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Preface

In 1966 my monograph The Linear Hypothesis: A General Theory was published
as one in a series of statistical monographs by Griffin, London. Part of the book
arose out of my PhD thesis, which took a more general approach than usual to
linear models. It used the geometrical notion of projections onto vector spaces
using idempotent matrices, thus providing an elegant theory that avoided being
involved with ranks of matrices. Although not a popular approach at the time, it has
since become an integral part of theoretical regression books where least squares
estimates, for example, are routinely given a geometrical interpretation.

Over the years I have written extensively on related topics such as linear
and nonlinear regression, multivariate analysis, and large sample tests of general
hypotheses including, for example, those arising from the multinomial distribution.
Given this additional experience and the fact that my original monograph is now
out of print, the time has come to rewrite it. This is it! Initially the 1966 monograph
was written as an attempt to show how the linear model and hypothesis provide
a unifying theme where all hypotheses are either linear or asymptotically so. This
means that the linear theory can be applied in a variety of modeling situations and
this monograph extends the breadth of these situations. In a monograph of this size,
the emphasis is on theoretical concepts, and the reader needs to look elsewhere for
practical applications and appropriate software. I appreciate that these days the focus
of statistical courses is much more applied. Numerous computationally oriented
books have been written, for example, on using the statistical package R that was
originally developed in the Statistics Department here at University of Auckland.
However I would mention that my books on linear, nonlinear, and multivariate
models all have comprehensive chapters on computational details and algorithms,
as well as practical examples.

Who is the monograph for? It is pitched at a graduate level in statistics and
assumes that the reader is familiar with the basics of regression analysis, analysis
of variance, and some experimental designs like the randomized block design, with
brief extensions to multivariate linear models. Some previous exposure to nonlinear
models and multinomial goodness-of-fit tests will help, and some knowledge of the
multivariate normal distribution is assumed. A basic knowledge of the matrix theory
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is assumed throughout, though proofs of most of the matrix results used are given
either in the text or in the Appendix. My aim is to provide the reader with a more
global view of modeling and show connections between several major statistical
topics.

Chapters 1, 2, 3 and 4 deal with the basic ideas behind the book: Chap. 1 gives
some preliminary mathematical results needed in the book; Chap.2 defines the
linear model and hypothesis with examples; Chap. 3 is on estimation; and Chap. 4
is on hypothesis testing, all from a geometrical point of view. Chapter 5 looks at
some general properties of the F-test, and in Chap. 6 methods of testing several
hypotheses are discussed. Chapters 7, 8 and 9 look at special topics: Chap.7 is
about augmenting hypotheses as in analysis of covariance and missing observations,
for example, Chap. 8 looks at nonlinear models and Chap. 9 at multivariate models.
Chapters 10, 11 and 12 involve considerable asymptotic theory showing how general
hypotheses about sampling from general distributions are asymptotically equivalent
to corresponding linear theory. The book finishes with an appendix giving some
useful, and in some cases not so common, matrix results with proofs.

Looking back after having been retired for a number of years, I am grateful for
the stimulus given to my writing through teaching most of the topics mentioned
above at University of Auckland, New Zealand. Teaching certainly clarifies one’s
understanding of a subject. In conclusion I would like to thank two referees for their
helpful comments.

Auckland, New Zealand George A.F. Seber
February 2015
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Chapter 1
Preliminaries

1.1 Notation

Linear algebra is used extensively throughout this book and those topics particularly
relevant to the development in this monograph are given within the chapters; other
results are given in the Appendix. References to the Appendix are labeled with a
prefix “A”, for example A.3 is theorem 3 in the Appendix. Vectors and matrices
are denoted by boldface letters a and A, respectively, and scalars are denoted by
italics. For example, a = (g;) is a vector with ith element ¢; and A = (a;) is a
matrix with i, jth element a;;. I shall use the same notation with random variables,
because using uppercase for random variables and lowercase for their values can
cause confusion with vectors and matrices. We endeavor, however, to help the reader
by using the lower case letters in the latter half of the alphabet, namely «, v, ..., z,
with the occasional exception (because of common usage) for random variables and
the rest of the alphabet for constants. All vectors and matrices contain real elements,
that is belong to R, and we denote n-dimensional Euclidean space by R”.

The nxn matrix diag(ay, ay, . . . , a,) or diag(a) is a matrix with diagonal elements
the elements of a' = (aj,a,...,a,) and off-diagonal elements all zero. When
the n diagonal elements are all equal to 1 we have the identity matrix I,,. The n-
dimensional vector with all its elements unity is denoted by 1,,. The trace of a matrix
A, denoted by trace[A], is the sum of its diagonal elements, and the rank of A is
denoted by rank[A]. The determinant of a square matrix A is denoted by det A or
|A|. We shall also use the Kronecker delta, §; which is one when i = j and zero
otherwise

The length of an n-dimensional vector x = (x;) is denoted by || x ||, so that

I x = V&) = 0+ 23 4+ 22).

© Springer International Publishing Switzerland 2015 1
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2 1 Preliminaries

We say that two vectors x and y in R” are orthogonal and write x L y if X'y = 0.
For an extensive collection of matrix results see Seber (2008).

1.2 Linear Vector Spaces

We shall be interested in particular subsets of R" called linear vector spaces that
may be defined as follows. A linear vector space is a set of vectors V such that
for any two vectors x and y belonging to V and for any real numbers a and b, the
vector ax + by also belongs to V. This definition is not the most general one, but
it is sufficient for the development given in this book. From now on we shall drop
the word “linear” and take it as understood. Since a and b can both be zero, we see
that every vector space contains a zero vector. We note that R" is also a vector space
and we can then say that V is a subspace. To prove two vector spaces are identical
we show that one is contained in the other and vice versa, as we see in Theorem 1.1
below.

We now give some examples of useful vector spaces. If V is a subspace of R",
then V-, the set of all vectors in R” perpendicular to every vector in V (called the
orthogonal complement of V), is also a vector subspace. This follows from the fact
thatif v € V, and x and y belong to V', then

V(ax +by) =av'x+bv'y =0 and ax + by € V*.

If X is an n x p matrix and C[X] is the set of all vectors 8 such that 8 = X3
for some 3, that is C[X] = {0 : @ = X3} is the set of all linear combinations of
the columns of X, then C[X] is a vector space. Also if N[X] = {¢ : X¢ = 0}, then
NX] is also vector space. We find then that associated with every matrix X there
are three vector spaces: (1) the column space (also called the range space) C[X],
(2) the row space C[X'], and (3) the null space (sometimes called the kernel) N'[X]
of X; proofs that they are subspaces are left to the reader. Two of these spaces are
related by the following theorem used throughout this monograph.

Theorem 1.1 N[X] = C[X'|*. In words, the null space of X is the orthogonal
complement of the row space of X.

Proof 1If @ € N[X], then X8 = 0 and 0 is orthogonal to each row of X. It is
therefore orthogonal to any linear combination of the rows of X, so that 8 L C[X]
and N[X] C C[X']*. Conversely, if & L C[X'] then X8 = 0, & € N[X], and
C[X']* ¢ N[X]. Hence the result follows.
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1.3 Basis of a Vector Space

A set of vectors 31, 3,...,3, is said to span a vector space V if every vector
v € V can be expressed as a linear combination of these vectors, that is, if there
exist constants by, by, . .. , b, such that

V= i biﬁi.
i=1

The vectors 31, 3s, ..., 3, are linearly independent if 3 _, b;3; = 0 implies that
by = by = ... = b, = 0. Thus linear independence implies that there is no non-
trivial linear relation among the vectors. If the vectors 3; (i = 1,2...,p) span V and
are linearly independent, then they are said to form a basis of V. Although a basis
is not unique, the number of vectors p in it is unique and is called the dimension
of V or dim V. From every basis it is possible to construct an orthonormal basis
ap,Qy, ..., qp,such that afaj = §;;; “ortho” as the vectors are mutually orthogonal
and “normal” as they have unit length. The construction can be carried out from a
basis using the Gram-Schmidt algorithm (Seber and Lee 2003, 338-339).If V is a
subspace of R”, it is always possible to enlarge an orthonormal basis of V to the set
a0, .., Qp, Oyt , Oy, . .., Oy to form an orthonormal basis for R”. Thus if
dimV = p, then it is readily seen that o1, . .., o, form an orthonormal basis for
V1 and dim V't = n —p.

Since the column space C[X] of a matrix X is the space spanned by its columns,
then dimC[X] will be the number of linearly independent columns of X and
therefore the rank of X. The dimension of A/[X] is known as the nullity of X and is
obtained from the rule (A.3)

rank + nullity = number of columns of X.

Thus if X is an n x p matrix of rank r (r < p, n), then we see that dim C[X] = p and
dmN[X]=p—r.

1.4 Addition and Intersection of Vector Spaces

A vector space V is said to be the direct sum of two vector spaces V) and V; if every
vector v € V can be expressed uniquely in the form v = v; + v,, where v; € V),
(i = 1,2). We represent this symbolically by V; @ V,. If we drop the word unique
from the definition, we say that V is the sum of V| and V, and write V = V| + V.

The intersection of two vector spaces V; and V) is denoted by V| N V), and is the
set of all vectors that belong to both spaces. The reader should check that if V; and
V), are all vector spaces in R", then V; @ V2, Vi + )V, and V) NV, are vector spaces.
The following theorems will be useful later on.
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Theorem 1.2 If V) and V, are two vector spaces in R", then

(i) Nt = Vi + V1
(ii) VNV =0, then [V N W)+ = VD Vi

Proof

(i) We can prove this quite generally by showing that the left hand side is contained
in the right hand side, and vice versa; this is left as an exercise. However, the
following proof using matrices is instructive as it uses Theorem 1.1 in Sect. 1.2.
Let A; and A, be matrices such that V; = A[A;] fori = 1,2. Then

A
()
= C[(A],A})] (cf. Theorem 1.1)

= C[A]] + C[A)]
=V + Vi

L
Vi NVt =

(ii) This follows from the fact that the columns of A/ are linearly independent of
the columns of A/, so that C[(A], A})] = C[A|] P CIA]].

Theorem 1.3 IfVy and V; (i = 1,2) are three vector spaces in R" such that V| C
Vo, then

VonN Vi + V) =V + Vo Ny,

Proof If v e LHS (left-hand side), thenv € Vyand v = v{+Vv;, where v, € V; C V)
and v, € V,. Hence v, = v—v; € Vyand v, € Vy N V;, so that v € RHS and LHS
C RHS. Conversely, if v € RHS, then v = v + v, € Vy, as v; € V; C Wy, and
vo € VoNVy, C V. Also vy + v, € V) 4V, so that v € LHS. Therefore LHS=RHS
and the result is proved.

1.5 Idempotent Matrices

We shall see later that symmetric idempotent matrices carry out an important role
with regard to projecting vectors orthogonally onto vector spaces, and are therefore
called projection matrices. The symbol P will always represent a symmetric
idempotent matrix, so that P’ = P and PP = P> = P.

Example 1.1 Lety = (y1,y2,...y,)" and consider Q; = Y ,(v; —y)> = y’A1y and
0> = ny> = y'Ayy, where y is the mean of the y;. We now show that both A; and
A, are symmetric and idempotent. First Q) = Y_,y? — Q> and Q> = n~ ' (y'1,1.y)
so that A, = n~'1,1/ and A% = A,. Also Q1 = y/(I, — Ay)y so that we have
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A% =, - Az)2 =1I,—2A; + A, = A;. We note thaty'y = Q; + Q> or, in terms
of matrices, I, = A; + A,. This is a special case of Cochran’s theorem discussed
later.

Projection matrices have useful properties that are summarized in the following
theorem.

Theorem 1.4 The eigenvalues of a symmetric idempotent matrix P are zero or
one, and the number of unit eigenvalues is the rank of P. Also, rank P = traceP.
Conversely, if P is symmetric and its eigenvalues are zero or one, then P is
idempotent.

Proof Suppose P is nxn of rank r. As P is symmetric there exists an nxn orthogonal
matrix T (A.7) such that

T'PT = diag(A1, A2, ..., A,) = A say,
where A1, A,, ..., A, are the eigenvalues of P. Now

A’ = TPTT'PT = T'PPT = T'PT = A,

and Aiz = A, for each i. Thus the only possible eigenvalues are zero or one, and the
rank of P, which is the number of nonzero eigenvalues, is therefore the number of
unit eigenvalues, namely r. As the rank of a matrix is unchanged by premultiplying
or post-multiplying by a nonsingular matrix (see A.4(i)), rankP = rankA =
trace A = r. Since by A.1, trace[AB] = trace[BA],

trace P = trace[PTT’] = trace[T'PT] = trace A,

as T is orthogonal. Conversely, if the eigenvalues are 0 or 1 then A> = A, or
T'PTT'PT = T'PPT = T'PT, and P?> = P. This completes the proof.

Since a’Pa = a’P’Pa = b’b > 0, where b = Pa, we see that P is nonnegative
definite (see the beginning of the Appendix for a definition). This also follows from
the fact that the eigenvalues of P are nonnegative.

Finally we note that I,, — P is symmetric and

(I, —P)I,—P)=1,—2P+P>=1,—P,

which implies that I, — P is also idempotent. Hence, if ¢ = (I, — P)a, then we have
a’(I, —P)a = ¢/c > 0 and I, — P is nonnegative definite.

Example 1.2 Returning to Example 1.1,

rank[A,] = trace[A,] = trace[n '1,1/] = n~ ' trace 1/1, = 1
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and
rank[A] = trace[A|] = n — trace[A;] = n— 1.

Example 1.3 1t is possible for a matrix to be idempotent without being symmetric.
For example, the matrix X(X'V~'X)~'X’V~! that arises in generalized least squares
regression is idempotent as

XXV IX)TIXVIXXVIX)TIXVT! = XX VIX)TIX'VTL

Its properties are similar to those of the symmetric case (see A.13).

1.6 Expectation, Covariance, and Variance Operators

If Z = (z;) is a matrix (or vector) of random variables, we define the general
expectation operator of the random matrix Z to be E[Z] = (E[z;]). Then, by
the linear properties of the one-dimensional expectation operator E, we see that
E[AZB + C] = AE[Z]B + C, where A, B, and C are matrices of appropriate sizes
with constant elements. In particular, if y is a random vector with mean 6, then
E[Ay] = AS6.

We can also define the covariance, Cov[x,y], of two random vectors x = (x;)
and y = (y;) as the matrix with (i, j)th element cov[x;, y;|. If x = y, then we write
Covly,y] = Varly] = (cov[y;, y;]). This matrix is known variously as the variance,
variance-covariance, or dispersion matrix of y. Its diagonal elements are variances
and its off-diagonal elements are covariances.

Theorem 1.5 Let E[x] = o and E[y] = 3, then:

(i) Cov[x,y] = E[(x — a)(y — B)'].
(ii) Cov|[Ax, By] = ACov|x,y|B’.
(iii) Var[By] = BVar[y|B'.
(iv) Varly] is nonnegative definite, and positive definite if a'y # b for some b and
non-zero a.
(v) Ifa andb are constant vectors of suitable dimensions, then

Cov[x —a,y — b] = Cov[x,y].
If ¢ is a vector of the correct dimension, then
Var[y — ¢] = Var[y].

(vi) Varly] = E[yy'] — E[y|E[y’].
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Proof
(@)
Cov[x, y] = (cov[x;, y;])
= (E[(xi — ) 0 — B)D
= E[x—a)(y - 8)].

(i) Letu = Ax and v = By. Then, by (i),

Cov[Ax, By] = Cov|u, V]
= E[(u — E[u])(v — E[V])']
= E[(Ax — Aa)(By — BS)']
=EAKx—a)(y-3)B]
= AE[(x —a)(y - B)']B’
= ACov[x,y|B'.
(iii) From (ii), Var[Ay] = Cov|[Ay, Ay] = AVar[y]A’.
(iv) a’Var[y]a = var[a'y] > 0, which is strictly positive for non-zero a if we don’t

have a’y = b for some b and non-zero a.
(v) From (i),

Covlx—a,y—b] =E[{x—a—(ax—a){y—b— (8 -b)}]
= Cov[x,y].

Thensetx =yanda=b =c.
(vi) Use (i) with x = y and expand, namely

Varly] = E[(y — B)(y — 8)']
= Elyy — By —yB' + B8]
= Elyy] - 88"

Example 1.4 1f'y is an n-dimensional vector with mean @ and variance-covariance
matrix ¥ = (o3), then
var[y] = var[ly/n]|
= 1, Varly]1,./n®
=1,31,/n*

= ZZO’,:,’/}’!Z.
i
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1.7 Multivariate Normal Distribution

An n x 1 random vectory = (y;) is said to have a (non-singular) multivariate normal
distribution if its density function is

—n _ 1 _
@m) 2|32 exp —530 - 'S "y—m)y .

We note that E[y] = p and Var[y] = X; we shall write y ~ N, [, X]. Since ¥ is
nonsingular, it is positive definite. Some situations arise when X is singular (e.g.,
the joint distribution of the residuals in linear regression analysis). In this case the
density function does not exist, but then y can be expressed as Ax, where x has a
non-singular normal distribution of smaller dimension. The main properties of the
multivariate normal distribution we shall use are given in the following the theorem.

Theorem 1.6

(i) Ify ~ N,(u, X), C is an m x n matrix of rank m, and d is an m x 1 vector, then
Cy +d ~ N,,(Cu + d, CEC'): in particular a'y is univariate normal.

(ii) Lety = Tz, where T is an orthogonal matrix, and ¥ = 021, Thenz = Ty,
Var[z] = T'ST = 021, and z ~ N,[T’ ., 6*1,), that is the z; are independently
distributed as N[t} p, 0%, where t; is the ith column of T.

(iii) The moment generating function of the multivariate normal vectory is

M(t) = E[exp(t'y)]
= exp(t'p + t'3t/2).

This result also holds if X is singular.

(iv) A random vector 'y with mean p and variance-covariance matrix ¥ has an
N, (., X) distribution if and only if a'y has a univariate distribution for every
vector a. This can be used to define the multivariate normal distribution for
both the non-singular and singular case (when X is singular).

(v) If y has a singular or non-singular multivariate normal distribution, then
the vectors Ay (i = 1,2) are statistically independent if and only if
Cov[A1y, Azy] = 0.

Proof For detailed summaries of the properties of this distribution see Seber and
Lee (2003, chapter 3) and Seber (2008, Section 20.5, 435ff). Property (iv) gives
a very useful definition for the multivariate normal as all other properties can be
derived from it. It can also be used to provide a similar definition of the Wishart
distribution used in multivariate analysis.

In most of this book ¥ = ¢2I,. The matrix takes this form when the y; are
uncorrelated and have the same variance. In this case we see from the factorization
of the density function that the y; are independently distributed as N [i;, 2] In the
future we drop the subscript “1” from the univariate distribution.
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Example 1.5 If yy,y,,...,y, is a random sample from N(u,o?) we can prove that
y is statistically independent of Y_,(y; — y)* as follows. Now

y=1y/n=Ayy
and
=01 =3 y2=Y .. 0n =Y =y—L1y/n=Asy,
where A, = I, — 1,1/, /n. Then, by Theorem 1.5(iii),
Cov[y,z] = Cov[A1y, Ayy] = n~'1/ Var[y]A, = o?(n'1)(1, — 1,1/, /n) = 0.

This implies from Theorem 1.6(v) above that y is independent of z, and therefore of

2= (i —y)2.

1.8 Non-central Distributions

The random variable x with probability density function

1 o [ 6x 1
1 8) = ety (Y L
Fred) = 5o5e x ; &) arGg+y

where I'(a) is the Gamma function, is said to have a non-central Chi-square
distribution with v degrees of freedom and non-centrality parameter §; we write
x ~ x2(8). The distribution can also be expressed in the form

>\ (8/2)
fed) =23 Do),
i=0 :

where f,,+2(x, 0) is the density function for X% 10i» the (central) chi-square distribu-
tion with v + 2i degrees of freedom.
We note the following properties:

Theorem 1.7

(i) When § = 0, the above density reduces to that of x>.
(ii) E[x] =v + 4.
(iii) The moment generating function (m.g.f.) of x is

M(t,8) = (1 — 207" exp[81/(1 — 21)],



10 1 Preliminaries

and it uniquely determines the distribution as it exists as a function of t in an
interval containing t = 0. When § = 0, the m.g.f. of the chi-square distribution
is (1 —21)7"/2,

(iv) The m.g.f. of Ax is E[exp(xAt)] = M, (At, §).

(v) The non-central chi-square can be defined as the distribution of the sum of the
squares of n independent univariate normal variables y; (i = 1,2, ...,n) with
variances 1 and respective means ;. Thus if y is distributed as N,(p, 0°1,),
then x =y'y/o* ~ x2(8), where § = p' /o>

(vi) The non-central chi-square distribution has the same additive property as the
central chi-square, namely, if two random variables are distributed indepen-
dently as )(ﬁl(Sl) and Xﬁz(é’z), then the distribution of their sum is )(ﬁl Sy
(81 + 82).

Proof We shall just give an outline. Using (v), the moment generating function
of y? is readily obtained from which we can find the m.g.f. of y’y by multiplying
the individual m.g.f.s. together giving us (iii). This m.g.f. can be expanded as a
power series of m.g.fs of central chi-square variables and, because of the uniqueness
of the underlying density function, we find that the density function is a power
series in chi-square density functions, as given above. The result (ii) follows from
differentiating the m.g.f., while (iv) is straightforward. The moment generating
function of the sum of two independent random variables is the product of their
m.g.f.s, which readily leads to (vi).

Since § > 0, some authors set § = 72, say. Others use 6/2, which because of (ii)
is not so memorable.

If x ~ x2(8), y ~ x2, and x and y are statistically independent, then F =
(x/m)/(y/n) is said to have a non-central F-distribution with m and n degrees of
freedom and non-centrality parameter §. We write F ~ F,, ,(8). When § = 0, we
use the usual notation F,, ,, (= F,,,(0)) for the F-distribution. Another statistic that
is related to the F-statistic is

X mF
v = = B
x+y mF+n

which has the so-called non-central Beta distribution with a finite domain [0, 1]. For
derivations of the above distributions see, for example, Johnson et al. (1994).
1.9 Quadratic Forms

Quadratic forms arise frequently in this book and we begin by finding the mean and
variance of a quadratic form.
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Theorem 1.8 Let y be an n-dimensional vector with mean p and variance-
covariance matrix Varly] = X, let A be an n X n symmetric matrix and ¢ be an
n x 1 constant vector. Then:

(i)
E[y'Ay] = trace[AX] + p'Ap.
(ii)
E[(y — ¢)'A(y — ¢)] = trace[AX] + (1 — ¢)'A(p — ©).
(iii) If S = 0?1, then,
E[y'Ay] = o*(sum of coefficients of the y?) + (Y AY)y=p.-

Proof
(i) This can be derived by simply expanding the quadratic. However, the following
proof is instructive.
E[y'Ay] = trace(E[y'Ay])

= E[trace(Ayy’)], (since trace(BC) = trace(CB))
= trace(E[Ayy'])
= trace(AE[yy’])
= trace[A(Var[y] + pp')],  (by Theorem 1.5(vi))
= trace[AX] + trace[App']
= trace[AY] + p'Ap.

(i) Setting x = y — ¢ with mean p — ¢, then Var[x] = Var[y] (by Theorem 1.5(v)),

and the result follows from (i).
(iii) trace(AY) = trace(o0?A) = o trace[A], and the result follows from (i).

Example 1.6 Givenyy,y,,...,y, a random sample from N[u, 0] we show that

n—1
1
= /AZ—E i1 — i)
0=yAy 2(n—1)i=1(y+1 Vi)

is an unbiased estimate of o2. Now
1
2(n—1)

1

(2 =y1)* + 33 =) + oo+ On = Yue1)?]

0=
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and
E[y'Ay] = o7 trace[A] + (¥'AY)eachyi—p
=0’2+2(n—-2)]/[2(n— 1] =0".
Example 1.7 Suppose that the random variables y;, y2, . .., ¥, have a common mean

W, common variance o2, and the correlation between any pair is p. Let ¥ = Var[y].
We now find the expected value of y'Ay = _,(y; — ¥)?. Since A = (§; — %) and

1pp...p
n_g2|Plrp
ppp---1

E[y’Ay] = trace[AX] + 0
-Y Yo
i

= o’[n—1—p(n* —n)/n]

=o’(n—1)(1~-p).
This example show the effect of correlation on the bias of the usual estimate of
52 =Y".(vi —¥)?/(n— 1) of 0. Tts expected value is o%(1 — p).

Theorem 1.9 Let x|,x,,...,x, be independent random variables where, for i =
1,2,...,n, x; has mean 0;, variance azzi, and third and fourth moments about the
mean [L3; and [L;, respectively (i.e., i; = E[(x; — 6;)"]). If A is any n X n symmetric
matrix, d is a column vector of the diagonal elements of A, andb = A0, then:

(i)

ar[x'Ax] = Z s+ Y Y ity + 2 Y @ity

i jj#i i jj#i

+ 4 Z biz,ltzz' +4 Z waibiai; — (Z aiiMZi)z

(ii) If oy = o, U3 = W3 and pa; = g fori =1,2,...,n, then

ar[x’Ax] = (g — 3p3)d’d + 23 trace[A%] + 41,0'A0 + 41130’ Ad.
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(iii) If the x; are normally distributed then

ar[x’Ax] = 2 Z Z afiuzi,uzj +4 Z b2 .
T, i

(iv) Ifx ~ N, (0, 0°L,) then
var[x’Ax] = 20* trace[A?] + 40260'A%0.
Proof
(i) Now
Var[x'Ax] = E[(x'Ax)?] — (E[x'Ax])>.
Ify = x — 0 so that E[y] = 0, then

xX'Ax = y'Ay + 2b'y + 6'A6.

Hence
E[X'Ax] = E[y'Ay] + 60'A0
=Y aiElyiy] + 6'A0
i
= Z aiiflri + 6'A0.
Also

(X'Ax)* = (Y'Ay)” + 4(b'y)* + (9'A6)’
+ 20'A0y' Ay + 40’'A0b'y + 4b'yy'Ay,

and (y'Ay)? = > Z Dok Do aijakeyiyiyeye. Since

Mais i=j=k=1{

Woifor, 1=j. k=1

Elyiyiyiyel = § Maiptaj, i=k,j=1"
Moifloj, T=4L,j=k

0, otherwise,

we have

E[(y Ay)z] = ZCZH,LMI + Z Z Qg L2i A2k +2 Z Za”/'LZlMZ]

i ki i jy#i

13

(1.1)

(1.2)



14 1 Preliminaries

Also
E[(®'y)’] = E[Q_ by’ = E[Y_ D bibyyl = D _ b o,
i i i
and

[b'yy'Ay] = Z Z Z boyiagyiy] = Z psibiaii.

Taking the expected value of (1.2) and substituting into (1.1) leads to our result.
(i)

varly' Ay] = (uq — 3#2) Z a; + Ky Z Z aidjj + 2:“2 Z Z aj;

+4ob'b + dpsb'd — 13 ai)?

i

= (g — 3ud)d'd 4 2443 trace[A?] + 4u,b'b + 4p3b'd,

since trace[A?] = Y. D ai = 3> alj, which is our result. This result

was stated without proof by Atiqullah (1962).
(iii) Since x; is normally distributed, jt4; = 3;1,%“ w3 = 0, and the result follows.
(iv) Here u, = o2, and (iv) follows from (iii).

Example 1.8 Ify ~ N, [0, X], where X is positive definite, we shall find the variance
of y'Ay, where A is any symmetric n X n matrix. Since X is positive definite, there
exist a nonsingular matrix R such that ¥ = RR’ (by A.9(iii)). If z = R‘ly, then

Var[z] = R"!ZR™Y = RT'RRR™! =1,
and z ~ N,[R™'0,1,]. Using Theorem 1.9(iv),

var[y’Ay] = var[z’R'ARz]
= trace[(R’AR)?] + 40'R™V(R'AR)’R"'6
— trace[R'ARR'AR] + 49'R""R'ARR'ARR ™'
= trace[R'AYAR] + 460’'AXA0
= trace[AXAY] + 40'ATAO (by A.1).

The following three theorems are used throughout this book.

Theorem 1.10 Supposey ~ N, (w,0>1,). If P is symmetric and idempotent of rank
r, then the quadratic y'Py/o? is distributed as non-central chi-square with r degrees
of freedom and non-centrality parameter § = p'Pu/o>.
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Proof Suppose P is n x n. As P is symmetric and idempotent, we may assume
without loss of generality that the first  eigenvalues are unity and the rest are zero
(Theorem 1.4 in Sect. 1.5). Then there exists an orthogonal matrix T such that

L0
TPT=( ).
(00)

and
IO
P=T|( "~ T
(v0)

t]
:(ti7t27"'7tr) E
t/

=T,T,, say,

where t, 15, ..., t, are the first 7 columns of T. Putting y = Tz gives us

y'Py = ZT'PTz
=z +n+ -+,

where the z; are independently distributed as N[t,u, 0%] (by Theorem 1.6 (ii) in
Sect. 1.6). Hence Y ;_, z2/0* ~ x%(8) (by Theorem 1.7(iv)), where

8=) (tw?/o®

i=1
= W'T,T,p/o’
= p'Pu/o’.
The converse is also true, as we see in the following theorem.

Theorem 1.11 Supposey ~ N,(u,0L,). If y'Ay/c?, where A is symmetric, has a
non-central chi-square distribution, then A is idempotent.

Proof Let y'Ay be any quadratic form and let S be the diagonalizing orthogonal
matrix. Putting y = Sz gives us

YAy = izt + g3 + - + Az

where the A; are the eigenvalues of A. From the proof of the previous theorem, the
z; are independently distributed as N[s]p, 2] and 72 /0% is non-central y3(3;), where
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§i = (s;u)?/0?. The m.g.f. of A;z2/0? is, by Theorem 1.7(iii) and (iv),

SiA;t
. N = (1 —2).F)"V/2 L
M;(,8) = (1 -2\, exp (1 — ZM) )

Hence the m.g.f. of y’Ay/o? is []; Mi(t,8;) which has to be the m.g.f of a non-
central chi-square distribution. This can only happen if the A; are 0 or 1, so that A
is idempotent. We note that if the first r eigenvalues are 1 and the rest are zero and

§ =Y "_,8,then

[IMie.8) = (1 =207 exp (1 ‘”2[) :

which is the m.g.f. of the non-central chi-square distribution X% (©).

Theorem 1.12 Suppose y ~ N,(u,01,). Given n x n symmetric idempotent
matrices A; (i = 1,2), then the quadratics y'A;y/o? (i = 1,2) are statistically
independent if and only if A1A, = 0. (We note that the assumption of idempotency
is not necessary, but the proof is instructive and relevant to its application in this
book.)

Proof It follows from Theorem 1.10 that the quadratics are each distributed as non-
central chi-square. Since they are independent, their sum is also non-central chi-
square (Theorem 1.7(vi)) so that by Theorem 1.11 A; + A, is idempotent. Hence

(Al + A2) = (Al + A2)(A1 + Az) =A+AA +AA + A,

so that AjA, + AA; = 0. The two equations obtained by multiplying the last
equation on the left (right) by A; give us

AA, +AAA; =0, and AAA; +AA =0,

so that AjA, = AyA; = 0. Conversely, given AjA, = 0, it follows from
Theorem 1.5(ii) in Sect. 1.6 that

Cov[A1y, Asy] = A, Var[y]A, = 0°A1A; = 0.

Hence by Theorem 1.6(v), A;y and A,y are statistically independent and the
quadratics Y'A;y = (A;y)'A;y (i = 1, 2) are statistically independent.
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1.10 Lagrange Multipliers

For the reader who is not familiar with the use of Lagrange multipliers we introduce
a brief section on their use in three situations. First, suppose we wish to find a local
maximum or minimum of a function g(0), where 8’ = (6, 6,,...,6,), is subject
to a linear constraint 2’0 = 0, and a’ = (ay, ay, . . ., a,). We introduce an unknown
constant called a Lagrange multiplier A for the constraint and consider the function

f(6) = 3(0) + A(2'0).

If we have the notation that

0 0 )\’
Dg(6) = 92(0) _ (3g( ) ds( )) ’

20 a6, * 7 06,

then the relative maximum or minimum is then given by differentiating the f(8)
with respect to 6 (cf. A.20), namely

Dg(@)+1a=0 and a0 =0, (1.3)

and solving for 6.

A second situation is when we have k independent linear constraints a;0 = 0
(i = 1,2,...,k). We then introduce a Lagrange multiplier A; for each constraint
and optimize the function

2(6) + ) Xi(al) = g(6) + X'A6,

l

where A" = (a;, a,...,a,) = (a;). The relative maximum or minimum, 6, is then
given by solving

ag(0
06;

k
D43 My =0 G=1.2....n)

i=1
and
320 =0 (i=12,....k),

where a;; is the jth element of a;. We thus have (k+ n) equations in (k+n) unknowns
0 and A, and therefore, theoretically, they can be solved. Since ), Aia; = Y, a]’.i/\,-,
the jth element of A’), the equations can be written in the form

Dg(0) + A'A =0 and A6 =0. (1.4)
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Finally, if the constraints are nonlinear, say a;(0) = O fori = 1,2,...,k, and the
matrix A has (i, j/)th element da;/ 06}, then the equations become

Dg(@) +A'A =0 and a(d) =0, (1.5)

where a(0) = (a1(0),a2(0), ..., ar(0))’.

Sufficient conditions for a local maximum or a local minimum are given by Seber
(2008, 516-517). However these conditions are awkward to apply and one usually
uses ad hoc methods to determine the nature of the stationary value.

In conclusion, we look at the role of the Lagrange multiplier in applying
identifiability conditions. Suppose g(€) is any real-valued “well-behaved” function
of @ with domain A and range R, and a(@) = 0 is now a set of k constraints
sufficient for the identifiability of 8. This means that for every b € R, there exists
a unique 0 € A satisfying the equations g(6) = b and a(6) = 0. Following Seber
(1971, Appendix), let r = n — k and consider the transformation from 6 to

d) = (g(e)v 925 cee erv a/(e))/ = C(e),

say. Now given b € A, then for ¢y = b, ¢p; = 6; (i = 2,3,...,r),and ¢; = 0
(i=r+1,...,n), ¢ is uniquely determined by the definition of identifiability. This
implies that subject to the constraints on ¢, the transformation is one-to-one and the
matrix of partial derivatives

Co = (9ci(0)/96))

D de
36, " 90,
0 Ir—l
= | du day
= |3 - 9,
da dag
3, " 90,

is non-singular. Defining A = (da;/d6;) as above, then for all @ such that a(g) = 0,
the columns of Cj are linearly independent and

Dg(0) + A'A=0 (1.6)

implies that A = 0. This means that in finding the stationary values of g subject to
the identifiability constraints a(@) = 0, the Lagrange multiplier is zero.
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Chapter 2
The Linear Hypothesis

2.1 Linear Regression

Ini this chapter we consider a number of linear hypotheses before giving a general
definition. Our first example is found in regression analysis.

Example 2.1 Suppose we have a random variable y with mean 6 and we assume that
6 is a linear function of p non-random variables xo, X1, . .., X, called regressors or
explanatory variables, namely,

0= ,BOxO + ,lel + -+ ,Bp—lxp—h

where the B’s are unknown constants (parameters). For n values of the x’s, we get n
observations on y, giving the model G

yi="0i te&
= xi0Bo +xiap1+ -+ xip—1Bp—1 +&, (=12,...,n),
where E[e;] = 0; generally x;0 = 1, which we shall assume unless stated otherwise.

This is known as a multiple linear regression model with p parameters, and by
putting x; = x; we see that the polynomial regression model

vi = Bo+ Bixi + Pox? + -+ Bpord T + e,

of degree p — 1 for a single variable x is included as a special case. We can also have
a mixture of both models. The linearity resides in the parameters.

Two further assumptions about the errors ¢; are generally made: (i) the errors are
uncorrelated, or cov[e;, ;] = Oforalli # j and (ii) the errors have the same variance
o2 If we wish to test the null hypothesis H : 8, = B4 = -+ = Bp—1 = 0, then we
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need to add a further assumption that the errors are normally distributed. If we define
X = (x5), 8 = (Bo.Bi1.....Py—1), and let X, represent the matrix consisting of the
first r columns of X, then the model, assumptions, and hypothesis can be written in
the formy = 0 + ¢, where € ~ N,[0,0%L,], G : 0 = XBand H : 0 = X,[3,,
where 3, is the vector of the first r elements of 3. In this situation X usually has
full rank, that is the rank of X is p. If we define the two column spaces 2 = C[X]
and v = C[X,], then it follows from Sect. 1.2 that §£2 and w are vector subspaces
of R" and w C £2. Thus H is the linear hypothesis that 8 belongs to a vector space
o given the assumption G that it belongs to a vector space §2. We also have that
Var[y] = Var[y — 8] = Var[e] = oI, (Theorem 1.5(v)) so that y ~ N,[X3, o°L,].

2.2 Analysis of Variance

Example 2.2 'We note that some of the x-variables in our regression model can also
be so-called indicator variables, that is variables taking the values of 0 or 1. For
example consider n observations from the straight-line model

Elyil=Bo+Bixi, i=1,2,...,n,

where x; = Ofori = 1,2,...nyandx; = 1 fori = n; + 1,ny +2,...,n If
n —n; = ny, then X3 takes the form

ln 0 ,30 )
X3 = ! .
6 ( 1"2 1"2 ) ( :31
This model splits into two models or samples, namely E[y;] = By for i =
1,2,...,ny and E[y;] = Bo + B1 fori = 1,2,...,n,. This would give us a model
for comparing the means (= Bo) and p(= Bo + B1) of two samples of sizes n;
and n; respectively. Testing if ;1 = p, is equivalent to testing 81 = 0. This type of

model where variables enter qualitatively is sometimes referred to as an analysis of
variance (ANOVA) model.

Example 2.3 We now consider generalizing the above example to comparing /
different samples with J; observations in the ith sample. Let y; (i = 1,2,...,]
andj = 1,2,...J;) be the jth observation from the ith sample, so that we have the
model y; = p; + ¢;;. Setting y = 6 + €, where

/
Y = 1,012, - - Y1 Y20 Y225 o s Y2las oo s VI V12 -+ 5 YiIT) s
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and 6 is similarly defined, we get 8 = Xpu, where

1, 0 --- 0
S PARTEN |

X = _ , Q2.1
00 -1,

and p = (1, 42, ..., 1)’ . Suppose we wish to test the hypothesis H : i1 = pu, =
-+ = u; (= u, say),or 8 = 1,u, where 1, is obtained by adding the columns of X
together. Then, from the previous section, 2 = C[X] and w = C[1,].

Alternatively, we can express H in the form

M1 — o =y — U3 =++-= 1 —py =0,
which can be written in matrix form Cp = 0, where

1-1 0-

C= 0 1-1-

.0 0
.0 0

00 0---1-1
Since & = Xpu and X has full rank p, the p x p matrix X’X has rank p and is therefore

nonsingular (cf. A.4(ii)). From @ = Xu we can then multiply on the left by X’ and
get 1 = (X’X)"'X’6. Hence H takes the form

0=Cup=CXX) X6 =86, (2.2)

say, or 6 € w, where w = C[X] N V[B].

An alternative parametrization can be used for the above example that is more
typical of analysis of variance models. Let u = Zle wi/I and define o; = p;—u so
that u; = u + ;. Then Zle a; = 0 is an “identifiability condition” (see Sect. 3.4)
giving us I 4+ 1 parameters or / free parameters still. We now have

n
L1, 00\ [ o
xg= |12 0l 0 (1o | 23)
1,0 0 -1,
o

where the first column of X, namely 1,, is the sum of the other columns, and the
matrix X is no longer of full rank.
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Example 2.4 We consider one other ANOVA model, the randomized block design
where there are J blocks and / treatments randomized in each block. Let y;
with mean 6; be the observation from the ith treatment in the jth block and,
fori = 1,2,...,1, lety; = (yil,yiz, - ,y,'j)/ and 0; = (9,'1, O, ... 9,’])/. Let
Yy = (¥].¥5....y}) with 0 and € similarly defined. We assume the model

yyzeij+€yzﬂ+ai+ﬁi+€y, (l: 1,2,...,Ilj:1,2,...,.,),

ory = 6 + €, where 8 = X§, namely

0, L,1,00--0|L

6, L0100 || ("
= o s

6, L{000--1,|L

where o = (001,02, ...,07) and B = (B1, B2, ..., By).

We have IJ observations and 1 + / + J unknown parameters. Setting 0, =
> 0i/J and 0. = 37, 3" 0;/1] etc., we assume from the randomization process

that the so-called interactions y; = 6; — §i, — @,j + 6. are all zero, i.e., CO = 0
for some matrix C. Since we have ) ;y; = 0 forj = 1,2,....J, Zi i =0
fori = 1,2,...,1, and both sets include ), Zi yi =0,wehavelJ —I—J+ 1=
(I-1)(J—1) independent constraints so that C will be (/—1)(J—1) x1J. The number
of parameters that can be estimated is IJ — (I — 1)(J — 1) = I +J — 1, which means
we have 2 too many parameters in §. We need to add two identifiability constraints
suchas ) ;o = 0 and Zj B; = 0,0r oy = 0and B; = 0, for example. By summing
columns, we see that the matrix X above has two linearly dependent columns so that
itis IJx (1 +14J)ofrankI+J—1.If we set oy = 0 and B, = 0 then X is reduced
to X, say, with full rank and the same column space as that of X, and ¢ is reduced
by two elements to d;, say. We are usually interested in testing H that there are no
differences in the treatments. Then H : o = o = --- = ay_1 = 0or C16; = 0,
say. Using (2.2) with §; = (X|X;)™'X/ 0, we now have 2 = C[X] N N[C] and
o =2 NN[C (X X)) 'X]].

2.3 Analysis of Covariance

When we have a mixture of quantitive and qualitative explanatory variables we have
a so-called analysis of covariance model. For example

yvi=mi+yvz+e (=12,...,0:j=12,...,J)

represents observations from / straight-line models. Two hypotheses are of interest,
namely H; that the lines are parallel (i.e. equal y;) and H, that the lines have the
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same intercept on the x-axis (i.e. equal ;). If both hypotheses are true, the lines are
identical. This model G can usually be regarded as the “sum” of two models with
2 = C[X] @ C[Z], where Z = (z;), X is given by Eq. (2.1) in the previous section,
and C[X] N C[Z] = 0. Such “augmented” models are discussed in Chap. 7.

2.4 General Definition and Extensions

The above examples illustrate what we mean by a linear hypothesis, and we now
give a formal definition. Let y = 0 + &, where 0 is known to belong to a vector
space §2, then a linear hypothesis H is a hypothesis which states that 8 € w, a
linear subspace of §2. The assumption that @ € 2 we denote by G. For purposes
of estimation we add the assumptions E[e] = 0 and Var[y] = Var[e] = oI,
and for testing H we add the further assumption that € has the multivariate normal
distribution. We now consider three extensions.

Example 2.5 There is one hypothesis that is basically linear, but does not satisfy the
definition. For example, suppose 8 = X3, where X is n x p of full column rank p,
say, and we wish to test H : AG = a, where A and a are known and a # 0. Now
(B = X'X)"'X’0, so that v = {0 : A(X’X)"'X'0 = a} is not a linear vector space
(technically a linear manifold) when a # 0. However, if we choose any vector ¢
such that Ac = a (which is possible if the linear equations A3 = a are consistent)
and put

z=y—Xc, ¢p=0—-Xc=X(B—-c¢), and vy=3-—c,
we have
z=¢+e, G:¢=X~,
and H : Ay = A(B—¢) = 0 or AX'X)"'X'¢p = Aj¢p = 0 is now a linear

hypothesis with o = N[A;] N 2 and 2 = C[X].

Example 2.6 In some examples the underlying model takes the formy = 6 + n,
where 7 is N, [0, 0>B] and B is a known positive-definite matrix. This implies that
there exists a nonsingular matrix V such that B = VV’ (by A.9(iii)). Using the
transformations z = V~'y, ¢ = V7!6, and e = V~!7 we can transform the model
to z = ¢ + e, where by Theorem 1.5(iii) in Sect. 1.6,

Var[e] = Var[V™!5]
= V" 'Var[p](v™")’
=’V I VV (V) =621,
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as before. To see that linear hypotheses remain linear, let the columns of W be any
basis of §2. Then

R=1{0:0=W3)
={¢p:¢=V'Wg}
= C[V~'W].

To test AB = 0 we note from above that 3 = (W'W)"!W’@ so that we have
H:AWW)"'WVep =00rw = 2 NNAWW)'W'V].

Example 2.7 One model of interestisy = @+¢, where € ~ N, [0,1,], 2 = R", and
w is a subspace of R". Although this model appears to be impractical, it does arise
in the large sample theory used in the last three chapters of this monograph. Large
sample models and hypotheses are shown there to be asymptotically equivalent to
this simple situation.



Chapter 3
Estimation

3.1 Principle of Least Squares

Suppose we have the model y = 8 + &, where E[e] = 0, Var[e] = ¢%1,,and 8 € £2,
a p-dimensional vector space. One reasonable estimate of 8 would be the value 6,
called the least squares estimate, that minimizes the total “error” sum of squares

SS=) e =ly-601
i=1

subjectto 8 € £2. A clue as to how we might calculate 6 is by considering the simple
case in which y is a point P in three dimensions and £2 is a plane through the origin
0. We have to find the point Q (= 6) in the plane so that PQ? is a minimum; this is
obviously the case when OQ is the orthogonal projection of OP onto the plane. This
idea can now be generalized in the following theorem.

Theorem 3.1 The least squares estimate 6 which minimizes |y—0 |>for6 c 2
is the orthogonal projection of y onto §2.

Proof Let o, oy, ... ,at, be an orthornormal basis for £2 and let ¢; = aﬁy. Then
P P
y= Zciai +(y— Zciai)
i=1 i=1
= a+ b, say.
© Springer International Publishing Switzerland 2015 27
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Now premultiplying by a} we get

p
M — P
ocjb =y — E cioG

i=1

p

= Cj— E C,'Sij
i=1

= O’

where §;; is 1 when i = j and O otherwise. Thus a € §£2, b L £2, and we have
decomposed y into two orthogonal vectors. This decomposition is unique otherwise
there will exist some other decomposition y = a; + b;. Then we have a; —a =
by — b, and since a; —a € 2 and b; — b € 21, both these vectors must be the

zero vector; therefore a; = a and b; = b. The unique vector a is the orthogonal
projection of y onto §2, and we now show thata = 6.
Sincea—0 € 2,

(y—a)(a-6)=b'(a-0)=0,
and fromy — 6 = (y —a) + (a — ) we have

ly—0IP=ly-al’+la-0]>+2(y—a)@a—9)
=lly-al’+Ja-6]".

Therefore || y — 6 ||? is minimized when 6 = a, and 0 = a.

3.2 Projection Matrices

We now show that € can be found by means of a linear transformation of y.

Theorem 3.2 If 6 is the least squares estimate defined above, then 6 = Poy,
where P is a unique symmetric idempotent matrix of rank p (the dimension of
§2) representing the orthogonal projection of R" onto §2.

Proof From Theorem 3.1,
6=a

P
= E i
i=1
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= («a 1,a2,...,a,,)(al,az,...,a,,)’y

Now Py, = Py and PoPp = T(T'T)T' = TT' = Py,. Hence Py is symmetric
and idempotent. If P is any other n xn matrix representing this orthogonal projection
then, by the uniqueness of a, (P — Pg)y = 0 for all y so that P = Py, and Py is
unique. Also

rank[Pg] = rank[TT'] = rank[T] = p,

by (A.4(ii)).
The converse is also true as we see from the following theorem.

Theorem 3.3 If P is a symmetric n X n idempotent matrix of rank r, then it
represents an orthogonal projection of R" onto some r-dimensional subspace V.

Proof From the previous theorem we see that P can be expressed in the form
(sty...,8,)(s1,...,s,), as with TT' above. Hence P represents an orthogonal
projection onto the vector space spanned by the orthonormal basis sy, . . ., s,. If this
vector space is V, then dim V' = r and the proof is complete.

A very useful result that will often be used is the following.

Theorem 3.4 If §2 is any subspace of R" and Pgq represents the orthogonal
projection of R" onto 2, then C[Pg] = £2

Proof From Theorem 3.2, P, = TT’, where the columns of T form an orthonormal
basis of 2. If @ € £2, then @ = T for some x and P = TT'Ta = Tax = 0 and
6 € C[Pg]. Conversely, if @ € Py, then 8 = T(T’'3) forsome 3,and 6 € C[T] = 2

Thus the two vector spaces are the same.

Since from the previous proof we have Po6 = 6 when 6 € £2, we have that
E[H] = PgE[y] = Ppf = 6 and 6 is an unbiased estimate of 6. In addition
Var[f] = 0?PoP), = 0?Pg.

3.3 Examples

Example 3.1 (Linear Regression) Lety = 6 + €, where E[y] = 6 = X3 and X
is an n x p matrix of rank p. Here 2 = C[X] = {0 : 8 = X3}. Also we assume
Varly] = 021,. Now, from the previous section, P = TT', where the columns
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of the n x p matrix T form an orthonormal basis for 2, i.e., T'T = I,. Since the
columns of X also form a basis of §£2, X = TC, where the p x p matrix C is a non-
singular matrix. Otherwise if C is singular, rank[X] < rank[C] < p by A.2, which is
a contradiction. Hence:

1) Pop =TT = XClc X = X(C'O)™'X' = X(X’X)™'X'. Since Py, is

idempotent, we have p = rank[P;] = trace[Pg;] by Sect. 1.5.

(i) PeX = XX'X)"IX'X = X.

(iii) By Theorem 1.4 in Sect. 1.5, I, — P, is symmetric and idempotent and

rank[I, — Pg] = trace[l, — Pg] = n — trace[Pg] = n —p.
If = X3, then
B=XX)"'X6 = (XX)'XPaoy = (XX)'Xy
by (ii), and (see Sect. 1.6)

E[B] = X'’X)"'X'’XB=8 and
Var[3] = (X'X) "' X' Var[y]X(X'X) ! = oc2(X'X) .

These results can also be derived by the more familiar method of minimizing the
sum of squares SS =| y — @ || for @ € £2; that is minimizing the sum of squares
SS = (y—-X08)(y—XB3) =yy-—-20Xy+ BXX3 with respect to 8. If d/d3
denotes the column vector with ith element d/dg; then we find that (A.20)

dBX'y) _ o dBX'XB) _ o
giving us
d(SS) _ A Xy —

These equations are known as the least squares or normal equations and have the
solution 8 = (X’ X)~' X'y, as before. They also follow directly from the fact that
y—0 1 2, thatis

0=X(y—8) =X (y—Xp). 3.2)
Using the transpose of (3.2) we note that

(y —XB)'(y — XB)
=(y—-XB+XB-XB)(y—XB+XB—-XPB)
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= (y—XPB)(y - XB) +2(y — XB)' (X3 — XB) + (XB — XB)' (X3 — XB)
= (y—XB)(y—XB) + (B - BXX(B - ).
Since XX' is positive definite (A.9(vii)), (B —BYX'X(3—B) > 0 unless 3 = 3,

which shows that 3 is a unique minimum.
We have, by A.4(i),

rank[(X'X) "'X'] = rank[X'] = p,

so that if y is multivariate normal we have by Theorem 1.6(i) in Sect. 1.7, B is
Np[B, o> (X'X)7'].

Example 3.2 Let 2 = NA], where the rows of A are linearly independent. Then
I, — Py represents the orthogonal projection of R” onto £21 since we have the
orthogonal decompositiony = Py + (I, — Pg)y. As 2+ = C[A’] (Theorem 1.1 in
Sect. 1.2) it follows from Example 3.1 that

Po=1,—-P,. =1,— A/(AA)'A.
Example 3.3 Suppose the yi,yi,...,y, are independent observations from

N[w,0?%). Theny = 6 + ¢, where € is N,[0,0°I,] and @ = 1,u. As 2 = C[1,],
P, =1,(1/1,)"'1/ = n~'1,1/, and therefore

~

0 =Poy =1,y
Hence, from 3 = (X’X)_IX’@,
=0Ty =7
Example 3.4 Suppose that y = X3 + n and Var[n] = o*B, where X has full rank
and B is a known positive-definite matrix. To find the least squares estimate of 3 we
can use Example 2.6 of Sect. 2.4 and transform the model to the standard form

z=¢+e and Var[e] = 0’l,,

using the transformationz = V™'y, ¢ = V7' = V~!X3, where V is given by
B = VV’ (cf. A.9(iii)). We now minimize (z — V™'X3)'(z — V™'X3) or

(y—XB)B~'(y—XB) = yBy —28X'B”'y + #X'B"'X3
with respect to 3. Differentiating with respect to 3 and using A.20 we get

—2X'B7 'y + 2X'B7'X3 =0,
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so that the least squares estimate of (3 is
B =XB'X)"'X'By,
and that of 0 is
6 = X3 =XXB'X)"'X'B'y = Py.

We note that P> = P so that P represents a projection, but it is an oblique projection
rather than an orthogonal one as P is not symmetric.

In practice it is often simpler to work with the original observations y and
minimize the above modified sum of squares rather than calculate the transformed
observations z. The method is referred to as generalized least squares. In many
applications B is a diagonal matrix B = diag(wy, wy, ..., w,), for example when y;
is the mean of a sample of n; observations so that w; = 1/n;, and our sum of squares
to be minimized takes the form Y/, wi ! (y;—6;)?, where the w; are suitably chosen
weights. This method is usually referred to as weighted least squares. Sometimes B
is a function of @ and iterative methods are needed to find the least squares estimates.

3.4 Less Than Full Rank Model

Suppose that 2 = C[X] but now X is n x p of rank r (r < p). This means that
although 0 is uniquely defined in & = X3, 3 is not, as the columns of X are
linearly dependent. In this situation we say that 3 is non-identifiable and the least
squares equations (3.1) in Example 3.1 do not have a unique solution for 3. To
overcome this, we introduce a set of 7 constraints H3 = 0 on 3 satisfying two
necessary and sufficient conditions for the identifiability of 3: namely (i) for every
0 € $2 there exists a 3 such that 8 = X3 and H3 = 0, and (ii) this 3 is unique.
The first condition is equivalent to C[X'] N C[H'] = 0, that is no vector that is
a linear combination of the rows of X is a linear combination of the rows of H
except 0 (for a proof see A.11). The second condition is satisfied if the rank of the
augmented matrix G = (X', H')’ is p, for then the p X p matrix G'G = X’X + HH
is nonsingular, and adding X'0 = X'X3 to 0 = H'HS gives the unique solution
B = (G’G)~'X’0. Thus, combining these two results, the conditions H3 = 0 are
suitable for identifiability if and only if rank[G] = p and rank[H] = p — r. In
general we can assume that there are no redundant identifiability constraints, so that
t = p — r and the rows of H are linearly independent.
From Sect. 1.10 and (1.4), the least squares equations are given by

2X'XB—2X'y + HA =0
HB = 0, (3.3)

where A\ is the vector Lagrange multiplier. This leads to the following theorem.
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Theorem 3.5 [f the constraints HB = 0 are suitable for identifiability constraints
andt = p —r then:

(i) B=(G'G)"'Xly.
(ii) Po = X(G'G)~'X".

(iii) A =0.
(iv) HG'G)™'X' = 0.
Proof

(i) Equation (3.2) holds irrespective of the rank of X. Since the constraints H3 =
0 are suitable for identifiability, there exists a unique B satisfying 0 = XB,
that is satisfying the normal equations (3.1). Hence adding in H’ HB = 0 leads
to B = (G'G)~'Xly.

(i) 0 = X3 = X(G'G)"'X'y = Pyy. As Py, is unique (Theorem 3.2), we have
P, = X(G'G)'X.

(iii) Since (3.1) holds for 3, H'A = 0 (by (3.3)). Hence A = 0 as the columns of
H' are linearly independent.

(iv) From 0 = H3 = H(G'G)~'X'y for all y, we have H(G'G)™'X’ = 0, and this
completes the theorem.

We note that as H3 = 0,
E[B] = (G'G)"'X'XB = (G'G)"'G'GB =3

and B is unbiased.

The essence of the above theory is that we wish to find a solution to the normal
equations (3.1) and we do this by imposing the identifiability constraints H3 = 0
without changing 2 (as indicated by A = 0, a special case of (1.6) in Sect. 1.10).
However, another method of finding a solution is to use a weak (generalized) inverse
of X’X. A weak inverse of a matrix L is any matrix L™ satisfying LL”L = L (See
Seber 2008, chapter 7). Now using the normal equations,

X'y = X'X3 = X'X(X'X)"X'X3 = X'X[(X'X)"X'y],
so that ,5’ = (X’X)~X'y is a solution of the normal equations. Since
Poy = 6 = X3 = X(X'X) X'y
for all y, we see that P = X(X'X)™ X/, by the uniqueness of Pg (Theorem 3.2).

From Theorem 3.5(ii), X'X(G'G)™'X'X = X'PoX = XX, so that (G'G)~" is
a weak inverse of X’X. It can be shown that another weak inverse of X'X is By

defined by
XXH\ ' (BB
Ho/ “\Byo)



34 3 Estimation

Instead of introducing identifiability constraints, another approach to this prob-
lem of identifiability of the 3 is to find out what functions of 3 are estimable. A
linear function ¢’3 is said to be estimable if it has a linear unbiased estimate a'y.
Thus

a’X3 = E[dy] = /B

is an identity in 3, and ¢’ = a’X. Hence ¢’ is an estimable function of 3 if and only
if ¢ is a linear combination of the rows of X. Since ¢/3 = a’6, the class of estimable
functions is simply the class of all linear functions a’@ of the mean vector. We note
that if ¢ is linearly independent of the rows of X, then ¢/3 is not estimable. Thus it
follows from A.11 that the identifiability constraints H3 = 0 are simply obtained
from a set of non-estimable functions h!3, where the h; form the rows of H.

We note that if ¢/3 is estimable, and ﬁ is any solution of the normal equations,
then ¢/3 is unique. To show thi§ we ﬁrstA note tpat ¢ = X’a for some a, so that
¢B = a’X@3 = a’0. Similarly, ¢’ = a’X3 = a’@, which is unique.

3.5 Gauss-Markov Theorem

Having given a method of estimating 8, namely by a least squares procedure, we
now ask if there are better ways of estimating 8. Our question is partly answered by
the following theorem (due to Gauss) that proves that the least squares estimate is
best in a certain sense.

Theorem 3.6 IfE[y] = 0, Varly] = 0°I,, 8 € 2, and ¢ = a'0, then among the
class of linear unbiased estimates of c there exists a unique estimate ¢ = a’Pgy
which has minimum variance. Thus if b'y is any other linear unbiased estimate of c,
then var[b'y] > var][c].

Proof Since Pp0 = 0 anda = Ppa + (I, — Pp)a,

¢ = E[a'y]

= E[(Pga)’y] +a'(1, — Pg)0

= E[c].
Thus ¢ is a linear unbiased estimate of c.

If b’y is any other linear unbiased estimate of ¢, then by a similar argument
(Pgb)'y is also an unbiased estimate. Now
0 = E[(Pgoa—Pgb)'y]
= (P_Qa — Pgb)’O



3.6 Estimation of o2 35

for every @ € 2, and hence (Poa — Pob) € £+, But this vector belongs to £2
so that Poa = Pgb for every b, and this projection of b, namely Pb, leads to a
unique ¢. Also
varb'y] = o> | b ||?

=o’(| Peb > + | (I, —Po)b )

>0 || Pob |

=0" | Pea |?

= var|c],
with equality only if b = Pob = Pga. Thus ¢ is the unique unbiased estimate of ¢
with minimum variance for the class of unbiased estimates.

If we are interested in the single elements 6;, then we choose a = e;, where
e; has 1 in the ith position and zeros elsewhere. We therefore have that the linear
unbiased estimate of 6; with minimum variance is e;ng = e;é = éi, the least
squares estimate of 6;.

3.6 Estimation of o>
Lety = 0 + € where E[¢] = 0 and Var[e] = 071, Since

El(y—0)(y—0)] = E[y_&] = no’,

we would expect the residual sum of squares RSS =|| y — 0 |? to provide some
estimate of 02. Let R = I, — Pg,. Since R is idempotent,

RSS = ||y —Poy |
=y R’
= y'Ry
=(y—-0)R(y—0)
= ¢'Re,

as RO = 0. From Theorem 1.8(iii) in Sect. 1.9 we have

E[RSS] = o trace[R] = o2 (n — trace[Pg]) = o*(n — p). (3.4)
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Therefore an unbiased estimate of o2 is given by
s> =yRy/(n—p). (3.5)
Ify ~ N,(O, azln), then, from Theorem 1.9(iv) ,
var[y'Ry] = 20* trace[R?] = 20* trace[R] = 20*(n — p),

so that var[s?] = 20*/(n — p).

We now ask what optimal properties RSS might have as an estimate of % (n — p).
Since o2 > 0 it seems reasonable to restrict our class of estimates to those that are
unbiased, non-negative, and quadratic (Rao 1952; Atiqullah 1962). Thus if y’Ay is
such an estimate, then y’Ay > 0 for all y so that A is non-negative definite. Also,
from Theorems 1.8(i) in Sect. 1.9 and 1.9(ii), we have

E[y'Ay] = o trace[A] + 8'AO = (n — p)o” (3.6)
and
var[y’Ay] = 20* trace[A%] + 45°6'A%6. 3.7

Hence from (3.6), trace[A] = n — p and ’A@ = 0 for all & € 2. Since A is non-
negative definite, A = VV’, where V has linearly independent columns (A.9(iii)).
Given 0 € 2,0 = Pgoa for some . Then 6’/A0 = 0 implies that 0 =
a’PoVV'Poa =|| VP« ||? for all o so that VP = 0 and AP, = VV/'P, = 0.

If A = R + D, then D is symmetric and trace[A] = trace[R] + trace[D] so that
trace[D] = 0. Also 0 = AP, = RPg; + DP; so that DP; = 0 and DR = D. Now
D =D =R'D'=RD and

A2 = (R +D)R + D)

= R? + RD + DR + D?
=R + 2D + D°.

Since trace[D] = 0, we take the trace of the above equation and get

trace[A’] = (n — p) + trace[D?*] = (n — p) + Z Z di

i J

This has a minimum when D = 0 and A = R so that s*> has minimum variance.
Atiqullah (1962) introduced the concept of a quadratically balanced design

matrix X of full rank as one for which Pp = X(X’X)™!'X’ has equal diagonal

elements. He showed that s> has minimum variance of all non-negative unbiased
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quadratic estimates irrespective of the distribution of y if X is quadratically
balanced. Quadratic balance is mentioned again in Sect. 5.2.

Under the assumption of normality, RSS/0? = €'Re/o” is distributed as x;_,
by Theorem 1.10 in Sect. 1.9, as R is idempotent of rank (and trace) n — p. When
we don’t have normality and the ; have kurtosis y, = (4 —30*)/0*, then we have
from Theorem 1.9(ii) and trace[R?] = n—p

var[s’] =

204 dd
g {1+ r2 } , (3.8)

n—p ?n—p

whered’d = Y7, v and R = (r;). As R is idempotent
BLEIN W
it
sothatr; > 7 and 0 < r; < 1. If Po = (p;) then

= _(1—pi)’

i i

= n—2trace[Pg] + Zp?,

1

=n—2+) p;

>n—2p.
Hence
204 -2
var[s*] > L%l+ﬁu}.
n—p 2 n—p

Clearly inferences for o based on s> will be strongly affected by long-tailed
distributions (y, > 0). If we have quadratic balance, then the p; will all be equal to
p/n so that the 7; are (n — p)/n. Hence d’'d = n(n — p)?/n* and from (3.8)
20* -
var[s’] = Al {1 + &u}
n—p 2 n

If (n—p)/n is small, inferences about 6% can be robust to non-normality. This won’t
be the case for a single sample as then p = 1.
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3.7 Assumptions and Residuals

Before we have confidence in a particular linear model, we need to check on its
underlying assumptions, which are: (i) the ¢; have mean zero, (ii), the ¢; all have
the same variance, (iii) the ¢; are mutually independent, and (iv) the &; are normally
distributed. An estimate of &; = y; — 6; is given by r; = y; — é,- = y; — Ji, say, where
the y; are called the fitted values. The properties of the ¢; will be reflected in the
properties of the r;, so that the latter can be used to investigate the assumptions. The
elements r; of the vector

~

r=y—60
= (In_P.Q)Ev

(since (I, —P)X = 0), are called the residuals. The sum of squares (y — 9)’ (y— é)
is called the residual sum of squares or RSS. There is an extensive literature on
how the r; and scaled versions of them can be used to investigate the underlying
assumptions (e.g., Seber and Lee 2003, chapter 10) which we shall not consider
here apart from a few properties. We note thaty = Py, where the projection matrix
Py is usually referred to as the hat matrix. We summarize the following properties
without assuming normality of e:

E[r] = (I, — Pp)E[e] = 0,
Var[r] = (I, — Pg)Var[y](dI, — Pg)’
=o*(I, —Po)1, — Py)’

=o0°(I, = Pg),
E[y] =P0 =10,
Var(§] = Pg Varly]P),
= O'ZP_Q,

and from Theorem 1.5(ii),
Cov[r.§] = Cov[(I, — Po)y.Poy] = 0°(I, — Po)Pg = 0.

If we now assume a normal distribution for y, the last result implies that r and §
are statistically independent (by Theorem 1.6(v) in Sect. 1.7). Also from the above
equations, r ~ N,[0,0%(I, — Pg)], a singular distribution as I, — Po(= P,.1)
has rank n — dim[§2] < n, and is therefore a singular matrix. If Po = (pj), the
diagonal elements p;; are called the hat matrix diagonals. By suitably scaling the r;,
these scaled residuals can be used for checking on the normality of their distribution



3.7 Assumptions and Residuals 39

and constant variance, for looking for outliers, and for checking on the linearity of
the model. For example, if s> = r'r/(n — p), we can use the so-called internally
Studentized residual

T

= s(1 —pi)/2’
which can be shown to have the property that the r**/(n — p) are identically
distributed with the Beta [§, 1(n — p — 1)] distribution (Cook and Weisberg (1982,
18)). Regression computing packages automatically produce various residuals and
their plots.

Systematic bias can sometimes be a problem in linear models so that assumption
(i) at the beginning of the section may not hold. In the case of a regression model,
there may be systematic bias because of an incorrect specification of the model. The
effect of this is discussed in detail in Seber and Lee (2003, section 9.2). In the case
of analysis of variance models, careful experimentation using randomization in the
experimental design will usually minimize any bias.

We can also consider the effect of serial correlation on the &; by assuming that
the ¢;s have a first-order autoregressive model AR(1), namely

g = (]58,‘_1 + a; |¢| <1,

where the @; (i = 0,41, 42, ... are independent with E[¢;] = 0 and var[a;] = o2
(i =1,2,...). From Seber and Wild (1989, 275-276) we have that the correlation
between ¢; and €;44 1S px = p’l‘ . Hence the correlation matrix V. = (vj;) is given
by v; = plli_‘j‘ and Var[e] = o?V. In terms of the AR(1) model, p; = ¢ and
02 = (1—¢*)o%. We consider the simple regression model of sampling from a single
population, namely y; = u + ¢;, where i = yand (n—1)s*> = Y_,(v;i —y)* = y'Ay.
Now

var[y] = var[ly/n] = 0*1,V1,/n* = o Z Z vii/n?,
i

where, after some algebra,

2np — 20" 2p(1 — p"! 2
ZZ”UZ’” p—2p"  2p( pz)%n(H_p)'
5 l—p (1—p) 1—p

This is larger than it should be (> n) for large n as without autocorrelation we have
var[y] = o2 /n. Also, from Theorem 1.8(i) in Sect. 1.9,

E[(n — 1)s’] = o* trace[AV] + ul/ Al,u

= 0 trace[AV]



40 3 Estimation
— oY Y ayuy
i
=0’ Z Z(&j —n Yy
i
= 02(n —n7! Z Z )
i

2
~ oz[n— 1+ —'0)]
l—p

so that

Elsl~o [1 (n—l)(l—p)}

and s? is an approximately unbiased estimate of o2 for large n and small p. Now the
usual 7-statistic for testing y = 0 assuming p = 0 is based on
=Y _ Y (3.9)

s JNaf]

where vat[y] is var[y] with o2 replaced by s>. When p # 0, the denominator is
underestimated and ¢ is larger than it should be so that it can give a significant result
when it is not actually significant.

‘We now consider the effect of autocorrelation on a more general regression model
for which Var[e] = 02V, where V is the same as before, E[y] = X3, and X'isn x p
of rank p. The ordinary least squares estimate of 3 is 3 = (X’X) ™' X'y, which is still
unbiased, with variance matrix o2(X’X) "' X'VX(X’X) ™! that in general will not be
equal to 02(X’X)™". Suppose we wish to test H : a’3 = 0, then when V = I,, we
would use the #-statistic

a’B
Vo

where © = s?a’(X’X)"'a will normally be a biased estimate of

var[a’ (] = o2a'(X'X) "' X'VX(X'X)'a.

Also from Theorem 1.8(i)) in Sect. 1.9

E[s?] - _pE[e/(In —Pg)e]
= o? trace[V(I, — Pgo)],
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where Pp = X(X’X)™!'X’. Then, if
E[0] = var[a’8] + b,

Swindel (1968, 315) showed that

—d b —d

a-d _ 8~ @ (3.10)
di var[a’ 3] d>

where ¢; is the mean of the (n — p) smallest eigenvalues of V, ¢, is the mean
of the (n — p) largest eigenvalues, d; is the largest eigenvalue value of V, and
d, the smallest eigenvalue; the bounds are attainable. Although we can’t find the

eigenvalues explicitly, we can use some approximations. We begin by considering
the inverse of V, namely (Seber 2008, 8.114b)

1 —p 0 - 00
{ —p 14p> —p - 00
- 00

= 0o — 1+ 02
a-,| . P
0 0 0 ---—pl

Assuming that p? is small we can approximate V™' by W/(1 — p?), where we
have wi; = wu, = 1 + p? and the other elements are unchanged, thus giving us
a symmetric tridiagonal matrix whose eigenvalues are known, namely (Seber 2008,
8.110(b))

A =f+2ygcos(in/(n+ 1) (=1,2,....n),

where f = 1+p*and g = —p. As Amin > f—2|g| = (1—|p|)? > 0, the eigenvalues
of W= are A, which, apart from the scale factor (I — p?) (which cancels out of
the above ratios in (3.10)), are approximations for the eigenvalues of V. The cosine
terms can be readily computed and, given an estimate of p, we can obtain some idea
of the bounds on b as a multiple of var[a’3].

There are a number of methods for testing for serial correlation that can arise
if the y; observations are collected serially in time. A plot of #; versus time order,
which is often a plot of r; versus i, may show up the presence of any correlation
between time consecutive ;. For positively correlated errors a residual tends to
have the same sign as its predecessor giving a slow up and down effect, while for
negatively correlated errors (which is much less common), the signs of the residuals
tend to alternate giving a saw-toothed plot. Another plot is to divide time-ordered
residuals into consecutive pairs and plot one member of the pair against the other.
Serially correlated data shows up as a linear trend in the plot. A useful graphical
method is the correlogram or autocorrelation plot of the sample autocorrelations
of the residuals r;, from the regression versus the time lags 4. We would want the
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sample autocorrelations to be close to zero. In addition, the Durbin-Watson statistic
(cf. Seber and Lee 2003, 292-294) provides a test for significant residual autocor-
relation at lag 1. I won’t proceed any further into the time series literature.
We finally consider briefly the effect of unequal variances by looking once again
at sampling from a single population, i.e. y; = i + &;. We assume that
Varle] = ¥ = diag((rlz,oz, ... ,(r,%) where 012 < (722 <...< 0,%.

Then since the y; are independent,

vary] = Y o7 /n’* = 0?/n.

where 02 is the mean of the o?. Also

-1
E[(n — 1)s*] = trace[AX] = Z:a,-,-ai2 - Z(riz

n

so that E[s?] = 02. We find then that for large n, t of (3.9) will be approximately
N[O, 1] and generally insensitive to unequal variances for large n. In the case of
multiple regression, the eigenvalues of ¥ are simply the diagonal elements of X.
Hence, from (3.10), with the criz being the eigenvalues,

1 n—p 2 1 n 2
EZi:lo—i 1< b - E2i=p+10i 1
o? " ovarfa’8] o}

3.8 Multiple Correlation Coefficient

A helpful assessment tool in regression analysis is the multiple correlation coeffi-
cient defined to be

>0i =9 Gi = 3)
— 1/2°
IS0 6502

the simple correlation between the two vectors y and the fitted values y. This is
applied to regression models with a constant term Sy so that the regression matrix
X has its first column all ones and, from PoX = X, we have Pp1,, = 1,,. We now
show how an alternative expression for R? can be derived using projection matrices.



3.8 Multiple Correlation Coefficient 43
We begin with

Y i3 =1,@—Po)y =0

so thaty = ;,-. Also, from (I, — P)Pg, = 0 and the above equation,
(I, —Po)(Pe —n~'1,1) = 0.

Hence

Y -y = Zy, —ny’

i

=y @, —n"'1,1))y

=y @, —Po +Po—n'1,1))y

=y (@, —Po)y +y (Po —n"'1,1))y

= @ —Po)y > + || (e —n~'1,1))y ||

=3 0=+ G- (3.11)
since I, — Po and P — n™! 1,1/, are both idempotent. Now
D Gi=VGi—3) =) 0i—-NG -
= y/(In - n_llnl,g)(PQ - n_llnI:l)y

=y ®Po—n""1,1)y
= Z@i -y
so that using (3.11),
Z (S)l - y)z
>0i—5)?

Z (i — y1)2

i =)
RSS

Z i —y)?

R2

=1-

=1-
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3.9 Maximum Likelihood Estimation
If y ~ N,[0, vL,], where v = ¢, then the likelihood function of y is
—n/2 1 2
£(0,v) = (27v) exp % ly—06|, (3.12)
v
and the log likelihood function (ignoring constants) is
LO.v) = ~21ogv— 1 [y~ 6|
,V) = —=logv — — — .
2 80T 1Y

To find the maximum likelihood estimates of v and 8 subject to 8 € £2 we wish to
maximize L(6, v) subject to the constraints on 8 and v. Clearly, for any v > 0 this
is maximized by minimizing || y — € |? using the least squares estimate 6. Hence
L(6,v) < L(6,v) for all v > 0. We now wish to maximize L(6, v) with respect to
v. Setting L/dv = 0, we get a stationary value of o =|| y — @ ||> /n. Then

LB, 0) — LB, v) = —g [log (”) r1- ﬂ >0,

v
since x < ¢*~! and therefore logx < x — 1 for all x > 0 (with equality when x = 1).
Hence

L(6,v) < L(B,v) < L(B,0) forallv>0

with equality if and only if & = 6 and v = 9. Thus & and © = 62 are the maximum
likelihood estimates of @ and v. Also, for future use,

0(0,6%) = 2n6)~WDen/2, (3.13)

Another method is to use a Lagrange multiplier A (cf. Sect. 1.10) and minimize
L(0,v) subject to (I, — Pp)0 = 0. Differentiating L(6, v) with respect to v and 6
gives us the equations (cf. A.20)

n 1 ,
—Z‘i‘ﬁ(y—@)(y—@—o

—y+0+{A,—Po)Av =0, and
(I, — P2)0 = 0.
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Multiplying the second equation by P, we get 0 = P,0 = Poy = 6 and

1 - A N
v= - 6-0 =

giving us the same estimates, as expected.
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Chapter 4
Hypothesis Testing

4.1 The Likelihood Ratio Test

Given the model y ~ N, (8, 0°I,) and assumption G that @ € £2, a p-dimensional
subspace of R", we wish to test the linear hypothesis H : 8 € w, where w is a
p — g dimensional subspace of 2. If v = ¢, and £(, v) is the normal probability
density function for y (given by (3.12)), the usual test statistic for H is based on the
likelihood ratio test A[H|G], where

Supeew,v>0 E(G, U)
SupBEQ,U>0 6(05 U)

maxgew,v>0 6(03 U)

A[H|G] =

maxgeq p>0 £(0,v)

We accept H if A[H|G] is “near” enough to unity. Any monotone function of A[H|G]
would also be suitable as a test statistic, and for reasons we shall see later we choose

F = ({A[HIG " = 1)(n—p)/q.

We would now accept H if F is “small” enough. A

Let 621 and Oy be the maximum likelihood estimates for @ € w. Then 8y = P,y
and n62 =y — O |>= RSSy, say, where P, is the symmetric idempotent matrix
representing the orthogonal projection of R” onto w. Then from (3.13),

A(H|G] = (8% /67)"?

© Springer International Publishing Switzerland 2015 47
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and

_(—p) (63—

F . %
(n—p)yPgo —P,)y

= 4.1
g Y@ —-Pp)y (&0

_ (n—p) (RSSy — RSS) “2)
q RSS

_ (n—p) (QH_Q)’ say 43)
q 0

= (Qn — Q)/(gs5%). (4.4)

To find the distribution of F we shall need the following theorem.

Theorem 4.1 Lety ~ N,(0,0%1,) andletA;, i = 1,2, ..., mbea sequence of nxn
symmetric matrices with ranks r; such that ) ;- A; = 1,,. If one (and therefore all,
by Theorem A.12) of the following conditions hold, namely

(i) > i, ri = n, where r; = rank[A;],
(ii) AA; = 0forallij.i# ]
(iii) A2 = A, fori=1.2.....m,

then the quadratics y'A;y are independently distributed as non-central chi-square
with r; degrees of freedom and non-centrality parameters 8’A;0 /c>.

Proof Since A, is symmetric and A;A; = 0 we have (Theorem 1.1 in Sect. 1.2)
CIA)] c N[A] = {CIA]}*.

Hence the C[A;] are mutually orthogonal vector spaces and, as I,y = ), A;x for
every y, their direct sum is R". We can therefore construct an orthonormal basis
t;,ta, ..., t, of R" such thatt, , t,,...,t, formabasis of C[A1]; ty +1,...,ts+r, @
basis for C[A;], and so forth. Let T = (t;,t;,...,t,), then T'T = I,. Now as A; is
symmetric and idempotent, it represents an orthogonal projection of R” onto C[A]
(Theorem 3.3 in Sect. 3.2). Hence

AT =(t1.t,....1,.,0,...0)

and

I, 0
TAT= (7).
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Also

000
TAT=[01,0].
000

and similar expressions are given for the other quadratics. Transforming z = T’y or
y = Tz give us

y/Aly =7ZTA Tz = z% + Z% 4 2

ry’

/ _ 2 2 2
YAy = LR o S T R S

and so forth, where the z; are independently distributed as N(t/6,0?) (by The-
orem 1.6(ii) in Sect.1.7). Hence, by Theorem 1.10 in Sect. 1.9, >/ z?/0? is
non-central chi-square with r; degrees of freedom and non-centrality parameter
81 = 6’'A,0/0?. Similarly xX’A,x is independently distributed as non-central chi-
square with r, degrees of freedom and non-centrality parameter §, = 6’A,0/02,
and so forth. This completes the proof.

We now use the above theorem to find the distribution of F given by (4.1).
Consider the identity

L =@, —Pg) + (Pe —Py,) + P, (4.5)

Since C[P,] = w C £ (by Theorem 3.4), PoP, = P,(= P, = P,Py) and
(P —P,)? =Py —PoP, —P,Po +P, =Py —P,. AsI, — Py is idempotent
with trace and rank n—p (by (3.4)), and P,, is idempotent of rank p—g, the conditions
of Theorem 4.1 hold so that by (i) of the theorem,

n=n—p+rank[Po —P,] +p—¢q

and rank[Po — P,] = ¢. It follows from the theorem that the quadratic Q/0? =
y (@, —Pg)y/o?is )(,21_1) (as the non-centrality parameter, namely 6’ (I, — P)6 /02,
is zero as P = 0) and (Qy — Q)/0> = y' (P — P,)y/0? is independently
distributed as non-central X;(S), where the non-centrality parameter § is given by
8§ = 0'(Py —P,)0/52. Note that E[Qy — Q] = 0%(q + §), from Theorem 1.7(ii)
in Sect. 1.8. When H is true, § = 0 as P,0 = 6 and F has the F,,, distribution,
while if H is false, F has the non-central F-distribution F; ,—,(§) (cf. Sect. 1.8)

The computations for calculating F' are usually set out in the form of an analysis
of variance (ANOVA) table as given below (Table 4.1). There df is the degrees of
freedom and MSS = SS/df is the Mean Sum of Squares. The difference Oy — Q is
sometimes referred to as the hypothesis sum of squares. Looking at the ratio of the
two MSS we see that F is roughly 1 + §/¢, and so we would reject H if F is much
greater than unity and accept H if F ~ 1. In fact we reject H at the 100 % level of



50 4 Hypothesis Testing

Table 4.1 ANOVA table

Source SS df MSS E[MSS]

H Ou—20 q Qu—0)/q o’ +80%/q
Residual 0 n—p Q/(n—p) o?

Total On n—p+gq

significance if F' > F,, where F, is determined by Pr[F,, , < Fo] = 1 —a. We
note that the hypothesis sum of squares is given by

On—0=| Po—P,)y |>=| 0 —0x |*. (4.6)

4.2 The Hypothesis Sum of Squares

In this section we look more closely at the matrix P, — P, from the hypothesis sum
of squares. We shall show that the F-test is not only based on the likelihood ratio
principle but it is also the test statistic obtained by applying a general principle due
to Wald. We shall require the following theorems.

Theorem 4.2 Py, — P, represents the orthogonal projection of R" onto w* N £2,
thatisPo — Py, =P, 1 0.

Proof In the previous section we saw that P,P, = P,P, = P,, and P, —P,, being
symmetric and idempotent is a projection matrix. If & € w® N £2, then P,0 = 0
and 8 = Pp0 = (P, — P,)0 € C[P,; — P,]. Conversely, if 0 = (P, — P,)a
then P8 = 6 and P,,0 = 0, so that @ € v N 2. Thus o' N 2 = C[P; — P,],
and the result follows from Theorem 3.3 in Sect. 3.2. [We note in passing that any
vector O € 2 takes the form & = Pob = (P, — P, )b + P,b for some b. Thus
we see intuitively that we have an orthogonal decomposition corresponding to 2 =
(0t N2)dw]

Theorem 4.3 If A is any matrix such that o = 2 N N[A), then
ot N R =C[PaA).
Proof By Theorems 1.2 and 1.1,

0t N2 =@nNNADT N
= (2t +CADN Q.

If @ belongs to the right-hand side of the above equation, then P60 = 6 and 8 =
(I, —Pg)a+ A’b for some a and b, which together implies 8 = PoA’b € C[PoA’].
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Conversely, suppose 8 = PoA’b, then since w € A[A] we have @ L C[A’]. Hence
P,0 =P,PoA'b =P,A'b =0

and Po@ = 0 so that @ € w™ N 2. Thus
(21 +C[A]) N 2 = C[PeA"]

and the theorem is proved.

Theorem 4.4 If A is a g x n matrix of rank q, then rank[PoA’] = q if and only if
CIAINnRt=0.

Proof Let the rows of A be a; i = 1,2,...,q). If rank[PoA’] # ¢, then the
columns of PoA’ are linearly dependent, that is there exist ¢y, ¢a, ..., ¢q not all
zero such that ), c;Ppa; = 0. This implies there exists a vector ) ; c;a; € C[A']
which is perpendicular to £2 and therefore C[A’] N 2+ # 0. We have established a
contradiction and the theorem is proved.

4.3 Wald Test

We now use the results of the previous section to consider an alternative form
of the likelihood ratio test. Let y = X8 + e, where X is n x p of rank p,
B = (Bo,Bi.,....Bp-1), 0 = X[, and € is N, [0, 021,]. Let A| be a ¢ x n matrix of
rank ¢ such that N[A|] = @ @ 2. Then

QNONA]l=2Nnwe 2 =

by Theorem 1.3 with Vy = §2 and V, = w. Also, from Theorem 4.3, P, — P,
represents the orthogonal projection onto C[PoA’]. Now, by Theorem 1.1 in
Sect. 1.2,
CIA I N2+ =NA TNt
=(woHtnet
—otnenet
=0.

Hence, by Theorem 4.4, the n x ¢ matrix PoA] has rank g, A|PoA] is g x g of
rank ¢ (by A.4(ii) and P2, = Py), and is therefore nonsingular. From Example 3.1
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in Sect. 3.3 with X = PpA’, and 0 the least squares estimate of @,
Y (P —P,)y = yXX'X)"'X'y
=y PoA (A {PoA)) A Poy 4.7)
= (A10)'(A|PoA))'AL6. (4.8)
The variance matrix of A 19 = APgy is (by Theorem 1.5(iii) in Sect. 1.6(iii))

var[A;8] = A Poo’L,PoA| = 0?A PoA],

and if D is its value for 62 = 62 = y/(I, — Po)y/n, the maximum likelihood
estimate of o2, then we find that

_ (n=p)y'(Pe —P,)y

F
q Y —Pg)y
= "7l (A,0/D'(A,0).
nq
Thus to test H : A;0 = 0, we replace 8 by its maximum likelihood estimate

and see if Alé is “near enough” to zero by calculating F, a simple positive-
semidefinite quadratic function of A;0. This simple test principle, due to Wald
(1943), is discussed again later.

Example 4.1 Suppose we consider the regression model discussed above and we
wishtotest H: B, = B,4+1 = ... = Bp—1 = 0. Then w = C[X,], where X, consists
of the first 7 columns of X so that

P, = XX'X)"'X', P, =X.(XX,)"'X/,
and we can immediately write down our F-statistic. However, using the Wald
principle, we can express P, — P, as a single matrix as follows. We first of all
show that if X = (X, X,,_,), then
w=2nNn N[X;_r(ln —-P,)l. (4.9)
If0 € w, then @ € $2, (I, — P,)0 = 0 and 0 belongs to the right-hand side of the

above equation. Conversely, if 8 belongs to the right-hand side, then 8 = X3 =
X, 8- + X,—B,— and X;)_,(In —P,)0 = 0. Thus, since (I, — P,,)X, =0,

0= X;—r(ln - Pw)(XrIBr + Xp—r/Bp—r)
= X;—r(ln - Pw)Xp—r/Gp—r-
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By Theorem 4.4 with 22+ replaced by w and A = X;;—r’ I, — P,)X,, with rank
p—rasC[X, . ]Nw = 0then X;;—r(ln —P,)X, is non-singular. Hence 8, = 0,
0 € C[X,] = w, and (4.9) is established. Since PpoX, , = X, ,,

Py (In - Pw)Xp—r = (In - Pw)Xp—r
and it follows from Eq. (4.7), with A| = X;_P(In —P,), that
Py —P, = (I, —P,)X,[X, (I, —P,)X,,]7'X (I, —P,). (4.10)

which can be used for a Wald test.

Example 4.2 Suppose X is defined as in Example 4.1, and we wish to test A3 = b,
where A is g x p of rank g. Let 3y be any solution of A3 = b, putz =y — X3
and let v = B — By. Then our original model and hypothesis are equivalent to
z = X~ + &, where € is N,[0,0°1,], and ® : Ay = 0. If ¢ = X, then since
v = XX)"'X'¢p, o = 2 NN[A{], where A} = AX'X)"!X". Now Ajc = 0
implies that X(X'X)™'A’c = 0, which pre-multiplying by X’ give us A’c = 0 or
¢ = 0, as the ¢ columns of A’ are linearly independent. Hence the rows of A; are
linearly independent and A has rank g. Also,

CANRt cexnet =o.

Thus (4.7) applies with A|P, = A, (since Pp;X = X). Substituting for A, and
using

B=XX)"Xz=XX)"X(y-XB) = B
and A3, = b, we get

Z(Po — P,z = (y — XBo)AL(A1A) A (y — XBo)
= (y — XBo) X(X'X) ' AAX'X) AT AX'X) X (y — XBo)
= (B— B0y ATAX'X)'AT'A(B - Bo)
= (AB-b/AX'X)"'AT (AB - D)
= (AB — b)Y {Var[AB]} " (AB — b) 0.

The above equation can be used for a Wald test.

Example 4.3 We now consider a theoretical model that we shall use in later
asymptotic theory. Let z = ¢ + 1 where 7 is N, [0, L,]. We assume that G : 2 = R”
andH : v = N[C], where the rows of C are linearly independent. Then P = I,
so that ¢ = z and, since N'[C] = C[C']* (by Theorem 1.1 in Sect. 1.2), we have
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P,=1,-P=1,—C/(CC)"'C,and q?)H = P, z. Because of the usefulness of this
model we express our result as a general theorem.
Theorem 4.5 Let z = ¢ + m, where n ~ N,[0,1,], and consider H : C¢p = 0,

where C is g X p of rank q. Let X and q~b be the restricted least-squares solutions
under H of

z—p+CA=0 (4.11)
and
Co = 0. (4.12)
Then H can be tested using
t=(@z—¢)@z—) (4.13)
=7C(CC)'Cz (4.14)
= ACC', (4.15)

where t ~ )([21(8), the non-central chi-square distribution with non-centrality
parameter § = ¢'C'(CC')~'Ce. The test statistic t is also the likelihood-ratio test.

Proof To find (}5 we can use A.20 to differentiate (cf. Sect. 1.10)
1 2 / 1 / / /. Wl
§||z—qb|| +AC¢:§(zz—2¢)z+¢)zz¢>)+d)CA,

to obtain (4.11). Multiplying (4.11) by C and using (4.12) we obtain A =
—(CC’)~'Cz. Substituting in (4.11) giveus ¢ = (I,—P)z, where P = C'(CC')"!C,
a projection matrix of rank g. Thus (z — o) (z — q~5) = 7/Pz, and has a non-
central chi-square distribution ij (8) with § = ¢'P¢ by Theorem 1.10 in Sect. 1.9.
Putting the above results together we obtain our three expressions for ¢. Finally,
the log of the likelihood function for the multivariate normal with 02 = 1 is
L(¢p) = —(z — @)/ (z — ¢) so that the likelihood ratio test is

20L(P) — L(P)] = (z— @) (z— P),

as L((}S) = L(z) = 0. This completes the proof.

Example 4.4 (Less than full rank) Suppose y = X3 + &, where X is n x p of
rank r (r < p). Instead of introducing identifiability constraints we can focus on
what linear restrictions H : agﬁ =0@G = 1,2,...,9) we might be able to test,
or in matrix terms A3 = 0 where rank[A] = ¢. A natural assumption is that the
constraints are all estimable, which implies a; = m/X (by end of Sect. 3.4) for some
m;, or A = MX, where M is g x n of rank ¢ (as ¢ = rank[A] < rank[M] by A.2).
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Since A3 = MX3 = M@ we can therefore find the least squares estimate of 6
under H by minimizing || y — @ ||> subject to 8 € C[X] = £2 and MX3 = MO = 0,
that is subject to @ € 2 N N[M] (= w). Now using Theorem 4.3 in Sect. 4.2,
ot N 2 = C[PoM], where by A.15(ii)

PoM = X(X'X) XM = X(X'X) A/,

is n x g of rank ¢ (cf. Theorem 4.4 in Sect.4.2) and (X'X)™~ is a weak inverse of
X’X. Hence

Y(Po —P,)y =yP,noy
=y (PoM)[MPoM'] ' (PoM')'y
= yXX'X)"AAX'X) AT TAX'X) Xy
= (ABYAX'X)"A'|'AB.

4.4 Contrasts

A contrast of the vector € is any linear function ¢’@ such that ) ,¢; = 0. Two
contrasts ¢’0 and d’'@ are said to be orthogonal if ¢’d = 0. For example, 6; — 6, and
01 + 6, + 05 — 30, are two orthogonal contrasts.

Example 4.5 The situation that we often meet in factorial experiments is that we
are given a set of independent contrasts 2,0 (i = 1,2,...,n — p) equal to zero and
we wish to test whether a further set of g orthogonal contrasts a’1 BGi=12,...,9,
which are orthogonal to the previous set, are also zero. If A = (aj,ay, ... ,an_p)’
and A; = (a1, a12,...,a1,), then Gis A@ = 0 and H is A0 = 0, A6 = 0, where
AjA’ = 0 and A A is diagonal, namely D = diag(a),ai. ... ,a/lqalq). Define
di(0) =| ay; |7 a},0 (i = 1,2,...,q), a set of orthonormal contrasts. Since, by
Example 3.2 of Sect. 3.3, P = I, — A/(AA/)'A, we have A|PoA| = A A/ and,
from (4.8),

_n—p(A8)YD7(A,0)
g Yd,—Pg)y
DAY ()

i=1"

gs?

Example 4.6 Consider a factorial experiment with two factors a and b, each at two
levels ay, a; and by, b,. Then the yields from the four treatment combinations may
be represented symbolically by axb,, aby, a1b,, and a;b;. We can now define the
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following quantities

effect of a at level by = a,b; — a1 by,

effect of a at level by, = a b, — a1b,,

and the average effect is
1
A= E(GZbl —a1b; + axby — a1by).

If the two factors were acting independently we would expect the two effects at
levels b; and b, to be equal, but in general they will be different, and their difference
is a measure of the extent to which the factors interact. We define the interaction AB
to be the difference between these two effects, namely

1
AB = E(azbz —ayby — apby + a1by).
In a similar manner we can define the average effect of b as
1
B = E(azbz —axby + aiby — arby),

and BA as half of the difference of the two effects of . However, AB = BA and the
concept of interaction is a symmetrical one, as we would expect. We note that A,
B, and AB are three orthonormal contrasts of the four treatments, and denoting the
mean yield by M we have the orthogonal transformation

2M 1 1 1 1 ab,
Al_1f1 1-1-1 arb,
B | 2]l1-1 141 ab, |’
AB 1-1-1 1 arb,
or
6 ="Tu,

say, where T is orthogonal. We have denoted the four combinations a;b; by u; (i =
1,2,3,4), and suppose we have ¢ observations on each combination p;. Then the
hypothesis of interest, H, is that the four population means are equal. If y;; is the
jth observation on the ith mean (i = 1,2,...4;j = 1,2,...,t) then we assume the
model y; = 0 + g and G : 6; = p; for all i,j. If @ is the vector of elements

6, then G states that certain contrasts 6; — 5,-. of @ are zero, and H is equivalent to
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A = B = AB = 0, where A, B, and AB are orthogonal contrasts in 8. For example

2A(0) = azby + a,by — a1b; — a1by

= M1+ M2 — U3 — U4
= 51. +§2. —53. —54.,

and this is a contrast in @ since 0y; + 6»; — 03j — 04; is a contrast and a sum (and
average) of contrasts is still a contrast. Also the two sets of contrasts for G and H
are orthogonal, and therefore the general theory described in the previous example,
Example 4.5, can be applied to this example. All we require is 8, and our F-statistic
for testing H is

oo - 1)t A(6)* + B(0)* + AB(6)?
3 ly—6 >

Minimizing »; > (vj — w;)? gives us élj = [l; = 3,, the least squares estimate of
;. Hence

2A(0) = yl. + ?2. - ?3. - ?4. etc.,
4M(O) = yi. + Yo + V3. + V4. = 4.,
and
4 1
ly=01P=)"> (s—¥)
i=1 j=1
Since 8’8 = /'T'TiL = i fu, we see that
4

4
AB) + B(6) + ABB)’ =y 5 —4M(9) = Y (5. —3.).
i=1

i=1

4.5 Confidence Regions and Intervals

In most practical applications of linear hypothesis theory our prime interest is not
just in significance tests but also in the finding of confidence regions and confidence
intervals for the unknown parameters. Suppose we are given G : 8 € §2 and we wish
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to test the hypothesis A16 = 0, where the g rows of A, are linearly independent. Let
B, = AlPQA’l, where B, is the variance-covariance matrix of A0 = A Pgy.
Since P60 = 0,

(A10 —A10)B (A0 —A10) = (y— 0)PoA B A Po(y — 0)
= €/(PQ — Pw)&’,

by Eq.(4.7) in Sect. 4.3, and y' (I, — Pp)y = €'(I, — P )e. Hence from (4.1),

F=(A0—-A0)B (A6 —A0)/qs (4.16)
_ (n—p)e'Pe—Py)e

¢ <0, —Poe 17
has the (central) F, ,—, distribution. Thus if
PrlFynp < Fynp@)] =1—a,
then a 100(1 — &) per cent confidence region for @ is given by
(A16 —A10)BT (A1 — A1) < g5°F (). (4.18)

If we wanted to obtain a confidence interval for a single constraint ¥ = a’6, then
by the Gauss-Markov Theorem 3.6 in Sect. 3.5

Y =a'0 = aPoy
has minimum variance, and the confidence interval for v is

W=y _

2
Fi.— .
(@Pgoa) =5, p(a)

As Fy,—p is tﬁ_ , where 1, is the t-distribution with n — p degrees of freedom, this

confidence interval can also be expressed in the form
¥ —s@Poa)' 1,y (@/2) < ¥ <V + s@@'Poa)'*1,(a/2),

We can also obtain simultaneous confidence intervals using Scheffé’s so-called
S-method (Scheffé 1959, 68) as follows. Let ¢ = A0 and ¢ = A;60. Then,
from (4.18),

l—a =Pr[F,—p < Fynp(a)]
= Pr[(¢ — )BT (¢ — @) < ¢5°Fynp(@)]



4.5 Confidence Regions and Intervals 59

=Pr[b'B;'b <m], say

(h'b)? .
= Pr| sup - <m by A.21(i)
 nnzo (W'Bih
[ (h'b)?
=Pr _fl/Bl)h <m, forallh(h # 0):|
[ W' — g 112
=Pr W < (qu’n_p(Ol)) / , forallh (h # 0) .

We can therefore construct a confidence interval for any linear function h’ ¢, namely
W' ¢ = (qF —p(@) ' s(Bi) 2, (4.19)

and the overall probability for the entire class of such intervals is exactly 1 — «.
We note that the term s’h’B;h involved in calculating (4.19) is simply an unbiased
estimate of var[h’¢] that can often be found directly. We can therefore write (4.19)
in the form

h’qAS + (qu,n_,,(oz))l/chrh/a).
Suppose 8 = X3, where X is n x p of rank p and B = (Bo. Bi.....Bp-1),
and we wish to use the test of A3 = 0, where A is ¢ X p of rank ¢, to
obtain a set of confidence intervals. Then A3 = A(X'X)"'X'0 = A0, say, and

AB = AX'X)"'X'0 = A,6. Also Var[AB] = 62A(X'X)"'A’ = 6B, say. Hence,
from (4.16)

(AB—ABYB™ (AB—AB)/(gs*) ~ Fyn—p.
Setting ) = Aﬁ and n = A3, we have
l—a =Pr(#—n)B"'(A—n) <m]

|h/ﬁ - h/"7| 12
= Pr I:W < (qu,n—p(a)) s forall h (h # 0) S

and we end up with a confidence interval for h'n, namely
W) £ (gF n—p(@))"/*s(W'Bh)'/2.

If we set h'n = 1; we include intervals for every 7; = aj3, where a; is the jth row
of A, namely

aj/ﬁ + (Fq,n—p(“))l/zaafﬁ‘
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If we set A = 1, a]’ﬂ is the jth element of 3, thus giving us a set of confidence
intervals for the B;, j =0,1,2,...,p—1).

Other confidence intervals can also be obtained. For example, we can use the p
Bonferroni intervals ,B}:I:stn_,, (a/(2p))d;;, where dj; is the (j+ 1)th diagonal element
of (X’X)~!. We can also use maximum-modulus ¢-intervals. For further details see

Seber and Lee (2003, chapter 5).
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Chapter 5
Inference Properties

5.1 Power of the F-Test

We assume the modely = 0 + €, G : 6 € §2, a p-dimensional vector space in R",
and H : 0 € w, a p — g dimensional subspace of £2; € is N,[0, 0°1,]. To test H we
choose a region W called the critical region and we reject H if and only if y € W.
The power of the test B(W, 0) is defined to be probability of rejecting H when 6 is
the true value of E[y]. Thus,

B(W,0) = Prly € W|6]

and is a function of W and 6. The size of a critical region W is supyyy B(W, 6), and
if B(W,0) = « for all @ € w, then W is said to be a similar region of size . If W is
of size  and B(W, 0) > « for every 0 € §2 — w (the set of all points in £2 which are
not in w), then W is said to be unbiased. In particular, if we have the strict inequality
B(W,0) > o for @ € 2 — w, then W is said to be consistent. Finally we define W
to be a uniformly most powerful (UMP) critical region of a given class Cif W € C
and if, forany W € Cand all € 2 — w,

B(W.0) = B(W'.0).

Obviously a wide choice of W is possible for testing H, and so we would endeavor to
choose a critical region which has some, or if possible, all of the desired properties
mentioned above, namely similarity, unbiasedness or consistency, and providing a
UMP test for certain reasonable classes of critical regions. Other criteria such as
invariance are also used (Lehmann and Romano 2005). The F-test for H, given by

o 2Y®P2—Po)y
fi Y1, —Po)y’

© Springer International Publishing Switzerland 2015 61
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where fi = g and f, = n — p, provides such a critical region Wy, say, and we now
consider some properties of Wj.
We note first of all that W, is the set of vectors y such that F > F,, where

Pr[F > F,|0 € 0] = «a,

so that W is a similar region of size «. The similarity property holds because F
is distributed as Fy, , when H is true, and it therefore doesn’t depend on € when
6 € w. The power of W, depends on € through the non-centrality parameter § =
0'(Py, — P,)0/0? and is therefore a function of § and Wy, say B(Wo, §). Also

BWo,8) = Pr[v > vy = fiFa/(fiFa + /2],

where v = fiF/(fiF + f>) has a non-central Beta distribution (cf. Sect. 1.8). It is
known that 8(Wj, §) can be increased by (a) decreasing fi keeping f> and § fixed, (b)
increasing f> keeping fi and § fixed, or (c) increasing § keeping fi and f; fixed. Now
since § = 0 if and only if @ € w, and B(W), §) is a monotonic strictly increasing
function of §, then 8(Wy, 8) > B(Wy, 0) = o when 8 € 2—w, and Wj is consistent.

It is known that W, has a number of optimal properties. However we shall only
consider one due to Saw (1964) as it demonstrates the geometric approach used in
this book. The result is stated as a theorem.

Theorem 5.1 W, is UMP among the class C of all consistent, variance-ratio type
tests. (A variance ratio test is a test of the form sy’ A,y /ry'Byy where the numerator
and denominator sums of squares (SS) are independently distributed as o times
a non-central chi-square distribution with r and s degrees of freedom respectively.
Also the non-centrality parameter 0'B40/c? for the denominator SS, y'Byy, is zero
when @ € 2 and the non-centrality parameter 0’'A,0/0? for the numerator SS is
zero when 0 € w.)

Proof For a consistent test we must have 8’A,0 > 0 when § € 2 — . The
quadratic y'Byy is distributed as o x? if and only if By is symmetric and idempotent
(Theorems 1.10 and 1.11 in Sect. 1.9), and therefore B represents an orthogonal
projection of R" on some vector space B, of dimension s. The non-centrality
parameter 8'B;8/0> = (B,0)'(B,0)/c? is, in units of 1/0?, the square of the
distance from the origin to the projection of 8 on B;. If this is to be zero for every
0 € 2,then B; L §2 sothats < n—p. When s = n—p there is a unique vector space
B, = 2+, so that y' (I, — Pg)y is the unique (error) SS with maximum degrees of
freedom n—p. Ify’A,y is 6% 2, then A, represents an orthogonal projection on some
vector space A, of dimension r. Since y'A,y and y'Byy are statistically independent
then A,B; = 0 (Theorem 1.12) or geometrically A, L B;. As y’A,y has zero non-
centrality parameter when 0 € w, then A, 1 w, thatis, A, C wt N Bﬁ-. Now, by
Theorem 1.3 in Sect. 1.4 with Vy = 0t, V) = 21, and V, = 2,

ot =N e 2t
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Therefore using 2 C Bﬁ- and Theorem 1.3 again with V) = Bﬁ-, Vi = wt N R,
and V, = 2+ we have

wtNBt =0t n2)® 2t nBt
=('n2)eR+nBH =D,

where D is the sum of two orthogonal vector spaces. We now show that for a
consistent test, » > dim[w* N 2] = ¢.

Let A* be the orthogonal projection of A, onto w® N £ so that since A, C
ot NBL =D, wehave A, C A*@ (21 NB). Suppose r < g so that dim[A*] < ¢
and A* is a proper subset of o N £2. Then there exists @ € w N £ such that
6 L A*. Since L 0+ ﬂB‘YJ-, 0 1 A, and A0 = 0. Hence there exists 8 € 2 —w
such that 8’A,0 = 0. This contradicts the requirement of consistency, so that r > q.

If B, = 2, then for a consistent test we must have A, = o N 2+, and YA,y
(= y(Pg — Py,)y) is the unique hypothesis sum of squares with minimum degrees
of freedom ¢. For a general variance-ratio test, however, when B, C 21, we have
A #oltnQ.

We now focus our attention on 02§, where § is the non-centrality parameter.
Since A, C D, PpA, = A,, where Pp is the projection matrix on D. Suppose
0c2—w,thend =6, + 0, where 0, € w, 0, € = N 2, and 6, # 0. Now
0, L D and, since 0 € Bﬁ‘ N 2+, 0, + 0 € D. Hence by Theorem 4.2 in Sect. 4.2,
(P_Q — Pw)O = (P_Q — Pw)02 = 02 = PDOZ = PDO. Thus

I (Po —P,)0 |* = || Ppo ||*
= PpA0 | + | Pp(l, — A6 |
> || PpA/O =] A6 |,

or
0'(Po —P,)0 > 0'A,0

with strict equality occurring for every 8 € 2 — w if and only if A, D 0t N 2
(since A0, = 6,).

It has been shown that (1) r > ¢ (i) n — p > s, (iii) the F-test is the unique
consistent variance-ratio test with r = g and s = n — p, and (iv) the F-test has a
non-centrality parameter as large as that of any other variance-ratio test and that if
there is a different test with the same non-centrality parameter, then A, D o™ N 2
(with strict inclusion) and r > ¢. By virtue of the remarks made above prior to the
theorem statement about the power being monotonic increasing with respect to § and
s and monotonic decreasing with respect to r, it follows that 8(Wy, 8) > B(W, )
for every 0 € §£2 — w and every W € C, with equality if and only if W = W,.



64 5 Inference Properties
5.2 Robustness of the F-Test and Non-normality

Although optimality properties of the F-test are of theoretical interest, what is
important is the degree of robustness the test has with regard to departures from
the underlying assumptions of the test. These assumptions are spelt out in Sect. 3.7
along with mention of some diagnostic tools for detecting departures from them.
We now examine the effect of various departures on the validity of the F-test. We
first begin with the assumption of normality and the effect of some departures from
it are described in the following two theorems from Atiqullah (1962) that make the
following assumptions. Let the y; be independent random variables with means 6;
(i=1,2,...,n), withcommon variance 02, and common third and fourth moments
w3 and pu4 respectively about their means. Let y» = (4 —30*)/0* be their common
kurtosis.

Theorem 5.2 Let P; (i = 1,2) be a symmetric idempotent matrix of rank f; such
that E[y'P;y] = o?f,, and let PyP, = 0. If p; is the column vector of the diagonal
elements of P;, then:

(i) varly'Piy] = 20*(f; + %yzp;pi).
(ii) cov[y'Py,y'Poy] = o*y2p|pa.

Proof

(i) Since P; is symmetric and idempotent, trace[P;] = rank[P;] = f; (by
Theorem 1.4 in Sect. 1.5). Also, by Theorem 1.8(iii) in Sect. 1.9,

E[y'Piy] = o? trace[P;] + 0'P;0 = o°f;,

so that 0'P?0 = @'P;0 = 0 for all 0; that is P;# = 0 for all 6. Therefore
substituting A = P; and ¢ = 6 in Theorem 1.9(ii) of Sect. 1.9, we have

varly Piy] = 20* trace[P?] + (114 — 30*)p}p;
1
= 20*{trace[P;] + Eyzp;pi}
4 -
=20"(fi + E)’Zpipi)-
(ii) Given P1P, = 0, we have

(P; + Py)* = P} + PP, + P,P; + P;
=P + PP+ (PP + P,
=P, +P,.
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Therefore P, + P is idempotent and, by (i),
varly'Pry + y'Poy] = varly' (P + P2)y]

1
= 20*{trace[P| + P,] + 5)’2(1’1 +p2)'(p1 + p2)}

1
=20*fi + o + 572(PiP1 +2pip2 + Pp2)}
= var[y'P1y] + var[y'Poy] + 26*y,p|p>.

Hence

1
covly'P1y, y'Poy] = E{var[y’(Pl + Po)y] — var[y'Pyy] — var[y'P,y]}
=0 4)/213/1 P2.

Theorem 5.3 Suppose that Py and P, satisfy the conditions of Theorem 5.2 above.
Let Z = %log F, where

/P 2
=y 1y/fi (_ 51 Say)7

yPy/fo 2

Then, for large fi and f> we have asymptotically
EZ)~ 5 (5" =)
x [+ 3v20ipe —fpr) (i + FROUAG — '] G
and
valZ] & 3 (5 1+ 31— Gipa—hROUA G+ 62

Proof Using a Taylor expansion of log s? about log 02, we have

2
i

_ 0.2 (S12 _ 0.2)2

02 204 (5-3)

10gsi2 ~ logo? + u
Taking expected values, and using E[s?] = o2, we have

1
E[log s,-z] ~ logo? — Fvar[sf],
o
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where, from Theorem 5.2,

varly'P;y]
f'2

SR S
var[s?] = =20 + SV *pip)-
Substituting in

E[Z) = 5 (Ellog 5} - Eflog )

leads to (5.1).
To find an asymptotic expression for var[Z], we first note that

1
var[Z] = Z{Var[log s%] + var[log s%] — 2cov[log sf, log s%]}. (5.4)

Then ignoring the third term of (5.3), we have E[log s{] ~ logo? and

var[log sl.z] ~ E[(log s,-2 —loga?)?]
E[(s} — 0)*]
ot

%

var(s?]

pu
Similarly,

cov[log s?, log s3] ~ E[(logs? — logo?)(log s3 — log 0?)]

Bl 0?3~ 0?)]

ot

_ cov[st, 53]
ot
Finally, substituting in

var[Z] (Var[s%] + var[s%] — ZCOV[S%, s%])

404

and using Theorem 5.2 leads to Eq. (5.2). This completes the proof.
We now apply the above theory to the F-test of H : 8 € w given G : 0 € £2. This

test is given by

__Y®e—P,)y/q
Y@, —Pg)y/(n—p)
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_YPwy/h

~ yPay/h
si

= g say,

where PP, = (P, — P,)([1, — Pp) = —P, + P,P, = 0. We now relax the
assumptions underlying F and assume only that the ¢; = y; — 6; are independently
and identically distributed with mean zero and variance o?; i.e., E[e] = 0 and
Varle] = o2I,. We note that E[s3] = o? (from (3.4) in Sect.3.6) and, from
Theorem 1.8(i) in Sect. 1.9,

Elgsi] = E[y'(Pe — P,)y]
= o2 (trace[Py] — trace[P,]) + 6'(P, — P,)0
=d’p—(p—9)=0g.

when H is true as Po@ — P,0 = 8 — @ = 0. Thus the conditions of Theorem 5.3
are satisfied. It is known that when the ¢; are normally distributed and f; and f, are
large, Z = %logF is approximately normally distributed with mean and variance
given by (5.1) and (5.2), but with y, = 0. This approximation is evidently quite
good even when f; and f, are as small as four so that it is not unreasonable to
accept the proposition that Z is still approximately normal for a moderate amount of
non-normality with mean and variance given approximately by (5.1) and (5.2). On
this assumption, Z and therefore F will be approximately independent of y; if the
coefficient of y; in (5.1) and (5.2) is zero; that is if

fip2 = fap1. (5.5)

Now using Atiqullah’s (1962) terminology, we say that F is quadratically balanced
if the diagonal elements of P; (i = 1, 2) are equal, that is if the diagonal elements
of P, are equal and those of Py are equal; most of the usual F-tests for balanced
experimental designs belong to this category. In this case, since trace[P;] = f;, we
have

pi = éln and fip2 = ‘ﬁ%h = fap1.

Thus a sufficient condition for (5.5) to hold is that F is quadratically balanced.

Example 5.1 We revisit Example 2.3 in Sect.2.2 where we compare / Normal
populations. Let y;; be the jth observation (j = 1,2,...,J;) on the ith population
N[u;,0%] (i=1,2,...,I),and letn = >_;Ji. This gives us the model

yiizeii+€ij (i:1,2,...,I;j:1,2,...,1i)
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with G : §;; = p, for all i, j. Then setting

/
Y= (1112 s VI Y21 Y22 e v s Yoo e v o s V11 Vi2s -+ 5 Yid})

with @ and e similarly defined, we have y = 0 + &, where € ~ N, [0, 0°1,]. We
have G : 0; = u,; and we wishtotest H : u; = plp = - = uy (= u, say). The
least squares estimate fi; of j; is obtained by minimizing ), Z](ylj — pi)?* with
respect to u;, namely ji; = ZIJ’:I vij/Ji = ;. say, and the residual sum of squares
('@, — Po)y) is

RSS= > (=) =D > g =) (5.6)

Similarly, under H we minimize }; > (v — w)?* with respect to . giving
A=) yg/n=7.
i
and

i i

RSSy =" j—fin)’ =)y (vi—¥.)
J J

Using the matrix approach, we have from (2.1) that RSS has n—1 degrees of freedom
(since rank[X] = I), and RSSy = y'(I, — P,,)y has n — 1 degrees of freedom (since
rank[Xy]| = rank[1,] = 1). The F-test of H is now

_ (RSSy—RSS)/(I—1)
N RSS/(n—1)

’

which has an Fj;_;,—; distribution when H is true. Alternative parameterizations
have been used for this model and the reader is referred to Seber and Lee (2003,
section 8.2.1). We note from (4.6) that

QOn—Q = RSSy — RSS = § — 0y ||

which for the above example gives us
Z Z(ﬁi — fn)* = Zfi@i- —-3.)% (5.7
i i

In order for F to be quadratically balanced we require the coefficients of the yl?j
terms to be all equal for each of RSSy and RSS. Now expanding RSS, ‘

2
CEDDIED I
I i
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where y;. = Zi v;; so that for quadratic balance we must have all the J; equal (to J,
say). In this case

O = Z Z(Yij —3.)? = Z Zyi - (Z Zy[j)z/l.],
i i i

which will also have equal diagonal elements for P,,.

5.3 Unequal Variances

One of our assumptions is that the y; all have the same variance. We now allow the
variances to vary and consider by way of illustration Example 5.1 in the previous
section. We assume that foreachi = 1,2,...,1, y;1,yi, ...,y 1S arandom sample
from a population with mean u;, variance criz and kurtosis yp (= Hia/ 01.4 — 3).
Assuming normality of the observations and equal variances, the F-ratio that we
can use for testing the hypothesis H that the u;’s are all equal can be expressed in
the form

n—p €Pg—Py,e

F = R
q e, - P.Q)€

(5.8)

which has an F,,—, distribution with g = I —landn—p = > ;(Ji — 1). To
actually carry out the test we replace € by y and then F has an F-distribution when
H is true. However (5.8) is useful for examining the effects of non-normality and
unequal variances. We note that because Pp0 = 0, the denominator of (5.8) is
(n — p)s*> = y'(I, — Pg)y. Referring to Example 5.1 and using (5.6) and (5.7) we
have from (5.8)

1
F =" Ji(wi=0)*/[( - 1)s’], (5.9)

i=1

where, replacing y; by y; — i,
Vi =Y. — i, V= Zfivi/”,

=) (Ji=s;/(n—1). and

Ji
sE=Y g =3/ i1

j=1
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Following Scheffé (1959, 341-342) we now allow the J; and n to go off to infinity
in such a way that Ji/n is fixed. Then s? — o7, and approximating J; — 1 by J; and
n — 1 by nin s?, F is approximately dlstrlbuted as

1
Fi= —— 3 v = 0)?,
1 (I—1)o2 ZL: (vi — )
where 02 = .Jio; 2 /n, a weighted average of the variances cr , and

Ji(v; —7)? = Jv — nv? = VA,
Z( ) Z

where A = (a;) and a; = 8;J; — J;J;/n. The next step is to find the mean and
variance of F;. Now v; is approximately normal with mean zero and variance al.z /Ji
so that

E[F|] = {Z] — nvar]| v]}
- {Zo _Zjaz/n}

1
= m(laj —02), (5.10)

where 02 is the unweighted average of the 6. We can find the variance of F; using
Theorem 1.9(iii) for Normal data, namely

ar[v'Av] = 2 Z Z aizjﬂ2iﬂ2j7
[
where py; = criz/Ji and a;; = 8;J; — JiJ;/n. Hence

2 (i JHjoa}
var[F] = T D202)? Z]i (1 - n) ZZ nZJJ

iy
2

= =iy {Z 22 dolnt <foo,-2/n>2}

2
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Now for large n, Fy_1,—; — (I — 1)7! )(%_1, and given normality and equal
variances F; will be distributed as (I — 1)~! X%—l' In general it therefore has an
expected value of 1 and variance 2/(I — 1). We see from (5.10) that the expected
value of F; will be unity only if crf = o‘%, that is if all the {J;} are equal. When this
happens

2
Var[Fl] = m {ZU? _ZZGi4/I+ (03)2} .

Using Y .0} — I(62)?> = Y ;(6? — 02)?, we can readily prove that the above
expression is equal to

2 I1-2
Var[Fl] = m 1+ Vum s (511)

where

1
V.= o? — o2)>.

The result (5.11) was proved by Scheffé (1959, 342) using a different approach. He
noted that if 7 = 2 or if the {0} are all equal so that V,, = 0in (5.11), then F has
the correct variance of 2/(I — 1); otherwise it is inflated. We conclude that except
for comparing just two populations, the F-test can be seriously affected by unequal
variances.
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Chapter 6
Testing Several Hypotheses

6.1 The Nested Procedure

Let 8 be an unknown vector parameter, let G be the hypothesis that 8 € 2, a
p-dimensional vector space in R”, and assume that y ~ N,[0,0°L,]. Let H; (i =
1,2,...,k) be the hypothesis that 8 € w;, a p — g;-dimensional subspace of £2, and
denote the joint hypotheses 8 € w; N w,, 8 € w1 N w, N w; etc., by Hyn, Hios, etc.
Suppose we wish to test the hypothesis H,. x versus G. Obviously we could test this
hypothesis directly, but if it was rejected we would not know why it was rejected
and which of the H; were responsible. What we want is a sequence of tests that tell
us how much of Hj,_; we can accept. One such method is the nested test procedure
where we accept Hj,. ; only if the tests of H versus G, Hy, versus Hy, Hi,3 versus
Hia,..., His._j versus Hyy_x— are not significant. The question immediately arises:
is such a procedure reasonable, and what sort of power does it have as a test method?
If we use the likelihood ratio as our test criterion, we have (Sect.4.1)

AlHy. (|Gl = A[H|G) A[Hi2|Hy) - - - A[Hio. k|Hi2. k1]

Thus if each of the likelihood ratio statistics on the right-hand side is “near” unity
then the left-hand side will also be “near” unity. This implies that if each of the
nested test statistics is well below its significance level then this nested procedure
is “nearly” equivalent to a direct likelihood ratio test of Hy. ; versus G. As the F-
test—and therefore the likelihood ratio test—has good power, this procedure will
also have good power. If the nested method led to an “acceptance” of Hi,._x, we
could make a final check and carry out a direct F-test of Hy»_; versus G.

© Springer International Publishing Switzerland 2015 73
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The appropriate distribution theory for the nested method follows from the
orthogonal decomposition

Y= —00)+Ba—0)+ (0 —012)+-+ 01,
=L —Po)y + (P — Py + (P —Pp)y +--- + Pio_y,

where P12 i = Py nwn..ne and @12,“5 = Py, ;y is the least squares estimate of
OcorNwyN...Nw;(i=1,2,...,k). The orthogonality follows by multiplying
the appropriate projection matrices together and using the fact that the product of
two projection matrices is equal to the projection matrix projecting onto the smaller
subset vector space. For example

(Po —P)(Pis—P) = PoP1, — PP — PP, + P =P, — P, — P, +P; = 0.
Since from the orthogonal decomposition of y above,
L =0 —P2)+ (Pe—P)+ P —Pn) +-+ Pras—1 —Prax) + Prax

and the projection matrices in parenthesis are each idempotent representing orthog-
onal projections onto the mutually orthogonal subspaces 2, wll N2, (w;Nw)*tN
i, ..., and oy k, then Cochran’s Theorem 4.1 in Sect.4.1 applies. Hence the
quadratics obtained by multiplying the bracketed terms in right-hand side of the
above equation on the left by y’, on the right by y, and dividing by o2, namely

0/0%, (01— Q)/0*.(Q12 — Q1) /0%, ..., (Qu2.k — Q12..4-1)/07,

are all distributed independently as chi-square withn—p andr,_;—r; (i = 1,2, ... k)
degrees of freedom respectively, where r; = dimjw; Nw, N ... N w;] and ry =
dim[£2] = p. The distributions are central or non-central depending on which of the
H; are true. Thus the test statistics for the nested method

n—p)(Q1—Q) (n—r1)(Q12—01) (n—r)(Qi23 — Q12)
p—r)Q = (n—-r)01 (r» — r3)012

all have F-distributions and the nesting procedure is continued until a significant test
is obtained. We notice that the denominator or residual sum of squares (SS) of each
test is obtained by pooling the previous numerator and residual SS. For this reason
the nested method is essentially one of “pooling non-significant sums of squares.”

, and so forth,

Example 6.1 The nested procedure can be applied to a set of hypotheses in which
there is a natural ordering of the hypotheses. An example of this is found in
polynomial regression where our basic underlying model is

vi=Bo+ Bixi+ ol + A B e ((=1,2,...,n),
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and the problem is to estimate p. The first step would be to decide what is the highest
value of k necessary for a polynomial approximation of the form

yi = Bo+ Pixi + Boxt + - + Bk + & (6.1)

to represent an adequate fit to the observations y. We could then apply the nested
procedure to the following sequence of hypotheses H, : Bx = 0, Hi2 : Br =
Br—1 = 0 etc. and carry on until a significant test is obtained. If the test of ; = 0
given that B = Br_1 = -+ = Bj31 = 0, is the first significant test, then j is our
estimate of p. Before leaving this example it should be noted that polynomial fitting
has some problems. It is known from the Weierstrass approximation theorem that
any continuous function on a finite interval can be approximated arbitrarily closely
by a polynomial (Davis 1975, chapter VI). We would therefore be tempted to fit a
low degree polynomial to a well-behaved curved trend in a scatter plot for the pairs
(x;, y;). Although the approximation could be improved by increasing the order of
the polynomial, the cost is an increase in the number of the 8; and some oscillation
between data points. Although it is possible to fit a polynomial of degree upton—1,
there are a number of practical difficulties when k is large. In particular, for k greater
than about 6, we find that the regression matrix X associated with (6.1) becomes ill-
conditioned, that is becomes close to being less than full rank. For further details
about the problem see Seber and Lee (2003, Section 7.1).

When there is no natural ordering of a set of hypotheses, the most thorough
procedure would be to test all possible combinations of hypotheses using special
computer selection methods. This problem arises in multiple regression where we
are given the model

yi = Bo + Bixi + Poxip + -+ Bp—1xip—1 + &

and we wish to find out which of the f’s can be put equal to zero without giving
a significant increase in the residual SS. Obviously the subset of 8’s selected will
not be unique, especially when there are high correlations among the x-variables,
and what we require is some criterion for choosing the best subset of 8’s from the
class of admissible subsets. Various methods are available, and these are discussed
in detail in Seber and Lee (2003, Chapter 12) for example.

In many situations, especially in analysis of variance applied to experimental
designs, the order of nesting is immaterial because of a certain property of the
system of hypotheses known as “orthogonality,” and a simpler procedure that we
describe below is available.
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6.2 Orthogonal Hypotheses

One method for testing Hj, i versus G would be to accept the hypothesis if we
accepted each of the k hypotheses H; : 0 € w; (i = 1,2,...,k) versus G separately.
As a first step, we assume that 6> = 1, which arises in large sample tests considered
in later chapters. Now the individual test for H; is (cf. Sect.4.1 with v = 1)
—2logL[H;|G] = y'(Pg — P;)y and the corresponding test statistic for Hyo. x is
y' (Po — P2 1)y. Following Darroch and Silvey (1963), a useful requirement would
be to have the individual test statistics independent of one another, and we ask what
constraints must be put on the vector spaces §2, ;, @y, . . ., wk to achieve this. Now
a reasonable criterion for independence would be

k
AlHy>4|G] = [ ] AlHiIG,

i=1
and taking logarithms this is true if and only if

k
Po—Pn =) (Po—P),

i=1

where P, — P; represents the orthogonal projection onto ! = a)iJ- N £2 (Theo-
rem 4.2). We therefore have from the above equation (cf. the special case of (4.5) in
Sect.4.1)

k

L =1,—Po+ ) (Po—P)+Pp
=1

where all the matrices are symmetric and idempotent. Hence by Theorem 4.1 in
Sect. 4.1, the subspaces £2+, o], o, ... 0, and wy,_; are mutually orthogonal
and the test statistics for the H; are mutually independent. We are thus led to
the following definition due to Darroch and Silvey (1963, 564). An experimental
design is orthogonal relative to a general linear model G and linear hypotheses H|,
H,,... Hy if, with this design, the subspaces §2, w;, @y, . . . , @ satisfy the conditions
o L o] foralli,j,i #j.Since o] L o if and only if &; & Qt=(tn)to
] (Theorem 1.2(ii) in Sect.1.4) if and only if w; D ] (since 2 D @] and
(w; ® 21) N 2 = w;), we have an equivalent definition of orthogonality, namely
w; D a)j‘.’ forall i, j,i # j. Because we have symmetry between i and j in the original

definition, we see that w; D a)j‘-’ if and only if w; D wf .
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If 02 is unknown and w; has dimension p — g;, then the F-statistics for testing the
individual hypotheses are

(n=p)yPe—P)y _(n=p) Q-0
g YL —Pga)y a 0

(i=1,2,....k).

An advantage of having the above property of orthogonality is given by the
following theorem.

Theorem 6.1 The sums of squares Q1 — Q, Q12 — Q1, ... Q12..k — Q12..k—1 are the
same independent of the order of nesting of the hypotheses if and only if »! L w]’.’ ,
i # j, that is, the hypotheses are orthogonal.

Proof (Sufficiency) Suppose o'

an orthogonal projection onto

1 a)j‘.”, i # j. The matrix Py, ;—; — Py, ; represents

Wi=w N N...Nwi— N(w Nwy N...Nw)*"
=wN...Nwi—1 N (a)ll 4+ + a)il) (by Theorem 1.2)
= ol
Justification for this last step is as follows: if 8 € a)f' then @ € w1 N ... N wj—
(by the alternative definition of orthogonality), 8 € a)l.J', and @ € W;. Conversely, if

OeW,then0ew Nw,...Nwi—1and @ =Py, ;_10. Also 0 € (a)f' +---4 a)l.J')
so that for some o, g, ..., o, @ = Z;’:l(ln —P))a; and

0 =P i Z(In - P)a;
=1

=P i1l —P)oy
=Pp.i-1(Pe —P)a;
=Pp_i1Pyra;

= Pwlpa,-,

since ! C wiNwaN..., wi—1. Hence O € of and W; = f. Equating the projection
matrices on these two subspaces gives us

Py i1 —Ppi=Po—P; (6.2)

and the sums of squares are equal to Q; — Q for i = 1,2,...,k, which are
independent of the order of nesting.

(Necessity). Given the sums of squares independent of the order of nesting, we can
choose w; to be the first in the sequence so that (6.2) must hold, that is a)f’ =W Cw;
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(i=12,....kj=1,2,...,i—1).Hence 0’ L a)j‘.’ foralli,j,i # j. This completes
the proof of the theorem.

Having established the definition of orthogonality, we can now demonstrate using
the above theorem that the separate test method for testing Hj».  versus G is a
reasonable one when we have hypothesis orthogonality. The following justification
is due to Darroch and Silvey (1963). From Sect. 4.1 we have, with orthogonality,

Op.i—0

0
_ @ -0+ ©Qu-0) 4+ (Qi.k—O12.k-1)
0

{AHp 4Gy 2" =1 =

Q (by Theorem 6.1)

k

Q —
2
Z {A[H,|G) ™" = 1),

If each A[H;|G] is “near” unity, then A[H|2_x|G] is “near” unity, and by the same
argument applied to the nested procedure we see that the separate test method will
also have good power.

6.3 Orthogonal Hypotheses in Regression Models

In this section we shall show that the idea of hypothesis orthogonality is usually
associated with those experimental designs in which least squares estimates of
certain parameters are uncorrelated.

Example 6.2 Suppose §2 takes the form 8 = X3, where X is an n X p matrix of rank
r (r < p) and H3 = 0 are suitable identifiability conditions. Let X be partitioned
into k + 1 submatrices (Xo, X1, Xy, ..., Xy) with a corresponding partition of 3 =
(8}, B} - ... B) and of H. We are interested in testing the hypotheses H; : 3; = 0
(i= 1 2,...,k). Thus w; = {6 = X'B, H*B = 0}, where X is the matrix X
with the submatrix X; deleted; H and 3/ are similarly defined. We shall now prove
that the least squares estimates Bi of 3;(i=1,2,...,k) for @ € 2 are uncorrelated
if and only if we have orthogonality. The proof rests on the following Theorem.

Theorem 6.2 Let §2 be a vector space and let A; (i = 1,2,...,k) be any matrix
such that w; = N[A;] N §2 is a proper subspace of $2. Then a)p 1 a) lfand only
if AiPeAl = 0. Furthermore, if 2 = NA] and AA] = 0 fori = 1,2,... k, then

f’J_a)j lfandonlylfAAj’—O(foralll],l;é])
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Proof From Theorem 4.3 in Sect. 4.2,
of = w- N2 =C[PeAl]
and therefore ] L ] if and only if
(PoA)'PoAj = APLA] = APoA! = 0.
If 2 = N[A] = C[A']* and AA] = 0, then
AiP_QA]/- = AL, — A/(AA/)_A]A; = A,-A]’.,

where (AA’)™ is a weak inverse (cf. A.15(ii)), and the result follows.

We are now in the position to prove the following theorem for our regression
example given above.

Theorem 6.3 The vectors Bi and Bj are uncorrelated if and only if ®! L a)j[.’.

Proof We note from Theorem 3.5(i) in Sect. 3.4 that 3 = (G'G)~'X'y. Since the
constraints H3 = 0 are suitable for identifiability, we have from Theorem 3.5 in
Sect. 3.4

P, = X(G'G)"'X’ and H(G'G)'X' =0, (6.3)
where G'G = X'X + H'H. Now 3 = (G'G)~'X'6, and the hypothesis 3; = 0
is equivalent to B;3 = 0, where B, if partitioned in the same way as X, has the
identity matrix in the (i 4+ 1)th partition and zero matrices elsewhere. Thus testing

the hypothesis H; is equivalent to testing B;(G'G)"!X'0 = A;0 = 0, and from
Theorem 6.2 above, @] L ] if and only if

APoA] = Bi(G'G)"'X'X(G'G)"'X'’X(G'G)"'B] = 0.
or using (6.3) with P, X = X and adding H'H to X'X,
B:(G'G)'X'X(G'G)™'B} = 0.
But from Theorem 1.5(iii) in Sect. 1.6,

Cov[B:. B] = Cov[B;3. B,
= B;Var[3]B]
= 0’Bi(G'G)"'X'’X(G'G)™'B;,

and we therefore have orthogonality if and only if Cov [B,-, ﬁj] =0.
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Example 6.3 We return to Example 6.1 on polynomial regression where we con-
sidered the model (6.1). In applying the nested method of hypothesis testing we run
into the problem that the least squares estimates of the ; have to be recalculated at
each stage of the nesting. However, the algebra would be much simpler if each of the
hypotheses H; : 8; = 0,i = 0,1, 2, ...,k was orthogonal, for then the least squares
estimates ﬁi would be uncorrelated, that is cov[,éi, ,3/] = 0 fori # j, and they would
be the same irrespective of whether or not some of the 8; were made zero. This
means we would not have to recalculate these estimates at each stage. One method
of achieving this desired simplification is by the use of orthogonal polynomials. Our
model then becomes

yi = Yodo(xi) + yid1(xi) + -+ + yade(xi) + i,

where ¢o(x;) = 1, ¢.(x;) is a polynomial of degree r, and >, ¢, (x;)¢s(x;) = 0 for
allr,s = 0,1,2,...,k,r # s.if v = (Yo, y1, ..., ), then E[y] = W+, where
W = (¢;(x;)) has mutually orthogonal columns. Let 4 be the least-squares estimate
of 7, then Var[9] = o(W'W)~!, which is diagonal as WW is diagonal, and the J;
are uncorrelated. Hence, by Theorem 6.3, the hypotheses H; : y; = 0 are orthogonal;
also By = Bi—1 = --- = B; = 0ifand only yx = yy—1 = ... = y; = 0. For further
details concerning orthogonal polynomials see Seber and Lee (2003, Chapter 7).
This example can be generalized in the following theorem.

Theorem 6.4 Suppose X = (Xo, X1, ..., Xy) with linearly independent columns,
with a corresponding partition of B = (8. 8),....8;,) . We wish to test the
hypotheses H; : B; = 0 (i = 1,2,...,k). Thus w; = C[X], where X} is the
matrix X with the submatrix X; deleted. Then o L wffor alli,j=1,2,...ki#]j
if and only ifXj’-(I,, —Py)X; = 0, where Py is the orthogonal projection onto C[Xy].

Proof We shall use the results that (i) P,Po, = PoP, = P, for v € £2, and (ii)
C[V] = C[Py], where Py represents the orthogonal projection onto C[V]. Also let
P, =P,

We first show that

CX D+ NCX] = C[(X, — P)X],

where the left-hand side (LHS) of the above equation is wf .If @ € LHS, then (I, —
P)0 = 0 and 8 = X for some 3, that is 8 = (I, — P;)X3 and 8 € RHS.
Conversely, if @ € RHS, then 8 = (I, —P;)X/3 for some 3 and 6 € (C[X}])*. Now
(In - PQ)0 = (In - PQ)(IV! - Pl)Xﬁ
=@, —Pe—P; +P)XB (asPeP; =P)
= (In - P.Q)Xﬁ
=0 (asPpX =X).
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Hence 8 € £2 and @ € LHS. Using the alternative definition for the orthogonality
of hypotheses, we now have the following equivalent statements for all i,, i # j.

a) 1 a)p — a)f’ C Njyj£iw;
Cld@, — P)X;] C C[Xo, X}]
CIP:X;] C C[Xo, X;]
CIP;i(I, — Po + Po)X;] C C[Xo, X]
C[P;(I, — Py)X;] C C[Xo,X;] (by (i) and (ii) as P;Py = Py)
Cl(P: — PoP)X;] C C[Xo,X;] (as PPy = PoP))
ClI, —Po)PX;] C C[Xi] (by (iD)
CIP:i(I, — P)X;] C C[Xi]
< Pi(I, -P)X; =0 (asC[X7|NC[X;] =0)
= X/, — Py)X; = 0.

This completes the proof.

Since I, — Py is idempotent, the above conditions are equivalent to
(I — Po)X; L (I, — Po)X;.

A number of special cases of the above theorem follow. For example, if X, = 0,
then the conditions reduce to X;Xj or, if X; = x;, to X having orthogonal columns,
as we found in Example 6.3 above. If Xg = 1, and X; = x;, then Py = 1,1/, /n and
the conditions reduce to Z';:l(xi, —X)(xjy — X)) = 0 (all i,j,i # j), where x; has
elements x;. and X; is the mean of the elements of x;.

6.4 Orthogonality in Complete Two-Factor Layouts

Consider a two-factor analysis of variance with factor A and B at I and J levels
respectively, and suppose that n; observations yji, yia, - - - , Vijn; are made on the
combination ¢;; of the ith level of A with the jth level of B. This gives us the model
yik = O + e fork = 1,2,... ny5, i = 1,2,...,[,andj = 1,2,...,J, where
O;ix = ¢y the random “errors” ;. are all independently distributed as N[0, 02]. We
now split up the i, jth cell mean ¢;; into an overall mean u, an effect o; due to the
ith level of A, an effect 8; due to the jth level of B, and an interaction term y;j, so
that ¢; = p + o; + B; + ;. If we write the element sets {y;i}, {6;i}, and {e;}
as single n-dimensional vectors (where n = n. = ), Zj n;j), we can express the
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above model in the formy = 8 + £ with G : 8 = XJ, where

0= (U @1y s Lo Br VI V12 oo s VI V21 V22 oo s ViLs - - -5 Y1) -

Since we have replaced the 1J uniquely defined parameters ¢; by 1 +1+J + IJ new
parameters, 6 will not be identifiable and we must introduce some identifiability
constraints. The form of these constraints will depend on what “weights” we choose
for defining these parameters. For example, the observations for certain i, j cells may
be more important than the others, and therefore we would want to give more weight
to these observations. Thus we may define our parameters as follows.

The means for the ith level of A and the jth level of B are defined to be a; =
> vspis and bj = Y u,p,, where all the w; > 0, v; > Oand ), u, = ) vs=1.
The general mean p is defined to be

= wai =y vb=Y Y upy.
i j i
The main effect of the ith level of A is defined by
o =dai— K= Z Vsis — Z Z UrVstprs
and the main effect of the jth level of B is defined by
Bi=b—pu= Z UrQrj — Z Z Uy VsQys.
Now ¢y = u + a; + B; + yij, where

Vi =y — Y vidy— ) widy+ ) ) uivigy
i

J i

is called the interaction between the ith level of A and the jth level of B. We have
effectively imposed the identifiability constraints

D ouiei =) v =) wiyy=) vy =0.
i i J

J

Finally, let vy = 03 — 0 where 0. = 3, 6;x/n;;, so that our model now takes
the form

eiik:M+ai+:3j+yij+Vijk’
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where the u, o;, B;, and y;; are defined above with gu replacing ¢;; in the definitions.
We now consider testing the hypotheses H; (i = 1, 2, 3, 4) versus G, where

G: vy =0,
Hy:vy =0, yp; =0 (interactions zero)
H:vy =0, « =0 (main effects of A zero)
Hs;:vp =0, B; =0 (main effects of B zero)

Hy:vyp =0, pn=0,

and in the following theorem we derive necessary and sufficient conditions for this
system of hypotheses to be orthogonal.

Theorem 6.5 The hypotheses H; (i = 1,2,3,4) are orthogonal with respect to G if
and only if

ng = npn.j/n, w; =n./n, and v; = n,;/n forall i, j,

where ni. = Y ny, nj =3 ny, andn =n. =3 ;3 ..

Proof If 0 is the n-dimensional vector with elements 8;; we can express the
hypotheses in the form

G:AG=0 and H,:A0=0,A06=0 (r=1,2,3,4).

For example, we wish to express the conditions

Mij
Vi = O — ) bje/nj = 0 (6.4)
(=1

in the form A@ = 0. The matrix A would be n x n and the row corresponding to
Eq. (6.4) would have the (ry, 59, tp) element of the form

81’/‘08]1?08/(1‘0 - Sirogjso/nroxoa (65)

where §,, is the Kronecker delta. Now
Yii = 51] — Z vxgi& - Z I/lrgrj. + Z Z u,vsgm.,

and the row of A corresponding to y;,;, = 0 hasits (r, s1, ;) element as

(8i1r18j1x1 - US18i1r1 - ur18j15‘1 + Mrl vxl)/nrlsl . (66)
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Similarly the (72, s2, ) element of row «;, = 0 for the matrix A, is

(Biyry Vs, — UryVsy) /Ny, s (6.7)
the (r3, 53, 13) element of row B;, = 0 for As is

(8js53Ury — UryUs3) [/ Mrssy,s (6.8)
and the (74, 54, t4) element of & = 0 is

Up Vs, /Mgy - (6.9)

By multiplying together (6.5) and (6.6), putting r; = ry, s = So, 1 = fo and
summing on 7y, So, fo (fo = 1.2,..., 055370 = 1,2,..., ;50 = 1,2,...,J) we
have AjA’ = 0. Similarly, A,A’, A;A’, and A4A’ are all zero matrices since (6.5)
is the only term above containing fy, and this summed on f; is zero. Thus by
Theorem 6.2, the hypotheses are orthogonal if and only if A,,A; is the zero matrix
for all p, g, p # ¢, and we now show that these matrix conditions hold if and only if

ng = ninj/n, uw; =n;./n, and v; = n;j/nforalli,j.
Sufficiency. If the above conditions on the n;;, u;, and v; hold, then (6.6) becomes
n(gilrl/nrl' - l/n)(ajlsl/n'é‘l —1/n). (6.10)

Therefore by multiplying (6.7) and (6.10) together, putting r, = ry, s = s1, t = 11,
and summing on ry, 51, t;, we have A 1A’2 = 0. In a similar manner it can be shown
that A;AY,.. . ,A3A] are all zero matrices. Hence the hypotheses are orthogonal and
the conditions are sufficient.

Necessity. Given that AjA), = 0, we multiply (6.6) and (6.9) together, set ry = ry,
sS4 = 81, t4 = t; and then sum on ry, sy, #;. This gives us an element of AIAQ so that

51 151

n n
1Jj1 r rl 5] r18]

Similarly, from A,A/, = 0 and A3;A, = 0 we obtain

%th ZZ{W%— (6.12)

n
52 rn 52 252
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and

2 2.2
%2{ s } —Zzgﬂ} —0. (6.13)

Npsj n
- r3j3 s 5 7383

From these last two equations we note that u;, > 0 and v;; > 0 for all i and js.
Adding (6.13) to (6.11), putting j; = j3, and dividing by u;,, we obtain

) 2
i_2{L§ —0. (6.14)

Rijy Riysy
Multiplying this equation by n;;,, summing on j;, and using Zjl v;, = 1, give us

UZ
S1 _
1— nj,. Z m =0.

51

Substituting this back into (6.14) leads to v;, = n;,;, /n;,. for all i1, that is,

Vi — Zil niljl _ n'j]
T .
Zil ;. n
In a similar manner it can be shown that
i j) nj;.
U, = —— = —.
I’l.jl n

Now by multiplying (6.7) and (6.8) together, putting r3 = 1y, §3 = $2, 13 = by,
and summing on r», s, 1> give us an element of A,Aj. Thus if A,A} = 0 we have,
substituting the expressions given above for u,, and vs,,

S; 1 S; 1
0= o B2
SEZ(e ) (s
r 52 15
_ My 1
nj.n.j; n

for every i, and j3. Therefore a necessary condition for orthogonality is that we have
ni = ni.n.;j/n for all i, j and this completes the proof of the theorem

We note that when we have equal numbers of observations per cell, thatis n; = K
for all i, j, the conditions for orthogonality are automatically satisfied, provided we
use equal weights. In this case the identifiability constraints reduce to the equations

2o =B =2y = 2,7 =0
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When the hypotheses are orthogonal, we have from Theorem 6.3 in Sect. 6.3 that
the least squares estimates of the i, {o;}, {B;}, and {y;;} for @ € §2 are uncorrelated
group-wise and are readily derived, as we shall see below, by using the Gauss-
Markov theorem. In the remainder of this section we will assume the conditions
for orthogonality hold, namely

u; =ni./n, vj=n;/n, n;=mn.n;/n foralli,j.

To find the least squares estimates of the parameters u, o; etc. for G we require
the least squares estimates of A, (r = 1,2, 3,4, 8 € §2). From the Gauss-Markov
Theorem 3.6 in Sect. 3.5 these are given by A,Poy, which is just A,y since P, =
I,—A’(AA)~'A and A,A’ = 0 (Theorem 6.2). Therefore the least squares estimates
[, @; etc. can be written down immediately from the definitions of the parameters
by replacing € by y and using the above conditions for orthogonality: thus

i
=220 vw/n
i J k

=y..say,
Vi = Vi — Z ngy;./n— Z n.y./n+y..
J i

=

a; = Zn.j?ii. —79..and
J

Bi =) mi¥y =Y.
i

Suppose we wish to test Hy : v = 0, y; = 0, or @ € wy, say, then we require the
least squares estimates Arél of A,0 (r = 2,3,4) for 6 € w;, namely A,P,y, where
P, = P,,. Now I, — P, represents the projection onto C[(A’, A})] (by Theorem 1.1
in Sect. 1.2) which is orthogonal to C[A!] for r = 2, 3, 4. Therefore we have the
result (I, — P;)A. = 0or A,P; = A, and

A =Ay=APoy=A0 forr=2234.

This confirms that the least squares estimates of j, ¢, and B; remain unchanged
when y; = 0 and do not have to be recalculated. As already noted, this follows
from the fact that the groups of estimates are uncorrelated and therefore independent
under the assumptions of normality. Hence the least squares estimates of any one
group, say the {¢;}, are independent of the least squares estimates of the parameters
in the other groups u, {B;}, and {y;;}.
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The numerator sums of squares I 0 — 0, |?, for the F-test of H, is 51mp1y
D227 yU =22 nUyU as the i, kth element of 6 — 6, is (2 + &; + ,3/
Vi) — (L + & + ,3/) or ;. Similarly we have

161 =0 |I>=16-6, = Zni~5li2
i

16— 01 [P = 16— 65 1= n;p?

J
| 0123 — O1o3s || = || 6 — 04 |*= nja?

and

QD)

m+m+m

= yij~‘

We note that 91234 = 0 and therefore || 9123 |>= nfi%. Thus corresponding to the
decomposition

O = i+ ati + B + vij + viie
we have a similar decomposition
Vi = L+ & + B + Py + yig — i

Squaring both sides and summing on i,j, k we find that the cross-product terms
vanish because of orthogonality, giving

Yoy zk:y?,.k =np?+ Y ma?+ Y np?
C i I
DN EDD Zk:(yijk =5,
P 5
In general we usually consider the total variation about the mean namely,
Y@ —Po)y =) > ; V2 — nii?
P
=22 Zk:(yijk -y..)?

P

and construct the following analysis of variance table for the sums of squares
(SS). Here the term “row” and “column” refer to the levels of the factors A and
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Table 6.1 Two-way ANOVA table

Source SS df MSS
Between rows > ina@? I—1 MSS(2)
Between columns > n.jﬁjz J—1 MSS(3)
Interactions 22 n,-j]?,-jz- I—nu-1 MSS(1)
Residual 22 2w i — i,-j,)z n—1J MSS
Corrected total 22 2 G = 5.2 n—1

Correction for ny-. 1

the mean

Total > Zj h Yizjk n

B respectively. The test statistic for testing H, is simply

o MSS()

r=1,2,3,
MSS

where MSS, as usual, denotes the appropriate SS divided by its degrees of freedom
(Table 6.1).

In general we are not interested in testing Hys : ;= 0, but if we accept hypothesis
Hj>; we may be interested in finding confidence intervals for p. These can be
calculated from /n(y..— )/ +/MSS, which has the r-distribution with n—1IJ degrees
of freedom.

The column giving the degrees of freedom for each SS is obtained by calculating
the number of independent constraints in A,0 for p = 1,2,3. Thus ¢ = A0
has (I — 1) independent constraints as there exists one identifiability condition
> ue; = 0. Similarly, as Y, u;y; = 0 forj = 1,2,...,J and Zj viy; = 0
fori =1,2,...,1 with ), Zj u;v;y;; = 0 in common, we see that v = A6 has
(I + J — 1) identifiability conditions givingus IJ —I —J + 1lor (I — 1)(J — 1)
independent constraints for the y;;. The degrees of freedom can also be obtained
from the traces associated with the SS, where the trace is the sum of the coefficients
of the terms y%jk. The expected value of a quadratic y'Cy is o2 trace[C] + 6'C8 so
that it can be shown, for example, that

E[Z n.6?] = o*(I—1) + Zni.af.

If n;; = K for all i,j (which is usually referred to as a balanced design), it can
be shown that the diagonal elements of each of the projection matrices P; for the
hypothesis H; : 8 € w; (i = 1,2,3) and of Py, are all equal. This means that the
corresponding F tests are quadratically balanced, which implies some robustness to
non-normality (by Theorem 5.3 in Sect. 5.2 and the following discussion). If we set
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ui = 1/I and v; = 1/J so that the identifiability conditions are now ) ;o = 0
and Zj B; = 0 etc., we again have orthogonality as the orthogonality conditions are
satisfied. Clearly having equal numbers per cell is the ideal situation.

6.5 Orthogonality in Complete p-Factor Layouts

The ideas developed in the previous section can be extended to complete layouts
with more than two factors. We have the following theorem (cf. Seber, 1964).

Theorem 6.6 A p-factor analysis of variance model with ni,i,...;, observations per
cell has orthogonal hypotheses if and only if

(nil....)(n.iz...) s (I’l...ip)
ni1i2i3~~~ip = 1

(foralliy, iy, ... ip), (6.15)

where a “dot” signifies summing on that subscript. For example, n... (= n, say) is
the sum of all the observations, namely

n.. = E E E nilizi3...ip.
i i ip

Proof As the notation becomes very complicated we shall prove this theorem for
just p = 3, with a change in notation for clarity, and then briefly indicate the
generalizations needed for p > 3. We use a different approach from the case p = 2
by beginning directly with three-way layout model

Viike = Oijke + ke

fori=12,....5j=12,....J;k=1,2,...,K; £ =1,2,...,n; and

Oiike = dijx = Ok

Let vijjxe = Bjxe — 0jjx.. We now define the following interactions and main effects:

i = Ejk — glj — O — O +0i. + 0.+ 0.4 — 0.
)/i;lz) = glj.. — 51 — 9] + 9
a3 =
) =i

O{fl) = gl —0..
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together with yu = 0..., where gijk. =Y, e/ nijx, gu =0 > 0 Oixe/nije, 6. =
> 2k 2_¢ Bije/ni.. etc. We note that this time weights are automatically imposed,
for example >, afl) n;./n = 0. The {7} are called second order interactions, the {y}
first order interactions, and the {«} are the main effects for each factor. Then

1) (2) (3) (12)

Ojke = 0 + o +o7 oyl oy

13 23
+yg + )/j(k '+ Tijk + Vijke

and we assume G : vy = Gjre — gijk. = 0 for all i,j,k,£. Given G, let H|, H;,
and H; be the individual hypotheses of no main effects, Hi,, Hy3, and H»3 the
hypotheses of zero first order interactions, H|»3 the hypothesis of zero second order
interactions, i.e. myx = 0, and Hy : u = 0. We denote the matrices corresponding
to the null space representations of these hypotheses by A,, A, A2z, and Ag = 1/,
respectively; also A denotes the matrix corresponding to G. Now it is seen that, apart
from g, all the other parameters are contrasts in G so that Al,, A,1,, A1, and
A1, are all zero, which means that each matrix post-multiplied by A{) is zero.
This is obviously true for a p-factor layout. To apply Theorem 6.2 we now need to
show that all the matrix products A,A’, A,A’, etc. are zero if and only if (6.15) is
true.

Sufficiency. Assuming (6.15) to be true for p = 3, we have

n;.n.n.r
My = —— 53— (6.16)
and summing on i gives us
ny = ——% 6.17)

together with two similar expressions obtained by summing on j and k respectively.
Since vy is the only parametric expression containing £, and v;. = 0, we have, by
taking matrix products and summing on £ first, that all the matrices post-multiplied
by A’ are zero. For example, if 6 has elements 6, (stacked according to the order
i,],j,k,£), then A@ = 0 implies that A is an n X n matrix with its row corresponding
tO Viyjokot, having its (7o, So, to, Uo) element

(Si()ro(Sioso Skoto 5150140 - 81'0’081'050 Skoto/ Nrgsoto s (6.18)
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where 8, is the Kronecker delta. Summing (6.18) on £, gives us zero. Similarly the
row of Aj»3 corresponding to m;,j x, has (ry, 1, t1, ;) element

SirriGjisi Sk B G, _ 8irry B, _ 8j1s1 8ty + 8iry

Nrisin Mrysy- Ny Nsin L
+ G + Sn 1 (6.19)
N.g,. N.q n

Using equations like (6.16) we find that (6.19) reduces to

n (5_ _ l) (5/_ _ 1) (5k_ _ 1) _ (6.20)
Ny N Ng. N Ny n

With Ay, the (2, 52, 2, u2) element of the row corresponding to y(lz) is

i2j2

Sizrz(gjzsz _ 8'2_72 _ 812_” + l,

Nyysy- Ny Mg, n

and, using equations like (6.17), the above equation reduces to

n (82—2 — l) (5’2—2 - 1) . (6.21)
Npy.. n N.g,. n

Finally, A| has the (r3, 53, 13, u3) element of the row corresponding to ocfsl) given by

Bisr 1
=5 (6.22)

Rpy 1

We see then that all the elements of the matrices A,, A,,, and A, factorize into one
or more of the following types of brackets:

(ﬁ - l) , (5_ - 1) . and (5_ - l) | (623)
ny.. N ng. N n., n

When we form all the matrix product pairs AjA’,, AxAl,; etc. we find that,
ignoring any power of n, the product of corresponding elements is also a product
of terms like those given by (6.23) with at least one of the above types of brackets
occurring only once. (This is true for general p-factor models.) For example,
considering A1»A’; we multiply the (2, 52, 12, u>) term of a row of Ay, (cf. (6.21))

by the (r3, 53,13, u3) term of a row of Ay and set r3 = ry, 53 = $, 13 = 1y, and
uz = uy to get

2% LY (S 1Y (e 1) Sk 1
Hpy N Mgy N Ny N n, nj)’
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where we have a “j” term occurring twice and the “i” and “k” terms occurring only
once each. We now sum over r5, s, f, and u; to get an element of A12A/23. In fact to
get the result that we want we only need to sum the first bracket over r, and u; as it
is the only term containing r,, namely

e ior 1 ! 8i r 1
25 (B ) S (B 1)

rn=1 u=1

nj,.. n
=0,
since combining (6.16) and (6.17) gives us
I nj.N.ji
ijk = n

for all 7, ], k. Using similar arguments we see that all the matrix products are zero
and the hypotheses are orthogonal.
Necessity. We assume that all the matrix products are zero. From A;A, = 0 it can
be shown, after some algebra, that

r=1s3=11n=1 uz=1
1 J K
_ 8i3r3 1 8]333 1
o n7’3531‘3 n ; n n
rn=1s3=11=1 3 30
Misjs 1

Hence

n;.n.;.

(6.24)
n

for all i and j, and we have similar expressions for n.j; and n;..
From A»A’; = 0 and using expressions like (6.24) it can be shown that

1 J K
Sizrz 5j2S2 5i2r2 8/2X2 1 5k2t2 1
o= 3 (Mt e e ) (B
n=1s=1n=1

Nyysy- Ny gy Ny N
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Hence
n njj.n..

ik =

ij P
which combined with (6.24) gives us

nj.n.jn.p
Rije = —— =
n

and the result is proved.

The above proof can be extended to any higher-way layout and we demonstrate
this using a 4-factor experiment. The matrices involved would now be of the form
Ao = 1, as before along with A;, A;;, Ay, and Aj»34 representing main effects,
first order interactions, second order interactions, and third order interactions,
respectively. To prove sufficiency we need to show that the appropriate products
of all pairs of matrices, for example A,A 334 are zero. In the latter case we would
get “i” and *‘j” factors occurring twice each (cf. (6.23)) as subscripts (1,2) occur in
both matrices, and the other two factors occur only once each. We then sum on the
number of observations and on a factor occurring only once to get zero. To prove
necessity for p = 4, we assume AlA/z, A 12A§, and A>3A4 are all zero matrices to
prove the following (using a more general notation):

Njjjpee = (l’l,l)(}’llz)/l’l

Rijiyiz- = (niliz..)(n..i3.)/n....

Nijisiyiy, = (Miyigiye) (Meviy) [y

which combined give

ni1i2i3i4 = (nil'“)(n-iz-')(n-'i3-)(n~-~i4)/n37

our required result. The conditions for orthogonality are automatically satisfied if
we have equal numbers of observations per cell, i.e. nj,i5i, = no for all iy,is, i3,
and i4. For further background reading, particularly with regard to the formulation
of interactions, see Seber and Lee (2003, section 8.6).

6.6 Orthogonality in Randomized Block Designs

Consider a randomized block design with I treatments and J blocks. Let y;; be the
observation for the ith treatment on the jth block, and assume the model E[y;] =
Gij = ,u+oti+,3jf0ri =1,2,...,7andj = 1,2,...,J. This is the same model as
for the two-way layout of Sect. 6.4, except that the treatment X block interactions are
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assumed to be negligible and there is only one observation per cell. As before we use
weights {u;} and {v;} giving the identifiability conditions ), u;o; =} v;8; = 0.
We now consider the hypotheses

Hl:Hij:,u—i—,Bj, HZ:H,-]-:,LL—}—a,-, H3:9ii:ai+ﬁi

and find what weights we must use for H;, H,, and Hj to be orthogonal with respect
toG:0;=pn+a;+ B

Theorem 6.7 The hypotheses H; (i = 1,2,3) are orthogonal with respect to G if
and only if u; = 1/I and v; = 1/J for all i and j.

Proof We shall use a more direct proof than that in Theorem 6.5.

(a) Necessity. From the alternative form of the definition of orthogonality we have
that the hypotheses are orthogonal if and only if a)lJ' N 2 C w; forj # i. Thus
a necessary condition for orthogonality is that a):,f' N §£2 C w1 N w,. The vector
space a):,f' N £2 is defined by the set of 6;; = p + «; + B such that 6 L w3, i.e.,

Z Z(af‘ +B) (1 +ai+p) =0 (6.25)
i

for every o and B} satisfying the constraints } ; w;er = > v;B;" = 0.1f this
set of 6;; also belongs to w; N w», the §; must be constant with respect to i and
jsothato; = «, B; = B, say. Equation (6.25) now becomes

DY @+ B +a+p)=0.
i

Since we are concerned with nontrivial vectors, (i +a+ ) # 0, and by putting
the {B;*} equal to zero we see that ) ,a = 0. In the same way Zj B =0
so that we have shown that the identifiability conditions must take the form
Yo =0and}  f;=0.

Sufficiency. If 3, c; = 3, f; = 0, then the vector space wi- N £2 is defined by
the set of 6;; such that

(b

~

0= 3"+ B +ai+h)
= WU +1)_ BB,
J

for every u* and ,3]?*. Hence u = 0 and B; = 0, giving §; = «;. This implies
that a)lJ' N £2 C wy. The other requirements follow in a similar manner. The
above method of proof was suggested by Dr. S. D. Silvey.
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We now turn our attention to the least squares estimation of the unknown
parameters, and by way of variation we give a slightly different approach from that
used in the complete two-way layout.

Let ) ;s =0and ), B; = 0, then we find that

pw=0. ao=0.—0. and B =0;—0.. (6.26)
Hence
yi—0j=G.—w)+ Q. =Y. —a) + (yj_i -B)
+y = Vi —¥; +5.)-

Squaring both sides, summing on i and j, and using the identifiability constraints,
we find that the cross-product terms vanish (because of orthogonality) giving

DY 0= =G — )+ G-y — )
i i
HY G =V = B Y Y =V =V V)
j P

Thus minimizing ), Z,(}’u — 6;)? with respect to the u, {o;}, and {B;} gives us the
least squares estimates

A A —

nL=y. o =y.—Yy. and ,3j =Y;= Y. (6.27)

which are of the same form as (6.26) but with € replaced by y. Also the above
estimates are unchanged if we put some of the parameters equal to zero. This means
we do not have to recalculate the estimates for testing the hypotheses H; and H», a
feature we have seen of orthogonality. The analysis of variance table follows with
MSS = SS/(df) (Table 6.2).

Table 6.2 ANOVA table for randomized blocks

Source SS df MSS
Between treatments JYiG5.—y.)? I—1 MSS(1)
Between Blocks 1Y5,6,— y.)? J—1 MSS(2)
Residual Y2 =y =5, +5.)? I—DUJ—1) MSS
Corrected total Z,» Zj(Yzj - y..)z -1

Correction for 152 1

the mean

Total PIPWY U
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The test statistic for testing H, (r = 1, 2) is simply

_ MSS(r)
T MSS

Before concluding this section, let us consider the model
Vijlx..x = W+ + ,3/‘ + Tk + ot i

with identifiability conditions ), ujet; = Zi v = D ywktk = --- = 0. The
hypotheses of interest are H;: all the «; zero, H»: all the B; zero, etc., and we can
add the hypothesis Hy : i = 0. As the proof of Theorem 6.5 can be generalized
to deal with this as in the next section, we have that the hypotheses Hy, H;, H>,. . .
are orthogonal with respect to G if and only if the identifiability conditions take the
form ), 0; = 3, Bj = >, w = --- = 0. The Latin and hyper-Latin square designs
and factorial designs with no interactions are special cases of this general model.
We look at the Latin square next.

6.7 Orthogonality in Latin Square Designs

An n x n Latin square design is a design method for comparing three factors A, B,
and C at n levels for each factor. An example of a 5 x 5 Latin square is

D AW N =
— AW N
D= AW
W N~ N A
B w o = un

Note that each number occurs once in each row and once in each column. Here
factor A has five levels given by the row number, factor B has five levels given by
the column number, and factor C has five levels given by the number. For example
the entry “4” in the (2,3) position represents factor A at level 2, factor B at level
3, and factor C at level 4. We can obtain other Latin squares by permuting rows,
columns, and numbers. The one chosen has “5” down one of the diagonals, which
may lead to bias. In setting up such an experiment one usually chooses a Latin
square at random from an appropriate set. This randomization goes some way to
help achieve any underlying normal distribution assumptions and reduce interaction
effects. We won’t be going into such details as our focus is on orthogonality.
The model we assume for the Latin square is

Yijk = el]k + gijkv (isjs k) € Sv
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where y;; is the observation on the treatment combination of factor A at level i,
factor B at level j, and factor C at level k. The triples (i, ], k) take on just n? values
determined by the Latin square chosen. This set of n? values of the triple (i, ., k)
is denote by the set S. For the above model, the set of n> random variables {&ik}
are assumed to be independently and identically distributed as N[0, 0-]. Our model
G : 0 € 2 is the set of all 8 such that

Qijk:M+ai+,Bj+)/k (i,j, k) €S,

where > uio; = Zj vif; = > wiyx = 0 are identifiability constraints. The
hypotheses of interest are
H :0jp=p+B+wm (=0 foralli)
H:Ojp=p+a;i+ye (Bj=0 forallj)
Hy:Op=p+o;+ B (=0 forallk)

and we add
Hy:O0p=a;i+Bi+y (uL=0).
We now establish necessary and sufficient conditions for orthogonality of the

hypotheses.

Theorem 6.8 The hypotheses H; (i = 1,2,3,4) are orthogonal with respect to G if
and only if u; = v = wy = 1/nforall (i,j, k) € S.
Proof (Necessity) To prove necessity we assume that the hypotheses are orthogonal,

that is a)f’ C wjforalli,j,i #j,ie., a)ff C w1 Nwy N w3. Now a)j- N £2 is defined
by the set of Ox = 1 + o + B + i such that @ L oy, that is,

S+ B+ vt + B+ ) =0. (6.28)
(ijk)eS

forall e, B, and y; satisfying 3, wief = 3, v, = 3, wiy = 0. If this set of
O« also belongs to w; N w> N ws, then O; must be constant with respect to i, j, and
ksothato; = «, B; = B, and yx = y, say. Then (6.28) now becomes

D@+ B+ ta+ Bty =0.
(ij,k)ES
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For nontrivial vectors we have (© + o + 8 + y) # 0, so that putting the {,3]?“}
and {y;} all equal to zero, we have that ) ;& = 0. Using a similar argument we
find that Z,’ ,31* = >, ¢ = 0. Hence our identifiability constraints take the form
Yo =) ;Bj =2 vk = 0, and the constraints are necessary.

(Sufficiency.) I 3 ;0 = 3 B; = >, v = 0 then wi- N 2 is the set of all @
such that {0 : O = 4+ a; + B + yi) and

0= > (W +B +yIu+ai+phi+
(ij.k)€S

= u+ny BBi+nY vin
J k

for all u*, B7, and y;". Hence u = 0, B; = 0 for all j, and y; = O for all k giving
us O = «; so that wll N §£2 C wy N w3. Using a similar argument, by cycling the
subscripts, we see that a)f- N2 C w; Nws and a)% N 2 C w; N wy. Now a)j- ng2
is the set of all 8 such that {0 : u 4+ o; + B; + yx} and

0= Y (@ +B; +v)+ai+Bi+ v
(ijh)ES

= Za,‘*ai + Zﬁfﬁj + Z Vi Vi
i j k

for all o, ]?k, and y;. Hence o; = O forall i, §; = 0 for all j, and y, = 0 for all k so
that 6; = p and a)j' N2 C w1 Ny Nw;. Bearing in mind that ] C w; if and only
if a);” C w; we see that ! C w; for all i, j, i # j and the hypotheses are orthogonal.

We now find the least squares estimates. For 8 € §2, we minimize

3 Oi—ai—B—y)?+ A O ai—D+0) B+ n-1) (629
j k

(ij.k)ES i

subject to the identifiability constraints, where the A; are the Lagrange multipliers.
Differentiating (6.29) with respect to 1 and dividing by —2, we get

0= > Gi—A—&—Bi—)

(ijk)ES

= Z yijk—nzﬂ—nz&i—nz,éj_nzyk
i J k

(ij.k)ES

= Y yx—nk

iy €S
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or fl = y.., the mean of the n> observations. Differentiating (6.29) with respect to
o; gives us

0= Z —z@iik—ﬂ—&i—ﬁj—?k)+ll,

(.k)€ES;

where S; is the set of n pairs (j, k) for which (i,j, k) € S and i has a fixed value. If
we also sum the above equation over i we see that A; = 0, which is what we expect
from the general theory of identifiability constraints. From the above equation we
get

= Y yik—nil—ndi— Zﬂ, Zn

(k) €S;

E Yijk — R — not,

(.k)€ES;

or
o = Y, - Y,

where y;.. is the mean of the n observations for which factor A is at level i. By

symmetry we have that ,3j =y, —)y.. and Pk = Y.x — Y... Now the residual sum of
squares Q is

Z (Yijk - ﬂ - &i j — )/k)z Z (yUk Vi _' — Y+ 2?)2

(ij.k)eS (ijk)ES

To test H : o; = 0 foralli we minimize ;s (Vije— 1 —Bj— ¥x)* with respect
to u, B;, and yx, and we get the same least squares estimates as before (because of
orthogonality), namely /i, {$;} and {Jx}. Now

ik = O = O = W+ Gpo = 5. — ) + G = Vo — ) + G = .. — %0
+ ik = Vi = Vo — Yo +25.)
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Table 6.3 ANOVA table for Latin Square

Source SS df MSS
Factor A nYy ;¥ —y.)? n—1 MSS(1)
Factor B ny (3, —73.)? n—1 MSS(2)
Factor C nY o —7y..)? n—1 MSS(3)
Residual Y ijmes ik = P = Voo = Foi + 25..)° n?—3n+2 MSS
Corrected total > iimes ik — y..)? n*—1

Correction for n*y2. 1

the mean

Total > Gimes ylzjk n

Squaring both sides, summing on i, j and k, and using the identifiability constraints,
we find that the cross-product terms vanish (because of the orthogonality) giving

D O =) =G — ) 1Yy G =Y. — )

(ijk)ES i

1Y Gy =T =B+ Y Gt =V — 1)
J k

+ D G =V =V — Vg + 2%
(ijk)ES

We can now obtain the least squares estimates and the residual sum of squares Q;
for each H; by inspection. For example, for H|, the hypothesis sum of squares Q; —
Q = nY (3. —¥..)% which leads to MSS(1) in the Table 6.3 above. Alternatively
we can use the result

01-0=l 0—8m) I’= Y ((A+a+h+p)—(A+B+70=n) a2

(ij.k)ES i

The analysis of variance table is given above.

6.8 Non-orthogonal Hypotheses

We see from Sect. 6.4 that we don’t have orthogonality of the hypotheses with a two-
way layout when there are unequal numbers of observations per mean and certain
conditions are not satisfied. In this case hypothesis testing is not so straightforward
as different parameterizations are used by different computer packages. We also
have the problem that least squares estimates have to be recalculated when some of
the parameters are put equal to zero. These are important practical issues discussed
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in Seber and Lee (2003, section 8.3) for example, but are not part of the main theme
of this monograph, which is concerned with broad principles.
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Chapter 7
Enlarging the Model

7.1 Introduction

Sometimes after a linear model has been fitted it is realized that more explanatory
(x) variables need to be added, as in the following examples.

Example 7.1 In an industrial experiment in which the response (y) is the yield and
the explanatory variables are temperature, pressure, etc., we may wish to determine
what values of the x-variables are needed to produce a certain yield. However, it may
be realized that another variable, say concentration, needs to be incorporated in the
regression model. This can be readily done by simply using a standard regression
computational package. In this case the added variable is quantitative and is readily
added into the original model.

Example 7.2 Consider an experiment that involves finding what variables deter-
mine a person’s performance on a given task. Suppose quantitative variables such
as height, weight, and age are used as well as the qualitative variable gender. In this
case gender can be incorporated into the initial regression model using an indicator
variable which takes just two values, one for female and zero for male. After fitting
a model it is decided that another qualitative variable with » possible unordered
categories needs to be added. This can be done, for example by adding »—1 indicator
variables.

Example 7.3 A more common application when one might add to a model arises
in the topic of analysis of covariance where we combine qualitative information
as in an analysis of variance model with quantitative information as in regression
models. For example, suppose we compare the effect of four teaching methods
on the performance of students in a test. Students were selected randomly to form
four equal-sized groups giving us a one-way analysis of variance model to test for
differences in the four group means. It was then decided that another quantitative
variable Intelligence Quotient (IQ) needed to be introduced as it was possible that

© Springer International Publishing Switzerland 2015 103
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the 1Qs were not randomly spread among the groups. Mathematically we started
with model y; = p; + &;, where y; is the score of the ith student in the jth
group (i = 1,2,3,4;j = 1,2,...,J) and the g; are independently and identically
distributed as N[0, o2]. The hypothesis of interestis H : u; = u (i = 1,2,3,4). If
z;j is the IQ of the same student, then a possible new model might be

Yij = Wi+ Vizij + &

when IQ is taken into account. This change amounts to fitting a straight line to the
data from each group. Any test of H would amount to comparing the means, but
allowing for any IQ effect. The variable z is usually referred to as a concomitant
variable. Several other hypotheses now present themselves such as y; = y (i =
1,2, 3, 4) in which the slopes of the lines are the same, and perhaps followed by the
hypothesis that y = 0. We might even go a step further and consider the model

Yij = Mi + Yizij + Sizizj + ¢,

which gives us a quadratic model for each group. Such models can be readily fitted
using a standard regression package. However there are some algebraic methods
that can be used to assist with model fitting and show the usefulness of projection
methods that we now consider. We set up a general model in the next section.

7.2 Least Squares Estimation

Giveny = 6 + e, suppose our linear model G : € € £2, with dim[2] = p, is
modifiedto G : 0 € 2 = 2 @ C|Z], where € is N,[0, ozln], 2 NC[Z] = 0, and
Z is n x r of rank r. Instead of calculating the least squares estimates for 8 and -~y
in the new model G, it is often more helpful to obtain least squares estimates for G
first and then modify them to give the estimates for G. Suppose 6 and 7 are the least
squares estimates for G, then

0+ Zj = Pgay. (7.1)

Since 2 C .Q, Q1 ¢ 2+, and from Theorem 4.2 in Sect. 4.2, Ps — Pg is the
projection onto £2 N £2-. From the last line of Theorem 4.3 with Al =1

2Nt =(Qaec[z)net=CRz),

where R = I, — P = Py1. Since C[Z] N §£2 = 0 and Z has full rank, it follows
from Theorem 4.4 and (4.7) with §2 replaced by £2 and A/ replaced by Z that

Ps — P, = RZ(ZRZ)"'Z'R. (7.2)
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Premultiplying (7.1) by Z'R, using RO = 0 (since O € 2), applying RP; = 0, and
noting that R?> = R gives us
Z'RZ~ = Z/RPzy
= Z'R[P; + RZ(Z'RZ)"'Z'R]y
= Z/Ry.
Hence
4 = (ZZRZ)"'Z'Ry (7.3)
and, using (7.1), (7.2), and (7.3),
0 =Pgy—77
= [Pg + RZ(Z'RZ)'Z'R — Z(Z'RZ)"'Z'R]y
=[Py + (I, —Po)Z(Z'RZ)"'Z'R — Z(Z'RZ) ' Z'R]y
=Po(y—1727) (7.4)
=6 —PoZA.

The above result suggests the following two-stage procedure. First, we assume
~ = 0 and obtain 8 = Ppy and the residual sum of squares y'Ry. Second, minimize
(y — Z~)'R(y — Z~) with respect to -« by differentiating it to get (cf. A.20)

—ZRy+Z'RZ7 =0 (7.5)
or
4 = (Z'RZ)™'Z'Ry,

which is (7.3). Third, the estimate 6 is now obtained by replacing y by y — Z~ in
0 = Pgy, as in (7.4). The correct residual sum of squares for the enlarged model is
then simply the actual minimum of (y — Z~)'R(y — Z~y) as
(y —Z%)'R(y — Z7) = y'Ry — 25'Z'Ry + ¥'Z'RZY
= YRy —4'ZRy (by (7.5))
=yY[R-RZ(Z'RZ)"'Z'Rly (by(7.3))
=Y[R—(Ps—Pg)ly (by(7.2)
=y(@, —Pg)y.
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We note from Theorem 1.5(iii) in Sect. 1.6 that

Var[¥] = (Z'RZ)"'Z'RVar[y]RZ(Z'RZ) ™"

= 0*(Z'R2)™"
= o’M, (7.6)
say. Using PoR = 0,
Cov]d, 4] = 0’PoRZ(Z'RZ)™ = 0 (1.7)

so that from (7.4)

Var[0] = Var[é] + Var[P,Z~)]
= 0*{Py + PoZMZ'Py}. (7.8)

We note that the residuals for the enlarged model are, from (7.2),

(I, —Pg)y = Ry — RZ(Z'RZ)'Z'Ry
= R[I, — Z(ZRZ)"'Z/|Ry
= RSRy, say. (7.9)
The above equation forms the basis of an algorithm due to Wilkinson (1970) for
fitting analysis of variance models by regression methods. The steps are

Step 1:  Compute the residuals Ry.

Step 2:  Use the operator that Wilkinson called a sweep to produce a vector of
apparent residuals Ry — Z#~ (= SRy).

Step 3:  Applying the operator R once again, reanalyze the apparent residuals to
produce the correct residuals RSRy.

7.3 Hypothesis Testing

One of the first hypotheses of interest is H- : v = 0 and the F-statistic for testing
this is given by (4.1), namely

n—dim[Q2] y'[Pgs—Po)y
rank[Z] yd—-Pg)y '

where dim[2] = p + r and rank[Z] = r. If the test is not significant and we
accept the hypothesis, then we are back to our usual model G. However, if the test is
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significant, we would then test some other hypothesis of the form H : E[y] € & =
® @ C[Z] and repeat the above procedure using w instead §2. The F-statistic would
then be

_ n—dim[2]  y(Pz—-Py)y
~ dim[2] —dim[w]  yAI—Ps)y

7.4 Regression Extensions

Suppose our original model for £2 is a regression model with 8 = X3, where X is
n X p of rank p and the columns of X are linearly independent of the columns of Z.
Now 6 = X33 so that from (7.4) with X'Pgo = X’
B=XX)"'X0

= (X'X)"'X'Po(y — Z7)

= XX)"'X'(y-Z79)

= 8- (X'X)"'X'77

=B-L17, say. (7.10)

Of particular interest in model fitting is the case of fitting one extra explanatory
variable. Suppose our original model G is denoted by

Ely] = x©,x, ... x¢*g,

where x) is the (j 4+ 1)th column of X, and we wish to add an extra variable with
column x? and parameter Bp so that Zy = x? Bp. From the previous section we
find that the least squares estimates for this enlarged model are readily calculated
since ZRZ (= XU’)/RX(I’)) is only a 1 x 1 matrix, that is a scalar. Hence

- »'R

- _ X y
,=4=(ZRZ)'ZRy = ———,
b ( ) y x®)'Rx®)

and from (7.10)
B=Po.Br.....Bp-1) = B— XX)'Xx"B, = LB,
From (7.7) we have

Cov[B. LB,] = Cov[(X'X)™'X'0, LB,] = (X'X)"'X'Cov[6, §,]L’ = 0.
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Hence using Example 3.1 (iii) of Sect.3.3 and (7.6), we have from the above
equation,
Var[3] = Var[@] + Var[L,gp]
= o2[(X'X)"! + LML/]
= o2[(X'X)"! + IWm),

where 1 = (X’X)~'X’x? (a vector) and, from (7.6), m = x”’Rx) (a scalar). Now

Cov[B. B,] = Cov[B — LB,. B,
= COV[B» Bp] - lvar[,ép]

= —o%m.

If6 = (3, B,), then
Var[d] = o [(X’X)‘l +1 - lmi|
—I'm m|’

Since the “corrections” involved in updating the original regression model are
readily made, the above method can be used in stepwise methods for regression
models. In particular, Wilkinson’s algorithm from (7.9) can be used. Methods
for adding and deleting cases and variables are given in Seber and Lee (2003,
Sect. 11.6).

7.5 Analysis of Covariance Extensions

Example 7.4 (One way ANCOVA) We revisit Example 7.3 in Sect.7.1 where we
have the balanced model

E[yij]:/ii'i_yizljv (l:1,2,,1,]:1,2,,1)

with n = 1J. Applying the theory of Sects.7.2 and 7.3 and using the results from
Example 5.1 in Sect. 5.2, the least squares estimate of u; for G : y; = p; + &; is
fi = ¥, with residual sum of squares Ry, = >, > .(yj — y.)>. Replacing y; by
Yij — YiXij in Ry, gives us

Ryy -2 Z Z )/,(y,, - i,)(zq — Zl) + Z Z sz(Zq _ Z[.)Z.
i i
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Differentiating this expression with respect to y; give us the least squares estimate
of y; for the extended model, namely

_ 20 =@ %) Ry
l Zj (Zij - Zi')z Rzzi '

say. The residual sum of squares for the extended model is then
Y@, —Pg)y =Ry =2 JiRyi+ Y 7R

R2.
= R —_ el .
. ZL: Rzzi

To test H : yi =y foralli = 1,2,...,I we find the least squares estimate of y
by minimizing Y, Y".(vy — V.. — ¥ (zj — Z:))? to get

- 220 =Yz —%) Ry
YH = = -,

Zi Zj(Zij - zi')z R,

say, and we find that

R?
y/(In - PcT))y = Ryy - Ryz.
Z

Example 7.5 (Randomized block design) If we wish to extend an experimental
design such as the randomized block design to

Elyyl = 05 + vzj = p + ai + B + vz,

then we find that identifiability conditions such as ) . o; = Zj B; = 0 need to
be incorporated into the model. This can be readily done in general as follows.
Suppose we use a regression formulation 8 = X3 for our experimental design,
with identifiability conditions of H3 = 0. Enlarging this model to E[y] = ¢ =
X3 + Z~ we find that the conditions H3 = 0 are still necessary and sufficient for
identifiability in the enlarged model, as we might expect. In fact, as we have

P\_ (X Z\(B

o0/ \H o/\~)’
the rows of (X, Z) are linearly independent of the rows of (H, 0) as the rows of X
are linearly independent of the rows of H. From Theorem 3.5 in Sect. 3.4 we have

Po = X(X'X + HH)"'X' = X(G'G)"'X' and B = (G'G)"'Xly.
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Since 6 = XB and Hﬁ =0, we get
X0 =XX3=XX+HH)}3
and
B=XX+HH)'X0=(GG)'X0.
Hence from (7.4)
B = (6'G)"'X'Po(y — Z7)
= (G'G) ' X'(y-7Z9),
which is ﬁ with y replaced by y — Z~. Since the Lagrange multipliers associated
with the identifiability conditions are zero (by Theorem 3.5), this means that the
general three-stage method of the previous section will apply to this example. We
demonstrate this by finding the squares estimates for our randomized block extended
model. One method of doing this has already been given in Sect. 6.6. We now use
the normal equations instead by differentiating >, > (vyj — 1 — o — Bi)* with

respect to each parameter and ignoring the Lagrange multipliers associated with the
identifiable conditions. The answer is

~ ~

A=y. o=y.—y. and ,Bj = y-j -y,

with residual sum of squares
Ry, = Z Z(Yu —A—&—p) = Z Z(Yu =Y =y, + 3.7
i i

We now replace y;; by y; — yz; in R,, and differentiate with respect to y to get
¥ = Ry;/R;;, where

Ry =" "0y =5 =5, +3.) (@ — % — % +Z.)
i
=YY il — % — % +2.).
i

The residual sum of squares for the extended model is then the minimum value

2

- = = ~ = = = \)\2 Ryz
> > i ==V, + V. — P —% — %+ 7)) =Ry—%"
i J 2z
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7.6 Missing Observations

In some experimental situations observations are “lost”, for example a test tube
is broken, a flood damages part of an agricultural experiment, animals die, and
patients withdraw from a medical trial because of some unpredictable event such
as having to move from the district or having an accident. When this happens,
an experimental design usually becomes unbalanced so that, for example, we lose
some robustness that we have shown with balanced designs in previous chapters. In
recent years there has been a complete change in methods for handling missing data,
beginning with the classification of types of missing data given by Rubin (1976)
and Little and Rubin (2002). They described three types of processes leading to
missing observations: missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR, sometimes referred to as NMAR). Here
MCAR assumes that the observed data can be regarded as a random subsample of
the hypothetically complete data sample. It means that the probability of a missing
observation on a variable y is unrelated to other measured variables and to the values
of y itself. The term MAR is a bit of a misnomer as the mechanism is not strictly
random but describes systematic “missingness,” where the propensity for missing is
related to other measured variables but not to the underlying values of y. Finally, data
are MNAR if the probability of missing is systematically related to the hypothetical
values that are missing. It is often hard to know whether we have MAR or MNAR.
In this Section I am only going to consider MCAR of which examples were given
at the beginning of the section. In this case some of the traditional methods of
analysis are satisfactory, in particular list-wise deletion; also known as complete-
case analysis. Many of more complex missing data problems do not fit into the
MCAR category so that the complete cases method produces biased estimates when
the MCAR assumption does not hold. The appropriate methods are then multiple
imputation and maximum likelihood (e.g., Baraldi and Enders 2010; Graham 2012).
In using the complete-cases method we have two basic strategies: (1) carry out the
statistical analysis with the data that we have and use the incomplete model, or (2)
add artificial numbers to replace the missing data so that we now use the properties
of a balanced design, but choose the numbers so that the final statistical analysis
gives results that are the same as those obtained through (1). The second method
essentially means choosing the artificial data so that the final residuals for those
missing data points are zero. We now develop the theory based on Kruskal (1960)
for this second approach using projection matrices. Later we also use an analysis of
covariance method due to Bartlett to produce the same estimates.

We begin with our usual model y = 0 + &, where, by relabelling the y;, we have

Yiu—m 0
Ym

where only the n — m values y,—,, are observed: 8 is partitioned in the same way.
We can therefore write R” as the direct sum of two vector spaces V| and V,, that is
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R" = V; @ V,, and y? = POy, where P? represents the orthogonal projection of

R" on V,. Here
L—,0 00
(1) n—m (2)
P ——( 0 0) and P —(0 Im).

Let 2, = P2 and E[y?”)] = 8 = P?@. Then £2; L £2, and in general we have
2 # 2, P $2,, although 2 C 2, P 2,.
To find the least squares estimates we first minimize

ly—61P=ly" -0V |* + | y* - 6@ |

subject to 8 € £2 to get 6 = P,y and the usual residual sum of squares, namely
| @, — Po)y ||?, and then minimize this sum of squares with respect to y? to get
§?, which is substituted back into . Hence from the first step we get

0=0"+06?=pPoy=Po(y" +y?),
and from the second step
§O = 9O
Combining these two equations,

6@ = P9 = POP,y(y" + 6?). (7.11)

We now ask, when does (7.11) have a unique solution for 0?2 To answer this, let
Pg represent the projection onto £2;. Now

0 =Po6 =P (6" +09), (7.12)

and PUy() € 2, c V; (as well as y), which implies that (I, — P))y®" € Vv,
and is therefore perpendicular to V,. This means that (I,, — Pg) )yVis orthogonal to
both £2, and £2, and hence to 2, so that P (I, — Pg) )y(l) = (. Therefore

0 =PoyV +3?) (7.13)
=Py Py +6?). (7.14)

Subtracting (7.14) from (7.12) gives us

P8 —PYy") =o.
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Thus 80 — Pg)y(l), which belongs to £2;, is orthogonal to §2, and this can only
happen if

N 1
o0 = plyO),

(To see this suppose (a},a)) € £ so that (a},0') € $£2,. If this vector is
perpendicular to §2 then aja; = 0; that is a; = 0.) We see then that the above two-
step least-squares procedure corresponds to first minimizing (y -0y’ (y() -0 1),
subject to 8V € 2, and then putting y® = 6@, where 8 is chosen such that
0 = 6" + 6D belongs to 2. The residual sum of squares is then

0=y @, -PY)yy" = W - 0Vy "V — o) =21, - Po)z,

where z = y + 6. This last result follows from the fact that I, — Pp) is
idempotent, and using (7.13) give us

@, —Po)(y" +0®@) =yD + 6@ _ 9
—yO_ O,

Obviously 8@ can only be unique if, corresponding to every ) € £2,, there exists
a unique 8@ € £2, such that 8V 4+ 8? € 2. Now 8@ will be unique if and only if
there is no non-zero ¢® € £2, such that 0 + ¢® € £2, for then 8 and 6? 4 @
both correspond to @V Thus the condition for uniqueness is that

dim[2] = dim[£2,],

and as an exercise we verify that the above condition implies that (7.11) has a unique
solution for @,
Suppose two solutions u and v exist, then from (7.11)

u—v=P?Pg,u—v). (7.15)

Now if Py represents the projection on any vector space W, thenz = Pyz + (I, —
Py )z for every z and therefore || z || >| Pwz || with equality if and only if z € W.
Applying this twice to Eq.(7.15) give us that (u — v) € §2 and Po(u —v) € V,.
Hence P (u — v) is in both V, and £2; it is therefore zero as dim[£2] = dim[£2,],
and (u —v) L £2. Thus u = v, establishing the uniqueness of .

To test the hypothesis H : 6 € w, a p — g subspace of §2, we simply go through
the same procedure as described above with the estimate éfqz) given by (7.11) with
£2 replaced by w, namely

6% = POP,(y" + 62). (7.16)
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Once again this equation will have unique solution if dim{w] = dim[w;], where
w; = PWw. The residual sum of squares for the hypothesis is

Qn =y (1, — Py = 2, (1, — Po)zs,
where zy = y() + éfqz) . The corresponding degrees of freedom for the residual sums

of squares Q and Qy are n — p —m and n — p + g — m, respectively, m degrees of
freedom being lost due to the estimation of y,,. The F-statistic is

_(n=p=m) Qu—0) _ (n—p—m) yV' @G —P)y"
q Q q y' (I, — PY)y®

F

Example 7.5 We revisit the randomized block design, namely
E[)/U]ZQUZM-FO[,-F,B/, (l=1,2,,],]=1,2,,.’),

where ), ; = 0 and >, f; = 0. From (6.27), the least squares estimate of 0; is
given by
eij = /:L +&1 +ﬂ] :yi. +y.j_y..-

We assume that the observation y;; is missing under the MCAR scenario, and denote
its estimate by u. From the above theory, u is also the least squares estimate of ;.
With 6® = (0,0, ...,u), (7.11) becomes

A Vix U Yig+ U Yix T U
= 9 = —_
= 7t 7

3

where the “star” notation denotes summation on the observed variables; for example
Vi = ijz_ll yij and y«x = IJy.. — yy;. Solving for u gives us

u = [Iype + Jysy — yex] /[ — 1)(J — D],

and since E[u] = u + o; + B; = 0y, u is an unbiased estimator of ;. To obtain
the residual sum of squares we evaluate RSS =}, > .(vj — ;. — ¥, + y.)? with yj;
replaced by its estimate u.

Suppose we wish to test H : «; = o = ... = oy = 0. Then, when H is true, the
least squares estimate of 6 is
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If we denote the new estimate of y;; under H by uy, we have by (7.16)

urr = Oy = sy + un) /1 (7.17)

or uy = y«y/(I — 1). To obtain the residual sum of squares under H, we calculate
RSSy = Y, >~ (vj —,)* with y; replaced by uy. Then

[(I — 1)(J — 1) — 1] (RSSy — RSS)

F =
(I-1) RSS

Bartlett (1937) suggested using an analysis of covariance method for handling
missing observations that we now use assuming the MCAR scenario. The method
is to assume that the missing observations are zero and then introduce concomitant
variables having a value of —1 corresponding to the missing observations, and zero
values elsewhere. For example, in the above randomized block example we assume
the model

yi = 1+ ai + B + vz,
where y;; = 0 and z; = —§;;6;7. To find 7, the least squares estimate of y, we first
assume y = 0 and obtain RSS = Y, >".(yjj — y;. — V,; + 3.)*. Then setting y; = 0

and replacing y;; by y; — yz;, we minimize RSS with respect to y (cf. Example 7.5
in Sect. 7.5). We therefore minimize

2
S R0 =5 = +3) =D @i—z -7 +3)p
or Ry, — 2yR,, + y*R., say, giving J = R,./R,.. With y;; = 0 we find that
Ry: = (Iyix + Jysxy —ys+)/IJ and R = (-1 —1)/1J
so that
V= W + Iy — yxx) /U= DI = 1)
= U.

Hence the covariance method leads to the same estimate u above. The reason for
this follows from the fact that all we are effectively doing is replacing y;; by y and
minimizing the residual sum of squares with respect to y. We note that we have the
alternative form

RSS = Ry, — *R,;, where y;; = 0in Ry,.
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In conclusion we find that the covariance method will lead to the same F-statistic as
before. However, the variance of  for the covariance method will be greater by o2
than the variance of u for the previous method, for although y;; is put equal to zero
it will still have a variance of 0.
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Chapter 8
Nonlinear Regression Models

8.1 Introduction

Nonlinear models arise when E[y] is a nonlinear function of unknown parameters.
Hypotheses about these parameters may be linear or nonlinear. Such models tend
to be used when they are suggested by theoretical considerations or used to
build non-linear behavior into a model. Even when a linear approximation works
well, a nonlinear model may still be used to retain a clear interpretation of the
parameters. Once we have established a nonlinear relationship the next problem
is how to incorporate the “error” term &. Sometimes a nonlinear relationship can be
transformed into a linear one but in doing so we may end up with an error term that
has awkward properties. In this case it is usually better to work with the non-linear
model. These kinds of problems are demonstrated by several examples.
A simple example of a non-linear model is

i = Bo + Bief* + e,
which is nonlinear in ;. If B is zero, we have the choice of two models
yi = ﬂleﬂzx +¢& or y = ,Bleﬂzxe,

depending on whether we think the error is additive or multiplicative. In the latter
case we have the possibility of using a log transformation

logy = log B1 + Box + loge.

with its usefulness depending on the distribution of log e.

As a further example, theoretical chemistry predicts that for a given sample of
gas kept at constant temperature, the volume v and pressure p of the gas satisfy the
relationship pv? = ¢, where y is a constant depending on the gas. Setting y = p
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and x = v~!, we have a linear model y &~ cx”, where any error term will be due to
experimental error. Once again we have the possibility of a log transformation. We
can then use the model to estimate the value of the gas constant y.

We have considered just two simple models. However the subject of nonlinear
modeling is a large and complex one and the associated inference theory depends
very much on complex assumptions that are discussed in detail by Seber and Wild
(1989, chapter 12). In this chapter we shall focus on the role and interplay of
asymptotic linear theory.

8.2 Estimation

We use the general model
yi=f(xi;0) +e=fi(0)+e (i=12,...,n),
or
y=¢+e=10)+e¢,

where £(0) = (f1(0),/2(0), ....f.(0)), x;is a k x 1 vector of explanatory variables,
0 is a p-dimensional vector, and 87, the true value of 6, is known to belong to &,
a subset of R”. (We use the notation @7 to fit in with this and later chapters on
asymptotic theory.) For example, if we have the model

yi = a1efit 4+ ayefre 4 gy

then x; = (xi1,x2)", k = 2,0 = (a1, 2, B1, f2)’, and p = 4.
Let F(6) = 0f(0)/00" with (i, r)th element 9f;(0)/00,. We shall make the
following regularity assumptions.

A(1l). The g; are independently and identically distributed with mean zero and
variance 0.

A(2). Foreachi, f;(0) = f(x;; 0) is a continuous function of 0 for 0 € ©.

A(3). O isaclosed, bounded (i.e., compact) subset of R”. (Such an assumption is
not too much of a restriction as parameters are usually bounded by the physical
constraints of the system being modeled. Also actual computations are discrete
so that @ can be regarded as a set with a finite number of elements (Wu, 1981).)

A@). Let

n

Ca(6.0)) = > _f(0)fi(61) and D,(6.61) = Y [£:(6) —£i(61)]".
i=1

i=1
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Then as n — oo, n~'C,(0, 6,) converges uniformly for all @ and 6, in ® to
a function C(6, 8,) (which is continuous if A(2) and A(3) hold). Also we have
D(0,07) = 0if and only 8 = 0.

A(5). Or is an interior point of §2. Therefore there exists an open neighborhood
of 07 in @, say Or.

A(6). The first and second derivatives

9f(0)/06, and 3*£,(0)/06,00, (r.s =1,2,....p),

exist and are continuous for all 8 € @7.
A(7). The matrix

=n"'F(0)F(0)

L (60) (6 _
l Z a6’

converges to some matrix ®(6) uniformly in 6 for 8 € &7 as n — oo.
A(8). The matrix
9*£(0)
!
Z |:89 00 :|

converges uniformly in 8 for @ € O (r,s = 1,2,...,p) asn — o0.
A@9). @7 = ®(07) is nonsingular.

The least squares estimate 6 of 6 is obtained by minimizing

0(0) = > {vi—f(xi:0)}”.

i=1

In contrast to the linear situation, Q(6) may have several relative minima in addition
to the absolute minimum. Given assumptions A(1) to A(4) above, we find that o
exists and @ and 6> = Q(@)/n are (strongly) consistent estimators of 87 and o
respectively. Differentiating with respect to 6, we find from assumption A(5) and n
sufficiently large that 6 is an interior point of @ and satisfies the equation

a0(0 of; (0 .
ﬁiﬁ—Z}]x o =0 =12 8.1)

This gives us

0= F{y—f£@)
=Fe,
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the normal equations for the nonlinear model, where F= F(é) and € is the vector
of residuals. If Py = F(F'F)"'F’, the idempotent matrix projecting R” orthogonally
on to C[F], then the above equation can be written as

Ppé = 0.

We can also prove from the above assumptions that nli 2 (Aé — O7) is asymptotically
N, [0, o2®;']. Since the assumptions imply that n~'F'F is a strongly consistent
estimator of ®7, then for large n

N 1
n'2(6 — Or) is approximately N, [0, UZ(ZF’TFT)_I], (8.2)

where F; = F(6y).

If in addition to assumption A(1) above we assume that the ¢; are normally
distributed, then using exactly the same method used in Sect.3.9 we find that 6
and 67 are also the maximum likelihood estimates of € and 0.

Before considering some linear approximations we require the following result
for future use. From (8.1) we have

P00 ¢ Ph(6)  0fi(0) 3i(6)
36,00, __2;%[” Al 90,00, 06, 06
so that
’00)7 _ ,
E [ 5696 } = 2F(0)'F(0). (8.3)

8.3 Linear Approximations

From assumption A(5), if @ € Or, where @7 is a small neighborhood of 07, we
have the Taylor expansion

p af;
f0) ~ fi6r) + Yoo (6= 0r)).
Jj=1 / or

or

£(6) ~ £(67) + Fr(6 — 07). (8.4)



8.3 Linear Approximations 121

Hence

06) = |ly—£©) |

~ | y—£(6r) —Fr(6 —6r) |

=l e-F1B | 8.5)
say, where e = y — f(07) and B = 6 — 67. From the properties of the linear
regression model, (8.5) is minimized when 3 is given by (cf. Example 3.1 in
Sect.3.3)

B = (F,Fr)"'Fje.

For n sufficiently large, B is almost certain to be in @7 so that 0— 0r ~ B and

6 — 6 ~ (F;Fr) " 'Fje. (8.6)
Furthermore, from (8.4) with 8 = 9,

£() — £(r) ~ Fr(0 — 0r)
~ Fr(FFr)"'Fje
= Ppe, (8.7)

and

y—£6) ~ y —£(8r) — Fr(0 — 6y)
~ € — Pre

= (I, — Pp)e. (8.8)
Hence from (8.8) and (8.7) we have

(n—p)s” = Q(6)

=|y-£@O) |?
~ | (I, —Pp)e ||
= ¢/(I, — Pp)e, (8.9)

and

| £8) — £(07) |1* ~ | Pre |?
= &'Pye. (8.10)
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Therefore, using (8.9) and (8.10) we get

0(0r) — 0(8) ~ e —€'(1, — Pp)e
= &'Pype

~ (6 — 67)F,Fr(6 — 0r). (8.11)

Within the order of the linear approximation used, we can replace Fr by F in the
above expressions when necessary. Also (8.6) and (8.9) hold to o, (n~"/?) and op(1),
respectively (e.g., Gallant, 1987, 258-260). We now have the following theorem.

Theorem 8.1 Given € ~ N,[0, 021, and regularity conditions A(1) to A(9) above,
we have approximately for large n:
(i) 0—0r ~ N[0, UZC;I], where Cr = F7Fr.
(ii) (n—p)s’/o* ~ €' (1, —Pp)e/o? ~ )(i_p.
(iii) 0 is statistically independent of s*.

(iv)
(0061 —Q®))/p  €Pre  n—p
0@)/n—p)  W—Pre p
~ Fpup. (8.12)
v)

(6 — 0r)F,Fr(0 — 67)
ps?

~ Fppp. (8.13)

Proof Parts (i) to (iii) follow from the exact linear theory (see Example 3.1 in
Sect.3.3) with X = Fp. Part (iv) follows from Theorem 4.1 by noting that
I, = (I, — Pp) + Pg. Part (v) follows from (iv) and (8.11). [The normality of
¢ is not needed for the proof of (i).]

We can use the above theorem to test a hypothesis such as H : 6y = c. The
so-called Wald test uses (8.13), namely
@~ O'FFO ~0)/(ps”).

which is asymptotically distributed as F}, ,—, when H is true. We can also use (8.13)
to obtain approximate simultaneous confidence intervals. An approximate likeli-
hood ratio test for H is given by (8.12).
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8.4 Concentrated Likelihood Methods

We note that 0% is a “nuisance” parameter as far as inference about 6 is concerned.
There is however a method that uses a useful technique referred to as the method of
concentrated likelihood, which is a step-wise method of maximum likelihood that
side-steps involvement with v = 2.

Suppose we have a general log-likelihood function L(8, v) to be maximized with
respect to 8 and v, given the data y. We assume that L is uniquely maximized with
respect to @ and v for every y. The first step of the maximization is to find ym.x(6,y),
the unique value of v that maximizes L with respect to v, with 8 being regarded
as a constant. The second step consists of finding & = 6(y), the value of 6 that
maximizes M(0 | y) = L(0, ymax(0,Y) | ¥). Then

LIBY), ymax(8.y) | y] = M | y)

> M@ |y)
= L[0, Ymax(0.,Y) | ¥]
= LO,vy),
and @ and § = ymax(é,y) are the maximum likelihood estimates of € and v.

The function M(6) is called the concentrated log-likelihood function because it is
concentrated on 8. The usefulness of M(6) is highlighted by the following theorem.

Theorem 8.2 Let L(0, v) be the log-likelihood defined above. We assume that L is
twice differentiable. Define § = (0’,v)’, and let 6 = (6',0) solve

0L(6,v) 9L(6,v)
Define
0°L
10) = ———
@) 0600’
_PL _ PL
6’ 2
[ Tgp Iy
= (Iue Iw) , (8.15)

say, and assume that it is positive definite at § = 5. Also define

_ Joo Jou
I''(0) = . 8.16
( ) (JU9 va) ( )
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Suppose for any fixed 6 that v = y(0) solves

aL(8,v) _o, S17)
Jv
and let M(0) = L[0, y(0)]. Then:
(i)
m@O)|
{ 20 } ;=0
(i)
PM(0) ~ )
%_ 9000’ }é = J991 i (Too — IOUIUUIIUG)[;- (8.18)

Proof Since 1(3) is assumed to be positive definite, it follows from A.9(viii) that
1(8) is positive definite in a neighborhood N of 4. Also, setting appropriate elements
of x in x'I(§)x equal to zero we see that in A the principal submatrix Iy is positive
definite and therefore nonsingular, and 1,,, > 0. Applying the implicit-function
theorem to (8.17) we find in N that y(0) is uniquely defined, o = y(8), and y(0)
has continuous first order derivatives. We assume that the following expressions are
valid for § € NV.

(i) Forv = y(0),

IM(0) _ZaL(e,v) 36;  OL(O,v) v
BOj - 39, 89/ v 89/

L0, v)
T

’

v=y(0)

since the second term is zero by (8.17). Hence using 0 = y(é),

IM(@)| _ L8, y(0))
a0 |, a0 p
_ L6, v)
9 |5;
=0,

by (8.14). Thus (i) is proved.
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(ii) Now in NV, (8.17) is an identity in 6, so that differentiating with respect to 6;,

U=)/(9)}

_(PLO.Y) | PLO.Y)
| 96;0v dv? ) =0y

0

9 (L@,
T | v

that is

2 2
0 { LB, v)  FL(O,v) v (8.19)

063v ov2 ae} =6

Now —3%L(0,v)/dv? evaluated at v = y(0) cannot be identified with I, as
the former is a function of 8 (y (@) being a particular function of 8), whereas
the laEter is a functAion of both @ and v with v unconstrained. However, when
6 = 6 we have y(0) = v and the two matrices then have the same value. The
same argument applies to the first term in (8.19). Hence from (8.19) we have

dy ()

20 |;

=~ ;- (8.20)

Using a similar argument leads to

M) | PLO.v) Yy PLO.v)
000" 0000 30 9000 | ,_,p

Setting 8 = 6 and using (8.20) we have

( M (6)

— = (Tpo — Iou1; ' T10);.
9090’ )9 5

Then applying F~! given by A.17 to I"! (&) of (8.16) gives us
Joolz = (Too — IouI,, ' Lo) '

and (ii) is proved.

From the above theorem we have the following steps to finding the maximum
likelihood estimates of @ and v and their asymptotic variance-covariance matri-
ces.

(1) Differentiate the log-likelihood function L(8, v) with respect to v and solve the
resulting equation for v = y(0) as a function of 6.
(2) Replace v by y(0) in L(6, v) to get M(6).
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(3) Treat M(0) as though it were the true log-likelihood function for 6, namely
differentiate M (@) with respect to 8, solve for 0, and find the estimated
information matrix (8.18). Under general regularity conditions, the latter matrix
is an estimate of the asymptotic variance-covariance matrix of 6.

(4) 1 is given by y(0).

Example 8.1 The above process is now demonstrated for the normal distribution.
We have
-, 1
£(y) = @mv) ™" exp (—5 > i —fx: 0)12) ,
i=1

so that taking logarithms and ignoring constants

1 n
L(O.v) = =3 logv— = Y[y —f(x:0)
i=1

n 1

For fixed 0, and differentiating with respect to v, the above expression is maximized
when v = Q(60)/n so that the concentrated log-likelihood function is

M(9) :L{e,@}
- —glogQ(O) + g(logn —1).

This expression is maximized when Q(0) is minimized, that is at the least-squares
estimator 6. To get 0 we replace 0 by 6 in y(0) sothat i = Q(O) /n is the maximum
likelihood estimator of v. Now [dQ(8)/06], = 0, so that

PM@O)) n 00(0) 090(0) n 9*Q(0)
%_aoae/ }A_{_z[g(e)]z 30 00° ' 20(0) 9600’ |,
1 (820(0)
_A{ 3600’ }

1 ~ A
~ 55 2F'F by (8.3)

so that Var[é] is estimated by f)(IA*" I:‘)_l. This is our usual estimator but with s
replaced by © (cf. (8.13)).
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8.5 Large Sample Tests

Three large sample tests are available for testing a nonlinear hypothesis H : a(8) =
[a1(8).a2(0), ...,a,(0)] = 0, the Likelihood ratio (LR) test, Wald’s (1943) (W)
test, and the Lagrange Multiplier (LM) or Score test (Rao, 1947; Silvey, 1959). If
M(0) is the concentrated log-likelihood function, then the three test statistics are
defined as follows:

LR = 2(M(6) — M(6y)),
W =a'())[AM'A'];'a(d) and

oM oM
IM=|_—_-M"'—]| |,
(30’ 00 )@H

where

_ (3a,(0) __°M(®)
A‘( 36, ) and M= 050

Under fairly general conditions (cf. Amemiya 1983: 351; Engle 1984), the above
three statistics are asymptotically equivalent and asymptotically distributed as ij
when H is true. When normal errors are assumed, another method is available
since the expected information matrix for @ and o is block diagonal for the two
parameters. We can then effectively treat 0 as though it were a constant, use the
log-likelihood L instead of M, derive the three test statistics, and then replace o' by
an appropriate estimator. However, if o is actually a function of @ in the nonlinear
model, then we can use the likelihood function L(8) directly.

The asymptotic equivalence of the above three statistics can be proved by
showing that the nonlinear model can be approximated for large samples by a linear
normal model with a linear hypothesis as described by Theorem 4.5 in Sect.4.3.
There we showed that for this model all three test statistics are identical, and it
transpires that those three statistics are asymptotically equivalent to the above three
large-sample test statistics. The theory showing the asymptotic equivalence to linear
theory is essentially spelt out in detail in Chap. 10 with L appropriately replaced by
M if necessary, so we won’t reproduce it here. When L is used, we usually replace
M by B = —n'E[3?L(0)/0000'], the expected information matrix. We can’t use
E[M] because of the result (8.18).
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Chapter 9
Multivariate Models

9.1 Notation

Up till now we have been considering various univariate linear models of the form
yi=0;+¢ (= 1,2,...,n), where E[¢g;] = 0 and the ¢; are independently and
identically distributed. We assumed G that @ € £2, where §2 is a p-dimensional
vector space in R”. A natural extension to this is to replace the response variable y;
by a 1 x d row vector of response variables y’, and replace the vector y = (y;) by
the data matrix

Yl
y/
Y=|"7|=g0y?, . . . y9),
Ya
say. Here y? (j = 1,2,...,d) represents n independent observations on the jth

variable of y. Writing y? = 89 4 u?) with E[u®”’] = 0, we now have d univariate
models, which will generally not be independent, and we can combine them into
one equation giving us

Y=0+1,

where ® = (01,0?,...,09), U = @V, u?,...,u?), and E[U] = 0.
Of particular interest are vector extensions of experimental designs where each
observation is replaced by a vector observation. For example, we can extend the
randomized block design

j=p+aoi+y (=12,....Lj=12,....J),
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where @ = (611,612,...,617,6021,02...,02,...,60n,00,...,0y) to
0= p+ i+ 7

In the univariate case we can use a regression model representation & = X3, where
X is an n X p design matrix. Since the form of X depends on the structure of the
design, it will be the same for each of the response variables in the multivariate
model so that 0 = X339, © = X(B1V, 3?7, ..., 3?¥) = XB, say, and

Yxa = anpoxd + Upxa. 9.D

If we let 2 = C[X] then our general model G now becomes 8 € £ for each
j = 1,2,...,d, that is the columns of ® are in §2. We can now generalize the
univariate least squares theory if we use so-called partial (Lowner) ordering for
symmetric matrices, namely, we say that C > D when C —D is nonnegative definite
(Seber 2008, 219-220). Thus if C(®) is a symmetric matrix-valued function, we
say that C is minimized at @ = O if C©) > C((:)).

By analogy with univariate least squares estimation, we can minimize the matrix
U'U = (Y — ©)(Y — O) subject to the columns of ® belonging to 2. Now it
seems reasonable to apply the univariate method to each column of © and consider
6v) = ngw or® = P,Y. Then P,® = 0, and since P, (I, — P;) = 0, we have

(Y-0)(©—-0)=Y(1,—Po)Po(Y —0) =0. 9.2)
Hence for all ® with columns in £2

C(®) = (Y- 0) (Y- ©)
=(Y-0+0-0)(Y-0+60-0)
=(Y-0)(Y-0)+(0-0)(0-0) (byEq.9.2)
> (Y- 0)(Y-0) 9.3)
= C(0).
since (@ 0y (@ 0) >0, and ¢) gives the required minimum. Equality occurs
in (9.3) only when (@ 0) (@ ©) = 0 or, by A.9(v), when © = 0. Since P is
unique, O is unique and it is called the least squares estimator of ®. The minimum
value of (Y — @) (Y —0) is
=(Y-0)(Y-0)
=Y, —-Pp)%Y
=Y'1,-Pp)Y, 9.4)
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the matrix analogue of Q = y'(I, — Pp)y, the residual sum of squares for the
univariate model.

We now apply the theory to the case @ = XB with £2 = C[X]. Referring to the
univariate Example 3.1 in Sect. 3.3, we have from Eq. (3.2) and X'P, = X' that

X'(Y-0) =X (I, - Po)Y =0.
Hence if B satisfies © = XB, it satisfies the equations
X'XB = X'Y, 9.5)

the multivariate analogue of the normal equations. The converse is also true. If B
satisfies (9.5) then X'(Y — XB) = 0, X'(y") — X3?) = 0 and y¥) — X337 1 £ for
every j. Now

y(i) — Xﬁ(}') + y(i) —Xﬁ(j) —a+b,

wherea € 2 and b € .QJ- Since this orthogonal decomposition is unique, we have
09 = a = X3 and B satisfies ® = XB. R

Extracting the jth column from (9.5) we have X’X3%) = X'y, so that as far as
least squares estimation is concerned, we can treat each of the d response variables
separately, even though the y? are correlated. Therefore any technique for finding
ﬁ in the corresponding univariate model can be used to find each ﬁ(/) This means
that univariate computational techniques can be readily extended to the multivariate
case.

We began this section with a randomized block example in which X does not have
full rank so we need to address this situation. Once again univariate methods carry
over naturally. We introduce identifiability restrictions H3Y) = 0 (j = 1,2,....,d)
or HB = 0, where the rank of G = (X', H’)’ is p and the rows of H are linearly
independent of the rows of X (see Sect. 3.4).

In the case of multivariate regression we would generally not have the same X
matrix for each response variable so that a more appropriate model would then be

y0 = X80 + u?,

We shall not consider this situation (cf. Seber 1984, Section 8.9 for some details).
Instead of the column representation of the multivariate model

=XBY +u? (=1,2,....d) (9.6)
it is sometimes more convenient to use the ith row representation
Y = B’X,-—i—u,- (l = 1,2,...,”), (97)

where x; is the ith row of X.
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9.2 Estimation

So far we have only assumed that E[U] = 0. Then
E[O] = PoE[Y] = P,0 = 0, (9.8)

and © is an unbiased estimator of ©. If X has less than full rank and we introduce
identiflability restrictions HB = 0 then, by analogy with the univariate case, we
have B = (G’G)~'X'Y, where G’'G = X’X + H'H, and
E[B] = (G'G)”'X'E[Y]

= (G'G)"'X'XB

= (G'G)"'(X’X + HH)B

= B.

To consider variance properties we generalize the univariate assumption that the

&; are uncorrelated with common variance o2, that is E[e,g;] = 80> where the
Kronecker delta §;; = 1 when A = i and O otherwise. The multivariate version is

that the u; are uncorrelated with common variance-covariance matrix ¥ = (o),
namely

Covlys, yi] = Cov[u,, u;]

= E[u,u]]
=Y (hi=1,2,...,n). 9.9
Referring to (9.6) we have
Cov[y?, y®] = Cov[u?,u®] = ojla, (9.10)

and, since 89 = (G'G)~'X'y?,

Cov[3?, 9] = (G'G)™'X'Cov[y?, y¥IX(G'G) ™!
= 0x(G'G)'X'X(G'G) . 9.11)

Here (G’'G)™! is a generalized inverse of X'X by A.15(iii). If X has full rank then
G is replaced by X and (9.11) reduces to oy (X'X)~!. The univariate version of the
so-called Gauss-Markov theorem can be generalized to the multivariate case as in
the following theorem.
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Theorem 9.1 Let' Y = O + U, where the rows of U are uncorrelated with mean 0
and have a common varignce-covariance matrix X; © = (0(1), 0@, . . .. 0(‘1)). Let
= Z}i:l b;@w and let © be the least squares estimate of O subject to the columns

of © belonging to 2. Then ¢ = Zf:l b]’.éw is the BLUE of ¢, that is, the linear
unbiased estimate of ¢ with minimum variance.

Proof From (9.8) ¢ is an unbiased estimator of ¢. Since ® = PoY, 80 = Poy?
and

¢ = Zb’ngw Z(Pgb)y@

j=1 j=1

is linear in the elements of Y. Let ¢* = Zj c;y(j) be any other linear unbiased
estimator of ¢. Then, taking expected values, ‘

Zcow ¢=> b forall6? e 2

J

so that (b;—¢;)’0% = 0 forall 8V (j = 1,2, ..., d). Hence (b;—c¢;) is perpendicular
to £2, and its projection onto £2 is zero; that is, Po (b; —¢;) = 0, or Pob; = Pgc; for
G =1,2,...,d). We now compare the variances of the two estimators q§ and ¢*.

ar[] = var ij/-ng(j)
J

= cov ZCPQY(/) Zc Poy®

= Z Z cPoCovly?, yWIPgey

= Z Z le-PQCkUjk [by (9-10)],
R

and similarly

var[¢p*] = Zchko,k
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Setting C = (¢, ¢a,...,¢,) and ¥ = RR/, where R is nonsingular (see A.9(iii)),
we have, since I, — P, is symmetric and idempotent,

var[p*] —var[g] = Y Y "¢/, — Po)eroj
Jok

= trace[C'(I, — Pp)CX]

= trace[R'C'(I, — P)' (I, — P)CR] by (A.1)

= trace[D'D] say,

>0,
since D’'D is positive semidefinite, and its trace is the sum of its (nonnegative)
eigenvalues (by A.9(ix)). Equality occurs only if D’D = 0 orD = 0 (py A.9(v)), that
is if (I, = Po)C = 0 or if ¢; = Puc; = Pob;. Thus var[¢*] > var[¢] with equality

if and only if ¢* = qS, and ¢3 is the unique estimate with minimum variance. This
completes the proof.

The advantage of the above approach is that §2 is not specified. We now turn out
attention to the estimation of Y. If £2 has dimension p then, by analogy with the
univariate case, a natural contender would be (9.4), namely Q/(n — p) = Y'(I,, —
Po)Y/(n—p). Since Py, is symmetric and idempotent, we have from Theorem 1.4
in Sect. 1.5 that trace[P] = rank[Pgo] = p so that

trace[l, — Po] = n — trace[Pp] = n —p.
Since Po® = O,

Q=Y —-Po)Y
=(Y-0)I,—Pg)(Y—-0)
= U, —Po)U

= Z Z(In —Po)pupu.
hooi
Hence, by (9.9),

E[Q] =) ) (I, —Po)ubu®

h
= {trace[(I, — Po)L,]}%
— —pE, 9.12)

so that Q/(n — p) is an unbiased estimator of X.
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9.3 Hypothesis Testing

In order to use the geometrical approach in hypothesis testing as in univariate
models, some multivariate distribution theory is needed that requires a type of multi-
variate generalization of the chi-square distribution, namely the Wishart distribution.
A number of equivalent definitions are available and the simplest definition is as
follows. If uy, uy, . .., u, are independently and identically distributed as Ny[0, X],
where X is positive definite, then

W=UU-= Zm:u,-u§

i=1

is said to have the (nonsingular) Wishart distribution with m degrees of freedom. We
shall write W ~ Wy[m, X], and the definition can be extended if ¥ is non-negative
definite. If m > d (which we shall assume), then it can be shown that W is positive
definite and has distinct positive eigenvalues, all with probability 1. Given the above
definitions, we list some properties.

Theorem 9.2
(i) If Cis a g x d matrix of rank q, then

CWC' ~ W,[m,CEC'].

The distribution is nonsingular if m > q.

(i) Foreveryl, £'WL/L'SL ~ x>

(iii) If A is an n x n matrix of rank r, then U'AU ~ W,[r, X] if and only if A*> = A,
that is A is a projection matrix.

(iv) Let W; = UA;U ~ Wy[m;, 3] for i = 1,2. Then Wy and W are statistically
independent if and only if AB = 0. If W and W, are statistically independent,
then Wi + W, ~ W (m; + my, X

(v) If A is an n x n non-negative definite matrix of rank r and r > d, then, with
probability one, U'AU is positive definite with distinct eigenvalues (Okamoto
1973; Eaton and Perlman 1973). Setting A = 1; we see that this result applies
to any Wishart matrix when m > d as a Wishart matrix can be expressed in the

d x d form U'U of rank d.
Proof Proofs are given in Seber (1984, Section 2.3; A2.8, A5.13).

Given Y = O + U, where the columns of ©® are in 2, a p-dimensional subspace
of R", we wish to test whether the columns are in w, a (p — g)-dimensional subspace
of 2.1f Qg = Y'(I,—P,)Y, then by analogy with the univariate model, our interest
focusses on Qg — Q = Y(P; — P,)Y and Q = Y'(I, — P2)Y. We know from
univariate theory that (P, — P, ) (I, —Pg) = 0 so that by (iv) in the above theorem,
Qg — Q and Q are statistically independent. Also, since we showed above that

Y' (I, —Po)Y = U1, — Po)U,
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where I, — Pg; is idempotent of rank n — p, it follows from (iii) above that Q ~
Wy[n — p, X]. When H is true, P, = 0 and
Y'(Pe —P,)Y = (Y- 0)'(Pe —P,)(Y - 0)
= U (P, —P,)U. (9.13)
Since P —P,, is idempotent of rank ¢, Qg —Q ~ Wy[q, ] when H is true. Thus we
have independent Wishart distributions when H is true. To test H, a natural statistic

to use is the likelihood-ratio test statistic. To do this we first need to obtain the
maximum likelihood estimates under G and H.

Theorem 9.3 Given our general linear model Y = © + U with the rows u. of U

independently and identically distributed as Nq[0, %], then © =PyYand ¥ =
(Y — ©) (Y — ©)/n are the maximum likelihood estimates of © and X. Also the
maximum value of the likelihood function is

F(Y;0,3) = n) 28|22,

Proof The likelihood function of Y = (y1,¥2,...,Y¥,) is the product of the density
functions of the y;, namely

1 n
f(Y;0,%) = @n) "= exp —3 D i—0)= T (vi— )¢
i=1

where 6; is the ith row of @. Since a constant equals its trace and trace[CD] =
trace[DC] (by A.1), the last term of the above expression is

trace[S 'Y 1L, (yi — 0,)(yi — 6))']
= trace[Z (Y — @) (Y — ©)]
= trace[E (Y —0)(Y—-0)+ 370 —0)(0—0)] by (9.2)
= trace[E7'Q] + trace[(® — ©®)X (O — ©)'].

Since ¥ is positive definite, then so is X! and by A.9(iv)
b = trace[(® — ©)Z'(@ — ©)] > 0.

Now the log-likelihood function takes the form
L(©. %) % log |5 — ~ trace[S' Q] — ~b
,Y)=c—=lo — —trace — —b,
2 BIET, 2

which is maximized for any positive definite ¥ when b = 0, that is when © = 0.
Hence L(0, X)) > L(0, X) for all positive definite . Now, as Q is positive definite
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with probability 1,
~ n 4
L(O,Y) = - {log || + trace[E7'Q/n]}

has a maximum at ¥ = ¥ = Q/n (by A.10). Thus
L(B.%) > L(©.3) > L(0,3),

SO tha} © and 3 are the maximum likelihood estimates. When b = 0 we have
trace[% ' Q] = ntrace[l;] = nd and

£(0,3) = )%~ 2e /2, (9.14)

To obtain the likelihood ratio test we note that under H the maximum likelihood
estimates are Oy = P, Y and

Sy = (Y—0)(Y—-0y/n=Y(1,—-P,)Y/n=Qu/n
Hence, from (9.14), the likelihood ratio is

A[H|G] = s
f(Y;0.%)
By
|72

and

Aw = A[H|GP/"

3]
Y@, = Po)Y]|
B IY/(In - Pw)YI

_ 19 (9.15)

1Qul’

To find the distribution of Ay, a statistic proposed by Wilks (1932) and a monotonic
function of the likelihood ratio test, we can use a multivariate analogue of Cochran’s
Theorem 4.1 in Sect.4.1 stated below. This theorem is useful in testing several
hypotheses, as we shall see later.

Theorem 9.4 Letu;,uy,...,u, be independently and identically distributed (i.i.d.)
as Ng[0,X] and let A; (i = 1,2, ...,m) be a sequence of n X n symmetric matrices
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with ranks r; such that Y-, A; = L. If one (and therefore all, by A.12) of the
following conditions hold, namely

(i) >_i, ri = m, where r; = rank[A}],

(ii) AjAj =0foralli,j,i#],
(iii) A} =A;fori=1,2,....,m,
then the generalized quadratics U'A;U are independently distributed as Wishart
distributions Wy[r;, X].

Proof 1Itis convenient to break the proof into two cases.

(Case 1I: ¥ = 1;). The method of proof follows the same pattern as for the
univariate case. Suppose the x; (i = 1,2, ..., n) are independently and identically
distributed (i.i.d.) Ng[0,1;] and X = (x1,X2,....X%,) = (xD, x@ ... x@) =
(7). Then using the orthogonal matrix T as in Theorem 4.1 in Sect.4.1, and
making the transformation T'x") = z, we have X = TZ and

XA X =ZTATZ
1
= Zz,z/r.
r=1

Similarly

ri+nr
X'AX = Z 7,7, etc.
r=ri+1

Now the elements of x; are i.d.d. as N[0, 1] so that all the x;; are i.i.d. as N[0, 1],
as the x; are independent. If Z = (z;;), then, since

Var[z?] = T'Var[x?|T = T, T = TT =1,

the z; are ii.d. N[0, 1] and the z; are i.i.d. Ny[0,I,]. Hence the X'A;X are
independently distributed as Wy[r;, I].

(Case 2: ¥ positive definite). Now ¥ = VV’ for some nonsingular V (A.9(iii)),
and setting x; = V~'u; we have Var[x;] = V7!ZV™! = 1, so that the x; are
i.i.d. Ng[0,I;]. Now x, = w/V™" or X = UV™" = UV, Setting X = TZ as
in case 1, the transformation U = XV’ = TZV’ gives us

UAU = VZTATZV

= 21: Vz,(Vz,)

r=1

1
’
= E W,W,, say,
r=1
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which is distributed as Wy[r;, X] as the w, are i.i.d. Ny[0, VV'] that is N[0, X].
Applying the same transformation again we get

rit+ry
/ _ /
UAU= ) ww,

r=r;+1

etc. showing that U'A;U ~ W,[r;, X] and the U’'A;U are mutually independent.
This complete the proof.

We now return to (9.15). When H is true, we have from (9.15) and (9.13)

|Q|
Ay = @
_ |Q|
Qy —Q + Q|
|U'(I, — Po)U|

~ [U®P, —P,)U+ U, —Py)U|

Since I, = (I, — Pp) + (P — P,) + P, is a decomposition into idempotent
matrices, Theorem 9.4 applies. Hence, once again, we find that Q and Qg — Q
are independently distributed as Wy[n — p, ¥] and W,[gq, X] respectively and, by
Theorem 9.2(iv), Qg is Wy[n — p + ¢, X], when H is true.

Here Aw has a so-called Uy 4, distribution when H is true and its properties
are discussed in Seber (1984, Sects 2.5.4,2.5.5). When (n —p) > dand g > d, Q
and Qg are both positive definite with probability one (cf. Theorem 9.2(v)) so that
Qg has a symmetric positive-definite square root Q}q/2 (see A.9(ii)). Hence,

Aw = 1Q;*QQ; |
= 1Q;"*(Qu + Q- QQ, |
=L, —V]|
= |T'||I; — V||T| (T orthogonal and T'VT = diag(6;, 65, ..., 64))
= |I; — diag(61, 6, ..., 04)|

d
=[la-6p.
j=1

where V = Q;l/ 2(QH — Q)Q;Il/ * and (I; — V) have multivariate Beta distributions,
and the 6; are the ordered eigenvalues of V. Since V is positive definite with
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probability one (by A.9(iv)), each 6; > 0 with probability one. Then 6; is a root of

O == IV - QdeI

= 1Q;"%(Qu - QQ;"* - 6,Q,2QuQ;"?|
= |Qu|™"1Qu — Q — 6,Qul,

that is, a root of

(Qu — Q) — 6,Qu| = 0. (9.16)

The above matrix, written as (1 — 6,)(Qx — Q) — 6;Q, is negative definite with
probability 1 if §; > 1 which implies that the above determinant is zero with
probability 0 (a contradiction); hence 6; < 1 with probability one. Since Q is
positive definite with probability one, we can express (9.16) in the form

[(Qu — Q) —¢Q| =0, 9.17)

where ¢; = 6;/(1 — 6,) are the eigenvalues of Q7/2(Qy — Q)Q~'/2. Then
conditional on Q, Qy — Q is still Wy[g, ¥] (because of independence) and
Q 2(Qu — QQ % is Wy[g, Q7/22Q~!/?] having distinct eigenvalues ¢; with
probability one. Hence the eigenvalues of V are also distinct so that we can order
them in the form 1 > 6; > 6, > --- > 6; > 0.

We note from above that Ay = n;l=1(1 —-0) = ]_[7=1(1 + ¢;)7', a statistic
proposed by Wilks (1932). By the likelihood principle (cf.9.15) we reject H if Ay
is too small, that is, if |Qg| is much greater than |Q|. However there are several
other competing test statistics also based on functions of eigenvalues. The key ones

as well as Wilks’ lambda are as follows:
(1) Wilks’ Ay = ]_[7=1(1 + ¢;)~! is the most commonly used statistic. It is most
useful if the underlying distributional assumptions appear to be met.

(2) Pillai-Bartlett trace (Pillai 1955),

d

App = trace[(Qn —Q)Q;'1 = ) [1 fi¢‘i| .
j

j=1

This is more robust than Ay and is preferable with smaller sample sizes,
unequal cell numbers, and unequal variances.
(3) The Lawley-Hotelling trace,

A = (n—p) trace[(Quy — Q)Q ']
d
=(n-p)) ¢
j=1

This test can generally be ignored as it is similar to Ay .
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(4) Roy’s (1953) greatest root test is based on the statistic Ag = @max, and it arises
from the so-called union-intersection test. Here ¢,y is the largest eigenvalue of
Qy—Q)Q 1. We reject H if ¢may is too large. This statistic is very sensitive to
departures from the underlying distributional assumptions and should be used
with caution. However ¢nax can be used to construct simultaneous confidence
intervals, as we see later.

The above four statistics are translated into F-statistics in order to test the null
hypothesis. In some cases, the F statistic is exact and in other cases it is approximate
and good statistical packages will tell us whether the F is exact or approximate.
Although the four statistics will generally differ, they produce identical F statistics
in some cases. Because Roy’s largest root is an upper bound on F, it is generally
disregarded when it is significant and the others are not significant. All four test
statistics are usually given in statistical computing packages.

9.4 Some Examples

We now apply the above theory to several examples. Univariate ANOVA methods
generalize readily to multivariate methods since, in practice, we simply replace
YAy = 3,3 ayyiy; by YAY = 3.3 a;yiy;, which means we simply replace
yiy; by yiy}-

Example 9.1 (Randomized Block Design) We now consider the multivariate exam-
ple given at the beginning of this chapter, namely

0j = p+ o+

where > . a; = 0 and ZjTj = 0. From (6.27) the least squares estimates are
fp=Yy.,& =Yy.—Y., and ﬁj =y, —Y.. To test H that the c; are all zero,
the univariate treatment sum of squares from Table 6.2 in Sect. 6.6is J ) _,(5;. — y.)?
which now becomes Qy—Q = J ) _;(¥,.—¥.)(¥;.—¥..)". The residual sum of squares

o Zj(Yij -y —y;+ y.)? becomes

Q=) -V —¥,+¥)Wi Y. —¥;+¥.)
i

Example 9.2 (Comparing Multivariate Means) We wish to compare the means p;
of I multivariate normal populations with common variance-covariance Y. For
i = 1,2,...,1, lety; G = 1,2,...,J;) be a sample of J; observations from
Ny[pi, X]. In the univariate case we can use the normal equations obtained by
differentiating »_, > (vj — W;)? to obtain the least squares estimate fi; = ¥, of
piand @ = 373 vy — y.)2. Under H : p; = pu for all i, we differentiate

22— pwtogetfiy =y.and Qp =Y, > — y.)2. For the multivariate
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case we have H : u; = p for all i with
Q=) > yi-¥)i—¥). Qu=)_ > (¥-¥)F;—7.)
i i

and Qy —Q = ¥, X,(5: —¥.) ¥ — )"

Example 9.3 (Regression Model) We return to the regression model considered
in Sect.9.1, namelyA(-D :AXB, where X isAn x p of rank r. If r = p then
B = (X'X)"1X'0, ® = XB, and from (9.5) B = (XX')~!X'Y. To test AB = 0,
where A is a known ¢ x p of rank g, we wish to minimize (Y — XB)'(Y — XB)
subject to 0 = AB = AXX')"!X'® = A;©. We therefore wish to minimize
(Y — ©) (Y — ©) subject to the columns of © lyinginw = £2 N NTA{]. The least
squares estimator of ® is now @y = P, Y. From (4.7) we have

P; — P, = PoA|(APoA))'AP,

= XX'X)TAAX'X) TATTTAXX) T IX. (9.18)
so that
Y'(Po —P,)Y = BA[AX'X)"'A’]"'AB.
Now using (9.18),

X'XBy = X0y

= X'P,Y
= X'PoY + X' (P, — Po)Y
= X'XB — A/[AX'X)"'A']"'AB, (9.19)

so that
By =B — (X'X)"'A/[AX'X)'A']'AB.

If X is not of full rank, then the constraints A;ﬁw must be estimable (see end of
Sect. 3.4), that is the rows a§ of A must be linear combinations of the rows of X, or
A = MX. Referring to Example 4.5 in Sect. 4.3 we have that

Po — P, = X(X'X)"A[AX'X) A 'AX'X)"X,

along with P, = X(X'X)~X. If HB = 0 are identifiability constraints we can use
(X’X)” = (G'G)™", where G’'G = X'X + H'H.

Example 9.4 (Regression Coefficients) We consider the following example with X
having full rank, as we make use of it later. Suppose in the previous example we set
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A =1, so that we are then testing H : B = 0 (i.e., ® = 0 and P, = 0). When H is
true we have

Qi —Q=Y'(Pe—P,)Y
=YP,Y
=YPLY
=YXXX)'X'X)(X'X)"'X'Y
= B'X'XB ~ W,[p. X].

If we replace Y by Y — XB in the above algebra, we get (ﬁ -B)X X(ﬁ —B) which
is now W,[p, X] in general (irrespective of whether H is true or not). We shall use
this result to construct simultaneous intervals in Sect. 9.6.

Example 9.5 (Orthogonal Hypotheses) Suppose we have hypotheses H; : 6 € w;,
(i = 1,2,...,k) that are orthogonal with respect to G : 8 € £2, so that we have
wiJ- ng L ij- N §2 for all i,j,i # j. We now ask which of the four test statistics
supports the separate method of Chap. 6. If Q,. x — Q is the hypothesis matrix for
testing @ € w; N w, - -+ N wy, then from the end of Sect. 6.2,

Ay = (n—p) trace[(Qp2..x — Q)Q ']

k
= Z(n — p) trace[(Q; — Q)Q ']

i=1
k
— ()
=2 A
i=1

so that we have the additive property of the individual test statistics. None of the
other three test statistics have this property.

Example 9.6 (Generalized Linear Hypothesis) The theory in this chapter can be
generalized in several ways and we consider one generalization. We have the usual
model Y = XB + U, where X is n X p of rank p and the rows of U are i.i.d Ny[0, X],
but H now takes the form ABD = 0, where A is ¢ X p of rank g (¢ < p), B is
p xd,and D is d x v of rank v (v < d). As the hypothesis reduces to AB = 0
when D = 1, a reasonable procedure for handling H is to try and carry out the
same reduction with a suitable transformation. We can do this by setting Yp = YD
so that

Yp = XBD 4+ UD
=X® + Up,
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say, where the rows of

u) (D'wy)’

U u) b (D'uy)’
p=1 . = .

u), (D'u,)’

are i.i.d. N, [0, D’YD]. Since H is now A® = 0, we can apply the general theory of
this chapter with (cf. (9.18))
Qu—Q =DYXXX)'AAXX) AT AX'X)"IX'YD (9.20)
= (ABD)'[A(X'X)"'A’|"'ABD,

and
Q=Y,I,—Po)Yp =D'Y'(I, —Po)YD.

The only change is that Y is replaced by Yp and d by v. Then Q ~ W,[n—p, D’'ED]
and, when H is true, Qg — Q ~ W, [¢q, D’ED]. If X has less than full rank, say r < p,
then the above theory still holds, with (X’X) ™! replaced by (X’X)~, and p by r.

It transpires that by an appropriate choice of A the above theory can be used to
carry out tests on one or more multivariate normal distributions such as testing for
linear constraints on a mean or comparing profiles of several normal distributions.
An example of the former is given in Example 9.7 in the next section. Another
generalization of the above model is to use Y = XAK’ + U along with H : AAD =
0. This model can be used for analyzing growth curves.

9.5 Hotelling’s Test Statistic

If x ~ Ny[p,X], W ~ Wy[m,X], ¥ is positive definite, and x is statistically
independent of W, then

T =m(x—p)W ' (x—p) (m>d
is said to have a Hotelling’s Tim distribution. In particular

m—d+1T?
———— ~Fym—q+i1-
d m

When d = 1, T? reduces to 12, where ¢ has the 1, distribution.
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In Sect. 9.3, if ¢ = 1 so that Qg —Q ~ W,[1, X] when H is true, then we find that
all four test statistics reduce to the same test. To see this we note first that there exists
u ~ Ny[0, X] such that Qg — Q = uu’ (by definition of the Wishart distribution),
where u is statistically independent of Q. Then, by A.4(i)

rank[(Qs — Q)Q "] = rank[Qy — Q] = 1

so that (9.17) has only one (non-zero) root that we can call ¢pn,x. We see that the
four statistics are Ay = (1 4+ Pmax) "> Apg = Pmax/ (1 + Pmax)s Arer = (11— P)Pmaxs
and Ag = ¢Pmax that are all monotonic functions of ¢yax. Also, using A.1
Ay = (n—p) trace[(Qy — Q)Q '] (9:21)
= (n—p) trace[un’ Q']

= (n— p) trace[u’Q 'y}

=(n—pu'Q'u
=u'S'u (9.22)
=717

where 7% ~ Tin_p and S = Q/(n—p).

Example 9.7 (Testing for constraints on a multivariate normal mean) Let
Y1,¥2,--.,Y¥n be iid. Ny[p, X] and suppose we wish to test H : D' = 0, where D’
is a known ¢ x d matrix of rank ¢. Putting Y = (y1,¥2,...,y,) and XB = 1,1/,
we have the linear model Y = XB + U, where the rows of U are i.i.d. N4[0, X]. The
hypothesis H now becomes 0’ = u'D = BD, which is a special case of ABD = 0
with A = 1 in Example 9.6, in the previous section. Now from (9.20)

Qx-Q=DY1,1,1,)"'1,1,)1,1,)"'1,YD
= nD'yy'D,

and
Q=DY{L,-1,1,1,)"'1,}YD
=D') (yi—¥)(yi—y)D

= D/QyDa
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say. However as rank[Q — Qx] = 1, Q ~ Wy[n — 1, X], and Var[y] = ¥/n, we can
test H using (cf. (9.21) and (9.22) with u = D’y)
7% = (n— 1) trace[(Qu — Q)Q ]
= n(D'y)'[D'SD]"'D’y,

where S = Q,/(n—1).

9.6 Simultaneous Confidence Intervals

Suppose we have Y = XB + U as before where X is n x p of rank p and B = (8;).

From Example 9.4 in Sect. 9.4, the least squares estimate of B is B = 0.4 X)_lY,
and we consider testing B = 0 as a means of constructing simultaneous confidence
intervals for the B8;;. We note that H is true if and only if H,y, : a’Bb = 0 is true for
2111 a and b, so that we can write H = N, N, Hy. Settingy = Yb, 3 = Bb, and
B = (X’X)" X'y, we can test H,;, : a’3 = 0 using the F-ratio (with ¢ = 1)

On—0
Flap = ———

Q/(n—p)’
where (cf. (9.18))
On — Q0 = yX(X'X) 'a[a’(X'X)'a] 'a'(X'X) "' Xy
= {2/ (X’X)"'X'Yb}?/{a’(X'X) " 'a}

_ (@Lb)’
~ a'Ma ’

where L = (X’X)"!X’Y = B and M = (X’X)~. We also have

Q0 =y@,—Py)y
=bY'(I, - Po)Yb
= b'Qb.

Using the union-intersection principle, a test of H has acceptance region

Ny ﬂh{Y . F(a, b) < k} = {Y > sup F(a,;,) < k}
a,b#0

s @Lb?  _ k
" ap (@Ma)(b’Qb) T n—p

= {Y . ¢max =< kl}

=k} (9.23)
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where ¢n,.x is the maximum eigenvalue of M'LQ'LY (by A.21(i1)), that is of
(see A.6)

L'MT'LQ™! = YXX'X)"'X'X(X'X)"'X'Q!
= B'X'’XBQ™!
= (Qu—Q)Q "' (byExample 9.4).

We have therefore arrived at Roy’s maximum root test again. Following Exam-
ple 9.4, we can replace L (= B) by B — B to obtain the following:

l—a= Pr[¢max < ¢o¢]
= Pr[ja’(B — B)b| < {¢oa'(X’X)"'a-b'Qb}"/? forall a, b (# 0).

We therefore have a set of multiple confidence intervals for all linear combinations
of B given by

a’Bb =+ {¢,a’(X'’X)'a-b'Qb}/2,

and the set has an overall confidence of 100(1 — «)%. If we set a and b equal to
vectors with 1 in the ith and jth positions, respectively, and zeroes elsewhere, we
include confidence intervals for all the ;. These intervals will tend to be very wide.
If we wish to include a set of confidence intervals from testing AB = 0, it transpires
that using (9.18) we simply replace a by A’a in the above theory. This gives us the
set of confidence intervals

a’ABb % {¢p,a’A(X'X)"'A’a- b'Qb}/2.

The largest root test of AB = 0 will be significant if at least one of the above
intervals does not contain zero.
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Chapter 10
Large Sample Theory: Constraint-Equation
Hypotheses

10.1 Introduction

Apart from Chap. 8 on nonlinear models we have been considering linear models
and hypotheses. We now wish to extend those ideas to non-linear hypotheses based
on samples of n independent observations xy, Xz, . . ., X, (these may be vectors) from
a general probability density function f(x, @), where 8 = (6, 6,, ..., Qp)’ and 0
is known to belong to W a subset of R”. We wish to test the null hypothesis H
that 67, the true value of 6, belongs to Wy, a subset of W, given that n is large.
We saw in previous chapters that there are two ways of specifying H; either in the
form of “constraint” equations such as a(0) = (a1(0),ax(0),...,a,(6)) = 0, or
in the form of “freedom” equations 8 = 6(«), where o = (o, 2, ... ,ap_q)/ s
or perhaps by a combination of both constraint and freedom equations. Although
to any freedom-equation specification there will correspond a constraint-equation
specification and vice versa, this relationship is often difficult to derive in practice,
and therefore the two forms shall be dealt with separately in this and the next
chapter.

We saw in Sect. 8.5 that three large-sample methods of testing H are available for
the nonlinear model: the likelihood ratio test, the Wald test, and the Score (Lagrange
multiplier) test. The same tests apply in the general situation of sampling from a
probability density function. The choice of which method to use will depend partly
on the ease of computation of the test statistic and therefore to some extent on the
method of specification of Wy. We shall show how a non-linear hypothesis and non-
normal model can be approximated, for large n, by a linear normal model and linear
hypothesis. The normality arises from fact that a maximum likelihood estimate
is asymptotically normally distributed. We shall then use this approximation to
define the three test statistics mentioned above and show that they are equivalent
asymptotically. In this chapter we shall consider just the constraint-equation form
a(f) = 0 only so that Wy = {0 : a(f) = 0 and 8 € W}. The freedom-equation
hypothesis will be considered in the next chapter. We have a slight change in
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150 10 Large Sample Theory: Constraint-Equation Hypotheses

notation because of subscript complications and replace Oy by 0, the restricted (by
H) maximum likelihood estimate of 6.

10.2 Notation and Assumptions

Let L(0) = log[].=,f(xi, 0) represent the log likelihood function, and let 6 and
6 be the maximum likelihood estimates of 6 for @ in W and Wy, respectively.
Although the maximum likelihood estimates depend on n we shall drop the latter
from the notation for simplicity. The (expected) information matrix is denoted by
By, where By is the p x p with i, jth element

L [PLO)] _ _ [#logf(x.0)
n | 06,06 | 96,00, |’

Let DL(0) be the column vector with ith element dL(0)/06;, and let Ag be the g X p
matrix with i, jth element da;(6)/d6;. For any function g(), D*g(0) is the matrix
with i, jth element 9*g(6)/36;36;.

We now assume that W, Wy, f(x, 8) and a(@) satisfy certain regularity assump-
tions which we list below (Silvey 1959). These are not the weakest assumptions we
could use, but are perhaps the simplest for the development given here.

(i) @7, the true value of 6, is an interior point of W.
(ii) Forevery @ € W, z(0) = [(logf(x, 0))f (x, O7)dx exists.
(iii) W is a convex compact subset of R”.
(iv) For almost all x, logf(x, 8) is continuous on W.
(v) For almost all x and for every 8 < W, dlogf(x,8)/d6; exists for
i = 1,2,...,p and |dlogf(x,0)/00;] < g(x) fori = 1,2,...,p, where
[ g(x)f (x, 07)dx < 0.
(vi) The function a(@) is continuous on W.
(vii) There exists a point 8, € Wy such that z(0«) > z(0) when @ € Wy and
0 # 0.
(viii) O is an interior point of Wy.
(ix) The functions a;(6) possess first- and second-order partial derivatives that are
continuous (and therefore bounded) on W.
(x) The order of operations of integration with respect to x and differentiation
with respect to 6 are reversible; thus

0= (3/36)(1) = (3/06) / F(x, 0)dx = / 9f /96,dx

and, using a similar argument,

0= / 9*f/06;00;dx.
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(xi) For almost all x, logf(x, @) possesses continuous second-order partial deriva-
tives in a neighborhood of 87. Also if 8 belongs to this neighborhood, then

|0% logf (x, 8)/36;00;| < Gy(x) fori,j =1,2,...,p,

where
/Gl(x)f(x, Or)dx < 0.

(xii) For almost all x, logf(x, @) possesses third-order partial derivatives in a
neighborhood of @7, and if 0 is in this neighborhood, then

|0° log f (x, 8)/36;00,06| < Ga(x) fori,j,k =1,2,....,p,

where

/Gz(x)f(x, Or)dx < 0.

(xiii) The matrix Ag has rank ¢ in the neighborhood of 87.

In the above assumptions, the statement “for almost all x” means “for all x except for
a set of measure zero—the probability measure being defined by the (cumulative)
distribution function of f(x, 8)”. Also these assumptions can be applied to discrete
probability functions by writing the above integrals in the Stieltjes form.

The matrices B7, By, B and B denote that By is evaluated at 07, O, é, and 0
respectively, with the same notation for Ag. We have a similar assignment for D; for
example DL(0r) is DL(0) evaluated at 07.

As we shall be considering asymptotic theory we will need some definitions.
Let {a,} be a sequence of vectors. If g(n) is a positive function of n, we say that

a, = o[g(n)] if

lim a,/g(n) = 0.

and a, = OJ[g(n)] if there exists a positive integer ny and positive constant M such
that

Il a, ||< Mg(n) forn > ng.
Let {z,} be a sequence of random vectors. We write

p lim z, =0 if,forevery§ >0, lim Prf| z, ||<4d] = 1.
n<—oo

n<—oo
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Also z, = op[g(n)] if
p lim z,/g(n) =0,
n—>00
and z, = Op[g(n)] if for each & > 0 there exists a c(¢) such that
Pr{| z, < c(e)g(m)] = 1 —¢

for all values of n.

10.3 Positive-Definite Information Matrix

We make a further assumption, namely,

(xiv) The matrix By exists and is positive definite in a neighborhood of 87; also its
elements are continuous functions of 6 there.

Assumptions (xiv), (ix), and (xiii), imply that (AB™'A’)g is positive defi-
nite (A.9(iv)) and its elements are continuous functions of @ in the neighborhood
of 07‘.

Let

_ dlogf(x,0) and d, = dlogf(x;, 0)

d 90 B 00

fori=1,2,...,n.

A key part in the proof that follows in the next section depends on the asymptotic
distribution of

n

1 1 dlogf(x;, 0)

-DL(O) = - _—

n © ng 00
=d.

By the multivariate central limit theorem n'/2d is asymptotically normally dis-
tributed with mean

E[d] = E [310gf(x, 9)}

00

_ [l

_ 9 _ o) _ .
=39 /fdx =29 = 0, by assumption (x)
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and variance-covariance matrix
Var[d] = E[dd],

by Theorem 1.5(vi) in Sect. 1.6.
If Bs = (b;) then

1 _[2L(6)
by = ——E
J [ 06;06; }

n
_[? logffd
~ ) 6007

3 3 (10f
—‘/a—e,-(fa_ef)f"’“

:/1afaf 1 9%

S Y e [ 2 g
796,967 | 706067

_ g dlogf dlogf
B 36, 06;
= (E[dd));.

} 4+ 0 (by Assumption (x))

Hence /nDn~'L(@) is asymptotically normally distributed with mean 0 and
variance matrix Bg. This will give us the normality assumption for our asymptotic
linear model.

10.3.1 Maximum Likelihood Estimation

We now derive some maximum likelihood equations. From assumptions (ii) to (v) it
can be shown, using the Strong Law of Large Numbers, that for almost all sequences
{x} = x1,x1,..., the sequence x, = n~'L(0) converges to z(#) uniformly with
respect to @ in W. Assumption (iii) ensures that any continuous function on W
attains it supremum at some point in W. In particular, the function L(6), for almost
all x, attains its supremum in W at @, the maximum likelihood estimate. But from
Wald (1949), z(61) > z(0) when 0 # O and € € W, and therefore it can be shown
that 6 = w, (as it depends on n) converges to 87 for almost all sequences {w} as
n — 00. In other words we say that 6 — 07 with probability one as n — 0o, which
implies the weaker statement p lim(é — 07) = 0. Since 07 is an interior point of
W (assumption (1)), it follows that for n sufficiently large, 0 will also be an interior
point of W and will, by the usual laws of calculus, emerge as a solution of

Dn'L(6) = 0.
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Using a Taylor expansion, we have from assumption (xii) and the above equation
0 = Dn'L(6") + [D*n'L(67)](0 — 67) + 0,(1).
But by assumption (xi), the Law of Large Numbers, and assumption (x),
plimD*n~'L(07) = D*z(07) = —Br.
Thus we can write
D*n'L(67) = —Br + 0,(1) (10.1)
and hence from the previous three equations
6 —0r =B;'Dn'L(67) + 0,(1).

Since n'/?Dn~'L(07) is asymptotically N, [0, B7], it follows from Theorem 1.5(iii)
that

nl/z(é — O7) is asymptotically N,[0, B;'], (10.2)
and since B;! does not depend on n we have
n'2(0 — 0r) = 0,(1). (10.3)

We now turn out attention to 8 and first of all make one further assumption:

(xv) If H is not true then O is “near” W;. This means that since @7 and 0,
maximize z(0) for 6 belonging to W and Wy, respectively, Or will be “near”
0... We define what we mean by nearness by

n'2(0r — 6,) = O(1). (10.4)

Assumption (xv) assumes that in testing H we now consider classes of alterna-
tives @7 that tend to Wy as n — oo. We choose this class of alternatives as for a fixed
alternative, O, the powers of the tests considered will tend to unity as n — oo. This
method using a limiting sequence of alternatives is usually referred to a Pitman’s
limiting power or Pitman’s local power analysis. However, according to McManus
(1991), the idea was first introduced by Neyman and then developed further by
Pitman. This assumption (xv) now implies that assumptions (xi), (xiii), and (xiv)
are valid in a neighborhood of 6., and from assumptions (iii) and (vi) it follows that
Wy is a convex compact subset of W. Therefore, by a similar argument that led to
Eq. (10.3) we have (Silvey 1959, p. 394) using (10.4)

n/2(0 —6,) = 0,(1) and n'*(@—07) = 0,(1). (10.5)
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In addition, as @ is an interior point of Wy, 0 will be an interior point also, for large
enough n, and will emerge as a solution of (cf. Sect. 1.10)

Dn'LO)+ A =0 (10.6)
and
a(@) =0, (10.7)
where p is the Lagrange multiplier. . _
Finally, from Egs. (10.3) to (10.5) we see that 07, 0, € and 0 are all “near” each

other. Since Ay and By are continuous functions of 8 in the neighborhood of 07, we
have from Taylor expansions

B=Br+0,n"? (10.8)
A, = A7 +0(n?) (10.9)

and
A=Ar+0,n"?. (10.10)

10.3.2 The Linear Model Approximation

Using the asymptotic results above, we can now show that our original model and
hypothesis can be approximated by the linear model

Zz=¢ +e¢,
where ¢ is N,[0,L,], £2 = RP, and the linear hypothesis
H:o = N[(AV)7],

where nonsingular V7 is defined later. The argument is as follows.
From (10.3) and (10.5) we have

n'2(0 — ) = 0,(1)
so that using a Taylor expansion,

Dn~'L(9) = Dn'L() + [D*n~'L(9)](6 — 6) + O, (n").
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Now Dn_lL(é) = 0, and applying (10.1) to a neighborhood of 87 containing 0
gives us, by (10.8) and the previous equation,

Dn'L() = —B(@ — 0) + 0,(n™")
=-Br(6-0)+0,n"). (10.11)

Therefore from (10.6),
A'n'? = —n"?Dn'L(0) = 0,(1),
which means that we can write
An'? = A1 + 0,(1). (10.12)
Thus using (10.11), (10.6) becomes
Brn'/2(6 — 0.) —Brn'/?(0 — 0.) + An' 2 = 0,(1). (10.13)
In the same way,

0 = n'"[a(d) —a(6.)]
= An'2(0—-0.) +0,(n""?)
= Am'2(0 - 0.) + 0,(n /%), by (10.9).
Therefore (10.7) becomes
Arn'2(0 - 0.) = 0,(1). (10.14)
Now from (10.2),

n'2(6 — 0,) = n"/*(0r — 0,) + 4. (10.15)
where § is asymptotically N, [0, B;'], which reminds us of the linear model given
in Example 2.6 in Sect.2.4. As By is positive definite, so is B>!, and there exists
a non-singular matrix Vr such that B;l = V7 V5 (A.9(vi) and (iii)). Using By =

(V) ~1V7L we put

z=n"?V7'(6 - 6y) (10.16)
¢ =n'?V; (07 — 6.) (10.17)
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and

¢ =n"?v;'(0 - 0.) (10.18)
in Eq. (10.15) to give us

Varlz] = V7' Var[8](V7') = V7' (VIV)(VE) =1,
and the linear model
z=¢+te,
where € is N, [0, I,]. Premultiplying (10.13) by V/ and using (10.14) leads to
z— ¢+ [AVI;n' i = o0,(1)
and
[AV]r = 0,(1).

But these are asymptotically the least squares equations for testing the linear
hypothesis [AV]y¢ = 0. Thus our original model is asymptotically equivalent to

a linear model with

G:Q2=R and H:o = N[AV)7]. (10.19)

10.3.3 The Three Test Statistics

Consider the linear model z = ¢ + €, where e is N,[0,1,], G: ¢ € 2,and H : ¢ €
£2 N N[C] = w for some matrix C. The least squares estimate of ¢ is ¢ = Pgz.

To find the restricted least squares estimate ¢ we minimize || z — ¢ ||* subject to
Co = 0 and (I, — Pp)¢p = 0. Introducing Lagrange multipliers —2A and —2X;
and using Sect. 1.10, we have to solve the following equations (cf. Theorem 4.5 in
Sect.4.3)
z—¢+ 1, —Po)A+CA =0, (10.20)
(I, —Po)¢p=0 and C¢ =0. (10.21)

Premultiplying (10.20) by Py, and using (10.21) leads to

(e ) (2)-(5)
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By choosing C correctly (Sect.4.3), (CPoC’)~" will exist, and inverting the
above matrix (cf. A.17) we have

¢\ _ (1, —PeC/(CPeC)"'CPg  —PoC'(CPoC) ™" (Poz
Al B —(CPQC/)—lch —(CPQC’)—l 0 ,

¢ =[Py —PoC/(CPC)"'CPylz = P,z

and
Al = —(CP,C)'CPyz.
Since
Var[A;] = (CP;C)"'CPoLPoC' (CP,C)~! = (CP,C)7!,
we have

@~ ) (¢—¢) =7 (Pg—P,)z
= 7/ (Pg — P,)z (by Theorems 4.2 and 4.3)

= 7P,C'(CP,C') 'CPyz (10.22)
= (C9)'(CP,C)'Co (10.23)
= X|(CPoC)A

= X|(Var[A]) 7' A, (10.24)

a slight generalization of Theorem 4.5 in Sect. 4.3. (Note that the scale factor of —2
applied to A; at the beginning of this section cancels out of the above expression.)
As 0% = 1, the likelihood function is (cf. (3.12) in Sect. 3.9)

. 1
(0.0 = e e |3 Iy -0 ).

so that the likelihood ratio is given by

maxge, £(6, 1)

maxgeg £(0,1)

_ exp{3(Z (1, —Po)z}
exp {%(z’(Ip — Pw)z)}

A[H|G] =

and therefore

—2log A[H|G] = Z (Pq — P,,)z. (10.25)
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For testing H we use the statistic ' (P, — P,,)z which has a chi-square distribution
when H is true, and we reject H if this statistic is too large. From the above we see
that this statistic can be expressed in three forms (10.23) to (10.25), and each form
defines a different test principle. Thus we accept H if C¢ is “near enough” to zero
(Wald principle), or if the Lagrange multiplier X is “near enough ” to zero (Lagrange
multiplier or Score principle), or if the likelihood ratio is “near enough” to unity.

If we put C = [AV] and 2 = R, then P, = I, and C is now function of 6.
Equations (10.20) and (10.21) now become

z— ¢+ [AVIA =0
and
AVg =0,
which are asymptotically equivalent to the equations obtained at the end of
Sect. 10.3.2 when A\; = n'/?f1 and AV is approximated by A7Vy. Now ¢ = z,

and using a Taylor expansion we have

[AV];¢ = ArVrz
=n'?A7(0 —05) by (10.16)
= n'a(9) + 0,(1) (since a(6.) = 0).

Also, by virtue of the remarks made after assumption (xiv),
[A'B7'A]r = [A'BT'A]; + 0,(1),
where the inverse of the matrix on the right-hand side will exist for n sufficiently
large. Using (10.23) with C = (AV)y, P = I,,, and CC' = [AB~'A]7, and
combining the above two results gives us
(C9) (CPoC)™'C = na'()[A'B™'A];'a(d) + 0,(1).
the so-called Wald test statistic. From (10.12),
A2 = An'? i 4 0,(1),
= —n'2Dn7'L(6) + 0,(1),
and from (10.6) with C = AV and A\; = n'/2fx,
N CPoC' A = (A'A)VV/(A'X)
= n[Dn'L(O)B~' [Dn ' L(9)] + 0,(1),
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the Score test statistic. Using a Taylor expansion and (10.1), we have
L(0) — L(®) = DL(6)' (6 — 6)
+ %(é —6)'[D*L(8)](8 — 8) + 0,(1)
=0— %n(é —0)B(6 —0) + 0,(1),
and therefore, from (10.16) and (10.18) with P =1,,,

—2L[(6) — L(B)] = n(8 — 8)B(6 — ) + 0,(1)
=n(V'O-V'0Y (V0 - V'0) + 0,(1)
=z—§)z—d) +0,(1)
=72, —P,)z+ 0,(1)
=7 (Po —P,)z+ 0,(1)
= —2log A[H|G] + 0,(1),

the likelihood ratio test statistic (see (10.25)). Thus the three statistics
na'(0)[AB~'A'|'a(8),
n'[DL)B~'[DL()], and
—2[L(®) — L(B)]
are asymptotically distributed as X; when H is true. When H is false, but 07 is
near W), then the above linear approximation is valid and the three statistics have
an asymptotic non-central chi-square distribution with non-centrality parameter
(cf. (10.22) with C = [AV]y)
§ = E[Z]C'(CC’)"'CE[z]
= ¢/C'(CC)7'Co
n(0r — 0.)' Ar(AB™'A)7 A7 (67 — 6.)
~ n(a(0r) —a(6:))' (AB™'A"); ! (a(B7) — a(84)),

which is 0 when H is true, i.e., when 87 = 0,. When 67 is not near Wy, the linear
approximation can not be used and we can say nothing about the power of the test
except that it will tend to unity as n tends to infinity. This is obvious since, for
example, /na(0) will be far from 0 when a(0) is not near 0.
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Example 10.1 Suppose we have the above model and we wish to test the hypothesis
H : 0y — 6y = 0. To do this we adopt the method described in Example 2.5 in
Sect. 2.4 where we essentially shift the origin. Recalling (10.16)—(10.18), we define
¢o = n'/2V71(8y — 6) and consider the asymptotic model w = n + &, where

W =1Z— ¢
=n'2V;'[(0 - 6.) — (8 — 60.)]
=n'"?V;'(6 - 6y),
n=¢—do=n">V;'(0r — 6y),

and A7 = I,. We now test H : A7Vrn = n'/2(67 — 6p) = 0, which is equivalent to
testing O = 6. We have

—2log A[H|G] = W' (Pq — P,)w
=w(I,— 0w
=ww

(6 — 60)Br(0 — 6y)
(6 — 60)B,(6 — 6y),

%

the Wald test. Rao’s score test readily follows from the above theory, namely
n~'[DL(6o)'B, ' DL(6). All three statistics are asymptotically distributed as 7
when H is true.

10.4 Positive-Semidefinite Information Matrix

The following is based on Seber (1963). If B is a p X p positive-semidefinite matrix
of rank p—ry, then 87 is not identifiable and we introduce ry independent constraints
to make 07 identifiable, namely

h(0r) = (h(01), h2(07), ..., hy(07)) = 0.

Let Hr be the ro x p matrix of rank ro with (i, j)th element [0/;(8)/36;]g,. Since Br
is positive semidefinite, there exists a (p — ry) X p matrix Ry of rank p — r( such that
Br = (R'R)7 (A.9(iii)). We now add a further assumption, namely

(xvi) (B + H'H)r is positive definite, that is the p x p matrix Gr = (R’,H')/. is
of rank p and Hy has rank ry.
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It follows from the above assumption that (G'G)r = (B + H'H)r is nonsingular,
Gr is nonsingular, and from [G(G'G)™!'G/]; = I, we get

[R(G/G)_IR/, R(G/G)‘lH’} _ (Ip—ro 0 ) (10.26)
T

H(G'G)"'R’, H(G'G)™'H 0 1,

Assuming certain underlying assumptions (Silvey 1959), the maximum likeli-
hood estimate of @7 is the solution of

Dn L) + H )y =0 (10.27)
and
h(6) = 0.
Since 6 is near 87 we can use the usual Taylor expansions
n'2Dn L(6) = n'/*Dn ' L(07) — n'/*Br(0 — 07) + 0,(1), (10.28)
H=H; +0,(n""/?),
and, since h(87) = 0,

0 = n'/’h(0) — n'/*h(67)
= n'2Hy (0 — 67) + 0,(1). (10.29)
Multiplying (10.29) by H/., subtracting the result (zero) from the right-hand side
of (10.28), and noting that n'/?Dn~'L(07) is asymptotically N,[0,Br], we get
from (10.27)
n"2(G'G)r(0 — 0r) — n'/*H, Ao = &, + 0,(1),

where §; ~ N, [0, B7]. Multiplying the above equation on the left by H7(G'G)™!
gives us

n'2Hz (6 — 67) — n'*Hr(G'G)'H Ag = Hr(G'G)'8; + 0,(1).
Using (10.29) and (10.26) in the above equation leads to

n'?Xo = —H7(G'G)™'8; + 0,(1)
= —Cé; + 0,(1), say.
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Now

var[n'/?Xo] = Cvar[8,]C" + o(1)
= CBTC/ + 0(1)
= {H(G'G)"'R'R(G'G)"'H'}1 + o(1)
=o(1) by (10.26),
so that n'/2X = 0,(1) and
n'?Dn~'L(0) = 0,(1). (10.30)

Since 07 is near 6, we have from (10.28) and (10.30)

0 =&, — Brn'/2(0 — 6.) + Brn'/2(0r — 0.) + 0,(1), (10.31)
n'?Hz (0 — 0.) = 0,(1) (10.32)

and
n'?Hr (07 — 0,) = o(1). (10.33)

10.4.1 Hypothesis Testing

The hypothesis of interest H is a(@) = 0 as in Sect. 10.2, and Ay is the g x p matrix
of rank g of corresponding derivatives. To find the restricted maximum likelihood
estimate 6 we solve

n'?Dn'L(0) + n'PH' Ao + n'/?A'X; = 0, (10.34)
h(8) =0,
and
a@) = 0.

As é, 04, and 0 are all near each other, we can carry out the usual Taylor expansions
to get from (10.30)

n'?Dn~'L(0) = n'*Dn~'L() — Brn'/%(6 — 0) + 0,(1)
=0—Brn'2(6—8) +o0,(1)
= —Bn'/2(0 — 6.) + Brn'/2(0 — 0.) + 0,(1),  (10.35)
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along with

n'’Hr (0 — 0.) = 0,(1),
and

n'2A7(0 — 04) = 0,(1).

The rows of Ay are assumed to be linearly independent of the rows of Hy. Since 0
is close to 87 we have

H=H; + 0,(n""/?)
and
A=Ar+0,n"?).
Using the above equations and substituting (10.35) in (10.34) gives us
—B7n'2(0—6.)+Brn'/2(0—0.)+n'PH Mo +n' AL N +0,(1) = 0, (10.36)

and setting y = n'/2(8 — 0,), B8 = n'/2(0; — 0,), and B = n'/%(6 — 6,) in
equations (10.31)—(10.33) we get the asymptotic linear model

Bry = Br3 + 4y,

where 6; ~ N,[0, Br], Hry = 0, and Hy3 = 0. From (10.36), @ is given by

Asrf = (f;)ﬁ o,

where Aoz is (g + ry) X p of rank g + ro (g + ro < p). Recalling that By = (R'R)7,
where Ry is (p — rp) x p of rank ry, we get

R/TRTy = R/TRTB + 61.

Since (RR')7 is p — rg X p — rp of rank p — ry it is nonsingular, and multiplying the
above equation by [(RR’)"!R]; we get the linear model

Z=¢+e¢,
where z = Ryy, Hry = 0, e = [(RR)™'R]74;,

Vare] = [(RR)"'R(RR)R'(RR) ']y = L,
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HyB3 = 0, and ¢ = Ry3. Considering the previous two equations, it follows
from A.11 and the assumption that (G’'G)7 is positive definite that 3 is identifiable
so that ¢ is not constrained and §2 = R0, This also follows from the fact that
since (G'G); ! is a generalized (weak) inverse of (R'R)7 (cf., A.14(iii)) and Py, is
unique, we have

P = [R(R'R)R]; = [R(G'G)'R|y =1,_,, by (10.26).

Since R7¢ = Br3 and Hy3 = 0 we have R}.¢ = (Br + H;Hy)B so that
B = (G'G);'R;¢. Also Ar3 = 0 implies that ® = {¢ | C¢ = 0}, where
C = A7(G’'G);'R/.. Replacing ¢ by z we gety = (G'G);'R/z. We now have the
asymptotic linear model and hypothesis

z=¢+e, Q=R o=N[Ar(GG);'R]. (10.37)

Referring to Section to (10.25) in Sect.10.3.3 with P, = I,, and using the
result N[C] = C[C']* (Theorem 1.1 in Sect. 1.2), along with generalized (weak)
inverses (A.14), gives us
—2log A[H|G] = 2/ (I,—, — Pu)z (10.38)
=7 C/(CC) Cz
= y'R;C’(CC")"CRyry
= YBr(G'G);'A7[A(G'G)'B(G'G) 'A'l; A7(G'G); 'Bry
=y AL [A(G'G) 'B(G'G)'A'|;Ary (asH;Hry = 0)
(10.39)
~ a(6) (Varfa(0)]); a(6). (10.40)

as Ary = nl/zAT(é —04) =~ nl/za(é) and

Var[Ary] ~ ArVar[(G'G); 'R} z]A)
= [A(G'G)"'R'R(G'G)'A'];
= [A(G'G)"'B(G'G)'A];.
Therefore the Wald statistic, (10.40), is asymptotically equivalent to the likelihood
ratio statistic, which has a )(5 distribution when H is true. It is shown later that the

above variance expression actually has an inverse.
To complete the picture we consider another form of the Wald statistic, namely

nax(0) [A2(G'G) ' A (6) ~ y'{AS[AX(G'G) AL Aslpy = W,
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say, where y = n'/2(6 — 6,) and A, = (A, H'). Then, since Hry = 0,
y

—1
/e v A re—1 A7 1Y/ A
(A,H)[(H)(GG) (A,H)} (H) "

A(G/G)'A/ A(G'G)—IH/]‘l (Ay)
H(G'G)'A’ H(G'G)'H' 0

W1 =yl

y

:y/

(A", 0) [

= y’[A’F_lA](;y,

where F~! is the matrix in the (1, 1) position in the inverse of the above matrix.
From A.17

F =A(G'G)'A’'—A(G'G)'HH(G'G)'A’
=A(G'G)"'(G'G)(G'G)'A' —A(G'G)"'H'H(G'G) " 'A’
=A(G'G)"'B(G'G)'A.

Hence W, = y{A’[A(G’G)"'B(G'G)"'A/]"'A’};y, which leads to (10.39) once
again.

10.4.2 Lagrange Multipler Test

To apply the Lagrange multiplier test statistic we add H/THTB =0and H;H7;y =0
to (10.36) to replace By by (G'G)r and then multiply the resulting equation by
R7(G'G);! to give us the approximate equation

—R7B + Rry + n'?Ry(G'G)7 ' Hy X + n'?Rr(G'G)7 AL = 0
or, by (10.26),
—p+z+0+Cn'?x =0. (10.41)
Hence, from (10.41) and q~b = Pz, it follows from (10.38) that

2 (I, —P,)z = (z— ¢)(2— @)
= nX|CC'A
= nX[A(G'G)'R'R(GG')'A']p A
= nX[A(G'G)'B(GG')'A']p A (10.42)
~ nX\|[A(G'G)'B(GG)'A 3. (10.43)
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This is the Lagrange multiplier test statistic, based on A1, which can also be written
in the form of a score statistic as follows.
From continuity considerations, G’G will be positive definite in a neighborhood
of Or (cf. A.9(viii)), so that it follows from (10.26) that [R(G’G)_lH’]é = 0.
Multiplying (10.34) by [R(G'G)™']; we get
[R(G'G)'3n'/>Dn'L(B) + n'*[R(G'G)'A'J;A| = 0,
and from (10.43)
nX[A(G'G)'R'R(G'G)'A'J3 A,
=nDn"'LO)[(G'G)'B(G'G)™"|;Dn'L(B).  (10.44)
Now By = [G'G — H'H]7 in (10.44) and from (10.35)
D' L(6)[(G'G)"'H]r = ~(6 — 6) R'R(G'G) 'H]r =0,
since [R(G'G)™'H']; = 0 by (10.26). Hence (10.44) becomes
n"'DL(8)'[(G'G)™'];DL(H), (10.45)
which is the well known score statistic. The only difference from the formula for
the case when B is non-singular is to replace By by (B + H'H)7.
Another form of the Lagrange multiplier test has been derived by Silvey (1959)
and its derivation is instructive. Using a Taylor expansion (cf. (10.34)),

n'?Dn~' L) = n'/*Dn~'L(67) — Br(8 — 1) + 0,(1). (10.46)

We now define A\, = (5\’ , 5\’1)’ and A,y = (H},A%)’, and we now assume that
H is true so that 8, = 67 and 0 has an asymptotic mean of 87. We also have

H7 (0 — 0r) = 0,(1) and A7( — 07) = 0,(1) so that Ayr(8 — 67) = 0,(1).
Substituting these expressions into (10.34) gives us

n'2(Br + HH7)(6 — 67) —n'/?Al X = n'2Dn~ ' L(O7) + 0,(1),

which can be approximately expressed in the form

al/2 (G'G)r —A; éTOT _ (6
Ay 0 A2 0/’
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where ; is N,[0, Br], and A2 has approximately a zero mean. Inverting the matrix,
Wwe can now write
12 6—6r\_(UV 8
A2 VW/ 0 ’

V =—-[A(G'G) AT AG'G) !,
W = —[Ay(G'G)'A)",  and
VA, = VIH' Al =~y with VH' =—[I,, 0]

where from A.18

Hence n'/2X, = V76, so that
Var[n'/?X;] = [VBV']7
= [V(G'G - HH)V];
= [WA2(G'G) ' (G'G)(G'G)'A,W'|; — V,H,H VY,

L, 0
:—W— il
~(53)

=Sz, say.

We now depart from Silvey’s proof and show that (i) —W;l is a weak inverse of Sy
and (ii) trace[—~W75'S7] = ¢. We first consider

Iro 0 — Iro _ Iro 0 H 1 ! A/ Iro 0
_(0 O)WTI (0 0)‘{(0 0)(A)(GG) (H’A)(o 0)}T
_ (1,00) (H(G’G)—IH/ H(G/G)‘lA/) (Imo)
—\00)\AGG'H AGGTA ) 00

(H(G/G)—lﬁ/) 0)
0 0/,

(L, 0

oo/’
by (10.26). Using this result we then find that S7(—W3')Sy = Sz so that —W; ! is
a weak inverse of Sr. Now using (10.26) again,

I, 0

0 0) Ay (G'G);'AL,

_STW;I =I4q + (
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0 0

I, *
= Ir()+‘1 - ( 00 0)

and trace[-SrW5!] = ¢g. We can now apply A.16 and then approximate Wy by w
to prove that

/ —1yy/
- (HT(G G);'H, *)

—nN;WIAy = n)[A2(G'G) A A,

is approximately distributed as X; when H is true. This expression looks very

different from (10.43), being based on 5\2 rather than )Tl, and Silvey shows that
ro of the transformed normal variables are identically zero. We note from (10.34)
that

Dn'L(B) = —A) X,

so that our Lagrange Multiplier statistic above can be expressed in the form of the
Score statistic

n"'DL(6)'[(G'G)'];DL(8), (10.47)
which is (10.45) again.

One other approach is worth mentioning. Assuming H to be true so that 8, = Or
once again, we substitute (10.42) into (10.34) to get

n'?Dn~'L(0r) — Brn'/?(8 — 07) + n'/?HyXo + n'2ALA; = 0,(1)
or the approximate equation

61 ~ BTI’ll/z(é — 07‘) — I’ll/zH}Xo — I’ll/zAlTj\l.

Since HT(é — 07) = 0,(1), we can replace By by By + HH;y = (G’G)r and
express the above equation in matrix form

(G'G)r —H} —A}\ (067 5
n2l —H;y 0 0 Ao ~|0
—Ar 0 0 Al 0

The matrix on the left hand side can be inverted using A.19 to get

n'2X; = (AMA");'A7M7 6,
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where

M; = (G'G);'[l, -H'(H(G'G)"'H) 'H(G'G) ']
= (G'G);'[l, -HH(G'G)"'|r by (10.26)
= (G'G);'[, - (G'G-B)(G'G) ']y
= (G'G);'Br(G'G)7".

Using Br = [(G’G)™! — H'H]7 once again we find that [MBM]; = M7 and

Var[n'/?X] = {{AMA’]"'AMBMA'[AMA'] "'}
= [AMA'];!.

Thus
a X (Var[n' 2 A1) 7' A = nN[A(G'G)'B(G'G)'AIr A,

which is the same as (10.42).

We see then that a major advantage of using the asymptotic linear model is
that we have proved that the likelihood ratio, Wald, and Lagrange multiplier test
statistics are all asymptotically equivalent as they are exactly equivalent for the
asymptotic linear model.

Example 10.2 We revisit Example 10.1 at the end of Sect. 10.3.3 where we tested
0r — 6y = 0, except we now have ry linear identifiability constraints Hy0; = 0
(and H76y = 0). If By = n'/?(6y — 0,), then in the theory following (10.36) we
replace y by

w=y—Bo=n"[(0—0.) — (8 —0.)] = n'"*@ - ),

and replace B by n = B — By = n'/>(@r — 6y). Then w = n + ¢, Hyw =
0 and, since H78; = 0, we have Hyn = 0. We now wish to test H : nn = 0,
given the identifiability constraints, so that Ay is an appropriately chosen p —rg X p
matrix, depending on the formulation of Hy (an example is given in Sect. 12.3).
Proceeding with the algebra we end up with the linear model z = ¢ + € where
z = Ryw, Hrw = 0, and ¢ = Ryn. From (10.37) we have 2 = RP70 and
o = N[(ArG'G);'R/]. With y replaced by w, the likelihood ratio test is given
by (10.39) and (10.40), namely

n(0 — 60)' {A’[(A(G'G)'B(G'G) 'A']'A}7(8 — 6y)
~ n(6 — 60) {A’[(A(G'G)'B(G'G)'A'T'A};(0 — 6y),  (10.48)
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the Wald statistic. The Score statistic follows in a similar fashion. From (10.45) this
statistic is given by

n"'DL(6,)'[(G'G) ]9, DL(6y). (10.49)

10.5 Orthogonal Hypotheses

Suppose that we are interested in testing two hypotheses H; : {8 : 0 € W;a;(0) =
0} (i = 1,2), namely 8 € W;, given G : 8 € W. We first assume a nonsingular (and
therefore positive-definite) expected information matrix By, where B}l = VTV/T
and V7 is nonsingular. Given that 67 is close to W N W, we can use our linear model
approximationz = ¢+¢, with (cf. (10.19)) G : 2 = R’ and w; = {68 : 8 € N[C}]},
where C; = (AOV); and AD = (9a;/00'). Now o N 2 = ol = C[V,A]
(by Theorem 1.1 in Sect. 1.2) so that we have orthogonal hypotheses if and only if
wf- 1 a)j-, that is if and only if

C.C, = ADVVAD), = (ADBIA®, =0

forall @7 € w; Nw,. This result was given by Aitchison (1962, 246) using a different
method. The following example is taken from Example 5 in his paper.

Example 10.3 The three dimensions of cuboids produced by a certain process are
described by a random vector X = (x1, X2, x3), where the x; are independently and
identically distributed as the scaled Gamma distribution

¥ Texp(—x/0)

™= —%rm

(x>0)

with known k. Here W = {6 : 6, > 0 (i = 1,2, 3)}. Two hypotheses of interest are
W, = {0 :0 € W;k*0,0,0; = a*}, the hypothesis that the average volume is a°,
and W, = {0 : 0 € W;0, = 6, = 05}, the hypothesis that the three dimension
are equal. Assuming a large sample n of vector observations X; = (x;1, X2, Xi3)’
(i = 1,2,...,n) from the Gamma distribution, we can use the large sample
approximation described above. The likelihood function takes the form

—1 ,—(x;i/6))
1_!11—!{ ekr(k) }

and the log likelihood (without constants) is

LO) =) Y (—x;/6;— klog )
i



172 10 Large Sample Theory: Constraint-Equation Hypotheses

so that

oL > .xj nk

w6 6

J

Since Elx;] = k6;,

L[ PL] sk
n L9606, ] V67

giving us B™! = k™! diag(07, 63, 67). We find that A; = k*(6,065, 656, 6,6,), and

A, = 1-1 0 ’
I 0-1

so that (AlB_lA/z)T = k391 9293(91 —6,,6, — 93)7‘ =0, when 07 € w; N w, C w>.
We therefore have orthogonality. This completes the example.

When By (= R}Ry) is singular we can use the theory of the previous section
where we have identifiability constraints with derivative matrix H. In this case,
from (10.37), we replace C; by the matrix A?(G'G)~'Ry so that the condition
for orthogonality is

CIC/Z — [A(l)(G/G)—IB(G/G)—IA(Z)/]T — 0 (1050)

for all & € w; N wy, where GG = B + H'H. If we also assume either
[H(G'G)'AM ]y = 0 or [H(G'G)"'AP]; = 0 then, by adding H'H to B
in (10.50), this condition reduces to [AV(G'G)"'A@"]; = 0. This gives us
sufficient conditions for orthogonality. We now apply the theory to Example 6 of
Aitchison (1962).

Example 10.4 A random sample with replacement of n individuals is taken from
a genetic population whose individuals belong to one or other of three types—
dominant, hybrid, and recessive. We therefore have n independent multinomial
trials with three categories having probabilities 6,/6.,6,/6.,05/6., where 6. =
01 + 6, + 65, for dominant, hybrid, and recessive types, respectively. Here W =
{0 : 6, > 0;i = 1,2,3}. The first hypothesis of interest is H; that 8 € Wi,
where W, = {0 : 6 € W; (0;/0)"% + (05/6.)'/> = 1}, the hypothesis that the
population is genetically stable, and the second hypothesis is H, that 8 € W,, where
W, = {0 : 0 € W; 6, = 05}, the hypothesis of equal proportions of dominants
and recessives. Our identifiability constraint is /(@) = 6, + 6, + 63 —1 = 0
so that H = (1,1,1) = 1. Now we can use this constraint to replace W; by

Wi =1{0:0¢cW; 911/2 + 931/2 = 1}. The multinomial distribution is discussed
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in Chap. 12 and from (12.3) we have

G'G=B+HH

_ Sjk ’
= (7/ ) + 1515
_ (%

= (3

= diag(8™")

so that (G'G)~! = diag(6), 6>, 65). Then considering W,
A= 5670.07),
and for W, we have A, = (1,0, —1). Then
ANGG) AL = S(620,61)(1,0,-1)
= S0/~ =0

when 0; = 65 for 6 € w; N w,. Also

H(G'G)™'A, = 1, diag(6;, 65, 63)(1,0, —1)’
=0,—-6;=0,

when 0; = 60;3. Hence w; and w, are orthogonal. This completes the example.

In concluding this section we now show that orthogonality of the hypotheses
leads to a partitioning of test statistics. From Theorem 6.1 in Sect. 6.2 we have

k
Qu.s—0=) (02— 0),

i=1

where Q1. x — Q is the test statistic for testing Hy». 4 : @ € wy Nwp N --- N wy and
Q; — Q is the test statistic for testing H; : 8 € w;. Now

0i—Q =y Po—P)y
=yPyy.

where P = I, and a)f- N2 = a)f- AsP P » = 0 (i # j)because of orthogonality,
i Y
we have that the test statistic for Hj_; can be partitioned into independent test
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statistics for the individual hypotheses H; : 8 € w;. When Hj,_ is true, all the test
statistics have chi-square distributions.
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Chapter 11
Large Sample Theory: Freedom-Equation
Hypotheses

11.1 Introduction

In this chapter we assume once again that & € W. However our hypothesis
H now takes the form of freedom equations, namely 8 = 6(a), where a =
(o1, 0p,... ,ap_q)/ . We require the following additional notation. Let @, be the
p X p — g matrix with (i, j)th element d6;/dc;, which we assume to have rank p —g.
As before, L(0) = log[]—, f(x:, 0) is the log likelihood function. Let DgL(6) and
D, L(0(x)) be the column vectors whose ith elements are dL(8)/d6; and L(8)/dc;
respectively. As before, Bg is the p x p information matrix with i, jth element

0°L(0) 02 log f(x,0)
-n'E = _pl|—2*""
"o [ 96,06 } [ 96;006; ] ’

and we add B,, the p — ¢ x p — ¢ information matrix with ,jth element
—E[9*log f(x, 0(cv))/de;de;]. To simplify the notation we use [-]o to denote that
the matrix in square brackets is evaluated at c, for example

B, = [0'B0], = @;Bg(a)@a.
‘We note that
D,L(0) = @;DgL(G(O[)).

We use similar assumptions to those given in the previous chapter so that (10.4)
and (10.5) still hold. This means that once again 07, 8. = 0(a.), 0 and 0 =
(&) are assumed to be all “near” each other. We consider two cases depending on
whether By, is positive definite or positive semi-definite. The theory in the next two
sections is based on Seber (1964) with a couple of typos corrected and a change in
notation.
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11.2 Positive-Definite Information Matrix

As By, is positive definite there exists a p x p nonsingular matrix Vr such that
we have Bg, = V,.V7. We now show that our original model and hypothesis are
asymptotically equivalent to the linear model

z=1 +e¢,

where € is Ny[0,1,], G : 2 = C[V7] = RP and H : = C[V70®,,]. In preparation
for proving this result we need to find the least squares estimates for the above linear
model. If X = V;0,,, then under G we have 1) = z and under H the least squares
(normgl) equations are X'(z — 17;) (cf. (3.2)). We use these equations below.

If 6 and & are the maximum likelihood estimates under G and H respectively
and 0 = 0(&v), then these estimates are the solutions of

Don 'L(O) =0 (1.1
and
D.n'L(B) = 0. (11.2)
As 0 is near 07, a Taylor expansion of (11.1) give us
0 = Don~'L(07) — By, (6 — 07) + 0,(1), (11.3)

where n!'/?Dgn'L(07) is asymptotically N, [0, By,]. Since 6, is near 7, (11.3)
becomes

8 = Bg,n'/%(0 — 6.) — Bg,n'*(0r — 6.) + 0,(1), (11.4)

where 6 is N,[0, Bg,]. As 0 is near @ and therefore both near 0., we have a similar
equation for (11.2), namely

0 = n'0, Don'L(9)
= n'/2@), Den'L(6) + 0,(1)
= —n'2@), Bg, (6 —0) + 0,(1)
= —n'2@), ViV7[(0 — 0.) — (6 — 0,)] + 0,(1). (11.5)
Multiplying (11.4) on the left by V! and putting z = n'/2V4( — 6.) and ¢ =
n'/2Vr(07 — 64), we get e = z— b, where € is N, [0, L]. If tp = n'/2V7(6 — 6,,) it

follows from (11.5) that X'(z — 1,~b) = 0p(1), where X = V70, . We have therefore
established thatz =1 4+ ¢,G: 2 =R, and H : w = C[V10O,,].
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Unfortunately the above formulation is not very helpful in providing a test
statistic, as it would be based z’ (I, — P,)z, where

P, = V70,40 ,Br0O,.] 'O, V).

Instead we can use the Score test based on the constraint equation specification from
Sect. 10.3.3, namely

n~'[DgL(6)] B~ Dy L(6)],

where 8 = 6(&). We simply assume that a constraint equation exists for
formulating the hypothesis, but we don’t need to actually find it.

11.3 Positive-Semidefinite Information Matrix

Suppose that the p X p matrix Bg, is positive semidefinite of rank p — ry. We now
find that 07 is not identifiable and we introduce ry identifiability constraints

h(07r) = (h(01), h2(07), ..., hy(07)) = 0.

Let Hy be the ry X p matrix of rank r with (i, j)th element dk;/d6; evaluated at O7.
We make a further assumption.

(xvi) By, + (H'H)7 is positive definite. (We see below once again that this
assumption follows naturally from the linear theory.)

Since By, is positive semidefinite, there exists a p — rp X p matrix Ry of rank p — rg
such that By, = [R'R]r (A.9(iii)). We will now show that our asymptotic linear
model and hypothesis take the form (cf. Seber 1964, with a slight change in notation)

z=¢+te,
where € is N,—, [0, L],
G:2={¢|d=ReB HB =0} =R""
and
H:o={¢|¢p=Rr0Oq,7: HrOq,v =0}
Assumption (xvi) implies that [Bg + H'H]7 is of full rank p so that the p x p
matrix Gr = [R’, H']; has rank p and Hy has rank ry, which are necessary and

sufficient conditions for the constraints Hy3 = 0 to be identifiable (see A.11).
Since (G’G)r is positive definite it follows from A.9(iv) that the p — g x p — g matrix
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0,,.GGr0,, = Ba, + (Hr0,,) (Hr®,,) is also positive definite. This means
that the constraints Hy®,, v = 0in H above are necessary and sufficient conditions
for « to be identifiable. A

The least squares estimates  and @ (= 6(&)) are respectively given by the
solutions of

Don'L(B) + HyAo =0, h(d) =0 (11.6)
and

Don ' L(O(&)) + OLH A =0, h(6(a) =0, (11.7)

where 5\0 and X, are the appropriate Lagrange multipliers for the identifiability
constraints. From (10.30) we have that n'/2\, = 0,(1) and, using the same
argument with o the unknown vector parameter, we have that n!/ 2N\ = 0,(1).
As 07 is near 0., we can use (10.30) and the following equations and replace (11.6)
by

n'2Den~'L(9) = 0,(1), (11.8)
Hn'/2(0 — 60.) = 0,(1) and Hrn'?(0r — 0.) = 0,(1). (11.9)

Similarly (11.7) can be replaced by

n'?Den'L(O(&)) = 0,(1) (11.10)
and HTnl/Z(é — 6.) = 0,(1), which can be approximated by
Hp, 0, 1" (& — ax) = 0,(1). (11.11)
Now using a Taylor expansion for (11.10) we have
0 = n'20;Dgn ' L(6) + 0,(1),
= n'2@/, Don'L(6) + 0,(1)
= n'2@/, Dgn~'L(6) — O, Bo,n"/*(8 — 6) + 0,(1)
=00, Bg,n"/%(0—8) +0,(1) by(l1.8)
= @/, Bg,n"%(8 — 0.) — O], By,n'*(6 —6,,). (11.12)
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Now setting z = Ryn'/2(6 — 05), ¢ = Ryn'/2(67 — 05), = Ryn'/2(6 — 0,), and
recalling that By, = [R'R]r, we have from (11.12)

0, Rz — @;*R’T&S =0,(1)
or
X'(z— @) = 0,(1), (11.13)
where X = R70,, . Referring to (10.31), we have
Bo,n'/2( — 0.) — Bg,n'* (07 — 0.) = &) + 0,(1),

where 9, is N, [0, Bg,], a singular multivariate normal distribution. Now R7R’. is
p —ro X p—rg of rank p — ry, so it is nonsingular. Premultiplying the above equation
by [(RR’)"'R]; we get

Rrn'/2(0 — 0.) — Ryn' 207 — 0.) = € + 0,(1), (11.14)
where € is N, [0, I, ] as
Varle] = [(RR)'RRR)R'(RR) |7 = 1,,.
Putting all this together, we have from (11.14) the approximating linear model z =
¢ + €, where z = Ryn'/?(0 — 0,) and ¢ = Ryn'/?>(67 — 64). From Sect. 10.4
the G model given there is the same as here so that £2 = R’~"0. Since (11.13) are

the normal equations for H, we have w = {¢ | ¢ = Ry0O,,~} with identifiability
constraints Hr®,, v = 0. The likelihood ratio test statistic is (cf. (10.25))

—2log A[H|G] = Z (1, — Py)z,
where

P, = R;10,.[0,,(R;R; + H;H;)"'0,.]7'0/ R}
= R70,+[0,,(G1Gr) ' Ous] ' 0, R}

As with the full rank case in Sect. 11.2, a more convenient approach is to use the
the Score test, namely

n~'[DyL(6)]' (B + H'H) "' [DyL(6)]. (11.15)

Reference

Seber, G. A. F. (1964). The linear hypothesis and large sample theory. Annals of Mathematical
Statistics, 35(2), 773-779.



Chapter 12
Multinomial Distribution

12.1 Definitions

In this chapter we consider asymptotic theory for the multinomial distribution,
which is defined below. Although the distribution used is singular, the approximat-
ing linear theory can still be used.

Let e; be the r-dimensional vector with 1 in the ith position and O elsewhere.
Let y be an r-dimensional random vector that takes the value e; with probability
pi/p- (i =1,2,...,k), where p. = Y '_, p;. A random sample of n observations y;
(G =1,2,...,n)is taken from this multivariate discrete distribution giving the joint
probability function

f(yl,yz,---,yn)zl_[(?) , (12.1)
i=1 ’

where x; is the number of times y; takes the value e;. We note that the probability
function of the x; is

n! e (pi\"
f('xla-XZa"'a-xr) = = (_) 5 (122)
[Tz %! ,l] D

which is a (singular) multinomial distribution because ) ;x; = n. The p; in (12.1)
and (12.2) are not identifiable as we can replace p; by ap; without changing (12.2),
so we need to add an identifiability constraint, namely p. = 1. The nonsingular
multinomial distribution then takes the form

n! o

f(-xlaXZ,...,.xr_l) == | |p;(,’
|

1_[,-:1)61-

i=1
withx, = n — Z;i x;andp, =1 — Z;il’i-
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12.2 Testof p = po

If p = (p1,p2,....p) . then the log likelihood function from (12.1) is
L(p) = logf(y1.y2.-...¥r)

=) xjlogp; —nlogp.. (12.3)

i=1

To find the maximum likelihood estimate of p we differentiate L(p) + A(p. — 1),
where A is a Lagrange multiplier (which we expect to be zero for an identifiability
constraint). We have, differentiating with respect to p;,

Tz + A =0 togetherwith p.=1.
pi D
Multiplying by p; and summing on i givesusn = ) ,x; = n— A, and A = 0 as
expected. Then the maximum likelihood estimate of p; is p; = x;/n (i = 1,2,...,7),
and
oL X n
i pi p’
so that
9*L X; n 92L n
— =—— + — and =— (i#)).
w;  pi P Ipidp;  p? ¢#)

Taking expected values gives us E[x;] = np;/p.,

o[ PL 5
Cij = — =n——n,

and our expected information matrix is

B, =n"'(c)) = (@ -1, (12.4)
Di

where §; = 1 when i = j and O otherwise.
Let

f) = (I/}lsﬁZs---sﬁ}’)/

=n"'(xx, ... x)
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r

_ -1

=n Xi€;
i=1

=Y,
which has mean p and is asymptotically normal by the multivariate Central Limit

Theorem. Now the variance-covariance matrix of y is

piqr —pip2 =+ —P1Dr
B = —P2P1 P29z - —P2Dr
—PrP1 —PrP2 -+ Prqr
= diag(p) — pp’. (12.5)
where diag(p) is diag(p1, p2, . . ., p;). The matrix X, is singular as ()1, = 0, and
n!'/2(p — p) is asymptotically N,[0, Z(,)].
LetF = diag(py'.py',....p;") = diag(p™"), say, then
FX) = diag(p~')(diag(p) — pp')
= Ir - lrp/,

and

2 F3() = (diag(p) — pp')(I, — 1,p")
= diag(p) — pp’
=20,
so that F is a generalized inverse X, of (). Furthermore, we see that
XnFYFY,) = X»FX( and
trace[FX,] = trace[l, — 1,p’]
= r — trace[p'1,]

=r—1.

It therefore follows from A.16 that

n(—p)S,G-p =) (12.6)

(x; — np;)?
=1 Wi
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is asymptotically X%—l' We can now test the hypothesis H that p = po, where we
have po = (pio), using the so-called Pearson’s goodness-of-fit statistic

~ (x; — npi)*
X2 = Z R U (12.7)
=1 npio

which is approximately distributed as X%—l when H is true.

12.3 Score and Wald Statistics

We shall first see where the general theory of Sect. 10.4.1 withp = rand ryp = 1
fits into the picture. To simplify notation we drop the subscript “T” and let pr = p,
the true value of p. Referring to Example 10.2 at the end of Sect. 10.4.2 where we
test H : p = po, we have the linear model w = n + €, where Hyn = 0 are the
identifiability constraints and n = n'/2(p—py). From (12.3), B, = diag(p™')—1,1.
and since 1/(p — po) = 0, Hy, = 1/ and ry = 1. Hence

(G'G);! = (B+HH),' = diag(po)

Po Po
and
DL() = DL(Po) = (G- =, > = n,..., = =),
Pio P2 Pro

The Score statistic is therefore given by (cf. 10.49)

- npin)2
n"'DL(00)'[(G'G)'16,DL(B) = Y % (12.8)

which means that Pearson’s goodness-of-fit statistic is also the Score (Lagrange
Multiplier) statistic.
In a similar manner we can derive the Wald statistic. Since

(G'G)'B(G'G)™" = diagp[diag(p~") — 1,1/] diag(p)
= diagp — pp’, (12.9)
we have from (10.49) that the Wald statistic is

W = n(p — po) {A'TA(G'G)'B(G'G) ' AT A} (B — po)
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where we can set A = (I,_{,0), an r — 1 x r matrix. Now using (12.9)

A(G'G)"'B(G'G)'A" = (I,-1, 0)(diag(p) — pp) (I,-1.0)’
= diag(p,—1) — P—1P)—
= 2(r—l)y

say, where p,—1 = (p1,p2,...,pr—1) . From Seber (2008, result 10.27)
3,1, = diag(p—1) — p; ' L1,
and
AL A = diag(p,),0) + p; ' (1,21,0) (1,1, 0).

Also

using the fact that ), p; = 1. Hence

W = n(p—po)'[A’;L,, Al (D — po)
r—1 A N

Z n(p; — poi)? N n(p, — por)?

lai lar

i=1
= Zr: (5 — npj)?
=

We know from the general theory that the Score and Wald statistics are asymptoti-
cally equivalent to the likelihood ratio test, which is given by the likelihood ratio

1_[?=1 P)(;i'

A[H|G] = l—Ir I/\)Xi’
i=1Fi

and corresponding test statistic

~2logA =2nY_ pilog (p—) .

=1 Doi
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We have seen above how the asymptotic linear model can be used to provide the
format of each of the three statistics and thereby prove their asymptotic equivalence,
being all approximately distributed as y>_, when p = py. However, given the
three statistics, another method can be used to prove their asymptotic equivalence
described in Seber (2013, 41-44).

12.4 Testing a Freedom Equation Hypothesis

Suppose we wish to test a more general hypothesis such as H : p = p(a) where a
is (r — g) x 1, as discussed in Chap. 11 with p = r. The likelihood ratio is then

l_[;=1 pi(a)*

A[H|G] = 1—[r If\)xi ’
i=1Fi

with test statistic

A

—2log A = Zan,log
= (04)

— . pi —pi(&)
=2n ) p;log (1 + — )
;g; pi(®)

Z (i = npi(@))” (12.10)

L npi(@)
using the approximation log(1 + y;) & y; — y?/2 for |y;| < 1, where y; converges
to 0 in probability. The above statistic is asymptotically distributed as X; when H is
true.

The Score statistic is readily obtained from (12.7); we simply replace py by p to
get (12.10) again.

Example 12.1 (Test for Independence) Suppose we have a multinomial experiment
giving rise to a two-way table consisting of / rows and J columns with x;; the
frequency of the (i, j)th cell. This is a single multinomial distribution with r = IJ
cells so that the log likelihood function is (cf. (12.3))

1
L(p) = ZZXU logp;; — nlogp.,

i=1 j=1

wheren =3, > xjandp. = ;> p;;. We can express the p;; as a single vector

P = (P11,P12s - s D1 P21 P22+ - P2ls + o s PILs P12y -+ s PLI)
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The hypothesis H of row and column independence is p; = «;f3;, where we have
S, = 1and Z]J: B; = 1. Therefore H takes the form p = p(6), where
0 = (a,a2,...,q1, b1, B2, ...Bs). Also, under H,

pi. = o, P;i::Bj and ZZPU:L
i

so that H can also be expressed in the form p; = p;p,;. We can therefore use
the theory given above and test H using a chi-square statistic of the form (12.10),
namely

1
('xl] npi; (@; :3]))
;; ol (12.11)

We need to find the maximum likelihood estimates &; and Bj, and the degrees of
freedom. Now the likelihood function (apart from constants) is

(e, B) = H]‘[(a B = 1‘[a Hﬁcf,

i=1 j=1

where R; = };x; (the ith row sum) and C; = }_,x; (the jth column sum).
If L(a, B) = logf(a,B) and A; and A, are Lagrange multipliers we need to
differentiate

L(a. B) + Ay (Zai—l) +h D> gi-1
i J

with respect to o; and ;. The estimates are then solutions of

R: !
=421 =0, Za,-zl and

o
J
C;
Z4r=0 > p=1
Bi =1
Since Ay = A, = =) R, = —Zj C; = —n, our maximum likelihood estimates

are

R; -
O~l,' = — and ,Bj =
n
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Hence p;i(@;, ,3}) = R;Cj/n so that the Score test is, from (12.11),

(x;j RC/")
ZZ jRC/n '

i=1 j=1

Under H this statistic has approximately the chi-square distribution with degrees of
freedomlJ —1— (I —1+4+J—1) = (I —1)(J — 1) corresponding to the difference
in the number of free parameters specifying §2 and w.

12.5 Conclusion

In the last three chapters we have seen how general hypotheses about sampling from
general distributions can, for large samples, be approximated by linear hypotheses
about linear normal models. Here the normality comes from maximum likelihood
estimates that are generally asymptotically normal. For the approximating linear
model the three test statistics, the likelihood ratio, the Wald Test, and the Score
(Lagrange Multiplier) test statistics are identical thus showing that for the original
model they are asymptotically equal. Clearly the method used is a general one so that
it can be used for other models as well. For example, one referee suggested structural
equation, generalized linear, and longitudinal models as well as incorporating
Bayesian and pure likelihood methods. The reader might like to try and extend the
theory to other models as an extended exercise!

References

Seber, G. A. F. (2008). A matrix handbook for statisticians. New York: Wiley.
Seber, G. A. F. (2013). Statistical models for proportions and probabilities (Springer briefs in
statistics). Heidelberg: Springer.



Appendix: Matrix Theory

In this appendix, conformable matrices are matrices that are the correct sizes when
multiplied together. All matrices in this appendix are real, though many of the results
also hold for complex matrices (see Seber 2008). Because of lack of uniformity in
the literature on some definitions I give the following definitions.

A symmetric nXn matrix A is said to be non-negative definite (n.n.d.) if x’Ax > 0
for all x, while if X’ Ax > 0 for all x # 0 we say that A is positive definite (p.d.).
The matrix A is said to be positive semidefinite if it is non-negative definite and
there exists x # 0 such that X’ Ax = 0, that is A is singular. A matrix A is said to be
negative definite if —A is positive definite.

A matrix A~ is called a weak inverse of A if AA™A = A. (We use the term weak
inverse as the term generalized inverse has different meanings in the literature.)

Trace

Theorem A.1 IfA ism X nand B is n X m, then
trace[AB] = trace[BA] = trace[B’A’] = trace[A'B’].

Proof

n

trace[AB] = szu i = Zzbjiaij = Zzbf] a; = ZZ“H i

i=1 j=1 j=1i=1 i=1 j=1 n=1 i=1

If m = n and either A or B is symmetric then trace[AB] = Y| a;b;;.
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Rank

Theorem A.2 If A and B are conformable matrices, then
rank[AB] < minimum{rank A, rank B}.

Proof The ith row of AB is }_;a;b;, where b] is the jth row of B. The rows of
AB are therefore linear combinations of the rows of B so that the number of linearly
independent rows of AB is less than or equal to those of B; thus rank[AB] < rank[Bl].
Similarly, the columns of AB are linear combinations of the columns of A, so that
rank[AB] < rank[A].

Theorem A.3 Let A be an m x n matrix with rank r and nullity s, where the nullity
is the dimension of the null space of A, then

r + s = number of columns of A.

Proof Let ay, @y, .. ., ay be a basis for N[A]. Enlarge this set of vectors to give a
basis oy, oz, ..., a,, By, B2, ..., 3 for R". Every vector in C[A] can be expressed
in the form

s t
Ax = A Zaiai + ijﬁj
i=1 Jj=1
t
=) bAB;
j=1

t
= Z bivy;, say.
=1

Now suppose that Y/_, ¢y; = 0, then

t

j
AlD aB|=D =0
j=1

J=1

and )_¢;3; € N[A]. This is only possible if the ¢;’s are all zero so that the ~; are
linearly independent. Since every vector Ax in C[A] can be expressed in terms of
the ~;’s, the ~;’s form a basis for C[A]; thus + = s. Since s + ¢t = n, our proof is
complete.
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Theorem A.4 Let A be any matrix.

(i) The rank of A is unchanged when A is pre- or post-multiplied by a non-singular
matrix.

(ii) rank[A’A] = rank[A]. Since rank[A’] = rank[A] this implies that rank[AA'] =
rank[A].

Proof

(i) If Qs a conformable non-singular matrix, then by A.2
rank[A] < rank[AQ] < rank[AQQ™!] = rank[A]

so that rank[A] = rank[AQ] etc.

(i) Ax = 0 implies that A’Ax = 0. Conversely, if A’Ax = 0 then X’A’Ax = 0,
which implies Ax = 0. Hence the null spaces of A and A’A are the same. Since
A and A’A have the same number of columns, it follows from A.3 that A and
A’A have the same ranks. Similarly, replacing A by A’ and using rank[A] =
rank[A’] we have rank[A’] = rank[AA'], and the result follows.

Theorem A.5 IfA isn x p of rank p and B is p x r of rank r, than AB has rank r.

Proof We note that n > p > r. From A.4(ii), A’A and B'B are nonsingular.
Multiplying ABx = 0 on the left by (B'B)"'B’(A’A)"'A’ gives us x = 0 so that
the columns of n x r matrix AB are linearly independent. Hence AB has rank r.

Eigenvalues

Theorem A.6 For conformable matrices, the nonzero eigenvalues of AB are the
same as those of BA.

Proof Let A be a nonzero eigenvalue of AB. Then there exists u (# 0) such that
ABu = Au, that is BABu = ABu. Hence BAv = Av, where v = Bu # 0 (as
ABu # 0), and A is an eigenvalue of BA. The argument reverses by interchanging
the roles of A and B

Theorem A.7 (Spectral Decomposition Theorem) Let A be any n x n sym-
metric matrix. Then there exists an orthogonal matrix T such that T'AT =
diag(Aq, A2, ..., A,), where the A; are the eigenvalues of A. [For further details
relating to this theorem see Seber (2008: 16.44).]

Proof Most matrix books give a proof of this important result.

Theorem A.8 If A is an n X n positive-definite matrix and B is a symmetric
n X n matrix, then there exists a non-singular matrix V such that V' AV = 1, and
V'BV = diag(y1, y2. . .., Yn), where the y; are the roots of [yA —B| = 0, (i.e., are
the eigenvalues of A~'B (or BA™! or A7'/2BA~1/2)).
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Proof There exists an orthogonal T such that T’AT = A, the diagonal matrix of
(positive) eigenvalues of A. Let A'/? be the square root of A, that is has diagonal
elements A%, and let R = TA™/2, Then RAR = A~'2T'ATA"Y/2 = I,. As
C = R’BR is symmetric, there exists an orthogonal matrix S such that S'CS =
diag(y1, y2, ..., yn) =T, say, where the diagonal elements of I' are the eigenvalues
of C. Setting V = RS we have VAV = S'/R’ARS = I, and VBV = S'CS =T,
where the y; are the roots of

0 = [yI, —R'BR| = [yR’AR —R'BR| = [R||[yA — B|[R'| = [yA —B|,

that is of |yI, — A='B| = 0. Using A.9(ii), we then apply A.6 to A~!/>?A~1/2B,
which has the same eigenvalues as A~'/?BA~!/2 to complete the proof.

Non-negative Definite Matrices

Theorem A.9 Let A be an n X n matrix of rank r (r < n).

(i) A is non-negative (positive) definite if and only if all its eigenvalues are non-
negative (positive).

(ii) If A is non-negative (positive) definite, then exists a non-negative (positive)
definite matrix AY/? such that A = (A'/?)2.

(iii) A is non-negative definite if and only if A = RR’ where R is n x n of rank r.
This result is also true if we replace R by an n x r matrix of rank r. If A is
positive definite then r = n and R is nonsingular.

(iv) If A is an n x n non-negative (positive) definite matrix and C is an n X p matrix
of rank p, then C'BC is non-negative (positive) definite.

(v) If A is non-negative definite and C'AC = 0, then AC = 0; in particular,
C'C = 0 implies that C = 0.
(vi) If A is positive definite then so is A~
(vii) If A is n x p of rank p, then A’A is nonsingular and therefore positive definite.
(viii) If the elements of n x n matrix A(0) are continuous functions of @ and A(6y)
is positive definite, then it will be positive definite in a neighborhood of 0.

(ix) If A is non-negative definite (n.n.d.), then trace[A] is the non-negative sum of

the eigenvalues of A.

Proof

(i) Since A is symmetric there exists an orthogonal matrix T such that T'AT =
diag(A;, A2, ..., A,) = A, where the A; are the eigenvalues of A. Now A is
n.n.d. if and only X' T'ATx = A;x] + A,x3 + -+ A,x2 > 0, if and only if the
A; are nonnegative as we can set X = e; for each i, where e; has one for the
ith element and zeros elsewhere.

(i) From the previous proof,

A = TAT = TA'2T'TA'*T = (A'/?)?,
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where A2 = diag(/\i/z,/\é/z, .. ,)LLI/Z) is n.n.d. and A2 = TAY2T is
n.n.d. by (iii).

(iii) Since A is positive semidefinite of rank r, we have from the proof of (i) that
T'AT = A, where the eigenvalues A; are all positive fori = 1,2,...,r, say,
and zero for the rest. Let A!/? = diag(k}/z,kyz, A0 ,0). Then
A = TA'2A'2T' = RR/, where R = TA!/? has rank r. Conversely, if
A = RR/, then rank[R] = r = rank[RR’] = rank[A], and X’Ax = X’RR'x =
y'y > 0, where y = R’x. Hence A is positive semidefinite of rank r.

We can replace R = TA!/2 by the n X r matrix T,Ai/z, where A}/z =
diag(k}/z, e /\i/z) and T, consists of the first » columns of T.

(iv) We note that yC'RR’Cy = z'z > 0, where z = R’Cy. If R is nonsingular,
z = 0 if and only if y = 0 as C has full column rank.

(v) We have from (iii) that A = RR’ so that 0 = C'RR’C = B'B (B = R'C),
which implies that b’b; = 0 and b; = 0 for every column b; of B. Hence
B=0and AC = RR'C =RB = 0.

(vi) Using (iii),

AT'=RR)'=R'R'=R'R!'=§8,

say, where S is nonsingular. Hence A™! is positive definite.

(vii) If y = Ax, then XA’Ax = y'y > 0 and A’A is positive semi-definite.
However by A.4(ii), the p X p matrix A’A has rank p and is therefore non-
singular and positive definite.

(viii) It is well-known that a matrix is positive definite if and only if all its leading
minor determinants are positive (for a proof see Seber and Lee (2003, 461—
462)). Now at 6y the ith leading minor determinant of A(@) is positive, so
by continuity it will be positive in a neighborhood N; of 8y. Hence all the
m leading minor determinants will be positive in the neighborhood N' =
N, N;, and A(@) will be positive definite in N

(ix) This follows from the proof of (ii), with T orthogonal, that

trace[A] = trace[TAT’] = trace[T'TA] = trace[A] = Z A >0,

by A.1 and (i).

Theorem A.10 Let f be the matrix function
f(®) = log || + trace[Z'A].

If the d x d matrix A is positive definite, then, subject to X being positive definite,
f(X) is minimized uniquely at ¥ = A.

Proof Let A1, As,..., Ay be the eigenvalues of £7'A, that is of X~1/2AX~!/2
(by A.8). Since the latter matrix is positive definite (by A.9(iv)), the A; are positive.
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Also, since the determinant of a symmetric matrix is the product of it eigenvalues

(E7'A)] = =7 [IAl = [=72AsT = T

Hence

f(®) —f(A) = log |SA™"| 4 trace[X7'A] — trace I,
= —log |[Z7V2AZT?| 4 trace[ETV/?AXT?] —d

= —IOgl—[Al-FZAl—d

d
=) (~loghi+ A —1) >0,
i=1

as logx < x — 1 for x > 0. Equality occurs when each A; is unity, that is when
¥ =A.

Identifiability Conditions

Theorem A.11 Let X be an n x p matrix of rank r, and H a t x p matrix. Then the
equations 8 = X3 and HB = 0 have a unique solution for 3 for every 0 € C[X] if
and only if

(i) CIX]NCH] =0, and
(ii) rank[G] = rank[§l:| =p.

Proof (Scheffé 1959: 17) We first of all find necessary and sufficient conditions for
3 to exist. Now 3 will exist if and only if

= (z) = (ﬁ)ﬁ =GB € C[G] forevery 0 € C[X].

This statement is equivalent to: every vector perpendicular to C[G] is perpendicular
to ¢ for every 8 € C[X]. Let a’ = (a}, a};) be any n + ¢ dimensional vector. Then

Ga=0= ¢’a=0 ifandonlyif
X'axy + Hay = 0 = 0'axy = 0 forevery 8 € C[X] if and only if
X'ay + Hay = 0 = X'ay = 0 and hence H'ay = 0.

Thus 3 will exist if and only if no linear combination of the rows of X is a linear
combination of the rows of H except 0, or C[X'] N C[H'] = 0.
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If 3 is to be unique, then the columns of G must be linearly independent so that
rank[G] = p.

We note that the theorem implies that rank[H] must be p — r for identifiability, so
we usually have t = p — r, with the rows of H linearly independent.

Idempotent Matrices

Theorem A.12 Let A, A,, ..., A, be asequence of n x n symmetric matrices such
that )i A; = L,. Then the following conditions are equivalent:

(i) > i, ri = n, where r; = rank[A;].
(ii) A;Aj =0foralli,j,i#].
(iii) A} =A;fori=1,2,....,m

Proof We first show that (i) implies (ii) and (iii). Since
y=Ly=Aiy+Ay+---+ Ay, (A.1)

(i) implies that R* = C[A]®- - -@C[A,]. Lety € C[Aj]. Then the unique expression
of y in the above form is

y=04 - +y4---+0. (A.2)

Since Eqs. (A.1) and (A.2) must be equivalent as y has a unique decomposition into
components in mutually exclusive subspaces, we have A;y = 0 (all i, i # j) and
Ajy = y when y € C[A}]. In particular, for any X, we have by putting y = A;x that
AjA;x = 0and Ajzx = A;x. Hence (ii) and (iii) are true.

That (ii) implies (iii) is trivial; we simply multiply >, Ay = I, by A;.

If (iii) is true so that each A; is idempotent, then rank[A;] = trace[A;] (by A.13)
and

n = trace[l,]

= trace[y  A/]
— Ztracle[Ai]
= Xl:rank[Ai]

so that (iii) implies (i). This completes the proof.

Theorem A.13 If A is an idempotent matrix (not necessarily symmetric) of rank r,
then its eigenvalues are 0 or I and trace[A] = rank[A] = r.
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Proof As A>—A = 0, A>—1 = 0 is the minimal polynomial. Hence its eigenvalues
are 0 or 1 and A is diagonalizable. Therefore there exists a nonsingular matrix R

such that
_ L0
R'AR=( |,

since the rank is unchanged when pre- or post-multiplying by a nonsingular
matrix (A.4(i)). Hence

trace[A] = trace[ARR™!] = trace[R"'AR] = r.

When A is also symmetric we see from Theorem 1.4 in Sect. 1.5 that R is
replaced by an orthogonal matrix.

Weak (Generalized) Inverse

Theorem A.14 If A is any matrix with weak inverse A~, then AA™ is idempotent
and trace[AA™] = rank[AA™] = rank[A].

Proof (AATA)A™ = AA™, so that AA™ is idempotent. Now from A .4(ii),
rank[A] = rank[AA™A] < rank[AA™] < rank[A].

Hence rank[AA™] = rank[A] = trace[AA™], by A.13.
Theorem A.15

(i) (A7) is a weak inverse of A/, which we can then describe symbolically as
(A7) = (A)". (Technically A~ is s not unique as it represents a family of
matrices.)

(ii) If X is n x p of rank r < p and (X'X)~ is any weak inverse of X'X, then we
have P = X(X'X)™X' is the unique projection matrix onto C[X], so that it is
symmetric and idempotent.

(iii) If G is defined in A.11, then (G'G)™" is a weak inverse of X'X.

Proof
(i) This is proved by taking the transpose of A = AATA.
(i) Let 22 = C[X]andlet @ = X3 € £2. Given the normal equations X'X3 = X'y,
these have a solution 3 = (X’X)™X'y. If 8 = X3, then
§'(y—6) = BX'(y—Xp)
= f' X'y - X'XB)
=0.
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We therefore have an orthogonal decomposition of y = 6+ y— 6 such that
6 e Qand(y—6) L £2.Since 8 = X8 = X(X’X)"X'y and the orthogonal
projection is unique, we must have Pp = X(X'X)~X". R

(iii) Using the normal equations X'’X3 = X'y and adding H3 = 0 we have
(X’X + H'H)3 = X'y so that 0 = HB = H(G'G)™'X'y for all y. Hence
H(G'G)~'X’ = 0 and

X'X(G'G)'X'X = (XX + HH)(G'G) " 'X'X = X'X.

Theorem A.16 Lety ~ N,[0, X], where X is a nonnegative-definite matrix of rank
s. If X7 is any weak inverse of X, then y'X 7y ~ X?-

Proof If z ~ N,[I,, 0], then y has the same distribution as X£'/?z (cf. A.9(ii))
since Varly] = (2'/2)2 = ¥. Now y'Ay = zZE2AX2z is x? if /2A%Y2 is
idempotent (Theorem 1.10 in Sect. 1.9), where
r = trace[X/2AX!/?] = trace[TA]
(since trace[CD] = trace[DC]), that is if
EI/ZAEI/ZEI/ZAEI/Z EI/ZAEI/Z (A3)
Multiplying the above equation on the left and right by 3!/2 we get
JAYAY = YAX. (A4)
We now show that Egs. (A.3) and (A.4) are equivalent conditions.
Let B = AYA — A, then we need to show that ¥BY = 0 implies that the matrix
D = X'/?Bx!/? = 0. Now D is symmetric and given EBX = 0,

trace[D?] = trace[S!/?BE!/2X!/2B%!/2]
= trace[XBYB]
=0.

However trace[D*] = 3, 3~ d; = 0 implies that D = 0.
We now set A = Y7, then

JATAY = (EX7Y)X7Y = IX¥TX = YA,

and the condition for idempotency is satisfied. We note that r = trace[¥A] =
trace[¥X 7] and, from A.14,

rank[¥¥7] = rank[X¥] = s = trace[XX].
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Hence r = s and y¥ 7y is y2.

Inverse of a Partitioned Matrix

Theorem A.17 If A and C are symmetric matrices and all inverses exist, then

ABY _( F! —F'G
B C “ \-GF! C'4+GF'G')’
where F = A —B'C™'Band G = C!B.

Proof The result is proved by confirming that the matrix multiplied on the left by
its inverse is the identity matrix.

Theorem A.18 If A is positive definite and all inverses exist, then

-1

A B\  (AT'-AT'BBATB)'BAT' AT'B/(BAT'B)!
B 0 N (BA™'B/)"'BA™! —(BA™!'B/)~!

Proof The matrix times its inverse is the identity matrix.

Theorem A.19 Let A be an r X r positive definite matrix, B be an s, X r matrix
of rank sy, C be an sy X r matrix of rank s,, and C[B'] N C[C'] = 0 so that
rank[(B', C')] = s1 + s2. If

AB C
Z=|{BO0 0],
cCo o0
then
P Q R’
Z7'=| Q -QAQ —QAR' |,
R —RAQ’ RAFR
where

P =M-MC'(CMC))"'cM,

Q = (BA™'B)'BA7![I, — C/(CMC))"!cM],
R = (CMC')"'CM, and

M=M =A"!'[I, —-B'(BA'B) 'BA!].
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Proof Let
PQR
Z'=|lQTU|,
RUYV

then from ZZ~! = I, +5,, we have a system of nine matrix equations, namely

AP+BQ+CR=1I, BP=0, CP=0, (A.5)
AQ +BT+CU=0, BQ =1, CQ =0, (A.6)
AR +BU +CV=0, BR =0 CR =1I,. (A7)

Now from Eq. (A.5)
P=A"'"-A"'"BQ-—A"'CR (A.8)
and using BP = 0 gives us
Q = (BA'B)"'BA!(I, - C'R).
Substituting back into Eq. (A.8) and using CP = 0 leads to
CM — CMC'R = 0. (A9)

Since A™! is positive definite, there exists a nonsingular r x r matrix L such that
A~! = L'L (A.9(ii)). Now LB’ is r x s, of rank s; so that
CMC’' = CL/[I, - LB'(BL'LB’) 'BL/|LC’
= CL'(I — PcpLp))LC
= CL'P L (CL)
by Theorem 1.1 in Sect. 1.2. Now Theorem 4.4 in Sect. 4.2 states that if A is ¢ x n

of rank ¢ then rank[PoA’] = ¢ if and only if C[A’] N 2+ = 0.If 2 = N[BL/] and
A = CL/, an s, x r matrix of rank s, then

CIA1N 2+ =CL'CINC[L/B] = 0,

since rank[B’, C'] is unchanged by premultiplying by L', a nonsingular matrix.
Hence rank[PnprjLC'] = s5. As Py is symmetric and idempotent,
CL'P L PapL/LC’ is 52 X s, of rank s,, and is therefore nonsingular, so that
CMC' has an inverse. From Eq. (A.9)
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R = (CMC)"'cM,
and from Eq. (A.6)

0 =QAQ +QB'T+QCU
= QAQ +1I,T

so that T = —QAQ’. From premultiplying Eq. (A.7) by Q, and then premultiply-
ing (A.7) by R, we obtain U’ = —QAR’. Since RC’ =1;,, V = RAR'.

Differentiation

Theorem A.20 Ifd/dB denotes the column vector with ith element d/dp;, then:

(i) d@'B)/dB =a.
(ii) d(B'AB)/dB = 2A0.

Proof
(i) d;aipi/dBi = a;.
(ii)
dBAB)/dpi = d()_aiP? + Y ayBiB;/)dp;
i i i
= 2a;Bi + Z(aii + a;)B;
Ji#i
=2 ayp;
J
Inequalities
Theorem A.21

(i) IfD is positive definite, then for any a

/)2
sup % (xa’]);i } =aD'a.
x:x#£0
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(ii) If M and N are positive definite, then

{ (x'Ly)?
sup

= (_q
X,y,Xx#0,y7#0 x'Mx - ley} e

where Omay is the largest eigenvalue of M~'LN"'L/, and of N"'L'M~!L.
Proof Proofs are given by Seber (1984: 527).
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