


SOFT WARE ARCHITECTURE 

A 



Other titles in the Wiley Series in SOFTWARE DESIGN PATTERNS 

PATTERN-ORIENTED SOFTWARE ARCHITECTURE 
VOLUME 2: Patterns for Concurrent and Networked Objects 

Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann 

Designing application and middleware software to run in 
concurrent and networked environments is a significant 
challenge to software developers. This book presents 17 
interrelated patterns ranging from idioms through 
architectural designs. They cover core elements of building 
concurrent and network systems: service access and 
configuration, event handling, synchronization, and 
concurrency. All patterns present extensive examples 
and known uses in multiple programming languages, 
including extensive examples and known uses in multiple 
programming languages, including C++, C and Java. 

0 471 60695 2 cloth 6 3 4 ~ ~  2000 

A PATTERN APPROACH TO INTERACTION DESIGN 

J a n  Borchers 

Discover the power of the pattern format in user interface 
design. Key features of this book include a comprehensive 
pattern language for the interface design of interactive exhibits 
as well as a thorough introduction to original pattern work and 
its application in software development. 

This book offers invaluable practical guidance for interface 
designers, project managers and researchers working in HCI, 
as well as for designers of interactive systems. 

0 47 1 49828 9 cloth 2 5 0 ~ ~  200 1 



Frank Buschmann 
Regine Meunier 

Hans Rohnert 
Peter Sornmerlad 

Michael Stal 

of Siemens AG, Germany 

JOHN WlLEY & SONS 
Chichester . New York . Brisbane . Toronto . Singapore 



Copyright J '  1996 by John'Wiley & Sons Ltd. 
B a n s  Lane. Chichester. 
West Sussex PO19 IUD. England 

National 01243 779777 
International [+44) 1243 779777 
e-mail [for orders and customer service enquiries): 
cs-bookst%vilev.co.uk 
Visit our Home Page un http://u?uw.u4le)~o.uk 

or http.//www ullcy com 

All Rights Reserved. No part of this publication may be reproduced, stored 
in a retrieval system, or transmitted. In any form or by any means. electmnlc. 
mechanical, photocopying, recordlng. scannlng or otherwise, except under the terms 
ofthe Coovrieht. Deslens and Patents Act 1988 or under the terms of a licence . . .> 

Issurd hy thr  ~ n p ) n ~ h t  Llcrnsing .Qency. 90 Tollenham Coun Road London. 
WiP BHE. I IK.  withnut thr  prrmlsslon in u-rltmg of the puhlishrr, N t h  thr  rxcepllon 
of any matenal supplied spc~:~Il~al ly for tlw purpose of k i n g  entered and executed an  
a computer system for exclusive use by the purchaser of the publication. 

Designations used by companies to distinguish their products are often claimed a s  
trademarks. In all instances where John Wlley & Sons is aware of a claim, the 
product names appear in Initial capltal or all capllal letters. Readen, however, should 
contact the appropriate companies for more complete information regarding 
trademarks and regstration. 

Other Wiley Editorial O m s  

John  Wiley & Sons. Inc.. 605 n l r d  Avenue. 
New York. NY 10158-0012. USA 

WILEY-VCH Verlag GmbH. Pappelallee 3. 
D-69469 Weinheim. Germany 

Jacaranda Wlley Ltd. 33 Park Road. Mllton. 
Queensland 4064  Australia 

John  Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop 602-01 
J in Xlng Dlstrlpark. Singapore 129809 

John Wiley & Sons Canada) Ud. 22 Worcester Road. 
Rexdale. Ontario M9W 1L1. Canada 

Couer dhtmlwn.  Bascd upon a photograph of Chnnrrs Cnthrdr:,l. 
I Monlquc Jacot / Network Photographers I.ld 

British Libraq Cataloguing i n  Pvblication Data  

A catalogue record for this book is avallablc fmrn the British Library 

ISBN 0 471 95889 7 

Pn~duccd lrom camcra-ready copy supphcd by the authors uslny FrmeMaker. 
Wnt rd  and hound in Grrat Britdn by Bookcrd (Bath) I.td. 
Ih l s  b w k  is prlntcd on acld-frw paper rnpns lh ly  m a n u l a ~ t u r d  frum subwinable 
forestry, in which at least two tre&&e planted for each one used for paper production 



el, Anja a n d  

Regine Meunier 

For Ute 

Hans  Rohnert 

For Andrea 

Peter Sommerlad 

eh, Macho, Merlin 

Michael Stal  





Table of Contents 

. . . . . . . . . . . . . . . . . . . . . . . .  About this Book 

Guide to the Reader . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Patterns 

. . . . . . . . . . . . . . . . . . . . . . .  What is a Pattern? 
What Makes a Pattern? . . . . . . . . . . . . . . . . . . .  
Pattern Categories . . . . . . . . . . . . . . . . . . . . . . .  
Relationships between Patterns . . . . . . . . . . . . .  
Pattern Description . . . . . . . . . . . . . . . . . . . . . .  
Patterns and Software Architecture . . . . . . . . . .  
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Architectural Patterns . . . . . . . . . . . . . . . . . .  
lntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
From Mud to Structure . . . . . . . . . . . . . . . . . . .  
Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Pipes and Filters . . . . . . . . . . . . . . . . . . . . . . . .  
Blackboard . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Distributed Systems . . . . . . . . . . . . . . . . . . . . . .  
Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Interactive Systems . . . . . . . . . . . . . . . . . . . . . .  
Model-View-Controller . . . . . . . . . . . . . . . . . . . .  
Presentation-Abstraction-Control . . . . . . . . . . . .  
Adaptable Systems . . . . . . . . . . . . . . . . . . . . . . .  
Microkernel . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



viii Contents 

. . . . . . . . . . . . . . . . . . . . . . . .  Design Patterns 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Introduction 

. . . . . . . . . . . . . . . . .  Structural Decomposition 
Whole-Part . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  Organization of Work 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  Master-Slave 

. . . . . . . . . . . . . . . . . . . . . . . . .  Access Control 
Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Management 
. . . . . . . . . . . . . . . . . . . . .  Command Processor 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  View Handler 
Communication . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . .  Forwarder-Receiver 
. . . . . . . . . . . . . . . . . .  Client-Dispatcher-Server 

. . . . . . . . . . . . . . . . . . . . .  Publisher-Subscriber 

Idioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  Introduction 

. . . . . . . . . . . . . . . . .  What Can Idioms Provide? 
. . . . . . . . . . . . . . . . . . . . . . . .  Idioms and Style 

. . . . . . . . . . . . . .  Where Can You Find Idioms? 
. . . . . . . . . . . . . . . . . . . . . . . .  Counted Pointer 

. . . . . . . . . . . . . . . . . . . . . . .  Pattern Systems 
. . . . . . . . . . . . . . . . .  What is a Pattern System? 

. . . . . . . . . . . . . . . . . . . .  Pattern Classification 
. . . . . . . . . . . . . . . . . . . . . . . .  Pattern Selection 

Pattern Systems as Implementation Guidelines . 
. . . . . . . . . . .  The Evolution of Pattern Systems 

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



e Architecture . . . . . . . .  383 
. . . . . . . . . . . . . . . . . . . . . . . . . .  384 

. . . . . . . . . . . .  Patterns in Software Architecture 391 
6.3 Enabling Techniques for Software Architecture . 397 
6.4 Non-functional Properties of Software Architecture 404 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.5 Summary 411 

. . . . . . . . . . . . . . . . .  Community 413 
7.1 TheRoots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  414 
7.2 Leading Figures and their Work . . . . . . . . . . . . .  415 
7.3 The Community . . . . . . . . . . . . . . . . . . . . . . . . .  416 

8 Go? . . . . . . . . . . . . . . . . .  419 
8.1 Pattern-Mining . . . . . . . . . . . . . . . . . . . . . . . . . .  420 
8.2 Pattern Organization and Indexing . . . . . . . . . . .  423 
8.3 Methods and Tools . . . . . . . . . . . . . . . . . . . . . . .  424 

. . . . .  8.4 Algorithms. Data Structures and Patterns 426 
8.5 FomalizingPatterns . . . . . . . . . . . . . . . . . . . . .  427 

. . . . . . . . . . . . . . . . . . . . . . . . .  A Final Remark 42 

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429 

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  433 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  ces 441 

. . . . . . . . . . . . . . . . . . . . . . .  rns 455 





About this Book 

This is a book about patterns for software architecture. or simply. 
patterns. Patterns have been drawing considerable attention over 
recent years: workshops, tutorials, forums for electronic discussion. 
papers in journals and whole books are being devoted to patterns. 
The pattern community has even started its own conference. All this 
enthusiastic discussion of patterns makes them seem as if they are 
the climax of the 'object wave'. 

What is so excitlng about patterns? It is probably the fact that they 
constitute a 'grass roots' effort to build on the collective experience of 
sldlled designers and software engineers. Such experts already have 
solutions to many recurring design problems. Patterns capture these 
proven solutions in an easily-available and. hopefully, well-written 
form. 

We want this book to support both novices and experts in software 
development. It should help novices to act a s  If they were-or almost 
as if they were-experts on modest-slzed projects. without having to 
gain many years of experience. It should support experts In the design 
of large-scale and complex software systems with defined properties. 
It should also enable them to learn from the experience of other 
experts. The book should help both groups to find well-proven 
solutlons, as well a s  alternatlves, to specific design problems. 

The book Is lntended to be both an instructive text and a reference 
guide. It helps software developers to think about software architec- 
ture In a new way. and presents a number of techniques for solving 
particular recurring design problems. Using this book as a guide in a 
software engineering course can provide students with an entirely 
new perspective on the design of large-scale software systems. It can 
serve as  a reference manual, because it presents our techniques com- 
prehensively and ready for use. We include many guidelines and 
constraints for the practical application of the patterns we include. 



About this Book 

The idea of recording design wisdom in a canonical form can be traced 
to Christopher Alexander1. He pioneered patterns in the context of 
the architecture of buildings. His book The Timeless Way of Building 
shows how patterns can be applied to house construction, as well a s  
to the planning of neighborhoods and whole cities. The underlying 
theme of his work is the design of living places that are not only 
functional and fashionable, but also comforting and corisoling. Well- 
designed buildings demonstrate inherent qualities that can be clearly 
perceived, but are hard to describe or quanti&. In short, such 
buildings possess 'a quality without a name'. 

Early experiments in adapting this approach to software engineering 
leaned heavily on Alexander's style. More recently the software 
community has been experimenting to find a stylistic form better- 
suited to software design. Several different description forms for 
patterns have been tried, but there is no consensus yet. 

Although we put considerable effort into fmding a good way to 
describe patterns, developing theories on 'pattern styles' is not the 
main goal of this book. It was certainly not our initial motivation for 
starting work on patterns. In 199 1 we recorded our first patterns in 
a straightforward way. While our style of pattern documentation 
improved slowly, it soon became clear that individual patterns do not 
stand alone. Instead, patterns reveal a rich set of interrelationships. 
This was one of the driving forces for producing a book, rather than 
documenting patterns one a t  a time and publishing them as a series 
of papers. The disadvantage of the book appfoach is the long 
gestation period before it becomes available. Although this has been 
well-known for decades, it still astonishes u s  just how long it takes to 
come up with good pattern descriptions. 

Four other authors experienced the same phenomenon. In the fall of 
1994, Erich Gamma, Richard Helm, Ralph Johnson and John 
Vlissides published the seminal book Design Patterns - Elements of 
Reusable Object-Oriented Software. Although the idea of design 

1. Christopher Alexander is a practising architect and urban planner, as well as 
Professor of Architecture at the University of California at Berkeley, and Director of the 
Center for Environmental Structure. He developed a theory of architecture. butldlng 
and planning that is based on the construction and use of patterns. The theory itself, 
the patterns, experiments with his approach, as well as criticisms of the approach are 
published in a series of books by Oxford University Press. 



patterns was no longer novel, the 'GoF' book (named after the 'Gang- 
of-Four' in Chinese politics) presented the first catalog of well- 
described design patterns for object-orlented programs. 

Our approach is slightly different to the Gang-of-Four, though there 
are many slmllarlties and some overlaps. The GoF book concentrates 
on design-level patterns, whereas our patterns span several levels of 
abstraction. These range from high-level architectural p a t t e r s  
through design patterns to low-level idioms. We also focus on issues 
other than object-orientation. and try to incorporate the latest In- 
sights into pattern description techniques. Our overall goal is to use 
patterns to help In the wlder context of software architecture. We call 
this approach pattern-oriented soJtware architecture. We talk about 
pattern systems, in which patterns are not just collected into a hete- 
rogeneous contalner. but are also grouped according to appropriate 
criteria. The GoF book started this categorization effort by dividing 
patterns into 'creatlonal'. 'structural' and 'behavioral' groupings. We 
try to take the next step by grouping patterns according to finer- 
grained crlteria such as  interactive and adaptable systems. organl- 
zation of work, communication and access control. 

We want to encourage users of our pattern system to share it with 
their colleagues. Pattern-sharing establishes a common vocabulary 
for design problems. It allows the members of the growlng pattern 
community to identjfy, name and discuss both problems and 
solutions more effectively. Getting 'up to speed' in systems design Is 
one of the more important reasons to work with patterns, 

Our pattern system is not Intended to be complete. There are already 
so many patterns that it is irnpossfble to record all of them in a single 
book. With evolving technology new patterns may evolve. We hope you 
will extend, modify and tailor our pattern system to your specific 
needs. Missing patterns should be added, those not needed may be 
ignored and others may be changed. 

If you have any comments, criticisms or suggestions for improvement 
of the style and content of this book, please feel free to make them. 
We also welcome reports of experiences with the patterns we describe. 
You can write to us care of John Wiley & Sons Ltd., or send electronic 
mailtopatterns@mchp.siemens.de. 



xiv About this Book 

Preliminary versions of most of the patterns we include were dis- 
cussed on the Internet. Our motivation was not to get free advertising 
or to give away patterns. Instead, we wanted to help a new trend in 
publishing, that of showing material early on to involve the commu- 
nity before printing, with benefit to all parties. We enjoyed this 
experience and thank all participants. This does not mean that public 
electronic discussion of our book is closed, however. The mailing list 
still exists and readers are welcome to participate. Guidelines for sub- 
scription can be found on the patterns home page. Its URL is: 

http://www.hillside.net/patterns/ 

This URL is also the most important information source for all 
aspects of patterns, such a s  available and forthcoming books, 
conferences on patterns, papers on patterns and so on. 

The Structure of the Book 

The first chapter systematically introduces the notion of a pattern 
and discusses the principles of pattern description. Chapters 2 
through 4 present our catalog of patterns. 

Architectural patterns are the highest-level patterns. They are 
intended to provide the skeleton of an  overall system architecture. 
Chapter 2 features eight architectural patterns from different 
application areas. 

Chapter 3 presents a collection of eight design patterns that address 
the sort of problems typically encountered after the overall structure 
of a software system has been specified. Our design patterns deal, for 
example, with structuring components to handle complexity, distri- 
buting workload between components and organizing inter-compo- 
nent communication. 

Chapter 4 is the third and last part of the catalog. It deals with idioms, 
the language-dependent patterns. We refer however mainly to other 
people's work instead of documenting our own idioms, and only 
present one idiom a s  a concrete example. The reason for not descri- 
bing our own set of idioms is simple-a lot of idioms for languages 
such a s  C++ and Smalltalk are already available. Instead of just re- 
phrasing these patterns, we choose to refer to the original source. 



In Chapter 5 we argue that it is important to organize patterns into 
pattern systems. Such systems should help both writers and users of 
patterns in several ways: finding the right pattern for the situation at 
hand, filling gaps in a collection of patterns, understanding the 
relationships between patterns and evolving pattern systems. 

In Chapter 6 we discuss how patterns are embedded in software 
architecture. In particular we discuss our understanding of software 
architecture and its underlying principles and we demonstrate how 
these principles are supported by patterns. 

Chapter 7 is about the history of patterns, related work and the 
pattern community a t  large. To complete the book. Chapter 8 gives 
our view of the future of patterns. 

The book ends with an  appendix on notations, a glossary of frequently 
used terms, comprehensive references and a pattern index. 

Acknowledgments 

We wish to thank the many people who helped in different ways with 
the creation of this book, not just because it is customary, but 
because we take genuine pleasure in doing so. 

We thank Joelle Coutaz, Wilhelm Gruber, Claus Jiikel, Doug Lea, 
Oscar Nierstrasz, Laurence Nigay, Frances Paulisch, Wolfgang Pree, 
Uwe Steinmiiller, John Vlissides and Walter Zimmer for their 
discussion and revision of earlier versions of our work. Ralph 
Johnson and the members of his architecture reading group a t  the 
University of Illinois, Urbana-Champaign, namely John Brant, 
Michael Chung, Brian Foote, Don Roberts and Joseph Yoder carefully 
reviewed most of our pattern descriptions. They provided us  with 
many useful comments and suggestions for improvement. We also 
thank the Hillside Group for its support and encouragement. 

Acknowledgments to those people who helped with the improvement 
of specific patterns are given at  the end of each pattern description in 
a separate section. 

Special thanks go to James Coplien, Joseph Davison. Neil Harrison, 
and Douglas Schmidt. Their detailed review of all our material helped 
u s  to shape and polish the final contents of this book. 



Our summer students Marina Seidl and Martin Bo ler suffered with 
u s  through some early experiments. Special thanks also go to Franz 
Kapsner and Hartmut Raffler for their managerial support and 
backing at  the software engineering labs of Corporate Research and 
Development of Siemens AG, Munich, Germany. 

Francis Glassborow and Steve Rickaby attempted to improve upon 
our limited English writing capabilities, and helped eradicate the 
worst 'Germanisms'-not an  easy task. 

Finally, we thank our editor Gaynor Redvers-Mutton and everyone 
else a t  John Wiley & Sons who made it possible to meet the tight 
production schedule for this book. 



Guide to the Reader 

This book is structured so that it can be read from cover to cover. The 
following hints are provided in case you want to choose your own 
route through the book. 

Chapter 1, Patterns gives an in-depth explanation of patterns for soft- 
ware architecture. Everything that follows builds on this discussion, 
so you should read this chapter first. The order in which you read 
individual patterns is up to you. To grasp the key ideas behind a spe- 
cific pattern, you only need to read its Context. Problem and Solution 
sections. Extensive cross-referencing will guide you in understanding 
the relationships between patterns. 

If patterns are new to you, we suggest that you read the basic and 
simple patterns first-patterns that are easy to understand and that 
appear in many well-structured software systems. Examples are: 

The Pipes and Filters architectural pattern (531' 

The Proxy design pattern (2631 

The Fonvarder-Receiver design pattern (3071 

You can also use this book to And solutions to design problems you 
may encounter in your current project. Use the overview of our 
pattern system in Chapter 5 .  Pattern Systems as  a guide in your 
search, then look up the detailed descriptions of those patterns you 
have selected as  potential solutions. 

The other chapters--Chapter 6. Patterns and Sofhuare Architecture. 
Chapter 7, The Pattern Community and Chapter 8. Where Will Pat- 
terns Go?-can be read in any order, although the given order will suit 
most readers best. 

1. We adopt the page number notation Introduced by lGHJV951. (53) means that 
the corresponding pattern descrlptlon starts on page number page 53 of this book. 



This Page Intentionally Left Blank



Patterns 

... Somewhere in the deeply remote past it seriously 
traumatized a small randomgroup of atoms dnfiing 

through the empty sterility of space and mnde them cling 
together in the most extraordinarily unlikely patterns. 
These patterns quickly learnt to copy themselws (this 

was part of what was so extraordinary about the 
patterns) and went on to cause massiw trouble on e w y  

planet they drifed on to. 
That was how Ice began in the Universe ... 

Douglas Adam,  The Hitchhiker's Guide to the Galaxy 

-. Patterns help you build on the collective experience of skilled software 
engineers. They capture existing, well-proven experience in software 
development and help to promote good design practise. Every pattern 
deals with a specific, recurring problem in the design or implementa- 
tion of a software system. Patterns can be used to construct software 
architectures with specific properties. 

In this chapter we give an in-depth explanation of what patterns for 
software architecture are, and how they help you build software. 



1.1 What is a Pattern? 

When experts work on a particular problem, it Is unusual for them to 
tackle it by inventlng a new solution that Is completely distinct from 
existing ones. They often recall a slmllar problem they have already 
solved. and reuse the essence of I t s  solution to solve the new problem. 
Thls kind of 'expert behavior'. the thinking in problem-solution pairs. 
is common to many dlfferent domains, such a s  archltecture [Ale791. 
economics IEtz641 and software engineering lW941. It I s  a natural 
way of coping with any kind of problem or social Interaction [NS72]. 

Here is an elegant and intuitive example of such a problem-solution 
pair. taken from archltecture: 

Example Window Place IAIS771: 

Everybody loves wlndow seats. bay windows, and blg wlndows 
with low sills and comfortable chairs drawn up to them ... A room 
whlch does not have a place llke thls seldom allows you to feel 
comfortable or perfectly at  ease. .. 
If the room contains no wlndow whlch is a 'place", a person In the 
room will be torn between two forces: 

1. He wants to sit down and be comfortable. 

2. He I s  drawn toward the light. 

Obviously. If the comfortable places--those places In the room 
where you most want to slt-are away from the windows. there is 
no way of overcoming thls conflict.. . 
Therefore: In every room where you spend any length of time 
durlng the day. make at  least one wlndow into a "window place" $yb e 

Wlndow place 



What is a Pattern? 3 

Abstracting from specific problem-solution pairs and distilling out 
common factors leads to patterns: These problem-solution pairs tend 
to fall into families of similar problems and solutions with each family 
exhibiting a pattern in both the problems and the solutions' IJoh94j. 
In his book The Timeless Way of Building (Ale791 (p. 247), the 
architect Christopher Alexander defines the term pattern a s  follows: 

Each pattern is a three-part rule, which expresses a relation 
between a certain context, a problem, and a solution. 

As an element in the world, each pattern is a relationship between 
a certain context, a certain system of forces which occurs 
repeatedly in that context, and a certain spatial configuration 
which allows these forces to resolve themselves. 

As an element of language, a pattern is an instruction, which 
shows how this spatial configuration can be used, over and over 
again, to resolve the given system of forces, wherever the context 
makes it relevant. 

The pattern is, in short, at the same time a thing, which happens 
in the world, and the rule which tells us how to create that thing. 
and when we must create it. It is both a process and a thing: both 
a description of a thing which is alive, and a description of the 
process which will generate that thing. 

We also find many patterns in software architecture. Experts in 
software engineering know these patterns from practical experience 
and follow them in developing applications with specific properties. 
They use them to solve design problems both effectively and elegantly. 
Before discussing this in detail, let us  look at  a well-known example: 

Example Model-View-Controller (125) 

Consider this pattern when developing software with a human- 
computer interface. 

User interfaces are prone to change requests. For example, when 
extending the functionality of an application, menus have to be 
modified to access new functions, and user interfaces may have to be 
adapted for specific customers. A system may often have to be ported 
to another platform with a different 'look and feel' standard. Even 
upgrading to a new release of your window system can imply changes 
to your code. To summarize, the user interface of a long-lived system 
is a moving target. 



Patterns 

Building a system with the required flexibility will be expensive and 
error-prone if the user interface is tightly interwoven with the 
functional core. This can result in the development and maintenance 
of several substantially different software systems, one for each user 
interface implementation. Ensuing changes then spread over many 
modules. In summary, when developing such an  interactive software 
system, you have to consider two aspects: 

Changes to the user interface should be easy, and possible a t  run- 
time. 

Adapting or porting the user interface should not impact code in 
the functional core of the application. 

To solve the problem, divide a n  interactive application into three 
areas: processing, output and input: 

The model component encapsulates core data and functionality. 
The model is independent of specific output representations or 
input behavior. 

View components display information to the user. A view obtains 
the data it displays from the model. There can be multiple views of 
the model. 

Each view has a n  associated controller component. Controllers 
receive input, usually a s  events that denote mouse movement, ac- 
tivation of mouse buttons or keyboard input. Events are translated 
to service requests, which are sent either to the model or t.o the 
view. The user interacts with the system solely via controllers. 

The separation of the model from the view and controller components 
allows multiple views of the same model. If the user changes the 
model via the controller of one view, all other views dependent on this 
data should reflect the change. To achieve this, the model notifies all 
views whenever its data changes. The views in turn retrieve new data 
from the model and update their displayed information. 

This solution allows you to change a subsystem of the application 
without causing major effects to other subsystems. For example, you 
can change from a non-graphical to a graphical user interface without 
modifying the model subsystem. You can also add support for a new 
input device without affecting information display or the functional 



What is a Pattern? 5 

core. All versions of the software can operate on the same model 
subsystem independently of specific 'look and feel'. 

The following OMT class diagram1 illustrates this solution: 

I call update 

attach(Observer1 attach 
detach(Observer1 
notify 

getData 
service 

update 

I 

View 

myModel 
mycontroller - 
initiallze(Mode1) 

' 

create 
makecontroller manipulate 
activate display 
display 
update 

attach 
I call service 

initislize(Mode1,View) 
handleEvent 
update 

tl 

We can derive several properties of patterns for software architecture 
from this introductory example2: 

A pattern addresses a recurring design problem that arises in specifi 
design situations, and presents a solution to it. In our example here 
the problem is supporting variability in user interfaces. This problem 
may arise when developing soRware systems -with human-computer 
interaction. You can solve this problem by a strict separation of 
responsibilities: the core functionality of the application is separated 
from its user interface. 

Patterns document existing, well-proven design experience. They are 
not invented or created artificially. Rather they 'distill and provide a 
means to reuse the design knowledge gained by experienced prac- 

- - - - 

1. For a summary of the analysis and design method Object-Modeling-Technique 
(OMT) and its notation, see Notations on page 429. For details we refer to [RBPELSl]. 

2. If not stated otherwise, we use the terms pattern and pattern for somare 
architecture as synonyms. 



titioners' [GHJV93]. Those familiar with an  adequate set of patterns 
'can apply them immediately to design problems without having to 
rediscover them' [GHJV93]. Instead of knowledge existing only in the 
heads of a few experts, patterns make it more generally available. You 
can use such expert knowledge to design high-quality software for a 
specific task. The Model-View-Controller pattern, for example, pre- 
sents experience g ed over many years of developing interactive 
systems. Many well-kn applications already apply the Model- 
View-Controller pattern-it is the classical architecture for many 
Smalltalk applications, and under everal application frameworks 
such as  MacApp [Sch86] or ET++ 

Patterns ident& and specla abstractions that are above the level of 
single classes and instances, or of components [GHJV93]. Typically, a 
pattern describes several components, classes or objects, and details 
their responsibilities and relationships, as  well as  their cooperation. 
All components together solve the problem that the pattern addres- 
ses, and usually more effectively than a single component. For 
example, the Model-View-Controller pattern describes a triad of three 
cooperating components, and each MVC triad also cooperates with 
other MVC triads of the system. 

Patterns provide a common vocabulary and understanding for design 
principles [GHJV93]. Pattern names, if chosen carefully, become part 
of a widespread design language. They facilitate effective discussion 
of design problems and their solutions. They remove the need to 

n a solution to a particular problem with a lengthy and 
complicated description. Instead you can use a pattern name, and 
explain which parts of a solution correspond to which components of 
the pattern, or to which relationships between them. For example, the 
name 'Model-View-Controller' and the associated pattern has been 

to the Smalltalk community since the early '80s, and is 
used by many software engineers. en we say 'the architecture of 
the software follows Model-View-Controller', all our colleagues who 
are familiar with the pattern have an idea of the basic structure and 
properties of the application immediately. 

Patterns are a means of documenting soffware architectures. They can 
describe the vision you have in mind when designing a software 
system. This helps others to avoid violating this vision when 
extending and modifying the original architecture, or when modifying 



What is a Pattern? 7 

the system's code. For example, if you know that a system is 
structured according to the Model-View-Controller pattern, you also 
know how to extend it with a new function: keep core functionality 
separate from user input and information display. 

Patterns support the construction of software with defined properties. 
Patterns provide a skeleton of functional behavior and therefore help 
to implement the functionality of your application. For example, 
patterns eldst for maintaining consistency between cooperating 
components and for providing transparent peer-to-peer inter-process 
communication. In addition, patterns explicitly address non- 
functional requirements for software systems, such a s  changeability, 
reliability, testability or reusability. The Model-View-Controller 
pattern, for example, supports the changeability of user interfaces 
and the reusability of core functionality. 

Patterns help you build complex and heterogeneous sofhoare 
architectures. Every pattern provides a predefined set of components, 
roles and relationships between them. It can be used to speciw 
particular aspects of concrete software structures. Patterns 'act a s  
building-blocks for constructing more complex designs' [GHJV93]. 
This method of using predefined design artifacts supports the speed 
q d  the quality of your design. Understanding and applying well- 
written patterns saves time when compared to searching for solutions 
on your own. This is not to say that individual patterns will 
necessarily be better than your own solutions, but, a t  the very least. 
a pattern system such as  is explained in this book can help you to 
evaluate and assess design alternatives. 

However, although a pattern determines the basic structure of the 
solution to a particular design problem, it does not speciw a fully- 
detailed solution. A pattern provides a scheme for a generic solution 
to a family of problems, rather than a prefabricated module that can 
be used 'as is'. You must implement this scheme according to the 
specific needs of the design problem at  hand. A pattern helps with the 
creation of similar units. These units can be alike in their broad 
structure, but are frequently quite different in their detailed 
appearance. Patterns help solve problems, but they do not provide 
complete solutions. 

Patterns help you to manage s o m a r e  complexity. Every pattern 
describes a proven way to handle the problem it addresses: the kinds 



Patterns 

of components needed, their roles, the details that should be hidden, 
the abstractions that should be visible, and how everything works. 
When you encounter a concrete design situation covered by a pattern 
there is no need to waste time inventing a new solution to your 
problem. If you implement the pattern correctly, you can rely on the 
solution it provides. The Model-View-Controller pattern, for example, 
helps you to separate the different user interface aspects of a software 
system and provide appropriate abstractions for them. 

We end with the following definition: 

A pattern for software architecture describes a particular recurring de- 
sign problem that arises in specific design contexts, and presents a 
well-proven generic scheme for its solution. The solution scheme is 
specified by describing its constituent components, their responsibi- 
lities and relationships, and the ways in which they collaborate. 

1.2 What Makes a Pattern? 

The discussion in the previous section leads u s  to adopt a three-part 
schema that underlies every pattern: 

Contexf: a situation giving rise to a problem. 

Problem: the recurring problem arising in that context. 

Solution: a proven resolution of the problem. 

The schema as a whole denotes a type of rule that establishes a 
relationship between a given context, a certain problem arising in 
that context, and an appropriate solution to the problem. All three 
parts of this schema are closely coupled. However, to understand the 
schema in detail, we have to clarify what we mean by context, problem, 
and solution. 

Context The context extends the plain problem-solution dichotomy by 
describing situations in which the problem occurs. The context of a 



What Makes a Pattern? 9 

pattern may be fairly general, for example 'developing software with a 
human-computer interface.' On the other hand, the context can tie 
specific patterns together, such as  'implementing the change- 
propagation mechanism of the Model-View-Controller triad.' 

Specifying the correct context for a pattern is difficult. We find it 
practically impossible to determine all situations, both general and 
specific, in which a pattern may be applied. A more pragmatic 
approach is to list all known situations where a problem that is 
addressed by a particular pattern can occur. This does not guarantee 
that we cover every situation in which a pattern may be relevant, but 
it a t  least gives valuable guidance. 

Problem This part of a pattern description schema describes the problem that 
arises repeatedly in the given context. I t  begins with a general 
problem specification, capturing its very essence-what is the con- 
crete design issue we must solve? The Model-View-Controller pattern, 
for example, addresses the problem that user interfaces often vary. 
This general problem statement is completed by a set of forces. 
Originally borrowed from architecture and Christopher Alexander, 
the pattern community uses the term force to denote any aspect of the 
problem that should be considered when solving it, such as: 

Requirements the solution must fulfil-for example, that peer-to- 
peer inter-process communication must be efficient. 

Constralnts you must consider-for example, that inter-process 
communication must follow a particular protocol. 

Desirable properties the solution should have-for example, that 
changing software should be easy. 

The Model-View-Controller pattern from the previous section 
specifies two forces: it should be easy to modify the user interface, but 
the functional core of the software should not be affected by its 
modification. 

In general, forces discuss the problem from various viewpoints and 
help you to understand its details. Forces may complement or 
contradict each other. Two contradictory forces are, for example, 
extensibility of a system versus minimization of its code size. If you 
want your system to be extensible, you tend to use abstract 
superclasses. If you want to minimize code size, for example for 



atter 

embedded applications, you may not be able to afford such a l m r y  
as  abstract superclasses. Most importantly, however, forces are the 
key to solving the problem. The better they are balanced, the better 
the solution to the problem. Detailed discussion of forces is therefore 
an  essential part of the problem statement. 

olution The solution part of a pattern shows how to solve the recurring 
problem, or better, how to balance the forces associated with it. In 
software architecture such a solution includes two aspects. 

Firstly, every pattern specifies a certain structure, a spatial configu- 
ration of elements. For ex ple, the description of the Model-View- 
Cbntroller pattern includes the following sentence: 'Divide an  interac- 
tive application into the three areas: processing, output, and input.' 

This structure addresses the static aspects of the solution. Since such 
a structure can be seen as  a micro-architecture [GHJV93], it consists, 
like any software architecture, of both components and their 
relationships. Within this structure the components serve a s  building 
blocks, and each component has a defined responsibility. The 
relationships between the components determine their placement. 

Secondly, every pattern specifies run-time behavior. For example, the 
solution part of the Model-View-Controller pattern includes the 
following statement: 'Controllers receive input, usually a s  events that 
denote mouse movement, activation of mouse buttons, or keyboard 
input. Events are translated to service requests, which are sent either 
to the model or to the view'. 

This run-time behavior addresses the dynamic aspects of the solu- 
tion. How do the participants of the pattern collaborate? How is work 
organized between them? How do they communicate with each other? 

It is important to note that the solution does not necessarily resolve 
all forces associated with the problem. It may focus on particular 
forces and leave others half or completely unresolved, especially if 
forces are contradictory. 

As we mentioned in the previous section, a pattern provides a solu- 
tion schema rather than a fully-specified artifact or blueprint. You 
should be able to reuse the solution in many implementations, but  so 
that its essence is still retained. A pattern is a mental building block. 
After applying a pattern, an  architecture should include a particular 



Pattern Categories 11 

structure that provides for the roles specified by the pattern, but ad- 
justed and tailored to the specific needs of the problem at  hand. No 
two implementations of a given pattern are likely to be the same. 

The following diagram summarizes the whole schema: 

Pattern 

C Context 

L Design situation giving rise to a design problem 

Problem 

L Set of forces repeatedly arising in the context 

Solution 

L Configuration to balance the forces 

t Structure with components and relationships 

Run-time behaviour 

This schema captures the very essence of a pattern independently of 
its domain. Using it as  a template for describing patterns seems 
obvious. It already underlies many pattern descriptions, for example 
those in [AIS77], IBJ941, [Cope94c], [Cur1941 and [Mes94]. This gives 
us confidence that the above form makes it easy to understand, share 
and discuss a pattern. 

1.3 Pattern Categories 

A closer look at  existing patterns reveals that they cover various 
ranges of scale and abstraction. Some patterns help in structuring a 
software system into subsystems. Other patterns support the 
refinement of subsystems and components, or of the relationships 
between them. Further patterns help in implementing particular 
design aspects in a specific programming language. Patterns also 
range from domm-independent ones, such as  those for decoupling 
interacting components, to patterns addressing domain-specific 



Patterns 

aspects such a s  transaction policies in business applications, or call 
routing in telecommunication. 

To refine our classification, we group patterns into three categories: 

Architectural patterns 

Design patterns 

Idioms 

Each category consists of patterns having a similar range of scale or 
abstraction. 

Architectural Patterns 

Viable software architectures are built according to some overall 
structuring principle. We describe these principles with architectural 
patterns. 

An architectural pattern expresses a fundamental structural organi- 
zation schema for software systems. It provides a set of predefined 
subsystems, specifies their responsibilities, and includes rules and 
guidelines for organizing the relationships between them. 

Architectural patterns are templates for concrete software architec- 
tures. They specify the system-wide structural properties of a n  
application, and have an impact on the architecture of its sub- 
systems. The selection of an  architectural pattern is therefore a 
fundamental design decision when developing a software system. 

The Model-View-Controller pattern from the beginning of this chapter 
is one of the best-known examples of an architectural pattern. It 
provides a structure for interactive software systems. 

Design Patterns 

The subsystems of a software architecture, as  well a s  the relation- 
ships between them, usually consist of several smaller architectural 
units. We describe these using design patterns. 



roble 

Solution 

A design pattern provides a scheme for refining the subsystems or 
components of a software system, or the relationships between them. 
It describes a commonly-recumng structure of communicating com- 
ponents that solves a general design problem within a particular 
context [GHJV95]. 

Design patterns are medium-scale patterns. They are smaller in scale 
than architectural patterns, but tend to be independent of a 
particular programming language or programming paradigm. The 
application of a design pattern has no effect on the fundamental 
structure of a software system, but may have a strong influence on 
the architecture of a subsystem. 

Many design patterns provide structures for decomposing more com- 
plex services or components. Others address the effective cooperation 
between them, such as  the following pattern: 

Observer [GHJV95] or Publisher-Subscriber (339) 

A component uses data or information provided by another 
component. 

Changing the internal state of a component may introduce inconsis- 
tencies between cooperating components. To restore consistency, we 
need a mechanism for exchanging data or state information between 
such components. 

Two forces are associated with this problem: 

The components should be loosely coupled-the information 
provider should not depend on details of its collaborators. 

The components that depend on the information provider are not 
known a priori. 

Implement a change-propagation mechanism between the informa- 
tion provider-the subject-and the components dependent on it-the 
obseroers. Observers can dynamically register or unregister with this 
mechanism. Whenever the subject changes its state, it starts the 
change-propagation mechanism to restore consistency with all regis- 
tered observers. Changes_?e propagated by invoking a special update 



Patterns 

function common to all observers. To implement change propaga- 
tion-the passing of data and state information from the subject to 
the observers-you can use a pull-model, a push-model, or a combi- 
nation of both. 

Observer I Subject 

applicationData 

propagatechan e 
attach(Observe3 
detach(0bserver) 

update 

senrice 

propagates a 
changes 

Idioms 

Idioms deal with the implementation of particular design issues. 

An idiom is a low-level pattern specific to a programming language. 
An idiom describes how to implement particular aspects of 
components or the relationships between them using the features of 
the given language. 

Idioms represent the lowest-level patterns. They address aspects of 
both design and implementation. 

Most idioms are language-specific-they capture existing program- 
ming experience. Often the same idiom looks different for different 
languages, and sometimes an idiom that is useful for one program- 
ming language does not make sense in another. For example, the C++ 
community uses reference-counting idioms to manage dynamically- 
allocated resources; Smalltalk provides a garbage collection mecha- 
nism, so has no need for such idioms. 

The following example deals with a critical operation in C++: 
assignment. The pattern is called Counted Body. Its description is 
largely taken from ICope94al. We later describe the Counted Pointer 
pattern (353). which includes the Counted Body pattern as  a variant. 



attern Categories 1 

Name Counted Body [Cope94a] 

ontext The interface of a class is separated from its implementation. A 
handle class presents the class interface to the user. The other class 
embodies the implementation, and is called body. The handle 
forwards member function invocations to the body. 

ent in C++ is defined recursively as  member-by-member 
nt, with copying as  the termination of the recursion. In 

Smalltalk, it would be more efficient and more in the spirit of the 
language if copying were rebinding. In detail, you need to balance 
three forces: 

* Copying of bodies is expensive in both storage requirements and 
processing time. 

* Copying can be avoided by using pointers and references, but these 
leave a problem-who is responsible for cleaning up the object? 
They also leave a user-visible distinction between built-in types 
and user-defined types. 

* Sharing bodies on assignment is semantically incorrect if the 
shared body is modified through one of the handles. 

olution A reference count is added to the body class to facilitate memory 
management. Memory management is added to the handle class, 
particularly to its implementations of initialization, assignment, copy- 
ing and destruction. It is the responsibility of any operation that 
modifies the state of the body to break the sharing of the body by 
making its own copy, decrementing the reference count of the original 
body. 

This solution avoids gratuitous copying, leading to a more efficient 
implementation. Sharing is broken when the body state is modified 
through any handle. Sharing is preserved in the more common case 
of parameter passing. Special pointer and reference types are 
avoided, and Smalltalk semantics are approximated. Garbage 
collection can be implemented based on this model. 

Ideally, our categories help you to preselect potentially useful 
patterns for a given design problem. They are related to important 



Patterns 

software development activities. Architectural patterns can be used 
at the beginning of coarse-grained design, design patterns during the 
whole design phase, and idioms during the implementation phase. A 
more detailed discussion of these issues can be found in Section 5.2, 
Pattern Classification, together with a discussion of alternative 
classification schemas. 

1.4 Relationships between Patterns 

A close look at  many patterns reveals that, despite initial impres- 
sions. their components and relationships are not always a s  'atomic' 
a s  they first appear to be. A pattern solves a particular problem, but 
its application may raise new problems. Some of these can be solved 
by other patterns. Single components or relationships inside a parti- 
cular pattern may therefore be described by smaller patterns, all of 
them integrated by the larger pattern in which they are contained. 

Example Refinement of the Model-View-Controller pattern 

The Model-View-Controller pattern separates core functionality from 
human-computer interaction to provide adaptable user interfaces. 
However, applying this pattern introduces a new problem. Views, and 
sometimes even controllers, depend on the state of the model. The 
consistency between them must be maintained: whenever the state of 
the model changes, we must update all its dependent views and con- 
trollers. However, we must not lose the ability to change the user 
interface. The Observer pattern from the previous section helps u s  to 
solve this problem-the model embodies the role of the subject, while 
views and controllers play the roles of observers. D 

Most patterns for software architecture raise problems that can be 
solved by smaller patterns. Patterns do not usually exist in isolation. 
Christopher Alexander puts this in somewhat idealistic terms: 'Each 
pattern depends on the smaller patterns it contains and on the larger 
patterns in which it is contained' IAle791. 

A pattern may also be a variant of another. From a general perspective 
a pattern and its variants describe solutions to very similar problems. 



Relationships between Patterns 17 

These problems usually vary in some of the forces involved, rather 
than in general character. This is illustrated in the following example. 

Example The Document-View variant of the Model-View-Controller pattern. 

Consider the development of an interactive text editor using the 
Model-View-Controller pattern. Within such an application it is hard 
to separate controller functionality from view functionality. Suppose 
you select text with the mouse and change it from regular to bold face. 
Text selection is a controller action that does not cause changes to the 
model. The selected text just serves as input for another controller 
action, here changing the face of the selected text. However, text 
selection has a visual appearance-the selected text is highlighted. In 
a strict Model-View-Controller structure, the controller must either 
implement this 'view-like' behavior by itself, or must cooperate with 
the view in which the selected text appears. Both solutions require 
some unnecessary implementation overhead. 

In such a situation it is better to apply the Document-View variant of 
the Model-View-Controller pattern, which unifies the view and 
controller functionality in a single component, the view of the 
Document-View pattern. The document component directly 
corresponds to the model of the Model-View-Controller triad. When 
using the Document-View variant, however, we lose the ability to 
change input and output functionality independently. D 

Patterns can also combine in more complex structures at the same 
level of abstraction. This happens when your original problem 
includes more forces than can be balanced by a single pattern. In this 
case, applying several patterns can solve the problem. Each pattern 
resolves a particular subset of the forces. 

Example Transparent peer-to-peer inter-process communication 

Suppose you have to develop a distributed application with high 
performance peer -to-peer inter -process communication. The 
following forces must be balanced: 

The inter-process communication must be efficient. Spending time 
searching for the location of remote servers is undesirable. 

Independence from a particular inter-process communication 
mechanism is desirable. The mechanism must be exchangeable 
without affecting clients or servers. 



Patterns 

Clients should not be aware of, or dependent on, the name and 
location of their servers. Instead, they should communicate with 
each other as  if they were in the same process. 

This problem cannot be solved by any single pattern in isolation, but 
two patterns in combination can achieve this. The Forwarder- 
Receiver pattern (307) resolves the first and second force. It offers a 
general interface for sending and receiving messages and data across 
process boundaries. The pattern hides the details of the concrete 
inter-process communication mechanism. Replacing this mechanism 
only affects the forwarders and receivers of the system. In addition, 
the pattern offers a name-to-address mapping for servers. 

The Proxy pattern (263) resolves the third force. In this pattern, the 
client communicates with a representative of the server that is located 
in the same process. This representative, the remote proxy, knows 
details about the server, such as its name, and forwards every request 
to it. 

Client Forwarder 
P - - 
computeTask marshal - 

deliver 
sendMsg 

proxy - 
- 

1ocationData 

service Receiver 

Receiver 

Forwarder 

receive 
unmarshal 
receiveMsg sendMsg 

u 
All three kinds of relationship-refinement, variants and 
combination-help in using patterns effectively. Refinement supports 
the implementation of a pattern, combination helps you compose 
complex design structures, and variants help when selecting the right 
pattern in a given design situation. 

You can find complementary discussion of relationships between 
patterns in IZim941. 



1.5 Patter 

Patterns must be presented in a n  appropriate form if we are to 
understand and discuss them. A good description helps us  grasp the 
essence of a pattern immediately-what is the problem the pattern 
addresses, and what is the proposed solution? A good description 
also provides u s  with all the details necessary to implement a pattern, 
and to consider the consequences of its application. 

Patterns should also be described uniformly. This helps u s  to 
compare one pattern with another, especially when we are looking for 
alternative solutions to a problem. 

The basic Context-Problem-Solution structure we discussed earlier in 
this chapter provides us  with a good starting point for a description 
format that meets the above requirements. It captures the essential 
characteristics of a pattern, and provides you with the key ideas. We 
have therefore based our description template on this structure. 

However, describing a pattern based exclusively on a Context- 
Problem-Solution schema is not enough. A pattern must be named- 
preferably with an intuitive name-if we are to share it and discuss it. 
Such a name should also convey the essence of a pattern. A good 
pattern name is vital, a s  it will become part of the design vocabulary 
[GHJV93]. 

We add a n  introductory example to the pattern description to help ex- 
plain the problem and its associated forces. We repeatedly refer to this 
example when discussing solution and implementation aspects of the 
general pattern. 

We further use diagrams and scenarios to illustrate the static and 
dynamic aspects of the solution. We also include implementation 
guidelines for the pattern. These guidelines help us  transform a given 
architecture into one that uses the pattern. We add sample code, and 
list successful applications of the pattern to enhance its credibility. 

We also describe variants of a pattern. Variants provide us  with 
alternative solutions to a problem. However, we do not describe these 
variants at  the same level of detail as  the original pattern-we only 
describe them briefly. 



Patterns 

A discussion of the benefits and potential liabilities of a pattern 
highlight the consequences of its application. This provides us  with 
information to help us  decide whether we can use the pattern to 
provide an adequate solution to a specific problem. We also cross- 
reference other related patterns, either because they refine the 
current pattern, or because they address a similar problem. 

With all this information available and appropriately laid out, we 
should be able to understand a pattern, apply and implement it 
correctly. 

Finally we give credits to all who helped to shape a particular pattern. 
Writing patterns is hard. Achieving a crisp pattern description takes 
several review and revision cycles. Many experts from all over the 
world have helped u s  with this activity, and we owe them our special 
thanks. If we know the names of the pattern 'discoverers', the persons 
who originally described the pattern, we give credits to them a s  well. 

Our pattern description template is therefore as  follows: 

Name The name and a short summary of the pattern. 

Also Known As Other names for the pattern, if any are known. 

Example A real-world example demonstrating the existence of the problem and 
the need for the pattern. 

Throughout the description we refer to the example to illustrate solu- 
tion and implementation aspects, where this is necessary or useful. 
Text that is specifically about the example is marked by the r symbol 
at its beginning and by the D symbol at its end. 

Context The situations in which the pattern may apply 

Problem The problem the pattern addresses, including a discussion of its 
associated forces. 

Solution The fundamental solution principle underlying the pattern. 

Structure A detailed specification of the structural aspects of the pattern, 
including CRC-cards [BeCu89] (see Notations on page 429) for each 
participating component and an OMT class diagram [RBPEL9 11. 

Dynamics m i c a 1  scenarios describing the run-time behavior of the pattern. 



Pattern 

Variants 

Known Uses 

Consequences 

We further illustrate the scenarios with Object Message Sequence 
Charts (see Notations on page 43 1). 

Guidelines for implementing the pattern. 

These are only a su estion, not an immutable rule. You should adapt 
the implementation to meet your needs, by adding different, extra, or 
more detailed steps, or by re-ordering the steps. We give C++, 
Smalltalk, Java or pSather code fragments to illustrate a possible 
implementation, often describing details of the example problem. 

Discussion of any important aspects for resolving the example that 
are not yet covered in the Solution, Structure, Dynamics and 
Implementation sections. 

A brief description of variants or specializations of a pattern. 

Examples of the use of the pattern, taken from existing systems. 

The benefits the pattern provides, and any potential liabilities. 

References to patterns that solve similar problems, and to patterns 
that help us  refine the pattern we are describing. 

atte Software Archite 

An important criterion for the success of patterns is how well they 
meet the objectives of software engineering. Patterns must support 
the development, maintenance and evolution of complex, large-scale 
systems. They must also support effective industrial software 
production, othenvise they remain just an interesting intellectual 
concept, but useless for constructing software. 

We have already learned that patterns are useful mental building- 
blocks for dealing with limited and specific design aspects when 
developing a software system. 



Patterns 

Patterns therefore address an important objective of software 
architecture-the construction of specific software architectures with 
defined properties. Consider the Model-View-Controller pattern 
again. It provides a structure that supports the tailoring of the user 
interface of an interactive application. 

General techniques for software architecture, such as guidelines on 
using object-oriented features such as inheritance and polyrnor- 
phism, do not address the solution of specific problems. Most of the 
existing analysis and design methods also fail at this level. They only 
provide general techniques for building software, for example 'sepa- 
rate policy from implementation' [RBPELS l]. The creation of specific 
architectures is still based on intuition and experience. 

Patterns effectively complement these general problem-independent 
architectural techniques with specific problem-oriented ones. Note 
that patterns do not make existing approaches to software architec- 
ture obsolete-instead, they fill a gap that is not covered by existing 
techniques. 

Constructing Heterogenous Architectures 

A single pattern cannot enable the detailed construction of a complete 
software architecture-it just helps you to design one aspect of your 
application. Even if you design one aspect correctly, however, the 
whole architecture may still fail to meet its desired overall properties. 
To meet the needs of software architecture 'in the large' we need a rich 
set of patterns that must cover many different design problems. The 
more patterns that are available, the more design problems that can 
be addressed appropriately, and the more we are supported in con- 
structing software architectures with defined properties. 

On the other hand, the more patterns that are available, the harder 
it is to achieve an overview of them. As  we have already pointed out. 
there are many relationships between patterns. When applying one 
pattern, you want to know which other patterns can help refine the 
structure it introduces. You also want to know which other patterns 
you can combine with it. 

To use patterns effectively, we therefore need to organize them into 
pattern systems. A pattern system describes patterns uniformly, clas- 
sifies them, and most importantly, shows how they are interwoven 



Patterns and Software Architecture 23 

with each other. Pattern systems also help you to find the right pat- 
tern to solve a problem or to identify alternative solutions to it. This 
is in contrast to a pattern catalog, where each pattern is described 
more or less in isolation from other patterns. Pattern systems help us 
to use the power that the entirety of patterns provides. 

Patterns versus Methods 

A good pattern description also includes guidelines for its implemen- 
tation that you can consider as a micro-method for creating the 
solution to a specific problem. These micro-methods complement 
general but problem-independent analysis and design methods. such 
as Booch [Boo941 and Object Modeling Technique [RBPELS 11, by pro- 
viding methodological steps for solving concrete recumng problems 
in software development. Section 5.4, Pattern Systems as lmplemen- 
tation Guidelines discusses this issue in detail. 

Implementing Patterns 

Another aspect that arises from the integrauon of patterns with 
software architecture is a paradigm for implementing them. Many 
current software patterns have a distinctly object-oriented flavor. It is 
tempting to conclude that the only way we can implement a pattern 
effectively is in an object-oriented programming language. However, 
we think such conclusions are false. 

On one hand, it is true that many patterns, including those in this 
book, use object-oriented techniques such as polymorphism and 
inheritance. Examples of such patterns are the Strategy pattern 
[GHJV95] and the Proxy pattern (263). 

On the other hand, object-oriented features are not essential for im- 
plementing these patterns. Proxy, for example, loses only a small 
fraction of its elegance by giving up inheritance. Strategy can be im- 
plemented in C by using function pointers instead of polymorphism 
and inheritance. 

At the design level, most patterns only require certain abstraction 
facilities of a programming language, such as modules or data 
abstraction. You can therefore implement patterns with almost any 
programming paradigm and in almost any programming language. In 



Patterns 

addition, every programming language has specific patterns of its 
own, the idioms of that language. They capture existing programming 
experience with the language and define a programming style for it. 

In conclusion, we can say that there is no single paradigm or 
language for implementing patterns. Patterns can be integrated with 
every paradigm used for constructing software architectures. 

1.7 Summary 

Patterns provide a promising approach for developing software with 
defined properties. They document existing design knowledge and 
help you find appropriate solutions to design problems. Patterns exist 
in various ranges of scale and abstraction, and cover many different 
and important areas of software development. Patterns are interwo- 
ven with each other-you can use them to refine other, larger patterns 
and you can combine them to solve more complex problems. They ad- 
dress important aspects of software architecture and complement 
existing techniques and methods. You can integrate them with every 
programming paradigm and implement them in almost any program- 
ming language. In summary, the entirety of patterns provides a 
mental toolbox that helps you construct software that meets both the 
functional and non-functional requirements of an application. 

Patterns are already being successfully applied. We find them in ap- 
plications from the business domain [EKM+94], the automation do- 
main [BM95] and the telecommunication domain [Sch95]. They play 
an important role in application frameworks such as  ET++ WGM881 
or Interviews [LCITV92], a s  well a s  in run-time environments like the 
Meta-Information-Protocol for C++ [BKSP921. 

To exploit the full power of patterns, however, we need to provide 
technical and methodical support that goes beyond the scope of 
individual patterns. We address some of these aspects in Chapter 5. 
Pattern Systems. 



2 Architectural Patterns 

Layer Cake 

2 cL White Creme de  Cacao 
2 cl. Aprlcot Brandy 

2 ct. Double cream 

Pour Creme de  Cacao lnto a Pusse-&f& glass. Add the 
Apricot Brandy by carefuUy letting ItJZow over the back 
o f a  spoon thcrt is touching the Inside ofthe glass. Add 
the cream in the same way as the Apricot Brandy. The 

individual layers must not be mtxed 
Drink whlk reading the Layers patfern. 

Architectural patterns express fundamental structural organization 
schemas for software systems. They provide a set of predefined 
subsystems. specify t he t  responsibilities. and include rules and 
guidelines for organizing the relationships between them. 

In this chapter we present the following eight architectural patterns: 
Layers, Pipes and Fllters. Blackboard. Broker, Model-View-Controller, 
Presentation-Abstractlon-Control. Microkernel. and Reflection. 



26 

2.1 Introduction 

Architectural Patterns 

Architectural patterns represent the highest-level patterns in our 
pattern system. They help you to specify the fundamental structure 
of an application. Every development activity that follows is governed 
by this structure-for example, the detailed design of subsystems, the 
communication and collaboration between different parts of the 
system, and its later extension. 

Each architectural pattern helps you to achieve a specific global sys- 
tem property, such as the adaptability of the user interface. Patterns 
that help to support similar properties can be grouped into categories. 
In this chapter we group our patterns into four categories: 

From M w l  to Structure. Patterns in this category help you to avoid 
a 'sea' of components or objects. In particular, they support a 
controlled decomposition of an overall system task into cooperating 
subtasks. The category includes the Layers pattern (31). the Pipes 
and Filters pattern (53) and the Blackboard pattern (7 1). 

Distributed Systems. This category includes one pattern. Broker 
(99), and refers to two patterns in other categories, Microkernel 
(17 1) and Pipes and Filters (53). The Broker pattern provides a 
complete infrastructure for distributed applications. Its underlying 
architecture is soon to be standardized by the Object Management 
Group (OMG) [OMG92]. The Microkernel and Pipes and Filters pat- 
terns only consider distribution as a secondary concern and are 
therefore listed under their respective primary categories. Details 
about distribution aspects of both patterns are discussed in Sec- 
tion 2.3, Distributed Systems, however. 

Interactive Systems. This category comprises two patterns, the 
Model-View-Controller pattern (125), well-known from Smalltalk, 
and the Presentation-Abstraction-Control pattern ( 145). Both 
patterns support the structuring of software systems that feature 
human-computer interaction. 

Adaptable Systems. The Reflection (193) pattern and the Microker- 
nel pattern (17 1) strongly support extension of applications and 
their adaptation to evolving technology and changing functional re- 
quirements. 



Introduction 

Note that this categorization is not intended to be exhaustive. It works 
for the architectural patterns we describe, but it may become 
necessary to define new categories if more architectural patterns are 
added-see Chapter 5, Pattern Systems for further discussion of this 
idea. 

The selection of an architectural pattern should be driven by the 
general properties of the application a t  hand. Ask yourself, for 
example. whether your proposed system is an interactive system, or 
one that will exist in many slightly different variants. Your pattern 
selection should be further influenced by your application's non- 
functional requirements, such a s  changeability or reliability. 

It is also helpful to explore several alternatives before deciding on a 
specific architectural pattern. For example, the Presentation- 
Abstraction-Control pattern (PAC) and the Model-View-Controller 
pattern (MVC) both lend themselves to interactive applications. 
Similarly, the Reflection and Microkernel patterns both support the 
adaptation of software systems to evolving requirements. 

Different architectural patterns imply different consequences, even if 
they address the same or very similar problems. For example, an  MVC 
architecture is usually more efficient than a PAC architecture. On the 
other hand, PAC supports multitasking and task-specific user 
interfaces better than MVC does. 

Most software systems, however, cannot be structured according to a 
single architectural pattern. They must support several system 
requirements that can only be addressed by different architectural 
patterns. For example, you may have to design both for flexibility of 
component distribution in a heterogeneous computer network and for 
adaptability of their user interfaces. You must combine several 
patterns to structure such systems-in this case, suitable patterns 
are Broker and Model-View-Controller. The Broker pattern provides 
the infrastructure for the distribution of components, while the model 
of the MVC pattern plays the role of a server in the Broker 
infrastructure. Similarly, controllers take the roles of clients, and 
views combine the roles of clients and servers, a s  clients of the model 
and servers of the controllers. 

However, a particular architectural pattern, or a combination of 
several, is not a complete software architecture. It remains a 



structural framework for a software system that must be further 
specified and refined. This includes the task of integrating the 
application's hnctionality with the framework, and detailing its 
components and relationships, perhaps with help of design patterns 
and idioms. The selection of an architectural pattern, or a 
combination of several, is only the first step when designing the 
architecture of a software system. 



2.2 From Mud to Structure 

Before we start the design of a new system, we collect the require- 
ments from the customer and transform them into specifications. 
Both these activities are more complex than is often believed. A recent 
book by Michael Jackson [Jac95] illuminates this topic. 

Being optimistic, we assume that the requirements for our new sys- 
tem are well-defined and stable. The next major technical task is to 
define the architecture of the system. At this stage, this means finding 
a high-level subdivision of the system into constituent parts. We are 
often aware of a whole slew of different aspects, and have problems 
organizing the mess into a workable structure. Ralph Johnson calls 
this situation a 'ball of mud' [Joh96]. This is usually all we have in the 
beginning, and we must transform it into a more organized structure. 

Cutting the ball along lines visible in the application domain won't 
help, for several reasons. On one hand, the resulting software system 
will include many components that have no direct relationship to the 
domain. Manager and helper functionality is a prime example of this. 
On the other hand, we want more than just a working system-it 
should possess qualities such as portability, maintainability, 
understandability, stability, and so forth that are not directly related 
to the application's functionality. 

We describe three architectural patterns that provide high-level 
system subdivisions of different kinds: Layers, Pipes and Filters, and 
Blackboard. 

The Layers  pattern 43 1) helps to structure applications that can be 
decomposed into groups of subtasks in which each group of 
subtasks is at  a particular level of abstraction. 

The Pipes and Filters patter.n (53) provides a structure for systems 
that process a stream of data. Each processing step is 
encapsulated in a filter component. Data is passed through pipes 
between adjacent filters. Recombining filters allows you to build 
families of related systems. 

The Blackboard pattern (71) pattern is useful for problems for 
which no deterministic solution strategies are known. In 



ltectural Patterns 

Blackboard several specialized subsystems assemble their 
knowledge to build a possibly partial or approximate solution. 

The Layers pattern describes the most widespread principle of 
architectural subdivision. Many of the block diagrams we see in 
system architecture documents seem to imply a layered architecture. 
However, the real architectures all too often turn out to be either a 
mix of different paradigmewhich by itself cannot be criticized-or 
concealed collections of cooperating components without clear 
architectural boundaries between them. To help with the situation, 
we try to be more rigorous in our description and list the 
characteristics of truly layered systems. 

The Pipes and Filters pattern, in contrast, is less often used, but is 
attractive in areas where data streams can be processed 
incrementally. Surprisingly, some system families modelled in this 
fashion turn out to be poor candidates for this paradigm, neglecting 
areas where this pattern could be used more beneficially. We expand 
this topic further in the pattern description. 

The Blackboard pattern comes from the Artificial Intelligence 
community. We describe this paradigm as  a pattern since the idea 
behind it deserves to be seen in a wider context. In poorly- 
structured-or simply new and immature--domains we often have 
only patchy knowledge about how to tackle particular problems. The 
Blackboard pattern shows a method of combining such patchy 
knowledge to arrive at solutions, even if they are sub-optimal or not 
guaranteed. When the application domain matures with time, 
designers often abandon the Blackboard architecture and develop 
architectures that support closed solution approaches, in which the 
processing steps are predefined by the structure of the application. 



Layers 

The h y e r s  architectural pattern helps to structure applications that 
can be decomposed into groups of subtasks in which each group of 
subtasks is at a particular level of abstraction. 

Example Networking protocols are probably the best-known example of layered 
architectures. Such a protocol consists of a set of rules and con- 
ventlons that describe how computer programs communicate across 
machine boundaries. The format, contents, and meaning of all 
messages are defined. All scenarios are described in detail, usually by 
giving sequence charts. The protocol specifies agreements at a variety 
of abstraction levels, ranging from the details of bit transmission to 
high-level application logic. Therefore designers use several sub- 
protocols and arrange them in layers. Each layer deals with a specific 
aspect of communication and uses the services of the next lower 
layer. The International Standardization Organization (ISO) defined 
the following architectural model, the OSI 7-Layer Model Pan921: 

Resentation I 
Session r'l 

Data Link r'l 
Physical rn 

Layer 7 Provides miscellaneous protocols 
for common activities 

Layer 6 Structures information 
and attaches semantics 

Layer 5 Provides dialog control and 
synchronization facilities 

Layer 4 Breaks messages into packets 
and guarantees delivery 

Layer 3 Selects a route 
from sender to receiver 

Layer 2 Detects and corrects errors 
in bit sequences 

Layer 1 Transmits bits: velocity. 
bit-code, connection, etc. 



Architectural Patterns 

A layered approach is considered better practice than implementing 
the protocol as  a monolithic block. since implementing conceptually- 
different issues separately reaps several benefits, for example aiding 
development by teams and supporting incremental coding and 
testing. Using semi-independent parts also enables the easier ex- 
change of individual parts at  a later date. Better implementation 
technologies such as new languages or algorithms can be in- 
corporated by simply rewriting a delimited section of code. 

While OSI is an important reference model, TCP/IP, also known as the 
'Internet protocol suite', is the prevalent networking protocol. We use 
TCP/IP to illustrate another important reason for layering: the reuse 
of individual layers in different contexts. TCP for example can be used 
'as is' by diverse distributed applications such as telnet or f tp .  

Context A large system that requires decomposition. 

Problem Imagine that you are designing a system whose dominant 
characteristic is a mix of low- and high-level issues, where high-level 
operations rely on the lower-level ones. Some parts of the system 
handle low-level issues such as hardware traps, sensor input, 
reading bits from a file or electrical signals from a wire. At the other 
end of the spectrum there may be user-visible functionality such as  
the interface of a multi-user 'dungeon' game or high-level policies 
such as telephone billing tariffs. A typical pattern of communication 
flow consists of requests moving from high to low level, and answers 
to requests, incoming data or notification about events traveling in 
the opposite direction. 

Such systems often also require some horizontal structuring that is 
orthogonal to their vertical subdivision. This is the case where several 
operations are on the same level of abstraction but are largely in- 
dependent of each other. You can see examples of this where the word 
'and' occurs in the diagram illustrating the OS1 7-layer model. 

The system specification provided to you describes the high-level 
tasks to some extent, and specifies the target platform. Portability to 
other platforms is desired. Several external boundaries of the system 
are specified a priori, such as a functional interface to which your 
system must adhere. The mapping of high-level tasks onto the plat- 
form is not straightforward, mostly because they are too complex to 
be implemented directly using services provided by the platform. 



In such a case you need to balance the followtngforces: 

Late source code changes should not ripple through the system. 
They should be confined to one component and not afTect others. 

Interfaces should be stable. and may even be prescribed by a stan- 
dards body. 

Parts of the system should be exchangeable. Cornponents should 
be able to be replaced by alternative implementations wtthout 
affecting the rest of the system. A low-level platform may be given 
but may be subject to change in the future. While such funda- 
mental changes usually require code changes and recompilation. 
reconfiguration of the system can also be done a t  run-time using 
an administration interface. Adjusting cache or buffer sizes are 
examples of such a change. An extreme form of exchangeability 
might be a client component dynamically swttching to a different 
implementation of a service that may not have been avallable a t  
start-up. Design for change in general is a major facilitator of 
graceful system evolution. 

It may be necessary to build other systems a t  a later date with the 
same low-level issues a s  the system you are currently designing. 

Similar responsibilities should be grouped to help understand- 
ability and maintainability. Each component should be coherent- 
if one component implements divergent issues its integrity may be 
lost. Crouplng and coherence are conflicting a t  times. 

There is no 'standard' component granularity. 

Complex components need further decomposition. 

Crossing component boundaries may impede performance, for 
example when a substantial amount of data must be transferred 
over several boundaries, or where there are many boundaries to 
cross. 

The system will be built by a team of programmers, and work has 
to be subdivided along clear boundarles-a requirement that is  
often overlooked a t  the architectural design stage. 



Architectural Patterns 

Solution From a high-level viewpoint the solution is extremely simple. 
Structure your system into an appropriate number of layers and 
place them on top of each other. Start at  the lowest level of 
abstraction-call it Layer 1. This is the base of your system. Work 
your way up the abstraction ladder by putting Layer J on top of Layer 
J - 1 until you reach the top level of functionality-call it Layer N. 

Note that this does not prescribe the order in which to actually design 
layers, it just gives a conceptual view. It also does not prescribe 
whether an individual Layer J should be a complex subsystem that 
needs further decomposition, or whether it should just translate 
requests from Layer J + l  to requests to Layer J -  1 and make little 
contribution of its own. It is however essential that within an in- 
dividual layer all constituent components work at  the same level of 
abstraction. 

Most of the services that Layer J provides are composed of services 
provided by Layer J -1. In other words, the services of each layer 
implement a strategy for combining the services of the layer below in 
a meaningful way. In addition, Layer J's services may depend on other 
services in Layer J. 

Structure An individual layer can be described by the following CRC card: 

Class 
Layer J 

Responsibility 
Provides services 
used by Layer J+ 1. 
Delegates subtasks 
to Layer J-1. 

Collaborator 
Layer J-1 

The main structural characteristic of the Layers pattern is that the 
services of Layer J are only used by Layer J + 1-there are no further 
direct dependencies between layers. This structure can be compared 



with a stack. or even an onion. Each individual layer shields all lower 
layers from direct access by higher layers. Fq5F highest level of abstrac"on 

Layer N-1 

Layer 1 lowest level of abstraction 

Examining individual layers in more detail may reveal that they are 
complex entities consisting of different components. In the following 
figure, each layer consists of three components. In the middle layer 
two components interact. Components in different layers call each 
other dlrectly-other deslgns shield each layer by Incorporating a 
unified interface. In such a design, component-2.1 no longer calls 
component-1.1 directly, but calls a Layer 1 interface object that 
forwards the request instead. In the Implementation section, we 
discuss the advantages and disadvantages of direct addressing. 



Architectural Patterne 

Dynamics The following scenarios are archetypes for the dynamic behavior of 
layered applicauons. Thls does not mean that you will encounter 
every scenario in every archltecture. In simple layered architectures 
you will only see the first scenario. but most layered appllcatlons 
involve Scenarios I and 11. Due to space limitations we do not glve 
obJect message sequence charts in thls pattern. 

Scenario I I s  probably the best-known one. A client Issues a request 
to Layer N. Since Layer N cannot cany out the request on its own. it 
calls the next Layer N - 1 for supporting subtasks. Layer N - I provides 
these. In the process sending further requests to Layer N-2. and so 
on until Layer I 1s reached. Here, the lowest-level servlces are finally 
performed. If necessary, replies to the different requests are passed 
back up from Layer 1 to Layer 2, kom Layer 2 to Layer 3, and so on 
until the final reply arrives at Layer N. The example code in the 
Implementation secUon lllustrates thls. 

A characteristic of such top-down communication Is that Layer J 
often translates a slngle request from Layer J+1 Into several requests 
to Layer J -  1 .  This is due to the fact that Layer J is on a hlgher level of 
abstraction than Layer J- 1 and has to map a hlgh-level service onto 
more prlmlUve ones. 

Scenario II illustrates bottom-up communicaUon-a chaln of actions 
starts at  Layer 1, for example when a device driver detects input. The 
driver translates the lnput into an Internal format and reports it to 
Layer 2. which starts lnterpreting it, and so on. In thls way data 
moves up through the layers until It arrives at the highest layer. While 
top-down lnformauon and control flow are often described as 
'requests'. bottom-up calls can be termed 'notifications'. 

As mentioned in Scenario I,  one top-down request often fans out to 
several requests in lower layers. In contrast. several bottom-up noU- 
fications may either be condensed into a slngle notificauon higher In 
the structure. or remain in a I : I relationship. 

Scenario III descrlbes the situation where requests only travel 
through a subset of the layers. A top-level request may only go to the 
next lower level N- 1 lf this level can satisfy the request. An example 
of this is where level N- 1 acts as a cache. and a request from level N 
can be satisfied without being sent all the way down to Layer 1 and 
from here to a remote server. Note that such caching layers mafntain 



state information, while layers that only forward requests are often 
stateless. Stateless layers usually have the advantage of being 
simpler to program, particularly with respect to re-entrancy. 

Scenario N describes a situation similar to Scenario 111. An event is 
detected in Layer 1, but stops at  Layer 3 instead of traveling all the 
way up to Layer N. In a communication protocol, for example, a re- 
send request may arrive from an impatient client who requested data 
some time ago. In the meantime the server has already sent the 
answer, and the answer and the re-send request cross. In this case, 
Layer 3 of the server side may notice this and intercept the re-send 
request without further action. 

Scenario V involves two stacks of N layers communicating with each 
other. This scenario is well-known from communication protocols 
where the stacks are known a s  'protocol stacks'. In the following 
diagram, Layer N of the left stack issues a request. 'The request moves 
down through the layers until it reaches Layer 1 ,  is sent to Layer 1 of 
the right stack, and there moves up  through the layers of the right 
stack. The response to the request follows the reverse path until it 
arrives a t  Layer N of the left stack. 

Layer 1 0 Layer 1 a 
For more details about protocol stacks, see the Example Resolved 
section, where we discuss several communication protocol issues 
using TCP/IP a s  an example. 



38 Architectural Patterns 

Implementation The following steps describe a step-wise refinement approach to the 
definition of a layered architecture. This is not necessarily the best 
method for all applications-often a bottom-up or 'yo-yo' approach is 
better. See also the discussion in step 5. 

Not all the following steps are mandatory-it depends on your 
applicauon. For example, the results of several implementation steps 
can be heavily influenced or even strictly prescribed by a standards 
specification that must be followed. 

1 Define the abstraction criterion for grouping tasks into layers. This 
criterion is often the conceptual distance from the platform. 
Sometimes you encounter other abstraction paradigms, for example 
the degree of customization for specific domains, or the degree of 
conceptual complexity. For example, a chess game application may 
consist of the following layers, listed from bottom to top: 

Elementary units of the game, such as a bishop 

Basic moves, such as castling 

Medium-term tactics, such as the Sicilian defense 

Overall game strategies 

In American Football these levels may correspond respectively to 
linebacker, blitz, a sequence of plays for a two-minute drill, and finally 
a full game plan. 

In the real world of software development we often use a mix of 
abstraction criterions. For example, the distance from the hardware 
can shape the lower levels, and conceptual complexity governs the 
higher ones. An example layering obtained using a mixed-mode 
layering principle like this is a s  follows, ordered from top to bottom: 

User -visible elements 

Specific application modules 

Common services level 

Operating system interface level 

Operating system (being a layered system itself, or structured 
according to the Microkernel pattern (17 1)) 

Hardware 



Determine the number of abstraction levels according to your 
abstraction criterion. Each abstraction level corresponds to one layer 
of the pattern. Sometimes this mapping from abstraction levels to 
layers is not obvious. Think about the trade-offs when deciding 
whether to split particular aspects into two layers or combine them 
into one. Having too many layers may impose unnecessary overhead, 
while too few layers can result in a poor structure. 

Name the layers and assign tasks to each of them The task of the 
highest layer is the overall system task, a s  perceived by the client. The 
tasks of all other layers are to be helpers to higher layers. If we take 
a bottom-up approach. then lower layers provide an infrastructure on 
which higher layers can build. However, this approach requires con- 
siderable experience and foresight in the domain to find the right 
abstractlons for the lower layers before being able to define specific 
requests from higher layers. 

Specih the services. The most important implementation principle is 
that layers are strictly separated from each other, in the sense that 
no component may spread over more than one layer. Argument, 
return, and error types of functions offered by Layer J should be built- 
in types of the programming language, types defined in Layer J, or 
types taken from a shared data definition module. Note that modules 
that are shared between layers relax the principles of strict layering. 

I t  is often better to locate more services in higher layers than in lower 
layers. This is because developers should not have to learn a large set , 

of slightly different low-level primitives--which may even change 
during concurrent development. Instead the base layers should be 
kept 'slim' while higher layers can expand to cover a broader 
spectrum of applicability. This phenomenon is also called the 
'inverted pyramid of reuse'. 

Refine the layering. Iterate over steps 1 to 4. It is usually not possible 
to define an abstraction criterion precisely before thinking about the 
implied layers and their services. Alternatively, it is usually wrong to 
define components and services first and later impose a layered 
structure on them according to their usage relationships. Since such 
a structure does not capture an inherent ordering principle, it is very 
likely that system maintenance will destroy the architecture. For 
example. a new component may ask for the services of more than one 
other laver. violatinn the ~ r i n c i ~ l e  of strict laverinn. 



Pattern 

The solution is to perform the first four steps several times until a 
natural and stable layering evolves. 'Like almost all other kinds of 
design, finding layers does not proceed in an orderly, logical way, but 
consists of both top-down ahd bottom-up steps, and certain amount 
of inspiration.. .' [Joh95]. Performing both top-down and bottom-up 
steps alternately is often called 'yo-yo' development, mentioned at  the 
start of the Implementation section. 

eciJiy an  interface for each layer. If Layer J should be a 'black box' 
r Layer J+1, design a flat interface that offers all Layer J's services, 

and perhaps encapsulate this interface in a Facade object [GHJV95]. 
The Known Uses section describes flat interfaces further. A 'white- 
box' approach is that in whi J+ 1 sees the internals of Layer 
J. The last figure in the e section shows a 'gray-box' 
approach, a compromise between black and white box approaches. 
Here Layer J+1 is aware of the fact that Layer J consists of three 
components, and addresses them separately, but does not see the 
internal workings of individual components. 

Good design practise tells u s  to use the black-box approach whenever 
possible, because it supports system evolution better than other 
approaches. Exceptions to this rule can be made for reasons of 
efficiency, or a need to access the innards of another layer. The latter 
occurs rarely, and may be helped by the Reflection pattern (193). 
which supports more controlled access to the internal functioning of 
a component. Arguments over efficiency are debatable, especially 
when inlining can simply do away with a thin layer of indirection. 

tructure indivzdual layers. Traditionally, the focus was on the proper 
relationships between layers, but inside individual layers there was 
often free-wheeling chaos. When an individual layer is complex it 
should be broken into separate components. This subdivision can be 
helped by using finer-grained patterns. For example, you can use the 
Bridge pattern [GHJV95] to support multiple implementations of 
services provided by a layer. The Strategy pattern [GHJV95] can 
support the dynamic exchange of algorithms used by a layer. 

8 Specth the communication between adjacent layers. The most often 
used mechanism for inter-layer communication is the push model. 
When Layer J invokes a senrice of Layer J- 1, any required information 
is passed as  part of the service call. The reverse is known as  the pull 
model and occurs when the lower layer fetches available information 



Layers 

from the higher layer a t  its own discretion. The Publisher-Subscriber 
(339) and Pipes and Filters patterns (53) give details about push and 
pull model information transfer. However, such models may intro- 
duce additional dependencies between a layer and its adjacent higher 
layer. If you want to avoid dependencies of lower layers on higher 
layers introduced by the pull model, use callbacks, a s  described in 
the next step. 

9 Decouple adjacent layers. There are many ways to do this. Often an 
upper layer is aware of the next lower layer, but the lower layer is 
unaware of the identity of its users. This implies a one-way coupling 
only: changes in Layer J can ignore the presence and identity of Layer 
J+ 1 provided that the interface and semantics of the Layer J services 
being changed remain stable. Such a one-way coupling is perfect 
when requests travel top-down, as  illustrated in Scenario 1, as return 
values are sufficient to transport the results in the reverse direction. 

For bottom-up communication, you can use callbacks and still 
preserve a top-down one-way coupling. Here the upper layer registers 
callback functions with the lower layer. This is especially effective 
when only a fixed set of possible events is sent from lower to higher 
layers. During start-up the higher layer tells the lower layer what 
functions to call when specific events occur. The lower layer 
maintains the mapping from events to callback functions in a 
registry. The Reactor pattern [Sch94] illustrates a n  object-oriented 
implementation of the use of callbacks in conjunction with event 
demultiplexing. The Command pattern [GHJV95] shows how to 
encapsulate callback functions into first-class objects. 

You can also decouple the upper layer from the lower layer to a certain 
degree. Here is an  example of how this can be done using object- 
oriented techniques. The upper layer is decoupled from specific 
implementation variants of the lower layer by coding the upper layer 
against an interface. In the following C++ code, this interface is a base 
class; The lower-level implementations can then be easily exchanged. 
even a t  run-time. In the example code, a Layer 2 component talks to 
a Level 1 provider but does not know which implementation of Layer 
1 it is talking to. The 'wiring' of the layers is done here in the main 
program, but will usually be factored out into a connection- 
management component. The main program also takes the role of the 
client by calling a service in the top layer. 



Architectural Patterns 

class LlProvider ( 
public: 

virtual void LlServiceO = 0; 
1 ;  
class Laprovider { 

public: 
virtual void ~2ServiceO = 0; 
void set~ower~ayer(L1~rovider *11) {levell = 11;) 

protected: 
LlProvider *levell; 

1 ;  
class L3Provider ( 
public: 

virtual void L3ServiceO = 0; 
void eetLowerLayer(L2Provider *12) (level2 = 12;) 

protected: 
LlProvider *level2; 

1 ;  

class DataLink : public LlProvider { 
public : 

virtual void LlSemiceO ( 
cout << llLIService doing its job' << endl;} 

} ;  
class Transport : public L2Provider { 
public: 

virtual void LZServiceO { 
cout << "L2Service starting its jobb1 << endl; 
levell->LlServiceO; 
cout << I1L2Service finishing its job" << endl;) 

1 ;  
class Session : public L3Provider ( 
public: 

virtual void L3ServiceO ( 
cout << I1L3Service starting its job" << endl; 
level2->L2Service(); 
cout << I1L3Service finishing its job" << endl; 1 

1 ; 

main0 I 
DataLink datalink; 
Transport transport; 
Session session; 



Layers 

The output of the program is as  follows: 

L3Service starting its job 
~2Service starting its job 
LlService doing its job 
~2Service finishing its job 
L3Service finishing its job 

For communicating stacks of layers where messages travel both up 
and down, it is often better explicitly to connect lower levels to higher 
levels. We therefore again introduce base classes, for example classes 
~ l p r o v i d e r ,  ~ 2 ~ r o v i d e r ,  and L 3 P r o v i d e r ,  as  in the code example, 
and additionally L l p a r e n t ,  ~ 2 ~ a r e n t ,  and L l P e e r .  Class L l P a r e n t  

provides the interface by which level 1 classes access the next higher 
layer, for example to return results, send confirmations or pass data 
streams. An andogous argument holds for L a p a r e n t .  L l P e e r  

provides the interface by which a message is sent to the level 1 peer 
module in the other stack. A Layer 1 implementation class therefore 
inherits from two base classes: L l P r o v i d e r  and L l P e e r .  A second- 
level implementation class inherits from L a p r o v i d e r  and L l P a r e n t ,  

as  it offers the services of Layer 2 and can serve a s  the parent of a 
Layer 1 object. A third-level implementation class finally inherits 
from L 3 P r o v i d e r  and L 2 P a r e n t .  

If your programming language separates inheritance and subtyping 
at the language level, as  for example Sather [Om0931 and Java [AG96] 
do, the above base classes can be transformed into interfaces by 
pushing data into subclasses and implementing all methods there. 

10 Design a n  error-handling strategy. Error handling can be rather 
expensive for layered architectures with respect to processing time 
and, notably, programming effort. A n  error can either be handled in 
the layer where it occurred or be passed to the next higher layer. In 
the latter case, the lower layer must transform the error into an error 
description meaningful to the higher layer. As a rule of thumb, try to 
handle errors at the lowest layer possible. This prevents higher layers 
from being swamped with many different errors and voluminous 
error-handling code. As a minimum, try to condense similar error 
types into more general error types, and only propagate these more 
general errors. If you do not do this, higher layers can be confronted 
with error messages that apply to lower-level abstractions that the 
higher layer does not understand. And who hasn't seen totally cryptic 
error messages being popped u p  to the highest layer of all-the user? 



Architectural Patterns 

Example The most widely-used communication protocol, TCP/IP, does not 
Resolved strictly conform to the OSI model and consists of only four layers: TCP 

and IP constitute the middle layers, with the application at  the top 
and the transport medium at the bottom. A typical configuration, that 
for the UNIX f t p  utility, is shown below: 

FTP protocol 
- - - - - - - - A -  m 

IP protocol 
- - - - - - - - A -  & 

I Ethernet protocol I 

- - - - - - - - - -  Ethernet 

I Physical connection 

TCP/IP has several interesting aspects that are relevant to our 
discussion. Corresponding layers communicate in a peer-to-peer 
fashion using a uirtual protocol. This means that, for example, the two 
TCP entities send each other messages that follow a specific format. 
From a conceptual point of view, they communicate using the dashed 
line labeled TCP protocol' in the diagram above. We refer to this 
protocol a s  'virtual' because in reality a TCP message traveling from 
left to right in the diagram is handled first by the IP entity on the left. 
This IP entity treats the message as  a data packet, prefixes it with a 
header, and forwards it to the local Ethernet interface. The Ethernet 
interface then adds its own control information and sends the data 
over the physical connection. On the receiving side Lhe local Ethernet 
and IP entities strip the Ethernet and IP headers respectively. The 
TCP entity on the right-hand side of the diagram then receives the 
TCP message from its peer on the left as  if it had been delivered over 
the dashed Line. 

A notable characteristic of TCP/IP and other communication proto- 
cols is that standardizing the functional interface is a secondary 
concern, partly driven by the fact that TCP/IP implementations from 
different vendors differ from each other intentionally. The vendors 
usually do not offer single layers, but full implementations of the 
protocol suite. As a result, every TCP implementation exports a fixed 



Layers 

set of core functions but is free to offer more, for example to increase 
flexibility or performance. This looseness has no impact on the appli- 
cation developer for two reasons. Firstly, different stacks understand 
each other because the virtual protocols are strictly obeyed. Secondly, 
application developers use a layer on top of TCP, or its alternative, 
UDP. This upper layer has a fixed interface. Sockets and TLI are 
examples of such a fixed interface. 

Assume that we use the Socket API on top of a TCP/IP stack. The 
Socket API consists of system calls such a s  bind ( ) , listen ( ) or 
read 0. The Socket implementation sits conceptually on top of 
TCP/UDP, but uses lower layers a s  well, for example IP and ICMP. 
This violation of strict layering principles is worthwhile to tune perfor- 
mance, and can be justified when all the communication layers from 
sockets to IP are built into the OS kernel. 

The behavior of the individual layers and the structure of the data 
packets flowing from layer to layer are much more rigidly defined in 
TCP/IP than the functional interface. This is because different 
TCP/IP stacks must understand each other-they are the workhorses 
of the increasingly heterogeneous Internet. The protocol rules de- 
scribe exactly how a layer behaves under specific circumstances. For 
example, its behavior when handling an  incoming re-transmit mes- 
sage after the original has been sent is exactly prescribed. The data 
packet specifications mostly concern the headers and trailers added 
to messages. The size of headers and trailers is specified, a s  well a s  
the meaning of their subfields. In a header, for example, the protocol 
stack encodes information such a s  sender, destination, protocol 
used, time-out information, sequence number, and checksums. For 
more information on TCP/IP, see for example ISte901. For even more 
detail, study the series started in [Ste94]. 

Variants Relaxed Layered System This is a variant of the Layers pattern that 
is less restrictive about the relationship between layers. In a Relaxed 
Layered System each layer may use the services of all layers below it, 
not only of the next lower layer. A layer may also be partially opaque- 
this means that some of its services are only visible to the next higher 
layer, while others are visible to all higher layers. The gain of flexibility 
and performance in a Relaxed Layered System is paid for by a loss of 
maintainability. This is often a high price to pay, and you should con- 
sider carefully before giving in to the demands of developers asking 



Architectural Patterns 

for shortcuts. We see these shortcuts more often in infrastructure 
systems, such as  the UNIX operating system or the X Window System, 
than in application software. The main reason for this is that infra- 
structure systems are modified less often than application systems, 
and their performance is usually more important than their main- 
tainability. 

Layering Through Inheritance. This variant can be found in some 
object-oriented systems and is described in [BuCa96]. In this variant 
lower layers are implemented as base classes. A higher layer re- 
questing services from a lower layer inherits from the lower layer's 
implementation and hence can issue requests to the base class 
services. An advantage of this scheme is that higher layers can modify 
lower-layer services according to their needs. A drawback is that such 
an inheritance relationship closely ties the higher layer to the lower 
layer. If for example the data layout of a C++ base class changes, all 
subclasses must be recompiled. Such unintentional dependencies 
introduced by inheritance are also known as  the fragile base class 
problem. 

Known Uses Virtual Machines. We can speak of lower levels as a virtual machine 
that insulates higher levels from low-level details or varying 
hardware. For example, the Java Virtual Machine (JVM) defines a 
binary code format. Code written in the Java programming language 
is translated into a platform-neutral binary code, also called byte- 
codes, and delivered to the JVM for interpretation. The JVM itself is 
platform-specific-there are implementations of the JVM for different 
operating systems and processors. Such a two-step translation 
process allows platform-neutral source code and the delivery of 
binary code not readable to humans1, while maintaining platform- 
independency. 

APIs. An Application Programming Interface is a layer that encapsu- 
lates lower layers of frequently-used functionality. An API is usually 
a flat collection of function specifications, such as the UNIX system 
calls. 'Flat' means here that the system calls for accessing the UNIX 
file system, for example, are not separated from system calls for stor- 
age allocation-you can only know from the documentation to which 

1. The Java bytecodes can be transformed into an ASCII representation that is a 
kind of object-oriented assembler code. This code can be read, but only with some pain! 



Layers 

group open ( ) or sbrk ( ) belong. Above system calls we find other 
layers, such as  the C standard library [KR881 with operations like 
p r i n t f  ( ) or f open ( ) . These libraries provide the benefit of portabil- 
ity between different operating systems, and provide additional 
higher-level services such as  output buffering or formatted output. 
They often carry the liability of lower efficiency2, and perhaps more 
tightly-prescribed behavior, whereas conventional system calls would 
give more flexibility-and more opportunities for errors and concep- 
tual mismatches, mostly due to the wide gap between high-level 
application abstractions and low-level system calls. 

Information Systems (IS) from the business software domain often 
use a two-layer architecture. The bottom layer is a database that 
holds company-specific data. Many applications work concurrently 
on top of this database to fulfill different tasks. Mainframe interactive 
systems and the much-extolled Client-Server systems often employ 
this architecture. Because the tight coupling of user interface and 
data representation causes its share of problems, a third layer is 
introduced between them-the domain layer-which models the 
conceptual structure of the problem domain. As the top level still 
mixes user interface and application, this level is also split, resulting 
in a four-layer architecture. These are, from highest to lowest: 

Presentation 

Application logic 

Domain layer 

Database 

See [Fow961 for more information on business modeling. 

Windows NT [Cus93]. This operating system is structured according 
to the Microkernel pattern (171). The NT Executive component 
corresponds to the microkernel component of the Microkernel 
pattern. The NT Executive is a Relaxed Layered System, as  described 
in the Variants section. It has the following layers: 

System services: the interface layer between the subsystems and 
the NT Executive. 

2. Input/output buffering in Mgher layers is often intended to have the inverse 
effect-better performance than undisciplined direct use of lower-level system calls. 



@ Resource management layer: this contains the modules Object 
Manager, Security Reference Monitor, Process Manager, 1 /0  
Manager, Virtual Memory Manager and Local Procedure Calls. 

@ Kernel: this takes care of basic functions such a s  interrupt and ex- 
ception handling, multiprocessor synchronization, thread schedu- 
ling and thread dispatching. 

@ HAL (Hardware Abstraction Layer): this hides hardware differences 
between machines of different processor families. 

@ Hardware 

Windows NT relaxes the principles of the Layers pattern because the 
Kernel and the 1/0 manager access the underlying hardware directly 
for reasons of efficiency. 

onsequences The Layers pattern has several 

Reuse of layers. If an individual layer embodies a well-defined 
abstraction and has a well-defined and documented interface, the 
layer can be reused in multiple contexts. However, despite the higher 
costs of not reusing such existing layers, developers often prefer to 
rewrite this functionality. They argue that the existing layer does not 
fit their purposes exactly, layering would cause high performance 
penalties-and they would do a better job anyway. An empirical study 
hints that black-box reuse of existing layers can dramatically reduce 
development effort and decrease the number of defects [ZEWH95]. 

Support for standardization. Clearly-defined and commonly-accepted 
levels of abstraction enable the development of standardized tasks 
and interfaces. Different implementations of the same interface can 
then be used interchangeably. This allows you to use products from 
different vendors in different layers. A well-known example of a 
standardized interface is the POSIX programming interface [IEEE88]. 

Dependencies are kept local. Standardized interfaces between layers 
usually confine the effect of code changes to the layer that is changed. 
Changes of the hardware, the operating system, the window system, 
special data formats and so on often affect only one layer, and you can 
adapt affected layers without altering the remaining layers. This sup- 
ports the portability of a system. Testability is supported a s  well, 
since you can test particular layers independently of other com- 
ponents in the system. 



Layers 

Exchangeability. Individual layer implementations can be replaced by 
semantically-equivalent implementations without too great an effort. 
If the connections between layers are hard-wired in the code, these 
are updated with the names of the new layer's implementation. You 
can even replace a n  old implementation with an implementation with 
a different interface by using the Adapter pattern for interface adap- 
tation [GHJV95]. The other extreme is dynamic exchange, which you 
can achieve by using the Bridge pattern IGHJV951, for example, and 
manipulating the pointer to the implementation a t  run-time. 

Hardware exchanges or additions are prime examples for illustrating 
exchangeability. A new hardware 1 /0  device, for example, can be put 
in operation by installing the right driver program-which may be a 
plug-in or replace a n  old driver program. Higher layers will not be af- 
fected by the exchange. A transport medium such as Ethernet could 
be replaced by Token Ring. In such a case, upper layers do not need 
to change their interfaces, and can continue to request services from 
lower layers as before. However, if you want to be able to switch 
between two layers that do not match closely in their interfaces and 
services, you must build a n  insulating layer on top of these two lay- 
ers. The benefit of exchangeability comes a t  the price of increased 
programming effort and possibly decreased run-time performance. 

The Layers pattern also imposes liabilities: 

Cascades ofchanging behavior: A severe problem can occur when the 
behavior of a layer changes. Assume for example that we replace a 10 
Megabit/sec Ethernet layer a t  the bottom of our networked app- 
lication and instead put IP on top of 155 Megabit/sec ATM~.  Due to 
limitations wlth 1 /0  and memory performance, our local-end system 
cannot process incoming packets fast enough to keep u p  with ATM's 
high data rates. However, bandwidth-intensive applications such as 
medical imaging or video conferencing could benefit from the full 
speed of ATM. Sending multiple data streams in parallel is a high- 
level solution to avoid the above limitations of lower levels. Similarly, 
IP routers, which forward packets within the Internet, can be layered 

3. ATM (Asynchronous Transfer Mode) provides much higher data rates (ranging 
from 155Mbps to 2.4Gbps) and functionality (such as quality of service guarantees) 
than conventional low-speed networks such as  Ethernet and Token Ring. In addition. 
ATM can emulate the behavior of Ethernet in a LAN, which allows it to be integrated 
seamlessly into existing networks. See IHHS941 for more Information on ATM. 



Architectural Patterns 

to run on top of high-speed ATM networks via multi-CPU systems that 
perform IP packet processing in parallel [PST96]. 

In summary, higher layers can often be shielded from changes in low- 
er layers. This allows systems to be tuned transparently by collapsing 
lower layers and/or replacing them with faster solutions such as  
hardware. The layering becomes a disadvantage if you have to do a 
substantial amount of rework on many layers to incorporate an ap- 
parently local change. 

Lower emiency. A layered architecture is usually less efficient than, 
say, a monolithic structure or a 'sea of objects'. If high-level services 
in the upper layers rely heavily on the lowest layers, all relevant data 
must be transferred through a number of intermediate layers, and 
may be transformed several times. The same is true of all results or 
error messages produced in lower levels that are passed to the highest 
level. Communication protocols, for example, transform messages 
from higher levels by adding message headers and trailers. 

Unnecessary work. if some services performed by lower layers per- 
form excessive or duplicate work not actually required by the higher 
layer, this has a negative impact on performance. Demultiplexing in 
a communication protocol stack is an example of this phenomenon. 
Several high-level requests cause the same incoming bit sequence to 
be read many times because every high-level request is interested in 
a different subset of the bits. Another example is error correction in 
fde transfer. A general purpose low-level transmission system is writ- 
ten first and provides a very high degree of reliability, but it can be 
more economical or even mandatory to build reliability into higher 
layers, for example by using checksums. See ISRC841 for details of 
these trade-offs and further considerations about where to place 
functionality in a layered system. 

Difiulty of establishing the correct granularity of layers. A layered 
architecture with too few layers does not fully exploit this pattern's 
potential for reusability, changeability and portability. On the other 
hand, too many layers introduce unnecessary complexity and 
overheads in the separation of layers and the transformation of 
arguments and return values. The decision about the granularity of 
layers and the assignment of tasks to layers is difficult, but is critical 
for the quality of the architecture. A standardized architecture can 



Layers 

only be used If the scope of potential client applications fits the 
defined layers. 

See Also Composite Message. Aamod Sane and Roy Campbell (SC95bl describe 
an object-oriented encapsulation of messages traveling through 
layers. A composite message is a packet that consists of headers, 
payloads, and embedded packets. The Composite Message pattern is 
therefore a variation of the Composite pattern (GHJV951. 

A Microkernel architecture (171) can be considered as a specialized 
layered architecture. See the discussion of Windows NT in the Known 
Uses section. 

The PAC architectural pattern (145) also emphasizes levels of 
increasing abstraction. However, the overall PAC structure is a tree of 
PAC nodes rather than a vertical line of nodes layered on top of each 
other. PAC emphasizes that every node consists of three components, 
presentation, abstraction, and control, while the Layers pattern does 
not prescribe any subdivisions of an individual layer. 

Credits This pattern was carefully reviewed by Paulo Villela, who highlighted 
many dark corners in earlier drafts. Douglas Schmidt gave valuable 
support in the ATM discussion. 





Pipes and Filters 

The Pipes and Filters architectural pattern provides a structure for 
systems that process a stream of data. Each processing step is 
encapsulated in a filter component. Data is passed through pipes 
between adjacent filters. Recombining filters allows you to build 
families of related systems. 

Example Suppose we have defined a new programming language called Mocha 
[Modular Object Computation with Hypothetical Algorithms). Our 
task is to build a portable compiler for this language. To support 
existing and future hardware platforms we define an intermediate 
language AuLait [Another Universal Language for Intermediate 
Translation) running on a virtual machine Cup (Concurrent Uniform 
Processor). Cup will be implemented by an interpreter or platform- 
specific backends. The AuLait interpreter simulates Cup in software. 
A backend will translate AuLait code into the machine instructions of 
a specific processor for best performance. 

4 ASCII program text 

Lexical Analysis/Scanner 

1 token stream 

Syntax Analysis/Parser 

1 abstract syntax tree 

Semantic Analysis 

1 augmented abstract syntax tree 

Intermediate Code Generation 

1 AuLait program 

Optimization 

Interpreter 



Architectural Patterns 

Conceptually, translation from Mocha to AuLait consists of the 
phases lexical analysis, syntax analysis, semantic analysis, interme- 
diate-code generation (AuLait), and optionally intermediate-code 
optimization iASU86). Each stage has well-defined input and output 
data. The input to the compilation process is a sequence of ASCII 
characters representing the Mocha program. The final stage in our 
system-whether backend or interpreter-takes the binary AuLait 
code as its input.* 

Context Processing data streams. 

Problem Imagine you are building a system that must process or transform a 
stream of input data. Implementing such a system as  a single 
component may not be feasible for several reasons: the system has to 
be built by several developers, the global system task decomposes 
naturally into several processing stages, and the requirements are 
likely to change. 

You therefore plan for future flexibility by exchanging or reordering 
the processing steps. By incorporating such flexibility, it is possible 
to build a family of systems using existing processing components. 
The design of the system-especially the interconnection of process- 
ing steps-has to consider the following forces: 

Future system enhancements should be possible by exchanging 
processing steps or by recombination of steps, even by users. 

Small processing steps are easier to reuse in different contexts 
than large components. 

Non-adjacent processing steps do not share information. 

Different sources of input data exist, such as a network connection 
or a hardware sensor providing temperature readings, for example. 

It should be possible to present or store final results in various 
ways. 

Explicit storage of intermediate results for further processing in 
files clutters directories and is error-prone, if done by users. 

You may not want to rule out multi-processing the steps, for 
example running them in parallel or quasi-parallel. 

4. Any similarities in names, persons, or events are coincidental and unintended. 



Pipes and Filte~s 55 

Whether a separation into processing steps is feasible strongly 
depends on the application domain and the problem to be solved. For 
example, an  interactive, event-driven system does not split into 
sequential stages. 

Solution The Pipes and Filters architectural pattern divides the task of a 
system into several sequential processing steps. These steps are 
connected by the data flow through the system-the output data of a 
step is the input to the subsequent step. Each processing step is 
implemented by a filter component. A filter consumes and delivers 
data incrementally-in contrast to consuming all its input before 
producing any output-to achieve low latency and enable real parallel 
processing. The input to the system is provided by a data source such 
as  a text file. The output flows into a data sink such as  a file, terminal, 
animation program and so on. The data source, the filters and the 
data sink are connected sequentially by pipes. Each pipe implements 
the data flow between adjacent processing steps. The sequence of 
filters combined by pipes is called a processing pipeline. 

Structure Filter components are the processing units of the pipeline. A filter 
enriches, refines or transforms its input data. It enriches data by 
computing and adding information, refines data by concentrating or 
extracting information, and transforms data by delivering the data in 
some other representation. A concrete filter implementation may 
combine any of these three basic principles. 

The activity of a filter can be triggered by several events: 

@ The subsequent pipeline element pulls output data from the filter. 

The previous pipeline element pushes new input data to the filter. 

@ Most commonly, the filter is active in a loop, pulling its input from 
and pushing its output down the pipeline. 

The first two cases denote so-called passive filters, whereas the last 
case is an active filter5. An active filter starts processing on its own as  
a separate program or thread. A passive filter component is activated 
by being called either as  a function (pull) or a s  a procedure (push). 

5. Note that all UNIX filters are active by this definition. Passive filters may be an  
unfamiliar concept. We introduce It to show that the Pipes and Filters pattern can be 
implemented without the overhead of context switches and data transfers and still 
remain a viable concept. 



Architectural Patterns 

Pipes denote the connections between filters, between the data source 
and the first filter, and between the last filter and the data sink. If two 
active components are joined, the pipe synchronizes them. This 
synchronization is done with a first-in- first-out buffer. If activity is 
controlled by one of the adjacent filters, the pipe can be implemented 
by a direct call from the active to the passive component. Direct calls 
make filter recombination harder, however. 

Class 
Filter 

Responsibility 
Gets input data. 
Performs a function 
on its input data. 
Supplies output 
data. 

Collaborators 
Pipe 

Class 
Pipe 

Responsibility 
Transfers data. 
Buffers data. 
Synchronizes 
active neighbors. 

Collaborators 
Data Source 
Data Sink 
Filter 

The data source represents the input to the system, and provides a 
sequence of data values of the same structure or type. Examples of 
such data sources are a file consisting of lines of text, or a sensor 
delivering a sequence of numbers. The data source of a pipeline can 
either actively push the data values to the first processing stage, or 
passively provide data when the first filter pulls. 

The data sink collects the results from the end of the pipeline. ?tYo 
variants of the data sink are possible. An active data sink pulls 
results out of the preceding processing stage, while a passive one 
allows the preceding filter to push or write the results into it. 

Class 
Data Source 

Responsibility 
Delivers input to 
processing 
pipeline. 

Collaborators 
Pipe 

Class 
Data Sink 

-- -- 

Responsibility 
Consumes output. 

Collaborators 
Pipe 



Pipes and Filters 57 

r In our Mocha compiler we use the UNIX tools l ex  and yacc to 
implement the first two stages of the compiler [ASU86). Both tools 
generate functions-yylex ( 1 and yyparse ( ) -for embedding in a 
program. The function yypar s e ( ) actively controls the frontend of 
our compiler. It calls yylex ( 1  whenever further input tokens are 
needed. The connection to the other frontend stages consists of many 
procedure calls embedded in the grammar action rules, and not just 
simple data flow. Such embedded calls are more efficient than treat- 
ing an explicit abstract syntax tree representation and passing it 
along a pipe. The backends and interpreter run as  separate programs 
to allow exchangeability. They are connected via a UNIX pipe to the 
frontend. 0 

Input a 
I int getchar() I 

Generator I 

Dynamics The following scenarios show different options for control flow 
between adjacent filters. Assume that F i l t e r  1 computes function f 1 
on its input data and ~ i l t e r 2  function f 2.  The first three scenarios 
show passive filters that use direct calls to the adjacent pipeline 
components, with different components controlling the activity-no 
explicit pipe components therefore exist. The last scenario shows the 
commonest case, in which all filters are active, with a synchronizing 
pipe between them. 



Architectural Patterns 

Scenario I shows a push pipeline in which activity starts with the 
data source. Filter activity is triggered by writing data to the passive 
filters. 

data write F-lL 
Scenario 11 shows a pull pipeline. Here control flow is started by the 
data sink calling for data. 

read 
read 4 

Scenario 111 shows a mixed push-pull pipeline with passive data 
source and sink. Here the second filter plays the active role and starts 
the processing. 



Pipes and Filters 59 

Data Source Filter1 Filter2 Data Sink 
pull pull/push 

I I I 

Scenario lV shows a more complex but typical behavior of a Pipes 
and Filters system. All filters actively pull, compute. and push data in 
a loop. Each filter therefore runs in its own thread of control, for 
example as a separate process. The filters are synchronized by a 
buffering pipe between them. For simplicity we assume that the pipe 
buffers only a single value. This scenario also shows how you can 
achieve parallel execution using filters. 

The following steps occur in this scenario: 

F i 1 t er 2 tries to get new data by reading from the pipe. Because no 
data is available the data request suspends the activity of 
F i 1 ter2-the buffer is empty. 

F i  1 t e r l  pulls data from the data source and performs function f 1. 

F i 1 t e r  1 then pushes the result to the pipe. 

F i l t e r 2  can now continue, because new input data is available. 
F i l t e r l  can also continue, because it is not blocked by a full 
buffer within the pipe. 

F i l t e r 2  computes f 2 and writes its result to the data sink. 

In parallel with F i l  ter2's activity, F i l  t e r l  computes the next 
result and tries to push it down the pipe. This call is blocked 
because F i l  ter2 is not waiting for data-the buffer is full. 

Fi 1 t e r 2  now reads new input data that is already available from 
the pipe. This releases Filterl so that it can now continue its 
processing. 



60 Architectural Patterns 

Implementation Implementing a Pipes and Filters architecture is straightforward. You 
can use a system service such as message queues or UNIX pipes for 
pipe connections, or other options like the direct call implementation, 
as described in steps 3 through 6 below. The design decisions in these 
steps are closely interrelated, so you may make them in an order 
other than that given here. The implementation of the data source 
and data sink is not addressed explicitly, because it follows the 
guidelines for pipes or filters closely. 

1 Divide the system's task into a sequence of processing stages. Each 
stage must depend only on the output of its direct predecessor. All 
stages are conceptually connected by the data flow. If you plan to 
develop a family of systems by exchanging processing stages, or if you 
are developing a toolbox of components, you can consider alternatives 
or recombinations for some processing stages at this point. 

r In our Mocha compiler the primary separation is between the 
AuLait-creating frontend and the backends. Further structuring of 
the frontend gives us the stages of scanner, parser, semantic analyzer 
and code generator. We decide not to construct an abstract syntax 
tree explicitly, to be passed from the parser to the semantic analyzer. 
Instead we embed calls to the semantic analyzer (sa) and code gener- 
ator (cg) into yacc's grammar rules: 



Pipes and Filters 

This means that we need to build a filter consisting of the parser, 
semantic analyzer and code generator stages. The scanner, as a 
separate filter component, remains passive until called by the parser. 
We thus link the function yylex ( ) into our frontend program. D 

Define the data format to be passed along each pipe. Defining a 
uniform format results in the highest flexibility because it makes 
recombination of filters easy. In most UNLX filter programs the data 
format is line-structured ASCII text. This may however impose an 
efficiency penalty. For example, a textual representation of floating- 
point numbers may be too inefficient to pass along a pipe, because 
repeated conversion between ASCII and floating-point representa- 
tions and back is needed. If you both want flexibility and apt for 
different data representations, you can create transformation filter 
components to change the data between semantically-equivalent rep- 
resentations. 

You must also define how the end of input is marked. If a system 
service is used for pipe connections an end-of-input error condition 
may be sufficient. For other pipe implementations you can use a 
special data value to mark the end of input. The values zero, -1, $, 
control-D, or control-Z are favored examples of end-of-input markers. 

s The input to our frontend is a Mocha program, in the form of a 
stream or file of ASCII characters. The tokens passed from scanner to 
parser are denoted by integer values. The function yylex ( 1  returns 
either the ASCII code of a character scanned, or a code beyond the 
ASCII range for tokens, such as  a Mocha keyword. The end of input 
is marked by the value zero. The data format used between the 
frontend and the backends or interpreter is provided by the definition 
of the AuLait byte codes. Ll 

3 Decide how to implement each pipe connection This decision directly 
determines whether you implement the filters as active or passive 
components. Adjacent pipes further define whether a passive filter is 
triggered by push or pull of data. The simplest case of a pipe connec- 
tion is a direct call between adjacent filters to push or pull a data 



Architectural Patterns 

value, a s  shown in the first three scenarios of the Dynamics section. 
If you use a direct call between filters, however, you have to change 
your code whenever you want to recombine or reuse filter compo- 
nents. Such filters are also harder to develop and test in isolation, due 
to the need for test frames to call the filter components. 

Using a separate pipe mechanism that synchronizes adjacent active 
filters provides a more flexible solution. If all pipes use the same 
mechanism, arbitrary recombination of filters becomes possible. A 
pipe supplies a first-in-first-out buffer to connect adjacent filters that 
produce and consume unequal amounts of data per computation. 
Many operating systems provide inter-process communication 
services such a s  queues or pipes that you can use to connect active 
filter programs. If such services are not available, you can implement 
filters a s  separate threads, and pipes a s  queues that synchronize 
producers and consumers of data. 

Because we want flexibility at  the backend of our Mocha 
compiler, we use the UNIX pipe mechanism between frontend and 
backends. This also allows u s  to store the intermediate results of our 
compilation-the AuLait code-in a file for further analysis or 
translation by another backend. 0 

4 Design and  implement theflters. The design of a filter component is 
based both on the task it must perform and on the adjacent pipes. 
You can implement passive filters a s  a function, for pull activation, or 
a s  a procedure for push activation. Active filters can be implemented 
either a s  processes or a s  threads in the pipeline program. 

The cost of a context switch between processes, and the need to copy 
data between address spaces, may heavily impact performance. The 
buffer size of the pipes is an  additional parameter you should take 
into account. A small buffer gives the worst case when combined with 
the most context switches. You can achieve high flexibility with small 
active filter components at  the price of an  overhead for many context 
switches and data transfers. 

If you want to be able to reuse filters easily, it is vital to control their 
behavior in some way. Several techniques are available for passing 
parameters to filters. UNIX filter programs, for example, allow many 
options to be passed on the command line. An alternative method is 
to use a global environment or repository that is available to filters 



Pipes and Filten, 63 

when they execute. This can be supported by the operating system, 
the shell or a configuration file. You should think carefully about the 
trade-off between the flexibiliQ of a filter and its ease of use. As a rule 
of thumb, a filter should do one thing well. 

e Our Mocha frontend reads program source code from standard 
input and creates an AuIait program on its standard output. The 
stages within the frontend communicate by direct calls. We also cre- 
ate an optimizer for AuLait running as a separate filter program. The 
AuLait interpreter can be viewed as a data sink, whereas the intended 
backends are additional filter stages producing object code as output.O 

5 Design the emr handling. Because pipeline components do not share 
any global state, error handling is hard to address and is often 
neglected. As a minimum, error detection should be possible. UNIX 
defines a specific output channel for error messages, stderr, that is 
used by most provided filter programs for this purpose. Such an 
approach can denote errors in input data, resource limitations and so 
on. A single error channel may however mix error messages from 
different components in a non-obvious and unpredictable way when 
filters run in parallel. 

If a filter detects errors in its input data, it can ignore input until some 
clearly marked separation occurs. For example, a filter may skip to 
the next line of input if a line is expected to contain a numerical value 
and does not. This approach is helpful if incorrect input data is 
possible and inaccurate results can be tolerated. 

It is hard to give a general strategy for error handling with a system 
based on the Pipes and Filters pattern. For example, consider the 
case in which a pipeline has consumed three-quarters of its input. 
already produced half of its output data, and some intermediate filter 
crashes. In many systems the only solution is to restart the pipeline 
and hope that it will complete without failure. 

Resynchronization of the pipeline can be a goal of an advanced 
system in which filters process data incrementally. One option is to 
introduce special marker values to tag the input data stream. These 
markers are passed unchanged to the output. You can then restart 
the pipe at the correct stage of the input to continue processing from 
a failure. Another option is to use pipes to buffer data that has 



Architectural Patterns 

already been consumed, and then use it to restart the pipeline if a 
filter crashes. 

In our simple compiler we send errors to the standard error 
channel. The parser is designed to skip tokens when it detects a 
syntax error until the scanner recognizes the ';' statement separator. 
This is done for example in the following grammar rule, which ignores 
syntax errors if they occur in an 'import' statement. 

import : FROM identifier objidentlist I ; '  

I FROM error ; 

I mochaerror(errs[E-IMPRTI ) ;  yyerrok; I 

In this rule yacc's special token error matches all unrecognized 
tokens until a semicolon is found. The statement yyerrok is a special 
action that resets the parser into normal mode after the occurrence 
of a syntax error. 0 

6 Set u p  the processing pipeline. If your system handles a single task 
you can use a standardized main program that sets up the pipeline 
and starts processing. This type of system may benefit from a direct- 
call pipeline, in which the main program calls the active filter to start 
processing. 

You can increase flexibility by providing a shell or other end-user fa- 
cility to set up various pipelines from your set of filter components. 
Such a shell can support the incremental development of pipelines by 
allowing intermediate results to be stored in files, and supporting files 
as pipeline input. You are not restricted to a text-only shell such as  
those provided by UNIX, and could even develop a graphical environ- 
ment for visual creation of pipelines using 'drag and drop' interaction. 

u Our compiler is set up by a UNIX shell command that establish- 
es the compilation or interpreter pipeline: 

# compile and optimize a Mocha program for a Sun 
$ Mocha <file.Mocha I optauLait ) auLait2SPARC za.out 

# interpret a Mocha program 
$ Mocha <file.Mocha I cup 

Mocha is the frontend program, the optimizer is called o p t a u l a i t ,  
and the backends follow the naming convention a u l a i  t 2machine. 
The interpreter is named cup after the virtual machine it imp1ements.Q 



Pipes and Filters 65 

Example We did not follow the Pipes and Filters pattern strictly in our Mocha 
resolved compiler by implementing all phases of the compiler a s  separate filter 

programs connected by pipes. We did this for performance reasons, 
and also because, in contrast to the third force, these phases do share 
a global state-the symbol table. It is sometimes possible to remove 
the need for shared global states by passing global information along 
the pipeline as  additional data. However, this involves more complex 
data structures and an  increase in pipeline data volume, imposing a 
performance penalty. Where the data being processed consists of 
simple types such a s  lines of text, such complex addltlonal data 
structures have to be encoded and decoded by each filter. 

4 
Lexical Analysls/scanner 

v 

Syntax Analysis/Parser 
I 

4 
Semantic Analysis 

I 

Intcr-nicdlatc Code Gcncr:~tion u 
We combined the first four compiler phases into a single program 
because they all access and modify the symbol table. This allows u s  
to implement the pipe connection between the scanner and the parser 
as a simple function call. Backends, interpreters or a debugger would 
also benefit from access to the symbol table. We therefore follow the 
example of many existing compilers by encoding some of the symbol 
table information, such asnames and source line numbers, into the 
binary code for debugging purposes. Note that such symbol table 
information can greatly increase the size of compiled programs. 



Architectural Patterns 

Varlants Tee and join pipeline systems. The single-input slngle-output filter 
specification of the Pipes and Filters pattern can be varied to allow 
filters wlth more than one input and/or more than one output. Pro- 
cessing can then be set up a s  a directed graph that can even contaln 
feedback loops. The deslgn of such a system, especially one wlth 
feedback loops, requires a solid foundation to explain and 
understand the complete calculation-a rigorous theoretical analysls 
and specification using formal methods are appropriate, to prove that 
the system terminates and produces the desired result. I f  we restrict 
ourselves to simple directed acyclic graphs, however, it is still posslble 
to build useful systems. The UNIX filter program tee. for example, 
allows you to write data passed along a pipe to a file or to another 
'named' pipe. Some filter programs allow the use of files or named 
pipes a s  input, a s  well a s  standard input. For example, to bulld a 
sorted list of all lines that occur more than once In a text file. we can 
construct the following shell program: 

# Eirst create two auxiliary named pipes to be used 
rnknod pipeA p 
mknod pipeB p 
# now do the processing using available UNIX filters 
# start side fork of processing in background: 
sort pipeA > pipeB & 
# the main pipeline 
cat file I tee pipeA I sort -u I corn -13 - pipea 

+A comm -13 - p l p B  



Pipes and Filters 67 

Known Uses UNIX [Bac86] popularized the Pipes and Filters paradigm. The 
command shells and the availability of many filter programs made 
this approach to system development popular. As a system for 
software developers, frequent tasks such as program compilation and 
documentation creation are done by pipelines on a 'traditional' UNIX 
system. The flexibility of UNIX pipes made the operating system a 
suitable plafform for the binary reuse of filter programs and for 
application integration. 

CMS Pipelines IHRV951 is an extension to the operating system of 
IBM mainframes to support Pipes and Filters architectures. The im- 
plementation of CMS pipelines follows the conventions of CMS, and 
defines a record as  the basic data type that can be passed along pipes, 
instead of a byte or ASCII character. CMS Pipelines provides a reuse 
and integration plafform in the same way as  UNIX. Because the CMS 
operating system does not use a uniform I/O-model in the same way 
as UNIX, CMS Pipelines defines device drivers that act a s  data 
sources or sinks, allowing the handling of specific I/O-devices within 
pipelines. 

LASSPTools [Set951 is a toolset to support numerical analysis and 
graphics. The toolset consists mainly of filter programs that can be 
combined using UNIX pipes. It contains graphical input devices for 
analog input of numerical data using knobs or sliders, filters for 
numerical analysis and data extraction, and data sinks that produce 
animations from numerical data streams. 

Consequences The Pipes and Filters architectural pattern has the following benefits: 

No intermediate files necessary, but possible. Computing results 
using separate programs is possible without pipes, by storing 
intermediate results in files. This approach clutters directories, and 
is error-prone if you have to set up your processing stages every time 
you run your system. In addition, it rules out incremental and 
parallel computation of results. Using Pipes and Filters removes the 
need for intermediate files, but allows you to investigate intermediate 
data by using a T-junction in your pipeline. 

Flexibility by filter exchange. Filters have a simple interface that 
allows their easy exchange within a processing pipeline. Even if filter 
components call each other directly in a push or pull fashion, 
exchanging a filter component is still straightforward. In our compiler 



Architectural Patterns 

example a scanner generated with lex can easily be replaced by a 
more efficient hand-coded function yylex ( 1 that performs the same 
task. Filter exchange is generally not possible at  run-time due to 
incremental computation in the pipeline. 

Flexibility by recombination. This major benefit, combined with the re- 
usability of filter components, allows you to create new processing 
pipelines by rearranging filters or by adding new ones. A pipeline 
without a data source or sink can be embedded a s  a filter within a 
larger pipeline. You should aim to tune the system plafform or sur- 
rounding infrastructure to support this flexibility, such a s  is provided 
by the pipe mechanism and shells in UNIX. 

Reuse ofJlter components. Support for recombination leads to easy 
reuse of filter components. Reuse is further enhanced if you 
implement each filter a s  an  active component, while the underlying 
plafform and shell allow easy end-user construction of pipelines. 

Rapid prototyping ofpiplines. The preceding benefits make it easy to 
prototype a data-processing system from existing filters. After you 
have implemented the principal system function using a pipeline you 
can optimize it incrementally. You can do this, for example, by 
developing specific filters for time-critical processing stages, or by re- 
implementing the pipeline using more efficient pipe connections. Your 
prototype pipeline can however be the final system if it performs the 
required task adequately. Highly-flexible filters such a s  the UNIX 
tools sed and awk reinforce such a prototyping approach. 

Egiciemy by parallel processing. It is possible to start active filter 
components in parallel in a multiprocessor system or a network. If 
each filter in a pipeline consumes and produces data incrementally 
they can perform their functions in parallel. 

Applying the Pipes and Filters pattern imposes some liabilities: 

Sharing state information is expensive or inflxible. If your processing 
stages need to share a large amount of global data, applying the Pipes 
and Filters pattern is either inefficient or does not provide the full 
benefits of the pattern. 



Pipes and Filters 69 

Efficiency gain by parallel processing is often a n  illusion. This is for 
several reasons: 

The cost for transferring data between filters may be relatively high 
compared to the cost of the computation carried out by a single 
filter. This is especially true for small filter components or pipelines 
using network connections. 

Some filters consume all their input before producing any output, 
either because the task, such a s  sorting, requires it or because the 
filter is badly coded, for example by not using incremental process- 
ing when the application allows it. 

Context-switching between threads or processes is generally an  
expensive operation on a single-processor machine. 

Synchronization of filters via pipes may stop and start filters often, 
especially when a pipe has only a small buffer. 

Data transformation overhead. Using a single data type for all filter 
input and output to achieve highest flexibility results in data 
conversion overheads. Consider a system that performs numeric 
calculations and uses UNIX pipes. Such a system must convert ASCII 
characters to real numbers, and vice-versa, within each filter. A 
simple filter, such a s  one that adds two numbers, will spend most of 
its processing time doing format conversion. 

Error handling. As we explained in step 5 of the Implementation 
section, error handling is the Achilles' heel of the Pipes and Filters 
pattern. You should at  least define a common strategy for error 
reporting and use it throughout your system. A concrete error- 
recovery or error-handling strategy depends on the task you need to 
solve. If your intended pipeline is used in a 'mission-critical' system 
and restarting the pipeline or ignoring errors is not possible, you 
should consider structuring your system using alternative archi- 
tectures such a s  Layers (3 1). 



Architectural Patterns 

See Also The Layers pattern (31) is better suited to systems that require 
reliable operation, because it is easier to implement error handling 
than with Pipes and Filters. However, Layers lacks support for the 
easy recombination and reuse of components that is the key feature 
of the Pipes and Filter pattern. 

Credits This pattern relies on experience we gained when learning, using, and 
teaching UNIX. Our thanks therefore go to the designers of the first 
versions of UNIX, and its predecessors, who invented and established 
the use of pipes and filters. 

The distinction of active and passive pipeline components was influ- 
enced by the PLoP'95 paper The Pipeline Design Pattern' [VBT95]. 

We also thank Ken Auer. Norbert Portner, Douglas C. Schmidt, Jiri 
Soukup, and John Vlissides for their valuable criticism and their sug- 
gestions for the improvement of the [PLoP94] version of this pattern. 



Blackboard 
-- - 

The Blackboard architectural pattern is useful for problems for which 
no determlnlstic solution strategies are known. In Blackboard several 
specialized subsystems assemble their knowledge to bulld a possibly 
partial or approximate solution. 

Example Consider a software system for speech recognition. The input to the 
system is speech recorded as a waveform. The system not only 
accepts single words, but also whole sentences that are restricted to 
the syntax and vocabulary needed for a specific application, such as 
a database query. The desired output is a machine represe~itation of 
the corresponding English phrases. The transformations involved 
require acoustic- phonetic, linguistlc. and statistical expertise. For 
example. one procedure dMdes the waveform into segments that are 
meaningful in the context of speech, such as  At the other 
end of the processing sequence, another procedure checks the syntax 
of candidate phrases. Both procedures work In different domains. 

I ARE ANY BY FElCENBAUM 1 Phrases 

Words 

6. A'phone' Is the smallest unit of sound within a spoken language. Thls Is distlnct 
from 'phoneme'. whlch Is the smallest subdlvlsion of a spoken language that conveys a 
dlsund meanlng. Aphonenle can be represented by different phoncs. For example, the 
German hard 'r' sound and the English roUed 'r' sound are dlfferent phones, but belong 
to the same phoneme IFe184). 

UW ERAY EY NX IY B AUrIH F A U r l Y  N X E Y N  B 
AA A E I H E Y  AY N T A Y E Y  EYIH NX "' 
W R  IH M AA EY THAO Y C AY EM 
AN' EY DX AY D HHAE 

Segments 



Architectural Patterns 

This diagram is mostly taken from [EHLR88]. The input is the 
waveform at the bottom, and the output consists of the phrase 'are 
any by Feigenbaum'. 

For the moment we assume that there is no consistent algorithm that 
combines all the necessary procedures for recognizing speech-we 
discuss this topic further in the Consequences section. To make mat- 
ters worse, the problem is characterized by the ambiguities of spoken 
language, noisy data, and the individual peculiarities of speakers 
such as vocabulary, pronunciation, and syntax. 

Context An immature domain in which no closed approach to a solution is 
known or feasible. 

Problem The Blackboard pattern tackles problems that do not have a feasible 
deterministic solution for the transformation of raw data into high- 
level data structures, such as diagrams, tables or English phrases. 
Vision, image recognition, speech recognition and surveillance are 
examples of domains in which such problems occur. They are char- 
acterized by a problem that, when decomposed into subproblems, 
spans several fields of expertise. The solutions to the partial problems 
require different representations and paradigms. In many cases no 
predetermined strategy exists for how the 'partial problem solvers' 
should combine their knowledge. This is in contrast to functional de- 
composition, in which several solution steps are arranged so that the 
sequence of their activation is hard-coded. 

In some of the above problem domains you may also have to work 
with uncertain or appromate  knowledge. Each transformation step 
can also generate several alternative solutions. In such cases it is 
often enough to find an optimal solution for most cases, and a 
suboptimal solution, or no solution, for the rest. The limitations of a 
Blackboard system therefore have to be documented carefully, and if 
important decisions depend on its results, the results have to be 
verified. 

The following forces influence solutions to problems of this kind: 

A complete search of the solution space is not feasible in a reason- 
able time. For example, if you consider phrases of up to ten words 
using a vocabulary of a thousand words, the number of possible 
permutations of words is in the order of 1000lO. 



Blackboard 

Since the domain is immature, you may need to experiment with 
different algorithms for the same subtask. For this reason, individ- 
ual modules should be easily exchangeable. 

There are different algorithms that solve partial problems. For 
example, the detection of phonetic segments in the waveform is 
unrelated to the generation of phrases based on words and word 
sequences. 

Input, as well as intermediate and final results, have different 
representations, and the algorithms are implemented according to 
different paradigms. 

An algorithm usually works on the results of other algorithms. 

Uncertain data and approximate solutions are involved. For exam- 
ple, speech often includes pauses and extraneous sounds. These 
significantly distort the signal. The process of interpretation of the 
signal is also error-prone. Competing alternatives for a recognition 
target may occur at any stage of the process. For example, it is hard 
to distinguish between 'till' and 'tell'. The words 'two' and 'too' even 
have the same pronunciation, as do many others in English. 

Employing disjoint algorithms induces potential parallelism. If 
possible you should avoid a strictly sequential solution. 

Artificial Intelligence (Al) systems have been used with some success 
for such complex non-deterministic problems. In the 'classical' expert 
system structure, the input to the system and intermediate results 
are kept in working memory. The memory contents are used by an 
inference engine in conjunction with the knowledge base to infer new 
intermediate results. Such manipulation steps are repeated until 
some completion condition is fulfilled. 

This type of expert system structure is inadequate for a speech 
recognition system. There are three reasons for this: 

All partial problems are solved using the same knowledge represen- 
tation. However, the components involved in the speech recognition 
process work on fields of knowledge that differ as widely as  the seg- 
mentation of a waveform and the parsing of candidate phrases. 
They therefore require different representations. 



The expert system structure provides only one inference engine to 
control the application of knowledge. Different partial problems 
with different representations require separate inference engines. 

In a 'classical' expert system, control is implicit in the structure of 
the knowledge base, for example in the ordering of the rules in a 
rule-based system. This is consistent with the view of many A1 
systems that 'problem solving is search' and 'knowledge prunes 
and directs search'. This implies that you search in the search tree 
for nodes that include the solution for your problem, and use items 
of knowledge to guide your way from the root of the search tree- 
where all solutions are possible-to a single leaf. 

For the speech recognition problem, the view 'problem solving is 
experts assembling their knowledge' is more suitable. In other 
words, fragments of knowledge have to be applied at  an  opportune 
time, rather than in a predetermined order. 

Solution The idea behind the Blackboard architecture is a collection of 
independent programs that work cooperatively on a common data 
structure. Each program is specialized for solving a particular part of 
the overall task, and all programs work together on the solution. 
These specialized programs are independent of each other. They do 
not call each other, nor is there a predetermined sequence for their 
activation. Instead, the direction taken by the system is mainly 
determined by the current state of progress. A central control 
component evaluates the current state of processing and coordinates 
the specialized programs. This data-directed control regime is 
referred to a s  opportunistic problem solving. It makes experimentation 
with different algorithms possible, and allows experimentally-derived 
heuristics to control processing. 

During the problem-solving process the system works with partial 
solutions that are combined, changed or rejected. Each of these 
solutions represents a partial problem and a certain stage of its 
solution, The set of all possible solutions is called the solution space, 
and is organized into levels of abstraction. The lowest level of solution 
consists of an internal representation of the input. Potential solutions 
of the overall system task are on the highest level. 

The name 'blackboardwas chosen because it is reminiscent of the 
situation in which human experts sit in front of a real blackboard and 



Blackboard 75 

work together to solve a problem. Each expert separately evaluates 
the current state of the solution, and may go up to the blackboard at  
any time and add, change or delete information. Humans usually 
decide themselves who has the next access to the blackboard. In the 
pattern we describe, a moderator component decides the order in 
which programs execute if more than one can make a contribution. 

Structure Divide your system into a component called blackboard, a collection 
of knowledge sources, and a control component. 

The blackboard is the central data store. Elements of the solution 
space and control data are stored here. We use the term vocabulary 
for the set of all data elements that can appear on the blackboard. The 
blackboard provides a n  interface that enables all knowledge sources 
to read from and write to it. 

At1 elements of the solution space can appear on the blackboard. For 
solutions that are constructed during the problem solving process 
and put on the blackboard, we use the terms hypothesis or 
blackboard entry. Hypotheses rejected later in the process are 
removed from the blackboard. 

A hypothesis usually has several attributes, for example its 
abstraction level, that is, its conceptual distance from the input. 
Hypotheses that have a low abstraction level have a representation 
that is still similar to input data representation, while hypotheses 
with the highest abstraction level are on the same abstraction level as  
the output. Other hypothesis attributes are the estimated degree of 
truth of the hypothesis or the time interval covered by the hypothesis. 

It is often useful to specify relationships between hypotheses, such a s  
'part-of or 'in-support-of. 

b The solution space for the speech recognition example consists 
of acoustic-phonetic and linguistic speech fragments. The levels of 
abstraction are signal parameters, acoustic-phonetic segments, 
phones, syllables, words, and phrases. 

The degree of truth for a syllable is estimated by the quality of the 
match between the ideal phone sequences for that syllable and the 
hypothesized phones. 



Architectural Patterns 

The waveform of the acoustic signal is recorded on a time axis that 
corresponds to the X-axis in the figure on page 7 1. Every solution has 
an attribute that specifies the interval on the X-axis that it describes. 

The blackboard can be viewed as a three-dimensional problem space 
with the time line for speech on the X-axis, increasing levels of 
abstraction on the Y-axis and alternative solutions on the Z-axis 
INii861. 0 

Knowledge sources are separate, independent subsystems that solve 
specific aspects of the overall problem. Together they model the 
overall problem domain. None of them can solve the task of the 
system alone-a solution can only be built by integrating the results 
of several knowledge sources. 

In the speech recognition system we specify solutions for the 
following partial problems: defining acoustic-phonetic segments, and 
creating phones, syllables, words and phrases. For each of these 
partial problem we define one or several knowledge sources. One 
knowledge source at  the word level, for example, may create words 
from adjacent syllables, while another source on the same level 
verifies words that depend on neighboring words. 

Note that the transformation from waveform to phrase is not 
necessarily a strictly sequential process. The complete waveform is 
not necessarily first transformed into segments, all segments into 
phones, then into syllables and words, and phrases then built. A 
portion of the waveform may have been transformed into words. 
another may have been rejected at  the word level back to the phone 
level, and a third may not be analyzed at  all until enough evidence on 
the phrase level exists to tackle it. 0 

Knowledge sources do not communicate directly-they only read from 
and write to the blackboard. They therefore have to understand the 
vocabulary of the blackboard. We explore the ramifications of this in 
the Implementation section. 

Often a knowledge source operates on two levels of abstraction. If a 
knowledge source implements forward reasoning, a particular 
solution is transformed to a higher-level solution. A knowledge source 
that reasons backwards searches at  a lower level for support for a 
solution, and may refer it back to a lower level if the reasoning did not 
give support for the solution. 



Blackboard 

Class 
Blackboard 

Collaborators 

Responsibility 
Manages central 
data 

Evaluates its own 
applicability 
Computes a result I 
updates Black- 
board 

Each knowledge source is responsible for knowing the conditions 
under which it can contribute to a solution. Knowledge sources are 
therefore split into a condition-part and an action-part. The condition- 
part evaluates the current state of the solution process, as written on 
the blackboard, to determine if it can make a contribution. The 
action-part produces a result that may cause a change to the 
blackboard's contents. 

w Our speech recognition system has diverse knowledge sources 
that transform several hypotheses at  the same level and with 
contiguous time intervals to a single hypothesis on the next higher 
level. For example, a phrase is built from a selection of words that 
together span the time interval corresponding to the phrase. Other 
knowledge sources predict new hypotheses a t  the same level. For 
example, one knowledge source predicts possible words that might 
syntactically precede or follow a given phrase. We also define a 
knowledge source that verifies the predicted hypotheses based on 
information at  the next lower level. This calculates the consistency 
between a predicted word and the set of segments that span the same 
time interval. D 

The control component runs a loop that monitors the changes on the 
blackboard and decides what action to take next. It schedules 
knowledge source evaluations and activations according to a knowl- 
edge application strategy. The basis for this strategy is the data on the 
blackboard. 

The strategy may rely on control knowledge sources. These special 
knowledge sources do not contribute directly to solutions on the 



Architectural Patterns 

blackboard, but perform calculations on which control decisions are 
made. Typical tasks are the estimation of the potential for progress, 
or the computational costs for execution of knowledge sources. Their 
results are called control data and are put on the blackboard as well. 

Class 
Control 

Responsibility 
Monitors Black- 
board 
Schedules Know- 
ledge Source acti- 
vations 

Collaborators 
Blackboard 
Knowledge 
Source 

Theoretically, it is possible that the blackboard can reach a state at 
which no knowledge source is applicable. In this case, the system 
fails to deliver a result. In practice, it is more likely that each 
reasoning step introduces several new hypotheses, and that the 
number of possible next steps 'explodes'. The problem is therefore to 
restrict the alternatives to be taken rather than to find an applicable 
knowledge source. 

A special knowledge source or a procedure in the control component 
determines when the system should halt, and what the final result is. 
The system halts when an acceptable7 hypothesis is found, or when 
the space or time resources of the system are exhausted. 

The following figure illustrates the relationship between the three 
components of the Blackboard architecture. The blackboard 
component defines two procedures: inspect  and update. Knowledge 
sources call inspect  to check the current solutions on the 
blackboard. update is used to make changes to the data on the 
blackboard. 

7. We consider the problem of when to accept or reject top-level solutions in the 
Implementation section. 



Blackboard 79 

The Control component runs a loop that monitors changes on the 
blackboard and decides what actions to take next. We call the proce- 
dure responsible for this decision nextsource ( ) 

Dynamics The following scenario illustrates the behavior of the Blackboard 
architecture. It is based on our speech recognition example: 

The main loop of the Control component is started. 

I 
I 

Control calls the nextsource ( )  procedure to select the next 
knowledge source. 

operates on 

nextsource ( )  first determines which knowledge sources are po- 
tential contributors by observing the blackboard. In this example 
we assume the candidate lmowledge sources are Segmentation. 
Syllable Creation and Word Creation. 

nextsource0 invokes the condition-part of each candidate 
knowledge source. In the example, the condition-parts of Segrnen- 
tation. Syllable Creation and Word Creation inspect the blackboard 
to determine if and how they can contribute to the current state of 
the solution. 

Knowledge 
Source 

The Control component chooses a lmowledge source to invoke, and 
a hypothesis or a set of hypotheses to be worked on. In the example 
the choice is made according to the results of the condition parts. 
In other cases the selection is also based on control data. It applies 
the action-part of the knowledge source to the hypotheses. In our 

P 

updateBlackboard + execcondition 
execAction 

Blackboard 

solutions 
controlData 

inspect 
update 

+l m 
activates 

Control 

loop 
nextsource 



Architectural Patterns 

speech recognition example, assume that Syllable Creation is the 
most promising knowledge source. The action-part of Syllable 
Creation inspects the state of the blackboard, creates a new 
syllable and updates the blackboard. 

inspect M 
updateBlackboard 

inspect 

4 

/ 
I 

Implementation To implement the Blackboard pattern, carry out the following steps: 

1 Define the problem: 

Specify the domain of the problem and the general fields of 
knowledge necessary to find a solution. 

Scrutinize the input to the system. Determine any special proper- 
ties of the input such as noise content or variations on a theme- 
that is, does the input contain regular patterns that change slowly 
over time? 



Blackboard 81 

Define the output of the system. Specify the requirements for 
correctness and fail-safe behavior. If you need an  estimation of the 
credibility of the results, or if there are cases in which the system 
should ask the user for further resources, record this. 

Detail how the user interacts with the system. 

s The fields of knowledge important for a system in the domain of 
speech recognition are acoustics, linguistics and statistics. The input 
is a sequence of acoustic signals from a speaker. The data is noisy. If 
the system allows the speaker to repeat a phrase several times, the 
input contains 'variations on a theme', a s  described above. The de- 
sired output is a written English phrase corresponding to the spoken 
phrase. When used for a database query interface, the system can tol- 
erate occasional misinterpretations. If we have to repeat a query in, 
say, 10% of cases, the system can still be useful. CS 

2 Define the solution spacefor the problem We distinguish intermediate 
and top-level solutions on one hand, and partial and complete solu- 
tions on the other. A top-level solution is at  the highest abstraction 
level. Solutions at other levels are intermediate solutions. A complete 
solution solves the whole problem, whereas a partial solution solves 
part of the problem. Note that complete solutions can belong to inter- 
mediate levels, and a partial solution may be top-level. 

s In speech recognition, complete top-level solutions are phrases 
that are correct with respect to a defined vocabulary and syntax. 
Complete intermediate solutions are sequences of acoustic-phonetic 
or linguistic elements that describe the whole spoken phrase. Parts of 
solutions are the elements themselves. 0 

So, perform the following steps: 

Specify exactly what constitutes a top-level solution. 

List the different abstraction levels of solutions. 

Organize solutions into one or more abstraction hierarchies. 

Find subdivisions of complete solutions that can be worked on 
independently, for example words of a phrase or regions of a 
picture or area. 



Architectural Patterns 

3 Divide the solution process into steps: 

Define how solutions are transformed into higher-level solutions. 

Describe how to predict hypotheses at  the same abstraction level. 

Detail how to verify predicted hypotheses by finding support for 
them in other levels. 

Specify the kind of knowledge that can be used to exclude parts of 
the solution space. 

r To transform solutions on the syllabic level to solutions on the 
word level, we provide a dictionary that associates a syllable with all 
the words whose pronunciation contains the syllable. 

Syntactic and statistical knowledge is useful when pruning the 
search for word sequences. For example, the heuristic that an  adjec- 
tive is normally followed by another adjective or a noun can be used 
to cut down computing time. Ll 

4 Divide the knowledge into specialized knowledge sources with certain 
subtasks. These subtasks often correspond to areas of specialization. 
There may be some subtasks for which the system defers to human 
specialists for decisions about dubious cases, or even to replace a 
missing knowledge source. Knowledge sources must be complete in 
the following sense: for most of the input phrases, at  least one 
possible sequence of knowledge source activations that leads to an 
acceptable solution should exist. 

r Examples of knowledge sources are segmentation, phone cre- 
ation, syllable creation, word creation, phrase creation, word 
prediction and word verification. Li 

5 Define the vocabulary of the blackboard. Elaborate your first definition 
of the solution space and the abstraction levels of your solutions. Find 
a representation for solutions that allows all knowledge sources to 
read from and contribute to the blackboard. This does not mean that 
each knowledge source must understand every blackboard entry, but 
each knowledge source must be able to decide whether it can use a 
blackboard entry. If necessary, provide components that translate 
between blackboard entries and the internal representations within 
knowledge sources. This allows knowledge sources to be easily 
exchanged, to be independent of each other's representation and 
paradigms, and at  the same time use each other's results. 



Blackboard 

r In our speech recognition example, each hypothesis has a uni- 
form attribute-value structure. Some attributes must be included in 
all hypotheses, while others are optional. The element name, the ab- 
straction level and the time interval covered by the hypothesis are 
among the required attributes. The estimated degree of truth is op- 
tional. For example, the blackboard may contain the following entry: 

ABOUT+FEIGENBAUM+AND+FELDMAN+] (phrase) ( 4 8 : 2 2 5 )  ( 8 3 ) .  

Depending on the abstraction level, each knowledge source can 
decide if it is able to work on a hypothesis or not. The knowledge 
source responsible for segmentation, for example, does not under- 
stand the symbols '+' and 'I ' in the blackboard entry shown here. It 
knows, by reading the value of the attribute abstraction level, that the 
hypothesis is a phrase, so it does not check the other attributes. Cl 

To evaluate the contents of the blackboard, the Control component 
must be able to understand it. The vocabulary of the blackboard 
cannot therefore be defined once, but evolves In concert with the 
definition of knowledge sources and the Control component. At some 
point during design the vocabulary must stabilize, to allow the 
development of stable interfaces to the knowledge sources. 

6 Specify the control ofthe system The Control component implements 
an opportunistic problem-solving strategy that determines which 
knowledge sources are allowed to make changes to the blackboard. 
The aim of this strategy is to construct a hypothesis that is acceptable 
as  a result. But when is a hypothesis acceptable? Since the 
correctness of a hypothesis is not verifiable In a strict sense, our goal 
is to construct the most credible complete, top-level solution possible 
in the solution space. 

The credibility of a hypothesis is the likelihood that it is correct. We 
estimate the credibility of a hypothesis by considering all plausible 
alternatives to it, and the degree of support each alternative receives 
from the input data. The credibility rating is, for example, a number 
on a scale ranging from 0 to 100. A hypothesis is acceptable if it is 
top-level and complete and if its assessed credibility reaches a 
threshold value, for example 85. To find a n  acceptable hypothesis, the 
system eliminates hypotheses with a low credibility, and detects 
mutually-supportive clusters of hypotheses that are consistent with 
the input data. 



Architectural Patterns 

In the simplest case the control strategy consults the condition-part 
of all knowledge sources whenever the blackboard is changed, and 
picks one of the applicable knowledge sources for activation a t  
random. However, this strategy usually is too inefficient, a s  progress 
toward an  acceptable hypothesis is slow. The design of a good control 
strategy is the most difficult part of the system design. It often 
consists of a tedious process of trying combinations of several 
mechanisms and partial strategies. The Strategy pattern IGHJV951 is 
useful here to support an  exchange of control strategies, even a t  run- 
time. Sophisticated control strategies may be implemented by a 
dedicated knowledge-based system. 

The following mechanisms optimize the evaluation of knowledge 
sources, and so increase the effectiveness and performance of the 
control strategy: 

Classifying changes to the blackboard into two types. One type 
specifies all blackboard changes that may imply a new set of appli- 
cable knowledge sources, the other specifies all blackboard 
changes that do not. After changes of the second type, the Control 
component chooses a knowledge source without another invoca- 
tion of all condition-parts. 

Associating categories of blackboard changes with sets of possibly 
applicable knowledge sources. 

Focusing of control. Thefocus contains either partial results on the 
blackboard that should be worked on next, or knowledge sources 
that should be preferred over others. 

Creating a queue in which knowledge sources classified a s  applica- 
ble wait for their execution. By using a queue, you save valuable 
information about knowledge sources rather than discarding it af- 
ter each change to the blackboard. 

Control strategies use heuristics to determine which of the applicable 
knowledge sources to activate. Heuristics are rules based on experi- 
ence and guesses. Keep in mind that good heuristics work often, but  
not always. Here are some examples of heuristics that can be used by 
control strategies: 

Prioritizing applicable knowledge sources. The basis for such a 
priority calculation is the evaluation of the condition-parts of 
knowledge sources, and possibly other information such a s  the 



Blackboard 

potential for making progress using a knowledge source, and the 
costs of its application. The Control component may consider the 
contributions of knowledge-sources to decide about prioritization. 
In this case it must execute the action-parts of all applicable 
knowledge sources before it can decide which should make a 
change to the blackboard. If the system uses a queue, the priority 
of each knowledge source is stored with its entry. A change to the 
blackboard may result in a change in priorities or the removal of 
knowledge sources from the queue. 

Preferring low-level or high-level hypotheses. If this is the only 
strategy used, the control strategy is no longer opportunistic, but 
rather implements forward- or backward-chaining. 

Preferring hypotheses that cover large parts of the problem. 

'Island driving'. This strategy involves assuming that a particular 
hypothesis is part of an acceptable solution, and is considered as  
an 'island of certainty'. Knowledge source activations that work on 
this hypothesis are then preferred over others, which removes the 
need to search constantly for alternative hypotheses with higher 
priorities. 

If the control component displays complex and independent 
subtasks, define one control knowledge source for each of these 
subtasks. Treat them like other knowledge sources. For example, the 
priority calculation for applicable knowledge sources can itself be 
implemented as  a dedicated control knowledge source. 

7 Implement the knowledge sources. Split the knowledge sources into 
condition-parts and action-parts according to the needs of the Con- 
trol component. To maintain the independency and exchangeability of 
knowledge sources, do not make any assumptions about other knowl- 
edge sources or the Control component. 

You can implement different knowledge sources in the same system 
using different technologies. For example, one may be a rule-based 
system, another a neural net and a third a set of conventional 
functions. This implies that the knowledge sources themselves may 
be organized according to diverse architectural or design patterns. 
For example, one knowledge source may be designed using the Layers 
pattern (31), while another may be structured according to the 
Reflection pattern (193). If you intend to develop your system using 



Architectural Patterns 

object-oriented technology, but your knowledge sources are im- 
plemented using another paradigm, it makes sense to 'wrap' them 
using the Facade pattern (GHJV951. 

Variants Production System This architecture is used in the OPS language 
[FMcD77]. In this variant subroutines are represented as condition- 
action rules, and data is globally available in working memory. 
Condition-action rules consist of a left-hand side that specifies a 
condition, and a right-hand side that specifies an action. The action 
is executed only if the condition is satisfied and the rule is selected. 
The selection is made by a 'conflict resolution module'. A Blackboard 
system can be regarded as a radical extension of the original pro- 
duction system formalism: arbitrary programs are allowed for both 
sides of the rules, and the internal complexity of the working memory 
is increased. Complicated scheduling algorithms are used for conflict- 
resolution. 

Repository. This variant is a generalization of the Blackboard pattern. 
The central data structure of this variant is called a repository. In a 
Blackboard architecture the current state of the central data 
structure, in conjunction with the Control component, finally 
activates knowledge sources. In contrast, the Repository pattern does 
not specify an  internal control. A repository architecture may be 
controlled by user input or by an external program. A traditional 
database, for example, can be considered as a repository. Application 
programs working on the database correspond to the knowledge 
sources in the Blackboard architecture. 

Examples of repository systems that are not Blackboard systems are 
given in lSG961: 'Programming environments are often organized as a 
collection of tools together with a shared repository of programs and 
program fragments. Even applications that have been traditionally 
viewed as  pipeline architectures, may be more accurately interpreted 
as repository systems.. .' Compilers, for example, have traditionally 
been described and sometimes also been implemented as  pipelines8. 
Modern compilers have a repository that holds shared information 
such as symbol tables and abstract syntax trees. The compilation 

8. For more information on pipeline architectures, refer to the Pipes and Filters 
pattern (53) where we explain in more detail why building compilers according to Pipes 
and Filters is usually not a good idea. 



Blackboard 87 

phases correspond to knowledge sources operating on the repository 
This architecture enables incremental problem solving: 

The scanner reads an identifier that is not yet defined. 

The parser recognizes the syntactical unit described by the 
identifier. 

The code generator then jumps in and creates the corresponding 
machine code, if any. 

Known uses HEARSAY-11. The first Blackboard system was the HEARSAY-I1 
speech recognition system from the early 1970's. It was developed as 
a natural language interface to a literature database. Its task was to 
answer queries about documents and to retrieve documents from a 
collection of abstracts of Artificial Intelligence publications. The 
inputs to the system were acoustic signals that were semantically 
interpreted and then transformed to a database query. (EM881 gives 
a detailed description and retrospective view of the project. Selected 
aspects of HEARSAY-I1 also serve as the running example of this 
pattern. The following paragraphs discuss its control aspects. 

In HEARSAY-11, the condition-part of a knowledge source identifies a 
configuration of hypotheses on the blackboard appropriate for action 
by the knowledge source. This subset is called the stimulusframe. For 
example, the condition-part of the knowledge source that generates 
phrase hypotheses looks for contiguous word or phrase hypotheses. 
Condition-parts also calculate a formal description of the likely action 
that the knowledge source will perform, called the responseframe. 
For example, a response frame for a word hypothesizer based on 
syllables indicates that its action will be to generate hypotheses at the 
word level, and that the interval covered by the hypothesis on the X- 
axis will include a t  least the stimulus frame. 

The control component of HEARSAY-I1 consists of the following: 

The focusofcontrol database, which contains a table of primitive 
change Qpes of blackboard changes, and those condition-parts 
that can be executed for each change type. Examples of primitive 
change types are 'new syllable' or 'new word created bottom-up'- 
indicating that a new word appeared on the blackboard and it was 
inferred using hypotheses on lower levels. 



Architectural Patterns 

The scheduling queue, which contains pointers to condition- or 
action-parts of knowledge  source^.^ 
The monitor, which keeps track of each change made to the black- 
board. The monitor inserts pointers to applicable condition-parts 
into the scheduling queue based on the corresponding primitive 
change types. If a condition-part is actually executed and the cal- 
culated response frame is not empty, a pointer to the matching 
action-part is placed in the scheduling queue. 

The scheduler, which uses experimentally-derived heuristics to 
calculate priorities for the condition- and action-parts waiting in 
the scheduling queue. This estimation is based on the specific 
stimulus and response frames. It also takes into account overall 
blackboard state information, such as which out of several com- 
peting hypotheses in the same X-axis interval has highest support 
from hypotheses on lower levels. The scheduler finally selects the 
condition- or action-part with the highest priority for execution 
[LeEr88]. 

The designers of HEARSAY-I1 combined several problem-solving 
techniques for their knowledge application strategy. The first is a 
bottom-up approach in which interpretations are synthesized directly 
from the data, working up the abstraction hierarchy. The second is a 
top-down strategy, in which hypotheses at  lower levels are produced 
recursively until a sequence of hypotheses on the lowest level is 
produced that can be tested against the original input. Orthogonal to 
those approaches, HEARSAY-I1 employs a 'generate-and-test' strat- 
egy, in which a knowledge source generates hypotheses, and their 
validity is evaluated by another knowledge source. 

HASP/SIAP. The HASP system was designed to detect enemy 
submarines. In this system, hydrophone arrays monitor a sea area by 
collecting sonar signals. A Blackboard system interprets these signals 
[Nii86]. HASP is an event-based system in the sense that the 
occurrence of a particular event implies that new information is 
available. The blackboard is used as a 'situation board' that evolves 

9. The scheduling queue does not iniplicitly determine the sequence of elements to 
be removed, as a LIFO- or FIFO-queue does. Instead the Scheduler determines the 
sequence by repeatedly calculating priorities. Therefore, according to our terminology, 
the HEARSAY-I1 'scheduling queue' is a container and not a queue. 



Blackboard 89 

over time. Since information is collected continuously, there is 
information redundancy as well as new and different information. 
HASP deals with multiple input streams. Besides the low-level data 
from hydrophones, it accepts high-level descriptions of the situation 
gathered from intelligence or other sources. 

CRYSALIS. This system was designed to infer the three-dimensional 
structure of protein molecules from X-ray diffraction data [Ter88]. 
The system introduces several features to the Blackboard 
architecture. The blackboard is divided into several parts called 
panels. Each panel has its own vocabulary and hierarchy. It is 
possible to restrict access to certain panels by knowledge sources. 
CRYSALIS uses a data panel and a hypothesis panel. Knowledge 
sources are organized into levels. Only the lowest level contains 
knowledge sources that actually create and modify hypotheses. The 
other levels consist of control knowledge sources. CRYSALIS was the 
first Blackboard system to use rule-based systems for control. 

TRICERO. This system monitors aircraft activities. It extends the 
Blackboard architecture to distributed computing [Wi184]. Four 
complete, independent expert systems for partial problems were 
designed to run on four separate machines. 

Generalizations. Between 1977 and 1984 application-oriented 
Blackboard systems were generalized to produce frameworks 
intended to ease building Blackboard applications. However, no 
standard way to do this emerged. 

SUS. A recent project called 'Software Understanding System', 
described in ITHG941, is particularly interesting from our point of 
view as software pattern authors. The aim of SUS is to support 
understanding of software, and the search for reusable assets. In a 
matching process the system compares patterns from a pattern base 
to the system under analysis. SUS incrementally builds a 'pattern 
map' of the analyzed software that then can be viewed. 

Example In the following we present an excerpt of the processing steps that 
Resolved HEARSAY-I1 performs to understand the phrase 'Are any by 

Feigenbaum and Feldman?', as described in 1EHLR881. 

To briefly characterize the knowledge sources that are activated in the 
example: 



Architectural Patterns 

RPOL runs as a high-priority task immediately after any knowledge 
source activity that creates a new hypothesis.RPOL uses rating 
information on the new hypothesis, as well as rating information 
on hypotheses to which the new hypothesis is connected, to 
calculate an overall rating for the new hypothesis. 

PREDICT works on a phrase and generates predictions of all words 
that can immediately precede or follow the phrase In the language. 

VERIFY tries to verify the existence of, or reject, a predicted word, 
in the context of the phrase that predicts it. If the word is verified 
a confidence rating must also be generated for it. This is done by 
the knowledge source RPOL. 

CONCAT accomplishes the generation of a phrase from a verified 
word and its predicting phrase. The extended phrase includes a 
rating that is based on the ratings of the predicting phrase, and the 
verified word. If a verified word is already associated with some oth- 
er phrase, CONCAT tries to parse that phrase with the predicting 
phrase. If successful, a phrase hypothesis is created which repre- 
sents the merging of the two phrases. 

We have simplified the original description for ease of understanding, 
and have omitted explicit executions of the condition-parts of knowl- 
edge sources. Executions of RPOL are also omitted. An execution of 
the VERIFY knowledge source often immediately follows the execution 
of the PREDICT knowledge source. The two knowledge source execu- 
tions are therefore combined into one step. 

To help you understand the following sequence of processing steps 
and the figure, here is an explanation of the notation we have used: 

The number in brackets behind a word or phrase denotes its 
credibility rating. 

'1' marks the begin of an spoken phrase, and 'I' marks its end. 

KS stands for 'knowledge source'. 

The highest rated hypotheses on the blackboard are currently: 

[ARE+ ( 9 7  ) , [ARE+REDDY (9 1) , FEIGENBAUM+AND+FELDMAN+] (85) , 
and [ ARE+ANY ( 8 6 ) . 

Step 17 is the first step to consider: 



Blackboard 

Step 17: KS PREDICT&VERIFY 
Stimulus: FEIGENBAUM+AND+FELDMAN+] (85) (phrase). 
Action: Predict eight preceding words; 
re] ect one : DISCUSS ; 
find three already on the blackboard: CITE(70), 
ABOUT (75) , BY (80) ; 
verify four: CITES (65) , QUOTE (70) , ED(75), NOT (75) . 

The rating of a hypothesis is not the only parameter the Scheduler 
uses to assign priorities to waiting knowledge source activations. In 
particular, the length of a hypothesis is also important. The phrase 
FEIGENBAUM+AND+FELDMAN+] with a rating of 85 Was therefore pre- 
ferred over the phrases [ARE+REDDY with a rating of 91 and [ARE+ANY 
with a rating of 86, because it is much longer. 

In steps 18 through 24, alternative word extensions of 
FEIGENBAUM+AND+FELDMAN+] (85 ) are explored. a result of this 
exploration, the phrase BY+FE IGENBAUM+AND+FELDMAN+ I ( 84 ) iS Con- 
sidered the most credible. 

Step 18: KS CONCAT 
Stimulus : BY (80) (word) , 
FEIGENBAUM+AND+FELDMAN+ ] ( 8 5 ) (phrase) . 
Action: Create phrase: 
BY+FEIGENBAUM+AND+FELDMAN+] (84). 

Step 19 : KS CONCAT 
Stimulus: ABOUT (75) (word) , 
FEIGENBAUM+AND+FELDMAN+] ( 85) (phrase) . 
Action: Create phrase: 
ABOUT+FEIGENBAUM+AND+FELDMAN+](83) 

Step 20: KS PREDICT&VERIFY 
Stimulus : 
ABOUT+FEIGENBAUM+AND+FELDMAN+] (83) (phrase). 
Action: Predict one preceding word; 
verify: WHAT (10) . 

Step 21: KS CONCAT 
Stimulus: CITE (70) (word) , 
FE IGENBAUM+AND+FELDMAN+] ( 85 ) (phrase) . 
Action: Create phrase: 
CITE+FEIGENBAUM+AND+FELDMAN+] (83 ) (phrase) . 



Architectural Patterns 

Step 22: KS PREDICT&VERIFY 
Stimulus : CITE+FEIGENBAUM+AND+FELDMAN+] (83 ) (phrase) 
Action: Predict ten preceding words; 
reject five : ABSTRACTS, ARE, BOOKS, PAPERS, REFERENCED; 
find two already on the blackboard: ANY (65) , THESE (25) ; 
verify three: ARTICLE (25) , WRITTEN(25) , ARTICLES (10) . 

If all ten word predictions preceding the phrase had been rejected, the 
phrase hypothesis itself would also be rejected. 

Step 24: KS CONCAT 
Stimulus : NOT (75) (word) , 
FEIGENBAUM+AND+FELDMAN+] (85). 
Action: Create phrase: 
NOT+FEIGENBAUM+AND+FELDMAN+] (83). 

Step 25 KS CONCAT 
Stimulus: ANY (65) (word) , 
BY+FEIGENBAUM+AND+FELDMAN+] (84) (phrase). 
Action: Create phrase: 
ANY+BY+FEIGENBAUM+AND+FELDMAN+](82). 
[ARE+ANY+BY+FEIGENBAUM+AND+FELDMAN+] (85) 
is also created from [ARE+ANY(86) and 
BY+FEIGENBAUM+AND+FELDMAN+] (84). 

The phrase happens to be a complete sentence, and is therefore a 
candidate for the interpretation of the spoken input. 

In the figure that follows, an arc points from one hypothesis to anoth- 
er if one hypothesis is derived from the other in a single processing 
step. The arc is labeled with the number of the processing step. 
Dashed arcs point to hypotheses that were already on the blackboard 
before step 17. 

Consequences The Blackboard. approach to problem decomposition and knowledge 
application helps to resolve most of the forces listed in the problem 
section: 

Experimentation. In domains in which no closed approach exists and 
a complete search of the solution space is not feasible, the Blackboard 
pattern makes experimentation with different algorithms possible, 
and also allows different control heuristics to be tried. 

Support for changeability and  maintainability. The Blackboard 
architecture supports changeability and maintainability because the 
individual knowledge sources, the control algorithm and the central 



Blackboard 

data structure are strictly separated. However, all modules can 
communicate via the blackboard. 

Reusable knowledge sources. Knowledge sources are independent 
specialists for certain tasks. A Blackboard architecture helps in 
making them reusable. The prerequisites for reuse are that 
knowledge source and the underlying Blackboard system understand 
the same protocol and data, or are close enough in this respect not to 
rule out adaptors for protocol or data. 

Support for fault tolerance and robustness. In a Blackboard 
architecture all results are just hypotheses. Only those that are 



Architectural Patterns 

strongly supported by data and other hypotheses survive. This pro- 
vides tolerance of noisy data and uncertain conclusions. 

The Blackboard pattern has some liabilities: 

Di@culty of testing. Since the computations of a Blackboard system 
do not follow a deterministic algorithm, its results are often not 
reproducible. In addition, wrong hypotheses are part of the solution 
process. 

No good solution is guaranteed. Usually Blackboard systems can solve 
only a certain percentage of their given tasks correctly. 

D@culty of establishing a good control strategy. The control strategy 
cannot be designed in a straightforward way, and requires a n  
experimental approach. 

Low Emiency. Blackboard systems suffer from computational 
overheads in rejecting wrong hypotheses. If no deterministk algor- 
ithm exists, however, low efficiency is the lesser of two evils when 
compared to no system at all. 

High development eflort. Most Blackboard systems take years to 
evolve. We attribute this to the ill-structured problem domains and 
extensive trial-and-error programming when defining vocabulary, 
control strategies and knowledge sources. 

No support for parallelism. The Blackboard architecture does not 
prevent the use of a control strategy that exploits the potential 
parallelism of knowledge sources. It does not however provide for 
their parallel execution. Concurrent access to the central data on the 
blackboard must also be synchronized. 

To summarize, the Blackboard architecture allows an  interpretative 
use of knowledge. It evaluates alternative actions, chooses the best 
for the current situation, and then applies the most promising 
knowledge source. The expense for such deliberation can be justified 
so long as  no adequate explicit algorithm is available for the problem. 
When such an algorithm emerges, it usually provides higher 
performance and effectiveness. The Blackboard architecture 
consequently lends itself best to immature domains in which 
experimentation is helpful. After research and the gaining of 
experience, better algorithms may evolve that allow you to use a more 
efficient architecture. 



Blackboard 95 

This occurred in the domain of speech recognition. For example, in 
the HARPY system, a successor to HEARSAY-11, most of the 
knowledge is precompiled into a unified structure that represents all 
possible spoken phrases IEHLR881. All inter-level substitutions, such 
a s  segment to phone. phone to word, and word to phrase are compiled 
into a single enormous finite-state Markov network. An interpreter 
then compares segments of the spoken phrase with this structure to 
find a network path that most closely approximates the segmented 
speech signal. The search technique used, called beam search, 
combined with word lattices, is a heuristic form of dynamic 
programming. Acoustical and linguistic knowledge are no longer 
combined via a blackboard, but rather by a 'maximum likelihood' 
computation. A window slides over the input and continuously 
appends new results to the output. This allows speech recognition to 
be used in a real-time fashion. [Mar951 gives a recent update on 
simpler speech recognition products. For more details on speech 
recognition, see [HAJSO], [Rab86] and [Rab89]. 

Credits Our Blackboard pattern is based mostly on features abstracted from 
the HEARSAY-I1 speech recognition system. We found the first 
reference to the term 'blackboard' in A1 literature, in a text by Newell 
and Simon [NS72] concerned with the organizational problems of 
checkers-playing, chess-playing and theorem-proving programs. The 
most comprehensive descriptions and discussions of Blackboard 
systems are in [EM881 and [Cra95]. 

We thank Harald Hoge from the Siemens speech processing group for 
explaining recent progress In this domain. 





2.3 Distributed Systems 

There are two major trends in recent developments in hardware 
technology: 

Computer systems with multiple CPUs are entering wen small 
offices, notably multiprocessing systems running operating 
systems such as  IBM OS/2 Warp, Microsoft Wlndows NT, or UNIX. 

Local area networks connecting hundreds of heterogeneous 
computers have become commonplace. 

Nowadays, even small companles are using distributed systems. But 
what are the advantages of distributed systems that make them so 
Interesting? Tanenbaum [Tan921 suggests the following: 

Economics. Computer nehvorks that incorporate both PCs and 
workstations offer a better price/performance ratio than malnframe 
computers. 

Performance and Scakability. According to the Sun Microsystems 
philosophy The network is the computer'. distdbuted applications 
are capable of using resources available on a network. A huge 
Increase in performance can be gained by uslng the comblned 
computing power of several nehvork nodes. In addition-at least In 
theory-multiprocessors and networks are easlly scalable. 

Inherent disbibution Some applications are inherently distributed, 
for example database applications that follow a Client-Server model. 

Relhbillty. In most cases, a machine on a network or a CPU In a 
multiprocessor system can crash without affecting the rest of the 
system. Central nodes such a s  file servers are notable exceptions to 
this. but can be protected by backup systems. 

Distributed systems, however, have a significant drawback [Tan92]: 
'Distributed systems need radically different software than do 
centralized systems'. This is the major technical reason why consortla 
such as the Object Management Group (OMG) and companies such 
as Mlcrosoft have developed thelr own technologies for distributed 
computlng. 

We introduce three patterns related to distributed systems in this 
category: 



Architectural Patterns 

The Pipes and Filters pattern (53) provides a structure for systems 
that process a stream of data. Each processing step is 
encapsulated in a filter component. Data is passed through pipes 
between adjacent filters. Recombining filters allows you to build 
families of related systems. 

This pattern is more often used for structuring the functional core 
of an application than for distribution, so we describe it in a 
different category-see Section 2.2, From Mud to Structure. 

The Microkernel pattern (171) applies to software systems that 
must be able to adapt to changing system requirements. It 
separates a minimal functional core from extended functionality 
and customer-specific parts. The microkernel also serves a s  a 
socket for plugging in these extensions and coordinating their 
collaboration. 

Microkernel systems employ a Client-Server architecture in which 
clients and servers run on top of the microkernel component. The 
main benefit' of such systems, however, is in design for adaptation 
and change. We therefore place the pattern description in another 
category-see Section 2.5, Adaptable Systems. 

Platforms such a s  Microsoft OLE (Object Linking and Embedding) 
[Bro94] and OMG's CORBA (Common Object Request Broker 
Architecture) [OMG92] share a common software architecture, from 
which we have abstracted the Broker pattern: 

The Broker pattern (99) can be used to structure distributed 
software systems with decoupled components that interact by 
remote service invocations. A broker component is responsible for 
coordinating communication, such a s  forwarding requests, a s  well 
as  for transmitting results and exceptions. 

There are three groups of developers who can benefit by using the 
Broker pattern: 

Those working with an existing Broker system who are interested 
in understanding the architecture of such systems. 

Those who want to build 'lean' versions of a Broker system, without 
all the bells and whistles of a full-blown OLE or CORBA. 

Those who plan to implement a hlly-fledged Broker system, and 
therefore need an in-depth description of the Broker architecture. 



Broker 

The Broker architectural pattern can be used to structure distributed 
software systems with decoupled components that interact by remote 
service invocations. A broker component Is responslble for 
coordinating communication, such as  forwarding requests. a s  well a s  
for transmitting results and exceptions. 

Example Suppose we are developing a city information system (CIS) designed 
to run on a wide area network. Some computers in the network host 
one or more services that maintain informatlon about events, restau- 
rants. hotels, historical monuments or public transportation. 
Computer terminals are connected to the network. Tourists through- 
out the city can retrieve information in which they are interested from 
the terminals uslng a World Wide Web IWWW) browser. This front-end 
software supports the on-line retrieval of informatlon from the appro- 
priate servers and its display on the screen. The data is distributed 
across the network. and is not all maintained in the terminals. . 

OhWell City Tourlst Information 

# 
Chooee h m  menu 

NowWhal Snace Center 

Town Hall 

City Map Server 

We expect the system to change and grow continuously, so the 
individual services should be decoupled from each other. In addition. 
the terminal software should be able to access services without 
having to know their location. This allows us  to move, replicate, or 



Architectural Patterns 

migrate services. One solution is to install a separate network that 
connects all terminals and servers, leading to an intranet system. 
Such an approach, however, has several disadvantages: not every 
information provider wants to connect to a closed intranet, and even 
more importantly, available services should also be accessible from 
all over the world. We therefore decide to use the Internet as  a better 
means of implementing the CIS system. 

Context Your environment is a distributed and possibly heterogeneous system 
with independent cooperating components. 

Problem Building a complex software system as  a set of decoupled and inter- 
operating components, rather than as a monolithic application, 
results in greater flexibility, maintainability and changeability. By 
partitioning functionality into independent components the system 
becomes potentially distributable and scalable. 

However, when distributed components communicate with each 
other, some means of inter-process communication is required. If 
components handle communication themselves, the resulting system 
faces several dependencies and limitations. For example, the system 
becomes dependent on the communication mechanism used, clients 
need to know the location of servers, and in many cases the solution 
is limited to only one programming language. 

Services for adding, removing, exchanging, activating and locating 
components are also needed. Applications that use these services 
should not depend on system-specific details to guarantee portability 
and interoperability, even within a heterogeneous network. 

From a developer's viewpoint, there should essentially be no differ- 
ence between developing software for centralized systems and 
developing for distributed ones. An application that uses an object 
should only see the interface offered by the object. It should not need 
to know anything about the implementation details of an object, or 
about its physical location. 

Use the Broker architecture to balance the following forces: 

Components should be able to access services provided by others 
through remote, location-transparent service invocations. 

You need to exchange, add, or remove components at  run-time. 



The architecture should hide system- and implementation-specific 
details from the users of components and services. 

Solution Introduce a broker component to achieve better decoupling of clients 
and servers. Servers register themselves with the broker, and make 
their services available to cllents through method interfaces. Clients 
access the functionality of servers by sending requests via the broker. 
A broker's tasks include locating the appropriate server, forwarding 
the request to the server and transmitting results and exceptions 
back to the client. 

By using the Broker pattern, an application can access distributed 
services simply by sending message calls to the appropriate object. 
instead of focusing on low-level inter-process communication. In 
addition, the Broker architecture is flexible, in that it allows dynamic 
change, addition, deletion, and relocation of objects. 

The Broker pattern reduces the complexity involved in developing 
distributed applications, because it makes distribution transparent 
to the developer. I t  achieves this goal by introducing an object model 
in which distributed services are encapsulated within objects. Broker 
systems therefore offer a path to the integration of two core 
technologies: distribution and object technology. They also extend 
object models from single applications to distributed applications 
consisting of decoupled components that can run on heterogeneous 
machines and that can be written in different programming 
languages. 

Structure The Broker architectural pattern comprises six types of participating 
components: clients. servers, brokers, bridges, client-side proxies and 
server-side proxies. 

A server1' implements objects that expose their functionality through 
interfaces that consist of operations and attributes. These interfaces 
are made available either through an interface definition language 
(IDL) or through a binary standard. The Implementation section 
contains a comparison of these approaches. Interfaces typically 

- 

10. In this pattern description servers are responsible for implemcnung services. In 
an object-oriented approach every service is realized by one or more objects. We use the 
term server object to emphasize the fact that such a server appears to other 
components as an object in the object-oriented sense. 



teetural Patterns 

group semantically-related functionality. There are two kinds of 
servers: 

Servers offering common services to many application domains. 

Servers implementing specific functionality for a single application 
domain or task. 

b The servers in our CIS example comprise WUW servers that 
provide access to HTML (Hypertext Markup Language) pages. VWWV 
servers are implemented a s  httpd daemon processes (hypertext 
transfer protocol daemon) that wait on specific ports for incoming re- 
quests. When a request arrives a t  the server, the requested document 
and any additional data is sent to the client using data streams. The 
HTML pages contain documents a s  well a s  CGI (Common Gateway in- 
terface) scripts for remotely-executed operations on the network 
host-the remote machine from which the client received the HTML- 
page. A CGI script may be used to allow the user fill out a form and 
submit a query, for example a search request for vacant hotel rooms. 
To display animations on the client's M browser, Java 'applets' 
are integrated into the HTML documents. For example, one of these 
Java applets animates the route between one place and another on a 
city map. Java applets run on top of a virtual machine that is part of 
the TNWW browser. CGI scripts and Java applets differ from each oth- 
er: CGI scripts are executed on the server machine, whereas Java 
applets are transferred to the WWW browser and then executed on 
the client machine. Cl 

Clients are applications that access the services of at  least one server. 
To call remote services, clients forward requests to the broker. After 
an  operation has executed they receive responses or exceptions from 
the broker. 

The interaction between clients and servers is based on a dynamic 
model, which means that servers may also act as  clients. This 
dynamic interaction model differs from the traditional notion of 
Client-Server computing in that the roles of clients and servers are 
not statically defined. From the viewpoint of an implementation, you 
can consider clients a s  applications and servers a s  libraries-though 
other implementations are possible. Note that clients do not need to 
know the location of the servers they access. This is important, 



Broker 

because it allows the addition of new services and the movement of 
existing services to other locations, even while the system is running. 

In the context of the Broker pattern, the clients are the available 
WWW browsers. They are not directly connected to the network. 
Instead, they rely on Internet providers that offer gateways to the 
Internet, such as Compuserve. WWW browsers connect to these 
workstations, using either a modem or a leased line. When connected 
they are able to retrieve data streams from httpd servers, interpret 
this data and initiate actions such as the display of documents on the 
screen or the execution of Java applets. 0 

Class 
Client 

Responsibility 
Implements user 
functionality. 
Sends requests to 
servers through a 
client-slde proxy. 

Collaborators 
Client-side 
proxy 

Sends responses 
and exceptions 
back to the client 
through a server- 
side proxy. 

Class 
Server 

Responsibility 
Implements 
services. 
Registers itself with 
the local broker. 

A broker is a messenger that is responsible for the transmission of 
requests from clients to servers, as well as the transmission of 
responses and exceptions back to the client. A broker must have 
some means of locating the receiver of a request based on its unique 
system identifier. A broker offers APIs (Application Programming 
Interfaces) to clients and servers that include operations for 
registering servers and for invoking server methods. 

Collaborat0l-S 
Server-side 
Prow' 
Broker 

When a request arrives for a server that is maintained by the local 
broker1', the broker passes the request directly to the server. If the 
server is currently inactive, the broker activates it. All responses and 
exceptions from a service execution are forwarded by the broker to the 
client that sent the request. If the specified server is hosted by 
another broker, the local broker finds a route to the remote broker 

11. In this pattern description we distinguish between local and remote brokers. A 
local broker is running on the machine currently under consideration. A remote broker 
is running on a remote network node. 



Architectural Patterns 

and forwards the request using this route. There is therefore a need 
for brokers to interoperate. 

Depending on the requirements of the whole system, additional 
services-such a s  nume seruices12 or marshaling s ~ ~ ~ o r t ' ~ - m a ~  be 
integrated into the broker. 

Class 
Broker 

Responsibility 
(Un-)registers 
servers. 
Offers APIs. 
Transfers 
messages. 
Error recovery. 
Intero erates with 
other grokers 
through bridges. 
Locates servers. 

Collaborators 
Client 
Server 
Client-side Proxy 
Server-side Proxy 
Bridge 

b A broker in our CIS example is the combination of an Internet 
gateway and the Internet infrastructure itself. Every information 
exchange between a client and a server must pass through the 
broker. A client specifies the information it wants using unique 
identifiers called URLs (Universal Resource Locators). By using these 
identifiers the broker is able to locate the required services and to 
route the requests to the appropriate server machines. When a new 
server machine is added, it must be registered with the broker. 
Clients and servers use the gateway of their Internet provider a s  a n  
interface to the broker. Cl 

Client-side proxies represent a layer between clients and the broker. 
This additional layer provides transparency, in that a remote object 
appears to the client a s  a local one. In detail, the proxies allow the 
hiding of implementation details from the clients such as: 

12. Name services provide associations between names and objects. To resolve a 
name, a name servlce determines which server is associated with a given name. In the 
context of Broker systems, names are only meaningful relative to a name space. 

13. Marshaling is the semantic-invariant conversion of data into a machine- 
independent format such as  ASN.1 (Abstract Syntax ~ota t ionj  or ONC XDR [external 
Data Representation). Unmarshaling performs the reverse transformation. 



Broker 

The inter-process communication mechanism used for message 
transfers between clients and brokers. 

The creation and deletion of memory blocks. 

The marshaling of parameters and results. 

In many cases, client-side proxies translate the object model specified 
as part of the Broker architectural pattern to the object model of the 
programming language used to implement the client. 

Sewer-side proxies are generally analogous to Client-side proxies. The 
difference is that they are responsible for receiving requests, 
unpacking incoming messages, unmarshaling the parameters, and 
calling the appropriate service. They are used in addition for 
marshaling results and exceptions before sending them to the client. 

Class 
Client-side Proxy 

- 

Responsibility 
Encapsulates sys- 
tem-specific func- 
tionality. 
Mediates between 
the client and the 
broker. 

Collaborators 
Client 
Broker 

Class 
Server-side Proxy 

Responsibility 
Calls servlces with- 
in the server. 
Encapsulates sys- 
tem-specific func- 
tionality. 
Mediates between 
the server and the 
broker . 

Collaborators 
Server 
Broker 

When results or exceptions are returned from a server, the Client-side 
proxy receives the incoming message from the broker, unmarshals 
the data and forward it to the client. 

r In our CIS example the WWW browsers and httpd servers such 
as Netscape provide built-in capabilities for communicating with the 
gateway of the Internet provider, so we do not need to worry about 
proxies in this case. Ll 

~ r i d ~ e s ' ~  are optional components used for hiding implementation 
details when two brokers interoperate. Suppose a Broker system runs 
on a heterogeneous network. If requests are transmitted over the 

14. We call these components Bridges following the terminology of the OMG in the 
CORBA 2 specification. 



Architectural Patterns 

network, different brokers have to communicate independently of the 
different network and operating systems in use. A bridge builds a 
layer that encapsulates all these system-specffic details. 

w Bridges are not required in our CIS example, because all httpd 
servers and WWW browsers implement the protocols necessary for 
remote data exchange such as http (hypertext transfer protocol) or 
f t p  (file transfer protocol). Ci 

Class 
Bridge 

Responsibility 
Encapsulates net- 
work-specific func- 
tionality. 
Mediates between 
the local broker 
and the bridge of a 
remote broker. 

Collaborators 
Broker 
Bridge 

There are two different kinds of Broker systems: those using direct 
communication and those using indirect communication. To achieve 
better performance, some broker implementations only establish the 
initial communication link between a client and a server, while the 
rest of the communication is done directly between participating 
components-messages, exceptions and responses are transferred 
between client-side proxies and server-side proxies without using the 
broker as an intermediate layer. This direct communication approach 
requires that servers and clients use and understand the same 
protocol. In this pattern description we focus on the Indirect Broker 
variant, where all messages are passed through the broker. The 
Client-Dispatcher-Server pattern (323) describes the important 
aspects of the direct variant of the Broker pattern. 

w Our CIS example implements the indirect communication 
variant, because browsers and servers can only collaborate using 
Inter-net gateways. There is one place in CIS however where we use 
the direct communicaUon variant instead4ava applets loaded from 
the network may connect directly to the WWW server from which they 
came using a socket connection. 0 



Broker 107 

The following diagram shows the objects involved in a Broker system: 

Dynamics This section focuses on the most relevant scenarios in the operation 
of a Broker system. 

transfers transfers 

Scenario I illustrates the behavior when a server registers itself with 
the local broker component: 

The broker is started in the initialization phase of the system. The 
broker enters its event loop and waits for incoming messages. 

Server-side 
R O X Y  

pack-data 
un ackdata 
cai-service 
send-response 

Client-side - 
Proxy 

pack-data 
unpackdata 
send-request 
return 

The user, or some other entity, starts a server application. First, the 
server executes its initialization code. After initialization is com- 
plete, the server registers itself with the broker. 

message Broker - 
main-event-loop 
update-repository 
re ster service 
acfhowkdgment 
find-server 
find-client 

The broker receives the incoming registration request from the 
server. It extracts all necessary information from the message and 
stores it into one or more repositories. These repositories are used 
to locate and activate servers. An acknowledgment is sent back. 

After receiving the acknowledgment from the broker, the server 
enters its main loop waiting for incoming client requests. 

forward-request 
forward-response 
i 

q calls 

Bridge uses 
API 

calls 

Server Client 

initiake 
enter-mainJoop 
run-service 
use-BrokerNI 

uses 
API 

call-server 
start-task 
use-Broker-API 

transmit-message 

pack-data 
unpack-data 
forward-message 

----@ 



Architectural Patterns 

Scenario 11 illustrates the behavior when a client sends a request to 
a local server. In this scenario we describe a synchronous invocation. 
in which the client blocks until it gets a response from the server. The 
broker may also support asynchronous invocations, allowing clients 
to execute further tasks without having to wait for a response. 

The client application is started. During program execution the 
client invokes a method of a remote server object. 

The client-side proxy packages all parameters and other relevant 
information into a message and forwards this message to the local 
broker. 

The broker looks up the location of the required server in its reposi- 
tories. Since the server is available locally, the broker forwards the 
message to the corresponding server-side proxy. For the remote 
case, see the following scenario. 

The server-side proxy unpacks all parameters and other informa- 
tion, such as the method it is expected to call. The server-side 
proxy invokes the appropriate service. 

After the service execution is complete, the server returns the 
result to the server-side proxy, which packages it into a message 
with other relevant information and passes it to the broker. 



Broker 

Client a 
The broker forwards the response to the client-side proxy. 

The client-side proxy receives the response, unpacks the result and 
returns to the client application. The client process continues with 
Its computation. 

process 



Architectural Patterns 

Scenario IIl illustrates the interaction of different brokers via bridge 
components: 

Broker A receives an  incoming request. It locates the server respon- 
sible for executing the specified service by looking it u p  in the 
repositories. Since the corresponding server is available a t  another 
network node, the broker forwards the request to a remote broker. 

The message is passed from Broker A to Bridge A. This component 
is responsible for converting the message from the protocol defined 
by Broker A to a network-specific but common protocol understood 
by the two participating bridges. After message conversion, Bridge 
A transmits the message to Bridge B. 

Bridge B maps the incoming request from the network-specific 
format to a Broker B-specific format. 

Broker B performs all the actions necessary when a request 
arrives, as described in the &st step of this scenario. 

forward 
request C 

I 

7 find-server 



Broker 111 

ImplemenhMon To implement this pattern, carry out the following steps: 

1 Define an object model, or use an exlsling model. Your choice of object 
model has a major impact on all other parts of the system under 
development. Each object model must specify entities such as object 
names, objects, requests, values, exceptions, supported types, type 
extensions, interfaces and operations. In this first step you should 
only consider semantic issues. If the object model has to be 
extensible, prepare the system for future enhancements. For 
example, specify a basic object model and how it can be r ehed  
systematically using extensions. More information on this topic is 
available in [OMG921. 

The description of the underlying computational model is a key issue 
in designing an object model. You need to describe definitions of the 
state of server objects, definitions of methods. how methods are 
selected for execution and how server objects are generated and 
destroyed. The state of server objects and their method imple- 
mentations should not be directly accessible to clients. Clients may 
only change or read the server's state indirectly by passing requests 
to the local broker. With this separation of interfaces and server 
implementations the so-called 'remoting' of interfaces becomes 
possible-clients use the cllent-side proxies as  server interfaces that 
are completely decoupled from the server implementations, and thus 
from the concrete implementations of the server interfaces. 

2 Decide whtch Mnd of component-interoperability the system should 
ofer. You can design for interoperabllity either by specifying a binary 
standard or by introducing a high-level interface dehition language 
[IDL). An IDL file contains a textual description of the interfaces a 
server offers to its clients. The binary approach needs support from 
your programming language. For example, binary method tables are 
available in Microsoft Object Linking and Embedding [OLE) Bro94j. 
These tables consist of pointers to method implementations, and 
enable clients to call methods indirectly using pointers. Access to 
OLE objects is only supported by compilers or interpreters that know 
the physical structure of these tables. 

In contrast to the binary approach, the IDL approach is more flexible 
in that an IDL mapping may be implemented for any programming 
language. Sometimes both approaches are used in combination, as in 
IBM's System Object Model [SOM) [Cam94]. 



Architectural Patterns 

An IDL compiler uses an IDL file as  input and generates program- 
ming-language code or binary code. One part of this generated code 
is required by the server for communicating with its local broker, 
another part is used by the client for communicating with its local 
broker. The broker may use the IDL specification to maintain type 
information about existing server implementations. 

Whenever interoperability is provided as a binary standard, every 
semantic concept of the object model must be associated with a 
binary representation. However, if you supply an interface definition 
language for interoperability, you can map the semantic concepts to 
programming language representations. For example, object handles 
may be represented by C++ pointers and data types may be mapped 
to appropriate C++ types. 

One question remains--when should a Broker system expose inter- 
faces with an interface definition language, and when by a binary 
standard? The rationale for the first approach is to gain more fled- 
bility for the broker's implementation-every implementation of the 
Broker architecture may define its own protocol for the interaction 
between the broker and other components. It is the task of the IDL to 
provide a mapping to the local broker protocol. When following a 
binary approach, you need to define binary representations such as  
method tables for invoking remote services. This often leads to greater 
efficiency, but requires all brokers to implement the same kind of 
protocol when communicating with clients and servers. 

3 Specc& the APIs the broker component prouidesfor collaborating with 
clients and seruers. On the client side, functionality must be available 
for constructing requests, passing them to the broker and receiving 
responses. Decide whether clients should only be able to invoke 
server operations statically, allowing clients to bind the invocations at 
compile-time. If you want to allow dynamic invocations15 of servers 
as well, this has a direct impact on the size or number of APIs. For 
example, you need some way of asking the broker about existing 
server objects. You can implement this with the help of a meta-level 
schema, as described in the Reflection pattern (193). 

15. Dynamic invocations are method calls that are dynamically constructed at run- 
time using API functions as well as type information. In contrast. static invocations are 
hard-coded into the source code. 



Broker 

You have to offer operations to clients, so that they are capable of 
constructing requests at  run-time. The server implementations use 
API functions primarily for registering with the broker. Brokers use 
repositories to maintain the information. These repositories may be 
available as external files, so that servers can register themselves 
before system start-up. Another approach is to implement the 
repository as an internal part of the broker component. Here, the 
broker must offer an API that allows servers to register at run-time. 
Since the broker needs to identify these servers when requests arrive, 
an appropriate identification mechanism is necessary. In other 
words, the broker component is responsible for associating server 
object identifiers with server object implementations. The server-side 
API of the broker must therefore be able to generate system-unique 
identifiers. 

If clients, servers and the broker are running as distinct processes. 
the API functions need to be based on an efficient mechanism for 
inter-process communication between clients, servers and the local 
broker. 

4 Use  proxy objects to hide implementation details from clients and 
sewers. On the client side, a local proxy (263) object represents the 
remote server object called by the client. On the server side, a proxy 
is used for playing the role of the client. Proxy objects have the 
following responsibilities: 

Client-side proxies package procedure calls into messages and 
forward these messages to the local broker component. In addition, 
they receive responses and exceptions from the local broker and 
pass them to the calling client. You must specify an internal 
message protocol for communication between proxy and broker to 
support this. 

Server-side proxies receive requests from the local broker and call 
the methods in the interface implementation of the corresponding 
server. They forward server responses and exceptions to the local 
broker after packaging them, according to an internal message 
protocol. 

Note that proxies are always part of the corresponding client or server 
process. 



Architectural Patterns 

Proxies hide implementation details by using their own inter-process 
communication mechanism to communicate with the broker compo- 
nent. They may also implement the marshaling and unmarshaling of 
parameters and results into/from a system-independent format. 

If you follow the IDL approach for interoperability, proxy objects are 
automatically available, because they can be generated by a n  IDL 
compiler. If you use a binary approach, the creation and deletion of 
proxy objects can happen dynamically. 

5 Design the broker component in parallel with steps 3 and 4. In this 
step we describe how to develop a broker component that acts a s  a 
messenger for every message passed from a client to a server and vice- 
versa. To increase the performance of the whole system, some 
implementations do not transmit messages via the broker. In these 
systems most of the work is done by the proxies, while the broker is 
still responsible for establishing the initial communication link 
between clients and servers. A direct communication between client 
and server is only possible when both of them can use the same 
protocol. We call such systems Direct Communication Broker systems 
(see Variants section). 

During design and implementation, iterate systematically through 
the following steps: 

5.1 Specify a detailed on-the-wire protocol for interacting with client-side 
proxies and server-side proxies. Plan the mapping of requests, 
responses, and exceptions to your internal message protocol. In an  
on-the-wire protocol, the internal message protocol handles the 
mapping of higher-level structures such a s  parameter values, method 
names and return values to corresponding structures specified by the 
underlying inter-process communication mechanism. 

5.2 A local broker must be available for every participating machine in the 
network. If requests, responses or exceptions are transferred from 
one network node to another, the corresponding local brokers must 
communicate with each other using a n  on-the-wire protocol. Use 
bridges to hide details such as  network protocols and operating 
system specifics from the broker. The broker must also maintain a 
repository to locate the remote brokers or gateways to which it 



Broker 

forwards messages. You may encode the routing information for 
finding remote brokers as a part of the server or client identifier. 
Broadcast communication is another (potentially inefficient) way to 
locate the network node where a server or client resides. 

5.3 When a client invokes a method of a server, the Broker system is 
responsible for returning all results and exceptions back to the origi- 
nal client. In other words, the system must remember which client 
has sent the request. In the Direct Communication variant (see the 
Variants section) there is no need to remember the originator of an in- 
vocation, because the client and the server are directly connected 
through a communication channel. In Indirect Broker systems you 
can choose between different means of remembering the sender of a 
request. For example, you may specifjr the client's address as  an ad- 
ditional, invisible parameter of the request or message. 

5.4 If the proxies (see step 4) do not provide mechanisms for marshaling 
and unmarshaling parameters and results, you must include that 
functionality in the broker component. 

5.5 If your system supports asynchronous communication between 
clients and servers, you need to provide message buffers within the 
broker or within the proxies for the temporary storage of messages. 

5.6 Include a directory service for associating local server identifiers with 
the physical location of the corresponding servers in the broker. For 
example, if the underlying inter-process communication protocol is 
based on TCP/IP, you could use an Internet port number as the 
physical server location. 

5.7 When your architecture requires system-unique identifiers to be 
generated dynamically during server registration, the broker must 
offer a name service for instantiating such names. 

5.8 If your system supports dynamic method invocation (see step 3), the 
broker needs some means for maintaining type information about 
existing servers. A client may access this information using the 
broker APIs to construct a request dynamically. You can implement 
such type information by instantiating the Reflection pattern (193). In 
this, metaobjects maintain type information that is accessible by a 
metaobject protocol. 



Architectural Patterns 

5.9 Consider the case in which something fails. In a distributed system 
two levels of errors may occur: 

A component such a s  a server may run into an  error condition. 
This is the same kind of error you encounter when executing 
conventional non-distributed applications. 

The communication between two independent processes may fail. 
Here the situation is more complicated, since the communicating 
components are running asynchronously. 

Plan the broker's actions when the communication with clients, other 
brokers or servers fails. For example, some brokers resend a request 
or response several times until they succeed. If you use an  ut-most- 
once semantic16, you have to make sure that a request is only 
executed once even if it is resent. Do not forget the case in which a 
client tries to access a server that either does not exist, or which the 
client is not allowed to access. Error handling is an  important topic 
when implementing a distributed system. If you forget to handle er- 
rors in a systematic way, testing and debugging of client applications 
and servers becomes an  extremely tedious job. 

6 Develop IDL compilers. Whenever you implement interoperability by 
providing an  interface definition language, you need to build a n  IDL 
compiler for every programming language you support. An IDL 
compiler translates the server interface definitions to programming 
language code. When many programming languages are in use, it is 
best to develop the compiler a s  afrarnework that allows the developer 
to add his own code generators. 

Example Our example CIS system offers different kinds of services. For 
Resolved example, a separate server workstation provides all the information 

related to public transport. Another server is responsible for 
collecting and publishmg information on vacant hotel rooms. A 
tourist may be interested in retrieving information from several 

16. When supporting at-most-once semantics your system has to guarantee that 
any request either fails, or is executed only once. If you Implement other semantics 
instead such as  at-least-once, the same request may be resent and executed several 
times. This strategy is only applicable to idernpotent services, where overall consistency 
is not damaged by executing a service more than once. A typical example of an  
idempotent service is a function that assigns an initial value to a variable. 



Broker 

hotels, so we decide to provide this data on a single workstation. 
Every hotel can connect to the workstation and perform updates. 

A tourist is capable of booking hotel rooms on-line from anywhere in 
the Internet using CGI scripts. Payments for hotel reservations are 
charged on-line by credit card. For security reasons we include en- 
cryption mechanisms for such transactions. Additional httpd servers 
are available to provide extra services such as flight booking or train 
reservations, the ordering of tickets or the retrieval of information 
about museums and other places of interest. 

Each CIS terminal executes a WWW browser. This allows u s  to use 
inexpensive PCs and Internet PCs as  terminals. The httpd servers run 
on fast UNM and Windows NT workstations to guarantee short 
response times. 

Variants Dtrect Communication Broker System. You may sometimes choose to 
relax the restriction that clients can only forward requests through 
the local broker for efficiency reasons. In this variant clients can 
communicate with servers directly. The broker tells the clients which 
communication channel the server provides. The client can then 
establish a direct link to the requested server. In such systems, the 
proxies take over the broker's responsibility for handling most of the 
communication activities. A similar argument applies to off-board 
communication: here clients address the remote broker directly, 
using bridges when appropriate, as opposed to sending requests to 
their local broker for forwarding to the remote server's broker. 

Message Passing Broker S y s t e m  This variant is suitable for systems 
that focus on the transmission of data, instead of implementing a 
Remote Procedure Call abstraction17. Using this variant, servers use 
the type of a message to determine what they must do, rather than 
offering services that clients can invoke. In this context, a message is 
a sequence of raw data together with additional information that 
specifies the type of a message, its structure and other relevant 
attributes. 

Trader S y s t e m  A client request is usually forwarded to exactly one 
uniquely-identified server. In some circumstances, services and not 

17. Brokers offering RPC (Remote Procedure Call) interfaces are typically built 
using message-passing interfaces. 



Architectural Patterns 

servers are the targets to which clients send their requests. In a 
Trader system, the broker must know which server(s) can provide the 
service, and forward the request to an appropriate server. Client-side 
proxies therefore use service idenhfiers instead of server identifiers to 
access server functionality. The same request might be forwarded to 
more than one server implementing the same service. 

Adapter Broker System. You can hide the interface of the broker 
component to the servers using an additional layer, to enhance 
flexibility. This adapter layer is a part of the broker and is responsible 
for registering servers and interacting with servers. By supplying 
more than one adapter, you can support different strategies for server 
granularity and server location. For example, if all the server objects 
accessed by an application are located on the same machine and are 
implemented as library objects, a special adapter could be used to 
link the objects directly to the application. Another example is the use 
of an object-oriented database for maintaining objects. Since the 
database is responsible for providing methods and storing objects, 
there may be no need to register objects explicitly. In such a scenario, 
you could provide a special database adapter. See also IOMG92). 

Callback Broker System Instead of implementing an active 
communication model in which clients produce requests and servers 
consume them, you can also use a reactive model. The reactive model 
I s  event-driven, and makes no distinction between clients and 
servers. Whenever an event arrives, the broker invokes the callback 
method of the component that is registered to react to the event. The 
execution of the method may generate new events that in turn cause 
the broker to trigger new callback method invocations. For more 
details on this variant, see [Sch94]. 

There are several ways of combining the above variants. For example, 
you can implement a Direct Communication Broker system and 
combine it with the Trader variant. In such a system an incoming 
client request causes the broker to select one server among those that 
provide the requested service. The broker then establishes a direct 
link between the client and the selected server. 

Known Uses CORBA. The Broker architectural pattern was used to specify the 
Common Object Request Broker Architecture (CORBA) defined by the 
Object Management Group. CORBA is an object-oriented technology 



Broker 

for distributing objects on heterogeneous systems. An interface 
definition language is available to support the interoperability of 
client and server objects [OMG92]. Many CORBA implementations 
realize the Direct Communication Broker System variant, for example 
IONA Technologies' Orbix IIona951. 

IBM SOM/DSOM. [Cam941 represents a CORBA-compliant Broker 
system. In contrast to many other CORBA implementations, it 
implements interoperability by combining the CORBA interface 
definition language with a binary protocol. SOM's binary approach 
supports subclassing from existing binary parent classes. You can 
implement a class in SOM in one programming language and derive 
a subclass from it in another language. 

Microsoft's OLE 2.x technology provides another example of the use 
of the Broker architectural pattern. While CORBA guarantees inter- 
operability using an interface definition language, OLE 2.x defines a 
binary standard for exposing and accessing server interfaces IBro941. 

The World Wide Web is the largest available Broker system in the 
world. Hypertext browsers such as HotJava, Mosaic, and Netscape 
act as brokers and WWW servers play the role of service providers. 

ATM-P. We implemented the Message Passing Broker System variant 
[ATM93] in a Siemens in-house project to build a telecommunication 
switching system based on ATM (Asynchronous Transfer Mode). 

Consequences The Broker architectural pattern has some important benef i t s :  

Location Transparency. As the broker is responsible for locating a 
server by using a unique identifier, clients do not need to know where 
servers are located. Similarly, servers do not care about the location 
of calling clients, as they receive all requests from the local broker 
component. 

Changeability and extensibility of components. If servers change but 
their interfaces remain the same, it has no functional impact on 
clients. Modifymg the internal implementation of the broker, but not 
the APIs it provides, has no effect on clients and servers other than 
performance changes. Changes in the communication mechanisms 
used for the interaction between servers and the broker, between 
clients and the broker, and between brokers may require you to 
recompile clients, servers or brokers. However, you will not need to 



Architectural Patterns 

change their source code. Using proxies and bridges is an  important 
reason for the ease with which changes can be implemented. 

Portability of a Broker system. The Broker system hides operating sys- 
tem and network system details from clients and servers by using 
indirection layers such a s  APIs, proxies and bridges. When porting is 
required, it is therefore sufficient in most cases to port the broker 
component and its APIs to a new platform and to recompile clients 
and servers. Structuring the broker component into layers is recom- 
mended, for example according to the Layers architectural pattern 
(31). If the lower-most layers hide system-specific details from the 
rest of the broker, you only need to port these lower-most layers, 
instead of completely porting the broker component. 

Interoperability between dzflerent Broker systems. Different Broker 
systems may interoperate if they understand a common protocol for 
the exchange of messages. This protocol is implemented and handled 
by bridges, which are responsible for translating the broker-specific 
protocol into the common protocol, and vice versa. 

Reusability. When building new client applications, you can often 
base the functionality of your application on existing services. Sup- 
pose you are going to develop a new business application. If compo- 
nents that offer services such as  text editing, visualization, printing, 
database access or spreadsheets are already available, you do not 
need to implement these services yourself. It may instead be sufficient 
to integrate these services into your applications. 

The Broker architectural pattern imposes some liabilities: 

Restricted emiency. Applications using a Broker implementation are 
usually slower than applications whose component distribution is 
static and known. Systems that depend directly on a concrete mecha- 
nism for inter-process communication also give better performance 
than a Broker architecture, because Broker introduces indirection 
layers to enable it to be portable, flexible and changeable. 

Lower fault tolerance. Compared with a non-distributed software sys- 
tem, a Broker system may offer lower fault tolerance. Suppose that a 
server or a broker fails during program execution. All the applications 
that depend on the server or broker are unable to continue success- 
fully. You can increase reliability through replication of components. 



Broker 

The following aspect gives benefits as well as liabilities: 

Testing and Debugging. A client application developed from tested 
services is more robust and easier itself to test. However, debugging 
and testing a Broker system is a tedious job because of the many 
components involved. For example, the cooperation between a client 
and a server can fail for two possible reasons--either the server has 
entered an error state, or there is a problem somewhere on the 
communication path between client and server. 

See also The Forwarder-Receiver pattern (307) encapsulates inter-process 
communication between two components. On the client side a 
forwarder receives a request and addressee from the client and 
handles the mapping to the IPC (inter-process communication) 
facility used. The receiver on the server side unpacks and delivers the 
message to the server. There is no broker component in this pattern. 
It is simpler to implement and results in smaller implementations 
than the Broker pattern, but is also less flexible. 

The Proxy pattern (263) comes in several flavors, the remote case 
being one of them. A remote proxy is often used in conjunction with 
a forwarder. The proxy encapsulates the interface and remote address 
of the server. The forwarder takes the message and transforms it into 
IPC-level code. 

The Client-DispatcherServer pattern (323) is a lightweight version of 
the Direct Communication Broker variant. A dispatcher allocates, 
opens and maintains a direct channel between client and server. 

The Mediator design pattern IGHJV951 replaces a web of inter-object 
connections by a star configuration in which the central mediator 
component encapsulates collective behavior by defining a common 
interface for communicating with objects. As with the Broker pattern, 
the Mediator pattern uses a hub of communication, but it also has 
several major differences. The Broker pattern is a large-scale infra- 
structure paradigm-it is not used for building single applications, 
but rather serves as  a platform for whole families of applications. It is 
not restricted to processing local computation, and dispatches and 
monitors requests without regard to the sender or the content of the 



Architectural Patterns 

request. In contrast, the Mediator pattern encapsulates application 
semantics by checking what a request is about and possibly where it 
came from--only then does it decide what to do. It may return a mes- 
sage to the sender, fulfill the request on its own, or involve more than 
one other component. 

redits We wish to thank the participants of the workshop on patterns for 
concurrent and distributed systems a t  OOPSLA '95 for reviewing the 
Broker pattern. Special credit is due to Jim Coplien, David DeLano, 
Doug Schmidt and Steve VinosM, who reviewed early version of the 
Broker description and contributed several fruitful suggestions and 
hints. 



2.4 Interactive Systems 

Today's systems allow a high degree of user interaction, mainly 
achieved with help of graphical user interfaces. The objective is to 
enhance the usability of an  application. Usable software systems 
provide convenient access to their services, and therefore allow users 
to learn the application and produce results quickly. 

When specifying the architecture of such systems, the challenge is to 
keep the functional core independent of the user interface. The core 
of interactive systems is based on the functional requirements for the 
system, and usually remains stable. User interfaces, however, are 
often subject to change and adaptation. For example, systems may 
have to support different user interface standards, customer -specific 
'look and feel' metaphors, or interfaces that must be adjusted to fit 
into a customer's business processes. This requires architectures 
that support the adaptation of user interface parts without causing 
major effects to application-specific functionality or the data model 
underlying the software. 

We describe two patterns that provide a fundamental structural 
organization for interactive software systems: 

The Model-View-Controller pattern (MVC) (1 25) divides an  
interactive application into three components. The model contains 
the core functionality and data. Views display information to the 
user. Controllers handle user input. Views and controllers together 
comprise the user interface. A change-propagation mechanism 
ensures consistency between the user interface and the model. 

The Presentation-Abstraction-Control pattern (PAC) (145) defines a 
structure for interactive software systems in the form of a 
hierarchy of cooperating agents. Every agent is responsible for a 
specific aspect of the application's functionality and consists of 
three components: presentation, abstraction, and control. This 
subdivision separates the human-computer interaction aspects of 
the agent from its functional core and its communication with 
other agents. 



Architectural Patterns 

MVC provides probably the best-known architectural organization for 
interactive software systems. It was pioneered by Trygve Reenskaug 
IRWL961 and first implemented within the Smalltalk-80 environment 
IKP881. It underlies many interactive systems and application 
frameworks for software systems with graphical user interfaces, such 
a s  MacApp IApp891, ET++ IGam911, and of course the Smalltalk 
libraries. Even Microsoft's Foundation Class Library [Kru96] follows 
the principles of MVC. 

However, it is not our intention to explain the Smalltalk MVC 
implementation-many details of Smalltalk's MVC implementation 
are left out to give a clearer understanding of the underlying 
principles. Few readers will create a new framework for MVC, but are 
more likely to use an  existing framework, or to partition their 
application following the key principles of MVC. 

PAC is not used a s  widely a s  MVC, but this does not mean that it is 
not worth describing. As a n  alternative approach for structuring 
interactive applications, PAC is especially applicable to systems that 
consist of several self-reliant subsystems. PAC also addresses issues 
that MVC leaves unresolved, such a s  how to effectively organize the 
communication between different parts of the functional core and the 
user interface. PAC was first described by Joelle Coutaz [Cou87]. The 
first application of PAC was in the area of Artificial Intelligence 
ICro85). 



Model-View-Controller 

The Model-View-Controller architectural pattern (MVC) divides an  
interactive application into three components. The model contains 
the core functionality and data. Views display information to the user. 
Controllers handle user input. Views and controllers together 
comprise the user interface. A change-propagation mechanism 
ensures consistency between the user interface and the model. 

Example Consider a simple information system for political elections with 
proportional representation. This offers a spreadsheet for entering 
data and several kinds of tables and charts for presenting the current 
results. Users can interact with the system via a graphical interface. 
All information displays must reflect changes to the voting data 
immediately. 

core data 

Black: 43% 

Green: 1W 
Others: 2% 

pie chart bar chart parliament spreadsheet 

It should be possible to integrate new ways of data presentation, such 
as  the assignment of parliamenta~y seats to political parties, without 
major impact to the system. The system should also be portable to 
platforms with different 'look and feel' standards, such as 
workstations runnlng Motif or PCs running Microsoft Windows 95. 



126 Architectural Patterns 

Context Interactive applications with a flexible human-computer interface. 

Problem User interfaces are especially prone to change requests. When you 
extend the functionality of an application, you must modify menus to 
access these new functions. A customer may call for a specific user 
interface adaptation, or a system may need to be ported to another 
plafform with a different 'look and feel' standard. Even upgrading to 
a new release of your windowing system can imply code changes. The 
user interface plafform of long-lived systems thus represents a 
moving target. 

Different users place conflicting requirements on the user interface. 
A typist enters information into forms via the keyboard. A manager 
wants to use the same system mainly by clicking icons and buttons. 
Consequently, support for several user interface paradigms should be 
easily incorporated. 

Building a system with the required flexibility is expensive and error- 
prone if the user interface is tightly interwoven with the functional 
core. This can result in the need to develop and maintain several 
substantially different software systems, one for each user interface 
implementation. Ensuing changes spread over many modules. The 
following forces influence the solution: 

The same information is presented differently in different windows, 
for example, in a bar or pie chart. 

The display and behavior of the application must reflect data 
manipulations immediately. 

Changes to the user interface should be easy, and even possible at 
run-time. 

Supporting different 'look and feel' standards or porting the user 
interface should not affect code in the core of the application. 

Solution Model-View-Controller (MVC] was first introduced in the Smalltalk-80 
programming environment [KPSS]. MVC divides an interactive 
application into the three areas: processing, output, and input. 

The model component encapsulates core data and functionality. The 
model is independent of specific output representations or input 
behavior. 



Model-View-Controller 127 

View components display information to the user. A view obtains the 
data from the model. There can be multiple views of the model. 

Each view has an associated controller component. Controllers receive 
input, usually as  events that encode mouse movement, activation of 
mouse buttons, or keyboard input. Events are translated to service 
requests for the model or the view. The user interacts with the system 
solely through controllers. 

The separation of the model from view and controller components 
allows multiple views of the same model. If the user changes the 
model via the controller of one view, all other views dependent on this 
data should reflect the changes. The model therefore notifies all views 
whenever its data changes. The views in turn retrieve new data from 
the model and update the displayed information. This change- 
propagation mechanism is described in the Publisher-Subscriber 
pattern (339). 

Structure The model component contains the functional core of the application. 
I t  encapsulates the appropriate data, and exports procedures that 
perform application-specific processing. Controllers call these proce- 
dures on behalf of the user. The model also provides functions to 
access its data that are used by view components to acquire the data 
to be displayed. 

The change-propagation mechanism maintains a registry of the 
dependent components within the model. All views and also selected 
controllers register their need to be informed about changes. Changes 
to the state of the model trigger the change-propagation mechanism. 
The change-propagation mechanism is the only link between the 
model and the views and controllers. 

C l a s s  
Model 

~p 

Responsibility 
Provides functional 
core of the 
application. 
Registers 
dependent views 
and controllers. 
Notifies dependent 
components about 
data changes. 

Collaborators 
View 
Controller 



Architectural Patterns 

View components present information to the user. Different views 
present the information of the model in different ways. Each view 
defines an  update procedure that is activated by the change- 
propagation mechanism. When the update procedure is called, a view 
retrieves the current data values to be displayed from the model, and 
puts them on the screen. 

During initialization all views are associated with the model, and 
register with the change-propagation mechanism. Each view creates 
a suitable controller. There is a one-to-one relationship between views 
and controllers. Views often offer functionality that allows controllers 
to manipulate the display. This is useful for user-triggered operations 
that do not affect the model, such a s  scrolling. 

The controller components accept user input a s  events. How these 
events are delivered to a controller depends on the user interface plat- 
form. For simplicity, let u s  assume that each controller implements 
a n  event-handling procedure that is called for each relevant event. 
Events are translated into requests for the model or the associated 
view. 

If the behavior of a controller depends on the state of the model, the 
controller registers itself with the change-propagation mechanism 
and implements an update procedure. For example, this is necessary 
when a change to the model enables or disables a menu entry. 

C l a s s  
View 

Responsibility 
Creates and initial- 
izes its associated 
controller. 
Displays 
information to the 
user. 
Implements the 
update procedure. 
Retrieves data from 
the model. 

Collaborators 
Controller 

Collaborators 
Controller View 

Model - 

Accepts user input 
as events. 
Translates events 
to service requests 
for the model or 
display requests for 
the view. 
Implements the 
update procedure, 
if required. 

Model 



Model-View-Controller 129 

An object-oriented implementation of MVC would define a separate 
class for each component. In a C++ implementation, view and 
controller classes share a common parent that defines the update 
interface. This is shown in the following diagram. In Smalltalk, the 
class Object d e h e s  methods for both sides of the change- 
propagation mechanism. A separate class Observer is not needed. 

Obseruer 

update 
I 

- In our example system the model holds the cumulative votes for 
each political party and allows views to retrieve vote numbers. It 
further exports data manipulation procedures to the controllers. 

Model 

coreData 
setofobservers 

1 attachlObserver1 
detachlObserver1 1 notie 

We define several views: a bar chart, a pie chart and a table. The chart 
views use controllers that do not affect the model, whereas the table 
view connects to a controller used for data entry. 0 

You can also use the MVC pattern to build a framework for interactive 
applications, as within the Smalltalk-80 environment [KP88]. Such a 
framework offers prefabricated view and controller subclasses for 
frequently-used user interface elements such as  menus, buttons, or 
lists. To instantiate the framework for an application, you can 
combine existing user interface elements hierarchically using the 
Composite pattern IGHJV951. 

/ \  

attach 
getData 

View 

myModel 
mvControUer 



130 Architectural Patterns 

Dynamics The following scenarios depict the dynamic behavior of MVC. For 
simplicity only one view-controller pair is shown in the diagrams. 

Scenario I shows how user input that results in changes to the model 
triggers the change-propagation mechanism: 

* The controller accepts user input in its event-handling procedure, 
interprets the event, and activates a service procedure of the 
model. 

* The model performs the requested service. This results in a change 
to its internal data. 

* The model notifies all views and controllers registered with the 
change-propagation mechanism of the change by calling their 
update procedures. 

* Each view requests the changed data from the model and re- 
displays itself on the screen. 

Each registered controller retrieves data from the model to enable 
or disable certain user functions. For example, enabling the menu 
entry for saving data can be a consequence of modifications to the 
data of the model. 

* The original controller regains control and returns from its event- 
handling procedure. 



Model-View-Controller 131 

Scenario XI shows how the MVC triad is initialized. This code is usu- 
ally located outside of the model, views and controllers, for example 
in a main program. The view and controller initialization occurs sim- 
ilarly for each view opened for the model. The following steps occur: 

The model instance is created, which then initializes its internal 
data structures. 

A view object is created. This takes a reference to the model as  a 
parameter for its initialization. 

The view subscribes to the change-propagation mechanism of the 
model by calling the attach procedure. 

The view continues initialization by creating its controller. I t  passes 
references both to the model and to itself to the controller's 
initialization procedure. 

The controller also subscribes to the change-propagation 
mechanism by calling the attach procedure. 

After initialization, the application begins to process events. 

Model -I I 

Model 

I View 

initialize d 



132 Architectural Patterns 

Implementation Steps 1 through 6 below are fundamental to writing a n  MVC-based 
application. Steps 7 through 10 clescribe additional topics that result 
in higher degrees of freedom, and lend themselves to highly flexible 
applications or application frameworks. 

Separate human-computer interactionfrom corefunctionality. Analyze 
the application domain and separate the core functionality from the 
desired input and output behavior. Design the model component of 
your application to encapsulate the data and functionality needed for 
the core. Provide functions for accessing the data to be displayed. 
Decide which parts of the model's functionality are to be exposed to 
the user via the controller, and add a corresponding interface to the 
model. 

r The model in our example stores the names of the political par- 
ties and the corresponding votes in two lists of equal length18. Access 
to the lists is provided by two methods, each of which creates a n  iter- 
ator. The model also provides methods to change the voting data. 

class Model{ 
List<long> votes; 
List<String> parties; 

pub1 ic : 
Model(List<String> partyNames): 

/ /  access interface for modification by controller 
void clearVotes0; / /  set voting values to 0 
void changeVote(Strin9 party, long vote); 

/ /  factory functions for view access to data 
Iterator<long> makevote1teratorO { 

return ~terator<long>(votes); 
I 
Iterator<String> makePartyIterator0 I 

return ~terator<String>(parties); 
1 

/ /  . . .  to be continued 
I 

2 Implement the change-propagation mechanism. Follow the Publisher- 
Subscriber design pattern (339) for this, and assign the role of the 
publisher to the model. Extend the model with a registry that holds 
references to observing objects. Provide procedures to allow views and 

18. An associative array with party names as keys and votes as the information 
would be a more realistic implementation but would bloat the example code. 



Model-View-Controller 133 

controllers to subscribe and unsubscribe to the change-propagation 
mechanism. The model's notify procedure calls the update procedure 
of all observing objects. All procedures of the model that change the 
model's state call the notify procedure after a change is performed. 

Proper C++ usage suggests that one should define an  abstract 
class Observer to hold the update interface. Both views and 
controllers inherit from Observer. The Model class from step 1 is 
extended to hold a set of references to current observers, and two 
methods, a t t a c h ( )  and d e t a c h ( ) ,  to allow observing objects to 
subscribe and unsubscribe. The method not i f  y  ( ) will be called by 
methods that modify the state of the model. 

class Observer{ / /  common ancestor for view and controller 
public : 

virtual void update0 { I 
/ /  default is no-op 
I ; 

class Model{ 
/ /  ... continued 
public: 

void attach(0bserver *s) { registry.add ( s )  ; 1 
void detach (Observer *s) { registry. remove (s 1 ; 3 

protected: 
virtual void notifyo; 

private : 
Set<Observer*> registry; 

I ;  
Our implementation of the method n o t i f y  ( ) iterates over all 
Observer objects in the registry and calls their update method. We do 
not provide a separate function to create an iterator for the registry, 
because it is only used internally. 

void Model : :not if y ( ) ( 
/ /  call update for all observers 
Iterator<Observer*> iter(registry) ; 
while (iter.next()) ( 

iter . curr ( )  ->update ( )  ; 
1 

1 
The methods changevo t e  ( ) and c learvotes  ( ) call n o t i f y  ( ) after 
the voting data is changed. Cl 



Architectural Patterns 

3 Design and implement the views. Design the appearance of each view. 
Specify and implement a draw procedure to display the view on the 
screen. This procedure acquires the data to be displayed from the 
model. The rest of the draw procedure depends mainly on the user 
interface platform. It would call, for example, procedures for drawing 
lines or rendering text. 

lmplement the update procedure to reflect changes to the model. The 
easiest approach is to simply call the draw procedure. The draw 
procedure goes ahead and fetches data needed for the view. For a 
complex view requiring frequent updates, such a straightforward 
implementation of update can be inefficient. Several optimization 
strategies exist in this situation. One is to supply additional 
parameters to the update procedure. The view can then decide if a re- 
draw is needed. Another solution is to schedule, but not perform, the 
re-draw of the view when it is likely that further events also require it. 
The view can then be redrawn when no more events are pending. 

In addition to the update and draw procedures, each view needs an  
initialization procedure. The initialization procedure subscribes to 
the change-propagation mechanism of the model and sets up  the 
relationship to the controller, a s  shown in step 5. After the controller 
is initialized, the view displays itself on the screen. The platform or 
the controller may require additional view capabilities, such a s  a 
procedure to resize a view window. 

b For all the views used by the election system we define a common 
base class View. The relationships to model and controller are 
represented by two member variables with corresponding access 
methods. The constructor of View establishes the relationship to the 
model by subscribing to the change-propagation mechanism. The 
destructor removes it again by unsubscribing. View also provides a 
simple non-optimized update ( ) implementation. 

class View : public Observer ( 
public: 

View (Model *m) : myModel (m) , mycontroller ( 0 )  
{ myModel ->attach( this) ; 1 

virtual -View ( )  ( myModel ->detach (this) ; 1 
virtual void update0 I this->draw 0 ; 1 
/ /  abstract interface to be redefined: 
virtual void initialize() ; / /  see below 
virtual void draw0 ; / /  (re-) display view 

/ /  . . . to be continued below 



Model-View-Controller 

Model *getModel() { return myModel; 1 
Controller *getcontroller() { return mycontroller; 1 

protected: 
Model *myModel ; 
Controller *myController; / /  set by initialize 

I ;  

class Barchartview : public View I 
public: 

BarChartView(Mode1 *m) : View(m) I 1 
virtual void draw0 ; 

I ;  

void ~arChartView::drawO { 
Iterator<String> ip = myModel->makePartyIterator(); 
Iterator<long> iv = my~odel->makevoteIterator(); 
List<long> dl; //for scaling values to fill screen 
long max = I;// maximum for adjustment 

/ /  calculate maximum vote count 
while (iv.next0) I 

if (iv.curr() > max ) max = iv.curr0; 
1 
iv.reset 0 ; 
/ /  now calculate screen coordinates for bars 
while (iv.next()) { 

dl.append((MAXBARS1ZE * iv.curr())/max); 
I  

// reuse iterator object for new collection: 
iv = dl; // assignment rebinds iterator to new list 
iv.reset 0 ; 

while (ip.next() && iv.next()) { 
/ /  draw text: cout << ip.curr 0 << " : " ; 
/ /  draw bar: . . .  drawbox(BARWIDTH, iv.curr0) ; . . .  

1 
I  

The class definition of BarChar tview demonstrates a specific view of 
our system. It redefines draw ( )  to show the voting data as  a bar 
chart. D 

4 Design and implement the controllers. For each view of the application, 
specify the behavior of the system in response to user actions. We 
assume that the underlying platform delivers every action of a user as  
an event. A controller receives and interprets these events using a 
dedicated procedure. For a non-trivial controller, this interpretation 
depends on the state of the model. 



Architectural Patterns 

The initialization of a controller binds it to its model and view and 
enables event processing. How this is achieved depends on the user- 
interface platform. For example, the controller may register its event- 
handling procedure with the window system as a callback. 

b Most views in our example do not require any specific event 
processing-they are only used for display. We therefore define a base 
class Controller with an  empty handleEvent 0 method. The 
constructor attaches the controller to its model and the destructor 
detaches it again. 

class Controller : public Observer I 
pub1 ic : 

virtual void handleEvent(Event * )  { 1 
/ /  default = no op 

Controller( View *v) : myView(v) I 
myModel = myview->getModelO; 
myModel ->attach (this) ; 

1 

virtual -Controller 0 { myModel ->detach(this) ; 1 
virtual void update0 I 1 / /  default = no op 

protected: 
Model *myModel ; 
View *myview; 

1 ;  

We omit a separate controller initialization method, because the 
relationship to the view and the model is already set up  by its 
constructor. D 

Calling the functional core closely links a controller with the model. 
since the controller becomes dependent on the application-specific 
model interface. If you plan to modify functionality, or if you want to 
provide reusable controllers and therefore would like the controller to 
be independent of a specific interface. apply the Command Processor 
(277) design pattern. The model takes the role of the supplier of the 
Command Processor pattern. The command classes and the 
command processor component are additional components between 
controller and model. The MVC controller has the role of controller in 
Command Processor. 



Model-View-Controller 137 

5 Design and implement the view-controller relationship. A view typically 
creates its associated controller during its initialization. When you 
build a class hierarchy of views and controllers, apply the Factory 
Method design pattern [GHJV95] and define a method 
makecontroller ( 1  in the view classes. Each view that requires a 
controller that differs from its superclass redefines the factory 
method. 

r In our C++ example the View base class implements a method 
initialize ( )  that in turn calls the factory method 
makecontroller ( ) .  We cannot put the call to makecontroller ( )  

into the constructor of the View class. because then a subclass' 
redefined makecontroller ( )  would not be called a s  desired. The 
only View subclass that requires a specffic controller is TableView. 
We redefine makecontroller ( )  to return a TableController to 
accept data from the user. 

class View : public Observer I 
/ /  ... continued 
public: 
//c++ deficit: use initialize to call right factory method 

virtual void initialize0 
{ mycontroller = makeController0 ;I 

virtual Controller *makeController() 
{ return new Controller(this); I 

1 ; 

class TableController : public Controller 
public: 

~ableController (TableView *tv) : Controller (tv) { I  
virtual void handleEvent(Event *e) I 
/ /  ... interpret event e, 
/ / for instance, update votes of a party 

if (vote && party) I / /  entry complete: 
my~odel->changeVote(party,vote); 

I 
I 

I; 
class TableView : public View { 
public: 

TableView(Mode1 *m) : View(m) I 1 
virtual void draw ( )  ; 
virtual Controller *makecontroller() 

{ return new TableController (this) ; I 
I ;  



Architectural Patterns 

6 Implement the set-up of MVC. The set-up code first initializes the 
model, then creates and initializes the views. After initialization, event 
processing is started, typically in a Loop, or with a procedure that 
includes a loop, such as  XtMainLoop ( ) from the X Toolkit. Because 
the model should remain independent of specific views and 
controllers, this set-up code should be placed externally, for example, 
in a main program. 

In our simple example the main function initializes the model 
and several views. The event processing delivers events to the control- 
ler of the table view, allowing the entry and change of voting data. 

main( ( 
/ /  initialize model 
List<String> parties; partie~.append(~~black"): 
parties. append (Itblue " ) ; parties. append ( "red " )  : 
parties .append ("green"); parties .append ("0th. " )  ; 
Model m (parties) ; 

/ /  initialize views 
TableView *vl = new TableView(&m) ; 
vl->initialize(); 
BarChartView *v2 = new BarChartView(&m); 
v2->initialize(); 
/ /  now start event processing . . .  cl 

7 Dynamic view creation If the application allows dynamic opening and 
closing of views, it is a good idea to provide a comp.onent for managing 
open views. This component, for example, can also be responsible for 
terminating the application after the last view is closed. Apply the 
View Handler (291) design pattern to implement this view 
management component. 

8 'Pluggabkg controllers. The separation of control aspects from views 
supports the combination of different controllers with a view. This 
flexibility can be used to implement different modes of operation, 
such as casual user versus expert, or to construct read-only views 
using a controller that ignores any input. Another use of this 
separatidn is the integration of new input and output devices with an 
application. For example, a controller for an eye-tracking device for 
disabled people can exploit the functionality of the existing model and 
views, and is easily incorporated into the system. 

r In our example only the class TableView supports several 
controllers. The default controller Tab 1 eCon t rol ler allows the user 



Model-View-Controller 139 

to enter voting data. For display-only purposes, TableView can be 
configured with a controller that ignores all user input. The code 
below shows how a controller is substituted for another controller. 
Note that se tcontrol ler returns the previously-used controller 
object. Here the controller object is no longer used and so it is deleted 
immediately. 

class view : public Observer{ 
/ /  ... continued 
public: 

virtual Controller *setController(Controller *ctlr); 
1; 

main ( ) 
/ /  . . .  

/ /  exchange controller 
delete vl->setcontroller( 

new Controller(v1)); / /  this one is read only 
/ /  . . -  

/ /  open another read-only table view; 
TableView *v3 = new TableView(&m); 
v3->initialize(); 
delete v3->setcontroller( 

new Controller(v3) ) ;  / /  make v3 read-only 
/ /  continue event processing 

/ /  . . .  
1 ci 

9 Infrastructure for hierarchical views and controllers. A framework 
based on MVC implements reusable view and controller classes. This 
is commonly done for user interface elements that are applied 
frequently, such as buttons, menus, or text editors. The user 
interface of an  application is then constructed largely by combining 
predefined view objects. Apply the Composite pattern [GHJV95] to 
create hierarchically composed views. If multiple views are active 
simultaneously, several controllers may be interested in events at the 
same time. For example, a button inside a dialog box reacts to a 
mouse click, but not to the letter 'a' typed on the keyboard. If the 
parent dialog view also contains a text field, the 'a' is sent to the 
controller of the text view. Events are distributed to event-handling 
routines of all active controllers in some defined sequence. Use the 
Chain of Responsibility pattern IGHJV951 to manage this delegation 
of events. A controller will pass an unprocessed event to the controller 
of the parent view or to the controller of a sibling view if the chain of 
responsibility is set up properly. 



10 Further decoupling from system dependencies. Building a framework 
with an  elaborate collection of view and controller classes is 
expensive. You may want to make these classes platform 
independent. This is done in some Smalltalk systems. You can 
provide the system with another level of indirection between it and the 
underlying platform by applying the Bridge pattern [GHJV95]. Views 
use a class named display a s  an  abstraction for windows and 
controllers use a sensor class. 

The abstract class display defines methods for creating a window, 
drawing lines and text, changing the look of the mouse cursor and so 
on. The sensor abstraction defines platform-independent events, and 
each concrete sensor subclass maps system-specific events to 
platform-independent events. For each platform supported, 
implement concrete displuy and sensor subclasses that encapsulate 
system specifics. 

The design of the abstract classes display and sensor is non-trivial, 
because it impacts both the efficiency of the resulting code, and the 
efficiency with which the concrete classes can be implemented on the 
different platforms. One approach is to use sensor and display 
abstractions with only the very basic functionality that is provided 
directly by all user-interface platforms. The other extreme is to have 
display and sensor offer higher-level abstractions. Such classes need 
greater effort to port, but use more native code from the user- 
interface platform. The first approach leads to applications that look 
similar across platforms, while the second results in applications that 
conform better to platform-specific guidelines. 

Variants Document-View. This variant relaxes the separation of view and 
controller. In several GUI platforms, window display and event 
handling are closely interwoven. For example, the X Window System 
reports events relative to a window. You can combine the 
responsibilities of the view and the controller from MVC in a single 
component by sacrificing exchangeability of controllers. This kind of 
structure is often called a Document-View architecture [App89], 
[Gam91], [Kru96]. The document component corresponds to the 
model in MVC, and also implements a change-propagation 
mechanism. The view component of Document-View combines the 
responsibilities of controller and view in MVC, and implements the 
user interface of the system. As in MVC, loose coupling of the 



Model-View-Controller 141 

document and view components enables multiple simultaneous 
synchronized but different views of the same document. 

Known Uses Smalltalk [GR83]. The best-known example of the use of the Model- 
View-Controller pattern is the user-interface framework in the 
Smalltalk environment [LP9 11, IKP88). MVC was established to build 
reusable components for the user interface. These components are 
shared by the tools that make up the Smalltalk development 
environment. However, the MVC paradigm turned out to be useful for 
other applications developed in Smalltalk as well. The VisualWorks 
Smalltalk environment supports different 'look and feel' standards by 
decoupling view and controllers via display and sensor classes, as 
described in implementation step 10. 

MF'C [Kru96]. The Document-View variant of the Model-View- 
Controller pattern is integrated in the Visual C++ environment-the 
Microsoft Foundation Class Library-for developing Windows 
applications. 

ET++ [Gam91]. The application framework ET++ also uses the Docu- 
ment-View variant. A typical ET++-based application implements its 
own document class and a corresponding view class. ET++ estab- 
lishes 'look and feel' independence by defining a class Windowport 
that encapsulates the user interface platform dependencies, in the 
same way as do our display and sensor classes. 

Consequences The application of Model-View-Controller has several benefits: 

Multiple views of the same model. MVC strictly separates the model 
from the user-interface components. Multiple views can therefore be 
implemented and used with a single model. At run-Ume, multiple 
views may be open at  the same time, and views can be opened and 
closed dynamically. 

Synchronized views. The change-propagation mechanism of the 
model ensures that all attached observers are notified of changes to 
the application's data at the correct time. This synchronizes all 
dependent views and controllers. 

'Pluggable' views and controllers. The conceptual separation of MVC 
allows you to exchange the view and controller objects of a model. 
User interface objects can even be substituted at  run-time. 



Exchangeability of 'look and feel'. Because the model is independent 
of all user-interface code, a port of an  MVC application to a new 
platform does not affect the functional core of the application. You 
only need suitable implementations of view and controller 
components for each platform. 

Framework potential. It is possible to base an application framework 
on this pattern, a s  sketched in implementation steps 7 through 10. 
The various Smalltalk development environments have proven this 
approach. 

The 1 es of MVC are a s  follows: 

Increased complexity. Following the Model-View-Controller structure 
strictly is not always the best way to build an interactive application. 
Gamma [Gamgl] argues that using separate model, view and 
controller components for menus and simple text elements increases 
complexity without gaining much flexibility. 

Potential for excessive number of updates. If a single user action 
results in many updates, the model should skip unnecessary change 
notifications. It may be that not all views are interested in every 
change-propagated by the model. For example, a view with a n  
iconized window may not need an  update until the window is restored 
to its normal size. 

Intimate connection between view and controller. Controller and view 
are separate but closely-related components, which hinders their 
individual reuse. It is unlikely that a view would be used without its 
controller, or vice-versa, with the exception of read-only views that 
share a controller that ignores all input. 

Close coupling of views and controllers to a d e l .  Both view and 
controller components make direct calls to the model. This implies 
that changes to the model's interface are likely to break the code of 
both view and controller. This problem is magnified if the system uses 
a multitude of views and controllers. You can address this problem by 
applying the Command Processor pattern (277), as described in the 
Implementation section, or some other means of indirection. 



Model-View-Controller 143 

Inemiency of data access in view. Depending on the interface of the 
model, a view may need to make multiple calls to obtain all its display 
data. Unnecessarily requesting unchanged data from the model 
weakens performance if updates are frequent. Caching of data within 
the view improves responsiveness. 

Inevitability of change to view and controller when porting. All 
dependencies on the user-interface platform are encapsulated within 
view and controller. However, both components also contain code that 
is independent of a specific platform. A port of an MVC system thus 
requires the separation of platform-dependent code before rewriting. 
In the case of an MVC framework or a large composed application, an  
additional encapsulation of platform dependencies may be required. 

D~ficul ty  of using MVC with modern user-interface took. If portability 
is not an issue, using high-level toolkits or user interface builders can 
rule out the use of MVC. It is usually expensive to retrofit toolkit 
components or the output of user interface layout tools to MVC. 
Additional wrapping would be the minimum requirement. In addition, 
many high-level tools or toolkits define their own flow of control and 
handle some events internally, such as displaying a pop-up menu or 
scrolling a window. Finally, a high-level user interface platform may 
already interpret events and offer callbacks for each kind of user 
activity. Most controller functionality is therefore already provided by 
the toolkit, and a separate component is not needed. 

See Also The Presentation-Abstraction-Control pattern (145) takes a different 
approach to decoupling the user-interface aspects of a system from 
its functional core. Its abstraction component corresponds to the 
model in MVC, and the view and controller are combined into a 
presentation component. Communication between abstraction and 
presentation components is decoupled by the control component. The 
interaction between presentation and abstraction is not limited to 
calling an update procedure, as it is within MVC. 

Credits Trygve Reenskaug created MVC and introduced it to the Smalltalk 
environment (RWL961. 





Presentation-Abstraction-Control 

The Presentation-Abstraction-Control architectural pattern (PAC) 
defines a structure for interactive software systems in the form of a 
hierarchy of cooperating agents. Every agent is responsible for a 
specific aspect of the application's functionality and consists of three 
components: presentation, abstraction, and control. This subdivision 
separates the human-computer interaction aspects of the agent from 
its functional core and its communication with other agents. 

Example Consider a simple information system for political elections with pro- 
portional representation. This offers a spreadsheet for entering data 
and several kinds of tables and charts for presenting current stand- 
ings. Users interact with the software through a graphical interface. 

Data presentation 

Data entry 

Different versions, however, adapt the user interface to specffic 
needs. For example, one version supports additional views of the 
data, such as the assignment of parliament seats to political parties. 

Context Development of an interactive application with the help of agentslg. 

19. In the context of this pattem an agent denotes an information-processing 
component that includes event receivers and transmitters, data structures to mantain 
stale, and a processor that handles incoming events, updates its own state. and 
that may produce new events IBaCo911. Agents can be as small a s  a single object, but 
also as complex as a complete software system. We use the terms agent and PAC agent 
a s  synonyms in this pattem description. 



146 Architectural Patterns 

Problem Interactive systems can often be viewed as a set of cooperating agents. 
Agents specialized in human-computer interaction accept user input 
and display data. Other agents maintain the data model of the system 
and offer functionality that operates on this data. Additional agents 
are responsible for diverse tasks such as error handling or 
communication with other software systems. Besides this horizontal 
decomposition of system functionality, we often encounter a vertical 
decomposition. Production planning systems (PPS) , for example, 
distinguish between production planning and the execution of a 
previously specified production plan. For each of these tasks separate 
agents can be defined. 

In such an architecture of cooperating agents, each agent is special- 
ized for a specific task, and all agents together provide the system 
functionality. This architecture also captures both a horizontal and 
vertical decomposition. The following forces affect the solution: 

Agents often maintain their own state and data. For example, in a 
PPS system, the production planning and the actual production 
control may work on different data models, one tuned for planning 
and simulation and one performance-optimized for efficient 
production. However, individual agents must effectively cooperate 
to provide the overall task of the application. To achieve this, they 
need a mechanism for exchanging, data, messages, and events. 

Interactive agents provide their own user interface, since their 
respective human-computer interactions often differ widely. For 
example, entering data into spreadsheets is done using keyboard 
input, while the manipulation of graphical objects uses a pointing 
device. 

Systems evolve over time. Their presentation aspect is particularly 
prone to change. The use of graphics, and more recently, multi- 
media features, are examples of pervasive changes to user 
interfaces. Changes to individual agents, or the extension of the 
system with new agents, should not affect the whole system. 

Solution Structure the interactive application as a tree-like hierarchy of PAC 
agents. There should be one top-level agent, several intermediate- 
level agents, and even more bottom-level agents. Every agent is 
responsible for a specific aspect of the application's functionality, and 
consists of three components: presentation, abstraction, and control. 



Presentation-Abstraction- 147 

The whole hierarchy reflects transitive dependencies between agents. 
Each agent depends on all higher-level agents up the hierarchy to the 
top-level agent. 

The agent's presentation component provides the visible behavior of 
the PAC agent. Its abstraction component maintains the data model 
that underlies the agent, and provides functionality that operates on 
this data. Its control component connects the presentation and 
abstraction components, and provides fimctionality that allows the 
agent to communicate with other PAC agents. 

The top-level PAC agent provides the functional core of the system. 
Most other PAC agents depend or operate on this core. Furthermore, 
the top-level PAC agent includes those parts of the user interface that 
cannot be assigned to particular subtasks, such as  menu bars or a 
dialog box displaying information about the application. 

Bottom-level PAC agents represent self-contained semantic concepts 
on which users of the system can act, such as  spreadsheets and 
charts. The bottom-level agents present these concepts to the user 
and support all operations that users can perform on these agents, 
such as zooming or moving a chart. 

Intermediate-level PAC agents represent either combinations of, or 
relationships between, lower-level agents. For example, an interme- 
diate-level agent may maintain several views of the same data, such 
as  a floor plan and an external view of a house in a CAD system for 
architecture. 

Our information system for political elections defines a top-level 
PAC agent that provides access to the data repository underlying the 
system. The data repository itself is not part of the application. At the 
bottom level we specify four PAC agents: one spreadsheet agent for 
entering data, and three view agents for each type of diagram for 
representing the data. The application has one intermediate-level 
PAC agent. This coordinates the three bottom-level view agents and 
keeps them consistent. The spreadsheet agent is directly connected 
to the top-level PAC agent. Users of the system only interact with 
bottom-level agents. 



Architectural Patterns 

I data repository I 
-- - - - - - . .- -.. . - - - -- 

intermediate-level 

Structure The main responsibility of the top-lewl PAC agent is to provide the 
global data model of the software. This is maintained in the 
abstraction component of the top-level agent. The interface of the 
abstraction component offers functions to manipulate the data model 
and to retrieve information about it. The representation of data within 
the abstraction component is media-independent. For example, in a 
CAD system for architecture, walls, doors, and windows are 
represented in centimeters or inches that reflect their real size, not in 
pixels for display purposes. This media-independency supports 
adaptation of the PAC agent to different environments without major 
changes in its abstraction component. 

The presentation component of the top-level agent often has few 
responsibilities. It may include user-interface elements common to 
the whole application. In some systems, such as the network traffic 
manager [TS93], there is no top-level presentation component at all. 

The control component of the top-level PAC agent has three 
responsibilities: 

It allows lower-level agents to make use of the services of the top- 
level agents, mostly to access and manipulate the global data 
model. Incoming service requests from lower-level agents are 
forwarded either to the abstraction component or the presentation 
component. 

It coordinates the hierarchy of PAC agents. It maintains 
information about connections between the top-level agent and 
lower-level agents. The control component uses this information to 



Presentation-Abstraction-Control 149 

ensure correct collaboration and data exchange between the top- 
level agent and lower-level agents. 

It maintains information about the interaction of the user with the 
system. For example, it may check whether a particular operation 
can be performed on the data model when triggered by the user. It 
may also keep track of the functions called to provide history or 
undo/redo services for operations on the functional core. 

s In our example information system for political elections, the 
abstraction component of the top-level PAC agent provides an 
application-specific interface to the underlying data repository. It 
implements functions for reading and writing election data. It also 
implements all functions that operate on the election data, such as 
algorithms for calculating projections and seat distributions. It 
further includes functions for maintaining data, such as those for 
updating and consistency checking. The control component organizes 
communication and cooperation with lower-level agents, namely the 
view coordinator and spreadsheet agents. This top-level PAC agent 
does not include a presentation component. CI 

Bottom-level PAC agents represent a specific semantic concept of the 
application domain, such as a mailbox in a network traffic manage- 
ment system [TS93] or a wall in a mobile robot system [Cro85]. This 
semantic concept may be as low-level as a simple graphical object 
such as a circle, or as complex as a bar chart that summarizes all the 
data in the system. 

The presentation component of a bottom-level PAC agent presents a 
specific view of the corresponding semantic concept, and provides 
access to all the functions users can apply to it. Internally, the 
presentation component also maintains information about the view, 
such as its position on the screen. 

The abstraction component of a bottom-level PAC agent has a similar 
responsibility as the abstraction component of the top-level PAC 
agent, maintaining agent-specific data. In contrast to the abstraction 
component of the top-level agent, however, no other PAC agents 
depend on this data. 

The control component of a bottom-level PAC agent maintains 
consistency between the abstraction and presentation components, 



Architectural Patterns 

thereby avoiding direct dependencies between them. It serves a s  a n  
adapter and performs both interface and data adaptation. 

The control component of bottom-level PAC agents communicates 
with higher-level agents to exchange events and data. Incoming 
events-such a s  a 'close window' request-are forwarded to the pre- 
sentation component of the bottom-level agent, while incoming data 
is forwarded to its abstraction component. Outgoing events and data, 
for example error messages, are sent to the associated higher-level 
agent. 

Concepts represented by bottom-level PAC agents, such as the bar 
and pie charts in the example, are atomic in the sense that they are 
the smallest units a user can manipulate. For the election system this 
means that users can only operate on the bar chart a s  a whole, for 
instance by changing the scaling factor of the y-axis. They cannot, for 
example, resize a n  individual bar of a bar chart. 

Bottom-level PAC agents are not restricted to providing semantic 
concepts of the application domain. You can also specify bottom-level 
agents that implement system services. For example, there may be a 
communication agent that allows the system to cooperate with other 
applications and to monitor this cooperation. 

r Consider a bar-chart agent in our information system for 
political elections. Its abstraction component saves the election data 
presented in the chart, and maintains chart-specific information 
such as the order of presentation for the data. The presentation 
component is responsible for displaying the bar chart in a window, 
and for providing all the functions that can be applied to it, such as 
zooming, moving, and printing. The control component serves as a 
level of indirection between the presentation and abstraction 
components. The control component is also responsible for the bar- 
chart agent's communication with the view coordinator agent. Cl 

Intermediate-Level PAC agents can fulfill two different roles: composi- 
tion and coordination When, for example, each object in a complex 
graphic is represented by a separate PAC agent, an  intermediate-level 
agent groups these objects to form a composite graphical object. The 
intermediate-level agent defines a new abstraction, whose behavior 
encompasses both the behavior of its components and the new char- 
acteristics that are added to the composite object. The second role of 



Presentation-Abstraction-Control 151 

an intermediate-level agent is to maintain consistency between lower- 
level agents, for example when coordinating multiple views of the 
same data. 

The abstraction component maintains the specific data of the inter- 
mediate-level PAC agent. The presentation component implements its 
user interface. The control component has the same responsibilities 
of the control components of bottom-level PAC agents and of the top- 
level PAC agent. 

s Our example information system for political elections defines 
one intermediate-level PAC agent. Its presentation component 
provides a palette that allows users to create views of the election 
data, such as bar or pie charts. The abstraction component maintains 
data about all currently-active views, each of which is realized by its 
own bottom-level agent. The main responsibility of the control 
component is to coordinate all subordinate agents. It forwards 
incoming notifications about data model changes taking place in the 
top-level agent to the bottom-level agents, and organizes their update. 
It also includes functionality to create and delete bottom-level agents 

Interm. -level Agent 1 Cl- 
on user request. 

Responsibility 
Coordinates lower- 
level PAC agents. 
Composes lower- 
level PAC agents to 
a single unit of 
higher abstraction. 

Class 
Top-level Agent 

Responsibility 
Provides the func- 
tional core of the 
system. 
Controls the PAC 
hierarchy. 

Class 
Bottom-level Agent 

Responsibility 
Provides a speciflc 
view of the software 
or a system service, 
including its asso- 
ciated human-com- 
puter interaction. 

Collaborators 
Intermediate- 
level Agent 
Bottom-level 
Agent 

Collaborators 
Top-level Agent 
Intermediate- 
level Agent 

Collaborators 
Top-level Agent 
Intermediate- 
level Agent 
Bottom-level 
Agent 



Architectural Patterns 

The following OMT diagram illustrates the PAC hierarchy of the 
information system for political elections. However, it only lists those 
functions that are necessary for controlling and coordinating the PAC 
hierarchy, or which are acckssible to  other^^^ agents or t i t he  user. 
We keep the interfaces of PAC agents small by applying the Composite 
Message pattern ISC95bl. All incoming service requests. events. and 
data are handled by a single function called receiveMsg ( ) . This 
interprets messages and routes them to their intended recipient, 
which may be the abstraction or presentation components of the 
agent, or of another agent. Similarly, the function s endMsg ( ) is used 
to pack and deliver service requests, events, and data to other agents. 
Another approach would be to provide an agent-specific interface that 
includes all the services the agent offers. The consequences of both 
these approaches are discussed in the ~m~lementati in section. 

I Repository I Top-level 
PAC agent 

Bottom-level 
PAC agent 

ErrorHandler 

errorData 

sendMsg 
receiveMsg receiveMsg 

Bottom-level 
PAC agents 

Bottom-level -1 PAC agent 

( Spreadsheet 1 

agent 
I I' 

Barchart I 

receive sg 
SendM3 I 
open 
close 
zoom 
move 
print 

o en 
ckse 
zoom 
move 
print 

:tr"e 
zoom 
move 
print 



Presentation-Abstraction-Control 153 

The internal structure of a PAC agent is shown below, using the bar- 
chart agent from our example: 

Bar-Chart Agent 

Abstraction 

barData 

setChartData 
getChartData 

update 
open 
close 
zoom 
move 
Print 

Control 

interactionData 

sendMs 
receivedsg 

getData 

Dynamics We will illustrate the behavior of a PAC architecture with two 
scenarios, both based on our election system example. 

Scenario I describes the cooperation between different PAC agents 
when opening a new bar-chart view of the election data. The scenario 
also includes a more detailed description of the internal behavior of 
the bar-chart agent. I t  is divided into five phases: 

A user asks the presentation component of the view coordinator 
agent to open a new bar chart. 

The control of the view coordinator agent instantiates the desired 
bar-chart agent. 

The view coordinator agent sends an 'open' event to the control 
component of the new bar-chart agent. 

The control component of the bar-chart agent first retrieves data 
from the top-level PAC agent. The view coordinator agent mediates 
between bottom and top-level agents. The data returned to the bar- 
chart agent is saved in its abstraction component. Its control 
component then calls the presentation component to display the 
chart. 

The presentation component creates a new window on the screen, 
retrieves data from the abstraction component by requesting it 
from the control component, and finally displays it within the new 
window. 



Architectural Patterns 

dinator Agent 

There are obvious optimizations possible here, such as caching top- 
level data in the view coordinator, or calling the bottom-level 
presentation component first and then storing the data. At this point, 
however, our emphasis is on explaining the basic ideas of the pattern. 

I I I 
- 

I 

Scenario 11 shows the behavior of the system after new election data 
is entered, providing a closer look at  the internal behavior of the top- 
level PAC agent. It has five phases: 

The user enters new data into a spreadsheet. The control 

opehiew(barchart) 1 

component of the spreadsheet agent forwards this data to the top- 
level PAC agent. 

Bar-Chart Agent 
b 

The control component of the top-level PAC agent receives the data 

Control 
4 W 

and tells the top-level abstraction to change the data repository 
accordingly. The abstraction component of the top-level agent asks 
its control component to update all agents that depend on the new 
data. The control component of the top-level PAC agent therefore 
notifies the view coordinator agent. 

Abstraction 

The control component of the view coordinator agent forwards the 
change notification to all view PAC agents it is responsible for 
coordinating. 

Presentation 



Presentation-Abstraction-Control 165 

As in the previous scenario, all view PAC agents then update their 
data and refresh the image they display. 

enter 
data + 

receiveMsg 
(change) 

Implementation To implement a PAC architecture, carry out the following ten steps, 
repeating any step or group of steps as necessary. 

1 Define a model of the application. Analyze the problem domain and 
map it onto an appropriate software structure. Do not consider the 
distribution of components to PAC agents when performing this step. 
Concentrate on finding a proper decomposition and organization of 
the application domain. To this end, answer the following questions: 

Which services should the system provide? 

Which components can fulfill these services? 

What are the relationships between components? 

How do the components collaborate? 

What data do the components operate on? 

How will the user interact with the software? 

Follow an appropriate analysis method when specifying the model. 

2 Define a general strategy for organizing the PAC hierarchy. At this 
point we have not yet defined individual agents, but can specify 
general guidelines for organizing the hierarchy of cooperating agents. 



Architectural Patterns 

One rule to follow is that of 'lowest common ancestor'. When a group 
of lower-level agents depends on the services or data provided by 
another agent, we try to specify this agent a s  the root of the subtree 
formed by the lower-level agents. As a consequence only agents that 
provide global services rise to the top of the hierarchy. For example, 
all agents in the election system depend on the central data 
repository. This is therefore provided by the top-level PAC agent. If 
only a fraction of all agents depend on the repository, we would try to 
group them into a subtree and define an  agent holding the repository 
a t  the root of that subtree. 

A second aspect to consider is the depth of the hierarchy. Most PAC 
architectures comprise several intermediate levels of PAC agents. In 
the Mobile Robot system [Cro85], for example, bottom-level agents are 
composed to environments which again are composed to workspaces 
-this is covered in more detail in the description of the Mobile Robot 
system in the Known Uses section. The deeper the hierarchy, the 
better it often reflects the decomposition of an  application into self- 
contained concepts. On the other hand, deep hierarchies tend to be 
inefficient a t  run-time, and also hard to maintain. Finding the 
appropriate decomposition of a system into PAC agents is important 
to be able to gain the benefits of this architecture. 

3 SpeciA the top-level PAC agent. Identify those parts of the analysis 
model that represent the functional core of the system. These are 
mostly components that maintain the global data model of the 
system, and components directly operating on this data. Identify also 
all user interface elements that are common to the whole application, 
such a s  menu bars or dialogs with information about the system. All 
components identified in this step will be part of the top-level agent. 

4 Spectfy the bottom-level PAC agents. Identify those components of the 
analysis model that represent the smallest self-contained units of the 
system on which the user can perform operations or view presen- 
tations. In our example system, these units are the various diagrams 
and charts presenting election data, and the spreadsheet for entering 
this data. 

For each of these units, identify those components that provide the 
human-computer interaction associated with them. The bar chart in 
our example requires a window in which the diagram is displayed, 
and functionality to manipulate the diagram, such a s  zooming and 



Presentation-Abstraction-Control 157 

printing. Each semantic concept such a s  a bar chart and its user 
interface components together form a separate bottom-level agent. 

5 Speclh bottom-level PAC agents for system services. Often an  
application includes additional services that are not directly related 
to its primary subject. In our example system we define an  error 
handler. Other systems may provide services for communicating with 
other systems or for configuration purposes. Each of these services, 
including their human-computer interaction, can be implemented as  
a separate bottom-level agent [BaCoS 11.. 

6 Spec& intermediate-level PAC agents to compose lower-level PAC 
agents. Often, several lower-level agents together form a higher-level 
semantic concept on which users can operate. 

In the mobile robot system described in [Cro85], several wall, place, 
and route PAC agents form an  environment. Users of the system can 
specify new environments, and missions for robots within environ- 
ments. Environments are displayed on the screen, and users perform 
actions such as  scrolling and zooming on these presentations. An en- 
vironment is therefore a higher-level concept with its own functional- 
ity and human-computer interaction. Such concepts are implement- 
ed a s  separate agents. They provide their own human-computer in- 
teraction, and operate on their constituent lower-level agents. 

Our election example does not provide semantic concepts above 
individual charts, diagrams, and spreadsheets. Therefore we do not 
define PAC agents for composing other PAC agents. 0 

7 Specih intermediate-level PAC agents to coordinate lower-level PAC 
agents. Many systems offer multiple views of the same semantic 
concept. For example, in text editors you find 'layout' and 'edit" views 
of a text document. When the data in one view changes, all other 
views must be updated. Such coordination components, which you 
may have identified when modeling the analysis model, provide their 
own human-computer interaction; for example, menu entries and 
associated callback functions. The view coordinator agent of our 
example system is such an  intermediate-level agent. To implement 
agents that coordinate multiple views you may apply the View 
Handler pattern (29 1). 

Note that views are not the only aspect of an  application that must be 
coordinated. The network traffic management system described in the 



Architectural Patterns 

Known Uses section [TS93], for example, implements an agent that 
coordinates the different concurrent jobs the system performs in a 
telecommunication network. 

8 Separate core functionality from human-computer interaction. For 
every PAC agent, introduce presentation and abstraction compo- 
nents. All components that provide the user interface of the agent, 
such as graphical images presented to the user, presentation-specific 
data like screen coordinates, or menus, windows, and dialogs form 
the presentation part. All components that maintain core data or 
operate on them form the abstraction. 

You can provide a unified interface to the abstraction and presenta- 
tion components of a PAC agent by applying the Facade pattern 
[GHJV951. The control component exports those parts of the abstrac- 
tion and presentation interfaces that other components can use. 

For some PAC agents it may be hard to specify presentation or 
abstraction parts. For example, top-level PAC agents often do not 
provide a presentation component. [BaCoS l]  suggest the implemen- 
tation of the top-level presentation as a general geometry manager 
that maintains spatial relationships between the presentation com- 
ponents of lower-level PAC agents. You can apply the Command 
Processor pattern (277) to further organize the presentation compo- 
nent. This allows you to schedule user requests for deferred or prior- 
itized execution, and to provide agent-specific undo/redo services. 

Some abstraction components, especially those in lower-level agents, 
often operate on data provided by other PAC agents. In this case, you 
may either not specify an abstraction component, or design the appli- 
cation such that the abstraction component.just serves as a data 
cache. In the first case, you save all the effort of implementing 
components to keep replica data, and the functionality to keep these 
replica consistent. In the latter case, you save additional communica- 
tion effort between PAC agents, for example when refreshing a view 
after a window is moved. 

Finally, introduce the control component to mediate between the 
abstraction and presentation components, and to avoid direct 
dependencies between them. The control component is implemented 
as an Adapter [GHJV95]. It links the presentation and abstraction 
components together by performing interface and data adaptation 



Presentation-Abstraction-Control 159 

between them. In this step, do not consider the parts of the control 
component that deal with the communication between the agent and 
other PAC agents. That is a different role of the control component. 
and should therefore be separated from the mediation between the 
agent internal abstraction and presentation components. 

r To illustrate this step in our example, we refine the bar-chart 
agent from the example, as described in the Structure section. The 
abstraction component keeps a copy of the election data displayed in 
the bar chart. 

The presentation component is structured into components that 
provide the functionality of windowing, menus, dialogs, and of 
maintaining presentation-specific data. To shield clients from this 
structure we provide a Facade (GHJV951. 

The control component of the pie chart PAC agent is simple. It just 
forwards data read requests from the presentation component to the 
abstraction component. Communication with higher-level agents is 
handled in the next step. 

Presentation 

update 
o en 
ckse 
zoom 
move 
print 

shields and uses 
I I I 
I I I 

Dialog 
P 

zoomDialog 
printDialog 
colorDialog 

Menu -- 
zoom 
move 
print 

- 
Window 

update 
o en 
cgse 
move operates on operates on 

Data 

zoomFactor 
screenPosition 

uses 

piecolors 

setData 
getData 



Architectural Patterns 

9 Rovide the external interface. To cooperate with other agents, every 
PAC agent sends and receives events and data. Implement this 
functionality as part of the control component. 

Within an agent, incoming events or data are forwarded to their 
intended recipient. The recipient may be the abstraction or the 
presentation component of the agent, but may also be lower or 
higher-level agents. For example, the view coordinator agent of our 
information system regularly receives change notifications from the 
top-level PAC agent and forwards them to the view agents. It also 
receives requests from lower-level agents that are forwarded to the 
top-level agent. In other words, the control component is a mediator- 
you may use the Mediator pattern [GHJV95] to implement this role. 

One way of implementing communication with other agents is to 
apply the Composite Message pattern [SC95b]. This keeps the inter- 
face of an agent small. It also allows agents to be independent of the 
specific interfaces of other agents, and also of particular data formats, 
marshaling, unmarshaling, fragmentation and re-assembling 
methods. Applying the Composite Message pattern requires, however, 
that the control component interprets incoming messages. It must 
decide what to do with them-calling the abstraction or presentation 
components, or fonvarding the message to another agent. This 
functionality is usually very complex and hard to implement. 

A second option is to provide a public interface that offers every 
service of an  agent as a separate function. These functions 'know' how 
to handle data and events when called. Compared to the Composite 
Message solution, this reduces the inner complexity of the control 
component, but introduces additional dependencies between 
agents-they depend on the specific interfaces of other agents. In 
addition, in this approach the interface of an  agent can 'explode'. For 
example, an  intermediate-level agent must offer all the functions of 
the top-level agent that are called by its associated lower-level agents. 
Vice versa, the intermediate-level agent must offer all the services of 
its associated lower-level agents that are called by the top-level agent. 
The interface of an agent may become complex and hard to maintain 
as a result. 

A PAC agent can be connected to other PAC agents in a flexible and 
dynamic way by using registrationfunctionality, as  introduced by the 
Publisher-Subscriber pattern (339). For example, if a new instance of 



the bar-chart agent in our election system is created. it is dynamically 
registered with the view coordinator agent. 

If a PAC agent depends on data or information maintained by other 
PAC agents, you should provide a change-propagation mechanism. 
Such a mechanism should involve all agents and all levels of the 
hierarchy and work in both directions. When changes to data occur 
within an agent. its abstraction component starts the change propa- 
gation. The control component forwards change notifications to all 
dependent PAC agents. but often also to the presentation component. 
Incoming change notifications from other agents cause the abstrac- 
tion and presentation components to update their internal states. 
One way to implement such a change-propagation mechanism is to 
use the Publisher-Subscriber pattern (339). Another way is to inte- 
grate change propagation with the general functionality for sending 
and receiving events, messages, and data: see the example code 
below. 

The interface for these communication and cooperation functions 
should be the same for all PAC agents. This supports re-configuration 
and reuse of PAC agents, and the extension of the application with 
new PAC agents. 

The control component of the view coordinator PAC agent in our 
election example provides the following interface: 

enum ViewKind I barchart, piechart, seats 1 ;  
/ /  type of available views of election data 

class DataSetInterface I / *  . . .  * /  I ;  
/ /  Common interface for datasets, messages, and 
/ /  events. according to the specifications of the 
/ /  Composite Message pattern ISC95bl 

class PACId ( / *  ... * /  I ;  
/ /  Provides a handle to a PAC agent 

class VCControl I 
// Data member specifications 
PACId parent: / /  higher-level agent 
List<PACId> children;// lower-level agents 
/ /  More data member specifications ... 

private: 
void attaCh(PAC1d agent, parentAgent = 0); 
void detach(PAC1d agent); 

/ /  Registration functionality for connecting 
/ /  dependent view agents and the top-level agent 
/ /  with the view coordinator agent. 



Architectural Patterns 

DataSetInterface sendMsg(DataSet1nterface data); 
/ /  Sending events, messages, or data to other PAC 
/ /  agents including change notifications 

void openview (ViewKind kind) ; 
void closeview (PACId agent) ; 

/ /  Opening and closing views including 
/ /  creation, registration,and deletion 
/ /  of bottom-level agents displaying charts 

public: 
DataSetInterface receiveMsg(DataSet1nterface data); 

/ /  Receiving events, messages, or data from other 
/ /  PAC agents including change notifications 

1 ; 

sendMsq ( 1  and receiveMsg ( 1  return objects for holding answers to 
the messages sent and received. D 

10 Link the hierarchy together. After implementing the individual PAC 
agents you can build the final PAC hierarchy. Connect every PAC 
agent with those lower-level PAC agents with which it directly 
cooperates. 

Provide the PAC agents that dynamically create and delete lower-level 
PAC agents with hnctionality to dynamically extend or reduce the 
PAC hierarchy. For example, the view coordinator agent in our 
information system creates a new view PAC agent if the user wants to 
opw a particular view, and deletes this agent when the user closes 
the window in which the view is displayed. 

Variants Many large applications-especially interactive ones-are multi-user 
systems. Multi-tasking is thus a major concern when designing such 
software systems. The following two variants of PAC address this 
force. 

PAC agents as actiue objects. Many applications, especially interactive 
ones, benefit from multi-threading. The mobile robot system (Cro851 
is an  example of a multi-threaded PAC architecture. Every PAC agent 
can be implemented as  an active object that lives in its own thread of 
control. Design patterns like Active Object and Half-Sync/Half-Async 
[Sch95] can help you implement such an architecture. 

PAC agents as processes. To support PAC agents located in different 
processes or on remote machines, use proxies (263) to locally 
represent these PAC agents and to avoid direct dependencies on their 
physical location. Use the Forwarder-Receiver pattern (307) or the 



Preeentation-Abstraction-Control 163 

Client-Dispatcher-Server pattern (323) to implement the inter- 
process communication (IPC) between PAC agents. 

Since IPC is inefficient, you can also consider organizing coherent 
subtrees of the PAC hierarchy within different processes. Agents that 
cooperate closely in carrylng out a particular task are then located 
within the same process. IPC between PAC agents is minimized, and 
is only necessary for coordinating different subtrees, a s  well as for 
accessing the services of the top-level PAC agent. 

Known Uses Network Traffic Management. This system is described in [TS93]. I t  
displays the traffic in telecommunication networks. Every fifteen 
minutes all monitored switching units report their current traffic 
situation to a control point where the data is stored. analyzed and 
displayed. This helps with identification of potential bottlenecks and 
in preventing traffic overload. The system includes functions for: 

Gathering traffic data from switching units. 

Threshold checking and generation of overflow exceptions. 

Logging and routing of network exceptions. 

Visualization of traffic flow and network exceptions. 

Displaying various user-configurable views of the whole network. 

Statistical evaluations of traffic data. 

Access to historic traffic data. 

System administration and configuration. 

The design and implementation of the system follows the 
Presentation-Abstraction-Control pattern. Every function of the 
system is represented by its own bottom-level PAC agent. There are 
dedicated agents for each view of the network, for the jobs the system 
can perform, and for the additional services the system offers, such 
as mail or help. Three intermediate-level PAC agents coordinate these 
bottom-level PAC agents, one for each of the three categories of 
application functionality: view, jobs, and additional services. In the 
diagram below, they are denoted by the agents NetEnv, JobEnv, and 
RegieEnv. An additional intermediate PAC agent organizes user 
sessions. The top-level PAC agent coordinates individual user 
sessions, and communicates with the functional core of the system. 
The core is implemented separately from the PAC hierarchy, probably 



Architectural Patterns 

because it incorporates legacy software. The PAC agent hierarchy of 
the system is dynamic. If, for example, a user starts a new session, a 
corresponding UISession agent is created and registered with the top- 
level agent. At the end of the session this agent is deleted. 

Functional I C0,R 1 

Netwindow Netwindow 
PAC . . . PAC 

Mobile Robot. This system [Cro85] allows an operator to interact 
with a mobile robot that navigates within a closed and hazardous - 

environment consisting of walls, equipment and people, either 
intruders or accident victims. The robot navigates using its own 
sensors and information from the system operator. The software 
allows the operator to: 

Provide the robot with a description of the environment it will work 
in, places in this environment, and routes between places. 

Subsequently modify the environment. 

Specify missions for the robot. 

Control the execution of missions. 

Observe the progress of missions. 

Each wall, route and place within an environment is represented by 
its own bottom-level PAC agent. These agents together visualize the 
environment. Environments are represented by intermediate-level 



Presentation-Abstraction-Control 165 

PAC agents. They control the constituent wall, route and place PAC 
agents. The control users can exert on an environment is 
implemented in a 'palette' PAC agent, which is also at  the bottom level 
of the hierarchy. The environment PAC agent and the palette PAC 
agent form a workspace for the robot. This workspace is represented 
by its own intermediate-level PAC agent. To support multiple views of 
the same environment, a multi-workspace PAC agent coordinates the 
different views of the same workspace. The PAC agent a t  the top level 
of the hierarchy encapsulates the functional core of the application, 
which is a rule-based intelligent supervisor for navigating and 
controlling the robot. 

To Level 
{Ac 

Multi Work- Multi Work- Multi Work- 
space PAC space PAC 

Workspace 1 Workspace 1 
PAC PAC 

Palette Environment 1 Palette Environment 1 
PAC PAC PAC PAC 

Consequences The Presentation-Abstraction-Control architectural pattern has 
several benefits: 

Separation of concerns. Different semantic concepts in the application 
domain are represented by separate agents. Each agent maintains its 
own state and data, coordinated with, but independent of other PAC 
agents. Individual PAC agents also provide their own human-com- 
puter interaction. This allows the development of a dedicated data 
model and user interface for each semantic concept or task within the 
application, independently of other semantic concepts or tasks. 

Supportfor change and extension. Changes within the presentation or 
abstraction components of a PAC agent do not affect other agents in 
the system. This allows you to individually modifjr or tune the data 



Architectural Patterns 

model underlying a PAC agent, or to change its user interface, for 
example from command shells to menus and dialogs. 

New agents are easily integrated into an existing PAC architecture 
without major changes to existing PAC agents. All PAC agents 
communicate with each other through a pre-defined interface. In 
addition, existing agents can dynamically register new PAC agents to 
ensure communication and cooperation. To add, for example, a new 
view PAC agent to our information system for political elections, we 
only need to extend the presentation of the view coordinator PAC 
agent with an appropriate palette field that allows users to create this 
new view. The functionality for handling this new PAC agent, for 
registering it with the view coordinator PAC agent, and for 
propagating changes and events to it is already available. 

Support for multi-tasking. PAC agents can be distributed easily to 
different threads, processes, or machines. Extending a PAC agent 
with appropriate IPC functionality only affects its control component. 

Multi-tasking also facilitates multi-user applications. For example, in 
our information system a newscaster can present the latest projection 
while data entry personnel update the data base with new election 
data. All that is necessary is for the shared data repository, or its 
control component, to take care of serialization or synchronization. 

The liabilities of this pattern are as follows: 

Increased system complexity. The implementation of every semantic 
concept within an application as its own PAC agent may result in a 
complex system structure. For example, if every graphical object such 
as a circle or square within a graphics editor is implemented as  its 
own PAC agent, the system would drown in a sea of agents. Agents 
must also be coordinated and controlled, which requires additional 
coordination agents. Think carefully about the level of granularity of 
your design, and where to stop refining agents into more and more 
bottom-level agents. 

Complex control component. In a PAC system, the control components 
are the communication mediators between the abstraction and pre- 
sentation parts of an agent, and between different PAC agents. The 
quality of the control component implementations is therefore crucial 
to an effective collaboration between agents, and therefore for the 
overall quality of the system architecture. The individual roles of con- 



Presentation-Abstraction-Control 167 

See also 

trol components should be strongly separated from each other. The 
implementation of these roles should not depend on specific details of 
other agents, such as their concrete names or physical locations in a 
distributed system. The interface of the control components should 
be independent of internal details, to ensure that an agent's collabo- 
rators do not depend on the specific interface of its presentation or 
abstraction components. It is the responsibility of the control compo- 
nent to perform any necessary interface and data adaptation. 

Egiciency. The overhead in the communication between PAC agents 
may impact system efficiency. For example, if a bottom-level agent 
retrieves data from the top-level agent, all intermediate-level agents 
along the path from the bottom to the top of the PAC hierarchy are 
involved in this data exchange. If agents are distributed, data transfer 
also requires IPC, together with marshaling, unmarshaling, 
fragmentation and re-assembling of data. 

These are serious potential pitfalls. We take them into account in the 
following discussion about when to use, and when not to use, the 
Presentation-Abstraction-Control pattern. 

Applicability. The smaller the atomic semantic concepts of an  appli- 
cation are, and the greater the similarity of their user interfaces, the 
less applicable this pattern is. For example, a graphical editor in 
which every individual object in a document is represented by its own 
PAC agent will probably result in a complex fine-grain structure 
which is hard to maintain. On the other hand, if the atomic semantic 
concepts are substantially larger, and require their own human- 
computer interaction, PAC provides a maintainable and extensible 
structure with clear separation of concerns between different system 
tasks. 

The Model-View-Controller pattern (125) also separates the functional 
core of a software system from information display and user input 
handling. MVC, however, defines its controller as  the entity 
responsible for accepting user input and translating it into internal 
semantics. This means that MVC effectively divides the user- 
accessible part-the presentation in PAC-into view and control. I t  
lacks mediating control components. Furthermore, MVC does not 
separate self-reliant subtasks of a system into cooperating but 
loosely- coupled agents. 



itectural Patter 

its PAC was originally described in [Cou87] by Joelle Coutaz. One of the 
first systems to be implemented based on PAC was the mobile robot 
application [Cro8 51. Further valuable guidelines for implementing 
PAC can be found in [BaCog 11 and [CNS95]. 

We thank Joelle Coutaz and Laurence Nigay for fruitful discussions 
and valuable input that helped us  to shape the description of this 
pattern. Steve Berczuk, Brian Foote, Ralph Johnson, Tim Ottinger, 
David E. DeLano and Linda Rising carefully reviewed an earlier 
version of PAC and provided u s  with detailed feedback for 
improvement. 



2.5 Adaptable Systems 

Systems evolve over time-new functionality is added and existing 
services are changed. They must support new versions of operating 
systems, user-interface plafforms or third-party components and 
libraries. Adaptation to new standards or hardware plafforms may 
also be necessary. During system design and implementation, 
customers may request new features, often urgently and at  a late 
stage. You may also need to provide services that differ from customer 
to customer. 

Design for change is therefore a major concern when specifymg the 
architecture of a software system. An application should support its 
own modification and extension a priori. Changes should not affect 
the core functionality or key design abstractions, otherwise the 
system will be hard to maintain and expensive to adapt to changing 
requirements. 

This section describes two patterns that help when designing for 
change: 

The Microkernel pattern (171) applies to software systems that 
must be able to adapt to changing system requirements. It 
separates a minimal functional core from extended functionality 
and customer-specific parts. The microkernel also serves a s  a 
socket for plugging in such extensions and coordinating their 
collaboration. 

The Reflection pattern (193) provides a mechanism for changing 
structure and behavior of software systems dynamically. It 
supports the modification of fundamental aspects, such as  type 
structures and function call mechanisms. In this pattern, an 
application is split into two parts. A meta level provides information 
about selected system properties and makes the software self- 
aware. A base level includes the application logic. Its 
implementation builds on the meta level. Changes to information 
kept in the meta level affect subsequent base-level behavior. 

The Microkernel pattern was developed to support the design of 
small, efficient and portable operating systems, and to support their 
extension with new services. It serves a s  the base architecture for 



several modern operating systems such a s  Chorus [ChogO], Mach 
[Tan921 and Windows NT [Cus93]. The Microkernel pattern provides 
a 'plug'n play' software environment, allowing you to connect 
extensions easily and to integrate them with the core sewices of the 
system. Specific components are used to encapsulate platform 
dependencies. Although only a few applications outside the domain of 
operating systems apply the principles of this pattern today, we 
believe that the Microkernel structure is very attractive, and that it 
lends itself to many systems that require a high degree of adaptability 
to different platforms and customer-specific requirements. 

The Reflection pattern takes a different approach. A system designed 
using Reflection maintains information about itself and uses this 
information to remain changeable and extensible. In particular, a 
Reflection system opens its implementation to support adaptation, 
change, and extension of specific structural and behavioral aspects 
such as  type structures, function call mechanisms or implementa- 
tions of particular services. The principles of reflection are supported 
by various programming languages, such as  CLOS [Kee89] and 
Smalltalk [GR83], operating systems such as  Apertos Wok921, and 
even large-scale industrial applications. Modern platforms such as  
CORBA [OMG92] and Microsoft's OLE [Bro94] also make use of some 
of the principles of the Reflection pattern. 



Microkernel 

The Microkernel architectural pattern applies to software systems 
that must be able to adapt to changing system requirements. It 
separates a minimal functional core from extended functionality and 
customer-specific parts. The microkernel also sexves as a socket for 
plugging in these extensions and coordinating their collaboration. 

Example Suppose we intend to develop a new operating system for desktop 
computers called Hydra. Our development team has elaborated a list 
of design goals to achieve this. One requirement is that this 
innovative operating system must be easily portable to the relevant 
hardware platforms, and must be able to accommodate future 
developments easily. I t  must also be able to run applications written 
for other popular operating systems such as NeXTSTEP, Microsoft 
Windows and UNIX System V. A user should be able to choose which 
operating system he wants from a pop-up menu before starting an 
application. Hydra will display all the applications currently running 
within its main window: 



Architectural Patterns 

To emulate all these operating systems, Hydra will integrate special 
servers that implement specific views of Hydra's functional core. A 
view denotes a layer of abstraction built on top of the core 
functionality. The emulation of Microsoft Windows by a server 
process is an example of such a view. Since several new technologies 
such as multimedia, pen-based computing and the World Wide Web 
are likely to increase in importance, Hydra should be designed for 
their easy integration, as well as for adaptation, evolution and 
enhancement of its overall functionality. 

Context The development of several applications that use similar 
programming interfaces that build on the same core functionality. 

Problem Developing software for an application domain that needs to cope 
with a broad spectrum of similar standards and technologies is a non- 
trivial task. Well-known examples are application platforms such as  
operating systems and graphical user interfaces20. Such systems 
often have a long life-span, sometimes ten years or more. Over time 
periods of this length, new technologies emerge and old ones change. 
The following forces therefore need particular consideration when 
designing such systems: 

The application platform must cope with continuous hardware and 
software evolution. 

The application platform should be portable, extensible and adapt- 
able to allow easy integration of emerging technologies. 

The success of such application platforms further depends on their 
capability to run applications written for existing standards. To 
support a broad range of applications, there is a need for more than 
one view of the functionality of the underlying application platform. 
In other words, an application platform such as an operating system 
or a database should also be able to emulate other application 
platforms that belong to the same application domain. 

20. In the existing literature Microkernel systems have mainly been described in 
relation to the design of operating systems. Nonetheless, we believe this pattern is also 
applicable to several other domains, for example that of financial applications or 
database systems [Woo96]. Due to the wide knowledge available about implementing 
operating systems using microkernels, our example will focus on this specific domain. 



Microkernel 

s For example, Hydra is designed to run applications that were 
originally developed for popular operating systems such as Microsoft 
Windows or OS/2 Warp. CI 

This leads to the followingforces: 

The applications in your domain need to support different, but 
similar, application platforms. 

8 

The applications may be categorized into groups that use the same 
functional core in different ways, requiring the underlying 
application platform to emulate existing standards. 

An application platform that provides the functional core of a domain 
is an exclusive resource for its clients. To avoid ~erformance prob- 
lems and to guarantee scaleability, your solution must take an 
additional force into account: 

The functional core of the application platform should be separated 
into a component with minimal memory size, and services that 
consume as little processing power as possible. 

Solution Encapsulate the fundamental services of your application platform in 
a microkernel component. The microkernel includes functionality that 
enables other components running in separate processes to commu- 
nicate with each other. It is also responsible for maintaining system- 
wide resources such as files or processes. In addition, it provides 
interfaces that enable other components to access its functionality. 

Core functionality that cannot be implemented within the micro- 
kernel without unnecessarily increasing its size or complexity should 
be separated in internal servers. 

External servers implement their own view of the underlying micro- 
kernel. To construct this view, they use the mechanisms available 
through the interfaces of the microkernel. Every external server is a 
separate process that itself represents an  application platform. 
Hence, a Microkernel system may be viewed as an application plat- 
form that integrates other application platforms. 

Clients communicate with external servers by using the communica- 
tion facilities provided by the microkernel. 



174 Architectural Patterns 

Structure The Microkernel pattern defines five kinds of participating 
components: 

Internal servers 

External servers 

Adapters 

Clients 

Microkernel 

The microkernel represents the main component of the pattern. It 
implements central services such a s  communication faciliues or 
resource handling. Other components build on all or some of these 
basic services. They do this indirectly by using one or more interfaces 
that comprise the functionality exposed by the microkernel. 

Many system-specific dependencies are encapsulated within the 
microkernel. For example, most of the hardware-dependent parts are 
hidden from other participants. Clients of the microkernel only see 
particular views of the underlying application domain and the 
platform specifics. 

The microkernel is also responsible for maintaining system resources 
such as  processes or files. It controls and coordinates the access to 
these resources. 

In summary, a microkernel implements atomic services, which we 
refer to a s  mechanisms. These mechanisms serve a s  a fundamental 
base on which more complex functionality, called policies, are 
constructed. 

Responsibility 
Provides core 
mechanisms. 
Offers communi- 
cation facilities. 
Enca sulates sys- 
tem 'f' ependencies. 
Manages and 
controls resources. 

Class 
Microkernel 

Collaborators 
Internal Server 



Microkernel 

r In Hydra we want to support UNIX System V and OS/2 Warp, 
amongst other operating systems. We face a problem when imple- 
menting Hydra's process model. A system call such a s  that to create 
a new child process is implemented in UNIX by cloning a n  existing 
process, copying the whole address space. OS/2 Warp handles 
process creation totally differently, in that it does not copy the 
address space of the parent process. In other words. OS/2 Warp and 
UNIX offer different policies for processes. Hydra is therefore designed 
to supply basic services such a s  mechanisms for creating processes 
a s  well a s  mechanisms for cloning existing process spaces. These are 
combined in various ways for implementing both the process model 
of UNE System V and the process model of OS/2 Warp. 

An internal server-also known a s  a subsystem-extends the func- 
tionality provided by the microkernel. It represents a separate 
component that offers additional functionality. The microkernel 
invokes the functionality of internal servers via service requests. In- 
ternal servers can therefore encapsulate some dependencies on the 
underlying hardware or software system. For example, device drivers 
that support specific graphics cards are good candidates for internal 
servers. 

Class 
Internal Server 

Responsibility 
Implements 
additional services. 
Encapsulates 
some system 
specifics. 

Collaborators 
Microkemel 

One of the design goals should be to keep the microkernel a s  small a s  
possible to reduce memory requirements. Another goal is to provide 
mechanisms that execute quickly, to reduce service execution time. 
Additional and more complex services are therefore implemented by 
internal servers that the microkernel activates or loads only when 
necessary. You can consider internal servers a s  extensions of the 



Architectural Patterns 

microkernel. Note that internal servers are only accessible by the 
microkernel component. 

An external seruer-also known as a personality-is a component that 
uses the microkernel for implementing its own view of the underlying 
application domain. As already mentioned, a view denotes a layer of 
abstraction built on top of the atomic services provided by the 
microkernel. Different external servers implement different policies 
for specific application domains. 

External servers expose their functionality by exporting interfaces in 
the same way as  the microkernel itself does. Each of these external 
servers runs in a separate process. It receives service requests from 
client applications using the communication facilities provided by the 
microkernel, interprets these requests, executes the appropriate 
services and returns results to its clients. The implementation of 
services relies on microkernel mechanisms, so external servers need 
to access the microkernel's programming interfaces. 

Class 
External Server 

Resgonsibilitg 
Provides 
programming 
interfaces for its 
clients. 

Collaborators 
Microkernel 

r In Hydra we want to implement an OS/2 Warp external server 
and a UNIX System V external server. Both these servers use the 
mechanisms of the underlying microkernel to implement a complete 
set of OS/2 Warp and UNIX System V system calls. Ci 

A client is an application that is associated with exactly one external 
server. I t  only accesses the programming interfaces provided by the 
external server. 

A problem arises if a client needs to access the interfaces of its 
external server directly. Each client has to use the available 
communication facilities to interoperate with the external servers. 



Microkernel 

Every communication with an external server must therefore be hard- 
coded into the client code. Such a tight coupling between clients and 
servers, however, leads to various disadvantages: 

Such a system does not support changeability very well. 

If external servers emulate existing application plafforms, client 
applications developed for these plafforms will not run without 
modification. 

We therefore introduce interfaces between clients and their external 
servers to protect clients from direct dependencies. Adapters4so 
known as emulators-represent these interfaces between clients and 
their external servers, and allow clients to access the services of their 
external server in a portable way. They are part of the client's address 
space. If the external server implements an existing application plat- 
form, the corresponding adapter mimics the programming interfaces 
of that platform. Clients written for the emulated platform can there- 
fore be compiled and run without modification. Adapters also protect 
clients from the specific implementation details of the microkernel. 

Whenever a client requests a service from an external server, it is the 
task of the adapter to forward the call to the appropriate server. For 
this purpose the adapter uses the communication services provided 
by the microkernel. 

Client l 
Responsibility 

Represents an 
application. 

Collaboratots 
Adapter 

Class 
Adapter 

Responsibility 
Hides system 
dependencies such 
as communication 
facilities from the 
client. 
Invokes methods of 
external servers on 
behalf of clients. 

Collaborators 
External Server 
Microkernel 

Due to encapsulation by an adapter, a Hydra client associated 
with the OS/2 Warp external server does not know whether it is 
running on a native OS/2 Warp system or on a Microkernel system 
that provides an OS/2 Warp external server. It just uses the OS/2 



Architectural Patterns 

system calls as before. What happens 'behind the scenes' is hidden 
by the adapter. Ci 

The following OMT diagram shows the static structure of a Micro- 
kernel system. Its central component, the microkernel, collaborates 
with external servers, internal servers and adapters. Each client is 
associated with an adapter used as  a bridge between the client and 
its external server. Internal servers are only accessible by the micro- 
kernel component. 

Microkernel Internal Server 

executeMechanism activates executeService 
lnltCommunication receiveReques t 
BndReceiver 
createHandle 
sendMess e 1 i ca~ntern%erver 

sends request 1 1 calls service1 1 

Dynamics The dynamic behavlor of a Microkernel system depends on the 
functionality it provides for inter-process communication. In the 
following scenarios we assume the availability of remote procedure 
calls. The first scenario also assumes that the external server does 
not access the microkernel interfaces-this latter case is illustrated 
in the second scenario. 

Scenario I demonstrates the behavior when a client calls a service of 
its external server: 

At a certain point in its control flow the client requests a service 
from an  external server by calling the adapter. 

The adapter constructs a request and asks the microkernel for a 
communication link with the external server. 



Microkernel 

The microkernel determines the physical address of the external 
server and returns it to the adapter. 

After retrieving this information, the adapter establishes a direct 
communication link to the external server. 

The adapter sends the request to the external server using a remote 
procedure call. 

The external server receives the request, unpacks the message and 
delegates the task to one of its own methods. After completing the 
requested service, the external server sends all results and status 
information back to the adapter. 

The adapter returns to the client, which in turn continues with its 
control flow. 

rl Microkernel External 
Server 



Architectural Patterns 

Scenario I1 illustrates the behavior of a Microkernel architecture 
when an external server requests a service that is provided by an  
internal server. In this scenario we assume that the internal server is 
implemented as  a separate process. It could alternatively be 
implemented as  a shared library that is dynamically linked to the 
microkernel. 

The external server sends a service request to the microkernel. 

A procedure of the programming interface of the microkernel is 
called to handle the service request. During method execution the 
microkernel sends a request to an internal server. 

After receiving the request, the internal server executes the 
requested service and sends all results back to the microkernel. 

The microkernel returns the results back to the external server. 

Finally, the external server retrieves the results and continues with 
its control flow. 

( Server I 
Microkernel 1 j:"": 

Implementation To implement a Microkernel system, carry out the following steps: 

1 Analyze the application domain. If you already know the policies your 
external servers need to offer, or if you have a detailed knowledge 
about the external servers you are going to implement, continue with 
step 2. If not, perform a domain analysis and identify the core 
functionality necessary for implementing external servers, then 
continue with step 3. 



crokernel 

2 Analyze external servers. Analyze the policies external servers are 
going to provide. You should then be able to identify the functionality 
you require within your application domain. 

For Hydra we already know which external servers have to be 
implemented: UNIX System V, OS/2 Warp, Microsoft Windows and 
NeXTSTEP. We therefore analyze their programming interfaces to 
determine the services they provide. This requirement analysis 
results in the list of services and service categories necessary for 
implementing desktop operating systems. 0 

3 Categorize the services. Whenever possible, group all the functionality 
into semantically-independent categories. 

Build categories of operations that are not directly related with the 
application domain, but are necessary to implement the system 
infrastructure. Some of these operations may be candidates for 
migration to internal servers. 

For example, in Hydra the core categories that are predefined by 
the domain of operating systems are memory management, process 
management, low-level services for 1 /0  and communication services. 

The following categories are not directly related to the core concepts 
of the application domain: page-handler processes, file systems, 
hardware and software drivers. We need these categories in our Hydra 
implementation, but they may be migrated to internal servers. CL 

4 Partition the categories. Separate the categories into services that 
should be part of the microkernel, and those that should be available 
as internal servers. You need to establish criteria for this separation. 
For example, it is best to implement time-critical, frequently-used or 
hardware-dependent operations within the microkernel component. 

In Hydra the microkernel provides services such as  process 
management, memory management, communication and low- 
level I/O. This functionality is time-critical, used by all other 
components, and also encapsulates system dependencies. It should 
therefore be part of the microkernel. All additional services such as  
page fault handlers, drivers or file systems are implemented by inter- 
nal servers. CL 



5 Find a consistent and complete set of operatims and abstractims for 
every category you identified in step 1. Remember that the micro- 
kernel provides mechanisms, not policies. Each policy a n  external 
server provides must be implemented through use of the services the 
microkernel offers through its interfaces. 

r Operations such as the creation of processes or threads are 
handled differently by operating systems like UNIX or Microsoft 
Windows. In Hydra we need to support both. We therefore provide a 
complete set of basic mechanisms for managing processes and 
threads. For example, we provide services for: 

Creating and terminating processes and threads. 

Stopping and restarling them. 

Reading from or writing to process address spaces. 

Catching and handling exceptions. 

Managing relationships between processes or threads. 

Synchronizing and coordinating threads. D 

6 Determine strategies for request transmission and retrieval. Specify 
the facilities the microkernel should provide for communication 
between components. You can choose among several alternatives, for 
example, asynchronous communication versus synchronous 
communication. The relationship between communicating com- 
ponents may be a one-to-one, a many-to-one or a many-to-many 
relationship. The communication strategies you integrate depend on 
the requirements of the application domain. In many cases low-level 
communication facilities such as  message-passing or shared memory 
are available, and you can build more complex communication 
mechanisms on top of them. Compare design patterns such as  
Forwarder-Receiver (307) and Client-Dispatcher-Server (323) for 
more information on the implementation of communication 
mechanisms. 

r Hydra provides two basic communication facilities: 

Synchronous Remote Procedure Calls (RPCs). RPCs enable a client 
to invoke the services of a remote server a s  if they were 
implemented by local procedure calls. The mechanisms necessary 
for supporting RPCs, for example the packing and unpacking of 



requests or the transmission of messages across process 
boundaries, are hidden from the caller and the sewer called. 

@ Asynchronous Mailboxes. A mailbox is a type of message buffer. A 
set of components is allowed to read messages from the mailbox, 
another set of components has permission to write messages to it. 
A component may be allowed to perform both activities. CL 

7 Structure the microkernel component. If possible, design the 
microkernel using the Layers pattern (3 1) to separate system-specific 
parts from system-independent parts of the microkernel. Place the 
services that the microkernel exposes to other components in the 
uppermost layer, and use the lower layers to hide system 
dependencies from higher layers. 

In our Hydra project we decide to use object-oriented techniques 
to implement the microkernel: 

@ The lowermost layer consists of low-level objects that hide hard- 
ware-specific details such as the bus architecture from other parts 
of the microkernel. 

@ In the intermediate layers the primary services are provided by sys- 
tem objects, such as objects responsible for memory management 
and objects used for managing processes. 

@ The uppermost layer comprises all the functionality that the 
microkernel exposes publicly, and represents the gateway to the 
microkernel services for any process. CL 

8 To specla the programming interfaces of the microkernel, you need to 
decide how these interfaces should be accessible externally. You must 
obviously take into account whether the microkernel is implemented 
as  a separate process or as  a module that is physically shared by 
other components. In the latter case, you can use conventional 
method calls to invoke the methods of the microkernel. 

If you implement the microkernel as  a separate process, existing 
communication facilities are required for transmitting requests from 
components to the microkernel. In this case you need to be aware 
that the kernel represents an exclusive resource, and can therefore 
be a bottleneck. To increase overall performance you could provide 
multiple threads within the microkernel that wait for incoming 
requests, and use the same, or other, threads to execute the 



184 Arc hit ec turd Pat t ems 

appropriate services. If you design such a multi-threaded system, 
make sure that the consistency of internal data is guaranteed. 

4 Since Hydra represents an operating system, its microkernel 
component is part of each user process. Services are therefore 
accessible by conventional system calls. These functions are logically 
grouped into APIs (Application Programming Interfaces) that support 
functionality such as file system operations or process management. 

Invoking a Hydra system call results in a system trap. Software 
exceptions are handled by a special trap handler routine in the 
microkernel. The trap handler analyzes the type of interrupt that led 
to the system trap, and delegates the work to one of its internal 
service objects. After the service is completed, a scheduling object 
decides which available thread should be executed next and assigns 

ci 
The microkernel is responsible for managing aZZ system resources 
such as memory blocks, devices or deoice contexts-a handle to an 
output area in a graphical user interface implementation. The 
microkernel maintains information about resources and allows 
access to them in a coordinated and systematic way. If components 
want to access a resource, they use a unique identifier (handle) rather 
than accessing the resource directly. The microkernel has the task of 
creating these handles and providing a mapping between handles and 
resources. This mapping can be implemented using hash tables. As 
resource management involves more than just providing a mapping, 
the microkernel must also implement strategies for the sharing, 
locking, allocation and deallocation of resources. 

4 Within Hydra, handles refer to objects that are instances of a 
resource class. Each of these objects offers a uniform interface to 
control access to a specific resource. 

Our resource objects expose the following interface, which follows the 
Windows NT approach: 

class Resource { 

a processing unit to it. 

9 

String name; / /  Name of object 
void OpenHandleO; / /  open handle to object 
Handle IterateHandlesO; / /  iterate over handles 
Body pointerTo0bject; / /  pointer to real object 
... / /  (much, much more . . . )  

1 0 



Microkernel 185 

10 Design and implement the internal ser-uers as separate processes or 
shared libraries. Perform this step in parallel with steps 7-9, because 
some of the microkernel services need to access internal servers. I t  is 
helpful to distinguish between active and passive servers: 

Active servers are implemented as processes 

Passive servers as shared libraries 

While passive servers are always invoked by directly calling their 
interface methods, active servers need different treatment. The active 
server process waits in an event loop for incoming requests. If it 
receives a request via the available communication facilities, it 
interprets and executes a service on behalf of the caller. Note that 
internal servers are accessed exclusively by the microkernel-no 
other component is permitted to invoke the services of internal 
servers. 

@ In Hydra we provide device drivers, authentication servers and 
page fault handlers, among other components, by implementing them 
as internal servers. 

Graphics card drivers are developed as shared libraries because they 
only act on behalf of clients. In contrast, page fault handlers are 
separate processes. They always have to remain in main memory and 

0 

Implement the external ser-uers. All the policies the external servers 
include are based on the services available in the programming 
interfaces of the microkernel. An external server receives requests, 
analyzes them, executes the appropriate services and sends the 
results back to the caller. When executing services, the external 
server may call operations in the microkernel. 

Each external server is therefore implemented as a separate process 
that provides its own service interface. The internal architecture of an 
external server depends on the policies it comprises. 

Specifjr how external servers dispatch requests to their internal 
procedures. For example, they may integrate a dispatcher component 
that executes a main event loop and waits for incoming requests. 
When a request arrives, the dispatcher unpacks it, interprets the 
request and calls the appropriate procedure via a callback 
mechanism. This is particularly useful if you design external servers 

cannot be swapped to external storage. 

11 



186 Architectural Patterns 

as application frameworks. See the Reactor pattern [Sch94] for a 
description of this event-driven approach. 

b We want to develop the following external servers for Hydra: 

A full implementation of Microsoft’s Win32 and Win16 APIs, to 
allow users to run Windows NT, Windows 3.11 and Windows 95 
applications. 

The complete functionality provided by IBM OS/2 Warp 2.0. 

An implementation of Openstep. 

All relevant UNIX System V interfaces specified by X/Open. a 
Implement the adapters. The primary task of an adapter is to provide 
operations to its clients that are forwarded to an external server. 
Whenever the client calls a function of the external server, the adapter 
packages all relevant information into a request and forwards the 
request to the appropriate external server. The adapter then waits for 
the server’s response and finally returns control to the client, using 
the facilities for inter-component communication. 

You can design the adapter either as a conventional library that is 
statically linked to the client during compilation, or as a shared 
library dynamically linked to the client on demand. You can view an 
adapter as a proxy that represents exactly one external server. You 
could therefore use the Proxy pattern (263) to implement an adapter. 
You could optimize the adapter by allowing it to execute some of the 
API operations on its own instead of forwarding requests to the 
external server, or by storing several client requests in a cache before 
forwarding them. Answers to common requests could also be stored 
here. See the Proxy pattern (263) for benefits and pitfalls of caching. 

You must decide whether one adapter should be available for all 
clients, or if every client is associated with its own adapter. The first 
approach results in less memory contention, while the second can 
lead to better response times. 

b If we design Hydra with a Microsoft Windows external server, all 
client applications associated with this server use the Win16 or 
Win32 APIs. In a native Windows 3 . 1 1  system all APIs are available 
as a set of shared libraries. In Hydra, however, Windows clients and 
the Windows server are separate processes. Since we want to be able 
to run a Windows-application on Hydra without modification, we 

12 



Microkernel 187 

need to supply the same environment. We therefore implement an 
adapter to work as a bridge between a Windows client and the 
Windows server. When the client calls a Win16 or Win32 API function, 
the call is handled by the adapter, which forwards a request to the 
Windows external server. Existing Windows clients can therefore be 

0 
DeueZop client uppZiculions or use existing ones for the ready-to-run 
Microkernel system. When creating a new client for a specific external 
server, its architecture is only limited by the constraints imposed by 
the external server. That is, clients depend on the policies implement- 
ed by their external server. 

y In Hydra we can develop Microsoft Windows applications by 
accessing the services of the Microsoft Windows external server via 

compiled and executed on the Hydra system. 
13 

the Microsoft Windows adapter. Q 

Example 
resolved 

Shortly after the development of Hydra has been completed, we are 
asked to integrate an external server that emulates the Apple MacOS 
operating system. To provide a MacOS emulation on top of Hydra, the 
following activities are necessary: 

Building an external server on top of the Hydra microkernel that 
implements all the programming interfaces provided by MacOS, 
including the policies of the Macintosh user interface. In its main loop 
the MacOS server waits for incoming requests, which are stored in a 
message port specifically assigned to the MacOS server. The server 
pulls these requests out of the message port, interprets them and 
dispatches them to internal procedures. These procedures emulate 
the policies that are typical of the MacOS environment. 

Providing an adapter that is designed as a library, dynamically linked 
to clients. For every API function available in a native MacOS system, 
a syntactically-identical procedure must be provided by the library. 
Each of these procedures is responsible for packaging the type of 
request, the arguments, and the identifiers of sender and receiver into 
a message. I t  then calls the procedure senmessage in the micro- 
kernel, which in turn stores the message in the message port of the 
MacOS server. 



Architectural Patterns 

implementing the internal sewers required for MacOS. For example, 
one internal server provides the network protocol AppleTalk. The 
microkernel must be modified to invoke these additional internal 
servers on behalf of the MacOS server. 

Variants Microkernel System with indirect Client-Server connections. In this 
variant, a client that wants to send a request or message to an 
external server asks the microkernel for a communication channel. 
After the requested communication path has been established, client 
and server communicate with each other indirectly using the 
microkernel as a message backbone. Using this variant leads to an 
architecture in which all requests pass through the microkernel. You 
can apply it, for example, when security requirements force the 
system to control all communication between participants. 

Distributed Microkernel System In this variant a microkernel can also 
act as a message backbone responsible for sending messages to 
remote machines or receiving messages from them. Every machine in 
a distributed system uses its own microkernel implementation. From 
the user's viewpoint the whole system appears as  a single Microkernel 
system-the distribution remains transparent to the user. A 
distributed Microkernel system allows you to distribute servers and 
clients across a network of machines or microprocessors. To achieve 
this the microkernels in a distributed implementation must include 
additional services for communicating with each other. 

Known Uses The Mach operating system [Tan921 was developed at Carnegie- 
Mellon-University, and its first version was released in 1986. The 
Mach microkernel is intended to form a base on which other 
operating systems can be emulated. One of the commercially- 
available operating systems that use Mach as its system kernel is 
NeXTSTEP. 

The operating system Amoeba (Tan921 consists of two basic 
elements: the microkernel itself and a collection of servers 
(subsystems) that are used to implement the majority of Amoeba's 
functionality. The kernel provides four basic services: the 
management of processes and threads, the low-level-management of 



icrokernel 

system memory, communication services, both for point-to-point- 
communication as  well as  group-communication, and low-level I/O- 
services. Services not provided by the kernel must be implemented by 
server processes. This leads to a reduction in kernel size and 
increases flexibility. 

Chorus [Cho9O] is a commercially-available Microkernel system that 
was originally developed by the French research institute I N U  
specifically for real-time applications. UNIX System V is available a s  
an  external server. 

ows NT [Cus93] was developed by Microsoft a s  an  operating sys- 
tem for high-performance servers. From an architectural point of view 
Windows NT is definitely a Microkernel system. It offers three external 
servers, an  OS/2 1 .x server, a POSIX server and a Win32 server. 

DE (Microkernel Datenbank Engine) system [Woo961 
introduces an  architecture for database engines that follows the 
Microkernel pattern. In this system the microkernel is responsible for 
providing fundamental services such as  physical data access, caching 
of data and transaction management. Various external servers run on 
top of the microkernel and provide different conceptual views of the 
underlying microkernel. A conceptual view denotes a data abstraction 
according to a given data model, for example the data model of a rela- 
tional SQL database. Applications such a s  accounting systems can 
use the external servers to access databases. MKDE implements the 
Distributed Microkernel variant to support distributed environments. 

onsequences The Microkernel pattern offers some important be 

Portability. A Microkernel system offers a high degree of portability, 
for two reasons: 

@ In most cases you do not need to port external servers or client 
applications if you port the Microkernel system to a new software 
or hardware environment. 

@ Migrating the microkernel to a new hardware environment only 
requires modifications to the hardware-dependent parts. 



Architectural Patterns 

Flexibility and Extensibility. One of the biggest strengths of a 
Microkernel system is its flexibility and extensibility. If you need to 
implement an additional view, all you need to do is add a new external 
server. Extending the system with additional capabilities only 
requires the addition or extension of internal servers. 

Separation of policy and mechanism. The microkernel component 
provides all the mechanisms necessary to enable external servers to 
implement their policies. This strict separation of policies and 
mechanisms increases the maintainability and changeability of the 
whole system. It also allows you to add new external servers that 
implement their own specialized views. If the microkernel component 
were to implement policies, this would unnecessarily limit the views 
that could be implemented by external servers. 

If we consider the Distributed Microkernel variant of the Microkernel 
architecture, further benefits appear: 

Scakability. A distributed Microkernel system is applicable to the 
development of operating systems or database systems for computer 
networks, or multiprocessors with local memory. If your Microkernel 
system works on a network of machines, it is easy to scale the 
Microkernel system to the new configuration when you add a new 
machine to the network. 

Reliability. Two issues are important in achieving reliability: 
availability and fault tolerance ITan921. A distributed Microkernel 
architecture supports availability, because it allows you to run the 
same server on more than one machine, increasing availability. If a 
server or a machine fails, therefore, the failure does not necessarily 
have an impact on an application. Fault tolerance may be easily 
supported because distributed systems allow you to hide failures 
from a user. 

Transparency. In a distributed system components can be distributed 
over a network of machines. In such a configuration, the Microkernel 
architecture allows each component to access other components 
without needing to know their location. All details of inter-process 
communication with servers are hidden from clients by the adapters 
and the microkernel. 



Mlcrokernel 

The Microkernel architectural framework also has liabilities: 

Perjiormance. If  we compare a monolithic software system designed to 
offer a specific view with a Microkernel system supporting different 
views. the performance of the former will be better in most cases. We 
therefore have to pay a price for flexiblllty and extenslbillty. If  the 
communication within the Microkernel system is optimized for 
performance, however, this price can be overlooked [Tan92]. 

Complexity of design and implementation. Developing a Microkernel- 
based system is a non-trivial task. For example, it can sometimes be 
very difficult to analyze or predict the basic mechanisms a micro- 
kernel component must provide. In addition, the separation between 
mechanisms and policies requires in-depth domain knowledge and 
considerable effort during requirements analysis and design. 

See also The Broker pattern (99) is suitable for dlstributed software systems 
that consist of interacting and decoupled components. In the Broker 
pattern clients access the services provided by servers using remote 
procedure calls or message-passlng. In contrast to the Microkernel 
architectural framework. the Broker pattern focuses on dlstribution 
over a network. A further difference between these patterns is that the 
coupling of components within a Broker system I s  not normally as  
tight as  It is within a Microkernel system. You can however combine 
both patterns when developlng a dlstributed Microkernel system. 

The Reflection pattern (1  93) provides a two-tlered architecture. A base 
level corresponds to a combination of mlcrokernel and internal 
servers. A meta level enables the behavior of base-level functionality 
to be changed dynamically. for example changing the strategies for 
resource management or communication between components. In 
addition, the meta level allows integration of customer-speclfic exten- 
sions to the base-level servlces. This corresponds to the provision of 
external servers in a Mlcrokernel architecture. In contrast to the 
Microkernel pattern, the adaptation of the meta level is  performed 
indirecuy with help of a specific Interface, the Metaobject Protocol 
(MOP). This allows users to specify a change, checks its correctness, 
and automatically integrates the change into the meta level. In recent 
developments of operating systems, the Reflectlon pattern and the 
Microkernel pattern are often combined IZim961. 



chitectural Patterns 

The relationship between the Layers (3 1) and the Microkernel pattern 
is twofold. Firstly, a Microkernel system may also be considered as  a 
variant of the Layers pattern. The microkernel implements a virtual 
machine, relying on internal servers to do this. The internal servers 
are the lowest layer and also belong to the virtual machine. The 
applications executed by the virtual machine include external servers 
and adapters, representing the layer on top of the virtual machine. 
One external server and one adapter together can be considered as  a 
second virtual machine on top of the microkernel. Each personality 
offered corresponds to a single second-level virtual machine. Client 
applications make up the highest layer in this hierarchy, and use 
specific personalities. 

Secondly, for some application domains both patterns may be applied 
alternatively. Consider architectures for business applications 
[Fow96]. A very common approach is to separate these systems into 
three tiers: 

The lowest layer includes the database management system. 

The middle layer contains the business logic. 

@ The highest layer comprises different business applications. 

If these applications can be grouped into different categories, you 
could instead introduce a microkernel responsible for implementing 
the core business logic. This microkernel could additionally 
encapsulate the functionality for accessing the DBMS into internal 
servers. External servers would provide different views of the 
microkernel mechanisms, covering the business logic in different 
ways to capture functionality specific to a particular business 
category. The actual business applications are then the clients. If, 
however, all clients build upon the same view of the underlying 
business logic, the Microkernel pattern should not be applied. 



Reflection 

The Reflectton architectural pattern provldes a mechanism for 
changing structure and behavior of software systems dynamically. I t  
supports the modification of fundamental aspects. such as  type 
structures and function call mechanisms. In this pattern, an 
application is split into two parts. A meta level provides information 
about selected system properties and makes the software self-aware. 
A base level includes the application logic. Its implementation builds 
on the meta level. Changes to information kept in the meta level affect 
subsequent base-level behavior. 

Also Known As Open Implementation, Meta-Level Architecture 

Example Consider a C++ application that needs to write objects to disk and 
read them in again. Since persistence is not a built-in feature of C++. 
we must specify how to store and read every type in the application. 
Many solutions to this problem, such as implementing type-specific 
store and read methods, are expensive and error-prone. For example. 
whenever we change the class structure of the application. we must 
modify these methods as  well. 

4- 

appllcat(on r e q w s  
a change to thepersfstencefiortim&@ 4 

Other solutions to the lack of persistence rase other problems. For 
example. we could provide a special base class for persistent obJects 
from which application classes are derived, with inherited store and 
read methods overridden. Changes to the class structure require us  
to modify these methods within existing application classes. 
Persistence and application functionality are strongly interwoven. 



Architectural Patterns 

Instead we want to develop a persistence component that is indepen- 
dent of specific type structures. However, to store and read arbitrary 
C++ objects, we need dynamic access to their internal structure. 

Context Building systems that support their own modification a priori. 

Problem Software systems evolve over time. They must be open to modifica- 
tions in response to changing technology and requirements. 
Designing a system that meets a wide range of different requirements 
a priori can be an  overwhelming task. A better solution is to specify 
an  architecture that is open to modification and extension. The 
resulting system can then be adapted to changing requirements on 
demand. In other words, we want to design for change and evolution. 
Several forces are associated with this problem: 

Changing software is tedious, error prone, and often expensive. 
Wide-ranging modifications usually spread over many components 
and even local changes within one component can affect other 
parts of the system. Every change must be implemented and tested 
carefully. Software which actively supports and controls its own 
modification can be changed more effectively and more safely. 

Adaptable software systems usually have a complex inner 
structure. Aspects that are subject to change are encapsulated 
within separate components. The implementation of application 
services is spread over many small components with different 
interrelationships [GHJV95]. To keep such systems maintainable, 
we prefer to hide this complexity from maintainers of the system. 

The more techniques that are necessary for keeping a system 
changeable, such as  parameterization, subclassing, mix-ins, or 
even copy and paste, the more awkward and complex its 
modification becomes. A uniform mechanism that applies to all 
kinds of changes is easier to use and understand. 

Changes can be of any scale, from providing shortcuts for 
commonly-used commands to adapting an  application framework 
for a specific customer. 

Even fundamental aspects of software systems can change, for 
example the communication mechanisms between components. 



Reflection 195 

Solution Make the software self-aware, and make selected aspects of its 
structure and behavior accessible for adaptation and change. This 
leads to an  architecture that is split into two major parts: a meta level 
and a base level. 

The meta level provides a self-representation of the software to give it 
knowledge of its own structure and behavior, and consists of so-called 
rnetaobjects. Metaobjects encapsulate and represent information 
about the software. Examples include type structures, algorithms, or 
even function call mechanisms. 

The base level defines the application logic. Its implementation uses 
the metaobjects to remain independent of those aspects that are 
likely to change. For example, base-level components may only 
communicate with each other via a metaobject that implements a 
specific user-defined function call mechanism. Changing this 
metaobject changes the way in which base-level components 
communicate, but without modifymg the base-level code. 

An interface is specified for manipulating the metaobjects. I t  is called 
the metaobject protocol (MOP), and allows clients to specify particular 
changes, such a s  modification of the function call mechanism 
metaobject mentioned above. The metaobject protocol itself is 
responsible for checking the correctness of the change specification, 
and for performing the change. Every manipulation of metaobjects 
through the metaobject protocol affects subsequent base-level 
behavior, a s  in the function call mechanism example. 

r For the persistence component, located a t  the base level of our 
example application, we specify metaobjects that provide run-time 
type information. For example, to store a n  object, we must know its 
internal structure and also the layout of all its data members. With 
this information available we can recursively iterate over any given 
object structure to break it down into a sequence of built-in types. 
The persistence component 'knows' how to store these. If we change 
the run-time type information we also modify the behavior of the store 
method. For example, objects of classes that are no longer persistent 
are no longer stored. Following similar strategies for every method, we 
can construct a persistence component that is able to read and store 
arbitrary data structures. Cl 



196 Architectural Patterns 

Structure The meta level consists of a set of metaobjects. Each metaobject 
encapsulates selected information about a single aspect of the 
structure, behavior, or state of the base level. There are three sources 
for such information: 

It can be provided by the run-time environment of the system, such 
as C++ type identification objects (DWP95j. 

I t  can be user-defined, such as the function call mechanism in the 
previous section. 

It can be retrieved from the base level at  run-time, for example 
information about the current state of computation. 

All metaobjects together provide a self-representation of an appli- 
cation. Metaobjects make information, which is otherwise only 
implicitly available, explicitly accessible and modifiable. Almost every 
system internal can be described in this way. For example, in a dis- 
tributed system there may be metaobjects that provide information 
about the physical location of base-level components. Other base- 
level components can use these metaobjects to determine whether 
their communication partners are local or remote. They can select the 
most efficient function call mechanism to communicate with them. 
The function call mechanisms themselves may be provided by other 
metaobjects. Further examples include type structures, real-time 
constraints, inter-process communication mechanisms and trans- 
action protocols. 

However, what you represent with metaobjects depends on what 
should be adaptable. Only system details that are likely to change or 
which vary from customer to customer should be encapsulated by 
metaobjects. System aspects that are expected to stay stable over the 
lifetime of an application should not be. 

The interface of a metaobject allows the base level to access the infor- 
mation it maintains or the service it offers. For example, a metaobject 
that provides location information about a distributed component will 
provide functions to access the name and identifier of the component, 
information about the process in which it is located, and information 
about the host on which the process runs. A metaobject that imple- 
ments a function call mechanism will offer a method of activating a 
specific function of a specific addressee, including input and output 
parameter passing. A metaobject does not allow the base level to 



Reflection 197 

modify its internal state. Manipulation is possible only through the 
metaobject protocol or by its own computation. 

The base level models and implements the application logic of the 
software. Its components represent the various services the system 
offers as well as their underlying data model. The base level also 
specifies the fundamental collaboration and structural relationships 
between the components it includes. If the software includes a user 
interface, this is also part of the base level. 

The base level uses the information and services provided by the 
metaobjects, such as location information about components and 
function call mechanisms. This allows the base level to remain 
flexible-its code is independent of aspects that may be subject to 
change and adaptation. Using the metaobject's services, base-level 
components do not need to hard-code information about the concrete 
locations of communication partners-they consult appropriate 
metaobjects for this information. 

Base-level components are either directly connected to the 
metaobjects on which they depend, or submit requests to them 
through special retrieval functions. These functions are also part of 
the meta level. The first type of connection is preferred if the 
relationship between the base level and the metaobject is relatively 
static. The base-level component always consults the same 
metaobject, for example if an object needs type information about 
itself. The second type of connection is used if the metaobjects used 
by the base level vary dynamically, as in the case of the store 
procedure of our persistence component. 

Collaborators 
Base Level I Meta Level 

Responsibi lity 
Implements the 
application logic. 
Uses information 
provided by the 
meta level. 

Class 
Meta Level 

Responsibility 
Encapsulates sys- 
tem internals that 
may change. 
Provides an inter- 
face to facilitate 
modifications to the 
meta-level. 

Collaborators 
Base Level 



Architectural Patterns 

The metaobject protocol (MOP] serves as an external interface to the 
meta level, and makes the implementation of a reflective system 
accessible in a defined way. Clients of the metaobject protocol, which 
may be base-level components, other applications, or privileged 
human users, can specify modifications to metaobjects or their 
relationships using the base level. The metaobject protocol itself is 
responsible for performing these changes. This provides a reflective 
application with explicit control over its own modification. 

To continue our example above, a user may specify a new function 
call mechanism to be used for communication between base-level 
components. As a first step, the user provides the metaobject protocol 
with the code of this new function call mechanism. The metaobject 
protocol then performs the change. I t  may do this, for example, by 
generating an appropriate metaobject that includes the user-defined 
code for the new mechanism, compiling the generated metaobject, 
dynamically linking it with the application, and updating all 
references of the 'old' metaobject to the 'new' one. 

The metaobject protocol is usually designed as a separate component. 
This supports the implementation of functions that operate on several 
metaobjects. For example, modifying metaobjects that encapsulate 
location information about distributed components eventually 
requires an update of the corresponding function call mechanism 
metaobjects. If we delegate the responsibility for such changes to the 
metaobjects themselves, consistency between them is hard to 
maintain. The metaobject protocol has a better control over every 
modification that is performed, because it is implemented separately 
from the metaobjectk 

Class 
Metaobject Protocol 

Responsibility 
Offers an interface 
for specifyin 

meta level. 
a changes to t e 

Performs specified 
changes 

Collaboratots 
Meta Level 
Base Level 



Reflection 

To perform changes, the metaobject protocol needs access to the in- 
ternal~ of metaobjects. If it is further entitled to change connections 
between base-level objects and metaobjects, it also needs access to 
base-level components. One way of providing this access is to allow 
the metaobject protocol to directly operate on their internal states. 
Another safer but more inefficient, way of providing it is for metaob- 
jects and base-level components to provide a special interface for 
their manipulation, only accessible by the metaobject protocol. 

Since the base-level implementation explicitly builds upon 
information and services provided by metaobjects, changing them 
has an immediate effect on the subsequent behavior of the base level. 
In our example, we changed the way base-level components 
communicate.~~owever, in contrast to a conventional modification, 
the system was changed without modifying base-level code. 

The general structure of a reflective architecture is very much like a 
Layered system (31). The meta level and base level are two layers, 
each of which provides its own interface. The base-level layer specifies 
the user interface for exploiting application functionality. The meta- 
level layer defines the metaobject protocol to modify the metaobjects. 

f i r  hvel I MetaobjectA I metaobjects 

However, in contrast to a layered architecture, there are mutual 
dependencies between both layers. The base level builds on the meta 
level, and vice-versa. A n  example of the latter occurs when 
metaobjects implement behavior that is executed in case of an 
exception. The kind of exception procedure that must be executed 
often depends on the current state of computation. The meta level 
retrieves this information from the base level, often from different 
components to those providing the interrupted service. In a pure 
layered architecture, these bidirectional dependencies between layers 
are not allowed. Every layer only builds upon the layers below. 

retrieves 
information 

uses uses 

-- 
uses uses 

B- hve. ComponentA further 
base-level 
components 

ComponentB 

L 
UserInterface 

provides 
access to 



Architectural Patterns 

r For our persistence component example we specify metaobjects 
that provide introspective access to the type structure of our applica- 
tion-that is, they can access information about the application's 
structure or behavior, but cannot modify it. We can obtain informa- 
tion about the name, size, data members and superclasses of a given 
type or object. An additional metaobject specifies a function that al- 
lows a client to instantiate objects of arbitrary types. We use this 
function, for example, when restoring an  object structure from a data 
file. The metaobject protocol includes functions for adding new, and 
modifying existing, run-time type information. 

The body of the persistence component is independent of the concrete 
type structure of our application. For example, the store procedure 
only implements the general algorithm for recursively breaking down 
a given object structure into a sequence of built-in types. If it needs 
information about the inner structure of user-defined types, it 
consults the meta level. Data members with built-in types are directly 
stored. All other data members are further decomposed. CL 

Dynamics It is almost impossible to describe the dynamic behavior of reflective 
systems in general. We therefore present two scenarios based on the 
persistence component example. See the Implementation section for 
details of the metaobject protocol and metaobjects involved. 

Scenario I illustrates the collaboration between base level and meta 
level when reading objects stored in a disk file. All data is stored in an 
appropriate order, and a type identifier proceeds every object. The 
scenario further abstracts from special cases, such as reading 
strings, static members, and restoring cycles in the object structure. 
The scenario is divided into six phases: 

The user wants to read stored objects. The request is forwarded to 
the read ( 1 procedure of the persistence component, together with 
the name of the data file in which the objects are stored. 

Procedure read 0 opens the data file and calls an internal 
readob j e c t  ( 1 procedure which reads the first type identifier. 

Procedure readObj e c t  ( calls the metaobject that is responsible 
for the creation of objects. The 'object creator' metaobject 
instantiates an 'empty' object of the previously-determined type. It 
returns a handle to this object and a handle to the corresponding 
run-time type information (RTTI) metaobject. 



Reflection 

Procedure readobj ect ( )  requests an iterator over the data mem- 
bers of the object to be read from its corresponding metaobject. The 
procedure iterates over the data members of the object. 

Procedure readob j ect ( ) reads the type identifier for the next data 
member. If the type identifier denotes a built-in type--a case we do 
not illustrate--the readobj ect ( ) procedure directly assigns the 
next data item from the file to the data member, based on the data 
member's size and offset within the object. Othenvise 
readobject 0 is called recursively. This recursion starts with the 
creation of an 'empty' object if the data member is a pointer. If not, 
the recursively called readob j ect ( ) operates on the existing lay- 
out of the object that contains the data member. 

After reading the data, the read ( ) procedure closes the data file 
and returns the new objects to the client that requested them. 



Architectural Patterns 

Scenario I1 illustrates the use of the metaobject protocol when 
adding type information to the meta level. Consider a class library 
used by the application that changes to a new version with new types. 
To store and read these types, we must extend the meta level with 
new metaobjects. Adding this information can be performed by the 
user, or automatically, using a tool. For reasons of simplicity we unify 
the classes type-info and extTypeInfo as specified in the 
Implementation section. The scenario is divided into six phases which 
are performed for every new type: 

A client invokes the metaobject protocol to specify run-time type 
information for a new type in the application. The name of the type 
is passed as an argument. 

The metaobject protocol creates a metaobject of class type-inf o 
for this type. This metaobject also serves as a type identifier. 

The client calls the metaobject protocol to add extended type 
information. This includes setting the size of the type, whether or 
not it is a pointer, and its inheritance relationships to other types. 
To handle the inheritance relationship, the metaobject protocol 
creates metaobjects of class baseInf o. These maintain a handle to 
the type-info object for a particular base class and its offset 
within the new type. 

In the next step, the client specifies the inner structure for the new 
type. The metaobject protocol is provided with the name and type 
of every data member. For every data member the metaobject 
protocol creates an object of class dataInf o. I t  maintains a handle 
to the type-inf o object for the type of the member, its name, and 
whether or not it is a static data member. The dataInf o object also 
maintains the absolute address of the data member if it is static, 
otherwise its offset within the new type. 

The client invokes the metaobject protocol to modify existing types 
that include the new type as a data member. Appropriate data 
member information is added for every type. Since this step is very 
similar to the previous one, we do not illustrate it in the object 
message sequence chart that follows. 

Finally, the client calls the metaobject protocol to adapt the 'object 
creator' metaobject. The persistence component must be able to 
instantiate an object of the new type when reading persistent data. 



Reflection 

The metaobject protocol automatically generates code for creating 
objects of the new type, based on the prevlously-added type 
information. It further integrates the new code with the existing 
implementation of the 'object creator' metaobject, compiles the 
modified implementation, and links it with the application. 

Metaobject Object 
Protocol I I creator 



204 Architectural Patterns 

Implementation The following guidelines help with implementing a Reflection 
architecture. Iterate through any subsequence if necessary. 

1 Define a model of the application. Analyze the problem domain and 
decompose it into an  appropriate software structure. Answer the 
following questions: 

Which services should the software provide? 

Which components can fulfil these services? 

What are the relationships between the components? 

How do the components cooperate or collaborate? 

What data do the components operate on? 

How will the user interact with the software? 

Follow an  appropriate analysis method when specifying the model. 

b The persistence component in our C++ disk-storage example is 
part of a warehouse management application ICoad951. We identify 
components that represent physical storage, such as  warehouses, 
aisles and bins. We also identify components for orders and items. It 
is a requirement that we can resume computation with a valid state 
after system crashes. Both the physical structure of the warehouse 
and its current population of items must therefore be made 
persistent. We need two components to achieve this. A persistence 
component provides the functionality for storing and reading objects. 
A file handler is responsible for locking, opening, closing. unlocking 
and deleting files, as  well a s  for writing and reading data. Cl 

2 Identtfy varying behavior. Analyze the model developed in the previous 
step and determine which of the application services may vary and 
which remain stable. There are no general rules for specifying what 
can alter in a system. Whether a certain aspect varies depends on 
many factors such a s  the application domain, the environment of the 
application and its customers and users. An aspect that is likely to 
vary in one system may stay stable in others. The following are 
examples of system aspects that often vary: 

Real-time constraints [HT92], such as  deadlines, time-fence 
protocols and algorithms for detecting deadline misses. 

Transaction protocols ISW951, for example optimistic and 
pessimistic transaction control in accounting systems. 



Reflection 

Inter-process communication mechanisms [CM93], such as 
remote procedure calls and shared memory. 

Behavior in case of exceptions [EKM+94], IHT921, for example the 
handling of deadline misses in real-time systems. 

Algorithms for application services [EKM+94], such as  country- 
specific VAT calculation. 

The Open Implementation Analysis and Design Method [mLM95] 
helps with this step. 

b To keep the persistence component example simple, we do not 
consider an adaptation of application behavior. 13 

3 Identify structural aspects of the system, which, when changed, 
should not affect the implementation of the base level. Examples 
include the type structure of an application [BKSP92], its underlying 
object model [McA951, or the distribution of components IMcA951 in a 
heterogenous network. 

r Our implementation of the persistence component must be 
independent of application-specific types. This requires access to 
run-time type information, such as  the name, size, inheritance 
relationships and internal layout of each type, as well a s  the types, 
order and names of their data members. Ll 

4 Identi% system services that support both the variation of application 
services identified in step 2 and the independence of structural 
details identified in step 3. For example, implementing resumable 
exceptions in C++ requires explicit access to the exception handling 
mechanism of the language. Other examples of basic system services 
are : 

Resource allocation 

Garbage collection 

Page swapping 

Object creation 

b The persistence component must instantiate arbitrary classes 
when reading persistent objects. a 



Architectural Patterns 

5 Define the metaobjects. For every aspect identifled in the three previ- 
ous steps, define appropriate metaobjects. Encapsulating behavlor is 
supported by several domain-independent design patterns, such as  
Objectifler IZim941. Strategy. Bridge, Visitor, and Abstract Factory 
IGHJV951. For example, metaobjects for function call mechanisms 
can be implemented as strategy objects, and multiple implementa- 
tions of components can be implemented with the Bridge pattern. 
Visitor allows you to integrate new functionality without modifying 
exlstlng structures. Sometimes you may find approprlate domain- 
specific patterns that support this step, for example the Acceptor and 
Connector patterns for developing distributed systems ISch951. 
Another example is the Detachable Inspector pattern ISC95al. which 
supports the addition of run-time facilities such as  debuggers and 
inspectors. Detachable lnspector builds on the Visitor pattern. 
Encapsulating structural and state information is supported by 
design patterns like Objectifler [Zim94] and State IGHJV951. 

The metaobjects that provide the run-time type information for 
our persistence component are organized as follows: 

The C++ standard library class type-info is used for identifying 
types [DWP951. Its interface offers functions for accessing the name 
of a type, for comparing two types. and for determining their system 
internal order. Every type in the application is represented by an 
instance of class type-info. 

class type-info ( 
/ / .  . . 

private: 
type-info (const type-info& rhs) ; 
type-info& operator(const type-info& rhs): 

public: 
virtual -type-info0 ; 
int operator-=(const type-info& rhs) const; 
int ogeratorI=(const type-info& rhs) const; 
int before(const type-info& rhs) const; 
const char* name0 const; 

1: 

None of the other classes of the run-time type information system are 
part of the C++ standard. 

A class extTypeInEo provides access to Information about the size, 
superclasses, and data members of a class. Clients can also 
determine whether the type is built-in or a pointer. 



Reflection 

class extTypeInfo I 
/ /  - . .  

public: 
const bool isBuiltIn ( )  const ; 
const bool isPointer0 const; 
const size-t size0 const; 
baseIter* bases(int direct = 0) const; 
dataIter* data(int direct = 0) const; 

1 ;  

The method bases ( ) returns an object of class base1 ter, which is 
an iterator over either all base classes of a given type or just its direct 
base classes. If the type is built-in, the method returns a NULL 
iterator. Analogously, the method data ( )  returns an object of class 
dataIter. It iterates either over all data members of a given type, 
including inherited ones, or just the data members declared 
specifically for this type. If the type is built-in, the method returns a 
NULL iterator. 

A class BaseInfo offers functions for accessing type information 
about a base class of a class, as well as  to determine its offset in the 
class layout. 

class BaseInfo t 
/ /  . . .  

public: 
const type-info* type0 const; 
const long offset 0 const; 

I ; 
A class DataInf o includes functions that return the name of a data 
member, its offset and its associated type-in•’ o object. 

class DataInfo 
/ /  . . .  

public: 
const char* name ( ) cons t ; 
const type-info* type0 const; 
cons t boo1 isstatic ( )  const; 
const long offset0 const; 
const long address ( )  const; 

1 ; 



Architectural Patterns 

6 Define the metaobject protocol. Support a defined and controlled 
modification and extension of the meta level, and also a modification 
of relationships between base-level components and metaobjects. 

There are two options for implementing the metaobject protocol: 

Integrate it with the metaobjects. Every metaobject provides those 
functions of the metaobject protocol that operate on it. 

Implement the metaobject protocol a s  a separate component. 

An advantage of the latter approach is that the control of every 
modification of the reflective application is localized a t  a central point. 
Functions that operate on several metaobjects are easier to 
implement. In addition, a separate component can shield metaobjects 
from unauthorized access and modification, if its implementation 
follows patterns such a s  Facade [GHJV95] or Whole-Part (225). The 
Singleton idiom [GHJV95] helps ensure that the metaobject protocol 
can only be instantiated once. 

If implemented a s  a separate component, the metaobject protocol 
usually does not serve a s  a base class for classes that define metaob- 
Jects-it just operates on them. I t  only makes sense to specify the 
metaobject protocol a s  a base class from which concrete metaobject 
classes are derived if it applies to every metaobject. 

b We provide a class MOP which defines the metaobject protocol for 
the meta level of our persistence component example. It is 
implemented a s  a singleton and operates directly on the internal 
structure of all classes declared in the previous step. 

m e  information is accessible by two functions. 

const type-info* getInfo(char* typeName) const; 
const extTypeInfo* getExtInfo(char* typeName) const; 

The first function allows clients to access the standard type 
information about an  object. The second function accesses the 
extended type information that we defined specifically for our run- 
time type information system. We need this function because objects 
of the standard class type-info do not provide access to user- 
def ied  information. All other type information-such a s  that about 
base classes--is accessible through the extTypeInf o object. 



Reflection 

New type information metaobjects can be initialized with two 
functions, one for instantiating type-info objects and one for 
creating extTypeInf o objects. 

void newTypeId (char* typeName) ; 
void newTypeInf o (char* typeName, 

bool builtIn, bool pointer); 

The newTypeInf o ( ) function also calculates and sets the size of a 
type. The function delete ~ n f  o ( ) deletes all available information 
about a type, but only if no other class of the system contains a 
reference to an object of that type. 

void deleteInfo(char* typeName); 

We define four functions for adding new or modifying existing type in- 
formation. The functions addBase ( ) and dele teBase ( ) respectively 
add and remove base class information, while the functions 
addData ( )  and deleteData 0 respectively add and delete data 
member information. 

void addBase(char* typeName, char* baseName); 
void addData(char* typeName, 

char* memberType,char* memberName); 
void deleteBase(char* typeName, char* baseName); 
void deleteData (char* typeName, char* memberName) ; 

Before executing changes, all functions perform consistency checks. 
For example, to set base class information, corresponding type-in•’ o 
and ext~ype ~ n f  o objects must be available. 

Two functions support modification of the 'object creator' metaobject. 

void addcreationcode (char* typeName) ; 
void deleteCreationCode(char* typeName); 

Internally, the metaobject protocol needs functions for calculating 
type sizes and offsets of base classes and data members. These 
functions are compiler-dependent and must therefore be changed 
when using a different compiler. One way to support changing these 
functions is provided by the Strategy pattern [GHJV95]. To maintain 
type-info and extTypeInfo objects, the metaobject protocol 
maintains two maps, tMap and eMap. These maps offer functions to 
add, remove and find elements. 



Most functions of the metaobject protocol can be implemented 
straightforwardly. Calculating offset and sizes and manipulating the 
'object creator' metaobject requires higher implementation effort. The 
following code defines the addBa s e ( ) function. 

void MOP: : addBase (char* typeName, char* baseName) I 
BaseInfo* base; 
/ /  Is extended type information for type typeName 
/ /  and type information for type baseName available? 
if ( ( ! eMap. element (typeName) ) I I 

(!tMap.element(baseName))) 
/ /  error handling . . .  

/ /  Instantiate the baseInfo object for type baseName 
base = new BaseInf o (tMap [baseNamel ) ; 
/ /  Calculate the offset of the base class. 
base->baseof f set = calc0f f set (typeName, baseName) ; 
/ /  Add the new baseInfo object to the list of 
/ /  bases within the extTypeInfo object for 
/ /  type typeName 
eMap [typeNamel ->baseList. add (base) ; 

Q 

Robustness is a major concern when implementing the metaobject 
protocol. Errors in change specifications should be detected wherever 
possible. Changes should also be reliable. The metaobject protocol 
described above, for example, checks the availability of appropriate 
type information metaobjects when adding new base class and data 
member information. Before deleting its type information, it also 
checks whether a type is used as  a base class or data member. 

Robustness also means maintaining consistency. For example, if we 
add a data member to a specific type, we must recalculate the size of 
all types that include the changed type as  a base class or a data 
member. In addition, any modification should only affect those parts 
of the system that are subject to change. Finally, clients of the 
metaobject protocol should not take responsibility for integrating 
changes into the meta level. Ideally, a client only specifies a change, 
and the metaobject protocol is responsible for its integration. This 
avoids direct manipulation of source code. 



Reflection 211 

7 D e w  the base level. Implement the functional core and user 
interface of the system according to the analysis model developed in 
step 1. 

Use metaobjects to keep the base level extensible and adaptable. 
Connect every base-level component with metaobjects that provide 
system information on which they depend, such as type information, 
or which offer services they need. such as object creation in our 
persistence component. To handle system services, use design 
patterns such as Shategy. Visitor, Abstract Factory and Bridge 
[GHJV951, or idioms like Envelope-Letter [Cope92]. For example, the 
context class component of the Strategy pattern represents the base- 
level component, and the strategy class hierarchy the metaobjects. 
When applying the Visitor pattern, the metaobjects are the visitors. 
and the object structure represents the base-level components. 

Provide base-level components with functions for maintaining the 
relationships with their associated metaobjects. The metaobject 
protocol must be able modify every relationship between the base 
level and the meta level. For example, when replacing a metaobject 
with a new one, the metaobject protocol must update all references to 
the replaced metaobject. The metaobject protocol operates either 
directly on internal data structures of base-level components, or uses 
a special interface the base-level components provide. 

If the metaobjects to be used are not known a priori, provide the meta 
level or the metaobject protocol with appropriate retrieval functions, 
such as the getInfo ( )  and getExtInfo ( )  functions in the persls- 
tence component example. 

Metaobjects often need information about the current state of 
computation. For example, the 'object creator' in our persistence 
component example must know what type it should instantiate. This 
information can either be passed as  a parameter to the metaobjects. 
the metaobjects can retrieve it from other metaobjects, or the 
metaobjects can retrieve it from appropriate base-level components. 

Changes to metaobjects affect the subsequent behavior of base-level 
components to which they are connected. Changing a relationship 
between the base level and the meta level affects only a specific base- 
level component, the one that malntalns the modffied relationship. 



Architectural Patterns 

r The implementation of the read 0 method of our persistence 
component follows the first scenario depicted in the Dynamics 
section. The method implements a general recursive algorithm for 
reading objects from a data file. The method consults the meta level 
to get information about how to read user-defined types. Reading 
built-in types or strings is hard-coded within its implementation. To 
obtain information about types, read ( ) consults the get In•’ o ( ) and 
getExt In•’ o ( ) functions of the metaobject protocol. For creating 
objects of arbitrary types, read ( 1  is directly connected with the 
'object creator' metaobject. 

The structure of the store ( ) method is similar to that of the read ( ) 
method. It first opens the data file to be read, then calls an internal 
s toreOb j ec t ( ) method that stores the object structure. Finally, 
store ( ) closes the data file. 

The most challenging part of implementing store ( ) is the detection 
of cycles in the object structure to be stored-it is essential to avoid 
storing duplicates and running into infinite recursion. To achieve 
this, the method marks the structure with a unique identifier which 
is also stored, before storing the object. If we return to an object that 
is so marked, we then just store its identifier. 

The following simplified code illustrates the structure of the 
storeob j ect ( ) method. It abstracts from several details, such as the 
storage of static data members. 

void Persistence::storeObject 
(void* object, char* typeName) { 

type-in•’ o* obj ectId; 
extTypeInfo* objectInf o; 
baseIter* i terator; 

/ /  Get type information about the object to be stored 
obj ectId = mop - >getInfo (typeName) ; 
objectInfo = mop->getExtInfo(typeName); 
iterator = objectInfo->data() ; 

/ /  Mark the object to avoid storing duplicates 
markobject (object) ; 

/ /  Object is of built-in type? 
if (objectInfo->isBuiltInO ) 

storeBuiltIn (object, objectId) ; 



Reflection 

/ /  Object is of type char*? 
else if (!~trcrnp(~~char*'~, objectId->name())) 

storestring (object) ; 

/ /  Object is a pointer ! =  NULL? 
/ /  *(char**)object means that we interpret the 
/ /  generic pointer object as a pointer to an address 
else if ( (objectInfo->isPointer 0 ) && 

( !  ( *  (char**)object)) ) 
/ /  Dereference the pointer 
storeobject ( *  (char**)object, 

iterator->curr() ->type() ->name()) ; 

/ /  Object is a user-defined type with data members 
else while ( ! iterator->atEndO ) { 

/ /  If not marked, store the data member, 
/ /  else store the marker 
if ( !marked( (char*)object + 

iterator->currO ->offset 0) ) 
storeobject( (char*)object + 

iterator->currO ->offsetO, 
iterator->curr 0 ->type() ->name ( )  ) ; 

else 
stormarker ( (char* ) obj ect + 

iterator->cur ( )  ->offset 0 ) ; 

iterator->next0 ; 
1 ; 
delete iterator; 

1 ;  

Example In the previous sections we explained the Reflection architecture of 
Resolved our persistence component example. How we provide run-time type 

information is still an open issue. 

Unlike languages like CLOS or Smalltalk. C++ does not support 
reflection very well-only the standard class type-in•’ o provides 
reflective capabilities: we can identify and compare types. One 
solution for providing extended type information is to include a 
special step in the compilation process. In this, we collect type 
information from the source files of the application, generate code for 
instantiating the' metaobjects, and link this code with the application. 
Similarly, the 'object creator' metaobject is generated. Users specify 
code for instantiating an 'empty' object of every type, and the toolkit 
generates the code for the metaobject. Some parts of the system are 
compiler-dependent, such as offset and size calculation. 



Architectural Patterns 

As illustrated in the code examples, we use pointer and address arith- 
metic, offsets, and sizes of types and data members to read and store 
objects. Since these features are considered harmful, for example by 
incurring the danger of overw-riting object code, the persistence com- 
ponent must be implemented and tested very carefully. 

Variants ReJection with several meta levels. Sometimes metaobjects depend on 
each other. For example, consider the persistence component. 
Changes to the run-time type information of a particular type 
requires that you update the 'object creator' metaobject. To 
coordinate such changes you may introduce separate metaobjects, 
and-conceptually-a meta level for the meta level, or in other words, 
a meta meta level. In theory this leads to an infinite tower of reflection. 
Such a software system has an infinite number of meta levels in 
which each meta level is controlled by a higher one, and where each 
meta level has its own metaobject protocol. In practice, most existing 
reflective software comprises only one or two meta levels. 

An example of a programming language with several meta levels is 
RbCl [IMY92]. RbCl is an interpreted language. RbCl base-level 
objects are represented by several meta-level objects. These are 
interpreted by an interpreter that resides at  the meta metal level of 
RbC1. The metaobject protocol of RbCl allows users to mod@ the 
metaobjects that represent RbCl base-level objects, the metaobject 
protocol of the meta meta level the behavior of the RbCl metaobject 
interpreter. 

Known Uses CLOS. This is the classic example of a reflective programming 
language [Kee89]. In CLOS, operations defined for objects are called 
generic functions, and their processing is referred to as  generic 
function invocation. Generic function invocation is divided into three 
phases: 

The system first determines the methods that are applicable to a 
given invocation. 

It then sorts the applicable methods in decreasing order of 
precedence. 

The system finally sequences the execution of the list of applicable 
methods. Note that in CLOS more than one method can be 
executed in response to a given invocation. 



Reflection 215 

The process of generic function invocation is defined in the 
metaobject protocol of CLOS [KRB91]. Basically, it executes a certain 
sequence of meta-level generic functions. Through the CLOS 
metaobject protocol users can vary the behavior of an application by 
modifying these generic functions or the generic functions of the 
metaobjects they call. 

P [BKSP92] is a run-time type information system for C++. It is 
mainly used for introspective access to the type system of an 
application. Every type of a C++ software system is represented by a 
set of metaobjects that provide general information about that type, 
its relationships to other types, and its inner structure. All 
information is accessible at run-time. The functionality of MIP is 
separated into four layers: 

The first layer includes information and functionality that allows 
software to identify and compare types. This layer corresponds to 
the standard run-time type identification facilities for C++ [SL92]. 

The second layer provides more detailed information about the type 
system of an application. For example, clients can obtain 
information about inheritance relationships for classes, or about 
their data and function members. This information can be used to 
browse type structures. 

The third layer provides information about relative addresses of 
data members, and offers functions for creating 'empty' objects of 
user-defined types. In combination with the second layer, this layer 
supports object I/O. 

The fourth layer provides full type information, such as  that about 
friends of a class, protection of data members, or argument and 
return types of function members. This layer supports the 
development of flexible inter-process communication mechanisms, 
or of tools such as  inspectors, that need very detailed information 
about the type structure of an application. 

The metaobject protocol of MIP allows you to specify and modify the 
metaobjects that provide run-time type information. It offers appro- 
priate functions for every layer of the MIP functionality. 

MIP is implemented as  a set of library classes. It also includes a 
toolkit for collecting type information about an application, and to 
generate code for instantiating the corresponding metaobjects. This 



Architectural Patterns 

code is linked to the application that uses MIP and is executed at the 
beginning of the main program. The toolkit can be integrated with the 
'standard' compilation process for C++ applications. A special 
interface allows users to scale the available type information for every 
individual class or type. 

PGen [THP941 is a persistence component for C++ that is based on 
MIP. It allows an application to store and read arbitrary C++ object 
structures. 

The example used to explain the Reflection pattern is based mainly 
on MIP and PGen. Although simplified, the description of the 
persistence component, the class declarations for the metaobjects 
and the metaobject protocol widely reflect the original structure of 
MIP and PGen. 

NEDIS. The car-dealer system NEDIS ISte95) uses reflection to 
support its adaptation to customer- and country-specific 
requirements. NEDIS includes a meta level called run-time data 
dictionary. It provides the following services and system information: 

Properties for certain attributes of classes, such as their allowed 
value ranges. 

Functions for checking attribute values against their required 
properties. NEDIS uses these functions to evaluate user input, for 
example to validate a date. 

Default values for attributes of classes, used to initialize new 
objects. 

Functions specifying the behavior of the system in the event of 
errors, such as invalid input or unexpected 'null' values of 
attributes. 

Country-specific functionality, for example for tax calculation. 

Information about the 'look and feel' of the software, such as  the 
layout of input masks or the language to be used in the user 
interface. 

The run-time data dictionary is implemented as a persistent 
database. A special interface allows users to modify any information 
or service it provides. Whenever the run-time data dictionary 



Reflection 217 

changes, special tools check and eventually restore its consistency. 
The run-time data dictionary is loaded when starting the software. 
For reasons of safety it cannot be modified while NEDIS is running. 

OLE 2.0 [Bro94] provides functionality for exposing and accessing 
type information about OLE objects and their interfaces. The 
information can be used to dynamically access structural information 
about OLE objects, and to create invocations of OLE interfaces. For 
example, the run-time environment of Visual Basic [Mic95] checks 
the correctness of method calls to an object before dynamically 
invoking it. A similar concept is specified for Corba [OMG92]. 

Further examples of languages and systems that use a Reflection 
architecture include Open C++ [CM93], RbCl [IMY92], AL-l/D 
IOIT921, R2 IHT921, Apertos Kok92j and CodA [McA95]. Even more 
examples can be found in IIMSA921, but note that although all 
examples provide reflective facilities, not all of them really implement 
a Reflection architecture as described by this pattern. 

Consequences A Reflection architecture provides the following benefits: 

No explicit mod$cation of source code. You do not need to touch 
existing code when modifying a reflective system. Instead, you specify 
a change by calling a function of the metaobject protocol. When 
extending the software, you pass the new code to the meta level as a 
parameter of the metaobject protocol. The metaobject protocol itself 
is responsible for integrating your change requests: it performs 
modifications and extensions to meta-level code, and if necessary re- 
compiles the changed parts and links them to the application while it 
is executing. 

Changing a software system is easy. The metaobject protocol provides 
a safe and uniform mechanism for changing software. I t  hides all 
specific techniques such as the use of visitors, factories and strategies 
from the user. It also hides the inner complexity of a changeable 
application. The user is not confronted with the many metaobjects 
that encapsulate particular system aspects. The metaobject protocol 
also takes control over every modification. A well-designed and robust 
metaobject protocol helps prevent undesired changes of the 
fundamental semantics of an application [Kic92]. 

Support for many kinds of change. Metaobjects can encapsulate every 
aspect of system behavior, state and structure. An architecture based 



Architectural Patterns 

on the Reflection pattern thus potentially supports changes of almost 
any kind or scale. Even fundamental system aspects can be changed, 
such as  function call mechanisms or type structures. With the help 
of reflective techniques it is also possible to adapt software to meet 
specific needs of the environment or to integrate customer-specific 
requirements. 

However, a Reflection architecture has some significant Habilitiee: 

Mod$ications a t  the meta level may cause damage. Even the safest 
metaobject protocol does not prevent users from specifying incorrect 
modifications. Such modifications may cause serious damage to the 
software or its environment. Examples of dangerous modifications 
include changing a database schema without suspending the execu- 
tion of the objects in the application that use it, or passing code to the 
metaobject protocol that includes semantic errors. Similarly, bugs in 
pointer arithmetic can cause object code to be overwritten. 

The robustness of a metaobject protocol is therefore of great 
importance [Kic92]. Potential errors within change specifications 
should be detected before the change is performed. Each change 
should only have a limited effect on other parts of the software. 

Increased number of components. It may happen that a reflective 
software system includes more metaobjects than base-level 
components. The greater the number of aspects that are 
encapsulated at the meta level, the more metaobjects there are. 

Lower emiency. Reflective software systems are usually slower than 
non-reflective systems. This is caused by the complex relationship 
between the base level and the meta level. Whenever the base level is 
unable to decide how to continue with computation, it consults the 
meta level for assistance. This reflective capability requires extra pro- 
cessing: information retrieval, changing metaobjects. consistency 
checking, and the communication between the two levels decrease 
the overall performance of the system. You can partly reduce this 
performance penalty by optimization techniques, such as  injecting 
meta-level code directly into the base level when compiling the 
system. 



Reflection 

Not aU potential changes to the software are supported. Although a 
Reflection architecture helps with the development of changeable 
software, only changes that can be performed through the metaobject 
protocol are supported. As a result, it is not possible to integrate eas- 
ily all unforeseen changes to an application, for example changes or 
extensions to base-level code. 

Not all languages support refection. A Reflection architecture is hard 
to implement in some languages, such as C++, which offers little or 
no support for reflection. C++ only provides type identification. 
Reflective applications in C++ often build on language constructs 
such as pointer arithmetic to handle arbitrary objects, and need tool 
support for dynamically modifying meta-level code. This is, however, 
tedious and error-prone. In such languages it is also impossible to 
exploit the full power of reflection, such as adding new methods to a 
class dynamically. However, even in languages that do not provide 
reflective capabilities, it is possible to build reflective systems that are 
changeable and extensible, such as the C++ systems NEDIS 
[EKM+94], MIP [BKSP92] and Open C++ [CM93]. 

See Also The Microkernel architectural pattern (1 7 1) supports adaptation and 
change by providing a mechanism for extending the software with ad- 
ditional or customer-specific functionality. The central component of 
this architecture-the rnlcrokernel-serves as  a socket for plugging in 
such extensions and for coordinating their collaboration. Modifica- 
tions can be made by exchanging these 'pluggable' parts. 

An earlier version of this pattern appeared in [PLoP95]. 

Credits One of the first works on reflection is the Ph.D. thesis by Brian 
Cantwell Smith [Smi82]. This describes reflection in the context of 
procedural languages. An overview of reflective concepts can be found 
in [Mae87). 

We thank the members of PLoP'95 Working Group 1 for their valuable 
criticism and suggestions for improvement of an earlier version of this 
pattern, especially Douglas C. Schmidt and Aarnod Sane. Special 
thanks also go to Linda Rising and David E. DeLano from AG Commu- 
nication Systems, and Brian Foote and Ralph Johnson from the 
University of Illinois at Urbana Champaign. Their detailed review of 
an earlier version of this pattern helped to shape this description. 





3 Design Patterns 

We all know the value of design experience. How many 
times you had design dejir-vu-that feeling that you've 
solved a problem before but not knowing exactly where 

or how? If you could remember the details of the 
previous problem and how you solved it, then you could 

reuse the experience instead of rediscovering it. 

The Gang-of-Four; Design Patterns - Elements of 
Reusable Object-Oriented Software 

A design pattern describes a commonly-recurring structure of 
communicating components that solve a general design problem in a 
particular context (GHJV95). 

In this chapter we present eight design patterns: Whole-Part, Master- 
Slave, Proxy, Command Processor, View Handler, Forwarder - 
Receiver, Client-Dispatcher-Server and Publisher-Subscriber. 



Design Patterns 

1 Introduction 

Design patterns are medium-scale patterns. They are smaller in scale 
than architectural patterns, but are at  a higher level than the 
programming language-specific idioms. The application of a design 
pattern has no effect on the fundamental structure of a software 
system, but may have a strong influence on the architecture of a 
subsystem. 

We group design patterns into categories of related patterns, in the 
same way as we did for architectural patterns: 

Structural Decomposition This category includes patterns that 
support a suitable decomposition of subsystems and complex 
components into cooperating parts. The Whole-Part pattern (225) 
is the most general pattern we are aware of in this category. It has 
wide applicability for structuring complex components. 

Organization of Work. This category comprises patterns that define 
how components collaborate together to solve a complex problem. 
We describe the Master-Slave pattern (245), which helps you to 
organize the computation of services for which fault tolerance or 
computational accuracy is required. It also supports the splitting 
of services into independent parts and their execution in parallel. 

Access Control. Such patterns guard and control access to services 
or components. We describe the Proxy pattern (263) here. Proxy 
lets clients communicate with a representative of a component, 
rather than to the component itself. 

Management. This category includes patterns for handling 
homogenous collections of objects, services and components in 
their entirety. We describe two patterns: the Command Processor 
pattern (277) addresses the management and scheduling of user 
commands, while the View Handler pattern (29 1) describes how to 
manage views in a software system. 

Communication. Patterns in this category help to organize 
communication between components. Two patterns address issues 
of inter-process communication: the Forwarder-Receiver pattern 
(307) deals with peer-to-peer communication, while the Client- 



Structural Decomposition 223 

Dispatcher-Server pattern (323) describes location-transparent 
communication in a Client-Server structure. 

The Publisher-Subscriber pattern (339) helps with the task of 
keeping data consistent between cooperating components. 
Publisher-Subscriber corresponds directly to the Observer pattern 
in [GHJV95]. We therefore only present the essence of this pattern, 
and focus on describing a n  important variant of Publisher- 
Subscriber, the Event Channel. 

The design patterns included in this chapter only cover a small range 
of the problems that can occur when designing a software system. 
The collection can and should be extended with further design 
patterns, for example those in IGHJV951. If more design patterns are 
added, it may also become necessary to define new categories for 
organizing them. We expand on this topic in Chapter 5, Pattern 
Systems. 

An important property of all design patterns is that they are 
independent of a particular application domain. They deal with the 
structuring of application functionality, not with the implementation 
of the application functionality itself. 

Most design patterns are independent of a particular programming 
paradigm. Usually they can be implemented easily in an object- 
oriented fashion, but all our design patterns are general enough to be 
adapted to more traditional programming practices, such as  a proce- 
dural style. 

3.2 Structural Decomposition 

Subsystems and complex components are handled more easily if 
structured into smaller independent components, rather than 
remaining as  monolithic blocks of code. Changes are easier to per- 
form, extensions are easier to integrate and your design is much 
easier to understand. 



Deslgn Patterns 

In this section we descrlbe a design pattern that supports the 
structural decompositlon of components: 

The Whole-Part design pattern (225) helps with the aggregation of 
components that together form a semantic unit. An aggregate 
component, the whole, encapsulates its constltuent components. 
the parts. organizes their collaboration, and provldes a common 
interface to its functionality. Direct access to the parts I s  not 
possible. 

The Whole-Part pattern has wlde applicability. Almost every software 
system includes components or even whole subsystems that can be 
organized using this pattern. Hierarchical smctures with contain- 
ment relationships are especlally suitable for the application of 
Whole-Part in one of its variants. 

Another well-known pattern that helps with structural decomposltlon 
is Composite IGHJV951. 

The Composite pattern organizes objects into tree structures that 
represent part-whole hierarchies. Composite allows clients to 
interact with 'individual objects and compositions of objects 
uniformly. 

Note that patterns such as Whole-Part and Composite do not provide 
the structural decomposltlon of a specific subsystem or component. 
You still need to specify the participants In a component structure 
according to the requirements of the application you are developing. 

Such patterns do however provlde general techniques for decompos- 
mg subsystems and complex components. Composite. for example, 
describes how to build hierarchical structures that allow clients to 
ignore the difference between compositions of objects and the individ- 
ual objects in the hierarchies. 

Patterns in this category also specify how to implement specffic 
relationships between components, such as assembly-parts or 
container-contents. They also specify the general klnds of responsi- 
bllitles particular components In such structures should have. 



Whole-Part 

The Whole-Part deslgn pattern helps with the aggregation of 
components that together form a semantic unit. An aggregate 
component, the  hole'. encapsulates Its constituent components, 
the Parts, organizes their collaboration, and provides a common 
interface to its functionality. Direct access to the Parts I s  not possible. 

Example A computer-alded deslgn (CAD) system for 2-D and 3-D modeling 
allows englneers to design graphical objects interactively. In such 
systems most graphlcal objects are modeled as  compositions of other 
objects. For example. a car object aggregates several smaller objects 
such a s  wheels and windows, whlch themselves may be composed of 
even smaller objects such as  circles and polygons. It I s  the 
responsibility of the car object to implement functionality that 
operates on the car as  a whole, such a s  rotating or drawing. 

1.  In this descrlpUon the names 01 pattern partldpanls sl;irt with a leading 
uppercase letter to dlsflngulsh between the word 'whole' and the component called 
'Whole'. 



Design Patterns 

Context Implementing aggregate objects. 

Problem In almost every software system objects that are composed of other 
objects exist. For example, consider a molecule object in a chemical 
simulation system-it can be implemented as a graph of separate 
atom objects. Such aggregate objects do not represent loosely-cou- 
pled sets of components. Instead, they form units that are more than 
just a mere collection of their parts. In this example, a molecule object 
would have .attributes such as its chemical properties, and methods, 
such as rotation. These attributes and methods refer to the molecule 
as a semantic unit, and not to the individual atoms of which it is com- 
posed. The molecules example illustrates the typical case in which 
aggregates reveal behavior that is not obvious or visible from their in- 
dividual parts-the combination of parts makes new behavior 
emerge. Such behavior is called emergent behavior. Consider. for ex- 
ample, the chemical reactions in which a molecule can participate- 
these cannot be determined by only analyzing its individual atoms. 

We need to balance the following forces when modeling such 
structures: 

A complex object should either be decomposed into smaller objects, 
or composed of existing objects, to support reusability, 
changeability and the recombination of the constituent objects in 
other types of aggregate. 

Clients should see the aggregate object as an atomic object that 
does not allow any direct access to its constituent parts. 

Solution Introduce a component that encapsulates smaller objects, and 
prevents clients from accessing these constituent parts directly. 
Define an interface for the aggregate that is the only means of access 
to the functionality of the encapsulated objects. allowing the 
aggregate to appear as a semantic unit. 

The general principle of the Whole-Part pattern is applicable to the 
organization of three types of relationship: 

An assembly-parts relationship, which differentiates between a 
product and its parts or subassemblies-such as the relationship 
of a molecule to its atoms in our previous example. All parts are 
tightly integrated according to the internal structure of the 



Whole-Part 

assembly. The amount and type of subassemblies is predefined 
and does not vary. 

@ A container-contents relationship, in which the aggregated object 
represents a container. For example, a postal package can include 
different contents such a s  a book, a bottle of wine, and a birthday 
card. These contents are less tightly coupled than the parts in an  
assembly-parts relationship. The contents may even be dynami- 
cally added or removed. 

The collection-members relationship, which helps to group similar 
objects-such as  an  organization and its members. The collection 
provides functionality, such a s  iterating over its members and 
performing operations on each of them. There is no distinction 
between individual members of a collection-all of them are treated 
equally. 

These relationships mimic relationships between objects in the real 
world. When modeling them with software entities, it is not always 
obvious which kind of relationship is appropriate. A molecule may be 
considered as a n  assembly composed of different atoms, but  also as 
a container with atoms as its contents. Which relationship is most 
appropriate depends on the desired use of the aggregate. 

It is important to note that these categorizations define relationships 
between objects, and not between data types. 

Structure The Whole-Part pattern introduces two types of participant: 

A Whole object represents an aggregation of smaller objects, which we 
call Parts. It forms a semantic grouping of its Parts in that it coordi- 
nates and organizes their collaboration. For this purpose, the Whole 
usks the functionality of Part objects for implementing services. 

Some methods of the Whole may be just placeholders for specific Part 
services. When such a method is invoked the Whole only calls the 
relevant Part service, and returns the result to the client. 

r Each graphical object in a CAD system may contaln a Part that 
provides version information to the user. When a client invokes the 
method getversion ( ) , the request is forwarded to the appropriate 
method of the Part. 0 



Design Patterns 

Other services of the Whole implement complex strategies that build 
on several smaller services offered by Parts. 

r Consider zooming a group of 2-D objects. To achieve this, the 
smallest surrounding rectangles of all group members are deter- 
mined. Calculating the union of these rectangles leads to the smallest 
surrounding rectangle of the group itself. Its center represents the 
center of the zoom operation. To complete the execution of the zoom 
method, the group object invokes the zoom operations of all its Parts, 
passing the center and the percentage zoom as  arguments. D 

The Whole may additionally provide functionality that does not invoke 
any Part service at all. 

r Consider the implementation of collections such a s  sets. Set 
objects offer functions like getsize ( 1  for returning the current 
number of contained elements. For performance reasons, qetsi z e  ( ) 

can be implemented by introducing caching strategies. An additional 
data member size stores the current sizes of elements within the set. 
Whenever elements are removed or added, the value of size is 
updated accordingly. If a client invokes getsize ( 1  , the function 
returns the value of size without needing to access any elements of 
the set. D 

Only the services of the Whole are visible to external clients. The 
Whole also acts as  a wrapper around its constituent Parts and 
protects them from unauthorized access. 

Each Part object is embedded in exactly one Whole. Two or more 
Wholes cannot share the same Part. Each Part is created and 
destroyed within the life-span of its Whole. 

Class 
Whole 

Aggregates several 
smaller objects. 
Provides services 
built on top of part 
objects. 
Acts as a wrapper 
around its 
constituent parts. 

~ollaborators 
Part 

Class 
Part 

Responsibility 
Represents a 
particular object 
and its services. 

Collaborators 



Whole-Part 229 

The static relationships between a Whole and its Parts are illustrated 
in the OMT diagram below: 

Client 

Dynamics The following scenario illustrates the behavior of a Whole-Part 
structure. We use the two-dimensional rotation of a line within a CAD 
system as an example. The line acts as a Whole object that contains 
two points p and q as Parts. A client asks the line object to rotate 
around the point c and passes the rotation angle as an argument. 
Since the rotation of a line can be based on the rotation of single 
points, it is sufficient for the line object to call the rotate methods of 
its endpoints. After rotation, the line redraws itself on the screen. For 
brevity, the scenario does not demonstrate how the old line is deleted 
from the screen, nor how the drawLine method retrieves the 
coordinates of the new endpoints. 

Whole 

The rotation of a point p around a center c with an angle a can be 
calculated using the following formula: 

PartA 

serviceAl 
serviceA2 
. . . 

sina cosa 

In the diagram below the rotation of the line given by the points p and 
q is illustrated. 

. .. other Parts 

PartN 

callsService 
combines 

semce 1 
service2 
... 



Design Patterns 

The scenario consists of four phases: 

A client invokes the rota te  method of the line L and passes the 
angle a  and the rotation center c as arguments. 

The line L calls the ro ta te  method of the point p. 

The line L calls the ro ta te  method of the point q. 

The line L redraws itself using the new positions of p I and q I as 
endpoints. 

Client Line L Point p Point q 



Implementation To implement a Whole-Part structure, apply the following steps: 

1 Design the public interface of the Whole. Analyze the functionality the 
Whole must offer to its clients. Only consider the client's viewpoint in 
this step. Think of the Whole as  an atomic component that is not 
structured into Parts, and compile a list of methods that together 
comprise the public interface of the Whole. 

2 Separate the Whole into Parts, or synthesize it #om existing ones. 
There are two approaches to assembling the Parts you need--either 
assemble a Whole 'bottom-up' from existing Parts, or decompose it 
'top-down' into smaller Parts: 

The bottom-up approach allows you to compose Wholes from 
loosely-coupled Parts that you can later reuse when implementing 
other types of Whole. A liability of this approach is the difficulty of 
covering all aspects of the required functionality of the Whole using 
existing Parts. As a result, you often have to implement 'glue' to 
bridge the gap between the composition of Parts and the interface 
provided by the Whole. 

@ The top-down approach makes it is possible to cover all of the 
Whole's functionality. Partitioning into Parts is driven by the 
services the Whole provides to its clients, freeing you from the 
requirement to implement glue code. However, strictly applying the 
top-down approach often leads to Parts that are tightly coupled 
and not reusable in other contexts as  a result. 

A mixture of both approaches is often applied. For example, you may 
follow the top-down approach until the resulting structure allows you 
to reuse existing Parts. 

3 Ifyou follow a bottom-up approach, use existing Parts from component 
libraries or class libraries and specify their collaboration. If you 
cannot cover all the Whole's functionality with existing Parts, specify 
additional ones and their integration with the remaining Parts. You 
may need to use the top-down approach to implement such missing 
Parts. 



4 If you follow a top-down approach, partition the Mirhole's services into 
smaller collaborating services and map these collaborating services to 
separate Parts. For example, in the Forwarder-Receiver design 
pattern (307) a forwarder component is responsible for marshaling an  
IPC message and delivering it to the receiver. You can therefore 
decompose a forwarder into two Parts, one responsible for marshaling 
and another responsible for message delivery. 

Note that there are often several ways to decompose a Whole into 
Parts. For example, a triangle can be specified by three points that are 
not co-linear, or by three lines, or by a line and a point. As a rule of 
thumb, select the decomposition strategy that provides the easiest 
way of implementing the services of the Whole. If, for example, 
hidden-line algorithms are going to be applied to triangles, you 
should implement them as  compositions of lines. 

5 SpeczA the services of the W'hole in terms of services of the Parts. In 
the structure you found in the previous two steps, the Whole is rep- 
resented a s  a set of collaborating Parts with separate responsibilities. 
You need to specify which Part functionality the Whole uses for ser- 
vicing client requests, and which requests it executes on its own. 

Two are two possible ways to call a Part service: 

@ If a client request is forwarded to a Part service, the Part does not 
use any knowledge about the execution context of the Whole, 
relying on its own environment instead. Such forwarding leads to 
a loose coupling between the Whole and its Parts-they may even 
be implemented a s  active objects running in different processes. 

@ A delegation approach requires the Whole to pass its own context 
information to the Part. Delegation is useful when the Part should 
be tightly embedded in the Whole's environment. For example, 
delegation is required if implementation inheritance between a Part 
and the Whole must be simulated. 

Decide whether all Part services are called only by their Whole, or if 
Parts may also call each other. Usually Parts are activated by their 
Whole. Sometimes, however, it is necessary for Parts to interact. For 
example, consider a simulation object such as  a Whole that 
represents a set of astronomical galaxies. If you need to determine the 
movements of such galaxies, it is not sufficient to just consider the 
effects of the 'Big Bang'-you also have to take the gravitation 



Whole-Part 

Variants 

attraction between galaxies into account. The solution to this problem 
requires numerical methods in which Parts interact with each other. 
Another example is provided by linked lists in which elements contain 
references to their neighbors. 

You can find further discussion about interaction between Parts in 
the Mediator design pattern IGHJV951. 

Implement the Parts. If the Parts are Whole-Part structures them- 
selves, design them recursively starting with step 1. If not, reuse 
existing Parts from a library, or just implement them if their imple- 
mentation is straightforward and further decomposition is not 
necessary. 

Implement the Whole. Implement the Whole's services based on the 
structure you developed in the preceding steps. Implement services 
that depend on Part objects by invoking their services from the Whole. 
You also need to implement those services that do not depend on a 
Part object in this step. 

When implementing the Whole, you need to take any given 
constraints into account, such as cardinality properties. For example, 
a water molecule consists of exactly two hydrogen atoms and one 
oxygen atom. Constraints may also exist between parts. Consider a 
postal package object and its contents-the size of the contents 
cannot exceed the size of the package. 

You also need to manage the life cycle of Parts. Since a Part lives and 
must therefore die with its Whole, the Whole must be responsible for 
creating and deleting the Part. 

The Example Resolved section presents a concrete example of an 
implementation of the Whole-Part pattern. 

Shared Parts. This variant relaxes the restriction that each Part must 
be associated with exactly one Whole by allowing several Wholes to 
share the same Part. The life-span of a shared Part is then decoupled 
from that of its Whole. For example, consider an electronic mail 
message that consists of a header and several attachments. The 
receiver of such a message could extract the attachments and 
package them into a new message. Even if the original message is 
deleted, its Parts-the attachments-may still exist. In such cases the 
Part itself. or a central administration com~onent. is res~onsible for 



Design Patterns 

managing the Part's life cycle. In programming languages such as 
C++ you can use reference-counting strategies for this purpose-this 
is explained in the Counted Pointer idiom (353). 

The next three variants describe the implementation of the Whole-to- 
Parts relationships we introduced in the Solution section: 

Assembly-Parts. In this variant the Whole may be an object that 
represents an assembly of smaller objects. For example, a CAD 
representation of a car might be assembled from wheels, windows, 
body panels and so on. Constituent Parts could follow the assembly- 
parts relationship recursively-a wheel may itself be a Whole 
consisting of Parts such as circles. Recursively applying whole-part 
relationships leads to trees, and may also lead to directed acyclic 
graphs if shared Parts are allowed. Assembly-Parts structures are 
fixed, in that they do not support the addition or removal of Parts kt 
run-time. They only allow you to exchange Parts with other Parts of 
the same type. 

Container-Contents. In this variant a container is responsible for 
maintaining differing contents. For example, an electronic mail 
message may contain a header, the message body, and optional 
attachments. In contrast to the Assembly-Parts variant, a container 
component allows you to add or remove its contents dynamically. 

The Collection-Members variant is a specialization of Container- 
Contents, in that the Part objects all have the same type. Parts are 
usually not coupled to or dependent on each other. You can apply this 
variant when implementing collections such as sets, lists, maps, and 
arrays. In addition, this pattern supports the inclusion of 
functionality for iterating over all members, and for executing 
operations on some or all members. 

The Composite pattern was introduced in [GHJV95]. It is applicable 
to Whole-Part hierarchies in which the Wholes and their Parts can be 
treated uniformly-that is, in which both implement the same 
abstract interface. 

Example In our CAD system we decide to define a Java package that provides 
Resolved the basic functionality for graphical objects. The class library consists 

of atomic objects such as circles or lines that the user can combine 
to form more complex entities. We implement these classes directly 



Whole-Part 236 

instead of using the standard Java package awt (Abstract Windowing 
Toolkit) because awt does not offer all the functlonallty we need. 

Objects use virtual coordinates instead of physical screen coordinates 
to hide system dependencies such as  screen resolution. The abstract 
base class GraphicsObj ect defines common methods such as  draw. 
rotate and dump. All other classes are either derived from Graphics - 
Object or one of its subclasses. The Implementation of classes that 
provide a particular type of graphical obJects such as  Triangle uses 
the Assembly-Parts variant. 

abstract class GraphicaObject { 
abstract public void dump0 ; 
abstract public void 

rotate(int xc, int yc, double angle) ; 
/ /  much more ... 

1 

The class Triangle is an example of a subclass of GraphicsObj ec t . 
Each triangle is assembled from exactly three carteslan polnts that 
are not co-linear. A triangle object therefore acts as a Whole that 
contains three polnts as Part objects. The implementation of the class 
Triangle. therefore. is based on the implementation of the class 
Point. For example. the rotation of a triangle can be performed by 



rotatlng its corners. The rotate method is therefore an example of a 
service of the Whole that uses operations provided by the Parts. The 
Assembly-Parts relationship between a Mangle and its comers is 
illustrated in the following diagram: 

When the method rotate is invoked for a point, the center of rotation 
is passed as  an argument. If the center and the point are the same. 
the method does nothing, otherwise it rotates the point around the 
center using the specified angle: 

class Point extends GraphicsObject ( 
int x; 
int y ;  

public static boolean isCollinear 
(Point p, Point q, Point r) I 
/ /  using long arithmetic to avoid overflow: 
return ( (long) (p.x - r.x) (q.y - r.y) - 

(long) (p.y - r.y) * (q.x - r.x)) == 0; 
1 

public Point(int xcoord, int yCoord) ( 
x = xCoordi 
y = yCoord; 

1 
public void dump0 ( 

System.out.print("PO1NT " ) ;  
Systern.out.printlnf"(" + x + "/" + y + " ) " )  ; 

1 
public boolean isEaual(Point aPoint) I 

return ( (x == aP0int.x) 66 
(y == aP0int.y)); 

1 



Whole-Part 

public void rotate(int xc, int yc, double angle) { 
if (isEqual (new point (xc,yc) ) ) 

return; 
else I 

double cosA = Math.cos(angle) ; 
double sinA = ~ath.sin(angle) ; 
double dx = x - xc; 
double dy = y - yc; 
x = (int) Math.round( cosA * dx - 

sinA * dy + 
XC 1 ; 

Y = (int) Math.round( sinA * dx + 
cosA * dy + 
YC ) ; 

1 
I 

1 
An example of constraint checking of the triangle as a Whole is that 
the constructor of Triangle must check whether the three points 
passed as arguments are collinear. Three points p, q, and r are not 
collinear if and only if they define a two-dimensional vector space: 

If this is the case, the following condition must hold for each point z: 

The equation can be solved for each point z if and only if the 
determinant of the matrix is non-zero: 

If this is not the case, the points are collinear and the constructor 
raises an exception. 

class pointsAreCollinear extends Exception { I  
class Triangle extends GraphicsObject { 

Point pl; 
Point p2; 
Point p3; 



Design Patterns 

public Triangle(Point pol, Point po2, Point po3) 
throws PointsAreCollinear 

{ / /  check if these points are collinear. 
/ /  If yes, raise an exception 
if (Point. isCollinear (pol, po2, po3) ) 

throw new Points~re~ollinear ( ) ; 
pl = pol; p2 = p02; p3 = po3; 

I 
public void dumg 0 I 

Systern.out.println("TRIANGLE"); 
System.out .print ("Point 1 : " )  ; 
pl.dump0; 
System.out.print("Point 2: " 1 ;  
p2.dumpO ; 
System.out.print ("Point 3: " )  ; 
p3 .dump0 ; 

I 
public void rotate(int xc, int yc, double angle) I 

pl.rotate(xc, yc, angle); 
p2. rotate (xc, yc, angle) ; 
p3. rotate (xc, yc, angle) ; 

1 
I 

We implement groups of different graphics objects using the 
Collection-Member variant. We can use this variant because a group 
does not need to know the concrete subtypes of its members-it can 
handle each of its members as an instance of class Graphicsob j ect 
instead. The class GroupObj ect comprises functionality such as the 
addition of graphical objects, and the iteration through all group 
members. Note that the class GroupObj ect does not comply exactly 
with the Composite variant (GHJV951. The reason for this is that Part 
objects have a type different from the Whole. Whereas the Whole is an  
instance of GroupObj ect, the Parts are not-we have introduced the 
class GroupOb j ect for this purpose. The alternative would have been 
to extend Graphicsobj ect with functionality for adding elements, 
regardless whether derived classes implement group objects or not. 

If a method such as  rotate is invoked for such a group, the group 
recursively invokes the method on all its members. 

class Groupobject extends GraphicsObject I 

private Vector members = new Vector(); 

public int size() { / /  number of members 
return members.size0; 

1 



Whole-Part 

public GraphicsObject object~t (int pos) { 
return (Graphicsob j ect) (members. elementAt (pos) ) ; 

1 
public void addobject (Graphicsobj ect ashape) { 

members. addElement (ashape) ; 
1 
public void rotate(int xc, int yc, double angle) { 

for (int i = 0; i < members.size0 ; i++) { 
objectAt (i) .rotate(xc, yc, angle) ; 

1 

public void dump ( )  { 
System.out .println (llGROUP with " + size ( )  + 

" members: " )  ; 

for (int i = 0; i < members .size ( )  ; i++) { 
objectAt (i) .dump ( )  ; 

1 
1 

1 

Imagine that a user creates different graphics objects, selects them 
with the mouse, inserts them into a group, and tells the object editor 
to rotate the group around ( 0 , 0 ) with an angle of n /4 .  The editor will 
execute a code sequence similar to that listed below: 

Point pl = new point (10,lO) ; 
Point p2 = new point (10,20) ; 
Point p3 = new Point (20,lO) ; 
Triangle t = new Triangle (p11p2,p3) ; 
Circle c = new Circle (new Point (0,O) , 10) ; 
Rectangle r = new ~ectangle(new point(-5,-5), 

new Point (+5, +5) ) ; 
Line 1 = new Line (new Point (1,l) , new point (l0,5) ) ; 
GroupOb j ec t g = new GroupOb j ec t ( ). ; 
g.addObject(t) ; 
g.add0bject (c) ; 
g.add0bject (r) ; 
g.addObject(1) ; 
g.rotate(O,O,java.lang.Math.~1/4); 

The classes we have already introduced support simple shapes such 
as circles or triangles, as well as the grouping of such graphics 
objects. To create more complex shapes, instances of the class 
T r e e O b j  ect support the composition of graphics objects using 
operators. For example, a circle with a rectangular hole may be 
represented by a binary tree. The left child specifies the circle, the 
right child the rectangle, and the node consists of the operator SUB as 
well as additional data. SUB is defined as subtraction of one figure 



240 Design Patterns 

from another. In this example, the rectangle is geometrically 
subtracted from the circle. resulting in a circle with a hole. 

Tree objects implement the Container-Contents variant of Part- 
Whole. The Whole is given by the complex shape that is calculated 
from simpler shapes using a geometrical formula. The graphics 
objects and the operator in this formula represent the Parts. When an 
operation such as move is invoked on the TreeObj ec t instance, the 
Whole forwards the request to all the sub-shapes of which it is 
composed. 

Known Uses The key abstractions of many object-oriented applications follow 
the Whole-Part pattern. For example, some graphical editors support 
the combination of different types of data to form multimedia 
documents. These are often implemented according to the Composite 
design pattern lGHJV951. In CAD or animation systems, items under 
construction are represented by Assembly-Part structures. Almost all 
aspects of an application that can be hierarchically structured and 
can represent semantic units may be a subject for the application of 
the Whole-Part pattern in one of its variants. 

Most object-oriented class libraries provide collection classes such 
as lists. sets. and maps. These classes implement the Collection- 
Member and Container-Contents variants. See BNI941 and [Lea961 
for examples. 

Graphical user interface toolkits such as Fresco or ET++ IGam911 
use the Composite variant of the Whole-Part pattern. 

Consequences The Whole-Part pattern offers several benefits: 



Whole-Part 

Changeability of Parts. The Whole encapsulates the Parts and thus 
conceals them from its clients. This makes it possible to modify the 
internal structure of the Whole without any impact on clients. Part 
implementations may even be completely exchanged without any 
need to modify other Parts or clients. 

Separation of concerns. A Whole-Part structure supports the 
separation of concerns. Each concern is implemented by a separate 
Part. It therefore becomes easier to implement complex strategies by 
composing them from simpler services than to implement them as 
monolithic units. 

Reusability. The Whole-Part pattern supports two aspects of 
reusability. Firstly, Parts of a Whole can be reused in other aggregate 
objects. Secondly, the encapsulation of Parts within a Whole prevents 
a client from 'scattering' the use of Part objects all over its source 
code-this supports the reusability of Wholes. 

The Whole-Part pattern suffers from the following liabilities: 

Lower emiency through indirection. Since the Whole builds a wrapper 
around its Parts, it introduces an additional level of indirection 
between a client request and the Part that fulfils it. This may cause 
additional run-time overhead compared with monolithic structures, 
especially when Parts are themselves implemented a s  Whole-Part 
structures. 

Complexity of decomposition into Parts. An appropriate composition of 
a Whole from different Parts is often hard to find, especially when a 
bottom-up approach is applied. This is because an optimal parti- 
tioning into Parts depends on many issues, such as the given 
application domain, the structure to be modeled and the functionality 
to be provided by the Whole. 

See also According to [GHJV95] the Composite design pattern is applicable 
when: 

You want to represent whole-part hierarchies of objects. 

You want clients to be able to ignore the difference between 
compositions of objects and individual objects. Clients will treat 
all objects in the composite structure uniformly. 

Composite is a variant of the Whole-Part design pattern that you 
should consider when facing these two requirements. 



The Facade design pattern [GHJV95] helps to provide a simple inter- 
face to a complex subsystem. A client uses this interface instead of 
accessing different Parts of the subsystem directly. However, a 
Facade structure does not enforce the encapsulation of Parts--clients 
may also access them directly. Another difference from Whole-Part 
structures is that facades do not compose complex services from sim- 
pler Part services-they only perform necessary interface translations 
and forward client requests to the appropriate Parts. 

redits We thank our colleague Peter Graubmann for all his fruitful 
suggestions and comments regarding this pattern description. 



3.3 Organization o 

The implementation of complex services is often solved by several 
components in cooperation. To organize work optimally within such 
structures you need to consider several aspects. For example, each 
component should have a clearly-defined responsibility, and the 
basic strategy for providing the service should not be spread over 
many different components. 

Several general principles apply when organizing the implementation 
of complex services. Examples are the separation of concerns, the 
separation of policy and implementation, and the 'divide and conquer' 
approach (see Chapter 6, Patterns and SoJware Architecture). 
Patterns that address the organization of work for particular kinds of 
services build on such enabling techniques. 

In this section we describe one pattern for organizing work within a 
system: 

The Master-Slave pattern (245) supports fault tolerance, parallel 
computation and computational accuracy. A master component 
distributes work to identical slave components and computes a 
final result from the results these slaves return. 

Master-Slave applies the 'divide and conquer' principle. Work is 
partitioned into several subtasks that are processed independently. 
The result of the whole service is calculated using the results that 
each partial processing operation provides. The Master-Slave pattern 
is widely applied in the areas of parallel and distributed computing. 

Another example of the application of Master-Slave is the implemen- 
tation of the so-called 'triple modular redundancy' principle. In this 
approach the execution of a service is delegated to three independent 
components, at  least two of which must provide the same result for it 
to be considered valid. 



The Chain of Responsibility, Command and Mediator patterns 
[GHJV95] also belong to this category: 

The Chain of Responsibility pattern avoids coupling the sender of a 
request to its receiver by giving more than one object the chance to 
handle the request. The receiving objects are chained and the 
request is passed along the chain until an  object can handle it. 

The Command pattern encapsulates a request a s  an  object, 
allowing you to parameterize clients with different requests , to 
queue or log requests and to support undoable operations. 

The Mediator pattern defines an  object that encapsulates the way 
in which a set of objects interact. Mediator promotes loose coupling 
by preventing objects from referring to each other explicitly, and 
allows you to vary their interaction independently. 

Patterns like Master-Slave (245), Chain of Responsibility and 
Mediator provide general collaboration techniques and structural 
frameworks for organizing work, analogously to patterns that address 
the structural decomposition of subsystems and components (see 
Section 3.2, Structural Decomposition). @ 

Adapting these patterns for solving a specific problem, for example 
using Master-Slave for matrix multiplication, is still subject to the 
concrete design activities for the application under development. 



Master-Slave 

The Master-Slave design pattern supports fault tolerance, parallel 
computation and computational accuracy. A master component 
distributes work to identical slave components and computes a Anal 
result from the results these slaves return. 

Example The traveling-salesman problem is well-known in graph theory. The 
task is to Bnd an optimal round trip between a given set of locations. 
such as the shortest trip that visits each location exactly once. 

The solution to this problem is of high computational complexity- 
there are approximately 6.0828 * different trips that connect the 
state capitals of the United States! Generally, the solution to the 
traveling-salesman problem with n locations is the best of (n-l)! 
possible routes. Since the traveling-salesman problem is NP-complete 
lGJ791, there is no way to circumvent this high complexity if the 
optimal solution must be found. 

Most existing implementations of the traveling-salesman problem 
therefore approximate the optimal solution by only comparing a fixed 
number of routes. One of the slmplest approaches is to select routes 
to compare at  random, and hope that the best route found 
approximates the optimal route sufficiently. We should make sure 



however that the routes to be investigated are chosen in a random 
and independent fashion, and that the number of selected routes is 
sufficiently large. 

Context Partitioning work into semantically-identical sub-tasks. 

Problem 'Divide and conquer' is a common principle for solving many h d s  of 
problems. Work is partitioned into several equal sub-tasks that are 
processed independently. The result of the whole calculation is com- 
puted from the results provided by each partial process. Several 
forces arise when implementing such a structure: 

Clients should not be aware that the calculation is based on the 
'divide and conquer' principle. 

Neither clients nor the processing of sub-tasks should depend on 
the algorithms for partitioning work and assembling the final 
result. 

It can be helpful to use different but semantically-identical imple- 
mentations for processing sub-tasks, for example to increase 
computational accuracy. 

Processing of sub-tasks sometimes needs coordination, for exarn- 
ple in simulation applications using the finite element method. 

Solution Introduce a coordination instance between clients of the service and 
the processing of individual sub-tasks. 

A master component divides work into equal sub-tasks, delegates 
these sub-tasks to several independent but semantically-identical 
shve components, and computes a final result from the partial 
results the slaves return. 

This general principle is found in three application areas: 

Fault tolerance. The execution of a service is delegated to several 
replicated implementations. Failure of service executions can be 
detected and handled. 

Parallel computing. A complex task is divided into a fixed number 
of identical sub-tasks that are executed in parallel. The final result 
is built with the help of the results obtained from processing these 
sub-tasks. 



Master-Slave 

Computational accuracy. The execution of a service is delegated to 
several different implementations. lnaccurate results can be 
detected and handled. 

Provide all slaves with a common interface. Let clients of the overall 
service communicate only with the master. 

r We decide to approximate the solution to the traveling-salesman 
problem by comparing a fixed number of trips. Our strategy for 
selecting trips is simple-we just pick them randomly. This simple- 
minded implementation uses an early version of the object-oriented 
parallel programming language pSather (MFL931. The program is 
tuned for a CM-5 computer from Thinking Machines Corporation with 
sixty-four processors. 

To take advantage of the CM-5 multi-processor architecture, the 
lengths of different trips are calculated in parallel. We therefore 
implement the trip length calculation as a slave. Each slave takes a 
number of trips to be compared as input, randomly selects these trips 
and returns the shortest trip found. A master determines a priori the 
number of slaves that are to be instantiated, specifies how many trips 
each slave instance should compare, launches the slave instances, 
and selects the shortest trip from all trips returned. In other words, 
the slaves provide local optima that the master resolves to a global 
optimum. Ll 

Structure The master component provides a service that can be solved by apply- 
ing the 'divide and conquer' principle. It offers an interface that allows 
clients to access this service. Internally, the master implements func- 
tions for partitioning work into several equal sub-tasks, starting and 
controlling their processing, and computing a final result from all the 
results obtained. The master also maintains references to all slave in- 
stances to which it delegates the processing of sub-tasks. 

The shve component provides a sub-service that can process the 
sub-tasks defined by the master. Within a Master-Slave structure, 
there are at least two instances of the slave component connected to 
the master. 



Design Patterns 

Class 
Master 

Responsibility 
Partitions work 
among several 
slave components 
Starts the cxecu- 
tion of slaves 
Computes a result 
from the sub- 
results the slaves 
return. 

Collaborators 
Slave 

Class 
Slave 

Responsibility 
Implements the 
sub-service used by 
the master. 

Collaborators 

The structure defined by the Master-Slave pattern is illustrated by 
the following OMT diagram. 

1 service I 

+2 - 

Dynamics In the following scenario we assume, for simplicity, that slaves are 
called one after the other. However, the Master-Slave pattern 
unleashes its full power when slaves are called concurrently, for ex- 
ample by assigning them to several separate threads of control. The 
scenario comprises six phases: 

A client requests a service from the master. 

The master partitions the task into several equal sub-tasks. 

The master delegates the execution of these sub-tasks to several 
slave instances, starts their execution and waits for the results 
they return. 

The slaves perform the processing of the sub-tasks and return the 
results of their computation back to the master. 

The master computes a final result for the whole task from the 
partial results received from the slaves. 

Master 

myslaves 

splitwork 
callSlaves 
combineResults 

The master returns this result to the client. 

delegates- 
sub-task execution 

Slave 

subsewice 



Master-Slave 249 

t 

splitwork 

callSlaves 

4 

Slave- 1 

result TIT 
Implementation The implementation of the Master-Slave pattern follows five steps. 

Note that these steps abstract from specific issues that need to be 
considered when supporting the application of the pattern to the spe- 
cial cases of fault tolerance. parallel computation, and computational 
accuracy, or when distributing slaves to several processes or threads. 
These aspects are addressed in the Variants section. 

1 Divide work. Specify how the computation of the task can be split into 
a set of equal sub-tasks. Identify the sub-services that are necessary 
to process a sub-task. 

b For our parallel traveling-salesman program we could partition 
the problem so that a slave is provided with one round trip at time 
and computes its cost. However, for a machine like the CM5 with 
SPARC node processors, such a partitioning might be too fine- 
grained. The costs for monitoring these parallel executions and for 
passing parameters to them decreases the overall performance of the 
algorithm instead of speeding it up. 

A more efficient solution is to define sub-tasks that identify the 
shortest trip of a particular subset of all trips. This solution also takes 
account of the fact that there are only sixty-four processors available 



on our CM5. The number of available processors limits the number of 
sub-tasks that can be processed in parallel. To find the number of 
trips to be compared by each sub-task, we divide the number of all 
trips to be compared by the number of available processors. cl 

2 Combine sub-task results. Specify how the final result of the whole 
service can be computed with the help of the results obtained from 
processing individual sub-tasks. 

@ Each sub-task returns only the shortest trip of a subset of all 
trips to be compared. We must still identify the shortest trip of these.cl 

3 Spec& the cooperation between master and slaves. Define an inter- 
face for the sub-service identified in step 1. It will be implemented by 
the slave and used by the master to delegate the processing of indi- 
vidual sub-tasks. 

One option for passing sub-tasks from the master to the slaves is to 
include them as  a parameter when invoking the sub-service. Another 
option is to define a repository where the master puts sub-tasks and 
the slaves fetch them. When processing a sub-task, individual slaves 
can work on separate data structures, or all slaves can share a single 
data structure. Slaves may return the result of their processing 
explicitly as  a return parameter, or they may write it to a separate 
repository from which the master retrieves it. 

Which of these options are best depends on many factors; for 
example, the costs of passing sub-tasks to slaves, of duplicating data 
structures, and of operating on a shared data structure with several 
slaves. The original problem also influences the decisions to be made. 
When slaves modify the data on which they operate, you need to 
provide each slave with its own copy of the original data structure. If 
they do not modify data, all slaves can work on a shared data 
structure, for example when implementing matrix multiplication. 

@ For the traveling-salesman program we let each slave operate on 
its own copy of the graph that represents all cities and their 
connections. We will create these copies when instantiating the 
slaves. The alternative-having the slaves read from one shared 
graph representation-was not chosen since such a communication 
load on the CM5 internal network would reduce the performance of 
our application considerably. 



Master-Slave 

The interface of the slave to the master is defined by a function that 
takes the number of random routes to be evaluated as an input 
parameter. The function returns the optimal route found, which is 
represented by an instance of class TOUR. 

randoalpems (numberperms : INT) : TOUR 

The term perms in randomgerms ( )  stands for permutations, since 
we represent round trips as permutations of the n nodes that stand 
for the n cities to be visited. 0 

4 Implement the slave components according to the specifications 
developed in the previous step. 

b The class TSP is the design center of our small applications. It 
includes a constructor, functions to create a random trip and to 
update the shortest Mp found so far, and the randomserms 0 
function specified in the previous step. The class COMPLETE-GRAPH 

represents the graph structure on which instances of TSP operate. 
The class RANDOM represents a random number generator. The code 
is not complete, but is an excerpt from a working application. 

class TSP is 
- -  Data structures 
best-tour, current-tour : TOUR; 
graph : COMPLETE-GRAPH; 
random : RANDOM; 
- -  Constructor for the slave that initializes 
- -  the return value, creates the graph structure, 
- -  and creates the random number generator. 
create0 : TSP is 

res - . = new; 
res.graph := COMPLETE-GRAPH::create; 
res.random := RAND0M::create; 

end; - -  create 
- -  Construct a number of randomly selected tours and 
- -  return the tour with the lowest costs 
randouenns (numberperms : INTI : TOUR is 

i : INT := 1; 
while i <= numberperms loop 

construct~random~tour; 
update-optimum; 
i := i+l; 

end; - - loop 
res := best-tour; 

end; - -  randomgerms 
- -  Construct a new random tour and calculate its costs 
construct~random~tour is - -  not shown here 
end; - -  construct~random~tour 



Design Patterns 

- -  Update the optimal tour if the currently evaluated 
- -  tour is better than the current optimum 
update-optimum is 

if current-tour.cost < best-tour.cost then 
best-tour : = current-tour ; 

end; - -  if 
end; - -  update-optimum 

end; - - class TSP 

Note that the assignment in update-opt imum assumes either deep- 
copy semantics, or that current-tour will refer to a new TOUR object 
after the assignment. Otherwise, cons truc t-random-tour ( ) Cor- 
rupts bes t-tour when modifying curren t-tour. The original pro- 
gram solved the problem by swapping the two TOUR objects to which 
best-tour and current-tour referred. Q 

5 Implement the master according to the specifications developed in 
step 1 to 3. 

There are two options for dividing a task into sub-tasks. The first is 
to split work into a fixed number of sub-tasks. This is most applicable 
if the master delegates the execution of the complete task to the 
slaves. This might typically occur when the Master-Slave pattern is 
used to support fault tolerance or computational accuracy applica- 
tions, or if the amount of parallel work is always fixed and known a 
priori. The second option is to define as many sub-tasks as  necessary, 
or possible. For example, the master component in our traveling- 
salesman program could define as many sub-tasks as there are pro- 
cessors available. 

The exchange of algorithms for subdividing a task can be supported 
by applying the Strategy pattern [GHJV95]. We discuss further issues 
you should consider in the Variants section. 

The code for launching the slaves, controlling their execution and col- 
lecting their results depends on many factors. Are the slaves executed 
sequentially, or do they run concurrently in different processes or 
threads? Are slaves independent of each other, or do they need coor- 
dination? We give more details about this in the Variants section. 

The master computes a final result with help of the results collected 
from the slaves. This algorithm may follow different strategies, a s  
described in the Variants section. To support its dynamic exchange 
and variation, you can again apply the Strategy pattern [GHJV951. 



Master-Slave 253 

You also must deal with possible errors, such as failure of slave 
execution or failure to launch a thread. Details are discussed in the 
Variants section. 

There is only one master component within a Master-Slave structure. 
You can apply the Singleton pattern [GHJV95] to ensure this 
property. 

r In the traveling salesman program we represent the master with 
an object of class CM5-TSP. It offers a function bes t-tour ( )  to its 
clients which returns the best round trip visited by the whole Master- 
Slave structure. The best-tour ( )  function takes the number of 
routes to be generated and the number of processors to use as 
parameters. 

The function distribute ( ) copies the graph and some additional 
data structures to all processors. The implementation we show works 
sequentially. 'sj' means 'do this operation on processor j'. The 
hnction di st ribu te ( ) creates as many new slaves as there are 
processors available. The function random_perrns ( )  launches the 
slaves. The function upda t e-op t imum ( ) selects the optimal route 
from the local optima returned by the slaves. 

Our strategy for coordinating the slaves is to start them asynchro- 
nously and to synchronize them later, in particular when we want to 
select the best trip found. To implement this behavior we use the 
'future' principle. A hture is a variable that defines a value that is 
computed asynchronously in a different process or thread of control. 
Synchronization is achieved when the variable is accessed later. Since 
pSather supports futures, we use an array of htures for slaves to 
coordinate their parallel execution. For reasons of brevity we do not 
illustrate object creation. For more details on the pSather version we 
use in our example, see [Lim93]. 

class CMSTSP is 
- -  Data structures. Shared variables in pSather 
- -  correspond to static members in C++ 
shared n : INT - -  Number of Cities 
shared P : INT; - -  Number of processors 
shared T : ARRAY {TSP) ; - -  The slave array 
shared best-tour : TOUR - * -  The best round trip 



Design Patterns 

- -  Assign a slave to each available processor 
distribute is 

- -  Create the slave instances 
i : INT := 1; 
while i <= P loop 

- - initializes T [ j  1 ; 
COPY-graph ( sj ; 
i := i+l; 

end; - - loop 
end; - -  distribute 
- -  Launch the slaves 
randomgerms (t : INT) is 

i, j , jobsgergroc : INT; 
- -  Calculate how many tours each slave must visit 
- -  Assume that P divides t 
j obsgerjroc : = t/P; 
- - Define a monitor 
m := MONITOR{TOUR):=MONITOR{TOUR}::new; 
- -  Launch each slave at its processor 
i := 1; 
while i <= P loop 

m : - T t i ]  . randorr~perms (jobsgerqroc) Oi: 
i := i + 1; 

end; - - loop 
- -  wait until the slaves finish with their 
- -  computation and take the results of the slaves 
- -  in whatever order they are returned 
j := 1; 
while j <= P loop 

current-tour := m.take; 
update-op t imum ( ) ; 
j := j + 1; 

end; - - loop 
end; - -  randorq-penns 
- -  Select the optimal tours from the trips the slaves 
- - returned 
update-optimum is - -  not shown here 
end; - - update-optimum 
- -  Return the optimal tour from t randomly created 
- -  ones with help of P slaves. 
best-tour (t , p : INT) : TOUR is 

P := p; 
- - Create the slaves, launch them, determine 
- -  the best trip visited, and return this tour 
- -  to the client calling the master 
distribute; 
randomgerms ( t ) ; 
upda-pt hum; 
res := best-tour; 

end; - -  best-tour 
end; - -  class CM5-TSP 



Master-Slave 255 

Variants There are three application areas for the Master-Slave pattern: 

MasterSlave for fault tolerance. In this variant the master just 
delegates the execution of a service to a fixed number of replicated 
implementations, each represented by a slave. As soon as the first 
slave terminates, the result produced is returned to the client of the 
master. Fault tolerance is supported by the fact that as long as at  
least one slave does not fail, the client can be provided with a valid 
result. The master can handle the situation in which all slaves fail, for 
example by raising an exception or by returning a special 'Exceptional 
Value' [Cun94] with which the client can operate. The master may use 
time-outs to detect slave failure. However, this variant does not help 
with the situation in which the master itself fails-it is the critical 
component that must 'stay alive' to make this structure work. 

Master-Slave for parallel computation The most common use of the 
Master-Slave pattern i,s for the support of parallel computation. In 
this variant the master divides a complex task into a number of 
identical sub-tasks, each of which is executed in parallel by a 
separate slave. The master builds the final result from the results 
obtained from the slaves. The master contains the strategies for 
dividing the overall task and for computing the Anal result. 

The algorithm for sub-dividing the task and for coordinating the 
slaves is strongly dependent on the hardware architecture of the 
machine on which the program runs. On distributed memory 
machines with general-purpose processors. for example, the granu- 
larity is usually larger than on SIMD (single instruction multiple data) 
machines. Other aspects that govern the algorithm are the machine's 
topology and the speed of its processor interconnections. The cooper- 
ation between the master and the slaves also depends on aspects 
such as the existence of shared or distributed memory for machines. 
The division of work is further influenced by issues listed in the Slave 
as Threads uariant (see below), and the cooperation between master 
and slaves by issues listed in step 3 of the Implementation section. 

Before the master can compute the final result it must wait for all 
slaves to finish executing their sub-tasks. To free the master from the 
task of synchronizing each slave individually, [KSS96] introduces the 
concept of a barrier. A barrier is initialized with the slaves on whose 
termination the master waits. It then suspends the execution of the 
master until all the slaves it controls have terminated. Our pSather 



Design Patterns 

example, in contrast, works in an incremental fashion-whenever a 
slave terminates the randomserms ( ) method takes its result. 

Master-Slave for computational accuracy. In this variant the execution 
of a service is delegated to at  least three different implementations, 
each of which is a separate slave. The master waits for all slaves to 
complete, and votes on their results to detect and handle inaccura- 
cies. This voting may follow different strategies. Examples include 
that in which the master selects the result that is returned by the 
greatest number of slaves, the average of all results, or the use of an 
Exceptional Value [Cun941 in the case in which all slaves produce dif- 
ferent results. 

To provide different slave implementations, we can extend the 
structure of the Master-Slave pattern with an additional abstract 
class. This defines an interface common to all slave implementations. 
Different slave implementations are then derived from this abstract 
base. 

Further variants exist for implementing slaves: 

Slaves as Processes. To handle slaves located in separate processes, 
you can extend the original Master-Slave structure with two addi- 
tional components IBro961. The master includes a top component that 
keeps track of all slaves working for the master. To keep the master 
and the top component independent of the physical location of dis- 
tributed slaves, remote proxies (263) represent each slave in the 
master process. You can apply the Forwarder-Receiver (307) or 
Client-Dispatcher-Server pattern (323) to implement the inter- 
process communication. 

AbstractSlaue 

subService 

Master 

myslaves 

delegates 
sub-task execution -a 

splitwork 
callslaves 
combineResults 

service 

I I 
ConcreteSlaveA 

subservice 

ConcreteSlaveB 

subservice 



Master-Slave 

Slaves as Threads. In this variant, every slave is implemented within 
its own thread of control (KSS961. In this variant the master creates 
the threads, launches the slaves, and waits for all threads to complete 
before continuing with its own computation. The Active Object 
pattern [Sch95] helps in implementing such a structure. 

In this variant the master must deal with two problems: what 
happens if a thread cannot be created, and how many threads should 
be created? A solution to the first problem is to call the slave's services 
directly, without launching them in a separate thread. Performance 
will suffer, but the result will be correct. The optimal number of 
threads depends on the number of processors available and on the 
amount of work required from each thread. Too many threads incur 
overheads in their creation and destruction, a s  well as in memory 
consumption. [KSS961 suggests experimenting with different 
strategies, starting with 'a few more threads than the number of 
processors'. 

MasterSlave with slave coordination. The computation of a slave may 
depend on the state of computation of other slaves, for example when 
performing simulation with finite elements. In this case the 
computation of all slaves must be regularly suspended for each slave 
to coordinate itself with the slaves on which it depends, after which 
the slaves resume their individual computation. 

There are two ways of implementing such a behavior. Firstly, you can 
include the control logic for slave coordination within the slaves 
themselves. This frees the master from the task of implementing this 
coordination, but  may decrease the performance of the overall 
structure. Slaves will stop their execution independently and may idle 
until the slaves on which they depend are ready for coordination. 

The second option is to let the master maintain dependencies 
between slaves and to control slave coordination. At regular time 
intervals the master suspends all slaves, retrieves the current state of 
their computation, forwards this data to all slaves that depend on this 
data, and resumes the execution of all slaves. 



n Uses [KSS96] lists three concrete examples of the application of the 
Master-Slave pattern for parallel computation: 

@ Matrix multiplication. Each row in the product matrix can be 
computed by a separate slave. 

@ Transform-coding an  image, for example in computing the discrete 
cosine transform (DCT) of every 8 x 8 pixel block in an  image. Each 
block can be computed by a separate slave. 

@ Computing the cross-correlation of two signals. This is done by 
iterating over all samples in the signal, computing the mean- 
square distance between the sample and its correlate, and 
summing the distances. We can partition the iteration over the 
samples into several parts and compute the square distance and 
its sums separately for each partition. The final sum is computed 
by summing all sums from these partitions. Each partial summing 
can be performed by a separate slave. A master component defines 
the partitions, launches the slaves, and computes the final sum. 

el described in [KR96] applies the Master-Slave 
pattern to implement process control for parallel computing, based 
on the principles of Linda [Ge185]. A programmer can assign a 
number of so-called workers to a workpool. Each worker offers the 
same services and is implemented in a separate process or thread. 
Clients send requests to the workpool, which handles these requests 
with help of its associated workers. The request itself is a function 
whose execution should be parallelized with help of the workers, such 
as matrix multiplication. This function corresponds to the master 
component in the Master-Slave pattern. 

The concept of Gag es [BI93] builds upon the principles of the 
Master-Slave pattern to handle 'plurality' in an  object-oriented 
software system. A gaggle represents a set of replicated service 
objects. When receiving a service request from a client, the gaggle 
forwards this request to one of the service objects it includes. Each of 
these service objects can be atomic, which means it executes the 
service and delivers a result, or another gaggle which itself represents 
a set of replicated service objects. 



Master-Slave 259 

[Bro96] lists several applications of the Master-Slave design pattern, 
all of which focus on distributed slaves. These include the distributed 
design rule checking system CalibreTM DRC-MP and the CheckMate 
IC verification tool, both from Mentor Graphics. 

Factoring large numbers into prime factors can also be done in a 
'divide and conquer' fashion. As this problem is central to cryp- 
tography, of great interest to governments, and requires vast com- 
puting resources, it has been carried out over the Internet. One site 
did the subdivision and sent sub-tasks to people willing to provide 
computing time and the use of their machines. 

Consequences The Master-Slave design pattern provides several benefits: 

Exchangeability and extensibility. By providing an abstract slave 
class, it is possible to exchange existing slave implementations or add 
new ones without major changes to the master. Clients are not 
affected by such changes. If they are implemented with the Strategy 
pattern [GHJV95], the same holds true when changing the algorithms 
for allocating sub-tasks to slaves and for computing the final result. 

Separation of concerns. The introduction of the master separates 
slave and client code from the code for partitioning work, delegating 
work to slaves, collecting the results from the slaves, computing the 
final result and handling slave failure or inaccurate slave results. 

Eficiency. The Master-Slave pattern for parallel computation enables 
you to speed up the performance of computing a particular service 
when implemented carefully. However, you must always consider the 
costs of parallel computation (see below). 

The Master-Slave pattern suffers from three liabilities: 

Feasibility. A Master-Slave architecture is not always feasible. You 
must partition work, copy data, launch slaves, control their 
execution, wait for the slave's results and compute the final result. All 
these activities consume processing time and storage space. 

Machine dependency. The Master-Slave pattern for parallel 
computation strongly depends on the architecture of the machine on 
which the program runs-see the Variants section for details. This 
may decrease the changeability and portability of a Master-Slave 
structure. 



Design Patterns 

Hard to implement. Implementing Master-Slave is not easy, especially 
for parallel computation. Many different aspects must be considered 
and carefully implemented, such as how work is subdivided, how 
master and slaves should collaborate, and how the final result should 
be computed. You also must deal with errors such as the failure of 
slave execution, failure of communication between the master and 
slaves, or failure to launch a parallel slave. Implementing the Master- 
Slave pattern for parallel computation usually requires sound 
knowledge about the architecture of the target machine for the 
system under development. 

Portability. Because of the potential dependency on underlying 
hardware architectures, Master-Slave structures are difficult or 
impossible to transfer to other machines. This is especially true for 
the Master-Slave pattern for parallel computation, and similarly for 
our simple traveling-salesman program tuned for the CM5 computer. 

See also An earlier version of this pattern appeared in [PLoP94]. 

The Master-Slave Pattern for Parallel Compute Services (Bro961 
provides additional insights for implementing a Master-Slave 
structure. It differs from the structure described here, as it 
concentrates on describing the Slaves as Processes variant. 

The book Programming with Threads [KSS96] describes the Slaves as 
Threads variant in detail. 

Object Group [Maf96] is a pattern for group communication and 
support of fault tolerance in distributed applications. It corresponds 
to the Master-Slavefor fault tolerance variant and provides additional 
details for its implementation. The Object Group pattern provides a 
local surrogate for a group of replicated objects distributed across 
networked machines. A request is broadcast to all objects of the 
group. The request will succeed as long as one group member 
terminates successfully. 

Credits We thank Ken Auer, Norbert Portner, Douglas C. Schmidt, Jiri 
Soukup, and John Vlissides for their valuable criticism and 
suggestions for improvement of the [PLoP94] version of this pattern. 
Special thanks go to Phil Brooks and Jiirgen Knopp for their 
contribution to this new version, 



3.4 Access 

Sometimes a component or even a whole subsystem cannot or should 
not be accessible directly by its clients. For example, not all clients 
may be authorized to use the services of a component, or to retrieve 
particular information that a component supplies. 

In this section we describe one design pattern that helps to protect 
access to a particular component: 

The Proxy design pattern (263) makes the clients of a component 
communicate with a representative rather than to the component 
itself. Introducing such a placeholder can serve many purposes, 
including enhanced efficiency, easier access and protection from 
unauthorized access. 

[GHJV95] also describes the Proxy pattern. Our description differs in 
that it separates the general principle that underlies the pattern from 
its concrete application cases, which we describe a s  variants. We also 
provide several new variants of Proxy that are not covered by the 
Gang-of-Four version. 

The Proxy pattern is widely applicable. Almost every distributed 
system or infrastructure for distributed systems uses the pattern to 
represent remote components locally, for example OMG-Corba 
[OMG92]. A more recent application of Proxy is the World Wide Web 
[LA94], where it is used to implement the proxy servers. 

Two other patterns described in [GHJV95] also belong to this 
category-Facade and Iterator: 

The Facade pattern provides a uniform interface to a set of 
interfaces in a subsystem. Facade defines a higher-level interface 
that makes the subsystem easier to use. 

The Iterator pattern provides a way to access the elements of an 
aggregate object sequentially without exposing its underlying 
representation. 

Like the Proxy pattern, both the Facade and Iterator patterns are 
widely applicable. 



Design Patterns 

Facade shields the components of a subsystem from direct access by ' 

their clients. Vice-versa, clients do not depend on the internal 
structure of the subsystem. A facade component routes incoming 
service requests to the subsystem component that implements the 
service. Facade is therefore of larger granularity than Proxy, which 
guards access to single component. 

Iterators are offered by almost every container class in an object- 
oriented program or class library. An iterator defines the order in 
which clients can traverse and access the elements of a container. For 
example, to access all elements in a binary tree, you can define 
iterators for pre-order, in-order and post-order traversal. 



- -  

The PmnJ design pattern makes the clients of a component 
communicate with a representative rather than to the component 
Itself. Introducing such a placeholder can serve many purposes, 
including enhanced efficiency, easier access and protection from 
unauthorized access. 

Example Company engineering staff regularly consult databases for informa- 
tion about material providers, available parts. blueprints, and so on. 
Every remote access may be costly, while many accesses are similar 
or identical and are repeated often. Thls situation clearly offers scope 
for optimization of access time and cost. However, we do not want to 
burden the engineer's appllcatlon code with such optimization. The 
presence of optimization and the type used should be largely trans- 
parent to the application user and programmer. 

read(entity a); 
read(entiiy b); 
read(entity c); 

read(entity a); 
read(entity b); 

f read(entity c); 



264 Design Patterns 

Context A client needs access to the services of another component2. Direct 
access is technically possible, but may not be the best approach. 

Problem I t  is often inappropriate to access a component directly. We do not 
want to hard-code its physical location into clients, and direct and 
unrestricted access to the component may be inefficient or even inse- 
cure. Additional control mechanisms are needed. A solution to such 
a design problem has to balance some or all of the followingforces: 

Accessing the component should be run-time-efficient, cost- 
effective, and safe for both the client and the component. 

Access to the component should be transparent and simple for the 
client. The client should particularly not have to change its calling 
behavior and syntax from that used to call any other direct-access 
component. 

The client should be well aware of possible performance or 
financial penalties for accessing remote clients. Full transparency 
can obscure cost differences between services. 

Solution Let the client communicate with a representative rather than the 
component itself. This representative-called a proxy-offers the 
interface of the component but performs additional pre- and post- 
processing such as access-control checking or making read-only 
copies of the original-see below. 

Structure The original implements a particular service. Such a service may 
range from simple actions like returning or displaying data to 
complex data-retrieval functions or computations involving further 
components. 

The client is responsible for a specific task. To do its job, it invokes the 
functionality of the original in an indirect way by accessing the proxy. 
The client does not have to change its calling behavior and syntax 
from that which it uses to call local components. 

2. 'Component' is used very vaguely here intentionally. It can mean anything to 
which you do not want to give direct access for the above reasons. Some examples of 
such components are ordinary local objects, an external database. an HTML page on 
the Web or an Image embedded In a text document. 



Therefore, the proxy offers the same interface as the original, and 
ensures correct access to the original. To achieve this the proxy 
maintains a reference to the original it represents. Usually there is a 
one-to-one relationship between the proxy and the original, though 
there are exceptions to this rule for Remote and Firewall proxies, two 
variants of this general pattern. See the Variants section for more 
information. 

The abstract original provides the interface implemented by the proxy 
and the original. In a language like C++, with no notable difference 
between subtyping and inheritance, both the proxy and the original 
inherit from the abstract original. Clients code agdnst this interface 
when accessing the original. 

Class 
Client 

Responsibilities 
Uses the interface 
provided by the 
proxy to request a 
particular service. 
Fulfills its own 
task. 

Collaboratols 
Proxy 

Class Collaborator I Proxy original 

Responsibilities 
Provides the 
interface of the 
original to clients. 
Ensures a safe, 
efficient and correct 
access to the 
original. 

Responsibilities 
Serves as an 
abstract base class 
for the proxy and 
the original. 

Collaborators 

Class 
Original 

Responsibilities 
Implements a 
particular service. 

Collaborators 



Design Patterns 

The following OMT diagram shows the relationships between the 
classes graphically: 

Dynamics The following diagram shows a typical dynamic scenario of a Proxy 
structure. Note that the actions performed within the proxy differ 
depending on its actual specialization-see the Variants section for 
more information: 

While working on its task the client asks the proxy to carry out a 
service. 

r The proxy receives the incoming service request and pre-processes 
it. This pre-processing involves actions such as looking up the 
address of the original, or checking a local cache to see if the 
requested information is already available. 

r If the proxy has to consult the original to fulfill the request, it for- 
wards the request to the original using the proper communication 
protocols and security measures. 

The original accepts the request and fulfills it. It sends the 
response back to the proxy. 

The proxy receives the response. Before or after transferring it to 
the client it may carry out additional post-processing actions such 
as caching the result, calling the destructor of the original or 
releasing a lock on a resource. 



Original 

service 
P 

CE pre-processing 

post-processing 

Implementation To implement the Proxy pattern, carry out the following steps: 

1 Ident-LA all responsibilities for dealing with access control to a 
component. Attach these responsibilities to a separate component, 
the proxy. The details of this step are described in the Variants 
section. 

2 If possible introduce an abstract base class that specifies the 
common parts of the interfaces of both the proxy and the original. 
Derive the proxy and the original from this abstract base. If 
identical interfaces for the proxy and the original are not feasible 
you can use a n  adapter [GHJV95] for interface adaptation. 
Adapting the proxy to the original's interface retains the client with 
the illusion of identical interfaces, and a common base class for the 
adapter and the original may be possible again. 

3 Impkment the proxy's finctions. To this end check the roles 
specified in the first step. 

4 Free the original and its clients from responsibilities that have 
migrated into the proxy. 

5 Associate the proxy and the original by giving the proxy a handle to 
the original. This handle may be a pointer, a reference, an address, 
an identifier, a socket, a port and so on. 

6 Remove all direct relationships between the original and its clients. 
Replace them by analogous relationships to the proxy. 



Variants We describe seven variants of the generic Proxy pattern below. We 
start by summarizing the situations to which the individual variants 
are best suited: 

Remote Proxy. Clients of remote components should be shielded 
from network addresses and inter-process communication 
protocols. 

Protection Proxy. Components must be protected from unautho- 
rized access. 

Cache Proxy. Multiple local clients can share results from remote 
components. 

Synchronization Proxy. Multiple simultaneous accesses to a compo- 
nent must be synchronized. 

Counting Proxy. Accidental deletion of components must be 
prevented or usage statistics collected. 

Virtual Proxy. Processing or loading a component is costly, while 
partial information about the component may be sufficient. 

Firewall Proxy. Local clients should be protected from the outside 
world. 

The paragraphs that follow detail the characteristics and irnplemen- 
tation details of each variant. 

A Remote Proxy encapsulates and maintains the physical location of 
the original. It also implements the IPC (inter-process communi- 
cation) routines that perform the actual communication with the 
original. For every original, one proxy is instantiated per address 
space in which the senices of the original are needed. For complex 
IPC mechanisms, you can refine the proxy by shifting responsibility 
for communication with the original to a forwarder component, a s  
described in the Fonvarder-Receiver pattern (307). Analogously, 
introduce a receiver component into the original. 

For reasons of efficiency, we discern remote proxies into three cases: 

Client and original live in the same process. 

Client and original live in different processes on the same machine. 

Client and original live in different processes that run also on 
different machines. 



The first case is simple: we do not need a proxy for talking to the 
original. For the second and third cases we put fields for a remote 
address into the proxy, usually consisting of machine ID, port or 
process number and an object ID. The second case obviously does not 
need the machine ID. If you want to save the few bytes that a machine 
ID occupies, bear in mind that the differentiation between the second 
and third cases complicates the code of the proxy. The effort of 
developing such differentiation logic is usually not justified, except in 
cases where the means of inter-process communication are different 
in both cases, enforcing such differentiation logic. Even then you can 
add a thin layer on top concealing the differences between the three 
cases, thus simplifying the code that uses the addressing scheme. 
The presence of an abstract original makes it completely transparent 
to the client which of the three cases is employed. 

In high-performance applications, you often want to determine 
whether or not communication is expensive at  the application level 
before committing to an off-board request. In such cases, a remote 
proxy reveals this information. 

A Protection Proxy protects the original from unauthorized access. To 
achieve this the proxy checks the access rights of every client. You 
can most easily achieve this by using the access-control mechanisms 
your platform offers. If appropriate and possible, try to give every 
client its own set of permissions to other components. Access control 
lists are a widespread implementation of this concept. 

To implement a Cache Proxy, extend the proxy with a data area to 
temporarily hold results. Develop a strategy to maintain and refresh 
the cache. When the cache is full and you need to free up space for 
new entries, there are several strategies.you can use. For example, 
you can delete the least-frequently used cache entries, or implement 
a 'move-to-front' strategy-this is usually easier to implement and 
efficient enough. In this strategy, whenever a client accesses a cache 
entry, it is moved to the front of, say, a doubly-linked list. When new 
entries have to be added to the cache, entries can be deleted from the 
back of the list. 

You must also take care of the 'cache invalidation' problem-when 
data in the original changes, copies of this data cached elsewhere 
become invalid. If it is crucial that your application always has up-to- 
date data, you can declare the whole cache invalid whenever the 



Design Patterns 

original copy of any of its entries is changed. Alternatively, you can 
use a 'write-through strategy, well-known from microprocessor cache 
design, for finer-grained control. Whenever the original is modified all 
its copies are modified as well. Note that this becomes complicated 
when there is more than one copy, or when the copies are remote, in 
contrast to a microprocessor cache where the situation is simpler. If 
your clients can accept slightly outdated information, you can label 
individual cache entries with expiration dates. Examples of this 
strategy include World Wide Web browsers. 

A Synchronization Proxy controls multiple simultaneous client 
accesses. If it is important that only one client-r a specified number 
of clients-can access the original at a time, the proxy can implement 
mutual exclusion via semaphores [Dij65]. Alternatively, it can use 
whatever means of synchronization your operating system offers. You 
may also differentiate between read or write access. In the former 
case, you can adopt more liberal policies, for example by allowing an 
arbitrary number of reads when no write is active or pending. The 
operating system literature is a good source for studying these 
mechanisms. 

A Counting Proxy can be used for collecting usage statistics, or to 
implement a well-known technique for automatically deleting obso- 
lete objects-reference counting. To achieve this the counting proxy 
maintains the number of references that exist to the original, and 
deletes the original when this number becomes zero. You need to 
ensure that there is exactly one counting proxy for every original, and 
that every access to an original goes through a defined interface of the 
respective proxy. Also keep in mind that reference counting alone 
does not help with the problem of finding cycles of otherwise isolated 
components that refer to each other's prodes. 

The Counted Poh-iter idiom (353) illustrates a different way to 
implement a counting proxy in C++. There, the reference counter is 
inside the original or its own object, not in a handle or proxy. The 
idiom also discusses why some C++ implementations employ another 
level of indirection to refer to the reference counter, and to update the 
reference counter whenever a handle object is  created or deleted. 

A Virtual Proxy, also known as lazy construction, assumes that an 
application references secondary storage, such as the hard disk. This 
proxy does not disclose whether the original is fully loaded or whether 



Pro 

only skeletal information about it is available. Loading missing parts 
of the original is performed on demand. 

When a service request arrives and the information present in the 
proxy is not sufficient to handle the request, load the required data 
from disk and forward the request to the freshly-created or expanded 
original. If the original is already fully loaded, just forward the 
request. This forwarding should be done transparently such that 
clients always use the same interface independent of whether the 
original is in main memory or not. It is the responsibility of the client 
or an associated module to notifjr the proxy when the original, or parts 
of it, are no longer needed. The proxy then frees the space allocated. 
When several clients reference the same original, it may be 
appropriate to add the capabilities of the Synchronization and Cache 
Proxy variants. 

all Proxy subsumes the networking and protection code 
to communicate with a potentially hostile environment. 

Usually the firewall proxy is implemented as  a daemon process on a 
firewall machine, which can also be referred to as  a 'proxy server'. All 
clients who pass requests to the outside world reference this proxy. 
The proxy works behind the scenes by checking outgoing requests 
and incoming answers for compliance with internal security and 
access policies. It denies access when a request does not comply with 
such policies, or when its resources are exhausted. Clients are 
provided with an almost complete illusion of unhindered a 
outside, and do not need to go to the inconvenience of 1 
the firewall machine. Similarly, security is maintained, a s  user 
accounts are protected from attack from outside. Servers on the 
Internet are given the illusion that the proxy is the client. This allows 
the internal structure of the network behind the firewall to be hidden. 

A notable characteristic of firewall proxies is that the user needs 
'proxied' versions of client software. For example, the standard f t p  
software must be replaced by another version that contacts the proxy 
instead of directly accessing the destination machine. A consequence 
of this can be that new services can only be used when equivalent 
proxied versions of these services are available. 



Because all communication flows through the firewall proxy, it 
constitutes a potential bottleneck and provides an  ideal place for 
optimizations such as  caching. It also provides an  ideal location for 
additional tasks like logging and accounting. For more information on 
firewall design, see [CZ95]. 

Example You may often need to use more than one of the above Proxy variants 
Resolved -you may want the proxy to play several of the above roles and fulfill 

the corresponding responsibilities. Make your choice by first picking 
the desired roles, for instance virtual and cache, then thinking about 
combining these roles into one proxy. 

If combining them bloats the resulting proxy too much, split it into 
smaller objects. One example of this is factoring out complicated 
networking code into a forwarder-receiver structure-see the 
Forwarder-Receiver pattern (307). In this case the proxy is left only 
with the location information of the original and the local-versus- 
remote decision. 

You can solve remote data access problems by using proxies with the 
properties of both Remote and Cache Proxy variants. Implementing 
such a mixed-mode proxy can be accomplished by using the Whole- 
Part pattern (225). 

One part is the cache. It contains a storage area and strategies for 
updating and querying the cache. By using the 'least frequently used' 
strategy and tuning the cache size, you can cut down the cost of 
external accesses. How you solve the cache invalidation problem 
depends on whether you have control over the database or not. If you 
have, you can arrange for individual cache entries to be invalidated 
when the corresponding original database entries are modified. If not, 
each access to the cache of the combined proxy has to check whether 
an  entry found is still valid. 

The other part of the combined proxy maintains the name and 
address of the original and performs the actual IPC. If the original is, 
say, a relational data base, it translates the client request into SQL 
queries and translates results into the required format. If it is another 
type of component, use the Forwarder-Receiver pattern (307). 



Proxy 273 

Known Uses The Proxy pattern is often used in combination with the Forwarder- 
Receiver pattern (307) to implement the 'stub' concept [LPW94]. 

NeXTSTEP. The Proxy pattern is used in the NeXTSTEP operating 
system to provide local stubs for remote objects. Proxies are created 
by a special server on the first access to the remote object. The 
responsibilities of a proxy object within the NeXTSTEP operating 
system are to encode incoming requests and their arguments, and 
forward them to their corresponding remote original. 

OMG-CORBA [OMG92] uses the Proxy pattern for two purposes. So- 
called 'client-stubs', or IDL-stubs, guard clients against the concrete 
implementation of their servers and the Object Request Broker. IDL- 
skeletons are used by the Object Request Broker itself to forward 
requests to concrete remote server components. 

Orbix [Iona95], a concrete OMG-CORBA implementation, uses 
remote proxies. A client can bind to an original by specifying its 
unique identifier. In the example of C++ language support, the 
b ind  ( )  call returns a C++ pointer that the client can use to invoke 
the remote object using normal C++ function invocation syntax. 

World Wide Web Proxy [LA941 describes aspects of the CERN H T P  
server that typically runs on a firewall machine. It gives people inside 
the firewall concurrent access to the outside world. Efficiency is 
increased by caching recently transferred files. 

OLE. In Microsoft OLE [Bro94] servers may be implemented as 
libraries dynamically linked to the address space of the client, or a s  
separate processes. Proxies are used to hide whether a particular 
server is local or remote from a client. When the client calls a server 
located in its own address space, it directly invokes that server's 
Implementation. If the server is not located in the client's address 
space, a proxy takes the arguments, packages them, and generates a 
remote procedure call to the remote server. In the server process 
another proxy-referred to as a 'stub' in OLE terminology-receives 
the request, unpacks the arguments, pushes them on the stack and 
invokes the appropriate server method. If the method invocation 
returns a result, this result is packaged and transmitted back to the 
client proxy. The client proxy unpacks the result and returns it to the 
client, which remains ignorant of whether the server was local or 
remote. 



274 Deeign Patterns 

Consequences One problem with the Proxy pattern as it is described here is that not 
all forces are equally well resolved. The traditional focus is on easy 
handling and achieving a certain degree of efficiency, as stated in the 
first and second forces. But what happens when the user or program- 
mer needs to retain explicit control for fine-tuning, as requested by 
force three? One possibility is to mirror this at  the level of the source 
code by doing away with the abstract superclass. The programmer is 
then always aware of whether the object at hand is 'the real thing' [U2] 
or just a surrogate. However, this violates forces one and two. 

The Proxy pattern provides the following benefits: 

Enhanced egiciency and lower cost. The Virtual Proxy variant helps to 
implement a 'load-on-demand' strategy. This allows you to avoid un- 
necessary loads from disk and usually speeds up your application. A 
similar argument holds for the Cache Proxy variant. Be aware, how- 
ever, that the additional overhead of going through a proxy may have 
the inverse effect, depending on the application-see liabilities below. 

Decoupling clients from the location of seruer components. By putting 
all location information and addressing functionality into a Remote 
Proxy variant, clients are not affected by migration of servers or 
changes in the networking infrastructure. This allows client code to 
become more stable and reusable. Note however that a straight- 
forward implementation of a remote proxy still has the location of the 
original hard-wired into its code. The advantage of this is that it usu- 
ally provides better run-time performance. If this loss of flexibility is 
important, you can think about introducing a dynamic lookup 
scheme in addition to the proxies, as described in the Client- 
Dispatcher-Server pattern (323). 

Separation of housekeeping code from functionality. In more general 
terms, this benefit applies to all Proxy variants. A proxy relieves the 
client of burdens that do not inherently belong to the task the client 
is to perform. 



Two liabilities of the Proxy pattern can be identified: 

Less emiency due to indirection. All proxies introduce an additional 
layer of indirection. This loss of efficiency is usually negligible com- 
pared with the cleaner structure of clients and the gain of efficiency 
through caching or lazy construction that is achieved by using 
proxies. You should however check such impacts on efficiency thor- 
oughly for every application of the Proxy pattern. 

Overkill via sophisticated strategies. Be careful with intricate 
strategies for caching or loading on demand-they do not always pay. 
An example of this occurs when originals are highly dynamic, for 
example in an airline reservation or other ticket booking system. Here 
complex caching with invalidating may introduce overhead that 
defeats the intended purpose due to the rate at which the original's 
data changes. Usually, only coarse-grained entities justify the 
resultant cache maintenance effort. 

See Also The Decorator pattern [GHJV95] is very similar in structure to Proxy. 
Concretecomponent-the original in the Proxy pattern-implements 
some behavior that is invoked via a decorator-the proxy in the Proxy 
pattern. Both classes inherit from a common base. The major differ- 
ence between the Decorator and Proxy patterns is one of intent. The 
decorator adds functionality or, more generally, gives options for 
dynamically choosing functionality in addition to the core function- 
ality of Concretecomponent. The proxy frees the original from very 
specific housekeeping code. 

Credits [GHJV95] also describe the Proxy design pattern. Specifically, they 
describe four variants: the Remote, Virtual, and Protection Proxies, a s  
well as  'Smart Reference', which is a combination of aspects of our 
Counting, Virtual, and Synchronization Proxles. 

We thank the members of PLoP'95 Working Group 3 for their valuable 
criticism and suggestions for improvement of an  earlier version of this 
pattern. Ken Auer, as assigned 'shepherd' for this pattern, gave key 
advice on re-factoring the pattern into a two-level pattern language. 
as  described in [PLoP95]. 



276 

3.5 Management 

Design Patterns 

Systems must often handle collections of objects of similar kinds, of 
services, or even of complex components. One example is incoming 
events from users or other systems, which must be interpreted and 
scheduled appropriately. Another example occurs when interactive 
systems must present application-specific data in a variety of 
different ways. Such views must be handled appropriately, both 
individually and collectively. 

In well-structured software systems, separate 'manager' components 
are often used to handle such homogeneous collections of objects. We 
describe hvo deslgn patterns of this type: 

The Command Processor pattern (277) separates the request for a 
service from its execution. A command processor component 
manages requests a s  separate objects, schedules their execution 
and provides additional services such a s  the storing of request 
objects for later undo. 

The View Handler pattern (291) helps to manage views in a 
software system. A view handler component allows clients to open, 
manipulate and dispose of views, coordinates dependencies 
between views and organizes their update. 

The Command Processor pattern and the Command pattern 
[GHJV95] both use the concept of encapsulating service requests into 
command objects. However, Command Processor embeds the 
Command pattern into a structure that deals with the management 
of command objects. IGHJV95J also describes a management pattern, 
Memento: 

The Memento pattern allows you to capture and externalize a n  
object's internal state without violating encapsulation, so that its 
state can be restored later. 

Memento helps you to manage the state of a particular component. 
For example, the state of a component may need to be restored when 
a previously-executed operation is undone. Another example occurs 
when a client needs to access the state of a component, but the 
component's encapsulation must not be violated. Memento allows 
you to provide the client with a copy of its current state. 



Command Processor 

The Command Processor design pattern separates the request for a 
service from its execution. A command processor component 
manages requests as separate objects, schedules their execution, and 
provides additional services such as the storing of request objects for 
later undo. 

Example A text editor usually provides a way to deal with mistakes made by 
the user. A simple example is undoing the most recent change. A 
more attractive solution is to enable the undoing of multiple changes. 
We want to develop such an editor. For the purpose of this discussion 
let us call it TEDDI. 

1 v \ 4 #*a& Patterns book! / 

The design of TEDDI includes a multi-level undo mechanism and 
allows for future enhancements, such as the addition of new features 
or a batch mode of operation. 

The user interface of TEDDI offers several means of interaction, such 
as  keyboard input or pop-up menus. The program has to define one 
or several callback procedures that are automatically called for every 
human-computer interaction. 

Context Applications that need flexible and extensible user interfaces, or 
applications that provide services related to the execution of user 
functions, such as scheduling or undo. 



278 Design Patterns 

Problem An application that includes a large set of features benefits from a 
well-structured solution for mapping its interface to its internal 
functionality. This allows you to support different modes of user 
interaction, such a s  pop-up menus for novices, keyboard shortcuts 
for more experienced users, or external control of the application via 
a scripting language. 

You often need to implement services that go beyond the core 
functionality of the system for the execution of user requests. 
Examples are undo, redo, macros for grouping requests, logging of 
activity, or request scheduling and suspension. 

The following forces shape the solution: 

Different users like to work with an  application in different ways. 

Enhancements of the application should not break existing code. 

Additional services such a s  undo should be implemented 
consistently for all requests. 

Solution The Command Processor pattern builds on the Command design 
pattern in [GHJV95]. Both patterns follow the idea of encapsulating 
requests into objects. Whenever a user calls a specific function of the 
application, the request is turned into a command object. The 
Command Processor pattern illustrates more specifically how 
command objects are managed. The See Also section discusses 
further differences between the Command pattern and the Command 
Processor pattern. 

A central component of our pattern description, the command proces- 
sor, takes care of all command objects. The command processor 
schedules the execution of commands, may store them for later undo, 
and may provide other services such as  logging the sequence of com- 
mands for testing purposes. Each command object delegates the 
execution of its task to supplier components within the functional 
core of the application. 

Structure The abstract command component defines the interface of all 
command objects. As a minimum this interface consists of a 
procedure to execute a command. The additional services 
implemented by the command processor require further interface 
procedures for all command objects. The abstract command class of 
TEDDI, for example, defines an additional undo method. 



Command Proceseor 279 

For each user function we derive a command component from the 
abstract command. A command component implements the interface 
of the abstract command by using zero or more supplier components. 
The commands of TEDDI save the state of associated supplier 
components prior to execution, and restore it in case of undo. For 
example, the delete command is responsible for storing the text 
deleted and its position in the document. 

class 1 ~ollab~rators 
Abstract Command 

Responsibi llty 
Defines a uniform 
interface to execute 
commands. 
Extends the inter- 
face for servlces of 
the command pro- 
cessor, such as 
undo and logging. 

Responsibility 
Encapsulates a 
function request. 
Implements inter- 
face of abstract 
command. 
Uses suppliers to 
perform a request. 

Class 
Command 

The controUer represents the interface of the application. It accepts 
requests, such as  'paste text,' and creates the corresponding 
command objects. The command objects are then delivered to the 
command processor for execution. The controller of TEDDI maintains 
the event loop and maps incoming events to command objects. 

The command processor manages command objects, schedules them 
and starts their execution. It is the key component that implements 
additional services related to the execution of commands. The 
command processor remains independent of specific commands 
because it only uses the abstract command interface. In the case of 
our TEDDI word processor, the command processor also stores 
already-performed commands for later undo. 

Collaborators 
Supplier 

The supplier components provide most of the functionality required to 
execute concrete commands (that is. those related to the concrete 
command class, as opposed to the abstract command class). Related 
commands often share supplier components. When an  undo 
mechanism is required, a supplier usually provides a means to save 
and restore its internal state. The component implementing the 
internal text representation is the main supplier in TEDDI. 



Design Patterns 

Controller I '  
Responsibi litg 

Accepts service 
requests. 
Translates requests 
into commands. 
Transfers com- 
mands to command 
processor. 

Collaborators 
Command 
Processor 
Command 

Command Processo~ r 
Responsibility 

Activates command 
execution. 
Maintains 
command objects. 
Provides additional 
services related to 
command execu- 
tion. 

Co2laborators 
Abstract 
Command 

Responsibility 
Provides a plica- 
tion speci ic func- 
tionality 

P 

Class 
Supplier 

The following diagram shows the principal relationships between the 
components of the pattern. It  demonstrates undo as an example of an 
additional service provided by the command processor. 

Collaborators 

Abstract 
Processor Command 

stores 
command-stack 

do-it (cmd] 
undo-it 

transfer Command 
- 

command P 

state-for-undo - 
P 

uses 
Controller - 

creates do - 
event-loop undo 

app-functions 
get-state 
restore-state 



Command Processor 28 1 

Dynamics The following diagram shows a typical scenario of the Command 
Processor pattern implementing an  undo mechanism. A request to 
capitalize a selected word arrives, is performed and then undone. The 
following steps occur: 

The controller accepts the request from the user within its event 
loop and creates a 'capitalize' command object. 

The controller transfers the new command object to the command 
processor for execution and further handling. 

The command processor activates the execution of the command 
and stores it for later undo. 

The capitalize command retrieves the currently-selected text from 
its supplier, stores the text and its position in the document, and 
asks the supplier to actually capitalize the selection. 

After accepting an undo request, the controller transfers this 
request to the command processor. The command processor 
invokes the undo procedure of the most recent command. 

The capitalize command resets the supplier to the previous state, 
by replacing the saved text in its original position 

If no further activity is required or possible of the command, the 
command processor deletes the command object. 

Controller 1 I Command ( I ~uppller 1 
I 

request - 
undo 
d 
request 

I I Processor I I I 
I I I I 

Capitalize 
I Command 

Capitalize do-it Command - 
b do 

b 
A - 

undo-it 
_.______) 



282 Dedgn Patterns 

Implementation To implement this pattern. carry out the following steps: 

1 Define the interface of the abstract command. The abstract command 
class hides the details of all specific commands. This class always 
specifies the abstract method required to execute a command. It also 
defines the methods necessary to implement the additional services 
offered by the command processor. An example is a method 
'getNameAndParameters' for logging commands. 

r For the undo mechanism in TEDDI we distinguish three types of 
commands. They are modeled as an enumeration, because the 
command type may change dynamically, as shown in step 3: 

No change. A command that requires no undo. Cursor movement falls 
into this category. 

Normal. A command that can be undone. Substitution of a word in 
text is an example of a normal command. 

No undo. A command that cannot be undone, and which prevents the 
undo of previously performed normal commands. 

If we want our text to become 'politically correct' and replace all 
occurrences of 'he' by 'he/she', TEDDI would need to store all 
corresponding locations in the document to enable later undo. The 
potentially high storage requirement of global replacements is the 
main reason why commands belong to the category 'no undo'. 

class AbstractCommand { 
public: 

enum CmdType { no-change, normal, no-undo 1 ;  
virtual -AbatractCommand ( ) ; 
virtual void doit(); 
virtual void undo ( ) ; 
CmdType getType0 const { return type;) 
virtual String getName0 const { return "NONAME" ; 1 

/ /  gives name of command for selection 
/ /  in undo/redo menu 

protected: 
CmdType type; 
Abstractcommand (CmdType t=no-change) : type (t) { I  

1 ;  

The method getName ( )  is used to display the most recent command 
to the user when he selects 'undo'. Ll 



Command Processor 283 

2 Design the command components for each type of request that the 
application supports. There are several options for binding a 
command to its suppliers. The supplier component can be hard- 
coded within the command. or the controller can provide the supplier 
to the command constructor as a parameter. An example of the 
second situation is a multi-document editor in which a command is 
connected to a specific document object. 

b The 'delete' command of TEDDI takes the object representing the 
text as its first parameter. The range of characters to delete is 
specified by two additional parameters: 

class DeleteCmd : public AbstractCommand { 
public: 

DeleteCmd(TEDD1-Text *t, int start, int end) 
: AbstractCommand(norma1) , mytext(t) , 

from (start) , to (end) I / * .  . .*/I 
virtual -DeleteCmd ( )  ; 
virtual void doit(); 

/ /  delete characters in mytext 
/ /  between from and to and save them in delstr 

virtual void undo0 ; 
/ /  insert delstr again at position from 

String getName 0 const { return "DELETE + delstr; I 
protected: 

TEDDI-Text *mytext;// plan for multiple text buffers 
int from,to; / /  range of characters to delete 
String delstr; / /  save deleted text for undo 

l ;  

The implementation of the method doi t ( ) calls the method 
deleteText ( ) of the TEDDI-Text supplier object. Q 

A command object may ask the user for further parameters. The 
TEDDI 'load text file' command, for example, activates a dialog to 
request the name of the file to be loaded. In this situation the event- 
handling system must deliver user input to the command, rather 
than to the controller. Commands that require user interaction 
during their creation or execution therefore call for additional care. 
The design of the event-handling system-which is outside the scope 
of this pattern-must be able to handle such situations. 

Undoable commands can use the Memento pattern (GHJV951 to store 
the state of their supplier for later undo without violating 
encapsulation. 

4 



Design Patterns 

3 Increase flexibility b y  providing macro commands that combine 
several successive commands. Apply the Composite pattern 
[GHJV95] to implement such a macro command component. 

b In TEDDI we implement a macro command class, to allow user- 
defined shortcuts to frequently-used command sequences: 

class MacroCmd : public AbstractCommand ( 
public : 

MacroCmd(String name, AbstractCommand *first) 
: AbstractCommand( first->getTypeO 1 ,  

macroname(name) I / * . . . * / }  
virtual -MacroCmd ( ) ; 
virtual void doit 0 ; 

/ /  do every command in cmdlist 
virtual void undo ( )  ; 

/ /  undo all commands in cmdlist in reverse order 
virtual void finish() ; / /  delete commands in cmdlist 
void add(AbstractCommand *next) I 

cmdlist.append(next); 
if (next->getType() == no-undo) type = no-undo; 
/ *  ... * / I  

String getName0 const return macroname;} 
protected: 

String macroname; 
OrderedCollection<AbstractCommand*~ cmdlist; 

1 ;  

The command type of a MacroCmd depends on the commands that are 
added to the macro. An appended command of type no-undo will 
prevent the undo of the complete macro command. The undo function 
otherwise iterates through cmdl i s t in reverse order undoing all 
normal commands and skipping all commands of type no-change. D 

4 Implement the controller component. Command objects are created by 
the controller, for example with the help of the 'creational' patterns 
Abstract Factory and Prototype [GHJV95]. However, since the 
controller is already decoupled from the supplier components, this 
additional decoupling of controller and commands is optional. A 
generic menu controller provides an example of the application of the 
Prototype pattern. Such a controller contains a command prototype 
object for each menu entry, and passes a copy of this object to the 
command processor whenever the user selects the menu entry. If 
such a menu controller can be dynamically configured with macro 
command objects, we can easily implement user-defined menu 
extensions. 



Command Processor 285 

r In TEDDI user interaction is handled by callback procedures in 
the controller. A callback creates the corresponding command object 
and passes it to the command processor. TEDDI uses a global vari- 
able theCP that refers to the single command processor component. 

void ~~~~~~controller::deleteButtonPressed~) { 
Abstractcommand *delcmd = 

new DeleteWordCommand( 
this->getcursor(),// pass cursor position 
this ->getText ( )  ) ; / /  pass text 

theCP->perf orm (delcmd) ; 
1 

On start-up the callback del eteBu t tonpres sed ( ) is registered with 
the event-handling system. Li 

5 lrnplernent access to the additional services of the command processor: 
A user-accessible additional service is normally implemented by a 
specific command class. The command processor supplies the 
functionality for the 'do' method. Directly calling the interface of the 
command processor is also an option. Other intrinsic services such 
as  logging of commands are performed automatically by the 
command processor. 

r The class Undocommand provides access to the undo mechanism 
of TEDDI. The implementation of this class cooperates with the 
internals of the command processor and is thus declared a friend to 
it. Note that Undocommand objects must not be stored by the 
command processor, and fall in the category no-change. 

class UndoComand : public AbstractCommand { 
public : 

UndoComand ( ) 
: Abstractcommand (no-change) ( 1  

virtual -Undocommand ( ) ; 
virtual void doit() { theCP->undo-lastcmdo; ] 

1 ;  

The method doi t ( ) of Undocommand asks the command processor to 
undo the last normal command executed. A class Redocommand 
provides the inverse functionality. Its method doi t ( ) makes the 
command processor re-execute the undone command. Li 



Design Patterns 

6 Implement the command processor component. The command 
processor receives command objects from the controller and takes 
responsibility for them. For each command object, the command 
processor starts the execution by calling the do method. A command 
processor implemented in C++, for example, is responsible for 
deleting command objects that are no longer useful. 

Apply the Singleton design pattern [GHJV95] to ensure that only one 
command processor exists. 

h For TEDDI we implement a multi-level undo/redo with two 
stacks, one for performed commands and one for undone commands: 

class Commandprocessor { 
public : 

CommandProcessorO; 
virtual -CommandProcessorO; 
virtual void do-cmd(AbstractCommand *cmd) ( 

/ /  do cmd and push it on donestack 
cmd->doit ( )  ; 
switch(cmd->getTypeO) I 
case AbstractCommand::normal: 

donestack .push (cmd) ; break; 
case AbstractCommand::no-undo: 

donestack .make-empty ( 1  ; 
undonestack.make-empty(); 
/ /  Fall through: 

case AbstractCommand::no-change: 
/ /  take responsibility for command objects: 
delete cmd; 
break; 

1 
1 
friend class UndoCommand; / /  special relationship 
friend class RedoCommand; / /  special relationship 

private: 
/ /  this method is only used by UndoCommand 
virtual void undo-lastcmd0 ; 

/ /  pop cmd from donestack, 
/ /  undo it, and push it on undonestack 

/ /  this method is only used by RedoCommand 
virtual void redo-lastundone0 { 

AbstractCommand *last = undonestack.pop0; 
if (last) this->do-cmd(1ast) ; 

1 
private: 

Stack<AbstractCommand*> donestack,undonestack; 
1 ; cl 



Command Processor 287 

Variants Spread controllerfunctionality. In this variant the role of the controller 
can be distributed over several components. For example, each user 
interface element such as a menu button could create a command 
object when activated. However, the role of the controller is not 
restricted to components of the graphical user interface. 

Combination with Interpreter pattern. In this variant a scripting lan- 
guage provides a programmable interface to an application. The 
parser component of the script interpreter takes the role of the con- 
troller. Apply the Interpreter pattern (GHJV951 and build the abstract 
syntax tree from command objects. The command processor is the 
client in the Interpreter pattern. It carries out interpretation by acti- 
vating the commands. 

Known Uses El'++ [WGM88] provides a framework of command processors that 
support unlimited, bounded, and single undo and redo. The abstract 
class Command implements a state machine to track the execution 
state of each command. This state machine is used to check if a 
command is performed or undone. The controller role is distributed 
over the event-handler object hierarchy of an ET++ application. 

MacApp (App891 uses the Command Processor design pattern to 
provide undoable operations. 

Interviews [LCITV!32] includes an action class that is an abstract 
base class providing the functionality of a command component. 

ATM-P (ATM931 implements a simplified version of the Command 
Processor pattern. It uses a hierarchy of command classes to pass 
command objects around, sometimes across process boundaries. The 
receiver of a command object decides how and when to execute it. 
Each process implements its own command processor. 

SICAT [SICAT951 implements the Command Processor pattern to 
provide a well-defined undo facility in the control program and the 
graphical SDL editors. 



288 Design Patterns 

Consequences The Command-Processor pattern provides the following benefits: 

Flexibility in the way requests are activated. Different user interface 
elements for requesting a function can generate the same kind of 
command object. It is thus easy to remap user input to application 
functionality. This helps to create a n  application interface that can be 
adapted to user preferences. An example is a text editor that provides 
different control modes such as  a WordStar or an  emacs keyboard. 

FZexibility in the number and functionality of requests. The controller 
and command processor are implemented independently of the 
functionality of individual commands. Changing the implementation 
of a command or introducing new command classes does not affect 
the command processor or other unrelated parts of the application. 
For example, it is possible to build more complex commands from 
existing ones. In addition to a macro mechanism, such compound 
commands can be pre-programmed, and thus extend the application 
without modifjing the functional core. 

Programming execution-related services. The central command 
processor easily allows the addition of services related to command 
execution. An advanced command processor can log or store 
commands to a file for later examination or replay. A command 
processor can queue commands and schedule them at  a later time. 
This is useful if commands should execute a t  a specified time, if they 
are handled according to priority, or if they will execute in a separate 
thread of control. An additional example is a single command 
processor shared by several concurrent applications that provides a 
transaction control mechanism with logging and rollback of 
commands. 

Testability at application level. The command processor is a n  ideal 
entry point for application testing. If combined with the Interpreter 
pattern [GHJV95] a s  in the second variant above, regression tests can 
be written in the scripting language and applied after changes to the 
functional core. Furthermore, logging of command objects executed 
by the command processor allows you to analyze error situations. If 
the sequence of executed commands is stored persistently, it can be 
re-applied after error correction, or reused for regression testing. 



Command Processor 289 

Concurrency. The Command Processor design pattern allows com- 
mands to be executed in separate threads of control. Responsiveness 
improves, because the controller does not wait for the execution of a 
command to finish. However, this calls for synchronization when the 
global variables of the application, for example in a supplier compo- 
nent, are accessed by several commands executing in parallel. 

The Command Processor pattern imposes some liabilities: 

Egiciency loss. As with all patterns that decouple components, the 
additional indirection costs storage and time. A controller that 
performs a service request directly does not impose an efficiency 
penalty. However, extending such a direct controller with new 
requests, changing the implementation of a service, or implementing 
an undo mechanism all require more effort. 

Potentid for an excessive number of command classes. An application 
with rich functionality may lead to many command classes. You can 
handle the complexity of this situation in a number of ways: 

By grouping commands around abstractions. 

By unifying very simple command classes by passing the supplier 
object as  a parameter. 

By pre-programmed macro-command objects that rely on the 
combination of few low-level commands. 

Complexity in acquiring command parameters. Some command 
objects retrieve additional parameters from the user prior to or during 
their execution. This situation complicates the event-handling 
mechanism, which needs to deliver events to different destinations, 
such as  the controller and some activated command object. 

See also The Command Processor pattern builds on the Command design 
pattern in [GHJV95]. Both patterns depict the idea of encapsulating 
service requests into command objects. Command Processor contrib- 
utes more details of the handling of command objects. The controller 
of the Command Processor pattern takes the role of the client in the 
Command pattern. The controller decides which command to use and 
creates a new command object for each user request. 

In the Command pattern, however, the client configures an invoker 
with a command object that can be executed for several user 



requests. The command processor receives command objects from 
the controller and takes the role of the invoker, executing command 
objects. The controller from the Command Processor pattern takes 
the role of the client, The suppliers of the Command Processor 
pattern correspond to receivers, but we do not require exactly one 
supplier for a command, 

Credits Studying the CommandProcessor classes of ET++ rWGM881 initially 
motivated this pattern description. The Siemens SICAT team 
[SICAT951 pointed out the problems with event handling that occur 
when a command acquires additional parameters from the user 
during execution. 



View Handler 

The View Handler design pattern helps to manage all views that a 
software system provides. A view handler component allows clients to 
open, manipulate and dispose of views. It also coordinates 
dependencies between views and organizes their update. 

Example Multi-document editors allow several documents to be worked on 
simultaneously. Each document is displayed in its own window. 

le Edlt Format Vlew Special Graphlcs Table Windm Help 
I Plnne 

To use such editors effectively, users need support for handling win- 
dows. For example, they might want to clone a window to work with 
several independent views of the same document. Users also often do 
not close open windows before quitting the editor. It is the task of the 
system to keep track of all open documents and to close them care- 
fully. Changes in one window may affect other windows as well. We 
therefore need an efficient update mechanism for propagating 
changes between windows. 

Context A software system that provides multiple views of application-speclfic 
data. or that supports working with multiple documents. 

Problem Software systems supporting multiple views often need additional 
functionality for managing them. Users want to be able conveniently 



Des 

to open, manipulate, and dis ose of views, such as  windows and their 
contents. Views must be c rdinated, so that an  update to one of 
them is propagated automatic to related views. 
drive the solution to this problem: 

Managing multiple views ould be easy from the user's 
d also for client components thin the system. 

a Implementations of individual views should not depend on each 
other or be mixed with the code used to m 

@ View implementations can vary, es of views may 
be added during the lifetime of the system. 

eparate the management of views from the code required to present 
or control specific views. 

A view handler component m ages all views that the software 
It offers the necessary nctionality for opening, 

closing specific views, and also for handling views- 
for example, a comm d to 'tile' all views, that is, arr 
orderly pattern. 

pecific views, t nctionality for their presentation and 
control, are enca separate view components--one for 
each kind of view. Suppliers provide views th the data they must 
present. 

The View Handler pattern adapts the idea of separ 
nal core, as proposed the Model-View-Controller 
. It does not provide an rall structure for a software 

system by itself-it only r oves the responsibility of m 
entirety of views and thei tual dependencies from the model and 
view components. The pattern gives this responsibility to the view 
handler. For example, a view does not need to manag ubviews. 
The View Handler pattern, therefore, is of finer gr than the 
Model-View-Controller pattern-it ne the relationshi 
between the model and its associated views. 

You can consider the view handler component as an Abstract Factory 
and as a Mediator an abstract factory 

lients are independen views are created. It 
ator because clients endent of how views 



View Handler 

b In the example of a document editor, we provide one view 
component for each type of document window. The system provides 
windows to edit documents, to preview printed output, and to see 
'thumbnails' of document pages. A view handler manages these 
views. Besides creation and deletion of windows, the view handler 
offers functions to bring a specific window to the foreground, to clone 
the foreground window, and to tile all open windows so that they do 
not overlap. The suppliers of the windows are the documents to be 
displayed. There can be multiple simultaneous views of a document, 
and multiple documents can be displayed. Ci 

Structure The view handler is the central component of this pattern. I t  is re- 
sponsible for opening new views, and clients can specify the view they 
want. The view handler instantiates the corresponding view compo- 
nent, takes care of its correct initialization, and asks the new view to 
display itself. If the requested view is open already, the view handler 
brings this open view to the foreground. If the requested view is open 
but iconized, the view handler tells the view to display itself full size. 

The view handler also offers functions for closing views, both 
individual ones and all currently-open views, a s  is needed when 
quitting the application. 

The main responsibility of the view handler, however, is to offer view 
management services. Examples include functions to quickly bring a 
specific view into the foreground, to tile all views, to split individual 
views into several parts, to refresh all views, and to clone views to 
provide several views of the same document. Such management 
functionality would be hard to organize if its implementation were 
spread over many different view components. 

Class 
View Handler 

ResponsibiliCy 
Opens, 
manipulates, and 
disposes of dews of 
a software system. 

Collabomtors 
Specific View 



Design Patterns 

An additional responsibility of the view handler is coordination. There 
may be dependencies between views such as occurs, for example, if 
several views display different parts of a compound document, such 
as  VObjectText objects in ET++ [WGM88]. Such views should be 
placed next to each other when tiling them. If a user modifies one view 
of the document, it may be necessary to update the others in a 
predefined order. For example, views that show the most global 
information should be updated first. 

An abstract view component defines an interface that is common to 
all views. The view handler uses this interface for creating, coordinat- 
ing, and closing views. The platform underlying the system uses the 
interface to execute user events, for example the resizing of a window. 
The interface of the abstract view must offer a corresponding function 
for all possible operations that can be performed on a view. 

Specific view components are derived from the abstract view and 
implement its interface. In addition, each view implements its own 
display function. This retrieves data from the view's suppliers, 
prepares this data for display, and presents them to the user. The 
display function is called when opening or updating a view. 

Class 
Abstract View 

Responsibility 
Defines an 
interface to create, 
initialize, 
coordinate, and 
close a speciflc 
view. 

Collaborators 

Responsibility 
Implements the 
abstract interface. 

Class 
Specific View 

Supplier components provide the data that is displayed by view com- 
ponents. Suppliers offer a n  interface that allows clients--such a s  
views-to retrieve and change data. They notify dependent compo- 
nents about changes to their internal state. Such dependent 
components are individual views or, in the case where the view 
handler organizes updates, the view handler itself. 

Collaborators 
Supplier 



View Handler 

Class l Collaborators 

Implements the 
interface of the 
abstract view--one 
class for each view 
onto the system. 

The following OMT class diagram shows the structure of the View 

1 

Handler pattern: 

i 

Suppller 

Responsibility 

update kies"e 

Specific View 
View Handler 

I - 

display 
initiallze 

creates, closes, and 
coordinates 
A 

notifies 
update 
open 

Supplier close - move 
size 

attach - 
detach +1 retrieves retrieves 
getData data data 
setData 'notifies 

I""" " 

Abstrac tView 

display 
update 
initialize 
open 
close 

display 
initialize 
update 
open 
close 
move 
size 

move 
size 

A 

Dynamics We select two scenarios to illustrate the behavior of the View Handler 
pattern: view creation and tiling. Both scenarios assume that each 
view is displayed in its own window. 



Design Patterns 

Scenario I shows how the view handler creates a new view. The 
scenario comprises four phases: 

A client-which may be the user or another component of the 
system-calls the view handler to open a particular view. 

The view handler instantiates and initializes the desired view. The 
view registers with the change-propagation mechanism of its 
supplier, as specified by the Publisher-Subscriber pattern (339). 

The view handler adds the new view to its internal list of open 
views. 

The view handler calls the view to display itself. The view opens a 
new window, retrieves data from its supplier, prepares this data for 
display, and presents it to the user. 

Scenario II illustrates how the view handler organizes the tiling of 
views. For simplicity, we assume that only two views are open. The 
scenario is divided into three phases: 

The user invokes the command to tile all open windows. The 
request is sent to the view handler. 

For every open view, the view handler calculates a new size and 
position, and calls its resize and move procedures. 



View Handler 

Implementation 

Each view changes its position and size, sets the corresponding 
clipping area, and refreshes the image it displays to the user. We 
assume that views cache the image they display. If this is not the 
case, views must retrieve data from their associated suppliers 
before redisplaying themselves. 

tile - 
- 

The implementation of a View Handler structure can be divided into 
four steps. We assume that the suppliers already exist, and include a 
suitable change-propagation mechanism. 

Idenhfy the views. Specify the types of views to be provided and how 
the user controls each individual view. 

Specify a common interfae for all views. This should include func- 
tions to open, close, display, update, and manipulate a view. The 
interface may also offer a function to initialize a view. This can be 
used, for example, to configure a view with data from a particular 
supplier. Encapsulate the interface in an abstract class. For some 
functions, for example view update, it is often possible to provide a 
default implementation. 

s For our document editor example we specify the class 
Abs tractview. The protected interface of the Abs trac tvi ew class 
includes methods to display and delete a window, and to display the 
window's contents. The public interface includes methods to open, 
close, move, size, drag, and update a view, as well a s  an initialization 
method. 



Design Patterns 

class AbstractView I 
protected: 

/ /  Draw the view 
virtual void displayData0 = 0; 
virtual void displayWindow(Rectang1e boundary) = 0; 
virtual void erasewindow0 = 0; 

public: 
/ /  Constructor and Destructor 
AbstractView ( )  ( 1  ; 
-Abstractview ( ) {I ; 
/ /  Initialize the view 
void initialize0 = 0; 
/ /  View handling with default implementation 
virtual void open(Rectang1e boundary) I / *  . . .  * /  I ;  
virtual void close 0 [ / *  . . . * /  1 ; 
virtual void move(Point point) I / *  . . .  * /  1; 
virtual void size(Rectang1e boundary) { /*  . . . * /  ) ; 
virtual void drag(Rectang1e boundary) I / *  . . .  * /  I; 
virtual void update ( )  { / *  . . . * /  1 ; 

I; C3 

3 Implement the views. Derive a separate class from the ~ b s  tractview 

class for each specific type of view identified in step 1. Implement the 
view-specific parts of the interface, such as the displayData 0 
method in our example. Override those methods whose default 
implementation does not meet the requirements of the specific view. 

If the view handler implements specific coordination and update 
policies, views must notify it about all events that may affect other 
views. For example, previously-hidden parts of other views can 
become visible when resizing a view. If the view handler coordinates 
the update of these views, it must be notified about the resizing. The 
Publisher-Subscriber pattern (339) helps with implementing such a 
change notification. 

r In our example we implement three view classes: Editview, 
Layoutview, and Thumbnailview, as specified in the solution 
section. We do not need to override the default implementations 
inherited from the Abs tractview class for their implementation. L l  

4 Define the view handler; Implement functions for creating views as 
Factory Methods [GHJV95]. Clients can specify the view they want, 
but they do not control how it is created. The view handler is 
responsible for instantiating and initializing the correct view 
component. 



View Handler 299 

The view handler maintains references to all open views internally. 
The Iterator pattern [GHJV95] can help you to implement this 
functionality. The view handler may also maintain additional 
information about views, such as the current position and size of a 
window on the screen. The view handler's management functionality, 
such as operations for cloning windows, uses this information. 

Your view handler may need to implement application-specific view 
coordination policies. For example, one view may present information 
about another view, for example logging information about a n  
animated simulation. Tiling should place these two dependent views 
next to each other or, if both views are iconized, opening one view 
should open the other as well. 

Update strategies are another example of view coordination. It may be 
necessary, for example, to give a higher priority to the update of 
particular views. For instance, a view that displays alarms may need 
to be updated before other open views. In such a case, the suppliers 
notify the view handler about changes, rather than dependent views. 
The view handler forwards these requests to affected views using its 
update strategy. View handlers that coordinate the update of views 
usually offer an update function in their public interface. 

To allow coordination strategies to be exchangeable they can be 
implemented with the Strategy pattern [GHJV95]. The Mediator 
design pattern (GHJV95) helps with implementing view coordination, 
for example by broadcasting a refresh request to all open views. Use 
the Singleton pattern [GHJV!351 to ensure that the view handler class 
can only be instantiated once. 

b The view handler in our example document editor provides 
functions to open and close views, as well a s  to tile them, bring them 
to the foreground, and clone them. Internally the view handler 
maintains references to all open views, including information about 
their position and size, and whether they are iconized. 

class ViewHandler { 
/ /  Data structures 
struct ViewInfo ( 

Abstractview* view; 
Rectangle boundary; 
boo1 iconized; 

I ; 



Design Patterns 

Container<ViewInfo*> myviews; 
/ /  The singleton instance 
static ViewHandler* theViewHandler; 
/ /  Constructor and Destructor 
ViewHandler ( ) ; 
-ViewHandler() ; 

public: 
/ /  Singleton constructor 
static ViewHandler* makeViewHandler0 ; 

/ /  Open and close views 
void open(AbstractView* view); 
void close (Abstractview* view) ; 

/ /  Top, clone, and tile views 
void top(AbstractViewC view); 
void clone(); / /  Clones the top-most view 
void tile ( )  ; 

I ;  
The following code illustrates the creation of new views. 
defaultBoundary is an object of class Rectangle and defines the 
default position and size for every new window. The code implements 
Scenario I of the Dynamics section. 

void ViewHandler::open~iew(AbstractView* view) { 
ViewInf o* viewInfo = new ViewInfo() ; 

/ /  Add the view to the list of open views 
viewInfo->view = view; 
viewInfo->boundary = defaultBoundary; 
viewInfo->iconized = false; 
myviews .add (viewInf o) ; 

/ /  Initialize the view and open it 
view->initialize 0 ; 
view->open (def aul tBoundary) ; 

1 ; 

Variants View Handler with Command objects. This variant uses command 
objects [GHJV95] to keep the view handler independent of specific 
view interfaces. Instead of calling view functionality directly, the view 
handler creates an  appropriate command and executes it. The 
command itself knows how to operate on the view. For example, we 
can specify a tile command that, when executed, first calls the size 



View Handler 30 1 

and then the move function of a view. Another option is to create 
commands and pass them to a command processor (277) which takes 
care of their correct execution, but also allows for additional 
functionality such as undoing an executed command. 

Known Uses Macintosh Window Manager [App85]. The Window Manager is the 
part of the Macintosh toolbox that can be compared to a view handler 
component. Its interface offers functions for window allocation, 
window display, mouse location, window movement and sizing, and 
update region maintenance. It also provides a data structure that 
underlies every Macintosh window. Parts of the interface for Pascal 
are as  follows: 

TYPE WindowRecord = RECORD 
port : Graf Port ; {window's grafport) 
windowKind: INTEGER; {window class) 
visible: BOOLEAN; {TRUE if visible] 
bore record elements . . . ) 
ref Con : LONGINT {window's reference value) 

END ; 

FUNCTION Newwindow( {lots of parameters) 1 : WindowPtr; 
PROCEDURE CloseWindow(theWindow: WindowPtr) ; 

PROCEDURE SelectWindow(theWindow: WindowPtr) ; 
PROCEDURE HideWindow(theWindow: WindowPtr) ; 
PROCEDURE ShowWindow(theWindow: WindowPtr) ; 

PROCEDURE BringToFront(theWindow: WindowPtr) ; 
PROCEDURE SendBehind(theWindow, behindwindow: WindowPtr) ; 

FUNCTION FindWindow(thePt: Point; 
VAR whichwindow: WindowPtr) : INTEGER; 

PROCEDURE MoveWindow(theWindow: WindowPtr; 
hGlobal, vGlobal : INTEGER; front : BOOLEAN) ; 

PROCEDURE DragWindow(theWindow: WindowPtr; 
startPt: Point; boundsRect: Rect); 

PROCEDURE SizeWindow(theWindow: WindowPtr; 
w,h: INTEGER; fUpdate: BOOLEAN) ; 

PROCEDURE BeginUpdate(theWind0w: WindowPtr) ; 
PROCEDURE Endupdate (thewindow: WindowPtr ) ; 

The Macintosh Window Manager does not offer functions that operate 
on several or all windows, it only provides support for handling 
individual windows. The Macintosh Window Manager can therefore 
be viewed as  a low-level view handler component. 



Design Patterns 

rd [Mic93b]. The Microsoft Word word-processing 
system offers functions for cloning, splitting, and tiling windows, and 
also for bringing an open window into the foreground. Quitting Word 
closes all open windows; dialogs are displayed requesting the desired 
action if a window contains data that has been changed but not 
saved. This provides an example of how a View Handler system can 
appear to the user, and the functionality it can provide. 

The View Handler pattern provides the following 

UniJorrn handling of views. All views share a common interface. The 
view handler and all other components of the system can therefore 
handle and manipulate all views uniformly, independent of what they 
display and how they are implemented. 

Extensibility and changeabilQ of views. The organization of view 
components in an inheritance hierarchy with an abstract base 
supports the integration of new views without changes to existing 
views and the view handler. Since individual views are encapsulated 
within separate components, changes to their implementation do not 
affect other components of the system. 

Application-specin view coordination. Since views are managed by a 
central instance, it is possible to implement specific view coordination 
strategies. 

The View Handler pattern also suffers from the following li 

Restricted applicability. Using the View Handler pattern is only 
worthwhile if the system must support many different views, views 
with logical dependencies between each other, or views which can be 
configured with different suppliers or output devices. It is also useful 
if the system must implement specific view coordination strategies. If 
none of these apply, the View Handler pattern just introduces 
additional implementation effort and increases the internal 
complexity of the system. 

E- iency .  The view handler component introduces a level of 
indirection between clients that want to create views, and also within 
the chain of propagation of change notifications, if the view handler 
is responsible to organizing view updating. This results in a loss of 
performance. In most cases these losses are negligible, however. 



View Handler 303 

See also The Model-View-Controller architectural pattern (125) provides an 
infrastructure for separating functionality from both input and 
output behavior. From the perspective of MVC the View Handler 
pattern is a refinement of the relationship between the model and its 
associated views. 

The Presentation-Abstraction-Control architectural pattern (145) 
implements the coordination of multiple views according to the 
principles of the View Handler pattern. An intermediate level PAC 
agent that creates and coordinates views corresponds to the view 
handler. Bottom-level view PAC agents that present data to the user 
represent the view components. 

Credits Special thanks go to Dirk Riehle, who carefully reviewed a n  earlier 
version of this pattern. 





3.6 Communication 

Only few of today's medium and large-scale software systems run on 
a single computer-most of them use networks of computers. There 
are many reasons for this: 

Distributed systems allow better sharing and utilization of the 
resources available within the network. 

Fast but expensive server machines may host central services such 
as database management systems, while inexpensive workstations 
can access these services remotely. 

Work within corporations is inherently distributed, and therefore 
distributed software systems that implement the business logic 
match this organization of work. 

The distribution of applications imposes an important requirement. 
Distributed subsystems must collaborate, and therefore need a 
means of communicating with each other. It is not possible to even 
think of distributed systems without having communication in mind. 
The problem with communication, however, is that there are so many 
mechanisms to choose from. Take UNIX as  an example. Here, you 
might use TCP/IP, sockets. TLI (Transport Layer Interface) or RPCs 
(Remote Procedure Calls), to name only a few. 

The use of communication facilities is often hard-wired into existing 
applications, leading to various problems. It may be difficult or even 
impossible to change the communication mechanism later, due to the 
fact that distributed systems depend directly on the communication 
mechanism used. Portability is another important issue. Finally, the 
migration of subsystems from one network node to another is only 
possible if the communication facility allows it. 

There are several ways to loosen the coupling between components of 
a distributed system and the mechanism it uses for communication. 
Two of the most important aspects in this context are encapsulation 
and location transparency. Encapsulation of communication facilities 
means hiding the details of the underlying communication 
mechanism from its users. This is often done by providing an abstract 
programming interface on top of the low-level communication 



Design Patterns 

facilities. Location transparency allows your applications to access 
remote components without any knowledge of their physical location. 

In this section we present two patterns that address these topics: 

The Forwarder-Receiver design pattern (307) provides transparent 
inter-process communication for software systems with a peer-to- 
peer interaction model. It introduces forwarders and receivers to 
decouple peers from the underlying communication mechanisms. 

The Client-Dispatcher-Semer design pattern (323) introduces an 
intermediate layer between clients and servers, the dispatcher 
component. It provides location transparency by means of a name 
service, and hides the details of the establishment of the 
communication connection between clients and servers. 

While the Forwarder -Receiver pattern provides encapsulation, Client- 
Dispatcher-Server offers location transparency. If you need to 
support both encapsulation and location transparency, you could 
combine these patterns. 

Keeping cooperating components consistent is another problem in 
communication. This problem is independent of whether or not a 
system consists of distributed components. Consistency is a general 
issue you need to consider whenever several components cooperate 
to solve a particular task. 

In this section we describe one pattern that addresses this issue: 

The Publisher-Subscriber pattern (339) helps to keep the state of 
cooperating components synchronized. To achieve this it enables 
one-way propagation of changes: one publisher notifies any 
number of subscribers about changes to its state. 

You may notice that our Publisher-Subscriber pattern is also 
described under the name Observer in [GHJV95]. Since it is not our 
intention to repeat existing work in yet another form and style, we 
only present a summary of the essence of this pattern. However, we 
also describe an important variant of Publisher-Subscriber that is not 
included in the Gang-of-Four version, the Event Channel. This 
variant is used in many distributed systems that use a Broker 
architecture (99), and is also used in infrastructures for distributed 
systems such as OMG-Corba [OMG92]. 



Forwarder-Receiver 

The Fonuarder-Receiwr design pattern provides transparent inter- 
process communication for software systems with a peer-to-peer 
interaction model. It introduces forwarders and receivers to decouple 
peers from the underlying communication mechanisms. 

Example The company DwarfWare offers applications for the management of 
computer networks. In a new project a development team has defined 
an infrastructure for network management. Among other compo- 
nents, the system consists of agent processes wrltten in Java that run 
on each available network node. These agents are responsible for 
observing and monitorlng events and resources. In addition, they 
allow network administrators to change and control the behavior of 
the network. for example by modifying routing tables. To enable the 
exchange of information, as well as fast propagation of administration 
commands, each agent is connected to remote agents in a peer-to- 
peer fashion, acting as client or server as  required. As the infrastruc- 
ture needs to support a wide variety of different hardware and 
software systems. the communication between. peers must not de- 
pend on a particular mechanism for inter-process communication. 



308 Design Patterns 

Context Peer-to-peer communication. 

Problem A common way to build distributed applications is to make use of 
available low-level mechanisms for inter-process communication 
(IPC) such as TCP/IP, sockets or message queues. These are provided 
by almost all operating systems, and are very efficient when com- 
pared to higher-level mechanisms such as remote procedure calls. 
These low-level mechanisms, however, often introduce dependencies 
on the underlying operating system and network protocols. By using 
a specific IPC mechanism, the resulting solution restricts portability, 
constrains the system's capability to support heterogeneous environ- 
ments, and makes it hard to change the IPC mechanism later. 

The Forwarder-Receiver pattern is useful when you need to balance 
the following forces: 

The system should allow the exchangeability of the communication 
mechanisms. 

The cooperation of components follows a peer-to-peer model, in 
which a sender only needs to know the names of its receivers. 

The communication between peers should not have a major impact 
on performance. 

Solution Distributed peers collaborate to solve a particular problem. A peer 
may act as a client, requesting services, as a server, providing servic- 
es, or both. The details of the underlying IPC mechanism for sending 
or receiving messages are hidden from the peers by encapsulating all 
system-specific functionality into separate components. Examples of 
such functionality are the mapping of names to physical locations. 
the establishment of communication channels, or the marshaling and 
unmarshaling of messages. 

Structure The Forwarder-Receiver design pattern consists of three kinds of 
components. forwarders, receivers, and peers: 

Peer components are responsible for application tasks. To cany out 
their tasks peers need to communicate with other peers. These may 
be located in a different process, or even on a different machine. Each 
peer knows the names of the remote peers with which it needs to 
communicate. It uses a forwarder to send messages to other peers 
and a receiver to receive messages from other peers. Such messages 



Forwarder-Receiver 309 

are either requests that a peer sends to remote peers, or responses 
that a peer transmits to the originators of requests. 

r The peers in our Dwarfware example are the agents running on 
the network nodes. They continuously monitor network events and 
resources, and listen for incoming messages from remote agents. 
Each agent may connect to any other agent to exchange information 
and requests. The network management infrastructure connects the 
network administrator's console with all other agents. The admin- 
strator's task is to control network activities and events. For this pur- 
pose, administrators may send requests to network agents or retrieve 
messages from them by using available network 
tools., 

Receiver 
Responsibility I hovides 

Class 
Peer 

application 
services. 
Communicates 
with other peers. 

Collaborators 
Forwarder 

administration 
0 

Forwarder components send messages across process boundaries. A 
forwarder provides a general interface that is an abstraction of a 
particular IPC mechanism, and includes functionality for marshaling 
and delivery of messages. It also contains a mapping from names to 
physical addresses. When a forwarder sends a message to a remote 
peer, it determines the physical location of the recipient by using its 
name-to-address mapping. In the transmitted message the forwarder 
specifies the name of its own peer, so that the remote peer is able to 
send a response to the message originator. 

r In our example different kinds of messages exist: 

Command messages instruct the recipient to perform some 
activities such as changing the routing tables of its host machine. 

Information messages contain data on network resources and 
network events. 



Design Patterns 

Response messages  allow agents to acknowledge the arrival of a 
message. 

Forwarder components are responsible for forwarding all these mes- 
sages to remote network agents without introducing any dependen- 
cies on the underlying IPC mechanisms. 0 

Receiver components are responsible for receiving messages. A receiv- 
er offers a general interface that is an abstraction of a particular IPC 
mechanism. It includes functionality for receiving and unmarshaling 
messages. 

b The receivers in our example wait for incoming messages on 
behalf of their agent process. As soon as a message arrives, they 
convert the received data stream into a general message format and 
forward the message to their agent process. 

ResponsiMl ity 
Provides a general 
interface for 
sending messages. 
Marshals and 
delivers messages 
to remote receivers. 
Maps names to 
physical addresses. 

C l a s s  
Forwarder 

Class 
Receiver 

Collaborators 
Receiver 

ResponsiMl ity 
Provides a general 
interface for 
receiving messages. 
Receives and 
unmarshals 
messages from 
remote forwarders. 

Collaborators 
Forwarder 

The static relationships in the Forwarder-Receiver design pattern are 
shown in the diagram below. 

To send a message to a remote peer, the peer invokes the method 
sendMsg of its forwarder, passing the message as a n  argument. The 
method sendMsg must convert messages to a format that the 
underlying IPC mechanism understands. For this purpose, it calls 
marshal. sendMsg uses deliver to transmit the IPC message data to 
a remote receiver. 

When the peer wants to receive a message from a remote peer, it 
invokes the receiveMsg method of its receiver, and the message is 
returned. receiveMsg invokes receive, which uses the functionality 



Forwarder-Receiver 31 1 

of the underlying IPC mechanism to receive IPC messages. After 
message reception receiveMsg calls unmarshal to convert IPC 
messages to a format that the peer understands. 

Dynamics The following scenario illustrates a typical example of the use of a 
Forwarder-Receiver structure. Two peers pl and p2 communicate 
with each other. For this purpose, PI uses a forwarder ~orwl and a 
receiver Recvl. ~2 handles all message transfers with a forwarder 
Forw2 and a receiver Recv2 : 

PI requests a service from a remote peer ~ 2 .  For this purpose, it 
sends the request to its forwarder ~orwl and specifies the name of 
the recipient. 

~orwl determines the physical location of the remote peer and 
marshals the message. 

Forwl delivers the message to the remote receiver Recv2. 

At some earlier time P2 has requested its receiver Recv2 to wait for 
an incoming request. Now, Recv2 receives the message arriving 
from Forwl. 

Recv2 unmarshals the message and forwards it to its peer ~ 2 .  



Dedgn Patterns 

sen 
--D 

Meanwhile. p l  calls Its recelver R e c v l  to wait for a response. 
PZ performs the requested service, and sends the result and the 
name of the recipient pl to the forwarder ~ o r w 2 .  The forwarder 
marshals the result and delivers it R e c v l .  

R e c v l  receives the response from P2, unmarshals it and delivers it 
to PI. 



Forwarder-Receiver 313 

Implementation To implement a Forwarder-Receiver design pattern, iterate through 
the following steps: 

1 Spec~fy a name-to-address mapping. Since peers reference other peers 
by name, you need to introduce an appropriate name space. A name 
space defines rules and constralnts to which names must conform in 
a given context. For example you could specify that all names consist 
of exactly fifteen characters and have to start with a capital letter, 
such as  'Peervideoserver'. You may alternatively structure names as  
path names in an UNIX-like fashion, such as  '/Server/VideoServer/ 
AVIServer'. 

A name does not necessarily refer to a single address--it may refer to 
a group of addresses. When a peer sends a message with a desti- 
nation name that represents a group of remote peers, the message is 
sent to each member of the group. You may even introduce hierarchi- 
cal structures that allow a group to be a member of another group. 

2 Specify the message protocols to be used between peers and 
forwarders. This protocol defines the detailed structure of message 
data a forwarder receives from its peer. Perform the same task for the 
message protocol to be used between receivers and their peers. 

b Our Dwarfware example is over-simplified in that it does not 
cover the handling of errors, or further details of communication such 
as  the partitioning of data into multiple packets. Peers use objects of 
the class Message when they invoke their forwarder. A receiver 
returns a Message object to its peer when it receives a message. In 
the example messages only contain the sender and the message data, 
both represented as  Unicode strings. Messages do not contain the 
name of the recipient, because the sender passes this name as  an 
extra argument to its forwarder. This allows us to send the same 
message to more than one recipient. 

class Message I 
public String sender; 
public String data; 
public ~essage (String thesender, String rawData) { 

sender = thesender; 
data = rawData; 

1 
1 



Design Patterns 

We also need a protocol for communication between the forwarders 
and the receivers of remote peers. A message sent from a forwarder to 
a remote receiver also includes the name of the sender. 

Each message is transmitted as a sequence of bytes, in which the first 
four bytes specify the total length of the message. The succeeding 
bytes contain the sender of the message as well as the message data 
itself. 0 

You often need to enable a system to cope with time-outs. For 
example, peers could specify time-out values to forwarders and 
receivers in order to prevent the whole system from becoming blocked 
should a receiver fail to respond to a message. Alternatively, time- 
outs could be specified by the user at  run-time, or forwarders and 
receivers could free the user from having to specify such values by 
implementing internal time-outs. 

You also need to consider what forwarders and receivers are expected 
to do in the case of communication failures. They may try to send or 
receive messages more than once, or they may immediately report an 
exception when the first communlcation attempt fails. All these 
aspects depend on the underlying IPC mechanism as well as the 
requirements of your application domain. 

3 Choose a communication mechanism. This decision is driven mainly 
by the communlcation mechanisms available in the operating system 
you use. When specifying an IPC facility you need to consider the 
following aspects: 

If efficiency is important, a low-level mechanism such as TCP/IP 
[Stego] may be the f i s t  choice. Such mechanisms are very 
efficient, and flexible in the communication protocols that may be 
built using them (see step 21. 

r Low-level mechanisms such as TCP/IP require substantial 
programming effort, and are dependent on the platform you use, 
restricting portability. If your system must be portable between 
platforms, it is better to use IPC mechanisms such as sockets 
instead. Sockets are available on most operating systems and are 
efficient enough for almost all applications. 

b For our DwarfWare application we decide to use sockets as the 
underlying communication mechanism. Ci 



Forwarder-Receiver 316 

4 Implement the forwarder., Encapsulate all functionality for sending 
messages across process boundaries in the forwarder. The forwarder 
provides its functionality through a public interface and encapsulates 
the details of a particular IPC mechanism. 

Define a repository that maps names to physical addresses. The 
forwarder accesses this repository to retrieve the physical addresses 
of recipients before establishing a communication link to the remote 
peer. This repository may either be statically predefined or may be 
changeable at run-time. In the latter case the system is able to add, 
move or delete peers dynamically. Decide whether each forwarder 
should have its own private repository, or whet'ler all forwarders 
should use a common repository that is local to their process. The 
first approach allows you to map the same name to different physical 
locations. For example, one peer could associate the name 'Printer' 
with a different physical location to that used by another peer. The 
structure of physical addresses is determined by the IPC mechanism 
you use. For example, if you implement communication using 
sockets, the physical address consists of the Internet address of the 
receiver, as well as its socket port. You could implement the 
repository using a hash table, for example. 

r In our example forwarders make use of a repository class 
Registry for mapping names to addresses. The repository uses a 
hash table to manage all the address mappings. The implementation 
of the hash table is taken from the standard Java class libraries. A 
physical address of a remote peer denotes the combination of a target 
machine name and a socket port number. The class Entry thus has 
two data members: des tinationID for specifying the target machine, 
and PortNr for specifying the socket port number of the remote peer. 
The repository implementation maps strings to instances of the class 
Entry: 

class Entry I 
private String destinationId; / /  target machine 
private int portNr; / /  socket port 
public Entry(String theDest, int theport) I 

destinationId = theDest; 
portNr = theport; 

1 
public String dest0 ( 

return destinationId; 
1 



Design Patterns 

public int port 0 [ 
return portNr; 

1 
1 
class Registry ( 

private Hashtable hTable = new Hashtable0 ; 
public void gut (String theKey, Entry theEntry) { 

hTable.put(theKey,theEntry); 
public Entry get(String aKey) ( 

return (Entry) hTable.get (theKey) ; 
1 

We now introduce the Forwarder class. The constructor of the class 
Forwarder expects a string argument theName that specifies the 
logical name of the peer. When a peer calls the sendMsg method. the 
following happens: 

The method sendMsg invokes marshal to convert the message 
theMsg to a sequence of bytes. 

deliver is called. Thls method looks up the physical location that 
is associated with the remotc peer theDes t in a local repository. 

For this purpose. the global class f r contalns a data member f r . reg 
that is an instance of Repository. deliver opens a socket port. 
connects with the remote peer. transmits the message, and closes all 
sockets. 

class Forwarder ( 
private Socket s;  
private Outputstream ~Str; 
private String myName; 
public Forwarder(String theNarne) ( myName = theName;l 
~rivate byte [ I  marshal (Message theMsg) [ / *  . . . * /  1 
private void deliver(String theDest, byte[] data) { 

try (Entry entry = fr.reg.get (theDest1 ; 
s = new Socket(entry.dest0 ,entry.portO); 
oStr = s.getOutputStream0 ; 
oStr.write(data); 
oStr.Elush0 ; 
oStr.close0; 
s.close0 ; 

1 
catch(I0Exception e )  / *  . . . * /  1 

1 
public void sendMsg (String theDes t , Message theMsg) { 

deliver(theDest, rnarshal(theMsg) 1 ;  
1 

1 Q 



Forwarder-Receiver 317 

It is useful to separate the forwarder's responsibilities from each 
other, such as marshaling, message delivery and the repository. All 
this functionality can be decomposed to the concrete IPC mechanism. 
Use the Whole-Part design pattern (225) to encapsulate each 
responsibility in a separate part component of the forwarder. 

5 Implement the receiver. Encapsulate all functionality for receiving IPC 
messages in the receiver. Provide the receiver with a general interface 
that abstracts from details of a particular IPC mechanism. The 
receiver needs to include functionality for receiving and 
unmarshaling IPC messages. With the Whole-Part design pattern 
(225) each of these responsibilities may be encapsulated in a separate 
part component of the receiver (see step 4). 

Two other aspects need special consideration when you design the 
receivers. Since all peers run asynchronously, you need to decide 
whether the receivers should block until a message anlves: 

If so, the receiver waits for an incoming message. I t  only returns 
control back to its peer when it receives a message. In other words, 
the peer cannot continue until message reception is successful. 
This behavior is appropriate if the peer depends on the incoming 
message to continue its work. 

In all other cases, you should implement non-blocking receivers 
that allow peers to specify time-out values (see also step 2). If no 
message has arrived in the specified time period, the receiver 
returns an exception to its peer. 

If the underlying IPC mechanism does not support non-blocking I/O, 
you could use a separate thread within the peer to handle 
communication. 

The use of more than one communication channel within receivers is 
another important design issue. Such receivers are capable of de- 
multiplexing communication channels-they wait until a message 
arrives on one of the channels and return the message to their peer. 
If it is possible for more than one message to arrive at  the same time, 
the receivers may provide an internal message queue for buffering 
messages. Whether demultiplexing is possible depends on the under- 
lying IPC mechanism. For example, the UNIX system call select 
allows a process to wait for events on a set of file and socket descrip- 
tors. If the IPC mechanism does not support demultiplexing, you can 



Design Patterns 

provide multiple threads within the receiver, where each thread is 
responsible for a particular communicaUon channel. For more details 
about demuluplexing events, see the Reactor pattern [Sch94]. 

In our example the class Receiver provides the receiver's 
components. If a peer instantiates a receiver, it calls the constructor 
and passes its own name as argument. The receiver uses this name 
to determine which socket port to use for message reception. When a 
peer wants to retrieve a message, it calls the receiveMsg method of 
its Receiver object, which in turn invokes receive. The method 
receive does two things: 

After retrieving the socket port number from the global repository, 
it opens a server socket and waits for connection attempts from 
remote peers. 

As  soon as  a connection is established with a second socket, the 
incoming message and its size are read fi-om the communication 
channel. receive retums the data to receiveMsg. 

Finally, receiveMsg invokes unmar shal to convert the sequence of 
bytes into a Message object and retums this object to the peer. 

class Receiver I 
private Serversocket snrS; 
private Socket s; 
private Inputstream iStr; 
private String myName; 
public Receiver(String theName) I myName = the~ame;} 
private Message unmarshal (byte [I an~rray) I / *  . ., * /  1 
private byte[] receive0 I 

int val; 
byte buffer [I = null; 
try I 

Entry entry = fr.reg.get(myName1 ; 
srvS = new ServerSocket(entry.port0, 1000); 
s = srvS.accept();iStr = s.getInputStream(); 
val = iStr. read ( )  ; buffer = new byte [vall ; 
iStr.read(buffer1 ; 
iStr.close0; s.close(); srvS.close(); 

1 
catch(I0Exception e) I / *  . . . * /  1 
return buffer; 

1 
public Message receiveMsg ( I 

return unmarshal(receive() ; 
1 

1 



Forwarder-Receiver 319 

6 Implement the peers of your application. Partition the peers into two 
sets, clients and servers. The intersection of these sets does not need 
to be empty. If a peer acts as a client. it sends a message to a remote 
peer and waits for the response. After receiving the response. it 
continues with its task. Peers acting as servers continuously wait for 
incoming messages. When such a message arrives, they execute a 
service that depends on the message they received, and send a 
response back to the originator of the request. Note that servers may 
also be clients of other servers. It is even possible for servers and 
clients to change their roles dynamically. 

The communication between two peers may not always be two-way. 
Sometimes it is sufficient for a peer to send a message to another peer 
without requiring a respons-ne-way communication. Here the 
peer sends a message and continues with its work. The recipient of 
the message retrieves the message from its receiver, but does not send 
a response to the message originator. You can use one-way 
communication to enable asynchronous communication between 
senders and recipients. 

s Here is an example of a peer acting as  a server: 

c lass  Server extends Thread I 
Receiver r ;  
Forwarder f; 
public void run() I 

Message result  = nul l ;  
r = new Receiver ( l1 Serveru ) ; 
result  = r .  receiveMsg ( ) ; 
f = new Forwarder ( "Servert1 ) ; 
Message msg = new Message ("Servern,  ItI am a l i v e f 1 )  ; 
f . sendMsg (resu l t .  sender, msg) ; 

I 
I CI 

7 Implement a start-up configuration. When your system starts up, 
forwarders and receivers must be initialized with a valid narne-to- 
address mapping. Introduce a separate start-up routine that creates 
a repository and enters all name/address pairs. Such a configuration 
routine could read these pairs from an external file, removlng the 
need to touch the source code when changing the mapping. 

If your software system allows different peers to have different narne- 
to-address mappings. the start-up configuration must be capable of 
initializing the repositories according to this requirement (see step 4). 



Design Patterns 

If you need the configuration to be able to change dynamically, 
implement additional functionality for modwng the repositories at 
run-time. 

r In the DwarfWare example we introduce the following 
configuration class, allowing us  to register a server and a client with 
the central repository: 

class Configuration { 
public Configuration0 I 

Entry entry = new Entry ("127.0.0. I", 1111) ; 
fr.reg.put ("Clientq1, entry) ; 
entry = new Entry ("127.0.0 .I", 2222) ; 
fr .reg.put ("servern, entry) ; 

1 
1' 0 

Example In our infrastructure for network management a common protocol 
resolved determines the format of requests, information messages and 

responses. If an agent wants to retrieve information from a remote 
agent, such as current resource contention, for example, it sends a 
message to the recipient. The recipient retrieves the message from its 
receiver, packages the requested information into a response and 
sends the response back to the message originator. When an agent 
transmits a command message, the recipient receives the message, 
interprets it and performs the appropriate command. It then tells the 
sender whether or not it could successfully perform the command. All 
relevant information is displayed on the console of the network 
administrator using a graphical interface. To increase availability, 
every machine in the network is able to host the network 
administration console. 

Variants Forwarder-Receiver without name-to-address mapping. Sometimes 
performance issues are more important than being able to 
encapsulate all details of the underlying IPC mechanism. To achieve 
this, you can remove the mapping from names to physical locations 
within forwarders and receivers, for example. In such a configuration, 
peers need to tell their forwarder the physical location of the recipient. 
This variant, however, might significantly decrease the ability to 
change the IPC mechanism. 



Forwarder-Receiver 32 1 

Known Uses The software development toolkit TASC ITASC911 supports the 
implementation of Forwarder-Receiver structures within distributed 
applications for factory automation systems. 

The material flow control software for flexible manufacturing that was 
developed as part of the REBOOT project [Kar95] uses Fonvarder- 
Receiver structures to facilitate an efficient IPC. 

The ATM-P switching system [ATM93] uses the Forwarder-Receiver 
design pattern to implement the IPC between statically-distributed 
components, for example between process-management and commu- 
nication agents. 

The Forwarder-Receiver design pattern is used to implement inter- 
process communication within the distributed Smalltalk 
environment BrouHaIia Istee9 11. 

Consequences The Forwarder -Receiver design pattern offers two benefits: 

Emient inter-process comrnunication. The pattern enables you to 
provide very efficient inter-process communication. I t  structures 
communication between its components in a peer-to-peer fashion, in 
which every forwarder of an IPC message knows the physical 
locations of its potential receivers. A forwarder does not therefore 
need to locate remote components. However, the separation of IPC 
functionality from peers introduces an additional level of indirection. 
Compared to the time consumption of the actual IPC, however, this 
overhead should be negligible in most cases. 

Encapsuhtion of IPC facilities. All dependencies on concrete IPC 
facilities are encapsulated within the forwarders and receivers. A 
change of the underlying IPC mechanism does not affect other 
components of the application, specifically the peers that 
communicate with each other through forwarders and receivers. 

However, the Forwarder-Receiver design pattern has one significant 
liability: 

No support for flexible re-configuration of components. Forwarder- 
Receiver systems are hard to adapt if the distribution of peers may 
change at  run-time. Such a change potentially affects all peers 
collaborating with the 'migrated' peer. This problem can be solved by 
adding a central dispatcher component to the Forwarder-Receiver 



Design Patterns 

structure, as  is described in the Client-Dispatcher-Server design 
pattern (323). 

See also The Client-Dispatcher-Seroer design pattern (323) provides 
transparent inter-process communication for software systems in 
which the distribution of components is not known at  compile-time. 
or may vary dynamically at run-time. You can apply this pattern in 
combination with the Forwarder-Receiver design pattern as  described 
below. 

The Client-Dispatcher-Server design pattern may be instantiated in 
such a way that the forwarder acts as the client and the receiver acts 
as the server. When a peer asks its forwarder to send a message, the 
forwarder causes the dispatcher to map the recipient's name to its 
physical location and to establish a communication channel with the 
remote receiver. Such an arrangement allows peers to migrate to 
other locations at run-time by unregistering and then re-registering 
with the dispatcher. 



Client-Dispatcher-Server 

The Client-Dlspatcher-Serwr design pattern introduces an 
intermediate layer between clients and servers, the dispatcher 
component. I t  provides location transparency by means of a name 
service, and hides the details of the establishment of the 
communication connection between clients and servers. 

Example Imagine we are developing a software system ACHILLES for the 
retrieval of new scientific information. The information providers are 
both on our local network and distributed over the world. To access 
an individual information provider, it is necessary to specify its 
location and the service to be executed. When an information provider 
receives a request from a client application, it runs the appropriate 
service and returns the requested information to the client. 

Sewer 

Client 

Context A software system integrating a set of distributed servers, with the 
servers running locally or distributed over a network. 



324 Design Patterns 

Problem When a software system uses servers distributed over a network it 
must provide a means for communication between them. In many 
cases a connection between components may have to be established 
before the communication can take place, depending on the available 
communication facilities. However, the core functionality of the 
components should be separate from the details of communication 
mechanisms. Clients should not need to know where servers are 
located. This allows you to change the location of servers dynamically, 
and provides resilience to network or server failures. 

We have to balance the following forces: 

A component should be able to use a service independent of the 
location of the service provider. 

The code implementing the functional core of a service consumer 
should be separate from the code used to establish a connection 
with service providers. 

Solution Provide a dispatcher component to act a s  an intermediate layer 
between clients and servers. The dispatcher implements a name 
service that allows clients to refer to servers by names instead of 
physical locations, thus providing location transparency. In addition, 
the dispatcher is responsible for establishing the communication 
channel between a client and a server. 

Add servers to the application that provides services to other 
components. Each server is uniquely identified by its name, and is 
connected to clients by the dispatcher. 

Clients rely on the dispatcher to locate a particular server and to 
establish a communication link with the server. In contrast to 
traditional Client-Server computing, the roles of clients and servers 
can change dynamically. 

Structure The task of a client is to perform domain-specific tasks. The client 
accesses operations offered by servers in order to carry out its 
processing tasks. Before sending a request to a server, the client asks 
the dispatcher for a communication channel. The client uses this 
channel to communicate with the server. 

A server provides a set of operations to clients. I t  either registers itself 
or is registered with the dispatcher by its name and address. A server 



Client-Dispatcher-Server 325 

component may be located on the same computer as a client, or may 
be reachable via a network. 

Client 7 
Responsibility 

Implements a 
system task. 
Requests server 
connections from 
the dlspatcher. 
Invokes services of 
servers, 

Collaborators 
Dispatcher 
Server 

Class 
Server 

Responsibility 
Provides services to 
clients. 
Registers itself with 
the dispatcher. 

Collaborators 
Client 
Dispatcher 

The dispatcher offers functionality for establishing communication 
channels between clients and servers. To do this, it takes the name of 
a server component and maps this name to the physical location of 
the server component. The dispatcher establishes a communication 
link to the server using the available communication mechanism and 
returns a communlcation handle to the client. If the dispatcher 
cannot initiate a communication link with the requested server, it 
informs the client about the error it encountered. 

To provide its name service, the dispatcher implements functions for 
registering and locating servers. 

Class 
Dispatcher 

- 

Responsibility 
Establishes 
communication 
channels between 
clients and servers. 
Locates servers. 
(Un-)Registers 
servers. 
Maintains a map of 
server locations. 

Collaborators 
Client 
Server 



Design Patterns 

The static relationships between clients, servers and the dispatcher 
are as  follows: 

requests 
Client service 

requests 
connection 

returns 
result 

1 Server 1 

1 registers 

accepts 1 link 
establishes 
connection 

Dynamics A typical scenario for the Client-Dispatcher-Server design pattern 
includes the following phases: 

A server registers itself with the dispatcher component. 

At a later time, a client asks the dispatcher for a communication 
channel to a specified server. 

The dispatcher looks up the server that is associated with the name 
specified by the client in its registry. 

The dispatcher establishes a communication link to the server. If it 
is able to initiate the connection successfully, it returns the 
communication channel to the client. If not, it sends the client an 
error message. 

The client uses the communication channel to send a request 
directly to the server. 

After recognizing the incoming request, the server executes the 
appropriate service. 

When the service execution is completed, the server sends the 
results back to the client. 



Implementation To implement a Client-Dispatcher-Server structure, apply the 
following steps. You do not necessarily need to follow the steps in the 
order given, because some of them are interrelated. 

1 Separate the application into servers and clients. Define which 
components should be implemented as  servers, and identify the 
clients that will access these servers. This partitioning may be 
predefined, because the application under construction may have to 



Design Patterns 

integrate existing servers. In such cases the separation into clients 
and servers may already be determined to some extent. Since clients 
may also act as servers, and vice-versa-their roles are not predefined 
and may change at  run-time. 

2 Decide which communication facilities are required. Select communi- 
cation facilities for the interaction between clients and the dispatcher, 
between servers and the dispatcher and between clients and servers. 
You can use a different communication mechanism for each connec- 
tion, or you can use the same mechanism for all three. Using a single 
communication facility decreases the complexity of the implementa- 
tion. Sometimes, however, this approach is not possible or feasible. 
This may be because of performance issues. For example, if the dis- 
patcher and the clients accessing it are on the same machine, shared 
memory is the fastest method of inter-process communication. In this 
example, clients may communicate with the dispatcher using shared 
memory, but the servers and the dispatcher, as well as clients and 
servers, could communicate using sockets. The servers may be dis- 
tributed across different machines, making sockets a good choice for 
the communication between clients and servers. 

Where existing servers have to be integrated into the application, the 
choice of an appropriate communication facility may be driven by the 
mechanisms already used by these servers. 

If all components are located within the same address space, the 
interaction between components can rely on conventional procedure 
call interfaces. 

3 Specl$y the interaction protocols between components. Consider the 
following diagram: 

CSprotocol 
Client Server 

Dispatcher 25 



A protocol specifies an ordered sequence of activities for initializing 
and malntalning a communication channel between two components, 
as  well as  the structure of messages or data being transmitted. The 
Client-Dispatcher-Server pattern implies three different kinds of 
protocol. 

We need an interaction protocol DSprotocoZ between a server and the 
dispatcher. This addresses two topics: it specifies how servers register 
with the dispatcher, and it determines the activities that are 
necessary to establish the communication channel to the server. 

Between the client and the dispatcher CDprotocoZ defines the inter- 
action that occurs when a client asks the dispatcher to establish a 
connection with a particular server. If communication establishment 
falls due to network or server problems, the dispatcher informs the 
client about the failure. The dispatcher may try to establish a 
communication link several times before it reports an error. 

CSprotocoZ specifies how clients and servers talk to each other. This 
interaction could comprise the following steps: 

@ The client sends a message to the server using the communication 
channel previously established between them. To make this work, 
clients and servers need to share common knowledge about the 
syntax and semantics of messages they send and receive. 

@ The server receives the message, interprets it and invokes one of its 
services. After the service is completed, the server sends a return 
message to the client. 

@ The client extracts the service result from the message and 
continues with its task. 

4 Decide b w  to name servers. The four-byte Internet IP address 
scheme is not applicable, because it does not provide location 
transparency. If IP addresses were used, a client would depend on the 
concrete location of the server. You need to introduce names that 
uniquely identify servers but do not carry any location information. 
For example, use strings such as  'ServerX' or predefined constants 
such as  ID-SERVER-X. These location-independent names are 
mapped to physical locations by the dispatcher (see step 5). 



5 Design and implement the dispatcher, Determine how the protocols 
you introduced in step 3 should be implemented using available 
communication facilities. If, for example, the dispatcher is located 
within the address space of the client, local procedure calls should be 
used for CDprotocol. For all other cases and protocols, you need to use 
facilities such as TCP ports or shared memory. 

With some communication mechanisms the available communication 
channels may be a limited resource. For example, the number of 
socket descriptors is constrained by the size of descriptor tables in 
the operating system. There are several ways round this. For 
example, each server may allocate its own socket, limiting the 
number of possible servers. en a client request arrives, the 
dispatcher returns the server's socket descriptor to the client. 
Alternatively, the dispatcher could temporarily store client requests 
in an  internal message queue. It would then provide a socket port 
where servers can ask whether new requests have arrived. When a 
service request arrives, the server opens a new socket and passes the 
new socket descriptor to the dispatcher. The dispatcher then forwards 
the information to the client. After the interaction between client and 
server is completed, the server closes its socket descriptor. 

Define the detailed structure of requests, responses, and error 
messages based on your chosen communication mechanisms and the 
identification scheme you use for servers. 

A dispatcher includes a repository for mapping server names to their 
physical locations. The representation of server locations depends on 
the underlying mechanism you use for Client-Server communication. 
For example, physical locations may be described in terms of socket 
ports, TCP ports, shared memory handles or some other suitable 
scheme. 

You need to consider performance issues. en many clients access 
many servers using one dispatcher, the dispatcher obviously 
constitutes a bottleneck. Use multi-threading if possible to improve 
response and execution ti . For example you can provide a pool of 
threads in the dispatcher. en a request arrives, one of the threads 
is then associated with the request, allowing you to handle many 
requests in parallel. 



Client-Dispatcher-Server 33 1 

. , 

6 

Example 
resolved 

Variants 

Implement the client and server components according to your desired 
solution and the decisions you make about the dispatcher interface. 
Configure the system and either register the servers with the 
dispatcher or let the servers dynamically register and unregister 
themselves. Follow the same strategies for optimizing performance 
that are described in step 5. 

In our scientific information example ACHILLES, a TCP port number 
and the Internet address of the host machine are combined to 
uniquely identify servers. Clients connect to the dispatcher and ask 
for server locations by using identifiers such as 'NASA/ 
HUBBLE-TELESCOPE'. The system predefines the structure of all 
messages: a message header with a fixed size is followed by a random 
amount of raw data. All the information necessary to interpret the 
raw data, such as its size or format, is provided in the message 
header. Each header also contains the sender and the receiver of the 
message. Messages are tagged with sequence numbers to enable the 
receiver of a message to recombine the incoming packets into their 
correct order. When a server receives a request, it extracts 
information from the message such as the service to invoke. For 
example, a client may include the following information in its 
message: 'HUBBLE-DOC-RECEIVE, ANDR0MEDA.j pg' . The server 
determines whether the requested file is available and sends a 
message containing the picture to the client. 

Distributed Dispatchers. Instead of using a single dispatcher 
component in a network environment, distributed dispatchers may 
be introduced. In this variant, when a dispatcher receives a client 
request for a server on a remote machine, it establishes a connection 
with the dispatcher on the target node. The remote dispatcher 
initiates a connection with the requested server and sends the 
communication channel back to the first dispatcher. The channel is 
then returned to the client. Another possibility is to allow clients to 
communicate directly with the dispatcher on the remote machine. 
This constrains location transparency, however, since clients must 
know the network node of each server they want to access. Before 
using the Distributed Dispatchers variant, consider the use of the 
Broker architectural   at tern 1991. 



Design Patterns 

Client-DispatcherSeruer with communication managed by clients. In 
this variant, instead of establishing a communication channel to 
servers, a dispatcher may only return the physical server location to 
the client. It is then the responsibility of the client to manage all com- 
munication activities with the server. You can use this variant to in- 
crease overall performance, or because the available communication 
facilities do not require you to establish an explicit communication 
link. 

Client-Dispatcher-Seruer with heterogeneous communication. It is not 
always possible to implement the communication between clients and 
servers using only one communication mechanism. Some servers 
may use sockets, while others use named pipes. This leads to a vari- 
ant of the Client-Dispatcher-Server pattern in which the dispatcher 
is capable of supporting more than one communication mechanism. 
In this variant, each server register itself wlth the dispatcher and 
specifies the communication mechanism it supports. When a client 
requests a communication channel to a particular server, the dis- 
patcher establishes the communication using to the communication 
facility the server specified. 

Client-DispatcherSewke, In this variant, clients address services and 
not servers. When the dispatcher receives a request, it looks up which 
servers provide the specified senrice in its repository, and establishes 
a connection to one of these service providers. If it falls to establish 
the connection, it may try to access another server providing the same 
service instead, if one is available. 

r The following sample Java code demonstrates the Client- 
Dispatcher-Senrice variant. All clients, servers and the dispatcher 
exist in the same address space. 

The class Dispatcher uses a hash table of vectors as a name service 
repository. An entry in the hash table is available for each service 
name. Each entry consists of the vector of all servers providing the 
same kind of service. A server registers with the dispatcher by 
specifying a service name and the new server instance. When a client 
asks the dispatcher for a specific service, the dispatcher looks up  all 
available servers in its repository. It randomly selects one of them and 
returns the server reference to the client. 



Client-Dispatcher-Server 

import java.util.*; 
import java.io.*; 

/ /  Exception thrown by the dispatcher: 
class NotFound extends Exception (1 
class Dispatcher I 

Hashtable registry = new Hashtable(); 
Random rnd = new Random(123456); / /  for random access 

public void regieter (String svc, Service obj) { 
Vector v = (Vector) registry. get (svc) ; 
if (V == null) { 

v = new Vector 0 ; 
registry.put (svc, v) ; 

I 
v.addElement(obj); 

I 
public Service locate(String svc) throws NotFound I 

Vector v = (Vector) registry .get (svc) ; 
if (V == null) throw new NotFound ( ) ; 
if (v.size() == 0 )  throw new NotFoundO; 
int i = rnd.nextInt 0 % v.size0 ; 
return (Service) v. elementAt (i) : 

1 
1 

The abstract class service represents the available server objects. I t  
registers server objects with the dispatcher automatically when the 
constructor is executed. 

abstract class Service I 
String nameofservice; / /  service name 
String nameofserver; / /  server name 
public Service(String svc, String srv) { 

nameofservice = svc; 
nameofserver = srv; 
CDS .disp .register (nameOfService, this) ; 

1 
abstract public void service0 ; / /  service provided 

1 

Concrete server classes are derived from the abstract class Service. 
They therefore have to implement the abstract method service. 
Instances of these concrete classes must call the base class 
constructor in their own constructors so that they are automatically 
registered. 



Design Patterns 

class PrintService extends Service ( 
public ~rintService(String svc, String srv) ( 

super (svc, srv) ; 
I 
public void service0 I / /  test output 

System.out.println("Service I' + nameofservice 
+ I by l1 + nameofserver); 

/ /  here the service code would be implemented 
I 

I 

Clients ask the dispatcher for object references, then use these 
references to invoke the appropriate method implementations. 

class Client ( 
public void doTask ( )  
{ Service S :  

try ( s = CDS .disp. locate ("printsvc") ; 
s . service ( )  ; 

I 
catch (NotFound n) { 

System.out .println ("Not available") ; 
1 
try ( s = CDS .disp. locate(~printSvc~ ; 

s .service ( )  ; 
1 
catch (NotFound n) I 

System.out.println("Not availablet1); 
I 
try ( s = CDS .disp. l~cate(~~drawSvc~~) ; 

s ..service ( )  ; 
I 
catch (NotFound n) { 

System.out.println("Not availablen) ; 
I 

The class CDS defines the main program of the application. It 
instantiates the dispatcher, some servers and a client. It  then invokes 
the event loop of the client: 

public class CDS ( 
public static Dispatcher disp = new Dispatcher(); 
public static void main(String args [ I  ) I 

Service sl = new PrintService (ltprintSvcll, Itsrvl") ; 
Service 82 = new PrintService("printSvc","srv2"); 
Client client = new Client 0 ; 
client .doTask 0 ; 



When the program is started, the following output is displayed: 

Service printSvc by snr2 
Service printSvc by srvl 
Not available 

When the user starts the application, the static method main of the 
class cDs is invoked. Two services sl and s 2  register with the 
dispatcher di sp under the same name. The client is then created and 
started by calling client .doTask 0. The client asks the dispatcher 
to locate the service 'PrlntSvc' twice, and once to locate the service 
'DrawSvc'. The dispatcher returns the service objects registered with 
a particular name by using a random number generator. The first 
service invocations of the client therefore refer to different service 
objects in the sample output. Since the service 'DrawSvc' is not 
available, an error occurs when the client asks the dispatcher to 
locate an appropriate server. 0 

Known Uses Sun's implementation of Remote Rocedure Calls (RPC) ISun9Oj is 
based upon the principles of the Client-Dispatcher-Server design 
pattern. It implements a combination of the variants Dishibuted 
Dispatchers and Client-Dispatcher-Seruer with wmrrmnication 
managed by ctienk. The portmapper process takes the role of the 
dispatcher. A process initiaUng an RPC then becomes the client and 
the receiving process the server. When a client process invokes a 
remote procedure, it wnnects to the portmapper process on the 
target machine. This is possible because all portmappers use the 
same TCP/UDP port for receiving requests. The portmapper returns 
the TCP/UDP port of the requested service to the client, which then 
establishes a direct communication channel with the remote server. 

The OMQ Corba (Common Object Request Broker Architecture) 
specification IOMG92j uses the principles of the Client-Dispatcher- 
Server design pattern for relining and instantiating the Broker 
architectural pattern (99). 



336 Design Patterns 

Consequences The Client-Dispatcher-Server design pattern has several benefits: 

Exchangeability of servers. In the Client-Dispatcher-Server design 
pattern a software developer can change servers or add new ones 
without modifications to the dispatcher component or the clients 
becoming necessary. If a new implementation of a server is available, 
the server first unregisters itself. It then registers itself again with the 
new implementation. 

Location and migration transparency. Clients do not need to know 
where servers are located-they do not depend on any location 
information. As a consequence, servers may be dynamically migrated 
to other machines. This does not work, of course, in the event of the 
server being migrated while it is connected to a client. 

Re-configuration The developer can defer decisions about which 
network nodes servers should run until the start-up time of the 
system, or even to run-time. The Client-Dispatcher-Server design 
pattern therefore allows you to prepare a software system for later 
conversion to a distributed system. 

Fault tolerance. When network or server failures occur, new servers 
can be activated at a different network node without any impact to 
clients. This makes the system more robust and fault-tolerant. 

The Client-Dispatcher-Server design pattern imposes some 
liabilities: 

Lower emiency through indirection and explicit connection establish- 
ment. The performance of a Client-Dispatcher-Server pattern 
depends on the overhead introduced by the dispatcher, due to its 
activities in locating and registering servers and explicitly establish- 
ing the connection. The alternative to this approach is to get rid of the 
dispatcher by hard-coding server locations into the clients. This leads 
to several disadvantages, however. For example, the clients would 
then depend directly on the server locations, thus loosing the ex- 
changeability of servers. 

Sensitivity to change in the interfaces of the dispatcher component. 
Because the dispatcher plays the central role, the software system is 
sensitive to changes in the interface of the dispatcher. 



Client-Dispatcher-Server 337 

See also The Forwarder-Receiver design pattern (307) can be combined with 
the Client-Dispatcher-Server pattern to hide the details of inter-pro- 
cess communication. While the Client-Dispatcher-Server pattern 
allows you to decouple clients and servers by supporting location 
transparency, it does not encapsulate the details of the underlying 
communication facilities. To achieve this, you could introduce 
forwarders and receivers between clients and servers, clients and the 
dispatcher, and between servers and the dispatcher. 

The Acceptor and Connector patterns [Sch96bl demonstrate a 
different way to decouple connection set-up from connection 
processing. Schmidt's patterns are more decentralized than our 
approach, which uses a centralized dispatcher. Every site that 
passively accepts connections in Schmidt's patterns can provide a 
family of Acceptor factories. These acceptors are responsible for 
constructing service handlers, which are entry points to the 
application-defined services. 

Various Acceptors can be defined, to distinguish between different 
connection policies such as  synchronous versus asynchronous, and 
to use different service policies, such as  running concurrently in 
separate processes or threads or being demultiplexed reactively in a 
single process. The Connector pattern is the 'dual' of the Acceptor 
pattern-it is used by sites that actively initiate connection setup. 
Our Client-Dispatcher-Server pattern resembles a mini-Broker (99) 
that is equipped with a name service that also enables dynamic 
relocation of servers. 

Credits We thank all participants of the writer's workshop at  the PLoP'95 
[PLoP95] for their valuable suggestions and comments. 





The Publisher-Subscriber design pattern helps to keep the state of 
cooperating components synchronized. To achieve this it enables 
one-way propagation of changes: one publisher notifies any number 
of subscribers about changes to its state. 

Also known as 

Problem 

Solution 

Observer, Dependents 

In this section we give an abbreviated pattern description based on 
the Observer pattern from [GHJV95], to allow us  to present additional 
viewpoints and variants. 

A situation often arises in which data changes in one place, but many 
other components depend on this data. The classical example is user - 
interface elements: when some internal data element changes all 
views that depend on this data have to be updated. We could solve the 
problem by introducing direct calling dependencies along which to 
propagate the changes, but this solution is inflexible and not 
reusable. We are looking for a more general change-propagation 
mechanism that is applicable in many contexts. 

The solution should balance the following forces: 

One or more components must be notified about state changes in 
a particular component. 

The number and identities of dependent components is not known 
a priori, or may even change over time. 

Explicit polling by dependents for new information is not feasible. 

The information publisher and its dependents should not be tightly 
coupled when introducing a change-propagation mechanism. 

One dedicated component takes the role of the publisher (called 
subject in [GHJV95]). All components dependent on changes in the 
publisher are its subscribers (called obseruers in [GHJV95]). 

The publisher maintains a registry of currently-subscribed 
com~onents. Whenever a com~onent wants to become a subscriber. 



Design Patterns 

it uses the subscribe interface offered by the publisher. Analogously, 
it can unsubscribe. 

Whenever the publisher changes state, it sends a notification to all its 
subscribers. The subscribers in turn retrieve the changed data at 
their discretion. 

The pattern offers the following degrees of freedom in its 
implementation: 

You can introduce abstract base classes to let different classes be 
publishers or subscribers, as described in [GHJV95]. 

The publisher can decide which internal state changes it will notify 
its observers about. It may also queue several changes before 
calling n o t i f y  ( ) . 
An object can be a subscriber to many publishers. 

An object can take both roles, that of a publisher as  well as sub- 
scriber. 

Subscription and the ensuing notification can be differentiated 
according to event type. This allows subscribers to get messages 
only about events in which they are interested. 

The publisher can send selected details of the data change when it 
notifies its subscribers, or can just send a notification and give the 
subscribers the responsibility to find out what changed. 

In more general terms we differentiate between the push and the pull 
model. In the push model, the publisher sends all changed data when 
it notffies the subscribers. The subscribers have no choice about if 
and when they want to retrieve the data-they just get it. In the pull 
model, the publisher only sends minimal information when sending a 
change notification-the subscribers are responsible for retrieving 
the data they need. Many variations are possible in the middle ground 
between these two extremes. 

The push model has a very rigid dynamic behavior, whereas the pull 
model offers more flexibility, at the expense of a higher number of 
messages between publisher and subscribers. 

For complex data changes, the push model can be a poor choice, 
especially when the publisher sends a large package to a subscriber 
that is not interested in it. Even pushing a package that just describes 



Publisher-Subscriber 34 1 

the nature of the data change can be too great an overhead. In such 
cases, use the pull model and make the subscribers find out what 
kind of data change occurred. The process of finding out successively 
great detail about data changes can be organized as a decision-tree. 

Generally, the push model Is a better choice when the subscribers 
need the published information most of the time. The pull model is 
used when only the individual subscribers can decide if and when 
they need a specific piece of information. 

Variants Gatekeeper. The Publisher-Subscriber pattern can be also applied to 
distributed systems. In this variant a publisher instance in one 
process notifies remote subscribers. The publisher may alternatively 
be spread over two processes. In one process a component sends out 
messages, while in the receiving process a singleton 'gatekeeper' 
demultiplexes them by surveying the entry points to the process. The 
gatekeeper notifies event-handling subscribers when events for which 
they registered occur. The Reactor pattern ISch94) describes this 
scheme in detail. 

The Event Channel variant was proposed by the OMG in its Event 
Service Specification [OMG95] and is targeted at distributed systems. 
This pattern strongly decouples publishers and subscribers. For 
example, there can be more than one publisher, and the subscribers 
only wish to be notified about the occurrence of changes, and not 
about the identity of the publisher-subscribers do not care which 
component's data has changed. Similarly, publishers are not 
interested in which components are subscribing. 

In this variant, an event channel is created and placed between the 
publisher and the subscribers. To publishers the event channel 
appears as  a subscriber, while to subscribers it appears as a 
publisher. A subscriber registers with the went channel, as 
illustrated in the figure below. It asks an administration instance to 
create a 'proxy publisher', and connects it over a process boundary 
with a local 'proxy subscriber'. Analogously, a 'proxy subscriber' is 
created between a publisher and an event channel and, on the event 
channel side, a 'proxy publisher'. 

In this way publisher, event channel and subscriber can all exist in 
different processes. Providing the event channel with a buffer 
decouples publishers and subscribers even further. When messages 



Design Patterns 

from a publisher arrive, the event channel does not have to notify the 
subscribers immediately, but can implement its own notification 
policies. 

Publisher 

You can even chain several event channels. The reason for doing this 
is that event channels can provide additional capabilities, such as 
filtering events, or storing an event internally for a fixed period and 
sending it to all components that subscribe during that period. This 
is often referred to as 'quality-of-service'. A chain can then assemble 
all the capabilities necessary for a system-the chain sums the 
capabilities of the individual event channels of which it is composed, 
analogously to UNIX pipes. 

The Event Channel variant is powerful enough to allow multiple 
publishers and typed events. 

Another variant of the generic Publisher-Subscriber pattern uses the 
Producer-Consumer style of cooperation. In this a producer supplies 
information, while a consumer accepts this information for further 
processing. Producer and consumer are strongly decoupled, often by 
placing a buffe; between them. The producer writes to the buffer 
without any regard for the consumer. The consumer reads data from 
the buffer at its own discretion. The only synchronization carried out 
is checking for buffer overflow and underflow. The producer is 
suspended when the buffer is full, while the consumer waits if it 
cannot read data because the buffer is empty. Another difference 
between the Publisher-Subscriber pattern and the Producer- 
Consumer variant is that in the latter producers and consumers are 
usually in a 1 : 1 relationship. 

Only more complex patterns such as Event-Channel can simulate a 
Producer-Consumer relationship with more than one producer or 

boundary Event 
Channel 

boundnry Subscriber - 

- proxy 
Publisher Subscriber 

pro=Y 
Publisher 



Publisher-Subscriber 343 

consumer. Several producers can provide data by only allowing them 
to write to the buffer in series, either directly or indirectly. The case 
of more than one consumer is slightly more complicated. When one 
consumer reads data from the buffer, the event channel does not 
delete that data from the buffer, but only marks it as  read by the 
consumer. The consumer is given the illusion that the data is 
consumed, and hence deleted, while other consumers will be given 
the illusion that the data is still present and unread. Iterators are a 
good way to implement this behavior. Each consumer has its own 
iterator on the buffer. The position of an iterator on the buffer reflects 
how far the comesponding consumer has read the buffer. The data in 
the buffer can be purged behind the lagging iterator, as  all reads on 
it have been completed. 





4 Idioms 

"A what?" he said. 
-An S.E. P." 

"An S...?' 
"... E.P." 

"And whal's that?' 

Douglas Adnms, we, the Unlwrse and Everything 

Idioms are low-level patterns specific to a programmlng language. An 
idlom describes how to lmplement particular aspects of components 
or the relationships between them with the features of the glven 
language. 

In thls chapter we provide an overview of the use of idioms. show how 
they can define a programmlng style, and show where you can find 
idioms. We refer mainly to other people's work instead of 
documenting our own idioms. We do however present the Counted 
Pointer idiom as  a complete idlom description. 



Idioms 

4.1 Introduction 

Idioms represent low-level patterns. In contrast to design patterns, 
which address general structural principles, idioms describe how to 
solve implementation-specific problems in a programming language, 
such as  memory management in C++. Idioms can also directly 
address the concrete implementation of a specific design pattern. We 
cannot therefore draw a clear line between design patterns and 
idioms. Idioms can address low-level problems related to the use of a 
language, such as naming program elements, source text formatting 
or choosing return values. Such idioms approach or overlap areas 
that are typically addressed by programming guidelines. To 
summarize, we can say that idioms demonstrate competent use of 
programming language features. Idioms can therefore also support 
the teaching of a programming language. 

A programming style is characterized by the way language constructs 
are used to implement a solution, such as  the kind of loop statements 
used, the naming of program elements, and even the formatting of the 
source code. Each of these separate aspects can be cast into an idiom, 
whenever implementation decisions lead to a specific programming 
style. A collection of such related idioms defines a programming style. 

As with all patterns for software architecture, idioms ease 
communication among developers and speed up software 
development and maintenance. The collected idioms of your project 
teams form an intellectual asset of your company. 

4.2 What Can Idioms Provide? 

Learning a new programming language does not end after you have 
mastered its syntax. There are always many ways to solve a particular 
programming problem with a given language. Some might be consid- 
ered better style or make better use of the available language features. 
You have to know and understand the little tricks and unspoken rules 
that will make you productive and your code of high quality. 



What Can Idiom Provide? 347 

A single idiom might help you to solve a recurring problem with the 
programming language you normally use. Examples of such 
problems are memory management, object creation, naming of 
methods, source code formatting for readability, efficient use of 
specific library components and so on. 

There are several ways to acquire expertise in solving such problems. 
One is by reading programs developed by experienced programmers. 
This makes you think about their style and encourages you to try to 
reproduce it in your own code. This approach takes a long time, as  
trying to understand 'foreign' code is not always easy. If a set of 
idioms are available for you to learn, it is much easier to become 
productive in a new programming language, because the idioms can 
teach you how to use the features of a programming language 
effectively to solve a particular problem. 

Because each idiom has a unique name, they provide a vehicle for 
communication among software developers. A team of experienced 
engineers who have been working together for some time might share 
experience by thinking in terms of their own idioms. It may be 
difficult for a newcomer to such a team to understand and learn these 
implicit idioms. I t  is therefore a good idea to make idioms and their 
use explicit-for example, try to document and name the idioms you 
use. 

In contrast to many design patterns, idioms are less 'portable' 
between programming languages. For example, the design of 
Smalltalk's collection classes incorporates many idioms that are 
specific to the language. They depend on features not present in C++ 
such as  garbage collection or meta-information. An early C++ class 
library, the NIHCL (GOP901, implemented collection classes for C++ 
programs by mimicking Smalltalk's collections. For example, every 
class that has objects stored in collections must inherit from the 
NIHCL root class O b  j ec t. In addition, memory management relies 
completely on the programmer, which makes the NIHCL collections 
much harder to use than Srilalltalk's collection classes. Modern C++ 
class libraries such as Generic++ ISNI941 abandon this approach and 
implement collection classes differently from NIHCL by using the C++ 
template mechanism. Such template collections can store any kind of 
data of a given type, even non-objects. 



Idioms 

4.3 Idioms and Style 

Experienced programmers apply patterns when doing their work, just 
a s  do other experts. A good program written by a single programmer 
will contain many applications of his set of patterns. Knowing the 
patterns a programmer uses makes understanding their programs a 
lot easier. 

It may be difficult to follow a consistent style, however, even for a n  
experienced programmer. If programmers who use different styles 
form a team, they should agree on a single coding style for their pro- 
grams. For example, consider the following sections of C/C++ code, 
which both implement a string copy function for 'C-style' strings: 

void strcopyRR(char *d, const char *s) { 
while (*d++=*s++) ; 

1 

void strcopyPascal (char d [ I  , const char s [I ) { 
int i ; 
for (i = 0: s[il ! =  ' \ O 1 :  i = i + 1) 
{ 

d[il = s [il ; 
1 
d[i] = I J O 1 ;  / *  always a s e i g n  0 character * /  

1 / *  END of strcopyPasca1 * /  

Both functions achieve the same result-they copy characters from 
string s to string d until a character with the value zero is reached. A 
compiler might even be able to create identical optimized machine 
code from both examples. The function strcopyKR ( ) uses pointers 
a s  synonyms for array parameters, in the terse C style in the tradition 
of Kerninghan and Ritchie [KR88]. The s t  rcopypascal ( ) function 
might have been written by a programmer with a background in a 
language such a s  Pascal, where pointers are intended for use with 
linked data structures. Both implementations follow their own style. 
Which version you prefer, or what your own version would look like, 
depends on your experience, background, taste and many other fac- 
tors. A program that uses a mixture of both styles might be much 
harder to understand and maintain than a program that uses one 
style consistently. It is a prerequisite that we can understand the 



Idioms and Style 349 

Name 

Problem 

Solution 

style of the program, such a s  the strange looking w h i l e  loop in 
strcopyKR ( ) . 

Corporate style guides are one approach to achieving a consistent 
style throughout programs developed by teams. Unfortunately many 
of them use dictatorial rules such a s  'all comments must start on a 
separate line'. This means that they are not in pattern form-they give 
solutions or rules without stating the problem. Another shortcoming 
of such style guides is that they seldom give concrete advice to a pro- 
grammer about how to solve frequently-occurring coding problems. 

We think that style guides that contain collected idioms work better. 
They not only give the rules, but also provide insight into the problem 
solved by a rule. They name the idioms and thus allow them to be 
communicated. For example, it is easier to say and memorize 'you 
should use an  Intention Revealing Selector here' [Bec97] than 'apply 
rule 97-42 and change your method name accordingly'. However, not 
many such style guides exist yet. A further problem is that idioms 
from conflicting styles do not mix well if applied carelessly to a 
program. 

Here is an example of a style guide idiom from Kent Beck's Smalltalk 
Best Practice Patterns [Bec97]: 

Indented Control Flow 

How do you indent messages? 

Put zero or one argument messages on the same lines a s  their 
receiver. 

Put the keyword/argument pairs of messages with two or more 
keywords each on its own line, indented one tab. 

a < b  
ifTrue: [ .  . . ] 
ifFalse: [ .  . . I  

Ll 
Different sets of idioms may be appropriate for different domains. For 
example, you can write C++ programs in an object-oriented style with 
inheritance and dynamic binding. In some domains. quch a s  real- 



time systems, a more 'efficient' style that does not use dynamic 
binding is required. A single style guide can therefore be unsuitable 
for large companies that employ many teams to develop applications 
in different domains. A style guide cannot and should not cover a 
variety of styles. 

A coherent set of idioms leads to a consistent style in your programs. 
Such a single style will speed up development, because you do not 
have to spend a lot of time thinking about the simple problems 
covered by your set of idioms, like how to format a block of code. In 
addition a consistent style also helps during program evolution or 
maintenance, because it makes programs a lot easier to understand. 

4.4 Where Can You Find Idioms? 

It is beyond the scope of this book to cover a programming style for a 
programming language-such styles and idioms could easily fill an  
entire book by themselves. We suggest that you look a t  any good 
language introduction to make a start on collecting a set of idioms to 
use. As an exercise in documenting your own patterns, you can try to 
rephrase the guidelines given in such books to correspond to a 
pattern template. This will help you to understand when to apply the 
rules, so that you can easily determine which problem a guideline 
solves. 

Some design patterns that address programming problems in a more 
general way can also provide a source of idioms. If you look at these 
patterns from the perspective of a specific programming language, 
you can find embedded idioms. For example, the Singleton design 
pattern [GHJV95] provides two idioms specific to Smalltalk and C++: 

Name 

Problem 

Solution 

Singleton (C++) 

You want to implement the Singleton design pattern IGHJV951 in 
C++, to ensure that exactly one instance of a class exists at run-time. 

Make' the constructor of the class private. Declare a static member 
variable theIns tance that refers to the single existing instance of the 



Where Can You Find Idioms? 351 

Example 

Name 

Problem 

Solution 

Example 

class. Initialize this pointer to zero in the class implementation file. 
Define a public static member function qetIns tance ( ) that returns 
the value of theInstance. The first time qetInstance ( )  is called, it 
will create the single instance with new and assign its address to 
theIns tance. 

class Singleton { 
static Singleton *theInstance; 
Singleton ( ) ; 
public: 
static Singleton *getInstance() { 

if ( ! theInstance) 
theInstance = new Singleton; 

return theInstance; 
1 

I ;  
/ / .  . . 
Singleton* Sing1eton::theInstance = 0; 

The corresponding Smalltalk version of Singleton solves the same 
problem, but the solution is different because Smalltalk's language 
concepts are completely distinct from C++: 

Singleton (Smalltalk) 

You want to implement the Singleton design pattern [GHJV95] in 
Smalltalk, to ensure that exactly one instance of a class exists a t  run- 
time. 

Override the class method new to raise a n  error. Add a class variable 
TheInstance that holds the single instance. Implement a class 
method getInstance that returns TheInstance. The first time 
qetInstance is called, it will create the single instance with super 
new and assign it to TheIns tance. 

new 
self error: 'cannot create new object' 

getInstance 
TheInstance isNil ifTrue: [TheInstance := super new]. 
A TheInstance 

CI 



I d i o m  

Idioms that form several different coding styles in C++ can be found 
for example in Coplien's Advanced C++ [CopegZ], Barton and 

an's Scientific and Engineering C++ [BN94] and Meyers' 
Effective C++ [MeygZ] . 
You can find a good collection of Smalltalk programming wisdom in 
the idioms presented in Kent Beck's columns in the Smalltalk Report. 
His collection of Smalltalk Best Practice Patterns is about to be 
published a s  a book [Bec96]. Beck defines a programming style with 
his coding patterns that is consistent with the Smalltalk class library, 
so you can treat this pattern collection a s  a Smalltalk style guide. 
Many of his patterns build on each other, so that in addition to being 
a style guide, his collection can be considered a pattern language. 

You can also look at your own program code, or the code of your 
colleagues, read it and extract the patterns that have been used. You 
can use such 'pattern mining' to build a style guide for your 
programming language that becomes an  intellectual asset of your 
team. By giving a name to each idiom, your style guide provides a 
language for communication between your developers. It can also 
provide a teaching aid for new developers who join your team. 



Counted Pointer 

The Counted Pointer idiom [Cope921 makes memory management of 
dynamically-allocated shared objects in C++ easier. It introduces a 
reference counter to a body class that is updated by handle objects. 
Clients access body class objects only through handles via the 
overloaded operator-> ( )  . 

Example When using C++ for object-oriented development, memory manage- 
ment is an important issue. Whenever an object is shared by clients. 
each of which holds a reference to it, two situations exist that are 
likely to cause problems: a client may delete the object while another 
client still holds a reference to it, or all clients may 'forget' their refer- 
ences without the object being deleted. 

I0bject.o: I I ObJect '0 I 
refers to 1 I refers to 

Object -0: Object *o: 

reference 'K"7 Object .o: 

r r w  J 

another I another 
object object 

should be 
deleted 



Idioms 

Context Memory management of dynamically allocated instances of a class. 

Problem In every object-oriented C++ program you have to pass objects a s  
parameters of functions. It is typical to use pointers or references to 
objects as parameters. This allows you to exploit polymorphism. 
However, passing object references around freely can lead to the 
situations shown in the diagram above-you do not know if 
references are still valid, or even still needed. 

One approach to the problems arising from the use of pointers and 
references is to avoid them completely and pass objects by value, as  
is normally done with integers. C++ allows you to create programs 
that do this, and the compiler will automatically destroy value objects 
that go out of scope. 

This solution does not work well for all kinds of program, however, for 
three reasons. Firstly, if the objects you pass by value are large, 
copying them each time they are used is expensive in run-time and 
memory consumption. Secondly, you might want to create dynamic 
structures of objects, such a s  trees or directed graphs, which is 
almost impossible to do in C++ using value objects alone. Lastly, you 
may want to share an object deliberately, for example by storing it in 
several collections. 

If you have to deal with references or pointers to dynamically 
allocated objects of a class, you may need to address the following 
forces: 

Passing objects by value is inappropriate for a class. 

Several clients may need to share the same object. 

You want to avoid 'dangling' references-references to an  object 
that has been deleted. 

If a shared object is no longer needed, it should be destroyed to 
conserve memory and release other resources it has acquired. 

Your solution should not require too much additional code within 
each client. 

Solution The Counted Pointer idiom eases memory management of shared 
objects by introducing reference counting. The class of the shared 
objects, called Body, is extended with a reference counter. To keep 
track of references used, a second class Handle is the only class 



Counted Pointer 355 

allowed to hold references to Body objects. All Handle objects are 
passed by value throughout the program, and therefore are allocated 
and destroyed automatically. The Handle class takes care of the Body 
object's reference counter. By overloading opera t o r  - > ( ) in the 
Handle class, its objects can be used syntactically a s  if they were 
pointers to Body objects. 

Implementation 

See the Variants section for a variation of this solution that applies 
when Body objects are only shared for performance reasons. 

Body 

int refcounter 

Client 

Handle h 

To implement the Counted Pointer idiom, carry out the following 
steps: 

refers to holds by value - Body *body - 

Make the constructors and destructor of the Body,class private (or 
protected) to prohibit its uncontrolled instantiation and deletion. 

Make the Handle class a friend to the Body class, and thus provide 
the Handle class with access to Body's internals. 

Extend the Body class with a reference counter. 

Add a single data member to the Handle class that points to the Body 
object. 

Implement the Handle class' copy constructor and its assignment 
operator by copymg the Body object pointer and incrementing the 
reference counter of the shared Body object. lmplement the 
destructor of the Handle class to decrement the reference counter and 
to delete the Body object when the counter reaches zero. 

lmplement the arrow operator of the Handle class a s  follows: 

Body * operator->() const { r e t u r n  body; 1 

and make it a public member function. 



Idioms 

7 Extend the Handle class with one or several constructors that create 
the initial Body instance to which it refers. Each of these constructors 
initializes the reference counter to one. 

Sample Code Applying the Counted Pointer idiom results in the following C++ code: 

class Body { 
public : 
/ /  methods providing the bodies functionality to the world 

void service0 ; 
/ /  further functionality ... 

private: 
friend class Handle; 
/ /  parameters of constructor as required 
Body(/*...*/) { / *  ... * /  I 
-Body0 { / *  ... * /  1 
int ref Counter : 

I : 

class Handle { 
public: 

/ /  use Body's constructor parameters 
Handle(/*. . . * / )  { 

body = new Body(/*. . . * / ) ;  
body->refcounter = 1; 

I 
Handle(const Handle &h) [ 

body = h-body; 
body->refcounter++; 

I 
Handle & operator=(const Handle &h) { 

h.body->refcounter++; 
if ( - -body->refcounter) <= 0) 

delete body; 
body= h.body; 
return *this; 

I 
-Handle0 { 

if (--body->refcounter <= 0) 
delete body; 

1 
Body* operator->O { return body; I 

private: 
Body *body; 

1 ; 



Counted Pointer 

/ /  example use of handles . . .  
Handle h(/* some parameter * / )  ; 
/ /  create a handle and also a new body instance 
{ Handleg(h); / /  create just a n e w  handle 

h->service(); g->service(); 
1 / /  g goes out of scope and is automatically deleted 

h->serviceO; / /  still possible 
/ /  after h goes out of scope the body instance is 
/ /  automatically deleted. Cl 

Variants A common application of reference counting, similar to Counted 
Pointer, is used for performance improvement with large Body 
objects. [Cope921 names this variant the Reference Counting Idiom or 
Counted Body in [Cope94a]. In this variant a client has  the illusion of 
using its own Body object, even if it is shared with other clients. 
Whenever an  operation is likely to change the shared Body object, the 
Handle creates a new Body instance and uses this copy for all further 
processing. To achieve this functionality it is not sufficient to just 
overload opera tor - > ( ) . Instead, the interface of the Body class is 
duplicated by the Handle class. Each method in the Handle class 
delegates execution to the Body instance to which it refers. Methods 
that would change the Body object create a new copy of it if other 
clients share this Body object. 

See Also Bjarne Stroustrup (Str911 discusses several ways of extending the 
Handle class. The Handle can be implemented as a template if the 
Body class, passed as a template parameter, cooperates with the 
Handle template class--for example, if the Body class provides the 
Handle class access to the reference counter. 

The solution provided by the Counted Pointer idiom has the drawback 
that you need to change the Body class to introduce the reference 
counter. Coplien and Koenig give two ways to avoid this change. 

James Coplien [Cope921 presents the Counted Pointer idiom and 
several variations. In cases where the Body class is not intended to 
have derived classes, it is possible to embed it in the Handle class. 
Another variation, shown in the diagram that follows, is to wrap 
existing classes with a reference counter class. This wrapper class 
then forms the Body class of the Counted Pointer idiom. This solution 
requires a n  additional level of indirection when clients access the 
Body object. 



refers to 
CountingBody *cb 

cb-xervicefl; 

lnt refcounter 

Andrew Koenig gives a further variation of the theme that allows you 
to add reference counting to classes without changing them IKoe951. 
He defines a separate abstraction for use counts. Then the Handle 
holds two pointers: one to the body object, the other to the use-count 
object. The use-count class can be used to implement handles for a 
variety of body classes. The Handle objects of this solution require 
twice the space of the other Counted Pointer variants, but the access 
is as direct as with a change to the Body class. 

- 7 L q  
refers to 

Int refcounter 

UseCount *count 
Body *body dyplz/) 

refers 
service[) const 
changin Service[) 
-BodY(..f 1 1 



Pattern Systems 

No pattern is an island. 

Richard Helm personal communication 

Apattern system ties individual patterns together. I t  describes how its 
constituent patterns are connected wlth other patterns in the system, 
how these patterns can be implemented, and how software 
development with patterns is supported. A pattern system is a 
powerful vehicle for expressing and constructing software 
architectures. 

In this chapter we specify a pattern system that includes the patterns 
we describe in this book, and that is open for the integration of other 
patterns, for example those from [GHJV951, [PLoP941 and IPLoP951. 
as well as your own patterns. 



Pattern Systems 

5.1 What is a Pattern System? 

Patterns do not exist in isolation-there are many interdependencies 
between them. A plain catalog-like list of all patterns, however, does 
not reflect these manifold relationships. Instead, patterns should be 
interwoven in pattern systems. 

A pattern system ties its constituent patterns together. It describes 
how the patterns are connected and how they complement each 
other. A pattern system also supports the effective use of patterns in 
software development. 

Christopher Alexander uses the term 'language' instead of 'system' to 
describe the same concept [Ale791 p. 185: 

The elements [of a pattern language] are patterns. There is a 
structure on the patterns, which describes how each pattern is 
itself a pattern of other smaller patterns. And there are also rules, 
embedded in the patterns, which describe the way that they can 
be created, and the way that they must be arranged with respect 
to other patterns. 

However, in this case, the patterns are both elements and rules. 
so rules and elements are indistinguishable. The patterns are 
elements. And each pattern is also a rule, which describes the 
possible arrangements of the elements-themselves again or other 
patterns. 

Indeed, a pattern system can be compared with a language. The 
patterns make the vocabulary of the language, and the rules for their 
implementation and combination make up its grammar. 

We prefer the term 'pattern system' to 'pattern language'. A pattern 
language implies that its constituent patterns cover every aspect of 
importance in a particular domain. A pattern language for software 
architecture must be computationally complete: at least one pattern 
must be available for every aspect of the construction and implemen- 
tation of software systems-there must be no gaps or blanks. Such 
pattern languages exist for some small and well-known domains. Two 
examples are Crossing Chasms IPLoP951 for connecting object- 
oriented applications to relational databases, and CHECKS [Cun94] 
for information integrity. However, the patterns we describe only cov- 
er certain aspects of the construction of software architectures. Their 



What is a Pattern System? 36 1 

entirety is not computationally complete. even when extended with all 
the other related patterns we know about. We however have more 
than just a catalog of patterns, since we describe how our patterns 
are tied together, but we have far less than a pattern language. 

We define the term 'pattern system' as follows: 

A pattern system for software architecture is a collection of patterns 
for software architecture, together with guidelines for their implemen- 
tation. combination and practical use in software development. 

The main objective of a pattern system for software architecture is to 
support the development of high-quality software systems. By 'high- 
quality', we mean systems that fulfill both their functional and non- 
functional requirements. To achieve this objective, a pattern system 
must meet the following requirements: 

It should comprise a surnient base of patterns. We need patterns 
that support specification of the basic architecture of a system, 
patterns that help with refining this basic architecture, and 
patterns that help with implementing a software architecture in a 
specific programming language. 

It should describe all its patterns unijorrnly. The form of description 
must capture both the essence of a pattern and a precise depiction 
of its details. The form must further support the comparison of a 
pattern with other patterns. 

It should expose the various rehtionships between patterns. The 
pattern system must identify which other patterns a pattern 
refines, which other patterns it exposes, with which patterns it can 
be combined, and what alternatives are available. 

It should organize its constituent patterns. Users should be able to 
find a pattern quickly that helps them solve their concrete design 
problem, and they should be able to explore alternative solutions 
that are addressed by different patterns. 

It should support the construction of software systems. A pattern 
system should show how to apply and implement its constituent 
patterns. 



Pattern Systems 

It should support its own evolution. With evolving technology, a 
pattern system will evolve as well. Existing patterns will change, 
their description will improve, new or missing patterns will be 
added and existing ones may even 'die'. 

The patterns in this book, and patterns written by others, already 
fulfill the first requirement-we are able to provide a sufficiently large 
and useful set of patterns. These patterns cover all ranges of scale, 
and address many problems in software architecture. 

Our pattern description template is also adjusted to the needs of a 
pattern system (see Chapter 1, Patterns). I t  allows u s  to draw the 'big 
picture' for a pattern, to detail its concrete structure and dynamics, 
and to guide the implementation of the pattern described. Most 
importantly for pattern systems, our description template shows how 
a pattern is connected with other patterns, with which other patterns 
it can be refined and combined, which variants it exposes and which 
other patterns solve the same problem in a different way. 

However, a pattern system is more than just a collection of patterns 
described with a template. We must specify a useful organization 
scheme for patterns, and guide users in selecting patterns and 
building software systems with patterns. Finally, we must ensure 
that the pattern system is open to its own evolution. 

5.2 Pattern Classification 

The more patterns a pattern system includes, the more difficult it be- 
comes to understand and use. If software developers must read, 
analyze and understand every pattern in detail to find the one they 
need, the pattern system as a whole is useless, even if its constituent 
patterns are useful. To handle the entirety of all patterns convenient- 
ly within a pattern system it is therefore helpful to class@ them into 
groups of related patterns. A pattern classification schema that sup- 
ports the development of software systems using patterns should 
have the following properties: 

It should be simple and easy to learn, rather than complex, hard to 
understand, and use. 



Pattern Classification 363 

It should consist ofonly a few class$cation criteria, rather than of 
a multi-dimensional pattern space that organizes patterns 
according to every theoretically-possible pattern property. 

Each class~fication criterion should reflect natural properties of 
patterns, for example the kinds of problems the patterns address, 
rather than artificial criteria such as whether patterns belong to a 
pattern language or not. 

It should provide a 'roadmap' that leads users to a set of potentially- 
applicable patterns, rather than a rigid 'drawer-like' schema that 
tries to support finding the one 'correct' pattern. 

The schema should be open to the integration of new patterns 
without the need for refactoring the existing classification. 

We keep our classification schema simple. It is build upon two 
classification criteria: pattern categories and problem categories. 

Pattern Categories 

The most fundamental classification criteria in our classification 
schema are the pattern categories. We distinguish architectural 
patterns, design patterns and idioms (see Chapter 1,  Patterns). All 
three categories are related to important phases and activities in 
software development: 

Architectural patterns can be used a t  the beginning of coarse- 
grained design, when specifying the fundamental structure of a n  
application. 

Design patterns are applicable towards the end of coarse-grained 
design, when refining and extending the fundamental architecture 
of a software system, for example deciding on the basic communi- 
cation mechanisms between subsystems. Design patterns are also 
applicable in the detailed design stage for specifying local design 
aspects, such as the required support for multiple implementa- 
tions of a component. 

Idioms are used in the implementation phase to transform a 
software architecture into a program written in a specffic language. 

Note that although the above guidelines work well in most cases, they 
are not an immutable rule, Exceptions occur for example if you want 



Pattern Systems 

to instantiate a singleton layered abstraction of a subsystem. The 
Singleton pattern [GHJV95] should be thought about first, then you 
can go on to think about how to structure the subsystem with the 
Layers pattern (3 1). 

Problem Categories 

Our second classification criterion provides a problem-oriented view 
of a pattern system. Every pattern addresses a specific problem that 
may arise in the development of software systems. For example, the 
Forwarder-Receiver pattern (307) describes how to implement peer- 
to-peer communication between distributed components, and the 
Client-Dispatcher-Server pattern (323) how to achieve location 
transparency in a distributed system. Abstracting from specific 
problems leads to problem categories that expose several related 
problems. Forwarder-Receiver and Client-Dispatcher-Server, for 
example, address problems that arise when implementing inter- 
process communication, or more generally, communication between 
components. Problem categories correspond directly to concrete 
design situations. They are therefore a useful pattern classification 
criterion for patterns. We define the following problem categories: 

Ram Mud to Structure includes patterns that support a suitable 
decomposition of an  overall system task into cooperating subtasks. 

Distributed Systems includes patterns that provide infrastructures 
for systems that have components located in different processes or 
in several subsystems and components. 

Interactive Systems includes patterns that help to structure 
systems with human-computer interaction. 

Adaptable Systems includes patterns that provide infrastructures 
for the extension and adaptation of applications in response to 
evolving and changing functional requirements. 

Structural Decomposition includes patterns that support a suitable 
decomposition of subsystems and complex components into 
cooperating parts. 

Organization of Work includes patterns that define how 
components collaborate to provide a complex service. 



Pattern Classification 365 

Access Control includes patterns that guard and control access to 
services or components. 

Management includes patterns for handling homogenous 
collections of objects, services and components in their entirety. 

Communication includes patterns that help to organize commu- 
nication between components. 

Resource Handling includes patterns that help to manage shared 
components and objects. 

Some patterns cannot be assigned to a single problem category, 
however. These patterns address several problems--one main 
problem and several secondary ones. We assign these patterns to all 
the relevant problem categories. For example, we assign the Pipes and 
Filters pattern (53) to the problem categories From Mud to Structure 
and Distributed Systems. 

The Classification Schema 

Both pattern categories and problem categories interweave to form a 
two-dimensional pattern classification schema-for every pattern we 
can define its corresponding pattern and problem categories. 

The schema itself is very simple, expressive and easy to learn. There 
are only two classification criteria. These correspond to two major 
aspects in software development: the general development activity 
that must be performed, and the concrete problem that must be 
solved. Both criteria also reflect natural properties of patterns-range 
of scale and the problem addressed. 

You may have noticed that the structure of this book reflects our 
classification schema. Chapters 2-4 correspond to the pattern 
categories, and each chapter is further structured according to 
different problem categories. The following table gives an overview of 
the classification of our patterns. 



366 Pattern Systems 

From Mud 
to Structure 

Architectural Patterns 

Distributed 
Systems 

Interactive 
Systems 

Adaptable 
Systems 

Structural 
Decompositio~ 

Design Patterns Idioms 

Organization 
of Work 

Layers (3 1) 
Pipes and Filters (53) 

Blackboard (7 1) 

Broker (99) 
Pipes and Filters (53) 

Microkernel (1 7 1) 

MVC (125) 
PAC (145) 

Microkernel (1 7 1) 
Reflection (1 93) 

I 

I Master -Slave (245) 

Whole-Part (225) 

Management I1 
I I I I 

I Command Processor (277) 
View Handler (29 1) 

Access Control Proxy (263) 

Handling 1 1  
Communi- 

cation 

Counted Pointer (353 

Publisher -Subscriber (339) 
Forwarder -Receiver (307) 

Client-Dispatcher-Sewer (323) 

Other patterns fit Into this classification schema a s  well. Reactor and 
Client-Server (PLoP941, for example, are architectural patterns for 
structuring distributed systems. Composite Message (SC95bl is a 
design pattern that addresses communication aspects. Handle-Body 
(Cope921 is an  idiom that guards access to services. 

Our classification schema is also extensible-see Section 5.5. 27w 
Evolution of Pattern Systems. We can add new pattern and problem 
categories to classify patterns that cannot be assigned to existing 
categories. Extending the schema in this way does not violate our 
existing pattern classification. 



Our classification schema is not the only one to be defined for 
organizing patterns. Probably the best- own schema is described in 
[GHJV95]. Like our schema, the Gang-of-Four's schema has two 
dimensions: purpose and scope. The following paragraphs are an 
excerpt from the Gang-of-Four book. 

The first criterion, called purpose. reflects what a pattern does. 
Patterns can have either creational, structural, or behavioral 
purpose. Creational patterns concern the process of object 
creation. Structural patterns deal with the composition of classes 
or objects. Behavioral patterns characterize the ways in which 
classes or objects interact and distribute responsibility. 

The second criterion, called scope, specifies whether the pattern 
applies primarily to classes or to objects. Class patterns deal with 
relationships between classes and their subclasses. These 
relationships are established through inheritance, so they are 
static-fixed at compile-time. Object patterns deal with object 
relationships, which can be changed at run-time and are more 
dynamic. 

According to this classification schema, for example, Composite 
[GHJV95] and Whole-Part (225) are structural object patterns, while 
Interpreter [GHJV95] is a behavioral class pattern. 

We believe, however, that a distinction between structural and 
behavioral patterns is too vague. Problem categories are more 
expressive. They explicitly name specific problem areas with which 
developers must deal when building software systems. Furthermore, 
the Gang-of-Four's scope criterion will not help software developers 
when selecting a pattern. This is because it does not relate to any 
specific design situation or activity, and also does not fit with non- 
object-oriented patterns such as  Layers (3 1) or Pipes and Filters (53). 

Other organizational schemes for patterns are presented in 
[EKM+94], [Zim94] and [BM94]. [EKM+94] builds on problem catego- 
ries, such as  transactions or bridging the gap between object-oriented 
applications and relational databases, in the same way that our sche- 
ma does. [Zim94] focuses on relationships between patterns, such as  
'pattern A uses pattern B' or 'pattern A is similar to pattern B' in its 
solution. 



Pattern Systems 

[BM94] is the predecessor of the schema we present in this book. It is 
three-dimensional. The first two dimensions--called 'granularity' and 
'functionality'-correspond directly to our pattern and problem 
categories. The third dimension, 'structural principles', depicts the 
technical principles that underlie the solutions the patterns propose. 
For example, the Whole-Part pattern (225) is based on the separation 
of policy and implementation IRBPEL9 11. However, as with the scope 
criterion of the Gang-of-Four's schema, the structural principle 
criterion is of less importance when selecting a pattern-we therefore 
dropped it when defining our new classification schema. 

5.3 Pattern Selection 

Based on our classification schema, our pattern description template 
(see Chapter 1, Patterns) and the relationships between patterns, we 
can define the following simple procedure for selecting a specific 
pattern. It includes seven steps: 

1 Spec~jQ the problem To be able to find a pattern that helps you solve 
a concrete problem, you must first specify the problem precisely: 
what is the general problem, and what are its forces? If the general 
problem has several aspects, such as specifymg the basic 
architecture of a system that is both distributed and interactive, split 
the problem into subproblems. Describe each subproblem and its 
forces separately. For each subproblem, try to find a pattern that 
helps to solve it. 

Let's assume, for example, that your problem is to define the 
fundamental structure of an interactive text editor. The system 
should be portable to different user-interface libraries and different 
customer-specific style guides. We will use this example to illustrate 
the remaining pattern selection steps. 

Select the pattern category that corresponds to the design activity you 
are performing. For our example, we need to specify the basic 
architecture of the text editor. We therefore select the architectural 
pattern category. 



Pattern Selection 369 

Although this step does not require detailed knowledge about the 
design problem involved, it already significantly limits the number of 
patterns that are potentially applicable to the design problem. 

Select the problem category that corresponds to the general nature of 
the design problem. Every problem category broadly summarizes the 
types of problems addressed by the patterns it contains. In our text 
editor example, we would select the problem category Interactive 
Systems, where we find the Model-View-Controller pattern (MVC) 
(1 25) and the Presentation-Abstraction-Control pattern (PAC) ( 145). If 
no problem category matches the concrete design problem, select an 
alternative problem category if possible (step 7). 

Compare the problem descriptiqns. Each pattern in your selected 
problem category may address a particular aspect of your concrete 
problem, and either a single pattern or a combination of several can 
help to solve it. Select the patterns whose problem descriptions and 
forces best match your design problem. This step Is the first that 
requires specific knowledge about the design problem to be solved. 
For a text editor, for example, we would probably select Model-View- 
Controller. Both MVC and PAC support changing the user interface of 
a system. However, since the domain of text editing mainly consists 
of a set of closely-related functions rather than of several independent 
subdomains, there is no need for our editor to have the agent-based 
architecture proposed by PAC. 

If the patterns in the selected problem category do not address 
aspects of the concrete design problem, select an  alternative problem 
category if possible (step 7). 

Compare benefits and liabilities. This step investigates the 
consequences of applying the patterns selected so far. Pick the 
pattern that provides the benefits you need and whose liabilities are 
of least concern to you. Since we have already selected a particular 
pattern for the architecture of our text editor, we skip this step. 

Select the uariant that best implements the solution to your design 
problem. In the case of our text editor example, the view and 
controller functionality is usually strongly interwoven. We therefore 
select the Document-View variant of MVC to specify the basic 
architecture of our editor. 



Pattern Systems 

Unless you encountered problems with step 3 or step 4, you have now 
completed your pattern selection. 

7 Select an alternative problem category. If there is no appropriate 
problem category, or if the selected problem category does not include 
patterns you can use, try to select a problem category that further 
generalizes your design problem. This category may include patterns 
that, when specialized, can help you to solve the problem. Then 
return to step 4, Compare the problem descriptions. 

Many patterns are specializations of other patterns from different 
problem categories. For example, the Composite Message pattern 
[SC95b], which addresses communication aspects, is basically a 
specialization of the Composite pattern IGHJV9.51, which is assigned 
to the problem category Structural Decomposition. If you are facing 
the problem that is addressed by Composite Message, but  do not have 
it available, you could perhaps use the Composite pattern instead. 

If steps 2, 3 and 4 provide no result, even after trying to select 
alternative problem categories, you should stop searching-the 
pattern system does not contain a pattern that can help you to solve 
your design problem. You may decide to look at other pattern 
languages, systems or catalogs to see whether they contain a pattern 
you can use, or you can solve your design problem without applying 
patterns. 

You do not need to apply the search procedure when implementing or 
refining a pattern you have already selected. The implementation 
section of our pattern descriptions refers directly to those patterns 
that naturally complement the pattern being implemented. 

5.4 Pattern Systems as Implementation Guidelines 

All our pattern descriptions provide steps and guidelines that specify 
their implementation. They help with the task of transforming a given 
software architecture that does not include the pattern into one that 
includes it. The implementation steps can be seen as  a micro-method 
for solving the specffic problem addressed by the pattern. 



Pattern Systems as Implementation Guidelines 37 1 

Like the patterns themselves, the steps for their implementation are 
interwoven-they often refer to other patterns that complement the 
pattern being described. Whenever another pattern is referenced, its 
implementation steps can be applied. 

Example Implementing a Model-View-Controller architecture (1 25) 

The implementation section of Model-View-Controller refers to seven 
other patterns: 

Step 2: 'Implement the change-propagation mechanism' suggests 
the use of the Publisher-Subscriber design pattern (339). 

Step 4: 'Design and implement the controllers' refers to the 
Command Processor design pattern (277). 

Step 5: 'Design and implement the view-controller relationship' 
refers to the Factory Method design pattern [GHJV95]. 

Step 7: 'Dynamic view creation' builds upon the View Handler 
design pattern (29 1). 

Step 9: 'Infrastructure for hierarchical views and controllers' uses 
the Composite IGHJV951 and Chain of Responsibility [GHJV95] 
patterns. 

Step 10: 'Further decoupling from system dependencies' suggests 
the application of the Bridge pattern [GHJV95]. 

Mvc 
1 Separate human-computer 

interaction from core func- 
tionality. 

2 Implement the change prop- 
agation mechanism. 

3 Design and lmplement the 
views. 

4 Design and implement the 
controllers. 

5 Design and implement the 
view-controller relationship. 

6 ... 

I Publisher-Subscriber h 
1 Identi@ the subject and its 

observers. 

/ 1: the registration1 
mechanism. 

refers to 

Command Proceseor 
1 Define the interface of the 

refers to abstract command. 
2 Design the command con]- 

ponents. 
3 Increase flexibility by provid- 

ing macro commands. 
4 ... 

1 ... 



atte ste 

The above example reveals that the implementation steps of all 
patterns collectively form an  extensible set of guidelines for software 
design and implementation. The implementation steps for individual 
patterns are its building-blocks. They can be plugged with the 
implementation steps of other patterns, namely those that refer to the 
pattern you are implementing. You can therefore solve complex 
problems by recursively applying the implementation steps of all 
patterns that are involved in its solution. 

This focus on solving specific problems distinguishes the 
implementation guidelines for patterns from existing analysis and 
design methods, such as  Booch [Boo94], Coad/Yourdon [CY9 11, 
Object Modeling Technique [RBPELS 11 or Shlaer/ Mellor [SM88]. 
These only provide general and problem-independent guidelines for 
software development such as  'Identify the objects/classes required 
to model the system' [Kar95]. The construction of a specific 
architecture, for example a Model-View-Controller architecture, is 
still based on your own experience and intuition. 

You may wonder how complete the guidelines are that you can derive 
from the implementation steps of individual patterns. Examining our 
pattern system shows that the support for software development in 
general is fairly incomplete and small. We cover only those problem 
areas of software architecture for which the system includes a t  least 
one pattern. For many problem areas, however, our guidelines give no 
support, because we do not provide patterns that address these 
problems. Examples include component creation, event handling, 
transactions, connecting object-oriented applications with relational 
databases, extensibility of an  application with new functionality and 
SO on. 

However, we designed our pattern system to .be extensible (see Sec- 
tion 5.5, The Evolution of Pattern Systems)-it can be extended with 
patterns for problem areas that are not yet covered. When integrating 
a new pattern in this way, we also specify its relationships to other 
patterns. This integrates the implementation steps for the new pat- 
tern with the implementation steps of related existing patterns. Every 
new pattern therefore extends the guidelines provided by the whole 
pattern system-they become more powerful, more specific, and 
cover more of the problem areas of software architecture. 



Pattern Systems as Implementation Guidelines 373 

Even the most comprehensive pattern system, however, will not and 
should not cover every problem area of software architecture. There 
will always be blank spots-design problems for which no pattern is 
available. (Cope961 maintains that 'the broader design space lends 
itself well to the common techniques of well-known paradigms'. For 
example, there is no need for patterns that describe the general use 
of modules, interfaces or procedures. Our implementation guidelines 
for individual patterns also do not address general aspects of software 
development, such as providing overall process and software life cycle 
models. Patterns do not therefore define a new method for software 
development that replaces existing ones. Instead, they complement 
general but problem-independent analysis and design methods with 
guidelines for solving specific and concrete problems. 

We therefore suggest the following pragmatic approach to the 
development of software systems using patterns: 

1 Use any method you like to define an  overall software development 
process and the detailed activities to be performed in each develop- 
ment phase, such as  Booch IBoo941, Coad/Yourdon ICY9 1 ], Object 
Modeling Technique IRBPEL9 11, Shlaer/Mellor [SM88], Responsi- 
bility-Driven-Design [WWW9Ol or the Unified Method (BR951. 

2 Use an appropriate pattern system to guide your design and 
implementation of solutions to specific problems. Whenever this 
pattern system includes a pattern that addresses a design problem 
you are faced with, use the implementation steps associated with 
that pattern to solve the problem. If these refer to other patterns, 
recursively apply these patterns and their associated 
implementation steps to complement your implementation of the 
original pattern. 

3 If the pattern system does not include a pattern for your design 
problem, try to find a pattern from other pattern sources you know. 

4 If no pattern is available, apply the analysis and design guidelines 
of the method you are using. These guidelines provide a t  least some 
useful support for solving the design problem at hand. 

This simple approach avoids defining yet another design method. It 
combines the experience in software development captured by exist- 



Pattern Systems 

ing analysis and design methods with the specific solutions to con- 
crete design problems described by patterns. 

5.5 The Evolution of Pattern Systems 

Even the most mature pattern systems will not remain static. 
Knowledge evolves over time-new technologies are developed and 
existing technologies are enhanced or become outdated. New patterns 
will therefore emerge and existing patterns may 'die'. Every new 
pattern to emerge must be integrated into the pattern system to keep 
it up-to-date. Outdated patterns must be removed if they are no 
longer used. Even individual pattern descriptions will change over 
time-specific aspects will be clarified and further known uses added. 
Whenever a new pattern is integrated into the system, or an existing 
pattern is removed, the relationships between existing patterns must 
be updated. 

Within the context of pattern system evolution, several issues must 
be considered: the evolution of pattern descriptions, 'pattern-mining'. 
the integration of new patterns into the system, the removal of 
outdated patterns and the extension of the organization schema. The 
following sections discuss these issues. 

The Evolution of Pattern Descriptions 

It is important to improve and stabilize the description of every 
pattern in a pattern system continuously for the system to remain 
useful. The more mature a pattern is, the longer it will stay in a 
pattern system and the greater is the chance of its successful 
application. Whenever a pattern is applied, the experience gained 
from its application should be used for a critical review of the pattern 
and its description. 

Such a review may lead to the recognition of additional benefits that 
are provided by the pattern, but also to further potential liabilities 
and limitations. You may also recognize the need for a slight 



The Evolution of Pattern Systems 375 

modification of the structure and dynamics of the pattern, or for the 
integration of a new variant in the pattern description. 

Example Proxy (263) 

Proxy is a good example of the evolution of a pattern and its descrip- 
tion. The original description in [GHJV95] lists three variants: Remote 
Proxy, Virtual Proxy and Protection Proxy, whose specific details were 
also interwoven with the description of the general principle. In 
[PLoP95] we presented an alternative description, which separated 
the general principle of the Proxy pattern from the details of its con- 
crete uses. We also presented four additional kinds of proxies: Cache 
Proxy, Firewall Proxy, Counting Proxy and Synchronization Proxy. 
Based on the feedback we received from many reviews of our Proxy 
description, we improved the pattern description further. We 
sharpened the phrasing of the essentials and added more technical 
information about the various variants. The result of this improve- 
ment process is the Proxy pattern to be found in this book (263). O 

You can stabilize a pattern further by extending the list of its known 
uses whenever you apply it successfully. The more known uses that 
are listed, the greater is the chance that users will identify a similar 
design situation to those described. In such a case there is 'reference- 
application' of the pattern and users can directly benefit from 
previous experience with it. 

Writer's Workshops 

Every pattern review should follow a structured format. The objective 
is to acquire as much feedback for constructive improvement as 
possible. Unstructured reviews tend to be insufficiently systematic- 
points are raised in an arbitrary and unrelated order, and many 
aspects for improvement are not discussed or are discussed only 
briefly. 

The format we suggest for pattern reviews is adapted from one used 
for the review of written works, specifically poetry. It is called a 
writer's workshop and-when used for the review of patterns-follows 
the following format: 

The pattern is discussed by a group of people that includes its 
author and a group of reviewers familiar with the contents of the 



pattern description. A moderator is also present to help the 
participants follow the conventions of the workshop. 

@ The author of the pattern description reads a paragraph of their 
choice from the pattern description. 

Two reviewers summarize the description from their personal 
viewpoints. 

In separate stages the strong points of the pattern description are 
first discussed, then its deficiencies, and finally every other aspect. 
Within this discussion, the author of the pattern description is only 
'virtually' present-the author does not participate actively in the 
discussion, nor do the reviewers address the author directly. The 
reviewers should discuss the pattern description as  if its author 
were not present. The author is, however, allowed to take notes 
about the discussion. 

After this discussion, the author may question the reviewers to 
clarify particular statements made. 

The author concludes the session with a final comment on the 
discussion. 

The pattern description can be improved on basis of the results from 
the writer's workshop. All patterns in [PLoP94] and [PLoP95], and 
most of our patterns, were reviewed in writer's workshops. 

There is not always a suitable pattern for solving a concrete design 
problem. In such a case it is often useful to 'mine' new patterns that 
address such problems, especially if you face them frequently. The 
following rules of thumb have proved to be practical: 

1 Find at least three exampks where a particular recurring design or 
implementation problem is solved effectively by using the same 
solution schelna. The examples should all be from different real-world 
systems, and all systems should have been developed by different 
teams. 



Extract the solution schema. Abstract the general solution schema 
from the specific details of its concrete applications. Describe the 
problem that the solution schema addresses, and the forces that are 
associated with the problem-use an  appropriate pattern description 
template. List the examples from which you derived the solution 
schema as  'known uses'. 

Declare the solution schema to be a 'pattern-candidate'. 

Run a writer's workshop to improve the description of the candidate 
pattern and to share it with your colleagues. 

Apply the candidate pattern in a real-world software development 
project . 
Declare the candidate pattern to be a pattern if its application is 
successful, and integrate it into your pattern system. Improve its 
description by running another writer's workshop. Add the new 
application to the list of known uses of the pattern. 

If the application of the candidate pattern failed, improve its 
description from the lessons learned and try to apply it again. 
Alternatively, consider abandoning the candidate completely and 
looking for a better solution to the original problem. 

When integrating a new pattern into a pattern system, either an 
existing pattern or a pattern you have 'mined', you need to perform 
two activities : 

ecth the relationships of the new pattern to other patterns in the 
pattern system, and all relationships from existing patterns to the 
new pattern. 

2 Classify the pattern by assigning it to appropriate pattern and 
problem categories. If you cannot assign the new pattern to existing 
categories, extend your organization schema appropriately (see 
below). 



Pattern Systems 

With evolving technology, patterns can become outdated. There are 
several reasons for this: 

Disappearance of the problem. A problem that in the past had to be 
explicitly addressed might now be handled by the programming 
languages or system environments in use. For example, 
introducing garbage collection in C++ makes several C++-specific 
idioms superfluous, namely those that address the handling of 
shared objects. 

Better alternatives. A new solution to a particular design problem 
might become available which is preferable to existing patterns 
that address the same problem. 

Technology evolution. A new paradigm, the evolution of 
programming languages and styles, or a change in the kinds of 
system that are developed can cause existing patterns to become 
outdated. 

Main Program and Subroutines [PLoP95] is an  example of an  
outdated pattern. This suggests the decomposition of an application's 
hnctionality into a set of 'nested collections of procedures'. When 
structural programming was new and programs were small, Main 
Program and Subroutines was a useful pattern, as  it helped 
programmers to think about system decomposition. A program that 
was not a large 'chunk' of code was thought of as  well-structured. 

Today almost all programs use subroutines-even badly-structured 
ones. It is no longer a sign of quality if Main Program and Subroutines 
is the main architectural principle of a system. The reason for this is 
that systems grow continuously both in size and functional 
complexity. They become more and more distributed, and most of 
them provide graphical user interfaces. Complex systems, however, 
call for architectural principles other than the one described by Main 
Program and Subroutines-this once useful pattern has become 
outdated. 

When should you remove a 'dying' pattern from a pattern system? 
Certainly it should not be used when developing new software sys- 
tems. It may, however, still be necessary to apply it, for example when 
maintaining legacy systems. Such systems may follow programming 



The Evolution of Pattern Systems 578 

practices of the past. The application of 'up-to-date' patterns often 
does not make sense-they may break the architectural vision under- 
lying these systems. We must apply 'old-fashioned' patterns that fit 
with the existing architecture. Patterns that become outdated should 
therefore only be removed from a pattern system if it is unlikely that 
they will ever be used in any future software development, or during 
system maintenance. 

Extending the Organization Schema 

With the evolution of a pattern system it may be necessary to modify 
its organization schema. We may need to add new pattern categories. 
for example. Our pattern system as  specified in this book only covers 
patterns that are of general applicability in software development. We 
do not provide domain-specific patterns that specify the organization 
of work In a particular application domain and which can be applied 
in the analysis phase. 

To integrate such patterns, we could add an Analysis Patterns 
category. Alternatively. we may define new problem categories, for ex- 
ample for component creation. New problem categories are necessary 
to extend our pattern system with the patterns from IGHJV951: 

Creation includes patterns that help with instantiating objects and 
recursive object structures. 

Service Variatbn comprises patterns that support changing the 
behavior of an object or component. 

Service Extensbn includes patterns that help to add new services 
to an object or object structure dynamically. 

Adaptatton provides patterns that help with interface and data 
conversion. 

All the other Gang-of-Four patterns can be assigned to existing 
problem categories. The following table shows the integration of their 
patterns into our pattern system. To distinguish the Gang-of-Four 
patterns from ours, they are shown in italics. 



380 Pattern Systems 

Architectural Patterns 

Distributed 
Broker (991 

Pipes and Filters (53) 
Microkernel (1 7 1) 

From Mud 
to Structure 

Design Patterns 

Adaptable Microkernel ( I  7 11 
Systems Reflection (1 93) 

Creation Prototype 
Builder 

Idioms 

Layers (3 1) 
Pipes and Filters (53) 

Blackboard (7 1) 

Interactive 
Systems 

Singleton 
Factory Method 

Interpreter 

MVC (125) 
PAC (1  45) 

Structural 
Decomposition 

Organization 
of Work 

Access Control 

Whole-Part (2251 
Composite I 

Master -Slave (245) 
Chain of Responsibility 

Command 
Mediator 

Proxy (263) 
F d e  
Iterator 

Variation 
Semce il B W e  

Strategy 
State 

Template Method 

Cornmuni- 
cation 

Service 
Extension 

Management 

Adaptation 

Publisher -Subscriber (339) 
Forwarder-Receiver (3071 

Client-Dispatcher-Server (3231 

Decorator 
Vls itor 

Command Processor (277) 
View Handler (29 1 I 

Memento 

Adapter 

Resource 
Handling 

Flyweight Counted Pointer (35: 



Summary 38 1 

Another possible extension is the addition of new classification 
criteria, for example Scope as defined by [GHJV95J, or Enabling 
Technique as described in [BM94], which specifies the principles that 
underlie specific patterns. Is this really useful, however? We do not 
believe so. Firstly, a multi-dimensional schema becomes overloaded. 
Users are confronted with a variety of different classification criteria 
that make a pattern system hard to understand and use. Secondly, 
more criteria require a knowledge of more details about the current 
design problem when selecting a pattern. 

The introduction of further, finer-grained criteria for grouping 
patterns should only be considered if the existing pattern groups 
become very large and thus hard to handle. Your goal should always 
be to help users to get an overview of the patterns in a pattern system, 
and to guide the selection of patterns, rather than providing a 
complete and detailed classification that covers every property that 
patterns can expose. 

5.6 Summary 

Patterns for software architecture exist in many ranges of scale and 
abstraction. They can be applied in different phases of software 
development and address a variety of different problems. They also 
exhibit different relationships with each other. The benefits of a set of 
related patterns is more than the sum of the benefits of each 
individual pattern in the set. 

To take advantage of such sets of patterns, we need to organize them 
into pattern systems. A pattern system helps to handle a significant 
number of patterns in a convenient way. It describes all patterns 
uniformly. It supports an overview of the patterns it includes by clas- 
sifylng them. It supports the selection of a pattern by providing an 
appropriate search strategy. It provides a set of guidelines to support 
the development of software systems with patterns. Finally, a pattern 
system supports its own evolution. 

Our pattern system includes patterns of general applicability in soft- 
ware development, from the specification of the basic architecture of 



a software system to the implementation of specific design aspects in 
a concrete programming language. The pattern system is extensible 
with patterns that address further aspects of the construction of soft- 
ware architectures, such as  those irom [GHJV95], [Sch95], [Cope921 
and many of the patterns described in [PLoP94] and [PLoP95]. Ex- 
tending our pattern system with these patterns provides concrete and 
practical support for solving many recurring design and implementa- 
tion problems. 

We can also extend our pattern system with domain-specific patterns, 
such as  the switching system patterns in [PLoP95]. For particular 
application domains it then becomes possible to cover most of the 
sof'tware development process with patterns, from analysis to im- 
plementation. Such a pattern system becomes a powerful vehicle for 
constnuctfng software systems. 



Patterns and Software 
Architecture 

The sign read: 
'Hold stick near the centre of its length. 

Moisten pointed end in mouth. 
Insert in tooth space, blunt end next to gum 

Use gentle in-out motion.' 

'It seemed to me.' said Wonlco the S m e .  
'that m y  ciuU(zatlon that had so far lost (ts head 
as to need to include a set of detailed instructtons 

for use in a packet of toothpicks. 
was no longer a civilizatton 

in whlch I could liw and stag sane.' 

Douglas Adams. So Long, and 'lknks for All the Flsh 

Patterns are an important vehicle for constructing high-quality 
software architectures. However. several other techniques, methods, 
and processes for software architecture already exist. How do 
patterns build on these techniques, methods, and processes, and 
how do patterns complement them? Do patterns even define the state 
of the art in software architecture? 

In this chapter we discuss how patterns are integrated into the larger 
field of software architecture. The chapter is not intended to provide 
a complete survey of software architecture, however. 



Patterns and Software Architecture 

6.1 Introduction 

Before discussing how patterns are integrated with software 
architecture, we need to characterize our understanding of this field. 
In this section we therefore briefly discuss some important aspects 
related to the discipline of software architecture. We give our 
definitions of the following terms: 

Software Architecture 

Component 

Relationship 

View 

Functional Property 

Non-functional Property 

Software Design 

Software Architecture 

Throughout our book we use the term 'software architecture' without 
any further explanation-we assume that you already have an  intui- 
tive understanding of its meaning. But what do we really mean by a 
software architecture? 

A software architecture is a description of the subsystems and 
components of a software system and the relationships between 
them. Subsystems and components are typically specified in different 
views to show the relevant functional and non-functional properties 
of a software system. The software architecture of a system is an  
artifact. It is the result of the software design activity. 



Introduction 

Component 

A component is an encapsulated part of a software system. A com- 
ponent has an interface. Components serve as  the building blocks for 
the structure of a system. At a programming-language level, com- 
ponents may be represented as  modules, classes, objects or a set of 
related functions. 

The following figure shows three different components: 

IEFINITION MODULE 
CoreData; 

7ROH Sys IMPORT 

objrupe. 
ObjID; 

EXPORT QUALIFIED 
PRCCEDURE 
newobj 0 :ObjType; 

PROCEDURE 
loadobj l1D:objIO) :ObjVpe; 

PROCEDURE 
storeobj 1obj:objTypei ; 

END CoreData. 

MODULA4 definition module 

Cla-9 Random I 
private: 

in t  s e e a ;  
i n t  seeds; 

public: 
Random l in t  aeedi ; 
-Randarn I I ; 
i n t  random-cardlint maxi ;  

C++ class definitlon C functions 

Note that components can be of very different natures. In the Broker 
pattern (99), for example, we mention 'the Broker component'. De- 
pending on the implementation of this pattern, the Broker component 
can be a linked library or a separate process. The term 'component' 
is-at least at first sight-independent of its eventual manifestation 
in source code. 

We sometimes use the term 'component' even more loosely. For 
example, when we speak of the 'client component', we intentionally 
want to forget for the moment how the client will be implemented. We 
want instead to focus on a different problem, for example that of 
specifying how clients can exploit the services that a pattern offers. 



Patterns and Software Architecture 

But how can we categorize components in principle? Here we list two 
different ways. IPW921, for example, distinguishes three different 
kinds of components, called elements: 

Processing elements 

Data elements 

Connecting elements 

h-ocessing elements supply transformations of the data elements 
that contain the information that is transformed. Connecting 
elements-which at  any time may be either processing elements, data 
elements or both-constitute the 'glue' that holds the different pieces 
together. 

Another categorization of components developed for the object- 
oriented programming paradigm Is a s  follows: 

Controller components 

Coordinator components 

Interface components 

Service provider components 

Information holder components 

Structuring components 

Relationship 

A relationship1 denotes a connection between components. A 
relationship may be static or dynamic. Static relationships show 
directly in source code. They deal with the placement of components 
within an architecture. Dynamic relationships deal with temporal 
connections and dynamic Interaction between components. They may 
not be easily visible from the static structure of source code. 

1. Other definitions for software architecture use the term 'connector' instead of 
relationship [SG96]. 



Introduction 

Aggregation and inheritance are examples of static relationships. Ob- 
ject creation, communication between objects, and data transfer are 
usually dynamic relationships. An example of a temporal relationship 
is when an object is inserted into a container at some point in time 
and later deleted. 

The following figure shows three static relationships in OMT notation 
[RBPELS 11. 

functions functions 

Superclass 

functions 

Subclass 

functions 

Aggregation Inheritance 
relationship relationship 

association 

Relationships between components have a great impact on the overall 
quality of a software architecture. For example, changeability is much 
better supported by software architectures in which the relationships 
support the variation of the components, in contrast to architectures 
in which any change to a component affects the implementation of its 
clients and collaborators. This explicit exposition of the importance of 
relationships can be observed in many of the recent definitions and 
discussions of software architecture [SG96] [PW921 [KMS+92]. 

View 

-- - 

A view represents a partial aspect of a software architecture that 
shows specific properties of a software system2. 

Examples of views are the state view of a component, or the commu- 
nication or data flow views of the relationships between components. 

2. Note that the term 'view' as used here has no direct relationship to view 
components in several of our patterns. 



Patterns and Software Architecture 

state view mmmunicaUon view 

ISNH951 propose describing software architectures by taking the 
following four different views: 

Conceptual architecture: components, connectors.. .. 
Module  architecture: subsystems, modules, exports, imports..,. 

Code architecture: files, directories. libraries, includes ... 
Execution architecture: tasks, threads, processes ... 

A similar approach is taken in II(ru951. Four different views-- 
enhanced by selected use casedescribe the software architecture. 

Logical view: the design's object model, or a corresponding model 
such as an entity relationship diagram. 

h e s s  view: concurrency and synchronization aspects. 

Physical view: the mapping of the software onto the hardware and 
its distributed aspects. 

Development view: the software's static organization in its 
development environment. 

There is obvious overlap between both approaches. For example, the 
conceptual architecture and the loglcal view seem very similar. Other 
views do not map well onto each other. For example, the module and 
code architectures together seem to cover the development view, but 
may also cover additional aspects. It would be interesting to see an 
example architecture described in both approaches. 



Introduction 389 

Functional and Non-functional Properties 

When discussing software architectures we often hear the term 'non- 
functional properties'. In contrast, the 'functional properties' are only 
assumed implicitly. 

Afunctional property deals with a particular aspect of a system's func- 
tionality, and is usually related to a specified functional requirement. 
A functional property may either be made directly visible to users of 
an application by means of a particular function, or it may represent 
aspects of its implementation, such as the algorithm used to compute 
the function. 

While developers were used in the past to concentrating on providing 
the stated functional properties for software, today non-functional 
properties are becoming increasingly important: 

A non-functional property denotes a feature of a system that is not 
covered, by its functional description. A non-functional property 
typically addresses aspects related to the reliability, compatibility, 
cost, ease of use, maintenance or development of a software system. 

In Section 6.4, Non-functional Properties of Sofhvare Architecture we 
discuss the following non-functional properties at length: 

Changeability 

Interoperability 

Reliability 

Testability 

Reusability 

3. In this book we consider efficiency as a non-functional property. However. 
emciency constraints may also be part of the functional requirements, for example in 
real-time systems. SLmilar arguments hold for other non-functional requirements that 
may become functional requirements when explicitly required by the customer. 



Patterns and Software Architecture 

Non-functional properties are of explicit interest when designing a 
software architecture. Firstly, software systems evolve over time. 
They must respond to changing technology, requirements and system 
environments. It is therefore not enough merely to decompose the 
global task of an application appropriately-the system has to be pre- 
pared for changes, extensions and adaptations as well. If this is not 
done a software system, especially if it has a long life-span, becomes 
difficult and expensive to maintain. Secondly, the functionality of a 
software system must often obey certain general requirements, for 
example for its overall operability, reliability or efficiency. To satisfy 
such requirements, its software architecture has to be designed 
appropriately. 

Software Design 

SoJtware design is the activity performed by a software developer that 
results in the software architecture of a system. It is concerned with 
specifyfng the components of a software system and the relationships 
between them within given functional and non-functional properties. 

Conventional wisdom has been to use terms like 'software architec- 
ture', 'software architectural design', or 'coarse-grained design' for the 
high-level structural subdivision of the system, and 'design' or 'de- 
tailled design' for more detailed planning. As mentioned earlier, we 
denote the whole activity of constructing a software system as 'soft- 
ware design' and the resulting artifacts as 'software architecture'. 

Many developers nowadays prefer the term 'software architecture' to 
'software design' for denoting all the artifacts that result from design 
activities. In doing so, they want to express the fact that they do not 
just decompose the functionality of a system into a set of cooperating 
components, but rather that they construct a software architecture. 
They want to show that they focus explicitly on an appropriate con- 
struction of the components of a software system, their attached 
responsibilities, their functionality and interfaces, their inner struc- 
tures, the manifold relationships that exist between them and the 



Patterns in Software Architecture 391 

way they collaborate-all with explicit consideration of non-function- 
al properties such as changeability and portability. They no longer 
agree that high-level design decisions can be made independently of 
lower -level decisions. 

Summary 

The brief discussion in this section already shows that the design of 
a software architecture is more than a simple activity within a limited 
scope. I t  comprises the technical, methodological and process aspects 
of software engineering. It explicitly addresses the needs of productive 
software development and maintenance, and has a great impact on 
the final quality of a software system. 

In the following section we show how patterns address the needs of 
software architecture and how they relate to existing approaches. 

6.2 Patterns in Software Architecture 

Our work on patterns is closely related to much other work in 
software architecture, object-oriented or procedural analysis, design 
and programming. 

Our patterns build on the immense practical experience in software 
development gathered by designers and programmers over the last 
three to four decades. None of the patterns we describe is artificially 
constructed, neither by us  nor by anyone else-they evolved over 
time. Software developers recognized that particular solutions solved 
a problem better than others, and so they reused these solutions 
again and again. Some of the patterns we describe have existed for a 
long time. For example, the Pipes and Filters pattern (53) has been 
known since the 1960s, and the Model-View-Controller pattern (125) 
since the late 1970's [KP88]. Without this practical experience, no 
patterns would exist. 

Patterns also build explicitly on the many principles that have been 
developed for structured programming-patterns are not dedicated 
solely to object technology. Many progra.mming principles that were 



Patterns and So 

developed in the 1970's form the foundation of our patterns, We 
discuss the relationships of patterns to these principles in Section 
6.3, Enabling Techniques for Software Architecture. 

Another objective of patterns is to build software systems with 
predictable non-hnctional properties. Patterns therefore also build 
on the principles for developing software for and with reuse, design 
for change and so on. We also discuss the relationships of patterns to 
important non-functional properties for software systems in Section 
6.4, Non-functional Properties of Somare Architecture. 

Methodologie 

A common question asked about patterns is how they relate to 
exlsting analysis and design methods such as  the Booch method 
[Boo94], Coad/Yourdon [CY9 11, Object Modeling Technique 
[RBPEL91] or Shlaer/Mellor [SM88]. Before we had patterns these 
methods were heralded as  the solution to 'the design problem'. More 
recently, people have become increasingly critical of methodologies- 
or certainly towards the idea of relying on them too heavily. Michael 
Jackson, for example, writes in [Jac95]: 

Failure to focus on problems has harmed many projects. But it 
has caused even more harm to the evolution of development 
METHOD. Because we don't talk about problems we don't analyze 
them or classify them. So we slip into the childish belief that there 
can be universal development methods, suitable for solving all 
development problems. We expect methods to be panaceas- 
medicines that cure all diseases. This cannot be. It's a good rule 
of thumb that the value of a method is inversely proportional to its 
generality. A method for solving all problems can give you very 
little help with any particular problem. 

It is not hard to foresee that people will voice similar complaints about 
patterns if we do not limit expectations. James Coplien recently wrote 
[Cope961 : 

One fear I harbor for patterns is that designers will look to them 
f i s t  for their design solutions. This happened when the object 
paradigm was young, too. Many design problems can be solved by 
well-known paradigms, and good designers should carry those in 
their toolkits-not always try to use the most recent tools, even if 
they are the most powerful. 



Patterns in Software Architecture 393 

In the recent past, we've tried to use object tools to solve 
everything. Patterns take us outside pedestrian object design 
methods, often into structures that are handled well by no existing 
paradigm. To me, that's where patterns shine-the dark corners 
of design. To me, patterns cover only small holes in the design 
space: the broader design space lends itself well to the common 
techniques of well-known paradigms, and we should seek to use 
those paradigms where they fit. 

By curtailing our expectations. we can use both patterns and 
methodologies to our advantage. Methodologies provide many usehl 
steps and guidelines for constructing high-quality software. The 
implementation sections of our patterns loosely follow these steps, 
adapted to the needs of the specific problems the patterns address. In 
addition, these methods define an overall process for software 
development that you can adapt and extend to integrate your use of 
patterns. Patterns complement the extsUng analysis and design 
methods with a set of concrete techniques for solving very specific but 
recurring design problems. 

Bear in mind that neither patterns, methodologies nor their 
combination will provide you with the Yellow Brick Road' to a fine 
architecture. There will be plenty of design problems left that you will 
have to solve on your own. 

Software Processes 

The blanket application of methodologies tends to cause even worse 
problems for software processes. How much harm has been done by 
enforcing the waterfall process in projects? A defined process has its 
benefits, but becomes a liability when it causes organizational 
overheads or enforces a way of working that doesn't fit your project's 
goals. How can a process that tries to fit all projects also fit your own 
project's special circumstances? How can you use crucial insights 
gained during implementation to redesign defined parts of your 
system if you are not allowed to go back to the design stage? You 
should not allow any methodology or process to dictate strictly how 
design and implementatlon is to proceed. 



Patterns and Software Architecture 

How can patterns help here? We would like to integrate patterns into 
an incremental delivery process that gets rid of the strict separation 
of development phases. Object-oriented analysis and design method- 
ologies tend to blur the boundaries between phases. We hope to con- 
tribute towards making this incremental and sometimes cyclic way of 
working more predictable. For example, if patterns help to produce 
better and more stable designs, we can limit the number of cycles 
through the phases and restrict redesign to well-defined parts of the 
system. 

We are often asked at what point of development should patterns be 
used: during analysis, high- or low-level design, or even during 
implementation? There is no single correct answer, but a rule of 
thumb is that you should use the high-level architectural patterns 
earlier than medium-level design patterns, which are themselves 
used before idioms. Section 5.2, Pattern ClasslJcation discusses this 
issue in more detail. 

Architectural Styles 

In 1992 Dwayne E. Perry and Alexander L. Wolf introduced the notion 
of architectural style: 

An architectural style defines a family of software systems in terms of 
their structural organization. An architectural style expresses com- 
ponents and the relationships between them, with the constraints of 
their application, and the associated composition and design rules for 
their construction. 

Generally speaking, an architectural style expresses a particular kind 
of fundamental structure for a software system together with an 
associated method that specifies how to construct it. An architectural 
style also comprises information about when to use the architecture 
it describes, its invariants and specializations, as well as the 
consequences of its application. 



Patterns in Software Architecture 395 

Example Multi-phase architectural style [PW92] 

The multi-phase architectural style consists of processing elements 
and data elements that are exchanged between processing elements. 
For example, the multi-phase style for a compiler includes: 

Processing elements: lexer, parser, semantor, optimizer, code 
generator. 

Data elements: characters, tokens, phrases, correlated phrases, 
annotated phrases, object code. 

If the multi-phase architectural style is organized sequentially, it also 
uses the following connecting elements: 

Connecting elements: procedure calls and parameters. 

The form of an  architectural style is expressed by weighted properties 
and relationships among its architectural elements. For example, in 
a compiler the optimizer and the annotated phrases must be found 
together, but they are only preferred elements and not mandatory. 
Architectural elements are also constrained by various other impor- 
tant perspectives, such a s  that of processing. 

For example, in a compiler the lexer is constrained to accept a se- 
quence of characters C, to produce a sequence of tokens T, and to pre- 
serve the ordering correspondence between characters and tokens: 

lexer: C -t T, where T preserves C 

The processing constraints must be specified for every element of a 
given architectural style. Further constraints are defined for the con- 
nections between components, the data flow, and the state of the 
computation. All constraints together strongly determine the concrete 
architecture of a software system that uses the multi-phase sequen- 
tial architectural style. CI 

Architectural styles have also been proposed in [SG96] and [SNH95]. 
Architectural styles are very similar to our architectural patterns. In 
fact every architectural style can be described a s  an  architectural pat- 
tern. For example, the Multi-phase architectural style corresponds to 



Patterns and Software Architecture 

the Pipes and Filters pattern (53). On the other hand, architectural 
styles differ from patterns in several important respects: 

Architectural styles only describe the overall structural frame- 
works for applications. Patterns for software architecture, however, 
exist in various ranges of scale, beginning with patterns for de- 
fining the basic structure of an application (architectural patterns) 
and ending with patterns that describe how to implement a partic- 
ular design issue in a given programming language (idioms). 

Architectural styles are independent of each other, but a pattern 
depends on the smaller patterns it contains, on the patterns with 
which it interacts, and on the larger patterns in which it is con- 
tained [Ale79]. 

Patterns are more problem-oriented than architectural styles. Ar- 
chitectural styles express design techniques from a viewpoint that 
is independent of an actual design situation. A pattern expresses a 
very specific recurring design problem and presents a solution to 
it, all from the viewpoint of the context in which the problem arises. 

Frameworks 

Frameworks are another important approach to software architec- 
ture: 

A framework is a partially complete software (sub-) system that is 
intended to be instantiated. It defines the architecture for a family of 
(sub-) systems and provides the basic building blocks to create them. 
It also defines the places where adaptations for specffic functionality 
should be made. In an object-oriented environment a framework 
consists of abstract and concrete classes. 

The instantiation of a framework involves composing and subclassing 
the existing classes. A framework for applications in a specific domain 
is called an  applicationframework. 

According to [Pree94] an application framework consists of frozen 
spots and hot spots. Frozen spots define the overall architecture of a 
software system-its basic components and the relationships 



Enabling Techniques for Software Architecture 

Retween them. These remain unchanged in any instantiation of the 
application framework. Hot spots represent those parts of the appli- 
cation framework that are specific to individual software systems. Hot 
spots are designed to be generic-they can be adapted to the needs of 
the application under development. 

When creating a concrete software system with an application frame- 
work, its hot spots are specialized according to the specific needs and 
requirements of the system. To achieve adaptability and change- 
ability with an application framework, you are not restricted to object- 
oriented techniques such as inheritance and polymorphism-you can 
also use patterns [Ta194]. For example, the Abstract Factory pattern 
[CHJV95] is used in the Interviews framework [LCITV92] to create 
user-interface objects with a specific 'look and feel', and in the ET++ 
framework [WCM88] to achieve portability across different window 
systems. Unidraw [VL90] applies the Command pattern ICHJV951 to 
implement undoable commands. 

From the perspective of application frameworks, patterns can be seen 
as their building blocks. From the perspective of patterns, an  appli- 
cation framework can be seen as a pattern for complete software sys- 
tems in a given application domain. 

6.3 Enabling Techniques for Software Architecture 

The construction of software is based on several fundamental 
principles. We call these principles enabling techniques, since the 
principles involved have become blurred over time. Techniques have 
been developed to realize these widely-accepted principles, to a degree 
that it becomes increasingly difficult to differentiate between 
principles and techniques. We therefore take the simple approach 
and use both terms as  synonyms. 

All enabling techniques are independent of a specific software de- 
velopment method, and most of them have been known for years. 
They were developed and proposed mainly in the 1970's in connection 
with publications on structured programming. Classical references 
are the papers by Parnas and colleagues-see for example [Par791 



Patterns and Software Architecture 

and [PCW851. Although the importance of enabling techniques has 
been recognized for a long time, their significance for successful soft- 
ware development has increased over the last few years, strongly 
linked to the emerging discipline of software architecture. Patterns for 
software architecture are explicitly built on these principles, many of 
them with a special focus on a particular principle. The following sec- 
tions summarize some of the most important enabling techniques for 
software architecture: 

Abstraction 

Encapsulation 

Information Hiding 

ModularizaUon 

Separation of Concerns 

Coupling and Cohesion 

Sufficiency, Completeness and Primitiveness 

Separation of Policy and lmplementation 

Separation of Interface and Implementation 

single Point of Reference 

Divide-and-Conquer 

Abstraction 

Abstraction is one of the fundamental principles humans use to cope 
with complexity. Grady Booch defines abstraction as The  essential 
characteristics of a n  object that distinguish I t  from all other kinds of 
objects and thus provide crisply defined conceptual boundaries 
relaUve to the perspective of the viewer.' [Boo94]. The word 'object' 
may be replaced with 'component' to achieve a more general definition 
of abstraction. Several forms of abstraction exist, such as entity 
abstraction, action abstraction, virtual machine abstraction and co- 
incidental abstraction [SS86]. This principle is addressed by several 
patterns such as the Layers pattern (31) and the Abstract Factory 
pattern (GHJV951. 



Enabling Techniques for Softwe Architecture 399 

Encapsulation 

Encapsulation deals with grouping the elements of an abstraction 
that constitute its structure and behavior, and with separating dlffer- 
ent abstractions from each other. Encapsulation provides explicit 
barriers between abstractions. The Fo~warder-Receiver pattern (307). 
for example, encapsulates the implementation details of inter-process 
communication mechanisms. Encapsulation fosters non-functional 
properties like changeability and reusability. 

Information Hiding 

Information hiding involves concealing the details of a component's 
implementation from its clients, to handle system complexity better 
and to minimize coupling between components. Any details of a 
component that clients do not need to know in order to use it properly 
should be hidden by the component. The Whole-Part pattern (225) 
addresses this principle explicitly. The principle of encapsulation is 
often used as a way to achieve information hiding. Information hiding 
can also be achieved using the principle of separation of interface and 
implementation, described later in this section. 

However, what is to be hidden inside a component sometimes 
depends on the application. Aspects that clients do not need to know 
in one application may need to be externally visible in another. For 
example, In one system direct access to the internal data shuctures 
of a component may be necessary for performance tuning. Such 
access may not be necessary when the component is used in other 
systems for which its performance is already adequate. 

The concept of reflection relaxes the principle of information hiding 
ISmi821. The Reflection pattern (193) opens the implementation of a 
software system or a component in a defined way, to provide more 
flexibility for adaptation and change IKee891. However, information 
hiding is still one of the fundamental and most important principles 
of software engineering. 



Patterns and Software Architecture 

Modularization 

Modularization is concerned with the meaningful decomposition of a 
software system and with its grouping into subsystems and 
components. The major task is to decide how to physically package 
the entities that form the logical structure of an application. The main 
objective of modularization is to handle system complexiQ by 
introducing well-defined and documented boundaries within a 
program. Modules serve as physical containers for functionalities or 
responsibilities of an application. Modularization is closely related to 
the principle of encapsulation. Examples of patterns that address 
modularity are the Layers pattern (31), the Pipes and Filters pattern 
(53) and the Whole-Part pattern (225). 

Separation of Concerns 

Different or unrelated responsibilities should be separated from each 
other within a software system, for example by attaching them to 
different components. Collaborating components that contribute to 
the solution of a specific task should be separated from components 
that are involved in the computation of other tasks. If a component 
plays different roles in different contexts, these roles should be 
independent and separate from each other within the component. 
Almost every pattern of our pattern system addresses this 
fundamental principle in some way. For example, the Model-View- 
Controller pattern (125) separates the concerns of internal model, 
presentation to the user and input processing. 

Coupling and Cohesion 

Coupling and cohesion are principles originally introduced as part of 
the structured design approach. Coupling focuses on inter-module 
aspects, whereas cohesion emphasizes intra-module characteristics. 

Coupling is the measure of the strength of association established by 
a connection from one module to another. Strong coupling compli- 
cates a system, since a module is harder to understand, change, or to 
correct if it is highly interrelated with other modules. Complexity can 
be reduced by designing systems with weak coupling between 
modules. 



Enabling Techniques for Softwe.re Architecture 401 

Cohesion measures the degree of connectivity between the functions 
and elements of a single module. There are several forms of cohesion. 
The most desirable form is functional cohesion, in which the elements 
of a module or component 'all work together to provide some well- 
bounded behavior' [Boo94]. The worst form is coincidental cohesion, 
in which entirely unrelated abstractions are thrown into the same 
module. Other types of cohesion-logical cohesion, temporal cohe- 
sion, procedural cohesion, communicational cohesion, sequential 
cohesion and informal cohesion-are described by [Ba185]. 

This principle is addressed by all our design patterns for organizing 
communication between components, such as the Client-Dispatcher- 
Server pattern (323) and the Publisher-Subscriber pattern (339). 

Sufficiency, Completeness and Primitiveness 

[Boo941 states that 'Every component of a software system should be 
sufficient, complete, and primitive'. 'Sufficient' means that the 
component should capture those characteristics of an abstraction 
that are necessary to permit a meaningful and efficient interaction 
with the component. 'Completeness' means that a component should 
capture all relevant characteristics of its abstraction. By 
'primitiveness'. Booch means that all the operations a component can 
perform can be implemented easily. It is a major goal of every pattern 
to be sufficient and complete with respect to the solution of a given 
problem. Many patterns are also relatively primitive and easy to 
implement, for example the Strategy pattern [GHJV95]. 

Separation of Policy and Implementation 

A component of a software system should deal with policy or imple- 
mentation, but not both: 

A policy component deals with context-sensitive decisions, 
knowledge about the semantics and interpretation of information. 
the assembly of many disjoint computations into a result or the 
selection of parameter values. 



Patterns and Software Architecture 

4 An implementation component deals with the execution of a fully- 
specified algorithm in which no context-sensitive decisions have to 
be made. The context and interpretation are external, and are 
normally supplied by arguments to the component. 

Because of their independence from a certain context, pure 
implementation components are easier to reuse and maintain, 
whereas policy components are often application-specific and subject 
to change. 

If it is not possible to separate policy and implementation into 
different components within a software architecture, there should at  
least be a clear separation of policy and implementation functionality 
within a component. The Strategy pattern [GHJV95] focuses on this 
principle. 

Separation of Interface and Implementation 

Any component should consist of two parts: 

An interface part that defines the functionality provided by the 
component and specifies how to use it. This interface is accessible 
by the clients of the component. An exported interface of this type 
usually consists of function signatures. 

An implementation part that includes the actual code for the 
functionality provided by the component. The implementation part 
may also comprise additional functions and data structures that 
are only used internally to the component. The implementation 
part is not accessible by the component's clients. 

The main objective of this principle is to protect a component's clients 
from its implementation details, and only to provide clients with the 
component's interface specification and guidelines for use. In 
addition, this principle allows you to implement the functionality of a 
component independently of its use by other components. Separation 
of interface and implementation is, like encapsulation, a technique to 
achieve information hiding, the principle that states that 'A client 
should only know what it needs to know'. 

Separation of interface and implementation also supports change- 
ability-a component is much easier to change if its interface is sep- 
arated from its Implementation. This separation prevents clients from 



Enabling Techniques for Sofinate Architecture 403 

being dlrectly affected by a change. The principle especially eases the 
task of changing a component's behavior or representation, for 
example for performance tuning, in cases where the change does not 
necessitate a change to its interface. The separation of Interface and 
implementation is addressed, for example, by the Bridge pattern 
IGHJV951. 

Single Point of Reference 

Any item within a software system should be declared and defined 
only once. The main objective of this principle is to avoid problems of 
inconsistency. 

Due to their design principles and implementations, however, many 
programming languages such as C++ [ES901 require a single point of 
definition, but allow or even mandate several points of declaration. In 
the case of C++ this is mainly due to the limitations of traditional 
compiler and linker technologies. The consequence for the program- 
mer is an increased workload in manually malntalnhg consistency. 

This principle is well-known, both from the politics of the ancient 
world as well as from combinatorial algorithms such as Merge-sort. 
We use this principle heavily in software architecture. Top-down 
design, for example, divides a task or component into smaller parts 
that can be designed independently. The Whole-Part pattern (225) 
approaches this technique at the pattern level. Other patterns also 
concentrate on such subdlvision, although more specifically than the 
generic Whole-Part. The Microkernel pattern (171), for example. 
subdivides what once mlght have been a monolithic block of code. 
Divide-and-Conquer also often provides a way to reallze the principle 
of separation of concerns. 

This list of principles may be extended further, for example to include 
the general principles for object-oriented software development 
proposed by Trygve Reenskaug IRee921. However, these are basically 
variations of the principles presented in this section. 



Patterns and Software Architecture 

It is important to note that not all general principles are 
complementary-some are contradictory. Examples of this are the 
principle of separating interface and implementation and that of 
single point of reference. The first principle-when realized with 
traditional technology-requires a t  least two points of reference for a 
particular function, one in the interface part of a component and the 
other in its implementation part. This is in contradiction to the strict 
interpretation of the principle of a single point of reference. 
Generating interfaces from implementations could be a solution, of 
course, and this is used in more modern approaches. 

Other principles are closely related, such a s  abstraction and 
encapsulation. A proper abstraction for a particular entity within a 
software system also requires encapsulation of all the elements that 
constitute its structure in a single component or module. 

6.4 Non-functional Properties of Software Architecture 

Non-functional properties of a software system have a great impact on 
its development and maintenance, its general operability and its use 
of computer resources. They have an  equal impact on the quality of 
an  application and its architecture a s  do the system's functional 
properties. The larger and more complex a software system and the 
longer its lifetime, the more important its non-functional propertles 
become. Patterns for software architecture explicitly consider these 
non-functional aspects. 

In this section we discuss some of the most important non-functional 
properties of software architecture in relation to patterns: 

Changeability 

Interoperability 

Efficiency 

Reliability 

Testability 

Reusability 



Non-functional Properties of Software Architecture 

Changeability 

Large-scale industrial and commercial software systems usually have 
a long life-span, sometimes twenty years or more. Many such appli- 
cations do not remain static after their original development phase- 
they tend to evolve continuously during their lifetime. Existing 
requirements change and new ones are added. To reduce mainte- 
nance costs and the workload involved in changing an application, it 
is important to prepare its architecture for modification and evolu- 
tion. 

Parnas writes very vividly about software aging [Par94]: 

Programs, like people, get old. We can't prevent aging, but we can 
understand its causes, take steps to limit its effects. temporarily 
reverse some of the damage it has caused, and prepare for the day 
when the software is no longer viable. 

He lists two reasons why software ages: 

Lack of movement-software ages if it is not frequently updated. 

Ignorant surgery-changes made by people who do not understand 
the original design gradually destroy the architecture. 

In another publication, Parnas adds two further reasons: 

The software is inflexible from the start. 

The documentation is inadequate, allowing understanding of the 
system to be eroded over time. 

The costs of software aging, as described in (Par941, are a growing 
inability to keep up with the market by introducing new features, re- 
duced performance and decreased reliability. These can be prevented 
by accurate documentation, preserving structure when introducing 
changes, intense reviewing, and of course designing for change a 
priori. 

We consider that changeability has four aspects: 

Maintainability. This deals mainly with problem fixing, 'repairing' a 
software system after errors occur. A software architecture that is 
well-prepared for maintainability tends to localize changes and 
minimize their side effects on other components. 



Patterns and Software Architecture 

Extensibility. This focuses on the extension of a software system 
with new features, as well as the replacement of components with 
improved versions and the removal of unwanted or unnecessary 
features and components. To achieve extensibility a software sys- 
tem requires loosely-coupled components. The aim is a structure 
that allows you to exchange components without affecting their 
clients. Support for integrating new components into an existing 
architecture is also necessary. 

Restructuring. This deals with the reorganization of the 
components of a software system and the relationships between 
them, for example when changing the placement of a component by 
moving it to a different subsystem. Support for the restructuring of 
a software system needs careful design of the relationships be- 
tween components. They should ideally allow you to configure 
components flexibly without affecting major parts of their im- 
plementation. 

Portability. This deals with adapting a software system to a variety 
of hardware platforms, user interfaces, operating systems. pro- 
gramming languages or compilers. To be portable, a software 
system needs to be organized in such a way that dependencies on 
hardware, other software systems and environments are factored 
out into special components such as system and user interface 
libraries. 

A software system designed for change also supports the construction 
of variants for different customers better than a software system that 
is not so designed. Many patterns address changeability, for example 
the Reflection pattern (193) and the Bridge pattern IGHJV95). 

Finally, a word of caution on designing for change. With the growing 
use of patterns we have seen people overdo it. Classes are no longer 
simple. Every 'chunk' of code is highly flexible and can adapt to many 
different contexts. Such flexibility, however. comes at  a price. Flexible 
software often consumes more resources by using more levels of 
indirection or increasing storage consumption. I t  also requires more 
thought and more work in coding. Good designers therefore try to 
decide in advance which parts of the software should be highly 
flexible to cope with foreseeable changes, and which parts will 
probably remain fairly static. If they prove wrong, there are still ways 
to introduce additional flexibility by carefully restructuring parts of 



Non-functional Ropertiee of Software Architecture 407 

the system, or by using a pattern that supports design for change. 
This approach is more economical than engineering in total 
changeability from the start. 

Interoperability 

Software that forms part of a system does not exist independently. I t  
is frequently interacting with other systems or its environment. To 
support interoperability, a software architecture must be designed to 
offer well-defined access to externally-visible functionality and data 
structures. The interaction of a program with software systems writ- 
ten in other programming languages is an aspect of interoperability 
that also impacts the software architecture of an application. The 
Broker architecture (99) is probably the most prominent example of a 
pattern that addresses interoperability. 

Efficiency 

Efficiency deals with the use of the resources available for the 
execution of software, and how this impacts response times, 
throughput and storage consumption. Efficiency is not only a matter 
of using sophisticated algorithms. The appropriate distribution of 
responsibilities to components, as well as their coupling, are im- 
portant architectural activities for achieving efficiency in a given 
application. 

Efficiency also plays a significant role in distributed software 
systems. The IPC (inter-process communication) mechanisms under- 
lying a distributed application must be fast enough to transfer 
messages and data with sufficient speed. Patterns like Forwarder- 
Receiver (307) address issues of efficiency. Many patterns, however, 
introduce an additional level of indirection to solve a problem, which 
may decrease rather than increase efficiency. 



408 Patterne and Software Architectwe 

Reliability 

Reliability deals with the general ability of a software system to 
maintain its functiondty, both in the face of application or system 
errors and in situations of unexpected or incorrect usage. Two 
aspects of reliability can be distinguished: 

Fault tolerance. This aims at ensuring correct behavior in the went 
of errors, and their internal 'repair', such as losing a connection to 
a remote component in a distributed software system and sub- 
sequently reconnecting to it. After repairing such an error, the 
software system should resume or repeat the execution of the op- 
eration in progress when the error occurred. 

Robustness. This deals with protecting an application against 
incorrect usage and degenerate input, and keeping it in a defined 
state in the went of unexpected errors. Note that in contrast to 
fault tolerance, robustness does not necessarily mean that the 
software is able to continue computation in the event of errors-it 
may only guarantee that the software terminates in a defined way. 

Software architecture has a major impact on the reliability of a 
software system. Examples of the way in which software architecture 
suppoh  reliability include the intentional inclusion of redundancy in 
an application, or the integration of monitoring components and 
exception handling. The Master-Slave pattern (245) provides an 
example of how patterns can support specific aspects of reliability. 

Testability 

With the increasing size and complexity of software systems, especial- 
ly industrial ones, testing is becoming more difficult and expensive. A 
software system needs support from its architecture to ease the eval- 
uation of its correctness--proving correctness is unluckily still out of 
reach in most cases. Software structures that support testability 
allow for better fault detection and fixing, and also for temporary in- 
tegration of debugging code and debugging components. 

Although the patterns we describe do not address testing explicitly. 
many of them have a major impact on the testability of a software sys- 
tem. The Command Processor pattern (2771, for example. facilitates 
testability on the level of user interaction by allowing the logging and 



replay of user command objects. The Broker pattern (99) eases testing 
of individual client and server components in a distributed system. 
This architecture frees components from dependencies on their com- 
munication partners and the communication mechanisms they use. 

The Broker pattern, however, complicates testing the collaboration 
between clients and servers, because it introduces additional 
components to support their independence. In contrast to implemen- 
tations in which clients and servers are more strongly coupled, 
debugging an  error in the delivery of a message from a client to a 
server is much harder. This is because several other components are 
involved in marshaling and unmarshaling data and sending messag- 
es across process boundaries. 

Reusability is currently one of the most discussed topics in software 
engineering. It promises a reduction of both cost and development 
time for software systems, a s  well a s  better software quality [Kar95]. 
Adele Goldberg once defined reuse a s  'the act of achieving what is 
desired with the help of what already exists' [Go19 11. Reusability has 
two major aspects-software development with reuse and software 
development for reuse: 

Software development with reuse means reusing existing compo- 
nents and results from previous projects or commercial libraries, 
design analyses, design specifications or code components. These 
reusable artifacts are integrated into the application under 
development, either as  they are or with modifications. Practising 
software development with reuse requires the construction of 
software architectures that allow you to 'plug in' prefabricated 
structures and code components. Software development with reuse 
aims to support software composition, which means composing an  
application out of existing components by adapting them to the 
needs of the development and implementing 'glue' components to 
connect them. 

Software development for reuse focuses on producing components 
that are potentially reusable in future projects a s  part of the cur- 
rent software development. This requires software architectures 
that allow self-contained parts to be taken from the application un- 



Patterns and Software Architecture 

der development and reused in other systems without significant 
modification, 

Although patterns do not address reusability explicitly, almost every 
pattern that supports changeability also supports reusability. For 
example, the Model-View-Controller pattern (125) supports the 
exchange of views and controllers and the reusability of the model. 

Some non-functional properties require similar architectural tech- 
niques for their achievement, for example design reusability and 
changeability. Others serve a similar overall purpose: for example, de- 
sign portability and interoperability deal with the integration of a soft- 
ware system into its environment, while reliability and efficiency deal 
with its general usability [Bal85]. 

Non-functional properties may contradict a s  well a s  complement each 
other. For example, when replicating the functionality of an  appli- 
cation to achieve fault tolerance, the resulting structure is usually 
less efficient and more expensive than a structure without such 
redundancy. When specifying non-functional requirements for a 
software architecture, you need explicitly to consider the 
interdependencies and trade-offs that exist between them. You also 
need to specify an  ordering priority between different non-functional 
requirements, to define a preference of one requirement against 
another in case of conflict. 

Although non-functional properties are very important in software 
architecture, their achievement is hard to measure. The detailed 
criteria a software architecture must satisfy has only been specified 
for a few such properties, for example reusability and changeability 
(Kar951. For this reason, estimating the degree to which a software 
architecture achieves a given non-functional property is still mainly 
based on the experience of software engineers. 



6.5 Summary 

Patterns fit in well with existing approaches to software architecture: 

They explicitly build on enabling techniques for constructing well- 
defined software systems, such as information hiding and the 
separation of interface and implementation. 

They stress the importance of non-functional properties, such as 
changeability and reliability. 

They complement existing problem-independent software develop- 
ment processes and methods with guidelines for solving specific re- 
curring design and implementation problems. 

Patterns also provide an important contribution to the benefits you 
can gain from software architecture: 

They help with the recognition of common paradigms, so that high- 
level relationships between software systems can be understood 
and new applications built as variations on old systems. 

They provide support for finding an appropriate architecture for 
the software system under development. 

They provide support for making principled choices among design 
alternatives. 

They help with the analysis and description of high-level properties 
of complex software systems. 

They provide support for change and evolution of software systems. 

Patterns provide a big step forward in supporting the systematic con- 
structlon of high-quality software systems with defined functional 
and non-functional properties. Patterns provide a pragmatic method- 
and process-independent way to solve the many design and imple- 
mentation problems that software developers face every day. 





The Pattern 
Community 

Evey great movement must experience three stages: 
ridicule. discusston. arloptlon 

John Stuart Mill 

Many software developers document patterns with which they are 
familiar and share them with colleagues world-wide. Together they 
form a community that shares a common interest in software 
patterns. But who makes up this pattern community? Where does it 
come from and who are its leading figures? 

This chapter gives an overview of 'who's who' in the pattern 
community. 



The Pattern Community 

7.1 The Roots 

The architect Christopher Alexander laid the foundations on which 
many of today's pattern approaches are built. He, and members of the 
Center for Environmental Structure in Berkeley, California, spent 
more than twenty years developing an  approach to architecture that 
used patterns. This 'entirely new attitude in architecture and 
planning' is published in a series of books [Ale791 [AIS77] [ASAM751 
IANAK871. Alexander describes over two hundred and fifty patterns 
that span a wide range of scale and abstraction, from structuring 
towns and regions down to paving paths and decorating individual 
rooms. He also defined the fundamental Context-F'roblem-Solution 
structure for describing patterns, the so-called 'Alexander form'. 
Recently, some pattern writers have started to distance themselves a 
little from Alexander, since they feel that his view on patterns does not 
translate directly into software patterns. They acknowledge the 
importance of Alexander's work, but would like to go their own way. 
Despite this discussion, however, Alexander's work is well worth 
reading by everybody who is interested in patterns. 

The pioneers of patterns in software development are Ward Cunning- 
ham and Kent Beck. They read Alexander's books and were inspired 
to adapt his ideas to software development. Ward and Kent's first five 
patterns deal with the design of user interfaces-their patterns 
Window per Task, Few Panes, Standard Panes, Nouns and Verbs and 
Short Menus mark the birth of patterns in software engineering 
ICope951. Since their publication Ward and Kent have written many 
more patterns. Ward captured his experience in the development of 
business systems, principally of accounting applications. The 
CHECKS pattern language for information integrity ICun941 is one re- 
srlt of this work. Kent focused on idioms in Smalltalk. His patterns 
will be published as  a series of books, of which the first volume Small- 
taUc Best Practice Patterns, Volume 1 :  Coding IBec961 is about to be 
released. Kent is also a regular columnist on Smalltalk idioms in the 
Smalltalk Report. 

The first published work about the use of patterns in software 
development was Erich Gamma's 199 1 doctoral thesis [Gam9 11. 
Written in German, this work did not achieve much recognition 
outside central Europe. Erich was the first to describe how to use 



Leading Figure8 and thelr Work 415 

object-oriented mechanisms In an  elegant way to solve typical design 
problems encountered in the development of applfcatlon frameworks. 
You can find early versions of about half of the patterns described In 
[GHJV95] Ln his thesis. 

7.2 Leading Figures and their Work 

Four software design experts-known as  the 'Gang-of-Four' in the 
pattern cornmunlty-paved the way for the wide acceptance of 
patterns in software engineerhg. Erich Gamma, Richard Helm, Ralph 
Johnson and John VUsddes are the authors of the seminal work 
Design Patterns - Elements of Reusable Object-Orien&d Sofkoare 
IGHJV95). Our patterns often build on the Gang-of-Four's patterns. 
although we initially collected them independently. In parallel to the 
compilation of the first Gang-of-Four catalog. We also share many 
aspects of our general view of patterns with the Gang-of-Four. for 
example about pattern systems versus pattern languages. We 
describe our patterns h a similar way to thelrs, and try to integrate 
thelr patterns Into our pattern system. 

James 0. Coplien 1s another leading expert on patterns. In 1991 he 
published the widely recognized C++ text-book Advanced C++ 
Programming Styles and Idioms ICope921. Although he does not use 
the term 'pattern', nor describe hls ideas in a pattern form, he is one 
of the pioneers of Idioms speclfic to C++. He Is currently working on 
patterns that address the structuring of organizations and software 
development projects, a s  well a s  people's roles in them IPLoP941. He 
recently started a column on patterns with John Vllssldes in the C++ 
Report. 

Douglas C. Schmldt is another noteworthy figure in the pattern 
community. Several years ago, a s  a Ph.D. student, he started working 
on the ACE (Adaptlve Communlcatlon Environment) framework. ACE 
supports the constructlon of distributed applications ISch96). He is 
the author of many patterns, mainly on the subject of dlstrlbutlon 
and high-speed networking ISch941 ISch951. Doug's patterns are 
widely used in many industrial communlcation sofhrare systems. 



The Pattern Community 

Robert Martln describes patterns that are suitable for use with C++. 
They can be categorized somewhere between design patterns and 
idioms [PLoP94). He derived these patterns from applications he 
developed. but without prior knowledge of the existence of the pattern 
movement-he just knew that they represented good solutlons to the 
problems he was solving. 

Peter Coad also works on patterns, and recently published his work 
as a book ICoad951. Thls contains about two hundred patterns, most 
of whlch are lntended to help with andyzlng a given application 
domaln and uslng object-oriented technology to build applications. 
Some of hls patterns also fall into our category of deslgn patterns. 
Peter Coad was one of the first people to present the subject of 
patterns to the public [Coad92]. 

Wolfgang Pree has looked at  the structural principles of design 
patterns for framework development IPree94). Wolfgang categorizes 
these structural principles Into seven so-called 'meta-patterns'. His 
views on design patterns focus more on the structural principles that 
are avallable for framework development, rather than on the concrete 
solutlons that help to solve speclfic deslgn and irnplementatlon 
problems. 

You can see from the above that much publlshed work about patterns 
is avallable. Many more publications on patterns eas t  whlch we 
cannot list here for reasons of space. In the near future even more will 
be published-papers, confercnce proceedings. special issucs of 
various magazines and journals. and books. 

7.3 The Community 

We and all the people mentioned In this chapter are working on and 
with patterns. Many software engineers from all over the world are 
documenting their experience In patterns and sharing It with others. 
Sharing our patterns with them was both helpful m d  enjoyable for 
us. 

Thls pattern community recently found Its own forum, the PLOP 
(Pattern Languages of Programming) conference. Its proceedings are 



The Community 417 

published as  a series of books. The PLoP'94 [PLoP94j and PLoP'95 
(PLoP951 proceedings are already available. PLoP also has a European 
arm, EuroPLoP, and its proceedings will also be part of the series. 
PLoP and EuroPLoP differ from other conferences in the following 
respects: 

Focus on practfcability. The conference looks for pattern descrlp- 
tions of proven solutions to problems, rather than on presenting 
the latest scientilic results. 

Aggressive disregard oforiginality. Pattern authors do not need to 
be the original developers of the solutions they describe. 

Non-anonymous review. Submissions are 'shepherded' rather than 
reviewed. The 'shepherd' contacts the authors of submitted papers 
and discusses the submissions with them. The goal is to improve 
the paper such that it can be accepted for review at  the conference 
and suffer as  little rejection as possible. 

Writer's workshops instead of presentations. All patterns are 
discussed In writer's workshops made up of conference attendees. 
rather than being presented by their authors in open forum. 

Careful editing. Authors get the chance to include the feedback 
from the writer's workshops. and all patterns are copy-edited 
before they appear in the h a 1  conference proceedings. 

To discuss patterns and pattern-related issues. the pattern commu- 
nity offers several mailing lists and a World Wide Web page. The URL 
of the pattern home page is: 

This page provides useful information about forthcoming pattern 
events and available books on patterns. and offers references to other 
Web pages about patterns, such as the Portland Pattern Repository 
at ht tp: / /c2 . com/ppr. which is maintained by Ward Cunningham. 

There are also several Internet mailing lists on patterns. For example, 
pat ternsks . uiuc . edu discusses concrete patterns that people 
want to share and pat terns-discuss ionpcs . uiuc . edu hosts dis- 
cussions of aspects related to patterns. such a s  'What is a pattern?' 
and 'How should patterns be described?'. Several other relevant mail- 
ing lists exist, among them a list for discussing the Gang-of-Four 
patterns and a list for discussing our patterns. You can find details 



The Pattern Community 

about available mailing lists and how to subscribe to them on the pat- 
terns home page. 

The unofficial steering committee of the pattern community is Hillside 
Incorporated, also known a s  the 'Hillside Group'. Hillside Inc. is a 
non-profit organization made u p  of several individuals. among them 
Ward Cunningham and Kent Beck, the Gang-of-Four, Grady Booch 
and James 0. Coplien. The main goal of the Hillside Group is to 
propagate the use of patterns in software development, to lead the 
pattern community, and to give support to newcomers in this new 
discipline of software engineering. The 'spiritual father' of the Hillside 
Group is Kent Beck. The Hillside Group also organizes and sponsors 
the PLoP and EuroPLoP conferences. 

As you can see, there is a large pattern community worldwide, and 
many leading figures in software engineering and software erchitec- 
ture are part of it. Most members of the pattern community work in 
the software industry, and are software developers with experience in 
designing and building large-scale applications. Academic members 
are mainly involved in industrial projects-they do not just teach how 
to build software systems, they also do it. By joining the pattern com- 
munity you can take advantage of all this experience, captured in 
many well-documented patterns that are ready for practical use. You 
will also be able to share your own experience in software develop- 
ment with other experts by writing your own patterns. 

The pattern community is the only community in computer science 
that is based on interest in a literal form, the pattern form for 
describing well-proven knowledge. This brings people with different 
backgrounds and fields of expertise together. Most interestingly, the 
pattern form makes it possible to discuss and share such knowledge 
with people who are expert in other domains, or even with newcomers 
and novices in software engineering. 

We invite you to join the pattern community if you are not already 
part of it. Visit the pattern home page, subscribe to the pattern 
mailing lists, look a t  the various pattern books, attend the PLoP or 
EuroPLoP conferences, capture your own experience a s  patterns and 
share them with experts from all over the world. You will certainly be 
rewarded by many positive 'aha!' effects. 



8 Where Will Patterns 
Go? 

These are the voyages oJ tk  Starship Enterprise. 
1tsJive-year mission: to explore strange new worlds. 

To seek out new lge and new civflkzations. 
To boldly go where no m n  has gone bebre.. . 

Star Trek: The Original Series 
O Paramount Plctures 1966-1 968 

At the time that this book is being urt-itten, patterns are in the 
forefront - - of everybody's mjnd. - People - speak enthusiastlcally about 
patterns and the benefits they will bring to software development. But- - 
where W 1  patterns go? What are the dlrectlons for future research? 

This chapter describes our view of the future of patterns. 



Where Will Patterns Go? 

8.1 Pattern-Mining 

Although a lot of patterns are already available, of all scales and 
degrees of abstraction and for many domains, mining new patterns 
will remain an  important activity for the future. 

Patterns for Software Architecture 

Several specific areas of software, such a s  object-oriented design in 
general, user interface programming and distributed computing, are 
well described by a variety of different patterns. Other areas, however, 
are not yet covered by patterns, or by only a few patterns. Examples 
include security and transaction-processing systems, parallel and 
scientific computing and fault tolerance. Filling these blank spots will 
be an important activity in the future. 

Considering patterns as  a mental tool, some experienced developers 
suggest first looking a t  patterns that do not fit directly into the 
domain of the application under design. Sometimes it is possible to 
generalize the key idea of a pattern and transfer it to another domain, 
resulting in a new pattern or a variant of the original. 

Capturing experience with common programming languages as  
idioms will be another important activity. Today, an adequate set of 
idioms only exists for Smalltalk and C++. Filling this gap for 
languages such a s  Pascal or C will help many programmers to use 
these languages morc effectively. 

An exciting and certainly a widely-recognized activity will be writing 
idioms for Java. This relatively new programming language is touted 
by many software development experts a s  the language of the future. 
Java must be learned first, however, and understanding its details is 
not easy. ldioms that reflect the growing programming experience 
with Java will be of great help for all who want to learn its proper use 
efficiently. Such idioms would form an excellent teaching course to 
help developers avoid stumbling into Java's pitfalls. 

In addition to the use of a programming language, programmer 
productivity relies on the use of libraries, frameworks such a s  the 
Microsoft Foundation Classes, or so-called 'middleware' platforms 
such a s  object brokers. Understanding and using these platforms 



Pattern MinIng 

efficiently can and should be supported by appropriate pattern 
collections. Not many of them exist in published form today. However, 
as the advantages of patterns become known to more and more 
developers, we hope to see such collections of patterns emerge from 
practical experience. It may be that future framework documentation 
will contain patterns that describe how to use the framework 
effectively. 

Organizational Patterns 

Patterns are already used to cover aspects of software development 
other than Just design and implementation. One example is the 
collection of organizational patterns produced by James 0 .  Coplien 
[Cope94b]. These descrlbe how to structure organizations and pro- 
Jects to provide appropriate support for the management of software 
development proJects. 

An example of an organizational pattern is Architect Controls Product 
ICope94bl. This addresses the fact that a product designed by many 
individuals lacks elegance and cohesiveness. The pattern states that 
in larger projects you should create an architect role. The architect 
should advise and control the developers and communicate closely 
with them, as  well as maintaining close contact with the customer. 

Other areas, such as how to organize requirements analysis, are not 
covered by many patterns yet. Mining patterns for such activities can 
help to make the whole software development process more effective 
and productive. 

Domain-specific Patterns 

ApplicaUon domains such as  telecommunications are a potentially 
large field for patterns. Specific domain knowledge is increasingly 
being documented in pattern form. Such patterns capture the 
structure of a domain, namely its constituting entities, their 
relationships, and, very importantly, how work is organized. 

Development staff at AT&T, for example, have started to collect pat- 
terns for switching systems in the telecommunication domain. They 
developed more than hundred patterns, eight of which are published 
in IPLoP951. Another example is the Internet malling list for publish- 



Where WW Patterns Go? 

ing and discussing patterns in business applications (business- 
pa tternsscs . uiuc . edu). Other domain-speclfic patterns are being 
written for factory automation, warehouse management, accounting, 
medical health and telecommunication network management. 

However, most domair-specific patterns are confidential-they 
represent a company's knowledge and expertise about how to build 
particular kinds of applications, so references to them are not 
available. We believe however that more and more of this knowledge 
will become public over time. In the long term, sharing experience is 
usually more effective for everyone than trying to hold onto secrets. 

Pattern Languages 

The development of complete pattern languages is an optimistic but 
worthwhile goal. Such languages provide solutions to all design 
problems that can occur in the respective domains. Christopher 
Alexander clalms to have done this for areas in architecture INS77). 
Pattern languages already exist for small sub-domains of software 
design, for example the CHECKS pattern language for information 
integrity [Cun941. It will be exciting to see how far the pattern 
community travels along this road. 

Even if we do not reach completeness in a strict sense, it would be 
very beneficial to have pattern languages that cover a substantial part 
of the design space of the respective domains. The Gang-of-Four book 
IGHJV951, for example, may be considered as covering a substantial 
amount-perhaps as much as half--of the general-purpose design 
patterns that occur in object-oriented design on the granularity level 
of a small number of cooperating classes. 



8.2 Pattern Organization and Indexing 

Most of today's work focuses on developing patterns and pattern 
languages. Over recent years, the pattern community has produced a 
large range of patterns for software architecture, design, 'and 
implementation. The books on patterns that are available, and the 
many patterns that are discussed on mailing lists and at the PLoP 
conferences, reflect this growing volume of documented expertise. 

The more this repository of available patterns grows, the harder it will 
be to handle the patterns in their entirety, and to find and use a 
particular pattern. We therefore need an appropriate organization 
method to cover all patterns. The relationships between the patterns 
must be made explicit, patterns must be categorized, and multiple 
descriptions of the same patterns must be unified-such as the Proxy 
pattern, which exists in both the Gang-of-Four's version and our own. 

We hope that our work on pattern systems will provide a useful 
starting point for organizing patterns. Another such starting point is 
Ward Cunningham's Portland Pattern Repository. This provides 
pattern languages for various aspects of software development, such 
as CHECKS [Cun94] and many Smalltalk programming patterns 
originating from Kent Beck [Bec94]. 

A very interesting approach was taken by the pattern community at 
PLoP'95-the 'pattern map'. Authors linked the patterns they wrote to 
related patterns from other authors. They wrote the pattern names on 
paper, placed these sheets somewhere on the floor of the main 
conference room, and connected each pattern to related patterns with 
string. A first picture of the pattern universe was thus drawn, 
although in a very informal, ad hoc and uncoordinated way. Never- 
theless, about three hundred different patterns were connected in 
this way. 

The Hillside Group used this map as input to a more serious attempt 
at linking patterns. At a mountain lodge in Canada in early 1996, the 
group wrote more than one hundred and fifty so-called 'patt1ets'- 
pattern abstracts that include the pattern name, a short problem 
description, the key ideas of its solution and a reference to the pat- 
tern's full-length description. Most importantly, all these pattlets 
were linked together using several different relationship types. Most 



Where Will Patterns Go? 

of these directly corresponded to the relationships we define in our 
book, such as  the refinement relationship. Other relationships were 
new, such as  the 'contrasts' relationship that describes the differ- 
ences between two completely distinct patterns that at first glance 
look similar. 

All the Hillside Group's pattlets will be available on the World Wide 
Web. Unfortunately the Web page was not available when we finished 
writing this book. For specific details about this interesting pattern 
index we therefore refer you to the pattern home page, which you can 
find at: 

http://st-www.cs.uiuc.edu/users/patterns/patterns.html 

The Hillside Group also defined a procedure for extending their 
pattern index with new pattlets. This allows you to write your own 
pattlet, connect it with other pattlets and integrate it into the index. 
Over time the index will grow, and with the addition of every new 
pattlet will draw a more complete picture of the pattern universe. 

Despite all this promising and interesting work, however, there is still 
much to be done before we can build really mature pattern systems 
that support the development of high-quality software effectively. We 
need much more concrete experience of applying patterns, and also 
more research into ways of organizing them. 

8.3 Methods and Tools 

More and more people are working on pattern tools. Examples 
include the Re-Engineering Tool SUS (Software Understanding 
System) ITHG941, or the software development environment FACE 
(Framework Adaptive Composition Environment) [ME96]. Others 
work on libraries of prefabricated code frameworks for particular 
patterns ISou941. The objective of all these approaches is to provide 
CASE tool support for patterns and to automate the use of patterns 
as much as  possible. Work on such tools will continue in the future. 



Methods and Tools 425 

Software development methods that support the use of patterns are 
also under discussion. Their goal is to guide software developers in 
selecting the patterns that should be applied in a specific develop- 
ment activity. Other work focuses on specifying general guidelines for 
selecting, applying and combining patterns, and for integrating them 
into an existing software architecture. 

Many experienced software developers, however, are sceptical about 
the usefulness of such tools and methods. Their first argument is that 
if you do not understand the patterns themselves, no method and tool 
will help you. Secondly, they argue that patterns are mental building 
blocks and leave blank spaces intentionally, to be filled out by the de- 
veloper. Each pattern must be adjusted to the needs of the application 
under development. As a result, no two implementations of a pattern 
are likely to be the same. You cannot therefore provide fully-fledged 
prefabricated code for a pattern, nor can you completely automate its 
instantiation. 

Combining several patterns into a heterogeneous structure is even 
more complicated. It does not just consist of connecting the com- 
ponents of different patterns in a particular order. You often need to 
merge the responsibilities of components from different patterns into 
a single component, and to attach the responsibilities of pattern com- 
ponents to existing components in your design. If combined wrongly. 
the resulting structure may introduce additional complexity and lose 
the properties each individual pattern supports. Finally, whether a 
pattern can be applied or not depends on the specific design problems 
and their associated forces. 

In conclusion, using patterns successfully still requires the 
intellectual skills of the software developer. We believe that a well- 
designed pattern browser or World Wide Web tool can be much more 
efficient in helping a developer to find and use patterns than a fully 
integrated 'pattern-supporting' software development environment 
ever could be. 

Despite this argument, however, many people are convinced of the 
usefulness of pattern tools and methods. Such tools and method 
issues will be discussed further, and no doubt more research work 
will be done and more tools and methods developed. 



426 Where Will Patterns Go? 

8.4 Algorithms, Data Structures and Patterns 

Patterns help to capture the existing knowledge of experts and to use 
it to Lnd solutions to recurring problems in software design. A similar 
goal once lead to a n  intensive search for fundamental algorithms and 
data structures. Whereas patterns focus primarily on architectural 
issues, algorithms and data structures address computational prob- 
lems such as searching and sorting. Unfortunately, software 
developers have to deal with both finding an appropriate architecture 
and solving computational problems. Only a combined use of pat- 
terns, abstract data types and algorithms helps developers to solve 
their specific problems. 

There is a twofold relationship between patterns and algorithms. On 
one hand, when we instantiate a particular pattern, we have to imple- 
ment all the services of its participants as well as their collaborations. 
Some of these services may be very complex. This is where algorithms 
and data structures come into play-they provide a means for imple- 
menting such services. On the other hand, design patterns and 
idioms can support the instantiation of algorithms and data struc- 
tures. 

We expect that future research will further clarify the combined usage 
of patterns and algorithms. As a first step, existing algorithms and 
data structures may be described in pattern form. A format derived 
from that which we introduced for describing patterns can be used. 
This would need some modifications and extensions when compared 
to pattern descriptions. For example, an additional section on 
complexity analysis is required. Other sections such as Structure 
should be changed or removed. 

Nevertheless, algorithms and data structures fit well into similar 
description schemes. For example, both address problems in a given 
context. The same algorithm may lead to several variants. Like pat- 
tern instantiations, the use of particular algorithms implies specific 
consequences. An algorithm may refine other algorithms. I t  may also 
be useful to group algorithms into systems and associate them with 
specific problem categories. Overall, algorithm descriptions reveal 
many properties that also apply to pattern descriptions. We hope new 



algorithm catalogs will appear that describe algorithms and data 
structures in a uniform and systemauc way. 

Although you can use the same scheme for describing algorithms and 
patterns, algorithms and patterns are not dlfferent sides of the same 
coin--algorithms help to solve computational problems. while pat- 
terns describe architectural elements. 

8.5 Formalizing Patterns 

The academic world especially is involved In dlscusdons about how 
to formalize patterns. Supporters of such formalization argue that it 
allows more precise pattern descriptions, especially with respect to 
their structure, dynamics and concrete semanucs. Formallzed pat- 
terns would support the development of pattern tools much better 
than the informal pattern descriptions of today. In the near future we 
therefore expect to see a lot of work in formalizing patterns. 

However, a s  with tools and methods, many practitioners do not agree 
with these arguments. Formalizing the problem statement makes it 
harder to match a pattern to a specific design problem. which is 
usually not formalized. Formalizing the soluuon makes it harder to 
grasp the key ideas of the pattern and to create valid variants. A 
formalized soluuon may thus narrow the applicability of a pattern 
unnecessarily. Conversely, it may make It too general to be of any use. 
In addition, we do not know of a formalism suitable for describing the 
benefits and liabilities of a pattern. 

All these aspects are of fundamental importance to the 
understanding of a pattern and the decision about whether it helps 
to solve a specific design problem. Slmllar arguments hold for the im- 
plementation guidelines for a pattern. Programmers need concrete 
Information that they can understand and transfer directly into their 
OWTI code, not an  impresslve formula. Patterns are mental building- 
blocks whose concrete appearance can show countless different 
faces. Formalisms, however. tend to describe particular issues very 
precisely. but do not allow for the variation that is inherently embed- 



Where Wffl Patterns Go? 

ded into every pattern. Formal methods have their place in software 
development-we just think that they do not apply to patterns. 

8.6 A Final Remark 

Patterns expose knowledge about software construction that has 
been gained by experts over many years. All work on patterns should 
therefore focus on making this precious resource widely available. 
Every software developer should be able to use patterns effectively 
when building software systems. When this is achieved, we will be 
able to celebrate the human intelligence that patterns reflect, both in 
each individual pattern and in all patterns in their entirety. 



Notations 

Class-Responsibility-Collaborator Cards 

Class-Responsibility-CoUaborators (CRC-) cards IBeCu891 help to 
identify and specfi objects or components of an application in an 
informal way-especially in the early phases of software development. 

Collabomtars 
Partner 
Components 

Responsibility 
Operations may go 
across several 

A CRC-card describes a component, an object or a class of objects. 
The card consists of three fields that describe the name of the 
component, its responsibilities, and the names of other collaborating 
components. The use of the term 'class' is historical [Ree921, and we 
use CRC cards for other kinds of components or single objects as well. 

Object Modeling Technique 

The Object Modeling Technique (OMTI [RBPEL911 is a widely-used 
object-oriented analysis and design method. OhtT consists of three 
models. the object model, the dynamic model and the functional mod- 
el. We adopt the notation only for the object model, to show the static 
structure of interacting components. The obJect model describes ob- 
jects or classes, their attributes, methods, and relationships. We also 



Notations 

use the boxes that represent classes in OMT for other kinds of com- 
ponents. OMT represents association, aggregation, and inheritance 
relationships between components by lines that connect the compo- 
nents. The basic concepts of O m s  object model notation are 
illustrated below: 

1 atmbutes k",. 
abstract method 
abstract method 

lnhentance 

Class Name Class Name 

Component 

Methods 

Attributes 

Association 

Aggregation 

Inheritance 

A rectangular box, denoting the name of the component and 
optionally its attributes and operations. Abstract components are 
labeled in italics as well as their corresponding abstract methods. 

Method names are written in the component boxes. They denote the 
operations of components. We show abstract methods. that is, those 
that only provide the interface for polymorphlsm, in itallcs. 

Attribute names are written in the component boxes. They denote the 
data slots of a component. 

A line that connects components. Associations can be optional 
(shown with a hollow circle) or multiple (shown with a black circle). A 
number a t  the end of an association may denote its cardinality. Asso- 
ciation of components is used to show any kind of component 
relationship except aggregation and inheritance. Transitive relation- 
ships are typically not drawn. 

A diamond shape at the termination of an association line denotes 
that the partner component(s) at the other end of the association are 
contained within the component. 

This relationship is denoted by a triangle in the middle of the 
association line. The apex of the triangle points to the superclass. 



Object Message Sequence Charts 

Message Sequence Charts (MSC) are a standard notation for 
designing and specifying protocols among concurrently-operating 
entities such as processes or hardware elements [CR92][GGR93]. The 
MSC notation is standardized in the telecommunication domain and 
integrated into the SDL language. I t  specifies a scenario that shows 
the signal flow between the entitles of a given domain. We do not 
follow the SDL/MSC standard notation, however, and adapt the MSC 
notation to demonstrate object or component interaction among the 
partidpants of a pattern. We refer to this adaptation as Object 
Message Sequencing Chart notation (OMSC). 

Object 3 I 

return 
I I 

method 
aCltUlhJ 



432 Notations 

Object 

lime 

Messages 

Oblect AcWW 

Parameter 

Object 
Ltfe cycle 

Address Space 

An obJect or component in an OMSC is drawn as  a rectangular box. 
The box Is labeled wlth the name of the component in the pattern. An 
obJect that sends or recelves messages in the OMSC has a vertical bar 
attached to the bottom of the box. 

Tlme flows from top to bottom. The time axls is not scaled. 

Messages between obJects are denoted by arrows. These arrows are 
labeled wlth the method name at the head, ifapplicable. To show the 
return of the control flow to the sender we extend the standard MSC 
notation by using arrows wlth a smaller head. Both types of arrows 
are comblned to a single double-headed arrow if the activated method 
does not send other relevant messages. 

To denote the activity of objects that perform a specific function. 
procedure, or method, rectangular boxes are placed on the vertlcal 
bar attached to the object. An obJect may also send messages to itself 
to activate other methods. Thls situation is represented by nested 
boxes offset sltghtly to the rlght. 

Parameters are only noted explicitly when they are necessary for the 
understanding of an OMSC. Parameters of a message are shown as  a 
box on top of the arrow. and return parameters below the returning 
arrow. If responslbUlty for a parameter object is passed along the 
arrow the name of the object is shown in boldface. If only a reference 
to the obJect 1s passed as  a parameter, its name is shown in italics. 

In most cases we assume that aII relevant objects already exist, and 
the corresponding boxes are drawn at  the top of the OMSC. If an 
OMSC shows obJect creation, this Is denoted by an unlabeled arrow 
to a box placed wlthin the OMSC. If an object ceases to exist, thls is 
denoted by a cross that termlnates the vertical bar. This notation 
corresponds to the constructor and destructor calls in C++. 

A thick angled h e  shows an address space or process boundary. 
Messages that cross thls boundary are transferred by a means of an 
IPC mechanism. Typically those messages are treated asynchronous- 
ly and processing continues within the sendlng and the receiving ob- 
ject concurrently. Remote procedure calls across process boundaries 
that block the sender untll the remote procedure returns are an 
exception to this. 



Glossary 

The glossary our use of many of the terms that are used frequently 
throughout the book. All the terms are related to specific aspects of 
software architecture. We have omitted many terms that we only use 
in one context. for example the terms borrowed from Artificial 
Intelligence in the Blackboard pattern. When we felt that such terms 
needed an  explanation we gave it in context rather than including 
them in the Glossary. We have also omitted central terms such a s  
'pattern', 'software architecture' or 'idiom'-these are explained in 
length in dedicated sections of the book. 

Abstract Class A class that does not implement all the methods that are defined in 
its interface. An abstract class defines a common abstraction for Its 
subclasses. 

Abstract A component that specifies an interface for other components. An 
Component abstract component can either be given explicitly, like an  abstract 

class, or implicitly by using its interface within another component. 
such as a class parameter of a C++ template function. Abstract 
components form the basis for exploitlng polymorphism and 
implementing flexible systems. This term is used in the same way a s  
abstract class, to avoid restrlcling patterns to an obJect-orlented 
implementation. 

Abshact An interface for an  operation oT a class that must be defined by a 
Method subclass. 

API Application programming interface. The external interface of a 
software platform such a s  an operating system, that is used by 
systems or applications built on top of it. 

Appllcdlon A program or collection of programs that fulfills a customer's 
requirements. 



Applicafion Aframework for complete applications in a specific domain. 
Framework 

Assoclatlve An array indexed via arbitrary key values rather than integers. Hash 
Array tables demonstrate one way of implementhg associative arrays. 

Class A fundamental building block in object-orlented languages. A class 
specifies and encapsulates its internal data structure as well as the 
functionality of its instances or objects. A class' description may build 
on one or more other classes by inheritance. 

Client In our descriptions cknt  denotes a component or subsystem that 
exploits functionality offered by other components. 

Collaborator A component that cooperates with another component. An element of 
a CRC cad.  

Component An encapsulated part of a software system A component has an 
interface that provides access to its services. Components serve as 
building blocks for the structure of a system. On a programming 
language level components may be represented as modules, classes. 
objects or a set of related functions. A component that does not 
implement all the elements of its Interface is called an abstract 
component. 

Concrete Class A class from which objects can be instantiated. In contrast to abstract 
classes, all methods are implemented in a concrete class. The term is 
used to distinguish derived concrete classes from their abstract 
superclass. 

Concrete A component that implements all elements defined in its interface. 
Component Used to distinguish components from the abstract component that 

, defines their interface, in the same way that a concrete class is 
distinguished from an abstract class. 

Container The common name for data structures that hold a number of 
elements. Examples of containers are lists, sets, and arrays. 

CRC Card Class-Responslbflity-Collaborator card. A design tool and notation 
[see page 429). We also use CRC cards to descrlbe components that 
are not classes. 



DemuMplexlng A mechanism that routes incoming data from an input port to its 
intended receivers. There is a l:N relationship between input port and 
receivers. Demultipleldng is commonly applied to incoming wents 
and data streams. The reverse operation is known as multiplexing. 

Design The activity performed by a software developer that results in the 
software architecture of a system Very often the term design is also 
used as a name for the result of thls activity. 

Domain Denotes concepts, knowledge and other items that are related to a 
subject. Often used as 'application domain' to denote the problem 
area an application addresses. 

Drag and Drop User activity supported by modem GUls. Drag and drop allows a user 
to perform an operation on a graphical object by selecting it and 
dragging it to another place on the screen. For example, a document 
can be printed by selecting it and dragging it to a printer icon. 

Dynamic A mechanism that defers the association of an operation name (a 
Blndlng message) to the corresponding code (a method) until run-time. It is 

used to implement polymorphism in object-oriented languages. 

Framework A seml-finished software (sub-) system intended to be instantiated. A 
framework defines the architecture for a family of (sub-) systems and 
provides the basic building blocks to create them. It also defines the 
parts of itself that must be adapted to achieve a specific functionality. 
In an object-oriented environment a framework consists of abstract 
and concrete classes. Instantiation of such a framework consists of 
composing and subclassing the existing classes. 

Functional A partlcular aspect of a system's functionality, usually related to a 
Property specified functional requirement. A functional property may be either 

made directiy visible to users of an application by means of a 
partlcular function, or it may represent aspects of its implementation. 
such as the algorithm used to compute the function. 

GUI Graphical user interface. 

Hardwiring Coding in a very inflexible way, for example by using a literal number 
or a smng instead of a variable. Such literal numbers are also known 
as 'maglc numbers' since the number itself may give no clue to 
understanding where it came from and what it is for. 



Inheritance 

lnllnlng 

Instance 

Instantiation 

Intercession 

Intranet 

Introspection 

IPC 

Message 

A feature of object-oriented languages that allows new classes to be 
derived from existing ones. Inheritance defines Implementation 
reuse, a subtype relationship, or both. Depending on the 
programming language, slngle or multiple inheritance is possible. 

Code expansion at compile time that inserts the code of a function or 
procedure body instead of the code used to call the function, Mining 
long function bodies can lead to code 'bloat', with negative effects on 
storage consumptlon and paging effects. 

An object originated from a specific class. Oflen used as  a synonym 
for object in an object-oriented environment. This term may also be 
used in other contexts (see Instanfiation). 

A mechanism that creates a new instance from some template. The 
term is used in several contexts. Objects are Instantiated from 
classes. C++ templates are instantiated to create new classes or 
functions. A n  appllcatlon framework is instantiated to create an 
application. The phrase 'instantlatlng a pattern' is sometimes used to 
refer to taking the pattern as described and filling in the necessary 
details to fit a specific application. 

The addition to, or modification of, the structure, behavior or state of 
a system by the system itself. 

A wide-area network of computers within a company. Such a network 
may be secured from outside access, and provides a platform for 
company-wide information exchange. cooperative work and work 
flow. 

The examination of selected aspects of the structure, behavior and 
state of a system by the system itself. 

Inter-process communication. Examples of IPC mechanisms are 
shared memory, pipes, message queues and network communica- 
tion. 

Messages are used for the communication between objects or 
processes. In an object-orlented system the term message is used to 
describe the selection and activation of an operation or method of an 
object. This kind of message is synchronous, which means that the - 

sender waits until the receiver finishes the activated operation. 



Method 

Module 

Multiple 
Inheritance 

Object 

Processes typically communicate asynchronously, in which the 
sending process continues its execution without waiting for the 
receiver to reply. Remote procedure calls (RPC) are a means of 
synchronous inter-process communication. 

Denotes an operation performed by an object. A method is speclfied 
within a class. The term is also used in 'software development 
method', which consists of a set of rules, guidelines and notations to 
be used by engineers during the development process. 

A 'small' class that defines an additional interface or functionality to 
be added to classes by multlple hheritance. Mix-In also denotes the 
mechanism for adding such functionality by inheriting from classes. 

A syntactical or conceptual entity of a software system Often used as  
a synonym for component or subsystem Sometimes, 'modules' also 
denote compilation units or files. Other writers use the term as  an 
equivalent to 'package' when referring to a code body with its own 
name space. We use the term as stated in the first sentence. 

Inheritance in which a class can have many superclasses. 

A feature of a system not covered by itsfunctIonal description. A non- 
functional property typically addresses aspects related to the 
reliability, compatibllity, efficiency, cost, ease of use, maintenance or 
development of a system. 

An identifiable entlty in an object-oriented system Objects respond 
to messages by performing a method [operation). An object may 
contain data values and references to other objects, which together 
define the state of the object. An object therefore has state, behavior. 
and identity. 

Communication that crosses machine boundaries. Note that the term 
'inter-process communication' depicts different types of 
communication, depending on whether the communicating processes 
exist on the same machine or on different machines. Such 
communication types may dlffer in latency, throughput and error 
probability. 



Relationship 

Responsibility 

Role 

S.E.P. 

An 'on-the-wire' protocol' defines how higher-level communicatlon 
toolkits (such as  DCE. CORBA, or Network OLE) transform messages. 
obJects, data and other entities into buffers that can be passed 'across 
the wire'. The term 'wire'today also includes transmission media 
such as microwave, fiber. and radio transmissions. 

In a distributed system peers are the processes that communicate 
with each other. In contrast to components in Client-Server 
architectures, peers may act as  clients, as servers or as both, and may 
change these roles dynamically. 

The sum of hardware and/or software a system uses for its 
implementation. Software platforms include operating systems. 
libraries, and frameworks. A platform implements a virtual machine 
with appllcatfons running on top of it. 

A concept in which a single name may denote different things. A 
function name may be bound over time to several different 
operations, or a variable may be bound to objects of different types. 
This concept makes it posslble to implement flexible systems based 
on abstractions. In object-orlented languages polymorphism is 
implemented by the dymmic bfnding mechanism of operations. This 
implies that a Axed portion of code may behave differently depending 
on its couaborathg objects. 

A connection between components. A relationship may be static or 
dynamlc. Statlc relationships show directly m source code. They deal 
with the placement of components within an architecture. Dynamic 
relationships deal with the Interaction between components. They 
may not be easily visible from source code or diagrams. 

The functionality of an object or a component in a specific context. A 
responsibility 1s typically specified by a set of operations. The 
responsibllity sectlon is an element of a CRC card. 

The responsibility of component within a context of related 
components. An implemented component may take different roles. 
even within a single pattern. 

Somebody Else's Problem. Software Engineering Process, or Software 
Engineering with Patterns--whatever you want it to be. 



Single 
Inheritance 

Subsystem 

Superclass 

System 

System Family 

A component or subsystem triggered by client requests. When a client 
request arrives the server attempts to fulfill it, either on its own, or by 
delegating subtasks to other components. 

Inheritance in which a class can have at most one direct superclass. 

A set of collaborating components performing a given task. A 
subsystem is considered a separate entity within a software 
architecture. It performs its designated task by interacting with other 
subsystems and components. 

A class from which another class inherits. 

A collection of software and/or hardware performing one or several 
tasks. A system can be a platform, an application or both. 

A set of related systems solving similar tasks. Systems in a system 
family share a great part of their architecture and implementation, 
often because every system is derived from the same framework. 
When a single system evolves over time, its delivered releases also 
build a system family. 

A standard for character representation using 16-bit coding. Unicode 
includes characters for almost all written languages, as well a s  
representations for punctuation, mathematical and other symbols. 





References 

D. Adams: 7he HitchhUcer's Gulde to the Galaxy, page ZA6. Pan Books Ltd.. 
London. 1979 

D. Adams: So long, and h a n k s  for All the Flsh Chapter 31. Pan Books Ltd.. 
London. 1984 

K. h o l d .  J. Gosling: 7he Jam Programming Language, Addison-Wesley. 
1996. see also http://Java.sun.com 

C. Alexander: The Timeless Way of Building. Oxford University Press. 1979 

C. Alexander. H. Nets. A. Annlnou. I. Klng: A New Theory of Urban Design. 
Oxford Unlversity Press. 1987 

C. Alexander. M. Silversteln. S. Angel. S. Ishikawa. D. Abrams: 7he Oregon 
Ewperiment. Oxford University Press, 1975 

C. Alexander. S. Ishikawa. M. Silverstein wlth M. Jacobson. I. Fiksdahl-King. 
S. Angel: A Pattern Language - Towns~Buildings~ConstrucIlon, Oxford 
University Press. 1977 

A. Aho. R Sethi. J. UUman: Compilers - Principles, Techniques, and Tools. 
Addison Wesley. 1986 

Siemens AG: Am-P: KompfexspeZlfrrcaUon. internal document. 1993 

Apple Computer Inc.: Inside Mactntosh Volume I. Cupertino. CA. 1985 

Apple Computer Inc.: Macintosh Programmers Workshop Pascal 3.0 
Reference, Cupertino, CA, 1989 

M.J. Bach: The Design of the UhTX Operatlq System Prentice Hall. 1986 

L. Bass. J. Coutaz: Developing Soj?ware for the User Interne,  Addison- 
Wesley. 1991 



References 

H. Balzert: Die Entwicklung von SoJware-Systernen, B.1. Wissenschaftsverlag, 
Mannheim Wien Ziirich, 1985 

K. Beck: Patterns and Software Developrnent, Dr. Dobb's Journal, 19(2), pp. 
18-23. February 1994 

K. Beck: Smalltalk Best Practice Patterns. Prentice-Hall. 1997 

K. Beck, W. Cunningham: A Laboratory For Teaching Object-Oriented 
Thinking. Proceedings of OOPSLA '89, N. Meyrowitz (Ed), Special Issue of 
SIGPLAN Notices. Vol. 24, No. 10. pp. 1-6, October1989 

A.P. Black, M.P. Immel: Encapsulating Plurality, Procecdings of ECOOP '93, 
pp. 57-79, IECOOP931 

K. Beck, R. Johnson: Patterns Generate Architectures. Proceedings of ECOOP 
'94, pp. 139-149. [ECOOP94] 

F. Buschmann. K. Kiefer, M. Stal. F. Paulisch: The Meta-Information-Protocol: 
Run-Time Type Information for C++, Proceedings of IMSA '92, pp. 82-87, 
[IMSA92] 

F. Buschmann, R. Meunier: A System of Patterns, Proceedings of P h P  '94. 
pp. 325-343. [PLoP94] 

F. Buschmann. R. Meunier: Building a SoJware System Electronic Design, 
February 20, 1995 

J.J. Barton. L.R. Nackrnan: Scientific and Engineering C++ -An Introduction 
with Advanced Techniques and Examples, Addison-Wesley. 1994 

G. Booch: Object-Oriented Analysis and Design With Applications, Second 
Edition, Benjamin/Cummings, Redwood City, California, 1994 

G. Booch: Un~fied Method for Object-Oriented Developrnent, Version 0.8. 
Rational Software Corporation 

K. Brockschmidt: Inside OLE 2, Microsoft Press, 1994 

Phil Brooks: Master-Slave Patternfor Parallel Compute Services, submitted to 
the 1996 Conference on Object-Oriented Technologies and Systems (COOTS) 

R.J.A. Buhr. R.S. Casselman: Use Case Maps for Object-Oriented Systems, 
Prentice Hall, 1996 



F.R. Campagnoni: IBM's System Object Model, Dr. Dobb's Journal. Special 
Report. #225 Winter 1994/95, pp. 24-28 

Chorus systemes: Chorus Kernel v3.2, Implementation Guide. CS/TR-90-5 

J. Coutaz, L. Nigay, D. Salber: Agent-Based Architecture Modelling for 
Interactive Systems, The Amodeus Project, ESPRIT Basic Research Action 
7040. System Modelling/WP53. April 1995 

S. Chiba, T. Masuda: Designing an Extensible Distributed Language with a 
Meta-Level Architecture, Proceedings of ECOOP '93, pp. 482-501, [ECOOP93] 

P. Coad: Object-Oriented Patterns, Communications of the ACM, Vol. 35, No. 
9. September 1992 

P. Coad with D. North and M. Mayfield: Object Models - Strategies, Patterns, 
&Applications, Yourdon Press, Prentice Hall, 1995 

J.O. Coplien: Advanced C++ - Programming Styles and Idioms. Addison- 
Wesley, Reading, MA. 1992 

J.O. Coplien: The Counted Body Idiom. Pattern Mailing List Reflector. Feb 
1994 

J.O. Coplien: Generative pattern languages: An emerging direction of software 
design, C++ Report, SIGS Publications, July-August 1994 

J.O. Coplien: A Generative Development-hocess Pattern Language. 
Proceedings of PLOP '94. pp. 183-237. IPLoP941 

J.O. Coplien: The History of Patterns, see http://c2.com/cgi/ 
wiki?HistoryOfPatterns 

J.O. Coplien: Pattern Mailing List Reflector. V96 #35, April 1996 

J. Coutaz: PAC, an Object OrIented Model for Dialog Design. Human- 
Computer Interaction - INTERACT '87 proceedings, H.-J. Bullinger and B. 
Shackel (Eds), pp. 43  1-436, Stuttgart, Germany, Elsevier Science Publishers 
B.V. (North-Holland), 1987 

Iain Craig: Blackboard Systems, Ablex Publishing Corporation, Norwood. 
New Jersey, 1995 

J. Crowley: Navigation for an Intelligent Mobile Robot, IEEE Journal of 
Robotics and Automation, Vol. RA- 1, No. 1, pp. 3 1-4 1, March 1985 



References 

W. Cunningham: 7'he CHECKS Pattern Language of Information Integrity, 
Proceedlys of PLOP '94, pp. 1 4 5 1  55, IPLoP941 

H. Custer: Inside Windows NT. Microsoft Press. 1993 

P. Coad, E. Yourdon: Object-Oriented Analysis, Prentice Hall, second edition, 
199 1 

D. Chapman, E. Zwicky: Building Internet Firewalk, O'Reilly €2 Associates, 
1995 

E.W. Dijkstra: Solution of a Problem in Concurrent Programming Control, 
CACM, Vol. 8, No. 9, p. 569, Sept. 1965 

ANSl document X3J 16/95 0088 WG2 1 /N0688: Programming Language C++. 
draft working paper. July 1995 

0 .  Lehrmann Madsen (Ed.): ECOOP '92 - European Conference on Object- 
Oriented Programming. Proceedings of 6th European Conference. Utrecht, 
The Netherlands, June/July 1992, Lecture Notes in Computer Science 6 15, 
Springer-Verlag. Berlin Heidelberg New York. 1992 

0. Nierstrasz (Ed.): ECOOP '93 - Object-Oriented Programming, Proceedings of 
7th European Conference. Kaiserslautern, Germany. July 1993, Lecture 
Notes in Computer Science 707, Springer-Verlag, Berlin Heidelberg New York, 
1993 

M. Tokoro, R. Pareschi (Eds.): ECOOP '94 - Object-Oriented Programming, 
Proceedings of 8th European Conference. Bologna. Italy, July 1994, Lecture 
Notes in Computer Science 82 1, Springer-Verlag, Berlin Heidelberg New York, 
1994 

W. Olthoff (Ed.): ECOOP '95 - Object-Oriented Programming, Proceedings of 
9th European Conference. h h u s .  Denmark, August 1995. Lecture Notes in 
Computer Science 952. Springer-Verlag, Berlin Heidelberg New York. 1995 

L.D. Erman, F. Hayes-Roth. V.R. Lesser. D.R. Reddy: The Hearsay-11 Speech- 
Understanding Sys  tern Integrating Knowledge to Resolve Uncertainty. ACM 
Computing Surveys 12 (2). pp. 213-253, 1980, reprinted in Blackboard 
Systems.  pp. 31-86, [EM881 

R. Eisenhauer, S. Kumsta, F. Miralles, K. Mobius, U. Steinmiiller, P. Stobbe. 
C. Vester: Architektur-Handbuch ftir Software-Architekten, Siemens Nixdorf 
Inforrnationssysteme AG. internal report, 1994 

R. Engelmore, T. Morgan (Eds): Blackboard Systems,  Addison-Wesley. 1988 



M.A. Ellis, B. Stroustrup: The Annotated C++ Reference Manual, Addison- 
Wesley, 1990 

A. Etzioni: Modern Organizations, Prentice-Hall, 1964 

K. Fellbaum: Sprachverarbeitung und Sprachiibertragung, Springer-Verlag, 
Berlin Heidelberg New York Tokyo, 1984 

C. Forgy, J. McDermott: OPS: a domain-independent production system 
language, Proceedings of the Fifth International Joint Conference on Artificial 
Intelligence IJCAI-77, pp. 933-939 

M. Fowler: Object Blueprints: Patterns in Systems Analysis, Addison-Wesley, 
to appear 

E. Gamma: Objektorientierte Software-Entwicklung am Beispiel uon ET++: 
Klassenbibliothek, Werkzeuge, Design, Dissertation, Universitat Zurich, 199 1 

D. Gelernter: Generative Comnicaffon in LNDA, ACM Transactions on 
Programming Languages and Systems, Vol. 7, No. 1, pp. 80-1 12, Jan.  1985 

J. Grabowski, P. Graubmann, E. Rudolph: The Standardization of Message 
Sequence Charts, in Software Engineering Standards Symposium, Brighton, 
UK, 1993 

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Abstraction 
and Reuse of Object-Oriented Design, Proceedings of ECOOP '93, pp. 406- 
431, [ECOOP93] 

E, Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns - Elements of 
Reusable Object-Oriented Software, Addison-Wesley, 1995 

M. Garey, D. Johnson: Computers and Intractability -A Guide to the Theory of 
NP-Completeness, W.H. Freeman and Company, New York, 1979 

A. Goldberg: Object-Oriented Pxject Management, Tutorial TOOLS Europe, 
Paris, 199 1 

K. Gorlen, S. Orlow, P. Plexlco: Data Abstraction and Object-Oriented 
Programming in C++, John Wiley & Sons, 1990 

A. Goldberg, D. Robson: Smalltalk-80: the language and its implementation, 
Addison-Wesley, 1983 



eferences 

J .  Grabowski, E. Rudolph: Message Sequence Charts (MSC] - A Survey of the 
new CCI7T Language for the Description of Traces within Communication 
Systems, 1992 

I W 9 0 1  X.D. Huang, Y. Ariki, M.A. Jack: Hidckn Markov Models for Speech 
Recognition, Edinburgh University Press, Edinburgh, 1990 

IHHS941 R. Hhdel,  M.N. Huber, S. Schroder, ATM Networks - Concepts, Protocols, 
Applications, 2nd Edition, Addison-Wesley , 1 994 

IHRV951 J .  Hwtmann, C. Reichetzeder, M. Varlan: CMS Pfpelines, http: / /-.a&- 
wien.ac.at/pipeline.html 

~HT921 Y. Honda, M. Tokoro: Soft Real-Time Programming through Reflection, 
Proceedings of IMSA '92, pp. 12-23, IIMSA921 

[IEEE88] IEEE: Portable Operating System Interface for Computer Environments 
(POSLX), 1003.1, Sept. 1988 

IIMSA921 A. Yonezawa, B.C. Smith (Eds.): Proceedings of the International Workshop on 
New Models for Sofhvare Architecture '92 - Reflection and Meta-Level 
Architecture, Tokyo, Japan, 1992 

Y. Ichisugi, S. Matsuoka, A. Yonezawa: RbCL A Reflectiue Object-Oriented 
Concurrent Language without a Run-time Kernel, Proceedings of IMSA '92, pp. 
24-35, IIMSA921 

IONA Technologies Ltd: Orbk P r o g r a m r ' s  Gulde, compare also http: / / 
m . i o n a . i e / ,  Dublin, Ireland, 1995 

M. Jackson: Software Requirements & Specifications - a lexicon of practice, 
principles and prejudices, Addison-Wesley , 1995 

R. Johnson: An Introduction to Patterns, Report on Object Analsysis & Design, 
Vol. 1, No. 1, SIGS Publications, May J u n e  1994 

R. Johnson: private communication 

R. Johnson: private communication 

E-A. Karlsson (Ed.): Sofhoare Reuse -A HoZZstlc Approach, John Wiley & Sons, 
1995 

S.E. Keene, Object-Oriented Programming in Common Lisp - A Programmer's 
Guide to CLOS, Addison-Wesley, 1989 



G. Kiczales: Towards a New Model of Abstraction in SoJware Engineering, 
Proceedings of IMSA '92, pp. 1-1 1, [IMSA92] 

G. Kiczales, R. DeLlne, A. Lee, C. Maeda: Open Implementation -Analysis and 
DeslgnTM of Substrate Sofhuare, Tutorial #2 1 of OOPSLA '95, October 1995 

A. Kausche, M. van Meegen, A. Schappert, P. Sommerlad, K. Bergner, B. 
Rumpe: Exploration FIeld Automated Software Development - State-of-the-Art 
Report, Siemens AG. internal technical report, Munlch, 1992 

A. Koenig: Another handle varlatlon, Journal of Object-Oriented Programming 
(JOOP), SIGS Publications. November-December 1995 

G.E. Krasner. S.T. Pope: A cookbook for using the Model-View-Controller user 
interface paradigm in Smalltalk-80, Journal of Object-Oriented Programming. 
1 (3), pp. 26-49, August/September 1988. SIGS Publications. New York. IVY, 
USA, 1988 

B. W. Kerninghan, D.M. Ritchie, The C Programming Language. 2nd edition 
covering ANSI-C, Prentice Hall, 1988 

J .  Knopp, M. Reich: A Data Model For Architecture Independent Parallel 
Programming, Workshop on High-Level Programming Models and Supportive 
Environments at the IEEE International Parallel Processing Symposium, 
Honolulu, 1996 

G. Kiczales, J .  des Rivieres, D. Bobrow: The Art of the Metaobject Protocol, MIT 
Press, 1991 

P.B. Kruchten: The 4 + 1 View Model of Architecture, IEEE Software. 
November 1995, pp. 42-50 

D. Kruglinski: Inside Visual C++, Microsoft Press, 1995 

S. Kleiman, D. Shah, B. Smaalders: Programming with Threads. SunSoft 
Press. Prentice Hall. 1996 

A. Luotonen, K. Altis: World-Wide Web Proxies, WWW94 Conference. 1994, 
see also http://www.w3.org/pub/WWW/Daemon/ 

M. Linton, P. Calder, J. Interrante, S. Tang, J. Vlissides: Interviews Reference 
Manual, CSL, Stanford University, 3.1 edition, 1992 

D. Lea: Collecffons, a Java package, http://g.oswego.edu/dl/, 1996 



V.R. Lesser, L.D. Erman: A Retrospective View of the Hearsay-II Architecture, 
in Blackboard Systems, Roc. of IJCAI-77, pp. 790-800 and Technical Report 
CMU-CS-78- 1 17, reproduced in Blackboard Systems, pp. 87-12 1, [EM881 

C. -C. Lim: A Parallel Object-Oriented Sys tem for Realizing Reusable and 
Encient Data Abstractions, PhD dissertation, TR-93-063, International 
Computer Science Institute, Berkeley, CA, 1993, see also http: / / 
m.icsi.berkeley.edu/ -sather/psather. html 

W.R. W n d e ,  J.R. Pugh: Inside,Smlltalk, Volume II, Rentice-Hall, 1991 

K.-P. Lijhr, I. Piens, T. Wolffi Verteilungstransparenz bei der objektorientierten 
Entwicklung verteilter Applikationen, OaJEKTspektrum 5/ 1994, pp. 8- 14, 
SIGS Publications, Miinchen, Germany, 1994 

Pattie Maes, Concepts and Experiments in Computational Reflection, in 

Roceedings of OOPSLA '87, pp. 147-1 55, 1987 

S. Maffeis: The Object Group Design Pattern, 2nd USENIX Conference on 
Object-Oriented Technologies and Systems (COOTS), Toronto, Ontario, 
Canada, 1996 

J. Markowitz: Taking to Machines, Byte, December 1995, pp. 97- 104 

J .  McAffer: Meta-level Programming with CodA, Roceedings of ECOOP '95, 
pp. 190-2 14, [ECOOP95] 

T.D. Meijler, R. Engel: Making Design Patterns explicit in FACE, a Framework 
Adaptive Composition Environment, submitted to EuroPLoP '96 

G. Meszaros: Pattern: Halfobject + Prototocol (HOPPI, Roceedings of PLoP '94, 
pp .12!3- 132, [PLOP941 

S. Meyers: Eflective C++ - 50 Spec~fic Ways to Improve Your Programs and 
Designs, Addison-Wesley, 1992 

S. Murer, J. Feldman, C. Lim: pSathec Layered Ektensions to an Object- 
Oriented Language for Emlent Parallel Computation, International Computer 
Science Institue, TR-93-028, Berkeley, CA, 1993 

Microsoft Corporation: Microsoft Word, User's Guide, 1993 

Microsoft Corporation: Microsoft Visual Basic, Rograrnmer's Guide, 1995 

H.P. Nii: Blackboard Systems, Part I and II, The A1 Magazine, vol. 7, nos 2 (pp. 
38-53) and 3 (pp. 82-106). 1986 



A. Newell, H.A. Simon: Human Problem Solvlng, Prentice-Hall, 1972 

H. Okamura. Y. Ishikawa, M. Tokoro: A L l I D :  A Distributed Programming 
System with Multi-Model Reflection Framework, Proceedings of IMSA '92, pp. 
36-47. [IMSA92] 

Object Management Group: The Common Object Request Broker: Architecture 
and Specination, OMG Document Number 9 1.12.1, Revision 1.1, 1992 

Object Management Group: CORBAseruices: Common Object Seruices 
Specification, OMG Document Number 95-3-31, 1995 

S.M. Omohundro: The Sather programming language, Dr. Dobb's Journal, 
18(11):42-48, October 1993, see also http: //www.icsi.berkeley.edu/Sather/ 

D.L. Parnas: On the criteria to be used in decomposing systems into modules, 
CACM, Vol. 15, pp. 1053-1058, Dec. 1972 

D.L. Parnas: Software Aging, IEEE Proceedings of the 16th International 
Conference on Software Engineering, 1994 

D.L. Parnas, P.C. Clements. D.M. Weiss: The Modular Structure of Complex 
Systems, IEEE Transactions on Software Engineering, Vol. SE-11, No. 3, 
March 1985 

J.O. Coplien, D.C. Schmidt (Eds.): Pattern Languages of Program Design, 
Addison-Wesley, 1995 (a book publishing the reviewed Proceedings of the 
First International Conference on Pattern Languages of Programming, 
Monticello, Illinois, 1994) 

J.O. Coplien, N. Kerth, J. Vlissidis [Eds.): Pattern Languages of Program 
Design, Addison-Wesley, 1996 (a book publishing the reviewed Proceedings of 
the Second International Conference on Pattern Languages of Programming, 
Monticello. Illinois, 1995) 

ParcPlace Systems Inc.: Objectworks\Smalltalk Release 4.1 User's Guide, 
ParcPlace Systems. 1992 

W. Pree: Meta Patterns - A Means For Capturing the Essentials of Reusable 
Object-Ortented Design, Proceedings of ECOOP '94, pp 150-162, [ECOOP94] 

W. Pree: Design Patterns for Object-Oriented Soflware Development, Addison- 
Wesley, 1995 



References 

G. Parulkar. D. Schmidt. J. Turner: dpm. a Strategy for Integrating 1P with 
A m ,  Proceedings of SIGCOMMM, ACM, Aug/Sep 1996, see also http:// 
siesta.cs.wustl.edu/-schmidt/ 

D.E. Perry, A.L. Wolf: Foundations for the Study of Software Architecture, ACM 
SIGSOFT, Software Engineering Notes, Vol. 17, No. 4, pp. 40-52, October 
1992 

L.R. Rabher et al: An Introduction to Hidden Markou Models, IEEE ASSP 
Magazine, Vol 3, pp. 4-16, January 1986 

L.R. Rabiner: A 'htorial on Hidden Markov Models and Selected Applications 
in Speech Recognition, Proceedings IEEE, Vol 77, No 2, pp 257-285, 1989 

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen: Object- 
Oriented Modeling and Design, Prentice Hall, 199 1 

T. Reenskaug: Intermediate Smalltalk, Practical Design and Implementation, 
Tutorial, TOOLS Europe '92, Dortmund. 1992 

T. Reenskaug, P. Wold. O.A. Lehne: Working with Objects: The OOram 
Software Engineering Method, Manning Publications Company, 1996 

A. Sane, R. Campbell: Detachable Inspector/Removable cout: A Structural 
Pattern for Designing Transparent Layered Services, Proceedings of PLoP '95 

A. Sane. R. Campbell: Composite Messages: A Structural Pattern For 
Communication Between Components, 00PSLA '95 Workshop on Concurrent, 
Parallel, and Distributed Object-Oriented Systems, Austin TX, 1995, see also 
http:/ /siesta.cs.wustl.edu/-schmidt/OOPSLA-95/index.html 

K.J. Schmucker: Object-Oriented Programming for the MacintoshTM. Hayden 
Book Company. Hasbrouck Heights. New Jersey. 1986 

D.C. Schmidt: Reactor An Object Behavioral Pattern for Concurrent Event 
Dernultiplexing and Event Handler Dispatching, Proceedings of PLOP '94, pp. 
529-545. [PLOP941 

D.C. Schmidt: A System of Reusable Design Patterns for Communication 
Somare, Theory and Practice of Object Systems, Special Issue on Patterns 
and Pattern Languages, S.P. Berczuk (Ed), John Wiley and Sons, 1995 

D.C. Schmidt: ACE - The ADAPTNE Communication Environment, see http:/ 
/siesta.cs.wustl.edu/-schmidt/ACE.html 



D.C. Schmidt: Acceptor and Connector - Design Patterns for Initializing 
Network Serukes, submitted to EuroPLoP '96 

J. Sethna: LASSPTools: Graphical and Numerical Extensions to Untu, http:// 
~vww.lassp.cornell.edu/LASSPTools/LASSPTools. html 

M. Shaw, D. Garlan: Software Architecture - Perspectives on an Emerging 
Discipline, Prentice Hall, 1996 

D. C. Schmidt, T. Harrison, E. Al-Shaer: Object-Oriented Components for 
High-speed Network Programming, Department of Computer Science, 
Washington University, 1996, see also http://siesta.cs.wustLedu/-schmidt/ 

Siemens AG: SICAT Steuerpmgramm Entwurfsspez~jikation, Internal 
document no. P30308-A633 1 -A000-02-D8 

B. Stroustrup, D. Lenkov: Run-Time Q p e  Identijication for C++, ANSI C++ 
standards documcnt No. X3J 16/92-0028, 1992 

S. Shlaer, S.J. Mellor: Object-Oriented Systems Analysis - Modeling the World 
In Data, Yourdon Press, Prentice Hall, 1988 

Brian C. Smith, Reflection and Semantics in a Procedural Lunguage, PhD 
thesis, Massachusetts Institute of Technology, 1982 

D. Sonl. R. Nord, C. Hofmeister: Software Architecture in Industrial 
Applkattons, in Proceedings of the 17th International Conference on Software 
Engineerlng, pp. 196-207, Seattle, Washington, ACM Press, April 1995 

Siemens Nixdorf Informationssysteme AG: Generic++ 2.0, Portable C++ 
Foundation Class Libray, User manual, October 1994 

J. Soukup: Implementing Patterns, Proceedings of PLOP '94, pp.395-412, in 
[PLOP941 

J. Saltzer, D. Reed, D. Clark: End-To-End Arguments in System Design, ACM 
Transactions on Computer Systems, Vol. 2, No. 4, pp. 277-288, Nov. 1984 

E. Seidewitz. M. Stark: Towards a General Object-Oriented Software 
Development Methodology, Proceedings of the First International Conference 
on Ada Programming Language Applications for the NASA Space Station, 
Lyndon B. Johnson Space Center, Texas. NASA, 1986 

D. Steel: Distributed Object Oriented Programming: Mechanisms & Experience, 
Proceedings of TOOLS USA '9 1. pp. 27-35, Prentice Hall, 199 1 



W.R. Stevens: UNLX Network r m g ,  Prentice Hall Software Series, 
1990 

W.R. Stevens: TCPIIP Illustrated, Volume 1 ,  The Protocols, Addison-Wesley, 
1994 

U. Steinmiiller: private communication 

B. Stroustrup: The C++ ramming Language, Second Edition, Addison- 
Wesley, 199 1 

Sun Microsystems, Inc. : Sun OS Documentation Tools, Formatting Documents, 
March 1990 

troud, 2. Wu: Us@ Metaobject Protocols to Implement Atomic Data 
Qpes ,  Proceedings .of ECOOP '95, pp. 168- 189, [ECOOP95] 

Taligent Inc.: Tdigent's Guide To Desfgning rams - Well-Mannered Object- 
Oriented Design in C++, Addison-Wesley, 1994 

A.S. Tanenbaum: Modern Operating Systems, Prentice Hall, 1992 

Siemens AG: Toolkit for Autonomous Sofhoare Components Communication, 
Systemdokumentation, internal document, 199 1 

A. Terry: Using Explicit Strategic Knowledge to Control Expert Systems, 
originally published in 1985, reproduced in Blackboard Systems, pp. 159- 
188, [EM881 

R. Thomson, K.E. Huff, J.W.Gish: MaAmizing Reuse During Reengineering, 
Proceedings of the Third International Conference on Software Reuse, Rio de 
Janeiro, Brazil, pp. 16-23, IEEE Computer Society Press, 1994 

W.F. Tichy , J .  Heilig, F. Newbery Paulisch: A Generative and Generic Approach 
to Persistence, C++ Report, SIGS Publications, January 1994 

C. Traving, H. Stadtherr: Building a T r a m  Management System with C++, 
Proceedings of the C++ User Group Technical Conference, Munich, 1993 

U2: even BETTER than the REAL THING, Island Records Ltd., 199 1 

Allan Vermeulen, Gabe Beged-Dov, Patrick Thompson: The Pipeline Design 
Pattern, 00PSLA '95 Workshop on Design Patterns for Concurrent, Parallel 
and Distributed Object-Oriented Systems, see also 

http: / /siesta.cs.wustl.edu/ -schmidt /OOPSLA-95/ html/ papers. html 



J. Vlissides. M. A. LInton: Unidraw -A framework for building domain-specific 
graphical editors, acm Transactions on Information Systems. Vol. 8, No. 3, 
pp. 237-268, July 1990 

R. Wirfs-Brock, B. Wilkerson, L. Wiener: Designing Object-Oriented Software, 
Prentice Hall. 1990 

A. Weinand, E. Gamma. R. Marty: ET++ - An Object-Oriented Application 
Ramework in C++, In Proceedings of OOPSLA '88, pp. 46-57, San Diego, 
1988 

M.A. Williams: Hierarchical Multi-expert Signal Understanding, Technical 
Report ESLIR20 1, ESL Inc, Sunnyville, CA. 1984. Reproduced in Blackboard 
Systems, pp. 387415,  [EM881 

D.W. Woodward: Ein Microkernel fiir die Datenbank, Software-Entwlcklung, 
AWi Verlag. April 1996. S. 28-31 

Y. Yokote: The New Mechanism for Object-Oriented System Programming, 
Proceedings of IMSA '92. pp. 88-93, [IMSA92] 

S.H. Zweben, S.H. Edwards, B.W. Weide, J.E. Hollingsworth: The Effects of 
Layering and Encapsulation on So_ftware Development Cost and Quality, IEEE 
Transactions on Software Engineering, Vol. 21, No. 3, pp. 200-208, 1995 

W. Zimmer: Relationships Between Design Patterns, Proceedings of PLoP '94, 
pp. 345-364, [PLoP941 

C. Zimmermann: Objektorfentierte Konzepte: Entscheidungsschichten 
zwischen Anwendung und BeMebssystemkern-Zwbchenspiek, iX, Februar 
1996. S.146-151 





Index of Patterns 

. . . . . . . . . . . . . . . . . . . . . . . . .  Abstract Factory .206.211.284.292.380.39 7.398 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Acceptor 206. 337 

Activeobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162. 257 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Adapter 49.158.267. 380 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Blackboard .26.29.71.95.366. 380 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  BrIdge .40.4 9. 140.206.21 1.371. 380 
. . . . . . . . . . . . . . . . .  Broker 26.98.99-122 . 191.306.331.335.337.366.380.385 

Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  380 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Chain of Responsibility .139.24 4.37 1.380 
Client.Dispatcher.Senrer.. . .10 6. 121. 163. 182.222.256.274.306.322.323.337. 

364.366.380 
Client-Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  366 
Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .41.244.276.278.289.30 0.380 
Command Processor . . . . . . .  136. 142. 158 . 222.276. 277-290 . 301 . 366 . 371 . 380 
Composite . . . . . . . .  51. 129 . 139.224.234.238.240.241.284.367.370.371.380 
Composite Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 1 . 152 . 160. 16 1.366.370 
Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206. 337 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CountedBody 357 
Counted Pointer . . . . . . . . . . . . . . . . . . . . . . . .  14. 15.234.270.353.368.366.380 

Decorator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275. 380 
Dependents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339 
Detachable Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206 
Document.View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .1 7. 140 . 141. 369 
Envelope-Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211 
Eventchannel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223. 341 
Exceptionalvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255.256 



Facade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .40. 86. 158. 159. 208.242. 26 1. 380 
Factory Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137.298. 37 1. 380 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Flyweight 380 
. . . . . . . .  Forwarder-Receiver .18. 121. 162. 182. 222. 232. 256. 268. 272. 273. 306. 

3 3 7 .  364. 366.380. 399 

c/Half-Async . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 
Handle-Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15. 366 

Indented Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349 
Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287.288.367. 380 
Iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261.299. 380 

Layers . .26. 29. 31.51. 69. 70. 85. 120. 183. 192. 199. 364. 366. 367. 380. 398. 400 

Main Program and Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  378 
Master-Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .222. 243. 244. 245- 
Mediator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 1. 160.233.244. 
Memento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276.283. 380 

. . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Meta-Level Architecture 193 
. . . . . . . . . . . . . . . . . .  Microkernel .26.38.47. 51.98. 169. 1 192. 219. 366. 

. . . . . . . . . . . . . . .  Model-View-Controller 3. 9. 10. 12. 16. 17. . 26. 123. 125- 
167.292.303. 366.369. 371.380.391. 400 

MVC see Model-View-Controller 

ObjectGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260 
Objectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206 
Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13. 223.306. 339 
Open Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193 

PAC see Presentation-Abstraction-Control 
. . . . . . . . .  Pipes and Filters 26. 29. 41. 53-70. 86. 98. 365. 366. 367. 380. 391. 400 

. . . .  Presentation.Abstraction-Control 26. 51. 123. 143. 145 
Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284. 380 
Proxy . .18. 23. 104. 105. 113. 121. 162. 186. 222. 256. 261. 

. . . . .  Publisher-Subscriber .13. 16. 4 1. 127. 132. 160. 16 1. 
366. 371. 380 

Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .41. 186.318.341. 366 
Reference Counting Idiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  357 

. . . . . . . . . . . . . .  Reflection 26. 40. 85. 112. 115. 169. 191. 1 . 366.380. 399 



Singleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .208.253.286.299. 364. 380 
Singleton(C++) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  350 
Singleton(Smallta1kJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  351 
State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206. 380 
Strategy . . . . . . . . . . . . . . . . . . . . . . .  .23. 40.84. 206.209. 21 1. 252. 259. 299. 380 

Template Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  380 

View Handler . . . . . . . . . . . . . . . . . . . . .  138. 157. 222. 276.291.303.366. 371. 380 
Visitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206.211. 380 

Whole-Part . . . . . .  208. 222. 224. 225-242. 272. 317. 366. 367. 368 . 380. 399 . 400 
Windowplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 





Index 

A 
Abstract Class 433 
Abstract Command 278.282 
Abstract Component 433 
Abstract Data 'Qpe 426 
Abstract Method 433 
Abstract Original 265 
Abstract View 294 
Abstraction 147, 158, 398 

Criterion 38 
Level 34, 39, 75, 176 

Access Control 222. 261, 365 
Active Filter 55, 57, 62 
Active Server 185 
Adams, Douglas 1, 29 1,345,383 
Adaptable Systems 26, 169. 364 
Adaptation 379 
Adapter 118. 177, 186 
Agent 307 
A1 (see Artificial Intelligence) 
Alexander. Christopher xii. 360.4 14 
Algorithm 426 
American Football 38 
Analysis Patterns 379 
API (see Application Programming Interface) 

Apple 
AppleTalk 188 
MacApp 124.287 
Macintosh 187 
Macintosh Window Manager 301 
MacOS 187 

Application 433 

Application Framework 186, 396, 434 
Application Platform 172, 177 
Application Programming Interface 46, 184, 

433 
Architectural Pattern xiv, 12, 25, 26, 363 
Architectural Style 394 
Artificial Intelligence 73, 124 
Assembly-Part 226, 234, 236 
Associative Array 434 
Asynchronous Transfer Mode 49 
ATM (see Asynchronous Transfer Mode) 
At-most-once Semantic 1 16 
Atomic Services 174 

B 
Backend 53 
Barrier 255 
Base Level 195, 197. 199. 21 1 
Beck, Kent 414 
Binary Standard 1 1 1 
Blackboard 75 

Entry 75 
Vocabulary 75, 82 

Black-box Approach 40 
Body 354, 357 
Bottom-up Approach 38, 23 1 

Bridge 105, 110 
Broker 101. 103 

Repository 1 13 
Business Application 192 
Business Modeling 47 



Index 

C 
C Standard Library 47 
C++ 41, 129. 193, 204, 213. 215, 219, 346, 

347. 349. 350.403.420 
Cache 269 

Invalidation 269 
Cache Proxy 269 . 
Callback 4 1. 1 18, 185. 277. 285 
Cardinality Property 233 
CGI (see Common Gateway Interface) 
Changeability 92, 100, 119. 194, 217. 241. 

302, 336, 405 
Change-propagation Mechanism 127, 130. 

131, 132, 161. 339 
Registry 132. 339 
Subscription 13 1, 133 
Unsubscription 133 
Update 134 

Chorus 170, 189 
Class 434 
Class-Responsibility-Collaborator Card 429, 

434 

Client 101. 102, 173, 176. 264, 319. 324. 
327. 331. 434 

Client-Server Computing 102. 324 

Client-side Proxy 104. 1 13 
CLOS 170, 213, 214 
Coad, Peter 416 
Collaborator 434 
Collection-Member 227, 234 
Command 278, 283 
Command Processor 278, 279. 286 
Common Gateway Interface 102 
Common Object Request Broker Architecture 

98, 118, 170,217,273, 306,335 
Communication 222. 305, 365 

Channel 188, 308.317, 324. 331 
Facility 174. 176, 328 
Link 315, 325 
Mechanism 100. 314, 324 
Path 188 
Protocol 328 

Component 169, 385, 434 
Communication 324 
Cooperation 243 
Interoperability 1 1 1 
Relationships 182 

Computational Accuracy 247, 256 

Computer Network 305, 307, 323 
Concrete Class 434 
Concrete Component 434 
Concurrency 248, 289 
Configurability 336 
Connector 386 
Container 434 
Container-Contents 227, 234 
Control 75. 77, 83. 147, 158, 166 
Controller 127, 128. 135. 279, 284 
Coplien. James 0. xv. 415. 421 
CORBA (see Common Object Request Broker 

Architecture) 
Counting Proxy 270 

Coupling and Cohesion 400 
CRC-card (see Class-Responsibility-Collabo- 

rator Card) 

Creation 379 
Cunningham, Ward 4 14.423 

D 
Data 

Flow 55 
Model 148 
Sink 55. 56 
Source 55, 56 
Stream 54, 310 
Structure 426 

Database 172. 189 
Debugger 206 
Debugging 121 
Delegation 232 
Demultiplexing 3 17, 337, 435 

Descriptor Table 330 
Design 435 



Design Pattern xiv. 12, 22 1, 363 

Device Context 184 

Device Driver 1 75 
Directory Service 1 15 
Dispatcher 321. 324, 325. 330 
Distributed 

Server 323 
Service 101 
Systems 26, 97, 305, 364 

Distributed Smalltalk 32 1 

Distribution 100 

Divide and Conquer 243,246,403 
Document-View 140 
Domain 435 

Domain Analysis 180 
Domain-specific Patterns 42 1 
Drag and Drop 435 
Dynamic Binding 435 
Dynamic Client-Server Model 102 
Dynamic Lookup 274 

E 
Economics 97 
Efficiency 50, 68, 69. 94, 120. 140, 167, 218, 

241, 259, 274, 289, 302, 321, 336, 
407 

Emergent Behavior 226 

Emulator 177 

Enabling Technique 397 
Encapsulation 143, 289, 305, 321, 399 
Error Handling 43. 63, 69 
ET++ 124, 141. 240, 287, 294 
Ethernet 44 
Event 4 1 

Handling 130, 139. 283. 289 
Loop 138 

Event Channel 341 
Event-driven System 55 
Exception Handling 205 
Exchangeability 259, 308. 336 

Expert System 73 

Extensibility 119. 190. 259. 302, 406 

External Interface 160 
External Server 173, 176, 185 

F 
Fault Tolerance 93, 120, 190, 246, 336, 408 
Filter 55, 62 

Recombination 62 
Synchronization 62, 69 

Firewall Proxy 27 1 

Flexibility 67. 68, 100. 126, 190, 284. 288, 
32 1 

Forwarder 309, 3 15 
Forwarding 232 
Four-layer Architecture 47 
Fragile Base Class Problem 46 
Framework 129. 139. 140, 142. 396. 420, 

435 
Fresco 240 
From Mud to Structure 26, 29. 364 
Frozen Spot 396 

Function Call Mechanism 195, 196 
Functional Core 132, 172 
Functional Property 389, 435 

G 
Gamma, Erich xii, 41 5 
Gang-of-Four xiii. 22 1, 379, 4 15 
Garbage Collection 205, 347 

Gatekeeper 34 1 
Gateway 114 
Generic Function 2 14 
Generic Function Invocation 2 14 
Generic++ 347 
GoF (see Gang-of-Four) 
Graph Theory 245 

Graphical User Interface 123, 172, 435 
Gray-box Approach 40 



Index 

GUI (see Graphical User Interface) 

H 
Handle 354. 357 
Hardwiring 435 
HEARSAY-I1 87. 89  
Helm, Richard xii, 359, 415 
Heuristics 84 
Hierarchical Component Structures 224 
Hillside Group 4 18. 423 
Horizontal Structuring 32 
Hot Spot 396 
HTML (see Hypertext Markup Language) 
Human-computer Interaction 132, 146, 157, 

158 
Hypertext Markup Language 102 
Hypothesis 75 

I 
IBM 0S/2  Warp 97, 173, 186 
Idiom xiv, 14, 345, 363, 420 
IDL (see Interface Definition Language) 
IDL Compiler 1 16 
Implementation 402 
Information Hiding 399 
Information Provider 323 
Infrastructure Systems 46 
Inheritance 436 
Inlining 436 
Inspector 206 
Inspiration 40 
Instance 436 
Instantiation 436 
lnteractive Systems 26. 123. 364 
lntercession 436 
Inter-component Communication 186 
Interface 402 
Interface Definition Language 10 1, 1 1 1 
Internal Server 173, 175, 185, 192 

Internet 45 
Interoperability 120. 407 
Interpreter 53 
Inter-process Communication 62, 100. 178, 

196. 205.308. 328. 337, 436 
Asynchronous 182, 317, 319 
Asynchronous Invocation 108 
Broadcast 1 15 
Connection Policy 337 
Direct 106. 1 14 
Dynamic Invocation 1 12, 1 15 
Indirect 106 
Off-board 1 17 
One-way 3 19 
Protocol 106 
Static Invocation 112 
Synchronous 182 
Synchronous lnvocation 108 
Two-way 3 19 

Interviews 287 
Intranet 100. 436 
Introspection 200. 215. 436 
IPC (see Inter-process Communication) 

J 
Jackson. Michael 392 
Java 43. 102. 234,420 
Java Virtual Machine 46 
Johnson, Ralph xii, 4 15 
JVM (see Java Virtual Machine) 

K 
Knowledge Source 75. 76. 82, 85  

Action-part 77. 85  
Application Strategy 77 
Condition-part 77, 8 5  

L 
LAN (see Local Area Network) 

Layer 34, 39, 48, 118, 183, 199 
Layer Cake 25 



Lazy Construction 270 

Library 420 

Life, the Universe and Everything 345 

Linda 258 

Load-on-demand 274 

Local Area Network 97 

Location Transparency 1 19, 305, 336 

Logging 278, 285. 288 
Lowest Common Ancestor 156 

Mach 170, 188 

Macro 278, 284, 288 

Mailbox 183 
Maintainability 92, 100, 405 

Management 222, 276, 365 

Marshaling 104, 232, 308 

Martin, Robert 4 16 

Master 246, 247, 250, 252 

Mechanism 174, 182, 190 
Memory Management 346, 354 

Mental Building-block 2 1 

Message 436 
Backbone 188 
Buffer 1 1 5, 1 83 
Call 101 
Header 33 1 
Passing 182 
Port 187 
Protocol 3 13 
Queue 308, 317, 330 
Reception 3 17 

Message Sending 3 15 
Message Sequence Chart 43 1 

Message Transfer 3 1 1 

Meta Level 195, 196, 199 
Metaobject 1 15, 195, 196, 206 

Methods 23,424 
Booch 23, 372,392 
Coad/Yourdon 372,392 
Object Modeling Technique 23, 372. 392 
Shlaer/Mellor 372, 392 

Microkernel 173, 174, 183 

Microsoft 
MFC (see Microsoft Foundation Class Li- 

brary) 
Microsoft Foundation Class Library 124, 

141 
Object Linking and Embedding 98, 1 1 1, 

119. 170. 217, 273 
OLE (see Object Linking and Embedding) 
Win16 186 
Win32 186 
Windows3.11 171. 186 
Windows 95 125, 186 
Windows NT 47,97, 170, 186, 189 
Word 302 

Migration Transparency 336 

Mill, John Stuart 4 13 

Mixed-mode Proxy 272 

Mix-In 437 

Model 126, 127, 132 

Modularization 400 

Module 437 

Monitoring 307 

Mostly Harmless 29 1 

MSC (see Message Sequence Chart) 

Multiple Inheritance 437 
Multiprocessing System 97 

Multi- tasking 162, 166 

Multi-threading 330 

Multi-user System 162 

Mutual Exclusion 270 

Metaobiect Protocol 1 15. 195. 198. 208 Name 

Method 437 
Method Tables 1 1 1 

Mapping 308.3 13,320 
Repository 330 
Service 104, 115 



Index 

Space 313 
Named Pipe 66, 332 
Network Failure 324 
Network Management 307 
Networking Protocol 3 1 
NeXTSTEP 171. 188, 273 
NlHCL 347 
Non-blocking 1/0 3 17 
Non-functional Property 389. 404, 437 
Notification 36 
NP-complete 245 

0 
Object 437 

Composition 225 
Creation 205, 2 1 1, 347 
1/0  215 
Model 101. 111,205 

Object Management Croup 97. 118 
Object Message Sequencing Chart 43 1 
Object Modeling Technique 429 
Object Technology 23. 101 
Observer 339 
Off-board Communication 437 
OMG (see Object Management Croup) 
OMSC (see Object Message Sequencing Chart) 
OMT (see Object Modeling Technique) 
One-way Coupling 41 
On-the-wire Protocol 114. 438 
OpenStep 186 
Operating System 97. 169, 172 
Opportunistic Problem Solving 74 
Orbix 273 
Organization of Work 222. 243. 364 
Organizational Patterns 42 1 
Original 264 
OS17-Layer Model 3 1 

P 
PAC Agent 145. 146, 148. 158 
PAC Hierarchy 146, 155 
Page Swapping 205 
Parallel Computing 246. 255 
Parallel Processing 68, 69 
Parnas, David 405 
Part 227.23 1 ,233 
Passive Filter 55, 57, 62 
Passive Server 185 
Pattern xi, 1, 2, 3, 5, 8, 21, 411, 426 

Catalog 23 
Category 1 1,363, 368, 379 
Classification 362, 423 
Classification Schema 365,379 
Combination 17 
Context 8 
Description 19 
Evolution 374 
Forces 9 
Form 19 
Formalization 427 
Implementation 23. 370 
Language 360.422 
Mining 352, 376. 420 
Problem 8. 9 
Properties 5 
Refinement 16 
Relationships 16 
Selection 368 
Solution 8, 10 
System xiii, 22, 359, 360 
Variation 16 

Pattern Home Page xiv, 41 7 
Pattern Languages of Programming 4 16 
Pattern Mailing Lists 41 7 
Peer' 308, 319 

Peer-to-peer 438 
Peer-to-peer Communication 44, 307 
Performance 97, 191 
Persistence 193, 195, 200, 204 
Personality 176 
Pipe 55, 56, 61 



Platform 438 
PLOP (see Pattern Languages of Programming) 
Plug'n Play 170 
Policy 174, 182, 190. 401 
Polling 339 
Polymorphism 354, 438 
Portability 120, 189, 260, 406 
Portland Pattern Repository 423 
Pree. Wolfgang 4 16 
Presentation 147, 158 
Problem Category 364, 369, 379 
Problem-Solution Pair 2, 3 
Processing Pipeline 55, 64 
Producer-Consumer 342 
Production System 86 
Programming Style 345, 346 
Protection Proxy 269 
Protocol Stack 37 
Proxy 264. 265 
Proxy Server 27 1 
pSather 247 
Publisher 339 
Pull Model 40, 55, 61, 340 
Push Model 40, 55, 61,340 

R 
Rapid Prototyping 68 
Real-time Constraint 204 
REBOOT 321 
Receiver 310. 317 
Redo 278, 286 
Reenskaug, Trygve 403 
Reference Counter 355 
Reference Counting 270, 354, 357 
Regression Testing 288 
Relationship 386, 438 

Reliability 97. 190, 408 
Remote Access 305 
Remote Procedure Call 178, 182. 205. 305. 

308.335 
Remote Proxy 268 
Remoting of Interfaces 11 1 
Replay 288 
Repository 86, 3 15 
Request 36, 309 

Dispatching 185 
Retrieval 182 
Transmission 182 

Requirement Specification 29 
Resource 

Allocation 205 
Handling 174, 365 
Management 184 
Sharing 305 
Utilization 305 

Response 309 
Responsibility 438 
Restructuring 406 
Reuse 48,68,93, 120, 136, 241, 409 
Robustness 93, 2 10, 218, 408 
Role 438 
Rollback 288 
Routing 103 

Table 307 
RPC (see Remote Procedure Call) 
RlTI (see Run-time Type Information) 
Run-time Data Dictionary 2 16 
Run-time Type Information 115. 193, 195, 

200, 205. 206, 215 

s 
S.E.P. 345, 438 
Sather 43 
Scaleability 97, 100, 190 
Scheduling 277,278, 288 
Schmidt, Douglas C. xv, 4 1 5 
Scripting Language 287 



Index 

SDL 287, 431 
Semaphor 270 
Separation of Concerns 165. 24 1, 259. 400 
Separation of Interface and Implementation 

402 
Separation of Policy and Implementation 40 1 
Server 101. 319, 324. 327. 331, 439 

Failure 324 
Registration 103. 324, 331 
Registry 326 

Server-side Proxy 105, 1 13 
Service 

Extension 379 
Handler 337 
Request 175, 183 
Variation 379 

Shared Library 180, 186 
Shared Memory 182.205. 328. 330 
Shell 63. 64 
SIMD (see Single Instruction Multiple Data) 
Single Inheritance 439 
Single Instruction Multiple Data 255 

Single Point of Reference 403 

Slave 246, 247. 250. 251 
Smalltalk 124, 126, 129. 140, 141, 213, 347, 

351. 420 
So Long. and Thanks for All the Fish 383 

Socket 45,308, 315, 328, 330, 332 
Descriptor 330 
Port 330 

Software Aging 405 
Software Architecture 2 1, 27, 384, 420 
Software Design 390 

Software Process 393 

Solution Space 74. 8 1 
SOM (see System Object Model) 
Speech Recognition 7 1 

SQL 189 
Standardization 48 
Star Trek 419 
Static Library 186 

Step-wise Refinement 38 
Structural Decomposition 222, 223. 364 
Structured Programming 39 1 
Style Guide 349 
Subject 339 
Subscribers 339 
Subsystem 175. 439 

Sufficiency, Completeness and Primitiveness 
40 1 

Superclass 439 
Supplier 278. 279, 292, 294 
Synchronization 14 1. 289 
Synchronization Proxy 270 
System 439 

Evolution 194 
Family 439 

System Call 175. 184 
System Object. Model 11 1, 1 19 
System Resource 173 
System-specific Dependencies 174 
System-unique Identifier 1 13 

T 
TCP/IP (see Transfer Control Protocol / 

Internet Protocol) 
Tee and Join 66 
Telecommunication 42 1 

Testability 288, 408 
Testing 94, 121 
The Hitchhiker's Guide to the Galaxy 1 

Thread 62. 183, 248. 257. 330 
Three-layer Architecture 47, 192 

TLI (see Transport Layer Interface) 
Tool 424 
Top-down Approach 23 1 
Trader 117 
Transaction 

Control 288 
~ O ~ O C O ~  204 

Transfer Control Protocol / Internet Protocol 



32, 44, 305, 314 Wrapping 143 
Transparency 190 Writer's Workshop 375, 41 7 
Transport Layer Interface 45, 305 WWW (see World Wide Web) 

Traveling-salesman Problem 245, 247, 250, 
253 X 

Triple Modular Redundancy 243 
Two-layer Architecture 47, i9 1 

X Window System 46 

Y 
u Yo-yo Approach 38 
UDP (see User Datagram Protocol) 
Uncertain Knowledge 72 
Undo 277,281, 284,285 
Unicode 313, 439 
UNIX 46, 63, 67, 97, 171, 186, 189, 305 

Filter 6 1, 62, 66 
Pipe 57, 60, 69 

Unmarshaling 308 
User Datagram Protocol 45 
User Interface 126, 146, 169, 199 

Vertical Structuring 32 
View 127, 128. 134, 291, 292, 294, 297, 387 
View Coordination 299 
View Handler 292, 293, 298 
View Management 293 
Virtual Machine 53, 192 
Virtual Protocol 44 
Virtual Proxy 270 
Vlissides, John xii, 4 15 

WAN (see Wide Area Network) 
White-box Approach 40 
Whole 227, 231, 233 
Wide Area Network 99 
Workpool Model 258 
World Wide Web 99, 102, 119, 273, 425 
Wrapper 357 




	Pattern-Oriented Software Architecture (Vol.1)
	Other Titles in the Series
	Copyright
	Contents
	About the Book
	Guide to the Reader
	Ch1 Patterns
	1.1 What is a Pattern?
	1.2 What Makes a Pattern?
	1.3 Pattern Categories
	1.4 Relationships between Patterns
	1.5 Pattern Description
	1.6 Patterns & Software Architecture
	1.7 Summary

	Ch2 Architectural Patterns
	2.1 Introduction
	2.2 From Mud to Structure
	Layers
	Pipes & Filters
	Blackboard

	2.3 Distributed Systems
	Broker

	2.4 Interactive Systems
	Model-View-Controller
	Presentation-Abstraction-Control

	2.5 Adaptable Systems
	Microkernel
	Reflection


	Ch3 Design Patterns
	3.1 Introduction
	3.2 Structural Decomposition
	Whole-Part

	3.3 Organization of Work
	Master-Slave

	3.4 Access Control
	Proxy

	3.5 Management
	Command Processor
	View Handler

	3.6 Communication
	Forwarder-Receiver
	Client-Dispatcher-Server
	Publisher-Subscriber


	Ch4 Idioms
	4.1 Introduction
	4.2 What Can Idioms Provide?
	4.3 Idioms & Style
	4.4 Where Can You Find Idioms?
	Counted Pointer


	Ch5 Pattern Systems
	5.1 What is a Pattern System?
	5.2 Pattern Classification
	5.3 Pattern Selection
	5.4 Pattern Systems as Implementation Guidelines
	5.5 Evolution of Pattern Systems
	5.6 Summary

	Ch6 Patterns & Software Architecture
	6.1 Introduction
	6.2 Patterns in Software Architecture
	6.3 Enabling Techniques for Software Architecture
	6.4 Non-Functional Properties of Software Architecture
	6.5 Summary

	Ch7 Pattern Community
	7.1 The Roots
	7.2 Leading Figures & their Work
	7.3 The Community

	Ch8 Where will Patterns Go?
	8.1 Pattern-Mining
	8.2 Pattern Organization & Indexing
	8.3 Methods & Tools
	8.4 Algorithms, Data Structures & Patterns
	8.5 Formalizing Patterns
	8.6 Final Remark

	Notations
	Glossary
	References
	Index of Patterns
	Index
	Backcover




