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Preface

The purpose of this textbook is to introduce the student to a basic area of macro-

scopic physics, namely the statistical mechanical study of the different phases of

matter, as well as the phase transitions between them. Although many books on

statistical physics, for both equilibrium and non-equilibrium systems, are already

available, they largely differ in contents. This generally reflects not only the differ-

ent interests of their authors, but also the epoch in which they were written. For

instance, the early books did usually devote much space to problems of the solid

state, whereas later ones do include, moreover, several aspects of the liquid state. At

present, however, the main emphasis in physics is on soft matter (e.g. liquid crys-

tals, colloids, polymers), and therefore these particular states of matter have also

been included in this volume. The main purpose of this textbook will consist, hence,

in providing its students with a first introduction, within the general framework of

equilibrium statistical physics, to a much larger variety of phases and phase transi-

tions than was previously the case for textbooks of statistical mechanics. Many of

these novel topics do, of course, deserve a more detailed study than the one which

can be provided here. Indeed, in the spirit of a first introduction, only very simple

models of these phases will be given, but more detailed information can be found in

the suggestions for further reading given in the References.

For pedagogical reasons, the subject matter of this book has been divided into

four parts (Parts I–IV), and a series of appendices (Appendices A–D), devoted to

some mathematical tools used in the main text.

In Part I (Chaps. 1–3), a summary is provided of the mechanical (Chap. 1) and

thermodynamical (Chap. 2) basis of the postulates of equilibrium statistical physics

(Chap. 3). Although most students of equilibrium statistical mechanics will in gen-

eral have a prior knowledge of, classical and quantum, mechanics and of equilibrium

thermodynamics, by including a summary of these topics the present book becomes

more self-contained. A fact generally well appreciated by the students.

In Part II (Chaps. 4–6), the general principles of equilibrium statistical physics

are illustrated for the simple case of the non-interacting or ideal systems. The three

main Gibbs ensembles, microcanonical (Chap. 4), canonical (Chap. 5) and grand

canonical (Chap. 6), are studied, together with some of their standard applications.

vii



viii Preface

These topics, although simple in principle, do nevertheless draw the students’ atten-

tion to some of the subtleties of statistical physics.

In Part III (Chaps. 7–9), these general principles are applied to the less simple

interacting or non-ideal systems. This, of course, can only be done approximately

and the most current approximation methods for the study of classical interacting

systems are summarized (Chap. 7). Based on these methods, some simple models

for most of the current phases of matter are introduced (Chap. 8), and the phase tran-

sitions between some of these phases are subsequently studied (Chap. 9). Although

the simple models of these phases considered here are only caricatures of the real

systems, their study will prepare the students for the more realistic, but also more

difficult, studies found in the current literature.

Finally, Part IV (Chaps. 10–13) is devoted to an introduction to some more ad-

vanced material. This includes an introduction to critical phenomena and the renor-

malization group calculation of critical exponents (Chap. 10), the study of interfaces

and the calculation of the surface tension (Chap. 11), the study of topological defects

(in nematic liquid crystals) and the resulting texture (Chap. 12), and the classical the-

ories of the phase transformation kinetics (Chap. 13). It is hoped that exposing the

students to an elementary treatment of these more advanced topics will encourage

them to also study these topics in more detail.

The present textbook is aimed at students of condensed matter physics, physical

chemistry or materials science, but throughout the level of rigor is one which will

be most familiar to students of theoretical physics. Likewise, the references quoted

at the end of each chapter mainly focus on books where supplementary material can

be found with a similar degree of rigor, i.e. those texts most useful to the readers of

the present one.

This volume is an enlarged version of a previous text, originally written in Span-

ish (C. F. Tejero y M. Baus, Fı́sica estadı́stica del equilibrio. Fases de la materia,

A.D.I., Madrid (2000), ISBN 84-931805-0-5).We are indebted to M. López de Haro

for its translation into English and also for helpful and interesting suggestions. We

also thank T. de Vos for his help with the figures. This final version owns much to

the many discussions with our students at the Faculté des Sciences (Université Libre

de Bruxelles) and at the Facultad de Ciencias Fı́sicas (Universidad Complutense de

Madrid) and with our colleagues, M. Fisher, R. Lovett, J. P. Ryckaert and J. M. Ortiz

de Zárate, all of which are gratefully acknowledged. Finally, we would also like to

thank our wifes, Myriam and Isabel, for their support.

Brussels and Madrid, M. Baus

June 2007 C. F. Tejero
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Chapter 1

Mechanics

Abstract In this first chapter, some of the basic concepts of Hamiltonian mechan-

ics (both classical and quantum mechanical), which are required for the study of

statistical physics, are summarized. For a more detailed analysis of these topics the

reader is referred to the books included in the References.

1.1 Classical Mechanics

In classical mechanics, the location of a particle or material point in Euclidean space

is determined by its position vector r, whose components are the Cartesian coordi-

nates x,y,z, where r = xex + yey + zez. Here, ex,ey, and ez are unit vectors in the

direction of the Cartesian axes. The above-mentioned three variables define uni-

vocally the position of the particle and, therefore, it is said that the material point

has three degrees of freedom. Note that the position of the material point may, for

instance, be likewise determined by using its spherical or cylindrical coordinates.

Hence, the notation q1,q2,q3 will be used generically for any set of three indepen-

dent variables defining univocally the position of the particle. Such variables are

referred to as generalized coordinates of the material point. In the case of a sys-

tem of N material points, the number of degrees of freedom is, therefore, 3N and

the position of the particles is completely specified by 3N generalized coordinates

q1, . . . ,q3N that are functions of time qi ≡ qi(t) (i = 1, . . . ,3N).

Even if the generalized coordinates of a system of N material points are known

at a certain instant of time, it is not possible to predict its temporal evolution since

the generalized velocities, q̇i ≡ q̇i(t) = dqi(t)/dt, may still be arbitrary. The fun-

damental principle of classical dynamics states that if the values of the coordinates

(q ≡ q1, . . . ,q3N) and of the generalized velocities (q̇ ≡ q̇1, . . . , q̇3N) are known si-

multaneously at a given time, then one can determine the value of these variables at

any other time.

Let LN(q, q̇) denote the Lagrange function or Lagrangian of the system which,

in what follows, will be assumed not to depend explicitly on time (conservative

system). This function can be written as

3



4 1 Mechanics

LN(q, q̇) = H id
N (q, q̇)−UN(q) , (1.1)

where the first term in the r.h.s., H id
N (q, q̇), is the kinetic energy of the system and

the second one, UN(q), is the potential energy. In Cartesian coordinates, the kinetic

energy of a system of N particles of mass m is given by

H id
N (vN) =

N

∑
j=1

1

2
mv2

j , (1.2)

where v j ≡ v j(t) = dr j/dt is the velocity of particle j, whose position vector is

r j ≡ r j(t), and vN ≡ v1, . . . ,vN . Note that although in this coordinate system the

kinetic energy is only a function of the generalized velocities, when (1.2) is ex-

pressed, for instance, in cylindrical coordinates then it becomes a function of both

the coordinates and the generalized velocities.

In what follows the potential energy will be written as

UN(rN) = H int
N (rN)+ Hext

N (rN) , (1.3)

with

H int
N (rN) =

1

2

N

∑
i=1

N

∑
i�= j=1

V (|ri − r j|) , (1.4)

and

Hext
N (rN) =

N

∑
j=1

φ(r j) , (1.5)

where V (|ri − r j|) is the pair potential interaction between particles i and j, which

has been assumed to be a function of the modulus of the relative distance between

them, |ri − r j|, and φ (r j) is the potential due to an external field acting on particle

j, while rN ≡ r1, . . . ,rN .

1.2 Hamilton’s Equations

Even though the laws of classical mechanics may be formulated in terms of the

generalized coordinates and velocities of the particles (Lagrangian dynamics), in

this chapter only the Hamiltonian dynamics will be considered. In this case, the

description of the mechanical state of the system is performed using the generalized

coordinates (q≡ q1, . . . ,q3N) and their conjugate momenta (p ≡ p1, . . . , p3N), where

pi ≡ pi(t) =
∂LN(q, q̇)

∂ q̇i

. (1.6)

The time evolution of these variables is given by the system of 6N first-order differ-

ential equations or Hamilton’s equations, namely
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q̇i =
∂HN(q, p)

∂ pi

, ṗi = −∂HN(q, p)

∂qi

, (i = 1, . . . ,3N) , (1.7)

where HN(q, p) is the Hamilton function or Hamiltonian of the system, defined by

the equation

HN(q, p) =
3N

∑
i=1

piq̇i −LN(q, q̇) , (1.8)

which is a particular case of a Legendre transformation (see Appendix A).

From (1.1), (1.2) and (1.6) it follows that p j = mv j and hence

HN(rN ,pN) =
N

∑
j=1

1

2m
p2

j +UN(rN) , (1.9)

which is the Hamiltonian of a system of N particles of mass m in Cartesian coordi-

nates, with pN ≡ p1, . . . ,pN .

Since in Hamilton’s dynamics the mechanical state of a system of N particles

is determined at each time by 3N generalized coordinates and their 3N conjugate

momenta, one may represent such a state by a point in the 6N-dimensional space

generated by q1, . . . ,q3N , p1, . . . , p3N . This space is known as the phase space or

Γ -space of the system. According to (1.7), the mechanical state follows in time

a trajectory in Γ -space (phase space trajectory), and one and only one trajectory

passes through a point of this space.

The formal solution to Hamilton’s equations can be written as

qt
i = qi(q

0, p0; t), pt
i = pi(q

0, p0;t), (i = 1, . . . ,3N) , (1.10)

where qt
i and pt

i are the generalized coordinates and their conjugate momenta at time

t, which are functions of the initial mechanical state q0, p0 = q0
1, . . .,q

0
3N , p0

1, . . ., p0
3N

and of time.

1.3 External Parameters

In all of the above it has been assumed that the Hamiltonian of a system of N mate-

rial points is a function of the generalized coordinates and their conjugate momenta.

Throughout the text, systems are studied in which the Hamiltonian is also a func-

tion of certain parameters, referred to as external parameters because they depend

on the position of bodies not belonging to the system. A first example is the case of

a particle of mass m and charge e placed in a constant and uniform magnetic field

B. If A(r) denotes the vector potential

A(r) =
1

2
B× r , (1.11)
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and c is the speed of light in vacuum, the Hamiltonian of the particle will be

H1(r,p;B) =
1

2m

(
p− e

c
A(r)

)2

, (1.12)

which is a function of the external parameter B. Upon development of the square in

(1.12) one finds

1

2m

(
p− e

c
A(r)

)2

=
1

2m
p2 − e

2mc
l ·B+

e2

2mc2
A2(r) , (1.13)

where

l = r×p (1.14)

is the angular momentum of the particle. The last two contributions in the r.h.s.

of (1.13) are called, respectively, paramagnetic and diamagnetic. In most cases the

diamagnetic term is much smaller than the paramagnetic one, so the Hamiltonian of

a particle of mass m and charge e placed in a constant and uniform magnetic field B

can be written in the form

H1(r,p;B) =
1

2m
p2 − µ ·B , (1.15)

where

µ =
e

2mc
l (1.16)

is the magnetic moment of the particle. Note that in an ideal system of N identical

particles placed in a constant and uniform magnetic field one has

HN(rN ,pN ;B) =
N

∑
j=1

H1(r j,p j;B) . (1.17)

Therefore,

∂HN(rN ,pN ;B)

∂B
= −

N

∑
j=1

µ j ≡−MN(rN ,pN) , (1.18)

where µ j is the magnetic moment of particle j and MN(rN ,pN) is the total magnetic

moment dynamical function. When the magnetic field is modified, the variation of

the Hamiltonian is thus given by

dHN(rN ,pN ;B) =
∂HN(rN ,pN ;B)

∂B
·dB = −MN(rN ,pN) ·dB , (1.19)

which is the mechanical work performed when modifying the external parameter B.

In the majority of the problems that are analyzed in physics, the particles are

placed in a container R of volume V , which is another example of an external

parameter. Even if within the container the interaction of a particle with the walls

may be negligible, this interaction becomes more important when the particle is

closer to the wall. In contrast with (1.12), the particle-container interaction is not
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known exactly in classical mechanics. A possible way to take into account this in-

teraction consists in writing the Hamiltonian of the system as

HN(rN ,pN ;V ) =
N

∑
j=1

1

2m
p2

j +UN(rN)+
N

∑
j=1

φ R(r j) , (1.20)

where φR(r j) is the potential that keeps the particle inside the container. Such a

potential vanishes when the particle is within the container and becomes (infinitely)

repulsive as the particle approaches the wall. In this way the Hamiltonian of the

system explicitly depends on the volume of the container. In analogy with (1.19),

the variation of the Hamiltonian when the volume changes is

dHN(rN ,pN ;V ) =
∂HN(rN ,pN ;V )

∂V
dV = −pN(rN ,pN ;V )dV , (1.21)

where

pN(rN ,pN ;V ) ≡−∂HN(rN ,pN ;V )

∂V
(1.22)

is the pressure dynamical function. The expression (1.21) is the mechanical work

performed upon changing the external parameter V .

In what follows, the Hamiltonian of a system of N particles that involves one or

several external parameters α will be indicated as HN(q, p;α).

1.4 Dynamical Functions

Let a(q, p) be a dynamical function, i.e. a function of the mechanical state of the

system. Its time evolution is induced by Hamilton’s equations (1.7), namely

ȧ(q, p) =
3N

∑
i=1

(
∂a(q, p)

∂qi

q̇i +
∂a(q, p)

∂ pi

ṗi

)

=
3N

∑
i=1

(
∂a(q, p)

∂qi

∂HN(q, p;α)

∂ pi

− ∂a(q, p)

∂ pi

∂HN(q, p;α)

∂qi

)

= {a,HN(α)} , (1.23)

where the Poisson bracket of two dynamical functions, a = a(q, p) and b = b(q, p),
has been defined as

{a,b} ≡
3N

∑
i=1

(
∂a(q, p)

∂qi

∂b(q, p)

∂ pi

− ∂a(q, p)

∂ pi

∂b(q, p)

∂qi

)
. (1.24)
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In particular, since the generalized coordinates and their conjugate momenta are

independent variables, from (1.24) it follows that

{qi,q j} = 0, {pi, p j} = 0, {qi, p j} = δ i j , (1.25)

where δ i j is Kronecker’s delta (δ i j = 1, if i = j, and δ i j = 0, if i �= j). Observe

that with the notation used for the Poisson bracket {a,b}, the generalized coordi-

nates and momenta do not appear explicitly. For this reason, when the Hamiltonian

HN(q, p;α) appears in a Poisson bracket, it will be written as HN(α), like in (1.23).

Every dynamical function C(q, p) conserved in the time evolution, i.e., Ċ(q, p) =
0, is denominated integral or constant of motion of the system. According to (1.23),

every integral of motion verifies the condition

{C,HN(α)} = 0 . (1.26)

An immediate consequence of (1.23) is the law of conservation of energy

ḢN(q, p;α) = 0. Note further that if C1(q, p) and C2(q, p) are two integrals of mo-

tion, one has

{HN(α),{C1,C2}} = 0 , (1.27)

i.e., {C1,C2} is also a constant of motion, as can be derived from Jacobi’s identity

{C1,{C2,C3}}+{C2,{C3,C1}}+{C3,{C1,C2}} = 0 (1.28)

valid for any three dynamical functions, if C3(q, p) = HN(q, p;α).
Once an integral of motion, for instance the energy, is known, the phase space

trajectory has to move on the “surface” of the Γ space, HN(q, p;α) = E , where E

is the value of this integral of motion (such a surface is a “volume” of 6N − 1 di-

mensions). If the system has another integral of motion, C(q, p), the trajectory in

phase space has to move also on the surface C(q, p) = C∗, where C∗ is the value of

this other integral of motion. It follows then that, if 6N −1 integrals of motion may

be found, the mechanical state of the system can be determined for every instant of

time. In this case one says that the system is integrable. It is well known that some

simple mechanical systems are integrable. Thus, all the mechanical systems having

only one degree of freedom are integrable in view of the principle of conservation

of energy. Systems with two or three degrees of freedom subjected to a central force

in the plane are also integrable. The integrability of dynamical systems is, however,

the exception rather than the rule. In general, in the absence of external forces, a me-

chanical system only has seven additive integrals of motion (these are the integrals

of motion whose value for a system formed by various subsystems is the sum of the

values for each subsystem): the Hamiltonian HN(rN ,pN ;α), the linear momentum

PN(pN), and the angular momentum LN(rN ,pN), where:

PN(pN) =
N

∑
j=1

p j, LN(rN ,pN) =
N

∑
j=1

r j ×p j . (1.29)
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These laws of conservation follow from the homogeneity of time and the isotropy

and homogeneity of space.

The time evolution equation (1.23) for the dynamical function a(q, p) may also

be written as

ȧ(q, p) = −LNa(q, p) , (1.30)

where LN is the linear differential operator:

LN ≡ {HN(α), } =
3N

∑
i=1

(
∂HN(q, p;α)

∂qi

∂

∂ pi

− ∂HN(q, p;α)

∂ pi

∂

∂qi

)
(1.31)

is called the Liouville operator of the system. The formal solution of (1.30) is

a(qt , pt) = a(q0, p0;t) = e−L
0
N ta(q0, p0;t = 0) , (1.32)

where qt , pt = qt
1, . . .,q

t
3N , pt

1, . . ., pt
3N and L0

N acts on the variables q0, p0.

1.5 Quantum Mechanics

Due to Heisenberg’s uncertainty principle, in quantum mechanics the position and

momentum of a material point may not be determined simultaneously with arbitrary

precision. If q1, . . . ,q3N and p1, . . . , p3N denote the Cartesian coordinates and their

conjugate momenta of a classical system of N material points, in quantum mechan-

ics these variables are replaced by operators q̂1, . . . , q̂3N and p̂1, . . . , p̂3N that satisfy

the commutation rules, which are the quantum mechanical equivalent to (1.25):

[q̂i, q̂ j] = 0, [p̂i, p̂ j] = 0, [q̂i, p̂ j] = ih̄δ i j Î , (1.33)

where Î is the identity operator and

[â, b̂] ≡ âb̂− b̂â (1.34)

is the commutator of the operators â and b̂. When [â, b̂] = 0 the operators are said

to commute. In the representation of coordinates, the prescription for the operators

q̂i and p̂i is obtained by associating to the Cartesian coordinate qi the operator q̂i,

multiplication by qi, and to its conjugate momentum pi the operator p̂i =−ih̄∂/∂qi,

where h is Planck’s constant and h̄ = h/2π.

Given a dynamical function a(q1, . . . ,q3N , p1, . . . , p3N), the associated operator,

â, is obtained after substitution of the variables qi and pi by their associated opera-

tors q̂i and p̂i, namely

â ≡ a

(
q1, . . . ,q3N ,−ih̄

∂

∂q1
, . . . ,−ih̄

∂

∂q3N

)
. (1.35)



10 1 Mechanics

For instance, the Hamiltonian operator corresponding to the Hamiltonian (1.20) is:

ĤN(V ) = − h̄2

2m

N

∑
j=1

∇2
j +UN(rN)+

N

∑
j=1

φR(r j) , (1.36)

where ∇ j = ∂/∂r j. In some cases, the correspondence (1.35) may not be well de-

fined and hence it is necessary to recur to a method of symmetrization of the operator

associated to the dynamical function (e.g., to the dynamical function qp one asso-

ciates the operator (q̂ p̂+ p̂q̂)/2, because the operators q̂ and p̂ do not commute).

Throughout the text, the Hamiltonian operator will be written in the form ĤN(α),
where α indicates one or several external parameters.

1.6 Self-adjoint Operators

The operators that represent observable magnitudes in quantum mechanics are self-

adjoint linear operators acting on the Hilbert space H of the system under con-

sideration. This space consists of the square-integrable wave functions Ψ(q) =
Ψ(q1, . . . ,q3N) in coordinate space, that is

∫
dq|Ψ(q)|2 < ∞ , (1.37)

where
∫

dq =
∫

dq1 . . .
∫

dq3N , |Ψ(q)|2 = Ψ(q)Ψ∗(q) and Ψ ∗(q) indicates the com-

plex conjugate of Ψ(q). According to Born’s probabilistic interpretation, the wave

function completely defines the dynamical state of the system so that |Ψ(q)|2 is the

probability density to find the system in the state q = (q1, . . . ,q3N) in coordinate

space, i.e.,
∫

dq|Ψ(q)|2 = 1 (see Appendix B).

The Hilbert space has the properties of a vector space. Thus, if |Ψ1〉 =Ψ1(q) and

|Ψ2〉 = Ψ2(q) are two elements of H, all the linear combinations λ 1|Ψ1〉+ λ 2|Ψ2〉,
where λ 1 are λ 2 are arbitrary complex numbers, also belong to H. On the other

hand, one may define a scalar product as

〈Ψ1|Ψ2〉 =

∫
dqΨ∗

1 (q)Ψ2(q) , (1.38)

which is linear in the vector on the right and antilinear in the one on the left, i.e.,

〈Ψ3|λ 1Ψ1 + λ 2Ψ2〉 = 〈Ψ3|λ 1Ψ1〉+ 〈Ψ3|λ 2Ψ2〉, 〈Ψ1|Ψ2〉 = 〈Ψ2|Ψ1〉∗. If 〈Ψ1|Ψ2〉 = 0

the two functions are said to be orthogonal.

Given an operator â, the adjoint operator â†, whenever it exists, is defined by

〈Ψ1|âΨ2〉 = 〈â†Ψ1|Ψ2〉 . (1.39)

And if â = â†, it is said that â is a self-adjoint operator.

When the system is in a state |Ψ〉 the expectation value of an operator â in such

a state is
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〈â〉 =
〈Ψ |âΨ〉
〈Ψ |Ψ〉 , (1.40)

so that, if â is self-adjoint, one has 〈Ψ |âΨ〉 = 〈â†Ψ |Ψ 〉 = 〈âΨ |Ψ〉 = 〈Ψ |âΨ〉∗ and

〈â〉 is real.

1.7 Eigenvalue Equation

The expectation value (1.40) is interpreted in quantum mechanics as the result of

the measurement of the observable magnitude corresponding to the operator â when

the system is prepared in the state |Ψ 〉. An important case is that of a self-adjoint

operator, â, whose dispersion 〈â2〉−〈â〉2 = 0, i.e., the case of an operator for which

one can state with certainty that the result of the measurement in a state |Ψ〉 takes a

prescribed value (see Appendix B). This condition is written as

〈Ψ |â2Ψ〉
〈Ψ |Ψ〉 −

(〈Ψ |âΨ〉
〈Ψ |Ψ 〉

)2

= 0 , (1.41)

and since 〈Ψ |â2Ψ〉 = 〈âΨ |âΨ〉, because â is self-adjoint, it follows that

〈âΨ |âΨ〉〈Ψ |Ψ〉 = 〈Ψ |âΨ〉2 . (1.42)

Note that (1.42) is a case in which Schwarz’s inequality becomes an equality, thus

implying that |âΨ〉 and |Ψ〉 are proportional, i.e.,

â|Ψ〉 ≡ |âΨ 〉 = a|Ψ〉 , (1.43)

which is known as the eigenvalue equation for the operator â. Every real number a in

(1.43) is called an eigenvalue of â and the non-zero solutions |Ψ〉 of this equation are

called eigenvectors of the operator. Throughout the text examples will be analyzed

in which the spectrum of the operator â is discrete, i.e., its eigenvalues form a finite

(or infinite) numerable set so that the eigenvalue equation may be cast in the form

â|an〉 = an|an〉 . (1.44)

Note that if |an〉 is an eigenvector of the operator â, the same is true for the vector

λ |an〉, where λ is an arbitrary complex number. Therefore, on account of (1.38),

it is always possible to choose λ in such a manner that the eigenvectors will be

normalized, namely

〈an|an〉 = 1 , (1.45)

and hence they are defined up to an arbitrary constant phase. It should be noted

that two eigenvectors of the eigenvalue equation yielding different eigenvalues are

orthogonal. To see this, consider two solutions to (1.44):
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â|a1〉 = a1|a1〉, â|a2〉 = a2|a2〉 . (1.46)

If one takes the complex conjugate of the first equation and multiplies the result by

|a2〉, this yields

〈â†a1|a2〉 = 〈a1|a1|a2〉 , (1.47)

while, if the second equation is multiplied by 〈a1|, the outcome is

〈a1|âa2〉 = 〈a1|a2|a2〉 . (1.48)

From the subtraction of (1.47) and (1.48) it follows that:

0 = 〈â†a1|a2〉− 〈a1|âa2〉 = (a1 −a2)〈a1|a2〉 . (1.49)

Therefore, if a1 �= a2, then necessarily 〈a1|a2〉 = 0.

If there is a set of eigenvectors of â with the same eigenvalue, one refers to

the latter as a degenerate eigenvalue. Although the eigenvectors corresponding to

a degenerate eigenvalue are not necessarily orthogonal, it is always possible to

look for linear combinations of them such that any two of the resulting vectors

are orthogonal (Schmidt’s orthogonalization), namely 〈ai|a j〉 = δ i j, where δ i j is

Kronecker’s delta. For instance, let a1 be a three times degenerate eigenvalue of

(1.44) and |a1〉, |a′1〉, and |a′′1〉 three non-orthogonal eigenvectors corresponding to

this eigenvalue. Assume that the first vector has been normalized, i.e., 〈a1|a1〉 = 1.

If the eigenvector |a2〉 is defined by the expression c2|a2〉 = |a′1〉 − |a1〉〈a1|a′1〉,
where c2 is a constant, and one multiplies this equation by 〈a1| the result is

c2〈a1|a2〉 = 〈a1|a′1〉− 〈a1|a1〉〈a1|a′1〉 = 0, i.e., |a1〉 and |a2〉 are orthogonal. There-

fore, it is only necessary to adjust c2 in order to normalize |a2〉. Similarly, the eigen-

vector c3|a3〉 is defined as c3|a3〉 = |a′′1〉− |a1〉〈a1|a′′1〉− |a2〉〈a2|a′′1〉, which is or-

thogonal to |a1〉 and |a2〉, and may again be normalized with the right choice for the

constant c3. Thus, |a1〉, |a2〉, and |a3〉 are orthonormal. Note that, by construction,

this process of orthogonalization is not unique.

Given an orthonormal set of eigenvectors |an〉 of a self-adjoint operator â, the

operator forms a complete set if any vector |Ψ 〉 of H may be expanded in a unique

way as

|Ψ〉 = ∑
n

〈an|Ψ〉|an〉 . (1.50)

One then says that the eigenvectors |an〉 constitute a basis for H. Given the afore-

mentioned point that any eigenvector is defined up to an arbitrary phase, by conven-

tion two bases will be considered identical when their eigenvectors only differ in

their phases.

Note that when there is a degenerate eigenvalue, the set of eigenvectors of the

operator â is not unique, and so the same applies to the expansion (1.50). Let b̂ be

another self-adjoint operator that commutes with â, i.e., [â, b̂] = 0. Then â and b̂

possess a set of common eigenvectors represented by |an,bm〉. As a matter of fact,

if |an,bm〉 is an eigenvector of â with eigenvalue an, from (1.34) and (1.44) one has
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âb̂|an,bm〉 = b̂â|an,bm〉 = b̂an|an,bm〉 = anb̂|an,bm〉 , (1.51)

and from the last equality it follows that b̂|an,bm〉 is an eigenvector of â, i.e.,

b̂|an,bm〉 = bm|an,bm〉. If this system is unique, namely if the pair of numbers

(an,bm) is not degenerate, one says that â and b̂ form a complete set of observ-

ables that commute. In such a case, any state |Ψ〉 of H has a unique expansion of

the form of (1.50) in the basis |an,bm〉. For any other case, one may look for a third

self-adjoint operator ĉ that commutes with â and b̂, etc. In this fashion, if â, b̂, ĉ, . . .
constitute a complete set of observables that commute, the state of the system is

completely determined. In quantum mechanics this is the process of preparation of

the system, which consists in performing upon it simultaneous measurements of a

complete set of commuting observables.

To close this section, some simple concepts about operators which will be needed

in Chap. 3 are now introduced. Let |an〉 be an orthonormal basis of H. The spectral

resolution of the identity operator Î is

Î = ∑
n

|an〉〈an| . (1.52)

The trace of an operator b̂ is defined as:

Tr b̂ = ∑
n

〈an|b̂|an〉 , (1.53)

which is independent of the choice of the basis and hence an intrinsic characteristic

of the operator.

An operator b̂ is bounded if for every state |Ψ〉 one has

〈Ψ |b̂|Ψ〉 ≤ λ 〈Ψ |Ψ〉 , (1.54)

where λ is a positive constant independent of |Ψ〉.
An operator b̂ is positive (indicated by b̂ ≥ 0), when it is bounded and for all |Ψ〉

one has:

〈Ψ |b̂|Ψ〉 ≥ 0 . (1.55)

1.8 Schrödinger’s Equation

Once the system has been prepared, the state evolves in time according to

Schrödinger’s equation:

ih̄
∂ |Ψ (t)〉

∂ t
= ĤN(α)|Ψ (t)〉 , (1.56)

where |Ψ(t)〉 is the wave function at time t and ĤN(α) is the Hamiltonian operator,

which is a function of one or several external parameters represented by the label α .

If |Ψn〉 = |Ψn(t = 0)〉 is an eigenvector of ĤN(α) with eigenvalue E
(N)
n (α), i.e.,
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ĤN(α)|Ψn〉 = E
(N)
n (α)|Ψn〉 , (1.57)

one says that the state |Ψn〉 is stationary and from Schrödinger’s equation it follows

that

|Ψn(t)〉 = e−iE
(N)
n (α)t/h̄|Ψn〉 . (1.58)

Thus, in the time evolution the state only changes its phase and it remains an eigen-

vector of ĤN(α) with eigenvalue E
(N)
n (α) at any instant of time.

In the next few lines, the eigenvalues of some stationary states of simple Hamil-

tonians that appear often in the text are considered.

1.8.1 Free Particle

The Hamiltonian of a free particle of mass m in a cubic box R of side L and volume

V = L3 is

H1(r,p;V ) =
1

2m
p2 + φR(r) , (1.59)

where p = pxex + pyey + pzez is the particle’s momentum and φR(r) the potential

that keeps the particle inside the box. The associated operator Ĥ1(V ) is according to

(1.35):

Ĥ1(V ) = − h̄2

2m

(
∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2

)
+ φR(r) , (1.60)

and the stationary states of this operator are

− h̄2

2m

(
∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2

)
|Ψnx,ny,nz〉 = εnx,ny,nz(V )|Ψnx,ny,nz〉 . (1.61)

Note that although in (1.61) the potential φ R(r) does not appear explicitly, in order

to locate the particle inside the box the condition is imposed that the eigenvectors

vanish at the extremes of the box. In such a case the eigenvalues of Ĥ1(V ) are quan-

tized as given below:

εnx,ny,nz(V ) =
π2h̄2

2mV 2/3

(
n2

x + n2
y + n2

z

)
, (nx,ny,nz = 1,2, . . . ) . (1.62)

The ground state or lowest energy level is non-degenerate and corresponds to the

quantum state nx = ny = nz = 1. Since all the other energy levels are degenerate,

the Hamiltonian operator of a free particle does not constitute a complete set of

observables.

Another form of quantization, that will be used throughout the text, consists in

dividing the Euclidean space in cubic boxes of side L and volume V = L3 and to

impose the condition that the eigenvectors be periodic with period L in the three
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directions of space. In such a case, the eigenvalues of Ĥ1(V ) are quantized as

follows:

εnx,ny,nz(V ) =
2π2h̄2

mV 2/3

(
n2

x + n2
y + n2

z

)
, (nx,ny,nz = 0,±1, . . .) , (1.63)

and hence the energy of the ground state (nx = ny = nz = 0) is zero.

The eigenvalues (1.62) and (1.63) are obtained by looking for plane wave solu-

tions to (1.61) and requiring that the wave function either vanishes at the extremes

of the box or be periodic with period L in the three directions of space. In the latter

case, if k is the wave vector with Cartesian components kx,ky, and kz, the condition

of periodicity is expressed as

ei [kxx+kyy+kzz] = ei [kx(x+L)+ky(y+L)+kz(z+L)],

i.e.,

kxL = 2πnx, kyL = 2πny, kzL = 2πnz,

where nx,ny,nz = 0,±1, . . . Upon substitution of these results in the expression of

the energy,

εnx,ny,nz(V ) =
h̄2

2m

(
k2

x + k2
y + k2

z

)
, (1.64)

one arrives at (1.63).

It should be noted that when the quantum numbers nx,ny,nz change by one unit,

the components of the wave vector change by |Δkx|= |Δky|= |Δkz|= 2π/L, so that

in the limit L → ∞ these variables may be considered as continuous. The number of

quantum states of a free particle whose wave vector lies between k and k+ dk is

ρ(kx,ky,kz)dkxdkydkz =
dkx

|Δkx|
dky

|Δky|
dkz

|Δkz|
=

V

8π3
dkxdkydkz , (1.65)

i.e., the density of quantum states in k-space is a constant whose value is V/8π3.

Therefore, the number of quantum states of a particle whose wave number k = |k|
is between k and k + dk is

ρ(k)dk =
V

8π3
4πk2dk =

V

2π2
k2dk , (1.66)

and for each of them there is an energy state ε = h̄2k2/2m , hence the number of

quantum states of a particle whose energy lies between ε and ε + dε is

ρ(ε)dε = 2πV

(
2m

h2

)3/2√
ε dε , (1.67)

a result that will be used in the study of ideal quantum gases carried out in Chap. 6.
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1.8.2 Harmonic Oscillator

The Hamiltonian of a one-dimensional harmonic oscillator of mass m and angular

frequency ω is

H1(q, p;ω) =
1

2m
p2 +

1

2
mω2q2 , (1.68)

where q is the Cartesian coordinate and p its conjugate momentum. The Hamilto-

nian operator Ĥ1(ω) associated to this dynamical function is, according to (1.35),

Ĥ1(ω) = − h̄2

2m

∂ 2

∂q2
+

1

2
mω2q2 . (1.69)

The stationary states of this operator are

(
− h̄2

2m

∂ 2

∂q2
+

1

2
mω2q2

)
|Ψn〉 = εn(ω)|Ψn〉 , (1.70)

with

εn(ω) =

(
n +

1

2

)
h̄ω , (n = 0,1,2 . . .) . (1.71)

Since there is only one eigenvector for each eigenvalue, Ĥ1(ω) forms by itself a

complete set of observables. Note that since the energy εn(ω) is univocally deter-

mined by the non-negative number n, this number may be interpreted as the number

of particles with energy h̄ω . By definition, the number of particles n is not a con-

served variable.

1.8.3 Particle in a Magnetic Field

The angular momentum of a particle l has been defined in (1.14) so that, upon ap-

plication of the correspondence rule (1.35), the angular momentum vector operator

l̂ is given by

l̂ = −ih̄r×∇ , (1.72)

whose components

l̂x = −ih̄

(
y

∂

∂ z
− z

∂

∂y

)

l̂y = −ih̄

(
z

∂

∂x
− x

∂

∂ z

)

l̂z = −ih̄

(
x

∂

∂y
− y

∂

∂x

)
, (1.73)
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verify the following commutation rules:

[
l̂x, l̂y

]
= ih̄l̂z, [l̂y, l̂z] = ih̄l̂x, [l̂z, l̂x] = ih̄l̂y . (1.74)

If one defines the scalar operator,

l̂2 = l̂2
x + l̂2

y + l̂2
z , (1.75)

it is readily verified that it commutes with each of the components of l̂, namely

[l̂, l̂2] = 0 , (1.76)

and hence with any function of these components. One may then form a basis of

eigenvectors common to both l̂2 and one of the components of l̂, say l̂z. The eigen-

value equations for these operators read:

l̂2|Ψl,m〉 = l(l + 1)h̄2|Ψl,m〉, l̂z|Ψl,m〉 = mh̄|Ψl,m〉 . (1.77)

If the spin angular momentum ŝ is included, one may generalize (1.73–1.77)

through replacement of the angular momentum l̂ by the total angular momentum

ĵ = l̂+ ŝ, namely

ĵ2|Ψj,m〉 = j( j + 1)h̄2|Ψj,m〉, ĵz|Ψj,m〉 = mh̄|Ψj,m〉 , (1.78)

and it can be shown that (1) the value of j in (1.78) is a non-negative number, either

an integer or an odd half integer and (2) the eigenvalue of m in (1.78) is one of the

(2 j + 1) quantities − j,− j + 1, . . . , j−1, j.

The Hamiltonian of interaction of a particle of angular momentum l in a uniform

and constant magnetic field B is, according to (1.15), given by

H1(r,p;B) = −µ ·B , (1.79)

where µ is the magnetic moment of the particle (1.16).

If the spin is included, the Hamiltonian operator of the interaction of the particle

with the field B is thus

Ĥ1(B) = −1

h̄
gµB ĵ ·B , (1.80)

where µB = eh̄/2mc is Bohr’s magneton (note that in µB, e is the magnitude of the

charge of the particle and m its mass, not to be confused with the quantum number

appearing in (1.78)), and g is the Landé factor:

g = 1 +
j( j + 1)+ s(s+ 1)− l(l+ 1)

2 j( j + 1)
, (1.81)

and s(s+ 1)h̄2 are the eigenvalues of s2 (the introduction of the Landé factor in the

Hamiltonian operator is valid when the latter is acting on the eigenfunction |Ψj,m〉).
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If the magnetic field is directed along the z-axis, B = Bez, the eigenvectors of

Ĥ1(B) are |Ψj,m〉 and the eigenvalues are quantized as follows:

εm(B) = −gµBmB, (m = − j,− j + 1, . . . , j−1, j) . (1.82)

1.9 System of Identical Particles

It is well known that in classical mechanics identical particles are considered distin-

guishable. In contrast, in quantum mechanics identical particles are indistinguish-

able which in turn implies that the wave function of a system of N identical particles

has to be either symmetric (bosons or particles with integer spin) or antisymmetric

(fermions or particles with an odd half integer spin) upon exchange of any two par-

ticles. Consider an ideal system of N identical particles defined by the Hamiltonian

operator ĤN(α), which is the sum of one-particle operators:

ĤN(α) =
N

∑
j=1

Ĥ
( j)
1 (α) . (1.83)

Due to the identical nature of the particles, the operators Ĥ
( j)
1 (α)≡ Ĥ1(α) have the

same eigenvalue equation which is written as

Ĥ1(α)|φ i〉 = ε i(α)|φ i〉 , (1.84)

where ε i(α) is the energy of the quantum state i whose eigenvector is |φ i〉, which is

assumed to be normalized, i.e., 〈φ i|φ i〉 = 1.

The wave function

|φ (1)
i1
〉 |φ (2)

i2
〉 . . . |φ (N)

iN
〉 , (1.85)

in which the subscript i j represents the quantum state of the jth particle (which has

been indicated with a superscript), is an eigenfunction of ĤN(α) whose eigenvalue is

ε i1(α)+ ε i2(α)+ · · ·+ ε iN (α) .

Since the values i j are not necessarily different, the energy of the system may be

written as

E
(N)
{ni}(α) = ∑

i

∗
niε i(α) , (1.86)

where ni is the number of particles (occupation number) in quantum state i and the

asterisk indicates that these numbers must satisfy the following condition:

∑
i

ni = N . (1.87)
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The wave functions of the system are linear combinations of the form (1.85),

symmetric (bosons) or antisymmetric (fermions) under the exchange of any two

particles. Then one has 0 ≤ ni ≤ N in the case of bosons and ni = 0,1 in the case

of fermions. As an example, consider a system of two particles, 1 and 2, in two

quantum states, i1 and i2. The possible wave functions of the system are

a) bosons

|φ (1)
i1
〉|φ (2)

i1
〉 (ni1 = 2, ni2 = 0),

|φ (1)
i2
〉|φ (2)

i2
〉 (ni1 = 0, ni2 = 2),

1√
2

(
|φ (1)

i1
〉|φ (2)

i2
〉+ |φ (1)

i2
〉 |φ (2)

i1
〉
)

(ni1 = 1, ni2 = 1).

b) fermions

1√
2

(
|φ (1)

i1
〉 |φ (2)

i2
〉+ |φ (1)

i2
〉 |φ (2)

i1
〉
)

(ni1 = 1, ni2 = 1).

Note that if the particles are considered to be distinguishable, the possible wave

functions are

|φ (1)
i1
〉|φ (2)

i1
〉 (ni1 = 2, ni2 = 0),

|φ (1)
i2
〉|φ (2)

i2
〉 (ni1 = 0, ni2 = 2),

|φ (1)
i1
〉|φ (2)

i2
〉 (ni1 = 1, ni2 = 1),

|φ (1)
i2
〉|φ (2)

i1
〉 (ni1 = 1, ni2 = 1).

Because a quantum system composed of identical particles is completely speci-

fied by the occupation numbers ni of the one-particle quantum states, the symmetric

or antisymmetric wave function may be represented in the form |n1, . . . ,ni, . . . 〉 (ob-

serve that, as has been shown in the previous example, in a system of distinguish-

able particles the mere specification of the occupation numbers ni is not sufficient

to determine the wave function of the system). The formalism of the particle num-

ber operator is based on the definition of creation and annihilation operators. For

bosons, the annihilation operator âi is defined as

âi|n1, . . . ,ni, . . . 〉 =
√

ni |n1, . . . ,ni −1, . . .〉 , (1.88)

since it destroys a particle in state i. The adjoint operator a
†
i verifies

â†
i |n1, . . . ,ni, . . . 〉 =

√
ni + 1 |n1, . . . ,ni + 1, . . .〉 , (1.89)
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and is called the creation operator, in view of the fact that it increases by one the

number of particles in state i.

For fermions, where ni can only take the values 0 and 1, the definitions of the

annihilation and creation operators are

âi|n1, . . . ,ni, . . . 〉 = (−1)νini |n1, . . . ,1−ni, . . .〉 , (1.90)

and

â
†
i |n1, . . . ,ni, . . . 〉 = (−1)νi(1−ni) |n1, . . . ,1−ni, . . . 〉 , (1.91)

with

ν i =
i−1

∑
k=1

nk.

Note that, in this case, â
†
i â

†
i = 0, because no two fermions may be created in the

same quantum state due to Pauli’s exclusion principle.

From (1.88–1.91), the number operator is then defined as n̂i = â
†
i âi, so that

n̂i|n1, . . . ,ni, . . . 〉 = ni|n1, . . . ,ni, . . .〉 . (1.92)

The total number of particles operator is

N̂ = ∑
i

n̂i , (1.93)

which commutes with the Hamiltonian operator

[N̂,ĤN(α)] = 0 . (1.94)

Equations (1.92–1.94) are applicable both to bosons and to fermions.
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Chapter 2

Thermodynamics

Abstract The systems which are the subject matter of statistical physics involve N

particles, atoms or molecules, with N ≃ 1023. Studying such systems using the laws

of mechanics (either classical or quantum mechanical) is an impossible task since,

for instance, to determine the mechanical state of a classical system at any instant of

time it is necessary to solve Hamilton’s equations and to know the initial mechanical

state of the system. As will be seen later on, there exist even more profound reasons

to abandon the mechanical study of systems composed of a very large number of

particles or macroscopic systems. An alternative description of such systems is pro-

vided by thermodynamics, a theory which is briefly described in this chapter. For a

more detailed study of this theory the readers may consult the texts included in the

References.

2.1 Fundamental Equation

Thermodynamics is a theory that deals with the exchange of matter and energy be-

tween a system, which is described in terms of a reduced number of thermodynamic

variables that characterize the system as a whole, and the external world, which is

everything that does not belong to the system. A natural first thermodynamic vari-

able is the volume of the system V which, as has been discussed in Chap. 1, is an

external parameter. A second thermodynamic variable is the energy E , referred to as

the internal energy in thermodynamics, a variable defined as the macroscopic man-

ifestation of the law of conservation of energy. In the case of an equilibrium (the

thermodynamic variables do not change with time), closed (the system does not

exchange particles with the external world) and simple (i.e., a system whose only

external parameter is the volume V ) system, it is postulated in thermodynamics that

the internal energy is a differentiable function of the volume and the entropy, namely

E = E(S,V) , (2.1)

21
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where S is the entropy of the system, which is termed a thermal variable since,

in contrast with the cases of V and E , it does not have a mechanical counterpart.

These three variables define the state of the system. Note that E and V are extensive

variables, i.e., magnitudes that grow proportionally to the size of the system. It is

further assumed that the entropy S is also an extensive and additive variable, namely

that the entropy of a composite system is the sum of the entropies of the constituent

macroscopic subsystems. The change in the energy of the system when the entropy

and the volume are modified is, therefore, given by

dE =
∂E

∂S
dS +

∂E

∂V
dV , (2.2)

which is the sum of two contributions. The first one is the change in energy due to a

change in the entropy S, while the second is the mechanical work performed when

the external parameter V is modified.

The partial derivatives in (2.2) are defined as

T =
∂E

∂S
, p = −∂E

∂V
, (2.3)

where T is the absolute (or thermodynamic) temperature of the system and p its

pressure, both of which are positive since it is postulated that E(S,V ) is an increas-

ing function of S that also decreases with V . Equation (2.2) is valid when the system

evolves reversibly (see below) between two close equilibrium states. This equation

is a particular case of the first law of thermodynamics:

dE = d′W + d′Q , (2.4)

which expresses the fact that the variation of the internal energy is the sum of the

work d′W performed against the pressure of the external world p0, which in a re-

versible process is equal to the pressure of the system

d′W = −pdV , (2.5)

(the minus sign is chosen so that d′W < 0 when dV > 0) and of the amount of heat

d′Q absorbed by the system from the external world at the temperature T0, which in

a reversible process is equal to the temperature of the system, i.e.,

d′Q = T dS (2.6)

(the notation d′W and d′Q indicates that the differentials of work and heat are not

exact differentials). Note that thermodynamics does not provide definitions of the

magnitudes E , V , and S, but that it only establishes through (2.2) the relationship

between the changes in these variables in a reversible process. The power of ther-

modynamics resides precisely in the fact that this relationship is independent of the

specific nature of the system.
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Sometimes it is necessary to generalize expression (2.5) in order to include other

extensive external parameters {X j}, namely

d′W = ∑
j

∂E

∂X j

dX j . (2.7)

In the case of open systems, i.e., systems which may exchange particles with the

external world, it is postulated that the state of the system is defined by the variables

E , S, {X j}, and {Nα}, where Nα is the number of particles of species α . It is further

admitted that the energy is a differentiable function of the entropy, of the extensive

external parameters, and of the numbers of particles, namely

E = E(S,{X j} ,{Nα}) . (2.8)

This equation is known as the fundamental equation of thermodynamics and it fol-

lows from it that in a differential reversible process connecting two equilibrium

states, the variation in the energy of the system is

dE = T dS +∑
j

∂E

∂X j

dX j +∑
α

µα dNα , (2.9)

where

µα =
∂E

∂Nα
, (2.10)

is the chemical potential of species α . In the case of a system that contains N par-

ticles of a single species, whose chemical potential is denoted by µ, and where the

only external parameter is the volume V , one has

dE = T dS− pdV + µdN . (2.11)

2.2 Intensive Variables

Note that the number of thermodynamic variables defining the state of a system in

the fundamental equation (2.8) is always small. On the contrary, in the mechan-

ical description the corresponding number of variables increases with N. This is

due to the fact that the thermodynamic variables E , S, {X j}, and {Nα} are mag-

nitudes that characterize the system globally. Since all of them are extensive, if

one denotes by {Yk} ≡ (S,X1,X2, . . . ,N1,N2, . . . ), from the fundamental equation

(2.8) it follows that E is a homogeneous function of degree one in the variables Yk,

namely

E({λYk}) = λE({Yk}) , (2.12)
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where λ is an arbitrary positive real number. If the conjugate variable or conjugate

force fl of Yl is defined through

fl =
∂E

∂Yl

, (2.13)

it follows from (2.12) that

fl({λYk}) = fl({Yk}) . (2.14)

The above equation shows that the conjugate variables fl are homogeneous func-

tions of degree zero in the variables Yk, i.e., they do not depend on the size of the

system. Hence, they are called intensive variables. Note that the ratio of two ex-

tensive variables is an intensive variable like, for instance, the energy per particle

E/N. It is common to write the extensive variables as capital letters while the in-

tensive variables, with the only exception (for historical reasons) of the absolute

temperature T , are usually written as small letters. An important relation may be

obtained from the derivative of (2.12) with respect to λ by considering the result in

the particular case where one sets λ = 1, namely

∑
k

fkYk = E . (2.15)

By differentiating this equation and comparing the result with (2.9), the Gibbs–

Duhem relation is obtained:

∑
k

Ykd fk = 0 , (2.16)

which shows that the changes in the intensive variables fk are not independent.

Since, on the other hand, E is a differentiable function of the variables Yk, one

has that ∂ 2E/∂Yl∂Ym is a symmetrical matrix. This property may also be expressed

as

∂ fl

∂Ym

=
∂ fm

∂Yl

, (2.17)

which are the so-called Maxwell relations. Note that throughout the text and for the

sake of simplifying the notation, it is understood that in the partial derivatives all the

other variables remain constant.

The thermodynamic description may, therefore, be summarized as follows. To

each macroscopic system one associates a variable E or internal energy. Accord-

ing to the fundamental equation, E is a function of a reduced number of extensive

variables {Yk}. For each Yk there is, according to (2.13), an intensive variable fk

and so E is referred to as a thermodynamic potential in view of the fact that all the

intensive variables may be obtained by derivation from the fundamental equation

E = E({Yk}). The structure of thermodynamics is, therefore, in a way reminiscent

of that of classical mechanics.
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2.3 Law of Entropy Increase

In order to introduce the law of entropy increase, note that (2.11) may be rewritten

in the form:

dS =
1

T
dE +

p

T
dV − µ

T
dN , (2.18)

which expresses the fact that S may be considered as a function of the extensive

variables E,V , and N. This formulation of thermodynamics in which S = S(E,V,N)
is the dependent variable is known as the “entropy representation,” whereas the

formulation (2.11), i.e., E = E(S,V,N) is known as the “energy representation.”

From (2.18) it follows that the intensive variables in the entropy representation are

1

T
=

∂S

∂E
,

p

T
=

∂S

∂V
,

µ

T
= − ∂S

∂N
. (2.19)

From a mathematical point of view this change of representation consists in obtain-

ing S as a function of E,V , and N from the fundamental equation E = E(S,V,N).
Note that (2.18) describes the changes that take place in a differential reversible

process that connects two equilibrium states. The second law of thermodynamics

states that when the intensive variables of the external world (the temperature T0,

the pressure p0, and the chemical potential µ0) are constant, because the number of

degrees of freedom of the external world is much greater than that of the system,

then the following inequality always holds:

dS ≥ 1

T0

dE +
p0

T0

dV − µ0

T0

dN , (2.20)

which may be written in the form

T0diS ≡ T0dS−dE − p0dV + µ0dN ≥ 0 , (2.21)

where diS is the change of entropy due to the irreversible processes taking place in

the system. Equation (2.21) indicates that the system evolves in such a way that the

entropy production diS is positive, until the system reaches a state of equilibrium

with the external world for which diS = 0. In particular, if one considers an iso-

lated system (which does exchange neither energy nor volume or particles with the

external world) then it follows from (2.21) that

diS ≡ dS ≥ 0 , (2.22)

which expresses that an isolated system evolves toward the state of maximum en-

tropy.

From the second law of thermodynamics (2.20) and from (2.18), three important

consequences can be derived:

1) In the natural evolution of a non-equilibrium system, the changes in the thermo-

dynamic variables verify the following relation,
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T0dS−dE − p0dV + µ0dN ≥ 0 , (2.23)

until equilibrium is reached. In the equilibrium state, the intensive variables of

the system and those of the external world become equal: T = T0, p = p0, and

µ = µ0.

2) If the differential changes of the thermodynamic variables take place between

two equilibrium states, then

T dS−dE − pdV + µdN = 0 , (2.24)

i.e., these changes are not independent so that a fundamental relation S =
S(E,V,N) or E = E(S,V,N) exists.

3) If a state of equilibrium is transformed into a non-equilibrium state, then diS > 0

cannot hold, since this inequality corresponds to a natural evolution and the for-

mer is not. Neither can it happen that diS = 0, since this corresponds to dif-

ferential changes between two equilibrium states. Therefore, diS < 0. Hence,

to distinguish the natural or spontaneous evolution toward equilibrium and the

forced or virtual transformation out of equilibrium, the natural changes are de-

noted by dS, . . . while the virtual ones are denoted by δS, . . . For any virtual

change of the state of the system one, therefore, has

T0δ S− δE − p0δV + µ0δN < 0 . (2.25)

2.4 Thermodynamic Potentials

Although the basic aspects of thermodynamics are embodied in (2.21–2.25), there

are equivalent formulations that involve the introduction of other thermodynamic

potentials. As a first example, consider the fundamental equation in the energy rep-

resentation, E = E(S,V,N). If one wants that, instead of S, T be the independent

variable, which is the conjugate variable of S with respect to E in (2.11), a Legendre

transformation may be performed (see Appendix A) from E to a new potential,

denoted by F and known as the Helmholtz free energy. To that end, the function

F = F(T,V,N) is defined through

F(T,V,N) = E(S,V,N)−TS , (2.26)

where S = S(T,V,N) in (2.26) is obtained after solving the implicit equation T =
∂E/∂S. Differentiating (2.26) and comparing with (2.11) one then has

dF = −SdT − pdV + µdN , (2.27)

so that in this representation

S = −∂F

∂T
, p = −∂F

∂V
, µ =

∂F

∂N
. (2.28)
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From (2.15) and (2.26) it follows that

F = −pV + µN, f = −pv + µ , (2.29)

where f = F/N is the Helmholtz free energy per particle, v = V/N = 1/ρ is the

volume per particle or specific volume, and ρ is the density. Differentiating F =
N f one finds dF = Nd f + f dN = −SdT − pdV + µdN, namely Nd f = −SdT −
pdV +(µ− f )dN, so that from (2.29) it follows that Nd f =−SdT − p(dV −vdN)=
−SdT −N pdv, or

d f = −sdT − pdv , (2.30)

where s = S/N is the entropy per particle. This equation shows that the intensive

variable f is a function of the intensive variables T and v.

In the thermodynamic analysis of a system, the choice of the thermodynamic po-

tential, although arbitrary, is to a great extent determined by the physical conditions

of the problem under study. Thus, since a phase transition takes place at constant

temperature and pressure (see below), an adequate potential is the Gibbs free en-

ergy, defined through

G(T, p,N) = E(S,V,N)−TS + pV , (2.31)

which is the double Legendre transform of the energy with respect to S and V ,

where S = S(T, p,N) and V = V (T, p,N) are obtained from (2.11) after solving the

implicit equations T = ∂E/∂S and p = −∂E/∂V . After differentiation of (2.31)

and comparison with (2.11) one obtains:

dG = −SdT +Vd p + µdN , (2.32)

so that in this representation

S = −∂G

∂T
, V =

∂G

∂ p
, µ =

∂G

∂N
. (2.33)

On the other hand, from (2.31) and (2.15) it follows that:

G = µN , (2.34)

and hence the chemical potential is equal to the Gibbs free energy per particle. Upon

differentiation of (2.34) one finds dG = Ndµ +µdN and after comparing with (2.32)

it follows that

dµ = −sdT + vd p , (2.35)

which is equivalent to the Gibbs–Duhem relation (2.16).

To close this section, consider the grand potential or Landau free energy:

Ω(T,V,µ) = E(S,V,N)−TS− µN , (2.36)
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which is the double Legendre transform of the energy with respect to S and N,

where S = S(T,V,µ) and N = N(T,V,µ) are obtained from (2.11) after solving the

implicit equations T = ∂E/∂S and µ = ∂E/∂N. After differentiation of (2.36) and

comparison with (2.11) one obtains

dΩ = −SdT − pdV −Ndµ , (2.37)

so that in this representation

S = −∂Ω

∂T
, p = −∂Ω

∂V
, N = −∂Ω

∂ µ
. (2.38)

On the other hand, from (2.36) and (2.15) it follows that

Ω = −pV . (2.39)

Upon differentiation of (2.39) and comparison of the result with (2.37) one finds

d p = ρsdT + ρdµ , (2.40)

which is an expression equivalent to (2.35).

2.5 Equilibrium Conditions

From (2.25) it follows that in a virtual process of an isolated system (δE = 0, δV = 0

and δ N = 0), δ S < 0, i.e., the entropy may only decrease and hence S must have

a maximum value in the equilibrium state. This result may be transformed into an

extremum principle. Thus, if S(E,V,N;{Z}) denotes the variational entropy of a

system with constrains denoted by {Z}, the entropy of the equilibrium state is a

maximum of S(E,V,N;{Z}) with respect to {Z} for given values of E,V , and N:

S(E,V,N) =
{

max{Z}S(E,V,N;{Z})
}

E,V,N
. (2.41)

Similarly, from (2.25) one can see that if δS = 0, δV = 0, and δN = 0, then δE >
0, i.e., the energy can only grow and hence E is a minimum in the equilibrium state.

Therefore, if E(S,V,N;{Z}) is the variational energy of a system with constrains

described by {Z}, one has

E(S,V,N) =
{

min{Z}E(S,V,N;{Z})
}

S,V,N
, (2.42)

so that the energy of the equilibrium state is a minimum of E(S,V,N;{Z}) with

respect to {Z} for given values of S,V , and N.

These extremum conditions may also be expressed using the other thermody-

namic potentials. Note that if δV = 0 and δ N = 0, the extremum principle (2.25)

can be rewritten as T0δS−δE < 0, so that if the temperature of the system remains
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constant and equal to the one of the external world, T = T0, then δF > 0, and hence

F is a minimum in the state of equilibrium. One then has

F(T,V,N) =
{

min{Z}F(T,V,N;{Z})
}

T=T0,V,N
, (2.43)

namely the Helmholtz free energy of the equilibrium state is a minimum of F(T,V,
N;{Z}) with respect to {Z}.

If δN = 0, the extremum principle is written as T0δ S− δE − p0δV < 0, so that

if the temperature and the pressure of the system remain constant and equal to the

temperature and pressure of the external world, T = T0 and p = p0, it follows that

δG > 0, and hence G is a minimum in the equilibrium state. One then has

G(T, p,N) =
{

min{Z}G(T, p,N;{Z})
}

T=T0,p=p0,N
, (2.44)

namely the Gibbs free energy of the equilibrium state is a minimum of G(T, p,N;

{Z}) with respect to {Z}.

Finally, if δV = 0, the extremum principle reads T0δ S−δE + µ0δN < 0, so that

if the temperature and chemical potential of the system remain constant and equal to

the temperature and chemical potential of the external world, T = T0 and µ = µ0, it

follows that δΩ > 0, and hence Ω is a minimum in the equilibrium state. One then

has

Ω(T,V,µ) =
[
min{Z}Ω(T,V,µ ;{Z})

]
T=T0,V,µ=µ0

, (2.45)

namely the Landau free energy of the equilibrium state is a minimum of Ω(T,V,µ;

{Z}) with respect to {Z}.

2.6 Stability Conditions

In the previous section, the extremum principles involving the different thermo-

dynamic potentials were examined. In order to provide a more detailed analysis of

some of them, consider a simple closed system which exchanges energy and volume

with the external world at the temperature T0 and at the pressure p0. By definition,

the intensive parameters of the external world remain constant and are, in general,

different from the temperature T and the pressure p of the system. The second law

of thermodynamics implies that for a virtual process

δ (E + p0V −T0S) = δE + p0δV −T0δS > 0 . (2.46)

In the energy representation E = E(S,V), and so upon expanding E in a Taylor

series up to second order one has
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δ E =
∂E

∂V
δV +

∂E

∂S
δS

+
1

2

[
∂ 2E

∂V 2
(δV )2 + 2

∂ 2E

∂V∂S
δVδS +

∂ 2E

∂S2
(δS)2

]
. (2.47)

Since ∂E/∂V = −p, ∂E/∂S = T and the equilibrium state is an extremum, it fol-

lows from (2.46) and (2.47) that

p = p0, T = T0 , (2.48)

which are the conditions for mechanical equilibrium and thermal equilibrium be-

tween the system and the external world. It should be clear that it is also possible

to obtain in this way the condition for chemical equilibrium (µ = µ0) in the case

where, on top of the above, the system and the external world also exchange parti-

cles.

Since the extremum is a minimum, one then has

∂ 2E

∂V 2
(δV )2 + 2

∂ 2E

∂V∂S
δVδS +

∂ 2E

∂S2
(δS)2 > 0 , (2.49)

which holds whenever the following inequalities are satisfied:

∂ 2E

∂V 2
> 0,

∂ 2E

∂V 2

∂ 2E

∂S2
−
(

∂ 2E

∂V∂S

)2

> 0,
∂ 2E

∂S2
> 0 . (2.50)

These are known as the stability conditions (note that the first two inequalities imply

the third one). From the first inequality it follows that

∂ 2E

∂V 2
= − ∂ p

∂V
=

1

V χS

, χS ≡− 1

V

(
∂V

∂ p

)

S

> 0 , (2.51)

namely that the isentropic compressibility coefficient χS is positive. In a similar

way, from the third inequality one finds

∂ 2E

∂S2
=

∂T

∂S
=

1

TCV

, CV ≡ T

(
∂S

∂T

)

V

> 0 , (2.52)

i.e., the constant volume heat capacity CV is also positive.

The stability conditions may also be formulated using any other thermodynamic

potential. Assume, for instance, that in (2.46) the independent variables are taken

to be the volume V and the temperature T , which are the natural variables of the

Helmholtz free energy. Then, since in this case E = E(T,V ) and S = S(T,V), in the

Taylor series expansion of (2.46) up to second order, the extremum conditions are

∂E

∂T
−T0

∂S

∂T
= 0,

∂E

∂V
+ p0 −T0

∂S

∂V
= 0 . (2.53)
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The first one implies that

T0 =
∂E

∂T

∂T

∂S
=

∂E

∂S
= T , (2.54)

which is the condition for thermal equilibrium, while the second one reads

p0 = −∂ (E −TS)

∂V
= −∂F

∂V
= p , (2.55)

which is the condition for mechanical equilibrium. In deriving this condition, it has

been taken into account that T0 = T .

In order to determine the stability conditions, it is required that the quadratic

form be positive definite. The coefficient that multiplies (δV )2 is

∂ 2E

∂V 2
−T

∂ 2S

∂V 2
=

∂ 2F

∂V 2
> 0 , (2.56)

which implies that the isothermal compressibility coefficient χT is positive:

∂ 2F

∂V 2
= − ∂ p

∂V
=

1

V χT

, χT ≡− 1

V

(
∂V

∂ p

)

T

> 0 . (2.57)

The coefficient that multiplies (δT )2 is

∂ 2E

∂T 2
−T

∂ 2S

∂T 2
> 0 . (2.58)

Since
∂ 2E

∂T 2
=

∂

∂T

(
T

∂S

∂T

)
=

∂S

∂T
+ T

∂ 2S

∂T 2
, (2.59)

it follows that (2.58) may be rewritten as

∂S

∂T
= −∂ 2F

∂T 2
> 0 , (2.60)

which, like in (2.52), implies that CV is positive.

From (2.50), (2.56) and (2.60) the following result may be inferred. When the

stability conditions are expressed in terms of any arbitrary thermodynamic potential,

the second derivative of the potential with respect to any of its natural variables

is positive (the function is convex) if the variable is extensive and negative (the

function is concave) if the variable is intensive. For instance,

∂ 2G

∂T 2
< 0,

∂ 2G

∂ p2
< 0 , (2.61)

and from (2.32) it follows that the first inequality in (2.61) implies that the constant

pressure heat capacity,
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Cp ≡ T

(
∂S

∂T

)

p

> 0 , (2.62)

is positive, while from the second one it follows that χT > 0.

2.7 Coexistence Conditions

Thus far, the equilibrium state of the system is, as referred to in thermodynamics, a

phase, i.e., the system is homogeneous (the intensive thermodynamic variables are

uniform). The concept of a phase is an idealization of reality since the existence

of external fields, such as the gravitational field, leads to inhomogeneities in the

system. Note also that since the system is enclosed in a region R of volume V ,

the intensive variables cannot be uniform due to the influence of the walls of the

container. In the thermodynamic study of a system it is assumed that these effects

are small.

It is well known that there exist different phases of matter. A simple fluid of

spherical molecules may, for instance, be found in a gas phase, in a liquid phase, or

in a solid phase. Each of these phases is thermodynamically stable for given con-

ditions of temperature and pressure. The paramagnetic and ferromagnetic phases of

some materials or the isotropic or nematic phases of liquid crystals represent other

kinds of phases of matter. In general, given two phases of a system, the phase stable

at a lower temperature presents greater order. Thus, a solid is more ordered than

a liquid because the former is not invariant under an arbitrary rotation or transla-

tion. Similarly, the ferromagnetic phase is more ordered than the paramagnetic one

because the former is not invariant under an arbitrary rotation.

In some cases, phases may coexist. That is, under given conditions of temperature

and pressure the system is not homogeneous. Examples of this are the liquid–vapor

coexistence, the liquid–solid coexistence and the vapor–solid coexistence. In other

cases, it is impossible to have phase coexistence. For instance, a material cannot be

both ferromagnetic and paramagnetic at prescribed values of the temperature and

pressure.

In Sect. 2.5 the equilibrium conditions between a system and the external world

were obtained. The same conditions must hold between two macroscopic phases (in

the following denoted 1 and 2) of a system in thermodynamic equilibrium. Indeed,

consider an isolated equilibrium system of entropy S = S1 +S2, energy E = E1 +E2,

volume V = V1 +V2 and N = N1 + N2 particles. In a virtual process, from (2.25) it

follows that,

δS < 0 , (2.63)

since E , V , and N are constant. This condition implies that the entropies of the

phases S1 = S1(E1,V1,N1) and S2 = S2(E2,V2,N2) satisfy

δS1 + δS2 < 0 . (2.64)
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Since

δS1 =
1

T1

δE1 −
p1

T1

δV1 +
µ1

T1

δ N1, δS2 =
1

T2

δE2 −
p2

T2

δV2 +
µ2

T2

δ N2 ,

and

δ E1 + δE2 = 0, δV1 + δV2 = 0, δN1 + δN2 = 0 ,

(2.64) can then be written as

(
1

T1

− 1

T2

)
δ E1 −

(
p1

T1

− p2

T2

)
δV1 +

(
µ1

T1

− µ2

T2

)
δN1 < 0 . (2.65)

Note that because δ E1, δV1, and δ N1 are arbitrary and the equilibrium state is an

extremum, from (2.65) the conditions for thermal equilibrium (equality of tempera-

tures),

T1 = T2 , (2.66)

for mechanical equilibrium (equality of pressures),

p1 = p2 , (2.67)

and for chemical equilibrium (equality of chemical potentials),

µ1 = µ2 , (2.68)

follow.

2.8 Phase Diagrams

The thermodynamic equilibrium states in which phases coexist are usually repre-

sented in the so-called phase diagrams that may be obtained from any thermody-

namic potential. The method to be followed to obtain a phase diagram depends,

however, on the choice of thermodynamic potential. In this section, the phase dia-

grams are derived from the Helmholtz free energy per particle f = F(T,V,N)/N =
f (T,v) and from the Gibbs free energy per particle g = G(T, p,N)/N = g(T, p),
which in a one-component system coincides with the chemical potential µ = µ(T, p)
(see Sect. 2.4). The main difference between µ(T, p) and f (T,v) is that in the for-

mer the two independent variables, p and T , appear explicitly in the equilibrium

conditions (2.66–2.68), while in the latter only one of its independent variables, T,
appears in these conditions.

2.8.1 Gibbs Free Energy

To construct the phase diagram from the Gibbs free energy, note that, since µ =
µ(T, p), from the equilibrium conditions T1 = T2 ≡ T and p1 = p2 ≡ p one has
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µ1(T, p) = µ2(T, p) , (2.69)

which defines the implicit relation

p = p(T ) , (2.70)

that the independent variables p and T must satisfy in order to have coexistence

between phases 1 and 2.

According to (2.35) a phase may be represented by a surface µ = µ(T, p) in the

space (µ ,T, p) or, as is usually done, by the projection of this surface onto isobaric

or isothermal planes, as shown in Figs. 2.1 and 2.2.

From the thermodynamic relations

∂ µ

∂T
= −s,

∂ µ

∂ p
= v , (2.71)

and
∂ 2µ

∂T 2
= −cp

T
,

∂ 2µ

∂ p2
= −vχT , (2.72)

where χT is the isothermal compressibility coefficient and cp = Cp/N the constant

pressure specific heat, it follows that the projection of the surface µ = µ(T, p) onto

an isobaric plane is a concave curve, because cp > 0, and a decreasing function of T ,

while the projection onto an isothermal plane is a concave function, since χT > 0,

and an increasing function of p.

Phase coexistence is obtained from (2.69), i.e., from the intersection of the sur-

faces that represent each phase or, as usual, from the intersection of the curves re-

sulting from the projection of these surfaces onto isobaric and isothermal planes

(Figs. 2.3 and 2.4).

In the point of intersection both phases coexist, but the slopes of the curves are

in general different since the two phases differ both in entropy (s1 �= s2) and in

Fig. 2.1 Projection onto the

isobaric plane, p = p0, of

the Gibbs free energy per

particle µ = µ(T, p), with

µ0 ≡ µ(T0, p0). The curve

µ(T, p0) is concave (cp > 0)

and decreases with T

µ

µ0

TT0

p = p0
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Fig. 2.2 Projection onto the

isothermal plane, T = T0, of

the Gibbs free energy per

particle µ = µ(T, p), with

µ0 ≡ µ(T0, p0). The curve

µ(T0, p) is concave (χT > 0)

and increases with p

µ

µ0

p0 p

T = T0

density (v1 �= v2). On each side of the point of intersection one of the phases has a

lower Gibbs free energy and is thus the stable phase, which has been represented by

a continuous line. A stable phase (χT > 0, cp > 0) which does not have the lower

Gibbs free energy is said to be metastable and has been represented by a broken line.

Since the concave curves of Figs. 2.3 and 2.4 can only intersect in one point,

there is a one-to-one correspondence between the points of intersection and the

corresponding point in the (T, p)-plane. In this way, all the information about the

intersection of the surfaces µ1(T, p) and µ2(T, p), that describes the equilibrium

between two phases, is transferred from the space (µ ,T, p) to the plane (T, p).
In the (T, p) phase diagram of Fig. 2.5, the coexistence line (2.70) separates the

two regions of this plane where either one of the phases is stable. If the coexistence

line is crossed, there will be a phase transition during which the stable phase be-

comes metastable and vice versa, and the two phases exchange their stability. On

the coexistence line both phases have the same Gibbs free energy per particle and,

Fig. 2.3 Projection onto

the isobaric plane, p = p0,

of the Gibbs free energies

per particle, µ1(T, p) and

µ2(T, p), of phases 1 and 2.

Phase 1 is stable when T > T0

and metastable when T < T0.

The stable regions have been

represented by a continuous

line and the metastable ones

by a broken line. At the

point of coexistence (T0, p0)
the two phases are stable,

µ0 ≡ µ1(T0, p0) = µ2(T0, p0)
and exchange their stability

µ

µ0

T0 T

1

2

2

1

p = p0
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Fig. 2.4 Projection onto the

isothermal plane, T = T0,

of the Gibbs free energies

per particle, µ1(T, p) and

µ2(T, p), of phases 1 and 2.

Phase 1 is stable when p < p0

and metastable when p > p0.

The stable regions have been

represented by a continuous

line and the metastable ones

by a broken line. At the

point of coexistence (T0, p0)
the two phases are stable,

µ0 ≡ µ1(T0, p0) = µ2(T0, p0),
and exchange their stability

µ

µ0

T = T0

2

1

1

2

p0 p

therefore, are simultaneously stable although the derivative of µ (with respect to T

or p) is, in general, different at the point of coexistence.

Upon substitution of (2.70) in (2.69) it follows that on the coexistence line:

µ1(T, p(T )) = µ2(T, p(T )) . (2.73)

Taking the derivative of (2.73) with respect to T yields

∂ µ1

∂ p

d p(T )

dT
+

∂ µ1

∂T
=

∂ µ2

∂ p

d p(T )

dT
+

∂ µ2

∂T
, (2.74)

while from (2.71), one then obtains the Clausius–Clapeyron equation,

d p(T )

dT
=

s1 − s2

v1 − v2

, (2.75)

Fig. 2.5 Phase diagram (T, p)
corresponding to the Figs. 2.3

and 2.4. The regions of sta-

bility of the phases (indicated

by 1 and 2) are separated by

the coexistence line on which

both phases are stable and

coexist

p

p0

T0 T

2

1
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which relates the slope of the coexistence curve (2.70) to the discontinuities in the

entropy per particle and the volume per particle. At the transition from phase 1 to

phase 2, there will hence be a latent heat of transformation lQ = T (s2 − s1) and the

transition is called a first-order transition (lQ �= 0). It may happen that, for certain

values of T or p(T ) , lQ = 0. Since then s1 = s2, both phases are entropically iden-

tical and have the same structure. The point (Tc, pc) where lQ = 0 is called a critical

point (CP) and the transition at this point is said to be continuous (see Chap. 9). At

the critical point, the first derivatives of µ are continuous (s1 = s2 and v1 = v2), but

the second derivatives (i.e., χT and cp) may be discontinuous.

2.8.2 Helmholtz Free Energy

To construct the phase diagram starting from the Helmholtz free energy per particle,

note that a phase may be represented by a surface f = f (T,v) in the ( f ,T,v) space

or, as usually done, by the projection of this surface onto isochoric and isothermal

planes.

From the thermodynamic relations

∂ f

∂T
= −s,

∂ f

∂v
= −p , (2.76)

and
∂ 2 f

∂T 2
= −cV

T
,

∂ 2 f

∂v2
=

1

vχT

, (2.77)

where cV = CV /N is the constant volume specific heat. It follows that the projection

of the surface f = f (T,v) onto an isochoric plane is a concave curve, since cV > 0,

and a decreasing function of T , whereas the projection onto an isothermal plane

is a convex curve, since χT > 0, which decreases with v. These curves are shown

schematically in Figs. 2.6 and 2.7.

Consider the intersection of the surfaces f1(T,v) and f2(T,v) that represent each

of the phases or, alternatively, the intersection of the curves that result from pro-

jecting these surfaces onto isochoric and isothermal planes. Note that since at such

a point of intersection onto an isothermal plane, T = T0, the two phases have the

same specific volume v0 (Fig. 2.8), this is not a point of coexistence because, in

general, when phases coexist they have different densities (v1 �= v2). For the same

reason, the projection onto an isochoric plane does not provide any information

about coexistence.

Note, however, that from the projection onto an isothermal plane one may derive

the values of p and µ at this temperature. In fact, from (2.76) it follows that the slope

of the curve f (T,v) at constant temperature is minus the pressure. On the other hand,

if f (T,0) is the intercept of the tangent to the curve at the point (v, f ), the equation

of this line is f (T,v)− f (T,0) = −pv, namely f (T,0) = f (T,v)+ pv = µ , where

(2.29) has been taken into account.
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Fig. 2.6 Projection onto the

isochoric plane, v = v0, of

the Helmholtz free energy

per particle f = f (T,v), with

f0 ≡ f (T0,v0). The curve

f (T,v0) is concave (cV > 0)

and a decreasing function of T

f

f0

T0 T

v = v0

The previous results led Maxwell to devise a geometrical method to locate the

coexistence between two phases. In Fig. 2.8 the projection of the curves f1(T0,v)
and f2(T0,v) (which intersect at v = v0) onto an isothermal plane (T = T0) are repre-

sented. It is observed from this figure that phase 2 is metastable with respect to phase

1 when v > v0 and that phase 1 is metastable with respect to phase 2 when v < v0. Let

v1 and v2 be the ordinates of the points of the curves f1(T0,v) and f2(T0,v) with the

same tangent, which is unique since the curves are convex, and called Maxwell’s

double tangent. Note that along the line that joins the points (v1, f1(T0,v1)) and

(v2, f2(T0,v2)), the pressure and the chemical potential remain constant, so that

these points correspond to phase coexistence. Since, on the other hand, the free

energy along the rectilinear segment is lower than the free energy of each phase,

the thermodynamic state in which both phases coexist is the stable state. Along this

segment, f (T0,v) is a linear combination of f1(T0,v1) and f2(T0,v2), namely

Fig. 2.7 Projection onto the

isothermal plane, T = T0, of

the Helmholtz free energy

per particle f = f (T,v), with

f0 ≡ f (T0,v0). The curve

f (T0,v) is convex (χT > 0)

and decreases with v

f

f0

T = T0

v0 v



2.8 Phase Diagrams 39

f
2 1

1

2

T = T0

v2 v0 v1 v

Fig. 2.8 Projection onto the isothermal plane, T = T0, of the Helmholtz free energies per particle

f1(T,v) and f2(T,v) of phases 1 and 2, which intersect at v = v0. Phase 1 is stable when v > v0,

where 2 is metastable. The stable portions have been represented with a continuous line and the

metastable ones with a broken line. At v = v1 and v = v2 the two curves have the same tangent

(Maxwell’s double tangent) and along the rectilinear segment (dotted line) the pressures and the

chemical potentials of both phases are equal. The points (v1,T0) and (v2,T0) belong to the binodal

curves in the (v,T )-plane

f (T0,v) =

(
v− v2

v1 − v2

)
f1(T0,v1)+

(
v1 − v

v1 − v2

)
f2(T0,v2) , (2.78)

for v2 < v < v1, which constitutes the so-called lever rule.

In summary, the stable parts of the free energy of the system are the convex

function f2(T0,v) (for v ≤ v2), the rectilinear segment of the double tangent or co-

existence region (for v2 < v < v1) and the convex function f1(T0,v) (for v1 ≤ v) that

together form the convex envelope of f1(T0,v) and f2(T0,v).
The phase diagrams that result in the planes (v,T ) and (v, p) are shown in Figs. 2.9

and 2.10. Observe that coexistence (a line in the (T, p)-plane of Fig. 2.5) in these

planes occurs in regions delimited by two curves called binodals.

2.8.3 van der Waals Loop

It may happen that at a temperature T = T0 the free energy f (T0,v) is formed by two

convex branches (v < v′2 and v > v′1) separated by a concave branch (v′2 < v < v′1),

such as illustrated in Fig. 2.11.

In this last branch the stability condition χT > 0 is not satisfied and so the sys-

tem is unstable. Note that if v2 and v1 are the abscissa of the points of the double

tangent of the convex branches then v2 < v′2 < v′1 < v1. For that reason, the region of

instability in the phase diagrams (v,T ) and (v, p), which is delimited by two curves
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Fig. 2.9 Phase diagram in the

(v,T )-plane in which we have

indicated the regions where

phases 1 and 2 are stable, the

binodal curves (continuous

lines) and the binodal region

where the two phases coexist

(2+1)

T

T0

v2 v1 v

2 1

2 + 1

called spinodals, is contained in between the binodal curves, as shown in Figs. 2.12

and 2.13.

Although the system is unstable in the spinodal region, it is admitted that in this

region f (T0,v) is the analytic continuation of the free energy of the stable regions.

In such a case, the isotherm in the (v, p)-plane has a loop, which must be replaced

by a horizontal segment (see Fig. 2.13), because according to the double tangent

construction method analyzed in the previous subsection, the pressures are equal at

coexistence. This horizontal segment is such that the areas abc and cde are equal,

which is known as Maxwell’s equal area rule.

As a matter of fact, the area A limited by the curve p = p(T0,v) is

A =
∫ v1

v2

dvp(T0,v) = f (T0,v2)− f (T0,v1) , (2.79)

where the fact that p = −∂ f/∂v, even inside the instability region, has been ac-

counted for. If one subtracts from A the area of the rectangle p0(v1 − v2), where

Fig. 2.10 Phase diagram in

the (v, p)-plane in which are

indicated the regions where

phases 1 and 2 are stable, the

binodal curves (continuous

lines) and the binodal region

where the two phases coexist

(2+1). In the diagram an

isotherm T = T0 (dash-dotted

line) has also been represented

p

p0

v2 v1 v

12

2 + 1

T = T0
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Fig. 2.11 van der Waals

loop of the Helmholtz free

energy per particle f (T,v) at

a temperature T = T0. In the

concave branch v′2 < v < v′1
(broken line) the system is

unstable (χT < 0). At v = v1

and v = v2 the curve has the

same tangent (dotted line)

f

v2 v2′ v1′ v1 v

T = T0

p0 = p0(T0) is the pressure at coexistence, and it is required that this difference

vanishes, then

f (T0,v2)− f (T0,v1)− p0(v1 − v2) = 0 , (2.80)

i.e., µ1(T0, p0) = µ2(T0, p0), which is the condition for chemical equilibrium of the

phases. This then proofs Maxwell’s rule.

2.8.4 An Example of a Phase Diagram

The phase diagram of a system contains, in general, more than two phases. To ob-

tain the phase diagram one has to analyze separately the coexistence of each pair

of phases, following the methods described in the previous subsections, and their

relative stability.

Fig. 2.12 Phase diagram in

the (v,T )-plane in which are

indicated the regions where

phases 1 and 2 are stable, the

spinodals (broken lines), the

binodals (continuous lines),

and the binodal region where

the two phases coexist (2+1)

T

T0

v2 v2’ v1’ v1 v

2 1

2 + 1
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Fig. 2.13 Phase diagram in

the (v, p)-plane in which are

indicated the regions where

phases 1 and 2 are stable,

the spinodals (broken lines),

the binodals (continuous

lines), and the binodal region

where the two phases coexist

(2+1). In the diagram an

isotherm T = T0 has been

included (dash-dotted line).

The rectilinear segment, at

a pressure p0, is chosen so

that the areas abc and cde are

equal

p

p0

v2 v2’ v1’ v1 v

T = T0

a

b

c

d

e

2 1

2+1

As a typical example, Figs. 2.14 and 2.15 show the phase diagrams of a simple

system containing three phases: solid (S), liquid (L), and vapor (V).

Note that these three phases may coexist simultaneously at a point (T, p) of the

phase diagram called the triple point (Tt , pt), which is the solution of the following

system of equations,

µ1(Tt , pt) = µ2(Tt , pt) = µ3(Tt , pt) , (2.81)

in which the three phases coexist. Observe that in these diagrams the vapor–liquid

coexistence line ends at a critical point (Tc, pc) where the two phases have the same

structure and merge into the so-called fluid phase (F). Note that the liquid only oc-

cupies a small region of the diagrams, between the triple point and the critical point,

and that there is no solid–fluid critical point. All transitions are first-order transitions

Fig. 2.14 Phase diagram

of a simple system in the

(T, p)-plane. The phases are S

(solid), L (liquid), V (vapor),

and F (fluid). Tc and pc are the

temperature and pressure of

the liquid–vapor critical point.

Tt and pt are the temperature

and pressure of the triple point

in which the three phases S, L,

and V coexist

p

pc

pt

Tt Tc T

S

L

V

F
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T

Tc

Tt

vS vL vc vV v

p

pc

pt

S L V

F

S + F

S + L

S + V

L + V

Fig. 2.15 Phase diagram of a simple system in the (v,T ) and (v, p) planes. The phases are S (solid),

L (liquid), V (vapor), and F (fluid). Tc, pc, and vc are the temperature, pressure, and volume per

particle of the liquid–vapor critical point. Tt and pt are the temperature and pressure of the triple

point in which the three phases S, L, and V coexist. vS,vL, and vV are the volumes per particle at

coexistence. Note the discontinuity in the slopes of the binodals for T = Tt

(lQ �= 0) except at the critical point where the transition is continuous (lQ = 0). In-

cluded in the (v,T ) and (v, p) diagrams are the binodals and the coexistence regions.

vc is the volume per particle at the critical point and the volumes per particle of the

phases S, L, and V at the triple point are denoted by vS, vL, and vV .
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Chapter 3

Statistical Physics

Abstract From the analysis given in the first two chapters the reader may have

noticed the fundamental difference between the mechanical and the thermodynamic

description of a system. In the first case, the mechanical state of N material points at

time t is determined by 3N generalized coordinates and their 3N conjugate momenta

(classical mechanics) or by the wave function (quantum mechanics). In the second

instance, the equilibrium state of a simple closed system is specified by only two

independent variables, such as the volume and the entropy.

It is well known that the laws of mechanics provide an adequate description of

the motion in systems with a small number of degrees of freedom. This is indeed

the case of the two-body problem whose most representative examples are the plan-

etary motion in classical mechanics and the hydrogen atom in quantum mechanics.

The integrability of mechanical systems, namely the possibility of predicting their

time evolution given some prescribed initial conditions is, however, the exception

rather than the rule. The most evident manifestation of the complexity of mechani-

cal motions is the chaotic behavior of their evolution even for systems with only a

few degrees of freedom. The origin of chaos lies in the non-linear character of the

equations of motion which, as a consequence, implies that a small change of the

initial condition completely alters the time evolution.

Assume that an experiment is performed in which one measures the final pressure

of a gas initially occupying one half of a cubic box of volume V , at the temperature

T which is held constant throughout the experiment. Once the wall separating the

two halves of the box is removed, the gas, which starts from a non-equilibrium initial

condition, expands all over the box until, after a certain time, the pressure reaches

a stationary equilibrium value. When the system is initially prepared, its mechan-

ical state is defined, within classical mechanics, by some generalized coordinates

and their conjugate momenta. If the experiment is repeated, the result of the new

measurement, except for small fluctuations, will be the same as that of the first ex-

periment. On the other hand, it is clear that the initial mechanical state of the second

experiment will in general be different from the one that the gas had in the first

experiment. It should be noted that even in the case where both initial mechanical

states are rather close to each other, their time evolution will in general be totally
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different due to the instability of the solutions to Hamilton’s equations. The ques-

tion thus arises as to why the same macroscopic result is reproduced by the different

experiments.

3.1 Dynamical Functions and Fields

Consider a classical fluid of N particles of mass m contained in a closed region

R. As was discussed in Chap. 1, the mechanical state of the fluid is determined

by 3N generalized coordinates and their 3N conjugate momenta. If the descrip-

tion of the mechanical state of the fluid is made using the Cartesian coordinates of

the particles, rN , and their conjugate momenta, pN , such a state being indicated by

(q, p) = (rN ,pN), the corresponding Hamilton’s equations are

ṙi =
1

m
pi, ṗi = −∂UN(rN)

∂ri

, (i = 1, . . . ,N) , (3.1)

where it has been admitted that the Hamiltonian is given by (1.9).

In order to analyze, within the framework of classical mechanics, the law of con-

servation of the number of particles, consider a volume element dr in the Euclidean

space centered at a point r. Let ρ1(q, p;r) be the dynamical function that represents

the local density of particles at r. One may then write

ρ1(q, p;r) ≡
N

∑
i=1

δ (r− ri) , (3.2)

where δ (r− ri) is the Dirac delta function. Equation (3.2) expresses that particle

i does not contribute to the local density at r if ri �= r and that it contributes an

infinite amount (since it has been assumed that the particles are point particles) if

ri = r. Upon integration of (3.2) over the region R in which the fluid is contained,

one obtains
∫

R
drρ1(q, p;r) = N . (3.3)

The time evolution of the dynamical function ρ1(q, p;r) is, according to (1.23),

ρ̇1(q, p;r) = {ρ1,HN(α)} =
N

∑
i=1

pi

m
·∇iδ (r− ri)

= −∇ ·
N

∑
i=1

viδ (r− ri) , (3.4)

where ∇i = ∂/∂ri, ∇ = ∂/∂r, vi = pi/m and use has been made of the fact that

∇iδ (r− ri) = −∇δ (r− ri). The above equation may be written in the form
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ρ̇1(q, p;r) = −∇ · j(q, p;r) , (3.5)

where the dynamical function current density j(q, p;r) has been defined through

j(q, p;r) ≡
N

∑
i=1

vi δ (r− ri) . (3.6)

At this stage, two observations should be made. The first one is that the dynamical

functions ρ1(q, p;r) and j(q, p;r) are irregularly varying functions of space and

time, since their evolution depends on the values of the coordinates ri and of the

velocities vi of all the particles in the fluid. The second one is that since the physical

trajectories of the mechanical systems are, in general, unstable, a small modification

in the initial mechanical state (q0, p0) notably changes the evolution of ρ1(q, p;r)
and j(q, p;r), although, for each initial state of the fluid, these dynamical functions

must comply with the conservation law (3.5).

These observations contrast appreciably with the description of the fluid using the

mechanics of continuous media. In the latter, the fluid is characterized by variables

that, in the simplest cases, are continuous functions of space and time. Examples of

such variables are the density field ρ1(r,t) and the velocity field u(r,t). The first one

is the density of particles, namely ρ1(r,t)dr is the number of particles that at time

t are contained in the volume element dr centered at r, such that upon integration

over the region R that contains the fluid one obtains

∫

R
drρ1(r,t) = N . (3.7)

The time evolution of the density field may be derived from the following reasoning.

Let R1 be an open region contained in R and Ω1 its surface. The variation of the

number of particles in R1 is due to the flow of particles through Ω1, namely

d

dt

∫

R1

drρ1(r,t) =

∫

R1

dr
∂ρ1(r,t)

∂ t
= −

∫

Ω1

dΩ ·u(r,t)ρ1(r, t)

= −
∫

R1

dr∇ · [ρ1(r,t)u(r,t)] , (3.8)

where the velocity field or mean fluid velocity at the point r and at time t, u(r,t),
has been introduced and the surface integral has been transformed into a volume

integral. Since (3.8) must be satisfied for any R1, it follows that

∂ρ1(r,t)

∂ t
= −∇ · j(r,t) , (3.9)

where j(r,t) = ρ1(r, t)u(r,t) is the current density field. In the mechanics of con-

tinuous media, (3.9) is known as the continuity equation. Equations (3.5) and (3.9)

are, of course, two equivalent forms of the law of conservation of the number of par-

ticles. In contrast with the first form, the second one does not make any reference
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to the mechanical state of the fluid. If both equations represent the same physical

process, the question arises as to how to relate one to the other.

It seems clear that to the dynamical function ρ1(q
t , pt ;r), where qt , pt indicates

the mechanical state of the system at time t, one has to associate the density field

ρ1(r,t) and in general to a dynamical function a(qt , pt ;r) a field a(r,t) will be as-

sociated. If the mechanical state qt , pt is expressed in terms of the initial mechanical

state q0, p0, which in what follows will be indicated by q, p, and of time t, one may

write

a(qt , pt ;r) = a(q, p;r,t)→ a(r,t) ≡ 〈a(q, p;r,t)〉 . (3.10)

This correspondence has to meet two requirements. The first one is that the irregular

spatio-temporal evolution of the dynamical function must be smoothed out when the

corresponding field is obtained. The second condition is that the field cannot depend

on the initial mechanical state of the system. If one defines

a(r,t) ≡
∫

dq

∫
d pa(q, p;r,t)ρ(q, p) , (3.11)

the correspondence is established upon multiplication of a(q, p;r,t) by a function

ρ(q, p) and subsequent integration over all the initial mechanical states (q, p). If the

function ρ(q, p) is positive definite in phase space,

ρ(q, p) ≥ 0 , (3.12)

and normalized

1 =

∫
dq

∫
d pρ(q, p) , (3.13)

then (3.11–3.13) associate a dynamical function with a field, which is the average

value of the dynamical function with a probability density ρ(q, p) in the phase space

of the system (see Appendix B). This is the first postulate of classical statistical

physics. It fulfills the two required conditions. On the one hand, multiplication of

the dynamical function by the probability density and integration over the complete

phase space allows the field variable so defined to be continuous in space and time.

On the other hand, the field is independent of the initial mechanical state of the

system because in (3.11) one averages over all possible initial states.

3.2 Liouville’s Equation

It is important to point out that, according to (3.11), the time evolution of the field

a(r,t) is induced by that of the dynamical function a(q, p;r,t). From (1.32) it fol-

lows that

a(q, p;r,t) = e−LNta(q, p;r,0) , (3.14)

(note that the Liouville operator LN acts upon the variables (q, p)), and hence (3.11)

may be written as
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a(r, t) =

∫
dq

∫
d p

[
e−LNta(q, p;r,0)

]
ρ(q, p)

=

∫
dq

∫
d pa(q, p;r,0)

[
eLN tρ(q, p)

]
, (3.15)

where to go from the first to the second expression an integration by parts has been

performed (since LN is a linear differential operator), and it has been admitted that

ρ(q, p) and all of its derivatives vanish at the limits of integration. Equation (3.15)

may also be written as

a(r,t) =
∫

dq

∫
d pa(q, p;r,0)ρ(q, p;t) , (3.16)

where the following definition has been introduced,

ρ(q, p;t) ≡ eLNtρ(q, p) . (3.17)

From (3.17) it follows that the evolution of the probability density is different from

that of the dynamical function (3.14). Indeed, while ρ(q, p;t) is obtained by al-

lowing the operator eLNt act upon the probability density at the initial instant, the

operator that produces a displacement of the dynamical function in a time t is e−LN t .

After derivation of (3.17) with respect to t one obtains

∂ρ(q, p;t)

∂ t
= LNρ(q, p;t) = {HN(α),ρ(t)} , (3.18)

which is known as the Liouville equation. Note that by transforming (3.11) into

(3.16) the time evolution of the field a(r,t) is induced in the latter expression by

that of the probability density ρ(q, p;t). In this way, the Liouville equation plays a

key role in classical statistical physics.

3.3 Systems in Equilibrium

Note that in thermodynamics the intensive variables (the particle density, the pres-

sure, etc.) are uniform and time-independent magnitudes, which represent a partic-

ular case of (3.16) in which a(r,t) does depend explicitly neither on r nor on t. This

implies that, in order to derive the intensive variables of a system in thermodynamic

equilibrium, the probability density has to be stationary (it cannot depend explicitly

on time) and, therefore, from (3.18) it follows that

{HN(α),ρ} = 0 . (3.19)

This equation is, of course, much simpler than (3.18). As a matter of fact, according

to the first postulate of classical statistical physics, ρ(q, p; t) can be any non-negative

normalizable function. In the case of systems in thermodynamic equilibrium, (3.19)
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indicates that ρ(q, p) is a function of the integrals of motion of the system. This fact,

although in itself a great simplification, does not specify the probability density of

a system in equilibrium, since this probability density may be any function of the

integrals of motion (provided the conditions given in (3.12) and (3.13) are satisfied).

As indicated in Chap. 1, in general every mechanical system in the absence of ex-

ternal forces has only seven additive integrals of motion: energy, linear momentum,

and angular momentum. Note that, in view of the fact that linear momentum and

angular momentum are associated to a global translation and a global rotation of the

system, respectively (which should not affect the thermodynamics of the system), it

may be admitted that the only relevant integral of motion is the energy. Therefore,

the second postulate of classical statistical physics is that in a system in equilibrium

the probability density is a function of the Hamiltonian of the system, namely

ρ(q, p) = ρ ((HN(q, p;α)) , (3.20)

and hence (3.16) is written as

〈a〉 =

∫
dq

∫
d pa(q, p)ρ(HN(q, p;α)) . (3.21)

Observe that in order for (3.21) to be useful, one still has to know explicitly the

function ρ(HN(q, p;α). This question is addressed in the following chapters.

Once the connection between mechanics and thermodynamics has been estab-

lished, the energy E of a system of N particles in equilibrium whose only external

parameter is the volume V is, according to (3.21), the average value of the hamilto-

nian, namely

E =
∫

dq

∫
d pHN(q, p;V )ρ(HN(q, p;V )) . (3.22)

Although this definition seems natural, it must still comply with the requirement that

the energy of the system is a function of the extensive variables entropy, S, volume,

V , and number of particles, N, as it is postulated in the fundamental equation of

thermodynamics (2.8). It is clear that E is a function of the number of particles N.

The dependence upon the volume V of the system is also evident since, in order

to confine the particles within a region R, the Hamiltonian of the system must in-

clude an external potential (see (1.20)), which makes it explicitly dependent on V .

In order to determine how the energy depends on the entropy one must recall that,

as indicated in Chap. 2, S is an extensive variable with no mechanical counterpart.

According to Gibbs, it is postulated that the entropy of a system of N particles and

energy E contained in a region R of volume V is given by the expression:

S ≡ −kB

∫
dq

∫
d p ln

[
h3Nρ(HN(q, p;V ))

]
ρ(HN(q, p;V ))

=
〈
−kB ln

[
h3Nρ(HN(q, p;V ))

]〉
, (3.23)

where kB is Boltzmann’s constant and h Planck’s constant. Note that S is the average

value of a non-mechanical property, so that the entropy is, in this sense, a thermal
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variable (it is not the average value of a dynamical function). Since, according to

(3.22), E depends on the choice of ρ(HN(q, p;V )), E is related, albeit indirectly,

with S. One refers to each particular choice of ρ(HN(q, p;V )) as a “Gibbs ensem-

ble” and some particular cases will be studied in the following chapters. In one of

these ensembles, the microcanonical ensemble, in which the energy of the system

is constant, it will be shown in Chap. 4 that (3.23) is the fundamental equation of

thermodynamics S = S(E,V,N).
Up till now the postulates of classical equilibrium statistical physics have been

introduced and they may be summarized as follows. In the first, one associates a field

variable to every dynamical function and this field variable is defined as the average

value of the dynamical function over a Gibbs ensemble. The thermodynamics of

the system is obtained from the second postulate when the probability density is

stationary and a function of the Hamiltonian. Although these postulates have been

derived using intuitive ideas, their rigorous justification is neither simple nor well

known. In spite of that, it seems gradually more evident that the statistical physics

of equilibrium systems is a well-established theory. In the last three sections of

this chapter, some basic questions related to these postulates are analyzed whose

rigorous study would require a level of mathematics exceeding the one of this text.

But before doing so, in the next section the postulates of quantum statistical physics

are introduced.

3.4 Density Operator

The mechanical state of a quantum system at a given time t = 0 is completely spec-

ified if the values of a complete set of commuting observables are known. Such a

state is described by a wave function (or vector in the Hilbert space H) |Ψ〉 ≡Ψ(q),
which is an eigenvector of the observables and is assumed to be normalizable,

namely 〈Ψ |Ψ〉= 1. This is the maximum information that may be obtained in quan-

tum mechanics and hence in this instance it is said that the system is in a pure state.

The expectation value of an operator â in this state is given by 〈Ψ |â|Ψ〉.
Note the analogy between the evolution of a pure state, represented in quantum

mechanics by a vector |Ψ〉, and the physical trajectory in classical mechanics. In the

first case, according to Schrödinger’s equation (1.56), a pure state only changes its

phase, so that its time evolution is determined by the complete set of commuting ob-

servables. In the second case, the trajectory in phase space is completely determined

by the intersection of the 6N–1 “surfaces” Cn(q, p) = C∗
n , where Cn(q, p) is the n-th

integral of motion whose value is C∗
n . The complete set of commuting observables

in quantum mechanics plays, therefore, a role equivalent to that of the integrals of

motion in classical mechanics.

As it also occurs in some systems in classical mechanics, where only a few in-

tegrals of motion are known, it is likely that in a quantum system all the required

information to determine the eigenvector |Ψ〉 may not be known, i.e., it may happen

that not all the values of a complete set of commuting observables are available.
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In such a case, assume that the system may be found in pure states |Ψi〉 = Ψi(q)
(which although normalizable are not necessarily orthogonal) with probabilities pi.

It is then postulated that the expectation value of an operator â is given by the ex-

pression

〈â〉 = ∑
i

pi〈Ψi|â|Ψi〉 , (3.24)

where the probabilities {pi} verify the following conditions:

pi ≥ 0 , (3.25)

and

∑
i

pi = 1 . (3.26)

Equations (3.24–3.26) are the quantum mechanical equivalent to (3.11–3.13) and

constitute the first postulate of quantum statistical physics. Observe that 〈â〉 in (3.24)

contains two types of averages. The first one, 〈Ψi|â|Ψi〉, is of quantum origin and

represents the expectation value of the operator â in the state |Ψi〉 while the second

average, which is of a statistical nature, associates a probability pi to the state |Ψi〉.
When in (3.24) all the pi vanish except the one of a particular state, one obtains the

expectation value of the operator in a pure case so that, for the sake of distinguishing

it from the latter, in (3.24) it is said that the state of the system is a mixed state.

The analogy between classical and quantum statistics may be more clearly seen

if one defines the density operator or density matrix ρ̂ as

ρ̂ = ∑
i

pi|Ψi〉〈Ψi| . (3.27)

Given an orthonormal basis set |bn〉 and an operator â, one has

Tr(âρ̂) = ∑
n

〈bn|âρ̂ |bn〉 = ∑
n

∑
i

pi〈bn|â|Ψi〉〈Ψi|bn〉

= ∑
n

∑
i

pi〈Ψi|bn〉〈bn|â|Ψi〉

= ∑
i

pi〈Ψi|â|Ψi〉 = 〈â〉 , (3.28)

where the spectral resolution of the identity (1.52) has been used. It may also be

shown further that ρ̂ is self-adjoint ρ̂† = ρ̂ (note that since ρ̂ contains an infinite

number of terms, one may not affirm that the adjoint of the sum is equal to the sum

of the adjoints, nevertheless the proof is simple), positive (see (1.55)),

〈bn|ρ̂ |bn〉 = ∑
i

pi〈bn|Ψi〉〈Ψi|bn〉 = ∑
i

pi|〈bn|Ψi〉|2 ≥ 0 , (3.29)

and of unit trace,
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Tr ρ̂ = ∑
n

〈bn|ρ̂|bn〉 = ∑
n

∑
i

pi〈bn|Ψi〉〈Ψi|bn〉

= ∑
n

∑
i

pi〈Ψi|bn〉〈bn|Ψi〉

= ∑
i

pi〈Ψi|Ψi〉 = ∑
i

pi = 1 , (3.30)

where the spectral resolution of the identity and the fact that the states |Ψi〉 are nor-

malized have been accounted for. Equations (3.28–3.30) are the quantum equivalent

to (3.11–3.13).

Observe that since in the Schrödinger picture the operators â do not change with

time and the states evolve according to Schrödinger’s equation (1.56), the time de-

pendence of 〈â〉 is induced by the evolution of the density operator. This evolution

equation is written as

ih̄
∂ ρ̂(t)

∂ t
= ih̄∑

i

pi

[
∂ |Ψi(t)〉

∂ t
〈Ψi(t)|+ |Ψi(t)〉

∂ 〈Ψi(t)|
∂ t

]

= ∑
i

pi[ĤN(α)|Ψi(t)〉〈Ψi(t)|− |Ψi(t)〉〈Ψi(t)|ĤN(α)]

= [ĤN(α), ρ̂(t)] , (3.31)

which is known as von Neumann’s equation (which is the quantum equivalent to

Liouville’s equation). In von Neumann’s equation, the commutator [ĤN(α), ρ̂(t)]
plays the role of the Poisson bracket {HN(α),ρ(t)} in (3.18).

In a system in equilibrium the average values 〈â〉 do not depend on time, and

hence the density operator is stationary (it cannot depend explicitly on time). This

implies that, according to (3.31), ρ̂ commutes with ĤN(α). In analogy with the

classical case, it is postulated that the density operator of a system in equilibrium is

only a function of the Hamiltonian operator, i.e.,

ρ̂ = ρ̂
(
ĤN(α)

)
. (3.32)

This second postulate of quantum statistical physics, by which it is admitted that ρ̂ is

not a function of operators that represent conserved variables but only of ĤN(α), is

justified in a certain sense by the fact that all mechanical systems conserve energy.

The different choices of ρ̂(ĤN(α)) give rise to the Gibbs ensembles of quantum

statistical physics.

3.5 Ergodicity

Consider a classical system of N particles in equilibrium whose Hamiltonian is

HN(q, p;α). According to (3.21), the thermodynamic variable 〈a〉 is the average

value of a dynamical function a(q, p) taken over a Gibbs ensemble, namely
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〈a〉 =

∫
dq

∫
d pa(q, p)ρ(HN(q, p;α)) , (3.33)

where ρ(HN(q, p;α)) is a stationary probability density. If the postulates are correct,

the result of (3.33) should reproduce the experimental value of 〈a〉.
Note that since the majority of experimental measurements are performed during

a small but finite interval of time, as the measurement proceeds a system of N parti-

cles evolves through a series of mechanical states (qt , pt) with ti < t < t f , where ti is

the time at which the measurement is initiated and t f the time at which the measure-

ment is completed. Let (q, p) be the mechanical state of the system at time t = 0.

According to Boltzmann, since every experimental measurement requires a finite

time (compared, say, with the collision time between particles), one may reasonably

wonder whether the average statistical value (3.33) is equal to the average temporal

value of the dynamical function a(q, p; t) where the average is taken over a period

of time τ = t f − ti, i.e.,

āτ(q, p) =
1

τ

∫ τ

0
dt a(q, p;t) . (3.34)

There is an important branch of statistical physics, referred to as “Ergodic Theory”,

which studies the equivalence between (3.33) and (3.34). The most important con-

clusion of this theory is that if the phase space trajectory densely covers the energy

surface HN(q, p;α) = E , then the system is ergodic, namely

ā ≡ lim
τ→∞

āτ(q, p) = 〈a〉 , (3.35)

which establishes the equivalence of the average over the microcanonical Gibbs

ensemble (i.e., the ensemble whose probability density is uniform on the energy

surface and which will be analyzed in Chap. 4) and the time average over an infi-

nite time interval, which is independent of the initial condition. The latter may be

obtained approximately from “Molecular Dynamics” simulations (see Chap. 7) in

which āτ(q, p) is determined over a time interval τ much greater than the collision

time between particles. The interpretation of (3.35) is the following. Assume that

one starts from an initial mechanical state of a conservative system. This state is on

the energy surface HN(q, p;α) = E and during the time evolution remains on this

surface. When τ → ∞ one should expect that the trajectory has visited almost every

point of the surface (except for a set of measure zero). If at any time the mechanical

state of the system is represented by a point, the picture that emerges, after a time

τ → ∞, is that of a cloud of points covering densely the surface. The time average

of a dynamical function is equivalent, in this case, to the average value of the same

dynamical function over the Gibbs ensemble whose probability density is uniform

on the energy surface (microcanonical ensemble).

Another fundamental aspect of (3.35) is that when the statistical and time av-

erages are equal, everything seems to indicate that the statistical average (3.33) is

nothing else but an alternative form to evaluate (3.34) with the advantage that in

the former it is not required to solve the equations of motion of the system. There
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are, however, two important ideas to be emphasized. By definition, the time average

of a dynamical function (3.34) when τ → ∞ is independent of time. The average

over a Gibbs ensemble (3.16) may either be independent of time if the probability

density is stationary, or a function of time if the probability density depends explic-

itly on time. Since it has been postulated that the connection between dynamical

functions and fields is made through (3.16), the mechanical justification of (3.35) is

only possible for systems in equilibrium. Recall further that the ergodic theorem is

based on the fact that the physical trajectory is regular enough on the energy surface

HN(q, p;α) = E . It may be shown that this is indeed true not only in some systems

of N ≫ 1 particles, but also in some systems with a reduced number of degrees of

freedom. Ergodicity seems, thus, to be related with the instability of the physical

trajectories of mechanical systems and not with the number of particles that con-

stitute the system. In the following section it is shown, however, that in order to

obtain the intensive variables of thermodynamics it is necessary to study the system

in the so-called thermodynamic limit in which the number of particles of the system

N → ∞. Therefore, the ergodic problem turns out to be unrelated to the study of the

thermodynamics of the system.

3.6 Thermodynamic Limit

According to (3.33), the intensive thermodynamic variables are the average values

of certain dynamical functions over a Gibbs ensemble. Since there exist different

ensembles, as will be seen in the following chapters, the average values in each

ensemble will, in general, be different. Under certain conditions, in what is known

as the “Thermodynamic Limit” (TL), it is possible to show that the intensive ther-

modynamic variables are independent of the probability density with which one

performs the average in (3.33).

In the next chapters the microcanonical, canonical, and grand canonical ensem-

bles will be introduced. These ensembles are defined by a probability density in the

phase space of the system and describe an isolated, a closed, and an open system,

respectively. To each ensemble a thermodynamic potential will be associated. The

corresponding thermodynamic potentials are the entropy S (E,V,N) (microcanon-

ical), the Helmholtz free energy F (T,V,N) (canonical), and the grand potential

Ω (T,V,µ) (grand canonical). Before introducing the thermodynamic limit, let us

first consider some properties of these thermodynamic potentials. As indicated in

Chap. 2, all these potentials are extensive variables. That means, for example, the

entropy S (E,V,N) cannot be an arbitrary function of the extensive variables E,V ,

and N. Indeed, the extensivity condition reads

S (λ E,λV,λ N) = λ S (E,V,N) , (3.36)

where λ is an arbitrary positive real number. Setting λ = 1/V in (3.36) leads to
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S (E,V,N) = VS (e,1,ρ) ≡V s(e,ρ) , (3.37)

where s(e,ρ) is the entropy per unit volume, which is a function of the intensive

variables e = E/V and ρ = N/V .

Since the Helmholtz free energy is a function of the extensive variables V and N,

the extensivity condition reads in this case

F (T,λV,λ N) = λ F (T,V,N) , (3.38)

and setting λ = 1/V in (3.38) yields

F (T,V,N) = VF (T,1,ρ) ≡V f (T,ρ) , (3.39)

where the Helmholtz free energy per unit volume f (T,ρ) depends on the intensive

variables T and ρ .

Finally, the extensivity condition for the grand potential is

Ω (T,λV,µ) = λ Ω (T,V,µ) , (3.40)

since it only depends on the extensive variable V . Again, setting λ = 1/V in (3.40)

leads to

Ω (T,V,µ) = VΩ (T,1,µ) ≡−V p(T,µ) , (3.41)

where, after (2.39), p(T,µ) is the pressure, which is a function of the intensive vari-

ables T and µ. In summary, the extensivity of the three thermodynamic potentials

implies that they can be written as the product of the volume of the system by a

function of two intensive thermodynamic variables.

In order to introduce the thermodynamic limit, note that the average (3.33) is a

function of the volume V of the region R in which the system is contained. More-

over, since the limits of integration of the coordinates of the particles go up to the

boundary of the region R, the result is also dependent on the particular geometry of

the region under consideration. For the sake of avoiding this dependence, one may

consider the following limiting process. Assume that the average (3.33) is deter-

mined for a sequence of regions of the same geometry but with increasing volumes

V = V1 < V2 < V3 < .. . Let 〈a〉k (k = 1,2, . . .) denote the values of the intensive

variables in each of the systems of the sequence. It seems evident that as the volume

of the region R grows the influence of the geometry of R should become smaller,

and so one could expect that the intensive variables 〈a〉k may be written in the form

〈a〉k = ã+ ãk(Vk) , (3.42)

where the first term is independent of the geometry of the systems in the sequence

and the second one verifies the condition

lim
Vk→∞

ãk(Vk) = 0 . (3.43)
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If these conditions are met, the variable ã in (3.42) may be interpreted as the “intrin-

sic value” of the intensive variable, which may, therefore, be obtained by computing

the limit

lim
Vk→∞

〈a〉k = ã . (3.44)

Observe that if the systems in the sequence only differ in their volume Vk, the sys-

tems “scale”with the original system if V is the unique independent extensive vari-

able of the thermodynamic potential associated to the ensemble (grand ensemble).

In general, in order for the systems in the sequence to be equivalent, it is neces-

sary to enforce that all the extensive variables grow proportionally to the volumes

Vk (k = 1,2, . . .), thereby leading to a sequence of systems that scale with the origi-

nal system. For instance, if ρ = N/V is the density of particles of the original system,

the numbers of particles of the systems in the sequence N = N1 < N2 < N3 < .. .
have to grow in such a way that the sequence ρk = Nk/Vk (k = 1,2, . . .) fulfills the

condition

lim
Vk→∞

ρk = ρ . (3.45)

Therefore, when V and N are the independent extensive variables of the thermo-

dynamic potential associated to the ensemble (canonical ensemble), the thermody-

namic limit is defined by

TL : Vk → ∞, Nk → ∞, ρk → ρ < ∞ , (3.46)

while when the independent extensive variables of the thermodynamic potential as-

sociated to the ensemble are V,N, and E (microcanonical ensemble), the thermody-

namic limit is defined by

TL : Vk → ∞, Nk → ∞, Ek → ∞, ρk → ρ < ∞, ek → e < ∞ , (3.47)

where e is the energy per unit volume of the original system and ek = Ek/Vk, with

E = E1 < E2 < E3 . . . the energy of the systems in the sequence.

It is clear that since in the thermodynamic limit one only imposes the require-

ment that in the system of infinite volume a reduced number of variables, ρk in

(3.46) and ρk and ek in (3.47), be the same as that of the original system, this does

not guarantee that all the intensive variables (3.33) approach to finite limits ã in the

thermodynamic limit and neither that these limits are equal to the values of the in-

tensive variables of the original system. One would have to prove that these limiting

values do not depend neither on the geometry of the chosen regions which form the

sequence, nor on the chosen sequence, nor on the probability density with which

one performs the averages of the dynamical functions. If one could prove all this,

the idea of applying the thermodynamic limit would, therefore, be to obtain out of

the original system a “scaled”system in which the thermodynamic variables (3.33)

are independent of the ensemble and of the particular geometry of the region R. Al-

though the mathematical formulation of the thermodynamic limit is not simple, in

what follows some known results are summarized.
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Since the average values over a Gibbs ensemble are a function of the Hamiltonian

of the system, the existence of the thermodynamic limit depends on some proper-

ties of H int
N (q, p;α). The first one, known as the “stability condition”, is that the

interaction energy must be bounded from below by a limit which is proportional to

N, i.e.,

H int
N (q, p;α) ≥−AN , (3.48)

where A is a positive constant independent of N. Physically, (3.48) expresses the fact

that the system cannot collapse, namely that the energy per particle will not become

infinitely negative when N increases. The second property is that the interaction

pair potential V (r) (assuming that the interactions are of that kind) has to meet the

“weak decay condition”

V (r) ≤ B

rd+ε
, (r ≥ R > 0) , (3.49)

where d is the dimensionality of space and B and ε are positive constants. This

equation expresses the fact that V (r) may not be too repulsive at large distances,

since otherwise the system would explode. Thus, V (r) has to decrease when r ≥ R

in such a way that ∫

r≥R
drV (r) < ∞ . (3.50)

An important exception to (3.50) is the Coulomb potential V (r) = e2/r, where e is

the electric charge of the particles, since in this case (3.50) yields for d = 3:

∫

r≥R
drV (r) =

∫ ∞

R
drV (r) = 4πe2

∫ ∞

R
drr = ∞ . (3.51)

Observe, however, that for systems of electrically charged particles there must be

at least two kinds of particles, e.g., electrons and positive ions, in order to maintain

the overall electroneutrality. For mobile charges (plasmas and colloidal dispersions)

the electroneutrality condition also holds locally and the particles adjust themselves

in such a way that there is a screening of the Coulomb interactions at large dis-

tances (see Sects. 7.3 and 8.10.2). The resulting effective interaction, which decays

as e−κr/r, with κ the Debye screening parameter, verifies both the stability condi-

tion and the weak decay condition.

In general, however, the exact pair potential is not known, or is too complicated,

and one then uses instead some simple model for V (r). The explicit expression of

such a model pair potential must however be compatible with the existence of a

thermodynamic limit for the model system. An exact result which is helpful in the

construction of acceptable V (r) -functions is provided by the following statement.

If V (r) does admit a finite Fourier transform

Ṽ (k) =

∫
dre−ik·r V (r) < ∞ , (3.52)
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then a necessary and sufficient condition for the existence of the thermodynamic

limit is

Ṽ (k) ≥ 0 (∀k) , (3.53)

including k = 0. For instance, when as above V (r) = e2/r, then Ṽ (k) = 4πe2/k2

and hence Ṽ (0) does not exist, in agreement with (3.51). But, on the contrary, when

V (r) = e2e−κr/r, then Ṽ (k) = 4πe2/
(
k2 + κ2

)
, and 0 < Ṽ (k) < ∞ (∀k) including

k = 0, when κ �= 0. Consider next a potential function of the form

V (r) = ε

(
e−ar

ar
− e−br

br

)
, (3.54)

which in contradistinction with the previous examples, which are repulsive, contains

a repulsion of range 1/a and an attraction of range 1/b, with ε setting the scale of

the interaction energy. In this case

Ṽ (k) =
4πε

a

(
1

k2 + a2
− a

b

1

k2 + b2

)
, (3.55)

and hence Ṽ (k) ≥ 0 implies here b > a. In other words, a system with such a pair

potential will posses a thermodynamic limit only when the attractions decay more

rapidly than the repulsions. Of course, not all the plausible V (r)-functions will have

a finite Ṽ (k). For instance, for the Lennard-Jones (LJ) model:

V (r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

, (3.56)

often used to model atomic systems (see Sect. 8.2.4), Ṽ (k) does not exist. Neverthe-

less, the Lennard-Jones potential does satisfy (3.48) and (3.50) guaranteeing thereby

the existence of the thermodynamic limit for this system. The reason why Ṽ (k) does

not exist is easily seen to be due to the strongly repulsive character, ∼ (σ/r)12
, of

the Lennard-Jones potential V (r) at short distances, i.e., for r → 0. This is often

the case for potentials modeling atomic matter. On the contrary, in the case of soft

matter (see Chap. 8) the constitutive particles often experience only a much softer

repulsion at short distances leading, e.g., to a finite value for V (0). For instance, the

potential defined as

V (r) = 4ε

[(
σ

r + γσ

)12

−
(

σ

r + γσ

)6
]

, (3.57)

verifies 0 < V (0) < ∞ for 0 < γ < 1, whereas for γ = 0 the Lennard-Jones model

is recovered. In this case Ṽ (k) does exist when γ �= 0, but it is easily verified that

Ṽ (0) < 0 for γ > (2/33)1/6
, and therefore the thermodynamic limit will only exist

when the potential does not become too soft at r = 0, i.e., for 0 < γ < (2/33)1/6
,

otherwise the system will collapse in the thermodynamic limit. In summary, the
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thermodynamic limit will exist only when the pair potential V (r) is sufficiently

repulsive at short distances and decays to zero sufficienltly rapidly at large distances.

A third condition is that the thermodynamic limit has to be taken in such a way

that the system becomes infinite in all directions. This excludes, for instance, sys-

tems which are confined between walls. Finally, the thermodynamic limit cannot be

taken when the density of the system ρ = N/V is very small (very dilute system),

since in this case the particle–wall interactions dominate over the particle–particle

interactions.

Under these conditions it can be shown (from a mathematical point of view) that,

for a large number of dynamical functions a(q, p), the average value (3.33) has a

thermodynamic limit ã:

TL [〈a〉] = ã , (3.58)

which is independent of the Gibbs ensemble, namely of the probability density with

which the average of the dynamical function is taken (it is understood here that

in (3.58) the variable 〈a〉 is intensive). In other words, the thermodynamics can be

obtained from any Gibbs ensemble provided that, at the end of the calculations,

(3.58) is applied.

In particular, in the canonical ensemble it can be rigorously shown that by

defining

F (T,V,N) = −kBT ln

[
1

N!h3N

∫
drN

∫
dpNe−βHN(rN ,pN ;V)

]
, (3.59)

where β = 1/kBT , then

TL

[
1

V
F (T,V,N)

]
= f (T,ρ) < ∞ , (3.60)

i.e., the limit of F (T,V,N)/V is finite in the thermodynamic limit (3.46), when the

Hamiltonian HN

(
rN ,pN ;V

)
in (3.59) satisfies the stability condition (3.48) and the

weak decay condition (3.50). The function f (T,ρ) in (3.60) can then be identified

with the Helmholtz free energy per unit volume in (3.39). This function is moreover

concave in T and convex in ρ . On the other hand, the Helmholtz free energy per

particle f (T,v) = v f (T,ρ) , where v = 1/ρ, is a concave decreasing function of T

and a convex decreasing function of v (see Figs. 2.6 and 2.7). Observe that (3.59)

and (3.60) are, therefore, the mathematically rigorous justification of (3.39), which

has been derived from the extensivity condition of the thermodynamic potential.

Proceeding analogously with the microcanonical and macrocanonical ensembles, a

mathematically rigorous justification of (3.37) and (3.41) can also be found, lead-

ing to the final demonstration of the equivalence of the Gibbs ensembles. Observe

that from the thermodynamic point of view the equivalence of the thermodynamic

potentials is based, on the contrary, on the properties of Legendre’s transformation.

It should be noted that the thermodynamic limit, which seems to have only a sim-

ple operative interest in statistical physics, has also other much deeper implications.
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In fact, from a mathematical point of view, only in the thermodynamic limit is it

possible to show the existence of a phase transition. Moreover, in this limit a ther-

modynamic system cannot be unstable and hence, for instance, the existence of van

der Waals loops is not possible (see Fig. 2.11).

In reality, however, all systems studied, in the laboratory or on a computer, are

always finite. In this case, what is really measured or computed is 〈a〉k of (3.42).

The quantity which is needed to, say, verify the statistical theory is ã of (3.44).

Therefore, specific precautions have to be taken to ensure that ãk(Vk) of (3.42) can

be neglected so that 〈a〉k ≃ ã. In the laboratory, one usually realizes (3.43) approx-

imately by considering only large, macroscopic, systems. When studying a system

on a computer, one usually imposes periodic boundary conditions, so as to avoid a

too strong dependence of the results on the geometry of the surface of V , and one

estimates then 〈a〉k for different system-sizes and extrapolates the results to infinite

size by postulating a simple law for (3.43).

3.7 Symmetry Breaking

Two phases of a system may or may not differ in their symmetries as the liquid

and solid phases or the liquid and vapor phases, respectively. Normally, one of

the phases has the same symmetries as the Hamiltonian and the other phase has

a smaller number of symmetries, in which case it is said that in the latter phase

some of the symmetries have been broken, i.e., they no longer exist. For instance,

the symmetries of a Hamiltonian which is invariant under translation and rotation

are the same as those of the vapor and the liquid, which are uniform and isotropic

phases. This fact is evident since the intensive variables of these two phases are,

according to the postulates of statistical physics, average values of dynamical func-

tions with a probability density in phase space ρ(HN(q, p;α)). A solid, however,

does not have the symmetries of translation and rotation of the hamiltonian (it only

has partial symmetries). Therefore, in a crystal there are three crystallographic axes

along which the invariance under translation is broken and is reduced to a set of

discrete translations. At first sight, the existence of this symmetry breaking is not

compatible with the postulates, since the mere integration over the phase space can-

not change the symmetries of the Hamiltonian. Because in nature every phase has

some given symmetries, the question arises as to how to deduce the existence, say

of a solid, from the postulates of statistical physics.

One way to solve this problem is due to Bogoliubov. Assume that to the Hamil-

tonian of the system HN(q, p;α) one adds the contribution of an external field,

Hext
N (q, p), with less symmetry than HN(q, p;α), and thus referred to as the sym-

metry breaking field. Consider the Hamiltonian HN(q, p;α)+λHext
N (q, p), where λ

(0 ≤ λ ≤ 1) is a real parameter which measures the strength of the external field. It

is clear that the average,

〈a〉λ =
∫

dq

∫
d pa(q, p)ρ(HN(q, p;α)+ λHext

N (q, p)) , (3.61)
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will have the same symmetries as HN(q, p;α)+ λHext
N (q, p). When λ → 0 the sys-

tem, provided it is finite, cannot have any broken symmetry, but if this limit and the

thermodynamic limit are taken in the order

TL

[
lim
λ→0

〈a〉λ

]
= TL[〈a〉] = ã , (3.62)

or in the inverse order

lim
λ→0

TL [〈a〉λ ] = lim
λ→0

ãλ = ã0 , (3.63)

there are two possibilities. If ã0 = ã, it is said that the system does not admit any

symmetry breaking due to the field Hext
N (q, p). It may happen, on the other hand,

that ã0 �= ã in which case it is said that there exists in the system a phase with a

broken symmetry.

As a first example, consider a system of N magnetic moments or spins in a region

R of volume V in the absence of a magnetic field. If the Hamiltonian HN(q, p;V )
contains an isotropic interaction term between the magnetic moments (for instance,

a pair interaction proportional to the scalar product of two magnetic moments, as in

the so-called Heisenberg model which is analyzed in Chap. 9), the total magnetic

moment of the system (which is the average value of the total magnetic moment dy-

namical function over a Gibbs ensemble with a probability density ρ(HN(q, p;V ))
will be zero, hence the system is paramagnetic. The reason is that, since the Hamil-

tonian is invariant under rotations, there can exist no privileged direction in space.

Since in nature some materials, at temperatures below the so-called Curie temper-

ature, are ferromagnetic (they have a total magnetic moment different from zero in

the absence of a magnetic field), the question arises as to how one can obtain this

phase in statistical physics. As indicated in the previous section, in order to show the

existence of a phase transition (in this case the paramagnetic–ferromagnetic transi-

tion) it is necessary to take the thermodynamic limit (3.46). Observe, however, that

since in all the systems in the sequence of increasing volume the invariance of the

hamiltonian under rotations is maintained, the total magnetic moment in all of them

is always zero, even in the system of infinite volume. Therefore, the thermodynamic

limit is a necessary but not sufficient condition to show the existence of the tran-

sition. Bogoliubov’s method is based on “helping”the system to find a privileged

direction in space (the ordered phase). Such “help”has to be weak in order to en-

sure that the transition is a spontaneous phenomenon and not a forced one. To that

end, assume that one includes in the Hamiltonian of the system a term accounting

for the interaction between a magnetic field and the spins on the surface and such

that these surface spins become oriented in the same direction. Note that normally

surface effects are small in macroscopic systems and tend to zero in the thermo-

dynamic limit. This interaction term denoted by Hext
N (q, p) in Bogoliubov’s method

includes an external parameter (the magnetic field) that does not act on all the spins

of the system but only on those on the surface. It is worth noting that although this

magnetic field is weak, in all of the systems of the sequence of increasing volume
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(including the system of infinite volume) there is now a privileged direction. Once

the thermodynamic limit has been taken, in order to guarantee that the phenomenon

is spontaneous, one must also take the limit of zero field. According to Bogoliubov,

these two limits do not always commute and hence the results of (3.62) and (3.63)

may turn out to be different. In the first order of taking the limits (3.62) the system

is paramagnetic while in the second one the system may be paramagnetic, ã0 = ã (if

the temperature is greater than the Curie temperature), or ferromagnetic, ã0 �= ã (if

the temperature is less than the Curie temperature). The reason is that the thermal

fluctuation may or may not destroy the order created by the magnetic field on the

surface.

As a second example, consider a liquid at a temperature T . Assume that the

Hamiltonian HN(q, p;V ) contains, as in the system of spins, an isotropic pair in-

teraction and let Hext
N (q, p) be a periodic external field that acts only on the atoms

or molecules contained in an enclosure R′ of volume V ′ (V ′ ≪ V ). This external

field is, therefore, a crystalline “seed” which is introduced into the system to help

it crystallize in much the same way as it is done in experiments of crystal growth.

In the absence of the seed, the system in the thermodynamic limit is a fluid. With

the seed present, the systems in the sequence have a crystalline structure, including

the system of infinite volume (note that the thermodynamic limit has to be taken

again before the weak field limit V ′/V → 0). In this case, the symmetry of the phase

may be that of a liquid or that of a crystal, depending on whether the temperature is

greater or less than the crystallization temperature.

In summary, Bogoliubov’s method of weak external fields shows, according to

the experiments which have served as a guide to develop it, that the postulates of

statistical physics are not incompatible with the existence of phases having less

symmetry than the Hamiltonian of the system. Since this method is rather complex,

in the study of such phase transitions one does not, in general, introduce an external

field, but instead usually imposes the symmetry breaking directly on the relevant

physical variables (see, for instance, Chap. 10).
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Chapter 4

Microcanonical Ensemble

Abstract In this chapter the microcanonical ensemble, which describes an isolated

system, is introduced. In this ensemble the entropy and the temperature, i.e. the

fundamental thermal variables of thermodynamics, are defined.

4.1 Classical Microcanonical Ensemble

The second postulate of classical statistical physics states that the probability den-

sity in phase space ρ(q, p) of an equilibrium system is a function of the Hamil-

tonian HN(q, p;α). Note that the particular form of ρ(q, p) not only depends on

HN(q, p;α), but also on the interaction between the system and the external world.

Indeed, according to the second law of thermodynamics, a non-equilibrium sys-

tem which exchanges energy, volume, and particles with the external world evolves

toward an equilibrium state. In this state the values of the intensive variables

of the system, namely temperature T , pressure p, and chemical potential µ , be-

come equal to those of the corresponding variables of the external world; thus,

strictly speaking, the probability density at equilibrium should be indicated by

ρ((HN(q, p;α);T, p,µ)). This interaction with the external world is what may favor

some regions of phase space with respect to others. The simplest case is, therefore,

the one in which the system does exchange neither energy nor matter with the ex-

ternal world (isolated system) and so the probability density in phase space ρ(q, p)
only depends on HN(q, p;α).

Consider then an isolated system of finite energy E . In what follows it will be as-

sumed that E ≥ 0, which may always be taken for granted due to the arbitrary choice

of the zero of the potential energy. The average over the Gibbs ensemble has to ac-

count for the fact that all those mechanical states (q, p) for which HN(q, p;α) �= E

cannot contribute to the average value over the ensemble, since they do not conserve

energy. Assume that one draws in the phase space of the system the “surface”of con-

stant energy HN(q, p;α) = E which, as will be shown in this chapter, is a regular

surface of finite volume. It has been already pointed out that ρ(HN(q, p;α)) = 0

67
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when HN(q, p;α) �= E . The question is now how to determine the probability den-

sity on the energy surface. Intuitively, there is no physical reason for which some

regions on the energy surface should be more probable than others, and thus it can

be argued that the probability density must be uniform over this surface. It is then

postulated that the probability density in phase space of an equilibrium system of

energy E is given by

ρ(q, p) =
1

h3N

1

ω(E,α,N)
δ (E −HN(q, p;α)) , (4.1)

where h is Planck’s constant and ω(E,α,N) is a function which can be obtained

from the normalization condition (3.13), namely

ω(E,α ,N) =
1

h3N

∫
dq

∫
d p δ (E −HN(q, p;α)) . (4.2)

The Gibbs ensemble described by (4.1) and (4.2) is called the microcanonical en-

semble which, by definition, is the one that describes an isolated system. (Note that

the introduction of Planck’s constant in (4.1) and (4.2) is arbitrary. This point will

be examined in the following chapters.) The average value of a dynamical function

a(q, p) in the microcanonical ensemble (4.1) and (4.2) is in turn given by

〈a〉 =
1

h3N

1

ω(E,α ,N)

∫
dq

∫
d p a(q, p)δ (E −HN(q, p;α)) . (4.3)

From (4.3) it follows that if the external parameter is the volume of the system

(α = V ), all the variables 〈a〉 are functions of the energy E , the volume V and the

number of particles N. As stated in Chap. 2, these are the independent variables in

the entropy representation of a one-component thermodynamic system whose only

external parameter is the volume. According to (4.3) all the macroscopic variables

depend on ω(E,V,N), which is a function of the same extensive variables as the

entropy depends upon in thermodynamics. It is, therefore, logical to think that both

functions are related. Before establishing this relationship, consider the volume of

phase space φ(E,α ,N) limited by the constant energy surface HN(q, p;α) = E:

φ (E,α,N) =
1

h3N

∫
dq

∫
d p Θ(E −HN(q, p;α)) , (4.4)

where Θ(x) is the Heaviside step function, and the volume Ω(E,α , N;ΔE) of phase

space contained between the constant energy surfaces HN(q, p;α) = E + ΔE and

HN(q, p;α) = E:

Ω(E,α ,N;ΔE) = φ(E + ΔE,α,N)−φ(E,α ,N) . (4.5)

From (4.2), (4.4), and (4.5) it follows that

ω(E,α ,N) =
∂φ (E,α,N)

∂E
, lim

ΔE→0

Ω(E,α ,N;ΔE)

ΔE
= ω(E,α,N) , (4.6)
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since Θ ′(x) = δ (x). Note that ω(E,α,N), φ (E,α,N), and Ω(E,α ,N;ΔE) are func-

tions associated to the Gibbs ensemble that cannot be expressed as average values

of dynamical functions, and this is why they are referred to as thermal variables. In

classical statistical physics the entropy S(E,α,N) is defined as

S(E,α,N) = kB lnφ (E,α,N) , (4.7)

where kB is the Boltzmann constant. Note that this statistical definition of entropy

allows one to obtain absolute values of this quantity, provided one can determine the

volume of phase space φ (E,α,N), which is only possible in some simple systems.

In the following sections it is shown that the statistical entropy (4.7) has all the

specific properties of the thermodynamic entropy (see Chap. 2).

It is important to point out that when the external parameter α is an intensive

variable, the statistical entropy (4.7) is not a function of the extensive variables

of the system as it is postulated in the fundamental equation of thermodynamics.

As shown in Sect. 4.7 the thermodynamic entropy is, in such cases, the Legendre

transform of (4.7), whereby both functions contain the same physical information

(see Appendix A).

4.2 Classical Ideal Gas

Consider a classical ideal gas of N particles of mass m contained in a closed region

R of volume V . The Hamiltonian of the gas may be written as

HN(rN ,pN ;V ) =
N

∑
j=1

(
p2

j

2m
+ φR(r j)

)
, (4.8)

where p2
j/2m is the kinetic energy of particle j and φ R(r j) is the external potential

that keeps it inside the closed region, namely

φR(r j) =

{
0, r j ∈ R

∞, r j /∈ R
. (4.9)

The volume of phase space limited by the surface HN(rN , pN ;V ) = E is, accord-

ing to (4.4),

φ(E,V,N) =
1

h3N

∫
drN

∫
dpNΘ

(
E −

N

∑
j=1

{
p2

j

2m
+ φR(r j)

})
. (4.10)

Observe that although the domain of integration of each of the variables r j in

(4.10) is all of the Euclidean space, the inclusion of the potential φR(r j) in the

Hamiltonian restricts the domain of integration to the region R, and so one obtains

a factor V for each integral, i.e.,
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φ (E,V,N) =

(
V

h3

)N ∫
dpNΘ

(
2mE −

N

∑
j=1

p2
j

)

=

(
V

h3

)N

V3N

(√
2mE

)
, (4.11)

where V3N(R) is the volume of the 3N-dimensional sphere of radius R defined by

Vn(R) =

∫
dxn Θ

(
R2 −

n

∑
j=1

x2
j

)
. (4.12)

Note that, with the change of variable xi = Ryi (i = 1,2 . . .n), (4.12) may be

expressed as

Vn(R) = Rn

∫
dyn Θ

(
1−

n

∑
j=1

y2
j

)
= Vn(1)Rn , (4.13)

where Vn(1) is a constant that only depends on the dimensionality of space. To

evaluate this constant, consider the integral

I ≡
∫ ∞

0
due−u

Vn

(√
u
)

, (4.14)

which, according to (4.13), may be written in the form

I = Vn(1)

∫ ∞

0
due−uun/2 = Vn(1)Γ

(n

2
+ 1
)

, (4.15)

where Γ (n) is the Euler gamma function:

Γ (n) =

∫ ∞

0
due−uun−1 , (4.16)

which, when n is an integer, is given by

Γ (n + 1) = n! , Γ

(
n +

1

2

)
=

1 ·3 ·5 . . .(2n−1)

2n

√
π . (4.17)

On the other hand, according to (4.12),

I =

∫ ∞

0
due−u

∫
dxn Θ

(
u−

n

∑
j=1

x2
j

)
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=

∫
dxn

∫ ∞

0
due−u Θ

(
u−

n

∑
j=1

x2
j

)

=

∫
dxn e−(x2

1+···+x2
n) = πn/2 . (4.18)

Therefore, from (4.15) and (4.18) it follows that

Vn(1) =
πn/2

Γ
(

n
2
+ 1
) . (4.19)

Simple examples are V2(R) = πR2, which is the area of a circle, and V3(R) =
4πR3/3, which is the volume of a sphere.

4.3 Entropy and the Gibbs Paradox

The volume of phase space φ(E,V,N) of the classical ideal gas is then given by

φ (E,V,N) =

(
V

h3

)N
1

Γ
(

3N
2

+ 1
)(2πmE)3N/2 . (4.20)

In order to derive the expression for the entropy from (4.7), the logarithm of the

Euler gamma function in (4.20) has to be evaluated. To that end, use may be made

of the Stirling approximation

Γ (n) ≃ e−nnn−1/2
√

2π

(
1 +

1

12n
+ . . .

)
, (4.21)

and so from (4.7), (4.20), and (4.21) it follows that

S(E,V,N) = Ns(e,ρ)+ NkB(lnN −1)+ O(lnN) , (4.22)

where e = E/N is the energy per particle, ρ = N/V is the density and

s(e,ρ) = kB

(
3

2
ln

(
4πme

3h2ρ2/3

)
+

5

2

)
. (4.23)

It is seen from (4.22) that in the thermodynamic limit N → ∞,V → ∞,E → ∞
with e < ∞ and ρ < ∞, the entropy per particle, S(E,V,N)/N, is

TL

[
1

N
S(E,V,N)

]
= TL[s(e,ρ)+ kB(lnN −1)] = ∞ , (4.24)

where it has been taken into account that
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TL

[
O(lnN)

N

]
= 0 .

This anomalous result (the entropy is not an extensive variable in the thermody-

namic limit) is known as the Gibbs paradox. There is an ad hoc criterion that solves

the problem. Assume that when α = V , (4.1) is written as

ρ(q, p) =
1

N!h3N

1

ω∗(E,V,N)
δ (E −HN(q, p;V )) , (4.25)

where ω∗(E,V,N) is obtained from the normalization condition of the probability

density, i.e.,

ω∗(E,V,N) =
1

N!h3N

∫
dq

∫
d p δ (E −HN(q, p;V ))

=
1

N!
ω(E,V,N) . (4.26)

Observe that the average values of the dynamical functions (4.3) are the same ir-

respective of whether the averages are performed with (4.1) and (4.2) or with (4.25)

and (4.26), the fundamental difference being that ω(E,V,N) has been replaced by

ω∗(E,V,N). From (4.6) it follows that, for consistency, the functions (4.4) and (4.5)

must be replaced by

φ∗(E,V,N) =
1

N!
φ (E,V,N) , Ω ∗(E,V,N;ΔE) =

1

N!
Ω(E,V,N;ΔE) .

Then, if the entropy of the gas is defined by the expression

S(E,V,N) = kB ln φ∗(E,V,N) = kB ln

(
φ(E,V,N)

N!

)
, (4.27)

from (4.20) and (4.27) one has

S(E,V,N) = Ns(e,ρ)+ O(lnN) , (4.28)

where N! = Γ (N +1) has been determined using the Stirling approximation (4.21).

Note that in this instance the entropy per particle, S(E,V,N)/N, is a finite quantity

in the thermodynamic limit, namely

TL

[
1

N
S(E,V,N)

]
= s(e,ρ) . (4.29)

The Gibbs’ paradox may be illustrated through the following reasoning. Take a

closed region of volume V split into two equal parts by a wall. On each side one

has the same ideal gas of N/2 particles and energy E/2 in equilibrium. If the wall is

removed, the gas attains an equilibrium state in which the N particles, of energy E ,
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occupy the volume V . If the variation of entropy taking place in the process is de-

termined from (4.22), one has

TL

[
1

N
S(E,V,N)− 2

N
S

(
E

2
,
V

2
,

N

2

)]
= kB ln2 , (4.30)

i.e. there is an increase of entropy upon removal of the wall. From a thermodynamic

point of view, in this process the entropy cannot increase since, when the wall is

put back into place, one recovers the initial state. On the other hand, note that from

(4.28) it follows that there is no entropy increase in the process. In order to under-

stand why the factor 1/N! solves the Gibbs paradox, notice that the volume in phase

space (4.10) is a 3N-dimensional integral extended to all the mechanical states of the

system. Since in classical mechanics the particles are considered to be distinguish-

able, the mechanical states that correspond to permutations of two or more particles

are different states and they have been considered so in (4.10). From a classical point

of view, this definition of entropy is, therefore, correct. Nevertheless, since classical

mechanics is only an approximation of quantum mechanics, where the particles are

indistinguishable, the Gibbs factor in (4.27) has the purpose of reducing by N!, i.e.,

in the number of permutations that one may perform with the N particles of the gas,

the mechanical states considered in (4.10). Any such permutation does not give rise

to a new state in quantum mechanics and in this way the Gibbs factor becomes a

correction of quantum origin in a classical system.

Note that in classical physics it is not always the case that particles may be per-

muted as it occurs in a fluid (either gas or liquid). In such instances it is not required

to introduce the Gibbs factor. Take, e.g., a system of N particles whose Hamiltonian is

HN(rN ,pN ;ω) =
N

∑
j=1

(
p2

j

2m
+

1

2
mω2(r j −R j)

2

)
, (4.31)

where p j is the momentum of particle j, r j its position vector, and R j a constant.

This Hamiltonian represents the harmonic oscillations of the atoms in a solid around

the equilibrium positions R j of a crystalline lattice. Note that in (4.31) it has been

assumed that all the atoms vibrate with the same frequency. This simple model for

the Hamiltonian of a solid is referred to as the classical Einstein model. The volume

of phase space delimited by the surface of energy E is, in this case,

φ (E,ω ,N) =
1

h3N

∫
drN

∫
dpNΘ

(
E −

N

∑
j=1

HN(rN ,pN ;ω)

)
, (4.32)

which, with the change of variables,

x j =
p j√
2m

, x j+N =

√
mω2

2
(r j −R j) , ( j = 1,2, . . . ,N) , (4.33)

may be written in the form
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φ (E,ω ,N) =

(
2

hω

)3N ∫
dx2N Θ

(
E −

2N

∑
j=1

x2
j

)

=

(
2

hω

)3N

V6N

(√
E
)

=
1

Γ (3N + 1)

(
2πE

hω

)3N

. (4.34)

The entropy per particle S(E,ω ,N)/N in the thermodynamic limit N → ∞, E →
∞ with e = E/N < ∞ (note that in this system the external parameter is not the

extensive variable V but the frequency ω of the oscillators, which is an intensive

variable) is

TL

[
1

N
S(E,ω ,N)

]
= 3kB

(
1 + ln

(
2πe

3hω

))
. (4.35)

In the classical Einstein model it is, therefore, not necessary to divide the phase

space volume φ (E,ω ,N) by N! when determining the entropy. This is due to the fact

that since the Hamiltonian (4.31) describes the vibrations of the atoms around their

equilibrium positions, these atoms are localized and it is not possible to permute

them.

In view of the results obtained for these ideal systems, it will be assumed

that, in general, the entropy (4.7) of a system of N particles and energy E whose

Hamiltonian is HN(q, p;α), may be written in the form

S(E,α,N) = Ns(e,α)+ 0(lnN) , (N ≫ 1) , (4.36)

where s(e,α) is the entropy per particle. Note that if α =V , (4.36) must be written as

S(E,V,N) = Ns(e,ρ)+ 0(lnN) , (N ≫ 1) , (4.37)

i.e., the arguments of the entropy per particle are, in this case, the energy per particle

and the density. With the previous proviso and in order to have a uniform notation,

the expression (4.36) will henceforth be used.

From (4.7) and (4.36) it follows that

φ(E,α ,N) = eNs(e,α)/kB+O(lnN) , (4.38)

and so, according to (4.6), one has

ω(E,α ,N) =
1

kB

s′(e,α)eNs(e,α)/kB+O(lnN) , (4.39)

where s′(e,α) = ∂ s(e,α)/∂e. If, in analogy with (4.7), one defines

Ŝ(E,α,N) = kB lnΩ(E,α ,N;ΔE) , (4.40)
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from (4.6) and (4.39) it follows that

Ŝ(E,α,N) = Ns(e,α)+ kB ln

[
ΔE

kB

s′(e,α)

]
+ O(lnN)+ O((ΔE)2) , (4.41)

or, alternatively,

TL

[
1

N
Ŝ(E,α,N)

]
= s(e,α) , (4.42)

where it has been assumed that

TL

[
O((ΔE)2)

N

]
= 0 .

Therefore, the definitions of the entropy given in (4.40) and (4.7) are equivalent in

the thermodynamic limit.

4.4 Temperature and Thermal Equilibrium

Consider a system of N particles and energy E formed by two subsystems of N1 and

N2 particles (N = N1 + N2) whose Hamiltonian is additive, namely

HN(q, p;α1,α2) = HN1
(q1, p1;α1)+ HN2

(q2, p2;α2) , (4.43)

where (qi, pi) (i = 1,2) are the generalized coordinates and conjugate momenta of

the subsystems of external parameters α1 and α2, and (q, p)≡ (q1,q2, p1, p2) being

the mechanical state of the system. For the sake of simplifying the notation, the

Hamiltonians that appear in (4.43) will be denoted in this section by H, H1, and H2.

Since the energy E is constant, the probability density in the phase space of the

system is given by the microcanonical ensemble, namely

ρ(q, p) =
1

h3N

1

ω(E,α ,N)
δ (E −H1 −H2) , (4.44)

ω(E,α ,N) =
1

h3N

∫
dq

∫
d pδ (E −H1 −H2) , (4.45)

with α ≡ (α1,α2).
The probability density ρ1(q1, p1) of subsystem 1, which exchanges energy with

subsystem 2, is the marginal probability density (see Appendix B):

ρ1(q1, p1) =
1

h3N

1

ω(E,α,N)

∫
dq2

∫
d p2 δ (E −H1 −H2)

=
1

h3N1

ω2(E −H1,α2,N2)

ω(E,α,N)
, (4.46)

where (4.2) has been taken into account.
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If one considers the equation E1 = H1, E1 is a random variable (since it is a

function of the mechanical state of subsystem 1) whose probability density may be

determined from (4.46) as (see Appendix B)

ρ1(E1) =
∫

dq1

∫
d p1 ρ1(q1, p1)δ (E1 −H1)

=
1

h3N1

∫
dq1

∫
d p1

ω2(E −H1,α2,N2)

ω(E,α ,N)
δ (E1 −H1)

=
ω1(E1,α1,N1)ω2(E −E1,α2,N2)

ω(E,α ,N)
. (4.47)

The normalization condition of ρ1(E1)
(∫ E

0 dE1ρ1(E1) = 1
)

implies that

ω(E,α,N) =
∫ E

0
dE1 ω1(E1,α1,N1)ω2(E −E1,α2,N2) , (4.48)

which is the composition (convolution) law for ω(E,α,N). Note that in order to

derive (4.48) the only requirement is the additivity of the energy (4.43).

Upon integration of (4.48) with respect to E one has

φ (E,α,N) =

∫ E

0
dE1 ω1(E1,α1,N1)φ 2(E −E1,α2,N2) , (4.49)

since φ 2(E −E1,α2,N2) = 0 when E −E1 < 0.

If the subsystems are macroscopic, i.e., if N1 = γ1N and N2 = γ2N, with γ1 =
O(1) and γ2 = O(1) (γ1 + γ2 = 1) and N ≫ 1, the entropies of the subsystems are

of O(N), and from (4.6) and (4.7) it follows that (4.49) may be written as

φ (E,α,N) =
∫ E

0
dE1 g(E1)eN f (E1) , (4.50)

where

N f (E1) = S1(E1,α1,N1)+ S2(E −E1,α2,N2)

= kB ln[φ1(E1,α1,N1)φ 2(E −E1,α2,N2)] , (4.51)

and kBg(E1) = ∂S1(E1,α1,N1)/∂E1, which may be approximated by (see

Appendix B)

φ (E,α,N) ≃
√

2π

N| f ′′(Ẽ1)|
g(Ẽ1)e

N f (Ẽ1) , (4.52)

where Ẽ1 is the global maximum of f (E1) in the interval (0,E). This maximum is

unique since N f (E1) is the logarithm of the product of a monotonously increasing

function of E1, φ 1(E1,α1,N1) and a monotonously decreasing function of E1,
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φ2(E −E1,α2,N2). From (4.7) it follows that

S(E,α,N) = S1(Ẽ1,α1,N1)+ S2(E − Ẽ1,α2,N2)+ O(lnN) , (4.53)

i.e., the entropy is additive. The condition of being an extremum of N f (E1) is

written as
(

∂S1(E1,α1,N1)

∂E1

)

E1=Ẽ1

=

(
∂S2(E2,α2,N2)

∂E2

)

E2=Ẽ2

, (4.54)

with Ẽ2 = E − Ẽ1. If the absolute temperature T is defined through

1

T
=

∂S(E,α,N)

∂E
, (4.55)

from which the energy equation E = E(T,α,N) follows, the extremum condition

(4.54) expresses the thermal equilibrium (equality of temperatures) of the subsys-

tems. In statistical physics, thermal equilibrium takes place in the state of maximum

probability, where the entropy is additive. Note that (4.55) and (2.19) are formally

analogous, although in (4.55) the entropy has been defined through the microcanon-

ical ensemble by (4.7). On the other hand, thermal equilibrium corresponds to the

one obtained in (2.66), although in the latter derivation it was obtained from the

extremum condition of the thermodynamic entropy.

It is convenient at this point to make the following observation. As was analyzed

in Chap. 2, the exchange of energy between two subsystems is a necessary condi-

tion for them to reach thermal equilibrium. In order for this to happen, there must

exist an interaction energy between the subsystems which, apparently, has not been

accounted for in (4.43). This is true for each mechanical state of the Gibbs ensem-

ble but, since the only restriction imposed on H1 and H2 is that H1 + H2 = E , the

different mechanical states of the subsystems have different energy in the ensemble.

Therefore, contrary to what may be suggested by (4.43), the subsystems exchange

energy and thus they reach the thermal equilibrium of (4.54).

4.5 Ideal Systems

The convolution law (4.48) is based, exclusively, on the additivity of the energy of

the subsystems. In the case of an ideal system, this law may be used iteratively to

obtain ω(E,α ,N) from the volume of the phase space of a single particle ω(E,α ,1).
As an example, consider a free particle of mass m in a closed region R of volume V .

If its energy is E , the volume of the phase space of the particle delimited by the

surface of energy p2/2m = E is given by
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φ (E,V,1) =
1

h3

∫
dr

∫
dp Θ

(
E − p2

2m
−φR(r)

)

=
V

h3
V3

(√
2mE

)
=

V

h3

1

Γ (5/2)
(2πmE)3/2 , (4.56)

yielding

ω(E,V,1) =
3V

2h3

1

Γ (5/2)
(2πm)3/2

√
E . (4.57)

In this way, from (4.48) one obtains

ω(E,V,N) =
∫ E

0
dE1 ω1(E1,V,N −1)ω2(E −E1,V,1) , (4.58)

and from the expression

∫ 1

0
dxxn−1(1− x)m−1 =

Γ (n)Γ (m)

Γ (n + m)
, (4.59)

it may be easily demonstrated that after two or three iterations in (4.58), a recurrence

law may be derived which allows one to obtain ω(E,V,N) for arbitrary N. This

function is the derivative of φ (E,V,N) (see (4.20)) with respect to the energy. The

interest of this result lies in the fact that the thermodynamic potential of the gas (the

entropy) may be obtained in classical statistical physics from ω(E,V,1). In Sect. 4.9

it will be shown that this result does not hold in quantum statistical physics.

4.6 Equipartition Theorem

From a classical point of view, the temperature is a magnitude associated with the

kinetic energy of the particles of a system. According to (4.55) the inverse of the

absolute temperature in classical statistical physics is the derivative of the entropy

of the system with respect to the energy. These two definitions of the same variable

may be related through the equipartition theorem.

Consider a system of N particles of mass m contained in a closed region R of

volume V . The Hamiltonian of the system is

HN(rN ,pN ;V ) =
N

∑
j=1

p2
j

2m
+ H int

N (rN)+
N

∑
j=1

φR(r j) , (4.60)

where the first two terms correspond to the kinetic energy and the interaction po-

tential energy while the last one is the potential energy (4.9) that keeps the particles

inside the region. In order to simplify the notation, in this section these terms will be

denoted by H id
N , H int

N , and HR
N . The average value of the kinetic energy of the system

in the microcanonical ensemble (4.1 and 4.2) is given by
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〈H id
N 〉 =

1

h3N

1

ω(E,V,N)

∫
drN

∫
dpN H id

N δ (E −H id
N −H int

N −HR
N) . (4.61)

From the identity

∂

∂λ
Θ(E −λH id

N −H int
N −HR

N) = −H id
N δ (E −λH id

N −H int
N −HR

N) , (4.62)

the integral I in (4.61) may be written as

I = −
(

∂

∂λ

∫
drN

∫
dpN Θ(E −λH id

N −H int
N −HR

N)

)

λ=1

, (4.63)

or, alternatively, as

I = −
(

∂

∂λ

∫
drN

V3N

(√
2m

λ
[E −H int

N −HR
N ]

))

λ=1

, (4.64)

where V3N(R) is the volume of the 3N-dimensional sphere of radius R. The deriva-

tive with respect to λ in (4.64) may be determined from (4.13), leading to

〈H id
N 〉 =

3N

2

1

h3N

1

ω(E,V,N)

∫
drN

V3N

(√
2m[E −H int

N −HR
N ]

)

=
3N

2

1

h3N

1

ω(E,V,N)

∫
drN

∫
dpN Θ(E −H id

N −H int
N −HR

N)

=
3N

2

φ(E,V,N)

ω(E,V,N)
. (4.65)

Since

φ (E,V,N)

ω(E,V,N)
=

(
∂ lnφ(E,V,N)

∂E

)−1

= kB

(
∂S(E,V,N)

∂E

)−1

= kBT ,

one finally obtains

〈H id
N 〉 =

3

2
NkBT , (4.66)

which expresses that the average kinetic energy (kBT/2 per degree of freedom) is pro-

portional to the temperature, which is the usual notion in classical statistical physics.

4.7 Equation of State

Throughout this chapter it has been assumed that the Hamiltonian of the system is a

function of some external parameters. If one varies the external parameter α by dα ,

the result is
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〈dHN(q, p;α)〉 =

〈
∂HN(q, p;α)

∂α
dα

〉
= −Aαdα , (4.67)

where Aα is the conjugate variable of α , namely

Aα ≡
〈
−∂HN(q, p;α)

∂α

〉
. (4.68)

As was shown in Chap. 1, if α is a uniform and constant magnetic field B, AB is

the total magnetic moment of the system M while if α is the volume V , AV is the

pressure p.

The conjugate variable of the external parameter α in the microcanonical ensem-

ble may be determined as follows:

Aα = − 1

h3N

1

ω(E,α ,N)

∫
dq

∫
d p

∂HN(q, p;α)

∂α
δ (E −HN(q, p;α))

=
1

h3N

1

ω(E,α,N)

∫
dq

∫
d p

∂

∂α
Θ(E −HN(q, p;α))

=
1

ω(E,α,N)

∂φ (E,α,N)

∂α
, (4.69)

which can be expressed as

Aα =
φ (E,α,N)

ω(E,α,N)

∂ lnφ (E,α,N)

∂α
=

(
∂ lnφ(E,α ,N)

∂E

)−1 ∂ lnφ(E,α ,N)

∂α

=

(
∂S(E,α,N)

∂E

)−1 ∂S(E,α,N)

∂α
= T

∂S(E,α,N)

∂α
, (4.70)

which is the equation of state corresponding to the parameter α .

As it was already pointed out in Sect. 4.1 when the external parameter is inten-

sive, the entropy (4.7) is not a function of the extensive variables of the system as

it is postulated in the fundamental equation of thermodynamics. Nevertheless, the

entropy (4.7) contains all the thermodynamic information about the system (the en-

ergy equation (4.55) and the equation of state (4.70)). Consider, for instance, that α
is the magnetic field B, in which case (4.70) reads

M = T
∂S(E,B,N)

∂B
. (4.71)

From (4.71) and (4.55) it follows that the differential of the statistical entropy

when E and B change (at constant N) is given by

T dS(E,B,N) = dE + M ·dB . (4.72)
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If the thermodynamic entropy S(E,M,N) is defined as the Legendre transform

(see Appendix A) of S(E,B,N) with respect to B (note that in order to simplify the

notation both functions S are denoted by the same letter), one has

S(E,M,N) = S(E,B,N)−M ·B , (4.73)

where in (4.73) B = B(E,M,N) is obtained from the equation of state (4.71).

Therefore,

TdS(E,M,N) = dE −B ·dM , (4.74)

which is the usual expression in thermodynamics and so the equation of state,

B = −T
∂S(E,M,N)

∂M
, (4.75)

contains the same information as (4.71).

4.8 Entropy and Irreversibility

The second law of thermodynamics establishes that, in an irreversible process, an

isolated system evolves toward the state with maximum entropy compatible with

the external conditions. Consider, for instance, the free expansion of an ideal gas.

As initial condition, one has a container of volume V divided into two regions of

volume V/2, one of which is occupied by a classical ideal gas of N particles and

energy E . If the wall separating the two regions is removed, experience shows that

the gas expands freely until it reaches a final state in which the gas occupies the

whole container. According to (4.20) and (4.27) the variation of the entropy in the

free expansion turns out to be

ΔS = NkB

(
ln V − ln

(
V

2

))
> 0 , (4.76)

in agreement with the second law of thermodynamics. Note, however, that (4.76)

is not a proof of the law of entropy increase. As a matter of fact, the statistical

definition of entropy (4.27) is only applicable to an equilibrium system. In order

to derive (4.76) it has been assumed that, starting from an initial equilibrium state,

which becomes a non-equilibrium state after the wall is removed, the gas expands

freely and ultimately reaches another final equilibrium state. Upon comparison of

the entropies of the initial and final states, it is found that the entropy of the final state

is greater than the one of the initial state. But this argument involves an essential

point which has not been derived, namely that the experiments show that the gas

expands when the wall is removed. If, on the other hand, the everyday experience

indicated that, starting from an initial state in which the gas occupies the volume V ,

the gas would contract freely until it occupied a volume V/2, from the definition in
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(4.27) it would follow that the entropy would diminish in the process. The second

law of thermodynamics establishes that an isolated system evolves toward a state of

maximum entropy, which in turn determines the arrow of time, as is the case of the

free expansion. This arrow of time is what has not been derived to determine the

result contained in (4.76).

Consider again the Gibbs definition of entropy (3.23), particularized to the mi-

crocanonical ensemble. Note that the probability density in phase space may be

written as

ρ(q, p) =
1

h3N

Θ(E + ΔE −HN(q, p;α))−Θ(E −HN(q, p;α))

Ω(E,α ,N;ΔE)
, (4.77)

which leads to (4.1) in the limit ΔE → 0 because

lim
Δx→0

Θ(x + Δx)−Θ(x)

Δx
= δ (x) . (4.78)

According to (4.77) the probability density is constant in the region of phase

space in which E < HN(q, p;α) < E + ΔE , and so the Gibbs entropy is given by

S = −kB

〈
ln
[
h3Nρ(HN(q, p;α))

]〉
= kB lnΩ(E,α,N;ΔE) , (4.79)

which coincides with the definition (4.40). The interest of this result is that since

the Gibbs entropy is defined as a function of the probability density in phase space,

it may be readily generalized to a non-equilibrium system by replacing the station-

ary probability density ρ(HN(q, p;α)) with the time-dependent probability density

ρ(q, p;t), i.e.,

S(t) = −kB

∫
dq

∫
d p ln

[
h3Nρ(q, p;t)

]
ρ(q, p; t) . (4.80)

The evolution equation of S(t) is thus given by

Ṡ(t) = −kB

∫
dq

∫
d p
{

1 + ln
[
h3Nρ(q, p;t)

]} ∂ρ(q, p;t)

∂ t
. (4.81)

Note that

∫
dq

∫
d p

∂ρ(q, p; t)

∂ t
=

∂

∂ t

∫
dq

∫
d pρ(q, p;t) = 0 , (4.82)

because the probability density is normalized at all times. On the other hand, from

the Liouville equation (3.18) one finds

I =
∫

dq

∫
d p lnρ(q, p;t)

∂ρ(q, p;t)

∂ t

=

∫
dq

∫
d p lnρ(q, p;t){HN(α),ρ(t)}

=

∫
dq

∫
d pHN(q, p;α){ρ(t), lnρ(t)} = 0 , (4.83)
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where it has been taken into account that ρ(q, p; t) vanishes on the surface of the

phase space and that {ρ(t), lnρ(t)} = 0. Therefore, when generalizing the Gibbs

entropy to a system out of equilibrium one has

Ṡ(t) = 0 , (4.84)

i.e., the Gibbs entropy is constant in the time evolution and so it is not possible to

derive from it the second law of thermodynamics. The reason for this is that the

first postulate of classical statistical physics associates a field (3.16) to a dynamical

function. This postulate is statistical with respect to the initial conditions and does

not contradict the laws of mechanics. As a matter of fact, the time evolution of the

field is induced by that of the dynamical function and this is in turn induced by

the Hamilton equations. Since the equations of mechanics are invariant under the

change t → −t, it is not possible to derive from them a non-mechanical evolution,

such as the one predicted by the second law of thermodynamics. On the other hand,

it must be pointed out that, while the thermodynamic limit allows one to derive

equilibrium thermodynamics (see Sects. 3.6 and 3.7), this limit is necessary but not

sufficient to justify irreversibility.

4.9 Quantum Microcanonical Ensemble

As was analyzed in Chap. 3, the density operator ρ̂ of an equilibrium system com-

mutes with the Hamiltonian operator ĤN(α). The additional postulate that ρ̂ is a

function of ĤN(α) is in a certain way justified because in all mechanical systems

energy is conserved (note that, as in the classical case, the density operator of an

equilibrium system depends also on the intensive parameters T, p, and µ if the

system exchanges energy, volume, and particles with the external world). When

[ρ̂,ĤN(α)] = 0, it is always possible to find a basis of the Hilbert space in which

both operators are diagonal. This basis is not necessarily the one formed with the

eigenvectors of ĤN(α), whose eigenvalue equation reads

ĤN(α)|Ψn〉 = E
(N)
n (α)|Ψn〉 , (4.85)

where it has been assumed that the spectrum is discrete. Note however that, contrary

to what occurs in classical physics, one cannot define an isolated system as the one

whose energy is E , since it is conceivable that there may not exist a quantum state n

of (4.85) whose energy is such that E
(N)
n (α) = E . In order to avoid this, in quantum

mechanics an isolated system will be defined as one whose energy lies between E

and E + ΔE , with ΔE ≪ E , although the interval is assumed to be large enough

so that there exist a great number of quantum states of energies E
(N)
n (α) such that

E < E
(N)
n (α) < E +ΔE . The number of these quantum states, which will be denoted

by Ω(E,α ,N;ΔE), may be written as
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Ω(E,α ,N;ΔE) = ∑
n

Θ
(

E + ΔE −E
(N)
n (α)

)

−∑
n

Θ
(

E −E
(N)
n (α)

)
. (4.86)

The density of quantum states ω(E,α ,N) is defined by the equation

ω(E,α ,N) = ∑
n

δ
(

E −E
(N)
n (α)

)
, (4.87)

and the number of quantum states whose energy is less than E , φ (E,α,N), is

defined as

φ (E,α,N) = ∑
n

Θ
(

E −E
(N)
n (α)

)
. (4.88)

Since the system has an energy between E and E + ΔE , those quantum states

of (4.85) such that E
(N)
n (α) < E or E

(N)
n (α) > E + ΔE should not contribute to the

average value of the operator (3.28) in the statistical mixing. On the other hand, from

the different quantum states n of (4.85) with energies E < E
(N)
n (α) < E + ΔE in

which the system may be found, there is no physical reason forcing one to be more

probable than the others. In the microcanonical ensemble of a quantum system, a

probability of zero is assigned to those states that are not compatible with the energy

of the system and the same probability to those states that are compatible. For that

reason it is postulated that the density operator of an isolated system is given by the

following expression:

〈Ψm|ρ̂|Ψn〉 = δ mn

Θ
(

E + ΔE −E
(N)
n (α)

)
−Θ

(
E −E

(N)
n (α)

)

Ω(E,α ,N;ΔE)
. (4.89)

That is, it is a diagonal matrix in the energy representation whose only non-zero

elements are those corresponding to quantum states whose energy E
(N)
n (α) veri-

fies E < E
(N)
n (α) < E + ΔE . The probability of each of these quantum states is

Ω−1(E,α,N;ΔE).
The average value of an operator â in the quantum microcanonical ensemble is

then given by

〈â〉 = ∑
n

〈Ψn|âρ̂|Ψn〉 = ∑
n

∑
m

〈Ψn|â|Ψm〉〈Ψm|ρ̂ |Ψn〉

= ∑
n

〈Ψn|â|Ψn〉
Θ
(

E + ΔE −E
(N)
n (α)

)
−Θ

(
E −E

(N)
n (α)

)

Ω(E,α ,N;ΔE)
, (4.90)

whose interpretation is simple: the average value in the statistical mixing is the sum

of the expectation values of the operator, 〈Ψn|â|Ψn〉, for all the eigenstates |Ψn〉 of

ĤN(α) whose energy lies in the interval (E,E + ΔE), divided by the number of
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quantum states in the interval, Ω(E,α ,N;ΔE). This average gives, therefore, the

same statistical weight to all these quantum states.

Once more, if the external parameter is the volume, the intensive variables (4.90)

are functions of the energy E , the volume V , and the number of particles N (the

dependence on ΔE tends to zero in the thermodynamic limit). By the same line of

reasoning followed in the classical case, the entropy of a quantum system may be

defined through the following expressions:

S(E,V,N) = kB lnφ (E,V,N) , (4.91)

and

Ŝ(E,V,N) = kB lnΩ(E,V,N;ΔE) , (4.92)

which are equivalent in the thermodynamic limit. In the case of a fluid, the func-

tions φ (E,V,N) and Ω(E,V,N;ΔE) are increasing functions of the energy and thus

the absolute temperature, defined by the thermodynamic relation (4.55), is non-

negative. Note further that, since in a quantum fluid the particles are indistinguish-

able, one only has to count the number of quantum states whose wave function has

a given symmetry (bosons or fermions). This is the reason why it is not easy to

compute φ (E,V,N) and Ω(E,V,N;ΔE) even when the system is ideal. In order to

get a better insight in the complexity of ideal quantum systems, one may consider

the following example. The convolution in the case of a quantum system formed

by two subsystems that exchange energy in an additive way is again (4.48) where

ω(E,α,N) corresponds now to the density of quantum states (4.87). When the sub-

systems are macroscopic, this law leads to the additivity of the entropy and to the

thermal equilibrium between the subsystems (see Sect. 4.4). Assume now that one

wants to apply this convolution law to determine the thermodynamic properties of

an ideal quantum gas of N particles contained in a closed region R of volume V , and

whose Hamiltonian operator is the sum of one-particle operators, namely

ω(E,V,N) =

∫ E

0
dE1 ∑

n1

δ
(

E1 −E
(N−1)
n1

(V )
)
∑
n2

δ
(

E −E1 −E
(1)
n2

(V )
)

= ∑
n1

∑
n2

δ
(

E −E
(N−1)
n1

(V )−E
(1)
n2

(V )
)

. (4.93)

It is clear that when combining a quantum state n1 of the system of N −1 particles

with a quantum state n2 of the N-th particle, the result is not a quantum state of the

system of N particles. The reason is that the product of the wave function of the

system of N −1 particles times the wave function of the N-th particle is not a wave

function of the system of N particles (see Sect. 1.9). Therefore, the law (4.93) cannot

be used to derive the thermodynamics of an ideal quantum gas from ω(E,V,1), as

one can do in the case of a classical ideal gas (see Sect. 4.5). The thermodynamic

properties of a quantum ideal gas, which are not as simple as those of its classical

counterpart, will be analyzed in Chap. 6.
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4.10 Absolute Negative Temperatures

In much the same way as it happens for the classical microcanonical ensemble, the

determination of the entropy of a system in the quantum microcanonical ensemble

may only be achieved in some simple cases. The reason is that one has to select

from all the quantum states of the system only those whose energy lies in the inter-

val between E and E + ΔE . The existence of such a restriction is what makes the

evaluation of the entropy difficult.

As a simple example, consider an ideal gas of N particles of total angular momen-

tum j under the action of a constant and uniform magnetic field B in the direction of

the z-axis. The energy of a particle is quantized according to (1.82). Therefore, the

energy of the system is given by

E
(N)
{m j}(B) = −gµBB

N

∑
j=1

m j , (4.94)

which in the case of j = 1/2 reads

E
(N)
{m j}(B) = −µ̄B

N

∑
j=1

m j , (4.95)

with µ̄ = gµB/2 and m j = ±1, states that are denoted by + and −. If the value of

the energy of the system is fixed, E
(N)
{m j}(B) = E , it is univocally determined by the

number of particles in each state, N+ and N−, which verify the following relations:

E = −µ̄B(N+ −N−) , N = N+ + N− . (4.96)

Note that there exists a degeneration in the energy levels if the energy is specified

through N+ and N−. Such degeneration turns out to be

N!

N+!N−!
, (4.97)

and when the numbers N+ and N− change by one unit, the variation in the abso-

lute value of the energy is 2µ̄B. The number of quantum states Ω(E,B,N;ΔE) is,

therefore,

Ω(E,B,N;ΔE) =
ΔE

2µ̄B

N!

N+!N−!

=
ΔE

2µ̄B

N!(
N
2
− E

2µ̄B

)
!
(

N
2

+ E
2µ̄B

)
!

. (4.98)

Note that in (4.98) it has been assumed that the degeneration (4.97) is the same

in the whole interval (E,E + ΔE). The justification of this approximation is based
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on the fact that the variation of the number of particles with orientation −, ΔN− =
−ΔN+, when the energy changes from E to E + ΔE , is ΔN− = ΔE/2µ̄B. If one

admits that ΔE ≪ E = O(N), then ΔN− ≪ N− in the whole interval.

From (4.92) it follows that the entropy per particle in the thermodynamic limit,

ŝ(e,B) = TL

[
1

N
kB lnΩ(E,B,N;ΔE)

]
,

is given by

ŝ(e,B) = −kB

{(
1− x

2

)
ln

(
1− x

2

)
+

(
1 + x

2

)
ln

(
1 + x

2

)}
, (4.99)

where e = E/N < ∞ is the energy per particle, x = e/µ̄B, and Stirling’s approxima-

tion (4.21) has been used (Fig. 4.1).

From (4.55) it follows that the absolute temperature is given by

1

T
=

∂ ŝ(e,B)

∂e
=

kB

2µ̄B
ln

(
1− x

1 + x

)
. (4.100)

Note that if 1− x > 1 + x, the energy per particle is negative and the absolute

temperature is positive. On the other hand, if 1−x < 1+x, the energy per particle is

positive and the absolute temperature is negative. When x → 0−, T → ∞ and when

x → 0+, T →−∞. Hence, the absolute negative temperatures are greater than +∞.

This peculiarity of a system of N particles of total angular momentum j is due to the

fact that the entropy Ŝ(E,B,N) is not an increasing function of the energy for all E ,

since it has a maximum at E = 0.

Consider now the definition of entropy (4.91). From (4.87) and (4.88) one has

φ(E,B,N) =
2µ̄B

ΔE
∑

E ′≤E

Ω(E ′,B,N;ΔE) , (4.101)

Fig. 4.1 Entropy per particle,

in units of the Boltzmann

constant, of an ideal system of

magnetic moments ( j = 1/2)

placed in a magnetic field B

as a function of the variable

x = e/µ̄B. When x > 0, the

functions ŝ(x) and s(x) are

represented, respectively,

by a broken line and by a

dotted line. When x < 0,

the two functions are equal

(continuous line)
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which when N ≫ 1 may be written as

φ(E,B,N) =
2µ̄B

ΔE
∑

e′≤e

eNŝ(e′,B)+O(lnN) , (4.102)

where ŝ(e,B) is given by (4.99). Note that in the thermodynamic limit the only term

that contributes to the sum in (4.102) is the term that makes the entropy per particle

to be maximum, namely

s(e,B) = TL

[
1

N
kB lnφ (E,B,N)

]
= maxe′≤e ŝ(e′,B) . (4.103)

When ŝ(e′,B) increases with e′ (negative energies) the maximum corresponds to

e = e′ and both definitions of entropy coincide s(e,B) = ŝ(e,B) (e < 0). When e′ ≥ 0,

ŝ(e′,B) is a decreasing function of the energy and the global maximum is located

at e′ = 0. Therefore, s(e,B) = ŝ(0,B) = kB ln2 (e ≥ 0). When the energy is non-

negative, the absolute temperature defined through s(e,B) is positive and infinite.

This particular feature of the system of magnetic moments by which the two defini-

tions of entropy differ is a consequence of the fact that, when e ≥ 0, the number of

quantum states does not grow upon an increase in energy (see Fig. 4.1).
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Chapter 5

Canonical Ensemble

Abstract In the previous chapter the basic concepts of the microcanonical ensem-

ble, which describes a system whose energy is constant, have been analyzed. The

entropy is the thermodynamic potential associated to this ensemble. The micro-

canonical ensemble presents two types of difficulties. The first one is mathematical

since, even in the simplest systems, determining the entropy is not a trivial issue.

The second difficulty is that the systems studied in thermodynamics are, in gen-

eral, not isolated. Note that, for instance, thermal equilibrium is attained when two

systems exchange energy. In this chapter the statistical physics of systems whose

energy is variable is analyzed.

5.1 Classical Canonical Ensemble

In the previous chapter it was shown that when a system of N1 particles and Hamil-

tonian HN1
(q1, p1;α1) exchanges energy with the external world, of N2 particles and

Hamiltonian HN2
(q2, p2;α2), the probability density of the energy of the system is

given by (4.47), i.e.,

ρ1(E1) =
ω1(E1,α1,N1)ω2(E −E1,α2,N2)

ω(E,α,N)

= ω1(E1,α1,N1)
Ω2(E −E1,α2,N2;ΔE)

Ω(E,α,N;ΔE)
, (5.1)

where α ≡ (α1,α2) and in the second equality of (5.1) it has been assumed that

ΔE ≪ E −E1. When N1 ≫ 1 and N2 ≫ 1, ρ1(E1) is a function with a very pro-

nounced maximum for a certain value Ẽ1. In this state of maximum probability,

the temperatures are equal (see (4.54)). Assume now that N2 ≫ N1, which is the

normal situation in an experiment in physics in which the system has much less

degrees of freedom than the external world. In this case it is to be expected that

89
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whenever ρ1(E1) differs appreciably from zero, the energy E2 is such that E2 ≫ E1.

Although in these circumstances it would seem logical to expand the function

Ω2(E−E1,α2,N2;ΔE) of (5.1) in a Taylor series around E2 = E , such an expansion

converges very slowly since this function grows very rapidly with the energy when

N2 ≫ 1 (for instance, for an ideal gas Ω2(E −E1,α2,N2;ΔE) ∼ (E −E1)
3N2/2−1).

In contrast, the Taylor series expansion of the logarithm of this function converges

more rapidly. Therefore, let us consider the following expansion of (5.1):

ln

(
Ω2(E −E1,α2,N2;ΔE)

Ω2(E,α2,N2;ΔE)

)
= −β 2E1 + . . . , (5.2)

with

β 2 ≡
(

∂ lnΩ2(E2,α2,N2;ΔE)

∂E2

)

E2=E

, (5.3)

where T2 = 1/kBβ 2 is the absolute temperature of the external world (see (4.55)).

The probability density of the energy of the system may then be approximated

by the expression:

ρ1(E1) =
Ω2(E,α2,N2;ΔE)

Ω(E,α,N;ΔE)
ω1(E1,α1,N1)e−β 2E1 . (5.4)

Taking into account the normalization condition of ρ1(E1), (5.4) may be rewrit-

ten in the form

ρ1(E1) =
1

Z1(β 2,α1,N1)
ω1(E1,α1,N1)e−β 2E1 , (5.5)

where

Z1(β 2,α1,N1) =

∫ E

0
dE1 ω1(E1,α1,N1)e−β 2E1 (5.6)

is the classical partition function of the system. Note that, except for β 2, all the

variables appearing in (5.5) and (5.6) are system variables. In what follows and for

the sake of simplifying the notation, all subindexes will be omitted, i.e.,

ρ(E) =
1

Z(β ,α,N)
ω(E,α,N)e−β E , (5.7)

with

Z(β ,α,N) =

∫ ∞

0
dE ω(E,α,N)e−β E , (5.8)

where the variables E,α , and N correspond to the system and the parameter β to

the external world. Note that, in view of the pronounced maximum of ρ(E), in

the partition function (5.8) the upper limit in the integral (the total energy of the

system) has been replaced by infinity. The ensemble described by (5.7) and (5.8)

is known as the canonical ensemble and represents a system in thermal contact
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(i.e., which exchanges energy) with another system (the external world) which has

a much greater number of degrees of freedom.

By a similar reasoning, according to (4.46),

ρ1(q1, p1) =
1

h3N1

Ω2(E −H1,α2,N2;ΔE)

Ω(E,α,N;ΔE)
, (5.9)

so that upon performing the Taylor expansion

ln

(
Ω2(E −H1,α2,N2;ΔE)

Ω2(E,α2,N2;ΔE)

)
= −β 2H1 + . . . , (5.10)

imposing the normalization condition to ρ1(q1, p1) and, finally, dropping all the

subindexes, which correspond in all cases to variables of the system except for the

parameter β , which refers to the external world, one has

ρ(q, p) =
1

h3N

1

Z(β ,α ,N)
e−βHN (q,p;α) , (5.11)

with

Z(β ,α,N) =
1

h3N

∫
dq

∫
d pe−βHN (q,p;α) , (5.12)

where the integration of the partition function (5.12) has been extended to the whole

phase space of the system without any restriction. Note that, in order to make

the partition function (5.12) dimensionless, in both ρ(q, p) and Z(β ,α,N) a fac-

tor 1/h3N has been introduced. Equations (5.11) and (5.12) are the expressions of

the canonical ensemble in the phase space of the system.

An immediate conclusion that shows that the canonical ensemble is mathemat-

ically simpler than the microcanonical ensemble follows from the convolution law

(4.48). Since the partition function (5.8) is the Laplace transform of ω(E,α ,N),
one has

Z(β ,α ,N) = Z1(β ,α1,N1)Z2(β ,α2,N2) , (5.13)

i.e., the partition function of a system formed by two subsystems which exchange

energy in an additive way is the product of the partition functions of the subsystems.

Clearly, this composition law is much simpler than (4.48).

5.2 Mean Values and Fluctuations

In a system described by the canonical ensemble the energy is a random vari-

able whose probability density is (5.7). The Hamiltonian of the system, HN ≡
HN(q, p;α), is a function of the mechanical state of the system whose probability

density in phase space is given by (5.11). One thus has
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〈HN〉 =
1

h3N

1

Z(β ,α ,N)

∫
dq

∫
d pHN e−βHN

=
1

h3N

1

Z(β ,α ,N)

(
− ∂

∂β

)∫
dq

∫
d pe−βHN , (5.14)

i.e.,

〈HN〉 = − 1

Z(β ,α ,N)

(
∂

∂β

)
Z(β ,α,N) , (5.15)

which is known as the energy equation.

In a similar fashion, the mean square value of HN is determined as follows:

〈H2
N〉 =

1

Z(β ,α,N)

(
∂ 2

∂β 2

)
Z(β ,α,N) , (5.16)

so that the fluctuation in the energy of the system is

〈H2
N〉− 〈HN〉2 =

∂

∂β

(
1

Z(β ,α,N)

∂Z(β ,α ,N)

∂β

)
, (5.17)

or, alternatively,

〈H2
N〉− 〈HN〉2 = − ∂

∂β
〈HN〉 . (5.18)

Note that the conjugate variable Aα of the external parameter α is

Aα =

〈
−∂HN

∂α

〉
, (5.19)

i.e.,

Aα = − 1

h3N

1

Z(β ,α ,N)

∫
dq

∫
d p

∂HN

∂α
e−βHN

=
1

β h3N

1

Z(β ,α,N)

(
∂

∂α

)∫
dq

∫
d pe−βHN , (5.20)

yielding

Aα =
1

β Z(β ,α,N)

∂Z(β ,α,N)

∂α
, (5.21)

which is known as the equation of state corresponding to the parameter α . Two

particular cases of (5.21) are

p = kBT
∂ lnZ(β ,V,N)

∂V
, M = kBT

∂ lnZ(β ,B,N)

∂B
, (5.22)

when the external parameter is the volume V of the system or the magnetic field B.
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5.3 Helmholtz Free Energy

As has been shown in the previous section, the energy equation and the equations of

state are determined in the canonical ensemble if one knows the partition function of

the system which, in this way, is a thermodynamic potential. In particular, when the

external parameter is the volume V , the independent variables β , V , and N, are the

same as those of the Helmholtz free energy (2.26) (although in thermodynamics one

takes the temperature T as independent variable, in statistical physics it is common

to consider the parameter β = 1/kBT as the independent variable, but this should

not lead to confusion). In order to establish the connection between the canonical

ensemble and thermodynamics, the Helmholtz free energy F(β ,α,N) is defined as

F(β ,α ,N) = −kBT lnZ(β ,α,N) . (5.23)

Note that, since N ≫ 1, (5.8) may be approximated by

Z(β ,α ,N) =

∫ ∞

0
dE ω(E,α,N)e−β E

≃ N

kB

∫ ∞

0
des′(e,α)eN(−β e+s(e,α)/kB)+O(lnN) , (5.24)

where e = E/N and s(e,α) are the energy per particle and the entropy per particle,

respectively, and (4.39) has been taken into account (recall the comment made on

(4.37)). The exponent of the last factor of (5.24) has a maximum at ẽ and so the

partition function may be approximated by (see Appendix B)

Z(β ,α,N) ≃ N

kB

s′(ẽ,α)

√
2π

N|g′′(ẽ)|e
N(−β ẽ+s(ẽ,α)/kB)+O(lnN) , (5.25)

where g(e) ≡−β e + s(e,α)/kB.

Therefore,

F(β ,α,N) ≃ N (ẽ−Ts(ẽ,α))+ O(lnN) , (5.26)

and so the Helmholtz free energy per particle in the thermodynamic limit reads

f (β ,α) = TL

[
1

N
F(β ,α,N)

]
= ẽ−T s(ẽ,α) , (5.27)

corresponding to (2.26) with ẽ = ẽ(β ,α), which is the value of the energy that max-

imizes the function g(e). The equivalence between the microcanonical ensemble

(entropy) and the canonical ensemble (Helmholtz free energy) occurs at the maxi-

mum of the probability density, in which the energy per particle is ẽ. The condition

for the maximum of g(e) reads
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1

T
=

(
∂ s(e,α)

∂e

)

e=ẽ

, (5.28)

i.e., the temperatures of the system and of the external world are equal at the

maximum.

5.4 Classical Ideal Gas

As a simple application, consider an ideal gas of N identical particles of mass m in

a closed region R of volume V at the temperature T = 1/kBβ . Due to the identical

nature of the particles, the one-particle partition function is the same for all of them,

and so from (5.13) it follows that the partition function of the gas is given by

Z(β ,V,N) = [Z(β ,V,1)]N , (5.29)

where Z(β ,V,1) is the one-particle partition function, namely

Z(β ,V,1) =
1

h3

∫
dr

∫
dpe−β [p2/2m+φR(r)] =

V

Λ 3
, (5.30)

and

Λ =
h√

2πmkBT
, (5.31)

is the thermal de Broglie wavelength associated to the particle. This example shows

that, in a classical ideal gas, in order to determine the thermodynamic properties in

the canonical ensemble (the Helmholtz free energy), one only needs to compute the

Gaussian integral in (5.30). In the microcanonical ensemble the volume of the 3N-

dimensional hypersphere was required to determine the entropy S(E,V,N). Thus,

the simplification obtained with the canonical ensemble is evident.

The Helmholtz free energy (5.23) then reads

F(β ,V,N) = −kBT lnZ(β ,V,N) = −NkBT ln

(
V

Λ 3

)
, (5.32)

which is not an extensive variable in the thermodynamic limit. The reason behind

this anomaly has again to do with the fact that the particles of the gas have been taken

to be distinguishable (Gibbs paradox). Note that, as in the microcanonical ensemble,

the paradox may be solved in an ad hoc manner if the canonical ensemble (5.11) and

(5.12) is written as

ρ(q, p) =
1

N!h3N

1

Z∗(β ,V,N)
e−βHN (q,p;V) , (5.33)

with

Z∗(β ,V,N) =
1

N!h3N

∫
dq

∫
d pe−βHN (q,p;V ) , (5.34)

which does not alter the average values taken over the ensemble.
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From (5.34) it follows that the partition function of the ideal gas becomes

Z∗(β ,V,N) =
1

N!
[Z(β ,V,1)]N , (5.35)

so that upon using the Stirling approximation, it follows that the Helmholtz free

energy, defined through Z∗(β ,V,N), is given by

F(β ,V,N) = −kBT lnZ∗(β ,V,N)

= NkBT

(
ln

(
NΛ 3

V

)
−1

)
+ O(lnN) , (5.36)

and the Helmholtz free energy per particle f (T,ρ) is finite in the thermodynamic

limit

f (T,ρ) = TL

[
F(β ,V,N)

N

]
= kBT

(
ln
(
ρΛ 3

)
−1
)

, (5.37)

where ρ = N/V < ∞.

5.5 Ideal Gas in an External Potential

Consider an ideal gas of N particles of mass m contained in a closed region R of

volume V at temperature T in an external potential φ(r). The one-particle partition

function is

Z(β ,V,1) =
1

h3

∫

R
dr

∫
dpe−β [p2/2m+φR(r)+φ(r)]

=

(
V

Λ 3

)
1

V

∫

R
dre−βφ(r) , (5.38)

and that of the gas is given by

Z∗(β ,V,N) =
1

N!

(
V

Λ 3

)N(
1

V

∫

R
dre−βφ(r)

)N

. (5.39)

Therefore, the Helmholtz free energy F(β ,V,N) = −kBT lnZ∗(β ,V,N) reads

β F(β ,V,N) = − ln

(
1

N!

(
V

Λ 3

)N
)
−N ln

(
1

V

∫

R
dre−βφ(r)

)

≡ β F[φ ] . (5.40)

Note that in order to determine the Helmholtz free energy one has to know the

value of the external potential φ (r) at all points of the Euclidean space that are
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contained in the region R, i.e., F(β ,V,N) is a functional of φ(r), which is denoted

by F [φ ] (see Appendix C). On the other hand, the external potential induces a non-

uniform local density of particles ρ1(r). It can be easily seen that

ρ1(r) =

〈
N

∑
j=1

δ (r− r j)

〉
= N

e−βφ(r)

∫
R dr′ e−βφ(r′) , (5.41)

where the average value has been determined with the canonical ensemble. In the

case of a uniform gravitation field φ (r) = mgz, (5.41) yields the well-known baro-

metric formula.

As the first functional derivative of F[φ ] with respect to the external potential,

δF [φ ]/δφ(r) is defined by (see Appendix C)

δ F[φ ] ≡ F [φ + δφ ]−F[φ ] =

∫

R
dr

δF [φ ]

δφ (r)
δ φ(r) , (5.42)

from (5.40) one has

β δF[φ ] = −N ln

(∫
R dre−β [φ(r)+δφ(r)]

∫
R dr′ e−βφ(r′)

)

= −N ln

(∫
R dre−βφ(r) (1−βδφ (r)+ . . .)

∫
R dr′ e−βφ(r′)

)

= −N ln

(
1−β

∫
R dre−βφ(r)δφ(r)
∫

R dr′ e−βφ(r′) + . . .

)

= Nβ

∫
R dre−βφ(r)δ φ(r)
∫

R dr′ e−βφ(r′) + . . . (5.43)

or

β δF [φ ] = β
∫

R
drρ1(r)δ φ(r)+ ...

i.e.,
δF [φ ]

δ φ(r)
= ρ1(r) , (5.44)

where use has been made of (5.41) and (5.42). Therefore, the functional derivative of

the Helmholtz free energy with respect to the external potential is the local density

of particles.

The concept of Legendre transform may now be generalized to the case of func-

tionals, by introducing the intrinsic Helmholtz free energy functional F[ρ1]:

F[ρ1] = F [φ ]−
∫

R
drφ (r)ρ1(r) , (5.45)
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i.e., in the new functional F[ρ1] the local density of particles is the independent

variable. From (5.41) it follows that

φ (r) = kBT

(
− lnρ1(r)+ lnN − ln

∫

R
dr′ e−βφ(r′)

)
. (5.46)

Upon substitution of (5.46) into (5.45) and taking into account that

∫

R
drρ1(r) = N

one obtains from (5.40)

F[ρ1] = kBT

∫

R
drρ1(r)

(
ln
(
ρ1(r)Λ

3
)
−1
)
+ O(lnN) , (5.47)

where the Stirling approximation has been used. In the thermodynamic limit (5.47)

reduces to

F[ρ1] = kBT

∫
drρ1(r)

(
ln
(
ρ1(r)Λ

3
)
−1
)

. (5.48)

Note that in a homogeneous system (φ (r)=0) , ρ1(r)=ρ , the intrinsic Helmholtz

free energy functional becomes a function of the density of the gas and (5.48) re-

duces to (5.37).

It must be pointed out that, in order to derive (5.48), the existence of an exter-

nal potential inducing a non-uniform local density of particles has been assumed.

This constitutes an example of a symmetry breaking field considered in Chap. 3. As

shown in that chapter, when taking first the thermodynamic limit and subsequently

the zero-field limit, it is possible to find phases that do not have the same symme-

try as the Hamiltonian. In particular, in the study of non-uniform phases (a solid)

or inhomogeneous systems (an interface), (5.48) is the ideal part of the intrinsic

Helmholtz free energy functional.

5.6 Equipartition Theorem

In the previous chapter the equipartition theorem in the microcanonical ensemble,

according to which the average kinetic energy per degree of freedom is equal to

kBT/2, has been derived. In order to obtain this theorem in the canonical ensemble,

consider a system of N particles whose Hamiltonian (see (4.60)) is the sum of the

kinetic energy H id
N , of the potential energy H int

N , and the interaction energy between

the particles and the container HR
N . Due to the additivity of the energy, the partition

function may be factorized with the result

Z(β ,V,N) =
1

h3N

∫
drN

∫
dpNe−β(Hid

N +Hint
N +HR

N )



98 5 Canonical Ensemble

= Zid(β ,V,N)Zint(β ,V,N) , (5.49)

where

Zid(β ,V,N) = [Z(β ,V,1)]N , (5.50)

is the ideal partition function (5.29) and (5.30), and

Zint(β ,V,N) =
1

V N

∫
drNe−β (Hint

N +HR
N ) (5.51)

is the partition function of the interactions. The average kinetic energy of the system

is given by

〈H id
N 〉 =

1

h3NZ(β ,V,N)

∫
drN

∫
dpNH id

N e−β (Hid
N +Hint

N +HR
N )

= − 1

βh3NZ(β ,V,N)

(
∂

∂λ

∫
drN

∫
dpNe−β (λHid

N +Hint
N +HR

N )

)

λ=1

= − 1

βZ(β ,V,N)

(
∂

∂λ
Zid(λ β ,V,N)Zint(β ,V,N)

)

λ=1

,

so that from (5.49) one has

〈H id
N 〉 = − 1

β

(
∂

∂λ
lnZid(λ β ,V,N)

)

λ=1

, (5.52)

or, alternatively, from (5.50)

〈H id
N 〉 = −N

β

(
∂

∂λ
lnZ(λ β ,V,1)

)

λ=1

. (5.53)

The derivative in (5.53) may be readily evaluated since Z(β ,V,1) = V/Λ3 leading

to the equipartition theorem:

〈H id
N 〉 =

3

2
NkBT . (5.54)

Note that this result is a consequence of the factorization of the partition functions

(5.49) and (5.50).

Another interesting example is that of a system of N harmonic oscillators whose

Hamiltonian is given by the Einstein model (4.31). Since the energy is additive (ideal

system), the partition function may be factorized and the average energy, in analogy

with (5.53), is determined as

〈HN〉 = −N

β

(
∂

∂λ
lnZ(λ β ,ω ,1)

)

λ=1

. (5.55)
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In this case, the partition function of a single harmonic oscillator is given by

Z(β ,ω ,1) =
1

h3

∫
dr

∫
dpe−β (p2/2m+mω2(r−R)2/2)

=
1

Λ 3

(
2π

β mω2

)3/2

, (5.56)

and so, from (5.55) and (5.56) one finds

〈HN〉 = 3NkBT , (5.57)

which shows that the average energy of each one-dimensional oscillator is kBT .

As was already pointed out in the previous chapter, the equipartition theorem is a

result of classical statistical physics which has no counterpart in quantum statistical

physics. In the following sections it is shown that, when applied to radiation or to

a harmonic solid, the equipartition theorem is at odds with experimental results.

Therefore, these systems should be treated within quantum statistical physics.

5.7 Classical Theory of Radiation

Consider Maxwell’s equations for the electromagnetic field in vacuum in a closed

region R of volume V at the absolute temperature T . If E ≡ E(r,t) and B ≡ B(r, t)
are the electric and magnetic fields, respectively, these equations read

∇×E = −1

c

∂B

∂ t
, ∇×B =

1

c

∂E

∂ t
, ∇ ·E = 0, ∇ ·B = 0 , (5.58)

where c is the velocity of light in vacuum.

Since E and B are related with the vector potential A ≡ A(r,t) through the

expressions:

B = ∇×A, E = −1

c

∂A

∂ t
, (5.59)

Maxwell’s equations (5.58) may be condensed into two equations, namely the

D’ Alembert equation or wave equation

∇2A− 1

c2

∂ 2A

∂ t2
= 0 , (5.60)

and the transversality condition:

∇ ·A = 0 . (5.61)

As usual, consider plane-wave type solutions to (5.60) and (5.61), i.e.,

ε̂α(k)ei(k·r−ωt) , (5.62)
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where ε̂α(k) is the polarization vector, which is a real unit vector whose direction

depends on k. The transversality condition then reads

k · ε̂α(k) = 0 , (5.63)

which indicates that, for a fixed wave vector k, there are two independent polariza-

tion states, since ε̂α(k) and k are orthogonal. On the other hand, upon substitution

of (5.62) into (5.60) one finds:

ω = kc , (5.64)

which is the dispersion relation, with k = |k|.
The general solution to the wave equation is a real linear superposition of plane

waves (5.62) with coefficients ck,α , i.e.,

A =

√
4π

V
∑
k

∑
α

{
ck,α ε̂α(k)ei(k·r−ωt) + c∗k,α ε̂α(k)e−i(k·r−ωt)

}
, (5.65)

and so from (5.59) the fields E and B and the Hamiltonian of the electromagnetic

field may be determined, namely

H =
1

8π

∫

R
dr(|E|2 + |B|2) . (5.66)

If A is periodic of period L (L3 = V ) in the three directions of space (see below) and

one takes into account the fact that

1

V

∫

R
dr{ε̂α(k) · ε̂α ′(k′)}ei(k−k′)·r = δ αα ′δ kk′ ,

then (5.66) becomes

H = ∑
k

∑
α

2
(ω

c

)2

ck,α(t)c∗k,α(t) , (5.67)

where

ck,α(t) = ck,α e−iωt . (5.68)

Introducing the variables

Pk,α(t) = − iω

c
{ck,α(t)− c∗k,α(t)} , (5.69)

and

Qk,α(t) =
1

c
{ck,α(t)+ c∗k,α(t)} , (5.70)

the energy of the electromagnetic field is given by

H = ∑
k

∑
α

1

2
{P2

k,α(t)+ ω2Q2
k,α(t)} , (5.71)
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which is the Hamiltonian of a system of uncoupled harmonic oscillators, since Pk,α

and Qk,α are seen to be canonical variables, i.e.,

Ṗk,α = − ∂H

∂Qk,α
, Q̇

k,α =
∂H

∂Pk,α
. (5.72)

Up to this stage, the result (5.71) is independent of the nature of the statistics. If

the radiation is treated classically, the average energy of each oscillator is, because

of the equipartition theorem, kBT . In order to determine the number of oscillators,

assume that the region R is a cubic box whose side is L and that the vector potential

is periodic, of period L, in the three directions of space. The number of oscillators

for which the modulus of the wave vector k lies between k and k + dk is, therefore,

ρ(k)dk =
V

8π3
4πk2dk =

V

2π2
k2dk , (5.73)

(note that, due to the periodicity condition, this result coincides with the one derived

for the number of quantum states for a free particle (1.66)).

It is important to realize that, for each oscillator with wave vector k, there are

two independent polarization states, as has been deduced from the transversality

condition. Starting from the dispersion relation (5.64) and from (5.73) one finds that

the total number of oscillators with angular frequency between ω and ω + dω is

given by

ρ(ω)dω = 2
V

2π2

1

c3
ω2dω =

V

π2c3
ω2dω . (5.74)

The average energy of the radiation in this interval of frequencies is, therefore,

e(ω)dω =
V

π2c3
kBT ω2dω , (5.75)

and so the heat capacity of the radiation CV is given by

CV =
∂E

∂T
=

∂

∂T

∫ ∞

0
dω e(ω) = kB

V

π2c3

∫ ∞

0
dω ω2 = ∞ , (5.76)

an anomaly known as the ultraviolet catastrophe. This result, as will be shown later

in Sect. 5.14, is a consequence of the application of the equipartition theorem.

5.8 Classical Theory of Solids

The crystalline structure of a solid of N atoms, whose position vectors are r j

( j = 1,2, . . . ,N), is determined by its potential energy H int
N (rN), which is a sum

of pair potentials (1.4). From a classical point of view, the state of minimum energy

of the solid corresponds to a configuration in which the atoms are localized at the

equilibrium positions R j ( j = 1,2, . . .N) of a Bravais lattice. This static image of the
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structure of a solid is inadequate because the atoms experience deviations with re-

spect to their equilibrium positions. If u j ≡ u j(R j) = r j −R j denotes the displace-

ment vector of atom j with respect to its equilibrium position, the potential energy

may then be written as

H int
N (rN) =

1

2

N

∑
i=1

N

∑
i�= j=1

V (|Ri −R j + ui −u j|) . (5.77)

When the relative displacements of the atoms ui−u j are small compared with the

lattice constant, the potential energy (5.77) may be expanded in a Taylor series up

to second order (an approximation called the “harmonic approximation”), namely

H int
N (rN) =

1

2

N

∑
i=1

N

∑
i�= j=1

V (|Ri −R j|)

+
1

4

N

∑
i=1

N

∑
i�= j=1

(ui −u j) ·
∂ 2V (|Ri −R j|)

∂Ri∂R j

· (ui −u j),

which does not contain the linear term because the equilibrium configuration is a

minimum of the potential energy and which may be rewritten as:

H int
N (rN) = H int

N (RN)+
1

4

N

∑
i=1

N

∑
i�= j=1

(ui −u j) ·U(Ri −R j) · (ui −u j) , (5.78)

where H int
N (RN) is the potential energy when the particles are at their equilibrium

positions and U(R) is the second-order tensor,

U
µν (R) =

∂ 2V (|R|)
∂Rµ ∂Rν

, (5.79)

with Rµ the Cartesian components of R.

After development of the products in the harmonic term of (5.78) one finds

H int
N (rN) = H int

N (RN)+
1

2

N

∑
i=1

N

∑
j=1

ui ·D(Ri −R j) ·u j , (5.80)

where the displacement tensor D(R) has been defined through (note that in (5.80)

the double sum includes the terms i = j, which do not appear in (5.78))

D(R) = δ R,0 ∑
R′

U(R′)−U(R) , (5.81)

which has the following properties:

D(R) = D(−R), D
µν (R) = D

νµ(R), ∑
R

D(R) = 0 . (5.82)
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If one adds to (5.80) the kinetic energy of the atoms, of mass m, the corresponding

Hamilton’s equations read (note that the mechanical state of the system is described

by the momenta pi and by the displacement vectors ui)

u̇i =
pi

m
, ṗi = −

N

∑
j=1

D(Ri −R j) ·u j , (5.83)

or, alternatively,

müi = −
N

∑
j=1

D(Ri −R j) ·u j , (5.84)

which are the equations of motion of the displacement vectors ui.

It is worth noting the analogy between the Hamiltonian (5.67) of the electromag-

netic field in vacuum and the harmonic term in the potential energy of the solid

(5.80), which are both positive definite quadratic forms. In the solid, since the dis-

placement tensor is real and symmetric, it is always possible to find a coordinate

transformation in which the transformed tensor is diagonal. In this coordinate sys-

tem, the Hamiltonian is the sum of the potential energy at the equilibrium positions

and of a set of 3N one-dimensional uncoupled harmonic oscillators (normal modes).

The average energy of the solid is thus given by

E = H int
N (RN)+ 3NkBT , (5.85)

since the average energy of each normal mode is kBT . Hence, the heat capacity of

the solid CV turns out to be

CV =
∂E

∂T
= 3NkB , (5.86)

which is independent of the temperature (Dulong–Petit law). This result is a good

approximation at high temperatures, but the experiments indicate that at low tem-

peratures CV ∼ T 3. Note that the possible deviations from the Dulong–Petit law

when anharmonic terms are included should be relevant at high temperatures, since

one would expect that under such conditions the relative displacements of the atoms

should increase. From the previous argument it follows that the Dulong–Petit law is

incorrect at low temperatures because of the application of the equipartition theorem

and is not due to the harmonic approximation considered for the atomic oscillations.

5.9 Quantum Canonical Ensemble

In the previous two sections, it has been shown that the application of the equipar-

tition theorem to the energy of the electromagnetic radiation in vacuum and to the

solid in the harmonic approximation leads to results that are completely at odds

with the experimental findings. Therefore, in this section the quantum statistical



104 5 Canonical Ensemble

treatment of a system that exchanges energy with the external world, i.e., the quan-

tum canonical ensemble, is discussed.

The derivation of the canonical ensemble from the microcanonical ensemble in

classical statistical physics was based on the fact that the energy was additive and

that the system had much fewer degrees of freedom than the external world. In this

way, from the probability density (4.1), which is uniform on the energy surface, the

probability density (5.11) was obtained in which the weight of the different mechan-

ical states is proportional to e−βHN (q,p;α), where HN(q, p;α) is the Hamiltonian of

the system and T = 1/kBβ the temperature of the external world. Since the con-

cepts that allow one to derive one ensemble from the other are also valid in quantum

mechanics, from the quantum microcanonical ensemble, in which all the quantum

states of the Hamiltonian operator (4.85) whose energies E
(N)
n (α) lie in the interval

between E and E + ΔE have the same probability (4.89), one obtains the quan-

tum canonical ensemble, in which the density operator is proportional to e−β ĤN (α),

where ĤN(α) is the Hamiltonian operator. Hence, one postulates that the density

operator ρ̂ of a system of N particles that exchanges energy with the external world

at the temperature T = 1/kBβ is diagonal in the energy representation and that its

elements are given by

ρmn = 〈Ψm|ρ̂|Ψn〉 =
δ mn

Z(β ,α ,N)
e−βE

(N)
n (α) , (5.87)

where n indicates the quantum state that corresponds to the eigenvector |Ψn〉 and

whose energy is E
(N)
n (α). The normalization condition (3.30) of the density operator

implies that

Z(β ,α,N) = ∑
n

e−βE
(N)
n (α) , (5.88)

where the sum extends over all quantum states of the eigenvalue equation (4.85).

Equations (5.87) and (5.88) define the quantum canonical ensemble, where Z(β ,α,
N) is the quantum partition function. Note the analogy between (5.12) and (5.88). In

the first case, one integrates over all the mechanical states in the phase space of the

system whereas in the second the sum is over all the quantum states of the eigenvalue

equation of the Hamiltonian operator. Note also that the partition function (5.88) is

the Laplace transform of the density of quantum states (4.87), namely

Z(β ,α ,N) =

∫ ∞

0
dE ω(E,α ,N)e−β E

= ∑
n

∫ ∞

0
dE δ

(
E −E

(N)
n (α)

)
e−βE

= ∑
n

e−βE
(N)
n (α) . (5.89)

As pointed out in Sect. 4.9, the convolution law for the density of quantum states

cannot be used to determine the thermodynamic properties of an ideal quantum gas

from ω(E,V,1). For this reason, the partition function (5.89) of a quantum ideal gas
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does not factorize as the product of one-particle partition functions and hence there

is no equipartition theorem in quantum statistical physics (see Sect. 5.6).

Note, finally, that the expressions for the average energy (5.15), the energy fluc-

tuation (5.17), and the equation of state (5.21) of a classical system may be used

for a quantum system provided the partition function is determined with (5.88). For

instance, consider the average value of the Hamiltonian operator which, according

to (3.28), with ĤN ≡ ĤN(α), reads

〈ĤN〉 = ∑
n

〈Ψn|ĤN ρ̂ |Ψn〉 = ∑
n

∑
m

〈Ψn|ĤN |Ψm〉〈Ψm|ρ̂|Ψn〉

=
1

Z(β ,α ,N) ∑
n

E
(N)
n (α)e−βE

(N)
n (α)

= − 1

Z(β ,α,N)

∂

∂β ∑
n

e−βE
(N)
n (α)

= − 1

Z(β ,α,N)

(
∂

∂β

)
Z(β ,α,N) , (5.90)

which coincides with (5.15).

Similarly, the Helmholtz free energy of a quantum system is defined by (5.23)

when the partition function is determined using (5.88).

5.10 Ideal Quantum Systems

Consider a system of N particles defined by a Hamiltonian operator ĤN(α) which

is the sum of one-particle operators (see Sect. 1.9), i.e.,

ĤN(α) =
N

∑
j=1

Ĥ
j

1(α) . (5.91)

If the particles are identical, the operators Ĥ
j

1(α) ≡ Ĥ1(α) have the same eigen-

value equation, which will be written as

Ĥ1(α)|φ i〉 = ε i(α)|φ i〉 , (5.92)

where it has been assumed that the spectrum of Ĥ1(α) is discrete. Once the eigenval-

ues ε i(α) are known, the quantum state of the system is completely characterized

when the occupation numbers of the particle quantum states are specified. For a

given configuration {ni} the energy of the system is given by

E
(N)
{ni}(α) = ∑

i

∗
niε i(α) , (5.93)

and so the partition function may be written as
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Z(β ,α,N) = ∑
{ni}

∗
e−β ∑i niε i(α) , (5.94)

that is a sum over all configurations {ni} which, due to the conservation of the

number of particles, satisfy the following condition:

∑
i

ni = N . (5.95)

This restriction has been indicated with an asterisk in (5.93) and (5.94).

The evaluation of (5.94) is not simple due to (5.95). Further, one must also bear

in mind that for bosons and fermions (indistinguishable particles) only those quan-

tum states having a well-defined symmetry have to be considered. Indeed, while for

bosons the wave function is symmetric under the permutation of any pair of particles

and the occupation numbers may take any integer value 0 ≤ ni ≤ N, for fermions

the wave function is antisymmetric under the exchange of any two particles and

the occupation numbers may only take the values ni = 0,1 due to Pauli’s exclusion

principle.

As will be analyzed in the next section, there is, however, one specially inter-

esting case in which (5.94) may be exactly determined in spite of the restriction

(5.95).

5.11 Maxwell–Boltzmann Statistics

Consider a system of identical distinguishable particles, i.e., particles that may be

numbered. Note that, in this case, the mere specification of the particle occupation

numbers ni is not enough to determine the quantum state of the system. For in-

stance, let n1 = 1,n2 = N −1,ni = 0(i ≥ 3). Since the particles are distinguishable,

the quantum state of the system will only be completely specified once one knows

which particle is in the energy state ε1(α) (the first one, the second one, etc.). There

are, therefore, N possible quantum states that correspond to this configuration. Since

all these states have the same energy, the fact of considering distinguishable parti-

cles introduces a degeneration of the energy levels of the system when these are

specified by the occupation numbers ni. In general, given a configuration {ni} the

degeneration of the quantum state of the system is given by

N!

∏i ni!
, (5.96)

and so the partition function turns out to be

Z(β ,α ,N) = ∑
{ni}

∗ N!

∏i ni!
e−β ∑i niε i(α)
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= ∑
{ni}

∗ N!

n1! . . .nr! . . .

(
e−βε1(α)

)n1

. . .
(

e−βεr(α)
)nr

. . . (5.97)

It is seen that (5.97), when the numbers ni satisfy the condition (5.95), is

Newton’s expansion of the multinomial:

Z(β ,α ,N) =
(

e−βε1(α) + . . .+ e−βε r(α) + . . .
)N

= [Z(β ,α,1)]N , (5.98)

where

Z(β ,α,1) = ∑
r

e−βεr(α) (5.99)

is the one-particle partition function. Note that (5.98) is the quantum equivalent of

the classical statistics of an ideal system (5.29). As will be analyzed in the next chap-

ter, the Maxwell–Boltzmann statistics (5.98) is, under certain conditions, a good ap-

proximation to the quantum statistics (bosons and fermions), in which the particles

are indistinguishable. In contrast with these quantum statistics, in the Maxwell–

Boltzmann statistics the thermodynamic properties of an ideal system of N particles

may be obtained from the one-particle partition function Z(β ,α,1).
The average value of the occupation number in a particle state r is given by

〈nr〉 =
1

Z(β ,α,N) ∑
{ni}

∗ N!

∏i ni!
nr e−β ∑i niε i(α) , (5.100)

which may be written as

〈nr〉 =
Ne−β εr(α)

Z(β ,α,N) ∑
{ni}

∗ (N −1)!

n1! . . . (nr −1)! . . .

×
(

e−βε1(α)
)n1

. . .
(

e−βεr(α)
)nr−1

. . .

=
Ne−β εr(α)

Z(β ,α,N)
[Z(β ,α ,1)]N−1 , (5.101)

where, once more, use has been made of Newton’s expansion of the multinomial.

According to (5.98), one finally obtains

〈nr〉 = N
e−βεr(α)

Z(β ,α,1)
, (5.102)

which is known as the Maxwell–Boltzmann statistics. Note that the average occu-

pation number of a particle quantum state is proportional to the Boltzmann factor

e−βεr(α).
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5.12 Maxwell–Boltzmann’s Ideal Gas

In order to determine the thermodynamic properties of an ideal quantum gas in the

Maxwell–Boltzmann statistics, one has to evaluate the partition function (5.99) of a

free particle. As shown in Chap. 1, the one-particle quantum states are specified by

three quantum numbers, nx,ny, and nz, that may take the values 0,±1,±2, . . . The

energy of a particle of mass m contained in a cubic box of side L in a quantum state

nx,ny,nz is given by

εnx,ny,nz(V ) =
2π2h̄2

mV 2/3
(n2

x + n2
y + n2

z) , (5.103)

where the volume of the box, V = L3, is the external parameter. The partition func-

tion of a free particle is, therefore,

Z(β ,V,1) =
∞

∑
nx=−∞

∞

∑
ny=−∞

∞

∑
nz=−∞

e−β2π2h̄2(n2
x+n2

y+n2
z )/mV 2/3

. (5.104)

The expression in (5.104) may be evaluated approximately when the volume of

the box is large. To that end, note that the components of the wave vector kx,ky,kz

are quantized, namely kx = 2πnx/L, ky = 2πny/L, kz = 2πnz/L. These components

vary, in modulus, by 2π/L when each of the quantum numbers changes by one unit.

If L is large, this variation tends to zero and the components of the wave vector may

be considered as continuous variables so that one has

Z(β ,V,1) =
V

8π3

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz e−β h̄2(k2

x+k2
y+k2

z )/2m , (5.105)

and the Gaussian integrals may be readily evaluated to obtain

Z(β ,V,1) =
V

Λ 3
, (5.106)

where Λ is the thermal de Broglie wavelength (5.31). Note that in classical statis-

tical physics, Planck’s constant is arbitrarily introduced in the determination of the

one-particle partition function. In this way, the classical partition function of a free

particle (5.30) coincides with (5.106). In the latter case, however, Planck’s constant

comes from the solution of Schrödinger’s equation for the free particle in the box.

It is easy to show, using (5.98) and (5.106), that in the Maxwell–Boltzmann

statistics the equation of state of the ideal gas is p = ρkBT and that the average

energy per particle is e = 3kBT/2, in agreement with the equipartition theorem.

On the other hand, the Helmholtz free energy (5.23) is not extensive. Such a re-

sult is logical since in the Maxwell–Boltzmann statistics particles are considered

to be distinguishable. Therefore, to avoid this anomaly, it is necessary to introduce

the Gibbs factor 1/N! when determining the partition function of the gas, namely

Z∗(β ,V,N) = [Z(β ,V,1)]N/N!. This correction does not alter the equation of state

and the energy equation of the gas.
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5.13 Brillouin’s Paramagnetism

Consider a system of N distinguishable particles of mass m, charge e, and total angu-

lar momentum ĵ in a magnetic field B. These particles might be, for instance, atoms

placed on the Bravais lattice of a solid, so that the Maxwell–Boltzmann statistics

may be applied to such a system. To simplify the calculations, it will be assumed

that the system is ideal while the kinetic energy of the atoms will not be considered.

As was pointed out in Chap. 1, the interaction energy of the total angular mo-

mentum ĵ with the field B is one of the 2 j + 1 values given by the expression

εm(B) = −gµBmB, (m = − j,− j + 1, . . . , j−1, j) , (5.107)

where g is the Landé factor, µB = eh̄/2mc is Bohr’s magneton, and B = |B|. The

partition function of an atom

Z(β ,B,1) =
j

∑
m=− j

eβgµBmB =
j

∑
m=− j

emx/ j (5.108)

is the sum of the terms of a geometric series with x = βgµBB j, i.e.,

Z(β ,B,1) = e−x e(2 j+1)x/ j −1

ex/ j −1
=

sinh
((

1 + 1
2 j

)
x
)

sinh
(

x
2 j

) . (5.109)

Since Z(β ,B,N) = [Z(β ,B,1)]N , the total magnetic moment of the system turns

out to be

M = NkBT
∂ lnZ(β ,B,1)

∂B
= NgµB jB j(x) , (5.110)

where B j(x) is the Brillouin function defined as

B j(x) =

(
1 +

1

2 j

)
coth

((
1 +

1

2 j

)
x

)
− 1

2 j
coth

(
x

2 j

)
. (5.111)

In Fig. 5.1 the Brillouin function is represented for j = 1/2, in which case

B1/2(x) = 2coth(2x)− cothx = tanhx, j = 1 and j = 3/2. Note that B j(x) ≃ 1

(x ≫ 1) and that all the curves pass through the origin. The latter feature shows

that, in the absence of a magnetic field, the magnetic moment of the system is zero

(paramagnetism).

These limiting cases may be derived straightforwardly from (5.108). Consider,

first, that x ≫ 1. The partition function of an atom may then be written as

Z(β ,B,1) =
j

∑
m=− j

emx/ j = ex
(

1 + e−x/ j + e−2x/ j + . . .
)
≃ ex , (5.112)

or, alternatively,
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Fig. 5.1 The Brillouin func-

tion B j(x) for j = 1/2 (con-

tinuous line), j = 1 (broken

line), and j = 3/2 (dotted

line)
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lnZ(β ,B,1) ≃ x , (5.113)

so that the equation of state (5.110) becomes

M ≃ NgµB j (x ≫ 1) . (5.114)

This result leads to the conclusion that if the magnetic field is intense or the temper-

ature is low (gµBB ≫ kBT ) all the magnetic moments will orient in the direction of

the field.

When x ≪ 1, the exponential in (5.108) may be expanded up to second order to

obtain

Z(β ,B,1) =
j

∑
m=− j

emx/ j =
j

∑
m=− j

(
1 +

x

j
m+

1

2

x2

j2
m2 + . . .

)

= (2 j + 1)

(
1 +

1

2(2 j + 1)

x2

j2

j

∑
m=− j

m2 + . . .

)
, (5.115)

since
j

∑
m=− j

m = 0.

Therefore,

lnZ(β ,B,1) ≃ ln(2 j + 1)+
1

2(2 j + 1)

x2

j2

j

∑
m=− j

m2 , (5.116)

where the approximation ln(1 + x)≃ x (x ≪ 1) has been used. Since

j

∑
m=− j

m2 =
1

3
j( j + 1)(2 j + 1),
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it follows that the equation of state (5.110) reduces in this case to

M ≃ 1

3
N(gµB)2 j( j + 1)

kBT
B (x ≪ 1) , (5.117)

which can be cast in the form

mV = χB (5.118)

where mV = M/V is the magnetic moment per unit volume,

χ =
1

3
ρ(gµB)2 j( j + 1)

kBT
(5.119)

is the magnetic susceptibility, which is inversely proportional to the absolute tem-

perature (Curie’s law), and ρ = N/V is the density. An immediate conclusion of the

theory of Brillouin is that since an ideal system of magnetic moments is paramag-

netic, a necessary condition in order for the ferromagnetic phase to exist is that there

must be interactions between the magnetic moments (see Chap. 9).

5.14 Photon Gas

When analyzing the classical radiation it was shown that the energy of the electro-

magnetic field in vacuum may be written as an infinite sum of terms each of which

is the Hamiltonian of a one-dimensional harmonic oscillator. When these oscilla-

tors are treated classically, the application of the equipartition theorem leads to an

infinite heat capacity of the radiation. Consider now the quantum treatment of these

oscillators. As was discussed in Chap. 1, the energy of an oscillator of angular fre-

quency ω i may take the following values:

ε i(ω i) = nih̄ω i, (ni = 0,1,2, . . .) , (5.120)

where ni is the number of photons in the state of frequency ω i (see Sect. 1.8) and

the zero-point energy has not been accounted for. Note that in order to specify the

quantum state of the radiation, one has to fix an infinite set of variables ni and that

the energy of this state is given by

E{ni}({ω i}) = ∑
i

nih̄ω i . (5.121)

The fundamental difference between (5.93) and (5.121) is that, in the latter, the

numbers ni do not have to comply with the restriction (5.95); in other words, there

is no conservation of the number of photons. The quantum partition function of the

electromagnetic radiation in the vacuum contained in a volume V at the absolute

temperature T is, therefore,
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Z(β ,V ) = ∑
{ni}

e−β ∑i nih̄ω i = ∏
i

∞

∑
ni=0

e−βnih̄ω i = ∏
i

1

1− e−β h̄ω i
, (5.122)

or, alternatively,

lnZ(β ,V ) = −∑
i

ln
(

1− e−β h̄ω i

)
, (5.123)

where the sum in (5.123) extends to all photon states.

It is convenient to point out at this stage that in the quantum theory of radiation it

is shown that the photon is a boson of spin 1 and zero rest mass, so that its energy is

ε = pc = h̄kc = h̄ω . Although in principle the photon has three possible spin states,

only two of them are independent, corresponding to the two states of polarization of

the electromagnetic wave. The sum over the photon states in (5.123) extends to the

oscillator states with any polarization (5.74), so that in the limit V → ∞, one has

lnZ(β ,V ) = − V

π2c3

∫ ∞

0
dω ω2 ln

(
1− e−β h̄ω

)
. (5.124)

Integrating by parts in (5.124) leads to

lnZ(β ,V ) =
2V

π2c3

(
kBT

h̄

)3

ζ (4) , (5.125)

where

ζ (n) =
1

Γ (n)

∫ ∞

0
dx

xn−1

ex −1
, (5.126)

is the Riemann function (ζ (4) = π4/90). From (5.125) it follows that the equation

of state and the energy equation of the electromagnetic radiation are given by

p =
π2

45h̄3c3
(kBT )4 , (5.127)

and

E =
π2V

15h̄3c3
(kBT )4 , (5.128)

which implies that the heat capacity CV is finite.

One may compare the classical and quantum treatments of the radiation by com-

puting the average number of photons in a photon state, namely

〈nr〉 =
1

Z(β ,V ) ∑
{ni}

nr e−β ∑i nih̄ω i . (5.129)

Due to the factorization of the different terms in (5.129) and (5.122), one has

〈nr〉 =
(

1− e−β h̄ω r

) ∞

∑
nr=0

nre
−β h̄ωrnr , (5.130)
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and, since the first term in the series (5.130) is zero, the sum may be evaluated in

the following way:

S ≡
∞

∑
nr=1

nre
−β h̄ωrnr =

∞

∑
mr=0

(mr + 1)e−β h̄ω r(mr+1)

= e−β h̄ωr

(
S +

∞

∑
mr=0

e−β h̄ωrmr

)

= e−β h̄ωr

(
S +

1

1− e−β h̄ω r

)
, (5.131)

i.e.,

S =
1

(eβ h̄ωr −1)(1− e−βh̄ωr)
,

i.e.,

〈nr〉 =
1

eβ h̄ωr −1
, (5.132)

which is known as Planck’s statistics.

In the limit V → ∞, one may determine from (5.132) the average energy of the

radiation in the frequency interval between ω and ω + dω. To that end, one has to

take the product of the number of photon states in that interval (5.74), Vω2dω/π2c3

times the energy of the photon, h̄ω times the average number of photons in the

interval (5.132), to obtain

e(ω)dω =
V

π2c3
ω2dω h̄ω

1

eβ h̄ω −1
. (5.133)

Integration of (5.133) over the whole interval of frequencies leads to (5.128).

Note, however, that in the limit of low frequencies or high temperatures (β h̄ω ≪ 1)

the fraction in (5.133) may be approximated by 1/β h̄ω , and so in this limit

e(ω)dω ≃ V

π2c3
kBT ω2dω (β h̄ω ≪ 1) , (5.134)

which results from multiplying the number of photon states in the interval by the

classical average energy of the oscillator kBT (see (5.75)). This equation shows that

the classical result is only a low-frequency approximation to the Planck statistics

so that if extrapolated to all frequencies it leads to an infinite heat capacity of the

radiation.

It is seen that (5.133) may be expressed in terms of the variable x ≡ β h̄ω as

e0(x)dx ≡ π2c3

V

h̄3

(kBT )4
e(ω)dω =

x3

ex −1
dx , (5.135)
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Fig. 5.2 Energy density of the

radiation e0(x) = x3/(ex −1)
as a function of the variable

x = β h̄ω (continuous line).

The curve has a maximum at

x = 2.821. The broken line is

the classical result e0(x) ≃ x2
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which is represented in Fig. 5.2. The function e0(x) has a maximum at x = 2.821,

which implies that the angular frequency at which e(ω) reaches its maximum grows

proportionally to the temperature (Wien’s displacement law).

5.15 Phonon Gas

In the Hamiltonian of a solid in the harmonic approximation, the term correspond-

ing to the deviations of the atoms from their equilibrium positions is a positive

definite quadratic form. As is well known, the time evolution of the 3N deviations

may be described by means of a set of 3N normal modes that satisfy equations of

motion of the harmonic oscillator-type. When these oscillators are treated classi-

cally, upon application of the equipartition theorem one obtains the Dulong–Petit

law. The quantum study of the harmonic oscillations in a solid is, therefore, similar

to the one just carried out for the electromagnetic radiation. Once more, the energy

of each oscillator is given by

ε i(ω i) = nih̄ω i, (ni = 0,1,2, . . .) , (5.136)

where ni is the number of phonons in the state of frequency ω i. The partition func-

tion of the phonon gas is then

Z(β ,V,3N) = ∑
{ni}

e−β ∑3N
i=1 nih̄ω i =

3N

∏
i=1

∞

∑
ni=0

e−βnih̄ω i

=
3N

∏
i=1

1

1− e−β h̄ω i
, (5.137)
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where neither the potential energy at the mechanical equilibrium nor (as in the case

of the photon gas) the zero-point energy of the oscillators have been considered.

There are two fundamental differences between the photon gas and the phonon

gas. The first one has to do with the fact that in the solid the number of oscillators

is 3N, while that of the electromagnetic radiation is infinite. The second one is that

in the solid the exact form of the dispersion relation ω i = ω i(k), where k is the

modulus of the wave vector, is not known exactly.

The average energy of the phonon gas is given by

E =
∂

∂β

3N

∑
i=1

ln
(

1− e−β h̄ω i

)
=

3N

∑
i=1

h̄ω i

eβ h̄ω i −1
, (5.138)

which in the high temperature limit β h̄ω i ≪ 1 may be approximated by

E ≃
3N

∑
i=1

h̄ω i

(1 + β h̄ω i + . . .)−1
= 3NkBT . (5.139)

This is the result that one would obtain using the equipartition theorem and which

leads to the Dulong–Petit law (5.86).

A simple approximation of (5.138) may be obtained if one assumes that all the

oscillators have the same frequency ωE (quantum Einstein model), so that

E = 3N
h̄ωE

eβ h̄ωE −1
, (5.140)

and, therefore,

CV = 3NkB

(
ΘE

T

)2
eΘE/T

(eΘE/T −1)2
, (5.141)

where the Einstein temperature has been defined as ΘE = h̄ωE/kB. Since ΘE is

unknown, it may be taken as a free parameter in (5.141) so that this expression fits

the experimental data. The results obtained in this fashion indicate that, although the

heat capacity of the solid in the Einstein model has a qualitatively correct behavior,

it decreases at low temperatures as

CV ≃ 3NkB

(
ΘE

T

)2

e−ΘE/T , (5.142)

when T ≪ΘE , whereas the experimental results indicate that in this limit CV ∼ T 3

(Fig. 5.3).

Finally, in order to establish the Debye theory, consider again the equations of

motion of the displacement vectors ui in the harmonic approximation (5.84). If one

seeks for plane wave solutions, namely

ε̂α(k)ei(k·Ri−ωα t) , (5.143)
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where ε̂α(k) is the polarization vector, which is a unit vector whose direction de-

pends on k, upon substitution of (5.143) into (5.84) one finds

D̃(k) · ε̂α(k) = mω2
α(k)ε̂α(k) , (5.144)

where

D̃(k) = ∑
R

D(R)e−ik·R = D̃(−k) . (5.145)

Note that (5.144) is the eigenvalue equation of the operator D̃(k), whose eigen-

vectors are ε̂α(k) and its eigenvalues mω2
α(k). From (5.145) it follows that D̃(k) is a

real tensor, even in k. The tensor is, moreover, symmetric since Dµν(R) = Dνµ(R).
For a fixed wave vector k, let ε̂α(k) (α = 1,2,3) be a set of orthonormal eigenvec-

tors:

ε̂α(k) · ε̂α ′(k) = δ α ,α ′ . (5.146)

Note that, in contrast with the case of the electromagnetic radiation, in a solid the

transversality condition does not hold so that, once the wave vector k is fixed, there

are three independent states of polarization.

In order to obtain an adequate description of the heat capacity of the solid at

low temperatures, consider the tensor D̃(k). According to (5.138) the most impor-

tant contribution when T → 0 (β → ∞) corresponds to the low frequencies ω or,

as shown in what follows, to the small wave vectors. Therefore, (5.145) may be

approximated by

D̃(k) = ∑
R

D(R)

(
1− ik ·R− 1

2
(k ·R)2 + . . .

)

= −k2

2
∑
R

D(R)(k̂ ·R)2 , (5.147)

where k̂ = k/k is the unit vector in the direction of k. The first two terms of the

expansion (5.147) are zero, the first one because of (5.82) and the second one due

to the fact that

∑
R

D(R) ·R = 0 , (5.148)

since D(R) = D(−R).
With this approximation, the eigenvalues of (5.144) may be written as

ωα(k) = cα(k̂)k , (5.149)

where cα(k̂) are the square roots of the eigenvalues of the tensor

− 1

2m
∑
R

D(R)(k̂ ·R)2 . (5.150)
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In an isotropic medium it is always possible to choose one of the directions of

the vectors ε̂α(k) in the direction of k (longitudinal mode), so that the other two po-

larization vectors are orthogonal to k (transverse modes). Note that the dispersion

relation (5.149), which is valid when k → 0, is analogous to one of the electromag-

netic radiation in the vacuum (5.64). In the case of the radiation, c is the velocity of

light, while in (5.149) cα(k̂) is the velocity of the longitudinal or transversal sound

wave.

Assume that, as in the case of radiation, periodic conditions are imposed to

(5.143) in a cubic box of side L, so that the number of phonon states whose modulus

of the wave vector lies between k and k + dk is (5.73). For the longitudinal wave,

the number of phonon states with angular frequency lying between ω and ω + dω
is, therefore,

ρ l(ω)dω =
V

2π2

1

c3
l

ω2dω , (5.151)

while for the transverse wave it is

ρ t(ω)dω = 2
V

2π2

1

c3
t

ω2dω , (5.152)

where cl and ct are the velocities of the longitudinal and transversal sound waves.

The total number of phonon states is given by

ρ(ω)dω =
V

2π2

1

c3
l

ω2dω + 2
V

2π2

1

c3
t

ω2dω = 3
V

2π2

1

c3
ω2dω , (5.153)

where c has been defined as
3

c3
≡ 1

c3
l

+
2

c3
t

. (5.154)

Since there are 3N phonon states, one must impose an upper frequency limit, ωD,

referred to as the Debye frequency, such that

3
V

2π2

1

c3

∫ ωD

0
dω ω2 = 3N , (5.155)

i.e.,

ω3
D = 6π2ρc3 , (5.156)

where ρ = N/V is the average density of the solid. The average energy of the phonon

gas is, according to (5.138),

E =
3V

2π2c3

∫ ωD

0
dω ω2 h̄ω

eβ h̄ω −1
, (5.157)

and hence

CV =
3Vk4

B

2π2c3h̄3
T 3
∫ β h̄ωD

0
dxx4 ex

(ex −1)2
, (5.158)
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Fig. 5.3 Specific heat at

constant volume, cV /kB,

of a crystalline lattice as

a function of x = T/ΘE

(Einstein’s theory, dotted

line) and x = T/ΘD (Debye’s

theory, continuous line). The

broken line is the classical

result

1.00.80.60.40.20.0
x

0

1

2

3

cV / kB

or

CV = 9NkB

(
T

ΘD

)3 ∫ ΘD/T

0
dxx4 ex

(ex −1)2
, (5.159)

where the Debye temperature, ΘD, has been defined as kBΘD = h̄ωD.

At low temperatures (T ≪ΘD) the upper limit in the integral may be replaced by

infinity and since ∫ ∞

0
dxx4 ex

(ex −1)2
=

4π4

15
,

one finally finds for the specific heat at constant volume cV = CV /N

cV =
12π4

5
kB

(
T

ΘD

)3

. (5.160)

This equation has an adjustable parameter, the Debye temperature, in a similar way

as in the Einstein model and the law cV ∼ T 3 is the one obtained in the experiments

(see Fig. 5.3). A typical Debye temperature is of the order of 102K (Table 5.1). Note

that if T ≪ΘD quantum effects are important, while if T ≫ΘD the classical result

(the Dulong–Petit law) is obtained.

Table 5.1 Debye temperature ΘD in Kelvin for some elements

ΘD ΘD

Li 400 Al 394

Na 150 Si 625

K 100 As 285

Cu 315 Fe 420

Ag 215 Ni 375

Au 170 Pt 230

Source: N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders, Philadelphia (1976)
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Chapter 6

Grand Canonical Ensemble

Abstract In this chapter, the grand canonical ensemble describing a system that

exchanges energy and particles with the external world is introduced. The density

fluctuations at the critical point and the ideal quantum boson and fermion gases are

presented as key applications of this ensemble.

6.1 Classical Grand Canonical Ensemble

When two closed systems of volumes V1 and V2, which together constitute an iso-

lated system of energy E and volume V = V1 +V2, exchange energy in an additive

way, E = E1 +E2, the probability density of the energy of a subsystem is, according

to (5.1),

ρ1(E1) =
ω1(E1,V1,N1)ω2(E −E1,V2,N2)

ω(E,V,N)
, (6.1)

where the numbers of particles, N1 and N2 (N = N1 + N2), are constant for each

subsystem.

If the subsystems may also exchange particles, where in what follows they will

be considered to be all of the same species, the question immediately arises as to

what the probability density, denoted by ρ1(E1,N1), for the subsystem to have an

energy E1 and a number of particles N1 will be. Note that in (6.1) N1 and N2 are

numbers that do not indicate which particles belong to one or the other subsystem.

From a classical point of view, the mere specification of these numbers is not enough

to determine the state of each subsystem, i.e., if the N particles of the total system

are numbered, which is always possible in classical mechanics, the state of the sub-

system will only be completely determined when one knows which particles belong

to it. Since one wants to determine the probability density that the subsystem has

any N1 particles and (6.1) is the same for each group of N1 particles, ρ1(E1,N1)
is the expression (6.1) times the number of possible ways to distribute N particles

121
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among the subsystems in groups of N1 and N2 particles (since the groups are mutu-

ally exclusive), namely

ρ1(E1,N1) =
N!

N1!N2!

ω1(E1,V1,N1)ω2(E −E1,V2,N −N1)

ω(E,V,N)
, (6.2)

in which the combinatorial factor corresponds to the degeneration of the states of

the subsystems due to their characterization through the numbers N1 and N2 (note

that this kind of combinatorial factor already appeared in Chap. 5 in the study of the

Maxwell–Boltzmann statistics). The above equation may be written as

ρ1(E1,N1) =
ω∗

1(E1,V1,N1)ω∗
2(E −E1,V2,N −N1)

ω∗(E,V,N)
, (6.3)

or, alternatively,

ρ1(E1,N1) = ω∗
1(E1,V1,N1)

Ω ∗
2 (E −E1,V2,N −N1;ΔE)

Ω ∗(E,V,N;ΔE)
, (6.4)

where

ω∗(E,V,N) ≡ 1

N!
ω(E,V,N) , (6.5)

Ω ∗(E,V,N;ΔE) ≡ ω∗(E,V,N)ΔE , (6.6)

and it has been assumed that E −E1 ≫ ΔE.
Note that (6.1) and (6.3) are similar, with the difference that in the latter the

functions ω(E,V,N) are divided by N!, following (6.5). Recall that both in the mi-

crocanonical and in the canonical ensembles the factor 1/N! was introduced in an

ad hoc manner to avoid the Gibbs paradox. In the case of a classical subsystem that

exchanges particles, this factor arises naturally for the reasons stated above. The

normalization condition for ρ1(E1,N1) reads

N

∑
N1=0

∫ E

0
dE1 ρ1(E1,N1) = 1 , (6.7)

which expresses the fact that the probability that the subsystem has any energy and

any number of particles is one.

Note that since the probability density (6.3) is the product of a monotonously in-

creasing function, ω∗
1(E1,V1,N1), and a monotonously decreasing function, ω∗

2(E−
E1,V2,N−N1), of N1 and E1, ρ1(E1,N1) has a maximum at Ñ1 and Ẽ1. When N ≫ 1,

1 ≪ Ñ1 ≪ N, and Ẽ1 ≪ E , which is the normal situation in an experiment in which

the system (subsystem 1) is macroscopic and much smaller than the external world,

one should expect that wherever ρ1(E1,N1) differs appreciably from zero, the en-

ergy E2 and the number of particles N2 be such that E2 ≫ E1 and N2 ≫ N1.

The probability density (6.4) may be approximated by taking the Taylor expan-

sion of the logarithm of Ω ∗
2 (E −E1,V2,N −N1;ΔE) around the point E2 = E and

N2 = N, namely
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ln

(
Ω ∗

2 (E −E1,V2,N −N1;ΔE)

Ω ∗
2 (E,V2,N;ΔE)

)
= −β 2E1 + β 2µ2N1 + . . . , (6.8)

with

β 2µ2 ≡−
(

∂ lnΩ ∗
2 (E2,V2,N2;ΔE)

∂N2

)

E2=E,N2=N

, (6.9)

where T2 = 1/kBβ 2 (see (5.3)) and µ2 are the temperature and the chemical potential

of the external world, respectively. Note that (6.9), which defines the chemical po-

tential in classical statistical physics, may be written from (4.40) (recall that if the

external parameter is the volume and the particles may be permuted, the function

Ω(E,V,N;ΔE) has to be replaced by Ω ∗(E,V,N;ΔE)) as

µ = −T
∂S

∂N
, (6.10)

which is precisely (2.19).

With the approximation (6.8), the density probability (6.3) leads to

ρ1(E1,N1) =
Ω ∗

2 (E,V2,N;ΔE)

Ω ∗(E,V,N;ΔE)
ω∗

1(E1,V1,N1)e−β 2E1 z
N1
2 , (6.11)

where the fugacity z has been defined as

z = eβ µ . (6.12)

If the normalization condition (6.7) is taken into account, one obtains the follow-

ing expression,

ρ1(E1,N1) =
1

Q(β 2,V1,z2)
ω∗

1(E1,V1,N1)e−β 2E1 z
N1
2 , (6.13)

where

Q(β 2,V1,z2) =
N

∑
N1=0

z
N1
2

∫ E

0
dE1 ω∗

1(E1,V1,N1)e−β 2E1 , (6.14)

is the classical grand partition function of the system. Observe that, except for β 2

and z2, all the variables appearing in (6.13) and (6.14) correspond to the system. In

what follows, to simplify the notation, the subscripts will be dropped to write

ρ(E,N) =
1

Q(β ,V,z)
ω∗(E,V,N)e−β E zN , (6.15)

with

Q(β ,V,z) =
∞

∑
N=0

zN

∫ ∞

0
dE ω∗(E,V,N)e−βE , (6.16)

where the variables E , V , and N correspond to the system and the parameters β and z

to the external world. Note that, due to the pronounced maximum of ρ(E,N), in the
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grand partition function (6.16) the upper limits in both the sum and the integral have

been replaced by infinity. The ensemble described by (6.15) and (6.16) is called the

grand canonical ensemble, which is the ensemble that represents a system in thermal

contact (that exchanges energy) and chemical contact (that exchanges particles) with

another system (the external world) which has a much greater number of degrees of

freedom.

Note that the classical grand partition function may be written as

Q(β ,V,z) =
∞

∑
N=0

zNZ∗(β ,V,N) , (6.17)

which is a series in the fugacity whose coefficients are the partition functions of N

particles (with Z(β ,V,0) ≡ 1):

Z∗(β ,V,N) =
∫ ∞

0
dE ω∗(E,V,N)e−β E . (6.18)

This is indeed (5.8) in which the phase volume ω(E,V,N) has been replaced by

ω∗(E,V,N). Note that in the grand canonical ensemble the factor 1/N! appears

because the probability density ρ(E,N) refers to any number of particles N.

Consider now the probability density in the phase space (4.46) of a subsystem

that exchanges energy with another subsystem. If one assumes that the subsystems

may also exchange particles, the probability density ρ1(q1, p1,N1) for the subsystem

1 to be in a state (q1, p1) and containing any N1 particles is, by the same kind of

arguments leading to (6.3) from (6.1), the probability density (4.46) multiplied by

the combinatorial factor N!/N1!N2! (once more, the Hamiltonians are denoted by

H1 and H2 in order to simplify the notation), namely

ρ1(q1, p1,N1) =
N!

N1!N2!

1

h3N1

ω2(E −H1,V2,N −N1)

ω(E,V,N)

=
1

N1!h3N1

Ω ∗
2 (E −H1,V2,N −N1;ΔE)

Ω ∗(E,V,N;ΔE)
, (6.19)

which may be approximated using a Taylor series expansion as

ln

(
Ω ∗

2 (E −H1,V2,N −N1;ΔE)

Ω ∗
2 (E,V2,N;ΔE)

)
= −β 2H1 + β 2µ2N1 + . . . , (6.20)

i.e., a result analogous to (6.8). Upon substitution of (6.20) into (6.19), imposing the

normalization condition

N

∑
N1=0

∫
dq1

∫
d p1 ρ1(q1, p1,N1) = 1 , (6.21)
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and, finally, dropping the subscripts, all of them corresponding to the variables of

the system, except for the temperature T2 (or the parameter β 2) and the chemical

potential µ2 (or the fugacity z2) of the external world, one has

ρ(q, p,N) =
1

N!h3N

1

Q(β ,V,z)
zNe−βHN (q,p;V) , (6.22)

with

Q(β ,V,z) =
∞

∑
N=0

zN 1

N!h3N

∫
dq

∫
d pe−βHN (q,p;V) , (6.23)

where the integral in (6.23) extends over the whole phase space of the system with-

out restriction and the upper limit of the sum has been replaced by infinity. Note

that (6.23) may be written as (6.17) with:

Z∗(β ,V,N) =
1

N!h3N

∫
dq

∫
d pe−βHN (q,p;V ) , (6.24)

which, in contrast to (5.12), includes the factor 1/N! (see also (5.34)).

6.2 Mean Values and Fluctuations

In a system described by the grand canonical ensemble, the energy and the number

of particles are random variables whose probability density is (6.15). The Hamilto-

nian of a system of N particles, HN ≡ HN(q, p;V ), is a function of the mechanical

state (q, p) whose probability density is (6.22). Therefore,

〈HN〉 =
1

Q(β ,V,z)

∞

∑
N=0

zN 1

N!h3N

∫
dq

∫
d pHN e−βHN

=
1

Q(β ,V,z)

∞

∑
N=0

zN 1

N!h3N

(
− ∂

∂β

)∫
dq

∫
d pe−βHN , (6.25)

i.e.,

〈HN〉 = − 1

Q(β ,V,z)

(
∂

∂β

)
Q(β ,V,z) , (6.26)

which is known as the energy equation.

Similarly, the mean quadratic value of HN is obtained as follows:

〈
H2

N

〉
=

1

Q(β ,V,z)

(
∂ 2

∂β 2

)
Q(β ,V,z) , (6.27)
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The fluctuation of the energy of the system is given by

〈
H2

N

〉
−〈HN〉2 =

∂

∂β

(
1

Q(β ,V,z)

∂Q(β ,V,z)

∂β

)
, (6.28)

i.e.,
〈
H2

N

〉
−〈HN〉2 = − ∂

∂β
〈HN〉 , (6.29)

which is analogous to (5.18). Note, however, that the average values in the grand

canonical ensemble are functions of β , V , and z, while the average values in the

canonical ensemble are functions of β , V , and N. This point is addressed in more

detail below.

Since in the grand canonical ensemble the number of particles is a random vari-

able, its average value is given by

〈N〉 =
1

Q(β ,V,z)

∞

∑
N=0

NzN 1

N!h3N

∫
dq

∫
d pe−βHN

=
1

Q(β ,V,z)

(
z

∂

∂ z

) ∞

∑
N=0

zN 1

N!h3N

∫
dq

∫
d pe−βHN , (6.30)

i.e.,

〈N〉 =
1

Q(β ,V,z)

(
z

∂

∂ z

)
Q(β ,V,z) . (6.31)

In a similar way one has

〈N2〉 =
1

Q(β ,V,z)

(
z

∂

∂ z

)(
z

∂

∂ z

)
Q(β ,V,z) , (6.32)

and the fluctuation in the number of particles turns out to be

〈N2〉− 〈N〉2 = z
∂

∂ z

(
1

Q(β ,V,z)
z

∂Q(β ,V,z)

∂ z

)
, (6.33)

i.e.,

〈N2〉− 〈N〉2 = z
∂

∂ z
〈N〉 . (6.34)

The pressure, which is the intensive variable corresponding to the external pa-

rameter V , is obtained as the average value of the dynamical function −∂HN/∂V

with the average performed with the probability density (6.22):

p = − 1

Q(β ,V,z)

∞

∑
N=0

zN 1

N!h3N

∫
dq

∫
d p

∂HN

∂V
e−βHN
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=
1

β Q(β ,V,z)

∞

∑
N=0

zN 1

N!h3N

∂

∂V

∫
dq

∫
d pe−βHN , (6.35)

or, alternatively,

p =
1

βQ(β ,V,z)

∂Q(β ,V,z)

∂V
. (6.36)

Note that (6.36), p = p(β ,V,z), is not the equation of state of the fluid p =
p(β ,V,〈N〉). Since in the grand canonical ensemble the fugacity is an independent

variable, all the average values are parametric functions of z. In order to obtain,

for instance, the equation of state p = p(β ,V,〈N〉), one has to eliminate z from the

equation for the average number of particles (6.31), i.e., z = z(β ,V,〈N〉), and then

substitute this result in (6.36), p = p(β ,V,z(β ,V,〈N〉)). This is not a simple process

as will be shown throughout this chapter.

6.3 Grand Potential

As indicated at the beginning of this chapter, the probability density (6.15) has a

pronounced maximum for a value of the energy Ẽ and the number of particles Ñ.

The conditions for the extremum of ρ(E,N) are given by

(
∂ lnΩ ∗(E,V,N;ΔE)

∂E

)

E=Ẽ,N=Ñ

−β = 0 , (6.37)

and
(

∂ lnΩ ∗(E,V,N;ΔE)

∂N

)

E=Ẽ,N=Ñ

+ β µ = 0 , (6.38)

which express, according to (4.55) and (6.9), the thermal equilibrium (equality of

temperatures) and the chemical equilibrium (equality of chemical potentials) be-

tween the system and the external world. These equilibrium conditions take place at

the state of maximum probability and so, as a consequence of the existence of this

maximum, the series in the fugacity (6.17) may be approximated by the dominant

term, namely

Q(β ,V,z) ≃ zÑZ∗(β ,V, Ñ) , (6.39)

where Ñ(β ,V,z) and Ẽ(β ,V,z) are the solution of the system of equations (6.37)

and (6.38). Multiplying by kBT and taking the logarithm, one has

kBT lnQ(β ,V,z) ≃ Ñµ + kBT lnZ∗(β ,V, Ñ) = Ñµ −F(β ,V, Ñ) , (6.40)

where F(β ,V, Ñ) is the Helmholtz free energy. If one defines the Landau free energy

or grand potential Ω(β ,V,z) as
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Ω(β ,V,z) = −kBT lnQ(β ,V,z) , (6.41)

from (6.40) one obtains

Ω(β ,V,z) ≃ F(β ,V, Ñ)− Ñµ , (6.42)

which is the thermodynamic relation (2.36) evaluated at Ñ. In the thermodynamic

limit

TL

[
Ω(β ,V,z)

〈N〉

]
= f (β ,ρ)− µ , (6.43)

where f (β ,ρ) is the Helmholtz free energy per particle and ρ = 〈N〉/V is the av-

erage density (note that due to the maximum of probability 〈N〉 = Ñ). From (6.36)

it follows that since p and β are intensive variables, in the thermodynamic limit

lnQ(β ,V,z) has to be a homogeneous function of degree one in V , i.e.,

p

kBT
= TL

[
lnQ(β ,V,z)

V

]
, (6.44)

or, alternatively,

TL

[
Ω(β ,V,z)

〈N〉

]
= − p

ρ
, (6.45)

which is (2.39). Note that the fact that in statistical physics the independent variables

are β and z (instead of the thermodynamic variables T and µ) should lead to no

confusion.

6.4 Classical Ideal Gas

As a simple application, consider the classical ideal gas in the grand canonical en-

semble. The grand partition function of the gas is given by

Q(β ,V,z) =
∞

∑
N=0

zN 1

N!
[Z(β ,V,1)]N = ezZ(β ,V,1) , (6.46)

where use has been made of (5.35). Therefore,

lnQ(β ,V,z) = zZ(β ,V,1) = z
V

Λ 3
, (6.47)

because, according to (5.30), Z(β ,V,1) = V/Λ 3.

The equation for the average number of particles (6.31) reads

〈N〉 = z
V

Λ 3
, (6.48)
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from which it readily follows that z = ρΛ3, where ρ = 〈N〉/V is the average density

of the gas and hence

µ = kBT ln(ρΛ 3) . (6.49)

The solution to the system of parametric equations is in this case trivial and so

substitution of the value of the fugacity z = ρΛ 3 into ( 6.26), (6.29), (6.34), and

(6.36) leads to

〈HN〉 =
3

2
〈N〉kBT , (6.50)

〈H2
N〉− 〈HN〉2 =

15

4
〈N〉(kBT )2 , (6.51)

〈N2〉− 〈N〉2 = 〈N〉 , (6.52)

and

p = ρkBT . (6.53)

Note that (6.50) is a generalization of the equipartition theorem, where N is re-

placed by 〈N〉. The energy fluctuation (6.51) is greater in this case than the one cor-

responding to the canonical ensemble, 3N(kBT )2/2 assuming that 〈N〉 = N, since

when the number of particles fluctuates (something that does not occur in the canon-

ical ensemble) these fluctuations also contribute to the energy fluctuation. Note that

(6.51) and (6.52) show that the relative fluctuations

〈H2
N〉− 〈HN〉2

〈HN〉2
=

5

3〈N〉 ,
〈N2〉− 〈N〉2

〈N〉2
=

1

〈N〉 , (6.54)

tend to zero in the thermodynamic limit. On the other hand, (6.53) is, as is well

known, the equation of state of the classical ideal gas.

6.5 Classical Ideal Gas in an External Potential

Consider now a classical ideal gas in a one-body external potential φ (r). From

(6.46) and (5.38) the grand partition function Q(β ,V,z) reads

lnQ(β ,V,z) = z
1

Λ 3

∫

R

dr e−βφ(r) , (6.55)

and, hence, the grand potential Ω (β ,V,z) = −kBT lnQ(β ,V,z) can be written as

βΩ (β ,V,z) = − 1

Λ 3

∫

R

dreβu(r) ≡ β Ω [u] , (6.56)

which is a functional, denoted by Ω [u] , of u(r) = µ −φ (r), with µ = kBT lnz the

chemical potential. The external potential φ (r) induces a non-uniform local density

of particles ρ1(r):
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ρ1 (r) =

〈
N

∑
i=1

δ (r− ri)

〉
=

1

Λ 3
eβu(r) , (6.57)

which is the barometric formula for the density distribution in the presence of an ex-

ternal field. It is seen from (6.57) that there is a one-to-one correspondence between

ρ1(r) and u(r).

From (6.56) one has

βδ Ω [u] = − 1

Λ 3

∫

R

dr
(

eβ [u(r)+δu(r)] − eβu(r)
)

= − 1

Λ 3

∫

R

dr eβu(r)β δu(r)+ ... (6.58)

i.e., the first functional derivative of the grand potential reads

δΩ [u]

δu(r)
= −ρ1 (r) . (6.59)

From (6.57) it follows that

δρ1 (r) =
1

Λ 3

(
eβ [u(r)+δu(r)] − eβu(r)

)
= β

1

Λ 3
eβu(r)δu(r)+ ...

= β
∫

R

dr′ρ1 (r)δ
(
r− r′

)
δu
(
r′
)
+ ... (6.60)

i.e.,
δρ1 (r)

δ u(r′)
= βρ1 (r)δ

(
r− r′

)
, (6.61)

yielding

δ 2Ω [u]

δu(r)δu(r′)
= −β ρ1 (r)δ

(
r− r′

)
< 0 , (6.62)

i.e., Ω [u] is a concave functional of u(r) .
Now define the intrinsic Helmholtz free energy functional F [ρ1] as the Legendre

transform of Ω [u]:

F [ρ1] = Ω [u]+

∫

R

dr u(r)ρ1 (r) , (6.63)

where u(r) in (6.63) is the solution of (6.57), i.e.,

u(r) = kBT ln
(
ρ1 (r)Λ 3

)
. (6.64)
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An elementary calculation leads to

F [ρ1] = kBT

∫

R

dr ρ1 (r)
(
ln
(
ρ1 (r)Λ 3

)
−1
)

. (6.65)

As will be shown in the next chapter, the equilibrium local density ρ1 (r) of an

open system in an external potential φ (r) can be obtained by a variational principle.

For an ideal gas the demonstration is simple. Indeed, define the functional

A [ρ1] ≡ F [ρ1]−
∫

R

dr u(r)ρ1 (r) , (6.66)

and observe that when ρ1 (r) = ρ1 (r) , (6.63) and (6.66) yields A [ρ1] = Ω [u], i.e.,

the functional reduces to the grand potential. The first functional derivative of (6.66)

at constant u(r) is

δA [ρ1]

δρ1 (r)
= kBT ln

(
ρ1 (r)Λ 3

)
−u(r) , (6.67)

which, after (6.64), vanishes at the equilibrium local density ρ1 (r). Moreover, the

second functional derivative is given by

δ 2
A [ρ1]

δρ1 (r)δρ1 (r′)
= kBT

δ (r− r′)
ρ1 (r)

, (6.68)

i.e., A [ρ1] is a convex functional of ρ1 (r) . In summary, the equilibrium local den-

sity ρ1 (r) minimizes the functional A [ρ1] for a fixed external potential u(r). In the

next chapter it will be shown that this variational principle also holds for interacting

systems.

6.6 Two-Particle Distribution Function

Consider a system of interacting particles in a one-particle external potential φ (r).
The Hamiltonian is

HN

(
rN ,pN

)
=

N

∑
j=1

p2
j

2m
+UN

(
rN
)

=
N

∑
j=1

p2
j

2m
+ H int

N

(
rN
)
+

N

∑
j=1

φ (r j) , (6.69)

which is the sum of the kinetic energy, the interatomic potential energy, and the

energy of the one-particle external potential. Observe that in (6.69) the interatomic

potential energy may consist of pair, triple, etc. interactions. The grand partition

function is
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Q(β ,V,z) =
∞

∑
N=0

zN 1

N!Λ 3N

∫

R

drN exp
[
−βUN

(
rN
)]

, (6.70)

where the elementary integration over the momenta has been performed. For sim-

plicity, denote by ρ̂1 (r) the dynamical function that represents the local density of

particles (4.69 ), i.e.,

ρ̂1 (r) =
N

∑
j=1

δ (r− r j) . (6.71)

Since z = eβ µ one finds

Nµ −
N

∑
j=1

φ (r j) =

∫

R

dr
N

∑
j=1

δ (r− r j) (µ −φ (r))

=

∫

R

dr u(r) ρ̂1 (r) , (6.72)

and the grand potential Ω (β ,V,z) = −kBT lnQ(β ,V,z) ≡ Ω [u] , which is a func-

tional of u(r) = µ −φ (r) , can be written as

e−βΩ [u] =
∞

∑
N=0

1

N!Λ 3N

∫

R

drNIN

(
rN ; [u]

)
, (6.73)

where

IN

(
rN ; [u]

)
≡ exp

⎡
⎣−β

⎧
⎨
⎩H int

N

(
rN
)
−
∫

R

dr u(r) ρ̂1 (r)

⎫
⎬
⎭

⎤
⎦ . (6.74)

This result is a straightforward extension of that obtained for the ideal gas. Observe,

however, that for interacting systems the two first functional derivatives of Ω [u]
yield different distribution functions. The first functional derivative of (6.73) is

δΩ [u]

δu(r)
= −eβΩ [u]

∞

∑
N=0

1

N!Λ 3N

∫

R

drN ρ̂1 (r) IN

(
rN ; [u]

)
, (6.75)

i.e.,
δΩ [u]

δu(r)
= − 〈ρ̂1 (r)〉 = −ρ1 (r) , (6.76)

where ρ1 (r) is the non-uniform local density of particles (one-particle distribu-

tion function) induced by the external potential. A further differentiation of (6.75)

leads to

δ 2Ω [u]

δu(r)δ u(r′)
= −βeβΩ [u]

∞

∑
N=0

1

N!Λ 3N

∫

R

drN ρ̂1 (r) ρ̂1

(
r′
)

IN

(
rN ; [u]

)
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+β
δΩ [u]

δu(r)

δΩ [u]

δ u(r′)
, (6.77)

i.e.,

δ 2Ω [u]

δ u(r)δu(r′)
= −β

(〈
ρ̂1 (r) ρ̂1

(
r′
)〉

−〈ρ̂1 (r)〉
〈
ρ̂1

(
r′
)〉)

< 0 , (6.78)

i.e., Ω [u] is a concave functional of u(r).
From (6.71) one has

〈
ρ̂1 (r) ρ̂1

(
r′
)〉

=

〈
N

∑
j=1

δ (r− r j)
N

∑
i=1

δ
(
r′−ri

)
〉

= δ
(
r− r′

)
〈

N

∑
j=1

δ (r− r j)

〉

+

〈
N

∑
j=1

N

∑
j �=i=1

δ (r− r j)δ
(
r′−ri

)
〉

, (6.79)

where the contributions i = j and i �= j have been separated, yielding

〈
ρ̂1 (r) ρ̂1

(
r′
)〉

= ρ1 (r)δ
(
r− r′

)
+ ρ2

(
r,r′

)
, (6.80)

with ρ2 (r,r′) the two-particle distribution function defined as

ρ2

(
r,r′

)
=

〈
N

∑
j=1

N

∑
j �=i=1

δ (r− r j)δ
(
r′−ri

)
〉

. (6.81)

From (6.76), (6.78), and (6.80) one obtains

δρ1 (r)

δu(r′)
= β

[
ρ2

(
r,r′

)
+ ρ1 (r)δ

(
r− r′

)
−ρ1 (r)ρ1

(
r′
)]

. (6.82)

It is seen, by comparison of (6.82) and (6.61), that for an ideal gas ρ2 (r,r′) =
ρ1 (r)ρ1 (r′).

6.7 Density Fluctuations

The fluctuation in the number of particles in the grand canonical ensemble is given

by (6.34) and, as has been indicated in Sect. 6.2, it is a function of β , V , and z. This

fluctuation, as will be shown shortly, is related to the isothermal compressibility

coefficient of the system. To that end, consider the identities:
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(
∂ 〈N〉

∂ z

)

β ,V

=

(
∂ 〈N〉
∂ p

)

β ,V

(
∂ p

∂ z

)

β ,V

, (6.83)

and (
∂ 〈N〉
∂ p

)

β ,V

= −
(

∂ 〈N〉
∂V

)

β ,p

(
∂V

∂ p

)

β ,〈N〉
, (6.84)

where, to be more precise, the variables that remain constant in each partial deriva-

tive have been indicated by a subscript. Note that if 〈N〉 = 〈N〉(β ,V, p), since β and

p are intensive variables, in the thermodynamic limit 〈N〉 has to be a homogeneous

function of degree one in V , so that

TL

[(
∂ 〈N〉
∂V

)

β ,p

]
= TL

[〈N〉
V

]
= ρ , (6.85)

where ρ is the average density of particles. On the other hand, from (6.31) and (6.36)

it follows that

z

(
∂ p

∂ z

)

β ,V

= z

(
∂

∂ z

)

β ,V

kBT

(
∂ lnQ(β ,V,z)

∂V

)

β ,z

= kBT

(
∂

∂V

)

β ,z

z

(
∂ lnQ(β ,V,z)

∂ z

)

β ,V

= kBT

(
∂ 〈N〉
∂V

)

β ,z

, (6.86)

and since β and z are intensive variables

TL

[
z

(
∂ p

∂ z

)

β ,V

]
= kBT TL

[〈N〉
V

]
= kBT ρ . (6.87)

Using (6.83) and (6.87), it is found that (6.34) may be expressed as

TL

[ 〈N2〉− 〈N〉2

〈N〉

]
= ρkBT χT , (6.88)

where the isothermal compressibility coefficient χT is defined by

χT ≡− 1

V

(
∂V

∂ p

)

β ,〈N〉
. (6.89)

Equation (6.88) expresses the fluctuation in the number of particles with respect

to the average value as a function of the temperature, the average density, and the

isothermal compressibility coefficient of the system. Note that in the thermodynamic

limit χT = χT (T,ρ), and hence if the system is a fluid, either a vapor or a liquid

phase, where χT is finite
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TL

[ 〈N2〉− 〈N〉2

〈N〉

]

T,ρ

< ∞ . (6.90)

An important exception to this result takes place at the liquid–vapor critical point,

since the critical isotherm Tc has an inflexion point (see Chap. 9) at ρ = ρc, where

ρc is the critical density, i.e., χT (Tc,ρc) = ∞. Therefore, at the critical point,

TL

[〈N2〉− 〈N〉2

〈N〉

]

Tc,ρc

= ∞ , (6.91)

and the density fluctuations become observable in a phenomenon called “critical

opalescence” (i.e., during the dispersion of light, the resulting fluctuations of the

index of refraction of the fluid make it to acquire a milky appearance).

6.8 Correlations at the Critical Point

The density fluctuations of a fluid may also be analyzed taking a different approach.

Consider again the dynamical function (6.71):

ρ̂1 (r) =
N

∑
j=1

δ (r− r j) . (6.92)

Assume that the fluid is formed by N particles contained in a closed region R

of volume V at temperature T . Let R′ ⊂ R be an open region of volume V ′. The

dynamical function number of particles contained in R′, N(q, p;V ′), is, according to

(6.92):

N(q, p;V ′) =

∫

R′
dr

N

∑
j=1

δ (r− r j) , (6.93)

whose average value in the grand canonical ensemble turns out to be

〈N〉V ′ =

∫

R′
dr

〈
N

∑
j=1

δ (r− r j)

〉
=

∫

R′
drρ1(r) , (6.94)

where

ρ1(r) =

〈
N

∑
j=1

δ (r− r j)

〉
, (6.95)

is the local density of particles.

In order to determine the fluctuation in the number of particles in R′, one has to

compute the square of (6.93) and take the average over the grand canonical ensem-

ble, namely
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〈N2〉V ′ =

∫

R′
dr

∫

R′
dr′
〈

N

∑
j=1

N

∑
i=1

δ (r− r j)δ (r′− ri)

〉
(6.96)

or, using (6.80)

〈N2〉V ′ =

∫

R′
drρ1(r)+

∫

R′
dr

∫

R′
dr′ρ2(r,r

′) . (6.97)

In the thermodynamic limit V → ∞, N → ∞ with ρ = N/V < ∞, the fluid is

invariant under any translation or rotation, so that for every vector a one has:

ρ1(r) = ρ1(r + a),

and

ρ2(r,r
′) = ρ2(r + a,r′+ a).

From the first equation it follows that the local density of particles is uniform

(independent of r) ρ1(r) = ρ and from the second equation it follows that the two-

particle distribution function only depends on the relative position r−r′. Due to the

invariance under rotations, ρ2(r,r
′) has to be a function of the scalar |r− r′|, i.e.,

ρ2(r,r
′) = ρ2(|r− r′|). Therefore, (6.97) may be written as

〈N2〉V ′ −〈N〉2
V ′ = ρV ′ + ρ2

∫

R′
dr

∫

R′
dr′ h(|r− r′|) , (6.98)

where the total correlation function h(r) has been defined by

ρ2h(r) ≡ ρ2(r)−ρ2 . (6.99)

Finally, in the thermodynamic limit 〈N〉V ′/V ′ → ρ and from (6.98) it follows that

TL

[ 〈N2〉− 〈N〉2

〈N〉

]
= 1 + ρ

∫
drh(r;T,ρ) , (6.100)

where the integral extends over the whole Euclidean space and the change in no-

tation from h(r) to h(r;T,ρ) is analyzed in the following. From the comparison of

(6.100) with (6.88) one has

1 + ρ
∫

drh(r;T,ρ) = ρkBT χT (T,ρ) , (6.101)

which is called the compressibility equation and is one of the most important equa-

tions in equilibrium statistical physics. Before examining the interest of (6.101), one

must provide an interpretation for the total correlation function h(r;T,ρ).
Note that from the definition of the two-particle distribution function (6.81), it

follows that this is the marginal probability density of finding any two particles

of the fluid at points r and r′ of the Euclidean space, since the average contains

the product δ (r− r j)δ (r′ − ri), which implies that the variables r j and ri are not
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integrated over in the statistical average (see Appendix B). In (6.81) the integration

is over the position of the remaining particles of the fluid, as well as over the mo-

menta of all the particles including the j-th and the i-th. On the other hand, the fluid

is in equilibrium with the external world of temperature T and chemical potential µ ,

since the average is over the grand canonical ensemble. Since in the thermodynamic

limit µ = µ(T,ρ), the two-particle distribution function in (6.81) should be written

in this limit as ρ2(|r− r′|;T,ρ). This is the notation that has been used in (6.101).

Although this function is extremely complicated one may still make some simple

considerations about it.

In the first place, note that in the thermodynamic limit the individual probability

density of finding any one particle at a point r of the Euclidean space, a quantity de-

noted by ρ1(r), is a constant (it cannot depend on r). Hence, in the thermodynamic

limit it follows that ρ1(r) = ρ , which is the average density of particles. As seen in

Sect. 6.6, in an ideal fluid ρ2(|r− r′|;T,ρ) = ρ2, which expresses that the marginal

probability density of finding any two particles of the fluid at r and r′ is the product

of the individual probability densities, i.e., in ideal systems the coordinates of the

particles are statistically independent random variables. In an ideal fluid, therefore,

h(r;T,ρ) = 0 and from (6.101) it follows that χT (T,ρ) = (ρkBT )−1, which is a

result that may be easily derived from the equation of state p = ρkBT .

From the statistical independence in an ideal fluid one concludes that in a fluid

with interactions ρ2(|r− r′|;T,ρ) �= ρ2, i.e., the interaction creates a correlation

between the particles. One would expect that ρ2(|r−r′|;T,ρ)→ ρ2 when |r−r′|→
∞, because in statistical physics one considers short-range interactions (see Chap. 3),

and thus there should be no correlations between the particles if they are very far

away from each other. Therefore, one defines the total correlation function h(r;T,ρ)
through (6.99), which satisfies the condition

lim
r→∞

h(r;T,ρ) = 0 . (6.102)

Another point to bear in mind is that, although the interactions in a fluid create

correlations between the particles, in order to derive (6.101) no specific form for the

interaction potential has been required and so the compressibility equation is valid

for all classical fluids, with the only restriction that the interaction potential has

to be of short range. Note further that in its derivation it has been assumed that the

density of the fluid ρ is uniform, which does not allow the use of the compressibility

equation in the liquid–vapor coexistence region (see Chap. 11).

Once these considerations have been made, the importance of the compressibility

equation should be clear. Note that when the fluid is in the vapor phase or in the

liquid phase χT (T,ρ) �= ∞ and, as a consequence, the integral of the total correlation

function is finite. Because the particles have a finite size (see Chap. 7), h(r;T,ρ) =
−1(r < σ), where σ is the diameter of the particle, as follows from (6.99), since

the probability of finding two particles at a distance less than the diameter is zero

ρ2(r;T,ρ) = 0(r < σ). Hence

∫
drh(r;T,ρ) = 4π

∫ ∞

0
drr2h(r;T,ρ) < ∞ , (6.103)
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which implies that h(r;T,ρ) is short ranged, in the sense that it must tend to zero at

least as fast as r−4 to avoid the divergence of the integral at the upper limit.

On the contrary, at the critical point, χT (Tc,ρc) = ∞ , the integral of the correla-

tion function diverges at the upper limit:

∫
drh(r;Tc,ρc) = 4π

∫ ∞

0
drr2h(r;Tc,ρc) = ∞ , (6.104)

which implies that h(r;Tc,ρc) is of infinite range (for instance, a function of the type

of r−1). Therefore, at the liquid–vapor critical point the correlations are of infinite

range even if the interaction potential is of short range. This result is fundamental

in the study of the thermodynamic properties of a fluid in the vicinity of the critical

point, usually referred to as “critical phenomena” (see Chap. 10).

6.9 Quantum Grand Canonical Ensemble

As has been analyzed in the classical case, the probability density in the phase space

of a system that exchanges energy and particles with the external world, of tempera-

ture T and fugacity z, is proportional to the factor zNe−βHN (q,p;V), where HN(q, p;V )
is the Hamiltonian of a system of N particles contained in a closed region R of vol-

ume V . For the derivation of the grand canonical ensemble from (6.1), the additivity

of the energy and of the number of particles has been taken into account as well as

the fact that the system is much smaller than the external world. Since these concepts

are also valid in quantum mechanics, it is postulated that the density operator of a

quantum system of N particles, whose Hamiltonian operator is ĤN(V ), is propor-

tional to zN̂e−β ĤN (V ), where N̂ is the number of particles operator, which commutes

with ĤN(V ). It is assumed, therefore, that the density operator is diagonal in the

energy representation and that its elements are given by

ρmn = 〈Ψm|ρ̂|Ψn〉 =
δ mn

Q(β ,V,z)
zNe−βE

(N)
n (V ) , (6.105)

where n denotes the quantum state of a system of N particles which corresponds to

the eigenvector |Ψn〉 and whose energy is E
(N)
n (V ). From the normalization condition

of the density operator (3.30) it follows that the quantum grand partition function

Q(β ,V,z) in (6.105) is given by

Q(β ,V,z) =
∞

∑
N=0

zN ∑
n

e−βE
(N)
n (V ) =

∞

∑
N=0

zNZ(β ,V,N) , (6.106)

where Z(β ,V,N) is the quantum partition function (5.88), whose sum extends to all

quantum states of the eigenvalue equation of the Hamiltonian operator (4.85).

The expressions for the average values and the fluctuations derived for a classical

system (see Sect. 6.2) may also be applied to a quantum system, although in this
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case the grand partition function must be evaluated using (6.106). Note that since

the quantum partition function contains only those states whose wave function is

either symmetric or antisymmetric, there is no Gibbs paradox in quantum systems.

6.10 Bose–Einstein and Fermi–Dirac Statistics

Consider an ideal gas of N particles of mass m contained in a closed region R of

volume V at temperature T . The partition function of the gas is, according to (5.94),

given by

Z(β ,V,N) = ∑
{ni}

∗
e−β ∑i niε i(V ) , (6.107)

where the energies ε i(V ) of the particle quantum states are given by (1.63), namely

ε i(V ) ≡ 2π2h̄2

mV 2/3
(n2

x + n2
y + n2

z), (nx,ny,nz = 0,±1, . . .) , (6.108)

a result obtained by dividing the Euclidean space in cubic boxes of side L and vol-

ume V = L3 and imposing periodicity, with period L, of the wave function in all

three directions of space. In (6.107) the asterisk indicates that the occupation num-

bers of the particle quantum states ni, which may take the values ni = 0,1 (fermions)

and ni = 0,1,2, . . . (bosons), must satisfy the condition

∑
i

ni = N (6.109)

and it is this restriction which does not allow one to determine the partition function

explicitly.

The grand partition function of the gas is given by

Q(β ,V,z) =
∞

∑
N=0

zNZ(β ,V,N) =
∞

∑
N=0

zN ∑
{ni}

∗
e−β ∑i niε i(V ) , (6.110)

which is a series in the fugacity z whose coefficients are the partition functions

Z(β ,V,N). In principle it does not seem likely for one to be able to sum a series

whose coefficients are unknown. Note, however, that the restriction (6.109) that

appears in each of the coefficients of the series is irrelevant in the evaluation of

Q(β ,V,z) since summing over N, which may take any value between zero and in-

finity, is equivalent to summing over all the occupation numbers without restriction.

In this way, (6.110) may be written as

Q(β ,V,z) = ∑
{ni}

z∑i nie−β ∑i niε i(V ) , (6.111)
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where the numbers ni are now independent variables (which do not have to satisfy

the condition (6.109)), and so the grand partition function may be factorized as

follows:

Q(β ,V,z) = ∏
i

∑
ni

(
ze−βε i(V )

)ni

, (6.112)

where the product extends to all one-particle quantum states.

For fermions (ni = 0,1) from (6.112) it immediately follows that

Q(β ,V,z) = ∏
i

(
1 + ze−βε i(V )

)
. (6.113)

For bosons (ni = 0,1,2, . . . ) the sum over the occupation numbers in (6.112) is,

for each of the one-particle quantum states of energy ε i(V ), that of a geometric pro-

gression of infinite terms and of ratio ze−βε i(V ). According to (6.108), the energies

of the one-particle quantum states are positive, except for that of the ground state

which is zero. In order for the series to converge, one has to impose, therefore, that

z < 1, which guarantees that the ratio is less than one. With this condition, the grand

partition function for the boson gas may be easily determined yielding

Q(β ,V,z) = ∏
i

(
1

1− ze−βε i(V )

)
(z < 1) . (6.114)

If one takes the logarithm of expressions (6.113) and (6.114), the two resulting

equations may be condensed into one that reads

lnQ(β ,V,z) = θ ∑
i

ln
(

1 + θze−β ε i(V )
)

, (6.115)

where θ = 1 for fermions and θ = −1 for bosons, in which case the fugacity has

to be less than one. From (6.115) and (6.31) it follows that the average number of

particles of the gas is given by

〈N〉 = ∑
i

ze−βε i(V )

1 + θze−βε i(V )
, (6.116)

which is a sum that extends over all the one-particle quantum states, so that the

average number of particles 〈ni〉 in a quantum state i of energy ε i(V ) turns out to be

〈ni〉 =
ze−βε i(V )

1 + θze−βε i(V )
, (6.117)

which particularized to θ = −1 and θ = 1 gives rise to the Bose–Einstein and to the

Fermi–Dirac statistics, respectively.

Note that from (6.115) and (6.36) it follows that the pressure of the gas is given

by

p = −∑
i

〈ni〉
∂ε i(V )

∂V
, (6.118)
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where use has been made of (6.117). From (6.108) one has

∂ε i(V )

∂V
= − 2

3V
ε i(V ) , (6.119)

and hence

p =
2

3V
∑

i

〈ni〉ε i(V ) =
2

3V
〈HN〉 , (6.120)

a result which is independent of the statistics.

For the sake of comparison, consider an ideal gas in the Maxwell–Boltzmann

statistics. The partition function of the gas is given by

Z∗(β ,V,N) =
1

N!
[Z(β ,V,1)]N , (6.121)

where

Z(β ,V,1) = ∑
i

e−βε i(V ) , (6.122)

is the one-particle partition function. The grand partition function of the gas is,

therefore,

Q(β ,V,z) =
∞

∑
N=0

zN 1

N!
[Z(β ,V,1)]N = ezZ(β ,V,1) , (6.123)

from which it follows that

〈N〉 = zZ(β ,V,1) = z∑
i

e−βε i(V ) , (6.124)

i.e., the average number of particles in a quantum state in the Maxwell–Boltzmann

statistics turns out to be

〈ni〉 = ze−βε i(V ) . (6.125)

Note that if z ≪ 1, the denominator of (6.117) may be approximated by one and

the two quantum statistics reduce to (6.125). Therefore, one calls this approxima-

tion the classical limit according to which the quantum gases may be studied with

the Maxwell–Boltzmann statistics. In the limit of infinite volume, the one-particle

partition function is V/Λ 3, so that from (6.124) it follows that the classical limit

z ≪ 1 may be expressed as

ρΛ 3 = ρ

(
h

2πmkBT

)3/2

≪ 1 , (6.126)

where ρ = 〈N〉/V is the average density of particles. Note that if v = 1/ρ is the

volume per particle of the gas and a is the side of the cube a3 = v, the inequal-

ity (6.126) may be written as a ≫ Λ , which expresses that the average distance

between particles is much greater than the thermal de Broglie wavelength. In this

case, quantum effects are not important and the boson and the fermion gases may

be treated as if they were a Maxwell–Boltzmann gas, whose study is rather simpler.
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This condition is met, the greater is the temperature of the gas and the smaller is the

density, although one must keep in mind that these two thermodynamic variables

are combined in (6.126).

6.11 Virial Expansions in the Classical Limit

The Bose–Einstein and Fermi–Dirac statistics reduce to the Maxwell–Boltzmann

statistics in the classical limit z ≪ 1, when the denominator of (6.117) may be ap-

proximated by one. This corresponds to considering only the first term in the series

expansion (1+x)−1 = 1−x+x2−x3 . . . , with x = θze−β ε i(V ). When including more

terms, one obtains a series in the fugacity. Consider, first, the equation of the average

number of particles (6.116), which may be written as

〈N〉 = ∑
i

ze−βε i(V )
(

1−θze−βε i(V ) + . . .
)

= z∑
i

e−βε i(V ) −θz2 ∑
i

e−2βε i(V ) + . . . . (6.127)

In the thermodynamic limit, the one-particle partition function is Z(β ,V,1) =
V/Λ 3, and thus it follows that

∑
i

e−2βε i(V ) =
1

23/2

V

Λ 3
, (6.128)

so that (6.127) reads

ρΛ 3 = z−θ
1

23/2
z2 + . . . (6.129)

Since z ≪ 1, this equation may be solved by iteration, i.e.,

z = ρΛ 3 + θ
1

23/2
z2 + . . .

= ρΛ 3 + θ
1

23/2
(ρΛ 3)2 + . . . , (6.130)

where in the term in z2, the fugacity, has been replaced by its value at the pre-

vious order, z = ρΛ 3. When considering more terms in the series of (6.127), the

fugacity is given by a series in the density, whose first two terms are the ones ob-

tained in (6.130). This type of expansion (see Chap. 7) appears in classical statistical

physics when there exists interaction between the particles. In this way, it is shown

that an ideal quantum gas has a similar behavior to the one of a classical gas with

interactions.

If one proceeds in the same way as in (6.127) with the logarithm of the grand

partition function (6.115), since ln(1 + x) = x− x2/2 + x3/3 + . . . , one has
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lnQ(β ,V,z) = θ ∑
i

(
θ ze−βε i(V )− 1

2
z2e−2βε i(V ) + . . .

)

= ∑
i

(
ze−βε i(V ) − 1

2
θ z2e−2βε i(V ) + . . .

)
, (6.131)

so that in the thermodynamic limit

lnQ(β ,V,z) = z
V

Λ 3
− 1

2
θ z2 1

23/2

V

Λ 3
+ . . . . (6.132)

The equation for the pressure is given by

pΛ 3

kBT
= z−θ

1

25/2
z2 + . . . , (6.133)

so that upon substitution into (6.133) of the value of the fugacity derived from

(6.130) one obtains the virial expansion of the pressure, namely

p = ρkBT

(
1 + θ

1

25/2
ρΛ 3 + . . .

)
. (6.134)

Note that if one only considers the first term, the result is the equation of state for

the classical ideal gas p = ρkBT . From the second term it follows that

B2(T ) = θ
1

25/2
Λ 3 , (6.135)

where B2(T ) is the second virial coefficient (see the next chapter), which is posi-

tive for fermions and negative for bosons. In classical statistical physics, the second

virial coefficient is positive when there is a repulsive interaction potential between

the particles and negative if the potential is attractive. Therefore, quantum effects

induce a “non-ideal” behavior of the boson and fermion gases. This fact is also re-

flected in the London–Placzek relation (see R. Balescu, Equilibrium and Nonequi-

librium Statistical Mechanics, J. Wiley, New (1975)) which expresses that the total

correlation function (see (6.99)) of a quantum ideal gas is given by

h(r;T,ρ) = −θ

∣∣∣∣∣

∫
dp eip·r/h̄ ze−βp2/2m

1 + θze−βp2/2m

∣∣∣∣∣

2

, (6.136)

which is negative for fermions and positive for bosons (note that the fraction in

(6.136) is the average number of particles in a one-particle quantum state of mo-

mentum p). It has been already stated in Sect. 6.8 that for a classical ideal gas

h(r;T,ρ) = 0. Since the Bose–Einstein and Fermi–Dirac statistics reduce to the

Maxwell–Boltzmann statistics when θ = 0, note that the absence of correlations

in a classical ideal gas is also contained in the London–Placzek equation. Observe

further that due to Pauli’s exclusion principle, if a fermion is in a quantum state,
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it is not possible to find another fermion in the same state, something that creates

a negative correlation (ρ2(r;T,ρ) < ρ2) between fermions which, classically, may

be interpreted as if the particles interacted through a repulsive interaction potential.

Since for bosons, on the contrary, the correlation is positive (ρ2(r;T,ρ) > ρ2), parti-

cles may accumulate in the same quantum state, which in classical statistical physics

may be interpreted as if there was an attractive interaction potential between bosons.

Since quantum effects in the limit z ≪ 1 appear as small corrections to the clas-

sical ideal behavior, one would expect their importance to be greater in very dense

systems or at low temperatures. These cases are analyzed in the following sections.

6.12 Boson Gas: Bose–Einstein Condensation

The average number of particles for a boson gas is, according to (6.116), given by

〈N〉 =
z

1− z
+∑

i

′ ze−β ε i(V )

1− ze−βε i(V )
, (6.137)

where the sum extends to the quantum states of energy ε i(V ) �= 0, while the term

z/(1 − z) is the contribution of the ground state. Note that at zero temperature

(β = ∞) this is the only non-vanishing term in (6.137), which may be easily in-

terpreted since, as the energy of the gas has to be a minimum, all the particles accu-

mulate in the ground state. When the temperature is increased, at constant average

density, the quantum states of energy ε i(V ) �= 0 begin to be populated with parti-

cles that at T = 0 were in the state of minimum energy. In order to examine what

happens at a temperature T �= 0 one has to bear in mind that, since ε i(V ) ∼ V−2/3,

in the thermodynamic limit these quantum states form a continuum and the sum in

(6.137) may be replaced by the integral of the function, multiplied by the density of

quantum states (1.67), namely

〈N〉 =
z

1− z
+ 2πV

(
2m

h2

)3/2∫ ∞

0
dε

√
ε

ze−βε

1− ze−βε
. (6.138)

In (6.138) the lower limit in the integral, ε1, has been replaced by zero since ε1 ∼
V−2/3, an approximation which is exact in the thermodynamic limit. Since z < 1, this

integral may be written as a series in the fugacity. To that end, expanding (1−x)−1 =

∑∞
q=0 xq and integrating with respect to ε , one obtains

〈N〉 =
z

1− z
+

V

Λ 3

∞

∑
q=1

zq

q3/2
=

z

1− z
+

V

Λ 3
g3/2(z) , (6.139)

where

gl(z) =
∞

∑
q=1

zq

ql
. (6.140)
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Assume that the conditions of density and temperature are such that z≪ 1 (classi-

cal limit). If the fugacity is increased, z < 1, this also increases the two contributions

to 〈N〉 in (6.139), because the functions z/(1− z) and g3/2(z) grow monotonously

with z. Note, however, that

TL

[
1

V

z

1− z

]
= 0 (z < 1) , (6.141)

and so in the thermodynamic limit (6.139) reads

ρ =
1

Λ 3
g3/2(z) (z < 1) , (6.142)

i.e., only the particles in the states ε i(V ) �= 0 contribute to the average density ρ of

the gas. Increasing z in (6.142) at constant average density decreases the temperature

of the gas. Since g3/2(z) has as an upper bound the Riemann function ζ (3/2), where:

ζ (l) =
∞

∑
q=1

1

ql
, (6.143)

from (6.142) it follows that the gas may be cooled up to a critical value of the

temperature Tc(ρ) defined by:

ρΛ 3
c (ρ) ≡ ζ (3/2) , (6.144)

where ζ (3/2)≃ 2.61238, and

Λc(ρ) =
h√

2πmkBTc(ρ)
. (6.145)

At temperatures below Tc(ρ), the particles begin to accumulate in the ground

state and equation (6.142) must be modified. Indeed, if there is a non-zero fraction

of particles in the ground state, i.e.,

z

1− z
= λ 〈N〉 , (6.146)

where 0 < λ ≤ 1, one has

z =
λ 〈N〉

1 + λ〈N〉 =
1

1 + 1
λ 〈N〉

, (6.147)

so that, in the thermodynamic limit, (6.139) reads:

ρ = ρ0 +
1

Λ 3
ζ (3/2) (z ≃ 1) , (6.148)
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where

ρ0 = TL

[
1

V

z

1− z

]
(z ≃ 1) (6.149)

is the average density of particles in the ground state and z ≃ 1 denotes the value of

the fugacity of the gas (6.147). In (6.148) one has further accounted that

TL

[
∞

∑
q=1

1

q3/2

(
1

1 + 1
λ 〈N〉

)q]
= ζ (3/2) . (6.150)

Equations (6.142) and (6.148) may, therefore, be written as

ρ =

⎧
⎪⎪⎨
⎪⎪⎩

1

Λ 3
g3/2(z), T > Tc(ρ)

ρ0 +
1

Λ 3
ζ (3/2), T < Tc(ρ)

(6.151)

where Tc(ρ) is defined by (6.144) and (6.145).

If there exists a critical value of the temperature Tc(ρ), finite and different from

zero, below which a non-zero fraction of particles accumulates in the ground state,

one says that the boson gas experiences a Bose–Einstein condensation at the temper-

ature Tc(ρ). If T > Tc(ρ) the gas is in a disordered phase, characterized by the fact

that there are no particles in the ground state. When T < Tc(ρ) the ordered phase

(particles in the ground state) and the disordered phase (particles in states ε i(V ) �= 0)

coexist. The transition may be characterized by an order parameter (the fraction of

particles, N0/N, in the state of minimum energy) which, according to (6.144) and

(6.151), may be written as

ρ0

ρ
= 1− ζ (3/2)

ρΛ 3
= 1− Λ 3

c (ρ)

Λ 3
,

or, alternatively,

ρ0

ρ
= 1−

(
T

Tc(ρ)

)3/2

, (6.152)

which is a maximum at the absolute zero of temperature, decreases as T is increased

and vanishes for T = Tc(ρ). Note that an essential point in the derivation of (6.151)

has been the application of the thermodynamic limit. In a finite system, (6.141) is

not valid and for any temperature there is a non-zero fraction of particles in the

ground state, i.e., Tc(ρ) = ∞.

The first experimental observation of Bose–Einstein condensation took place in

1995, i.e., 61 years after its theoretical prediction. The greatest problems were asso-

ciated with the difficulty of obtaining very low temperatures (close to the absolute

zero) and finding a boson system with very weak interactions such that it would

behave as an ideal gas (the system must not crystallize at such low temperatures

nor be a liquid, such as helium). Through a combination of optical and evaporation

techniques, in 1995 temperatures of the order of 1 nK were obtained, which allowed
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the observation of condensation in a system of 2000 87Rb atoms. Since at those tem-

peratures the atoms tend to adhere to the walls of the container, it is necessary to

confine them using magnetic fields and hence to study the Bose–Einstein conden-

sation in an external potential, which modifies the critical behavior of the gas (see

V. Bagnato, D. E. Pritchard and D. Kleppner, Phys. Rev. A 35, 4354 (1987)). Thus,

the order parameter N0/N in a harmonic potential mω2
0/2 of frequency ω0 vanishes

according to the following law:

N0

N
= 1−

(
T

T0(N)

)3

,

when T < T0(N), where T0(N) is a critical temperature given by

kBT0(N) = h̄ω0

(
N

ζ (3)

)1/3

,

and ζ (3) is the Riemann function. In Fig. 6.1 the experimental values of the order

parameter in the Bose–Einstein condensation of 87Rb as a function of temperature

are represented. Note that the results are accounted for by the theoretical predictions

for an ideal boson gas in a harmonic potential. Afterward, condensation has also

been observed in dilute gases of alkaline atoms. All these results represent the first

macroscopic manifestations of quantum effects in an ideal gas with Bose–Einstein

statistics.

6.12.1 Specific Heat

It is well known that in phase transitions (see Chap. 9) some thermodynamic vari-

ables are discontinuous or diverge at the transition. Note that the partition function

Fig. 6.1 Order parameter,

N0/N, as a function of T/T0

in the Bose–Einstein con-

densation of an ideal boson

gas in a harmonic potential

whose critical temperature is

T0 = T0(N) (continuous line).

The points refer to the exper-

imental values in a system of

forty thousand atoms of 87Rb

at 280 nK

Source: J. R. Ensher, D. S.

Jin, M. R. Matthews, C. E.

Wieman and E. A. Cornell,

Phys. Rev. Lett. 77, 4984

(1996)
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of an ideal quantum gas (6.107) is a sum of exponentials, which are analytic func-

tions of β , and hence of T (T �= 0). This sum extends to the occupation numbers

ni of the one-particle quantum states, with the restriction (6.109). If N is finite, the

partition function is a sum of a finite number of terms and hence an analytic function

of T (T �= 0). Only if N → ∞ it is possible to predict a phase transition since, in this

case, there are no analyticity theorems on the sum of an infinite number of analytic

terms. As was already indicated in Chap. 3, only in the thermodynamic limit is it

possible to demonstrate the existence of a phase transition.

In the grand canonical ensemble the number of particles is not an independent

variable since it has been replaced by the fugacity. In this ensemble, therefore, the

existence of a phase transition when V → ∞ may only be shown when for a critical

value of the fugacity, zc, some thermodynamic variables are not analytic in z. In

the Bose–Einstein condensation zc → 1 which, according to (6.146), corresponds to

〈N〉 → ∞.

In order to analyze the behavior of some thermodynamic variables at the transi-

tion, consider the expression for the logarithm of the grand partition function of the

gas, namely

lnQ(β ,V,z) = − ln(1− z)

−2πV

(
2m

h2

)3/2 ∫ ∞

0
dε

√
ε ln

[
1− ze−βε

]
, (6.153)

where the sum over states ε i(V ) �= 0 has been replaced by an integral in the limit

of infinite volume. Expanding the logarithm in (6.153) in a series, ln(1 − x) =
−∑∞

q=1 xq/q, and integrating with respect to ε , one has

lnQ(β ,V,z) = − ln(1− z)+
V

Λ 3
g5/2(z) . (6.154)

From (6.26) it follows that the average energy per particle e = 〈HN〉/〈N〉 is given

by

e =
3

2
kBT

1

ρΛ 3
g5/2(z) , (6.155)

which when particularized to z < 1 and z ≃ 1 can be written as

e =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3

2
kBT

(
T

Tc(ρ)

)3/2 g5/2(z)

ζ (3/2)
, T > Tc(ρ)

3

2
kBT

(
T

Tc(ρ)

)3/2 ζ (5/2)

ζ (3/2)
, T < Tc(ρ)

(6.156)

where ζ (5/2)≃ 1.34149 and use has been made of (6.144). The average energy per

particle is, therefore, a continuous function at T = Tc(ρ), where it takes the value
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(e)T=Tc(ρ) =
3

2
kBTc(ρ)

ζ (5/2)

ζ (3/2)
. (6.157)

From an experimental point of view, the specific heat cV = ∂e/∂T is a more rel-

evant thermodynamic variable than the energy since it can be experimentally mea-

sured. As shown in what follows, cV is also continuous at T = Tc(ρ). The method

used in this derivation may be readily generalized to higher order derivatives of the

energy with respect to the temperature. In this way it is shown that the derivative

∂cV /∂T is discontinuous at T = Tc(ρ), which is a macroscopic manifestation of the

Bose–Einstein condensation.

Consider, first, the specific heat cV at a temperature below the critical tempera-

ture. From (6.156) one has

cV =
15

4
kB

(
T

Tc(ρ)

)3/2 ζ (5/2)

ζ (3/2)
, (6.158)

for T < Tc(ρ), so that when T → Tc(ρ)− 0, i.e., when T approaches Tc(ρ) from

below then:

(cV )Tc(ρ)−0 =
15

4
kB

ζ (5/2)

ζ (3/2)
. (6.159)

Note that, according to (6.151), when T > Tc(ρ) the fugacity of the gas is a

function of the temperature, and so after taking the derivative of the energy equation

(6.156) the result is

cV =
15

4
kB

(
T

Tc(ρ)

)3/2 g5/2(z)

ζ (3/2)

+
3

2
kBT

(
T

Tc(ρ)

)3/2
1

ζ (3/2)

∂g5/2(z)

∂T
, (6.160)

and since z∂gq(z)/∂ z = gq−1(z), the derivative of the last term of (6.160) reads

∂g5/2(z)

∂T
=

∂g5/2(z)

∂ z

∂ z

∂T
=

g3/2(z)

z

∂ z

∂T
. (6.161)

On the other hand, after derivation of (6.151) with respect to the temperature one

has

− 3

2T
ρΛ 3 =

∂g3/2(z)

∂T
=

g1/2(z)

z

∂ z

∂T
. (6.162)

From (6.160) and (6.162) it follows finally that

cV =
15

4
kB

(
T

Tc(ρ)

)3/2 g5/2(z)

ζ (3/2)
− 9

4
kB

g3/2(z)

g1/2(z)
, (6.163)

where the fugacity is a function of T/Tc(ρ) which is obtained from the solution of

(6.144) and (6.151) i.e.,
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g3/2(z) = ζ (3/2)

(
Tc (ρ)

T

)3/2

. (6.164)

At the transition (z → 1) g1/2(z) diverges and the last term in (6.163) vanishes,

i.e.,

(cV )Tc(ρ)+0 =
15

4
kB

ζ (5/2)

ζ (3/2)
, (6.165)

and from (6.159) it follows that cV is a continuous variable at T = Tc(ρ).
By a similar argument, one may determine ∂cV /∂T from ( 6.158) and (6.163),

with the result

(
∂cV

∂T

)

Tc(ρ)−0

=

(
∂cV

∂T

)

Tc(ρ)+0

+
27

8
ζ (3/2)

kB

Tc(ρ)
lim
z→1

(
g3/2(z)g−1/2(z){

g1/2(z)
}3

)
. (6.166)

In order to obtain the limit appearing in (6.166), the following approximation for

the functions gl(z) when 2l is an odd integer and z → 1 (z < 1) may be used (see

J. E. Robinson, Phys. Rev. 83, 678 (1951)):

gl(z) = Γ (1− l)(− lnz)l−1 +
∞

∑
s=0

(−1)s

s!
ζ (l − s)(− lnz)s , (6.167)

where Γ (1− l)Γ (l) = πcosec(πl). From (6.167) it follows that

lim
z→1

(
g3/2(z)g−1/2(z){

g1/2(z)
}3

)
=

ζ (3/2)

2π
,

which leads to

(
∂cV

∂T

)

Tc(ρ)−0

−
(

∂cV

∂T

)

Tc(ρ)+0

=
27

16π
{ζ (3/2)}2 kB

Tc(ρ)
, (6.168)

i.e., the derivative of the specific heat is discontinuous at the transition, as shown in

Fig. 6.2.

6.12.2 Equation of State

Consider now the equation of state (6.120). From (6.155) one has

p =
kBT

Λ 3
g5/2(z), (6.169)
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Fig. 6.2 Specific heat, cV /kB

(continuous line), of an ideal

boson gas as a function of

T/Tc, where Tc = Tc(ρ) is

the critical temperature. The

broken line is the classical

result (Dulong–Petit law)
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which may be written as

p =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

kBT

Λ 3
g5/2(z), z < 1

kBT

Λ 3
ζ (5/2), z ≃ 1

(6.170)

Note that from the first of these equations it follows that p = p(z,T ). Since,

according to (6.142), in the disordered phase z = z(T,ρ), in such a phase the pressure

p = p(z(T,ρ),T )≡ p(T,ρ) is a function of the density and of the temperature. From

the second equation of (6.170), on the contrary, it is seen that when the ordered phase

and the disordered phase coexist, p = p(T ). Observe that if the gas is compressed at

constant temperature, according to (6.142) the transition from the disordered phase

to the coexistence region takes place at a critical specific volume vc(T ) defined by

vc(T ) ≡ Λ 3

ζ (3/2)
, (6.171)

and so the equation of state is given by

p =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

kBT

Λ 3
g5/2(z), v > vc(T )

kBT

Λ 3
ζ (5/2), v < vc(T )

(6.172)

The isotherms in the (v, p) plane of the Bose–Einstein gas are similar to those of a

first-order transition. Comparing (6.172) with Fig. 2.10 it follows that the disordered

phase of the Bose–Einstein gas at a temperature T0 is the region v > vc(T0) and that

the binodal region is v < vc(T0). The specific volumes of the binodals of Fig. 2.9

at the temperature T0 are, therefore, v1 = vc(T0) and v2 = 0, which is independent

of temperature. Note that since vc(T ) ∼ T−3/2, when the temperature is increased,
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Fig. 6.3 Compressibility

factor Z = pv/kBT of an ideal

boson gas as a function of

v/vc, where vc = vc(T ) is the

critical specific volume. The

broken line is the classical

result
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the width of the binodal region in the (v,T ) plane decreases. Since the binodals

coincide at the critical point (vc,Tc) (see Fig. 2.15) this happens in the Bose–Einstein

gas when Tc = ∞ and vc = 0. Such a result shows, therefore, that it is not possible

to pass in a continuous way from the disordered phase to the completely ordered

phase, in which all the particles are in the ground state.

In Fig. 6.3 the compressibility factor Z = pv/kBT of an ideal boson gas is repre-

sented as a function of v/vc(T ), i.e.,

Z =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g5/2(z)

g3/2(z)
, v > vc(T )

ξ (5/2)

ξ (3/2)

v

vc(T )
, v < vc(T )

(6.173)

where, in the first of these equations, the fugacity is a function of v/vc(T ) which is

obtained by solving the following equation:

g3/2(z) = ξ (3/2)
vc(T )

v
. (6.174)

6.13 Fermion Gas

Consider the properties of an ideal fermion gas at the absolute zero of tempera-

ture β = ∞. Since no two particles may be found in the same quantum state, due

to Pauli’s exclusion principle, the state of minimum energy of the gas is obtained

when, starting from the ground state, the quantum states of lower energies are filled

until all particles have been accommodated. Note that if in the expression for the

average occupation number of a one-particle quantum state corresponding to the
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Fermi–Dirac statistics,

〈ni〉 =
ze−βε i(V )

1 + ze−βε i(V )
, (6.175)

the fugacity z is replaced in terms of the chemical potential µ , z = eβ µ , namely

〈ni〉 =
1

eβ (ε i(V )−µ) + 1
, (6.176)

according to (6.176) when β = ∞, if ε i(V ) < µ then 〈ni〉 = 1, whereas if ε i(V ) > µ
then 〈ni〉 = 0. Since in the grand canonical ensemble z = z(T,ρ) and hence µ =
µ(T,ρ), at the absolute zero of temperature all those quantum states whose energy

is less than the Fermi energy µF ≡ µ(T = 0,ρ) are occupied.

Before deriving the expression for µF , one should point out that one of the most

important applications of the Fermi–Dirac statistics is based on assuming that the

conduction electrons in a metal form an ideal gas. If the spin of the electrons is

included, in the absence of a magnetic field each translation state is doubly degener-

ated. In this way, in the thermodynamic limit, the equation for the average number

of particles reads:

〈N〉 = 4πV

(
2m

h2

)3/2∫ ∞

0
dε

√
ε f (ε − µ,T ) , (6.177)

where use has been made of the density of quantum states (1.67) and the Fermi

function f (ε − µ,T ) has been defined as (Fig. 6.4)

f (ε − µ,T ) =
1

eβ (ε−µ) + 1
. (6.178)

Since at the absolute zero of temperature, the Fermi function reduces to a step

function, one has

Fig. 6.4 Fermi function of an

ideal fermion gas f (ε −µ,T )
as a function of the energy

ε at the absolute zero of

temperature f (ε − µF ,T =
0) = Θ(µF − ε) (broken

line) and at a temperature

T ≪ TF , where TF is the

Fermi temperature of the ideal

fermion gas (continuous line)

f

1

0

µF
ε
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〈N〉T=0 = 4πV

(
2m

h2

)3/2∫ ∞

0
dε

√
ε Θ(µF − ε) , (6.179)

whose integration is immediate, yielding

µF =
h2

2m

(
3ρ

8π

)2/3

, (6.180)

where ρ is the average density.

Observe that even at T = 0 the average energy of the gas is not zero. Its value

may be obtained from (6.26) or, alternatively, by multiplying the density of quantum

states by the energy and by the average occupation number of a quantum state,

namely

〈HN〉 = 4πV

(
2m

h2

)3/2 ∫ ∞

0
dε ε3/2 f (ε − µ,T ) , (6.181)

which at the absolute zero of temperature may be written as

〈HN〉T=0 = 4πV

(
2m

h2

)3/2 ∫ ∞

0
dε ε3/2 Θ(µF − ε) . (6.182)

Once more, the integration in (6.182) is immediate and the result may be written,

using (6.180), in the following way:

e0 =
3

5
µF , (6.183)

where e0 is the average energy per particle. From (6.120 ) it follows that the pressure

at the absolute zero of temperature is given by

p0 =
2

5
ρµF . (6.184)

In order to determine the thermodynamic properties of a fermion gas when T �= 0,

one may write (6.177) in terms of the variable x = β(ε − µ) as

ρΛ 3 =
4√
π

∫ ∞

−β µ
dx

√
β µ + x

ex + 1
. (6.185)

The integral I in (6.185) may be split as

I =

∫ 0

−β µ
dx

√
β µ + x

ex + 1
+

∫ ∞

0
dx

√
β µ + x

ex + 1

=

∫ β µ

0
dx

√
β µ − x

e−x + 1
+

∫ ∞

0
dx

√
β µ + x

ex + 1
, (6.186)
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and since
1

e−x + 1
= 1− 1

ex + 1
, (6.187)

one has

I =

∫ β µ

0
dx
√

β µ − x−
∫ β µ

0
dx

√
β µ − x

ex + 1

+
∫ ∞

0
dx

√
β µ + x

ex + 1
, (6.188)

i.e.,

I =
2

3
(β µ)3/2 + I1 + I2 , (6.189)

where

I1 =

∫ β µ

0
dx

√
β µ + x−

√
β µ − x

ex + 1
, (6.190)

and

I2 =
∫ ∞

β µ
dx

√
β µ + x

ex + 1
. (6.191)

Assume now that β µ ≫ 1 (this hypothesis will be justified a posteriori), in which

case the last integral in (6.189) is negligible. For instance, if β µ = 102, one has

I2 = 5.3× 10−43, while the first term of the r.h.s. of (6.189) is ≃ 6× 102. On the

other hand, if one adds and subtracts to the numerator of I1 the first term of the

Taylor series expansion of
√

β µ + x−
√

β µ − x, one has

I1 = I3 + I4 , (6.192)

with

I3 =

∫ β µ

0

dx

ex + 1

(
√

β µ + x−
√

β µ − x− x√
β µ

)
, (6.193)

and

I4 =
1√
β µ

∫ β µ

0
dx

x

ex + 1
. (6.194)

For β µ = 102 the result is I3 = 7.1× 10−6, while the value of β µ in the upper

limit of the integral in (6.194) may be replaced by infinity. Due to the fact that

∫ ∞

0
dx

x

ex + 1
=

π2

12
, (6.195)

it then follows that

I =
2

3
(β µ)3/2 +

π2

12

1√
β µ

+ . . . (6.196)
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Observe that for β µ = 102, I1 = 0.0822538 while the last contribution to (6.196) is

0.0822467, which proves the validity of the approximation.

Using (6.196) the equation for the average number of particles (6.185) reads

µ
3/2
F = µ3/2

(
1 +

π2

8

1

(β µ)2
+ . . .

)
, (6.197)

where use has been made of the expression for the Fermi energy (6.180). This equa-

tion may be solved by iteration as

µ = µF

(
1 +

π2

8

1

(β µ)2
+ . . .

)−2/3

≃ µF

(
1 +

π2

8

1

(β µF)2
+ . . .

)−2/3

≃ µF

(
1− π2

12

1

(β µF)2
+ . . .

)
, (6.198)

since µ does not differ much from µF and (1 + x)−q ≃ 1−qx (x ≪ 1).

If the Fermi temperature TF is defined as

µF = kBTF , (6.199)

then (6.198) may be rewritten as

µ = µF

(
1− π2

12

(
T

TF

)2

+ . . .

)
, (6.200)

which is an approximate expression for the chemical potential of the gas at the

temperature T . Since the Fermi temperature of a typical metal is of the order of

TF ≃ 104 K (Table 6.1), (6.200) indicates that at room temperature, T ≃ 102 K,

the temperature correction is of the order of 10−4, which leads to the conclusion

that, to a good approximation, the electron gas may be studied as if it were at the

absolute zero of temperature (in this case β µ ≃ β µF = 102, which is the numerical

value used in the previous approximations). Nevertheless, it is necessary to include

this small correction in order to determine the specific heat of the gas. To that end,

consider (6.181) which, with the change of variable β (ε − µ) = x, reads

β eρΛ 3 =
4√
π

∫ ∞

−β µ
dx

(β µ + x)3/2

ex + 1
, (6.201)

where e is the average energy per particle when T �= 0. The integral in (6.201) may

be approximated by the same method that was followed in the equation for the

average number of particles with the result

∫ ∞

−β µ
dx

(β µ + x)3/2

ex + 1
=

2

5
(β µ)5/2 +

π2

4

√
β µ + . . . . (6.202)
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Table 6.1 Fermi temperature TF in Kelvin for some metals

TF ×10−4 TF ×10−4

Li 5.51 Al 13.6

Na 3.77 Fe 13.0

K 2.46 Mn 12.7

Cu 8.16 Zn 11.0

Ag 6.38 Sn 11.8

Au 6.42 Pb 11.0

Source: N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders, Philadelphia (1976)

Within this approximation (6.201) reads

e = e0

(
µ

µF

)5/2(
1 +

5π2

8

1

(β µ)2
+ . . .

)
, (6.203)

which may be solved by iteration, if one takes into account (6.200), i.e.,

e ≃ e0

(
1− π2

12

(
T

TF

)2

+ . . .

)5/2(
1 +

5π2

8

(
T

TF

)2

+ . . .

)

≃ e0

(
1− 5π2

24

(
T

TF

)2

+ . . .

)(
1 +

5π2

8

(
T

TF

)2

+ . . .

)

= e0

(
1 +

5π2

12

(
T

TF

)2

+ . . .

)
, (6.204)

from where it follows that the specific heat cV is given by

cV = e0
5π2

6

T

T 2
F

=
3

2
kB

(
π2

3

T

TF

)
, (6.205)

which tends to zero proportionally to T . Note that at room temperature, the specific

heat of the electron gas is much smaller than that of the classical ideal gas, namely

3kB/2.

At low temperatures, the specific heat of the metal is the sum of the contributions

of the electron gas (6.205) and of the lattice (5.160), namely
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Fig. 6.5 Experimental values of cV /T (in J/Kmol K2) of metallic Ag as a function of T 2 (in K2).

Source: W. S. Corak, M. P. Garfunkel, C. B. Satterthwaite and A. Wexler, Phys. Rev. 98, 1699

(1955)

cV = kB

(
ν

π2

2

T

TF

+
12π4

5

(
T

ΘD

)3
)

, (6.206)

where ν is the number of conduction electrons per atom. Note that if TF = 104 K,

ΘD = 102 K, and ν = 1, defining a temperature T0 by the equation

π2

2

T0

TF

=
12π4

5

(
T0

ΘD

)3

,

one finds T0 = 1.45K. This result shows that, in order to observe experimentally the

term cV ∼ T due to the conduction electrons, the solid has to be cooled to very low

temperatures. Note that (6.206) is the equation of a straight line in the (T 2,cV /T )

plane. This is the behavior observed experimentally, as shown in Fig. 6.5.
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Part III

Non-ideal Systems





Chapter 7

Classical Systems with Interactions

Abstract In the ideal systems considered in the previous chapters the Hamilto-

nian HN(q, p;α) and the Hamiltonian operator ĤN(α) are, respectively, a sum of

one-particle dynamical functions and of one-particle operators (kinetic energy and

harmonic oscillators). Real systems are characterized by the fact that, besides the

kinetic energy, HN(q, p;α) and ĤN(α) also include the potential energy, which de-

scribes how the particles, atoms or molecules, interact with each other. As has been

shown throughout the text, ideal quantum systems are more complex than classical

ideal systems. This complexity is also greater in systems with interaction and so

from here onward only classical systems will be considered.

Since, in general, the interaction potential in real systems is not known exactly,

it is rather common to introduce the so-called reference systems in which the poten-

tial energy of interaction is relatively simple, while their thermodynamic properties

are nevertheless similar to those of real systems, and so they provide a qualitative

description of the latter.

Along this chapter some approximate methods for the determination of the free

energy of an interacting system are considered. In the last section, a brief summary

of the so-called numerical simulation methods is provided.

7.1 Thermodynamic Integration

Consider a real classical system of N particles in equilibrium with the external

world at temperature T , whose Hamiltonian is H ≡ HN(q, p;α), where α denotes

one or several external parameters (note that in this section the Hamiltonian is de-

noted by H instead of HN). As analyzed in Chap. 5, the thermodynamic poten-

tial in the canonical ensemble is the Helmholtz free energy F ≡ F(β ,α ,N), with

β = 1/kBT . Let H0 ≡H0
N(q, p;α) and F0 ≡ F0(β ,α,N) be the Hamiltonian and the

Helmholtz free energy of a reference system whose thermodynamic properties are

qualitatively similar to those of the real system. Consider a family of Hamiltonians

H(λ) ≡ HN(q, p;α |λ) which depends on a parameter λ (0 ≤ λ ≤ 1), such that

163
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H(λ = 1) = H and H(λ = 0) = H0, like, for instance,

H(λ ) = H0 + λ(H −H0) . (7.1)

The Helmholtz free energy F(λ ) ≡ F(β ,α ,N|λ ) associated to the Hamiltonian

H(λ) is

e−βF(λ ) =
1

h3N

∫
dq

∫
d pe−βH(λ ) , (7.2)

since F(λ ) = −kBT lnZ(λ ), where Z(λ ) ≡ Z(β ,α,N|λ ) is the partition function

corresponding to the Hamiltonian H(λ ). Upon derivation of (7.2) with respect to λ
one has

∂F(λ )

∂λ
e−βF(λ ) =

1

h3N

∫
dq

∫
d p

∂H(λ )

∂λ
e−βH(λ ) , (7.3)

or, alternatively,

∂F(λ )

∂λ
=

〈
∂H(λ )

∂λ

〉

λ

, (7.4)

where

〈a〉λ =
1

h3N

1

Z(λ )

∫
dq

∫
d pa(q, p)e−βH(λ ) , (7.5)

is the average value of the dynamical function a(q, p) in the canonical ensemble of

Hamiltonian H(λ).
Note that since F(λ = 1) = F and F(λ = 0) = F0, the identity

F = F0 +

∫ 1

0
dλ

∂F(λ )

∂λ
(7.6)

may be written, according to (7.4), as

F = F0 +
∫ 1

0
dλ

〈
∂H(λ )

∂λ

〉

λ

. (7.7)

If this equation is particularized to the linear path (7.1), the result is

F = F0 +

∫ 1

0
dλ
〈
H −H0

〉
λ , (7.8)

and so from the mean value theorem,

∫ 1

0
dλ
〈
H −H0

〉
λ =

〈
H −H0

〉
λ̄ , (7.9)

it follows that

F = F0 +
〈
H −H0

〉
λ̄ . (7.10)
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Observe that, although the Helmholtz free energy of the system may not be ex-

pressed as an average of a dynamical function, since it is a thermal variable, accord-

ing to (7.10) the difference in free energy between the real system and the reference

system, ΔF = F − F0, is equal to the average value of the difference in energy,

ΔH = H −H0 in the canonical ensemble of Hamiltonian H(λ̄ ), where λ̄ is, in gen-

eral, an unknown quantity. From (7.8) it follows that ΔF may also be determined as

the integral over λ of 〈ΔH〉λ , an average value that may be computed numerically

using simulation methods whose basic principles are considered at the end of this

chapter.

7.2 Thermodynamic Perturbation Theory

Upon derivation of (7.3) with respect to λ and taking into account the definition of

the average value of a dynamical function (7.5), one obtains

∂ 2F(λ )

∂λ 2
=

〈
∂ 2H(λ)

∂λ 2

〉

λ

−β

〈(
∂H(λ )

∂λ

)2
〉

λ

+ β

〈
∂H(λ )

∂λ

〉2

λ

=

〈
∂ 2H(λ)

∂λ 2

〉

λ

−β

〈(
∂H(λ )

∂λ
−
〈

∂H(λ )

∂λ

〉

λ

)2
〉

λ

, (7.11)

and since 〈
(a−〈a〉λ )2

〉
λ
≥ 0 , (7.12)

it follows that
∂ 2F(λ )

∂λ 2
≤
〈

∂ 2H(λ )

∂λ 2

〉

λ

. (7.13)

From (7.4) and (7.11) it is straightforward to see that the identity

∂F(λ )

∂λ
=

[
∂F(λ )

∂λ

]

λ=0

+
∫ λ

0
dλ ′ ∂ 2F(λ ′)

∂λ ′2 , (7.14)

yields the inequality

∂F(λ )

∂λ
≤
〈

∂H(λ )

∂λ

〉

0

+

∫ λ

0
dλ ′

〈
∂ 2H(λ ′)

∂λ ′2

〉

λ ′
, (7.15)

where 〈. . .〉0 = 〈. . .〉λ=0. When particularizing this equation to the family of Hamil-

tonians (7.1) and subsequently integrating between the reference system and the real

system, one has

F ≤ F0 +
〈
H −H0

〉
0

, (7.16)
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which is referred to as the Gibbs–Bogoliubov inequality. This equation expresses

that the free energy difference, F −F0, has as an upper bound the energy difference,

H −H0, averaged over the canonical ensemble of the reference system. An inter-

esting feature of the Gibbs–Bogoliubov inequality is that the free energy of the real

system F may be determined approximately by using a variational principle. Thus,

if the Hamiltonian of the reference system depends on one (or several) parameter γ ,

H0 = H0(γ), then F0 = F0(γ) and the best estimate of F is obtained by minimizing

the upper bound (7.16) with respect to γ , namely

F ≃ min
γ

[
F0(γ)+

〈
H −H0(γ)

〉
0

]
. (7.17)

An application of this method is provided in Sect. 8.4.

Sometimes the reference system is chosen using some physical criterion that fixes

all its parameters, so it is not possible to apply the variational method (7.17). In such

a case (7.11) may be written as

∂ 2F(λ )

∂λ 2
≃
〈

∂ 2H(λ )

∂λ 2

〉

λ

, (7.18)

where it has been assumed that the fluctuations of ∂H (λ)/∂λ are small for every λ .

With this approximation, when particularizing (7.15) to the family of Hamiltonians

(7.1) and subsequently integrating between the reference system and the real system,

one finds

F ≃ F0 +
〈
H −H0

〉
0

, (7.19)

which corresponds to the first order of a perturbative expansion of F in 〈H −H0〉0

around F0.

An important application of (7.19) is the van der Waals theory. For its derivation,

take the interaction potential H int to be the sum of a repulsive part, H int
R , and of an

attractive part, H int
A . If the Hamiltonian of the reference system is H0 = H id + H int

R ,

i.e., the one of the real system without the attractive part of the potential, (7.19) is

a first-order perturbative expansion in which H int
A is the perturbation. In the van der

Waals theory one then has

F ≃ F0 +
〈

H int
A

〉
0

, (7.20)

and so if H int
A is the sum of pair potential interactions, namely

H int
A =

1

2

N

∑
i=1

N

∑
i�= j=1

VA(|ri − r j|) , (7.21)

it follows that

〈
H int

A

〉
0
=

1

2

∫

R
dr

∫

R
dr′ρ0

2(r,r
′)VA(|r− r′|) , (7.22)
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where ρ0
2(r,r

′) is the two-particle distribution function (see (6.81)) of the reference

system (note that, in this case, the average is over the canonical ensemble).

If as an additional approximation correlations are neglected in (7.22), i.e., if

ρ0
2(r,r

′) = ρ0
1(r)ρ

0
1(r

′), where ρ0
1(r) is the local density of particles of the refer-

ence system, one has

〈
H int

A

〉

0
=

1

2

∫

R
dr

∫

R
dr′ρ0

1(r)ρ
0
1(r

′)VA(|r− r′|) =
1

2

∫

R
drρ0

1(r)φ A(r) , (7.23)

where

φA(r) =

∫

R
dr′ρ0

1(r
′)VA(|r− r′|) (7.24)

is the mean potential at r due to the attractive part of the potential. That is the

reason why (7.23) is also called a mean (potential) field approximation. Therefore,

the Helmholtz free energy in the van der Waals theory is given by

F = F0 +
1

2

∫

R
dr

∫

R
dr′ρ0

1(r)ρ
0
1(r

′)VA(|r− r′|) . (7.25)

It is important to point out that in order to apply the van der Waals theory (and, in

general, in all the perturbative methods) it is necessary to know the thermodynamic

and structural properties of the reference system, e.g., F0 and ρ0
1(r) in the van der

Waals theory. The determination of these properties is not simple and requires addi-

tional approximations, as will be analyzed in the next chapter.

7.3 Virial Expansions

The Helmholtz free energy per particle f of a fluid may be written as

f = f id + f int , (7.26)

where

f id = kBT
(
ln
(
ρΛ 3

)
−1
)

(7.27)

is the ideal part (5.37) and f int is the contribution of the interactions. At low densities

f int may be expanded (in the thermodynamic limit) in a Taylor series expansion in

the density of particles ρ = N/V . Such a series is known as the virial expansion and

the coefficients in the series as the virial coefficients. If B∗
n ≡ B∗

n(T ) are the virial

coefficients of β f int, i.e.,

β f int =
∞

∑
n=1

B∗
n+1 ρn, (7.28)

from the thermodynamic relation,

p = ρ2 ∂ f

∂ρ
, (7.29)
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it follows that the virial expansion of the pressure p is given by

β p = ρ +
∞

∑
n=1

Bn+1ρn+1, Bn+1 = nB∗
n+1 . (7.30)

On the other hand, from (7.27), (7.28), and (7.30) it readily follows that the ideal

contribution, µ id, and the contribution of the interactions, µ int, to the chemical

potential,

µ = f +
p

ρ
, (7.31)

are, after (6.49), given by

β µ id = ln
(
ρΛ 3

)
,

and

β µ int =
∞

∑
n=1

B∗∗
n+1ρn, B∗∗

n+1 = (n + 1)B∗
n+1 , (7.32)

which is the virial expansion of µ int.

Since the determination of the virial coefficients Bn is not simple, one often

considers only the correction due to the second coefficient, which may be evalu-

ated analytically for some interaction potentials. In this approximation (note that

B∗∗
2 = 2B∗

2 = 2B2),

β pint ≃ B2ρ2, β f int ≃ B2ρ, β µ int ≃ 2B2ρ . (7.33)

In order to derive the analytical expression of B2, consider again (7.8),

F = F0 +
∫ 1

0
dλ
〈
H −H0

〉
λ , (7.34)

particularized to the case in which H0 is the kinetic energy of the system H0 = H id.

One then has that the free energy of the interactions, F int = F −F id, is given by

F int =

∫ 1

0
dλ
〈

H int
〉

λ
, (7.35)

where H int = H −H id is the potential energy. If H int is a sum of pair potential inter-

actions, i.e.,

H int =
1

2

N

∑
i=1

N

∑
i�= j=1

V (|ri − r j|) , (7.36)

then (7.35) may be written as

F int =
1

2

∫ 1

0
dλ
∫

R
dr

∫

R
dr′ρ2(r,r

′|λ )V (|r− r′|) , (7.37)
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where ρ2(r,r
′|λ) is the two-particle distribution function of the system whose

Hamiltonian is H(λ) = H id + λH int (see (6.81)), namely

ρ2(r,r
′|λ ) =

〈
N

∑
i=1

N

∑
i�= j=1

δ (r− ri)δ (r′− r j)

〉

λ

. (7.38)

If Zint(λ ) is the partition function of the interactions of the system with Hamil-

tonian H(λ ), after (5.51) one then has

ρ2(r,r
′|λ ) =

N (N −1)

V NZint(λ )

∫

R
drNδ (r− r1)δ (r′− r2)e−β λHint

. (7.39)

Note that, since the particles are identical, the double summation in (7.38) has been

expressed as N(N −1) times the product of two Dirac delta functions, for instance

δ (r− r1)δ (r′ − r2), which eliminates two integrations (there is, therefore, a term

V−2) and localizes the interaction potential V (|r1−r2|). Hence, (7.39) may be writ-

ten as:

ρ2(r,r
′|λ ) = ρ2

(
1− 1

N

)
e−βλV (|r−r′|) + · · · , (7.40)

where the dots denote other terms that depend on the thermodynamic variables N, V ,

and β , on the parameter λ and on r and r′ (in the thermodynamic limit such terms

form a series in the density). Note that since in (7.37) one only wants to obtain

the lowest order in the density, the terms represented by the dots in (7.40) may be

neglected in first approximation. Since

∫ 1

0
dλ V (|r− r′|)e−βλV (|r−r′|) = − 1

β
f (|r− r′|;T ) , (7.41)

where

f (r;T ) = e−βV (r) −1 (7.42)

is referred to as the Mayer function, from (7.37), (7.40), and (7.41) it follows that

F int = − 1

2β
ρ2

(
1− 1

N

)∫

R
dr

∫

R
dr′ f (|r− r′|;T )+ · · · . (7.43)

The free energy per particle f int in the thermodynamic limit then reads

β f int = −1

2
ρ
∫

dr f (r;T )+ · · · , (7.44)

which upon comparison with (7.33) allows one to obtain the expression for the

second virial coefficient, namely

B2 ≡ B2(T ) = −1

2

∫
dr f (r;T ) . (7.45)



170 7 Classical Systems with Interactions

Recall that, as stated in Chap. 3, in order to prove the existence of the thermody-

namic limit, the Hamiltonian must fulfill the stability condition and the weak-decay

condition. The latter implies that the pair potential interaction V (r) has to decrease

with the distance at least as r−(d+ε), where d is the dimensionality of space and ε
is a positive constant. This condition is also required for the existence of the virial

expansions. Indeed, consider (7.45) and let r0 be the range of V (r), i.e., βV (r) ≪ 1

when r > r0. The second virial coefficient may then be written as

B2 = 2π
∫ ∞

0
drr2

(
1− e−βV (r)

)
= 2π

∫ r0

0
drr2

(
1− e−βV (r)

)

+2π
∫ ∞

r0

drr2
(

1− e−βV (r)
)

. (7.46)

In the last integral, the exponential may be expanded in a Taylor series yielding

∫ ∞

r0

drr2
(

1− e−βV (r)
)

=

∫ ∞

r0

drr2βV (r)+ · · · , (7.47)

and in order for the latter integral to be finite in the upper limit one must necessarily

have V (r) ∼ r−(3+ε). When this condition is fulfilled, one says that the interaction

pair potential is short-ranged. Note that for long-ranged pair potentials B2 is infi-

nite (the same result holds then for all virial coefficients) and, therefore, no virial

expansions exist. The reason is that, in these expansions, the thermodynamics of a

system of N particles (the pressure) is divided into a sequence of terms involving

one, two, three, etc. particles (the coefficients of the virial series); for instance, B2

contains the interaction of only two particles. If the pair potential is long-ranged,

this separation looses its meaning and hence all the terms in the series diverge.

It is evident that this result does not imply, for instance, that there does not ex-

ist an equation of state, it only implies that the virial expansion of the pressure

is inadequate (thus, in the Taylor series expansion of e−x − 1 = −x + x2/2! + · · ·
all the terms of the series diverge when x → ∞, although the series is conver-

gent). As also indicated in Chap. 3, an important example of a long-ranged pair

potential is the Coulomb potential V (r) = e2/r, where e is the electric charge of

the particles. In systems of mobile charges or plasmas (note that a plasma should

have at least two types of particles to maintain the overall electroneutrality), there

exists a series expansion of f int in the so-called plasma parameter whose coeffi-

cients are finite. The fundamental difference between a short-ranged potential and

the Coulomb potential may be envisaged through the following argument. In a

fluid whose pair potential is short-ranged, the relevant variables are the mass of

the particles m, the density ρ , the temperature T , and the amplitude ε and the

range r0 of the potential. With these variables two dimensionless parameters may

be formed: ε/kBT and ρr3
0 . If ρr3

0 ≪ 1 the thermodynamic properties of the fluid

may be expanded as a series of this parameter and one obtains the virial expan-

sions. In a plasma one does not have the variables ε and r0, but one has the electric

charge e (although in a plasma the different components have different charges,
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it is usual to consider the so-called one-component plasma in which particles of

charge e move in a background of continuous charge that maintains the overall

electroneutrality). In this case, one may only form one dimensionless parameter

with the variables m,ρ,T , and e, namely ρλ 3
, where λ is the Debye wavelength

λ =
√

kBT/4πe2ρ . If ρλ 3 ≫ 1 the thermodynamic properties of the plasma may

be expanded in a series in the plasma parameter ε = (ρλ 3)−1 ≪ 1. The condi-

tion ρλ 3 ≫ 1 implies that there is a great number of particles in a Debye cube

of side λ , i.e., charge electroneutrality is also maintained locally in such a way

that the effective pair potential between the mobile charges is the Yukawa poten-

tial e−κr/r, with κ = 1/ λ , instead of the Coulomb potential (for more details, see

Sect. 8.10.2 where the effective interaction between charged particles is analyzed).

It is thus seen that the series expansions in ε ∼ √
ρ are not analytic in the den-

sity and this is the reason why the coefficients of the virial series of a plasma are

infinite.

7.4 Direct Correlation Function

In the next chapters, phases of matter (e.g., solids and liquid crystals) and inhomoge-

neous systems (e.g., a liquid–vapor interface) characterized by a non-uniform local

density of particles ρ1 (r) will be considered. As stated in Chap. 3, the standard

method to produce an inhomogeneity in a system whose Hamiltonian is invariant

under translation and rotation is to add to the Hamiltonian the contribution of a one-

particle external potential φ (r), also referred to as the symmetry breaking field. As

was discussed in Chap. 6 the grand potential becomes in this case a functional Ω [u]
of u(r) = µ −φ (r), where µ is the chemical potential. It has been also shown there

that for an ideal gas there is a one-to-one correspondence between ρ1 (r) and u(r)
and that Ω [u] is a concave functional of u(r). These properties allowed to define

the intrinsic Helmholtz free energy functional F [ρ1] as the Legendre transform of

Ω [u] and to formulate a variational principle in terms of the functional A [ρ1]. The

density functional approach thus focuses on functionals of ρ1 (r) rather than u(r).
For a system of interacting particles, it has been found in Sect. 6.6 that Ω [u] is

also a concave functional of u(r) and that the two first functional derivatives of Ω [u]
are related to the local density of particles ρ1 (r) and to the two-particle distribution

function ρ2 (r,r′). Whereas it is clear that ρ1 (r) is univocally determined by u(r),
one can prove the less obvious result that only one u(r) can determine a specified

ρ1 (r). In this way, the equilibrium properties of inhomogeneous interacting systems

can also be formulated in terms of the Legendre transform of Ω [u], i.e., from the

intrinsic Helmholtz free energy functional F [ρ1].
Consider an open system of interacting particles in a one-particle external po-

tential φ (r). Since there is a one-to-one correspondence between ρ1 (r) and u(r),
the intrinsic Helmlholtz free energy functional F [ρ1] can be constructed as the

Legendre transform of Ω [u]:
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F [ρ1] = Ω [u]+

∫

R

dru(r)ρ1 (r) , (7.48)

which, in what follows, will be split into the ideal part (6.65) and the contribution

resulting from the interactions, i.e.,

F [ρ1] = kBT

∫

R

drρ1 (r)
(
ln
(
ρ1 (r)Λ 3

)
−1
)
+F

int [ρ1] . (7.49)

Consider now the following definitions:

c1 (r) ≡−β
δFint [ρ1]

δρ1 (r)
, c2

(
r,r′

)
≡−β

δ 2
Fint [ρ1]

δρ1 (r)δρ1 (r′)
, (7.50)

which are functionals of the local density, i.e., c1 (r) = c1 (r, [ρ1]) and c2 (r,r′) =
c2 (r,r′, [ρ1]). In particular, c2 (r,r′) is known as the Ornstein–Zernike direct cor-

relation function (or, simply, direct correlation function) which will henceforth be

denoted by c(r,r′).

Using the well-known properties of the Legendre transform, from (7.48) and

(6.76) one obtains

δF [ρ1]

δρ1 (r)
= u(r) . (7.51)

The first functional derivative of (7.49) then yields, using (7.50),

kBT ln
(
ρ1 (r)Λ 3

)
= kBT c1 (r)+ u(r) , (7.52)

which can be re-expressed as

ρ1 (r) =
1

Λ 3
eβ [u(r)+kBT c1(r)] . (7.53)

For an ideal gas c1 (r) = 0, and (7.53) reduces to the barometric law (6.57). Thus,

−kBT c1 (r) in (7.53) can be interpreted as an effective one-particle potential result-

ing from the interactions which, together with u(r), determines ρ1 (r).
A further differentiation of (7.52) leads to

kBT
δ (r− r′)

ρ1 (r)
= kBT c

(
r,r′

)
+

δu(r)

δρ1 (r′)
, (7.54)

and using the identity

∫

R

dr′′
δu(r)

δ ρ1 (r′′)
δ ρ1 (r′′)
δu(r′)

= δ
(
r− r′

)
, (7.55)

from (6.82) and (7.54) one has
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ρ2

(
r,r′

)
= ρ1 (r)ρ1

(
r′
)
+ ρ1 (r)ρ1

(
r′
)

c
(
r,r′

)

+ ρ1 (r)

∫

R

dr′′c
(
r,r′′

)[
ρ2

(
r′′,r′

)
−ρ1

(
r′′
)

ρ1

(
r′
)]

. (7.56)

By defining the pair correlation function g(r,r′) and the total correlation function

h(r,r′) as

ρ2

(
r,r′

)
≡ ρ1 (r)ρ1

(
r′
)

g
(
r,r′

)
≡ ρ1 (r)ρ1

(
r′
)[

h
(
r,r′

)
+ 1
]

, (7.57)

then (7.56) reads

h
(
r,r′

)
= c

(
r,r′

)
+

∫

R

dr′′c
(
r,r′′

)
ρ1

(
r′′
)

h
(
r′′,r′

)
, (7.58)

which is known as the Ornstein–Zernike equation. Observe that, as indicated in

Sect. 6.8, in (7.58) a shorthand notation for the functionals h(r,r′) and c(r,r′),
which moreover are functions of the thermodynamic state, has been used. For a uni-

form fluid phase of average density ρ , these functionals reduce to ordinary functions

of ρ which only depend on the modulus of the relative distance, i.e., h(|r− r′|) and

c(|r− r′|). The Ornstein–Zernike equation then reads in the thermodynamic limit

h
(
|r− r′|

)
= c

(
|r− r′|

)
+ ρ

∫
dr′′c

(
|r− r′′|

)
h
(
|r′′− r′|

)
, (7.59)

or

h̃(k) = c̃(k)+ ρ c̃(k)h̃(k), (7.60)

where h̃(k) and c̃(k) are the Fourier transforms of h(r) and c(r), e.g.,

h̃(k) =

∫
dr e−ik·rh(r) . (7.61)

7.5 Density Functional Theory

Define the functional

A [ρ1] ≡ F [ρ1]−
∫

R

dr u (r)ρ1 (r) , (7.62)

which, after (7.48), yields A [ρ1] = Ω [u] when ρ1 (r) = ρ1 (r). The first functional

derivative of (7.62) at constant u(r) is

δA [ρ1]

δρ1 (r)
= kBT ln

(
ρ1 (r)Λ 3

)
− kBT c1 (r)−u(r) , (7.63)
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which, by virtue of (7.52), vanishes at the equilibrium density ρ1 (r). The notation

c1 (r) in (7.63) expresses that the functional is evaluated at the local density ρ1 (r).
Further differentiation of (7.63) at constant u(r) (with the same meaning for the

notation c(r,r′)) yields

β
δ 2

A [ρ1]

δ ρ1 (r)δρ1 (r′)
=

δ (r− r′)
ρ1 (r)

− c
(
r,r′

)
. (7.64)

At the equilibrium density the r.h.s. of (7.64) is positive:

δ (r− r′)
ρ1 (r)

− c
(
r,r′

)
= β

δ u(r)

δρ1 (r′)
> 0 ,

since
δρ1 (r′)
δu(r)

> 0, (7.65)

as has been already shown in (6.82). Therefore, A [ρ1] is a convex functional of

ρ1 (r) and Ω [u] is the minimum value of A [ρ1] at the equilibrium density ρ1 (r),
for a given u(r). This variational principle is the cornerstone of density functional

theory.

From (7.49), A [ρ1] can be written as

A [ρ1] = kBT

∫

R

drρ1 (r)
(
ln
(
ρ1 (r)Λ 3

)
−1
)

+F
int [ρ1]−

∫

R

dr u (r)ρ1 (r) , (7.66)

and, hence, F
int [ρ1] plays a central role in density functional theory. It is clear that

the complexity involved in Fint [ρ1] is the same as that of the partition function. Any

practical implementation of density functional theory then requires some explicit

approximation for the functional Fint [ρ1]. Finally, note that the equilibrium local

density ρ1 (r) is the minimum of A [ρ1], i.e.,

(
δF [ρ1]

δρ1 (r)

)

ρ1(r) = ρ1(r)

− µ + φ (r) = 0 , (7.67)

which can also be interpreted as follows.

Consider a closed system of N interacting particles in a region R of volume V at

temperature T (canonical ensemble) in a one-particle external potential φ (r). In this

case, the Helmholtz free energy is a functional of the external potential F [φ ] (see

Sect. 5.5) and φ (r) induces a non-uniform local density of particles ρ1 (r), which

verifies following the normalization condition:

N =

∫

R

drρ1 (r) . (7.68)
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Define the functional F [ρ1] as

F [φ ] = F [ρ1]+
∫

R

dr φ (r)ρ1 (r) (7.69)

and assume that the r.h.s. of (7.69) is minimized with the constraint

N =
∫

R

dr ρ1 (r) .

As is well known, the result of this variational procedure can be obtained by remov-

ing the constraint using a Lagrange’s multiplier µ and minimizing the functional

F [φ ]− µN = F [ρ1]+

∫

R

dr φ (r)ρ1 (r)− µ
∫

R

dr ρ1 (r) , (7.70)

leading to:

(
δF [ρ1]

δρ1 (r)

)

ρ1(r)

− µ + φ (r) = 0, (7.71)

which is (7.67). Observe that, in this case, once the solution ρ1 (r) of (7.71) is found,

the Lagrange’s multiplier must be eliminated by using (7.68).

7.6 Mean Field Theory

In the previous sections an approximation to the free energy of a system has been

obtained through variational methods, perturbative methods or as a virial series.

In this section a statistical approximation, called mean field theory, whose main

hypothesis is that there are no correlations among the N identical particles of the

system, is studied.

Consider for that purpose the joint probability density ρ(rN) of finding the N

particles at the points rN of a closed region R of volume V at the temperature T ,

which is normalized in the following way:

1

V N

∫

R
drNρ(rN) = 1 . (7.72)

Note that ρ(rN) is the marginal probability density of the canonical distribution, i.e.,

ρ(rN) =
1

ZU
e−βU , (7.73)

where U is the potential energy and ZU the corresponding partition function.
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If one assumes that the particles are not correlated, the probability density ρ(rN)
may be expressed as the product of N identical factors (see Appendix B), which are

the individual probability densities, i.e.,

ρ(rN) =
N

∏
j=1

ρ1(r j)

ρ
, (7.74)

where ρ1(r) is the local density of particles and ρ = N/V . From the normalization

condition (7.72) it follows that

1

V

∫

R
drρ1(r) = ρ . (7.75)

In order to determine the intrinsic Helmholtz free energy functional, consider

again equation (7.35). Since the local density of particles (7.75) is, in general, not

uniform, Fid[ρ1] is the density functional (6.65), namely

F
id[ρ1] = kBT

∫

R
drρ1(r)(ln

(
ρ1(r)Λ

3
)
−1) . (7.76)

Observe, further, that since the factorization (7.74) is independent of the interac-

tion, the average value 〈H int〉λ is independent of λ (i.e., of the “charging parame-

ter”which adds interaction to the system in (7.1) when H0 = H id), i.e.,

∫ 1

0
dλ〈H int〉λ =

∫ 1

0
dλ

1

V N

∫

R
drNρ(rN)

1

2

N

∑
i=1

N

∑
i�= j=1

V (|ri − r j|)

=
1

2

N

∑
i=1

N

∑
i�= j=1

1

N2

∫

R
dri ρ1(ri)

∫

R
dr j ρ1(r j)V (|ri − r j|)

=
1

2

(
1− 1

N

)∫

R
drρ1(r)

∫

R
dr′ρ1(r

′)V (|r− r′|). (7.77)

In the thermodynamic limit, the intrinsic Helmholtz free energy functional F[ρ1]
in mean field theory is, therefore,

F[ρ1] = kBT

∫
drρ1(r)(ln

(
ρ1(r)Λ

3
)
−1)

+
1

2

∫
drρ1(r)

∫
dr′ρ1(r

′)V (|r− r′|). (7.78)

For the sake of understanding why this theory is called mean field, consider the

variational principle (7.71). After taking the thermodynamic limit, let φ (r) → 0,

where φ (r) is the external potential which produces the inhomogeneity. The varia-

tional principle then yields
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kBT ln
(
ρ1(r)Λ

3
)
+

∫
dr′ρ1(r

′)V (|r− r′|)− µ = 0 , (7.79)

i.e.,

ρ1(r) =
eβ µ

Λ 3
e−βφ mf(r) , (7.80)

where the mean field potential φmf(r) has been defined as

φmf(r) =

∫
dr′ρ1(r

′)V (|r− r′|) . (7.81)

Imposing the normalization condition to (7.80) one has

N =

∫
drρ1(r) =

eβ µ

Λ 3

∫
dre−βφ mf(r) , (7.82)

and after elimination of eβ µ/Λ 3 from (7.82) and substitution into (7.80) yields

ρ1(r) = N
e
−βφ

mf
(r)

∫
dr′e−βφ

mf
(r′) , (7.83)

which is expression (5.41) for the local density of particles in an external potential

φmf(r). Note that (7.81) and (7.83) are self-consistent equations in the local density

ρ1(r) and the mean field potential φ mf(r). This (fictitious) external potential is,

according to (7.81), the average potential acting on a particle of the system due to

the pair potential V (|r− r′|).
Finally, note that in mean field theory F

int [ρ1] reads

F
int [ρ1] =

1

2

∫
drρ1(r)

∫
dr′ρ1(r

′)V (|r− r′|) , (7.84)

and from (7.50) it is found that the direct correlation function is

c
(∣∣r− r′

∣∣)= −βV (|r− r′|). (7.85)

7.7 Numerical Simulations

A considerable part of the research in statistical physics is based on the so-called

numerical simulation methods. The purpose of this section is to provide a few sim-

ple ideas of some known methods and their relation with the general principles of

statistical physics. For a more detailed study, one should refer to some specialized

texts which have been included in the References.
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7.7.1 Molecular Dynamics

In this method, the classical trajectories of a system of N particles or molecules are

determined, hence the name “Molecular Dynamics” or “MD”. Let Ct ≡ (rN(t),pN(t))
denote the mechanical state at time t of a system of N particles. If a(Ct) is the value

of a dynamical function at time t, a characteristic problem of MD consists in deter-

mining the time-averaged value of the dynamical function, ā, namely

ā = lim
T→∞

1

T

∫ T

0
dt a(Ct) . (7.86)

As usual, to evaluate numerically (7.86) the time variable t, which is continuous,

is replaced by a sequence of discrete values t1, . . . , tn, . . . such that tn+1 = tn + Δ t =
t1 + nΔ t. If T = tk = kΔ t, (7.86) may be approximated by

ā = lim
k→∞

1

k

k

∑
n=1

a(Ctn) . (7.87)

In practice, the sum in (7.87) is restricted to a large though finite number of terms,

each of which follows from the previous one in a deterministic way upon integration

of the equations of motion of the system. Thus, if Δ t is small enough, the Taylor

expansion of the position vector of the i-th particle ri(tn ±Δ t) is written as:

ri(tn ±Δ t) = ri(tn)±Δ t vi(tn)+
1

2
(Δ t)2ai(tn)+ O

(
(Δ t)3

)
, (7.88)

where vi(tn) and ai(tn) are the velocity and acceleration of the particle, respectively,

at time tn. From (7.88) one has

ri(tn + Δ t)+ ri(tn −Δ t) = 2ri(tn)+ (Δ t)2ai(tn)+ O
(
(Δ t)4

)
, (7.89)

and

ri(tn + Δ t)− ri(tn −Δ t) = 2Δ t vi(tn)+ O
(
(Δ t)3

)
, (7.90)

which may be written as

ri(tn + Δ t) = 2ri(tn)− ri(tn −Δ t)+
1

mi

(Δ t)2Fi(tn)+ O
(
(Δ t)4

)
, (7.91)

and

vi(tn) =
1

2Δ t
[ri(tn + Δ t)− ri(tn −Δ t)]+ O

(
(Δ t)2

)
. (7.92)

In (7.91) Fi(tn) is the force acting on particle i, of mass mi, at time tn since,

according to Newton’s equations of motion, miai(tn) = Fi(tn). This force, which

is supposed to be known, is a function of the coordinates rN(tn). Equation (7.91)

allows one to determine the position vector of the particles step by step, while from

(7.92) one obtains the velocity of the particles step by step, although in a preceding
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interval Δ t. Once the value of the dynamical function in each instant is known, one

may compute (7.87) for a large number k of terms. This method of evaluation of

(7.87) is known as the Verlet algorithm.

From a practical point of view, the algorithm presents some inconveniences. For

instance, the interval Δ t may neither be very small nor very large. Normally, Δ t is

optimized so that the total energy remains constant up to a given precision. Note that

k cannot be excessively large, since this would substantially increase the computa-

tion time and, for the same reason, neither can N be very large, although only in the

thermodynamic limit does one expect that the time average and the ensemble aver-

age over the microcanonical ensemble be equal (see Sect. 3.5). Since in this limit

the intensive properties are independent of the geometry of the region in which the

system is contained, periodic boundary condition are imposed on the system in the

algorithm. It is well known that MD simulations lead to very good results, which

is probably due to the fact that all these limiting processes behave properly and are

rapidly convergent.

7.7.2 Monte Carlo Method

This is a probabilistic method, hence the name “Monte Carlo” (or “MC”), to evalu-

ate multidimensional integrals of the form

〈a〉 =
1

V N

∫

R
drNa(rN)ρ(rN) , (7.93)

which appear in the equilibrium statistical physics of systems of interacting parti-

cles. In (7.93), a(rN) is a dynamical function that depends on the mechanical state

rN of the system, ρ(rN) is a marginal probability density of a Gibbs ensemble (note

that the integration over the momenta pN may always be performed analytically so

that the ensemble averages reduce to integrals of the type of (7.93)), and V is the

volume of the region R wherein the system is contained.

If, as usual, the region R is discretized and divided into cells, the domain of

integration in (7.93), RN , is also discretized and the integral is replaced by a sum

〈a〉 = ∑
C

a(C)p(C) , (7.94)

where C denotes a configuration rN , whose probability is p(C). Note that the number

of terms in the sum (7.94) is equal to the number of cells in RN , which is finite. If one

now considers an infinite sequence of configurations {C1,C2, . . .} by the definition

of probability, one has

p(C) = lim
k→∞

1

k

k

∑
n=1

δC,Cn , (7.95)
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namely p(C) is the fraction of terms in the sequence for which Cn = C, provided

the infinite sequence covers all possible configurations in a sufficiently regular way.

Substitution of (7.95) into (7.94) leads to

〈a〉 = ∑
C

a(C) lim
k→∞

1

k

k

∑
n=1

δC,Cn

= lim
k→∞

1

k

k

∑
n=1

∑
C

a(C)δC,Cn

= lim
k→∞

1

k

k

∑
n=1

a(Cn), (7.96)

and so 〈a〉 may be computed as the average of a(Cn) over the infinite sequence.

Note that although (7.96) and (7.87) are analogous (the fact that in (7.87) the

average is over the phase space (rN ,vN) while in (7.96) it is done only over rN is

irrelevant), there is a fundamental difference between them. Thus, while in (7.87) the

sequence of mechanical states Ctn is deterministic, because Ctn+1
is obtained from Ctn

by solving Newton’s equations of motion, in (7.96) the sequence of configurations

Cn is probabilistic or stochastic so that, in principle, there is no rule to determine

Cn+1 from Cn. On the other hand, there are two aspects to emphasize about (7.94).

The first one has to do with the fact that since in the systems analyzed in statistical

physics N or V is large, so is the (finite) number of terms in (7.94), otherwise this

sum could be evaluated directly. The second aspect is that, since in many systems

p(C) has a pronounced maximum, the contribution of the vast majority of terms of

the sum to 〈a〉 is small, and so the choice in (7.96) of a completely random sequence

Cn has no practical interest. For this reason, Metropolis et al. introduced a particular

type of sampling (“importance sampling”) which is detailed in the following. The

method may be easily understood if the formal analogy between (7.87) and (7.96) is

pursued further. Observe first that in MD all the mechanical states Ctn that conserve

the energy have the same probability and that as pointed out earlier Ctn+1
is obtained

from Ctn by solving Newton’s equations of motion. Since, as has been stated, in the

MC method one has to assign a weight to each configuration Cn, it is necessary to

obtain some “equations of motion”that allow the determination of Cn+1 from Cn.

In the Metropolis et al. algorithm, based on the theory of stochastic processes, the

transition from Cn to Cn+1 depends on the relative values of p(Cn) and p(Cn+1).
Let W (C′, t|C, t + Δ t) be the conditional probability that if at time t the system

is in the configuration C′, at time t + Δ t it will be found in the configuration C. If

p(C,t) denotes the probability of finding the system in configuration C at time t,

then

p(C, t + Δ t) = ∑
C′

W (C′,t|C, t + Δ t)p(C′,t) . (7.97)

If one subtracts from this equation the identity
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p(C, t) = ∑
C′

δC,C′ p(C′, t) , (7.98)

and the result is divided by Δ t, in the limit Δ t → 0 one finds

∂ p(C, t)

∂ t
= ∑

C′
T (C′|C)p(C′,t) , (7.99)

where

T (C′|C) = lim
Δ t→0

1

Δ t

[
W (C′,t|C,t + Δ t)− δC,C′

]
, (7.100)

and it has been assumed that W (C′,t|C,t + Δ t) does not depend on t (stationary

process). Equation (7.99), which determines the time evolution of the probability

p(C,t), is known as the master equation or central equation.

Note that from (7.100) it follows that

W (C′,t|C,t + Δ t) = δC,C′ + T(C′|C)Δ t + O((Δ t)2) , (7.101)

if C �= C′, T (C′|C) is a conditional probability per unit of time, i.e., T (C′|C) > 0.

Since

∑
C

W (C′, t|C, t + Δ t) = 1 , (7.102)

from (7.101) and (7.102) one obtains

∑
C

T (C′|C) = 0 , (7.103)

i.e.,

T (C′|C′) = −∑
C

∗
T (C′|C) < 0 , (7.104)

where the asterisk indicates that the sum extends over all the configurations C �= C′.
If in the master equation the contributions C �= C′ and C = C′ are separated, one

obtains

∂ p(C,t)

∂ t
= ∑

C′

∗
T (C′|C)p(C′,t)+ T (C|C)p(C,t) , (7.105)

which, with the aid of (7.104), may be written as

∂ p(C,t)

∂ t
= ∑

C′

∗ [
T (C′|C)p(C′,t)−T(C|C′)p(C, t)

]
. (7.106)

Note that this equation expresses that the probability of configuration C changes

in time due to two terms of opposite sign. The first one is the flux of incoming

probability from configurations C′ �= C, whereas the second is the flux of outgoing

probability to configurations C′ �= C.
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Assume that in its time evolution the system reaches a stationary or equilibrium

state:

pe(C) = lim
t→∞

p(C,t) . (7.107)

In this case, from (7.106) it follows that

∑
C′

∗
T (C′|C)pe(C

′) = ∑
C′

∗
T (C|C′)pe(C) , (7.108)

namely in the stationary state the incoming and outgoing fluxes of probability are

equal.

One of the main objectives of the theory of stochastic processes is to derive the

stationary solution of the master equation (7.108), pe(C), from the conditional prob-

abilities per unit time T (C|C′) and T (C′|C). Note, however, that since in an equilib-

rium system in order to evaluate the sum (7.94) one needs pe(C) (which is a marginal

probability density of a Gibbs ensemble), Metropolis et al. addressed what may be

referred to as the “inverse problem”, namely to derive from pe(C) the conditional

probabilities per unit time T (C|C′) which generate a sequence p(C,t) that verifies

(7.107). Observe that in the equilibrium statistical physics of interacting systems,

one does not know the exact weight of each mechanical state (which would imply,

for instance, that one might compute the partition function), but the relative weight

between two of them is indeed known. For example, in the canonical ensemble the

relative weight is e−βΔE , where ΔE is the energy difference of the states. Since the

solution to the inverse problem is not unique, Metropolis et al. assumed as a hy-

pothesis that for any pair of configurations C and C′ the detailed balance condition

is verified:

T (C′|C)pe(C
′) = T (C|C′)pe(C) , (7.109)

i.e.,

T (C′|C)

T (C|C′)
=

pe(C)

pe(C′)
. (7.110)

Note that a particular solution of (7.109) is

T (C|C′) =

⎧
⎪⎨

⎪⎩

pe(C
′)

pe(C) , pe(C) > pe(C
′)

1, pe(C) ≤ pe(C
′)

(7.111)

This is the Metropolis scheme by which the transition from a configuration C to

a more probable one C′ (pe(C
′) > pe(C)) is always accepted, whereas the transition

to a less probable configuration (pe(C
′) < pe(C)) is only accepted with a proba-

bility equal to pe(C
′)/pe(C). In this latter case a random number γ (0 ≤ γ ≤ 1) is

generated out of a uniform distribution, so that if pe(C
′)/pe(C) > γ the new config-

uration is accepted, and if pe(C
′)/pe(C) < γ it is rejected. Note that the probability

γ < pe(C
′)/pe(C) is then equal to pe(C

′)/pe(C), as has been assumed in (7.111).
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In summary, if one starts from a configuration C0, a new configuration C1 is

built (which is normally obtained by varying slightly the position of one or more

particles) and accepted or rejected with the criteria of the Metropolis algorithm.

Upon repeating this process, a sequence of accepted configurations C1,C2, . . . ,Cn

is obtained that for large enough n are generated with probability pe(C). From this

sequence one evaluates (7.94) using (7.96). Observe, finally, that increasing n in a

simulation is equivalent to increasing the time variable, which is real in MD and

fictitious in the MC method.

Note that within the numerical simulation methods described in this section, in

MD the energy is constant (microcanonical ensemble) while in the MC method

the energy is variable and the relative weight of the states is that of the canonical

ensemble. The generalization of the MC method to other ensembles and of the MD

approach to out-of-equilibrium systems may be found in the textbooks included in

the References.
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Chapter 8

Phases of Matter

Abstract The objective of statistical physics is to derive the macroscopic (thermo-

dynamic) properties of matter from the laws of mechanics that govern the motion

of its microscopic constituents. Note that in this context microscopic may have dif-

ferent meanings. Indeed, although it is common to consider that matter is made

of atoms or molecules (something known as the atomic description), this is not

the only possible description. For instance, one might consider from the outset that

matter is made of electrons and nuclei (subatomic description) that interact through

Coulomb forces. Clearly, the derivation of the thermodynamic properties of matter

is much more involved when, instead of the atomic description, one uses the sub-

atomic one. The reason is that, in this case, one should analyze successively how

electrons and nuclei form atoms, how these atoms constitute molecules, and, finally,

how the macroscopic properties of matter may be derived from the molecular de-

scription. As a matter of fact, the subject of going from the subatomic description

to the atomic one does not truly belong to the realm of statistical physics (rather it

belongs to atomic and molecular physics) which usually takes as starting point the

atomic and molecular interactions.

There is yet a third description in the thermodynamic study of matter (supramole-

cular or mesoscopic description), which has sometimes been used to study systems

having such a complex molecular architecture that it is very difficult to derive the

intermolecular interactions from the atomic interactions. The properties of meso-

scopic systems are nevertheless similar to those of atomic systems, but they differ

in the relevant length scales: the angstrom in atomic systems (microscopic) and the

micron in the supramolecular ones (mesoscopic). In the last few years, there has

been a spectacular development of research in mesoscopic systems in what is called

soft condensed matter (liquid crystals, colloidal dispersions, polymers, etc.), some

examples of which are considered later in this chapter.

Due to the existence of an interaction potential between the constituents of a non-

ideal system, the latter may be found in different structures or phases whose relative

stability depends on the thermodynamic state, such as the pressure and the temper-

ature. When these variables are changed, a phase transition may occur in which the

structure of the system changes. These transitions will be studied in Chap. 9. In the

present chapter a summary is provided of some common structures of matter.
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8.1 Crystals

Consider first of all a material in the solid phase. A solid is usually formed by the

union of crystalline elements with a certain spatial order. In what follows, the case is

considered where the solid is formed by a single crystal. Although such monocrys-

talline solids exist in nature, their experimental preparation is not simple, because

they usually contain defects, in particular on their surface. To simplify the study, it

will be assumed that the monocrystal is perfect (it does not have any defects) and of

infinite volume. A perfect crystal is an example of a phase with spatial order, which

means that if one knows the average value of the position vector of a molecule, then

the average values of the position vectors of all the other molecules are specified.

If the molecules have spherical symmetry, their location in space is fixed by the

position vectors of their centers of mass {r j}, which may be written as

r j = R j + u j , (8.1)

where {R j} are the position vectors of a Bravais lattice and {u j} the displacement

vectors (see Sect. 5.8). In a solid in equilibrium 〈r j〉 = R j, where the average is

taken over a Gibbs ensemble or, alternatively, 〈u j〉 = 0. The set of vectors {R j}
defines the structure of a solid with spatial ordering, which for a crystal is a periodic

lattice. There are also some solids in which the vectors {R j} are the equilibrium

positions of a quasiperiodic lattice formed by the superposition of periodic lattices

whose lattice parameters are incommensurate. These solids are called quasicrystals

and a simple example of a quasicrystal is studied in Appendix D.

8.1.1 Crystal Structure

The structure of a solid is characterized by the two-particle distribution function,

ρ2(r,r
′) =

〈
N

∑
j=1

N

∑
j �=i=1

δ (r− r j)δ (r′− ri)

〉
, (8.2)

which may be written as

ρ2(r,r
′) = ρ1(r)ρ1(r

′)g(r,r′) , (8.3)

where g(r,r′) is the pair correlation function and ρ1(r) is the local density of

particles:

ρ1(r) =

〈
N

∑
j=1

δ (r− r j)

〉
. (8.4)
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Since g(r,r′) ≃ 1 when |r− r′| > σ (where σ is the diameter of the molecule), a

great majority of the structural properties of a crystal or a quasicrystal may thus be

derived from ρ1(r).
Note that the local density of particles must be a function with very pronounced

peaks in the vicinity of the equilibrium positions of the lattice {R j} and must tend

to zero when r �= R j. Since in a crystal all the vertices in the lattice are equivalent,

ρ1(r) must have the following form:

ρ1(r) =
N

∑
j=1

φ (r−R j) , (8.5)

where φ (r−R j) is the local density around R j. In a quasicristal the vertices are

not equivalent and so in the sum (8.5) the function φ (r−R j) must be replaced by

functions φ j(r−R j). As a first approximation, the function φ (r−R j) of a crystal

may be written as

φ(r−R j) =
(α

π

)3/2

e−α(r−R j)
2

, (8.6)

although it is known that φ(r−R j) does not decrease as fast as a Gaussian nor has

spherical symmetry (in (8.6), α(r−R j)
2 must be replaced by (r−R j) ·A ·(r−R j),

where A is a matrix that has all the symmetries of the Bravais lattice). Integrating

over the whole crystal (which has been assumed to have an infinite volume, so that

N → ∞), one has
1

V

∫
drρ1(r) = ρ , (8.7)

where ρ = N/V is the average density, which is an important parameter in the char-

acterization of a crystal.

Since a crystal is obtained through repetition of a unit cell (Fig. 8.1), of n1 par-

ticles and volume v1, it follows that N = N̄n1 and V = N̄v1, where N̄ is the number

of unit cells and thus ρ = n1/v1. For instance, in a simple cubic (sc) lattice, whose

lattice parameter is a, v1 = a3 and n1 = (1/8)8 = 1, since each of the eight ver-

tices belongs to eight unit cells. Therefore, ρ = 1/a3, and so if one knows ρ , the

lattice parameter is determined. In a body centered cubic (bcc) lattice v1 = a3 and

sc bcc fcc

Fig. 8.1 Unit cell of the three cubic Bravais lattices: simple cubic (sc), body centered cubic (bcc),

and face centered cubic (fcc)
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n1 = (1/8)8+1 = 2, i.e., ρ = 2/a3, and in a face centered cubic (fcc) lattice v1 = a3

and n1 = (1/8)8+(1/2)6 = 4, i.e., ρ = 4/a3 (note that in these lattices a is still the

lattice parameter of the corresponding simple cubic lattice).

In a solid ρ has an upper limit, which is the density at which the atoms or

molecules are in contact. When this happens, the distance between nearest neighbor

atoms is equal to the diameter of the atoms and one says that the solid reaches its

maximum packing (note that if one forces two atoms to be at distances smaller than

their diameter, the atoms ionize and the solid transforms into a different phase).

If one assumes that the atoms are hard spheres of diameter σ (which can, there-

fore, not interpenetrate), the density of maximum packing or “close packing” (cp)

ρcp may be determined in a simple way. In fact, in a simple cubic lattice when

a = σ one has ρcpσ3 = 1. Analogously, the distance between nearest neighbors

(nn) rnn in a bcc lattice is r2
nn = 3(a/2)2, i.e., rnn =

√
3a/2 and so if rnn = σ one

has ρcpσ3 = 3
√

3/4. In an fcc lattice r2
nn = 2(a/2)2, i.e., rnn =

√
2a/2 and so if

rnn = σ one has ρcpσ3 =
√

2. Since the latter is the highest value for the close pack-

ing density that one may obtain, the fcc lattice is called a closest packing lattice

(Table 8.1).

8.1.2 Cell Theory

There exist different approximations for the determination of the thermodynamic

properties of a crystal, such as its Helmholtz free energy. The simplest one is the

cell theory of Lennard-Jones and Devonshire, which has also been applied to dense

fluids but with less satisfactory results. An elementary way of describing a solid

contained in a closed region R of volume V consists in assuming that each parti-

cle (atom or molecule) is localized in a region (Wigner–Seitz cell) R1 of volume

v = V/N centered at its equilibrium position in the Bravais lattice. Notice that the

region R1 does not coincide with the unit cell of the Bravais lattice of the previous

section, because in the Wigner–Seitz cell the particle is at the center of the cell.

Since all the vertices of a perfect monocrystal are equivalent (which is only true in

Table 8.1 Some characteristics of the simple cubic lattice, the body centered cubic lattice, and the

face centered cubic lattice. Number of particles in the unit cell, n1, nearest neighbor distance, rnn,

referred to lattice parameter of the simple cubic lattice, a, and density of close packing, ρcp, of

hard spheres of diameter σ . Also included are the close packing fraction, ηcp = πρcpσ3/6, which

is the fraction of the volume of space occupied by the spheres at their closest packing

n1 rnn/a ρcpσ3 ηcp

sc 1 1 1 0.524

bcc 2
√

3/2 3
√

3/4 0.680

fcc 4
√

2/2
√

2 0.740
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the thermodynamic limit, where the surface effects disappear) all the cells have the

same shape. For instance, in a simple cubic lattice the Wigner–Seitz cell is a cube

of side a, i.e., v = a3 . Since the vectors {R j} are located at the centers of the cells

{R1}, the partition function of the interactions may be approximated in a mean field

theory as

Zint(β ,V,N) =
1

V N

∫

R
drNe−βHint(rN)

≃ 1

vN

∫

R1

duNe
−β ∑N

j=1 ε(u j) , (8.8)

with

H int(rN) =
1

2

N

∑
i=1

N

∑
i�= j=1

V (|ri − r j|) , (8.9)

where V (|ri − r j|) is the pair potential interaction, ε(u j) is the average potential

acting on particle j due to the interaction with the particles in the neighboring cells

(a potential which is independent of R j since all cells are equivalent), u j is the dis-

placement vector and the last multiple integral in (8.8) extends over the region R1,

since each particle is kept inside one cell. Note that, in general, the relation between

ε(u j) and V (|ri − r j|) is not evident. A case in which the approximation (8.8) turns

out to be intuitively clear is when the pair potential is that of hard spheres, namely

V (r) = ∞(r < σ) and V (r) = 0(r > σ) (see (8.42)). As is well known, this potential

considers that the particles are spheres of diameter σ that cannot interpenetrate each

other, and so the volume occupied by one sphere v0 = πσ3/6 cannot be overlapped

by others. Therefore, this type of interaction is referred to as an excluded volume in-

teraction. Note that although in a real system the repulsive part of the potential is not

necessarily a hard-sphere one and that, in general, the potential also involves an at-

tractive part, nowadays it is possible to produce systems of mesoscopic polystyrene

spheres that interact through a hard-sphere potential (in fact, the discontinuity at

r ≃ σ is then less abrupt). Since these systems may form crystals when they are

suspended in an inert medium, this is the main reason that justifies the study of

crystalline solids using a hard-sphere interaction.

The major simplification involved in the approximation (8.8) is that the partition

function may be factorized in the following form:

Zint(β ,V,N) =
(v f

v

)N

, (8.10)

where

v f =

∫

R1

due−βε(u) (8.11)

is, for the reason explained below, the free volume per particle. Indeed, if V (r) is

a hard-sphere potential, so will be ε(u), and hence from (8.11) it follows that v f is

the volume of the region R1 where ε(u) = 0, i.e., it is the volume that a particle can

occupy freely in a cell when it does not overlap with neighboring particles. In order
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to determine v f one has to know how these neighboring particles are distributed

around the particle being considered. Since ε(u) is an average potential, one may

assume as a first approximation that this potential has spherical symmetry, and so

if r1 is the average distance between the chosen particle and its neighbors, the free

volume v f is the volume a sphere of radius r1 −σ , namely

v f =
4

3
π(r1 −σ)3 . (8.12)

Since the exact expression of v f depends on the form of the Wigner–Seitz cell,

the inherent approximation involved in (8.12) is that this cell has approximately

spherical symmetry (note that since the volume of the Wigner-Seitz cell and the one

of a sphere only differ by a numerical factor, this difference is irrelevant in the study

of the thermodynamic properties of the crystal).

Equation (8.12) may be expressed in terms of the average density of the crystal,

since ρ = 1/cr3
1, where c is a constant that depends on the geometry of the Wigner–

Seitz cell and ρcp = 1/cσ3, i.e.,

v f

v
=

(
r1 −σ

r1

)3

,

or, alternatively,

v f

v
=

⎛
⎝1−

(
ρ

ρcp

)1/3
⎞
⎠

3

, (8.13)

so that v f → v when ρ → 0 and v f → 0 when ρ → ρcp.

Therefore, in the cell theory, the Helmholtz free energy per particle of a crystal

whose close packing density is ρcp is given in the thermodynamic limit by

f (T,ρ) = kBT
(
ln
(
ρΛ 3

)
−1
)
−3kBT ln

⎛

⎝1−
(

ρ

ρcp

)1/3
⎞

⎠ , (8.14)

and hence the equation of state turns out to be given by

p =
ρkBT

1−
(

ρ
ρcp

)1/3
. (8.15)

Observe that these expressions are analytic functions of ρ1/3 when 0 < ρ < ρcp.

Since the hard-sphere solid is thermodynamically unstable at low density, (8.14) and

(8.15) are only relevant when the average density of the solid is greater than some

limiting density (see Chap. 9). At high densities (8.15) is a very good approximation

for the equation of state of a hard-sphere crystal, as clearly shown in Fig. 8.2.



8.1 Crystals 191
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Fig. 8.2 Compressibility factor, Z = β p/ρ , in the cell theory (8.15) of a solid that crystallizes into

a face centered cubic structure (ρcpσ3 =
√

2) as a function of ρσ 3 (continuous line). The broken

line is a simple fit (Z ≃ 3ρ/(ρcp −ρ)), proposed by Hall, to the high density values of Z obtained

by Alder and Wainwright through numerical simulation (dots)

Sources: B. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1209 (1957); K. R. Hall, J. Chem.

Phys. 57, 2252 (1972)

8.1.3 van der Waals Theory

Consider now a crystal whose pair potential is the sum of a hard-sphere potential

and an attractive potential. The Helmholtz free energy of the crystal in the van der

Waals theory F = F(T,V,N) is given by (7.25), where F0 = F0(T,V,N) is the free

energy of the cell theory (8.14 ). If the local density of particles of the reference

system ρ0
1(r) is written as (8.5), from (7.25) one has

F = F0 +
1

2

N

∑
i=1

N

∑
j=1

∫

R
dr

∫

R
dr′φ 0(r−Ri)φ

0(r′−R j)VA(|r− r′|) . (8.16)

Since in a crystal the function φ0(r −Ri) has a very pronounced peak in the

vicinity of the equilibrium position of the lattice Ri, at low temperatures it may be

approximated by a Dirac delta function φ0(r−Ri) ≃ δ (r−Ri) (classically this is

true when T = 0) and so (8.16) reads

F = F0 +
1

2

N

∑
i=1

N

∑
j=1

VA(|Ri −R j|) . (8.17)

Note that the double sum in (8.17) may be replaced by N times the sum over the

equilibrium positions R j when one of the atoms of the sum over i is located at the

origin, due to the fact that in a crystal all the vertices of the lattice are equivalent.
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If the attractive potential is given by

VA(r) = −ε
(σ

r

)n

, (r > σ) , (8.18)

where ε is a parameter with dimensions of energy and n is an integer, it follows that

F = F0 − 1

2
Nε

1

xn
1

N

∑
j=1

(
x1

x j

)n

, (8.19)

where x j = |R j|/σ . The Helmholtz free energy per particle of the crystal is then

written as

β f (T,ρ) = ln
(
ρΛ 3

)
−1−3ln

⎛
⎝1−

(
ρ

ρcp

)1/3
⎞
⎠− 1

2t

(
ρ

ρcp

)n/3

Mn , (8.20)

where one has used the fact that x1 = (ρ/ρcp)
1/3, introduced the dimensionless

variable t = kBT/ε, and defined the Madelung constant Mn as

Mn =
N

∑
j=1

(
x1

x j

)n

, (8.21)

some values of which (in the limit N → ∞) have been included in Table 8.2 for

different Bravais lattices and indices n.

8.1.4 Variational Theory

In some cases, the Helmholtz free energy of a crystal may be obtained, approxi-

mately, from the Gibbs–Bogoliubov inequality. Consider a solid whose Hamiltonian

is given by:

Table 8.2 Madelung constant Mn of the simple cubic, body centered cubic, and face centered cubic

lattices for different indices n

n sc bcc fcc

4 16.53 22.64 25.34

6 8.40 12.25 14.45

8 6.95 10.36 12.80

10 6.43 9.56 12.31

12 6.20 9.11 12.13

14 6.10 8.82 12.06

16 6.05 8.61 12.03

Source: N. W. Ashcroft and N. D. Mermin, Solid State Physics, Sawnders, Philadelphia
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H =
N

∑
j=1

p2
j

2m
+

1

2

N

∑
i=1

N

∑
i�= j=1

V (|ri − r j|) . (8.22)

In order to apply the variational method (7.16), one has to look for a simple refer-

ence system for which the upper bound of the Gibbs–Bogoliubov inequality may be

evaluated analytically. If one takes as the reference system the Einstein solid (4.31)

of Hamiltonian:

H0 =
N

∑
j=1

(
p2

j

2m
+

1

2
mω2(r j −R j)

2

)
, (8.23)

the partition function Z0 may be readily evaluated, since all the integrals are

Gaussian, leading to

Z0 =
1

Λ 3N

(π

α

)3N/2

, (8.24)

where α = β mω2/2 and Λ is the thermal de Broglie wavelength. The free energy

of the Einstein solid is thus given by

F0 =
3

2
NkBT ln

(
αΛ 2

π

)
. (8.25)

Note further that, upon application of the equipartition theorem, one has

〈
N

∑
j=1

1

2
mω2(rj −R j)

2

〉

0

=
3

2
NkBT , (8.26)

and hence

〈
H −H0

〉
0

=

〈
1

2

N

∑
i=1

N

∑
i�= j=1

V (|ri − r j|)
〉

0

− 3

2
NkBT

=
1

2

∫
dr

∫
dr′ ρ0

2(r,r
′)V (|r− r′|)− 3

2
NkBT , (8.27)

where ρ0
2(r,r

′) is the two-particle distribution function (8.2) of the reference system.

Since the Einstein solid is an ideal system, ρ0
2(r,r

′) = ρ0
1(r)ρ

0
1(r

′), where ρ0
1(r) is

the local density of particles, whose analytical expression may be derived from (8.4)

and (8.23) with the result

ρ0
1(r) =

(α

π

)3/2 N

∑
j=1

e−α(r−R j)
2

, (8.28)

which is a sum of normalized Gaussians of parameter α , in agreement with (8.6).

Note that the higher the frequency of the oscillators or the lower the temperature,

the Gaussians become narrower and the particles become more localized around the

equilibrium positions of the atoms in the lattice, as follows from (8.28) since:
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〈
(r j −R j)

2
〉

0
=

3

2α
=

3kBT

mω2
. (8.29)

These fluctuation are usually connected to the nearest-neighbor distance in the lat-

tice rnn through the so-called Lindemann ratio L:

L =

√
3

2αr2
nn

. (8.30)

Empirically it is known that a crystal melts when L � 0.15.

The Gibbs–Bogoliubov inequality (7.16) reads in this case

F(α) ≤ 3

2
NkBT

(
ln

(
αΛ 2

π

)
−1

)

+
1

2

∫
dr

∫
dr′ρ0

1(r)ρ
0
1(r

′)V (|r− r′|)

=
3

2
NkBT

(
ln

(
αΛ 2

π

)
−1

)

+
1

2

1

(2π)3

∫
dk|ρ̃0

1(k)|2Ṽ (k) , (8.31)

where

ρ̃0
1(k) =

∫
dre−ik·r ρ0

1(r), Ṽ (k) =

∫
dre−ik·rV (r) , (8.32)

are the Fourier transforms of the local density of particles and of the pair potential,

respectively. From (8.28) one has

ρ̃0
1(k) = e−k2/4α

N

∑
j=1

e−ik·R j , (8.33)

which in turn implies

|ρ̃0
1(k)|2 = e−k2/2α

N

∑
j=1

N

∑
i=1

e−ik·(R j−Ri) . (8.34)

Since in a perfect crystal all the atoms are equivalent, the double sum in ( 8.34)

may be replaced by N times the sum over the equilibrium positions R j, when one

of the atoms involved in the sum over i is located at the origin, namely

|ρ̃0
1(k)|2 = Ne−k2/2α

N

∑
j=1

e−ik·R j , (8.35)
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and so (8.31) is written as

F(α) ≤ 3

2
NkBT

(
ln

(
αΛ 2

π

)
−1

)

+N
1

2

1

(2π)3

N

∑
j=1

∫
dke−k2/2αe−ik·R jṼ (k) . (8.36)

As an application, consider that V (r) is the Yukawa potential of amplitude ε and

range 1/κ:

V (r) = ε
e−κr

κr
, (8.37)

in which case the integral in (8.36) may be determined analytically yielding ( f (α) =
F(α)/N):

β f (α∗) ≤ 3

2

[
ln

(
α∗κ2Λ 2

π

)
−1

]

+
1

4t
e1/2α∗

∑
j

1

x j

e−x j erfc

(
1−α∗x j√

2α∗

)

− 1

4t
e1/2α∗

∑
j

1

x j

ex j erfc

(
1 + α∗x j√

2α∗

)
, (8.38)

where x j = κR j, α∗ = α/κ2, t = kBT/ε , erfc(x) = 1 − erf(x), erf(x) being the

error function, and the sum extends over all the shells of a Bravais lattice which

are at a distance x j of the origin of coordinates. Upon minimization of f (α)
w.r.t. α for given values of the temperature, T , and of the density, ρ , one finds

α∗(T,ρ), and so the Helmholtz free energy per particle of the solid is f (T,ρ) =
f (α∗(T,ρ)).

The interest of this result is that (8.37) models the effective pair potential inter-

action between charge-stabilized colloidal spheres suspended in a solvent which,

in a first approximation, is the Derjaguin–Landau–Verwey–Overbeek (DLVO) po-

tential (see Sect. 8.10.2). When the point particle limit of the DLVO potential

is taken, a simple Yukawa pair potential is obtained. It is this limiting situation

that many of the computer simulations have considered. This colloidal system

may crystallize in a bcc or in a fcc lattice. Results for the compressibility fac-

tor Z = β p/ρ, where p is the pressure, of a crystal of point particles interacting

through the Yukawa potential and which crystallizes in a bcc lattice are shown in

Fig. 8.3.
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Fig. 8.3 Compressibility factor, Z = β p/ρ , obtained from the variational method of a crystal of

point particles that interact through the Yukawa potential ( 8.37) as a function of the parameter λ
(λ 3 = κ3/ρ) at the temperatures t = 6.3×10−4 (continuous line) and t = 1.4×10−3 (broken line).

This system crystallizes into a bcc lattice and the dots are the values of MC simulations

Source: E. J. Meijer and D. Frenkel, J. Chem. Phys. 94, 2269 (1991)

8.2 Fluids

Under given conditions of pressure and temperature, a material may be found in a

phase which is invariant under any translation or rotation (this is only rigorously

true in the thermodynamic limit, where the surface effects disappear). In contrast

with a crystal, in such a phase the particles are distributed randomly in space. When

the interaction is of the excluded volume type, one says that the material is in a fluid

phase. If the interaction also contains an attractive part, one similarly refers to a fluid

as being the homogeneous and isotropic phase in which the effects of the repulsive

part of the potential dominate over those of the attractive part (for more details see

Sect. 8.2.4 and Chap. 9).

8.2.1 Dense Fluids

The virial expansion up to second order (see Sect. 7.3) is inadequate even for moder-

ately dense fluids. Since it is not simple to determine the virial coefficients of order

higher than two, one may adopt empirical criteria to sum the virial series. In this

section two examples are considered.

Recall that the perturbative methods are based on the choice of a reference system

which in the van der Waals theory (7.25) is that whose Hamiltonian is the sum of the

kinetic energy and the repulsive part of the interaction potential. The free energy per
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particle, f 0, of the reference system in the second virial coefficient approximation

(7.33) is thus given by:

β f 0 = β f id + B2ρ , (8.39)

where B2 is the second virial coefficient of the repulsive part of the interaction po-

tential. In the case of a repulsive square-well (SW) potential of amplitude ε and

range σ , i.e.,

V (r) = ε Θ(σ − r) , (8.40)

the second virial coefficient is given by

B2 =
2π

3
σ3
(

1− e−βε
)

. (8.41)

When ε → ∞, the potential (8.40) is the hard-sphere potential:

V (r) =

{
∞, r < σ
0, r > σ

(8.42)

in which case

B2 = 4v0, (8.43)

where v0 = πσ3/6 is the excluded volume around each particle due to the hard-

sphere potential (the volume of a sphere of diameter σ ). Since the hard-sphere po-

tential prevents the spheres from overlapping, its effect is more important the denser

the fluid is.

Consider two empirical approximations to sum the virial series of a hard-sphere

fluid. In the first approximation, one starts from the virial expansion of the pressure

at low densities β p = ρ(1 + B2ρ + · · ·), namely

β p ≃ ρ

1−B2ρ
, (8.44)

since B2ρ ≪ 1. Extrapolating empirically (8.44) to high densities, one has

β p =
ρ

1−B2ρ
= ρ

∞

∑
n=0

(B2ρ)n , (8.45)

which in turn implies that Bn+1 = Bn
2. With this approximation and since

∞

∑
n=1

xn

n
= − ln(1− x), (x < 1),

the free energy per particle due to the repulsive part of the interaction potential, f int
R ,

is given by
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β f int
R =

∞

∑
n=1

1

n
(B2ρ)n = − ln(1−B2ρ) . (8.46)

Observe that in this approximation due to van der Waals, the pressure tends to in-

finity when ρ → B−1
2 , i.e., when the fraction of the volume of the Euclidean space

occupied by the spheres (the packing fraction η = ρv0) is η = 0.25. This result is

incorrect since, as was analyzed in Sect. 8.1.1, the maximum packing fraction in

a system of hard spheres is that of a crystal whose structure is the one of a face

centered cubic lattice (ηcp = 0.740).

Another empirical approximation is due to Carnahan and Starling and is based on

the values of the virial coefficients of a hard-sphere fluid. The analytical expression

of the first three coefficients is known, B2 = 2πσ3/2,

B3

B2
2

=
5

8
,

B4

B3
2

=
1

2240π

(
219

√
2+ 4131arcos

(
1√
3

))
− 89

280
,

and of the remainder, their numerical value up to B10. This is an exception, since for

most pair potentials analytical or numerical results are known only for B2 and B3.

The proposal made by Carnahan and Starling for the virial coefficients Bn of a

hard-sphere fluid is

Bn+1 = n(n + 3)

(
B2

4

)n

, (8.47)

which, as shown in Table 8.3, provides an excellent approximation to the exact

values and to those obtained by numerical integration.

If one takes into account that

∞

∑
n=1

xn =
x

1− x
, (x < 1),

and
∞

∑
n=1

nxn = x
∂

∂x

∞

∑
n=1

xn =
x

(1− x)2
, (x < 1),

Table 8.3 Virial coefficients bn = Bn/(B2)
n−1 of the hard-sphere fluid obtained from the

Carnahan-Starling (CS) equation and from analytical or numerical integration techniques (NI) for

different values of n

n bn(CS) bn(NI)

3 5/8 5/8

4 0.28125 0.28695

5 0.109375 0.110252

6 0.039063 0.038882

7 0.013184 0.013024

8 0.004272 0.004183

9 0.001343 0.001309

10 0.000411 0.000404

Source: N. Clisby and B. M. McCoy, J. Stat. Phys. 122, 15 (2006)
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the free energy f int
R is given by

β f int
R =

∞

∑
n=1

(n + 3)ηn =
η(4−3η)

(1−η)2
, (8.48)

where η = ρv0 is the packing fraction. The pressure p of the hard-sphere fluid is,

therefore,
β p

ρ
=

1 + η + η2 −η3

(1−η)3
, (8.49)

which is known as the Carnahan–Starling equation of state.

Observe that (8.49) diverges at η = 1, which is an unphysical value for the pack-

ing fraction since the spheres cannot occupy the whole volume of the system. This

divergence, however, is not important because the numerical simulations show that

when η ≃ 0.5 the hard-sphere fluid crystallizes in a fcc lattice (see Chap. 9). There-

fore, the hard-sphere fluid at high density is metastable with respect to the solid and

the Carnahan–Starling equation ceases to be relevant. The compressibility factor of

the Carnahan–Starling and the van der Waals equations of state (8.46) and the one

that is obtained by approximating the equation of state by n = 2,3, . . . ,10 terms of

the virial expansion are displayed in Fig. 8.4.

8.2.2 Fluid Structure

As was analyzed in Sect. 6.8, the local density of particles ρ1(r) of a homogeneous

phase is uniform (independent of r) so from (8.7) it follows that

0 0.6
η
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10

20

30

Z

0.40.2

Fig. 8.4 Compressibility factor, Z = β p/ρ , of the Carnahan–Starling equation of state (continuous

line) as a function of the packing fraction η . The dashed lines are the results obtained from the virial

series when this series is approximated by n = 2,3, . . . ,10 terms. Note that, in these latter cases, Z

increases with n
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ρ1(r) = ρ , (8.50)

where ρ = N/V is the average density of particles. On the other hand, the two-

particle distribution function (8.2) may be written as

ρ2(r,r
′) = ρ2g(|r− r′|;T,ρ) = ρ2[1 + h(|r− r′|;T,ρ)] , (8.51)

since the pair correlation function, g(r;T,ρ), and the total correlation function,

h(r;T,ρ), depend on the modulus of the relative distance, of the density ρ , and

of the temperature T (see Sect. 6.8).

In contrast with a solid, where the great majority of the structural information

is contained in the local density of particles (8.5) and (8.6), the pair correlation

function g(r;T,ρ), or the total correlation function h(r;T,ρ), contains all the infor-

mation about the structure of a fluid. One may then obtain the thermodynamic prop-

erties of the fluid from the knowledge of these structural functions; for instance,

the compressibility equation (6.101) shows that, if the total correlation function

h(r;T,ρ) is known, the isothermal compressibility coefficient can be determined

and, after integration of the latter, also the equation of state.

The pair correlation function g(r;ρ) of a hard-sphere fluid is shown in Fig. 8.5.

This function has a similar behavior for fluids whose interaction contains a repulsive

part, not necessarily of the hard-sphere type, and an attractive part. The main dif-

ference is that in the case of the hard-sphere fluid this function does not depend on

temperature. Note that g(r;ρ) = 0 (r < σ ) since the probability of finding two par-

ticles at a distance smaller than the hard-sphere diameter is zero. On the other hand,
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Fig. 8.5 Pair correlation function, g(r;ρ), of a fluid of hard spheres of diameter σ as a function of

the variable r/σ for η = πρσ 3/6 = 0.49. The continuous line is the solution of the Percus–Yevick

equation and the dots are values obtained by MC simulations

Source: J. P. Hansen and I. R. McDonald, Theory of Simple fluids, 2nd ed., Academic Press, London

(1986)
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as was already analyzed in Sect. 6.8, g(r;ρ) → 1 (r ≫ σ ). Moreover, the range of

g(r;ρ) (and, therefore, of h(r;ρ)) is of the order of several hard-sphere diameters.

Hence, in the theory of fluids, the direct correlation function c(r;T,ρ) is introduced

because its range is smaller than that of h(r;T,ρ). This function is defined through

the Ornstein–Zernike equation (7.59):

h(r;T,ρ) = c(r;T,ρ)+ ρ
∫

dr′c(r′;T,ρ)h(|r− r′|;T,ρ) , (8.52)

or, alternatively,

h̃(k;T,ρ) = c̃(k;T,ρ)+ ρ c̃(k;T,ρ)h̃(k;T,ρ) , (8.53)

which relates the Fourier transforms of both functions.

Note that from the compressibility equation (6.101) one has

h̃(0;T,ρ) =

∫
drh(r;T,ρ) = kBT χT (T,ρ)− 1

ρ
, (8.54)

which shows that the integral of the total correlation function diverges at the criti-

cal point because χT (Tc,ρc) = ∞, i.e., h(r;Tc,ρc) is long-ranged. From (8.53) and

(8.54) it follows, on the other hand, that

c̃(0;T,ρ) =

∫
drc(r;T,ρ) =

1

ρ
− 1

ρ2kBT χT (T,ρ)
, (8.55)

and so at the critical point c̃(0;Tc,ρc) = 1/ρc, i.e., c(r;Tc,ρc) is short-ranged.

It is important to point out that the Ornstein–Zernike equation defines c(r;T,ρ)
so that, apart from the information obtained through (8.55), this function is as

complicated as h(r;T,ρ). In order to determine one or the other, an approxi-

mate “closure relation” is required. The best known is the Percus–Yevick closure

given by

c(r;T,ρ) =
(

1− eβV (r)
)

g(r;T,ρ) . (8.56)

Note that for the hard-sphere potential (8.42), it follows from (8.56) that c(r;ρ) = 0

(r > σ ), where σ is the diameter of the sphere, i.e., in this approximation c(r;ρ) has

the range of the potential. If, on the other hand, one defines the function y(r;T,ρ)
by the equation

y(r;T,ρ) = eβV (r)g(r;T,ρ) , (8.57)

from (8.56) one has

c(r;T,ρ) = y(r;T,ρ) f (r;T ) , (8.58)

where f (r;T ) is the Mayer function (7.42), and the Ornstein–Zernike equation

transforms into a non-linear integral equation for y(r;T,ρ) which, in the case of

hard spheres, reads
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y(r;ρ) = 1−ρ
∫

dr′ y(r′;ρ)Θ(σ − r′)y(|r− r′|;ρ)Θ(|r− r′|−σ)

+ρ
∫

dr′ y(r′;ρ)Θ(σ − r′) . (8.59)

This equation may be solved analytically (see J. P. Hansen and I. R. McDonald in

the References) and its solution (note that c(r;ρ) = −y(r;ρ) (r < σ )) is

c(x;η) =

(
−a−6ηbx− 1

2
ηax3

)
Θ(1− x) , (8.60)

where x = r/σ , η = πρσ3/6, and

a =
(1 + 2η)2

(1−η)4
, b = −

(
1 + 1

2
η
)2

(1−η)4
. (8.61)

Taking all these results to (8.55), one obtains

1

ρkBT χT (T,ρ)
=

1 + 4η + 4η2

(1−η)4
, (8.62)

whose integration with respect to ρ allows one to determine the equation of state:

β p

ρ
=

1 + η + η2

(1−η)3
, (8.63)

which is known as the Percus–Yevick compressibility equation of state (PY-c).

Note that the equation of state of a fluid may be obtained in the canonical ensem-

ble with the aid of the expression p = kBT ∂ lnZ(β ,V,N)/∂V , i.e.,

p = kBT
∂

∂V

[
ln

∫

R
drNe−βHint

N (rN)

]
, (8.64)

where H int
N (rN) is the potential energy of interaction (8.9). Assume that the region

R is a cube of side L (V = L3) and consider the integral

A(L3) ≡
∫

L3
drNe−βHint

N (rN ) . (8.65)

One then has

A(λ 3
L3) =

∫

λ 3L3
drNe−βHint

N (rN) = λ 3N
∫

L3
dxNe−βHint

N (λxN) , (8.66)

where the change of variable ri = λ xi (i = 1,2, . . . ,N) has been made and λ xN ≡
λ x1, . . . ,λ xN . After derivation of the first and the third terms of (8.66) with respect

to λ , particularizing the result for λ = 1 and dividing by 3V , one finds
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A′(V ) = ρA(V )− 1

6V
β
∫

R
drN

N

∑
i=1

N

∑
i�= j=1

|ri − r j|V ′(|ri − r j|)e−βHint
N (rN ) , (8.67)

where ρ = N/V and the prime indicates a derivative with respect to the argument.

From (8.64) and (8.67) it follows that

p = ρkBT − 1

6V

∫

R
dr

∫

R
dr′|r− r′|V ′(|r− r′|)ρ2(r,r

′) , (8.68)

where ρ2(r,r
′) is the two-particle distribution function. In the thermodynamic limit,

from (8.51) and (8.57), one has

β p

ρ
= 1− 1

6
β ρ

∫
drrV ′(r)g(r;T,ρ)

= 1 +
1

6
ρ
∫

drr y(r;T,ρ) f ′(r;T ) , (8.69)

which is known as the virial equation of state.

Since for hard spheres f ′(r;T ) = δ (r−σ), from (8.69) the Percus–Yevick virial

equation of state of a hard-sphere fluid (PY-v) is found:

β p

ρ
= 1−4ηc(1;η) =

1 + 2η + 3η2

(1−η)2
. (8.70)

Note that although both the compressibility equation (8.54) and the virial equation

of state (8.69) are exact, when an approximation is introduced to determine the

structure of a fluid (for instance, the Percus–Yevick closure relation), the equations

of state derived from each of them turn out to be different. This fact is known as

the “thermodynamic inconsistency” of the virial and compressibility routes to the

equation of state. The differences between (8.63), (8.70) and the Carnahan–Starling

equation of state (8.49) (which is an excellent approximation to the simulation re-

sults) are shown in Fig. 8.6. Note that although the equations are practically iden-

tical at low densities (η ≪ 1), at moderate densities (η > 0.3) the discrepancies

are appreciable. This indicates that the Percus–Yevick closure relation is a good

approximation only if the hard-sphere fluid is moderately dense.

8.2.3 Fluids and Glasses

Up to this point, the equation of state of the hard-sphere fluid has been obtained from

the sum of the virial series for the pressure, assuming that the virial coefficients obey

a given law (Carnahan–Starling equation), or through the Percus–Yevick closure

relation. Since, in general, this kind of information is not available for more complex

systems, a third approximation is considered in this section.
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Fig. 8.6 Compressibility factor, Z = β p/ρ , of a hard-sphere fluid as a function of the packing frac-

tion η . The continuous line is the Carnahan–Starling equation of state, the broken line corresponds

to the PY-c equation of state, and the dotted line corresponds to the PY-v equation of state. The

dots indicate the results of numerical simulations

Source: B. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1209 (1957)

A simple idea, due to van der Waals, is that, since the thermodynamic properties

of a fluid of hard spheres of diameter σ reduce to those of an ideal gas when σ → 0,

the Helmholtz free energy of a hard-sphere fluid may be approximated by the one

of an ideal gas (5.36) in which the volume V is replaced by the “free volume” V f ,

which is the volume accessible to the N spheres. If v0 = πσ3/6 is the volume of

a hard sphere, the accessible volume is bounded by the region of V which is not

occupied by the N spheres, namely V f ≤V −Nv0. Therefore,

F(T,V,N) = F id(T,V f ,N) = F id(T,V,N)−NkBT ln

(
V f

V

)
. (8.71)

Since
V f

V
≤ 1−ρv0 + O

(
ρ2
)

, (8.72)

the inequality (8.72) may be written as an equality:

V f

V
= 1− ρ

ρ0

, (8.73)

where ρ0 is a constant satisfying ρ < ρ0 <
√

2/σ3, because V f has to be positive.

In the thermodynamic limit the Helmholtz free energy per particle is, therefore,

f (T,ρ) = kBT
[
ln
(
ρΛ 3

)
−1
]
− kBT ln

(
1− ρ

ρ0

)
, (8.74)
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and so the pressure of the hard-sphere fluid in the van der Waals approximation is

given by:

p =
ρkBT

1− ρ
ρ0

. (8.75)

Note that the derivation of this equation of state is simple and that (8.75) has a

certain parallelism with the equation of state of the cell theory (8.15). As has al-

ready been pointed out, ρ0σ3 < ρcpσ3 =
√

2, which is the density of maximum

packing of the most compact crystalline structure. The reason is that if ρ0 = ρcp,

the fluid and solid phases cannot exchange their stability, i.e., at any density the free

energy of the fluid (8.74) would be smaller than that of the solid (8.14), and there

would be no phase transition, contrary to what is observed in the simulations. As

will be seen in the next chapter, an equilibrium disordered structure may only ex-

ist when 0 ≤ ρσ3 ≤ 0.943, while in order for an equilibrium periodic structure of

hard spheres to exist it is required that 1.041 ≤ ρσ3 ≤
√

2. It must be mentioned,

however, that the accessible structure at high densities need not necessarily be a

crystal. As a matter of fact, a method of great practical interest in order to avoid

crystallization of a fluid consists in rapidly increasing the pressure in such a way

that the particles (in this case the hard spheres) do not have time to reorganize and

stay trapped in a disordered structure which, therefore, is not a phase in thermody-

namic equilibrium (see Chap. 13). The density of maximum packing of this kind of

structure, “random close packing” (rcp), is ρ rcpσ3 ≃ 1.203 (a result obtained from

the simulations) although this value depends on how one constructs the packing.

The structure obtained in this fashion in systems whose interaction is not necessar-

ily that of hard spheres (note that in such a case the same result may also be obtained

by abruptly decreasing the temperature) is called a glass phase (since ordinary win-

dow glasses are obtained using this method) which, as has already been mentioned,

is not an equilibrium phase as the ones studied in this chapter. In a glass phase the

time the system takes to reach equilibrium or relaxation time may be of the order of

centuries. The most evident manifestation that the glass phase is an “intermediate

phase” between the fluid and the crystal is that, in spite of being a disordered phase,

its thermodynamic properties may be described using an equation of state which is

similar to the one of cell theory, namely

p =
ρkBT

1−
(

ρ
ρrcp

)1/3
, (8.76)

instead of an equation of state of equilibrium fluids such as (8.75).

The free energy of the solid, glass, and fluid phases of a hard-sphere system

is represented in Fig. 8.7. The solid and glass phases are described using the cell

theory, i.e., (8.15) and (8.76), while the fluid phase is described within the van der

Waals approximation (8.75) with ρ0σ3 ≃ 0.946 (see Chap. 9). Note that the glass is

stable with respect to the fluid in the interval 0.943 < ρσ3 < 1.203, although it is

metastable with respect to the solid in the whole density range.
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Fig. 8.7 Reduced free energy F∗ ≡ β Fσ3/V of the solid (continuous line), glass (dotted line) and

fluid (broken line) phases of a system of hard spheres of diameter σ as a function of ρσ3. For the

sake of clarity, the figure has been divided into two parts: a 0 ≤ ρσ 3 ≤ 0.2. b 0.2 ≤ ρσ3 ≤ 1.4

8.2.4 Vapor and Liquid

In the previous sections the focus has been on a fluid with a repulsive interaction

which, when abrupt enough, may be approximated by a hard-sphere potential. In

real atomic fluids the interaction potential contains both a repulsive and an attractive

part. The origin of the former are the repulsive forces between the electron clouds,

while the latter arises due to the attractive forces of electric polarization (either

permanent or induced) of these electronic clouds.

A simple example of this type of pair potential which adequately describes the

thermodynamic properties of simple fluids is the Lennard-Jones (LJ) potential:
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V (r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

, (8.77)

which contains two parameters: σ , which is the distance at which V (r) = 0 and −ε ,

which is the value of the potential at the minimum rm = 21/6σ . The term 1/r12

describes in a conventional way the repulsion, while the term 1/r6 is obtained from

the induced dipole-induced dipole van der Waals interaction.

Two widely employed pair potential models in statistical physics are of the form

V (r) = VR(r) + VA(r), where VR(R) is the hard-sphere potential (8.42), σ is the

diameter of the sphere and VA(r) is either the square-well potential,

VA(r) = −ε[Θ(σ + δ − r)−Θ(σ − r)] , (8.78)

where ε and δ are, respectively, the depth and the width of the well, or the inverse

power potential,

VA(r) = −ε
(σ

r

)n

, (r > σ) , (8.79)

where ε is a parameter with dimensions of energy and n an integer. These potentials

have been represented in Fig. 8.8 and the values of the parameters for the Lennard-

Jones and square-well potentials of some simple fluids are gathered in Table 8.4.

These data are obtained from the comparison of the numerical and experimental

values of the second virial coefficient in a certain interval of temperature.

Since, in general, the attractive interaction is weak, it may be treated using per-

turbation theory. As has been analyzed in Sect. 7.2, the Helmholtz free energy per

particle may then be determined using the van der Waals equation (7.25), which for

a uniform phase reads, in the thermodynamic limit,

2.01.61.20.8
r / σ

–1

0

1

2

3

V/∈

Fig. 8.8 Lennard-Jones potential (broken line), square-well potential (continuous line), and inverse

power potential with n = 6 (dash-dotted line). The hard-sphere diameter in the last two potentials

has been taken to be equal to the variable σ of the Lennard-Jones potential and the width of the

square-well δ = 79/55 has been chosen in such a way that the area of the well is equal to the

integral of the negative part of the Lennard-Jones potential (represented are V (r)/ε versus r/σ )
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Table 8.4 Parameters of the Lennard-Jones (LJ) and square-well (SW) potentials obtained from

the comparison of numerical and experimental values of the second virial coefficient in a cer-

tain interval of temperature. The parameters σ and ε/kB are expressed in angstroms and Kelvin,

respectively

δ/σ σ ε/kB

Ar LJ 3.504 117.7

Ar SW 1.70 3.067 93.3

Kr LJ 3.827 164.0

Kr SW 1.68 3.278 136.5

Xe LJ 4.099 222.3

Xe SW 1.64 3.593 198.5

Source: A. E. Sherwood and J. M. Prausnitz, J. Chem. Phys. 41, 429 (1964)

f (T,ρ) = f 0(T,ρ)+
1

2
ρ
∫

drVA(r) , (8.80)

and so if the free energy of the reference system f 0(T,ρ) is approximated by (8.74)

then one has

f (T,ρ) = kBT
(
ln
(
ρΛ 3

)
−1
)
− kBT ln

(
1− ρ

ρ0

)
−aρ , (8.81)

where a is a positive constant (since VA(r) < 0) which measures the cohesion be-

tween the particles induced by the attractive part of the potential:

a = −1

2

∫
drVA(r) . (8.82)

A remarkable fact about (8.81) is that the relative contribution to the Helmholtz

free energy coming from the attractive and repulsive parts depends on temperature.

According to this, once the density ρ is fixed, there exists a value of the temperature,

T0, for which both contributions compensate, i.e.,

kBT0 = − aρ

ln
(

1− ρ
ρ0

) . (8.83)

When T = T0 the free energy is that of an ideal system, even though there is interac-

tion between the particles. If T ≫ T0 the deviation with respect to the ideal behavior

is due mainly to the repulsive part of the potential, while if T ≪ T0 it is the attrac-

tive part of the potential that contributes most to the non-ideal behavior. As will be

analyzed in the next chapter, at low density the free energy (8.81) describes at high

temperature the fluid phase of the previous sections and at low temperature the gas

or vapor phase, which is the natural continuation of the fluid phase. At low temper-

ature and high density, on the contrary, (8.81) describes a new disordered phase in
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which the attraction is essential and which is called the liquid phase. As has been

indicated, in the vapor phase the repulsion dominates over the attraction whereas in

the liquid phase the opposite happens. Since both phases are described by the same

free energy, it is possible to go from one phase to the other in a continuous way.

That is the reason why the title of the thesis of van der Waals is “On the continuity

of the liquid and gas phases.” In that thesis he derived the equation of state,

p =
ρkBT

1−bρ
−aρ2 , (8.84)

which is called the van der Waals equation of state, to study the liquid–vapor transi-

tion. This equation may be derived using (8.81), with ρ0 = 1/b, and the thermody-

namic relation p = ρ2∂ f/∂ρ .

8.3 Mixtures

Although the systems analyzed so far are formed by particles of a single species,

it is well known that many systems in nature are a mixture of various components.

According to the fundamental equation of thermodynamics, the internal energy E of

a multi-component system is a function of the entropy S, of the volume V (assum-

ing that this is the only external parameter), and of the numbers of particles of the

different species {Nα}, namely E = E(S,V,{Nα}). All the thermodynamic infor-

mation contained in this equation may be taken over to the Helmholtz free energy

F = F(T,V,{Nα}) through a Legendre transformation (see Appendix A).

8.3.1 Binary Mixtures

In the description of a mixture, we may use as intensive variables the partial densi-

ties ρα = Nα/V that verify the condition ∑α ρα = ρ = N/V , where ρ is the total

density and N = ∑α Nα , or the number fractions xα = Nα/N, that verify ∑α xα = 1.

Therefore, in the thermodynamic description of a mixture one must clearly specify

the variables that are used. The case of a disordered phase, which is later particular-

ized to the binary mixture case, is analyzed in this subsection.

The Helmholtz free energy (5.36) of an ideal system in the thermodynamic limit,

NkBT

(
ln

(
NΛ 3

V

)
−1

)
,

may be generalized to the case of a mixture as
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F id(T,V,{Nα}) = kBT ∑
α

Nα

(
ln

(
NαΛ 3

α

V

)
−1

)

= kBTV ∑
α

ρα

(
ln
(
ραΛ 3

α

)
−1
)

= kBT N ∑
α

xα
(
lnxα + ln

(
ρΛ 3

α

)
−1
)

, (8.85)

where Λα = h/
√

2πmα kBT is the thermal de Broglie wavelength of species α .

Similarly, the virial expansion up to second order, (7.33) and (7.45), can be gen-

eralized for a mixture as

F int(T,V,{Nα}) = kBTV ∑
α

∑
γ

ρα ργbαγ , (8.86)

i.e.,

B2 = ∑
α

∑
γ

xα xγbαγ , (8.87)

with

bαγ = −1

2

∫
dr
(

e−βV αγ (r) −1
)

, (8.88)

where V αγ (r) is the total interaction potential between particles of species α and γ .

An interesting problem consists in determining whether a mixture is thermody-

namically stable or metastable with respect to the system of the separate species,

i.e., whether the free energy of the mixture is smaller or greater than the sum of the

free energies of each of the components. In order to simplify the equations, consider

a binary mixture in the second virial coefficient approximation. The Helmholtz free

energy of the mixture is according to (8.85) and (8.86), given by

F(T,V,N1,N2) = kBTV
2

∑
α=1

ρα

(
ln
(
ραΛ 3

α

)
−1 +

2

∑
γ=1

ργ bαγ

)
, (8.89)

so that the free energy per particle f (T,ρ ,x) = F(T,V,N1,N2)/N, where N = N1 +
N2, ρ = N/V , and x = x1 is the number fraction of one of the components (x2 =
1− x), turns out to be

f (T,ρ ,x) = kBT x
(
lnx + ln

(
ρΛ 3

1

)
−1
)

+kBT (1− x)
(
ln(1− x)+ ln

(
ρΛ 3

2

)
−1
)

+kBT ρ
(
x2b11 + 2x(1− x)b12 +(1− x)2b22

)
, (8.90)

where one has used the fact that b12 = b21.

The free energy per particle of component 1, if considered separately at the same

density and temperature as those of the mixture is, according to (8.90), f (T,ρ ,1),
while that of component 2 is f (T,ρ ,0). If the “free energy of mixing” is defined by

the expression
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Fmix(T,V,N1,N2) = N f (T,ρ ,x)−N1 f (T,ρ ,1)−N2 f (T,ρ ,0),

then the free energy of mixing per particle f mix(T,ρ ,x) is given by

f mix(T,ρ,x) = f (T,ρ ,x)− x f (T,ρ,1)− (1− x) f (T,ρ,0) . (8.91)

From (8.90) it follows that

f mix(T,ρ,x) = kBT {x lnx +(1− x) ln(1− x)}

+kBT ρx(1− x)(2b12 −b11 −b22) . (8.92)

The first term in the r.h.s. of (8.92) is the ideal contribution to the “entropy of

mixing”, while the second one is the contribution of the “energy of mixing” in the

second virial coefficient approximation. Note that the interaction term does not de-

pend separately on the variables bi j, but only on the coefficient,

b = −1

2
({b11 −b12}+{b22 −b12}) , (8.93)

i.e., on the asymmetries between the different species and, therefore, such a mixture

is called regular. If f mix(T,ρ ,x) is negative for certain values of T,ρ , and x, the

mixture is the thermodynamically stable phase. It may occur that when modifying

one of these variables f mix(T,ρ,x) becomes positive and the mixture then will be

metastable with respect to the pure phases. One says then that in the mixture a

demixing phase transition takes place (cf. Chap. 9).

8.3.2 Colloidal Suspensions

Colloidal suspensions are multi-component systems composed of mesoscopic col-

loidal particles dispersed in a molecular solvent which often contains other smaller

particles as well, i.e., polymers, ions of a dissociated salt, etc. The statistical treat-

ment of such mixtures is generally complicated because the widely separated length

and time scales between the colloids and the remaining constituents inhibits a treat-

ment of all the components on an equal footing. Indeed, a typical linear dimension

of a colloidal particle is of the order of µm, whereas a typical atomic radius is of

the order of nm. This large difference in size has important physical consequences.

First, characteristic timescales for the motion of the colloidal particles are much

slower and one typically observes the system to evolve at macroscopic timescales

in contrast with the rapid motion of the small particles. From the experimental point

of view, the size of a colloidal particle, which is of the same order of magnitude as

the wavelength of visible light, allows to analyze the structure of a colloidal fluid

by light-scattering experiments, instead of the traditional neutron-scattering exper-

iments which have to be performed in the case of atomic fluids. Also, colloidal
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crystals exhibit a rigidity against mechanical deformations which is many orders of

magnitude smaller than their atomic counterparts, i.e., they are “soft” solids which

can be easily “shear-melted.” Moreover, as indicated above, a melted colloidal crys-

tal will take a macroscopic time to recrystallize, opening up the possibility of a

detailed study of the crystallization kinetics.

For equilibrium systems, when the colloids are monodisperse, i.e., all particles

have the same size, a colloidal suspension can often be viewed as a one-component

system of “supramolecules” described by an “effective” Hamiltonian. This effective

Hamiltonian results from tracing out in the partition function the degrees of freedom

of the remaining, microscopic, constituents, and, hence, it depends on the thermo-

dynamic state of the mixture. In order to illustrate this concept, let us consider a

binary mixture of N1 large particles of mass M1 and coordinates RN1 , and N2 small

particles of mass m2 and coordinates rN2 , in a region R of volume V and being at

temperature T . The full two-component potential energy is

U
(
RN1 ,rN2

)
= U11

(
RN1

)
+U12

(
RN1 ,rN2

)
+U22

(
rN2
)

≡ U11 +U12 +U22 , (8.94)

where U11 (U22) contains the interactions between the large (or small) particles,

while U12 describes the interactions between the large and the small particles. If

the goal is to eliminate the small particles from the picture, the partition function of

the mixture can be written, by first performing the elementary integration over the

momenta of both components, as

Z (β ,V,N1,N2) =
1

Λ 3N1
1 N1!

∫

R
dRN1 e−β [U11(RN1)+ΔF(β ,V,N1,N2;RN1)] , (8.95)

where ΔF
(
β ,V,N1,N2;RN1

)
has been defined by

e−βΔF(β ,V,N1,N2;RN1) ≡ 1

Λ 3N2
2 N2!

∫

R
drN2 e−β [U12(RN1 ,rN2)+U22(rN2)] , (8.96)

with Λ1 (Λ2) denoting the thermal de Broglie wavelength of the large (or small) par-

ticles. Note that this formal transformation of the partition function of the mixture

allows to identify the r.h.s. of (8.95) as the partition function of a one-component

system of large particles described by an effective potential energy:

Ueff
11

(
β ,V,N1,N2;RN1

)
= U11

(
RN1

)
+ ΔF

(
β ,V,N1,N2;RN1

)

≡ U11 + ΔF . (8.97)

The effective potential energy (8.97) consists of the direct interactions U11 and a

free energy term ΔF which indirectly includes the effects of the small particles. An

important difference with respect to atomic systems, where the interactions are de-

termined by the electronic structure, is that in colloidal systems the effective interac-

tions depend on the thermodynamic state, here β ,V,N1, and N2. A change, say, in the

temperature or in the composition of the mixture modifies the effective interactions
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which can thus be controlled externally. As a matter of fact, the complexity of the

mixture, with different size scales, is conserved in the exact effective potential en-

ergy (8.97) because (8.95) and (8.96) are merely formal transformations of the par-

tition function of the mixture. Moreover, effective colloidal interactions are not nec-

essarily pairwise additive, even if the underlying interactions in (8.94) are strictly

pairwise. However, in order to take advantage of the well-known methods developed

in statistical physics for atomic systems, one has always to resort to approximations

in order to express ΔF in terms of effective pair potential interactions which depend

on the intensive thermodynamic variables, here Veff (|R−R′| ;β ,ρ1,ρ2), where ρ1

and ρ2 are the number densities of the components. Two well-known examples of

effective pair potentials will be introduced below. In general, problems with the pair

potential picture are to be expected only at very high concentrations of colloids.

Further, it has to be emphasized that, even in the pair potential approximation,

ΔF contains a term which does not depend on the coordinates of the large parti-

cles, i.e.,

ΔF = F0 (β ,V,N1,N2)

+
1

2

N

∑
i=1

N

∑
i�= j=1

Veff

(∣∣Ri −R j

∣∣ ;β ,ρ1,ρ2

)
. (8.98)

The term F0 (β ,V,N1,N2) must be extensive in the thermodynamic limit, and,

therefore, can be written as V f0 (β ,ρ1,ρ2) where f0 (β ,ρ1,ρ2) is some function of

its arguments. For this reason, V f0 (β ,ρ1,ρ2) is known as the volume term. The

first-principles determination of Veff (|R−R′| ;β ,ρ1,ρ2) and f0 (β ,ρ1,ρ2) is gen-

erally a formidable task which can be solved only approximately in most cases.

The lack of dependence of the volume term on the coordinates of the large particles

moreover implies that the average of any dynamical function (e.g., the pair corre-

lation function) in unaffected by this term, i.e., the volume term plays no role in

the structure of the one-component effective system. Nevertheless, the volume term

affects the phase diagram and the thermodynamic properties, because of its depen-

dence on the intensive variables β ,ρ1, and ρ2. Finally, observe that the foregoing

arguments can be easily transposed to other multi-component systems and also to

different Gibbs ensembles.

8.3.3 Asakura–Oosawa Potential

The addition of a non-adsorbing polymer to a suspension of colloidal particles dis-

persed in a solvent can cause an effective attraction between the particles by the

depletion mechanism. This phenomenon can be interpreted in terms of a volume

restriction whereby the exclusion of polymer particles between two neighboring

colloidal particles produces a net attraction between them (see Fig. 8.9).

Consider that the suspension is in equilibrium with a reservoir containing solely

the solvent and the polymer molecules. If p and pR denote the pressure of the system
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Fig. 8.9 Depletion mechanism. Two large hard spheres of diameter σ in a sea of small spheres

of diameter σ .́ The spherical shell with thickness σ /́2 surrounding each large sphere is called the

depletion layer. When the depletion layers do not overlap (upper case), there is an isotropic osmotic

pressure acting on each large sphere. When the depletion layers overlap (lower case), there is an

unbalanced osmotic pressure driving the large spheres together

and of the reservoir, the osmotic pressure difference π is given by π = p− pR. Let

us assume for simplicity that the colloidal particles and the polymer molecules can

be considered as hard spheres of diameters σ and σ ′ (σ > σ ′) , respectively. On an

isolated colloidal particle the polymer suspension exerts an isotropic osmotic pres-

sure π . But if two colloidal particles approach each other so that the center-to-center

separation r is smaller than σ +σ ′, polymer molecules will be excluded from a well-

defined region between the particles (the depletion region). The resulting effect is

an unbalanced osmotic pressure driving the particles together. Integration of this os-

motic pressure over the portion of available surface area of the two particles gives

rise to the following effective pair potential between two colloidal hard spheres:

Veff(r;π) =

⎧
⎨
⎩

∞, r < σ
VAO(r;π), σ < r < σ + σ ′

0, r > σ + σ ′
(8.99)

In (8.99) VAO(r;Π) = −πΩ(r;σ + σ ′) is the Asakura–Oosawa depletion poten-

tial, with Ω(r;σ +σ ′) denoting the volume of the overlapping depletion zones, i.e.,
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Ω(r;x) =
πx3

6

(
1− 3r

2x
+

r3

2x3

)
, (x = σ + σ ′) . (8.100)

The effective pair potential (8.99) consists, therefore, of a hard-sphere repulsion

and an attractive contribution. The range of the attractive part can be monitored by

modifying σ ′ (the radius of gyration of the polymer, see Sect. 8.5.1) while the depth

is controlled by π (i.e., by the polymer concentration).

8.3.4 DLVO Potential

Consider colloidal particles with ionizable groups on their surface. When they are

dispersed in a polar liquid such as water, some of the ionizable groups dissociate

and the colloids acquire an electric charge. Since the discharged counterions remain

near the charged colloidal particles, the result is the formation of an electric double

layer surrounding the particles composed of the counterions and the ions of any salt

added to the suspension (Fig. 8.10).

When two colloidal particles approach each other, the overlap of these double

layers causes an effective repulsive force between the particles. Let us assume that

each colloidal particle is a hard sphere of diameter σ which carries a charge −Ze,

where e denotes the magnitude of the electronic charge, uniformly distributed over

their surface. Let us also assume that the remaining components in the suspension

are point particle microions (counterions of charge +e and fully dissociated pairs of

monovalent salt ions of charge ±e) and that the solvent is a continuum of dielectric

constant ε . The point particle microions screen the Coulomb repulsion between the

colloids in such a way that the resulting effective pair potential between two charged

hard spheres is

Veff(r;κ) =

{
∞, r < σ

VDLVO (r;κ) , r > σ
(8.101)

where VDLVO (r;κ) is the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential:

Fig. 8.10 Two colloidal parti-

cles of charge −Ze in a sea of

microions of charge +e. The

overlap of the electric dou-

ble layers causes an effective

repulsive force between the

colloidal particles
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VDLVO(r;κ) =
Z2e2

ε

(
eκσ/2

1 + κσ/2

)2
e−κr

r
. (8.102)

In (8.102) κ is the Debye screening parameter:

κ2 =
4πe2

εkBT
(Zρ + 2ρs) (8.103)

with ρ (ρ s) denoting the number density of the colloids (salt). The effective pair

potential (8.101) consists, therefore, of a hard-sphere potential and a repulsive state-

dependent contribution. The range and depth of the DLVO potential can be con-

trolled externally by modifying the intensive thermodynamic variables ρ,ρ s, and T.

8.4 Liquid Crystals

Many systems in nature are formed by non-spherical molecules whose interaction

cannot be described by a central pair potential. Sometimes the anisotropy of the

molecules plays absolutely no role and so such systems may be treated with the

methods that have been described in Chap. 7. In other cases, such as a system with

molecules very elongated in one direction, the molecular anisotropy manifests it-

self at a macroscopic scale in the form of phases with anisotropic properties. These

phases, which are specific of very oblate or prolate molecules, are called mesophases

since they have a degree of order which is intermediate between the one of the

(disordered) fluid phase and that of the (ordered) crystalline phase. Two of these

mesophases are the nematic phase and the smectic phase. In the former, which is

invariant under all translations, the molecules have a degree of orientational or-

der, since they tend to align along a common axis called the nematic director. In

the latter, which is invariant under certain translations, the molecules are situated

on parallel planes and they may have moreover some degree of orientational or-

der within the planes and, sometimes, also between consecutive planes. Since these

mesophases have both properties of the liquid phase (such as fluidity) and of the

crystalline phase (such as birefringence), they are also called liquid crystals.

In this section only the simplest mesophase is considered, namely a nematic liq-

uid crystal. Note that in order to describe an elongated molecule, on top of the

position vector of the center of mass r, one needs a unitary vector u in the direction

of the elongation. For instance, if the molecule is cylindrical u has the direction of

the axis of the cylinder and if it is ellipsoidal, the direction of the principal axis of

the ellipsoid. In what follows it will be assumed that the molecule has symmetry of

rotation around u (like, e.g., an ellipsoid of revolution) and that the directions u and

−u represent the same state of orientation. In a system of N identical molecules,

since the centers of mass are distributed uniformly in space, the nematic phase may

be considered as a mixture of molecules with different orientations or unit vectors,

where each species of the mixture corresponds to one orientation. Let ρ1(u) be the
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average density of molecules with orientation u, which is normalized in the follow-

ing way: ∫
duρ1(u) = ρ , (8.104)

with ∫
du · · · = 1

4π

∫ 2π

0
dφ
∫ π

0
dθ sinθ . . . , (8.105)

where (θ ,φ ) are the polar angles of u and ρ = N/V . If the mixture is described

with the second virial coefficient approximation (8.89), the variational Helmholtz

free energy functional of the nematic phase may then be written as

βF(T,V,N; [ρ1])

V
=

∫
duρ1(u)

[
ln
(
ρ1(u)Λ 3

)
−1
]

+
∫

duρ1(u)
∫

du′ ρ1(u
′)b(u,u′) , (8.106)

where the sum over species has been replaced by an integral over orientations, since

u is a continuous variable, and Λ also includes now the orientational degrees of

freedom. In (8.106) b(u,u′) is, after (8.88),

b(u,u′) = −1

2

∫
dr
(

e−βV (r;u,u′) −1
)

, (8.107)

where V (r;u,u′) is the interaction potential between two molecules with orienta-

tions u and u′, and r is the relative position vector of the centers of mass.

Note that F(T,V,N, [ρ1]) is a functional of the density ρ1(u) whose equilibrium

value, ρ1(u), is, according to (7.71), given by

ln
(
ρ1(u)Λ 3

)
+ 2

∫
du′ρ1(u

′)b(u,u′) = β µ , (8.108)

which is a non-linear integral equation for ρ1(u), where the constant β µ should be

chosen such as to comply with the normalization condition (8.104). In order to solve

(8.108) one needs the expression for b(u,u′). In the following two limiting cases are

considered in which b(u,u′) may be obtained in an approximate manner, which in

turn allows one to determine the Helmholtz free energy.

8.4.1 Maier–Saupe Theory

In the case of a weak interaction potential, i.e., βV (r;u,u′) ≪ 1, (8.107) may be

approximated by

b(u,u′) ≃ 1

2
β
∫

drV (r;u,u′) . (8.109)
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If, on the other hand, V (r;u,u′) depends on r = |r| and on the scalar products of

r,u, and u′, one may write

b
(
u ·u′)=

∞

∑
l=0

alPl(u ·u′) , (8.110)

where Pl(u ·u′) is the Legendre polynomial of order l and argument u ·u′. The mul-

tipolar expansion (8.110) takes into account the anisotropy of the electronic clouds

in non-spherical molecules. When, as in a nematic, u and −u denote the same ori-

entational state, the series (8.110) only contains the even terms. Therefore,

∫
du′ρ1(u

′)b
(
u ·u′)=

∞

∑
l=0

a2l

∫
du′ρ1(u

′)P2l(u ·u′) , (8.111)

where

a2l ≡
1

2

∫ 1

−1
dx P2l (x)b(x) , x = u ·u′ . (8.112)

If, finally, one assumes that in the multipolar expansion (8.111) only the first

two terms, P0(x) = 1 and P2(x) = (3x2 − 1)/2, are relevant, then the result is the

Maier–Saupe approximation,

∫
du′ρ1(u

′)b
(
u ·u′)≃ ρa0 + a2

∫
du′ρ1(u

′)P2(u ·u′) , (8.113)

where use has been made of the normalization condition (8.104). As shown later on,

the dipolar approximation (8.113) is sufficient to obtain a nematic phase.

When the nematic has cylindrical symmetry, ρ1(u) only depends on the angle

formed by u and the nematic director n (n2 = 1), and so

ρ1(u) = ρh(x), x = u ·n = cosθ , (8.114)

where it has been assumed that n has the direction of the polar z-axis and h(x) is the

angular distribution of the molecules at equilibrium. From the sum rule,

Pl(u ·u′) =
4π

2l + 1

l

∑
m=−l

Y m
l (θ ,φ )Y−m

l (θ ′,φ ′) , (8.115)

where Y m
l (θ ,φ ) are the spherical harmonics, the integral

I ≡
∫

du′ρ(u′)Pl(u ·u′)

in (8.113) reads

I =
ρ

2l + 1

l

∑
m=−l

Y m
l (θ ,φ )

∫ 2π

0
dφ ′

×
∫ π

0
dθ ′sinθ ′ h(cosθ ′)Y−m

l (θ ′,φ ′) . (8.116)
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Note that since Y m
l (θ ,φ ) ≃ eimφ , the only non-zero contribution to (8.116) corre-

sponds to m = 0, and so taking into account that

Y 0
l (θ ′,φ ′) =

√
2l + 1

4π
Pl(cosθ ′) , (8.117)

yields

I =
1

2
ρPl(x)

∫ 1

−1
dx′h(x′)Pl(x

′) . (8.118)

Using (8.118), then (8.108) may be cast in the following form:

ln h(x)+ ρa2P2(x)

∫ 1

−1
dx′h(x′)P2(x

′) = C , (8.119)

where C is a constant and hence from the normalization condition,

1

2

∫ 1

−1
dxh(x) = 1 , (8.120)

it follows that the angular distribution at equilibrium is given by

h(x) =
eq2P2(x)

∫ 1
0 dx′ eq2P2(x′)

, (8.121)

where use has been made of the fact that P2(x) = P2(−x) and, in turn, h(x) = h(−x).
In (8.121)

q2 = −ρa2

∫ 1

−1
dx′h(x′)P2(x

′) , (8.122)

is an order parameter (see Chap. 9) that minimizes the free energy and which is

obtained from (8.121) and (8.122), or, alternatively, from the following equation

2ε2 =
q2

∫ 1
0 dxeq2P2(x)

∫ 1
0 dxP2(x)eq2P2(x)

(8.123)

where ε2 = −ρa2. From (8.123) it follows that

lim
q2→0+

ε2 =
1

2
lim

q2→0+

q2

∫ 1
0 dxeq2P2(x)

∫ 1
0 dxP2(x)eq2P2(x)

=
1

2
∫ 1

0 dxP2
2 (x)

=
5

2
, (8.124)

and there exists a solution q2 �= 0 of (8.123) when ε2 ≥ 2.244 (see Fig. 9.9), which

implies that the dipolar interaction (which is the one that induces the orientation)

has to be strong enough for the existence of a thermodynamically stable nematic

phase. Comparing the angular distribution (8.121) with (7.83), one concludes that

the Maier–Saupe theory is a mean field theory in which the orientational order of

each molecule is produced by the mean field potential φ (x) = −kBT q2P2(x). This

potential is attractive (it has a minimum) when the molecules orient in the direction
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Fig. 8.11 Angular distri-

bution h = h(cosθ) in the

Maier–Saupe theory as a

function of θ for q2 = 1 (dot-

ted line), q2 = 2 (broken line),

and q2 = 3 (continuous line)
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of the director and repulsive (it has a maximum) when they orient perpendicularly

to the director (Figs. 8.11 and 8.12).

8.4.2 Onsager Theory

Assume now that, on the contrary, the interaction potential is that of a hard body,

namely V (r;u,u′) = ∞ if the molecules overlap and V (r;u,u′) = 0 if they do not.

In this case, from (8.107) one has

b(u ·u′) =
1

2
E(u ·u′) , (8.125)

where E(u ·u′) is the excluded volume of two molecules with orientations u and u′,
whose analytical expression may only be determined exactly for some molecules of

simple geometry.

Fig. 8.12 Mean field po-

tential βφ = β φ (cosθ) in

the Maier–Saupe theory as

a function of θ for q2 = 1

(dotted line), q2 = 2 (broken

line), and q2 = 3 (continuous

line)
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Thus, in the case of spherocylinders (Fig. 8.13), i.e., cylinders of length L and

diameter of the base D closed at their extremes by two hemispheres of diameter D

one has, according to Onsager,

E(u ·u′) = 8v0 + 2L2D

√
1− (u ·u′)2 , (8.126)

where v0 = πD2L/4 + πD3/6 is the volume of the spherocylinder. In his original

theory, Onsager assumed that the spherocylinders were very much elongated (L ≫
D), i.e.,

E(u ·u′) = 2L2D

√
1− (u ·u′)2 + O

( v0

L2D

)
. (8.127)

It may be shown that in the limit of hard rods, D/L → 0, if the packing fraction

η = ρv0 ≃ πρD2L/4 → 0 in such a way that ηL/D remains finite, the second virial

coefficient approximation (8.106) is exact.

In order to determine the variational Helmholtz free energy functional (8.106),

one may consider the following approximation. As one would expect that in the ne-

matic phase, h(θ)≡ h(cosθ) has a very pronounced maximum when the molecules

are oriented parallel (θ ≃ 0 or θ ≃ π) and h(θ ) = h(π −θ), the function h(θ), with

ρh(θ ) = ρ1(u), may be written as

h(θ ) =
1

N(α)

⎧
⎨
⎩

e−αθ 2/2, 0 ≤ θ ≤ π/2

e−α(π−θ)2/2, π/2 ≤ θ ≤ π

(8.128)

where N(α) is a constant that normalizes (8.120), namely

N(α) =

∫ π/2

0
dθ sin θ e−αθ 2/2 . (8.129)

When α ≫ 1, the maximum of h(θ) is very pronounced and the Helmholtz free en-

ergy may be evaluated asymptotically. Thus, with the change of variable y = αθ 2/2,

the normalization constant may be approximated by

Fig. 8.13 Spherocylinder,

i.e., a cylinder of length L

and diameter of the base D

closed at its extremes by two

hemispheres of diameter D
L

D
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N(α) =
1

α

∫ απ2/8

0
dye−y

sin

√
2y
α√

2y
α

≃ 1

α

∫ ∞

0
dye−y

(
1− y2

3α2
. . .

)
≃ 1

α
, (8.130)

where the upper limit απ2/8 has been replaced by infinity.

The entropy contribution in (8.106) is given by

∫
duρ1(u)

(
ln
(

ρ1(u)Λ 3
)
−1
)

= ρ
(
ln
(
ρΛ 3

)
−1
)

+
1

2
ρ
∫ π

0
dθ sinθ h(θ ) lnh(θ) ,

(8.131)

with

1

2

∫ π

0
dθ sinθ h(θ) ln h(θ) =

∫ π/2

0
dθ sinθ h(θ) lnh(θ)

=
∫ π/2

0
dθ sinθ h(θ)

(
− lnN(α)− 1

2
αθ2

)

= − lnN(α)+
1

N(α)
α

∂

∂α
N(α)

≃ lnα −1 , (8.132)

while the contribution of the second virial coefficient is

1

2

∫
duρ1(u)

∫
du′ρ1(u

′)E(u ·u′) = ρ2
[
4v0 + L2DI(α)

]
, (8.133)

with

I(α) =
∫ π/2

0
dθ sinθ

∫ π/2

0
dθ ′ sinθ ′ h(θ )h(θ ′)

√
1− cos2(θ −θ ′) . (8.134)

Since α ≫ 1 in (8.134) it is only necessary to consider θ ≃ 0 and θ ′ ≃ 0, i.e.,

sinθ ≃ θ , sinθ ′ ≃ θ ′ and cos(θ −θ ′) ≃ cosθ cosθ ′, and hence

√
1− cos2θcos2θ ′ ≃

√
1− (1−θ2)(1−θ ′2) ≃

√
θ2 + θ ′2.

With the changes of variable y = αθ2/2 and y′ = αθ ′2/2, (8.134) may be approxi-

mated by
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I(α) ≃
√

2

α

∫ ∞

0
dye−y

∫ ∞

0
dy′ e−y′

√
y + y′.

Since

∫ ∞

0
dy′ e−y′

√
y + y′ = ey

∫ ∞

y
due−u

√
u =

√
y+

√
π

2
erfc(

√
y)ey,

one has ∫ ∞

0
dye−y

(√
y+

√
π

2
erfc(

√
y)ey

)
=

3
√

π

4
,

i.e.,

I(α) ≃ 3

2

√
π

2α
. (8.135)

The Helmholtz free energy (note that upon parameterizing h(θ) according to

(8.128), the functional (8.106) becomes a function of α) then reads

βF(V,N;α)

V
= ρ

(
ln
(
ρΛ 3

)
−1
)
+ 4v0ρ2 + ρ(lnα −1)

+
3

2
L2Dρ2

√
π

2α
, (8.136)

which has a minimum at

α =
π

2

(
3

4
L2Dρ

)2

. (8.137)

For aρv0 = 5, with av0 = πL2D/4, the minimum is located at α = 35.81, which

justifies the asymptotic development (α ≫ 1) of this section.

Substituting (8.137) into (8.136) one finds:

β F(V,N)

V
= ρ ln

(
ρΛ 3

)
+ 4v0ρ2 + ρ ln

(
π

2

(
3

4
L2Dρ

)2
)

, (8.138)

which is the Helmholtz free energy of a nematic phase of spherocylinders with a

high degree of orientation in the Onsager theory.

8.5 Polymers

Except for the section dedicated to liquid crystals, throughout this chapter only sys-

tems of particles (atoms, molecules, colloids, ...) with spherical symmetry have

been considered. In nature there exist very long molecules which, because they

are flexible, cannot be studied as hard bodies of fixed geometry but rather as de-

formable tubes or strings. Such giant molecules are called polymers when their

atomic structure may be represented as a periodic repetition of a certain group of
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atoms referred to as the monomer. For instance, polyethylene is a molecule with a

structure CH3−(CH2)n−CH3 which contains many ethylene groups (CH2 = CH2),

with a large degree of polymerization, n. The typical value of n lies in the range

102 < n < 105, although in some polymers of biological interest, such as DNA(
n ≃ 107

)
, this number may be even larger (n ≃ 109).

8.5.1 Radius of Gyration

In this section, the simplest case of a polymer solution, constituted by the mixture

of NA polymers of the form A1−A2−·· ·−An (n ≫ 1) and a solvent of NB (small and

spherical) molecules of type B, is considered. For simplicity, it will be assumed that

the monomers Ak (k = 1, . . . ,n) are identical spherical molecules of type A separated

by a fixed distance b that represents the chemical bond (A-A) between two consec-

utive monomers. It will be further assumed that the structure of the polymer is a

linear flexible chain with a fixed positional order along the chain, although the bond

between Ak−1 and Ak can rotate around the bond between Ak and Ak+1. In a real so-

lution, the different polymers have, in general, different degrees of polymerization

and thus the solution is referred to as polydisperse. In what follows it will be admit-

ted that the solution is monodisperse (i.e., n is fixed) and very dilute (NA ≪ NB), so

that one can neglect the polymer–polymer interactions. The properties of the solu-

tion may then be determined from the behavior of a single polymer. Note that since

n ≫ 1, one may apply the methods of statistical physics even to a single chain in

the solution. Let r1, . . . ,rn be the position vectors of the n monomers of a polymer

(Fig. 8.14), which may be characterized by its mass and its length. If each monomer

has a mass mA the mass of the polymer is nmA. Concerning its length, two types

of measures may be considered. Let bk = rk+1 − rk be the vector in the direction

of the k-th bond, whose modulus is constant, |bk| = b, although its orientation may

change. Consider the dynamical function

R =
n−1

∑
k=1

bk = rn − r1 , (8.139)

Fig. 8.14 Schematic repre-

sentation of a linear polymer

chain of (n−1) segments

b1 b2

r1 r3

r2

bn–1

rn

0

b3
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which is a vector whose length measures the end-to-end distance of the polymer. In

an isotropic solution, the probabilities of R and of −R are equal, and so 〈R〉 = 0. In

spite of that one may associate to (8.139) a measure R0 related to the fluctuation of

R, that is R2
0 = 〈R2〉. If, as a first approximation, one assumes that the bonds are not

correlated 〈bk ·bl〉 = δ kl〈bk〉 · 〈bl〉 = δ klb
2, one has

R2
0 =

n−1

∑
k=1

〈b2
k〉 = (n−1)b2 , (8.140)

namely

R0 =
√

nb, (8.141)

because n−1 ≃ n for n ≫ 1, which in the language of polymer physics is expressed

by saying that R0 grows (“scales”) as
√

n. Note that since n ≫ 1, in polymer physics

one frequently analyzes how the variables depend on the degree of polymerization n.

The scaling law (8.141) is a first example.

From (8.139) to (8.141) it follows that this measure of the length of a polymer

is that of a random walk of n− 1 steps of the same length, b. In reality, this walk

is not completely random for two main reasons. The first one is that in a polymer

there exists interaction between consecutive bonds, 〈bk · bk+1〉 �= 0, and thus the

term 〈bk · bl〉 is not zero, but a decreasing function of |k − l|. It may be shown,

however, that this effect does not modify the scaling law R0 ∼
√

n, which may then

be expressed as R0 =
√

nbe, where be is an effective bond length be �= b. The second

and most important reason is that the random walk has to avoid the superposition

of bonds since they cannot cross, i.e., around each bond there is a volume excluded

to any other bond. When the two effects are combined, the scaling law that one

obtains is

R0 = nνbe , (8.142)

where the Flory scaling exponent ν ≃ 0.588 (a value close to 3/5) is not the classical

exponent, 1/2, of (8.141). It must be pointed out that the numerical value of this

exponent has not been obtained from (8.142), since R0 cannot be measured directly,

but from a similar equation involving a different measure of the size of the polymer,

called its radius of gyration Rg. Consider the correlation function of an isolated

polymer chain

g0(r) =

〈
1

n

n

∑
i=1

n

∑
j=1

δ (r− ri j)

〉
, (8.143)

where ri j = ri − r j, whose Fourier transform,

g̃0(k) =

〈
1

n

n

∑
i=1

n

∑
j=1

e−ik·ri j

〉
, (8.144)

may be measured in X-ray scattering experiments. In an isotropic solution g̃0(k) =
g̃0(k), where k = |k|, so that the expansion of (8.144) when k → 0 reads
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g̃0(k) =

〈
1

n

n

∑
i=1

n

∑
j=1

(
1− 1

2
(k · ri j)

2 + . . .

)〉

= g̃(0)

(
1− 1

3
k2R2

g + . . .

)
. (8.145)

where it has been assumed that k has the direction of the z -axis. Equation (8.145)

is known as the Guinier formula. In (8.145) Rg is the radius of gyration:

R2
g =

3

2

〈
1

n2

n

∑
i=1

n

∑
j=1

z2
i j

〉
=

1

2

〈
1

n2

n

∑
i=1

n

∑
j=1

r2
i j

〉
, (8.146)

(note that to obtain the last equality use has been made of the isotropy of the solu-

tion) which may also be written as

R2
g =

1

n

〈
n

∑
i=1

(ri − r0)
2

〉
, (8.147)

where r0 is the center of mass vector of the polymer, i.e.,

r0 =
1

n

n

∑
j=1

r j . (8.148)

From the experimental determination of g̃0(k), one may obtain in the limit k → 0

the value of the radius of gyration Rg of an isolated polymer which is known to obey

the scaling law:

Rg = nνbe , (8.149)

where ν ≃ 0.558 is the scaling exponent. Note that since, according to (8.147), R2
g

is the average value of the sum of the quadratic deviations of the position vectors of

the monomers with respect to r0, the volume of the sphere, 4πR3
g/3, is in a certain

way a measure of the spatial extension of the polymer.

8.5.2 Flory–Huggins Theory

The thermodynamic properties of a dilute polymer solution can be determined, in

first approximation, from the regular solution theory (see Sect. 8.3.1) or Flory–

Huggins theory. Note that if the solution contains NA polymers and, therefore,

nNA monomers, the former are indistinguishable, although the n monomers of each

polymer are distinguishable because they are ordered along the chain. Hence, a

solution of NA polymers and NB solvent molecules (which are assumed to be identi-

cal and thus indistinguishable) contains N = NA +NB “particles” but NT = nNA +NB

molecules. The thermodynamic properties of the solution are, therefore, extensive
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with respect to NT instead of N (the Helmholtz free energy per molecule, F/NT , is

finite in the thermodynamic limit). Since NT −N = (n−1)NA ≫ 1 this difference is

important. The free energy of the solution is, according to (8.89), given by

F(T,V,NA,NB) = kBTV ρA(ln
(
ρAΛ 3

A

)
−1)

+kBTVρB(ln
(
ρBΛ 3

B

)
−1)

−V (ρ2
AaAA + ρ2

BaBB + 2ρAρBaAB) , (8.150)

where it has been assumed that the interaction potentials V αγ(r) are weak and at-

tractive (βV αγ(r) ≡ βV
αγ
A (r) << 1), namely

bαγ = −1

2

∫
dr
(

e−βV
αγ
A (r) −1

)
≃ 1

2
β
∫

drV
αγ
A (r) ≡−βaαγ ,

where

aαγ = −1

2

∫
drV

αγ
A (r) (8.151)

are positive constants that measure the cohesion energy due to the attractive inter-

actions (V
αγ
A (r) < 0) between the different species. Note that although in polymers

there must also exist a repulsive interaction, this is not considered explicitly in this

theory because the excluded volume effects are much more complicated in this case

than for simple fluids (see below).

In (8.150) ρA = NA/V , ρB = NB/V and ΛA and ΛB are, respectively, the thermal

de Broglie wavelengths of the polymers (assumed to be spherical and of mass nmA,

where mA is the mass of the monomer) and of the solvent molecules (which have

also been assumed to be spherical and of mass mB). Recall that the properties of the

mixture are independent of ΛA and ΛB. Using the notation

f =
F(T,V,NA,NB)

NT

, x ≡ xA = n
NA

NT

, xB = 1− xA, ρ =
NT

V
,

where xA is the number fraction of monomers (not that of polymers) in the solution,

ρaAA = n2εAA/2, ρaAB = nεAB/2, and ρaBB = εBB/2, where the parameters εαγ are

molecule–molecule interaction energies (positive since the interaction is attractive),

then (8.150) may be cast in the form

β f (T,ρ ,x) =
x

n

(
ln
(
ρΛ 3

A

)
+ ln

( x

n

)
−1
)

+(1− x)
(
ln
(
ρΛ 3

B

)
+ ln(1− x)−1

)

−1

2
β
(
x2εAA +(1− x)2εBB + 2x(1− x)εAB

)
, (8.152)

and so the free energy of mixing per molecule is given by
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β f mix(T,x) =
1

n
x lnx +(1− x) ln(1− x)+ χx(1− x) , (8.153)

where χ is the Flory–Huggins mixing parameter:

χ =
1

2
β (εAA + εBB −2εAB) . (8.154)

Note that χ is independent of the density and inversely proportional to the tem-

perature. In order to stress the importance of the 1/n term in (8.153), consider the

equation of state (the osmotic pressure) of the solution. The osmotic pressure π is

defined as the difference in pressure between the polymer solution and the pure sol-

vent when both phases, separated by a membrane which is only permeable to the

solvent, are in equilibrium. The condition for equilibrium of the solvent on both

sides of the membrane is

µB(T, p + π,x) = µB(T, p,0) , (8.155)

where µB(T, p,x) is the chemical potential of the solvent in the polymer solution,

namely

µB(T, p,x) =
∂G(T, p,NA,NB)

∂NB

, (8.156)

where G(T, p,NA,NB) is the Gibbs free energy of the solution

G(T, p,NA,NB) = F(T,V,NA,NB)+ pV , (8.157)

with F(T,V,NA,NB) given by (8.150). If instead of NA and NB one chooses as in-

dependent variables NT and x, namely F(T,V,NT ,x), from (8.156), (8.157), and

(8.152) it follows that

µB(T, p,x) =

(
∂F(T,V,NT ,x)

∂NT

)

T,ρ ,x

(
∂NT

∂NB

)

NA

+

(
∂F(T,V,N,x)

∂x

)

T,ρ ,NT

(
∂x

∂NB

)

NA

+
p

ρ

(
∂NT

∂NB

)

NA

. (8.158)

Since

(
∂NT

∂NB

)

NA

= 1,

(
∂x

∂NB

)

NA

= − x

NT
,

and (
∂F(T,V,NT ,x)

∂NT

)

T,ρ ,x

= f (T,ρ ,x),
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one can write

µB(T, p,x) = f (T,ρ ,x)− x
∂ f (T,ρ,x)

∂x
+

p

ρ

= f mix(T,x)− x
∂ f mix(T,x)

∂x

+ f (T,ρ,0)+
p

ρ
, (8.159)

i.e.,

π = ρ

(
x

∂ f mix(T,x)

∂x
− f mix(T,x)

)
, (8.160)

so that from (8.153) one finally obtains

π = ρkBT

(
1

n
x− x− χx2 − ln(1− x)

)
. (8.161)

When x ≪ 1, performing a Taylor expansion of the term inside the brackets of

(8.161) leads to

π = ρkBT

(
1

n
x +

(
1

2
− χ

)
x2 +

1

3
x3 + · · ·

)
, (8.162)

i.e., to dominant order

π ≃ ρkBT
1

n
x =

NA

V
kBT , (8.163)

which indicates that the solution behaves as an ideal gas, a result known as the van’t

Hoff law.

In the case of a polymer solution (n ≫ 1), this law is modified due to the small-

ness of 1/n, yielding

π = ρkBT

((
1

2
− χ

)
x2 +

1

3
x3 + · · ·

)
, (8.164)

a result that may be easily tested experimentally since it does not depend on

the degree of polymerization. The osmotic pressure π of solutions of poly(α-

methylstyrene) of different molecular weights in toluene as a function of the con-

centration c is presented in Fig. 8.15. Note that when the molecular weight (M ∼ n)

increases all the curves tend to a universal curve independent of M. The same result

follows from (8.162) since when n ≫ 1 the osmotic pressure is given by (8.164)

which is independent of n.

Note, further, that at the θ -temperature for which 2χ = 1, the quadratic term in

(8.164) vanishes and the osmotic pressure is given by

π ≃ 1

3
ρkBθx3 (T = θ) , (8.165)
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π/c

Fig. 8.15 Osmotic pressure π of solutions of poly(α-methylstyrene) of different molecular weights

M (in units of the molecular weight of the monomer) in toluene at 25oC as a function of the

concentration c. The molecular weight M×10−4 is 7.08 (triangles), 20 (inverted triangles), 50.6

(circles), and 182 (squares). The units are π/c (cm) and c (g cm−3). The curves are only drawn to

guide the eye

Source: I. Noda, N. Kato, T. Kitano and M. Nagasawa, Macromolecules, 14, 668 (1981)

whenever n ≫ 1. From (8.164) and (8.165) it follows that the polymer solution be-

haves in a qualitatively different manner than a solution of small molecules, which

corresponds to (8.162) with n = 1. One says that the polymer is in a good sol-

vent if χ < 1/2, in a bad solvent if χ > 1/2, and in a θ -solvent if χ = 1/2. Note

1.00.80.60.40.20.0
x

– 0.2

0.0

0.2

0.4

Z

Fig. 8.16 Compressibility factor Z = βπ/ρ of a polymer solution in the Flory–Huggins theory

as a function of the number fraction of monomers in the solution x for χ = 1 (dash-dotted line),

χ = 1/2 (broken line), and χ = 1/4 (continuous line). Note that when χ = 1 the osmotic pressure

is negative
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that the Flory–Huggins theory is qualitatively correct only in a good solvent or

in a θ -solvent, since in a bad solvent the osmotic pressure may become negative

(Fig. 8.16). The reason is that in a good solvent the polymer prefers to form con-

tacts with the solvent molecules and “stretches,” while in a bad solvent it tends to

avoid such contacts and hence adopts the form of a “coil.” In the latter case, the

excluded volume effects, which are not accounted for in the Flory–Huggins theory,

will dominate.
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Chapter 9

Phase Transitions

Abstract In the previous chapter, some common structures of molecular systems

were studied. The number of structures of a system increases as the symmetry of the

molecules decreases. Under certain conditions of pressure and temperature, some of

these structures may form thermodynamically stable phases (their free energies sat-

isfy the stability conditions analyzed in Chap. 2). When two or more phases are

simultaneously stable, the equilibrium phase is the one with the lowest free energy,

while the others are metastable phases. When the thermodynamic conditions are

modified, the free energies of the different phases change accordingly and in some

instances the equilibrium phase becomes metastable with respect to another phase

(formerly metastable) which is now the new equilibrium phase. This change of sta-

bility is called a phase transition, whose study is the subject of this chapter.

9.1 Structural Transitions

When the phase transition takes place between two different structures, the transition

is called a structural phase transition as, for example, the order–disorder transitions

between a completely disordered phase and a partially ordered phase. Thus, in the

transition between the fluid phase and the crystalline (solid) phase, also known as

the melting–freezing transition, the fluid is the disordered phase and the crystal is

the ordered phase. The order is due to the absence of some translation and rotation

symmetry elements. Another example is the transition between the isotropic and the

nematic phases of a fluid, since the latter has a broken symmetry of rotation. Not

all the structural transitions are, however, order–disorder transitions. Thus, when a

nematic fluid with orientational order crystallizes into a completely ordered crys-

tal, both phases are ordered. Also, in the transition between a bcc crystal and a fcc

crystal, both phases are completely ordered. In conclusion, in a structural phase tran-

sition the two phases have a different degree of order due to the different elements

of symmetry that are broken. In what follows two examples of structural transitions

are considered.

233
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9.1.1 Fluid–Solid Transition

This is a universal phase transition since, no matter how complex its atoms or

molecules may be, a system always exists in a fluid and in a solid phase. In the

former, the centers of mass of the molecules and their orientations are distributed

randomly in space and the phase is, therefore, uniform and isotropic. In the latter,

the molecules are located on a periodic lattice and the structure is that of a crystal or

solid. The location of the fluid–solid transition (F–S) in the phase diagram depends

of course on the molecular interaction potential. A system of spherical molecules in-

teracting through the hard-sphere potential (8.42) which may be described in a sim-

ple way using the cell theory (Sect. 8.1.2) and the free volume theory (Sect. 8.2.4)

will be considered in this subsection. The Helmholtz free energy per particle of the

fluid phase is then given by (8.74), i.e.,

β fF(T,ρ) = ln
(
ρΛ 3

)
−1− ln

(
1− ρ

ρ0

)
, (9.1)

and that of the solid phase is given by (8.14), i.e.,

β fS(T,ρ) = ln
(
ρΛ 3

)
−1−3ln

⎛
⎝1−

(
ρ

ρcp

)1/3
⎞
⎠ . (9.2)

Note that, according to (9.2), from all the possible crystalline structures, the equi-

librium phase at high density is the most compact one (for instance, a fcc phase) for

which ρcpσ3 =
√

2, where σ is the diameter of the spheres.

The existence of a fluid–solid transition in a hard-sphere system was suggested

by Kirkwood and Monroe in 1941 and verified in 1957 by MD simulations. In the

case of colloidal particles (which behave approximately as hard spheres) this tran-

sition has moreover been observed experimentally (Fig. 9.1). All these results show

that ρF σ3 = 0.943 and ρSσ3 = 1.041, where ρF and ρS are the densities of the fluid

and solid phases at coexistence. Note that, since it concerns an excluded volume in-

teraction, the transition is independent of temperature since the interaction partition

function does not depend on T . This happens because the potential is infinitely re-

pulsive when the spheres overlap and zero when there is no contact between them

(see (8.42)). Since, on the other hand, the interaction energy is zero, the thermody-

namic relation F = E −TS reduces to F = 3NkBT/2−TS = T (3NkB/2− S) and

the state of minimum free energy coincides with the one of maximum entropy T

appearing merely as a scale factor. This is why it is said that such a transition is

entropy-driven.

Note that from (9.1) and (9.2) it follows that the Helmholtz free energy of the

hard-sphere system may be written as
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Fig. 9.1 Reduced pressure β p/ρ cp of a system of hard spheres as a function of the packing frac-

tion η . The horizontal line indicates the pressure at the fluid–solid coexistence obtained by MD.

The circles are the results of numerical simulations and the squares are the experimental values

of sedimenting polystyrene spheres with a diameter of 720 nm in a saline solution obtained from

X-ray densitometry

Source: A. P. Gast and W. B. Russel, Physics Today 51, 24 (1998); B. J. Alder and

T. E. Wainwright, J. Chem. Phys. 27, 1209 (1957)

β f (T,ρ) = ln
(
ρΛ 3

)
−1− ln

(
1− ρ

ρ0

)
Θ(ρ∗−ρ)

− 3ln

⎛
⎝1−

(
ρ

ρcp

)1/3
⎞
⎠Θ(ρ −ρ∗), (9.3)

where ρ∗ is the density at which the change in stability occurs, namely

1− ρ∗

ρ0

=

⎛
⎝1−

(
ρ∗

ρcp

)1/3
⎞
⎠

3

. (9.4)

By defining the variables

xF =
ρF

ρ0

, xS =

(
ρS

ρcp

)1/3

, (9.5)

from (9.1) and (9.2) it follows that the conditions of mechanical equilibrium and

chemical equilibrium are, respectively, given by (see Chap. 2)

ρ0

ρcp

(
xF

1− xF

)
=

x3
S

1− xS

, (9.6)
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and

ln

(
ρ0

ρcp

)
+ ln

(
xF

1− xF

)
+

1

1− xF

= 3ln

(
xS

1− xS

)
+

1

1− xS

. (9.7)

Note that the density ρ∗ at which the exchange of stability takes place and the

densities at coexistence, ρF and ρS, depend on ρ0, which is the highest value of

the density for which a fluid may exist and which, as analyzed in Sect. 8.2.3, is

unknown. It is clear that ρ0σ3 < ρcpσ3 =
√

2. On the other hand, ρ0σ3 > 3/2π,

since the lowest order of the virial expansion of the pressure is B2ρ = 2πρσ3/3 < 1.

Therefore, as a simple approximation, one may assume that ρ0σ3 is the arithmetic

mean of these values, namely

ρ0σ3 =
1

2

(
3

2π
+
√

2

)
≃ 0.946 . (9.8)

Substituting (9.8) into (9.4), (9.6), and (9.7) it follows that ρ∗σ3 ≃ 0.944, ρF σ3 ≃
0.907, and ρSσ3 ≃ 1.195, respectively. The densities at coexistence are, therefore,

in good agreement with the results obtained both experimentally and by the simula-

tions. The fluid–solid transition of hard spheres analyzed in this section is shown in

Fig. 9.2.

1.31.10.90.70.5
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Fig. 9.2 Reduced free energy F∗ ≡ β Fσ3/V of the hard-sphere system as a function of ρσ 3.

At ρ∗σ3 ≃ 0.944 the fluid phase (F) and the solid phase (S) exchange their stability (the stable

branches have been represented by a continuous line and the metastable branches by a broken

line). The dots indicate the densities at coexistence (ρF σ 3 ≃ 0.907, ρSσ3 ≃ 1.195) and the dotted

line is Maxwell’s double tangent
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9.1.2 Isotropic–Nematic Transition

When the molecules are not spherical, the fluid–solid transition of the previous sub-

section takes place in successive stages. Since the intermediate phases have, in gen-

eral, properties that are common to both the fluid and the crystal phases, they are

called liquid crystal phases. The transition between a uniform isotropic fluid which

is completely disordered (whose properties are indicated by a subscript I), and a

uniform fluid with nematic orientational order (whose properties are indicated by a

subscript N) is studied in this subsection. If the molecules are hard spherocylinders,

the transition may be studied using the Onsager theory of Sect. 8.4.2. Within the

second virial coefficient approximation, the Helmholtz free energy per particle of

the isotropic phase is given by

β fI(T,ρ) = ln
(
ρΛ 3

)
−1 +

1

2
ρ
∫

du

∫
du′E(u ·u′) , (9.9)

which follows from (8.106) and (8.126) when ρ(u) = ρ (note that in this case the

functional reduces to a function of the density). Using (8.127) and

∫
du

∫
du′
√

1− (u ·u′)2 =
1

2

∫ π

0
dθ sin2θ =

π

4
, (9.10)

since in the scalar product u ·u′ one of the vectors may be arbitrarily chosen to be

in the direction of the polar axis, one has:

β fI(T,ρ) = ln

(
Λ 3

av0

)
−1 + ln(aρv0)+ 4ρv0 + aρv0 , (9.11)

where v0 is the volume of the spherocylinder, of length L and diameter D, and the

constant a ≡ πL2D/4v0 has been introduced.

On the other hand, according to (8.138), the Helmholtz free energy per particle

of the nematic phase reads

β fN(T,ρ) = ln

(
Λ 3

av0

)
+ 3ln(aρv0)+ 4ρv0 + ln

(
9

2π

)
. (9.12)

Therefore, the density ρ∗ at which the exchange of stability occurs is given by

aρ∗v0 −2ln(aρ∗v0) = 1 + ln

(
9

2π

)
, (9.13)

which may be solved numerically, yielding aρ∗v0 ≃ 4.256. Note that although the

Onsager theory has been derived from a low-density virial expansion, it may be

shown that in the hard-rod limit L/D → ∞ (a → ∞) if ρv0 → 0 and x = aρv0 < ∞,

the theory (9.11) is exact, since the remaining terms of the virial expansion vanish

identically in this limit.

In the Onsager limit

a → ∞, ρv0 → 0, x = aρv0 < ∞ , (9.14)
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the conditions of mechanical equilibrium and chemical equilibrium between the two

phases, which follow from (9.11) and (9.12), are

xI(1 + xI) = 3xN , (9.15)

and

ln xI + 2xI = 3ln xN + 3 + ln

(
9

2π

)
, (9.16)

where xI and xN are the values of x for the two phases, I and N, at coexistence.

These equations may be solved numerically yielding xI = 3.604 and xN = 5.532,

which represents a relative change of density of 38.4% at the transition. According

to (8.137) α = πx2
N/2≃ 48, which justifies the asymptotic expansion α ≫ 1. The ex-

act results of the Onsager theory are, on the other hand, xI = 3.290 and xN = 4.189,

which shows the validity of the approximation made in Sect. 8.4.2. The isotropic–

nematic transition of this section in the Onsager limit is shown in Fig. 9.3.

Note finally that the packing fractions at coexistence of the isotropic phase,

η I = xI/a, and of the nematic phase, ηN = xN/a, decrease with L/D as

η I =
3.604

L/D
, ηN =

5.532

L/D
,

which is the qualitative behavior found experimentally as shown in Fig. 9.4.
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Fig. 9.3 Reduced free energy βx f of a system of hard rods as a function of x = aρv0 in the Onsager

limit. At x∗ ≃ 4.256 the isotropic (I) and nematic (N) phases exchange their stability (the stable

branches have been represented with a continuous line and the metastable branches by a broken

line). The dots indicate the densities at coexistence (xI ≃ 3.604, xN ≃ 5.532) and the dotted line is

Maxwell’s double tangent
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Fig. 9.4 Volume fraction φ at coexistence of the isotropic and nematic phases of a suspension of

poly(bencyl-L-glutamate) in dioxane as a function of the estimated value of L/D. These molecules

behave approximately as long rods and so φ ∼ D/L. The circles correspond to the nematic phase

and the squares to the isotropic phase. The lines have been drawn to guide the eye

Source: P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford

(1993)

9.2 Isostructural Transitions

The phase transitions that take place between two (ordered or disordered) phases

with the same symmetries are called isostructural transitions. In this section two

examples are considered.

9.2.1 Liquid–Vapor Transition

The best-known isostructural transition is probably the liquid–vapor transition in

which both the dilute phase (the vapor, V ) and the dense phase (the liquid, L) are

uniform and isotropic. Since the two phases are disordered phases and they only

differ in density, both are described by the same Helmholtz free energy. Thus, in the

van der Waals approximation, the free energy per particle is given by (8.81)

β f (T,ρ) = ln
(
ρΛ 3

)
−1− ln

(
1− ρ

ρ0

)
−βaρ . (9.17)

Since a > 0, the free energy ρ f (T,ρ) is not always a convex function of the

density and at low temperatures (Fig. 9.5) it is formed by two convex branches

separated by a concave branch along which the system is unstable. In this case, from

the method of the double tangent construction of Maxwell analyzed in Sect. 2.8.3,
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Fig. 9.5 Reduced free energy βx f of the disordered phases (vapor, V, and liquid, L) in the van

der Waals approximation as a function of x = ρ/ρ0 for t = kBT/aρ0 = 0.2. The convex branches

(continuous lines) are separated by a concave branch (broken line) where the system is unstable.

The dotted line is Maxwell’s double tangent and the points indicate the coexistence densities at that

temperature (xV = 0.036 y xL = 0.729)

it follows that there are two solutions ρV (T ) and ρL(T ) having the same pressure

and chemical potential.

Introducing the variables

xV =
ρV (T )

ρ0

, xL =
ρL(T )

ρ0

, t =
kBT

aρ0

, (9.18)

from (9.17) it follows that the conditions for mechanical equilibrium and chemical

equilibrium are p(T,xV ) = p(T,xL) and µ(T,xV ) = µ(T,xL), where

β p(T,x) = ρ0

(
x

1− x
− 1

t
x2

)
, (9.19)

and

β µ(T,x) = ln
(
ρ0Λ 3

)
−1 + ln

(
x

1− x

)
+

1

1− x
− 2

t
x . (9.20)

Note that since the pressure in each phase has to be positive, one has

xV (1− xV ) < t, xL(1− xL) < t , (9.21)

and since xV < xL, from (9.21) it follows that when t → 0 then xV ∼ O(t) → 0

and xL ∼ 1−O(t) → 1. As the temperature is increased, the width of the transition

xL−xV decreases until, for a certain critical value tc = 8/27, xL = xV = xc = 1/3, as

shown in Fig. 9.6. The behavior of the liquid–vapor transition in the vicinity of this

“critical” value of the temperature is analyzed in Sect. 9.6.2.
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Fig. 9.6 Binodals in the (x, t) phase diagram of the liquid–vapor (L–V) transition in the van der

Waals theory, with x = ρ/ρ0 and t = kBT/aρ0. When t = tc = 8/27, the binodals coincide at

xc = 1/3

9.2.2 Solid–Solid Transition

An isostructural transition may also take place between two ordered phases. Con-

sider, for instance, the Helmholtz free energy per particle of a crystal in the van der

Waals theory (see Sect. 8.1.3):

β f (T,ρ) = ln
(
ρΛ 3

)
−1−3ln

⎛
⎝1−

(
ρ

ρcp

)1/3
⎞
⎠− 1

2t

(
ρ

ρcp

)n/3

Mn . (9.22)

At low temperatures, the free energy (9.22) is not necessarily an increasing func-

tion of the density and so van der Waals loops similar to those of the liquid–vapor

transition appear. If ρE(T ) and ρC(T ) are the coexistence densities of the expanded

solid (E) (the one with the smaller density) and of the condensed solid (C) (the one

with the greater density) and one introduces the variables

xE =

(
ρE(T )

ρcp

)1/3

, xC =

(
ρC(T )

ρcp

)1/3

, (9.23)

the conditions of mechanical equilibrium and chemical equilibrium are p(T,xE) =
p(T,xC) and µ(T,xE) = µ(T,xC), where

β p(T,x) = ρcpx3

(
1

1− x
− 1

6t
nxnMn

)
, (9.24)
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Fig. 9.7 Binodals in the (x, t) phase diagram of the isostructural expanded solid- condensed solid

(E-C) transition of a face centered cubic lattice. The continuous line corresponds to the van der

Waals theory for an inverse power potential with an index n = 50 and the broken line is the result

of MC simulations for an attractive Yukawa potential with (see text) κσ = 67

Source: P. G. Bolhuis, M. H. J. Hagen and D. Frenkel, Phys. Rev. E 50, 4880 (1994)

and

β µ(T,x) = ln
(

ρcpΛ 3
)
−1 + 3ln

(
x

1− x

)
+

1

1− x
− 2

3t
nxnMn . (9.25)

In much the same way as occurs for the liquid–vapor transition, the width of the

isostructural solid–solid transition xC −xE decreases as the temperature is increased

until, for a certain critical value tc, xC = xE = xc. The binodals in the (x,t) phase

diagram of the isostructural expanded solid (E)-condensed solid (C) transition of a

fcc lattice as given by the van der Waals theory for the potential (8.18) with n = 50

(continuous line) are shown in Fig. 9.7. When t = tc ≃ 1.026, the binodals coincide

at xc ≃ 0.963. The broken line is the result of MC simulations when the attractive

part of the interaction is the Yukawa potential:

VA(r) = −ε
(σ

r

)
eκσ(1−r/σ), (r > σ) ,

with κσ = 67, where 1/κ is a length that measures the range of the attractive part.

In this case, the binodals coincide at xc ≃ 0.937, tc ≃ 0.715.

9.3 Symmetry Breaking and Order Parameters

As was analyzed in Chap. 3, some equilibrium states have less symmetry than the

Hamiltonian of the system (which, in general, is invariant under translations and

rotations) and so they are referred to as states of broken symmetry. The different
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phases of matter may, therefore, be classified in terms of their broken symmetries.

Thus, from a completely symmetric disordered phase (uniform and isotropic), one

obtains ordered phases (non-uniform and/or anisotropic), for each element of sym-

metry that is eliminated. The sequence fluid, nematic, smectic, and crystal is an

example of the above. This method of classification may also be applied to the

transition between two phases and hence, if the phases differ in certain symme-

try elements, one says that the transition is one of symmetry-breaking. According

to this criterion, all the structural transitions, such as the order–disorder (liquid–

solid) and those of order 1–order 2 between two crystalline structures (bcc–fcc),

are symmetry-breaking transitions. The isostructural transitions, however, are not

since both phases have the same structure, with the same degree of order (fcc–

fcc) or disorder (liquid–vapor) and so it is said that these transitions conserve the

symmetry.

The symmetry-breaking transitions may, in general, be described by means of

an “order parameter,” which is a variable that quantifies the degree of order in the

phases, and so it is usually defined in such a way that it is zero for the phase with the

greater symmetry. In some cases, such as in the bcc–fcc transition, there is no phase

with a greater symmetry and so no order parameter exists (since this parameter may

only be defined when the symmetry group of one phase is a subgroup of the sym-

metry group of the other phase). Two representative examples of phase transitions

that may be described with an order parameter are analyzed in this section.

Consider a fluid with uniaxial anisotropy and assume, for greater generality, that

b(u ·u′) in (8.106) is written as

bl(u ·u′) = a0 + alPl(u ·u′) , (9.26)

where l (l �= 0) may be even or odd. For instance, l = 2 is the Maier–Saupe fluid and

l = 1 is the Heisenberg fluid , where P1(u ·u′) = u ·u′ is the so-called Heisenberg ex-

change interaction. The first case has already been analyzed in (8.4.1) and the second

one provides a simple model to study the paramagnetic–ferromagnetic transition. If

the average density of molecules with orientation u is written as ρ1(u) = ρh(x), with

x = cosθ , where h(x) is the angular distribution function, the variational Helmholtz

free energy per particle (8.106) reads (see (8.118))

β fl(T,ρ; [h]) =
1

2

∫ 1

−1
dx h(x)

(
ln
(
ρΛ 3

)
+ lnh(x)−1

)
+ ρa0

+
1

4
ρal

(∫ 1

−1
dxh(x)Pl(x)

)2

, (9.27)

whose equilibrium solution hl(x) (notice the change of notation with respect to

Sect. 8.4.1) is obtained by minimizing the functional, namely

lnhl(x)+ ρalPl(x)

∫ 1

−1
dx′hl(x

′)Pl(x
′) = C , (9.28)
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where C is a constant. Since lnhl(x) ∼ Pl(x), if h(x) is parameterized as

h(x) =
1

Nl(q)
eqPl(x) , (9.29)

with

q ≡−ρal

∫ 1

−1
dx′h(x′)Pl(x

′) , (9.30)

where Nl(q) in (9.29) is obtained from the normalization condition (8.120):

Nl(q) =
1

2

∫ 1

−1
dxeqPl(x) , (9.31)

the functional (9.27) becomes a function of the parameter q:

β fl(T,ρ;q) = ln
(
ρΛ 3

)
−1 + ρa0 +

1

4ε l

q2 − lnNl(q) , (9.32)

where

ε l ≡ ε l(T,ρ) = −ρal . (9.33)

Upon minimizing (9.32) with respect to q, the equilibrium value of the parameter

q, ql , is obtained from the equation

q = 2ε l

∂ lnNl(q)

∂q
. (9.34)

Note that in the disordered phase (hl(x) = 1) ql = 0, i.e., ql is an order parameter

and

β fl(T,ρ;ql = 0) = ln
(
ρΛ 3

)
−1 + ρa0 ≡ fI(T,ρ)

is the free energy of the isotropic phase (I). In the phase of lower symmetry with

orientational order, ql �= 0 and the solution of (9.34) ql(ε l) = ql(T,ρ) is a function

of the density and of the temperature. The variational free energy difference between

the phase with orientational order and the isotropic phase,

Δ fl(T,ρ;q) = fl(T,ρ ;q)− fI(T,ρ) , (9.35)

evaluated at equilibrium,

Δ fl(T,ρ) ≡ Δ fl(T,ρ;ql) , (9.36)

allows one to determine the relative stability of the phases.

Note that, as a consequence of the underlying symmetries, it is possible to derive

some qualitative properties of the transition. Since Pl(x) = (−1)lPl(−x), it follows

that Nl(q) = Nl((−1)lq), and so if l is odd Nl(q) and Δ fl(T,ρ;q) are even func-

tions of q. On the other hand, if ql is a solution of (9.34), so is −ql, from which

it follows that hl(−x) �= hl(x) (in fact, hl(−x) = 1/hl(x)) and, therefore, x and −x
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denote different physical states (with different probability). When l is even, one has

Nl(−q) �= Nl(q), and so the series expansion of Δ fl(T,ρ ;q) in powers of q contains

odd and even terms. Since, on the other hand, hl(−x) = hl(x), x and −x are the same

physical state and if ql is a solution of (9.34), −ql is not, in general, a solution of

this equation.

The symmetry properties Nl(q) = Nl(−q) (when l is odd) and Nl(−q) �= Nl(q)
(when l is even) are also shared by the variational Helmholtz free energy, which

allows one to distinguish, according to Landau, two types of symmetry-breaking

transitions.

9.4 Landau Theory

In order to obtain the series expansion of (9.35) with respect to the parameter q, note

that (9.31) may be written as

Nl(q) = 1 +
∞

∑
n=1

cn(l)q
n, cn(l) ≡

1

2

1

n!

∫ 1

−1
dx[Pl(x)]

n . (9.37)

Since

P1(x) = x, P2(x) =
1

2

(
3x2 −1

)
,

P3(x) =
1

2

(
5x3 −3x

)
, P4(x) =

1

8

(
35x4 −30x2 + 3

)
,

one has

c1(l) = 0 (l �= 0), c2(l) =
1

2(2l + 1)
,

c3(2l + 1) = 0, c3(2l) > 0,

and

c2
2(l) > 2c4(l), ( l = 1,2),

as may be verified using the numerical values gathered in Table 9.1.

Table 9.1 Some coefficients in the expansion (9.36) for l = 1 and l = 2

l = 1 l = 2

c2(l) 1/6 1/10

c3(l) 0 1/105

c4(l) 1/120 1/280
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In this way, the series expansion of Δ fl(T,ρ;q) is given by

β Δ fl(T,ρ ;q) =
1

4ε l

q2 −
∞

∑
n=2

cn(l)q
n +

1

2

(
∞

∑
n=2

cn(l)q
n

)2

+ . . . , (9.38)

or, alternatively,

βΔ fl(T,ρ;q) = q2
(
a2(l)+ a3(l)q + a4(l)q

2 + . . .
)

. (9.39)

The coefficients ai(l)(i = 2,3,4) in (9.39) are given by

a2(l) =
1

4ε l

− c2(l) , (9.40)

i.e., a2(l) ≥ 0 when ε l ≤ l + 1/2 and a2(l) < 0 when ε l > l + 1/2,

a3(l) = −c3(l) , (9.41)

i.e., a3(l) = 0 if l is odd and a3(l) < 0 if l is even, and

a4(l) =
1

2
c2

2(l)− c4(l) > 0 . (9.42)

The values of the order parameter which make (9.39) to be an extremum are

obtained from the equation

(
∂β Δ fl(T,ρ;q)

∂q

)

q=ql

= 2a2(l)ql + 3a3(l)q
2
l + 4a4(l)q

3
l + · · · = 0 , (9.43)

and the extrema are a minimum when

(
∂ 2β Δ fl(T,ρ;q)

∂q2

)

q=ql

= 2a2(l)+ 6a3(l)ql + 12a4(l)q
2
l + · · · > 0 . (9.44)

From (9.43) and (9.44) it immediately follows that there are two branches of

solutions. The first one,

ql = 0, a2(l) > 0 , (9.45)

corresponds to the disordered phase and the second one,

a2(l)+
3

2
a3(l)ql + 2a4(l)q

2
l = 0,

3

2
a3(l)ql + 4a4(l)q

2
l > 0 , (9.46)
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to the ordered phase. Note that the inequality in (9.46) is obtained by substituting the

condition of extremum into (9.44). Observe now how the symmetry of the ordered

phase affects the transition.

9.4.1 Continuous Transitions

When l = 2n + 1 (n = 0,1,2, . . . ), (9.46) has two solutions,

q±2n+1 = ±
√

− a2(2n + 1)

2a4(2n + 1)
, a2(2n + 1) < 0 , (9.47)

which correspond to the same ordered phase since the free energy is an even function

of q2n+1. Since the domain of stability of the ordered phase (q2n+1 �= 0, a2(2n+1)<
0, ε2n+1 > 2n + 3/2) is complementary to that of the disordered phase (q2n+1 =
0, a2(2n + 1) > 0, ε2n+1 < 2n + 3/2), the coexistence of phases is only possible

when the following equality is verified:

ε2n+1 = 2n +
3

2
, (9.48)

which is the equation of a straight line (see (8.112) and (9.33)) in the (ρ ,T ) plane,

since ε l ∼ ρβ , i.e., (9.48) is the coexistence line of the order–disorder transition.

When ε2n+1 → 2n+3/2 from the ordered phase, q±2n+1 → 0, until the order param-

eter becomes zero at coexistence and the two phases become identical. Since the or-

der parameter goes to zero continuously in the transition, these symmetry-breaking

phase transitions are called, generically, continuous transitions.

9.4.2 Discontinuous Transitions

When l = 2n (n = 1,2, . . . ), (9.46) has two solutions,

q±2n = −3a3(2n)

8a4(2n)

(
1±

√
1− 32

9

a2(2n)a4(2n)

a2
3(2n)

)
, (9.49)

which verify the following condition, obtained after elimination of a3(2n) in (9.43)

and subsequent substitution in (9.44):

(
q±2n

)2
>

a2(2n)

2a4(2n)
. (9.50)

If one defines

D ≡ 32

9

a2(2n)a4(2n)

a2
3(2n)

, (9.51)
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then (9.50) may be cast in the form

1−D±
√

1−D > 0 , (9.52)

from which the following cases follow: (a) When D > 1, the solutions q±2n are imagi-

nary, which is not possible since h2n(x) has to be real, (b) if 0≤D < 1, the inequality

is only satisfied by q+
2n, and (c) when D < 0, both solutions satisfy the inequality but

q−2n < 0, which in turn would imply that this ordered phase would be less probable

than the disordered phase. Therefore, the only physical solution for D ≤ 1 is the

root q+
2n of (9.49), and so the ordered and disordered phases may coexist in the finite

domain:

2

4n + 1
≤ 1

ε2n

≤ 2

4n + 1
+

9

8

a2
3(2n)

a4(2n)
. (9.53)

Since the order parameter is always different from zero,

q+
2n ≥

−3a3(2n)

8a4(2n)
, (9.54)

this parameter changes discontinuously at the transition. Examples of this kind of

symmetry-breaking transitions have already been considered in Sect. 9.1 and such

transitions are called, generically, discontinuous transitions.

9.5 Bifurcation Theory

The results of the Landau theory are based on the series expansion (9.39) of the

variational free energy β Δ fl(T,ρ ;q) in powers of the order parameter. Note that

although in the vicinity of a continuous transition (ql → 0) the series β Δ fl(T,ρ;q)
converges, far from the transition or for a discontinuous transition (ql �= 0) the series

might not. The interest of the Landau theory is that, even if the series may not

be a convergent one, the qualitative results that follow from it are correct. To see

this, consider again (9.34) whose number of solutions, ql = ql(ε l), determines the

number of phases. Since (9.34) always has as solution the trivial solution ql = 0

(the disordered phase), each solution ql �= 0 corresponds to an ordered phase. One

says then that these phases are obtained by bifurcation from the trivial solution and

hence (9.34) is called the bifurcation equation. The solutions to this equation may

be represented in the (ε l ,ql) plane in what is known as a bifurcation diagram, which

is analogous to the phase diagrams of Sect. 2.8.

As a first example, let l = 1, in which case (9.31) and (9.34) read, respectively, as

N1(q) =
1

q
sinhq , (9.55)
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and

1

2ε1

=
1

q1

(
cothq1 −

1

q1

)
≡ 1

q1

L(q1) , (9.56)

where L(q1) is the Langevin function. The solutions of (9.56) may be determined

numerically and the results are shown in the bifurcation diagram displayed in

Fig. 9.8.

Observe that when ε1 < 3/2 the stable phase is the disordered phase (q1 = 0) and

if ε1 > 3/2 the stable phase is the ordered phase (q1 �= 0), which is degenerate since

±q1 denote the same phase. When ε1 = 3/2 the order parameter goes to zero and

the two phases coexist and are identical. Therefore, ε1 = 3/2 is the bifurcation point

at which the new solution q1 �= 0 appears. Notice that in this case the bifurcation and

coexistence points coincide. Due to the form of this diagram the bifurcation is called

a fork bifurcation.

As a second example consider now l = 2, in which case (9.31) reads

N2(q) =

√
2

3q
eqD

(√
3q

2

)
, (9.57)

where D(x) is the Dawson function:

D(x) = e−x2
∫ x

0
dyey2

. (9.58)

On the other hand, (9.34) reduces in this case to

2.52.01.51.00.50.0
∈1

–4

–2

0

2

4

q1

B

L

L

B

Fig. 9.8 Bifurcation diagram of the Heisenberg fluid (l = 1) in the (ε1,q1) plane. The curves B

and L are the solutions of the bifurcation equation (9.56) and of the Landau theory, respectively. In

the interval 0 ≤ ε1 ≤ 3/2 both curves coincide
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2.62.42.22.0
ε2

0

1

2

3

4

5

q2

L

L

B

B

Fig. 9.9 Bifurcation diagram of the Maier–Saupe fluid (l = 2) in the (ε2,q2) plane. The curves B

and L are the solutions of the bifurcation equation (9.59) and of the Landau theory, respectively.

The broken curves indicate the non-physical solutions and the continuous curves are the physical

solutions. In the intervals 2.24 < ε2 < 2.5 (B) and 2.12 < ε2 < 2.5 (L) the two phases are stable

and at some point within these intervals coexistence takes place

1

ε2

=
1

q2

⎛
⎜⎜⎝

√
3

2q2

D

(√
3q2
2

) − 1

q2

−1

⎞
⎟⎟⎠ , (9.59)

whose numerical solution leads to the bifurcation diagram presented in Fig. 9.9,

which shows that if ε2 < 2.24 the stable phase is the disordered phase (q2 = 0),

if ε2 > 2.5 the stable phase is the ordered phase (q2 �= 0) and in the interval

2.24 < ε2 < 2.5 both phases are stable. The bifurcation point is, therefore, ε2 = 2.24

and the corresponding bifurcation diagram is known as a Hopf bifurcation. The

coexistence point is obtained from the conditions of mechanical equilibrium and

chemical equilibrium of the phases. Note that, in this case, the bifurcation point and

the point of coexistence do not coincide.

The qualitative results obtained from the bifurcation diagrams are similar to the

ones of the Landau theory, although there exist quantitative differences. For in-

stance, in the Landau theory the bifurcation point when l = 2 is found at ε2 =
70/33 ≃ 2.12 (instead of at ε2 ≃ 2.24) and the order parameter changes from

zero to q2 = 5/2 ( instead of q2 ≃ 1.45). Therefore, the Landau theory provides

a simple and qualitatively correct description of the symmetry-breaking phase

transitions.
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9.6 Critical Points

As was indicated in Chap. 8, the different phases of matter may be classified by

their broken symmetries; for instance, the disordered phase (which has the same

symmetries as the Hamiltonian), the intermediate phases or mesophases (in which

one or more symmetries are lacking), and the completely ordered phase (in which

all the symmetries are broken). In a similar fashion, a transition between two phases

may be classified as structural (with symmetry breaking) or isostructural (without

symmetry breaking), depending on whether or not the phases differ in their elements

of symmetry.

From an experimental point of view it is common to classify phase transitions as

transitions with a latent heat (lQ �= 0) or without a latent heat (lQ = 0), since it is

easier to measure lQ than to determine a change of symmetry. Recall that according

to the Clausius–Clapeyron equation (2.75), when lQ �= 0 the first derivatives of the

Gibbs free energy (s = −∂ µ/∂T , v = ∂ µ/∂ p) are discontinuous (s1 �= s2, v1 �= v2).

For that reason Ehrenfest introduced a classification that is determined by the conti-

nuity of the thermodynamic potential. According to Ehrenfest, a phase transition is

of order n if the first derivative of the thermodynamic potential that is not continuous

is an n-th derivative. In this way, if lQ �= 0 the transition is of first order and if lQ = 0

it is, at least, of second order. However, it should be pointed out that the Ehrenfest

thermodynamic classification is not always equivalent to the classification based on

symmetry-breaking. Hence, a symmetry-breaking transition is of first order when it

is discontinuous and it is at least of second order when it is continuous. On the other

hand, a transition that conserves symmetry is of first order, save at some isolated

thermodynamic points where it may be of a higher order. In this section the transi-

tions without a latent heat, i.e., the ones which are not of first order, are examined

more thoroughly. Every point of the thermodynamic (T, p) plane that corresponds

to a phase transition in which lQ = 0 is called a “critical point.”

9.6.1 Isolated Critical Points

As has been analyzed previously, in a phase transition that conserves symmetry,

the projection of the Helmholtz free energy per particle f (T,v) on the isothermal

plane may be formed by two stable branches separated by an unstable branch (see

Fig. 2.11). For instance, if at a temperature T ,

∂ 2 f (T,v)

∂v2

⎧
⎨

⎩

> 0, 0 < v < v′2
< 0, v′2 < v < v′1
> 0, v′1 < v

(9.60)

where v′1 = v′1(T ) and v′2 = v′2(T ), then a phase with v < v′2 may coexist with a

phase with v > v′1. Since the variation of the specific volume at the transition,

Δv = v1 − v2, is Δv > v′1 − v′2 > 0 (see Fig. 2.11), the transition is discontinuous.
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It may happen, however, that upon changing the temperature, the difference v′1 − v′2
decreases and vanishes for a certain value T = Tc. Since, according to (9.60), the

derivative ∂ 2 f (T,v)/∂v2 changes sign at v′1 and v′2 at that temperature, one then

has that ∂ 2 f (T,v)/∂v2 = 0 at T = Tc. Note further that, according to the construc-

tion of Maxwell’s double tangent (see Sect. 2.8.3), when T = Tc one has Δv = 0

(v1 = v2 = vc, where vc is the critical volume), and so at the critical temperature Tc

the discontinuous transition becomes continuous. In order to analyze the stability of

this special thermodynamic state, consider the convexity condition of f (T,v) in the

interval v2 < v < v1 (see Appendix A and Fig. 9.10):

f (T,λ v1 +(1−λ)v2) < λ f (T,v1)+ (1−λ) f (T,v2), (0 < λ < 1) , (9.61)

which expresses the fact that the function f (T,v) has as an upper bound, the straight

line joining the points (v2, f (T,v2)) and (v1, f (T,v1)).
If v2 < v′′,v′ < v1 and v′ = v′′±ε (ε → 0), the convexity condition in the interval

between v′ and v′′ is written as

f (T,v′′±λε) < λ f (T,v′′± ε)+ (1−λ) f (T,v′′) . (9.62)

Expanding in Taylor series both sides of the inequality, one has (v = v′′)

∞

∑
n=1

1

n!
(±λε)n ∂ n f (T,v)

∂vn
< λ

∞

∑
n=1

1

n!
(±ε)n ∂ n f (T,v)

∂vn
, (9.63)

or, alternatively,

0 <
∞

∑
n=2

1

n!
(λ −λ n)(±ε)n ∂ n f (T,v)

∂vn
. (9.64)

Fig. 9.10 Graphical repre-

sentation of a convex function

f (v) in an interval v2 < v < v1.

Note that f (continuous line)

has as an upper bound the

straight line (broken line) that

joins both points

f

v2 v1 v
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Since λ > λ n
(n ≥ 2) and (±ε)n may be positive or negative, the inequality is satis-

fied when the first non-zero derivative is even and positive. If this occurs for n = 2,

one obtains the usual convexity condition

∂ 2 f (T,v)

∂v2
> 0 . (9.65)

Since at the critical point (∂ 2 f (T,v)/∂v2)c = 0 (where the subscript c indicates

an expression evaluated at T = Tc and v = vc), at this point the inequality (9.64) is

satisfied only when the third derivative vanishes and the fourth one is positive. Thus,

the Helmholtz free energy is convex at the critical point when

(
∂ 2 f (T,v)

∂v2

)

c

= 0,

(
∂ 3 f (T,v)

∂v3

)

c

= 0,

(
∂ 4 f (T,v)

∂v4

)

c

> 0 . (9.66)

The solutions to the first two equations (9.66), i.e., {Tc,vc} are called critical states

and in them the discontinuous transition becomes continuous. Generally, this takes

place at an isolated point (Tc, pc) of the coexistence curve p = p(T ), called the

critical point (see Fig. 2.15).

9.6.2 Liquid–Vapor Critical Point

The first two conditions (9.66) applied to the liquid–vapor transition of Sect. 9.2.1

read:

1

(1− xc)2
− 2xc

tc
= 0,

1

(1− xc)3
− 1

tc
= 0 , (9.67)

where xc = ρc/ρ0, ρc = ρV (Tc) = ρL(Tc), and tc = kBTc/aρ0. The unique solution

of (9.67) is (see Fig. 9.6):

xc =
1

3
, tc =

8

27
, (9.68)

and so from the equation of state,

p = ρkBT

(
1

1− x
− 1

t
x

)
, (9.69)

one has that the compressibility factor, β p/ρ, at the critical point is independent of

the model (i.e., of ρ0 and a):

β c pc

ρc

=
3

8
= 0.375 , (9.70)

where pc is the critical pressure. This behavior agrees qualitatively with the ex-

perimental results, although for the majority of simple fluids β c pc/ρc ≃ 0.294.
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Therefore, if (8.84) is written in terms of the reduced variables p̄ = p/pc, ρ̄ = ρ/ρc,

and T̄ = T/Tc, one has:

p̄ =
8ρ̄T̄

3− ρ̄
−3ρ̄2 , (9.71)

which is independent of the characteristics of the fluid, i.e., of the particular values

of pc, ρc, and Tc. For that reason, if two fluids have the same reduced variables it is

said that they find themselves in “corresponding states.”

If in the vicinity of the critical point ( p̄ = 1, ρ̄ = 1 and T̄ = 1) one writes p̄ =
1− δ p̄, ρ̄ = 1− δρ̄ , and T̄ = 1− δ T̄ , this leads to

Δs

3kB/2
=

Δv

4vc

=

{
0, T ≥ Tc

∼ (δ T̄ )
1/2

, T = Tc −0
(9.72)

i.e., the discontinuity in Δv and Δs tends to zero when T → Tc − 0. Experimental

and numerical results show that Δv ∼ (δ T̄ )β where β ≃ 0.35, which differs from

the value β = 1/2 of (9.72), and so the van der Waals theory does not provide an

adequate description of this “critical exponent” (see Chap. 10).

Note, further, that although at the critical point the liquid–vapor transition is con-

tinuous, some thermodynamic variables are discontinuous at the transition, as for

instance the isothermal compressibility coefficient χT ,

χT =

{
(−6pcδ T̄ )−1, T = Tc + 0

(12pcδ T̄ )−1, T = Tc −0
(9.73)

which diverges when T ≃ Tc with an amplitude that is discontinuous, while the

constant pressure specific heat cp

cp

3kB/2
=

{
1 + 2(−9δ T̄ )−2/3, T = Tc + 0

1 +(3δ T̄ )−1, T = Tc −0
(9.74)

diverges with an amplitude and a critical exponent, which are both discontinuous.

In both cases, the “critical exponents” of the van der Waals theory also differ from

those experimentally determined. It thus follows that, in spite of its simplicity, the

van der Waals theory provides a qualitatively but not quantitatively correct descrip-

tion of the liquid–vapor transition, including its critical point.

9.6.3 Solid–Solid Critical Point

The first two conditions of (9.66), applied to the solid–solid transition of Sect. 9.2.2,

read:

3−2xc

(1− xc)2
− n(n + 3)

6tc
xn

cMn = 0 , (9.75)
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and

2(2− xc)

(1− xc)3
− n2(n + 3)

6tc
xn−1

c Mn = 0 , (9.76)

where x3
c = ρc/ρcp, ρc = ρC(Tc) = ρE(Tc), and tc = kBTc/ε . The unique solution to

(9.75) and (9.76) is given by

xc =
1

4(n + 1)

[
5n + 4−

√
n2 + 16(n + 1)

]
, (9.77)

tc =
n(n + 3)

6
Mn

xn
c(1− xc)

2

3−2xc

. (9.78)

The compressibility factor, β p/ρ, at the critical point is

β c pc

ρc

=
4(n + 1)2

n + 3

√
n2 + 16(n + 1)−n−4

(
√

n2 + 16(n + 1)−n)2
, (9.79)

which is a function of the index n. Therefore, there is no “corresponding states” law

as in the case of fluids. The values of xc and tc of a fcc lattice for different indices n

are shown in Table 9.2.

The isostructural solid–solid transition has been recently obtained using simula-

tion methods (see Fig. 9.7). This transition is thermodynamically stable in systems

in which the range of the attractive part of the interaction potential is small compared

with the range of the repulsive part. For instance, in the case of a square-well attrac-

tive potential of width δ , i.e., VA(r) =−ε[Θ(σ +δ −r)−Θ(σ −r)], the solid–solid

transition is stable when δ/σ < 0.07. This kind of interaction potential is not char-

acteristic of atomic systems for which the range of the attractive part is greater than

that of the repulsive part (see Fig. 8.7 and Table 8.4) and the transition will not be

observed (it is metastable). However, the transition could be observed experimen-

tally in colloidal suspensions. Assume, for example, a mixture of hard spheres of

diameters σ and σ ′ (σ ′ ≪ σ ). If the density of the large spheres is low, the osmotic

pressure exerted by the fluid of small spheres on each large sphere is isotropic. At

high density, in contrast, if the distance r between the centers of two large spheres is

such that r < σ + σ ′, the small spheres cannot penetrate inside the region between

the two large spheres and, since the osmotic pressure is unbalanced, this leads to

Table 9.2 Critical values xc and tc of the isostructural solid–solid transition of a crystal whose

structure is the face centered cubic lattice for different indices n (see Fig. 9.7)

n xc tc

50 0.963 1.026

100 0.981 1.052

150 0.987 1.062

200 0.990 1.067
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an effective attraction of range σ ′ between the two large spheres. For this reason,

in a colloidal suspension of particles of two different sizes, the transition might be

observed upon reduction of the size of the small particles (see Sect. 8.3.3).

9.6.4 Consolute Critical Point

Many mixtures have a liquid–vapor critical point similar to that of a one-component

system. Furthermore, in mixtures a demixing phase separation can also take place

and lead to a critical point known as the consolute critical point. In order to simplify

the study of this transition, consider the regular solution theory of Sect. 8.3.1 applied

to a binary mixture of particles of the same mass m1 = m2 (Λ1 = Λ2 ≡Λ ). Equation

(8.90) may then be written as

β f (T,ρ ,x) = ln
(
ρΛ 3

)
−1 + β f0(x)+ ρB(x) , (9.80)

where

β f0(x) = x ln x +(1− x) ln(1− x) , (9.81)

and

B(x) = x2b11 + 2x(1− x)b12 +(1− x)2b22 . (9.82)

Since normally the phase separation is studied at constant pressure (the atmo-

spheric pressure), the adequate potential, instead of f (T,ρ ,x), is the Gibbs free

energy per particle g(T, p,x) defined as the Legendre transform:

g(T, p,x) = f (T,ρ ,x)+
p

ρ
, (9.83)

where in (9.83) ρ = ρ(T, p,x) is obtained by solving the implicit equation p =
ρ2∂ f (T,ρ ,x)/∂ρ , namely

β p = ρ + ρ2B(x) , (9.84)

whose positive solution is

ρ(T, p,x) =
1

2B(x)

(√
1 + 4β pB(x)−1

)
. (9.85)

From (9.80) and (9.83–9.85) it follows that:

β g(T, p,x) = ln

(
Λ 3

2B(x)

)
+ β f0(x)+ ln

(√
1 + 4β pB(x)−1

)

+
√

1 + 4β pB(x)−1. (9.86)
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Note that, in a binary mixture, the Gibbs free energy is given by

g(T, p,x) = xµ1(T, p,x)+ (1− x)µ2(T, p,1− x) , (9.87)

where µ1 and µ2 are the chemical potentials of the two species. On the other hand,

the Gibbs–Duhem relation (2.16) at constant pressure and temperature reads

x
∂ µ1(T, p,x)

∂x
+(1− x)

∂ µ2(T, p,1− x)

∂ (1− x)
= 0 , (9.88)

and so from (9.87) and (9.88) one obtains

∂g(T, p,x)

∂x
= µ1(T, p,x)− µ2(T, p,1− x) . (9.89)

If x′ and x′′ denote the number fractions of species 1 at coexistence, the conditions

for chemical equilibrium are

µ1(T, p,x′) = µ1(T, p,x′′), µ2(T, p,x′) = µ2(T, p,x′′) , (9.90)

where, after (9.87) and (9.89),

µ1(T, p,x) = g(T, p,x)+ (1− x)
∂g(T, p,x)

∂x
, (9.91)

and

µ2(T, p,x) = g(T, p,x)− x
∂g(T, p,x)

∂x
. (9.92)

Note that if β pB(x) ≪ 1 from (9.85) it follows that, as a first approximation,

ρ(T, p,x) ≃ β p, which does not depend on x, in which case from (9.80) and (9.83)

one finds

βg(T, p,x) = ln
(
β pΛ 3

)
+ β f0(x)+ β pB(x)

= ln
(
β pΛ 3

)
+ β p(xb11 +(1− x)b22)

+β f mix(T,β p,x), (9.93)

where f mix(T,β p,x) is given by (8.92), in which ρ has been replaced by β p. From

(9.93) it follows that (9.90) reads

ln

(
x′(1− x′′)
x′′(1− x′)

)
= 4β pb(x′− x′′) , (9.94)
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and

ln

(
1− x′

1− x′′

)
= −2β pb(x′− x′′)(x′ + x′′) , (9.95)

where the coefficient b is given by (8.93).

The phase separation diagram of a binary mixture in the (x,β pb) plane is shown

in Fig. 9.11. The consolute critical point (xc,β c pcb ) is obtained, by the same argu-

ments used to derive (9.66) now particularized to the Gibbs free energy per particle,

from the following system of equations:

(
∂ 2g(T, p,x)

∂x2

)

c

= 0,

(
∂ 3g(T, p,x)

∂x3

)

c

= 0 , (9.96)

i.e.,

1

xc

+
1

1− xc

−4β c pcb = 0 , (9.97)

− 1

x2
c

+
1

(1− xc)2
= 0 , (9.98)

yielding

xc =
1

2
, β c pcb = 1 , (9.99)

which implies that b has to be positive, namely 2b12 > b11 + b22.

1.00.80.50.20.0
x

0.8

1.0

1.2

1.4

βpb

Fig. 9.11 Phase separation diagram of a binary mixture in the (x,β pb) plane, where x is the num-

ber fraction of one of the components and β pb is the reduced pressure. The coordinates of the

consolute critical point are xc = 1/2 and β c pcb = 1
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Note that, according to (9.93), the consolute critical point (9.96) is obtained with

the approximation ρ(T, p,x) ≃ β p from the free energy of mixing f mix(T,β p,x).
For that reason, applying the same kind of study to a polymer solution in the Flory–

Huggins theory, from (8.153) it follows that

1

nxc
+

1

1− xc
−2χc = 0 , (9.100)

and

− 1

nx2
c

+
1

(1− xc)2
= 0 , (9.101)

i.e.,

xc =
1

1 +
√

n
, χc =

1

2

(
1 +

1√
n

)2

, (9.102)

which implies that the critical concentration of the polymer xc decreases with n,

while the critical temperature Tc ∼ χ−1
c increases, results which have been verified

experimentally (Fig. 9.12).

9.6.5 Critical Lines

As has been analyzed previously, in a phase transitions with symmetry breaking, two

cases may occur. In the case of a discontinuous transition, i.e., when the free energy

is not an even function of the order parameter, the transition is always of first order

since the order parameter changes from ql = 0 to ql �= 0 at the transition (see (9.54)).

On the contrary, when the free energy is an even function of the order parameter, ql is

continuous at the transition (which is thus called a continuous transition) and in such

a transition critical points may exist, i.e., points of coexistence for which Δs = 0

and Δv = 0. To see this, consider once more the Landau theory or the bifurcation

theory of Sects. 9.4 and 9.5. In a continuous transition the contribution of the order

parameter to the Helmholtz free energy difference Δ fl(T,ρ) (see (9.39) and (9.47))

is given by

β Δ fl(T,ρ) = −1

2

a2
2(l)

a4(l)
, (9.103)

with l = 2n + 1. Since at the coexistence between the ordered and the disordered

phases a2(l) = 0, one has that Δ fl(T,ρ) and its first derivatives (with respect to ρ or

T ), which are denoted indistinctly as Δ f ′l (T,ρ), β Δ f ′l (T,ρ) = −a2(l)a
′
2(l)/a4(l)

(since a4(l) is a constant) vanish at coexistence. Therefore, Δ fl(T,ρ) does not con-

tribute neither to Δs nor to Δ p and coexistence is produced at the critical point

(Δs = 0 and Δv = 0), although the second derivatives may be discontinuous (like,

for instance, cV ). The transition is, at least, of second order in the Ehrenfest sense.
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Fig. 9.12 Experimental values (indicated by points) of the critical temperature Tc (K) and critical

concentration of polystyrene φ c (volume fraction) of a polystyrene–methylcyclohexane solution

as a function of the molecular weight M of the polymer (in units of the molecular weight of the

monomer). The lines have been drawn to guide the eye

Source: T. Dobashi, M. Nakata and M. Kaneko, J. Chem. Phys. 72, 6685 (1980)

At the critical point, the continuous transitions have a similar behavior to that of

the isostructural transitions. For instance, the order parameter q±2n+1 tends to zero as

q±2n+1 ∼
√

ε2n+1 −2n− 3

2
, (9.104)

when one approaches the transition from the ordered phase, although the Landau

theory (as all mean field theories) does not adequately describe the critical expo-

nent in (9.104). The main difference in critical behavior between phase transitions

with or without symmetry breaking is appreciated in a (ρ ,T ) phase diagram. For the
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transitions that conserve the symmetry, the critical behavior in the (ρ,T ) plane usu-

ally takes place at an isolated point of the plane like, for example, in the liquid–vapor

transition and in the isostructural solid–solid transition (see Figs. 9.6 and 9.7). The

same occurs in the (T, p) plane (see Fig. 2.15). The transition is continuous at the

critical point and discontinuous everywhere else. For the transitions with symmetry-

breaking the critical points are the solutions to the equation q(ρ ,T ) = 0, namely

ε2n+1 ≡−1

2
ρβ

∫
drV2n+1(r) = 2n +

3

2
, (9.105)

which in the (ρ ,T ) plane form a curve called a critical line. In every point of this line

the transition is continuous and at least of second order. For instance, when ε1 = 3/2

this critical line is the Curie line of the paramagnetic–ferromagnetic transition.

9.7 Summary

Let A and B be two phases whose symmetry groups are GA and GB, respectively.

As a summary of the general characteristics of the phase transitions analyzed in this

chapter, one may make the following considerations.

1) GA ≡ GB

The two phases have the same symmetry group and so the transition is called an

isostructural transition (that conserves symmetry). There is no order parameter

and the transition is discontinuous (of first order in the Ehrenfest sense), except

at isolated points. For example, the liquid–vapor transition.

2) GA �= GB

The two phases have different symmetry groups and so the transition is called a

structural transition (with symmetry breaking). Here two cases may occur.

a) The symmetry group of one phase is not a subgroup of the symmetry group

of the other phase, and so there is no order parameter and the transition is

discontinuous (of first order in the Ehrenfest sense). For example: the fcc–bcc

transition.

b) The symmetry group of one phase is a subgroup of the symmetry group of

the other phase, GA ⊂ GB. The transition may be described with an order

parameter q and it is

b1) discontinuous (of first order in the Ehrenfest sense) if the free energy is

not an even function of q. For example, the isotropic–nematic transition.

b2) continuous (at least of second order in the Ehrenfest sense) if the free

energy is an even function of q. For example, the paramagnetic–

ferromagnetic transition.
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9.8 Triple Points

Up to this point, the coexistence between two phases and the transition from one

phase to the other have been considered. Since a system may find itself in more than

two phases, the derivation of the resulting phase diagrams requires the study of all

the binary coexistences.

9.8.1 Ordinary Triple Point

Consider a system that may be found in three different phases whose Gibbs free

energies per particle are µ i(T, p) (i = 1,2,3). There are, therefore, three possible

p

pt

Tt T

2

3

2
1

1

3

p

pt

Tt T

θ2

θ3

θ1
2

1

3

Fig. 9.13 Stable parts (continuous lines) and metastable parts (broken lines) of the coexistence

lines 1–2, 2–3, and 3–1 in the (T, p) plane, intersecting at the triple point (Tt , pt ). Since the co-

existence lines are obtained from the intersection of convex surfaces µ i = µ i(T, p), the angles θ i

formed by the stable parts are such that θ i < π (i = 1,2,3)
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transitions described by the following coexistence lines in the (T, p) plane: µ1(T,
p) = µ2(T, p), µ2(T, p) = µ3(T, p), and µ3(T, p) = µ1(T, p). It is possible that

these three lines intersect at a point (Tt , pt),

µ1(Tt , pt) = µ2(Tt , pt) = µ3(Tt , pt) , (9.106)

which is called the triple point and in which the three phases coexist. Assume, first,

that the three transitions are discontinuous in the vicinity of (Tt , pt ).

The intersection of these lines is shown in Fig. 9.13. On crossing the triple point,

each line changes from being stable (continuous line) to being metastable (broken

line). If, as usual, only the stable parts are represented, the angles formed by the

coexistence lines are less than π .

The phase diagram of an ordinary triple point (the three transitions are discon-

tinuous) in the (v,T ) plane is represented in Fig. 9.14. The specific volumes at the

triple point have been denoted by v1, v2, and v3. Examples of ordinary triple points

are the solid–liquid–vapor triple point (see Fig. 9.16) and the triple point fluid-bcc

solid-fcc solid in charged colloidal particles interacting with a repulsive Yukawa

potential.

9.8.2 Critical Endpoint

Assume now that in the vicinity of the triple point the transitions 1–2 and 1–3 are

discontinuous while the transition 2–3 is continuous. The resulting phase diagram

in the (v,T ) plane is shown in Fig. 9.15 and the corresponding triple point is called

a critical endpoint (v2 = v3). An example of a critical end point is the paramagnetic

T

Tt

v1 v2 v3 v

1

1 + 2 2 + 3

1 + 3

2 3

Fig. 9.14 Phase diagram in the (v,T ) plane of an ordinary triple point in which three phases coexist

(1,2, and 3) at the specific volumes v1 �= v2 �= v3. All the transitions are discontinuous. Note the

discontinuity in the slopes of the binodals for T = Tt
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T

Tt

v1 v2 = v3 v

1

2

1 + 2
3

1 + 3

Fig. 9.15 Phase diagram in the (v,T ) plane with a critical endpoint in which three phases coexist

(1,2, and 3) at the specific volumes v1 and v2 = v3. The transitions 1–2 and 1–3 are discontinuous

while the transition 2–3 is continuous. Note the change in curvature of the binodals for T = Tt

liquid–ferromagnetic liquid transition in a fluid in which the attractive part of the

isotropic interaction dominates over the anisotropic Heisenberg interaction.

9.8.3 Bicritical Point

Another special case is obtained when two of the three transitions are continuous.

T

Tt

v1 = v2 = v3 v

1

2

3

1 + 3

Fig. 9.16 Phase diagram in the (v,T ) plane with a bicritical point at which three phases coexist

(1,2, and 3) at the specific volumes v1 = v2 = v3. The transitions 1–2 and 2–3 are continuous while

the transition 1–3 is discontinuous. Note the continuity of the slopes of the binodals for T = Tt
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T

Tt

v

1

3

1 + 3

v1 = v2 = v3

Fig. 9.17 A particular case of Fig. 9.16 in which the transitions 1–2 and 2–3 merge. Note that the

transition 1–3 is discontinuous below the temperature Tt and continuous above it. This point is then

called a tricritical point. Note the discontinuity in the slopes of the binodals for T = Tt

If the transition 1–3 is discontinuous, the phase diagram in the (v,T ) plane is

shown in Fig. 9.16 and such a triple point is called a bicritical point (v1 = v2 = v3).

An example of a bicritical point is the paramagnetic liquid–ferromagnetic liquid

transition in a fluid in which the anisotropic Heisenberg interaction dominates over

the attractive part of the isotropic interaction.

9.8.4 Tricritical Point

Finally, it may occur that the continuous transitions 1–2 and 2–3 merge in the vicin-

ity of the triple point, as is shown in Fig. 9.17. In this case the transition 1–3 changes

from being discontinuous to being continuous at the triple point, which is then called

a tricritical point.
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Chapter 10

Critical Phenomena

Abstract As was already seen in Chap. 9, there may exist particular thermodynam-

ical states where a discontinuous (first-order) phase transition becomes continuous

(second-order) or where the order parameter of a continuous phase transition van-

ishes (Fig. 10.1). Such a thermodynamical state is called a critical state, or a critical

point (CP), and its variables will be distinguished here by a subscript c. In the im-

mediate vicinity of a CP, there occur a number of peculiar (static and dynamic)

phenomena which are designed collectively as “critical phenomena.” During the

last four decades considerable progress has been made in the understanding of these

phenomena. In this chapter some of the new ideas which emerged from these studies

are summarized and explained in the simpler context of the present textbook. More

complete studies can be found in the References.

10.1 Classical Theory

Consider the behavior of the thermodynamic potentials, e.g., the Helmholtz free en-

ergy per particle f (T,v), in the vicinity of a critical point. Until now it has been

always assumed that the thermodynamic potentials are analytical, i.e., that they can

be expanded in a power series around any thermodynamic state, including the criti-

cal state. The expansion of f (T,v) around the CP (Tc,vc) will then read:

f (T,v) =
∞

∑
n=0

∞

∑
k=0

1

n!k!

(
∂ n+k f (T,v)

∂vn∂T k

)

c

(δ v)n (δT )k , (10.1)

where δv = v− vc and δT = T − Tc measure the distance between the thermody-

namic state and the CP defined by

(
∂ 2 f (T,v)

∂v2

)

c

= 0,

(
∂ 3 f (T,v)

∂v3

)

c

= 0. (10.2)

269
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0
CP

∈c

qT

v

CP

(a) (b)

Tc

vc

∈

Fig. 10.1 a An upper CP terminating the coexistence curves (binodals), T = T (v), of a discontinu-

ous phase transition, such as the L–V transition. The coordinates of this CP in the (v,T)-plane will

be denoted by (vc,Tc). b Behavior of the order parameter q versus a control-parameter ε = ε (T,v)
for a continuous phase transition (see Sect. 9.4.1). The value εc = ε (Tc,vc) for which q vanishes

corresponds to a CP

It is easily shown that these equations are equivalent to the more familiar

definition (
∂ p(T,v)

∂v

)

c

= 0,

(
∂ 2 p(T,v)

∂v2

)

c

= 0, (10.3)

in terms of the pressure p(T,v) = −∂ f (T,v)/∂v, or

(
∂ µ (T,v)

∂v

)

c

= 0,

(
∂ 2µ (T,v)

∂v2

)

c

= 0, (10.4)

in terms of the chemical potential µ (T,v) = f (T,v)− v∂ f (T,v)/∂v. As in most

parts of this textbook, the language of the one-component fluid is used for illus-

tration purposes, but the same discussion can be performed for any other system

(mixtures, magnetic systems, etc.) exhibiting a CP although, in fact, most of the

CP-literature (cf. References) is usually presented in the language of the magnetic

systems.

10.2 Critical Exponents

The CP can be approached along different thermodynamical paths, e.g., along the

coexistence curve, along an isotherm or along an isochore (Fig. 10.2).

If T = T (v) denotes the coexistence curve (binodals) in the (v,T )-plane

(Fig. 10.1), then the CP, Tc = T (vc) , is found by following this curve until its
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Fig. 10.2 Different ways to

approach the CP: along the

critical isotherm T = Tc, along

the critical isochore v = vc,
along the coexistence curve

T = T (v)

Tc

vc

T

v

δv = 0

δT = 0

extremum is reached, i.e., when (∂T (v)/∂v)c = 0. Therefore, in the vicinity of

the CP one finds

T (v) = T (vc)+
1

2!

(
∂ 2T (v)

∂v2

)

c

(δv)2 + O
(
(δv)3

)
, (10.5)

a behavior that will be rewritten compactly as (δ T )coex ∼ (δv)2
, where δT and

δv are the distances to the critical point and the subscript reminds that (δT )coex

is measured here along the coexistence curve T = T (v), hence (δT )coex = T (v)−
T (vc). The relation (δT )coex ∼ (δv)2

states that in the classical theory the shape of

the coexistence curve is parabolic in the vicinity of the CP. For later use, this relation

will be rewritten more generally as

(δT )coex ∼ (δv)1/β , (10.6)

where β is the so-called critical exponent, which in the above classical theory takes

on the value β = 1/2.

If, similarly,

δ p = p(T,v)− p(Tc,vc)

is followed along the critical isotherm δ T = 0, (10.3) implies

p(Tc,v) = p(Tc,vc)+
1

3!

(
∂ 3 p(T,v)

∂v3

)

c

(δv)3 + O
(
(δ v)4

)
, (10.7)

or, (δ p)δT=0 ∼ (δ v)3. This relation will be rewritten more generally as

(δ p)δT=0 ∼ (δ v)δ , (10.8)
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where δ is a new critical exponent whose value in the above classical theory is

δ = 3.

Consider next the inverse of the isothermal compressibility coefficient:

1

χT (T,v)
= v

∂ 2 f (T,v)

∂v2
, (10.9)

which, after (10.2), implies that along the critical isochore δ v = 0 one has

(
∂ 2 f (T,v)

∂v2

)

v=vc

=

(
∂ 3 f (T,v)

∂v2∂T

)

c

δT + O
(
(δT )2

)
, (10.10)

or
(
χ−1

T

)
δv=0

∼ δT , i.e., χT diverges when the CP is approached along the critical

isochore δv = 0. This relation can be rewritten as

(
χ−1

T

)
δv=0

∼ (δT )γ =

{
+|δT |γ+ , δ T > 0

−|δT |γ− , δ T < 0
(10.11)

where γ is yet another critical exponent whose classical value is γ = 1. Note that to

write (10.11) it has been taken into account that this time the value of the exponent

γ could depend on the sign of δT since for δv = 0 and δT > 0 the fluid is in a

one-phase region whereas for δ v = 0 and δT < 0 the fluid is in a two-phase region,

while in (10.8) one always remains in the one-phase region when δT = 0. However,

in order to simplify the notation, in what follows the set of two exponents (γ+,γ−)

will be designed simply as γ . More critical exponents can be introduced but since

ultimately only two of them will turn out to be independent, in what follows only

(10.6), (10.8), and (10.11) will be considered and be rewritten compactly as

(δ T )coex ∼ (δ v)1/β , (δ p)δT=0 ∼ (δv)δ ,
(
χ−1

T

)
δv=0

= (δ T )γ . (10.12)

Instead of relying on the above theoretical considerations for the determination

of the critical exponents, one can of course measure them experimentally. One then

finds that, when one is not too close to the CP, the above classical results (β = 1/2,

δ = 3, γ = 1) appear to be adequate but that they become inadequate the closer one

gets to the CP. Clearly, to really measure the critical exponents a limiting procedure

is required. For instance, to measure β of (10.6) one can plot ln(δT )coex versus

ln(δv) and measure the slope 1/β of this relation as one crosses the CP. In this way

a vast body of experimental evidence has been gathered during the past decades

which clearly indicates that the above theoretical values of the critical exponents are

in fact incorrect (cf. Fig. 10.3), justifying hereby our rewriting their definition in the

more general form of (10.12).

The experimental evidence shows clearly that the values of 1/β , δ , and γ cannot

be represented by integers. The very reason why in the above classical theory the

values of these critical exponents did turn out to be integers can clearly be traced

down to the fact that in the classical theory it has been assumed that f (T,v) is an

analytic function of δT and δ v in the vicinity of the CP. Another, more positive,
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100

1– ––
Vc
V

Fig. 10.3 Measurements of the coexistence curve of helium in the neighborhood of its critical

point (circles = vapor (v > vc) , triangles = liquid (v < vc)). The critical exponent β has a value

0.354

Source: H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Clarendon Press,

Oxford (1971)

experimental finding has been that a given critical exponent turns out to have the

same numerical value for physically very different systems, e.g., fluids, magnetic

systems, etc. This is usually expressed by saying that while the critical exponents

take on non-classical values, their values are “universal.” Such a universality is typ-

ical of critical phenomena, or of continuous (second order) phase transitions, and

is in clear contradistinction with the results obtained for discontinuous (first-order)

phase transitions which are strongly system-dependent. To bring the theory of the

CP-behavior in agreement with these experimental observations has been a major

enterprise of the statistical physics of the last few decades. Here only the major steps

in the resolution of this enigma are summarized. More details can be found in the

specialized literature quoted in the References.

10.3 Scaling Hypothesis

The first major step forward in bringing the theory of the CP-behavior in agreement

with the experimental findings was the introduction by B. Widom in 1965 of a scaled

equation of state. To understand how this comes about, consider the behavior of

p(T,v) in the vicinity of the CP. When the CP is approached along an isotherm, the

classical theory predicts that

p(T,v) = p(T,vc)+
∞

∑
n=1

1

n!

(
∂ n p(T,v)

∂vn

)

v=vc

(δv)n , (10.13)

or, when the isotherm is close to the critical isotherm, so that δT is small, (10.13)

becomes up to fourth order:
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p(T,v) = p(T,vc)+

(
∂ 2 p(T,v)

∂v∂T

)

c

δvδT +
1

2!

(
∂ 3 p(T,v)

∂v2∂T

)

c

(δv)2 δT

+
1

3!

(
∂ 3 p(T,v)

∂v3

)

c

(δv)3 +
1

2!

(
∂ 3 p(T,v)

∂v∂T 2

)

c

δv(δT )2

+O

(
(δv)4 ,(δ v)2 (δT )2 ,(δ v)3δT

)
. (10.14)

Evaluating (10.14) for T = T (v) it is seen, using (10.5), that, because (δT )coex ∼
(δv)2

, the second and fourth term of (10.14) are of order (δ v)3
while the remaining

terms are of order (δ v)4
or higher. Keeping only the dominant terms, (10.14) may

be rewritten as

Δ p ≡ H (δT,δv) = ac δvδT + bc (δv)3 , (10.15)

where

Δ p ≡ p(T,v)− p(T,vc) ,

ac ≡
(

∂ 2 p(T,v)

∂v∂T

)

c

, bc ≡
1

3!

(
∂ 3 p(T,v)

∂v3

)

c

.

Consider now H (δv,δT ) of (10.15). In the vicinity of the CP this function obeys

a relation of the form:

H
(

λ 2δT,λδ v
)

= λ 3
H (δ T,δv) , (10.16)

for any λ > 0. Such a relation is called a scaling relation because it states that when

re-scaling the variables of H (δT,δv) as δv → λ δv and δT → λ 2δT , the value

of H (δT,δv) is restored up to a scaling factor λ 3
. The mathematical property of

(10.16) implies that the function of two variables H (δT,δv) can always be written

in the simpler form

H (δv,δT ) = (δv)3
f0

(
δT

(δv)2

)
, (10.17)

where f0 (x) is a function of a single but rescaled variable x = δT/(δv)2
, which

remains invariant under the above re-scaling transformation. To prove (10.17) it is

indeed sufficient to take λ = 1/δv in (10.16). Moreover, from (10.15) it is seen

that in the classical theory f0 (x) = bc + acx. Suppose now that, in order to obtain

non-classical results, one modifies (10.15–10.17) empirically as

Δ p = (δ v)δ f

(
δT

(δ v)1/β

)
, (10.18)

where δ and β are some (still undetermined) critical exponents and f (x) a still

arbitrary function of the rescaled variable x = δT/(δv)1/β
. Equation (10.18) is
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equivalent to the scaling relation:

H
(

λ 1/β δT,λ δv
)

= λ δ
H (δT,δv) , (10.19)

which generalizes (10.16). Since (Δ p)δT=0 = (δ p)δT=0, it follows that (10.18) di-

rectly implies (10.8), provided f (0) is finite. Moreover, evaluating Δ p/δv from

(10.8), and taking into account that as δv → 0 one has

(
Δ p

δv

)

δv→0

=

(
∂ p(T,v)

∂v

)

v=vc

=

(
1

vχT (T,v)

)

v=vc

, (10.20)

so that
1

vcχT (T,vc)
=

[
(δv)δ−1 f

(
δT

(δv)1/β

)]

δv→0

. (10.21)

Evaluating now (10.21) along the coexistence curve T = T (v), where according

to (10.6) δ v ∼ (δT )β , it is seen that (10.21) is equivalent to

1

χT (T,vc)
∼ (δT )β (δ−1) f (1) ∼ (δT )β (δ−1), (10.22)

provided f (1) is finite. Therefore, the scaled equation of state (10.18) is fully con-

sistent with the experimental observations under some fairly weak conditions on

f (x). Moreover, comparing (10.22) with (10.12) yields

γ = β (δ −1) , (10.23)

showing that only two of the critical exponents (β ,γ,δ ) are independent. The sur-

mised non-analyticity of the equation of state in the vicinity of the CP can, according

to (10.18), now be traced back to the fact that f (x) is a function of the rescaled vari-

able x = δ T/(δ v)1/β
, i.e., for δT �= 0, f (x) is a non-analytical function of δv. Note,

however, that the conditions imposed on f (x) are compatible with f (x) being an an-

alytic function of x. Therefore, the complete non-classical thermodynamic behavior

observed in the vicinity of the CP can be deduced from the scaling relation (10.19),

itself an empirical modification of the classical scaling relation (10.16). There re-

mains now to understand why a scaling behavior such as described by (10.19) should

hold, i.e., what is the physical reason behind this scale-invariance of the thermody-

namics in the region of the CP?

10.4 Correlation Length and Universality

Scale-invariance is rather unusual since specific physical systems usually have spe-

cific scales on which its variables change. Therefore, in the vicinity of the CP these

system-specific scales must in some sense become irrelevant. Of particular interest



276 10 Critical Phenomena

here is the fact, first pointed out by Ornstein and Zernike in 1916, that the spatial

scale of the density fluctuations will change dramatically near a CP and become ob-

servable as critical opalescence. As already seen in Sect. 6.7, at the CP the density

fluctuations will diverge (cf. (6.91)) and the total correlation function h(r;Tc,ρc)
will become long-ranged (cf. (6.104)) even for a short-ranged pair potential. In other

words, near the CP it is the spatial scale of h(r;T,ρ) which is important in order

to understand the phenomenon of critical opalescence whereas the spatial scale of

the system-specific pair potential becomes irrelevant. This suggested Ornstein and

Zernike to introduce a new function, the direct correlation function c(r;T,ρ) de-

fined by (8.52) and (8.53) (see also Sect. 7.4), which remains short-ranged at the CP

(cf. (8.55)). If c(r;T,ρ) is short-ranged, then its Fourier transform c̃(k;T,ρ) can be

expanded as

c̃(k;T,ρ) =

∫
dr e−ik·rc(r;T,ρ) = 4π

∫ ∞

0
dr r2c(r;T,ρ)

sin(kr)

kr

= c̃(0;T,ρ)+ c̃2 (T,ρ)k2 + O
(
k4
)
, (10.24)

where ρ c̃(0;T,ρ) is given by (8.55), i.e.,

1−ρc̃(0;T,ρ) =
1

ρkBT χT (T,ρ)
, (10.25)

and

ρ c̃2 (T,ρ) = −2π

3
ρ
∫ ∞

0
dr r4c(r;T,ρ) ≡−R2 (T,ρ) , (10.26)

where R(T,ρ) is a system-specific length scale. Rewrite (8.53) as

1 + ρh̃(k;T,ρ) =
1

1−ρc̃(k;T,ρ)

=
1

1−ρc̃(0;T,ρ)−ρc̃2 (T,ρ)k2 + O(k4)
. (10.27)

From (10.25) and (10.26) one obtains for the small-k (large-r) asymptotic expan-

sion of h̃(k;T,ρ):

1 + ρh̃(k;T,ρ) =
R−2 (T,ρ)

ξ−2 (T,ρ)+ k2
, (10.28)

where the O
(
k4
)
-terms in (10.27) have been dropped, which is meaningful provided

the range of c(r;T,ρ) is finite, and introduced a new length-scale:

ξ (T,ρ) = R(T,ρ)
√

ρkBT χT (T,ρ). (10.29)

From (10.28) evaluating the inverse-Fourier transform using, e.g., the calculus of

residues yields
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ρh(r;T,ρ) =
1

4πR2 (T,ρ)

e−r/ξ(T,ρ)

r
, (10.30)

where an irrelevant term proportional to δ (r) has been deleted. It is seen from

(10.30) that ξ (T,ρ) determines the spatial range of h(r;T,ρ). Since at the CP,

R(T,ρ) will remain finite but χT (T,ρ) will diverge like (δT )−γ (cf.(10.12)), one

finds from (10.29) that ξ (T,ρ) will diverge like (δT )−ν with ν = γ/2, i.e.,

ξ ∼ (δT )−ν , ν =
γ

2
. (10.31)

Therefore, near a CP, the spatial scale determined by the correlation length

ξ (T,ρ) of h(r;T,ρ) will dominate all system-specific length-scales, e.g., those re-

lated to the pair potential such as R(T,ρ) of (10.26). This, together with a vast body

of similar results (on various fluids, binary mixtures, magnetic systems, etc.) sug-

gested to L. Kadanoff in 1968 that the reason why one witnesses scale-invariant

properties such as (10.19) is that in the vicinity of a CP only those properties

which change on the largest possible scale, namely ξ (T,ρ), are important, i.e.,

ξ (T,ρ) is the only relevant spatial scale. Since the divergence of ξ (T,ρ) is system-

independent, it only depends on the existence of a CP, the CP-properties must ex-

hibit system-independent or universal features. This observation led Kadanoff to

formulate the “universality hypothesis” according to which the value of the critical

exponents will only depend on (a) d, the dimensionality of the working space, i.e.,

they are different for bulk systems (d = 3) and for surfaces (d = 2) and (b) n, the

number of symmetry-unrelated components of the order parameter characterizing

the continuous (second-order) phase transition, or if there is no order parameter,

the number of diverging length scales. In other words, each pair (d,n) defines a

“universality class” of systems having the same critical exponents.

With respect to the first point (d) it has to be noted that in the above only (d = 3)

bulk systems have been considered, e.g., when a d-dimensional Fourier transform is

used (10.30) will become

h(r;T,ρ) ∼ e−r/ξ (T,ρ)

r(d−1)/2
. (10.32)

Whereas for the second point (n), in the above, fluid systems with only one di-

verging length scale ξ related to the density fluctuations were considered, hence

n = 1. When an order parameter exists, one has to consider instead the correlation

lengths of the fluctuations of the independent components of the order parameter.

Therefore, one often assimilates, in this context, a fluid system to a system having

an “effective”scalar order parameter related to the density difference between the

coexisting fluid phases. More details can be found in the specialized literature given

in the References.
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10.5 Renormalization Group (RG) Idea

The scaling hypothesis and the universality hypothesis do bring the theory of the CP

into agreement with a vast body of theoretical and experimental results. However,

they are formulated in terms of some abstract non-classical critical exponents whose

value remains undetermined. What is still lacking is a theoretical scheme to calculate

their value. Such a calculational technique was introduced in 1971 by K.G.Wilson

and is known as the “Renormalization Group”(RG) because it is similar to an earlier

technique bearing this name and used in field theory to compute the renormalized

coupling constants. This technique not only allows for the critical exponents to be

computed but also provides a more profound justification for the scaling and uni-

versality assumptions. It can thus be said to “solve” the CP-enigma. Unfortunately,

although the physical ideas involved are simple, the calculational details are very

complex. The basic idea consists in “decimating” successively all the physical infor-

mation contained in the irrelevant microscopic scales until the relevant macroscopic

scale (ξ ) is reached. To this end the original microscopic system is, at each suc-

cessive step, transformed into a new system with less irrelevant scales. These suc-

cessive transformations form a mathematical (semi-) group which is the RG. Each

such transformation will modify the system’s parameters (the parameters setting the

scales) and this flow of parameters culminates in a set of differential equations for

the relevant parameters which is characteristic of the given RG. Evaluating finally

the “fixed points” of these differential equations allows one to describe ultimately

the system’s behavior at the macroscopically relevant scale. It will be obvious that

this technique, as formulated here, is very general and not limited to, although very

well adapted for, the study of the CP. In fact, the RG-technique can be used to study

any problem for which the physically relevant information is independent of the

system’s microscopic scales. This generality will be used here to illustrate the RG-

technique on a physical problem closely related, but not identical, to the calculation

of a critical exponent. The problem chosen to illustrate the RG-technique concerns

the calculation of the Flory exponent introduced in (8.142). Many of the steps used

in this example can easily be translated into the CP-language but the calculational

details turn out to be much simpler.

10.6 Critical Exponents and the Flory Exponent

The basic reason why the critical exponents (β ,γ,δ ) are non-classical is that the

correlation length of the density fluctuations ξ diverges as ξ ∼ (δ T )−ν (ν = γ/2)
near the CP. Therefore, ξ is the only relevant spacial scale for the study of critical

phenomena. Any theory which neglects fluctuations on this scale will always yield

classical exponents.

A very similar observation can be made with respect to the Flory exponent ν
introduced in (8.142) and characterizing the size R0 of a linear chain of n seg-

ments. In Chap. 8 the classical value ν = 1/2 of the Flory exponent was obtained but
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Fig. 10.4 Two configurations of a chain of ten segments with an exlcuded volume interaction

between segments: a 2 and 5. b 1 and 10

its evaluation did neglect the excluded volume interactions between the segments.

When measuring the distance along the chain of segments these excluded volume

interactions will operate not only between nearby segments, i.e., at short distances,

but also between any two segments whose distance (along the chain) is compara-

ble to the total length of the chain (cf. Fig. 10.4). The presence of these excluded

volume interactions will lead thus to correlations between the position of the seg-

ments with a correlation length comparable to the total length of the chain. In the

asymptotic regime, where the number of segments tends to infinity, this correlation

length will hence diverge. In other words, the relevant scale is not the length of

a segment but the total length of the chain. Rewriting the Flory relation, R0 ∼ nν

for n → ∞, in the form R0 ∼ (1/n)−ν for (1/n) → 0, it becomes obvious that the

evaluation of the Flory exponent ν is analoguous to the evaluation of the critical

exponent of ξ ∼ (δT )−ν (ν = γ/2) for δT → 0, with 1/n playing the role of δT .

It is indeed found experimentally that the Flory exponent ν , although non-classical

(ν �= 1/2), is universal in the sense that its value does not depend on the specific

nature of the segments of the linear chain. The evaluation of the Flory exponent is

thus a good candidate for illustrating the RG-technique. Before doing so one should

nevertheless also point out a difference between the Flory exponent, R0 ∼ (1/n)−ν ,

and the critical exponent , ξ ∼ (δ T )−ν , because, although the two values of ν are

very close and often represented by the same symbol (as here) they are not strictly

equal. It can, in fact, be shown that these two problems do not belong to the same

universality class which, as stated, is determined by the space dimensionality d and

the number of components n (not to be confused here with the number of segments

n) of the order parameter. Indeed, in both cases one is interested in d = 3, but while

ξ corresponds to a scalar (one-component) order parameter it can be shown that

the evaluation of R0 corresponds, formally, to an order parameter whose number of

components tends to zero.
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10.7 RG-Calculation of the Flory Exponent

As in Chap. 8, one considers a linear chain of n−1 ≃ n(n ≫ 1) identical segments

(homopolymer), each of length b, and wants to determine its average size R0 (or

volume 4πR3
0/3) in terms of the fluctuations, namely 〈R〉 = 0,

〈
R2
〉

= R2
0, of the

end-to-end vector R but averaged now over a statistical ensemble which includes

excluded volume interactions between any pair of segments. Let thus v (not to be

confused with the specific volume) denote here the strength of the excluded volume

interaction between two segments. Moreover, since the strength of the fluctuations

of R becomes weaker when the dimensionality d of the working space increases

(see (10.32) for a similar result), a linear chain in a d-dimensional space will hence-

forth be considered since one can always return to d = 3 at the end. To perform

the RG-calculation an original method proposed by P.G. de Gennes in 1972 is fol-

lowed.

10.7.1 RG-Transformations

Starting from the original chain characterized by the triplet {n,b,v}, one first tries to

eliminate (“decimate”) the irrelevant (microscopic) scale b by regrouping formally g

successive segments, g being an integer larger than one, into a new “renormalized”

segment also called a blob (cf. Fig. 10.5). This transformation, say T, of the origi-

nal chain {n,b,v} will produce a new chain characterized by the triplet {n1,b1,v1},

where n1 is the number of new segments, b1 their length, and v1 the strength of

their excluded volume interaction. One has n1 = n/g < n, while b1 and v1 are un-

known functions of b,v, and g. Without loss of generality, these two functions will

be written in the following suggestive form:

g = 2

1

2

3

4

5

6

1

2

3

Fig. 10.5 Transformation of a chain of six original segments into a renormalized chain of three

blobs, each consisting of two original segments
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b1 = bg1/2[1 + h(g,u)], v1 = vg2[1−q(g,u)], (10.33)

where h = h(g,u) and q = q(g,u) are two dimensionless functions of the two di-

mensionless variables, g and u = v/bd , which can be formed with {g,b,v} when

the space dimensionality is d, the strength v having the dimension of the volume

excluded to a second segment due to the presence of a segment. The suggestive

forms used here are such that all the excluded volume effects are contained in

h(g,u) and q(g,u). Indeed, when h(g,u) = 0 the new chain is expected to behave

classically, i.e., b1 ∼ bg1/2, while when h(g,u) �= 0 one expects the excluded vol-

ume effects to increase the size of the chain, hence h(g,u) > 0. Similarly, since

the new segments contain g(g−1)/2 ≃ g2 pairs of old segments, it should be ex-

pected that v1 ∼ vg2, although this probably overestimates the effect, hence one

writes v1 = vg2[1−q(g,u)] with q(g,u) > 0.

Applying now the same transformation T to the new chain {n1,b1,v1}, a twice

renormalized chain {n2,b2,v2} is obtained, and iterating T k-times, i.e., applying Tk

to the original chain {n,b,v}, one obtains a chain characterized by {nk,bk,vk} with

nk = nk−1/g,

bk = bk−1g1/2[1 + h(g,uk−1)], vk = vk−1 g2[1−q(g,uk−1)], (10.34)

and k = 1,2, . . ., n0 = n, b0 = b, v0 = v, together with uk = vk/bd
k . The successive

transformations, Tk, form a mathematical semi-group, namely TkTl = Tk+l , which

fully characterizes the renormalization operations. Note that this semi-group cannot

be completed into a group because the inverse of T cannot be defined. Indeed, at

each transformation the smaller scale bk−1 is eliminated (decimated) in favor of the

larger (g > 1) scale bk and this process cannot be reversed. This semi-group will

nevertheless be designed briefly as the renormalization group (RG).

10.7.2 Fixed-Points of the RG

The basic assumption underlying the RG-equations (10.34) is that at each step of

the renormalization scheme the new chain behaves in the same way as the orig-

inal chain. This is expressed by the fact that in (10.34) the functions h(g,u) and

q(g,u) do not depend explicitly on k, only implicitly via uk−1. This implies a scale-

invariance of the type expected at a CP. To see this more clearly consider now the

“flow” of the dimensionless parameter uk as k increases. From (10.34) one obtains

for uk = vk/bd
k :

uk = uk−1gε/2[1− l (g,uk−1)], (10.35)

where ε ≡ 4−d, together with

1− l (g,u) =
1−q(g,u)

[1 + h(g,u)]d
, (10.36)
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so that, for a given value of d = 4− ε and g, (10.35) determines the flow uk−1 → uk

in terms of the function l (g,u) defined by (10.36). When k increases, nk decreases

while bk and vk increase, so that uk = vk/bd
k may either increase indefinitely or tend

to a finite value u∗. Physically, one expects the latter to be the case. The limiting

value u∗ must then obey (10.35),

u∗ = u∗gε/2[1− l (g,u∗)], (10.37)

for any g, i.e., when uk → u∗ the system will have reached a state which is inde-

pendent of the scale g. Note, however, that k cannot increase beyond the value k∗

for which nk∗ = 1. Nevertheless, since n ≫ 1 one expects k∗ ≫ 1 and one often

assimilates u∗ to limk→∞ uk.
Any solution, u = u∗, of (10.37) is called a fixed point of the RG. By construction

one has l (g,0) = h(g,0) = q(g,0) = 0, and, therefore, (10.37) always admits the

trivial fixed-point u∗ = 0, corresponding to the classical theory (ν = 1/2). Any non-

trivial fixed-point u∗ �= 0 must, therefore, be a solution of

1 = gε/2[1− l (g,u∗)], (10.38)

and, henceforth, such a solution will be assumed to exist.

10.7.3 Non-classical Flory Exponent

The problem one originally did set out to solve with the aid of the RG-technique

did concern the relation between R0 and n for n ≫ 1, namely R0 ∼ nν . This relation

may be formally written as R0 = b f (n,u), where f (n,u) is unknown except that

f (n,0)∼ n1/2, since u = 0 corresponds to the classical theory. As the value of R0 is

not affected by the renormalization of the segments, one must have

R0 = b f (n,u) = b1 f (n1,u1) = . . .. = bk f (nk,uk) , (10.39)

and, therefore,

bk−1 f (nk−1,uk−1) = bk f (nk,uk) , (10.40)

which, using (10.34) to evaluate bk/bk−1, can be transformed into

f

(
n

gk
,uk

)
= f

(
n

gk−1
,uk−1

)
1

g1/2[1 + h(g,uk−1)]
. (10.41)

Assume now that k is large enough (k ≫ 1) so that one may approximate the

solution of uk of (10.35) by the fixed-point value u∗. Then (10.41) reduces to

f

(
n

gk
,u∗
)

= f

(
n

gk−1
,u∗
)

1

g1/2[1 + h(g,u∗)]
. (10.42)
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To solve (10.42) one may write f (nk,u
∗) = C (u∗)nν

k , where ν is the Flory expo-

nent. Substituting this power-law into (10.42) yields

C (u∗)
nν

gkν
= C (u∗)

nν

g(k−1)ν

1

g1/2[1 + h(g,u∗)]
, (10.43)

or

ν =
1

2
+

ln[1 + h(g,u∗)]
lng

. (10.44)

It is seen from (10.44) that for any non-trivial fixed-point u∗ �= 0, the Flory expo-

nent ν will take on a non-classical value (ν �= 1/2), whereas for u∗ = 0 one recovers

the classical value ν = 1/2, since h(g,0) = 0.

10.7.4 Critical Dimension

The search for a non-classical value of ν is thus reduced to the search for a non-

trivial fixed point u∗ �= 0. The very reason why one did use a d-dimensional presen-

tation is that there exists a particular value of d for which the solution of the fixed-

point equation (10.38) becomes trivial. Indeed, for ε = 0, or equivalently d = 4,

(10.38) reduces to l (g,u∗) = 0, which implies u∗ = 0. Hence for the particular value

d = 4 the only fixed-point is the trivial one u∗ = 0 and the Flory exponent will al-

ways be classical. This value of d is called the critical dimension of the present RG.

Of course, experiments in d = 4 are not possible but, following a suggestion of K.

Wilson and M. Fischer (1971), one may try to evaluate ν or u∗ by treating d = 4−ε
as a continuous variable and by performing a perturbation expansion for small ε-

values, i.e., by expanding ν in a power series in ε . Theoretically there is, of course,

no difficulty in treating d as a continuous variable.

10.7.5 ε-Expansion

Since for ε = 0 the solution of (10.38) is u∗ = 0, one expects that for ε �= 0 but

|ε| ≪ 1 (10.38) will have a solution such that |u∗| ≪ 1. For small-ε one may thus

expand the basic unknowns, h(g,u), q(g,u), and l (g,u) in a power series in u and

retain only the dominant terms, namely

h(g,u) = Chu + O
(
u2
)
,

q(g,u) = Cqu + O
(
u2
)
,

l (g,u) = Clu + O
(
u2
)
, (10.45)

where Ch, Cq, and Cl are constants depending on g and ε but not on u. Note that

from (10.36) one has Cl = Ch +dCq, while (10.38) becomes now to dominant order:
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1 = gε/2 (1−Cl u∗) . (10.46)

Rewriting (10.46) as

gε/2Cl u∗ = gε/2 −1, (10.47)

where gε/2 −1 is a small quantity which may be rewritten as

gε/2 = 1 +
ε

2
lng + O

(
ε2
)
, (10.48)

so that the solution of (10.47) will read to dominant order in ε

u∗ =
ε lng

2Cl

. (10.49)

Substituting (10.49) into (10.44) yields then

ν =
1

2
+

ln(1 +Chu∗)
lng

≃ 1

2
+

Chu∗

lng
=

1

2
+

ε

2

(
Ch

Cl

)

ε=0

, (10.50)

which clearly shows that ν is non-classical when ε �= 0, and hence one expects ν to

be non-classical also for the physical value ε = 1 or d = 3, although it is not obvious

that the small ε-expansion (10.50) can still be used when ε → 1. It is known, in fact,

that the perturbation expansion (10.45) diverges when ε = 1, i.e., the excluded vol-

ume effects are not small in d = 3, so why should things improve when ε is small?

To understand why this is the case, some qualitative properties of the RG-equations

(10.34) are now considered.

10.7.6 Differential RG-Equations

In order to study the two basic RG-equations, namely

bk+1 = bkg1/2[1 + h(g,uk)], uk+1 = ukgε/2[1−q(g,uk)], (10.51)

in more detail, one first transforms these finite-difference equations into differential

equations. Although, physically, k and g are integers, the only mathematical con-

dition used until now is g > 1. One replaces, therefore, the (finite) elementary step

(k → k + 1) of the RG-transformation by an infinitesimal one by treating now also

g as a continuous variable and writing g = 1+Δg, with Δg ≪ 1. If at the step k the

length of the renormalized segment was s, then at the next step k +1 this length will

increase to s+ Δs. One will thus also replace the discrete variable k by the continu-

ous variable s, namely bk → b(s), and uk → u(s), and the discrete transformation by

s+Δs = gs = (1 + Δg)s so that Δg = Δs/s represents now the infinitesimal relative

increase in the length s of the segments. In this representation, the original transfor-

mation, bk → bk+1, will thus be replaced by b(s) → b(s+ Δs) with Δs = sΔg. Now

first rewrite (10.51) as:
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bk+1 −bk = bk

(
g1/2 −1

)
+ bkgε/2h(g,uk) , (10.52)

and

uk+1 −uk = uk

(
gε/2 −1

)
−ukgε/2q(g,uk) , (10.53)

and consider the limit Δg → 0. Since

bk+1 −bk → b(s+ Δs)−b(s) = Δs
db(s)

ds
+ O

(
(Δs)2

)
,

the l.h.s. of (10.52) and (10.53) will be first order in Δs. The first term in the r.h.s.

of (10.52) and (10.53) will also be first order in Δs, namely

bk

(
g1/2 −1

)
→ b(s)

(
(1 + Δg)1/2 −1

)
= b(s)

Δg

2
+ O

(
(Δg)2

)
,

since Δg = Δs/s. The limit Δg → 0 of the second term can, however, not be taken

as such. To perform this limit first observe that for small-ε one has l (g,uk) =Cluk +
O
(
u2

k

)
, but that according to (10.47) u∗ will remain finite for small ε only if one has

Cl ∼ g1/2 −1. Now introduce the new constants Ch, etc. according to

Ci =
(

g1/2 −1
)

Ci, (i = h,q, l) , (10.54)

instead of the constants Ch, etc. of (10.45). Note that in the present notation one has

u∗ = 1/Cl , cf. (10.49), and Ch/Cl = Ch/Cl , cf. (10.50). Returning now to (10.52)

and (10.53), it is seen that the second term is also first-order in Δg because

bkg1/2h(g,uk) → b(s)g1/2
(

gε/2 −1
)

Chu,

and

gε/2 −1 =
ε

2
Δg + O

(
(Δg)2

)
.

Therefore, dividing (10.52) and (10.53) by Δs = sΔg and taking the limit Δg→ 0

one obtains finally

db(s)

ds
=

b(s)

2s

(
1 + εChu(s)

)
, (10.55)

and
du(s)

ds
= ε

u(s)

2s

(
1−Clu(s)

)
, (10.56)

i.e., two differential equations which, for g− 1 and ε small, are equivalent to the

original RG-equations (10.51), except that the finite transformation g has been re-

placed here by an infinitesimal transformation g = 1+Δg. Since (10.55) is linear in
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b(s) it can be easily integrated in terms of u(s). The basic equation is thus (10.56)

which is non-linear in u(s).

10.7.7 Stability of the Fixed Points

Using (10.49) and (10.54) one may rewrite (10.56) as

du(s)

ds
= ε

u(s)

2s

(
1− u(s)

u∗

)
, (10.57)

whose qualitative properties are now considered. The two stationary points of the

differential equation (10.57) are seen to coincide with the two fixed-points, u(s) = 0

and u(s) = u∗ of the RG. When u is not a fixed-point, u′ (s) ≡ du(s)/ds will have

the same sign as εu(s) (1− u(s)/u∗) because s > 0, while for s → ∞, u′ (s) will

decrease as 1/s. This qualitative relation between u′ (s) and u(s), i.e., the so-called

phase-portrait of the differential equation (10.57), can thus be represented as shown

in Fig. 10.6. As seen from the figure, u′ (s) changes sign when u(s) is close to a

fixed-point but the detailed behavior still depends on the sign of ε . Assume, for

example, that one starts initially from a value u(s) = u0 close to u∗ and consider

the case ε > 0. If one increases s from s0 to s1 (s1 > s0), u(s) will change from

u0 ≡ u(s0) to u1 ≡ u(s1). From the figure it is seen that if u1 > u∗ then u′ (s1) < 0

and the differential equation (10.57) counteracts the further increase of u(s). Simi-

larly, if u1 < u∗ then u′ (s1) > 0 and (10.57) also counteracts this decrease of u(s).

Therefore, the differential equation (10.57) is such as to prevent the solution u(s)
to run away from u = u∗. Hence, all the trajectories u(s), i.e., all the solutions of

(10.57) corresponding to different initial values u0, will ultimately tend to the point

u = u∗. Such a point is called a stable fixed-point or an “attractor” of the differential

equation (10.57). Note that when ε < 0 this behavior is reversed, i.e., all the trajec-

tories u(s) now run away from u = u∗. Such a point is called an unstable fixed-point.

ε < 0

u

du
ds

0 u*u

du
ds

0

ε > 0

u*

Fig. 10.6 Phase-portrait of the differential equation (10.57). The arrows indicate the flow of u in

the vicinity of the two fixed points
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u

ε < 01/s

s = s0

0u0

ε > 01/s

s = s0

u*u*

Fig. 10.7 Solutions u(s) of (10.57) for different values u0 = u(s0). For convenience u(s) is plotted

versus 1/s so that the asymptotic state (s → ∞) corresponds here to 1/s → 0

One can thus say that the fixed-point u = u∗ is stable when ε > 0 and unstable for

ε < 0 while, conversely, the fixed-point u = 0 is unstable when ε > 0 and stable

for ε < 0. This same behavior is also often represented in the flow diagram of u(s)
versus s as shown in Fig. 10.7 which represents a few trajectories u(s) here shown

versus 1/s so that asymptotically 1/s → 0. From this figure it is clearly seen that the

solutions of (10.57) come in two families separated by a separatrix. When ε > 0, this

separatrix is u = 0, while it is u = u∗ for ε < 0. Translated in the present context this

implies that for the physically relevant values of ε , i.e., ε > 0, one may start from

any initial value, u0 > 0, the asymptotic properties of the corresponding solution

u(s) will always be controlled by the non-trivial stable fixed point u = u∗ and hence

the Flory exponent will be non-classical. Therefore, the above calculation, based on

small positive values of ε and u∗, describes the correct physics, even when the final

(positive) values of ε and u∗ turn out not to be small.

More generally, any physical problem which is dominated by long-ranged cor-

relations, and whose RG-equations have the same mathematical structure, will be

described by the same characteristic exponents, explaining hereby the high degree

of universality found between these phenomena. This also explains the widespread

use of RG-techniques in many different branches of physics.

10.7.8 Numerical Value of the Flory Exponent

As one is insured now that (10.50) contains the correct physics of this problem,

it is tempting to evaluate it for the physically relevant value ε = 1. This can be

done provided one knows Ch/Cl = Ch/Cl for g = 1 and ε → 0. Since these con-

stants result from the perturbation expansion (10.45), their evaluation is not more

difficult than, say, the evaluation of the second and the third virial coefficient for
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this, or a related, problem. One then finds that (Ch/Cl)ε=0 = 1/8, so that (10.50)

becomes

ν =
1

2
+

1

16
ε + O

(
ε2
)

(10.58)

or, if the expansion is extended to second-order in ε ,

ν =
1

2
+

1

16
ε +

15

512
ε2 + O

(
ε3
)
. (10.59)

Evaluating now the Flory exponent ν for ε = 1 (d = 3) one finds from (10.58)

ν ≃ 0.5625 and from (10.59) ν ≃ 0.592, which compare well with the experimen-

tal value ν = 0.588± 0.001. This can be viewed as a manifestation of the “un-

reasonable success of mathematics in physics” (E. Wigner) because, remember,

the radius of convergence of (10.59) is not known. While these ε-expansions are

probably not convergent for ε = 1, they are usually considered to be asymptotic

expansions.

10.8 Numerical Values of the Critical Exponents

As will be obvious from the above, similar ε-expansions can be found also for the

critical exponents, although at the expense of more complex calculations. One then

finds to first-order in ε that

β =
1

2
− 3

2(n+ 8)
ε + O

(
ε2
)
, (10.60)

γ = 1 +
n+ 2

2(n+ 8)
ε + O

(
ε2
)
, (10.61)

δ = 3 + ε + O
(
ε2
)
, (10.62)

for a system which is d = 4 − ε dimensional and has a CP described by a n-

component order parameter, i.e., for the universality class (d,n). For instance, for

the liquid–vapor CP one obtains by substituting ε = 1 and n = 1 in (10.60–10.62)

that β ≃ 1/3, γ ≃ 7/6, and δ ≃ 4, which are in fair agreement with the experimen-

tal values β ≃ 0.3265, γ ≃ 1.239, and δ ≃ 4.5. Note also that the Flory exponent

expression of (10.59) corresponds to (10.61), namely ν = γ/2, for n → 0, a fact

first pointed out by P. G. de Gennes (1972). Observe also that (10.60–10.62) satisfy

(10.23).

The RG-idea can thus be considered to solve the CP-enigma in a satisfactory

manner although, of course, the very reason of the quantitative success of the ex-

pansions (10.60–10.62) for ε = 1 remains somewhat obscure.
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Chapter 11

Interfaces

Abstract As has been analyzed in Chap. 9, in a discontinuous phase transition two

phases of different average density may coexist in equilibrium. In the various ex-

amples of coexistence considered in Sects. 9.1 and 9.2, the average densities of

the phases are uniform, i.e., the conditions of mechanical equilibrium and chemical

equilibrium at a given temperature have been derived from the free energy of each

bulk phase (in the thermodynamic limit), and so the density at coexistence changes

discontinuously from one phase to the other. For instance, in the liquid–vapor transi-

tion the densities at coexistence are uniform, ρL(T ) and ρV (T ), according to (9.18).

This is only an approximation since, as may be observed experimentally, there are

two kinds of surface effects to be considered. The first one is the effect of the walls

of the container, which is not specific to the system and which gives rise to the well-

known meniscus effects, which may be neglected at points far away from the wall.

The second effect is that, due to the gravitational field, the denser phase (the liquid)

occupies the lower part of the container, the less dense phase (the vapor) the upper

part, and the local equilibrium density ρ1(r) = ρ1(z) will change continuously (al-

beit abruptly) from one phase to the other. This profile and the discontinuous profile

of Chap. 9 are shown schematically in Fig. 11.1 Note that for the continuous profile

Fig. 11.1 Schematic repre-

sentation of the liquid–vapor

local density, ρ1(z), as a

function of the height z.

The thermodynamic density

changes discontinuously at

z = z0 from ρL to ρV (broken

line) while the local density

changes continuously from

ρL to ρV through the interface

(ρ ′
1(z) �= 0) (continuous line)

ρ1

ρL

ρV

z0 z

a
b

c

d e
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ρ1(z) ≃ ρL(T ) (z < z0), ρ1(z) ≃ ρV (T ) (z > z0) and in the interface (z ≃ z0) the

gradient of the local density is ρ ′
1(z) = dρ1(z)/dz �= 0. The consequences of the

existence of this transition region or interface between the two coexisting phases are

studied in this chapter.

11.1 Non-uniform Systems

A system like the one just described is an example of a non-uniform fluid in which

the local density of particles at equilibrium ρ1(r)> 0 is a function of r normalized as

∫
drρ1(r) = N , (11.1)

where N is the number of particles. Other examples of non-uniform systems (crys-

tals, quasicrystals, and liquid crystals) have been analyzed in Chap. 8. In non-

uniform systems, the intrinsic Helmholtz free energy is a functional of the local

density of particles, which is denoted by F(T,V,N; [ρ1]) or, in abbreviated form,

F[ρ1] (see Appendix C). According to the mean field theory of Sect. 7.6, if the in-

teraction potential may be written as V (r) = VR(r)+VA(r), where VR(r) and VA(r)
are the repulsive and attractive parts of the interaction, the functional F[ρ1] (see

(7.78)) may be written as

F[ρ1] = F
id[ρ1]+FR[ρ1]+FA[ρ1] , (11.2)

where

F
id[ρ1] = kBT

∫
drρ1(r)

(
ln
(
ρ1(r)Λ

3
)
−1
)

(11.3)

is the ideal part, FR[ρ1] is the contribution due to VR(r), and

FA[ρ1] =
1

2

∫
drρ1(r)

∫
dr′ρ1(r

′)VA(|r− r′|) . (11.4)

If VR(r) is a hard-sphere potential, the van der Waals theory of Sect. 8.4.2 may

be generalized to a non-uniform system (see (8.74)) and one may approximate the

functional FR[ρ1] by

FR[ρ1] = −kBT

∫
drρ1(r) ln

(
1− ρ1(r)

ρ0

)
, (11.5)

which implies that

1− ρ1(r)

ρ0

> 0 , (11.6)

for all r. From (11.3) and (11.5) one has
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F
id[ρ1]+FR[ρ1] =

∫
dr f HS(T,ρ1(r)) , (11.7)

where

f HS(T,ρ) = kBT ρ

(
ln
(
ρΛ 3

)
−1− ln

(
1− ρ

ρ0

))
(11.8)

is the free energy density (Helmholtz free energy per unit volume) of a uniform hard-

sphere (HS) fluid of density ρ . Observe that the integrand in (11.7) f HS(T,ρ1(r)) is

a function of ρ1(r) (not a functional) obtained by replacing the uniform density ρ by

the local non-uniform density ρ1(r) in (11.8). Since in this case Fid[ρ1]+FR[ρ1] is

the integral of a function of the local density ρ1(r), one says that this approximation

of the functional is “local.”

Note that, in contrast, FA[ρ1] is “non-local”, since it is a functional of ρ1(r) and

ρ1(r
′), that may be written as

FA[ρ1] =
1

2

∫
drρ1(r)U(r, [ρ1]) , (11.9)

where U(r, [ρ1]) is the mean potential at r due to the attractive part of the potential,

i.e.,

U(r, [ρ1]) =

∫
dr′ρ1(r

′)VA(|r− r′|) . (11.10)

Since this potential is the sum of a local contribution

U0(r, [ρ1]) = ρ1(r)

∫
dr′VA(|r− r′|) , (11.11)

and a non-local contribution

δU(r, [ρ1]) =

∫
dr′
{

ρ1(r
′)−ρ1(r)

}
VA(|r− r′|) , (11.12)

from (11.7), (11.11), and (11.12) one finally has

F[ρ1] =

∫
dr f 0(T,ρ1(r))+

1

2

∫
drρ1(r)δU(r, [ρ1]) , (11.13)

where

f 0(T,ρ) = kBT ρ

(
ln
(
ρΛ 3

)
−1− ln

(
1− ρ

ρ0

))
−aρ2 , (11.14)

is the free energy density (Helmholtz free energy per unit volume) of a uniform fluid

of density ρ in the van der Waals theory (see (8.81) and (8.82)).

In the study of some applications, it is useful to make a local approximation for

the non-local potential δU(r, [ρ1]) of the form
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δU(r, [ρ1]) =

∫
dr′VA(|r− r′|)

(
(r′− r) ·∇

)
ρ1(r)

+

∫
dr′VA(|r− r′|)1

2

(
(r′− r) ·∇

)2
ρ1(r)+ . . .

= −a2∇2ρ1(r)+ . . . , (11.15)

where it has been taken into account that
∫

dr ′(r′− r)VA(|r− r′|) =

∫
drrVA(r) = 0 , (11.16)

and

1

2

∫
dr′ (r′− r)(r′− r)VA(|r− r′|) =

1

2

∫
drrrVA(r) = −a2I , (11.17)

where I is the unit tensor and a2 is a positive constant:

a2 = −1

6

∫
drr2 VA(r) , (11.18)

which is finite as long as VA(r) decreases more rapidly than r−5 when r → ∞.

Note that within the local approximation (11.15) the functional (11.13) reads

F[ρ1] =
∫

dr

(
f 0(T,ρ1(r))−

1

2
a2ρ1(r)∇

2ρ1(r)

)
, (11.19)

and so, if ∇ρ1(r) vanishes at the limits of integration, upon integration by parts

one has

F[ρ1] =

∫
dr

(
f 0(T,ρ1(r))+

1

2
a2 {∇ρ1(r)}2

)
, (11.20)

which is called the square gradient approximation, since the correction due to the

gradients of ρ1(r) is proportional to {∇ρ1(r)}2
.

11.2 Density Profile

In the van der Waals theory, the functional (11.13) has to be minimized to obtain

the equilibrium local density ρ1(r) but, due to the restriction (11.1), it is necessary

to use a Lagrange multiplier to eliminate this constraint (see Chap. 7). In this way,

if µ is the Lagrange multiplier, one has to minimize, now without restriction, the

functional F[ρ1]− µ
∫

drρ1(r). Therefore, consider the functional (7.66),

A[ρ1] = F[ρ1]− µ
∫

drρ1(r)+

∫
drρ1(r)φ (r) , (11.21)
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where φ (r) is an external potential. The extremum ρ1(r) of (11.21) is obtained from

(
δF[ρ1]

δ ρ1(r)

)

ρ1(r)=ρ1(r)

− µ + φ(r) = 0 , (11.22)

which using (11.12–11.14) may be written as

µ = φ(r)+ kBT

(
ln

(
ρ1(r)Λ

3

1−bρ1(r)

)
+

bρ1(r)

1−bρ1(r)

)

+

∫
dr′ρ1(r

′)VA(|r− r′|) (11.23)

where b = 1/ρ0.

Since

µHS(T,ρ) =
∂ f HS(T,ρ)

∂ρ
, (11.24)

and

µ0(T,ρ) =
∂ f 0(T,ρ)

∂ρ
= µHS(T,ρ)−2aρ , (11.25)

(11.23) for the equilibrium profile ρ1(r) may be expressed in different ways as

µ = φ (r)+ µHS(T,ρ1(r))+

∫
dr′ρ1(r

′)VA(|r− r′|) , (11.26)

µ = φ (r)+ µ0(T,ρ1(r))+ δU(r, [ρ1]) , (11.27)

or, alternatively, in the local approximation of δU(r, [ρ1]),

µ = φ (r)+ µ0(T,ρ1(r))−a2∇2ρ1(r) . (11.28)

Note that when solving any of these equations, the parameter µ must be chosen in

such a way that the normalization condition (11.1) is verified.

As a simple application of a non-uniform system in equilibrium, consider the

liquid–vapor coexistence with a planar interface, i.e., ρ1(r) = ρ1(z), where z is the

coordinate perpendicular to the planar interface, so that the density profile behaves

qualitatively as the continuous profile of Fig. 11.1. Note that although (11.26) is a

non-linear integral equation for ρ1(z) which has to be solved numerically, in the

local approximation it is replaced by the differential equation (11.28). The potential

φ(r) in (11.28) is the sum of two contributions. The first, φ R(r), is the one that keeps

the system inside the container and whose effect may be neglected at points far away

from the walls. The second contribution, φ (z), is the gravitational potential respon-

sible for the spatial separation of the phases. If this potential is weak (φ(z) → 0), it

may be neglected in (11.28) and replaced by adequate boundary conditions. There-

fore, the equation that determines the density profile when the interface is planar is

given by

µ = µ0(T,ρ1(z))−a2ρ ′′
1(z) , (11.29)
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where a prime denotes a derivative with respect to the argument, which is an ordi-

nary second-order differential equation whose solution has to satisfy the boundary

conditions

lim
z→−∞

ρ1(z) = ρL, lim
z→∞

ρ1(z) = ρV , (11.30)

and

lim
z→−∞

ρ ′
1(z) = 0 , lim

z→∞
ρ ′

1(z) = 0 , (11.31)

which express that ρ1(z) has to smoothly turn over into the liquid (z = −∞) or the

vapor (z = ∞) bulk phase. If this is the case then, ρ ′′
1(±∞) = 0, and, when z = ±∞,

(11.29) reduces, according to (11.30)-(11.31), to

µ = µ0(T,ρL) = µ0(T,ρV ) , (11.32)

which expresses the equality of the chemical potentials of the liquid and vapor

phases. Note that since µ in (11.32) is equal to the chemical potential of both

phases, this parameter may be interpreted as being the chemical potential of the

non-uniform system which, according to (11.29), is constant all over the system.

Observe that (11.29) contains two positive constants a and a2, given by (11.14) and

(11.18), which yield a characteristic length l :

l2 ≡ a2

a
, (11.33)

which, together with the parameter b = 1/ρ0, completely determines the van der

Waals theory of planar interfaces. Introducing the dimensionless variables

x =
z

l
, t =

kBTb

a
, η(x) = bρ1(z) , (11.34)

(11.29) may be cast in the form

µ(t,η(x))− µ(t,ηL,V )− 1

t
η ′′(x) = 0 , (11.35)

where ηL,V denotes indistinctly ηL or ηV and µ(t,η) has been defined as

µ(t,η) = ln

(
η

1−η

)
+

η

1−η
− 2

t
η =

∂ f (t,η)

∂η
, (11.36)

with

f (t,η) = η

(
ln

(
η

1−η

)
−1

)
− 1

t
η2 . (11.37)

Multiplying (11.35) by η ′(x), the resulting equation may be written as

∂

∂x

(
f (t,η(x))−η(x)µ(t,ηL,V )− 1

2t
{η ′(x)}2

)
= 0 , (11.38)
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i.e.,

f (t,η(x))−η(x)µ(t,ηL,V )− 1

2t
{η ′(x)}2 = CL,V , (11.39)

where the constants CL,V are obtained from the determination of the limits x →±∞,

namely

CL,V = f (t,ηL,V )−ηL,V µ(t,ηL,V ) = −
ηL,V

1−ηL,V

+
1

t
η2

L,V . (11.40)

Note that CL = CV , since − f (t,η) + ηµ(t,η) is proportional to the pressure,

which is the same in both phases. Therefore, from (11.40) it follows that the equation

for the density profile (11.39) reads

f (t,η(x))− f (t,ηL,V )− (η(x)−ηL,V )
∂ f (t,ηL,V )

∂ηL,V

− 1

2t
{η ′(x)}2 = 0 . (11.41)

In the vicinity of the critical point (T < Tc) the variables ηL,ηV , and η(x) do not

differ much from ηc = 1/3 (see (9.68)) and the gradients of ρ1(z) are small, and

hence the expansion (11.15) converges whenever VA(r) is short-ranged as indicated

in (11.18). Therefore, in the critical region all the terms of (11.41) are small. Note,

further, that the expression

Δ f (T,η(x)) = f (t,η(x))

−
(

f (t,ηL,V )+ (η(x)−ηL,V )
∂ f (t,ηL,V )

∂ηL,V

)
, (11.42)

that appears in (11.41) is the difference between f (t,η) evaluated at η = η (x) and

the Maxwell double tangent construction on this function between η(x) = ηL and

η(x) = ηV . Since f (t,x) is the free energy density in the van der Waals theory, this

function has a loop when T < Tc, and so Δ f (T,η(x)) > 0 when η(x) �= ηL,V and

Δ f (T,η(x)) = 0 at η(x) = ηL,V . These results are consistent with (11.41), which

may be written as

η ′(x) = ±
√

2tΔ f (T,η(x)) . (11.43)

When T ≃ Tc (T < Tc), Δ f (T,η) may, therefore, be approximated, according to the

comments below (11.42), by the function

Δ f (T,η) = c(η −ηL)
2(η −ηV )2 , (11.44)

where c is a positive constant. Note that with the approximation (11.44) the deriva-

tive ∂Δ f (T,η)/∂η vanishes at the points ηL, ηV , and (ηL + ηV )/2, and hence

the constant c may be determined by imposing the condition that (11.44) verifies

(11.41) for the particular value η = (ηL +ηV )/2. Upon substitution of (11.44) into

(11.43) and subsequent integration, one finds
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ln

(
η(x)−ηV

ηL −η(x)

)
= ±

√
2ct(ηL −ηV )(x− x0) , (11.45)

where x0 is a constant of integration whose value will be determined later on, so

that, in terms of the variables z and ρ1(z), eliminating η(x) in (11.45) leads to

ρ1(z) =
1

2
(ρL + ρV )− 1

2
(ρL −ρV )tanh

(
z− z0

2ξ

)
, (11.46)

where ξ is a new characteristic length defined by

ξ =
l

b(ρL −ρV )
√

2ct
. (11.47)

Equation (11.46) is the density profile of a planar liquid–vapor interface in the

van der Waals theory. Note that, due to the local approximation (11.28), ρ1(z) de-

creases exponentially to ρL when z → −∞ and to ρV when z → ∞. On the other

hand, when ρ1(z) is obtained from (11.26) or (11.27), the density profile depends

on the particular form of VA(r) and not only of the moments of the attractive po-

tential (a and a2) as in (11.46). In spite of the approximations that have been in-

troduced, (11.46) provides a good fit for the experimental results and its form is

similar to the continuous profile of Fig. 11.1. The characteristic length ξ , which

diverges at the critical point, is a measure of the width of the interface. Note that

ρ(z0) = (ρL +ρV )/2, although the van der Waals theory does not allow one to pre-

dict the value of z0. In fact, since (11.29) depends on z only through the density

profile, if ρ1(z) is a solution to the equation, so is ρ1(z− z0) for any z0. When the

density profile (11.46) is replaced by a discontinuous profile, as done in thermody-

namics, the discontinuity is located in a plane z = z0. For this plane one generally

chooses the so-called zero adsorption Gibbs surface, which is defined by the follow-

ing equation, ∫ z0

−∞
dz {ρL −ρ1(z)} =

∫ ∞

z0

dz {ρ1(z)−ρV } , (11.48)

and which implies that the areas abc and cde of Fig. 11.1 are equal, as is the case of

(11.46). Note that the choice of the Gibbs surface (11.48) to locate the interface is

an extra-thermodynamic hypothesis.

11.3 Pressure Profile

In thermodynamics, the liquid–vapor interface is viewed as a discontinuous surface

characterized by a surface tension coefficient γ . In the case of a spherical interface of

radius R (a drop of liquid), the pressure profile has been represented in Fig. 11.2 and

the pressure difference pL − pV is given by the Laplace equation pL − pV = 2γ/R.

Note the similarity with Fig. 11.1, but with the difference that pL − pV → 0 when

R → ∞, while ρL −ρV �= 0 even at a planar interface (corresponding to R = ∞).
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Fig. 11.2 Schematic repre-

sentation of the discontinuous

local pressure p(r) of a spher-

ical liquid drop of radius R

as a function of the distance

r to the center of the sphere.

pL and pV are the pressures

of the liquid and the vapor,

respectively, whose differ-

ence is given by the Laplace

equation pL − pV = 2γ/R,

where γ is the surface tension

coefficient

p

pL

p V

R r

As will be shown in this section, the real pressure profile is not discontinuous

but rather it is continuous, as shown in Fig. 11.3 (spherical and planar interfaces).

Note that in the interface the local pressure becomes negative, which gives rise to

a surface or interfacial “tension” (negative pressure). This occurs even at a planar

interface (Fig. 11.3) and so one has γ �= 0 even when R = ∞. The pressure profile

of a planar interface is determined in this section while the determination of the

surface tension coefficient and the analysis of the relation between the planes z = z′0
and z = z0 of Figs. 11.3 and 11.1 are carried out in the next section.

In order to study the pressure profile across a planar interface, consider once

more the van der Waals theory of Sect. 11.1. In the first place, it is necessary to

introduce the concept of local pressure in a non-uniform system for which, as usual,

this field is defined through the linear relation in an equilibrium system between

the “work of deformation” (or variation of the free energy) and the “deformation”

variable. The latter, up to a change of sign, is the differential change of volume

of the system which is generally obtained via an infinitesimal displacement of one

of the boundaries of the region that contains the system (at constant T and N).

Therefore,

(δF[ρ1])T,N = −
∫

A
dS ·δu(S) p(S) , (11.49)

where (δF[ρ1])T,N is the variation of the free energy, p(S) is the local pressure act-

ing on the surface S, δu(S) is the infinitesimal displacement of a surface element

dS, and the integral extends over the area A of the closed surface of the container.

Since dS is a surface element oriented in the normal direction and pointing outwards

of the system, (11.49) may be written as

(δF[ρ1])T,N = −
∫

A
dS δun(S) p(S) , (11.50)

where δun(S) is the normal component of the displacement. Note that in the case of

a uniform system, p(S) = p and δun(S) = δun (independent of S), and so (11.50)

reduces to
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p

pL

p V
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pL = p V

0
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Fig. 11.3 Schematic representation of the continuous local pressure p(r) of a spherical liquid drop

of radius R as a function of the distance r to the center of the sphere and of the continuous local

pressure p(z) of a planar interface as a function of the height z. pL and pV are the pressures of the

liquid and the vapor, respectively. Note that in both cases the local pressure becomes negative in

the interfacial region

(δF[ρ1])T,N = −p

∫

A
dS δun = −pAδun = −pdV , (11.51)

which is the thermodynamic relation (2.27). Equation (11.50) is, therefore, the gen-

eralization of (11.51) to non-uniform systems. Since p(S) in (11.50) is a thermody-

namic definition of the local pressure, one needs a statistical theory to determine it.

Note that if the potential that keeps the particles in the closed region φ R(r) changes

(at constant T and N) by δφ R(r), then upon application of (11.21) to an equilibrium

system one has (
δF[ρ1]

δφ R(r)

)

T,N

= ρ1(r) , (11.52)

and thus (see Appendix C)



11.3 Pressure Profile 301

(δF[ρ1])T,N =

∫
drρ1(r)δφ R(r) . (11.53)

On the other hand, from (11.26) it follows that

δφR(r) = −∂ µHS(T,ρ1(r))

∂ρ1(r)
δρ1(r)−

∫
dr′ δρ1(r

′)VA(|r− r′|) , (11.54)

where δ ρ1(r) is the variation of the equilibrium density profile corresponding to

δφR(r). In order to determine the local pressure on the plane x = 0, note that a

local deformation of this plane x → x + δun(y,z) produces a change in the density

ρ1(x,y,z) → ρ1(x + δun(y,z),y,z), namely

δρ1(r) =
∂ρ1(r)

∂x
δun(y,z) , (11.55)

which after substitution into (11.53) and (11.54) yields

(δF[ρ1])T,N = −
∫

drρ1(r)

{
∂ µHS(T,ρ1(r))

∂ρ1(r)

∂ρ1(r)

∂x
δun(x,y)

+

∫
dr′

∂ρ1(r
′)

∂x′
δun(y

′,z′)VA(|r− r′|)
}

. (11.56)

On the other hand, (11.50) reads

(δF[ρ1])T,N = −
∫

dy

∫
dzδ un(y,z) p(y,z), (x = 0) , (11.57)

and so, comparing (11.56) and (11.57), it follows that

p(y,z) =

∫ ∞

−∞
dxρ1(r)

∂ µHS(T,ρ1(r))

∂ρ1(r)

∂ρ1(r)

∂x
(11.58)

+

∫ ∞

−∞
dx

∂ρ1(r)

∂x

∫
dr′ ρ1(r

′)VA(|r− r′|) , (11.59)

or, alternatively, since

ρ
∂ µHS(T,ρ)

∂ρ
=

∂ pHS(T,ρ)

∂ρ
, (11.60)

where pHS(T,ρ) is the pressure of a hard-sphere fluid, one finally obtains

p(y,z) =

∫ ∞

−∞
dx

∂ pHS(T,ρ1(r))

∂x

+

∫ ∞

−∞
dx

∂ρ1(r)

∂x

∫
dr′ ρ1(r

′)VA(|r− r′|) . (11.61)
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In order to apply (11.61) to a planar liquid–vapor interface one has, first, to create

a boundary in the infinite system. To that end, one removes the fluid contained in

the half-space x < 0 and the local pressure exerted by the half-space x < 0 on the

half-space x > 0 is determined through (11.59) with (Fig. 11.4):

ρ1(r) = ρ1(z)Θ(x) , (11.62)

where Θ(x) is the Heaviside step function. Substituting (11.61) into (11.59), one

has

p(z) = pHS(ρ1(z))

+

∫ ∞

−∞
dxρ1(z)δ (x)

∫
dr′ ρ1(z

′)Θ(x′)VA(|r− r′|) , (11.63)

or, alternatively,

p(z) = pHS(ρ1(z))+ ρ1(z)
∫ ∞

0
dx′

∫ ∞

−∞
dz′ ρ1(z

′)V2(|x′|, |z− z′|)

= pHS(ρ1(z))+
1

2
ρ1(z)

∫ ∞

−∞
dz′ ρ1(z

′)V1(|z− z′|) , (11.64)

where

V2(|x′|, |z− z′|) =

∫ ∞

−∞
dyVA

(√
|x′|2 + y2 +(z− z′)2

)
, (11.65)

and

V1(|z− z′|) =

∫ ∞

−∞
dx′V2(|x′|, |z− z′|) . (11.66)

Fig. 11.4 In order to define

the local pressure p(z) in a

liquid–vapor interface whose

local density of particles is

ρ1(z) one introduces a virtual

plane perpendicular to the

planes of constant density.

This plane (the plane x = 0)

divides the infinite system into

two parts: x < 0 (empty half-

space) and x > 0 (occupied

half-space) x

z

V

L

x > 0x < 0

>-- δun (z)

--<p (z)
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Note that since the planar interface is invariant under translations along the y-

axis, p(y,z) is independent of y, p(y,z) = p(z), and that in the van der Waals ap-

proximation the pressure profile is completely determined by the density profile.

Finally, in the local approximation of the attractive part of the interaction, (11.64)

reads

p(z) = pHS(ρ1(z))−aρ2
1(z)−

1

2
a2ρ1(z)ρ

′′
1(z)+ . . . , (11.67)

where use has been made of (8.82) and (11.18), or, alternatively,

p(z) = p0(ρ1(z))+
1

2
ρ1(z)[µ0(ρL,V )− µ0(ρ1(z))] , (11.68)

where p0(ρ) is the van der Waals pressure (8.84) and µ0(ρ) is the chemical potential

(11.25). Note that when z → ±∞, p(z) tends to p0(ρL) or to p0(ρV ), while in an

interval of z around the interface, p(z) is negative, i.e., the “pressure” transforms

into a “tension” (see Fig. 11.3).

11.4 Surface Tension

As has been analyzed in the previous sections, the planar liquid–vapor interface is

characterized by the density profile ρ1(z) and by the pressure profile p(z). Since

ρ ′
1(z) and p′(z) are different from zero only in the interface, whose width (far from

the critical point) is of a few molecular diameters, in macroscopic theories these

profiles are replaced by discontinuous profiles. In this section the relation between

both descriptions is examined.

If one denotes by ρ̄1(z) and p̄(z) the discontinuous profiles (which in macro-

scopic theories replace the continuous profiles ρ1(z) and p(z)), one may write

ρ̄1(z) = ρVΘ(z− z0)+ ρLΘ(z0 − z)+ αδ (z− z0), (11.69)

p̄(z) = pVΘ(z− z′0)+ pLΘ(z′0 − z)− γδ (z− z′0) , (11.70)

where ρL and pL (ρV and pV ) indicate the density and the pressure of the liquid

(vapor) and z0 and z′0 are the planes where the discontinuities are supposed to be

located. These surfaces are usually referred to as “the dividing surface” (z = z0)

and “the surface of tension” (z = z′0). In macroscopic theories a surface variable

is associated to each of these surfaces, the adsorption coefficient α to the dividing

surface and the surface tension coefficient γ to the surface of tension. If (11.70) is

substituted into (11.57), one has
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(δF[ρ1])T,N = −pV

∫ ∞

z′0
dz

∫ ∞

−∞
dyδ un(y,z)

−pL

∫ z′0

−∞
dz

∫ ∞

−∞
dyδun(y,z)

+γ
∫ ∞

−∞
dyδun(y,z

′
0)

= −pV dVV − pLdVL + γdA , (11.71)

where dVV and dVL are the volume changes of the vapor and liquid phases due to the

deformation δ un(y,z) of the boundary surface and dA is the variation of the surface

area of the interface. This equation is the generalization to a two-phase system of

the thermodynamic relation (δF[ρ1])T,N = −pdV . Since

Θ ′(x) = δ (x), xδ (x) = 0, xδ ′(x) = −δ (x),

from (11.70) it follows that

p̄′(z) = (pV − pL)δ (z− z′0)− γδ ′(z− z′0) , (11.72)

namely

(z− z′0)p̄′(z) = γδ (z− z′0) , (11.73)

and

(z− z′0)
2 p̄′(z) = 0 . (11.74)

Integrating (11.72–11.74) one has

∫ ∞

−∞
dz p̄′(z) = pV − pL = 0, (11.75)

∫ ∞

−∞
dz(z− z′0)p̄′(z) = γ, (11.76)

∫ ∞

−∞
dz(z− z′0)

2 p̄′(z) = 0 , (11.77)

where in (11.75) use has been made of the fact that the pressures of the phases are

equal at equilibrium. From these equations it finally follows that

γ =

∫ ∞

−∞
dzz p̄′(z) , (11.78)

and

2γz′0 =

∫ ∞

−∞
dzz2 p̄′(z) , (11.79)

which are the expressions of γ and of z′0 in terms of the first two moments of the

pressure profile p̄(z).
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If one performs a similar calculation with the density profile (11.69), one finds

∫ ∞

−∞
dz ρ̄ ′

1(z) = ρV −ρL, (11.80)

∫ ∞

−∞
dz(z− z0)ρ̄

′
1(z) = −α, (11.81)

∫ ∞

−∞
dz(z− z0)

2ρ̄ ′
1(z) = 0, (11.82)

from which it follows that

z0(ρV −ρL)−α =
∫ ∞

−∞
dzz ρ̄ ′

1(z) , (11.83)

and

z2
0(ρV −ρL)−2z0α =

∫ ∞

−∞
dzz2 ρ̄ ′

1(z) . (11.84)

In thermodynamics it is usually assumed that the molecules are either in the liq-

uid phase or in the vapor phase so that there are no particles in the dividing surface,

i.e., α = 0. Note that in the case of a continuous profile ρ1(z), as a generalization

of (11.80) and (11.83), one may define the zero adsorption (α = 0) Gibbs surface

z = z0 by the equation

z0 =

∫ ∞
−∞ dzzρ ′

1(z)∫ ∞
−∞ dzρ ′

1(z)
, (11.85)

which is equivalent to (11.48), while, in analogy with (11.78) and (11.79), the sur-

face tension coefficient γ and the surface of tension z = z′0 are defined by the follow-

ing equations:

γ =

∫ ∞

−∞
dzz p′(z) . (11.86)

z′0 =
1

2

∫ ∞
−∞ dzz2 p′(z)
∫ ∞
−∞ dzz p′(z)

. (11.87)

Using the van der Waals theory it may be shown that with the expressions (11.85)

and (11.87) z0 �= z′0, so that the location of the discontinuity in the macroscopic

theory depends on the variable that is being considered. The difference z0−z′0, called

the Tolman length, although being small, reflects the fundamental inadequacy of the

discontinuous description of an interface.

From an experimental point of view, γ may be determined from (11.71) and the

result compared with the one obtained in (11.86). For instance, from (11.68) one

has (since ∂ p/∂ρ = ρ∂ µ/∂ρ)

p′(z) =
1

2
ρ ′

1(z)

(
µ0(ρL,V )− µ0(ρ1(z))+

∂ p0(ρ1(z))

∂ρ1(z)

)
, (11.88)
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Fig. 11.5 Dimensionless variable γσ2/ε , where γ is the surface tension coefficient, as a function

of the reduced temperature T/Tc of a planar liquid–vapor interface in the van der Waals theory.

The interaction potential is the potential of hard spheres of diameter σ plus the attractive part of a

Lennard-Jones potential of parameters ε and σ . Tc is the critical temperature

a result which when substituted into (11.86) allows one to obtain γ . Note that, ac-

cording to (11.46), ρ ′
1(z) tends to zero when ρL −ρV → 0. From (11.86) it follows

then that γ vanishes on approaching the critical point from coexistence, as shown in

Fig. 11.5.
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Chapter 12

Topological Defects

Abstract As was seen in Chap. 8 many bulk states of matter exhibit a, partial or

full, orientational and/or translational order. Until now this order has always been

considered to be perfect although, in practice, many bulk phases exhibit defects, i.e.,

domains where this order departs from the one originally postulated. Such defects

are usually very stable, because the free energy cost to remove them easily exceeds

the thermal energy, and prevent the system to reach its true defect-free equilibrium

state. In some cases they are induced by the system’s boundary conditions and are,

hence, unavoidable, i.e., they correspond to the true equilibrium state given the ap-

plied boundary conditions.

In most cases these defects correspond to an elastic deformation of the ideal

structure. In the context of soft matter, where by definition of “soft ” the elastic

constants are weak, the number of observable defect-structures is extremely large.

Defects are usually classified according to their topological nature: point defects,

line defects, etc. Whereas point defects are easily visualized, this is not the case of

the line defects because the latter are spatially extended structures. Point defects are

often encountered in crystalline structures under the form of vacancies (a crystal

node without particle) or interstitials (a particle not attached to a crystal node). The

study of point defects is presently well understood and requires no new concepts.

On the contrary, the study of line defects, which are very frequent in liquid crystals,

is much more difficult and not yet fully understood. Line defects produce a texture

in many liquid crystals and the optical observation of this texture, which is typical

of a particular type of liquid crystal, is often used as a means to identify the liquid

crystal type. By “texture” one should understand here the spatial organization of

the different line defects. Many different liquid crystal textures have been observed

but, for simplicity, only the study of line defects, and their texture, in nematic liquid

crystals will be considered here.

307
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12.1 Frustration

A nematic liquid crystalline phase is characterized by orientational order without

translational order (cf. Chap. 8). In the case of a uniaxial nematic, which is the ex-

ample that will be considered here, there is cylindrical rotational symmetry around

a fixed direction, indicated by the director n, together with an inversion symmetric

w.r.t. any point of the cylinder’s axis, i.e., n and −n are equivalent choices. In many

cases this ideal structure of the nematic is however topologically incompatible with

the applied boundary conditions. One then says that the nematic is “frustrated” and

in response adopts a non-ideal structure. This can be easily understood by consid-

ering a few examples. The interaction between the nematic and the boundary of the

vessel containing the nematic liquid is governed by a vessel-specific surface free

energy which is minimal for a certain contact angle, i.e., for a certain angle between

n and the normal to the boundary. When n is everywhere normal to the boundary

the anchoring of the nematic on such a boundary is designed as “homeotropic”. It

is called “planar” when n is everywhere parallel to the boundary and “mixed” in

all other cases. Fig. 12.1 shows a non-frustrated and a frustrated situation. In the

case shown in Fig. 12.1a, the lateral boundaries provide a planar anchoring while

the upper and lower boundaries are homeotropic. In such a situation the nematic

can easily adapt itself to the imposed boundary conditions and is not frustrated. For

the case of the spherical homeotropic boundary shown in Fig. 12.1b, the imposed

boundary condition is topologically incompatible with an ideal nematic structure,

i.e. the nematic is frustrated by these boundary conditions. The only way out for

the nematic is to abandon its ideal structure and adopt a new structure whereby its

(a) (b)

Fig. 12.1 a A nematic placed at the center of a cylindrical vessel with homeotropic b.c. on the

upper and lower boundaries and planar b.c. on the lateral boundaries will not be frustrated by these

boundary conditions. b A nematic placed at the center of a spherical vessel with homeotropic b.c.

will be frustrated by the latter (b.c.= boundary conditions). For clarity only a planar section through

a symmetry axis is shown
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director adapts itself to the imposed boundary condition. As seen from Fig. 12.1b

this implies that n becomes a field n(r). Hence in the case of frustration one has

∇n(r) �= 0 whereas one did have ∇n (r) = 0 for the ideal structure. Frustration by

the boundary conditions results, thus, always in an elastic deformation, ∇n (r) �= 0,

and the ideal structure, ∇n(r) = 0, will be restored only when these boundary con-

ditions are removed.

12.2 Elastic Deformations

When the deformations of n(r) w.r.t. the ideal structure are weak and macroscopic,

the corresponding free energy functional of deformation Fd [n] can be expanded in

powers of ∇n(r). Since for the uniaxial nematic this free energy functional must

be even in n(r), there can be no linear term whereas the quadratic term can be

written as

Fd [n] =
1

2

∫
dr ∑

i, j,l,m

{∇in j (r)}Ki jlm{∇lnm (r)} , (12.1)

where Ki jlm are (generally temperature and density dependent) elastic constants.

Because of the r → −r (∇ →−∇) and n → −n symmetries, the summations in

(12.1) can be restricted to i = l and j = m. Taking into account that Fd [n] must be

a scalar and that by definition {n(r)}2 = 1 (orn(r) ·∇n(r) = 0) one finally obtains

the following Frank-Oseen expression,

Fd [n] =
1

2
K1

∫
dr{∇ ·n(r)}2 +

1

2
K2

∫
dr(n(r) · {∇×n(r)})2

+
1

2
K3

∫
dr(n(r)×{∇×n(r)})2 , (12.2)

involving at most three independent elastic constants Ki (i = 1,2,3). The detailed

derivation of (12.2) is most easily performed in Fourier-transform, ñ(k), in which

case it is seen that each of the three Ki’s is associated with each of the three compo-

nents ñi (k), when ñ(k) is referred to a system of three orthogonal axis one of which

is taken in the direction of k. In the case where the nematic is elastically isotropic,

K1 = K2 = K3 ≡ K (an oversimplification for most nematics), (12.2) reduces to

Fd [n] =
1

2
K

∫
dr
[
{∇ ·n(r)}2 +{∇×n(r)}2

]
. (12.3)

The director field n(r) which minimizes (12.3) must then be a solution of

δFd [n]

δ n(r)
= 0 , (12.4)
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or

∇2n(r) = 0 , (12.5)

together with the imposed boundary conditions.

12.3 Schlieren Texture

The resulting director-field n(r) can have different spatial structures, corresponding

to the different “textures” of the nematic. For instance, for the case of Fig. 12.1b,

two such structures are shown in Fig. 12.2.

It is seen that in the case of Fig. 12.2a, n(r) can no longer be defined at r = 0

because n(r) is multi-valued there. Such a field n(r) is called singular at r = 0

and the origin is then a point defect. Similarly, in the case of Fig. 12.2b there is

a line defect, i.e., a line of singular points, seen in the figure as two point defects

(corresponding to the points where the section shown cuts the line defect). The field

lines, to which ±n(r) is everywhere tangent, are similar to the electric field-lines

generated by a static system of charges. The defects can then also be viewed as

resulting from fictitious electric charges called “topological charges.”

When the nematic is enclosed between two parallel glass plates the director field

n ≡ n (r) can usually be represented by Frank’s planar model
(
n2 = 1

)
:

nx = cosϕ (x,y) , ny = sinϕ (x,y) , nz = 0 , (12.6)

where the z-axis is taken perpendicular to the plates and ϕ (x,y) is the angle between

n(x,y) and the x-axis. For these planar configurations, (12.4) reduces for (12.6) to

(b)(a)

Fig. 12.2 The director field n(r) for the case of Fig. 12.1b. n(r) is everywhere tangent to the

dotted field-lines. a A texture with a single point-defect at r = 0. In this case n(r) has a radial

symmetry. b A texture with a line-defect in the equatorial plane. In this case n(r) has a cylindrical

symmetry around the poles. The figure shows only a cross-section cutting the line defect in the

two point defects shown as heavy dots. When rotating this cross-section around an axis through

the poles of the sphere, the two point defects will generate a line defect
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(
∂ 2

∂x2
+

∂ 2

∂y2

)
ϕ (x,y) = 0 , (12.7)

i.e., the two-dimensional Laplace equation which in polar coordinates (r,θ ) can be

rewritten as (
1

r

∂

∂ r

(
r

∂

∂ r

)
+

1

r2

∂ 2

∂θ 2

)
ϕ (r,θ ) = 0 , (12.8)

where θ is the angle between r and the x-axis (cf. Fig. 12.3). In writing (12.7) and

(12.8) it has been assumed that ϕ is small.

For r �= 0, (12.8) admits a particular solution of the form

ϕ (θ) = ϕ0 + mθ (12.9)

but since θ and θ + 2π correspond to the same point r, ϕ (θ ) and ϕ (θ + 2π)
must correspond to equivalent directions of n, i.e., to either n or −n. Since (12.9)

implies ϕ (θ + 2π) = ϕ (θ) + 2πm, one must have either m = 0,±1,±2, . . . or

m = ±1/2,±3/2, . . . The resulting director field (12.6), i.e.,

nx = cos(ϕ0 + mθ) , ny = sin(ϕ0 + mθ) , nz = 0 , (12.10)

represents then a disclination of strength m with the z-axis as disclination axis. A

few such examples of planar director fields are illustrated in Fig. 12.4.

The free energy associated to the deformation (12.10) of the director-field can

then be estimated (cf. (12.3)) as

y

x0

r

n

θ

ϕ

Fig. 12.3 Relation between the angle ϕ (r,θ) of n(r,θ) and the angle θ of r(r,θ) with respect to

the x-axis



312 12 Topological Defects

m = 1/2, ϕ0 = 0

m = 1, ϕ0= π/2 m = –1, ϕ0 = π/2

m = 1, ϕ0 = π/4m = 1, ϕ0 = 0

m = 1/2, ϕ0 = π/4

Fig. 12.4 Director configurations, nx = cos (ϕ0 +mθ) and ny = sin(ϕ0 +mθ), for disclinations of

different strength m and constant ϕ0, with θ = arctan (y/x)
Source: M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction, Springer-

Verlag, New York (2003), Fig. 11.4, p. 392. [3]. Reproduced with permission

Fd =
1

2
KLz

∫ ∞

0
dr r

∫ 2π

0
dθ

1

r2

(
∂ϕ (θ )

∂θ

)2

≃ 1

2
KLz 2πm2

∫ R

rc

dr
1

r
= πKLz m2 ln

(
R

rc

)
, (12.11)

where Lz is the distance between the two plates, R the macroscopic size of the cell

containing the nematic and rc the radius of the region containing the r = 0 singu-

larity inside which the above considerations become ill-defined. From (12.11) it is

seen that Fd ∼ m2, explaining why in practice one only observes low-strength discli-

nations, usually m = ±1/2 and m = ±1. The resulting texture is called a Schlieren

texture.

When the cell containing the nematic is put between crossed (linear) polariz-

ers and observed with white light, a beautiful color texture is revealed. Since the
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Fig. 12.5 A Schlieren texture of a nematic phase with planar anchoring conditions. Observe how

the two dark brushes converge to a singular point representing a disclination of strength m = ±1

Source: I. Dierking, Textures of Liquid Crystals, Wiley-VCH, Weinheim (2003), Plate 11, p. 171.

Reproduced with permission

(uniaxial) nematic is birefringent, any light-ray is split into an ordinary and an ex-

traordinary ray. The ordinary ray is phase-shifted by an amount which depends on

the wavelength (hence the colors) and follows an optical path parallel to the director

field revealing hereby any defect-structure of the director field. Since this defect-

structure is very common and typical for a given type of liquid crystal, such an

observation provides a practical means to identify liquid crystal phases and their

transitions (Fig. 12.5).
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Chapter 13

Phase Transformation Kinetics

Abstract In the above, a phase transition was viewed as resulting from changing a

control parameter, such as T or p, across a phase boundary, say a coexistence line,

of the system’s phase diagram. In practice, such a transformation, of say a liquid

phase into a crystal phase, will however require a considerable amount of molec-

ular scale re-organization, and this will always take a finite amount of time. The

precise way in which the old (liquid) phase is transformed into the new (crystal)

phase will hence involve some dynamic (time-dependent) phenomena which can-

not be described within the equilibrium statistical mechanical framework used until

now. In the present chapter some of the kinematic aspects related to the physical

transformation of one phase into another will thus be considered. Needless to say

that a good understanding of these kinematic aspects is essential for the correct in-

terpretation of what is seen in the laboratory during a phase transition. For instance,

in some cases the transformation is so slow that the new phase cannot be formed,

during the finite time of observation, without some help from the experimentalist.

In other cases, the amount of reorganization required is so important that the system

gets arrested in a glass-like configuration somewhat intermediate between the two

equilibrium phases involved in the transition. Unfortunately, several of these aspects

are, even today, not well understood. Here, only the classical theories of nucleation

and of spinodal decomposition will be considered.

13.1 Homogeneous Nucleation

The most general mechanism of phase transformation is provided by the process

of nucleation. If one starts from an initial phase, say phase 1, without any impuri-

ties, one qualifies the nucleation as being homogeneous (the case of heterogeneous

nucleation will be analyzed in Sect. 13.2). To initiate a homogeneous nucleation

process, one transforms the state (p,T ) of phase 1, from an initial equilibrium state

(pi,Ti) into a final state
(

p f ,Tf

)
, where phase 1 is thermodynamically metastable

relative to, say, phase 2. The transformation (pi,Ti) →
(

p f ,Tf

)
, may proceed via

315
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Fig. 13.1 A thermodynamic

path (i → b → f ) transform-

ing the initial equilibrium

state (i) of phase 1 into a final

state ( f ) where phase 1 is

metastable relative to phase 2.

This path crosses the 1–2

phase-boundary at (b)

p

T

2 1

b

i

f

any path (cf. Fig. 13.1) of the (T, p)-plane, as long as this path crosses the 1–2

coexistence line. It may proceed in a slow quasi-static or in a rapid quench-like

manner. The only thing which counts is that in the final state,
(

p f ,Tf

)
, phase 1 is

metastable relative to phase 2, which is the equilibrium state corresponding to the

values
(

p f ,Tf

)
of (p,T ). Note that in the case where phase 1 would be unstable in

the final state, the process of spinodal decomposition would be involved, instead of

the nucleation process considered here (see Sect. 13.3). Although, during the trans-

formation, (pi,Ti) →
(

p f ,Tf

)
, the system crosses the 1–2 phase boundary, nothing

particular happens during the crossing. Leaving the system in its final metastable

state, an evolution will eventually set in after some time. In the classical theory of

homogeneous nucleation, this evolution is described as occurring in three successive

steps. In the first step, the thermal fluctuations will produce in phase 1, an embryo

or “nucleus” of phase 2, i.e., a small amount of matter where the phase transition

1→2 took place, as a result of the random exploration of the system’s free energy

surface by the thermal fluctuations. Once the system contains several nuclei, it is ob-

served that the smaller nuclei of phase 2 disappear by retransforming into phase 1,

while the larger nuclei eventually grow in size at the expense of the remainder of

phase 1. This then corresponds to the second step of the nucleation process. When

the larger nuclei grow they eventually coalesce to form still larger ones and pro-

gressively transform all of the remainder of phase 1 into a bulk phase of phase 2.

This third step represents then the end of the evolution, the system having been,

meanwhile, transformed into its new equilibrium state corresponding to the values(
p f ,Tf

)
of (p,T ), which is phase 2.

13.1.1 Becker–Döring Theory

An attempt to describe the first step of the nucleation process is provided by the the-

ory of Becker and Döring. Since the first step occurs on the timescale of the thermal

fluctuations, no explicit time-dependent considerations will be introduced. Instead,



13.1 Homogeneous Nucleation 317

an attempt will be made to continue to describe the situation using only thermody-

namic considerations, although the system is not in a true equilibrium state.

First, consider a system containing one nucleus of phase 2 surrounded by phase 1,

and describe it in the context of the so-called capillary approximation of Gibbs. It

is thereby assumed that the nucleus of phase 2 can be described in the same way

as an ordinary bulk phase, while the nucleus-phase 1 interface can be assimilated to

a geometric surface. If the system consists of N molecules enclosed in a volume V

at the temperature T , and the nucleus contains N2 molecules and has a volume V2,

the system’s Helmholtz free energy, F (T,V,N), will be moreover written as being

equal to

F (T,V,N) = F1 (T,V1,N1)+ F2 (T,V2,N2)+ σ12 (T )A12 (V2) , (13.1)

where F1 (T,V1,N1) is the Helmholtz free energy of a bulk phase-1 containing

N1 = N −N2 molecules occupying a volume V1 = V −V2, while F2 (T,V2,N2) is the

corresponding free energy of a bulk phase-2 (representing the nucleus), and A12 (V2)
is the surface area of the nucleus on which a surface tension σ12 (T ) is supposed to

act. Note that (13.1) is identical to the separation used to describe the equilibrium

coexistence between two bulk phases separated by an interface (cf. Chap. 11). In

what follows, one will assume the nucleus to be spherical, i.e. it is assumed that F

is minimal w.r.t. A12 for a given V2. In practice, this is not always the case, in par-

ticular when phase-2 is anisotropic. If V2 = 4πR3/3 and A12 (V2) = 4πR2, then σ12

of (13.1) could moreover still depend on R but, henceforth, this dependence will

be neglected and σ12 will be considered to be a function of T only, as indicated in

(13.1) . Finally, if the nucleus is treated as a bulk phase, one has N2 = ρ2V2, where

ρ2 is the (constant) density of phase 2.

Since F of (13.1) depends parametrically on V2 and N2, i.e., on R, but the value of

R is not controlled experimentally, one can let these values fluctuate and impose in-

stead the pressure p acting on V . The thermodynamic potential appropriate to these

experimental conditions will hence be the Gibbs free energy G(T, p,N) obtained

from F (T,V,N) through the Legendre transform G(T, p,N) = F (T,V,N) + pV ,

with p = −∂F/∂V , or in the present case one obtains from (13.1)

G(T, p,N) = (F1 (T,V1,N1)+ pV1)+ (F2 (T,V2,N2)+ pV2)

+σ12 (T )A12 (V2) , (13.2)

where N2,V2,N1, and V1 are fluctuating but p and N are not. If the nucleus is in

thermodynamic equilibrium with phase 1, then the partition of the system into two

phases, at fixed T, p, and N, must be such that

(dG)T,p,N = 0,

(
∂G

∂Vi

)

T,p,N

= 0,

(
∂G

∂Ni

)

T,p,N

= 0, (i = 1,2) . (13.3)

From (13.2) and (13.3) one obtains:
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(
∂G

∂V1

)

T,p,N

= 0 =
∂F1

∂V1

+ p, (13.4)

and

(
∂G

∂V2

)

T,p,N

= 0 =
∂F2

∂V2

+ p + σ12 (T )
dA12 (V2)

dV2

, (13.5)

where

dA12 (V2)

dV2

=
d
(
4πR2

)

d (4πR3/3)
=

2

R
. (13.6)

Writing pi = −∂Fi/∂Vi (i = 1,2), (13.4) becomes p1 = p, i.e., the pressure in

phase 1 equals the externally imposed pressure p, while (13.5) can then be rewrit-

ten as:

p2 = p1 +
2

R
σ12 (T ) , (13.7)

i.e., the pressure inside the nucleus p2 exceeds (σ12 (T ) > 0) the exterior pressure

by an amount 2σ12 (T )/R, which depends on the radius of curvature R of the nu-

cleus. Equation (13.7) is known as the Laplace law. Finally, from N = N1 + N2, it

follows that

(
∂N1

∂N2

)

T,p,N

= −1, (13.8)

and hence

(
∂G

∂N1

)

T,p,N

= −
(

∂G

∂N2

)

T,p,N

, (13.9)

while (13.2) yields

(
∂G

∂N1

)

T,p,N

=
∂F1

∂N1

+

[
∂F2

∂N2

+ σ12 (T )
∂A12 (V2)

∂N2

](
∂N2

∂N1

)

T,p,N

= 0, (13.10)

with

∂A12 (V2)

∂N2

=
∂A12 (V2)

∂V2

∂V2

∂N2

=
2

Rρ2

, (13.11)

where (13.6) has been used and N2 (V2) = ρ2V2. Then (13.10) reads

µ1 (T, p) = µ2 (T, p)+
2v2

R
σ12 (T ) , (13.12)
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where v2 = 1/ρ2, µ i = ∂Fi/∂Ni (i = 1,2). With p = p1 and (13.7) one obtains from

(13.12)

µ1 (T, p1) = µ2 (T, p1)+ v2 (p2 − p1) , (13.13)

but since µ2 (T, p1)− p1v2 = f2 (T,v2) (see (2.29)), the r.h.s. of (13.13) can be

rewritten as f2 (T,v2) +p2v2 = µ2 (T, p2), so that (13.13) becomes

µ1 (T, p1) = µ2 (T, p2) , (13.14)

i.e., the usual condition of equality of the chemical potentials of the two phases,

provided these chemical potentials are referred to the pressure of each phase, these

pressures being different on account of (13.7). As a result of (13.14), the equilibrium

coexistence curve, say p = p(T ), between phase 1 and a nucleus of phase 2 will

correspond to a solution of the implicit equation,

µ1 (T, p) = µ2

(
T, p +

2

R
σ12 (T )

)
, (13.15)

and this curve will in general be different from the coexistence curve, say p0 =
p0 (T0), for two bulk phases separated by a planar interface, corresponding to a

solution of

µ1 (T0, p0) = µ2 (T0, p0) . (13.16)

To quantify the influence of the curvature of the nucleus on the coexistence curve,

one may write p = p0 + Δ p and T = T0 + ΔT , and when the corrections are small

one can use the approximation

µ (T0 + ΔT, p0 + Δ p)≃ µ (T0, p0)− s0ΔT + v0Δ p, (13.17)

where (2.35) has been taken into account, s0 being the entropy per particle and v0

the volume per particle. If the temperature is fixed at T = T0, one may use (13.17)

with ΔT = 0, together with (13.15) and (13.16) to obtain

v1Δ p = v2

(
Δ p +

2

R
σ12 (T0)

)
, (13.18)

showing that the equilibrium pressure will be shifted by an amount

Δ p =

(
v2

v1 − v2

)
2

R
σ12 (T0) (13.19)

having the same sign as v1 −v2 ≡ v1 (T0)−v2 (T0). Similarly, if the pressure is fixed

at p = p0 then one obtains from (13.15–13.17)

−s1ΔT = −s2ΔT + v2
2

R
σ12 (T0) , (13.20)
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where the correction ∼ (∂σ12 (T )/∂T )ΔT has been neglected since it is usually

very small. Equation (13.20) shows then that the equilibrium temperature T0 will be

shifted by an amount

ΔT = −
(

v2

s1 − s2

)
2

R
σ12 (T0) (13.21)

having the same sign as −(s1 − s2) ≡ −(s1 (T0)− s2 (T0)). Since (see (2.75)) d p0/
dT0 = (s1 − s2)/(v1 − v2), the signs of Δ p and ΔT will be opposite whenever

d p0/dT0 is positive. These shifts in the coexistence curve, resulting from the cur-

vature of the interface, are usually referred to as the Gibbs–Thomson effect. They

imply that the values of (p,T ) for which the nucleus of phase 2 will be in equilib-

rium with phase 1 will in general belong to the metastable regions of the 1–2 bulk

phase diagram, i.e., p(T ) �= p0 (T ).
Assume now that one starts from an initial situation consisting solely of phase 1.

Its Gibbs free energy will thus be Gi (T, p,N) = Nµ1 (T, p). After some time, the

thermal fluctuation may be able to create a nucleus of phase 2, which when in equi-

librium with phase 1 will lead then to a final situation whose Gibbs free energy will

be G f (T, p,N) = N1µ1 (T, p)+ N2µ2 (T, p)+ σ12 (T ) A12 (V2). The corresponding

change in free energy ΔG = G f −Gi can then be written as

ΔG = (N1 −N)µ1 (T, p)+ N2µ2 (T, p)+ σ12 (T )A12 (V2)

= −N2 (µ1 (T, p)− µ2 (T, p))+ σ12 (T )A12 (V2) , (13.22)

i.e.,

ΔG = −4πR3

3
ρ2Δ µ + 4πR2σ12 (T )

= 4πR2σ 12 (T )

(
1− R

R0

Δ µ

|Δ µ |

)
, (13.23)

where Δ µ = µ1 (T, p)− µ2 (T, p), and

R0 =
3v2σ12 (T )

|Δ µ | , (13.24)

is a characteristic radius. For the transformation i → f to be thermodynamically

favorable one must have ΔG < 0, which according to (13.23) is possible only when

Δ µ > 0, i.e., µ1 (T, p) > µ2 (T, p) or when phase 1 is metastable relative to phase 2

for the given (p,T )-values. Indeed, only when Δ µ > 0 can the volume term
(
∼ R3

)

of (13.23) compete with the surface term
(
∼ R2

)
, the latter being essential to the

stability of the nucleus and being always positive. Note also from (13.23) that ΔG,

when viewed as a function of R, has a qualitatively different behavior according to

the sign of Δ µ (cf. Fig. 13.2).
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ΔG

RRmax0

Δµ < 0 ΔG

R

Rmax

0

Δµ > 0

R0

Rc

Fig. 13.2 Qualitative behavior of ΔG of (13.23) as a function of R, according to the sign of

Δ µ = µ1 −µ2

Since N2 is limited by N, one expects R to be limited by Rmax, where 4πR3
max/3

is of the order of Nv2. From (13.23) or Fig. 13.2 it is seen that, when Δ µ < 0,

ΔG is positive for 0 < R < Rmax and increases with R. If, on the contrary, Δ µ > 0

then ΔG is positive for 0 < R < R0 with a maximum at R = Rc, and negative for

R0 < R < Rmax. From (13.23) it is easily seen that Rc = 2R0/3. When ΔG < 0, i.e.,

for Δ µ > 0 and R0 < R < Rmax, the transition i → f is favorable. The system can

moreover further decrease its free energy by increasing the size R of the nucleus till

at R ≃ Rmax the phase transition 1 → 2 is completed. Creating such a large nucleus

(R0 < R < Rmax) by a thermal fluctuation is however a process of very small prob-

ability and this process can, therefore, not explain why a phase transformation does

occur. When ΔG > 0, i.e., for 0 < R < Rmax when Δ µ < 0 or 0 < R < R0 when

Δ µ > 0, the transition i → f will involve a cost in free energy. In this case ΔG

is moreover an increasing function of R, for all R when Δ µ < 0 and for 0 < R <
Rc when Δ µ > 0. The system can thus lower its free energy by decreasing R. One

expects thus that even if a small nucleus (for instance, 0 < R < Rc) is created by

a thermal fluctuation it will disappear again after some time. There remains how-

ever the case, Δ µ > 0 and Rc < R < R0. Here, although ΔG is positive, it is now a

decreasing function of R. Hence, once such a nucleus is created by a thermal fluc-

tuation, which will involve some cost in free energy since ΔG > 0, the system can

only lower its free energy by increasing the size of the nucleus. When it does so, the

corresponding value of R will eventually exceed R0 and the growth process will con-

tinue until Rmax is reached. The only situation which is favorable to actually creating

the phase transformation corresponds thus to Δ µ > 0 and R � Rc, i.e., choosing val-

ues of (p,T ) for which phase 1 is metastable (µ1 (T, p) > µ2 (T, p)) and waiting for

the thermal fluctuations to create one or several nuclei of an intermediate size R≃Rc

called the critical size. In the theory of nucleation, it is thus assumed that the ther-

mal fluctuations continuously create nuclei of all sizes, with the sub-critical nuclei

(R < Rc) disappearing again, while the super-critical nuclei (R > Rc) are growing.
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The phase transformation process is thus related to the crossing of the free energy

barrier (ΔG)R=Rc
= 4πR2

cσ12 (T )/3, by the thermal fluctuations.

If one imagines the initial stage of the transformation to consist of n nuclei of

phase 2 embedded in a bulk phase 1 containing N1 molecules, then a first estimate

of n can be obtained from the following thermodynamic argument. If Gn represents

the free energy of such a state, then the value of n which will be realized when

the nuclei are in equilibrium with phase 1, say neq, must be such as to minimize

Gn. If one writes Gn = G1 + ΔGn −TΔSn, where G1 represents the free energy of

phase 1, ΔGn represents the cost in free energy to create the n nuclei and ΔSn the

gain in entropy of mixing the n nuclei with the N1 molecules of phase 1, then the

equilibrium value of n will be the solution of ∂Gn/∂n = 0, i.e.,

(
∂ΔGn

∂n

)

n=neq

=

(
T

∂ΔSn

∂n

)

n=neq

. (13.25)

To simplify (13.25), assume that all the n nuclei have the same radius R so that

ΔGn = nΔG(R), where ΔG(R) is given by (13.23), and that ΔSn can be approxi-

mated by the following entropy of mixing of an ideal mixture containing N1 objects

of type 1 and n objects of type 2:

ΔSn = kB ln
(N1 + n)!

N1!n!
. (13.26)

Since one expects n to increase with N1 and N1 ≫ 1, one may use the Stirling

approximation lnN! = N (lnN −1) for N ≫ 1, to rewrite (13.26) as

ΔSn ≃ kB (N1 + n)(ln(N1 + n)−1)

−kB [N1 (lnN1 −1)+ n(lnn−1)] , (13.27)

so that (13.25) yields

ΔG(R) = kBT ln

(
N1 + neq

neq

)
≃ kBT ln

(
N1

neq

)
, (13.28)

for neq ≪ N1, and hence

neq (R) = N1e−βΔG(R), (13.29)

i.e., a Boltzmann distribution relative to the free energy barrier ΔG(R).

13.1.2 Zeldovich–Frenkel Theory

Although the initial creation of the nuclei could be described in thermodynamic

terms, their subsequent growth or decay must involve genuine kinetic aspects. The
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latter will be described here in the context of the theory of Zeldovich and Frenkel.

In this theory, the elementary step involved in the growth or decay of the nuclei

is considered to be the attachment or detachment of a molecule of phase 1 to an

existing nuclei. This process can then be represented in the form of the following

“polymerization” reaction:

M1 + Mp ⇄ Mp+1 (13.30)

where Mp represents a nucleus containing p molecules, M1 being the molecule of

phase 1 which is being attached to the nucleus Mp with a frequency ν+
p , or being

detached from the nucleus Mp+1 with a frequency ν−
p . If N (p,t) represents the

number of nuclei of p molecules present at time t, the net flux I (p,t) resulting from

(13.30) will be

I (p,t) = ν−
p N (p + 1,t)−ν+

p N (p,t) . (13.31)

When the reaction (13.30) reaches “chemical” equilibrium, the net flux in

(13.31) is zero and the corresponding equilibrium distributions Neq (p) will satisfy

ν−
p Neq(p + 1) = ν+

p Neq (p) , (13.32)

which allows us to eliminate ν−
p or ν+

p in favor of the Neq (p), and to rewrite (13.31)

as

I (p,t) = ν+
p Neq (p)

[
N (p + 1, t)

Neq (p + 1)
− N (p, t)

Neq (p)

]
. (13.33)

If the reaction (13.30) is viewed as a stochastic process, the time evolution of

N (p,t) will be given by the master equation (7.105), which can be rewritten here as

∂N(p,t)

∂ t
= ∑

p′

∗ [
T (p′|p)N(p′,t)−T(p|p′)N(p,t)

]
, (13.34)

where N (p,t)/NT is the probability to observe a nucleus containing p nuclei, and

NT = ∑
p

N (p,t) (13.35)

is the total number of nuclei. Note that since the latter is here a conserved quan-

tity, NT is independent of time and (13.34) is equivalent to (7.108). In (13.34), the

T (p′|p) are the transition probabilities per unit time associated with the frequency

with which the process p′ → p occurs. Since, according to the one-step process

described by (13.30), one must have p′− p = ±1, and

ν+
p = T (p|p + 1), ν−

p = T (p + 1|p), (13.36)

it is seen that (13.32) is equivalent to the condition of detailed balance (7.109), while

(13.34) can be rewritten here as
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∂N (p,t)

∂ t
= T (p + 1|p)N (p + 1,t)+ T (p−1|p)N (p−1,t)

−T (p|p + 1)N (p,t)−T (p|p−1)N (p,t) , (13.37)

or

∂N (p,t)

∂ t
=
[
ν−

p N (p + 1, t)−ν+
p N (p,t)

]

−
[
ν−

p−1N (p,t)−ν+
p−1N (p−1,t)

]

= I (p, t)− I (p−1,t). (13.38)

Now, if p is large enough (p ≫ 1), one may treat p as a continuous variable and

use the result

f (p + Δ p)− f (p)

Δ p
≃ ∂ f (p)

∂ p
, (13.39)

valid for |Δ p/p| ≪ 1, and any smooth function f (p), to rewrite (13.38) as

∂N (p,t)

∂ t
≃ ∂ I (p,t)

∂ p
, (13.40)

where |Δ p/p| = 1/p ≪ 1 has been used. When p is considered as a continuous

variable, (13.40) is nothing but the continuity equation, which expresses the conser-

vation of NT =
∫

d p N (p, t), with I (p,t) being the flux conjugated to N (p, t). In

this case (13.33) becomes:

I (p,t) = ν+
p Neq (p)

∂

∂ p

[
N (p,t)

Neq (p)

]
. (13.41)

so that, according to (13.40), N (p,t) must be a solution of the following Fokker–

Planck equation:

∂N(p, t)

∂ t
=

∂

∂ p

{
ν+

p Neq (p)
∂

∂ p

[
N (p,t)

Neq (p)

]}
, (13.42)

i.e., a diffusion equation in p-space,

∂N(p,t)

∂ t
=

∂

∂ p

[
Dp

∂N(p,t)

∂ p

]
− ∂

∂ p
[ApN (p,t)] , (13.43)

with a diffusion coefficient Dp ≡ ν+
p and a friction coefficient Ap:

Ap = −ν+
p Neq (p)

∂

∂ p

[
1

Neq (p)

]
. (13.44)
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To evaluate (13.44), one uses (13.29), Neq (p) = neq (R), where the change of

variables from R to p is given by p = 4πR3ρ2/3, so that Ap =−ν+
p [∂β ΔG(p)]/∂ p,

with ΔG(p) given by (13.23) expressed in terms of p instead of R. Equation (13.43)

then becomes

∂N(p,t)

∂ t
=

∂

∂ p

[
Dp

∂N(p,t)

∂ p

]
+

∂

∂ p

[
DpN (p, t)β

∂ΔG(p)

∂ p

]
, (13.45)

i.e., the Zeldovich–Frenkel kinetic equation for N (p,t). This equation is difficult to

solve, but clearly shows that the evolution of N (p, t) is governed by the competition

between a diffusion process which is purely kinetic, Dp = ν+
p , and a friction process

which is controlled by the thermodynamic force, −∂ΔG(p)/∂ p, which changes

sign (cf. Fig. 13.2) at p = pc, with pc = 4πR3
cρ2/3.

In order to avoid having to solve (13.45), the method of absorbing boundary

conditions will be applied to the present nucleation problem. One, therefore, as-

sumes that once a nucleus has reached the characteristic size p ≥ p0, or R ≥ R0

(cf. (13.24)), where ΔG(p) ≤ 0, it will evolve spontaneously and uncouple from

the polymerization reaction (13.30). If this is the case then (13.30) will be unable

to reach equilibrium, but will reach eventually a stationary state characterized by

the fact that the larger nuclei (p > p0) are constantly being withdrawn from the

reaction (13.30). Such a stationary state will be characterized by a distribution,

∂N (p,t)/∂ t = 0 or N (p, t)= N0 (p), but N0 (p) �= Neq (p), and according to (13.40)

by a flux, I(p, t) = I0 (p), such that ∂ I0 (p)/∂ p = 0 or I0 (p) = I0 �= 0, i.e., the sta-

tionary flux must be independent of p. This flux can be identified with the nucle-

ation rate, i.e., the rate at which the nuclei cross the p = pc < p0 barrier. According

to (13.41) this nucleation rate will be given by

I0 = −DpNeq (p)
∂

∂ p

[
N0 (p)

Neq (p)

]
, (13.46)

or
I0

DpNeq (p)
= − ∂

∂ p

[
N0 (p)

Neq (p)

]
. (13.47)

Integrating (13.47) up to a value p, formally p = ∞ but physically sufficiently

large to apply the boundary condition, one obtains

I0
∫ ∞

p
d p′

1

Dp′N
eq (p′)

=
N0 (p)

Neq (p)
−
(

N0 (p)

Neq (p)

)

p=∞

, (13.48)

where limp→∞

(
N0 (p)/Neq (p)

)
= 0. Indeed, since the nuclei with p > p0 are ab-

sorbed (withdrawn), one expects N0 (p) < Neq (p) for p > p0, and since ΔG(p) is

negative for p > p0, one expects Neq (p) ∼ e−βΔG(p) to be much larger than N0 (p)
for p > p0. On the contrary, when p→ 0, one expects (13.30) to be only weakly per-

turbed so that N0 (p) ≃ Neq (p) for p < pc, or limp→0

(
N0 (p)/Neq (p)

)
= 1. Using

these boundary conditions, (13.48) implies
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I0 =

[∫ ∞

0
d p′

1

Dp′N
eq (p′)

]−1

, (13.49)

and

N0 (p)

Neq (p)
=

[∫ ∞

p
d p′

1

Dp′N
eq (p′)

][∫ ∞

0
d p′

1

Dp′N
eq (p′)

]−1

, (13.50)

i.e., an expression for N0 (p) and I0 in terms of the kinematic factor Dp and of

the equilibrium distribution Neq (p) containing the Bolztmann factor e−βΔG(p). For

instance, if the nucleation barrier ΔG(p) is very pronounced around p = pc (cf.

Fig. 13.2), one may evaluate the nucleation rate from (13.49) as

1

I0
=

∫ ∞

0
d p′

1

Dp′N
eq (p′)

≃ eβΔG(pc)

DpcN1

∫ ∞

0
d p e−β [ΔG(pc)−ΔG(p)], (13.51)

or, expanding ΔG(p) around ΔG(pc) up to second order in p− pc, one obtains

I0 ≃ DpcNeq (pc)

√
βa

π
(13.52)

where 2a =−
(
∂ 2ΔG(p)/∂ p2

)
pc

> 0. Hence, from (13.52) the nucleation rate I0 is

seen to be the product of a purely kinematic factor, Dpc , and a purely thermodynamic

factor, Neq (pc). To obtain a substantial nucleation rate it is hence not sufficient to

be in a thermodynamically favorable situation, one must also have a kinematically

favorable case. For instance, when (13.52) is analyzed as a function of the temper-

ature T , it is found to be a sharply peaked function of the type shown in Fig. 13.3,

where Tn is different from the bulk phase coexistence temperature at which Δ µ of

Fig. 13.3 Schematic behavior

of the nucleation rate I0 of

(13.52) as a function of 1/T

I0

1/Tn 1/T
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(13.23) vanishes. Hence, for most values of T , the nucleation process appears to be

blocked
(
I0 ≃ 0

)
, while for T ≃ Tn it almost explodes. Therefore, the nucleation

process is usually described as a process of “all or nothing.”

13.1.3 Avrami Theory

In the late stage of the nucleation process, the respective growth processes of the

supercritical nuclei (p > pc) hinder each other, the nuclei coalesce and phase 2

gradually fills the available volume by a complicated hydrodynamic process which

depends on the details of the experimental set up. Avoiding the latter aspects, one

usually describes the late stage of the nucleation process in terms of the theory of

Avrami, which only takes into account the steric aspects of this hindrance. Let V2 (t)
be the volume occupied by phase 2 at time t, and φ (t) =V2 (t)/V the corresponding

volume fraction. Moreover, let V 2 (t) be the volume which phase 2 would occupy at

time t if each nucleus could continue to grow without being hindered by the other

nuclei, and let φ (t) = V 2 (t)/V be the corresponding fictitious volume fraction. The

theory of Avrami is based on the assumption that, during the late stage of the evo-

lution of the nucleation process, dφ (t)/dt and dφ (t)/dt will remain proportional

to each other. Since, however, dφ (t)/dt must vanish when, ultimately, V2 (t) → V ,

whereas dφ (t)/dt is unbounded, one also assumes dφ (t)/dt to be proportional to

1− φ (t), and one writes

dφ (t)

dt
= (1−φ (t))

dφ (t)

dt
, (13.53)

i.e., Avrami’s equation, which implies ln(1−φ (t))+ φ (t) = C, but since φ (t) = 0

must imply φ (t) = 0, one has C = 0 and hence

φ (t) = 1− e−φ(t). (13.54)

Although some attempts to compute φ (t) do exist (which is easier than comput-

ing φ (t)), most experimental results are usually fitted to (13.54) by using Avrami’s

phenomenological law

φ (t) = Ktn, (13.55)

where K is a constant and n the, so-called, Avrami exponent of the nucleation pro-

cess. One then usually finds 1 < n < 4, with often a non-integer n-value.

Summarizing, the theory of homogeneous nucleation considers the 1 → 2 phase

transition to proceed in three successive stages:

(1) Creation of nuclei of phase 2 in the midst of a metastable phase 1. This process

is expected to occur on a timescale characteristic of the thermal fluctuations, the

latter having to cross a free energy barrier (13.29) related to the creation of the

nucleus-phase 1 interface.
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(2) Growth of the nuclei whose size is super-critical (R > Rc). This process is oc-

curring on a kinetic timescale
(
1/υ+

p

)
and leads to a nucleation rate I0 (13.52)

which is a complicated, non-exponential, function of the temperature T .

(3) Coalescence of the growing nuclei, which invade the whole of the available

volume V . This process is occurring on a hydrodynamic timescale and leads to

a volume fraction φ (t) (13.54 and 13.55) which is a non-exponential function

of the time t.

In practice, these three stages are often seen to overlap, i.e., one stage begins

before the previous stage has ended.

13.2 Heterogeneous Nucleation

From the preceding theory of homogeneous nucleation one gets the (correct) im-

pression that it is difficult to produce a phase transition via this process. This

conclusion, however, is in sharp contrast with the widespread occurrence of phase

transitions in nature, the explanation being that the latter usually proceed via the pro-

cess of heterogeneous nucleation. Indeed, the theory of homogeneous nucleation as-

sumes that one starts from a system containing only phase 1, whereas most systems

will contain moreover impurities, the system being then heterogeneous with respect

to its composition. These “impurities” can be dust particles, foreign ions, boundary

surfaces made of a different material, etc. Since to initiate a nucleation process one

has to first form a nucleus of a super-critical size, one easily realizes that when this

nucleus is created around a dust particle, which has already a considerable size, this

will greatly facilitate the formation of large nuclei, i.e., nuclei whose interfaces have

a small curvature. This difference between homogeneous and heterogeneous nucle-

ation is even more spectacular when the dust particle is charged. Consider hence

that one introduces into a clean system a foreign ion of charge e (with e a posi-

tive number) and radius a. The only modification to the Becker–Döring expression

(13.23) of ΔG = G f −Gi will amount then to adding to the system’s free energy G

an electrostatic contribution Ge. In the initial state where only phase 1 is present,

the electrostatic contribution of the ion will be

Ge
i =

ε1

8π

∫

V

dr(E1 (r))2 =
e2

2ε1

∫ L

a
dr

1

r2
=

e2

2ε1

(
1

a
− 1

L

)
, (13.56)

where ε1 is the dielectric constant of phase 1, the ion has been placed at the origin

so that |E1 (r)| = e/ε1r2 is the amplitude of the electric field in phase 1, and for

facility it has been assumed that V is a sphere of radius L. In the final state, phase 1

contains a nucleus of radius R which contains the ion. It is possible to show that the

corresponding electrostatic contribution,

Ge
f =

ε1

8π

∫

V1

dr(E1 (r))2 +
ε2

8π

∫

V2

dr(E2 (r))2 , (13.57)
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will be minimal when the ion is located at the center of the nucleus, in which case

the electric field inside the nucleus will have an amplitude |E2 (r)|= e/ε2r2 with ε2

being the dielectric constant of phase 2, and (13.57) becomes

Ge
f =

e2

2ε1

∫ L

R
dr

1

r2
+

e2

2ε2

∫ R

a
dr

1

r2

=
e2

2ε1

(
1

R
− 1

L

)
+

e2

2ε2

(
1

a
− 1

R

)
, (13.58)

where L > R > a since the nucleus surrounds the ion. The electrostatic contribution

ΔGe = Ge
f −Ge

i to ΔG will then read

ΔGe = −e2

2

(
1

ε1

− 1

ε2

)(
1

a
− 1

R

)
, (13.59)

leading to a total ΔG (cf.(13.23)),

ΔG = −4πR3

3
ρ2Δ µ + 4πR2σ12 (T )

−e2

2

(
1

ε1

− 1

ε2

)(
1

a
− 1

R

)
, (13.60)

and, therefore, the sign of the electrostatic term will be determined by the relative

magnitude of the dielectric constants of the two phases. In particular, if phase 2 is the

more condensed phase one will have ε2 > ε1 and the electrostatic term of (13.60)

will be negative, opposing the effect of the surface tension term, hereby greatly

facilitating the nucleation process. Note that one can now have ΔG < 0 even when

Δ µ < 0, provided the electrostatic term is large enough. This effect is exploited in

Wilson’s cloud chamber which is filled with a weakly under-saturated vapor. Hence,

since Δ µ < 0 homogeneous nucleation is excluded but as soon as an ion, for instance

a charged elementary particle, enters the chamber, the electrostatic term of (13.60)

makes ΔG negative allowing nucleation to proceed spontaneously. The particle’s

trajectory becomes then visible as a track formed by the nuclei of liquid droplets.

Putting the chamber in external electric and magnetic fields, a study of this track

(trajectory) allows then a determination of the particle’s charge and mass, i.e., an

identification of this elementary particle. A similar process also explains why it often

rains after a thunderstorm, the water vapor condensing on the many ions formed by

the thunderstorm. In conclusion, the nucleation process, which is a rare event in the

homogeneous case, becomes a frequent event in the presence of natural or artificial

impurities.
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13.3 Spinodal Decomposition

In the preceding sections it has been seen how the new phase 2 nucleates in the midst

of the old phase 1 when the latter is in a metastable state. An alternative scenario

is possible for phase transitions which involve unstable states. As already noticed

in Chap. 2, an isostructural phase transition can give rise to a van der Waals loop,

in which case the coexistence region will contain an unstable region, delimited by

two spinodal lines. In such a case, one can first transform the old phase 1 from a

stable initial state into a final state inside the spinodal region. Since in the spinodal

region the thermodynamic state of phase 1 is unstable, it will immediately undergo a

transformation, which is called a “spinodal decomposition,” of the old phase 1 and,

which will result in the creation of a new stable state, the new phase 2. This scenario

is different from a nucleation but in order to realize it the transformation from initial

to final state must proceed sufficiently rapidly. Indeed, between the spinodal and the

binodal there is always a region where phase 1 is metastable and where a nucleation

could start. To avoid this, one has to transform the initial stable state of phase 1

rapidly into an unstable state, so that along the intermediate metastable states the

nucleation has no time to proceed. Such a rapid transformation of the initial into

the final state is called a “quench.” Although the spinodal decomposition process is

more easily observed in mixtures, it will, for simplicity, be illustrated here for the

case of the liquid–vapor transition of a one-component system.

Assume then that one starts from an initially uniform fluid state of density ρ i

and temperature Ti and that one subsequently quenches the system into a state

(ρ,T ) where the fluid is unstable. Suppose, moreover, that during the whole pro-

cess the system’s temperature is kept fixed at the value T = Ti. Since at (ρ,T ) the

system is unstable, its density will immediately start to evolve in time and space

ρ → ρ1 (r,t) = ρ + δρ1 (r,t), where ρ1 (r,0) = ρ and δρ (r, t) represents a spatial

fluctuation:

1

V

∫

V

dr δ ρ1 (r, t) = 0, (13.61)

which for t > 0 structures the system at constant average density ρ . Although the

state (ρ1 (r,t) ,T ) is a non-uniform non-equilibrium unstable state, one first tenta-

tively estimates its intrinsic Helmholtz free energy functional F [ρ1] from the square

gradient approximation of Chap. 11. The fluctuation ρ → ρ +δρ1 (r, t) will be ther-

modynamically acceptable if it lowers the system’s free energy (11.20), i.e., when

ΔF [ρ1] =

∫

V

dr

[
f (T,ρ1 (r, t))− f (T,ρ)+

1

2
a2 {∇δ ρ1 (r,t)}2

]
, (13.62)
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is negative. In the early stage of the evolution process, one may consider δρ1 (r,t)
to be small and (13.62) can be rewritten as

ΔF [ρ1] =
1

2

∫

V

dr

[
∂ 2 f (T,ρ)

∂ρ2
{δρ1 (r,t)}2 + a2{∇δρ1 (r,t)}2

]
, (13.63)

where (13.61) eliminates the linear term and the higher-order terms have been ne-

glected on account of the smallness of δρ1 (r, t). Since for the unstable state (ρ,T )
the free energy density f (T,ρ) is no longer convex, one has ∂ 2 f (T,ρ)/∂ρ2 < 0 and

it follows from (13.63) that ΔF [ρ1] < 0 provided the non-uniformity ∇δρ1 (r, t) is

not too strong (remember that a2 > 0). For instance, if δρ1 (r,t)∼ eik·r δρk (t), then

(13.63) implies that ΔF [ρ1] < 0 provided k < kc, where the critical wavenumber kc

is given by

k2
c = − 1

a2

∂ 2 f (T,ρ)

∂ρ2
> 0, (13.64)

and it has been taken into account that δρ1 (r,t) must be real. Hence, the system

will accept any long-wavelength spatial modulation (k < kc) of its density. The uni-

form fluid phase will thus transform into regions of high (liquid-like) density and

low (vapor-like) density separated by an interface. The form of these regions still

depends on the applied boundary conditions but their characteristic size will always

be given by λ c = 2π/kc, which is an intrinsic wavelength. Once formed, these re-

gions will moreover evolve in time as a result of the system’s instability. The latter

evolution of δρ1 (r,t) is usually described in terms of the following generalized

diffusion equation:

∂δ ρ1 (r, t)

∂ t
= M ∇2 δF [ρ1]

δρ1 (r,t)
, (13.65)

where M is a phenomenological coefficient describing the mobility (diffusion) of

the non-uniform domains of high and low density. In conjunction with the above

square gradient approximation (13.62) for F [ρ1], (13.65) reduces to

∂δρ1 (r,t)

∂ t
= M ∇2

(
∂ f (T,ρ1 (r, t))

∂ρ1 (r, t)
−a2∇2δρ1 (r,t)

)
, (13.66)

which is usually referred as the Cahn–Hilliard equation. When δρ1 (r,t) is small

(13.66) reduces to

∂δ ρ1 (r, t)

∂ t
= M

(
∂ 2 f (T,ρ)

∂ρ2
−a2∇2

)
∇2δρ1 (r, t) , (13.67)

so that for δρ1 (r,t) ∼ eik·r+ω
k

t δ ρk (0), one obtains

ω
k
= a2Mk2

(
k2

c − k2
)
, (13.68)
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showing that the stable domains (k < kc) will grow exponentially in time (ω
k
> 0).

Once this initial growth has reached a stage where δρ1 (r, t) is no longer small,

one has to return to the full non-linear equations, and the later stage of the spinodal

decomposition will then evolve according to an hydrodynamic process, not unlike

the one encountered in the late stage of the nucleation process. One then finds that

the size of the domains grows (a process called coarsening) like t1/3, a result known

as the Lifshitz–Slyozov law. In practice, one also often finds it necessary to include

higher-order gradients terms into F [ρ1], as a result of the steepening of the inter-

faces between the domains. In the end, the high-density domains will merge and

evolve toward a single domain, separated by a single interface from the low-density

region, when the phase transition is completed and the system has reached a stable

two-phase coexistence equilibrium state.

13.4 Glass Transition

As it has been seen above, the process of homogeneous nucleation is difficult to ini-

tiate. This then raises the question of what will happen to the system when one tries

to bypass the very possibility of nucleation. Consider, therefore, a third scenario

where one starts from a stable initial state of phase 1 and rapidly quenches it into

a new state where phase 1 is metastable. In other words, one now applies the rapid

quench method, which was used in the spinodal decomposition scenario to avoid the

nucleation process, to a situation where nucleation is the only process available to

produce a phase transition. To reinforce the absence of nucleation, assume that the

target phase 2 has a broken symmetry and, to fix the ideas, one may consider phase

1 to be a liquid and phase 2 a crystal. In this case, the creation of a nucleus, in partic-

ular of a small anisotropic crystal, will require a considerable amount of molecular

re-organization. To further prevent this, assume moreover that one has performed a

deep quench, for instance to a temperature which is so low that the molecular mo-

tions are considerably inhibited. After such a rapid and deep quench of, say, a liquid

phase, the latter will hence be kinematically arrested, i.e., its molecules will only

be able to execute small oscillations (like in a crystal) around the positions these

molecules did have initially, i.e., positions characteristic of a liquid configuration.

Although the final state of the system is thermodynamically metastable, any fur-

ther evolution, in a finite time, has now become impossible, the system being in a

non-equilibrium stationary state. Assume now that the corresponding temperature-

quench did proceed at a constant speed b, i.e., T (t) = Ti − bt with Ti = T (0), and

that one measures the specific volume v = 1/ρ of this metastable liquid as a func-

tion of the temperature, like one would do for an equilibrium situation. Compare the

results for three different speeds b0,b1, and b2, and assume that b0 is so small that

nucleation can proceed, while b1 corresponds to a rapid quench for which nucleation

is excluded, and b2 to an even more rapid quench. From the results, schematically

shown in Fig. 13.4, one may conclude the following with respect to v as a function

of T . For the case b = b0, there are two equilibrium phases with the liquid being the
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Fig. 13.4 Schematic repre-

sentation of the evolution of

the specific volume v with the

temperature T (t) = Ti − bt ,

for three values of b, with

b0 ≪ b1 < b2. Here T0 cor-

responds to the equilibrium

phase transition temperature

and Tg, with Tg (b2) < Tg (b1),
to the thermodynamic glass

transition temperature

TTf
Tg(b2) Tg(b1)

v

glass

glass

crystal

b0

T0 Ti

b2

b1
liq

uid

stable phase for T0 < T < Ti and the crystal being the stable phase for Tf < T < T0,

while at the liquid–crystal coexistence temperature (for the given pressure) T0 there

is a discontinuity in v signaling the phase transition.

For the case b = b1, v is continuous everywhere but dv/dT exhibits a discon-

tinuity at T = Tg, Tg being called the thermodynamic glass transition temperature,

because for Tf < T < Tg the system is said to be in a glass phase. Note that nothing

particular has happened at T = T0 indicating hereby that the nucleation process was

indeed inhibited. The liquid phase is still the stable phase for T0 < T < Ti but is

called supercooled in the region Tg < T < T0. Note also that the values of dv/dT are

very similar for the two cases. Finally, the case b = b2 is similar to the case b = b1,

except for the fact that Tg is a decreasing function of b. To avoid this sensitivity of

Tg to b, one often introduces a conventional glass transition temperature T ′
g defined

as the temperature for which the shear viscosity reaches the (conventional) value of

103 poise. One then finds that T ′
g is much less sensitive to the value of b than is the

case for the thermodynamic glass transition temperature Tg. One should, however,

not be confused by the terminology being used here: the glass transition is a kine-

matic transition, not a true equilibrium phase transition. The latter being always a

transition between two equilibrium states, whereas the glass phase is a metastable,

hence, non-equilibrium state. Therefore, although the glass phase will remain stable

on any human-like timescale, some of its properties may still very slowly evolve.

One then says that the glass phase is aging. Nowadays, most of the new materials

(plastics, ceramics, metallic glasses, etc.) are in fact glass phases, but the nomen-

clature used refers, of course, to the way in which window glass is being produced.

The glass transition is hence a central topic in what is called, at present, materials

science. It is a difficult topic which mixes in a subtle way the equilibrium and non-

equilibrium aspects of the general theory of phase transitions. Needless to say that

a detailed study of the glass transition is beyond the scope of the present book.
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Appendix A

Legendre Transformations

A.1 Case of One Variable

In order to introduce the concept of Legendre transformation, consider an analytic

function y = y(x), whose derivative is p ≡ y′(x) (in what follows, a prime denotes

a derivative with respect to the argument). If one eliminates x from this equation,

x = x(p), and then substitutes in the original function the result is y = y(x(p)) ≡
y(p), which is a first-order differential equation whose general solution contains

an arbitrary integration constant. Since only for a certain value of the integration

constant one recovers the function y = y(x), the functions y = y(p) and y = y(x) are

not equivalent. In spite of this, it is possible to find a transformation of the function

y = y(x) into another equivalent function in which p is the independent variable.

To that end, note that a curve is defined either by the set of points (x,y) such that

y = y(x), or by the envelope of the curve. The latter is formed by the set of points

(p,y0), where y0 is the ordinate at the origin of the straight line whose slope is

p = y′(x), which is the tangent to the curve at the point x. Since the equation of the

tangent to the curve that passes through the point (x,y) is given by

y = y0 + px , (A.1)

the curve is completely characterized by the function y0(p), namely

y0(p) = y(p)− px(p) , (A.2)

where x(p) is obtained when one eliminates x from the equation

p = y′(x) , (A.3)

and y(p) is the function:

y = y(x(p)) ≡ y(p) . (A.4)

The transformation (A.2) by which the function y = y(x) is replaced by the func-

tion y0 = y0(p), in which the derivative of the original function is the independent

337
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variable, is known as a Legendre transformation and the function y0(p) is referred

to as the Legendre transform of the function y(x).
Differentiating (A.2) one has

dy0 = dy− pdx− xd p = −xd p , (A.5)

so that

x = −y′0(p) . (A.6)

The inverse Legendre transform of the function y0(p) is obtained when one elim-

inates the derivative p = y′(x) from (A.6), and so y(x) may be expressed, according

to (A.2), as

y(x) = y0(y
′(x))+ xy′(x) , (A.7)

which is the original function.

Note that from (A.3) and (A.6) it follows that

p′(x) = y′′(x) , x′(p) = −y′′0(p) ,

and since

p′(x) =
[
x′(p)

]−1
,

one finally obtains

y′′(x)y′′0(p) = −1 . (A.8)

It may be shown that the Legendre transform exists and is unique when the func-

tion y(x) is convex or concave. A function y(x) is convex when y′′(x) > 0 and con-

cave when y′′(x) < 0. From (A.8) it follows that the Legendre transform of a convex

function is a concave function and vice versa. Some simple examples of convex

functions on the real axis are y(x) = x2 and y(x) = ex, whose Legendre transforms

are, respectively, y0(p) = −p2/4 and y0(p) = p(1 − ln p). The Legendre trans-

form of the function y(x) = ln x, which is convex on the real positive semiaxis, is

y0(p) = −(1 + ln p).
It may happen that in some interval x1 < x < x2, y′′(x) does not exist. In such cases

one may use the following (more general) definitions of convexity and Legendre

transform. If xk = kx1 + (1− k)x2 (0 < k < 1) is an arbitrary point of the interval

(x1,x2), the function y(x) is convex in the interval when

y(xk) < ky(x1)+ (1− k)y(x2) , (A.9)

which expresses that y(x) lies below the straight line joining the points (x1,y(x1))
and (x2,y(x2)) (Fig. A.1).

If y′(x) exists, (A.9) is equivalent to

y(xk) > y(x0)+ (xk − x0)y
′(x0) , (A.10)

i.e., y(x) lies above the tangent to the curve at x0, for all xk �= x0 (Fig. A.2).

Finally, if y′′(x) exists, (A.10) is equivalent to
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Fig. A.1 A convex function

y(x) in the interval (x1,x2) .
Note that y(x) lies below the

straight line joining the points

(a,y(a)) and (b,y(b)) for any

x1 ≤ a < b ≤ x2

x

y

x1 x2a b

y′′(xk) > 0 . (A.11)

In the general case, the Legendre transform of y(x) and its inverse y0(p) are

defined as

y0(p) = minx (y(x)− xp) , y(x) = maxp (y0(p)+ px) , (A.12)

where x and p are the conjugate variables of the transformation. Note that p = y′(x)
and x = −y′0(p), when the derivatives do exist.

Fig. A.2 A differentiable

convex function y(x) in the

interval (x1,x2) . Note that

y(x) lies above the tangent to

the curve at a (or b) for any

x1 < a < x2
x

y

x1 x2a b
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A.2 Case of n Variables

The concepts developed for one variable may be extended to the case in which

y = y(x1, . . . ,xn) is a function of n variables. If

pk ≡
∂y(x1, . . . ,xn)

∂xk

(k = 1, . . . ,n) , (A.13)

different Legendre transforms may be defined, depending on the partial deriva-

tives (A.13) that one wants to have as independent variables in the transforma-

tion. Let s ≤ n be these variables. The partial Legendre transform of the function

y(x1, . . . ,xn) ≡ y({xs};{xn−s}), in which {xs} denotes the set of variables that are

going to be replaced by their derivatives {ps} in the Legendre transform and {xn−s}
denotes the set of variables that are not affected by the transformation, is defined by

the following equation:

y0({ps};{xn−s}) = y({ps};{xn−s})−
s

∑
k=1

pkxk({ps};{xn−s}) , (A.14)

where xk({ps};{xn−s}) is obtained by eliminating the variables xk (k = 1, . . . ,s) from

(A.13) in terms of the derivatives {ps} and of the remaining n− s variables {xn−s},

and y({ps};{xn−s}) is the function:

y({ps};{xn−s}) = y({xs({ps};{xn−s})};{xn−s}) . (A.15)

Differentiating (A.14) one finds

dy0 = dy−
s

∑
k=1

[pkdxk + xkd pk] =
n

∑
i=n−s

pidxi −
s

∑
k=1

xkd pk , (A.16)

so that

xk = −∂y0({ps};{xn−s})
∂ pk

, (k = 1, . . . ,s) . (A.17)

The inverse Legendre transform of the function y0({ps};{xn−s}) is obtained

when one eliminates the derivatives pk = pk({xs};{xn−s}) from (A.17), in such a

way that y may be derived from (A.14) as

y({xs};{xn−s}) = y0({xs};{xn−s})+
s

∑
k=1

xk pk({xs};{xn−s}) , (A.18)

which is the original function with

y0({xs};{xn−s}) = y0({ps({xs};{xn−s})};{xn−s}) . (A.19)
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A.2.1 Some Examples

The Lagrangian LN(q, q̇) ≡ LN(q1, . . . ,q3N , q̇1, . . . , q̇3N) of a system of 3N degrees

of freedom is a function of the coordinates q1, . . . ,q3N and of the generalized veloc-

ities q̇1, . . . , q̇3N (see Chap. 1). The equations of motion of the system or Lagrange

equations are

d

dt

(
∂LN(q, q̇)

∂ q̇i

)
− ∂LN(q, q̇)

∂qi

= 0 , (i = 1, . . . ,3N) . (A.20)

The generalized momenta are defined as

pi =
∂LN(q, q̇)

∂qi

, (A.21)

and the Hamiltonian HN(q, p)≡HN(q1, . . . ,q3N , p1, . . . , p3N), with a change of sign,

is the Legendre transform of LN(q, q̇) when the generalized velocities are replaced

by the generalized momenta, namely

−HN(q, p) = LN(q, q̇)−
3N

∑
i=1

piq̇i . (A.22)

Differentiating (A.22) one has

−dHN(q, p) =
3N

∑
i=1

(ṗidqi − q̇id pi) , (A.23)

where use has been made of (A.20) and (A.21). Therefore,

q̇i =
∂HN(q, p)

∂ pi

, ṗi = −∂HN(q, p)

∂qi

, (i = 1, . . . ,3N) , (A.24)

which are the Hamilton equations (see Chap. 1).

The fundamental equation of thermodynamics (see Chap. 2) of a one component

system whose only external parameter is the volume is E = E(S,V,N), where E is

the internal energy, S is the entropy, V is the volume, and N is the number of parti-

cles. The intensive parameters temperature, T , pressure, p, and chemical potential,

µ, are the derivatives:

T =
∂E

∂S
, p = −∂E

∂V
, µ =

∂E

∂N
. (A.25)

Throughout the text different partial Legendre transforms of the fundamental

equation appear. Three of these transforms or thermodynamic potentials are the

Helmholtz free energy

F(T,V,N) = E(S,V,N)−TS , (A.26)
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where in (A.26) S = S(T,V,N) is obtained from the solution of the first of the im-

plicit equations in (A.25), the Gibbs free energy

G(T, p,N) = E(S,V,N)−TS + pV , (A.27)

where in (A.27) S = S(T, p,N) and V = V (T, p,N) are obtained from the solution

of the first two implicit equations in (A.25), and the Landau free energy or grand

potential

Ω(T,V,µ) = E(S,V,N)−TS− µN , (A.28)

where in (A.28) S = S(T,V,µ) and N = N(T,V,µ), are obtained from the solution

of the first and the third implicit equations in (A.25).

Reference

1. R. Balian, From Microphysics to Macrophysics, Vol. 1, Springer-Verlag, Berlin (1991). Pro-

vides a detailed discussion of the Legendre transformation method.
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Random Variables

B.1 One-Dimensional Random Variable

One defines a one-dimensional continuous random variable X , which is assumed to

take values on the real axis, by its probability density ρX (x), which is a non-negative

function that satisfies the normalization condition:
∫ ∞

−∞
dxρX(x) = 1. (B.1)

The probability P[x1 < x < x2] that the variable takes values in the interval [x1,x2]
is given by

P[x1 < x < x2] =

∫ x2

x1

dxρX(x), (B.2)

so that (B.1) expresses that the probability that X takes any value on the real axis

is one. Note that the random variable has been denoted by a capital letter and its

possible values by the same small letter.

If X is a random variable, one defines the moment of order n, 〈Xn〉, as

〈Xn〉 ≡
∫ ∞

−∞
dxxn ρX (x), (B.3)

and the average value of a function f (X) by

〈 f (X)〉 ≡
∫ ∞

−∞
dx f (x)ρ X(x). (B.4)

The first moment is thus the average value of the variable. The dispersion or

fluctuation of the random variable, σ2
X , is defined as

σ2
X ≡ 〈[X −〈X〉]2〉 = 〈X2〉− 〈X〉2 ≥ 0. (B.5)

343
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Consider a real function Y = f (X) of the random variable X , whose probability

density is ρX(x). Y is a random variable whose probability density ρY (y) may be

determined as follows. The probability that Y takes values in the interval [y,y + Δy]
is the probability that X takes values on the real axis, such that y < f (x) < y + Δy,

namely

ρY (y)Δy =

∫ ∞

−∞
dx [Θ(y + Δy− f (x))−Θ(y− f (x))]ρX (x), (B.6)

and so dividing by Δy and taking the limit Δy → 0, one has

ρY (y) =

∫ ∞

−∞
dxδ (y− f (x))ρX (x). (B.7)

When the probability density ρX(x) is of the form

ρX (x) = ∑
n

pnδ (x− xn), ( pn ≥ 0), (B.8)

where the sum extends over a finite or numerable infinite set of points of the real

axis, one says that the random variable is discrete. In (B.8) pn is then the probability

that the random variable takes the value xn and the normalization condition (B.1) is

expressed as

∑
n

pn = 1. (B.9)

B.1.1 Some Examples

A continuous random variable X is Gaussian when its probability density ρX(x) is:

ρX (x) =
1√

2πσ2
X

e−(x−〈X〉)2/2σ2
X , (B.10)

where 〈X〉 is the average value of the variable and σ2
X its dispersion. Observe that in

the case of Gaussian random variables all the moments can be expressed in terms of

the first two moments. When 〈X〉= 0 and σX = 1, one says that the random variable

is a normal Gaussian random variable in which case the moments of odd order are

zero, by symmetry, and the moments of even order are given by

〈X2n〉 =
1√
2π

∫ ∞

−∞
dxx2n e−x2/2 =

2n

√
π

Γ

(
n +

1

2

)
, (B.11)

where Γ (x) is the Euler gamma function.

The Fourier transform of the Gaussian distribution (B.10) is
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ρ̃X(k) =

∫ ∞

−∞
dxe−ikxρX(x) = e−ik〈X〉−k2σ 2

X /2, (B.12)

an expression that will be used later on.

A discrete random variable X is binomial, when the probabilities pn are given by

pn =
N!

n!(N −n)!
pn(1− p)N−n, (n = 0,1, . . . ,N) , (B.13)

where N is an integer and p a real number 0 < p ≤ 1. The average value and the

dispersion of the binomial distribution (B.13) are 〈X〉 = N p, σ2
X = N p(1− p).

A discrete random variable X is a Poisson random variable, when the probabili-

ties pn are given by

pn =
1

n!
λ n

e−λ , (n = 0,1, . . .) , (B.14)

where λ is a positive real number. The average value and the dispersion of the

Poisson distribution (B.14) are 〈X〉 = λ , σ2
X = λ .

B.2 Approximation Methods

Throughout the text one finds probability densities of random variables which have

the form

ρX(x) =
1

Z (N)
eN f (x), (B.15)

where f (x) is an analytic function on the real axis and N an integer, N ≫ 1. The

constant Z (N) in (B.15) is obtained from the normalization condition (B.1), namely

Z (N) =

∫ ∞

−∞
dxeN f (x). (B.16)

Assume now that f (x) has a single maximum at x0, i.e., f ′(x0) = 0 and f ′′(x0) <
0. If N ≫ 1, the function

a(x) ≡ eN[ f (x)− f (x0)], (B.17)

has a very pronounced peak in the vicinity of x0 and tends to zero exponentially as

one gets away from it. An approximate expression for a(x) may then be obtained

by performing a Taylor expansion of the function f (x)− f (x0) that appears in the

exponent up to second order, leading to

a(x) ≃ e−N| f ′′(x0)|(x−x0)2/2. (B.18)

Integrating with respect to x, one has

∫ ∞

−∞
dxa(x) ≃

∫ ∞

−∞
dxe−N| f ′′(x0)|(x−x0)2/2 =

√
2π

N| f ′′(x0)|
, (B.19)



346 B Random Variables

and hence

Z (N) ≃
√

2π

N| f ′′(x0)|
eN f (x0). (B.20)

The probability density (B.15), is, according to (B.18) and (B.19), given by

ρX(x) ≃
√

N| f ′′(x0)|
2π

e−N| f ′′(x0)|(x−x0)2/2, (B.21)

which implies that X is a Gaussian random variable of average value x0 and disper-

sion:

σ2
X =

1

N| f ′′(x0)|
. (B.22)

If one considers more terms in the Taylor expansion of the function f (x)− f (x0)
in (B.17), expanding the resulting exponentials, except the Gaussian, one obtains

∫ ∞

−∞
dxa(x) =

√
2π

N| f ′′(x0)|

[
1 + O

(
1

N2

)]
, (B.23)

and hence

lim
N→∞

1

N
lnZ (N) = f (x0). (B.24)

Note that, by the same type of arguments, if b(x) is a smoothly varying function

in the neighborhood of x0, one has

∫ ∞

−∞
dxb(x)a(x) ≃ b(x0)

∫ ∞

−∞
dxa(x), (B.25)

i.e.,
∫ ∞

−∞
dxb(x)eN f (x) ≃

√
2π

N| f ′′(x0)|
b(x0)e

N f (x0). (B.26)

B.3 n-Dimensional Random Variable

An n-dimensional random variable (X1, . . . ,Xn) is defined by the joint probability

density ρX1,...,Xn
(x1, . . . ,xn), which is a non-negative function that satisfies the nor-

malization condition,

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxn ρX1,...,Xn

(x1, . . . ,xn) = 1, (B.27)

and which, when integrated over a region Rn, is the probability that the n-dimensional

variable takes values in that region. When it may lead to no confusion, the joint
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probability density is denoted by ρn(x1, . . . ,xn) and even by ρ(x1, . . . ,xn). This last

notation is the one used in the text.

The marginal probability density ρX1,...,Xs
(x1, . . . ,xs) of a subset of s < n variables

is defined as

ρX1,...,Xs
(x1, . . . ,xs) =

∫ ∞

−∞
dxs+1 . . .

∫ ∞

−∞
dxn ρX1,...,Xn

(x1, . . . ,xn), (B.28)

whose normalization is, according to (B.27),

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxs ρX1,...,Xs

(x1, . . . ,xs) = 1. (B.29)

The first and second moments of an n-dimensional random variable are defined

as

〈X j〉 =

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxn x j ρX1,...,Xn

(x1, . . . ,xn)

=

∫ ∞

−∞
dx j x j ρX j

(x j), (B.30)

and

〈XiX j〉 =

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxn xix j ρX1,...,Xn

(x1, . . . ,xn)

=

∫ ∞

−∞
dxi

∫ ∞

−∞
dx j xix j ρXi,X j

(xi,x j). (B.31)

From (B.30) and (B.31) an n×n matrix may be defined whose elements are

C(Xi,X j) = 〈XiX j〉− 〈Xi〉〈X j〉, (B.32)

The diagonal terms are the dispersions σ2
i = 〈X2

i 〉−〈Xi〉2 and the off-diagonal terms

are called the correlations.

The random variables X1, . . . ,Xn are called statistically independent when

ρX1,...,Xn
(x1, . . . ,xn) =

n

∏
i=1

ρXi
(xi), (B.33)

in which case 〈XiX j〉 = 〈Xi〉〈X j〉 (i �= j) and the correlation between any pair of

variables is zero.

Consider two continuous random variables X1 and X2 whose joint probability

density is ρX1,X2
(x1,x2). The probability density of the random variable Y = X1 +X2

may be determined using a similar reasoning to the one considered in (B.6), namely
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ρY (y)Δy =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 [Θ(y + Δy− x1− x2)−Θ(y− x1− x2)]

× ρX1,X2
(x1,x2). (B.34)

Dividing (B.34) by Δy in the limit Δy → 0, one has

ρY (y) =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 δ (y− x1 − x2)ρX1,X2

(x1,x2)

=

∫ ∞

−∞
dx1 ρX1,X2

(x1,y− x1), (B.35)

so that if X1 and X2 are statistically independent variables,

ρY (y) =
∫ ∞

−∞
dx1 ρX1

(x1)ρX2
(y− x1), (B.36)

i.e., the probability density of the sum of two independent random variables is the

convolution of the individual probability densities. Taking the Fourier transform of

(B.36), one has

ρ̃Y (k) = ρ̃X1
(k)ρ̃X2

(k). (B.37)

Consider N continuous random variables X1, . . . ,XN statistically independent and

identical (the individual probability density ρX (x) is the same for all of them) of

average value 〈Xi〉 = 0 and dispersion σ2
X . Note that the restriction on the average

value is not important, since if this is not zero one may take as random variables

Xi −〈Xi〉. Consider the random variable

Y =
1√
N

(X1 + · · ·+ XN) (B.38)

of zero average value and dispersion σ2
Y = σ2

X , as may be verified by squaring (B.38)

and taking the average value, since 〈XiX j〉 = 0 (i �= j).

Let ρ̃Y (k) and ρ̃X(k) be the Fourier transforms of the probability densities ρY (y)
and ρX(x). One then has

ρ̃Y (k) =

[
ρ̃X

(
k√
N

)]N

. (B.39)

Since

ρ̃X

(
k√
N

)
=

∫ ∞

−∞
dxeikx/

√
N ρX (x) = 1− k2σ2

X

2N
+ O

(
1

N3/2

)
, (B.40)

it follows that

ρ̃Y (k) =

[
1− k2σ2

X

2N
+ O

(
1

N3/2

)]N

, (B.41)
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which in the limit N → ∞ reads

lim
N→∞

ρ̃Y (k) = lim
N→∞

[
1− k2σ2

X

2N
+ O

(
1

N3/2

)]N

= e−k2σ 2
X /2, (B.42)

where use has been made of the definition of the number e. According to (B.12),

Y is a normal Gaussian random variable. Note that to arrive at this result it has not

been necessary to specify the particular form of ρX (x) and it has only been assumed

that the random variables are identical and independent. This result is known as the

central limit theorem.

Reference

1. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam

(1981). A classic introduction to various stochastic methods.
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Functional and Functional Derivative

C.1 Definition of a Functional

Consider first a function of n variables F(ρ1, . . . ,ρn), where ρ i = ρ(xi) (i = 1, . . .n)

is the value of the function ρ(x) at a point xi in the interval in which the func-

tion is defined (in what follows it will be assumed that this interval is the whole

real axis). The function F(ρ1, . . . ,ρn) is an application that associates a number

F(ρ1, . . . ,ρn) to any set of values ρ1, . . .ρn. As a generalization of the definition

of a function of n variables, the concept of a functional of a function arises as the

limit of F(ρ1, . . . ,ρn) when n tends to infinity in such a way that the {ρ i} cover the

whole curve ρ = ρ (x). In this way a functional associates a number to a curve.

Consider, for instance, the integral

F[ρ ] =

∫ ∞

−∞
dxρ(x) ≃ ∑

i

ρ iΔxi, (C.1)

which associates to each function ρ(x) a number F [ρ] (whenever the integral ex-

ists). Note that the functional dependence is denoted by a bracket, instead of by a

parenthesis as in the case of a function, and hence two observations are pertinent

here. The first one is that, since F [ρ ] is not a function of x, the notation F [ρ(x)],
which may lead to confusion, is not adequate. The second one is that F[ρ ] is not a

function of a function, which is denoted by a parenthesis. For example, if ρ(x) = x

and g(x) = x2 +1, one has g(ρ(x)) = (ρ(x))2 +1, which is a function of the function

ρ(x), not a functional of ρ(x).

C.2 The Functional Derivative

The differential of F(ρ1, . . .ρn) when the variables {ρ i} change from ρ i to ρ i +dρ i

is

351
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dF =
n

∑
i=1

∂F(ρ1, . . . ,ρn)

∂ρ i

dρ i, (C.2)

which may be written as

dF =
n

∑
i=1

Δxi

1

Δxi

∂F(ρ1, . . . ,ρn)

∂ρ i

dρ i, (C.3)

where Δxi = xi+1−xi. Consider now the limit n → ∞, Δxi → 0 of (C.3). When some

mathematical conditions are met, this sum may be written in the aforementioned

limit as the integral

δF [ρ] =

∫
dx

δF[ρ ]

δρ(x)
δρ(x), (C.4)

where δρ(x) is the increment of the function ρ(x) (as the limit of {dρ i}), δF [ρ]
is the increment of the functional (as the limit of dF), and one has defined the

functional derivative δ F[ρ ]/δρ(x) as the limit of

1

Δxi

∂F(ρ1, . . . ,ρn)

∂ρ i

.

Note that, in much the same way that the functional dependence is denoted by a

bracket, the symbol δ is reserved for the functional increments. Observe also that

the functional derivative is a functional of ρ(x) (due to the limit n → ∞) and a

function of x (due to the dependence on Δxi → 0) and that the dimension of the

functional derivative is not the one of the partial derivative, due to the factor 1/Δxi.

C.3 Some Examples

The next are a few simple applications.

(a) From the identity

δ ρ(x) =

∫
dx′ δ (x− x′)δ ρ(x′), (C.5)

where δ (x) is the Dirac delta, it follows that from the comparison of (C.4) with (C.5)

one has

δρ(x)

δρ(x′)
= δ (x− x′). (C.6)

(b) Note that the rules of functional derivation are similar to the ones of the

derivation of functions. For instance, given the functional

F [ρ ] =
∫

dx lnρ(x), (C.7)
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the increment of the functional δ F[ρ ] = F [ρ + δρ]−F [ρ ] when the function in-

creases by δρ(x) is

δF [ρ] =
∫

dx ln[ρ(x)+ δρ(x)]−
∫

dx lnρ(x)

=
∫

dx ln

[
1 +

δρ(x)

ρ(x)

]
=
∫

dx

[
δρ(x)

ρ(x)
+ . . .

]
, (C.8)

i.e.,

δF [ρ]

δρ(x)
=

1

ρ(x)
. (C.9)

This result may also be obtained by functional derivation of (C.7), using the rules

for the derivation of functions and (C.6), namely

δF [ρ]

δρ(x)
=

δ

δρ(x)

∫
dx′ lnρ(x′) =

∫
dx′

δ lnρ(x′)
δρ(x)

=

∫
dx′

1

ρ(x′)
δ ρ(x′)
δρ(x)

=

∫
dx′

1

ρ(x′)
δ (x− x′)

=
1

ρ(x)
. (C.10)

In this way, if g(x) is a function independent of ρ(x), one has

δ

δρ(x)

∫
dx′g(x′)ρ(x′) = g(x), (C.11)

δ

δ ρ(x)

∫
dx′g(x′)[ρ(x′)]n = ng(x)[ρ(x)]n−1, (C.12)

δ

δρ(x)

∫
dx′g(x′)ρ(x′) ln ρ(x′) = g(x)[lnρ(x)+ 1] (C.13)

(c) Consider a system of particles contained in a closed region R of volume V in

an external potential φ (r). The Helmholtz free energy F [φ ] is a functional of φ(r)
(note that this is a generalization of the one-dimensional problem). The functional

derivative with respect to the external potential is the local density of particles ρ1(r)
(see Sect. 5.5):

ρ1(r) =
δ F[φ ]

δ φ(r)
. (C.14)
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In the case of functionals, the Legendre transformation has to be modified due

to the definition of the functional derivative. The intrinsic Helmholtz free energy

functional F[ρ1] is defined as

F[ρ1] = F [φ ]−
∫

R
drφ(r)ρ1(r), (C.15)

where φ (r) in (C.15) is a function of the local density of particles that is obtained

from the solution of the implicit equation (C.14).

The variation of (C.15) is

δF[ρ1] = δF [φ ]−
∫

R
dr[φ(r)δ ρ1(r)+ ρ1(r)δ φ(r)], (C.16)

and since

δF [φ ] =

∫

R
dr

δF [φ ]

δφ (r)
δφ (r), (C.17)

from (C.14), (C.16), and (C.17) it follows that

δF[ρ1] = −
∫

R
drφ(r)δ ρ1(r), (C.18)

i.e.,

φ(r) = −δF[ρ1]

δρ1(r)
. (C.19)

Therefore, the first derivative of the intrinsic Helmholtz free energy functional with

respect to the local density of particles is the external potential with a change of sign.

Equations (C.14) and (C.19) show that φ (r) and ρ1(r) are the conjugate variables

(fields) of the functional Legendre transformation (C.15).
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Appendix D

A Quasicrystalline Lattice

As has been indicated in Sect. 8.2, in a crystal the particles (atoms or molecules)

oscillate around the equilibrium positions of a periodic lattice (a Bravais lattice).

In 1912 von Laue suggested that crystals might behave as diffraction lattices for

X-rays, so that if the wavelength of the rays were comparable to the average distance

between the atoms, it should be possible to determine the symmetries of the lattice

through diffraction experiments. Some symmetries are forbidden in a crystal (as

shown below), and hence with the observation in 1984 of crystals with symmetries

that do not correspond to periodic lattices, but to quasiperiodic lattices, the study of

this kind of “crystals,” called quasicrystals, was initiated.

D.1 Forbidden Symmetries of Periodic 2D Lattices

Consider a periodic lattice, that for simplicity will be assumed to be two-dimensional,

formed by the vertices of regular polygons that produce a tiling covering the plane

(infinite). Since not all regular polygons may cover the plane, it is clear that there

must exist forbidden symmetries in periodic lattices. This may be demonstrated with

the following reasoning. If the regular polygon has n sides (n > 2), the angle that

form the segments that join the center of the polygon with the vertices of one side

is 2π/n (Fig. D.1) and the axis perpendicular to the plane that passes through the

center of the polygon is a symmetry axis of order n. Assume now that the axis per-

pendicular to the plane that passes through one vertex has a symmetry of order q,

i.e., that the angle formed by the side of the polygon and the segment that joins one

vertex with the center is π/q. One then has (see Fig. D.1) 2π/n+2π/q = π , namely

1/n+1/q = 1/2, or, alternatively, q = 2n/(n−2). Note that the only interesting so-

lutions to this equation are those for which n and q are integers. Therefore, if n = 3

(triangles) then q = 6, when n = 4 (squares) q = 4, if n = 5 (pentagons) q = 10/3,

which is not an integer, and when n = 6 (hexagons) q = 3. For n > 6 there are no

solutions with q being an integer, since when n → ∞ one has q → 2, i.e., 3 > q > 2

if 6 < n < ∞ and there is no integer between 2 and 3. As a consequence, the only

355
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periodic lattices in the plane correspond to n = 3,4, and 6, with a symmetry of order

q = 6,4, and 3, respectively. The symmetries q = 5 and q > 6 are forbidden.

To construct a periodic two-dimensional lattice one may adopt the convention by

which the vertices (x,y) of the lattice are represented by complex numbers z = x+ iy.

Consider, for instance, the triangular lattice (n = 3, q = 6) and let

ω = e2πi/6 =
1

2
+ i

√
3

2
, (D.1)

be a root of the equation ω6 = 1. The vertices of the triangular lattice are given by

the set of complex numbers

{zt} = {k1 + k2ω}, (D.2)

where k1 and k2 are integers (k1,k2 = 0,±1,±2 . . .). Note that in this lattice the side

of the triangle has been taken equal to one. If the side of the triangle is a, the set of

complex numbers defining the lattice is, instead of {zt}, {azt}.

D.2 A Quasiperiodic 2D Lattice

This convention established for a crystal may now be generalized to a quasicrystal.

Thus, consider the set of complex numbers,

{zd} = {z1 + z2ξ}, (D.3)

Fig. D.1 Angles formed by

the segments that join the

center of a regular polygon

of n sides with the vertices of

a side of the polygon and by

one of these segments and one

of the sides of the polygon

π/q

2π/n

π/q
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where

ξ = e2πi/12 =

√
3

2
+ i

1

2
(D.4)

is a root of the equation ξ 12 = 1. Note that ξ is a vector oriented along a forbidden

direction of a two-dimensional lattice. In (D.3 ) z1 = k1 +k2ω and z2 = k′1 +k′2ω are

two arbitrary elements of the set of complex numbers (D.2), namely

{zd} = {k1 + k2ω + k′1ξ + k′2ωξ}, (D.5)

where k1,k2,k
′
1,k

′
2 = 0,±1,±2,. . . and ωξ = e5πi/6 = −

√
3/2+ i/2 (note that ω =

ξ 4
and ωξ = ξ 5

).

Observe that while (D.2) is a periodic lattice in real space, (D.5) is a periodic

lattice in complex space, i.e., the number of dimensions of space is duplicated from

two to four. In the first case, k1 and k2 are the “coordinates” of each point of space,

which in the second are k1,k2,k
′
1, and k′2. This interpretation refers, of course, to

abstract mathematical spaces, which does not prevent (D.5) from also representing

points in the space (x,y). For this to be so, one needs to “project” this space of

dimension four onto a two-dimensional lattice. The way to perform this projection

is not unique and, for instance, the quasicrystalline lattice of Fig. D.2 corresponds

to points {zd} that satisfy the following conditions:

[
(Re zd)

cos[(2k + 1)π/12]

cos(π/12)
+ (Imzd)

sin[(2k + 1)π/12]

sin(π/12)

]2

≤ 1, (D.6)

where zd = Rezd + i Imzd and k = 0,1,2,3,4,5. Note that the lattice is not periodic,

but rather a superposition of two periodic lattices, of periods ω and ξ , and an “in-

terference” term ωξ . If the values of ω and ξ or the conditions (D.6) are modified,

Fig. D.2 Part of the infinite

quasiperiodic lattice con-

structed as indicated in the

text
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one obtains different quasiperiodic lattices, although not all of them are of inter-

est in physics. The example of the quasiperiodic lattice of Fig. D.2 is observed in

quasicrystals and may be seen to correspond to a “mixture” of triangles and squares.
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