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Preface

As in the first edition of this book, the purpose of this revision is the collection and
unified presentation of statistical models and methods for the analysis of failure
time data. The motivation for this effort continues to derive primarily from biome-
dical contexts and, to a lesser extent, industrial life-testing purposes.

A voluminous literature on failure time analysis and the closely related event
history analysis has developed in the more than 20 years since the publication in
1980 of the first edition of this book. The theoretical underpinnings of the methods
described previously have been strengthened in the interim, and many important
generalizations and related developments have taken place. Counting process methods
and related martingale convergence results have led to precise and general asymp-
totic results for tests and estimators under key classes of failure time models and
important censoring and truncation mechanisms. These developments have also
contributed to the formulation of broader classes of models and methods.

An important challenge in developing this revision was to preserve the feature of
a fairly elementary and classical likelihood-based presentation of failure time models
and methods while integrating the counting process notation and related theory.
This we have done by using classical notation and descriptions throughout the first
four chapters of the revision while introducing the reader to key estimating func-
tions and estimators in notation involving counting processes and stochastic inte-
gration. These chapters deal with survivor function estimation and comparison of
survival curves (Chapter 1); statistical models for failure time distributions, including
parametric and semiparametric regression models (Chapter 2); testing and estima-
tion in parametric regression models under right censoring and other selected cen-
soring schemes (Chapter 3); and testing and estimation under the semiparametric
Cox regression model (Chapter 4). These chapters, along with parts of Chapters 6
to 8, can form the basis for an introductory graduate-level biostatistics or statistics
course. We have tried to keep a solid contact with the first edition in many places
and, for example, have retained illustrations from that edition where they still
seemed to make the relevant points well.

A new Chapter 5 provides a more systematic introduction to counting processes
and martingale convergence results and describes how they can be applied to yield
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asymptotic results for many of the statistical methods discussed in the first four
chapters. The treatment is somewhat less formal than in some more specialized
books, but presents the reader with a development and summary of the main ideas
and a good basis for further investigation and study.

The remainder of the book uses the notation from counting processes and stochastic
integrals where it is helpful, but continues to emphasize the likelihood basis for
testing and estimation procedures. Like Chapter 5 in the first edition, Chapter 6
is devoted to general concepts of likelihood and partial likelihood construction,
especially in relation to time-dependent and evolving covariate histories. We also
provide an example in which martingale methods do not allow the development of
asymptotic results because the conditioning events are not nested in time. Like our
previous Chapter 6, Chapter 7 is devoted to the semiparametric log-linear or accel-
erated failure time model. Over the past two decades much effort has been devoted
to regression estimation under this model, to the point where it can provide a prac-
tical alternative to the Cox model. Like our previous Chapter 7, Chapters 8 through
10 are devoted to aspects of multivariate failure time data analysis, including com-
peting risk and multistate failure time modeling and estimation (Chapter 8), recur-
rent event modeling and estimation (Chapter 9), and correlated failure time methods
(Chapter 10). Aside from a part of Chapter 8, most of the material in these
chapters reflects developments since the first edition was published. Martingale
convergence results are applicable to some of the estimating functions considered
in these chapters, but others rely on empirical process methods. The latter methods
can largely subsume the martingale methods, but we have not attempted compre-
hensive coverage here. Chapter 11 is devoted to more specialized topics. We have
retained some of the material from our original Chapter 8 while providing a
description of methods for such topics as risk set sampling, missing covariate
data, mismeasured covariate data, sequential testing and estimation, and Bayesian
methods, mostly in the context of the Cox model. The revision as a whole can serve
as the textbook for a more advanced graduate course in biostatistics or statistics.

With the vast literature that has developed on failure time analysis, we have had
to be selective in both the scope and depth of our coverage. We have chosen not to
provide in-depth coverage of probability theory that is relevant to the asymptotic
methods and results discussed, nor, except for some general comments in Appendix B,
have we attempted to include a description of how available statistical software
packages can or cannot be used to implement the various methods. We have chosen
to emphasize some statistical models and approaches that seem to us to be of partic-
ular importance, to stress the ideas behind their development and application, and to
provide some worked examples that illustrate their use.

To augment the usefulness of this revision as a graduate text, we have included a
set of exercises at the end of each chapter. A number of these problems introduce
the reader to additional pertinent failure time literature. As before, we have used
references sparingly, especially in the early chapters, and bibliographic notes are
provided at the close of each chapter. For historical reasons we have retained
most of bibliographic notes from the original version, but we have augmented
them with important recent references for each failure time topic.
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There are a number of books on failure time methods that nicely complement
this work and provide more comprehensive coverage of specific topics. For
example, Lawless (1982) provides extensive coverage of parametric failure time
models and estimation procedures; Cox and Oakes (1984) provide a concise and
readable account of a range of failure time data topics; Fleming and Harrington
(1991) provide a rigorous presentation of Cox regression methods and selected
other failure time topics with considerable attention to model checking procedures;
Andersen et al. (1993) give a comprehensive compendium of failure time and event
history analysis methods with emphasis on counting processes. Andersen et al.
(1993) provide additional material on a number of the topics discussed here. Books
by Collett (1994) and Klein and Moeschberger (1997) provide relatively less tech-
nical accounts of the methods for key failure time topics. Collett includes a presen-
tation of computer software options. Therneau and Grambsch (2000) discuss the
implementation of failure time methods using SAS and S-Plus and provide a num-
ber of detailed illustrations with particular attention to model building and testing.
Hougaard (2000) presents the first book dedicated to multivariate failure time
methods. His book nicely complements our Chapters 8 through 10, with a greater
emphasis on random effects or frailty models.

We would like to express our thanks to colleagues and to former and current stu-
dents who have helped to shape our understanding of failure time analysis issues
and methods. Their ideas and efforts have helped to inform this presentation.

Joun D. KALBFLEISCH
Ross L. PRENTICE

February 2002






CHAPTER

Introduction

1.1 FAILURE TIME DATA

We consider methods for the analysis of data when the response of interest is the
time until some event occurs. Such events are generically referred to as failures,
although the event may, for instance, be the performance of a certain task in a learn-
ing experiment in psychology or a change of residence in a demographic study.
Major areas of application, however, are biomedical studies and industrial life
testing.

We assume that observations are available on the failure time of » individuals
usually taken to be independent. A principal problem examined is that of develop-
ing methods for assessing the dependence of failure time on explanatory variables.
Typically, such explanatory variables will describe prestudy heterogeneity in the
experimental material or differential allocations of treatments resulting from the
study design. A secondary problem involves the estimation and specification of
models for the underlying failure time distribution.

Additional problems arise in the analysis of multivariate failure times and failure
types. These problems entail assessing the frequency of recurrent failures and esti-
mating the correlation among failure times and types. There are a number of rea-
sons why special methods and special treatment is required for failure time data,
and it is convenient to illustrate some of the distinguishing features through the
following examples.

1.1.1 Carcinogenesis

Table 1.1 gives the times from insult with the carcinogen DMBA to mortality from
vaginal cancer in rats. Two groups were distinguished by a pretreatment regimen.
We might consider comparing the two regimes using the r-test (presumably to
transformed data) or one of several nonparametric tests. Such procedures cannot
be applied immediately, however, because of a feature very prevalent in failure
time studies. Specifically, four failure times in Table 1.1 are censored. For these
four rats, we can see that the failure times exceed 216, 244, 204, and 344 days,
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Table 1.1 Days to Vaginal Cancer Mortality in Rats

Group 1 143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220
227, 230, 234, 246, 265, 304, 216*, 244*

Group 2 142, 156, 163, 198, 205, 232, 232, 233, 233, 233, 233
239, 240, 261, 280, 280, 296, 296, 323, 204%, 344"

Source: Pike (1966).
* These four items are right censored.

respectively, but we do not know the failure times exactly. In this example, the
(right) censoring may have arisen because these four rats died of causes unrelated
to application of the carcinogen and were free of tumor at death, or they may simply
not have died by the time of data analysis. The necessity of obtaining methods of
analysis that accommodate censoring has been a principal motivating factor for the
development of specialized models and procedures for failure time data.

A larger set of animal carcinogenesis data is given in Appendix A (data set V).
Two groups of male mice were given 300 rads of radiation and followed for cancer
incidence. One group was maintained in a germ-free environment. The new feature
of these data is that more than one failure mode occurs. It is of interest, for example,
to evaluate the effect of a germ-free environment on the incidence rate of reticulum
cell sarcoma while accommodating the competing risks of developing thymic lym-
phoma or other causes of failure.

1.1.2 Randomized Clinical Trial

Table 1.2 gives some data from a randomized clinical trial on 64 patients with
severe aplastic anemia. Prior to the trial, all the patients were treated with high-
dose cyclophosphamide followed by an infusion of bone marrow from an HLA-
identical family member. Patients were then assigned to each of two treatment
groups: cyclosporine and methotrexate (CSP + MTX) or methotrexate alone
(MTX). One endpoint of interest was the time from assignment until the diagnosis
of a life-threatening stage (>2) of acute graft versus host disease (AGVHD). The
times are given in days. Also included are two covariates measured at the outset:
the patient’s age in years at the time of transplant and an indicator of whether or
not the patient was assigned to a laminar airflow (LAF) isolation room. Storb et al.
(1986) report on the subset of 46 patients who were randomly assigned to treatment,
with stratification by age group and LAF. For purposes of illustration, we shall treat
the data as though all 64 patients had been randomly assigned. In this trial, only 20
of the 64 patients actually reached the endpoint; the remaining 44 patients were
right censored.

Appendix A (data set II) gives a part of the data from a much larger clinical trial
carried out by the Radiation Therapy Oncology Group. The full study included
patients with squamous cell carcinoma of 15 sites in the mouth and throat, with
16 participating institutions, although only the data on three sites in the oropharynx
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Table 1.2 Time in Days to Severe (Stage > 2) Acute Graft Versus Host Disease
(AGVHD), Death, or Last Contact for Bone Marrow Transplant Patients Treated
with Cyclosporine and Methotrexate (CSP + MTX) or with MTX Only ¢

CSP + MTX MTX

Time LAF Age| Time LAF Age Time LAF Age| Time LAF Age
3* 0 40 324 0 23 9 1 35 104* 1 27

8 1 21 356*% 1 13 11 1 27 106* 1 19
10 1 18 378*% 1 34 12 0 22 156* 1 15
12% 0 42 408* 1 27 20 1 21 218%* 1 26
16 0 23 411* 1 5 20 1 30 230%* 0 11
17 0 21 420* 1 23 22 0 7 231* 1 14
22 1 13 449* 1 37 25 1 36 316%* 1 15
64* 0 20 490* 1 37 25 1 38 393* 7 27
65* 1 15 528* 1 32 25 0 20 395%* 0 2
77* 1 34 547*% 1 32 28 0 25 428%* 0 3
82* 1 14 691* 1 38 28 0 28 469* 1 14
98* 1 10 769* 0 18 31 1 17 602* 1 18
155% 0 27 | 1111* 0 20 35 1 21 681%* 0 23
189* 1 9 | 1173* 0 12 35 1 25 690* 1 9
199* 1 19 | 1213* 0 12 46 1 35 | 1112* 1 11
247* 1 14 | 1357* 0 29 49 0 19 | 1180* 0 11

@ Asterisks indicate that time to severe AGVHD is right censored; that is, the patient died without severe
AGVHD or was without severe AGVHD at last contact.

reported by the six largest institutions are given. Patients entering the study were
randomly assigned to one of two treatment groups: radiation therapy alone or radia-
tion therapy together with a chemotherapeutic agent. One objective of the study was
to compare the two treatment policies with respect to patient survival.

Approximately 30% of the survival times are censored, owing primarily to
patients surviving to the time of analysis. Some patients were lost to follow up
because the patient moved and was unable to continue, but these cases were
relatively rare. From a statistical point of view, a key feature of these data is the
considerable lack of homogeneity between individuals being studied. Of course,
as a part of the study design, certain criteria for patient eligibility had to be met
which eliminated extremes in the extent of disease, but still many factors are not
controlled. This study included measurements of many covariates that would be
expected to relate to survival experience. Six such variables are given in the data
of Appendix A (sex, T staging, N staging, age, general condition, and grade). The
site of the primary tumor and possible differences between participating institutions
require consideration as well.

The TN staging classification gives a measure of the extent of the tumor at the
primary site and at regional lymph nodes. T; refers to a small primary tumor, 2 cm
or less in largest diameter, whereas T} is a massive tumor with extension to adjoin-
ing tissue. T, and T3 refer to intermediate cases. Ny refers to the absence of clinical
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evidence of a lymph node metastasis and Ny, N,, and N3 indicate, in increasing
magnitude, the extent of existing lymph/node involvement. Patients with classifica-
tions T1No, T1Ny, ToNg, or T,N; or with distant metastasis were excluded from
study.

The variable ‘““‘general condition’ gives a measure of the functional capacity of
the patient at the time of diagnosis (1 refers to no disability, whereas 4 denotes bed
confinement; 2 and 3 refer to intermediate levels). The variable grade is a measure
of the degree of differentiation of the tumor (the degree to which the tumor cell
resembles the host cell) from 1 (well differentiated) to 3 (poorly differentiated).

In addition to the primary question of whether the combined treatment mode is
preferable to the conventional radiation therapy, it is of considerable interest to
determine the extent to which the several covariates are related to subsequent sur-
vival. In answering the primary question, it may also be important to adjust the sur-
vival times for possible imbalance that may be present in the study with regard to
the other covariates. Such problems are similar to those encountered in the classical
theory of regression and the analysis of covariance. Again, the need to accommo-
date censoring is an important distinguishing point. In many situations, nonpara-
metric and robust procedures are desirable since there is frequently little empirical
or theoretical work to support a particular family of failure time distributions.

1.1.3 Heart Transplant Data

Crowley and Hu (1977) give survival times of potential heart transplant recipients
from their date of acceptance into the Stanford heart transplant program. These data
are reproduced in Appendix A, data set IV. One problem of considerable interest is
to evaluate the effect of heart transplantation on subsequent survival.

For each study subject the explanatory variables ‘“‘age” and ‘““prior surgery”
were recorded. There were also donor—recipient variables that may be predictive
of post-transplant survival time. The main new feature here is that patients
change treatment status during the course of the study. Specifically, a patient
is part of the control group until a suitable donor is located and transplantation takes
place, at which time he or she joins the treatment group. Correspondingly, some
explanatory variables, such as waiting time for transplant, are observed during
the course of the study and depend on the time elapsed to transplant. This study
is examined in some detail in Chapter 6 using the ideas of time-dependent covari-
ates and time-dependent stratification.

The existence of covariates that change over time is yet another unusual feature
of failure time data that requires special methods and attention to model character-
istics and implications. Transplant studies, such as the heart transplant study, pro-
vide a class of examples where such covariates arise because of the very nature of
the treatment. Alternatively, we can imagine a system operating under stress where
the stress factor is varied as time elapses. In such a situation, it would be common to
examine the relationship between the stress applied now and the current risk of
failure. Other examples arise in clinical studies, such as, for example, measures
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of immune function taken at regular intervals for leukemia patients in remission. One
may wish, in this instance, to study the relationship between changes in immune func-
tion and corresponding propensity to relapse. Such examples are also discussed in
Chapter 6. In comparative trials, time-dependent covariates such as measures of
immune function can be responsive; that is, they can be affected by the treatments
under investigation. Responsive covariates have the potential to be useful in examin-
ing the mechanism of a treatment effect (does the treatment work by improving
immune function?) or even in serving as a surrogate for the primary failure time
outcome. If, however, they are treated as ordinary covariates in a regression model
to investigate the effect of treatments, they can mask a treatment effect.

1.1.4 Accelerated Life Test

Nelson and Hahn (1972) present data on the number of hours to failure of motor-
ettes operating under various temperatures. The name accelerated life test for this
type of study derives from the use of a stress factor, in this case temperature, to
increase the rate of failure over that which would be observed under normal oper-
ating conditions. The data are presented in Table 1.3 and exhibit severe censoring,
with only 17 of 40 motorettes failing. Note that the stress (temperature) is constant
for any particular motorette over time. The principal interest in such a study
involves determination of the relationship between failure time and temperature
for the purpose of extrapolating to usual running temperatures. Of course, the valid-
ity of such an extrapolation depends on the constancy of certain relationships over a
very wide range of temperatures. For this study, the failure time distribution at the
regular operating temperature of 130°C was of interest.

As in earlier examples, the censoring here is type I or time censoring. That is,
censored survival times were observed only if failure had not occurred prior to a
predetermined time at which the study was to be terminated. Experiments of this
type, where considerable control is available to the experimenter, offer the possibi-
lity of other censoring schemes. For instance, in the study above it might have been
decided in advance to continue the study until specified numbers of motorettes had
failed at each of the temperatures (e.g., until one, three, five, and seven motorettes
had failed at 150°C, 170°C, 190°C, and 220°C, respectively). Such censoring
is usually referred to as type II or order statistic censoring, in that the study termi-
nates as soon as certain order statistics are observed. With certain models, some

Table 1.3 Hours to Failure of Motorettes

150°C All 10 motorettes without failure at 8064 hours
170°C 1764, 2772, 3444, 3542, 3780, 4860, 3196

3 motorettes without failure at 5448 hours
190°C 408, 408, 1344, 1344, 1440

5 motorettes without failure at 1680 hours
220°C 408, 408, 504, 504, 504

5 motorettes without failure at 528 hours
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inferential procedures (e.g., exact significance tests) are simpler for type II than for
type I censoring. It should be noted, however, that type II censoring usually does
not allow an upper bound to be placed on the total duration of the study and is
generally not a feasible study design if there 1s staggered entry to the study.

Some of the examples above are considered further throughout the book. We
turn now, however, to mathematical representations of failure times and consider
the very simplest case of an independent sample from a homogeneous population
(no explanatory variables) with a single failure mode.

1.2 FAILURE TIME DISTRIBUTIONS

Let T be a nonnegative random variable representing the failure time of an indivi-
dual from a homogeneous population. The probability distribution of T can be spe-
cified in many ways, three of which are particularly useful in survival applications:
the survivor function, the probability density function, and the hazard function.
Interrelations among these three representations are given below for discrete and

continuous distributions.
The survivor function is defined for discrete and continuous distributions by the

probability that 7 exceeds a value ¢ in its range; that is,
F(t) = P(T > 1), 0<t<oo.

Note that F in some settings refers to the cumulative distribution function,
P(T < t), and therefore gives the probabilities in the left tail rather than in the right
tail of the distribution. The right tail, however, is the important component for the
incorporation of right censoring, so it is more convenient to concentrate on the sur-
vivor function in dealing with failure time distributions. Clearly, F(¢) is a non-
increasing right-continuous function of ¢ with F(0) = 1 and lim,,, F(¢) = 0.

1.2.1 T (Absolutely) Continuous
The probability density function (PDF) of T is

f(t) = —dF(z)/d:.

The range of T is [0, 00), and this should be understood as the domain of definition
for functions of z. It is convenient to remember that f(¢) gives the density of prob-
ability at ¢ and for A4 small has the interpretation

fOh~Pt<T<t+h)=F(t)—F(t+h),

provided that f(#) is continuous at z. We note also that f(®) >0, [°f(r)dr =1, and
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The hazard function is defined as

A(t):hg%+P(t§T<t+h|TZt)/h (1.1)

and specifies the instantaneous rate at which failures occur for items that are surviv-
ing at time ¢. The hazard function fully specifies the distribution of ¢ and so deter-
mines both the density and the survivor functions. From (1.1) and using the
definition of the density function, it follows that

A(t) = —f(8)/F(¢)
= —dlog F(1)/dt.

Now integrating with respect to ¢ and using F(0) = 1, we obtain

F(r) = exp [— J: A(s) ds]
— expl-A(1)], (12)

where A(f) = [; A(s) ds is called the cumulative hazard function. The PDF of T can
be obtained by differentiating (1.2) to find that

£(6) = A(t)exp[~A (7). (13)

Examination of (1.2) indicates that any nonnegative function A(z) that satisfies
14
J A(s)ds < o0
0
for some ¢ > 0 and
00
J A(s) ds = o0
0

can be the hazard function of a continuous random variable.
Other representations of the failure time distribution are occasionally useful. An
example is the expected residual life at time f,

r(t) = E(T—t|T > 1),

which uniquely determines a continuous survival disirtbution with inite mean. To
see this, note that

B ftoo(s — 1) f(s)ds
r(t) = F(t)
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and integrate by parts to obtain

(1.4)

where we have used the fact that E(7) < oo implies that lim,_,, tF(z) = 0. Substi-
tuting ¢+ = 0 in (1.4) gives the useful result

E(T) = r(0) = Eo F(s) ds. (15)

Taking the reciprocal of both sides of (1.4), we obtain

1 d o0
=" log| F
5=~ loe j (s)ds,

so that

JI & jog ro F(s)ds + log r(0).

This leads finally to the expression

=gl

for the survivor function.

1.2.2 T Discrete

If T is a discrete random variable taking values a; < a; < --- with associated
probability function

the survivor function is

F(r)= ) f(xg).

Jlaj >t

The hazard at g; is defined as the conditional probability of failure at a; given that
the individual has survived to a;,

N=P({T=a|T>a)=2" i=1,2,...
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where F(a~) = lim,_,,- F(¢). Corresponding to (1.2) and (1.3), the survivor func-
tion and the probability function are given by

P = TL(-) (16)
Hlaj <t

and

fla) =5 T - ) (17

As in the continuous case, the discrete hazard function (\;,i = 1,2,...) uniquely
determines the distribution of the failure time variable T

The results in (1.6) and (1.7) are quite easily deduced by considering the failure
time process unfolding over time and a sequence of trials, each of which may or
may not result in a failure. For example, the result in (1.7) follows from noting
that an individual fails at time q; if and only if:

e The individual survives in sequence each of the preceding discrete failure times

aip,...,a;—; with corresponding (conditional) probabilities (1 — \;),...,
(1—=X-1).

e Having survived to a;, the individual fails at a; with (conditional) prob-
ability ;.

1.2.3 T has Discrete and Continuous Components

More generally, the distribution of 7' may have both discrete and continuous com-
ponents. In this case, the hazard function can be defined to have the continuous

component A.(z) and discrete components Aj, ;... at the discrete times
a; < ap < ---. The overall survivor function can then be written
; .
F(t) = exp [—J Ac(u) du] H (1-XN).
0 Jlaj<t

The discrete, mixed, and continuous cases can be combined. The cumulative
hazard function,

t
A(Y) :J MG di+ Y N,
? Jlaj <t

is a right-continuous nondecreasing function. From A(¢) we define the differential
increment

dA(t) = A(t™ +dt) — A(r7)
= P[T € [t,t + dt)|T > 1]
Al t=a;, 1=1,2,...
N { A (1) dt, otherwise.

which specifies the hazard of failure over the infinitesimal interval [t, ¢ + df).
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The survivor function in the discrete, continuous, or mixed cases can then be
written as

F(t) = 21 — dA(u)], (1.8)

where the product integral & is defined by

r

Pyl — dA(w)] = lim [ T{1 — [A(w) — AQwi)]}-

k=1

Here O0=uy<u; <---<wu,=t and the limit is taken as r — oo and
max(u; — u;—1) — 0. In the continuous case (A\; =0 for all i), it can be shown
that this reduces to

F(t) = 21 — dA(u)] = 21 — () du] = exp [— J; Ae(u) du} |

In the discrete case [A:(t) = O for all 7], it is easily seen that

Zol1 —dAw)] = J] (1—x).

Jlaj <t

This unification shows that failure time data can be considered to arise in essen-
tially the same way in both the discrete and continuous cases. The product repre-
sentation in (1.8) can be thought of as describing a coin-tossing experiment in
which the probability of heads varies over time. The coin is tossed repeatedly
and failure corresponds to the first occurrence of a tail. Thus, in general, the survi-
val probability at time ¢ is obtained by taking the product of the conditional survival
probabilities 1 — dA(u) over infinitesimal intervals up to time 7. This way of view-
ing a failure mechanism has led to many developments in the area and is crucial in
understanding many of the ideas and techniques. In effect, it is possible to examine
survival experience by looking at the survival experience over each interval condi-
tional upon the experience to that point. Simple arguments for estimating the sur-
vivor function (Section 1.4) or for constructing censored data tests (Section 1.5)
depend on this idea. It also underlies failure time analysis by counting processes
and martingales (Chapter 5), the construction of the likelihood under independent
censoring (Section 6.2), the construction of partial likelihood in the Cox model
(Section 4.3), and the analysis of multivariate failure times and life-history pro-
cesses (Chapter 9).

Note that f(¢) and F(¢) [or more usually, the cumulative distribution function
F(t) = 1 — F(t)] are common representations of the distribution of a random vari-
able. The hazard function A(¢) is a more specialized characterization but is particu-
larly useful in modeling survival time data. In many instances, information is
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At)

(b) (¢)

Figure 1.1 Examples of hazard functions: (a) hazard for human mortality; (b) positive aging;
(c) negative aging.

available as to how failure rates change with the amount of time on test. This infor-
mation can be used to model A(¢) and easily translated into implications for F(t)
and f (¢) using the formulas above. For example, in modeling age at death of human
populations, it is clear that initially, A(#) is elevated, owing to infant mortality and
childhood diseases. This is followed by a period of relatively low mortality, after
which the mortality rate increases very rapidly (see Figure 1.1a). In other applica-
tions, monotone increasing hazards (positive aging) or decreasing hazards (negative
aging) may be suggested (Figure 1.1 and c). Such qualitative information on A(¢)
can be useful in selecting a family of probability models for 7. In Chapter 2
we discuss and examine some commonly used models for failure time and their
associated hazard functions.

In the discussion above, we have specified models for a homogeneous popula-
tion in which all individuals independently experience the same probability laws
governing their failure. As noted earlier, there are many applicaticns where we
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wish to incorporate measured covariates into the model. With covariates x measured
at the time origin of the study, we can then think of models for the corresponding

hazard function

At x) = ;l,ig(l)P{T € [t,t+ h)|T > t,x}/h,

which applies to those individuals with covariate value x. Corresponding to this,
there are density and survivor functions, written f(#;x) and F(z; x), respectively.

1.3 TIME ORIGINS, CENSORING, AND TRUNCATION

In considering failure time data, it is important to have a clear and unambiguous
definition of the time origin from which survival is measured. In some instances,
time may represent age, with the time origin the birth of the individual. In other
instances, the natural time origin may be the occurrence of some event, such as ran-
domization or entry into a study or diagnosis of a particular disease. In like manner,
one must have a clear definition of what constitutes failure. For example, in a trial
to compare treatments of heart disease, one might take previous documented occur-
rence of a heart attack as providing eligibility for study. The time origin might be
admission and randomization to the study, and failure may correspond to the recur-
rence of a heart attack. One would need to define carefully the clinical medical con-
ditions that correspond to failure (and eligibility for the study). We will not talk
about this further, but the clear identification of an origin and an endpoint are cru-
cial applied aspects of failure time studies.

As noted earlier, failure time data often include some individuals who do not fail
during their observation period; the data on these individuals are said to be right
censored. In some situations, right censoring arises simply because some indivi-
duals are still surviving at the time that the study is terminated and the analysis
is done. In other instances, individuals may move away from the study area for rea-
sons unconnected with the failure time endpoint, so contact is lost. In yet other
instances, individuals may be withdrawn or decide to withdraw from the study
because of a worsening or improving prognosis. As is intuitively apparent, some
censoring mechanisms have the potential to introduce bias into the estimation of
survival probabilities or into treatment comparisons.

A right-censoring mechanism is said to be independent if the failure rates that
apply to individuals on trial at each time ¢ > O are the same as those that would
have applied had there been no censoring. We discuss this idea more thoroughly
in Chapter 6, but a brief discussion here is useful to set the stage. Suppose that
the failure rate at time ¢ that applies in the absence of censoring for an individual
selected at random from a group with covariate value x is \(¢; x). Here, as before, x
consists of measurements taken on the individual at the time that he or she enters
the study, such as age, sex, measures of physical condition, and so on. Suppose that
within this group, individuals are to be censored according to a specific mechanism.
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Consider the subset of individuals who are at risk of failure (neither failed nor cen-
sored) at some time ¢ > 0. The censoring mechanism or scheme is independent if
for an individual selected at random from this subset, the failure rate is A(#; x). Thus
we require that at each time f,

T et > > —
L PTEli+mT >0 PTEft+mT >0Y(0) = 1)

h—0 h h—0 h 3 (19)

where Y(¢) = 1 indicates that the individual has neither failed nor been censored
prior to time # (is at risk of failure at time ¢). If the censoring scheme is independent,
it can be shown that an individual who is censored at time ¢ contributes the term
P(T > t;x) = F(t;x) to the likelihood. Thus the information that the individual is
censored at time ¢ tells us only that the time to failure exceeds ¢.

As mentioned, independent censoring is examined more fully in Chapter 6. It is
interesting to note, however, that some standard censoring schemes are indepen-
dent. Consider, for example, a random censorship model where the ith individual
has a time 7; to failure and a time C; to censoring. Given the covariate value x;, we
suppose that C; and 7; are independent random variables. Further, conditional on
the x;’s, (T}, C;) are independent, i = 1,...,n, where n is the number of subjects
in the study. The time T; to failure is observed if 7; < C;. Otherwise, the individual
is censored at C;. For this case, it is easy to see that

P{Ticlt,t+R)x, T >ty .. P{Tcft.t+h)|x,T; >1,C; >t
h—0 h h—0 h

which is equivalent to the condition (1.9). Type II censoring, in which individuals
are put on trial until the kth item fails, for some fixed k, was discussed briefly Sec-
tion 1.1.4. This censoring scheme is also independent.

In general, a censoring scheme is independent if the probability of censoring at
each time ¢ depends only on the covariate x, the observed pattern of failures and
censoring up to time ¢ in the trial, or on random processes that are independent
of the failure times in the trial. Mechanisms in which the failure times of indivi-
duals are censored because the individuals appear to be at unusually high (or
low) risk of failure are not independent. For these mechanisms, the condition
(1.9) is violated, and the basic methods of survival analysis are not valid. Because
of this, it is very important to follow the individuals entered into a study as com-
pletely as possible, so that the possibility of dependent censoring is minimized.

In some studies, individuals are not identified for observation at their respective
time origin, but rather, at the occurrence of a subsequent event. Thus, there is a
larger group of individuals who could have been observed, but the study is com-
prised of a subset of those in the cohort who experience some interr:ediate event.
For these individuals, we observe the time origin and the follow-up time until they
fail or are censored. For example, suppose that is the chosen time variable, so that

“time of birth is the time origin. Interest centers on the group of incividuals who
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were exposed to some environmental risk, and individuals are identified for study at
the time they respond to an advertisement. Any individuals who died prior to the
advertisement are not observed, and in fact may not even be known to exist. Those
who are observed are subject to delayed entry or left truncation. There is a condi-
tion similar to (1.9) for independent left truncation which requires that the failure
rates of individuals under observation at time ¢ are representative of those in the
study population. Many of the methods and analyses that we discuss extend easily
to allow for independent left truncation as well as independent right censoring.

Individuals can also be subject to left censoring, which occurs if the individual is
observed to fail prior to some time ¢, but the actual time of failure is otherwise
unknown. In this case, we observe that T € [0, ¢], which is analogous to right cen-
soring, where we observe that T € (z,00). Left censoring should not be confused
with left truncation, as discussed in the preceding paragraph. With left censoring,
we know the individual exists and failed prior to the time ¢. With left truncation, the
existence of an individual who fails before the beginning of observation is hidden
from us.

Other types of censoring also arise. For example, in some situations individuals
are interval censored, so we observe only that the failure time falls within some
interval T € (a, b). One might also have situations in which individuals are subject
to right truncation. That is, an individual is observed if and only if its failure time is
less than some given time ¢. Exercise 1.13 gives an example. We discuss these more
general censoring schemes in Chapter 3 in the context of parametric analyses. Most
of our attention, however, is focused on independent right censoring and extensions
to allow independent delayed entry or left truncation.

1.4 ESTIMATION OF THE SURVIVOR FUNCTION

1.4.1 Kaplan-Meier or Product Limit Estimator

The empirical distribution function,

— __no. sample values < x

F,(x)

n

is a simple estimate of the distribution function F(x) = P(X < x) and is a familiar
and convenient way to summarize and display data. A plot of F,(x) versus x
visually represents the sample and provides full information on the percentile
points, the dispersion, and the general features of the sample distribution. Besides
these obvious descriptive uses, it is an indispensable aid in studying the distribu-
tional shape of the population from which the sample arose; in fact, the empirical
distribution function can serve as a basic tool in constructing formal tests of good-
ness of fit of the data to hypothesized probability models (see, e.g., Cox and
Hinkley, 1974, pp. 691tf.).

In the analysis of survival data, it is very often useful to summarize the survival
experience of particular groups of patients in terms of the empirical survivor
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function. If an uncensored sample of » distinct failure times is observed from a con-
tinuous homogeneous population, the sample survivor function F,,(t) = 1 — F,,(¢) is
a step function that decreases by n! at each failure time observed. As noted earlier,
survival data very often involve right censoring, and in this case a convenient
method for estimating F(¢) is required.

Let ) <t, < --- < t; represent the observed failure times in a sample of size
n = ng from a homogeneous population with (unknown) survivor function F. Sup-
pose that d; items fail at #; and m; items are censored in the interval (¢, #;41) at times
tiy- o s bim,J=0,...,k, where =0 and fr;3=o00. Let n=
(m; +dj) + - - + (my + di) denote the number of items at risk at a time just prior
to t;. The probability of failure at ¢ is

We assume that the contribution to the likelihood of a censored survival time at #; is
P(T > ty) = F(t;).

Here we are assuming that the observed censoring time #; tells us only that the
unobserved failure time is greater than ;. This is appropriate provided that the
censoring is independent, as discussed in Section 1.3.

The probability of the data is then of the form

L= I:k—[o{ [F(tj_) - F(fj)]djﬁF(fﬂ)}’

=1

which, given the data, can be viewed as a likelihood function on the space of all
survivor functions F. The (nonparametric) maximum likelihood estimate (MLE)
is the survivor function F that maximizes L.

Clearly, F (¢) is discontinuous at the failure times observed (i.e., places some
positive probability mass at each ¢;) since otherwise, L = 0. Further, since #; > ¢;,
F(t;) is maximized by taking F(tz) =F()(j=1,...,kl=1,...,m;). The
required MLE, F(¢), is therefore a discrete survivor function with hazard compo-
nents ):1, ey Xk at t,,. .., 1, respectively. Thus

() =T -A) (1.10)
and

Fi) =1 -5, (1.11)
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Table 1.4 Kaplan-Meier Survivor Function Estimates for Carcinogenesis Data

Group 1 Group 2
t; d; n; ﬁ([,‘) ﬁr(f’) t; d; n; F(l,‘) \73\1'(27)
143 1 19 0.947 0.00262 142 1 21 0.952 0.00216
164 1 18 0.895 0.00496 156 1 20 0.905 0.00410
188 2 17 0.789 0.00875 163 1 19 0.857 0.00583
190 1 15 0.737 0.01021 198 1 18 0.810 0.00734
192 1 14 0.684 0.01137 205 1 16 0.759 0.00885
206 1 13 0.632 0.01225 232 2 15 0.658 0.01109
209 1 12 0.579 0.01283 233 4 13 0.455 0.01240
213 1 11 0.526 0.01312 239 1 9 0.405 0.01208
216 1 10 0474 0.01312 240 1 8 0.345 0.01148
220 1 8 0.414 0.01311 261 1 7 0.304 0.01067
227 1 7 0.355 0.01264 280 2 6 0.202 0.00814
230 1 6 0.296 0.01170 296 2 4 0.101 0.00459
234 1 5 0.237 0.01029 323 1 2 0.051 0.00243
246 1 3 0.158 0.00873
265 1 2 0.079 0.00530
304 1 1 0.000
where the Xl’s are chosen to maximize the function
L ji-1 J j £ .
T T =TT —am | =[x a—xn)"2, (1.12)
j=1 I= =1 j=1

obtained by substituting (1.10) and (1.11) in L. Clearly, ):j =di/ni(j=1,...,k)
and the Kaplan—Meier or product limit estimate of the survivor function is

Foy=T[% —4 (1.13)

n.
jg<e Y

In the product limit estimate, we are in effect making the estimated hazard or con-
ditional probability of failure at each #; agree exactly with the observed proportion
(d;/n;) of the n; individuals at risk who fail at #;. Again we are viewing the survival
experience sequentially and at each failure time estimating the hazard of failure to
be the observed proportion of failures. It should be noted that F(¢) never reduces to
zero if m; > 0. In this instance, the largest time recorded is censored and it is usual
to take F(¢) as undefined for ¢ > fty,,,.

The estimate F(¢) is the direct generalization of the sample survivor function for
censored data. It was first derived by Kaplan and Meier (1958), and as a conse-
quence, is often referred to as the Kaplan—Meier estimate. Table 1.4 and Figure 1.2
exemplify the Kaplan—Meier estimate (1.13) for the carcinogenesis data of Section
1.1.1.
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Figure 1.2 Kaplan-Meier survivor funtions estimates for carcinogenesis data: solid line, group; dashed
line, group 2.

We consider now the asymptotic distribution of F(f) at a prespecified value of 7.
A heuristic derivation of an asymptotic variance can be obtained by regarding
(1.12) as a parametric likelihood in the parameters Ay, ..., A;. Standard likelihood
methods, reviewed in Section 3.4, would yield an estimate d;(n; — d;)/n} for the
asymptotic variance of A; and hence for

logF(r) = ) | log (1~ %),

g <t

an asymptotic variance estimate of

arflog F(0)] = Y (1 - &) 2var (1- %)

Jlg <t
dj

]|tj_<_tn](n] - Cl]) .

The induced expression for the asymptotic variance of F(¢) is then

Ve = 7t [F)] = B2 Y —— . (1.14)
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Expression (1.14), known as Greenwood’s formula (Greenwood, 1926), was first
derived as the asymptotic variance of the classical life-table estimator, which is
discussed below. The derivation above would be valid if the distribution of ¢
were discrete with finitely many mass points. Proper treatment of the asymptotic
properties of the Kaplan—Meier estimator in the continuous case can be based on
counting process formulations and related martingale theory. We discuss these
topics in Chapter 5, and asymptotics for the Kaplan—-Meier and related estimates
are discussed further in Section 1.7. Essentially, under reasonably mild conditions
on the censoring and large n, the results justify the use of a normal approximation
of the distribution of F(f) with mean F(¢) and variance estimate (1.14). These
results hold whether T is discrete or continuous or mixed with discrete and contin-
uous components.

An approximate 95% confidence interval for F(r) is F(¢) + 1.96[var F(r)]"/*. At
extreme values of 7 (e.g., t < 188 or ¢ > 246 for the group 1 data of Table 1.3, such
an approximate confidence interval may include impossible values outside the
range [0, 1]. This problem can be avoided by applying the asymptotic normal
distribution to a transformation of F(¢) for which the range is unrestricted. For
example, the asymptotic variance of

9 (t) = log[—log F(1)]

is, from Greenwood’s formula and asymptotic theory (Section 3.4), estimated by
(1) = vat[log F(£)] / [log F (1))

An asymptotic 95% confidence interval of o(¢) £ 1.965(¢) for v(¢) = log[—log F(?)]
gives a corresponding asymptotic 95% confidence interval for F(t) of

~ ] exp[£1.965(7)]

[F(2)

Y

which takes values in [0, 1]. Application of this method to the group 1 data of
Table 1.1 gives an approximate 95% confidence interval for F(t) at t = 150 of
(0.679,0.992). A normal approximation to the distribution of #(150), in contrast,
gives (0.846,1.047), a clearly unsatisfactory result.

It should be noted that many authors consider first the cumulative hazard
function A(r), which is most naturally estimated using the Nelson-Aalen estimator,

Aty => "di/n; =" X, (1.15)

<t <t

which is a right-continuous step function whose increments are the empirical
hazard estimates. Note that since the estimated distribution is discrete, the
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Nelson—Aalen and Kaplan—-Meier estimators are related in the way that one should
expect [see (1.6) and (1.8)]

F(t) = Z)[1 —dA(w)] = [ J(1 - A

t<t

1.4.2 Life-Table and Related Estimates

Many other estimators of the survivor function have been considered. The oldest is
that formed from the life table (see, e.g., Chiang, 1968). A life table 1s a summary
of the survival data grouped into convenient intervals. In some applications (e.g.,
actuarial), the data are often collected in such a grouped form. In other cases, the
data might be grouped to get a simpler and more easily understood presentation.
Suppose, for example, that the data are grouped into intervals Iy, ..., I; such that

Ii=({bo+: - +b_1,bp+ - +b))

is of width b; with by = 0. The life table then presents the number of failures and
censored survival times falling in each interval.

Suppose that m; censored times and d; failure times fall in the interval [;, and let
nj = 35 ;(di + m) be the number of individuals at risk at the start of the jth inter-
val. The standard life-table estimator of the conditional probability of failure in I;
given survival to enter [;, is g; = 1 if n; = 0 and

L d
%—W_Wﬂ

otherwise. The m;/2 term in the denominator is used in an attempt to adjust for the
fact that not all the n; individuals are at risk for the whole of ;. The corresponding
life-table estimator of the survivor function at the end J; is

o= ) = [T 0 -a (116

Greenwood’s formula (1.14), with n; replaced by n; — m;/2, provides an estimator
of the variance of F.

The life-table method is designed primarily for situations in which actual failure
and censoring times are unavailable and only the d;’s and m;’s are given for the jth
interval. A simple modification of the life-table method utilizes the additional infor-
mation when the (continuous) failure times are known. Suppose, for cxample, that
%1, - - -, b, are the observed times in [; of which m; are censored and d; are failures,
ri=dj+mj(j=1,...,k). Suppose that the hazard function A{s} is faken to be a
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step function having constant value ), in the interval /;. In this case, it can be shown
that the maximum likelihood estimate of J; is

N = dj/S},

where

i j—1
Sj = Z (l‘jl — Zb,) + I’lj+1bj
0

is the total observed survival time in the interval J;. The corresponding estimator of
the survivor function is for ¢ € [;,

I:“(t):exp[ (t—i:bl) Z } (1.17)

Unlike the preceding estimators, this is a continuous function of ¢ and so relatively
easier to view and to interpret shape. There is, however, an arbitrariness in the
choice of intervals and in the piecewise constant model. Nonetheless, for explora-
tory purposes, the estimator (1.17) can be very useful.

1.5 COMPARISON OF SURVIVAL CURVES

Often, it is of interest to determine whether two or more samples could have arisen
from identical survivor functions. One approach would involve the use of the
asymptotic results for (¢) mentioned above to devise a test for equality of the sur-
vivor functions at some prespecified time ¢. Such a procedure, however, would not
usually make efficient use of the data available, and attention has turned instead to
test statistics that attempt to evaluate differences between survivor function estima-
tors over the entire study period. The most commonly used statistics of this type can
be viewed as censored data generalizations of such familiar nonparametric rank
tests as the Wilcoxon test and the Savage (1956) or exponential scores test.

In this section, a heuristic derivation of the log-rank test is given. This test is a
censored data generalization of the Savage test and is particularly good when the
ratio of hazard functions in the populations being compared is approximately con-
stant. It can also be advocated on the basis of ease of presentation to nonstatistical
personnel since the test statistic is particularly simple in form. It amounts to the
difference between the number of failures observed in each group and a quantity
that, for most purposes, can be thought of as the corresponding expected number
of failures under the null hypothesis.

Suppose that one wishes to test the hypothesis that the survivor functions
Fo(t),...,Fp(t) are equal on the basis of samples from each of p + 1 populations.
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Table 1.5 Frequency of Failures and Survivals at the Observed Failure Time ;

Sample O e Sample i e Sample p Total
Failures do; e djj . dyj d;
Survivors noj ~ do; e ny — dj e Ny — d n — d;
At risk ng; s nij ce Ny n

Let #; < --- < f; denote the failure times for the sample formed by pooling the
p + 1 samples. Suppose that d; failures occur at ¢ and that n; study subjects are
at risk just prior to #; (j = 1,...,k). Let d; and n;; be the corresponding numbers
in sample i (i =0,...,p). The data at #; can be summarized in the form of a
2 x (p + 1) contingency table, as illustrated in Table 1.5. Conditional on the failure
and censoring experience up to time #;, the joint probability function of dy, . .., dy,
is simply the product of independent binomial terms,

f[(nl])A (1= Ny,

where ) is the conditional failure probability (or hazard) at #;, which under the null
hypothesis is common for each of the p + 1 samples. The conditional distribution
for dy;,...,d, given d; is then the multivariate hypergeometric distribution with

probability function
p -1
() o
,H) (d,-,- d;

The conditional mean and variance of d;; from (1.18) are, respectively,
= nydin;
and
(W) = nyi(n; — ny)dj(mj — dj)n;>(nj — 1)1 (1.19)
The conditional covariance of dj; and dj; is

(W))yy = —ngnydi(nj — dj)n7 % (n; — 1) (1.20)

Thus, the statistic w; = (dij — eyj, . .., dp; — €p;) has conditional mean 0 and p x p
variance matrix W;. Summing over the k failure times yields the log-rank statistic

k
w=Y w=0-E, (1.21)
j=1
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where O = (01,...,0,), E=(E\,...,E), 0;=Y( dy and E; =3/ e
i=1,...,p. Note that O is the vector of observed numbers of failures and E can
informally be thought of as a vector of “‘expected’ failures. This is informal only in
that E is the sum of conditional expectations and its elements are random variables.
If the k contingency tables were independent, the variance of the log-rank statis-
tic w would be W = W 4 .- 4+ W, and an approximate test of equality of the
p + 1 survival distributions could be based on an asymptotic Xﬁ distribution for

wWlw. (1.22)

Note that any of the p + 1 samples might be chosen as sample 0 and the log-rank
statistic computed on the remaining p samples relabeled 1,.. ., p. It can be shown
that the value of the statistic (1.22) is unchanged under any such relabeling.

Application of the log-rank method to a comparison of the two groups (p = 1) of
survival data in Section 1.1.1 gives a log-rank statistic (1.21), w = 19 — 23.763 =
—4.763, with corresponding variance estimate W = 7.263. The approximate x?
statistic has value (4.763)%(7.263)™" = 3.12, which is just significant at the 10%
level. The slight evidence of a difference that this test shows suggests improved
survival for the group 2 rats. This is exhibited in the log-rank statistic, in which
we see that the observed number (19) of failures in this group is less than the
expected number (23.763).

The derivation of the log-rank test above is similar to that given by Mantel
(1966). It is difficult, however, to formalize the distribution theory from this devel-
opment since the contingency tables over failure times are clearly not independent.
It can, however, be shown that the w;’s are uncorrelated and that W provides an
estimate of the covariance matrix of w. The chi-squared limiting distribution of
(1.22) can be shown to hold under fairly general conditions. The asymptotic results
are most easily established using counting processes and martingale limit theorems,
as outlined in Chapter 5.

There are two important extensions of the log-rank procedure which can be men-
tioned at this stage. The first is stratification, and the second concerns the inclusion
of weights.

1.5.1 Stratified Log-Rank Test

A simple means of testing equality of several survival curves while allowing for
heterogeneity in the populations to be compared involves stratification on auxiliary
variables. An overall test statistic is obtained by summing the log-rank statistics
(1.21) and corresponding variances obtained within each of the independent strata.
Specifically, if the strata are indexed by A, and w®) and W are the corresponding
log-rank and variance statistics based on the data in stratum 4, the stratified log-rank
test is based on the statistic

h=1 h=1 h=1
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Under the null hypothesis, (1.23) typically has an asymptotic Xﬁ distribution. It
should be noted that this test will be most sensitive to differences among the
p + 1 treatment groups that are similar across the strata. Examination of the indi-
vidual log-rank tests in each of the strata can also provide some insights into pos-
sible treatment by strata interactions. This method can provide a valuable means of
initial analysis and presentation for many data sets. As well, it is often a useful tool
for communicating the results of a more complex analysis to nonstatistical personnel.

1.5.2 Weighted Log-Rank Test

The log-rank statistic as formulated above is most sensitive to departures from the
null hypothesis in which the hazard ratios among the samples are roughly constant
over time. In some instances, there may be reason to expect that any differences in
the failure rates would occur early and that after the treatment has been in place for
some time, treated and untreated individuals would show little difference. Conver-
sely, there may be situations where any differences in failure rates between treat-
ment groups might be expected to be small to begin and then larger later. Consider
the weighted log-rank statistic

k
w(g) = gwj, (1.24)
j=1
where gi1,...,gr are weights chosen in specific applications to emphasize or

deemphasize in an appropriate way the differences measured by the w;’s. The
gj’s may be functions of time or of j, or they may depend on the past failure and
censoring experience in the study. For example, one might consider the weights
ng) = n;, which yields the Gehan-Breslow generalization of the Wilcoxon or

Kruskal-Wallis statistic. Alternatively, the weights g}P) = [Lig;[1 —di/(ni + 1)]
yield the Peto and Prentice generalization of the Wilcoxon. Note that ng) is a sur-
vivor function estimate, close to the Kaplan-Meier estimator at ¢;. Both of these
weighting schemes emphasize early differences in the failure rates.

Under the null hypothesis, arguments similar to those outlined above show that
the weighted log-rank statistic (1.24) has mean 0 and variance estimated by W(g) =

> gJZW, This again yields a simple asymptotic xf) statistic,

w(g) W(g) 'w(g).

These statistics are considered much more comprehensively in Chapter 7.

1.6 GENERALIZATIONS TO ACCOMMODATE DELAYED ENTRY

The methods of survivor function estimation and log-rank and related tests are
easily generalized to accommodate independent left truncation or delayed entry
into the study sample. In fact, there are essentially no changes involved in the for-
mula and results given. As individuals enter the study, they become at risk of failure
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and so are included in the n; or n;’s. With right censoring only, the number at risk in each
sample will decrease over time as individuals fail or are censored. With left truncation,
however, each new entry increases the number at risk in the appropriate group.

As a brief example, the Atomic Bomb Casualty Commision/Radiation Effects
Research Foundation in Japan has, since 1950, followed a lifespan study cohort
of over 100,000 persons who resided in Hiroshima or Nagasaki as of October 1,
1950. Data on this cohort are used to assess the effects of ionizing radiation
exposure on mortality. The cohort includes a subsample who were residents of,
but not in, either city at the time of the 1945 bombings. Key analyses from this
cohort use date of bombing in the respective cities as the time origin, since mortal-
ity risk as a function of radiation exposure and time since exposure is of interest
from both the public health and radiation biology perspectives. Data on time
from exposure to death in this cohort are subject to left truncation since the cohort
was not assembled until 1950. One can, however, estimate failure rates just as
before as d;/n;, where d; is the number of deaths at the jth chronological death
time ¢ and n; is the number of cohort members alive and without censoring just
prior to f;. Similar changes generalize the log-rank procedures to this case. In
this example it is not possible to estimate the failure rates or survival distribution
for early times because no individuals who die early are included in the data. Typi-
cally, however, one can estimate the survival experience after some threshold time.
Thus we can estimate that

Fit|T>a)=P(T>t|t>a)=F(t)/F(a)

for some suitably chosen a, where a might be October 1, 1950 or later in the illus-
tration above.

In other instances, the data are subject to right truncation. In this case, the con-
dition for study membership is that the event of interest occurs before some time of
recruitment. Appendix A (data set III) gives data on transfusion-related AIDS cases
in the United States. This study contains those individuals who were diagnosed with
AIDS prior to 1988 and for whom the mode of infection was determined to be by
blood transfusion. The distribution of the time from infection to diagnosis of
AIDS (the incubation period) is of interest. In this study, individuals whose diag-
nosis occurs after the end of the study period are not included in the study, and the
times included in the study are subject to very strong selection favoring the shorter
incubation times. Right truncation is more difficult than left truncation to incorpo-
rate. Right truncation and this example are discussed further in Exercise 1.13.

1.7 COUNTING PROCESS NOTATION

Counting processes provide an alternative very compact notation for describing
many of the results discussed above, and the related martingale theory provides a
framework for deriving asymptotic properties. The theoretical framework and some
of the asymptotic results are discussed in Chapter 5. In this section, some of the
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counting process notation is introduced and the estimators, tests, and variance formulas
are reexpressed in these terms. The counting process notation is widely used in the
literature on failure time analysis, and a general acquaintance with it is important.

1.7.1 Kaplan-Meier and Related Estimators

As in Section 1.4, suppose that n individuals from a homogeneous population are
put on study at time 0. Let F be the survivor function and A be the cumulative
hazard function; these may be discrete, continuous, or mixed. For the ith individual,
let N;(t) count the number of failures observed in the interval (0,¢] and let
N;(0) = 0. Note that N; is right continuous and takes value O until a failure is
observed to occur, at which time it jumps to 1. Let Y; be the at-risk process defined
such that Y;(¢) = 1 if the individual is without failure and uncensored just prior to
time ¢, and Y;(¢) = O otherwise. By convention, Y; is taken to be left continuous.
Let N(t) =>7_;Ni(t) and Y.(r) = >F_, Yi(¢), 0 <t < oo. Clearly, Y (¢) is the
number of individuals in the entire study group that are at risk at time ¢, and
N.(t) is the total number of observed failures in the interval (0,7]. In the notation
of Section 1.4, N.(t) = }_, _,d; is a right-continuous step function with a jump of d;
at t;, i=1,...,k and Y(£),0 <t < oo is a left-continuous step function that
specifies the number of individuals who are uncensored and surviving at time t.
Note that Y (;) = n;,i =1,... k.

The Nelson—Aalen estimator of the cumulative hazard (1.15) can be written as
the stochastic integral

A I (u)

Ar) = Jo Y. dN .(u), (1.25)
where J(u) = I[Y.(u) > 0] with the convention that 0/0 is interpreted as 0. Note
that J(u) is used as a device to account for the possibility that at time u~, there
may be no items at risk. The Kaplan—Meier estimator of the survivor function is

F(t) =[]t - dA(w)] = 21 - JW iy (u)] (1.26)
e 0 Y.(u) 7 '

We had previously considered the Kaplan—Meier and Nelson—Aalen estimators to
be undefined for ¢ values greater than the maximum observed time if that time cor-
responded to a censoring. The convention being used in (1.25) and (1.26), however,
takes the estimates as defined at all ¢, but constant following the maximum observed
time. The former convention is more appropriate in most contexts, but the latter is
convenient for some theoretical arguments.

A variance estimator for the Nelson—Aalen estimator (1.15) or (1.25) is

0= [ e - |

di(n; — d;)
:Z—’ ]’13 ey (1.27)
<t i
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where AN.(u) = N(u) — N(u™). Large-sample properties of the Nelson—Aalen
estimator can be shown to hold under relatively mild conditions, as outlined in
Section 5.5. If for given ¢, Y.(u) — oo for all u € (0,¢] as n — oo, it is shown
that A(r) 2 A(f) and

A

[Ae) = A@)]/V(0)°° S N(O, 1),

P 2 . .. : - T
where — and — indicate convergence in probability and convergence in distribu-
tion, respectively.

Greenwood’s variance formula (1.14) can be written

var [F(1)] = [F()) J; Y_(S)[Y_(s)l— AN (s)]

dN.(s). (1.28)

1.7.2 Log-Rank and Related Tests

Consider the experimental situation described in Section 1.5, where n;, items are
placed on test in the ith group at time 0, and let N (¢), ¢ > O be the counting process
for the number of failures observed in (0, #] for the I/th individual in the ith group,
I=1,...,n0;i=0,...,p. The corresponding at risk processes are Y(¢), and again
we assume independent censoring. Let N; (f) = >, Ny(¢) record the number of
observed failures in the ith group and Y; (1) = > Yi(¢) specify the number at risk
at time ¢. The ith component of the log-rank statistic (1.21) can now be written as

w; = J:o dN; (u) — ?((L;)) dN..(u), (1.29)

where N..(f) = Y F_, Ni.(¢r). With some algebra, it can be verified that

w; = ;J:o {6,1 - ?((Z))J ANy (w), i=1,...,p, (1.30)

where 6;; = 1(i = £). The variance and covariance formulas can also be expressed
in counting process notation, as discussed further in Section 5.6.

BIBLIOGRAPHIC NOTES

Some useful references to life-table estimation are those by Berkson and Gage
(1952), Cutler and Ederer (1958), Chiang (1960,1968), and Gehan (1969). The
Kaplan—Meier or product limit estimator appears first to have been proposed as a
limit of the life-table estimator by Bohmer (1912). It was not followed up, however,
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and was reintroduced in the important paper by Kaplan and Meier (1958), who
showed that the estimate was a nonparametric MLE through an argument similar
to that given in Section 1.4.1. Efron (1967) showed that the estimate satisfied a cer-
tain self-consistency property and discussed asymptotic properties. Breslow and
Crowley (1974) first derived the asymptotic results for the Kaplan—Meier estimator
under a random censorship model. More recent references for asymptotic results
utilizing counting processes and martingales are reviewed in the notes to
Chapter 5. The estimates based on the life table will tend to be slightly biased
due to the grouping, and this will also typically be true for the piecewise continuous
estimate (1.17). The nonparametric maximum likelihood approach and the self-
consistency ideas of Efron (1967) were extended by Turnbull (1974, 1976) to
include left and right truncations and interval censoring. Some of this work is
reviewed in Section 3.9.1, and additional references and discussion on interval cen-
soring are given in the bibliographic notes for Chapter 3.

The Nelson—Aalen estimate was first proposed by Nelson (1969,1972) as the
basis for simple graphical checks for hazard shape in industrial life testing. Its
large-sample properties were studied by Breslow and Crowley (1974) and by
Aalen (1976). Altshuler (1970) also derived the Nelson—Aalen estimator and
gave a related estimate of the survivor function. The product integral was intro-
duced in the statistical literature by Cox (1972) as a compact description of the rela-
tionship between the hazard and the survivor function. A useful summary can be
found in Dollard and Friedman (1979). See Gill and Johansen (1990) for a compre-
hensive account of product integration in relation to failure time data.

The adequacy of the asymptotic approximations to the Kaplan—Meier and
Nelson—Aalen estimators has received some attention in the literature. It is evident
that transformations to improve the asymptotic approximation in the tail is a useful
technique and this has been explored by Klein (1991), who suggests a logistic rather
than a log(—log) transformation. Thomas and Grunkemeier (1975) developed a
generalized likelihood ratio test of an hypothesized value for F(c) at a given ¢
(see Exercise 1.8) and argued that a x? asymptotic distribution should apply and
gave some simulations. This approach has received some attention in the literature,
and asymptotic results have been derived by Li (1995a,b), Li et al. (1996), and
Murphy (1995) for nonparametric likelihood ratio tests in various contexts. This
approach is essentially that of empirical likelihood, and the recent book by Owen
(2001) gives references and a good summary of asymptotic results.

We have given a derivation of the log-rank test in Section 1.5 that is essentially
the same as that given originally by Mantel (1966). The test has been widely used
in the literature, and both it and the weighted log-rank test arise in various contexts.
The name log-rank was coined by Peto and Peto (1972) and the motivation of the
term is not entirely clear to all — some say to apply it one first logs the data and then
ranks them. The weighted log-rank test has been considered by many authors. Tar-
one and Ware (1977) first considered the general class. Harrington and Fleming
(1982) considered a family of weight functions indexed by a parameter p that
included the Wilcoxon and log-rank tests as special cases. They derive the asymp-
totic null distribution of the maximum weighted log-rank statistic in the class.
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Fleming and Harrington (1991, Chap. 7) give an extensive discussion of log-rank
and weighted log-rank procedures and have collected numerous references.
References for counting processes and associated asymptotics are collected in

Chapter 5.

EXERCISES AND COMPLEMENTS

1.1

1.2

1.3

14

1.5

1.6

Consider the mouse carcinogenesis data of Appendix A (data set V).

Compute the product limit (Kaplan—Meier) estimates (1.10) of the survivor

function for the endpoint, reticulum cell sarcoma, for the control and germ-

free groups by:

(a) Ignoring failures from thymic lymphoma and other causes (i.e., eliminate
mice dying by these causes before carrying out calculations).

(b) Regarding failure times from lymphoma or other causes as right censored.

Comment on the relative merits of parts (a) and (b). (Hint: Try to understand
what is being estimated in both cases.) On the basis of the survivor function
plots, does the germ-free environment appear to reduce the risk of reticulum
cell sarcoma?

Plot on a single graph the logarithms of the estimates obtained from the life
table (1.16), product limit (1.10), and the continuous (1.17) estimates of the
survivor function for the thymic lymphoma data in the germ-free group.
Regard failures from reticulum cell sarcoma and other causes as censored.
Use grouping intervals of width 50 days for (1.16) and (1.17).

Show that the Kaplan—Meier estimate reduces to £(f) = (no. observations >
t)/n when there is no censoring. Show that Greenwood’s formula (1.14)
reduces in this case to the usual estimate of the variance of a binomial
proportion. That is,

ar [F(e)] = n ™ E(1)[1 - E(1)).

Let T be a discrete failure time variable taking values on the points xy, x, . . .
with survivor function F(¢). Show that the area under the survivor function,
o  F(t)dt = E(T ). (Note: A simple geometric proof of this is obtained by
partitioning a plot of the survivor function into rectangles with bases along
the vertical axis.)

Let T be a discrete, continuous, or mixed random variable with survivor
function F(¢). Show that E(T) = [° F(¢) dt.

An electronic system is at continuous risk of failure with a constant hazard of
A events per hour. In addition, power surges occur each hour (i.e., at times
1,2,...), and at each power surge there is a 10% chance that the system will
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1.7

1.8

1.9

fail immediately. Obtain expressions for the survivor and cumulative hazard
functions. Find the mean of 7.

Let the survival time T > 0O be an integer-valued random variable with finite
mean ry and let

=E(T—i|T>i)

be the expected residual life at time i, i = 1,2,.... Show that the survivor
function for integer ¢ is

r,l—l

F(t) =P(T > 1) :ﬂ

Thus, in the discrete case also, the residual mean lifetime specifies the
distribution of 7. (Note: The geometric argument in Exercise 1.4 can be used
to show that rj = [1 — F(1) —--- — F(j — 1)]/F(j), forj = 1,2,....)

Asin Section 1.3,lett; < £, < --- < 1 represent the observed failure times in

a sample of size ny from a homogeneous population with survivor function

F(t). Suppose that d; items fail at #; and that »; items are at risk at ;.

(a) Let b be a prespecified time (b > #;) and ¢ be a constant (0 < ¢ < 1).
Show that subject to the constraint F(b) =c¢, the nonparametric
maximum likelihood estimate of F(r) is

Fy=T] a1 -x),

i<t

where fo = Ao =0 and \; = d;/(n; +a) if ; < b and dj/n; if t; > b,
j=1,...,k Thevalue a is chosen to satisfy F(b) = c. Note thatif b < #;,
the constrained estimate is not unique for ¢+ < b. An arbitrary convention
would assign a hazard 1 — ¢ at t = € for some small positive € < b.

(b) Show that the log-likelihood ratio statistic for the hypothesis F(b) = ¢
can be written

R=3" [(n,- —d,~)10g<1 +n-_i?) ~n,-10g<1 +’—1a—>]

i|[,‘§b ! !

(¢) Thomas and Grunkemeier (1975) show that the usual asymptotic prop-
erties apply and that —2R is asymptotically x7 under the hypothesis. Use
this result to establish a 95% confidence interval for F(b). Compare these
results with those obtained in Section 1.3 for the carcinogenesis data
(Table 1.1) with b = 150.

Suppose that censored samples are available on two populations with survivor
functions Fi(¢) and F,(f). Consider the hypothesis F,(b) = F (b) at some-
prespecified time b. Extend the results in Exercise 1.8 to obtain the nonparametric
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likelihood ratio statistic for this hypothesis. Apply this approach to test for
equality of the survivor functions at b = 250 for the carcinogenicity data

(Table 1.1).

Show that the mean vector and variance matrix for (dyj,...,d,) in the
distribution (1.18) are as asserted.

Consider again the mouse carcinogenesis data (data set V, Appendix A). Use
the log-rank test (1.16) to test the hypothesis that germ-free isolation does not
affect overall mortality.

Suppose that 71, . . ., T, are independent exponential variates with respective
failure rates Ay, ..., A,. Let v1, ..., 7 be the distinct elements of Aj,..., \,.
LetS=>"_,T.

(a) Show that the survivor function of § may be written as
m
Fs(t) =P(S>1)=>_ pi(t)e™,
j=1

where the p;’s are polynomials in ¢.

(b) Let \s(z) be the hazard function of S and show that As(#) < A, for all ¢
and that lim,— o As(#) = Amin, Where Apin = min(yy, . . ., Ym)-

Consider the transfusion-related AIDS data in data set III, Appendix A. As

discussed in Section 1.6, these data are subject to right truncation in that a

condition for study membership is that diagnosis of AIDS takes place prior to

the end of the study period. Let T represent the number of months from

transfusion to AIDS diagnosis, and F(¢) = P(T > t) be the corresponding

(discrete) survivor function. Let #; be the month of diagnosis, and let a; be the

total months elapsed to the end of the study period for the ith subject,

i=1,...,n

(a) Under what conditions would the likelihood function be of the form
[T- {[F() — F(£)]/[1 = F(ai)]}-

(b) Explain why F can only be estimated up to a constant of proportionality.

(¢c) Let a = max(ay,...,a,), and find the maximum likelihood estimate
of the conditional survivor function G(t) = F(t)/[1 — F(a)] =
P(T>t|T <a).

(d) What additional information would you need to estimate the median time
from transfusion infection to diagnosis with AIDS? (Lagakos et al., 1988;
Kalbfleisch and Lawless, 1989)

Consider the data of Table 1.2. Apply the log-rank test to compare the two
treatment groups in the trial. Consider dividing the data into three strata
consisting of patients in the age groups <15, 16-25, and > 26, respectively.
Apply a log-rank test separately in each stratum and the stratified log-rank
test. Discuss the results.
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Failure Time Models

2.1 INTRODUCTION

Although a primary focus of this book concerns the relationship between failure
time and explanatory variables, it is a useful first step to consider failure time dis-
tributions for homogeneous populations. Throughout the literature on failure time
data, certain parametric models have been used repeatedly; exponential and Weibull
models, for example, are often used. These distributions admit closed-form expres-
sions for tail area probabilities and thereby simple formulas for survivor and hazard
functions. Log-normal and gamma distributions are generally less convenient com-
putationally but are still applied frequently. We also consider more general para-
metric models (e.g., the log F and generalized gamma) that are able to adapt to a
diverse range of distributional shapes.

In Section 2.2 we discuss some of the standard failure time models for homoge-
neous populations. In the presentation we concentrate on model interpretation both
through hazards and through models for the logarithm of failure time. The general
properties and theoretical bases of these distributions are considered here only
briefly. More detailed discussion can be found in various sources, and we mention,
in particular, Johnson and Kotz (1970a,b), Mann et al. (1974), and Lawless (1982)
as good reference sources. In Section 2.3 we consider extensions of the parametric
models to include regressor variables and identify two general classes of models:
the relative risk or Cox models and the accelerated failure time models. In
Section 2.4 we consider discrete regression models and their relationships to
continuous models.

2.2 SOME CONTINUOUS PARAMETRIC
FAILURE TIME MODELS

As before, T > 0 is a random variable representing failure time, and ¢ represents a
point in its range. We use Y = log T to represent the log failure time and summarize
the failure time distributions in terms of both 7" and Y. Shape comparisons among
the parametric models are often simpler in terms of Y than 7.
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2.2.1 Exponential Distribution

The one-parameter exponential distribution is obtained by taking the hazard func-
tion to be constant, A(#) = A > 0, over the range of 7. The instantaneous failure
rate is independent of ¢, so that the conditional chance of failure in a time interval
of specified length is the same regardless of how long the individual has been on
study; this is referred to as the memoryless property of the exponential distribution.
The survivor function and density functions of 7" are, respectively,

Ft)y=e¢™ and  f(t) = de™

from (1.2) and (1.3). Figure 2.1 graphs the functions A(¢), f(¢), and F(¢) for the
exponential distribution. An empirical check of the appropriateness of the exponen-
tial model for a set of survival data is provided by plotting the log of a survivor
function estimate versus ¢. Such a plot should approximate a straight line through
the origin. As can be deduced from Table 1.1, the carcinogenesis data of
Section 1.1.1 are not well described by a single-parameter exponential model,
owing primarily to the absence of vaginal cancer deaths within the first 140 days.
The PDF of Y =logT is

exp(y —a —e7%), —00 <y < 00,
where @ = —log A. Letting ¥ = o + W, the PDF is

exp(w — e"), —00 < w < 00, (2.1)

Figure 2.1 Hazard function, density function, and survivor function for the single-parameter exponen-
tial model. Note that A may exceed 1.
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which is an extreme value (minimum) distribution. This distribution derives its
name from its appearance as the limiting distribution of a standardized form of
the minimum of a sample selected from a continuous distribution with support
on (—oo,a) for some a < oo. Details of the derivation are given, for example, by
Johnson and Kotz (1970a, Chap. 2.1). In a similar manner, the exponential distribu-
tion arises as the limiting distribution of a standardized form for the minimum of a
sample from certain densities with support (0,00) (see Exercise 2.1). This can
sometimes be taken as theoretical justification for its use in survival studies in
which a complex mechanism fails when any one of its many components fails.
The extreme value distribution (2.1) is a unimodal distribution with skewness —1.14
and kurtosis 2.4. The mean of (2.1) is —0.5722 . . ., the negative of Euler’s constant,
and the variance is 72/6 = 1.6449 .. .. The moment generating function is

Mw(0) =EE")=T06+1), 6> -1,

where

I'(k) = Jooxk_le_xdx

0

is the gamma function.

2.2.2  Weibull Distribution

An important generalization of the exponential distribution allows for a power
dependence of the hazard on time. This yields the two-parameter Weibull distribu-
tion with hazard function

Al) = M)

for A, v> 0. This hazard (see Figure 2.2) is monotone decreasing for vy < 1,
increasing for v > 1, and reduces to the constant exponential hazard if v = 1.
The PDF is

F() = Xy ()" exp[—(\)"]

and the survivor function is

F(t) = exp[—(\)].

Clearly,
log [-log F(t)] = v(logt + log \),

so that an empirical check for the Weibull distribution is provided by a plot of
log [—log F)] versus log t, where F is a sample (Kaplan-Meier) estimate of the sur-
vivor function. The plot should give approximately a straight line, the slope and x
intercept of which provide a rough estimate of v and —log A, respectively.
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Figure 2.2 Hazard functions for the two-parameter Weibull model with shape parameter v = p.

The PDF of the log failure time Y is
U—le(y-u)/aexp(_e(y—u)/a)’ —00 < y < 00,

where 0 = 4! and o = —log \. More simply, we can write ¥ = o + oW, where W
has the extreme value PDF (2.1). The shape of the density for Y is fixed because
A and ~ affect only the location and the scaling of the distribution. The Weibull
distribution can also be developed as the limiting distribution of the minimum
of a random sample from certain distributions (Exercise 2.1).

2.2.3 Log-Normal Distribution

Again, the model for ¥ = logT is of the form ¥ = o+ oW, but W is a standard
normal variate with density

1
p(w) = ——e /2, —00 < W < 00. (2.2)

The density function for 7' can be written

£(6) = (zﬂ)~1/27t_1 exp [—72(1;@ /\t)z}’

where, as before, & = —log A and o = y~!. The survivor and hazard functions
involve the normal distribution function ®(w) = [*_ ¢(u)du. The survivor func-
tion is

F(t) =1— ®(ylog Xr)
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Figure 2.3 Hazard functions of the log-normal distribution with shape parameter v = p.

and the hazard function is f(¢)/F(t). The hazard function has value 0 at r =0,
increases to a maximum and then decreases, approaching zero as t becomes large
(see Figure 2.3). The log-normal model is particularly simple to apply if there is no
censoring, but with censoring the computations become more difficult. The log-
logistic distribution of Section 2.2.6 provides a good approximation to the log-
normal distribution, and since it has a closed form for the survivor and hazard
function, may frequently be a preferable survival time model.

2.2.4 Gamma Distribution

As noted above, the Weibull distribution is a two-parameter generalization of the
exponential model; another such generalization is the gamma distribution with
density function

k—le)\t
f(@) :)\_()\_I{‘)Zk—)_—’

where k, A > 0. The model for ¥ =logT can be written ¥ = o+ W, where
a = —log A and W has the density

kw — e¥
expll — ") (2.3)
I'(k)

The error quantity W has a negatively skewed distribution with skewness decreas-
ing with increasing k. When k = 1, at the exponential model, W has the extreme
value distribution (2.1). More generally, the moment generating function of W is

M(O) =2



36 FAILURE TIME MODELS

from which it is easily shown that the mean and variance of (2.3) are the digamma
function

dlogI'(k)
k)= "t
vk = =5
and the trigamma function
d*log T (k)
(k) =

respectively. These are discussed and tabulated, for example, in Abramowitz and

Stegun (1965).
It is of interest to note that W, suitably standardized, has a limiting normal

distribution as k — oo: From Stirling’s formula,
1
log'(k) = —k + (k — 5) logk + log V27 + O(k™"),

it is easily seen that 1(k) = logk + O(k~!') and ¥V (k) = k~! + O(k~?). We con-
sider, then, the standardized variate

W* = Vk(W — logk)
and obtain

lim My~ (0) = exp(6°/2),

k—o00

where My-(6) is the moment generating function of W*. Thus as k — oo, the
distribution of W* converges to that of a standard normal variate.
The survivor and hazard functions of the gamma distribution involve the incom-

plete gamma integral,

xkle=* dx
k

Ik(s) F(k) )

and are, respectively,
F(t) =1-L(\)

and

. A exp(—Ar)
M= T Ron]
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The hazard function is monotone increasing from 0 if k > 1, monotone decreasing
from oo if k < 1, and in either case approaches A as t becomes large. If k = 1,
the gamma distribution reduces to the exponential distribution. With integer
k, the gamma distribution is sometimes called a special Erlangian distribution.

The gamma distribution with integer k (and the exponential distribution, kK = 1)
can be derived as the distribution of the waiting time to the kth emission from a
Poisson source with intensity parameter A\. As a side result, it is apparent from
this and the properties of the Poisson process that the sum of k independent
exponential variates with failure rate A has a gamma distribution with parameters
A and k.

2.2.5 Generalized Gamma Distribution

The gamma family of Section 2.2.4 can be generalized by incorporating a scale
parameter o in the model for ¥ = log T to give ¥ = a + oW, where W has the dis-
tribution with density (2.3). This three-parameter model was introduced by Stacy
(1962) and includes as special cases the exponential (¢ =k = 1), the gamma
(0 =1), and the Weibull (k = 1). The log-normal is also a limiting special case
as k — 00.

The PDF for T can be written

vk—1 _ Y
oy = 27 F(ek);p[ (A’

t >0,

where A\ = exp(—a) and y = o~!. The hazard function incorporates a variety of
shapes, as indicated by the special cases. The distribution is most easily visualized
in terms of Y, the log survival time.

2.2.6 Log-Logistic Distribution

Other failure time models can be constructed by selecting different distributions for
the error variable W in Y = a4+ oW. One such is the log-logistic distribution for T’
obtained if W has the logistic density

ew

m . (2.4)

This is a symmetric density with mean O and variance 7?/3 with slightly heavier
tails than the normal density function, the excess in kurtosis being 1.2. The prob-
ability density function of ¢ is then

£ =Xy(\) 1+ ()] 72,

where again A = exp(—a) and vy = o~ !. Although this model is used less frequently
in life-testing applications, it has the advantage (like the Weibull and exponential
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models) of having simple algebraic expressions for the survivor and hazard func-
tions. It is therefore more convenient than the log-normal distribution in handling
censored data, while providing a good approximation to it except in the extreme
tails. The survivor and hazard functions are, respectively,

Flt) = 1+ (Ar)?
and
(!
A(t) = T o0

This hazard function is identical to the Weibull hazard, aside from the denominator
factor 1+ (A\#)7; it is monotone decreasing from oo if v < 1 and is monotone
increasing from A if v = 1. If v > 1, the hazard resembles the log-normal hazard
in that it increases from zero to a maximum at f = (y — 1)1/ 7/ and decreases
toward zero thereafter.

2.2.7 Generalized F Distribution

The final parametric model to be discussed incorporates all the foregoing distribu-
tions as special cases; the primary value of this model may be its use for discrimi-
nating between competing models such as the Weibull and log-logistic distributions
for a given set of data (see Section 3.8). It also has the advantage that it can adapt to
a wide variety of distributional shapes.

Once again we consider a location and scale model for the log failure time Y in
which the error distribution is now assumed to be that of the logarithm of an F vari-
ate on 2m; and 2m, degrees of freedom. That is, Y = pu + oW, where the PDF of
W is

(my /m2)™ exp(wmy)(1 + mye” /my)~(mTm)
B (m1 y mz)

, (2.5)

where B(my,my) = I'(mq)I"(my)/T"(m; + my) is the beta function. The resulting
model for T is the generalized F distribution. It can be seen that the distributions
discussed in Sections 2.2.1 through 2.2.6 are special cases of the generalized F.
If (my,my) = (1,1), then (2.5) reduces to the logistic model and T has the log-
logistic distribution. The Weibull model is obtained as (m;,m;) = (1,00), for
which (2.5) is the extreme value error density (2.1); if, in addition, o = 1, the expo-
nential model is obtained. The generalized gamma distribution corresponds to
my = oo and, as before, reduces to the gamma distribution for ¢ = 1. The log-
normal distribution arises by allowing (m;,m,) — (00, 00), as discussed below.
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The densities (2.5) are positively skewed for m; > m;, negatively skewed for
m, > m;, and symmetric along m; = my. The log F' distribution is tabulated in
the Fisher—Yates tables (1938).

The moment generating function can be used to establish the limiting special
cases noted above:

1 my\? [0 xfrmi-l
B(my,my) \mi/) Jo (1+x)

 D(my + O)T(my — 0) (my\’
~ D(m)T(my) <m1> ’

where a change of variables to x = (m; /my)e" and

00 xa—l
B(a,b :J —dx
(a,b) o (1 +x)a+b

have been used. The mean and variance of W are easily obtained as

E(W) = 5108 My (6)]y_ = (m) — ¥{ms) + log "

my
m

and

2

d
- @EIOgMW(Q)b:O = W (my) + ! (my),

var(W)
where, as before, 1 and (1) are the digamma and trigamma functions.

All the special cases of the generalized F distribution listed above are apparent
upon inserting the Stirling approximation into My (6) except the convergence to the
normal as (my,m;) — (00,00). It is easily seen that E(W) — 0 as (my,m;) —
(00, 00) and further that

var(W) = m;' + my ' + O(m;?) + O(m;?)

by Stirling’s approximation. If W* = \/mym,/(m; + my)W, then var(W*) — 1 as
(my,my) — (00,00) and it can be shown further (with rather tedious algebra) that
as (my,my) — (00,00), My~(0) — ¢”/2, the moment generating function of a stan-
dard normal variate.

The generalized F distribution is discussed in more detail in Section 3.8, where
parameter transformations are considered to obtain the properties of regular estima-
tion on the boundaries m; = oo or my = oco. Its use in discrimination among
submodels is also considered there.
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2.2.8 Other Distributions and Generalizations

There are, of course, many other distributions that have been or could be used as
models for survival data. We have attempted only to outline some of the more
commonly used models along with some of their extensions and generalizations.
In modeling adult human mortality, a more rapidly increasing hazard function
than that represented by, say, the Weibull distribution is necessary. In fact, a rela-
tionship in which the hazard function is an exponential function of follow-up time
(age at death) has been found to be descriptive in many investigations, at least for
ages greater than 35. Such a relation leads to the Gompertz (1825) hazard A(¢) =
A exp(vt). Sometimes the exponential term is generalized to a polynomial function
of t. The Makeham (1860) generalization adds a constant to the hazard to give
A(t) = a+ X exp(yr).

Failure time is sometimes modeled to include an initial threshold parameter (or
guarantee parameter) A before which it is assumed that failure cannot occur. The
models given above could all be modified in this way simply by replacing 7' with
T =T — A. When such a A is known to exist, it should be incorporated in the
modeling. But it would be rare that A would be known to exist without its value
being known. For this reason, and also because of analytical difficulties in estimat-
ing A, such a threshold is usually not included as a free parameter to be estimated
in the methods of Chapter 3. The exercises at the end of Chapter 3 outline some of
the standard results for models with thresholds.

All the models discussed above are appropriate for continuous failure time vari-
ables. As noted earlier, however, failure time can be discrete and, correspondingly,
discrete models are required. Some examples of discrete failure time models are
given in the exercises at the end of the chapter. Discrete models in a regression
framework are discussed in Section 2.4.

2.3 REGRESSION MODELS

In Section 2.2, several survival distributions were introduced for modeling the sur-
vival experience of a homogeneous population. Usually, however, there are expla-
natory variables upon which failure time may depend. It therefore becomes of
interest to consider generalizations of these models to take account of concomitant
information on the individuals sampled.

Consider failure time 7 > 0 and suppose that a vector of basic covariates
x = (x1,xz,...) is available on each individual, their measurements having been
taken at or before time 0. Thus, x may contain information on treatment group, var-
ious physical measurements, time on study, and so on, and aspects of x are expected
to be predictive of subsequent failure time. We consider models for the failure time
that depend on a vector of derived covariates Z' = (Z,, . ..,Z,) which are obtained
as functions of the basic covariates x. Note that Z may include both quantitative
variables and qualitative variables such as treatment group; the latter can be incor-
porated through the use of indicator variables. It may also, for example, include
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interactions between elements of x or quadratic terms in elements of x. The princi-
pal problem dealt with in this book is that of modeling and determining the relation-
ship between T and derived covariates Z. Certain of the covariates are usually of
primary interest, such as those specifying treatment groups or specific risk factors
of interest. One primary aim is then to evaluate treatment effects, or examples,
while accounting for heterogeneity among the individuals sampled.

2.3.1 Exponential and Weibull Regression Models

The exponential distribution can be generalized to obtain a regression model by
allowing the failure rate to be a function of the derived covariates Z. The hazard
at time ¢ for an individual with basic covariate vector x can be written

A(t;x) = N(2).

Thus the hazard for a given x is a constant characterizing an exponential failure
time distribution, but the failure rate depends on the derived covariates Z. The
A(+) function may be parameterized in many ways. If the effect of the components
of Z is only through a linear function, Z'(, one has

At x) = X e(Z'B),

where 3 = (fi,..., ), of regression parameters, A is a constant, and ¢ is a spe-
cified functional form. The choice of ¢ may depend on the particular data being
considered. Three specific forms have been used (e.g., Feigl and Zelen, 1965):
() c(s) =1+s5,(2) c(s) = (1 +5)7", and (3) ¢(s) = exp(s). The first two of these,
corresponding to (1) the failure rate and (2) the mean survival time, being linear
functions of Z. They both suffer from the disadvantage that the set of 3 values con-
sidered must be restricted to guarantee that ¢(Z'3) > 0 for all possible Z. In many
ways, (3) is the most natural of the forms since it takes only positive values. We use
the form ¢(s) = exp(s) here and elsewhere, although it should be kept in mind that
other forms may be more appropriate in specific settings and could be used without
adding unduly to numerical or analytical computations.
Consider then the model with hazard function

At x) = Nexp(Z'B). (2.6)
The conditional density function of T given x is then
£(1:x) = Aexp(Z'B) expl—t exp(Z/B)]

The model (2.6) specifies that the log failure rate is a linear function of the covariate
Z. In terms of the log survival time, Y = log T, the model (2.6) can be written

Y=a-ZB8+W, (2.7)
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where o = —log A and W has the extreme value distribution (2.1). The model (2.6)
is a log-linear model; it is a linear model for Y with the error variable W having a

specified distribution.
The Weibull distribution can be generalized to the regression situation in essen-
tially the same way. If the conditional hazard is

A(t;x) = (M) exp(Z'B),

the conditional density of T is

ft;x) = My(\)""" exp(Z'8) exp[— ()" exp(Z'B)]. (2.8)

The effect of the covariates is again to act multiplicatively on the Weibull hazard.
Alternatively, in terms of Y = log T, the model (2.8) is the linear model

Y=a+Z3 + oW, (2.9)

where a = —log A\, 0 = v7!, and 8" = —a8.

The forms of the exponential and Weibull regression models suggest two distinct
generalizations. First, the effect of the covariates in either (2.6) or (2.8) is to act
multiplicatively on the hazard function. This relationship suggests a general model
called the relative risk or Cox model. Second, both of these models are log-linear
models; that is, the covariates act additively on Y (or multiplication on T'). From this
we obtain a general class of log-linear models called the accelerated failure time
model.

2.3.2 Relative Risk or Cox Model

Again, let A(#; x) represent the hazard function at time 7 for an individual with basic
covariates x. The relative risk model (Cox, 1972) specifies that

A(t;x) = o) exp(Z'9), (2.10)

where \g(+) is an arbitrary unspecified baseline hazard function for continuous 7. In
this model, the covariates act multiplicatively on the hazard function. If \y(z) = A,
(2.10) reduces to the exponential regression model (2.6); the Weibull model (2.8) is
the special case Ao(f) = Ay(\r)" .

The conditional density function of T given x corresponding to (2.10) is

f(t;x) = Xo(r) exp(Z'B)exp [—exp(Z’ﬂ) J; Ao(u) du] : (2.11)

The conditional survivor function for 7" given Z is

F(t; x) = [Fo(t)]P#P (2.12)
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where

Folt) = exp [— J Ao (1) a’u] .

0

Thus the survivor function of ¢ for a covariate value, x, is obtained by raising
the baseline survivor function Fy(#) to a power. The class of models produced
by this process is sometimes referred to as the Lehmann class (Lehmann, 1953).

If \o(+) is arbitrary, this model is sufficiently flexible for many applications.
There are, however, two important generalizations that do not substantially compli-
cate the estimation of (3. First, the nuisance function Ao(f) can be allowed to vary in
specific subsets of the data. Suppose that the population is divided into r strata and
that the hazard \;(#;x) in the jth stratum depends on an arbitrary shape function
Xoj(t) and can be written

N (t,) = Doy(1) exp(ZB), (2.13)

for j=1,...,r, where Z = (Z;,...,Z,) is again a vector of derived covariates.
Such a generalization is useful, for instance, if some explanatory variable or vari-
ables do not appear to have a multiplicative effect on the hazard function. The range
of such variables can then be divided into strata with only the remaining regression
variables contributing to the exponential factor in (2.13).

The second important generalization allows the covariates Z to depend on time.
Such regression variables arise, for example, in the heart transplant example of
Section 1.1.3, where the treatment group itself is time-dependent, as are certain
donor-recipient matching variables. In other instances, the covariate Z(¢) may be
thought of as a stress factor affecting the individuals under study at time ¢, as for
example pollution levels where the failure corresponds to a severe asthmatic attack.
In other instances, components of Z(¢) may simply reflect interactions between co-
variates x measured at baseline with time. With such time-dependent covariates, the
relative risk model is of the form

A5 X(5)] = do(2) exp[Z(1)' A,

where X(¢) = {x(u) : 0 < u <t} is the history prior to time ¢ of basic, possibly
time-dependent, covariates x(u). The covariates modeled are defined as suitable
functions of X(z). The use and analysis of time-dependent covariables are examined
in Chapters 4 and 6 in various contexts.

We have avoided the fairly common nomenclature proportional hazards
model for the model (2.10). With fixed covariates, the hazards within a stratum
are proportional under the model. The important generalization to time-dependent
covariates, however, suggests that relative risk (or Cox) model is a more appropriate
name.
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2.3.3 Accelerated Failure Time Model

The multiplicative effect of the regression variables on the hazard as specified in
(2.10) has a clear and intuitive meaning. Without restriction on A(-), however,
this model postulates no direct relationship between Z and the time to failure T
itself. In Section 2.2.1 it was noted that the exponential and Weibull regression
models are linear in Y =logT [see (2.7) and (2.9)]. In this section we obtain a
second semiparametric class of survival models, the class of log-linear models
for T.

Suppose that Y = log T is related to the derived covariate Z via a linear model
Y =Z7Z'8+ W, where W is an error variable with density f. Exponentiation gives
T = exp(Z'3)S, where S = exp(W) > 0 has hazard function \o(s), say, that is inde-
pendent of 3. It follows that the hazard function for T can be written in terms of this
baseline hazard A\o(-) according to

At x) = exp(—Z'B) Aolte 7). (2.14)

The survivor function is

F(t;x) = exp{— Jt exp(—Z'B) Ao[ue %] du}

= exp{—Aq[te 7]}, (2.15)

where Ag(t) = j(; Ao(u) du. The density function is the product of (2.14) and (2.15).

Although the interpretation of the model (2.14) in terms of log T is straightfor-
ward, it is also easily seen that this model specifies that the effect of the covariate is
multiplicative on ¢ rather than on the hazard function. That is, there is a baseline
hazard function A\g(¢) which applies when Z = 0, and the effect of the regression
variables is to alter the rate at which an individual proceeds along the time axis.
Equivalently, it is supposed that the role of Z is to accelerate (or decelerate) the
time to failure. The accelerated failure time model (2.14) is discussed further in
Chapters 3 and 7. An extension of the model to incorporate time-dependent covari-
ates is given in Chapter 7. Figure 2.4 compares the relative risk and the accelerated
failure time models for a simple Z = 0 or Z = 1 covariate which acts multiplica-
tively on the hazard, or multiplicatively on the failure time.

All the parametric models discussed in Section 2.2 lead to linear models for Y,
so that, in many ways, the log-linear regression model is their most natural general-
ization. The exponential and Weibull regression models can be considered as spe-
cial cases of either the accelerated failure time model (2.14) or the relative risk
model (2.10). Note, however, that log-linear models derived from the other para-
metric models are not special cases of (2.10). For example, log-normal hazard func-
tions (Section 2.2.3) with different location parameters «; and a5, are not
proportional to one another. In the next section it is shown that the only log-linear
models that are also relative risk models are the exponential and Weibull regression
models of Section 2.3.1.
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Figure 2.4 The baseline hazard function Ao(u) corresponding to Z = 0 is compared to the hazard for

Z = 1(8 = —log1.5) under a relative risk mode! and to z = 1 (3 = log 1.5) under an accelerated failure
time model. '

2.3.4 Comparison of Regression Models

Consider now the intersection of the relative risk and accelerated failure time mod-
els; or equivalently, consider the subset of log-linear models in which the regression
variable acts multiplicatively on the hazard function. Using subscripts 1 and 2 for
the respective models and changing the sign of the accelerated failure time regre-
ssion parameter, we require that

Aoi(t) exp(Z'B1) = Azt exp(Z'32)] exp(Z'6,)

for all (¢,Z). The value Z = 0 gives A1 (-) = Aoa(-) = Ao(:), say, while z = (—logt/
B21,0,...,0) gives, at that ¢,

Xo(D)ePuBa = Ag(1)e 71,

where 311 and (3,; are the first components of 3; and 3,, respectively. It follows that
for all ¢,

Xo(t) = M),

where v = 81,85 and X = [Ao(1)/~]"". Note also that 3, = v83,. The Weibull
(and exponential) log-linear regression models are then the only log-linear models
in (2.10). Also, the discussion above leads to a characterization of the two-parameter
Weibull model as the unique family that is closed under both multiplication of fail-
ure time and multiplication of the hazard function by an arbitrary nonzero constant.

Both general classes of models described would provide sufficient flexibility for
many purposes if methods for estimating 3 were available that did not require
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undue restrictions on the nuisance function Ag(-). The remarkable feature of the
relative risk or Cox model is that suitable methods of inference are available with-
out any restriction on Ag(-). This is discussed in Chapter 4. Parametric procedures
for estimation in the accelerated failure time family are given in Chapter 3. In
Chapter 7 we discuss rank-based methods of inference under (2.14) that can provide
consistent regression parameter estimates regardless of the error density f.

2.4 DISCRETE FAILURE TIME MODELS

2.4.1 General

All the models discussed to this point are appropriate for failure time data arising
from continuous distributions. As remarked earlier, however, failure time data
are sometimes discrete either through the grouping of continuous data due to impre-
cise measurement or because time itself is discrete. The latter case arises, for
example, when the response time represents the number of episodes that occur prior
to a terminal event. A concrete example would arise if the response were the num-
ber of standardized blows required to fracture a piece of pavement.

Any of the continuous failure time models discussed in Section 2.2 can be used
to generate a discrete model by introducing a grouping on the time axis. For exam-
ple, suppose that the underlying continuous failure time S has a Weibull distribution
with survivor function |

exp[—(Xs)"]

and times are grouped into unit intervals so that the discrete observed variable is
T = [S] (where [c] represents “‘integer part of ¢’’). The probability function of T
can be written

fO)=PT=1)=Pt<S<t+1)
=" — gt t+=0,1,2,..., (2.16)

where 0 < § = exp(—\") < 1. The special case y = 1 is the geometric distribution
with probability function 6'(1 — 6). The hazard function corresponding to (2.16) is

AX)=P(T =T >1)

- 1— 0(t+1)7—t7

~ which is monotone increasing, monotone decreasing, or constant for y > 1,y < 1,
- or v = 1, respectively. This can be generalized to a regression model by applying
the same grouping to the Weibull regression model with density (2.8).

In the next two sections we discuss general discrete regression models which,
like the continuous relative risk or accelerated failure time models, allow an arbi-
trary baseline hazard function which can be estimated from the data.
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2.4.2 Discrete Regression Models

A discrete analog of the relative risk model with fixed covariates can be obtained by
applying the survivor function relationship (2.12) directly to a discrete model. Let
the failure time T given basic covariates x have a discrete distribution with mass
points at 0 < a; <a; <---.LetZ = (Z,,...,Z,) be a vector of derived covariates
as before, and let Fy(¢) represent the baseline survivor function for Z = 0. The
corresponding survivor function for covariates x is

F(1;x) = Fo(r)**#P (2.17)

Y

as in (2.12). If the hazard function corresponding to Fy, has contribution J\; at a;,
then

Fo()= [ (1=N)

ila; <t
and from (2.17),

F(t;x) = [] (1= x)®?. (2.18)

ila; <t
The hazard at a; for covariate Z is then
1— (1= X)), (2.19)

It is of some interest to note that the discrete model (2.19) can also be obtained
by grouping the continuous model (2.10). Thus if continuous failure times arising
from the relative risk model (2.10) are grouped into disjoint intervals [0 =
co,€1),[c1,¢2), -, [ck—1,cr = 00), the hazard of failure in the ith interval for an
individual with covariate Z is

P{T € [Ci—laci)iT > ci—l} =1- (1 — /\i)eXp(Z'ﬂ),

where \; = exp[[;" _ Ao(u) du]. This discrete model is then the uniquely appropriate
one for grouped data from the continuous relative risk model.
If the discrete baseline cumulative hazard function is written as

Ao(2) = Z Aiy (2.20)

a,'St

as in Section 1.2.3, we see that the hazard function corresponding to covariate
vector Z is

dA(t;x) =1 = [1 — dAo(1)]"P#P), (2.21)
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Note that if dA(¢) is replaced with a continuous hazard Ao (¢) df so that Ay(z) is the
cumulative hazard of a continuous failure time variate, then (2.21) gives precisely
A(t;x) = Mo(t) exp(Z'B), as in (2.10). If Ag(¢) is the baseline cumulative hazard
function (Z = 0) for a discrete, continuous, or mixed random variable, (2.21)
defines a regression model for which the relationship between the survivor and
hazard functions is

F(t;Z) = P41 — dA(u; x) du]
= PU[1 — dAo(u)]PEP), (2.22)

where 2 is the product integral of Section 1.2.3. The expression (2.22) reduces
to (2.18) in the discrete case and to (2.12) in the continuous case. We shall
refer to the discrete model in (2.21) as the grouped relative risk model. The form
of (2.21) suggests a procedure whereby many different discrete models might be
generated.

In terms of hazard relationships, perhaps the simplest discrete, mixed, or contin-
uous model is described by the hazard relationship

dA(t;x) = exp(Z'B) dAo(¢), 4 (2.23)

which retains the multiplicative hazard relationship. Here again, Ao(¢) is a discrete,
continuous, or mixed baseline cumulative hazard function. In the discrete or mixed
case, there will be some range restrictions on the parameter (3 induced by the
fact that the discrete hazard components are less than or equal to unity. We shall
refer to the model (2.23) as the discrete and continuous relative risk model. The
model has the advantage of retaining the relative risk interpretation of the multipli-
cative factor exp(Z'().

Another discrete failure time regression model was proposed by Cox (1972) and
specifies a linear log odds model for the hazard probability at each potential failure
time. Thus if Ao(¢) is an arbitrary discrete or continuous cumulative hazard func-
tion, the hazard for an arbitrary Z is dA(t; Z), where

dA(t;x)  dAo(r)
1 —dA(t;x) 1 —dAo(2)

exp(Z'B). (2.24)

This is a linear binary logistic model with an arbitrary location parameter cor-
responding to each discrete failure time point. We refer to this as the discrete logis-
tic model. The effect of the covariates is to act multiplicatively, not on the discrete
hazards but on the discrete odds. Thus the interpretation of exp(Z’(3) is as an odds
ratio rather than a relative risk. If the cumulative hazard Ag(¢) is continuous, the
denominator terms reduce to 1, and this model again yields the continuous propor-
tional hazards model (2.10). The three discrete models (2.20), (2.23), and (2.24) are
therefore very similar if all of the discrete hazard contributions \; are small.

Any of these three discrete models could be generalized to allow time-cependent
covariates. Discrete models are discussed further in Section 4.8.
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Properties of the exponential, Weibull, log-normal, gamma, generalized gamma,
and log-logistic distributions are discussed by Johnson and Kotz (1970a,b), who
also give extensive bibliographies on these distributions. Some of these distribu-
tions are also discussed by Cox (1972), Mann et al. (1974), Gross and Clark
(1975), Lawless (1982), and Klein and Moeschberger (1997). The generalized
gamma distribution was introduced by Stacy (1962) and has been discussed by
Stacy and Mihram (1965), Parr and Webster (1965), Harter (1967), Hagar and
Bain (1970), and Prentice (1974). The generalized F distribution is discussed by
Prentice (1975).

Exponential, Weibull, and log-normal regression models have received consider-
able use in the literature. Since most of this work has been concerned with estima-
tion, a list of references for these and other parametric models is deferred to the
bibliographic notes at the end of Chapter 3.

The relative risk model was introduced by Cox (1972); the two-sample special
case with censored data was considered by Peto and Peto (1972). This model has
been discussed extensively with regard to inferential problems, and references are
given in Chapter 4. The grouped relative risk model was given by Kalbfleisch and
Prentice (1973), and Cox (1972) suggested the linear logistic model for the discrete
case. The discrete relative risk model (2.23) was proposed and discussed by
Prentice and Kalbfleisch (2002). Additional references are given in Chapter 5,
where inference from discrete models is considered more fully. The accelerated
failure time model was introduced by Cox (1972) and considered by Prentice (1978)
and by many authors since. A bibliographic summary is given in Chapter 7, where
general inference in this class is considered. Methods of inference for discrete
failure time distributions are considered in Section 4.8, and additional references
are given there.

EXERCISES AND COMPLEMENTS

2.1 (a) Let Ty,...,T, be a random sample from a distribution with survivor
function F(¢) and suppose that as t — 0,

F(t) =1— Xt +o(1)

for some A > 0. Show that the limiting distribution of X, = n min
(Ty,...,T,) is exponential with failure rate A. As noted in
Section 2.2.1, this property is sometimes taken as justification for the
choice of an exponential model.
[Note that a function g(#) is said to be o(") as t — 0 if lim, o g(¢)/
" =0.]

(b) Suppose now that for ¢ near O,

F(t)=1—(Xt)" + o(¢"),
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where A > 0 and r > 0. Show that the limiting distribution of

Y, = n'" min(Ty,...,T,)
is Weibull with shape v and scale .

(a) Show that the exponential distribution is the only continuous distribution
for which the mean residual lifetime r(¢) = constant for all r > 0.

(b) Show that if A(z) > 0 for all z and A(t) — ¢ € [0,00) as t — oo, then
r(t) — clast— oo.
(c) Examine the form of r(z) for the log-normal and gamma distributions.

Show that the moment generating function of the logistic distribution (2.4) is
L(1+6)I(1-¢6)

and that the 2rth cumulant is

|
kzr:_(_Zr).C(Z’:)_’ r=1,2,...,
¥

where ((n) is the Riemann zeta function
¢(n) = Z i
i=1

Hence show that the excess in kurtosis for the extreme value density is 1.2.
[Note that ((2) = IT?/6 and ((4) = IT*/90.]

Let W; and W, be independent with the extreme value density exp(w — e*).
Show that V = W; — W, has the logistic density

flv) =e'(1+e")

Derive the variance and kurtosis of the logistic distribution from those of the
extreme value distribution.

Consider a two-sample situation (Z = 0, 1), in which the hazard is exponen-
tial:

At;Z) = Nexp(Z'B)

for the continuous failure variable 7. The time axis is grouped into disjoint
intervals I; = [¢j_1,¢j),j=1,2,..., where ¢ =0 < ¢; < --- and ¢ — o©
as k — o0o. Define the discrete variable Y =jfor T €1[;, j=1,2,....
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(a)

(b)

(0

Verify that the resulting discrete model is of the form (2.21) and that the
same parameter J measures the sample differences.

Show that if the grouping intervals are constant so that ¢; —¢j_; =
c/A, j=1,2,..., where c is a positive constant, the discrete model also
has the logistic relationship (2.24). For the latter case, note that the log
odds ratio is 3*, where

N exp(—ceP)
exp(ﬁ ) - 1 — CXP(—C) :

This is close to 3 if ¢ is small.

Again with constant grouping intervals, show that the model can also be
written in the form (2.23) as a mixed discrete and continuous Cox model.
Express the relative risk in the discrete model in terms of the relative risk
in the continuous model.



CHAPTER 3

Inference in Parametric Models and
Related Topics

3.1 INTRODUCTION

As mentioned previously, one important reason for specialized statistical models
and methods for failure time data is the need to accommodate right censoring in
the data. It is usually the case that censoring greatly complicates the exact distribu-
tion theory for the estimators even when the censoring mechanism is simple and
well understood. In other cases, complex censoring mechanisms may make such
computations impossible even in principle. This fact leads, in most instances, to
a reliance on asymptotic methods for estimation and testing.

The purpose of this chapter is to consider estimation and testing with parametric
regression models. We begin with some discussion of exact methods within the
exponential distribution, but note that at least in the medical setting, the necessary
control on the experiment to allow exact confidence intervals and tests is rarely
available. We therefore consider the asymptotic methods based on the likelihood
as the primary means for inference.

We delay general discussions of censoring to Chapter 6, and in the present con-
text, consider random censorship models. The derivations are first given in terms of
random right censorship, and extensions are considered to allow for more general
random censoring and truncation. Our discussion begins with an analysis of inde-
pendent right-censored data arising from a parametric model, and asymptotic
results are first discussed in that context.

3.2 CENSORING MECHANISMS

We consider survival studies in which » items or individuals are put on test and data
of the form (T}, 6;,x;), i = 1,...,n, are collected. Here §; is an indicator variable
(6; = 0 if the ith item is censored; §; = 1 if the ith item failed) and 7; is the corre-
sponding failure or censoring time. As before, x; = (x;1,xz, . ..) is a vector of basic
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covariates associated with the ith individual and Z; = (Zi, - .., Z;p) is a vector of
modeled or derived covariates that will be incorporated into the failure time model,
which is presumed specified up to a parameter vector ¢. The survivor function for
the ith individual is P(T; > t;0,x;) = F(r;0,x;) with the corresponding density
f(t;0,x;), where T; is the underlying uncensored failure time variable. For the
time being, we restrict attention to absolutely continuous failure times 7;.

To obtain the likelihood function for 6, it is necessary to consider the nature of
the censoring mechanism. For most of this chapter, we make the rather restrictive
assumption of random censoring. Specifically, we assume that the censoring time
C; for the ith individual is a random variable with survivor and density functions G;
and g;, respectively (i = 1,...,n), and that given x, ..., X, the C;’s are stochasti-
cally independent of each other and of the independent failure times Ty,..., T,
Note that the random censorship model includes the special case of type I censor-
ing, where the censoring time of each individual is fixed in advance, as well as the
case where items enter the study at random over time and the analysis is carried out
at a prespecified time (Exercise 3.3). The latter situation provides a good model for
some medical studies. It should be noted, however, that the random censorship for-
mulation is not sufficiently general to include some censoring schemes that are
commonly used in certain areas of application, as discussed below.

LetX; =T; A C;and §; = (T; = T,) Thus, T; is the observed, possibly censored
failure time. For random censorship

P[T; € (t,t+dt),6; = 1;x;,60) = P[T; € (t,t +dt),C; > t;x;, 6]
= Gi(t)f(t;0,x;) dt

and

P[T; € (t,t +dt),6; = 0;x;,0] = P[C; € (t,t +dt), T; > t;x;, 6]
= gi()F(t;0,x;) dt.

Given xy, .. .,x,, the pairs (T;,6;), i = 1,...,n, are independent. Thus, if the cen-
soring is noninformative [i.e., G;(t) does not involve 6], the likelihood on the data
(T; = t;,6i,xi), i =1,...,n, conditional on x;,...,x, is

L(H) (04 ﬁf(tl’;H,Xi)éiF(ti;e’Xi)l_éi. (31)

i=1

This likelihood is of the form L(#) = II L;(6), where L;(0) is f(#;; 6, x;) for a failure
and F(t;;0,x;) for a censored time. The contribution to the likelihood of an indivi-
dual censored at ¢; is just P(Ti > ti;%i,0).

In fact, the likelihood (3.1) is much more generally correct than the discussion
above would suggest. As described explicitly in Section 6.2, therc ‘s a class of
censoring mechanisms called independent censoring for which this hikelihood is
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appropriate. Briefly, the censoring procedure or rules may depend arbitrarily during
the course of the study on previous failure times, on previous censoring times, on
random mechanisms external to the study, or on values of covariates included in the
model. The likelihood is then built up by considering the experience of the entire
study group as it evolves over time. This leads to an expression of the form

L(6) ocH)\ .0, x;)%exp —J Z Au; 0,x¢) du |, (3.2)
0

i=1 £E€Ru)

where R(u) is the risk set at time u and comprises the set of individuals who are
alive and still under observation (not censored) at time u~, just prior to time u.
Thus R(u) = {i:#; > u}. It is left as an exercise to verify that (3.2) and (3.1)
are equivalent. Many of the censoring schemes commonly discussed in the litera-
ture are independent. For example, the study may continue until the dth smallest
failure time occurs, at which time all surviving items are censored (type Il censor-
ing), or a specific fraction of individuals at risk may be censored at each of several
ordered failure times ( progressive type Il censoring).

The censoring scheme is not independent if individuals are censored selectively
or withdrawn from study because they appear to be at an unusually high (or low)
risk of failure compared to others on study with the same covariates. Some
restriction of this type is clearly necessary since it would be impossible to obtain
meaningful survival data if, for example, individuals were withdrawn from study
whenever they appeared to be in imminent danger of failure.

3.3 CENSORED SAMPLES FROM AN EXPONENTIAL DISTRIBUTION

A simple example illustrates the relationship between the censoring mechanism and
the complexity of exact (frequentist) inferences. Suppose that failure times arise
from a homogeneous exponential distribution with failure rate A\. In the notation
above, 6 =\, F(t;Z,0) = F(t;\) = e and f(t;Z,0) = Ae ™. Based on an
uncensored sample 71, ..., 1,, the likelihood function is

L(A) = A" exp(—Av),

where v = ) 1; and the maximum likelihood estimate (MLE) is A=n /v. The like-
lihood function is determined by the observed value v of V = " 7; so that V is
sufficient for \. That is, inference on A can be based on the value of V and its dis-
tribution. The distribution of V is simply obtained from its moment generating
function (MGF). The MGF of AT; with parameter ¢ is (1 — &)™™', so that of AV is
(1 — &)7". This is the MGF of a gamma variate (2.2.4) with shape k = n and scale
A = 1. Equivalently, 2\V has a x? distribution with 2n degrees of freedom. This
result leads to simple significance tests and confidence intervals for .
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Inference on A is equally simple with type II censoring. Suppose that n indivi-
duals are placed simultaneously on test and the study terminates when the dth fail-
ure occurs. Denote the ordered failure times by #(1) < f(2) < -+ < (4). As in the
general expression (3.1), the likelihood contribution from each of the (n — d) items
censored at #4) is exp(—Af()), since the corresponding failure times are known
only to exceed f;), and the contribution of the failure f;) is Aexp(—A¢g),
i =1,...,d. The likelihood is then

L()) = M exp(—Av), (33)
for which \ = d /v. In this case, v is the observed value of the total survival time

V= Z‘f ?"(i) + (n— d)T(d), which is again sufficient for A. The joint density of
T(1y,- .., (g is required to derive the density for V. For this purpose, we divide

the time axis into intervals [O, 1(1)), [l‘(l), 1) + dl‘(])), [t(l) + dl‘(l), 1(2)), Ceey [l‘(d),
ta) +dt)), [t + dt(4),00) and use the multinomial probability of obtaining fre-
quencies 0,1,0,...,1, (n — d) in the respective intervals. This gives a probability
element
n! d
‘ exp[—(n — d)/\t(d)]H[/\ exp(—/\t(i)) dt(,-)J.

(n—d)! )

The corresponding joint PDF of T(l), ceey T(d) is

n! M exp(—\v)
(n—=d)

0 <ty <+ <ta,

which, of course, gives rise to (and amounts to a derivation of) the likelihood func-
tion (3.3) above.
Consider the change of variables to the normalized spacings Uy, ..., U;, where

UiZ(n—i+1)(T(i)—T(i_1)), i=1,...,d

where T() = 0. The transformation has Jacobian (n — d)!/n! and it is easily seen
that V = > U,. It follows that the joint density of the U;’s is

d
H()\e_)‘”"), uy,...,ug >0,
1

so that Uy, ..., U; have independent exponential distributions with failure rate .
As above, it then follows that 2\V = 2/\2‘11 U, has a x? distribution with 2d degrees
of freedom and inference proceeds as in the uncensored case. Note that with expo-
nential data, the same estimating efficiency is achieved by following d items until
all have failed or a larger number, n, until the dth failure.
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With d = n, the transformation to the U;’s allows a simple expression for the
exponential order statistics since

. U U. U;
1 2_ o

_ R T S i —=1.....n. 34
n n—1 +n—i—l—1’ : el (3.4)

Since the expectation of each U; is A~', the expectation of Ty is
B i
ETy)=2"Y"(m—j+1)7",  i=1...n
j=1

This suggests a simple graphical test for exponentiality with uncensored or type I1
censored data: A plot of #(; versus Zj': (n—j+ 1)~" should be approximately lin-
ear if the exponential model is suitable. This procedure is a first-order approxima-
tion to that based on a plot of the log survivor function estimator as suggested in
Section 2.2.1: The Kaplan-Meier estimator, for ¢ € [t(;), #4+1)), can be written

i

FoOy =TI = (=j+ 17,

j=1

so that

log F(t) = zl: log[l — (n—j+1)7"]

j=1
~ —Z(n —j+ D7
j=1

Consider sampling from an exponential model with an arbitrary independent
censoring mechanism. The likelihood function can again be written

L)) = X exp(—\v),

where d =Y 6; and v =>_ 1;6; + > t;(1 — &) = >_ t;. Typically, not only V, but
also the number of failures D, is random and the sampling distribution of the suffi-
cient statistic (V, D) or that of the MLE A = D/V is complicated by the censoring
mechanism.

Consider, for example, the simple case of type I censoring where the censoring
times ¢y, ¢, ..., c, are specified in advance for the n individuals on study. In this
case

n

V = Z [(1 — 6,')C,' + 6iTi],

i=1
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where, as before, 7; is the failure time of the ith individual. Even in this very simple
case, the joint distribution of D and V is quite complicated, as is the exact distribu-
tion of the MLE A = D/V. Further, the MLE is no longer sufficient for inference
about A. This complication of the distribution theory and the lack of sufficiency
properties leads, in most cases, to the use of asymptotic likelihood arguments for
inference about the parameters.

3.4 LARGE-SAMPLE LIKELIHOOD THEORY

In this section we consider the main asymptotic results that typically apply to the
likelihood function and the maximum likelihood estimator. Generally speaking,
these results are applicable to the likelihoods derived from parametric regression
models for failure time data with independent censoring mechanisms. Some discus-
sion of the derivations of the asymptotic results is given in Section 3.8 and in
Chapter 5. Our purpose here, however, is to draw together the various methods
that are used for inference from a parametric likelihood function. These methods
are based on asymptotic approximations to the distribution of the score statistic,
the maximum likelihood estimator and the likelihood ratio statistic. These basic
procedures also apply to the partial likelihood that arises in analysis of the relative
risk or Cox regression model, discussed in Chapter 4.

As discussed in Section 3.2, we suppose that data (#;,6;,x;), i=1,...,n, are
available from a parametric model with parameter § = (6;,...,6,) and give rise
to the likelihood function

L) = [ JL(0) | 35)

i=1

= HA(t,-;O, x,-)ﬁs exp —J Z Ae(u; 8,x0) dul, (3.6)

i=1 0 ¢eRr()

where R(u) = {£: t, > u} is the set of individuals at risk (i.e., alive and uncensored) at
time u > 0. These two expressions describe two ways of viewing survival data. In
(3.5), the term L;(6) is the likelihood contribution arising from the ith individual
and represents the corresponding density function if the individual is observed to
fail, and the survivor function if the individual is censored. This is a natural way
to view the problem with random censoring, and asymptotic arguments proceed in
fairly standard ways. Further, the approach to asymptotics extends in a natural way
to other types of random censoring (interval or left censoring) as well as random
truncation. The expression (3.6) arises naturally from viewing the survival data as
unfolding sequentially in time and relates to general independent right censoring. In
this case, asymptotic results can be obtained through martingale central limit the-
orems as discussed in Chapter 5. In some respects, however, these methods are
more restrictive in that they generally do not extend in natural ways to certain other
types of censoring or truncation that arise with some frequency in applications.
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With either approach, however, the main result relates to a central limit theorem
for the score vector. Other results follow in fairly standard ways from this founda-
tion. In this section we discuss asymptotic results as they relate to the random
censorship model and the likelihood expression (3.5).

3.4.1 Score Statistic
Central to asymptotic likelihood arguments are the efficient score vectors
U;(0) = 0 log L;(0) = 0 log L;(6) (3.7)
1 - w g 1 - %j g 1 pXI’ *

i=1,...,n. If the operations of expectation and differentiation with respect to 0
can be interchanged, it can be shown that U;(#) has expectation 0 and covariance
matrix

50 - Bu©Uo) - - (5550) 68)
797k pxp
It should be noted that although the conditions above leading to (3.8) are quite mild,
they are nonetheless sufficient to exclude parameters that define the range of sup-
port for the random variable T and thus threshold or guarantee parameters are not
covered by these arguments.
With random censorship, U;(6), ..., U,(0) are independent. Thus, under certain
conditions, a central limit theorem will apply to the total score statistic

U(9) = iU,-(a).
i=1

As a consequence, U(6) is typically asymptotically normal with mean 0 and covar-
iance matrix #(0) = > _;_#(6). For convenience, we speak of U(#) as being
asymptotically normal with mean 0 and covariance .#(#), although it is, of course,
the standardized version n~'/2U(#) that converges. For the central limit theorem to
apply, the requirements are basically that the relative information .%(6).# ()"
approaches a zero matrix for each i as n — oo, and the total information
#(0) approaches infinity at a suitable rate. Necessary and sufficient conditions
for the central limit theorem for sums of independent variables were given by
Lindeberg (e.g., Feller, 1971, p. 262; Shorack, 2000, p. 260). The sufficient condi-
tions of Ljapunov (e.g., Feller, 1971, p. 286) are often more easily verified.

Under these conditions, the asymptotic distribution of the score U(6) can be
used for approximate inference about 6. Specifically, under a hypothesized
6 = 6y, the score statistic U(fy) is asymptotically normal with mean 0 and variance
H(0o). If #(6y) is nonsingular, it follows that

U’ (60)-(60) "' U(60) (3.9)
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has an asymptotic XI% distribution where p is the dimension of §. The hypothesized
value of 6 is assessed by comparing the value of (3.9) with the x? tables. Alterna-
tively, an approximate confidence region for 6 can be formed as the set of values 6
for which (3.9) is less than a specified upper level of the x* distribution. It is also
possible to use the score function for tests of certain composite hypotheses as dis-
cussed in Section 3.4.4.

The limiting normal distribution of the score function is the fundamental result
of asymptotic likelihood theory. It serves as the basis on which the other asymptotic
results are built.

3.4.2 Maximum Likelihood Estimator

Simpler methods of interval estimation are available than those based on the score
statistic. These involve the asymptotic distribution of the MLE 4. If 6 is interior to
the parameter space, L(6) is thrice differentiable, and certain boundedness condi-
tions on the third derivatives are satisfied, it can be shown that for sufficiently large
n, 6 is the unique solution to U(f) = 0, that 6 is consistent for 6, and that the asymp-
totic distribution of 6 is multivariate normal with mean 6 and covariance matrix
#(0)"". We can write

6~N@O, 507", (3.10)

where again, it is a standardized form n'/ 2(@ — 6) that converges. Tests of hypoth-
eses about § and interval estimation can be based on this result.
For example, approximate confidence regions can be specified using the asymp-
totic x; distribution of
(0 —6).7(6)(6—6). (3.11)
Similarly, if ¢ = (8},6,), where 8, = (61,...,6), and

fll(e) tle(e) )

1(0)—1 = (le(e) f22(9)

where .#'1(6) is of dimension k x k, it follows that
(61— 61) 7 (6)7 (6, — 61)

has an asymptotic 7 distribution. In particular, if k = 1, this gives a simple asymp-
totic standard normal variate for estimating 6;, or equivalently 6;, as

6 — )7 (0)] /2, (3.12)
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where i7(0) is the (j,j) element of .# (6)"'. Typically, (3.12) involves the unknown
6 and to be useful, #(f) must be estimated.

The results above can be modified by replacing the Fisher information
F(0) = E(—0*L(0)/00 8¢') with an estimator. For example, under regularity
conditions, .#(0).# (6)™" converges in probability to a p x p identity matrix. As a
consequence, £ (6) can replace .#(6) in (3.10), (3.11), and (3.12). An even simpler
estimator of .#(0) is provided by the observed information

1(6) = (___—a;;?g;;(e) )p x

the expected value of which is the Fisher information. Thus .#(6) can be replaced
in the results above with I(#) or with I(§) without affecting the asymptotic dis-
tributions. It should also be noted that .#(f) in (3.9) may be replaced with
#(8), 1(6y), or I() while retaining the asymptotic x? result.

3.4.3 Score Tests of Composite Hypotheses

Under the same regularity conditions as for the maximum likelihood methods,
score-based procedures can also be used for asymptotic tests of composite hypoth-
eses. Specifically, suppose that the total score is partitioned as

U(91, 62), - [U(l)(61> 02>,7 U(2) (01 y 02)/]’
where the component vector U(! is of dimension k corresponding to 6;, and where

6, and U® have dimension p — k. Let 6, = 6,(0,) be the MLE of 6, for given 6;,
which is obtained as a solution to

U@ (6,,6,) = 0.

Let (7(1)(91) =UM(8,,0,) and j“(ﬁl) = #1101, 0,). The score statistic for esti-
mating or testing hypotheses about 6 is

~ ~11 ~
Ve, 7" 000" (0y),

which has an asymptotic x7 distribution. For inference about the scalar component
parameter ¢;, we could utilize the related asymptotic normal statistic,

(6 (8,

As in statistics based on the MLE, the Fisher information .#(6) in the score statis-
tics above can be replaced by the observed information /(#) while retaining the
asymptotic results.
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3.4.4 Likelihood Ratio Statistic
A third class of likelihood statistics arises from the likelihood ratio

_L(9)

*O=16)

and its asymptotic distribution. If the regularity conditions of maximum likelihood
theory hold, then under the hypothesis 6 = 6, the asymptotic distribution of

—21log R(6y) (3.13)

is that of a x; variate where p is the dimension of 6. )

If ¢ = (6),6,) as above, then under the hypothesis 6; = 9, —2log R[¢7, 6,(6?)]
has a X,%, where k is the dimension of 6. This result and the related score test are
quite general since by reparametrization it is usually possible to use the likelihood
ratio to test any hypothesis of interest about the 6;’s. Basically, we need to be able to
reparametrize to a vector of parameters, v = y(6), to which maximum likelihood
theory applies and for which the hypothesis of interest is equivalent to specifying
the values of a subset of ~;’s. Thus, suppose that v = h(#) is a k-dimensional para-
meter of interest, where 4 is a differentiable mapping from R’ — R¥, and the matrix
H(0) = Oh/9¢ is of full row rank k. Under the hypothesis v = -y, the statistic

—2log Ry (o) = —2log 108

has an asymptotic X/% distribution, where sup denotes supremum.

One desirable feature of any inference procedure is that the conclusions drawn
should be independent of the (to some extent) arbitrary parametrization used. Thus
if 6 is replaced by some 1:1 function, say, A = A(6), the conclusions should be unal-
tered. All tests and inference procedures based on the likelihood ratio statistic have
this property. The score test statistic (3.9) also has this property. To see this for
(3.9), we suppose that A = A(f) is a 1:1 differentiable function of € and let
Ao = A(6p). If U*(\) and #*(\) are the score statistic and the information for A,
respectively, straightforward calculations show that

U*(No) = JoU(6o)
F* (M) = JoF (60)Jy,

where J is the Jacobian matrix with (i, /) element (09;/0);) evaluated at A = Xo. It
then follows that

U (M0)2* (M) T U* (No) = U'(60)-F(60) " U(6p).
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Testing and estimation procedures based on the asymptotic distribution of the
maximum likelihood estimate do not have the property of functional invariance.
Even the score function tests do not possess this property if #(6y) is replaced
with an estimate, as is generally necessary with censored failure time data, owing
to the complex sample spaces over which expectations must be taken. As discussed
further in Section 3.4.5, use of the expected information can also be criticized since
the inference would then depend on potential censoring times even when these have
not affected the observations.

The fact that asymptotic theory applied to 6 or X leads to different results sug-
gests that some care need be exercised in the use of asymptotic results for the max-
imum likelihood estimator. Consideration should in general be given to selecting a
parametrization A = A\(6) for which a normal approximation to the distribution of A
is suitable. Some rough guidelines are to select A so that its components do not have
unnecessary range restrictions and so that its asymptotic variance matrix is reason-
ably stable near X It is also possible, in some instances, to choose A to make the
likelihood nearly symmetric in shape by making the third derivatives of the log
likelihood, evaluated at A, small. The asymptotic distribution of 6 is obtained
from that of U(6#) by approximating the log likelihood with a quadratic function,
and choosing a parametrization that makes the third derivatives small improves
this approximation. This suggests that the normal shape of the likelihood is
important for the application of large-sample theory for the estimator. It should
be noted that if the likelihood can be made very close to normal in shape, the like-
lihood ratio statistic and the maximum likelihood estimates yield nearly identical
inferences.

The discussion above suggests superiority of the asymptotic approximations
based on the likelihood ratio, and this same general conclusion has been reached
by many authors.

3.4.5 Exponential Sampling Illustration

In this section we consider application of the methods of Section 3.4 to a sample
from the exponential distribution with type I censoring as defined at the end of
Section 3.3. We suppose, as there, that failure times 7} arise as independent expo-
nential variates with failure rate A and the ith individual has a censoring time
C; = ¢; fixed in advance of follow-up. Note that the same analysis would apply
to a random censorship model where independent censoring times C;,
i=1,...,n, are determined according to some distribution free of A. In the latter
case, the analysis is conditioned upon C; = ¢;, the censoring times being ancillary
statistics for the estimation of A. Let T; = T; A ¢; and again let ¢; be the observed
value of T;.
As noted before, the contribution of the ith individual to the likelihood is

Li(\) = (Ae )i (e= )10

= Mg, i=1,...,n,
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so that the efficient scores are

zmnz%—n

and —0°log L;(\)/ON? = §;/)\2. 1t is easily seen that

B = 252~ B(r)
=0,
while
Fi(A) = E/(\i') =1 ;zpi,

where p; = exp(—Ac;) is the probability that the ith item is censored.
If, as before, D = ) é; represents the total number of failures and V = ) | T;, the
total accumulated survival, it follows from Section 3.4.1 that the score function

wnzg—v

is asymptotically normal with mean O and variance

SO\ = E/(\I;) - E(I/\; Pi). (3.14)

The requirement for asymptotic normality of U()) is simply that the expected num-
ber of deaths approaches infinity as n — oo. This in turn places some very mild
restriction on the censoring times to the effect that the ¢;’s must not converge too
rapidly to zero as n becomes large.

Now we have a common situation in the application of asymptotic methods with
censored data: (3.14) involves the potential censoring times for individuals that fail.
It is certainly not clear, however, that potential but unobserved censoring times
should affect the inference even if they are available. For these reasons, the
observed information,

~logL())

or I(\), is commonly substituted for .#()), as discussed earlier. Replacing .#(\)
with I(\) = D/X2, we find that D~'/2AU()) has an asymptotic stzrdard normal
distribution.
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For example, suppose that failure time in excess of 100 days in the group 1 data
of Section 1.1.1 is exponentially distributed with failure rate \. Then D =d = 17
and v= (43 + 64 + --- + 144) = 2195. The results above give an approximate
95% confidence interval for the failure rate, A, as the set of A values for which

IATV2UN)| = |dY? = Xd™V20) < 1.96

since £1.96 bracket the central 95% probability from a standard normal distribu-
tion. Direct solution gives (0.00406, 0.01143) as the approximate confidence inter-
val. Maximum likelihood results applied to A=d /v, with the information
estimated by I()\) = v?/d, give

(A= NIX)V? =d'? — xd™ v

as an approximate standard normal variate, which, in this case, is precisely the same
as the score procedure. Alternatively, we may prefer to apply asymptotic MLE
results to v = log A since ~y has unrestricted range and the asymptotic variance of
4 = log A is estimated by I, () = d~' a constant. The latter statement follows from
direct manipulation of the likelihood for v, L.(y) = L(e?) = exp(yd — e"v). It
follows that d'/2log A/ has an asymptotic standard normal distribution, giving

d d
[a,b] = (— —1.96d71%, log=+ 1.96d“‘/2)
v ()

as an approximate 95% confidence interval for v and (e?, e’) as an approximate
95% interval for A\. For the data of Section 1.1.1, the interval is (0.00481,
0.01246). Similarly, the reparametrization o = A\'/3 may be considered, since the
log likelihood for « is very nearly symmetric about & = ):1/3. More precisely,
the third derivative of this log likelihood evaluated at ¢ is zero. This choice of para-
meter gives an approximate confidence interval for A of

1.964-1/2\°
(1 n 96d ) g
3 v

based on the asymptotic distribution of &. As expected, this interval is in close
agreement with those given earlier for large d. It has value (0.00462, 0.01204)
for the carcinogenesis data.

Finally, the likelihood ratio

M exp(—Av)

e (3.15)

RO\ =

can also be used for inference about A. The statistic —2 log R()\o) has an asymptotic
X3 distribution if A = )\g, and an approximate 95% confidence interval for \ is
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obtained as the set of A values for which (3.15) has a value less than 3.84, the upper
5% point of 3. This is simply found by plotting R(\) or —2logR()) as a function
of A and reading off the appropriate interval or a simple iterative or search technique
will give the more accurate results. In the present case the 95% interval is (0.00462,
0.01203), which is nearly indistinguishable from that based on & above. The like-
lihood ratio statistic (3.15) is particularly well suited for tests of hypotheses about
A. It has, as noted before, the advantage of being functionally invariant so that
application to « or -y gives the same results. Moreover, it does not involve un-
observed censoring times. It is, in fact, the only inference procedure we have
considered with both of these properties.

3.5 EXPONENTIAL REGRESSION

3.5.1 Methods

Suppose that failure times arise from an exponential distribution. The basic covari-
ates are again denoted by x and the model for failure rate depends on a regression
vector of p derived covariates Z = (Z,,...,Z,)" as in (2.6). For ease of notation let
the hazard function be written

A(t;x) = exp(Z'B),
where Z; = 1, so that A = exp(/3)) is the failure rate when other components of Z

have value 0. On assumption of an independent censoring mechanism, the likeli-
hood function of 3 is written

L(8) = ]| &% exp(~e"s)
1

where, as before, #; is an observed survival time with corresponding regression vec-
tor Z! = (Zi;,Zni, - - -, Zp;) and ¢; indicates failure (6; = 1) or censoring (6; = 0).
The score vector has components

810 L )

and the (j, k) element of the observed information matrix 1(f3) is

—d%log L(B)

dB;0Bx - Z ZiZyi exp(Z{P)t;. (3.17)

As in the single-sample case discussed above, the information matrix involves tak-
ing an expectation of (3.17) with respect to the variables 7; and ; and will typically
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be difficult or impossible to evaluate. As before, we shall use the observed informa-
tion in constructing asymptotic results.

For the central limit theorem to apply to the score statistic U(/3), whose compo-
nents are defined in (3.16), conditions are required on both the regression vectors Z;
and the censoring mechanism. As before, the times of censoring must not converge
too rapidly to zero as n — oo, but also the Z;’s must be such that the relative infor-
mation from observation i, .%(8).#(3)"" goes to a zero matrix as n — co. This
means that the normal approximation to the distribution of U(() is likely to be
poorer when the sample contains isolated and extreme Z values, since such values
can exert considerable influence upon the 3 estimate and upon .#(3). Of course,
observations corresponding to such Z values should be scrutinized routinely for
consistency with the assumed model, quite apart from the asymptotic normality
considerations.

The asymptotic distribution of U () is multivariate normal with mean 0 and var-
iance #(3), while that of [ is multivariate normal with mean [ and variance
#(B)". As before, to eliminate the role of unobserved censoring times, the
expected information #(3) can be replaced with the observed information ()
or its estimate /((3) in either asymptotic result. Note that 3 as well as the likelihood
ratio statistic will usually require iterative calculation. The Newton—Raphson
method generally works very well. Under this technique, an initial value 3 is
updated to BV = 8O + [1(39] U () iteratively until convergence is achieved.
A starting value of 8 = (v/d,0,...,0)" usually will suffice.

3.5.2 Comparisons of Two Exponential Samples

A special case in which £ can be calculated explicitly is that of comparing two
exponential samples. Suppose that failure times from two groups of individuals
are exponential with failure rates \; and \;, respectively. Comparison of the two
groups then involves comparison of A\; and \,. Such data can be placed in the
regression framework above by defining for the ith individual a regression vector
Z; = (Z1i,Zpi), where Zy; = 1, as before, and Zy; = 0 if individual i is in group 1
and Z,; = 1 if individual 7 is in group 2. Then ¢® = \; and %% = ), and equality
of A\; and ); is equivalent to 3, = 0. The score statistic (3.16) can be written

Ui(B)=d +dp — Py — PPy,
Uz(ﬁ) =d, — eﬁ“%vz,

where (dj, v;) is the number of failures and total survival time in sample j, j = 1, 2.
This gives exp(ﬂl) =d, /v and exp(ﬁz) dyv; /dyv,. The observed 1nformat10n
matrix is

- eﬁl +ﬂ2 U2 eﬂl +ﬁ2 U2
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so that
N di+d, d, A 1 d> —dy
I(ﬁ) o < d2 d2 ) and I(IB) dldz ( "d2 dl + d2 ) '

Consider now a test of the hypothesis 3, = 0, which corresponds to equality of
the failure time distributions for the two groups. The asymptotic d1str1but10n of 3,
is most convenient for this purpose. From the (2,2) element of / (ﬁ) ﬁz has an
asymptotic normal distribution with mean (3, and variance est1mated by
(dy + dy)/d1d,. The corresponding test for 3, = 0 then involves a comparison of

Bo\/didy/(dy + d) (3.18)

with standard normal tables.

For illustration, suppose that survival times in excess of 100 days are exponential
for both groups of rats for the data in Section 1.1.1. Then d; = 17, v; = 2195, as
before, and d, = 19, v, = 2923 so that 3, = log(d»/v,) — log(d; /v1) = —0.1752
and (3.18) has value —0.5248, which is central to the standard normal distribution
and offers no evidence against the hypothesis 3, = 0. A normal approximation to
the distribution of (3.18) may be expected to be suitable with only moderate values
of di, d, pecause of the stable variance estimate and the absence of range restric-
tions on f3,.

The asymptotic distribution of the score statistic can also be used to test 3, = B9
upon maximizing out ;. Let ﬁl (89) represent the maximum likelihood estimate of
(1, assuming that 5, = 3 g The asymptotic conditional distribution of U,(/3) given
Ui(B) =0 [i.e., given B; = 3,(8Y)] is, from the asymptotic distribution of U(3)
and multivariate normal theory, normal with mean zero and variance estimated by

+ 0
eﬂl ﬂ2 UZ _— 5 ,
eﬁl U1 + eﬂl'{"ﬂz Uy

(3.19)

evaluated at () = ﬁl (). Under the hypothesis 8, = 0, we have from U;(S),
exp[3,(0)] = (dy +dy)/(v1 + v2), so that U, () evaluated at (3,(0),0) becomes

(dy + da) v, _du —div

dy —
V1 + ¥ v + V2

with variance estimate, from (3.19), of (d; + d2)vivp/(v; + vz)z. This gives an
asymptotic standard normal statistic

dryvy — divy

[(dy + d3)vyv2]"? (3.20)
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for testing 3, = 0. For the carcinogenesis data, (3.20) has value —0.5255, in close
agreement with (3.18). Either the MLE or score procedure could be used to form an
approximate confidence interval for 3,, though the asymptotic distribution of 3, is

more convenient for this purpose.
The likelihood ratio method could also be used to test 3, = 0. The log likelihood

1S written

log L(B) = dif31 — €”'vy + dy(B1 + ) — €7 TPy,

so that

A~

log R(B) = log L(3) — log L(/3)
d d
=log L(B) — di log = + dy — dy log = + d.
(4] (%)
For the hypothesis 5, =0, we have exp[3,(0)] = (dy +dp) /(v + v2) so that

—21log R(B) evaluated at 8; = 3;(0), B, = 0 has the value

di +d,
U1 + vy ’

d d
2|y logv—1+d2 logv—z—— (di + d) log (3.21)

which, under the hypothesis 3, = 0, has an asymptotic x? distribution. Again with
the carcinogenesis data, (3.21) has value 0.274, which is in good agreement with the
approximate x? statistics (—0.5248)> = 0.275 and (—0.5255)> = 0.276 from the
MLE and score procedures. None of the these tests suggests any survival
difference between the two groups of rats. Of course, all the tests are based on
an assumed exponential model for time in excess of 100 days, which is suspect
on the basis of the survival curves of Figure 1.2. The more general parametric
regression models of Chapter 2 would be expected to provide an improved fit.

3.6 ESTIMATION IN LOG-LINEAR REGRESSION MODELS

The likelihood methods of Section 3.5 are easily generalized to any specific log-
linear regression model, such as those arising from the parametric models of
Section 2.2.

Suppose that the PDF for Y = log T can be written

o f(w),

where w = (y — Z'8) /o and Z = (Z,,...,Z,)" is a regression vector corresponding
to failure time ¢. Note that o is a scale constant and that if Z; = 1 identically, the
first component of 3’ = (i, . ., 0,) represents the general location of Y. As simple
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examples, a Weibull regression model is given by f(w) = exp(w — €"); the expo-
nential model of Section 3.5 requires, in addition, that o = 1.

Again for an independent censoring mechanism where §; and y;, respectively,
represent the noncensoring indicator and the logarithm of the minimum of failure
and censoring time for the ith individual, the likelihood function may be written

L(B,0) = ﬁ [0~ (wa))* F(wi)' ™,

1

where w; = (y; — Zi3)/o and F(w) = [°f(u) du. The score statistic can be written

0 logL . )
[]](ﬂa 0') = =07 IZZjiaia J= 17' - P

19)6] o
ol ’L =1 (3.22)
(0] -
Upti(8,0) = === 07"~ (wia; — &),

i=1

where

and A(w;) =f(w;)/F(w;). The observed information matrix, I(3, o), has entries

—d%logL e

———F =0 ZiZiiA;,

8B; B: ; TR

5 a. =0 Wwidi + 0~ Uj(8, 0), :
G0 —° ;z,w +07'Uj(B,0) (3.23)
—leogL__

= 072 " (WPAi + 6) + 207 Usa (B, 0),

0o —
i=1

where j,k=1,...,p and

da,-
A=
d? log f (Wi) dlogf (Wi) 2
= 6,‘ ‘—————dw? + (1 — (5,) )\(W,‘) __—dwi + )\ (W,‘) .

I(B, &) is somewhat simpler by virtue of the fact that U(B, &) = 0. The same
criteria as in Section 3.5 will be associated with the suitability of a normal appro-
ximation to the distribution of U(B,0) and (3,8). Of course, convergence to
normality would usually be more rapid for error distributions close to normal.
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The likelihood derivatives (3.22) and (3.23) depend on (a;,A;), i=1,...,n,
which are straightforward to obtain provided that A(w;) can be calculated conveni-
ently. For instance, the Weibull regression model has f(w;) = exp(w; — "), so that
Aw;) =e", a;=¢€" — 6, and A; =da;/dw; = e"'. Similarly, the log-logistic
regression model has f(w;) = e (1 +e%)% so that F(w;) = (1+e%)",
Aw) =ev(14+e) ", ai= 6+ (1+8)e” (1 +e%)", and A; = (1 + &)e”
(1 +¢*)7%. The log-normal regression model is given by f(w;) = (2m) /2
CXp(—W?/Z) so that a; = 6,‘W,' -+ (1 — (51)/\(W,) and A,’ = 6,' + (1 — (S,)/\(W,)[/\
(w;) — w;]. The likelihood derivatives involve, through A(w;), the incomplete
normal integral. An approximation, such as that given in Abramowitz and Stegun
(1965, p. 932, 26.2.19) gives rise to a straightforward computation in the log-
normal model.

3.7 ILLUSTRATIONS IN MORE COMPLEX DATA SETS

3.7.1 Accelerated Life Testing

Consider the accelerated life test data of Nelson and Hahn (1972) as given in
Table 1.2 (Section 1.1.4). Hours to failure of motorettes are given as a function
of operating temperatures of 150°C, 170°C, 190°C, or 220°C. The primary purpose
of the experiment was to estimate certain percentiles of the failure time distribution
at a design temperature of 130°C. Nelson and Hahn applied a log-normal model to
these data with the single regressor variable, Z = 1000/(273.2+ °C). They used a
weighted least squares method of estimation which required at least two failures at
each test condition, so that the 150°C data had to be excluded. By this method, they
obtained an estimate of 10.454 for the log-median lifetime at 130°C (they use base
10 logarithms rather than base e used here) with an associated 90% confidence
interval 10.454 +1.645 (0.417). This gives an estimated median life time of
exp(10.454) = 34,700 hours, and approximate 90% confidence interval (17,500,
68,900).

For comparative purposes the models of Section 3.6 are fitted to only the 30
observations at test temperatures of 170°C or greater, although elimination of the
150°C data is unnecessary for the maximum likelihood methods. A log-normal
regression model and Newton—Raphson iterative technique yield

N

&=-10471, [=8322, & =0.6040,

at which parameter values the maximum log likelihood is —24.474.
The estimated covariance matrix of (&, 3,5) is

7.684 —3.556 0.0327
—3.556 1.649 —0.0128
0.0327 —-0.0128  0.0123
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A comparison of /3 with its estimated standard error verifies the important effect of
temperature on failure time.

The maximum likelihood estimate of the 100 pth percentile of the distribution of
y (log-failure time) at Z = z; is simply

9, = &+ 208 + 6wy, (3.24)

where w), is the 100 pth percentile of the error distribution. Also, if 3 represents the
estimated covariance matrix of (&, 3, 6), the estimated variance of §, is

(1,20, w?)2(1, 20, wP)'.

At 130°C, zo = 1000/(273.2 + 130) = 2.480, so that the estimated log-median
lifetime is

$5 = —10.471 + 8.322(2.480) + 0.6040(0) = 10.170,

while var y5 = (0.433)2. This gives approximate 90% confidence interval for ys of
10.170 + 1.645 (0.433). The estimate of the median lifetime is exp (10.170) =
26,100 with an associate approximate 90% confidence interval (12,800, 53,200).

A Weibull model may equally well be taken for failure time. In fact, if the motor-
ettes are such that failure occurs when the first of any of several essentially inde-
pendent components fails, there would be some theoretical reason for considering a
Weibull model. We find that

&=-11.891, 3=9038, &=0.3613

and a maximized log likelihood of —22.952. Since the median of an extreme value
minimum distribution (2.1) is log(log2), the maximum likelihood estimate of the
log-median lifetime at 130°C is y5 = 10.391 from (3.24). The standard error of ys
is estimated as 0.303. The estimated median lifetime is then exp(10.391) = 32,600
with approximate 90% confidence interval (19,800, 53,600). Note the greater
precision of the Weibull analysis over the log-normal and weighted least squares
procedures. The Weibull model is to some extent preferable to the log-normal
model on account of the larger maximized log likelihood. Further work with these
models could, for example, include additional or alternative functions of tempera-
ture in the regression vector. Because of the small number of failures involved,
further work should also be carried out, perhaps by simulation, to validate the
use of asymptotic methods.

3.7.2 Clinical Trial Data

As a further example, consider the Veterans’ Administration lung cancer data of
Appendix A. In this trial, males with advanced inoperable lung cancer were
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randomized to either a standard or test chemotherapy. The primary endpoint for
therapy comparison was time to death. Only 9 of the 137 survival times were cen-
sored. As is common in such studies, there was much heterogeneity between
patients in, for example, disease extent and pathology, previous treatment of the
disease, demographic background, and initial health status. The data in the appen-
dix include information on a number of covariates measuring some aspects of this

heterogeneity:

1. A measure at randomization, of the patient’s performance status (Karnofsky
rating); 10-30 completely hospitalized, 40-60 partial confinement, 70-90
able to care for self.

Time in months from diagnosis to randomization.

Age in years.

Prior therapy; 0 = no, 10 = yes.

Histological type of tumor: squamous, small cell, adeno, large cell.

SO wb

Treatment: 0 = standard, 1 = test.

After preliminary investigations described below, a Weibull regression model
was fitted to these data with eight regressor variables; the results are summarized
in Table 3.1. Single indicator variables distinguish treatment and prior therapy
groups, and three indicator variables for squamous, small cell, and adenocarcinoma
permit arbitrary log linear location effects for the four cell- type classes. The other
factors enter as indicated in Table 3.1. The asymptotic X3 statistics given in the
table are formed for the ith component as [ﬁ, /(estimated standard error of ﬂl)] .
The asymptotlc X3 statistic corresponding to cell type differences is calculated as
b'S"7'b, where b’ = (s, B¢, 3,) is the vector of maximum likelihood estimates
and Z is the estimated covariance matrix for b. This statistic, of course, does not
depend on which three cell types are used to define the indicator variables.

From Table 3.1, a strong prognostic effect of initial performance status is
indicated as is a difference among survival times in the different cell type groups.

Table 3.1 Asymptotic Likelihood Inference on Lung Cancer Data Using a Weibull
Regression Model

Regressor Variable Regression Coefficient (B) x? Statistic
Performance status (Karnofsky) 0.0301 38.79
Disease duration (months) —0.0005 0.00
Age (years) 0.0061 0.51
Prior therapy (0 no, 10 yes) —0.0044 0.04
Cell type

Squamous vs. large 0.3977

Small cell vs. large —0.4285 22.03
Adeno. vs. large —0.7350

Treatment (standard O, test 1) 0.2285 1.50
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This analysis would indicate, however, that patient survival does not differ signifi-
cantly between treatment groups after taking account of the prognostic effect of
other variables. There is, as well, no apparent dependence of survival time on
age or disease duration prior to entry to the clinical trial. Even in a randomized
study such as this, it is instructive to conduct an analysis that takes account of prog-
nostic factors. Treatment comparisons that do not control for such factors, however,
are also valid and typically have a useful population-averaged interpretation.

Weibull and log-normal analyses of these data with only performance status and
cell type as factors yielded maximized log likelihoods of —197.10 and —196.75,
respectively. It is of some interest to test the adequacy of the exponential regression
mode] relative to the Weibull model. The Weibull model reduces to the exponential
at 0 = y~! = 1. The maximum likelihood estimate of ¢ under the Weibull model is
o = 0.928 with an estimated standard error 0.062. A test of the hypothesis o = 1
provides no evidence against the exponential model relative to the encompassing
Weibull model. Further results of fitting various models to these data are given in
Sections 3.8.2 and 4.5.

Graphical methods can be very useful with such data in preliminary data
exploration and in checking the validity of fitted models. For example, if regression
variables do not severely dominate, a plot of log[—log F(¢)] versus logt (F is the
product limit estimator) may be used to give an overall impression of adequacy
of the Weibull model. Such a plot should be approximately linear with slope
ol = ~ if the data were homogeneous and Weibull and so, in this case, yields also
an informal estimate  of the Weibull shape parameter. Similar plots may be
constructed in strata defined by components of the regression vector, for example,
by low, medium, and high initial performance status groups in the lung cancer
study. The corresponding plots of log[—log F(¢)] versus logt should each be
roughly linear with approximately common slope if the Weibull regression model
holds. Further, the distance between these plots should be roughly proportional to
the difference between Z values used in forming the strata. Once a Weibull regres-
sion model has been fitted, the same type of plot may be used as a check on the
model. For such a plot the original survival times #; are replaced with
=1t exp(—Z;3) and the product limit estimator computed on the basis of these.

An exploratory tool that can be useful if the distribution of the data is nearly
exponential is to compute hazard rate estimators (d/v in the notation of Sections
3.3 and 3.5) in various subsets of the data. For example, in Figure 3.1 exponential
failure rate estimators are plotted on a logarithmic scale versus performance status
for the lung cancer data. A straight-line relationship agrees with a linear modeling
of performance status on log . Other tabulations of exponential failure rates, taking
regressor variables one or two at a time, point out the most important prognostic
factors and suggest a form for a log-linear modeling of regression variables. A gra-
phical estimator, , of the Weibull shape parameter may be used to bring to bear
this procedure when a Weibull, but not an exponential, model is appropriate. Each
censored or uncensored failure time ¢ is simply replaced by 7 = ¢/ before computing
hazard rate estimators (d/v). If a Weibull model is appropriate, the 7 values will
have a distribution closely approximated by an exponential regression model. An
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Figure 3.1 Log death rates estimated from an exponential model for the nine performance status
groups (VA lung cancer data).

alternative and more generally applicable approach can be based on the logrank test
of Sections 1.4 and 4.2.5.

3.8 DISCRIMINATION AMONG PARAMETRIC MODELS

3.8.1 Methods

There are many formal as well as informal methods of assessing the goodness of fit
of data to a specified probability model or of selecting a best model among several
competitors. One approach, for a log-linear model y = Z'8 + ow, where w has an
error distribution of specified form, is to compute the residuals W; = (y; — Z;3)/6
(i =1,...,n), which should resemble to some extent a (censored) sample from the
specified error distribution. As suggested above for the Weibull model, graphical
methods based on the Kaplan—Meier estimator computed from these residuals
can then provide the tool for an informal assessment of fit. More formally, however,
the generalized F model of Section 2.2.7 includes the other parametric models of
Chapter 2 as special cases and thus permits their evaluation relative to each other
and to a more general model.
Recall that the generalized F is a log-linear model y =a + Z'8 + ow for
y = log ¢, where the error density f(w) is that of the logarithm of an F variate
on 2m; and 2m; degrees of freedom. Its special forms were discussed in Section
2.2.77 and we review these briefly here. The distribution of ¢ is log-logistic
for m; =my =1, Weibull for my =1, my — oo, (degenerate) log-normal for
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m; = my = 00, and generalized gamma as m, — oo; that is,

my" exp(mw — mye”) (3.25)

o ) =)

For specified m; and m;, the results of Section 3.6 can be used to fit this model to
the data. If m; and m, are both finite, then from (2.5),

dlog f(w) _ (i +mo)k
dwi ' 14k

d*log f(wi) _ (mi+mo)k;
aw?  (1+4+k)?

where k; = me" /my and F(w;) = I(s;;m, m1). Here s; = (1 +k;)~" and I repre-
sents the incomplete beta ratio that can be calculated using results of Osborn and
Madley (1968). Similarly, from (3.25) at finite m; and m; = oo, dlog f(w;)/dw; =
my —me"s; d*log f(w;)/dw? = —me” and F(w;) = 1 —P(s;;m;), where s; =
e™" and P is the incomplete gamma ratio that may be calculated using Abramo-
witz and Stegun (1965, p.262, 6.5.29). The model at (m; = oo, m,) can be fit by
replacing each w; by wi‘1 and using the method just indicated with m; replacing
my. The log-normal model (m; = co,m; = 00) can be applied as indicated in
Section 3.6. As shown in Prentice (1975), a reparametrization from (mj,m;) to
(g,p > 0) where

g=(m7' —myYY(myt +myt)V?

p=2(mi +m)”"

will lead to a regular maximized log likelihood function (finite, not identically zero
likelihood derivatives) everywhere on the boundary m; = oo or my = co(p = 0). In
the new parametrization (Fig. 3.2) the log-normal, Weibull, log-logistic, reciprocal
Weibull, and generalized gamma model occur at respective (g, p) values of (0,0),
(1,0), (0,1), (—1,0), and (g > 0,0). For inference on (g,p) or, equivalently, on
(m1, my) we may calculate the maximized log likelihood over a grid of (g, p) values,
and because of the regularity of the log likelihood, we may use the asymptotic dis-
tribution of the likelihood ratio statistic to form approximate confidence regions for
(¢,p) and for evaluating the specific models relative to the generalized F model.

3.8.2 Illustrations

Consider again the two-sample carcinogenesis data of Section 1.1.1. As in Farewell
and Prentice (1977), the generalized F model was applied to the variabies t — 100 at
a range of boundary values (p = 0). Note that at p = 0,
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Figure 3.2 Special cases of the log F model. Note that {(g,0) : ¢ > 0} gives the generalized gamma
model.

and that the log-normal and Weibull models previously applied occur at ¢ = 0 and
q = 1, respectively. Figure 3.3 presents a plot of the maximized log relative like-
lihood, R(g) (maximized log likelihood standardized to have maximal value zero).

Note that the MLE § (at p = 0) has value 0.87 and that R(1) = —0.05
while R(0) = —2.32. The asymptotic x? distribution for —2R(g) gives an

Log normal

00— 1.0 q

Weibull

-107T

-2.0

R(q)

Figure 3.3 Maximized log likelihood assuming a log F model with p = 0 and based on the carcino-
genicity data of Table 1.1.
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approximate 95% confidence interval for g as those values of g for which
R(q) > —1.92. There is then evidence against the log-normal model relative to
this more general class but not against the Weibull model, which, as noted above,
indicated an improved survival for the group 2 rats. In fact, the previous calcula-
tions of Section 3.7.2 alone, giving maximized log likelihood of —20.618 and
—22.890 for Weibull and log-normal models, respectively, are sufficient to provide
evidence against the log-normal model. The fact that the difference between log
likelihoods —20.618 +22.890 = 2.27 exceeds 1.92 = 3.84/2 indicates that the
log-normal model will be excluded from an approximate 95% confidence interval
based on R(q). Note that P(x? > 3.84) = 0.05.

The analysis above may be extended to estimate the duration, 6, of the initial
failure-free period, rather than specify it as 100 days. Pike (1966) calculates
5=1989 assuming a Weibull model. Since ¢ is a threshold parameter, the likelihood
function does not possess the required regularity to permit the use of standard
asymptotic likelihood results for the estimation of ¢. To examine whether inclusion
of ¢ gives rise to a significant improvement in the generalized F, the model with
p = 0 was applied as above to ys = log(r — 8), where ¢ is the time from insult to
diagnosis, for several values of ¢ between O and the smallest observed time of
142 days. In each case the log likelihood was maximized over (f,0,q). Note
that the Jacobian factor [exp (y) — 6]/exp () needs to be introduced into the max-
imized log likelihood I*(6), to describe the change in scale from y to ys. Table 3.2
gives values of R*(6) = I"(6) — I*(125). Apparently, there is little ability to discri-
minate between values of § with these data. The values ¢ = ¢(6) range from 0.36 at
6 = 0 to about 1.75 at § = 140. The generalized F model is sufficiently flexible in
this case that the inclusion of a guarantee-type parameter contributes little.

This section ends with a brief discussion of the application of the generalized F
regression model to the illustration of Section 3.8. With the accelerated life-test
data of Table 1.2, the maximum likelihood estimate of the ‘‘skewness’” parameter
q (subject to a value of zero for the “kurtosis” parameter p) is 1.6. The maximized
log relative likelihood yields R(0) = —1.73 and R(1) = —0.21, so that some doubt
is cast on the suitability of the log-normal model, but there is no evidence against
the Weibull model relative to this more general model. At g = 1.6 one obtains an
estimated log-median failure time estimate and standard error at 130°C of
10.499 £ 0.252. The corresponding median failure time estimate and approximate
90% confidence interval are then 36,300 and (24,000, 54,900), respectively. The
standard error estimate for y 5 is appropriate assuming that ¢ = 1.6 but does not
take a account of the correlation between y 5 and g.

Table 3.2 Maximized Log Likelihood for a Guarantee Time 6 Based on the Data of
Section 1.1.1

o 0 25 50 75 100 125 140

R*(8) ~0.55 —049 —040  —032 —0.19 —000 —0.16
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Table 3.3 Analysis of Veterans Administration Lung Cancer Data Using a Generalized

F Regression Model®

Log Normal Weibull Log F (p =0)
Regression Variable i S.E.(B) B SE.(B) B SE.(B
No prior therapy (g =0.43)
(97 patients)
Performance status 0.030 0.006 0.022  0.006 0.026 0.006
Squamous vs. large —0.085 0.34 0.175 031 0.086 0.32
Small vs. large —0.762 0.31 -0.521  0.28 —-0.669 0.29
Adeno. vs. large —0.804 0.34 —0.840 0.30 -0.795 0.32
Prior therapy (g = 1.05)
(40 patients)
Performance status 0.059 0.010 0.054  0.009 0.053 0.009
Squamous vs. large —0.199 0.46 0428  0.38 0.450 0.38
Small vs. large —0.388 0.49 —-0.044 042 —-0.033 041
Adeno. vs. large —0.694 0.61 —-0.787  0.51 —0.794  0.50

2 G.E., standard error.

A similar application to the lung cancer data (Appendix A, data set I) with per-
formance status and three cell-type indicators as regressor variables gives g = 0.47.
There is evidence against both Weibull and log-normal models as R(0) = —2.59
and R(1) = —2.94. Further, the shape of the failure time distribution was found
to depend on whether or not the patient had received prior therapy. Data on the
40 patients who had received therapy prior to the start of the study give
g = 1.05, whereas data on the 97 without prior therapy yield § = 0.43. A likelihood
ratio test for equality of the ¢’s gives x? = 9.0, which is significant at the 1% level.
Separate analyses for the two prior therapy groups are therefore indicated. Table 3.3
gives some results from such analyses. Note the interaction between prior therapy
and performance status. Performance status is an important prognostic factor for
both groups of patients but is particularly dominating among patients who have
received prior therapy.

3.9 INFERENCE WITH INTERVAL CENSORING

In some settings, the failure time for the ith individual may be subject to interval
censoring so that 7; is known only to fall in some interval, (I;, r;]. Such censoring
arises, for example, if the individual is subject to occasional inspection times
0<Cy <Cp <+ < Cyy, <00, say, and the status as to whether failure has
occurred is determined only at those times. Let C; = (Ci,...,Ciy,). In such a
study, it is observed that T; falls in one of the intervals (C;j_,Cyl,
J=1,...,m+1, where Cjp =0 and C; . +1 = co. Note that right censoring at /;
corresponds to r; = oo, and left censoring at r; corresponds to [; = 0.
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Censoring schemes of this type occur in clinical studies where subjects are
scheduled to return for regular visits that patients may keep, but typically with
some random variation, and where it is determined whether or not failure has
occurred since the most recent visit. The actual time at which the failure occurs,
however, is not observed. They also arise in industrial studies where the status of
components of a system might be ascertained only at certain prespecified times. To
make valid inferences about the underlying failure distribution, we again need to
have certain assumptions about the nature of the censoring. We will assume that
pairs T;, C; are independent for i = 1,...,n and that the censoring mechanism is
such that

F(Cij-1) — F(Cy)

P{Ti € (Ci,j—lacij”Ti > Cij-1,Cij-1,Cy} = F(Cii-1)
L]—

(3.26)

for all {i,j}. This occurs, for example, if C; is fixed in advance or if it is distributed
independently of T;. It is, however, also satisfied by many other inspection schemes
and essentially implies that having observed that the individual is alive at time
Cij-1, the timing of the next inspection is distributed independently of the time
of failure. We refer to such schemes as independent interval censoring. Note that
if there were covariates x;, we should interpret (3.26) conditional upon them.

A special case of interest, called current status data, arises when each individual
i is subject to observation only at the single follow-up time Cy;, where 0 < Cy; < 00
so that m; = 1 for all i. It is also of interest to note that the usual case of ‘“‘exact”
observation of failure time in reality corresponds to interval censoring with a small
grouping interval. Viewed this way, the continuous-type likelihood arises as a
convenient approximation to the likelihood based on interval censoring.

3.9.1 Estimation of the Survivor Function

Consider a sample of » individuals subject to independent interval censoring. Sup-
pose that the underlying failure times are IID (independent and identically distrib-
uted) with common survivor function F(z) and that the data consist of observations
T; € (Ii,ri],i=1,...,n. We assume that [; < r; foralli = 1,...,n and that /; may be
0 or r; may be oo. Under these conditions, the likelihood function is proportional to

L= ﬁ[F(ri) — F(I). (3.27)

i=1

Consider arranging the distinct values of [,r;,;i =1,...,n in increasing order
along the time axis where the I’s have been shifted slightly to the right to break
ties between left and right endpoints. Proceed left to right along the axis and
identify all intervals (L;,Rj], j=1,...,m (say), where L;€{ly,...,I,},
R; € {ry,...,r,} and L; and R; are adjacent in the arrangement. The determination
of the intervals (L;, R;] for a small example is illustrated in Figure 3.4. It can be
shown that any nonparametric MLE of F must concentrate all mass on these m
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Figure 3.4 Determination of the mass intervals [L;, R;] for an interval-censored sample of n = 5 indi-
viduals. The horizontal lines define the interval censoring and the projection on the x-axis defines the
intervals.

intervals. The nonparametric MLE of F is then obtained by maximizing the
likelihood

n

{ 6, [F(R,) F(Lm},
1

i=1 Uj=

where 6; = 1{(L;,R;] C (l;,ri]},i=1,...,n;j=1,...,m. It is convenient to let
pj = F(R;) — F(L;),j = 1,...,m and consider maximizing the log likelihood

fI (zm: 5,-,p,-> , (3.28)

i=1\j=1

where 0 <p; <1and ) p;=1.

Various approaches could be used to maximize (3.28), but the simplest is the
expectation-maximization (EM) algorithm (see Appendix B). For this, view the
likelihood (3.28) as having arisen from an underlying m-class multinomial distribu-
tion for X! = (X1, ..., Xim) with index 1 and probabilities py,...,pm, i=1,...,n
independently. In the corresponding incomplete data problem, the ith outcome is
observed only to fall in one of the classes j for which é; = 1 and so gives rise to
(3.28). Denote the incomplete databy ¥ = {6;;,i =1,...,n, j=1,...,m} and the
complete data by X = {Xj;,i=1,...,n, j=1,...,m}. The complete data log
likelihood is the multinomial likelihood
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where X.; =Y " | X; and 5 X, =n. Let p(0 = (p(lo), . ,pf,?))/ be a trial value.
The expectation step is

Ell(p)|Y,p¥] = 3 ZX(O log pj, (3.29)
i=1j=
where
5
0 i
X’(J) = E[XIJ|Y7P(O)] = ) (0)
Zj"’l 6U’p]’

The updated estimate of p; is p}l) =n"lX .}0) , J=1,...,m, obtained by maximiz-

ing (3.29). The expectation and maximization steps are repeated to convergence to
p. This convergence establishes a self-consistency equation for the p;’s:

Z Oub) (3.30)

=12 =1 8yby

The EM algorithm simply involves repetitive use of (3.30). It can be shown that the
EM algorithm always converges to the MLE from any starting point where all

©'> 0and >.pj(0) =1 (Gentleman and Geyer, 1994), although the convergence
can be very slow.

This gives rise to a family of MLEs of the survivor function F(-). Specifically,
any survivor function F that satisfies F(R;) — F(L;) = p;, j=1,...,m and places
no mass outside the intervals (L;, R;] is a nonparametric MLE. One might adopt var-
ious conventions to choose a unique estimate. One such would be to distribute the
assigned mass p; uniformly over the interval (L;, R;] to obtain a continuous estimate.

Asymptotic properties of such estimators are nonstandard. In the simplest case,
there may be a fixed number m of possible intervals (L;, R;] as n — oo. In this case,
fairly simple conditions would lead to the usual asymptotic results of the form
n'/2{F(t) — F(t)} approaches a normal limit for any given t € {L;,R;, j =
1,...,m}. In the more typical situation where the number of intervals increases
with sample size, the situation is much more complex. Some investigations have
assumed that the endpoints become dense in the neighborhood of a fixed ¢, and
under some conditions, a normal limit holds but with multiplier n'/3 instead of
n'/2. See, for example, Groenboom and Wellner (1992). Some grouping of the
data to reduce the number of intervals can achieve n!/? asymptotics. The use of
parametric models provides a way to avoid these difficulties.

3.9.2 Analysis of Regression Models with Interval Censoring

Suppose now that a log-linear or accelerated failure time model is postulated for the
failure time so that the PDF for ¥ = log T is fi(w) /o, where w = (y — Z'8) /0. Let
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f fw(u) du be the corresponding survivor function. The log likelihood
ansmg from 1ndependent interval censored data ([;,r;],i =1,...,nis

1(B,0) = Zn:log[FW(uj) — Fw(v)], (3.31)

where u; = (log r; — Z!3) /o and v; = (log I; — Z!3)/o. The corresponding score
function is of dimension p + 1 and given by

U(B,0) = %i“o" Z (3.32)

i=1 du

The observed information matrix, again in partitioned form, is
Z (boi +a3,)ZE* (b1 + aviar)Z;
, 02 (blz + aOzalz)Z b2i + a%i ’
where Z®?% = ZZ'. In these expressions,

uj fw (i) — v} fw(v;) and

uh iy (ui) = 0} fiy ()
Fy(u;) — Fw(v;) (3.33)

bii = Fw(u:) — Fw(v;)

a; =

forl=0,1,2andi=1,...,n

As in the case of right-censored data discussed in Section 3.6, the quantities a;;
and by; are simply computed in many models. A Newton—Raphson algorithm essen-
tially involves computation of Fyw, fw, and fj, at each iteration which are the same
quantities needed in the right censored case. Thus, these calculations can be
extended in a straightforward way to incorporate such flexible error models as
the generalized log F.

Under independent interval censoring, standard asymptotic arguments apply.
The score components in (3.32) are independent and a central limit theorem applies
provided that the censoring mechanism and the covariates are such that the Linde-
berg condition holds for the variances of the independent score components. In
many instances, it is reasonable to assume that as n becomes large, the average
information_converges to a positive-definite covariance matrix V. In this case,
n~(B,0) 2V as n — oo and

n"\2U(8,0) 2 N(O, V),

and
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As before, V can be estimated by n™ '] (B, ). This leads to standard inference pro-
cedures for all smooth functions of § and o, including, for example, the survivor
function at a given value of Z and .

Similar results can be obtained for other parametric regression models, such as
relative risk models with a specified parametric form for A¢(¢). The use of flexible
parametric models in the context of interval censoring has much to recommend it. It
leads to relatively simple computation and fitting of models and to standard asymp-
totic results under fairly general and realistic conditions. On the other hand, non-
parametric procedures for this estimation problem are generally relatively difficult
to implement and have the disadvantage that standard asymptotic results do not
apply to estimation of some quantities of interest, such as, for example, the survivor
function at a specified time ¢ and covariate Z.

3.9.3 Truncation

Suppose now that individuals are subject to truncation so that individual i enters the
study if and only if the corresponding survival time 7; exceeds some threshold value
tjo. For individuals who enter, we observe the corresponding #;; those who do not
enter the study are completely unobserved, so that not even their existence is
known. The ith individual is subject to interval censoring and we observe
T; € (I;, r;] as above. With a log-linear model, covariate vector Z;, and independent
censoring and truncation, the likelihood function is

L(B,0) = H—ﬁ%@—)

i=1

where u; and v; are as defined above and r; = (log #;p — Z/(3) /0. The same approach
can be applied here, and for random censoring and truncation, asymptotic results
follow as before. Other truncation schemes (e.g., right truncation or double trunca-
tion) can also be accommodated with relatively little additional complication.

3.10 DISCUSSION

Parametric regression models such as Weibull, log-normal, and log-logistic may
involve stronger distributional assumptions than it is suitable to make, and the infer-
ence procedures mentioned may not be sufficiently robust to departures from these
assumptions.

With uncensored data, it can be seen that estimation based on a log-linear model
with the right regression form but incorrect error form will give consistent estimates
of the regression parameters. Specifically, suppose that the true model is of the form

logT; = Zf + oW;, i=1,...,n,

where the W;’s are IID with density f(w) and Z; = (Z;, ..., Z;) with Z;; = 1 for all
i. Suppose, however, that we have adopted a model for inference in which the
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density of W is assumed to be g instead of f. One cannot, of course, estimate the
intercept (3; or the scale parameter o consistently. Under the usual regularity con-
ditions, however, it can be shown that estimates of the regression parameters
B2, ..., 0B, are consistent as n — oo; further, adjustments can be made to variance
estimation using sandwich-type estimates for estimating equations so as to get
robust variance estimates and valid confidence intervals. There is, however, some
loss in efficiency due to an incorrect assumption about the error. If the data are sub-
ject to independent right censoring or other forms of independent censoring or trun-
cation, however, this consistency result for the regression parameters 3,, ..., 3, no
longer holds in general and inconsistent estimates are obtained if the assumed error
distribution is incorrect. The extent of such inconsistency has not been examined
systematically, but may often be relatively small, provided that the censoring is
not too severe. It should also be kept in mind that the regression modeling itself
is usually not exactly correct and the practical importance of this inconsistency
result requires further investigation. Nonetheless, it is a feature not seen with uncen-
sored data, and it can be argued that it adds some additional motivation to seek
techniques that are less dependent on parametric assumptions.

When the primary interest is in the effects of regression variables, a variety of
approaches might be considered to achieve greater robustness. The more general
parametric models, such as the generalized F, represent one such approach.
Another approach would be to extend the M estimation procedures developed for
linear regression (e.g., Huber, 1972, 1973; Andrews et al., 1972; Hampel, 1974) to
include censoring; that is, to develop specific (pseudo) score functions for which the
corresponding regression estimates have both good efficiency and robustness prop-
erties. One such generalization was proposed by Hjort (1985). In a counting process
notation, the jth component of the score vector arising from a parametric model
A(t; 6, x) can be written

U;(8) = zn:Jw [% log A(t; 6,x,~)} [dN;(t) — Yi(t)\i(2; 0, x;) dt],

i=1J0 J

where, as before, N;(¢) is the counting process that records the number of failures
observed on the ith individual and Y;(¢) is the at-risk process. Hjort (1985) sug-
gested considering estimates arising from the estimating equation

U]T(e) = zn:JOOKj(t; 6, x;)[dN;(t) — Yi(t)\i(;6,x;) di] = 0,
i=170

where K;(t) is a deterministic function that can be used to emphasize or deempha-
size the influence of failures over the time axis. In fact, more general functions are
allowable in that K; can be a predictable process (see Chapter 5 for definitions).
Although the suitable choice of K; could evidently yield quite robust procedures,
this suggestion is somewhat different in spirit from the usual M estimation idea
in that the estimating function U' is generally unbiased only if the assumed model
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is true. Thus, this procedure can again be expected to lead to inconsistent inference
if the assumed model is incorrect, although for suitable choices of the weighting
function, the degree of inconsistency may be relatively unimportant compared
with the uncertainty in regression modeling. There does not seem to have been a
systematic study of this suggested generalization of M estimation, although
Andersen et al. (1993, pp. 433 ff.) provide some discussion.

A third approach is to consider more general models that are nonparametric, or
semiparametric, such as the proportional hazards and accelerated failure time mod-
els of Section 2.3. The objective with such models is to develop inference proce-
dures that will be consistent and reasonably efficient regardless of which member of
the class obtains. In the next chapter we describe estimation under the important
class of relative risk (Cox) regression models. A semiparametric approach based
on the accelerated failure time model is considered in Chapter 7.

BIBLIOGRAPHIC NOTES

Inference from type II (order statistic) censored samples has been much discussed
in the literature. For example, Epstein and Sobel (1953) gave some basic exponen-
tial sampling results. General reference books on order statistic properties include
those by Sarhan and Greenberg (1962) and David (1970). Johnson and Kotz
(1970a,b) give a comprehensive account of estimation for homogeneous popula-
tions assumed to have the parametric models considered in this chapter (exponen-
tial, Weibull, log-normal, gamma, log-logistic). Mann et al. (1974) summarize from
an industrial life-testing point of view estimation procedures for these as well as
other distributions, for both single- and two-sample problems, with censoring.
Gross and Clark (1975) give similar results from the biomedical point of view.
In general, the methods given are based on asymptotic maximum likelihood proce-
dures with some exact results for order statistic sampling. Bartholomew (1957) pro-
vides an early example of a discussion of statistical properties for the MLE with
type I (time) censoring. Cox (1953) suggests that under some circumstances, a sui-
table approximation involves treating type I censored data as if they were type II
censored. Some authors (e.g., Gilbert, 1962; Efron, 1967; Breslow, 1970; Breslow
and Crowley, 1974) postulate a probability distribution for censoring times in an
attempt to derive exact properties or to more easily develop asymptotic distribution
theory for estimators. Exact conditional confidence interval estimates have been
obtained for type II censored data from the Weibull (or extreme value distribution)
by Lawless (1973, 1978, 1982). He compares these exact results with those
obtained from asymptotic theory. Similar arguments could be applied to type II
censored data from other models in the accelerated failure time class.

There is a very large literature utilizing exponential, Weibull, and log-normal
regression models. Some of the earlier papers are the following: Cox (1964), Feigl
and Zelen (1965), Zippin and Armitage (1966), Pike (1966), Glasser (1967), Cox
and Snell (1968), Sprott and Kalbfleisch (1969), Nelson (1970), Mantel and Myers
(1971), Nelson and Hahn (1972), Peto and Lee (1973), Prentice (1973), Myers et al.
(1973), Breslow (1974), Byar et al. (1974), Kalbfleisch (1974), and Prentice and
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Shillington (1975). Farewell and Prentice (1977) consider regression in the general-
ized gamma distribution. Summaries of parametric models and examples are given
in the books by Lawless (1982), Cox and Oakes (1984), Klein and Moeschberger
(1997), and Hougaard (2000). Andersen et al. (1993) give an extensive discussion
of parametric inference in the context of multivariate counting processes.

In one of the examples of Section 3.7, the accelerated failure time model is used
for extrapolation in an industrial setting. Even more extreme extrapolations beyond
dosages (regression variable values) actually considered is often necessary in carci-
nogenesis testing. Typically, experimental animals are tested at highly accelerated
dosages of a suspected carcinogen, and times to tumor incidence are recorded.
- Downward extrapolation is required to dosages that yield some “safe’” level of
risk or to dosages comparable to those found in the environment. The regression
models considered in this chapter form the basis for proposed methods of extrapo-
lation. The associated literature gives some interesting further insights into biologi-
cal mechanisms that can give rise, for example, to Weibull or log-normal regression
models. For example, “multistate” or “‘multihit” carcinogenesis theories can lead
to the Weibull model (e.g., Armitage and Doll, 1954, 1961; Crump et al., 1976).
Rather different assumptions concerning the existence of thresholds leads to log-
normal (probit) extrapolations (e.g., Mantel and Bryan, 1961; Mantel et al.,
1975). Differences in tail shape for these models generally lead to completely dif-
ferent low-dose risk estimates. Some work in this area (e.g., Hartley and Sielken,
1977) utilizes models more general than the Weibull, but still of a proportional
hazards (Section 2.3.2) type.

A summary of asymptotic likelihood theory is given in Cox and Hinkley (1974).
These procedures were proposed by Fisher (1922, 1925), and important contribu-
tions were made by Neyman and Pearson, Wilks, Wald, Cramér, Bartlett, Le Cam,
and many others. In particular, the reader is referred to Le Cam (1970) for a tech-
nical discussion of asymptotic normality. Moran (1971) discusses some properties
of maximum likelihood estimators of parameters on the boundary of the parameter
space. Methods of improving the asymptotic approximation to the distribution
of maximum likelihood estimators have been considered by many authors.
Variance-stabilizing transformations are wellknown and discussed in several
standard texts (e.g., Cox and Hinkley, 1974, p. 275). Transformations to improve
symmetry in the log likelihood (by eliminating the cubic term in the Taylor series
expansion) have been considered by Anscombe (1964) and by Sprott (1975). The
asymptotic arguments referred to in this chapter relate to the use of a central limit
theorem for the sum of independent random variables. This Lindeberg—Feller
theorem is discussed and proved in many books—Shorack (2000, p. 260) is a recent
reference. This approach allows for asymptotic treatment of parametric models
under quite arbitrary independent random censoring and truncation, including,
for example, interval or left censoring and right truncation. They are therefore quite
broad in their application. In certain instances, asymptotic arguments can also be
based on counting processes, and martingale central limit theorems as discussed
in Section 5.7. This approach was first applied by Aalen and Hoem (1978) and
more generally by Borgan (1984). Andersen et al. (1993) give a complete treatment.



EXERCISES AND COMPLEMENTS 87

This approach applies only to independent right censoring and left truncation and
not, for example to random interval censoring or right truncation. It should be
noted, however, that the counting process approach does allow general independent
(right) censoring mechanisms, and this is more general than independent random
censoring considered in this chapter.

Cox (1961, 1962a) and Atkinson (1970) consider general procedures for discri-
minating among several families of hypotheses. Cox’s work involves approximating
the distribution of the likelihood ratio. Assuming uncensored data, Dumonceaux and
Antle (1973) simulate the distribution of the likelihood ratio statistic in order to
discriminate between Weibull and log-normal hypotheses. Hagar and Bain (1970)
consider the problem of testing for a Weibull model within the generalized gamma
family.

As also mentioned in Chapter 1, Turnbull (1974,1976) first obtained the MLE of
the survivor function under interval censoring and truncation, and developed the
self-consistency algorithm given in Section 3.9.1. The EM algorithm (see Appendix B)
was formally set out by Dempster et al. (1977), who also noted the application to
censored data problems. The convergence of the EM algorithm to the NPMLE for
interval-censored data was shown by Gentleman and Geyer (1994). Bohning et al.
(1996) noted that globally convergent algorithms for fitting nonparametric mixtures
can be used to find the NPMLE in interval-censored data. Gentleman and Vandal
(2001, 2002) have used graph-theoretic techniques to characterize the NPMLE for
general interval-censored models in both univariate and bivariate problems.
Asymptotic properties of the NPMLE for interval-censored data is considered in
Groenboom and Wellner (1992) and Huang and Wellner (1995), where it is shown
that, in general, the survivor function estimates converge at order n~'/3 instead of
the usual n~1/2. The latter paper establishes n~'/2 asymptotics for linear functionals
of the survivor function. Odell et al. (1992) have considered the use of a Weibull
hazard model for interval-censored data. Other work on fitting interval-censored
data has used a Cox or relative risk model, and some references are given in the
Chapter 4 bibliographic notes.

Current status data have also received some attention in the literature—see, for
example, Keiding (1991), Jewell and van der Laan (1995), Rossini and Tsiatis
(1996), Sun and Kalbfleisch (1993), and Andersen and Ronn (1995). One place
where such data arise is in survival sacrifice experiments with incidental tumor
that is clinically unobservable. In this case, tumor status at death constitutes current
status data. Some references are Hoel and Walburg (1972), Dinse and Lagakos
(1983), McKnight and Crowley (1984), and Dewanji and Kalbfleisch (1986).

EXERCISES AND COMPLEMENTS

3.1 (a) Use expression (3.4) to show that if #(,) is the largest of n independent unit
exponential variates, the rth cumulant of #(,) is

n

r=11 ) i

i=1
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(b) Show that the asymptotic distribution of X, = logn — #(,) is the extreme
value distribution with density (2.1). Note also that the MGF of X,
converges uniformly for fe(—1,1) to the MGF of (2.1). This implies
convergence of the moments of X,, to those of (2.1) (see Rao, 1965, p. 101).

(¢) By making use of parts (a) and (b), show that the extreme value density has

cumulants

_ BT . —1 _
k1 =¢(1) = nlgg) (logn Z:z ) vy

gy =P V) = (1) (r = D! ¢, r=234,...,

where ((r) is the Riemann zeta function,

dr

PrD(x) = —Slogl(x),  r=12,...,
are the polygamma functions with (x) the digamma function, and
v = 0.5772... is Euler’s constant.

Note that this provides an elementary evaluation of the well-known definite

integrals

J x exp(x —e*)dx = —y

—00

and

00 ,".2
J x* exp(x — &) dx = 3 + 42

-0

Using the results of Exercise 3.1, determine the expected information matrix
for the Weibull distribution with density function

Ap (MY~ lexp[— ()], 0<t<oo.

Consider the comparison of two type II censored samples where sample i is

followed to the observed d;th failure, i = 1, 2.

(a) In the notation of Section 3.3, show that (A\;V1/d;)(A\2V2/ dz)_1 has an F
distribution on 2d; and 2d, degrees of freedom.

(b) Suppose that d; = 17 and d, = 19 and it is observed that V; = 2195 and
V, = 2923. Compute a 95% confidence interval for 5, = log(),/\;) and
compare with the results given in Section 3.5.2 for the same data but with
type I censoring.

(c) For large degrees of freedom, the logarithm of an F,,, variate is
approximately normal with mean (n~! —m™!) and variance 2(n! +
m~!) (Atiquallah, 1962). Use this result to obtain an approximate normal
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34

3.5

3.6

3.7

3.8

distribution for 3, and compare it with the asymptotic normal distribution
of 3, in Section 3.4.5.

Consider again type II censoring in an exponential distribution. As in
Section 3.3, suppose that n items are placed on test and followed until the
dth failure. Let U;,...,U; be the normalized spacings defined by
U,' == (n — i+ 1)(T(,) - T(i—l)), i = 1, ce ,d.

(a) Obtain the distribution of Yi,...,¥;y, given Y;=ys, where
Yi=3_1U,i=1,...,d, and show that this distribution is that of the
order statistic in a sample size d — 1 from the uniform distribution on
(and)'

(b) Develop a test for large d of the exponential assumption using an
approximate distribution for Z‘li_lYi given Y; = y,. For what kinds of
departures from the exponential would you expect this to be a sensitive
test? An insensitive test?

Consider a type I censored sample from the exponential distribution with
censoring time ¢ common to all » individuals on test. Show that the total
number of failures, D, has a binomial distribution with parameters n and
p = 1 — exp(—Ac). Compare the (asymptotic) efficiency of the MLE of A from
the marginal distribution of D to that from (V, D). Under what conditions on ¢
is it sensible to base inferences about A\ upon D alone?

A laboratory has n test locations for life testing a particular type of electronic
equipment. To conserve time, it is decided to place an item in each test location
and test all n items simultaneously. As soon as an item fails, it is immediately
replaced by a new item and the system is observed until the dth failure occurs.
Suppose that the failure times are exponentially distributed. Let S be the
random variable representing the time to cessation of testing. Show that S is
sufficient for the failure rate \. Derive the distribution of S and give an exact
95% confidence interval for A when n = 25,d = 5, and the fifth failure occurs
407 hours after the start of the experiment.

Consider a random censorship model in which failure time 7T is exponential
with failure rate A\ and censoring time C is exponential with rate «. Let
T; = T; AC;, V = >__ | Ti, and D be the number of failures. Show that (V, D)
is sufficient for (A, ). Show further that V and D are independent, that D is
binomial with parameters n and A(\ + «) ", and that 2(\ + )V has a x>
distribution with 2D degrees of freedom. Discuss how inference on A may be
carried out.

The guaranteed exponential distribution has density function

f(t) = A9, t> G,
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where A, G > 0 are unspecified parameters. Let 7(;),...,T(,) be the order

statistic on a sample of size n.

(a) Show that U = ZZT(,-) and Ty are jointly sufficient for A and G and
determine the maximum likelihood estimates.

(b) Show that n(T(l) - G), (n - 1)(T(2) - T(l)), (n — 2)(T(3) - T(z)), ceey
(Tny — T(,,_l)) are independent exponentials with failure rate A and
hence determine the joint distribution of U and TY;).

(c¢) Establish methods for exact interval estimation of A and G. (The like-
lihood ratio statistic gives rise to simple pivotals for these parameters.)

(d) Apply these results to the group 1 data of Table 1.1. For this purpose, omit
the censored data points.

Suppose that the failure times in Exercise 3.8 are type II censored at Ty,

where d is fixed in advance. How would this alter the analysis?

Let Ty,...,T, and Sy,...,S,, be uncensored samples from two guaranteed

exponential distributions with parameters (A, G;) and (\,, G2), respectively.

(a) Outline a test of the hypothesis \; = ;.

(b) Supposing that A\; = A\, = A is known, develop a test of the hypothesis
G1 = G,. For this purpose, show that U = T{;) — §(;) has a double
exponential distribution with density

nmA\
—nAu), >0
p— mexp( nAu) u
flu) = \
nm
e Au), < 0.
p— xp(mAu) u

(¢) Generalize this to a test of G; = G, when A\; = A\, = A but ) is unknown.
Verify that this is the likelihood ratio test of this hypothesis.

Freireich et al. (1963) present the following remission times in weeks from a

clinical trial in acute leukemia:

Placebo: 1, 1, 2, 2, 3 4, 4, 5, 5, 8, 8,

8, 8, 11, 11, 12, 12, 17, 22, 23

6-MP: 6, 6, 6, 7, 10, 13, 6, 22, 23, 64, 9+,

10+, 114, 174, 94+, 20+, 254, 324, 324, 344, 35+

(a) Test the hypothesis of equality of remission times in the two groups using
Weibull, log-normal, and log-logistic models. Which model appears to fit
the data best?

(b) Test for adequacy of an exponential model relative to the Weibull
model.
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(c) As a graphical check on the suitability of exponential and Weibull
models, compute the Kaplan-Meier estimators F(t) of the survivor
functions for the two groups. Plot log F(r) versus ¢ and log[—logF(¢)]
versus log ¢.

3.12 Suppose that uncensored paired failure times (Ty;,72) have regression

3.13

3.14

variables Z;; = 1, Z;; =0, i = 1,...,n. Suppose also that the hazard func-
tion for the jth individual in the ith pair can be written

)‘i exp(ZﬁB), ]: 1a2

(a) Show that the MLE, §, satisfies

where w; is the observed value of W; = Ty; /T»;. Does asymptotic like-
lihood theory apply to 3?7 Show that the usual asymptotic formula, if
applicable, would yield an asymptotic variance of 2/n for 5‘

(b) Write down the PDF of W;, and show that it is independent of
Ai,i=1,...,n. Write down the likelihood function based on
wi,i=1,...,n and show that the corresponding MLE for [, in this
case, satisfies precisely the same equation as that given in part (a). Show
that asymptotic likelihood results apply to this new (marginal) likelihood
function and thereby calculate the asymptotic variance for 5‘ Compare
with that given in part (a).

(¢) Show that Y; = logW, arises from a linear model with mean —(3. Write
down the least squares estimator of 3 and evaluate its efficiency [ratio of
asymptotic variance of ﬁ from part (b) to least squares variance].

(d) Leteg; =1ifw; < 1ande¢ = 0if w; > 1. Derive the distribution of ¢; and

- compare the efficiency of the MLE based on ¢;,i = 1,...,n to that given
in part (b), at § = 0.

Suppose that the likelihood function (1.12) arises from a discrete failure time
variable with sample space ay, . . ., a;. Assume also that censoring can occur
only at these discrete times and that, as usual, a censored failure time ¢ means
that the underlying survival time exceeds ¢. Using the asymptotic likelihood
methods of Section 3.4, derive the joint asymptotic distribution of the product
limit estimators F (a;), j=1,...,k as defined in (1.14). Compare the
asymptotic variance of F(a;) to (1.11).

Suppose again that failure time is discrete with sample space ay,...,ax.
Suppose that r populations are being compared on the basis of such discrete
failure time data. Let \; be the conditional probability that an individual in
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sample i fails at g; given survival up to a;. Derive the score test for the
hypothesis A\; = J; all (i, j). Compare with the logrank test of Section 1.5.

Suppose that
A(t,Z) = Mug(1)e?”,

where

7 — { 0, group 1
I, group 2.
Assuming that the ratio of hazard functions between the two samples is 1.5,
and assuming no possibility of censoring, calculate the approximate sample
size, common to both groups, required to show a difference between groups at
the 0.05 level of significance, with probability (power) 0.80. How does this
sample size depend on Ay(-)?

A prior density p(6) is said to be conjugate to the density f(x|@) if for all
8, p(0) is proportional to a possible likelihood function from f(x|@). That is,

p(0) o [ £l0)

i=1

for some n and xq,...,Xx,.
(a) Show that the class of gamma distributions is conjugate to the exponen-
tial density

ftA) =xe™™,  t>0.

(b) If the prior distribution for A is gamma with parameters ~ (scale) and v
(shape), show that posterior distribution of A given data t;,...,t, is
gamma with parameters (7 + >_¢#) and (n + v). The gamma family of
distributions is said to be closed under sampling from the exponential
distribution.

(¢) Obtain the predictive distribution of the next observation and also the
posterior distribution of the reliability parameter p = e = P(T > t|)),
where ¢ is a specified positive number.

(d) Generalize these results to a censored sample 71, ... ,t, with indicators
01, ..., 0,. Note that in the parametric Bayesian approach, no difficulty is
caused by quite complex censoring schemes.

Beginning at chronological time 0, individuals enter a clinical trial over the
interval (0,a] according to a Poisson process with intensity function
a(s) > 0,0 < s < a. Once entered on study, individuals are followed until
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3.18

3.19

3.20

3.21

chronological time a+ b for some b > 0, at which time all surviving
individuals are censored. The distribution of the time T from entry into the
trial until failure occurs is of interest and it is assumed that these times are IID
from some distribution with survivor function F.

(a) Let N be the total number of individuals entering the trial. What is
P(N =n)?

(b) Suppose that N =n is given and consider a random permutation of
individuals which are then labeled 1,2,...,n, and let Sy,...,S, be the
corresponding times of entry into the study. Show that Sy,...,S, is a
random sample from the density o(s)[ [} o) du] ™.

(c) Explain how the results from this study can be viewed as a random
censoring model in which the failure and censoring times (7, C;) are IID
and find the common censoring distribution.

(continuation) An alternative way to look at the situation in Exercise 3.17 is
to label the sample 1,2, ..., nin the order in which they enter the study. Let 7;
and C; be the corresponding failure and censoring time for the ith entry. Show

that in this formulation, 7 = (77, ..., T,) is independent of C = (Cy, ..., C,)
but the Cy, ..., C, are not mutually independent. Find the distribution of C.

(continuation) Suppose that each individual upon entry is independently
assigned at random and with equal probabilities to one of two treatment
groups. Let F; and F, be the survivor functions for treatment groups 1 and 2,
and let M; and M, be the respective number of failures observed in the study.
Find the joint distribution of (M;,M,).

Show that any nonparametric MLE of F arising from the likelihood (3.27)
must concentrate all mass on the m intervals [L;,R;], as described in
Section 3.9.1.

(Current status data) Suppose that 71, ..., T, are IID failure time variables
with common survivor function F(-). Suppose that inspection times
a=(ay,...,a,) are determined independently of Tj,...,T,, the ith item
is inspected once at time a;, and D; = 1(7T; < a;) is observed. That is, we only
observe whether or not the ith individual has failed by time a;, i = 1,...,n.
Let by, ..., b be the distinct values of ay, ..., a,.
(a) Place this in the context of interval-censored data and show that any
survivor function F' that satisfies F(b;) = g;,j = 1,...,k is a nonpara-
metric MLE of F where the g, . .., g maximize the likelihood

k
L=]]q/(1-¢)"

j=1

subject to the isotonic constraint 1 > g; > --- > gx > 0. In this, r; and s,



9

INFERENCE IN PARAMETRIC MODELS AND RELATED TOPICS

are, respectively, the number of items inspected at time b; that are
surviving and that have failed at that time.

(b) Suppose thatn = 10,a = (1,2,3,4,5,6,7,8,9,10), and D = (0, 1, 0,0,
1,0,1,0,1,1). Apply the EM algorithm to find the g;’s and describe the
class of MLEs in this case.

(¢) Use the pool adjacent violators algorithm (see Ayer et al., 1955 or Barlow
et al., 1972) to find F.



CHAPTERA4

Relative Risk (Cox)
Regression Models

4.1 INTRODUCTION

In this chapter, attention is focused on methods of estimation and testing based on
data arising from the relative risk or Cox regression model (2.10). In the parame-
tric models discussed in Chapter 3, the failure time distribution is assumed
known except for a vector of parameters. The relative risk model, however, has a
nonparametric aspect in the sense that it involves an unspecified function in the
form of an arbitrary baseline hazard function. The model also incorporates a
parametric modeling of the relationship between the failure rate and specified
covariates, and is sometimes therefore referred to as semiparametric. The relative
risk model in its most general form is remarkably flexible, but because of the
nonparametric component, nonstandard methods are required for estimation and
testing.

The relative risk models that we consider in this chapter incorporate covariates
that are fixed (time-independent) or are defined functions of time. This class of
models is very rich, and although the potential for flexible modeling of this sort
has been known for some time, its flexibility has not been widely used in practice.
Indeed, it is often implied that the Cox model is one that specifies proportional
hazards for all distinct pairs of covariate values, a relatively strong assumption.
One of our aims in the organization and scope of this chapter is to increase aware-
ness of the full breadth of the Cox model for fixed or deterministic covariates. As
wide as this class is, further extensions of the model to allow stochastic time-depen-
dent covariates are possible and important. These generalization and some applica-
tions of such covariates are considered in Chapter 6.

Let x = (x1,x2, .. .)' be a vector of basic (fixed) covariates that are measured at
or before time 0 on individuals under study, and let 7" be a corresponding absolutely
continuous failure time variate. We consider a class of models, termed relative risk
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models or Cox models, which arer specified by the hazard relationship
At;x) = ;,“f{)‘, Pi<T<t+h|T>tx)/h

= Xo(8)r(t,x), t>0. (4.1)

In (4.1), A\o(?) is an arbitrary unspecified baseline hazard function, and the relative
risk function r(¢, x) specifies the relationship between the covariates x and the fail-
ure rate or hazard function. We comment below on flexibility in the specification of
r, but for the majority of this chapter and book, we consider the usual exponential
form for the relative risk function, r(¢,x) = exp[Z(¢)’ 3], which yields the model

A(t;x) = Xo(t) explZ(1)' 3], (4.2)

where Z(f) = [Zi(t),...,Z,(t)] is a vector of derived, possibly time-dependent
covariates obtained as functions of ¢ and the basic covariates x. The baseline hazard
function Ao() corresponds to Z(t) = (0,...,0) for all £, and 8 = (B1,...,53,) is a
vector of (unknown) regression parameters. There is wide flexibility in the choice
of the regression variables Z(¢) in the model and the specification of a suitable
model is an important step in data analysis. Once the model is set, inferential pro-
blems include estimation of the components of [, the baseline hazard function
Ao(?), and functions of 8 and A\o(z), such as, for example, the survivor function
at given values of ¢ and x.

If the failure time 7 has hazard function (4.2), the corresponding survivor
function is

F(t;x) = P(T > tx) = exp{— J; Ao(u) explZ(u)' ] du} (4.3)

and the density function is
ft;x) = A6, x)F(t; x). (4.4)

Before proceeding, we consider briefly some examples of relative risk modeling
to indicate the breadth of this class of models. We begin by considering the simplest
of exampies, in which the basic covariate is an indicator x = 0 and 1, perhaps repre-
senting control and treatment groups, respectively. We consider several different
models that might be specified:

e The simplest model is A(¢,x) = Ao(7) exp(x3),x = 0, 1. The hazards in the
two treatment groups are proportional to one another, and the parameter (3
measures the effect of treatment.

¢ In many instances, we may wish to extend this model to allow the relative risk
to vary with time. To do this, we could specify, for example, Z;(f) = x and
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Z,(t) = xt. The model (4.2) now becomes
Alt,x) = Ao(1) explxfy + (x1) 3],

where 3, measures the effect of the interaction between x and time. This
model specifies that the relative risk of x =1 versus x =0 is changing
smoothly in time. If 3, > 0 (3, < 0), the relative risk function is increasing
(decreasing) with time and [, = 0 corresponds to the proportional hazards
case above. One important aspect of this extended model is its use for testing
the proportional hazards or constant relative risk relationship, but the model
also allows a concise description of a useful class of treatment effects.
Interactions with other functions of time could also be used, such as logt
instead of t.

e The effect of treatment can also be modulated in other ways. For example, we
might suspect that the treatment group has a high initial failure rate, due, for
example, to postoperative risk in a surgical study that attenuates over a
specified period of, say, 1.5 weeks. To accommodate this, let Z; () = x,
Zy(t) = xt, and Z3(t) = x(1.5 — t)1(¢ < 1.5). The parameter (5 then allows
for the postoperative risk, and having adjusted for that, 3, and 3, are
interpreted as before.

e In most instances, there will be several measured covariates with
x = (x1,x2,...). Various models could now be specified that would allow
for a smoothly changing effect of any of the basic covariates with time. That
is, we can entertain models in which the derived covariates Z(¢) incorporate
the basic covariates as well as possible interactions among those covariates
and interactions between the covariates and functions of time.

Figure 4.1 gives a graphical view of some of the simple relative risk models
described above.
Before proceeding further, it is useful to make the following notes:

1. When the covariates in the model are constant so that Z(z) = Z for all ¢, then
r(t;x) = exp(Z'B) is independent of time, and the hazard functions at
different covariate values are proportional. The model (4.2) with fixed
covariates is often called the proportional hazards model. In this case, (4.3)
can be written

F(t;x) = Fo(n)™“7), (45)

where Fy(t) = exp[— [; Ao(u) du] is an arbitrary baseline survivor function
corresponding to Z = 0. The class of models [Fy(¢), 0 < ¢ < o0] is some-
times called the Lehmann family.

2. The term proportional hazards model has been used widely to describe the
relative risk or Cox model. It is not a descriptive term, however, except in the
special case of fixed covariates, so we avoid its use here. The full flexibility of
the relative risk modeling seems often to be ignored in data analysis and in
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Figure 4.1 Hazards and relative risk functions for two-sample (x = 0 or x = 1) relative risk models:
(a) proportional hazards with RR = exp(xf) and § = 1; (b) model with interaction with time and
RR = exp(xf; +xt3,) with 8, =03 and f(, =—0.3; (¢) model with high initial risk and
RR = exp[xf +x(1.5 — 1)1(t < 1.5)3,] with 8) = —1.0 and 5, = 2.

the arguments supporting the need for alternative models; in part, this may be
due to the proportional hazards misnomer.

. Time-dependent covariates Z(#),0 < t < co can be much more general than

the deterministic type that we consider in this chapter, and they are discussed
in more detail in Chapter 6. For example, the covariate may include the output
of a stochastic process and may even require the survival of the individual for
its existence. The simple deterministic covariates that we consider here,
however, allow for useful generalizations of strict proportional hazards and
give good flexibility in relative risk modeling. They also lead to simple
methods for testing whether individual fixed covariates yield proportional
hazards.

. In the above, the relative risk function r(¢, x) in (4.1) has been specified to be

of the parametric form exp[Z(¢)'3]. Other specifications (e.g., r(t;x) = 1+
Z(t)Bor [1 +Z(t)4]™") could also be used and may be more appropriate in
some instances. We shall, however, use the exponential form in (4.2) as the
basis of discussion.
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The main problems addressed in this chapter are those related to the estimation
of  and the cumulative baseline hazard function defined by Ay () = f(; Ao(u) du.
Estimation of (3 is considered in Section 4.2, and in Section 4.3 we deal with the
estimation of Ag(-), or equivalently, of Fy(-), where

t

Fo(t) = exp [— J

Ao(u) a'u} :

0

Other topics include the extension of (4.2) to include strata, the relationship
between the log-rank test and the model (4.2), and the analysis of related discrete
models. Although asymptotic results are stated in this chapter, a more detailed
discussion can be found in Chapter 5.

Throughout this chapter, unless otherwise specified, failure times are presumed
to be subject to arbitrary independent right censoring. Simple extensions apply to
incorporate independent left truncation as well, and most formulas apply under both
independent left truncation and independent right censoring.

4.2 ESTIMATION OF g

The primary method of analysis is called partial likelihood. It formed the basis of
the Cox (1972) analysis of the model (4.2), and was discussed further and
abstracted in Cox (1975). The presentation in Sections 4.2.1 and 4.2.2 relates clo-
sely to that work. '

4.2.1 Definition and Some Properties of Partial Likelihood

Suppose that the data consist of an observation on a random vector Y that has
density function f(y; 6, 3). Here 3 is the vector of parameters of interest and € is
a nuisance parameter that is typically of very high or infinite dimension. In some
applications, € is in fact a nuisance function, as, for example, the hazard function
Ao(+) in the relative risk regression model (4.2). Suppose that Y is transformed into
a set of variables A{,Bi,...,An, B, in a one-to-one manner, and let AV =
(A1,...,4;) and BY) = (By,...,B;). Suppose that the joint density of A" B
can be written

m

ﬁf(bj | U0, a070;0,8) ] £(a; | BV, aU1; B). (4.6)
j=1 '

j=1

The second term in (4.6) is called the partial likelihood of (3 based on {A;} in the
sequence {A;, B;}. The number of terms m could be random or fixed. In certain
applications one may argue that any information on [ in the first term is inextric-
ably tied up with information on the nuisance parameters 8. In these situations, we
might choose to base inference on the second term alone, which involves only £.
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It should be noted that the partial likelihood

m

L(B) =[] f(a; | 8Y,aD; ) (4.7)

j=1

arises as the product of conditional probability statements but is not directly inter-
pretable as a likelihood in the ordinary sense of the word. In fact, (4.7) cannot in
general be given any direct probability interpretation as either the conditional or the
marginal probability of any event. Nonetheless, in many instances it can be used
like an ordinary likelihood for purposes of large-sample estimation in that the usual
asymptotic properties formulas and properties associated with the likelihood func-
tion and likelihood estimation apply.

We can obtain some intuition about partial likelihood and why it works through
consideration of the score components

_ Ologf(A; | Hj; B)
— 5 ,

U; i=12,....m, (4.8)
where H; = (BY),AU~V) is used to specify the conditioning variables for the jth
term in (4.8). The total score arising from the partial likelihood (4.7) is

_OlogL &

U;.
B e

U

Conditionally on Hj, f(a; | hj; B) is a density function. Thus, under the usual regu-
larity conditions, we have E(U; | H; = h;) = 0. It follows that

E(U;) = EE(U; | Hj) = 0.
Further, if j < k, the condition Hy = h; implies that U; is fixed. Hence, for j < k,
E(U;U,) = EE(U;U; | Hi) = E{U;E(U, | Hi)} = 0.

The score contributions Uy, Us, ... thus have mean zero and are uncorrelated.
Again, since f(a; | hj; B) is a (conditional) density,

var(U;) = E(U;U;) = 5},

where

L [PP108 (e | 3 )
5= ~E [ 5pom }'
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From this it follows that the total score U has mean O and covariance matrix
var(U) = 4 = ij.

The total score U is thus the sum of m uncorrelated variables, each with mean 0.
One might expect a central limit theorem to apply to U as m — oo provided that the
U; exhibit a certain degree of independence, the .#; are not too disparate, and Y. F i
approaches infinity at a suitable rate. When such a central limit applies, we have the
usual basic result for likelihood asymptotics as discussed in Section 3.4: that is, that
the score vector has the large-sample approximation

U ~ N(0,.9). (4.9)

Let 3 be the estimator obtained from solving U= U(8) =0, and let
1(3) = —8*log L(3)/03 03 be the observed information matrix from the partial
likelihood. If 3 is consistent, and I(3).# ! converges to an identity matrix as
m — 00, it would follow that .# in (4.9) can be replaced with I(3) or I(3). The
other usual asymptotic results based on B or on the likelihood ratio would then
also follow under some additional regularity conditions.

These very informal arguments suggest that at least in some instances, the partial
likelihood can be used for large-sample inference, exactly as an ordinary likelihood.
The application to the relative risk regression model is given in Section 4.2.2, and in
that case, rigorous derivations of the asymptotic results can be based on martingale
limit theorems as outlined in Section 5.6.

The argument above deals with the case where the partial likelihood is composed
of many terms m, each of which contributes a small amount of information about £.
This is the situation that arises in its application to the relative risk regression model
discussed in the next section. Sometimes, however, the value m is fixed, and as the
sample size increases, each score statistic U; is based on a large amount of data.
This is the situation for some examples with discrete failure times. In that case,
a central limit theorem often applies to each score vector U; individually, and the
same asymptotic results as given above apply to the finite sum.

4.2.2 Partial Likelihood for f

The partial likelihood argument applies directly to the relative risk model

A(t;x) = Mol?) exp[Z()' ] (4.10)

under arbitrary independent right censorship. Suppose that the sample comprises k
uncensored failure times #; < --- < f#; and ignore for the moment the case of ties.
The remaining n — k individuals are right censored. Let j denote the individual fail-
ing at #;, and let Z(r) and x, denote the covariate vectors for the /th individual. In
the notation of Section 4.2.1, let B; specify the censoring information in [f;_y, ;)
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plus the information that one individual fails in the interval [f;,t + df;). Let A;
specify that item j fails in [t;,#; + dt;). The jth term in the partial likelihood (4.7) is

Li(B) = f(a; | )aV™"; ). (4.11)

Now, the conditioning event b i1 specifies all the censoring and failure infor-
mation in the trial up to time 7 and also provides the information that a failure
occurs in [t(j), t;) + dt;)). Under independent censoring, it follows that

_ AEix)dy
ZEER(;,) /\(tj;xf) dtj ,

where R(z) is the set of items at risk of failure at time ™, just prior to time ¢. Thus
R(t) consists of all individuals who have not failed and are still under observation
(uncensored) just prior to time ¢. It is sometimes convenient to define at risk vari-
ables, Y;(t) = 1[i € R(¢)], where 1(-) is the indicator function. The jth term in the
partial likelihood can then be written as

(4.12)

L;(B)

_ At x;) iy
Sor— 1 Ye(t;) A (15 x0) dt;

All expressions could be rewritten in this way, and for some purposes, there is an
advantage to doing so. At an introductory stage, however, the risk set notation in
(4.12) may be more transparent.

Under the relative risk model (4.10), (4.12) simplifies since the baseline hazard
Ao(t;) dt; cancels in the numerator and denominator. The product over j then gives
the partial likelihood for S,

(4.13)

Li(B)

CE eplz()d
M= U ootz 8 (4.14)

The arbitrary baseline hazard function has been eliminated and the resulting like-
lihood can be used for inferences about S.

In forming the partial likelihood of [ in (4.14), we are ignoring any information
about § which might be obtained from the observation that no items fail in the inter-
vals (ti_1,4), j=1,...,k+ 1, where fp = 0 and 441 = co. Since A¢(¢) is comple-
tely unspecified, intuition suggests that the failure-free interval (#_;,;) can yield
little information about [ since we can account for it simply by taking A\o(#) to
be very close to zero over the interval. If one had additional information on
Ao(?), for example, a parametric form, there would be contributions to the inference
about 3 from the intervals with no failures.

The maximum likelihood estimate, B, from (4.14), can be obtained as a solution
to the vector equation

k
U(B) = 0logL/88 = Y [Z(t;) — £(B,1;)] =0, (4.15)
j=1
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where
EB,1) =D Ze(t)pe(B,1;)
¢ERTy)
and
exp[Ze(1;)' ]

pg(ﬂ, tj) = { e R(tj). (416)

ZieR(zj) CXP[Zi(t]‘)’,B] ’

Thus, &(0,1;) is the expectation of Z,(t;) with respect to the distribution (4.16) on
the risk set R(¢). Similarly, the observed information matrix is

_ BPlogLl ¢

where

V(B = > [2t) — 6B, )] pe(B, 1)

€€R(tj)

is the covariance matrix of Z,(;) under the distribution (4.16). (Note that b%? = bb’
for b a vector.] As a consequence, I(3) is typically positive definite for all /3, the log
likelihood is strictly concave, and the estimate B is typically unique. The value 3
that maximizes (4.14) can usually be obtained by a Newton—Raphson iteration uti-
lizing (4.15) and (4.17). A starting value of 3y = 0 often suffices. It is important to
note, however, that the estimate of a component of 3, 3; say, can be oo (or —o0) as
outlined in Exercise 4.1. Also, as in ordinary regression, the covariance and infor-
mation matrices can be singular; see Exercise 4.2.

Examination of the score equation (4.15) shows that Z;(;), the covariate value of
the failure at time #;, is being compared with the expectation, &(0, t;). It is instruc-
tive to think about the scalar case (p = 1). In this case, (4, ) is an increasing
function of 3, and if the observed Z;(#;) is one of the larger (smaller) values in
the risk set, the jth term in (4.15) favors a positive (negative) value of (3. The score
equation combines these single-time considerations to find the value of (3 that best
describes the failure experience overall.

Asymptotic results completely analogous to those for parametric likelihoods
apply under quite general conditions here, as discussed in Section 5.7. In the
absence of ties, the asymptotic distribution of (3 is normal with iiean 3 and esti-
mated covariance matrix / (ﬂA)”l. For example, inference on the /th component [3;
of 3 can be based on the asymptotic result

Bl - /Bl %N(O’jll)’
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where I is the (1,1) element of [ (3)"". Likelihood ratio tests can be based on the
partial likelihood, and the score statistic U(f3) from (4.10) can be used to test
B = (3, with the usual x? and normal asymptotic results. Score tests are discussed
in Section 4.2.4.

The numerical illustrations in this chapter assume that the conditions for asymp-
totic normality of the score statistic U(y) and ( are met and that sample sizes are
large enough for asymptotic distributional approximations to be adequate. As in
Chapter 3, however, the question of the adequacy with which the asymptotic
form of the distribution approximates the actual sampling distribution must be
kept in mind in any particular application. The normal approximation to the distri-
bution of the score statistic (4.15) for the special case of comparing several uncen-
sored samples without ties, however, often seems adequate for surprisingly small
samples of size 10 or possibly even fewer in each group. Somewhat larger, but
probably not appreciably larger, samples sizes are probably necessary for an ade-
quate approximation to the (3 distribution provided that the regression variables and
censoring mechanism are not too extreme. As with the parametric models, extreme
and isolated Z(¢) values or very severe censoring increase the total sample size
necessary to ensure the adequacy of normal approximations. In small-sample situa-
tions where, for example, the results of significance tests are equivocal, some
numerical work may be necessary to develop an improved approximation for, or
to produce an estimate of, the actual sampling distributions for U((,) or 8.

We have concentrated on the partial likelihood derivation above, but several
other approaches to estimating (8 have been suggested when continuous data arise
from the Cox model. Breslow (1974), for example, suggests an approach in which
the baseline hazard function is approximated by a step function that is constant
between adjacent uncensored failure times, and he shows that the resulting maxi-
mized likelihood for (3 is given by (4.14) (see Exercises 4.4, 4.5, and 4.6). Bayesian
approaches have also been suggested and are discussed in Section 11.7. When the
covariates are time independent, the estimation of 3 can also be based on a marginal
likelihood arising from the observed rank or generalized rank vector. This approach
is discussed in Section 4.7.

4.2.3 Ties in Continuous Failure Time Data

When there are ties among the uncensored failure times, the partial likelihood can
be adjusted in various ways. We consider here primarily the case where a contin-
uous model seems appropriate, but there are some ties that occur due to grouping or
round-off of the observations.

Perhaps the most natural adjustment for ties is to use the average likelihood that
arises through breaking the ties in all possible ways. Suppose, as before, that
1 < .-+ < f are the distinct failure times and suppose that d; items fail at time
ti, j=1,...,k. Let D(t;) = {j1,...,ja} be the set of labels of individuals that
fail at #;, and let Q; be the set of d;! permutations of the labels {ji,...,jq}. Let
P=(p1,...,pq) be an element in Q; and R(#;,P,r) = R(t;)) — {p1,...,Pr-1}
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The average partial likelihood contribution at ¢; which arises from breaking the ties
in all possible ways is then

-1

dj
%exp{sj(fj)/ﬁ]zn > explZe(n)Bl p
J* PEQ

€Qir=1| £eR(t,Pr)

where s;(t;) = Z?:l Z;,(t;) is the sum of the covariates of individuals observed to
fail at #;. The corresponding average partial likelihood is proportional to

-1
k

[[eoboa S [ 3 ewlzarat ). @

j=1 PeQ r=1|teR(yPr)

The result (4.18) is computationally intensive if the number of ties is large at any
failure time. If the ties are not too numerous, the expression (4.18) will be well
approximated (Peto, 1972b; Breslow, 1974) by

k exp[s;(t;)' 6] (4.19)

L= |
i=1 {2 verqy) explZe(4) B}

An alternative approximation suggested by Efron (1977) is

. exply(@) 420
21 TT20 A e expl2e(s) 8] — rA(5,5)}

’,‘:]>r

where

ABy)=d7" Y explzi(y)'Bl.

eGD(Ij)

Note that (4.14) is a special case of (4.18), (4.19), and (4.20).

It is a straightforward matter to compute the score equations and information
matrices that arise from each of these approximate likelihoods. The calculations
for (4.19) and (4.20) are particularly simple. For both of these, however, the score
has nonzero expectation and the corresponding estimators have some asymptotic
bias under a grouped continuous Cox model. In addition, the inverse of the infor-
mation matrix will not provide an exactly consistent estimator of the variance of B.
If the ties arise through grouping of the continuous model and the fraction d;/n; of
ties at any failure time is large, numerical investigation indicates that (4.18) often
still gives good estimates, whereas (4.19) may exhibit a substantial bias for the con-
tinuous relative risk parameter. Efron’s approximation (4.20) gives an improvement
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over (4.19) and yields surprisingly good estimates, even when the grouping is quite
severe. For applications with relatively few ties, it does not matter much which like-
lihood is used since asymptotic biases or problems with variance estimation are
slight. For estimating the continuous relative risk parameter, there is some prefer-
ence for using the average likelihood (4.18) or, failing that, the Efron approxima-
tion (4.20). If there are many ties in the data, it may be best to consider a discrete
model, and these are discussed in some detail in Section 4.8.

The Breslow likelihood (4.19) is often used in practice because its form is so
simple, and we have elected to use it in most of the examples in this book. It
can be shown that the score equation from the Breslow likelihood is consistent
for a relative risk parameter defined in the mixed, discrete, and continuous Cox
model

dA(t; x) = exp[Z(t) BldAo(t) (4.21)

of Section 2.3, where A (?) is an unspecified baseline discrete, continuous, or mixed
cumulative hazard function. As a consequence, the estimate of 3 obtained from the
Breslow likelihood (4.19) is consistent for 3 in the model (4.21). This provides
additional motivation for basing estimation on the Breslow likelihood. Note that
at any mass point where dAo(#) > 0, the model (4.21) places a constraint on S,
since for all relevant x, we must have dA(¢;x) < 1 (see Section 4.8.2 for additional
discussion).

Cox (1972) suggests handling ties through a partial likelihood argument applied
to the discrete logistic model,

of Section 2.4.3. In this, dAy(¢) is an unspecified discrete hazard function with mass
at the observed failure times #;,%,,...,#%. A direct generalization of the partial
likelihood argument of Section 4.2.2 can then be used to compute, at each failure
time, the probability that the d; failures should be those observed given the risk set
and the multiplicity d;. A simple computation gives the conditional probability as
the jth term in the partial likelihood,

k exp[s;(;)' O] (4.23)

j=1 ZeeRdj(t,) CXP[SE(tj)/ﬂ] '

In this expression, Ry, (t) is the set of all subsets of d; items chosen from the risk set
R(t;) without replacement, ¢ = {{,...,€;} is an element of Ry(f), and
se(t)) =D ;e Zi(tj). The partial likelihood (4.23) is difficult computationally if
the number of ties is large, although there are fairly efficient recursive methods
for computation due to Howard (1972). With relatively fewer ties, approximations
are afforded by (4.19) or (4.20).
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The partial likelihood (4.23) does not give rise to a consistent estimator of the
parameter 3 in (4.6) if the ties arise by the grouping of continuous failure times nor
for the relative risk parameter in the extended model (4.21). This inconsistency in
the partial likelihood occurs since (4.23) must be thought of as arising from the dis-
crete model (4.22), so the 3 value that maximizes (4.23) estimates the odds ratio
parameter (3 in that model. Since (4.22) does not arise as a grouping of the contin-
uous model, the two parameters do not have identical interpretations.

4.2.4 Log-Rank Test

Before proceeding to look at an application of these results, it is worth studying the
score function tests at 3 = 0 that arise from the partial likelihood given above,
thereby deriving the important log-rank test of Section 1.4. In this discussion
we consider fixed covariates Z(f) = Z, although extension to defined covariates is
immediate.

First, suppose that there are no ties or censoring in the data so that the observed
failure times are #; < 1, < --- < t, with corresponding covariate vectors Zi, . ..Z,.
The score test statistic for the hypothesis # = 0 that arises from (4.14) or (4.19) can
be written

U(0) = Z Z{ -+ (- ) o+ (- )T (429)

obtained by substitution in (4.15). This is in the form of a linear rank statistic
Z;’:I Zia;, where a; = a;, is the score attached to the ith ordered observation or
failure time (see Chapter 7). In this case, the ith score is 1 minus the expected
ith-order statistic in a sample of size n from a unit exponential distribution. This
is the Savage (1956) or exponential scores test.

Generalizations of the Savage test for tied or censored data can be obtained from
the score function test corresponding to an exact or approximate partial likelihood.
For example, from the approximate Breslow likelihood (4.19), the score test statis-
tic for the global null hypothesis 8 = 0 can be written

k

Uo)=> |s—dn' > z]|, (4.25)

j=1 LER(Y;)

where n; is the number at risk at 1 Note that (4.25) reduces to (4.24) if there are no
ties (d; = 1) and no censoring. The special case of the comparison of p + 1 survival
curves labeled 0,1,2,...,p arises upon defining Z; = (Zy;,...,Z,), where Z
equals 1 or zero according to whether or not the ith study subject is in the uth sam-
ple(i=1,...,n;u=1,...,p). Itis then easy to see that (4.25) is precisely the log-
rank statistic U(0) = O — E introduced in (1.21), where O = s1 + - - - + 5i gives the
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observed number of failures in each of the samples 1,2,...,p and

k
E=) dpn;' Z)zg

]:1 KER(tj

is a corresponding vector of summed conditional expected numbers of failures.

This same score statistic (4.25) also arises from the partial likelihood (4.23) as
an exact result corresponding to the discrete logistic model (4.22). In fact, the con-
struction of the partial likelihood relates very closely to the hypergeometric argu-
ments of Section 1.4 and the O — E interpretation of the log-rank statistic. The
asymptotic results for partial likelihoods show that the log-rank statistic, O — E,
is asymptotically normal with estimated covariance matrix given by W,,, whose
(h,u) element

k
Wha = Z[dj(nujnj-—l5hu — nhjnujnj—2)(nj — dj)(nj — 1)_1]
j=1

is obtained as the negative of the second partial derivative of the logarithm of
(4.23). In this expression, n,; is the size of the risk set in sample u just prior to ¢
and ép, = 1 or 0 according to whether or not & = u. The appropriate test statistic for
testing 8 = 0 is then

U)wu(o) (4.26)

which, under the hypothesis, has an asymptotic Xz distribution. This is exactly the
log-rank test given in Section 1.4.

The covariance matrix of U(0) might also be estimated from the approximate
likelihood (4.19). This gives 1(0) with (h,j) element

k
1 (0) = Z dj(nujnj_l(Shu — nhjnujnj—2>.

j=1

which agrees with Wy, if there are no ties (6; = 1); this corresponds to the fact that
(4.19) is then an exact result. If there are ties, however, the elements of /(0) tend to
overestimate the variance of the score statistic.

4.2.5 Some Examples

Example 4.1. Consider the carcinogenesis data and, in the first instance, the
simple model A(#;Z) = A\o(¢) exp(Z53), where Z = 0,1 is a treatment indicator.
The first step in applying the results of this section to data is to order the survival
times from smallest to largest, with the additional convention that failure times
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Table 4.1 Relative Risk Model Applied to the Carcinogenesis Data with the Single
Covariate Z = Treatment Group

Failures, Censored, Contribution
i t d; Z; Z; to Likelihood
1 142 1 1 e’ /(19 + 21€°)
2 143 1 0 1/(19 + 20e)
3 156 1 1 €’ /(18 + 20e7)
4 163 1 1 €7 /(18 + 19¢7)
5 164 1 0 1/(18 + 18¢P)
6 188 2 0,0 1/(17 + 18¢7)?
7 190 1 0 1/(15 + 18¢7)
8 192 1 0 1/(14 + 18¢°)
9 198 1 1 1(204) e’ /(13 + 18€°)
27 296 2 1,1 €20 /(1 + 4ef)?
28 304 1 0 1/(1 + 2€°)
29 323 1 1 1(344) P /2¢”

precede censored times in the case of ties. This ordering is presented in Table 4.1
for the carcinogenesis data. Also recorded in the table are the numbers of failures d;
occurring at each distinct failure time ¢;, the covariates of the failures, and the cov-
ariates of censored times in [t;, #;41). In general, there is an advantage to beginning
the calculation at the last failure time #; since the risk set at #; can be formed by
adding, to that at #(;, 1), the labels of items failing or censored in [t;, #;1). The con-
tributions to the likelihood (4.19) at a specified 3 value are then easily computed.
With these data, the approximation in (4.19) is not necessary since all items failing
at any given time have the same covariates. The ties may thus be broken in any way
at all and the likelihood (4.14) used. The approximation (4.19) has been used here
for illustration. Only a small difference arises through breaking the ties and using
the exact result (4.14).

Three iterations of the Newton—Raphson procedure, with an initial estimate of
(8 =0, give the maximum likelihood estimate to three-figure accuracy, as

B = —0.596. The information observed is I(() = 8.237. Thus 31/1(3) = —1.71
is, under the assumption that 5 =0, an observation from a N(0, 1) distribution.
This gives a significance level of 0.087. There is some indication of a treatment
effect, although the evidence is not strong. The log relative likelihood,

A~

R(B) = log L(B) — log L(B),

is plotted for these data in Figure 4.2. The close agreement of this plot with the
normal log likelihood —11(B)(B - [3)2 suggests that the large-sample procedures
based on [ are reasonably accurate.
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Figure 4.2 Log partial likelihood of 3 (solid line) and the approximating normal likelihood arising
from the carcinogenesis data of Table 1.1.
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An alternative test of 3 = 0 is based on the likelihood ratio statistic. We find that
—2R(0) = 2.86, and comparison with the x7 distribution gives a significance level
of 0.091, in close agreement with the test based on the asymptotic distribution of B
The latter gives a X7 statistic (1.71)* = 2.92. An approximate 95% confidence
interval for 3 obtained from the likelihood ratio test as {3] — 2R(f) < 3.84}.
[Note that P(x? > 3.84) = 0.05.] This yields the interval (—1.27, 0.11), compared
to (—1.28, 0.09), as the interval based on the approximate normal statistic

(6= B 1(5).

A third procedure for testing 3 = 0 is provided by the score test based on U(0).
We find that U(0) =4.763 and I(0) = 7.560, which gives the test statistic
U(0)*1(0)~" =3.00. Recall that U(0) = O — E is the log-rank statistic, which
was also considered in Section 1.4. The variance estimate /(0) is based on the
approximate likelihood (4.19); as discussed above, a better estimate of the asymp-
totic variance is V = 7.263, which arises as the observed information from the like-
lihood (4.23), and yields a x? statistic U (0)2V-! = 3.12. As is generally the case,
the test statistic based on the variance estimate /(0) is smaller and gives a more
conservative test, although the differences here are too small to be of practical
importance. As noted earlier, since all items failing at any given time have the
same covariates, the ties may be broken and the analysis could be based on
the log-rank statistic with no ties. This gives U(0) = 4.584 and I = V = 7.653.
The log-rank ? statistic is then (4.584)%/7.653 = 2.75. 0

One advantage of this analysis of the carcinogenesis data is that the extended
initial period with no observed failures is easily handled. Except for the generalized
F, all parametric models discussed previously required insertion of a guarantee
time to provide an adequate fit to these data. This was usually done by arbitrarily
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specifying the origin of measurement to be 100 days, although a threshold para-
meter could be included and estimated from the data. In Section 3.10 we found
the generalized F to be sufficiently flexible to be able to account for this failure-
free period with no guarantee parameter. The proportional hazards approach, how-
ever, is conceptually simpler and involves much less computation.

As noted in Section 4.1, an important use of defined covariates is in checking the
proportional hazards assumption within a model involving only fixed covariates. In
this two-sample problem, let Z; = 0,1 denote the samples and suppose that the
hazard function is given by

Ao(t) explZi 81 + Z,(1) 32], (4.27)

where Z,(t) = Z; logt is a defined time-dependent covariate. As discussed earlier, a
test of 3, = 0 provides a check of the proportional hazards model for the levels of
Z, versus one in which the hazard ratio of sample 1 to sample O is increasing
(62 > 0) or decreasing (3, < 0) with time. Various other types of alternatives could
be checked by changing the definition of Z,(¢).

The model (4.27) was fitted to the carcinogenesis data in order to check the pro-
portionality assumption implicit in use of the single covariate Z; for treatment. On
examining the second derivatives of the log partial likelihood, it becomes clear that
the estimates of 3; and (3, are highly correlated, owing to lack of centering of the
log #(;). There is some numerical advantage to using the equivalent model

Xo(t) exp[Z, 8] + Z, (logt — ¢)Ba],

where c is taken to be the average of the logzg’s, so that 8] = 31 + Bac.

Convergence is reached in four iterations from initial values 8f = 3, = 0, and
one obtains the estimates Bf = —0.599, Bz = —0.230, with the estimated covari-
ance matrix

L, (01211 0.0487
- \0.0487 3.3303/)°

A test of 3, = 0 based on the asymptotic distribution of Bz gives a standard normal
statistic —0.230/4/3.3303 = —0.1258, which is not significant. There is no evi-
dence to suggest inadequacy of the proportional hazards assumption (at least in
the direction of an increasing or decreasing hazard ratio over time).

The immediate extension of this procedure gives a check on the proportional
hazards assumption in the model for fixed covariates, Ao(¢) exp(x3). The procedure
involves specification of a more general model with a vector of covariates Z(¢),
where Z;(t) = x; and Zg;(t) = x; g:(¢t) for i = 1,...,s. Thus we consider

Xo(t) exp [Z(2) ],
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where g;() is some specified function of ¢, and [, is taken to be zero except for
components of x for which the proportionality assumption is being questioned. A
test of the hypothesis G;; = 0 provides a check on proportionality for the jth com-
ponent of x. This general approach provides a flexible method to evaluate depar-
tures from proportionality. It also provides an approach to building a model for
the dependence of relative risk on time.

Example 4.2. Consider the data on aplastic anemia presented in Table 1.2.
There are three covariates—treatment, age, and laminar airflow isolation—and
we consider models involving age and treatment. Laminar airflow exhibits no effect
with respect to the endpoint. Treatment is coded in the variable x;, which takes the
value 0 for CSP + MTX and 1 for MTX only. Age is incorporated into the model
both as a quantitative variable, with x, giving age in years, and also as a grouped
variable on three levels (015, 16-25, > 26). In the latter case, the groupings were
chosen to give approximately equal numbers in each group, and the variable is
coded with indicators x3 and x4 for the two older groups. There is often some
advantage through coding a quantitative variable into groups like this since it limits
the effect of extreme values on the fit, and also allows some considerable flexibility
in the form of the regression. An alternative approach that yields similar results in
this case is to include linear and quadratic terms for age.

Kaplan—Meier estimates of the survivor functions in the two treatment groups
are given in Figure 4.3. The estimates suggest a potential treatment benefit to the
combined therapy CSP + MTX. The plots also do not suggest a power relationship
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Figure 4.3 Survivor function estimates for the data on acute graft versus host disease of Table 1.2.
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Table 4.2 Relative Risk Models for Example 4.2 Fit to the AGVHD Data of Table 1.2

Age Group
Log
Model Treatment Age 16-20 > 26 Trt x Time Likelihood
1 — — - — — —79.12
2 1.143/0.517 - — - — —76.14
(0.027)
3 1.388/-0.554 0.057/0.025 — — — =73.71
(0.009) (0.025)
4 1.165/0.537 — 1.907/0.771 1.678/0.810 — —71.58
(0.030) (0.013) (0.038)
5 —2.053/1.507 — 1.933/0.771 1.780/0.810 0.1608/0.0813 —68.19
— (0.012) (0.028) (0.048)

“The numerator is the estimated regression coefficient, the denominator is the estimated standard error,
and the number in parentheses is the estimated significance level or p value.

between the two survivor functions and so suggest that the hazards may not be
proportional. The use of a time-dependent relative risk function is one way to
describe such an effect.

Table 4.2 presents the results of various relative risk models fit to these data.
Model 1 gives a baseline log likelihood with no variables in the model, and model
2, with treatment alone, confirms the impression from Figure 4.3 of an overall ben-
eficial effect to the addition of CSP. The estimated relative risk is exp(1.143) =
3.14, with a corresponding confidence interval of exp(1.143 4+ 1.96 x 0.517) =
(1.14,8.64). Models 3 and 4 examine the dependence on age. The stratification
into three groups (model 4) gives the better fit as measured by the maximized
log partial likelihood. This fit suggests that the younger age group 0-15 has a better
survival experience than either older group, with little difference between the older
groups. Model 5 has a relative risk of the form exp[Z(¢)'3], where Z(t) =
(x1,x3,x4,x1t), allowing an interaction between treatment and time. This interac-
tion term results in an increase in the maximum log likelihood of 71.58 -
68.19 = 3.38 and a significance level of P(x? > 6.75) < 0.01. Similar results are
found with models that incorporate interactions with other monotone functions of
time, such as g(¢) = log?.

This likelihood ratio test is preferable to a test based on the maximum likelihood
estimate since the likelihood function is positively skewed with respect to this coef-
ficient. In this case, the MLE of the regression coefficient of the treatment by time
interaction is 34 = 0.1608 with a standard error of 0.0813. This gives an approxi-
mate significance level of 0.05, which would indicate substantially less evidence
against 34 = 0 than does the likelihood ratio procedure above. An approximate
95% confidence interval based on the likelihood ratio statistic is (0.032, 0.362),
compared with (0.002,0.320) based on the MLE.

There is a strong evidence here of a net benefit to CSP + MTX and there is evi-
dence suggesting that the size of the effect increases with time since treatment and
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so tends to delay or avoid late occurrence of AGVHD. From model 5, the estimated
relative risk function comparing CSP + MTX versus MTX is

F(t) = exp(2.053 — 0.1608¢),

giving a description of a smoothly changing effect on relative hazard rates as time
from treatment increases. The choice of an interaction term x, ¢ versus, for example,
x1 log t cannot be very fully justified from these data, but other such choices lead to
qualitatively similar conclusions. O

4.3 ESTIMATION OF THE BASELINE HAZARD
OR SURVIVOR FUNCTION

Consider now the derivation of an estimator of the baseline cumulative hazard func-
tion and the baseline survivor function that are analogous to the Nelson—Aalen and
Kaplan—-Meier estimators obtained in Chapter 1. One way to do this is to embed the
continuous-time relative risk model in a more general discrete/mixed/continuous
model and use the nonparametric maximum likelihood arguments of the type
that led to the Kaplan—Meier estimate in Section 1.4. There are various ways to
accomplish this, but perhaps the most natural discrete/continuous model is the
grouped relative risk model obtained, with fixed covariates, by grouping the contin-
uous model.

The discussion of the grouped relative risk model in Section 2.4.3 was limited to
fixed covariates, and we extend it here, in the obvious way, to include defined time-
dependent covariates Z(¢). Thus, let Ay(¢) be a baseline cumulative hazard function.
The corresponding hazard at basic covariate values x is analogous to (2.21),

dA(t;x) = 1 — [1 — dAo()]P#OP) (4.28)

which reduces to (4.2) in the continuous case and the discrete model (2.19) in
the discrete case [A.(z) = 0], except for time-dependent Z(¢). The corresponding
survivor function for 7 is

F(t;x) = P(T > t;x) = 241 — dA(u; x)]
= P — dAo ()P Z P (4.29)

[see also (2.22)].
When Z(u) = Z has only fixed covariates,

F(t;x) = Fo(1)™**7), (4.30)

where the baseline survivor function

Folt) = Z4[1 — dAo(u)] (4.31)
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corresponds to Z = 0. With time-dependent Z(t), however, the relationship between
F(t;x) and Fo(t) is summarized in the more complicated (4.29) with
dAo(u) = —dFo(u)/Fo(u) at continuity points and dAo(u) = 1 — [Fo(u)/Fo(u™)]
at mass points.

Suppose now that data are available from the extended model (4.29) and con-
sider calculation of the nonparametric maximum likelihood estimate of Fy(z). As

before, let #1, ..., be the distinct failure times, D; be the set of labels associated
with individuals failing at #;, and C; be the set of labels associated with individuals
censored in [t;,t;41),i = 0, ..., k, where #p = 0 and 41 = co. The contribution to

the likelihood of an individual with covariates x who fails at #; is, under independent
censorship, F(#;7;x) — F(t;;x) and the contribution of a censored observation at
time ¢ is F(t;x). The likelihood function can then be written

L= H{ [TF@E %) — Flesx) T F(ti;xe)}, (4.32)

LeD; LeC;

where Dy is empty.

As with the Kaplan—Meier estimate, it is clear that L is maximized by taking
Fo(t) = Fo(t;) for t; <t < t;1; and allowing probability mass to fall only at the
observed failure times #q,...,#. These observations lead to the consideration of
a discrete model with baseline cumulative hazard function

which places a discrete hazard component 1 — ¢; at each observed failure time
tj,j = 1,...,k. Substitution into (4.32) and using (4.29) gives the likelihood func-
tion

k

H H(l . a?xp[zi(tj)/ﬂ]) H a?xp[Zz(ti)’ﬂ] ’ (433)

i=1|jeD; éeR(t,«)wD,-

which is to be maximized in aq, ..., a.

The estimation of the survivor function can be carried out by joint estimation of
the a’s and 3 in (4.29), as outlined in Exercise 4.11. More simply, however, we can
take 3 = B as estimated from the partial likelihood function and then maximize
(4.33) with respect to «jy,...,ax. Differentiating the logarithm of (4.33) with
respect to o; gives the maximum likelihood estimate of «; as a solution to

3 explzi@) Al — ofPEONT = S explzeupl. (434)

JED; LER(t;)
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If only a single failure occurs at #;, (4.34) can be solved directly for &; to give

5 exp[-Zi(1:)f]
4 — {1 __ explZi(t)f] } .
ZéeR(t,-) exp|(Z(t:) /]

Otherwise, an iterative solution is required; a suitable initial value for the iteration
is «;,, where

-1

l — oy =d Z CXP[Ze(fi)B] - (4.35)

ZER(I,')

Note that the ¢;’s can be calculated separately.
The maximum likelihood estimate of the baseline survivor function is

Fott) = TT & (4.36)

which, like the Kaplan—Meier estimate, is a step function with discontinuities at
each observed failure time #;. The corresponding estimate of the cumulative hazard
function is

Ao(t) =D (1= It <1).

The estimated survivor function for covariate function Zy(#) corresponding to basic
covariate xg is

F(t;x0) = P[1 — dAo(u)]?% @A, (4.37)

which reduces to F(f;x0) = [Fo(£)]™"*? when Z is a constant covariate vector.

A closely related estimator is the Nelson—-Aalen estimator (also sometimes
calle:d the Bres~low estimator) of the cumulative hazard function, which is given
by A(t) = [;dAo(u), where dAy(t) is O except at the observed failure times f;,
where it takes the value

-1

dho(t) =di{ Y explzo(t:)fl p (4.38)
LER(t;)

This estimator corresponds to (4.35), the suggested initial value for the iteration
above. This estimate is particularly simple and can be derived from the discrete
and continuous relative risk model as a straightforward moment estimator. It
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does, however, have some unsatisfactory features; for example, the estimated
hazard contribution (4.38) can exceed 1. Nonetheless, it is a reasonable estimate
when the hazards are relatively small and one is looking at events relatively early
in the failure time distribution. A product integral may seem the natural way to
form the corresponding estimate of the survivor function, but this does not yield
an estimator that satisfies the relationship (4.37) for different values of xo. Most
authors suggest using

F(t;x0) = exp{— J; exp[Zo(u)’B]df\o(u)} (4.39)

as the corresponding estimate of the survivor function. This does not reduce to the
Kaplan—-Meier estimate and does not have the usual discrete relationship with
A(t;xp) that should be expected. In most applications, however, it provides a
good approximation to the maximum likelihood estimator (4.37).

Many other estimates of the survivor function have been proposed. One such, a
modified life-table estimate, involves partitioning the time axis into intervals

Ii,...,I; and supposing the baseline hazard A\¢(f) to be constant within each
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Figure 4.4 Survivor function estimates arising from the Cox model for the carcinogenesis data of
Table 1.1.
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interval. A simple estimation of the hazard function and consequently of Fy(t) is
then available. This approach is analogous to that giving (1.11) in the single-sample
problem of Section 1.3 and is outlined in Exercise 4.7. The maximum likelihood
approach of Exercise 4.11 gives yet another estimator. All these estimates are typi-
cally in reasonably close agreement for particular data sets, and since the use of
such estimators is largely descriptive, it probably does not matter much which is
used. Large-sample properties of the estimates (4.38) and (4.39) are discussed in
Section 4.8.2.

Figure 4.4 gives the estimated survivor functions from (4.37) for the carcinogen-
esis data for each of the two samples (Z =0,1) under the simple model
A(t;Z) = Xo(t)e?P. To carry out these calculations, the data are again ordered as
in Table 4.1 and the hazard contribution at each observed failure time ¢; calculated
from (4.34). Note that the assumed model constrains the estimates so that one sur-
vivor function dominates the other. Such graphs can give a misleading impression
that one of the treatments is consistently preferable and suggest significant differ-
ences even when they are not present. In this example, a better description is given
by the separate Kaplan—Meier estimates in Figure 1.2.

4.4 INCLUSION OF STRATA

The relative risk regression model (4.1) specifies a model which involves all ele-
ments of the covariate vector Z(¢). In some instances, however, there are compo-
nents of Z(t), or equivalently of x, for which we do not wish to specify a
particular model and in these cases it is possible to let the different levels of that
covariate specify strata. For example, if we are using a model with fixed covariates
only, the model (4.1) effectively assumes that for any two covariate sets Z; and Z»,
the hazards satisfy

At;Z1) o A(t;Z2), 0<t<o0.

Sometimes there are important factors, the different levels of which produce hazard
functions that differ markedly from proportionality. For such a factor, we could
model interactions with functions of time through defined time-dependent covari-
ates and model the dependence of hazard ratios on time. But in many instances,
especially where the nature of the time dependence in the relative risk is not of par-
ticular interest, stratification on these factors provides a simpler and better approach.
Suppose that we wish to stratify on a factor that occurs on g levels. We define the
hazard function for an individual in the jth stratum (or level) of this factor as

Nj(t;x) = Aoj(t) explZ(1)' ] (4.40)

forj=1,2,...,q, where Z(t) is the vector of covariates for which a relative risk
model is descriptive. The baseline hazard functions, Aoi(:), ..., Aog(:), for the g
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strata are allowed to be arbitrary and assumed completely unrelated. In this more
general situation, the (approximate) partial likelihood of [ is the product of terms
like (4.19), one arising from each stratum. In general,

LB) =[] L), (4.41)

j=1

where L;(/3) is the partial likelihood of 3 arising from the jth stratum alone.

The maximization of the likelihood (4.41) is easily accomplished; the first and
second derivatives are merely sums over strata of those computed earlier [see (4.22)
and (4.23)], and a Newton—Raphson technique generally leads to quick convergence
to the estimate of 3. Although some loss of efficiency is encountered in the estimate
of 8 when stratification is used unnecessarily, it is shown in Section 4.7 that this
loss is generally not severe.

Once an estimate of 3 is obtained, the methods of Section 4.3 can be used to give
estimates of the survivor functions in each of g strata separately. With fixed covari-
ates, this provides a graphical check of the appropriateness of a proportional
hazards model for those factors used in defining strata. If Fo;(¢) is the estimate of
the survivor function for the jth level of a factor, a check to determine whether the
corresponding hazards are approximately proportional is afforded by plotting
log [~log Fo;(t)],j = 1,...,q, versus log t. Such plots for any two values of j
should exhibit approximately constant differences over time. Should the differences
change systematically over time, the lack of proportionality could perhaps be
accounted for by incorporating an interaction with some function of time. If
describing the nature of the time dependence explicitly is not so important, an
alternative simpler and fully satisfactory approach is to incorporate that factor as
defining strata.

If the hypothesis 3 = 0 is of interest, the score function test from (4.41) can be
used for inference. It is left as an exercise to show that this leads to the stratified
log-rank test (1.23).

4.5 ILLUSTRATIONS

We first look at some results of applying the proportional hazards model to the lung
cancer data discussed in Section 3.8, and listed in Appendix A, for comparison with
the parametric methods of Sections 3.8 and 3.9.2. Table 4.3 summarizes the max-
imum likelihood estimates and asymptotic x? statistics based on the marginal like-
lihood (4.8) for the proportional hazards model (4.1) and for the Weibull analysis of
Section 3.8. The Weibull model is a special case of the proportional hazards model,
and the extremely good agreement between the x? statistics even in the presence of
strong prognostic factors suggests that little efficiency is lost in using the semipara-
metric model (4.1) relative to the fully parametric regression model. Theoretical
efficiency comparisons are considered in Section 4.7. Table 4.3 also shows good
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Table 4.3 Asymptotic Likelihood Inference on Lung Cancer Data

Weibull Model Proportional Hazards Model

Regressor Variable Coefficient (—13) x? Statistic Coefficient (B) x? Statistic
Performance status —0.030 38.79 —0.033 35.11
Disease duration (months) 0.000 0.00 —0.000 0.00
Age (years) —0.006 0.51 —0.009 0.84
Prior therapy 0.004 0.04 0.007 0.10
Cell type

Squamous —0.398 —0.400

Small 0.428 22.03 0.457 18.15

Adeno. 0.735 0.789
Treatment 0.228 1.50 0.290 1.96

agreement between the absolute values of the regression coefficient estimates. If a
Weibull model with regression coefficient » and shape parameter v = o~! holds,
the proportional hazards regression parameter is 3 = —b/o. The fact that
6 = 0.928 is close to unity accounts for the close correspondence between B and
—b for these data.

As a second example, consider the clinical trial discussed in Section 1.1.2. In
that study patients with primary tumors at any of four sites in the head and neck
were randomly assigned to a test or standard treatment policy. The data for one
of the sites are given in Appendix A, data set I. Each treatment policy dictated
the treatment to be administered during a 90-day period. After this, each patient
received medical care as deemed prudent by the participating institution. No restric-
tions, except a prohibition of the study treatment, were placed on post-90-day care.
The primary purpose of the study was to compare patient survival for the two treat-
ment policies in the four primary disease sites. The data considered here are those
collected by the eight institutions with the largest patient accession. There were 438
patients entered by these institutions, 217 assigned to the standard, and 221 to the
test treatment groups.

As noted in Section 1.1.2 and exemplified in the data of Appendix A, there are
many covariates measured on individuals under study and available for considera-
tion. Institution is one such covariate and is of particular importance here since
there was considerable variability in patient treatment following the 90-day study
period. In addition, the 7N staging classification, the grade or degree of differentia-
tion of the primary tumor, the site of the primary tumor, age, sex, and general
condition are covariates considered here. These covariates are discussed in
Section 1.2.3.

In the analysis of such an extensive set of failure time data, the first step is
exploratory, its purpose being the identification of which covariates correlate
with subsequent survival. One approach makes extensive use of the log-rank test
to check for a dependence of failure time on each covariate taken one at a time.
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The log-rank test with stratification allows an additional check for possible interac-
tions with other covariates. In the present case, the failure time distribution is rea-
sonably close to an exponential distribution, and as is discussed in Section 3.8,
estimated failure rates based on assumed exponential distributions were computed
in two-way tables, with covariates being examined in pairs. This examination iden-
tified four covariates (i.e., sex, general condition, and TN staging) as being highly
related to subsequent survival.

As a preliminary model, these four factors were included as covariates in (4.40),
and the eight institutions were allowed to define the strata with baseline hazards
Xoj(t). To check whether an institution might reasonably be incorporated in the
regression portion of (4.40), the corresponding survivor function estimates Fo;(f)
were obtained and log [—log F;(¢)] was plotted against time for each j. Although
any of the estimates of the survivor function discussed in Section 4.3 would be
adequate, we have used the modified life-table estimate outlined in Exercise 4.7.
Figure 4.5 gives the resulting plots, and the curves are seen to have approximately
constant differences over time. This suggests that an institution might be incorpo-
rated as a covariate in (4.40). Modeling of the other covariates can be checked in
similar ways. Figure 4.6 gives the estimated survivor functions when general
condition X sex forms the strata and the survivals are adjusted for 7, N, and institu-
tion differences. Again there is close correspondence to constant separation. On
examining the differences between males and females within the levels of general
conditions it is further apparent, that the factors of sex and general condition oper-
ate approximately additively on the log (—log) survivor function. This suggests that
the linear modeling in the exponential factor of (4.40) is appropriate for these
variables.
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Figure 4.5 Log minus log plot for five largest institutions. Survival curve estimates standardized to

male, general condition 1, T classification 3, N classification 2. —, male, good condition; — — —,
male, poor condition; — - — - — - , female, good condition; — - - — - -, female, poor condition.
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Figure 4.6 Log minus log plot to check for covariate inclusion of sex and general condition. Survival
curve estimates standardized to T classification 3, N classification 2. —, male, good condition; — — —,
male, poor condition; — - — - — - , female, good condition; — - - — - -, female, poor condition.

In investigating the factors of treatment and region, the covariates in (4.40) were
sex, general condition, TN staging, and institution, while region x treatment formed
the strata. Figures 4.7 and 4.8 give the survivor curves for each of the four regions
for the two treatment groups, and Figures 4.9 through 4.12 compare the treatments
for each of the four regions. Figures 4.7 and 4.8 show considerable departures from
constant separation and suggest that the site of primary tumor is probably best not
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Figure 4.7 Log minus log plot to check for covariate inclusion of region (standard treatment group).
Bracketed numbers are sample sizes.
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Figure 4.8 Log minus log plot to check for covariate inclusion of region (test treatment group).
Bracketed numbers are sample sizes.

included in the regression portion of (4.40). Figures 4.9 through 4.12 suggest that
with the possible exception of region 3, the proportional hazards specification for
treatment is reasonable within region. In what follows, treatment is included in the
regression portion for all regions. However, some further investigation of region 3
may be useful. This could be done by incorporating an interaction of treatment
with time within region 3. The comparisons in Figures 4.9 through 4.12 are not
constrained by the proportional hazards relationship since for their construction,
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Figure 4.9 Log minus log plot for treatment, region 1.
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Figure 4.10 Log minus log plot for treatment, region 2.

treatments are determining the strata. It would be possible, once treatment is incor-
porated as a covariate, to produce estimates of the survivor function that are
constrained in this way. Such plots would, however, tend to accentuate treatment
differences and are subject to the same criticism as that of Figure 4.2 in the
carcinogenesis example. The model incorporating treatment as a regression variable
is very useful, however, from an inferential point of view, in that simple tests for
treatment differences are then available.
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Figure 4.11 Log minus log plot for treatment, region 3.
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Figure 4.12 Log minus log plot for treatment, region 4.

These considerations lead to the tentative model for these data with hazard
function

N(t;Z,1,x) = Xoj(t) exp(Z06 + vi + ox), j=1,...,4, (4.42)

where Z is the vector giving sex, general condition, the 7" and the N classifications, j
denotes the region of the primary tumor, i is the institution number (with v; = 0),
and x takes values O or 1 for the standard and test treatments, respectively. The co-
efficient o; gives a measure of treatment differences within the jth region. Table 4.4
gives the estimates for the regression parameters (except the 4;’s corresponding to
institution) and the estimated standard errors of the estimates. The calculations
were done using a Newton—Raphson routine with initial values O for all parameters.

Table 4.4 | Regression Coefficients and Estimated Variances for the Model (4.26)

Estimated Regression Estimated Standard
Variable Coefficients Error of the Estimate
Sex B = —0.446 0.154
General condition ﬁz =0.483 0.103
T classification B = 0.358 0.098
N classification Bs = 0.267 0.055
Treatment region
1 a; = —0.313 0.267
2 &y = 0.102 0.162
3 a3 = —0.101 0.349
4 dq = —0.656 0.369
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From Table 4.4 it is easily seen that sex, general condition, and the TN classifi-
cation are all important in evaluating survival prognosis. The treatment effects,
however, are not significant. Only in region 4 is there any evidence of dependence
on treatment, and there the significance level is at best marginal. In this case, four
independent tests for treatment differences have been made. Thus the nominal sig-
nificance level of about 7% for the treatment effect in region 4 must, to some extent,
be discounted, owing to these multiple comparisons.

Once the model (4.42) has been fit, it is possible to check its appropriateness by
forming residuals and carrying out residual plots such as in ordinary linear regres-
sion. In the model (4.42), let ¢; be the survival time of the ith individual in the jth
stratum and define

eji = Agj(1i)e"”,

where Agi(t) = f(; Aoj(u) du. The e;;’s are a censored sample from the exponential
distribution with failure rate 1. If Ag; and 3 are replaced with estimates, we obtain
estimates of the e;;’s or residuals:

&ji = Agj(1)e™”.

In forming these residuals in the present case, the continuous estimate A()j(t)
obtained above and the marginal likelihood estimate 3 have been used, but other
estimates of Ag;(), for example, the Nelson—Aalen estimator, could also be used.
If the model is appropriate, the é;;’s should be similar to a censored exponential
sample (an ¢;; is taken as censored if the corresponding #; is censored). Survival
curve estimates based on the residuals should, when plotted on a log scale, yield
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Figure 4.13 Survivor curve estimate from residuals.
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Figure 4.14 Survivor curve estimates from residuals subdivided by region.

approximately a straight line with slope —1. Alternatively, a plot of the cumulative
hazard should yield an approximate straight line through the origin of slope +1.
The overall adequacy of the model can be partially checked by plotting the sur-
vivor curve estimate arising from the residuals, as illustrated in Figure 4.13. The
correspondence with the anticipated line is extremely good. A check that the adjust-
ment for covariates has been adequate in the four regions under study is provided by
plotting the residual survivor curve for each region (Figure 4.14). Again, close cor-
respondence to the expected line is observed. The modeling of the covariates can be
checked in a similar way. Figure 4.15 gives the residual survivor curves for gender
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Figure 4.15 Survivor curve estimates from residuals subdivided by sex.




128 RELATIVE RISK (COX) REGRESSION MODELS

0.0
General condition 1

—————— General condition 2
) T —— General condition 3
©
3
ke
2
Rouii N
538
o
o O
g3 -
a
o
C
|

-2.0 |- N
\\
\
[ i | 1 i ]

1.0 2.0

Figure 4.16 Survivor curve estimates subdivided by general condition.

and Figure 4.16 for general condition. Again, the fit seems adequate. It should be
noted, however, that it is not apparent what kinds of departures one would expect to
see in the residuals if the model is incorrect or even to what extent agreement with
the anticipated line should be expected. As pointed out by Crowley and Hu (1977),
the many free parameters being fitted to the data may lead to misleadingly good
approximations.

The Cox—Snell residuals used above are one of several types that have been pro-
posed for model checking and model formulation. Some aspects of this quite exten-
sive literature are discussed in Section 6.5. A more formal approach to the problems
of checking goodness of fit in the proportional hazards model is provided by testing
expanded models obtained by incorporating interactions with functions of time, as
illustrated in Examples 4.1 and 4.2.

4.6 COUNTING PROCESS FORMULAS

As in earlier chapters, counting process notation is commonly used to describe key
aspects of the partial likelihood and related analyses of the relative risk regression
model. As before, let N;(¢) be the right-continuous counting process for the number
of observed failures on (0, #] for the ith individual, and let ¥;(¢) be the left-contin-
uous at-risk process, so that ¥;(r) = 1 indicates that the individual is under observa-
tion at time ¢ and has not yet failed. Let x; and Z;(z) be the basic and derived
covariates as above. In addition, let N.(t) = > N;(¢) and Y.(r) = > Y;(¢). It is
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convenient to use the following notation:

$9(8,1) = (o) explzi1) 8],

Ye(t) explZe(t)' ]
oty Yi(e) explZi(r) 8]

pl(/g’ )

and
6.1 = ZOpelB1),
. =1

where 0 </ <n, 0 <t < oo, and 0/0 is interpreted as 0. Note that &(,¢) repre-
sents a mean covariate vector in the risk set at time ¢, the expectation being taken
over the distribution p,(3,t),l =1,...,n. Note that p,(3,¢t) =0 if [ ¢ R(¢), and
this notation is consistent with that used before.

Many expressions of interest can now be written as stochastic integrals with
respect to the counting processes. For example, the log partial likelihood from
(4.15) can be written

n

1(B) = ZJ Z;(t) BdN;(t J log {ZY ) exp|Zi(t)’ ]}dN.(t)

i=1

=3[0 - g 6. 0amn), 4.4)

and the score function (4.16) can be written

n

uE) =3 1@ - s@.01aM0). (4.44)

i=1

In a similar manner, the observed Fisher information obtained from the partial
likelihood (4.43) is

108) = — gﬂlgg JjV(ﬂ,t)dN.(t), (4.45)
where
V(B0 =S () - 66,01 n(5,1)

i=1

is the covariance matrix of Z;(¢) taken over the risk set at time ¢.
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The Nelson—Aalen estimator (4.38) of the baseline cumulative hazard function
Ao(t) can be written

Aot = [ 1893, 1 v,

where it has been assumed that ¢ is less than or equal to the largest observed failure
or censoring time. Under regularity conditions, the asymptotic variance of
n'/2[Ag(t) — Ao(t)] is consistently estimated by

t R t . R 2 )
Vi(B, t)=n{JO[S(°’(6, u)] "2 dN .(u) + [ L E(B,1)[SV (B8, u)] ™ dN-(t)] (8, t)]“l},

where 1(f,t) = fé V(B,u) dN.(u) is the observed information in the partial likeli-
hood up to time ¢.

We return to this notation and to derivations of various asymptotic results in
Chapter 5, where the associated martingales are also introduced.

4.7 RELATED TOPICS ON THE COX MODEL

4.7.1 Marginal Likelihood for f

In this section an alternative approach to inference about (3 is based on the marginal
distribution of the rank statistic or on simple generalizations of that distribution.
This serves to illustrate the close connection between inferences about (§ and
rank tests and provides a link between the proportional hazards model and the
rank based analyses of the accelerated failure time model outlined in Chapter 7.

Suppose that the model (4.1) holds with the covariates being fixed [Z(¢) = Z], so
that

At x) = Ao(r)e??. (4.46)

Suppose that n individuals are observed to fail at #1, .. ., #, with corresponding cov-
ariates Zi, ..., Z,. For the moment we assume that all failures are distinct and that
no censoring is present in the data. Central to our discussion will be the order sta-
tistic O(t) = [tq1), . - -, t(»)] and the rank statistic r(t) = [(1),..., (n)]. The order sta-
tistic refers to the #’s ordered from smallest to largest (i.e., f(1) < fz) < -+ < f())
and the notation (i) in the rank statistic refers to the label attached to the ith element
of the order statistic. For example, if n =4 andt; = 5,1, = 17,43 = 12,t, = 15 are
observed, then O = [5,12,15,17] and r = [1, 3,4, 2].

At the risk of some confusion and for this section only, some specialized nota-
tion is introduced. Specifically, the bracketed subscripts are used to indicate the
ordered data. This enables discussion of the order statistic, the rank statistic, and
the derivations in a straightforward manner.
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Consider the model (4.46) and define u = g~!(¢), where g € G, the group of
strictly increasing and differentiable transformations of (0,00) onto (0,00). The
conditional distribution of U = g~!(T) given Z has the hazard

A (w)e??,

where Aj(u) = Ao(g(u))g’(u). Thus if the data were presented in the form
ui,...,u, and Zy,...,Z, where g(u;) = t;, the inference problem about 3 would
be the same provided that Ao(-) [so A;(-)] is completely unknown. The estimation
problem for f3 is said to be invariant under the group G of transformations on t.

Consider now the effect of G on the sample space. The order statistic O(¢) can be
mapped to any specified order statistic by an element of g € G, while the rank sta-
tistic r(¢) is left unchanged by all g € G. For example, if the transformation u = £
is applied to the sample above, we obtain O(u) = [25,144,225,289] and
r(u) =[1,3,4,2] = r(t). Further, any specified order statistic can clearly be
obtained for u by an appropriate choice of g € G. Since the estimation problem
for (3 is the same under any such transformation, and since the order statistic can
be made arbitrary by such a transformation, only the ranks carry information about
B when Ag(¢) is completely unknown.

For inference about (3, the marginal distribution of the ranks is available and the
marginal likelihood (see Fraser, 1968; Kalbfleisch and Sprott, 1970) is proportional
to the probability that the rank vector should be that observed. That is, the marginal
likelihood is proportional to

P(r; ) :P{r: [(1)""7(”)];/3}

= J T #ley; Zo) e
Hy < <tm 1

eXp [Z (i) ,3]

- ; (4.47)
i=1 ZEGR(Q;)) exp(Z;P)

where, as before, R(t(,-)) is the set of labels attached to the individuals at risk just
prior to #(;, so that R(¢;)) = [(i), (i + 1),. .., (n)]. This expression is identical to the
partial likelihood for this case.

To handle censored data, some modification of this argument is required. If all
items are put on test simultaneously and followed to the kth failure time (type II
censoring), a marginal likelihood is again easily obtained. In this case, the group
acts transitively on the censoring time and the invariant in the sample space is
the first k rank variables (1),..., (k). The argument could be extended to progres-
sive type II censoring patterns where items are withdrawn from test with each
failure.

More general independent censoring cannot be handled directly by this approach
since the censored model will not in general possess group invariance properties.
We can note, however, that had the entire sample been observed, the rank statistic



132 RELATIVE RISK (COX) REGRESSION MODELS

would be marginally sufficient for 8. When a censored sample is obtained, only par-
tial information is observed on the ranks. For example, if the observed survival
times of four tested items were 114, 90", 63, 108, where the asterisks indicate
censoring, the underlying rank statistic is known to be one of the following six
possibilities:

(3,2,4,1]; [3,4,2,1]; [3,2,1,4];
3,4,1,2]; [3,1,2,4]; [3,1,4,2].

To make an inference about (3, the marginal probability that the rank statistic should
be one of those possible can be used. The observed part of the marginally sufficient
statistic r is generating the likelihood. Note that the exact time of censoring is
ignored, but the invariance of the uncensored model suggests that the lengths
of the intervals between successive failures is irrelevant for inference about (.
Consequently, it would seem reasonable to suppose that the exact time of censoring,
relative to adjacent uncensored times, should not contribute to the inference about (.

Suppose that k items labeled (1),..., (k) give rise to observed failure times
ta) <t <--- <ty with corresponding covariates Z),...,Zy and suppose
further that m; items with covariates Z;;,...Z;, are censored in the ith interval
[t@), tirn), i=1,...,k, where tg) = 0 and #4) = oo. The marginal likelihood
of (3 is computed as the probability that the rank statistic should be one of those
possible on the sample and is, therefore, the sum of a large number of terms like
(4.47). The set of possible rank vectors can be characterized, however, by

tay <o <ty to <tity--stim (i=0,1,...,k), (4.48)
where #;, ..., tim, are the unobserved failure times associated with individuals cen-
sored in [t(i), t(i+1))- Writing the event as (4.48) allows simple computation of the
marginal likelihood since, given #(;), the event ;) < #;, ..., tim, has the conditional

probability
1)
h(t) —exp[ Zexp J )\o(u)du], i=0,1,...,k
0

The marginal likelihood is then proportional to the probability of the event (4.48).
This probability is

£ exp(Z,0)
5 Zj))h(t;)) d : 4.49
Ll)@% Hf(t, ()t digy = HZM(; exp(Z1B) (4.49)

in exact agreement with the partial likelihood (4.14). It should be noted that (4.49)
1s not the probability of observing the event (4.48) in the censored experiment. This
probability would depend on the censoring mechanism and in general also on A(z).
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The expression (4.49) is the probability that, in the underlying uncensored version
of the experiment, the event (4.48) would occur.

This same general idea of considering the set of all possible rank vectors
consistent with the data leads also to a natural generalization of (4.49) to accommo-
date tied data, and this is given by (4.48), with the covariates Z(t) = Z being time
independent.

4.7.2 Efficiency of the Rank Analysis Under a Parametric Submodel

In this section we consider some aspects of the efficiency of the partial or marginal
likelihood analysis of the relative risk model with fixed covariates Z = Z(t) in com-
parison with parametric submodels. A more detailed discussion of asymptotic effi-
ciency can be found in Section 5.8 following the development of asymptotic results
for the partial likelihood. Some indication of finite sample relative efficiency can be
obtained by comparing (expected) information matrices at fixed sample sizes. The
information matrix gives the expected curvature of the likelihood function and
hence an indication of the precision with which [ is estimated. We make here a
few comparisons of this type based on the parametric model in which
Ao(t) = Ahy(t), with hy(t) known. Following Kalbfleisch (1974), we compare the
information matrix from the rank analysis with that based on a marginal likelihood
analysis of this parametric model. Information calculations for the marginal and full
likelihood analyses will be nearly the same.

First, define # = [} ho(u) du so that the hazard function for ¢ is AeZ#. This model
for ¢ is invariant under the group of scale transformations and, in the absence of
censoring, the variates a; = /t},i = 2,...,n form the maximum invariant in the
sample space; their density function generates the marginal likelihood for 3. For
simplicity suppose that there is a scalar regressor variable with values Z;,...,Z,,
corresponding to the uncensored failure times ¢y, .. ., t,. Without loss of generality
we may take Z; + - -+ + Z, = 0. The density function for a = (ay,...,a,) is

—n
fa(a; 8) = (n—1)! (Za, ) , a,...,a, >0,

where a; = 1. The probability distribution for the rank vector r = [(1),. .., (n)] is,
from (4.47),

-1

The information in the rank vector about [ is

1(6) = -E[ 2 togsr36)
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which at § = 0 reduces to

n '.l_. n_.Z. Zin —Z,
10) =) E, Z"‘Z(’;-i l_Oir( 1<;>2 ®)

i=1

n
_ § : 2
- EP(mZ,i - ml,i)>
i=1
where

mei=(n—i+ 1)y Zf,  k=12,....
j=i

Here E, refers to the expectation over the permutation distribution on
{(1),(2),...,(n)}. It is easily verified that E,(m;;) = u, and that

P2 x~ i—1
E,(m?)) =
p(m1,) n(n~1)Zn-—i+1’

i=1
so that

Ny o~ n—i

I,(0) = ,
() n—i+1

n_li-—-l

where py is the kth central moment of Z;,...,Z,.
On the other hand, straightforward calculation verifies that the information on 3
contained in the variate a is

2

L(6) = ~E g 1og (@)

n-pn

n+1

The relative efficiency at § = 0 for a sample of size n of the rank statistic compared
to the statistic a is

R"(O):Zgg;
n+l < n—i
=n(n-—1)zn—i+1' (4.50)
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Table 4.5 Relative Efficiency of Rank Analysis Versus Exponential at f= 0

n 2 3 5 7 10 15 20 40 60 100 oo

R,(0) | 075 078 0.82 0.84 0.89 091 09%4 095 097 099 1

As noted above, the asymptotic relative efficiency at 3 = 0 is

R(0) = lim R,(0) = 1.

From (4.50) the relative efficiency for finite n can be evaluated, and this has a
simple interpretation in terms of variance. For example, the case n =2 gives
R, (0) =2 (uo # 0). This can be interpreted as the ratio of the asymptotic variances
of the rank and parametric analyses in a twin study when the ith twin pair has its own
failure rate \; and (3 is a regression parameter common to all twin pairs. Table 4.5
gives such relative efficiencies for several values of n, and the approach to full effi-
ciency is readily seen to be rapid.

Consider now the case of two regression variables 3, 3;, where (31 is of interest,
and suppose that the variable Z, takes on only a finite number of distinct values. It is
easily seen that the asymptotic relative efficiency of the rank analysis for the esti-
mation of (; is 1 at #; = O since the problem could be handled with full efficiency
by considering the hazard for the jth possible value of Z, as \gj(t)e”?, where the
information regarding proportionality for the second variable is suppressed. Clearly,
the small-sample efficiencies will be poorer; for example, if 3, is very large and Z,
takes only two values each with equal frequency, the small-sample relative efficien-
cies for the rank analysis will increase at about half the rate stated in Table 4.5. The
relative efficency for n = 20 in this case would be about 0.89, compared to 0.94
with no auxiliary variable. This reduction in small-sample efficiency could concei-
vably be severe if Z, took many values and 3, were reasonably large. This same
line of reasoning suggests that no additional loss of asymptotic efficiency is
incurred through unnecessary stratification, but that small-sample efficiencies based
on g strata may approach asymptotic results at a rate as low as 1/q of that for
unstratified analysis.

Further examination of the small-sample efficiencies by this approach could also
allow the incorporation of censoring through consideration of type II or order sta-
tistic censoring in which individuals are removed at random from the risk set on the
occurrence of failures. The group invariance properties are retained under this
model, and information comparisons could be made.

4.8 SAMPLING FROM DISCRETE MODELS

Consider the discrete regression models discussed in Section 2.4.2 and inference
about the regression parameter 3 and the baseline cumulative hazard function Ay
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based on a right-censored (and possible left-truncated) sample. As before, the cen-
soring and truncation is assumed to be independent.

As before, x represents a vector of fixed basic covariates and Z(#) is a vector of
derived, possibly time-dependent covariates whose elements are functions of x and
t. Let Ag be a discrete baseline cumulative hazard function with masses
A1, Ag, ..., A\ at the discrete times aj,ay,...,ar, Where 0 < a; <a; < --- < a,
so that

Ao(r) = i Nl(aj < 1).
j=1

Note that we have assumed that the number of possible mass points k included in
the study is fixed so that the baseline hazard will be specified in terms of a finite
number k of parameters. This allows straightforward asymptotic arguments to apply
to the maximum likelihood methods.

Let A(t,x) be the cumulative hazard function corresponding to covariate vector
x. An examination of the three discrete models (2.21), (2.22), and (2.23) suggests
the encompassing formulation

hldA(t,x)] = hldAo(t)] + Z(2)'B, (4.51)

where A is a monotone-increasing and twice-differentiable function mapping [0, 1]
into [—o00, co] with h(0) = —oo. Note the choices:

1. h(u) = log[—log (1 — u)] gives the grouped relative risk model (2.21).
2. h(u) = logu gives the discrete relative risk model (2.22).
3. h(u) =log [u/(1 — u)] gives the discrete logistic model (2.23).

Other discrete models could also be generated. For example, a discrete probit
model is obtained by specifying h(u) = ®~!(u), where ®~! is the inverse standard
normal cumulative distribution function (CDF). Note that if dA(t,x) = A(t,x) dt
corresponds to a continuous model, then for each choice of £ mentioned, the model
(4.51) reduces to A(t,x) = Ao(t) exp[Z(¢)'B]. Thus, each of cases 1, 2, and 3 and
even the discrete probit model can be viewed as a generalization of the continu-
ous-time relative risk model (4.1) to discrete (and mixed) failure time variables.

It should be noted that (2) places some restrictions on 3 in order to satisfy the
requirement that dA(#,x) < 1 for all x and ¢. This relative risk model is useful for
describing survival experience when dA(a;) is small for all j. This situation arises
when a relatively large cohort is being observed over a relatively short period of
time with many individuals censored. No restrictions on § are implied by model
1 or 3 above or by the discrete probit model.

Most commonly, discrete survival data arise when the survival time is subject
to interval grouping, and model (1) arises through grouping the continuous-time
relative risk model when the covariates Z(#) = Z are time independent. In other
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instances, however, time may truly be discrete, as, for example, when T represents
the number of attempts required to perform a certain task successfully.

Suppose that independent right-censored and/or left-truncated data are available
from the discrete model (4.51). Let D; represent the set of labels attached to indi-
viduals failing at ¢; and R; the set of labels attached to individuals censored at a; or
observed to survive past a;. We suppose that an item censored at a; contributes the
information that its underlying survival time exceeds a; but nothing further is
known. In effect, censored observations at g; are being supposed to follow failures
at ;. In grouping continuous data, this is equivalent to allowing censoring to occur
only just prior to the end of an interval. It is possible, of course, that censoring may
occur within an interval, and one way to handle this situation is to “reduce” the
data by replacing all potential censoring times by potential censoring times at the
immediately smaller partition point prior to applying the methods of this section.

A full maximum likelihood analysis of the model (4.51) is considered first in
Section 4.8.1. In subsequent sections, we consider some special analyses available
for the grouped relative risk and discrete logistic models.

4.8.1 Maximum Likelihood Estimation

Let v; = h[dAo(a;)] = h(N;), j=1,...,k and Ayq = 1. It follows that the model
(4.51) can be rewritten as

dA(a;,x) = gl + Z(1) B, (4.52)

where g(u) = h~!(u). Note that for cases 1, 2, and 3 above, g(u) is given by
1 — exp[—exp(u)], exp(u), and exp(u)[1 + exp(u)] ™", respectively. If the censoring
is independent and occurs, as discussed above, at the end of grouping intervals, the
log likelihood of v = (v1,72,---, %) 8= (B1,...,8,) can be written

k

log L(y,8) = > | D log gy + Zi(t) 8] + ) log {1 — gl + Z:()' A1} |,

j=1 leDj lERj

(4.53)

where the argument leading to (4.53) is basically the same as that leading to (1.12);
the relationships (1.6) and (1.7) have been used to obtain the survivor and probabil-
ity functions associated with (4.51).

The components of the score vector ¢ = c(7, 3) are

OlogL 52 B 8}1

(4.54)
0%  iep8r fer &

and

0 log L k Zy, (aj)g],'l Zy, (aj)gjl‘l
-3 |, sl

9PBu j=1|iep; &I I€R; I =g
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where g = g[v; + Zi(«;)'8), & = &'l +Zi(a)'B), and 1 <j <k, 1 <u <p. The
maximum likelihood estimator (¥, 3) is a solution to

) = OlogL OlogL OlogL OdlogL '_
D= T T s )

Calculation of (¥, 8 ) by a Newton—Raphson iteration requires second derivatives of
log L. The Fisher information observed can be written

—0%logL —0%logL

_(Hu Hin\ | 979y 0v0p
Hy Hy —0%logL. —8%loglL
98 &y oB B

where H;; is diagonal with jth element

—0%1
a'yogL Z”J’JFZ"W

J leD; leR;

The columns of H,; are

—8%logL - :
—aa ag =Y gwiZi@) + Y wiZia), j=1,....k
/8 Py] lEDj lERj

and

k

H22 = Z Z[ujlll(aj)®2] + Z[’Ulel(aj)®2] y

j=1 IGDJ' leRj

2 2
where w; = g;/gi — (8j/81)", vi = [gy/(1 — gu)] — [g;/(1 — gn)]", and g =

" !
&'l + Zi(4) 6.
A Newton—Raphson iteration to compute (7, 8 1nvolves updating current values
g
(70, Bo) to (71, /8;) until convergence is reached using the formula

95!
(m) (m)+%cm

where Hj and ¢, represent H and ¢ evaluated at (y,, 8;). Since (k + p), the dimen-
sion of H, may be large, direct numerical inversion of H may be time consuming or
inaccurate. The fact that the first (k x k) block of H is diagonal can be exploited,
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since

H*l_(Hn H12>_1_ Hi' +FI7'F o —FJ™!
“\m Hy) ~

—JIF S

where F = H 1‘11H12 and J = Hy; — Hy F. Consequently, only a matrix J of dimen-
sion p need be inverted numerically.

A simple starting value is 3y, = 0 and -y, = 9(0), the maximum likelihood esti-
mate at 3 = 0. Suppose that n; individuals are at risk just prior to a; (n; is the total
number of study subjects in D; U R;), of which d; (the number of subjects in D)) fail
at a;. The jth component of 4(0) is then

3(0) =g~ (dim;") = h(djn; ).

Instability in the Newton—Raphson procedure may occur if the numbers of fail-
ures in specific time intervals are small. Such situations would usually correspond
to a rather fine grouping of failure times in which case estimation based on an
approximate partial likelihood (4.19) or (4.20) may provide an attractive alterna-
tive. With course grouping or even with a relatively fine grouping and large sample
sizes, many ties will occur in the failure time data and the methods of this section
provide a useful estimation procedure in such circumstances. Further, with
the choice h(u) = log[—log(1 — u)], the model involves precisely the same relative
risk parameter exp[Z(¢)'5] as in the continuous model (4.1). Since the discrete
model (4.51) or (4.52) involves only a finite number (k + p) of parameters, asymp-
totic likelihood theory can be applied in a relatively straightforward way along the
lines discussed for the parametric models in Chapter 3. This theory leads to an
asymptotic normal distribution for (¥, B) with mean vector (v, ) and variance
matrix estimated by B!, under some relatively mild restrictions on the Z(¢) vectors
and the censoring.

Consider now estimation of the survivor function at a specified basic covariate
vector x. The maximum likelihood estimator F(z; x) is a right-continuous step func-
tion with possible jumps only at the a;’s and with

F(a;;x) H{l — gl + Z(a)' B}, (4.55)

u=1

where Z(t) is the derived covariate corresponding to x. Because of the fixed number
of parameters, the asymptotic distribution of F can easily be determined. As with
the Kaplan—Meier estimator, the range restrictions on F(#; x) may make the approx-
imation inaccurate in moderate sample sizes, especially when estimating F'(¢; x) at
small or large values of 7. The adequacy of the approximations can often be
improved by applying asymptotic results to ) = log [~log F (aj; x)] rather than to
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F (aj; x) itself, since ¥ is devoid of range restrictions. The asymptotic distribution of
v is normal with mean ¢ = log [~log F(aj; x)] and variance oy, = wH 'w, where
W = (9v/0, 0/08).

For the grouped relative risk model g(u) = log[—log(l — u)] in case 1, for
example, w has components

U~ <))
0% 3 hy

v _ Zjl;:l‘z(au)hu
a5 Sihe

where h, = exp|y, + Z(a,)'3]. Note that at 3 =0 the survival curve estimator
(4.55) reduces to the Kaplan—Meier estimator

by virtue of 4(0). Also, the variance estimator &12/, reduces to the Greenwood esti-
mator of the asymptotic variance.

The methods of this section with a grouped relative risk model are illustrated in
Prentice and Gloeckler (1978) in the analysis of survival data on a large set (11,442)
of breast cancer patients. Thompson (1977) provides an illustration for the di<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>