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Chapter 1

An Introduction to Bayes’ Theorem

and Bayesian Belief Networks (BBN)

1.1 Introduction to Bayes’ Theorem and BBN

Determining future states of nature based on complex streams of asymmetric

information is increasing comes at a premium cost for today’s organizations across

a global economy. Strategic leaders at all levels face uncanny events where

information feeds at near real-time require decision-making based on the interac-

tive effects of this information and across all spectrums of operations, to include the

militaries, governments, corporations, and the scientific communities. The domi-

nate information that has historically been absent here is subjective in nature and

flows directly from the innate knowledge of leaders and subject matter experts

(SME) of these organizations. With the use of inductive reasoning, we can integrate

this truth and have a more plausible future expectation based on the decisions these

leaders make today when we filter it through the lens of Bayes’ theorem. This is

done by formulating a hypothesis (a cause) of the proportional relationships one

believes that exists and then filtering this knowledge through observable informa-

tion (the effect(s)) to revise the initial beliefs.

There is a gradual acceptance by the scientific community of traditionalists

(frequentists) for the Bayesian methodology. This is not through any new theoreti-

cal revelation, but through the sheer momentum of its current utility in scientific

discovery. It possesses the uncanny ability to allow researchers to seamlessly

transition from the traditional cause and effect to the effect and cause scenario

using inductive logic or plausible reasoning.1 This precipice is possible, in part,

through the use of subjective (prior) beliefs where researchers obtain knowledge,

either through historical information or subject matter expertise, when attempting

1 E. T. Jaynes, in his book, “Probability Theory: The Logic of Science” (Jaynes 1995) suggests the
concept of plausible reasoning is a limited form of deductive logic and “The theory of plausible

reasoning” . . . “is not a weakened form of logic; it is an extension of logic with new content not

present at all in conventional deductive logic” (p. 8).

J. Grover, Strategic Economic Decision-Making: Using Bayesian Belief
Networks to Solve Complex Problems, SpringerBriefs in Statistics 9,

DOI 10.1007/978-1-4614-6040-4_1, # Springer Science+Business Media New York 2013
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to formulate the truth. This knowledge2 can originate either from observed data or

intuitive facts as seen through the lenses of these SME. The use of this “prior”

knowledge, though, manifests the theoretical rub or clash between the

traditionalists and Bayesians. The question remains, even in the midst of this

struggle; does the Bayesian method have utility?

In responding to this question, I can offer an example from the art and science of

diagnosing a disease. There is a great consensus that the science of diagnosing is

unequivocally rigid and more exact. The art of diagnosing though is not an exact

science. Let’s consider a case and solve it using the basic concepts of Bayes’

theorem. Suppose you are to undergo a medical test to rule out a horrific disease

but test result is positive (Event A), which suggests that you have the disease

(Event B). We are conditioning Event A on B and we are expressing the relation-

ship, which says, the probability of the test being positive, P(A), given you have the

disease P Bð Þ, or P AjBð Þ. What we are looking for the opposite—the probability that

you have the disease given the test is positive, P BjAð Þ. If we let P(A) ¼ 5.9 %,3

P(B) ¼ 1 %, and P AjBð Þ¼ 95:0%, then we have enough information to answer

P BjAð Þ . Using Set theory, we are interested in the sharing of these two random

events going in both directions. First, we are interested inPðA \ BÞand thenPðB \AÞ.
Knowing that PðA \ B ¼ PðB \AÞ we can use the chain rule of probability to get

our answer. SincePðA \BÞ ¼ P Að Þ P BjAð Þ andPðB \AÞ ¼ P Bð Þ P AjBð Þ, we have
P Að Þ P BjAð Þ ¼ P Bð Þ P AjBð Þ. Rearranging we have for one path:

P BjAð Þ ¼ PðBÞ PðAjBÞ
PðAÞ :

Now, we can simply solve this equation and obtain our answer.

P BjAð Þ ¼ Pð1:0%Þ Pð95:0%Þ
Pð5:9%Þ ¼ 1:0%

5:9%
¼ 16:1%:

Now, the probability of actually having the disease given you have a positive test

result is downgraded from 95 % to 16.1 %, which is a non-significant percentage

compared to just chance alone. This is the essence of Bayes’ theorem—it has the

ability to slice through observable information using prior beliefs to reweight the

truth proportionally.

Now, consider the scenario where your physician makes a diagnosis based on the

test results of 95.0 % and recommends surgery, a regiment of medicine, or even

additional tests. If she or he is incorrect in their diagnosis, then the economic

consequences at a minimum would include the psychological costs of mental,

2 In the BBN literature, researchers refer to this knowledge as subjective or originating from a

priori (prior) probabilities.
3 I computed the (marginal) probability of Event B, P(A), as P Bð Þ � P AjBð ÞþPð~BÞ � P Aj~B� �¼
1:0%� 95:0%þ 99:0%� 5:0% ¼ 0:95%þ 4:95% ¼ 5:9%.

2 1 An Introduction to Bayes’ Theorem and Bayesian Belief Networks (BBN)



physical and emotional pain and suffering but also those costs associated with

surgery and a regiment of medication, where often the cure is worse than the cause.

When your physician begins to add prior knowledge or initial beliefs to this case,

the original diagnosis comes into question. Suppose that only 1.0 % of the popula-

tion actually has this disease? Using inductive logic, your physician would begin to

adjust her or his beliefs of the diagnosis downward. Again, what if your physician

adds the fact that there is no family history? Then she or he would continue to adjust

their beliefs, possibly to non-significant levels. Doing this, manifest the underlying

principles of BBN; they learn from these partial truths or knowledge.4 Deductively,

you would be less confident in the initial diagnosis if your physician did not

consider these initial facts when making their diagnosis.

1.2 The Identification of the Truth

The above discussion begs for a discussion on the definition of truth. This is a

critical discussion in the study of Bayes’ theorem because if we accept that prior

knowledge has intrinsic value, then we are well on our way to the use of BBN. If we

reject this form of knowledge, then by default we remain in the traditionalist camp;

and if we accept this form of knowledge, then we enter the Bayesian camp.

The latter accepts this knowledge as truth based on initial assumptions of

rational beliefs. The former initially rejects this knowledge as truth through falsifi-

cation using the rigors of hypothesis testing. The strength in the latter is that in

searching for the truth, they accept partial truths, which begins to illuminate it more

clearly. The strength in the former is their belief in the rigor of science. The facts

remain—both parties have a dim view of the truth, initially, and each attempts to

discover it logically deductively and inductively, respectively. For if we knew the

truth, then there would be no need to search

The common Bible verse references the truth: “You will know the truth, and the

truth will set you free” (John 8:32, New International Version). We are on a quest to

find the “Golden Grail” of truth. If we knew the truth, then there would be no need

to search. Since, generally speaking, we do not know the truth; we search for it

using available information or knowledge. This comes from rigid systematic

research and discoveries and from historical or innate knowledge hidden in

traditions and facts known only to SME. Inductive logic (Bayesian logic) is

allowing the scientific community to overcome traditional constraints induced by

using the deductive logic of falsification. We are now able to overcome this gap by

accepting the truth using Bayes’ theorem.

4 I use information and knowledge interchangeably throughout the book.
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1.3 The Motivation for This Book

Firstly, I am motivated to share the concept of Bayes’ theorem due to its simplicity

and utility in everyday life. It has an uncanny ability to separate truth from fiction

and can truthify information very rigidly, logically, and quickly. As we experience

everyday life events with assumed facts presented as truths, we can apply inductive

logic and inverse probability to back out of this noisy information and point toward

the truth. The global economy continually bombards today’s scientific, political,

religious, government, marketing, and business world with vast amounts of infor-

mation from terabytes of data in the form of information. We are motivated in

finding the truth contained in this information, and to inductive logic of Bayes’

theorem will provide a filter to allow us to see it more clearly. Secondly, I am also

motivated to share this concept with strategic decision-makers in that Bayes’

theorem is very robust in its ability to absorb SME expertise, without the need to

use real data, where these decision makers can make plausible assumptions from

this hidden information. Also, as their respective governmental, economic, and

academic environments bombard with these data, knowing the question to ask

empowers them to require the truth from both structured and unstructured data

sources. With this power, they now have the uncanny ability to make decisions

using all possible sources of information with a refined agreement of the truth

contained therein.

1.4 The Intent of This Book

I intend to present the elementary principles of Bayes’ theorem using minimal

statistical terminology and symbology to allow for non-statisticians and naı̈ve

learners to learn quickly and apply these benefits symmetrically and seamlessly

when modeling a BBN, which is absent from the literature. This is the literature

contribution of this book to the study of Bayes’ theorem and BBN. The difficulty is

learning this material is partly because of the literature, which is flooded with

resources in learning BBN but requires an exponential learning curve to grasp

due to its complex nature and scattered and haphazard statistical symbology. I also

intend to bridge this gap by providing grounded constructs within BBN with

multiple examples across areas of interest I previously suggested. Having a funda-

mental understanding of these constructs is essential in absorbing the concepts

embedded in Bayes’ theorem. In addition, I intend to provide the learner with the

appropriate starter statistical concepts, terminology, and definitions and with a

series of ten examples, ending with a two stage, 3-Node BBN to illustrate the

concepts I put forth in this book.
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1.5 The Utility of Bayes’ Theorem

As I suggested above, the utility of Bayes’ theorem reaches across all branches of

science. While very simple in design, it requires sound inductive logic when

applying independent and dependent causal relationships. Based on the results of

past events, we are motivation to determine logical events that will affect a universe

of partial truths to allow the illumination of the truth. What has great utility in the

Bayesian universe is its utility to contain an infinite number of illuminating events

that when invoked, it scales down the original set of events so that the resulting

universe begins to learn the truth. Incredible, we begin with a subjective view of

what we believe the truth of a universe holds and then by invoking multiple events,

the truth begins to reveal itself. This is diametrically different from the philosophy

of deductive logic of falsifying and never really accepting the truth.

1.6 Inductive Verses Deductive Logic

As we battle the forces of traditionalism and realism, the frequentists argue that

deductive reasoning is the only way to the truth, and the Bayesian argues that the

past reveals the truth, inductively. Of course, the former will immediately suggest

that the latter is biasing their data selection process by reaching back to historical

or past observable events to determining future states of nature, they remain in a

theoretical rut by not illuminating the truth using subjective information. While

the Bayes’ are exponentially exploiting the universe of truth by doing this reach-

back and suggesting reasonable future states of nature. Just ask Microsoft Corpo-

ration or Google in their use of Bayesian inference within their search engines, or

ask the medical community when they correctly diagnose the existence or non-

existence of cancer. Clearly, there is a utility in Bayes’ theorem and the use of

inductive logic.

In defining inductive and deductive logic, Bolstad (2007) suggests the former uses

plausible reasoning to infer the truth contained within a statement to gauge the truth or

falsehood of other statements that are consequences of the initial one. He also suggests

that inductive logic goes from the specific to the general using statistical inferences of

a parameter using observable data from a sample distribution. In addition, he suggests

that deductive logic proceeds from the general to the specific to infer the truth of a

statement from knowing the truth or falsehood from other statements that are

consequences of the initial statement. Here, we make deductions from a population

distribution rather than a parameter to determine the sampling distribution of a

statistic. Furthermore, he suggests that whenwe have some event that has no deductive

arguments available, we may use inductive reasoning to measure its plausibility by

working from the particular to the general. He agrees with Richard Threlkeld Cox’s

(1946) sentiment that any set of plausibilities that satisfy these desired properties must

operate according to the same rules of probability. Now, we can logically revise
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plausibilities by using the rules of probability, which allows the use of prior truths to

project future states of nature.

1.7 Popper’s Logic of Scientific Discovery

Karl Popper, the father of deductive scientific reasoning, basically rejects inductive

reasoning. For example, he asserts that just because we always see white swans, that

does not mean that there or non-white ones. He believes only truths can be falsified

or rejected, i.e., the rejection of the null in classical statistical. Here is where the

Bayesians continue to conflict with the current scientific status quo as put forth by

his idea of falsification and rejection of inductive reasoning. He asserts that we

cannot prove but only disprove or falsify the truth. Bayes’ updating of prior

probability through iteratively invoking partial truth is in direct opposition of his

assertion. In current scientific hypothesis testing, we only reject or fail to reject the

null-we never prove it as absolute truth. Here, we go away from the truth, whereas

with Bayes’, we go towards it.

1.8 Frequentist Verses Bayesian (Subjective) Views

Following a Google search for the terms frequentist and Bayesian (subjective),

representing the two schools of statistical thought, I quickly noted the interest in the

latter. This search produced 174,000 results for frequentist and 4,980,000 for

Bayesian. The latter etymology begins with M. G. Kendall who first used the

term to contrast with Bayesians, whom he called “non-frequentists” (Kendall

1949). Given the difference between these two schools of thought, I will provide

some discussion that will differentiate between them and provide insights to the

philosophy that substantiates them. These dominant thoughts caused the frequentist

view to overshadow the Bayesian during the first half of the twentieth century. We

see the word “Bayesian” appear in the 1950s and by the 1960s, it became the term

preferred by people who sought to escape the limitations and inconsistencies of the

frequentist approach to probability theory.

1.8.1 Frequentist to Subjectivist Philosophy

John Maynard Keynes(1921) provides a treatise on the role of the frequentist. His

chapter VIII, “The Frequency Theory of Probability” provides 17 points of insight

to the position of subjectivism, which follow:

6 1 An Introduction to Bayes’ Theorem and Bayesian Belief Networks (BBN)



• Point 1 suggests the difficulty in comparing degrees of probability of the

frequentist and offers an alternative theory.

• Point 2 suggests a link to frequentist theory back to Aristotle who stated that:

“the probability is that which for the most part happens” (p. 92). Keynes traces

the frequentist back to Leslie Ellis who he suggested invented the concept that:

“If the probability of a given event be correctly determined” . . . “the event will
on a long run of trails tend to recur with frequency proportional to their

probability” (p. 93). He also suggests that Venn, in his “Logic of Chance” was

an early adopter.

• Point 3 suggests that Venn expresses an interest in probabilities through an

empirically determined series of events and suggested that one may express

probabilities based on experience.

• Point 4 suggests a divergence of probability from frequentist statistics, as

initiated by Venn.

• Point 5 suggests that Venn’s theory is narrowly limited in his exclusion of events

that are not certain from the science of probability, which allows us to express

statements of frequency. Venn also suggests that these probabilities can be

derived either through inductive or deductive logic.

• Point 6 suggests two points where we have “induced Venn to regard judgments

based on statistical frequency” (p. 97) into the frequentist camp are subjectivity

and the inability for us to provide accurate measurements, Venn fails to discuss

these in his theory. So, they are not ruled out, if you will, as being subjective in

nature.

• Point 7 suggests then that Venn’s theory is incomplete because he admits that in

most cases we can arrive at statistical frequencies using induction.

• Point 8 suggests that Venn’s belief was that we base probabilities on statistical

frequencies alone, which are based on calculable chance. Most importantly,

Keynes brings to the discussion the concept of inverse and a posteriori
probabilities based on statistical grounds.

• Point 9 suggests that Karl Pearson agrees with Venn but only generally. He

suggests a generalized frequency theory that does not regard probability to be

identical with statistical frequency.

• Point 10 suggests the use of true proportions as a class of true frequencies as the

measure of the probability of a proportion relative to a class, which is equal to

the truth-frequency. Alternatively, that “the probability of a proportion always

depends upon referring it to some class whose truth-frequency is known within

wide or narrow limits” (p. 101). This gives rise to the idea of conditional

probability, which gives probabilities of proportions that are relative to given

data.

• Point 11 suggests criticism of frequency theory based on how one determines the

class of reference, which we cannot define as “being the class of proportions of

which everything is true is known to be true of the proportion whose

probabilities we seek to determine” (p. 103).

• Point 12 suggests a modified view of frequency theory based on the above

argument.
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• Point 13 suggests the “Additional Theorem” (p. 105) which is based on how to

derive true proportions that are “independent for knowledge” (p. 106) relative to

the given data. This points us to a theorem of “inverse probability” and the use of

a-priori knowledge.

• Point 14 suggests one can base his theory of inverse probability on inductive

reasoning.

• Points 15–17 suggest additional arguments for his inverse theory of probability.

1.8.2 Bayesian Philosophy

While Bayes is the Father of Bayesian inference, we give credit to Pierre-Simon

LaPlace for actually deriving the formula as we see it today. He transitioned

probability science from the objective to the subjective school of thought. Here,

the former purports that the statistical analysis depends only on the assumed model

and the analyzed data, and that one did not require subjective decisions. Con-

versely, the subjectivist school did not require objective analysis for hypothesis

determination. Fine (2004) reviews Joyce (2008) who suggests that Bayesian

probability interprets the concept of probability as knowledge-base or inductive

measure instead of the frequentist view of an event’s probability as the limit of its

relative frequency in a large number of trials. From the Bayesian view, the literature

presents two views that interpret states of knowledge: the objectivist and the

subjectivist school. The former is an extension of Aristotelian logic, and for

the latter, the state of knowledge corresponds to a personal belief. The dominant

feature of the Bayesian view is that one can assign a probability to a hypothesis,

which one cannot do as a frequentist. The basis of Bayes’ theorem in its simplest

form is its ability to revise previous information when one invokes it to determine

unique event revised probabilities. This statement requires a rigorous alternative

approach to probability theory. Its essence is its ability to account for observed

information when updating the unobservable. Understanding this concept is funda-

mental to learning Bayes’ theorem. Chapter 2, “A Literature Review of Bayes’
Theorem and Bayesian Belief Networks (BBN),” will discuss the evolution of

Bayes’ theorem and BBN in some detail.
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Chapter 2

A Literature Review of Bayes’ Theorem

and Bayesian Belief Networks (BBN)

2.1 Introduction to the Bayes’ Theorem Evolution1

The concept of the theorem begins with a series of publications beginning with the

“Doctrine of Chances” by Abraham de Moivre during the period of 1718–1756

(Schneider 2005). Historians have named the theorem after the Reverend Thomas

Bayes2 (1702–1761), who studied how to compute a distribution for the parameter

of a binomial distribution. His friend, Richard Price (1763), edited and presented

the work in 1763, after his death, as “An Essay towards solving a Problem in the
Doctrine of Chances” (Bayes and Price 1763). Of particular importance is his

Proposition 9. Of greater importance is Bayes’ original idea of using a “Starting

Guess” for a parameter of interest. This ignites the science of inverse probability

and the beginning of a new school of probability thought. We see the different

schools linked to philosophical approaches such as “Classical” statistics from R.A.

Fisher’s p-values and Aris Spanos Jerzy Neyman’s deductive hypothesis tests, or

the Popperian view of science that an hypothesis is made, and then it is tested and

can only be rejected or falsified, but never accepted (Lehmann 1995). The Bayesian

epistemology3 runs contrary to these schools of thought.

In 1774, Pierre-Simon LaPlace publishes his first version of inverse probability

following his study of Moivre’s “Doctrine of Chance,” presumably the 1756

version. His final rule was in the form we still use today:

P CjEð Þ ¼ P EjCð ÞPpriorðCÞP
P EjC0ð ÞPpriorðC0Þ ;

1 I obtained most of the facts on the evolution of Byes’ theorem included in Section 2.1 from

McGrayne (2011).
2 There is still debate on the true author of Bayes’ theorem. Some give the honor to Pierre-Simon

LaPlace following his 1774 publication of a similar theorem.
3 See Joyce’s comments on Bayesian epistemology for a complete discussion (Joyce 2008).

J. Grover, Strategic Economic Decision-Making: Using Bayesian Belief
Networks to Solve Complex Problems, SpringerBriefs in Statistics 9,

DOI 10.1007/978-1-4614-6040-4_2, # Springer Science+Business Media New York 2013
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where P CjEð Þ is the probability of a hypothesis C(Cause) given data or information,

which is equal to the probability of new information, P EjCð Þ times the prior

information divided by the sum of the probabilities of the data of all possible

hypotheses. In the late 1870s early 1880s, Charles Sanders Peirce championed

frequency-based probability, which launches this stream of empirical thought.

In 1881, George Chrystal challenges Laplace’s idea of the theorem4 and declares

that the laws of inverse probability are dead. Towards the end of the seventeenth

Century, we begin to see some utility of the theorem when the French mathemati-

cian and physicist Henri Poincare’ invokes the theorem during the military trial of

the Dreyfus affair of 1899 to prove the falsity of this accusation that Alfred Dreyfus,

a French army officer and Jew, was a German spy.

2.1.1 Early 1900s

In 1918, EdwardC.Molina, aNewYorkCity engineer and self-taughtmathematician,

uses the theorem to evaluate the economic value of automating the Bell telephone

system with call data to adopt a cost-effective strategy to deal with this uncertainty to

prevent a looming bankruptcy. Albert Wurts Whitney, a Berkley insurance mathe-

matics expert, uses the theorem to establish a form of social insurance with optimized

premiums.

2.1.2 1920s–1930s

In 1926, Sir Harold Jeffreys, the Father of modern Bayesian statistics, uses Bayes’

Rule to infer that the Earth’s core is liquid and Frank P. Ramsey, English mathe-

matician and philosopher, suggests making decisions under uncertainly using

personal beliefs and quantified through making a wager. In 1933, Andrey

Kolmogorov, a Soviet mathematician, suggests the use of the theorem as a method

of firing back at a German artillery bombardment of Moscow using Bertrand’s

Bayesian firing system. In 1936, Lowell J. Reed, a medical researcher at Johns

Hopkins University, uses the theorem to determine the minimum amount of radia-

tion required to cure cancer patients while causing the least amount of damage.

In 1938, Erik Essen-Möller, Swedish professor of genetics and psychiatry, develops

an index of probability for paternity testing that was mathematically equivalent to

the theorem that was in use for 50 years until the advent of DNA testing. Finally, in

1939, Harold Jeffreys, a geologist, publishes his theory of probability that uses the

theorem as the only method to conduct scientific experiments with subjective

probabilities.

4 Here after I refer to Bayes’ theorem as “the theorem.”
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2.1.3 1940s–1950s

In 1941, Alan Mathison Turning, the father of the modern computer, invents a

Bayesian system of Bankurismus using banded Banburg strips looking for “fits”

using sequential analysis to break the German secret Enigma coding machine.

In 1942, Kolmogorov introduces firing dispersion theory, which is a Bayesian

scoring system using a 50-50 guess for aiming artillery, and Alan Turing invents

Bayesian Turingismus to deduce the patterns of cams surrounding the Tunny-Lorenz

machine by using “gut feels” as prior probabilities. From 1943 to 1944, Max

Newman, a British mathematician and code-breaker, invents the Colossus I and II

machines and intercepts a message that Hitler gave Rommel ordering a delay of his

attack in Normandy. In 1945, Ian Cassels, JimmyWhitworth, and Edward Simpson,

cryptanalysts use the theorem to Break Japanese code during WWII and John

Gleason, a cryptanalyst, uses the theorem to break Russian code during the Cold

War era. In 1947, Arthur L. Baily, an insurance actuary, resurrects Bayes’ theory and

demands the legitimate use of prior probabilities making justification from the Bible

referencing one’s personal belief could make all things possible. In 1950, he reads

his work on Credibility procedures during an actuarial society banquet, citing

LaPlace’s form of the theorem and the combination of prior knowledge with

observed data. In 1951, Jerome Cornfield, a history major working at the National

Institute of Health, uses the theorem to provide a solid theoretical link that smoking

does cause cancer; allowing epidemiologists to link this disease with causes.

In 1954, Jimmie Savage, a University of Chicago statistician, publishes his revolu-

tionary book, the “Foundations of Statistics,” which extends Frank Ramsey’s

attempt to use the theorem for making inferences and decision-making. In 1955,

L.H. Longly-Cook, a chief actuary, predicts the first U.S. catastrophic aviation

disaster of two planes colliding in mid-air, which allows insurance companies to

raise rates prior to this event and Hans Bühlmann, a mathematics professor, extends

Baily’s Bayes’ philosophy and publishes a general Bayesian theory of credibility. In

1958, Albert Madansky, a statistician, writes a summary to the RANDS Corps final

report, “On the Risk of an Accidental or Unauthorized Nuclear Detonation,”
suggesting a probability greater than zero that this event could occur. Finally, in

1959, Robert Osher Schlaifer, a Harvard University’s statistician, publishes “Prob-
ability and Statistics for Business Decisions, An Introduction to Managerial Eco-
nomics under Uncertainty,” which was a first reference to endorse the theorem.

2.1.4 1960s–Mid 1980s

In 1960, Morris H. DeGroot, a practitioner, publishes the first international text on

Bayesian decision theory, Frederick Mosteller, Harvard University professor, and

David L. Wallace, University of Chicago statistician, evaluate the 12 unknown

authors of the Federalist papers using the theorem and identify Madison as the
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correct author. John W. Tukey, a Princeton statistic’s professor, predicts Nixon as

the winner of the Nixon-Kennedy presidential elections for NBC using their

mainframe computers and Bayesian like code. In 1961, Homer Warner, a pediatric

heart surgeon, develops the first computerized program for diagnosis of diseases

using the theorem and Robert Osher Schlaiter and Howard Raiffa, two Harvard

University business professors, publish “Applied Statistical Decision Theory,” a

classical work using the theorem that charters the future direction for Bayesian

theory. In 1968, John Piña Craven, civilian chief scientist, and Frank A. Andrews,

Navy Captain, (retired), use Bayesian search techniques to locate the sunken

submarine, the U.S.S. Scorpion. In 1974, Norman Carl Rasmussen, a physicist

and engineer, uses Raiffas’ decision trees (Raiffa 2012) to weigh the risks of

meltdowns in the nuclear-power industry for the U.S. Nuclear Regulatory Com-

mission (NRC) (Fienberg 2008). The NRC halts his study due to his inclusion of the

theorem but following the 1979 Three Mile Island incident; they resurrected it.

In 1975, Lawrence D. Stone, a Daniel H. Wagner Associates employee, publishes

“Theory of Optimal Search” using Bayesian techniques following his participation

in locating the U.S.S. Scorpion and the NRC gives him an invitation to publish

his findings. In 1976, Harry C. Andrews, a digital image processor, publishes his

“Digital Image Restoration.” This uses Bayes’ inference to restore nuclear weapons
testing images from activity at Los Alamos National Laboratories. Finally, in 1983,

Teledyne Energy Systems uses hierarchical methods to estimate shuttle failure at

35:1 when NASA estimated it as 100,000:1; in 1986, the Challenger explodes.

2.2 BBN Evolution

In 1985, Judea Pearl, computer scientist, publishes the seminal work on BBN,

“Bayesian Networks: A Model of Self Activated Memory for Evidential Reasoning”
(Pearl 1985) to guide the direction of BBN using discrete random variables and

distributions. The following empirical studies are representative of peer review

extensions to his work from 2005 to the present as queried through the Social

Science Citation Index Web of Science® (Reuters 2012).5

2.2.1 Financial Economics, Accounting, and Operational Risks

BBN studies in these areas include: gathering information in organizations (Calvo-

Armengol and Beltran 2009); conducting Bayesian learning in social networks

(Acemoglu et al. 2011); processing information (Zellner 2002); evaluating games

5Certain data included herein are derived from the Web of Science ® prepared by THOMSON

REUTERS ®, Inc. (Thomson®), Philadelphia, Pennsylvania, USA: # Copyright

THOMSON REUTERS ® 2012. All rights reserved.
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and economic behavior (Mannor and Shinikin 2008), and economic theory and

market collapse (Gunay 2008); determining accounting errors (Christensen 2010);

evaluating operational risk in financial institutions (Neil et al. 2009); and determin-

ing the valuation of contingent claims with mortality and interest rate risks using

mathematics and computer modeling techniques (Jalen and Mamon 2009).

2.2.2 Safety, Accident Analysis, and Prevention

BBN studies in these areas include: studying epidemiology; environmental, human

safety, injury, and in accidents, road design, and urban settings (DiMaggio and Li

2012), evaluating infant mortality, deprivation, and proximity to polluting indus-

trial facilities (Padilla et al. 2011) and human-centered safety analysis of prospec-

tive road designs (Gregoriades et al. 2010); predicting real-time crashes on the basic

freeway segments of urban expressways (Hossain and Muromachi 2012) and crash

counts by severity (Ma et al. 2008); evaluating the effects of osteoporosis on injury

risk in motor-vehicle crashes (Rupp et al. 2010); and workplace accidents caused by

falls from a height (Martin et al. 2009).

2.2.3 Engineering and Safety

BBN studies in these areas include: incorporating organizational factors into

probabilistic risk assessment of complex socio-technical systems (Mohaghegh

et al. 2009); predicting workloads for improved design and reliability of complex

systems (Gregoriades and Sutcliffe 2008b); evaluating a methodology for assessing

transportation network terrorism risk with attacker and defender interactions

(Murray-Tuite and Fei 2010); evaluating individual safety and health outcomes in

the construction industry (McCabe et al. 2008); evaluating risk and assessment

methodologies at the work sites (Marhavilas et al. 2011); quantifying schedule risk

in construction projects (Luu et al. 2009); and studying emerging technologies that

evaluated railroad transportation of dangerous goods (Verma 2011).

2.2.4 Risk Analysis

BBN studies in this area include: developing a practical framework for the

construction of a biotracing model as it applied to salmonella in the pork

slaughterchain (Smid et al. 2011); assessing and managing risks posed by emerging

diseases (Walshe and Burgman 2010); identifying alternative methods for comput-

ing the sensitivity of complex surveillance systems (Hood et al. 2009); assessing

uncertainty in fundamental assumptions and associated models for cancer risk
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assessment (Small 2008); modeling uncertainty using model performance data

(Droguett and Mosleh 2008); using Bayesian temporal source attribution to evalu-

ate foodborne zoonoses (Ranta et al. 2011); and developing of posterior probability

models in risk-based integrity modeling (Thodi et al. 2010).

2.2.5 Ecology

BBN studies in this area include: studying marine ecology to evaluate integrated

modeling tools to support risk-based decision-making in marine spatial manage-

ment (Stelzenmuller et al. 2011); integrating fuzzy cognitive mapping in a liveli-

hood vulnerability analysis (Murungweni et al. 2011); optimizing participatory

water resources management in Spain (Zorrilla et al. 2010); negotiating participa-

tory irrigation management in the Indian Himalayas (Saravanan 2010); evaluating

feral cat management options (Loyd and DeVore 2010); conducting an integrated

analysis of human impact on forest biodiversity in Latin America (Newton et al.

2009); and integrating biological, economic, and sociological knowledge to evalu-

ate management plans for Baltic salmon (Levontin et al. 2011).

2.2.6 Human Behavior

BBN studies in this area include: evaluating psychological and psychiatric factors

in decision-making on ambiguous stimuli such as prosody by subjects suffering

from paranoid schizophrenia, alcohol dependence, and without psychiatric diagno-

sis (Fabianczyk 2011); studying substance use and misuse and addiction to estimate

population prevalence from the Alcohol Use Disorders Identification Test scores

(Foxcroft et al. 2009); evaluating the role of time and place in the modeling of

substance abuse patterns following a mass trauma (Dimaggio et al. 2009); and

affective disorders on applied non-adult dental age assessment methods in

identifying skeletal remains (Heuze and Braga 2008).

2.2.7 Behavioral Sciences and Marketing

BBN studies in these areas include: (1) Behavioral Sciences: analyzing adaptive

management and participatory systems (Smith et al. 2007); evaluating human

behavior in the development of an interactive computer-based interface to support

the discovery of individuals’ mental representations and preferences in decisions

problems as they relate to traveling behavior (Kusumastuti et al. 2011); determining

semantic coherence (Fisher and Wolfe 2011); conducting a behavioral and brain

science study to evaluate base rates in ordinary people (Laming 2007); evaluating
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the implications of natural sampling in base-rate tasks (Kleiter 2007) and evaluating

a probabilistic approach to human reasoning as a précis of Bayesian rationality

(Oaksford and Chater 2009); and conducting an environmental and behavioral

study to model and measure individuals’ mental representations of complex

spatio-temporal decision problems (Arentze et al. 2008). (2) Marketing: evaluating

marketplace behavior (Allenby 2012); modeling a decision-making aid for com-

petitive intelligence and marketing analysts (Michaeli and Simon 2008); and

investigating endogeneity bias in marketing (Liu et al. 2007).

2.2.8 Decision Support Systems (DSS) with Expert Systems (ES)
and Applications, Information Sciences, Intelligent
Data Analysis, Neuroimaging, Environmental Modeling
and Software, and Industrial Ergonomics

BBN studies in these areas include: (1) DDS with ES and Applications: aiding the

diagnosis of dementia (Mazzocco and Hussain 2012); determining customer churn

analysis in the telecom industry of Turkey (Kisioglu and Topcu 2011); conducting a

customer’s perception risk analysis in new-product development (Tang et al. 2011);

assessing critical success factors for military decision support (Louvieris et al. 2010);

predicting tourism loyalty (Hsu et al. 2009); Korean box-office performance (Lee and

Chang 2009); and using data mining techniques to detect fraudulent financial

statements (Kirkos et al. 2007) and (Ngai et al. 2011). (2) Information Sciences:

evaluating affectively intelligent and adaptive car interfaces work (Nasoz et al. 2010).

(3) Intelligent Data Analysis: evaluating automatic term recognition (Wong et al.

2009) and a socio-technical approach to business process simulation (Gregoriades

and Sutcliffe 2008a). (4) Neuroimaging: conducting multi-subject analyses with

dynamic causal modeling (Kasess et al. 2010); (5) Environmental Modeling and

Software: evaluating perceived effectiveness of environmental DDS in participatory

planning using small groups of end-users (Inman et al. 2011) and modeling linked

economic valuation and catchment (Kragt et al. 2011); and (6) Industrial Ergonomics:

exploring diagnostic medicine using DDS (Lindgaard et al. 2009).

2.2.9 Cognitive Science

BBN studies in this area include: evaluating the role of coherence in multiple

testimonies (Harris and Hahn 2009) and a learning diphone-based segmentation

(Daland and Pierrehumbert 2011); evaluating the efficiency in learning and prob-

lem solving (Hoffman and Schraw 2010); evaluating the base rate scores of the

Millon Clinical Multiaxial Inventory-III (Grove and Vrieze 2009); evaluating

spatial proximity and the risk of psychopathology after a terrorist attack (DiMaggio
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et al. 2010); evaluating actuarial estimates of sexual recidivism risk (Donaldson and

Wollert 2008); and evaluating poor diagnostic reliability with sexually violent

predator evaluations (Wollert 2007).

2.2.10 Medical, Health, Dental, and Nursing

BBN studies in these areas include: (1) Medical: evaluating the risk of tuberculosis

infection for individuals lost to follow-up (Martinez et al. 2008) and assessing

differences between physicians’ realized and anticipated gains from electronic

health record adoption (Peterson et al. 2011); (2) Health: evaluating socioeconomic

inequalities in mortality in Barcelona (Cano-Serral et al. 2009); estimating

race/ethnicity and associated disparities where administrative records lack

self-reported race/ethnicity (Elliott et al. 2008); and facilitating uncertainty in

economic evaluations of patient level data (McCarron et al. 2009); (3) Dental:

combining surveillance and expert evidence of viral hemorrhagic septicemia

freedom (Gustafson et al. 2010) and investigating dentists’ and dental students’

estimates of diagnostic probabilities (Chambers et al. 2010); (4) Nursing: evaluating

affective disorders in postnatal depression screening (Milgrom et al. 2011);

estimating coronary heart disease risk in asymptomatic adults (Boo et al. 2012);

determining the efficacy of T’ai Chi (Carpenter et al. 2008); and evaluating

diagnostic test efficacy (Replogle et al. 2009).

2.2.11 Environmental Studies

BBN studies in this area include: identifying potential compatibilities and conflicts

between development and landscape conservation (McCloskey et al. 2011);

evaluating longer-term mobility decisions (Oakil et al. 2011); assessing uncertainty

in urban simulations (Sevcikova et al. 2007); modeling land-use decisions under

conditions of uncertainty (Ma et al. 2007); determining the impact of demographic

trends on future development patterns and the loss of open space in the California

Mojave Desert (Gomben et al. 2012); determining a methodology to facilitate

compliance with water quality regulations (Joseph et al. 2010); and using partici-

patory object-oriented Bayesian networks and agro-economic models for ground-

water management in Spain (Carmona et al. 2011).

2.2.12 Miscellaneous: Politics, Geriatrics, Space Policy,
and Language and Speech

BBN studies in these areas include: (1) Politics: a study evaluated partisan bias and

the Bayesian ideal in the study of public opinion (Bullock 2009); (2) Geriatrics: an

evaluation of the accuracy of spirometry in diagnosing pulmonary restriction in
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elderly people,(Scarlata et al. 2009); (3) Space Policy: the value of information

in methodological frontiers and new applications for realizing asocial benefit

(Macauley and Laxminarayan 2010); and (4) Language and Speech: include

quantified evidence in forensic authorship analysis (Grant 2007) and causal expla-

nation and fact mutability in counterfactual reasoning (Dehghani et al. 2012).

2.3 Current Government and Commercial Users of BBN

The following list represents the utility in current business, government, and

commercial users of BBN:

• Analyzing information system network risk (Staker 1999).

• Analyzing roadway safety measures (Schultz et al. 2011).

• Applications in land operations (Starr and Shi 2004).

• Building process improvement business cases (Linders 2009).

• Comparing public housing and housing voucher tenants (The U.S. Department

of Housing and Urban Development) (Mast 2012).

• Conducting social network analysis (Koelle et al. n.d.).

• Conducting unified, flexible and adaptable analysis of misuses and anomalies in

network intrusion detection and prevention systems (Bringas 2007).

• Designing food (Corney 2000).

• Evaluating the risk of erosion in peat soils (Aalders et al. 2011).

• Evaluating U.S. county poverty rates (The U.S. Census Bureau) (Asher and

Fisher 2000).

• Executing cognitive social simulation from a document corpus (The Modeling,

Virtual Environments, and Simulation Institute) (McKaughan et al. 2011).

• Identifying military clustering problem sets (BAE Systems) (Sebastiani et al.

1999).

• Identifying potential compatibilities and conflicts between development and

landscape conservation (McCloskey et al. 2011).

• Improving Attrition Rates in the M1A1/M1A2 Master Gunner Course (U.S.

Army) (Zimmerman et al. 2010).

• Investigating engineering design problems (The U.S. Department of Energy)

(Swiler 2006).

• Investigating the relationships between environmental stressors and stream

condition (Allan et al. 2012).

• Measuring the internal dosimetry of uranium isotopes (The Los Alamos National

Laboratory) (Little et al. 2003).

• Measuring neighborhood quality with survey data (The U.S. Department of

Housing and Urban Development) (Mast 2010).

• Modeling the reliability of search and rescue operations within United Kingdom

Coastguard (maritime rescue) coordination centres (Norrington et al. 2008).
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• Optimizing and parameter estimation in environmental management (Vans

1998).

• Predicting long-term shoreline change due to sea-level rise (The U.S. Geological

Survey Data Series) (Gutierrez et al. 2011).

• Predicting the impacts of commercializing non-timber forest products on

livelihoods ecology and society (Newton et al. 2006).

• Predicting the reliability of military vehicles (Neil et al. 2001).

• Ranking of datasets (U.S. Government) (Data.gov).

• Use in U.S. Government public policy and government settings including: city

growth in the areas of census-taking and small area estimation, U.S. election

night forecasting, U.S. Food and Drug Administration studies, assessing global

climate change, and measuring potential declines in disability among the elderly

(Fienberg 2011).
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Chapter 3

Statistical Properties of Bayes’ Theorem

3.1 Introduction to Statistical Terminology

This chapter provides a review of the basis statistical properties associated with

modeling BBN. I begin with a simple two Bayes’ theorem proofs to show the

conditional and unconditional relationships between them in revising the priors to

formulate a-posterior or revised a-priori probabilities. This revision process begins
with the priors, is filtered through the likelihood, joint, and marginal probabilities

and finishes with the a-posterior probabilities.

3.2 Bayes’ Theorem Proof

I present a two and three event proof of Bayes’ theorem.1 The two event proof

validates the BBN models in Chaps. 5, 6, 7, 8, 9, 10, 11, 12 and 13 and the three

event proof, the BBN model in Chap. 14.

3.2.1 A Bayes’ Theorem Proof with Two Events, A and B

Given, ðA \ BÞ ¼ ðA \ BÞ, it follows from the chain rule and conditional probability

that:

• Step 1: PðB \ AÞ ¼ PðBÞPðAjBÞ and
• Step 2: PðA \ BÞ ¼ PðAÞPðBjAÞ, then

1 These proofs only represent one path across a BBN. For example, if a BBN consists of an Event B

with two sub-elements and an Event A with two sub-elements, then there are 2 � 4 or 4 total paths.

If the Event A has three sub-elements, then there would be 2 � 3 or 6 paths, etc. For example, this

proof traces the event pathB ! A. Other paths for a 2 � 2 � 2 BBN include B! �A or �B! �A, etc.
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• Step 3: PðBÞPðAjBÞ ¼ PðAÞPðBjAÞ; where
• Step 4: PðBjAÞ ¼ PðBÞPðAjBÞ

PðAÞ ¼ PðA\BÞ
PðAÞ , Bayes’ theorem, qed.

Bolstad (2007) suggest a general form as:

PðBijAÞ ¼ PðA\BiÞ
PðAÞ ¼ PðAjBiÞPðBiÞ

Sn
j¼1PðAjBjÞPðBjÞ , where P(A) and P(B) � 0

and P(Bi) consists of mutually exclusive (disjoint) events within the universe, S.2

The elegance of this simple proof is that it allows one to transition from the truth

of an Event B given the evidence contained in Event A or from the truth contained

in Event A given the truth of Event B. Its utility in learning is that the truth

contained in the a posteriori P(B|A) becomes the a-priori truth for the next iteration

of a chained BBN.

3.2.2 A Step-by-Step Explanation of the Two Event Bayes’
Theorem Proof

I begin with setting ðA \ BÞ ¼ ðA \ BÞ and using the chain (product) rule of

probability.

Step 1: PðB \ AÞ ¼ PðBjAÞPðAÞ, using the chain rule.

Here, the joint probability of events B and A, PðB \ AÞ , is equal to the

(conditional) probability of an Event B given the simultaneously occurrence of

Event A, PðBjAÞ times the probability of an Event A, P(A).

Step 2: PðA \ BÞ ¼ PðAjBÞPðBÞ, using the chain rule.

Here, the joint probability of events A and B, PðA \ BÞ , is equal to the

(conditional) probability of an Event A given the simultaneously occurrence of

Event B, PðAjBÞ, times the probability of an Event B, P(B).

Given PðB \ AÞ ¼ PðA \ BÞ
Step 3: P BjAð Þ P Að Þ ¼ P AjBð Þ P Bð Þ where

P AjBð Þ ¼ P BjAð ÞPðAÞ
PðBÞ , and rearranging,

Step 4: P BjAð Þ ¼ P AjBð ÞPðBÞ
PðAÞ , qed.

Now, the conditional probability of Event B, given the probability of a given

Event A, P BjAð Þ is equal to the conditional probability of Event A given Event B

P AjBð Þ times the probability of Event B, P(B), divided by the probability of Event

A, P(A), which is Bayes’ theorem.

2Note the law of total probability allows us to reform P(A) into
Pn

j¼1 PðA \ BjÞ or PðAÞ ¼
Pn

j¼1 P AjBj

� �� PðBjÞ (Bolstad 2007).
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3.2.3 A Bayes’ Theorem Proof with Three Events, A, B, & C

Given, Ai \ B \ Cð Þ ¼ C \ B \ Aið Þ, it follows from the chain rule and conditional

probability that:

• Step 1: P Ai \ B \Cð Þ ¼ P AijB \Cð Þ P BjCð Þ PðCÞ; and
• Step 2: P C \ B \ Aið Þ ¼ P CjB \ Aið Þ PðBjAiÞ PðAiÞ; and
• Step 3: P AijB \ Cð Þ P BjCð Þ PðCÞ ¼ P CjB \ Aið Þ PðBjAiÞ PðAiÞ:
• Step 4: P AijB \ Cð Þ ¼ P CjB \ Aið Þ P BjAið ÞP Aið Þ

P BjCð Þ PðCÞ ¼ P CjB \ Aið Þ P B \ Aið Þ
ðB \ CÞ ¼ ðAi \ B \ CÞ

ðB \ CÞ ;

Bayes’ theorem, qed .3

To be able to use this across a BBN, we would to invoke the Law of Total

Probability for conditional events.

This done as follows:

From
P CjB \ Aið Þ P B \ Aið Þ

ðB \ CÞ , we remove the nuisance parameter B again by using

the Chain Rule of probability. We begin by reversing P B \ Aið Þ and B \ Cð Þ;
P CjB \ Aið Þ P Ai\ Bð Þ

ðC \ BÞ , and applying the Chain Rule again and eliminate P(B):

P CjB \ Aið Þ P Aj jBð ÞPðBÞ
P CjBð ÞPðBÞ . Now we apply the Law of Total Probability for conditional

events as such:

P CjBð Þ ¼
X

i

P CjB \ Aið ÞP AijBð Þ:

Expanding this we have for i ¼ A and A
�
, P CjBð Þ ¼ PðCjB \ AÞP AjBð Þþ fPðC

jB\A
�
ÞPðA

�
jBÞ.4

Now, we have: P AjB \ Cð Þ ¼ P CjB \ Aið Þ P Aj jBð Þ
PðCjB \ AÞ PðAjBÞþPðCjB \A

�ÞPðA� jBÞ
.

3.2.4 Independence and Conditional Independence Evaluation

3.2.4.1 Independence

Here is where we can test for independence. If P AjBð Þ ¼ P Að Þ or P BjAð Þ ¼ P Bð Þ,
then the two events are independent. If they are independent, then there is not a cause

and effect relationship between the events; i.e., Event A does not cause Event B.

If this is true, there is no utility in using Bayes’ theorem as a predictive tool.

3 Using this proof, using the Law of Total Probability, we are only interested in solving across two

BBN paths: A!B!C and A ̅!B!C.
4Gregory (2005) offers this as a “Usual Form” of Bayes’ Theorem.
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3.2.4.2 Conditional Independence

Here, I will show that the conditional independence property of the relationship

below is true. This relationship is one in which I condition Event A and B on an

Event C and provide a proof. I am determining if the joint probability of Events

A and B conditioned or given themarginal probability of Event C is equal to the joint

probability of Events A, B, and C divided by the marginal probability of Event C.

• Step 1: PðA \ BjCÞ ¼ PðA \ B \ CÞ
PðCÞ . Rearranging:

• Step 2: PðA \ B \ CÞ ¼ PðA \ BjCÞPðCÞ, from the chain rule:

• Step 3: PðA \ B \ CÞ¼ PðAÞ PðBjAÞ PðCjA \ BÞ. Given
• Step 4: PðA \ B \ CÞ¼ PðA \ B \ CÞ, then
• Step 5: PðA \ BjCÞ PðCÞ¼ PðAÞ PðBjAÞ PðCjA \ BÞ, and
• Step 6: PðA \ BjCÞ ¼ PðAÞPðBjAÞ PðCjA \ BÞ

PðCÞ , and from the chain rule

PðA \ BÞ ¼ PðAÞ PðBjCÞ , then

• Step 7: PðA \ BjCÞ ¼ PðA \ BÞ PðCjA \ BÞ
PðCÞ , and

• Step 8: PðA \ BjCÞ ¼ PðA \ B \ CÞ
PðCÞ , qed.

3.3 Statistical Definitions

3.3.1 Axioms of Probability

The following are three basic axioms of probability that underpin the concepts of

Bayes’ theorem and BBN: (1) chances are always at least zero (never negative),

P(A) � 0; (2) the chance that something happens in a universe is always 100%,

P([) ¼ 1; and (3) if two events cannot both occur at the same time (if they are

disjoint or mutually exclusive), the chance that either one occurs is the sum of the

chances that each occurs, PðA [ BÞ ¼ P Að Þ þ P Bð Þ. For non-mutually events this is

PðA [ BÞ ¼ P Að Þ þ P Bð Þ � PðA \ BÞ . We can derive other mathematical facts

about probability from these three axioms.

3.3.2 Bayes’ Theorem

P BjAð Þ ¼ P AjBð ÞPðBÞ
PðAÞ ;
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where the conditional probability of Event B, given the probability of a given

Event A, P BjAð Þ is equal to the conditional probability of Event A given Event B

PðAjBÞ times the probability of Event B, P(B), divided by the probability of Event

A, P(A), which is Bayes’ theorem.

3.3.3 Combinations and Permutations

Combinations. The number of combinations of n things taken k at a time is the

number of ways of picking a subset of k of the n things, without replacement, and

without regard to the order in which we select the elements of the subset. The number

of such combinations is nCk ¼ n!=ðk! n� kð Þ, where k! (pronounced “k Factorial”)
is k � (k � 1) � (k � 2) � . . . � 1. The numbers nCk are also called the Binomial
coefficients. From a set that has n elements one can form a total of 2n subsets of all

sizes. For example, from the set {a, b, c}, which has 3 elements, one can form the

23 ¼ 8 subsets {}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}. Because the number

of subsets with k elements one can form from a set with n elements is nCk, and the

total number of subsets of a set is the sum of the numbers of possible subsets of each

size, it follows that nC0þnC1þnC2 þ . . . þnCn ¼ 2n. Permutations. A permutation

of a set is an arrangement of the elements of the set in some order. If the set has n

things in it, there are N! different orderings of its elements. For the first element in an

ordering, there are n possible choices, for the second, there remain n � 1 possible

choices, for the third, there are n � 2, etc., and for the nth element of the ordering,

there is a single choice remaining. By the fundamental rule of counting, the total

number of sequences is thus n � (n � 1) � (n � 2) � . . . � 1. Similarly, the

number of orderings of length k one can form from n � k things is n � (n � 1)

� (n � 2) � . . . � (n � k + 1) ¼ n!/(n � k)!. This is denoted nPk, the number of

permutations of n things taken k at a time.

3.3.4 Conditional and Unconditional Probability

Conditional Probability. Suppose there is some interest in the probability that

some Event A occurs, and we learn that the Event B occurred. How should we

update the probability of A to reflect this new knowledge? This is what the

conditional probability does: it says how the additional knowledge that B occurred

should affect the probability that A occurred quantitatively. For example, suppose

that A and B are mutually exclusive. Then if B occurred, A did not, so the

conditional probability that A occurred given that B occurred is zero. At the other

extreme, suppose that B is a subset of A, so that A must occur whenever B does.

Then if we learn that B occurred, A must have occurred too, so the conditional

probability that A occurred given that B occurred is 100%. For in-between cases,

where A and B intersect, but B is not a subset of A, the conditional probability of A
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given B is a number between zero and one. Basically, one “restricts” the outcome

space S to consider only the part of S that is in B, because we know that B occurred.

For A to have happened given that B happened requires that AB happened, so we

are interested in the Event AB. To have a legitimate probability requires that P

(S) ¼ 100%, so if we are restricting the outcome space to B, we need to divide by

the probability of B to make the probability of this new S be 100%. On this scale,

the probability that AB happened is P(AB) / P(B). This is the definition of the

conditional probability of A given B, provided P(B) is not zero (division by zero is

undefined). Note, that the special cases AB ¼ {} (A and B are mutually exclusive)

and AB ¼ B (B is a subset of A) agree with our intuition as described at the top of

this paragraph. Conditional probabilities satisfy the axioms of probability, just as

ordinary probabilities do. Unconditional Probability. This is the probability of B

given A, which is that part of B that is also in A. When we multiply it by a scale

factor 1/P(A) it becomes a conditional probability (Bolstad (2007)).

3.3.5 Counting, Countable and Uncountable Set

Counting. To count a set of things is to put it in one to one correspondence with a

consecutive subset of the positive integers, starting with 1. Countable Set. A set is

countable if we can place its elements in one-to-one correspondence with a subset

of the integers. For example, the sets {0, 1, 7,�3}, {red, green, blue}, {. . .,�2,�1,

0, 1, 2, . . .}, {straight, curly}, and the set of all fractions, are countable. If a set is not
countable, it is uncountable. Uncountable Set. A set is uncountable if it is not

countable. The set of all real numbers is uncountable.

3.3.6 Complement and Complement Rule

Complement. The complement of a subset of a given set is the collection of all

elements of the set that are not elements of the subset. Complement Rule. This

states that the probability of the complement of an event is 100% minus the

probability of the event: P(Ac) ¼ 100% � P(A).

3.3.7 Disjoint or Mutually Exclusive Events/Sets

Events. Two events are disjoint or mutually exclusive if the occurrence of one is

incompatible with the occurrence of the other; that is, if they cannot both happen at

once (if they have no outcome in common). Equivalently, two events are disjoint if

their intersection is the empty set. Sets. Two sets are disjoint or mutually exclusive
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if they have no element in common. Equivalently, two sets are disjoint if their

intersection is the empty set.

3.3.8 Event

An event is a subset of outcome space. An event determined by a random variable

has the form A ¼ (X is in A). When we observe the random variable X, that

determines if A will occur: if the value of X is in A, A occurs; if not, A does

not occur.

3.3.9 Factorial

For an integer k that is greater than or equal to 1, k! (pronounced “k factorial”) is

k � (k � 1) � (k � 2) � . . . � 1. By convention, 0! ¼ 1. There are k! ways of
ordering k distinct objects. For example, 9! is the number of batting orders of 9

baseball players, and 52! is the number of different ways one can order a standard

deck of playing cards.

3.3.10 Intersection and Union (of Sets)

Intersection The intersection of two or more sets is the set of elements that all the

sets have in common; the elements contained in every one of the sets. The

intersection of the events A and B is written, “A \ B”. Union. The union of two

or more sets is the set of objects contained by at least one of the sets. I denote the

union of the events A and B as, “A [ B.”

3.3.11 Joint and Marginal Probability Distribution

Joint If X1, X2, . . . , Xk are random variables defined for the same experiment,

their joint probability distribution gives the probability of events determined by the

collection of random variables: for any collection of sets of numbers {A1, . . . , Ak},

the joint probability distribution determines P( (X1 is in A1) and (X2 is in A2) and

. . . and (Xk is in Ak). Marginal. The marginal probability distribution of a random

variable that has a joint probability distribution with some other random variables is

the probability distribution of that random variable without regard for the values

that the other random variables take. One can find the marginal distribution of a

discrete random variable X1 that has a joint distribution with other discrete random
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variables from the joint distribution by summing over all possible values of

the other variables. Marginalization.5 A technique in BBN when dealing with

an unknown parameter and conditional probabilities using the Total Law of

Probability. Using a three event example, we have:

PðAijB \ CÞ ¼ PðAijCÞPðBjAi \ CÞ
PðBjCÞ

Here, we can update our belief in hypothesis Ai given the additional evidence B and

the background information C. The left-hand term, PðAijB \ CÞ is the posterior

probability, or the probability ofAi after an analyst considers the effect of B given C.

The termPðAi CÞj is the prior probability ofAi given C alone. The termPðB Ai \ CÞj is

the likelihood and gives the probability of the evidence assuming the hypothesis A

and the background information C is true. Finally, the last term P(B|C) is the

expectedness, or how expected the evidence is given only C. It is independent of

Ai and an analyst can regard it as a marginalizing or scaling factor.

We can rewrite this as PðBjCÞ ¼ S
i
PðBjAi \ CÞPðAijCÞ where i denotes a

specific hypothesis Ai, and the summation is taken over a set of hypotheses which

are mutually exclusive and exhaustive (their prior probabilities sum to 1). Hebert

et al. (2007) also suggests it is important to note that all of these probabilities are

conditional in that they specify the degree of belief in some proposition or

propositions based on an initial assumption that some other propositions are true.

So, this prior determination of the probability of these previous propositions

underpins the theory.

3.3.12 Mean, Arithmetic Mean

The sum of a list of numbers, divided by the number of numbers.

3.3.13 Outcome Space

The outcome (outcome space) is the set of all possible outcomes of a given random

experiment and I will denote this by the capital letter S.

5 I derived this definition from Hebert et al. (2007).
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3.3.14 Parameter

A numerical property of a population, such as its mean.

3.3.15 Partition

A partition of an Event A is a collection of events {A1, A2, A3, . . . } such that the

events in the collection are disjoint and their union is A. That is,

AjAk ¼ {} unless j ¼ k, and A ¼ A1 [ A2 [ A3 [. . . .
If the Event A is not specified, we assume it to be the entire outcome S.

3.3.16 Population

This is a collection of studied units. Units can be people, places, objects, epochs,

drugs, procedures, or many other things. Much of statistics is concerned with

estimating numerical properties (parameters) of an entire population from a random

sample of units from the population.

3.3.17 Prior and Posterior Probabilities

See Bayes’ theorem.

3.3.18 Probability and Probability Sample

Probability The probability (chance) of an event is a real number between zero

and 100%. The meaning (interpretation) of probability is the subject of theories of

probability, which differ in their interpretations. However, any rule for assigning

probabilities to events has to satisfy the axioms of probability. Probability Sample.

A draw from a population using a random mechanism so that every element of the

population has a known chance of ending up in the sample.
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3.3.19 Product (Chain Rule)

The Chain Rule for Probability for non-zero events allows for the expansion of

members of a set of random variables from a joint distribution across any BBN

using only conditional probabilities. For example, if we have a collection of events

A1 � � � An, we can expand this as:

P An; . . . ;A1ð Þ ¼ P Anj An�1; . . . ;A1ð ÞPðAn�1; . . . ;A1Þ:

Chaining this process across a BBN creates the product:

Pð\n
k¼1 AkÞ ¼

Qn
k¼1 PðAkj \k�1

j¼1 Aj ), which is a well-known general form of

the rule.

For example: P A1 \ A2 \ A3ð Þ ¼ P A1jA2 \ A3ð Þ PðA2jA3Þ PðA3Þ.

3.3.20 Sample, Sample Space, Random Sample, Simple
Random Sample, Random Experiment (Event),
and Random Variable

Sample A sample is a collection of units from a population. Sample Space.

Each trail has as its outcome one of the elements of S, which is the set of all

possible outcomes of one single trial, which contains the universe, U, of all possible
outcomes. Random Sample. A random sample consists of members chosen at

random from a given population in such a way that one can compute the chance of

obtaining any particular sample. We name the number of units in the sample the

sample size, often denoted as n. The number of units in the population often is

denoted N. One can draw random samples with or without replacing objects

between draws; that is, drawing all n objects in the sample at once (a random

sample without replacement), or drawing the objects one at a time, replacing

them in the population between draws (a random sample with replacement). In a

random sample with replacement, any given member of the population can occur in

the sample more than once. In a random sample without replacement, any given

member of the population can be in the sample at most once. Simple Random

Sample. A simple random sample of n units from a population is a random sample

drawn by a procedure that is equally likely to give every collection of n units from

the population; that is, the probability that the sample will consist of any given

subset of n of the N units in the population is 1
n Cn . Simple random sampling is

sampling at random without replacement (without replacing the units between

draws). We can construct a simple random sample of size n from a population of

N � n units by assigning a random number between zero and one to each unit in the

population, then taking as the sample those units that this method assigned the n
largest random numbers. Random Experiment (Event). An experiment or trial
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whose outcome is not perfectly predictable, but for which the long-run relative

frequency of outcomes of different types in repeated trials is predictable. Note that

“random” is different from “haphazard,” which does not necessarily imply long-

term regularity. Random Variable. A random variable is an assignment of num-

bers to possible outcomes of a random experiment. For example, consider tossing

three coins. The number of heads showing when the coins land is a random

variable: it assigns the number 0 to the outcome {T, T, T}, the number 1 to the

outcome {T, T, H}, the number 2 to the outcome {T, H, H}, and the number 3 to

the outcome {H, H, H}.

3.3.21 Real Number

Loosely speaking, real numbers are all numbers that one can represent as fractions

(rational numbers), either proper or improper—and all numbers in between the

rational numbers. That is, the real numbers comprise the rational numbers and all

limits of Cauchy sequences of rational numbers, where the Cauchy sequence is with

respect to the absolute value metric. (More formally, the real numbers are the

completion of the set of rational numbers in the topology induced by the absolute

value function.) The real numbers contain all integers, all fractions, and all irratio-

nal (and transcendental) numbers, such as p, e, and 2½. There are uncountably

many real numbers between 0 and 1; in contrast, there are only countably many

rational numbers between 0 and 1.

3.3.22 Set, Subset, Member of a Set, and Empty Set

Set. A set is a collection of things, without regard to their order. Subset. A subset of

a given set is a collection of things that belong to the original set. Every element

of the subset must belong to the original set, but not every element of the original set

need be in a subset (otherwise, a subset would always be identical to its originating

set). Member of a Set. Something is a member (or element) of a set if it is one of

the things in the set. Empty Set. The empty set, denoted {} or Ø, is the set that has

no members.

3.3.23 Theories of Probability

A theory of probability is a way of assigning meaning to probability statements

such as “the chance that a thumb tack lands point-up is 2/3.” That is, a theory of

probability connects the mathematics of probability, which is the set of

consequences of the axioms of probability, with the real world of observation
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and experiment. There are several common theories of probability. According to the

frequency theory of probability, the probability of an event is the limit of the

percentage of times that the event occurs in repeated, independent trials under

essentially the same circumstances. According to the subjective theory of probabil-

ity, a probability is a number that measures how strongly we believe an event will

occur. The number is on a scale of 0–100%, with 0% indicating that we are

completely sure it will not occur, and 100% indicating that we are completely sure

that it will occur. According to the theory of equally likely outcomes, if an experi-

ment has n possible outcomes, and (for example, by symmetry) there is no reason

that any of these outcomes should occur preferentially to any of the others, then the

chance of each outcome is 100%/n. Each of these theories has its limitations, its

proponents, and its detractors.

3.3.24 Unit

A member of a population.

3.3.25 Venn Diagram

A Venn diagram shows the relations among sets or events using diagrams or

pictures. We usually draw the universal set or outcome space as a rectangle

where we represent sets as probability regions within this rectangle and the

overlapping regions are the intersection of the sets. If the regions do not overlap,

then we say the sets are disjoint or mutually exclusive, which represent the union of

the sets.

The Venn diagram in Fig. 3.1 is a graphical representation of a Venn diagram.

Fig. 3.1 Venn diagram representing (AUB) (left Venn diagram) and (AUBUC) (right Venn
diagram) (Obtained from Venn Diagram (n.d.))
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3.4 The Algebra of Sets

The following are a number of applicable general laws about sets that follow from

the definitions of set theoretic operations, subsets, etc.6 Stoll (1979) offers the

following two theorems:

3.4.1 Theorem 1: For Any Subsets, A, B, & C of a Set U
the Following Equations Are Identities

1. A [ ðB [ CÞ ¼ ðA [ BÞ [ C A \ ðB \ CÞ ¼ ðA \ BÞ \ C Associative law

2. A [ B ¼ B [ A A \ B ¼ B \ A Communicative law

3. A [ ðB \ CÞ ¼ ðA [ BÞ \ ðA [ CÞ A \ ðB [ CÞ ¼ ðA \ BÞ [ ðA \ CÞ Distributive law

4. A [ ;¼A A \ U¼A Identity laws

5. A [ �A ¼ U A \ �A ¼ ; Complement law

3.4.2 Theorem 2: For Any Subsets, A and B of a Set U
the Following Equations Are Identities

6. If; for all A; A [ B ¼ A; then B ¼ ; If; for all A; A \ B ¼ A;
then B ¼ U

7. A [ B ¼ UandA \ B ¼ ;; then B ¼ �A Self-dual

8. A ¼ A Self-dual

9. ; ¼ U U ¼ ; Identity law

10. A [ A ¼ A A \ A ¼ A Idempotent law

11. A [ U ¼ U A \ ; ¼ ; Identity law

12. A [ ðA \ BÞ ¼ A A \ ðA [ BÞ ¼ A Absorption law

13. A [ B ¼ A \ B A \ B ¼ A [ B DeMorgan law
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Chapter 4

Bayesian Belief Networks (BBN)

Experimental Protocol

4.1 Introduction

This chapter represents the statistical methodology I followed in formatting the

example Chaps. 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 that follow. My intent is to

present a starting point reference guide for naı̈ve researchers when exploring and

learning BBN.

4.2 BBN Experimental Protocol

This chapter provides a road map to the required statistical and probability theory

review to cover themulti-dimensional andhierarchical relationships that exist inBBN.

4.3 Characteristics of a Random Experiment

The follow-on chapters contain ten random example experiments across multiple

areas of research interest. Using the statistical definitions defined in Chap. 3,

Statistical Properties of Bayes’ Theorem, each random experiment contains two

or more events and elements where I derived the data from random sampling

techniques using Monte Carlo simulations. These examples are fictitious in nature

but do represent reality at a higher levels of thought and the techniques and

procedures I outline here can be easily adapted to similar experiments. To do

this, it is critical that researchers understand the premise of conducting the random

experiment so they can be grounded in theory. This chapter suggests a methodology

as a starting point for the follow-on chapters and in conducting subsequent inde-

pendent research.

J. Grover, Strategic Economic Decision-Making: Using Bayesian Belief
Networks to Solve Complex Problems, SpringerBriefs in Statistics 9,

DOI 10.1007/978-1-4614-6040-4_4, # Springer Science+Business Media New York 2013
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4.4 Bayes’ Research Methodology

There exists a universe of events that have actually occurred in the past that are

invisible to us. We have not seen them but we know they exist. Having a

scientific mindset, we desire to determine an acceptable truth of the proportions

that the elements of these respective events represent. We begin this process by

making an initial assumption of these proportions based on our beliefs. We then

conduct an experiment by making random draws from a population of interest to

determine these proportions. In the language of Bayes’ statistics, we refer to this

population base as the universe of all possible events in which we seek to make

their respective elements visible or known. In the Bayesian universe, we seek to

determine conditional relationships across these events. In essence the unob-

served event then becomes our “Cause” and the observable events our “Effect”

and vice versa.

In general, in doing this we seek to identify a universal set. Within this universe,

we also seek mutually exclusive (disjoint) sub-sets. The unobservable sub-set

contains the elements we desire to discover. We discover these elements by condi-

tioning the observable on the unobservable event(s) and count these frequencies of

dependencies. In essence, we are asking what is the probability of an Event B given

the evidence of an Event A, or P BjAð Þ in a BBN. Understanding this concept is

critical so that we can properly conduct these experiments.

For example, if we have a vat of white and black marbles and we desire to know

the proportional mix of each, then we could conduct a random experiment starting

with our initial belief of the mix. Let’s say out belief was that 10% of the marbles

are black. We would conduct our random draw and select a marble at random while

blind folded. This way we do not see the marble we select initially and in theory,

one out of every ten marbles is black. We take a series of random draws and

beginning with the first marble we select, we show this marble to a spotter who

identifies its true color. We are expecting the first marble to be black and the spotter

will verify (truthify) its color and then categorize it accordingly and begin the

counting process using conditional probability. Let’s say we make 100 random

draws and 95% of every one out of ten marbles were actually white, Pð ~WjWÞ, and
5.0% were actually black, Pð ~BjWÞ, and of the remaining nine out of ten marbles,

80% were actually black, Pð ~BjBÞ and 20% were actually white, or Pð ~WjBÞ. Here, we
have set us our random experiment to use for the counting process for Bayes’

theorem.1 Using the statistical properties of Bayes’ theorem developed in Chap. 3,

I will follow these steps:

1 This is the random draw method I used in the follow-on example chapters, Chaps. 5, 6, 7, 8, 9, 10,

11, 12, 13 and 14, in the book. I explain the symbology embedded in this example in detail below.
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4.5 Conducting a Bayesian Experiment

This section outlines the research methodology an analyst can follow when

conducting BBN research. I framed it using the following 11-Steps: (1) Step 1:

Identify a population of interest, (2) Step 2: Slice through this population and

identify at a minimum two mutually exclusive or disjoint (unconditional) events,

which are the subsets of our population, (3) Step 3: Determine prior (a priori) or

unconditional probabilities, (4) Step 4: Identify the conditional event and its subset

of mutually exclusive or disjoint (unconditional) elements, (5) Step 5: Conduct the

random experiment, (6) Step 6: Determine Frequency Counts, (7) Step 7: Deter-

mine Likelihood/Conditional Probabilities (Relative Frequencies), (8) Step 8:

Determine Joint Probabilities, (9) Step 9: Determine Posterior Probabilities, (10)

Step 10: Draw a Tree Diagram, and (11) Step 11: Run a Netica Replication. These

steps follow iteratively:

Step 1: Identify a population of interest. This is a collection of studied units. Units

can be people, places, objects, epochs, drugs, procedures, or many other things.

Much of statistics is concerned with estimating numerical properties (parameters) of

an entire population from a random sample of units from the population.

Step 2: Slice through this population and identify at a minimum two mutually
exclusive or disjoint (unconditional) elements, which are the subsets of our popu-
lation. This represents the disjoint elements of the unobservable event.

Step 3: Determine prior2 (a-priori) or unconditional probabilities. An analyst

determines these discrete event probabilities before conducting the experiment to

satisfy the independence requirement of Bayes’ theorem. This is a common fallacy

in the literature and researchers should not use priors they obtain from observable

events. The concept of prior information and unconditional3 probabilities is unique

and it represents how confident an analyst is in her or his initial beliefs. These priors

are subjective and represent the proportions that she or he believe exist in the

population and an analyst weight them before the experiment without looking at

the observable data counts and probabilities. I designate them using percentages as:

P(B) ¼ X% and Pð~BÞ ¼ 1� P Bð Þ , where P Bð Þ þ Pð~BÞ ¼ 100% , where, again,

Event Bi represents the unobservable event.
4

2 These priors can also be vague but we will see that they can be “washed them away” across BNN

nodes using the chain rule in Chap. 14, “Special Forces Assessment and Selection (SFAS) Two
Stage Example.” They are really just starting points in our experimental process but must always

remain independent. When we start referencing to parameter values and prior distributions, we

quickly slip into Bayesian inference techniques such as WinBugs, R, BayesiaLab, and other

MCMC software platforms.
3 See Earman (1992) for a thorough discussion (including many historical references) of the

problem of priors and other foundational controversies in Bayesian philosophy of science.
4When the observable Event B has more than two elements, B1 þ B2 þ � � � þ Bn ¼ 100%:

4.5 Conducting a Bayesian Experiment 45

http://dx.doi.org/10.1007/978-1-4614-6040-4_14


Step 4: Identify the conditional event and its subset of mutually exclusive or disjoint
(unconditional) elements. In this example, an analyst is looking for an observed event

consisting of elements she or he can slice through to identify their proportions of

outcomes.

Step 5: Conduct the random experiment. In conducting the experiment, the analyst

selects at random one of the elements of the unobservable5 event, Event Bi, based on

the a-priori probabilities identified in Step 3. Then, depending on the drawn element,

either B or ~B, she or hewill take a random sample from the observable event, EventAi,

to select either element A or ~A and assign this conditionally to obtain their initial

count. This will be done iteratively until they have obtained their desired sample size.

Step 6: Determine frequency counts. To record frequency counts, an analyst will

report these in a Frequency Count matrix as illustrated in Table 4.1. After each

repetition of the experiment, the analyst will sum across the observable and down

the unobservable event to determine totals.

Step 7: Determine likelihood/conditional probabilities (relative frequencies). The
analyst then computes relative frequencies/likelihood probabilities as conditional

based on the subjective probabilities of the unobservable event. To determine these

percentages, the analyst calculates probabilities across the sliced elements of the

observable event and then reports these results in Table 4.2, Relative Frequency/

Likelihood/Conditional Probabilities:

Step 8: Determine joint and marginal probabilities. To compute joint probabilities,

the analyst multiplies the likelihood probabilities in Table 4.2 across the observable

and unobservable events. To compute conditional (marginal) probabilities, the

analyst then sums the joint probabilities down the elements of the unobservable

event and then across the elements of the observable event, which totals 100.0%. The

analyst then reports these in Table 4.3 as joint and marginal probabilities:

Table 4.1 Frequency counts

Observable event

Unobservable event Event A Event ~A Total

Event B AjBa ~A
��B AjBþ ~A

��B

Event ~B Aj~B ~A
��~B Aj~Bþ~A

��~B

Conditional/marginal probabilities

Total AjBþAj~B ~A
��Bþ~A

��~B AjBþAj~Bþ~A
��Bþ~A

��~B

Note: These values represent the total conditional counts obtained from the sampling process. This

is a precursor to computing the likelihood probabilities. An analyst calculates totals by adding

across the observable and down the unobservable event. For example, if the count of A|B ¼ 25 and
~AjB ¼ 75, then the total ¼ 100
aA|B represents the observable count of event A given an event B

5 Since this is an unobservable event, the analyst cannot identify the elements of this set so the

conditional identification of the observable element with it allows for conduct of the counting.
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Step 9: Determine posterior probabilities. To compute posterior probabilities, the

analyst divides the joint probabilities in Table 4.3 by their respective conditional/

marginal probabilities, which totals 100%. For example, the analyst computes the

posterior probabilities for each element in the observable event by dividing them

individually by their respective conditional/marginal probabilities and then reports

these in Table 4.4 as posterior probabilities.

Step 10: Draw a tree diagram. The analyst reports posterior probabilities, which

they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 4.1.

Table 4.2 Relative frequency/likelihood/conditional probabilities

Observable event

Unobservable event P(A) P(~A) Total (%)

P(B) P AjBð Þa P ~A
��B

� �
100.0

P ~B
� �

P Aj ~B� �
P ~A

��~B
� �

100.0

Conditional/marginal probabilities

Total P AjBð Þ þ P Aj~B� �
b P Aj~B� �þ P ~A

��~B
� �

100.0

Note: These values represent relative frequencies/likelihood probabilities for the conditional

sampling that the analyst calculated using count data reported in Table 4.1. The analyst computes

the conditional/marginal probabilities by dividing the total frequency counts down the observable

event and across unobservable event using the frequency counts from Table 4.1
aP AjBð Þ ¼ AjB=ðAjBþ ~A

��BÞ � 100
bP AjBð Þ þ PðAj~BÞ ¼ ðAjBþ Aj~BÞ= ðAjBþ Aj~Bþ ~A

��Bþ ~A
��~BÞ � 100:

Table 4.3 Joint and marginal probabilities

Observable event

Unobservable

event P(A) P(~AÞ Marginal probabilities

P(B) PðA \ BÞa ¼
P AjBð ÞP Bð Þ

P ~A \ B
� � ¼ Pð ~A

��B
� �

P Bð Þ PðA \ BÞ þ P ~A \ B
� �

P ~B
� �

PðA \ ~BÞ ¼ P Aj ~B� �
P ~B
� �

P ~A \ ~B
� �¼ P ~A

��~B
� �

P ~B
� �

P A \ ~B
� �¼ P ~A \ ~B

� �

Conditional (marginal) probabilities

Total PðA \ BÞ þ PðA \ ~BÞ P ~A \ B
� �þ P ~A \ ~B

� �
100%

Notes: These values represent the joint probabilities for each observable and unobservable event

elements that the analyst calculated using prior probabilities and probabilities reported in

Table 4.2, Relative Frequency/Likelihood/Conditional Probabilities
aP(A \ B) ¼ Prior probability� P(A|B). The observable and unobservable events are dependent if

PðA \ BÞ 6¼ ½PðA \ BÞ þ PðA \ ~BÞ � PðA \ BÞ þ P ~A \ B
� ��
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Step 11: Run a netica replication.6 The analyst reports the results of the Netica (The
Norsys Software Corp7) replication of the prior, conditional, and marginal

probabilities of the BBN.

Reference

Earman, J. (1992). Bayes or bust: A critical examination of Bayesian confirmation theory.
Cambridge: MIT Press.

Table 4.4 Posterior probabilities

Observable event

Unobservable

event P(A) P( ~A)

P(B) PðA \ BÞ=P Að Þa PðA \ ~BÞ=P ð ~AÞ
P ~B
� �

Pð~A \ BÞ=P Að Þ P ~A \ ~B
� �

= P ~A
� �

Total PðA \ BÞ=P Að Þ
þPð~A \ BÞ=P Að Þ ¼ 100%

P ðA \ ~BÞ=P ð ~AÞ þ Pð~A \ ~BÞ =Pð ~AÞ ¼ 100%

Note: This represents the posterior probabilities of the elements of the observable event. The

analyst calculated them using the joint and conditional/marginal probabilities reported in Table 4.3
aPðA \ BÞ=P Að Þ ¼ PðA \ BÞ=½PðA \ BÞ þ PðA \ ~BÞ�

Likelihood Marginal Joint Posterior

P(A|B) P(A)

P(B)

P( | ) P( ) P( ∩ B) P( B)/P( )b

P( | ) P(A) P(A ∩ ) P(A ∩ )/P(A)

P( )

P( | ) P( ) P( ∩ ) P( ∩ )/P( )

P(A ∩ B) P(A∩B)/P(A)a

Fig. 4.1 Tree diagram. From Tables 4.1 through 4.4, the analyst can now trace across selected

paths in this diagram the respective likelihood, joint, and posterior probabilities of this One-

Stage BBNModel. aP Að Þ ¼ PðB \ AÞ P Að Þ þ PðB \ ~AÞ Pð~AÞ (marginal probabilities). bP ~A
� � ¼ P

ðB \ AÞ P Að Þ þ PðB \ ~AÞ Pð~AÞ(marginal probabilities)

6 By default, Netica only adds one decimal point for two-digit numbers and two decimal points for

one-digit numbers. To compensate for this, I calculated all numbers with one decimal point. Note,

there may be some rounding errors due to this.
7 See http://www.norsys.com/
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Chapter 5

Manufacturing Example*

5.1 Scenario

In this scenario, XYZ Electronics, Inc. obtains transistors from multiple companies

and stores them in an open container. The assembly department is experiencing an

above-average number of defective transistors from the deliveries of three suppliers,

Companies A, B, and C. Their concern is that these defective parts will start slowing

down assembly time in the plant and exponentially increase the cost of goods sold.

Their research question is to determine the proportions of defective and non-

defective transistors given the contributions of respective suppliers, Company A,

B, and C. Obtaining quality transistors with the minimal amount of costs would be a

benefit to the XYZ Electronics, Inc. A company analyst will evaluate this scenario

using a One-Stage Bayesian Belief Network (BBN).

5.2 Experimental Protocol

Step 1: Identify a population of interest. The population consists of the total number

of transistors produced and delivered by each of these three companies.

Step 2: slice through this population and identify at a minimum two mutually
exclusive or disjoint (unconditional) events, which are the subsets of our popula-
tion. The two disjoint elements are “Not Defective” and “Defective” transistors

from the element, “Transistor Quality.”

Step 3: Determine prior (a priori) or unconditional probabilities. Historically, ABC
Electronics, Inc. has received 28.6% defective transistors from their suppliers.

*This context of this example is from Weiers (Weiers et al. 2005).

J. Grover, Strategic Economic Decision-Making: Using Bayesian Belief
Networks to Solve Complex Problems, SpringerBriefs in Statistics 9,

DOI 10.1007/978-1-4614-6040-4_5, # Springer Science+Business Media New York 2013
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Step 4: Identify the conditional event and its subset of mutually exclusive or disjoint
(unconditional) elements. In this example, the analyst is looking for an event with

an outcome that has the capability to identify which company is supplying defective

transistors. The disjoint event is “Supplier.” The analyst will slice through Supplier

by identifying the effects following the distribution of capacitors from each of the

three companies: (1) Company A, (2) Company B, and (3) Company C, which

become the elements of this event.

Step 5: Conduct the random experiment. The analyst performs this experiment by

making random draws of Good and Defective transistors inside a storage container.

The sampling process starts with a single random draw and selection of an element

from Transistor Quality and then from Supplier and ends with the assignment of the

draw results. The analyst will continue this process until she or he has obtained

the desired sample size.

Step 6: Determine frequency counts. To record frequencies, the analyst reports

count data for further analysis. The analyst has reports these results in Table 5.1,

Frequency Counts, for 335 iterations.

Step 7: Determine likelihood/conditional probabilities (relative frequencies). The
analyst then computes relative frequencies/likelihood probabilities as conditional

probabilities based on the subjective probabilities of the Transistor Quality event.

To determine these percentages, the analyst calculates probabilities across the

sliced events of Supplier and then reports these results in Table 5.2, Relative

Frequency/Likelihood/Conditional Probabilities.

Step 8: Determine joint and marginal probabilities. To compute joint probabilities,

the analyst multiplies the likelihood probabilities in Table 5.2 across Supplier and

Transistor Quality. To compute marginal probabilities, the analyst then sums

the joint probabilities down the elements of Transistor Quality and then across the

elements of Supplier, which totals 100.0%. The analyst then reports these in

Table 5.3, Joint and Marginal Probabilities.

Step 9: Determine posterior probabilities. To compute posterior probabilities, the

analyst divides the joint probabilities in Table 5.3 by their respective marginal

probabilities, which totals 100.0%. For example, the analyst computes the posterior

probabilities for each element in Supplier by dividing them individually by their

respective marginal probabilities and then reports these in Table 5.4 as posterior

probabilities.

Table 5.1 Frequency counts

Supplier

Transistor quality Company A Company B Company C Total

Not defective 120 83 72 275a

Defective 17 12 31 60

Total 137b 95 103 335

Note: These values represent transistor quality frequency counts for each of the Supplier elements
a275 ¼ 120 + 83 + 72
b137 ¼ 120 + 17
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Table 5.3 Joint and marginal probabilities

Supplier Marginal

probabilities (%)Transistor quality Company A (%) Company B (%) Company C (%)

Not defective 31.2a 21.6 18.7 71.4c

Defective 8.1 5.7 14.7 28.6

Marginal probabilities

Total 39.3b 27.3 33.5 100.0

Notes: These values represent the joint probabilities for each Transistor Quality and Supplier

elements that the analyst calculated using prior probabilities and probabilities reported in

Table 5.2, Relative Frequency/Likelihood Probabilities. Events Supplier and Transistor Quality

are dependent as evaluated by P(Company A \ Not Defective) 6¼ P(Company A) � P(Not

Defective), 31.2% 6¼ 39.3% � 71.4% ¼ 28.1%
a31.2% ¼ 71.4% � 43.6%
b39.3% ¼ 31.2% + 8.1%
c71.4% ¼ 31.2% + 21.6% + 18.7%

Table 5.4 Posterior probabilities

Supplier

Transistor quality Company A (%) Company B (%) Company C (%)

Not defective 79.4a 79.0 55.9

Defective 20.6 21.0 44.1

Total 100.0b 100.0 100.0

Note: This represents the posterior probabilities of the elements of Supplier. The analyst calculated

them using the joint and marginal probabilities reported in Table 5.3
a79.4% ¼ 31.2%/39.3%
b100.0% ¼ 79.4% + 20.6%

Table 5.2 Relative frequency/likelihood/conditional probabilities

Supplier

Total (%)Transistor quality Company A (%) Company B (%) Company C (%)

Not defective 43.6a 30.2 26.2 100.0

Defective 28.3 20.0 51.7 100.0

Conditional probabilities

Total 40.9b 28.4 30.7 100.0

Note: These values represent transistor quality relative frequencies/likelihood/conditional

probabilities for each Supplier that the analyst calculated using count data reported in Table 5.1
a43.6% ¼ 120/275 � 100. The analyst computed the marginal probabilities by dividing the total

frequency counts down Transistor Quality and across Supplier using the frequency counts from

Table 5.1
b40.9% ¼ 137/335 � 100
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Step 10: Draw a tree diagram. The analyst reports posterior probabilities, which

they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 5.1.

Step 11: Run a netica replication. The analyst reports the results of the Netica

replication of the prior, conditional, and marginal probabilities of the BBN, which

she or he illustrates in Fig. 5.2.

Transistor Quality Company Likelihood Joint Marginal Posterior

Company A 43.6% 31.2% 39.3% 79.4%

Not Defective 71.4%
Company B 30.2% 21.6% 27.3% 79.0%

Company C 26.2% 18.7% 33.5% 55.9%

Company A 28.3% 8.1% 20.6%

Defective 28.6% Company B 20.0% 5.7% 21.0%

Company C 51.7% 14.8% 44.1%

Manufacturing Example

Fig. 5.1 Tree diagram for the manufacturing example. From Tables 5.1, 5.2, 5.3, and 5.4, the

analyst can now trace across selected paths in this diagram the respective likelihood, joint, and

posterior probabilities of this one-stage BBN model

Panel A Panel B

Transistor Quality

Not Defective
Defective

71.4
28.6

Company

Company A
Company B
Company C

39.3
27.3
33.5

Transistor Quality

Not Defective
Defective

79.0
21.0

Company

Company A
Company B
Company C

0
100

0

Fig. 5.2 This represents the Netica replication of this manufacturing example. Panel A represents

the subjective or prior probabilities (transistor quality node) and the conditional or marginal joint

probabilities (company node) (Table 5.3). Panel B represents the revised prior or posterior

probabilities when an analyst invoked the element Company B (Table 5.4). The analyst uses the

raw data inputs into the Netica un-normalized input table
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5.3 Conclusions

After conducting this experiment, the analyst has a BBN loaded with all the

available information to date. Now, there is a predictive tool to identify the next

occurrence of an event. This tool can evaluate either cause and effect (posterior)

relationships or effect and cause (inverse) relationships.

5.3.1 Posterior Probabilities

The analyst can evaluate conditional probability changes going from the effect

event, Transistor Quality, to the cause event, Company. After conducting this

experiment and priming the BBN with all available information, following the

outcome of the next Company B produced transistor, she or he could conclude that

there is a 79.0% chance that it is not defective and a 21.0% chance that it is

defective. Other events that could contribute to the updating of the posterior

probabilities of this BBN include manufacturing quality and standard, number of

parts produced, and increases in materials or labor costs.

Transistor Quality

Not Defective
Defective

 100
   0

Company

Company A
Company B
Company C

43.6
30.2
26.2

Fig. 5.3 Represents the effects on the conditional probabilities using inverse probability when the

analyst inverts the cause and effect relationship. For example in referring to Fig. 5.3, not only can

the analyst determine the probability of a unloaded dice effecting a gambler’s win or losing, P(Not

Defective|Company B) ¼ 79.0 % (Fig. 5.2), but they can also determine the percentage effect of

not detective transistors from Company B (Company A and Company C), P(Company B|Defec-

tive) ¼ 30.2 %, which are two distinct probabilities. Invoking Company or Company B will

similarly adjust these conditional probabilities
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5.3.2 Inverse Probabilities

Using inverse probabilities, the analyst can reverse the results above by evaluating

conditional probability changes going from the effect event, Transistor Quality, to

the cause event, Company. For example in referring to Fig. 5.3, not only can she or

he determine the probability of a Unloaded Dice effecting a gambler’s win or

losing, P(Not Defective|Company B) ¼ 79.0% (Fig. 5.2), but they can also deter-

mine the percentage effect of Not defective transistors from Company B (Company

A and Company C), P(Company B|Defective) ¼ 30.2%, which are two distinct

probabilities. Invoking Defective will similarly adjust these conditional

probabilities.

References
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Australia/Mason, OH: South-Western Cengage Learning.
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Chapter 6

Political Science Example

6.1 Scenario

In this scenario, an incumbent State Republican Senator obtains constituent votes

from two majority Republican counties and hopes to maintain voter confidence. The

Senator is experiencing an above-average number of party defectors from these two

counties, County A and B. The Senator’s concern is that these defectors will sway

other voters and jeopardize the upcoming elections and exponentially increase the

cost of winning these voters back. The Senator’s research question is to determine

the proportions of remaining current political affiliation. Obtaining loyal voters with

the minimal amount of costs would be a benefit to the winning strategy of the

campaign. A political analyst will evaluate this scenario using a One-Stage Bayesian

Belief Network (BBN).

6.2 Experimental Protocol

Step 1: Identify a population of interest. The population consists of the total number

of registered voters in each of the concerned counties.

Step 2: Slice through this population and identify at a minimum two mutually
exclusive or disjoint (unconditional) events, which are the subsets of our popula-
tion. The two disjoint elements are “County A” and “County B” from the element,

“County.”

Step 3: Determine prior (a priori) or unconditional probabilities. Historically, the
28.6% of the constituents in County A and 71.4% of County B have supported

the incumbent.

Step 4: Identify the conditional event and its subset of mutually exclusive or disjoint
(unconditional) elements. In this example, the analyst is looking for an event with an

outcome that can identify county constituency. The disjoint event is, “Constituency.”

J. Grover, Strategic Economic Decision-Making: Using Bayesian Belief
Networks to Solve Complex Problems, SpringerBriefs in Statistics 9,
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The analyst will slice through this event by identifying the effects following the results

of a survey that will identify these county citizens as either a Democrat or Republican,

which will become the sub-events for this event.

Step 5: Conduct the random experiment. The analyst performs this experiment by

making random draws of constituents from Counties A and B in a database. The

sampling process starts with a single random draw and selection of an element from

County and then from Political Affiliation and ends with the assignment of draw

results. The analyst will continue this process until she or he has obtained the

desired sample size.

Step 6: Determine frequency counts. To record frequencies, the analyst reports

count data for further analysis. The analyst has reports these results in Table 6.1,

Frequency Counts, for 388 iterations.

Step 7: Determine likelihood/conditional probabilities (relative frequencies). The
analyst then computes relative frequencies/likelihood/conditional probabilities as

conditional probabilities based on the subjective probabilities of the Transistor

Quality event. To determine these percentages, the analyst calculates probabilities

across the sliced events of Supplier and then reports these results in Table 6.2,

Relative Frequency/Likelihood/Conditional Probabilities.

Table 6.1 Frequency counts

Political affiliation

County Democrat Republican Total

County A 243 145 388a

County B 211 151 362

Total 454b 296 750

Note: These values represent county counts for each of the Political Affiliation elements
a388 ¼ 243 + 145
b454 ¼ 243 + 211

Table 6.2 Relative frequency/likelihood/conditional probabilities

Political affiliation

County Democrat (%) Republican (%) Total (%)

County A 62.6a 37.4 100.0

County B 58.3 41.7 100.0

Conditional probabilities

Total 60.5b 39.5 100.0

Note: These values represent county relative frequencies/likelihood/conditional probabilities for

each political affiliation that the analyst calculated using count data reported in Table 6.1
a62.6 % ¼ 120/275 � 100. The analyst computed the marginal probabilities by dividing the total

frequency counts down County and across Political Affiliation using the frequency counts from

Table 6.1
b60.5 % ¼ 454/750 � 100
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Step 8: Determine joint and marginal probabilities. To compute joint probabilities,

the analyst multiplies the likelihood probabilities in Table 6.2 across Political

Affiliation and County. To compute marginal probabilities, the analyst then sums

the joint probabilities down the elements of County and Political Affiliation, which

totals 100.0%. The analyst then reports these in Table 6.3, Joint and Marginal

Probabilities.

Step 9: Determine posterior probabilities. To compute posterior probabilities, the

analyst divides the joint probabilities in Table 6.4 by their respective marginal

probabilities, which totals 100.0%. For example, the analyst computes the posterior

probabilities for each element in Political Affiliation by dividing them individually

by their respective marginal probabilities and then reports these in Table 6.4 as

posterior probabilities.

Step 10: Draw a tree diagram. The analyst reports posterior probabilities, which

they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 6.1.

Step 11: Run a netica replication. The analyst reports the results of the Netica

replication of the prior, conditional, and marginal probabilities of the BBN, which

she or he illustrates in Fig. 6.2.

Table 6.3 Joint and marginal probabilities

Political affiliation

County Democrat (%) Republican (%) Marginal probabilities (%)

County A 17.9a 10.7 28.6c

County B 41.6 29.8 71.4

Marginal probabilities

Total 59.5b 40.5 100.0

Notes: These values represent the joint probabilities for each Country and Political Affiliation

elements that the analyst calculated using prior probabilities and probabilities reported in

Table 6.2, Relative Frequency/Likelihood/Conditional Probabilities. Events Political Affiliation

and County are dependent as evaluated by P(Democrat \ County A) 6¼ P(Democrat) � P(County

A), 17.9% 6¼ 59.5% � 28.6% ¼ 17.0%
a17.9% ¼ 28.6% � 62.6%
b59.5% ¼ 17.9% + 41.6%
c28.6% ¼ 17.9% + 10.7%

Table 6.4 Posterior probabilities

Political affiliation

County Democrat (%) Republican (%)

County A 30.1a 26.4

County B 69.9 73.6

Total 100.0b 100.0

Note: This represents the posterior probabilities of the elements of Political Affiliation. The analyst

calculated them using the joint and marginal probabilities reported in Table 6.3
a30.1% ¼ 17.9%/59.5%
b100.0% ¼ 30.1% + 69.9%
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6.3 Conclusions

After conducting this experiment, the BNN is loaded with all the available infor-

mation to date. Now, there is a predictive tool to identify the next occurrence of an

event. This tool can evaluate either cause and effect (posterior) relationships or

effect and cause (inverse) relationships.

County
Political 

Affiliation Likelihood Joint Marginal Posterior

Democrat 62.6% 17.9% 59.5% 30.1%
County A 28.6%

Republican 37.4% 10.7% 26.4%

Democrat 58.3% 41.6% 69.9%
County B 71.4%

Republican 41.7% 29.8% 40.5% 73.6%

Political Science Example

Fig. 6.1 Tree diagram for the Political Science example. From Tables 6.1, 6.2, 6.3 and 6.4, the

analyst can now trace across selected paths in this diagram the respective likelihood, joint, and

posterior probabilities of this One-Stage BBN Model

Panel A Panel B

County

County A
County B

28.6
71.4

Political Affiliation

Democrat
Republican

59.5
40.5

County

County A
County B

30.1
69.9

Political Affiliation

Democrat
Republican

100
0

Fig. 6.2 This represents the Netica replication of this Political Science example. Panel A
represents the subjective or prior probabilities (County Node) and the conditional or marginal

joint probabilities (Political Affiliation Node) (Table 6.3). Panel B represents the revised prior or

posterior probabilities when an analyst invoked the element Democrat (Table 6.4). The analyst

uses the raw data inputs into the Netica un-normalized input table
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6.3.1 Posterior Probabilities

Here, an analyst can evaluate conditional probability changes going from the effect

event, County, to the cause event, Political Affiliation. After conducting this

experiment and priming the BBN with all available information, following the

outcome of the next citizen polling and identifying a Democrat, an analyst could

conclude that there is a 30.1% chance that she or he was from County A and a

69.9% chance that she or he was from County B. Other events that could contribute

to updating the posterior probabilities of this BBN could include length of time of

their current political affiliation and conservative or liberal political views.

6.3.2 Inverse Probabilities

Using inverse probabilities, the analyst can reverse the results above by evaluating

conditional probability changes going from the effect event, County, to the cause

event, Political Affiliation. For example in referring to Fig. 6.3, not only can an analyst

determine the probability of democrats living in County B, P(County B|Democrat)

¼ 69.9% (Fig. 6.2), but she or he can also determine the percentage effect of

democrats(and republicans) living in County B, P(Democrat|County B) ¼ 58.3%,

which are two distinct probabilities. Invoking County A will similarly adjust these

conditional probabilities.

County
County A
County B

0
100

Political Affiliation
Democrat
Republican

58.3
41.7

Fig. 6.3 Represents the effects on the conditional probabilities using inverse probability when an

analyst inverts the cause and effect relationship. For example in referring to Fig. 6.3, not only can

an analyst determine the probability of democrats living in County B, P(County B|Democrat)

¼ 69.9% (Fig. 6.2), but she or he can also determine the percentage effect of democrats (and

republicans) living in County B, P(Democrat|County B) ¼ 58.3%, which are two distinct

probabilities. Invoking County A will similarly adjust these conditional probabilities
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Chapter 7

Gambling Example

7.1 Scenario

In this scenario, a casino obtains die from a custom manufacturer who ensures

fairness and issues them to employees working at tables that use these die. The

casino experiencing an above-average number of wins from its gamblers who are

either using loaded or unloaded die. Their concern is that loaded die will start

slowing eroding away the advantage of the house and increase the loss rate of the

casino. Their research question is to determine the proportions of die fairness given

the contributions of respective die. Obtaining fair die with the minimal amount of

costs would be a benefit to the casino. A casino analyst will evaluate this scenario

using a One-Stage Bayesian Belief Network (BBN).

7.2 Experimental Protocol

Step 1: Identify a population of interest. The population consists of the total number

of all die that have been thrown in the casino by all gamblers.

Step 2: Slice through this population and identify at a minimum two mutually
exclusive or disjoint (unconditional) events, which are the subsets of our population.
The two disjoint elements are “Winner” and “Loser” gamblers from the element,

“Die Randomness.”

Step 3: Determine prior (a priori) or unconditional probabilities. Historically, the
casino has experienced 50.0% of gamblers who normally win.

Step 4: Identify the conditional event and its subset of mutually exclusive or disjoint
(unconditional) elements. In this example, the analyst is looking for an event with

an outcome that can determine which gamblers are using loaded die. The disjoint

event is, “Fair Die.” The analyst will slice through Fair Die by identifying the
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effects following the play of Loaded and Unloaded Die from each of the gamblers,

which become the elements of this event.

Step 5: Conduct the random experiment. The analyst performs this experiment by

making random draws of winners and loser inside a database. The sampling process

starts with a single random draw and selection of a sub-event from Die Randomness

and then from Fair Die and ends with the assignment of the draw results. The analyst

will continue this process until she or he has obtained the desired sample size.

Step 6: Determine frequency counts. To record frequencies, the analyst reports

count data for further analysis. The analyst has reports these results in Table 7.1,

Frequency Counts, for 11 iterations.

Step 7: Determine likelihood/conditional probabilities (relative frequencies).The
analyst then computes relative frequencies/likelihood/conditional probabilities as

conditional probabilities based on the subjective probabilities of the Transistor

Quality event. To determine these percentages, the analyst calculates probabilities

across the sliced events of Supplier and then reports these results in Table 7.2,

Relative Frequency/Likelihood/Conditional Probabilities.

Table 7.1 Frequency counts

Fair die

Die randomness Loaded Unloaded Total

Winner 4 7 11a

Loser 58 49 107

Total 62b 56 118

Note: These values represent die randomness frequency counts for each of the Fair Die elements
a11 ¼ 4 + 7
b62 ¼ 4 + 58

Table 7.2 Relative frequency/likelihood/conditional probabilities

Fair die

Die randomness Loaded (%) Unloaded (%) Total (%)

Winner 36.4a 63.6 100.0

Loser 54.2 45.8 100.0

Conditional probabilities

Total 52.5b 47.5 100.0

Note: These values represent die randomness relative frequencies/likelihood/conditional

probabilities for each of the fair die that the analyst calculated using count data reported in

Table 7.1
a36.4% ¼ 4/11 � 100. The analyst computed the marginal probabilities by dividing the total

frequency counts down Transistor Quality and across Supplier using the frequency counts from

Table 7.1
b52.5% ¼ 62/118 � 100
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Step 8: Determine joint and marginal probabilities. To compute joint probabilities,

the analyst multiplies the likelihood probabilities in Table 7.2 across Die

Randomness and Fair Die. To compute marginal probabilities, the analyst then

sums the joint probabilities down the elements of Die Randomness and Fair Die,

which totals 100.0%. The analyst then reports these in Table 7.3, Joint and Marginal

Probabilities.

Step 9: Determine posterior probabilities. To compute posterior probabilities, the

analyst divides the joint probabilities in Table 7.3 by their respective marginal

probabilities, which totals 100.0%. For example, the analyst computes the posterior

probabilities for each element in Supplier by dividing them individually by their

respective marginal probabilities and then reports these in Table 7.4 as posterior

probabilities.

Step 10: Draw a tree diagram. The analyst reports posterior probabilities, which

they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 7.1.

Table 7.3 Joint and marginal probabilities

Fair die

Die randomness Loaded (%) Unloaded (%) Marginal probabilities (%)

Winner 18.2a 31.8 50.0c

Loser 27.1 22.9 50.0

Marginal probabilities

Total 45.3b 54.7 100.0

Notes: These values represent the joint probabilities for each Transistor Quality and Supplier

elements that the analyst calculated using prior probabilities and probabilities reported in

Table 7.2, Relative Frequency/Likelihood/Conditional Probabilities. Events Die Status and Die

Randomness are dependent as evaluated by P(Loaded \ Winner) 6¼ P(Loaded) � P(Winner),

18.2% 6¼ 45.3% � 50.0% ¼ 22.6%
a18.2% ¼ 50.0% � 36.4%
b45.3% ¼ 18.2% + 27.1%
c50.0% ¼ 18.2% + 31.8%

Table 7.4 Posterior probabilities

Fair die

Die randomness Loaded (%) Unloaded (%)

Winner 40.2a 58.2

Loser 59.8 41.8

Total 100.0b 100.0

Note: This represents the posterior probabilities of the elements of Fair Die. The analyst calculated

them using the joint and marginal probabilities reported in Table 7.3
a40.2% ¼ 18.2%/45.3%
b100.0% ¼ 40.2% + 59.8%
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Step 11: Run a netica replication. The analyst reports the results of the Netica

replication of the prior, conditional, and marginal probabilities of the BBN, which

she or he illustrates in Fig. 7.2.

7.3 Conclusions

After conducting this experiment, the BNN is loaded with all the available infor-

mation to date. Now, there is a predictive tool to identify the next occurrence of an

event. This tool can evaluate either cause and effect (posterior) relationships or

effect and cause (inverse) relationships.

Dice Randomness Fair Die Likelihood Joint Marginal Posterior

Loaded 36.4% 18.2% 45.3% 40.2%
Winner 50.0%

Unloaded 63.6% 31.8% 54.7% 58.2%

Loaded 54.2% 27.1% 59.8%
Loser 50.0%

Unloaded 45.8% 22.9% 41.8%

Gambling Example

Fig. 7.1 Tree diagram for the Gambling Example. From Tables 7.1, 7.2, 7.3, and 7.4, the analyst

can now trace across selected paths in this diagram the respective likelihood, joint, and posterior

probabilities of this One-Stage BBN Model

Panel A Panel B

Gambler

Loser
Winner

50.0
50.0

Fair Die

Loaded
Unloaded

45.3
54.7

Gambler

Loser
Winner

58.2
41.8

Fair Die

Loaded
Unloaded

   0
 100

Fig. 7.2 This represents the Netica replication of this Gambling example. Panel A represents the

subjective or prior probabilities (Gambler Node) and the conditional or marginal joint probabilities

(Fair Die Node) (Table 7.3). Panel B represents the revised prior or posterior probabilities when an

analyst invoked the element Unloaded (Table 7.4). The analyst uses the raw data inputs into the

Netica un-normalized input table
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7.3.1 Posterior Probabilities

Here, an analyst can evaluate conditional probability changes going from the effect

event, Gambler, to the cause event, Fair Die. After conducting this experiment and

priming the BBN with all available information, following the next gambler with

unloaded Die, an analyst could conclude that there is a 58.2% chance that she or he

will lose and a 41.8% chance that she or he will win. Other events that could

contribute to the updating of the posterior probabilities of this BBN include

bankruptcy filing of the gambler, profession, and high-risk personality traits.

7.3.2 Inverse Probabilities

Using inverse probabilities, the analyst can reverse the results above by evaluating

conditional probability changes going from the effect event, Gambler, to the cause

event, Fair Die. For example in referring to Fig. 7.3, not only can an analyst

determine the probability of Unloaded Die effecting a Winner Gambler, P(Win-

ner|Unloaded) ¼ 41.8% (Fig. 7.2), but she or he can also determine the percentage

effect on Unloaded (Loaded) given a Winner Gambler, P(Unloaded|Winner)

¼ 45.8%, which are two distinct probabilities. Invoking Loser will similarly adjust

these conditional probabilities.

Gambler
Loser
Winner

   0
 100

Fair Die
Loaded
Unloaded

54.2
45.8

Fig. 7.3 Represents the effects on the conditional probabilities using inverse probability when an

analyst inverts the cause and effect relationship. For example in referring to Fig. 7.3, not only can

an analyst determine the probability of Unloaded Die effecting a Winner Gambler, P(Winner|

Unloaded) ¼ 41.8% (Fig. 7.2), but she or he can also determine the percentage effect on Unloaded

(Loaded) given a Winner Gambler, P(Unloaded|Winner) ¼ 45.8%, which are two distinct

probabilities. Invoking Loaded will similarly adjust these conditional probabilities
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Chapter 8

Publicly Traded Company Default Example

8.1 Scenario

In this scenario, there is a concern from the Office of the Controller of the Currency

(OCC) maintains facility ratings of multinational corporations operating in the U.S.

due to potential devaluation issued of the U.S. Dollar (USD) and other global

economic issues. The OCC is noticing an above number of companies that they

improperly rate that continue as a going concern, are involved. Their concern is the

population of U.S. and Non U.S. public multinational companies (MNC) listed on

the New York Stock Exchange (NYSE) with high market capitalizations that have

great influences on the USD. Their research question is to determine the proportions

of Altman Z-Scores ratings they assign to these MNC given they remain as going

concerns, transition in merger or acquisition (M&A) activities, are dissolved, or

go bankrupt. A U.S. Government OCC analyst will evaluate this scenario using a

One-Stage Bayesian Belief Network (BBN).

8.2 Experimental Protocol

Step 1: Identify a population of interest. The population consists of the total number

of current and historical publicly traded companies listed on the NYSE.

Step 2: Slice through this population and identify at a minimum two mutually
exclusive or disjoint (unconditional) events, which are the subsets of our popula-
tion. The two disjoint elements are “Z-Scores > 3” and “Z-Scores < ¼ 3” from the

element, “Z-Score.”

Step 3: Determine prior (a priori) or unconditional probabilities. Historically, the
NYSE has experienced 5.0% of their listed publicly traded companies with

Z-Scores < ¼ 3.
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Step 4: Identify the conditional event and its subset of mutually exclusive or disjoint
(unconditional) elements. In this example, the analyst is looking for an event with

an outcome that has the capability to identify which company will transition from a

going concern. The disjoint event is “Legal Status.” The analyst will slice through

“Legal Status” by identifying companies that have: (1) continue as a going concern,

(2) filed for bankruptcy, (3) entered into an M&A activity, and (4) have simply

dissolved, which become the elements of this event.

Step 5: Conduct the random experiment. The analyst performs this experiment by

making random draws of companies with Z-Scores > 3 or Z-Scores < ¼ 3 from a

database of companies that have been listed on the NYSE. The sampling process

starts with a single random draw and selection of a sub-event from Z-Scores and then

fromHealth Status and ends with the assignment of the draw results. The analyst will

continue this process until she or he has obtained the desired sample size.

Step 6: Determine frequency counts. To record frequencies, the analyst reports

count data for further analysis. The analyst has reports these results in Table 8.1,

Frequency Counts, for 10,427 iterations.

Step 7: Determine likelihood/conditional probabilities (relative frequencies). The
analyst then computes relative frequencies/likelihood/conditional probabilities as

conditional probabilities based on the subjective probabilities of the Transistor

Quality event. To determine these percentages, the analyst calculates probabilities

across the sliced events of Supplier and then reports these results in Table 8.2,

Relative Frequency/Likelihood/Conditional Probabilities.

Step 8: Determine joint and marginal probabilities. To compute joint probabilities,

the analyst multiplies the likelihood probabilities in Table 8.2 across Z-Scores and

Health Status. To compute marginal probabilities, the analyst then sums the joint

probabilities down the elements of Z-Scores and Health Status, which totals

100.0%. The analyst then reports these in Table 8.3, Joint and

Marginal Probabilities.

Step 9: Determine posterior probabilities. To compute posterior probabilities, the

analyst divides the joint probabilities in Table 8.3 by their respective marginal

probabilities, which totals 100.0%. For example, the analyst computes the posterior

probabilities for each element in Health Status by dividing them individually by

Table 8.1 Frequency counts

Health status

Z-Scores Going concern M&A Dissolved Bankrupt Total

Z-Scores < ¼ 3 256 583 1,978 239 3,056a

Z-Scores >3 6,439 459 321 152 7,371

Total 6,695b 1,042 2,299 391 10,427

Note: These values represent z-scores frequency counts for each of the Health Status elements
a3,056 ¼ 256 + 583 + 1,978 + 239
b6,695 ¼ 256 + 6.439
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their respective marginal probabilities and then reports these in Table 8.4 as

posterior probabilities.

Step 10: Draw a tree diagram. The analyst reports posterior probabilities, which

they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 8.1.

Table 8.3 Joint and marginal probabilities

Health status

Z-Scores

Going concern

(%)

M&A

(%)

Dissolved

(%)

Bankrupt

(%)

Marginal

probabilities (%)

Z-Scores < ¼ 3 0.4a 1.0 3.2 0.4 5.0c

Z-Scores >3 83.0 5.9 4.1 2.0 95.0

Marginal probabilities

Total 83.4b 6.9 7.4 2.4 100.0

Notes: These values represent the joint probabilities for each Z-Scores and Health Status elements

that the analyst calculated using prior probabilities and probabilities reported in Table 8.2, Relative

Frequency/Likelihood/Conditional Probabilities. Events Health Status and Legal Status are depen-

dent as evaluated by P(Going Concern \ Z-Scores > 3) 6¼ P(Going Concern)� P(Z-Scores > 3),

0.4% 6¼ 83.4% � 5.0% ¼ 4.2%
a0.4% ¼ 5.0% � 8.4%
b83.4% ¼ 0.4% þ 83.0%
c5.0% ¼ 0.4% þ 1.0% þ 3.2% þ 0.4%

Table 8.2 Relative frequency/likelihood/conditional probabilities

Health status

Z-Scores Going concern (%) M&A (%) Dissolved (%) Bankrupt (%) Total (%)

Z-Scores < ¼ 3 8.4a 19.1 64.7 7.8 100.0

Z-Scores >3 87.4 6.2 4.4 2.1 100.0

Conditional probabilities

Total 64.2b 10.0 22.0 3.7 100.0

Note: These values represent Z-Scores relative frequencies/likelihood/conditional probabilities for

each Health Status category that the analyst calculated using count data reported in Table 8.1
a8.4% ¼ 256/3,056 � 100. The analyst computed the marginal probabilities by dividing the total

frequency counts down Z-Scores and across Health Status using the frequency counts from

Table 8.1
b64.2% ¼ 6,695/10,427 � 100

Table 8.4 Posterior probabilities

Health status

Z-Scores Going concern (%) M&A (%) Dissolved (%) Bankrupt (%)

Z-Scores < ¼ 3 0.5a 13.9 43.9 16.6

Z-Scores >3 99.5 86.1 56.1 83.4

Total 100.0b 100.0 100.0 100.0

Note: This represents the posterior probabilities of the elements of Health Status. The analyst

calculated them using the joint and marginal probabilities reported in Table 8.3
a0.5% ¼ 0.4%/83.4%
b100.0% ¼ 0.5% þ 99.5%
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Step 11: Run a netica replication. The analyst reports the results of the Netica

replication of the prior, conditional, and marginal probabilities of the BBN, which

she or he illustrates in Fig. 8.2.

Altman Z-Score Health Status Likelihood Joint Marginal Posterior

Going Concern 8.4% 0.4% 83.4% 0.5%

M&A 19.1% 1.0% 13.9% 13.9%
Z-Scores <= 3 5.0%

Dissolved 64.7% 3.2% 43.9% 43.9%

Bankruptcy 7.8% 0.4% 16.6% 16.6%

Going Concern 87.4% 83.0% 99.5%

M&A 6.2% 5.9% 86.1%
Z-Scores > 3 95.0%

Dissolved 4.4% 4.1% 56.1%

Bankruptcy 2.1% 2.0% 83.4%

Default Example Example

Fig. 8.1 Tree diagram for the Default Example. From Tables 8.1, 8.2, 8.3 and 8.4, the analyst can

now trace across selected paths in this diagram the respective likelihood, joint, and posterior

probabilities of this One-Stage BBN Model

Panel A Panel B

Altman Z-Score

Greater Than 3
Less Than Or Equal To 3

5.00
95.0

Health Status

Going Concern
M and A
Dissolved
Bankrupt

83.4
6.87
7.37
2.35

Altman Z-Score

Greater Than 3
Less Than Or Equal To 3

16.6
83.4

Health Status

Going Concern
M and A
Dissolved
Bankrupt

   0
   0
   0

 100

Fig. 8.2 This represents the Netica replication of this default example. Panel A represents the

subjective or prior probabilities (Altman Z-Score Node) and the conditional or marginal joint

probabilities (Health Status Node) (Table 8.3). Panel B represents the revised prior or posterior

probabilities when an analyst invoked the element Bankrupt (Table 8.4). The analyst uses the raw

data inputs into the Netica un-normalized input table
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8.3 Conclusions

After conducting this experiment, the BNN is loaded with all the available infor-

mation to date. Now, there is a predictive tool to identify the next occurrence of an

event. This tool can evaluate either cause and effect (posterior) relationships or

effect and cause (inverse) relationships.

8.3.1 Posterior Probabilities

Here, an analyst can evaluate conditional probability changes going from the effect

event, Country, to the cause event, Fatality Status. After conducting this experiment

and priming the BBN with all available information, following the next company

default or bankruptcy, an analyst could conclude there is a 16.6% chance that this

company has an Altman Z-Score < 3 and a 83.4% chance an Altman Z-Score > ¼3.

Other events that could contribute to the updating of the posterior probabilities of this

BBN include unsuccessful default on debt issues, corporate executive turnover, effects

of a recession on the country currency valuation.

Altman Z-Score

Greater Than 3
Less Than Or Equal To 3

 100
   0

Health Status

Going Concern
M and A
Dissolved
Bankrupt

8.38
19.1
64.7
7.82

Fig. 8.3 Represents the effects on the conditional probabilities using inverse probability when

an analyst inverts the cause and effect relationship. For example in referring to Fig. 8.3, not only can

an analyst determine the probability of a bankruptcy effecting an Altman Z-Score > 3, P(Z-Score

> 3|Bankruptcy) ¼ 16.6% (Fig. 8.2), but she or he can also determine the percentage effect on

Altman Z-Score > 3 (Z-Score < ¼ 3) given a Bankruptcy, P(Bankruptcy|Z-Score > 3) ¼ 7.82%,

which are two distinct probabilities. Invoking Altman Z-Score < ¼ 3 will similarly adjust these

conditional probabilities
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8.3.2 Inverse Probabilities

Using inverse probabilities, the analyst can reverse the results above by evaluating

conditional probability changes going from the effect event, Altman Z-Score, to the

cause event, Health Status. For example in referring to Fig. 8.3, not only can an

analyst determine the probability of a bankruptcy effecting an Altman Z-Score > 3,

P(Z-Score > 3|Bankruptcy) ¼ 16.6% (Fig. 8.2), but she or he can also determine

the percentage effect on Altman Z-Score > 3 (Z-Score < ¼ 3) given a Bankruptcy,

P(Bankruptcy|Z-Score > 3) ¼ 7.82%, which are two distinct probabilities. Invok-

ing Altman Z-Score < ¼ 3 will similarly adjust these conditional probabilities.
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Chapter 9

Insurance Risk Levels Example

9.1 Scenario

In this scenario, an insurance company obtains insurer risk categories for multiple

fatality status and provides insurers with respective rate quotes. The agency is

experiencing an above-average number of discounted quotes that do not hedge

the risk of respective insurers. Their concern is that these discounted quotes will

start putting pressure on general policy holders to make up for forecasted pay outs

to fatality insurers and increasing the cost of policies sold exponentially. Their

research question is to determine the proportions of age group insurance premiums

given the results of future fatality statuses. Obtaining optimal insurance pricing

with the minimal amount of costs would be a benefit to the insurance company and

its agents. An insurance actuary will evaluate this scenario using a One-Stage

Bayesian Belief Network (BBN).

9.2 Experimental Protocol

Step 1: Identify a population of interest. The population consists of the total number

of drivers that ABC Insurance Company insures.

Step 2: Slice through this population and identify at a minimum two mutually
exclusive or disjoint (unconditional) events, which are the subsets of our popula-
tion. The three disjoint elements are: “16–19,” “20–25,” and “> 25” from the

element, “Risk Category.”

Step 3: Determine prior (a priori) or unconditional probabilities. Historically, the
insurance company has reported fatality rates of 45.0% for Age Group 16–19,

35.0% for Age Group 20–25, and 20.0% for Age Group > 25 of their insurers.

Step 4: Identify the conditional event and its subset of mutually exclusive or disjoint
(unconditional) elements. In this example, the analyst is looking for an event with
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an outcome that can identify the future fatality status of an insurer. The disjoint

event is, “Fatality Status.” The analyst will slice through “Fatality Status” by

identifying the effects following speeding incidents of insurer that result in a

“Fatality” or “Non-Fatality,” which become the elements of this event.

Step 5: Conduct the random experiment. The analyst performs this experiment by

making random draws of their insured drivers in brackets of: (1) Age 16–19, (2)

Age 20–24, and (3) Age > 25 from a database. The sampling process starts with a

single random draw and selection of an element from Risk Category and then from

Fatality Status and ends with the assignment of the draw results. The analyst will

continue this process until she or he has obtained the desired sample size.

Step 6: Determine frequency counts. To record frequencies, the analyst reports

count data for further analysis. The analyst has reports these results in Table 9.1,

Frequency Counts, for 1,107 iterations.

Step 7: Determine likelihood/conditional probabilities (relative frequencies).
The analyst then computes relative frequencies/likelihood/conditional probabilities

as conditional probabilities based on the subjective probabilities of the Transistor

Quality event. To determine these percentages, the analyst calculates probabilities

across the sliced events of Supplier and then reports these results in Table 9.2,

Relative Frequency/Likelihood/Conditional Probabilities.

Step 8: Determine joint and marginal probabilities. To compute joint probabilities,

the analyst multiplies the likelihood probabilities in Table 9.2 across Fatality Status

and Risk Category. To compute marginal probabilities, the analyst then sums the

joint probabilities down the elements of Risk Category and Fatality Status, which

totals 100.0%. The analyst then reports these in Table 9.3, Joint and Marginal

Probabilities.

Step 9: Determine posterior probabilities. To compute posterior probabilities, the

analyst divides the joint probabilities in Table 9.3 by their respective marginal

probabilities, which totals 100.0%. For example, the analyst computes the posterior

probabilities for each element in Fatality Status by dividing them individually by

Table 9.1 Frequency counts

Fatality status

Risk category Fatality No fatality Total

Age 16–19 269 838 1,107a

Age 20–24 273 649 922

Age > 25 59 561 620

Total 601b 2,048 2,649

Note: These values represent risk category frequency counts for each of the

Fatality Status elements
a1,107 ¼ 269 + 838
b601 ¼ 269 + 273 + 59
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Table 9.3 Joint and marginal probabilities

Fatality status

Risk category Fatality (%) No fatality (%)

Marginal

probabilities (%)

Age 16–19 10.9a 34.1 45.0c

Age 20–24 10.4 24.6 35.0

Age > 25 1.9 18.1 80.0

Marginal probabilities

Total 23.2b 76.8 100.0

Notes: These values represent the joint probabilities for each Risk Category and

Fatality Status elements that the analyst calculated using prior probabilities and

probabilities reported in Table 9.2, Relative Frequency/Likelihood/Conditional

Probabilities. Events Fatality Status and Risk Category are dependent as

evaluated by P(Fatality \ Age 16–19) 6¼ P(Fatality) � P(Age 16), 10.9% 6¼
23.2% � 45.0% ¼ 10.4%
a10.9% ¼ 45.0% � 24.3%
b23.2% ¼ 10.9% + 10.4% + 1.9%
c45.0% ¼ 10.9% + 34.1%

Table 9.4 Posterior probabilities

Fatality status

Risk category Fatality (%) No fatality (%)

Age 16–19 47.1a 44.4

Age 20–24 44.7 32.1

Age > 25 8.2 23.6

Total 100.0b 100.0

Note: This represents the posterior probabilities of the elements of Fatality

Status. The analyst calculated them using the joint and marginal probabilities

reported in Table 9.3
a47.1% ¼ 10.9%/23.2%

Table 9.2 Relative frequency/likelihood/conditional probabilities

Fatality status Total

Risk category Fatality (%) No fatality (%) Total (%)

Age 16–19 24.3a 75.7 100.0

Age 20–24 29.6 70.4 100.0

Age > 25 9.5 90.5 100.0

Total 24.3 75.7 100.0

Conditional probabilities

Total 22.7b 77.3 100.0

Note: These values Risk Category relative frequencies/likelihood/conditional

probabilities for each Fatality Status category that the analyst calculated using

count data reported in Table 9.1
a24.3% ¼ 269/1,107� 100. The analyst computed the marginal probabilities by

dividing the total frequency counts down Risk Category and across Fatality

Status using the frequency counts from Table 9.1
b22.7% ¼ 601/2,649 � 100
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their respective marginal probabilities and then reports these in Table 9.4 as

posterior probabilities.

Step 10: Draw a tree diagram. The analyst reports posterior probabilities, which

they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 9.1.

Risk Category Fatality Status Likelihood Joint Marginal Posterior

Fatality 24.3% 10.9% 23.2% 47.1%
Age 16-19 45.0%

No Fatality 75.7% 34.1% 76.8% 44.4%

Fatality Status 29.6% 10.4% 44.7%
Age 20-24 35.0%

No Fatality 70.4% 24.6% 32.1%

Fatality 9.5% 1.9% 8.2%
Age > 25 20.0%

No Fatality 90.5% 18.1% 23.6%

Insurance Risk Levels Example

Fig. 9.1 Tree diagram for the Insurance Risk Levels example. From Tables 9.1, 9.2, 9.3 and 9.4,

the analyst can now trace across selected paths in this diagram the respective likelihood, joint, and

posterior probabilities of this One-Stage BBN Model

Panel A Panel B

Fatality Status

Fatality
No Fatality

23.2
76.8

Risk Category

Age 16 to 19
Age 20 to 24
Age Greater Than 25

45.0
35.0
20.0

Fatality Status

Fatality
No Fatality

 100
   0

Risk Category

Age 16 to 19
Age 20 to 24
Age Greater Than 25

47.1
44.7
8.20

Fig. 9.2 This represents the Netica replication of this Insurance example. Panel A represents the

subjective or prior probabilities (Risk Category Node) and the conditional or marginal joint

probabilities (Fatality Status Node) (Table 9.3). Panel B represents the revised prior or posterior

probabilities when an analyst invoked the element Fatality (Table 9.4). The analyst uses the raw

data inputs into the Netica un-normalized input table
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Step 11: Run a netica replication. The analyst reports the results of the Netica

replication of the prior, conditional, and marginal probabilities of the BBN, which

she or he illustrates in Fig. 9.2.

9.3 Conclusions

After conducting this experiment, the BNN is loadedwith all the available information

to date. Now, there is a predictive tool to identify the next occurrence of an event. This

tool can evaluate either cause and effect (posterior) relationships or effect and cause

(inverse) relationships.

9.3.1 Posterior Probabilities

Here, an analyst can evaluate conditional probability changes going from the effect

event, Risk Category, to the cause event, Fatality Status. After conducting this

experiment and priming the BBN with all available information, following the next

fatal automobile accident, an analyst could conclude there is a 47.1% chance that

this occurred in the Age 16–19 age group, a 44.7% chance in the Age 20–24 age

group, and a 8.2% chance in the Age > 25 age group. Other events that could

contribute to the updating of the posterior probabilities of this BBN include

previous arrest due to driving while intoxication, previous driving records, and

other risky lifestyle indicators.

Fatality Status

Fatality
No Fatality

24.3
75.7

Risk Category

Age 16 to 19
Age 20 to 24
Age Greater Than 25

 100
   0
   0

Fig. 9.3 Represents the effects on the conditional probabilities using inverse probability when an

analyst inverts the cause and effect relationship. For example in referring to Fig. 9.3, not only can

an analyst determine the probability of a fatality effecting an insured in Age 16–19, P(Age 16–19|

Fatality) ¼ 47.1% (Fig. 9.2), but she or he can also determine the percentage effect on Fatality (No

Fatality) given an Age 16–19 insurer, P(Fatality|Age 16–19) ¼ 24.3%, which are two distinct

probabilities. Invoking Age 20–24 and Age > 25 will similarly adjust these conditional

probabilities

9.3 Conclusions 77



9.3.2 Inverse Probabilities

Using inverse probabilities, the analyst can reverse the results above by evaluating

conditional probability changes going from the effect event, Risk Category, to the

cause event, Fatality Status. For example in referring to Fig. 9.3, not only can an

analyst determine the probability of an fatality effecting an insured in Age 16–19,

P(Age 16–19|Fatality) ¼ 47.1% (Fig. 9.2), but she or he can also determine the

percentage effect on Fatality (No Fatality) given an Age 16–19 insurer, P(Fatality|

Age 16–19) ¼ 24.3%, which are two distinct probabilities. Invoking Age 20–24 or

Age > 25 will similarly adjust these conditional probabilities.
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Chapter 10

Acts of Terrorism (AOT) Example

10.1 Scenario

In this scenario, the U.S. dollar (USD) and currencies that are pegged to the USD

continually appreciated and depreciates based on global economic conditions. The

USD pegged currencies are experiencing depreciation across a range of economic

effects due to whipsaw actions that generate 1,000 pip devaluation movements over

short periods of time. The Office of the Controller of the Currency’s (OCC) concern

is that these currencies will continue to depreciate and exponentially increase the

opportunity lost cost of these currencies in a global market place. Their research

question is to determine the proportions of country currency depreciation rates

given future economic effects. Maintaining optimal currency valuations with the

minimal amount of economic costs would be a benefit to the countries of concern.

OCC analyst will evaluate this scenario using a One-Stage Bayesian Belief Net-

work (BBN).

Step 1: Identify a population of interest.
The population consists of AOTs against Americans in France, Germany, and

Greece, historically.

The universe would consist of all AOT this country could have committed, and a

subset would be the number of attempts made against the U.S. that were either

successful or unsuccessful. To narrow down our universe, our sample population

consists of the countries of France, Germany, and Greece.

10.2 Experimental Protocol

Step 1: Identify a population of interest. The population consists of the total number

of countries of interest that have experienced AOT where Americans are present.
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Step 2: Slice through this population and identify at a minimum two mutually
exclusive or disjoint (unconditional) events, which are the subsets of our population.
The three disjoint elements are: “France,” “Germany,” and “Greece” from the

element, “Country.”

Step 3: Determine prior (a priori) or unconditional probabilities. Historically,
Department of State (DOS) has reported AOT of 21.0% in France, 59.0% in

Germany, and 20.0% in Greece from these respective embassies.

Step 4: Identify the conditional event and its subset of mutually exclusive or disjoint
(unconditional) elements. In this example, the analyst is looking for an event with

an outcome that can to cause harm to an American following an AOT. The disjoint

event becomes “AOT.” The analyst will slice through AOT by identifying the

effects following AOT that result in a “Fatality,” “Injured,” or “No Harm,” which

become the sub-events for this event.

Step 5: Conduct the random experiment. The analyst performs this experiment by

making random draws from France, Germany, and Greece from an AOT database.

The sampling process starts with a single random draw and selection of an element

from Country and then from Fatality Status and ends with the assignment of the

draw results. The analyst will continue this process until she or he has obtained the

desired sample size.

Step 6: Determine frequency counts. To record frequencies, the analyst reports

count data for further analysis. The analyst has reports these results in Table 10.1,

Frequency Counts, for 692 iterations.

Step 7: Determine likelihood/conditional probabilities (relative frequencies). The
analyst then computes relative frequencies/likelihood/conditional probabilities as

conditional probabilities based on the subjective probabilities of the Transistor

Quality event. To determine these percentages, the analyst calculates probabilities

across the sliced events of Supplier and then reports these results in Table 10.2,

Relative Frequency/Likelihood/Conditional Probabilities.

Step 8: Determine joint and marginal probabilities. To compute joint probabilities,

the analyst multiplies the likelihood probabilities in Table 10.2 across Country and

Fatality Status. To compute marginal probabilities, the analyst then sums the joint

Table 10.1 Frequency counts

Fatality status

Country Fatality Injured No harm Total

France 34 68 590 692a

Germany 12 23 650 685

Greece 21 89 495 605

Total 67b 180 1,735 1,982

Note: These values represent country frequency counts for each of the Fatality Status elements
a692 ¼ 34 + 68 + 590
b67 ¼ 34 + 12 + 21
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probabilities down the elements of Country and Fatality Status, which totals 100.0%.

The analyst then reports these in Table 10.3, Joint and Marginal Probabilities.

Step 9: Determine posterior probabilities. To compute posterior probabilities, the

analyst divides the joint probabilities in Table 10.3 by their respective marginal

probabilities, which totals 100.0%. For example, the analyst computes the posterior

probabilities for each element in Fatality Status by dividing them individually by

their respective marginal probabilities and then reports these in Table 10.4 as

posterior probabilities.

Step 10: Draw a tree diagram. The analyst reports posterior probabilities, which

they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 10.1.

Table 10.2 Relative frequency/likelihood/conditional probabilities

Fatality status

Country Fatality (%) Injured (%) No harm (%) Total (%)

France 4.9a 9.8 85.3 100.0

Germany 1.8 3.4 94.9 100.0

Greece 3.5 14.7 81.8 100.0

Total 4.9 9.8 85.3 100.0

Conditional Probabilities

Total 3.4b 9.1 87.5 100.0

Note: These values represent country relative frequencies/likelihood/conditional probabilities for

each fatality status category that the analyst calculated using count data reported in Table 10.1
a4.9% ¼ 34/692 � 100. The analyst computed the marginal probabilities by dividing the total

frequency counts down Transistor Quality and across Supplier using the frequency counts from

Table 10.1
b3.4% ¼ 67/1,982 � 100

Table 10.3 Joint and marginal probabilities

Fatality status

Country Fatality (%) Injured (%) No harm (%) Marginal probabilities (%)

France 1.0a 2.1 17.9 21.0b

Germany 1.0 2.0 56.0 59.0

Greece 0.7 2.9 16.4 80.0

Marginal Probabilities

Total 2.8c 7.0 90.3 100.0

Notes: These values represent the joint probabilities for each Country and Fatality Status elements

that the analyst calculated using prior probabilities and probabilities reported in Table 10.2,

Relative Frequency/Likelihood/Conditional Probabilities. Events Fatality Status and Country

are dependent as evaluated by P(Fatality \ France) 6¼ P(Fatality) � P(France), 1.3% 6¼ 2.8%

� 21.0% ¼ 0.6%
a1.0% ¼ 21.0% � 4.9%
b21.0% ¼ 1.0% + 2.1% + 17.9%
c2.8% ¼ 1.0% + 1.0% + 0.7%
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Step 11: Run a netica replication. The analyst reports the results of the Netica

replication of the prior, conditional, and marginal probabilities of the BBN, which

she or he illustrates in Fig. 10.2.

Table 10.4 Posterior probabilities

Fatality status

Country Fatality (%) Injured (%) No harm (%)

France 37.4a 29.5 19.8

Germany 37.5 28.4 62.0

Greece 25.2 42.1 18.1

Total 100.0b 100.0 100.0

Note: This represents the posterior probabilities of the elements of Fatality Status. The analyst

calculated them using the joint and marginal probabilities reported in Table 10.3
a37.4% ¼ 1.0%/2.8%
b100.0% ¼ 37.4% + 37.5% + 25.2%

Country Fatality Status Likelihood Joint Marginal Posterior

Fatality 4.9% 1.0% 2.8% 37.4%

France 21.0%

Injured 9.8% 2.1% 7.0% 29.5%

No Harm 85.3% 17.9% 90.3% 19.8%

Fatality 1.8% 1.0% 37.5%

Germany 59.0%

Injured 3.4% 2.0% 28.4%

No Harm 94.9% 56.0% 62.0%

Fatality 3.5% 0.7% 25.2%

Greece 20.0% Injured 14.7% 2.9% 42.1%

No Harm 81.8% 16.4% 18.1%

Acts of Terrorism Example

Fig. 10.1 Tree diagram for the AOTs example. From Tables 10.1, 10.2, 10.3 and 10.4, the analyst

can now trace across selected paths in this diagram the respective likelihood, joint, and posterior

probabilities of this One-Stage BBN Model
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10.3 Conclusions

After conducting this experiment, the BNN is loaded with all the available infor-

mation to date. Now, there is a predictive tool to identify the next occurrence of an

event. This tool can evaluate either cause and effect (posterior) relationships or

effect and cause (inverse) relationships.

10.3.1 Posterior Probabilities

Given a fully saturated model containing all available information, an analyst can

evaluate conditional probability changes going from the cause event, Fatality

Status, to the effect event, Country. After conducting this experiment and priming

the BBN with all available information, following the next AOT when an American

citizen becomes a fatality, an analyst could conclude there is a 37.4% chance that

this occurred in France, a 37.5% chance in Germany, and a 25.2% chance in

Greece. An analyst can obtain similar revised probabilities for Injured and No

Harm outcomes. Other events that could contribute to updating the posterior

probabilities of this BBN could include unrest, economic embargos, and revenge

attacks.

Panel A Panel B

Country

France
Germany
Greece

21.0
59.0
20.0

Fatality Status

Fatality
Injured
No Harm

2.76
6.99
90.3

Country

France
Germany
Greece

37.4
37.5
25.2

Fatality Status

Fatality
Injured
No Harm

 100
   0
   0

Fig. 10.2 This represents the Netica replication of this AOT example. Panel A represents the

subjective or prior probabilities (Country Node) and the conditional or marginal joint probabilities

(Fatality Status Node) (Table 10.3). Panel B represents the revised prior or posterior probabilities

when an analyst invoked the element Fatality (Table 10.4). The analyst uses the raw data inputs

into the Netica un-normalized input table
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10.3.2 Inverse Probabilities

Using inverse probabilities, the analyst can reverse the results above by evaluating

conditional probability changes going from the effect event, Country, to the cause

event, Fatality Status. For example in referring to Fig. 10.3, not only can an analyst

determine the probability of an fatality effecting an American in France, P(France|

Fatality) ¼ 37.4% (Fig. 10.2), but she or he can also determine the percentage

effect on Fatality (Injured and No Harm) given an AOT in France, P(Fatality|

France) ¼ 4.91%, which are two distinct probabilities. Invoking Germany or

Greece will similarly adjust these conditional probabilities.
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Country

France
Germany
Greece

 100
   0
   0

Fatality Status

Fatality
Injured
No Harm

4.91
9.83
85.3

Fig. 10.3 Represents the effects on the conditional probabilities using inverse probability when an

analyst inverts the cause and effect relationship. For example, in referring to Fig. 10.3, not only can

an analyst determine the probability of a fatality effecting an American in France, P(France|

Fatality) ¼ 37.4% (Fig. 10.2), but she or he can also determine the percentage effect on Fatality

(Injured and No Harm) given an AOT in France, P(Fatality|France) ¼ 4.91%, which are two

distinct probabilities. Invoking Germany and Greece will similarly adjust these conditional

probabilities

84 10 Acts of Terrorism (AOT) Example



Chapter 11

Currency Wars Example*

11.1 Scenario

In this scenario, the U.S. dollar (USD) and currencies that are pegged to the USD

continually appreciated and depreciates based on global economic conditions. The

USD pegged currencies are experiencing depreciation across a range of economic

effects due to whipsaw actions that generate 1,000 pip devaluation movements over

short periods of time. The Office of the Controller of the Currency’s (OCC) concern

is that these currencies will continue to depreciate and exponentially increase the

opportunity lost cost of these currencies in a global market place. Their research

question is to determine the proportions of country currency depreciation rates

given economic effects. Maintaining optimal currency valuations with the minimal

amount of economic costs would be a benefit to the countries of concern. The OCC

analyst will evaluate this scenario using a Bayesian Belief Network (BBN).

11.2 Experimental Protocol

Step 1: Identify a population of interest. The population consists of the total number

of weekly price movements greater than or equal to 1,000 pips during a 10-year

period.

Step 2: Slice through this population and identify at a minimum two mutually
exclusive or disjoint (unconditional) events, which are the subsets of our popula-
tion. There are two disjoint elements are the following currency pairs: USD/CHF,

USD/JPY, and EUR/USD.

*The idea of a currency war comes from Rickard (Rickard 2012). I obtained date from the OANDA

website (OANDA 2012).
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Step 3: Determine prior (a priori) or unconditional probabilities. Historically, this
basket of currencies has experiences the following pip movement mix: (1) USD/

CAD, 22.0%, (2) EUR/USD, 36.0%, and (3) USD/JPY, 42.0%.1

Step 4: Identify the conditional event and its subset of mutually exclusive or disjoint
(unconditional) elements. In this example, the analyst is looking for events can

cause pip whipsaw movements in excess of 1,000 pips in a week. The disjoint event

is “Economic Event.” The analyst would slice through Economic Event by

identifying the effects following the following events: (1) Natural Disasters, (2)

Assassinations, and (3) National Bank Interventions, which become the elements of

this event.

Step 5: Conduct the random experiment. The analyst performs this experiment by

making random draws of currency pairs: (1) USD/CAD, (2) EUR/USD, and (3)

USD/JPY from a database. The sampling process starts with a single random draw

and selection of an element from Currency Pair and then from Economic Event and

ends with the assignment of the draw results. The analyst will continue this process

until she or he has obtained the desired sample size.

Step 6: Determine frequency counts. To record frequencies, the analyst reports

count data for further analysis. The analyst has reports these results in Table 11.1,

Frequency Counts, for 15 iterations.

Step 7: Determine likelihood/conditional probabilities (relative frequencies). The
analyst then computes relative frequencies/likelihood/conditional probabilities as

conditional probabilities based on the subjective probabilities of the Transistor

Quality event. To determine these percentages, the analyst calculates probabilities

across the sliced events of Supplier and then reports these results in Table 11.2,

Relative Frequency/Likelihood/Conditional Probabilities.

Step 8: Determine joint and marginal probabilities. To compute joint probabilities,

the analyst multiplies the likelihood probabilities in Table 11.2 across Currency

Table 11.1 Frequency counts

Economic effects

Currency pair

Natural

disaster Assassination National bank intervention Total

USD/CAD 4 3 8 15a

EUR/USD 2 5 8 15

USD/JPY 8 2 7 17

Total 14b 10 23 47

Note: These values represent currency pair frequency counts for each of the Economic Effects

elements
a25 ¼ 4 + 3 + 8
b14 ¼ 4 + 2 + 8

1 I obtained currency data from: http://www.oanda.com/.
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Pair and Economic Event. To compute marginal probabilities, the analyst then sums

the joint probabilities down the elements of Currency Pair and Economic Events,

which totals 100.0%. The analyst then reports these in Table 11.3, Joint and

Marginal Probabilities.

Step 9: Determine posterior probabilities. To compute posterior probabilities, the

analyst divides the joint probabilities in Table 11.3 by their respective marginal

probabilities, which totals 100.0%. For example, the analyst computes the posterior

probabilities for each element in Economic Event by dividing them individually by

Table 11.2 Relative frequency/likelihood/conditional probabilities

Economic event

Currency pair Natural disaster (%) Assassination (%) National bank intervention (%)

Total

(%)

USD/CAD 26.7a 20.0 53.3 100.0

EUR/USD 13.3 33.3 53.3 100.0

USD/JPY 47.1 11.8 41.2 100.0

Conditional probabilities

Total 29.8b 21.3 48.9 100.0

Note: These values represent currency pairs’ relative frequencies/likelihood/conditional

probabilities for each economic event that the analyst calculated using count data reported in

Table 11.1
a26.7% ¼ 4/15 � 100. The analyst computed the marginal probabilities by dividing the total

frequency counts down Transistor Quality and across Supplier using the frequency counts from

Table 11.1
b29.8% ¼ 14/47 � 100

Table 11.3 Joint and marginal probabilities

Economic event

Currency

pair

Natural disaster

(%)

Assassination

(%)

National bank intervention

(%)

Marginal

probabilities (%)

USD/CAD 5.9a 4.4 11.7 22.0b

EUR/USD 4.8 12.0 19.2 36.0

USD/JPY 19.8 4.9 17.3 58.0

Marginal probabilities

Total 30.4c 21.3 48.2 100.0

Notes: These values represent the joint probabilities for each Currency Pair and Economic Event

elements that the analyst calculated using prior probabilities and probabilities reported in

Table 11.2, Relative Frequency/Likelihood/Conditional Probabilities. Events Economic Event

and Currency Pair are dependent as evaluated by P(Natural Disaster \ USD/CAD) 6¼ P(Natural

Disaster) � P(USD/CAD), 5.9% 6¼ 30.4% � 22.0% ¼ 6.7%
a5.9% ¼ 22.0% � 22.7%
b22.0% ¼ 5.9% + 4.40% + 11.7%
c30.4% ¼ 5.9% + 4.8% + 19.8%
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their respective marginal probabilities and then reports these in Table 11.4 as

posterior probabilities.

Step 10: Draw a tree diagram. The analyst reports posterior probabilities, which

they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 11.1.

Table 11.4 Posterior probabilities

Economic event

Currency pair Natural disaster (%) Assassination (%) National bank intervention (%)

USD/CAD 19.3a 20.6 24.3

EUR/USD 15.8 56.2 39.8

USD/JPY 64.9 23.2 35.9

Total 100.0b 100.0 100.0

Note: This represents the posterior probabilities of the elements of Economic Event. The analyst

calculated them using the joint and marginal probabilities reported in Table 11.3
a19.3% ¼ 5.9%/30.4%
b100.0% ¼ 19.3% + 15.8% + 64.9%

Currency Pair Economic Event Likelihood Joint Marginal Posterior

Natural Disaster 26.7% 5.9% 30.4% 19.3%
USD/CAD 22.0%

Assasination 20.0% 4.4% 21.3% 20.6%

National Bank Intervention 53.3% 11.7% 48.2% 24.3%

Natural Disaster 13.3% 4.8% 15.8%

EUR/USD 36.0% Assasination 33.3% 12.0% 56.2%

National Bank Intervention 53.3% 19.2% 39.8%

Natural Disaster 47.1% 19.8% 64.9%

USD/JPY 42.0% Assasination 11.8% 4.9% 23.2%

National Bank Intervention 41.2% 17.3% 35.9%

Currency Wars Example

Fig. 11.1 Tree diagram for the Currency Wars example. From Tables 11.1, 11.2, 11.3 and11.4,

the analyst can now trace across selected paths in this diagram the respective likelihood, joint, and

posterior probabilities of this One-Stage BBN Model
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Step 11: Run a netica replication. The analyst reports the results of the Netica

replication of the prior, conditional, and marginal probabilities of the BBN, which

she or he illustrates in Fig. 11.2.

11.3 Conclusions

After conducting this experiment, the BNN is loaded with all the available infor-

mation to date. Now, there is a predictive tool to identify the next occurrence of an

event. This tool can evaluate either cause and effect (posterior) relationships or

effect and cause (inverse) relationships.

11.3.1 Posterior Probabilities

Here, an analyst can evaluate conditional probability changes going from the effect

event, Currency Pair, to the cause event, Economic Event. After conducting this

experiment and priming the BBN with all available information, if the next 1,000

pip movement is caused by an assassination, then she or he could conclude there is a

26.1% chance that it will affect the USD/CAD pair, a 56.2% the EUR/USD pair,

and a 23.2% the USD/JPY pair. Other events that could contribute to the updating

of the posterior probabilities of this BBN include county inflation rates and the

release of new economic data.

Panel A Panel B

Currency Pair

USD CAD
EUR USD
USD JPY

22.0
36.0
42.0

Economic Event

Natural Disaster
Assasination
National Bank Intervention

30.4
21.3
48.2

Currency Pair

USD CAD
EUR USD
USD JPY

20.6
56.2
23.2

Economic Event

Natural Disaster
Assasination
National Bank Intervention

   0
 100

   0

Fig. 11.2 This represents the Netica replication of this Currency Wars example. Panel A
represents the subjective or prior probabilities (Currency Pair Node) and the conditional or

marginal joint probabilities (Economic Event Node) (Table 11.3). Panel B represents the revised

prior or posterior probabilities when an analyst invoked the element Assassination (Table 11.4).

The analyst uses the raw data inputs into the Netica un-normalized input table
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11.3.2 Inverse Probabilities

Using inverse probabilities, an analyst can reverse the results above by evaluating

conditional probability changes going from the effect event, Currency Pair, to the

cause event, Economic Event. For example in referring to Fig. 11.3, not only can an

analyst determine the probability of an assassination effecting a 1,000 pip currency

movement, P(EUR/USD|Assassination) ¼ 20.6% (Fig. 11.2), but she or he can also

determine the percentage effect on Assassination (Natural Disaster and National

Bank Intervention) given a 1,000 pip movement in the EUR/USD pair, P(Assassi-

nation|EUR/USD) ¼ 33.3%, which are two distinct probabilities. Invoking USD/

CAD and USD/JPY will similarly adjust these conditional probabilities.
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Currency Pair

USD CAD
EUR USD
USD JPY

   0
 100

   0

Economic Event

Natural Disaster
Assasination
National Bank Intervention

13.3
33.3
53.3

Fig. 11.3 Represents the effects on the conditional probabilities using inverse probability when an

analyst inverts the cause and effect relationship. For example in referring to Fig. 11.3, not only can

an analyst determine the probability of an assassination effecting a 1,000 pip currency movement,

P(EUR/USD|Assassination) ¼ 20.6% (Fig. 11.2), but she or he can also determine the percentage

effect on Assassination (Natural Disaster and National Bank Intervention) given a 1,000 pip

movement in the EUR/USD pair, P(Assassination|EUR/USD) ¼ 33.3%, which are two distinct

probabilities. Invoking USD/CAD and USD/JPY will similarly adjust these conditional

probabilities
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Chapter 12

College Entrance Exams Example

12.1 Scenario

In this scenario, a university obtains freshmen students based on multiple with

American College Testing (ACT) score levels. The admissions department is

experiencing an above-average number of freshmen dropouts across each level of

ACT scores. Their concern is that these freshmen will continue to drop out and

exponentially increase the opportunity lost cost of these students and also send a

signal to the accreditation authority of possible creditability issues. Their research

question is to determine the proportions of freshman maturation given the levels of

ACT scores. Obtaining quality freshman with the minimal amount of costs would

be a benefit to the university. A university analyst will evaluate this scenario using a

One-Stage Bayesian Belief Network (BBN).

12.2 Experimental Protocol

Step 1: Identify a population of interest. The population consists of the total number

of freshmen whom the university has historically accepted.

Step 2: Slice through this population and identify at a minimum two mutually
exclusive or disjoint (unconditional) events, which are the subsets of our popula-
tion. There are two disjoint elements are “Graduate” and “Non-Graduate” freshmen

from the element, “Freshman Status.”

Step 3: Determine prior (a priori) or unconditional probabilities. Historically, the
85.0% of Freshman who have been accepted and started have graduated in 4 years.

Step 4: Identify the conditional event and its subset of mutually exclusive or disjoint
(unconditional) elements. In this example, the analyst is looking for an event with

an outcome that can determine which entering freshman would actually graduate in

4 years. The analyst disjoint event is “ACT Scores.” The analyst will slice through
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ACT Scores by identifying the effects from ACT score ranges of (1) Level 1, (2)

Level 2, and (3) Level 3, which become the elements of this event.

Step 5: Conduct the random experiment. The analyst performs this experiment by

making random draws of Graduates and Non-Graduates from a database. The

sampling process starts with a single random draw and selection of an element

from Freshman Status and then from ACT Scores and ends with the assignment of

the draw results. The analyst will continue this process until she or he has obtained

the desired sample size.

Step 6: Determine frequency counts. To record frequencies, the analyst reports

count data for further analysis. The analyst has reports these results in Table 12.1,

Frequency Counts, for 459 iterations.

Step 7: Determine likelihood/conditional probabilities (relative frequencies). The
analyst then computes relative frequencies/likelihood/conditional probabilities as

conditional probabilities based on the subjective probabilities of the Transistor

Quality event. To determine these percentages, the analyst calculates probabilities

across the sliced events of Supplier and then reports these results in Table 12.2,

Relative Frequency/Likelihood/Conditional Probabilities.

Table 12.1 Frequency counts

ACT scores

Freshman status Level 1 Level 2 Level 3 Total

Graduate 369 52 38 459a

Non graduate 83 58 26 167

Total 452b 110 64 626

Note: These values represent transistor freshman status frequency counts for each of the ACT

Scores elements
a459 ¼ 369 + 52 + 38
b452 ¼ 369 + 83

Table 12.2 Relative frequency/likelihood/conditional probabilities

ACT scores

Freshman status Level 1 (%) Level 2 (%) Level 3 (%) Total (%)

Graduate 80.4a 11.3 8.3 100.0

Non graduate 49.7 34.7 15.6 100.0

Conditional probabilities

Total 72.2b 34.7 10.2 100.0

Note: These values represent freshman status relative frequencies/likelihood/conditional

probabilities for each ACT Score that the analyst calculated using count data reported in

Table 12.1
a80.4% ¼ 369/459 � 100. The analyst computed the marginal probabilities by dividing the total

frequency counts down Transistor Quality and across Supplier using the frequency counts from

Table 12.1
b72.2% ¼ 452/426 � 100
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Step 8: Determine joint and marginal probabilities. To compute joint probabilities,

the analyst multiplies the likelihood probabilities in Table 12.2 across Freshman

Status and ACT Scores. To compute marginal probabilities, the analyst then sums

the joint probabilities down the elements of Freshman Status and ACT Scores,

which totals 100.0%. The analyst then reports these in Table 12.3, Joint and

Marginal Probabilities.

Step 9: Determine posterior probabilities. To compute posterior probabilities, the

analyst divides the joint probabilities in Table 12.3 by their respective marginal

probabilities, which totals 100.0%. For example, the analyst computes the posterior

probabilities for each element in ACT Scores by dividing them individually by their

respective marginal probabilities and then reports these in Table 12.4 as posterior

probabilities.

Step 10: Draw a tree diagram. The analyst reports posterior probabilities, which

they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 12.1.

Step 11: Run a netica peplication. The analyst reports the results of the Netica

replication of the prior, conditional, and marginal probabilities of the BBN, which

she or he illustrates in Fig. 12.2.

Table 12.3 Joint and marginal probabilities

ACT scores

Freshman status Level 1 (%) Level 2 (%) Level 3 (%) Marginal probabilities (%)

Graduate 68.3a 9.6 7.0 85.0b

Not Graduate 7.5 5.2 2.3 15.0

Marginal Probabilities

Total 75.8c 14.8 9.4 100.0

Notes: These values represent the joint probabilities for each Freshman Status and ACT Score

elements that the analyst calculated using prior probabilities and probabilities reported in

Table 12.2, Relative Frequency/Likelihood/Conditional Probabilities. Events ACT Scores and

Freshman Status are dependent as evaluated by P(Level 1\ Graduate) 6¼ P(Level 1) � P(Gradu-

ate), 68.3% 6¼ 75.8% � 85.0% ¼ 64.4%
a68.3% ¼ 85.0% � 80.4%
b85.0% ¼ 68.3% + 9.6% + 7.0%
c75.8% ¼ 68.3% + 74.6%

Table 12.4 Posterior probabilities

ACT scores

Freshman status Level 1 (%) Level 2 (%) Level 3 (%)

Graduate 90.2a 64.9 75.1

Not graduate 9.8 35.1 24.9

Total 100.0b 100.0 100.0

Note: This represents the posterior probabilities of the elements of ACT Scores. The analyst

calculated them using the joint and marginal probabilities reported in Table 12.3
a90.2% ¼ 68.3% / 75.8%
b100.0% ¼ 90.2% + 9.8%
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12.3 Conclusions

After conducting this experiment, the BNN is loaded with all the available infor-

mation to date. Now, there is a predictive tool to identify the next occurrence of an

event. This tool can evaluate either cause and effect (posterior) relationships or

effect and cause (inverse) relationships.

Graduate Freshman Status Likelihood Joint Marginal Posterior

Level 1 80.4% 68.3% 75.8% 90.2%

Graduate 85.0%

Level 2 11.3% 9.6% 14.8% 64.9%

Level 3 8.3% 7.0% 9.4% 75.1%

Level 1 49.7% 7.5% 9.8%

Not Graduate15.0% Level 2 34.7% 5.2% 35.1%

Level 3 15.6% 2.3% 24.9%

College Entrance Exams Example

Fig. 12.1 Tree diagram for the College Entrance Exams example. From Tables 12.1 through 12.4,

the analyst can now trace across selected paths in this diagram the respective likelihood, joint, and

posterior probabilities of this One-Stage BBN Model

Panel A Panel B

Freshman Status

Graduate
Not Graduate

85.0
15.0

ACT Scores

Level 1
Level 2
Level 3

75.8
14.8
9.37

Freshman Status

Graduate
Not Graduate

75.1
24.9

ACT Scores

Level 1
Level 2
Level 3

   0
   0

 100

Fig. 12.2 This represents the Netica replication of this College Entrance Exams example. Panel A
represents the subjective or prior probabilities (Freshman Status Node) and the conditional or

marginal joint probabilities (ACT Scores Node) (Table 12.3). Panel B represents the revised prior

or posterior probabilities when the analyst invoked the element Level 3 (Table 12.4). The analyst

uses the raw data inputs into the Netica un-normalized input table
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12.3.1 Posterior Probabilities

Given a fully saturated model containing all available information, an analyst can

evaluate conditional probability changes going from the cause event, ACT Scores, to

the effect event, Freshman Status. After conducting this experiment and priming

the BBN with all available information, following the next freshman admission of a

student who scores a Level 3 on the ACT, then an analyst can conclude that she or

he has a 75.1% chance of and graduating and a 24.9% of not graduating in 4 years.

An analyst can obtain revised conditional probabilities when invoking Level 1 and

Level 2 similarly. Other events that could contribute to updating the posterior

probabilities of this BBN could include a student’s desire as measured by a psycho-

logical measurement tool, parental support and income level, and possibly sex.

12.3.2 Inverse Probabilities

Using inverse probabilities, the analyst can reverse the results above by evaluating

conditional probability changes going from the effect event, Freshman Status, to the

cause event, ACT Scores. For example in referring to Fig. 12.3, not only can an

analyst determine the probability of Level 3 students graduating in four years,

P(Graduate|Level 3) ¼ 75.1% (Fig. 12.2), but an analyst can also determine the

percentage effect of Level 3 (Level 1 and Level 2) students graduating in four years,

P(Level 3|Graduate) ¼ 80.4%, which are two distinct probabilities. Invoking Not

Graduate will similarly adjust these conditional probabilities. This represents the

Level 3 portion of all graduating students, Levels 1, 2, and 3.

Freshman Status

Graduate
Not Graduate

 100
   0

ACT Scores

Level 1
Level 2
Level 3

80.4
11.3
8.28

Fig. 12.3 Represents the effects on the conditional probabilities using inverse probability when

an analyst inverts the cause and effect relationship. For example in referring to Fig. 12.3, not

only can an analyst determine the probability of level 3 students graduating in 4 years, P

(Graduate|Level 3) ¼ 75.1% (Fig. 12.2), but she or he can also determine the percentage effect

of level 3 (level 1 and level 2) students graduating in 4 years, P(Level 3|Graduate) ¼ 80.4%,

which are two distinct probabilities. Invoking not graduate will similarly adjust these condi-

tional probabilities
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Chapter 13

Special Forces Assessment and Selection

(SFAS) One-Stage Example*

13.1 Scenario

In this scenario, the U.S. Army Special Forces Command’s (USASFC) Special

Forces Assessment and Selection (SFAS) course obtain Soldiers from the ranks of

the Army. The SFAS has experienced an elevated level of attrition rates of Soldiers

they are receiving from the current recruiting of enlisted and Officer Soldiers.1

Their concern is that these high attrition rates will stop the Special Forces commu-

nity from being fully mission capable, according to regulatory requirements and

increase the cost of recruiting and assessing future Soldiers. Their research question

is to determine the proportions of not selected and selected Soldiers given the

Soldier is enlisted or officer and their physical fitness levels. Selecting the right

Soldier with the minimal amount of costs would be a benefit to the U.S. Army’s

recruiting program. An Army Research Institute analyst will evaluate this scenario

using a One-Stage Bayesian Belief Network (BBN).

13.2 Experimental Protocol

Step 1: Identify a population of interest. The population consists of the total number

of Soldiers who were accepted and entered into SFAS.

*See the U.S. Army’s Special Forces website: http://www.sorbrecruiting.com/. Last accessed:

11/6/2012.
1 The SFAS course is a 3-week evaluation of enlisted and Officer Soldiers’ physical, mental, and

psychological capabilities to determine if they would fit the ranks of special operations Soldiers.

Those Soldiers accepted through SFAS will attend either the Officer or Enlisted Special Forces

Qualification Course (SFQC) for final selection to earn the Green Beret. SFAS is only a gateway to

the SFQC.
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Step 2: Slice through this population and identify at a minimum two mutually
exclusive or disjoint (unconditional) events, which are the subsets of our popula-
tion. The two disjoint elements are “Selected” and “Not Selected” Soldiers from the

element, “Graduate.”

Step 3: Determine prior (a priori) or unconditional probabilities. Historically, the
selection rate has been 30.0% for all Soldiers who were accepted and entered into

SFAS.

Step 4: Identify the conditional event and its subset of mutually exclusive or disjoint
(unconditional) elements. In this example, the analyst is looking for an event with

an outcome that can identify which Soldier will not be selected. The disjoint event

is “Status.” The analyst will slice through Status by identifying the effects follow-

ing the entrance of these Soldiers into SFAS from the enlisted and officer ranks,

which become the elements of this event.

Step 5: Conduct the random experiment. The analyst performs this experiment by

making random draws of Selected and Not Selected Soldiers from a database. The

sampling process starts with a single random draw and selection of an element from

Graduate and then from Status and ends with the assignment of the draw results.

The analyst will continue this process until she or he has obtained the desired

sample size.

Step 6: Determine frequency counts. To record frequencies, the analyst reports

count data for further analysis. The analyst has reports these results in Table 13.1,

Frequency Counts, for 715 iterations.

Step 7: Determine likelihood/conditional probabilities (relative frequencies). The
analyst then computes relative frequencies/likelihood/conditional probabilities as

conditional probabilities based on the subjective probabilities of the Graduate

event. To determine these percentages, the analyst calculates probabilities across

the sliced events of Status and then reports these results in Table 13.2, Relative

Frequency/Likelihood/Conditional Probabilities.

Step 8: Determine joint and marginal probabilities. To compute joint probabilities,

the analyst multiplies the likelihood probabilities in Table 13.2 across Graduate and

Status. To compute marginal probabilities, the analyst then sums the joint

Table 13.1 Frequency counts

Status

Graduate Enlisted Officer Total

Selected 663 52 715a

Not selected 263 22 285

Total 926b 74 1,000

Note: These values represent selection frequency counts for each of the Status elements
a715 ¼ 663 + 52
b926 ¼ 663 + 263
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probabilities down the elements of Graduate and Status, which totals 100.0%. The

analyst then reports these in Table 13.3, Joint and Marginal Probabilities.

Step 9: Determine posterior probabilities. To compute posterior probabilities, the

analyst divides the joint probabilities in Table 13.3 by their respective marginal

probabilities, which totals 100.0%. For example, the analyst computes the posterior

probabilities for each element in Status by dividing them individually by their

respective marginal probabilities and then reports these in Table 13.4 as posterior

probabilities.

Step 10: Draw a tree diagram. The analyst reports posterior probabilities, which

they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 13.1.

Step 11: Run a netica replication. The analyst reports the results of the Netica

replication of the prior, conditional, and marginal probabilities of the BBN, which

she or he illustrates in Fig. 13.2.

Table 13.2 Relative frequency/likelihood/conditional probabilities

Status

Graduate Enlisted (%) Officer (%)

Total

(%)

Selected 92.7a 7.3 100.0

Not selected 92.3 7.7 100.0

Conditional probabilities

Total 92.6b 7.4 100.0

Note: These values represent selection relative frequencies/likelihood/conditional probabilities for

each Soldier status that the analyst calculated using count data reported in Table 13.1
a92.7% ¼ 663/715 � 100. The analyst computed the marginal probabilities by dividing the total

frequency counts down Graduate and across Status using the frequency counts from Table 13.1
b92.6% ¼ 926/1,000 � 100

Table 13.3 Joint and marginal probabilities

Status

Graduate Enlisted (%) Officer (%) Marginal probabilities (%)

Selected 27.8a 2.2 30.0c

Not selected 64.6 5.4 70.0

Marginal probabilities

Total 92.4b 7.6 100.0

Notes: These values represent the joint probabilities for each Graduate and Status elements that the

analyst calculated using prior probabilities and probabilities reported in Table 13.2, Relative

Frequency/Likelihood/Conditional Probabilities. Events Status and Graduate are dependent as

evaluated by P(Enlisted \ Selected) 6¼ P(Enlisted) � P(Selected), 27.8% 6¼ 92.4% �
30.0% ¼ 27.7%
a27.8% ¼ 30.0% � 92.7%
b92.4% ¼ 27.8% + 64.6%
c30.0% ¼ 27.8% + 2.2%
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Table 13.4 Posterior probability table

Status

Graduate Enlisted (%) Officer (%)

Selected 30.1a 28.8

Not selected 69.9 71.2

Total 100.0b 100.0

Note: This represents the posterior probabilities of the elements of Status. The analyst calculated

them using the joint and marginal probabilities reported in Table 13.3
a30.1% ¼ 27.8%/92.4%
b100.0% ¼ 30.1% + 69.9%

Graduate Status Likelihood Joint Marginal Posterior

Enlisted 92.7% 27.8% 92.4% 30.1%

Selected 30.0%

Officer 7.3% 2.2% 7.6% 28.8%

Enlisted 92.3% 64.6% 69.9%

Not Selected 70.0%
Officer 7.7% 5.4% 71.2%

Special Forces Assessment and Selection Example

Fig. 13.1 Tree diagram for the SFAS example. From Tables 13.1, 13.2, 13.3 and 13.4, the analyst

can now trace across selected paths in this diagram the respective likelihood, joint, and posterior

probabilities of this One-Stage BBN Model

Panel A Panel B

Graduate

Selected
Not Selected

30.0
70.0

Status

Enlisted
Officer

92.4
7.59

Graduate

Selected
Not Selected

28.8
71.2

Status

Enlisted
Officer

   0
 100

Fig. 13.2 This represents the Netica replication of this SFAS stage one BBN example. Panel A
represents the subjective or prior probabilities (Graduate Node) and the conditional or marginal

joint probabilities (Status Node) (Table 13.3). Panel B represents the revised prior or posterior

probabilities when an analyst invoked the element Officer (Table 13.4). The analyst uses the raw

data inputs into the Netica un-normalized input table
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13.3 Conclusions

After conducting this experiment, the BNN is loaded with all the available infor-

mation to date. Now, there is a predictive tool to identify the next occurrence of an

event. This tool can evaluate either cause and effect (posterior) relationships or

effect and cause (inverse) relationships.

13.3.1 Posterior Probabilities

Given a fully saturated model containing all available information, an analyst can

evaluate conditional probability changes going from the cause event, Status, to

the effect event, Graduate. After conducting this experiment and priming the BBN

with all available information, following the next officer completing SFAS, an

analyst could conclude there is a 28.8% chance that he will and 71.2% that he will

not be selected to attend the SFQC. An analyst can obtain similar revised

probabilities for enlisted Soldier outcomes. Other events that could contribute

to updating the posterior probabilities of this BBN could include a Soldiers

physical training level.2

13.3.2 Inverse Probabilities

Using inverse probabilities, an analyst can reverse the results above by evaluating

conditional probability changes going from the effect event, Graduate, to the cause

event, Status. For example in referring to Fig. 13.3, not only can an analyst

determine the probability of officers being selected at SFAS, P(Selected|Officer)

¼ 28.8% (Fig. 13.2), but she or he can also determine the percentage effect of

selected officers (and enlisted), P(Officer|Selected) ¼ 7.27% (Fig. 13.3), which are

two distinct probabilities. Invoking Not Selected will similarly adjust these condi-

tional probabilities. This represents the Selected portion of all selected Soldiers,

enlisted and officer.3

2 I will include this variable during my evaluation of the SFAS Two Stage Model in Chap. 14.
3 Due to very low selection rates and the smaller proportion of officers attending SFAS, this

percentage is also low.
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   0
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Fig. 13.3 Represents the effects on the conditional probabilities using inverse probability when an

analyst inverts the cause and effect relationship. For example, in referring to Fig. 13.3, not only can

an analyst determine the probability of officers being selected at SFAS, P(Selected|Officer)

¼ 28.8% (Fig. 13.2), but she or he can also determine the percentage effect of selected officers

(and enlisted), P(Officer|Selected) ¼ 7.27%, which are two distinct probabilities. Invoking

Enlisted will similarly adjust these conditional probabilities

102 13 Special Forces Assessment and Selection (SFAS) One-Stage Example

http://www.sorbrecruiting.com/


Chapter 14

Special Forces Assessment and Selection

(SFAS) Two-Stage Example*

14.1 Scenario

In this scenario, the U.S. Army Special Forces Command’s (USASFC) Special

Forces Assessment and Selection (SFAS) course obtains Soldiers from the ranks of

the Army. The SFAS has experienced an elevated level of attrition rates of Soldiers

they are receiving from the current recruiting of enlisted and Officer Soldiers.1

Their concern is that these high attrition rates will stop the Special Forces commu-

nity from being fully mission capable, according to regulatory requirements and

increase the cost of recruiting and assessing future Soldiers. Their research question

is to determine the proportions of not selected and selected Soldiers given the

Soldier is enlisted or officer and their physical fitness levels. Selecting the right

Soldier with the minimal amount of costs would be a benefit to the U.S. Army’s

recruiting program. An Army Research Institute analyst will evaluate this scenario

using a Two-Stage Bayesian Belief Network (BBN).

14.2 Experimental Protocol

Step 1: Identify a population of interest. The population consists of the total number

of Soldiers who were accepted and entered into SFAS.

Step 2: Slice through this population and identify at a minimum two mutually
exclusive or disjoint (unconditional) events, which are the subsets of our population.

* See the U.S. Army’s Special Forces website: http://www.sorbrecruiting.com/. Last accessed:

11/6/2012.
1 See the U.S. Army’s Special Forces website: http://www.sorbrecruiting.com/. Last accessed: 11/6/

2012. The SFAS course is a 3-week evaluation of enlisted and Officer Soldiers’ physical, mental, and

psychological capabilities to determine if theywould fit the ranks of special operations Soldiers. Those

Soldiers accepted through SFASwill attend either theOfficer or Enlisted Special Forces Qualification

Course (SFQC) for final selection to earn the Green Beret. SFAS is only a gateway to the SFQC.
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In this Two Event scenario, the two disjoint elements are “Selected” and “Not

Selected” Soldiers from the element, “Graduate” and “Above,” “Extreme,” and

“Average” from the element, Physical Training (PT).

Step 3: Determine prior (a priori) or unconditional probabilities. Historically,
the selection rate has been 28.5% for all Soldiers who were accepted and entered

into SFAS.

Step 4: Identify the conditional event and its subset of mutually exclusive or disjoint
(unconditional) elements.

Stage 1. In this example, the analyst is looking for an event than can cause a

Soldier to not be selected following the attendance to SFAS. The disjoint event

becomes “Rank.” The analyst will slice through Status by identifying the effects

following the entrance of these Soldiers into SFAS from the enlisted and officer

ranks, which become the elements of this event.

Stage 2. In this example, the analyst is looking for an event than can cause a

Soldier to not be selected following the attendance to SFAS. The disjoint event

becomes “PT.” The analyst will slice through PT by identifying the effects follow-

ing the entrance of these Soldiers into SFAS from the enlisted and officer ranks and

their PT status of “Above,” “Extreme,” or “Average,” which become the elements

of this event.

Step 5: Conduct the random experiment. The analyst performs this experiment by

making random draws of Selected and Not Selected Soldiers from a database. The

sampling process starts with a single random draw and selection of an element from

Graduate, Status, and then from PT and ends with the assignment of the draw

results. The analyst will continue this process until she or he has obtained the

desired sample size.

Step 6: Determine frequency counts. To record frequencies, the analyst reports

count for further analysis for both nodes in Table 14.1, Frequency Counts-Stage 1

Status Node for 1,000 iterations; Table 14.2, Frequency and Adjusted Frequency

Counts Stage 2 Status Node-Enlisted for 926 iterations; Table 14.3 Frequency and

Adjusted Frequency Counts Stage 2 Status Node-Officer for 76 iterations; and

finally sums these counts in Table 14.4, Stage 2 Status Node-Total Officer &

Enlisted, again for 1,000 iterations.

Step 7: Determine likelihood/conditional probabilities (relative frequencies).
Stage 1. The analyst then computes relative frequencies/likelihood/conditional

probabilities as conditional probabilities based on the subjective probabilities of the

Graduate event. To determine these percentages, the analyst calculates probabilities

across the sliced events of Status Node-Stage 1 and then reports these results in

Table 14.5, Relative Frequency/Likelihood/Conditional Probabilities-Status Node-

Stage 1.

Stage 2. The analyst then computes relative frequencies/likelihood/conditional

probabilities as conditional probabilities based on the subjective probabilities of the

Graduate event for both Enlisted and Officer. To determine these percentages,
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Table 14.4 Stage 2 status node-total officer and enlisted

Stage 2-PT node-total

Graduate Above Extreme Average Total

Not selected 255 250 210 715a

Selected 101 88 96 285

Total 356b 338 306 1,000

Note: These values represent transistor quality frequency counts for each

of the Stage 2-PT Node-Total elements
a715 ¼ 255 + 250 + 210
b356 ¼ 255 + 101

Table 14.1 Frequency counts-stage 1 status node

Stage 1-status node-total

Graduate Enlisted Officer Total

Not selected 663 52 715a

Selected 263 22 285

Total 926b 74 1,000

Note: These values represent transistor quality frequency counts for each

of the Stage 1-Status Node-Total elements
a715 ¼ 663 + 52
b926 ¼ 663 + 263

Table 14.2 Frequency and adjusted frequency counts stage 2 status node-

enlisted

Stage 2-PT node-enlisted

Graduate Above Extreme Average Total

Not selected 237 234 192 663a

Selected 92 82 89 263

Total 329b 316 281 926

Note: These values represent transistor quality frequency counts for each

of the Stage 2-PT Node-Enlisted elements
a663 ¼ 237 + 234 + 192
b329 ¼ 237 + 92

Table 14.3 Frequency and adjusted frequency counts stage 2 status node-

officer

Stage 1-PT node-officer

Graduate Above Extreme Average Total

Not selected 18 16 18 52a

Selected 9 6 7 22

Total 27b 22 25 74

Note: These values represent transistor quality frequency counts for each

of the Stage 1-PT Node-Officer elements
a52 ¼ 18 + 16 + 18
b27 ¼ 18 + 9
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the analyst calculates probabilities across the sliced events of Stage 2-PT

Node-Enlisted and Stage 2-PT Node-officer and then reports these results in

Table 14.6, Relative Frequency/Likelihood/Conditional Probabilities-PT Node-

Enlisted/Officer-Stage 2.

Step 8: Determine joint and marginal probabilities.
Stage 1. To compute joint probabilities, the analyst multiplies the prior

probabilities by the respective probabilities in Table 14.5 Relative Frequency/

Table 14.5 Relative frequency/likelihood/conditional probabilities-status node-stage 1

Status node-stage 1

Graduate Enlisted (%) Officer (%) Total (%)

Not selected 92.7a 7.3 100.0

Selected 92.3 7.7 100.0

Conditional probabilities

Total 92.6b 7.4 100.0

Note: These values represent transistor quality relative frequencies/likelihood/conditional

probabilities for each Enlisted and Officer Soldier Status Node-Stage 1 that the analyst calculated

using count data reported in Table 14.1 Frequency Counts-Stage 1 Status Node
a92.7% ¼ 663/715 � 100. The analyst computed the conditional/marginal probabilities by divid-

ing the total frequency counts down Graduate and across Status Node-Stage 1 using the frequency

counts from Table 14.1
b92.6% ¼ 926/1,000 � 100

Table 14.6 Relative frequency/likelihood/conditional probabilities-PT node-enlisted/officer-

stage 2

Stage 2-PT node-enlisted

Graduate Above (%) Extreme (%) Average (%) Total (%)

Not selected 35.7a 35.3 29.0 100.0

Selected 35.0 31.2 33.8 100.0

Stage 2-PT node-officer

Graduate Above Extreme Average Total

Not selected 34.6b 30.8 34.6 100.0

Selected 40.9 27.3 31.8 100.0

Conditional probabilities

Total 35.6c 33.8 30.6 100.0

Note: (1) Stage 2-PT Node-Enlisted. These values represent transistor quality relative frequencies/

likelihood/conditional probabilities for each PT level that the analyst calculated using count data

reported in Table 14.2 Frequency and Adjusted Frequency Counts Stage 2 Status Node-Enlisted.

(2) Stage 2-PT Node-Officer. These values represent transistor quality relative frequencies/likeli-

hood/conditional probabilities for each PT level that the analyst calculated using count data

reported in Table 14.3 Frequency and Adjusted Frequency Counts Stage 2 Status Node-Officer.

(3) The analyst computed the conditional/marginal probabilities by dividing the total frequency

counts down Graduate and across Stage 2-PT Node-Total using the frequency counts from

Table 14.4 Stage 2 Status Node-Total Officer & Enlisted
a35.7% ¼ 237/663 � 100
b34.6% ¼ 18/52 � 100
c35.6% ¼ 356/1,000 � 100
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Likelihood/Conditional Probabilities-Status Node-Stage 1. To compute marginal

probabilities, the analyst then sums the joint probabilities down the elements of

Graduate and Status Node-Stage 1, which totals 100.0%. The analyst then reports

these in Table 14.7, Stage 1-Joint and Marginal Probabilities.

Stage 2a. To compute joint probabilities for the Stage 2-PT Node-Enlisted, the

analyst multiplies the prior probabilities by the respective probabilities in Table 14.5

Relative Frequency/Likelihood/Conditional Probabilities-Status Node-Stage 1 by

the probabilities in Table 14.6, Relative Frequency/Likelihood/Conditional

Probabilities-PT Node-Enlisted/Officer-Stage 2. To compute conditional (mar-

ginal) probabilities, the analyst then sums the joint probabilities down the elements

of Graduate and Stage 2-PT Node-Enlisted, which totals 100.0%. The analyst then

reports these in Table 14.8 as joint, marginal, and conditional probabilities.

Stage 2b. To compute joint probabilities for the Stage 2-PT Node-Officer,

the analyst multiplies the prior probabilities by the probabilities in Table 14.5

Relative Frequency/Likelihood/Conditional Probabilities-Status Node-Stage 1 by

the respective probabilities in Table 14.6, Relative Frequency/Likelihood/Condi-

tional Probabilities-PT Node-Enlisted/Officer-Stage 2. To compute conditional

(marginal) probabilities, the analyst then sums the joint probabilities down the

elements of Graduate and Stage 2-PT Node-Officer, which totals 100.0%. The

analyst then reports these in Table 14.8, Stage 2-Joint and Marginal Probabilities.

Step 9: Determine posterior probabilities.
Stage 1. To compute posterior probabilities, the analyst divides the joint

probabilities in Table 14.7 Stage 1-Joint and Marginal Probabilities by their respec-

tive conditional/marginal probabilities, which totals 100.0%. For example, the

analyst computes the posterior probabilities for each element in Status Node-

Stage 1 by dividing them individually by their respective conditional/marginal

probabilities and then reports these in Table 14.9 as posterior probabilities.

Table 14.7 Stage 1-Joint and marginal probabilities

Status node-stage 1

Graduate Enlisted (%) Officer (%) Marginal probabilities (%)

Not selected 66.3a 5.2 71.5c

Selected 26.3 2.2 28.5

Marginal probabilities

Total 92.6b 7.4 100.0

Notes: These values represent the joint probabilities for each Graduate and Status Node-Stage 1

elements that the analyst calculated using prior probabilities and count data reported in Table 14.5

Relative Frequency/Likelihood/Conditional Probabilities-Status Node-Stage 1. Events Supplier

and Transistor Quality are dependent as evaluated by P(Enlisted \ Not Selected) 6¼ P(Enlisted) �
P(Not Selected), 66.3% 6¼ 92.6% � 71.5% ¼ 66.2%
a66.3% ¼ 35.7% � 71.5%. The analyst computed the Marginal Probabilities by summing down

Status Node-Stage 1 and across Graduate elements
b92.6% ¼ 31.2% þ 8.1%
c71.5% ¼ 66.3% þ 5.2%
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Table 14.8 Stage 2-Joint and marginal probabilities

Stage 2-PT node-enlisted

Graduate Above (%) Extreme (%) Average (%) Marginal probabilities (%)

Enlisted 23.7a 23.4 19.2 66.3c

Officer 9.2 8.2 8.9 26.3

Marginal probabilities

Sub-total 32.9b 31.6 28.1 92.6

Stage 2-PT node-officer

Graduate Above (%) Extreme (%) Average (%) Marginal probabilities (%)

Not selected 1.8d 1.6 1.8 5.2f

Selected 0.9 0.6 0.7 2.2

Sub-marginal probabilities

Sub-Total 2.7e 2.2 2.5 7.4

Marginal probabilities

Total 35.6g 33.8 30.6 100.0

Notes: (1) Stage 2-PT Node-Enlisted. These values represent the joint probabilities for each

Graduate and Stage 2-PT Node-Enlisted elements that the analyst calculated using prior

probabilities, probabilities in Table 14.5 Relative Frequency/Likelihood/Conditional

Probabilities-Status Node-Stage 1, and probabilities in Table 14.6 Relative Frequency/Likeli-

hood/Conditional Probabilities-PT Node-Enlisted/Officer-Stage 2. (2) Marginal Probabilities are

computed by summing down each Stage 2-PT Node-Enlisted and across each Graduate element.

(3) Stage 2-PT Node-Officer. These values represent the joint probabilities for each Graduate and

Stage 2-PT Node-Officer elements that the analyst calculated using prior probabilities,

probabilities in Table 14.5 Relative Frequency/Likelihood/Conditional Probabilities-Status

Node-Stage 1, and probabilities in Table 14.6 Relative Frequency/Likelihood/Conditional

Probabilities-PT Node-Enlisted/Officer-Stage 2. (4) Marginal Probabilities are computed by

summing down each Stage 2-PT Node-Enlisted and across each Graduate element
a23.7% ¼ 35.7% � 92.7% � 71.5%
b32.9% ¼ 23.7% þ 9.2%
c66.3% ¼ 23.7% þ 23.4% þ 19.2%. Events Graduate and Stage 2-PT Node-Enlisted are depen-

dent as evaluated by P(Enlisted \ Not Selected) 6¼ P(Enlisted)� P(Not Selected), 23.7% 6¼ 32.9%

� 71.5% ¼ 23.5%
d1.8% ¼ 7.3% � 34.6% � 71.5%
e2.7% ¼ 1.8% þ 1.6% þ 1.8%
f32.9% ¼ 1.8% þ 0.9%
g35.6% ¼ 32.9% þ 2.7%. Events Graduate and Stage 2-PT Node-Officer are dependent as

evaluated by P(Officer \ Not Selected) 6¼ P(Officer) � P(Not Selected), 1.8% 6¼ 2.7% �
71.5% ¼ 1.9%

Table 14.9 Stage 1 posterior probabilities

Status node-stage 1

Graduate Enlisted (%) Officer (%)

Not selected 71.6a 70.3

Selected 28.4 29.7

Total 100.0b 100.0

Note: This represents the posterior probabilities of the elements of Status Node-Stage

1. The analyst calculated them using the joint and conditional/marginal probabilities

reported in Table 14.7 Stage 1-Joint and Marginal Probabilities
a71.6% ¼ 66.3%/92.6%
b100.0% ¼ 71.6% þ 28.4%
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Stage 2. To compute posterior probabilities, the analyst divides the joint

probabilities in Table 14.8 Stage 2-Joint and Marginal Probabilities by their respec-

tive conditional/marginal probabilities, which totals 100.0%. For example,

the analyst computes the posterior probabilities for each element in Stage 2-PT

Node-Enlisted and Stage 2-PT Node-Officer by dividing them individually by their

respective conditional/marginal probabilities and then reports these in Table 14.10

as posterior probabilities.

Step 10a: Draw a tree diagram. The analyst reports posterior probabilities, which
they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 14.1 using an iterative process

where she or he first determines the posterior probabilities from Stage One and then

uses these probabilities as the priors for Stage Two.

Step 10b: Draw a tree diagram. The analyst reports posterior probabilities, which
they computed by filtering them through the likelihood, joint, and marginal

probabilities, which she or he illustrates in Fig. 14.2 using a process called margin-

alization2 using the Total Law of Probability.

Table 14.10 Stage 2 posterior probabilities

PT node-enlisted stage 2

Graduate Above (%) Extreme (%) Average (%)

Not selected 72.0a 74.1 68.3

Selected 28.0 25.9 31.7

Total 100.0b 100.0 100.0

PT Node-officer stage 2

Graduate Above (%) Extreme (%) Average (%)

Not selected 66.7c 72.7 72.0

Selected 33.3 27.3 28.0

Total 100.0d 100.0 100.0

Note: (1) PT Node-Enlisted Stage 2. This represents the posterior probabilities of

the elements of PT Node-Enlisted Stage 2. The analyst calculated them using the

joint and conditional/marginal probabilities reported in Table 14.8 Stage 2-Joint

and Marginal Probabilities. (2) PT Node-Officer Stage 2. This represents the

posterior probabilities of the elements of PT Node-Officer Stage 2. The analyst

calculated them using the joint and conditional/marginal probabilities reported in

Table 14.8 Stage 2-Joint and Marginal Probabilities
a72.0% ¼ 23.7%/32.9%
b100.0% ¼ 72.0% þ 28.0%
c66.7% ¼ 1.8%/2.7%
d100.0% ¼ 66.7% þ 33.3%

2 See Chap. 3 of this book, Statistical Properties of Bayes’ Theorem, for a discussion of this

concept.
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Step 11: Run a netica replication3. The analyst reports the results of the Netica

replication of the prior, conditional, and marginal probabilities of the BBN, which

she or he illustrates in Figs. 14.3, 14.4 and 14.5.

14.3 Conclusions

After conducting this experiment, the BNN is loaded with all the available infor-

mation to date. Now, there is a predictive tool to identify the next occurrence of an

event. This tool can evaluate either cause and effect (posterior) relationships or

effect and cause (inverse) relationships.

14.3.1 Posterior Probabilities

Given a fully saturated model containing all available information, an analyst can

evaluate conditional probability changes going from the cause event, Status, to the

Graduate Status Likelihood Joint Marginal Posterior PT Likelihood Joint Marginal Posterior

Above 35.7% 23.7% 32.9% 72.0%a

Enlisted 92.7% 66.3% 92.6% 71.6%a Extreme 35.3% 23.4% 31.6% 74.1%
Average 29.0% 19.2% 28.1% 68.3%

Not Selected71.5%

Above 34.6% 1.8% 66.7%
Officer 7.3% 5.2% 70.3% Extreme 30.8% 1.6% 72.7%

Average 34.6% 1.8% 72.0%

Above 35.0% 9.2% 28.0%
Enlisted 92.3% 26.3% 28.4% Extreme 31.2% 8.2% 25.9%

Average 33.8% 8.9% 31.7%
Selected 28.5%

Above 40.9% 0.9% 2.7% 33.3%
Officer 7.7% 2.2% 7.4% 29.7% Extreme 27.3% 0.6% 2.2% 27.3%

Average 31.8% 0.7% 2.5% 28.0%

Special Forces Assessment and Selection Two Stage Example

PT Node
Stage TwoStage One

Status Node

Fig. 14.1 Tree diagram for the SFAS example. From Tables 14.1, 14.2, 14.3, 14.4, 14.5, 14.6,

14.7, 14.8, 14.9 and 14.10, the analyst can now trace across selected paths in this diagram the

respective likelihood, joint, and posterior probabilities across each Stage of this BBN. aIf Graduate

¼ Ai, Status ¼ Bj, and PT ¼ Ck, where i ¼ Not Selected, j ¼ Enlisted, and j ¼ Above and

invoking BT, PðAijBÞ ¼ PðAiÞP B Aijð Þ
PðBÞ ¼ 71:5%ð Þ 92:7%ð Þ

92:6% ¼ 71:6% ¼ 71:6% ¼ P AjBð Þ . bTo calculate

the posterior probability for stage two, we have PðAijCÞ ¼ PðAi Bj ÞP C Aijð Þ
PðCÞ ¼ 71:6%ð Þ 35:7%ð Þ

35:5% ¼ 72:0%

(Note that when the analyst selected Graduate ¼ “Not Selected” and Status ¼ “Enlisted,” BT did

not require the values for Status ¼ “Officer” (P(~B)) in the calculation of P(A|B) for Stage 1 or the

calculation of P(A|BC) for Stage 2, where P(C) ¼ PT ¼ “Above”)

3 Note that when the analyst selected Graduate ¼ “Not Selected” and Status ¼ “Enlisted,” BT did

not require the values for Status¼ “Officer” (P(~B) in the calculation of P(A|B) for Stage One or the
calculation of P(A|BC) for Stage Two, where P(C) ¼ PT ¼ “Above.”
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effect event, Graduate. After conducting this experiment and priming the BBN with

all available information, following the next officer completing SFAS, an analyst

could conclude there is a 28.0% chance that he will and 72.0% that he will not be

selected to attend the SFQC. An analyst can obtain similar revised probabilities for

enlisted Soldier outcomes. Other events that could contribute to updating the

posterior probabilities of this BBN could include if a Soldier is Airborne or Ranger

qualified, is married, or if he is a recycle.

14.3.2 Inverse Probabilities

Using inverse probabilities, the analyst can reverse the results above by evaluating

conditional probability changes going from the effect event, Status and PT, to the

cause event, Graduate. For example in referring to Fig. 14.6, not only can an analyst

determine the probability of an Officer with an average PT scores has a 72.0%

Graduate Status Likelihood Joint Marginal Posterior PT Likelihood Joint Marginal Posterior

Above 35.7% 23.7% 32.9% 72.0%a

Enlisted 92.7% 66.3% 92.6% 71.6% Extreme 35.3% 23.4% 31.6% 74.1%

Average 29.0% 19.2% 28.1% 68.3%

Not Selected71.5%

Above 34.6% 1.8% 66.7%
Officer 7.3% 5.2% 70.3% Extreme 30.8% 1.6% 72.7%

Average 34.6% 1.8% 72.0%

Above 35.0% 9.2% 28.0%
Enlisted 92.3% 26.3% 28.4% Extreme 31.2% 8.2% 25.9%

Average 33.8% 8.9% 31.7%

Selected 28.5%

Above 40.9% 0.9% 2.7% 33.3%
Officer 7.7% 2.2% 7.4% 29.7% Extreme 27.3% 0.6% 2.2% 27.3%

Average 31.8% 0.7% 2.5% 28.0%

Special Forces Assessment and Selection Two Stage Example

PT Node

Stage TwoStage One

Status Node

Fig. 14.2 Tree diagram for the SFAS example. aFrom Tables 14.1, 14.2, 14.3, 14.4, 14.5, 14.6,

14.7, 14.8, 14.9 and 14.10, the analyst can now trace across selected paths in this diagram the

respective likelihood, joint, and posterior probabilities of this Three-Event BBN Model. If

Graduate ¼ Ai, Status ¼ Bj, and PT ¼ Ck and where we invoke: (1) Not Selected, (2) Enlisted,

and (3) Above, we can compute

P ANot Selected jBEnlisted\CAboveð Þ¼
P CAbovejBEnlisted \ ANot Selectedð ÞP ANot Selected jBEnlistedð Þ

P CAbovejBEnlisted \ ANot Selectedð ÞþP CAbovejBEnlisted\ ASelectedð ÞP ASelectedjBEnlistedð Þ¼

ð 35:7%ð Þ 71:6%ð Þ
35:7%ð Þ 71:6%ð Þþ 28:4%ð Þ 35:0%ð Þ¼

25:6%

25:6%þ9:9%
¼25:6%

35:5%
¼72:0%
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chance of not being selected, as seen above, P(Not Selected|Officer, Average), but

she or he can also determine the percentage effect of Soldiers that have above

average PT scores and who are officers who will not be selected, P(Above, Officer|

Not Selected), which is 35.7% (Above) and 7.27% (Officer), respectively. Invoking

Selected will similarly adjust these conditional probabilities.4

Panel A
Status Quo

Panel B
Enlisted

Panel C
Officer

Graduate

Not Selected
Selected

71.5
28.5

PT

Above
Extreme
Average

35.6
33.8
30.6

Status

Enlisted
Officer

92.6
7.40

Graduate

Not Selected
Selected

71.6
28.4

PT

Above
Extreme
Average

35.5
34.1
30.3

Status

Enlisted
Officer

 100
   0

Graduate

Not Selected
Selected

70.3
29.7

PT

Above
Extreme
Average

36.5
29.7
33.8

Status

Enlisted
Officer

   0
 100

Fig. 14.3 The Netica replication of this SFAS example. Panel A represents the subjective or prior

probabilities (Graduate Node) and the conditional or marginal joint probabilities (PT and Status

Nodes) which are verified in Table 14.1. Panel B represents the revised prior or posterior

probabilities when an analyst invoked the Event Enlisted; and Panel C represents the revised

prior or posterior probabilities when an analyst invoked the Event Officer. Panel B and C
probabilities are verified in Stage 1 of Fig. 14.5, P(Not Selected|Enlisted) and P(Not Selected|

Officer)

Panel A
Status-Enlisted > PT-Above

Panel B
Status-Enlisted > PT-Extreme

Panel C
Status-Enlisted > PT-Average

Graduate

Not Selected
Selected

72.0
28.0

PT

Above
Extreme
Average

 100
   0
   0

Status

Enlisted
Officer

 100
   0

Graduate

Not Selected
Selected

74.1
25.9

PT

Above
Extreme
Average

   0
 100

   0

Status

Enlisted
Officer

 100
   0

Graduate

Not Selected
Selected

68.3
31.7

PT

Above
Extreme
Average

   0
   0

 100

Status

Enlisted
Officer

 100
   0

are invoked. The Netica replication of this SFAS example. Panel A represents the subjective or

prior probabilities (Graduate Node) when an analyst invokes the Events Enlisted and Above P(Not

Selected|Enlisted, Officer) ¼ 72.0%. Panel B represents the revised prior or posterior probabilities

when an analyst invokes the Events Enlisted and Above P(Not Selected|Enlisted, Extreme)

¼ 74.1%. Panel C represents the revised prior or posterior probabilities when an analyst invokes

the Events Enlisted and Above P(Not Selected|Enlisted, Average) ¼ 68.3%. Table 14.10 verifies

these probabilities

4 Due to very low selection rates and the smaller proportion of officers attending SFAS, this

percentage is also low.
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Panel A
Status-Officer > PT-Above 

Panel B
Status-Officer > PT-Extreme

Panel C
Status-Officer > PT-Average

Graduate

Not Selected
Selected

66.7
33.3
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Average
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   0
   0
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 100

Graduate
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72.7
27.3

PT

Above
Extreme
Average

   0
 100
   0

Status

Enlisted
Officer

   0
 100

Graduate

Not Selected
Selected

72.0
28.0

PT

Above
Extreme
Average

   0
   0

 100

Status

Enlisted
Officer

   0
 100

Fig. 14.5 Revised Prior probabilities when the events Officer and Above, Extreme, and Average

are invoked. The Netica replication of this SFAS example. Panel A represents the subjective or

prior probabilities (Graduate Node) when an analyst invokes the Events Officer and Above P(Not

Selected|Enlisted, Officer) ¼ 66.7%. Panel B represents the revised prior or posterior probabilities

when an analyst invokes the Events Enlisted and Above P(Not Selected|Officer, Extreme)

¼ 72.7%. Panel C represents the revised prior or posterior probabilities when an analyst invokes

the Events Officer and Above P(Not Selected|Officer, Average) ¼ 72.0%. These probabilities are

verified in Table 14.10

Graduate

Not Selected
Selected

 100
   0

PT

Above
Extreme
Average

35.7
35.0
29.4

Status

Enlisted
Officer

92.7
7.27

Fig. 14.6 Represents the effects on the conditional probabilities using inverse probability when an

analyst inverts the cause and effect relationship. For example in referring to Fig. 14.6, not only can

an analyst determine the probability of an Officer with an average PT scores has a 72.0% chance of

not being selected, as seen above, P(Not Selected|Officer, Average), but she or he can also

determine the percentage effect of Soldiers that have above average PT scores and who are officers

who will not be selected, P(Above, Officer|Not Selected), which is 35.7% (Above) and 7.27%

(Officer), respectively. Invoking Selected will similarly adjust these conditional probabilities
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