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1 Introduction

Fungi are extremely abundant and globally diverse. They are the second largest

group of organisms in the world only after insects. Recent estimates of the number

of fungi on Earth are approximately 1.5 million. The total number of described

fungi of all kinds is currently 100,000 species. The number of higher fungi

(mushrooms) species on Earth is currently estimated at 150,000, yet perhaps only

10% (approximately 15,000 are named species) are known to science [1–4]. Higher

fungi are currently being evaluated for their nutritional value and acceptability as

well as for their pharmacological properties. They make up a vast and yet largely

untapped source of potentially potent new pharmaceutical products [4]. In this

contribution, a general overview of pigments, nitrogen-containing compounds,

and terpenoids from higher fungi will be provided. Toxins are included in each

section as they are encountered. Secondary metabolite structures and their biolog-

ical activities, chemical synthesis, and biosynthesis will be discussed.

2 Pigments of Higher Fungi

2.1 Introduction

This section, like previous reviews [5–10], surveys the chemical, biological, and

mycological literature dealing with the isolation, structure elucidation, biological

activities, and synthesis of pigments biosynthesized by those fungi that produce

conspicuous fruiting bodies (macromycetes) or by fungi grown in mycelial cultures.

Additionally, several colorless metabolites are included where they are significant

or related to the pigments. However, unlike previous reviews, the pigments from

slime molds (myxomycetes) are not included in this chapter. This chapter covers

the literature from 2010 to 2016, and compounds are classified according to their

perceived route of biosynthesis.

2.2 Pigments from the Shikimate-Chorismate Pathway

2.2.1 Pigments Derived from Arylpyruvic Acids

Terphenylquinones

Terphenyls are a group of pigments consisting of a chain of three benzene rings.

Almost all reported natural terphenyls are of the p-terphenyl type and have been

found mainly in actinomycetes, lichens, and fungi. The structure elucidation,

biological activities, transformation, and total synthesis as well as biosynthesis of

Secondary Metabolites from Higher Fungi 3



terphenyl derivatives from natural sources since 1877 have been reviewed in detail

[11]. Mushroom-derived p-terphenyls were found in the genera Sarcodon,
Hydnellum, Boletopsis, Thelephora, Polyozellus, and Hypoxylon (Table 1). Struc-

turally, natural p-terphenyls are characterized by having various oxygenated sub-

stituents, such as hydroxy, methoxy, or acyloxy groups, and exhibit deceptively

simple 1H NMR spectra, but complex 13C NMR spectra, with many olefinic

quaternary carbons, which has made it difficult to determine the substitution

positions of certain p-terphenyls.

Table 1 Natural terphenyls discovered in recent years

Compounda Origin

Biological

activity Refs.

Phellodonin (1) Phellodon niger [12]

Sarcoviolin β (2) Sarcodon leucopus Antioxidative;

α-glucosidase
inhibition

[13]

Episarcoviolin β (3) Sarcodon leucopus Antioxidative;

α-glucosidase
inhibition

[13]

20,30,50,60-Tetracetoxy-4,
400-dihydroxy-p-terphenyl

Sarcodon leucopus [13]

Sarcoviolin ε (29) Sarcodon scabrosus [14]

Concrescenins A (4), B (5) Hydnellum concrescens α-Glucosidase
inhibition

[15]

Boletopsins A–C (6–8) Boletopsis leucomelas KDR kinase

inhibitor

[16]

Boletopsin 11 (9), 12 (10) Boletopsis sp. [17]

Boletopsin 13 (11), 14 (12) Boletopsis sp. [18]

Thelephantin O (13) Thelephora
aurantiotincta

Antitumor

(selective)

[19]

Vialinin A (14) Thelephora
aurantiotincta

Antitumor

(selective)

[19]

Vialinin C (15) Thelephora vialis TNF-α production [20]

Vialisyl A (16) Thelephora vialis [21]

Polyozellic acid (17) Polyozellus multiplex Antiangiogenesis [22]

Thelephoric acid (18) Polyozellus multiplex Antiangiogenesis [22]

Rickenyl A (19) Hypoxylon rickii [23]

Rickenyl B (20) Hypoxylon rickii [23]

Rickenyls C–E (21–23) Hypoxylon rickii [23]

aColor of compound in adjoining column

4 H.-P. Chen and J.-K. Liu



The edible mushroom Phellodon niger has been investigated chemically infre-

quently. During a search for novel and secondary metabolites of mushrooms from

Yunnan Province of the People’s Republic of China, a nitrogenous p-terphenyl was
reported by Fang et al. from P. niger, namely, phellodonin (1), along with

sarcoviolin β (2) (Fig. 1) [12]. The EtOAc extract of the Tibetan wild mushroom

Sarcodon leucopus showed a strong antioxidant activity. Bioactivity-guided frac-

tionation of this extract resulted in the isolation of two red-colored sarcoviolin

pigments, sarcoviolin β (2) and episarcoviolin β (3), and a green p-terphenyl
pigment, 20,30,50,60-tetracetoxy-4,400-dihydroxy-p-terphenyl, along with seven

known p-terphenyls (Fig. 1). Episarcoviolin β is the N-1β epimeric isomer of

sarcoviolin β. All of the isolated compounds not only showed antioxidant effects

in the DPPH radical-scavenging assay, but also mediated total antioxidant capacity,

reducing power, and lipid peroxidation, and moreover displayed pronounced α-
glucosidase inhibitory activity. Among these compounds, sarcoviolin β exhibited

the most pronounced α-glucosidase inhibitory activity, with an IC50 value of

0.58 μM [13]. Also, concrescenins A (4) and B (5) isolated from the consumed

edible mushroom Hydnellum concrescens also exhibited potent inhibition of α-
glucosidase with IC50 values of 0.99 and 3.11 μM, respectively, in a

non-competitive fashion (Fig. 1) [15]. It was established that the sarcodonins

have a benzodioxazine core structure by X-ray crystallography [16].

Boletopsins A–C (6–8), along with the known compounds Bl-IV, Bl-V,

cycloleucomelone, and cycloleucomelone-2-acetate, were isolated from an

EtOAc-soluble fraction of the fruiting bodies of the mushroom B. leucomelas
(Fig. 1). These compounds were evaluated with respect to their antiangiogenic

acitivity by measuring their inhibitory effects on KDR kinase and proliferation of

human umbilical vein endothelial cells (HUVECs). The results suggested that

boletopsin C showed inhibitory acitivity against KDR kinase and proliferation of

human umbilical vein endothelial cells with IC50 values of 70.7 and 9.04 μM [14].

The mushroom Boletopsis sp. has been used traditionally by the Kiovi people in

Papua New Guinea as a therapeutic agent for gastrointestinal complaints. Barrow

et al. reported four p-terphenyl pigments, boletopsins 11–14 (9–12), from this

fungus, and suggested a naming system for this type of compound based on

chronological publication time (Fig. 1) [17, 18]. Boletopsins 11 (9) and 12 (10)

showed moderate antibiotic activity against Staphylococcus epidermidis and Pseu-
domonas aeruginosa, while boletopsins 13 and 14 are two tri-/tetra-brominated p-
terphenyls, which represent the first report of polybrominated fungal metabolites

produced by a terrestrial macrofungus. The small sample quantities available were

the main impediment in establishing unambiguously the structures of these mole-

cules possessing bromine. Eventually, the structures of boletopsins 13 (11) and

14 (12) were established by synthesis unequivocally.

The genus Thelephora has proven to be a rich source of p-terphenyl pigments. In

the course of screening food material for anticancer activity, the ethanol extract of

Thelephora aurantiotincta was shown to decrease the viability of human

Secondary Metabolites from Higher Fungi 5
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hepatocellular carcinoma cells (HepG2). Further separation of this extract yielded

thelephantin O (13) and the known compound vialinin A (14) (Fig. 1). These two

compounds were tested for inhibitory activity against the cell viability of HepG2

and Caco2 cells, and non-cancerous human hepatocytes. The results demonstrated

that both thelephantin O and vialinin A showed potent inhibitory activity against

HepG2 and Caco2 in a dose-dependent manner but, notably, showed no cytotoxic-

ity on non-cancerous human hepatocytes [19]. Vialinin C (15) was isolated from the

fruiting bodies of Thelephora vialis and was successfully synthesized, adding to the
list of dibenzofuran p-terphenyl derivatives with two p-hydroxybenzoyl substitu-
tions (Fig. 1). Vialinin C showed an IC50 value of 0.89 μM when tested for

inhibitory activity against TNF-α production [20]. The green pigment vialisyl A

(16) was isolated from the same mushroom (T. vialis) and the structure was

determined by 2D NMR spectroscopy, including a 2D-INADEQUATE experiment

because an HMBC experiment was unsuitable for the unambiguous establishment

of the structures due to the many contiguous quaternary carbons present

(Fig. 1) [21].
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HO
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Fig. 1 (continued)

Secondary Metabolites from Higher Fungi 7



The Japanese mushroom Polyozellus multiplex is an edible fungus with black-

purple fruiting bodies. Polyozellic acid (17), a black powder with a symmetrical

structure, was isolated from the fruiting bodies of Polyzellus multiplex, accompa-

nied by the known compound thelephoric acid (18) (Fig. 1). The structure of 17 was

established by NMR spectroscopic analysis and chemical modification. Biological

evaluation of their effects on angiogenesis revealed that both 17 and 18 suppressed

the formation of the tubule formation of HUVECs. Moreover, both strongly

inhibited HUVECs in an invasion assay at a concentration of 2.5 μM [22].

Not only are diverse p-terphenyls reported to have a basidiomycetous origin,

but they are also represented in the ascomycete Hypoxylon rickii. Rickenyls A–E
(19–23) are five pigments with a p-terphenyl backbone obtained from a mycelial

extract of the fermentation of H. rickii (Fig. 1). These compounds are the first

examples of p-terphenyls derived from the order Xylariales. Rickenyl A (19)

exhibited strong antioxidative effects and moderate cytotoxic potencies against

various cancer cell lines [23].

The p-terphenyls have long been attractive targets in terms of their total synthe-

sis, not only because of the potential erroneous assignment of some of their

structures, but also because of their interesting biological activities. Fujiwara and

co-workers have accomplished the total synthesis of thelephantin O, vialinin

A/terrestrin A, and terrestrins B–D in order to evaluate their biological activities

(Scheme 1). The synthesis routes developed by Fujiwara were more efficient and

practical and also applicable to symmetrical diesters, such as vialinin A,

terrestrin A, and terrestrin B. All of the synthetic compounds, thelephantin O,

vialinin A, terrestrin A, and terrestrins B, were evaluated for their inhibitory

activities against HepG2 and Caco2 cells. The IC50 values were found to be 16.3/

24.1, 13.6/24.1, 15.5/26.5, 14.1/23.7, and 20.7/26.7 μM, respectively [24].

The total synthesis of kynapcin-12 (24) was achieved by Takahashi and associ-

ates [25]. The key steps of the syntheses involved a double Suzuki-Miyaura

coupling, CAN oxidation, and lead tetraacetate oxidation. However, total synthesis

of the proposed structure of kynapcin-12 and its isomer suggested that the structure

of kynapcin-12 should be revised to 20,30-diacetoxy-1,50,60,400-tetrahydroxy-p-
terphenyl (25), which was isolated from Boletopsis grisea (Scheme 2). Further-

more, the total synthesis of the proposed thelephantin D (26) also led to its

structural revision, which proved to be identical with terrestrin C (27) (Scheme

2) [26].

Sarcodonins, sarcoviolins, hydnellins, and phellodonin are a group of p-
terphenyls with a benzodioxazine core and an unprecedented N,N-dioxide ring

junction, which were proposed by natural product chemists to be derived via a [4

+2] cycloaddition between the 3,4-benzoquinone of the terphenyl and the 1β–2β
double bond of N-oxopyrazine. The instability and inaccessibility of crystals for

X-ray structural analysis of these compounds has aroused suspicion as to their

structural validity. Baran and co-workers reported the possibility of an alternative

benzodioxane aminal core structure (28) for this family of compounds through

8 H.-P. Chen and J.-K. Liu



extensive synthesis studies (Scheme 3a) [27]. However, Fujimoto and co-workers

isolated sarcodonin ε (29) from S. scabrosus in a sizable amount, which led to a

crystal structure of the hydroxy-methylated derivative of compound 29 via

TMSCHN2 methylation. The X-ray crystallographic result provided solid evidence
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Scheme 1 Total synthesis of thelephantin O (13), terrestrin C, and terrestrin D.

Reagents and conditions: (i) PPTS (0.008 equiv), PhMe, reflux, 110 min; (ii) K2ON(SO3)2,

KHPO4, H2O, 0
�C, 1 h; (iii) H2, PtO2, THF, 24

�C, 2 h; (iv) NaH, DMF, 0�C, 1 h, then MOMBr,

0! 24�C, 20 h; (v) BuLi, THF, 0�C, 1 h, then CF2BrCF2Br; (vi) K2CO3, (Ph3P)4Pd, 1,4-dioxane-

H2O (3:1), reflux, 2 h; (vii) DDQ, TsOH�H2O, PhH, 50
�C, 24 min; (viii) H2, PtO2, THF, 24

�C, 1 h;
(ix) n-BuLi (1.2 equiv), THF, �78�C, 1 h, then PhCH2COCl (1.2 equiv), �78 ! 24�C, 21 h;

(x) NaH, THF, 0�C, 1 h, then RCOCl, 0 ! 24�C, 18–22 h; (xi) HSCH2CH2SH, AlCl3, MeNO2,

�20�C, 30 min
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for the stable existence of the N,N-dioxide ring junction. By a methylation

approach, Fujimoto and co-workers also revised the structure of the known com-

pound sarcodonin δ from 30 to 31 (Scheme 3b) [16]. Later, the total syntheses of

phellodonin and sarcodonin ε were accomplished by Baran and co-workers [28].
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Scheme 2 Structural revisions of kynapcin-12 (24) and thelephantin D (26)
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Pulvinic Acids and Related Butenolides

Inhibition of the yellow pigment produced by methicillin-resistant Staphylococcus
aureus (MRSA) has been a new target for anti-MRSA agents. During the screening

for these agents from a Japanese mushroom, (�)-tylopilusins A (32) and B (33)

were isolated. These pulvinic acid-related compounds were obtained from the

fruiting bodies of the mushroom Tylopilus eximius (Table 2, Fig. 2). Interestingly,
these compounds were isolated as racemates, and were purified by enantioselective

HPLC to afford their optically pure forms. During the isolation process, (�)-

tylopilusin B (33) was crystallized and analyzed by X-ray crystallography. The

absolute configurations of (+)- and (�)-tylopilusin A (32) were established by ECD

calculations. A continuing study of this mushroom yielded tylopilusin C (34)

(Table 2, Fig. 2). Biological testing suggested that the tylopilusins are inhibitors

of a yellow pigment produced by pathogenic MRSA, but that they do not affect the

growth of MRSA itself [29, 30].

Steglich et al. revealed that methyl isoxerocomate (35) was responsible for the

bright-yellow color of the stalk bases of the American mushroom Leccinum
chromapes, with variegatorubin (36) leading to the pink color of the cap skin

(Table 2, Fig. 2). Moreover, chromapedic acid (37) was also isolated as a pale-

yellow compound, which represents a new type of dimer formed from

4-hydroxyphenylpyruvic acid (Table 2, Fig. 2). When chromapedic acid was exposed

to air, it transformed into 3-(3,4-dihydroxybenzyl)-4-(3,4-dihydroxyphenyl)furan-

2,5-dione (38) [31].

Steglich et al. also proposed a possible biosynthesis pathway for the family of

pyruvic acid derivatives. As depicted in Scheme 4, two molecules of

4-hydroxyphenylpyruvic acid react: (a) via the cyclization mode A to yield

terphenylquinones, which, upon further oxidation, give pulvinic acids. Two mole-

cules of pulvinic acids further dimerize to yield chalcitrin, norbadione A, and

sclerocitrin; (b) via the cyclization mode B to yield tylopilusins, which further

undergo decarboxylation to form cyclopentanoids; (c) via the cyclization mode C to

Table 2 Pulvinic acids and related butenolides published in recent years

Compounda Origin Refs.

(�)-Tylopilusin A (32) Tylopilus eximius [29]

(�)-Tylopilusin B (33) Tylopilus eximius [29]

Tylopilusin C (34) Tylopilus eximius [30]

Chromapedic acid (37) Leccinum chromapes [31]

Isoxerocomic acid (39) Leccinum chromapes [31]

Methyl isoxerocomate (35) Leccinum chromapes [31]

Atromentic acid (40) Leccinum chromapes [31]

Variegatorubin (36) Leccinum chromapes [31]

aColor of compound in adjoining column
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give retipolides; (d) via the cyclization mode D to yield the aformentioned

chromapedic acid; and (e) grevillins may be produced through the cyclization

mode E [31].

2.2.2 Pigments Derived from Cinnamic Acids

Inonotusins A (41) and B (42) were isolated from the methanolic extract of the

fruiting bodies of Inonotus hispidus (Fig. 3, Table 3). These compounds displayed

significant scavenging activity against the 2,20-azinobis(3-ethylbenzthiazoline-6-

sulfonate) radical cation. Inonotusin A (41) also exhibited moderate cytotoxicity

against a human breast carcinoma cell line (MCF-7) with an IC50 value of 19.6 μM
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[32]. Phelliribsin A (43) is an orange pigment with an unprecedented spiroindene

scaffold isolated from the medicinal fungus Phellinus ribis (Fig. 3, Table 3). The

biosynthesis pathway of phelliribsin A is shown in Scheme 5 [33].

Phaeolschidins A–E (44–48), along with the known compound pinillidine (49),

are five hispidin derivatives isolated from the fruiting bodies of the Tibetan

mushroom Phaeolus schweinitzii (Fig. 3, Table 3). Phaeolschidins A–D (44–47)

are bishispidin derivatives, which have rarely been found in Nature, with pinillidine

originally isolated from the medicinal fungus Phellinus pini regarded as the first

example. All of these compounds showed weak radical-scavenging activities [34].
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2.2.3 Meroterpenoids Derived from Hydroquinone

In previous reviews, this section has been entitled “Compounds Derived from

4-Hydroxybenzoic Acid”, referring to meroterpenoids derived from the

shikimate-chorismate pathway. Biogenetically, as summarized in Scheme 6, the

mevalonate pathway yields terpenoid precursors, while the shikimate pathway

provides 4-hydroxybenzoic acid (50). Compound 50 undergoes two routes to

produce hydroquinone and 4-(hydroxymethyl)phenol. A combination of these two

pathways yields various meroterpenoids. Generally, this meroterpenoid category

contains prenyl-/geranyl-/farnesyl-/geranylgeranyl-substituted benzoic acid or

hydroquinone derivatives. Herein, these meroterpenoids are classified into four

groups: prenylated benzene derivatives, meromonoquiterpenoids,

merosesquiterpenoids, and meroditerpenoids, on the basis of the type of terpenoid

moiety.
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Fig. 3 Compounds derived from cinnamic acids

Table 3 Compounds derived from cinnamic acids

Compounda Origin Refs.

Inonotusins A (41), B (42) Inonotus hispidus [32]

Phelliribsin A (43) Phellinus ribis [33]

Phaeolschidins A–E (41–48) Phaeolus schweinitzii [34]

Pinillidine (49) Phaeolus schweinitzii [34]

aColor of compound in adjoining column
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Notably, in previous reviews, the meroterpenoids derived from the acetate-

malonate pathway, of which the benzene ring typically is substituted with a methyl

and a p-hydroxy group, are included in this section. In the present contribution,

meroterpenoids derived from the acetate-malonate pathway are categorized in the

Section entitled “Pigments from the Acetate-Malonate Pathway”.

Prenylated Benzene Derivatives

The genus Stereum is productive in accumulating prenylated benzene derivatives.

Vibralactone (51) is a well-studied molecule featuring a β-lactone group and

displaying pancreatic lipase inhibition [isolated from the culture broth of

Boreostereum vibrans (syn. Stereum vibrans)] (Fig. 4) [35]. The biosynthesis

pathway of vibralactone was elucidated and it was shown that the prenylated

4-hydroxybenzoic acid (50) is reduced to the prenylated 4-(hydroxymethyl)phenol

(52), then cleavage of the benzene ring leads to the production of the key interme-

diate 1,5-seco-vibralactone (53), which further undergoes a 1,5-C—C bond forma-

tion to yield 51 (Scheme 7) [36]. Vibralactone derivatives were used as chemical

probes to study the structure and activity of ClpP1P2 [37]. Interestingly, 51was also

encountered in another species of Stereum [38, 39]. Hoffmeister and co-workers

found vibralactone and the co-isolates vibralactones R and S from a stereaceous

fungus [39].

An in-depth study mainly by large-scale fermentation of B. vibrans resulted in

the isolation of the vibralactone derivatives, vibralactones B–Q (55) [40–43],

1,5-seco-vibralactone (53) [40], and 10-lactyl vibralactone G (54) [44] (Table 4).

Recently, several oximes and polyoxime esters with a vibralactone backbone,

namely, vibralactoximes A–P (56–59), were reported to show more potent pancre-

atic lipase inhibitory activity than that of vibralactone (Table 4, Fig. 4). Moreover,

most of these also exhibited cytotoxicity against five human cancer cell lines

(HL-60, SMMC-7721, A-549, MCF-7, and SW480) [46].

A thorough analysis of the secondary metabolome of B. vibrans has resolved the
divergent vibralactone biosynthesis pathways. Yang et al. proposed that prenylated

4-(hydroxymethyl)phenol (52) is a key intermediate for the generation of 20 ana-

logues with different scaffolds, and confirmed this by feeding experiments with

3-allyl-4-hydroxybenzylalcohol, and the corresponding derivatives were obtained

with allyl moieties rather than isoprenyl moieties [52]. In general, the secondary

metabolome of B. vibrans is represented by five structural classes with the skeletons
A–E, as depicted in Scheme 8. However, the isoprenyl moiety of those skeletons is

conserved, while the benzene ring is present in various forms. In particular, 52 is at

a junction of various biosynthesis routes. One proceeds by way of oxygenation and

splitting of a benzene ring to give vibralactone J (60) with the scaffold type A. A

second route involves a carbon–carbon formation reaction to yield vibralactone and

its derivatives, representing scaffold type B. Third, an oxygenation and reduction

on the benzene ring of 52 followed by a key ring contraction reaction yields

vibralactone I (61), representing scaffold type C. On the other hand, oxygenation
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of the alcoholic hydroxy group leads to 3-prenyl-3-hydroxybenzoaldehyde (62).

This intermediate undergoes a C2 extension with pyruvate to give vibranether,

based on skeleton D. Moreover, 62 may be further oxygenated to 3-prenyl-3-

hydroxybenzoic acid (63). Decarboxylation of 63 followed by a cascade of oxy-

genation/decarboxylation reactions yields vibralactone G (64), representing skele-

ton E.

It is notable that Yang et al. also identified a FAD-dependent monooxygenase

(VibMO1) that converts prenyl-4-hydroxybenzoate into prenylhydroquinone. Het-

erologous expression of VibMO1 confirmed this function. This finding provided

OPP
OH

COOH

HO

OH

HO
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O

OH

53 5150 52

Scheme 7 Biosynthesis pathway of vibralactone (51)

Table 4 Prenylated benzene derivatives

Compounda Origin Refs.

Vibralactone (51) Boreostereum vibrans [35]

Vibralactones B–Q (55) Boreostereum vibrans [40–45]

Vibralactones R, S Stereum sp. [39]

10-Lactyl vibralactone G (54) Boreostereum vibrans [44]

1,5-seco-Vibralactone (53) Boreostereum vibrans [40]

Vibralactoximes A–P (56–59) Boreostereum vibrans [46]

Vibranether Boreostereum vibrans [45]

2,5-Dihydroxy-3,6-bis(3-methylbut-3-en-1-

ynyl)benzaldehyde (65)

Stereum hirsutum [47]

3-(Hydroxymethyl)-2,5-bis(3-methylbut-3-en-

1-ynyl)benzene-1,4-diol (66)

Stereum hirsutum [47]

2,5-Dihydroxy-3-iso-prenyl-6-(3-methylbut-3-

en-1-ynyl)benzaldehyde (67)

Stereum hirsutum [47]

Sterins A–B (68) Stereum hirsutum [48]

Sterin C Stereum hirsutum [49]

Hexacyclinol (69) Panus rudis [50]

Panepophenanthrin (71) Panus rudis [51]
aColor of compound in adjoining column
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crucial information for the determination of enzymes essential for similar conver-

sion steps in other organisms.

Compounds 65–67 were isolated from the cultures of the wood-decaying fungus

Stereum hirsutum. These compounds feature a 3-methylbut-3-en-1-ynyl substitu-

ent, which originates from a prenyl group (Fig. 4) [47]. Sterins A–C were isolated

from the same fungus by other research groups. The differences among sterins A–C

is due to the form of the prenyl groups. In sterin A (68), the prenyl is cyclized with

the phenolic hydroxy group to yield a 2H-chromene scaffold (Fig. 4) [48, 49].

Hexacyclinol (69) was isolated as a bioactive constituent from the culturing of

the basidiomycete Panus rudis HKI 0254 (Fig. 4). This compound displayed

inhibition of oxidant generation in zymosan-stimulated polymorphonuclear
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neutrophil leukocytes. Furthermore, 69 also showed cytotoxicity against the L-929

murine fibroblast cell line and K562 cancer cell lines with IC50 values of 1.4 and

0.4 μg/cm3. Moreover, 69 exhibited inhibitory activity against Plasmodium
falciparum with an IC50 value of 2.49 μg/cm3 [53]. Due to its diverse biological

activities and intriguingly relatively complex structure, many research groups have

been challenged to accomplish its total synthesis. However, it was proved that the

structure of hexacyclinol was incorrectly assigned originally and this was revised to

70 [50]. Panepophenanthrin (71) is a similar type of meroterpenoid dimer isolated

from the same fungus, P. rudis Fr. IFO8994, by a Japanese group (Fig. 4) [51]. The
structure of 71 was established via NMR spectroscopic data interpretation and

X-ray crystallographic analysis. This compound is an inhibitor of ubiquitin-

activating enzyme, which is indispensable for the ubiquitin-proteasome pathway.

Interestingly, considering the high structural similarities between 69 and 71,

Rychnovsky reassigned the structure of 69 on the basis of 13C NMR chemical shifts

derived by computational methods and proposed that 69 is an artefact, which arose

from the acid-catalyzed rearrangement of 71 in the presence of methanol [54]. How-

ever, Porco et al. synthesized 71, which was further exposed to various acidic

conditions, but this treatment did not result in an observable conversion into

69 [55].

Meromonoterpenoids

Meromonoterpenoids derived from the shikimate-chorismate pathway are a family

of compounds in which the benzene ring is substituted by a geranyl residue. To the

best of our knowledge, this family of compounds has only been found in the genera

Tricholoma, Lactarius, Clitocybe, and Ganoderma (Table 5).

Tricholomenyns A–E (72–76) are five enyne-containing meromonoterpenoids

isolated from the European mushroom Tricholoma acerbum (Fig. 5).

Tricholomenyns A and B display antimitotic activity against T lymphocytes.

Tricholomenyns C–E are dimers through an ester bond, and tricholomenyn C

(74) is a useful chemotaxonomic marker for Tricholoma species since it is produced
by T. ustaloides, T. vaccinum, T. albobrunneum, and T. imbricatum
[56, 57]. Terreumols A–D (77–80) are four highly oxygenated meroterpenoids

isolated from the fruiting bodies of the European gray knight mushroom

T. terreum (Fig. 5). Structurally, all of these compounds contain two C–C bonds

between the benzene ring and the terpenoid moieties to build a rare 10-membered

ring. The absolute configurations of terreumols A (77) and C (79) were determined

unambiguously by single-crystal X-ray crystallographic analysis. Terreumols A, C,

and D exhibited cytotoxicity against five human cancer cell lines (HL-60, SMMC-

7721, A-549, MCF-7, and SW480) with IC50 values comparable to those of

cisplatin [58]. The enantioselective total syntheses of 77 and 79 have been accom-

plished by Lindel and co-workers in 14 steps and with a 23% overall yield for

terreumol A (77) [75]. The key step to (–)-terreumol C was a ring-closing metath-

esis to form a trisubstituted (Z ) double bond embedded in the 10-membered ring of
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the [8.4.0] bicyclic system. (–)-Terreumol A was obtained by diastereoselective

epoxidation of terreumol C (Scheme 9).

Meroterpenoids with a rare 10-membered ring were also found in the genera

Lactarius and Clitocybe. Flavidulols A–D (81–84) were isolated from the acetone

extract of the edible mushroom L. flavidulus (Fig. 5). The 10-membered ring of

flavidulol B was cleaved between C-4 and C-5 to give two terminal double bonds

and connected between C-2 and C-7. Flavidulol C (83) is a meroterpenoid dimer

through the C–C bond between the benzene rings. Flavidulol A (81) exhibited

antibacterial activity against Staphylococcus aureus and Bacillus subtilis with the

same MIC value of 6.2 μg/cm3. Moreover, flavidulols A–C also displayed suppres-

sive effects on the proliferation of murine lymphocytes stimulated by concanavalin

A and lipopolysaccharide, with IC50 values of 8.9, 4.9, and 36.3 μg/cm3 against

concanavalin A-induced proliferation and 6.7, 3.9, and 28.3 μg/cm3 against

lipopolysaccharide-induced proliferation, respectively [59–61]. Chemical investi-

gation of solid medium (malt-peptone-glucose-agar) cultures of the basidiomycete

C. calvipes led to the isolation of five ten-membered-ring meroterpenoids, desig-

nated as clavilactones A–E (85–89) (Fig. 5). Clavilactones A–C exhibited antimi-

crobial activity and inhibition of the germination of Lepidium sativum, while
clavilactone D inhibited tyrosine kinase.

Recent years have been a time for the rapid discovery of meroterpenoids derived

from the traditional Chinese medicinal mushroom genus Ganoderma. These

Table 5 Meromonoterpenoids

Compounda Origin Refs.

Tricholomenyns A–E (72–76) Tricholoma acerbum [56, 57]

Terreumols A–D (77–80) Tricholoma terreum [58]

Flavidulols A (81), C (83), D (84) Lactarius flavidulus [59–61]

Flavidulol B (82) Lactarius flavidulus [59]

Clavilactones A–E (85–89) Clitocybe clavipes [62–64]

Petchienes A–E (90, 91) Ganoderma petchii [65]

Chizhines A–E Ganoderma lucidum [66]

Spirolingzhines A–D (92) Ganoderma lingzhi [67]

Lingzhines A–F (93) Ganoderma lingzhi [67]

Applanatumols A (94), B (95) Ganoderma applanatum [68]

(�)-Lingzhiol (96) Ganoderma lucidum [69]

Applanatumin A (98) Ganoderma applanatum [70]

(�)-Ganoapplanin (99) Ganoderma applanatum [71]

(�)-Sinensilactam A (97) Ganoderma sinensis [72]

Cochlearol A (102) Ganoderma cochlear [73]

Cochlearines A (100), B (101) Ganoderma cochlear [74]

aColor of compound in adjoining column
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meroterpenoids with both intricate structures and promising bioactivities have

attracted the interest of many research groups (Table 5).

Many meromonoterpenoids were isolated from different species of Ganoderma,
such as petchienes A–E (90, 91) [65], chizhines A–E [66], spirolingzhines A–D

(92) [67], lingzhines A–F (93) [67], and applanatumols A (94) and B (95) [68].

Lingzhiol (96) was isolated as a racemate from the fruiting bodies of G. lucidum
(Fig. 5). Structurally, lingzhiol (96), which bears an unusual 5/5/6/6 ring system,

was characterized as sharing a C-30–C-70 axis. The absolute configuration of

lingzhiol was established by X-ray diffraction analysis of (–)-lingzhiol, which

was separated by chiral-phase HPLC. (+)- and (–)-Lingzhiol selectively inhibited

the phosphorylation of Smad3 in TGF-β1-induced rat renal proximal tubular cells

and activated Nrf2/Keap1 in mesangial cells [69]. The total synthesis of lingzhiol

was achieved by Yang et al. [76], Qin et al. [77, 78], and Gautam and Birman [79].

(�)-Sinensilactam A (97) was isolated as colorless crystals from the fruiting

bodies of Ganoderma sinensis, the structures of which were confirmed unambigu-

ously by X-ray diffraction analysis (Fig. 5). Sinensilactam A is based on an
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unprecented 2H-pyrrolo[2,1-b][1,3]oxazin-6(7H )-one ring system, derived from

the shikimate, mevalonate, and amino acid pathways. (–)-Sinensilactam exhibited

inhibition of Smad3 phosphorylation in TGF-β1-induced human renal proximal

tubular cells [72].

The dimeric meroterpenoid applanatumin A (98) was isolated from the mush-

room Ganoderma applanatum (Fig. 5). Applanatumin A (98) possesses a

hexacyclic skeleton containing a spiro[benzofuran-2,10-cyclopentane] motif,

which was established by extensive spectroscopic data interpretation supported

by a computational approach. A plausible pathway was proposed to involve a

Diels-Alder reaction as the key step. This compound exhibited potent antifibrotic

activity in TGF-β1-induced human renal proximal tubular cells [70]. More recently,

the compound ganoapplanin was also isolated from G. applanatum and is present as

both enantiomers, but in unequal amounts (Fig. 5). The structure of (�)-
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ganoapplanin (99), which bears an unprecedented dioxaspirocyclic skeleton

constructed from a 6/6/6/6 tetracyclic system and an unusual tricyclo[4.3.3.03
0,70]

dodecane motif, was established by spectroscopic data interpretation and confirmed

by single crystal X-ray diffraction analysis. Biological results suggested that the

optically pure form and a racemic mixture displayed different potencies against the

inhibition of T-type voltage-gated calcium channels (TTCCs). The maximum

inhibition of (�)-ganoapplanin was 43%, while values of >80% were obtained

for (+)- and (–)-ganoapplanin [71].

Cochlearines A (100) and B (101) are two examples of Ganoderma alkaloids

bound with meromonoterpenoids through a C–C bond (Fig. 5). (�)-Cochlearine A

significantly inhibited Cav3.1 T-type calcium channels and showed pronounced

selectivity against Cav1.2, Cav2.1, Cav2.2, and Kv11.1 (hERG) channels [74].

Merosesquiterpenoids

All merosesquiterpenoids reported in recent years have been obtained from species

in the genus Ganoderma. The number of reports on both Ganoderma
merosesquiterpenoids and the cyclization mode of the farnesyl unit have been

less than those of the Ganoderma meromonoterpenoids and fewer structural types

have been proposed. However, most of the terpenoid motifs of Ganoderma
merosesquiterpenoids remain uncyclized, such as in zizhines A–F (102) [80],

ganocalidins B–F [81], ganomycins E and F [82], fornicin E [82], and cochlearol

D [83] (Table 6).

The total phenolic portion of an extract of G. cochlear yielded four pairs of

polycyclic meroterpenoid enantiomers, namely, (�)-ganocins A–D (103–106)

(Fig. 6). Their structures were established by extensive spectroscopic data analysis.

The structure of ganocin A (103) was confirmed from the X-ray diffraction

Table 6 Merosesquiterpenoids

Compounda Origin Refs.

Zizhines A–F (102) Ganoderma sinensis [80]

Ganocalidins A–F (111) Ganoderma calidophilum [81]

Ganocapensins A (112), B (113) Ganoderma capense [82]

Ganomycins E, F Ganoderma capense [82]

Fornicin E Ganoderma capense [82]

(�)-Ganodilactone (114) Ganoderma leucocontextum [84]

Cochlearols B–D (107, 115) Ganoderma cochlear [73, 83]

Ganocin A (103) Ganoderma cochlear [85]

Ganocins B–D (104–106) Ganoderma cochlear [85]

Cochlearoids A (108), B (109),

E (110)

Ganoderma cochlear [74]

aColor of compound in adjoining column
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crystallographic data of its acetylated derivative. The possible biogenetic pathway

of these compounds was also proposed. A chemical investigation of the same

mushroom resulted in the isolation of the yellow amorphous solid cochlearol B

(107), which is a 4/5/6/6/6 ring-fused meroterpenoid (Fig. 6). The structure of
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cochlearol B also was established by extensive spectroscopic analysis. (–)-

Cochlearol B potently disrupted Smad2 and Smad3 activation whereas (+)-

cochlearol B showed no activity in this regard [73]. An in-depth investigation of

the effect of a crude extract of G. cochlear on T-type calcium channels prompted

the isolation of cochlearoids A (108), B (109), and E (110), which are three dimeric

meroterpenoid enantiomers (Fig. 6). Their dimers are characterized by the C–C

bond connection between two benzene rings resulting in a unique methanobenzo[c]
oxocino[2,3,4-ij]-isochromene scaffold. Biological assays suggested that (+)-

cochlearoid A has an effect on Cav3.1 similar to that of mibefradil [74].

Ganocalidin A (111) and ganocapensin A (112) are meroterpenoids with

macrocycles. They were reported from different Ganoderma species by two differ-

ent research groups (Fig. 6) [81, 82]. However, ganocalidin A and ganocapensin A

proved to be the same molecule, based on a careful examination of their NMR data.

Peng et al. misassigned the 13C NMR chemical values between positions C-40 and
C-50, but uncovered the racemic nature of ganocalidin A [82]. Ganocalidin A was

reported to exhibit an inhibitory effect on β-hexosaminidase activity (IC50 9.44 μM)

and reduced substantially the production of IL-4 and LTB4 by RBL-2H3 cells in

response to antigen stimulation, suggesting the potential antiallergic activity of this

compound [81]. Ganocapensin B (113) is a meroterpenoid with a 14-membered

macrocyclic ring, which is a rare feature in the Ganoderma meroterpenoid com-

pound class (Fig. 6). The absolute configuration of OH-100 was determined by a

modified Mosher’s method [82].

(�)-Ganodilactone (114) is a meroterpenoid dimer with a unique 50H-spiro
[chroman-4,20-furan]-2,50-dione ring system isolated from the Tibetan mushroom

G. leucocontextum (Fig. 6). The (�)-, (+)-, and (–)-ganodilactones showed pancre-

atic lipase inhibitory activities with IC50 values of 27.3, 4.0, and 2.5 μM, which

were more active than that of vibralactone [84].

Meroditerpenoids

Unlike the foregoing meroterpenoids, meroditerpenoids are found mainly in higher

fungi and sponges. The terpenoid moiety of mushroom-derived meroditerpenoids

always exhibits a linear geranyl moiety. Many compounds of this type were

included as “Compounds Derived from 4-Hydroxybenzoic Acid” in previous

reviews [1–6].

Cochlearoids C (116) and D (117) are two meroditerpenoids isolated from the

medicinal fungusG. cochlear. The geranyl moiety of these two compounds remains

uncyclized (Fig. 7) [74].
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2.3 Pigments from the Acetate-Malonate Pathway

2.3.1 Pentaketides

A bioassay-guided isolation of the chloroform extract of the dried fruiting bodies of

Hypoxylon truncatum gave hypoxylonols C–F (120–123), three reduced benzo[j]
fluoranthene derivatives, together with hypoxylonols A (118) and B (119) (Fig. 8,

Table 7) [86, 87]. Their structures were established by analysis of NMR spectro-

scopic data. The structures of hypoxylonols B, C, E, and F were confirmed by X-ray

diffraction. Hypoxylonols D and E showed antiproliferative activity against human

umbilical vein endothelial cells (HUVECs) with IC50 values of 6.9 and 7.4 μM, and

against human umbilical artery endothelial cells (HUAECs) with IC50 values of 6.1

and 4.1 μM. A biological study suggested that hypoxylonol C has a dual effect

against HUVECs. On the one hand, hypoxylonol C arrested the cell cycle at the

G2/M phase by down-regulation of cell cycle-related gene expression, while, on the

other hand, it inhibited angiogenesis of vascular endothelial cells by suppressing the

expression of adhesion molecules [87].

In the form of a yellow powder, daldinone E (124) was isolated from the solid

fermentation on “Cheerios™” breakfast cereal medium treated with the epigenetic

modifier, suberoylanilide hydroxamic acid (SAHA), at a concentration of 800 μM,

and co-occurred with the known compound daldinone B (125) (Fig. 8). Interest-

ingly, daldinone B appeared in both SAHA-treated and control cultures, while

daldinone E could only be found from the SAHA-treated cultures. Their structures

as well as their absolute configurations were established by spectroscopic methods

and DFT calculations of specific rotations and ECD spectra. Structurally, daldinone

E contains a chlorine atom. Daldinone B was proven to be established erroneously,

and its structure was revised in this report (Fig. 8). Both compounds exhibited

DPPH radical-scavenging activities with potencies comparable to the positive

control ascorbic acid (IC50 3.2 μM) [88].

A chemical study of the fruiting bodies of a mixture of Annulohypoxylon sp.,

A. leptascum, and A. cf. truncatum, which were collected from Argentina, Thailand,

and the USA, led to the isolation of six benzo[j]fluoranthene pigments, truncatones
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B–D (127–129), along with the known compounds truncatone A (126), and

hypoxylonols C and F (Fig. 8). The absolute configurations of truncatones A, B,

and D were determined by CD spectroscopy. Truncatones A, C, and D showed

moderate antiproliferative activities against the L-929 murine fibroblast cell line,

with IC50 values of 3.2, 7.0, and 1.1 μM, respectively [89].

Ganodone (130) is a benzofuran derivative isolated from the mature fruiting

bodies of Ganoderma tsugae (Fig. 8). This compound possesses only one chiral

carbon, and enantioselective HPLC analysis suggested its optically pure character

on purification. The structural assignment of 130 was confirmed by chemical

synthesis of racemic ganodone, while the absolute configuration remained
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undetermined due to X-ray diffraction results conducted with an unsatisfactory

Flack parameter value. Bioassay results using an MTT assay showed that 130

displayed potent cytostatic activity against the HCT-116, HeLa, and Neuro2a cell

lines, with IC50 values of 0.22 � 0.01, 0.49 � 0.03, and 0.081 � 0.019 μM [90].

A crude extract obtained from the saprobic North American cup fungus Urnula
craterium exhibited promising antibacterial activity. A bioassay-guided isolation

procedure used for this extract led to the discovery of three new

spirobinaphthalenes, urnucratins A–C (131–133) (Fig. 8). Their structures were

determined by means of spectroscopic data analysis and supported by quantum

chemical CD calculations. Urnucratins A (131) and B (132) displayed the most

promising antimicrobial potencies against the Gram-positive bacteria Staphylococ-
cus aureus (ATCC 29213), methicillin-resistant S. aureus (MRSA), vancomycin-

resistant Enterococcus faecium (ATCC), E. faecalis (ATCC 29212), and Strepto-
coccus pyogenes, with an MIC value of 0.5 μg/cm3 obtained for urnucratin A

against both E. faecalis and S. pyogenes. However, none of these three compounds

displayed inhibitory activities against Gram-negative bacteria [91].

The culture broth of D. concentrica yielded three new polyketides named

daldins A–C (134–136), along with the known compound 2-hydroxymethyl-3-

(1-hydroxypropyl)phenol (Fig. 8). The absolute configuration at a chiral oxygen-

ated methine stereocenter in compounds 134–136 was established as (S) based on

X-ray diffraction analysis, literature information, and comparison of optical rota-

tion values [92].

Yellow needles of 4,9-dihydroxy-1,2,11,12-tetrahydroperyl-ene-3,10-quinone

(137) were reported from the fungus Bulgaria inquinans, which is widely

Table 7 Pentaketide pigments

Compounda Origin Type Refs.

Hypoxylonols C–F

(118–123)

Hypoxylon
truncatum

Benzo[j]fluoranthene [86, 87]

Daldinones B (125) and

E (124)

Daldinia sp. Benzo[j]fluoranthene [88]

Truncatones A–D

(126–129)

Annulohypoxylon sp.

A. leptascum
A. cf. truncatum

Benzo[j]fluoranthene [89]

Ganodone (130) Ganoderma tsugae Benzofuran [90]

Urnucratins A–C

(131–133)

Urnula craterium Spirobinaphthalene [91]

Daldins A–C (134–136) Daldinia
concentrica

Benzene derivative [92]

4,9-Dihydroxy-1,2,11,

12-tetrahydroperyl-ene-3,

10-quinone (137)

Bulgaria inquinans Perylenequinone [93]

aColor of compound in adjoining column
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distributed in the northern part of the People’s Republic of China (Fig. 8). However,
this perylenequinone pigment was not included in a previous review [93].

2.3.2 Hexaketides

Seven azaphilone pigments, lenormandins A–G (138–144), were isolated from the

inedible fungus Hypoxylon lenormandii (Fig. 9, Table 8). Interestingly, HPLC

analysis revealed that these compounds also occurred in herbarium specimens

including various type materials collected in the nineteenth and early twentieth

O OH

O

O

O O

O OH

O

O

O O
H

O OH

O

O

O O

O OH

O

O

O O

O OH

O

O

O O

H

H

O OH

O

O
O

O 7 4
4

O OH

O

O
O

O 13

138 (lenormandin A) 139 (lenormandin B)

140 (lenormandin C) 141 (lenormandin D)

142 (lenormandin E) 143 (lenormandin F) 144 (lenormandin G)

O

O

O

HO OH

HO
O

O

O

OH

O

OH

ROOC
OH

146 (pyranone C) R = H
147 (pyranone D) R = Me

148 ((−)-nitidon)145 (pyranone B)

149

Fig. 9 Structures of hexaketide pigments

Secondary Metabolites from Higher Fungi 31



centuries, suggesting this group of pigments is specific for H. lenormandii from
various geographic regions [94].

Pyranones B–D (145–147) and (–)-nitidon (148) are four highly unsaturated and

conjugated compounds that were isolated from the culture broth of Junghuhnia
nitida (Fig. 9). Their absolute configurations were determined by a matrix method

or ECD calculations. Pyranones B–D were evaluated for their cytotoxicity against

five human cancer cell lines (MCF-7, SMMC-7721, HL-60, SW480, and A-549),

but none of them exhibited discernible inhibitory activity at the concentrations

used [95].

The rare α-pyrone, 4-methoxy-6-phenyl-2H-pyran-2-one (149), was isolated

from the bitter-tasting mushroom Sarcodon scabrosus, which was reported to

afford mainly cyathane diterpenoids and terphenyl pigments (Fig. 9). This com-

pound showed inhibition on lettuce seedling radicle growth with an EC50 value of

0.446 μmol/cm3 [96].

2.3.3 Octaketides

Azaphilone Pigments

Cohaerins G (150), H (151), I (152), and K (153) are yellowish azaphilone pigments

isolated from the fruiting bodies of Annulohypoxylon cohaerensi. They were

accompanied by the known azaphilones, cohaerins C–F. The absolute configura-

tions were assigned by NOE experiments, CD spectroscopy, and use of a modified

Mosher’s method, which led to a revision of the absolute configurations of

cohaerins C–F (Fig. 10) [97].

Anthraquinone and Anthraquinone Carboxylic Acids

The ascomycete Bulgaria inquinans is a wood-inhabiting fungus widely distributed
in northern mainland China. After treatment with Na2CO3, the fruiting bodies are

edible. A chemical investigation of the chloroform layer of a 70% ethanol extract of

this fungus led to the isolation of the two anthraquinone derivatives bulgareone A

Table 8 Hexaketides

Compounda Origin Type Refs.

Lenormandins A–G (138–144) Hypoxylon
lenormandii

Azaphilone [94]

Pyranones B–D (145–147) Junghuhnia nitida Acetylene [95]

(�)-Nitidon (148) Junghuhnia nitida Acetylene [95]

4-Methoxy-6-phenyl-2H-pyran-2-one
(149)

Sarcodon scabrosus Hexaketide [96]

aColor of compound in adjoining column
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(154) and B (155) (Fig. 11, Table 9). Both were purified as dark-red amorphous

powders. The absolute configurations of the biphenyl bond were established as (R)
in each case, based on the positive Cotton effect observed at 430 nm, corresponding
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to an anticlockwise orientation of the two long axes of the anthraquinone

backbone [98].

The macrofungal genus Cortinarus is a rich source of polyketide pigments.

Rufoolivacins A–D (156–159) are polyketide-derived pigments isolated from the

Chinese toadstool Cortinarius rufo-olivaceus (Fig. 11). Rufoolivacins C and D are

unusual pigments incorporating an ortho-anthraquinone chromophore. Their struc-

tures as well as the axial chiralities were assigned through extensive spectroscopy

and quantum calculations. All of these compounds proved to be toxic towards the

brine shrimp [99].

Coupled Pre-anthraquinones

The Tasmanian mushroom Cortinatius vinpsipes yielded a new violet-red

1,4-anthraquinone dimer, austrocolorone B (160), and a yellow

dihydroanthracenone dimer, austrocolorin B1 (161) (Fig. 12). In addition, 160

was assigned as the first naturally occurring 10,100-coupled (or 9,90-coupled)
1,4-anthracenedione dimer. The optical rotation value of austrocolorone B

(–419 cm2/g (c 0.011, CHCl3)) is due to the restricted rotation of the biaryl axis.

The axial configurations of asymmetric bianthryls have been deduced from the

shape of their CD spectra [10]. Based on this strategy, the absolute configuration of

160 was determined from its CD spectrum. Austrocolorone B and austrocolorin B1

were evaluated against P388D1 murine lymphoblast cells, and exhibited IC50 values

of 10 and 31 μg/cm3 [100].

Table 9 Anthraquinones

Compounda Origin Type Refs.

Bulgareones A (154), B (155) Bulgaria inquinans Anthraquinone [98]

Rufoolivacins A–D (156–159) Cortinarius rufo-olivaceus Anthraquinone [99]
aColor of compound in adjoining column
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2.3.4 Meroterpenoids Derived from the Acetate-Malonate Pathway

Meroterpenoids derived from mixed acetate–malonate and mevalonate pathways

are structurally similar but less complex when compared to meroterpenoids derived

from the shikimate pathway. This type of meroterpenoid was reported from various

genera of Basidiomycetes, mainly Stereum, Hericium, and Albatrellus (Table 10).
Biosynthesis considerations, as depicted in Scheme 10, suggested that four units of

acetyl CoA undergo an aldol reaction and aromatization to yield the key interme-

diate, orsellinic acid thioester (162). Two molecules of orsellinic acid thioester

could then dimerize through an intermolecular ester bond and become prenylated to

give the Stereum meroterpenoids (pathway A). On the other hand, orsellinic acid

can be directly geranylated and after further modifications could give Hericium
meroterpenoids (pathway B). Through pathway C, orsellinic acid could become

decarboxylated and further farnesylated to yield the Albatrellus meroterpenoids.

The edible Lion’s Mane mushroom (H. erinaceum) has been used as a Tradi-

tional Chinese Medicine for a long time. Numerous publications have dealt with the

secondary metabolites as well as their biological activities isolated from

H. erinaceum (Table 10). Interestingly, most of the meroterpenoids derived from

H. erinaceum display high structural similarities with mycophenolic acid (163),

which is used as an immunosuppressant drug to prevent rejection in organ trans-

plantation. The terpenoid parts of Hericium-derived meroterpenoids are farnesyl

groups with oxygenated modifications. It should be pointed out that the

meroterpenoids containing a nitrogen atom will be included in the next

Section and classified as isoindolones.

Hericenone A (164) displayed growth inhibition of HeLa cells at a concentration

of 100 μg/cm3 (Fig. 13) [101]. Hericenones C–H (165–170), L (171), erinacene D

(172), and 3-hydrohericenone F (173) are meroterpenoid fatty acid esters (Fig. 13).

Their common fatty acid moieties are palmitoyl, stearoyl, and linoleoyl. Biological

studies of these meroterpenoid fatty acid esters revealed that this type of compound

possesses nerve growth factor (NGF)-stimulating activities depending on the chain

length and nature of the double bond of the fatty acid moiety. Hericenones C, D, and

E exhibited stimulatory activity on the synthesis of NGF in vitro. The activity level

of hericenone D was almost at the same level as that of the potent stimulator

epinephrine, while the activities of hericenone C (172) and E were weaker than

that of hericenone D [102]. Structurally, hericenones F, G, and H possess a chroman

scaffold formed by cyclization between the phenol group and C-30 of the geranyl

substituent, and all three were obtained as racemates. Hericenone H exhibited

stimulant activity on the synthesis of NGF (45.1 � 1.1 pg/cm3 of NGF secreted

into the medium in the presence of 33 μg/cm3 of hericenone H), while hericenones

F and G showed no activity under the same conditions [103].

3-Hydroxyhericenone F (173) was isolated from the mushroom H. erinaceum
with the concomitant occurrence of hericenones I (174) and J (175) (Fig. 13).

3-Hydroxyhericenone F (173) was present in a racemic form as suggested by its

CD spectroscopic data. These three isolates were subjected to testing in a protection
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Table 10 Meroterpenoids derived from the acetate-malonate pathway

Compounda Origin Refs.

Hericenones A (164), C-I (165–170), J (175),

L (171)

Hericium
erinaceum

[101–105]

Isohericenone J (176) Hericium
erinaceum

[106]

Erinacerin B (178) Hericium
erinaceum

[107]

3-Hydroxyhericenone F (173) Hericium
erinaceum

[105]

Methyl 4-hydroxy-3-(3-methylbutanoyl)benzoate Hericium
erinaceum

[108]

Erinacene D (172) Hericium
erinaceum

[109]

Corallocin A (177) Hericium
coralloides

[110]

Grifolin (179) Albatrellus
confluens

[111]

Neoalbaconol (180) Albatrellus
confluens

[112]

Albatrelins A–C (181–183) Albatrellus
ovinus

[113]

Albatrelins D–F (184–186) Albatrellus
ovinus

[113]

(S)-17-Hydroxy-18,20-ene-neogrifolin (187) Albatrellus
caeruleoporus

[114]

(S)-18,19-Dihydroxyneogrifolin (188) Albatrellus
caeruleoporus

[114]

(S)-9-Hydroxy-10,22-ene-neogrifolin (189) Albatrellus
caeruleoporus

[114]

(9S,10R)-6,10-Epoxy-9-hydroxyneogrifolin (190) Albatrellus
caeruleoporus

[114]

(9S,10R)-6,9-Epoxy-10-hydroxyneogrifolin (191) Albatrellus
caeruleoporus

[114]

(�)-13,14-Dihydroxyneogrifolin (192) Albatrellus
caeruleoporus

[114]

Albatrelins G (193) and H (194) Albatrellus
caeruleoporus

[114]

(S)-10-Hydroxygrifolin (195) Albatrellus
caeruleoporus

[114]

Cristatomentin (196) Albatrellus
cristatus

[115]

Antroquinonol (197), antroquinonols B–D (198–

200)

Antrodia
cinnamomea

[116–119]

(continued)
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assay targeted against endoplasmic reticulum (ER) stress-dependent cell death.

3-Hydroxyhericenone F showed dose-dependent and significant protective activity

against both tunicamycin- and thapsigargin-induced toxicity, while hericenones I

and J were inactive at concentrations of up to 10 μg/cm3. However, the detailed

mechanism of the effects of the compounds remained unresolved [105]. Kim et al.

reported a molecule named isohericenone J (176) isolated from the fruiting bodies

Table 10 (continued)

Compounda Origin Refs.

4-Acetylantroquinonol B (201) Antrodia
cinnamomea

[120]

Antrocamphins A (202), B (203) Antrodia
camphorata

[121]

2,3,4,5-Tetramethoxybenzoyl chloride (213) Antrodia
camphorata

[121]

Antrodioxolanone (207) Antrodia
camphorata

[121]

2,20,5,50-Tetramethoxy-3,4,30,
40-bi-methylenedioxy-6,60-dimethylbiphenyl (208)

Antrodia
camphorata

[122]

Benzocamphorins A (204), B (205) Antrodia
camphoratus

[123]

Benzocamphorins C (214), D (209), E (210) Antrodia
camphoratus

[123]

4,7-Dimethoxy-5-methyl-1,3-benzodioxole (215) Antrodia
camphorata

[124]

Antrocamphin O (206) Antrodia
camphorata

[125]

3-Isopropenyl-2-methoxy-6-methyl-4,5-

methylenedioxyphenol (216)

Antrodia
camphorata

[126]

2-Hydroxy-4,40-dimethoxy-3,30-dimethyl-5,6,50,
60-bimethylenedioxybiphenyl (211)

Antrodia
camphorata

[126]

4,40-Dihydroxy-3,30-dimethoxy-2,20-dimethyl-

5,6,50,60-bimethylenedioxybiphenyl (212)

Antrodia
camphorata

[126]

Sterenins F (217) and G (218) Stereum
hirsutum

[127]

Sterenins H–J (219–221) Stereum
hirsutum

[127]

Compounds 1 (222), 2 (223) Stereum
hirsutum

[128]

MS-3 (224) Stereum
hirsutum

[128]

Hericenols A–D (225–228) Stereum sp. [129]

6-((2E,6E)-3,7-Dimethyldeca-2, 6-dienyl)-7-

hydroxy-5-methoxy-4-methylphtanlan-1-one (229)

Laetiporus
sulphureus

[130]

aColor of compound in adjoining column

Secondary Metabolites from Higher Fungi 37



of H. erinaceum, although the NMR spectroscopic data were the same as those of

hericenone J, suggesting the likelihood of structural misassignment of the latter

compound [106].

Corallocin A (177) is a geranylated benzofuranone derivative isolated from the

rarely investigated mushroom H. coralloides (Fig. 13). This compound was found

to induce NGF and/or brain-derived neurotrophic factor expression in human

1321N1 astrocytes [110].

The inedible basidiomycetous genus Albatrellus produces nitrogen-free pig-

ments (Table 10). The meroterpenoids derived from this genus are characterized

by a farnesyl-substituted benzene ring. Among the reported pigments, grifolin (179)

has been most studied meroterpenoid, and has proved to be a promising antitumor

agent (Fig. 14). Grifolin (179) was isolated initially from the mushroom Grifola
confluens and shown to act against the Gram-positive bacteria Staphylococcus
aureus and Bacillus subtilis [131]. Later, in 2005, Liu and Cao et al. revealed the

inhibitory activity of 179 against several tumor cell lines, including CNE1, HeLa,

MCF-7, SW480, K562, Raji, and B95-8, by induction of apoptosis [132]. The

natural abundance of 179 made it feasible to further study the molecular target

and underlying mechanism of action of its cytotoxic activities. In-depth studies

carried out by Liu and Cao et al. revealed that the ERK1/2 protein kinases are direct

molecular targets of 179, and that this molecule exerts its potential antitumor

activity by epigenetic reactivation of metastasis inhibitory-related genes through

ERK1/2-Elk1-DNMT1 signaling. This also suggests the role of 179 as an ERK1/2

kinase inhibitor as well as a useful epigenetic agent to further understand DNMT1
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function [133]. Moreover, 179 also decreased reactive oxygen species generation

and intracellular ATP to suppress tumor cell adhesion/migration via impeding the

interplay between peroxisome proliferator-activated receptor γ, coactivator 1α
(PGC1α), and Fra-1/LSF-MMP2/CD33 axes [134]. Hence, grifolin (179) is a

promising lead compound for further investigation of its antitumor potential.

Neoalbaconol (180) is a pigment isolated from the mushroom A. confluens
(Fig. 14). Structurally, the terpenoid moiety of neoalbaconol can be regarded as a

drimane rather than a linear farnesyl type. Biological investigations of this com-

pound demonstrated that it can activate autophagy and cause apoptotic and

necroptotic cell death by targeting 3-phosphoinositide-dependent protein kinase
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1 (PDK1). It inhibited the downstream phosphoinositide-3 kinase (PI3-K)/Akt-

hexokinase 2 (HK2) pathway, which eventually leads to energy depletion

[135]. Further research suggested that neoalbaconol-induced cell death is partially

dependent on TNFα feed-forward signaling. Moreover, neoalbaconol can abolish

the ubiquitination of RIPK1 by down-regulating E3 ubiquitin ligases, cellular

inhibitors of apoptosis protein 1/2 (cIAP1/2), and TNFα receptor-associated factors

(TRAFs). Furthermore, this compound also causes RIPK3-mediated reactive oxy-

gen species production and contributes to cell death [112].

Many grifolin derivatives were reported from the Basidiomycetes A. ovinus and
A. caeruleoporus. Albatrelins A–F (181–186) were isolated from the fruiting bodies

of A. ovinus collected in the eastern part of mainland China, of which albatrelins D–

F are three novel dimers directly connected by two benzene rings (Fig. 14) [113].

A chemical investigation of the non-toxic but inedible mushroom

A. caeruleoporus yielded various grifolin derivatives (187–195). All these isolated

compounds were subjected to cytotoxicity assays against five human cancer cell

lines (HL-60, SMMC-7721, A-549, MCF-7, and SW480). Of these substances,

albatrelin G showed the most potent cytotoxicity against HL-60 cells, with an IC50

value of 12.8 μM (Fig. 14) [114].

Cristatomentin (196) is a green pigment from the toadstool A. cristatus, and was
proposed to be derived from the meroterpenoid cristatic acid and the terphenyl 2-O-
acetlyatromentin, which co-occur with 196 in this mushroom (Fig. 14) [115].

The mushroom Antrodia camphorata is only found in Taiwan. Many publica-

tions have addressed the secondary metabolites of this medicinal species, which are

mainly of the ergostane and lanostane triterpenoid types. Interestingly,

merosesquiterpenoids were also found in this fungus but only in the cultured

mycelium. So far, only five merosesquiterpenoids, namely, antroquinonol (197),

antroquinonols B–D (198–200), and 4-acetylantroquinonol B (201), were reported

(Table 10, Fig. 15). These antroquinonols display a chemical backbone similar to

coenzyme Q and the plastoquinones, which are essential molecules for some life

processes.

Antroquinonol (197) is the most abundant component from the mycelium of

A. camphorata. It exhibits a broad spectrum of bioactivities, including anti-

inflammatory and cytotoxic effects (Fig. 15). It was revealed that antroquinonol

suppresses stem cell-like properties via targeting PI3K/AKT/β-catenin signaling

[117]. Antroquinonol D (200) (3-demethoxyantroquinonol) is a DNA

methyltransferase 1 inhibitor isolated from the mycelium of A. camphorata
(Fig. 15). A thorough biological study suggested that 200 induces DNA demethyl-

ation and affects multiple tumor suppressor genes, while inhibiting breast cancer

growth and migration potential [119]. The antiproliferative compound,

4-acetylantroquinonol B (201), was purified using antiproliferative activity toward

HepG2 cells as a guide and was designated as the major potential antihepatoma

constituent of A. camphorata (Fig. 15). The EC50 value of this compound for

HepG2 cells was 0.01�0.00 and 0.08�0.00 μg/cm3 for 72 and 96 h treatments,

respectively [120]. The biosynthesis pathways of antroquinonol and

4-acetylantroquinonol B were elucidated by Chou and co-workers [116]. The
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total syntheses of antroquinonol (197) and antroquinonol D (200) were accom-

plished by Chen et al. via a route featuring an iridium-catalyzed olefin

isomerization-Claisen rearrangement reaction, lactonization, and Grubbs olefin

metathesis [118].

In addition to antroquinonol merosesquiterpenoids, A. camphorata has also been
reported to produce benzenoid secondary metabolites. Some of these are prenylated

benzene derivatives, while others are simple benzene derivatives or biphenyl

compounds. Antrocamphins A (202) and B (203) [121], benzocamphorins A

(204) and B (205) [123], and antrocamphin O (206) [125] are 30-methylbut-3-en-

1-ynyl or 30-oxo-but-3-en-1-ynyl substituted benzenoids isolated from the fruiting

bodies of A. camphorata (Fig. 15). These different substituents, which were recog-

nized as arising from prenyl or nor-prenyl groups, play an important role in the

mediation of their biological activities. Antrocamphin A (202) showed potent

inhibition against N-formyl-methionyl-leucyl-phenylalanine-induced superoxide

production with an IC50 value of 9.33 � 3.31 μM, while antrocamphin B (203)

was inactive in this regard [121]. Biological follow-up on the mechanism of the

anti-inflammatory activity of compound 202 revealed that it suppresses

pro-inflammatory molecular release via the down-regulation of iNOS and COX-2

expression through the NF-κB pathway [136]. Benzocamphorin B (203) also showed

inhibition in relation to lipopolysaccharide-induced iNOS-dependent NO production

with an IC50 value of 12.1 � 0 μM, and NADPH oxidase (NOX)-dependent

reactive oxygen species production with an IC50 value of 14.4 � 4.9 μM
[123]. Antrodioxolanone (207) is a rare carbonate-containing meso compound,

which might be formed by intermolecular cyclization at the acetyl group of

antrocamphin B (203) (Fig. 15) [121].

2,20,5,50-Tetramethoxy-3,4,30,40-bi-methylenedioxy-6,60-dimethylbiphenyl (208)

[122], benzocamphorins D (209) and E (210) [123], 2-hydroxy-4,40-dimethoxy-

3,30-dimethyl-5,6,50,60-bimethylenedioxybiphenyl (211) [126], and 4,40-dihydroxy-
3,30-dimethoxy-2,20-dimethyl-5,6,50,60-bimethylenedioxybiphenyl (212) [126], are

biphenyl compounds that were isolated from the fruiting bodies of A. camphorata.
The benzene rings of 209 are connected via an ether bond, while the the other

substituents are directly connected by carbon–carbon bonds (Fig. 15). Compound

212 inhibited LPS-induced NO production with an IC50 value of 18.8� 0.6 μg/cm3.

2,3,4,5-Tetramethoxybenzoyl chloride (213) [121], benzocamphorin C (214)

[123], 4,7-dimethoxy-5-methyl-1,3-benzodioxole (215) [124], and 3-isopropenyl-

2-methoxy-6-methyl-4,5-methylenedioxyphenol (216) [126] are four additional

benzenoids obtained from the fruiting bodies of A. camphorata (Fig. 15). 2,3,4,5-

Tetramethoxybenzoyl chloride was obtained as a natural product for the first time,

and its structure was established via spectroscopic data interpretation and confirmed

by a methanolysis experiment to give the corresponding benzoate. Compound 215

was isolated from three different sources of dried fruiting bodies of A. camphorata.
Ho et al. have shown a potential role for compound 215 in cancer chemotherapy,

which decreased tumor growth in a COLO-205 human colon cancer xenografted

athymic nude mouse model, when injected intraperitoneally three times per week in

the dose range 1–30 mg/kg body weight. Two mechanisms for the antitumor
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activity of 215 were proposed: induction of p53-mediated p27/Kip1 protein levels,

while not changing p21/Cip1 protein levels, and decreasing levels of the G0/G1

phase cell cycle regulators, cyclins D1, D3, and A. Compound 216 inhibited

LPS-induced NO production in an in vitro bioassay, with an IC50 value of 1.8 �
0.2 μg/cm3.

Sterenins E, and F–J (217–221) are meroterpenoids isolated from the solid

fermentation of the fungus Stereum hirsutum (Fig. 16, Table 10). Salient structural

differences between the sterenins and those of the above-mentioned meroterpenoids

are the presence of additional orsellinic acid moieties and their shortened terpenoid

moieties. Sterenins E–H showed inhibitory activities against yeast α-glucosidase
with IC50 values of 7.62, 3.06, 6.03, and 22.70 μM, respectively, while sterenins I

and J showed no activity of this type (IC50 values of >50 μM) [127]. Compounds 1

(222) and 2 (223) are two additional meroterpenoids isolated from another

S. hirsutum strain collected on the Tibetan Plateau, along with the known

compound, MS-3 (224) (Fig. 16). Both exhibited inhibitory activity against the
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growth of Staphylococcus aureus and methicillin-resisitant S. aureus (MRSA)

with the same MIC value of 25.0 μg/cm3. Additionally, they also displayed

antibacterial activities against Bacillus subtilis, with the respective MIC values

of 25.0 and 50.0 μg/cm3. Moreover, 222 displayed NO inhibitory activity in a

LPS-induced macrophage in vitro bioassay with an IC50 value of 19.17 � 1.11

μM. Compound 222 was evaluated for activity against A549 adenocarcinoma

cells, and showed an IC50 value of 13.14 � 0.89 μM [128].

Hericenols A–D (225–228) are Stereum-derived farnesyl-substituted benzene

derivatives with structural similarities to those of the Hericium-derived
meroterpenoids (Fig. 16). Hericenol A (225) showed weak antimicrobial activity,

while hericenol C (227) exhibited cytotoxicity against COS-7 and COLO 320 cells,

both with an IC50 value of 5 μg/cm3 [129].

Compound 229 is a mycophenolic acid analogue isolated from cultures of the

mushroom Laetiporus sulphureus. This compound did not show any discernible

cytotoxicity toward any of the HL-60, SMMC-7721, A-549, and MCF-7 cell lines

at the concentration levels used (Fig. 16) [130].

2.3.5 Other Polyketides and Compounds of Fatty Acid Origin

As identified by large ribosomal subunit gene sequencing, a fungus designated BY1

was assigned to the Stereaceae family. When this fungus grown on a solid cultured

medium was injured, the edges of the injured site turned to a yellow color 3–4 days

after being wounded and the color remained unchanged for several weeks. HPLC-

DAD analysis of an extract of the post-wounded BY1 mycelia revealed two major

pigments. Their structures were established as (3Z,5E,7E,9E,11E,13Z,15E,17E)-
18-methyl-19-oxoicosa-3,5,7,9,11,13,15,17-octaenoic acid (230) and (3E,5Z,7E,
9E,11E,13E,15Z,17E,19E)-20-methyl-21-oxodocosa-3,5,7,9,11,13,15,17,19-nonaenoic

acid (231), via extensive spectroscopic data acquisition and interpretation (Fig. 17).

Anti-insect activity assays showed that these injury-elicited pigments may play a

role in protecting the mycelium from feeding larvae. Both 230 and 231 showed

selective antproliferative activities against K562 leukemia cells when compared

with non-tumorigenic human umbilical vein epithelial cells (HUVECs). Thus, GI50
values of 15.4 and 1.1 μM were obtained for K-562 cells for 230 and 231,

respectively, compared with 71.6 and 17.4 μM against HUVECs [137].

HO
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HO

O

O

230

231

Fig. 17 Pigments isolated

from a wounded Stereum sp.
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2.4 Pigments from the Mevalonate Pathway

The edible mushroom Lactarius hatsudake yielded the blue and red guaiane

sesquiterpene pigments lactariolines A (232) and B (233) (Fig. 18). Both were

evaluated for their effects on the modulation of IFN-γ in NK92 cells. The results

showed that 232 and 255 inhibited IFN-γ production in NK92 cells in a dose-

dependent manner, corresponding to 56.7% inhibition at 400 μM and 21.4% at

100 μM, respectively, for 232, and 80.9% inhibition at 400 μM and 31.2% at

100 μM, respectively, for 233 [138].

2.5 Pigments Containing Nitrogen

2.5.1 Indoles

Asterriquinones are members of tryptophan-derived indolyl benzoquinones that are

found principally in Ascomycetes. This type of compound was shown to exhibit

in vivo antitumor activities. The American fungus Annulohypoxylon truncatum
collected in Texas yielded two deep-purple asterriquinone-type pigments,

truncaquinones A (234) and B (235) as well as the known compound, truncatone

(Fig. 19). The structures of compounds 234 and 235 were established by spectro-

scopic data analysis. The ambiguity of the position of a methoxy group in

truncaquinone A was resolved using an HMBC experiment with extended long-

range evolution delay times, which resulted in the appearance of 4JCH correlations

from H-200 to C-1 and C-3. Both compounds displayed weak activity against the
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pigments derived from the
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Fig. 19 Asterriquinone pigments isolated from Annulohypoxylon truncatum

46 H.-P. Chen and J.-K. Liu



Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus, with respec-

tive MIC values of 66.7 μg/cm3 (for A and B) and 33.3/16.7 (for A and B). In

addition, they were evaluated for their comparative cytotoxic effects against KB3.1

cancer cells (IC50 5.8 and 5.3 μM, respectively) and the murine L-929 normal

fibroblast cell line (IC50 17.3 and 16.0 μM, respectively) [139].

2.5.2 Quinolines

The mushroom Mycena pelianthina is distributed widely in hardwood and mixed

hardwood-conifer forests in Europe and North America. A chemical investigation

of this mushroom furnished two previously unknown pyrroloquinoline pigments,

pelianthinarubins A (236) and B (237). These contain a (S)-hercynine moiety, and

differ considerably from other pyrroloquinoline alkaloids (Fig. 20). The planar

structures of 236 and 237 were deduced from their NMR spectroscopic data, and

their absolute configurations were established by comparison of CD spectra with

those of synthesized standard samples, and by analysis of NOE effects and 1H NMR

coupling constants. It was proposed that these two pigments might play an ecolog-

ical role in chemical defense since they were not active in a panel of bioassays

utilized [140].

2.5.3 β-Carbolines

The mushroom genus Cortinarius is a rich source of β-carboline alkaloids.

Infractopicrin (238) and 10-hydroxy-infractopicrin (239) are two polycyclic

β-carboline alkaloids isolated from the toadstool C. infractus (Fig. 21). Both

exhibited AChE-inhibitory activity and displayed a higher selectivity than

galanthamine, while neither showed inhibition of BChE up to a concentration of

100 μM. The mode of action was also investigated by means of docking studies,

suggesting that the lack of π-π-interactions in BChE is responsible for the selec-

tivity. Moreover, studies on other Alzheimer’s disease pathology-related targets

showed an inhibitory effect on self-aggregation of Aβ-peptides but not on ACh-

induced Aβ-peptide aggregation [141].
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Fig. 20 Quinolines from the mushroom Mycena pelianthina

Secondary Metabolites from Higher Fungi 47



In the process of screening for β-carboline alkaloids using HR-MALDI-MS

imaging of the mushroom Mycena metata, a series of alkaloids was detected and

then isolated. 6-Hydroxymetatacarboline D (240) was the most abundant

β-carboline alkaloid found, with its structure determined using 2D NMR spectro-

scopic methods and HR-ESIMS (Fig. 21). In order to determine its absolute

configuration, 6-hydroxymetatacarboline D was hydrolyzed. The hydrolysis prod-

ucts were further derivatized to afford the resulting amino acids, for which their

absolute configurations were determined by GC-MS comparison with authentic

samples. Some minor constituents of M. metata were detected by application of

LC-HR-ESIMS, LC-HR-ESIMS/MS, and LC-HR-ESIMS3 techniques [142].

2.5.4 Polyenes with Tetramic Acid or Amino Acid End Groups

Mycenaaurin A (241) is an orange polyene pigment isolated from the fruiting

bodies of the mushroom Mycena aurantiomarginata (Fig. 22). Structurally,

mycenaaurin A consists of a tridecaketide and two amino acid moieties. The

structure of mycenaaurin A was established from its 2D NMR spectroscopic data

and by APCIMS. The absolute configuration was determined using chemical

methods. Biological evaluation revealed 241 to show antimicrobial activity against

Bacillus pumilus [143].
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2.5.5 Other Pigments Containing Nitrogen

The four orange pigments, hypoxyvermelhotins A–C (242–244) and the known

compound vermelhotin (245), were isolated from a newly classified species of the

genus Hypoxylon, H. lechatii (Fig. 23). All four compounds were isolated as

inseparable (E)/(Z ) mixtures. When screened for cytotoxicity against the L-929

murine fibroblast cell line, of the compounds tested, 242 and 245 showed IC50

values of 5.0 and 2.0 μg/cm3. Additionally, 242 and 245 also displayed weak

inhibition ofMucor hiemalis DSM 2656 and Nematospora coryli DSM 6981 [144].

The yellow oil pyranone A (246) is a pyranone- and isoxazole-containing

compound isolated from a culture of the fungus Junghuhnia nitida (Fig. 23).

Pyranone A was evaluated for cytotoxicity against five human cancer cell lines

(MCF-7, SMMC-7721, HL-60, SW480, and A549) and showed comparable cyto-

toxic potencies to those of cisplatin [95]. Enokipodin J (247) was isolated as a

purple powder from the rice fermentation of the edible mushroom Flammulina
velutipes (Fig. 23). This compound represents the first example of a cuparane-type

sesquiterpene containing an amino group [145].

3 Nitrogen-Containing Compounds of Higher Fungi

3.1 Introduction

In this section, like in our previous reviews [146, 147], the chemical, biological, and

mycological literature is covered dealing with the isolation, structure elucidation,
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biological activities, and synthesis of nitrogen-containing compounds from the

fruiting bodies or submerged cultures of macromycetes. The literature cited in

this section covers reports that appeared in the years between 2010 and 2016.

3.2 Nitrogen Heterocycles

3.2.1 Indoles

Simple Indoles

It is well documented that the largest edible mushroom Termitomyces titanicus is
always symbiotic with termites. Termites cultivate the mycelia in their nest and as a

consequence the fruiting bodies arise on or near the mounds. The EtOAc- and

EtOH-soluble extracts of this organism showed protective acitivity against endo-

plasmic reticulum stress-dependent cell death, leading to the isolation of the indole

alkaloid termitomycamide B (248) from the EtOAc extract (Fig. 24) [148]. The

structure of 248 was confirmed by the detection of linoleic acid and the

corresponding amine. This compound was subjected to an evaluation of its protec-

tive activity against endoplasmic reticulum stress-dependent cell death caused

by tunicamycin. It showed protective activity against tunicamycin-toxicity in a

dose-dependent manner. A structure-activity relationship investigation revealed

that the linoleic moiety of 248 is indispensable for this activity.

Three β-carboline alkaloids, cordysinins C–E (249–251), isolated from the

medicinal fungus Cordyceps sinensis, were reported as new natural products

(Fig. 24). Cordysinins C and D were obtained as enantiomers purified by chiral-

phase HPLC and their absolute configurations were determined using the modified

Mosher’s method. The absolute configuration of cordysinin E (251) was established

NH

O
N
H

O

N
H

N

R

R =

R =

R =
H

OH

OH
H

OH
OH

248

249

250

251

Fig. 24 Structures of simple indoles
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by comparison of its CD spectrum with those reported in the literature for related

compounds [149].

Isoindoles

Isoindoles account for the largest proportion of nitrogen-containing compounds

derived from higher fungi. The edible mushroom Hericium erinaceum is a rich

source of isoindoles both from its fruiting bodies and solid or liquid cultures

(Table 11). Hericerin (252) was first isolated in 1991 from H. erinaceum
(Fig. 25). It displayed significant inhibitory activity against pine pollen germination

and tea pollen growth. However, the structure of 252was established erroneously in

the first report, and a structural revision was accomplished by total synthesis,

showing that 252 should be revised to be the carbonyl regioisomer 253

[150, 151]. Indeed, Miyazawa et al. reported the same molecule and named it

isohericerin [152], but with misassignments of the 13C NMR data of C-3a and

C-7a, which were corrected by Lee et al. [153].

Further investigation of the mushroom H. erinaceum led to the isolation of a

series of isoindole compounds that differed in the substituents on the nitrogen atom

and by varations of the geranyl side chain. Bioassay-guided isolation of an 80%

aqueous MeOH extraction of the partially dried fruiting bodies of H. erinaceum led

to the isolation of isohericenone (255) (Fig. 25). This compound showed cytotox-

icity against the A549, SK-OV-3, SK-MEL-2, and HCT-15 cancer cell lines with

respective IC50 values of 2.6, 3.1, 1.9, and 2.9 μM [153]. Hericerin A (256), isolated

from the methanol extract of the fruiting bodies of H. erinaceum (Fig. 25), showed

antiproliferative activity against HL-60 human acute promyelocytic leukemia cells

with an IC50 value of 3.06 μM [106]. Fourteen new isoindole derivatives, namely,

erinacerins C–L (257–266) and Q–T (267–270) as well as the known compound

Table 11 Isoindoles isolated from the genus Hericium

Compound Origin Refs.

Hericerin (252) Hericium erinaceum [150–152]

N-de-Phenylethyl isohericerin (254) Hericium erinaceum [152]

Isohericenone (255) Hericium erinaceum [153]

Hericerin A (256) Hericium erinaceum [106]

Erinacerins C–L (257–266), Q–T (267–270) Hericium erinaceum [154, 155]

Erinaceolactams A–E (271–275) Hericium erinaceum [156]

Corallocins B (276), C (277) Hericium coralloides [110]

Daldinan A (278) Daldinia concentrica [157]

Entonalactams A–C (279–281) Entonaema sp. [158]

4,6-Dihydroxy-1H-isoindole-1,3(2H )-dione (282) Lasiosphaera fenzlii [159]

4,6-Dihydroxy-2,3-dihydro-1H-isoindol-1-one (283) Lasiosphaera fenzlii [159]

Clitocybin A (284) Lasiosphaera fenzlii [159]

Sterenins K–M (285–287) Stereum hirsutum [127]
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hericerin (252) were isolated from the fermentation on rice of the mushroom

H. erinaceum (Fig. 25) [154, 155]. Erinacerins E, F, K, and L were characterized

by having amino acid moieties substituted on the nitrogen atom, of which the

absolute configurations were established by comparing their specific rotation values

with those of related synthetic phthalimidines. All compounds showed inhibitory

activity against α-glucosidase. The erinacerins displayed IC50 values lower than

40 μM, with the exception of erinacerins G and I. Moreover, erinacerins Q–T

exhibited inhibitory activity against protein tyrosine phosphatase-1B (PTP1B)

with respective IC50 values of 29.1, 42.1, 28.5, and 24.9 μM [154].

Erinaceolactams A–E (271–275) were isolated from a 70% ethanol-soluble

extract of the fruiting bodies of H. erinaceum (Fig. 25) [156]. It is noteworthy

that erinaceolactams C–E were isolated as racemates since their specific rotations

were nearly zero. This was verified by chiral-phase HPLC analysis and separation.

Corallocins B (276) and C (277) are two isoindolinone derivatives isolated from the

rarely investigated mushroom H. coralloides (Fig. 25). Both of these compounds

induced nerve growth factor (NGF) and/or brain-derived neurotrophic factor

expression in human 1321N1 astrocytes. Furthermore, 276 also showed

antiproliferative activity against HUVECs and the MCF-7 and KB-3-1 human

cancer cell lines [110].

The two genera Daldinia and Entonaema belonging to the family Xylariaceae

were reported to produce isoindole alkaloids (Table 11). Daldinan A (278) is an

isoindolinone isolated from a methanol extract of the fruiting bodies of Daldinia
concentrica. However, its absolute configuration was not resolved [157]. Daldinan

A (278) was judged as being inactive in a 1,1-diphenyl-2-picrylhydrazyl radical-

scavenging assay, but active in a 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonate)

radical-scavenging assay with an IC50 value of 10.4 μM, comparable to that of

butylated hydroxyanisole (IC50 10.8 μM) (Fig. 26). A bioassay-guided fractionation

of the Australian rainforest fungus Entonaema sp. resulted in the isolation of the

three new isoindolinone derivatives, entonalactams A–C (279–281) (Fig. 26)

[158]. All compounds were determined to be racemic based on specific rotation

data and X-ray crystallographic analysis.

The fungus Lasiosphaera fenzlii is widely distributed in the People’s Republic of
China and is used in Traditional Chinese Medicine for the treatment of bleeding

disorders. In an effort to search for tumor inhibitors from natural sources, three

isoindole compounds were isolated from an EtOAc extract of this fungus

[159]. They were identified as 4,6-dihydroxy-1H-isoindole-1,3(2H)-dione (282),

4,6-dihydroxy-2,3-dihydro-1H-isoindol-1-one (283), and clitocybin A (284)

(Fig. 26). Compound 282 contains a phthalimide moiety with a similarity to that

of thalidomide. All compounds were tested for their antiproliferative effects against

the A549, PC-3, U87, and HeLa tumor cells and for in vitro antiangiogenic activity.

The results showed that 282 displayed significant antiangiogenic activity, by

inhibiting the secretion of vascular endothelial growth factor in A549 cells, and

was more potent in this regard than thalidomide [159].
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Sterenins K–M (285–287) are three isoindole derivatives isolated from the fer-

mentation on rice of the fungus Stereum hirsutum (Fig. 26). Sterenin L (286) showed

α-glucosidase inhibitory activity in vitro with an IC50 value of 13.09 μM [127].

3.2.2 Pyridines and Pyrroles

Several well-known medicinal fungi in the genus Ganoderma have been investi-

gated extensively in terms of their secondary metabolites. The reported Ganoderma
triterpenoids represent the largest group of such compounds that originate from

higher fungi. Owing to the rapid development of experimental approaches and

enhanced instrumentation used in natural products chemistry, many alkaloids,

mainly pyridine-containing compounds, were characterized also from this genus

(Table 12). Ganoine (288) and ganodine (289) represent the first examples of

alkaloids containing a pyrrole ring isolated from the cultured mycelia of

G. capense (Fig. 27) [160]. Sinensine (290) was the first pyridine-containing

alkaloid isolated from the fruiting bodies of G. sinense (Fig. 27) [161]. This

compound exhibited protective activity against hydrogen peroxide-mediated injury

in HUVEC cells with an EC50 value of 6.2 μM. A further chemical investigation of
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Table 12 Pyridines and pyrroles

Compound Origin Type Refs.

Ganoine (288) Ganoderma capense Pyrrole-

containing

[160]

Ganodine (289) Ganoderma capense Pyrrole-

containing

[160]

Sinensine (290) Ganoderma sinense Pyridine-

containing

[161]

Sinensines B–E (291–294) Ganoderma sinense Pyridine-

containing

[162]

Lucidimines A–D (295–298) Ganoderma lucidum Pyridine-

containing

[163]

Petchine (299) Ganoderma petchine Pyridine-

containing

[164]

3-Hydroxy-5-methyl-5,6-dihydro-7H-cyclo-
penta[b]pyridin-7-one (300)

Ganoderma petchine Pyridine-

containing

[164]

Termitomycamide C (301) Termitomyces
titanicus

Pyridine-

containing

[148]

Sterostreins M–O (302–304) Stereumostrea
BCC22955

Pyridine-

containing

[165]

Divaricatines C (305), D (306) Clavicorona
divaricata

Pyridine-

containing

[166]

Acuminatopyrone (312) Xylaria allantoidea Pyridine-

containing

[167]

Erinacerins M–P (313–316) Hericium erinaceum Pyridine-

containing

[154]

Pyristriatins A (307), B (308) Cyathus cf. striatus Pyridine-

containing

[168]

Orellanine (317) Cortinarius orellanus
Cortinarius rubellus

Pyridine-

containing

[169]

Orellanine-4-glucopyranoside

(318)

Cortinarius orellanus
Cortinarius rubellus

Pyridine-

containing

[169]

Orellanine-4,40-diglucopyranoside
(319)

Cortinarius orellanus
Cortinarius rubellus

Pyridine-

containing

[169]

Radianspenes J–L (309–311) Coprinus radians Pyrrole-

containing

[170]

Compound 1 (320) Flammulina velutipes Pyrrole-

containing

[171]

2-[2-Formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]
acetic acid (321)

Leccinum
extremiorientale

Pyrrole-

containing

[172]

(2S)-1-[2-(Furan-2-yl)-2-oxoethyl]-5-
oxopyrrolidine-2-carboxylate (322)

Armillaria mellea Pyrrole-

containing

[173]

(2S)-1-[2-(Furan-2-yl)-2-oxoethyl]-5-
oxopyrrolidine-2-carboxylic acid (323)

Armillaria mellea Pyrrole-

containing

[173]

1-[2-(Furan-2-yl)-2-oxoethyl]pyrrolidin-2-one

(324)

Armillaria mellea Pyrrole-

containing

[173]

(continued)
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the fruiting bodies of G. sinense resulted in the discovery of four additional

pyridine-containing alkaloids, sinensines B–E (291–294) (Fig. 27) [162]. The

relative configuration of sinensine E (294) was determined by X-ray analysis of

its acetylated product. Lucidimines A–D (295–298) are four pyridine alkaloids

isolated from the fruiting bodies of G. lucidum [163]. Petchine (299) and

3-hydroxy-5-methyl-5,6-dihydro-7H-cyclopenta[b]pyridin-7-one (300) are alka-

loids isolated from G. petchii (Fig. 27) [164].
Termitomycamide C (301) is a pyridine-containing amide from the edible very

large mushroom Termitomyces titanicus (Fig. 28) [148]. Nitrogen-containing ter-

penoids are rarely encountered from organisms. Sterostreins M–O (302–304) and

Table 12 (continued)

Compound Origin Type Refs.

(4S)-3,4-Dihydro-4-(4-hydroxybenzyl)-3-oxo-
1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde
(325)

Xylaria nigripes Pyrrole-

containing

[174]

Methyl (2S)-2-[2-formyl-5-(hydroxymethyl)-1H-
pyrrol-1-yl]-3-(4-hydroxyphenyl)propanoate

(326)

Xylaria nigripes Pyrrole-

containing

[174]

Xylapyrrosides A (327), B (328) Xylaria nigripes Pyrrole-

containing

[175]

Pollenopyrrosides A (329), B (330) Xylaria nigripes Pyrrole-

containing

[175]
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divaricatines C (305) and D (306) are naturally pyridine ring-containing

sesquiterpenoids (Fig. 28) [165, 166], while pyristriatins A (307), B (308), and

radianspenes J–L (309–311) are pyridine or pyrrole ring-containing diterpenoids

isolated from the cultures of the fungi Cyathus cf. striatus and Coprinus radians,
respectively (Figs. 28 and 29) [168, 170]. Pyristriatins A (307) and B (308) were the

first cyathane diterpenoids featuring a pyridine ring. These two compounds were
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tested for their inhibitory activities against various bacteria, fungi, and three

mammalian cell lines. Interestingly, both showed antibacterial activity exclusively

against Gram-positive bacteria, exhibiting MIC values of 9.4 and 9.4 μg/cm3

against Bacillus subtilis and Staphylococcus aureus for 307, and 8.3 and 16.7 μg/cm
3 against B. subtilis and S. aureus for 308. Additionally, 307 and 308 exhibited, in

turn, IC50 values of 12.7 and 14.7 μM against KB 3.1 Hela cells [168].

Erinacerins M–P (313–316) are four pyridine-containing compounds that were

isolated from a solid culture of the Lion’s Mane mushroom, H. erinaceum (Fig. 28).

A postulated biogenetic pathway proposed that the synthetic precursors are amino

acids and that four molecules of acetyl CoA undergo cascade condensation reaction-

dehydration or condensation reaction–decarboxylation–amination–dehydration

processes to give erinacerins M (313) and N (314). Erinacerins M–P showed IC50

values of 16.3, 18.2, 15.9, and 11.4 μM against wild-type K562 cells [154].

Orellanine (317) is a nephrotoxic bipyridine N-dioxide toxin produced by

various mushrooms in the family Cortinaceae. Cortinarius orellanus and

C. rubellus are two of the world’s most poisonous mushrooms, bearing striking

similarities to those of the edible mushrooms Cantharellus tubaeformis and

Cantharellus cibarius, which have led to several fatalities (Fig. 28). Orellanine

poisoning is characterized by a latency period varying from 2 to 17 days before

symptoms of acute renal failure occur. However, there is no cure for orellanine

poisoning to date. Whereas 317 is selectively toxic to renal cells, it was tested as a
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potential treatment for metastatic renal cancer. Herrmann and co-workers devel-

oped a quantitative and sensitive HPLC-ESI-MS/MS method for detecting 317 at a

4.9 ng/cm3 level in all Cortinarius mushroom extracts that were investigated. They

also identified orellanine mono- and diglucosides 318 and 319 that were rapidly

hydrolyzed in a MeOH or acidified MeOH extract but not in a 3 N HCl extract. This

research provided new approaches for food regulatory agencies to monitor food

safety in terms of possible orellanine poisoning, in particular for suspected poison-

ing determination and detection of small amounts of orellanine in body fluids of

tissues during the latency period of orellanine poisoning. Moreover, it also provided

a method for maintaining the concentration of orellanine within a therapeutic range

when conducting orellanine clinical trials for treating metastatic renal cancer [169].

A novel norsesquiterpene alkaloid was isolated from a solid culture of the edible

fungus Flammulina velutipes (320) (Fig. 29). The absolute configuration of this

compound was determined using the induced CD spectrum of the complex formed

in situ with Rh2(OCOCF3)4. This compound was evaluated against KB cells (IC50

16.6 μM) [171].

A new pyrrole alkaloid, 2-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]acetic
acid (321), was isolated from the fruiting bodies of Leccinum extremiorientale
(Fig. 29) [172]. Three γ-lactams, methyl (2S)-1-[2-(furan-2-yl)-2-oxoethyl]-5-
oxopyrrolidine-2-carboxylate (322), (2S)-1-[2-(furan-2-yl)-2-oxoethyl]-5-
oxopyrrolidine-2-carboxylic acid (323), and 1-[2-(furan-2-yl)-2-oxoethyl]

pyrrolidin-2-one (324), were isolated from the culture broth of Armillaria mellea
(Fig. 29). Their absolute configurations were established by computational

methods [173].

The preciousmedicinal fungusXylaria nigripes is called “Wuling Shen” inChinese,

and is used in Traditional Chinese Medicine for the treatment of insomnia and

depression. From the fermented mycelia of X. nigripes, two pyrrole-containing alka-

loids, (4S)-3,4-dihydro-4-(4-hydroxybenzyl)-3-oxo-1H-pyrrolo[2,1-c][1,4]oxazine-6-
carbaldehyde (325) and methyl (2S)-2-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-
yl]-3-(4-hydroxyphenyl)propanoate (326), were obtained [174]. The absolute con-

figurations of 325 and 326 were deduced from the observed Cotton effects of their

CD spectra. Two pyrrole-containing compounds, xylapyrrosides A (327) and B

(328), along with the known compounds pollenopyrrosides A (329) and B (330),

were also isolated from this fungus (Fig. 29) [175]. Their structures were established

based on spectroscopic and X-ray crystallographic analysis. Notably, the total

syntheses of 327, 328, and 330 were also accomplished for the first time.

Xylapyrrosides A (327) and B (328) are rare naturally spirocyclic pyrrole alkaloids.

3.3 Other Nitrogen Heterocycles

The mushroom Schizophyllum commune is used as a food in Asia. A bioassay-

guided chemical investigation of Danish S. commune led to the isolation of three

heterocyclic compounds, schizines A (331), B (332), and epischizine A (333)

(Fig. 30) [176], of which the latter might be an artifact with an inverted
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configuration at C-20, when compared to 331. These compounds contain an

iminolactone (3,6-dihydro-2H-1,4-oxazin-2-one) group, which was encountered

for the first time in Nature. The structure of 331 was confirmed by X-ray crystal-

lographic analysis. With regard to the biosynthesis of these compounds, it was

assumed that a reaction of the precursor amino acid with 2α-hydroxy-1-
ketomarasmone resulted in the formation of the iminolactone group (Scheme 11).

Cytotoxicity assays revealed that 331 and 332 inhibited the growth of three tumor

cancer cell lines, EL4 (leukemia), MCF-7 (breast), and PC3 (prostate), while 333

did not show any inhibition up to 200 μM for any of these three cell lines.

Recently, during the preparation of an iminolactone assembly, an unexpected

epimerization of the α-carbon atom of both D- and L-α-amino acids when esterified

with (1S,2S,5S)-2-hydroxypinan-3-one was discovered. This led to a protocol in

which iminolactones could be used as tools for conversion of the absolute config-

uration of α-amino acids [177]. Further bioassays on additional iminolactones

showed considerable antiproliferative effects for some of these compounds toward

three cancer cell lines (EL4, MCF-7, PC3), while having no inhibitory effects on

non-malignant cell lines (McCoy, MCF10A, NIH3T3) [177].

A cancer cell line bioassay-guided separation of an EtOAc extract of the plant-

associated fungus Coprinus cinereus led to the isolation of oxazolinone (334) [178].
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3.4 Nucleosides and Non-protein Amino Acids

Bioactivity-guided fractionation using human peripheral blood mononuclear cells

of the mushroom Rubinoboletus ballouii led to the isolation of 1-ribofuranosyl-s-

triazin-2(1H )-one (335) (Fig. 31). This compound exhibited significant immuno-

suppressive effects on phytohemagglutinin (PHA)-stimulated human PBMCs by

inhibiting [methyl-3H]-thymidine uptake and inflammatory cytokine production

[179]. 9β-D-Ribopyranosylpurine (336) was isolated from the edible mushroom

Tricholoma japonicum (Fig. 31) [180]. Cordysinin B (337) was characterized as a

new natural product from the the mycelia of Cordyceps sinensis (Fig. 31) [149].
Mushroom-derived non-protein amino acids are a class of compounds playing

important roles both in allelopathic effects and as mushroom toxic principles.

(2S,4R)-2-Amino-4-methyl-hex-5-enoic acid (338) is the major allelochemical

isolated from the fruiting bodies of Boletus fraternus (Fig. 31). This non-protein
amino acid caused 50% inhibition of lettuce seedling radicle growth at a concen-

tration of 34 ppm [181]. Purpurolic acid (339) was obtained as a novel secondary

metabolite from the sclerotia of Claviceps purpurea, which consists of proline and

alanine moieties (Fig. 31). Purpurolic acid accumulates when C. purpurea parasit-

izes agricultural products. Its abundance is higher than those of the ergoline

alkaloids, which suggests the use of 339 as a biomarker for detection of ergot

contamination in agricultural products [182].

Myriocin (ISP-I) (340) is a crystalline compound first isolated from the thermo-

philic ascomycete Myriococcum albomyces and later re-encountered from the

fermentation of Cordyceps heteropoda (Fig. 32) [183, 184]. Myriocin showed no

antibacterial activity but was active against all the filamentous fungi tested to date.

Moreover, 340 was shown by Fujita et al. to be five- to tenfold more potent than the

immunosuppressant agent cyclosporine A. In order to simplify the structure and
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improve the biological properties, many analogues of myriocin were synthesized.

The introduction of an aromatic moiety, which could improve activity by restricting

conformation, led to fingolimod (341) with improved biological activity, a more

favorable toxicity profile, more desirable physical properties, and being devoid of

chirality (Fig. 32). Ultimately, 341 was approved by the U.S. FDA as a new

treatment for multiple sclerosis in September 2010 [185, 186].

The mushroom Pleurocybella porrigens is a species widespread in temperate

forests of the Northern Hemisphere, which has been ingested for a long time all

over the world. However, a mushroom intoxication incident occurred in Japan in

2004 with 55 people being poisoned, of which 17 died of acute encephalopathy. To

elucidate the toxic properties of P. porrigens, Takata et al. conducted an oligosac-

charide hydrolysis experiment to obtain saccharides from the fruiting bodies of this

mushroom, leading to the isolation of the two neuraminic acids, N-
acetylneuraminic acid (NeuAc) (342) and N-glycolylneuraminic acid (NeuGc)

(343) (Table 13, Fig. 33). The more abundant 342 was found in both samples

collected during the period of poisoning and in other years, while 343 could only be

found in the samples collected in the period when the poisoning occurred,

suggesting that 343 might be related to these incidents [187]. Moreover, Kawagishi

and co-workers reported six unusual amino acids isolated from the lyophilized

fruiting bodies of P. porrigens (344–349, Table 13, Fig. 33). Biological evaluation
of these amino acids against mouse cerebrum glial cells revealed that 344 and 346–

348 showed weak toxicity to the cells at 10 μg/cm3, while 349 was inactive,

indicative of the indispensable role of the 2-hydroxyvaline moiety for the mediation

of their cytotoxicity [188].

A further inspection of these unusual amino acids suggested that all them share a

β-hydroxyvaline unit, which inspired Kan and co-workers to propose the occur-

rence of a labile aziridine amino acid, namely, pleurocybellaziridine (350), as the

common precursor (Table 13, Fig. 33). These authors then synthesized the proposed

350 and its esters. As shown in Scheme 12, the methyl ester 351was synthesized via

eight steps. Since 351 was unstable when hydrolyzed, the more stable compound

352 subsequently was synthesized as the diphenylmethyl (Dpm) ester (Scheme 12).

The steric hindrance around the aziridine ring caused by the Dpm group made the
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Dpm ester 352 more stable than 351. With these two esters in hand, the authors

designed a sophisticated experimental procedure to confirm the presence of 350 in

the mushroom extract. Thus, initially they treated the mushroom extract with

CH2N2 or Ph2CN2, then purified the corresponding 350 ester with those synthesized

as references, and achieved the expected results, which confirmed the natural

existence of the labile amino acid, pleurocybellaziridine. Examination of the

toxicity of both 350 and its methyl ester 351 showed that 350 significantly reduced

Table 13 Nucleosides and non-protein amino acids

Compound Origin Type Refs.

1-Ribofuranosyl-s-triazin-2(1H )-one (335) Rubinoboletus
ballouii

Nucleoside [179]

9β-D-Ribopyranosylpurine (336) Tricholoma
japonicum

Nucleoside [180]

Cordysinin A (337) Cordyceps
sinensis

Nucleoside [149]

(2S,4R)-2-Amino-4-methyl-hex-5-enoic acid (338) Boletus
fraternus

NAA [181]

Purpurolic acid (339) Claviceps
purpurea

NAA [182]

Myriocin (340) Cordyceps
heteropoda

NAA [183, 184]

Fingolimod (341) [185, 186]

N-Acetylneuraminic acid (342) Pleurocybella
porrigens

Saccharide [187]

N-Glycolylneuraminic acid (343) Pleurocybella
porrigens

Saccharide [187]

2-Amino-3-ethoxy-3-methylbutanoic acid (344) Pleurocybella
porrigens

NAA [188]

2-Amino-3-(2,3-dihydroxypropoxy)-3,3-

dimethylpropanoic acid (345)

Pleurocybella
porrigens

NAA [188]

Compound 3 (346) Pleurocybella
porrigens

NAA [188]

2-Amino-3-hydroxy-3-methylbutanoic acid (347) Pleurocybella
porrigens

NAA [188]

2-Amino-3-methoxy-3-methylbutanoic acid (348) Pleurocybella
porrigens

NAA [188]

3-Amino-2-hydroxy-3-methylbutanoic acid (349) Pleurocybella
porrigens

NAA [188]

Pleurocybellaziridine (350) Pleurocybella
porrigens

NAA [189]

(2R,4S)-Amino-hydroxy-5-hexynoic acid (353) Trogia venenata NAA [190]

(2R)-Amino-5-hexynoic acid (354) Trogia venenata NAA [190]

γ-Guanidinobutyric acid (355) Trogia venenata NAA [190]

Cycloprop-2-ene carboxylic acid (356) Russula
subnigricans

Other [191]
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cell viability at concentrations of up to 10 μg/cm3 (87 μM), while its methyl ester

demonstrated only weak cytotoxicity at 30 μg/cm3 (233 μM). These data suggested

that 350 might be the actual compound causing the demyelinating symptoms, with

its carboxylic acid residue and the aziridine skeleton being crucial for

activity [189].

The mushroom Trogia venenata is a recently described species from Yunnan

Province, southwest mainland China (Fig. 34). Epidemiological studies indicated

that ingestion of this mushroom has been responsible for the sudden unexpected

deaths of more than 260 people over the past 30 years. Liu and co-workers isolated

and characterized three toxic non-protein amino acids from the fruiting bodies of

this mushroom, namely, (2R)-amino-(4S)-hydroxy-5-hexynoic acid (353), (2R)-
amino-5-hexynoic acid (354), and γ-guanidinobutyric acid (355), guided by oral

toxicity tests in mice (Table 13, Fig. 33). The absolute configuration of 353 was

determined as (2R,4S) by both matrix-mode and optical rotation computations

based on DFT methods. This was also further confirmed by total synthesis

(Scheme 13). Both 353 and 354 proved lethal for ICR mice with LD50 values of

71 and 84 mg/kg, respectively. The total content of 353 and 354 in the fruiting

bodies of T. venenata was 0.2%, equivalent to a lethal dose in a human (60 kg) if
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approximately 400 g of dried fruiting bodies were to be ingested. It is noteworthy

that 353 was also detected in the cardiac blood of a mushroom poisoning victim in

Yunnan Province [190].

Fig. 34 The toxic mushroom Trogia venenata
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Scheme 12 The total synthesis of pleurocybellaziridine and its esters 351 and 352.

Reagents and conditions: (i)MeMgBr, THF,�20�C; (ii) PPTS,MeOH, 96% (2 steps); (iii) TEMPO,

PhI(OAc)2, NaClO2, MeCN, buffer pH 6.4, 96%; (iv) CH2N2, Et2O 87%; (v) HCl gas, MeOH;

(vi) DNsCl, 2,6-lutidine, CH2Cl2, 72% (2 steps); (vii) DEAD, Ph3P, toluene, 83%; (viii) nPrNH2,

CH2Cl2, 0
�C ! RT, 52%; (ix) Ph2CN2, CH2Cl2, 77%; (x) HCl gas, MeOH; (xi) DNsCl, Na2CO3,

THF/H2O (2:1), 59% (2 steps); (xii) DIAD, Ph3P, toluene, 70%; (xiii) nPrNH2, CH2Cl2, 0
�C! RT,

90%; (xiv) H2, 5% Pd/C, MeOH, 67%. DNsCl ¼ 2,3-dinitrobenzenesulfonyl, PPTS ¼ pyridinium

p-toluenesulfonate, TEMPO ¼ 2,2,6,6-tetramethylpiperidine-1-oxyl, DIAD ¼ diisopropyl

azodicarboxylate, Dpm ¼ diphenylmethyl
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The toxin of the mushroom Russula subnigricans, which caused several cases of
fatal poisoning in Japan, was proven by Matsuura et al. to be the simple and

unstable compound cycloprop-2-ene carboxylic acid (356) (Table 13, Fig. 33).

While 356 is not a nitrogen-containing substance, this compound represents a

new type of a mushroom toxin. Oral administration in mice with a synthetic sample

of 356 caused tremor, hair erection, and decreased mobility within 3 h, and the mice

died through collapse and tonic extension in the worst-affected cases. However,

introduction of a methyl group into the skeleton of 356 considerably reduced the

resultant toxicity. Preliminary biological testing revealed that 356 does not directly

attack myocytes, but triggers rhabdomyolysis and subsequent lethal poisoning.

Compound 356 showed no discernible general antibacterial acitivity nor cellular

cytotoxicity. The LD100 value of this compound in mice was 2.5 mg/kg,

corresponding to a lethal dose of only a small amount of the mushrooms in humans,

since the concentration level of this compound was 0.072% [191].

3.5 Cyclic Peptides

The basidiomycete Lepista sordida is an edible agaric species that belongs to the

family Tricholomataceae. In the course of screening for bioactive metabolites from

the macrofungi of southern mainland China, four diketopiperazines, lepistamides

A–C (357–359) and diatretol (360), were isolated from a solid culture of L. sordida
(Fig. 35). Lepistamide A (357) and 360 are C-3 epimers [192]. In the process of

searching for anti-inflammatory principles from the mycelia of Cordyceps sinensis,
a diketopiperazine was obtained and named cordysinin A (361) (Fig. 35). This

compound showed inhibitory activities on superoxide anion generation and elastase

release with respective IC50 values of 11.34 and 13.03 μg/cm3 [149]. Echinuline

(362) is a cyclic dipeptide formed by triprenylated tryptophan and alanine. It was

isolated from the Brazilian edible mushroom Lentinus strigellus (Fig. 35) [193].
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Scheme 13 Total synthesis of 353.

Reagents and conditions: (i) Et3N, CH3ONHCH3�HCl, BOP�PF6, CH2Cl2; (ii) HC�CMgBr

(5 equiv), Et2O, �78�C, 78% yield; (iii) (S)-B-methyl Corey-Bakshi-Shibata (CBS) catalyst

(2 equiv), BH3-SMe2 (2 equiv), toluene, 61% yield; (iv) CF3CO2H, 99% yield.

BOP ¼ benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium
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The macrofungal genus Armillaria is a rich source of protoilludane

sesquiterpenoids with polyketide structural modifications. Furthermore, many

cyclic peptides were isolated from cultures of Armillaria (Table 14). Three

sulfur-containing diketopiperazines were isolated from EtOAc extracts of

A. tabescens (JNB-OZ344), namely, emestrin (363), emestrin F (364), and emestrin

HN
NH

O

O

HN

367  (neoechinulin A)

N

NH

H
N

HN

N

O

O

O
O

O

HN
N

O
N
H

O
N

O
N
H

O
N

O
N
H

O
N

O

H
N

O
N

O
H
N

O
N

O
H
N

O
N

O

O

H
N

O

N

O

OH
R

N

N
O

O

369  (gymnopeptide A)  R = H 370  (gymnopeptide B)  R = CH3

368

HN
NH

O

O

OR1

R2O

HN
NH

O

O

OMe

HO

R1 R2

H
H H

357  (lepistamide A)
358  (lepistamide B)
359  (lepistamide C)

N
NH

O

O

H

HO

361  cordysinin A

H
N

H
N

N
H

O

O

362  (echinuline)

O

N N

OH

O

O

O

S

O R

O

O OH

2

363  (emestrin)     
364  (emestrin F)  
365  (emestrin G)

N
N

O

O

H
O

O

360  (diatreol)

R = OH
R = H
R = OH

366

Me

Me

Me

Fig. 35 Structures of cyclic peptides

Secondary Metabolites from Higher Fungi 67



G (365) (Fig. 35). Emestrin (363) exhibited antimicrobial activity against the fungi

Candida albicans and Cryptococcus neoformans and the bacteria Escherichia coli
and Staphylococcus aureus. The most significant inhibition was for C. neoformans
with an IC50 value of 0.6 μg/cm3. Emestrin F (364) only showed activity against

C. neoformans and Mycobacterium intracellulare, while 365 was inactive

[194]. (R)-2-(2-(Furan-2-yl)-oxoethyl)-octahydropyrrolo[1,2-a]pyrazine-1,4-dione
(366) is a furan-containing diketopiperazine isolated from the liquid fermentation

broth of A. mellea (Fig. 35). Its absolute configuration was established by compu-

tational methods [195]. Neoechinulin A (367) is an indole-containing cyclic dipep-

tide isolated from the fruiting bodies of Xylaria euglossa, which is of

chemotaxonomic relevance for this fungus (Fig. 35) [196].

Macrocyclic peptides are rarely encountered from higher fungi. A chemical study

on the liquid cultures of the fungus X. carpophila resulted in the isolation of the cyclic
pentadecapeptide cyclo(N-methyl-L-Phe-L-Pro-L-Leu-D-Ile-L-Val) (368) (Fig. 35).

The absolute configutations of the amino acid units were established by the advanced

Marfey’s method [197]. Two additional cyclic octadecapeptides, gymnopeptides A

(369) and B (370), were isolated from the Hungarian mushroom Gymnopus fusipes
(syn.Collybia fusipes). They represent the largest cyclic peptides of mushroom origin

(Fig. 35). The structures were established using extensive spectroscopic methods,

such as from their 1H, 13C, 2D-TOCSY, and heteronuclear 2D NMR spectra, which

revealed that these two compounds differ only in the presence of a single amino acid

moiety. The absolute configurations of the amino acids except for the serine and

threonine moieties, were determined by Marfey’s derivatization in combination with

HPLC-MS methods [198].

Table 14 Cyclic peptides

Compound Origin Type Refs.

Lepistamides A–C (357–359) Lepista
sordida

Diketopiperazine [192]

Diatretol (360) Lepista
sordida

Diketopiperazine [192]

Cordysinin A (361) Cordyceps
sinensis

Diketopiperazine [149]

Echinuline (362) Lentinus
strigellus

Diketopiperazine [193]

Emestrin (363) Armillaria
tabescens

Diketopiperazine [194]

Emestrins F (364), G (365) Armillaria
tabescens

Diketopiperazine [194]

(R)-2-(2-(Furan-2-yl)-oxoethyl)-octahydropyrrolo
[1,2-a]pyrazine-1,4-dione (366)

Armillaria
mellea

Diketopiperazine [195]

Neoechinulin A (367) Xylaria
euglossa

Diketopiperazine [196]

Cyclo(N-methyl-L-Phe-L-Pro-L-Leu-D-Ile-L-Val)

(368)

Xylaria
carpophila

Macrocyclic

peptide

[197]

Gymnopeptides A (369), B (370) Gymnopus
fusipes

Macrocyclic

peptide

[198]
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3.6 Sphingolipids

The new C18-ceramide, pecipamide (371), was isolated from the solid fermentation

of the basidiomycetous fungus Polyporus picipes (Fig. 36). The structure of 371

was established as (2S,3R,20R)-N-20-hydroxyheptadecanoyl-2-amino-octadecane-

1,3-diol [199]. Lee et al. reported the cerebroside, cerebroside E (372), from the

well-known mushroom Hericium erinaceus (Fig. 36) [200]. Cerebroside E (372)

was evaluated for its probable medicinal potential in several human diseases.

The results showed that 372 attenuated cisplatin-induced nephrotoxicity in

LLC-PK1 cells and exhibited a significant inhibitory activity on angiogenesis in

HUVECs.

3.7 Miscellaneous

Termitomycamides A (373), D (374), and E (375) are three linoleyl amides isolated

from the very large edible mushroom Termitomyces titanicus (Fig. 37, Table 15).

The structure of 375 was confirmed by synthesis [148]. The fruiting bodies of the

mushroom Lactarius vellereus yielded leptosphaepin (376), a γ-lactone amide

(Fig. 37). The structure of 376 was established through X-ray diffraction

analysis [201].

Leccinine A (377) was isolated from the fresh fruiting bodies of the edible

mushroom Leccinum extremiorientale (Fig. 37). The NMR data of 377 displayed

pairs of signals both in the 1H and 13C NMR spectra. NMR data interpretation along

with the MS data suggested that 377 consists of a pair of N-formyl rotational

isomers in a ratio of 3:1 as determined from the integrated values of the 1H NMR

signals. Leccinine A (377) was subjected to evaluation in a bioassay concerning ER
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stress-dependent cell death caused by tunicamycin (TM) and thapsigargin (TG).

The results indicated that 377 exhibited significant dose-dependent protective

activity against TG-toxicity, while no protective activity was observed using

TM. Further structure-activity relationships of 377 were carried out by synthesizing

analogues of leccinine A to test their activities. These results revealed that the

formamide group is indispensable for such activity [202].

N-Benzoyl-L-leucine methyl ester (378) was isolated from the fruiting bodies of

the medicinal fungus Agaricus blazei (Fig. 37) [203]. In turn, enokipodin J (247)

was obtained from the solid fermentation of the edible mushroom Flammulina
velutipes as a purple powder. This represents the first cuparane-type sesquiterpene
containing an amino group to have been found (Fig. 37). Enokipodin J (247)

exhibited cytotoxic effects against the HepG2, MCF-7, SGC7901, and A549

human tumor cell lines [145].

Crude extracts of the culture broth and cells of the basidiomycete

Anthracophyllum sp. showed antimalarial activity against the K1 strain of Plasmo-
dium falciparum, with IC50 values varying from 1.563 to 3.125 μg/cm3, while it

showed no growth inhibitory activity against non-cancerous cells even at a con-

centration of 50 μg/cm3. Further isolation work led to the purification of a nitrogen-

containing bisabolane sesquiterpenoid containing a spiro-lactone group,

anthracophyllic acid (379) (Fig. 37). The relative configuration of 379 was

established by X-ray single-crystal diffraction analysis [204]. However, this com-

pound was present as two isomers due to the spiro-lactone group. This

epimerization phenomenon seems to be common when a compound contains such

a spiro-lactone/lactam group [210].

Table 15 Miscellaneous nitrogen containing compounds

Compound Origin Refs.

Termitomycamides A (373), D (374), and E (375) Termitomyces
titanicus

[148]

Leptosphaepin (376) Lactarius vellereus [201]

Leccinine A (377) Leccinum
extremiorientale

[202]

N-Benzoyl-L-leucine methyl ester (378) Agaricus blazei [203]

Enokipodin J (247) Flammulina velutipes [145]

Anthracophyllic acid (379) Anthracophyllum sp. [204]

Pistillarin (380) Rubinoboletus
ballouii

[179]

Eritadenine (381) Lentinus edodes [205]

Hericirine (382) Hericium erinaceum [206]

Compounds 1 (383), 2 (384) Ramaria
madagascariensis

[207]

Compounds 1 (385), 2 (386) Ramaria
madagascariensis

[208]

N-(30α,40β-Dihydroxy-20β-(hydroxymethyl)-10β-(cyclobutyl)
palmitamide (387)

Ganoderma tsugae [209]
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Pistillarin (380) was obtained via the bioassay-guided isolation of the fruiting

bodies of the wild mushroom Rubinoboletus ballouii. Biological testing indicated

that pistillarin was responsible for the immunosuppressive activity demonstrated

for an ethanol-soluble extract of this mushroom [179]. Eritadenine (381) is a purine

alkaloid that was isolated from the shiitake mushroom, Lentinus edodes, which
showed the highest concentration level of this compound among several edible

mushrooms. Later, compound 381 was also isolated from Agaricus bisporus. This
compound showed angiotensin-converting enzyme (ACE) inhibitory activity with

an IC50 of 0.091 μM, while the IC50 of the positive control captopril was 0.025 μM.

Further kinetic research of 381 revealed that this compound is a strong competitive

inhibitor of ACE [205].

A chemical investigation on the dried fruiting bodies of the mushroom Hericium
erinaceum yielded the norergosterol alkaloid hericirine (382). Its structure was

elucidated after extensive spectroscopic analysis. Hericirine was found to inhibit

protein expression of iNOS and COX-2 and also reduced NO, PGE2, TNF-α, IL-6,
and IL-1β production in RAW264.7 cells exposed to LPS. These inhibitory activ-

ities might be due to its ergosterol-related structure [206].

Four amide-group-containing alkaloids were isolated from a 95% ethanol-

soluble extract of the mushroom Ramaria madagascariensis (383–386, Fig. 37)

[207, 208]. N-(30α,40β-Dihydroxy-20β-(hydroxymethyl)-10β-(cyclobutyl)palmit-

amide (387) was isolated from the fruiting bodies of Ganoderma tsugae (Fig. 37).
The long-chain acyl moiety was determined as palmitoyl by acid hydrolysis of this

compound to afford palmitic acid methyl ester and further characterized by

GC-MS. This compound was found to contain a rare cyclobutyl ring [209].

4 Terpenoids of Higher Fungi

4.1 Sesquiterpenoids

Among the secondary metabolites derived from higher fungi, the sesquiterpenoid

family is undoubtedly the most diverse type of compound both in terms of their

overall number and the range of structural scaffolds.

Farnesyl pyrophosphate (FPP, also known as farnesyl diphosphate, FDP) is a key

intermediate for the divergent biosynthesis of sesquiterpenoids (Scheme 14). In

turn, the key intermediates for humulane and germacrane are transformed enzy-

matically from FPP via 1,11- and 1,10-cyclizations. Additionally, through a

1,6-cyclization pathway, FPP produces the bisabolane skeleton, which further

yields cuparane, chamigrane, and the rare spiro[4.5]decane (with only one example

reported) scaffolds via 7,11-, 6,11-, and 6,10-cyclization modes. The cuparane

backbone further affords the tricyclic gymnomitrane via methyl migrations and

nucleophilic addition procedures (Scheme 15). Farnesyl pyrophosphate undergoes

a 2,7-cyclization to yield the drimane sesquiterpenoids, which are a large group of

sesquiterpenoid metabolites, while via 1,7-, 4,6-, and 6,11-cyclization cascades,
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xylcarpin sesquiterpenoids are produced. Through a 3,9-cyclization, mitissimolone

is obtained, which represents the only example of this mode of cyclization.

The FPP-humulane pathway is the most important for the formation of addi-

tional diverse sesquiterpenoids. Humulane yields the rare africane skeleton with a

strained cyclopropane ring, which further produces a quaternary carbon-shared 4/6/

5 tricyclic trefolane backbone. On the other hand, carbon–carbon bond formation

between C-2 and C-9 with subsequent methyl migration of FPP yields the

tremulane skeleton, which is converted via carbon–carbon bond cleavage and

rearrangement to form the seco-tremulane and irlactane skeletons. Humulane pro-

duces the tricyclic protoilludane, a key intermediate for more than five subsequent

pathways. One of them leads to illudane with a spiro-cyclopentane/cyclohexane

scaffold. When the strained cyclopentane ring of illudane opens, this leads to the

illudalane skeleton. The second pathway is the formation of the 3/6/5-fused tricy-

clic marasmane by arrangement of the cyclobutane ring of protoilludane.

Marasmane proved to be the precursor of lactarane, which is converted to seco-
lactarane via a carbon–carbon bond cleavage. Migration of the cyclobutane ring of

protoilludane gives cerapicane. Cerapicane itself is the intermediate for sterpurane-

type sesquiterpenoids, which further leads to the isolactarane scaffold. The fourth

pathway with protoilludane as the precursor results in the cerapicane and hirsutane

tricyclopentane skeletons, via ring rearrangements and methyl migrations. The last

pathway constitutes a carbon–carbon bond cleavage in protoilludane, which leads

to the fomannosane skeleton (Scheme 14).

The FPP-germacrane pathway further produces many sesquiterpenoid skeletons

through no less than five branches (Scheme 16). Although only one germacrane-

type of sesquiterpenoid has been reported among mushroom secondary metabolites,

it is regarded as a key intermediate for many sesquiterpenoids that have retained

isopropyl moieties. Germacrane, in a 1,11-cyclization manner, gives aristolane with

a geminal methyl-substituted cyclopropane ring. Cleavage of the cyclopentane ring

of aristolane gives nardosinane. Also, germacrane, when modified via a

1,6-cyclization pathway, produces cadinane. Ring reduction and carbon–carbon

bond formation of cadinane lead to the spiroaxane and stereumane skeletons,

respectively. In addition, eudesmane is formed by a 2,7-cyclization procedure; it

OPP

OPP

−OPP
H H

cuparane

gymnomitrane

Scheme 15 The biosynthesis pathway of gymnomitrane-type sesquiterpenoids
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is converted into eremophilane via a methyl migration step. Moreover, germacrane

yields the guaiane and isodaucane skeletons via 2,6- and 1,7-cyclization modes,

respectively, of which the guaiane sesquiterpenoids are always aromatic and occur

in the form of azulene pigments.

The pathway through which humulane, via 1,11-cyclization, gives cis-/trans-
caryophyllanes, which subsequently produces a variety of sesquiterpenoids, is

designated as the humulane–caryophyllane pathway (Scheme 17). These

sesquiterpenoids are characterized by a retained geminal methyl substituted
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Scheme 16 The sesquiterpenoid skeletons derived from the common precursor of germacrane
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Scheme 17 The sesquiterpenoid skeletons derived from the common precursors of cis-/trans-
caryophyllane
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cyclobutane ring. Among them, the silphiperfolane type stems from trans-
caryophyllane, but it is different from other caryophyllane-derived skeletons. The

detailed biosynthesis pathway of silphiperfolane is shown in Scheme 18. The

punctaporonane, collybial, and tricyclo[6.3.1.02.5]undecane skeletons are formed

from the precursor trans-caryophyllane, while the tricyclo[5.4.0.02.5]undecane,

tricyclo[5.3.0.02.5]decane, and bicyclo[5.2.0]nonane skeletons are derived from

cis-caryophyllane.

4.1.1 Humulanes

Humulane-type sesquiterpenoids are found rarely in Nature. They have been

recognized as being biogenetic precursors of many types of sesquiterpenoids

(Schemes 14 and 17). Humulane-type sesquiterpenoids in mushrooms occur mainly

in the genus Lactarius (Table 16). The macrocyclic nature of members of the

humulane group has proved to be troublesome for the determination of their

absolute configurations.

So far, only 13 humulanes were reported from higher fungi (Table 16). Antrodols

A–C (388–390) were the first examples of humulanes isolated from fungal cultures,

and the others were obtained from fruiting bodies of Lactarius mushrooms (Fig. 38)

[211]. Mitissimols A–G (391–397) and mitissimol A oleate and linoleate (398 and

399) are humulanes isolated from the mushroom L. mitissimus (Fig. 38) [212–

214]. The relative configuration of 391 was established by X-ray analysis, and the

H

OPP

OPP

silphiperfolane

Scheme 18 The biosynthesis pathway of silphiperfolane-type sesquiterpenoids

Table 16 Humulane sesquiterpenoids

Compound Origin Type Refs.

Antrodols A–C (388–390) Antrodiella albocinnamomea Humulane [211]

Mitissimols A–G (391–397) Lactarius mitissimus Humulane [212–214]

Mitissimol A oleate (398) Lactarius mitissimus Humulane [212]

Mitissimol A linoleate (399) Lactarius mitissimus Humulane [212]

(6Z,9Z)-2β,3α-Epoxyhumula-6,9-dien-

8α-ol (400)
Lactarius hirtipes Humulane [215]
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absolute configuration of 395 was determined by means of the modified Mosher’s
method. Antrodol A (388) showed inhibitory activities against protein-tryosine

phosphatase MEG2 and PTP1Bc with IC50 values of 8.0 and 10.0 μg/cm3. Antrodol

C (390) showed a less potent inhibitory effect against protein-tyrosine phosphatase

PTP1Bc, having an IC50 value of 15.1 μg/cm3 (Fig. 38) [211].

4.1.2 Africanes

Africane sesquiterpenoids are a class of 5/7/3 ring-fused sesquiterpenoids, which

have been found to date mainly in marine soft corals and higher fungi. Species of

the genera Lemnalia and Sinularia of the soft corals, Leptographium of the Asco-

mycetes, and Omphalotus and Clavicorona among the Basidiomycetes have been

reported to produce africane-type sesquiterpenoids. So far, only three examples of

this type of sesquiterpenoid were reported from higher fungal origin (Table 17,

Fig. 39).

Omphadiol (401) is a sesquiterpenoid isolated from the basidiomycete

Omphalatus illudens. This compound contains six contiguous stereogenic centers,

which made it a challenging synthesis target. The total synthesis of omphadiol was

achieved by Liu and Romo [219] and Liang and associates [220]. Liu and Romo

developed a scaleable route to the key synthesis intermediate, the bicyclic β-lactone
404, in three steps, and then achieved the total synthesis of (+)-omphadiol within

ten steps (Scheme 19). This total synthesis was characterized by several efficient C–
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Fig. 38 Structures of humulane and humulane-type sesquiterpenoids from higher fungi
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Table 17 Africane sesquiterpenoids

Compound Origin Type Refs.

Omphadiol (401) Omphalotus illudens Africane [216, 217]

Isoomphadione (402) Omphalotus illudens Africane [218]

Pyxidatol C (403) Clavicorona pyxidata Africane [217]
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Fig. 39 Structures of africane, omphadiol (401), isoomphadione (402), and pyxidatol C (403)
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Scheme 19 The total synthesis of (+)-omphadiol (401).

Reagents and conditions: (i) [Mn(dpm)3] (3 mol%), PhSiH3 (1.5 equiv), iPrOH, O2 (1 atm), 63%

yield (d.r. 2:1); (ii) H5IO6, Et2O, 95% yield; (iii) TsCl (1.5 equiv), 4-PPY (1 equiv), K2CO3

(3 equiv), DIPEA (4 equiv), CH2Cl2, 2 h, 83% yield (d.r. >19:1); (iv) DIBAI-H, CH2Cl2,

�78 ! 0�C, 99% yield; (v) TsCl, LiBr, py. 23 ! 60�C, 3 h; (vi) (EtCO)2O, NEt3, DMAP,

23�C, 48 h, 79% yield; (vii) KHMDS (3 equiv), THF, �78�C 20 min, then MeI, 84% yield;

(viii) Ph3SnCH2CHCH2PhLi, nBu2O, Et2O, 0! 23�C, then Et2O,�78�C, 74% yield; (ix) Grubbs

II (3 mol%), toluene, 90�C, 3 h, 95% yield; (x) tBuLi, DIBAI-H, toluene, �78�C, 86% yield

(d.r. 14:1); (xi) diethyl zinc, CH2I2, CH2Cl2, 30 ! 0�C, 83% yield (d.r. >19:1).

dpm ¼ dipivaloylmethanato; PPY ¼ 4-pyrrolidinopyridine
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C bond-forming reactions, novel single-pot, sequential, and tandem processes, and

the highly stereocontrolled introduction of all six stereogenic centers [219].

4.1.3 Aristolanes

Most of the reported aristolane sesquiterpenoids are from the genus Russula.
Recently, this type of sesquiterpenoid was also reported from the luminescent

mushroom Neomothopanus nambi and the genus Anthracophyllum (Table 18).

Nardosinane-type sesquiterpenoids are biogenetically related to the aristolanes.

The bright yellow compound, lepidamine (405), represented the first report of an

aristolane-type sesquiterpene alkaloid from the basidiomycete R. lepida (Fig. 40)

[224]. The configuration of C-2 of rulepidol (2-hydroxyaristolone) was corrected to

(S) instead of (R) by a NOESY experiment together with calculations of the 1H and
13C NMR spectra based on the optimized geometries of C-2 (S)- and (R)-
2-hydroxyaristolone diastereomers [221]. Ramarins A (406) and B (407) are two

aristolanes isolated from the fruiting bodies of Ramaria formosa. Both showed

Table 18 Aristolanes

Compound Origin Type Refs.

(+)-Aristolone Russula lepida Aristolane [221–223]

Lepidamine (405) Russula lepida Aristolane [224]

Rulepidol Russula lepida Aristolane [221, 225]

(1R,2S)-1,2-Dihydroxyaristolone Russula lepida
Russula amarissima

Aristolane [221]

(2S,11S)-2,12-Dihydroxyaristolone Russula lepida
Russula amarissima

Aristolane [221]

(1R,2S,11S)-1,2,12-
Trihydroxyaristolone

Russula lepida
Russula amarissima

Aristolane [221]

(1S,2S,11S)-1,2,12-
Trihydroxyaristolone

Russula lepida
Russula amarissima

Aristolane [221]

Nambinones A, B, C (410) Neonothopanus
nambi

Aristolane [226, 227]

1-epi-Nambinone B Neonothopanus
nambi

Aristolane [226]

Axinysone A Ramaria formosa Aristolane [227]

Axinysone B Neonothopanus
nambi

Aristolane [226]

Aurisins A (408), G, K (409) Neonothopanus
nambi

Dimeric

aristolane

[226]

Ramarins A (406), B (407) Ramaria formosa Aristolane [227]

ent-Aristolane Ramaria formosa Aristolane [227]

(+)-1,2-Didehydro-9-hydroxyaristone Russula lepida Aristolane [222]

(+)-12-Hydroxyaristolone Russula lepida Aristolane [222]

Anthracophyllone Anthracophyllum sp. Aristolane [204]
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30–35% inhibitory acitivities against human neutrophil elastase (HNE) at a con-

centration of 100 μM, whereas the positive control, epigallocatechin gallate,

exhibited a 60% inhibition at 100 μM [227].

A chemical investigation of the poisonous luminescent mushroom N. nambi
yielded five aristolanes and the two aristolane dimers 408 and 409 (Table 18,

Fig. 40). The relative configuration of aurisin A (408) was established by X-ray

crystallographic analysis. Biological testing of aurisins A and K (409) showed

antimalarial activity against Plasmodium falciparum (IC50 0.80 and 0.61 μM,

respectively) and antimycobacterial activity against Mycobacterium tuberculosis
(MIC values of 92.55 and 23.94 μM, respectively). Moreover, these two dimers also

showed cytotoxicity against the NCI-H187 cancer cell line with IC50 values of 1.55

and 1.45 μM. Aurisin A also exhibited cytotoxicity against the BC1 cell line with an

IC50 value of 3.72 μM, while aurisin K showed cytotoxicity against KB cells with

an IC50 value of 6.87 μM. In addition, aurisin A displayed cytotoxic effects against

several cholangiocarcinoma cell lines (KKU-100, KKU-139, KKU-156, and

KKU-213) that were comparable in potency to the standard drug ellipticine.

Nambinone C (410) was less active when evaluated against the NCI-H187 cell

line, having an IC50 value of 16.42 μM. These data suggest that the dimerized

products in this series produced improved bioactivities when compared to those of

the monomers [226].

4.1.4 Aromadendranes

Aromadendrane-type sesquiterpenoids are a group of 5/7/3 ring-fused

sesquiterpenoids that have been rarely reported from fungi (Table 19). With a

trans-fused five- and seven-membered ring, the resultant skeleton is called
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aromadendrane, and with a cis-fused five- and seven-membered ring,

alloaromadendrane. The carbon–carbon bonds between C-1 and C-3, C-1 and

C-10 are vulnerable to being cleaved.

(+)-Globulol (411) is an aromadendrane sesquiterpenoid that was obtained from

the mycelium of Quambalaria cyanescens in the form of needle-shaped crystals

(Fig. 41) [231].

4.1.5 Bisabolanes

Bisabolane-type sesquiterpenoids occur both in the plant and fungal kingdoms

(Table 20). However, Abraham did not cover this type of sesquiterpenoid in his

review on fungal sesquiterpenes [251]. The side chain of bisabolanes is ususally

oxygenated to ether or hemiacetal/acetal functionalities with the six-membered ring

to produce complex polycyclic molecules. Many of these compounds display a

range of biological activities.

Table 19 Aromadendranes

Compound Origin Type Refs.

Hebelodendrol Hebeloma
longicaudum

Alloaromadendrane [228]

2β,12-Dihydroxyledol Dichomitus squalens Aromadendrane [229]

2β,3β,12-Trihydroxyledol
(412)

Dichomitus squalens Aromadendrane [230]

Dichomitone (413) Dichomitus squalens 1,10-seco-2,3-seco-
Aromadendrane

[229]

(+)-Globulol (411) Quambalaria
cyanescens

Aromadendrane [231]

Psilosamuiensins A, B Psilocybe samuiensis 2,3-seco-Aromadendrane [232]

Compounds 1, 2 Agrocybe salicacola 2,3-seco-Aromadendrane [233]

Inonotins A-L Inonotus sp. BCC
23706

Aromadendrane [234]
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Fig. 41 Structures of aromadendrane/alloaromadendrane, (+)-globulol (411), 2β,12-dihydroxyledol
(412), and dichomitone (413)
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A search for secondary metabolites with nematicidal activities from the culture

broth of the basidiomycete Cheimonophyllum candidissimum resulted in the dis-

covery of six bisabolane-type sesquiterpenoids, cheimonophyllons A–E (414) and

cheimonophyllal (Fig. 42) [236, 237]. These compounds exhibited nematicidal and

weak antifungal, antibacterial, and cytotoxic activities, which stimulated two

research groups to accomplish the total synthesis of cheimonophyllon E and

cheimonophyllal [252–254]. Arimillariol A, isolated from culture broth of

Arimillaria sp., regulates hypocotyl and root growth of the lettuce [241].

Pleurospiroketals A–C (415), with a unique benzannulated 5,5-spiroketal skeleton

obtained from the edible mushroom. Pleurotus cornucopiae, showed inhibitory

activity against nitric oxide production in lipopolysaccharide-activated

Table 20 Bisabolanes

Compound Origin Type Refs.

Lepistirone Lepista irina Bisabolane [235]

Cheimonophyllons A–E (414) Cheimonophyllum
candidissimum

Bisabolane [236,

237]

Cheimonophyllal Cheimonophyllum
candidissimum

Bisabolane [236,

237]

(1R,7S)-15-Hydroxy-1-epi-β-bisabolol Aleuria aurantia Bisabolane [238]

(6S,7S)-6,7-Dihydroxy-3,6-dimethyl-2-

isovaleroyl-4,5,6,7-

tetrahydrobenzofuran

Lentinus squarrosulus
BCC 22366

Bisabolane [239]

Xylcarpins D, E Xylaria carpophila Bisabolane [197]

Virgineol Amanita virgineoides Bisabolane [240]

Anthracophyllic acid Anthracophyllum sp.

BCC18695

Bisabolane [204]

Armillariols A–C Armillaria sp. Bisabolane [241]

((6S,7S)-6,7-Dihydroxy-6-methyl-2-

(3-methylbutanoyl)-4,5,6,7-

tetrahydrobenzofuran-3-yl)methyl

acetate

Pleurotus eryngii Bisabolane [242]

Polisins A–C Polyporus ellisii Norbisabolane [243]

Pleurospiroketals A–E (415) Pleurotus cornucopiae Bisabolane [244]

Inonolane A Inonotus vaninii Bisabolane [245]

Daedatrin A Daedaleopsis tricolor Bisabolane [246]

Daedatrins B, C Daedaleopsis tricolor Norbisabolane [246]

Inonotic acids A, B Inonotus rickii Bisabolane [247]

3-O-Formyl inonotic acid A Inonotus rickii Bisabolane [247]

Phelilane H Phellinus linteus Bisabolane [248]

(2E,4E)-(+)-40-Hydroxy-γ-
ionylideneacetic acid

Phellinus linteus Bisabolane [248]

(2E,4E)-γ-Ionylideneacetic acid Phellinus linteus Bisabolane [248]

Pleurotons A (416), B (417) Pleurotus cystidiosus Bisabolane [249]

Gypseatriol Antrodiella gypsea Bisabolane [250]
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macrophages with IC50 values of 6.8, 12.6, and 20.8 μM, respectively (Fig. 42)

[244]. Pleurotons A (416) and B (417), from the edible mushroom P. cystidiosus,
exhibited significant cytotoxicity against two human prostate cancer cell lines, with

IC50 values of 174 and 28 nM, respectively, against DU-145 cells, and 104 and

52 nM, against C42B cells (Fig. 42) [249].

4.1.6 Cadinanes

Mushroom-derived cadinane-type sesquiterpenoids are distributed in species of the

genera Stereum, Strobilurus, Lentinus, Tyromyces, and Phellinus (Table 21). This

type of compound has been reported to display diverse biological activities. Thus,

(+)-10α-hydroxy-4-muurolen-3-one (418) isolated from the basidiomycete

Favolaschia sp. 87129 by Anke and colleagues, showed inhibition of leukotriene

biosynthesis with IC50 values between 5 and 10 μg/cm3 (21.2–42.4 μM) (Fig. 43)

[260]. Stereumins C (419) and D exhibited potent activities comparable to that of a

standard nematocide, avermectin, which killed 84.4 and 94.9% of Panagrellus
redivivus at 400 mg/dm3 in 48 h (Fig. 43) [268]. Stereumin T (420) exhibited

antibacterial activity against Bacillus cereus with anMIC value of 3.97 μM. 4β,14-
Dihydroxy-6α,7βH-1(10)-cadinene (421) inhibited HIV-1 with an EC50 value of

3.0 μg/cm3 (SI ¼ 25.4) (Fig. 43) [266]. Strobilol H (422), an aromatic cadinane-

type sesquiterpene from Strobilurus ohshimae, was evaluated against the YMB

human breast cancer cell line, and gave an IC50 value of 16 μM (Fig. 43)

[262, 263]. Both boreovibrin F (423) and trefoliol B (424) showed inhibitory effects

against 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1) (human IC50 46.7 μM,

mouse IC50 66.4 μM for boreovibrin F, and human IC50 13.1 μM, mouse IC50 91.8

μM for trefoliol B) (Fig. 43) [271, 277].
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4.1.7 Caryophyllanes and Caryophyllane-Related Sesquiterpenoids

Caryophyllane-type sesquiterpenoids, which have been reviewed previously [251],

are found mainly in the plant kingdom. Caryophyllanes may be classified into two

categories, trans- or cis- caryophyllanes, depending on the mode of fusion of the

cyclobutane and nine-membered rings (Scheme 17). Further cyclization of the nine-

Table 21 Cadinanes

Compound Origin Type Refs.

δ-Cadinene Lentinus lepideus Cadinane [255]

α-Muurolene Lentinus lepideus Cadinane [255]

γ-Muurolene Lentinus lepideus Cadinane [255]

Lentideus ether Lentinus lepideus Cadinane [256]

Isolentideus ether Lentinus lepideus Cadinane [256]

10-Hydroxylentideus ether Lentinus lepideus Cadinane [256]

(+)-Torreyol Xylobolus frustulatus (syno-
nym Stereum frustulatus)

Cadinane [257]

Eleganthol Clitocybe elegans Cadinane [258]

Ganomastenols A–D Ganoderma mastoporum Cadinane [259]

(+)-10α-Hydroxy-4-muurolen-3-one

(418)

Favolaschia sp. 87129 Cadinane [260]

11-Desoxyeleganthol Limacella illinita Cadinane [261]

Strobilols A–M (422) Strobilurus ohshimae Cadinane [262–265]

4β,14-Dihydroxy-6α,7βH-1(10)-
cadinene (421)

Tyromyces chioneus Cadinane [266]

Stereumins A–E, G, K–U (419, 420) Stereum sp. CCTCC AF

207024

Cadinane [267–270]

Boreovibrins A–G (423) Boreostereum vibrans Cadinane [271]

Lyophyllone A Lyophyllum transforme Cadinane [272]

Lyophyllanetriol A Lyophyllum transforme Cadinane [272]

Muurolane-10β,15-diol Ceriporia alachuana Cadinane [273]

2β-Hydroxy-α-cadinol Ceriporia alachuana Cadinane [273]

3β-Hydroxy-δ-cadinol Ceriporia alachuana Cadinane [273]

Epicubenol Ceriporia alachuana Cadinane [273]

12-Hydroxy-α-cadinol Daedaleopsis tricolor Cadinane [246]

(+)-(1R,3R,6S,7S,11R)-3,12-
Dihydroxy-α-muurolene

Trichaptum pargamenum Cadinane [274]

(+)-(1R,3R,6S,7S,11S)-3,12-
Dihydroxy-α-muurolene

Trichaptum pargamenum Cadinane [274]

(+)-(1R,3R,6S,7S,8R,11R)-3,8,
12-Trihydroxy-α-muurolene

Trichaptum pargamenum Cadinane [274]

3α-Hydroxyartemisinic acid Trichaptum pargamenum Cadinane [274]

3α,12-Dihydroxy-δ-cadinol Phellinus igniarius Cadinane [275]

Tyromol B Tyromyces chioneus Cadinane [276]

Agripilol C Tyromyces chioneus Cadinane [276]

Trefoliol B (424) Tremella foliacea Cadinane [277]
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membered ring leads to a series of “caryophyllane-related sesquiterpenoids”.

Herein, the “caryophyllane-related sesquiterpenoids” are defined as those with the

features in common of having a geminal methyl-substituted cyclobutane ring and

caryophyllane as the biogenetic precursor. Sesquiterpenoids based on the core

structures tricyclo[5.4.0.02,5]undecane, tricyclo[5.3.0.02,5]decane, and bicyclo

[5.2.0]nonane are classified as “caryophyllane-related sesquiterpenoids”. Notably,

the core tricyclo[5.4.0.02,5]undecane was assigned to a dehydrochlorination product

of caryophyllene dihydrochloride [278]. Among fungi, it occurs naturally princi-

pally in the genera Hebeloma, Naematoloma, and Hypholoma (Table 22). Interest-

ingly, almost all of the four-membered rings are cis-fused with other rings in the

fungal caryophyllane-related compounds while cis-fused caryophyllanes have only
accounted for a small proportion of the reported structures.

6,9-Dihydroxy-3(15)-caryophyllen-4,8-dione (425) displayed cytotoxic effects

against the L1210 and HL60 cell lines with IC50 values of 1.9 and 3.8 μM (Fig. 44)

[279]. Hebelophyllenes G and H (426) are two 6,7-seco-caryophyllanes isolated

from liquid cultures of Hebeloma longicaudum [228]. Fascicularones A–K (427,

428) showed lettuce radicle elongation activities at a concentration of 100 ppm

(Fig. 44) [285–287].

From a culture of the basidiomycete Campanella junghuhnii, a new sesquiter-

pene with a tricyclo[6.3.1.02,5]dodecane skeleton, 2,3,6-trihydroxycaryol-5-en-7-

one (429), was obtained (Fig. 44). Comparative analysis between the structure of

this compound and that of the cytotoxic sesquiterpene, caryo-7-en-6-ol, suggested

that the precursor of this skeleton might be caryophyllane [288].

Compounds 430–432 are unusual sesquiterpenoids isolated from cultures of the

tropical rainforest basidiomycete Marasmiellus troyanus. The absolute configura-

tion of 430 was established by single-crystal X-ray structural analysis and the

modified Mosher’s method [281].
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Table 22 Caryophyllanes and related sesquiterpenoids

Compound Origin Type Refs.

6,9-Dihydroxy-3(15)-caryophyllen-

4,8-dione (425)

Marasmius sp. Caryophyllane [279]

Hebelophyllenes A–C Hebeloma
longicaudum

Caryophyllane [280]

β-Caryophyllane Marasmiellus
troyanus

Caryophyllane [281]

Hebelophyllenes E–H (426) Hebeloma
longicaudum

6,7-seco-
Caryophyllane

[228, 282]

Naematolins C, G Naematoloma
fasciculare

Tricyclo[5.4.0.02,5]

undecane

[283]

Fascicularones A, C (428), D Naematoloma
fasciculare

Tricyclo[5.4.0.02,5]

undecane

[284, 285]

Fascicularones E–H, J, K Hypholoma
fasciculare

Tricyclo[5.4.0.02,5]

undecane

[286, 287]

Hebelophyllene D Hebeloma
longicaudum

Tricyclo[5.3.0.02,5]

decane

[280]

Fascicularone B (427) Naematoloma
fasciculare

Tricyclo[5.3.0.02,5]

decane

[284]

Fascicularone I Hypholoma
fasciculare

Tricyclo[5.3.0.02,5]

decane

[286]

(2S,3R)-Dihydroxy-carophyllan-[5,8]-
6,7-olide (430)

Marasmiellus
troyanus

Bicyclo[5.2.0]

nonane

[281]

(2S)-Hydroxy-3-oxo-carophyllan-[5,8]-
6,7-olide (431)

Marasmiellus
troyanus

Bicyclo[5.2.0]

nonane

[281]

(2S,3R,7S)-Trihydroxy-carophyllan-
[4,7]-6,8-oxide (432)

Marasmiellus
troyanus

Bicyclo[5.2.0]

nonane

[281]

2,3,6-Trihydroxycaryol-5-en-7-one

(429)

Campanella
junghuhnii

Tricyclo[6.3.1.02,5]

dodecane

[288]

Collybial Collybia
confluens

[289]
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Fig. 44 Selected examples of caryophyllane and caryophyllane-related sesquiterpenoids
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4.1.8 Cuparanes

Cuparane-type sesquiterpenoids of fungal origin possess a skeleton with a

six-membered ring connected to a five-membered ring, of which the

six-membered ring is always aromatic (Table 23). This type of sesquiterpenoid

was not covered in a previous review [251].

Isodeoxyhelicobasidin (433), isolated from the culture broth of Volvariella
bombycina, dose-dependently inhibited human neutrophil elastase (HNE), with an

IC50 value of 9.0 μM, which was comparable to the positive control,

epigallocatechin gallate (IC50 12.9 μM) (Fig. 45). This compound also exhibited

antibacterial activity against a panel of Gram-positive bacteria with MIC values of

3.1 to 12.4 μg/cm3 [294].

The highly oxygenated enokipodins A–D (434, 435), isolated by Takahishi et al.

from cultures of the edible mushroom Flammulina velutipes, exhibited antimicro-

bial activities against Cladosporium herbarum and Bacillus subtilis (Fig. 45). The
sterically congested structures and the quaternary carbon stereocenters located on

the cyclopentane ring of the enokopodins A–D have attracted considerable interest.

Table 23 Cuparanes

Compound Origin Type Refs.

Enokipodins A–J (434, 435) Flammulina velutipes Cuparane [145, 290, 291]

Flamvelutpenoids A–D Flammulina velutipes Cuparane [292]

2,5-Cuparadiene-1,4-dione Flammulina velutipes Cuparane [145]

Coprinol Coprinus sp. Cuparane [293]

Isodeoxyhelicobasidin (433) Volvariella bombycina Cuparane [294]

Deconins A–E (436) Deconica sp. 471 Cuparane [295]

Spirobenzofuran Coprinus echinosporus Cuparane [296]

Deoxyspirobenzofuran Coprinus echinosporus Cuparane [296]

Methoxyspirobenzofuran Coprinus echinosporus Cuparane [296]
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The total synthesis of enokipodins A–D was accomplished successfully by several

groups [297–300]. For example, Yoshida et al. developed a strategy of a palladium-

catalyzed addition of an arylboronic acid to an allene followed by an Eschenmoser-

Claisen rearrangement with enantiospecific construction of the quaternary carbon

atom (Scheme 20), leading to the enantioselective total syntheses of enokipodins A

and B [300].

Deconins A–E (436) are the first cuparane sesquiterpenoids containing

unmodified mevalonic acid residues, and were isolated from cultures of a Thai

basidiomycete, Deconica sp. They showed weak antimicrobial activities [295].

4.1.9 Drimanes

Among the sesquiterpenoids of fungal origin, drimanes are one of the largest type of

biologically active secondary metabolites. The first member of this group was

reported from a higher fungus in 1980. Highly oxygenated drimane derivatives

have been attributed with superoxide-release inhibition, insect antifeedant, platelet

aggregation inhibition, antimicrobial, and cytotoxic biological activities (Table 24).

From the fermentation of Kuehneromyces sp., collected in Tasmania, drimane

(kuehneromycin A) and 13-nor-drimane (kuehneromycin B, 437) sesquiterpenoids

were obtained. Kuehneromycin A proved to be a non-competitive inhibitor of the

avian myeloblastosis virus and moloney murine leukemia virus reverse transcrip-

tases. The 5β-H isomer of kuehneromycin B, panudial (438), which was obtained

from a Panus sp., was found to be a potent inhibitor of platelet aggregation when

stimulated with different inducers [311, 312].

It is noteworthy that within the large group of drimane derivatives, the

cryptoporic acids, are a class of compounds linked to an isocitric acid moiety via

an ether bond between C-11 and C-10. They are only found in the genus
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Scheme 20 The key steps of the enantioselective total synthesis of enokipodin A (434) by

Yoshida and co-workers
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Table 24 Drimane sesquiterpenoids

Compound Origin Type Refs.

Uvidins A-E Lactarius uvidus Drimane [301, 302]

(–)-Drimenol Lactarius uvidus Drimane [301]

Pereniporins A, B Perenniporia
medullaepanis

Drimane [303]

Cryptoporic acids A–H (442) Cryptoporus volvatus Drimane [304, 305]

Cryptoporic acids H, I Ganoderma neo-japonicum Drimane [306]

Peniopholide Peniophora polygonia Drimane [306]

3β-Hydroxypeniopholide Peniophora polygonia Drimane [306]

3α-Hydroxypeniopholide Peniophora polygonia Drimane [306]

3β-Hydroxydihydroconfertifolin Peniophora polygonia Drimane [306]

6β-Hydroxycinnamolide Peniophora polygonia Drimane [306]

6α-Hydroxycinnamolide Peniophora polygonia Drimane [306]

7α-Hydroxyconfertifolin Peniophora polygonia Drimane [306]

cis-Dihydroconfertifolin Peniophora polygonia Drimane [306]

Cinnamolide Peniophora polygonia Drimane [306]

3β-Hydroxycinnamolide Peniophora polygonia Drimane [306]

Roseolide A Roseoformes subflexibilis Dimeric

drimane

[307]

Mniopetals A-F (443) Mniopetalum sp. Drimane [308, 309]

Marasmal Mniopetalum sp. Drimane [308, 309]

Anhydromarasmone Marasmius oreades Drimane [310]

Marasmone (444) Marasmius oreades Drimane [310]

Isomarasmone Marasmius oreades Drimane [310]

Dihydromarasmone Marasmius oreades Drimane [310]

Kuehneromycin A Kuehneromyces sp. Drimane [311]

Kuehneromycin B (437) Kuehneromyces sp. 13-Nordrimane [311]

Panudial (438) Panus sp. 9096 13-Nordrimane [312]

Haploporic acid A (441) Haploporus odorus Dimeric

drimane

[313]

Isodrimenediol Polyporus arcularius Drimane [314]

Isocryptoporic acids H, I Polyporus arcularius Drimane [315]

20 0-O-Methyl-cryptoporic acid H Polyporus cileates Drimane [315]

Methoxylaricinolic acid (445) Stereum ostrea Drimane [316]

Laricinolic acid Stereum ostrea Drimane [316]

Nebularic acid A Lepista nebularis 11-Nordrimane [317]

Nebularic acid B Lepista nebularis Drimane [317]

Nebularilactones A, B Lepista nebularis Drimane [317]

Strobilactones A, B Strobilurus ohshimae Drimane [265]

3-Keto-drimenol Clitocybe conglobata Drimane [318]

3β-Hydroxy-11-acetyldrimene Clitocybe conglobata Drimane [318]

3β-Hydroxydrimenol Clitocybe conglobata Drimane [318]

11,12-Dihydroxydrimene Clitocybe conglobata Drimane [318]

(continued)
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Cryptoporus. The terpenoid part of this type of compound is most often albicanol

(439), but sometimes 15-hydroxyalbicanol (440), 3-hydroxyalbicanol, or

(3-hydroxy-)drim-7-en-11-ol occur (Table 24). The position of dimerization of

these compounds by ester bonds is either between C-15(C-1500) and C-4000(C-40),

Table 24 (continued)

Compound Origin Type Refs.

3β-Hydroxy-11,12-O-
isopropyldrimene

Clitocybe conglobata Drimane [318]

Drimane-3,8,11,12-tetraol Marasmius cladophyllus Drimane [319]

Cryptoporic acid J Marasmius cladophyllus Dimeric

drimane

[319]

Cryptoporic acids J–O Cryptoporus sinensis Drimane [320, 321]

Demethylcryptoporic acid D Cryptoporus sinensis Drimane [321]

Arecoic acids A–F (446) Arecophila saccharicola
YMJ96022401

Drimane [322]

Marasmene B Marasmius sp. Drimane [323]

Marasmals B, C Marasmius sp. Drimane [323]

Funatrols A–D Funalia trogii Drimane [324]

(2S)-Hydroxyalbicanol Polyporus arcularius Drimane [325]

(2S)-Hydroxyalbicanol acetate Polyporus arcularius Drimane [325]

11,12-Epoxy-3α,6β,9α,11α-
tetrahydroxydrimene

Trichaptum biforme Drimane [326]

11,12-Epoxy-3α,9α,11α-
trihydroxydrimene

Trichaptum biforme Drimane [326]

Cryptoporic acids P, Q Fomitella fraxinea Drimane [327]

11,12-Dihydroxy-15-drimeneoic

acid

Agaricus arvensis Drimane [328]

3α,11,15-Trihydroxydrimene Agaricus arvensis Drimane [328]

3α,6β-Dihydroxycinnamolide Inonotus rickii Drimane [247]

3β,6β-Dihydroxycinnamolide Fomitiporia punicata Drimane [329]

Phellinuins A–G Phellinus tuberculosus Drimane [330]

Porialbocin A Poria albocincta BCC

26244

Drimane [331]

Inotolactone C Inonotus obliquus Drimane [332]

12-Hydroxy-3-oxodrimenol Phellinidium sulphurascens Drimane [333]

11-Hydroxyacetoxydrim-7-en-

3β-ol
Phellinidium sulphurascens Drimane [333]

Cryptoporic acids R, S Cryptoporus volvatus Drimane [334, 335]

60,60 0 0-Cryptoporic acid G

dimethyl ester

Cryptoporus volvatus Dimeric

drimane

[335]

Sulphureuine B Laetiporus sulphureus Drimane [336]

15-Hydroxydrimenol Psathyrella candolleana Drimane [337]

Cryptoporol A Cryptoporus volvatus Drimane [338]

60-Cryptoporic acid E methyl

ester

Cryptoporus volvatus Dimeric

drimane

[338]
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or between C-15(C-150) and C-500(C-50), as for example in haploporic acid A (441).

These compounds are responsible for the strong bitter taste of their mushrooms of

origin, and show various other biological activities. For example, cryptoporic acid

A (442) completely inhibited the germination of rice seeds at a concentration of

200 ppm (Fig. 46) [304]. Cryptoporic acids C–E showed superoxide releasing

inhibitory activities (Fig. 46) [305]. Cryptoporic acid D exhibited inhibition against

nitric oxide production in macrophages with an IC50 value of 45.8� 3.6 μM, which

was comparable to that of the positive control used, hydrocortisone (IC50 of 40.6 �
2.5 μM) (Fig. 46) [321]. Mniopetals A–F (443) are inhibitors of RNA-directed

DNA-polymerases (Fig. 46) [308, 309].
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4.1.10 Eremophilanes and Eudesmanes

Eremophilane- and eudesmane-type sesquiterpenoids are representative of two

skeletons having considerable similarities that often co-exist. These two types of

sesquiterpenoids are mainly found in plants. In recent years, such compounds have

been isolated and characterized frequently from fungi. Interestingly, nearly

two-thirds of the fungal eremophilanes have been isolated from members of the

genus Xylaria (Table 25).

Table 25 Eremophilane and eudesmane sesquiterpenoids

Compound Origin Type Refs.

Hypodoratoxide (447) Hypomyces odoratus Eremophilane [339, 340]

Integric acid (448) Xylaria sp./Xylaria
feejeensis
2FB-PPM08M

Eremophilane [341–343]

Xylarenals A, B (452) Xylaria persicaria Eremophilane [344]

Dacrymenone Dacrymyces sp. Eremophilane [345]

1β,7α,10α-Trihydroxyeremophil-11

(13)-en-12,8β-olide
Xylaria sp. BCC

21097

Eremophilane [322, 346]

7α,10α-Dihydroxy-1β-
methoxyeremophil-11(13)-en-12,8β-
olide

Xylaria sp. BCC

21097

Eremophilane [346]

1α,10α-Epoxy-7α-hydroxyeremophil-

11(13)-en-12,8β-olide
Xylaria sp. BCC

21097

Eremophilane [346]

1β,10α,13-Trihydroxyeremophil-7

(11)-en-12,8β-olide
Xylaria sp. BCC

21097

Eremophilane [322, 346]

10α,13-Dihydroxy-1β-
methoxyeremophil-7(11)-en-12,8β-
olide

Xylaria sp. BCC

21097

Eremophilane [346]

1α,10α-Epoxy-13-hydroxyeremophil-

7(11)-en-12,8β-olide
Xylaria sp. BCC

21097

Eremophilane [346]

1α,10α-Epoxy-3α-hydroxyeremophil-

7(11)-en-12,8β-olide
Xylaria sp. BCC

21097

Eremophilane [346]

Mairetolide F Xylaria sp. BCC

21097

Eremophilane [346]

Xylaranic acid Xylaria sp. 101 Eremophilane [347]

7β,8α,12-Trihydroxyeremophila-9,11

(13)-diene

Xylaria sp. BCC 5484 Eremophilane [348]

Arecolactone (453) Arecophila
saccharicola
YMJ96022401

Eremophilane [322]

Polylisins A–D (454) Polyporus ellisii Eremophilane [243]

Eremoxylarin C Xylaria allantoidea
BCC 23163

Eremophilane [167]

Eremoxylarin A Xylaria allantoidea
BCC 23163

Eremophilane [167]

(continued)
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Hypodoratoxide (447), an eremophilane ether from Hypomyces odoratus,
decreased germination rates and displayed potent antifungal activity against several

organisms (Fig. 47) [339, 340]. Integric acid (448), an acyl eremophilane

sesquiterpenoid, is an inhibitor of HIV-1 integrase (Fig. 47) [341]. Further biolog-

ical evaluation revealed that integric acid exhibited inhibitory activity against the

malarial parasite Plasmodium falciparum K1 strain with an IC50 value of 6.91 μM
[342]. The SAR of derivatives of chemical and enzymatic modifications of integric

acid were thoroughly investigated [355]. The biosynthesis pathway of integric acid

was also elucidated.

Dictyophorines A (449) and B are eudesmane-type sesquiterpenoids first iso-

lated from the mushrooms Dictyophora indusiata in 1997. They promote the

synthesis of nerve growth factor (NGF)-synthesis in astroglial cells (Fig. 47) [349].

Eudesm-1β,6α,11-triol (450) was isolated from cultures of Phellinus ignarius
(Fig. 47). Its antiviral activity against the H5N1 influenza A virus was investigated

using a MTT colorimetric assay system in Madin-Darby canine kidney cells. The

results suggested that this compound significantly inhibited the influenza virus with

an EC50 value of 0.14 � 0.04 μM. Molecular modeling revealed that the antiviral

activity of compound 450 can be ascribed partially to the interactions of its hydroxy

groups with an amino acid residue (Asn 170) of neuraminidase at the binding

site [352].

Hypoxylans A–C (451) are three 14-noreudesmane sesquiterpenoids containing

an aromatic ring, and were isolated from cultures of the ascomycete Hypoxylon
rickii (Fig. 47). Biological evaluation showed that compound 451 has weak

antibacterial activity against the Gram-positive bacterium Staphylococcus aureus

Table 25 (continued)

Compound Origin Type Refs.

07H239-A Xylaria allantoidea
BCC 23163

Eremophilane [167]

Dictyophorines A (449), B Dictyophora indusiata Eudesmane [349]

Teucrenone Dictyophora indusiata Eudesmane [349]

(5β,6α)-6,11-Dihydroxyeudesmane Sparassis crispa Eudesmane [350]

3α,4-Epoxy-13-hydroxyeudesma-7

(11)-en-12,8α-olide
Xylaria sp. BCC 5484 Eudesmane [348]

3α,4-Epoxyeudesma-7(11)-en-12,8α-
olide

Xylaria sp. BCC 5484 Eudesmane [348]

Flamvelutpenol A Flammulina velutipes Eudesmane [351]

Eudesm-1β,6α,11-triol (450) Phellinus ignarius Eudesmane [352]

Hypoxylans A–C (451) Hypoxylon rickii 14-

Noreudesmane

[353]

14(10!1)abeo-Eudesm-11-ene-1,13-

diol

Marasmiellus
ramealis

14(10!1)abeo-
Eudesmane

[354]

14(10!1)abeo-Eudesma-1,11,13-

triol

Marasmiellus
ramealis

14(10!1)abeo-
Eudesmane

[354]
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DSM 346 with an MIC value of 67.0 μg/cm3, and also it exhibited weak inhibitory

activity against the L929 murine fibroblast cell line [353].

4.1.11 Hirsutanes and Related Triquinane Sesquiterpenoids

The protoilludane-derived triquinanes consist of at least six types of

sesquiterpenoids, as depicted in Scheme 21. Hirsutanes are the most common and

largest group of these structural types (Table 26). Notably, hirsutanes are invariably

accompanied by compounds based on other carbon skeletons in many species.

Hirsutanes were previously reviewed [251]. Hirsutanes are usually dimerized or

trimerized via C–C or ester bonds and display diverse biological activities.

Sterhirsutins A-D (455–458) are heterodimeric sesquiterpenoids constructed by

a Diels-Alder reaction of hirsutane on one side and humulane, hirsutane, and

caryophyllane, on the other. They were isolated from the Tibetan fungus Stereum
hirsutum (Fig. 48) [365, 366]. Sterhirsutin E (459) is a hirsutane homodimer via an

ester bond, while sterhirsutin J (460) is a heterodimer constructed from a hirsutane

sesquiterpenoid and a meroterpenoid. Sterhirsutins A and B showed cytotoxicity

against the K562 cell line with IC50 values of 12.97 and 16.29 μM, and against the
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hirsutaneceratopicane

protoilludane

Scheme 21 The

protoilludane-derived

triquinane skeletons

Table 26 Hirsutanes and related sesquiterpenoids

Compound Origin Type Refs.

Phellodonic acid (461) Phellodon melaleucus Hirsutane [356]

1-Desoxyhypnophilin Lentinus crinitus Hirsutane [357]

Hypnophilin Lentinus crinitus Hirsutane [357, 358]

Hirsutenols A–C Stereum hirsutum Hirsutane [359]

Dichomitol (467) Dichomitus squalens Hirsutane [229]

Connatusins A, B Lentinus connatus BCC
8996

Hirsutane [358]

Dihydrohypnophilin Lentinus connatus BCC
8996

Hirsutane [358]

Hirsutenols D–F Stereum hirsutum Hirsutane [360]

Creolophins A, C–E Creolophus cirrhatus 13-Norhirsutane [361, 362]

Creolophin B Creolophus cirrhatus Hirsutane [361, 362]

Xeromphalinones A–D Xeromphalina sp. Hirsutane [363]

Xeromphalinones E (463),

F

Xeromphalina sp. Dimeric hirsutane [363]

Chlorostereone Stereum sp. Hirsutane [363]

Complicatic acid Stereum sp. Hirsutane [363]

Pleurocybellone A (462) Pleurocybella porrigens [363]

Coriolin C Pleurocybella porrigens Hirsutane [363]

(�)-Hirsutanol A, C Gloeostereum incarnatum Hirsutane [364]

(+)-Incarnal Gloeostereum incarnatum Hirsutane [364]

Compounds 3–5 Stereum hirsutum Hirsutane [128]

Sterhirsutins A (444), B

(456)

Stereum hirsutum Heterodimeric

Hirsutane/humulane

[365]

Sterhirsutins C (457), D

(458)

Stereum hirsutum Heterodimeric

Hirsutane/

caryophyllane

[366]

Hirsutic acids D, E Stereum hirsutum Hirsutane [365]

Sterhirsutins E–G (459) Stereum hirsutum Dimeric hirsutane [366]

Sterhirsutins H–I Stereum hirsutum Trimeric hirsutane [366]

(continued)
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HCT116 cell line with IC50 values of 10.74 and 16.35 μM. From the same fungus,

many hirsutane dimers and trimers have been isolated and they showed bioactivities

in a panel of bioassays. Sterhirsutins E–G and I exhibited antiproliferative activity

with IC50 values in the range of 6–20 μM (Fig. 48). Sterhirsutin K was found to

possess autophagy-inducing activity at a concentration of 50 μM, while

sterhirsutins J and hirsutic acid E inhibited the growth of GFP-LC3 stable Hela

cells at a dose of 50 μM (inhibition rate 100%).

Phellodonic acid (461), the first bioactive metabolite from a culture of a species of

the family Thelephoraceae, was found to display potent antibacterial activities against

Bacillus brevis and B. subtilis with MIC values of 2 and 5 μg/cm3 (Fig. 48).

Pleurocybellone A (462) is a sesquiterpenoid with a fatty acid modification isolated

from the mushroom Pleurocybella porrigens, which, as mentioned earlier in this

chapter, was reported to produce toxic amino acids leading to several mushroom

poisoning cases in Japan [187–189, 363]. The compound xeromphalinone E (463) is a

hirsutane homodimer, in which two hirsutane units are directly connected by a

carbon–carbon bond [363].

Antrodins A–C (464–466) are three novel triquinane sesquiterpenoids isolated

from submerged cultures of the fungus Antrodiella albocinnamomea. The absolute
configuration of 464 was determined using single-crystal X-ray diffraction

analysis [367].

The structure of dichomitol (467) was isolated by Wei et al. from the cultures of

the fungus Dichomitus squalens [229]. However, a total synthesis of the proposed
structure led to distinctly different spectroscopic characteristics from those

reported, indicative of the need to revise the structure of 467 [369].

Dihydrohypnophilin, isolated from Lentinus conatus BCC 8996, exhibited cyto-

toxic effects against the NCI-H187 and Vero cell lines with IC50 values of 0.67 and

1.1 μg/cm3. (–)-Hirsutanol A and (+)-incarnal, purified from Gloeostereum
incarnatum, exhibited antiproliferative activity against murine B16 melanoma

cells with IC50 values of 25 and 14 μM.

Table 26 (continued)

Compound Origin Type Refs.

Sterhirsutins J–L (460) Stereum hirsutum Hirsutane [366]

Antrodin A (464) Antrodiella
albocinnamomea

[367]

Antrodin B (465) Antrodiella
albocinnamomea

Ceratopicane [367]

Antrodin C (466) Antrodiella
albocinnamomea

[367]

Antrodin D Antrodiella
albocinnamomea

Hirsutane [367]

Trefoliol C Tremella foliacea [277]

Flammulinol A Flammulina velutipes [368]
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4.1.12 Protoilludanes and Cerapicanes

The 4/6/5 ring-fused protoilludane-type sesquiterpenoids are the precursors of

many other sesquiterpenoids, representing the largest group of sesquiterpene

metabolites of fungal origin. Among them, a large number of protoilludane

orsellinates or everninates, which have been designated as protoilludane aryl esters,

have been isolated only from the genus Armillaria (Table 27). Interestingly, the

overall number and structural variety of these aryl esters varies among Armillaria
species, but also within a given species, which is thought to be correlated with
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Fig. 48 Selected compounds of hirsutane sesquiterpenes and related-triquinane skeletons
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Table 27 Protoilludane sesquiterpenoids

Compound Origin Type Refs.

Armillaritin Armillaria mellea Protoilludane aryl ester [370]

Armillarivin Armillaria mellea Protoilludane aryl ester [370]

Armillyl orsellinate Armillaria mellea Protoilludane [371]

Sulcatines C–E, G (468) Laurilia sulcata Norprotoilludane [372, 373]

7-epi-Sulcatine D Laurilia sulcata Norprotoilludane [373]

Melleolides K–M Armillariella mellea Protoilludane aryl ester [374]

Gloeophyllone Gloeophyllum
sp. 97022

15(11!10)-abeo-
Protoilludane

[375]

Atlanticones A–D Lactarius altanticus Protoilludane [376]

Illudiolone Omphalotus illudens Protoilludane [218]

Tsugicoline A Clavicorona
divaricata

Protoilludane [166, 377]

Tsugicoline E (469) Laurilia tsugicola Protoilludane [378]

Repraesentin A Lactarius
repraesentaneus

Protoilludane [379]

Repraesentins B (472), C Lactarius
repraesentaneus

Cerapicane [379]

Riparol A Ripartites metrodii
82136

Protoilludane [380]

Russujaponols A–D, G–H Russula japonica Protoilludane [381, 382]

Pasteurestins A (470), B (471) Agrocybe
cylindracea

Protoilludane [383, 384]

Pyxidatols A–C Clavaria pyxidata Protoilludane [217]

Arnamial (473) Armillaria mellea Protoilludane aryl ester [385]

Melledonol Armillaria mellea Protoilludane aryl ester [385]

Melleolides C, D Armillaria mellea Protoilludane aryl ester [385]

Melledonal A Armillaria mellea Protoilludane aryl ester [385]

Melledonal C Armillaria mellea Protoilludane aryl ester [385]

10α-Hydroxymelleolide Armillaria mellea Protoilludane aryl ester [385]

4,5-Dehydro-5-deoxyarimillol Coprinus cinereus Protoilludane [386]

5-Hydroxydichomitol Dichomitus squalens Protoilludane [230]

Lentinellone Clavicorona
divaricata

Protoilludane [166]

10-Dehydroxymelleolide B Armillaria sp. Protoilludane aryl ester [387]

1-O-Formyl-10-dehydroxy-

melleolide B

Armillaria sp. Protoilludane aryl ester [387]

10-Oxo-melleolide B Armillaria sp. Protoilludane aryl ester [387]

2-Hydroxycoprinolone Granulobasidium
vellereum

Protoilludane [388]

8-Deoxy-4a-hydroxytsugicoline Granulobasidium
vellereum

Protoilludane [388]

8-Deoxydihydrotsugicoline Granulobasidium
vellereum

Protoilludane [388]

(continued)
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pathogenicity against their hosts or as a result of responding to the competitive

growth of other antagonistic fungi [395].

This class of natural products is known to exhibit antimicrobial and cytotoxic

activities. It was revealed that the Δ2,4-double bond of the protoilludane moiety is

essential for antifungal activity against several fungi, e.g. Aspergillus nidulans,
Aspergillus flavus, and Penicillium notatum, but did not result in cytotoxicity

against human cancer cells [396]. Additionally, some other protoilludane aryl esters

Table 27 (continued)

Compound Origin Type Refs.

Radulones A, B Granulobasidium
vellereum

Protoilludane [388]

Coprinolone ketodiol Granulobasidium
vellereum

Protoilludane [388]

2a-Hydroxycoprinolone Granulobasidium
vellereum

Protoilludane [389]

3-Hydroxycoprinolone Granulobasidium
vellereum

Protoilludane [389]

Coprinolone diol B Granulobasidium
vellereum

Protoilludane [389]

Granulodienes A, B Granulobasidium
vellereum

Protoilludane [389]

Granulone B Granulobasidium
vellereum

Protoilludane [389]

8-Deoxy-4a-hydroxytsugicoline

B

Granulobasidium
vellereum

Protoilludane [389]

Demethylgranulone Granulobasidium
vellereum

Protoilludane [389]

Cerapicolene (476) Granulobasidium
vellereum

Cerapicane [389]

Melleolides N, Q, R Armillaria mellea Protoilludane aryl ester [390]

10-Dehydroxymelleolide D Armillaria sp. Protoilludane aryl ester [391]

13-Hydroxymelleolide K Armillaria sp. Protoilludane aryl ester [391]

5-O-Acetyl-7,14-dihydroxy-
protoilludanol

Conocybe siliginea Protoilludane [392]

50-Methoxy-armillasin (474) Armillaria mellea Protoilludane aryl ester [393]

5-Hydroxyl-armillarivin (475) Armillaria mellea Protoilludane aryl ester [393]

60-Dechloroarnamial Armillaria mellea
FR-P75

Protoilludane aryl ester [394]

60-Chloromelleolide F Armillaria mellea
FR-P75

Protoilludane aryl ester [394]

10-Hydroxy-50-methoxy-

60-chloroarmillane

Armillaria mellea
FR-P75

Protoilludane aryl ester [394]

13-Deoxyarmellides A, B Armillaria mellea
FR-P75

Protoilludane aryl ester [394]
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displayed inhibition of lettuce growth and mycelial growth of Coprinopsis cinerea
and/or Flammulina velutipes.

The biosynthesis pathway of the orsellinic acid moiety, a cross-coupling mech-

anism of the protoilludane moiety and orsellinic acid, and chlorination at C-60 of
some melleolides in vivo was clarified by Hoffmeister and associates. It was

revealed that the non-reducing iterative type I polyketide synthase ArmB is respon-

sible for the biosynthesis of orsellinic acid, and a transesterification reaction of

orsellinic acid and the terpene moiety, and five flavin-dependent halogenases

(ArmH1 to ArmH5), are responsible for catalyzing the transfer of a single chlorine

atom to the melleolides [397, 398].

Protoilludanes, as well as their rearranged congeners, also have been isolated

from other fungal genera, e.g. Omphalotus, Coprinus, Lactarius, and Russula
(Table 27). Two compounds bearing rare skeletons, which are rearranged from

protoilludane, sulcatine G (468), and cerapicane accompanied by several

protoilludane sesquiterpenes, were purified from Laurilia sulcata (Fig. 49). The

total synthesis of sulcatine G was accomplished by Mehta and Sreenivas and by

Taber and Frankoski, leading to the establishment of the absolute configuration of

the dextrorotatory isomer [399–401].
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(+)-Armillarivin was first discovered from an acetone extract of Armillaria
mellea mycelia, but was not mentioned in a previous review [251]. The compounds

8-deoxydihydrotsugicoline and radudiol were isolated from the saprotrophic and

rare wood-decaying fungus Granulobasidium vellereum [388, 389]. The

chemoenzymatic total syntheses of (+)-armillarivin, 8-deoxydihydrotsugicoline,

and radudiol were accomplished by Banwell’s group [402, 403].

Tsugicoline E (469) is a polyoxygenated protoilludane sesquiterpene from the

cultures of the fungus Laurilia tsugicola (Fig. 49). Its structure was established via

NMR spectroscopic analysis and X-ray diffraction studies [378].

Pasteurestins A (470) and B (471), two protoilludane sesquiterpenoids from the

basidiomycete Agrocybe cylindracea, are potential veterinary antibiotics, since

they potently and selectively inhibited pathogens responsible for bovine respiratory

disease, such as strains of Mannheimia haemolytica (Fig. 49). Unfortunately, they

were reported in a patent application with neither their relative nor absolute

configurations indicated [384]. The many contiguous stereocenters of pasteurestins

A and B, and the lack of availability of the source material has posed challenges to

the establishment of their absolute configurations. The total synthesis of 470 and

471 were conducted successfully by K€ogl et al., involving key two step [2+2+2]

CpCo(CO)2-mediated Vollhardt cycloadditions in both syntheses, and a

tin-mediated asymmetric Reformatsky-type condensation in the synthesis of

471 [383].

The variable structural features of this class of sesquiterpene has stimulated the

testing of their activities in diverse types of bioassays, such as antifungal, radicle

elongation promoting, and cytotoxicity determinations [390, 393]. Sulcatines C–E

and G were active in an antifungal assay, and sulcatines C and E exhibited inhibition

ofCladosporium cladosporioides, C. cucumerinum, and Aspergillus niger in amounts

as low as 50 μg per plate in a bioautographic antifungal testing procedure

[373]. Repraesentins A, B (472), and C promoted the radicle elongation of lettuce

seedlings by 136, 118, and 184%, respectively, at 67 ppm [379]. Russujaponol A

inhibited 63% of the invasion of the human HT1080 fibrosarcoma cell line to the

reconstituted basal membrane at 3.73 μM (positive control, doxorubicin 52% at 0.17

μM) [381]. Russujaponols I–J promoted neurite outgrowth of cultured rat cortical

neurons in a concentration range from 0.1 to 10 μM [382]. Arnamial (473), a

protoilludane everninate ester from the fungus A. mellea, showed cytotoxicity against
Jurkat T, MCF-7 breast adenocarcinoma, CCRF-CEM lymphoblastic leukemia, and

HCT-116 colorectal carcinoma cells, with IC50 values of 3.9, 15.4, 8.9, and 10.7 μM
[385]. A SAR study of the melleolides revealed that hydroxylation of the

terpenoid unit is of major relevance to the resultant cytotoxicity, while the position

of the double bond and 60-chlorination of the aromatic ring do not influence such

activity [404]. Radulone A showed inhibition on spore germination of the competing

fungi Phlebiopsis gigantea, Coniophora puteana, and Heterobasidion occidentale
at 10, 500 and 100 μM [388]. Melleolide K inhibited the growth of seveval

Secondary Metabolites from Higher Fungi 101



Gram-positive bacteria, yeasts, and fungi, but did not inhibit Gram-negative bacteria

in this regard.

4.1.13 Fomannosanes

Fomannosane-type sesquiterpenoids possess seco-protoilludane skeletons and are

rarely isolated from fungi. Only seven fomanosane-type sesquiterpenoids have

been reported from mushrooms since an earlier review was published (Table 28)

[251]. Illudosone hemiacetal (477) and illudosone (478) were isolated as a mixture

of a hemiacetal and a free aldehyde (Fig. 50). 5-Desoxyilludosin (479) and

13-hydroxy-5-desoxyilludosin (480) were obtained from a fungal extract of Bovista
sp. 96042 (Fig. 50). 5-Desoxyilludosin (479) was also found in the fungus

Ripartites metrodii 93109. (2S,3S,9R)-5-Desoxy-14-hydroxyilludosin (481) was

reported to exhibit inhibition of the murine P388 leukemia cell line with an ED50

value of 5.3 μg/cm3 (Fig. 50). The relative configuration of agrocybin H (482),

isolated with the accompanying agrocybin I (483), was determined by single-crystal

X-ray crystallographic diffraction analysis (Fig. 50).

Table 28 Fomannosane sesquiterpenoids

Compound Origin Type Refs.

Illudosone hemiacetal (477) Omphalotus illudens Fomannosane [218]

Illudosone (478) Omphalotus illudens
Agrocybe salicacola

Fomannosane [218, 405]

5-Desoxyilludosin (479) Ripartites metrodii
93109

Bovista sp. 96042

Fomannosane [380, 406]

13-Hydroxy-5-desoxyilludosin (480) Bovista sp. 96042 Fomannosane [406]

(2S,3S,9R)-5-Desoxy-14-
hydroxyilludosin (481)

Coprinus cinereus Fomannosane [386]

Agrocybins H (482), I (483) Agrocybe salicacola Fomannosane [405]
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4.1.14 Illudanes and Illudalanes

Illudane-type sesquiterpenoids are derived biogenetically from the protoilludanes

(Table 29), as verified from an experiment by feeding synthetic deuterium labeled

dl-6-protoilludene to the illudin-producing fungus Omphalotus olearius. In this

manner, illudins M (484) and S (485) were produced. Most illudanes exhibit

cytotoxic effects toward many tumor cell lines and some are regarded as having a

Table 29 Illudanes and illudalanes

Compound Origin Type Refs.

Psathyrellon B Bovista sp. 96042 Illudane [406]

Bovistol (494) Bovista sp. 96042 Illudane-

illudalane dimer

[406]

Illudane Bovista sp. 96042

Ripartites metrodii 82136
Illudane [380, 406]

Illudins I, I2, J, J2 Coprinopsis episcopalis (syn.
Coprinus episcopalis)

Illudane [407, 408]

Paneolic acid Panaeolus retirugis Illudane [409]

Paneolilludinic acid Panaeolus retirugis Illudane [409]

Riparol A Ripartites metrodii 82136 Illudane [380]

Psathyrellon A Ripartites metrodii 93109 Illudane [380]

Coprinastatin l (487) Coprinus cinereus Illudane [178]

7,7a-Diepicoprinastatin

l

Coprinus cinereus Illudane [386]

Agrocybone (495) Agrocybe salicacola Illudane-

illudalane dimer

[410]

Agrocybins A–G (496) Agrocybe salicacola Illudane [411]

Illudin T Agrocybe salicacola Illudane [411, 412]

Dichomilludol Dichomitus squalens Illudane [230]

Phellinuin J Phellinus tuberculosus Illudane [413]

Sulphureuine A Laetiporus sulphureus Illudane [413]

(3S,7R)-Illudin M

(488)

Granulobasidium vellereum Illudane [414]

(3S,7S)-Illudin M

(490)

Granulobasidium vellereum Illudane [414]

(3S,4S,7R)-
Dihydroilludin M (491)

Granulobasidium vellereum Illudane [414]

(3S,6S,7R)-Illudin S

(489)

Granulobasidium vellereum Illudane [414]

Illudadiene A Granulobasidium vellereum Illudane [414]

Illudadiene B Granulobasidium vellereum Illudane [414]

Granuloinden B (492) Granulobasidium vellereum Illudalane [414]

Granulodione (493) Granulobasidium vellereum 12-Norilludane [415]

Gleophyllols A-D Gloeophyllum sp. 97022 15(11!10)-abeo-
Illudalane

[375]

(continued)
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high potential as anticancer drug lead compounds. Illudins M and S were isolated

from the Jack-o’-Lantern mushroom, Omphalotus illudens (syn. Clitocybe
illudens), in an attempt to discover antibiotics from Basidiomycetes at the

New York Botanical Garden by Anchel et al. (Fig. 51) [421]. Illudin S showed

potent antibiotic activity against Staphylococcus aureus but it was found to be

extremely toxic to experimental animals. An investigation of the secondary metab-

olites of O. illudens indicated 485 to be the only constituent to exhibit antiviral

activity [422]. Although illudins have been proven to be cytotoxic against various

tumor cell types following extensive studies, their high toxicity and low therapeutic

index has prevented their further development as anticancer agents to date. In order

to improve on the therapeutic characteristics of illudins, hydroxymethylacylfulvene

(irofulven, HMAF) (486) has been produced, with the acylfulvene core structure

semi-synthesized from illudin S by treatment with dilute sulfuric acid and excess

paraformaldehyde (Fig. 51). A phase I clinical trial revealed that 486 was more

potent against gastrointestinal tumors and metastatic prostate cancer than mitomy-

cin, cisplatin, and paclitaxel, and showed synergistic activity with conventional

cancer chemotherapeutic agents. Hydroxymethylacylfulvene has reached phase III

trial clinical testing [423, 424]. Certain urea, carbamate, and sulfonamide deriva-

tives of acylfulvene were synthesized to evaluate their antitumor potential

[425, 426]. As a result of their promising antitumor activity, illudins and

acylfulvenes have long been an interesting synthesis targets for organic chemists.

Several total racemic or enantioselective synthesis procedures for illudins and

acylfulvenes have been reported [427–430].

The illudane-type sesquiterpenes paneolic acid and paneolilludinic acid

exhibited antibacterial activity against Staphylococcus aureus. Paneolic acid gave

Table 29 (continued)

Compound Origin Type Refs.

Divaricatines A–D

(305)

Clavicorona divaricata Illudalane [166, 377]

7-epi-Tsugicoline H Clavicorona divaricata Illudalane [377]

Tsugicoline M Clavicorona divaricata Illudalane [377]

Echinolactones A, B Echinodontium japonicum Illudalane [416]

Riparol B Ripartites metrodii 82136 Illudalane [380]

Russujaponols E, F, I–

L (498–500)

Russula japonica Illudalane [381, 382]

Coprinol Coprinus cinereus Illudalane [178]

Epimer of coprinol Coprinus cinereus Illudalane [178]

Sterostreins A–C, T

(497)

Stereum ostrea BCC 22955 Illudalane dimer [417, 418]

Sterostreins D–I, M–S

(501)

Stereum ostrea BCC 22955 Illudalane [165, 417–

419]

Sterostreins J–L Stereum ostrea BCC 22955 15-Norilludalane [165]

Granulolactone Granulobasidium vellereum Illudalane [415]

Puraquinoic acid (502) Mycena pura 12-Norilludalane [420]
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an IC50 of 18.9 μg/cm3 for HL-60 cells [409]. Coprinastatin l (487) showed both

cytotoxicity against the P388 lymphocytic leukemia line (ED50 of 5.3 μg/cm3) and

antibacterial activity against the pathogenic bacterium Neisseria gonorrhoeae (MIC
value of 32–64 μg/cm3) (Fig. 51) [178]. The saprotrophic wood-decaying fungus

Granulobasiodium vellereum accumulates a variety of sesquiterpenoid metabolites.

(3S,7R)-Illudin M (488) and (3S,4S,7R)-dihydroilludin M (491), enantiomers of

illudin M and dihydroilludin M, respectively, and (3S,6S,7R)-illudin S (489) and

(3S,7S)-illudin M (490), diastereomers of illudin M and illudin S, were isolated

from cultures of G. vellereum. Compounds 488–490 were found to possess cyto-

toxic activities against two tumor cell lines (Huh7 and MT4), while 491 did not

display such effects at concentrations up to 400 μM. Both 489 and 490 showed ten

times more potency than 488. A chemical reactivity study revealed 489 to be more

active than 488 when reacted with 2 M HCl and cysteine. These results might

explain why 488, 489, and 490 displayed differential degrees of cytotoxicity

[414]. From the same fungus, granuloinden B (492) was isolated and shown to be

cytotoxic against the Huh7 and MT4 tumor cell lines, with CC50 values of 6.7 and

0.15 μM [431]. The 12-norilludane, granulodione (493), also isolated from the same

fungus, caused an 83% mortality of Tetranychus urticae on exposure to this

compound after 2 h (Fig. 51). The acaricidal activity of granulodione proved to

be more potent than that of a known antifeedant plant compound, catechin [415].

Illudanes and illudalanes readily undergo dimerization via a Diels-Alder reac-

tion to result in more complex molecules. For example, bovistol (494) is an

illudane-illudalane dimer from Bovista sp. 96042 (Fig. 51) [406]. Agrocybone

(495), with its structure determined by X-ray diffraction analysis, is an illudane-

illudalane bis-sesquiterpene isolated from cultures of Agrocybe salicacola, and it

displayed weak antiviral activity against respiratory syncytial virus (RSV) with an

IC50 value of 100 μM [410]. Agrocybin A (496), a highly cyclized illudane

sesquiterpenoid isolated from the same fungus, contains seven chiral stereocenters

arranged compactly within six rings (Fig. 51). The relative configuration of

agrocybin A was determined by X-ray diffraction analysis. Sterostreins A–C, and

T are illudalane-norilludalane bis-sesquiterpenes obtained from Stereum ostrea
BCC 22955 and Stereum sp. YMF1.1686, respectively [417, 418]. Sterostrein A

(497) exhibited antimalarial activity against Plasmodium falciparum K1 cells (IC50

value 2.3 μg/cm3) as well as cytotoxicity against cancer cell lines (KB, MCF-7, and

NCI-H187) and non-malignant Vero cells, with IC50 values of 38, 7.2, 5.3, and

12 μg/cm3, respectively (Fig. 51).

Compared to the large group of protoilludanes and illudanes, illudalanes have

been encountered relatively rarely among higher fungi. Most of the reported

illudalanes are active in biological assays. Russujaponols I–K (498–500), and L

are aromatic illudalane sesquiterpenes from the fruiting bodies of Russula japonica
(Fig. 51). When 498–500were subjected to neurite outgrowth-promoting activity in

primary neuronal cultures, they showed promotion of neurite outgrowth in cultured

rat cortical neurons in a concentration range 0.1 to 10 μM [382]. Sterostrein P (501)

is an illudalane sesquiterpenoid with nematicidal activity, killing 72.4% of the

Caenorhabditis elegans present at 500 mg/dm3 in 72 h [419].

106 H.-P. Chen and J.-K. Liu



Sterostreins M–O (302–304), Q, divaricatines C (305), D (306), and illudinine

are the only seven reported examples of aza-illudalanes found in the Basidiomy-

cetes (Fig. 51) [165, 166, 419, 432]. More recently, it was revealed that the pyridyl

moiety of these aza-illudanes arises from non-enzymatic condensation between the

dione moiety and ammonia [433]. Divaricatines C and D showed weak antibacterial

activity against Bacillus cereus and Sarcinea lutea, and inhibition of the root

elongation Lepidum sativum of 85 and 72% after 48 h, respectively [166].

The 12-norilludalane sesquiterpene puraquinonic acid (502) was isolated from

mycelial cultures of the basidiomycete Mycena pura, exhibiting induction of

differentiation in HL-60 cells (Fig. 51) [420]. The challenging quaternary

stereocenter (C-11) and the distal methyl and hydroxyethyl groups have increased

the difficulties required to be overcome for its enantioselective total synthesis,

although it appears to be a simple molecule at first glance. So far, a number of

routes have dealt with the enantioselective total synthesis of 502, which has been

accomplished by several groups [434–439]. More recently, the first total synthesis

of the illudalane sesquiterpene coprinol was achieved by Singh et al. [440].

4.1.15 Marasmanes

Marasmic acid was the first marasmane-type sesquiterpenoid to be isolated from the

mushroom Marasmius conigenus nearly 70 years ago. However, not many

marasmane metabolites have been reported from Basidiomycetes in the intervening

period (Table 30, Fig. 52), and previous reviews have covered about 30 of these

compounds. Interestingly, this type of sesquiterpenoid is found mainly among

members of the family Russulaceae.

Table 30 Marasmane sesquiterpenoids

Compound Origin Type Refs.

7α,8α,13,14-Tetrahydroxy-marasm-5-γ-oic
acid γ-lactone (503)

Lactarius
vellereus

Marasmane [441]

10β-Hydroxy-lactarorufin A (504) Lactarius
vellereus

Marasmane [441]

Lactapiperanols A–D (505–508) Lactarius
piperatus

Marasmane [442]

Lactapiperanols E (509) Russula foetens Marasmane [443]

8α,13-Dihydroxy-marasm-5-oic acid γ-lactone
(510)

Russula foetens Marasmane [444]

13-Hydroxy-marasm-7(8)-en-5-methoxy γ-acetal
(511)

Russula foetens Marasmane [444]

7α,8α,13-Trihydroxy-marasm-5-oic acid γ-lactone Russula foetens Marasmane [444]

Pubescenone (512) Lactarius
pubescens

Marasmane [445]

Russulfoen (513) Russula foetens Marasmane [446]
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4.1.16 Lactaranes and seco-Lactaranes

Lactarane sesquiterpenoids also are derived mainly from the Russulaceae family

(Table 31). A biomimetic transformation by heating isovelleral to yield the product

pyrovellerofuran showed an interaction between the marasmanes and the lactaranes.
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Fig. 52 Structures of marasmane and selected derivatives

Table 31 Lactarane and seco-lactarane sesquiterpenoids

Compound Origin Type Refs.

Cochleol (522) Lentinellus cochleatus Lactarane [447]

10β-Hydroxy-lactarorufin A (523) Lactarius vellereus Lactarane [441]

Compound 1 Russula emetica Lactarane [448]

Rufuslactone (516) Lactarius rufus Lactarane [449]

1,2-Dehydrolactarolide A (517) Lactarius vellereus Lactarane [450]

Lactarorufin A Lactarius vellereus/L.
subpiperatus

Lactarane [450]

3-O-Ethyllactarolides A, B Lactarius vellereus Lactarane [450]

Lactarolide A Lactarius subpiperatus Lactarane [450]

Velleratretraol (518) Lactarius vellereus Lactarane [451]

Subvellerolactones B–E (519–521) Lactarius subvellereus Lactarane [452]

Sangusulactones A–C Russula sanguinea Lactarane [453]

Blennin A Russula sanguinea Lactarane [453]

15-Hydroxyblennin A Russula sanguinea Lactarane [453]

Russulanobilines A–C Russula nobilis Lactarane [454]

Strobiluric acid (524) Strobilurus stephanocystis seco-Lactarane [455]
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Results on the secondary metabolite differences between intact and injured Russula
fruiting bodies have shed light on the biogenetic interrelationship between the

marasmane and lactarane skeletons [456]. Thus, it was revealed that intact

Russulaceae mushroom fruiting bodies produce inactive and tasteless fatty acid esters

of sesquiterpenoid alcohols, e.g. stearoylvelutinal (514). When the fruiting bodies are

injured, these fatty acid esters are transformed enzymatically into either tasteless or

bitter, acrid components, with the latter responsible for the unfavorable taste of some

Russula or Lactarius mushrooms, and are produced within a period varying from

seconds to hours [447, 454, 457]. For example, stearoylvelutinal was transformed

enzymatically to the dialdehyde velleral (515). Velleral is rapidly metabolized in

injured specimens into many lactaranes (Scheme 22). These patterns constitute a

chemical defense machinery, which protects mushrooms against predators, parasites,

and microorganisms.

Compared to the illudanes, lactarane sesquiterpenes seem less promising in

terms of drug discovery. However, several biological activities of lactaranes have

been reported, which have involved assessments of antifungal, cytotoxic, and

lettuce elongation growth promotion. Rufuslactone (516) not only displayed growth

inhibition on the plant pathogenic fungus, Alternaria brassicae, with an inhibition

rate of 68.3% at 100 μg/cm3, but also negatively affected A. alternata, producing an
inhibition rate of 38.9% at the same concentration level that growth was not

affected by the positive control, carbendazim (Fig. 53), at 100 μg/cm3 [449].

1,2-Dehydrolactarolide A (517) exhibited growth promotion activities on radicle

elongation in lettuce seedlings of 119, 152, and 162% at 3.6, 36, and 360 μM,

respectively (Fig. 53) [450]. Velleratretraol (518) is an unusual highly

functionalized lactarane sesquiterpene obtained from L. vellereus. Its relative

configuration was determined by X-ray diffraction analysis, while its absolute

configuration was established by a computational method to calculate the optical

rotation value (Fig. 53) [451]. Velleratretraol (518) showed weak activity against

HIV-1 cells with an effective concentration of 68.0 μg/cm3 and a selectivity index

of 2.0. Subvellerolactones B–E (519–521), three lactarane lactones isolated from

the inedible mushroom L. subvellereus, were evaluated in cytotoxicity assays using
human cancer cell lines (Fig. 53). Subvellerolactone B (520) exhibited IC50 values

of 26.5, 18.3, and 14.2 μM, respectively, when evaluated against the A549,

SK-MEL-2, and HCT-15 cell lines. Subvellerolactones D and E were also tested

O

O

O

R
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R = CH3(CH2)16CO
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OHC

OHC
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enzymatic
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Scheme 22 The enzymatic transformation process of marasmanes to lactaranes
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against the A549 and HCT-15 cell lines (IC50 values for D: 25.1 and 17.8 μM, and

IC50 values for E: 19.6 and 28.7 μM, respectively) [452].

Seco-lactaranes are extremely rare in Nature (Table 31). Only one example of

this type of sesquiterpenoid has been found since a previous review was published

[251]. Strobiluric acid (524) was isolated from the fermentation broth of the

basidiomycete Strobilurus stephanocystis and has displayed no discernible biolog-

ical effect in studies conducted to date (Fig. 53).

4.1.17 Sterpuranes

Sterpurols A (525) and B (526) were obtained from the fermentation on rice of the

edible fungus Flammulina velutipes (Fig. 54, Table 32). The absolute configuration
of sterpurol A was established by circular dichroism of an in situ-formed complex

with [Rh2(OCOCF3)4] [145].
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4.1.18 Isolactaranes

Isolactaranes are 5/6/3 ring-fused sesquiterpenes, which were isolated initially from

the genus Lactarius, and, to date, have been accompanied by lactaranes when

purified. Isolactaranes and lactaranes are biogenetically different although they

have similar names, which has created some confusion. Isolactaranes are thought

to be derived from the sterpurane sesquiterpenoids, but not from the lactaranes or

marasmanes (Table 33).

Hyphodontal (529) is a non-competitive inhibitor of the avian myeloblastosis

virus (Ki 346 μM) and Moloney murine leukemia virus (Ki 112 μM) reverse

transcriptases (Fig. 55) [459]. Sterelactones A–D (530–533) showed antibacterial,

antifungal, and cytotoxic activities (Fig. 55). Udalactaranes A (534) and B (536)

were isolated as mixtures with their repective epimeric acetals. They showed

inhibition for spore germination of the plant pathogenic fungus Fusarium
graminearum at 10 and 5 μg/cm3, respectively (Fig. 55). Additionally, they also

displayed cytotoxic effects against Jurkat cells with IC50 values of 101 and 42 μM
[460]. Flammulinolides A–G (538–544) are isolactarane sesquiterpenes or

isolactarane-related norsesquiterpenes obtained from the solid culture of the edible

fungus Flammulina velutipes (Fig. 55). Flammulinolides A, B, and F showed

cytotoxic properties against the KB cell line with IC50 values of 3.9, 3.6, and 4.7

μM, while flammulinolide exhibited cytotoxicity against the Hela cell line with an

IC50 value of 3.0 μM [368].

Table 32 Sterpurane sesquiterpenoids

Compound Origin Type Refs.

1-Hydroxy-3-sterpurene (527) Gloeophyllum sp. Sterpurane [375]

Udasterpurenol A (528) Phlebia uda Sterpurane [458]

Sterpurols A (525), B (526) Flammulina velutipes Sterpurane [145]

Table 33 Isolactarane sesquiterpenoids

Compound Origin Type Refs.

Udalactarane A (534) Phlebia uda Isolactarane [458]

epi-Udalactarane A (535) Phlebia uda Isolactarane [458]

Udalactarane B (536) Phlebia uda Isolactarane-sterpurane

dimer

[458]

epi-Udalactarane B (537) Phlebia uda Isolactarane-sterpurane

dimer

[458]

Hyphodontal (529) Hyphodontia sp. Isolactarane [459]

Sterelactones A–D (530–533) Stereum
sp. IBWF01060

Isolactarane [460]

Flammulinolide A (538) Flammulina velutipes Isolactarane [368]

Flammulinolides B–G (539–

544)

Flammulina velutipes 15-Norisolactarane [368]
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4.1.19 Tremulanes and seco-Tremulanes

Tremulane-type sesquiterpenoids are a class of sesquiterpenoids with a 5/7-ring-

fused perhydroazulene carbon skeleton. In 1993, the first example of a tremulane

was isolated from the wood-decaying fungus Phellinus tremulae by Ayer and Cruz

[461]. Shortly after this, the biosynthesis pathway was elucidated by the same group

through a 13C-labeled feeding experiment. This revealed that tremulanes are

derived from trans,trans-farnesyl pyrophosphate via humulene and a key step of

methyl migration (Scheme 14). In recent years, a number of tremulanes have been

reported from mushrooms or wood-decaying fungi, mainly from the two species

Conocybe siliginea and Phellinus igniarius (Table 34).
Tremulanes were reported to exhibit vascular-relaxing activities against

phenylephrine-induced vasoconstriction as well as antiplasmodial activity

[462, 465, 469]. Among these, 10β,12-dihydroxy-tremulene (545) exhibited

vascular-relaxing activities against phenylephrine-induced vasoconstriction with a

relaxing rate of 78.7% at a concentration of 3 � 104 M, and against KCl-induced

vasoconstriction with a relaxing rate of 57.7% at the same concentration. The

relaxing rate of tremulenediol B (546) was 59.3% against phenylephrine-induced
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Table 34 Tremulane and seco-tremulane sesquiterpenoids

Compound Origin Type Refs.

10β,12-Dihydroxy-tremulene (545) Phellinus igniarius Tremulane [462]

Tremulenediols A–C (546, 547) Phellinus igniarius Tremulane [462]

Conocenolides A (548), B (549) Conocybe siliginea seco-Tremulane [463]

Conocenols A–D (550, 551) Conocybe siliginea Tremulane [463]

11,12-Epoxy-12β-hydroxy-1-tremulen-5-one

(552)

Conocybe siliginea Tremulane [464]

(−)-(2S,3S,6S,7S,9R)-Tremul-1(10)-ene-

11,12,14-triol (553)

Phellinus igniarius Tremulane [465]

(−)-(2S,3S,6S,7S,9S)-Tremul-1(10)-ene-

11,12,15-triol (554)

Phellinus igniarius Tremulane [465]

(+)-(1R,6S,7S)-Tremul-2-ene-12(11)-lactone (555) Phellinus igniarius Tremulane [465]

1β,12-Epoxy-14-hydroxy-2(11)-tremulene (556) Conocybe siliginea Tremulane [466]

1β,14-Epoxy-12-hydroxy-2(11)-tremulene (557) Conocybe siliginea Tremulane [466]

6β,12-Dihydroxy-tremulene (558) Phellinus igniarius Tremulane [462]

11,12-Epoxy-10α-hydroxy-5,6-seco-1,6(13)-
tremuladien-5,12-olide (559)

Conocybe siliginea seco-Tremulane [467]

11-Formyl-5,6-seco-1,6(13)-tremuladien-5,12-

olide (560)

Conocybe siliginea seco-Tremulane [467]

11-Acetyl-5,6-seco-1,6(13)-tremuladien-5,12-olide Conocybe siliginea seco-Tremulane [467]

11-Acetyl-10α-hydroxy-5,6-seco-1,6(13)-
tremuladien-5,12-olide

Conocybe siliginea seco-Tremulane [467]

12-Acetyl-5,6-seco-1,6(13)-tremuladien-5,11-

olide

Conocybe siliginea seco-Tremulane [467]

11,12-Dihydroxy-1-tremulen-5-one Conocybe siliginea Tremulane [464]

5α,12-Dihydroxy-1-tremulen-11-yl 2(S)-
pyroglutamate

Conocybe siliginea Tremulane [464]

2α,11-Dihydroxy-1(10)-tremulen-5,12-olide Conocybe siliginea Tremulane [464]

10β,11-Dihydroxy-5,6-seco-1,6(13)-
tremuladien-5,12-olide

Conocybe siliginea Tremulane [464]

Tremulenediol A Conocybe siliginea Tremulane [464]

Conocenolide A Conocybe siliginea Tremulane [464]

11-O-Acetyl-5β-11,12-trihydroxy-1-tremulene Conocybe siliginea Tremulane [466]

14-O-Acetyl-11,12,14-trihydroxy-1-tremulene Conocybe siliginea Tremulane [466]

15-O-Acetyl-11,12,15-trihydroxy-1-tremulene Conocybe siliginea Tremulane [466]

11-O-Acetyl-11,12,14-trihydroxy-1-tremulene Conocybe siliginea Tremulane [466]

1β,12-Epoxy-5α-hydroxy-3(11)-tremulene Conocybe siliginea Tremulane [466]

5α,11,12,14-Tetrahydroxy-1-tremulene Conocybe siliginea Tremulane [392]

4α,11,12,14-Tetrahydroxy-1-tremulene Conocybe siliginea Tremulane [392]

(+)-(3S,6R,7R)-Tremulene-6,11,12-triol Phellinus igniarius Tremulane [465]

(+)-(3S,6S,7S,10S)-Tremulene-10,11,12-triol Phellinus igniarius Tremulane [465]

(+)-(3S,6R,7R,10S)-Tremulene-6,10,12-triol Phellinus igniarius Tremulane [465]

(−)-(2R,3S,6S,7S,9R)-Tremul-1(10)-ene-

11,12,14-triol

Phellinus igniarius Tremulane [465]

(−)-(2S,3S,4S,6S,7S)-Tremul-1(10)-

ene-4,11,12-triol

Phellinus igniarius Tremulane [465]

(continued)
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vasoconstriction (Fig. 56) [462]. Tremulenediol A (547) showed antiplasmodial

activity against Plasmodium falciparum (K1, multidrug resistant strain) with an

IC50 value of 8.6 μg/cm3 (Fig. 56) [469].

seco-Tremulanes are derived biogenetically from tremulanes via a Baeyer-

Villiger oxidation, leading to the cleavage of the C-5 to C-6 bond (Table 34).

Conocenolides A (548) and B (549) are two inseparable seco-tremulanes that have

been obtained from cultures of the mushroom Conocybe siliginea (Fig. 56) [463].

4.1.20 Alliacanes

Alliacane-type sesquiterpenes have been reported only rarely of mushroom origin.

So far, only 18 members of this type of sesquiterpenoid were reported from four

mushroom species (Table 35). Alliacols A (561) and B (562) not only showed

antimicrobial activities, but also strongly inhibited DNA synthesis in cells of the

ascetic form of Ehrlich carcinoma at concentrations of 2–5 μg/cm3 (Fig. 57)

[470]. The edible mushroom Pleurotus cystidiosus produces the alliacane-type

clitocybulol sesquiterpenes, which possess some potent bioactivities (Fig. 57).

Thus, clitocybulols D (563), E (564), and F (565) were reported to exhibit cytotox-

icity against two human prostate cancer (DU-145 and C42B) cell lines (Fig. 57).

The IC50 values of clitocybulols D, E, and F were 233, 162, and 179 nM, respec-

tively, against DU-145 cells, and were 163, 120, 119 nM, respectively, for C42B

cells [249]. From the same edible fungus, clitocybulols G–O were obtained and

their structures determined by spectroscopic data interpretation, inclusive of an

analysis of their circular dichroism spectra (Fig. 57). Clitocybulols G (566), L (567)

and C showed weak inhibitory activity against protein tyrosine phosphatase-1B

(PTP1B), with IC50 values of 49.5, 38.1, and 36.0 μM, respectively [472].

Table 34 (continued)

Compound Origin Type Refs.

(−)-(2S,3R,6S,7S)-Tremul-1(10)-ene-2,12-diol Phellinus igniarius Tremulane [465]

6β,11,12-Trihydroxy-tremul-1(10)-ene Phellinus igniarius Tremulane [462]

11,12-Dihydroxy-7β-peroxy-hydroxyl-tremul-

1(10)-ene

Phellinus igniarius Tremulane [462]

12,15-Dihydroxy-tremulene Phellinus igniarius Tremulane [462]

(3R*,3aR*,4R*,6S*,6aS*,7S*)-6,8,8-Trimethyl-

1,3,3a,4,5,6,6a,7,8,9-decahydroazuleno[4,5-c]
furan-3,4,7-triol

Marasmius
cladophyllus

Tremulane [319]

Irlactin E Irpex lacteus Tremulane [468]

Tremulenolide D Ceriporia
alachuana

Tremulane [273]

11,12-Epoxy-5,6-seco-tremula-1,6(13)-dien-

5,12-olide

Flavodon flavus
BCC17421

seco-Tremulane [469]
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Fig. 56 Structures of tremulanes and seco-tremulane derivatives

Table 35 Alliacane sesquiterpenoids

Compound Origin Type Refs.

Alliacols A (561), B (562) Marasmius alliaceus Alliacane [470]

Clitocybulols A–C (568–570) Clitocybula oculus Alliacane [471]

Clitocybulols D–O (563–567) Pleurotus cystidiosus Alliacane [249, 472]

Purpuracolide (571) Gomphus purpuraceus Alliacane [473]
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4.1.21 Botryanes

Botryane-type sesquiterpenoids have been encountered only rarely in mushrooms.

Most of the reported botryanes were found in the ascomycetesDaldinia concentrica
and Hypoxylon rickii (Table 36, Fig. 58). So far, no specific biological activity has

been discerned for any member of the botryrane sesquiterpenoid class.
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Fig. 57 Structures of alliacane and selected derivatives

Table 36 Botryane sesquiterpenoids

Compound Origin Type Refs.

Methyl-7α-acetoxydeacetylbotryoloate (572) Daldinia concentrica Botryane [474]

7α-Acetoxydeacetylbotryenedial Daldinia concentrica Botryane [474]

7α-Hydroxybotryenalol Daldinia concentrica Botryane [474]

7,8-Dehydronorbotryal Daldinia concentrica Botryane [474]

7α-Acetoxydehydrobotrydienal Daldinia concentrica Botryane [474]

7α-Acetoxy-15-methoxy-10-O-methyl-

deacetyldihydrobotrydial (573)

Daldinia concentrica Botryane [474]

7α-Hydroxy-10-O-ethyldihydrobotrydial Daldinia concentrica Botryane [474]

7-Hydroxy-16-O-methyldeacetyldihydrobotrydial Daldinia concentrica Botryane [474]

7-Hydroxy-16-O-methyldeacetyldihydrobotrydial-

hydrate

Daldinia concentrica Botryane [474]

(continued)
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4.1.22 Spiroaxanes

The spiroaxanes are a class of sesquiterpenoids with 5/6 spiro rings that were

discovered initially from the marine sponge Axinella cannabina. To date, only

17 sesquiterpenes of this kind have been isolated from the Basidiomycetes, from the

species Pholiota adiposa, Phellinus igniarius, Tyromyces chioneus, Trametes
versicolor, and Flammulina velutipes (Table 37, Fig. 59). The structure of

flammuspirone A (577) was determined by X-ray crystallographic analysis

(Fig. 59). Biological testing revealed that flammuspirones A and C have weak

Table 36 (continued)

Compound Origin Type Refs.

7-Hydroxydeacetyl-botryenalol Daldinia concentrica Botryane [474]

7α-Hydroxydihydrobotrydial Daldinia concentrica Botryane [474]

(1S)-7-[(2E)-But-2-enoyl]-1,3,3,6-tetramethyl-2,3-

dihydro-1H-indene-1-carbaldehyde (575)
Hypoxylon rickii Botryane [353]

(3aS)-6-Hydroxy-3a,5,5,8-tetramethyl-3,3a,4,5-

tetrahydro-1H-cyclopenta[de]isochromen-1-one

(576)

Hypoxylon rickii Botryane [353]

(3aS)-7-Hydroxy-3a,5,5,8-tetramethyl-3,3a,4,5-

tetrahydro-1H-cyclopenta[de]isochromen-1-one

Hypoxylon rickii Botryane [353]

(3aS)-3a,5,5,8-Tetramethyl-3,3a,4,5-tetrahydro-1H-
cyclopenta[de]isochromen-1-one

Hypoxylon rickii Botryane [353]

(3aS,8R)-3a,5,5,8-Tetramethyl-3,3a,4,5,7,8-

hexahydro-1H-cyclopenta[de]isochromen-1-one

Hypoxylon rickii Botryane [353]

Botryenanol Hypoxylon rickii Botryane [353]

Boledulins A–C (574) Boletus edulis Botryane [475]
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Fig. 58 Structures of botryane and selected derivatives
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HMG-CoA reductase activities and that flammuspirones C–E and H displayed

marginal dipeptidyl peptidase-4 (DPP-4) inhibitory effects.

4.1.23 Other Skeletons

A summary of sesquiterpenoids from mushrooms bearing miscellaneous carbon

skeletons is provided in Table 38.

Deoxycollybolidol (583) is a crystalline compound isolated from the fruiting

bodies of Collybia maculata, and contains two lactone groups (Fig. 60) [479]. This

species produces many types of sesquiterpenoids, including marasmanes and

lactaranes. Two nardosinane sesquiterpenoids, rulepidanol (584) and

rulepidadiene B, were isolated from the mushroom Russula lepida (Russulaceae).

They were accompanied by two aristolanes, which has supported the hypothesis

that nardosinane sesquiterpenes are derived from an aristolane precursor (Scheme

14, Fig. 60) [223].

Table 37 Spiroaxane sesquiterpenoids

Compound Origin Type Refs.

15-Hydroxy-6α,12-epoxy-7β,10αH,11βH-spiroax-4-
ene (578)

Pholiota adiposa Spiroaxane [476]

3α,6α-Dihydroxyspiroax-4-ene (580) Phellinus
igniarius

Spiroaxane [275]

Tyromol A (579) Tyromyces
chioneus

Spiroaxane [276]

Tramspiroins A–D (581, 582) Trametes
versicolor

Spiroaxane [477]

Flammuspirones A–J (577) Flammulina
velutipes

Spiroaxane [478]
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Table 38 Miscellaneous sesquiterpenoids

Compound Origin Type Refs.

Deoxycollybolidol (583) Collybia
maculata

[479]

Rulepidanol (584) Russula lepida Nardosinane [223]

Rulepidadiene B Russula lepida Nardosinane [223]

Dictyopanines A-C (585) Dictyopanus
sp. HKI0181

[480]

1(10),4-Germacradiene-2,6,12-triol (586) Resupinatus
leightonii

Germacrane [481]

Russulanorol (587) Russula delica Russulane [482]

Stereumone A (588) Stereum sp. 8954 [483]

Stereumins H–J (589) Stereum
sp. CCTCC AF

207024

Stereumane [484]

Limacellone (590) Limacella
illinita

[261]

Cyclopinol (591) Boletus calopus [485]

Cyclocalopin A Boletus calopus [485]

O-Acetylcyclocalopin A Boletus calopus [485]

(3R*,3aS*,4S*,8aR*)-3-(10-Hydroxy-
10-methylethyl)-5,8a-

dimethyldecahydroazulen-4-ol (592)

Sparassis crispa Isodaucane [350]

Mitissimolone (593) Lactarius
mitissimus

[486]

Sterperoxides A–D (594, 595) Steccherinum
ochraceum

Chamigrane [487, 488]

Xylaranols A, B (596) Xylaria sp. 101 Guaiane [347]

Lactariolines A, B (532, 233) Lactarius
hatsudake

Guaiane [138]

Xylcarpins A–C (597) Xylaria
carpophila

Thujopsane [197]

Trefolane A (598) Tremella
foliacea

Trefolane [489]

Conosilane A (599) Conocybe
siliginea

Conosilane [490]

Phellilins A–C (600, 601) Phellinus linteus [491]

Cordycepols A–C (602) Cordyceps
ophioglossoides

Spiro[4.5]

decane

[492]

Cordycol Cordyceps
ophioglossoides

[492]

Irlactins A–D (603) Irpex lacteus Irlactane [468]

Postinins A (604), B (605) Postia sp. Ylangene [493]

Brasilanes A–C (606) Coltricia
sideroides

Brasilane [494]

Gymnomitrane-3α,5α,9β,15-tetraol (607) Ganoderma
lucidum

Gymnomitrane [495]

(continued)
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In the course of screening for new antibacterial compounds from the tropical

mushroom, Dictyopanus sp. HKI0181, three sesquiterpenes, dictyopanines A

(585), B, and C were obtained (Fig. 60). Structurally, these three sesquiterpenes

are esterified by different fatty acids. Dictyopanines A–C were shown in an

antibiotic assay using an agar well diffusion method to display antimicrobial

activities against a small group of filamentous fungi and Gram-positive bacteria

[480]. Bioactivity-guided isolation of submerged cultures of the basidiomycete

Resupinatus leightonii led to the discovery of the macrocylic germacrane-type

sesquiterpenoid 1(10),4-germacradiene-2,6,12-triol (586), which activated cAMP-

mediated signal transduction in the formation of melanized appressoria for the

invasion of host plants by the plant pathogenic fungus Magnaporthe grisea
(Fig. 60) [481]. The norsesquiterpenoid russulanorol (587), based on the russulane

skeleton, was isolated from the mushroom Russula delica (Fig. 60). The structure of
587 was elucidated by interpretation of its spectroscopic data and by chemical

transformations. The analytical data obtained suggested that russulanorol occurs as

two co-existing isomers [482].

The genus Stereum produces many different sesquiterpenoid classes, including

cadinanes, drimanes, hirsutanes, illudalanes, isolactaranes, and sterpuranes,

suggesting that different terpenoid cyclase enzymes are also produced. Stereumone

A (588) possesses an unusual 4H-naphtho[2,3-b]furan skeleton, which has not

previously been found among the sesquiterpenoids to date [483]. Stereumins H–J

(589) were isolated from the culture broth of the basidiomycete Stereum
sp. CCTCC AF 207024, and possess a stereumane-type backbone. Their structures

were determined unambiguously with the involvement of X-ray crystallographic

and computional methods [484].

Limacellone (590) obtained from the fermentation broth of Limacella illinita, is
a cage-like sesquiterpene having a C15 carbon skeleton (Fig. 60). Limacellone was

evaluated for cytotoxicity against the L1210 cell line (IC50 value of 90 μg/cm3) and

it affected the shoot growth both Setaria italica and Lepidium sativum [261].

Cyclopinol (591), isolated from the mushroom Boletus calopus, is a spiro-

sesquiterpene containing lactone and hemiacetal groups (Fig. 60) [485]. The edible

Table 38 (continued)

Compound Origin Type Refs.

Antrodin F Antrodiella
albocinnamomea

Gymnomitrane [367]

Antrodin E (610) Antrodiella
albocinnamomea

Ventricosane [367]

Penarines A–F (608, 609) Hygrophorus
penarius

Ventricosane [496]

13-Hydroxysilphiperfol-6-ene (611) Hypoxylon rickii Silphiperfolane [497]

9-Hydroxysilphiperfol-6-en-13-oic acid

(612)

Hypoxylon rickii Silphiperfolane [497]

2-Hydroxysilphiperfol-6-en-13-oic acid Hypoxylon rickii Silphiperfolene [497]

15-Hydroxysilphiperfol-6-en-13-oic acid Hypoxylon rickii Silphiperfolene [497]
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cauliflower mushroom Sparassis crispa is used as a Chinese medicinal species

and/or a functional food. The chemical investigation of this mushroom led to the

isolation of the initial isodaucane-type sesquiterpenod (3R*,3aS*,4S*,8aR*)-
3(10-hydroxy-10-methylethyl)-5,8a-dimethyldecahydroazulen-4-ol (592) [350].

Mitissimolone (593) was obtained as a cytotoxic sesquiterpenoid from an etha-

nol extract of the fruiting bodies of Lactarius mitissimus. The IC50 value was

29.8 μg/cm3 for this compound against the HeLa cell line (Fig. 60) [486]. During

a search for bioactive compounds from the basidiomycete Steccherinum
ochraceum, four chamigrane sesquiterpenoids with an endoperoxide function,

namely, steperoxides A-D (594, 595) were obtained (Fig. 60). The chamigranes

have mainly been found to be derived from marine organisms and they are

halogenated. This was the first time that chamigranes were reported to be of

mushroom origin. Sterperoxide D (595) showed antimicrobial activity against

Staphylococcus aureus with inhibition zones of 22 and 19 mm at 10 and 5 μg/
disk, respectively [487, 488].

Four guaiane-type sesquiterpenoids, xylaranols A (596) and B, and lactariolines

A (232) and B (233), were isolated from the fruiting bodies of Xylaria sp. and

Lactarius hatsudake [138, 347]. Lactariolines A and B are two azulene sesquiter-

pene pigments bearing a conjugated 5/7-ring-fused system (Fig. 60). Lactarioline A

(232) displays a blue color while lactarioline B is red. Lactarioline A inhibited

IFN-γ production in NK92 cells in a dose-dependent manner, corresponding to

56.7% inhibiton at 400 μM and 21.4% at 100 μM, respectively. Similarly,

lactarioline B also exhibited inhibitory activity in a dose-dependent manner with

80.9% inhibition at 400 μM and 31.2% at 100 μM [138].
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Fungi belonging to the genus Xylaria are known to produce a variety of bioactive
compounds, varying from sesquiterpenoids to diterpenoids. A phytochemical study

of the fermentation broth of the fungus Xylaria carpophila led to the isolation of

three thujopsane sesquiterpenoids, xylcarpins A–C (597) (Fig. 60)

[197]. Thujopsane sesquiterpenoids have been found only in plants previously

and this was the first report of their occurrence among the fungi.

Trefolane A (598) and conosilane A (599), isolated from the culture broth of the

Basidiomycetes Tremella foliacea and Conocybe siliginea, respectively, were found
to produce novel sesquiterpenoids based on additional skeletons (Fig. 60) [489, 490].

Their structures were elucidated using spectroscopic methods and confirmed by

single-crystal X-ray diffraction analysis. Of these, trefolane possesses a 5/6/4 tricyclic

ring system, representing a 4(6!7)abeo-africane skeleton. In turn, conosilane pos-

sesses a 6/5/5/5 tetracyclic ring system, in which two pentacyclic rings are formed

through acetal bonds. The precursor of trefolane and conosilane is humulane, which is

produced by fanesyl pyrophosphate (FPP). Conosilane A (598) was tested against

human and mouse 11β-HSD1 (hydroxysteroid dehydrogenase-1), with inhibition rates
of 53.3 and 70.0%, respectively, at a concentration of 10 μg/cm3.

In the course of discovering new anti-inflammatory lead drugs from higher

fungi, three sesquiterpenoids, phellilins A–C (600, 601), were isolated from the

cultured mycelium of Phellinus linteus (Fig. 60). The biogenetic interrelationships
of these three compounds were also discussed [491].

The fungus Cordyceps ophioglossoides is a parasite of certain types of

Elaphomyces species and it was used in traditional Chinese medicine as a tonic.

A chemical investigation of this fungicolous fungus resulted in the purification of

three unusual spiro[4.5]decane sesquiterpenes, namely, cordycepols A–C, as well

as the known compound, cordycol (Fig. 60). A preliminary cytotoxicity determi-

nation of these compounds revealed that cordycepol C (602) and cordycol showed

inhibitory activities in a dose- and time-dependent manner [492]. Mechanistically,

cordycepol C induced apoptosis of HepG2 hepatoma cells without affecting the

L-02 normal liver cell line, and also caused poly(ADP-ribose) polymerase-1

(PARP-1) cleavage and triggered the loss of mitochondrial membrane potential in

HepG2 cells in a time- and dose-dependent manner. It also induced the expression

of the Bax protein, followed by its translocation from the cytosol to mitochondria in

both wild type and p53 knockdown HepG2 cells [498].

Irpex lacteus is a pathogenic wood-decaying fungus belonging to the family

Polyporaceae. Irlactins A–D (603) isolated from the culture broth of this fungus

were characterized as sesquiterpenoids having a rearranged 6/6 bicyclic system.

Their absolute configurations were established by single-crystal X-ray diffraction

analysis. Irlactins B–D were obtained as a mixture in solution, while a co-crystal of

irlactins C and D was obtained in methanol [468].

Postinins A (604) and B (605) are two ylangene-type sesquiterpenoids isolated

from cultures of the fungus Postia sp. (Fig. 60). They possess a rigid core structure

that was found previously only in soft corals. Both postinins A and B showed

inhibitory activities against protein-tryosine phosphatase 1 and SH2-containing

cytoplasmic tyrosine phosphatase-1 (SHP1) and -2 (SHP2), with IC50 values in

the range 1.6–6.2 μg/cm3 [493].
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Three new brasilane-type sesquiterpenes, brasilanes A–C (606), were found in a

culture of Coltricia sideroides and they represent the first representatives of this

class to have been isolated from the Basidiomycetes (Fig. 60). This rare type of

sesquiterpenoid was isolated previously only from various liverworts, red algae,

and endophytic fungi [494].

Antrodin F is a gymnomitrane-type sesquiterpenoid isolated initially from a

culture of the basidiomycete Antrodiella albocinnamomea (Fig. 60). Its structure

was established unambiguously by X-ray diffraction analysis. Furthermore,

gymnomitrane-3α,5α,9β,15-tetrol (607) was isolated from the fruiting bodies of

the medicinal fungus Ganoderma lucidum. Gymnomitrane-3α,5α,9β,15-tetrol
(607) inhibited the growth of the epidermal growth factor receptor-tyrosine kinase

inhibitor EGFR-TKI-resistant A549 human lung cancer and PC3 human prostate

cancer cell lines with inhibition rates of 18.8 and 52.5%, respectively, at a concen-

tration of 30 μM [495].

The ventricosane- and silphiperfolene-type sesquiterpenoids are very rare in

Nature, and only several examples are known as the secondary metabolites of higher

fungi. The ventricosanes have been reported primarily from liverworts, and

silphiperfolenes from the plant family Asteraceae. Penarines A–F (608, 609) are

ventricosane-type sesquiterpenes isolated from the basidiomycete Hygrophorus
penarius, but did not show any discernible types of activity when evaluated in a

panel of bioassays (Fig. 60) [496]. Four silphiperfolene derivatives (as e.g. 611, 612)

were isolated from a culture of the ascomycete Hypoxylon rickii, and represent the

first examples of this kind of sesquiterpene isolated from the fungi (Fig. 60) [497].

4.2 Diterpenoids

Among the terpenoids biosynthesized by higher fungi, the diterpenoid class is less

varied than the sesquiterpenoids both with respect to their structural diversity and

the overall number of representatives (Fig. 61). The diterpenoids derived from

sordarincyathane guanacastane pimarane

pleuromutilins abietane crinipellins

Fig. 61 The primary skeletons of fungal-originated diterpenoids
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macromycetes, and specifically, the cyathanes from the mushroom Hericium
erinaceum as well as their bioactivities, were reviewed previously

[499, 500]. This chapter does not include those compounds covered in these two

reviews and only covers the literature dealing with the isolation, structural eluci-

dation, and biological evaluation of fungal diterpenoids reported during the period

2008–2016.

4.2.1 Cyathanes

The 5/6/7 ring-fused cyathane-type of diterpenes, including the cyathane-xylosides,

is the largest group of diterpenoids from higher fungi. Cyathanes have been isolated

mainly from the three genera Cyathus, Hericium, and Sarcodon, and the three

particular species, Phellodon niger, Laxitextum incrustatum, and Strobilurus
tenacellus (Table 39).

Table 39 Cyathane diterpenoids

Compound Origin Type Refs.

11-O-Acetylcyathin A3 Hericium
erinaceum

Cyathane [501]

Erinacine A (613) Hericium
erinaceum

Cyathane [502, 503]

(12S)-11α,14β-Epoxy-13a,14b,15-
trihydroxycyath-3-ene

Strobilurus
tenacellus

Cyathane [504]

(12R)-11α,14β-Epoxy-13a,14b,15-
trihydroxycyath-3-ene

Strobilurus
tenacellus

Cyathane [504]

Nigernins A–F (616, 617) Phellodon niger Cyathane [12, 505]

Scabronines G (614), H (615), K, L, M Sarcodon
scabrosus

Cyathane [506–508]

Secoscabronine M Sarcodon
scabrosus

Cyathane [509]

Cyrneine E Sarcodon cyrneus Cyathane [510]

Cyathins D–H (618, 619), W, V, T, Q (620) Cyathus africanus Cyathane [511–513]

Cyathin I (621) Cyathus hookeri Cyathane [514]

Cyathins J–P Cyathus
gansuensis

Cyathane [515]

Striatoids A–F (622) Cyathus striatus Cyathane

xyloside

[516]

Pyristriatins A, B (624) Cyathus
cf. striatus

Cyathane [168]

Compound 1 Hericium
erinaceus

Cyathane [517]

Laxitextines A, B (623) Laxitextum
incrustatum

Cyathane

xyloside

[518]
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It is noteworthy that the cyathane-xylosides were only reported from liquid

cultures of the fungal strains, and not from the fruiting bodies or rice cultures,

while cyathane-non-xyloside analogs were reported from liquid/solid cultures and

fruiting bodies. Structurally, among the total of 107 reported cyathanes, 93 contain

a C-2–C-3 double bond, accounting for 87% of this group. Three of these are

2,3-seco, six are 2,3-epoxidized, and five are non-C-2–C-3 olefinic, which attests to
the highly conserved double bond between C-2 and C-3.

Nerve growth factor (NGF) is a member of small secreted proteins known as

neurotrophins, which are vital signaling molecules for the growth and maintenance

of neural cells. Intake of exogenous NGF stimulates the outgrowth of neuritic

projections, and may have applications in the treatment of neurodegenerative

disorders, such as Alzheimer’s disease. However, a drawback is that NGF is not

able to cross the blood-brain barrier and is rapidly metabolized in vivo. Therefore,

the search for natural products with the potential to stimulate the endogenous

production of NGF is of potential importance in drug discovery. Cyathanes were

proven to exhibit diverse biological activities, including neurite outgrowth-stimu-

lating/neurotrophic, anti-inflammation, antimicrobial, and antitumor-related

effects. However, it is due to their NGF-stimulating activity, that cyathanes have

attracted considerable attention both in terms of drug discovery and compound total

synthesis.

Erinacine A (613), a potent stimulator of NGF synthesis, was obtained from

mycelia of the monkey head mushroom, Hericium erinaceum (Fig. 62). This has

become a compound of great interest in recent years. It was shown that erinacine A

increases catecholamine and NGF content in the central nervous system as demon-

strated in an in vivo experiment in rats [503]. Very recently, several papers have

dealt with Hericium erinaceum mycelia and/or erinacine A, including their role in

protecting against ischemia-injury-induced neuronal cell death, their toxicological

safety evaluation by a feeding study in mice, the molecular mechanism in the

protection of MPTP-induced neurotoxicity, as well as the amelioration of

Alzheimer’s disease-related pathologies [519–524].

Scabronines G (614) and H (615) are two C-11 epimers isolated from the fruiting

bodies of the mushroom Sarcodon scabrosus (Fig. 62). In vitro antimicrobial

studies showed that the antibacterial potencies of scabronines G and H were almost

the same as that of streptomycin at concentrations of 1 mg/cm3 and 100 μg/cm3

against Staphylococcus aureus, Bacillus thuringiensis, B. megaterium, B. subtilis,
and Escherichia coli. However, at a concentration of 10 μg/cm3, only E. coli and
B. megaterium were sensitive to these two compounds while streptomycin was still

effective against all of the bacteria. Scabronines G and H also displayed inhibitory

activity against Gibberella zeae, Sclerotinia sclerotiorum, Fusarium moniliforme,
and F. oxysporum at a concentration of 1 mg/cm3 [507].

In the course of investigating the secondary metabolites from the edible mush-

room, Phellodon niger, six cyathane diterpenoids, nigernins A–F (616, 617),

including four with a rare aromatic acyl group modification, were isolated

(Fig. 62). Position C-15 is oxygenated in all six compounds in the form of a

carboxylic acid group [12, 505].
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The rice fermentation of the fungus Cyathus africanus is a good source of

cyathane diterpenoids [511–513]. The structure of cyathin E (618) was confirmed

by single-crystal X-ray crystallographic analysis (Fig. 62). Cyathins F (619) and H

showed potent inhibition against nitric oxide production in lipopolysaccharide-

activited macrophages with IC50 values of 2.57 and 1.45 μM, respectively

(Fig. 62). Neosarcodonin O and 11-O-acetylcyathatriol were assessed for cytotox-

icity against the Hela and K562 cell lines and gave IC50 values of <10 μM [511].
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In turn, cyathine W showed an IC50 value of 12.1 μM against the K562 cell line

[512]. Cyathin Q (620), a cyathane diterpene that was obtained by bioactivity-

guided purification, exhibited inhibitory activity against HCT116 colon cancer cells

and Bax-deficient HCT116 cells in vitro and in vivo (Fig. 62). A mechanism-of-

action study showed that cyathin Q exerted induction of mitochondrial and

autophagy-dependent apoptosis in HCT116 cells [513].

The fungus Cyathus hookeri is close taxonomically to C. africanus. It is char-
acterized by a campanulate peridium covered with wool-like hairs and a broadly

ovoid basidiospore. A chemical investigation on this fungus led to the isolation of

cyathin I (621) as well as two known compounds, including erinacine I. Cyathin I

(621) and erinacine I showed inhibitory effects against nitric oxide production in

macrophages with IC50 values of 15.5 and 16.8 μM, respectively (Fig. 62) [514].

From a submerged culture of the bird’s nest fungus, Cyathus striatus, six highly

oxygenated cyathane-xylosides, striatoids A–F (622) (Fig. 62) were isolated. These

compounds enhanced NGF-induced neutrite outgrowth using rat pheochromocy-

toma cells as a model system of neuronal differentiation. It was revealed that these

diterpenoid derivatives dose-dependently enhanced NGF-mediated neurite out-

growth in rat pheochromocytoma cells [516].

A bioassay-guided isolation procedure of the mycelial culture of Laxitextum
incrustatum, collected in Kenya, led to the purification of the two cyathanes,

laxitextines A (623) and B (Fig. 62). Laxitextine A showed inhibition of

Staphylococcus aureus at 7.8 μg/cm3 and also anti-MRSA activity with an MIC
value of 7.8 μg/cm3. Furthermore, both showed inhibitory activities against the

MCF-7 cell line with IC50 values of 2.3 and 2.0 μM, respectively [518].

A phytochemical investigation of the cultures of the Thai fungus Cyathus
cf. striatus led to the isolation of two pyridine ring-containing cyathane derivatives,
which were named pyristriatins A (624) and B (Fig. 62). These compounds dem-

onstrated antibacterial activity against Gram-positive bacteria. They also showed

antifungal activity against some filamentous fungi as well as yeasts [168].

Owing to the documented biological activity of the cyathane diterpenoids, this

group of compounds have been of considerable interest in terms of their total

synthesis. Several total syntheses of cyathanes have been reported, including

those of cyathin A3 [525, 526], cyathin B2 [525], (–)-scabronine A [527], (–)-

scabronine G [527, 528], and (–)-erinacine E [529], to name just a few. Nakada

et al. have accomplished the total synthesis of eight cyathanes [530, 531].

(–)-Scabronine A (625), one of the most potent NGF synthesis stimulators,

contains six contiguous stereogenic centers in its seven-membered ring, which

has increased the difficulty of its total synthesis. The first enantioselective total

synthesis of (–)-scabronines A and G was achieved by Kobayakawa and Nakada

in 2013 [527]. It was shown that 626 is a key intermediate for the synthesis of

(–)-scabronines A and G, and was constructed by a step involving an oxidative

dearomatization/intramolecular IEDDA reaction cascade (Scheme 23). This
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Scheme 23 Total synthesis of (�)-scabronine A (625).

Reagents and conditions: (i) TIPSCl, imidazole, DMF, 40�C, 83%. (ii) propargyl bromide, Zn,

TiCl4 (5 mol%), THF, 0�C. (iii) Et3SiH, BF3�OEt2, CH2Cl2, 0
�C, 84% (2 steps). (iv) nBuLi, BnO

(CH2)2CON(OMe)Me, THF, �78�C to RT, 89%. (v) Ru[(R,R)-Tsdpen]( p-cymene) (6 mol%),

iPrOH, RT, 92% (95% ee). (vi) (EtO)2P(O)Cl, DMAP, Et3N, CH2Cl2, RT, 97%. (vii) iPrMgCl,

CuCN�2 LiCl, THF,�78�C, quant. (viii) TBAF, THF, 0�C, 97% (95% ee). (ix) PIDA, MeOH, RT,

7 days, 97%. (x) H2, Pd/C (5 mol%), EtOAc, RT, 92% [95% ee,>99% ee (recryst.)]. (xi) (COCl)2,
DMSO, Et3N, CH2Cl2,�78 to 0�C, 98%. (xii) Ph3PCH3Br, tBuOK, THF, 0

�C, 99%. (xiii) NaBH4,

MeOH, 0�C; then, 3N HCl (aq.), 95%. (xiv) H2C¼C(CH2Br)(CH2OTBDPS), Zn, THF, RT, 91%.

(xv) PIDA, CH2Cl2, RT, 90%. (xvi) Grubbs II (2.5 mol%), CH2Cl2, reflux, 89%; (xvii) NaClO2,

NaH2PO4, 2-methyl-2-butene, THF, tBuOH, H2O, RT. (xviii) MeI, K2CO3, DMF, RT, 74%

(2 steps). (xix) OsO4 (2.5 mol%), NMO, THF, tBuOH, H2O, RT. (xx) triphosgene, pyridine,

DMAP, CH2Cl2, 0
�C to RT, 66% (α), 20% (β) (2 steps). (xxi) DBU, PhH, RT, quant.; (xxii) (R)-

CBS, BH3�SMe2, THF, 0
�C. (xxiii) TBAF, THF, 0�C to RT, 90% (2 steps). (xxiv) TEMPO (20 mol

%), PIDA, CH3CN, CH2Cl2, KPB7, 80%. (xxv) NaOMe, MeOH, 0 to 15�C. (xxvi) HCl, MeOH,

0�C to RT, 82% (15α), 7% (15β). (xxvii) MeI, NaH, THF, RT, 99%. (xxviii) 2 N NaOH (aq.),

MeOH, 70�C, then, 3 N HCl (aq.), 94%. NMO ¼ N-methylmorpholine N-oxide
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approach enabled the total synthesis of (–)-scabronine G in 19 steps with a 21%

overall yield. Additionally, a highly stereoselective oxa-Michael/protonation/

acetalization cascade enabled the completion of the first total synthesis of (–)-

scabronine A [527].

4.2.2 Guanacastanes

The 5/7/6 ring-fused guanacastane-type of diterpenoid is rarely encountered in the

secondary metabolites of macromycetes. Recent years have been a period for the

rapid discovery of this kind of diterpenoid, mainly from the genus Coprinus. So far,
about 35 examples of the guanacastanes have been isolated from higher fungi,

including six reviewed previously (Table 40) [500]. Most members of this com-

pound type contain large conjugated systems, which leads to the observation of

maxima at long-wavelengths in their UV absorption spectra.

A strain of Coprinus radians was isolated from the spore suspension of an

Amanita sp. Thirteen guanacastane-type diterpenoids were obtained from the

PDA solid medium (Table 40). Radianspenes J–L (309–311) are three lactam

group-containing guanacastane diterpenoids, and radianspene M (627) is a

guanacastane dimer (Fig. 63) [170].

Guanacastanes were reported to possess cancer cell cytotoxic effects and 11β-
HSD1 inhibitory activity. Radianspene C (628) exhibited growth inhibitory activity

against the MDA-MB-435 cell line with an IC50 value of 0.91 μM [170]. Plicatilisin

A (629) was reported to exhibit cytotoxic effects against the HepG2, HeLa,

MDA-MB-231, BGC-823, HCT 116, and U2OS human cancer cell lines with

IC50 values ranging from 1.2 to 6.0 μM [535]. Plicatilisin F (630), isolated from

C. plicatilis, was obtained as two inseparable tautomers in a 1:1 ratio

[534]. Guanacastepene R (631) displayed inhibitory activities against the human

and mouse isozymes of 11β-HSD1 with IC50 values of 6.2 and 13.9 μM
(Fig. 63) [536].

The complex polycyclic rings of the guanacastanes have attracted some attention

with respect to their total synthesis [537–540].

Table 40 Guanacastane diterpenoids

Compound Origin Type Refs.

2,5-Epoxy-5,13-dihydroxyneodolast-3-

en-14-one

Trametes corrugata Guanacastane [532]

Lacrymarone Lacrymaria velutina Guanacastane [533]

Radianspenes A–M (309–311, 627, 628) Coprinus radians Guanacastane [170]

Plicatilisins A–H (629–630) Coprinus plicatilis Guanacastane [534, 535]

Guanacastepenes P–T (631) Psathyrella
candollana

Guanacastane [536]
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4.2.3 Isopimaranes

Almost all of the reported mushroom isopimarane-type diterpenes have been found

either in the fruiting bodies or the cultures of the ascomycete genus Xylaria
(Table 41). The isopimarane skeleton has a tendency to be oxygenated, and,

among the reported isopimaranes, the C-19 methyl group is often oxygenated to a

carboxylic acid group. Xylaria-derived isopimaranes have shown cytotoxic effects

against many different cancer cell line types.

The fungus Xylaria polymorpha is a copious secondary metabolite-producing

strain. A rice fermentation of this species led to the isolation of three isopimarane

diterpene glycosides and three unusual compunds of this class (632) (Fig. 64). The

sugar moieties of these glycosides are either D-mannose or D-glucose and the

absolute configurations of the sugar moieties were established by comparison of

their optical rotation values with those of authentic samples. The sugars were

obtained by enzymatic hydrolysis of the original isolated samples [541]. A

6,7-seco-isopimarane, spiropolin A (633), and a cyclopropane-bearing compound,

myrocin E (634), were also isolated from the rice fermentation of X. polymorpha
(Fig. 64). The structure of spiropolin A was established unequivocally by single-
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crystal X-ray diffraction analysis. Spiropolin A (633) represents the first example of

a naturally occurring 6,7-secopimarane (Fig. 64). A bioassay used demonstrated

that spiropolin A restores the growth inhibition caused by hyperactivated Ca2+-

signaling in a mutant yeast strain [542].

Xylaria species also play an important role in wood decomposition. A chemical

investigation of the wood-decaying fungus Xylaria sp. BCC4297 led to the

Table 41 Isopimarane diterpenoids

Compound Origin Type Refs.

16α-D-Mannopyranosyloxyisopimar-7-

en-19-oic acid (632)

Xylaria polymorpha Isopimarane [541]

15-Hydroxy-16α-D-
mannopyranosyloxyisopimar-7-en-19-

oic acid

Xylaria polymorpha Isopimarane [541]

16α-D-Glucopyranosyloxyisopimar-7-

en-19-oic acid

Xylaria polymorpha Isopimarane [541]

Spiropolin A (633) Xylaria polymorpha 6,7-Isopimarane [542]

Myrocins D, E (634) Xylaria polymorpha Isopimarane [542]

Xylarenolide Xylaria sp. 101 Isopimarane [347]

Xylopimarane (635) Xylaria sp. BCC4297 20-Norisopimarane [543]

Sphaeropsidin C Xylaria sp. BCC4297 Isopimarane [543]

Compound 4 Xylaria sp. BCC5484 Isopimarane [348]

Hymatoxin E Xylaria sp. BCC5484 Isopimarane [348]

Xylallantins A, B (636, 637), C Xylaria allantoidea
BCC23163

Isopimarane [167]

Xylarianes A, B Xylaria sp. 290 Isopimarane [544]
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discovery of a ring B aromatic 20-norisopimarane glucoside, namely, xylopimarane

(635), along with the known compound sphaeropsidin C (Fig. 64). Xylopimarane

was evaluated for cytotoxicity against the KB, MCF-7, and NCI-H187 cancer cell

lines, and exhibited IC50 values of 1.0, 12, and 65 μM, respectively. It was assumed

that sphaeropsidin C is a precursor of xylopimarane via a decarboxylation-

aromatization process followed by glycosidation [543].

The first chemical study of the wood-decaying fungus Xylaria allantoidea
BCC23163 led to the isolation of four isopimarane diterpenoids. Xylallantin A

(636) was found to be highly oxygenated with five hydroxy groups, of which one

is formed by a hemiacetal structure between the hydroxy group of C-20 and the

ketone carbonyl on C-6 (Fig. 64). This compound gave an IC50 value of 17 μg/cm3

when evaluated against NCI-H187 cells. Xylallantins B (637) and C were charac-

terized as possessing an ester bond between C-19 and C-6 (Fig. 64) [167].

4.2.4 Sordarins

Sordarins are a group of diterpenoids with a bridged ring and are distributed mainly

in the family Xylariaceae. However, this type of diterpene is often found in

filamentous fungi. Only two reports on the isolation of sordarins have been

published, from the wood-decaying fungi Xylaria sp. and Xylotumulus gibbisporus
(Fig. 65).

Xylarin (638), with a tricyclic uronic acid moiety, is an antifungal metabolite

from the liquid culture of a wood-decaying Xylaria species (Fig. 65). It showed

inhibition of fungal growth, and theMIC values for 638 against Nematospora coryli
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and Saccharomyces cerevisiae were 0.5 and 5 μg/cm3, respectively. However, 638

did not exhibit discernible antibacterial activity [545].

The fungus Xylotumulus gibbisporus was described for the first time in 2006

from dead angiosperm wood collected from the Bird Park area in the Hawaii

Volcanoes National Park. Sordarins C–F (639, 640) are diterpene glycosides, and,

along with sordarin (641), were isolated from the fermented broth of X. gibbisporus
(Fig. 65). These compounds were evaluated for their antifungal and NO production

inhibition activities. Compound 641 exhibited antifungal activities against Candida
albicans ATCC 18804, C. albicans ATCC MYA-2876, and Saccharomyces
cerevisiae ATCC 2345, with IC50 values of 64.0, 32.0, and 32.0 μg/cm3. Sordarin

and sordarin D also displayed weak inhibition of NO production [546].

4.2.5 Pleuromutilins

The fungal secondary metabolite pleuromutilin (642) was first reported in 1951

from the two basidiomycete species Pleurotus passeckerianus and Pleurotus
mutilus (now known as Clitopilus scyphoides), by Kavanagh and co-workers

(Fig. 66) [547].

642  (pleuromutilin)

1

10

2

1213

21

16

17

18
20

3

45 9

14

19 OH

O

O

O
R H

6 7 8

22
15

R = OH

R=
S

N

S

H
N

(R)(R)

O

NH2

643  (tiamulin)

644  (valunemulin)

S NR =

645  (retapamulin)

R = S
OH

NH2

646  (BC-3781)

OH

O

O

O

H

OH

O

HO H

647  (14-acetyl-mutilin) 648  (mutilin)

OH

O

RO H

649  R = CO(CH2)7CH=CH(CH2)7CH3

650  R = CO(CH2)7CH=CHCH2CH=CH(CH2)4CH3

651  R = CO(CH2)7CH=CH(CH2)9CH3

OH

O

O H

O

OO

OHHO
HO

652  (A40104)

R=

Fig. 66 Structures of pleuromutilin (642), its optimized compounds, and pleuromutilin

derivatives

134 H.-P. Chen and J.-K. Liu



Antimicrobial testing revealed that 642 is highly active against Gram-positive

cocci, but an in vivo experiment in mice using Streptococcus hemolyticus resulted
in the low rate of survival of the test animals, a finding that led to less attention

being placed on pleuromutilin subsequently. In the early 1960s, pleuromutilin was

re-encountered from a culture of Clitopilus passeckeranius and it demonstrated

enhanced inhibitory activity against both penicillin- and streptomycin-resistant

Staphylococcus and Mycoplasma spp. In order to improve on their antimicrobial

activity, many pleuromutilin derivatives have been synthesized, mainly to intro-

duce structural variations of the C-14 side chain. Up to the present, tamulin (643)

and valunemulin (644) have been developed successfully as veterinary antibiotics

(Fig. 66) [548, 549].

Pleuromutilins appear to exert their antimicrobial activity by inhibition of

prokaryotic protein synthesis through an interaction with the 50S ribosomal

subunit. This antibacterial mechanism has enhanced the development of

pleuromutilin derivatives for human use, and as might be expected, considerable

attention has been given to the synthesis of pleuromutilin derivatives to explore

their potential for humans. Retapamulin (645) was approved by the U.S. FDA for

the topical treatment of impetigo and traumatic lesions of skin infections, but has

limited water solubility (Fig. 66). Compound BC-3781 (646) is a synthesized

pleuromutilin thioether derivative which entered Phase II clinical studies

(Fig. 66) [548, 549].

The development of improved pleuromutilin derivatives with the potiential for

human use is ongoing. A structure-activity relationship study revealed that the C-14

side chain functionality is the key determinant for properties driving systemic

efficacy. However, additional evidence is needed to support a direct link between

the putative antimicrobial target, the peptidyl transferase center (PTC) of the 50S

ribosomal subunit and its substrate, and the pleuromutilin derivatives [549–552].

Owing to the excellent antimicrobial activity of pleuromutilins, much work on

their biosynthesis as well as total synthesis has been undertaken in recent years. For

example, seven gene clusters responsible for pleuromutilin biosynthesis were

identified, and heterologous expression within the ascomycete Aspergillus oryzae
successfully improved the production of pleuromutilin by tenfold [553].

In addition, efforts in searching for new pleuromutilins from natural sources

have continued. In 1976, Knauseder et al. isolated several pleuromutilin derivatives

from a culture of Clitopilus passeckerianus (647–651) (Fig. 66) [554]. A40104A
(652), pleuromutilin β-D-xylopyranoside, has been reported to exhibit antibiotic

activity that is fivefold greater than that of pleuromutilin (Fig. 66) [555].

4.2.6 Abietanes

Abietane-type diterpenoids occur mainly as plant-derived secondary metabolites.

However, some examples of this type of diterpene have been isolated from fungi.

So far, only seven abietanes, of which the C rings are all aromatic, are of mushroom

origin (Table 42).
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From two Phellinus fruiting bodies, P. igniarius and P. pini, the two abietanes,

12-hydroxy-7-oxo-5,8,11,13-tetraene-18,6-abitanolide (653) and dehydroabietic

acid (654) were obtained (Fig. 67) [556, 557]. Dehydroabietic acid showed very

weak inhibition of NO production with an IC50 value of 98.9 μM, while L-NMMA,

the positive control, gave an IC50 value of 15.7 μM. The ascomycete Hypoxylon
rickii has been found to produce different types of secondary metabolites, including

the abietane diterpenoid, rickitin A (655) (Fig. 67). Rickitin A displayed weak

antibacterial activity against Staphylococcus aureus DSM 346, with an MIC value

of 33.3 μg/cm3, and was evaluated for cytotoxic effects against the KB3.1 cervical

carcinoma cell line and L929 mouse fibroblast cells, with IC50 values of 18.0 and

23.0 μg/cm3, respectively [353].
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Table 42 Abietane diterpenoids

Compound Origin Type Refs.

12-Hydroxy-7-oxo-5,8,11,13-tetraene-18,6-

abitanolide (653)

Phellinus igniarius Abietane [556]

Dehydroabietic acid (654) Phellinus pini Abietane [557]

Rickitin A(655) Hypoxylon rickii Abietane [353]

Perenacidins A–D (656–659) Perenniporia
subacida

Abietane [558]
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4.2.7 Crinipellins

Crinipellins are a class of diterpenoids possessing a tetraquinane skeleton, and these

compounds are produced by the basidiomycetous genus Crinipellis (Table 43).

Culturing of the fungus Crinipellis stipitaria led to the the isolation of a crystalline

substance with antibiotic properties, named crinipellin. However, later on the

structure of this substance was determined to be 9-O-acetylcrinipellin A (660)

(Fig. 68) [559, 560]. The structure of crinipellin remained undetermined until

1985. Four related diterpenes were obtained from several strains of this fungus,

namely, crinipellins A (661), B (662), dihydrocrinipellin B (663), and

tetrahydrocrinipellin A (664) (Fig. 68). The absolute configuration of crinipellin

B was established by single-crystal X-ray diffraction analysis [559]. Crinipellin

derivatives were found in a fungus collected in Yunnan Province, People’s Repub-
lic of China, and partial sequence analysis of the internal transcribed spacers (ITS1

and ITS2) and the 5.8S rDNA gene were supportive of the organism being inves-

tigated as belonging to the genus Crinipellis. Four additional crinipellin derivatives
665–668 were isolated from an agar culture of this fungus. All showed moderate

growth-inhibitory activities against HeLa cells [561].

More recently, four potentially anti-inflamatory crinipellin analogues,

crinipellins E–H (669–672), were isolated from the liquid culture of a Crinipellis
species (Fig. 68). Structurally, the C-14 isopropyl moiety is modified as terminal

double bonds in crinipellins G and H. Biological testing revealed that crinipellins E,

F, and G dose-dependently inhibited LPS/IFN-γ induced CXCL10 promoter activ-

ity in transiently transfected human MonoMac6 cells, with IC50 values of 15, 1.5,

and 3.15 μM, respectively. Moreover, the aforementioned three crinipellins also

reduced mRNA levels and the synthesis of pro-inflammatory mediators, while

crinipellin H was devoid of these types of biological activities [562].

Although the crinipellins were discovered in 1985, reports dealing with their

isolation and characterization have been limited to only three research articles,

Table 43 Crinipellins

Compound Origin Type Refs.

Crinipellins A (661), B (662) Crinipellis
stipitaria

Crinipellin [559]

9-O-Acetylcrinipellin A(660) Crinipellis
stipitaria

Crinipellin [559, 560]

Dihydrocrinipellin B (663) Crinipellis
stipitaria

Crinipellin [559]

Tetrahydrocrinipellin A (664) Crinipellis
stipitaria

Crinipellin [559]

(4β)-4,4-O-Dihydrocrinipellin A (665) Crinipellis sp. 113 Crinipellin [561]

(4β,8α)-4,4-O-8,8-O-Tetrahydrocrinipellin B

(666)

Crinipellis sp. 113 Crinipellin [561]

Crinipellins C (667), D (668) Crinipellis sp. 113 Crinipellin [561]

Crinipellins E–H (669–672) Crinipellis sp. Crinipellin [562]
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including one that was just published very recently. For some time, their interesting

tetraquanane structures and promising bioactivities have made the crinipellins

appealing synthetic targets [563, 564].

4.2.8 Miscellaneous Diterpenoids

Macromycetes species have yielded several other types of diterpenoids, such as

cleistanthanes, labdanes and rosanes. Many of these diterpenoids were reported in

recent years, which has expanded the known chemical diversity of terpenoids

produced by fungi.

A culture of the basidiomycetous fungus Albatrellus confluens yielded two

cleistanthane-type diterpenes, 3α,5α,8β-trihydroxycleistanth-13(17),15-dien-18-
oic acid (673) and 8β-hydroxy-18-norcleistanth-4(5),13(17),15-trien-3-one (674)

(Fig. 69) [565]. Gleromycenolic acid A (675) is a cleistanthane-type diterpene

isolated from the medicinal fungus Engleromyces goetzii. This species is distrib-
uted widely in the Tibetan plateau and in Sichuan and Yunnan provinces of

1
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H

O
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O
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O
O

OHHO
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O OHO
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O OHO
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Fig. 68 Structures of crinipellins
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mainland China, and is used to treat infections, inflammation, and cancer (Fig. 69).

Gleromycenolic acid A (675) inhibited the activity of the cholesterol ester transfer

protein (CETP) with an IC50 value of 7.55 μM [566]. Moreover, five additional

rosane-type diterpenoids (676) were also obtained from cultures of Engleromyces
goetzii, but they were devoid of discernible CETP inhibitory activity.

In the course of searching for novel inhibitors of human neutrophil elastase

(HNE), two labdane diterpenes, 677 and 678, were isolated from the fruiting bodies

of Ramaria formosa (Table 44). Both exhibited moderate inhibition of HNE. Other

types of diterpenoids, such as kauranes (679, 680), a viscidane (681), an atisane

(682), the macrocyclic eryngiolide A (683), and the diterpenoid alkaloid concavine,

represent a miscellanous group of diterpenoids isolated from mushrooms.

Tricholomalides A–C (686, 687) are three γ-lactone group-containing

diterpenoids isolated from a methanol extract of the fruiting bodies of Tricholoma

OH

HOOC
HO

OH

OH
O

H

HOOC

HO

HOOC

HO

HO

HO
HO

COOCH3 O

HO
HO

O

OH

O
OH

OH

R
OH

679 R = CHO
680 R = CH2OH

HO

O

OH

OH

OH

HOOC

OH

N

O

O

O

O

O

HO

HO
OH

OH

673 674 675

676 677 678

681 682

684683 685

Fig. 69 Structures of miscellaneous diterpenoids
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sp. These three compounds were evaluated for the induction of neurite outgrowth in

rat pheochromocytoma cells at a concentration of 100 μM [572]. A total synthesis

of tricholomalides A and B led to a revision of their structures (Scheme 24) [573].

Table 44 Miscellaneous diterpenoids

Compound Origin Type Refs.

3α,5α,8β-Trihydroxycleistanth-13(17),15-
dien-18-oic acid (673)

Albatrellus confluens Cleistanthane [565]

8β-Hydroxy-18-norcleistanth-4(5),13(17),15-
trien-3-one (674)

Albatrellus confluens Cleistanthane [565]

Gleromycenolic acid A (675) Engleromyces goetzii Cleistanthane [566]

Engleromycenolic acid B Engleromyces goetzii Rosane [566]

Engleromycenol (676) Engleromyces goetzii Rosane [566]

Rosololactone Engleromyces goetzii Rosane [566]

Rosenonolactone Engleromyces goetzii Rosane [566]

7-Deoxyrosenonolactone Engleromyces goetzii Rosane [566]

8,14-Labdadien-13-ol (685) Phellinus pini Labdane [557]

3β,18-Dihydroxy-8S-labd-13E-en-16-oate
(677)

Ramaria formosa Labdane [567]

3β,18-Dihydroxy-8S-tetra-nor-labdan-12-oate
(678)

Ramaria formosa Norlabdane [567]

Phlebiakauranol aldehyde (679) Punctularia
atropurpurascens

Kaurane [568]

Phlebiakauranol alcohol (680) Punctularia
atropurpurascens

Kaurane [568]

8-Oxoviscida-2,11(18)-diene-13,14,15,19-

tetraol (681)

Hypsizygus
marmoreus

Viscidane [569]

17-Hydroxy-ent-atisan-19-oic acid (682) Inonotus obliquus Atisane [332]

Eryngiolide A (683) Pleurotus eryngii [570]

Concavine (684) Clitocybe concava Diterpenoid

alkaloid

[571]

O

OO

O
HO

O

OO

O
HO

revised

686 (tricholomalide A)

OH

OO

O
HO

OH

OO

O
HO

revised

687 (tricholomalide B)

Scheme 24 Structural

revisions of tricholomalides

A (686) and B (687)
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4.3 Triterpenoids

Triterpenoids are a major group of secondary metabolites from mushrooms, espe-

cially from their fruiting bodies. Triterpenoids are composed of six isoprene units

represented by acyclic, mono-, di-, tri-, tetra-, and pentacyclic carbon skeletons. So

far, a total of four types of polycyclic triterpenoids have been isolated from higher

fungi, namely, those of the lanostane-, ergostane-, cucurbitane-, and saponaceolide

types (Fig. 70). Among them, the lanostanes account for the largest proportion of

mushroom triterpenoids. In turn, the Ganoderma-derived lanostanes have been

investigated to the greatest extent thus far. Some fungal-derived lanostanes are

considered to be potential anticancer compounds [574]. Ergostane-type

triterpenoids have been found mainly in the medicinal fungus Antrodia
cinnamomea.

4.3.1 Ganoderma Lanostanes

The genus Ganoderma comprises more than 300 species that are distributed mostly

in tropical regions [575]. Ganoderma species are a group of medicinal fungi that

have been used as remedies for the treatment of many different types of disease for

thousands of years in China. A literature survey revealed that except for the

extensively studied species Ganoderma lucidum, a further 23 species of

Ganoderma have been subjected to phytochemical investigation. These are:

G. amboinense, G. annulare, G. applanatum (synonym G. lipsiense), G. australe,
G. boninense, G. capense, G. carnosum, G. cochlear, G. colossum, G. concinna,
G. curtisii, G. fornicatum, G. hainanense, G. leucocontextum, G. mastoporum,
G. neo-japonicum, G. orbiforme, G. pfeifferi, G. resinaceum, G. sinense,
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G. theaecolum, G. tropicum, and G. tsugae. The secondary metabolites of

Ganoderma species comprise (nor-)lanostanes, C30 pentacyclic triterpenes,

meroterpenoids, sesquiterpenoids, alkaloids, steroids, and benzenoids. Baby et al.

have published a systematic review of the secondary metabolites from Ganoderma
[576]. However, this review highlighted the structural classification of the

Ganoderma triterpenoids, while the biological activities of these triterpenes were

only discussed briefly. Therefore, those Ganoderma triterpenes with distinctive

structures and/or significant and promising bioactivities are highlighted in the

present section (Table 45).

Lanostane triterpenoids from the genus Ganoderma have been classified into

four groups based on the carbon number of the lanostane skeleton as follows:

(a) C30 lanostanes including ganoderic acids and other functionalized lanostanes,

such as aldehydes, alcohols, esters, glycosides, lactones, and ketones; (b) C27

lanostanes with the C-25, C-26, C-27 carbon atoms degraded, including lucidenic

acids, alcohols, lactones, and esters; (c) C24 and C25 lanostanes, and (d) C30

pentacyclic triterpenes. Almost half of the lanostanes have been reported from the

medicinal fungus G. lucidum.
Ganoderma triterpenoids display diverse biological activities, such as having

anti-inflammatory, antitumor, antiviral, and antiplasmodial effects (Table 45).

Many biological studies on Ganoderma triterpenoids have focused on their effects

on the proliferation of tumor cells and their potential anti-inflammatory activity.

Additionally, Ganoderma triterpenoids also exhibit the inhibition of many

enzymes.

Ganoderic acid Df as well as its methyl ester were isolated from G. lucidum. A
biological study revealed ganoderic acid Df to have human aldose reductase

inhibitory activity in vitro, with an IC50 value of 22.8 μM, while its methyl ester

derivative was much less active. Therefore, it was suggested that the carboxylic

acid group of the side chain is essential for aldose reductase inhibitory activity

[582]. A similar general observation was made for ganoderic acid C2 and

ganoderenic acid A (693) (Fig. 71), using the same type of biological test system

[609]. Moreover, ganoderenic acid A is a potent inhibitor of β-glucuronidase, which
is associated with liver injury [610]. α-Glucosidase inhibitors prevent the digestion
of carbohydrates and some have use as potential drug leads for the treatment of

diabetes mellitus type-2. A bioguided-isolation procedure of the chloroform extract

of G. lucidum resulted in the isolation of ganoderol B. Ganoderol B displayed α-
glucosidase inhibitory activity with an IC50 value of 48.5 μg/cm3 (119.8 μM)

[625]. Lucidenic acid O and lucidenic lactone are trinorlanostanes isolated from

G. lucidum. Both these compounds were found to inhibit calf DNA polymerase α,
rat DNA polymerase β, and human immunodeficiency virus type 1 reverse tran-

scriptase at a concentration of 100 μM [619].

The activity of Ganoderma triterpenoids against the source of malaria infection,

Plasmodium falciparum, and against the pathogenic bacterium, Mycobacterium
tuberculosis, have also been reported. Ganoderic acid S, 23-hydroxyganoderic

acid S, ganoderic aldehyde TR, and ganoboinketals A–C were reported to exhibit

antiplasmodial activity [592, 630]. Ganoderic aldehyde TR possesses an aldehyde
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group and proved to be more active than 23-hydroxyganoderic acid S, which

contains a carboxylic acid group. The IC50 values of ganoderic aldehyde TR,

ganoderic acid S, and 23-hydroxyganoderic acid S were 6, 11, 11 μM, respectively,

while the co-occurring compound ganoderic acid DM showed no antiplasmodial

activity in vitro at 20 μM. In contrast to its biologically active structural analogs,

ganoderic acid DM lacks a 7,9(11)-diene moiety, which is regarded as an essential

functional group for their conferment of antiplasmodial activity [592]. This same

conclusion could also be drawn from the anti-HIV-1 efffects of ganoderic acid B

and ganoderiol B, and the antitubercular effect of 3β,15α,22β-triacetoxy-lanosta7,9
(11),24-trien-26-oic acid (Fig. 71) [646, 647]. Both ganoderic acid B and

ganoderiol B, are more active against HIV-1 protease than triterpenoids that are

devoid of a Δ7,9(11) substructure [646].

Ganoboninketals A–C (696–697), isolated from G. boninense, are three

nortriterpenes with a rearranged 3,4-seco-norlanostane skeleton (Fig. 71). All

showed antiplasmodial activity against Plasmodium falciparum, with IC50 values

of 4.0, 7.9, and 1.7 μM, respectively [630].

A series of lanostanes varying in the presence of acetoxy groups was isolated

from Ganoderma sp. BCC 16642. Most displayed growth inhibitory activities

againstMycobacterium tuberculosis H37Ra, with theMIC value of the most active

compound being 0.781 μg/cm3. Structure-activity relationships of these lanostanes

were proposed, which suggested that a 3β-OAc group is crucial for antitubercular

activity. Moreover, lanostanes containing a 7,9(11)-diene motif showed higher

antitubercular activity than their 8-ene congeners [636].

The lanostane skeletons of Ganoderma species tend to undergo carbon bond

cleavage and rearrangement, and the C-3–C-4 bond may be cleaved to form a

3,4-seco-lanostane skeleton. Other rearrangements of the lanostanes lead to the 14

(13!12)abeo-lanostane and 9(10!19)abeo-lanostane skeletons [635, 640,

641]. The side chains of lanostane skeletons readily form lactone groups or

spiroketal lactone groups, and then result in the formation of more complex

polycyclic triterpenoids. Colossolactones and ganodermalactones are unusual

tritepenoids isolated from the mushrooms G. colossum and Ganoderma spp.,

respectively, and feature an α,β-unsaturaed-δ-lactone group and have structural

similarities to those of triterpenoid lactones isolated from the medicinal plant

genera Schisandra and Kadsura (Fig. 71) [648–651].

4.3.2 Antrodia cinnamomea Ergostanes and Lanostanes

The medicinal fungus Antrodia cinnamomea (synonyms A. camphorata,
Taiwanofungus camphorata, and Ganoderma camphoratum) is a rare and valuable

fungus indigenous to Taiwan. The Chinese name of this fungus is “Chang-Kun” or

“Niu-Chang-Chih”. This fungus has been used traditionally as an antidote as well as

anticancer and anticnesmatic agent. The first study of the chemical constituents of this

fungus was conducted in 1995, and, after this, more and more attention has been paid

to the constituents of A. cinnamomea and their biological evaluation. Tzeng et al. have
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published a systematic review of the bioactive compounds and the pharmacological

effects of A. camphorata [652]. However, this review did not include all triterpenoids

that were reported before 2009. Therefore, such compounds will be included in the

present chapter, which also covers the triterpenoids from A. camphorata as well as

their biological activities reported from 2009 to 2016 (Table 46).

The triterpenoids found in the fruiting bodies, submerged cultures, and wood or

solid-state culturess of A. camphorata are only representative of the ergostane and

lanostane types. Due to the high structural and stereochemical similarities of the

ergostanes isolated from A. camphorata, which has made their purification process

difficult, most have been obtained as (25R/S) epimeric mixtures. Several new

approaches were applied to successfully separate the (25R/S) ergostanes, for exam-

ple, by employing supercritical-fluid chromatography [673]. Interestingly, using a

MTT assay it was shown that (25S)-antcin C exhibited cytotoxicity against Hep G2

Table 46 Ergostanes and lanostanes from A. cinnamomea

Compound Origin Type Refs.

Zhankuic acid C (710) T. camphoratus Ergostane [653, 654]

Zhankuic acids D, E A. cinnamomea Ergostane [655]

15α-Acetyl-dehydrosulphurenic acid A. cinnamomea Lanostane [655]

Eburicoic acid (712) A. camphorata Lanostane [656]

Dehydroeburicoic acid (713) A. cinnamomea Lanostane [655, 657–

661]

Dehydrosulphurenic acid A. cinnamomea Lanostane [655]

Antcinate A A. camphorata Ergostane [662]

(25R/S)-Antcin C A. cinnamomea Ergostane [663]

Methyl antcinate A A. camphorata Ergostane [664, 665]

Methyl antcinate B A. camphorata Ergostane [122, 666]

Methyl antcinate K A. salmonea Ergostane [667]

Methyl antcinate L A. salmonea Ergostane [667]

Antcin K (711) A. cinnamomea Ergostane [668, 669]

Antcin M A. salmonea Ergostane [667]

Camphoratins A–J T. camphoratus Ergostane [123, 670]

3,7,11-Trioxo-5α-lanosta-8,24(E)-dien-26-oic
acid

A. camphorata Lanostane [671]

Methyl 11α-3,7-dioxo-5α-lanosta-8,24(E)-dien-
26-oate

A. camphorata Lanostane [671]

Methyl 3,7,11,12,15,23-hexaoxo-5α-lanost-8-
en26-oate

A. camphorata Lanostane [671]

Ethyl 3,7,11,12,15,23-hexaoxo-5α-lanost8-en-
26-oate

A. camphorata Lanostane [671]

Ethyl lucidenate A A. camphorata Lanostane [672]

Ethyl lucidenate F A. camphorata Lanostane [672]

15-O-Acetylganolucidate A A. camphorata Lanostane [672]

3,11,15,23-Tetraoxo-27ξ-lanosta-8,16-dien-26-
oic acid

A. camphorata Lanostane [672]
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and MCF-7 cells with IC50 values of 14.5 and 12.8 μg/cm3, while (25R)-antcin C

did not show significant cytotoxic effects [663].

Many of the isolated triterpenoids from A. camphorata have been reported to

display potential antitumor and anti-inflammatory activities [670, 672, 674]. Methyl

antcinate L, antcin M, and methyl antcinate K inhibited NO production with IC50

values around 1.7–16.5 μM [667]. Zhankuic acid C (710) exhibited an immuno-

suppressive effect on dendritic cell activation and the contact hypersensitivity

response. This suggested that this compound may be a promising agent for use in

treating chronic inflammation and autoimmune diseases (Fig. 72) [654]. Antcin K

(711) is the most abundant ergostane tritepenoid from the fruiting bodies of

basswood-cultivated A. cinnamomea (Fig. 72). Biological studies showed that

compound 711 can reduce the protein expression of integrins β1, β3, α5, and αv
and suppress phosphorylation of FAK, Src, PI3K, AKT, MEK, ERK, and JNK, so

as to inhibit the adhesion, migration, and invasion of Hep 3B human hepatoma

cells. Moreover, antcin K can induce mitochondrial and endoplasmic reticulum

stress-mediated apoptosis in this same type of cells. These results suggested that

antcin K could be used as an adjuvant in liver cancer therapy [668, 669].

Further studies have revealed that other lanostane-related triterpenoids, C-24

methyl lanostane (which was also named eburicane), eburicoic acid (712) and

dehydroeburicoic acid (712) isolated from this medicinal fungus, display several

biological activities (Fig. 72). Eburicoic acid and dehydroeburicoic acid inhibited

acetic acid-induced writhing responses and formalin-induced pain in the late phase

in mice. They also displayed potential anti-inflammatory activity and thus might

decrease inflammatory cytokines and increase antioxidant enzyme activity

[658]. Dehydroeburicoic acid (712) induced G2/M phase arrest in a dose-dependent
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Fig. 72 Selected structures of ergostane and lanostane triterpenoids from Antrodia cinnamomea
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manner in HL 60 cells. In xenograft animal model work, it was revealed that

dehydroeburicoic acid reduced tumor weight and size [659, 661]. Further studies

have shown that 712 also displayed antidiabetic and antihyperlipidemic-related

activities [660].

4.3.3 Poria cocos Lanostanes

Poria cocos is a saprophytic fungus that parasitizes the roots of many Pinus species.
The sclerotia of P. cocos have been used as a traditional Chinese medicine for their

diuretic, sedative, and tonic effects. Pharmacological investigations have revealed

that P. cocos-derived polysaccharides are related to observed immune-stimulating

effects, while the lanostane triterpenoids are responsible for anti-inflammatory and

cytotoxic activities evident in laboratory studies. Lanostanes as well as eburicanes

originating from P. cocos were fully reviewed in previous accounts [574, 675].

Herein are covered the triterpenoids isolated from P. cocos between the years 2012

and 2016 as well as the newly reported biological activities of several triterpenoids

(Table 47).

Pachymic acid (714) is one of the predominant and most well-studied eburicane

triterpenoids isolated from P. cocos (Fig. 73). Previous investigations have shown
that pachymic acid can stimulate glucose uptake through enhanced GLUT4 expres-

sion and translocation [679], inhibit cell growth, modulate arachidonic acid metab-

olism in A549 non-small cell lung cancer cells [680], and damage breast cancer cell

Table 47 Selected compounds from P. cocos

Compound Origin Type Refs.

3-epi-Benzoyloxy-dehydrotumulosic acid Poria cocos Eubricane [676]

3-epi-(30-O-Methylmalonyloxy)-dehydrotumulosic

acid

Poria cocos Eubricane [676]

3-epi-(30-Hydroxy-30-methylglutaryloxyl)-

dehydrotumulosic acid

Poria cocos Eubricane [676]

16α-Hydroxy-3-oxo-24-methyllanosta-5,7,9(11),24

(31)-tetraen-21-oic acid (715)

Poria cocos Eubricane [677]

3β,16α,29-Trihydroxy-24-methyllanosta-7,9(11),24

(31)-trien-21-oic acid

Poria cocos Eubricane [677]

3β,16α,30-Trihydroxy-24-methyllanosta-7,9(11),24

(31)-trien-21-oic acid

Poria cocos Eubricane [677]

3β-Acetoxy-16α,24β-dihydroxylanosta-7,9(11),25-
trien-21-oic acid

Poria cocos Lanostane [677]

3β,16α-Dihydroxy-7-oxo-24-methyllanosta-8,24

(31)-dien-21-oic acid

Poria cocos Eubricane [677]

3α,16α-Dihydroxy-7-oxo-24-methyllanosta-8,24

(31)-dien-21-oic acid

Poria cocos Eubricane [677]

3-(2-Hydroxyacetoxy)-5α,8α-
peroxydehydrotumulosic acid (716)

Poria cocos Eubricane [678]
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invasion by suppressing nuclear factor-κB-dependent matrix metalloproteinase-9

expression [681]. Moreover, pachymic acid remains a molecule of interest with

potential for treating many other diseases.

In the course of a pharmacological investigation of compound 714, oral admin-

istration in mice prolonged sleeping time and suppressed locomotion activity,

suggestive of sedative-hypnotic effects. Moreover, 714 increased protein level

expression of GAD65/67 over a broad dose range, and increased α- and β-subunit
protein levels, but decreased γ-subunit protein levels in GABAA receptors. This

experimental work suggested that pachymic acid has potential for the treatment of

insomnia [682].

Other bioassays on pachymic acid have focused mainly on its potential

antitumor activity. Chen et al. reported that 714 significantly reduced cell growth

in a dose- and time-dependent manner, arrested the G0 phase of the cell cycle in

gallbladder cells, and affected the AKT and ERK signaling pathways [683]. More-

over, 714 exerted antitumor-related activity in other in vitro and in vivo bioassays

[684–687].

4.3.4 Lanostanes from Other Mushrooms

Lanostanes are widely distributed secondary metabolites of additional mushrooms,

and the majority are found in their fruiting bodies (Tables 48, 49, and 50). Due to

the shortages of their organisms of origin and the consequent difficulty in obtaining

sufficient quantities of fruiting bodies, only a small number of these mushrooms

have been investigated chemically and reported to produce triterpenoids.
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Fig. 73 Selected structures of eburicanes from P. cocos
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Fruiting bodies from the genus Astraeus have a star-like structure and are thus

sometimes called earth-star fungi. Most mushrooms belonging to this genus are

edible. A bioassay-guided fractionation of an EtOH extract of the mushroom

A. pteridis led to the isolation of three lanostane triterpenoids with intramolecular

hemiacetal groups, astrapteridone, astrapteridiol, and 3-epi-astrapteridiol (717)

(Fig. 74) [688]. The absolute configuration of astrapteridone was established by

Table 49 Lanostane triterpenoids reported from other mushrooms (2)

Compound Origin Type Refs.

(30S)-3β-Acetyl-2α-(30-hydroxy-
30-methyl)glutarylcrustulinol (HS-A)

Hebeloma
crustuliniforme

Lanostane [710, 711]

HS-A (726), B, C H. spoliatum Lanostane [711]

Hebelomic acids A–F, H–I (727) H. senescens Lanostane [712–714]

24(E)-3β-Hydroxylanosta-8,24-dien-26-al-
21-oic acid

H. versipelle Lanostane [715]

Inonotsuoxides A, B I. obliquus Lanostane [716]

Inotodiol (728) I. obliquus Lanostane [717]

Inonotsutriols A–C (729) I. obliquus Lanostane [718]

(3β,22R,23E)-Lanosta-8,23-diene-3,22,25-
triol

I. obliquus Lanostane [719]

(3β,22R,23E)-Lanosta-7,9(11),23-triene-
3,22,25-triol

I. obliquus Lanostane [719]

Inoterpenes A-F I. obliquus Lanostane [720]

Spiroinonotsuoxodiol (731) I. obliquus 7(8!9)abeo-
Lanostane

[721]

Inonotusols A–G (730) I. obliquus Lanostane [722]

Inotolactones A (732), B (733) I. obliquus Lanostane [332]

Inonotusanes A, B I. obliquus Lanostane [723]

Inonotusane C I. obliquus 3-Norlanostane [723]

Table 50 Lanostane triterpenoids reported from other mushrooms (3)

Compound Origin Type Refs.

Fasciculols A–F (734), H–M Neamatoloma fasciculare Lanostane [724–727]

Fasciculic acids A–C (735) Neamatoloma fasciculare Lanostane [728, 729]

Clavaric acid Clavariadelphus truncates Lanostane [730]

Elfvingic acids A–H (739) Elfvingia applanata Lanostane [731]

Tyromycin A Tyromyces lacteus Lanostane [732]

Thyromycic acids B–G (737) Tyromyces fissilis Lanostane [733, 734]

Blazeispirol A (736) Agaricus blazei Nor-lanostane [735]

Hexatenuins A–C (738) Hexagonia tenuis Lanostane [736]

Hexagonins A–E Hexagonia apiaria Lanostane [737]

Gloeophyllins A–J Gloeophyllum abietinum Lanostane [738]

Phellibarins A–C (740) Phellinus rhabarbarinus Lanostane [739]

Saponaceols A–C (741) Tricholoma saponaceum Lanostane [740]
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single-crystal X-ray diffraction analysis. All compounds were evaluated for

antituberculosis activity againstM. tuberculosis. 3-epi-Astrapteridiol showed mod-

erate activity with a MIC value of 34.0 μg/cm3. From the popular Thai edible

mushroom A. odoratus, five lanostane triterpenes, astraodorol and astraodoric acids
A–D, were obtained. Astrodoric acids A and B exhibited antituberculosis activities

in vitro with respective MIC values of 50 and 25 μg/cm3, and exhibited cytotoxic

effects against the KB and NCI-H187 cell lines [689]. The predominant compound,

astraodorol, was used as a template to synthesize ten derivatives, which showed

promising antimalarial activities [741]. Astrakurkurol and astrakurkurone (718) are

two crystalline triterpenes reported from the Indian edible mushroom

A. hygrometricus (Fig. 74). Both showed inhibition of the growth of Candida
albicans, and were comparable in potency to the standard antifungal antibiotics

used. Additionally, 718 also inhibited the growth of Leishmania donovani
promastigotes [691].

The fungus Daedalea dickinsii is a wood-decaying fungus that is distributed

widely in East Asia. This organism produces lanostane triterpenes with particular

structural modifications, such as esterification by malonic acid at C-3 and

glucosidation at the C-21 carboxylic acid group. 31-Hydroxycarboxyacetylquercinic

acid (719) was isolated from the fruiting bodies of D. dickinsii. It showed antimicro-

bial activities against human pathogenic fungi and bacteria [696]. Daedaleanic acid A

(720) and daedaleaside A (721) display a rare rearrangement of the lanostane skeleton,

19(10!5)abeo-4,5-seco-lanostane, of which ring A is cleaved between C-4 and C-5,

and ring B is aromatic (Fig. 74). Other triterpenes obtained this study showed

induction activity on internucleosomal DNA fragmentation characteristic of apoptotic

cell death in the HL-60 cell line [697].

The genus Fomitopsis belongs to the family Polyporaeae and has proven to be a

good source of triterpenes. Many such species were investigated phytochemically,

including F. nigra, F. pinicola, F. rosea, and F. spragei. For example, fomitopsin B

(722) is a triterpenoid with an intramolecular spiro-acetal group isolated from the

fruiting bodies of F. spraguei (Fig. 74) [702]. In the course of a chemical study of

the wood-decaying fungus F. pinicola, two lanostane triterpenoids and ten

lanostane triterpenoid glycosides were obtained from the fruiting bodies.

Fomitopinic acid A, and fomitosides E (723) and F displayed inhibition of the

COX-2 enzyme with IC50 values in the range 0.15–1.15 μM, with the positive

control being indomethacin (IC50 0.60 μM) [703]. Fomitoside K (724) is a bioactive

lanostane triterpenoid glycoside isolated from the fruiting bodies of F. nigra.
Fomitoside K induced apoptosis in YD-10B cells through the ROS-dependent

mitochondrial dysfunction pathway [704, 705].

Officimalonic acid A (725), isolated from the ethnomedicinal fungus

F. officinalis, is an unusual triterpenoid with a 7(8!9)abeo-lanostane skeleton.

Its absolute configuration was established by X-ray diffraction analysis

(Fig. 74) [709].

Lanostane triterpenoids from the genus Hebeloma were proven to be toxic

metabolites (Table 49). The three triterpenoids HS-A (726), B, and C were isolated

from the Japanese mushroom H. spoliatum (Fig. 75). They showed a papaverine-
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like relaxation effect in mice. Intraperitoneal administration of HS-A, B, and C

caused death after paralysis of the limbs in mice at a dose 100 mg/kg [711]. Several

hebelomic acids were isolated also from this genus. Interestingly, most of these

isolated triterpenoids contain a 3-hydroxy-3-methylglutaric acid (HMG) acyl

moiety, of which the absolute configuration was established by chemical methods

[714]. Moreover, hebelomic acids H (727) and I from the fruiting bodies of

H. senescens are two triterpene depsipeptides containing valine and isoleucine

units. The absolute configurations of the HMG residue and amino acids were

determined by chemical methods [713].
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The fungus Inonotus obliquus is called “Kabanoanatake” in Japan, and “Chaga”
in Russia. This fungus has been used as a Russian folk medicine for treating cancer

since at least the sixteenth century. Investigation of the secondary metabolites of

I. obliquus has been a topic of extensive interest for some time. The major group of

metabolites, which are lanostane triterpenoids, turned out to be bioactive

constituents of I. obliquus (Table 49). Inotodiol (728) is a C-3,C-22-dihydroxy

substituted lanostane triterpene and it is also the most abundant triterpene isolated

from the fruiting bodies of I. obliquus (Fig. 75). Inotodiol displayed potent anti-

tumor-promoting activity in an in vivo model, and mechanistically it induces DNA

fragmentation and increases caspase-3/7 activity [716, 717]. Notably, lanostane

triterpenoids with a five-membered ring between C-20 and C-24 located in the side

chain have been found only from this fungus, namely, inonotsutriols A–C (729)

[718], inoterpene F [720], and inonotusols A–G (730) [722]. Spiroinonotsuoxodiol

(731) represents the first compound with a 7(8!9)abeo-lanostane skeleton isolated
from the higher fungi (Fig. 75). Other reports describing this kind of skeleton refer

to species in the plant genus Abies [742–744]. Spiroinonotsuoxodiol was evaluated
for cytotoxicity against the P388, L1210, HL-60, and KB cell lines, demonstrating

respective IC50 values of 29.5, 12.5, 30.1, 21.2 μM [721]. Inotolactones A (732) and

B (733) are α,β-unsaturated δ-lactone-bearing lanostane-type triterpenoids isolated

from a submerged culture of I. obliquus. They exhibited more potent α-glucosidase
inhibitory activities than the positive control acarbose, attesting to the potential

antihyperglycemic properties of this fungus (Fig. 75) [332].

Lanostane triterpenoids were also found in other mushrooms, such as the genera

Clavariadelphus, Elfvingia, Gloeophyllum, Hexagonia, Neamatoloma, Phellinus,
and Tyromyces (Table 50). The triterpenoids from the bitter mushroom

N. fasciculare were reported to exhibit plant growth inhibition [724], and are

toxic to humans, and inhibit calmodulin. Fasciculols E (734) and F have been

shown to cause paralysis and death in mice, with LD50 values of 50 mg/kg and

168 mg/kg, respectively (Fig. 76) [727]. Fasciculic acids A–C (735) and F are

calmodulin antagonists [726, 729]. Clavaric acid isolated from the fungus

Clavariadelphus truncatus is an inhibitor of human farnesyl-protein transferase

(FPT) [745].

Blazeispirol A (736) is a hexanor-lanostane isolated from the fermentation of the

mushroom Agaricus blazei (Fig. 76). A biological study showed that blazeispirol A

induces cell death in Hep 3B human hepatoma cells through caspase-dependent and

caspase-independent pathways, suggesting its potential for cancer chemopreventive

and chemotherapeutic use [735]. The genus Hexagonia accumulates lanostane

triterpenoids with a spiro-lactone group in the side chain, forming some rigid

lanostanes. Hexatenuins A–C and hexagonins A–E showed anti-inflammatory and

antitrypanosomal activities [736, 737].
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4.3.5 Cucurbitanes

Cucurbitane triterpenoids are a group of usually bitter-tasting constituents produced

mainly by members of the plant families Cucurbitaceae [746], Cruciferae, and

Primulaceae. However, this type of triterpenoid has been found also in mushrooms,

specifically the two speciesHebeloma vinosophyllum and Leucopaxillus gentianeus
and the genus Russula (Table 51).

Twelve cucurbitane triterpenoids, hebevinosides I–XII (742) were isolated from

the mushroom H. vinosophyllum (Fig. 77). These cucurbitanes were purified as

toxic principles of this mushroom [747–749]. A bitter component of the mushroom

L. gentianeus is cucurbitacin B, which has been investigated extensively biologi-

cally as a common higher plant constituent.

The genus Russula affords lactarane-type sesquiterpenoids, which have been

mentioned previously. Many cucurbitane triterpenoids were also found in this

genus (Table 51).

Table 51 Cucurbitane triterpenoids

Compound Origin Type Refs.

Hebevinosides I–XIV (742) Hebeloma
vinosophyllum

Cucurbitane [747–

749]

Cucurbitacin B Leucopaxillus
gentianeus

Cucurbitane [750]

Leucopaxillones A (743), B (744) Leucopaxillus
gentianeus

Cucurbitane [750]

Cucurbitacin D Leucopaxillus
gentianeus

Cucurbitane [751]

16-Deoxycucurbitacin B Leucopaxillus
gentianeus

Cucurbitane [751]

Rosacea acids A, B Russula rosacea Cucurbitane [752]

Lepida acid A (745) Russula lepida Cucurbitane [753]

(24E)-3β-Hydroxycucurbita-5,24-diene-
26-oic acid

Russula lepida Cucurbitane [754]

(24E)-3,4-seco-Cucurbita-4,24-diene-
3,26-dioic acid (746)

Russula lepida 3,4-seco-
Cucurbitane

[754]

(24E)-3,4-seco-Cucurbita-4,24-diene-
3,26,29-trioic acid (747)

Russula lepida 3,4-seco-
Cucurbitane

[754]

Lepidolide (748) Russula lepida Cucurbitane [755]

(24E)-3,4-seco-Cucurbita-4,24-diene-3-
hydroxy-26,29-dioic acid

Russula lepida Cucurbitane [222]

Roseic acid (749) Russula aurora/
Russula minutula

Cucurbitane [756]

Roseolactones A, B Russula aurora/
Russula minutula

Cucurbitane [756]
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4.3.6 Saponaceolides

Saponaceolides are a group of triterpenoids isolated from the genus Tricholoma,
with there having been 25 examples reported so far. The spiro and bridged struc-

tural features of saponaceolides are vulnerable to rearrangement, which has led to

the formation of terreolides A–F (Table 52, Fig. 78) [760].

Repeated ingestion of the wild mushroom T. equestre caused rhabdomyolysis in

France [762]. The mushroom T. terreum is a co-occurring species of T. equestre in
southwestern France (Fig. 79). The crude extracts (CHCl3-MeOH, 1:1) of these two

mushrooms were found to be toxic to mice, while only the non-polar fraction (ethyl
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Table 52 Saponaceolides from mushroom T. saponaceum, and T. terreum

Compound Origin Type Refs.

Saponaceolides A–G Tricholoma saponaceum Saponaceolides [757–759]

Terreolides A–F (753, 754) Tricholoma terreum Saponaceolides [760]

Saponaceolides H–L, N–S Tricholoma terreum Saponaceolides [760, 761]

Saponaceolides B (751), M (752) Tricholoma terreum Saponaceolides [760]
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Fig. 78 Structures of saponaceolides A (752), B (750), M (751), and terreolides A (753) and

D (754)

Fig. 79 The mushroom Tricholoma terreum

Secondary Metabolites from Higher Fungi 163



acetate layer) was toxic when the extract of T. terreum was partitioned between

water and ethyl acetate. Further chemical investigation of the secondary metabo-

lites of T. terreum led to the isolation of 15 triterpenoids, namely, terreolides A–F

and saponaceolides H–P. Acute toxicity and the serum creatine kinase (CK) assays

in mice treated with these compounds revealed that saponaceolides B (751) and M

(752) were toxic principles, with LD50 values of 88.3 and 63.7 mg/kg. They caused

a 1.52- to 1.65-fold increase in serum CK levels relative to mice that received either

water or 1% Tween-80 alone. This investigation documented a hitherto unknown

poisonous European mushroom, T. terreum [760].

5 Conclusions

The first systematic investigations of secondary metabolites from higher fungi

originated after the discovery and introduction of penicillin into clinical practice.

From 1940 until the early 1950s mycelial cultures or fruiting bodies of more than

2000 higher fungi were screened for the production of antibiotics [763]. These

investigations resulted in the discovery of pleuromutilin (642), the lead compound

for the semisynthetic tiamulin (643) used in veterinary practice and recently also in

humans [764]. It is also of significance that a synthetic analog of illudin S (485),

(–)-irofulven (486), has entered clinical trials and demonstrated activity against

ovarian, gastrointestinal, and non-small cell lung forms of cancer. As compared to

the natural product, 486 has a much better therapeutic index and pharmacological

profile [765].

As can be deduced from the numerous new structures described recently and

documented in this chapter, interest in the secondary metabolism of higher fungi

has gained momentum. The biological activities are interesting and may help to

define new lead compounds offering structures not easily detected by the random

screening of compound assemblies derived from combinatorial chemical synthesis

procedures. The availability of secondary metabolites from higher fungi is facili-

tated by progress made in fermentation technologies and genetics, opening up

access to novel templates for chemical syntheses and providing new chemical

approaches to probe as yet unexplored biological targets [763]. The higher fungi

should continue to attract the interest of natural products chemists and other

investigators well into the future as a source not only of potential drugs, but also

of toxins, hallucinogens, and pigments.
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1 Introduction

Devastating neurodegenerative and autoimmune disorders, such as Alzheimer’s
disease, multiple sclerosis, rheumatoid arthritis, various cardiomyopathies, and

diversified cancers have been repeatedly promulgated with common evidence of
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accumulation of citrullinated proteins, autoantibody generation, and expression of

peptidylarginine deiminase (PAD). Peptidylarginine deiminase (EC 3.5.3.15)

belongs to a Ca(II)-dependent group of enzymes. It catalyzes a particular post-

translational modification called “citrullination” or “deimination” to create novel

epitopes on common proteins providing “neoantigens”, which are now known to be

characteristic for autoimmune and neurodegenerative diseases [1]. By irreversible

removal of the imine group from the protein-embedded arginine side chain at

neutral pH [2], peptidylarginine deiminase consequently induces an uncharged

citrulline residue into a protein chain (Fig. 1). Although a tRNA for citrulline

does not exist [3–5], several proteins are known to contain citrulline. The first

example was described by Rogers and Simmonds as “trichohyalin” in hair follicles

[6]. Selective expression of peptidylarginine deiminase isoforms in neurons and

astrocytes and accompanying citrullinated proteins within and surrounding

PAD-expressing cells is predominant in neurodegenerative changes typical of the

respective pathology of multiple sclerosis and Alzheimer’s disease.
In recent years it has become obvious that myelin basic protein, histones,

collagen, fibronectin, as well as other cellular proteins can be modified by

peptidylarginine deiminases during epigenetic regulation in the cell. Conversion

of the arginyl residue plays a key role in the molecular mechanism that contributes

to protein degradation, traumatic brain injuries, and cardiomyopathies in neurode-

generative and autoimmune diseases [7, 8]. Disease-associated neuronal loss results

in the release of cellular contents, including citrullinated proteins and their degra-

dation fragments, into the brain interstitium [9]. Once they have entered the blood

and the lymphatic circulation, these neo-antigens may elicit an immune response

resulting in the production of autoantibodies.

At physiological activity levels, peptidylarginine deiminases regulate many cell

signaling pathways including differentiation, apoptosis, and gene transcription

Fig. 1 Graphical illustration of the organ-specific expression of peptidylarginine deiminase

isoforms in humans. Conversion of positively-charged arginine to neutral citrulline in a protein

influences structure and function of these molecules and plays a central role in pathogenesis of

many diseases. Selective PAD inhibitors may antagonize its hyperactivity
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[10]. Increased research efforts over the past few decades have helped to advance

an understanding of the pathological events associated with PAD. In addition,

while linked to several human pathologies (see Fig. 1), the properties of

peptidylarginine deiminases has demonstrated their importance as unique thera-

peutic targets [11] and for antioxidation [12]. However, little is known about the

underlying mechanisms of peptidylarginine deiminase involved in the initiation of

pathologies such as in Alzheimer’s disease, multiple sclerosis, sepsis, and tumor-

igenesis. Herein, a detailed survey is presented on deiminase enzymes, their

regulation, homeostasis, selective inhibitors, and common detection assays, which

is intended to collate widely dispersed knowledge in the field to channel future

studies in the direction of the research areas to be explored.

2 Isozymes of Peptidylarginine Deiminase

Peptidylarginine deiminase-encoding genes are localized at chromosome 1p35–36

(Fig. 2) in humans as a well-organized cluster within a 350 kilobase-pair (kb)

region [13, 14]. Peptidylarginine deiminases are unable to convert free L-arginine

to L-citrulline, while this can be done by nitric oxide synthase (EC 1.14.13.39) in

eukaryotes and arginine deiminase (EC 3.5.3.6) in bacteria, independent from the

Ca(II) concentration, yielding nitric oxide instead of ammonia as a by-product of the

conversion [15]. To date, only a single prokaryotic enzyme, AAF06719, identified in

Porphyromonas gingivalis [16] can convert both L-arginine and peptide-bound argi-

nine into citrulline, independent of Ca(II) ions [17].

Currently, five family members of PAD enzymes (PAD1–4 and PAD6) have

been discovered, cloned, and characterized in mammals [18, 19], and they display

50–70% sequence similarity [19–22]. Each isotype has a tissue-specific expression

pattern and is distributed over a wide range of cells and tissues throughout the body

[23–26]. All known hPAD isozymes, their tissue distribution, cellular localization,

and a few of their known substrates are summarized in Table 1.

Chromosome 1p36.13
Telomere

29.3

PAD6 PAD4 PAD3 PAD1 PAD2Ig1

8.1 55.8 24.0 35.1 3.1 40.9

334.7 Kilobase pairs (kb)

85.7 52.7

Fig. 2 Schematic representation of the human peptidylarginine deiminase gene locus on chro-

mosome 1p36.13. Scheme of human peptidylarginine deiminase genes at the p-arm on chromo-

some one (1p36.13). The transcribed regions of the genes are represented by colors and the

transcription orientations are illustrated by arrowheads
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2.1 Peptidylarginine Deiminase Type 1

Peptidylarginine deiminase type 1 (PAD1) is encoded by the 40.9 kb region

localized in between the PADI-2 and PADI-3 genes that span at the p-arm of

chromosome 1 (1p36.13) (see Fig. 2). While available RT-PCR and EST data

suggest a broader tissue distribution of peptidylarginine deiminase type 1 (PAD1)

[18, 27, 28], it is primarily expressed in the epidermis and uterus [29, 30] where it

citrullinates keratinocytes, keratins (K1, K10), and keratin-associated filaggrin

protein [15]. The loss of charge following citrullination alters inter- and intra-

molecular interactions leading to partial protein unfolding and modulating the

cornification of epidermis [21]. The disassembly of the filaggrin-cytokeratin com-

plex makes it susceptible to cleavage by proteases like calpain [31, 32] that converts

pro-filaggrin into mature filaggrin [33], which can aggregate with keratin filaments

Table 1 Cellular localization, substrates, and conserved active site residues of peptidylarginine

deiminase isozymesa

aHuman PAD1 to 4 and 6 correspond to EMBL accession numbers AB033768 (Q9ULC6),

AB030176 (Q9Y2J8), AB026831 (Q9ULW8), AB017919 (Q9UM07), and AY422079

(Q6TGC4). In parentheses the corresponding UniProtKB accession numbers are given. The D,

H, and C residues are highly conserved and can be well-aligned in all peptidylarginine deiminase

isoforms, while residues at positions 372b, 374b, and 639b may play a role in substrate specificity
bAmino acids are numbered according to human peptidylarginine deiminase type 4
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by ionic interactions that enhance the physical resistance of the epidermis by

protecting keratin from proteolytic cleavage [34–36].

Among the five known isozymes, PAD1, exhibits the broadest substrate speci-

ficity [37, 38], when incubated with S100A3 protein, as compared to PAD2 and

PAD3. An X-ray structure can be used to elucidate both the catalytic mechanism

and the broad substrate precision. Recently, hexagonal bipyramidal crystals of full-

length hPAD1 (663 amino acids, UniProt No. Q9ULC6) have been obtained with

unit-cell parameters of a ¼ b ¼ 90.3 and c ¼ 372.3 Å, belonging to the p61 space

group [39, 40]. Human PAD isozymes exist as head-to-tail homodimers in solution

[41, 42]. The asymmetric crystal of PAD1 (Fig. 3) contains two monomers. Also,

small-angle X-ray scattering analysis has revealed PAD1 as a monomer in

solution [40].

2.2 Peptidylarginine Deiminase Type 2

The gene encoding for peptidylarginine deiminase type 2 (PAD2) is large (52.7 kb),

and is localized about 85.7 kilobase pairs away from the other members (see Fig. 2)

of the family and is transcribed in the direction of telomere [30]. Peptidylarginine

deiminase type 2 is distributed in common tissues including those in the central

nervous system, skeletal muscles, spleen, secretory glands, uterus, kidney, female

reproductive organs, and hematopoietic systems (see Table 1), where its expression

is regulated at both the mRNA splicing and protein translation levels [43]. The

gray matter of the brain and hypothalamus have higher expression levels of

peptidylarginine deiminase type 2 compared to the cerebellum [15]. Myelin basic

protein, the major protein component of myelin sheathes that helps to cover the

Fig. 3 Ribbon representation of X-ray structure and asymmetric unit of peptidylarginine

deiminase type 1. The PAD1 contains three main domains, i.e. the catalytic, IgG1, and IgG2

domains. In an asymmetric crystal, PAD1 exists in its monomeric form, as recently revealed by

small-angle X-ray scattering analysis [40] (PDBID: 5HP5)
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axons of nerve cells, and the glial fibrillary acidic protein are the two major targets

of PAD2 in the brain [21], whereas in the skeletal muscles and macrophages,

the intermediate filament “vimentin” is a well-known PAD2 substrate [25]. The

physio-pathological aspects of citrullination of these natural substrates of

peptidylarginine deiminase are discussed later in this contribution. Peptidylarginine

deiminase type 2 mainly resides in the cytoplasm, but in epithelial cells of human

and canine mammary glands it has been reported to exhibit nuclear translocation,

where it binds directly to chromatin [44, 45] and citrullinates of histones H3 and

H4. Thus, PAD2 may regulate gene activity of the estrogen receptor alpha [29, 46].

Beta- and gamma-actin were described also as substrates for PAD2 in neutro-

phils [47]. Recently, X-ray crystallographic details of the head-to-head homo-2-mer

PAD2 (Fig. 4) with 10 mM calcium ions were reported [48]. However, a full-length

cDNA profile of 2348 base pairs encoding a 665 amino acid sequence of PAD2 with

a predicted molecular mass of 75 kDa was cloned some years ago [49]. In vitro

kinetic properties of human peptidylarginine deiminase isoform 2 (hPAD2) show a

twofold reduction in Ca(II) dependence due to phosphatidylserine and phosphati-

dylcholine [50], while it generally requires about 1–100 μM Ca(II) for activity

(as described in Sect. 4).

2.3 Peptidylarginine Deiminase Type 3

Peptidylarginine deiminase type 3 expresses exclusively in the inner and outer root

sheathes of hair follicles and the epidermis [42, 49, 51–53]. The encoding 35.1 kilo

base pair (kb) genes are localized in close proximity (i.e. about 3.1 kb) to the PADI-

1 genes, as illustrated in Fig. 2. Trichohyalin, a major structural protein of the hair

follicle, is a natural substrate of PAD3 [54]. Citrullination affects the alpha-helical

structure of trichohyalin and helps it to crosslink with keratin filaments by

transglutaminase-3 [15, 55]. In the presence of Ca(II) ions, citrullination mediates

Fig. 4 Ribbon representation of the crystal structure of peptidylarginine deiminase type 2. An

X-ray diffraction study of PAD2 has revealed that PAD2 preferentially exists in a head-to-head

homo-2-meric form in the presence of 10 mM Ca(II) ions [48] (PDBID: 4N2B)
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the aggregation of keratin filaments to form a solid matrix contributing to the

directional hair growth [56–58].

In addition, PAD3 is co-localized with profilaggrin and filaggrin in granular

keratinocytes and the lower stratum spinosum of the epidermis [43]. The ionic

interactions of the positively-charged filaggrin can bundle negatively-charged

keratin intermediate filaments into tight arrays [59]. A decrease in the net positive

charge as a consequence of filaggrin deimination may induce its dissociation and

subsequent degradation. Due to this phenomenon, the skin produces a natural

moisturizing factor [52, 60, 61], which is necessary for epidermal barrier functions

[62, 63]. Peptidylarginine deiminases of types 1–3 are reported to be expressed in

normal human keratinocytes (NHKs) with an increased level of mRNA when

exposed to vitamin D, but the amount of proteins remains unaffected [52]. The

EF-hand type Ca(II)-binding protein is a member of S100 family. This protein

S100A3 is co-localized with PAD3 in hair cuticles. Peptidylarginine deiminase

type 3 catalyzes the conversion of a symmetric pair of R51 at the surface of the

S100A3 dimer and promotes its assembly as a homo-tetramer [38, 64]. At this stage

PAD1 and PAD2 convert R3, R22, R51, and R77 to citrulline at the surface of the

S100A3 protein [37, 39]. The recognition mechanism of sheltered R51 by PAD3

remains unclear. Moreover, these different substrate specificities among PAD iso-

zymes affirm the need to determine the X-ray structure of all isozymes [65].

In 2012 a research group from Japan has reported the crystal structure and some

preliminary X-ray analytical data of human PAD3 [66]. This comprised hexagonal

pyramidal crystals containing two hPAD3 molecules as a putative dimeric biolog-

ical unit. It belongs to space group R3 with unit cell parameters a and b ¼ 114.97,

and c ¼ 332.49 Å, α ¼ β ¼ 90, and γ ¼ 120� [66].

2.4 Peptidylarginine Deiminase Type 4

Human PAD4 was named initially PAD5 (or PAD V in some literature reports). For

its slightly different reaction kinetics when compared to mouse PAD4 [67], human

peptidylarginine deiminase type 4 was thought to be novel, but its genomic orga-

nization, expression data and amino acid sequence corresponded to those of rodent

PAD4 [3, 68]. Thus, the HUGO Gene Nomenclature Committee (HGNC) has

renamed it human PAD4 [15, 30]. It is mainly expressed by cells of the hemato-

poietic lineage [43, 51, 69] and can be detected in various tissues [21, 43,

54]. Human myeloid leukemia HL-60 cells were first reported to contain PAD4,

when induced to differentiate into granulocytes [70]. PAD4 encoding genes

(55.8 kb) span at chromosome 1p35–36 in between PADI3 and PADI6 (see

Fig. 2). Nucleophosmin/B23 and core histones (H2A, H3, and H4) are the reported

substrates of PAD4 in calcium ionophore-stimulated granulocytes and HL-60 cells

[3, 67, 70, 71].

The X-ray crystal structure of human PAD4 was reported by Arita and col-

leagues in 2003 [70] who demonstrated that binding of different substrates (ben-

zoyl-L-arginine amide or histone N-terminal peptides) does not change the crystal
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structure of Ca(II)-bound PAD4 [22, 72]. The molecular weight of human PAD4 is

74.079 kDa (663 amino acids) and contains two N-terminal immunoglobulin-like

subdomains (Fig. 5). Subdomain 1, extending from residue M1 to C118, contains

nine β-strands and a classic nuclear localization sequence (NLS, 56-PPAKKKST-

63) at the molecular surface. This unique NLS translocates human PAD4 to the

nucleus during cell activation as PAD4 is predominantly localized in the cytoplasm

[41]. Subdomain 2 (A119 to P300) is constituted of ten β-strands and four short

α-helices [42].

Ca2+−1

Ca2+−2

Ca2+−4
Ca2+−3
Ca2+−5

N-terminal
domain

C-terminal
domain

a

c

b

Sub-domain 2

NLS region
N

Sub-domain 1

Fig. 5 Structure of peptidylarginine deiminase type 4. (a) Ribbon representation of the mono-

meric PAD4. Five Ca(II) ions (Ca1–Ca5) are shown as black balls, and the substrate, benzoyl-L-

arginine amide, is illustrated as dark blue ball-and-stick model. Subdomains 1 and 2 and the

C-terminal domain are marked in color. The nuclear localization signal (NLS) region is shown by a

dotted line; (b) head-to-tail dimer of PAD4; (c) the C-terminal domain of PAD4. Five ββαβ
modules are light blue, red, dark blue, yellow, and orange. The substrate, benzoyl-L-arginine

amide, is a green stick model. The right panel provides a top-down view of the left panel (printed

with permission from Ref. [22])
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The C-terminal catalytic domain (N301 to P663) is highly conserved among all

PAD isozymes [15, 21, 73, 74]. It has a structure of five circularly arranged ββαβ
modules that make a pseudo 5-fold symmetric structure called an α/β propeller, a

characteristic of the deiminase superfamily [17, 22, 42, 72]. The first β-strand of

each individual module (β41, β22, β25, β30, β36) forms an active site cleft of the

enzyme to bind with the substrate [22]. Based on crystallographic data, PAD4 has

five calcium-binding motifs, which are highly conserved among all PAD isozymes

except for PAD6 [56, 74]. The N-terminal subdomain 2 occupies three calcium ions

(Ca3–Ca5) while the other two calcium ions (Ca1 and Ca2) bind to the C-terminal

catalytic domain. The binding of calcium ions occurs in a cooperative manner and

induces conformational changes leading to the activation of the enzyme [48, 51, 42,

75]. Binding of calcium ions is one of the factors discussed extensively in enzyme

regulation [51, 76].

Although it is unknown whether all PAD isoforms can multimerize, human

PAD4 exists as a head-to-tail dimer with an elongated rubber boot structure

[20, 22, 42, 41, 77]. The N-terminal domain of one monomer binds to the

C-terminal domain [4] by hydrophobic interactions and salt bridges between the

adjacent monomers [20, 42]. A crystallographic two-fold axis runs vertically

through the center of the dimer [22]. Dimerization of PAD4 has been suggested

to be required for its regulatory mechanism. The kinetic studies of hPAD4 indicate

that the disruption of the dimer interface does not only decrease the enzymatic

activity, but also affects the cooperative binding of calcium ions [20, 48]. Among

the residues R8, Y237, D273, E281, Y435, R544, and D547, located at the surface

of the dimer, R8, D547, and Y435 mediate hydrophobic interactions, imperative for

dimerization [20]. Peptidylarginine deiminase type 4 appears to play an important

role in gene regulation, inflammatory diseases, and neurodegeneration.

2.5 Peptidylarginine Deiminase Type 6

Some years ago, the identification of highly abundant, zona-free metaphase II

mouse egg-protein, revealed the existence of this novel PAD isotype

[78, 79]. The amplified mouse ovarian adapter-ligated cDNA library encodes for

681 amino acids that exhibit 40% homology with the calcium-dependent

peptidylarginine deiminase family [78]. Based on its homology with the PAD

family and its expression in egg cells [79], embryos [51], oocytes [4, 80], and

ovaries [69, 80], the protein was designated as ePAD (egg- and embryo-abundant

peptidylarginine deiminase). Later on, in a large-scale sequencing project, new

human cDNA was constructed from a fetal brain cDNA library. The putative

protein encoded by this cDNA was found to be orthologous to ePAD, and was

thus renamed as hPAD6 by the HUGO Gene Nomenclature Committee (HGNC)

[15, 81].

The peptidylarginine deiminase type 6-encoding gene is an about 29.3 kb region

at chromosome 1p36.13, containing 16 exons (see Fig. 2) and expressing the

77.7 kDa (694 amino acids, pI 5.13) cytoplasmic PAD6 protein [43, 81, 82]. It
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contains a short lysine-rich motif (139-SDKQAKKK-147) in its N-terminal

domain, but it remains to be tested if it is involved in nuclear translocation

[83]. Peptidylarginine deiminase type 6 has been reported to be essential for female

fertility [84, 85] and lattice formation within oocytes and early embryos [86], where

citrullination of epithelial cell keratin results in cytoskeletal reorganization during

the early stages of development [87]. Peptidylarginine deiminase type 6 associates

with α-tubulin at lattices to stabilize microtubule formation, while in PAD6-null

mice, a defective organelle repositioning has been reported [84, 87]. Additionally,

immunohistochemical data suggest the presence of PAD6 in cortical granules of

mouse oocytes, released extracellularly during oocyte fertilization to associate with

blastomeric surfaces as a peripheral membrane protein. This indicates the extracel-

lular functions of PAD6 in preimplantation development [82].

In contrast to the other family members, the biochemical properties, regulation,

and functions of PAD6 are poorly understood so far [88, 89]. Interestingly, the

sequence alignment of all PAD isozymes reveals the loss of a conserved active-site

cysteine residue and acidic residues in PAD6 (see Table 1) which are involved in

Ca(II) binding [22, 43, 89], suggesting a possible need of further factors or scaffolds

for enzymatic activity. Fluorescence polarization and X-ray crystallography

have confirmed (Fig. 6) the two binding sites at PAD6 for the 4-3-3 protein, a

Fig. 6 Binding sites of peptidylarginine deiminase type 6 for the 14-3-3 protein. Using X-ray

crystallography two binding motifs of PAD6 are revealed for the eukaryotic adaptor protein 14-3-3

that binds to PAD6 with two binding motifs: (a) Binding motif I and (b) Binding motif II during

the cell cycle in a phosphorylation-dependent manner suggested to play a part in the regulation of

its activity [88] (PDBID: 4DAT(a), 4DAU(b))
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member of a class of highly conserved and abundant eukaryotic adapter proteins

that influence a plethora of physiological processes in a phosphorylation-dependent

manner [88, 90]. Peptidylarginine deiminase type 6, purified from the mouse ovary,

showed no enzymatic activity, but interestingly the isozyme has the potential to

constitute a hexameric structure rather than being a dimer like other members of

the family [89].

3 Isolation and Sequence Determination

of Peptidylarginine Deiminase

The presence of a non-ribosomal-encoded citrulline amino acid in a variety of

protein substrates is a consequence of enzyme-catalyzed post-translational modi-

fication (PTM). Citrulline was first described in Citrullus vulgaris (water melon) by

Fearon and colleagues in 1939 [91], whereas Rogers and coworkers have reported

the presence of an arginine-converting enzyme in crude extracts of hair follicles

that catalyze the conversion of arginyl residues of the insoluble trichohyalin to

citrulline [92]. Later, this enzyme was purified from the stratum corneum of calf’s
snouts [93] and described as an epidermal arginine-converting enzyme that is

active at neutral pH and dependent on the presence of Ca(II) ions for activity. A

partially purified enzyme using ammonium sulfate precipitation, ion-exchange,

and size-exclusion chromatography exhibited a molecular weight of 69 kDa

[93]. The occurrence of the enzyme in the epidermis was further confirmed by

Fujisaki and Sugawara [94], who proposed the name “peptidylarginine deiminase

(PAD)”, and extracted this enzyme from the epidermis of a newborn rat. An

enhanced activity of peptidylarginine deiminase was recorded in the presence of

the reducing agent dithiothreitol towards N-substituted L-arginine derivatives.

Fujisaki and Sugawara further suggested that peptidylarginine deiminase is an

SH-enzyme, for which the activity is affected by the nature of the neighboring

arginyl residues [94].

An 115 kDa peptidylarginine deiminase isotype was partially extracted from

rabbit skeletal muscles [95], kidney, lung, and brain [96] for which protamine,

histone, and ribonuclease A were reported to be the better substrates when com-

pared to small synthetic peptides [95]. The isoelectric point (pI) and amino acid

composition of PAD were determined, respectively, as 5.3 and �663 amino acids.

Soybean trypsin inhibitor-affinity chromatography was used to improve

peptidylarginine deiminase purification [97]. Combined biochemical and immuno-

chemical investigations of peptidylarginine deiminase in various tissues have

suggested the occurrence of three PAD isotypes (muscle type, hair follicle type,

and epidermal type) in mammals [98]. The tissue distribution of peptidylarginine

deiminase was described by activity monitoring in various mouse organs [99].

The salivary glands, pancreas, and uterus were observed to exhibit higher
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peptidylarginine deiminase activity with sex- and estrous cycle-related

differences [100].

The primary structure of rat muscle-type PAD was determined partially by

subjecting peak fractions of lysyl endopeptidase digests from a high-performance

liquid chromatography column to an amino acid analyzer [101]. The entire

sequence of peptidylarginine deiminase was deduced from the sequences of three

overlapping cDNA clones synthesized using total RNA from various organs of the

Plate 1 Graphical representation of full-length human peptidylarginine deiminase type

1 sequence as reported in UniprotKB accession number Q9ULC6. Human peptidylarginine

deiminase type 1 is composed of 663 amino acids. A digital solid state propulsion (DSSP)

algorithm suggests the secondary structure of PAD1 is 16% helical (18 helices of 113 residues)

and 32% β-sheets (48 strands made up of 219 residues). The remaining 331 residues are either a

part of β-bridges, turns, or bends, or have no secondary structure. Three to four calcium-binding

sites are also predicted as indicated with colored circles (PDBID: 5HP5)
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rat [98, 101, 102]. Epidermal and hair follicle-specific rat PAD3 was later cloned

and sequenced using full-length cDNA by RT-PCR [2]. Plates 1–3 show the full-

length sequence and calcium-binding sites of human peptidylarginine deiminases

types 1, 2, and 4 (PDBID: 5HPH, 4N2N, and 1DW9). No matching entry was found

in the RCSB Protein Data Bank for PAD types 3 and 6.

Plate 2 Graphical representation of full-length human peptidylarginine deiminase type

2 sequence as reported in UniprotKB accession number Q9Y2J8. PAD2 contains 665 amino

acids. A DSSP algorithm suggests a secondary structure of PAD2 that is 17% helical (19 helices

of 123 residues) and contains 34% β-sheets (52 strands made up of 239 residues). The remaining

303 residues are either a part of β-bridges, turns, or bends, or have no secondary structure. Three

calcium-binding sites are also predicted as indicated with colored circles (PDBID: 4N2B)
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4 Ca(II) and pH-Dependence of Peptidylarginine

Deiminase

Calcium is an essential cofactor for deiminase activity [15]. The cytosolic concen-

tration of Ca(II) is relatively low under physiological conditions (about 10�7 M)

that keeps peptidylarginine deiminase from being active [25, 103, 104], and a

100-fold higher concentration (approximately 1–100 μM) of Ca(II) is generally

Plate 3 Graphical representation of the sequence of human peptidylarginine deiminase type 4 as

reported in UniprotKB accession number Q9UM07. PAD4 contains 663 amino acids. The

predicted secondary structure of PAD2 is 19% helical (22 helices of 129 residues) and contains

33% β-sheets (48 strands made up of 222 residues). The other 312 residues are either a part of

β-bridges, turns, or bends, or have no secondary structure. Three to four calcium-binding sites are

also predicted as indicated with colored circles (PDBID: 1WD9)
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required by all enzyme isoforms for conversion of their substrates [74, 105]. Mod-

ification of the peptidylarginine side chain influences the movement of Ca(II) ions

from the extracellular to intracellular milieu [15]. Calcium sensitivity varies among

PAD isozymes, depending on the nature of the substrate [63, 83]. For

peptidylarginine deiminase type 2, a half-maximal activity was reported at

40–60 μM Ca(II) concentrations [97]. In terms of the catalysis and regulation of

the deiminase enzymes, pH optimum and Ca(II) ion concentration are the two

crucial factors, as discussed below.

Five to six Ca(II) ions are required per enzyme monomer [48, 51, 42], as

revealed during the detailed crystallographic analysis of peptidylarginine deiminase

type 1 [40], type 2 [48], type 3 [75], type 4 [22, 70, 72], and peptidylarginine

deiminase type 6 [88]. Two of the 5/6 calcium ions (Ca1 and Ca2) bind to the

C-terminal catalytic domain, inducing a major conformational change and gener-

ating the active site cleft, competent for catalysis [74, 75]. The remaining three

calcium ions (Ca3 to Ca5) bind to the N-terminal subdomain 2 and promote the

formation of an α-helix between residues 158–171 [106], which is disordered in the
apoenzyme [22, 42]. The newly discovered sixth calcium-binding site (Ca6) is

not detected in PAD4, although it is conserved in peptidylarginine deiminase

type 2 [48].

The dependence of enzyme activity on binding of calcium ions leads to the

rearrangement and stabilization of the immunoglobulin-like N-terminal domain.

This IgG-like domain acts as a regulatory mechanism for the enzyme [22, 51]. Cal-

cium ions bind in a cooperative manner [20], and once they are in loco, induce

marked structural changes in the enzyme to arrange the distances and conforma-

tions of the ten major amino acids of the active site, i.e. R346, R372, W347, D350,

D472, G374, V468, H470, L640, and C646 [75].

Calcium-binding motifs are highly conserved among all peptidylarginine

deiminase isoforms except for PAD6 [56, 107], which is probably a possible

explanation for its inadequate detectable activity [89]. An artificial increase of

cytosolic Ca(II) concentrations using a calcium ionophore leads macrophages to

apoptosis and exhibits only a selective citrullination of vimentin [25, 103]. Although

all PAD isotypes are highly specific to calcium ions, peptidylarginine deiminase

type 1 and type 3 have been also reported to exhibit, in turn, up to 15 and 2.5%

activity in the presence of Ba(II), a group II divalent metal ion [107]. Other bivalent

cations, e.g. Zn(II), Mg(II), Mn(II), Co(II), Ni(II), Cu(II), and Sr(II) are not able

generate any activity in PAD isozymes. Instead, at a concentration of 1 mM along

with 1 mM calcium, an inhibition of PAD activity was recorded with Mn(II) (80%

inhibition), Ni(II) (65% inhibition), and Co(II) (25% inhibition) for rabbit skeletal

muscle peptidylarginine deiminase type 2 [83, 108].

Additionally, all isoforms of PAD require an optimal pH (between 7.2–7.6) for

catalysis [4, 94]. Measurements of pH and pKa of active site residues are used to

describe the catalytic mechanism of the enzyme [109]. Kinetic values (Kcat and

Km), when plotted against the pH profile, give a bell-shaped curve with pKa 7.3 and

8.2 for the ascending and descending limbs of the curve, which corresponds to the
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pKa values of the active site of cysteine and histidine residues [74, 109]. The active

site residues, C645 and H471, deprotonate and protonate subsequently prior to the

substrate binding, suggesting a reverse protonation mechanism of catalysis

[110]. Human peptidylarginine deiminases type 2 and type 4 exhibit a decreasing

trend of activity beyond the optimal pH to pH 9.5, and thereafter no or negligible

activity is reported [4]. The pH profile of Porphyromonas gingivalis PAD (about

51 kDa) indicated pH 9.5 as the optimal pH for maximum activity, while the

enzyme exhibited 38.5 and 3.4% activity at pH 6 and 11 [111].

5 Mechanism of Catalysis and Active-Site Cleft

Structural and mechanistic studies with peptidylarginine deiminase type 4 indicate

that four key catalytic residues (D350, H471, D372, and C645) are involved in

substrate binding [22, 74, 105, 107, 109]. As mentioned earlier, the amino acids of

the C-terminal catalytic domain and the acidic residues involved in Ca(II) binding

are highly conserved among all deiminase isozymes [13, 15, 107] except for

peptidylarginine deiminase type 6 [22, 83, 89], which exhibits a few variations

(see Table 1).

Among these major residues of the active site, C645 exists as a thiolate in the

active form of the enzyme [109] and is known to act as a nucleophile at the

guanidinium carbon of the protein-embedded arginine leading to the formation of

a tetrahedral intermediate [22, 30, 74]. Residue H471 stabilizes the charge of the

thiolate through an ion pair, while the guanidine side chain is held by hydrogen-

bonding interactions with two conserved aspartate residues, i.e. D350 and D473

[110]. After formation of a transition state intermediate, H471 acts as a general acid

to eliminate ammonia causing the transition state intermediate to collapse and

forming an S-alkylthiouronium intermediate. It ultimately hydrolyzes to generate

citrulline and evacuate thiolate for further catalysis. The remaining active site

residues at positions 372, 374, and 639 (R or other amino acids in hPAD1–4 and

6 as summarized in Table 1) do not play a role in enzyme catalysis, but are thought

to be involved in substrate specificity by forming a kind of filter for substrates at the

entry of the active site cleft [83].

As suggested by reaction simulations, the thiouronium intermediate is attacked

by an ordered water molecule, activated through H471, forming another tetrahedral

intermediate before the generation of citrulline as the second product [17, 22,

112]. Some other mechanisms have also been proposed with arginine [113] or

ammonia [105] acting as the general base. However, the available data are most

consistent with H471 acting as the general base [22, 105, 109]. As most mechanistic

studies on peptidylarginine deiminases have been performed with PAD4, it will be

of interest to determine if other deiminases can catalyze their substrates following

similar mechanisms or if they are distinct from PAD4 [110].
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6 Substrate Specificity of Peptidylarginine Deiminase

Initially, the specificity of peptidylarginine deiminases towards protein substrates

has not been investigated, except for the dermal type and human PAD4

[72, 83]. Thus, understanding of the natural and preferential substrate selection of

peptidylarginine deiminase isozymes remains quite narrow [4, 30, 104, 107]. It has

been reported that peptidylarginine deiminase binds with the substrates when

present in the ES-H+ form, where E is the enzyme, S– represents the negatively-

charged thiolate and H+ is the positively-charged imidazolonium ion at the active

site center of peptidylarginine deiminase [107, 109]. Due to the surplus of acidic

residues, all human peptidylarginine deiminase isoforms have a low calculated pI
value (about 5.8), resulting in net negative charge under physiological conditions

(on average –14), which is favorable for the interaction with positively charged

arginines of the substrates [15].

Peptidylarginine deiminase activity has been monitored in many organs, tissues,

and cells, particularly in relation to their physiological substrates, i.e., structural

proteins like keratin, alpha-tubulin, vimentin, glial fibrillary acidic protein, myelin

basic protein [63, 73, 84, 87, 114–116], intermediate filaments-associated proteins

like trichohyalin, filaggrin [59, 117], nuclear proteins such as histones and

nucleophosmin [71, 118, 119], as well as some extracellular proteins like fibrin,

fibronectin, and others [14, 120].

In vitro studies suggest that peptidylarginine deiminase isoforms have

broader specificity and rely mainly on the accessibility of arginine [4, 15, 42] in

the unstructured regions of the substrates [42, 107]. Purified or recombinant

peptidylarginine deiminase types 1–4 exhibited different relative activities and

citrullination patterns with benzoylarginine [83], histone peptides [72], and

HL-60 cell lysate [47], where certain proteins were citrullinated more rapidly

than others by individual deiminase isotypes [15]. The substrate specificities of

human peptidylarginine deiminase types 2 and 4 were recently mapped using

assemblies of synthetic peptides and heterogeneous protein samples [11]. Evalua-

tion of the flanking amino acids by amino acid substitutions (Fig. 7) depicted a

higher substrate specificity for human peptidylarginine deiminase type 4 than type

2 [104]. Certain amino acids flanking the targeted arginine and the conformation of

the substrate’s secondary structure were reported to influence the PAD activity

[30, 59, 83, 121, 122]. A summary of specificity of peptidylarginine deiminase

towards the primary and secondary structure of substrates is provided in Table 2.

Although the consensus amino acid sequences for the targets against all PAD

isotypes remain obscure [4], subcellular localization of the enzyme, its micro

environment, e.g. inter- and intracellular Ca(II) concentrations as well as the

physiochemical features like structure, charge, size, and flexibility of the target

protein, are reported to be important for in vivo substrate selection [15].

Human Deiminases: Isoforms, Substrate Specificities, Kinetics, and Detection 219



Fig. 7 Graphical illustration of the influence of the surrounding residues of arginine on human

peptidylarginine deiminase catalysis. Naturally occurring/substituted amino acids, flanking

targeted arginine, influence its susceptibility to citrullination by peptidylarginine deiminases.

Promulgated positive and negative influences of amino acids on substrate specificity of human

deiminase isoforms are shown with blue and red arrows

Table 2 Influence of arginine neighboring residues and protein secondary structure on

peptidylarginine deiminase catalysis

Arg and other residues Enzyme catalysis Ref.

Arganear to N-terminus Slow citrullination [83]
Arg near to C-terminus Slow citrullination except for MBP [30, 170]
Pro-Arg-Pro No citrullination at all [15, 30, 171]
Pro-Arg-Arg-Pro Moderate citrullination [171]
Pro/Glu adjacent to Arg Bare citrullination [30, 83]
¡Arg-Arg Rapid citrullination at ¡Arg [83]
'N-Arg-Asp-C' Rapid citrullinationb [30]
Gly next to Arg Rapid citrullination [104]
Tyr at +3 position to Arg Preferred citrullination by hPAD2 and hPAD4 [11]
'N-X-X-X-Arg-Z-Z-Z-C' Citrullination is more influenced by X amino acids 

compare to Z
[142, 171]

Secondary conformation of substrates 

Alpha helix Hardly deiminated [30]
Beta turn Rapid citrullinationc [30, 72]
Beta sheet Data are not available [30]
Disordered Rapid citrullinationd [30, 72]
a
At position 1–3, except if preceded by carbobenzoxy or benzoyl group. ‘N and C’ are the N and

C-termini of the substrates
bUp to 100% efficiency
cMost favorable region for citrullination; X represents any amino acid besides Arg towards

N-terminal while Z illustrates any amino acid adjacent to Arg towards C-terminal
dUp to 95% efficiency
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7 Peptidylarginine Deiminase Regulation

Recent developments of peptidylarginine deiminase inhibitors have enhanced the

understanding of the physiological functions of deiminases, but the mechanisms

that regulate their activities, under physiological and pathological conditions, are

poorly known [123–125]. It has been reported that citrullination is regulated at

multiple levels, including the transcription and translation of PADI genes [52],

by calcium ions [41], estrogen hormone concentration [30], as well as by auto-

deimination of peptidylarginine deiminase [77, 123]. The influence of calcium

concentration, one of the major regulators of PAD activity, is discussed in Sect. 4.

7.1 Transcriptional and Translational Regulation

Peptidylarginine deiminase type 4 is reported to be regulated at the transcriptional,

translational, as well as post-translational levels [25, 126]. Mechin and colleagues

observed levels of PADI1-3 mRNAs, their protein amounts, and also the activity as

an effect of the differentiation to natural human keratinocytes (NHKs) [52]. The

active form of vitamin D3 (1,25-dihydroxy vitamin D3), a known inducer of

deiminase activity, can also regulate a complex differentiation network in the

keratinocytes, chondrocytes, and osteoblasts [83, 127]. Upregulation of PADI1-3

mRNAwas recorded with distinct kinetics upon treatment of NHKs with vitamin D,

although the amount of the enzymes as well as their activities remained unchanged

[52]. Increased cell density is another cellular model for differentiation induction

in NHKs, which failed to affect PADI2 genes, but the mRNA and corresponding

peptidylarginine deiminase of type 1 and 3 were upregulated, suggesting that PADI

genes follow distinct or independent kinetics of regulation during cellular

differentiation [52].

Long-range enhancers, i.e. 86 kb and 81–82 kb distant from the PADI3

promoter, are reported to regulate transcription of PADI3 genes by binding with

AP-1 factors through chromatin looping events in differentiated keratinocytes

[128, 129]. Moreover, Mechin and colleagues have described the post-

transcriptional regulation of PADI 1–3 genes [52], like others who reported this

for PADI2 and PADI4 during monocyte/macrophage differentiation and in the

optic nerves [25, 130], suggesting that a long 30-untranslated region of PADI2

mRNA plays a role in regulation of corresponding protein production.

An oocyte-specific transcriptional regulator, Nobox (Newborn ovary homeo-

box), is reported to regulate PAD6 activity in germ cells [80]. The presence of the

Nobox DNA-binding element (NBE) in the mouse peptidylarginine deiminase type

6 promoter region suggests a direct regulation of PAD6 in oocytes by Nobox,

although the specificity of Nobox on peptidylarginine deiminase type 6 regulation

and its role in oocyte and germ cell development remain to be determined [80].
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7.2 Hormonal Regulation

Peptidylarginine deiminase types 1, 2, and 4 are regulated by hormones, e.g. estrogen

and/or epidermal growth factors in the uterus, pituitary, and mammary glands of

female rats, mice, dogs, and humans in consonance with the estrous cycle

[44]. Expression of PADs in the mouse uterus and mammary glands is highest during

the estrus stage, while in canine mammary glands, estrus initiates peptidylarginine

deiminase type 2 expression, which peaks during diestrus [84]. The differencemay be

due to the different lengths of the individual stages of the estrous cycle or peculiar

hormonal levels between the species [21]. Following ovariectomy, peptidylarginine

deiminase levels in the uterus, pituitary, and mammary glands dropped considerably

[15], but can be restored by injection of exogenous 17β-estradiol, but not by proges-
terone or testosterone [131, 132]. Progesterone is reported to antagonize the estradiol-

induced peptidylarginine deiminase activity in the uterus of ovariectomized mice,

when injected simultaneously [83].

During pregnancy, peptidylarginine deiminase type 2 expression in the mouse

uterus and pituitary gland is elevated after an initial decline [15, 133]. Studies with

MCF-7 cells revealed that estrogen-induced PADI4 expression is mediated by

estrogen’s receptor-alpha-promoted Sp1, nuclear factor-Y, and transfactor activator

protein-1 that bind with PADI4 promoter and upregulate its expression

[41, 134]. As most of the tissues do not exhibit estrogen-dependent peptidylarginine

deiminase expression, it is suggested that hormonal regulation of PAD expression is

tissue-specific [15].

7.3 Auto-Citrullination

Post-translational modifications (phosphorylation, methylation, acetylation, etc.) of

enzymes may regulate their interactions, catalytic activities, as well as tissue/cellular

localization [123]. Likewise, it is reported that citrullination reduces the activity of

the peptidylarginine deiminase [52] as a function of its regulatory mechanism

[77]. An in vitro study suggested that the optimal temperature required to auto-

citrullinate recombinant human peptidylarginine deiminases of types 1–3 ranges

between 37�C and 50�C in a time-dependent manner [52]. Moreover, auto-

citrullination is reported to occur only in the presence of calcium ions, although the

presence of substrate does not change the pattern of auto-citrullination of the enzyme,

as analyzed with the recombinant human peptidylarginine deiminase type 4 [77].

Loss of positive charge as a consequence of citrullination may lead to

structural transformation of the target protein, and thus it was hypothesized that

auto-citrullination of peptidylarginine deiminase alters its structural conforma-

tion. French researchers have demonstrated a reduced avidity of anti-

peptidylarginine deiminase type 3 antibody to recognize the immunogenic peptide

(49-DIYISPNMERGRERADTR-66) of human PAD3 after auto-deimination

[52]. Similarly, anti-peptidylarginine deiminase type 4 antibodies against its
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C-terminal epitope (amino acids 519–528) and N-terminal sequence from residues

1–15, failed to immunoprecipitate the auto-citrullinated recombinant human

peptidylarginine deiminase type 4 [77], ratifying the immunogenic variations of

structure and/or charge of PAD after auto-deimination. In vivo experimentation

using PAD4 tagged with green fluorescent protein (GFP) demonstrated the same

results [77].

A three-dimensional model of peptidylarginine deiminase type 3 was developed

[52] to mimic auto-deimination in silico, using the crystal structure of deiminase

type 4, in which most accessible arginine residues were replaced by citrulline. The

calculated volume and surface area of the whole molecule and of the active site cleft

remained unexpectedly the same to affirm that auto-citrullination does not perturb

remarkably the overall structure of the enzyme. However, for the four major

residues of the active site cleft, a profound conformational change was monitored

(Fig. 8). The distances between the conserved active site residues (D350, D472,

H470, and C646) increased after auto-deimination [52]. Consequently, reduction of

the activity of the enzyme occurred as a mode of self-regulation, which may play a

major role in the metabolism and rate of citrullination of filaggrin in the stratum

corneum to maintain the barrier function and moisturization of skin [52].

Potential auto-deamination sites were determined by scrutinizing the trypsinized

auto-citrullinated human PAD4 using linear-trap-quadrupole (LTQ) and QSTAR

mass spectrometers. Among the ten identified possible citrullination sites, R372

and R374 span into the active site cleft, and play a major role in substrate recognition

and were reported previously [72]. Residue R252 (position 419 when aligned)

has also been reported as a possible auto-citrullination site in mouse PAD2

[15]. Thus, mutant variants of human PAD4 were expressed by replacing R372 and

Fig. 8 Magnification of the four major amino acids at the active site cleft of human

peptidylarginine deiminase 3. Left: inter-amino acid distances of the inactive form of PAD3 in

the absence of calcium ions, middle: abatement of distances in active form of PAD3 in the

presence of calcium ions, and right: auto-deiminated form where more accessible arginine

(accessibility to solvents�40%) has been replaced by citrulline. Calculated distances are indicated

in picometers. Auto-deimination induces an enlargement of the active site of PAD3 in the presence

of calcium ions. The increase of distances between the four amino acids D350 (Cγ yellow), D472
(Cγ white), H470 (Nδ1, pink), and C646 (Sγ orange) reduces the enzyme activity (printed with

permission from Ref. [75])
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R374 with L-lysine to preserve the charge, but to lack the guanidine group. A dearth

of activity supported the critical interactions of arginine with the carbonyl backbones

of substrates that are essential to stabilize the active site of the enzyme [72, 77].

Contrary to this, Slack and colleagues identified seven auto-deimination sites

(six in vitro and two in vivo; none of which had been reported earlier) in

peptidylarginine deiminase type 4 using isotopic labeling and matrix-assisted

laser desorption/ionization-time-of-flight analysis [123, 125]. They further demon-

strated that auto-citrullination does not alter the enzymatic activity and substrate

specificity or their dependence on calcium ions, but weakens the enzyme interac-

tions with its binding partners, e.g. citrullinated histone (Cit H3), proteinarginine

methyltransferase 1 (PRMT1), and histone deacetylase 1 (HDAC1) [135]. More-

over, it was reported that histone deacetylase imposes an inhibitory effect on auto-

deimination activity of human peptidylarginine deiminase type 4 [123]. The major

disparities between these studies include the choice of substrates and methodolo-

gies as well as the particular detection strategies utilized.

8 Activity Assay for Peptidylarginine Deiminase

Conversion of arginyl to citrullyl is a regular measure of peptidylarginine deiminase

activity, often known as COLDER or colorimetric assay, with Nα-benzoyl-L-arginine

ethyl ester (1) (BAEE) as a commonly used substrate [136, 137]. Zendman and

colleagues have introduced an antibody-based assay to determine the PAD activity

by incubating it with immobilized arginine-containing epitope sequences of filaggrin

in a microtiter plate [138]. In addition to this, a monoclonal anticitrulline antibody

(single chain variable fragment (scFv) RA3) was produced to detect the incipient

citrulline [139]. The (scFv) RA3 antibody is reported to be reactive against up to

5 pmol filaggrin-derived citrullinated peptides, although not to endogenous ureido-

containing compounds, e.g. urea, citrulline, etc. [138]. Anti-modified citrulline

immunoblotting has also been reported to determine enzyme catalysis [8, 52, 77,

123–125].

Interestingly, PAD activity can also be determined using thin-layer chromatog-

raphy [111], where the reaction product of the enzyme and substrate can be resolved

H2N

NH

H
N

NH

O

O

O

1 (Nα-benzoyl-L-arginine ethyl ester, BAEE)
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on a silica gel plate in the presence of methanol and ammonium hydroxide solution.

Ninhydrin was used to stain the modified arginine as a measure of enzyme activity

[140]. Moreover, to monitor the release of ammonia during arginyl to citrullyl

conversion there is another assay reported to determine PAD activity [141]. The

authors specified their method as a “continuous spectrophotometric assay”, where

the ammonia released was directly coupled to α-ketoglutarate via glutamate dehy-

drogenase (GDH) yielding glutamate in the presence of nicotinamide adenine

dinucleotide (NADH). The rate of ammonia formation is directly associated with

the oxidation of NADH, which decreases the absorbance at 340 nm. This assay uses

the change of absorbance as a measure of peptidylarginine deiminase activity,

suitable for enzyme kinetics. However, the impedance of endogenous ammonia,

NAD(P)H, and dehydrogenases reduce the usefulness of the assay, particularly for

small amounts of PAD activity [104].

Chikuma and colleagues have developed a more sensitive HPLC-fluorometric

assay using N-dansyl-glycyl-arginine as a fluorescent substrate [142]. In this assay

the reaction product of PAD catalysis can be measured at 533 nm. Dansyl-glycyl-

Cit is separated well from dansyl-glycyl-Arg using an acetate buffer with octane

sulfonate (pH 4.0) and acetonitrile on a reversed-phase C18 column at a retention

time of 5 and 9 min, respectively. This assay is reported to have a linear response

from 10 nmol to 2 pmol without any hindrance of endogenous citrulline, urea, or

other ureido-containing compounds [142].

Recently, Wang and colleagues have proposed a fluorescence-based sensing

strategy to monitor peptidylarginine deiminase activity [143] using a TAMRA-

coupled pre-described PAD4 substrate (GRGA) [107]. Among all the commercially

available dyes screened against a fluorophore-coupled substrate, acid green-27 was

found to exhibit a 166-fold fluorescent readout of TAMRA-(GRGA) tetramer upon

citrullination [143]. Over a decade ago, a simple fluorescence-based assay for

peptidylarginine deiminase activity was also reported that exploited the substrate

specificity of trypsin [144]. The fluorophore substrate was synthesized by coupling

7-amino-4-methylcoumarin (AMC) at the carboxyl side of arginine and hydrolysis

of the amide by trypsin releases AMC and generates fluorescence (450 nm).

Acylation of AMC on arginine reduces the fluorescence intensity up to four-fold.

However, the sensitivity of the assay and its application in live-cell biology was not

described [145].

9 Inhibitors/Inactivators of Peptidylarginine Deiminase

Diversified evidence of human peptidylarginine deiminase activity in several

human diseases, e.g. rheumatoid arthritis [146–149], multiple sclerosis [19, 73,

116, 118, 150, 151], prion disease [152], Alzheimer’s disease [27, 153], Crohn’s
disease [154], and different cancers [21, 45, 155, 156] has demonstrated their

significance as therapeutic targets [11] to stop further disease progression [109].

Initially, paclitaxel (2) (a taxane derivative), which bears a similar functionality to
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the well-known peptidylarginine deiminase substrate Nα-benzoyl-L-arginine ethyl

ester (1) (BAEE), demonstrated a complete inhibition of PAD2 activity at 12.5 mM
concentration [157]. Later on, arginine derivatives were synthesized to examine

their inhibitory activity [158], and monomethylarginine and asymmetric

dimethylarginine were reported as specific peptidylarginine deiminase type 4 inhib-

itors [158]. Half-maximal inhibitory concentrations (IC50) for some of the promul-

gated peptidylarginine deiminase inhibitors are shown in Table 3.

Halogen(acet)amidine and haloamides (mainly F- or Cl-containing) potentially

inactivate peptidylarginine deiminase type 4 irreversibly by modifying C645, the

active site nucleophile [159], in a time- and concentration-dependent manner

[160]. In particular, 2-chloroacetamidine has been disseminated as a general

pharmacophore for covalent inactivation of two diverse members of the

amidinotransferase superfamily, i.e. peptidylarginine deiminase (PAD) and

dimethylarginine dimethylamino hydrolase (DDAH). A possible mechanism of

enzyme inactivation by 2-chloroacetamidine and 2-chloroacetamide using DDAH

C249 as an active center was proposed by Stone and colleagues [160]. Also,

fluoroamidine (F-amidine), a small molecule with a similar structure to benzoylated

arginine, exhibited PAD4 inhibition at an IC50 value of 22 μM [161]. Due to its

positive charge and two potential H-bond donors, it mimics closely the structure of

arginine and binds covalently with the active site C645 for selective and irreversible

inactivation following a similar mechanism proposed by Stone and coworkers in

2005 [160]. Hence, substitution of halide may occur either directly by nucleophilic

attack of C645 on the methylene carbon of a halo-amidine or by the attack of the

thiolate on the iminium carbon to form a tetrahedral and three-membered sulfonium

ring intermediate which subsequently rearranges to form a stable thioether bond.

Although the latter mechanism has a poor leaving group potential for fluoride

[161, 162], it has been suggested to be the preferential mechanism of inactivation

[163, 164].

Luo and colleagues tagged Cl- and F-amidines with a fluorophore, e.g. rhodamine

and biotin to develop activity-based protein profiling [161, 162] reagents with a

detection limit of 125 ng (or 1.7 pmol) of peptidylarginine deiminase type 4.

O NH O

O

OH OOH

O

OHO

O
O

O
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O

2 (paclitaxel)
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Rhodamine-tagged-F-amidine (RFA) showed a higher selectivity, while rhodamine-

tagged-Cl-amidine (RCA) inhibited peptidylarginine deiminase type 4 four-fold

more potently (see Table 3). In addition, by using RFA, disease-modifying antirheu-

matic drugs (DMARDs) were screened for PAD4 inhibition that led to the identifi-

cation of streptomycin, minocycline, and chlortetracycline as relatively weak (μM)

peptidylarginine deiminase inhibitors [165].

Causey and colleagues have developed a second generation of F-/Cl-amidines by

side chain and backbone substitutions, e.g. N-α-(2-carboxyl)benzoyl-N5-(2-fluoro-
1-iminoethyl)-L-ornithine amide (o-F-amidine) and Nα-(2-carboxyl)benzoyl-N5-
(2-chloro-1-iminoethyl)-L-ornithine amide (o-Cl-amidine), with improved potency

and differential selectivity for peptidylarginine deiminase type 1–4 isozymes [166],

as summarized in Table 3. In turn, Jones and coworkers screened a 264-membered

F-acetamidine-containing peptide assembly and identified Thr-Asp-F-amidine

(TDFA), an irreversible and highly potent inhibitor [163] selecting peptidylarginine

deiminase type 4 �15-fold more when compared to peptidylarginine deiminase

type 1, and �50-fold more than peptidylarginine deiminase types 2 and 3. It is

reported that these cell-active F-, and Cl-amidines reduce the disease severity in

animal models of rheumatoid arthritis (RA) [159, 161], ulcerative colitis

(UC) [167], and neuron degeneration in multiple sclerosis (MS) [73] by decreasing

human deiminase activity and protein citrullination [163].

Table 3 Selected inhibitors of peptidylarginine deaminases and their half-maximal inhibitory

concentrations (IC50)

Promulgated PAD inhibitors/inactivators
Half-maximal inhibitory 

concentration (IC50)/mM
PAD isozyme Ref.

Paclitaxel (= taxol) (2) 5-6 Bovine PAD2 [157]

Bz-NG
-monomethyl-Arg

Bz-NG
-dimethyl-Arg (asymmetric) 0.4

PAD4 [158]

Halo-amidine

Halo-acetamidine

0.022
a
, 0.0059

b

>0.5

PAD4 [160, 161]

Tetracycline, chlortetracycline

Minocycline, deoxycycline

0.78, 0.1,

0.62, 0.86

PAD4 [165]

5-Aminosalicylic acid, azathioprine 

Azithromycin, clindamycin, leflunomide

Methotrexate, streptomycin, sulfamethoxazole

Sulfapyridine, trimethoprim

>10, 8.5, >10, 

5.1, 2.6, >10, 

1.8, >10, >10, 

>10, 7.5

PAD4 [165]

Rhodamine-tagged-fluouroamidine (RFA)

Rhodamine-tagged-chloroamidine (RCA)

0.024

0.0074

PAD4 [162, 164]

ο-F-amidine 

ο-Cl-amidine

0.0014, 0.05, 0.034, 0.0019

0.00084, 0.0062, 0.00069, 0.0022

PAD1-4

PAD1-4

[166]

Thr-Asp-F-amidine (TDFA)

Thr-Asp-Cl-amidine (TDCA)

0.0085, 0.071, 0.026, 0.0023

0.0028, 0.059, 0.032, 0.0034

PAD1-4 [163]

YW4-03, YW3-56, YW4-15 0.005
c
, 0.001-0.005

d
PAD4 [29]

Imidazolone derivatives designated as

10 and 11 (H2/H3-antagonists)

Comparable to Cl-amidine PAD4 [51]

a
F-amidine
bCl-amidine
cFor YW4-03
dFor YW3-56 and YW4-15
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Analogues of Cl-amidine, e.g. YW3-56, YW4-03, and YW4-15 [29], are

reported to activate p53 target genes and inhibit mTORC1 signaling pathways

that suppress the growth of cancerous cells and reduce tumor size [168, 169].

Guanidine-containing compounds [51] have also been tested against

peptidylarginine deiminase type 4, but a weak or no inhibitory activity was

recorded when compared to Cl-amidine except for two imidazolone derivatives

(compounds 10 and 11 in Ref. [51]), where the guanidine group at the center of

the molecules was suggested to react with D323 and H613, shown by docking

simulations. H610 and E615 were reported to establish hydrogen bonds with

the imidazolone ring while R347 at the peptidylarginine deiminase type

4-binding groove interacts with the 1,2,5-oxadiazole of compounds 10 and 11 of

Ref. [51].

10 Conclusions

Citrullination events in the pathophysiology of trauma or brain injuries contribute

to protein degradation and neurodegeneration. In this sense, PAD may facilitate the

discovery of new biomarkers that could improve diagnostic and prognostic stan-

dards in clinical use. Also, peptide-based selective inhibitors for human PAD

isozymes, that mimic the structure of its substrate, may help to enhance therapeutic

applications. Peptidylarginine deiminase inhibitors have been demonstrated to

selectively suppress colitis via cell cycle arrest in mice. Thus, it can be hypothe-

sized that PAD inhibitors can prevent tumorigenesis and degradation of neuronal

connections as well as inflammation. Detailed studies on the substrate specificity

for peptidylarginine deiminase isozymes and appropriate study designs to charac-

terize peptidylarginine deiminase-specific and closely related disorders, such as

lung and heart inflammation in arthritis, neurodegenerative disorders, or dementia,

are necessary. Early diagnostic markers are urgent, as these will facilitate earlier

intervention for better treatment outcomes and thereby will decrease the disease

burden on the population.
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1 Introduction

Coumarins are the largest class of 1-benzopyran derivatives, and coumarin (1) (2H-
1-benzopyran-2-one) (Fig. 1), a fragrant colorless compound isolated from the

tonka bean (Dipteryx odorata; family Fabaceae; Plate 1) in 1820, was the initial

member of this class of compounds. The name coumarin comes from the French
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term for the tonka bean, “coumarou”. Since the discovery of coumarin (1), several
of its derivatives have been isolated from various natural sources, especially from

higher plants. Major detailed and comprehensive accounts of the chemistry and

biochemistry of coumarins have been provided by Murray in this book series up to

2002 [1–4].

Most of the plant-derived coumarins are oxygenated at C-7, and the intitial such

member is umbelliferone (2), which was first isolated from the family Umbelliferae

(syn. Apiaceae). Umbelliferone (2) (Fig. 2), also known as 7-hydroxycoumarin,

hydrangine, or skimmetine, is considered biosynthetically as the parent compound

for other highly oxygenated, prenylated, geranylated, farnesylated, and more com-

plex forms of coumarin derivatives (e.g. bruceol, 3, isolated from Eriostemon
brucei). The prenyl groups found in coumarins undergo various biogenetic modi-

fications to form dihydrofuran, dihydropyran, furan, and pyran ring systems. Sim-

ilarly, various biogenetic processes produce monoterpenyl- and sesquiterpenyl-

coumarins, respectively, from geranyl- and farnesyl-substituted coumarins. The

plant families Apiaceae, Asteraceae, and Rutaceae are the three major sources of

coumarins [5].

The biosynthesis of most of the naturally occurring coumarins starts from (E)-4-
hydroxycinnamic acid (4, also known as p-coumaric acid) (Scheme 1). An enzyme-

O O
2
3

45

6

7
8

4a

8a

1 (coumarin) 
1

Fig. 1 Coumarin (1) and its
numbering system

Plate 1 Dipteryx odorata
(tonka bean), the source of

the first coumarin.

Photograph courtesy of

http://www.kladovayalesa.

ru/archives/5732

O OHO O O

O

O

HO

2 (umbelliferone) 3 (bruceol) 

Fig. 2 Umbelliferone (2)
and bruceol (3)

242 S.D. Sarker and L. Nahar

http://www.kladovayalesa.ru/archives/5732
http://www.kladovayalesa.ru/archives/5732


mediated oxidation of this starting compound 4 produces 2-hydroxy-p-coumaric

acid (5) followed by the formation of its 2-glucoside 6 [5]. This glucoside (6)
undergoes isomerization to produce its (Z)-diastereomer (7). Umbelliferone (2) is
formed through ring closure of compound 7.

Generally, coumarins can be structurally classified into simple, simple

prenylated, simple geranylated, furano, pyrano, sesquiterpenyl, and oligomeric

coumarins [5]. Using this standard classification, this chapter presents a snapshot

of the advances of the chemistry of naturally occurring coumarins reported recently

(within the period 2014–2015) in the literature.

2 Naturally Occurring Coumarins Recently Reported

A significant body of literature has become available on the extraction, isolation,

identification, and assessment of biological activities of naturally occurring cou-

marins in recent years. Several new coumarins together with various known

coumarins were reported from known or new plant sources. Although the main

focus of this chapter is on new analogs that have contributed to the discovery of new

coumarin chemistry, some of the known coumarins, which have been re-isolated as

bioactive components or reported from new sources, have also been incorporated

into this chapter.

2.1 Simple Coumarins

Most of the recently reported simple coumarins (Fig. 3) are known compounds,

with some of them from new plant sources, and others re-isolated as part of

bioassay-guided isolation processes. However, there has been also a number of

new simple coumarins reported recently. The occurrence of simple coumarins is

quite widespread in the plant kingdom. However, most of the recently reported

coumarins are mainly from the families Apiaceae, Asteraceae, and Rutaceae, with

HO

COOH

HO

COOH

OH HO

COOH

O

HO
COOH

O OHO

4 ((E)-4-hydroxycinnamic acid) 5 (2-hydroxy-p-coumaric acid) 6 (2-glucosyloxy-p-coumaric acid)

7 ((Z)-2-glucosyloxy-p-coumaric acid)2 (umbelliferone)

other coumarins
O

glucosyl

glucosyl

Scheme 1 Biosynthesis of umbelliferone (2)
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the other reported sources from the families Aceraceae, Apocynaceae, Araliaceae,

Caryophyllaceae, Convolvulaceae, Dryopteridaceae, Gomphidiaceae, Guttiferae,

Lamiaceae, Lauraceae, Malvaceae, Meliaceae, Moraceae, Oleaceae, Rosaceae,

Rubiaceae, Salvadoraceae, Saxifragaceae, Simaroubaceae, Solanaceae, and

Thymelaeaceae.

Aesculetin (8), aesculin (9), chicoriin (12), scopoletin (29), and umbelliferone

(2) were isolated from an aqueous ethanolic extract of the leaves of Calendula
officinalis (Asteraceae) (Plate 2) [6]. Among these, 8 showed amylase inhibitory

activity at concentrations ranging from 1.02 to 2.64 μg/cm3. Scopoletin (29) and its
glucoside, scopolin (30), were identified as part of a quality control assessment of

bark samples of Lycium chinense and L. barbarum (Solanaceae) using a validated

LC-MS/MS method [7]. Coumarin (2) was also identified from Salvadora indica
(Salvadoraceae) as an antihyperlipidemic and antitumor principle [8]. Isofraxidin

(22) and eleutheroside B1 (15) were purified and analyzed by UPLC/DAD/qTOF-

MS from the Tibetan herbal medicine Carduus acanthoides (Asteraceae), which is

well known for the treatment of hematemesis, hematuria, and menorrhagia [9]. A

phytochemical investigation on the aerial parts of the Chinese medicinal plant

Gerbera piloselloides (Asteraceae) afforded 7,8-dihydroxycoumarin (14), which
is also known as daphnetin [10]. A coumarin ester, officinalin (27), was found in the
aerial parts of Opopanax hispidus (Apiaceae) [11].
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CH3 (7-methoxy-8-methylcoumarin)
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Fig. 3 Simple coumarins 8–32
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Scopoletin (29), isolated from Artemisia roxburghiana (Asteraceae), was utilized

for the preparation of an anti-inflammatory nanoconjugate [12]. A phytochemical

study on the seeds of Solanum indicum (Solanaceae) (Plate 3) afforded fraxetin (16)
and 22, as well as a new 3-substituted coumarin, 7-hydroxy-6,8-dimethoxy-3-

(40-hydroxy-30-methoxyphenyl)-coumarin (33) [13]. While isoscopoletin (23) was
found in the twigs ofMicromelum integerrimum (Rutaceae) [14], scoparone (28) and
29 were isolated from the fruit pulp of Acanthopanax senticosus (Araliaceae)

[15]. Coumarin 28 was also found in Ferula oopoda (Apiaceae) [16]. Ayapanin

(10) was reported recently from the leaves of Murraya alata (Rutaceae) [17].

The simple coumarins, 2, 8, 9, 16, fraxidin (17), 22, 28–30, skimmin (31), 6,7,8-
trimethoxycoumarin (32), and 6-hydroxy-5,7-dimethoxycoumarin (36), were

reported from the fruits of Chroogomphus rutilus (Gomphidiaceae) [18] (Fig. 4;

Plate 3 Solanum indicum
(Indian nightshade), flower.

Photograph courtesy of

Vinayaraj, Creative

Commons

Plate 2 Calendula
officinalis (pot marigold).

Photograph courtesy of

KENPEI, Creative

Commons
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Plate 4). Coumarins 2 and 29 were also present in the roots of Saposhnikovia
divaricata (Apiaceae) [19], and 28 and 29 were isolated from the stem bark of

Zanthoxylum avicennae (Plate 5) [20], and from the roots of Bunium incrassatum
(Apiaceae) [21].

Coumarins 29 and 36 were found in the bark of Entandrophragma congoense
(Meliaceae) [22]. A new simple coumarin, edgeworic acid (39), together with

5,7-dihydroxycoumarin (34) and 2, were obtained from the flower buds of

Edgeworthia chrysantha (Plate 6) (Thymelaeaceae) [23].

Coumarins 2, 8, 9, and 28–30 occur very widely in the plant kingdom [24–

36]. Scopolin (30) was purified from the roots of Angelica dahurica (Apiaceae) [34]
and Lindera reflexa (Lauraceae) [35]. Coumarins 29 and 30 were also isolated from
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H
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Fig. 4 Simple coumarins
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Micromelum integerrimum (Rutaceae) [32]. A phytochemical and chemotaxo-

nomic investigation on Ficus tsiangii (Moraceae) afforded 1, 2, 8, 29, and

6-carboxy-umbelliferone (11) [37]. Coumarins with a carboxylic acid functionality,

such as in 11, are not very common in Nature.

Plate 4 Chroogomphus
rutilus (brown slimecap),

Ehingen, Germany.

Photograph courtesy of

H. Krisp, Creative

Commons

Plate 5 Zanthoxylum
avicennae, Hong Kong

Zoological and Botanical

Gardens. Photograph

courtesy of Daderot, Public

Domain
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A new coumarin with an alkyl substituent at C-8, named 7-O-methylphellodenol

B (26), was purified from the fruits ofCnidium monnieri (Apiaceae) (Plate 7) [38]. In
addition, 7-methoxy-8-formylcoumarin (24) was reported. Dryofracoumarin A (40),
a new 4-substituted simple coumarin, along with 8 and isoscopoletin (23), were
isolated as cytotoxic components of a hydro-ethanolic extract of the whole plant of

Dryopteris fragrans (Dryopteridaceae) [39]. While coumarins 2, 29, and 8-hydroxy-
7-methoxycoumarin (20) were identified in the twigs of Feroniella lucida
(Rutaceae) (Plate 8) [40], 17 and 29 were reported as NF-κB inhibitors from a

methanolic extract of the roots of Eurycoma longifolia (Simaroubaceae)

[41]. Hymexelsin (41) and 29 were isolated from the stem bark of Pauridiantha
callicarpoides (Rubiaceae) [24].

Plate 6 Edgeworthia
chrysantha (oriental

paperbush, mitsumata).

Photograph courtesy of

peganum, Creative

Commons

Plate 7 Cnidium monnieri.
Photograph courtesy of

Henry Qin, Linkedin
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7-Methoxy-8-methyl-coumarin (25) was isolated from the fruits ofMicromelum
minutum (Rutaceae) [42], and toddalenone (43) and 5,7,8-trimethoxycoumarin (38)
were obtained from the roots of Toddalia asiatica (Rutaceae) [43]. From the same

family, 43 was also purified from the aerial parts of Murraya tetramera [44], and

from the leaves of M. alata [17]. Two new isomeric (erythro and threo) coumarin

glycosides 44 and 45 (Fig. 5) possessing hepatoprotective properties were obtained
from the stems of Hydrangea paniculata (Saxifragaceae), and named hydrangeside

C (erythro form, 44) and hydrangeside D (threo form, 45) [45]. Li et al. reported the
isolation of several simple coumarins and coumarin glycosides from the stems of

Zanthoxylum schinifolium (Rutaceae) [46]; those were hymexelsin (41), daphnetin
7-methyl ether (20), phytodolor (22), 28–30 and xanthoxyloside (42). A new

coumarin glycoside, isoscopoletin (6-(6-O-β-apiofuranosyl-β-glucopyranoside))
(46), similar to xanthoxyloside (42), was isolated from the stems of Morus alba
(Moraceae), by centrifugal partition chromatography [47].

Dracunculin (47), a simple coumarin that contains a methylenedioxy function-

ality, and 29 were purified from an ethanolic extract of the aerial parts of Artemisia
elegantissima (Asteraceae) [48]. Dracunculin (47) was also isolated from Artemisia
indica (Asteraceae) as a potential antitumor agent [49].

The coumarinolignan cleomiscosin A (48), a simple coumarin with a substituted

ethylenedioxy functionality (Fig. 5), was reported from the aerial parts ofMelochia
umbellata (Malvaceae) (Plate 9) [50]. This compound is in fact a dimer between a

coumarin and a phenylpropanoid moiety, and can also be placed under the class of

miscellaneous coumarins as shown near the end of this chapter. Two similar

Plate 8 Feroniella lucida, grown as bonsai, Vietnam. Photograph courtesy of Nguyen Thanh

Quang, Creative Commons
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coumarinolignans, cleomiscosins C (49) and D (50), together with 29, were iden-

tified from Acer mono (Aceraceae) [51]. Coumarins 8, 16 and their glucosides,

9 and 18, were found in Fraxinus chinensis (Oleaceae) [52].
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O
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Fig. 5 Simple coumarins 43–51
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The occurrence of 6-hydroxycoumarin (19), reported from Prangos pabularia
(Apiaceae), is rare, as 7-hydroxylation (as in 2) is biogenetically more favored in

plants [27]. A simple coumarin with eight carbon atoms containing a formyl side

chain, (E)-4-methyl-6-(coumarin-70-yloxy)hex-4-enal (51), was reported from the

leaves of Zanthoxylum schinifolium (Rutaceae) [53]. Two new methoxylated sim-

ple coumarins, muralatins G (52) and H (53) (Fig. 6), were detected in the leaves of
Murraya alata (Rutaceae) [17]. A new ester of 7-hydroxycoumarin, 7-O-(4,8,12-
trihydroxy-4,8,12-trimethyl-tridecanoyl)-coumarin, named ferulone C (54), was
purified from the aerial parts of Ferula persica (Apiaceae) [54]. A phytochemical

study on an infusion prepared from the stem bark of Exostema caribaeum
(Rubiaceae) afforded the new 4-phenylcoumarin glycosides 55–61 [55].

Glucose is the most common sugar unit found in the coumarin glycosides

reported recently. Two 4-substituted simple coumarins, isopedilanthocoumarin

B (62) and pedilanthocoumarin B (63), with the former being a new coumarin,

were reported from a dichloromethane extract of the bark of Mammea
neurophylla (Caryophyllaceae) [56].

A new 3-substituted simple coumarin, 6-hydroxy-3-(4-hydroxyphenyl)-

7-methoxy-2H-chromen-2-one (64), which showed anti-tobacco mosaic virus

activity, was isolated from the roots and stems of flue-cured Nicotiana tabacum
(Solanaceae) [57]. 7,70-Dimethoxy-6,60-biscoumarin (65), an unusual 6-substituted

coumarin (Fig. 7), was identified from a methanolic extract of the stem bark of

Hypericum riparium (Guttiferae) [58]. Two new isomeric 3-substituted simple

coumarins, talacoumarins A (66) and B (67), were purified from the wetland soil-

derived fungus Talaromyces flavus [59]. None of these coumarins has the usual

oxygenation at C-7. The new coumarins, cashmins A (68) and B (69), were reported
from Sorbus cashmiriana (Rosaceae) (Plate 10) [60], and they also lack any

oxygenation at C-7. A glycoside of a 3-substitued coumarin, gerberinside (70),
was isolated from the whole plant of Ainsliaea fragrans (Asteraceae) [61] and this

coumarin glucoside also does not have any oxygenation at C-7.

Plate 9 Melochia
umbellata, Keaukaha,
Hawaii. Photograph

courtesy of Forest & Kim

Starr, Creative Commons
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A new unusual coumarin, where both the 3- and 4-positions are substituted, was

isolated from the roots of Sideritis pullulans (Lamiaceae) and named 7-demethyl-8-

methoxycoumarsabin (72) [62]. Another new simple coumarin derivative with

similar structural features, 3,8-dihydroxy-4-(4-hydroxyphenyl)-6-methylcoumarin

O O
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Fig. 6 Simple coumarins 52–64
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(73), was isolated from the endolichenic fungus, Tolypocladium cylindrosporum
[63]. This coumarin is also rather unusual in the sense that it does not have any

7-oxygenation. The extraction of the stems of Alyxia schlechteri (Apocynaceae)
followed by chromatographic separation and recrystallization afforded a new

O OO

HO O
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Fig. 7 Simple coumarins 65–76
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benzyl coumarin derivative, alyterinin (71), which also does not possess oxygena-

tion at C-7 [64]. This plant also produces coumarin (1), 6,8-dihydroxycoumarin

(13), 3-hydroxycoumarin (74), 5-hydroxycoumarin (37), and 7-hydroxy-8-

methoxycoumarin (21) [64].
Several 3- and 4-substituted simple coumarins were obtained from the flue-

cured roots and stems of Nicotiana tabacum (Solanaceae) [65]. Among them, the

3-substitued coumarins, 7-(4-hydroxyphenyl)-6H-[1,3]dioxolo[4,5-g]chromen-

6-one (75) and 7-(2-hydroxy-3,4-dimethoxyphenyl)-6H-[1,3]dioxolo[4,5-g]
chromen-6-one (76), were identified as new natural products, and the other

known compounds detected were 8, 16, 29, 30, and 4-methyl-6,7-

dihydroxycoumarin (77) (Fig. 8). Coumarins 22 and 29 were found in the vines

of Prevostea ferruginea (Convolvulaceae) [66]. A new coumarin, 4,6-dihydroxy-

7-formyl-3-methylcoumarin (78), was reported from the broth extract of the plant

endophytic fungus Pestalotiopsis versicolor [67].

2.2 Simple Prenylated Coumarins

Plants often produce coumarins with one or more prenyl (3-methyl-but-2-en-1-yl or

dimethylallyl) or modified prenyl groups attached to them. Prenyl transferases are

Plate 10 Sorbus cashmiriana (Kashmir rowan), Botanical Garden Zielona Góra, Poland. Photo-

graph courtesy of Krzysztof Ziarnek, Creative Commons
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78 (4,6-dihydroxy-7-formyl-3-methylcoumarin)

Fig. 8 Simple coumarins 77–78
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involved in the biosynthesis of prenylated simple coumarins. In addition to known

simple prenylated coumarins, such as meranzin (117), osthol (160), and osthenol

(159), several new coumarins of this class, including hydramicromelin D (85),
integerrimelin (113), and 6-(30-methyl-l0-oxobuty1)-7-hydroxycoumarin (87),
were reported from various plant sources, with most of them being from the

Apiaceae and the Rutaceae plant families (Figs. 9, 10, 11, 12, 13, 14, 15, 16, 17

and 18). However, prenylated coumarins were also reported recently from some
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Fig. 9 Simple prenylated coumarins 79–95
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other families, including Calophyllaceae, Caryophyllaceae, Clusiaceae, Fabaceae,

and Moraceae. Most of these coumarins have C- or O-prenylation at C-6 (79–98)
(Figs. 9 and 10) and C-8 (101–165) (Figs. 12–16).

Only one coumarin with prenylation at both the C-6 and C-8 positions (166)
(Fig. 17) was described recently. In some cases, in addition to prenylations and

other usual substitutions on aromatic carbons, there are substitutions at C-3, C-4, or

at both (167–180) (Fig. 18). Two 7-O-prenylated coumarins, 99 and 100 (Fig. 11),

were also reported.

Meranzin (117, also known as aurapten), a 8-C-prenylated coumarin, was

reported from the fruits of Citrus tangerina (Rutaceae) (Plate 11) [68]. It was

also found in Prangos pabularia (Apiaceae), which also provided osthol (160) [27].
Osthol (160) was also isolated from the roots of Prangos ferulacea [69]. The

6-C-prenylated and 3,4-substituted coumarin, glycyrurol (169), was purified as a

neuroprotective principle from an herbal remedy containing Glycyrrhiza species

(Fabaceae) [70]. Daud et al. [71] isolated a new prenylated coumarin with a pentyl

group at C-3 on the coumarin nucleus, named hoseimarin (170), from the stem bark

of Calophyllum hosei (Clusiaceae). 6-(30-Methyl-l0-oxobutyl)-7-hydroxycoumarin

(87), a new coumarin, was obtained from a non-polar extract of the aerial parts

of Apium graveolens (Apiaceae) [72]. Phakhodee et al. [14] purified the new

coumarins hydramicromelin D (85) and integerrimelin (113), together with

hydramicromelin A (83), 7-hydroxy-8-(20,30-dihydroxy-30-methylbutyl)-coumarin

(111), micromelin (88), murrangatin (151), murralogin (148), and tortuoside (112)
from the twigs of Micromelum integerrimum (Rutaceae).
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O

99 R1 = H, (lacinartin)
100 R1 = OCH3 (puberulin)

Fig. 11 Simple prenylated coumarins 99–100
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The new coumarins, isomurralonginoic acid (115), isomurralonginol senecioate

(114), meranzin hydrate 20-palmitate (119), and murrangatin 20-formate (153), were
isolated from the vegetative branches ofMurraya exotica (Rutaceae) [73]. Glycyrin
(166), glycycoumarin (167), and glycyrol (168) were purified as antihepatitis C

viral compounds from Glycyrrhiza species, as exemplified by G. uralensis (Plate
12) [74].
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Anticarin A (80), a new 6-prenylated coumarin, together with peucedanol (81),
was purified from the trunk bark of Antiaris toxicana (Moraceae) [75] (Fig. 9).

A chromatographic analysis of the chloroform fraction of the methanol extract of

the leaves of Murraya paniculata (Rutaceae) provided a new coumarin,

kimcuongin (116), together with murracarpin (139), with vasorelaxant activity

[76]. Lin et al. [43] isolated seven new prenylated coumarins from an ethanolic

extract of the roots of Toddalia asiatica (Rutaceae), a well-known component

of Traditional Chinese Medicine (TCM) preparations used for the treatment

of rheumatic arthritis, injuries and infections. Those coumarins were named
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O OO

OH

Fig. 14 Simple prenylated coumarins 123–128
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3000-O-demethyltoddalin A (91), toddalins A–D (90, 96–98) (Fig. 10), ent-
toddalolactone (93), and (–)-toddalolactone 30-O-β-D-glucopyranoside (94). In

addition, coumurrayin (104), (Z )-dehydrocoumurrayin (105), 5,7-dimethoxy-6-

(3-methylbutyl)-coumarin (82), 5,7-dimethoxy-8-(3-methylbutyl)-coumarin (106),
gleinadiene (109), toddaculin (89), toddalolactone (92), and toddanone (95) were

129 (micromarinate)

O OO

O

O

HO
OAc

130 (microminutin)

O OO

O

O

131 (microminutin B)
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O
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O

O

O
OH
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142 (muralatin E)
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O
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O
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O OO
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146 (muralatin K)

O OO
OH

147 (murragleinin)

O
O
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Fig. 15 Simple prenylated coumarins 129–147
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obtained from this plant. Toddaculin (89), isolated from the stem of this plant, was

found recently to inhibit osteoclastogenesis in RAW 264 cells and enhanced

osteoblastogenesis in MC3T3-E1 cells [77].

Two 7-O-prenylated simple coumarins, lacinartin (99) and puberulin (100)
(Fig. 11), were isolated from the stems of Zanthoxylum schinifolium
(Rutaceae) [46].

A new antioxidative coumarin with a prenyl substituent at C-8, named

7-methoxy-8-(3-methyl-2,3-epoxy-1-oxobutyl)chromen-2-one (120), was purified

from the fruits of Cnidium monnieri (Apiaceae) (Plate 7) [78]. In addition, the

known dihydrofuranocoumarins (Z )- and (E)-murraol (154 and 155) and

micromarin F (128), with cytoprotective properties, were also isolated. Several

antifungal prenylated coumarins were obtained from the fruits of Micromelum
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Fig. 16 Simple prenylated coumarins 148–165
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O OO
OH

166 (7-methoxy-6,8-bis-(2,3-dihydroxy-
3-methylbutyl)-coumarin)

OH

HO

OH

Fig. 17 Simple prenylated coumarin 166
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Fig. 18 Simple prenylated coumarins 167–180
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minutum (Rutaceae), mainly by repeated preparative-thin layer chromatography

(prep-TLC) and open column chromatography (CC) on silica gel. Among those

coumarins, micromarinate (129), microminutins B and C (131 and 132) (Fig. 15)
are new coumarins with prenylation at C-8. Hydramicromelin A (83), isomicromelin

(86), 6-methoxy-microminutinin (134), 7-methoxy-8-(40-methyl-30-furanyl)coumarin

(121), micromarins A-C (125-127), micromelosides A–C (136, 84 and 135),

Plate 11 Citrus tangerina (tangerine), Portugal. Photograph courtesy of Gold Bernard, Creative

Commons

Plate 12 Glycyrrhiza uralensis (Chinese licorice), San Diego Botanic Garden, Encinitas, Cali-

fornia, USA. Photograph courtesy of Stickpen, Public Domain

262 S.D. Sarker and L. Nahar



microminutin (130), microminutinin (133), minumicrolin (138), and murralongin

(149) are known coumarins that were isolated during this study [42].

A method using off-line two-dimensional high-performance liquid chromatog-

raphy coupled with electrospray tandem mass spectrometry (off-line 2D-HPLC-

ESI/MSn) was developed to identify coumarins in the roots of Angelica dahurica
(Apiaceae), and, among the identified coumarins, osthenol (159) was the only

simple prenylated coumarin [34], which was also isolated from the roots of

Clausena lansium (Rutaceae) (Plate 13) [79]. Two new prenylated coumarins,

30-O-methylmurraol (the 30-methyl ether of 155) and rel-(10S,20S)-10-O-
methylphlojodicarpin (165), together with auraptenol (101), demethylauraptenol

(102), meranzin hydrate (118), (E)-murraol (155), osthol (160), osthenol (159),
peroxyauraptenol (103), and peroxymurraol (156), were purified from the fruits of

Cnidium monnieri (Apiaceae) (Plate 7) [78]. Osthol (160) was also found in an

acetone extract of the roots of Clausena guillauminii (Rutaceae) [80].
7-Methoxycoumarins with various forms of prenylation patterns microcoumaririn

(123), microfalcrin (124), micromarin B (126), micromelin (88), micromelosidester

(137), micromeloside A (136), microminutin (130), and micromarin A (125), were
isolated fromMicromelum falcatum [81]. Microcoumaririn (123), microfalcrin (124),
and micromelosidester (137) are new natural products (Figs. 14 and 15). A phyto-

chemical investigation on the aerial parts ofMurraya tetramera (Rutaceae) afforded
5,7-dimethoxy-8-[(Z)-30-methylbutan-10,30-dienyl]coumarin (105) (also known as

(Z)-dehydrocoumurrayin), 5,7-dimethoxy-8-(3-methyl-2-oxo-butyl)coumarin (107),
and murrangatin acetate (152) [44].

Plate 13 Clausena lansium
(wampee), Hong Kong.

Photograph courtesy of

WingkLEE, Public Domain
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The 6-prenylated 5,7-dimethoxycoumarins, aculeatin (79), toddalolactone (92),
and toddaculin (89), were isolated from Toddalia asiatica (Rutaceae) [82], and 79
was shown to enhance differentiation and lipolysis of adipocytes. The new

8-prenylated and methoxylated simple coumarins, muralatins C–F (140–143) and
I–K (144–146), were reported from the leaves of Murraya alata (Rutaceae)

(Fig. 15) [17]. Several known 8-prenylated coumarins, coumurrayin (104),
5,7-dimethoxy-8-[(Z )-3-methylbut-1,3-dienyl]-coumarin (105) (also known as

(Z)-dehydrocoumurrayin), 5,7-dimethoxy-8-(3-methyl-2-oxo-butyl)-coumarin

(107), 8-(3-ethoxy-2-hydroxy-3-methylbutyl)-5,7-dimethoxycoumarin (108),
gleinene (110), gleinadiene (109), mexoticin (122), murralongin (149),
murranganon (150), murrangatin (151), murragleinin (147), murraol (155),
murpanicin (157), omphamurin (158), osthol (160), peroxyauraptenol (103), and
seselinal (161), were also isolated from this plant. Three new coumarins,

divaricoumarins A–C (162–164), were purified from a methanolic extract of the

roots of Saposhnikovia divaricata (Apiaceae) [19].

A new di-C-prenylated simple coumarin, 7-methoxy-6,8-bis-(2,3-dihydroxy-3-

methylbutyl)-coumarin (166), was recently isolated from the leaves of Sophora
interrupta (Fabaceae) (Fig. 17) [83].

Among the mammea-type coumarins isolated from the stem bark of Mammea
usambarensis (Clusiaceae), four were simple prenylated coumarins, mammea

B/BB (173), mammea E/BB (174), mammea B/BD (175), and mammea B/AB

(176) (Fig. 18) [84]. The mammea coumarins are isoprenylated 4-alkyl or

4-phenylcoumarins, which are generally distributed exclusively in three

Clusiaceae/Calophyllaceae genera [85]. A series of 4-substituted prenylated simple

coumarins (Fig. 18), mammea E/BA (177), mammea E/EB (178), neurophyllols A
(179), B (180), and C (172), was obtained from a dichloromethane extract of the

bark of Mammea neurophylla (Caryophyllaceae) [56, 85]. Of these compounds,

coumarin 172 is a new natural product.

2.3 Simple Geranylated Coumarins

Geranylated coumarins (181–196) are actually monoterpenyl coumarins containing

a ten-carbon monoterpenyl unit linked to the coumarin nucleus (Figs. 19 and 20).

The Rutaceae family appears to be the major source of geranylated coumarins that

have been reported recently, but such coumarins were also documented from the

families Apiaceae, Asteraceae, Cucurbitaceae, and Gomphidiaceae. Geranylation

of coumarin is facilitated by the geranyl transferase enzyme, which utilizes geranyl

diphosphate as the substrate.

Auraptene (181) was isolated from the fruits of Chroogomphus rutilus
(Gomphidiaceae) [18]. Three 7-O-geranylated simple coumarins, collinin (184),
8-methoxyabisocoumarin H (186), and acetoxyschinifolin (183), were obtained

from the stems of Zanthoxylum schinifolium (Rutaceae) [46]. Jeong et al. [53]
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reported collinin (184), 8-methoxyabisocoumarin H (186), and 7-((60R)-hydroxy-
30,70-dimethylocta-20,70-dienyloxy)-coumarin (187) as a result of their search for

bioactive constituents from the leaves of Z. schinifolium. A modified geranyl

(monoterpenyl) substituted simple coumarin, clausenalansimin B (194), was

O OO

181 R1 = R2 = H (auraptene)
182 R1 = AcO, R2 = H (5'-acetoxyauraptene)
183 R1 = AcO, R2 = OMe (acetoxyschinifolin)
184 R1 = H, R2 = OMe (collinin)
185 R1 = OH, R2 = H (5'-hydroxyauraptene)
186 R1 = OH, R2 = OMe (8-methoxyabisocoumarin H)

R2

R1

Fig. 19 Simple geranylated coumarins 181–186

O OO

187 (7-(6'R)-hydroxy-3',7'-dimethylocta-2',7'-
dienyloxy)-coumarin)

OH
O OO

188 (7-O-geranyl-6-methoxycoumarin)

O

O OO
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196 (tricanguina B)
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Fig. 20 Simple geranylated coumarins 187–196
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isolated from the peels of Clausena lansium (Rutaceae) (Plate 13) [86]. While 7-O-
geranyl-osthenol (189) was purified from Rauia nodosa (Rutaceae) [87], 7-O-
geranyl-6-methoxycoumarin (188) was found in the aerial parts of Murraya
tetramera of the same family [44]. In the search for acetylcholinesterase inhibitors,

in addition to 2 and a few sesquiterpenyl coumarins, three geranylated coumarins,

auraptene (181), 50-acetoxyauraptene (182), and 50-hydroxyauraptene (185), were
isolated from the oleogum resin of Ferula gummosa (Apiaceae) [88]. The

monoterpenyl simple coumarins tricanguinas A (195) and B (196) were obtained

from the aerial parts of Trichosanthes anguina (Cucurbitaceae) [89]. Four rather

unusual new coumarins, ainsliaeasins A1 (190) and A2 (191), and ainsliaeasins B1

(192) and B2 (193) were reported from the whole plant of Ainsliaea fragrans
(Asteraceae) [61].

2.4 Furanocoumarins

Furanocoumarins (also known as furocoumarins) possess a furan (or dihydrofuran)

ring fused with the coumarin skeleton, e.g., psoralen (198) (Scheme 2).

O OHO
2 (umbelliferone)

+

DMAPP

O OHO
7-demethylsuberosin

O OHO

159 (osthenol)

O O
289 (marmesin)
O

HO

O O

265 (columbianetin)

O

HO

O O
198 (psoralen)

O
O O

197 (angelicin)

O

other derivatives

OPP

Scheme 2 Biosynthesis of

furanocoumarins
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These two rings are fused in different ways to produce various angular

(e.g. angelicin (197)) and linear (e.g. psoralen (198)) furanocoumarins. They are

generally biosynthesized involving two pathways, the phenylpropanoid and the

mevalonic acid pathways, by a coupling of dimethylallyl pyrophosphate (DMAPP)

and umbelliferone (2), and through the formation of a prenylated simple coumarin

intermediate (Scheme 2). The Apiaceae and the Rutaceae are the main sources of

furanocoumarins, with the families Asteraceae, Caryophyllaceae, Fabaceae,

Moraceae, and Salvadoraceae, having also been shown to produce these compounds

in recent studies. Furanocoumarins (including dihydrofuranocoumarins) can broadly

be classified into angular and linear furanocoumarins, and furanocoumarins reported

recently are discussed under these classes below.

2.4.1 Angular Furanocoumarins

There are not many angular furanocoumarins (Fig. 21) found in plants, and even

recent work has only revealed known compounds of this class. The simplest angular

furanocoumarin, isopsoralen (197), (also known as angelicin), was reported from

the seeds of Psoralea corylifolia (Fabaceae) (Plate 14) and found to possess

antidiabetic potential [90]. A bioassay-guided isolation of antimicrobial coumarins

from the fruits of Heracleum mantegazzianum (Apiaceae) (Plate 15) by high-

performance counter-current chromatography afforded 197 and pimpinellin (199)
(Fig. 9) [91].

O O

197 R1 = R2 = H (isopsoralen/angelicin)
199 R1 = R2 = OMe (pimpinellin)

R1
R2

O

Fig. 21 Angular

furanocoumarins 197 and

199

Plate 14 Psoralea
corylifolia (babchi), The

Agri-Horticultural Society

of India, Alipore, Kolkata,

India. Photograph courtesy

of Biswarup Ganguly,

Creative Commons
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2.4.2 Linear Furanocoumarins

No new simple linear furanocoumarins, which do not have any prenylation or

geranylation, were recently reported; all reported coumarins of this category

(Fig. 22) are known natural products.

Bergapten (200), isopimpinellin (204), and xanthotoxin (205), together with the

prenylated furanocoumarin imperatorin (212), were isolated from the roots of

Heracleum dissectum (Apiaceae) [92]. Furanocoumarins 200 and 205 were also

found in a water extract of Peucedanum praeruptorum (Apiaceae)

[30]. Xanthotoxin (205) was purified from an ethanolic extract of the stems of

Salvadora indica (Salvadoraceae) by flash chromatography, and showed consider-

able antihyperlipidemic and antitumor activities [7]. Psoralen (198) was one of the
active components with antidiabetic potential in the seeds of Psoralea corylifolia
(Fabaceae) (Plate 14) [90]. Coumarins 198, 204, and 205 were identified as a result
of GC-MS analysis of the extract of the Bulgarian celeriac, Apium graveolens var.
rapaceum (Apiaceae) [72]. Xanthotoxin (205) was again isolated as an anticonvul-

sant agent from the fruits of Pastinaca sativa (Apiaceae) [93], and also from

Gerbera anandria (Asteraceae) [94], and the whole plant of Ainsliaea fragrans
(Asteraceae) [61]. The aerial parts of Prangos pabularia (Apiaceae) were found to

produce 205 and xanthotoxol (206) [27]. The methoxylated furanocoumarin,

isopimpinellin (204), which is a linear version of pimpinellin (199), was purified
from the roots of Angelica nitida (Apiaceae) [95]. A bioassay-guided isolation

procedure of antimicrobial coumarins from the fruits of Heracleum
mantegazzianum (Apiaceae) (Plate 15) led to the identification of 200, 204, and
205 [91]. While xanthotoxol-8-O-β-D-glucopyranoside (207) was isolated from

Plate 15 Heracleum mantegazzianum (giant hogweed), National Botanic Garden of Belgium.

Photograph courtesy of Jean-Pol Grandmont, Creative Commons
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Clausena lansium (Rutaceae) (Plate 13) [96], 200, bergaptol (201), 204,
5-methoxy-8-hydroxy-psoralen (205), and 5-hydroxy-8-methoxy-psoralen (203)
were reported from Angelica dahurica (Apiaceae) [34].

Among the recently reported furanocoumarins, prenylated linear furanocoumarins

(Figs. 23 and 24) form one of the largest groups of furanocoumarins, but most have

been known natural products. Both C- and O-prenylations are common in these

compounds. The O-prenylated furanocoumarins, byakangelicin (218), cnidilin (211),
imperatorin (212), isobyakangelicin (224), isoimperatorin (213), and phellopterin

(214), were obtained from the roots of Angelica nitida (Apiaceae) [95]. Heraclenol

(219), heraclenol-glycoside (220), oxypeucedanin hydrate (225), a demethoxy

derivative of isobyakangelicin (224), oxypeucedanin hydrate monoacetate (226),
pabulenol (236), and 212 were isolated from the aerial parts of Prangos pabularia
(Apiaceae) [27]. A bioassay-guided isolation of antimicrobial coumarins from

the fruits of Heracleum mantegazzianum (Apiaceae) (Plate 15) afforded 212
and 214 [91]. Coumarin 225 was also isolated from the trunk bark of Antiaris
toxicaria (Moraceae) [75], and from a methanolic extract of the roots of

Saposhnikovia divaricata (Apiaceae) [36]. Several furanocoumarins, 212–214,
demethylfuropinarine (222), and isodemethylfuropinarine (230) (Fig. 25) were iden-
tified from the roots of Angelica dahurica var. formosana cv. Chuanbaizhi

(Apiaceae) [97]. Chalepensin (221), which is a 3-prenylated linear furanocoumarin,

together with 200, was isolated from the leaves of Esenbeckia alata (Rutaceae) [98].

O O

208 R1 = 3-methyl-2-butenyl, R2 = OH (alloimperatorin)
209 R1 = OH, R2 = 3-methyl-2-butenyl (alloisoimperatorin)
210 R1 = 3-methyl-2-butenyloxy, R2 = 3-methyl-2-butenyloxy (cnidicin)
211 R1 = OMe, R2 = 3-methyl-2-butenyloxy (cnidilin)
212 R1 = 3-methyl-2-butenyloxy, R2 = H (imperatorin)
213 R1 = H, R2 = 3-methyl-2-butenyloxy (isoimperatorin)
214 R1 = 3-methyl-2-butenyloxy, R2 = OMe (phellopterin)

R1

R2

O

Fig. 23 Simple prenylated

linear furanocoumarins

208–214

O O

200 R1 = H, R2 = OMe (bergapten)
201 R1 = H, R2 = OH (bergaptol)
202 R1 = OMe, R2 = OH (5-hydroxy-xanthotoxin)
203 R1 = OH, R2 = OMe (5-hydroxy-8-methoxy-psoralen)
204 R1 = OMe, R2 = OMe (isopimpinellin)
205 R1 = OMe, R2 = H (xanthotoxin)
206 R1 = OH, R2 = H (xanthotoxol)
207 R1 = glucosyloxy, R2 = H (xanthotoxol-8-O-b-D- 
glucopyranoside)

R1

R2

O

Fig. 22 Simple linear

furanocoumarins 200–207
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A method using off-line two-dimensional high-performance liquid chromatog-

raphy coupled with electrospray tandem mass spectrometry (off-line 2D-HPLC-

ESI/MSn) was developed to identify linear furanocoumarins in the roots of Angelica
dahurica (Apiaceae), and several of these compounds were prenylated

furanocoumarins, e.g. 211–214, 224, 225, alloimperatorin (208), alloisoimperatorin

(209), anhydrobyakangelicin (215), anhydroisobyakangelicin (216), apaensisn

(217), byakangelicin (218), isobyakangelicol (229), isogospherol (231),
isooxypeucedanin (228), neobyakangelicol (232), oxypeucedanin (234), pabulenol
(236), and pabularinone (235) [34]. Similar known coumarins were isolated from

the aerial parts of the Bhutanese medicinal plant Pleurospermum amabile
(Apiaceae) as antibacterial compounds, namely, 198, 200, 204, 213, 225, and
oxypeucedanin methanolate (226) [99]. Imperatorin (212) was also reported from

the flowers of Ferula lutea (Apiaceae) [33, 100]. While 204 was recently isolated
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O

O

O

OH

O O

218 R1 = OMe, R2 = H (byakangelicin)
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224 R1 = OMe, R2 = H (isobyakangelicin)
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hydrate methyl ether)
227 R1 = H, R2 = Ac (oxypeucedanin 
hydrate monoacetate)
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O
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228 (isooxypeucedanin)

Fig. 24 Simple prenylated linear furanocoumarins 215–228
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from the leaves of Sophora interrupta (Fabaceae) [83], oxypeucedanin (234), which
is conspicuous in the genus Ferulago, has been found in Ferulago angulata
(Apiaceae) [101].

Lee et al. [78] purified 200, 204, 205, 206, and 212 from the fruits of Cnidium
monnieri (Apiaceae) (Plate 7). Shokoohinia et al. [69] isolated the antiviral and

cytotoxic furanocoumarins, 198, 213, 225, 226, 234, 236, and 237 from the roots of

Prangos ferulacea (Apiaceae).

In recent years, several geranylated linear furanocoumarins were isolated from

various species, mainly of the families Apiaceae and Rutaceae (Figs. 26 and 27),

and some of these are new natural products, e.g. clausemarins A–D (248–251).
A phytochemical study on the twigs of Feroniella lucida (Plate 8) afforded

several coumarins of this category, such as anisolactone (239), bergamottin (240),
20,30-epoxyanisalactone (243), lucidafuranolactone B (246), and notoptol (247)
[40]. Bergamottin (240) and 8-geranyloxypsoralen (244) were identified from the

roots of Angelica dahurica (Apiaceae) [34]. Clausemarins A–D (248–251), the new
coumarins referred to above, were obtained from the roots of Clausena lansium
(Rutaceae) (Plate 13) [79]. In all of these new compounds, a monoterpene unit is

linked to the furanocoumarin skeleton. The known geranylated compounds from
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Fig. 25 Simple prenylated linear furanocoumarins 229–238
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this plant are 244 and wampetin (252), together with known prenylated compounds

212 and 213. Clauslactone V (241) and clauslactone W (242), together with 239 and
252, were isolated from the peel of C. lansium (Plate 13) [86, 102].

A new monoterpenyl furanocoumarin, 9-[3-methyl-4-(4-methyl-5-oxo-

tetrahydro-furan-2-yl)-but-2-enyloxy]-furo[3,2-g]chromen-7-one (253) (Fig. 28),

quite similar to the clausemarins (248–251), was identified from the stems of

Clausena lansium (Rutaceae) (Plate 13) [102]. Pabularinone (235) was also found

in this plant. While Xu et al. [103] isolated 206 and indicolactone (245) from the

O OO

254 R1 = (claucoumarin A)

255 R1 = (claucoumarin B)

256 R1 = (claucoumarin D)

257 R1 = (clausenalansimin A)

258 R1 = 

259 R1 = (lansiumarin C)

260 R1 =

OR1

O OO

O

O

O
253 (9-[3-methyl-4-(4-methyl-5-oxo-tetrahydrofuran-2-yl)-
but-2-enyloxy]-furo[3,2- g]chromen-7-one)

OH
OH

OH

OMe

OH

OH
OH

OH

O
O

O O

O O
O

O

261

((E)-9-((6,7-dihydroxy-3,7-dimethyloct-2-
en-1-yl)oxy)-7H-furo[3,2-g]chromen-7-one

((E,E)-8-((7-hydroxy-3,7-dimethyloct-2,5-
dienyl)oxy)-psoralen)

Fig. 28 Geranylated linear furanocoumarins 253–261
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fresh ripe fruits, Liu et al. [96] obtained 17 furanocoumarins including some

geranylated representatives from the stems of the same plant. The stem-derived

coumarins were alloisoimperatorin (209), anisolactone (239), clausenalansimin

A (257), claucoumarins A–D (254, 255, 223, and 256, which are new natural

products), dahurin (238), (E)-9-(6,7-dihydroxy-3,7-dimethyloct-2-en-1-yl)oxy)-

7H-furo[3,2-g]chromen-7-one (258), (E,E)-8-(7-hydroxy-3,7-dimethylocta-2,5-

dimethoxy)-psoralen (260), imperatorin (212), 8-isopentonyloxypsoralen (234),
lansiumarin C (259), 5-{[(E)-3-methyl-4-(2S,4R)-4-methyl-5-oxotetrahydrofuran-

2-yl)but-2-en-1-yl]oxy}-psoralen (261), wampetin (252), xanthotoxol (206), and
xanthotoxol-8-O-β-D-glucopyranoside (207). However, claucoumarin B (255) and
9-[3-methyl-4-(4-methyl-5-oxo-tetrapydrofuran-2-yl)-but-2-enyloxy]-furo[3,2-g]
chromen-7-one (253) are the same compound, with the only difference being that in

255, the relative configuration was defined.

A new chlorinated furanocoumarin, 5-chloro-8-methoxy-psoralen (262),
together with 204 and 205, were isolated by Severino et al. as a mixture from the

aerial parts (branches) of Hortia superba (Rutaceae) (Fig. 29) [105]. Halogenated

coumarins like 262 are rare in the plant kingdom, and as often in similar occur-

rences, the possibility that these compounds might be extraction artefacts cannot be

rouled out convincingly.

The same group reported 200 and two angular pyranocoumarins from this same

plant in the following year [106]. Compound 200, together with 204, were isolated
as phytotoxic agents from the roots and rhizomes of Notopterygii (Notopterygium
incisum) of the family Apiaceae [106]. Peucedanin (263), where substitutions are

on the furan ring, was found in the aerial parts of Opopanax hispidus [11].

2.4.3 Angular Dihydrofuranocoumarins

Only a handful of angular dihydrofuranocoumarins were reported recently

(Fig. 30). 3-O-Methylvaginol (268) (also described as (10S,20S)-10-O-
methylvaginol, a new angular dihydrofuranocoumarin), was isolated from the fruits

of Cnidium monnieri (Apiaceae) [78]. Apterin (265), a dihydrofuranocoumarin

glucoside, was purified from the roots of Heracleum dissectum (Apiaceae) [92]. An

unusual angular dihydrofuranocoumarin, (2S*,3R*)-2-[(3E)-4,8-dimethylnona-

3,7-dien-1-yl]-2,3-dihydro-7-hydroxy-2,3-dimethylfuro[3,2c]coumarin (269), and
its stereoisomer, (2R*,3R*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2,3-dihydro-

7-hydroxy-2,3-dimethylfuro[3,2c]coumarin (270), were isolated from a chloroform

O OO

O

262 (5-chloro-8-methoxy-psoralen)

Cl

O OO

O

263 (peucedanin)

ClOFig. 29 Linear

furanocoumarins with

unusual substitutions 262
and 263
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extract of the underground parts of Ferula heuffelii (Apiaceae) [107]. Both new

compounds can also be classified as sesquiterpenyl coumarins.

Six coumarins of this same category, possessing antioxidant properties, were

obtained from the salt marsh plant Corydalis heterocarpa [108]; these were (20S)-
columbianetin (265), (20S)-columbianetin 30-acetate (266), (20S)-columbianetin

30-glucoside (267), (20S)-columbianetin 30-propanoate (276), (20S)-columbianetin

O O

264 R1 = glucosyl, R2 = H (apterin)
265 R1 = R2 = H (2'S-columbianetin)
266 R1 = Ac, R2 = H ((2'S)-columbianetin acetate)
267 R1 = glucosyl, R2 = H ((2'S)-columbianetin glucoside)
268 R1 = H, R2 = OMe (3-O-methylvaginol)

O

R2

R1O O O

O

HO

269 ((2S*,3S*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2,3-
dihydro-7-hydroxy-2,3-dimethylfuro[3,2c]coumarin)

O O

O

HO

270 ((2R*,3R*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-
2,3-dihydro-7-hydroxy-2,3-dimethylfuro[3,2c]coumarin)
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278 R1 = (2S)-methylbutanoate ((2'S)-
columbianetin-3'-isopentanoate)

Fig. 30 Angular dihydrofuranocoumarins 264–278
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30-sulfate (277), and (20S)-columbianetin 30-isopentanoate (278). The 4-substituted

angular dihydrocoumarins, 6-benzoyl-5-hydroxy-4-phenylcolumbianelin (271),
isopedilanthocoumarin B (62), and ochrocarpins F–I (272–275), were purified from

a dichloromethane extract of the bark of Mammea neurophylla (Calophyllaceae)

[56, 85].

2.4.4 Linear Dihydrofuranocoumarins

A number of linear dihydrofuranocoumarins, with most of them are known com-

pounds, were reported recently (Fig. 31). Marmesinin (290), a glucoside of

marmesin (289), was isolated from the aerial parts of Gerbera piloselloides

O O
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[10]. Several acylated marmesin derivatives, smirniorin (299),
3-hydroxyprantschimgin (285), 40-acetyl-30-isobutyryl-30-hydroxymarmesin (279),
and 30-isobutyryl-30-hydroxymarmesin (280), with the latter being a new coumarin,

were purified from the aerial parts of Opopanax hispidus [11]. A 30-oxo
dihydrofuranocoumarin, oreoselon (298), was also found in this plant.

While (S)-marmesin (291) was isolated from the twigs of Feroniella lucida
(Plate 8) [40] and the flowers of Ferula lutea (Apiaceae) [100], (R)-marmesin (289)
was reported from the trunk bark of Antiaris toxicaria (Moraceae) [75]. Imperatorin

(212) was also found in Ferula lutea (Apiaceae). Isoangenomalin (287),
nodakenetin (295) and 40-O-β-D-glucopyranosyl-30-hydroxy-nodakenetin (296)
were identified from Ficus tsiangii (Moraceae) [37]. Chalepin (282), a

3-prenylated dihydrofuranocoumarin from Ruta angustifolia (Rutaceae) (Plate

16), was isolated as a bioactive compound that was found to inhibit hepatitis C

virus replication [109]. Nodakenetin (295), nodakenetin tiglate (296), and rutaretin
(292) were obtained from a water extract of Peucedanum praeruptorum (Apiaceae)

[26]. Prantschimgin (286) (also known as pranchimgin) was obtained from

Ferulago angulata (Apiaceae) [101], and this compound is also distributed in

other species of the genus Ferulago. While isoangenomilin (287) and

leptophyllidin (288) were obtained from the woody stems of Esenbeckia alata
(Rutaceae) [98], a phytochemical study of the flowers of Ferula lutea (Apiaceae)

revealed the presence of (+)-(Z )-deltoin (283) and (–)-(E)-deltoin (284)
[33, 100]. A new linear dihydrofuranocoumarin, 8-methoxysmyrindiol (294), was
isolated from Gerbera anandria (Asteraceae), and was found to possess

antibacterial and antitumor properties [94]. Ainsliaeasin C (281), a stereoisomer

of 8-methoxysmyrindiol (294), which is a new natural product, together with (S)-
marmesin (291) and nodakenin (293), were reported from the whole plants of

Ainsliaea fragrans (Asteraceae) [61].

Plate 16 Ruta angustifolia
(rue) Tor�a, 575 m, Segarra-

Catalunya, Spain.

Photograph courtesy of

Isedre Blanc, Creative

Commons
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2.5 Pyranocoumarins

Pyranocoumarins possess a pyran (or dihydropyran) ring usually fused with

the aromatic ring of the coumarin skeleton, as e.g. in xanthyletin (322). These
two rings are fused in different ways to produce various angular (e.g. seselin (312))
and linear (e.g. xanthyletin (322)) pyranocoumarins. The biosynthesis pathway for

pyranocoumarins is quite similar to that of furanocoumarins, and starts from a

coupling of dimethylallyl pyrophosphate (DMAPP) and umbelliferone (2), and
proceeds through the formation of a prenylated simple coumarin intermediate

(Scheme 3). The only difference is in the ring formation from the prenyl group to

a pyran ring, not to a furan (Scheme 2).

Most of the pyranocoumarins reported recently are from the Rutaceae, but plants

from other families, such as Apiaceae, Asteraceae, Calophyllaceae, Clusiaceae,

Fabaceae, and Malvaceae, were also shown to produce this class of compounds.

Like furanocoumarins (including dihydrofuranocoumarins), pyranocoumarins can

also be classified into angular and linear pyranocoumarins, and pyranocoumarins

recently reported are discussed under these classes below.

2.5.1 Angular Pyranocoumarins

Angular pyranocoumarins are generally formed involving either C-5 and C-6 of a

coumarin nucleus resulting in the alloxanthoxyletin-type (300) angular

pyranocoumarins (Fig. 32), or C-7 and C-8 leading to the seselin-type (312)
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Scheme 3 Biosynthesis of

pyranocoumarins
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(Fig. 33) pyranocoumarins. In recent years, a good number of angular

pyranocoumarins, many of them with prenylations (e.g. avicennol (303)), were
reported. Avicennin (302), a prenylated angular pyranocoumarin, was isolated from

the roots and stems of Zanthoxylum avicennae (Rutaceae) [110]. Three new cou-

marins, 8-formylalloxanthoxyletin (301), avicennone (306), and (Z)-avicennone
(307), as well as alloxanthoxyletin (300), avicennin (302), avicennol (303),
avicennol methyl ether (304), and (Z )-avicennol methyl ether (305) were purified

from the stem bark of the same plant [20]. Alloxanthoxyletin (300) was also

procured from the roots of Hibiscus vitifolius (Malvaceae) [111].

Braylin (308), 5-methoxyseselin (310), and norbraylin (311) were isolated from

a 95% ethanolic extract of the roots of Toddalia asiatica (Rutaceae) [43].

5-Methoxyseselin (310), together with 6-(3,3-dimethylallyl)seselin (309), was

O OO

O
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300 R1 = H (alloxanthoxyletin)
301 R1 = CHO (8-formylalloxanthoxyletin)
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305 ((Z)-avicennol methyl ether)

O

O OO

O

O
306 (avicennone)
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Fig. 32 Angular pyranocoumarins 300–307 involving C-5 and C-6
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308 R1 = H, R2 = OMe (braylin)
309 R1 = H, R2 = 3,3-dimethylallyl (6-(3,3-dimethylallyl)seselin)
310 R1 = OMe, R2 = H (5-methoxyseselin)
311 R1 = H, R2 = OH (norbraylin)
312 R1 = H, R2 = H (seselin)
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Fig. 33 Angular pyranocoumarins 308–313 involving C-7 and C-8
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obtained from the leaves of Murraya alata (Rutaceae) [17]. While a 3-substituted

angular pyranocoumarin, called mammaea B/AB cyclo D (313), was found in the

stem bark of Mammea usambarensis (Clusiaceae) [84], the simplest compounds of

this class, seselin (312) and 5-methoxyseselin (310), were identified from Hortia
superba (Rutaceae) [104, 105].

The 3-phenyl-substituted angular pyranocoumarins, 11,12-anhydroionophyllum

A (314), calophyllolide (315), inophyllum A (316), inophyllum C (317), and

inophyllum E (318), were isolated from the fruits of Calophyllum inophyllum
(Calophyllaceae) (Plate 17) [112] (Fig. 34).

Plate 17 Calophyllum inophyllum (Alexandrian laurel), Maui Nui Botanical Garden. Photograph

courtesy of Forest & Kim Starr, Creative Commons
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Fig. 34 3-Phenyl substituted angular pyranocoumarins 314–318
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An unusual angular pyranocoumarin (Fig. 35), bothrioclinin (319), where the

pyran ring formation involves oxygenation at C-4 and prenylation at C-3 of the

coumarin nucleus, was reported from the whole plant of Ainsliaea fragrans
(Asteraceae) [61]. This compound is also unusual in the sense that, unlike most

other plant-derived coumarins, it does not have any oxygenation at C-7.

2.5.2 Linear Pyranocoumarins

The roots and stems of Zanthoxylum avicennae (Rutaceae) afforded a well-known
linear pyranocoumarin (Fig. 36), xanthoxyletin (321), as well as its isomer,

luvangetin (320) [20, 111], with the latter also isolated from the stem bark

of Zanthoxylum ailanthoides by centrifugal partition chromatography

[113]. Xanthoxyletin (321) and xanthyletin (322) were found in Hibiscus vitifolius
(Malvaceae) [107]. An acetone extract of the roots of Clausena guillauminii
(Rutaceae) produced 321 [80], which was also purified from Ficus tsiangii
(Moraceae) [37].

2.5.3 Angular Dihydropyranocoumarins

Angular dihydropyranocoumarins, formed involving C-7 and C-8 of the coumarin

nucleus (Figs. 37 and 38), are the major group of pyranocoumarins reported

recently. Most of these have further substitutions, predominantly prenylations.

Many of them are (–)-(Z )-khellactone (340) derivatives. A new angular

dihydropyranocoumarin glycoside, anticarin B (324), was reported from the trunk

bark of Antiaris toxicaria (Moraceae) [75]. 30,40-Dihydrobraylin (325) and

5-methoxydihydroseselin (326) were isolated from a 95% ethanolic extract of the

roots of Toddalia asiatica (Rutaceae) [43].

O O

319 (bothrioclinin)

O
Fig. 35 An unusual

angular pyranocoumarin

319 involving C-3 and C-4

O O
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pyranocoumarins 320–322

Progress in the Chemistry of Naturally Occurring Coumarins 281



Praeruptorins A (329) and B (330) were detected in the wood bark of

Peucedanum praeruptorum (Apiaceae), commonly known as Peucedani Radix

(Chinese: “Qian-hu”) [114]. Additional prenylation is present in both compounds.

Another plant from the same genus, P. japonicum, afforded an angular

dihydropyranocoumarin with potential antiobesity activity, called pteryxin (331)
[115]. A stereoisomer of praeruptorin A (329), namely, 30-angeloyl-40-acetyl-(Z)-
khellactone (323), was purified from an ethanolic extract of the root bark of

Oplopanax horridus (Araliaceae) [28]. Corymbocoumarin (334), (–)-(Z )-
khellactone (340), d-laserpitin (341), praeroside III (328), Pd-lb (327), praeruptorins
A (329), B (330), praeruptorin E (342), and qiamhucoumarin (333) were obtained
from an aqueous extract of Peucedanum praeruptorum (Apiaceae) [30].

Six angular dihydropyranocoumarins were isolated from the aerial parts of

Glehnia littoralis (Apiaceae) (Plate 18) and shown to inhibit lipopolysaccharide-

induced nitric oxide (NO) production in RAW 264.7 macrophage cells [116].
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(+)-(Z)-(30S,40S)-Diisobutyrylkhellactone (334) was identified as a new natural

product, and 30-senecioyl-40-acetylkhellactone (344), 30-isovaleryl-40-acetylkhellactone
(337), 30,40-disenecioylkhellactone (336), 30-isovaleryl-40-senecioylkhellactone (339),
and 30,40-diisovalerylkhellactone (335) are known angular dihydropyranocoumarins.

(Z)-30,40-disenecioylkhellactone (336) (Z )-30-isovaleryl-40-acetylkellactone (338),
(Z)-30-isovaleryl-40-senecioylkhellactone (339), (–)-(Z )-khellactone (340), and

praeruptorins B (330) and F (343) were purified from a methanolic extract of the

roots of Saposhnikovia divaricata (Apiaceae) [19] (Fig. 38).

O O

332 R1 = OAc R2 = (corymbocoumarin)

333 R1 = R2 = (qiamhucoumarin)
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339 R1 = R2 = ((Z )-3'-isovaleryl-4'-senecioylkhellactone)

340 R1 = H R2 = H ((–)-(Z)-khellactone)

341 R1 = H R2 = (d-laserpitin)

342 R1 = R2 = (praeruptorin E)

343 R1 = R2 = (praeruptorin F)

344 R1 = R2 = OAc (3'-senecioyl-4'-acetylkhellactone)

O

OR1
OR2

O

O O

O O

O O
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Fig. 38 Angular dihydropyranocoumarins 332–344
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2.5.4 Linear Dihydropyranocoumarins

Only a few linear dihydropyranocoumarins were reported recently (Fig. 39).

Licopyranocoumarin (351) was isolated from an herbal medicine composed mainly

of Glycyrrhiza species (Fabaceae) as a potential neuroprotective agent for the

treatment of Parkinson’s disease [70].
Dihydrozanthyletin (347) was purified from Ficus tsiangii (Moraceae) [37], and

(–)-decursinol (345) was found in the fruits of Micromelum minutum (Rutaceae)

[42] as well as in a methanolic extract of the roots of Saposhnikovia divaricata
(Apiaceae) [19]. An angeloyl derivative of decursinol (345), decursinol angelate
(346), was isolated from a water extract of Peucedanum praeruptorum (Apiaceae)

[30]. A new linear dihydropyranocoumarin, (�)-hydroxydecursinol (349), together
with (+)-decursinol (348), was reported from the roots of Angelica dahurica var.

formosana cv. Chuanbaizhi [97].

Plate 18 Glehnia littoralis (American silvertop), Syonai area, Japan. Photograph courtesy of

Qwert1234, Creative Commons

O OO

R1

345 R1 = OH  ((–)-decursinol)
346 R1 = angeloyloxy (decursinol angelate)
347 R1 = H  (dihydroxanthyletin)

O OO

348 ((+)-decursinol)

HO

O OO

HO

349 ((–)-hydroxydecursinol)

HO
O OO

350 (licopyranocoumarin)

HO

O
HO OH

Fig. 39 Linear dihydropyranocoumarins 345–350
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2.6 Sesquiterpenyl Coumarins

Sesquiterpenyl coumarins are formed via conjugation between a farnesyl

(or substituted farnesyl) unit or a sesquiterpene unit and a coumarin nucleus. The

conjugation can be either through C or O. In recent years, several sesquiterpenyl

coumarins were reported, including some new natural products (Figs. 40, 41, 42, 43

and 44). All of these compounds have been obtained exclusively from species in the

Apiaceae. Umbelliprenin (351) (Fig. 40) is the simplest member of this group of

compounds, where a farnesyl moiety is linked through an oxygen bridge involving

C-7 of the coumarin nucleus. These sesquiterpenyl coumarins, almost exclusively,

have been reported from various species of the genus Ferula of the family

Apiaceae.

The sesquiterpene coumarins, badrakemin acetate (352), kellerin (357), and a

samarkandin diastereomer (380), were isolated from the gum resin of Ferula assa-
foetida (Apiaceae) (Plate 19), employed as an herbal medicine used traditionally

for the treatment of microbial, protozoal and viral infections [117]. A phytochem-

ical investigation of a dichloromethane extract of the fruits of Ferula gummosa
afforded three drimane-sesquiterpene coumarins, conferone (355), feselol (368),
and mogoltacin (378), which were shown to enhance doxorubicin uptake by a

O OO

352 (badrakemin acetate)

AcO
O OO

353 (colladonin)

HO
O OO

354 (conferol)

AcO

O OO

355 (conferone)

O OO

356 R1 = OH (deacetylkellerin)
357 R1 = OAc (kellerin)

R1
O OO

358 (episamarcandin)

O

OH

HO

OH

Fig. 41 Sesquiterpenyl coumarins 352–358

O OO

351 (umbelliprenin)

Fig. 40 Umbelliprenin (351), the simplest member of the sesquiterpenyl coumarins
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doxorubicin-resistant human breast cancer cell line (MCF-7/Dox) [118]. The new

sesquiterpene coumarins, fnarthexone (371) and fnarthexol (370), along with

conferol (355), conferone (356), and 2, were isolated from Ferula narthex
(Apiaceae) [26].

Samarkandin acetate (379) was found in the underground parts of Ferula
heuffelii [107]. In a search for acetylcholinesterase inhibitors, in addition to 2 and

a few geranylated coumarins, the sesquiterpenyl coumarins deacetylkellerin (356),
farnesiferol B (361), farnesiferol C (362), and kellerin (357), were purified from the

oleogum resin of Ferula gummosa [88, 130]. A new sesquiterpene coumarin with a

O OO

359 R1 = Et (ethyl galbanate)
360 R1 = Me (methyl galbanate)

1OR O

O OO

361 (farnesiferol B)
HO

O OO

362 (farnesiferol C)

O

O OO

363 (farnesiferon A)

HO
O OO

364 (farnesiferon B)

O

O OO

365 (fekolone)

O

O OO

366 R1 = H (fekrynol)
367 R1 = AcO (fekrynol acetate)

R1O

O OO

368 (feselol)

HO

Fig. 42 Sesquiterpenyl coumarins 359–368
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novel sesquiterpene carbon framework, sinkiangenorin D (382), and lehmannolol

(376), lehmannolone (377), episamarcandin (358), colladonin (353), sinkianone
(383), fekrynol (366), fekolone (365), feselol (368), and the simple

farnesyloxycoumarin, umbelliprenin (351), were reported from the seeds of Ferula
sinkiangensis (Apiaceae) [119]. Their cytotoxic activity for a small panel of cancer

cells was also investigated.

The first ever reported disesquiterpenyl coumarin, sanandajin (381), together
with methyl galbanate (360), ethyl galbanate (359), fekrynol acetate (367),
farnesiferol B (361), and kamonolol (373), was isolated from the roots of Ferula
pseudalliacea [120, 121].

O OO

369 (flabellilobin)

AcO

O OO

370 (fnarthexol)

HO

O OO

371 (fnarthexone)

O

O OO

372 R1 = OH, R2 = Me, R3 = OAc (4'-hydroxy kamolonol acetate)
373 R1 = Me, R2 = H, R3 = OH (kamolonol)
374 R1 = Me, R2 = H, R3 = OAc (kamolonol acetate)
375 R1 = Me, R2 = H, R3 = H (szowitsia coumarin A)

R2R1
O

R3

O OO

376 (lehmannolol)

HO

O OO

377 (lehmannolone)

O

O OO

378 (mogoltacin)

HO

O OO

379 (samarkandin acetate)

AcO

OH

O OO

380 (samarkandin diasteromer)

HO

OH

Fig. 43 Sesquiterpenyl coumarins 369–380
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All of these coumarins showed considerable phyto- and cytotoxicity. The same

research group also reported further sesquiterpene coumarins (Fig. 43) from the

roots of the same plant, namely, 40-hydroxy-kamolonol acetate (372), kamolonol

(373), szowitsia-coumarin A (375), farnesiferon B (364), farnesiferol C (362), and
flabellilobin A (369). 40-Hydroxy-kamolonol acetate (372) was considered as a new
natural product [120, 121].

O OO

381 (sanandajin)

O O

H

H

O OO

382 (sinkiangenorin D)

OH

O OO

383 (sinkianone)

O

Fig. 44 Sesquiterpenyl coumarins 381–383

Plate 19 Ferula assa-foetida (asant), Ayaz Kala, Kyzyl Kum desert, Uzbekistan. Photograph

courtesy of V. Fassiaux, Public Domain
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2.7 Oligomeric Coumarins

Oligomeric coumarins (Figs. 45, 46, 47, 48, 49 and 50), predominantly coumarin

dimers, have been appearing more and more in the literature in recent years,

O OHO

384 (3,3'-bisisofraxidin)

O

O

OO
O

OH

O

O OHO

385 (daphnoretin)

O O O O
O OHO

386 (7,7'-dihydroxy-6,6'-dimethoxy-8,8'-
biscoumarin)

O

OO OH

O

O OHO

387 (7,7'-dihydroxy-6,6'-
dimethoxy-3,3'-biscoumarin)

O

OO OH

O

O OR1O

388 R1 = H (7,7'-dihydroxy-6,6'-biscoumarin)
389 R1 = Me (7,7'-methoxy-6,6'-biscoumarin)

O OR1O

O OHO

390 R1 = H (7,7'-dihydroxy-
8,8'-biscoumarin)
391 R1 = Me (7-hydroxy-,7'-
methoxy-8,8'-biscoumarin)

OO OR1

O OHO

392 (edgeworoside C)

OO O
rhamnosyl

O

393 (Lawsonia bicoumarin) 

OO O

O

O

O

O

O O

O O

O

O

394 (7-methoxy-6,7'-dicoumarinyl ether)

Fig. 45 Dimeric coumarins 384–394

O OHO

395 (edgeworoside A)

O O O

O OO
rhamnosyl

Fig. 46 The coumarin trimer edgeworoside A (395)
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probably because of significant advances in separation and identification tech-

niques, which have made it much easier to isolate and characterize structurally

such compounds with greater confidence. Most of these oligomers are predomi-

nantly from plants in the Apiaceae and the Thymelaeaceae, and a few from species

396 R1 = H (bifuranocoumarin)
397 R1 = OMe (bifuranocoumarin)

O O

O

O

O
O

O

O

O

R1

398 (dahuribirin)

O O

O

O
O

O

O
O

O

O

399 (dahuribirin D)

O O

O

O

O
O

O

O

O

O

400 (dahuribirin E)

O O

O

O

O
O

O

O

O
OH

OO O

O

O

O

O

OO O

OH

401 (dahuribiethrin A)

OO O

R1

O

O

O

OO O

OH

402 R1 = H (dahuribiethrin B)
403 R1 = OMe (dahuribiethrin C)

HO

Fig. 47 Dimeric coumarins 396–403 with a spacer group
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in the other families, Asteraceae, Guttiferae, Lythraceae, Rubiaceae, Rutaceae, and

Saxifragaceae. Many of the recently reported oligomeric coumarins are new natural

products.

A dimeric coumarin, 3,30-bisisofraxidin (384), was purified from a Tibetan

traditional medicine based on Carduus acanthoides (Asteraceae) (Fig. 45)

[9]. Ghanem et al. [122] isolated daphnoretin (385), a 3,70-dimer through an ether

linkage, from the aerial parts of Thymelaea microphylla (Thymelaeaceae);

OO O

O

O

O

O

OO O

404/405 (dahuribiethrin D/E)

HO

OO O

O

O

O

OO O

406 (dahuribiethrin F)

O
O

OO O

O

O

O

OO O

407 (dahuribiethrin G)

O
O

OO
OH

O

O

O

O

O

HO

408 ((±)−dahuribiscoumarin)

OO

O

O

O

O

OH
HO

O

O

O

O

O

409 (daphuribirin B)

OO OO

OH
HO

HO
O

O

O

O

O

O

O

HO
HO

OH

410 (hydrangeside A)

Fig. 48 Dimeric coumarins 404–410 with a spacer group
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compound 385, together with a rhamnoside of a 8,80-coumarin dimer, edgeworoside

C (392), was also obtained from Edgeworthia chrysantha (Thymelaeaceae) [23].

Rajachan et al. [25] isolated daphnoretin (387) from the roots of Enkleia siamensis
of the same family. 7,70-Dihydroxy-6,60-dimethoxy-8,80-biscoumarin (386) and

7,70-dihydroxy-6,60-dimethoxy-3,30-biscoumarin (387) were obtained from the stem

bark ofPauridiantha callicarpoides (Rubiaceae) [24]. 7,70-Dihydroxy-6,60-biscoumarin

(388), 7,70-dihydroxy-8,80-biscoumarin (390), 7,70-dimethoxy-6,60-biscoumarin (389),
and 7-methoxy-6,70-dicoumarinyl ether (394) were isolated from a methanolic

extract of the stem bark of Hypericum riparium (Guttiferae) [58]. 7-Hydroxy-7-
0-methoxy-8,80-biscoumarin (391) was found in Thymelaea microphylla
(Thymelaeaceae) [23, 123]. A new bicoumarin, Lawsonia bicoumarin A (393), was
identified from a dichloromethane extract of the flowers of Lawsonia inermis
(Lythraceae), through repeated column chromatography on silica gel, as well as

reversed-phase semi-preparative HPLC [122]. A trimeric coumarin glycoside,

edgeworoside A (395), was identified as a constituent of the flower buds of

Edgeworthia chrysantha (Fig. 46) [23].

The formation of coumarin dimers through spacer groups, normally a prenyl or a

terpenyl group, has added to interest in coumarin chemistry. A new biscoumarin,

(�)-dahuribiscoumarin (408), formed through dimerization between two linear

furanocoumarins units, involving a prenyl derived spacer group, was purified

from the roots of Angelica dahurica var. formosana cv. Chianbaixhi (Apiaceae)

[97]. A method using off-line two-dimensional HPLC coupled with electrospray

413 (bis-dracunculin)

O O

O

OO

O

OO

O O

Fig. 50 Bis-dracunculin

(413)

OO

O

O

O

O

OH
HO

O

O

O

O
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O
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O

O

O
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412 (toddalosin)

Fig. 49 Dimeric coumarins

411–412 with a spacer

group

292 S.D. Sarker and L. Nahar



tandem mass spectrometry afforded two new bifuranocoumarins 396 and 397
(Fig. 47), as well as dahuribirin A (398), dahuribirin D (399), dahuribirin E (400),
daphuribirin B (409), and rivulobirin D (411) (Fig. 48), in the roots of Angelica
dahurica (Apiaceae) [34, 131].

All of these dimers have a spacer group formed from their prenyl side chains.

The new furanocoumarin dimers, dahuribiethrins A–G (401–407), formed through

prenyl spacers, were reported from the roots of Angelica dahurica (Apiaceae)

[125], and all of these coumarins possess anti-inflammatory properties as demon-

strated in an assay using the murine RAW 264.7 macrophage cell line.

Toddalosin (412) (Fig. 49) was isolated from an ethanolic extract of the roots of

Toddalia asiatica (Rutaceae) [43]. It is a dimer formed through a monoterpenyl

spacer group. A dimeric simple coumarin, hydrangeside A (410), with an extensive
spacer group, possessing hepatoprotective properties, was purified from the stems

of Hydrangea paniculata (Saxifragaceae) [45].

An unusual simple coumarin dimer, bis-dracunculin (Fig. 50) (413), was purified
from an ethanolic extract of the aerial parts of Artemisia elegantissima (Asteraceae)
[48]. Two dracunculin (47) units form bis-dracunculin (413), a symmetrical dimer,

through dimerization involving 3,30 and 4,40 carbons, leading to a cyclobutane ring

system.

2.8 Miscellaneous Coumarins

Approximately a dozen unusual coumarin derivatives, which may not be placed

under any of the above classifications, have also been reported recently (Fig. 51).

Two anti-inflammatory coumarinolignans of previously known structure,

cleomiscosin A (414) and cleomiscosin E (415), were isolated from the seeds of

Brucea javanica (Simaroubaceae) [126]. Compounds 414 and 415 might, however,

also be regarded as simple coumarins. Cleomiscosin A (414) was also found in the

stem bark of Pentas schimperi (Rubiaceae) [127]. A new coumarinolignan (416), a
unique coumarin-lignan adduct that possesses anti-HBV activity against HBeAg

and HBsAg, and moderate antifibrotic and neuroprotective properties, was reported

from the stems of Kadsura heteroclita (Schisandraceae) [128]. An unusual couma-

rin, 10-methoxy-7-methyl-2H-benzo[g]chromen-2-one (423), was purified from the

aerial parts of Murraya tetramera (Rutaceae) and shown to possess cytotoxicity

against a small panel of cancer cell lines [44].

Two new rather rare coumarins, muralatins A (424) and B (425), were isolated

from the leaves of another species of the same genus, Murraya alata (Rutaceae)

[17]. Muralatin A (424) is an angular version of 10-methoxy-7-methyl-2H-benzo[g]
chromen-2-one (423). Two new unusual coumarins, herpetosperins A (421) and B

(422), and a known analog, herpetolide A (421), were found in the seeds of

Herpetospermum caudigerum (Cucurbitaceae) [129]. A new isocoumarin, ethyl
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(E)-3-((3S,4S)-3-butyryl-6,7-dihydroxy-2-oxochroman-4-yl)-2-hydroxy-4-oxohept-

2-enoate (417), was obtained from the whole plants of Euphorbia wallichii
(Euphorbiaceae) (Plate 20) [130]. The occurrence of coumarins or isocoumarins in

the genus Euphorbia is rare, and is limited to a few species, e.g., E. lunulata,
E. quinquecostata, E. lagascae, and E. portlandica.

Exotines A (418) and B (419), two isopentenyl-substituted indole-coumarin

adducts, where the indolyl moiety is linked to C-8 of the coumarin nucleus, were

isolated from the roots of Murraya exotica (Rutaceae) [131]. Toddacoumaquinone

(426) is a coumarin-quinone adduct formed via a C–C link directly between

a coumarin and a quinone, and was isolated from the roots of Toddalia
asiatica [43].

414 R1 = Me, R2 = H (cleomiscosin A) 
415 R1 = H, R2 = Me (cleomiscosin E) 
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Fig. 51 Miscellaneous coumarins 414–426
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3 Conclusions

Well over 400 coumarin isolations were reported in the years 2014 and 2015, with

many of these being re-isolations of previously known compounds from new or

known sources, most often associated with some type of biological activity. How-

ever, an appreciable number of compounds based on new coumarin skeletons,

especially various coumarin dimers, prenylated furanocoumarins, sesquiterpenyl

coumarins, and some unusual coumarins, were reported during this period. Cou-

marin chemistry is still one of the major interest areas for phytochemists, especially

because of their quite versatile bioactivities and potential medicinal properties, as

exemplified by substances showing analgesic, anticoagulant, anti-HIV, anti-inflam-

matory, antimicrobial, antioxidant, cytotoxic, and immune-modulation effects.

Coumarins as a group remain of strong interest because of their interesting struc-

tural diversity. While there have been significant advancements recently in the

extraction, isolation, structure elucidation, and bioactivity testing of naturally

occurring coumarins, only a marginal advancement is an apparent in relation to

the study of their biosynthesis.

Plate 20 Euphorbia wallichii (Wallich spurge), Real Jardı́n Botánico, Madrid, Spain. Photograph

courtesy of A. Barra, Creative Commons
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