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Preface

Welcome to the second edition of “ggplot2: elegant graphics for data
analysis”. I’m so excited to have an updated book that shows off all the
latest and greatest ggplot2 features, as well as the great things that have
been happening in R and in the ggplot2 community the last 5 years. The
ggplot2 community is vibrant: the ggplot2 mailing list has over 7,000
members and there is a very active Stack Overflow community, with nearly
10,000 questions tagged with ggplot2. While most of my development effort
is no longer going into ggplot2 (more on that below), there’s never been a
better time to learn it and use it.

I am tremendously grateful for the success of ggplot2. It’s one of the most
commonly downloaded R packages (over a million downloads in the last year!)
and has influenced the design of graphics packages for other languages. Per-
sonally, ggplot2 has brought me many exciting opportunities to travel the
world and meet interesting people. I love hearing how people are using R and
ggplot2 to understand the data that they care about.

A big thanks for this edition goes to Carson Sievert, who helped me mod-
ernise the code, including converting the sources to R Markdown. He also
updated many of the examples and helped me proofread the book.

Major Changes

I’ve spent a lot of effort ensuring that this edition is a true upgrade over
the first. As well as updating the code everywhere to make sure it’s fully
compatible with the latest version of ggplot2, I have:

• Shown much more code in the book, so it’s easier to use as a reference.
Overall the book has a more “knitr”-ish sensibility: there are fewer floating
figures and tables and more inline code. This makes the layout a little less
pretty but keeps related items closer together.
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viii Preface

• Published the complete source online at https://github.com/hadley/
ggplot2-book.

• Switched from qplot() to ggplot() in the introduction, Chap. 2. Feedback
indicated that qplot() was a crutch: it makes simple plots a little easier,
but it doesn’t help with mastering the grammar.

• Added practice exercises throughout the book so you can practise new
techniques immediately after learning about them.

• Added pointers to the rich ecosystem of packages that have built up around
ggplot2. You’ll now see a number of other packages highlighted in the book
and get pointers to other packages I think are particularly useful.

• Overhauled the toolbox chapter, Chap. 3, to cover all the new geoms. I’ve
added a completely new section on text labels, Sect. 3.3, since it’s impor-
tant and not covered in detail elsewhere. The mapping section, Sect. 3.7,
has been considerably expanded to talk more about the different types of
map data and where you might find them.

• Completely rewritten the scales chapter, Chap. 6, to focus on the most
important tasks. It also discusses the new features that give finer control
over legend appearance, Sect. 6.4, and shows off some of the new scales
added to ggplot2, Sect. 6.6.

• Split the data analysis chapter into three pieces: data tidying (with tidyr),
Chap. 9; data manipulation (with dplyr), Chap. 10; and model visuali-
sation (with broom), Chap. 11. I discuss the latest iteration of my data
manipulation tools and introduce the fantastic broom package by David
Robinson.

The book is accompanied by a new version of ggplot2: version 2.0.0. This
includes a number of minor tweaks and improvements, and considerable im-
provements to the documentation. Coming back to ggplot2 development after
a considerable pause has helped me to see many problems that previously es-
caped notice. ggplot2 2.0.0 (finally!) contains an official extension mechanism
so that others can contribute new ggplot2 components in their own packages.
This is documented in a new vignette, vignette(‘‘extending-ggplot2").

The Future

ggplot2 is now stable and is unlikely to change much in the future. There will
be bug fixes and there may be new geoms, but there will be no large changes to
how ggplot2 works. The next iteration of ggplot2 is ggvis. ggvis is significantly
more ambitious because it aims to provide a grammar of interactive graphics.
ggvis is still young and lacks many of the features of ggplot2 (most notably
it currently lacks facetting and has no way to make static graphics), but over
the coming years the goal is to make ggvis better than ggplot2.

The syntax of ggvis is a little different to ggplot2. You won’t be able
to trivially convert your ggplot2 plots to ggvis, but we think the cost is

https://github.com/hadley/ggplot2-book
https://github.com/hadley/ggplot2-book
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worth it: the new syntax is considerably more consistent and will be easier
for newcomers to learn. If you’ve mastered ggplot2, you’ll find your skills
transfer very well to ggvis and after struggling with the syntax for a while, it
will start to feel quite natural. The important skills you learn when mastering
ggplot2 are not the programmatic details of describing a plot in code, but
the much harder challenge of thinking about how to turn data into effective
visualisations.
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Getting Started



Chapter 1

Introduction

1.1 Welcome to ggplot2

ggplot2 is an R package for producing statistical, or data, graphics, but it is
unlike most other graphics packages because it has a deep underlying gram-
mar. This grammar, based on the Grammar of Graphics (Wilkinson, 2005),
is made up of a set of independent components that can be composed in
many different ways. This makes ggplot2 very powerful because you are not
limited to a set of pre-specified graphics, but you can create new graphics
that are precisely tailored for your problem. This may sound overwhelming,
but because there is a simple set of core principles and very few special cases,
ggplot2 is also easy to learn (although it may take a little time to forget your
preconceptions from other graphics tools).

Practically, ggplot2 provides beautiful, hassle-free plots that take care of
fiddly details like drawing legends. The plots can be built up iteratively and
edited later. A carefully chosen set of defaults means that most of the time
you can produce a publication-quality graphic in seconds, but if you do have
special formatting requirements, a comprehensive theming system makes it
easy to do what you want. Instead of spending time making your graph look
pretty, you can focus on creating a graph that best reveals the messages in
your data.

ggplot2 is designed to work iteratively. You can start with a layer showing
the raw data then add layers of annotations and statistical summaries. It
allows you to produce graphics using the same structured thinking that you
use to design an analysis, reducing the distance between a plot in your head
and one on the page. It is especially helpful for students who have not yet
developed the structured approach to analysis used by experts.

Learning the grammar not only will help you create graphics that you know
about now, but will also help you to think about new graphics that would
be even better. Without the grammar, there is no underlying theory, so most
graphics packages are just a big collection of special cases. For example, in

© The Author 2016
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4 1 Introduction

base R, if you design a new graphic, it’s composed of raw plot elements like
points and lines, and it’s hard to design new components that combine with
existing plots. In ggplot2, the expressions used to create a new graphic are
composed of higher-level elements like representations of the raw data and
statistical transformations, and can easily be combined with new datasets
and other plots.

This book provides a hands-on introduction to ggplot2 with lots of ex-
ample code and graphics. It also explains the grammar on which ggplot2 is
based. Like other formal systems, ggplot2 is useful even when you don’t un-
derstand the underlying model. However, the more you learn about it, the
more effectively you’ll be able to use ggplot2. This book assumes some basic
familiarity with R, to the level described in the first chapter of Dalgaard’s
Introductory Statistics with R.

This book will introduce you to ggplot2 as a novice, unfamiliar with the
grammar; teach you the basics so that you can re-create plots you are already
familiar with; show you how to use the grammar to create new types of graph-
ics; and eventually turn you into an expert who can build new components
to extend the grammar.

1.2 What Is the Grammar of Graphics?

Wilkinson (2005) created the grammar of graphics to describe the deep fea-
tures that underlie all statistical graphics. The grammar of graphics is an
answer to a question: what is a statistical graphic? The layered grammar of
graphics (Wickham, 2010) builds on Wilkinson’s grammar, focussing on the
primacy of layers and adapting it for embedding within R. In brief, the gram-
mar tells us that a statistical graphic is a mapping from data to aesthetic
attributes (colour, shape, size) of geometric objects (points, lines, bars). The
plot may also contain statistical transformations of the data and is drawn on
a specific coordinate system. Facetting can be used to generate the same plot
for different subsets of the dataset. It is the combination of these independent
components that make up a graphic.

As the book progresses, the formal grammar will be explained in increasing
detail. The first description of the components follows below. It introduces
some of the terminology that will be used throughout the book and outlines
the basic responsibilities of each component. Don’t worry if it doesn’t all make
sense right away: you will have many more opportunities to learn about the
pieces and how they fit together.

All plots are composed of:

• Data that you want to visualise and a set of aesthetic mappings describ-
ing how variables in the data are mapped to aesthetic attributes that you
can perceive.
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• Layers made up of geometric elements and statistical transformation.
Geometric objects, geoms for short, represent what you actually see on
the plot: points, lines, polygons, etc. Statistical transformations, stats for
short, summarise data in many useful ways. For example, binning and
counting observations to create a histogram, or summarising a 2d rela-
tionship with a linear model.

• The scales map values in the data space to values in an aesthetic space,
whether it be colour, or size, or shape. Scales draw a legend or axes, which
provide an inverse mapping to make it possible to read the original data
values from the plot.

• A coordinate system, coord for short, describes how data coordinates are
mapped to the plane of the graphic. It also provides axes and gridlines to
make it possible to read the graph. We normally use a Cartesian coordinate
system, but a number of others are available, including polar coordinates
and map projections.

• A faceting specification describes how to break up the data into subsets
and how to display those subsets as small multiples. This is also known as
conditioning or latticing/trellising.

• A theme which controls the finer points of display, like the font size and
background colour. While the defaults in ggplot2 have been chosen with
care, you may need to consult other references to create an attractive plot.
A good starting place is Tufte’s early works (Tufte, 1990, 1997, 2001).

It is also important to talk about what the grammar doesn’t do:

• It doesn’t suggest what graphics you should use to answer the questions
you are interested in. While this book endeavours to promote a sensible
process for producing plots of data, the focus of the book is on how to
produce the plots you want, not knowing what plots to produce. For more
advice on this topic, you may want to consult Robbins (2013), Cleveland
(1993), Chambers et al. (1983), and Tukey (1977).

• It does not describe interactivity: the grammar of graphics describes only
static graphics and there is essentially no benefit to displaying them on
a computer screen as opposed to a piece of paper. ggplot2 can only
create static graphics, so for dynamic and interactive graphics you will
have to look elsewhere (perhaps at ggvis, described below). Cook and
Swayne (2007) provides an excellent introduction to the interactive graph-
ics package GGobi. GGobi can be connected to R with the rggobi package
(Wickham et al., 2008).

1.3 How Does ggplot2 Fit in with Other R Graphics?

There are a number of other graphics systems available in R: base graphics,
grid graphics and trellis/lattice graphics. How does ggplot2 differ from them?
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• Base graphics were written by Ross Ihaka based on experience implement-
ing the S graphics driver and partly looking at Chambers et al. (1983).
Base graphics has a pen on paper model: you can only draw on top of the
plot, you cannot modify or delete existing content. There is no (user acces-
sible) representation of the graphics, apart from their appearance on the
screen. Base graphics includes both tools for drawing primitives and entire
plots. Base graphics functions are generally fast, but have limited scope.
If you’ve created a single scatterplot, or histogram, or a set of boxplots in
the past, you’ve probably used base graphics.

• The development of “grid” graphics, a much richer system of graphical
primitives, started in 2000. Grid is developed by Paul Murrell, growing
out of his PhD work (Murrell, 1998). Grid grobs (graphical objects) can
be represented independently of the plot and modified later. A system of
viewports (each containing its own coordinate system) makes it easier to
lay out complex graphics. Grid provides drawing primitives, but no tools
for producing statistical graphics.

• The lattice package, developed by Deepayan Sarkar, uses grid graphics to
implement the trellis graphics system of Cleveland (1993) and is a consider-
able improvement over base graphics. You can easily produce conditioned
plots and some plotting details (e.g., legends) are taken care of automat-
ically. However, lattice graphics lacks a formal model, which can make it
hard to extend. Lattice graphics are explained in depth in Sarkar (2008).

• ggplot2, started in 2005, is an attempt to take the good things about base
and lattice graphics and improve on them with a strong underlying model
which supports the production of any kind of statistical graphic, based on
the principles outlined above. The solid underlying model of ggplot2 makes
it easy to describe a wide range of graphics with a compact syntax, and
independent components make extension easy. Like lattice, ggplot2 uses
grid to draw the graphics, which means you can exercise much low-level
control over the appearance of the plot.

• Work on ggvis, the successor to ggplot2, started in 2014. It takes the
foundational ideas of ggplot2 but extends them to the web and interactive
graphics. The syntax is similar, but it’s been re-designed from scratch to
take advantage of what I’ve learned in the 10 years since creating ggplot2.
The most exciting thing about ggvis is that it’s interactive and dynamic, so
plots automatically re-draw themselves when the underlying data or plot
specification changes. However, ggvis is work in progress and currently can
create only a fraction of the plots in ggplot2 can. Stay tuned for updates!

• htmlwidgets, http://www.htmlwidgets.org, provides a common frame-
work for accessing web visualisation tools from R. Packages built on top
of htmlwidgets include leaflet (https://rstudio.github.io/leaflet/,
maps), dygraph (http://rstudio.github.io/dygraphs/, time series)
and networkD3 (http://christophergandrud.github.io/networkD3/,
networks). htmlwidgets is to ggvis what the many specialised graphic
packages are to ggplot2: it provides graphics honed for specific purposes.

http://www.htmlwidgets.org
https://rstudio.github.io/leaflet/
http://rstudio.github.io/dygraphs/
http://christophergandrud.github.io/networkD3/


1.4 About This Book 7

Many other R packages, such as vcd (Meyer et al., 2006), plotrix (Lemon
et al., 2006) and gplots (Warnes, 2015), implement specialist graphics, but
no others provide a framework for producing statistical graphics. A com-
prehensive list of all graphical tools available in other packages can be
found in the graphics task view at http://cran.r-project.org/web/views/
Graphics.html.

1.4 About This Book

The first chapter, Chap. 2, describes how to quickly get started using ggplot2
to make useful graphics. This chapter introduces several important ggplot2
concepts: geoms, aesthetic mappings and facetting. Chapter 3 dives into more
details, giving you a toolbox designed to solve a wide range of problems.

Chapter 4 describes the layered grammar of graphics which underlies gg-
plot2. The theory is illustrated in Chap. 5 which demonstrates how to add
additional layers to your plot, exercising full control over the geoms and stats
used within them.

Understanding how scales work is crucial for fine-tuning the perceptual
properties of your plot. Customising scales gives fine control over the exact
appearance of the plot and helps to support the story that you are telling.
Chapter 6 will show you what scales are available, how to adjust their pa-
rameters, and how to control the appearance of axes and legends.

Coordinate systems and facetting control the position of elements of the
plot. These are described in Chap. 7. Facetting is a very powerful graphical
tool as it allows you to rapidly compare different subsets of your data. Dif-
ferent coordinate systems are less commonly needed, but are very important
for certain types of data.

To polish your plots for publication, you will need to learn about the tools
described in Chap. 8. There you will learn about how to control the theming
system of ggplot2 and how to save plots to disk.

The book concludes with four chapters that show how to use ggplot2
as part of a data analysis pipeline. ggplot2 works best when your data is
tidy, so Chap. 9 discusses what that means and how to make your messy
data tidy. Chapter 10 teaches you how to use the dplyr package to perform
the most common data manipulation operations. Chapter 11 shows how to
integrate visualisation and modelling in two useful ways. Duplicated code is
a big inhibitor of flexibility and reduces your ability to respond to changes in
requirements. Chapter 12 covers useful techniques for reducing duplication
in your code.

http://cran.r-project.org/web/views/Graphics.html
http://cran.r-project.org/web/views/Graphics.html
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1.5 Installation

To use ggplot2, you must first install it. Make sure you have a recent version
of R (at least version 3.2.0) from http://r-project.org and then run the
following code to download and install ggplot2:

install.packages("ggplot2")

1.6 Other Resources

This book teaches you the elements of ggplot2’s grammar and how they fit
together, but it does not document every function in complete detail. You will
need additional documentation as your use of ggplot2 becomes more complex
and varied.

The best resource for specific details of ggplot2 functions and their argu-
ments will always be the built-in documentation. This is accessible online,
http://docs.ggplot2.org/, and from within R using the usual help syn-
tax. The advantage of the online documentation is that you can see all the
example plots and navigate between topics more easily.

If you use ggplot2 regularly, it’s a good idea to sign up for the ggplot2
mailing list, http://groups.google.com/group/ggplot2. The list has rela-
tively low traffic and is very friendly to new users. Another useful resource is
stackoverflow, http://stackoverflow.com. There is an active ggplot2 com-
munity on stackoverflow, and many common questions have already been
asked and answered. In either place, you’re much more likely to get help if
you create a minimal reproducible example. The reprex (https://github.
com/jennybc/reprex) package by Jenny Bryan provides a convenient way
to do this, and also include advice on creating a good example. The more
information you provide, the easier it is for the community to help you.

The number of functions in ggplot2 can be overwhelming, but RStudio
provides some great cheatsheets to jog your memory at http://www.rstudio.
com/resources/cheatsheets/.

Finally, the complete source code for the book is available online at
https://github.com/hadley/ggplot2-book. This contains the complete text
for the book, as well as all the code and data needed to recreate all the plots.

1.7 Colophon

This book was written in R Markdown (http://rmarkdown.rstudio.com/)
inside RStudio (http://www.rstudio.com/ide/). knitr (http://yihui.name/
knitr/) and pandoc (http://johnmacfarlane.net/pandoc/) converted the

http://r-project.org
http://docs.ggplot2.org/
http://groups.google.com/group/ggplot2
http://stackoverflow.com
https://github.com/jennybc/reprex
https://github.com/jennybc/reprex
http://www.rstudio.com/resources/cheatsheets/
http://www.rstudio.com/resources/cheatsheets/
https://github.com/hadley/ggplot2-book
http://rmarkdown.rstudio.com/
http://www.rstudio.com/ide/
http://yihui.name/knitr/
http://yihui.name/knitr/
http://johnmacfarlane.net/pandoc/
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raw Rmarkdown to html and pdf. The complete source is available from
github (https://github.com/hadley/ggplot2-book). This version of the
book was built with:

devtools::session_info(c("ggplot2", "dplyr", "broom"))

#> Session info ------------------------------------------------------

#> setting value

#> version R version 3.2.3 (2015-12-10)

#> system x86_64, darwin13.4.0

#> ui X11

#> language (EN)

#> collate en_US.UTF-8

#> tz America/Chicago

#> date 2016-02-27

#> Packages ----------------------------------------------------------

#> package * version date source

#> assertthat 0.1 2013-12-06 CRAN (R 3.2.0)

#> BH 1.58.0-1 2015-05-21 CRAN (R 3.2.0)

#> broom 0.4.0 2015-11-30 CRAN (R 3.2.2)

#> colorspace 1.2-6 2015-03-11 CRAN (R 3.2.0)

#> DBI 0.3.1 2014-09-24 CRAN (R 3.2.0)

#> dichromat 2.0-0 2013-01-24 CRAN (R 3.2.0)

#> digest 0.6.9 2016-01-08 CRAN (R 3.2.3)

#> dplyr * 0.4.3 2015-09-01 CRAN (R 3.2.0)

#> ggplot2 * 2.1.0 2016-02-26 local

#> gtable 0.2.0 2016-02-26 CRAN (R 3.2.3)

#> labeling 0.3 2014-08-23 CRAN (R 3.2.0)

#> lattice 0.20-33 2015-07-14 CRAN (R 3.2.3)

#> lazyeval 0.1.10 2015-01-02 CRAN (R 3.2.0)

#> magrittr 1.5 2014-11-22 CRAN (R 3.2.0)

#> MASS 7.3-45 2015-11-10 CRAN (R 3.2.3)

#> mnormt 1.5-3 2015-05-25 CRAN (R 3.2.0)

#> munsell 0.4.2 2013-07-11 CRAN (R 3.2.0)

#> nlme 3.1-122 2015-08-19 CRAN (R 3.2.3)

#> plyr 1.8.3 2015-06-12 CRAN (R 3.2.0)

#> psych 1.5.8 2015-08-30 CRAN (R 3.2.0)

#> R6 2.1.2 2016-01-26 CRAN (R 3.2.3)

#> RColorBrewer 1.1-2 2014-12-07 CRAN (R 3.2.0)

#> Rcpp 0.12.3 2016-01-10 CRAN (R 3.2.3)

#> reshape2 1.4.1 2014-12-06 CRAN (R 3.2.0)

#> scales 0.4.0 2016-02-26 CRAN (R 3.2.3)

#> stringi 1.0-1 2015-10-22 CRAN (R 3.2.0)

#> stringr 1.0.0 2015-04-30 CRAN (R 3.2.0)

#> tidyr * 0.4.1 2016-02-05 CRAN (R 3.2.3)

getOption("width")

#> [1] 67

https://github.com/hadley/ggplot2-book
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Chapter 2

Getting Started with ggplot2

2.1 Introduction

The goal of this chapter is to teach you how to produce useful graphics with
ggplot2 as quickly as possible. You’ll learn the basics of ggplot() along with
some useful “recipes” to make the most important plots. ggplot() allows you
to make complex plots with just a few lines of code because it’s based on a
rich underlying theory, the grammar of graphics. Here we’ll skip the theory
and focus on the practice, and in later chapters you’ll learn how to use the
full expressive power of the grammar.

In this chapter you’ll learn:

• About the mpg dataset included with ggplot2, Sect. 2.2.
• The three key components of every plot: data, aesthetics and geoms,

Sect. 2.3.
• How to add additional variables to a plot with aesthetics, Sect. 2.4.
• How to display additional categorical variables in a plot using small mul-

tiples created by facetting, Sect. 2.5.
• A variety of different geoms that you can use to create different types of

plots, Sect. 2.6.
• How to modify the axes, Sect. 2.7.
• Things you can do with a plot object other than display it, like save it to

disk, Sect. 2.8.
• qplot(), a handy shortcut for when you just want to quickly bang out a

simple plot without thinking about the grammar at all, Sect. 2.9.

© The Author 2016
H. Wickham, ggplot2, Use R!, DOI 10.1007/978-3-319-24277-4 2
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2.2 Fuel Economy Data

In this chapter, we’ll mostly use one data set that’s bundled with ggplot2:
mpg. It includes information about the fuel economy of popular car models
in 1999 and 2008, collected by the US Environmental Protection Agency,
http://fueleconomy.gov. You can access the data by loading ggplot2:

library(ggplot2)

mpg

#> Source: local data frame [234 x 11]

#>

#> manufacturer model displ year cyl trans drv cty

#> (chr) (chr) (dbl) (int) (int) (chr) (chr) (int)

#> 1 audi a4 1.8 1999 4 auto(l5) f 18

#> 2 audi a4 1.8 1999 4 manual(m5) f 21

#> 3 audi a4 2.0 2008 4 manual(m6) f 20

#> 4 audi a4 2.0 2008 4 auto(av) f 21

#> 5 audi a4 2.8 1999 6 auto(l5) f 16

#> 6 audi a4 2.8 1999 6 manual(m5) f 18

#> .. ... ... ... ... ... ... ... ...

#> Variables not shown: hwy (int), fl (chr), class (chr)

The variables are mostly self-explanatory:

• cty and hwy record miles per gallon (mpg) for city and highway driving.
• displ is the engine displacement in litres.
• drv is the drivetrain: front wheel (f), rear wheel (r) or four wheel (4).
• model is the model of car. There are 38 models, selected because they had

a new edition every year between 1999 and 2008.
• class (not shown), is a categorical variable describing the “type” of car:

two seater, SUV, compact, etc.

This dataset suggests many interesting questions. How are engine size
and fuel economy related? Do certain manufacturers care more about fuel
economy than others? Has fuel economy improved in the last 10 years? We
will try to answer some of these questions, and in the process learn how to
create some basic plots with ggplot2.

2.2.1 Exercises

1. List five functions that you could use to get more information about the
mpg dataset.

2. How can you find out what other datasets are included with ggplot2?
3. Apart from the US, most countries use fuel consumption (fuel consumed

over fixed distance) rather than fuel economy (distance travelled with fixed
amount of fuel). How could you convert cty and hwy into the European
standard of l/100km?

http://fueleconomy.gov
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4. Which manufacturer has the most the models in this dataset? Which model
has the most variations? Does your answer change if you remove the re-
dundant specification of drive train (e.g. “pathfinder 4wd”, “a4 quattro”)
from the model name?

2.3 Key Components

Every ggplot2 plot has three key components:

1. data,
2. A set of aesthetic mappings between variables in the data and visual

properties, and
3. At least one layer which describes how to render each observation. Layers

are usually created with a geom function.

Here’s a simple example:

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point()

This produces a scatterplot defined by:

1. Data: mpg.
2. Aesthetic mapping: engine size mapped to x position, fuel economy to y

position.
3. Layer: points.

Pay attention to the structure of this function call: data and aesthetic
mappings are supplied in ggplot(), then layers are added on with +. This is
an important pattern, and as you learn more about ggplot2 you’ll construct
increasingly sophisticated plots by adding on more types of components.
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Almost every plot maps a variable to x and y, so naming these aesthetics
is tedious, so the first two unnamed arguments to aes() will be mapped to x

and y. This means that the following code is identical to the example above:

ggplot(mpg, aes(displ, hwy)) +

geom_point()

I’ll stick to that style throughout the book, so don’t forget that the first
two arguments to aes() are x and y. Note that I’ve put each command on
a new line. I recommend doing this in your own code, so it’s easy to scan a
plot specification and see exactly what’s there. In this chapter, I’ll sometimes
use just one line per plot, because it makes it easier to see the differences
between plot variations.

The plot shows a strong correlation: as the engine size gets bigger, the fuel
economy gets worse. There are also some interesting outliers: some cars with
large engines get higher fuel economy than average. What sort of cars do you
think they are?

2.3.1 Exercises

1. How would you describe the relationship between cty and hwy? Do you
have any concerns about drawing conclusions from that plot?

2. What does ggplot(mpg, aes(model, manufacturer)) + geom point() show? Is
it useful? How could you modify the data to make it more informative?

3. Describe the data, aesthetic mappings and layers used for each of the
following plots. You’ll need to guess a little because you haven’t seen all
the datasets and functions yet, but use your common sense! See if you can
predict what the plot will look like before running the code.

1. ggplot(mpg, aes(cty, hwy)) + geom point()

2. ggplot(diamonds, aes(carat, price)) + geom point()

3. ggplot(economics, aes(date, unemploy)) + geom line()

4. ggplot(mpg, aes(cty)) + geom histogram()

2.4 Colour, Size, Shape and Other Aesthetic Attributes

To add additional variables to a plot, we can use other aesthetics like colour,
shape, and size (NB: while I use British spelling throughout this book, ggplot2
also accepts American spellings). These work in the same way as the x and y

aesthetics, and are added into the call to aes():
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• aes(displ, hwy, colour = class)

• aes(displ, hwy, shape = drv)

• aes(displ, hwy, size = cyl)

ggplot2 takes care of the details of converting data (e.g., ‘f’, ‘r’, ‘4’) into
aesthetics (e.g., ‘red’, ‘yellow’, ‘green’) with a scale. There is one scale for
each aesthetic mapping in a plot. The scale is also responsible for creating a
guide, an axis or legend, that allows you to read the plot, converting aesthetic
values back into data values. For now, we’ll stick with the default scales
provided by ggplot2. You’ll learn how to override them in Chap. 6.

To learn more about those outlying variables in the previous scatterplot,
we could map the class variable to colour:

ggplot(mpg, aes(displ, cty, colour = class)) +

geom_point()

This gives each point a unique colour corresponding to its class. The legend
allows us to read data values from the colour, showing us that the group of
cars with unusually high fuel economy for their engine size are two seaters:
cars with big engines, but lightweight bodies.

If you want to set an aesthetic to a fixed value, without scaling it, do so
in the individual layer outside of aes(). Compare the following two plots:

ggplot(mpg, aes(displ, hwy)) + geom_point(aes(colour = "blue"))

ggplot(mpg, aes(displ, hwy)) + geom_point(colour = "blue")
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In the first plot, the value “blue” is scaled to a pinkish colour, and a leg-
end is added. In the second plot, the points are given the R colour blue. This
is an important technique and you’ll learn more about it in Sect. 5.4.2. See
vignette("ggplot2-specs") for the values needed for colour and other aesthet-
ics.

Different types of aesthetic attributes work better with different types of
variables. For example, colour and shape work well with categorical variables,
while size works well for continuous variables. The amount of data also makes
a difference: if there is a lot of data it can be hard to distinguish different
groups. An alternative solution is to use facetting, as described next.

When using aesthetics in a plot, less is usually more. It’s difficult to see
the simultaneous relationships among colour and shape and size, so exercise
restraint when using aesthetics. Instead of trying to make one very complex
plot that shows everything at once, see if you can create a series of simple
plots that tell a story, leading the reader from ignorance to knowledge.

2.4.1 Exercises

1. Experiment with the colour, shape and size aesthetics. What happens
when you map them to continuous values? What about categorical values?
What happens when you use more than one aesthetic in a plot?

2. What happens if you map a continuous variable to shape? Why? What
happens if you map trans to shape? Why?

3. How is drive train related to fuel economy? How is drive train related to
engine size and class?

2.5 Facetting

Another technique for displaying additional categorical variables on a plot
is facetting. Facetting creates tables of graphics by splitting the data into
subsets and displaying the same graph for each subset. You’ll learn more
about facetting in Sect. 7.2, but it’s such a useful technique that you need to
know it right away.
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There are two types of facetting: grid and wrapped. Wrapped is the most
useful, so we’ll discuss it here, and you can learn about grid facetting later.
To facet a plot you simply add a facetting specification with facet wrap(),
which takes the name of a variable preceded by ˜.

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

facet_wrap(˜class)

You might wonder when to use facetting and when to use aesthetics.
You’ll learn more about the relative advantages and disadvantages of each in
Sect. 7.2.5.

2.5.1 Exercises

1. What happens if you try to facet by a continuous variable like hwy? What
about cyl? What’s the key difference?

2. Use facetting to explore the three-way relationship between fuel economy,
engine size, and number of cylinders. How does facetting by number of
cylinders change your assessment of the relationship between engine size
and fuel economy?

3. Read the documentation for facet wrap(). What arguments can you use to
control how many rows and columns appear in the output?

4. What does the scales argument to facet wrap() do? When might you
use it?
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2.6 Plot Geoms

You might guess that by substituting geom point() for a different geom func-
tion, you’d get a different type of plot. That’s a great guess! In the following
sections, you’ll learn about some of the other important geoms provided in
ggplot2. This isn’t an exhaustive list, but should cover the most commonly
used plot types. You’ll learn more in Chap. 3.

• geom smooth() fits a smoother to the data and displays the smooth and its
standard error.

• geom boxplot() produces a box-and-whisker plot to summarise the distri-
bution of a set of points.

• geom histogram() and geom freqpoly() show the distribution of continuous
variables.

• geom bar() shows the distribution of categorical variables.
• geom path() and geom line() draw lines between the data points. A line plot

is constrained to produce lines that travel from left to right, while paths
can go in any direction. Lines are typically used to explore how things
change over time.

2.6.1 Adding a Smoother to a Plot

If you have a scatterplot with a lot of noise, it can be hard to see the dominant
pattern. In this case it’s useful to add a smoothed line to the plot with
geom smooth():

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_smooth()
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This overlays the scatterplot with a smooth curve, including an assessment
of uncertainty in the form of point-wise confidence intervals shown in grey. If
you’re not interested in the confidence interval, turn it off with geom smooth(se

= FALSE).
An important argument to geom smooth() is the method, which allows you

to choose which type of model is used to fit the smooth curve:

• method = "loess", the default for small n, uses a smooth local regression
(as described in ?loess). The wiggliness of the line is controlled by the span

parameter, which ranges from 0 (exceedingly wiggly) to 1 (not so wiggly).

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_smooth(span = 0.2)

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_smooth(span = 1)

Loess does not work well for large datasets (it’s O(n2) in memory), so an
alternative smoothing algorithm is used when n is greater than 1000.

• method = "gam" fits a generalised additive model provided by the mgcv
package. You need to first load mgcv, then use a formula like formula = y

˜ s(x) or y ˜ s(x, bs = "cs") (for large data). This is what ggplot2 uses
when there are more than 1000 points.

library(mgcv)

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_smooth(method = "gam", formula = y ˜ s(x))
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• method = "lm" fits a linear model, giving the line of best fit.

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_smooth(method = "lm")

• method = "rlm" works like lm(), but uses a robust fitting algorithm so that
outliers don’t affect the fit as much. It’s part of the MASS package, so
remember to load that first.

2.6.2 Boxplots and Jittered Points

When a set of data includes a categorical variable and one or more continuous
variables, you will probably be interested to know how the values of the
continuous variables vary with the levels of the categorical variable. Say we’re
interested in seeing how fuel economy varies within car class. We might start
with a scatterplot like this:

ggplot(mpg, aes(drv, hwy)) +

geom_point()
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Because there are few unique values of both class and hwy, there is a lot of
overplotting. Many points are plotted in the same location, and it’s difficult
to see the distribution. There are three useful techniques that help alleviate
the problem:

• Jittering, geom jitter(), adds a little random noise to the data which can
help avoid overplotting.

• Boxplots, geom boxplot(), summarise the shape of the distribution with a
handful of summary statistics.

• Violin plots, geom violin(), show a compact representation of the “density”
of the distribution, highlighting the areas where more points are found.

These are illustrated below:

ggplot(mpg, aes(drv, hwy)) + geom_jitter()

ggplot(mpg, aes(drv, hwy)) + geom_boxplot()

ggplot(mpg, aes(drv, hwy)) + geom_violin()

Each method has its strengths and weaknesses. Boxplots summarise the
bulk of the distribution with only five numbers, while jittered plots show
every point but only work with relatively small datasets. Violin plots give
the richest display, but rely on the calculation of a density estimate, which
can be hard to interpret.
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For jittered points, geom jitter() offers the same control over aesthetics as
geom point(): size, colour, and shape. For geom boxplot() and geom violin(),
you can control the outline colour or the internal fill colour.

2.6.3 Histograms and Frequency Polygons

Histograms and frequency polygons show the distribution of a single numeric
variable. They provide more information about the distribution of a single
group than boxplots do, at the expense of needing more space.

ggplot(mpg, aes(hwy)) + geom_histogram()

#> �stat_bin()� using �bins = 30�. Pick better value with

#> �binwidth�.

ggplot(mpg, aes(hwy)) + geom_freqpoly()

#> �stat_bin()� using �bins = 30�. Pick better value with

#> �binwidth�.

Both histograms and frequency polygons work in the same way: they bin
the data, then count the number of observations in each bin. The only dif-
ference is the display: histograms use bars and frequency polygons use lines.

You can control the width of the bins with the binwidth argument (if you
don’t want evenly spaced bins you can use the breaks argument). It is very
important to experiment with the bin width. The default just splits your
data into 30 bins, which is unlikely to be the best choice. You should always
try many bin widths, and you may find you need multiple bin widths to tell
the full story of your data.

ggplot(mpg, aes(hwy)) +

geom_freqpoly(binwidth = 2.5)

ggplot(mpg, aes(hwy)) +

geom_freqpoly(binwidth = 1)
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An alternative to the frequency polygon is the density plot, geom density().
I’m not a fan of density plots because they are harder to interpret since the
underlying computations are more complex. They also make assumptions
that are not true for all data, namely that the underlying distribution is
continuous, unbounded, and smooth.

To compare the distributions of different subgroups, you can map
a categorical variable to either fill (for geom histogram()) or colour (for
geom freqpoly()). It’s easier to compare distributions using the frequency
polygon because the underlying perceptual task is easier. You can also use
facetting: this makes comparisons a little harder, but it’s easier to see the
distribution of each group.

ggplot(mpg, aes(displ, colour = drv)) +

geom_freqpoly(binwidth = 0.5)

ggplot(mpg, aes(displ, fill = drv)) +

geom_histogram(binwidth = 0.5) +

facet_wrap(˜drv, ncol = 1)
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2.6.4 Bar Charts

The discrete analogue of the histogram is the bar chart, geom bar(). It’s easy
to use:

ggplot(mpg, aes(manufacturer)) +

geom_bar()

(You’ll learn how to fix the labels in Sect. 8.4.2).
Bar charts can be confusing because there are two rather different plots

that are both commonly called bar charts. The above form expects you to
have unsummarised data, and each observation contributes one unit to the
height of each bar. The other form of bar chart is used for presummarised
data. For example, you might have three drugs with their average effect:

drugs <- data.frame(

drug = c("a", "b", "c"),

effect = c(4.2, 9.7, 6.1)

)

To display this sort of data, you need to tell geom bar() to not run the
default stat which bins and counts the data. However, I think it’s even better
to use geom point() because points take up less space than bars, and don’t
require that the y axis includes 0.

ggplot(drugs, aes(drug, effect)) + geom_bar(stat = "identity")

ggplot(drugs, aes(drug, effect)) + geom_point()
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2.6.5 Time Series with Line and Path Plots

Line and path plots are typically used for time series data. Line plots join the
points from left to right, while path plots join them in the order that they
appear in the dataset (in other words, a line plot is a path plot of the data
sorted by x value). Line plots usually have time on the x-axis, showing how
a single variable has changed over time. Path plots show how two variables
have simultaneously changed over time, with time encoded in the way that
observations are connected.

Because the year variable in the mpg dataset only has two values, we’ll show
some time series plots using the economics dataset, which contains economic
data on the US measured over the last 40 years. The figure below shows two
plots of unemployment over time, both produced using geom line(). The first
shows the unemployment rate while the second shows the median number of
weeks unemployed. We can already see some differences in these two variables,
particularly in the last peak, where the unemployment percentage is lower
than it was in the preceding peaks, but the length of unemployment is high.

ggplot(economics, aes(date, unemploy / pop)) +

geom_line()

ggplot(economics, aes(date, uempmed)) +

geom_line()
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To examine this relationship in greater detail, we would like to draw both
time series on the same plot. We could draw a scatterplot of unemployment
rate vs. length of unemployment, but then we could no longer see the evo-
lution over time. The solution is to join points adjacent in time with line
segments, forming a path plot.

Below we plot unemployment rate vs. length of unemployment and join
the individual observations with a path. Because of the many line crossings,
the direction in which time flows isn’t easy to see in the first plot. In the
second plot, we colour the points to make it easier to see the direction of
time.

ggplot(economics, aes(unemploy / pop, uempmed)) +

geom_path() +

geom_point()

year <- function(x) as.POSIXlt(x)$year + 1900

ggplot(economics, aes(unemploy / pop, uempmed)) +

geom_path(colour = "grey50") +

geom_point(aes(colour = year(date)))

We can see that unemployment rate and length of unemployment are
highly correlated, but in recent years the length of unemployment has been
increasing relative to the unemployment rate.

With longitudinal data, you often want to display multiple time series on
each plot, each series representing one individual. To do this you need to
map the group aesthetic to a variable encoding the group membership of each
observation. This is explained in more depth in Sect. 3.5.

2.6.6 Exercises

1. What’s the problem with the plot created by ggplot(mpg, aes(cty, hwy))

+ geom point()? Which of the geoms described above is most effective at
remedying the problem?
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2. One challenge with ggplot(mpg, aes(class, hwy)) + geom boxplot() is that
the ordering of class is alphabetical, which is not terribly useful. How
could you change the factor levels to be more informative?
Rather than reordering the factor by hand, you can do it automati-
cally based on the data: ggplot(mpg, aes(reorder(class, hwy), hwy)) +

geom boxplot(). What does reorder() do? Read the documentation.
3. Explore the distribution of the carat variable in the diamonds dataset. What

binwidth reveals the most interesting patterns?
4. Explore the distribution of the price variable in the diamonds data. How

does the distribution vary by cut?
5. You now know (at least) three ways to compare the distributions of

subgroups: geom violin(), geom freqpoly() and the colour aesthetic, or
geom histogram() and facetting. What are the strengths and weaknesses
of each approach? What other approaches could you try?

6. Read the documentation for geom bar(). What does the weight aesthetic do?
7. Using the techniques already discussed in this chapter, come up with three

ways to visualise a 2d categorical distribution. Try them out by visualising
the distribution of model and manufacturer, trans and class, and cyl and
trans.

2.7 Modifying the Axes

You’ll learn the full range of options available in Chap. 6, but two families
of useful helpers let you make the most common modifications. xlab() and
ylab() modify the x- and y-axis labels:

ggplot(mpg, aes(cty, hwy)) +

geom_point(alpha = 1 / 3)

ggplot(mpg, aes(cty, hwy)) +

geom_point(alpha = 1 / 3) +

xlab("city driving (mpg)") +

ylab("highway driving (mpg)")

# Remove the axis labels with NULL

ggplot(mpg, aes(cty, hwy)) +

geom_point(alpha = 1 / 3) +

xlab(NULL) +

ylab(NULL)
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xlim() and ylim() modify the limits of axes:

ggplot(mpg, aes(drv, hwy)) +

geom_jitter(width = 0.25)

ggplot(mpg, aes(drv, hwy)) +

geom_jitter(width = 0.25) +

xlim("f", "r") +

ylim(20, 30)

#> Warning: Removed 138 rows containing missing values (geom_point).

# For continuous scales, use NA to set only one limit

ggplot(mpg, aes(drv, hwy)) +

geom_jitter(width = 0.25, na.rm = TRUE) +

ylim(NA, 30)

Changing the axes limits sets values outside the range to NA. You can
suppress the associated warning with na.rm = TRUE.
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2.8 Output

Most of the time you create a plot object and immediately plot it, but you
can also save a plot to a variable and manipulate it:

p <- ggplot(mpg, aes(displ, hwy, colour = factor(cyl))) +

geom_point()

Once you have a plot object, there are a few things you can do with it:

• Render it on screen with print(). This happens automatically when run-
ning interactively, but inside a loop or function, you’ll need to print() it
yourself.

print(p)

• Save it to disk with ggsave(), described in Sect. 8.5.

# Save png to disk

ggsave("plot.png", width = 5, height = 5)

• Briefly describe its structure with summary().

summary(p)

#> data: manufacturer, model, displ, year, cyl, trans, drv,

#> cty, hwy, fl, class [234x11]

#> mapping: x = displ, y = hwy, colour = factor(cyl)

#> faceting: facet_null()

#> -----------------------------------

#> geom_point: na.rm = FALSE

#> stat_identity: na.rm = FALSE

#> position_identity

• Save a cached copy of it to disk, with saveRDS(). This saves a complete
copy of the plot object, so you can easily re-create it with readRDS().
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saveRDS(p, "plot.rds")

q <- readRDS("plot.rds")

The plot structure is not guaranteed to stay the same over time, so use
this for short-term caching, not long-term storage. You’ll learn more about
how to manipulate these objects in Chap. 12.

2.9 Quick Plots

In some cases, you will want to create a quick plot with a minimum of typing.
In these cases you may prefer to use qplot() over ggplot(). qplot() lets you
define a plot in a single call, picking a geom by default if you don’t supply
one. To use it, provide a set of aesthetics and a data set:

qplot(displ, hwy, data = mpg)

qplot(displ, data = mpg)

#> �stat_bin()� using �bins = 30�. Pick better value with

#> �binwidth�.

Unless otherwise specified, qplot() tries to pick a sensible geometry and
statistic based on the arguments provided. For example, if you give qplot()

x and y variables, it’ll create a scatterplot. If you just give it an x, it’ll create
a histogram or bar chart depending on the type of variable.

qplot() assumes that all variables should be scaled by default. If you want
to set an aesthetic to a constant, you need to use I():

qplot(displ, hwy, data = mpg, colour = "blue")

qplot(displ, hwy, data = mpg, colour = I("blue"))
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If you’re used to plot() you may find qplot() to be a useful crutch to get
up and running quickly. However, while it’s possible to use qplot() to access
all of the customizability of ggplot2, I don’t recommend it. If you find yourself
making a more complex graph, e.g. using different aesthetics in different layers
or manually setting visual properties, use ggplot(), not qplot().



Chapter 3

Toolbox

3.1 Introduction

The layered structure of ggplot2 encourages you to design and construct
graphics in a structured manner. You’ve learned the basics in the previous
chapter, and in this chapter you’ll get a more comprehensive task-based in-
troduction. The goal here is not to exhaustively explore every option of every
geom, but instead to show the most important tools for a given task. For
more information about individual geoms, along with many more examples
illustrating their use, see the documentation.

It is useful to think about the purpose of each layer before it is added. In
general, there are three purposes for a layer:

• To display the data. We plot the raw data for many reasons, relying on
our skills at pattern detection to spot gross structure, local structure, and
outliers. This layer appears on virtually every graphic. In the earliest stages
of data exploration, it is often the only layer.

• To display a statistical summary of the data. As we develop and explore
models of the data, it is useful to display model predictions in the context
of the data. Showing the data helps us improve the model, and showing
the model helps reveal subtleties of the data that we might otherwise miss.
Summaries are usually drawn on top of the data.

• To add additional metadata: context, annotations, and references.
A metadata layer displays background context, annotations that help to
give meaning to the raw data, or fixed references that aid comparisons
across panels. Metadata can be useful in the background and foreground.
A map is often used as a background layer with spatial data. Background
metadata should be rendered so that it doesn’t interfere with your percep-
tion of the data, so is usually displayed underneath the data and formatted
so that it is minimally perceptible. That is, if you concentrate on it, you
can see it with ease, but it doesn’t jump out at you when you are casually
browsing the plot.

© The Author 2016
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Other metadata is used to highlight important features of the data. If you
have added explanatory labels to a couple of inflection points or outliers,
then you want to render them so that they pop out at the viewer. In that
case, you want this to be the very last layer drawn.

This chapter is broken up into the following sections, each of which deals
with a particular graphical challenge. This is not an exhaustive or exclusive
categorisation, and there are many other possible ways to break up graphics
into different categories. Each geom can be used for many different purposes,
especially if you are creative. However, this breakdown should cover many
common tasks and help you learn about some of the possibilities.

• Basic plot types that produce common, ‘named’ graphics like scatterplots
and line charts, Sect. 3.2.

• Displaying text, Sect. 3.3.
• Adding arbitrary additional annotations, Sect. 3.4.
• Working with collective geoms, like lines and polygons, that each display

multiple rows of data, Sect. 3.5.
• Surface plots to display 3d surfaces in 2d, Sect. 3.6.
• Drawing maps, Sect. 3.7.
• Revealing uncertainty and error, with various 1d and 2d intervals, Sect. 3.8.
• Weighted data, Sect. 3.9.

In Sect. 3.10, you’ll learn about the diamonds dataset. The final three
sections use this data to discuss techniques for visualising larger datasets:

• Displaying distributions, continuous and discrete, 1d and 2d, joint and
conditional, Sect. 3.11.

• Dealing with overplotting in scatterplots, a challenge with large datasets,
Sect. 3.12.

• Displaying statistical summaries instead of the raw data, Sect. 3.13.

The chapter concludes in Sect. 3.14 with some pointers to other useful
packages built on top of ggplot2.

3.2 Basic Plot Types

These geoms are the fundamental building blocks of ggplot2. They are useful
in their own right, but are also used to construct more complex geoms. Most
of these geoms are associated with a named plot: when that geom is used by
itself in a plot, that plot has a special name.

Each of these geoms is two dimensional and requires both x and y aesthet-
ics. All of them understand colour (or color) and size aesthetics, and the
filled geoms (bar, tile and polygon) also understand fill.
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• geom area() draws an area plot, which is a line plot filled to the y-axis
(filled lines). Multiple groups will be stacked on top of each other.

• geom bar(stat = "identity") makes a bar chart. We need stat = "identity"

because the default stat automatically counts values (so is essentially a 1d
geom, see Sect. 3.11. The identity stat leaves the data unchanged. Multiple
bars in the same location will be stacked on top of one another.

• geom line() makes a line plot. The group aesthetic determines which ob-
servations are connected; see Sect. 3.5 for more detail. geom line() connects
points from left to right; geom path() is similar but connects points in the
order they appear in the data. Both geom line() and geom path() also un-
derstand the aesthetic linetype, which maps a categorical variable to solid,
dotted and dashed lines.

• geom point() produces a scatterplot. geom point() also understands the
shape aesthetic.

• geom polygon() draws polygons, which are filled paths. Each vertex of the
polygon requires a separate row in the data. It is often useful to merge
a data frame of polygon coordinates with the data just prior to plotting.
Section 3.7 illustrates this concept in more detail for map data.

• geom rect(), geom tile() and geom raster() draw rectangles. geom rect() is
parameterised by the four corners of the rectangle, xmin, ymin, xmax and
ymax. geom tile() is exactly the same, but parameterised by the center of
the rect and its size, x, y, width and height. geom raster() is a fast special
case of geom tile() used when all the tiles are the same size. .

Each geom is shown in the code below. Observe the different axis ranges
for the bar, area and tile plots: these geoms take up space outside the range
of the data, and so push the axes out.

df <- data.frame(

x = c(3, 1, 5),

y = c(2, 4, 6),

label = c("a","b","c")

)

p <- ggplot(df, aes(x, y, label = label)) +

labs(x = NULL, y = NULL) + # Hide axis label

theme(plot.title = element_text(size = 12)) # Shrink plot title

p + geom_point() + ggtitle("point")

p + geom_text() + ggtitle("text")

p + geom_bar(stat = "identity") + ggtitle("bar")

p + geom_tile() + ggtitle("raster")



36 3 Toolbox

p + geom_line() + ggtitle("line")

p + geom_area() + ggtitle("area")

p + geom_path() + ggtitle("path")

p + geom_polygon() + ggtitle("polygon")

3.2.1 Exercises

1. What geoms would you use to draw each of the following named plots?

1. Scatterplot
2. Line chart
3. Histogram
4. Bar chart
5. Pie chart

2. What’s the difference between geom path() and geom polygon()? What’s the
difference between geom path() and geom line()?

3. What low-level geoms are used to draw geom smooth()? What about
geom boxplot() and geom violin()?
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3.3 Labels

Adding text to a plot can be quite tricky. ggplot2 doesn’t have all the answers,
but does provide some tools to make your life a little easier. The main tool
is geom text(), which adds labels at the specified x and y positions.

geom text() has the most aesthetics of any geom, because there are so many
ways to control the appearance of a text:

• family gives the name of a font. There are only three fonts that are guar-
anteed to work everywhere: “sans” (the default), “serif”, or “mono”:

df <- data.frame(x = 1, y = 3:1, family = c("sans", "serif", "mono"))

ggplot(df, aes(x, y)) +

geom_text(aes(label = family, family = family))

It’s trickier to include a system font on a plot because text drawing is done
differently by each graphics device (GD). There are five GDs in common
use (png(), pdf(), on screen devices for Windows, Mac and Linux), so to
have a font work everywhere you need to configure five devices in five
different ways. Two packages simplify the quandary a bit:

– showtext, https://github.com/yixuan/showtext, by Yixuan Qiu,
makes GD-independent plots by rendering all text as polygons.

– extrafont, https://github.com/wch/extrafont, by Winston Chang,
converts fonts to a standard format that all devices can use.

Both approaches have pros and cons, so you will to need to try both of
them and see which works best for your needs.

• fontface specifies the face: “plain” (the default), “bold” or “italic”.

https://github.com/yixuan/showtext
https://github.com/wch/extrafont
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df <- data.frame(x = 1, y = 3:1, face = c("plain", "bold", "italic"))

ggplot(df, aes(x, y)) +

geom_text(aes(label = face, fontface = face))

• You can adjust the alignment of the text with the hjust (“left”, “center”,
“right”, “inward”, “outward”) and vjust (“bottom”, “middle”, “top”, “in-
ward”, “outward”) aesthetics. The default alignment is centered. One of
the most useful alignments is “inward”: it aligns text towards the middle
of the plot:

df <- data.frame(

x = c(1, 1, 2, 2, 1.5),

y = c(1, 2, 1, 2, 1.5),

text = c(

"bottom-left", "bottom-right",

"top-left", "top-right", "center"

)

)

ggplot(df, aes(x, y)) +

geom_text(aes(label = text))

ggplot(df, aes(x, y)) +

geom_text(aes(label = text), vjust = "inward", hjust = "inward")
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• size controls the font size. Unlike most tools, ggplot2 uses mm, rather
than the usual points (pts). This makes it consistent with other size units
in ggplot2. (There are 72.27 pts in a inch, so to convert from points to
mm, just multiply by 72.27/25.4.)

• angle specifies the rotation of the text in degrees.

You can map data values to these aesthetics, but use restraint: it is hard
to perceive the relationship between variables mapped to these aesthetics.
geom text() also has three parameters. Unlike the aesthetics, these only take
single values, so they must be the same for all labels:

• Often you want to label existing points on the plot. You don’t want the
text to overlap with the points (or bars etc), so it’s useful to offset the text
a little. The nudge x and nudge y parameters allow you to nudge the text a
little horizontally or vertically:

df <- data.frame(trt = c("a", "b", "c"), resp = c(1.2, 3.4, 2.5))

ggplot(df, aes(resp, trt)) +

geom_point() +

geom_text(aes(label = paste0("(", resp, ")")), nudge_y = -0.25) +

xlim(1, 3.6)
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(Note that I manually tweaked the x-axis limits to make sure all the text
fit on the plot.)

• If check overlap = TRUE, overlapping labels will be automatically removed.
The algorithm is simple: labels are plotted in the order they appear in the
data frame; if a label would overlap with an existing point, it’s omitted.
This is not incredibly useful, but can be handy.

ggplot(mpg, aes(displ, hwy)) +

geom_text(aes(label = model)) +

xlim(1, 8)

ggplot(mpg, aes(displ, hwy)) +

geom_text(aes(label = model), check_overlap = TRUE) +

xlim(1, 8)



3.3 Labels 41

A variation on geom text() is geom label(): it draws a rounded rectangle
behind the text. This makes it useful for adding labels to plots with busy
backgrounds:

label <- data.frame(

waiting = c(55, 80),

eruptions = c(2, 4.3),

label = c("peak one", "peak two")

)

ggplot(faithfuld, aes(waiting, eruptions)) +

geom_tile(aes(fill = density)) +

geom_label(data = label, aes(label = label))

Labelling data well poses some challenges:

• Text does not affect the limits of the plot. Unfortunately there’s no way to
make this work since a label has an absolute size (e.g. 3 cm), regardless of
the size of the plot. This means that the limits of a plot would need to be
different depending on the size of the plot—there’s just no way to make
that happen with ggplot2. Instead, you’ll need to tweak xlim() and ylim()

based on your data and plot size.
• If you want to label many points, it is difficult to avoid overlaps.

check overlap = TRUE is useful, but offers little control over which labels
are removed. There are a number of techniques available for base graphics,
like maptools::pointLabel(), but they’re not trivial to port to the grid
graphics used by ggplot2. If all else fails, you may need to manually label
points in a drawing tool.

Text labels can also serve as an alternative to a legend. This usually makes
the plot easier to read because it puts the labels closer to the data. The
directlabels (https://github.com/tdhock/directlabels) package, by Toby
Dylan Hocking, provides a number of tools to make this easier:

https://github.com/tdhock/directlabels
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ggplot(mpg, aes(displ, hwy, colour = class)) +

geom_point()

ggplot(mpg, aes(displ, hwy, colour = class)) +

geom_point(show.legend = FALSE) +

directlabels::geom_dl(aes(label = class), method = "smart.grid")

Directlabels provides a number of position methods. smart.grid is a rea-
sonable place to start for scatterplots, but there are other methods that are
more useful for frequency polygons and line plots. See the directlabels web-
site, http://directlabels.r-forge.r-project.org, for other techniques.

3.4 Annotations

Annotations add metadata to your plot. But metadata is just data, so you
can use:

• geom text() to add text descriptions or to label points Most plots will
not benefit from adding text to every single observation on the plot, but
labelling outliers and other important points is very useful.

• geom rect() to highlight interesting rectangular regions of the plot.
geom rect() has aesthetics xmin, xmax, ymin and ymax.

• geom line(), geom path() and geom segment() to add lines. All these geoms
have an arrow parameter, which allows you to place an arrowhead on the
line. Create arrowheads with arrow(), which has arguments angle, length,
ends and type.

http://directlabels.r-forge.r-project.org
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• geom vline(), geom hline() and geom abline() allow you to add reference
lines (sometimes called rules), that span the full range of the plot.

Typically, you can either put annotations in the foreground (using alpha if
needed so you can still see the data), or in the background. With the default
background, a thick white line makes a useful reference: it’s easy to see but
it doesn’t jump out at you.

To show off the basic idea, we’ll draw a time series of unemployment:

ggplot(economics, aes(date, unemploy)) +

geom_line()

We can annotate this plot with which president was in power at the time.
There is little new in this code - it’s a straightforwardmanipulation of existing
geoms. There is one special thing to note: the use of -Inf and Inf as positions.
These refer to the top and bottom (or left and right) limits of the plot.

presidential <- subset(presidential, start > economics$date[1])

ggplot(economics) +

geom_rect(

aes(xmin = start, xmax = end, fill = party),

ymin = -Inf, ymax = Inf, alpha = 0.2,

data = presidential

) +

geom_vline(

aes(xintercept = as.numeric(start)),

data = presidential,

colour = "grey50", alpha = 0.5

) +

geom_text(

aes(x = start, y = 2500, label = name),
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data = presidential,

size = 3, vjust = 0, hjust = 0, nudge_x = 50

) +

geom_line(aes(date, unemploy)) +

scale_fill_manual(values = c("blue", "red"))

You can use the same technique to add a single annotation to a plot, but
it’s a bit fiddly because you have to create a one row data frame:

yrng <- range(economics$unemploy)

xrng <- range(economics$date)

caption <- paste(strwrap(��Unemployment rates in the US have

varied a lot over the years", 40), collapse = ��\n��)

ggplot(economics, aes(date, unemploy)) +

geom_line() +

geom_text(

aes(x, y, label = caption),

data = data.frame(x = xrng[1], y = yrng[2], caption = caption),

hjust = 0, vjust = 1, size = 4

)

It’s easier to use the annotate() helper function which creates the data
frame for you:

ggplot(economics, aes(date, unemploy)) +

geom_line() +

annotate("text", x = xrng[1], y = yrng[2], label = caption,

hjust = 0, vjust = 1, size = 4

)
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Annotations, particularly reference lines, are also useful when comparing
groups across facets. In the following plot, it’s much easier to see the subtle
differences if we add a reference line.

ggplot(diamonds, aes(log10(carat), log10(price))) +

geom_bin2d() +

facet_wrap(˜cut, nrow = 1)

mod_coef <- coef(lm(log10(price) ˜ log10(carat), data = diamonds))

ggplot(diamonds, aes(log10(carat), log10(price))) +

geom_bin2d() +

geom_abline(intercept = mod_coef[1], slope = mod_coef[2],

colour = "white", size = 1) +

facet_wrap(˜cut, nrow = 1)
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3.5 Collective Geoms

Geoms can be roughly divided into individual and collective geoms. An in-
dividual geom draws a distinct graphical object for each observation (row).
For example, the point geom draws one point per row. A collective geom
displays multiple observations with one geometric object. This may be a re-
sult of a statistical summary, like a boxplot, or may be fundamental to the
display of the geom, like a polygon. Lines and paths fall somewhere in be-
tween: each line is composed of a set of straight segments, but each segment
represents two points. How do we control the assignment of observations to
graphical elements? This is the job of the group aesthetic.

By default, the group aesthetic is mapped to the interaction of all discrete
variables in the plot. This often partitions the data correctly, but when it does
not, or when no discrete variable is used in a plot, you’ll need to explicitly
define the grouping structure by mapping group to a variable that has a
different value for each group.

There are three common cases where the default is not enough, and we
will consider each one below. In the following examples, we will use a simple
longitudinal dataset, Oxboys, from the nlme package. It records the heights
(height) and centered ages (age) of 26 boys (Subject), measured on nine oc-
casions (Occasion). Subject and Occasion are stored as ordered factors.

data(Oxboys, package = "nlme")

head(Oxboys)

#> Subject age height Occasion

#> 1 1 -1.0000 140 1

#> 2 1 -0.7479 143 2

#> 3 1 -0.4630 145 3

#> 4 1 -0.1643 147 4

#> 5 1 -0.0027 148 5

#> 6 1 0.2466 150 6

3.5.1 Multiple Groups, One Aesthetic

In many situations, you want to separate your data into groups, but render
them in the same way. In other words, you want to be able to distinguish
individual subjects, but not identify them. This is common in longitudinal
studies with many subjects, where the plots are often descriptively called
spaghetti plots. For example, the following plot shows the growth trajectory
for each boy (each Subject):

ggplot(Oxboys, aes(age, height, group = Subject)) +

geom_point() +

geom_line()
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If you incorrectly specify the grouping variable, you’ll get a characteristic
sawtooth appearance:

ggplot(Oxboys, aes(age, height)) +

geom_point() +

geom_line()

If a group isn’t defined by a single variable, but instead by a combination
of multiple variables, use interaction() to combine them, e.g. aes(group =

interaction(school id, student id)).

3.5.2 Different Groups on Different Layers

Sometimes we want to plot summaries that use different levels of aggrega-
tion: one layer might display individuals, while another displays an overall
summary. Building on the previous example, suppose we want to add a sin-
gle smooth line, showing the overall trend for all boys. If we use the same
grouping in both layers, we get one smooth per boy:
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ggplot(Oxboys, aes(age, height, group = Subject)) +

geom_line() +

geom_smooth(method = "lm", se = FALSE)

This is not what we wanted; we have inadvertently added a smoothed
line for each boy. Grouping controls both the display of the geoms, and the
operation of the stats: one statistical transformation is run for each group.

Instead of setting the grouping aesthetic in ggplot(), where it will apply
to all layers, we set it in geom line() so it applies only to the lines. There are
no discrete variables in the plot so the default grouping variable will be a
constant and we get one smooth:

ggplot(Oxboys, aes(age, height)) +

geom_line(aes(group = Subject)) +

geom_smooth(method = "lm", size = 2, se = FALSE)
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3.5.3 Overriding the Default Grouping

Some plots have a discrete x scale, but you still want to draw lines connecting
across groups. This is the strategy used in interaction plots, profile plots, and
parallel coordinate plots, among others. For example, imagine we’ve drawn
boxplots of height at each measurement occasion:

ggplot(Oxboys, aes(Occasion, height)) +

geom_boxplot()

There is one discrete variable in this plot, Occasion, so we get one boxplot
for each unique x value. Now we want to overlay lines that connect each
individual boy. Simply adding geom line() does not work: the lines are drawn
within each occasion, not across each subject:

ggplot(Oxboys, aes(Occasion, height)) +

geom_boxplot() +

geom_line(colour = "#3366FF", alpha = 0.5)
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To get the plot we want, we need to override the grouping to say we want
one line per boy:

ggplot(Oxboys, aes(Occasion, height)) +

geom_boxplot() +

geom_line(aes(group = Subject), colour = "#3366FF", alpha = 0.5)

3.5.4 Matching Aesthetics to Graphic Objects

A final important issue with collective geoms is how the aesthetics of the
individual observations are mapped to the aesthetics of the complete entity.
What happens when different aesthetics are mapped to a single geometric
element?

Lines and paths operate on an off-by-one principle: there is one more
observation than line segment, and so the aesthetic for the first observation
is used for the first segment, the second observation for the second segment
and so on. This means that the aesthetic for the last observation is not used:

df <- data.frame(x = 1:3, y = 1:3, colour = c(1,3,5))

ggplot(df, aes(x, y, colour = factor(colour))) +

geom_line(aes(group = 1), size = 2) +

geom_point(size = 5)

ggplot(df, aes(x, y, colour = colour)) +

geom_line(aes(group = 1), size = 2) +

geom_point(size = 5)
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You could imagine a more complicated system where segments smoothly
blend from one aesthetic to another. This would work for continuous variables
like size or colour, but not for discrete variables, and is not used in ggplot2.
If this is the behaviour you want, you can perform the linear interpolation
yourself:

xgrid <- with(df, seq(min(x), max(x), length = 50))

interp <- data.frame(

x = xgrid,

y = approx(df$x, df$y, xout = xgrid)$y,

colour = approx(df$x, df$colour, xout = xgrid)$y

)

ggplot(interp, aes(x, y, colour = colour)) +

geom_line(size = 2) +

geom_point(data = df, size = 5)

An additional limitation for paths and lines is that line type must be
constant over each individual line. In R there is no way to draw a line which
has varying line type.
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For all other collective geoms, like polygons, the aesthetics from the in-
dividual components are only used if they are all the same, otherwise the
default value is used. It’s particularly clear why this makes sense for fill: how
would you colour a polygon that had a different fill colour for each point on
its border?

These issues are most relevant when mapping aesthetics to continuous
variables, because, as described above, when you introduce a mapping to a
discrete variable, it will by default split apart collective geoms into smaller
pieces. This works particularly well for bar and area plots, because stacking
the individual pieces produces the same shape as the original ungrouped data:

ggplot(mpg, aes(class)) +

geom_bar()

ggplot(mpg, aes(class, fill = drv)) +

geom_bar()

If you try to map fill to a continuous variable in the same way, it doesn’t
work. The default grouping will only be based on class, so each bar will be
given multiple colours. Since a bar can only display one colour, it will use the
default grey. To show multiple colours, we need multiple bars for each class,
which we can get by overriding the grouping:

ggplot(mpg, aes(class, fill = hwy)) +

geom_bar()

ggplot(mpg, aes(class, fill = hwy, group = hwy)) +

geom_bar()



3.5 Collective Geoms 53

The bars will be stacked in the order defined by the grouping variable. If
you need fine control, you’ll need to create a factor with levels ordered as
needed.

3.5.5 Exercises

1. Draw a boxplot of hwy for each value of cyl, without turning cyl into a
factor. What extra aesthetic do you need to set?

2. Modify the following plot so that you get one boxplot per integer value of
displ.

ggplot(mpg, aes(displ, cty)) +

geom_boxplot()

3. When illustrating the difference between mapping continuous and discrete
colours to a line, the discrete example needed aes(group = 1). Why? What
happens if that is omitted? What’s the difference between aes(group = 1)

and aes(group = 2)? Why?
4. How many bars are in each of the following plots?

ggplot(mpg, aes(drv)) +

geom_bar()

ggplot(mpg, aes(drv, fill = hwy, group = hwy)) +

geom_bar()

library(dplyr)

mpg2 <- mpg %>% arrange(hwy) %>% mutate(id = seq_along(hwy))

ggplot(mpg2, aes(drv, fill = hwy, group = id)) +

geom_bar()

(Hint: try adding an outline around each bar with colour = "white")
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5. Install the babynames package. It contains data about the popularity of
babynames in the US. Run the following code and fix the resulting graph.
Why does this graph make me unhappy?

library(babynames)

hadley <- dplyr::filter(babynames, name == "Hadley")

ggplot(hadley, aes(year, n)) +

geom_line()

3.6 Surface Plots

ggplot2 does not support true 3d surfaces. However, it does support many
common tools for representing 3d surfaces in 2d: contours, coloured tiles and
bubble plots. These all work similarly, differing only in the aesthetic used for
the third dimension.

ggplot(faithfuld, aes(eruptions, waiting)) +

geom_contour(aes(z = density, colour = ..level..))

ggplot(faithfuld, aes(eruptions, waiting)) +

geom_raster(aes(fill = density))

# Bubble plots work better with fewer observations

small <- faithfuld[seq(1, nrow(faithfuld), by = 10), ]

ggplot(small, aes(eruptions, waiting)) +

geom_point(aes(size = density), alpha = 1/3) +

scale_size_area()
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For interactive 3d plots, including true 3d surfaces, see RGL, http://rgl.
neoscientists.org/about.shtml.

3.7 Drawing Maps

There are four types of map data you might want to visualise: vector
boundaries, point metadata, area metadata, and raster images. Typically,
assembling these datasets is the most challenging part of drawing maps. Un-
fortunately ggplot2 can’t help you with that part of the analysis, but I’ll
provide some hints about other R packages that you might want to look at.

I’ll illustrate each of the four types of map data with some maps of Michi-
gan.

3.7.1 Vector Boundaries

Vector boundaries are defined by a data frame with one row for each “cor-
ner” of a geographical region like a country, state, or county. It requires four
variables:

• lat and long, giving the location of a point.
• group, a unique identifier for each contiguous region.
• id, the name of the region.

Separate group and id variables are necessary because sometimes a geo-
graphical unit isn’t a contiguous polygon. For example, Hawaii is composed
of multiple islands that can’t be drawn using a single polygon.

The following code extracts that data from the built in maps package
using ggplot2::map data(). The maps package isn’t particularly accurate or
up-to-date, but it’s built into R so it’s a reasonable place to start.

mi_counties <- map_data("county", "michigan") %>%

select(lon = long, lat, group, id = subregion)

http://rgl.neoscientists.org/about.shtml
http://rgl.neoscientists.org/about.shtml
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head(mi_counties)

#> lon lat group id

#> 1 -83.9 44.9 1 alcona

#> 2 -83.4 44.9 1 alcona

#> 3 -83.4 44.9 1 alcona

#> 4 -83.3 44.8 1 alcona

#> 5 -83.3 44.8 1 alcona

#> 6 -83.3 44.8 1 alcona

You can visualise vector boundary data with geom polygon():

ggplot(mi_counties, aes(lon, lat)) +

geom_polygon(aes(group = group)) +

coord_quickmap()

ggplot(mi_counties, aes(lon, lat)) +

geom_polygon(aes(group = group), fill = NA, colour = "grey50") +

coord_quickmap()

Note the use of coord quickmap(): it’s a quick and dirty adjustment that
ensures that the aspect ratio of the plot is set correctly.

Other useful sources of vector boundary data are:

• The USAboundaries package, https://github.com/ropensci/
USAboundaries which contains state, county and zip code data for
the US. As well as current boundaries, it also has state and county
boundaries going back to the 1600s.

• The tigris package, https://github.com/walkerke/tigris, makes it easy
to access the US Census TIGRIS shapefiles. It contains state, county, zip-
code, and census tract boundaries, as well as many other useful datasets.

• The rnaturalearth package bundles up the free, high-quality data from
http://naturalearthdata.com/. It contains country borders, and borders
for the top-level region within each country (e.g. states in the USA, regions
in France, counties in the UK).

https://github.com/ropensci/USAboundaries
https://github.com/ropensci/USAboundaries
https://github.com/walkerke/tigris
http://naturalearthdata.com/
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• The osmar package, https://cran.r-project.org/package=osmar wraps
up the OpenStreetMap API so you can access a wide range of vector data
including individual streets and buildings

• You may have your own shape files (.shp). You can load them into R with
maptools::readShapeSpatial().

These sources all generate spatial data frames defined by the sp package.
You can convert them into a data frame with fortify():

library(USAboundaries)

c18 <- us_boundaries(as.Date("1820-01-01"))

c18df <- fortify(c18)

#> Regions defined for each Polygons

head(c18df)

#> long lat order hole piece id group

#> 1 -87.6 35 1 FALSE 1 4 4.1

#> 2 -87.6 35 2 FALSE 1 4 4.1

#> 3 -87.6 35 3 FALSE 1 4 4.1

#> 4 -87.6 35 4 FALSE 1 4 4.1

#> 5 -87.5 35 5 FALSE 1 4 4.1

#> 6 -87.3 35 6 FALSE 1 4 4.1

ggplot(c18df, aes(long, lat)) +

geom_polygon(aes(group = group), colour = "grey50", fill = NA) +

coord_quickmap()

3.7.2 Point Metadata

Point metadata connects locations (defined by lat and lon) with other vari-
ables. For example, the code below extracts the biggest cities in MI (as of
2006):

https://cran.r-project.org/package=osmar
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mi_cities <- maps::us.cities %>%

tbl_df() %>%

filter(country.etc =="MI") %>%

select(-country.etc, lon = long) %>%

arrange(desc(pop))

mi_cities

#> Source: local data frame [36 x 5]

#>

#> name pop lat lon capital

#> (chr) (int) (dbl) (dbl) (int)

#> 1 Detroit MI 871789 42.4 -83.1 0

#> 2 Grand Rapids MI 193006 43.0 -85.7 0

#> 3 Warren MI 132537 42.5 -83.0 0

#> 4 Sterling Heights MI 127027 42.6 -83.0 0

#> 5 Lansing MI 117236 42.7 -84.5 2

#> 6 Flint MI 115691 43.0 -83.7 0

#> .. ... ... ... ... ...

We could show this data with a scatterplot, but it’s not terribly useful
without a reference. You almost always combine point metadata with another
layer to make it interpretable.

ggplot(mi_cities, aes(lon, lat)) +
geom_point(aes(size = pop)) +
scale_size_area() +
coord_quickmap()

ggplot(mi_cities, aes(lon, lat)) +
geom_polygon(aes(group = group), mi_counties, fill = NA, colour = "grey50") +
geom_point(aes(size = pop), colour = "red") +
scale_size_area() +
coord_quickmap()
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3.7.3 Raster Images

Instead of displaying context with vector boundaries, you might want to
draw a traditional map underneath. This is called a raster image. The easiest
way to get a raster map of a given area is to use the ggmap package, which
allows you to get data from a variety of online mapping sources including
OpenStreetMap and Google Maps. Downloading the raster data is often time
consuming so it’s a good idea to cache it in a rds file.

if (file.exists("mi_raster.rds")) {
mi_raster <- readRDS("mi_raster.rds")

} else {
bbox <- c(

min(mi_counties$lon), min(mi_counties$lat),

max(mi_counties$lon), max(mi_counties$lat)

)

mi_raster <- ggmap::get_openstreetmap(bbox, scale = 8735660)

saveRDS(mi_raster, "mi_raster.rds")

}
(Finding the appropriate scale required a lot of manual tweaking.)
You can then plot it with:

ggmap::ggmap(mi_raster)

ggmap::ggmap(mi_raster) +

geom_point(aes(size = pop), mi_cities, colour = "red") +

scale_size_area()

If you have raster data from the raster package, you can convert it to the
form needed by ggplot2 with the following code:

df <- as.data.frame(raster::rasterToPoints(x))

names(df) <- c("lon", "lat", "x")

ggplot(df, aes(lon, lat)) +

geom_raster(aes(fill = x))

3.7.4 Area Metadata

Sometimes metadata is associated not with a point, but with an area. For
example, we can create mi census which provides census information about
each county in MI:

mi_census <- midwest %>%

tbl_df() %>%
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filter(state =="MI") %>%

mutate(county = tolower(county)) %>%

select(county, area, poptotal, percwhite, percblack)

mi_census

#> Source: local data frame [83 x 5]

#>

#> county area poptotal percwhite percblack

#> (chr) (dbl) (int) (dbl) (dbl)

#> 1 alcona 0.041 10145 98.8 0.266

#> 2 alger 0.051 8972 93.9 2.374

#> 3 allegan 0.049 90509 95.9 1.600

#> 4 alpena 0.034 30605 99.2 0.114

#> 5 antrim 0.031 18185 98.4 0.126

#> 6 arenac 0.021 14931 98.4 0.067

#> .. ... ... ... ... ...

We can’t map this data directly because it has no spatial component.
Instead, we must first join it to the vector boundaries data. This is not
particularly space efficient, but it makes it easy to see exactly what data is
being plotted. Here I use dplyr::left join() to combine the two datasets and
create a choropleth map.

census_counties <- left_join(mi_census, mi_counties, by = c("county" ="id"))

census_counties

#> Source: local data frame [1,472 x 8]

#>

#> county area poptotal percwhite percblack lon lat group

#> (chr) (dbl) (int) (dbl) (dbl) (dbl) (dbl) (dbl)

#> 1 alcona 0.041 10145 98.8 0.266 -83.9 44.9 1

#> 2 alcona 0.041 10145 98.8 0.266 -83.4 44.9 1

#> 3 alcona 0.041 10145 98.8 0.266 -83.4 44.9 1

#> 4 alcona 0.041 10145 98.8 0.266 -83.3 44.8 1

#> 5 alcona 0.041 10145 98.8 0.266 -83.3 44.8 1

#> 6 alcona 0.041 10145 98.8 0.266 -83.3 44.8 1

#> .. ... ... ... ... ... ... ... ...

ggplot(census_counties, aes(lon, lat, group = county)) +

geom_polygon(aes(fill = poptotal)) +

coord_quickmap()

ggplot(census_counties, aes(lon, lat, group = county)) +

geom_polygon(aes(fill = percwhite)) +

coord_quickmap()
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3.8 Revealing Uncertainty

If you have information about the uncertainty present in your data, whether
it be from a model or from distributional assumptions, it’s a good idea to
display it. There are four basic families of geoms that can be used for this job,
depending on whether the x values are discrete or continuous, and whether
or not you want to display the middle of the interval, or just the extent:

• Discrete x, range: geom errorbar(), geom linerange()

• Discrete x, range & center: geom crossbar(), geom pointrange()

• Continuous x, range: geom ribbon()

• Continuous x, range & center: geom smooth(stat = "identity")

These geoms assume that you are interested in the distribution of y con-
ditional on x and use the aesthetics ymin and ymax to determine the range of
the y values. If you want the opposite, see Sect. 7.4.2.

y <- c(18, 11, 16)

df <- data.frame(x = 1:3, y = y, se = c(1.2, 0.5, 1.0))

base <- ggplot(df, aes(x, y, ymin = y - se, ymax = y + se))

base + geom_crossbar()

base + geom_pointrange()

base + geom_smooth(stat = "identity")
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base + geom_errorbar()

base + geom_linerange()

base + geom_ribbon()

Because there are so many different ways to calculate standard errors, the
calculation is up to you. For very simple cases, ggplot2 provides some tools
in the form of summary functions described below, otherwise you will have
to do it yourself. Chapter 11 contains more advice on extracting confidence
intervals from more sophisticated models.

3.9 Weighted Data

When you have aggregated data where each row in the dataset represents
multiple observations, you need some way to take into account the weighting
variable. We will use some data collected on Midwest states in the 2000
US census in the built-in midwest data frame. The data consists mainly of
percentages (e.g., percent white, percent below poverty line, percent with
college degree) and some information for each county (area, total population,
population density).

There are a few different things we might want to weight by:

• Nothing, to look at numbers of counties.
• Total population, to work with absolute numbers.
• Area, to investigate geographic effects. (This isn’t useful for midwest, but

would be if we had variables like percentage of farmland.)

The choice of a weighting variable profoundly affects what we are looking
at in the plot and the conclusions that we will draw. There are two aesthetic
attributes that can be used to adjust for weights. Firstly, for simple geoms
like lines and points, use the size aesthetic:
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# Unweighted

ggplot(midwest, aes(percwhite, percbelowpoverty)) +

geom_point()

# Weight by population

ggplot(midwest, aes(percwhite, percbelowpoverty)) +

geom_point(aes(size = poptotal / 1e6)) +

scale_size_area("Population\n(millions)", breaks = c(0.5, 1, 2, 4))

For more complicated grobs which involve some statistical transformation,
we specify weights with the weight aesthetic. These weights will be passed
on to the statistical summary function. Weights are supported for every case
where it makes sense: smoothers, quantile regressions, boxplots, histograms,
and density plots. You can’t see this weighting variable directly, and it doesn’t
produce a legend, but it will change the results of the statistical summary.
The following code shows how weighting by population density affects the
relationship between percent white and percent below the poverty line.

# Unweighted

ggplot(midwest, aes(percwhite, percbelowpoverty)) +

geom_point() +

geom_smooth(method = lm, size = 1)

# Weighted by population

ggplot(midwest, aes(percwhite, percbelowpoverty)) +

geom_point(aes(size = poptotal / 1e6)) +

geom_smooth(aes(weight = poptotal), method = lm, size = 1) +

scale_size_area(guide = "none")
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When we weight a histogram or density plot by total population, we change
from looking at the distribution of the number of counties, to the distribution
of the number of people. The following code shows the difference this makes
for a histogram of the percentage below the poverty line:

ggplot(midwest, aes(percbelowpoverty)) +

geom_histogram(binwidth = 1) +

ylab("Counties")

ggplot(midwest, aes(percbelowpoverty)) +

geom_histogram(aes(weight = poptotal), binwidth = 1) +

ylab("Population (1000s)")

3.10 Diamonds Data

To demonstrate tools for large datasets, we’ll use the built in diamonds dataset,
which consists of price and quality information for ˜54,000 diamonds:

diamonds

#> Source: local data frame [53,940 x 10]

#>

#> carat cut color clarity depth table price x y

#> (dbl) (fctr) (fctr) (fctr) (dbl) (dbl) (int) (dbl) (dbl)
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#> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98

#> 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84

#> 3 0.23 Good E VS1 56.9 65 327 4.05 4.07

#> 4 0.29 Premium I VS2 62.4 58 334 4.20 4.23

#> 5 0.31 Good J SI2 63.3 58 335 4.34 4.35

#> 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96

#> .. ... ... ... ... ... ... ... ... ...

#> Variables not shown: z (dbl)

The data contains the four C’s of diamond quality: carat, cut, colour and
clarity; and five physical measurements: depth, table, x, y and z, as described
in Fig. 3.1.

z

table width

x

x

y

z
depth

depth = z depth / z * 100
table = table width / x * 100

Fig. 3.1 How the variables x, y, z, table and depth are measured

The dataset has not been well cleaned, so as well as demonstrating inter-
esting facts about diamonds, it also shows some data quality problems.

3.11 Displaying Distributions

There are a number of geoms that can be used to display distributions, de-
pending on the dimensionality of the distribution, whether it is continuous
or discrete, and whether you are interested in the conditional or joint distri-
bution.

For 1d continuous distributions the most important geom is the histogram,
geom histogram():

ggplot(diamonds, aes(depth)) +

geom_histogram()
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#> �stat_bin()� using �bins = 30�. Pick better value with

#> �binwidth�.

ggplot(diamonds, aes(depth)) +

geom_histogram(binwidth = 0.1) +

xlim(55, 70)

#> Warning: Removed 45 rows containing non-finite values (stat_bin).

It is important to experiment with binning to find a revealing view. You
can change the binwidth, specify the number of bins, or specify the exact
location of the breaks. Never rely on the default parameters to get a revealing
view of the distribution. Zooming in on the x axis, xlim(55, 70), and selecting
a smaller bin width, binwidth = 0.1, reveals far more detail.

When publishing figures, don’t forget to include information about impor-
tant parameters (like bin width) in the caption.

If you want to compare the distribution between groups, you have a few
options:

• Show small multiples of the histogram, facet wrap(˜ var).
• Use colour and a frequency polygon, geom freqpoly() .
• Use a “conditional density plot”, geom histogram(position = "fill").

The frequency polygon and conditional density plots are shown below. The
conditional density plot uses position fill() to stack each bin, scaling it to
the same height. This plot is perceptually challenging because you need to
compare bar heights, not positions, but you can see the strongest patterns.

ggplot(diamonds, aes(depth)) +

geom_freqpoly(aes(colour = cut), binwidth = 0.1, na.rm = TRUE) +

xlim(58, 68) +

theme(legend.position = "none")

ggplot(diamonds, aes(depth)) +

geom_histogram(aes(fill = cut), binwidth = 0.1, position = "fill",

na.rm = TRUE) +

xlim(58, 68) +

theme(legend.position = "none")
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(I’ve suppressed the legends to focus on the display of the data.)
Both the histogram and frequency polygon geom use the same underlying

statistical transformation: stat = "bin". This statistic produces two output
variables: count and density. By default, count is mapped to y-position, be-
cause it’s most interpretable. The density is the count divided by the total
count multiplied by the bin width, and is useful when you want to compare
the shape of the distributions, not the overall size.

An alternative to a bin-based visualisation is a density estimate.
geom density() places a little normal distribution at each data point and
sums up all the curves. It has desirable theoretical properties, but is more
difficult to relate back to the data. Use a density plot when you know that
the underlying density is smooth, continuous and unbounded. You can use
the adjust parameter to make the density more or less smooth.

ggplot(diamonds, aes(depth)) +

geom_density(na.rm = TRUE) +

xlim(58, 68) +

theme(legend.position = "none")

ggplot(diamonds, aes(depth, fill = cut, colour = cut)) +

geom_density(alpha = 0.2, na.rm = TRUE) +

xlim(58, 68) +

theme(legend.position = "none")
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Note that the area of each density estimate is standardised to one so that
you lose information about the relative size of each group.

The histogram, frequency polygon and density display a detailed view of
the distribution. However, sometimes you want to compare many distribu-
tions, and it’s useful to have alternative options that sacrifice quality for
quantity. Here are three options:

• geom boxplot(): the box-and-whisker plot shows five summary statistics
along with individual “outliers”. It displays far less information than a
histogram, but also takes up much less space.
You can use boxplot with both categorical and continuous x. For contin-
uous x, you’ll also need to set the group aesthetic to define how the x
variable is broken up into bins. A useful helper function is cut width():

ggplot(diamonds, aes(clarity, depth)) +

geom_boxplot()

ggplot(diamonds, aes(carat, depth)) +

geom_boxplot(aes(group = cut_width(carat, 0.1))) +

xlim(NA, 2.05)

#> Warning: Removed 997 rows containing non-finite values

#> (stat_boxplot).

• geom violin(): the violin plot is a compact version of the density plot. The
underlying computation is the same, but the results are displayed in a
similar fashion to the boxplot:

ggplot(diamonds, aes(clarity, depth)) +

geom_violin()

ggplot(diamonds, aes(carat, depth)) +

geom_violin(aes(group = cut_width(carat, 0.1))) +

xlim(NA, 2.05)

#> Warning: Removed 997 rows containing non-finite values

#> (stat_ydensity).
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• geom dotplot(): draws one point for each observation, carefully adjusted in
space to avoid overlaps and show the distribution. It is useful for smaller
datasets.

3.11.1 Exercises

1. What binwidth tells you the most interesting story about the distribution
of carat?

2. Draw a histogram of price. What interesting patterns do you see?
3. How does the distribution of price vary with clarity?
4. Overlay a frequency polygon and density plot of depth. What computed

variable do you need to map to y to make the two plots comparable? (You
can either modify geom freqpoly() or geom density().)

3.12 Dealing with Overplotting

The scatterplot is a very important tool for assessing the relationship between
two continuous variables. However, when the data is large, points will be often
plotted on top of each other, obscuring the true relationship. In extreme cases,
you will only be able to see the extent of the data, and any conclusions drawn
from the graphic will be suspect. This problem is called overplotting.

There are a number of ways to deal with it depending on the size of the
data and severity of the overplotting. The first set of techniques involves
tweaking aesthetic properties. These tend to be most effective for smaller
datasets:

• Very small amounts of overplotting can sometimes be alleviated by making
the points smaller, or using hollow glyphs. The following code shows some
options for 2000 points sampled from a bivariate normal distribution.
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df <- data.frame(x = rnorm(2000), y = rnorm(2000))

norm <- ggplot(df, aes(x, y)) + xlab(NULL) + ylab(NULL)

norm + geom_point()

norm + geom_point(shape = 1) # Hollow circles

norm + geom_point(shape = ".") # Pixel sized

• For larger datasets with more overplotting, you can use alpha blending
(transparency) to make the points transparent. If you specify alpha as a
ratio, the denominator gives the number of points that must be overplotted
to give a solid colour. Values smaller than ˜1/500 are rounded down to
zero, giving completely transparent points.

norm + geom_point(alpha = 1 / 3)

norm + geom_point(alpha = 1 / 5)

norm + geom_point(alpha = 1 / 10)

• If there is some discreteness in the data, you can randomly jitter the
points to alleviate some overlaps with geom jitter(). This can be particu-
larly useful in conjunction with transparency. By default, the amount of
jitter added is 40% of the resolution of the data, which leaves a small
gap between adjacent regions. You can override the default with width and
height arguments.
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Alternatively, we can think of overplotting as a 2d density estimation prob-
lem, which gives rise to two more approaches:

• Bin the points and count the number in each bin, then visualise that count
(the 2d generalisation of the histogram), geom bin2d(). Breaking the plot
into many small squares can produce distracting visual artefacts. (D. B.
Carr et al., 1987) suggests using hexagons instead, and this is implemented
in geom hex(), using the hexbin package (D. Carr et al., 2015).
The code below compares square and hexagonal bins, using parameters
bins and binwidth to control the number and size of the bins.

norm + geom_bin2d()

norm + geom_bin2d(bins = 10)

norm + geom_hex()

norm + geom_hex(bins = 10)

• Estimate the 2d density with stat density2d(), and then display using one
of the techniques for showing 3d surfaces in Sect. 3.6.

• If you are interested in the conditional distribution of y given x, then the
techniques of Sect. 2.6.3 will also be useful.
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Another approach to dealing with overplotting is to add data summaries
to help guide the eye to the true shape of the pattern within the data. For
example, you could add a smooth line showing the centre of the data with
geom smooth() or use one of the summaries below.

3.13 Statistical Summaries

geom histogram() and geom bin2d() use a familiar geom, geom bar() and
geom raster(), combined with a new statistical transformation, stat bin()

and stat bin2d(). stat bin() and stat bin2d() combine the data into bins
and count the number of observations in each bin. But what if we want a
summary other than count? So far, we’ve just used the default statistical
transformation associated with each geom. Now we’re going to explore
how to use stat summary bin() to stat summary 2d() to compute different
summaries.

Let’s start with a couple of examples with the diamonds data. The first
example in each pair shows how we can count the number of diamonds in
each bin; the second shows how we can compute the average price.

ggplot(diamonds, aes(color)) +

geom_bar()

ggplot(diamonds, aes(color, price)) +

geom_bar(stat = "summary_bin", fun.y = mean)

ggplot(diamonds, aes(table, depth)) +

geom_bin2d(binwidth = 1, na.rm = TRUE) +

xlim(50, 70) +

ylim(50, 70)
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ggplot(diamonds, aes(table, depth, z = price)) +

geom_raster(binwidth = 1, stat = "summary_2d", fun = mean,

na.rm = TRUE) +

xlim(50, 70) +

ylim(50, 70)

To get more help on the arguments associated with the two transforma-
tions, look at the help for stat summary bin() and stat summary 2d(). You can
control the size of the bins and the summary functions. stat summary bin()

can produce y, ymin and ymax aesthetics, also making it useful for displaying
measures of spread. See the docs for more details. You’ll learn more about
how geoms and stats interact in Sect. 5.6.

These summary functions are quite constrained but are often useful for a
quick first pass at a problem. If you find them restraining, you’ll need to do
the summaries yourself. See Sect. 10.4 for more details.

3.14 Add-on Packages

If the built-in tools in ggplot2 don’t do what you need, you might want to use
a special purpose tool built into one of the packages built on top of ggplot2.
Some of the packages that I was familiar with when the book was published
include:

• animInt, https://github.com/tdhock/animint, lets you make you ggplot2
graphics interactive, adding querying, filtering and linking.

• GGally, https://github.com/ggobi/ggally, provides a very flexible scat-
terplot matrix, amongst other tools.

• ggbio, http://www.tengfei.name/ggbio/, provides a number of specialised
geoms for genomic data.

• ggdendro, https://github.com/andrie/ggdendro, turns data from tree
methods in to data frames that can easily be displayed with ggplot2.

https://github.com/tdhock/animint
https://github.com/ggobi/ggally
http://www.tengfei.name/ggbio/
https://github.com/andrie/ggdendro


74 3 Toolbox

• ggfortify, https://github.com/sinhrks/ggfortify, provides fortify and
autoplot methods to handle objects from some popular R packages.

• ggenealogy, https://cran.r-project.org/package=ggenealogy, helps ex-
plore and visualise genealogy data.

• ggmcmc, http://xavier-fim.net/packages/ggmcmc/, provides a set of
flexible tools for visualising the samples generated by MCMC methods.

• ggparallel, https://cran.r-project.org/package=ggparallel: easily
draw parallel coordinates plots, and the closely related hammock and
common angle plots.

• ggtern, http://www.ggtern.com, lets you use ggplot2 to draw ternary di-
agrams, used when you have three variables that always sum to one.

• ggtree, https://github.com/GuangchuangYu/ggtree, provides tools to
view and annotate phylogenetic tree with different types of meta-data.

• granovaGG, https://github.com/briandk/granovaGG, provides tools to
visualise ANOVA results.

• plotluck, https://github.com/stefan-schroedl/plotluck: the ggplot2
version of Google’s “I’m feeling lucky”. It automatically creates plots for
one, two or three variables.

A great place to track new extensions is http://www.ggplot2-exts.org,
by Daniel Emaasit.
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Chapter 4

Mastering the Grammar

4.1 Introduction

In order to unlock the full power of ggplot2, you’ll need to master the un-
derlying grammar. By understanding the grammar, and how its components
fit together, you can create a wider range of visualizations, combine multiple
sources of data, and customise to your heart’s content.

This chapter describes the theoretical basis of ggplot2: the layered gram-
mar of graphics. The layered grammar is based on Wilkinson’s grammar of
graphics (Wilkinson, 2005), but adds a number of enhancements that help it
to be more expressive and fit seamlessly into the R environment. The differ-
ences between the layered grammar and Wilkinson’s grammar are described
fully in Wickham (2008). In this chapter you will learn a little bit about each
component of the grammar and how they all fit together. The next chapters
discuss the components in more detail, and provide more examples of how
you can use them in practice.

The grammar makes it easier for you to iteratively update a plot, changing
a single feature at a time. The grammar is also useful because it suggests the
high-level aspects of a plot that can be changed, giving you a framework
to think about graphics, and hopefully shortening the distance from mind
to paper. It also encourages the use of graphics customised to a particular
problem, rather than relying on specific chart types.

This chapter begins by describing in detail the process of drawing a simple
plot. Section 4.2 starts with a simple scatterplot, then Sect. 4.3 makes it more
complex by adding a smooth line and facetting. While working through these
examples you will be introduced to all six components of the grammar, which
are then defined more precisely in Sect. 4.4.

© The Author 2016
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4.2 Building a Scatterplot

How are engine size and fuel economy related? We might create a scatterplot
of engine displacement and highway mpg with points coloured by number of
cylinders:

ggplot(mpg, aes(displ, hwy, colour = factor(cyl))) +

geom_point()

You can create plots like this easily, but what is going on underneath the
surface? How does ggplot2 draw this plot?

4.2.1 Mapping Aesthetics to Data

What precisely is a scatterplot? You have seen many before and have prob-
ably even drawn some by hand. A scatterplot represents each observation as
a point, positioned according to the value of two variables. As well as a hori-
zontal and vertical position, each point also has a size, a colour and a shape.
These attributes are called aesthetics, and are the properties that can be
perceived on the graphic. Each aesthetic can be mapped to a variable, or set
to a constant value. In the previous graphic, displ is mapped to horizontal
position, hwy to vertical position and cyl to colour. Size and shape are not
mapped to variables, but remain at their (constant) default values.

Once we have these mappings we can create a new dataset that records
this information:

x y colour

1.8 29 4
1.8 29 4
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x y colour

2.0 31 4
2.0 30 4
2.8 26 6
2.8 26 6
3.1 27 6
1.8 26 4

This new dataset is a result of applying the aesthetic mappings to the
original data. We can create many different types of plots using this data.
The scatterplot uses points, but were we instead to draw lines we would get
a line plot. If we used bars, we’d get a bar plot. Neither of those examples
makes sense for this data, but we could still draw them (I’ve omitted the
legends to save space):

ggplot(mpg, aes(displ, hwy, colour = factor(cyl))) +

geom_line() +

theme(legend.position = "none")

ggplot(mpg, aes(displ, hwy, colour = factor(cyl))) +

geom_bar(stat = "identity", position = "identity", fill = NA) +

theme(legend.position = "none")

In ggplot, we can produce many plots that don’t make sense, yet are
grammatically valid. This is no different than English, where we can create
senseless but grammatical sentences like the angry rock barked like a comma.

Points, lines and bars are all examples of geometric objects, or geoms.
Geoms determine the “type” of the plot. Plots that use a single geom are
often given a special name:

Named plot Geom Other features

Scatterplot Point
Bubblechart Point Size mapped to a variable
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Named plot Geom Other features

Barchart Bar
Box-and-whisker plot Boxplot
Line chart Line

More complex plots with combinations of multiple geoms don’t have a
special name, and we have to describe them by hand. For example, this plot
overlays a per group regression line on top of a scatterplot:

ggplot(mpg, aes(displ, hwy, colour = factor(cyl))) +

geom_point() +

geom_smooth(method = "lm")

What would you call this plot? Once you’ve mastered the grammar, you’ll
find that many of the plots that you produce are uniquely tailored to your
problems and will no longer have special names.

4.2.2 Scaling

The values in the previous table have no meaning to the computer. We need
to convert them from data units (e.g., litres, miles per gallon and number of
cylinders) to graphical units (e.g., pixels and colours) that the computer can
display. This conversion process is called scaling and performed by scales.
Now that these values are meaningful to the computer, they may not be
meaningful to us: colours are represented by a six-letter hexadecimal string,
sizes by a number and shapes by an integer. These aesthetic specifications
that are meaningful to R are described in vignette("ggplot2-specs").



4.2 Building a Scatterplot 81

In this example, we have three aesthetics that need to be scaled: horizontal
position (x), vertical position (y) and colour. Scaling position is easy in this
example because we are using the default linear scales. We need only a linear
mapping from the range of the data to [0, 1]. We use [0, 1] instead of exact
pixels because the drawing system that ggplot2 uses, grid, takes care of
that final conversion for us. A final step determines how the two positions
(x and y) are combined to form the final location on the plot. This is done
by the coordinate system, or coord. In most cases this will be Cartesian
coordinates, but it might be polar coordinates, or a spherical projection used
for a map.

The process for mapping the colour is a little more complicated, as we have
a non-numeric result: colours. However, colours can be thought of as having
three components, corresponding to the three types of colour-detecting cells
in the human eye. These three cell types give rise to a three-dimensional
colour space. Scaling then involves mapping the data values to points in this
space. There are many ways to do this, but here since cyl is a categorical
variable we map values to evenly spaced hues on the colour wheel, as shown
in Fig. 4.1. A different mapping is used when the variable is continuous.

Fig. 4.1 A colour wheel illustrating the choice of five equally spaced colours. This is the
default scale for discrete variables

The result of these conversions is below. As well as aesthetics that have
been mapped to variable, we also include aesthetics that are constant. We
need these so that the aesthetics for each point are completely specified and
R can draw the plot. The points will be filled circles (shape 19 in R) with a
1-mm diameter:

x y colour size shape

0.037 0.531 #F8766D 1 19
0.037 0.531 #F8766D 1 19
0.074 0.594 #F8766D 1 19
0.074 0.562 #F8766D 1 19
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x y colour size shape

0.222 0.438 #00BFC4 1 19
0.222 0.438 #00BFC4 1 19
0.278 0.469 #00BFC4 1 19
0.037 0.438 #F8766D 1 19

Finally, we need to render this data to create the graphical objects that
are displayed on the screen. To create a complete plot we need to combine
graphical objects from three sources: the data, represented by the point geom;
the scales and coordinate system, which generate axes and legends so that we
can read values from the graph; and plot annotations, such as the background
and plot title.

4.3 Adding Complexity

With a simple example under our belts, let’s now turn to look at this slightly
more complicated example:

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_smooth() +

facet_wrap(˜year)

This plot adds three new components to the mix: facets, multiple layers
and statistics. The facets and layers expand the data structure described
above: each facet panel in each layer has its own dataset. You can think of
this as a 3d array: the panels of the facets form a 2d grid, and the layers
extend upwards in the 3rd dimension. In this case the data in the layers is
the same, but in general we can plot different datasets on different layers.
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The smooth layer is different to the point layer because it doesn’t display
the raw data, but instead displays a statistical transformation of the data.
Specifically, the smooth layer fits a smooth line through the middle of the
data. This requires an additional step in the process described above: after
mapping the data to aesthetics, the data is passed to a statistical transforma-
tion, or stat, which manipulates the data in some useful way. In this example,
the stat fits the data to a loess smoother, and then returns predictions from
evenly spaced points within the range of the data. Other useful stats include
1 and 2d binning, group means, quantile regression and contouring.

As well as adding an additional step to summarise the data, we also need
some extra steps when we get to the scales. This is because we now have
multiple datasets (for the different facets and layers) and we need to make
sure that the scales are the same across all of them. Scaling actually occurs
in three parts: transforming, training and mapping. We haven’t mentioned
transformation before, but you have probably seen it before in log-log plots.
In a log-log plot, the data values are not linearly mapped to position on the
plot, but are first log-transformed.

• Scale transformation occurs before statistical transformation so that statis-
tics are computed on the scale-transformed data. This ensures that a plot
of log(x) vs. log(y) on linear scales looks the same as x vs. y on log scales.
There are many different transformations that can be used, including
taking square roots, logarithms and reciprocals. See Sect. 6.6.1 for more
details.

• After the statistics are computed, each scale is trained on every dataset
from all the layers and facets. The training operation combines the ranges
of the individual datasets to get the range of the complete data. Without
this step, scales could only make sense locally and we wouldn’t be able to
overlay different layers because their positions wouldn’t line up. Sometimes
we do want to vary position scales across facets (but never across layers),
and this is described more fully in Sect. 7.2.3.

• Finally the scales map the data values into aesthetic values. This is a local
operation: the variables in each dataset are mapped to their aesthetic
values, producing a new dataset that can then be rendered by the geoms.

Figure 4.2 illustrates the complete process schematically.

4.4 Components of the Layered Grammar

In the examples above, we have seen some of the components that make up
a plot: data and aesthetic mappings, geometric objects (geoms), statistical
transformations (stats), scales, and facetting. We have also touched on the
coordinate system. One thing we didn’t mention is the position adjustment,
which deals with overlapping graphic objects. Together, the data, mappings,
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Map variables to aesthetics

Facet datasets

Transform scales

Train scales

Map scales

Render geoms

Compute aesthetics

Fig. 4.2 Schematic description of the plot generation process. Each square represents a
layer, and this schematic represents a plot with three layers and three panels. All steps
work by transforming individual data frames except for training scales, which doesn’t affect
the data frame and operates across all datasets simultaneously
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stat, geom and position adjustment form a layer. A plot may have multiple
layers, as in the example where we overlaid a smoothed line on a scatterplot.
All together, the layered grammar defines a plot as the combination of:

• A default dataset and set of mappings from variables to aesthetics.
• One or more layers, each composed of a geometric object, a statistical

transformation, a position adjustment, and optionally, a dataset and aes-
thetic mappings.

• One scale for each aesthetic mapping.
• A coordinate system.
• The facetting specification.

The following sections describe each of the higher-level components more
precisely, and point you to the parts of the book where they are documented.

4.4.1 Layers

Layers are responsible for creating the objects that we perceive on the plot.
A layer is composed of five parts:

1. Data
2. Aesthetic mappings.
3. A statistical transformation (stat).
4. A geometric object (geom).
5. A position adjustment.

The properties of a layer are described in Chap. 5 and their uses for data
visualisation in Chap. 3.

4.4.2 Scales

A scale controls the mapping from data to aesthetic attributes, and we need
a scale for every aesthetic used on a plot. Each scale operates across all the
data in the plot, ensuring a consistent mapping from data to aesthetics. Some
examples are shown in Fig. 4.3.

A scale is a function and its inverse, along with a set of parameters. For
example, the colour gradient scale maps a segment of the real line to a path
through a colour space. The parameters of the function define whether the
path is linear or curved, which colour space to use (e.g., LUV or RGB), and
the colours at the start and end.
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Fig. 4.3 Examples of legends from four different scales. From left to right : continuous
variable mapped to size, and to colour, discrete variable mapped to shape, and to colour.
The ordering of scales seems upside-down, but this matches the labelling of the y-axis:
small values occur at the bottom

The inverse function is used to draw a guide so that you can read values
from the graph. Guides are either axes (for position scales) or legends (for
everything else). Most mappings have a unique inverse (i.e., the mapping
function is one-to-one), but many do not. A unique inverse makes it possible
to recover the original data, but this is not always desirable if we want to
focus attention on a single aspect.

For more details, see Chap. 6.

4.4.3 Coordinate System

A coordinate system, or coord for short, maps the position of objects onto
the plane of the plot. Position is often specified by two coordinates (x, y),
but potentially could be three or more (although this is not implemented
in ggplot2). The Cartesian coordinate system is the most common coordi-
nate system for two dimensions, while polar coordinates and various map
projections are used less frequently.

Coordinate systems affect all position variables simultaneously and differ
from scales in that they also change the appearance of the geometric ob-
jects. For example, in polar coordinates, bar geoms look like segments of
a circle. Additionally, scaling is performed before statistical transformation,
while coordinate transformations occur afterward. The consequences of this
are shown in Sect. 7.5.

Coordinate systems control how the axes and grid lines are drawn. Fig-
ure 4.4 illustrates three different types of coordinate systems. Very little ad-
vice is available for drawing these for non-Cartesian coordinate systems, so
a lot of work needs to be done to produce polished output. See Sect. 7.3 for
more details.
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Fig. 4.4 Examples of axes and grid lines for three coordinate systems: Cartesian, semi-
log and polar. The polar coordinate system illustrates the difficulties associated with non-
Cartesian coordinates: it is hard to draw the axes well

4.4.4 Facetting

There is also another thing that turns out to be sufficiently useful that we
should include it in our general framework: facetting, a general case of con-
ditioned or trellised plots. This makes it easy to create small multiples, each
showing a different subset of the whole dataset. This is a powerful tool when
investigating whether patterns hold across all conditions. The facetting spec-
ification describes which variables should be used to split up the data, and
whether position scales should be free or constrained. Facetting is described
in Chap. 7.

4.5 Exercises

1. One of the best ways to get a handle on how the grammar works is to
apply it to the analysis of existing graphics. For each of the graphics listed
below, write down the components of the graphic. Don’t worry if you don’t
know what the corresponding functions in ggplot2 are called (or if they
even exist!), instead focussing on recording the key elements of a plot so
you could communicate it to someone else.

1. “Napoleon’s march” by Charles John Minard: http://www.datavis.ca/
gallery/re-minard.php

2. “Where the Heat and the Thunder Hit Their Shots”, by Jeremy White,
Joe Ward, and Matthew Ericson at The New York Times. http://nyti.
ms/1duzTvY

3. “London Cycle Hire Journeys”, by James Cheshire. http://bit.ly/
1S2cyRy

4. The Pew Research Center’s favorite data visualizations of 2014: http://
pewrsr.ch/1KZSSN6

http://www.datavis.ca/gallery/re-minard.php
http://www.datavis.ca/gallery/re-minard.php
http://nyti.ms/1duzTvY
http://nyti.ms/1duzTvY
http://bit.ly/1S2cyRy
http://bit.ly/1S2cyRy
http://pewrsr.ch/1KZSSN6
http://pewrsr.ch/1KZSSN6
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5. “The Tony’s Have Never Been so Dominated by Women”, by Joanna
Kao at FiveThirtyEight: http://53eig.ht/1cJRCyG.

6. “In Climbing Income Ladder, Location Matters” by the Mike Bostock,
Shan Carter, Amanda Cox, Matthew Ericson, Josh Keller, Alicia Par-
lapiano, Kevin Quealy and Josh Williams at the New York Times:
http://nyti.ms/1S2dJQT

7. “Dissecting a Trailer: The Parts of the Film That Make the Cut”, by
Shan Carter, Amanda Cox, and Mike Bostock at the New York Times:
http://nyti.ms/1KTJQOE

References

Wickham H (2008) Practical tools for exploring data and models. PhD Thesis,
Iowa State University. http://had.co.nz/thesis

Wilkinson L (2005) The grammar of graphics. Statistics and computing, 2nd
edn. Springer, New York

http://53eig.ht/1cJRCyG
http://nyti.ms/1S2dJQT
http://nyti.ms/1KTJQOE
http://had.co.nz/thesis


Chapter 5

Build a Plot Layer by Layer

5.1 Introduction

One of the key ideas behind ggplot2 is that it allows you to easily iterate,
building up a complex plot a layer at a time. Each layer can come from a
different dataset and have a different aesthetic mapping, making it possible
to create sophisticated plots that display data from multiple sources.

You’ve already created layers with functions like geom point() and
geom histogram(). In this chapter, you’ll dive into the details of a layer, and
how you can control all five components: data, the aesthetic mappings, the
geom, stat, and position adjustments. The goal here is to give you the tools
to build sophisticated plots tailored to the problem at hand.

5.2 Building a Plot

So far, whenever we’ve created a plot with ggplot(), we’ve immediately added
on a layer with a geom function. But it’s important to realise that there really
are two distinct steps. First we create a plot with default dataset and aesthetic
mappings:

p <- ggplot(mpg, aes(displ, hwy))

p
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There’s nothing to see yet, so we need to add a layer:

p + geom_point()

geom point() is a shortcut. Behind the scenes it calls the layer() function
to create a new layer:

p + layer(

mapping = NULL,

data = NULL,

geom = "point",

stat = "identity",

position = "identity"

)

This call fully specifies the five components to the layer:

• mapping: A set of aesthetic mappings, specified using the aes() function
and combined with the plot defaults as described in Sect. 5.4. If NULL, uses
the default mapping set in ggplot().
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• data: A dataset which overrides the default plot dataset. It is usually
omitted (set to NULL), in which case the layer will use the default data
specified in ggplot(). The requirements for data are explained in more
detail in Sect. 5.3.

• geom: The name of the geometric object to use to draw each observation.
Geoms are discussed in more detail in Sect. 5.3, and Chap. 3 explores their
use in more depth.
Geoms can have additional arguments. All geoms take aesthetics as pa-
rameters. If you supply an aesthetic (e.g. colour) as a parameter, it will
not be scaled, allowing you to control the appearance of the plot, as de-
scribed in Sect. 5.4.2. You can pass params in ... (in which case stat and
geom parameters are automatically teased apart), or in a list passed to
geom params.

• stat: The name of the statistical transformation to use. A statistical trans-
formation performs some useful statistical summary, and is key to his-
tograms and smoothers. To keep the data as is, use the “identity” stat.
Learn more in Sect. 5.6.
You only need to set one of stat and geom: every geom has a default stat,
and every stat a default geom.
Most stats take additional parameters to specify the details of statistical
transformation. You can supply params either in ... (in which case stat
and geom parameters are automatically teased apart), or in a list called
stat params.

• position: The method used to adjust overlapping objects, like jittering,
stacking or dodging. More details in Sect. 5.7.

It’s useful to understand the layer() function so you have a better men-
tal model of the layer object. But you’ll rarely use the full layer() call
because it’s so verbose. Instead, you’ll use the shortcut geom functions:
geom point(mapping, data, ...) is exactly equivalent to layer(mapping, data,

geom = "point", ...).

5.3 Data

Every layer must have some data associated with it, and that data must be
in a tidy data frame. You’ll learn about tidy data in Chap. 9, but for now,
all you need to know is that a tidy data frame has variables in the columns
and observations in the rows. This is a strong restriction, but there are good
reasons for it:

• Your data is very important, so it’s best to be explicit about it.
• A single data frame is also easier to save than a multitude of vectors,

which means it’s easier to reproduce your results or send your data to
someone else.
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• It enforces a clean separation of concerns: ggplot2 turns data frames into
visualisations. Other packages can make data frames in the right format
(learn more about that in Sect. 11.4).

The data on each layer doesn’t need to be the same, and it’s often useful
to combine multiple datasets in a single plot. To illustrate that idea I’m
going to generate two new datasets related to the mpg dataset. First I’ll fit
a loess model and generate predictions from it. (This is what geom smooth()

does behind the scenes.)

mod <- loess(hwy ˜ displ, data = mpg)

grid <- data_frame(displ = seq(min(mpg$displ), max(mpg$displ), length = 50))

grid$hwy <- predict(mod, newdata = grid)

grid

#> Source: local data frame [50 x 2]

#>

#> displ hwy

#> (dbl) (dbl)

#> 1 1.60 33.1

#> 2 1.71 32.2

#> 3 1.82 31.3

#> 4 1.93 30.4

#> 5 2.04 29.6

#> 6 2.15 28.8

#> .. ... ...

Next, I’ll isolate observations that are particularly far away from their
predicted values:

std_resid <- resid(mod) / mod$s

outlier <- filter(mpg, abs(std_resid) > 2)

outlier

#> Source: local data frame [6 x 11]

#>

#> manufacturer model displ year cyl trans drv cty

#> (chr) (chr) (dbl) (int) (int) (chr) (chr) (int)

#> 1 chevrolet corvette 5.7 1999 8 manual(m6) r 16

#> 2 pontiac grand prix 3.8 2008 6 auto(l4) f 18

#> 3 pontiac grand prix 5.3 2008 8 auto(s4) f 16

#> 4 volkswagen jetta 1.9 1999 4 manual(m5) f 33

#> 5 volkswagen new beetle 1.9 1999 4 manual(m5) f 35

#> 6 volkswagen new beetle 1.9 1999 4 auto(l4) f 29

#> Variables not shown: hwy (int), fl (chr), class (chr)
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I’ve generated these datasets because it’s common to enhance the display
of raw data with a statistical summary and some annotations. With these
new datasets, I can improve our initial scatterplot by overlaying a smoothed
line, and labelling the outlying points:

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_line(data = grid, colour = "blue", size = 1.5) +

geom_text(data = outlier, aes(label = model))

(The labels aren’t particularly easy to read, but you can fix that with some
manual tweaking.)

Note that you need the explicit data = in the layers, but not in the call
to ggplot(). That’s because the argument order is different. This is a little
inconsistent, but it reduces typing for the common case where you specify
the data once in ggplot() and modify aesthetics in each layer.

In this example, every layer uses a different dataset. We could define the
same plot in another way, omitting the default dataset, and specifying a
dataset for each layer:

ggplot(mapping = aes(displ, hwy)) +

geom_point(data = mpg) +

geom_line(data = grid) +

geom_text(data = outlier, aes(label = model))

I don’t particularly like this style in this example because it makes it less
clear what the primary dataset is (and because of the way that the arguments
to ggplot() are ordered, it actually requires more keystrokes). However, you
may prefer it in cases where there isn’t a clear primary dataset, or where the
aesthetics also vary from layer to layer.
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5.3.1 Exercises

1. The first two arguments to ggplot are data and mapping. The first two
arguments to all layer functions are mapping and data. Why does the order
of the arguments differ? (Hint: think about what you set most commonly.)

2. The following code uses dplyr to generate some summary statistics about
each class of car (you’ll learn how it works in Chap. 10).

library(dplyr)

class <- mpg %>%

group_by(class) %>%

summarise(n = n(), hwy = mean(hwy))

Use the data to recreate this plot:

5.4 Aesthetic Mappings

The aesthetic mappings, defined with aes(), describe how variables are
mapped to visual properties or aesthetics. aes() takes a sequence of
aesthetic-variable pairs like this:

aes(x = displ, y = hwy, colour = class)

(If you’re American, you can use color, and behind the scenes ggplot2 will
correct your spelling;)

Here we map x-position to displ, y-position to hwy, and colour to class.
The names for the first two arguments can be omitted, in which case they
correspond to the x and y variables. That makes this specification equivalent
to the one above:

aes(displ, hwy, colour = class)



5.4 Aesthetic Mappings 95

While you can do data manipulation in aes(), e.g. aes(log(carat),

log(price)), it’s best to only do simple calculations. It’s better to move com-
plex transformations out of the aes() call and into an explicit dplyr::mutate()
call, as you’ll learn about in Sect. 10.3. This makes it easier to check your
work and it’s often faster because you need only do the transformation once,
not every time the plot is drawn.

Never refer to a variable with $ (e.g., diamonds$carat) in aes(). This breaks
containment, so that the plot no longer contains everything it needs, and
causes problems if ggplot2 changes the order of the rows, as it does when
facetting.

5.4.1 Specifying the Aesthetics in the Plot vs.
in the Layers

Aesthetic mappings can be supplied in the initial ggplot() call, in individual
layers, or in some combination of both. All of these calls create the same plot
specification:

ggplot(mpg, aes(displ, hwy, colour = class)) +

geom_point()

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = class))

ggplot(mpg, aes(displ)) +

geom_point(aes(y = hwy, colour = class))

ggplot(mpg) +

geom_point(aes(displ, hwy, colour = class))

Within each layer, you can add, override, or remove mappings:

Operation Layer aesthetics Result

Add aes(colour = cyl) aes(mpg, wt, colour = cyl)

Override aes(y = disp) aes(mpg, disp)

Remove aes(y = NULL) aes(mpg)

If you only have one layer in the plot, the way you specify aesthetics doesn’t
make any difference. However, the distinction is important when you start
adding additional layers. These two plots are both valid and interesting, but
focus on quite different aspects of the data:

ggplot(mpg, aes(displ, hwy, colour = class)) +

geom_point() +

geom_smooth(method = "lm", se = FALSE) +

theme(legend.position = "none")
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ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = class)) +

geom_smooth(method = "lm", se = FALSE) +

theme(legend.position = "none")

Generally, you want to set up the mappings to illuminate the structure
underlying the graphic and minimise typing. It may take some time before
the best approach is immediately obvious, so if you’ve iterated your way to
a complex graphic, it may be worthwhile to rewrite it to make the structure
more clear.

5.4.2 Setting vs. Mapping

Instead of mapping an aesthetic property to a variable, you can set it to a
single value by specifying it in the layer parameters.Wemap an aesthetic to a
variable (e.g., aes(colour = cut)) or set it to a constant (e.g., colour = "red").
If you want appearance to be governed by a variable, put the specification
inside aes(); if you want override the default size or colour, put the value
outside of aes().

The following plots are created with similar code, but have rather different
outputs. The second plot maps (not sets) the colour to the value ‘darkblue’.
This effectively creates a new variable containing only the value ‘darkblue’
and then scales it with a colour scale. Because this value is discrete, the
default colour scale uses evenly spaced colours on the colour wheel, and since
there is only one value this colour is pinkish.

ggplot(mpg, aes(cty, hwy)) +

geom_point(colour = "darkblue")

ggplot(mpg, aes(cty, hwy)) +

geom_point(aes(colour = "darkblue"))
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A third approach is to map the value, but override the default scale:

ggplot(mpg, aes(cty, hwy)) +

geom_point(aes(colour = "darkblue")) +

scale_colour_identity()

This is most useful if you always have a column that already contains
colours. You’ll learn more about that in Sect. 6.6.4.

It’s sometimes useful to map aesthetics to constants. For example, if you
want to display multiple layers with varying parameters, you can “name”
each layer:

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_smooth(aes(colour = "loess"), method = "loess", se = FALSE) +

geom_smooth(aes(colour = "lm"), method = "lm", se = FALSE) +

labs(colour = "Method")
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5.4.3 Exercises

1. Simplify the following plot specifications:

ggplot(mpg) +

geom_point(aes(mpg$disp, mpg$hwy))

ggplot() +

geom_point(mapping = aes(y = hwy, x = cty), data = mpg) +

geom_smooth(data = mpg, mapping = aes(cty, hwy))

ggplot(diamonds, aes(carat, price)) +

geom_point(aes(log(brainwt), log(bodywt)), data = msleep)

2. What does the following code do? Does it work? Does it make sense?
Why/why not?

ggplot(mpg) +

geom_point(aes(class, cty)) +

geom_boxplot(aes(trans, hwy))

3. What happens if you try to use a continuous variable on the x axis in one
layer, and a categorical variable in another layer? What happens if you do
it in the opposite order?
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5.5 Geoms

Geometric objects, or geoms for short, perform the actual rendering of the
layer, controlling the type of plot that you create. For example, using a point
geom will create a scatterplot, while using a line geom will create a line plot.

• Graphical primitives:

– geom blank(): display nothing. Most useful for adjusting axes limits using
data.

– geom point(): points.
– geom path(): paths.
– geom ribbon(): ribbons, a path with vertical thickness.
– geom segment(): a line segment, specified by start and end position.
– geom rect(): rectangles.
– geom polyon(): filled polygons.
– geom text(): text.

• One variable:

– Discrete:
· geom bar(): display distribution of discrete variable.

– Continuous
· geom histogram(): bin and count continuous variable, display with

bars.
· geom density(): smoothed density estimate.
· geom dotplot(): stack individual points into a dot plot.
· geom freqpoly(): bin and count continuous variable, display with

lines.

• Two variables:

– Both continuous:
· geom point(): scatterplot.
· geom quantile(): smoothed quantile regression.
· geom rug(): marginal rug plots.
· geom smooth(): smoothed line of best fit.
· geom text(): text labels.

– Show distribution:
· geom bin2d(): bin into rectangles and count.
· geom density2d(): smoothed 2d density estimate.
· geom hex(): bin into hexagons and count.

– At least one discrete:
· geom count(): count number of point at distinct locations
· geom jitter(): randomly jitter overlapping points.

– One continuous, one discrete:
· geom bar(stat = "identity"): a bar chart of precomputed summaries.
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· geom boxplot(): boxplots.
· geom violin(): show density of values in each group.

– One time, one continuous
· geom area(): area plot.
· geom line(): line plot.
· geom step(): step plot.

– Display uncertainty:
· geom crossbar(): vertical bar with center.
· geom errorbar(): error bars.
· geom linerange(): vertical line.
· geom pointrange(): vertical line with center.

– Spatial
· geom map(): fast version of geom polygon() for map data.

• Three variables:

– geom contour(): contours.
– geom tile(): tile the plane with rectangles.
– geom raster(): fast version of geom tile() for equal sized tiles.

Each geom has a set of aesthetics that it understands, some of which must
be provided. For example, the point geoms requires x and y position, and
understands colour, size and shape aesthetics. A bar requires height (ymax),
and understands width, border colour and fill colour. Each geom lists its
aesthetics in the documentation.

Some geoms differ primarily in the way that they are parameterised. For
example, you can draw a square in three ways:

• By giving geom tile() the location (x and y) and dimensions (width and
height).

• By giving geom rect() top (ymax), bottom (ymin), left (xmin) and right (xmax)
positions.

• By giving geom polygon() a four row data frame with the x and y positions
of each corner.

Other related geoms are:

• geom segment() and geom line()

• geom area() and geom ribbon().

If alternative parameterisations are available, picking the right one for your
data will usually make it much easier to draw the plot you want.
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5.5.1 Exercises

1. Download and print out the ggplot2 cheatsheet from http://www.rstudio.
com/resources/cheatsheets/ so you have a handy visual reference for all
the geoms.

2. Look at the documentation for the graphical primitive geoms. Which aes-
thetics do they use? How can you summarise them in a compact form?

3. What’s the best way to master an unfamiliar geom? List three resources
to help you get started.

4. For each of the plots below, identify the geom used to draw it.

http://www.rstudio.com/resources/cheatsheets/
http://www.rstudio.com/resources/cheatsheets/
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5. For each of the following problems, suggest a useful geom:

• Display how a variable has changed over time.
• Show the detailed distribution of a single variable.
• Focus attention on the overall trend in a large dataset.
• Draw a map.
• Label outlying points.

5.6 Stats

A statistical transformation, or stat, transforms the data, typically by sum-
marising it in some manner. For example, a useful stat is the smoother, which
calculates the smoothed mean of y, conditional on x. You’ve already used
many of ggplot2’s stats because they’re used behind the scenes to generate
many important geoms:

• stat bin(): geom bar(), geom freqpoly(), geom histogram()

• stat bin2d(): geom bin2d()

• stat bindot(): geom dotplot()

• stat binhex(): geom hex()

• stat boxplot(): geom boxplot()

• stat contour(): geom contour()

• stat quantile(): geom quantile()

• stat smooth(): geom smooth()

• stat sum(): geom count()

You’ll rarely call these functions directly, but they are useful to know
about because their documentation often provides more detail about the
corresponding statistical transformation.

Other stats can’t be created with a geom function:

• stat ecdf(): compute a empirical cumulative distribution plot.
• stat function(): compute y values from a function of x values.
• stat summary(): summarise y values at distinct x values.
• stat summary2d(), stat summary hex(): summarise binned values.
• stat qq(): perform calculations for a quantile-quantile plot.
• stat spoke(): convert angle and radius to position.
• stat unique(): remove duplicated rows.

There are two ways to use these functions. You can either add a stat ()

function and override the default geom, or add a geom () function and override
the default stat:

ggplot(mpg, aes(trans, cty)) +

geom_point() +

stat_summary(geom = "point", fun.y = "mean", colour = "red", size = 4)
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ggplot(mpg, aes(trans, cty)) +

geom_point() +

geom_point(stat = "summary", fun.y = "mean", colour = "red", size = 4)

I think it’s best to use the first form because it makes it more clear that
you’re displaying a summary, not the raw data.

5.6.1 Generated Variables

Internally, a stat takes a data frame as input and returns a data frame as
output, and so a stat can add new variables to the original dataset. It is
possible to map aesthetics to these new variables. For example, stat bin, the
statistic used to make histograms, produces the following variables:

• count, the number of observations in each bin
• density, the density of observations in each bin (percentage of total/bar

width)
• x, the centre of the bin

These generated variables can be used instead of the variables present in
the original dataset. For example, the default histogram geom assigns the
height of the bars to the number of observations (count), but if you’d prefer a
more traditional histogram, you can use the density (density). To refer to a
generated variable like density, “..” must surround the name. This prevents
confusion in case the original dataset includes a variable with the same name
as a generated variable, and it makes it clear to any later reader of the code
that this variable was generated by a stat. Each statistic lists the variables
that it creates in its documentation. Compare the y-axes on these two plots:
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ggplot(diamonds, aes(price)) +

geom_histogram(binwidth = 500)

ggplot(diamonds, aes(price)) +

geom_histogram(aes(y = ..density..), binwidth = 500)

This technique is particularly useful when you want to compare the dis-
tribution of multiple groups that have very different sizes. For example, it’s
hard to compare the distribution of price within cut because some groups
are quite small. It’s easier to compare if we standardise each group to take
up the same area:

ggplot(diamonds, aes(price, colour = cut)) +

geom_freqpoly(binwidth = 500) +

theme(legend.position = "none")

ggplot(diamonds, aes(price, colour = cut)) +

geom_freqpoly(aes(y = ..density..), binwidth = 500) +

theme(legend.position = "none")

The result of this plot is rather surprising: low quality diamonds seem to
be more expensive on average. We’ll come back to this result in Sect. 11.2.
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5.6.2 Exercises

1. The code below creates a similar dataset to stat smooth(). Use the appro-
priate geoms to mimic the default geom smooth() display.

mod <- loess(hwy ˜ displ, data = mpg)

smoothed <- data.frame(displ = seq(1.6, 7, length = 50))

pred <- predict(mod, newdata = smoothed, se = TRUE)

smoothed$hwy <- pred$fit

smoothed$hwy_lwr <- pred$fit - 1.96 * pred$se.fit

smoothed$hwy_upr <- pred$fit + 1.96 * pred$se.fit

2. What stats were used to create the following plots?

3. Read the help for stat sum() then use geom count() to create a plot that
shows the proportion of cars that have each combination of drv and trans.

5.7 Position Adjustments

Position adjustments apply minor tweaks to the position of elements within
a layer. Three adjustments apply primarily to bars:

• position stack(): stack overlapping bars (or areas) on top of each other.
• position fill(): stack overlapping bars, scaling so the top is always at 1.
• position dodge(): place overlapping bars (or boxplots) side-by-side.

dplot <- ggplot(diamonds, aes(color, fill = cut)) +

xlab(NULL) + ylab(NULL) + theme(legend.position = "none")

# position stack is the default for bars, so �geom_bar()�

# is equivalent to �geom_bar(position = "stack")�.

dplot + geom_bar()

dplot + geom_bar(position = "fill")

dplot + geom_bar(position = "dodge")
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There’s also a position adjustment that does nothing: position identity().
The identity position adjustment isn’t useful for bars, because each bar ob-
scures the bars behind, but there are many geoms that don’t need adjusting,
like lines:

dplot + geom_bar(position = "identity", alpha = 1 / 2, colour = "grey50")

ggplot(diamonds, aes(color, colour = cut)) +

geom_line(aes(group = cut), stat = "count") +

xlab(NULL) + ylab(NULL) +

theme(legend.position = "none")

There are three position adjustments that are primarily useful for points:

• position nudge(): move points by a fixed offset.
• position jitter(): add a little random noise to every position.
• position jitterdodge(): dodge points within groups, then add a little ran-

dom noise.

Note that the way you pass parameters to position adjustments differs
to stats and geoms. Instead of including additional arguments in ..., you
construct a position adjustment object, supplying additional arguments in
the call:

ggplot(mpg, aes(displ, hwy)) +

geom_point(position = "jitter")

ggplot(mpg, aes(displ, hwy)) +

geom_point(position = position_jitter(width = 0.05, height = 0.5))
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This is rather verbose, so geom jitter() provides a convenient shortcut:

ggplot(mpg, aes(displ, hwy)) +

geom_jitter(width = 0.05, height = 0.5)

Continuous data typically doesn’t overlap exactly, and when it does (be-
cause of high data density) minor adjustments, like jittering, are often insuf-
ficient to fix the problem. For this reason, position adjustments are generally
most useful for discrete data.

5.7.1 Exercises

1. When might you use position nudge()? Read the documentation.
2. Many position adjustments can only be used with a few geoms. For ex-

ample, you can’t stack boxplots or errors bars. Why not? What properties
must a geom possess in order to be stackable? What properties must it
possess to be dodgeable?

3. Why might you use geom jitter() instead of geom count()? What are the
advantages and disadvantages of each technique?

4. When might you use a stacked area plot? What are the advantages and
disadvantages compared to a line plot?



Chapter 6

Scales, Axes and Legends

6.1 Introduction

Scales control the mapping from data to aesthetics. They take your data and
turn it into something that you can see, like size, colour, position or shape.
Scales also provide the tools that let you read the plot: the axes and legends.
Formally, each scale is a function from a region in data space (the domain of
the scale) to a region in aesthetic space (the range of the scale). The axis or
legend is the inverse function: it allows you to convert visual properties back
to data.

You can generate many plots without knowing how scales work, but un-
derstanding scales and learning how to manipulate them will give you much
more control. The basics of working with scales is described in Sect. 6.2. Sec-
tion 6.3 discusses the common parameters that control the axes and legends.
Legends are particularly complicated so have an additional set of options as
described in Sect. 6.4. Section 6.5 shows how to use limits to both zoom into
interesting parts of a plot, and to ensure that multiple plots have match-
ing legends and axes. Section 6.6 gives an overview of the different types of
scales available in ggplot2, which can be roughly divided into four categories:
continuous position scales, colour scales, manual scales and identity scales.

6.2 Modifying Scales

A scale is required for every aesthetic used on the plot. When you write:

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = class))

What actually happens is this:

© The Author 2016
H. Wickham, ggplot2, Use R!, DOI 10.1007/978-3-319-24277-4 6
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ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = class)) +

scale_x_continuous() +

scale_y_continuous() +

scale_colour_discrete()

Default scales are named according to the aesthetic and the variable type:
scale y continuous(), scale colour discrete(), etc.

It would be tedious to manually add a scale every time you used a new
aesthetic, so ggplot2 does it for you. But if you want to override the defaults,
you’ll need to add the scale yourself, like this:

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = class)) +

scale_x_continuous("A really awesome x axis ") +

scale_y_continuous("An amazingly great y axis ")

The use of + to “add” scales to a plot is a little misleading. When you +

a scale, you’re not actually adding it to the plot, but overriding the existing
scale. This means that the following two specifications are equivalent:

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

scale_x_continuous("Label 1") +

scale_x_continuous("Label 2")

#> Scale for 'x' is already present. Adding another scale for 'x',

#> which will replace the existing scale.

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

scale_x_continuous("Label 2")

Note the message: if you see this in your own code, you need to reorganise
your code specification to only add a single scale.

You can also use a different scale altogether:

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = class)) +

scale_x_sqrt() +

scale_colour_brewer()

You’ve probably already figured out the naming scheme for scales, but to
be concrete, it’s made up of three pieces separated by “ “:

1. scale

2. The name of the aesthetic (e.g., colour, shape or x)
3. The name of the scale (e.g., continuous, discrete, brewer).
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6.2.1 Exercises

1. What happens if you pair a discrete variable to a continuous scale? What
happens if you pair a continuous variable to a discrete scale?

2. Simplify the following plot specifications to make them easier to under-
stand.

ggplot(mpg, aes(displ)) +

scale_y_continuous("Highway mpg") +

scale_x_continuous() +

geom_point(aes(y = hwy))

ggplot(mpg, aes(y = displ, x = class)) +

scale_y_continuous("Displacement (l)") +

scale_x_discrete("Car type") +

scale_x_discrete("Type of car") +

scale_colour_discrete() +

geom_point(aes(colour = drv)) +

scale_colour_discrete("Drive\ntrain")

6.3 Guides: Legends and Axes

The component of a scale that you’re most likely to want to modify is the
guide, the axis or legend associated with the scale. Guides allow you to
read observations from the plot and map them back to their original values.
In ggplot2, guides are produced automatically based on the layers in your
plot. This is very different to base R graphics, where you are responsible
for drawing the legends by hand. In ggplot2, you don’t directly control the
legend; instead you set up the data so that there’s a clear mapping between
data and aesthetics, and a legend is generated for you automatically. This
can be frustrating when you first start using ggplot2, but once you get the
hang of it, you’ll find that it saves you time, and there is little you cannot
do. If you’re struggling to get the legend you want, it’s likely that your data
is in the wrong form. Read Chap. 9 to find out the right form.

You might find it surprising that axes and legends are the same type of
thing, but while they look very different there are many natural correspon-
dences between the two, as shown in table below and in Fig. 6.1.

Axis Legend Argument name

Label Title name

Ticks & grid line Key breaks

Tick label Key label labels
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mpg
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15 20 25 30
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Axis label

Legend
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Tick mark
and label

Legend title
Axis

Key label

Fig. 6.1 Axis and legend components

The following sections covers each of the name, breaks and labels arguments
in more detail.

6.3.1 Scale Title

The first argument to the scale function, name, is the axes/legend title. You
can supply text strings (using \n for line breaks) or mathematical expressions
in quote() (as described in ?plotmath):

df <- data.frame(x = 1:2, y = 1, z = "a")

p <- ggplot(df, aes(x, y)) + geom_point()

p + scale_x_continuous("X axis")

p + scale_x_continuous(quote(a + mathematical ˆ expression))

Because tweaking these labels is such a common task, there are three
helpers that save you some typing: xlab(), ylab() and labs():
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p <- ggplot(df, aes(x, y)) + geom_point(aes(colour = z))

p +

xlab("X axis") +

ylab("Y axis")

p + labs(x = "X axis", y = "Y axis", colour = "Colour\nlegend")

There are two ways to remove the axis label. Setting it to "" omits the
label, but still allocates space; NULL removes the label and its space. Look
closely at the left and bottom borders of the following two plots. I’ve drawn
a grey rectangle around the plot to make it easier to see the difference.

p <- ggplot(df, aes(x, y)) +

geom_point() +

theme(plot.background = element_rect(colour = "grey50"))

p + labs(x = "", y = "")

p + labs(x = NULL, y = NULL)

6.3.2 Breaks and Labels

The breaks argument controls which values appear as tick marks on axes
and keys on legends. Each break has an associated label, controlled by the
labels argument. If you set labels, you must also set breaks; otherwise, if
data changes, the breaks will no longer align with the labels.

The following code shows some basic examples for both axes and legends.
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df <- data.frame(x = c(1, 3, 5) * 1000, y = 1)

axs <- ggplot(df, aes(x, y)) +

geom_point() +

labs(x = NULL, y = NULL)

axs

axs + scale_x_continuous(breaks = c(2000, 4000))

axs + scale_x_continuous(breaks = c(2000, 4000), labels = c("2k", "4k"))

leg <- ggplot(df, aes(y, x, fill = x)) +

geom_tile() +

labs(x = NULL, y = NULL)

leg

leg + scale_fill_continuous(breaks = c(2000, 4000))

leg + scale_fill_continuous(breaks = c(2000, 4000), labels = c("2k", "4k"))

If you want to relabel the breaks in a categorical scale, you can use a
named labels vector:

df2 <- data.frame(x = 1:3, y = c("a", "b", "c"))

ggplot(df2, aes(x, y)) +

geom_point()

ggplot(df2, aes(x, y)) +

geom_point() +

scale_y_discrete(labels = c(a = "apple", b = "banana", c = "carrot"))
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To suppress breaks (and for axes, grid lines) or labels, set them to NULL:

axs + scale_x_continuous(breaks = NULL)

axs + scale_x_continuous(labels = NULL)

leg + scale_fill_continuous(breaks = NULL)

leg + scale_fill_continuous(labels = NULL)

Additionally, you can supply a function to breaks or labels. The breaks

function should have one argument, the limits (a numeric vector of length
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two), and should return a numeric vector of breaks. The labels function
should accept a numeric vector of breaks and return a character vector of
labels (the same length as the input). The scales package provides a number
of useful labelling functions:

• scales::comma format() adds commas to make it easier to read large num-
bers.

• scales::unit format(unit, scale) adds a unit suffix, optionally scaling.
• scales::dollar format(prefix, suffix) displays currency values, rounding

to two decimal places and adding a prefix or suffix.
• scales::wrap format() wraps long labels into multiple lines.

See the documentation of the scales package for more details.

axs + scale_y_continuous(labels = scales::percent_format())

axs + scale_y_continuous(labels = scales::dollar_format("$"))

leg + scale_fill_continuous(labels = scales::unit_format("k", 1e-3))

You can adjust the minor breaks (the faint grid lines that appear be-
tween the major grid lines) by supplying a numeric vector of positions to the
minor breaks argument. This is particularly useful for log scales:

df <- data.frame(x = c(2, 3, 5, 10, 200, 3000), y = 1)

ggplot(df, aes(x, y)) +

geom_point() +

scale_x_log10()

mb <- as.numeric(1:10 %o% 10 ˆ (0:4))

ggplot(df, aes(x, y)) +

geom_point() +

scale_x_log10(minor_breaks = log10(mb))
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Note the use of %o% to quickly generate the multiplication table, and that
the minor breaks must be supplied on the transformed scale.

6.3.3 Exercises

1. Recreate the following graphic:

Adjust the y axis label so that the parentheses are the right size.
2. List the three different types of object you can supply to the breaks argu-

ment. How do breaks and labels differ?
3. Recreate the following plot:
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4. What label function allows you to create mathematical expressions? What
label function converts 1 to 1st, 2 to 2nd, and so on?

5. What are the three most important arguments that apply to both axes
and legends? What do they do? Compare and contrast their operation for
axes vs. legends.

6.4 Legends

While the most important parameters are shared between axes and legends,
there are some extra options that only apply to legends. Legends are more
complicated than axes because:

1. A legend can display multiple aesthetics (e.g. colour and shape), from
multiple layers, and the symbol displayed in a legend varies based on the
geom used in the layer.

2. Axes always appear in the same place. Legends can appear in different
places, so you need some global way of controlling them.

3. Legends have considerably more details that can be tweaked: should they
be displayed vertically or horizontally? How many columns? How big
should the keys be?

The following sections describe the options that control these interactions.

6.4.1 Layers and Legends

A legend may need to draw symbols from multiple layers. For example, if
you’ve mapped colour to both points and lines, the keys will show both
points and lines. If you’ve mapped fill colour, you get a rectangle. Note the
way the legend varies in the plots below:
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By default, a layer will only appear if the corresponding aesthetic is
mapped to a variable with aes(). You can override whether or not a layer
appears in the legend with show.legend: FALSE to prevent a layer from ever
appearing in the legend; TRUE forces it to appear when it otherwise wouldn’t.
Using TRUE can be useful in conjunction with the following trick to make
points stand out:

ggplot(df, aes(y, y)) +

geom_point(size = 4, colour = "grey20") +

geom_point(aes(colour = z), size = 2)

ggplot(df, aes(y, y)) +

geom_point(size = 4, colour = "grey20", show.legend = TRUE) +

geom_point(aes(colour = z), size = 2)

Sometimes you want the geoms in the legend to display differently to the
geoms in the plot. This is particularly useful when you’ve used transparency
or size to deal with moderate overplotting and also used colour in the plot.
You can do this using the override.aes parameter of guide legend(), which
you’ll learn more about shortly.

norm <- data.frame(x = rnorm(1000), y = rnorm(1000))

norm$z <- cut(norm$x, 3, labels = c("a", "b", "c"))

ggplot(norm, aes(x, y)) +

geom_point(aes(colour = z), alpha = 0.1)

ggplot(norm, aes(x, y)) +

geom_point(aes(colour = z), alpha = 0.1) +

guides(colour = guide_legend(override.aes = list(alpha = 1)))
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ggplot2 tries to use the fewest number of legends to accurately convey the
aesthetics used in the plot. It does this by combining legends where the same
variable is mapped to different aesthetics. The figure below shows how this
works for points: if both colour and shape are mapped to the same variable,
then only a single legend is necessary.

ggplot(df, aes(x, y)) + geom_point(aes(colour = z))

ggplot(df, aes(x, y)) + geom_point(aes(shape = z))

ggplot(df, aes(x, y)) + geom_point(aes(shape = z, colour = z))

In order for legends to be merged, they must have the same name. So if you
change the name of one of the scales, you’ll need to change it for all of them.

6.4.2 Legend Layout

A number of settings that affect the overall display of the legends are con-
trolled through the theme system. You’ll learn more about that in Sect. 8.2,
but for now, all you need to know is that you modify theme settings with the
theme() function.
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The position and justification of legends are controlled by the theme set-
ting legend.position, which takes values “right”, “left”, “top”, “bottom”, or
“none” (no legend).

df <- data.frame(x = 1:3, y = 1:3, z = c("a", "b", "c"))

base <- ggplot(df, aes(x, y)) +

geom_point(aes(colour = z), size = 3) +

xlab(NULL) +

ylab(NULL)

base + theme(legend.position = "right") # the default

base + theme(legend.position = "bottom")

base + theme(legend.position = "none")

Switching between left/right and top/bottom modifies how the keys in
each legend are laid out (horizontal or vertically), and how multiple legends
are stacked (horizontal or vertically). If needed, you can adjust those options
independently:

• legend.direction: layout of items in legends (“horizontal” or “vertical”).
• legend.box: arrangement of multiple legends (“horizontal” or “vertical”).
• legend.box.just: justification of each legend within the overall bounding

box, when there are multiple legends (“top”, “bottom”, “left”, or “right”).

Alternatively, if there’s a lot of blank space in your plot you might want to
place the legend inside the plot. You can do this by setting legend.position to
a numeric vector of length two. The numbers represent a relative location in
the panel area: c(0, 1) is the top-left corner and c(1, 0) is the bottom-right
corner. You control which corner of the legend the legend.position refers to
with legend.justification, which is specified in a similar way. Unfortunately
positioning the legend exactly where you want it requires a lot of trial and
error.

base <- ggplot(df, aes(x, y)) +
geom_point(aes(colour = z), size = 3)

base + theme(legend.position = c(0, 1), legend.justification = c(0, 1))
base + theme(legend.position = c(0.5, 0.5), legend.justification = c(0.5, 0.5))
base + theme(legend.position = c(1, 0), legend.justification = c(1, 0))
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There’s also a margin around the legends, which you can suppress with
legend.margin = unit(0, "mm").

6.4.3 Guide Functions

The guide functions, guide colourbar() and guide legend(), offer additional
control over the fine details of the legend. Legend guides can be used for any
aesthetic (discrete or continuous) while the colour bar guide can only be used
with continuous colour scales.

You can override the default guide using the guide argument of the corre-
sponding scale function, or more conveniently, the guides() helper function.
guides() works like labs(): you can override the default guide associated with
each aesthetic.

df <- data.frame(x = 1, y = 1:3, z = 1:3)

base <- ggplot(df, aes(x, y)) + geom_raster(aes(fill = z))

base

base + scale_fill_continuous(guide = guide_legend())

base + guides(fill = guide_legend())
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Both functions have numerous examples in their documentation help pages
that illustrate all of their arguments. Most of the arguments to the guide
function control the fine level details of the text colour, size, font etc. You’ll
learn about those in the themes chapter. Here I’ll focus on the most important
arguments.

6.4.3.1 guide legend()

The legend guide displays individual keys in a table. The most useful op-
tions are:

• nrow or ncol which specify the dimensions of the table. byrow controls how
the table is filled: FALSE fills it by column (the default), TRUE fills it by row.

df <- data.frame(x = 1, y = 1:4, z = letters[1:4])

# Base plot

p <- ggplot(df, aes(x, y)) + geom_raster(aes(fill = z))

p

p + guides(fill = guide_legend(ncol = 2))

p + guides(fill = guide_legend(ncol = 2, byrow = TRUE))

• reverse reverses the order of the keys. This is particularly useful when
you have stacked bars because the default stacking and legend orders are
different:

p <- ggplot(df, aes(1, y)) + geom_bar(stat = "identity", aes(fill = z))

p

p + guides(fill = guide_legend(reverse = TRUE))
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• override.aes: override some of the aesthetic settings derived from each
layer. This is useful if you want to make the elements in the legend more
visually prominent. See discussion in Sect. 6.4.1.

• keywidth and keyheight (along with default.unit) allow you to specify the
size of the keys. These are grid units, e.g. unit(1, "cm").

6.4.3.2 guide colourbar

The colour bar guide is designed for continuous ranges of colors—as its name
implies, it outputs a rectangle over which the color gradient varies. The most
important arguments are:

• barwidth and barheight (along with default.unit) allow you to specify the
size of the bar. These are grid units, e.g. unit(1, "cm").

• nbin controls the number of slices. You may want to increase this from the
default value of 20 if you draw a very long bar.

• reverse flips the colour bar to put the lowest values at the top.

These options are illustrated below:

df <- data.frame(x = 1, y = 1:4, z = 4:1)

p <- ggplot(df, aes(x, y)) + geom_tile(aes(fill = z))

p

p + guides(fill = guide_colorbar(reverse = TRUE))

p + guides(fill = guide_colorbar(barheight = unit(4, "cm")))
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6.4.4 Exercises

1. How do you make legends appear to the left of the plot?
2. What’s gone wrong with this plot? How could you fix it?

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = drv, shape = drv)) +

scale_colour_discrete("Drive train")

3. Can you recreate the code for this plot?
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6.5 Limits

The limits, or domain, of a scale are usually derived from the range of the
data. There are two reasons you might want to specify limits rather than
relying on the data:

1. You want to make limits smaller than the range of the data to focus on
an interesting area of the plot.

2. You want to make the limits larger than the range of the data because you
want multiple plots to match up.

It’s most natural to think about the limits of position scales: they map
directly to the ranges of the axes. But limits also apply to scales that have
legends, like colour, size, and shape. This is particularly important to realise
if you want your colours to match up across multiple plots in your paper.

You can modify the limits using the limits parameter of the scale:

• For continuous scales, this should be a numeric vector of length two. If
you only want to set the upper or lower limit, you can set the other value
to NA.

• For discrete scales, this is a character vector which enumerates all possible
values.

df <- data.frame(x = 1:3, y = 1:3)

base <- ggplot(df, aes(x, y)) + geom_point()

base

base + scale_x_continuous(limits = c(1.5, 2.5))

#> Warning: Removed 2 rows containing missing values (geom_point).

base + scale_x_continuous(limits = c(0, 4))
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Because modifying the limits is such a common task, ggplot2 provides some
helper to make this even easier: xlim(), ylim() and lims() These functions
inspect their input and then create the appropriate scale, as follows:

• xlim(10, 20): a continuous scale from 10 to 20
• ylim(20, 10): a reversed continuous scale from 20 to 10
• xlim("a", "b", "c"): a discrete scale
• xlim(as.Date(c("2008-05-01", "2008-08-01"))): a date scale from May 1 to

August 1 2008.

base + xlim(0, 4)

base + xlim(4, 0)

base + lims(x = c(0, 4))

If you have eagle eyes, you’ll have noticed that the range of the axes
actually extends a little bit past the limits that you’ve specified. This ensures
that the data does not overlap the axes. To eliminate this space, set expand

= c(0, 0). This is useful in conjunction with geom raster():

ggplot(faithfuld, aes(waiting, eruptions)) +

geom_raster(aes(fill = density)) +

theme(legend.position = "none")

ggplot(faithfuld, aes(waiting, eruptions)) +

geom_raster(aes(fill = density)) +
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scale_x_continuous(expand = c(0,0)) +

scale_y_continuous(expand = c(0,0)) +

theme(legend.position = "none")

By default, any data outside the limits is converted to NA. This means that
setting the limits is not the same as visually zooming in to a region of the plot.
To do that, you need to use the xlim and ylim arguments to coord cartesian(),
described in Sect. 7.4. This performs purely visual zooming and does not
affect the underlying data. You can override this with the oob (out of bounds)
argument to the scale. The default is scales::censor() which replaces any
value outside the limits with NA. Another option is scales::squish() which
squishes all values into the range:

df <- data.frame(x = 1:5)

p <- ggplot(df, aes(x, 1)) + geom_tile(aes(fill = x), colour = "white")

p

p + scale_fill_gradient(limits = c(2, 4))

p + scale_fill_gradient(limits = c(2, 4), oob = scales::squish)
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6.5.1 Exercises

1. The following code creates two plots of the mpg dataset. Modify the code
so that the legend and axes match, without using facetting!

fwd <- subset(mpg, drv == "f")

rwd <- subset(mpg, drv == "r")

ggplot(fwd, aes(displ, hwy, colour = class)) + geom_point()

ggplot(rwd, aes(displ, hwy, colour = class)) + geom_point()

2. What does expand limits() do and how does it work? Read the source
code.

3. What happens if you add two xlim() calls to the same plot? Why?
4. What does scale x continuous(limits = c(NA, NA)) do?

6.6 Scales Toolbox

As well as tweaking the options of the default scales, you can also override
them completely with new scales. Scales can be divided roughly into four
families:

• Continuous position scales used to map integer, numeric, and date/time
data to x and y position.

• Colour scales, used to map continuous and discrete data to colours.
• Manual scales, used to map discrete variables to your choice of size, line

type, shape or colour.
• The identity scale, paradoxically used to plot variables without scaling

them. This is useful if your data is already a vector of colour names.

The follow sections describe each family in more detail.
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6.6.1 Continuous Position Scales

Every plot has two position scales, x and y. The most common continu-
ous position scales are scale x continuous() and scale y continuous(), which
linearly map data to the x and y axis. The most interesting variations are
produced using transformations. Every continuous scale takes a trans argu-
ment, allowing the use of a variety of transformations:

# Convert from fuel economy to fuel consumption

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

scale_y_continuous(trans = "reciprocal")

# Log transform x and y axes

ggplot(diamonds, aes(price, carat)) +

geom_bin2d() +

scale_x_continuous(trans = "log10") +

scale_y_continuous(trans = "log10")

The transformation is carried out by a “transformer”, which describes the
transformation, its inverse, and how to draw the labels. The following table
lists the most common variants:

Name Function f(x) Inverse f−1(y)

asn tanh−1(x) tanh(y)
exp ex log(y)
identity x y
log log(x) ey

log10 log10(x) 10y

log2 log2(x) 2y

logit log( x
1−x )

1
1+e(y)

pow10 10x log10(y)
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Name Function f(x) Inverse f−1(y)

probit Φ(x) Φ−1(y)
reciprocal x−1 y−1

reverse −x −y

sqrt x1/2 y2

There are shortcuts for the most common: scale x log10(), scale x sqrt()

and scale x reverse() (and similarly for y.)
Of course, you can also perform the transformation yourself. For example,

instead of using scale x log10(), you could plot log10(x). The appearance of
the geom will be the same, but the tick labels will be different. If you use a
transformed scale, the axes will be labelled in the original data space; if you
transform the data, the axes will be labelled in the transformed space.

In either case, the transformation occurs before any statistical summaries.
To transform, after statistical computation, use coord trans(). See Sect. 7.4
for more details.

Date and date/time data are continuous variables with special labels. gg-
plot2 works with Date (for dates) and POSIXct (for date/times) classes: if your
dates are in a different format you will need to convert them with as.Date()

or as.POSIXct(). scale x date() and scale x datetime() work similarly to
scale x continuous() but have special date breaks and date labels arguments
that work in date-friendly units:

• date breaks and date minor breaks() allows you to position breaks by date
units (years, months, weeks, days, hours, minutes, and seconds). For ex-
ample, date breaks = "2 weeks" will place a major tick mark every two
weeks.

• date labels controls the display of the labels using the same formatting
strings as in strptime() and format():

String Meaning

%S Second (00–59)
%M Minute (00–59)
%l Hour, in 12-hour clock (1–12)
%I Hour, in 12-hour clock (01–12)
%p am/pm
%H Hour, in 24-hour clock (00–23)
%a Day of week, abbreviated (Mon–Sun)
%A Day of week, full (Monday–Sunday)
%e Day of month (1–31)
%d Day of month (01–31)
%m Month, numeric (01–12)
%b Month, abbreviated (Jan–Dec)
%B Month, full (January–December)
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String Meaning

%y Year, without century (00–99)
%Y Year, with century (0000–9999)

For example, if you wanted to display dates like 14/10/1979, you would
use the string "%d/%m/%Y".

The code below illustrates some of these parameters.

base <- ggplot(economics, aes(date, psavert)) +

geom_line(na.rm = TRUE) +

labs(x = NULL, y = NULL)

base # Default breaks and labels

base + scale_x_date(date_labels = "%y", date_breaks = "5 years")

base + scale_x_date(

limits = as.Date(c("2004-01-01", "2005-01-01")),

date_labels = "%b %y",

date_minor_breaks = "1 month"

)

base + scale_x_date(

limits = as.Date(c("2004-01-01", "2004-06-01")),

date_labels = "%m/%d",

date_minor_breaks = "2 weeks"

)
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6.6.2 Colour

After position, the most commonly used aesthetic is colour. There are quite
a few different ways of mapping values to colours in ggplot2: four different
gradient-based methods for continuous values, and two methods for mapping
discrete values. But before we look at the details of the different methods, it’s
useful to learn a little bit of colour theory. Colour theory is complex because
the underlying biology of the eye and brain is complex, and this introduction
will only touch on some of the more important issues. An excellent and more
detailed exposition is available online at http://tinyurl.com/clrdtls.

At the physical level, colour is produced by a mixture of wavelengths of
light. To characterise a colour completely, we need to know the complete
mixture of wavelengths. Fortunately for us the human eye only has three
different colour receptors, and so we can summarise the perception of any
colour with just three numbers. You may be familiar with the RGB encoding
of colour space, which defines a colour by the intensities of red, green and
blue light needed to produce it. One problem with this space is that it is
not perceptually uniform: the two colours that are one unit apart may look
similar or very different depending on where they are in the colour space. This
makes it difficult to create a mapping from a continuous variable to a set of
colours. There have been many attempts to come up with colours spaces that
are more perceptually uniform. We’ll use a modern attempt called the HCL
colour space, which has three components of hue, chroma and luminance:

• Hue is a number between 0 and 360 (an angle) which gives the “colour”
of the colour: like blue, red, orange, etc.

• Chroma is the purity of a colour. A chroma of 0 is grey, and the maximum
value of chroma varies with luminance.

• Luminance is the lightness of the colour. A luminance of 0 produces black,
and a luminance of 1 produces white.

Hues are not perceived as being ordered: e.g. green does not seem “larger”
than red. The perception of chroma and luminance are ordered.

The combination of these three components does not produce a simple
geometric shape. Figure 6.2 attempts to show the 3d shape of the space.
Each slice is a constant luminance (brightness) with hue mapped to angle
and chroma to radius. You can see the centre of each slice is grey and the
colours get more intense as they get closer to the edge.

An additional complication is that many people (˜10% of men) do not
possess the normal complement of colour receptors and so can distinguish
fewer colours than usual. In brief, it’s best to avoid red-green contrasts, and
to check your plots with systems that simulate colour blindness. Visicheck is
one online solution. Another alternative is the dichromat package (Lumley,
2013) which provides tools for simulating colour blindness, and a set of colour
schemes known to work well for colour-blind people. You can also help people
with colour blindness in the same way that you can help people with black-
and-white printers: by providing redundant mappings to other aesthetics like
size, line type or shape.

http://tinyurl.com/clrdtls
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Fig. 6.2 The shape of the HCL colour space. Hue is mapped to angle, chroma to radius
and each slice shows a different luminance. The HCL space is a pretty odd shape, but you
can see that colours near the centre of each slice are grey, and as you move towards the
edges they become more intense. Slices for luminance 0 and 100 are omitted because they
would, respectively, be a single black point and a single white point

6.6.2.1 Continuous

Colour gradients are often used to show the height of a 2d surface. In the fol-
lowing example we’ll use the surface of a 2d density estimate of the faithful

dataset (Azzalini and Bowman, 1990), which records the waiting time be-
tween eruptions and during each eruption for the Old Faithful geyser in
Yellowstone Park. I hide the legends and set expand to 0, to focus on the
appearance of the data. . Remember: I’m illustrating these scales with filled
tiles, but you can also use them with coloured lines and points.

erupt <- ggplot(faithfuld, aes(waiting, eruptions, fill = density)) +

geom_raster() +

scale_x_continuous(NULL, expand = c(0, 0)) +

scale_y_continuous(NULL, expand = c(0, 0)) +

theme(legend.position = "none")

There are four continuous colour scales:

• scale colour gradient() and scale fill gradient(): a two-colour gradient,
low-high (light blue-dark blue). This is the default scale for continuous
colour, and is the same as scale colour continuous(). Arguments low and
high control the colours at either end of the gradient.
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Generally, for continuous colour scales you want to keep hue constant, and
vary chroma and luminance. The munsell colour system is useful for this
as it provides an easy way of specifying colours based on their hue, chroma
and luminance. Use munsell::hue slice("5Y") to see the valid chroma and
luminance values for a given hue.

erupt

erupt + scale_fill_gradient(low = "white", high = "black")

erupt + scale_fill_gradient(

low = munsell::mnsl("5G 9/2"),

high = munsell::mnsl("5G 6/8")

)

• scale colour gradient2() and scale fill gradient2(): a three-colour gradi-
ent, low-med-high (red-white-blue). As well as low and high colours, these
scales also have a mid colour for the colour of the midpoint. The midpoint
defaults to 0, but can be set to any value with the midpoint argument.
It’s artificial to use this colour scale with this dataset, but we can force it
by using the median of the density as the midpoint. Note that the blues
are much more intense than the reds (which you only see as a very pale
pink)

mid <- median(faithfuld$density)

erupt + scale_fill_gradient2(midpoint = mid)
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• scale colour gradientn() and scale fill gradientn(): a custom n-colour
gradient. This is useful if you have colours that are meaningful for your
data (e.g., black body colours or standard terrain colours), or you’d like
to use a palette produced by another package. The following code includes
palettes generated from routines in the colorspace package. (Zeileis et al.,
2008) describes the philosophy behind these palettes and provides a good
introduction to some of the complexities of creating good colour scales.

erupt + scale_fill_gradientn(colours = terrain.colors(7))

erupt + scale_fill_gradientn(colours = colorspace::heat_hcl(7))

erupt + scale_fill_gradientn(colours = colorspace::diverge_hcl(7))

By default, colours will be evenly spaced along the range of the data. To
make them unevenly spaced, use the values argument, which should be a
vector of values between 0 and 1.

• scale color distiller() and scale fill gradient() apply the Color-
Brewer colour scales to continuous data. You use it the same way as
scale fill brewer(), described below:

erupt + scale_fill_distiller()

erupt + scale_fill_distiller(palette = "RdPu")

erupt + scale_fill_distiller(palette = "YlOrBr")
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All continuous colour scales have an na.value parameter that controls what
colour is used for missing values (including values outside the range of the
scale limits). By default it is set to grey, which will stand out when you use
a colourful scale. If you use a black and white scale, you might want to set it
to something else to make it more obvious.

df <- data.frame(x = 1, y = 1:5, z = c(1, 3, 2, NA, 5))

p <- ggplot(df, aes(x, y)) + geom_tile(aes(fill = z), size = 5)

p

# Make missing colours invisible

p + scale_fill_gradient(na.value = NA)

# Customise on a black and white scale

p + scale_fill_gradient(low = "black", high = "white", na.value = "red")

6.6.2.2 Discrete

There are four colour scales for discrete data. We illustrate them with a
barchart that encodes both position and fill to the same variable:
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df <- data.frame(x = c("a", "b", "c", "d"), y = c(3, 4, 1, 2))

bars <- ggplot(df, aes(x, y, fill = x)) +

geom_bar(stat = "identity") +

labs(x = NULL, y = NULL) +

theme(legend.position = "none")

• The default colour scheme, scale colour hue(), picks evenly spaced hues
around the HCL colour wheel. This works well for up to about eight
colours, but after that it becomes hard to tell the different colours apart.
You can control the default chroma and luminance, and the range of hues,
with the h, c and l arguments:

bars

bars + scale_fill_hue(c = 40)

bars + scale_fill_hue(h = c(180, 300))

One disadvantage of the default colour scheme is that because the colours
all have the same luminance and chroma, when you print them in black
and white, they all appear as an identical shade of grey.

• scale colour brewer() uses handpicked “ColorBrewer” colours, http://
colorbrewer2.org/. These colours have been designed to work well
in a wide variety of situations, although the focus is on maps and so
the colours tend to work better when displayed in large areas. For
categorical data, the palettes most of interest are ‘Set1’ and ‘Dark2’
for points and ‘Set2’, ‘Pastel1’, ‘Pastel2’ and ‘Accent’ for areas. Use
RColorBrewer::display.brewer.all() to list all palettes.

bars + scale_fill_brewer(palette = "Set1")

bars + scale_fill_brewer(palette = "Set2")

bars + scale_fill_brewer(palette = "Accent")

http://colorbrewer2.org/
http://colorbrewer2.org/
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• scale colour grey() maps discrete data to grays, from light to dark.

bars + scale_fill_grey()

bars + scale_fill_grey(start = 0.5, end = 1)

bars + scale_fill_grey(start = 0, end = 0.5)

• scale colour manual() is useful if you have your own discrete colour palette.
The following examples show colour palettes inspired by Wes Anderson
movies, as provided by the wesanderson package, https://github.com/
karthik/wesanderson. These are not designed for perceptual uniformity,
but are fun!

library(wesanderson)

bars + scale_fill_manual(values = wes_palette("GrandBudapest"))

bars + scale_fill_manual(values = wes_palette("Zissou"))

bars + scale_fill_manual(values = wes_palette("Rushmore"))

https://github.com/karthik/wesanderson
https://github.com/karthik/wesanderson
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Note that one set of colours is not uniformly good for all purposes: bright
colours work well for points, but are overwhelming on bars. Subtle colours
work well for bars, but are hard to see on points:

# Bright colours work best with points

df <- data.frame(x = 1:3 + runif(30), y = runif(30), z = c("a", "b", "c"))

point <- ggplot(df, aes(x, y)) +

geom_point(aes(colour = z)) +

theme(legend.position = "none") +

labs(x = NULL, y = NULL)

point + scale_colour_brewer(palette = "Set1")

point + scale_colour_brewer(palette = "Set2")

point + scale_colour_brewer(palette = "Pastel1")

# Subtler colours work better with areas

df <- data.frame(x = 1:3, y = 3:1, z = c("a", "b", "c"))

area <- ggplot(df, aes(x, y)) +

geom_bar(aes(fill = z), stat = "identity") +

theme(legend.position = "none") +

labs(x = NULL, y = NULL)

area + scale_fill_brewer(palette = "Set1")

area + scale_fill_brewer(palette = "Set2")

area + scale_fill_brewer(palette = "Pastel1")



6.6 Scales Toolbox 141

6.6.3 The Manual Discrete Scale

The discrete scales, scale linetype(), scale shape(), and scale size discrete()

basically have no options. These scales are just a list of valid values that are
mapped to the unique discrete values.

If you want to customise these scales, you need to create your own new
scale with the manual scale: scale shape manual(), scale linetype manual(),
scale colour manual(). The manual scale has one important argument, values,
where you specify the values that the scale should produce. If this vector is
named, it will match the values of the output to the values of the input;
otherwise it will match in order of the levels of the discrete variable. You
will need some knowledge of the valid aesthetic values, which are described
in vignette("ggplot2-specs").

The following code demonstrates the use of scale colour manual():

plot <- ggplot(msleep, aes(brainwt, bodywt)) +

scale_x_log10() +

scale_y_log10()

plot +

geom_point(aes(colour = vore)) +

scale_colour_manual(

values = c("red", "orange", "green", "blue"),

na.value = "grey50"

)

#> Warning: Removed 27 rows containing missing values (geom_point).

colours <- c(

carni = "red",

insecti = "orange",

herbi = "green",

omni = "blue"

)
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plot +

geom_point(aes(colour = vore)) +

scale_colour_manual(values = colours)

#> Warning: Removed 27 rows containing missing values (geom_point).

The following example shows a creative use of scale colour manual() to
display multiple variables on the same plot and show a useful legend. In most
other plotting systems, you’d colour the lines and then add a legend:

huron <- data.frame(year = 1875:1972, level = as.numeric(LakeHuron))

ggplot(huron, aes(year)) +

geom_line(aes(y = level + 5), colour = "red") +

geom_line(aes(y = level - 5), colour = "blue")

That doesn’t work in ggplot because there’s no way to add a legend man-
ually. Instead, give the lines informative labels:

ggplot(huron, aes(year)) +

geom_line(aes(y = level + 5, colour = "above")) +

geom_line(aes(y = level - 5, colour = "below"))



6.6 Scales Toolbox 143

And then tell the scale how to map labels to colours:

ggplot(huron, aes(year)) +

geom_line(aes(y = level + 5, colour = "above")) +

geom_line(aes(y = level - 5, colour = "below")) +

scale_colour_manual("Direction",

values = c("above" = "red", "below" = "blue")

)

See Sect. 9.3 for another approach.

6.6.4 The Identity Scale

The identity scale is used when your data is already scaled, when the data and
aesthetic spaces are the same. The code below shows an example where the
identity scale is useful. luv colours contains the locations of all R’s built-in
colours in the LUV colour space (the space that HCL is based on). A legend is
unnecessary, because the point colour represents itself: the data and aesthetic
spaces are the same.
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head(luv_colours)

#> L u v col

#> 1 9342 -3.37e-12 0 white

#> 2 9101 -4.75e+02 -635 aliceblue

#> 3 8810 1.01e+03 1668 antiquewhite

#> 4 8935 1.07e+03 1675 antiquewhite1

#> 5 8452 1.01e+03 1610 antiquewhite2

#> 6 7498 9.03e+02 1402 antiquewhite3

ggplot(luv_colours, aes(u, v)) +

geom_point(aes(colour = col), size = 3) +

scale_color_identity() +

coord_equal()

6.6.5 Exercises

1. Compare and contrast the four continuous colour scales with the four
discrete scales.

2. Explore the distribution of the built-in colors() using the luv colours

dataset.
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Chapter 7

Positioning

7.1 Introduction

This chapter discusses position, particularly how facets are laid out on a page,
and how coordinate systems within a panel work. There are four components
that control position. You have already learned about two of them that work
within a facet:

• Position adjustments adjust the position of overlapping objects within
a layer. These are most useful for bar and other interval geoms, but can
be useful in other situations (Sect. 5.7).

• Position scales control how the values in the data are mapped to posi-
tions on the plot (Sect. 6.6.1).

This chapter will describe the other two components and show you how
all four pieces fit together:

• Facetting is a mechanism for automatically laying out multiple plots on
a page. It splits the data into subsets, and then plots each subset in a dif-
ferent panel. Such plots are often called small multiples or trellis graphics
(Sect. 7.2).

• Coordinate systems control how the two independent position scales are
combined to create a 2d coordinate system. The most common coordinate
system is Cartesian, but other coordinate systems can be useful in special
circumstances (Sect. 7.3).

7.2 Facetting

You first encountered facetting in Sect. 2.5. Facetting generates small multi-
ples each showing a different subset of the data. Small multiples are a pow-
erful tool for exploratory data analysis: you can rapidly compare patterns in

© The Author 2016
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different parts of the data and see whether they are the same or different.
This section will discuss how you can fine-tune facets, particularly the way
in which they interact with position scales.

There are three types of facetting:

• facet null(): a single plot, the default.
• facet wrap(): “wraps” a 1d ribbon of panels into 2d.
• facet grid(): produces a 2d grid of panels defined by variables which form

the rows and columns.

The differences between facet wrap() and facet grid() are illustrated in
Fig. 7.1.

1 2 3

4 5 6

7 8 9

1

2

3

A B C

A1 B1 C1

A2 B2 C2

A3 B3 C3

facet_grid facet_wrap

Fig. 7.1 A sketch illustrating the difference between the two facetting systems.
facet grid() (left) is fundamentally 2d, being made up of two independent components.
facet wrap() (right) is 1d, but wrapped into 2d to save space

Faceted plots have the capability to fill up a lot of space, so for this chapter
we will use a subset of the mpg dataset that has a manageable number of
levels: three cylinders (4, 6, 8), two types of drive train (4 and f), and six
classes.

mpg2 <- subset(mpg, cyl != 5 & drv %in% c("4", "f") & class != "2seater")

7.2.1 Facet Wrap

facet wrap() makes a long ribbon of panels (generated by any number of
variables) and wraps it into 2d. This is useful if you have a single variable
with many levels and want to arrange the plots in a more space efficient
manner.

You can control how the ribbon is wrapped into a grid with ncol, nrow,
as.table and dir. ncol and nrow control how many columns and rows (you
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only need to set one). as.table controls whether the facets are laid out like
a table (TRUE), with highest values at the bottom-right, or a plot (FALSE),
with the highest values at the top-right. dir controls the direction of wrap:
horizontal or vertical.

base <- ggplot(mpg2, aes(displ, hwy)) +

geom_blank() +

xlab(NULL) +

ylab(NULL)

base + facet_wrap(˜class, ncol = 3)

base + facet_wrap(˜class, ncol = 3, as.table = FALSE)

base + facet_wrap(˜class, nrow = 3)

base + facet_wrap(˜class, nrow = 3, dir = "v")

7.2.2 Facet Grid

facet grid() lays out plots in a 2d grid, as defined by a formula:
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• . ˜ a spreads the values of a across the columns. This direction
facilitates comparisons of y position, because the vertical scales are aligned.

base + facet_grid(. ˜ cyl)

• b ˜ . spreads the values of b down the rows. This direction facilitates
comparison of x position because the horizontal scales are aligned. This
makes it particularly useful for comparing distributions.

base + facet_grid(drv ˜ .)

• a ˜ b spreads a across columns and b down rows. You’ll usually want to
put the variable with the greatest number of levels in the columns, to take
advantage of the aspect ratio of your screen.

base + facet_grid(drv ˜ cyl)
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You can use multiple variables in the rows or columns, by “adding” them
together, e.g. a + b ˜ c + d. Variables appearing together on the rows or
columns are nested in the sense that only combinations that appear in the
data will appear in the plot. Variables that are specified on rows and columns
will be crossed: all combinations will be shown, including those that didn’t
appear in the original dataset: this may result in empty panels.

7.2.3 Controlling Scales

For both facet wrap() and facet grid() you can control whether the position
scales are the same in all panels (fixed) or allowed to vary between panels
(free) with the scales parameter:

• scales = "fixed": x and y scales are fixed across all panels.
• scales = "free x": the x scale is free, and the y scale is fixed.
• scales = "free y": the y scale is free, and the x scale is fixed.
• scales = "free": x and y scales vary across panels.

facet grid() imposes an additional constraint on the scales: all panels in
a column must have the same x scale, and all panels in a row must have the
same y scale. This is because each column shares an x axis, and each row
shares a y axis.

Fixed scales make it easier to see patterns across panels; free scales make
it easier to see patterns within panels.

p <- ggplot(mpg2, aes(cty, hwy)) +

geom_abline() +

geom_jitter(width = 0.1, height = 0.1)

p + facet_wrap(˜cyl)
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p + facet_wrap(˜cyl, scales = "free")

Free scales are also useful when we want to display multiple time series that
were measured on different scales. To do this, we first need to change from
‘wide’ to ‘long’ data, stacking the separate variables into a single column. An
example of this is shown below with the long form of the economics data, and
the topic is discussed in more detail in Sect. 9.3.

economics_long

#> Source: local data frame [2,870 x 4]

#> Groups: variable [5]

#>

#> date variable value value01

#> (date) (fctr) (dbl) (dbl)

#> 1 1967-07-01 pce 507 0.000000

#> 2 1967-08-01 pce 510 0.000266

#> 3 1967-09-01 pce 516 0.000764

#> 4 1967-10-01 pce 513 0.000472

#> 5 1967-11-01 pce 518 0.000918

#> 6 1967-12-01 pce 526 0.001579

#> .. ... ... ... ...

ggplot(economics_long, aes(date, value)) +

geom_line() +

facet_wrap(˜variable, scales = "free_y", ncol = 1)
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facet grid() has an additional parameter called space, which takes the
same values as scales. When space is “free”, each column (or row) will have
width (or height) proportional to the range of the scale for that column (or
row). This makes the scaling equal across the whole plot: 1 cm on each panel
maps to the same range of data. (This is somewhat analogous to the ‘sliced’
axis limits of lattice.) For example, if panel a had range 2 and panel b had
range 4, one-third of the space would be given to a, and two-thirds to b. This
is most useful for categorical scales, where we can assign space proportionally
based on the number of levels in each facet, as illustrated below.

mpg2$model <- reorder(mpg2$model, mpg2$cty)

mpg2$manufacturer <- reorder(mpg2$manufacturer, -mpg2$cty)

ggplot(mpg2, aes(cty, model)) +

geom_point() +

facet_grid(manufacturer ˜ ., scales = "free", space = "free") +

theme(strip.text.y = element_text(angle = 0))
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7.2.4 Missing Facetting Variables

If you are using facetting on a plot with multiple datasets, what happens
when one of those datasets is missing the facetting variables? This situation
commonly arises when you are adding contextual information that should be
the same in all panels. For example, imagine you have a spatial display of
disease faceted by gender. What happens when you add a map layer that
does not contain the gender variable? Here ggplot will do what you expect:
it will display the map in every facet: missing facetting variables are treated
like they have all values.

Here’s a simple example. Note how the single red point from df2 appears
in both panels.

df1 <- data.frame(x = 1:3, y = 1:3, gender = c("f", "f", "m"))

df2 <- data.frame(x = 2, y = 2)

ggplot(df1, aes(x, y)) +

geom_point(data = df2, colour = "red", size = 2) +
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geom_point() +

facet_wrap(˜gender)

This technique is particularly useful when you add annotations to make it
easier to compare between facets, as shown in the next section.

7.2.5 Grouping vs. Facetting

Facetting is an alternative to using aesthetics (like colour, shape or size) to
differentiate groups. Both techniques have strengths and weaknesses, based
around the relative positions of the subsets. With facetting, each group is
quite far apart in its own panel, and there is no overlap between the groups.
This is good if the groups overlap a lot, but it does make small differences
harder to see. When using aesthetics to differentiate groups, the groups are
close together and may overlap, but small differences are easier to see.

df <- data.frame(

x = rnorm(120, c(0, 2, 4)),

y = rnorm(120, c(1, 2, 1)),

z = letters[1:3]

)

ggplot(df, aes(x, y)) +

geom_point(aes(colour = z))
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ggplot(df, aes(x, y)) +

geom_point() +

facet_wrap(˜z)

Comparisons between facets often benefit from some thoughtful annota-
tion. For example, in this case we could show the mean of each group in every
panel. You’ll learn how to write summary code like this in Chap. 10. Note
that we need two “z” variables: one for the facets and one for the colours.

df_sum <- df %>%

group_by(z) %>%

summarise(x = mean(x), y = mean(y)) %>%

rename(z2 = z)

ggplot(df, aes(x, y)) +

geom_point() +

geom_point(data = df_sum, aes(colour = z2), size = 4) +

facet_wrap(˜z)
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Another useful technique is to put all the data in the background of each
panel:

df2 <- dplyr::select(df, -z)

ggplot(df, aes(x, y)) +

geom_point(data = df2, colour = "grey70") +

geom_point(aes(colour = z)) +

facet_wrap(˜z)

7.2.6 Continuous Variables

To facet continuous variables, you must first discretise them. ggplot2 provides
three helper functions to do so:

• Divide the data into n bins each of the same length: cut interval(x, n)

• Divide the data into bins of width width: cut width(x, width).
• Divide the data into n bins each containing (approximately) the same

number of points: cut number(x, n = 10).

They are illustrated below:
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# Bins of width 1

mpg2$disp_w <- cut_width(mpg2$displ, 1)

# Six bins of equal length

mpg2$disp_i <- cut_interval(mpg2$displ, 6)

# Six bins containing equal numbers of points

mpg2$disp_n <- cut_number(mpg2$displ, 6)

plot <- ggplot(mpg2, aes(cty, hwy)) +

geom_point() +

labs(x = NULL, y = NULL)

plot + facet_wrap(˜disp_w, nrow = 1)

plot + facet_wrap(˜disp_i, nrow = 1)

plot + facet_wrap(˜disp_n, nrow = 1)

Note that the facetting formula does not evaluate functions, so you must
first create a new variable containing the discretised data.
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7.2.7 Exercises

1. Diamonds: display the distribution of price conditional on cut and carat.
Try facetting by cut and grouping by carat. Try facetting by carat and
grouping by cut. Which do you prefer?

2. Diamonds: compare the relationship between price and carat for each
colour. What makes it hard to compare the groups? Is grouping better
or facetting? If you use facetting, what annotation might you add to make
it easier to see the differences between panels?

3. Why is facet wrap() generally more useful than facet grid()?
4. Recreate the following plot. It facets mpg2 by class, overlaying a smooth

curve fit to the full dataset.

7.3 Coordinate Systems

Coordinate systems have two main jobs:

• Combine the two position aesthetics to produce a 2d position on the plot.
The position aesthetics are called x and y, but they might be better called
position 1 and 2 because their meaning depends on the coordinate system
used. For example, with the polar coordinate system they become angle
and radius (or radius and angle), and with maps they become latitude and
longitude.

• In coordination with the faceter, coordinate systems draw axes and panel
backgrounds. While the scales control the values that appear on the axes,
and how they map from data to position, it is the coordinate system which
actually draws them. This is because their appearance depends on the
coordinate system: an angle axis looks quite different than an x axis.



160 7 Positioning

There are two types of coordinate system. Linear coordinate systems pre-
serve the shape of geoms:

• coord cartesian(): the default Cartesian coordinate system, where the 2d
position of an element is given by the combination of the x and y positions.

• coord flip(): Cartesian coordinate system with x and y axes flipped.
• coord fixed(): Cartesian coordinate system with a fixed aspect ratio.

On the other hand, non-linear coordinate systems can change the shapes:
a straight line may no longer be straight. The closest distance between two
points may no longer be a straight line.

• coord map()/coord quickmap(): Map projections.
• coord polar(): Polar coordinates.
• coord trans(): Apply arbitrary transformations to x and y positions, after

the data has been processed by the stat.

Each coordinate system is described in more detail below.

7.4 Linear Coordinate Systems

There are three linear coordinate systems: coord cartesian(), coord flip(),
coord fixed().

7.4.1 Zooming into a Plot with coord cartesian()

coord cartesian() has arguments xlim and ylim. If you think back to the scales
chapter, you might wonder why we need these. Doesn’t the limits argument
of the scales already allow us to control what appears on the plot? The key
difference is how the limits work: when setting scale limits, any data outside
the limits is thrown away; but when setting coordinate system limits we
still use all the data, but we only display a small region of the plot. Setting
coordinate system limits is like looking at the plot under a magnifying glass.

base <- ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_smooth()

# Full dataset

base

# Scaling to 5--7 throws away data outside that range

base + scale_x_continuous(limits = c(5, 7))

#> Warning: Removed 196 rows containing non-finite values
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#> (stat_smooth).

#> Warning: Removed 196 rows containing missing values (geom_point).

# Zooming to 5--7 keeps all the data but only shows some of it

base + coord_cartesian(xlim = c(5, 7))

7.4.2 Flipping the Axes with coord flip()

Most statistics and geoms assume you are interested in y values conditional
on x values (e.g., smooth, summary, boxplot, line): in most statistical models,
the x values are assumed to be measured without error. If you are interested
in x conditional on y (or you just want to rotate the plot 90 degrees), you
can use coord flip() to exchange the x and y axes. Compare this with just
exchanging the variables mapped to x and y:

ggplot(mpg, aes(displ, cty)) +

geom_point() +

geom_smooth()

# Exchanging cty and displ rotates the plot 90 degrees, but the smooth

# is fit to the rotated data.

ggplot(mpg, aes(cty, displ)) +

geom_point() +

geom_smooth()

# coord_flip() fits the smooth to the original data, and then rotates

# the output

ggplot(mpg, aes(displ, cty)) +

geom_point() +

geom_smooth() +

coord_flip()
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7.4.3 Equal Scales with coord fixed()

coord fixed() fixes the ratio of length on the x and y axes. The default ratio

ensures that the x and y axes have equal scales: i.e., 1 cm along the x axis
represents the same range of data as 1 cm along the y axis. The aspect ratio
will also be set to ensure that the mapping is maintained regardless of the
shape of the output device. See the documentation of coord fixed() for more
details.

7.5 Non-linear Coordinate Systems

Unlike linear coordinates, non-linear coordinates can change the shape of
geoms. For example, in polar coordinates a rectangle becomes an arc; in a
map projection, the shortest path between two points is not necessarily a
straight line. The code below shows how a line and a rectangle are rendered
in a few different coordinate systems.

rect <- data.frame(x = 50, y = 50)

line <- data.frame(x = c(1, 200), y = c(100, 1))

base <- ggplot(mapping = aes(x, y)) +

geom_tile(data = rect, aes(width = 50, height = 50)) +

geom_line(data = line) +

xlab(NULL) + ylab(NULL)

base

base + coord_polar("x")

base + coord_polar("y")
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base + coord_flip()

base + coord_trans(y = "log10")

base + coord_fixed()

The transformation takes part in two steps. Firstly, the parameterisation
of each geom is changed to be purely location-based, rather than location-
and dimension-based. For example, a bar can be represented as an x position
(a location), a height and a width (two dimensions). Interpreting height and
width in a non-Cartesian coordinate system is hard because a rectangle may
no longer have constant height and width, so we convert to a purely location-
based representation, a polygon defined by the four corners. This effectively
converts all geoms to a combination of points, lines and polygons.

Once all geoms have a location-based representation, the next step is to
transform each location into the new coordinate system. It is easy to trans-
form points, because a point is still a point no matter what coordinate sys-
tem you are in. Lines and polygons are harder, because a straight line may
no longer be straight in the new coordinate system. To make the problem
tractable we assume that all coordinate transformations are smooth, in the
sense that all very short lines will still be very short straight lines in the new
coordinate system. With this assumption in hand, we can transform lines and
polygons by breaking them up into many small line segments and transform-
ing each segment. This process is called munching and is illustrated below:
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1. We start with a line parameterised by its two endpoints:

df <- data.frame(r = c(0, 1), theta = c(0, 3 / 2 * pi))

ggplot(df, aes(r, theta)) +

geom_line() +

geom_point(size = 2, colour = "red")

2. We break it into multiple line segments, each with two endpoints.

interp <- function(rng, n) {
seq(rng[1], rng[2], length = n)

}
munched <- data.frame(

r = interp(df$r, 15),

theta = interp(df$theta, 15)

)

ggplot(munched, aes(r, theta)) +

geom_line() +

geom_point(size = 2, colour = "red")
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3. We transform the locations of each piece:

transformed <- transform(munched,

x = r * sin(theta),

y = r * cos(theta)

)

ggplot(transformed, aes(x, y)) +

geom_path() +

geom_point(size = 2, colour = "red") +

coord_fixed()

Internally ggplot2 uses many more segments so that the result looks
smooth.

7.5.1 Transformations with coord trans()

Like limits, we can also transform the data in two places: at the scale
level or at the coordinate system level. coord trans() has arguments x and
y which should be strings naming the transformer or transformer objects
(see Sect. 6.6.1). Transforming at the scale level occurs before statistics are
computed and does not change the shape of the geom. Transforming at the
coordinate system level occurs after the statistics have been computed, and
does affect the shape of the geom. Using both together allows us to model
the data on a transformed scale and then backtransform it for interpretation:
a common pattern in analysis.

# Linear model on original scale is poor fit

base <- ggplot(diamonds, aes(carat, price)) +

stat_bin2d() +

geom_smooth(method = "lm") +

xlab(NULL) +

ylab(NULL) +

theme(legend.position = "none")
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base

# Better fit on log scale, but harder to interpret

base +

scale_x_log10() +

scale_y_log10()

# Fit on log scale, then backtransform to original.

# Highlights lack of expensive diamonds with large carats

pow10 <- scales::exp_trans(10)

base +

scale_x_log10() +

scale_y_log10() +

coord_trans(x = pow10, y = pow10)

7.5.2 Polar Coordinates with coord polar()

Using polar coordinates gives rise to pie charts and wind roses (from bar
geoms), and radar charts (from line geoms). Polar coordinates are often used
for circular data, particularly time or direction, but the perceptual properties
are not good because the angle is harder to perceive for small radii than it
is for large radii. The theta argument determines which position variable is
mapped to angle (by default, x) and which to radius.

The code below shows how we can turn a bar into a pie chart or a bullseye
chart by changing the coordinate system. The documentation includes other
examples.

base <- ggplot(mtcars, aes(factor(1), fill = factor(cyl))) +

geom_bar(width = 1) +

theme(legend.position = "none") +
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scale_x_discrete(NULL, expand = c(0, 0)) +

scale_y_continuous(NULL, expand = c(0, 0))

# Stacked barchart

base

# Pie chart

base + coord_polar(theta = "y")

# The bullseye chart

base + coord_polar()

7.5.3 Map Projections with coord map()

Maps are intrinsically displays of spherical data. Simply plotting raw longi-
tudes and latitudes is misleading, so we must project the data. There are two
ways to do this with ggplot2:

• coord quickmap() is a quick and dirty approximation that sets the aspect
ratio to ensure than 1m of latitude and 1m of longitude are the same
distance in the middle of the plot. These is a reasonable place to start for
smaller regions, and is very faster.

# Prepare a map of NZ

nzmap <- ggplot(map_data("nz"), aes(long, lat, group = group)) +

geom_polygon(fill = "white", colour = "black") +

xlab(NULL) + ylab(NULL)

# Plot it in cartesian coordinates

nzmap

# With the aspect ratio approximation

nzmap + coord_quickmap()
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• coord map() uses the mapproj package, https://cran.r-project.org/
package=mapproj to do a formal map projection. It takes the same argu-
ments as mapproj::mapproject() for controlling the projection. It is much
slower than coord quickmap() because it must munch the data and trans-
form each piece.

world <- map_data("world")

worldmap <- ggplot(world, aes(long, lat, group = group)) +

geom_path() +

scale_y_continuous(NULL, breaks = (-2:3) * 30, labels = NULL) +

scale_x_continuous(NULL, breaks = (-4:4) * 45, labels = NULL)

worldmap + coord_map()

# Some crazier projections

worldmap + coord_map("ortho")

worldmap + coord_map("stereographic")

https://cran.r-project.org/package=mapproj
https://cran.r-project.org/package=mapproj


Chapter 8

Themes

8.1 Introduction

In this chapter you will learn how to use the ggplot2 theme system, which
allows you to exercise fine control over the non-data elements of your plot.
The theme system does not affect how the data is rendered by geoms, or how
it is transformed by scales. Themes don’t change the perceptual properties of
the plot, but they do help you make the plot aesthetically pleasing or match
an existing style guide. Themes give you control over things like fonts, ticks,
panel strips, and backgrounds.

This separation of control into data and non-data parts is quite different
from base and lattice graphics. In base and lattice graphics, most functions
take a large number of arguments that specify both data and non-data ap-
pearance, which makes the functions complicated and harder to learn. ggplot2
takes a different approach: when creating the plot you determine how the data
is displayed, then after it has been created you can edit every detail of the
rendering, using the theming system.

The theming system is composed of four main components:

• Theme elements specify the non-data elements that you can control. For
example, the plot.title element controls the appearance of the plot title;
axis.ticks.x, the ticks on the x axis; legend.key.height, the height of the
keys in the legend.

• Each element is associated with an element function, which describes
the visual properties of the element. For example, element text() sets the
font size, colour and face of text elements like plot.title.

• The theme() function which allows you to override the default
theme elements by calling element functions, like theme(plot.title =

element text(colour = "red")).
• Complete themes, like theme grey() set all of the theme elements to values

designed to work together harmoniously.

For example, imagine you’ve made the following plot of your data.

© The Author 2016
H. Wickham, ggplot2, Use R!, DOI 10.1007/978-3-319-24277-4 8
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base <- ggplot(mpg, aes(cty, hwy, color = factor(cyl))) +

geom_jitter() +

geom_abline(colour = "grey50", size = 2)

base

It’s served its purpose for you: you’ve learned that cty and hwy are highly
correlated, both are tightly coupled with cyl, and that hwy is always greater
than cty (and the difference increases as cty increases). Now you want to
share the plot with others, perhaps by publishing it in a paper. That requires
some changes. First, you need to make sure the plot can stand alone by:

• Improving the axes and legend labels.
• Adding a title for the plot.
• Tweaking the colour scale.

Fortunately you know how to do that already because you’ve read Chap. 6:

labelled <- base +

labs(

x = "City mileage/gallon",

y = "Highway mileage/gallon",

colour = "Cylinders",

title = "Highway and city mileage are highly correlated"

) +

scale_colour_brewer(type = "seq", palette = "Spectral")

labelled
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Next, you need to make sure the plot matches the style guidelines of your
journal:

• The background should be white, not pale grey.
• The legend should be placed inside the plot if there’s room.
• Major gridlines should be a pale grey and minor gridlines should be re-

moved.
• The plot title should be 12 pt bold text.

In this chapter, you’ll learn how to use the theming system to make those
changes, as shown below:

styled <- labelled +
theme_bw() +
theme(
plot.title = element_text(face = "bold", size = 12),
legend.background = element_rect(fill = "white", size = 4, colour = "white"),
legend.justification = c(0, 1),
legend.position = c(0, 1),
axis.ticks = element_line(colour = "grey70", size = 0.2),
panel.grid.major = element_line(colour = "grey70", size = 0.2),
panel.grid.minor = element_blank()

)
styled
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Finally, the journal wants the figure as a 600 dpi TIFF file. You’ll learn
the fine details of ggsave() in Sect. 8.5.

8.2 Complete Themes

ggplot2 comes with a number of built in themes. The most important is
theme grey(), the signature ggplot2 theme with a light grey background and
white gridlines. The theme is designed to put the data forward while sup-
porting comparisons, following the advice of (Tufte, 2006; Brewer, 1994; Carr,
2002, 1994; Carr and Sun, 1999). We can still see the gridlines to aid in the
judgement of position (Cleveland, 1993), but they have little visual impact
and we can easily ‘tune’ them out. The grey background gives the plot a sim-
ilar typographic colour to the text, ensuring that the graphics fit in with the
flow of a document without jumping out with a bright white background. Fi-
nally, the grey background creates a continuous field of colour which ensures
that the plot is perceived as a single visual entity.

There are seven other themes built in to ggplot2 1.1.0:

• theme bw(): a variation on theme grey() that uses a white background and
thin grey grid lines.

• theme linedraw(): A theme with only black lines of various widths on white
backgrounds, reminiscent of a line drawing.

• theme light(): similar to theme linedraw() but with light grey lines and
axes, to direct more attention towards the data.

• theme dark(): the dark cousin of theme light(), with similar line sizes but
a dark background. Useful to make thin coloured lines pop out.

• theme minimal(): A minimalistic theme with no background annotations.
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• theme classic(): A classic-looking theme, with x and y axis lines and no
gridlines.

• theme void(): A completely empty theme.

df <- data.frame(x = 1:3, y = 1:3)

base <- ggplot(df, aes(x, y)) + geom_point()

base + theme_grey() + ggtitle("theme_grey()")

base + theme_bw() + ggtitle("theme_bw()")

base + theme_linedraw() + ggtitle("theme_linedraw()")

base + theme_light() + ggtitle("theme_light()")

base + theme_dark() + ggtitle("theme_dark()")

base + theme_minimal() + ggtitle("theme_minimal()")

base + theme_classic() + ggtitle("theme_classic()")

base + theme_void() + ggtitle("theme_void()")
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All themes have a base size parameter which controls the base font size.
The base font size is the size that the axis titles use: the plot title is usually
bigger (1.2x), and the tick and strip labels are smaller (0.8x). If you want to
control these sizes separately, you’ll need to modify the individual elements
as described below.

As well as applying themes a plot at a time, you can change the default
theme with theme set(). For example, if you really hate the default grey back-
ground, run theme set(theme bw()) to use a white background for all plots.

You’re not limited to the themes built-in to ggplot2. Other packages, like
ggthemes by Jeffrey Arnold, add even more. Here’s a few of my favourites
from ggthemes:

library(ggthemes)

base + theme_tufte() + ggtitle("theme_tufte()")

base + theme_solarized() + ggtitle("theme_solarized()")

base + theme_excel() + ggtitle("theme_excel()") # ;)

The complete themes are a great place to start but don’t give you a lot of
control. To modify individual elements, you need to use theme() to override
the default setting for an element with an element function.

8.2.1 Exercises

1. Try out all the themes in ggthemes. Which do you like the best?
2. What aspects of the default theme do you like? What don’t you like?

What would you change?
3. Look at the plots in your favourite scientific journal. What theme do they

most resemble? What are the main differences?
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8.3 Modifying Theme Components

To modify an individual theme component you use code like plot +

theme(element.name = element function()). In this section you’ll learn about
the basic element functions, and then in the next section, you’ll see all the
elements that you can modify.

There are four basic types of built-in element functions: text, lines, rectan-
gles, and blank. Each element function has a set of parameters that control
the appearance:

• element text() draws labels and headings. You can control the font family,
face, colour, size (in points), hjust, vjust, angle (in degrees) and lineheight

(as ratio of fontcase). More details on the parameters can be found in
vignette("ggplot2-specs"). Setting the font face is particularly challenging.

base_t <- base + labs(title = "This is a ggplot") + xlab(NULL) + ylab(NULL)
base_t + theme(plot.title = element_text(size = 16))
base_t + theme(plot.title = element_text(face = "bold", colour = "red"))
base_t + theme(plot.title = element_text(hjust = 1))

You can control the margins around the text with the margin argument
and margin() function. margin() has four arguments: the amount of space
(in points) to add to the top, right, bottom and left sides of the text. Any
elements not specified default to 0.

# The margins here look asymmetric because there are also plot margins
base_t + theme(plot.title = element_text(margin = margin()))
base_t + theme(plot.title = element_text(margin = margin(t = 10, b = 10)))
base_t + theme(axis.title.y = element_text(margin = margin(r = 10)))
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• element line() draws lines parameterised by colour, size and linetype:

base + theme(panel.grid.major = element_line(colour = "black"))

base + theme(panel.grid.major = element_line(size = 2))

base + theme(panel.grid.major = element_line(linetype = "dotted"))

• element rect() draws rectangles, mostly used for backgrounds, parame-
terised by fill colour and border colour, size and linetype.

base + theme(plot.background = element_rect(fill = "grey80", colour = NA))
base + theme(plot.background = element_rect(colour = "red", size = 2))
base + theme(panel.background = element_rect(fill = "linen"))

• element blank() draws nothing. Use this if you don’t want anything drawn,
and no space allocated for that element. The following example uses
element blank() to progressively suppress the appearance of elements we’re
not interested in. Notice how the plot automatically reclaims the space pre-
viously used by these elements: if you don’t want this to happen (perhaps
because they need to line up with other plots on the page), use colour =

NA, fill = NA to create invisible elements that still take up space.
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base

last_plot() + theme(panel.grid.minor = element_blank())

last_plot() + theme(panel.grid.major = element_blank())

last_plot() + theme(panel.background = element_blank())

last_plot() + theme(

axis.title.x = element_blank(),

axis.title.y = element_blank()

)

last_plot() + theme(axis.line = element_line(colour = "grey50"))

• A few other settings take grid units. Create them with unit(1, "cm") or
unit(0.25, "in").

To modify theme elements for all future plots, use theme update(). It returns
the previous theme settings, so you can easily restore the original parameters
once you’re done.

old_theme <- theme_update(

plot.background = element_rect(fill = "lightblue3", colour = NA),

panel.background = element_rect(fill = "lightblue", colour = NA),

axis.text = element_text(colour = "linen"),

axis.title = element_text(colour = "linen")

)

base

theme_set(old_theme)

base
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8.4 Theme Elements

There are around 40 unique elements that control the appearance of the plot.
They can be roughly grouped into five categories: plot, axis, legend, panel
and facet. The following sections describe each in turn.

8.4.1 Plot Elements

Some elements affect the plot as a whole:

Element Setter Description

plot.background element rect() Plot background
plot.title element text() Plot title
plot.margin margin() Margins around plot

plot.background draws a rectangle that underlies everything else on the
plot. By default, ggplot2 uses a white background which ensures that the
plot is usable wherever it might end up (e.g. even if you save as a png and
put on a slide with a black background). When exporting plots to use in other
systems, you might want to make the background transparent with fill =

NA. Similarly, if you’re embedding a plot in a system that already has margins
you might want to eliminate the built-in margins. Note that a small margin
is still necessary if you want to draw a border around the plot.

base + theme(plot.background = element_rect(colour = "grey50", size = 2))

base + theme(

plot.background = element_rect(colour = "grey50", size = 2),

plot.margin = margin(2, 2, 2, 2)

)

base + theme(plot.background = element_rect(fill = "lightblue"))
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8.4.2 Axis Elements

The axis elements control the appearance of the axes:

Element Setter Description

axis.line element line() Line parallel to axis
(hidden in default themes)

axis.text element text() Tick labels
axis.text.x element text() x-axis tick labels
axis.text.y element text() y-axis tick labels
axis.title element text() Axis titles
axis.title.x element text() x-axis title
axis.title.y element text() y-axis title
axis.ticks element line() Axis tick marks
axis.ticks.length unit() Length of tick marks

Note that axis.text (and axis.title) comes in three forms: axis.text,
axis.text.x, and axis.text.y. Use the first form if you want to modify the
properties of both axes at once: any properties that you don’t explicitly set
in axis.text.x and axis.text.y will be inherited from axis.text.

df <- data.frame(x = 1:3, y = 1:3)

base <- ggplot(df, aes(x, y)) + geom_point()

# Accentuate the axes

base + theme(axis.line = element_line(colour = "grey50", size = 1))

# Style both x and y axis labels

base + theme(axis.text = element_text(color = "blue", size = 12))

# Useful for long labels

base + theme(axis.text.x = element_text(angle = -90, vjust = 0.5))



180 8 Themes

The most common adjustment is to rotate the x-axis labels to avoid long
overlapping labels. If you do this, note negative angles tend to look best and
you should set hjust = 0 and vjust = 1:

df <- data.frame(

x = c("label", "a long label", "an even longer label"),

y = 1:3

)

base <- ggplot(df, aes(x, y)) + geom_point()

base

base +

theme(axis.text.x = element_text(angle = -30, vjust = 1, hjust = 0)) +

xlab(NULL) +

ylab(NULL)

8.4.3 Legend Elements

The legend elements control the appearance of all legends. You can also
modify the appearance of individual legends by modifying the same elements
in guide legend() or guide colourbar().
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Element Setter Description

legend.background element rect() Legend background
legend.key element rect() Background of legend keys
legend.key.size unit() Legend key size
legend.key.height unit() Legend key height
legend.key.width unit() Legend key width
legend.margin unit() Legend margin
legend.text element text() Legend labels
legend.text.align 0–1 Legend label alignment

(0 = right, 1 = left)
legend.title element text() Legend name
legend.title.align 0–1 Legend name alignment

Description

(0 = right, 1 = left)

These options are illustrated below:

df <- data.frame(x = 1:4, y = 1:4, z = rep(c("a", "b"), each = 2))

base <- ggplot(df, aes(x, y, colour = z)) + geom_point()

base + theme(

legend.background = element_rect(

fill = "lemonchiffon",

colour = "grey50",

size = 1

)

)

base + theme(

legend.key = element_rect(color = "grey50"),

legend.key.width = unit(0.9, "cm"),

legend.key.height = unit(0.75, "cm")

)

base + theme(

legend.text = element_text(size = 15),

legend.title = element_text(size = 15, face = "bold")

)
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There are four other properties that control how legends are laid out in the
context of the plot (legend.position, legend.direction, legend.justification,
legend.box). They are described in Sect. 6.4.2.

8.4.4 Panel Elements

Panel elements control the appearance of the plotting panels:

Element Setter Description

panel.background element rect() Panel background (under data)
panel.border element rect() Panel border (over data)
panel.grid.major element line() Major grid lines
panel.grid.major.x element line() Vertical major grid lines
panel.grid.major.y element line() Horizontal major grid lines
panel.grid.minor element line() Minor grid lines
panel.grid.minor.x element line() Vertical minor grid lines
panel.grid.minor.y element line() Horizontal minor grid lines
aspect.ratio numeric Plot aspect ratio

The main difference between panel.background and panel.border is that the
background is drawn underneath the data, and the border is drawn on top
of it. For that reason, you’ll always need to assign fill = NA when overriding
panel.border.

base <- ggplot(df, aes(x, y)) + geom_point()

# Modify background

base + theme(panel.background = element_rect(fill = "lightblue"))

# Tweak major grid lines

base + theme(

panel.grid.major = element_line(color = "gray60", size = 0.8)

)

# Just in one direction

base + theme(

panel.grid.major.x = element_line(color = "gray60", size = 0.8)

)



8.4 Theme Elements 183

Note that aspect ratio controls the aspect ratio of the panel, not the overall
plot:

base2 <- base + theme(plot.background = element_rect(colour = "grey50"))

# Wide screen

base2 + theme(aspect.ratio = 9 / 16)

# Long and skiny

base2 + theme(aspect.ratio = 2 / 1)

# Square

base2 + theme(aspect.ratio = 1)

8.4.5 Facetting Elements

The following theme elements are associated with faceted ggplots:

Element Setter Description

strip.background element rect() Background of panel strips
strip.text element text() Strip text
strip.text.x element text() Horizontal strip text
strip.text.y element text() Vertical strip text
panel.margin unit() Margin between facets
panel.margin.x unit() Margin between facets (vertical)
panel.margin.y unit() Margin between facets (horizontal)
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Element strip.text.x affects both facet wrap() or facet grid();
strip.text.y only affects facet grid().

df <- data.frame(x = 1:4, y = 1:4, z = c("a", "a", "b", "b"))
base_f <- ggplot(df, aes(x, y)) + geom_point() + facet_wrap(˜z)

base_f
base_f + theme(panel.margin = unit(0.5, "in"))
base_f + theme(
strip.background = element_rect(fill = "grey20", color = "grey80", size = 1),
strip.text = element_text(colour = "white")

)

8.4.6 Exercises

1. Create the ugliest plot possible! (Contributed by Andrew D. Steen, Uni-
versity of Tennessee - Knoxville)

2. theme dark() makes the inside of the plot dark, but not the outside. Change
the plot background to black, and then update the text settings so you
can still read the labels.

3. Make an elegant theme that uses “linen” as the background colour and a
serif font for the text.

4. Systematically explore the effects of hjust when you have a multiline title.
Why doesn’t vjust do anything?

8.5 Saving Your Output

When saving a plot to use in another program, you have two basic choices of
output: raster or vector:

• Vector graphics describe a plot as sequence of operations: draw a line from
(x1, y1) to (x2, y2), draw a circle at (x3, x4) with radius r. This means that
they are effectively ‘infinitely’ zoomable; there is no loss of detail. The most
useful vector graphic formats are pdf and svg.
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• Raster graphics are stored as an array of pixel colours and have a fixed
optimal viewing size. The most useful raster graphic format is png.

Figure 8.1 illustrates the basic differences in these formats for a circle.
A good description is available at http://tinyurl.com/rstrvctr.

Fig. 8.1 The schematic difference between raster (left) and vector (right) graphics

Unless there is a compelling reason not to, use vector graphics: they look
better in more places. There are two main reasons to use raster graphics:

• You have a plot (e.g. a scatterplot) with thousands of graphical objects
(i.e. points). A vector version will be large and slow to render.

• You want to embed the graphic in MS Office. MS has poor support for
vector graphics (except for their own DrawingXML format which is not
currently easy to make from R), so raster graphics are easier.

There are two ways to save output from ggplot2. You can use the standard
R approach where you open a graphics device, generate the plot, then close
the device:

pdf("output.pdf", width = 6, height = 6)

ggplot(mpg, aes(displ, cty)) + geom_point()

dev.off()

This works for all packages, but is verbose. ggplot2 provides a convenient
shorthand with ggsave():

ggplot(mpg, aes(displ, cty)) + geom_point()

ggsave("output.pdf")

ggsave() is optimised for interactive use: you can use it after you’ve drawn
a plot. It has the following important arguments:

• The first argument, path, specifies the path where the image should be
saved. The file extension will be used to automatically select the correct
graphics device. ggsave() can produce .eps, .pdf, .svg, .wmf, .png, .jpg,
.bmp, and .tiff.

• width and height control the output size, specified in inches. If left blank,
they’ll use the size of the on-screen graphics device.

http://tinyurl.com/rstrvctr
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• For raster graphics (i.e. .png, .jpg), the dpi argument controls the resolu-
tion of the plot. It defaults to 300, which is appropriate for most printers,
but you may want to use 600 for particularly high-resolution output, or
96 for on-screen (e.g., web) display.

See ?ggsave for more details.

References

Brewer CA (1994) Color use guidelines for mapping and visualization. In:
MacEachren AM, Taylor DRF (ed) Visualization in modern cartography.
Elsevier Science, Burlington, pp 123–147

Carr D (1994) Using gray in plots. ASA Stat Comput Graph Newsl 2(5):
11–14. http://www.galaxy.gmu.edu/∼dcarr/lib/v5n2.pdf

Carr D (2002) Graphical displays. In: El-Shaarawi AH, Piegorsch WW (ed)
Encyclopedia of environmetrics, vol 2. Wiley, New York, pp 933–960.
http://www.galaxy.gmu.edu/∼dcarr/lib/EnvironmentalGraphics.pdf

Carr D, Ru S (1999) Using layering and perceptual grouping in statistical
graphics. ASA Stat Comput Graph Newsl 10(1):25–31

Cleveland W (1993) A model for studying display methods of statistical
graphics. J Comput Graph Stat 2:323–64. http://stat.bell-labs.com/
doc/93.4.ps

Tufte ER (2006) Beautiful evidence. Graphics Press, Cheshire

http://www.galaxy.gmu.edu/~dcarr/lib/v5n2.pdf
http://www.galaxy.gmu.edu/~dcarr/lib/EnvironmentalGraphics.pdf
http://stat.bell-labs.com/doc/93.4.ps
http://stat.bell-labs.com/doc/93.4.ps


Part III

Data Analysis



Chapter 9

Data Analysis

9.1 Introduction

So far, every example in this book has started with a nice dataset that’s easy
to plot. That’s great for learning (because you don’t want to struggle with
data handling while you’re learning visualisation), but in real life, datasets
hardly ever come in exactly the right structure. To use ggplot2 in practice,
you’ll need to learn some data wrangling skills. Indeed, in my experience,
visualisation is often the easiest part of the data analysis process: once you
have the right data, in the right format, aggregated in the right way, the right
visualisation is often obvious.

The goal of this part of the book is to show you how to integrate ggplot2
with other tools needed for a complete data analysis:

• In this chapter, you’ll learn the principles of tidy data (Wickham, 2014),
which help you organise your data in a way that makes it easy to visualise
with ggplot2, manipulate with dplyr and model with the many modelling
packages. The principles of tidy data are supported by the tidyr package,
which helps you tidy messy datasets.

• Most visualisations require some data transformation whether it’s creating
a new variable from existing variables, or performing simple aggregations
so you can see the forest for the trees. Chapter 10 will show you how to
do this with the dplyr package.

• If you’re using R, you’re almost certainly using it for its fantastic modelling
capabilities. While there’s an R package for almost every type of model
that you can think of, the results of these models can be hard to visualise.
In Chap. 11, you’ll learn about the broom package, by David Robinson,
to convert models into tidy datasets so you can easily visualise them with
ggplot2.

© The Author 2016
H. Wickham, ggplot2, Use R!, DOI 10.1007/978-3-319-24277-4 9
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Tidy data is the foundation for data manipulation and visualising models.
In the following sections, you’ll learn the definition of tidy data, and the
tools you need to make messy data tidy. The chapter concludes with two case
studies that show how to apply the tools in sequence to work with real(istic)
data.

9.2 Tidy Data

The principle behind tidy data is simple: storing your data in a consistent
way makes it easier to work with it. Tidy data is a mapping between the
statistical structure of a data frame (variables and observations) and the
physical structure (columns and rows). Tidy data follows two main principles:

1. Variables go in columns.
2. Observations go in rows.

Tidy data is particularly important for ggplot2 because the job of ggplot2
is to map variables to visual properties: if your data isn’t tidy, you’ll have a
hard time visualising it.

Sometimes you’ll find a dataset that you have no idea how to plot. That’s
normally because it’s not tidy. For example, take this data frame that contains
monthly employment data for the United States:

ec2

#> Source: local data frame [12 x 11]

#>

#> month 2006 2007 2008 2009 2010 2011 2012 2013 2014

#> (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl)

#> 1 1 8.6 8.3 9.0 10.7 20.0 21.6 21.0 16.2 15.9

#> 2 2 9.1 8.5 8.7 11.7 19.9 21.1 19.8 17.5 16.2

#> 3 3 8.7 9.1 8.7 12.3 20.4 21.5 19.2 17.7 15.9

#> 4 4 8.4 8.6 9.4 13.1 22.1 20.9 19.1 17.1 15.6

#> 5 5 8.5 8.2 7.9 14.2 22.3 21.6 19.9 17.0 14.5

#> 6 6 7.3 7.7 9.0 17.2 25.2 22.3 20.1 16.6 13.2

#> .. ... ... ... ... ... ... ... ... ... ...

#> Variables not shown: 2015 (dbl)

(If it looks familiar, it’s because it’s derived from the economics dataset
that we used earlier in the book.)

Imagine you want to plot a time series showing how unemployment has
changed over the last 10 years. Can you picture the ggplot2 command you’d
need to do it? What if you wanted to focus on the seasonal component of
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unemployment by putting months on the x-axis and drawing one line for
each year? It’s difficult to see how to create those plots because the data is
not tidy. There are three variables, month, year and unemployment rate, but
each variable is stored in a different way:

• month is stored in a column.
• year is spread across the column names.
• rate is the value of each cell.

To make it possible to plot this data we first need to tidy it. There are
two important pairs of tools:

• Spread & gather.
• Separate & unite.

9.3 Spread and Gather

Take a look at the two tables below:

x y z

a A 1
b D 5
c A 4
c B 10
d C 9

x A B C D

a 1 NA NA NA
b NA NA NA 5
c 4 10 NA NA
d NA NA 9 NA

If you study them for a little while, you’ll notice that they contain the
same data in different forms. I call the first form indexed data, because you
look up a value using an index (the values of the x and y variables). I call
the second form Cartesian data, because you find a value by looking at
intersection of a row and a column. We can’t tell if these datasets are tidy or
not. Either form could be tidy depending on what the values “A”, “B”, “C”,
“D” mean.

(Also note the missing values: missing values that are explicit in one form
may be implicit in the other. An NA is the presence of an absence; but some-
times a missing value is the absence of a presence.)

Tidying your data will often require translating Cartesian indexed forms,
called gathering, and less commonly, indexed Cartesian, called spreading.
The tidyr package provides the spread() and gather() functions to perform
these operations, as described below.
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(You can imagine generalising these ideas to higher dimensions.) However,
data is almost always stored in 2d (rows & columns), so these generalisations
are fun to think about, but not that practical. I explore the idea more in
Wickham (2007).

9.3.1 Gather

gather() has four main arguments:

• data: the dataset to translate.
• key & value: the key is the name of the variable that will be created from

the column names, and the value is the name of the variable that will be
created from the cell values.

• ...: which variables to gather. You can specify individually, A, B, C, D, or
as a range A:D. Alternatively, you can specify which columns are not to be
gathered with -: -E, -F.

To tidy the economics dataset shown above, you first need to identify the
variables: year, month and rate. month is already in a column, but year and
rate are in Cartesian form, and we want them in indexed form, so we need
to use gather(). In this example, the key is year, the value is unemp and we
want to select columns from 2006 to 2015:

gather(ec2, key = year, value = unemp, �2006�:�2015�)

#> Source: local data frame [120 x 3]

#>

#> month year unemp

#> (dbl) (chr) (dbl)

#> 1 1 2006 8.6

#> 2 2 2006 9.1

#> 3 3 2006 8.7

#> 4 4 2006 8.4

#> 5 5 2006 8.5

#> 6 6 2006 7.3

#> .. ... ... ...

Note that the columns have names that are not standard variable names
in R (they don’t start with a letter). This means that we need to surround
them in backticks, i.e. ‘2006‘ to refer to them.

Alternatively, we could gather all columns except month:

gather(ec2, key = year, value = unemp, -month)

#> Source: local data frame [120 x 3]

#>

#> month year unemp
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#> (dbl) (chr) (dbl)

#> 1 1 2006 8.6

#> 2 2 2006 9.1

#> 3 3 2006 8.7

#> 4 4 2006 8.4

#> 5 5 2006 8.5

#> 6 6 2006 7.3

#> .. ... ... ...

To be most useful, we can provide two extra arguments:

economics_2 <- gather(ec2, year, rate, �2006�:�2015�,

convert = TRUE, na.rm = TRUE)

economics_2

#> Source: local data frame [112 x 3]

#>

#> month year rate

#> (dbl) (int) (dbl)

#> 1 1 2006 8.6

#> 2 2 2006 9.1

#> 3 3 2006 8.7

#> 4 4 2006 8.4

#> 5 5 2006 8.5

#> 6 6 2006 7.3

#> .. ... ... ...

We use convert = TRUE to automatically convert the years from character
strings to numbers, and na.rm = TRUE to remove the months with no data. (In
some sense the data isn’t actually missing because it represents dates that
haven’t occurred yet.)

When the data is in this form, it’s easy to visualise in many different ways.
For example, we can choose to emphasise either long term trend or seasonal
variations:

ggplot(economics_2, aes(year + (month - 1) / 12, rate)) +

geom_line()

ggplot(economics_2, aes(month, rate, group = year)) +

geom_line(aes(colour = year), size = 1)
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9.3.2 Spread

spread() is the opposite of gather(). You use it when you have a pair of
columns that are in indexed form, instead of Cartesian form. For example,
the following example dataset contains three variables (day, rain and temp),
but rain and temp are stored in indexed form.

weather <- dplyr::data_frame(

day = rep(1:3, 2),

obs = rep(c("temp", "rain"), each = 3),

val = c(c(23, 22, 20), c(0, 0, 5))

)

weather

#> Source: local data frame [6 x 3]

#>

#> day obs val

#> (int) (chr) (dbl)

#> 1 1 temp 23

#> 2 2 temp 22

#> 3 3 temp 20

#> 4 1 rain 0

#> 5 2 rain 0

#> 6 3 rain 5

Spread allows us to turn this messy indexed form into a tidy Cartesian
form. It shares many of the arguments with gather(). You’ll need to supply
the data to translate, as well as the name of the key column which gives the
variable names, and the value column which contains the cell values. Here
the key is obs and the value is val:

spread(weather, key = obs, value = val)

#> Source: local data frame [3 x 3]

#>

#> day rain temp
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#> (int) (dbl) (dbl)

#> 1 1 0 23

#> 2 2 0 22

#> 3 3 5 20

9.3.3 Exercises

1. How can you translate each of the initial example datasets into the other
form?

2. How can you convert back and forth between the economics and
economics long datasets built into ggplot2?

3. Install the EDAWR package from https://github.com/rstudio/EDAWR.
Tidy the storms, population and tb datasets.

9.4 Separate and Unite

Spread and gather help when the variables are in the wrong place in the
dataset. Separate and unite help when multiple variables are crammed into
one column, or spread across multiple columns.

For example, the following dataset stores some information about the re-
sponse to a medical treatment. There are three variables (time, treatment
and value), but time and treatment are jammed in one variable together:

trt <- dplyr::data_frame(
var = paste0(rep(c("beg", "end"), each = 3), "_", rep(c("a", "b", "c"))),
val = c(1, 4, 2, 10, 5, 11)

)
trt
#> Source: local data frame [6 x 2]
#>
#> var val
#> (chr) (dbl)
#> 1 beg_a 1
#> 2 beg_b 4
#> 3 beg_c 2
#> 4 end_a 10
#> 5 end_b 5
#> 6 end_c 11

The separate() function makes it easy to tease apart multiple variables
stored in one column. It takes four arguments:

• data: the data frame to modify.
• col: the name of the variable to split into pieces.

https://github.com/rstudio/EDAWR
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• into: a character vector giving the names of the new variables.
• sep: a description of how to split the variable apart. This can either be a

regular expression, e.g. to split by underscores, or [ˆa-z] to split by any
non-letter, or an integer giving a position.

In this case, we want to split by the character:

separate(trt, var, c("time", "treatment"), "_")

#> Source: local data frame [6 x 3]

#>

#> time treatment val

#> (chr) (chr) (dbl)

#> 1 beg a 1

#> 2 beg b 4

#> 3 beg c 2

#> 4 end a 10

#> 5 end b 5

#> 6 end c 11

(If the variables are combined in a more complex form, have a look at
extract(). Alternatively, you might need to create columns individually your-
self using other calculations. A useful tool for this is mutate() which you’ll
learn about in the next chapter.)

unite() is the inverse of separate()—it joins together multiple columns
into one column. This is less common, but it’s useful to know about as the
inverse of separate().

9.4.1 Exercises

1. Install the EDAWR package from https://github.com/rstudio/EDAWR.
Tidy the who dataset.

2. Work through the demos included in the tidyr package (demo(package =

"tidyr"))

9.5 Case Studies

For most real datasets, you’ll need to use more than one tidying verb. There
many be multiple ways to get there, but as long as each step makes the data
tidier, you’ll eventually get to the tidy dataset. That said, you typically apply
the functions in the same order: gather(), separate() and spread() (although
you might not use all three).

https://github.com/rstudio/EDAWR
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9.5.1 Blood Pressure

The first step when tidying a new dataset is always to identify the variables.
Take the following simulated medical data. There are seven variables in this
dataset: name, age, start date, week, systolic & diastolic blood pressure. Can
you see how they’re stored?

# Adapted from example by Barry Rowlingson,

# http://barryrowlingson.github.io/hadleyverse/

bpd <- readr::read_table(

"name age start week1 week2 week3

Anne 35 2014-03-27 100/80 100/75 120/90

Ben 41 2014-03-09 110/65 100/65 135/70

Carl 33 2014-04-02 125/80 <NA> <NA>

", na = "<NA>")

The first step is to convert from Cartesian to indexed form:

bpd_1 <- gather(bpd, week, bp, week1:week3)

bpd_1

#> Source: local data frame [9 x 5]

#>

#> name age start week bp

#> (chr) (int) (date) (chr) (chr)

#> 1 Anne 35 2014-03-27 week1 100/80

#> 2 Ben 41 2014-03-09 week1 110/65

#> 3 Carl 33 2014-04-02 week1 125/80

#> 4 Anne 35 2014-03-27 week2 100/75

#> 5 Ben 41 2014-03-09 week2 100/65

#> 6 Carl 33 2014-04-02 week2 NA

#> .. ... ... ... ... ...

This is tidier, but we have two variables combined together in the bp

variable. This is a common way of writing down the blood pressure, but
analysis is easier if we break it into two variables. That’s the job of separate:

bpd_2 <- separate(bpd_1, bp, c("sys", "dia"), "/")

bpd_2

#> Source: local data frame [9 x 6]

#>

#> name age start week sys dia

#> (chr) (int) (date) (chr) (chr) (chr)

#> 1 Anne 35 2014-03-27 week1 100 80

#> 2 Ben 41 2014-03-09 week1 110 65

#> 3 Carl 33 2014-04-02 week1 125 80

#> 4 Anne 35 2014-03-27 week2 100 75

#> 5 Ben 41 2014-03-09 week2 100 65
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#> 6 Carl 33 2014-04-02 week2 NA NA

#> .. ... ... ... ... ... ...

This dataset is now tidy, but we could do a little more to make it easier
to use. The following code uses extract() to pull the week number out into
its own variable (using regular expressions is beyond the scope of the book,
but \\d stands for any digit). I also use arrange() (which you’ll learn about
in the next chapter) to order the rows to keep the records for each person
together.

bpd_3 <- extract(bpd_2, week, "week", "(\\d)", convert = TRUE)

bpd_4 <- dplyr::arrange(bpd_3, name, week)

bpd_4

#> Source: local data frame [9 x 6]

#>

#> name age start week sys dia

#> (chr) (int) (date) (int) (chr) (chr)

#> 1 Anne 35 2014-03-27 1 100 80

#> 2 Anne 35 2014-03-27 2 100 75

#> 3 Anne 35 2014-03-27 3 120 90

#> 4 Ben 41 2014-03-09 1 110 65

#> 5 Ben 41 2014-03-09 2 100 65

#> 6 Ben 41 2014-03-09 3 135 70

#> .. ... ... ... ... ... ...

You might notice that there’s some repetition in this dataset: if you know
the name, then you also know the age and start date. This reflects a third
condition of tidyness that I don’t discuss here: each data frame should contain
one and only one data set. Here there are really two datasets: information
about each person that doesn’t change over time, and their weekly blood
pressure measurements. You can learn more about this sort of messiness in
the resources mentioned at the end of the chapter.

9.5.2 Test Scores

Imagine you’re interested in the effect of an intervention on test scores. You’ve
collected the following data. What are the variables?

# Adapted from http://stackoverflow.com/questions/29775461

scores <- dplyr::data_frame(

person = rep(c("Greg", "Sally", "Sue"), each = 2),

time = rep(c("pre", "post"), 3),

test1 = round(rnorm(6, mean = 80, sd = 4), 0),

test2 = round(jitter(test1, 15), 0)

)
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scores

#> Source: local data frame [6 x 4]

#>

#> person time test1 test2

#> (chr) (chr) (dbl) (dbl)

#> 1 Greg pre 84 83

#> 2 Greg post 76 75

#> 3 Sally pre 80 78

#> 4 Sally post 78 77

#> 5 Sue pre 83 80

#> 6 Sue post 76 75

I think the variables are person, test, pre-test score and post-test score. As
usual, we start by converting columns in Cartesian form (test1 and test2) to
indexed form (test and score):

scores_1 <- gather(scores, test, score, test1:test2)

scores_1

#> Source: local data frame [12 x 4]

#>

#> person time test score

#> (chr) (chr) (chr) (dbl)

#> 1 Greg pre test1 84

#> 2 Greg post test1 76

#> 3 Sally pre test1 80

#> 4 Sally post test1 78

#> 5 Sue pre test1 83

#> 6 Sue post test1 76

#> .. ... ... ... ...

Now we need to do the opposite: pre and post should be variables, not
values, so we need to spread time and score:

scores_2 <- spread(scores_1, time, score)

scores_2

#> Source: local data frame [6 x 4]

#>

#> person test post pre

#> (chr) (chr) (dbl) (dbl)

#> 1 Greg test1 76 84

#> 2 Greg test2 75 83

#> 3 Sally test1 78 80

#> 4 Sally test2 77 78

#> 5 Sue test1 76 83

#> 6 Sue test2 75 80
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A good indication that we have made a tidy dataset is that it’s now easy
to calculate the statistic of interest: the difference between pre- and post-
intervention scores:

scores_3 <- mutate(scores_2, diff = post - pre)

scores_3

#> Source: local data frame [6 x 5]

#>

#> person test post pre diff

#> (chr) (chr) (dbl) (dbl) (dbl)

#> 1 Greg test1 76 84 -8

#> 2 Greg test2 75 83 -8

#> 3 Sally test1 78 80 -2

#> 4 Sally test2 77 78 -1

#> 5 Sue test1 76 83 -7

#> 6 Sue test2 75 80 -5

And it’s similarly easy to plot:

ggplot(scores_3, aes(person, diff, color = test)) +

geom_hline(size = 2, colour = "white", yintercept = 0) +

geom_point() +

geom_path(aes(group = person), colour = "grey50",

arrow = arrow(length = unit(0.25, "cm")))

(Again, you’ll learn about mutate() in the next chapter.)

9.6 Learning More

Data tidying is a big topic and this chapter only scratches the surface. I
recommend the following references which go into considerably more depth
on this topic:
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• The tidyr documentation. I’ve described the most important arguments,
but most functions have other arguments that help deal with less common
situations. If you’re struggling, make sure to read the documentation to
see if there’s an argument that might help you.

• “Tidy data (http://www.jstatsoft.org/v59/i10/)”, an article in the
Journal of Statistical Software. It describes the ideas of tidy data in more
depth and shows other types of messy data. Unfortunately the paper was
written before tidyr existed, so to see how to use tidyr instead of reshape2,
consult the tidyr vignette (http://cran.r-project.org/web/packages/
tidyr/vignettes/tidy-data.html).

• The data wrangling cheatsheet (http://rstudio.com/cheatsheets) by
RStudio, includes the most common tidyr verbs in a form designed to
jog your memory when you’re stuck.
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Chapter 10

Data Transformation

10.1 Introduction

Tidy data is important, but it’s not the end of the road. Often you won’t have
quite the right variables, or your data might need a little aggregation before
you visualise it. This chapter will show you how to solve these problems (and
more!) with the dplyr package.

The goal of dplyr is to provide verbs (functions) that help you solve the
most common 95% of data manipulation problems. dplyr is similar to gg-
plot2, but instead of providing a grammar of graphics, it provides a grammar
of data manipulation. Like ggplot2, dplyr helps you not just by giving you
functions, but it also helps you think about data manipulation. In particular,
dplyr helps by constraining you: instead of struggling to think about which of
the thousands of functions that might help, you can just pick from a handful
that are design to be very likely to be helpful. In this chapter you’ll learn
four of the most important dplyr verbs:

• filter()

• mutate()

• group by() & summarise()

These verbs are easy to learn because they all work the same way: they
take a data frame as the first argument, and return a modified data frame.
The other arguments control the details of the transformation, and are
always interpreted in the context of the data frame so you can refer to vari-
ables directly. I’ll also explain each in the same way: I’ll show you a motivating
example using the diamonds data, give you more details about how the func-
tion works, and finish up with some exercises for you to practice your skills
with.

You’ll also learn how to create data transformation pipelines using %>%.
%>% plays a similar role to + in ggplot2: it allows you to solve complex prob-
lems by combining small pieces that are easily understood in isolation.

© The Author 2016
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This chapter only scratches the surface of dplyr’s capabilities but it should
be enough to help you with visualisation problems. You can learn more by
using the resources discussed at the end of the chapter.

10.2 Filter Observations

It’s common to only want to explore one part of a dataset. A great data
analysis strategy is to start with just one observation unit (one person, one
city, etc), and understand how it works before attempting to generalise the
conclusion to others. This is a great technique if you ever feel overwhelmed
by an analysis: zoom down to a small subset, master it, and then zoom back
out, to apply your conclusions to the full dataset.

Filtering is also useful for extracting outliers. Generally, you don’t want
to just throw outliers away, as they’re often highly revealing, but it’s useful
to think about partitioning the data into the common and the unusual. You
summarise the common to look at the broad trends; you examine the outliers
individually to see if you can figure out what’s going on.

For example, look at this plot that shows how the x and y dimensions of
the diamonds are related:

ggplot(diamonds, aes(x, y)) +

geom_bin2d()

There are around 50,000 points in this dataset: most of them lie along the
diagonal, but there are a handful of outliers. One clear set of incorrect values
are those diamonds with zero dimensions. We can use filter() to pull them
out:
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filter(diamonds, x == 0 | y == 0)

#> Source: local data frame [8 x 10]

#>

#> carat cut color clarity depth table price x y

#> (dbl) (fctr) (fctr) (fctr) (dbl) (dbl) (int) (dbl) (dbl)

#> 1 1.07 Ideal F SI2 61.6 56 4954 0 6.62

#> 2 1.00 Very Good H VS2 63.3 53 5139 0 0.00

#> 3 1.14 Fair G VS1 57.5 67 6381 0 0.00

#> 4 1.56 Ideal G VS2 62.2 54 12800 0 0.00

#> 5 1.20 Premium D VVS1 62.1 59 15686 0 0.00

#> 6 2.25 Premium H SI2 62.8 59 18034 0 0.00

#> .. ... ... ... ... ... ... ... ... ...

#> Variables not shown: z (dbl)

This is equivalent to the base R code diamonds[diamonds$x == 0 | diamonds$y
== 0, ], but is more concise because filter() knows to look for the bare x in
the data frame.

(If you’ve used subset() before, you’ll notice that it has very similar be-
haviour. The biggest difference is that subset() can select both observations
and variables, where in dplyr, filter() works exclusively with observations
and select() with variables. There are some other subtle differences, but the
main advantage to using filter() is that it behaves identically to the other
dplyr verbs and it tends to be a bit faster than subset().)

In a real analysis, you’d look at the outliers in more detail to see if you
can find the root cause of the data quality problem. In this case, we’re just
going to throw them out and focus on what remains. To save some typing,
we may provide multiple arguments to filter() which combines them.

diamonds_ok <- filter(diamonds, x > 0, y > 0, y < 20)

ggplot(diamonds_ok, aes(x, y)) +

geom_bin2d() +

geom_abline(slope = 1, colour = "white", size = 1, alpha = 0.5)
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This plot is now more informative—we can see a very strong relationship
between x and y. I’ve added the reference line to make it clear that for most
diamonds, x and y are very similar. However, this plot still has problems:

• The plot is mostly empty, because most of the data lies along the diagonal.
• There are some clear bivariate outliers, but it’s hard to select them with

a simple filter.

We’ll solve both of these problem in the next section by adding a new
variable that’s a transformation of x and y. But before we continue on to
that, let’s talk more about the details of filter().

10.2.1 Useful Tools

The first argument to filter() is a data frame. The second and subsequent
arguments must be logical vectors: filter() selects every row where all the
logical expressions are TRUE. The logical vectors must always be the same
length as the data frame: if not, you’ll get an error. Typically you create the
logical vector with the comparison operators:

• x == y: x and y are equal.
• x != y: x and y are not equal.
• x %in% c("a", "b", "c"): x is one of the values in the right hand side.
• x > y, x >= y, x < y, x <= y: greater than, greater than or equal to, less

than, less than or equal to.

And combine them with logical operators:

• !x (pronounced “not x”), flips TRUE and FALSE so it keeps all the values
where x is FALSE.

• x & y: TRUE if both x and y are TRUE.
• x | y: TRUE if either x or y (or both) are TRUE.
• xor(x, y): TRUE if either x or y are TRUE, but not both (exclusive or).

Most real queries involve some combination of both:

• Price less than $500: price < 500

• Size between 1 and 2 carats: carat >= 1 & carat < 2

• Cut is ideal or premium: cut == "Premium" | cut == "Ideal", or cut %in%

c("Premium", "Ideal") (note that R is case sensitive)
• Worst colour, cut and clarity: cut == "Fair" & color == "J" & clarity ==

"SI2"

You can also use functions in the filtering expression:

• Size is between 1 and 2 carats: floor(carat) == 1

• An average dimension greater than 3: (x + y + z) / 3 > 3
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This is useful for simple expressions, but as things get more complicated
it’s better to create a new variable first so you can check that you’ve done
the computation correctly before doing the subsetting. You’ll learn how to
do that in the next section.

The rules for NA are a bit trickier, so I’ll explain them next.

10.2.2 Missing Values

NA, R’s missing value indicator, can be frustrating to work with. R’s under-
lying philosophy is to force you to recognise that you have missing values,
and make a deliberate choice to deal with them: missing values never silently
go missing. This is a pain because you almost always want to just get rid of
them, but it’s a good principle to force you to think about the correct option.

The most important thing to understand about missing values is that they
are infectious: with few exceptions, the result of any operation that includes
a missing value will be a missing value. This happens because NA represents
an unknown value, and there are few operations that turn an unknown value
into a known value.

x <- c(1, NA, 2)

x == 1

#> [1] TRUE NA FALSE

x > 2

#> [1] FALSE NA FALSE

x + 10

#> [1] 11 NA 12

When you first learn R, you might be tempted to find missing values using
==:

x == NA

#> [1] NA NA NA

x != NA

#> [1] NA NA NA

But that doesn’t work! A little thought reveals why: there’s no reason why
two unknown values should be the same. Instead, use is.na(X) to determine
if a value is missing:

is.na(x)

#> [1] FALSE TRUE FALSE
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filter() only includes observations where all arguments are TRUE, so NA

values are automatically dropped. If you want to include missing values, be
explicit: x > 10 | is.na(x). In other parts of R, you’ll sometimes need to
convert missing values into FALSE. You can do that with x > 10 & !is.na(x)

10.2.3 Exercises

1. Practice your filtering skills by:

• Finding all the diamonds with equal x and y dimensions.
• A depth between 55 and 70.
• A carat smaller than the median carat.
• Cost more than $10,000 per carat
• Are of good or better quality

2. Fill in the question marks in this table:

Expression TRUE FALSE NA

x x
? x
is.na(x) x
!is.na(x) ? ? ?
? x x
? x x

3. Repeat the analysis of outlying values with z. Compared to x and y, how
would you characterise the relationship of x and z, or y and z?

4. Install the ggplot2movies package and look at the movies that have a
missing budget. How are they different from the movies with a budget?
(Hint: try a frequency polygon plus colour = is.na(budget).)

5. What is NA & FALSE and NA | TRUE? Why? Why doesn’t NA * 0 equal zero?
What number times zero does not equal 0? What do you expect NA ˆ 0 to
equal? Why?

10.3 Create New Variables

To better explore the relationship between x and y, it’s useful to “rotate” the
plot so that the data is flat, not diagonal. We can do that by creating two new
variables: one that represents the difference between x and y (which in this
context represents the symmetry of the diamond) and one that represents its
size (the length of the diagonal).
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To create new variables use mutate(). Like filter() it takes a data frame
as its first argument and returns a data frame. Its second and subsequent
arguments are named expressions that generate new variables. Like filter()

you can refer to variables just by their name, you don’t need to also include
the name of the dataset.

diamonds_ok2 <- mutate(diamonds_ok,

sam = x - y,

size = sqrt(x ˆ 2 + y ˆ 2)

)

diamonds_ok2

#> Source: local data frame [53,930 x 12]

#>

#> carat cut color clarity depth table price x y

#> (dbl) (fctr) (fctr) (fctr) (dbl) (dbl) (int) (dbl) (dbl)

#> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98

#> 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84

#> 3 0.23 Good E VS1 56.9 65 327 4.05 4.07

#> 4 0.29 Premium I VS2 62.4 58 334 4.20 4.23

#> 5 0.31 Good J SI2 63.3 58 335 4.34 4.35

#> 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96

#> .. ... ... ... ... ... ... ... ... ...

#> Variables not shown: z (dbl), sym (dbl), size (dbl)

ggplot(diamonds_ok2, aes(size, sym)) +

stat_bin2d()

This plot has two advantages: we can more easily see the pattern followed
by most diamonds, and we can easily select outliers. Here, it doesn’t seem
important whether the outliers are positive (i.e. x is bigger than y) or negative
(i.e. y is bigger x). So we can use the absolute value of the symmetry variable
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to pull out the outliers. Based on the plot, and a little experimentation, I came
up with a threshold of 0.20. We’ll check out the results with a histogram.

ggplot(diamonds_ok2, aes(abs(sym))) +

geom_histogram(binwidth = 0.10)

diamonds_ok3 <- filter(diamonds_ok2, abs(sym) < 0.20)

ggplot(diamonds_ok3, aes(abs(sym))) +

geom_histogram(binwidth = 0.01)

That’s an interesting histogram! While most diamonds are close to being
symmetric there are very few that are perfectly symmetric (i.e. x == y).

10.3.1 Useful Tools

Typically, transformations will be suggested by your domain knowledge. How-
ever, there are a few transformations that are useful in a surprisingly wide
range of circumstances.

• Log-transformations are often useful. They turn multiplicative relation-
ships into additive relationships; they compress data that varies over or-
ders of magnitude; they convert power relationships to linear relationship.
See examples at http://stats.stackexchange.com/questions/27951

• Relative difference: If you’re interested in the relative difference between
two variables, use log(x / y). It’s better than x / y because it’s symmetric:
if x < y, x / y takes values [0, 1), but if x > y, x / y takes values (1, Inf).
See Tornqvist et al. (1985) for more details.

http://stats.stackexchange.com/questions/27951
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• Sometimes integrating or differentiating might make the data more in-
terpretable: if you have distance and time, would speed or acceleration
be more useful? (or vice versa). (Note that integration makes data more
smooth; differentiation makes it less smooth.)

• Partition a number into magnitude and direction with abs(x) and sign(x).

There are also a few useful ways to transform pairs of variables:

• Partitioning into overall size and difference is often useful, as seen above.
• If you see a strong trend, use a model to partition it into pattern and

residuals is often useful. You’ll learn more about that in the next chapter.
• Sometimes it’s useful to change positions to polar coordinates (or vice

versa): distance (sqrt(xˆ2 + yˆ2)) and angle (atan2(y, x)).

10.3.2 Exercises

1. Practice your variable creation skills by creating the following new vari-
ables:

• The approximate volume of the diamond (using x, y, and z).
• The approximate density of the diamond.
• The price per carat.
• Log transformation of carat and price.

2. How can you improve the data density of ggplot(diamonds, aes(x, z)) +

stat bin2d(). What transformation makes it easier to extract outliers?
3. The depth variable is just the width of the diamond (average of x and y)

divided by its height (z) multiplied by 100 and round to the nearest integer.
Compute the depth yourself and compare it to the existing depth variable.
Summarise your findings with a plot.

4. Compare the distribution of symmetry for diamonds with x > y vs. x < y.

10.4 Group-wise Summaries

Many insightful visualisations require that you reduce the full dataset down
to a meaningful summary. ggplot2 provides a number of geoms that will do
summaries for you. But it’s often useful to do summaries by hand: that gives
you more flexibility and you can use the summaries for other purposes.

dplyr does summaries in two steps:

1. Define the grouping variables with group by().
2. Describe how to summarise each group with a single row with summarise()
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For example, to look at the average price per clarity, we first group by
clarity, then summarise:

by_clarity <- group_by(diamonds, clarity)

sum_clarity <- summarise(by_clarity, price = mean(price))

sum_clarity

#> Source: local data frame [8 x 2]

#>

#> clarity price

#> (fctr) (dbl)

#> 1 I1 3924

#> 2 SI2 5063

#> 3 SI1 3996

#> 4 VS2 3925

#> 5 VS1 3839

#> 6 VVS2 3284

#> .. ... ...

ggplot(sum_clarity, aes(clarity, price)) +

geom_line(aes(group = 1), colour = "grey80") +

geom_point(size = 2)

You might be surprised by this pattern: why do diamonds with better
clarity have lower prices? We’ll see why this is the case and what to do about
it in Sect. 11.2.

Supply additional variables to group by() to create groups based on more
than one variable. The next example shows how we can compute (by hand)
a frequency polygon that shows how cut and depth interact. The special
summary function n() counts the number of observations in each group.

cut_depth <- summarise(group_by(diamonds, cut, depth), n = n())

cut_depth <- filter(cut_depth, depth > 55, depth < 70)

cut_depth

#> Source: local data frame [455 x 3]
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#> Groups: cut [5]

#>

#> cut depth n

#> (fctr) (dbl) (int)

#> 1 Fair 55.1 3

#> 2 Fair 55.2 6

#> 3 Fair 55.3 5

#> 4 Fair 55.4 2

#> 5 Fair 55.5 3

#> 6 Fair 55.6 4

#> .. ... ... ...

ggplot(cut_depth, aes(depth, n, colour = cut)) +

geom_line()

We can use a grouped mutate() to convert counts to proportions, so it’s
easier to compare across the cuts. summarise() strips one level of grouping off,
so cut depth will be grouped by cut.

cut_depth <- mutate(cut_depth, prop = n / sum(n))

ggplot(cut_depth, aes(depth, prop, colour = cut)) +

geom_line()
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10.4.1 Useful Tools

summarise() needs to be used with functions that take a vector of n values
and always return a single value. Those functions include:

• Counts: n(), n distinct(x).
• Middle: mean(x), median(x).
• Spread: sd(x), mad(x), IQR(x).
• Extremes: quartile(x), min(x), max(x).
• Positions: first(x), last(x), nth(x, 2).

Another extremely useful technique is to use sum() or mean() with a logical
vector. When a logical vector is treated as numeric, TRUE becomes 1 and FALSE

becomes 0. This means that sum() tells you the number of TRUEs, and mean()

tells you the proportion of TRUEs. For example, the following code counts the
number of diamonds with carat greater than or equal to 4, and the proportion
of diamonds that cost less than $1000.

summarise(diamonds,

n_big = sum(carat >= 4),

prop_cheap = mean(price < 1000)

)

#> Source: local data frame [1 x 2]

#>

#> n_big prop_cheap

#> (int) (dbl)

#> 1 6 0.269

Most summary functions have a na.rm argument: na.rm = TRUE tells the
summary function to remove any missing values prior to summarisation. This
is a convenient shortcut: rather than removing the missing values then sum-
marising, you can do it in one step.

10.4.2 Statistical Considerations

When summarising with the mean or median, it’s always a good idea to
include a count and a measure of spread. This helps you calibrate your
assessments—if you don’t include them you’re likely to think that the data is
less variable than it really is, and potentially draw unwarranted conclusions.

The following example extends our previous summary of the average price
by clarity to also include the number of observations in each group, and the
upper and lower quartiles. It suggests the mean might be a bad summary for
this data - the distributions of price are so highly skewed that the mean is
higher than the upper quartile for some of the groups!
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by_clarity <- diamonds %>%

group_by(clarity) %>%

summarise(

n = n(),

mean = mean(price),

lq = quantile(price, 0.25),

uq = quantile(price, 0.75)

)

by_clarity

#> Source: local data frame [8 x 5]

#>

#> clarity n mean lq uq

#> (fctr) (int) (dbl) (dbl) (dbl)

#> 1 I1 741 3924 2080 5161

#> 2 SI2 9194 5063 2264 5777

#> 3 SI1 13065 3996 1089 5250

#> 4 VS2 12258 3925 900 6024

#> 5 VS1 8171 3839 876 6023

#> 6 VVS2 5066 3284 794 3638

#> .. ... ... ... ... ...

ggplot(by_clarity, aes(clarity, mean)) +

geom_linerange(aes(ymin = lq, ymax = uq)) +

geom_line(aes(group = 1), colour = "grey50") +

geom_point(aes(size = n))

Another example of this comes from baseball. Let’s take the MLB batting
data from the Lahman package and calculate the batting average: the number
of hits divided by the number of at bats. Who’s the best batter according to
this metric?
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data(Batting, package = "Lahman")

batters <- filter(Batting, AB > 0)

per_player <- group_by(batters, playerID)

ba <- summarise(per_player,

ba = sum(H, na.rm = TRUE) / sum(AB, na.rm = TRUE)

)

ggplot(ba, aes(ba)) +

geom_histogram(binwidth = 0.01)

Wow, there are a lot of players who can hit the ball every single time!
Would you want them on your fantasy baseball team? Let’s double check
they’re really that good by calibrating also showing the total number of at
bats:

ba <- summarise(per_player,

ba = sum(H, na.rm = TRUE) / sum(AB, na.rm = TRUE),

ab = sum(AB, na.rm = TRUE)

)

ggplot(ba, aes(ab, ba)) +

geom_bin2d(bins = 100) +

geom_smooth()
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The highest batting averages occur for the players with the smallest num-
ber of at bats - it’s not hard to hit the ball every time if you’ve only had
two pitches. We can make the pattern a little more clear by getting rid of the
players with less than 10 at bats.

ggplot(filter(ba, ab >= 10), aes(ab, ba)) +

geom_bin2d() +

geom_smooth()

You’ll often see a similar pattern whenever you plot number of observations
vs. an average. Be aware!

10.4.3 Exercises

1. For each year in the ggplot2movies::movies data determine the percent of
movies with missing budgets. Visualise the result.
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2. How does the average length of a movie change over time? Display your
answer with a plot, including some display of uncertainty.

3. For each combination of diamond quality (e.g. cut, colour and clarity),
count the number of diamonds, the average price and the average size.
Visualise the results.

4. Compute a histogram of carat by “hand” using a binwidth of 0.1. Display
the results with geom bar(stat = "identity"). (Hint: you might need to
create a new variable first.)

5. In the baseball example, the batting average seems to increase as the
number of at bats increases. Why?

10.5 Transformation Pipelines

Most real analyses require you to string together multiple mutate()s,
filter()s, group by()s , and summarise()s. For example, above, we created a
frequency polygon by hand with a combination of all four verbs:

# By using intermediate values

cut_depth <- group_by(diamonds, cut, depth)

cut_depth <- summarise(cut_depth, n = n())

cut_depth <- filter(cut_depth, depth > 55, depth < 70)

cut_depth <- mutate(cut_depth, prop = n / sum(n))

This sequence of operations is a bit painful because we repeated the name
of the data frame many times. An alternative is just to do it with one sequence
of function calls:

# By "composing" functions

mutate(

filter(

summarise(

group_by(

diamonds,

cut,

depth

),

n = n()

),

depth > 55,

depth < 70

),

prop = n / sum(n)

)
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But this is also hard to read because the sequence of operations is inside
out, and the arguments to each function can be quite far apart. dplyr provides
an alternative approach with the pipe, %>%. With the pipe, we can write the
above sequence of operations as:

cut_depth <- diamonds %>%

group_by(cut, depth) %>%

summarise(n = n()) %>%

filter(depth > 55, depth < 70) %>%

mutate(prop = n / sum(n))

This makes it easier to understand what’s going on as we can read it almost
like an English sentence: first group, then summarise, then filter, then mutate.
In fact, the best way to pronounce %>% when reading a sequence of code is
as “then”. %>% comes from the magrittr package, by Stefan Milton Bache.
It provides a number of other tools that dplyr doesn’t expose by default,
so I highly recommend that you check out the magrittr website (https://
github.com/smbache/magrittr).

%>% works by taking the thing on the left hand side (LHS) and supplying
it as the first argument to the function on the right hand side (RHS). Each
of these pairs of calls is equivalent:

f(x, y)

# is the same as

x %>% f(y)

g(f(x, y), z)

# is the same as

x %>% f(y) %>% g(z)

10.5.1 Exercises

1. Translate each of the examples in this chapter to use the pipe.
2. What does the following pipe do?

library(magrittr)

x <- runif(100)

x %>%

subtract(mean(.)) %>%

raise_to_power(2) %>%

mean() %>%

sqrt()

3. Which player in the Batting dataset has had the most consistently good
performance over the course of their career?

https://github.com/smbache/magrittr
https://github.com/smbache/magrittr
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10.6 Learning More

dplyr provides a number of other verbs that are less useful for visualisation,
but important to know about in general:

• arrange() orders observations according to variable(s). This is most useful
when you’re looking at the data from the console. It can also be useful for
visualisations if you want to control which points are plotted on top.

• select() picks variables based on their names. Useful when you have many
variables and want to focus on just a few for analysis.

• rename() allows you to change the name of variables.
• Grouped mutates and filters are also useful, but more advanced. See

vignette("window-functions", package = "dplyr") for more details.
• There are a number of verbs designed to work with two tables of data

at a time. These include SQL joins (like the base merge() function) and
set operations. Learn more about them in vignette("two-table", package

= "dplyr").
• dplyr can work directly with data stored in a database - you use the same

R code as you do for local data and dplyr generates SQL to send to the
database. See vignette("databases", package = "dplyr") for the details.

Finally, RStudio provides a handy dplyr cheatsheet that will help jog your
memory when you’re wondering which function to use. Get it from http://
rstudio.com/cheatsheets.

Reference

Törnqvist L, Pentti V, Yrjö OV (1985) How should relative changes be mea-
sured? Am Stat 39(1):43–46

http://rstudio.com/cheatsheets
http://rstudio.com/cheatsheets


Chapter 11

Modelling for Visualisation

11.1 Introduction

Modelling is an essential tool for visualisation. There are two particularly
strong connections between modelling and visualisation that I want to explore
in this chapter:

• Using models as a tool to remove obvious patterns in your plots. This is
useful because strong patterns mask subtler effects. Often the strongest
effects are already known and expected, and removing them allows you to
see surprises more easily.

• Other times you have a lot of data, too much to show on a handful of
plots. Models can be a powerful tool for summarising data so that you get
a higher level view.

In this chapter, I’m going to focus on the use of linear models to achieve
these goals. Linear models are a basic, but powerful, tool of statistics, and
I recommend that everyone serious about visualisation learns at least the
basics of how to use them. To this end, I highly recommend two books by
Julian J. Faraway:

• Linear Models with R http://amzn.com/1439887330
• Extending the Linear Model with R http://amzn.com/158488424X

These books cover some of the theory of linear models, but are pragmatic
and focussed on how to actually use linear models (and their extensions) in R.

There are many other modelling tools, which I don’t have the space to
show. If you understand how linear models can help improve your visual-
isations, you should be able to translate the basic idea to other families of
models. This chapter just scratches the surface of what you can do. But hope-
fully it reinforces how visualisation can combine with modelling to help you
build a powerful data analysis toolbox. For more ideas, check out Wickham
et al. (2015).

© The Author 2016
H. Wickham, ggplot2, Use R!, DOI 10.1007/978-3-319-24277-4 11
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This chapter only scratches the surface of the intersection between visual-
isation and modelling. In my opinion, mastering the combination of visuali-
sations and models is key to being an effective data scientist. Unfortunately
most books (like this one!) only focus on either visualisation or modelling,
but not both. There’s a lot of interesting work to be done.

11.2 Removing Trend

So far our analysis of the diamonds data has been plagued by the powerful
relationship between size and price. It makes it very difficult to see the impact
of cut, colour and clarity because higher quality diamonds tend to be smaller,
and hence cheaper. This challenge is often called confounding. We can use a
linear model to remove the effect of size on price. Instead of looking at the
raw price, we can look at the relative price: how valuable is this diamond
relative to the average diamond of the same size.

To get started, we’ll focus on diamonds of size two carats or less (96%
of the dataset). This avoids some incidental problems that you can explore
in the exercises if you’re interested. We’ll also create two new variables: log
price and log carat. These variables are useful because they produce a plot
with a strong linear trend.

diamonds2 <- diamonds %>%

filter(carat <= 2) %>%

mutate(

lcarat = log2(carat),

lprice = log2(price)

)

diamonds2

#> Source: local data frame [52,051 x 12]

#>

#> carat cut color clarity depth table price x y

#> (dbl) (fctr) (fctr) (fctr) (dbl) (dbl) (int) (dbl) (dbl)

#> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98

#> 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84

#> 3 0.23 Good E VS1 56.9 65 327 4.05 4.07

#> 4 0.29 Premium I VS2 62.4 58 334 4.20 4.23

#> 5 0.31 Good J SI2 63.3 58 335 4.34 4.35

#> 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96

#> .. ... ... ... ... ... ... ... ... ...

#> Variables not shown: z (dbl), lcarat (dbl), lprice (dbl)

ggplot(diamonds2, aes(lcarat, lprice)) +

geom_bin2d() +

geom_smooth(method = "lm", se = FALSE, size = 2, colour = "yellow")
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In the graphic we used geom smooth() to overlay the line of best fit to the
data. We can replicate this outside of ggplot2 by fitting a linear model with
lm(). This allows us to find out the slope and intercept of the line:

mod <- lm(lprice ˜ lcarat, data = diamonds2)

coef(summary(mod))

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 12.2 0.00211 5789 0

#> lcarat 1.7 0.00208 816 0

If you’re familiar with linear models, you might want to interpret those
coefficients: log2(price) = 12.2 + 1.7 · log2(carat), which implies price =
4900 · carat1.7. Interpreting those coefficients certainly is useful, but even if
you don’t understand them, the model can still be useful. We can use it to
subtract the trend away by looking at the residuals: the price of each diamond
minus its predicted price, based on weight alone. Geometrically, the residuals
are the vertical distance between each point and the line of best fit. They tell
us the price relative to the “average” diamond of that size.

diamonds2 <- diamonds2 %>% mutate(rel_price = resid(mod))

ggplot(diamonds2, aes(carat, rel_price)) +

geom_bin2d()
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A relative price of zero means that the diamond was at the average price;
positive means that it’s more expensive than expected (based on its size),
and negative means that it’s cheaper than expected.

Interpreting the values precisely is a little tricky here because we’ve log-
transformed price. The residuals give the absolute difference (x− expected),
but here we have log2(price) − log2(expectedprice), or equivalently log2
(price/expectedprice). If we “back-transform” to the original scale by apply-
ing the opposite transformation (2x) we get price/expectedprice. This makes
the values more interpretable, at the cost of the nice symmetry property of
the logged values (i.e. both relatively cheaper and relatively more expensive
diamonds have the same range). We can make a little table to help interpret
the values:

xgrid <- seq(-2, 1, by = 1/3)

data.frame(logx = xgrid, x = round(2 ˆ xgrid, 2))

#> logx x

#> 1 -2.000 0.25

#> 2 -1.667 0.31

#> 3 -1.333 0.40

#> 4 -1.000 0.50

#> 5 -0.667 0.63

#> 6 -0.333 0.79

#> 7 0.000 1.00

#> 8 0.333 1.26

#> 9 0.667 1.59

#> 10 1.000 2.00

This table illustrates why we used log2() rather than log(): a change of 1
unit on the logged scale, corresponding to a doubling on the original scale.
For example, a rel price of −1 means that it’s half of the expected price; a
relative price of 1 means that it’s twice the expected price.

Let’s use both price and relative price to see how colour and cut affect
the value of a diamond. We’ll compute the average price and average relative
price for each combination of colour and cut:

color_cut <- diamonds2 %>%

group_by(color, cut) %>%

summarise(

price = mean(price),

rel_price = mean(rel_price)

)

color_cut

#> Source: local data frame [35 x 4]

#> Groups: color [?]

#>

#> color cut price rel_price
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#> (fctr) (fctr) (dbl) (dbl)

#> 1 D Fair 3939 -0.0755

#> 2 D Good 3309 -0.0472

#> 3 D Very Good 3368 0.1038

#> 4 D Premium 3513 0.1093

#> 5 D Ideal 2595 0.2173

#> 6 E Fair 3516 -0.1720

#> .. ... ... ... ...

If we look at price, it’s hard to see how the quality of the diamond affects
the price. The lowest quality diamonds (fair cut with colour J) have the
highest average value! This is because those diamonds also tend to be larger:
size and quality are confounded.

ggplot(color_cut, aes(color, price)) +

geom_line(aes(group = cut), colour = "grey80") +

geom_point(aes(colour = cut))

If however, we plot the relative price, you see the pattern that you expect:
as the quality of the diamonds decreases, the relative price decreases. The
worst quality diamond is 0.61x (2−0.7) the price of an “average” diamond.

ggplot(color_cut, aes(color, rel_price)) +

geom_line(aes(group = cut), colour = "grey80") +

geom_point(aes(colour = cut))
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This technique can be employed in a wide range of situations. Wherever
you can explicitly model a strong pattern that you see in a plot, it’s worth-
while to use a model to remove that strong pattern so that you can see what
interesting trends remain.

11.2.1 Exercises

1. What happens if you repeat the above analysis with all diamonds? (Not
just all diamonds with two or fewer carats). What does the strange geom-
etry of log(carat) vs relative price represent? What does the diagonal line
without any points represent?

2. I made an unsupported assertion that lower-quality diamonds tend to be
larger. Support my claim with a plot.

3. Can you create a plot that simultaneously shows the effect of colour, cut,
and clarity on relative price? If there’s too much information to show on
one plot, think about how you might create a sequence of plots to convey
the same message.

4. How do depth and table relate to the relative price?

11.3 Texas Housing Data

We’ll continue to explore the connection between modelling and visualisation
with the txhousing dataset:

txhousing

#> Source: local data frame [8,034 x 9]

#>

#> city year month sales volume median listings inventory

#> (chr) (int) (int) (dbl) (dbl) (dbl) (dbl) (dbl)

#> 1 Abilene 2000 1 72 5380000 71400 701 6.3
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#> 2 Abilene 2000 2 98 6505000 58700 746 6.6

#> 3 Abilene 2000 3 130 9285000 58100 784 6.8

#> 4 Abilene 2000 4 98 9730000 68600 785 6.9

#> 5 Abilene 2000 5 141 10590000 67300 794 6.8

#> 6 Abilene 2000 6 156 13910000 66900 780 6.6

#> .. ... ... ... ... ... ... ... ...

#> Variables not shown: date (dbl)

This data was collected by the Real Estate Center at Texas A&M Univer-
sity, http://recenter.tamu.edu/Data/hs/. The data contains information
about 46 Texas cities, recording the number of house sales (sales), the to-
tal volume of sales (volume), the average and median sale prices, the num-
ber of houses listed for sale (listings) and the number of months inventory
(inventory). Data is recorded monthly from Jan 2000 to Apr 2015, 187 entries
for each city.

We’re going to explore how sales have varied over time for each city as it
shows some interesting trends and poses some interesting challenges. Let’s
start with an overview: a time series of sales for each city:

ggplot(txhousing, aes(date, sales)) +

geom_line(aes(group = city), alpha = 1/2)

Two factors make it hard to see the long-term trend in this plot:

1. The range of sales varies over multiple orders of magnitude. The biggest
city, Houston, averages over ˜4000 sales per month; the smallest city, San
Marcos, only averages ˜20 sales per month.

2. There is a strong seasonal trend: sales are much higher in the summer than
in the winter.

http://recenter.tamu.edu/Data/hs/
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We can fix the first problem by plotting log sales:

ggplot(txhousing, aes(date, log(sales))) +

geom_line(aes(group = city), alpha = 1/2)

We can fix the second problem using the same technique we used for
removing the trend in the diamonds data: we’ll fit a linear model and look at
the residuals. This time we’ll use a categorical predictor to remove the month
effect. First we check that the technique works by applying it to a single city.
It’s always a good idea to start simple so that if something goes wrong you
can more easily pinpoint the problem.

abilene <- txhousing %>% filter(city == "Abilene")

ggplot(abilene, aes(date, log(sales))) +

geom_line()

mod <- lm(log(sales) ˜ factor(month), data = abilene)

abilene$rel_sales <- resid(mod)

ggplot(abilene, aes(date, rel_sales)) +

geom_line()
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We can apply this transformation to every city with group by() and
mutate(). Note the use of na.action = na.exclude argument to lm(). Coun-
terintuitively this ensures that missing values in the input are matched with
missing values in the output predictions and residuals. Without this argu-
ment, missing values are just dropped, and the residuals don’t line up with
the inputs.

deseas <- function(x, month) {
resid(lm(x ˜ factor(month), na.action = na.exclude))

}

txhousing <- txhousing %>%

group_by(city) %>%

mutate(rel_sales = deseas(log(sales), month))

With this data in hand, we can re-plot the data. Now that we have log-
transformed the data and removed the strong seasonal effects we can see
there is a strong common pattern: a consistent increase from 2000–2007, a
drop until 2010 (with quite some noise), and then a gradual rebound. To make
that more clear, I included a summary line that shows the mean relative sales
across all cities.

ggplot(txhousing, aes(date, rel_sales)) +

geom_line(aes(group = city), alpha = 1/5) +

geom_line(stat = "summary", fun.y = "mean", colour = "red")

(Note that removing the seasonal effect also removed the intercept - we
see the trend for each city relative to its average number of sales.)
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11.3.1 Exercises

1. The final plot shows a lot of short-term noise in the overall trend. How
could you smooth this further to focus on long-term changes?

2. If you look closely (e.g. + xlim(2008, 2012)) at the long-term trend you’ll
notice a weird pattern in 2009–2011. It looks like there was a big dip in
2010. Is this dip “real”? (i.e. can you spot it in the original data)

3. What other variables in the TX housing data show strong seasonal effects?
Does this technique help to remove them?

4. Not all the cities in this data set have complete time series. Use your dplyr
skills to figure out how much data each city is missing. Display the results
with a visualisation.

5. Replicate the computation that stat summary() did with dplyr so you can
plot the data “by hand”.

11.4 Visualising Models

The previous examples used the linear model just as a tool for removing
trend: we fit the model and immediately threw it away. We didn’t care about
the model itself, just what it could do for us. But the models themselves
contain useful information and if we keep them around, there are many new
problems that we can solve:

• We might be interested in cities where the model didn’t fit well: a poorly
fitting model suggests that there isn’t much of a seasonal pattern, which
contradicts our implicit hypothesis that all cities share a similar pattern.

• The coefficients themselves might be interesting. In this case, looking at
the coefficients will show us how the seasonal pattern varies between cities.

• We may want to dive into the details of the model itself, and see exactly
what it says about each observation. For this data, it might help us find
suspicious data points that might reflect data entry errors.

To take advantage of this data, we need to store the models. We can do
this using a new dplyr verb: do(). It allows us to store the result of arbitrary
computation in a column. Here we’ll use it to store that linear model:

models <- txhousing %>%

group_by(city) %>%

do(mod = lm(

log2(sales) ˜ factor(month),

data = .,

na.action = na.exclude

))

models
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#> Source: local data frame [46 x 2]

#> Groups: <by row>

#>

#> city mod

#> (chr) (chr)

#> 1 Abilene <S3:lm>

#> 2 Amarillo <S3:lm>

#> 3 Arlington <S3:lm>

#> 4 Austin <S3:lm>

#> 5 Bay Area <S3:lm>

#> 6 Beaumont <S3:lm>

#> .. ... ...

There are two important things to note in this code:

• do() creates a new column called mod. This is a special type of column:
instead of containing an atomic vector (a logical, integer, numeric, or char-
acter) like usual, it’s a list. Lists are R’s most flexible data structure and
can hold anything, including linear models.

• . is a special pronoun used by do(). It refers to the “current” data frame.
In this example, do() fits the model 46 times (once for each city), each
time replacing . with the data for one city.

If you’re an experienced modeller, you might wonder why I didn’t fit one
model to all cities simultaneously. That’s a great next step, but it’s often
useful to start off simple. Once we have a model that works for each city
individually, you can figure out how to generalise it to fit all cities simulta-
neously.

To visualise these models, we’ll turn them into tidy data frames. We’ll do
that with the broom package by David Robinson.

library(broom)

Broom provides three key verbs, each corresponding to one of the chal-
lenges outlined above:

• glance() extracts model-level summaries with one row of data for each
model. It contains summary statistics like the R2 and degrees of freedom.

• tidy() extracts coefficient-level summaries with one row of data for each
coefficient in each model. It contains information about individual coeffi-
cients like their estimate and standard error.

• augment() extracts observation-level summaries with one row of data for
each observation in each model. It includes variables like the residual and
influence metrics useful for diagnosing outliers.

We’ll learn more about each of these functions in the following three sec-
tions.
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11.5 Model-Level Summaries

We’ll begin by looking at how well the model fit to each city with glance():

model_sum <- models %>% glance(mod)

model_sum

#> Source: local data frame [46 x 12]

#> Groups: city [46]

#>

#> city r.squared adj.r.squared sigma statistic p.value

#> (chr) (dbl) (dbl) (dbl) (dbl) (dbl)

#> 1 Abilene 0.530 0.500 0.282 17.9 1.50e-23

#> 2 Amarillo 0.449 0.415 0.302 13.0 7.41e-18

#> 3 Arlington 0.513 0.483 0.267 16.8 2.75e-22

#> 4 Austin 0.487 0.455 0.310 15.1 2.04e-20

#> 5 Bay Area 0.555 0.527 0.265 19.9 1.45e-25

#> 6 Beaumont 0.430 0.395 0.275 12.0 1.18e-16

#> .. ... ... ... ... ... ...

#> df

#> (int)

#> 1 12

#> 2 12

#> 3 12

#> 4 12

#> 5 12

#> 6 12

#> .. ...

#> Variables not shown: logLik (dbl), AIC (dbl), BIC (dbl), deviance

#> (dbl), df.residual (int)

This creates a variable with one row for each city, and variables that either
summarise complexity (e.g. df) or fit (e.g. r.squared, p.value, AIC). Since all
the models we fit have the same complexity (12 terms: one for each month),
we’ll focus on the model fit summaries. R2 is a reasonable place to start
because it’s well known. We can use a dot plot to see the variation across
cities:

ggplot(model_sum, aes(r.squared, reorder(city, r.squared))) +

geom_point()
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It’s hard to picture exactly what those values of R2 mean, so it’s helpful
to pick out a few exemplars. The following code extracts and plots out the
three cities with the highest and lowest R2:
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top3 <- c("Bryan-College Station", "Lubbock", "NE Tarrant County")

bottom3 <- c("McAllen", "Brownsville", "Harlingen")

extreme <- txhousing %>% ungroup() %>%

filter(city %in% c(top3, bottom3), !is.na(sales)) %>%

mutate(city = factor(city, c(top3, bottom3)))

ggplot(extreme, aes(month, log(sales))) +

geom_line(aes(group = year)) +

facet_wrap(˜city)

The cities with low R2 have weaker seasonal patterns and more variation
between years. The data for Harlingen seems particularly noisy.

11.5.1 Exercises

1. Do your conclusions change if you use a different measurement of model
fit like AIC or deviance? Why/why not?

2. One possible hypothesis that explains why McAllen, Harlingen and
Brownsville have lower R2 is that they’re smaller towns so there are fewer
sales and more noise. Confirm or refute this hypothesis.
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3. McAllen, Harlingen and Brownsville seem to have much more year-to-year
variation than Bryan-College Station, Lubbock, and NE Tarrant County.
How does the model change if you also include a linear trend for year? (i.e.
log(sales) ˜ factor(month) + year).

4. Create a faceted plot that shows the seasonal patterns for all cities.
Order the facets by the R2 for the city.

11.6 Coefficient-Level Summaries

The model fit summaries suggest that there are some important differences
in seasonality between the different cities. Let’s dive into those differences by
using tidy() to extract detail about each individual coefficient:

coefs <- models %>% tidy(mod)

coefs

#> Source: local data frame [552 x 6]

#> Groups: city [46]

#>

#> city term estimate std.error statistic p.value

#> (chr) (chr) (dbl) (dbl) (dbl) (dbl)

#> 1 Abilene (Intercept) 6.542 0.0704 92.88 7.90e-151

#> 2 Abilene factor(month)2 0.354 0.0996 3.55 4.91e-04

#> 3 Abilene factor(month)3 0.675 0.0996 6.77 1.83e-10

#> 4 Abilene factor(month)4 0.749 0.0996 7.52 2.76e-12

#> 5 Abilene factor(month)5 0.916 0.0996 9.20 1.06e-16

#> 6 Abilene factor(month)6 1.002 0.0996 10.06 4.37e-19

#> .. ... ... ... ... ... ...

We’re more interested in the month effect, so we’ll do a little extra tidying
to only look at the month coefficients, and then to extract the month value
into a numeric variable:

months <- coefs %>%

filter(grepl("factor", term)) %>%

tidyr::extract(term, "month", "(\\d+)", convert = TRUE)

months

#> Source: local data frame [506 x 6]

#> Groups: city [46]

#>

#> city month estimate std.error statistic p.value

#> (chr) (int) (dbl) (dbl) (dbl) (dbl)

#> 1 Abilene 2 0.354 0.0996 3.55 4.91e-04

#> 2 Abilene 3 0.675 0.0996 6.77 1.83e-10

#> 3 Abilene 4 0.749 0.0996 7.52 2.76e-12
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#> 4 Abilene 5 0.916 0.0996 9.20 1.06e-16

#> 5 Abilene 6 1.002 0.0996 10.06 4.37e-19

#> 6 Abilene 7 0.954 0.0996 9.58 9.81e-18

#> .. ... ... ... ... ... ...

This is a common pattern. You need to use your data tidying skills at many
points in an analysis. Once you have the correct tidy dataset, creating the plot
is usually easy. Here we’ll put month on the x-axis, estimate on the y-axis,
and draw one line for each city. I’ve back-transformed to make the coefficients
more interpretable: these are now ratios of sales compared to January.

ggplot(months, aes(month, 2 ˆ estimate)) +

geom_line(aes(group = city))

The pattern seems similar across the cities. The main difference is the
strength of the seasonal effect. Let’s pull that out and plot it:

coef_sum <- months %>%

group_by(city) %>%

summarise(max = max(estimate))

ggplot(coef_sum, aes(2 ˆ max, reorder(city, max))) +

geom_point()
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The cities with the strongest seasonal effect are College Station and San
Marcos (both college towns) and Galveston and South Padre Island (beach
cities). It makes sense that these cities would have very strong seasonal effects.

11.6.1 Exercises

1. Pull out the three cities with highest and lowest seasonal effect. Plot their
coefficients.

2. How does strength of seasonal effect relate to the R2 for the model? Answer
with a plot.

3. You should be extra cautious when your results agree with your prior
beliefs. How can you confirm or refute my hypothesis about the causes of
strong seasonal patterns?
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4. Group the diamonds data by cut, clarity and colour. Fit a linear model
log(price) ˜ log(carat). What does the intercept tell you? What does the
slope tell you? How do the slope and intercept vary across the groups?
Answer with a plot.

11.7 Observation Data

Observation-level data, which include residual diagnostics, is most useful in
the traditional model fitting scenario, because it can helps you find “high-
leverage” points, point that have a big influence on the final model. It’s also
useful in conjunction with visualisation, particularly because it provides an
alternative way to access the residuals.

Extracting observation-level data is the job of the augment() function. This
adds one row for each observation. It includes the variables used in the orig-
inal model, the residuals, and a number of common influence statistics (see
?augment.lm for more details):

obs_sum <- models %>% augment(mod)

obs_sum

#> Source: local data frame [8,034 x 10]

#> Groups: city [46]

#>

#> city log2.sales. factor.month. .fitted .se.fit .resid .hat

#> (chr) (dbl) (fctr) (dbl) (dbl) (dbl) (dbl)

#> 1 Abilene 6.17 1 6.54 0.0704 -0.372 0.0625

#> 2 Abilene 6.61 2 6.90 0.0704 -0.281 0.0625

#> 3 Abilene 7.02 3 7.22 0.0704 -0.194 0.0625

#> 4 Abilene 6.61 4 7.29 0.0704 -0.676 0.0625

#> 5 Abilene 7.14 5 7.46 0.0704 -0.319 0.0625

#> 6 Abilene 7.29 6 7.54 0.0704 -0.259 0.0625

#> .. ... ... ... ... ... ... ...

#> Variables not shown: .sigma (dbl), .cooksd (dbl), .std.resid (dbl)

For example, it might be interesting to look at the distribution of stan-
dardised residuals. (These are residuals standardised to have a variance of one
in each model, making them more comparable.) We’re looking for unusual
values that might need deeper exploration:

ggplot(obs_sum, aes(.std.resid)) +

geom_histogram(binwidth = 0.1)

ggplot(obs_sum, aes(abs(.std.resid))) +

geom_histogram(binwidth = 0.1)
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A threshold of 2 seems like a reasonable threshold to explore individually:

obs_sum %>%

filter(abs(.std.resid) > 2) %>%

group_by(city) %>%

summarise(n = n(), avg = mean(abs(.std.resid))) %>%

arrange(desc(n))

#> Source: local data frame [43 x 3]

#>

#> city n avg

#> (chr) (int) (dbl)

#> 1 Texarkana 12 2.43

#> 2 Harlingen 11 2.73

#> 3 Waco 11 2.96

#> 4 Victoria 10 2.49

#> 5 Brazoria County 9 2.31

#> 6 Brownsville 9 2.48

#> .. ... ... ...

In a real analysis, you’d want to look into these cities in more detail.

11.7.1 Exercises

1. A common diagnostic plot is fitted values (.fitted) vs. residuals (.resid).
Do you see any patterns? What if you include the city or month on the
same plot?

2. Create a time series of log(sales) for each city. Highlight points that have
a standardised residual of greater than 2.
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Chapter 12

Programming with ggplot2

12.1 Introduction

A major requirement of a good data analysis is flexibility. If your data
changes, or you discover something that makes you rethink your basic as-
sumptions, you need to be able to easily change many plots at once. The
main inhibitor of flexibility is code duplication. If you have the same plotting
statement repeated over and over again, you’ll have to make the same change
in many different places. Often just the thought of making all those changes
is exhausting! This chapter will help you overcome that problem by showing
you how to program with ggplot2.

To make your code more flexible, you need to reduce duplicated code by
writing functions. When you notice you’re doing the same thing over and over
again, think about how you might generalise it and turn it into a function.
If you’re not that familiar with how functions work in R, you might want to
brush up your knowledge at http://adv-r.had.co.nz/Functions.html.

In this chapter I’ll show how to write functions that create:

• A single ggplot2 component.
• Multiple ggplot2 components.
• A complete plot.

And then I’ll finish off with a brief illustration of how you can apply
functional programming techniques to ggplot2 objects.

You might also find the cowplot (https://github.com/wilkelab/cowplot)
and ggthemes (https://github.com/jrnold/ggthemes) packages helpful.
As well as providing reusable components that help you directly, you can
also read the source code of the packages to figure out how they work.

© The Author 2016
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12.2 Single Components

Each component of a ggplot plot is an object. Most of the time you create the
component and immediately add it to a plot, but you don’t have to. Instead,
you can save any component to a variable (giving it a name), and then add
it to multiple plots:

bestfit <- geom_smooth(

method = "lm",

se = FALSE,

colour = alpha("steelblue", 0.5),

size = 2

)

ggplot(mpg, aes(cty, hwy)) +

geom_point() +

bestfit

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

bestfit

That’s a great way to reduce simple types of duplication (it’s much better
than copying-and-pasting!), but requires that the component be exactly the
same each time. If you need more flexibility, you can wrap these reusable
snippets in a function. For example, we could extend our bestfit object to
a more general function for adding lines of best fit to a plot. The following
code creates a geom lm() with three parameters: the model formula, the line
colour and the line size:

geom_lm <- function(formula = y ˜ x, colour = alpha("steelblue", 0.5),

size = 2, ...) {
geom_smooth(formula = formula, se = FALSE, method = "lm", colour = colour,

size = size, ...)

}
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ggplot(mpg, aes(displ, 1 / hwy)) +

geom_point() +

geom_lm()

ggplot(mpg, aes(displ, 1 / hwy)) +

geom_point() +

geom_lm(y ˜ poly(x, 2), size = 1, colour = "red")

Pay close attention to the use of “...”. When included in the function
definition “...” allows a function to accept arbitrary additional arguments.
Inside the function, you can then use “...” to pass those arguments on to
another function. Here we pass “...” onto geom smooth() so the user can still
modify all the other arguments we haven’t explicitly overridden. When you
write your own component functions, it’s a good idea to always use “...” in
this way.

Finally, note that you can only add components to a plot; you can’t modify
or remove existing objects.

12.2.1 Exercises

1. Create an object that represents a pink histogram with 100 bins.
2. Create an object that represents a fill scale with the Blues ColorBrewer

palette.
3. Read the source code for theme grey(). What are its arguments? How does

it work?
4. Create scale colour wesanderson(). It should have a parameter to pick the

palette from the wesanderson package, and create either a continuous or
discrete scale.



244 12 Programming with ggplot2

12.3 Multiple Components

It’s not always possible to achieve your goals with a single component. For-
tunately, ggplot2 has a convenient way of adding multiple components to a
plot in one step with a list. The following function adds two layers: one to
show the mean, and one to show its standard error:

geom_mean <- function() {
list(

stat_summary(fun.y = "mean", geom = "bar", fill = "grey70"),

stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.4)

)

}
ggplot(mpg, aes(class, cty)) + geom_mean()

ggplot(mpg, aes(drv, cty)) + geom_mean()

If the list contains any NULL elements, they’re ignored. This makes it easy
to conditionally add components:

geom_mean <- function(se = TRUE) {
list(

stat_summary(fun.y = "mean", geom = "bar", fill = "grey70"),

if (se)

stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.4)

)

}
ggplot(mpg, aes(drv, cty)) + geom_mean()

ggplot(mpg, aes(drv, cty)) + geom_mean(se = FALSE)
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12.3.1 Plot Components

You’re not just limited to adding layers in this way. You can also include any
of the following object types in the list:

• A data.frame, which will override the default dataset associated with the
plot. (If you add a data frame by itself, you’ll need to use %+%, but this is
not necessary if the data frame is in a list.)

• An aes() object, which will be combined with the existing default aesthetic
mapping.

• Scales, which override existing scales, with a warning if they’ve already
been set by the user.

• Coordinate systems and facetting specification, which override the existing
settings.

• Theme components, which override the specified components.

12.3.2 Annotation

It’s often useful to add standard annotations to a plot. In this case, your
function will also set the data in the layer function, rather than inheriting it
from the plot. There are two other options that you should set when you do
this. These ensure that the layer is self-contained:

• inherit.aes = FALSE prevents the layer from inheriting aesthetics from the
parent plot. This ensures your annotation works regardless of what else is
on the plot.

• show.legend = FALSE ensures that your annotation won’t appear in the
legend.

One example of this technique is the borders() function built into ggplot2.
It’s designed to add map borders from one of the datasets in the maps pack-
age:

borders <- function(database = "world", regions = ".", fill = NA,

colour = "grey50", ...) {
df <- map_data(database, regions)

geom_polygon(

aes_(˜lat, ˜long, group = ˜group),

data = df, fill = fill, colour = colour, ...,

inherit.aes = FALSE, show.legend = FALSE

)

}
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12.3.3 Additional Arguments

If you want to pass additional arguments to the components in your func-
tion, ... is no good: there’s no way to direct different arguments to different
components. Instead, you’ll need to think about how you want your function
to work, balancing the benefits of having one function that does it all vs. the
cost of having a complex function that’s harder to understand.

To get you started, here’s one approach using modifyList() and do.call():

geom_mean <- function(..., bar.params = list(), errorbar.params = list()) {
params <- list(...)
bar.params <- modifyList(params, bar.params)
errorbar.params <- modifyList(params, errorbar.params)

bar <- do.call("stat_summary", modifyList(
list(fun.y = "mean", geom = "bar", fill = "grey70"),
bar.params)

)
errorbar <- do.call("stat_summary", modifyList(

list(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.4),
errorbar.params)

)

list(bar, errorbar)
}

ggplot(mpg, aes(class, cty)) +
geom_mean(

colour = "steelblue",
errorbar.params = list(width = 0.5, size = 1)

)
ggplot(mpg, aes(class, cty)) +
geom_mean(

bar.params = list(fill = "steelblue"),
errorbar.params = list(colour = "blue")

)
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If you need more complex behaviour, it might be easier to create a custom
geom or stat. You can learn about that in the extending ggplot2 vignette
included with the package. Read it by running vignette("extending-ggplot2").

12.3.4 Exercises

1. To make the best use of space, many examples in this book hide the axes
labels and legend. I’ve just copied-and-pasted the same code into multiple
places, but it would make more sense to create a reusable function. What
would that function look like?

2. Extend the borders() function to also add coord quickmap() to the plot.
3. Look through your own code. What combinations of geoms or scales do

you use all the time? How could you extract the pattern into a reusable
function?

12.4 Plot Functions

Creating small reusable components is most in line with the ggplot2 spirit:
you can recombine them flexibly to create whatever plot you want. But some-
times you’re creating the same plot over and over again, and you don’t need
that flexibility. Instead of creating components, you might want to write a
function that takes data and parameters and returns a complete plot.

For example, you could wrap up the complete code needed to make a
piechart:

piechart <- function(data, mapping) {
ggplot(data, mapping) +

geom_bar(width = 1) +

coord_polar(theta = "y") +

xlab(NULL) +

ylab(NULL)

}
piechart(mpg, aes(factor(1), fill = class))
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This is much less flexible than the component based approach, but equally,
it’s much more concise. Note that I was careful to return the plot object,
rather than printing it. That makes it possible add on other ggplot2 compo-
nents.

You can take a similar approach to drawing parallel coordinates plots
(PCPs). PCPs require a transformation of the data, so I recommend writing
two functions: one that does the transformation and one that generates the
plot. Keeping these two pieces separate makes life much easier if you later
want to reuse the same transformation for a different visualisation.

pcp_data <- function(df) {
is_numeric <- vapply(df, is.numeric, logical(1))

# Rescale numeric columns

rescale01 <- function(x) {
rng <- range(x, na.rm = TRUE)

(x - rng[1]) / (rng[2] - rng[1])

}
df[is_numeric] <- lapply(df[is_numeric], rescale01)

# Add row identifier

df$.row <- rownames(df)

# Treat numerics as value (aka measure) variables

# gather_ is the standard-evaluation version of gather, and

# is usually easier to program with.

tidyr::gather_(df, "variable", "value", names(df)[is_numeric])

}
pcp <- function(df, ...) {

df <- pcp_data(df)

ggplot(df, aes(variable, value, group = .row)) + geom_line(...)

}
pcp(mpg)

pcp(mpg, aes(colour = drv))
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A complete exploration of this idea is qplot(), which provides a fairly deep
wrapper around the most common ggplot() options. I recommend studying
the source code if you want to see how far these basic techniques can take
you.

12.4.1 Indirectly Referring to Variables

The piechart() function above is a little unappealing because it requires the
user to know the exact aes() specification that generates a pie chart. It would
be more convenient if the user could simply specify the name of the variable
to plot. To do that you’ll need to learn a bit more about how aes() works.

aes() uses non-standard evaluation: rather than looking at the values of
its arguments, it looks at their expressions. This makes it difficult to work
with programmatically as there’s no way to store the name of a variable in
an object and then refer to it later:

x_var <- "displ"

aes(x_var)

#> * x -> x_var

Instead we need to use aes (), which uses regular evaluation. There are
two basic ways to create a mapping with aes ():

• Using a quoted call, created by quote(), substitute(), as.name(), or parse().

aes_(quote(displ))

#> * x -> displ

aes_(as.name(x_var))

#> * x -> displ

aes_(parse(text = x_var)[[1]])

#> * x -> displ

f <- function(x_var) {
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aes_(substitute(x_var))

}
f(displ)

#> * x -> displ

The difference between as.name() and parse() is subtle. If x var is “a +
b”, as.name() will turn it into a variable called ‘a + b‘, parse() will turn
it into the function call a + b. (If this is confusing, http://adv-r.had.co.
nz/Expressions.html might help).

• Using a formula, created with ˜.

aes_(˜displ)

#> * x -> displ

aes () gives us three options for how a user can supply variables: as a string,
as a formula, or as a bare expression. These three options are illustrated below

piechart1 <- function(data, var, ...) {
piechart(data, aes_(˜factor(1), fill = as.name(var)))

}
piechart1(mpg, "class") + theme(legend.position = "none")

piechart2 <- function(data, var, ...) {
piechart(data, aes_(˜factor(1), fill = var))

}
piechart2(mpg, ˜class) + theme(legend.position = "none")

piechart3 <- function(data, var, ...) {
piechart(data, aes_(˜factor(1), fill = substitute(var)))

}
piechart3(mpg, class) + theme(legend.position = "none")

There’s another advantage to aes () over aes() if you’re writing ggplot2
plots inside a package: using aes (˜x, ˜y) instead of aes(x, y) avoids the
global variables NOTE in R CMD check.

http://adv-r.had.co.nz/Expressions.html
http://adv-r.had.co.nz/Expressions.html
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12.4.2 The Plot Environment

As you create more sophisticated plotting functions, you’ll need to understand
a bit more about ggplot2’s scoping rules. ggplot2 was written well before I
understood the full intricacies of non-standard evaluation, so it has a rather
simple scoping system. If a variable is not found in the data, it is looked for
in the plot environment. There is only one environment for a plot (not one
for each layer), and it is the environment in which ggplot() is called from
(i.e. the parent.frame()).

This means that the following function won’t work because n is not stored
in an environment accessible when the expressions in aes() are evaluated.

f <- function() {
n <- 10

geom_line(aes(x / n))

}
df <- data.frame(x = 1:3, y = 1:3)

ggplot(df, aes(x, y)) + f()

#> Error in x/n: non-numeric argument to binary operator

Note that this is only a problem with the mapping argument. All other
arguments are evaluated immediately so their values (not a reference to a
name) are stored in the plot object. This means the following function will
work:

f <- function() {
colour <- "blue"

geom_line(colour = colour)

}
ggplot(df, aes(x, y)) + f()

If you need to use a different environment for the plot, you can specify it
with the environment argument to ggplot(). You’ll need to do this if you’re
creating a plot function that takes user provided data. See qplot() for an
example.

12.4.3 Exercises

1. Create a distribution() function specially designed for visualising contin-
uous distributions. Allow the user to supply a dataset and the name of
a variable to visualise. Let them choose between histograms, frequency
polygons, and density plots. What other arguments might you want to
include?

2. What additional arguments should pcp() take? What are the downsides of
how ... is used in the current code?
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3. Advanced: why doesn’t this code work? How can you fix it?

f <- function() {
levs <- c("2seater", "compact", "midsize", "minivan", "pickup",

"subcompact", "suv")

piechart3(mpg, factor(class, levels = levs))

}
f()

#> Error in factor(class, levels = levs): object 'levs' not found

12.5 Functional Programming

Since ggplot2 objects are just regular R objects, you can put them in a list.
This means you can apply all of R’s great functional programming tools. For
example, if you wanted to add different geoms to the same base plot, you
could put them in a list and use lapply().

geoms <- list(

geom_point(),

geom_boxplot(aes(group = cut_width(displ, 1))),

list(geom_point(), geom_smooth())

)

p <- ggplot(mpg, aes(displ, hwy))

lapply(geoms, function(g) p + g)

#> [[1]]

#>

#> [[2]]

#>

#> [[3]]
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If you’re not familiar with functional programming, read through http://
adv-r.had.co.nz/Functional-programming.html and think about how you
might apply the techniques to your duplicated plotting code.

12.5.1 Exercises

1. How could you add a geom point() layer to each element of the following
list?

plots <- list(

ggplot(mpg, aes(displ, hwy)),

ggplot(diamonds, aes(carat, price)),

ggplot(faithfuld, aes(waiting, eruptions, size = density))

)

2. What does the following function do? What’s a better name for it?

mystery <- function(...) {
Reduce(�+�, list(...), accumulate = TRUE)

}

mystery(

ggplot(mpg, aes(displ, hwy)) + geom_point(),

geom_smooth(),

xlab(NULL),

ylab(NULL)

)

http://adv-r.had.co.nz/Functional-programming.html
http://adv-r.had.co.nz/Functional-programming.html
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