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Preface

Suppose you are asked to describe an individual. You probably list age, sex, marital

status, presence of children and number of children, main occupation, education

level, ethnicity, place of residence, place of work, main source of income, religious

denomination and some lifestyle features. You probably add years of major tran-

sitions: when the person graduated from school, got married, entered the current job

and moved to the current address. If the person has children, you may add the name,

age and sex of each child. When you are asked to describe a population, you may

mention size, age structure, distribution by level of education, employment status,

marital status and health status. It describes the population at a point in time. If

asked to describe population change, you may mention changes in size and distri-

bution. Population change is an outcome of changes in people’s lifestyle and life

course. An ageing population is a result of people having fewer children and living

longer. A declining married proportion is an outcome of fewer people marrying,

postponement of marriage and marriages being less stable. Fewer marriages may be

linked to changes in the meaning of the institution of marriage. An increase in the

proportion of unemployment is an outcome of more people losing their job and/or

decreased likelihood of finding a job when unemployed, resulting in longer unem-

ployment spells. The description of population change in terms of changing lives is

referred to as the biographical method. The method emphasizes personal attributes,

life events and life histories.

An individual may be characterized by a set of attributes such as marital status,

employment status, health status, place of residence and income level. If attributes

are represented by discrete variables with finite numbers of categories, a combina-

tion of categories defines a state of existence and an individual with given values of

attributes is said to occupy a state. Individuals with the same values of attributes

occupy the same state. The state space is the set of possible states. In practice, one

or a few attributes are selected to define the state space. Which attributes are

selected depends on the research question. Other attributes that are relevant but

not of primary importance are treated as covariates.

As life unfolds, an individual moves between states. The sequences of states and

transitions between states describe life histories or careers. Employment histories,
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marital histories and residential histories are examples of careers. In studies of life

histories, two approaches are distinguished (Abbott 2001). The first views a life

path as a whole and tries to find typical patterns. The approach is generally known

as sequence analysis. The second views a life history as a realization of a stochastic

process and aims at the description, explanation and prediction of life histories.

Probability models are used to represent stochastic processes and to model the life

histories that they generate. This book is about the second approach. Life histories

are viewed as realizations of continuous-time Markov processes that depend on

rates of transition between states. The rates are estimated from longitudinal data.

The multistate methods that are presented in this book are included in the

software package Biograph, a package in R that implements the biographical

method. The packages can be downloaded from the Comprehensive R Archive

Network (CRAN) (http://cran.r-project.org/). Biograph retrieves useful information

from life history data. It estimates transition rates and computes useful life history

indicators. A particularly useful feature of Biograph is the set of utilities that

connect the package to R packages for multistate modeling including mstate,
msm, mvna, etm, Epi, and the package TraMineR for sequence analysis. Biograph
produces input data in the right format and basic R objects for the packages.

The motivation to write the book was to stimulate the use of multistate modeling

among social science students and researchers with basic knowledge of survival

analysis and event history analysis. The methods presented in the book are illus-

trated using two data sets. The first is a subsample of the German Life History

Survey. Blossfeld and Rohwer (2002) and Blossfeld et al. (2007) used the data to

illustrate the statistical modeling of time-to-event data. By using the same data set,

the multistate analysis of life histories is presented as a logical extension of the

analysis of time-to-event data. At the end of the book, another data set is consid-

ered: the Netherlands Fertility and Family Survey of 1998. The data sets are

included in the Biograph package.

The book should appeal to anyone interested in how populations change and how

the change is related to the lifestyle and life course of individuals. The changes

include today’s major societal challenges: ageing, population decline, migration

and integration, population diversity, population health, labour market dynamics

and the role of education and skills in the modern knowledge society. The book

should be of particular interest to demographers, epidemiologists and students of

population health, sociologists, criminologists, economists and historians. The

book is suitable as a textbook for graduate courses on event history analysis. It

may also be used as a self-study book provided the reader has a basic knowledge of

survival analysis and multistate modeling. The R code used on the book is available

online.

The preparation of the book has been a long but exciting journey. Most of the

work was done while I was with the Netherlands Interdisciplinary Demographic

Institute (NIDI) in The Hague. The book was completed at the Max Planck Institute

for Demographic Research in Rostock, Germany. I would like to thank Hans-Peter

Blossfeld for allowing me to use the subsample of the German Life History Survey
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that he used in his book with Götz Rohwer, Techniques of Event History Modeling
(Blossfeld and Rohwer 2002). James Raymer, Jutta Gampe, Sabine Zinn and Arthur

Allignol provided useful comments on the manuscript. I am grateful for their help.

Rostock, Germany Frans Willekens

May 2014
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Chapter 1

Introduction

In this book, a particular class of models is considered: multistate models. Multi-

state models are ideally suited to model life histories. At a given instant, an

individual has a set of attributes, such as marital status, employment status, living

arrangement, health status and place of residence. In multistate analysis, a person

with a given set of attributes is said to occupy a given state, and persons with the

same attributes occupy the same state. When an attribute changes, the person moves

to a different state. Most personal attributes change in the life course, implying

transitions between states. Marriage, marriage dissolution, birth of a child, job

change, migration, onset of disability and death are events that imply a transition

between states. The set of possible states is the state space. The state variable is the

state an individual occupies at a given time or age. If individuals are combined in

cohorts or populations, the state variable is the number of individuals in a state at a

given time or age. The life course is operationalised as a sequence of states and
transitions between states. Two types of states are distinguished: states that can be

entered and left (transient states) and states that can be entered but not left

(absorbing states). Age is not a personal attribute; it is a time scale. Different

time scales may be used to measure time to transition, calendar time and age

being the most common time measurements.

The multistate model is approached from a survival analysis perspective. Sur-
vival analysis is a subfield of statistics that studies the occurrence and timing of

events. An event is an outcome of a stochastic process. The occurrence of the event

and the waiting time to the event are random variables with characteristic distribu-

tions. A stochastic process model implies a parametric model of the waiting time to

the event. For instance, a model that assumes that the event occurs at a constant rate

implies an exponential waiting time distribution. A model that assumes that the rate

declines exponentially with duration leads to a Gompertz distribution of time-to-

event. Instead of using a model, the empirical distribution of waiting times may be

used directly to estimate event rates. In that case, no stochastic process model and

associated waiting time distribution are assumed. The method is known as the

non-parametric approach.

© Springer International Publishing Switzerland 2014
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It is often useful to distinguish event types. For instance, upon completion of

college education and receipt of a bachelor degree, a person may move on to

graduate school, get a job, take time off for travel or get involved in another

activity. These activities are competing for the individual’s time. They are com-

peting destinations and competing risks. Another example: Marital dissolution is an

event caused by death of the spouse or a divorce. Death of the spouse and divorce

are competing causes of marriage dissolution. They compete to be the reason for

marriage dissolution. In multistate analysis, competing risks are everywhere, and

the modelling of competing risks is an important part of multistate modelling.

In multistate modelling, the life course is modelled as a continuous-time Markov

process, which may be written as a system of differential equations. The parameters

of the model are instantaneous transition rates, also referred to as hazard rates. They

are estimated from data by tracking event occurrences and persons at risk of the

event. To experience an event, a person has to be at risk. For example, only married

persons are at risk of divorce. Partners who are not married may separate, and a

separation may be perceived as a divorce, but it is not a divorce. The risk concept is

central to the study of life histories. To determine the probability of an event at a

given age, event occurrences at that age and persons at risk need to be recorded.

Tracking events and persons is complicated when (a) people can enter, leave and

re-enter the population at risk any time during a period of observation, (b) people

may leave for reasons unrelated to the study or (c) observations do not cover the

entire sequence of entries and exits but only a segment of that sequence: the

segment in the observation period or observation window. The third complication

implies that the observation starts after some people have already experienced the

event or ends before all people included in the observation have experienced the

event. The statistical theory for estimating hazard rates and probabilities by

counting events and tracking exposure times is the counting process theory

(Andersen et al. 1993; Aalen et al. 2008). It is the main theory applied in this

book. A counting process tracks event occurrences and an at risk process keeps

track of who is exposed. Occurrences are related to exposures (population at risk

and exposure times). Transition counts, risk sets and exposure times provide the

necessary information to derive transition rates. One approach is to update and

cumulate the transition rate each time a transition is recorded. Life history measures

are computed from cumulated hazards. In the book, the method is contrasted with

an alternative method, which also counts events and tracks exposure times. Instead

of estimating hazard rates each time an event occurs, the rates are estimated for time

periods. During a period of 1 year, say, the event count and exposure time are

determined and the hazard rate is computed as the ratio of occurrences and

exposures. This approach to estimating occurrence-exposure rates is common in

demography, epidemiology and other disciplines. Both methods are covered in this

book. The first method is implemented in statistical packages for multistate model-

ling discussed in this book. The second method is implemented in Biograph.
Biograph tracks transitions and the population at risk of a transition. The

package relies on life history data, collected retrospectively in cross-sectional

surveys or prospectively in follow-up studies. Life history data come in a variety
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of formats. Most empirical studies organise data by life domain, e.g. employment,

partnership and marriage, family and fertility, health and migration. For the study of

life histories, events need to be ordered chronologically by time of occurrence, and

populations at risk at these times must be determined. Biograph uses a particular

chronological format, known as the wide format (see later). Other authors use a

different format. For that reason, a number of functions are included in Biograph
that convert one data format into another. The Biograph format is the data structure

of a Biograph object.

The graphics capabilities of R motivated the visualisation of life histories. The

methods presented in the book should be considered as a first step towards visual-

isation of life history data. In the demographic tradition, individual lifelines are

presented in an age-time diagram with age on the y-axis and calendar time on the

x-axis. In several textbooks, the diagram is used to show how measurement and

estimates vary by age, period and cohort. The diagram is known as the Lexis

diagram. Biograph uses two packages to display life histories in the Lexis diagram:

the Epi package that includes functions to produce Lexis diagrams and the ggplot2
package. Some functions in Biograph include functions of another package in

CRAN with considerable graphics capabilities: TraMineR.
Biograph was designed to make life history data analysis accessible to a large

group of students and researchers. The package includes a step-by-step method for

tracking event occurrences and populations at risk and for calculating rates of

transition between states. The rates are then used to predict the probability of a

particular transition (transition probability), the probability of being in a given state

at a given age (state probability) and the expected time spent in each of the states

(state occupation times).

Biograph produces several life history indicators. They include state and transi-

tion probabilities and expected state occupation times. Indicators are generated for

individuals, groups of individuals with similar characteristics or experiences

(e.g. birth cohorts) and the entire population. They are derived from transition

rates that are estimated from data. The aim of the exploratory analysis is to help

comprehend the data before engaging in advanced statistical analysis. Biograph
visualises data in a way that should simplify the exploratory analysis of life

histories and facilitate the detection of cases that need special attention. Biograph
predicts life paths for groups and individuals. Predicted life paths are synthetic

biographies because they are obtained using a model and estimating the model

parameters by pooling biographic information from different individuals.

In the literature on multistate modelling, the estimation of transition rates

receives considerable attention. The Comprehensive R Archive Network (CRAN)

includes several contributed packages that estimate transition rates from data,

e.g. survival, eha, mvna, mstate and msm. Biograph contains functions that convert
a Biograph object into input data for these packages.

Observations on the life course may be recorded retrospectively or prospectively

during a period of time. The observation period is referred to as the observation
window. In a cross-sectional retrospective survey, subjects are asked to recall

events between birth and survey date or, more often, during a brief period
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(e.g. 5 years) prior to the survey. In a longitudinal survey or follow-up study,

subjects are followed for a number of years, and events are recorded upon occur-

rence (in continuous time) or indirectly by recording for the same individual the

states occupied at consecutive points in time (panel). Changes in the observation

window may influence the estimates of transition rates because they influence event

counts, persons at risk and durations at risk. Biograph allows the imposition of

different observation windows on the same data set to assess how sensitive results

are to variations in observation period. The observation window may be defined by

age and/or by calendar time. For instance, you may want to consider not the entire

period for which you have data but only the most recent 3 years. Or you may want to

restrict the analysis to individuals between ages 20 and 30. By tracking transitions

and persons at risk between ages 20 and 30, transition rates may be obtained that

apply to that age group. To obtain the transition rate for one age, 21 say, transitions

and persons at risk should be considered between the 21st and the 22nd birthday.

Biograph monitors transitions and exposure times for observation windows you

specify. For each individual in the (sample) population and for any observation

window you specify, it determines the precise dates of entry in each of the states and

the dates of exit. It determines whether the exit is due to the transition of interest,

another transition (competing event) or because observation ends (censoring). That

flexibility is an important feature of the package.

In life history data analysis, data storage and data structure have occupied

researchers for many years (see, e.g. Alter and Gutmann 1999). In Biograph, all
data pertaining to an individual are stored in one record. The data format is known

as the wide format and the file structure as person file. To use Biograph, the data

must be in the proper format. A first step in any data analysis involving Biograph is
to create a Biograph object, which has data in the format required by Biograph. The
package includes utilities for preparing Biograph objects from raw data. It also has

functions that convert data in wide format to a long format and vice versa. In the

long format, a record contains information on a transition or an episode. In that file

structure, the life history of an individual with several transitions is distributed over

multiple records.

Two data sets are used to illustrate Biograph. The first data set is a subsample of

the German Life History Survey (GLHS). The GLHS was organised in 1981–1983

and provides information on the life histories of more than 5,000 men and women

from three birth cohorts: 1929–1931, 1939–1941 and 1949–1951. Blossfeld and

Rohwer (2002) and Blossfeld et al. (2007) used a subsample of 201 respondents for

training purposes. The 201 respondents experienced 600 job episodes. The data are

used to illustrate hazard rate modelling of the job episodes with TDA (Transition

Data Analysis) (2002 publication) and Stata (2007 publication). The same subsam-

ple of 201 respondents is used in this book. This book considers 201 employment
careers, consisting of a total of 600 job spells and 382 episodes without a job. Dates
of job entry and job exit are given in Century Month Code (CMC). Personal

attributes are the date of birth and five covariates: sex, level of education, date of

marriage, date of labour market entry and birth cohort. The GLHS subsample is

used throughout the book, except in Chap. 7. In that chapter, another date set is
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considered to illustrate Biograph: the Netherlands Family and Fertility Survey

of 1998.

The book consists of nine chapters. In Chap. 2, I present an overview of the

methods used in the book. The Biograph object and the Biograph data format are

described in Chap. 3. In the chapter, I also present several functions to change the

observation window and to convert a Biograph object to objects that are recognised
by other packages in the Comprehensive R Archive Network (CRAN). Chapters 4

and 5 cover descriptive and exploratory analysis. The computation of life history

indicators from the sample data is presented in Chap. 4. Visualisation of event

histories and state sequences is the subject of Chap. 5. The Lexis diagram and the

visualisation of state and event sequences represent the main methods. Chapters 6

and 7 go beyond descriptive analysis. Chapter 6 covers the estimation of multistate

models from data using specialised statistical packages. The following packages in

CRAN are covered:

– survival (Therneau 2014; Therneau and Grambsch 2000)

– eha (Broström 2012, 2014)

– mstate (Putter et al. 2007, 2011; De Wreede et al. 2011; Putter 2014)

– mvna (Allignol 2013) (see also Allignol et al. 2011)

– etm (Allignol 2014) (see also Allignol et al. 2011)

– msm (Jackson 2011, 2014a)

Several of these packages for multistate analysis are described in a special issue

of the Journal of Statistical Software (Putter 2011a).

Methods for constructing synthetic biographies are presented in Chap. 7. The

chapter builds on two complementary developments. The first is the multistate life

table (MSLT) developed in demography. The second is microsimulation. In

Chap. 8, an illustrative analysis of data from the Netherlands Family and Fertility

Survey 1998 (NLOG98) demonstrates the added value of Biograph. The chapter

addresses a particular research question: what is the effect of the age of leaving the

parental home and the sequences of partnerships and living arrangements on the age

at first birth? Chapter 9 provides a summary and a conclusion.

In Annex A, additional data sets are presented to illustrate how to create a

Biograph object. The first and the second are hypothetical data. The third is the

Survey of Health, Ageing and Retirement in Europe (SHARE). SHARE is a panel

survey of more than 45,000 individuals aged 50 and over in more than 10 European

countries. The survey started in 2004. The third wave of data collection,

SHARELIFE, collected detailed retrospective life histories in 13 countries in

2008–2009. SHARELIFE data are used in this book. The fourth is the National

Family Health Survey (NFHS) of India. The survey is a repeated cross-section,

organised in 1992–1993, 1998–1999 and 2005–2006. The NFHS is comparable to

the Demographic and Health Surveys (DHS) organised in a large number of

countries to collect information on family formation and family dynamics. The

fifth has data from the European Registry for Blood and Marrow Transplantation,

maintained by the European Group for Blood and Marrow Transplantation

(EBMT). The population covered are patients who have undergone a
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haematopoietic stem cell transplantation (HSCT) procedure, patients with bone

marrow failures receiving immunosuppressive therapies and patients receiving

non-haematopoietic cell therapies. The sixth data set is the output of a

microsimulation that generates individual life histories from transition rates. For

this application, I use the msm.sim function of the msm package. By storing the

life histories in a Biograph object, the virtual population resulting from the

microsimulation can be investigated using Biograph and other packages for life

history data analysis.

Annex B is a list of Biograph functions and data included in the package. For

each function, the dependencies on other functions are listed in Annex C.
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Chapter 2

Life Histories: Real and Synthetic

2.1 Introduction

Life history data are generally incomplete. Usually, they do not cover for each

individual in the study the entire life span or the life segment of interest. If data are

collected retrospectively, observation ends at interview date, and no information is

available on events and experiences after the date. Data collected prospectively are

incomplete because events and other experiences are recorded during a limited

period of time only. To deal with data limitations, models are introduced. The

model that is considered in this chapter describes life histories. The model is based

on the premise that life histories are realisations of a continuous-time Markov

process. A Markov process is a stochastic process that describes a system with

multiple states and transitions between the states. The time at which a transition

occurs is random but the distribution of the time to transition is known. In the

continuous-time Markov process, the transition time has an exponential distribu-

tion. The rate of transition out of the current state (exit rate) is the parameter of the

exponential distribution. It depends on the current state only and is independent of

the history of the stochastic process. In a system with multiple states, an individual

who leaves the current state may enter one of several states. In competing risks

models, states in the state space are viewed as competing destinations and transition

rates are destination-specific. The Markov process is a first-order process: the

destination state depends on the current state only and is independent of states

occupied previously.

The Markov model predicts1 the probability that an individual of a given age

occupies a given state. The Markov model may also be used to predict the number

of transitions during a given interval and the number of times an individual

1 Prediction is used in the statistical meaning. Prediction is a statement about an outcome. A model

is often used to predict an outcome, e.g. an event that occurs in a population or that is experienced

by an individual in a population. The parameter(s) of the model are estimated from observations on
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occupies a given state. The stochastic process that describes the transition counts or

the state occupancy counts is a Markov counting process (see below). It belongs to

the class of counting processes. The most elementary counting process is the

Poisson process. It is a stochastic process that counts the number of transitions

without considering origin and destination states. In a Poisson process, the time

between two consecutive transitions has an exponential distribution.

The parameters of the Markov model are estimated from data. By pooling data

on different but similar individuals, models can be estimated that describe the entire

life histories. The life history that is based on pooled data is a synthetic life history.
It is a virtual life history; it is not observed. It does not say anything about a specific

individual in a sample but tells something about the sample the individual is part

of. A synthetic biography summarises information on several individuals. It is the

life course that would result if an individual lives a life prescribed by the collective

experience of similar individuals under observation. The collective experience is

summarised in transition rates. These rates play a key role in generating synthetic

biographies. Transition rates are estimated from life history data and used to

generate synthetic biographies. Maximum likelihood estimates of transition rates

are used to generate expected life histories and expected values of life history

indicators. Individual life histories are distributed randomly around an expected life

path. Microsimulation is used to generate individual life histories from empirical

transition rates.

In life history analysis and life history modelling, age is the main time scale. Age

is a proxy for stage of life. Other useful time scales are calendar time and time since

a reference event. Birth, marriage, labour market entry and entry into observation

are examples of reference events. The standard approach in survival analysis is to

use time since the baseline survey or (first) entry into the study (time-on-study).

Time-on-study has no explanatory power, which is acceptable if time dependence

of a transition rate is not of interest, such as in the Cox model with free baseline

hazard. Korn et al. (1997) argue that time-on-study is not appropriate for predicting

transition rates. They recommend age as the time scale (see also Pencina et al. 2007

and Meira-Machado et al. 2009). Rates of transition between states generally vary

with age. The Markov process that accommodates changing rates is the time-

inhomogeneous Markov process. The model of that process is discussed in this

chapter.

To characterise life histories, a set of indicators is usually used, including state

occupancies at consecutive ages, durations of stages of life and ages at significant

transitions. The indicators are sometimes combined in a table, known as the

multistate life table. The multistate life table originated in demography (Rogers

1975), but it is currently used across disciplines. The model that produces the values

of the indicators summarised in the multistate life table is the Markov process

model.

a selection of individuals. Prediction is part of statistical inference. It should not be confused with

forecasting.

8 2 Life Histories: Real and Synthetic



Two examples may clarify the concept of synthetic biography. The first relates to

the length of life and the second to marriage and fertility:

(a) Suppose we are interested in the life expectancy of a 60-year-old. The empirical

evidence consists of a 10-year follow-up of 1,000 individuals aged 60 and over.

At the beginning of the observation period, some individuals are relatively

young (60 years, say), while others are already old (over 90, say). During the

observation period of 10 years, some individuals die. The oldest old are more

likely to die than other individuals under observation. To determine the

expected remaining lifetime for a 60-year-old, one could calculate the mean

age at death of those who die during the observation interval. The observed

mean age at death provides a wrong answer, however. It depends on the age

composition of the population under observation. If the group under observa-

tion consists of many old persons, the mean age at death will be higher than for

a group that consists mainly of persons in their sixties and seventies. To remove

the effect of the age composition, death rates are calculated by age. The

distribution of ages at death is obtained by applying a piecewise exponential

survival model, with parameters the age-specific mortality rates. The expected

age at death is 60 plus the expected remaining lifetime or life expectancy. The

life expectancy of a 60-year-old is the number of years that the individual may

expect to live if at each age over 60 he experiences the age-specific mortality

rate estimated during the 10-year follow-up of 1,000 individuals. At young

ages, he experiences the mortality rates of individuals who were 60 recently. At

older ages, the mortality rates are from old persons who turned 60 many years

ago. The life expectancy is adequate if the age-specific mortality rates do not

vary in time.

(b) The second illustration considers marriage and fertility. Suppose we want to

know at what age women start marriage and at what duration of marriage they

have their first child. It is not possible to follow all women until they have their

first child since some will remain childless. Suppose the data are from a 5-year

follow-up survey of girls and women aged 15–35 at the onset of observation. At

the end, they are 20–40. During the follow-up, the age at marriage and the age

at birth of the first child are recorded. At the start of observation, some

individuals are already married. Other individuals remain unmarried during

the entire period of observation. They may marry after observation is ended or

they may not marry at all. To determine the age at marriage and the duration of

marriage at time of birth of the first child, marriage and childbirth are described

by a continuous-time Markov process with transition rates the empirical mar-

riage rates and marital first birth rates. The model describes the marriage and

first birth behaviour of hypothetical and identical individuals of age 15 assum-

ing that at consecutive ages, they experience the empirical rates of marriage and

first birth. Transition rates may depend on covariates and other factors.

This chapter consists of two parts. The first part (Sect. 2.2) is devoted to the

estimation of transition rates from data. The second part (Sects. 2.3, 2.4 and 2.5)

focuses on life histories derived from transition rates. Section 2.3 shows how
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transition probabilities and state occupation probabilities are computed from tran-

sition rates. The computation of expected occupation times is covered in Sect. 2.4.

The generation of synthetic life histories is discussed in Sect. 2.5. Section 2.6 is the

conclusion.

The methods presented in this chapter are illustrated using employment data

from a subsample of 201 respondents of the German Life History Survey (GLHS)

(see Chap. 1). Two states are distinguished: employed (Job) and not employed

(Nojob). Transitions are from employed to not employed (JN) and from not

employed to employed (NJ). Dates of transition are given in months; it is assumed

that transitions occur at the beginning of a month. In the chapter, references are

made to R packages for multistate modelling and analysis, in particular mvna
(Allignol 2013; Allignol et al. 2008), etm (Allignol 2014; Allignol et al. 2011),

msm (Jackson 2011, 2014a), mstate (Putter et al. 2011; de Wreede et al. 2010,

2011), dynpred (Putter 2011b), ELECT (van den Hout 2013) and Biograph
(Willekens 2013a).

2.2 Transition Rates

Transition rates are the parameters of the Markov process that underlies the

multistate life history model. In this section, two broad approaches for estimating

transition rates are covered. Age, which is the time scale, is treated as a continuous

variable. Transitions may occur at any age. Transition rates are estimated by

relating transitions to exposures. In the first approach, transition rates may vary

freely with age. The age profile is not constrained in any way. In the second

approach, transition rates are restricted to follow an age profile described by a

parametric model. The first approach is non-parametric; the second is parametric.

The two approaches are covered by, e.g. Aalen et al. (2008).

In the non-parametric analysis of life history data, cumulative transition rates are

estimated for ages at which transitions occur. Without any parametric assumptions,

the transition rate can be any nonnegative function, and this makes it difficult to

estimate. The cumulative transition rate is easy to estimate. This is akin to estimat-

ing the cumulative distribution function, which is easier than estimating the density

function (Aalen et al. 2008, p. 71). At ages at which transitions occur, the cumu-

lative transition rate jumps to a higher value. Therefore, the function that describes

cumulative transition rates is a step function. It implies that between observations,

the cumulative transition rate is the one estimated at the last observation. The shape

of the function is entirely free, not influenced by an imposed age dependence. The

cumulative transition rate is said to be empirical. In the second approach, the age

dependence is restricted to follow an imposed pattern. A convenient and simple

restriction is a constant transition rate. If the transition rate is constant, the cumu-

lative transition rate increases linearly with age and the survival function is expo-

nential. The restriction of constant rate may be relaxed by keeping the rate constant

within relatively narrow age intervals and let the rate vary freely between age
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intervals. Because of the imposed age dependence, there is no need to estimate the

cumulative transition rate each age a transition occurs. It suffices to estimate the

cumulative transition rate at the end of each age interval. The cumulative hazard

function is not a step function. It is a piecewise linear function: linear within age

intervals with slopes varying between intervals. The two approaches differ, but at

the limit when the age interval becomes infinitesimally small, they coincide. The

first approach is common in biostatistics, while the second is common in the life

table method of demography, epidemiology and actuarial science. Covariates may

be introduced in each approach. The cumulative transition rates may be estimated at

each level of covariate or a regression model may be used. A (piecewise) constant

transition rate is only one of the many possible restrictions imposed on the age

dependence of transition rates. In demography, biostatistics, epidemiology and

other fields, a large number of models are used to describe age dependencies of

rates. These models are beyond the scope of this chapter.

A few software packages in R implement the non-parametricmethod. They include

mvna and mstate. The packages eha, msm and Biograph implement the parametric

method, more particularly the piecewise constant transition rate model: the transition

rate varies freely between age intervals and is constant within age intervals.

Transition rates are estimated by relating transitions to exposures. At a given

age, the rate of transition is estimated by dividing the number of transitions and the

risk set, which is the population under observation and at risk just before a transition

occurs. In multistate modelling, a risk set is the number of individuals under

observation and occupying a given state. That basic principle allows complex

observation schemes. Individuals may be at risk but not under observation. It is

not practical to track every individual from birth to death to record occurrences and

monitor risk sets and periods at risk. When the period of observation does not cover

the entire life span, observations are incomplete. Individuals may enter and leave

the population at risk during the observation period. They may leave the population

at risk because the transition of interest occurs or another, unrelated, transition

removes them from the population at risk. Individuals who leave the population at

risk may return later and be at risk again. Counting transitions and tracking

exposures necessarily take place during periods of observation. Transitions and

exposures outside the observation period are not recorded. The nonoccurrence of a

transition during a period of observation to persons at risk of that transition is

however useful information that should not be omitted. The proportion of individ-

uals under observation and at risk that experiences a transition is an estimator of the

likelihood of a transition. The proportion that does not experience a transition is an

estimator of the survival probability.

Dates of transition are usually measured in the Gregorian calendar. For reasons

of computation, calendar dates are often converted into Julian dates, which are days

since a reference date. Sometimes, calendar months are coded as number of months

since a reference month. The Century Month Code (CMC) is a coding scheme with

reference month January 1900. The reference month is month 1. In life history

analysis, dates are often replaced by ages. In this chapter, dates (in CMC) and ages

are used, but age is the main time scale. Hence, most of the time reference is made
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to age. Transitions may occur at any time and age. Hence, time at transition and age

at transition are random variables. T will be used to denote time and age, and X will

be used to denote age only. A realisation of T is t and a realisation of X is x.
Continuous time is approximated by dividing a period in very small time intervals.

A small interval following t is denoted by [t+ dt), where dt is the length of the

interval. The brackets indicate the type of interval: [ means that t is not included in

the interval and ) means that t+ dt is included in the interval. A small interval

following age x is [x, x+ dx). When is an interval small? An interval is considered

small when at most one transition occurs in the interval.

In the employment data used for illustrative purposes (GLHS), two states are

distinguished (J and N) and two transitions: NJ and JN. In this chapter, transitions

between jobs are not considered. Individuals in state N are at risk of the NJ

transition and individuals in J are at risk of the JN transition. Labour market entry

(first jobs) is selected as onset of the observation. The original GLHS data include

transitions between jobs, and dates at transition are expressed in CMC. Two

Biograph functions are used to prepare the desired data file from the original

data. The function Remove.intrastate is used to remove transitions between

jobs. The function ChangeObservationWindow.e is used to select observa-

tion periods between labour market entry and survey date. Table 2.1 shows the data

for a selection of ten respondents. Two variants are presented. The first shows

calendar dates at transition. The second shows ages, except for the birth date, which

is given in CMC. Calendar dates and ages are derived from CMC using Biograph’s
date_b function.

d <- Remove.intrastate(GLHS)
dd <- ChangeObservationWindow.e (Bdata=d,

entrystate="J",
exitstate=NA)

d3.a <- date_b (Bdata=dd,
selectday=1,
format.out="age")

The ten individuals experience 33 episodes (20 job episodes and 13 episodes

without a job). They experience 23 transitions during the observation period (13 JN

transitions and 10 NJ transitions). Individual 2 is born in September 1929 and enters

the labour market (first job) in May 1949 at age 19. She leaves the first job in May

1974 at age 44 and remains without a paid job until the end of the observation

period in November 1981, when she is at age 52. Individuals 1, 5 and 7 are

employed throughout the observation period. They move between jobs, but they

do not experience a period without a job. Individuals 3, 4, 6, 8, 9 and 10 have

several jobs, separated by periods without a job. Observation periods differ between

individuals. In this chapter, we estimate transition rates for the JN and NJ transi-

tions, transition probabilities, state occupation probabilities and expected state

occupation times for the subsample of 201 respondents. For illustrative purpose, a

selection of the ten respondents shown in Table 2.1 is also used. The focus is on the

method and not on the application.
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Individual 4 (with ID 76) will be singled out for a detailed description. He gets

his first job in October 1969 at age18 and remains employed until April 1970. He is

not employed for about 2 years, until he gets another job in May 1972. From

January to April 1976, he experiences another period without employment. At the

end of the observation, i.e. at survey date, the person is 30 years of age and

employed. The employment career is JNJNJ. The lifeline is shown in Fig. 2.1.

The figure is a Lexis diagram, which is a diagram with calendar time on the x-axis

and age on the y-axis. The transitions are displayed, as well as the job and no job

episodes. The Lexis diagram is discussed in detail in Chap. 5. During the observa-

tion period, the individual experiences the JN transition two times, in April 1970 at

age 18 and in January 1976 at age 24. Transitions are assumed to occur at the

beginning of a month. From 1 October 1969 to 31 March 1970, he is at risk of the

first occurrence of the JN transition, and from 1 May 1972 to 31 December 1975, he

is at risk of the second occurrence. From 1 April 1976, he is at risk of a third

occurrence but does not experience the JN transition before the end of the obser-

vation on 1 November 1981. The individual experiences three job episodes, two end

in a JN transition and one ends because observation is terminated (censored). In

addition, the respondent experiences two episodes without a job. They end with a

new job.

The estimation of transition rates involves counting transitions and persons at

risk. Let k denote an individual. Transitions are denoted by origin state and

destination state. The number of states is I and any two states are denoted by

i and j. Let kNij(t1,t2) denote the number of (i,j)-transitions individual k experiences
during a period of observation from t1 to t2. Without loss of generality, in this

Table 2.1 Subsample of German Life History Survey (GLHS)

a. Calendar dates
ID  born start   end    sex  path   Tr1   Tr2   Tr3   Tr4

1    1 Mar29 Mar46 Nov81   Male     J  <NA>  <NA>  <NA>  <NA>
2    2 Sep29 May49 Nov81 Female  JN May74  <NA>  <NA>  <NA>
3   67 Dec39 Feb55 Nov81 Female  JNJN Sep58 Aug70 Mar80  <NA>
4   76 Jun51 Oct69 Nov81   Male JNJNJ Apr70 May72 Jan76 Apr76
5   82 Jun51 Aug74 Nov81 Female     J  <NA>  <NA>  <NA>  <NA>
6   96 Feb39 Apr57 Nov81 Female JNJNJ Apr62 Apr64 Feb65 Nov68
7   99 May40 Sep58 Nov81   Male     J  <NA>  <NA>  <NA>  <NA>
8  180 Aug40 Aug54 Nov81   Male JNJNJ Apr56 Apr59 Jul61 Jan63
9  200 Nov50 Sep68 Dec81   Male JNJNJ Apr70 Jan72 Jan74 Jan79
10 208 May40 Jul59 Nov81 Female  JNJN May61 Nov61 Dec62  <NA>

b. Ages
ID born  start    end    sex  path    Tr1    Tr2    Tr3    Tr4

1    1  351 17.000 52.667   Male     J     NA     NA     NA     NA
2    2  357 19.667 52.167 Female    JN 44.667     NA     NA     NA
3   67  480 15.167 41.917 Female JNJN 18.750 30.667 40.250     NA
4   76  618 18.333 30.417   Male JNJNJ 18.833 20.917 24.583 24.833
5   82  618 23.167 30.417 Female     J     NA     NA     NA     NA
6   96  470 18.167 42.750 Female JNJNJ 23.167 25.167 26.000 29.750
7   99  485 18.333 41.500   Male     J     NA     NA     NA     NA
8  180  488 14.000 41.250   Male JNJNJ 15.667 18.667 20.917 22.417
9  200  611 17.833 31.083   Male JNJNJ 19.417 21.167 23.167 28.167
10 208  485 19.167 41.500 Female  JNJN 21.000 21.500 22.583     NA
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section, I assume that t1¼ 0 and represent t2 by t. The observation interval is

therefore from 0 to t. The variable kNij(0, t) is denoted by kNij(t). Data on numbers

of transitions are count data. Transition counts cannot be predicted with certainty;

hence, kNij(t) is a random variable. The distribution of transition counts is described

by a stochastic process model. A widely used model is the Poisson process model,

where changes (‘jumps’) occur randomly and are independent of each other (Çinlar

1975). The sequence of random variables {kNij(t); t� 0} is a random process,

known as a counting process (Aalen et al. 2008, p. 25). The counting process is a

continuous process. The increment in kNij(t) during the small interval between t and
t+ dt is denoted by dkNij(t). It is a binary variable with possible values

0 (no transition) and 1 (transition). Individual counting processes are aggregated

to obtain the aggregated process: Nij(t)¼∑ K
k¼ 1kNij(t), where K is the number of

individuals in a (sample) population. If dt is sufficiently small to make the counting

process absolutely continuous, at most, one transition occurs in the interval dt.
A main issue in survival analysis, and in multistate modelling in particular, is to

determine who is at risk or exposed at time (age) t and who is not. Individuals may

experience a transition between t and t+ dt if and only if they are at risk at t, i.e. just
before the interval [t, t+ dt). If individual i is at risk at t, he/she is at risk during the

infinitesimally small interval from t to t+ dt. To be at risk of the (i,j)-transition, an
individual should be in state i. Let kYi(t) be a binary variable, which takes the value
of 1 if individual k is in state i at t and 0 if the individual is not. The binary random

Fig. 2.1 Employment career of respondent with ID 76
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variable kYi(t) indicates the exposure status. The number of individuals in state i just

before t, and at risk of the (i,j)-transition, is Yi(t)¼∑ K
k¼ 1kYi(t). It is the risk set. The

sequence of risk sets{Yi(t), t� 0} is the at risk process or exposure process. The risk
set in state i at time (age) t, Yi(t), changes when an individual enters state i or leaves
the state and when the observation starts or ends. In many studies, Yi(t) is large

relative to the numbers of (i,j)-transitions. That empirical observation will be used

for estimating the variance of the transition rate.

During the observation period from 0 to t, individual k is at risk of experiencing

the (i,j)-transition during the time (age) segments he occupies state i. The state

occupation time measures the duration at risk. It is kLi¼
Ð
t
0kYi(τ) dτ. The total

duration at risk may be spread over multiple ‘at risk’ episodes. This approach, in

which a counting process and an at risk process are distinguished, is known as the

counting process approach to the study of life histories and event histories. The

approach is very flexible. It allows late entry, exit and re-entry in state i during the

observation period.

The counting process is a random process. It can be modelled by a Poisson

process. The parameter of the model is the transition rate. The transition rate in the

small time (age) interval [t, t+ dt) is referred to as the instantaneous transition rate

and is denoted by kμij(t). The counting process approach to the Poisson process

describes the intensity of the process in terms of the instantaneous transition rate

and exposure status. It adds exposure status to the conventional description of the

Poisson process in probability theory. Aalen et al. (2008) write the intensity at t as
the product of the instantaneous transition rate and the indicator function kYi(t),
which is equal to 1 if individual k is at risk just before t and 0 otherwise:

kλij(t)¼ kμij(t)kYi(t). The intensity function is the transition rate function weighted

by the exposure status. If individual k is not at risk at t, the intensity is zero although
the transition rate may be positive. The product kλij(t)dt is the probability that

individual k experiences the (i,j)-transition during the small time (age) interval

from t to t+ dt, provided that just prior to the interval k is at risk of the (i,j)-
transition, i.e. is in state i. It is the product of the intensity and the length of the

interval. The probability is conditioned on being at risk. In survival analysis, that

condition is usually imposed by the statement ‘provided that the event has not

occurred yet’. That condition applies in case of a single event because an individual

is at risk as long as (1) the event has not occurred yet and (2) the individual is under

observation. In the case of repeatable transitions or different types of transitions, an

individual may be under observation but not at risk. In the example of employment,

an individual in state N is under observation but not at risk of the JN transition.

If at most one transition occurs during the interval dt, the probability of

occurrence may be expressed in different but equivalent ways. It is the probability

that kNij(t) changes to kNij(t) + 1; the probability that the transition occurs at t,
Pr(dkNij (t)¼ 1) and the probability that the transition time (age) kTij is in the

[t, t+ dt) interval: Pr(t� kTij< t+ dt). The probability that dkNij(t) is one,

Pr(dkNij (t)¼ 1), is equal to the expected value of dkNij(t), hence kλij(t)
dt¼E[dkNij(t)]. Note that kNij(t) and its increment dkNij(t) are observations, whereas
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kλij(t) is a model of the increment dkNij(t) (Poisson process model that satisfies the

two conditions listed above). kλij(t) is the intensity process of the counting process

kNij(t).
If individuals are independent of each other, the intensity process of the aggre-

gated counting process Nij(t) is λij(t)¼∑ K
k¼ 1kλij(t). If in addition all individuals are

assumed to have the same hazard rate, i.e. kμij(t)¼ μij(t) for all k, then the survival

times are independent and identically distributed. The aggregate intensity process

may be written as λij(t)¼∑ K
k¼ 1kλij(t)¼ μij(t) ∑ K

k¼ 1kYi(t)¼ μij(t) Yi(t), where Yi(t) is
the number of individuals in state i just before t. It is the population at risk. The

model λij(t)¼ μij(t) Yi(t) is the multiplicative intensity model for a counting process

(Aalen et al. 2008, p. 34). In the multiplicative intensity model, the at risk process

Yi(t) does not depend on unknown parameters (Aalen et al. 2008, p. 77). That

condition is satisfied if the population at risk is large relative to the number of

transitions. The same condition was introduced by Holford (1980) and Laird and

Olivier (1981) in the context of estimating (piecewise constant) transition rates with

log-linear models. The transition rates μij(t) are key model parameters, and a main

aim of statistical analysis is to determine how they vary over time (age) and depend

on covariates.

The observed increment dNij(t) of the counting process Nij(t) generally differs

from the model estimate λij(t)dt because observations do not meet the conditions

imposed by the Poisson process. Aalen et al. (2008, p. 27) refer to the difference as

noise and to the probability of a transition during the interval dt as signal. The noise
cumulated up to time (age) t is the martingaleMij(t), and dMij(t) is the increment in

noise during the small interval following t: dMij(t)¼ dNij(t)�λij(t) dt. The intensity
process and the noise process are stochastic processes, whereas Nij(t) represents

observations. Note that Nij(t)¼
Ð
t
0dNij(τ), Λij(t)¼

Ð
t
0 λij(τ) dτ and

Mij(t)¼
Ð
t
0 dMij(τ), where Λij(t) is the cumulative intensity process, that is, the

expected number of transitions up to t, predicted by the Poisson model. The

martingale is the difference between the counting process and the cumulative

intensity process. It can be interpreted as cumulative noise. The intensity process

is central to the statistical modelling of event occurrences and transitions between

states. Note that the intensity process depends on the transition rate and the at risk

process.

A frequently used measure in multistate modelling is the cumulative hazard

Aij(t)¼
Ð
t
0dAij(τ), where dAij(τ) is equal to the increment in the cumulative hazard

during an infinitesimally small interval. In case of a continuous process,

dAij(τ)¼ μij(τ) dτ. The reason for using the cumulative hazard is given above.

The transition rates μij(t) and the cumulative transition rates Aij(t) are estimated

from the data. The estimation method is determined by the assumed underlying

stochastic process. In this chapter, two methods are described. In the first method,

no assumption is made about the process. The method is known as the
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non-parametric method because of the absence of a parametric model that describes

the time (age) dependence of transition rates. The second method assumes that

transition rates are (piecewise) constant. As a consequence, the duration to the next

transition and the time between two consecutive transitions follow a (piecewise)

exponential distribution. In the remainder of this chapter, I use age as time scale.

(a) Non-parametric Method

Recall that Nij(t) is the number of (i,j)-transitions experienced by individuals in

the (sample) population during the observation interval from 0 to t, and Tij is the age
at an (i,j)-transition. For the estimation of empirical transition rates

(non-parametric), transitions are ordered by age of occurrence. Let Tnij denote the

age of the n-th occurrence of the (i,j)-transition experienced in the (sample)

population. The number of individuals at risk just before Tnij is Yi(T
n
ij). Consider

the age interval [t, t+ dt). If in a population no event occurs in the interval, the

natural estimate of μij(t) dt is zero. If a transition is recorded during the interval, the
natural estimate is 1 divided by the number of individuals at risk, that is, 1/Yi(t) or
the proportion of individuals at risk that experiences a transition. Aggregating these

contributions over all age intervals at which transitions occur, up to age t, gives

the estimator Â ij tð Þ of Aij(t). A natural estimator of the cumulative transition rate

at age t is Â ij tð Þ ¼
ð t

0

dNij τð Þ
Yi τð Þ , where numerator and denominator are aggregations

over all individuals. If transition ages are Tnij, then the estimator is

Â ij tð Þ ¼
X

T n
ij�t

1

Yi T n
ij

� �, where Tnij is the age at the n-th occurrence of the (i,j)-

transition. The estimator is known as the Nelson-Aalen estimator. The estimator

was initially developed by Nelson and extended to event history models and

Markov processes by Aalen, who adopted a counting process formulation (see

Aalen et al. 2008, pp. 70ff). The Nelson-Aalen estimator corresponds to the

cumulative hazard of a discrete distribution, with all its probability mass concen-

trated at the observed ages at transition. The matrix Â tð Þ is a matrix of step

functions with jumps at ages at transition.

The variance of the Nelson-Aalen estimator is σ̂ 2
ij tð Þ ¼

X
T n
ij�t

1

Yi T n
ij

� �h i 2

(Aalen variance). The variance increases with t. The increment is

Δσ2ij T n
ij

� �
¼ 1

Yi T n
ijð Þ½ � 2. In large samples, the Nelson-Aalen estimator at age t is

approximately normally distributed. Therefore, the 95 % confidence interval is

Â ij tð Þ � 1:96 σ̂ ij tð Þ. If the sample size is small, the approximation to the normal
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distribution is improved by using a log-transformation giving the confidence inter-

val exp ln Â ij tð Þ � 1:96 σ̂ ij tð Þ= Â ij tð Þ
� �

(Aalen et al. 2008, p. 72).

Consider the employment careers of the ten individuals, shown in Table 2.1. To

track individuals at risk, ages at entry into observation and exit from observation

and ages at transition should be ordered. Individual 8 enters observation at age

14.00, followed by individual 3 at age 15.16. The first transition occurs at age 15.67

when individual 8 enters a period without a job. At that age, 2 individuals are at risk

of the JN transition (3 and 8). The Nelson-Aalen estimator of the cumulative

transition rate at that age is ½. The next event is at age 17.00 when individual

1 enters observation. Just before that age, individual 3 is at risk in J and individual

8 in N. At age 17.00, individual 1 joins 3 in J. The next event is at age 17.83 when

individual 9 enters observation. When individual 6 enters observation at age 18.17,

three individuals are in J and one in N. Individuals 4 and 7 enter observation at age

18.33. At age 18.67, individual 8 enters J again. Just before that age, he is the only

person in N and at risk of the NJ transition, while 6 individuals are in J. Hence, the

estimator of the hazard is 1. The next event is at age 18.75, when individual 3 leaves

J and enters a period without a job. At that age 7 individuals are in J and at risk of

the JN transition (1, 3, 4, 6, 7, 8, 9). The cumulative JN transition rate 1/2 +

1/7¼ 0.64. The Aalen variance is (1/2)2 + (1/7)2¼ 0.270. At that age, three indi-

viduals have not yet entered observation and do not contribute to the cumulative

hazard estimation (2, 5 and 10). The cumulative transition rate increases to age

44.67 when individual 3 enters a period without a job. At that age, the cumulative

transition rate is 2.696 and the Aalen variance is 0.764. Table 2.2 shows the Nelson-

Aalen estimator based on data of the ten respondents. The columns are: (1) age at

entry into observation, exit from observation or transition, (2) the population at risk

just prior to the transition (nrisk), (3) occurrence of a transition (nevent),
(4) censoring (ncens), (5) the Nelson-Aalen estimator of the cumulative transition

rate (cumhaz) at the indicated age, (6) the Aalen estimator of the variance (var)
and (7) increment in the cumulative hazard (delta). The information is shown

each time a transition occurs or a respondent enters or leaves observation. The

number of events is less than the number of entries (10) + the number of exits (10)

+ the number of JN transitions (13) + the number of NJ transitions (10), because

individuals 3 and 7 enter observation at the same time, individual 5 enters obser-

vation when individuals 6 and 9 experience a JN transition, and individuals 4 and

5 leave observation at the same age, as do individuals 7 and 10. The table is

produced by the mvna function of the mvna package. The last column is produced

by the etm function of the etm package (see below). The object d.10 is the

Biograph object for a selection of ten respondents, and D$D is an object with data

of ten respondents in mvna format. The following code is used:
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# Select 10 respondents and create Biograph object
idd <- c(1,2,67,76,82,96,99,180,200,208)
d.10 <- d3.a[d3.a$ID%in%idd,]
D<- Biograph.mvna (d.10)
library (mvna)
library (etm)
tra <- matrix(ncol=2,nrow=2,FALSE)
tra[1, 2] <- TRUE
tra[2,1] <- TRUE
na <- mvna(data=D$D,c("J","N"),tra,"cens")
etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0)

gg.1 <- data.frame (
round(na$"J N"$time,4),
na$n.risk[,1],
unname(aperm(na$n.event,c(3,2,1))[,2,1]),
na$n.cens[,1],
round(na$"J N"$na,4), 
round(na$"J N"$var.aalen,3),
round(aperm (etm.0$delta.na,c(3,2,1))[,2,1],4))

dimnames (gg.1) <- list
(1:37,c("age","nrisk","nevent","ncens","cumhaz","var","delta
"))
gg.2 <- data.frame (

round(na$"N J"$time,4),
na$n.risk[,2][na$time %in% na$"N J"$time],
unname(aperm(na$n.event,c(3,2,1))[,1,2])[na$time %in% 
na$"N J"$time],
na$n.cens[,2][na$time %in% na$"N J"$time],
round(na$"N J"$na,4), 
round(na$"N J"$var.aalen,3),
round(aperm (etm.0$delta.na,c(3,2,1))[,1,2][na$time %in% 
na$"N J"$time],4))

dimnames (gg.2) <- list
(1:nrow(gg.2),c("age","nrisk","nevent","ncens","cumhaz","var
","delta"))

The ten respondents enter observation at ages 14.00 (ID 180), 15.67 (ID 67),

17.00 (ID 1), 17.83 (ID 200), 18.17 (ID 96), 18.83 (ID 99), 19.17 (ID 208), 19.67

(ID 2) and 23.17 (ID 82) (see Table 2.1). They experience 13 JN transitions and

10 NJ transitions. At time of survey, 7 respondents had a job and 3 were without a

job. The youngest age at job exit is 15.67 years (ID 180). The youngest age at

survey is 30.42 (ID 76 and 82) and the highest is 52.67 (ID 1). Two respondents are

41.50 years at survey date, one (ID 99) has a job and one (ID 208) is without a job.

The time-continuous model of the counting process {Nij(t), t� 0} assumes that

not more than one transition occurs in an interval. In practice and in particular in

large samples, more than one individual may experience a transition in the same

time interval (e.g. same day). If multiple transitions occur in the same interval, their

times of occurrence are referred to as tied transition times. Tied transition times

may be a consequence of (a) grouping and rounding or (b) time (age) intervals that

are genuinely discrete. For instance, if instead of days or months, seconds are used

as time units, it is unlikely that more than one transition occurs at the same time

(age). If tied transition times are due to grouping and rounding, the interval may be
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Table 2.2 Nelson-Aalen estimator and Aalen variance of cumulative transition rates. GLHS,

subsample of ten respondents

Transition JN
age nrisk nevent ncens cumhaz   var  delta

1  14.0000     1      0     0 0.0000 0.000 0.0000
2  15.1667     1      0     0 0.0000 0.000 0.0000
3  15.6667     2      1     0 0.5000 0.250 0.5000
4  17.0000     1      0     0 0.5000 0.250 0.0000
5  17.8333     2      0     0 0.5000 0.250 0.0000
6  18.1667     3      0     0 0.5000 0.250 0.0000
7  18.3333     4      0     0 0.5000 0.250 0.0000
8  18.6667     6      0     0 0.5000 0.250 0.0000
9  18.7500     7      1     0 0.6429 0.270 0.1429
10 18.8333     6      1     0 0.8095 0.298 0.1667
11 19.1667     5      0     0 0.8095 0.298 0.0000
12 19.4167     6      1     0 0.9762 0.326 0.1667
13 19.6667     5      0     0 0.9762 0.326 0.0000
14 20.9167     6      1     0 1.1429 0.354 0.1667
15 21.0000     6      1     0 1.3095 0.382 0.1667
16 21.1667     5      0     0 1.3095 0.382 0.0000
17 21.5000     6      0     0 1.3095 0.382 0.0000
18 22.4167     7      0     0 1.3095 0.382 0.0000
19 22.5833     8      1     0 1.4345 0.397 0.1250
20 23.1667     7      2     0 1.7202 0.438 0.2857
21 24.5833     6      1     0 1.8869 0.466 0.1667
22 24.8333     5      0     0 1.8869 0.466 0.0000
23 25.1667     6      0     0 1.8869 0.466 0.0000
24 26.0000     7     1     0 2.0298 0.486 0.1429
25 28.1667     6      0     0 2.0298 0.486 0.0000
26 29.7500     7      0     0 2.0298 0.486 0.0000
27 30.4167     8      0     2 2.0298 0.486 0.0000
28 30.6667     6      0     0 2.0298 0.486 0.0000
29 31.0833     7      0    1 2.0298 0.486 0.0000
30 40.2500     6      1     0 2.1964 0.514 0.1667
31 41.2500     5      0     1 2.1964 0.514 0.0000
32 41.5000     4      0     1 2.1964 0.514 0.0000
33 41.9167     3      0     0 2.1964 0.514 0.0000
34 42.7500     3      0     1 2.1964 0.514 0.0000
35 44.6667     2      1     0 2.6964 0.764 0.5000
36 52.1667     1      0     0 2.6964 0.764 0.0000
37 52.6667     1      0     1 2.6964 0.764 0.0000

Transition NJ
age nrisk nevent ncens cumhaz   var  delta

1  17.0000     1      0 0 0.0000 0.000 0.0000
2  17.8333     1      0     0 0.0000 0.000 0.0000
3  18.1667     1      0     0 0.0000 0.000 0.0000
4  18.3333     1      0     0 0.0000 0.000 0.0000
5  18.6667     1      1     0 1.0000 1.000 1.0000
6  18.8333     1      0     0 1.0000 1.000 0.0000
7  19.1667     2      0     0 1.0000 1.000 0.0000
8  19.4167     2      0     0 1.0000 1.000 0.0000
9  19.6667     3      0     0 1.0000 1.000 0.0000
10 20.9167     3      1     0 1.3333 1.111 0.3333
11 21.0000     3      0     0 1.3333 1.111 0.0000
12 21.1667     4      1     0 1.5833 1.174 0.2500
13 21.5000     3      1     0 1.9167 1.285 0.3333
14 22.4167     2      1     0 2.4167 1.535 0.5000
15 22.5833     1      0     0 2.4167 1.535 0.0000
16 23.1667     2      0     0 2.4167 1.535 0.0000
17 24.5833     4      0     0 2.4167 1.535 0.0000
18 24.8333     5      1     0 2.6167 1.575 0.2000
19 25.1667     4      1     0 2.8667 1.637 0.2500
20 26.0000     3      0     0 2.8667 1.637 0.0000
21 28.1667     4      1     0 3.1167 1.700 0.2500
22 29.7500     3      1     0 3.4500 1.811 0.3333
23 30.4167     2      0     0 3.4500 1.811 0.0000
24 30.6667     2      1     0 3.9500 2.061 0.5000
25 31.0833     1      0     0 3.9500 2.061 0.0000
26 40.2500     1      0     0 3.9500 2.061 0.0000
27 41.2500     2      0     0 3.9500 2.061 0.0000
28 41.5000     2      0     1 3.9500 2.061 0.0000
29 41.9167     1      0     1 3.9500 2.061 0.0000
30 52.1667     1      0     1 3.9500 2.061 0.0000
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divided in even smaller intervals and the transition times (ages) ordered. The

increment in the Nelson-Aalen estimator of the cumulative hazard at age Tnij may

be written asΔ Â ij T n
ij

� �
¼

Xdn�1

k¼0

1

Yi T n
ij

� �
� k

(Aalen et al. 2008, p. 84). If the age

intervals are genuinely discrete, the increment in the Nelson-Aalen estimator at age

Tnij is Δ Â ij T n
ij

� �
¼ dn

Yi T n
ijð Þ, where Yi(T

n
ij) is the population at risk just prior to the

interval and dn is the number of transitions recorded at age Tnij. In the presence of

tied transition times, the variance of the Nelson-Aalen estimator needs to be

adjusted. When tied event times are a consequence of grouping or rounding, the

increment in the variance is Δ σ̂ 2
ij T n

ij

� �
¼

Xdn�1

k¼0

1

Yi T n
ij

� �
� k

h i 2
. In case of

discrete age intervals, the increment in the variance is estimated by

Δ σ̂ 2
ij T n

ij

� �
¼ Yi T n

ijð Þ�dn½ � dn
Yi T n

ijð Þ½ � 3 . Aalen et al. (2008, p. 85) report that the numerical

difference between the two approaches to tie correction is usually quite small,

and it is not very important which of the two one adopts.

(b) Parametric Method: Exponential and Piecewise Exponential Models

The Nelson-Aalen estimator is non-parametric. The shape of the hazard function

is not constrained in any way. In a parametric counting process model, the age

dependence of the transition rate is constrained, and consequently the waiting times

to a transition are constrained. It is assumed that there is a continuous-time process

underlying the data. In addition, the transition rate may depend on covariates.

Covariates are not considered in this chapter. Two models are considered in this

chapter. The first is the exponential model, which imposes a constant transition rate

and an exponential waiting time distribution. The second model is a piecewise

exponential model, which imposes piecewise constant transition rates. Transitions

rates are assumed to be constant in age intervals of usually 1 year. The transition

rates of consecutive age groups are unrelated, i.e. no restrictions are imposed on

how the piecewise constant rates vary with age. The estimation method therefore

combines a parametric approach (within intervals) and a non-parametric approach

(between intervals). Individuals are assumed to be independent and to have the

same instantaneous transition rate. In other words, transition times of the individ-

uals in the (sample) population are assumed to be independent and identically

distributed. The estimation of piecewise exponential models and occurrence-

exposure rates received considerable attention in the literature (see, e.g. Hoem

and Funck Jensen 1982; Tuma and Hannan 1984; Hougaard 2000; Blossfeld and

Rohwer 2002; Aalen et al. 2008; Van den Hout and Matthews 2008; Li et al. 2012).

Mamun (2003) and Reuser (2010), who study the effect of covariates on disability

and mortality, impose the restriction that the piecewise constant transition rates

(occurrence-exposure rates) increase exponentially with age. The result is a

Gompertz model with piecewise constant transition rates. The choice of model is
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determined by the age profile of transition rates (exponential increase) and data

limitations. Parametric models of transition rates covering the entire age range in

multistate models have been estimated too. Van den Hout and Matthews (2008)

estimate a multistate model in which the age dependence of transition rates is

described by a Weibull model, and Van den Hout et al. (2014) use a Gompertz

model. In demography, a variety of models are specified to describe age profiles of

transition rates in multistate models. For an overview of models, see Rogers (1986).

In the counting process approach, the likelihood function is written in terms of

the counting process kNij(t) and the intensity process kλij(t), where t represents age.
The intensity process at age t is kλij(t)¼ kμij(t) kYi(t). The indicator function kYi(t) is
1 if individual k is under observation and in state i at t and 0 otherwise. The total

occupation time in state i is kYi¼
Ð
ω
0 kYi(τ) dτ, with ω the highest age. If individuals

are independent, the intensity process at age t is λij(t)¼∑ K
k¼ 1kλij(t), and λij(t)dt is

the number of (i,j)-transitions between t and t+ dt, given the instantaneous transi-

tion rate and the exposure function. If in addition all individuals have the same

hazard rate, i.e. kμij(t)¼ μij(t) for all k, then the survival times are independent and

identically distributed. The aggregate intensity process may be written as

λij(t)¼∑ K
k¼ 1kλij(t)¼ μij(t) ∑ K

k¼ 1kYi(t)¼ μij(t) Yi(t), where Yi(t) is the number of

individuals under observation and in state i just before t. If the transition rate is

constant, then kμij(t)¼ kμij for all t and the intensity process at t is kλij(t)¼ kμij kYi(t).
If the transition rate is piecewise constant during the age interval from x to x + 1,

kμij(t)¼ kμij(x) for x� t< x + 1 and the intensity process at t is kλij(t)¼ kμij(x) kYi(t)
for x� t< x+ 1. The intensity of leaving state i at age t, irrespective of destination,
is kλi(t)¼∑ j 6¼ i kλij(t), which may be written as kλi(t)¼ kμi(t) kYi(t), with

kμi(t)¼∑ j 6¼ i kμij(t).
Let ω denote the highest age in the study. A transition is observed if it occurs

before ω. Individual k experiences kNij(ω) occurrences of the (i,j)-transition from

0 to ω. In addition, the observation is censored in state i or in another state. Hence,

the number of episodes of exposure is the number of transitions plus one. The

contribution of individual k to the likelihood function is:

Y
kNij ωð Þ
n¼1 kλ

n
ij kT

n
ij

� �
exp �

ð ω

0
kλ

n
i τð Þdτ

� �� �
exp �

ð ω

0
kλ

c
i τð Þdτ

� �

where kT
n
ij is the age at the n-th occurrence of the (i,j)-transition. Since the intensity

depends on the instantaneous transition rate and exposure, the likelihood function is

written in terms of the counting process kNij(t) and its intensity process kλij(t) (Aalen
et al. 2008, p. 210). Notice that kλnij(kT

n
ij)¼ μij kY

n
i (kT

n
ij), with the at risk function

equal to one if individual k is in state i just before the transition and 0 otherwise, and

kλni (τ)¼ μi kYni (τ), with the at risk function equal to one if k is in i at τ. The last term
is the probability of surviving in state i between the age at last entry and age at

censoring. The intensity kλci (τ) depends on the instantaneous rate of leaving i and
the at risk function, which is zero except for τ larger than or equal to the age of the

last transition and less than the age at censoring. In the traditional approach,
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integration is from the beginning of the period during which individual k is at risk of
the (i,j)-transition to the end of that period. In the first term, the end is the age at the

next occurrence; in the last term, it is the age at censoring. Hougaard (2000, p. 181)

derives the likelihood function following the traditional approach:

Y
kNij ωð Þþ1

n¼1 kλ
n
ij kT

n
ij

� �
kδ

n
ij

� �
exp �

ð ω

0
kλi τð Þdτ

� �

where kδnij is one if the at risk period ends in an (i,j)-transition and zero if it ends

because the observation is discontinued (censored). The counting process approach

to the likelihood function is (Aalen et al. 2008, p. 210):

Y
0�t<ω kλij tð Þk

ΔNij tð Þh i
exp �

ð ω

0
kλi τð Þdτ

� �

with kΔNij(t) the increment of kNij at age t.
The full likelihood is

YK

k¼1

Y
0�t<ω kλij tð Þ

ΔkNij tð Þh in o
exp �

ð ω

0

λi τð Þdτ
� �

with λi(τ) the intensity process of the aggregated process Ni(t).

The log-likelihood is ‘(μij)¼∑ K
k¼ 1 ∑

ω
t¼ 0ΔkNij(t) ln[kλij(t)]�

Ð
ω
0 λi(τ) dτ. The

maximum likelihood estimator of μij is the value of μij for which the score function

is zero: U μij
� 	 ¼ ∂‘

∂μij
¼ 0. The score function is the first-order condition for

maximising the likelihood that the model predicts the data. In the exponential

model, kλij(t)¼ μij kYi(t) and the first term of the log-likelihood is

ln(μij)∑ K
k¼ 1 ∑

ω
t¼ 0ΔkNij(t)¼ ln(μij) Nij(ω). The second term is

μij
Ð
ω
0 Yi(τ) dτ¼ μij Ri(ω), with Ri(ω) the total exposure time in state i for all

individuals in the (sample) population. The score function is

U μij
� 	 ¼ ∂‘ μijð Þ

∂μij
¼ Nij ωð Þ

μij
� Ri ωð Þ. The solution of the equation U(μij)¼ 0 gives the

maximum likelihood estimator of the transition rate: μ̂ ij ¼ Nij ωð Þ=Ri ωð Þ. The
estimator is the observed number of transitions (occurrences) divided by the total

duration at risk (exposure). The estimator is an occurrence-exposure rate.

In large samples, the estimator μ̂ ij is approximately normally distributed around

the true value of μij, with the variance estimator μ̂ ij
2=Nij ωð Þ ¼ μ̂ ij=Ri ωð Þ. To

improve the distribution for μ̂ ij, the logarithmic transformation is used. Only ten

transitions are needed for ln μ̂ ij

� 	
to be approximately normally distributed around

ln(μij) with variance estimator 1/Nij(ω) (Aalen et al. 2008, p. 215).

The cumulative transition rate under the exponential model (occurrence-

exposure rate) increases linearly with duration. The empirical cumulative transition

rate (Nelson-Aalen estimator) is a step function (Andersen and Keiding 2002,
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p. 100). The two estimators are usually close. To improve the approximation, the

age interval from 0 to ω may be partitioned in subintervals and the occurrence-

exposure rate estimated for each subinterval. The exponential model turns into a

piecewise exponential model with piecewise constant transition rates. That is the

common approach in demography, where an age interval is usually 1 year. The

estimator of the transition rate and the variance, given above, is applied to each

subinterval. Consider the aggregate counting processes Nij(t) and Yi(t) and sub-

intervals from exact age x to exact age y (y not included). Age intervals are usually
1 year, but a more general interval is chosen here. The transition rate, which

is constant in the interval, is denoted by μij(x, y). The observed number of

(i,j)-transitions during the interval is Nij(x, y), and the observed exposure time in

state i is Ri(x, y). Following Aalen et al. (2008, pp. 220ff), the score function is

solved. The score function is U μij x; yð Þ� � ¼ ∂‘ μij x;yð Þ½ �
∂μij x;yð Þ ¼ Nij x;yð Þ

μij x;yð Þ � Ri x; yð Þ, where
Nij(x, y)¼

Ð
ω
0 Iij(τ)dNij(τ)dτ and Ri(x, y)¼

Ð
ω
0 Iij(τ)Yi(τ)dτ with Iij(τ) an indicator

function taking the value of one in the interval from x to y and a value of zero

otherwise.

The maximum likelihood estimator of the transition rate from i to j during the

interval from x to y is the occurrence-exposure rate μ̂ ij x; yð Þ ¼ Nij x; yð Þ=Ri x; yð Þ.
Occurrence-exposure rates are approximately independent and normally

distributed around their true values, and the variance of μ̂ ij x; yð Þ can be estimated by

μ̂ ij x; yð Þ=Ri x; yð Þor the logarithmic transformationvar ln μ̂ ij x; yð Þ� �
 � ¼ 1=Nij x; yð Þ.
In demography, epidemiology and actuarial science, transition rates are usually

occurrence-exposure rates and are determined by dividing occurrences by expo-

sures. In the absence of exposure data, exposure is approximated by the product

of the mid-period population and the length of the period, a method also used by

Aalen et al. (2008, p. 222).

By way of illustration of the method, aggregate transition rates and age-specific

transition rates are estimated from the subsample of 201 individuals, entering

observation at labour market entry. The analysis focuses on transitions between

job episodes and episodes without a job. Transitions between jobs are omitted.

Biograph and some additional calculations produced the main results reported in

this section. The results are compared to those generated by the msm package for

multistate modelling. The 201 individuals experience 504 episodes (323 job epi-

sodes and 181 episodes without a job). The total observation time between first job

entry and survey is 4,668 person-years (3,397 person-years in J and 1,271 person-

years in N ). The sample population experienced 303 transitions during the obser-

vation period (181 JN transitions and 122 NJ transitions). The JN transition rate is

181/3,397¼ 0.0533 per year and the NJ transition rate is 122/1,271¼ 0.0960

per year. To determine the 95 % confidence interval of the occurrence-exposure

rate, the log-transformation of the estimator is used: exp ln μ̂ ij

� 	� 1:96
ffiffiffiffiffiffiffiffiffiffiffi
1=Nij

p� �
.

The confidence interval around the JN transition rate is

exp ln 0:0533ð Þ � 1:96 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=181

ph i
, which is (0.0461, 0.0617). The confidence
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interval around the NJ transition rate is exp ln 0:096ð Þ � 1:96 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=122

ph i
, which is

(0.0804, 0.1146). Bootstrapping, i.e. sampling the original 201 observations with

replacement, with 100 bootstrap samples, produces a JN transition rate of 0.0535

with confidence interval (0.0452, 0.0636) and a NJ transition rate of 0.0977 with

confidence interval (0.0701, 0.1264). Five hundred bootstrap samples yield a JN

transition rate of 0.0534 with confidence interval (0.0.0451, 0.0629) and a NJ

transition rate of 0.0973 with confidence interval (0.0729, 0.1254). Bootstrapping

produces confidence intervals that are somewhat larger than the analytical method.

The package msm produces the same estimates and confidence intervals. The

code is:

The first line removes transitions between jobs. The second line changes the

observation window: observation starts at labour market entry (first job) and ends at

interview. The third line converts dates in CMC into ages. The fourth line converts

the Biograph object data to the long format required by the msm package. The

fifth and sixth lines generate initial values for transition rates. The next line calls the

msm function for estimating the transition rates. Object GLHS.msm.y contains the

estimates and the 95 % confidence intervals, with the row variable denoting origin

and the column variable destination. State 1 is J and state 2 is N.

State 1                      State 2 
State 1 -0.05328 (-0.06164,-0.04606) 0.05328 (0.04606,0.06164)  
State 2 0.09602 (0.08041,0.1147)     -0.09602 (-0.1147,-0.08041)

As expected, the 95 % confidence intervals produced by themsm package are the

same as computed above. The msm package includes a function (boot) that uses
bootstrapping to produce estimates, standard errors and confidence intervals.

Bootstrapping, with 100 bootstrap samples, produces the following estimates and

library (msm)
d <- Remove.intrastate(GLHS)
dd <- ChangeObservationWindow.e 

(Bdata=d,entrystate="J",exitstate=NA)
data <- date_b (Bdata=dd,selectday=1,format.out="age",

covs=c("marriage","LMentry"))
Dmsm <- Biograph.msm(data)   
twoway2.q <- rbind(c(-0.025, 0.025),c(0.2,-0.2)) 
crudeinits.msm(state ~ date, ID, data=Dmsm, 

qmatrix=twoway2.q) 
GLHS.msm.y <- msm( state ~ date, 

subject=ID, 
data = Dmsm,
use.deriv=TRUE,
exacttimes=TRUE,
qmatrix = twoway2.q, 
obstype=2,
control=list(trace=2,REPORT=1,

abstol=0.0000005),
method="BFGS")
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confidence intervals: 0.0532 for the JN transition rate, with 95 % confidence

interval (0.0453, 0.0621), and 0.0988 for the NJ transition rate, with 95 % confi-

dence interval (0.0755, 0.1294).

Consider the piecewise constant exponential model with age intervals of 1 year.

The input data are transition counts (occurrences) and exposures by single year of

age for the 201 respondents. Transition counts and exposure times are shown in

Table 2.3. Column JN shows the number of transitions from J to N and PY is the

exposure time. The table also shows the state occupancies at birthdays (Occup)
and the number of observations censured by age (cens). The estimate of the

transition rate is r.est and the 95 % confidence interval is (r.L95, r.U95).
The estimate and the confidence interval are obtained using the analytical method.

Bootstrapping produces the estimate b.est and the confidence interval (b.L95,
b.U95). The cumulative transition rate is cumrate. Consider age 30. Of the

201 individuals, 198 are under observation at that age; 138 have a job on their 30th

birthday and 60 are without a job. For 3 individuals, the information is missing.

Two did not reach age 30 yet when observation ended at age at interview (ID 45 and

115) and one entered labour force and observation after age 30 (ID 49). Together,

the individuals spent 127.75 years in state J and 56.58 years in state N between the

30th and 31st birthdays. Notice that an individual in state J on his 30th birthday may

spend some time in state N before reaching age 31. At age 30, 2 individuals

experienced a JN transition and 3 an NJ transition. At that age, the JN transition

rate is 2/127.75¼ 0.0157 and the NJ transition rate is 3/60.25¼ 0.0530. In

Table 2.3, r.est denotes the estimator of the transition rate. The 95 % confidence

interval around the JN transition rate at age 30 is exp ln 0:0157ð Þ � 1:96 � ffiffiffiffiffiffiffiffi
1=2

ph i
,

which is (0.0039, 0.0626). The confidence around the NJ transition rate at age 30 is

exp ln 0:0530ð Þ � 1:96 � ffiffiffiffiffiffiffiffi
1=3

ph i
, which is (0.0171,0.1644). In the table, r.L95

denotes the lower bound and r.U95 the upper bound. The table also shows

estimated transition rates (b.est) and confidence intervals (b.L95 and b.U95)
obtained by bootstrapping with 100 bootstrap samples. The bootstrap standard

errors are generally larger than the asymptotic standard errors, but it is not always

the case in the table because of the relatively small number of bootstrap samples.

The cumulative JN transition rate at age 30 is 1.3455, and the cumulative NJ

transition rate is 3.2957.

Biograph produced several of the figures in Table 2.3. The state occupancies at

birthday are produced by the Occup function, the transitions by the Trans
function and the transition rates and cumulative rates by the Rates.ac function.

Biograph tracks individual transitions and state occupancies (exposure times).

The purpose of tracking individuals is to show an individual’s contribution to

transition counts and exposure times. Consider individual with ID 76. The data

are shown in Table 2.1 and the employment career in Fig. 2.1. Table 2.4 shows the

states occupied at all birthdays between first job and survey date and the exposure

times by age. At exact age 18, the individual is not under observation yet (state -).

He enters observation at age 18.333, when he gets his first job. Between the 18th
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Table 2.3 Piecewise constant exponential model: occurrences, exposures and transition rates.

GLHS, 201 respondents

State J
Occup     PY JN cens  r.L95  r.est  r.U95  b.L95  b.est  b.U95 cumrate
13     0   1.83  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
14     6 20.42  2    0 0.0245 0.0979 0.3916 0.0000 0.0941 0.2255  0.0000
15    28  33.83  3    0 0.0286 0.0887 0.2750 0.0254 0.0893 0.2043  0.0979
16    37  43.17  6    0 0.0624 0.1390 0.3094 0.0480 0.1494 0.2830  0.1866
17    52  78.25  1    0 0.0018 0.0128 0.0907 0.0000 0.0125 0.0438  0.3256
18    95 111.67  9    0 0.0419 0.0806 0.1549 0.0344 0.0828 0.1332  0.3384
19   123 137.83 11    0 0.0442 0.0798 0.1441 0.0299 0.0763 0.1273  0.4190
20   146 138.17 24    0 0.1164 0.1737 0.2592 0.1022 0.1739 0.2409  0.4988
21 138 143.42 17    0 0.0737 0.1185 0.1907 0.0629 0.1157 0.1696  0.6725
22   141 150.17  9    0 0.0312 0.0599 0.1152 0.0294 0.0618 0.0933  0.7910
23   151 151.33 10    0 0.0356 0.0661 0.1228 0.0279 0.0669 0.1049  0.8510
24   151 145.00 15    0 0.0624 0.1034 0.1716 0.0536 0.1095 0.1668  0.9170
25   143 139.00 11    0 0.0438 0.0791 0.1429 0.0374 0.0811 0.1292  1.0205
26   135 134.25 14    0 0.0618 0.1043 0.1761 0.0588 0.1050 0.1660  1.0996
27   129 131.58  6    0 0.0205 0.0456 0.1015 0.0142 0.0453 0.0831  1.2039
28   135 133.75  8    0 0.0299 0.0598 0.1196 0.0264 0.0594 0.1062  1.2495
29   134 138.08  5    2 0.0151 0.0362 0.0870 0.0069 0.0343 0.0682  1.3093
30   138 127.75  2   19 0.0039 0.0157 0.0626 0.0000 0.0143 0.0335  1.3455
31   120 108.83  5   18 0.0191 0.0459 0.1104 0.0088 0.0483 0.0926  1.3612
32   102  90.33  4   14 0.0166 0.0443 0.1180 0.0104 0.0461 0.0977  1.4071
33    84  85.08  3    0 0.0114 0.0353 0.1093 0.0052 0.0335 0.0688  1.4514
34    86  84.83  3    0 0.0114 0.0354 0.1097 0.0000 0.0379 0.0915 1.4867
35    84  86.08  1    0 0.0016 0.0116 0.0825 0.0000 0.0138 0.0424  1.5220
36    87  86.83  1    0 0.0016 0.0115 0.0818 0.0000 0.0103 0.0368  1.5337
37    86  87.58  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.5452
38    88  88.08  2    0 0.0057 0.0227 0.0908 0.0000 0.0241 0.0573  1.5452
39    90  89.75  1    1 0.0016 0.0111 0.0791 0.0000 0.0101 0.0361  1.5679
40    88  83.17  1   17 0.0017 0.0120 0.0854 0.0000 0.0120 0.0448  1.5790
41    74  68.08  0   12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.5910
42    62  57.17  2    8 0.0087 0.0350 0.1399 0.0000 0.0406 0.1301  1.5910
43    53  53.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6260
44    53  52.00  2    0 0.0096 0.0385 0.1538 0.0000 0.0415 0.1085  1.6260
45    51  52.33  1 0 0.0027 0.0191 0.1357 0.0000 0.0180 0.0595  1.6645
46    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836
47    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836
48    52  52.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836
49    52  51.92  0    1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.6836
50    51  37.25  2   26 0.0134 0.0537 0.2147 0.0000 0.0544 0.1249  1.6836
51    24  15.67  0   17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373
52     7   3.33  0    7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373
53     0   0.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  1.7373

State N
Occup    PY NJ cens  r.L95  r.est  r.U95  b.L95  b.est  b.U95 cumrate
13     0  0.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
14     0  0.33  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
15     2  3.67  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
16     5  8.25  2    0 0.0606 0.2424 0.9693 0.0000 0.2412 0.6905  0.0000
17   9  8.08  3    0 0.1197 0.3713 1.1512 0.0000 0.4121 1.0889  0.2424
18     7  9.92  3    0 0.0975 0.3024 0.9377 0.0000 0.2947 0.6461  0.6137
19    13 13.67 10    0 0.3936 0.7315 1.3596 0.3920 0.7578 1.1739  0.9161
20    14 26.83  6    0 0.1005 0.2236 0.4978 0.0928 0.2296 0.4226  1.6477
21    32 33.50 11    0 0.1818 0.3284 0.5929 0.1760 0.3322 0.5461  1.8713
22    38 33.75  9    0 0.1387 0.2667 0.5125 0.1203 0.2764 0.4944  2.1996
23    38 41.17  6    0 0.0655 0.1457 0.3244 0.0455 0.1488 0.2946  2.4663
24    42 48.92  6    0 0.0551 0.1226 0.2730 0.0421 0.1317 0.2440  2.6121
25    51 55.00  3    0 0.0176 0.0545 0.1691 0.0000 0.0564 0.1292  2.7347
26    59 60.42  6    0 0.0446 0.0993 0.2210 0.0449 0.1014 0.1646  2.7892
27    67 65.17  9    0 0.0719 0.1381 0.2654 0.0648 0.1457 0.2569  2.8886
28    64 66.00  6    0 0.0408 0.0909 0.2024 0.0297 0.0911 0.1569  3.0267
29    66 61.75 11    0 0.0987 0.1781 0.3217 0.0882 0.1783 0.2794  3.1176
30    60 56.58  3    6 0.0171 0.0530 0.1644 0.0000 0.0523 0.1221  3.2957
31    53 50.83  4    9 0.0295 0.0787 0.2097 0.0198 0.0824 0.1614  3.3487
32    45 45.75  0    3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.4274
33    46 44.92  5    0 0.0463 0.1113 0.2674 0.0281 0.1060 0.1873  3.4274
34    44 45.17  1    0 0.0031 0.0221 0.1572 0.0000 0.0219 0.0730  3.5387
35    46 43.92  4    0 0.0342 0.0911 0.2427 0.0203 0.0917 0.2204  3.5609
36    43 43.17  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.6519
37    44 42.42  2    0 0.0118 0.0471 0.1885 0.0000 0.0458 0.1160  3.6519
38    42 41.92  4    0 0.0358 0.0954 0.2542 0.0085 0.0938 0.2038  3.6991
39    40 40.17  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.7945
40    41 36.25  4    5 0.0414 0.1103 0.2940 0.0263 0.1130 0.2514  3.7945
41    33 30.50  0    5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9048
42    28 24.50  1    7 0.0057 0.0408 0.2898 0.0000 0.0463 0.1723  3.9048
43    22 22.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9457
44    22 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  3.9457
45    24 22.67  2    0 0.0221 0.0882 0.3528 0.0000 0.1051 0.3614  3.9457
46    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339
47    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339
48    23 23.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339
49    23 22.92  0    1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0339
50    22 17.92  1   10 0.0079 0.0558 0.3962 0.0000 0.0570 0.1755  4.0339
51    13  8.83  0    8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897
52     5  2.00  0    5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897
53     0  0.00  0    0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  4.0897
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and 19th birthday, respondent with ID 76 spends 0.333 years before observation

(in state -), 0.5 years in J and 0.167 years in N. At age 30, he spends 0.417 years in J

and 0.583 years in the state ‘censored’. The tracking of individual transitions and

exposures is necessary for a correct estimation of transition rates and is a central

aspect of the counting process approach. If m̂ ij xð Þ is an estimate of the rate of

transition from i to j between exact ages x and x+ 1, then the contribution of the

individual to the likelihood function is m̂ ij xð Þ exp � m̂ ij xð Þ� �
if the individual

experiences a transition between x and x+ 1 and exp � m̂ ij xð Þ� �
if he experiences

no transition. The best estimate of mij(x) is the one that maximises the likelihood

function for all individuals combined.

2.3 Transition Probabilities and State Occupation

Probabilities

In multistate modelling, distinct types of probabilities have been identified (see,

e.g. Schoen 1988, pp. 81ff). Survival probabilities, transition probabilities and state

occupation probabilities are well known. They relate to the state occupied at a given

age or at given ages. An event probability is the probability that a given transition

occurs at least once during a given period. The cumulative incidence, which is

frequently used in epidemiology and health sciences, is an event probability. If the

destination state is an absorbing state, e.g. dead, the transition probability and the

event probability are the same. Otherwise they differ. The probability types are

discussed in some detail. In this section and the following sections, age is denoted

by x and y. State and transition probabilities are denoted by p and event probabilities
by π. The matrix of transition probabilities between ages x and y is P(x,y), and the

vector of state probabilities at x is p(x). The probability of a continuous stay in a

Table 2.4 State occupancies and state occupation times. Individual with ID 76

- J N +     - J     N     +
18 1 0 0 0 0.333 0.500 0.167 0.000
19 0 0 1 0 0.000 0.000 1.000 0.000
20 0 0 1 0 0.000 0.083 0.917 0.000
21 0 1 0 0 0.000 1.000 0.000 0.000
22 0 1 0 0 0.000 1.000 0.000 0.000
23 0 1 0 0 0.000 1.000 0.000 0.000
24 0 1 0 0 0.000 0.750 0.250 0.000
25 0 1 0 0 0.000 1.000 0.000 0.000
26 0 1 0 0 0.000 1.000 0.000 0.000
27 0 1 0 0 0.000 1.000 0.000 0.000
28 0 1 0 0 0.000 1.000 0.000 0.000
29 0 1 0 0 0.000 1.000 0.000 0.000
30 0 1 0 0 0.000 0.417 0.000 0.583
31 0 0 0 1 0.000 0.000 0.000 1.000

28 2 Life Histories: Real and Synthetic



state between ages x and y will be denoted by S(x,y). It is the survival probability in
the state; it is the probability of nonoccurrence of an event (exit from the state).

The survival probability at age x is the probability of being alive at that age. In

some fields, such as demography, dead is usually not a separate state in the state

space. It is an absorbing state that is integrated in the diagonal of the transition

matrix. The probability of being alive is the probability of being in any of the states

of the state space. In medical statistics, the absorbing state of dead is usually a

separate state of the state space. In that case, the survival probability is the

probability of being in a transient state. Unless specified otherwise, the state

occupation probability at age x is the probability of occupying a given state at

age x, conditional on being in any of the states of the state space at x, i.e. conditional
on still being part of the population. The transition probability is the probability of

occupying a given state at age y, conditional on occupying a given state at age

x with y� x. All probabilities are derived from transition rates. Before deriving

probabilities from rates, probability types are discussed. Probabilities are defined

for periods. A period may be delineated by two ages, two transitions or by an age

and a transition. The delineation results in periods of fixed or variable length.

Probabilities may be conditional on being in a given state or having experienced

a transition.

Probabilities are computed at a reference age. The reference age indicates the

position of the observer in the life course. The reference age is particularly relevant

in the presence of mortality or when the probability is conditional on the state

occupied at the reference age. For instance, the probability of experiencing a period

without a job between ages 30 and 40 is likely to differ between persons employed

at age 30 and persons employed at age 25, but not necessarily at age 30. At age

30, the latter category may have a job or may be without a job. The difference is due

to competing events between ages 25 and 30. In medical statistics, the reference age

x from which a transition probability is estimated is known as the landmark time

point or age and the method to select a range of reference ages as the landmark

method. Individuals who experience the transition of interest before the landmark

time point or who leave the population at risk for another reason (e.g. censoring)

are removed from the data (Van Houwelingen and Putter 2008; Beyersmann

et al. 2012, p. 187). The landmark method is used for dynamic prediction (van

Houwelingen and Putter 2011). The central idea of dynamic prediction is that, by

increasing the reference age, time-varying covariates may be updated with more

recent values and predictions adjusted.

If a period is delineated by two ages, the first age is denoted by x and the second
by y (y> x). The probability of a transition, an event or a continuous stay in a given
state between ages x and y depends on competing events before and during the

period. To exclude the effect of competing events before x, the probability is

computed at age x. If the impact of competing events before x needs to be accounted
for, the probability is computed at an age lower than x. For instance, the probability
of impairment after age 65 depends on the likelihood of surviving to 65. It is higher

if computed at 65 than at age zero. Probabilities are computed for individual k, but
the reference to k is omitted for convenience.
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The probability that an individual who is in state i on his x-th birthday will be in
state j at age y is the transition probability pij(x, y). It may be written as pij(x, y)¼ Pr

(X(y)¼ j|X(x)¼ i), where X(x) is a random variable denoting the state occupied at

age x. The transition probability depends on the life history. If the life history is

represented by Θ, that dependence is denoted by pij(x, y)¼ Pr(X(y)¼ j|X(x)¼ i,Θ).
That dependence is omitted in this section on the derivation of probabilities.

The time scale is continuous (t is a continuous variable). The process is time-

homogeneous if the transition probability pij(x, y) only depends on the age differ-

ence y�x and not on age x. In life history data analysis with age as the time scale,

the process is time-inhomogeneous. Age matters. Transition probabilities defined

for the age interval from x to y are combined in a matrix of transition probabilities:

P x; yð Þ ¼

p11 x; yð Þ p21 x; yð Þ : : pI1 x; yð Þ
p12 x; yð Þ p22 x; yð Þ : : pI2 x; yð Þ

: : : : :
: : : : :

p1I x; yð Þ p2I x; yð Þ : : pII x; yð Þ

2
66664

3
77775

where pii(x, y) is the probability that an individual who is in state i at age x will also
be in state i at age y. Between x and y, the individual may move out of i and return

later but before y. The reason for using matrices is that, except for a few simple

cases, transition probabilities depend on all transition intensities and that requires

systems of equations, which are conveniently written as matrix equations.

The interval from x to y may be partitioned into smaller intervals:

x¼ x0< x1< x2 . . . < xP¼ y. The transition probability matrix P(x,y) may be

written as a matrix product:

P x; yð Þ ¼ P x0; x1ð Þ P x1; x2ð Þ P x2; x3ð Þ : : : : P xP�1; xPð Þ

The equation is the Chapman-Kolmogorov equation for the Markov process. If the

number of time points increases and the distance between them goes to zero in a

uniform way, the matrix product approaches a limit termed a (matrix-valued)

product integral. The product integral is a counterpart of the usual integral in

classical calculus.

State occupation probabilities at age y are derived from transition probabilities

P(x,y) and state probabilities at age x. Let p(x) denote the vector of state probabil-
ities at exact age x. The state probabilities at age y are P(x,y) p(x).

To show the link between transition probability and (cumulative) transition rate,

consider the infinitesimally small interval from τ to τ + dτ with x� τ< y. The
transition probability may be expressed in terms of increments of cumulative

transition rates. The cumulative transition rates at age τ may be arranged in a

matrix:
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A τð Þ ¼

A11 τð Þ �A21 τð Þ : : �AI1 τð Þ
�A12 τð Þ A22 τð Þ : : �AI2 τð Þ

: : : : :
: : : : :

�AiI τð Þ �A2I τð Þ : : AII τð Þ

2
66664

3
77775

An element Aij(τ) denotes the cumulative rate at age τ of the transition from i to j.
The diagonal element Aii(τ) is the cumulative rate at age τ of leaving i:
Aii(τ)¼∑ j 6¼ i Aij(τ). The cumulative transition rate can be a step function, with a

jump at each age a transition occurs, or a continuous function. The increment of

Aij(τ) during the interval from τ to τ + dτ is dAij(τ). The probability that the

individual who is in i at τ will be in j at τ + dτ is pij(τ, τ + dτ)� dAij(τ). The
probability that an individual who is in i at τ will be in i at τ + dτ is pii(τ, τ + dτ)¼
1�∑ j 6¼ ipij(τ, τ + dτ)� 1�∑ j 6¼ idAij(τ). The matrix of transition probabilities

between ages x and y, expressed in terms of the transition probabilities in small

subintervals, is

P x; yð Þ ¼
Y

x�τ<y
P τ, τ þ dτð Þ �

Y
x�τ<y

I� dA τð Þ½ �

The equation is the solution to the Chapman-Kolmogorov equation. No assumption

is made on the nature of the distribution of the transition probability (Aalen

et al. 2008, p. 470). The distribution can be discrete or continuous. The product

integral is a restatement of the Chapman-Kolmogorov equation.

If transition rates are continuous functions of age, then dAij(τ)¼ μij(τ)dτ and

dA(τ)¼ μ(τ)dτ. The quantity μij(τ)dτ is the probability that an individual who is in

i at τ will move to j during the interval of length dτ pij(τ, τ + dτ)¼ μij(τ)dτ. Since the
interval is sufficiently small to ensure not more than one transition, a move from i to
j implies that the individual will be in j at τ + dτ. The probability of remaining in

i during the interval of length dτ is pii(τ, τ + dτ)¼ 1�∑ j 6¼ iμij(τ)dτ. The matrix

expression linking the matrix of transition probabilities during the interval from τ to
τ + dτ to the matrix of instantaneous transition rates is P(τ, τ + dτ)¼ I�μ(τ)dτ,
where I is the identity matrix and

μ τð Þ ¼

μ11 τð Þ �μ21 τð Þ : : �μI1 τð Þ
�μ12 τð Þ μ22 τð Þ : : �μI2 τð Þ

: : : : :
: : : : :

�μ1I τð Þ �μ2I τð Þ : : μII τð Þ

2
66664

3
77775

with μii(τ)¼∑ j 6¼ iμij(τ). If the instantaneous transition rates are continuous func-

tions of age, P(x, y)¼∏ x� τ<y[I�μ(τ)dτ]
In the literature, the instantaneous transition rate matrix has different configura-

tions. The configuration used in this chapter is common in demography. The first

subscript denotes the origin and the second the destination. In statistics, the
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off-diagonal element is the transition rate instead of minus the transition rate, and

the matrix is the transpose of the matrix shown here. The reasons for choosing the

configuration become clear later.

If the transition probability is a continuous function of age, a system of differ-

ential equations links transition probabilities and transition rates. The differential

equations are derived from the Chapman-Kolmogorov equation. Recall that we

may write

P x; yð Þ ¼ P x; τð Þ P τ; yð Þ

Subtraction of P(τ, y) from both sides of the equation and dividing by τ�x yields

P x; yð Þ � P τ; yð Þ
τ � x

¼ P x; τð Þ � I
�
P
�
τ, y

� 	
τ � x

and

lim
τ!x

P x; yð Þ � P τ; yð Þ
τ � x

¼ lim
τ!x

P x; τð Þ � I
�
P
�
τ, y

� 	
τ � x

Since limτ!x
P x;τð Þ�I

τ�x ¼ �μ xð Þ, we obtain the differential equation

dP xð Þ
dx

¼ �μ xð ÞP xð Þ:

The differential equation describes continuous-time nonhomogeneous Markov

processes. In physics, the equation is known as the master equation. In the social

sciences, the master equation is less well known, but some important applications

(under that name) exist (see, e.g. Weidlich and Haag 1983, 1988; Aoki 1996;

Helbing 2010). Aoki summarises the significance of the master equation as follows:

‘The master equations describe time evolution of probabilities of states of dynamic

processes in terms of probability transition rates and state occupancy probabilities’

(Aoki 1996, p. 116).

To solve the matrix differential equation, we may try to generalise the solution of

the scalar differential equation
dp xð Þ
dx ¼ �μ xð Þ p xð Þ. The solution, given the interval

from x to y, is p(x, y)¼ exp[�Ð
y
xμ(τ)dτ], with p(x,y) the probability that an individ-

ual who is alive at age xwill be alive at age y and μ(τ) the instantaneous death rate at
age τ. The generalisation P(x, y)¼ exp[�Ð

y
xμ(τ)dτ] does usually not work, how-

ever. It works only if the matrices of instantaneous transition rates commute, i.e. if

the matrix multiplication μ(τ)μ(τ + dτ)¼μ(τ + dτ)μ(τ) for all τ.
To solve the system of differential equations, it is replaced by a system of

integral equations:
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P x; yð Þ ¼ I�
ð y

x

μ τð ÞP x; τð Þdτ

This equation is essentially a system of flow equations of the multistate model. The

element pij(x, y) of P(x, y) is:

pij x; yð Þ ¼ pij x; xð Þ �
ð y

x

X
q6¼j

μjq τð Þpij x; τð Þdτ þ
ð y

x

X
q 6¼j

μqj τð Þpiq x; τð Þdτ

pij x; yð Þ ¼ pij x; xð Þ �
X

q 6¼j i
djq τ, τ þ dτð Þ þ

X
q6¼j i

dqj τ, τ þ dτð Þ

idjq(x, y) represents the number of moves or direct transitions from state j to state

q between the ages x and y by an individual in state i at exact age x. The sum is the

number of exits from state j by persons in i at x. The last term is the number of

entries into state j by persons in i at x.
To derive an expression involving transition rates during the interval from x to y,

we write

P x; yð Þ ¼ I�
ð y

x

μ τð ÞP x; τð Þdτ
� � ð y

x

P x; τð Þdτ
� ��1 ð y

x

P x; τð Þdτ
� �

P x; yð Þ ¼ I�m x; yð ÞL x; yð Þ

where m(x,y) is the matrix of transition rates. An element mij(x,y) ( j 6¼ i) is the

average transition rate during the interval from x to y and the diagonal element is the

rate of leaving i: mii(x, y)¼∑ j 6¼ imij(x, y). Schoen (1988, p. 66) shows the same

matrix equation and points to the link with the flow equations commonly used in

demography.

Transition probabilities serve as input in the computation of state occupation

probabilities. Let pi(y) denote the probability that an individual who is alive at age

y is in state i at that age and let p(y) denote the vector of state occupation

probabilities at age y. The state probabilities at age y depend on state probabilities

at an earlier age and transition probabilities, e.g. p(y)¼P(x, y) p(x). This equation
may be applied recursively to determine state occupancies at consecutive ages.

Consider age intervals of 1 year. If the state occupation probabilities at birth are

given and the transition probabilities P(x, x+ 1) are known for 0� x< z�1, with

z the start of the highest, open-ended age group, then a recursive application of

p(x+ 1)¼P(x, x + 1) p(x) with 0� x< z�1 produces state occupation probabilities

by single years of age from birth to the highest age.

The estimation of transition probabilities from data relies on the Nelson-Aalen

estimator if the waiting time distribution of a transition is not constrained and on the

occurrence-exposure rate if the waiting time distribution is (piecewise) exponential.

The two approaches are considered in the remainder of this section. Some packages

for multistate modelling, e.g. etm and mstate, adopt the non-parametric method

assuming that the multistate survival function is a step function and estimate the
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empirical transition matrix, while other packages, e.g.msm and Biograph, adopt the
parametric method assuming that the underlying multistate process is continuous

but transition rates are (piecewise) constant.

(a) Non-parametric Method

A logical estimator of P(x,y) is P̂ x; yð Þ ¼
Y

x�τ<y
I� d Â τð Þ� �

. Since the

estimator Â τð Þ is a matrix of step functions with a finite number of increments in

the (x,y)-interval, the product integral is the finite matrix product:

P̂ x; yð Þ ¼
Y

x�Tn<y
I� Δ Â Tnð Þ� �

The matrix P̂ x; yð Þ is the empirical transition matrix, often denoted as the Aalen-

Johansen estimator. It is a non-parametric estimator, which generalises the Kaplan-

Meier estimator to Markov chains (Aalen et al. 2008, p. 122). The diagonal element

is generally not equal to the Kaplan-Meier estimator. The i-th diagonal element is

the probability that an individual who is in i at age x will also be in i at age y. The
state may be left and re-entered during the interval. The Kaplan-Meier estimator is

an estimator of the probability that an individual who is in i at age x will remain in

i at least until age y. The state may not be left during the interval. The Kaplan-Meier

estimator is
Y

x�Tn<y
1�

X
j6¼i
ΔNij Tnð Þ

Yi Tnð Þ

2
4

3
5.

For the covariance of the empirical transition matrix, see Aalen et al. (2008).

Consider the selection of the GLHS data on ten individuals. The Aalen-Johansen

estimator of the transition probabilities are derived from the Nelson-Aalen estima-

tor of the cumulative transition rates shown in Table 2.2. Consider the transition

probability between ages 14 and 18.833. At age 14, individual 8 (ID¼ 180) enters

his first job and enters observation. He leaves the first job at age 15.667 (see

Table 2.1, JN transition). At that age, individual 3 (ID¼ 67) had entered observa-

tion (at age 15.167). The empirical probability of transition from J to N between

ages 14 and 15.667 is (1�1/2)¼ 0.5. The probability that the individual is without a

job at age 18.833 is 28.57 %. It is computed by the matrix multiplication:

I� dA 15:667ð Þ½ � � I� dA 18:167ð Þ½ � � I� dA 18:750ð Þ½ � � I� dA 18:833ð Þ½ � ¼
0:500 0

0:500 1

� �
1 1

0 0

� �
0:857 0

0:143 1

� �
0:833 0

0:167 1

� �
¼ 0:714 0:714

0:286 0:286

� �

Table 2.5 shows the results. The column etm.est gives the probability of an

occurrence before t and etm.var gives the variance. The probability of no

occurrence is surv. It is the empirical survival function or Kaplan-Meier estimator

of the survival function. Both the Nelson-Aalen estimator and the Kaplan-Meier

estimator are discrete distributions with their probability mass concentrated at the

observed event times. The link between the cumulative hazard estimator and the
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Kaplan-Meier estimator relies on the approximation of the product integral. The

product integration is the key to understanding the relation between the Nelson-

Aalen and the Kaplan-Meier estimators (Aalen et al. 2008, p. 99 and p. 458). The

column delta shows the increments of the cumulative hazard. The probability

that an individual who is in state J at age 14 will be in state N at age 25 is 43.27 %.

The estimate is based on all transitions before age 25, the last one at age 24.833. The

probability of being in J at age 25 is the same as the probability of being in J at age

24.833, since in the sample population no transition occurred between ages 24.833

and 25. Recall that the elements of the empirical transition matrix are step functions

with constant values between transition times. The probability that a 20-year-old

individual who is in state J will be in N at age 25 is 41.52 %.

The etm function of the etm package computes the Aalen-Johansen estimator of

the transition probability matrix of any multistate model. The entries of the Aalen-

Johansen estimator are empirical probabilities. The etm package is used to produce

the results shown in Table 2.5. The results are for a selection of the ten respondents

used for illustration of the Nelson-Aalen estimator. The code is:

library (etm)
D<- Biograph.mvna (d.10)
tra <- attr(D$D,"param")$trans_possible
etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0)

The covariance matrix of the empirical transition matrix is derived using mar-

tingale theory (Aalen et al. 2008, pp. 124ff). The Aalen-Johansen estimator along

with event counts, risk set, variance of the estimator and confidence intervals can be

obtained through the summary function of the etm package:

summary(etm.0)$"J N"
summary(etm.0)$"N J"

The confidence interval is computed without transformation of the data. Trans-

formations can be specified, however (see Beyersmann et al. 2012, p. 185).

Respondents enter observation when they start their first job. The probability of

being employed at the highest age in the sample population (53) depends on the

employment status at lower ages. An individual with a job at age 14 has a 37 %

chance of also having a job at age 53. The percentage is the same for a person with a

job at age 18. An individual with a job at age 30 has a 42 % chance of having a job at

age 53. Because employment status varies with age the probability of being in a

given state at a given higher age varies with age too. By varying the reference age,

the changes in probabilities can be assessed. The selection of a range of reference

ages is the basic idea of the landmark method. In this example, the end state is a

transient state. In the landmark method, the end state is an absorbing state. In

multistate life table analysis, the method of selecting different reference ages and to

estimate transition probabilities conditional on states occupied at a reference age is

known as the status-based life table (Willekens 1987).
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Table 2.5 Aalen-Johansen estimator of transition probabilities. GLHS subsample of ten individuals

JN transition
age nrisk nevent   etm.est     etm.var      surv

1  14.00000     1      0 0.0000000 0.000000000 1.0000000
2  15.16667     1      0 0.0000000 0.000000000 1.0000000
3  15.66667     2      1 0.5000000 0.125000000 0.5000000
4  17.00000     1      0 0.5000000 0.125000000 0.5000000
5  17.83333     2      0 0.5000000 0.125000000 0.5000000
6  18.16667     3      0 0.5000000 0.125000000 0.5000000
7  18.33333     4      0 0.5000000 0.125000000 0.5000000
8  18.66667     6      0 0.0000000 0.000000000 1.0000000
9  18.75000     7      1 0.1428571 0.017492711 0.8571429
10 18.83333     6      1 0.2857143 0.029154519 0.7142857
11 19.16667     5      0 0.2857143 0.029154519 0.7142857
12 19.41667     6      1 0.4047619 0.032056473 0.5952381
13 19.66667     5      0 0.4047619 0.032056473 0.5952381
14 20.91667     6      1 0.3690476 0.028351420 0.6309524
15 21.00000     6      1 0.4742063 0.028903785 0.5257937
16 21.16667     5      0 0.3556548 0.026799238 0.6443452
17 21.50000     6      0 0.2371032 0.021280425 0.7628968
18 22.41667     7      0 0.1185516 0.012347346 0.8814484
19 22.58333     8      1 0.2287326 0.020075818 0.7712674
20 23.16667     7      2 0.4490947 0.027585427 0.5509053
21 24.58333     6      1 0.5409123 0.026181931 0.4590877
22 24.83333     5      0 0.4327298 0.026119191 0.5672702
23 25.16667     6      0 0.3245474 0.023469628 0.6754526
24 26.00000     7      1 0.4210406 0.025223801 0.5789594
25 28.16667     6      0 0.3157805 0.022498163 0.6842195
26 29.75000     7      0 0.2105203 0.017385650 0.7894797
27 30.41667     8      0 0.2105203 0.017385650 0.7894797
28 30.66667     6      0 0.1052602 0.009886262 0.8947398
29 31.08333     7      0 0.1052602 0.009886262 0.8947398
30 40.25000     6      1 0.2543835 0.025396927 0.7456165
31 41.25000     5      0 0.2543835 0.025396927 0.7456165
32 41.50000     4     0 0.2543835 0.025396927 0.7456165
33 41.91667     3      0 0.2543835 0.025396927 0.7456165
34 42.75000     3      0 0.2543835 0.025396927 0.7456165
35 44.66667     2      1 0.6271917 0.075842235 0.3728083
36 52.16667     1      0 0.6271917 0.075842235 0.3728083
37 52.66667     1      0 0.6271917 0.075842235 0.3728083

NJ transition
age nrisk nevent   etm.est     etm.var      surv

1  14.00000     0      0 0.0000000 0.000000000 1.0000000
2  15.16667     0      0 0.0000000 0.000000000 1.0000000
3  15.66667     0      0 0.0000000 0.000000000 1.0000000
4  17.00000     1      0 0.0000000 0.000000000 1.0000000
5  17.83333     1      0 0.0000000 0.000000000 1.0000000
6  18.16667     1      0 0.0000000 0.000000000 1.0000000
7  18.33333     1      0 0.0000000 0.000000000 1.0000000
8  18.66667     1      1 1.0000000 0.000000000 0.0000000
9  18.75000     0      0 0.8571429 0.017492711 0.1428571
10 18.83333     1      0 0.7142857 0.029154519 0.2857143
11 19.16667     2      0 0.7142857 0.029154519 0.2857143
12 19.41667     2      0 0.5952381 0.032056473 0.4047619
13 19.66667     3      0 0.5952381 0.032056473 0.4047619
14 20.91667     3      1 0.6309524 0.028351420 0.3690476
15 21.00000     3      0 0.5257937 0.028903785 0.4742063
16 21.16667     4      1 0.6443452 0.026799238 0.3556548
17 21.50000     3      1 0.7628968 0.021280425 0.2371032
18 22.41667     2      1 0.8814484 0.012347346 0.1185516
19 22.58333     1      0 0.7712674 0.020075818 0.2287326
20 23.16667     2      0 0.5509053 0.027585427 0.4490947
21 24.58333     4      0 0.4590877 0.026181931 0.5409123
22 24.83333     5      1 0.5672702 0.026119191 0.4327298
23 25.16667     4      1 0.6754526 0.023469628 0.3245474
24 26.00000     3      0 0.5789594 0.025223801 0.4210406
25 28.16667     4      1 0.6842195 0.022498163 0.3157805
26 29.75000     3      1 0.7894797 0.017385650 0.2105203
27 30.41667     2      0 0.7894797 0.017385650 0.2105203
28 30.66667     2      1 0.8947398 0.009886262 0.1052602
29 31.08333     1      0 0.8947398 0.009886262 0.1052602
30 40.25000     1      0 0.7456165 0.025396927 0.2543835
31 41.25000     2      0 0.7456165 0.025396927 0.2543835
32 41.50000     2      0 0.7456165 0.025396927 0.2543835
33 41.91667     1      0 0.7456165 0.025396927 0.2543835
34 42.75000     0      0 0.7456165 0.025396927 0.2543835
35 44.66667     0      0 0.3728083 0.075842235 0.6271917
36 52.16667     1      0 0.3728083 0.075842235 0.6271917
37 52.66667     0      0 0.3728083 0.075842235 0.6271917
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The following code computes the Aalen-Johansen estimators of the transition

probabilities for reference ages 18, 25, 30 and 35 (see Beyersmann et al. 2012,

p. 187):

age. points <- c(18,25,30,35)
landmark.etm <- lapply (age.points, 

function (reference.age)
{etm(data=D$D,
state.names=c("J","N"),
tra=tra,"cens",
s=reference.age) })

The landmark method is also implemented in the dynpred package (Putter,

2011b). It is the companion package of Van Houwelingen and Putter (2011).

State occupation probabilities are derived from transition probabilities. Because

all individuals are initially in J, the probability of being in state N is the transition

probability JN with the youngest age as reference age (compare with Beyersmann

et al. 2012, p. 190). In the subsample of ten individuals, the probability of

occupying state J at age 30 is 78.95 %, and the probability of being in N is

21.05 % (Table 2.5). The 95 % confidence intervals are (0.531, 1.000) (0:7895

�1:96
ffiffiffiffiffiffiffiffiffiffiffi
0:017

p
) and (0.000, 0.469) ( 0:2105� 1:96

ffiffiffiffiffiffiffiffiffiffiffi
0:017

p
), respectively. The

following code produces these results:

dd=Biograph.mvna(d.10)
etm(data=dd$D,c("J","N"),tra,"cens",s=0)
summary(etm.0)$"J N"[26, c("P","lower","upper")]
summary(etm.0)$"N J"[26, c("P","lower","upper")]

where dd is the data for the 10 selected individuals (Biograph object) and 26 is the

age index associated with the age at the last transition before 30 (age 29.75).

Consider now the subsample of 201 respondents. Of the 201 respondents,

160 enter the labour market (first job) before age 20 and 41 enter after age 20.

The ages at labour market entry are obtained by the code:

table (trunc(d3.a$start))

Of those who entered the labour market before age 20, 146 are in state J (91 %)

and 14 in state N (9 %) at age 20. In the observation plan considered, they are under

observation at age 20. Some entered observation at young ages, while others

entered just before age 20. The empirical transition probabilities take into account

durations under observation and durations spent in J and N. The transition proba-

bilities condition the state occupancy on the state occupied at a reference age. A

person with a job at age 14 (lowest age) has an 85.6 % chance of having a job at age

20 and 14.4 % chance of having no job. A person without a job at age 14 has a

probability of 75.1 % to have a job at age 20 and 24.9 % to have no job at that age.

The state probabilities at age 20 are produced by the code:
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D=Biograph.mvna(d3.a) 
tra <- Parameters (d3.a)$trans_possible
etm.0 <- etm(data=D$D,c("J","N"),tra,"cens",s=0,t=20)

where d3.a is the Biograph object with ages at transition.

To display the results for age 20, use the code:

summary(etm.0)$"J N"[81:84,]
summary(etm.0)$"N J"[81:84,]

The state probabilities at age 30 are obtained from the state probabilities at age

20 and the empirical transition probabilities between ages 20 and 30, P̂ 20; 30ð Þ

0:6952 0:6135
0:3048 0:3865

� �
0:856
0:144

� �
¼ 0:6835

0:3165

� �
:

The following code produces the transition matrix P̂ 20; 30ð Þ:

etm.20_30 <-
etm(data=D$D,c("J","N"),tra,"cens",s=20,t=30)

The product of P̂ 20; 30ð Þ and p̂ 20ð Þ is:

t(etm.20_30$est[,,99])%*% 
t(etm.0$est[,,dim(etm.0$est)[3]])[,1]

The state occupation probabilities at age 30 p̂ 30ð Þ can be obtained by the code:

etm(data=D$D,c("J","N"),tra,"cens",s=0,t=30)

The probability of being employed at age 30 is 68.5 % if the person is employed

at the lowest age and 67.5 % if the person is not employed. Table 2.6 shows the state

probabilities at selected ages. The table shows the probabilities of occupying state J

(J_est) and state N (N_est) at selected ages and the 95 % confidence intervals

(J_lower, J_upper) and (N_lower, N_upper) for individuals who are

employed at the lowest age. The confidence intervals are computed by the sum-
mary.etm function of the etm package.

Table 2.6 Probabilities of being with/without a job at selected ages: non-parametric method.

GLHS, 201 respondents

age J_lower J_est J_upper N_lower N_est N_upper
1  15   0.827 0.926   1.000   0.000 0.074   0.173
2  20   0.786 0.856   0.926   0.074 0.144   0.214
3  25   0.641 0.707   0.774   0.226 0.293   0.359
4  30   0.618 0.684   0.749   0.251 0.316   0.382
5  40   0.624 0.699   0.774   0.226 0.301   0.376
6  50   0.600 0.688   0.775   0.225 0.312   0.400
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(b) Parametric Method: Piecewise Exponential Model

If the instantaneous transition rates are constant, the distribution of the waiting

time to the next transition is exponential. Assume that the instantaneous transition

rates are constant in the age interval from x to y: μij(τ)¼mij(x, y) for x� τ< y, with
mij(x,y) the transition rate during the (x,y)-interval. The matrix of transition prob-

abilities is P(x, y)¼ exp[�(y� x)m(x, y)]. If transition rates are age-specific with

age intervals of 1 year, then the transition probabilities between reference age x and
age y are obtained by the matrix expression

P x; yð Þ ¼ P x, xþ 1ð Þ P xþ 1, xþ 2ð Þ : : : P y� 1, yð Þ

with P(x, x+ 1)¼ exp[�m(x, x+ 1)].
To determine the value of exp[�m(x,y)], I use the Taylor series expansion. Note

that for matrix A, exp(A) may be written as a Taylor series expansion:

exp Að Þ ¼ I þ A þ 1

2!
A2 þ 1

3!
A3 þ 	 	 	

Hence,

exp � y� xð Þm x; yð Þ½ � ¼ I � y� xð Þm x; yð Þ þ y� xð Þ2
2!

m x; yð Þ½ � 2

� y� xð Þ3
3!

m x; yð Þ½ � 3 þ 	 	 	

(see also Schoen 1988, p. 72).

The estimator of the transition matrix is P̂ x; yð Þ ¼ exp � y� xð Þ m̂ x; yð Þ½ � with
m̂ x; yð Þ the matrix of empirical occurrence-exposure rates in the (x,y)-interval:
m̂ ij x; yð Þ ¼ Nij x; yð Þ=Ri x; yð Þ, where Nij(x,y) is the observed number of moves from

i to j during the interval and Ri(x,y) is the exposure time in i.
In case of two states, the rate equation may be written as follows:

m̂ 11 x; yð Þ � m̂ 21 x; yð Þ
� m̂ 12 x; yð Þ m̂ 22 x; yð Þ

� �
¼ N11 x; yð Þ �N21 x; yð Þ

�N12 x; yð Þ N22 x; yð Þ
� �

R1 x; yð Þ 0

0 R2 x; yð Þ
� ��1

where m̂ 11 x; yð Þ ¼ m̂ 12 x; yð Þ and m̂ 22 x; yð Þ ¼ m̂ 21 x; yð Þ. In matrix notation:

m̂ x; yð Þ ¼ N x; yð Þ R x; yð Þ½ ��1

Consider the example with 201 respondents. The age-specific transition rates are

shown in Table 2.3. The first state is J and the second N. The JN transition rate for

18-year-old individuals is 0.0806 and the NJ transition rate is 0.3024. They are

obtained by dividing the number of transitions by the exposure time in each state

between ages 18 and 19. The 1-year transition probability matrix is:
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P̂ 18; 19ð Þ ¼ exp � m̂ 18; 19ð Þ½ � ¼ exp � 0:0806 �0:3024
�0:0806 0:3024

� �� �

¼ 0:9330 0:2512
0:0670 0:7488

� �

The probability that an individual in the sample population who on his 18th

birthday has a job will be without a job on his 19th birthday is 6.7 %. The

probability that an 18-year-old without a job will be with a job 1 year later is

25.1 %. Bootstrapping is used to generate confidence intervals. The mean transition

probability produced by 100 bootstrap samples is 0.0665 for the JN transition, with

95 % confidence interval (0.0294, 0.1043), and 0.2583 for the NJ transition, with

95 % confidence interval (0.0000, 0.4611). The retention probabilities are 0.9335

for J, with confidence interval (0.8957, 0.9706), and 0.7417 for N, with confidence

interval (0.5389, 1.0000).

The state occupation probabilities at age 30 are obtained as the product of

the transition probability matrix P̂ 20; 30ð Þ and the state probabilities p̂ 20ð Þ.
In the subsample, 86 % is employed at age 20 and 14 % is without a job

(Table 2.6). The state probabilities at age 30 are p̂ 30ð Þ ¼ P̂ 20; 30ð Þ
p̂ 20ð Þ ¼ P̂ 29; 30ð Þ P̂ 28; 27ð Þ 	 	 	 P̂ 20; 21ð Þ p̂ 20ð Þ. It is equal to

0:6970 0:6144
0:3030 0:3856

� �
0:8646
0:1354

� �
¼ 0:6858

0:3142

� �
:

The 95 % confidence intervals of the state occupation probabilities at age

30, obtained from 100 bootstrap samples, are (0.6173, 0.7556) for J and (0.2444,

0.3827) for N. The estimates and their confidence interval are close to the figures

produced by the non-parametric method (Table 2.6).

2.4 Expected Waiting Times and State Occupation Times

State occupation times, also denoted as sojourn times and exposure times, are

durations of stay in a state or stage during a given period. They indicate the lengths

of episodes and are expressed in days, weeks, months or years if measured for a

single individual or in person-days to person-years if measured for a population.

Observed sojourn times are used to determine the exposure to the risk of a

transition. In this section, the focus is on expected sojourn times. The fundamental

question is: Given a set of transition rates, what is the expected sojourn time in a

state? Questions on durations of stay are omnipresent. What is the expected lifetime

(life expectancy)? What is the health expectancy, i.e. how many years may a person

expect to live healthy? What is the expected age at disability for those who ever

become disabled? What is the expected duration of marriage at time of divorce?
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What is the expected duration of unemployment for someone who becomes unem-

ployed?What is the expected number of years of working life for persons who retire

early? What these questions have in common is that they are about the length of

periods between two reference points. The reference points may be transitions such

as in the question on duration of marriage at divorce. Marriage and divorce are the

two transitions. The reference point may be any point in time. When the second

reference point is a transition, the expected sojourn time is equivalent to the

expected waiting time to the transition.

Expected occupation times depend on transition rates between two reference

ages. They also depend on the location of the observer. Suppose we want to know

the number of years a person may expect to live with cardiovascular disease

between ages 60 and 80. It depends on the transition rates between ages 60 and

80, including rates of death from cardiovascular disease or other causes. It also

depends on the reference age because the reference age introduces dependencies on

intervening transitions. The expected number of years with the disease is larger for

60-year-old individuals than for 0-year-old children because the latter category may

not reach age 60.

The sojourn time between ages x and y spent in each state of the state space by

state occupied at age x is xL(x, y)¼
Ð
y
xP(x, τ) dτ. The configuration of xL(x, y) is:

xL x; yð Þ ¼
1L1 x; yð Þ 2L1 x; yð Þ : : IL1 x; yð Þ
1L2 x; yð Þ 2L2 x; yð Þ : : IL2 x; yð Þ

: : : : :
: : : : :

1LI x; yð Þ 2LI x; yð Þ : : ILI x; yð Þ

2
66664

3
77775

The marginal state occupation times give the total expected sojourn time in the

system by state occupied at age x (column total).

The time spent in state j between ages x and y by an individual who is in state i at
exact age x is

ixLj x; yð Þ ¼
ð y

x

pij x; tð Þdt
� �

and for all states of origin and states of destination: xL(x, y)¼
Ð
y
xP(x, τ) dτ

In the above formulation, the expected occupation time in state j is conditional
on being in state i at age x. The occupation time is said to be status-based; it is
estimated for individuals in a given state at the reference age x. The population-
based occupation time is the expected occupation time in state j beyond age x,
irrespective of the state occupied at age x. It is the sum of status-based occupation

times between x and y, weighted by state probabilities at age x:

xLj(x, y)¼∑ i[pi(x)
Ð
y
xpij(x, τ)dτ] ¼∑ ipi(x) ixLj(x, y), where pi(x) is the probabil-

ity that an individual is in state i at age x.
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The expected state occupation times are derived from transition rates. Two

approaches are considered: the non-parametric approach and the (piecewise con-

stant) exponential model.

(a) Non-parametric Approach

Beyersmann and Putter (2014) present a non-parametric method for estimating

the expected state occupation time. Divide the period between age 0 and the highest

age ω in intervals. Intervals of 1 year are considered, but the method can be applied

to intervals of any length. Let pi(x) denote the state occupation probability at age x.
A natural estimate of the expected occupation time in i beyond age x, irrespective of
the state occupied at age x, is:

x L̂ i x; yð Þ ¼
Xy�1

τ¼x
x� x� 1ð Þ	 p̂ i

�
x

� 	 ¼ Xy�1

τ¼x
p̂ i xð Þ

The method assumes that an individual who is in state i at age x stays in i during the
entire year preceding x, and an individual who leaves i between x�1 and x leaves at
the beginning of the interval (at x�1). The assumption can be relaxed by reducing

the length of the interval or by making alternative assumptions about ages at entry

and exit. A plausible assumption is that transitions take place in the middle of the

interval. That assumption is valid if the interval is sufficiently short so that at most

one transition occurs during the interval. Multiple transitions during an interval

(tied transitions) require an assumption about the sequence of transitions.

(b) Parametric Approach: Exponential Model

A distinction is made between expected state occupation times between two ages

(closed interval) and expected state occupation times beyond a given age (open

interval). The reference age may be any age at or before the start of the interval. For

instance, the expected number of years in good health beyond age 65 may be

computed for persons aged 65 or for persons of an age below 65, e.g. at birth or

at labour market entry. The expected state occupation time may be conditioned on

the state occupied (and other characteristics) at the reference age or the first age of

the closed or open interval. The expected state occupation time may also be

conditioned on a future transition. Consider an employment career. The age at

which a person may experience a first episode without work after a period with

employment is lower for those who will ever experience an episode without work

than for the average population. The expected occupation time during an age

interval, conditioned on a transition occurring with certainty during that interval,

is less than the expected occupation time that is not conditioned on a transition

occurring. For instance, the expected duration of marriage at divorce is lower for

those who ever divorce than for the average married population. The latter includes

those who never divorce.

The time spent in state j between ages x and y by an individual who is in state i at

exact age x is xL(x, y)¼ [
Ð
y
xP(x, t)dt], where an element ixLj(x, y) denotes the time an

individual in i at age x may expect to spend in j between ages x and y. If the
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transition rates are constant in the (x,y)-age interval (exponential model), the

integration of the equation leads to

xL x; yð Þ ¼
ð y

x

P x; tð Þdt ¼
ð y

x

exp � t� xð Þm x; tð Þ½ � dt,

which is equal to

xL x; yð Þ ¼ m x; yð Þ½ � -1 I� exp � y� xð Þ m x; yð Þ½ �½ �,

provided m(x,y) is not singular. The expression is also shown by Namboodiri and

Suchindran (1987, p. 145), Schoen (1988, p. 101) and van Imhoff (1990). If m(x,y)
is singular, a very small value may be added to the diagonal elements of the matrix.

Izmirlian et al. (2000, p. 246), who consider the case with an absorbing state

(death), suggest to replace by one the zero diagonal element corresponding to the

absorbing state. I choose to add a small value (10�8) to the diagonal. It may be

viewed as a rate of a fictitious attrition. It is too small to occur between x and y but it
is large enough to make m(x,y) non-singular.

Taylor series expansion of exp[�(y� x) m(x, y)] results in the following equiv-

alent expression for the state occupation times (Schoen 1988, p. 73):

xL x;yð Þ¼ y� xð Þ I� y� xð Þ
2!

m x;yð Þþ y� xð Þ2
3!

m x;yð Þ½ � 2� y� xð Þ3
4!

m x;yð Þ½ �3þ		 	
" #

When the interval is short, the sojourn time may be approximated by the linear

integration hypothesis, which implies the assumption of uniform distribution of

events (linear model):

xL x; yð Þ ¼ y� x

2
Iþ P x; yð Þ½ �

The linear method is usually used in demography and actuarial science. It is

often referred to as the actuarial method.

The reference age may be any age at or before the start of the interval. Consider

the reference age zero. The expected time newborns may expect to spend in each

state between ages x and y, by state at birth, is

0L x; yð Þ ¼ xL x; yð ÞP 0; xð Þ

where P(0,x) represents the transition probabilities between ages 0 and x. When the

reference age changes from age 0 to age x, the expected length of stay in the various
states between ages x and y changes from an unconditional measure to a conditional

measure. It becomes conditional on being present in the population at x. The
measure is
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xL x; yð Þ ¼ 0L x; yð Þ P 0; xð Þ½ ��1
,

provided the inverse of P(0,x) exists. The state occupation times between ages x and
y, a newborn may expect, irrespective of the state occupied at birth is 0L(x, y)p(0).

The estimation of the expected state occupation times beyond a given age

requires the state occupation time beyond the highest age group. If at high ages

few transitions occur, the ages are often collapsed in an open-ended age group with

constant transition rates. Demographers use that approach to close the life table. Let

z denote the first age of the highest open-ended age group. The sojourn time in the

various states beyond age z by individuals present at z is zL(z,1)¼ [m(z,1)]�1,

where 1 denotes infinity.

The life expectancy at age x is the number of years an individual aged x may

expect to spend in each state beyond age x, by state occupied at x or irrespective of

the state occupied at x. It is xe(x,1)¼ [
Ð1
x P(x, t)dt]. An element ixej(x,1) of

xe(x,1) is the number of years an individual who is in state i at age x may expect

to spend in state j beyond age x. xe(x,1) is a matrix with the state at age x as the
column variable and the state occupied beyond age x the row variable. It gives the

expected remaining lifetime conditional on the state occupied at age x. In multistate

demography, it is known as the status-based life expectancy at age x. The popula-
tion-based life expectancy is the time an individual aged x may expect to spend in

each of the states beyond age x, irrespective of the state occupied at age x. It is

xe(x,1) multiplied by the vector of state occupation probabilities at age x.
If transition rates are age-specific, i.e. piecewise constant, and the length of an

age interval is 1 year, then the expected state occupation times at reference age x is

xe x;1ð Þ ¼
Xz�1

τ¼x xL τ, τ þ 1ð Þ þ xL z;1ð Þ

with xL(τ, τ + 1)¼ [m(τ, τ + 1)]�1 [exp[m(τ, τ + 1)]� I] and zL(z,1)¼ [m(z,1)]�1.

The expected occupation time in state i depends on the rate of leaving i. If the
exit rate between ages x and y is zero, an individual in i at age x will remain in i at
least until age y. If a departure from i occurs during the (x,y)- interval, it will occur
at an occupation time which is less than the expected occupation time. In other

words, the expected occupation time, conditioned on a transition occurring, is less

than the expected occupation time that is not conditioned on a transition occurring.

Consider an individual in state i at age x. The expected waiting time to leaving

i between x and y consists of two parts. The first is the state occupation time for

stayers. It is equal to y� x. The probability of staying in i during the entire interval

from x to y is the survival probability ixSi(y)¼ exp[�Ð
y
x μi(τ)dτ]. The second part is

the waiting time to an exit from i that occurs before y. It is denoted by oc
ix Li(x, y).

Hence, the occupation time equation is ixLi(x, y)¼ (y� x)ixSi(y) + oc
ix Li(x, y)

[1� ixSi(y)] and
oc
ix Li x; yð Þ ¼ ixLi x; yð Þ � y� xð ÞixSi yð Þ

1� ixSi yð Þ . It is the time an individual

aged x in i spends in i on a continuous basis before leaving, provided the exit occurs
before y. The occupation time equation distinguishes stayers and leavers.
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The fraction of an interval spent in a given state if a transition occurs with

certainty is frequently referred to as Chiang’s ‘a’, after the statistician Chiang who

introduced it. Chiang, who developed the measure in the context of mortality, called

‘a’ the fraction of the last year of life (Chiang 1968, pp. 190ff, 1984, pp. 142ff).

Schoen (1988, p. 8 and p. 71) uses the concept of mean duration at transfer to

denote the expected number of years before the transition. It is the product of

Chiang’s ‘a’ (fraction of the interval) and the length of the interval. If transitions are

uniformly distributed during the interval, the survival function is linear, and ‘a’ is

half the length of the interval. If the transition rate is constant during an interval, the

waiting time to the event is exponentially distributed. Consequently, the expected

time to an event that occurs with certainty is less than half the interval length. The

probability that an exit from state i during the (x,y)-interval occurs during the first

half of the interval, provided it occurs with certainty during the interval, is a ratio of

two distribution functions:
1� exp �y� x

2
mi x; yð Þ

h i
1� exp � y� xð Þmi x; yð Þ½ � :

Consider the 201 respondents and age 18. The expected occupation times in each

of the states of the state space (J and N) by state on the 18th birthday is:

18L 18; 19ð Þ ¼ 0:0806 �0:3024
�0:0806 0:3024

� �� ��1
1 0

0 1

� �
� 0:9330 0:2512

0:0670 0:7488

� �� �

¼ 0:9644 0:1336
0:0356 0:8664

� �

A person of exact age 18 with employment may expect to spend 0.036 years (less

than half a month) without employment before reaching age 19. The 95 % confi-

dence interval, produced by bootstrapping, is (0.0136, 0.0635). A person of the

same age without a job may expect to be employed during 0.134 years (1.6 months)

before his 19th birthday, with confidence interval (0.0323, 0.2663). A small figure

(10�8) has been added to the diagonal to prevent m(18,19) from being singular. A

person aged 18 with employment, who leaves employment before age 19, may

expect to leave employment after
0:9644� 0:9330

1� 0:933
¼ 0:4687 years or 5.6 months.

The Taylor series expansion gives about the same result. A sum of four terms plus

the identity matrix gives
0:9644 0:1336
0:0356 0:8664

� �
.

The number of years between the lowest age (14) and the highest age (54) is

40 years. Since states J and N are transient states, the total numbers of years spent in

the employment career between ages 14 and 54 is 40. If a hypothetical individual

starts at age 14 with a job and the employment career is governed by the

occurrence-exposure rates estimated from the GLHS subsample of 201 subjects,

then the expected number of years with a job is 28.66, and the number of years

without a job is 11.34. The average of the 100 bootstrap samples is 28.55 and 11.45,

respectively. The 95 % confidence intervals are (26.65, 30.28) and (9.72, 13.35).
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2.5 Synthetic Life Histories

The methods presented in the previous sections produce state probabilities and

expected occupation times that are consistent with empirical transition rates. The

state probabilities and the occupation times describe the expected life history, given

the data. The confidence intervals around the expected values indicate the degree of

uncertainty in the data. Transition rates are differentiated by age to capture the age

patterns of transitions. In this section, age-specific transition rates are considered,

with age intervals of 1 year. Transition rates are piecewise constant: they vary

between age groups, but they are constant within age groups. Individual life

histories differ from the expected life history because of observed differences

between individuals with different personal attributes, unobserved differences and

chance. The chance mechanism is the subject of this section. Observed and

unobserved differences are disregarded because they are beyond the scope of this

chapter. Synthetic individual life histories are generated using longitudinal

microsimulation (Willekens 2009; Zinn 2011, 2014; Zinn et al. 2013). The method

is consistent with discrete event simulation (DEV) methods.

To explain the chance mechanism, a single transition rate will do, and to explain

the basic principle of generating synthetic biographies, a single transition rate

matrix is sufficient. To generate more realistic synthetic biographies, age-specific

transition rates are used. Consider the 201 respondents of the GLHS sample and the

observation period between labour market entry and survey date. In Sect. 2.2, the

aggregate NJ transition rate was estimated at 0.096 per year (using msm). An
individual who previously had a job (the nature of the sample) and who is currently

without a job may expect to get another job in 10.4 years (1/0.096) on average. The

expected waiting time during the first year is (1/0.096)[1� exp(�0.096)]¼ 0.9534

years. It is high because at the time the data were collected a relatively large number

of respondents, in particular women, left the labour force and did not return. The

probability of experiencing the event in the first year is 9.154 % [100*(1�exp

(�0.096))]. An individual without a job, who gets a job within 1 year, waits

0.4920 years, on average. This is a little less than 6 months. Individual waiting

times are random variables; the values are distributed around these expected value.

Since the transition rate is constant at 0.096, individual waiting times are exponen-

tially distributed with a mean of 10.4 years and a variance of 108 years, assuming

no competing transition intervenes in the labour market transitions. The median

waiting time is 7.2 years [ln(2)]/0.096.

To obtain individual waiting times that are consistent with these expected

values, waiting times are drawn randomly from an exponential distribution with a

hazard rate 0.096 or, alternatively, a mean waiting time of 10.4 years. A random

draw is implemented in two steps. First, a random number is drawn from the

standard uniform continuous distribution U[0,1]. Every value between zero and

one is equally likely to occur. The random number drawn represents the probability

that the waiting time to the transition is less than or equal to t, where t needs to be

determined. Let α denote the probability. Hence, α¼ 1� exp[�0.096t]. Suppose
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α¼ 0.54. The value of t is derived from the inverse distribution function of the

exponential distribution. It is t ¼ � ln 1�αð Þ
0:096 ¼ � ln 1�0:54ð Þ

0:096 ¼ 8:09 years. n draws from

the uniform distribution result in n individual waiting times. If n is sufficiently

large, the sample mean is close to the expected value of 10.4 years, and the sample

variance is close to 108 years. One experiment of 1,000 draws resulted in a mean

waiting time of 10.11 years and a variance of 116.5 years. Another experiment

resulted in a mean waiting time of 9.89 years and a variance of 87.4 years.

The transition rate estimated from data, in this example 0.096, is subject to

sample variation. The rate is itself a random variable. If the number of observations

is sufficiently large, the rate is a normally distributed random variable with the

expected value as its mean. The 95 % confidence interval of the NJ transition

rate was estimated at (0.0804, 0.1146). To incorporate the degree of uncertainty in

the data in the generation of synthetic life histories, a transition rate may be drawn

from a normal distribution with mean ln(0.096) and standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=122 ¼p

0:0905. The standard deviation of the NJ transition rate was computed

in Sect. 2.2 of this chapter. If the value drawn from a normal distribution is denoted

by m, then the transition rate is exp(m). An alternative to drawing a transition rate

from a normal distribution is to resample the data (with replacement) and to

estimate the transition rate from the new sample. In this approach, the distribution

of the transition rate is the distribution generated by bootstrap samples. Consider

100 bootstrap samples and 100 transition rates, one from each sample. Each of these

transition rates is used to generate 1,000 individual waiting times. The collection of

waiting time incorporates the effects of sample variation and the exponential

distribution of waiting times. For a person without a job, the overall average waiting

time to a job is 10.54 years, and the variance is 115.00 years. The NJ transition rates

estimated in the bootstrap samples vary from 0.073 to 0.140, with mean rate 0.0967.

The aggregate transition rates may be used to generate employment histories.

The JN transition rate is 0.0533 and the NJ transition rate is 0.0960. Recall that

observations started at labour market entry (first job). Hence, N refers to being

without a job, after having had at least one job. The transition rate matrix is

m̂ ¼ 0:0533 �0:0960
�0:0533 0:0960

� �
. Everyone starts the employment history in J. The

starting time is zero, meaning that the time is measured as time elapsed since labour

market entry. The employment history is simulated for 30 years (simulation stop

time). The transition rates are assumed to remain constant during that period. In this

example, employment histories are sequences of transitions and waiting times to

transitions. They are assumed to be outcomes of a continuous-time Markov model

with constant rates. The simulation runs as follows. Let t denote time. An individual

starts in J at time 0. A random number is drawn from an exponential distribution

with transition rate 0.0533 to determine the time to transition from J to N. One draw

results in a transition at t¼ 8.29 years. To determine how long the individual stays

in N, a random number is drawn from an exponential distribution with transition

rate 0.096. The randomly selected time to NJ transition is 4.30 years. Hence, the

individual starts a second job 12.59 years after labour market entry (8.29 + 4.30).
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A new random waiting time is drawn from an exponential distribution with

transition rate 0.0533 to determine the time at the second JN transition. The number

is 24.00, which means that the transition would occur 36.59 years after labour

market entry. The transition time exceeds the time horizon of 30 years and is not

considered. When the simulation is discontinued, the individual is in state J. The

function sim.msm of the msm package is used to generate the life history of a

single individual. The code is

m <- array(c(0.0533,-0.0533,-0.096,0.096),
dim=c(2,2),dimnames=list(destination=c("J","N"),
origin=c("J","N")))
bio <- sim.msm (-t(m),mintime=0,maxtime=30,start=1)

where m is the transition rate matrix shown above, mintime is the starting time of

the simulation, maxtime is the ending time and start is the starting state (J is

state 1 and N is state 2). The object bio has two components. The first contains the

state sequence and the second the transition times.

The distribution of employment histories that are consistent with the transition

rates may be obtained by simulating a large number of employment histories. In this

simple illustration, the transition rates are assumed not to depend on age and to

remain constant during the period of 30 years. Simulation of 1,000 employment

histories results in the distribution shown in Table 2.7. The most frequent trajectory

is JNJ, about one third of all trajectories. The trajectories JN and J cover about one

fifth each. These 3 trajectories account for 68 % of all trajectories during a period of

30 years. For each trajectory, the median ages at transition are also shown. The table

is produced by the Sequences function of Biograph. The results of the simulation

are stored in a Biograph object, which facilitates analysis of the simulated life

histories.

Constant transition rates have been used for illustrative purposes only. Usually,

age-specific transition rates are used to generate synthetic life histories. Suppose an

individual enters his first job at age 21.3 (decimal year). He experiences the

employment exit rate from age 21.3 onwards until (a) he enters a period without

a job, (b) he experiences a competing transition, or (c) the ‘observation’ is censored,

i.e. simulation is discontinued. In this illustration, no competing transition is

considered. Hence, the waiting time to the JN transition depends on the

age-specific transition rates between age 21.3 and the age at which simulation is

discontinued, which in the sample of 201 respondents is 52. Age-specific transition

rates are weighted by exposure time. The transition rate at age 21 is multiplied by

Table 2.7 Employment histories in virtual population, based on GLHS aggregate transition rates

ncase % cum% path tr1     tr2     tr3     tr4
1   305 30.5 30.5 JNJ  9.12>N 19.95>J                
2   194 19.4 49.9    JN 20.35>N                        
3   185 18.5 68.4     J                                
4   130 13.0 81.4 JNJNJ 4.81>N 10.42>J 18.86>N 24.91>J
5   121 12.1 93.5  JNJN  6.53>N 13.28>J 25.83>N        
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the duration of exposure, which is 0.7 years (22.0�21.3). The transition rates at age

22 and higher are multiplied by one. The sum of the age-specific transition rates

beyond age 21 is the cumulative transition rate, computed at age 21. The waiting

time to the JN transition is determined by a random draw from an exponential

waiting time distribution associated with the cumulative transition rate computed at

age at labour market entry. The age at the JN transition is the current age plus the

waiting time to the JN transition. Suppose a waiting time of 3.4 years is drawn. The

individual will enter a period without a job at age 24.4. If the waiting time is such

that the age at transition exceeds the highest age in the observation scheme, then the

observation is censored at the highest age.

If the number of states exceeds two, the destination state must be determined in

addition to the time to transition. A multinomial distribution is used. The distribu-

tion is derived from the origin-destination-specific transition rates. If mij(x,y) is the
(i,j)-transition rate between ages x and y, then the probability of selecting state j,

conditional on leaving i, is iqj x; yð Þ ¼ mij x;yð ÞX
j 6¼i
mij x; yð Þ, with ∑ jiqj(x, y)¼ 1. The

probability is an event probability, not a transition probability. The probabilities

are used to partition the interval between the minimum probability (0) and the

maximum probability (1): {0, iq1, iq1 + iq2, iq1 + iq2 + iq3 . . . , 1}. A random

number is drawn from a standard uniform distribution, and the interval that corre-

sponds to its value determines the destination state. The method is implemented in

the msm package.

The method of estimating time to transition and destination state consists of two

steps. The first uses the exit rate from the current state, i say, to determine the time

to transition (exit from i). The exit rate is taken from the diagonal of the transition

rate matrix. The second step is to determine the destination, conditional on leaving

the current state. This method was suggested by Wolf (1986). An alternative but

equivalent method relies on the destination-specific transition rates. Consider an

individual in state i at age x. For each possible destination j random waiting

times are drawn from exponential distributions with parameters the cumulative

(i,j)-transition rates between x and the highest age: Aij(x,ω)¼
Ð
ω
x μij(τ)dτ. If transi-

tion rates are piecewise constant (age-specific), the cumulative hazard is piecewise

linear. The smallest random waiting time determines the destination. The two

methods rely on the theory of competing risks and assume that the waiting times

corresponding to the distinct destinations are independent. Zinn (2011, pp. 177ff)

shows that the two methods give similar results. Notice that the two methods are

also consistent with discrete event simulation (DEVS), although only the second

method stores randomly drawn waiting times in event queues before selecting the

shortest waiting time. The LifePaths (Statistics Canada2) and MicMac
microsimulation models (Gampe et al. 2009) use event queues. The msm package

uses exit rates and conditional destination probabilities.

For illustrative purposes, the transition rates in Table 2.3 are used to generate

synthetic employment histories for 2010 individuals, 10 for each observation in the

2 http://www.statcan.gc.ca/microsimulation/lifepaths/lifepaths-eng.htm
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GLHS subsample of 201 respondents. For each individual in the GLHS sample,

10 employment histories are simulated to reduce the Monte Carlo variation. The

employment career is simulated between a low age and a high age. The ages are

determined by individual observation periods in the GLHS subsample of

201 respondents. For instance, individual 1 enters the labour market at age 17 and

is 52 at interview. In the virtual population, ten individuals enter the labour market

at age 17 and are interviewed at age 52. Individual 4 is 22 at labour market entry and

31 at interview. The ages of labour market entry and interview of that respondent

are imposed on ten individuals in the virtual population. The simulated employment

histories cover the same age intervals as the observed employment histories.

Differences between simulated and observed employment trajectories are due to

sample variation affecting the estimated transition rates and Monte Carlo variation

in the simulation. Table 2.8 shows the main employment trajectories in the

Table 2.8 Employment histories in observed population and virtual population, based on

age-specific GLHS transition rates

A. Observed trajectories: males and females combined
ncase     %   cum%   case     tr1     tr2     tr3     tr4 

1    67 33.33  33.33      J 
2    54 26.87  60.20    JNJ 21.71>N 26.17>J
3    44 21.89  82.09     JN 24.88>N   
4    16  7.96  90.05  JNJNJ 20.83>N 23.96>J 25.62>N 29.62>J
5    10  4.98  95.02   JNJN 20.12>N 21.21>J 29.62>N   

B. Simulated trajectories: males and females combined
ncase     %   cum% case     tr1     tr2     tr3     tr4

1    627 31.19  31.19     J  
2    531 26.42  57.61   JNJ 22.99>N 27.33>J
3    294 14.63  72.24    JN  27.2>N
4    245 12.19  84.43  JNJN 21.21>N  24.3>J 30.31>N
5    218 10.85  95.27  NJNJ 20.66>N 22.31>J 26.92>N 32.43>J 

C. Observed trajectories: males
ncase     %   cum%      case     tr1     tr2     tr3     tr4     tr5    tr6

1    52 49.06  49.06         J            
2    41 38.68  87.74       JNJ 21.92>N 25.33>J 
3     6  5.66  93.40     JNJNJ 18.42>N 20.17>J 22.71>N 24.04>J
4     3  2.83  96.23        JN  27.5>N 
5     3  2.83  99.06   JNJNJNJ 18.17>N 19.67>J  21.5>N 22.08>J 33.17>N 35.75>J

D. Simulated trajectories: males
ncase     %   cum%      case     tr1     tr2     tr3     tr4     tr5     tr6 

1   518 48.87  48.87         J
2   314 29.62  78.49       JNJ  21.5>N 24.93>J
3   131 12.36  90.85     JNJNJ 20.54>N 22.54>J 26.81>N 28.85>J 
4    35  3.30  94.15      JNJN  21.3>N 23.37>J  34.4>N
5    23  2.17  96.32   JNJNJNJ  20.4>N 21.65>J 22.52>N 23.85>J  28.4>N 30.62>J

E. Observed trajectories: females
ncase     %   cum%    case     tr1     tr2     tr3     tr4     tr5     tr6 

1    41 43.16  43.16      JN 24.67>N
2    15 15.79  58.95       J 
3    13 13.68  72.63     JNJ  21.5>N 29.58>J 
4    10 10.53  83.16    JNJN 20.12>N 21.21>J 29.62>N
5    10 10.53  93.68   JNJNJ 23.21>N 26.29>J 27.62>N 32.25>J
6     5  5.26  98.95  JNJNJN  18.5>N 19.67>J 27.17>N 28.42>J 32.58>N
7     1  1.05 100.00 JNJNJNJ 21.92>N 22.08>J 33.83>N 35.08>J 39.83>N 40.17>J

F. Simulated trajectories: females
ncase     %   cum%       case     tr1     tr2     tr3     tr4

1    337 35.47  35.47         JN 25.32>N 
2    183 19.26  54.74       JNJN 21.13>N  25.5>J 30.11>N
3    174 18.32  73.05        JNJ 24.43>N 31.99>J
4    139 14.63  87.68          J
5     62  6.53  94.21      JNJNJ 20.91>N 24.31>J  28.8>N 37.05>J
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observed and the simulated population. For a given trajectory, the number of

simulated trajectories should be about 10 times the observed trajectories because

10 simulations were performed for each observation. The table also shows the

median ages at transition. The results differ considerably because in the GLHS,

which was organised in 1981, women and men report very different employment

histories, and the transition rates are not differentiated by sex. If the transition rates

are estimated separately for males and females and employment trajectories are

produced for the two sexes separately, the simulated trajectories are much closer to

the observations (Table 2.8). Among females, JN is the most frequent trajectory,

whereas it is quite rare among males. For both men and women, the model

accurately estimates the proportion of persons employed continuously throughout

the observation period. For women, it underestimates permanent withdrawal from

the labour market after a single employment episode and overestimates re-entry.

That may be due to a cohort effect with younger cohorts more likely to re-enter the

job market after a period of absence. The sample size is too small to estimate

age-specific transition rates by sex and birth cohort.

2.6 Conclusion

Life histories are operationalised as state and event sequences. Synthetic life

histories describe sequences that would result if individual life courses are

governed by transition rates estimated from life history data. Transition rates link

real and synthetic life histories. If transition rates are accurate, synthetic biogra-

phies mimic observed life paths. Life history data are generally incomplete. They

do not cover the entire life span. By combining data from similar individuals, the

transition rates may cover the entire life span. The estimation of transition rates

is crucial. In this chapter, two estimation methods are described. The first is

non-parametric and the second is parametric, or more appropriate, partial paramet-

ric. The non-parametric approach is common in biostatistics. The Nelson-Aalen

estimator of transition rates is distribution-free; it does not rely on an assumption

that the data are drawn from an underlying probability distribution. The partial

parametric method is common in demography, epidemiology and actuarial science.

The occurrence-exposure rate computed for an age interval assumes that the

transition rate is constant within the interval. Occurrence-exposure rates vary freely

between intervals. The two methods converge when the interval gets infinitesimally

small.

Transition rates are used to generate synthetic biographies. Synthetic biogra-

phies describe life histories in terms of state occupation probabilities and expected

state occupation times. Life expectancies, healthy life expectancies and active life

expectancies are examples of state occupation times. Life histories generated by the

most likely transition rates, given the data, are expected life histories. They apply to

a population. Few individuals have a life path that coincides with the expected life

history. Microsimulation is used to determine the distribution of individual life
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histories around expected life histories. The method presented in this chapter

involves drawing individual waiting times to transitions from piecewise exponen-

tial waiting time distributions. Sequences of waiting times are obtained by joining

randomly drawn waiting times. The method, which is referred to as longitudinal

microsimulation, is described in the chapter. The added value of synthetic individ-

ual life paths is the information they provide on the distribution of (1) state and

event sequences and (2) state occupation times around expected values. Synthetic

individual biographies describe life paths in a virtual population. The virtual

population closely resembles the real population if (1) transition rates are accurately

estimated and (2) the observation plan applied to the real population is also applied

to the virtual population, i.e. simulated life segments fully coincide with observed

life segments.

The variation of individual life histories indicates uncertainties in the data and

uncertainties associated with drawing random numbers from probability distribu-

tions. The uncertainties translate into uncertainties in transition rates, transition and

state probabilities and expected state occupation times. Uncertainties in transition

rates can be measured assuming that transition rates or transformations of transition

rates are normally distributed (asymptotic theory). The distributions of probabilities

and occupation times are more complicated and cannot always be expressed

analytically. In the chapter, bootstrapping is used to estimate the uncertainties in

transition probabilities, state probabilities and occupation times. If the cohort

biography (expected life path) is computed for each bootstrap sample, the distribu-

tion of cohort biographies can be determined. By combining bootstrapping and

longitudinal microsimulation, synthetic individual biographies can be produced

that incorporate uncertainties in the data and uncertainties introduced by the

microsimulation (Monte Carlo variation). The latter results from drawing random

numbers from probability distributions. The precision of the method of computing

synthetic biographies from real data is measured by comparing summary statistics

of virtual and real populations.

The methods described in this chapter are implemented in Biograph and other

packages discussed in this book. The packages have in common that they adopt a

counting process point of view (Aalen et al. 2008).
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Chapter 3

The Biograph Object

3.1 Introduction

A Biograph object is a data frame of individual life history data. All information on

the life history of a person is stored in a single record. That data format is known as

wide format. The wide format differs from the long format, in which information on

an episode or a transition is contained in a separate record. The structure of the data

frame is described in Sect. 3.2 of this chapter. In a Biograph object, life history data
are organised chronologically starting with the first reported state of the life course

and the first transition. That data structure is consistent with the life course as a

sequence of events and a sequence of states. Converting raw data from surveys,

registers or follow-up studies into a Biograph object can be cumbersome. Most

surveys are not organised from a life history perspective but from a life domain

perspective. In Sect. 3.3, I describe how to convert the GLHS data into a Biograph
object. The GLHS data structure is only one of the many possible data structures. It

is not possible to develop a single conversion method for all known data structures.

More on how to create a Biograph object and several examples may be found in

Annex A. Data analysis may require some operations on the data before the analysis

can start. In multistate modelling, that may involve the removal from the data of

transitions to the same state (intrastate transitions). In the GLHS data, job changes

are intrastate transitions. Other operations may change the observation window.

Biograph includes functions to change the observation window. One function

selects transitions between two time points (calendar time) or between two ages.

Another function delineates an observation window by two events or by an event

and the survey date. These operations change the structure of the data. Data

restructuring is the subject of Sect. 3.4. In Sect. 3.5 of this chapter, I review formats

of life history data and list functions that may be used to convert one data format

into another. A description of life histories includes information on states occupied

during the period of observation, on transitions between states and on the dates of

transition. Different ways exist to report dates. Most people use calendar dates, but
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dates may also be measured as time elapsed since a reference date or a reference

event. The Century Month Code (CMC), used in the GLHS, measures dates as the

number of months elapsed since 1 January 1900. Other surveys may express dates

differently. Section 3.6 covers different date formats and R functions, including

Biograph functions, for converting one date format into another.

It takes time and effort to create a Biograph object. It is a good investment,

however, because Biograph offers access to packages in CRAN for survival

analysis, sequence analysis and competing risks and multistate modelling. The

packages include survival, Epi, TraMineR, mstate, msm, mvna and etm. Biograph
includes functions that convert a Biograph object into objects required by these

packages: survival object, Lexis object (Epi), state-sequence object (TraMineR),
msdata object (mstate) and data frames for mvna, etm and msm. The data structures
of the objects required by these packages as input are documented in this chapter.

3.2 Description of a Biograph Object

A Biograph object is a data frame with one record for each subject. A record stores

data on personal attributes, the sequence of states occupied during the period of

observation and the reported transitions between states. The data structure is a wide

format, as opposed to the long format with one record for each episode or transition.

Table 3.1 shows a selection of the GLHS survey data, used by Blossfeld and

Rohwer (2002). The data were briefly discussed in Chap. 1. The data are collected

retrospectively and cover the period from birth to survey date. The 201 individuals

experience 600 job episodes and 382 episodes without a job.

Consider subject 1. He is a male born in March 1929 (CMC 351). The birth

cohort is 1929–1931. He enters the first job in March 1946 (CMC 555) at age 17.

Information on that first job episode ends at the beginning of November 1981 (CMC

983), which is the survey date. Blossfeld and Rohwer assume that the transition

occurs at the beginning of a month and that the survey takes place at the end of the

month. If the month of censoring is given and not the calendar date, Biograph
assumes that censoring occurs at the beginning of the month. Therefore, 1 month is

added to the censoring month given by Blossfeld and Rohwer: CMC 982 becomes

CMC 983 (see Sect. 3.6).

Table 3.1 Biograph object: GLHS data

ID born start end    sex edu marriage LMentry  cohort path Tr1 Tr2 Tr3 Tr4 Tr5 Tr6 Tr7
1   1  351   351 983   Male 17      679     555 1929-31    NJ 555  NA  NA  NA  NA  NA  NA
2   2  357   357 983 Female  10      762     593 1929-31    NJJJN 593 639 673 893  NA  NA  NA
3   3  473   473 983 Female  11      870     688 1939-41    NJJJJJN 688 700 730 742 817 829 NA
4   4  604   604 983 Female  13      872     872 1949-51    NJN 872 927  NA  NA  NA  NA  NA
5   5  377   377 983   Male  11      701     583 1929-31    NJJJ 583 651 788  NA  NA  NA  NA
6   6  492   492 983   Male 11      781     691 1939-41   NJNJNJNJ 691 717 728 754 771 847 859
7   7  476   476 983 Female   9      748     652 1939-41    NJJJJN 652 705 730 736 751  NA  NA
8   8  609   609 983   Male  11      881     838 1949-51    NJJJ 838 844 892  NA  NA  NA  NA
9   9  377   377 983   Male 12      690     591 1929-31    NJJJJ 591 602 634 643  NA  NA  NA
10 10  382   382 983   Male  11      824     580 1929-31    NJJNJ 580 701 843 862  NA  NA  NA
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Subject 2 is a female. She enters observation at birth (CMC 357). The observa-

tion is censored at CMC 983 at age 52. She enters the first job at the beginning of

month 593 (CMC) at age 19 and starts a new job at the beginning of month 639 at

age 23. The third job episode starts at the beginning of month 673 at age 26. It ends

at the end of month 892 and is followed by a period without a job, starting at the

beginning of month 893. The observation is censored at survey date at the begin-

ning of month 983, when the respondent is aged 44. At time of interview the

respondent has no job.

When multiple events occur during the same month, it is assumed that the events

occur at the same time, i.e. at the beginning of the month.1

Blossfeld and Rohwer study the 600 job episodes. Biograph considers the full

employment career that includes 600 job spells and 382 spells without a job. It

addresses the complete sequence of both states and events that characterise the

employment domain of the life course. Figure 3.1 shows the state space and the

possible transitions.

The data include the subject identification number (ID), date of birth, start and

end of observation (observation period or observation window), covariates and

information on states occupied during the observation period: the state sequence

and the dates of transitions. In Biograph, a state is denoted by a single character. A

state sequence is a character string; it is the successive states occupied during the

observation period. The dates are ordered chronologically, with the date at the first

transition displayed first, followed by the date at the second transition, etc. The

ordering is consistent with the state sequence. The number of states occupied during

the observation period is equal to the length of the character string denoting the

state sequence.

In R, objects may have attributes attached to it. A Biograph object has three

attributes. The first is the format of the dates, in this case CMC. The second attribute

is the format of the date of birth, in this case also CMC. The third attribute consists

of parameters that characterise the data. Object attributes will be explained later in

this chapter.

Job (J)No Job (N)

Fig. 3.1 Labour market data: state space and transitions. GLHS

1 Some packages for (multistate) survival analysis in R do not permit multiple events in the same

time unit.
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In the Biograph object a record contains the following variables (columns):

ID: identification number of respondent. ID is a numeric value. The

values do not need to be sequential, but they need to be numeric.

Character variables are not allowed.

born: date of birth of respondent. The date may be in CMC or another

date format. The date format is one of the attributes of the Biograph
object.

start: onset of observation

end: end of observation

Four

covariates:

sex (sex), highest educational attainment before entry into the

labour market (edu), date (CMC) of marriage (marriage) and
date (CMC) of entry into the labour market

path: sequence of states occupied during the observation period. The

variable path must be a character variable. Each state is

represented by a single character.

Tr*: transition dates in CMC. The maximum number of transitions is

determined by the data. In this subsample, it is 12.

The variable path (for life path) is a character variable representing the

sequence of states occupied during the observation period. The path should be a

character variable; otherwise, Biograph gives an error message and stops. You

should check that the variables are of the required type, using the str(GLHS)
command. The variables pres and NOJ are omitted since these variables are

associated with job episodes and not with persons.

The length of the string path gives the number of states an individual occupies

during the period of observation. The number of states the i-th individual occupies

is nchar(GLHS$path[i]). The respondent occupying the largest number of

states in the observation period is produced by the code:

It is the person with ID 194. The number of covariates may vary between data

sets. Biograph determines the number of covariates from the position of the

variable path in the data frame. In the data record, path always follows the

covariates. The column number that contains the variable path is identified by

the function locpath:

It is column 10. In locpath, the position of path is identified by the following

code:

GLHS[nchar(GLHS$path)==max(nchar(GLHS$path)),]

locpat <- locpath (GLHS)

which(GLHS[1,]==GLHS[1,"path"],arr.ind=TRUE)[2]
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The code shows why the name of the state sequence must be ‘path’ and why

path should be a character variable for the method to work. Any other variable

name will not work.

A Biograph object has three attributes attached to it. The first is the date format.

Possible date formats are CMC, year, age and calendar date. A calendar date is a

character string accepted by the as.Date function of base R. In the GLHS data,

the format is CMC. The attribute is defined by the code:

The second attribute is the date of birth format. The attribute is defined by the

code:

The third attribute is a set of parameters that characterise the data. The function

Parameters extracts the parameters from the data. The following code defines

the attribute:

The function Parameters is a function of the Biograph package. It derives from
the Biograph object (data set) a set of parameters that characterise the data, such as

sample size, state space, numbers of transitions, etc. The function also determines the

transitions that are included in the data. The function is documented in Chap. 4.

3.3 How to Create a Biograph Object?

In this section, I describe how to convert the GLHS data published by Blossfeld and

Rohwer (2002) into a Biograph object. The programme create.GLHS.r con-

verts the published data into a Biograph object. The programme is not part of the

Biograph package, but it is distributed with the package. It is located in the

documentation folder of the package source.

The published data file is an episode file. The filename is rrdat. The data are
conveniently included in the Biograph package. The data object rrdat can be

retrieved by typing data(rrdat) after loading the Biograph package. The data

file can also be downloaded from the designated website http://oldsite.soziologie-

blossfeld.de/eha/tda/ using the following code, provided the computer is connected

to the Internet:

attr(GLHS,"format.date") <- "CMC"

attr(GLHS,"format.born") <- "CMC"

attr(GLHS,"param")  <- Parameters (GLHS)

url.tda <- "http://oldsite.soziologie-
Blossfeld.de/eha/tda/cf_files/Data/RRDAT.1"
rrdat.1 <- as.matrix (read.table(file=url.tda),header=FALSE)
colnames(rrdat.1) <- c("ID","NOJ","TS","TF","SEX","TI","TB","TE",
"TM","PRES","PRES1","EDU")

rownames(rrdat.1) <-c(1:nrow(rrdat.1))
rrdat <- data.frame(rrdat.1)
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A selection of the GLHS survey data is presented in Table 3.2. The data contain

the date of birth and 5 covariates: sex, date of marriage, prestige score of the current

job, prestige score of the next job and level of education. Observation starts at birth

(TB) and ends at the date of interview (TI). A job episode is identified by a serial

number (NOJ) and is characterised by the starting date of the episode (TS) and the

ending date (TF). The starting date of the first job episode is the date of entry into

the labour market. Dates are given in Century Month Code (CMC).

The Biograph object is prepared in five steps. The first is the specification of the
state space and the possible transitions. The state space consists of two states: no job

(N) and job (J). Everyone starts in state N. In this simple case, three transitions are

possible: from no job to job (NJ), from job to no job (JN) and from a job to another

job (JJ). In other state spaces, some transitions may not be possible. If the state

space consists of marital statuses, for instance, the transition from married to never

married is not feasible. The second step is the selection of covariates. The third step

is the specification of the observation window for each subject. It requires the dates

at start and end of observation. In the fourth step, the state sequence is determined

and the dates at transition are recorded. In the fifth and final step, all data are stored

in a data frame, three data attributes are attached to the data frame. The first

attribute is the format of the transition dates, the second the format of the dates of

birth and the third a set of parameters that characterise the data. The parameters

include the transition matrix, i.e. the matrix of possible and relevant transitions.

Table 3.2 GLHS input data for Blossfeld and Rohwer’s TDA programme (rrdat)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1 1 555 982 1 982 351 555 679 34 �1 17

2 1 593 638 2 982 357 593 762 22 46 10

2 2 639 672 2 982 357 593 762 46 46 10

2 3 673 892 2 357 593 762 46 �1 10

Variable Name Description

1 ID Identification number of subject

2 NOJ Serial number of the job episode

3 TS Starting time of the job episode

4 TF Ending time of the job episode

5 SEX Sex (1 male; 2 females)

6 TI Date of interview (CMC)

7 TB Date of birth (CMC)

8 T1 Date of entry into the labour market (CMC) (denoted by TE)

9 TM Date of marriage (CMC) [0 if not married]

10 PRES Prestige score of current job, i.e. of job episode in current record of data

file

11 PRESN Prestige score of the next job (if missing, �1)

12 EDU Highest educational attainment before entry into labour market
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The reshape function is used to convert the long format to a wide format.

When creating the wide format, the attributes of episodes (NOJ, PRES and PRESN)

are omitted and a new covariate (birth cohort) is defined.

The Blossfeld-Rohwer data are limited to job episodes, with information on the

starting month and ending month of a job episode. The authors assume that job

episodes start at the beginning of a month and end at the end of a month. In

Biograph, the end of an episode is not considered explicitly because the end of an

episode is the beginning of a new episode. Episodes are assumed to start at the

beginning of the month. From the data on job episodes, the start dates and end dates

of episodes without a job are extracted.

Three attributes are added to the data set. The first is the format of the transition

dates:

The second is the format of the birth dates:

The third is the set of parameters:

The parameters include the matrix of feasible transitions that some packages

require (Parameters(GLHS)$tmat).
In Chap. 8, the creation of a Biograph object is described using the data from

the Netherlands Family and Fertility Survey (NLOG98). Annex A illustrates the

creation of a Biograph object using other data than the GLHS and the NLOG98.

The data include hypothetical data and real data. The first hypothetical data set

carries information on three subjects, the second on 22 subjects. The third example

of how to prepare a Biograph object uses data from the Survey of Health, Ageing

and Retirement in Europe (SHARE). The SHARE survey is modelled after the US

Health and Retirement Survey (HRS). The fourth example uses data from the

National Family Health Survey of India, which is one of many Demographic and

Health Surveys (DHS) organised in Third World countries and countries in transi-

tion. The fifth example uses medical data included in the mstate package for

multistate modelling in R, developed by Putter and colleagues at Leiden University

Medical Center. The data cover 2,279 leukaemia patients who had a bone marrow

transplant. The final example uses simulated life history data.

3.4 Data Restructuring

In applied research, an analysis is often performed on a subset of a (sample)

population or part of an observation period. First, I consider a selection of a subset

of data. Data restructuring is considered next. Suppose we want to restrict the analysis

of GLHS data to a subset of the sample population, e.g. women born in 1939–1941.

attr(GLHS,"format.date") <- "CMC"

attr(GLHS,"format.born") <- "CMC"

attr(GLHS,"param") <- Parameters (GLHS)
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To select the subset of the sample population, the subset function of base R is used:

or GLHS[GLHS$sex¼¼"Female"&GLHS$cohort¼¼"1929-31",].
The use of the subset function removes the attributes. They need to be added

to the GLHS.c1 object.

Biograph includes three functions to select subsets of data. The first function,

Remove.intrastate, selects transitions to destination states that differ from the

origin states and removes transitions to the same state. In the GLHS data, many

transitions are from one job to another job. In multistate event history analysis, these

transitions are referred to as intrastate moves as opposed to interstate moves. Some

packages for multistate survival analysis require that the intrastate transitions are

removed, e.g. the mvna and the mstate packages. The second and third functions,

ChangeObservationWindow.e and ChangeObservationWindow.t,
redefine the observation window. These functions are presented now.

(a) Remove intrastate transitions.

To function Remove.intrastate removes intrastate transitions from the

data set:

The object GLHS.0 is the data with intrastate transitions removed and the

attributes of the Biograph object are updated. The attribute changes because

intrastate transitions are no longer possible. Table 3.3 shows the first records of

the new data.

(b) Change observation window.

Two functions change the observation window. The first function, Change-
ObservationWindow.e, selects observations between two transitions or a transi-
tion and the survey date. The second function, ChangeObservationWindow.t,
selects observations between two time points or two ages. The (age at) survey datemay

be one of these points. Before these functions are called, the function Parameters
needs to be invoked (see further).

The function ChangeObservationWindow.e defines an observation win-

dow from entry into a given state of the state space (entry state) to entry into another

GLHS.c1 <- subset 
(GLHS,GLHS$sex=="Female"&GLHS$cohort=="1939-41")

GLHS.0 <- Remove.intrastate (Bdata=GLHS)

Table 3.3 Biograph object: GLHS data with intrastate transitions removed

ID born start end    sex edu marriage LMentry  cohort     path Tr1 Tr2 Tr3 Tr4 Tr5 Tr6 Tr7
1   1  351   351 983   Male  17      679     555 1929-31    NJ 555  NA  NA  NA  NA  NA  NA
2   2  357   357 983 Female  10      762     593 1929-31    NJN 593 893  NA  NA  NA  NA  NA
3   3  473   473 983 Female  11      870     688 1939-41    NJN 688 829  NA  NA  NA  NA  NA
4   4  604   604 983 Female  13      872     872 1949-51    NJN 872 927  NA  NA  NA  NA  NA
5   5  377   377 983   Male  11      701     583 1929-31    NJ 583  NA  NA  NA  NA  NA  NA
6   6  492   492 983   Male 11      781     691 1939-41  NJNJNJNJ 691 717 728 754 771 847 859
7   7  476   476 983 Female   9      748     652 1939-41    NJN 652 751  NA  NA  NA  NA  NA
8   8  609   609 983   Male  11      881     838 1949-51    NJ 838  NA  NA  NA  NA  NA  NA
9   9  377   377 983   Male  12      690     591 1929-31   NJ 591  NA  NA  NA  NA  NA  NA
10 10  382   382 983   Male  11      824     580 1929-31    NJNJ 580 843 862  NA  NA  NA  NA
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given state (exit state). In the original GLHS data, the observation window extends

from birth to survey date. All state occupancies and transitions since birth are

considered. Suppose we want to start observation at labour market entry and end

observation at survey date. The segment of life before labour market entry needs to be

removed from the data. The new data set that results consists of observations that start

at labour market entry. In calling the function ChangeObservationWindow.e,
the entry state should be specified. The exit state is set equal to NA if observation

ends at survey date. The following code results in an observation window that starts at

labour market entry and ends at survey date:

Table 3.4 shows selected result.

If you want to limit the observation from birth to labour market entry, use:

Table 3.5 shows selected results.

The function ChangeObservationWindow.t defines an observation win-

dow as the period between two points in time or between two ages. Suppose we

wish to study the GLHS observations recorded between CMC 600 and CMC 800.

The starting time of observation is 600 and the ending time 800. The time interval is

given in the time scale used in the Biograph object.

If the dates are given in CMC, the interval must also be given in CMC. Events

that occur later than CMC 800 are omitted. The code is:

Since the covariates include date variables (date of marriage and date of labour

market entry), these dates need to be considered too. Table 3.6 shows a selection of

the observations recorded between CMC 600 and CMC 800.

entry <- "J"
exit <- NA
GLHS.y2 <- ChangeObservationWindow.e 

(Bdata=GLHS,entrystate=entry,exitstate=exit)

entrystate <- "N"
exitstate <- "J"
GLHS.y3 <- ChangeObservationWindow.e 

(Bdata=GLHS,entrystate,exitstate)

Table 3.4 Biograph object: GLHS data with observation window starting at labour market entry

ID born start end    sex edu marriage LMentry  cohort path Tr1 Tr2 Tr3 Tr4 Tr5 Tr6
1   1  351   555 983   Male 17      679     555 1929-31        J  NA  NA  NA  NA  NA  NA
2   2  357   593 983 Female  10      762     593 1929-31    JJJN 639 673 893  NA  NA  NA
3   3  473  688 983 Female  11      870     688 1939-41    JJJJJN 700 730 742 817 829  NA
4   4  604   872 983 Female  13      872     872 1949-51    JN 927  NA  NA  NA  NA  NA
5   5  377   583 983   Male  11      701     583 1929-31    JJJ 651 788  NA  NA  NA NA
6   6  492   691 983   Male 11      781     691 1939-41   JNJNJNJ 717 728 754 771 847 859
7   7  476   652 983 Female  9      748     652 1939-41     JJJJN 705 730 736 751  NA  NA
8   8  609   838 983   Male  11 881     838 1949-51      JJJ 844 892  NA  NA  NA  NA
9   9  377   591 983   Male  12      690     591 1929-31   JJJJ 602 634 643  NA  NA  NA
10 10  382   580 983   Male  11      824     580 1929-31 JJNJ 701 843 862  NA  NA  NA

GLHS.y4 <- ChangeObservationWindow.t 
(Bdata=GLHS,
starttime=600,
endtime=800,
covs.dates=c("marriage","LMentry"))
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A similar procedure can be used to define an observation window between two

ages. First, convert the CMCs in the Biograph object to ages (for a description of

the function, see below):

The function ChangeObservationWindow.t can be used with the new

data set. To select observations between ages 20 and 40, use:

3.5 Other Data Formats

The Biograph data format has one row per subject. It is one of several data formats

used in R packages for the analysis of transition data, state sequences and event

sequences. Biograph has a number of functions that convert a Biograph object into

a data frame that can be accessed by other packages. Packages sometimes require

not only a particular input data structure but also specific column labels. Biograph
takes care of that too. Before the conversion functions are presented, I briefly

review data structures.

Three data types may be associated with life histories that are represented by

sequences of states and transitions between states: status data, event data and

GLHS.a <- date.b(Bdata=GLHS,
format.in="CMC",
selectday=1,
format.out="age",
covs=c("marriage","LMentry"))

GLHS.y5 <- ChangeObservationWindow.t 
(Bdata=GLHS.a,
starttime=20,
endtime=40,
covs.dates=c("marriage","LMentry"))

Table 3.5 Biograph object: GLHS data with observation window starting at birth and ending at

labour market entry

ID born start end     sex edu marriage LMentry cohort path Tr1 Tr2 Tr3 Tr4 Tr5 Tr6 Tr7 Tr8 
1   1  351   351 555   Males  17      679 555 1929-31    NJ 555  NA  NA  NA  NA  NA  NA  NA
4   2  357   357 593 Females  10      762 593 1929-31      NJ 593  NA  NA  NA  NA  NA  NA  NA
9   3  473   473 688 Females  11      870 688 1939-41    NJ 688  NA  NA  NA  NA  NA  NA  NA
10  4  604   604 872 Females  13      872 872 1949-51      NJ 872  NA  NA  NA  NA  NA  NA  NA  
13  5  377   377 583   Males  11      701 583 1929-31    NJ 583  NA  NA  NA  NA  NA  NA  NA  
17  6  492   492 691   Males  11      781 691 1939-41    NJ 691  NA  NA  NA  NA  NA  NA  NA  
21  7  476   476 652 Females   9      748 652 1939-41    NJ 652  NA  NA  NA  NA  NA  NA  NA  
24  8  609   609 838   Males  11      881 838 1949-51      NJ 838  NA  NA  NA  NA  NA  NA  NA  
28  9  377   377 591   Males 12      690 591 1929-31    NJ 591  NA  NA  NA  NA  NA  NA  NA  
31 10  382   382 580   Males  11      824 580 1929-31    NJ 580  NA  NA  NA  NA  NA  NA  NA

Table 3.6 Biograph object: GLHS observations from CMC 600 to CMC 800

ID born start end    sex edu marriage LMentry  cohort path Tr1 Tr2 Tr3 Tr4 Tr5
1   1  351   600 800   Male  17      679     555 1929-31    J  NA  NA  NA  NA  NA
2   2  357   600 800 Female  10      762     593 1929-31    JJJ 639 673  NA  NA  NA
3   3  473   600 800 Female  11      870     688 1939-41    NJJJJ 688 700 730 742  NA
4   4  604   604 800 Female  13      872     872 1949-51    N  NA  NA  NA  NA  NA
5   5  377   600 800   Male  11 701     583 1929-31     JJJ 651 788  NA  NA  NA
6   6  492   600 800   Male 11      781     691 1939-41   NJNJNJ 691 717 728 754 771
7   7  476   600 800 Female 9      748     652 1939-41  NJJJJN 652 705 730 736 751
8   8  609   609 800   Male  11      881     838 1949-51  N  NA  NA  NA  NA  NA
9   9  377   600 800   Male  12      690     591 1929-31    JJJJ 602 634 643  NA  NA
10 10  382   600 800   Male  11      824     580 1929-31   JJ 701  NA  NA  NA  NA
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episode data. In economics, episodes are generally referred to as spells. Status data
are common for repeated measurements such as panel surveys. For each measure-

ment or observation, the time in a given time scale (e.g. age or calendar time) and

the state occupied are recorded. If at two consecutive points in time different states

are recorded, a transition has occurred. No information is usually available on the

date of the transition. Status data are interval-censored data: the time interval in

which the transition occurs is known, but the precise date is not. The origin state is

the prior state; the destination state is the current state. Event data show for each

event or transition the (exact) date, the origin state and the destination state. Episode
data are closely related to event data. They show for each episode the state

occupied, date at start of episode, date at end of episode (stop) and the reason for

ending. A status (0–1) variable is used to denote whether the end of an episode is

due to the transition of interest (1) or an event unrelated to the transition being

studied (censoring) (0). This data structure is referred to as the counting process

data structure. The format was proposed by Andersen and Gill (1982). It is used in

the survival package (Therneau 1999, 2014; Lumley 2004) and other packages for

survival analysis. The format allows for left truncation and right censoring. The

period between start and end defines the time period exposed to the risk of

experiencing the transition.

The distinction between status data and event data is mirrored in the description

of life histories. Life histories are described as state sequences or event sequences.

Biograph uses both types of life history data but emphasises state sequence.

The description of life histories follows one of two data formats: a wide format

with one record per subject and a long format with one record for each episode or

transition. In the latter format, data on an individual are distributed over several

records, one for each transition or episode. The wide format is common in social

sciences and health sciences. For example, the Demographic and Health Surveys

uses the wide format. TraMineR, an R package for describing and visualising state

and event sequences, uses the wide format (Gabadinho et al. 2011). The long format

is common in event history analysis because it is considered to be more flexible.

Blossfeld and Rohwer (2002) use the long format to present episode data. In their

terminology, the wide format is known as person file and the long format as episode

file. For further discussion on the structure of episode data, see Alter and

Gutmann (1999).

Gabadinho et al. (2012) distinguish the same three data types, but they also

consider additional data formats. For instance, the wide format includes a data

format in which successive states are given in consecutive columns (the state-

sequence (STS) format), a format in which successive states are listed together

with the duration in the state (the state-permanence-sequence (SPS) format), and

the format in which successive states are listed without the duration (the distinct-

state-sequence (DSS) format). The sequence of states occupied may be displayed in

an extended format or a compressed format. In the extended format, the state

occupied is recorded every year (or other time unit) and the state sequence is a

vector of length equal to the number of ages that are covered by the observation

window. In the compressed format a state sequence is represented by (i) a sequence
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of letters or combination of letters (words) or (ii) a sequence of numerical codes.

The codes are separated by a separation character. Gabadinho et al. also consider

the long format, covering the episode format and the event format. In the episode

format, which is referred to as SPELL format, there is one line for each spell

(episode), and a spell is characterised by the state occupied, a starting date and an

ending date. In the event format, referred to as vertical time-stamped-event (TSE)

format, there is one record for each transition and a transition is characterised by the

transition number and the time at which the transition occurs.

Now I consider three data structures in more detail: person data (wide format),

episode data (long format) and event data (long format).

(a) Person data (wide format)

The Biograph object has data in a wide format (person file). A single record

contains all data of an individual. The number of records equals the sample size. A

state is denoted by a single character and the state sequence is a character string (the

path variable).

TraMineR (Gabadinho et al. 2012) uses the data format with one record per

subject (wide format). In the extended format, state sequences are given as vectors

of states. The data set is a matrix with subject ID as the row variable and age as the

column variable. Table 3.7 shows a selection of GLHS data (subjects 1–10 and ages

15–25 and 40–45) in the extended format. The states are out of a job (N), in a job

(J) and censored (+). The same table can be obtained from the object produced by

the Occup function of Biograph (see next chapter). The code to generate the data is
Occup(GLHS)$st_age_1[1:10,c(16:26,41:46)]. The object may be

used as input to TraMineR.
The extended format can be converted to a compressed format by the seqconc

function of the TraMineR package:

In the compressed format a sequence is represented as a character string. The

states are represented by words or numerical codes separated by a specific separa-

tion character. In TraMineR the default separator is ‘�’. The separator can be

omitted provided a state is represented by a single character or digit:

Table 3.8 shows a selection of the data in the compressed format. Note that each

string has 54 characters, which is the number of ages from 0 to 53. The number of

characters is nchar(DtraMineR2[1]).
The function seqdef of the TraMineR package converts DTraMineR in a

sequence object, a pivotal object in the TraMineR package (see further).

(b) Episode data (long format)

Blossfeld and Rohwer (2002) use the long format to present episode data.

Several packages in CRAN use the long format, e.g. survival, eha, mvna, etm,

library (TraMineR)
DTraMineR <- seqconc (occup$st_age_1,sep="-")

DTraMineR2 <- seqconc (occup$st_age_1,sep="")
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Epi and mstate. The survival and eha packages use the same long format. The other

packages use different long formats. In the long format used by the first two

packages, the data are in a data frame with a row for each episode and at least the

following columns:

Tstart: starting date of episode

Tstop: ending date of episode

Event: indicator variable, indicating whether the episode ends in the event of

interest (1) or censoring (0)

If all episodes start at the same date (e.g. 0), the Tstart column may be

omitted. In that case, the Tstop variable is replaced by a variable

labelled time. The data format is known as the counting process data format,

which was proposed by Andersen and Gill (1982). The Surv function of the

survival package converts data in a counting process format to a survival object.

The same Surv function is used in the eha package. Note that the presence or

absence of Tstart implies different time scales. If Tstart and Tstop are

given, the time scale measures time in calendar time, CMC, days since 1 January

1970 or another exogenous time scale. If time is used, the time scale measures

time since entry in the current state. The variable time is equal to Tstop –
Tstart. In the context of multistate modelling, Putter et al. (2007) refer to the first

time scale as the clock forward approach and to the second as the clock reset
approach.

Table 3.9 shows the GLHS data in episode format, as required by the survival
package. There is one record for every episode. The number of records is therefore

equal to the number of episodes. In the GLHS data, the subsample has a total of

Table 3.7 GLHS data in TraMineR extended format: states occupied at birthdays

age
ID   15  16  17  18  19  20  21  22  23  24  25  40  41  42  43  44  45 

1  "N" "N" "N" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J"
2  "N" "N" "N" "N" "N" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "N"
3  "N" "N" "N" "J" "J" "J" "J" "J" "J" "J" "J" "N" "N" "N" "+" "+" "+"
4  "N" "N" "N" "N" "N" "N" "N" "N" "J" "J" "J" "+" "+" "+" "+" "+" "+"
5  "N" "N" "N" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J"
6  "N" "N" "J" "J" "N" "J" "J" "N" "N" "J" "J" "J" "+" "+" "+" "+" "+"
7  "J" "J" "J" "J" "J" "J" "J" "J" "N" "N" "N" "N" "N" "N" "+" "+" "+"
8  "N" "N" "N" "N" "N" "J" "J" "J" "J" "J" "J" "+" "+" "+" "+" "+" "+"
9  "N" "N" "N" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" "J"
10 "N" "N" "J" "J" "J" "J" "J" "J" "J" "J" "J" "N" "J" "J" "J" "J" "J"

Table 3.8 GLHS data in TraMineR compressed format

[1]   "NNNNNNNNNNNNNNNNNNJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ+"
[2]   "NNNNNNNNNNNNNNNNNNNNJJJJJJJJJJJJJJJJJJJJJJJJJNNNNNNNN+"
[3]   "NNNNNNNNNNNNNNNNNNJJJJJJJJJJJJNNNNNNNNNNNNN+++++++++++"
[4]   "NNNNNNNNNNNNNNNNNNNNNNNJJJJNNNNN++++++++++++++++++++++"
[5]   "NNNNNNNNNNNNNNNNNNJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ+++"
[6]   "NNNNNNNNNNNNNNNNNJJNJJNNJJJJJJNJJJJJJJJJJ+++++++++++++"
[7]   "NNNNNNNNNNNNNNNJJJJJJJJNNNNNNNNNNNNNNNNNNNN+++++++++++"
[8]   "NNNNNNNNNNNNNNNNNNNNJJJJJJJJJJJJ++++++++++++++++++++++"
[9]   "NNNNNNNNNNNNNNNNNNJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ+++"
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982 episodes, 600 job spells and 382 episodes without a job. The state occupied

during the episode is given in the OR (origin) column. The starting date of the

episode is given by Tstart and the ending date by Tstop. An episode may end

because the subject experiences a transition to a new episode or an unrelated

transition, or the observation is terminated. The status variable denotes whether

the ending of an episode is caused by an event (transition of interest) (status¼1)

or censoring (status¼0). If status is equal to one, the destination state is given

in the DES (destination) column. The variable trans denotes the transition

number. These numbers are contained in the object Parameters(GLHS)
$tmat, produced by the Parameters function of Biograph. The NJ transition

has number 1, the JN transition 2 and the JJ transition 3. The transition number is

followed by the covariates and the date of birth (column ‘born’).
The data in the long format are produced by the code:

The results are stored in object Dlong, which consists of two components. The

first, Dlong$Devent, has event data (see Section c). The second, Dlong
$Depisode, has episode data. The component Dlong$Depisode is a data

frame with 982 rows. The Biograph.long function uses the reshape function

from the stats package because of its speed. The reshape function generates an

event file and Biograph.long converts the event file into an episode file.

Some packages, includingmvna andmstate, require that intrastate transitions are
omitted. In that case, a transition from J to J is not possible. The function Remove.
intrastate removes intrastate transitions.

An object of class Lexis is the main data object of the Epi package. It

represents follow-up data in multiple time scales, such as calendar time, age and

time since a reference event (e.g. labour market entry). In this book, two time scales

are considered: calendar time and age. The data format is a long format with one

record for each episode. The Lexis object is a data frame with a variable for each

time scale and four variables with reserved names starting with lex:

Table 3.9 GLHS data in episode format

ID OR  DES Tstart Tstop status trans sex pres edu marriage NOJ  TE  cohort born
1   1  N    J    351   555      1     1   1   0   17      679   0 555 1929-31  351
2   1  J cens    555   983      0     2   1   0   17      679   0 555 1929-31  351
3   2  N    J    357   593      1     1   2   0   10      762   0 593 1929-31  357
4   2  J    J    593   639      1     3   2   0   10      762   0 593 1929-31  357
5   2  J    J    639   673      1     3   2   0   10      762   0 593 1929-31  357
6   2  J    N    673   893      1     2   2   0   10      762   0 593 1929-31  357
7   2  N cens    893   983      0     1   2   0   10      762   0 593 1929-31  357
8   3  N    J    473   688      1     1   2   0   11      870   0 688 1939-41  473
9   3  J    J    688   700      1     3   2   0   11      870   0 688 1939-41  473
10  3  J    J    700   730      1     3   2   0   11      870   0 688 1939-41  473
11  3  J    J    730   742      1     3   2   0   11      870   0 688 1939-41  473
12  3  J    J    742   817      1     3   2   0   11      870   0 688 1939-41  473
13  3  J    N    817   829      1     2   2   0   11      870   0 688 1939-41  473
14  3  N cens    829   983      0     1   2   0   11      870   0 688 1939-41  473

Dlong <- Biograph.long (Bdata=GLHS)
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per calendar time at start of episode

age age at start of episode

lex.dur length of the episode (duration of follow-up)

lex.Cst state occupied during the episode, also referred to as

current state and entry state. It is the state in which the

follow-up takes place

lex.Xst exit status (eXit state), i.e. the state taken up after a

transition out of lex.Cst. It is also referred to as

destination state

lex.id Subject identification number

The arguments per, age and lex.dur define the start and length of the

episode in two time scales (calendar time and age). Only two of the three elements

need to be given. They should be numeric. The third element is imputed. The

arguments lex.Cst and lex.Xst define the state at entry and the state at exit.

They are character variables. The Lexis object may contain other variables,

e.g. covariates. The function Biograph.Lexis converts a Biograph object

into a Lexis object:

The function relies on the Lexis function of the Epi package to convert the

data. If the argument Dlong is missing, it is computed. The Lexis function

converts the arguments lex.Cst and lex.Xst from character variables to

factors. The function produces a Lexis object with the six variables listed above

and with covariates and other data copied from the Biograph object GLHS. For

details on the Lexis object, see Plummer and Carstensen (2011).

Table 3.10 shows the Lexis object for the first four respondents in the GLHS

subsample. The required variables are shown and one variable (status) is added.

Dlexis <- Biograph.Lexis (Bdata=GLHS,
Dlong=Dlong$Depisode)

Table 3.10 Lexis object: GLHS data

lex.id      per      age    lex.dur lex.Cst lex.Xst status
1       1 1929.162  0.00000 17.0000000       N       J      1
2       1 1946.162 17.00000 35.6712329       J       J      0
3       2 1929.666  0.00000 19.6630137       N       J      1
4       2 1949.329 19.66301  3.8328767       J       J      1
5       2 1953.162 23.49589  2.8383562       J       J      1
6       2 1956.000 26.33425 18.3287671       J       N      1
7       2 1974.329 44.66301  7.5041096       N       N      0
8       3 1939.329  0.00000 17.9178082       N       J      1
9       3 1957.247 17.91781  1.0000000       J       J      1
10      3 1958.247 18.91781  2.5020585       J       J      1
11      3 1960.749 21.41987  0.9993113       J       J      1
12      3 1961.748 22.41918  6.2520548       J       J      1
13      3 1968.000 28.67123  1.0000000       J       N      1
14      3 1969.000 29.67123 12.8328767       N       N      0
15      4 1950.247  0.00000 22.3353919       N       J      1
16      4 1972.582 22.33539  4.5796766       J       N      1
17      4 1977.162 26.91507  4.6712329       N       N      0
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The first column is the subject identification number, the second the calendar date at

the start of an episode, the third the age at the start, the fourth the duration of the

episode (in years), the fifth the entry state or state occupied during the episode,

the sixth the exit state or destination state and the last column the status at exit

(1 in case of a transition and 0 if the observation is censored). The table is produced

by the following code:

The Lexis object for a single episode, e.g. the episode between birth and job

entry, may be obtained directly from a Biograph object in three steps. First, the

dates in the Biograph object are converted to calendar years:

Second, a transition is selected. The following function selects the transition

NJ. Respondents that did not experience the NJ transition are removed from the data

(KEEP¼FALSE). If KEEP¼TRUE, the records pertaining to respondents who do

not experience the NJ transition are not removed, but the dates of the NJ transition

are set equal to NA.

The data frame jn has 201 rows because every respondent enters the labour

market once. The function table(trunc(jn$year)) gives the number of

respondents by year of the first job entry. The respondents who do not enter the

labour market at time of censoring are removed in the jn object, i.e. the cases are

not kept. In this example no respondent is removed because all respondents enter

the labour market before survey date. The third step is required only if some

respondents do not experience the transition. In that step, respondents who do not

experience the transition at time of censoring are removed from the yr object:

The following code produces the Lexis object:

The result is shown in Table 5.1 in Chap. 5. This completes the presentation of

the Lexis object.

The package mvna uses as input a data.frame of the form

Dlexis[1:17,c(6,1,2,3,4,5,12)]

yr<- date_b (Bdata=GLHS,
format.in="CMC",
selectday=1,
format.out="year",
covs=c("marriage","LMentry"))

jn <- TransitionAB (Bdata=yr,
transition="NJ",keep=FALSE)

yr2 <- subset (yr,yr$ID%in%jn$id)

Lcoh <- Lexis( 
id = yr2$ID,
entry = list( per=yr2$start ),
exit  = list( per=jn$year, age=jn$year-yr2$born 

),
exit.status = rep(1,nrow(yr2)),
data=yr2,
merge=TRUE)
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data.frame(id,from,to,time) or

data.frame(id,from,to,entry,exit) with

id subject identification number

from the state from where the transition occurs (state occupied

during the episode)

to the state to which a transition occurs (direction of transition at

the end of the episode)

either time time when a transition occurs, measured as time elapsed since

start of episode (time when current episode, which starts at time

0, ends)

or entry entry time in state/episode

exit exit time from state/episode

The function Biograph.mvna converts data from the Biograph format to the

mvna format:

The mvna package does not accept intrastate transitions, i.e. transitions to the

same state (e.g. from job to job). It requires a transition matrix that indicates that

intrastate transitions are absent. The Biograph.mvna function performs four

operations on data in Biograph format. First, it checks whether intrastate transitions

are present, which is the case when at least one diagonal element of the transition

matrix is not NA (missing values). If that is the case, then it calls the Remove.
intrastate function to remove the intrastate moves. Second, it calls the

Parameters function to determine the parameters associated with the Biograph
object with intrastate transitions removed. Themvna package requires the transition
matrix Parameters(Remove.intrastate(GLHS))$tmat. Third, it calls
the Biograph.long function to create an object having the data in the long

format. Fourth, it adds to the data frame the variables entry and exit and it

changes the variable name of the subject identification numbers from ID to id.
The function Biograph.mvna creates an object with three components. The

first component is Dmvna$D, which is a data frame with the variables id, from,
to, entry and exit. That data frame is used by the mvna package. The second

component is Dmvna$D.cov, which is the same data frame augmented by the

covariates and some other information. The third component, Dmvna$cens, is

the code for censored observations. The function adds the ‘format.date’,
‘format.born’ and ‘param’ attributes to the components Dmvna$D and

Dmvna$Dcov.
The object Dmvna$D has columns with the labels id (for ID), from (for OR), to

(for DES), entry (for Tstart) and exit (for Tstop). The time scale, which in the

original data is calendar time in CMC, is changed to age. Since the CMC at birth is

included as a covariate in Dmvna$D.cov (variable born), age can easily be

converted back to calendar time. The reason for using age is that the cumulative

Dmvna <- Biograph.mvna (Bdata=GLHS)
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hazard is shown for different ages. A selection of data from the GLHS data frame,

with the variables from, to, entry and exit, is shown in Table 3.11.

The mstate package requires data in a particular long format, the ‘msdata’
format. In this format, each subject has a number of rows equal to the number of

transitions for which he is at risk (Putter et al. 2007); transitions to the same state are

not allowed. In other words, the package requires one record for each potential
transition. Since a censored observation could have resulted in any of the possible

destinations, one record is added for every possible destination. For instance, if a

person has a job and the observation is censored, then there is only one transition

that could occur but did not because of censoring: the JN transition. The JJ

transition cannot occur because transitions to the same state are not allowed. The

consideration of each potential transition is rooted in the theory of competing risks

in which every possible destination is considered. This data structure allows flexible

model specification, as will be demonstrated later in this book.

An object of class ‘msdata’ is a data frame with at least the following

variables:

id subject identification

from the state from where the transition occurs (starting state)

to the state to which a transition occurs (receiving state or

destination state)

trans the transition number

Tstart the starting time in the state from where the transition occurs

(origin state)

Tstop the ending time in the state from where the transition occurs

status status variable, with 1 indicating an event (transition) and 0

censoring

The ‘msdata’ class of objects requires an attribute that contains the transition

numbers. It is the ‘trans’ attribute, referring to the transition matrix of possible

transitions (similar to the tmat object produced by the Parameters function).

The Biograph.mstate function produces a data frame in the ‘msdata’
format (object of class ‘msdata’) from a data frame in the Biograph format.

Table 3.11 GLHS data in mvna format

id from   to Tstart Tstop status trans born    entry exit
1.2   1    N    J    351   555      1     2  351  0.00000 17.00000
1.15  1    J cens    555   983      0     1  351 17.00000 52.67124
2.2   2    N    J    357   593      1     2  357  0.00000 19.66302
2.3   2    J    N    593   893      1     1  357 19.66302 44.66302
2.15  2    N cens    893   983      0     2  357 44.66302 52.16713
3.2   3    N    J    473   688      1     2  473  0.00000 17.91781
3.3   3    J    N    688   829      1     1  473 17.91781 29.67123
3.15  3    N cens    829   983   0     2  473 29.67123 42.50411
4.2   4    N    J    604   872      1     2  604  0.00000 22.33539
4.3   4    J    N    872   927      1     1  604 22.33539 26.91506
4.15  4    N cens    927   983      0     2  604 26.91506 31.58630
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It performs three operations. First, it checks to determine whether the intrastate

transitions are removed. If they are not yet removed, it calls the Remove.intra-
state function to remove the intrastate moves. Using the Parameters function,

it defines the transition matrix, i.e. the matrix that shows the feasible transitions and

the number of each transition (matrix tmat). In this case the NJ transition is

transition 1 and the JN transition is transition 2. In the new transition matrix,

intrastate transitions are absent. Second, it calls the Biograph.long function

to create an object having the data in the long format. Third, it determines for a

subject in a given state all possible transitions (destinations; competing risks) and

specifies one record for each possible destination. The Dmstate object is of class

‘msdata’ and carries the ‘format.date’, ‘format.born’ and ‘param’
attributes. The ‘param’ attribute includes the matrix of feasible transitions

tmat, which is used by the mstate package: attr(Dmstate,"param")
$tmat.

Table 3.12 shows the GLHS data in the format required by mstate. It is produced
by the following code (covariates are omitted):

The object produced contains also several covariates (not shown): the date of

birth in CMC, the year of birth (decimal year), sex, education, date of marriage

(CMC), date of labour market entry (CMC) and birth cohort.

Consider the first respondent in Table 3.12. The observation was censored while

he was employed (J). Hence, there is one possible hypothetical transition: JN. The

possible transition did not occur before the end of the observation (status¼ 0).

Respondent 2 was out of a job (N) when the observation was censored. Here the one

possible hypothetical transition is NJ, since J is the only possible destination of a

transition out of N.

Other packages have also utilities to convert data formats. The Epi package
includes the function msdata.Lexis that converts a data frame of the class Lexis

(wide format) into a long data frame required bymstate. The function emt.Lexis
produces data in the format required by the etm package. The function msprep of

the mstate package converts data in a wide format to the long format. The function

can be applied only in the absence of transitions to previous states. Multistate

models in which back transitions do not occur or are not allowed are known as

Dmstate <- Biograph.mstate (Bdata=GLHS)

Table 3.12 GLHS data in msdata format for mstate package

ID OR DES Tstart Tstop status trans born   OD Episode  Tstarta   Tstopa from to
1.2   1  N   J    351   555      1     1  351   NJ       1  0.00000 17.00000    1  2
1.15  1  J   N    555   983      0     2  351 cens       2 17.00000 52.66667    2  1
2.2   2  N   J    357   593      1     1  357   NJ       1  0.00000 19.66667    1  2
2.3   2  J   N    593   893      1     2  357   JN       2 19.66667 44.66667    2  1
2.15  2  N   J    893   983      0     1  357 cens       3 44.66667 52.16667    1  2
3.2   3  N   J    473   688      1     1  473   NJ       1  0.00000 17.91667    1  2
3.3   3  J   N    688   829      1     2  473   JN       2 17.91667 29.66667    2  1
3.15  3  N   J    829   983      0     1  473 cens       3 29.66667 42.50000    1  2
4.2   4  N   J    604   872      1     1  604   NJ       1  0.00000 22.33333    1  2
4.3   4  J   N    872   927      1     2  604   JN       2 22.33333 26.91667    2  1
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irreversible Markov chains and progressive multistate models (Meira-Machados

and Roca-Pardinas 2012).

(c) Event data (long format)

The reshape function in the stats package of R reshapes a data frame between

wide format with repeated measurements in separate columns of the same record

and long format with the repeated measurements in separate records. The function

is:

The zx object has for each subject 12 records, one for each of the maximum

number of transitions. The number of records in the zx object is 2,412 (¼201*12).

If a transition does not occur and the date is not applicable (NA), then the ‘date’

column shows NA. The redundant records can be removed as follows:

The zx2 object has 781 records.

Respondents may experience more than one transition. The Reshape function

lists the first transition first. It adds the second, third and subsequent transitions at

the end of the object. This implies that zx is sorted by the line number of the

transition and not by subject ID. To get the data sorted by subject ID, use:

The reshape function creates ‘time’ and ‘date’ columns. The ‘time’ column

shows the line numbers of transitions experienced by the individual with a given ID

and the ‘date’ column shows the dates of the transitions. The reshape function

does not give the state of origin and the state of destination of a transition. The

following command gives the origin and destination:

The result of these steps is shown in Table 3.13.

To complete the construction of the event data structure, the date format of

transitions and birth dates and the transition matrix are added as attributes (note that

mstate needs the transition matrix tmat):

zx <- reshape (GLHS,
idvar="ID",
varying=list((locpath(GLHS)+1):(ncol(GLHS))),
v.names="date",
direction="long")

zx2 <- zx[!is.na(zx$date),]

Dlong.reshape <- zx2[order(zx2$ID),]. 

Dlong.reshape$OD <- substr(Dlong.reshape$path,
Dlong.reshape$time,
Dlong.reshape$time+1)

attr(Dlong.reshape,"format.date") <-
attr(GLHS,"format.date")

attr(Dlong.reshape,"format.born") <-
attr(GLHS,"format.born")

attr(Dlong.reshape,"trans") <-
attr(Remove.intrastate(GLHS),"param")$tmat
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The msm package requires event data and a long format. For each transition, the

date and the destination state are required. Entry into observation and censoring are

treated in the same way as events. The function Biograph.msm produces a data

object for the msm package. The conversion is time consuming. The long format is

stored in the data frame Dmsm. To create input data for msm from data in the

Biograph format, use the utility Biograph.msm:

Table 3.14 shows part of the data in the object Dmsm, created by the above

statement (the covariates are omitted). The variables are:

ID identification number

born CMC at birth

path state sequence

time event (including entry in the first state)

date date of transition (in CMC code)

age age at transition

OR origin state

DES destination state (state occupied after the transition)

trans transition number

firstobs dummy denoting the first transition (first transition¼ 1)

Table 3.13 GLHS data in long format, produced by reshape function of stats package

ID born start end    sex edu marriage LMentry  cohort path time date OD
1.1  1  351   351 983   Male  17   679     555 1929-31       NJ    1  555 NJ
2.1  2  357   357 983 Female  10 762     593 1929-31    NJJJN    1  593 NJ
2.2  2  357   357 983 Female  10      762     593 1929-31    NJJJN    2  639 JJ
2.3  2  357   357 983 Female  10      762     593 1929-31    NJJJN    3  673 JJ
2.4  2  357   357 983 Female  10      762     593 1929-31    NJJJN    4  893 JN
3.1  3  473   473 983 Female 11      870     688 1939-41 NJJJJJN    1  688 NJ
3.2  3  473   473 983 Female  11      870     688 1939-41 NJJJJJN 2  700 JJ
3.3  3  473   473 983 Female  11      870     688 1939-41  NJJJJJN    3  730 JJ
3.4  3  473   473 983 Female  11      870     688 1939-41  NJJJJJN    4  742 JJ
3.5  3  473   473 983 Female  11      870     688 1939-41  NJJJJJN    5  817 JJ
3.6 3  473   473 983 Female  11      870     688 1939-41  NJJJJJN    6  829 JN
4.1  4  604   604 983 Female  13      872     872 1949-51 NJN    1  872 NJ

Dmsm <- Biograph.msm (Bdata=GLHS)

Table 3.14 GLHS data in msm format

ID born    path time      age OR  DES trans firstobs stateN state
1.1 1  351      NJ    1  0.00000  #    N    NA        1      N     1
1.2   1  351      NJ    2 17.00000  N    J    NA        1      J     2
1.14  1  351      NJ    3 52.66667  J cens    NA        1      J     2
2.1   2  357   NJJJN    1  0.00000  #    N    NA        1      N     1
2.2   2  357   NJJJN    2 19.66667  N    J    NA        1      J     2
2.3   2  357   NJJJN    3 23.50000  J    J    NA        1      J     2
2.4   2  357   NJJJN    4 26.33333  J    J    NA        1      J     2
2.5   2  357   NJJJN    5 44.66667  J    N    NA        1      N     1
2.14  2  357   NJJJN    6 52.16667  N cens    NA        1      N     1
3.1   3  473 NJJJJJN    1  0.00000  #    N    NA        1      N     1
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stateN state occupied after the transition (except for censoring,

in which case state denotes the state occupied at time of

censoring)

state state occupied after the transition(number) (see

stateN)

At entry into observation, the state of entry is denoted as a destination state. The

origin state is not applicable and is denoted by #. For instance, respondent with ID

1 enters observation at CMC 352. The state of entry is N. Note that the state

associated with the CMC at censoring is the state occupied at time of censoring.

3.6 A Note on Dates

In the GLHS, transition dates are given in CMC, i.e. months elapsed since 1 January

1900. The same practice is adopted in the Demographic and Health Surveys. Other

surveys and follow-up studies express dates as days elapsed since a reference date.

Reference dates vary. For instance, the Framingham Heart Study (FHS), which is a

longitudinal study that started in 1948–1950 and is widely used in epidemiology,

and the US Health and Retirement Survey (HRS) count the number of days since

1 January 1960. The date is often referred to as SAS dates because that practice is

adopted in the SAS data analytic software. Some studies use age or time elapsed

since a reference event other than birth. Calendar dates are used too to express the

date at transition. It is sometimes useful to switch between date formats. For

instance, calendar dates can easily be interpreted, much easier than CMC or days

elapsed since 1 January 1960, but they are not very suitable for computations. In the

study of the life course, the time to event is often measured by the age of the

individual. Another useful date measure is the decimal year. It is the calendar year

of a transition augmented by the fraction of the year. For instance, a transition that

occurs on 5 March 2012 occurs at time 2012.175 and a transition on 10 October

2012 occurs at time 2012.773. For an overview of different date representations,

conversion methods and applications, see Willekens (2013b).

Biograph includes several functions to convert dates in one format to dates in

another format. They are presented in this section. First, a few general comments on

dates and a selection of conversion methods are provided.

The most common representation of dates is the character representations

(day/month/year) and (month/day/year). Dates are also expressed in number of

days, weeks or months since a reference date. For instance, in R dates are

represented as the number of days since 1 January 1970, with negative values for

earlier dates (R reference manual, version 3.0.0 (2013-04-03), p. 120). They are

printed following the rules of the current Gregorian calendar. Although the date

should be an integer, this is not enforced in the internal representation. To convert a

date given as a character string into number of days since the reference date
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(1 January 1970), consider 9 October 2008. The as.Date function of base R converts

character data to dates.

The number of days between 1 January 1970 and 9 October 2008 is 14,161.

In event history analysis, the reference date is often 1 January 1900. Suppose an

event occurs on 4 May 1988. The number of days since the reference date is:

Authors use different methods to convert the number of days to years. Some take

a year to be 365.25 days (e.g. Kalbfleisch and Prentice 2002). The Framingham

Heart Study (FHS) expresses the dates of the exams in number of days since

1 January 1960. If SAS dates are used, for a person born on 1 January 1960, the

value is 0, and for a person born on 11 July 1955, the value is �1,635, and for a

person born on 12 November 1962, it is 1,046. These figures can be converted into

exact number of years since the beginning of the twentieth century:

EY ¼ 1960þ DATE=365:25

where DATE is the date of the event in days since 1 January 1960 and EY is the date

of the event in exact years (Mamun 2003). For instance, if the DATE of an event is

�460, the event occurs in 1958 and more specifically at 1958.741.

Mamun (2003) uses a different method to determine the exact number of years

since the reference date, which he takes to be 1 January 1900:

EY ¼ YEARþ MONTH � 1ð Þ=12þ DAY� 1ð Þ= 30:437 � 12ð Þ

For instance, 4 May 1988 is 88.3415 years since the beginning of the twentieth

century:

88þ 5� 1ð Þ=12þ 4� 1ð Þ= 30:437 � 12ð Þ ¼ 88:34154702

The date in exact years may be converted back in year, month and day of occur-

rence, using the following formula (where TRUNC means truncation):

YEAR ¼ TRUNC EYð Þ
MONTH ¼ TRUNC EY� YEARð Þ � 12½ � þ 1

DAY ¼ TRUNC EY� YEAR � MONTH� 1ð Þ=12ð Þ � 30:437 � 12½ � þ 1

For instance, 88.3415470 is:

Mydate <- as.Date (“2008-10-09”)
Refdate <- as.Date (“1970-01-01”)
days <- Mydate – Refdate

mdy.date(5,4,1988)-mdy.date(1,1,1900) = 32265
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YEAR ¼ TRUNC 88:3415470½ � ¼ 88

MONTH ¼ TRUNC 88:3415470� 88ð Þ � 12½ � þ 1 ¼ 5 MAYð Þ
DAY ¼ ROUND 88:34154702� 88� 5� 1ð Þ=12ð Þ � 30:437 � 12½ � þ 1 ¼ 4

The conversion is not always perfect because it does not account for the different

numbers of days in a month and the changing number of days in the month of

February.

Dates are often expressed in months since a reference date. For instance, the

Century Month Code (CMC), used in several studies in demography and health,

represents the date as the number of months since 1 January 1900 (see,

e.g. Blossfeld and Rohwer 2002). The approach is adopted in the Demographic

and Health Surveys and several other surveys. The dates in exact years may be

converted into dates in CMC:

DATECMC ¼ EY� 1900ð Þ � 12

Consider 4 May 1988. The date in CMC is 88.34154702 * 12¼ 1,060.098564. The

month is CMC 1060 and the day is ROUND[0.098564 * 30.437] + 1¼ 4.

The CMC measures the months elapsed since 1 January 1900. For instance,

CMC 555 is March 1946 and CMC 1100 is August 1991. The CMC is generally an

integer number but may be a real number. If the date is known precisely (day,

month and year), the CMC is a real number. If the date is known approximately

(month), the CMC is an integer number. If CMC is an integer, the transition is

assumed to take place at the beginning of the month. If the CMC is an integer value

(e.g. if dates are measured in months as in many demographic surveys), Biograph
assumes that the onset of observation, censoring and the events occur at the

beginning of a month. That is important since surveys may assume that events

occur at the beginning of a month, but that censoring occurs at the end of a month

(e.g. the GLHS data distributed by Blossfeld and Rohwer (2002) and Blossfeld

et al. (2007)).

From the Century Month Codes, the years of the transitions can be obtained. The

year is 1900 + (CMC�1)/12, since January 1900 is month 1. The result is a real

value, which is often used as such. In several applications, the real number is

converted into year and month. For instance, a transition that occurs at CMC

1100 occurs in the year 1900 + trunc((1,100�1)/12)¼ 1991. The month is

(CMC�12*trunc((CMC�1)/12))¼ 8.
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The Biograph functions that convert dates in one format to dates in a different

format are:

Function Conversion

cmc_as_year cmc to decimal year

cmc_as_age cmc to age

cmc_as_Date cmc to date of class Date

Date_as_year date of class Date to decimal year

Date_as_cmc date of class Date to cmc

Date_as_age date of class Date to age

year_as_Date decimal year to date of class Date

year_as_cmc decimal year to cmc

year_as_age decimal year to age

age_as_Date age to date of class Date

age_as_year age to decimal year

For possible date formats, you are referred to the R Date package.
For instance, the following code converts the marriage dates in CMC to calendar

dates (dates of class Date); it is assumed that marriages occur at the beginning of the

month:

If selectday¼15, the event is assumed to occur in the middle of the month.

To convert CMC to decimal year, use:

The marriage date of the first respondent is CMC 679 or 1956.497 or

1 July 1956.

The age at marriage is obtained by converting CMC to age:

Object z has two components. The first gives the date in decimal year and the

second gives the age. The first respondent marries at age 27 (z$age[1]).
Biograph has a generic function that integrates the different functions listed

above. It is the date_convert function. The function requires the input and

output formats of the dates. For instance, the following function converts 01/01/

2011 to 1 January 2011:

z <- cmc_as_Date (
GLHS$marriage,
selectday=1,
format.out="%Y-%m-%d")

z <- cmc_as_year (GLHS$marriage,selectday=1)

z <- cmc_as_age (GLHS$marriage,
born=GLHS$born,
format.born="CMC")

b <- date_convert(d='01/01/2011',
format.in='%m/%d/%Y',
format.out='day-month-year')
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To determine the age on 01/01/2011 of a person born on 20 September 1980, use

the function:

The age is 30 years and the fraction of the year is 0.2814. The object bb has four

components. The first is the age in seconds; the second is the age in days; the third is

the age in years, months and days; and the fourth is the age in decimal year.

The function date_b converts an entire Biograph object. The following code

produces calendar dates in the format day/month/year:

Table 3.15 shows transition dates for a random sample of ten respondents. It is a

selection of rows and columns of GLHSb. It is produced using the following code:

The function date_b uses the function cmc_as_Date that converts CMC

format to an object of class ‘Date’. Note that the functions CMC.years and CMC.
ages in the first release of Biograph (January 2011) have been replaced in

Biograph 2.0 by the more general date_b function.

3.7 Conclusion

The Biograph object is a data frame of individual life histories. The object has one

record for each individual in the sample. Events are ordered chronologically. The

object contains the input data for the Biograph package and keeps information on

essential characteristics of the data. The characteristics are stored in attributes of the

object. When the data are in Biograph format, all functions of the package can

easily be applied. In addition, the data can be easily converted into another format

bb<- date_convert("01/01/2011",
format.in="%d/%m/%Y",
format.out="age",
born="20/9/1980",
format.born="$d/$m/$Y")

GLHSb <- date_b(GLHS,
format.in="CMC",
selectday=1,
format.out="%d%b%Y",
covs=c("marriage","LMentry"))

GLHSb[GLHSb$ID%in%sample(GLHSb$ID,10,replace=FALSE),
c(1:4,7,8,10,11:12)]

Table 3.15 Calendar dates of transitions in GLHS

ID      born     start       end  marriage   LMentry      path       Tr1       Tr2
3     3 01May1939 01May1939 01Nov1981 01Jun1972 01Apr1957   NJJJJJN 01Apr1957 01Apr1958
9     9 01May1931 01May1931 01Nov1981 01Jun1957 01Mar1949     NJJJJ 01Mar1949 01Feb1950
12   12 01May1939 01May1939 01Nov1981 01Sep1967 01May1954     NJJJJ 01May1954 01Mar1967
28   28 01May1931 01May1931 01Nov1981 01Apr1960 01Apr1954    NJJJJJ 01Apr1954 01Aug1955
43   44 01Apr1949 01Apr1949 01Nov1981 01Jan1974 01Oct1966 NJJJJNJJJ 01Oct1966 01Feb1967
72   75 01Jun1931 01Jun1931 01Nov1981      <NA> 01Aug1945       NJJ 01Aug1945 01Aug1971
90   94 01Nov1949 01Nov1949 01Nov1981 01Oct1971 01Nov1970        NJ 01Nov1970      <NA>
146 151 01Feb1951 01Feb1951 01Nov1981      <NA> 01May1968        NJ 01May1968      <NA>
163 169 01Sep1951 01Sep1951 01Nov1981 01Jul1973 01Apr1968      NJJJ 01Apr1968 01Jul1978
174 180 01Aug1940 01Aug1940 01Nov1981 01Mar1966 01Aug1954    NJNJNJ 01Aug1954 01Apr1956
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and subsets of data can be selected. Biograph includes conversion utilities and

functions that select subsets of data.

The preparation of a Biograph object involves (a) defining events as transitions

between states of a state space and (b) ordering events chronologically. Since in

most data collections, data on events are not organised chronologically but by

domain of life, the data restructuring may take time. After the transitions are

properly identified, the Biograph utility Sequences.ind.0 orders dates of

transition chronologically and determines the state sequence. In Annex A, a utility

is used to convert several data sets into a Biograph object.
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Chapter 4

Exploratory Data Analysis

4.1 Introduction

Biograph contains several functions for exploratory transition data analysis. In this

chapter I describe the functions and the objects they generate. The following

functions are covered:

(a) Parameters derives from a Biograph object several characteristics of the

data, such as the sample size, state space, absorbing states and transition

matrix.

(b) AgeTrans finds the ages at transition. Age is exact up to the time unit used in

the analysis (e.g. month) and is given in decimal form.

(c) YearTrans finds the calendar years of transitions. The calendar year indi-

cates the decimal year, which gives the year and the fraction of the year.

(d) SamplePath shows, for a selection of subjects, the state sequence recorded

during the period of observation.

(e) OverviewEpisodes displays summary information on episodes.

(f) OverviewTransitions displays summary information on transitions,

e.g. the number of transitions by state of origin and state of destination and

the mean ages at transition.

(g) Sequences counts the different state sequences experienced by subjects in

the sample.

(h) Occup identifies for every age the states occupied at that age by subjects in

the sample. It also identifies state occupation times (durations of stay) in each

state by age. It determines that information for each subject in the sample and

for groups of subjects you select.

(i) Trans counts transitions by age, state of origin and state of destination.

(j) RateTable produces the main output table of the Biograph package,

namely, Stable, which is a data frame with the necessary data (occurrences

and exposure times) for computation of age-specific transition rates by age,
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origin and destination. It also produces an object with the censored cases by

age and state occupied at time of censoring.

Results of the computations are stored in objects: variables and data frames. The

objects are returned to the programme calling the function.

This chapter consists of six sections. In the first section I present functions that

extract from the observations general characteristics of the (sample) population.

They include the sample size, the state space, the total number of episodes and

transitions, etc. I also discuss ways to extract information from the data using

functions of R Base. Finally, I present a function to extract information on a

particular transition between two states. Functions that provide detailed information

on episodes and transitions are covered in Sect. 4.2. Open episodes are distin-

guished from closed episodes. Functions that extract individual sample paths from

the data and produce frequency tables of empirical state sequences are presented in

Sect. 4.3. In the next section, I present functions that determine state occupancies

and exposure times by age. State occupancy refers to the state an individual of a

given age occupies (micro). It also refers to the distribution of the population of that

age between the states (macro). These functions are generic. They produce infor-

mation for a selected individual, for a selected group of individuals in the popula-

tion or for the entire (sample) population. The possibility to extract information for

selected individuals is particularly useful for identifying outliers. Groups of indi-

viduals may be formed on the basis of any characteristic or combination of

characteristics included in the data. In Sect. 4.5, covariates are used to differentiate

individuals in a population and to create groups. No new functions are introduced in

this section, but I show how generic functions can be applied to subsets of the

(sample) population in order make comparisons. Section 4.6 is the conclusion of the

exploratory analysis.

4.2 The Multistate System and Its Measurement

The function Parameters explores the Biograph object and extracts information

on the multistate system being described by the data: (1) number of observations

(sample size), (2) state space, (3) possible transitions, (4) age groups, (5) states of

origin and destination, (6) covariates, etc. The function returns a list or parameters

for use in tabulations and computations. Parameters is invoked by the following

command:

param <- Parameters (GLHS)

The object returned by Parameters contains the following components:

1. nsample: sample size.
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2. numstates: number of states in the state space (produced by the

StateSpace function called by Parameters).
3. namstates: state labels. The state space is determined by the

StateSpace function. States are identified by a single character. The labels

are stored in a character vector.

4. absorbstates: character vector of absorbing states. They are determined as

states that are not left during the observation period. In the absence of absorb-

ing states, it is NULL.

5. iagelow: lowest age in the (sample) population.

6. iagehigh: highest age in the (sample) population.

7. namage: labels for the single years of age from the lowest age (iagelow) to
the highest age (iagehigh).

8. nage: number of age groups.

9. maxtrans: maximum number of transitions experienced by an individual

during the observation period. It is determined by the number of dates of

transitions in the Biograph data frame. It is the maximum number of states

occupied by a subject minus one: max(nchar(GLHS$path))-1.
10. ntrans: total number of transitions.

11. trans_possible: transition matrix with elements ‘true’ indicating that the

transition from i to j is feasible transition and ‘false’ indicating that the

transition is not possible.

12. tmat: transition matrix indicating for each possible transition the transition

number from 1 to n, where n is the number of possible (i,j) transitions.

13. transitions: different representations of transitions.
14. nntrans: transition matrix with, for each possible transition, the transition

count.

15. locpat: column of the Biograph object that contains the state sequence

(path).
16. ncovariates: number of covariates that the Biograph object contains.

17. covariates: character vector of covariate names.

18. format.date: format of the dates in the Biograph object.

19. format.born: format of date of birth in the Biograph object.

Parameters: invokes other functions that are part of Biograph:

(a) string_nb: removes blanks in the character variable string.
(b) stringf: converts a character string (string) into a vector of characters

(str_char). The number of characters in the string is the length of the vector.

(c) StateSpace: uses GLHS$path to determine the number of states

(numstates) and the state labels (namstates).

The StateSpace function determines the state space from the individual state

sequences in the path column of the Biograph object. The function generates a

character vector with as elements the different states identified in the state sequence

(path column) of the Biograph object. The vector represents the state space. In the
GLHS data, the number of states is 2 and the names of the states are ‘N’ and ‘J’.
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The first element of the vector is the state encountered first in the data. The second

element is the state encountered next. The data determine the sequence of elements

of the state space vector. To determine the state space used in the GLHS data,

invoke the StateSpace function:

statespace <- StateSpace (GLHS)

The function produces an object with two components. The first (statespace
$namstates) is a character vector with the state labels. It is {‘N’,‘J’}. The

second (statespace$absorbstates) is a character vector with absorbing

states. In the absence of absorbing states, NULL is returned.

For tabulation purposes a different order of states may be desired.

StateSpace may be used to change the order of states in the state space. For

instance, if you wish the sequence to be ‘J’ and ‘N’ rather than ‘N’ and ‘J’, use:

StateSpace (GLHS,newnamstates=c("J","N"))

The object namstates is now changed.

In the GLHS data, the age variable iagelow is 0 and iagehigh is 53. The

number of age groups is 54, and the labels are 0, 1, 2, . . ., 53. The value of

maxtrans is 12. To determine the ID of the individual(s) with the maximum

number of states occupied during the observation period, use the code:

GLHS$ID [nchar(GLHS$path)== max(nchar(GLHS$path))]

The associated record number is:

which (nchar(GLHS$path)== max(nchar(GLHS$path))

It is individual in line 188 (with ID 194).

The number of possible transitions is 3. The possible transitions are NJ, JN and

JJ. Two transition matrices indicate the possible transitions. The first, param
$trans_possible, is a matrix of logical values that are TRUE if the transition

is possible and FALSE otherwise. In some statistical packages for estimating

multistate models, e.g. mvna and mstate, this matrix is referred to as the transition

matrix and is used to distinguish transitions that are possible from transitions that

are not possible. The second, param$tmat, shows the transition numbers:

To
From  N J

N NA 1
J  2 3

The count of transitions is param$nntrans:
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Destination
Origin   N   J

N   0 323
J 181 277

The object param$transitions shows for each transition the state of origin

and the state of destination, in character and numerical format:

Trans OR DES ORN DESN
1     1  1   2   N    J
2     2  2   1   J    N
3     3  2   2   J    J

The Biograph object stores the dates of the transitions in the columns starting at

locpat+1, where locpat<- locpath (GLHS). To display the dates, use the

command GLHS[,(locpat+1):ncol(GLHS)].
The function AgeTrans obtains the ages at transition from the dates at transi-

tion and the dates of birth. It also determines the ages at entry into observation and

the ages at exit. It is called by the following command:

agetrans <- AgeTrans (Bdata=GLHS)

It returns the following objects:

(a) agetrans$ages: object with for each subject, the ages at transition. The ID

of the subject is also given.

(b) agetrans$ageentry: for each subject, age at entry into observation.

(c) agetrans$agecens: for each subject, age at censoring.

(d) agetrans$st_entry: for each subject, state at time of entry into

observation.

(e) agetrans$st_censoring: for each subject, state at end of observation

(censoring).

Consider subjects with ID 3 and 208. Their ages at transition are given by

agetrans$ages[rownames(agetrans$ages)%in% c(3,208),]

The ages at entry and at censoring and the states at entry and at censoring may be

obtained in the same way for any individual. The following code generates a

frequency table of ages at censoring. The ages are from the lowest age (iagelow)
to the highest age (iagehigh) in the data.
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namage <- c(param$iagelow:param$iagehigh)
censored_by_age <- table(cut(agetrans$agecens,

breaks=namage,
include.lowest=TRUE,
right=FALSE))

Age is a continuous variable. To transform age into an interval variable, i.e. to

generate age intervals, the cut function of R Base may be used. The intervals are

defined by the breaks argument, which gives a set of breakpoints. Unless

specified otherwise, intervals are closed on the right and open on the left except

for the lowest interval. It means that the lowest value is excluded from the interval

and the highest value is included. The interval is denoted by (a,b], where a and b are

the lowest and highest values, respectively. If include.lowest is TRUE, then

the lowest value is included and the highest excluded. The interval is [a,b). In

demography, age intervals usually include the lowest age and exclude the highest

age. For instance, the age group 20–25 includes individuals aged 20 and excludes

individuals aged 25. The censored cases by age and sex are obtained using the code:

table(cut(agetrans$agecens,
breaks=namage,
include.lowest=TRUE,
right=FALSE),
GLHS$sex)

The frequency table of ages at entry into observation (agetrans$ageentry)
may be obtained in a similar way. To tabulate states at censoring by sex, use table
(agetrans$st_censoring,GLHS$sex).

The age profile of the first transition, irrespective of the type of transition, is

agetrans$ages[,1], that of the second transition is agetrans$ages
[,2], etc. The mean ages at transition are produced by the command:

zmean <-
apply(agetrans$ages,2,function(x) mean(x,na.rm=T))

The mean age at censoring (survey date) is mean(agetrans$agecens). It
is 41.4 years.

The function YearTrans determines the calendar years in which transitions

occur and expresses the dates at transition in decimal years. It is invoked by the

following command:

yeartrans <- YearTrans (GLHS)

The difference between two calendar years (real values; in decimal form) gives

the length in years of the episode between two transitions. The function returns the
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object yeartrans. It gives for each respondent in the sample population the

calendar years at transition.

Note that the frequency table of agetrans$ages by yeartrans gives the

number of transitions by age and calendar year. That information can be displayed

in a Lexis diagram (see further) and used for age-period-cohort analysis. The

following statement tabulates the number of transitions by age and calendar year:

table(trunc(agetrans$ages),
trunc(yeartrans[,5:ncol(yeartrans)]))

To tabulate the number of transitions by 5-year age groups and periods of

5 years, use:

a1 <- cut(agetrans$ages,breaks=seq(0,55,by=5))
b1 <- cut(yeartrans[,5:ncol(yeartrans)],

breaks=seq(1943,1983,by=5))
z <- table (a1,b1)

The first year with a transition is 1943 and the last year 1983. The total number of

transitions (sum(z)) is 781, which is the sum of z and also the sum of the

transitions by origin and destination. Note that the table shows the total number

of transitions by age group and calendar period. To get the first transition only,

convert the vectors a1 and b1 to matrices

locpat <- locpath(GLHS) 
a1mat <- matrix(a1,c(nsample,ncol(GLHS)-locpat))
b1mat <- matrix(b1,c(nsample,ncol(GLHS)-locpat))

and use table(a1mat[,1],b1mat[,1]).
Transitions may also be grouped by birth cohort. The years of birth of subjects

are trunc(data.frame(yeartrans)$born). Let us define a birth cohort

as consisting of subjects born during a period of 5 years, e.g. during the period

1950–1954 or 1985–1989. These births cohorts are defined by the code:

bb <- trunc(data.frame(yeartrans)$born)
c1 <- cut(bb,breaks=seq(5*trunc(min(bb)/5),

5*trunc(max(bb)/5+1),by=5))

The three-dimensional table that shows the number of first transitions by age

group, calendar period and birth cohort is produced by the code:

table(a1mat[,1],b1mat[,1],c1)

4.2 The Multistate System and Its Measurement 87



The survival package has a tcut function, which is similar to the cut function

of R Base used here:

require (survival)
z <- tcut(agetrans$agecens,

breaks=c(namage,60),
labels=namage)

z is an object containing the value of agetrans$agecens and with three

attributes:

– attr(,"cutpoints")the cutpoints
– attr(,"labels") the labels of the intervals

– attr(,"class") the class ‘tcut’

The number of censored cases by age is obtained by table(trunc(z)). It is

29 30 31 32 39 40 41 42 49 50 51 52
2 25 27 17  1 22 17 15  2 36 25 12

with in the first row the age (age interval) and in the second row the number of

censored cases in that interval.

Note that the table is the same as the one obtained by the following code:

table(cut(agetrans$agecens,breaks=namage))

If a value of agetrans$agecens is equal to the lowest value of the interval,

tcut excludes that value from that interval and includes it in the previous interval.

Age profiles of transition are obtained using the TransitionAB function. The

function extracts information on a given transition from the data. The transition is

denoted by the state of origin and the state of destination. A state is represented by

the character in namstates. Consider entry into first job, which is the transition

from state N to state J. The following command extracts information on first job

entry:

z <- TransitionAB (GLHS,"NJ")

The information is obtained in two steps. In the first step, the position of the

given transition in the event sequence is determined for each subject. The event

sequence is given by the string variable GLHS$path. In the case of first job entry,
it is trivial since it is always the second position in the character string GLHS
$path. In the second step, the date of the transition of interest is selected from the

GLHS object.

The object z has eight components. The first, z$case, is the transition. The

second, z$n, is the number of individuals experiencing the transition. The third,
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z$id, is the vector of identification numbers of the individuals experiencing the

transition. The fourth, z$pos, is the position of the transition in GLHS$path. The
remaining components give for each transition the date of the transition (z$date),
the age (z$age) and calendar year (z$year) of the transition and the birth cohort
(z$cohort) of the respondent experiencing the transition.

The command

zJN <- TransitionAB (GLHS,"JN")

extracts information on the first JN transition, i.e. on the first job exit followed by a

period out of employment. Subsequent JN transitions are disregarded.

The following code gives the numbers of NJ transitions by age, calendar year

and birth cohort:

table(trunc(z$age),trunc(z$year),trunc(z$cohort))

To tabulate the number of transitions by 5-year age group and birth cohort in

periods of 5 years, use the code:

a1 <- cut(z$age,breaks=seq(0,55,by=5))
table (a1,c1)

4.3 Episodes and Transitions

The functions OverviewEpisodes and OverviewTransitions provide

summary information on episodes and transitions and stores the information in

data frames. The information produced by OverviewEpisodes includes num-

ber of episodes, types of episodes and mean lengths of episodes. Summary infor-

mation on transitions includes possible transitions, number of transitions by origin

and destination and mean ages of transitions.

The functions are invoked by the following commands:

seq.ind <- Sequences.ind (GLHS$path,namstates)
overviewE <- OverviewEpisodes(

Bdata=GLHS,
seq.ind=seq.ind)

overviewT <- OverviewTransitions (
Bdata=GLHS,
seq.ind=seq.ind,
agetrans=agetrans)
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The function OverviewEpisodes produces an object with five components:

(a) overviewE$n: number of observations (sample size)

(b) overviewE$ne: number of episodes

(c) overviewE$nt: number of transitions

(d) overviewE$types: types of episodes: open and closed intervals

(e) overviewE$sojourn: total state occupation time in each state (in time

units used in the data; in this case months)

Table 4.1 shows overviewE$types. The number of job episodes is 600, and

the number of episodes without a job is 382. The GLHS subsample has 580 closed

episodes, 122 episodes without a job (N) and 458 job episodes (J). At the start of

observation (at birth), all respondents are out of job (see episode type LOpen).

LOpen episodes are relatively long because few transitions occur at young ages. At

survey, 59 are out of a job and 142 have a job (episode type ROpen).

Table 4.2 shows overviewE$sojourn. All the 201 respondents combined

spend 40,762 months with a job and 59,208 months without a job. Closed episodes

represent less than one third of the total observation time.

The function OverviewTransitions produces an object with two

components:

(a) Ttrans: the number of transitions of each type

(b) meanage: mean ages at transition by type

The first component contains the total number of transitions by origin and

destination. It also gives the number of censored cases by state at time of censoring.

The object is shown in Table 4.3.

The mean ages at transition, overviewT$meanage, are shown in Table 4.4.

Table 4.1 Types of episodes. GLHS

Episode LROpen LOpen ROpen Closed Total
N          0   201    59    122   382
J          0     0   142    458   600
Total      0   201   201    580   982

Table 4.2 State occupation times by type of episode. GLHS

Episode LROpen LOpen ROpen Closed Total
N          0 43958 10571   4679 59208
J          0     0 18194  22568 40762
Total      0 43958 28765  27247 99970
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Note that the mean age at all transitions from N to J is higher than the mean age

at first entry in the labour market, i.e. the first NJ transition. The mean age at labour

market entry is given by the commands:

z <- TransitionAB (GLHS,"NJ")
mean(z$age,rm.na=TRUE)

The mean age at entry is 18.7 years.

The rate of job exit is the number of job episodes during the period of observa-

tion that are not right censored (458) divided by the total time spent with a job

(40,762). It is 458/40,762¼ 0.0112. That rate is equal to the parameter of the

exponential transition rate model without covariates, as expected (Blossfeld and

Rohwer 2002, p. 92). The rate calculated by dividing the number of transitions by

the exposure time is an occurrence-exposure rate. It is an estimator of the transition

rate of the population.

4.4 State and Event Sequences: Individual and Aggregate

A particularly useful function is SamplePath. It produces sample paths for

selected subjects. Subjects are selected by their ID. The IDs of the selected subjects

are stored in a vector. The vector may contain a few subjects but may also include

all subjects under observation. The function SamplePath checks whether the IDs

selected are included in the data and removes IDs that are not recognised. For

instance, the following command requests the employment careers of subjects with

ID 1, 30 and 208 (GLHS data):

Table 4.3 Transitions and censoring, by state of origin and destination. GLHS

Destination
Origin    N   J Total Censored TOTAL
N       0 323   323       59   382
J     181 277   458      142   600
Total 181 600   781      201   982

Table 4.4 Mean ages at transition and censoring. GLHS

Destination
Origin     N     J censored

N   NaN 20.61    41.38
J 24.02 26.11    40.06
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samplepaths <- SamplePath 
(Bdata=GLHS,subjectsID=c(1,30,208))

where subjectsID is a set of subject IDs. The object samplepaths is a list

object with as elements the employment careers of the selected individuals. Box 4.1

shows the employment careers of respondents with IDs 1 (samplepaths
[[1]]), 30 (samplepaths[[2]]) and 208 (samplepaths[[3]]).

The function Sequences.ind produces, for each subject, the sequence of

states occupied during the period of observation. The state sequences can be used in

other functions. The states are given in numeric variables and not in character

variables. The numeric value is determined from the character variable GLHS
$path. The function is called by:

ist <- Sequences.ind (path=GLHS$path)

The state sequences for a selection of subjects are shown in Table 4.5. The

subjects with ID 1, 10, 70 and 208 are selected. The list is produced by the

statement:

z <- ist[GLHS$ID %in% c(1,10,70,208),]

The object z presents states by number rather than by label. Hence the sequence

of states that makes up the observed segment of the life course is denoted by

characters in the object GLHS$path and by numbers in object ist. The number

indicates the position of the state in the state space. Pattern matching (grep
command) is used to derive that number from the state space.

State N is coded one and state J 2. The coding may be reversed, using the

namstatesnew argument of the function:

ist2 <- Sequences.ind (path=GLHS$path,
namstatesnew=c("J","N"))

92 4 Exploratory Data Analysis



Box 4.1: Sample Paths for Selected Subjects. GLHS

ID  1   
$born
[1] "Subject ID = 1  Date of birth 351 (01Mar29)"

$start_end
Start  Start2 Stop   Stop2

1   351 01Mar29  983 01Nov81

$path
Episode State EntryDate1 EntryDate2 EntryAge Durat OR DE

1       1     N        351    01Mar29     0.00   204  0  1
2       2     J        555    01Mar46    17.00   428  1  2
3       3  Cens        983    01Nov81    52.67    NA  2  0

ID  30
$born
[1] "Subject ID = 30  Date of birth 364 (01Apr30)"

$start_end
Start  Start2 Stop   Stop2

1   357 01Sep29  983 01Nov81

$path
Episode State EntryDate1 EntryDate2 EntryAge Durat OR DE

1       1     N        364    01Apr30     0.00   169  0  1
2       2     J 533    01May44    14.08   144  1  2
3       3     N        677    01May56    26.08   306  2  1
4       4  Cens        983    01Nov81    51.59    NA  1  0 

Continued
ID 208
$born
[1] "Subject ID = 208  Date of birth 485 (01May40)"

$start_end
Start  Start2 Stop   Stop2

1   473 01May39  983 01Nov81

$path
Episode State EntryDate1 EntryDate2 EntryAge Durat OR DE

1       1     N        485    01May40     0.00   230  0  1
2       2     J        715    01Jul59    19.17    22  1  2
3       3     N        737    01May61    21.00     6  2  1
4       4     J        743    01Nov61    21.50    13  1  2
5       5     N        756    01Dec62    22.58   227  2  1
6       6  Cens        983    01Nov81    41.50    NA  1  0
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The function Sequences determines and orders individual sequences in the

sample population. The command

seq <- Sequences(GLHS,mean_median="median")

returns a frequency table of state sequences. The object seq has two components.

The first is the choice of mean or median. The second contains the table of

sequences. Table 4.6 shows the 12 most frequent sequences: seq$sequences
[1:12,]. The number of different sequences is nrow(seq), and the number of

subjects included in the sequence table is sum(seq$ncase). The 201 individ-

uals included in the subsample experience 48 different pathways. The most prev-

alent sequence is NJN. Among the 201 respondents, 23 (11.4 %) experience the

NJN sequence and 19 (9.4 %) experience the trajectory NJJ. The persons who

experience the sequence NJN enter the labour market at a median age of 18.6 and

leave their first job at a median age of 24.4. They are interviewed (censored) at a

median age of 40.6. The following command lists the 23 respondents.

z<- subset(GLHS,GLHS$path=="NJN")

Of the 23 respondents, 21 are females and 2 are males. All women who left the

job are married, and the age at leaving the job is related to the age at marriage.

For each sequence recorded in the sample, the following information is given:

(a) ncase is the number of respondents with the indicated state sequence.

(b) % is the proportion of the state sequence in the sample.

(c) cum% is the cumulative proportion.

Table 4.6 Most frequent state and event sequences. GLHS

ncase     %  cum% M_age_entry M_age_exit ns   case     tr1     tr2     tr3     tr4     tr5 
1     23 11.44 11.44           0      40.58  3    NJN 18.58>J 24.42>N
2     19  9.45 20.90           0      49.92  3    NJJ    18>J 24.92>J
3     17  8.46 29.35           0      40.17  4   NJNJ 18.58>J  22.5>N 27.25>J
4     16  7.96 37.31           0      36.96  2     NJ 19.75>J 
5     16  7.96 45.27           0      41.71  4   NJJJ 17.38>J 21.54>J 27.33>J
6     11  5.47 50.75           0      40.67  4   NJJN 18.17>J 21.08>J 25.08>N 
7     10  4.98 55.72           0      41.79  5  NJJJJ 18.25>J 23.54>J 32.58>J 36.71>J
8      9  4.48 60.20           0      40.25  6 NJNJNJ 17.83>J 21.08>N 23.67>J 24.92>N 29.83>J
9      8  3.98 64.18           0      50.75  5  NJNJJ 16.62>J 20.75>N 22.92>J 39.67>J
10     8  3.98 68.16           0      45.50  6 NJNJJJ 17.54>J 20.75>N 22.04>J 26.58>J 30.25>J
11     8  3.98 72.14           0      41.42  5  NJNJN 17.54>J 20.71>N 21.21>J 26.88>N
12     6  2.99 75.12           0      51.25  5  NJJJN 17.62>J 20.62>J 23.46>J 32.67>N

Table 4.5 Selected individual state sequences. GLHS

Transition
ID    1 2 3 4 5 6 7 8 9 10 11 12 13
1   1 2 0 0 0 0 0 0 0  0  0  0  0
10  1 2 2 1 2 0 0 0 0  0  0  0  0
70  1 2 2 0 0 0 0 0 0  0  0  0  0
208 1 2 1 2 1 0 0 0 0  0  0  0  0
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(d) M_age_entry is the mean age at entry into observation.

(e) M_age_exit is the mean age at end of observation (interview).

(f) ns is the number of states (episodes) in the state sequence.

(g) case is the state sequence (character variable).

(h) tr* is the median ages at transition (or mean age, depending on the function

argument).

4.5 State Occupancies, Transitions and State Occupation

Times

Biograph contains four functions to display state occupancies, transitions and state

occupation times for selected individuals, groups of individuals and the entire

sample. The functions are state_age, state_time, Occup and Trans.
The state_age function displays, for a selected individual or each of a group

of individuals, the state occupied at a given age and the transitions during two

consecutive ages. For instance,

state_age (GLHS,20,208)

shows that individual with ID 208 is in state J at exact age 20. The following code

displays the states occupied at birthdays between ages 20 and 25:

state_age (GLHS,20:25,208)

The states individuals 33 and 208 occupy at birthdays between 20 and 25 are

given by the code

state_age (GLHS,20:24,c(33,208))

The function state_age produces an object with three components. The first

shows the state labels. A ‘�’ indicates that the individual is not under observation yet,

and a ‘+’ indicates that the observation has ended. The second component shows the

state occupied at the given age or the states occupied at the selected ages. The third

component shows the number of individuals in each state at consecutive ages.

The function state_time displays the states selected individuals occupy at

each age (from the lowest to the highest age). For instance,

state_time(GLHS,33)

shows the states individual 33 occupies at each age between birth and age 53. The

states occupied by individuals 33 and 208 are obtained by

ss <- state_time(GLHS,c(33,208))

4.5 State Occupancies, Transitions and State Occupation Times 95



The function state_time produces object ss with four components:

(a) ss$state: states occupied at consecutive birthdays between the lowest age

and the highest age

(b) ss$state.n: the number of selected individuals in each state at consecutive

birthdays

(c) ss$sjt_age_1: the number of years (or time units) the selected individuals

spend in each state between consecutive birthdays

(d) as$tjst: for each age, the number of years (or time units) the selected

individuals spends in each state

The function Occup produces detailed information on (a) state occupancies by

age and (b) state occupation times by age and state. The function is called by the

following command:

occup <- Occup (Bdata=GLHS)

The function calls the function state_time, which determines for given

individuals state occupation times at all ages. The function state_time calls

AgeTrans and state_age. The latter determines, for each individual under

observation, the state occupied at each consecutive birthday. Occup returns an

object, occup say, with the following components:

(a) occup$state_occup: state occupancies, number of subjects by age and

state occupied. Censored cases are listed too. Age is the exact age, and,

consequently, the state occupancies are the states on birthdays (and more

precise, on 0:00 a.m.).

(b) occup$st_age_1: for each subject the states occupied at consecutive birth-

days. For instance, the states occupied by the 10th subject between the mini-

mum and the maximum ages (0 and 53) are given by occup$st_age_1
[10,]. It shows the state occupied at each consecutive birthday. This data

format is also used by the TraMineR package, where it is referred to as the

‘extended format of state sequence data’.

(c) occup$sjt_age_1: for each subject and each age, the number of years in

each of the states. Consider subject 10. The number of years spent in the

different states during each single year of age between 0 and 53 is occup
$sjt_age_1[10,,]. ‘Censored’ is treated as a fictitious state.

(d) occup$tsjt: total number of years spent in each state between two consec-

utive ages, by all subjects combined.

The object occup is of class ‘occup.S’. The Occup function attaches the

class to the object.

An individual, who makes a transition at his or her birthday, is allocated to the

next age, and the state occupied on his birthday is the origin state (because the

transition occurs later than midnight at 0:00 a.m.). For instance, an individual who

leaves a job in the month of his 23rd birthday is considered to be 23 years at the time

of leaving the job. This procedure is standard in demographic analysis. A different
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result is obtained when the R function cut is applied. In R the default interval

between a and b is defined as (a,b], which comprises the values of x that are larger

than a and smaller or equal to b: {x | a< x� b}. The code table(cut(ages,1:
highest_age)) allocates transitions at birthday (or in the month that has the

birthday) incorrectly to the age in the previous year. Consider the following code:

GLHS.a<- date_b (GLHS,
format.in='CMC',
selectday=1,
format.out="age")

ages <- GLHS.a$end
highest_age=54
table(cut(ages,1:highest_age))

The number of respondents with observations censored at age 29 in completed

years, i.e. between ages 29 and 30, is 5 (which is (29,30]). Two persons are aged

29 at the time of interview, and 3 have the interview on their 30th birthday.

To close the interval on the left and open on the right ([29,30)), the following

code should be used:

table(cut(ages,1:highest_age,include.lowest=TRUE,
right=FALSE))

The following code shows the state occupation times by state and age for the

subject with identification number 188:

print (round(occup$sjt_age_1[GLHS$ID==188,,],3))

For this application, the transitions to the same state have been removed.

Individual 188 is a female, born in CMC 500 and experiences five transitions

between the states N and J, at CMC 705, 817, 834, 844 and 964. The observation

is censored at CMC 983.

Table 4.7 shows, for ID 188, the observed state occupation times in the different

states. The table shows the individual contribution to the transitions and, more

importantly, to the state occupation times. The state occupation times are key

figures in the estimation of transition rates. The option to investigate the individual

contributions to transitions and state occupation times in the estimation of transition

rates is considered one of the major strengths of Biograph. Note that the individual
contributes to both closed episodes and open episodes. The person enters the first

job at age (705� 500)/12¼ 17.08 and leaves employment at age (817� 500)/

12¼ 26.42. She gets a new job at age (834� 500)/12¼ 27.83, which she leaves

at age (844� 500)/12¼ 28.67 years. The last job is entered at age (964� 500)/

12¼ 38.67, and she still has that job when the observation ends at age (983� 500)/

12¼ 40.25 years. Note that the function cmc_as_age may be used to get the age

and calendar year at labour market entry, e.g. cmc_as_age
(705,500,"cmc").
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Table 4.7 Individual state occupation times by age. Respondent with ID 188. GLHS

state
Age      N     J Censored Total
0  1.000 0.000     0.00     0
1  1.000 0.000     0.00     0
2  1.000 0.000     0.00     0
3  1.000 0.000     0.00     0
4  1.000 0.000     0.00     0
5  1.000 0.000     0.00     0
6  1.000 0.000     0.00     0
7  1.000 0.000     0.00     0
8  1.000 0.000     0.00     0
9  1.000 0.000     0.00     0
10 1.000 0.000     0.00     0
11 1.000 0.000     0.00     0
12 1.000 0.000     0.00     0
13 1.000 0.000     0.00     0
14 1.000 0.000     0.00     0
15 1.000 0.000     0.00     0
16 1.000 0.000     0.00     0
17 0.083 0.917     0.00     0
18 0.000 1.000     0.00     0
19 0.000 1.000     0.00     0
20 0.000 1.000     0.00     0
21 0.000 1.000     0.00     0
22 0.000 1.000     0.00     0
23 0.000 1.000     0.00     0
24 0.000 1.000     0.00     0
25 0.000 1.000     0.00     0
26 0.583 0.417     0.00     0
27 0.833 0.167     0.00     0
28 0.333 0.667     0.00     0
29 1.000 0.000     0.00     0
30 1.000 0.000     0.00     0
31 1.000 0.000     0.00     0
32 1.000 0.000     0.00     0
33 1.000 0.000     0.00     0
34 1.000 0.000     0.00     0
35 1.000 0.000     0.00     0
36 1.000 0.000     0.00     0
37 1.000 0.000     0.00     0
38 0.667 0.333     0.00     0
39 0.000 1.000     0.00     0
40 0.000 0.250     0.75     0
41 0.000 0.000     1.00     0
42 0.000 0.000     1.00     0
43 0.000 0.000     1.00     0
44 0.000 0.000     1.00     0
45 0.000 0.000     1.00     0
46 0.000 0.000     1.00     0
47 0.000 0.000     1.00     0
48 0.000 0.000     1.00     0
49 0.000 0.000     1.00     0
50 0.000 0.000     1.00     0
51 0.000 0.000     1.00     0
52 0.000 0.000     1.00     0
53 0.000 0.000     1.00     0
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The following command may be used to create an object with the state occupa-

tion times for selected ages:

z <- occup$tsjt[match(ageprint,param$namage),]

where ageprint is the vector of the ages to be printed and namage is the vector

with age labels, e.g.

ageprint <- c(0,30,40,50)

An alternative is to get the age labels from the rownames. The following

command selects the ages 0, 30, 40 and 50 from occup$tsjt.

z <- occup$tsjt[rownames(occup$tsjt) %in% c(0,30,40,50),]

The results are shown in Table 4.8.

The object occup$tsjt shows for all subjects combined the time spent in

each of the states between two consecutive ages. The time shown in the column

‘censored’ is the number of years lost to observation due to censoring at ages below

or at the age indicated. The total time (in months) subjects are observed in each state

is round(apply(occup$tsjt,2,sum),2):

N         J   Censored     Total
4934.00   3396.83    2523.17  10854.00

The total state occupation time is 201*54¼ 10,854 years, with 53 the highest age

in completed years (age 0 . . . 53). The total number of years of observation is 4,934

+ 3,396.83¼ 8,330.83 years or 99,970 months. It is the same as the number of

months computed by OverviewEpisodes.
The number of respondents by state occupied at consecutive ages is presented in

Fig. 4.1. The data are contained in object occup$state_occup. For instance, at
their 32nd birthday, 45 persons are out of job and 102 have a job. Information on

54 persons is missing because they are below 32 at the time of survey. The graph is

produced by the function plot.occup.S, which plots an object of class

‘occup.S’:

Table 4.8 Observed aggregate state occupation times at selected ages. GLHS

state
Age        N      J  Censored Total
0   201.00   0.00      0.00   201
30   57.58 127.75     15.67   201
40   36.25  83.17     81.58   201
50   17.92  37.25    145.83   201
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z<- plot (x=occup$state_occup,
namstates.desired=c("N","J","Censored"),
colours=c("red","green","lightgrey"),
title="States occupancies. GLHS",
area=TRUE,
xmin=10,
xmax=55)

Note that class(occup$state_occup) is ‘occup.S’.
The function Trans produces data on transitions by origin, destination and age.

For example,

trans <- Trans(Bdata=GLHS)

Trans creates the following objects:

(a) trans$Ttrans: matrix showing number of transitions by origin and desti-

nation and censored cases.

Fig. 4.1 State occupancies by age. GLHS
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(b) trans$meanage: mean ages at transition.

(c) trans$trans: for each age the number of transitions by origin and

destination.

(d) trans$trans_during_interval: for each subject and each age inter-

val, the number of transitions during that interval. This component can be used

to investigate multiple transitions.

The objects trans$Ttrans and trans$meanage are shown in Table 4.9.

The number of transitions the sample population experiences at selected ages is

produced by

trans$trans[rownames(trans$trans) %in%ageselect,,]

and is shown in Table 4.10 for ageselect¼c(25,26).
To display the age-specific transitions by origin and destination, use:

aperm(trans$trans[rownames(trans$trans)
%in%ageselect,,],c(3,2,1))

Table 4.9 Number of transitions by origin and destination and mean ages. GLHS

a. Number of transitions
Destination

Origin    N   J Total Censored
N      0 323   323       59
J     181 277   458      142
Total 181 600   781      201

b. Mean ages
Destination

Origin     N     J censored
N   NaN 20.61    41.38
J 24.02 26.11    40.07

Table 4.10 Number of transitions at selected ages. GLHS

, , origin = N

destination
Age  N J censored
25 0 3        0
26 0 8        0

, , origin = J

destination
Age   N  J censored
25 11 10        0
26 14 11        0

4.5 State Occupancies, Transitions and State Occupation Times 101



The function RateTable is a particularly useful function in the process of

estimating transition rates. The object combines information on transitions and

durations of exposure. That information is needed for the estimation of the transi-

tion rates. In addition, it keeps for tabulation purposes the state occupancies and the

mean ages at transition. For example,

ratetable <- RateTable (GLHS,occup,trans)

RateTable returns two data frames:

(a) ratetable$Stable
(b) ratetable$censored_by_age

The first, ratetable$Stable, is an object in the format of a table with the

state occupancies by age, exposure times by age and state and transitions by age and

by origin and destination. Table 4.11 shows the information for the ages 0, 25,

40 and 50. It is produced by the following command:

ratetable$Stable[rownames(ratetable$Stable)
%in% c(0,25,40,50),,]

ratetable$Stable is an array with three dimensions: the first is age, the

second is state occupied at birthday and the third is a set of measures that pertain to

persons of the indicated age in the indicated state at the last birthday: number of

subjects occupying that state at that birthday, state occupation time in that state

Table 4.11 Data for calculation of transition rate, selected ages. GLHS

, , State = N

Case
Age  Occup     PY Leaving N J Censored
0    201 201.00       0 0 0        0
25    58  62.00       3 0 3        0
40    41  36.25       9 0 4        5
50    22  17.92      11 0 1       10

, , State = J

Case
Age  Occup     PY Leaving  N  J Censored
0      0   0.00       0  0  0        0
25   143 139.00      21 11 10        0
40    88  83.17      22  1  3       18
50    51  37.25      28  2  0       26
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between the last and next birthday, number leaving that state between the two

birthdays and destination. The object Stable is used for further data processing,

e.g. for the calculation of transition rates in the multistate life table.

For each state ratetable$Stable shows:

(a) Number of subjects in that state at exact ages. For instance, in the GLHS, at

exact age 25, 58 respondents are out of a job and 143 have a job. The total is

201 (sample size). Note that, if an individual makes a transition at his or her

birthday, then the state occupied at the birthday is the origin state (see descrip-

tion of occup$state_occup).
(b) Total state occupation time during the period of observation spent in each of the

states between two consecutive ages, by all subjects combined. The 201 respon-

dents together spent 62.00 years out of job between the 25th and 26th birthday

and 139.00 years with a job. The same information, but arranged differently, is

also shown in the output file tsjt.out (see below).

(c) Direct transitions by state of origin, state of destination and age. For instance,

3 respondents without a job got a job between ages 25 and 26; 11 persons with a

job left the job to be out of a job and 10 moved to another job. No observation

was censored at age 26. Note that an individual, who makes a transition at his or

her birthday, is allocated to the correct age.

The second object returned by RateTable is ratetable
$censored_by_age. It is the number of subjects censored by age and state

occupancies at censoring. The information is used for microsimulation with cen-

soring. Note the difference with agetrans$agecens. The latter gives for each
individual in the sample population the age at censoring.

4.6 Covariates

The methods described above may be extended to exploratory transition data

analysis with covariates. The simplest approach is to split the data set based on

values of a covariate or sets of covariates and use Biograph functions for each

subset separately. By way of illustration, consider state sequences recorded in the

GLHS and suppose we want to determine whether the employment career of the

younger cohort differs from that of the older cohort. To split the data set, use the

split function of R Base. The following command splits the GLHS data in two

data sets, one for each cohort:

GLHS.cohort <-
split(GLHS,as.factor(GLHS$cohort))

The object GLHS.cohort is an object of type ‘list’ with three components: a

data frame with the records for individuals born before in the 1929–1931 period, a
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data frame with the records for individuals born in 1930–1941 and a data frame for

individuals born in 1949–1951. To display the three components, use str(GLHS.
cohort). The component GLHS.cohort $“1949-51”, or alternatively

GLHS.cohort[[3]], contains the data for the respondents born in 1949–

1951. Among the 201 respondents, 75 were born in the period 1939–1941, 55 in

the period 1939–1941 and 71 were born in 1949–1951. To list the first ten records of

the first data frame, use

GLHS.cohort$"1929-31"[1:10,]

or

GLHS.cohort[[1]][1:10,]

The state sequences by birth cohort are obtained by the following commands:

seq.c1 <- Sequences (GLHS.cohort[[1]])$sequences
seq.c2 <- Sequences (GLHS.cohort[[2]])$sequences
seq.c3 <- Sequences (GLHS.cohort[[3]])$sequences

Table 4.12 State and event sequences, by birth cohort. GLHS

a. Born in 1929-31
ncase     %  cum% M_age_exit ns   case     tr1     tr2     tr3    tr4  tr5

1     10 13.33 13.33      50.83  3    NJJ 16.33>J 30.79>J                     
2      8 10.67 24.00      50.58  3    NJN 18.29>J 23.58>N                     
3      6  8.00 32.00      50.75  2     NJ 16.96>J                             
4      6  8.00 40.00      51.29  4   NJJJ 18.75>J 23.38>J    31>J             
5      6  8.00 48.00      50.92  5  NJNJJ 15.46>J    21>N 28.67>J  41.5>J     
6      5  6.67 54.67      51.83  5  NJJJN 18.33>J 21.75>J 24.25>J  35.5>N     
7      4  5.33 60.00      51.17  5  NJJJJ 19.21>J 25.04>J 33.38>J 44.96>J     
8      4  5.33 65.33      51.88  6 NJNJJJ 17.54>J 25.33>N 26.58>J  38.5>J 46>J
9      3  4.00 69.33      51.42  4   NJJN    17>J  21.5>J 24.67>N             
10     3  4.00 73.33      50.83  5  NJJNJ  16.5>J 26.58>J 34.33>N 35.33>J 

Born in 1939-41
ncase     %  cum% M_age_exit ns   case     tr1     tr2     tr3     tr4     tr5

1     7 12.73 12.73      41.00  4   NJNJ 18.92>J 20.42>N 27.08>J                
2     5  9.09 21.82      41.58  4   NJJJ 17.17>J  19.5>J    25>J                
3     5  9.09 30.91      41.25  6 NJNJNJ 17.08>J 23.17>N 25.17>J    26>N 33.25>J
4     4  7.27 38.18      41.42  3    NJN 19.29>J 24.62>N                        
5     3  5.45 43.64      41.08  5  NJJJJ  16.5>J 27.83>J 34.25>J 36.83>J        
6     3  5.45 49.09      42.67  4   NJJN 19.17>J 22.17>J 25.33>N                
7     3  5.45 54.55      41.33  5  NJNJN 17.67>J 19.83>N 20.92>J  25.5>N        
8     2  3.64 58.18      41.92  2     NJ 19.62>J
9     2  3.64 61.82      40.33  3    NJJ 22.71>J    24>J

Born in 1949-51
ncase     %  cum% M_age_exit ns   case     tr1     tr2     tr3     tr4     tr5

1    11 15.49 15.49      31.25  3    NJN 18.17>J 26.83>N
2     8 11.27 26.76      31.12  2     NJ 22.29>J                                
3     8 11.27 38.03      32.00  4   NJNJ  18.5>J 23.83>N 27.12>J                
4     7  9.86 47.89      31.00  3    NJJ 18.42>J 22.67>J
5     5  7.04 54.93      30.58  4   NJJJ 17.58>J 20.42>J 27.17>J                
6     5  7.04 61.97      31.67  4   NJJN 18.17>J 19.25>J 21.75>N                
7     4  5.63 67.61      31.42  6 NJNJNJ 18.08>J 20.25>N 22.42>J 24.75>N    29>J
8     3  4.23 71.83      32.42  5  NJJJJ 20.67>J 20.92>J  25.5>J 27.92>J        
9     3  4.23 76.06      31.33  6 NJJNJJ    17>J 21.33>J 25.92>N 26.83>J 28.42>J
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Table 4.12 shows the most prevalent pathways for the three cohorts. The

sequence NJN accounts for 11 % of the employment trajectories in the oldest

cohort, 7 % in the middle cohort and 15 % in the youngest cohort. The ages at

transition are median ages.

To illustrate the use of covariates further, consider the age profile at entry into

the labour market. One way of plotting the age profiles is by covariate. Consider the

first cohort:

z <- subset(GLHS,GLHS$cohort=="1929-31")
attr(z,"format.date") <- attr(GLHS,"format.date")
attr(z,"format.born") <- attr(GLHS,"format.born")
attr(z,"param") <- attr(GLHS,"param")
z.c1 <- TransitionAB(Bdata=z,

transition="NJ",keep=FALSE)

and similarly for the second and third cohort. The ages at labour market entry are

given in z.c1$age.
An alternative is to use a Trellis plot, i.e. a panel of graphic displays. Figure 4.2

shows the age distribution at labour market entry by birth cohort and sex. It is a

density plot produced by the following commands:

library (lattice)  
z <- TransitionAB(GLHS,"NJ")
zzz <- as.data.frame(cbind (ID=GLHS$ID,

cohort=GLHS$cohort,
sex=GLHS$sex,
Entry=z$age))

zzz$cohort <- factor(zzz$cohort,
labels=c("1929-31","1939-41","1949-51"))

zzz$sex <- factor(zzz$sex,
labels =c("Males","Females"))

densityplot (~Entry|sex,data=zzz,
plot.points="rug",
main="Age at labour market entry",
sub= paste("Total number of entries with known

covariates is ",
length(na.omit(zzz$Entry)),sep=""),        
xlab="Age", 
scale=list(x=list(alternating=FALSE)),
groups=cohort,
ref=TRUE,
auto.key=TRUE)

Figure 4.2 shows that women born in 1939 or later enter the labour market later

than women born in 1929–1931. Men enter later if they are born in 1949–1951. The

distribution of the age at labour market entry is wider for the oldest cohort.
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The figure reveals that the age profile of labour market entry for the 1939–1941

birth cohort is a mixture of two age profiles.

4.7 Conclusion

Data analysis starts by getting acquainted with the data. It involves looking at the

data, the computation of summary measures, the identification of patterns and

peculiarities such as outliers and the display of data for visual inspection. The

tools presented in this chapter offer summary measures but also a detailed look at

the data. The measures and tabulations that are produced for the sample population

may also be produced for a subset of that population and even for each member

separately. The purpose of a detailed look at life history data is to get a feeling for

the data before embarking on statistical analysis. For instance, what is the share of

open episodes, i.e. censored observations? What are the most frequent transitions

and event sequences? Is a transition soon followed by another transition? The

answers to these questions provide information that is useful for describing the
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Fig. 4.2 Trellis plot of age distribution at labour market entry, by birth cohort and sex. GLHS
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life paths of the sample population and at the same time support further statistical

analysis. For instance, a detailed account of open and closed episodes helps the

construction and understanding of the likelihood function in survival models. The

purpose of a full documentation of the computation of event counts and state

occupation times is to promote understanding of the method underlying the esti-

mation of transition rates. The object Stable has all the necessary information to

estimate age-specific transition rates by origin and destination. It is therefore

considered one of the most useful objects produced by the Biograph package.

Visualisation of the data and life histories is the subject of the next chapter.
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Chapter 5

Visualisation of Life Histories

5.1 Introduction

Data visualisation is the graphic presentation of data to reveal complex information

at a glance (Steele and Iliinsky 2010). The challenge is to map data to a visual

display that reveals the range of values of variables and relations between variables.

Visualisation of data can be an effective introduction to formal statistical model-

ling. Ages at marriage may be displayed as points in a scatter plot to assess the

distribution of ages and to identify outliers. The marriage duration of a person may

be displayed as a line connecting age at marriage and current age or age at marriage

dissolution. The end point may be marked if the marriage has been dissolved and

not marked if the marriage is intact at the end of the observation period. Visuali-

sation of life histories poses particular challenges. The first is conceptual. The life

history is a multistage process of development in which stages create a basis for

subsequent stages. In this book the life course is conceptualised as sequences of

states and sequences of events. In each domain of life, a state and event sequence

can be identified. A second challenge is embedding. The life course is embedded in

a historical context, and the visualisation should reveal how developmental pro-

cesses vary in time. That requires at least two time scales: age and calendar time.

The Lexis diagram, named after the demographer Wilhelm Lexis (1837–1914),

meets that challenge. Each line in a Lexis diagram represents the follow-up of a

single individual from entry to exit on two time scales: age and calendar time. The

Lexis diagram is widely used and has inspired improved visualisations of life

histories. Some of that research is reviewed in the brief historical note in

Sect. 5.1. A third challenge is to reveal significant information at a glance. The

graph should convey essential information and highlight the unexpected.

One of the great strengths of R is the graphics capabilities. In this chapter, I use

two general-purpose and two special-purpose graphics packages to display life

history data. The general-purpose packages are lattice and ggplot2. Lattice, devel-
oped by Sarkar (2008, 2014), is designed to combine multiple plots in a page. It is
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modelled on the Trellis graphic originally developed by Cleveland (1993) and

written in S. The ggplot2 package, developed by Wickham (2009, 2010, 2014),

starts from the grammar of graphics (Wilkinson 2005, 2012) to compose graphics

using a set of independent components and multiple layers. Section 5.1 contains a

brief description of the grammar of graphics, which is implemented in ggplot2. The
special-purpose packages are Epi and TraMineR. Epi, developed by Carstensen

(2013), presents state sequences and event sequences in Lexis diagrams. TraMineR,
developed by Gabadinho et al. (2011, 2012) and maintained by Ritschard (2014),

includes several functions for the visualisation of state sequences. In Sect. 5.2

ggplot2 functions are illustrated using GLHS data. The Lexis diagram is covered

in Sect. 5.3. The visualisation of state distributions and state sequences is the

subject of Sect. 5.4.

5.2 Points of Departure

In this book, the life course is approached as a sequence of states and sequence of

transitions between states. Visualisation of the life course means visualisation of

sequences highlighting transition dates (or ages) and sojourn times. The study of a

single transition or a single episode is a first step. A scatter diagram of individual

ages at transition by one or several covariates may reveal significant differences and

may function as a guide for more formal analysis. Outliers are easily identified. The

simplest visual representation of multiple transitions is the event chart. Each

individual is represented by a single horizontal line, and transitions are denoted

by various symbols placed along the line. The x-axis denotes the time scale, and

subject ID is shown along the y-axis. Time can be calendar time or time elapsed

since a reference event, e.g. birth or entry in a study. The event chart was introduced

by Goldman (1992). Lee et al. (2000) review and discuss developments. They

distinguish three basic formats of event charts: (a) calendar event chart, which

displays calendar dates of transitions along the x-axis; (b) interval event chart,

which displays times elapsed since a reference event along the x-axis; and

(c) Goldman event chart, which shows the interval date along the x-axis and the

calendar date along the y-axis. One of the extensions they consider is using different

colours to represent episodes of life. The authors developed event.chart,
which is a function of the Hmisc package in CRAN to display different types of

event charts. For an application of event charts in the analysis of event sequences in

longitudinal studies, using the Hmisc package, see Dubin and O’Malley (2010). For

the methods, see Dubin et al. (2001).

Pleasant et al. (1996) developed LifeLines and later LifeFlow and EventFlow to

visualise individual life histories.1 Horizontal lines represent different domains of

life. Medical conditions may be represented by one line and employment history by

1 http://www.cs.umd.edu/hcil/members/cplaisant/
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another. Icons indicate events. Line colour and thickness illustrate relationships or

the significance of events.

In 1996, Francis and Fuller (1996) discussed the usefulness of exploratory

visualisation of event histories as a precursor to more formal statistical modelling

and reviewed a number of visualisation methods. They selected the Lexis diagram

as the main graphical method for displaying life histories. The Lexis diagram

represents events and episodes in two time scales: age (individual time) and

calendar time. Calendar time is shown on the x-axis and age on the y-axis. The

authors extend the Lexis diagram, which displays for each individual a single

lifeline or life history, to a Lexis pencil displaying multiple life histories. The

multiple histories may relate to domains of life, partners or household members.

Different colours are used to denote the stages of life in a lifeline. Lifelines of

different domains of life are displayed side by side resembling a pencil. Francis and

Fuller note that the Goldman event chart is essentially a Lexis diagram with axes

reversed.

The grammar of graphics (Wilkinson 2005) is a systematic approach to statis-

tical graphics. It describes the mapping of data to objects displayed in a graphic and

the aesthetic attributes of the objects. The aesthetic attributes or aesthetics are

visual properties that affect the way observations are displayed. To represent

data, numerical values should be translated into positions in a coordinate system,

shapes, sizes and colours. Aesthetic mapping (aes) is the mapping of data to

positions, shapes, sizes and colours. For instance, to highlight changes in age at

marriage over time, ages at marriage of members of a population may be

represented by points in an age-time coordinate system (e.g. Lexis diagram). Points,

lines, histograms and bar charts are geometric objects (geom) used to display the

data. To determine whether the changes in marriage age differ between males and

females, the point may be replaced by a circle if the subject is a male and a triangle

when it is a female. Colours may be used to distinguish levels of education. To

distinguish between first- and higher-order marriages, the data set may be split, and

separate plots may be shown in two panels for easy comparison.

The grammar of graphics is implemented in ggplot2 (Wickham 2009). Wickham

makes a distinction between the information content of a plot and its beauty. The

information content is controlled by: (1) the geometric object used to display

observations (points, lines, histogram) and (2) the position of observations in the

plot and the shape, size and colour of the geometric object. The beauty is deter-

mined by non-data-related elements, such as title, axis labels, background, grid

lines, legend, etc. In ggplot2 position, shape, size and colour are referred to as

aesthetics. Geometric objects, denoted by geom, and the aesthetics control the

information content of a plot. The appearance of non-data-related elements are

controlled by the theme system of ggplot2. The range of geoms, aesthetics and

themes make ggplot2 a flexible plotting system. A plot may consist of multiple

layers. Each layer may come from a different data set and have a different

geometric object and aesthetic mapping (Wickham 2009, pp. 42ff, 2010). For

instance, a histogram may be placed on a scatter plot. In addition, data may be

split into subsets, and a panel of similar graphs may be used to display the subsets.

5.2 Points of Departure 111



The display of subsets of data in panels is referred to as faceting. The plotting

system enables the user to specify many details of a plot. There is no need to specify

all the details because aesthetics have a default. In addition, ggplot2 includes a

function for quick plots: the qplot function. These different components of

ggplot2 are briefly described in this section. For details, the reader is referred to

Wickham (2009) and the ggplot2 website (http://ggplot2.org/).

The data and the mapping of data to aesthetics are specified the ggplot
function. The data mapping is done in the aes argument. The mapping of data to

aesthetics is controlled by scales. It determines how numerical values in the data are

mapped to positions, shapes, sizes and colours. For instance, the position on the

x-axis may be determined by the value of a variable or the log of the value. Discrete

variables may be represented by different shapes. A continuous variable may be

converted to an interval variable represented by different colours or may not be

converted and represented by a colour gradient, obtained by linear interpolation

of colours. Every aesthetic has a default scale. For instance, if we select colours

to distinguish levels of education, default colours are selected unless a scale

function is used to overwrite the default (in this case the scale function is

scale_colour_manual). A scale function starts with scale_, followed by

the name of the aesthetic and the name of the scale (for details, see Wickham 2009,

pp. 93ff and the scale section of the ggplot2 website http://had.co.nz/ggplot2/).

Scales that control the position of an observation in the plot, i.e. the position on the

x- and y-axes, are called a position scale. Shape scales control the shape of the

mapping of numerical values to shapes. Scales that control the mapping of

values to colour are colour scales. The colour scale may be defined manually by

specifying the colours by name or hexadecimal number and using the

scale_colour_manual function. An alternative is to select colours from a

palette. Common colour palettes are rainbow, which is part of Base R, or the

ColorBrewer palette provided by the RColorBrewer package in CRAN.

5.3 Basic Graphics with ggplot2

In this section, I uses the ggplot2 package. The package needs to be installed,

including packages it needs: reshape, plyr, proto, digest, RColorBrewer and

colorspace. Suppose we want to determine whether men and women of different

birth cohorts enter the labour market at different ages. The IDs of the subjects are

shown on the x-axis, and the age at labour market entry is shown on the y-axis.

Cohorts are represented by colours and sexes by shapes. The function

TransitionAB may be used to select the ages at labour market entry

(NJ transition) from the Biograph object. The ages at labour market entry are also

included in the GLHS data (GLHS$LMentry; age in CMC). The scatter plot is

shown in Fig. 5.1. It is produced by the qplot (quick plot) function of the ggplot2
package. The code is:
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z <- TransitionAB (Bdata=GLHS,"NJ")
GLHS$age_at_LMentry <- z$age
qplot(ID,

age_at_LMentry,
data=GLHS,
colour=cohort,
shape=sex)

The youngest age at labour market entry is 13 years and the highest is 31 years.

Visual inspection of the scatter plot does not reveal a significant effect of birth

cohort and sex. To display the number of labour market entries by cohort and sex,

use table(GLHS$cohort,GLHS$sex).
Instead of using the quick plot facility, the plot may be constructed layer by

layer. A layer has five components. The first is the data, in this case age at labour

market entry. The second is the set of aesthetic mappings, which describe how

variables in the data are mapped to aesthetic properties of the layer: position in the

coordinate system, shape, size and colour. The position is determined by the x-axis

and the y-axis. In this case, subject identification number ID is displayed on the

x-axis and age at labour market entry (LMentry) is displayed on the y-axis. In other

Fig. 5.1 Scatter plot of ages at labour market entry, by birth cohort and sex. GLHS
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words, x-position is mapped to ID and y-position to age at labour market entry. The

aes function of ggplot2 describes the mapping of data to aesthetics. The third

component is the geometric used to draw the layer. In ggplot2 point, line,

histogram and bar chart are geometric objects. A geometric object describes the

type of object used to display the data. The object is denoted by geom. The
geometric object to display points is geom_point, and the object to display a

bar chart is geom_bar. In principle, histograms are for continuous variables and

bars for discrete variables (Wickham 2009, p. 14). The following code produces a

scatter plot of ages at labour market entry:

p <- ggplot (GLHS,aes(x=ID,y=z$age))
pp <- p + geom_point ()

The first line is the mapping of data to aesthetics. The second line specifies a

layer and displays the result. The plot is saved as a graphic object (pp). To display

Fig. 5.1, we need to add colour to represent cohort and a shape to represent sex:

p <- ggplot (GLHS,aes(x=ID,y=age_at_LMentry,
colour=cohort,shape=sex))

p + geom_point ()

The plot uses the default mappings of data into aesthetic. The default can be

overwritten by specifying the aesthetic in the layer. The following code replaces the

default colours by dark red, dark green and purple:

colours=c("1929-31"="darkred",
"1939-41"="darkgreen","1949-51"="purple")

p + geom_point (aes(colour=cohort))
+scale_colour_manual(values=colours)

To see whether gender differences by cohort vary with education, two education

levels are derived from years of education. The first level is lower secondary

education or less (years of education less than or equal to 11). The second level is

middle school or higher. The following code produces two scatter diagrams of ages

at labour market entry by birth cohort and sex, one for subjects with lower

secondary education or less and one for subjects with middle school or higher.

The first plot is produced by the quick plot function qplot, the second by

constructing the plot layer by layer using the ggplot function. The quick plot is

produced by the code:

GLHS.e <- GLHS
GLHS.e$edu2<- factor (ifelse (GLHS$edu<=11,1,2),

labels=c("-LowerSec","Middle+"))
qplot(ID,age_at_LMentry,

data=GLHS.e,
colour=cohort,
shape=sex,
facets=edu2~.)
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Figure 5.2 shows the result.

The function uses faceting, which is the splitting of data into subsets and displaying

the same graph for each subset.

The same plot may be produced using the ggplot function:

p <- ggplot (GLHS.e,
aes(x=ID,y=age_at_LMentry,colour=cohort,shape=sex))

p + geom_point() + facet_grid(edu2~.)

Two types of faceting are provided in ggplot2: facet_grid and

facet_wrap. The first produces a two-dimensional grid of panels, defined by

two variables. In this case one variable (edu2) is used. The dot denotes the absence
of a column variable. The second type of faceting produces a one-dimensional

ribbon of panels that is wrapped into two dimensions:

p + geom_point() + facet_wrap(~edu2,nrow=2)

The plot is not shown.

Fig. 5.2 Scatter plot of ages at labour market entry by cohort, sex and level of education. GLHS
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The age distribution at labour market entry may be shown in a histogram,

produced by the quick plot function:

qplot(age_at_LMentry, 
data=GLHS,
geom="histogram",
binwidth=1,
fill=cohort)

The command plots a stacked histogram. The plot is not shown. A histogram of

ages at labour market entry by sex is shown in Fig. 5.3. The histogram is one of

several geometric objects included in ggplot2. The geom ‘histogram’ may be

replaced by the geom ‘bar’. The results are the same.

To assess the gender differences in ages at labour market entry by cohort, the

technique of faceting may be used.

qplot(age_at_LMentry, 
data=GLHS,
geom="histogram",
binwidth=1,
fill=cohort,
facets=sex~.)

The same figure may be produced using the facet_grid function:

qplot(age_at_LMentry, 
data=GLHS,geom="histogram", 
binwidth=1)

+ facet_grid(sex~.)

An alternative approach is to use the ggplot function, mapping the position on

the x-axis to age at labour market entry and the filling of stacked values to cohort:

p2 <- ggplot (GLHS.e,
aes(x=age_at_LMentry,fill=cohort))

p2 + geom_bar() + facet_grid(sex~.)

The histogram has one position aesthetic (x-axis) and a fill aesthetic. The

following code plots the age at labour market entry by cohort, sex and level of

education (Fig. 5.3):

p2 + geom_bar() + facet_grid(edu2~sex)

The previous two plots show information on the 201 respondents in the subsam-

ple of the GLHS. We now consider the 600 job spells and 382 episodes without a

job experienced by the respondents, a total of 982 episodes. Suppose we want to

compare J and N episodes and open and closed episodes. Of the job spells, 458 are

closed episodes and 142 are open. Of the 382 N episodes, 122 are closed, 201 start

at onset of observation and 59 are terminated at survey (censoring). Let us display
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the 982 episodes, using colours and shapes to distinguish between N and J episodes

and open and closed intervals. Using the theme system of ggplot, a few elements are

added to make the visual appearance of the plot more complete and attractive for

publication.

The beauty of a plot is determined by non-data-related elements, such as title,

axis labels, axis tick labels, legend labels, legend key labels, grid lines, background

colour and fonts in parts of the plot. The appearance of non-data-related elements is

controlled by the theme system (Wickham 2009, Chap. 8). Themes do not affect the

geoms and the aes function that maps data to aesthetics. The information content

of a plot is controlled by the geom and the mapping of data in aesthetics. The beauty

of the plot is controlled by the theme system. The theme system was rewritten in

version 0.9.2 of ggplot2 released in September 2012.

The theme system can be changed locally for a single plot or globally for all

future plots. In earlier versions of ggplot2, the function opts would update

elements of the theme locally, and the function theme_update updates the

elements globally (Wickham 2009, p. 146). The function opts is deprecated,

and its tasks are incorporated in the theme function. The functions theme_xx
have also been deprecated (with xx blank, line, text, segment and rect). The

function theme_update may be used to modify a small number of elements of

Fig. 5.3 Bar charts of age distribution at labour market entry, by sex, level of education and birth

cohort. Facet grid of GLHS data
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the current theme. The function theme modifies a theme setting, and the function

theme_set completely overwrites a theme. The command theme_get()
displays the current setting of the themes.

A theme controls the appearance of a single item on the plot. The title, the legend

name and the x-axis label are examples of items. For a complete list of theme

elements, see the ggplot2 website. The appearance of an element is controlled by

the theme function.

To display information on the episodes, the long data format is produced first:

D <- Biograph.long (GLHS)

Recall that the attributes format.date, format.born and param must

have been assigned to the data frame GLHS. To check the presence of the attribute,

use str(GLHS). The object D has two components: D$Devent and

D$Depisode.
For plotting the duration of each episode, or state occupied, distinguishing

between open and closed episodes and between N and J episodes, D$Depisode
is used:

DE <- D$Depisode

An identification number is created for each episode and the duration (time)

variable is created:

DE$id <- 1:nrow(DE)
DE$Duration <- DE$Tstop-DE$Tstart
DE$StateOccupied <- DE$OR
DE$Status <- factor (DE$status,

labels=c("Open","Closed"))

The choice of the name of the duration variable (‘Duration’) and the state

occupied (‘StateOccupied’) is in anticipation of the legend in the plot. By default

the variable name is used as the title of the legend. The class of the variable

status is changed from numeric and continuous to factor because the shape

aesthetic is applicable to discrete variables only.

The following code plots the data (982 points), using default shapes and default

colours:

p.e <- ggplot (DE,
aes(x=id,y=Duration,shape=Status,
colour=StateOccupied))

p.e + geom_point()

Let us overwrite some defaults. The following code replaces the default shape

and default colour:
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p.e2 <- p.e + 
geom_point(aes(shape=Status,colour=StateOccupied))
+ scale_shape_manual(values=c(1,19))
+ scale_colour_manual(values=c("N"="red","J"="blue"))

The second line specifies the aesthetics to be changed. The third and fourth lines

are scale functions that control the shape and colour of the points that represent the

ages at labour market entry. The shape is specified by an integer between 0 and 25.

Shape 1 is a small open circle and shape 19 is a filled circle (Wickham 2009,

p. 196ff). The plot shows the default legend. The title of the legend is the name of

the variable, and the categories are the category names in the data. In the data ED,

the name of the variable specifying the state occupied during a given episode is OR.
The easiest way to change the title of the legend is to change the variable name. Let

us change OR to StateOccupied, redefine the aesthetics and get a new plot:

p.e <- ggplot (DE,
aes(x=id,y=Duration,shape=Status,
colour=StateOccupied))

p.e2 <- p.e + geom_point(
aes(shape=Status,colour=StateOccupied)) + 
scale_shape_manual(values=c(1,19)) + 

scale_colour_manual(
values=c("N"="red","J"="blue"))

p.e2

The result is shown in Fig. 5.4.

The default colour of background of the panel is light grey (theme_grey ())
and the gridlines are white. To get a white background with grey gridlines, use the

built-in theme theme_bw():

p.e2 + geom_point() + theme_bw()

Adding a theme to a plot overwrites the theme for a single plot.

We may add a title to the plot. For instance, the following code displays the title

‘Durations of episodes’ in red, with a relatively small font and left adjusted:

title <- "Durations of episodes in months"
p.e2 <- p.e +  labs (title=title) + 

theme(plot.title=element_text(colour="red",
 size="12",face="bold",hjust=0))

The plot is not shown.

Finally, the colour of the entire plot background may be changed to light blue

and the border of the plot to black (not shown).

p.e2 + theme (
plot.background=element_rect

(fill="lightskyblue1",
colour="black",size=5)) + geom_point()
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Several of the ggplot2 functions presented in this subsection are used in

Biograph to graphically display characteristics of life histories.

5.4 The Lexis Diagram

The Lexis diagram represents transitions and episodes in two time scales: age and

calendar time. If age and calendar time are known precisely, the date of birth can be

derived. Hence the age-time diagram carries information on birth cohorts. For

instance, if we know that a person marries on 20 July 2010 on his 30th birthday,

we can derive that the person is born on 20 July 1980. Alternatively, if we know that

a person born on 20 July 1980 marries on his 30th birthday, we can derive that the

date of marriage is 20 July 2010. Two variables are sufficient to determine the third.

The fact is used in drawing Lexis diagrams. It also makes the Lexis diagram an

ideal graphical aid for studying how age patterns vary over time and across birth

cohorts.

Fig. 5.4 Aesthetic mapping of lengths of episodes in months, by type of episode and state

occupied. GLHS
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In this section Lexis diagrams are produced using functions from two packages

in the Comprehensive R Archive Library (CRAN): Epi, developed by Carstensen

(2007, 2013; see also Carstensen and Plummer 2011; Plummer and Carstensen

2011) for epidemiological and demographic analysis and ggplot2 developed by

Wickham (2009). Biograph includes functions to display transitions (points), epi-

sodes and state sequences (lines). It also includes functions to display in Lexis

diagram event counts and exposure times for individuals, groups of selected

individuals and the entire (sample) population. The event count in a given

age-time interval and the exposure time during the same interval determine the

transition rate during that interval. In this section, the following functions are

documented:

• Lexispoints: displays ages and dates at transition using functions included

in Epi package
• Lexis.points: displays ages and dates at transition using ggplot2
• Lexislines.episodes: draws lifelines for selected subjects using func-

tions in Epi package
• Lexis.lines: draws lifelines for selected subjects using pplot2
• LexisOccExp: plots Lexis diagram with event counts, exposure times and

transition rates by age and calendar year

In the Epi package, the main object is the Lexis object. A Lexis object contains

the data necessary to display a single episode in a Lexis diagram: the calendar time

and age at onset of the episode, the state occupied during the episode and the event

marking the end of the episode. The event is a transition to another state or

censoring.

Formally, the Lexis object is a data frame with a variable for each time scale and

four variables with reserved names starting with lex (see Chap. 3):

(a) per: calendar time at start of episode.

(b) age: age at start of episode.
(c) lex.dur: length of the episode (duration of follow-up).

(d) lex.Cst: state occupied during the episode, also referred to as current status

and entry status. It is the state in which the follow-up takes place.

(e) lex.Xst: exit status (eXit state), i.e. the state taken up after a transition out of
lex.Cst. It is also referred to as destination state.

(f) lex.id: subject identification number.

Table 5.1 shows the Lexis object of the episode between birth and labour market

entry for the first ten respondents in the GLHS subsample. For the computation of

the Lexis object, see Chap. 3.

The episode starts at birth. The date of birth is labelled per. The age at birth is

zero. per and age represent the entry times on each time scale. The age at labour

market entry is the exit time on the age scale. It is the duration of follow-up, denoted

by lex.dur. At the start of the episode and throughout the episode, the subject is

without a job, denoted by 0 (lex.Cst). The exit status (lex.Xst) is labour

market entry, denoted by 1. The last column is the subject identification number.
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Biograph includes two functions to draw a Lexis diagram: Lexispoints and

Lexis.points. First consider Lexispoints. The function uses functions

from the Epi package. The code

data (GLHS)
require (Epi)
z <- Lexispoints (Bdata=GLHS,transition="NJ")

creates a Lexis object and draws the Lexis diagram showing ages at labour market

entry (transition ‘NJ’). The output z contains the Lexis object, augmented by the

variables in the GLHS data. The ages may be differentiated by one covariate. In the

Biograph versions available today, only a single covariate may be used. The values

of the covariate are identified by colour. Figure 5.5 shows ages and dates of labour

market entry by sex. It is produced by the following code:

z <- Lexispoints (Bdata=GLHS,
transition="NJ",
title="Calendar time and age at labour 

market entry",
cov="sex",
legend="topleft")

The legend is positioned in the top left corner.

To plot the ages and dates at exit from the first job (first JN transition), the code

is:

z <- Lexispoints (Bdata=GLHS,
transition="JN",
title="Calendar time and age at exit from first 

job",
cov="sex",
legend="topleft")

The figure is not shown. A total of 134 respondents experience the event, and

67 are still in their first job at survey date.

Table 5.1 Lexis object: data on episodes between birth and labour market entry. GLHS

per age  lex.dur lex.Cst lex.Xst lex.id
1  1929.162   0 17.00036       0       1      1
2  1929.666   0 19.66325       0       1      2
3  1939.329   0 17.91823       0       1      3
4  1950.247   0 22.33542       0       1      4
5  1931.329   0 17.16823       0       1      5
6  1940.915   0 16.58070       0       1      6
7  1939.581   0 14.66618       0     1      7
8  1950.666   0 19.08225       0       1      8
9  1931.329   0 17.83323       0       1      9
10 1931.748   0 16.50105       0       1     10
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The following call uses the Lexis.points function to display labour market entry

by sex and birth cohort. Sex is the covariate and cohort is the group variable. The

function uses the ggplot2 package.

library (ggplot2)
z <- Lexis.points (Bdata=GLHS,

transition="NJ",
title="Labour market entry by sex and cohort",
cov="sex",
group="cohort",
legend.pos=c(0.9,0.95),
pdf=FALSE)

The legend is positioned in the top right corner. The option to save the plot in a

PDF file is not used. The plot is shown in Fig. 5.6.

Now we turn to Lexislines.episodes and Lexis.lines. Figure 5.7

shows for five subjects the lifelines with the transitions marked. Subject with ID

46 is born in 1951, enters the labour market in 1972 at age 21, leaves the first job in

1975 at age 24 and gets another job in 1979 at age 28. The observation is censored

in 1981 (c). The plot is produced by the function Lexislines.episodes and

the following commands:

Fig. 5.5 Lexis diagram: scatter plot of calendar years and ages at labour market entry by

sex. GLHS
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subjectsID <- c(1,19,46,208)
title1 <- "Lifelines for selection of respondents. GLHS"
D <- Biograph.long (Bdata=GLHS)
z <- Lexislines.episodes

 (GLHS,D$Depisode,subjectsID,title1)

Fig. 5.6 Lexis diagram: scatter plot of calendar years and ages at labour market entry by birth

cohort and sex. GLHS
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The function Lexislines.episodes requires episode data (long format).

The function returns the object z$Loc, which is the Lexis object for the subjects

selected. The Lexis object is augmented by the raw data (GLHS).

The employment careers for individuals with ID 1, 19, 46 and 208 are displayed.

The data for these subjects are obtained by:

D$Depisode[D$Depisode$ID %in% c(1,19,46,208),]

The Lexis.lines function uses ggplot2. It requires data in long format too.

In addition, it requires data in decimal calendar years. The following code produces

the plot (Fig. 5.8).

GLHS.yr <- date_b(Bdata=GLHS,
selectday=1,format.out="year")

D <- Biograph.long (GLHS.yr)
subjects <- c(1,78,120,208)
z <- Lexis.lines (Bdata=GLHS.yr,

Dlong=D$Depisode,
subjectsID = subjects,
title = " ")

Fig. 5.7 Lexis diagram: employment careers of selected GLHS respondents. Display A, using Epi
package
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The function LexisOccExp draws a Lexis diagram with transition counts,

exposure times and transition rates for age groups with an interval provided by the

user. The interval variable is generally equal to 1 or 5. Consider the transition from

Job to NoJob. The transition is denoted by JN. A transition occurs when a respon-

dent leaves his or her job for a period or non-employment. A person is exposed to

the risk of the transition when employed. It starts after entry into employment.2

Some periods of exposure end in the JN transition, while other periods end at survey

date. We are interested in plotting in the Lexis diagram transition counts, exposure

time and transition rates. The counts, exposures and rates are plotted by 5-year age

groups and calendar periods of 5 years. The following command draws the Lexis

diagrams:

w <- LexisOccExp (Bdata=GLHS,transition= "JN",
nyear=5)

The function produces three Lexis diagrams, one each for counts, exposures and

rates (Fig. 5.9). After each plot, the user needs to press the return key. The function

Fig. 5.8 Lexis diagram: employment careers of selected GLHS respondents. Display B, using

ggplot2 package

2 For an exposition of the measurement of risk periods in multistate models, see Beyersmann

et al. (2012, p. 175).
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Exposures to transition JN (years)

Calendar time

A
ge

1940 1945 1950 1955 1960 1965 1970 1975 1980 1985
10

15

20

25

30

35

40

45

50

55

2 5 0 1 0 0 0 0 0

0 60 23 36 16 51 15 0 0

0 1 84 22 71 12 110 18 0

0 0 2 90 19 45 6 101 20

0 0 0 2 95 22 48 6 23

0 0 0 0 2 101 21 57 9

0 0 0 0 0 2 107 26 20

0 0 0 0 0 0 2 106 25

0 0 0 0 0 0 0 2 25

Count of transition JN (years)

Calendar time

A
ge

1940 1945 1950 1955 1960 1965 1970 1975 1980 1985
10

15

20

25

30

35

40

45

50

55

1 0 0 1 0 0

12 2 7 1 2 7

0 13 3 19 5 16 3

1 7 3 5 0 11 2

0 3 0 1 1 1

0 1 1 0 0

0 2 0 1

0 1 0

1 0

Fig. 9 (continued)
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uses the par function of R to set the graphical parameter that tells the function to

pause until you hit a key:

par (ask=TRUE)

This function requires an input from the user before a new figure is drawn. The

LexisOccExp function displays three Lexis diagrams and returns the following

objects:

(a) w$surv: the survival object which shows for each respondent and for the first

job episode, the starting date of the episode (in this illustration the date of labour

market entry), the ending date (the date of the first job exit) and the type of exit

(event or censoring).

(b) w$Lcoh: the Lexis object.
(c) w$nevents: the number of transitions by calendar period and age group.

(d) w$ndur: the exposure time by calendar period and age group.

(e) w$rates: the transition rates by calendar period and age group. The transition
rates (occurrence-exposure rates) are obtained by dividing transition counts by

the durations of exposure.

Transition JN: Occurrence-exposure rates (per year)

Calendar time

A
ge

1940 1945 1950 1955 1960 1965 1970 1975 1980 1985
10

15

20

25

30

35

40

45

50

55

0.42918 0 0 0.63291 0 0

0.19917 0.0854 0.19401 0.06154 0.03896 0.46144

0 0.15325 0.13435 0.26544 0.41667 0.14437 0.16667

0.41322 0.07763 0.1519 0.10948 0 0.10802 0.09756

0 0.03128 0 0.02051 0.15576 0.04211

0 0.00988 0.04562 0 0

0 0.01858 0 0.04801

0 0.00936 0

0.44444 0

Fig. 5.9 Lexis diagram: job exits and exposure times by calendar period and age: exposure times,

transition counts and occurrence-exposure rates. GLHS
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The function LexisOccExp uses a particularly useful function of the Epi
package, the splitLexis function. This function divides each interval into

disjoint subintervals according to breakpoints supplied by you. As a consequence,

each row of the Lexis object is split in several rows, one for each subinterval. Event

counts and exposure times may be determined for subintervals. What follows is a

technical description that may be skipped. Consider the first job episodes and let

Lcoh denote the Lexis object. Calendar time varies from 1930 (PerLow) to 1985

(PerHigh), and age varies from 0 (AgeLow) to 60 (AgeHigh). The following

functions divide the job episodes in intervals of length nyear, which in this case is
equal to 5. The first function generates intervals along the calendar time axis. The

second function adds age intervals.

Lcoh <- w$Lcoh
PerLow <- 1930
PerHigh <- 1985
AgeLow <- 0
AgeHigh <- 60
nyear <- 5
Lcoh_tr1_p <- splitLexis(Lcoh,

breaks=seq(PerLow,PerHigh,nyear),
time.scale="CalTime" )

Lcoh_tr1_ap <- splitLexis(Lcoh_tr1_p,
breaks=seq(AgeLow,AgeHigh,nyear),
time.scale="Age" ) 

where p refers to period and ap to age-period. The breakpoints are 1940, 1945, . . .,
1985 and ages 0, 5, . . ., 60. The Lexis object Lcoh is produced internally in

LexisOccExp. The ages and the calendar times at the start of the intervals are

obtained by the following expressions:

Lcoh_tr1_ap$AGE <- timeBand(Lcoh_tr1_ap,"Age","left")
Lcoh_tr1_ap$PER <- timeBand(Lcoh_tr1_ap,"CalTime","left")

The number of transitions in each age-period interval from a job to a period

without a job is given by

nevents <- tapply (status(Lcoh_tr1_ap,"exit")==1, 
list(Lcoh_tr1_ap$AGE,Lcoh_tr1_ap$PER),sum)

and the exposure time, i.e. the duration of the job episode, by

ndur <- round(tapply (dur(Lcoh_tr1_ap),
list(Lcoh_tr1_ap$AGE,Lcoh_tr1_ap$PER),sum),2)

The sum of the transitions should be equal to 134, the number of persons who

experienced the JN transition. The sum is sum(nevents,na.rm¼TRUE). The
total sojourn time in the first job episode should be 2095.6.
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5.5 State Distribution and State Sequences

The subject of this section is to show how to plot state occupancies of the sample

population at different ages. A person who is employed (J) at interview started out

at age 0 without a job (N) and may have switched between states N and J several

times. The state distribution plot displays the collective history of the sample

population up to the highest age (54 in this case). Individuals who are not 54 yet

at interview occupy the fictitious state ‘being censored’ between the age at inter-

view and 54. Methods are presented to display state distributions. The first uses the

ggplot2 package, and the second uses the TraMineR package. The TraMineR
package includes a number of useful functions to display life history data.

In Chap. 4 the plot.occup.S function was used to display the state occu-

pancies by age. The function makes use of the ggplot2 package. Figure 4.2 is

produced by the code

occup <- Occup(GLHS)
z<- plot (x=occup$state_occup,

namstates.desired=c("N","J","Censored"),
colours=c("red","green","lightgrey"),
title="States occupancies. GLHS",
area=TRUE,
xmin=10,
xmax=55)

The arguments of the function are:

(a) The object occup$state_occup contains the state occupancies in the

sample population. The object is of class ‘occup.S’.
(b) namstates.desired is a list of states in a desired sequence. ‘Being

censored’ is treated as a state. A person who is 35 at interview spends

19 years in the state of being censored (between 35 and the highest age 53;

note that for plotting 55 is used).

(c) colours is the vector of colours representing the states. The last element is

the colour of the background of the panel.

(d) area is a logical variable. If area is TRUE, then an area plot is displayed (using

geom_area of ggplot2). If area is FALSE, a bar plot is displayed (using

geom_bar of ggplot2).
(e) xmin and xmax are the minimum and maximum ages shown on the x-axis

(55 is used instead of 53).

The output of the function is an object with two components. The first contains

the state occupancies. The second component is the plot. To display the plot, use z
$plot.

The function seqplot of the TraMineR package displays state occupancies. To

use the function, a sequence object needs to be prepared first. The seqdef function

creates a sequence object in a format accepted by the plotting function of

TraMineR. Biograph produces a sequence object too. The object occup

130 5 Visualisation of Life Histories

http://dx.doi.org/10.1007/978-3-319-08383-4_4
http://dx.doi.org/10.1007/978-3-319-08383-4_4


$st_age_1 shows, for each individual under observation, the state occupied at

each birthday during the period of observation. It is a matrix with for each

individual (row) the state occupied at exact ages 0–53 (column). TraMineR requires

that the matrix is converted to a character string, with each state separated by a

separator. The TraMineR function seqconc may be used for that purpose. The

function seqdef creates a state sequence object. The following code produces a

state sequence object starting from the raw GLHS data. The time scale is age and

the time unit is year.

occup <- Occup(GLHS)
require (TraMineR)
DTraMineR <- seqconc (occup$st_age_1,sep="-")
namst <- c(Parameters(GLHS)$namstates,"Censored")
D.seq <- seqdef (DTraMineR,states=namst)

with states the short state labels.

The state distribution plot by sex is produced by the code (with group variable

sex):

seqplot(D.seq, type="d", 
title="State distribution. GLHS",
ylab="Count",
xtlab=0:54,
group=GLHS$sex)

Figure 5.10 shows the result. The figure clearly illustrates the age pattern of

labour force participation of women in the GLHS cohorts. Around age 20, women

start leaving jobs. The decline of women without jobs, starting at age 30, is due to

the censoring of observations (C).

The function seqiplot plots individual sequences. The following function

plots the sequences for subjects with ID 1, 20 and 208 (figure not shown):

Fig. 5.10 State occupancies by age and sex, using TraMineR. GLHS
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seqiplot(D.seq,tlim= GLHS$ID%in%c(1,20,208))

The following statement produces a sequence frequency plot, displaying the ten

most frequent state sequences for males and females:

n <- 10
seqfplot(D.seq,

group=GLHS$sex,
tlim=1:n,
title="Sequence frequency plot.GLHS",
xtlab=c(0:54), 
ltext=c("N","J","Censored"),
las=1,
ylab=paste(n,

" most frequent sequences (%)",sep="") )

The result is shown in Fig. 5.11. Clearly, women have more differentiated

employment careers than men. TraMineR requires that, if a covariate is a numeric

variable, it is converted to a factor variable:

GLHS$sex <- factor (GLHS$sex,labels=c("Male","Female"))

Fig. 5.11 Frequency plot of state sequences, by sex, using TraMineR. GLHS
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5.6 Conclusion

One of the strengths of the R computing environment is graphics. R is rich with

utilities for creating and developing interesting graphics. Some of the utilities are

illustrated in this chapter. It represents first steps towards visualisation of life

history data. Effective graphical displays of the complex information in life history

data remain a major challenge. Effective visualisation requires adequate conceptua-

lisation of the life course and mapping of life history data to objects displayed in a

graphic and their aesthetic attributes. The Lexis diagram (two dimensions) and its

extension to the Lexis surface (three dimensions) are a good point of departure. The

display of life history data in two time scales, usually age and calendar time or age

and birth cohort, may reveal patterns that are difficult to detect otherwise. In the

diagram, intercohort variation of life histories become manifest, and effects of age,

calendar period and cohort can be revealed relatively easily.
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Chapter 6

Statistical Packages for Multistate Life

History Analysis

6.1 Introduction

The Comprehensive R Archive Network (CRAN) (http://cran.r-project.org/) has a

number of statistical packages for multistate analysis of event histories (multistate

survival analysis). These packages focus on statistical inference, i.e. the estimation

of transition rates and transition probabilities from empirical data. In this Chapter,

the following packages are covered: survival by Therneau and Lumley, eha by

Broström, mvna and etm by Allignol et al., mstate by Putter et al. and msm by

Jackson. For an up-to-date overview of packages for survival analysis, the reader is

referred to the CRAN Task View on Survival Analysis, maintained by Allignol and

Latouche. The Task View has a section on multistate models. For a review of

methods for estimating multistate models, the reader is referred to Chap. 2 and, for

amore extensive treatment, to Aalen et al. (2008, in particular Chap. 3), Beyersmann

et al. (2012), and a special issue of the Journal of Statistical Software (January

2011), edited by Putter. For recent advances in demography, see Willekens and

Putter (2014). Mills (2011) offers a brief introduction to multistate models using

R. In essence, the method consists of counting transitions (events) and numbers of

persons at risk of a transition just before the transition occurs or in the observation

interval. The chapter consists of five sections, in addition to the introduction.

Section 6.2 describes the survival package, Sect. 6.3 the eha package, Sect. 6.4 the

mvna and etm packages, Sect. 6.5 themstate package and Sect. 6.6 themsm package.

6.2 The Survival Package

The survival package was developed in S by Therneau (1999), ported to R by

Lumley (2004) and maintained by Therneau (2014). It is a general package for

survival analysis with an emphasis on the Cox model. It considers right censoring
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and left truncation. The core object in the package is the survival object. The object

is described in the first subsection. The object is usually used as the response

variable in survival models such as the Cox model. By way of illustration, I present

the Kaplan-Meier estimation, the exponential transition rate model and the Cox

model. These models are covered by Blossfeld and Rohwer (2002) and I compare

the output of the survival package with the output of the TDA package published by

Blossfeld and Rohwer. For an introduction to these models using R, see

Mills (2011).

6.2.1 The Survival Object

The survival object documents individual risk periods by starting time, ending time

and reason for ending. The object is created by the function Surv. It uses three
variables: Tstart, Tstop and status. Tstart is the starting date of an

episode, Tstop is the ending date and status is the reason for ending, the

occurrence of the transition of interest or censoring. The presence of Tstart
indicates that observations on episodes are left truncated. If Tstart is zero for all

episodes or the original time scale does not need to be conserved, only two variables

are required: time and status. Tstop is replaced by the duration variable

time. Consider the first respondent in the GLHS data. The person, a male, enters

his first job at CMC 555. He did not leave that job before survey date, which is

CMC 983. The function call Surv(555,983,0) produces the survival object:

(555,983+], where the first element in the brackets is the starting time of the

episode and the second element the ending time. The survival package and R

assume that intervals are open on the left and closed on the right. A+ refers to an

interval that ends because the observation is terminated (censoring). The episode is

an open episode. When the + is absent, the interval ends because the event of

interest occurs. The episode is a closed episode. The second respondent, a female,

enters her first job at CMC 593. At CMC 639 she moves on to another job. The

survival object , which is produced by Surv(593,639,1), is(593,639].
The function Biograph.long converts data in Biograph format to a counting

process data structure that includes the Tstart, Tstop and status variables.

The data format is a long format with one record for each risk period or episode.

Covariates are copied from the original data set. The function was documented in

Chap. 3:

D <- Biograph.long (GLHS)

The data frame D$Depisode can be used as input for the survival package. It
has 982 rows (intrastate transitions not removed). Each record pertains to an

episode. There are 600 job episodes and 382 episodes without a job. For illustration

the 600 job episodes, which are analysed by Blossfeld and Rohwer (2002), are

selected. The data are obtained by the following command:
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DJ600 <- subset (D$Depisode,D$Depisode$OR=="J")

or

DJ600 <- D$Depisode[D$Depisode$OR=="J",]

The object DJ600 has 600 rows, one for each job episode. There are 348 males

and 252 females. These figures can be obtained by table (DJ600$sex) or

length(DJ600$ID[DJ600$sex¼¼"Male"]) and length(DJ600$ID
[DJ600$sex¼¼"Female"]). There are 458 closed job episodes and

142 open episodes. Job episodes end in (1) another job, (2) NoJob or (3) censoring.

To enable comparison with Blossfeld and Rohwer (2002), the variable time is

computed and four attributes of job episodes are added to the data file DJ600. They

are: the line number of job episode (NOJ), the prestige of the current job (pres),
the prestige of the next job (presn) and the labour market experience (LFX).

DJ600$time <- DJ600$Tstop-DJ600$Tstart
data(rrdat) # the data are included in the Biograph 

package
rrdat <- data.frame(rrdat)
DJ600$pres <- rrdat[,10] 
DJ600$NOJ <- rrdat[,2]
DJ600$LFX <- DJ600$Tstart-DJ600$LMentry
DJ600$PNOJ <- DJ600$NOJ-1 

The following code produces the survival object:

require (survival)
surv  <- Surv(DJ600$Tstart,DJ600$Tstop,DJ600$status)
surv2 <- with(DJ600, Surv(Tstart,Tstop,status))

The survival object is the dependent (response) variable in survival models such

as the Kaplan-Meier estimation (function survfit), the transition rate model

(function survreg) and the Cox model (function coxph). These models are

considered next.

6.2.2 Kaplan-Meier Estimator

The Kaplan-Meier estimation of the survivor function is obtained by the code:

KM <- survfit (Surv(time,status)~sex,
data=DJ600)
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The empirical survival function by sex is given by summary(KM). Figure 6.1
contains the plot of the survivor functions for men and women with 95 % confi-

dence intervals. The plot has been generated with the following code:

plot(KM,
conf.int=TRUE,
xlab="Duration of job episode months)",
ylab="survival probability",
col=c("red","blue"),
sub="Data from cohorts 1929-31, 1939-41 and 1949-51; 
600 job episodes; Compare BR2002 p. 78",
cex.sub=0.7)

legend(300/12,1,
c("Males","Females"),
col=c("red","blue"),
fill=c("red","blue"),
cex=0.9,
bg="white",
mark.time=FALSE)

The plot is the same as shown by Blossfeld and Rohwer (2002, p. 78).

6.2.3 Exponential Transition Rate Model

The exponential transition rate model predicts the job exit rate. It is one of the

parametric transition models reviewed by Blossfeld and Rohwer (2002). It can be

estimated in R using the survreg function of the survival package:

Fig. 6.1 Kaplan-Meier

estimator of job duration, by

sex. GLHS
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z <- survreg (formula=Surv(time,status) ~ 1, 
data=DJ600, 
dist="exponential")

where time ¼ DJ600$Tstop – DJ600$Tstart. For an introduction to the

exponential transition rate model using R, see Mills (2011, pp. 125ff).

The regression coefficient is estimated at 4.488636. The job exit rate is exp

(�4.488636)¼ 0.0112 per month. The estimate is the same as the one obtained by

Blossfeld and Rohwer, but in Blossfeld and Rohwer (2002, p. 93) the regression

coefficient has the opposite sign. When comparing the output of the survival
package with the output of TDA and published in Blossfled and Rohwer, note that the

regression coefficients in the survival package measure the effects on the duration of

the episode (survival time), whereas in TDA the regression coefficients measure the

effects on the transition rate. Since the expected duration is one over the transition rate,

the regression coefficients are minus the coefficients produced by TDA.

The expected duration of an episode is one over the transition rate. That explains

the opposite sign since exp(�a) is 1/exp(a). The expected (predicted) duration of a

job episode is 89 months with a standard deviation of 4.16 years. This result is

obtained by the code

zp <- predict (z,se.fit=TRUE)

Covariates are easily introduced, e.g.

zs <- survreg (Surv(time, status) ~ as.factor(sex),
data=DJ600, 
dist="exponential")

with sex as a categorical variable. The first category (male) is the reference category.

The result is obtained with summary(zs) (see Box 6.1). The antilogarithm of

the regression coefficient is known as the alpha effect.

Box 6.1: Basic Exponential Transition Rate Model with Covariate

Sex. GLHS

survreg(formula = Surv(time, status) ~ as.factor(sex), data = D, 
dist = "exponential")

Value Std. Error     z        p
(Intercept)      4.715     0.0639 73.81 0.00e+00
as.factor(sex)2 -0.573   0.0937 -6.11 9.76e-10

Scale fixed at 1 

Exponential distribution
Loglik(model)= -2495.6   Loglik(intercept only)= -2513.8

Chisq= 36.4 on 1 degrees of freedom, p= 1.6e-09 
Number of Newton-Raphson Iterations: 5 
n= 600
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The job exit rate for males is exp(�4.715)¼ 0.00896 and it is exp(�(4.715–

0.573))¼ 0.01589 for females. Females leave their job at a rate that is 77 % higher

than that of males [100*(exp(0.573)–1)¼ 77.4 %]. When we add the birth cohort as

a covariate and control for the cohort effect, females leave their job at a rate that is

65 % higher than that of males [100*(exp(0.507)–1)¼ 65.0 %]. The difference is

due to the distribution of females over cohorts. Females are a little better

represented in cohorts that change jobs more often. Cohorts 1939–1941 and

1949–1951 have a rate of leaving a job that is more than twice that of the cohort

1929–1931. The proportion of females in the birth cohort 1929–1931 is 41.6 %; it is

42.2 % in the two mobile cohorts combined. As a result, part of the greater mobility

of females relative to males can be attributed to the share of females in the mobile

cohorts. The possible effects of cohort differences in the mobility of females

relative to males are not considered. That requires interaction effects. The expo-

nential model with two covariates (sex and cohort) is

EM <- survreg (Surv(time, status) ~ 
as.factor(sex)+as.factor(cohort),
data=DJ600, 
dist="exponential")

The regression coefficients and their standard errors are shown in Box 6.2.

Consider the full exponential model, discussed by Blossfeld and Rohwer (2002,

p. 98). The model is:

EM_full <- survreg (Surv(time,status) ~
+edu+cohort+LFX+PNOJ+pres,
data=DJ600,
dist="exponential")

The regression coefficients of the full model are listed in Box 6.3.1 The results

are produced by summary(EM_full).

Box 6.2: Basic Exponential Model with Covariates Sex and Birth

Cohort. GLHS

Value Std. Error     z        p
(Intercept)               5.011 0.0843 59.45 0.00e+00
as.factor(sex)2          -0.507     0.0943 -5.37 7.68e-08
as.factor(cohort)1939-41 -0.534     0.1120 -4.76 1.90e-06
as.factor(cohort)1949-51 -0.674     0.1152 -5.85 4.95e-09

1 The variables NOJ and pres are taken from the original data file rrdat. Their values are

suppressed in the wide data format.
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The effect of an additional year of schooling on the exit rate is an increase

with 8.04 %. The expression is 100*(exp(-EM_full$coefficient[2])-1).
Three additional years of schooling increases the exit rate by 26.1 %:

100*(exp(-3 * EM_full$coefficient[2])-1)

The job exit rate for those with the highest education (edu¼ 19) is:

100*(exp(-(max(DJ600$edu)-min(DJ600$edu)) *
EM_full$coefficient[2])-1)

It is 116.4 % higher than that of persons with the lowest education (edu¼ 9).

The basic exponential model may be used as a predictive model, i.e. to predict the

job duration for a person with a given set of characteristics. For instance, the model

predicts that an individual born in 1929–1931,with 13 years of education, just entering

the labour force (LFX¼ 0 and PNOJ¼ 0) into a job with prestige level pres¼ 60 has

an exit rate of r¼ exp(�4.4894+ 0.07721 * 13–0.02802 * 60)¼ 0.0057. Themean job

duration is 1/0.0057¼ 175months or 15years. Themedian job duration is 121months.

The median is the duration at which 50 % has left the job. It is derived from the

survival function 0.50¼ exp(�0.0057 * t); hence, t¼�ln(0.50)/0.0057.

The survreg function incorporates several parametric waiting time distribu-

tions in addition to the exponential distribution. It does not support time-dependent

covariates. It does not support left truncation either. It supports only time¼Tstop –

Tstart data. The coxph function of the survival package, however, can handle data
that are left truncated and right censored. It can be used to fit any transition of a

multistate model.

6.2.4 The Cox Model

The Cox proportional hazard model with job duration as the time variable and a

single covariate (sex) is:

Box 6.3: Basic Exponential Model with Several Covariates

(Full Model). GLHS

Value Std. Error     z        p
(Intercept)               4.48818   0.279523 16.06 5.14e-58
edu                      -0.07721   0.024708 -3.12 1.78e-03
as.factor(cohort)1939-41 -0.60793   0.113548 -5.35 8.61e-08
as.factor(cohort)1949-51 -0.61222   0.118542 -5.16 2.41e-07
LFX                       0.00317   0.000937  3.38 7.23e-04
PNOJ                     -0.05958   0.044129 -1.35 1.77e-01
pres 0.02802   0.005530  5.07 4.02e-07
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Cox_s <- coxph(Surv(time,status) ~ sex,
data=DJ600,
method="breslow")

where time¼Tstop – Tstart. The result is shown in Box 6.4.

The variable sex is a categorical variable. By default the first category (males) is

the reference category. The dependent variable in the Cox model is the transition

rate, in this case the job exit rate. Hence, there is no difference in the sign of the

regression coefficients between the survival package and TDA. The result indicates
that, if the gender effect does not vary with job duration, females leave their job at a

rate that is 53 % higher than the job exit rate of males. The exp(coef) is the ratio

of the job exit rate of females and males (reference category). In other words, it is

the job exit rate of females relative to that of males. The ratio of two hazard rates is

known as the risk ratio or the hazard ratio. For a thorough discussion of the Cox

model, see Therneau and Grambsch (2000). The rate of job exit may vary with job

duration, but in the Cox model duration dependence is left unspecified. The

proportional hazard model assumes that the effects of the covariates on the transi-

tion rate are the same for all durations. How the transition rates vary with duration is

beyond the scope of the proportional hazard regression model. The duration

dependence is captured in the baseline hazard.

In many applications, such as the prediction of the probability of leaving a job in

a given interval or the expected length of a job episode, hazard rates are used. The

cumulative baseline hazard rates associated with the Cox model Cox_s are pro-

duced by the function basehaz with argument Cox_s. The baseline hazard is

determined for a hypothetical individual with covariate values that are the average

in the data set, after deletion of any observations with missing values (Therneau and

Grambsch 2000, p. 266). Since the average of categorical variables has no meaning,

the baseline hazard cannot be interpreted. Therneau and Grambsch make it quite

clear: ‘users should not expect anything really interpretable from the “mean” curve’

(p. 266). The primary reason why the function is included in the survival package is

that ‘users will look for the phrase “baseline hazard”’ (Therneau 2014). The

covariate values of the ‘mean’ subject are given by Cox_s$mean (or Cox_s
$means). The characteristics of the hypothetical individual can be influenced

partly. By adding the argument centered ¼ FALSE, a baseline hazard is

estimated for a hypothetical individual zero values of covariates:

Box 6.4: Cox Proportional Hazard Model. GLHS

coef exp(coef) se(coef)    z  p
sexFemales 0.424      1.53   0.0948 4.47 7.6e-06

Likelihood ratio test=19.7  on 1 df, p=8.99e-06  n= 600
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basehaz (Cox_s,centered=FALSE)

Amuch better alternative is to estimate the survival function for individuals with

given covariate characteristics (using the survfit.coxph function) and to derive

the cumulative hazard from the survival function.

The function survfit.coxph creates a survival function from a previously

fitted Cox model. The survival curve gives the probability that a job episode

experienced by an individual with given characteristics exceeds x, where x varies

from 0 to the maximum job duration. The survival curve is for a ‘mean’ individual.

However, there are two ways to obtain the survival curve for individuals with given

covariates: segmentation and stratification. Segmentation involves the selection of

individuals with given characteristics and to estimate the survival curve for each

group. For instance, Dm < - DJ600[DJ600$sex¼¼"Male",] is the subset

consisting of males and Df < - DJ600[DJ600$sex¼¼"Female",] is the

subset of females.2 Applying coxph to Dm and Df without covariates fits null

models, Coxm and Coxf, say. The survival function for males and females is

created from the results of the null model by the survfit.coxph function. These

survival curves are the empirical survival curves for males and females. The

survival probability is given at every time point at which the survival curve has a

step. There are 105 steps in the male data (Dm) and 89 in the female data (Df).
Application of basehaz with the argument Coxm and Coxf gives the cumulative

hazard function for males and for females separately.

A second way to obtain the survival curve for individuals with given covariates

is stratification. The following code estimates a stratified Cox model with a separate

baseline hazard for each stratum (male and female sample population):

Cox_s <- coxph(Surv(time,status) ~ +strata(sex),
data=DJ600,
method="breslow")

The survival curves for males and females separately are produced by:

sfits <- survfit(Cox_s)

The object sfits that is returned by the survfit function has several compo-

nents, the most important being the survival function and the associated upper and

2Note that the variable sex may be denoted by 1 and 2. To convert the numeric value of the

categories to labels, use

if (!is.null(survey$sex) & !is.factor(DJ600$sex))
DJ600$sex <-factor(DJ600$sex,levels=c(1,2),

labels=c("Males","Females"))
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lower confidence intervals. To display the components, type str(sfits). The

components are explained in the manual of the survival package (see survfit.
object).

The survival curves are plotted by plot(sfits). Arguments are added to get

useful features, such as the 95 % confidence interval:

plot (sfits[1],
conf.int=TRUE,
lty=c(1,2,2),
xlab="Job duration (months)",
ylab="Survival probability",
col="red",
mark.time=FALSE)

lines (sfits[2]$time,sfits[2]$surv,
lty=1,
col="blue")

lines (sfits[2]$time,sfits[2]$lower,
lty=2,
col="blue")

lines (sfits[2]$time,sfits[2]$upper,
lty=2,
col="blue")

legend ("topright",
legend=c("Males","Females"),
col=c("red","blue"),
fil=c("red","blue"),
cex=0.9,bg="white")

The resulting plot is shown in Fig. 6.2.

Fig. 6.2 Probabilities that

job spells exceed given

durations based on the

stratified Cox model with

single covariate

(sex). GLHS
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If the survival function has been estimated, then the cumulative hazard is plotted

by the following code:

plot (sfits[2],
conf.int=T,
lty=c(1,2,2),
fun="cumhaz",
xlab="Job duration (months)",
ylab="Cumulative hazard",
col="blue",
mark.time=FALSE)

lines (sfits[1]$time,-log(sfits[1]$surv),
lty=1,
col="red")

lines (sfits[1]$time,-log(sfits[1]$lower),
lty=2,
col="red")

lines (sfits[1]$time,-log(sfits[1]$upper),
lty=2,
col="red")

legend ("topright",
legend=c("Males","Females"),
col=c("red","blue"),
fil=c("red","blue"),
cex=0.9,bg="white")

The result is shown in Fig. 6.3.

The Cox proportional hazard model with all covariates is:

Fig. 6.3 Cumulative

hazard based on the

stratified Cox model with a

single covariate

(sex). GLHS
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Cox_full <- coxph(Surv(Tstop-Tstart,status)~
edu+as.factor(cohort)+LFX+PNOJ+pres,
data=DJ600,
method="breslow",
na.action=na.exclude,
iter.max=100)

Note that Tstop-Tstart is the time variable. The result is shown in

Box 6.5. The regression coefficients are the same as those obtained by Blossfeld

and Rohwer (2002, p. 233).

The survival function and other useful measures are produced by survfit
(Cox_full) and the cumulative baseline hazard is produced by basehaz
(Cox_full). Note that the baseline hazard is for a hypothetical subject whose

covariate values are the corresponding means from the original data. The duration-

specific job exit rates are produced by

ms<- coxph.detail(Cox_full) 

and stored in ms$hazard. Details of the Cox model are produced using the

coxph.object(Cox_full) and coxph.detail(Cox_full) functions.

For instance, the cumulative baseline hazard is obtained by the expression

basehaz(Cox_full) and the hazard increments by coxph.detail
(Cox_full)$hazard.

To test the proportionality assumption of the Cox proportional hazard model, a

graphical check using Schoenfeld residuals may be applied. The assumption holds

if the effect of a covariate on the transition rate does not vary with the time variable,

in this case job duration. The impact of a covariate does not change with duration if

the scaled Schoenfeld residuals for that covariate are a horizontal line (Therneau

and Grambsch 2000, p. 136; Mills 2011, p. 153). The measure is produced by the

cox.zph function. Consider the effect of education. The Schoenfeld residual plot

is shown in Fig. 6.4 along with the fitted least squares line and the 90 % confidence

Box 6.5: Cox Proportional Hazard Model with Several

Covariates. GLHS

coef   se(coef)  Pr(>|z|)    
edu                       0.0667012  0.0249169  0.007430 ** 
as.factor(cohort)1939-41  0.4102979  0.1153436  0.000375 ***
as.factor(cohort)1949-51  0.3055312  0.1219753  0.012250 *  
LFX                      -0.0039771  0.0009315  1.96e-05 ***
PNOJ                      0.0686945  0.0441625  0.119829    
pres                     -0.0261477  0.0055000  1.99e-06 ***
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intervals. The impact of education does not vary with job duration up to about

150 months. At higher durations, the effect of education diminishes although,

because of few observations, the change in the effect of education with job duration

is not significant. The Schoenfeld residual plot is produced by the following code:

Cox_full.zph <- cox.zph(Cox_full,
transform="identity",
global=TRUE)

plot (Cox_full.zph[1])

One function in the survival package performs functions similar to the Occup
function in Biograph: pyears. The function computes the person-years of follow-

up contributed by a cohort of subjects, stratified into subgroups. It also computes

event counts and numbers of subjects in each cell of the output table. The results of

pyears are normally used as input to further calculations. The following code

generates the total duration of exposure:

pyears(Tstop-Tstart ~ tcut(born,c(0,1000)),
data=DJ600,scale=1)

The scale argument assures that the exposure time is expressed in the same unit

as the data. The total duration time is 40,762 months. That figure is the same as the

figure produced by Biograph and shown in Table 4.2. The function pyears also

produces the number of episodes: 600. The function does not give the number of job

exits (458).

If the response variable is a Surv object, the pyears function gives for each

combination of covariates the exposure time, the number of episodes and the

number of events. Consider the Cox model with two covariates: sex and cohort.

Fig. 6.4 Scaled Schoenfeld

residuals for effect of

education on job exit rate by

job duration. GLHS
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The events and durations of exposure by combination of covariates are obtained in

two steps. The first step is the estimation of the Cox model:

Cox_sc <- coxph(Surv(Tstop-Tstart,status)~
sex+cohort,data=DJ600,method="breslow",
na.action=na.exclude,iter.max=100)

The second step is the estimation of person-years of exposure:

y <- pyears (Cox_sc,DJ600,data.frame=TRUE,scale=1)

The results are stored in the object y$data. Events are stored in y$data
$event, exposure times in y$data$pyears and numbers of episodes contrib-

uted to a given cell of the array in y$data$n. Males born in 1929–1931 contribute

132 job episodes to a total of 600 episodes. Together they experience 92 job exits

and their combined exposure time is 15,867 months. Their job exit rate is

92/15,867¼ 0.0058. The rates for a given covariate combination are the ratio of

events over exposure time. The total number of job exits is sum(y$data
$event)¼ 458, the total exposure time is sum(y$data$pyears)¼ 40,762

and the overall job exit rate is 458/40,762¼ 0.0112.

Once a Cox model has been estimated, the survfit.coxph function predicts

the survival probabilities for persons with given characteristics. The covariates are

stored in the newdata data frame. Consider the second individual in the data set.

The individual was born in 1929–1931 and has 10 years of education. She is

a female but that information is not included in the Cox model presented as

Cox_full. When the respondent entered the labour force (LFX¼ 0 and

PNOJ¼ 0), she got a job with prestige level 22 (pres¼ 22). During the observa-

tion period she had three jobs. The second and third jobs had a much higher prestige

level, namely, 46. The first job episode lasted 46 months (Tstop-Tstart), the second

34 months and the third 220 months. What are the expected durations predicted by

the model? The prediction of the mean survival time is not an option in survfit.
coxph and, because of censoring, there is no good estimate of the mean survival

time. We estimate the survival function, which is the probability that a job episode

lasts at least a given number of months. Consider the first job episode. The survival

curve is estimated in two steps (Therneau and Grambsch 2000, p. 264). First, a

separate data set is created that contains the covariate values of the individual. In

this case, it is individual with ID 2:

ID.2.1 <- data.frame(edu=10,
cohort="1929-31",
LFX=0,
PNOJ=0,
pres=22)

Second, the expected individual survival curve is obtained using the covariate

values of the individual and the Cox model labelled Cox_full:
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sfit.2.1 <- survfit (Cox_full,newdata=ID.2.1)

The survival curve and the confidence interval are given by summary
(sfit.2.1). The probability that the individual keeps her job for at least

10 years (120 months) is predicted by the Cox_full model at 15.2%. The

probability of job exit within 10 years is 84.8 %. The probability of job exit within

4 years (48 months) is 62.8 %. The figures are obtained using the following code:

z <- cbind(sfit.2.1$time,sfit.2.1$surv)
100*z[which(z[,1]==120),2]
100*(1-z[which(z[,1]==48),2])

The object sfit.2.1$time contains the job durations at which survival

probabilities are estimated. Survival probabilities are estimated at time points at

which the curve has a step. The object sfit.2.1$surv is the survival probability.

The entire survival curve, which gives the probability that a job episode lasts at least

x months, for x varying from 0 to the maximum job duration, is graphically

displayed by the plot.survfit function. The function draws the survival curve

sfit.2.1$surv and the 95 % confidence intervals sfit.2.1$upper and

sfit.2.1$lower. The function plot(sfit.2.1) plots the survival curve and

the confidence intervals. The following code adds labels, a title and a legend:

plot (sfit.2.1,
las=1, 
xlab="Job duration (month)",
ylab="Survival probability",
mark.time=FALSE,
cex.main=0.9,
conf.int=T,
col="black")

zv <- cbind(colnames(ID.2.1),t(ID.2.1))
legend (250,1.0,legend=zv[,1],box.lty=0,cex=0.9)
legend (280,1.0,legend=zv[,2],box.lty=0,cex=0.9)

The legend identifies the hypothetical individual in terms of his/her covariates.

In the legend, the names of the covariates are displayed at job duration 250 and

survival probability one. The values of the covariates are displayed at job duration

280 and survival probability one.

The job exit rate of the hypothetical individual is derived using the predict.
coxph function. The function computes fitted values and regression terms for a

model fitted by coxph. Two important values that are predicted are the linear

predictor (‘lp’) and the risk score (‘risk’). The linear predictor is the value

predicted by the Cox model. The risk score is the exponent of the linear predictor,

exp(lp).
The code is:
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lp.2.1 <- predict (Cox_full,
newdata=ID.2.1,
type="lp",
se.fit=TRUE)

where type is the type of predicted value. The linear predictor is 0.3130 and the

standard deviation is 0.1083. The linear predictor is derived from the regression

equation x0
i β̂ where xi is the covariate vector of individual i and β̂ is the vector of

estimated regression coefficients. The terms of the linear predictor associated with

each of the observations (600 job episodes) are generated by the expression

uu <- predict (Cox_full,type="terms",se.fit=TRUE)

The terms associated with the observation on the first job episode of respondent

with ID 2 are uu$fit[2,] and uu$se.fit[2,] (Box 6.6).

A comparison of the predicted job survival curves of individuals with different

characteristics is done by plotting different survival curves. The survival curves for

four different hypothetical individuals are shown in Fig. 6.5. The four individuals

differ in period of birth and years of education. Two have 9 years of education and

2 have 19 years. Two are born in 1929–1931 and two in 1939–1941. The individual

characteristics are given in the following data set:

indiv <- data.frame(
edu=c(9,9,19,19),
cohort=c("1929-31","1939-41","1929-31","1939-41"),
LFX=0,
PNOJ=0,
pres=44)

The data frame is:

edu  cohort LFX PNOJ pres
1   9 1929-31   0    0   44
2   9 1939-41   0   0   44
3  19 1929-31   0    0   44
4  19 1939-41   0    0   44

It is displayed by print(indiv).
The survival curves are obtained by

Box 6.6: Terms of Cox Model Used to Predict Length of the First Job

Episode for Respondent with ID 2. GLHS

$fit
edu      cohort LFX       PNOJ      pres

1 -0.08471053 -0.2231001 0.2972321 -0.1021258 0.4257716

$se.fit
edu       cohort LFX       PNOJ    pres

1 0.03164449 0.06329048 0.06961654 0.06565494 0.0895576
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sfit <- survfit(Cox_full,newdata=indiv)

and the plot by

colours <- c("black","red","blue","green")
plot (sfit,

las=1,
col=colours, 
xlab="Job duration (month)",ylab="Survival 

probability",
main="Effects of covariates on job duration,Cox model. 

GLHS (BR2002)",conf.int=F)
legend (150,1.0,legend=c(

"edu=9, cohort=1929-31,LFX=0,PNOJ=0,pres=44",
"edu=19,cohort=1939-41,LFX=0,PNOJ=0,pres=44",
"edu=9, cohort=1929-31,LFX=0,PNOJ=0,pres=44",
"edu=19,cohort=1939-41,LFX=0,PNOJ=0,pres=44"),
cex=0.7,
col=colours,
fill=colours)

The confidence intervals are not shown. Figure 6.6 shows the confidence interval

around the first survival curve. It is produced by:

Fig. 6.5 Predicted job

survival for individuals with

given characteristics based

on the Cox model. GLHS

(confidence intervals

omitted)
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plot (sfit[1],las=1,
conf.int=TRUE,
col=colours,
xlab="Job duration (month)",ylab="Survival 

probability",
mark.time=FALSE)

lines(sfit[2],col="red")
lines(sfit[3],col="blue")
lines(sfit[4],col="green")
legend (150,1.0,legend=c(

"edu=9, cohort=1929-31,LFX=0,PNOJ=0,pres=44",
"edu=19,cohort=1939-41,LFX=0,PNOJ=0,pres=44",
"edu=9, cohort=1929-31,LFX=0,PNOJ=0,pres=44",
"edu=19,cohort=1939-41,LFX=0,PNOJ=0,pres=44"),
cex=0.7,col=colours,fill=colours)

The ratio of the job exit rates of the four hypothetical persons relative to the

sample mean job exit rate is derived using the predict.coxph function. The

code is:

z1 <- predict (Cox_full,
newdata=indiv,
type="risk",
se.fit=TRUE)

where type is the type of predicted value. In this case it is the risk score exp

(lp) (‘risk’), with lp being the linear predictor. The relative risks (ratio of job exit

rates) and their confidence intervals are given in Box 6.7.

Fig. 6.6 Predicted job

survival for individuals with

given characteristics based

on the Cox model. GLHS

(with confidence intervals)
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If no secondary data set (newdata) is provided to the survfit function, then

the curve produced is that for the ‘mean’ subject.

6.2.5 Nelson-Aalen Estimator

The survival package does not produce the Nelson-Aalen estimator of the cumula-

tive hazard rate, but the estimator can be obtained indirectly. An easy way is to use

the baseline hazard estimator of a Cox model without covariates:

NeAa <- basehaz(coxph(Surv(time,status)~1,data=DJ600))

An alternative way is to compute the cumulative hazard from the object returned

by the survfit function:

fit <- survfit (Surv(time,status)~1,data=DJ600)
cumhaz <- cumsum(fit$n.event/fit$n.risk)

6.3 The eha Package

eha is a package for survival and event history analysis with an emphasis on Cox

regression and extensions. It was developed and is being maintained by Broström

(2012, 2014) (http://tal.stat.umu.se/~gb/eha/index.html). The package was first

uploaded to CRAN in 2003. Its main focus is on proportional hazards modelling

in survival analysis, and in that respect, eha can be regarded as a complement and

Box 6.7: Predicted Cumulative Job Exit Rate with Confidence Intervals.

Selection of Hypothetical Individuals. GLHS

$fit
[,1]

1 0.7197271
2 1.0848207
3 1.4023212
4 2.1136721

$se.fit
[,1]

1 0.1089391
2 0.1230591
3 0.2242662
4 0.3027850
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an extension of the survival package (Broström 2003). In fact eha requires survival.
The package contains several functions for proportional hazards analysis: coxreg,
mlreg and weibreg. The function coxreg performs Cox regression, almost as

coxph in the survival package. The function mlreg is a discrete-time propor-

tional hazards model. The function weibreg is a Weibull regression for left-

truncated and right-censored data that allows for stratification with different shape

and scale parameters in the strata. The function phreg estimates a proportional

hazard model with parametric baseline hazard. The function aftreg estimates

parametric models of duration dependence. In addition, eha contains a number of

functions for data checking and exploratory data analysis. They include the

check.surv function that checks whether individuals experience at most one
event, that spells do not overlap and that exit occurs after entry and join.spells
that cleans up successive spells. Overlapping spells are ‘polished’ and spells that

are cut unnecessarily are glued together. Functions for exploratory analysis include

age.window and cal.window that cut, respectively, age and (calendar) time

spells into intervals of given length and piecewise that calculates piecewise

hazards, number of events and exposure times in each interval. The perstat
function calculates occurrence-exposure rates for given time periods and ages.

The eha package uses the same input data structure as the survival package. The
package allows for left-truncated and right-censored data.

The package allows the display, for each event time point, of the time point, the

event count and the risk set just prior to the event time. The code is

ev <- table.events(exit=DJ600$time,event=DJ600$status)

The object ev has three components:

(a) ev$times: event (transition) times

(b) ev$events: transition counts

(c) ev$riskset.sizes: risk set

In this section, three functionalities of the eha package are discussed: estimation

of transition rate models, estimation of Cox models with parametric baseline hazard

and the functions to change the observation window.

6.3.1 Transition Rate Models

The eha package is particularly useful for parametric models of duration depen-

dence, such as the Gompertz model, the Weibull model, the log-normal model,

the log-logistic model and the extreme value distribution. All these models, except

the extreme value distribution, are covered by Blossfeld and Rohwer (2002). The

models are estimated using the aftreg function. The name of the function derives

from accelerated failure time regression.
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The basic exponential model is a Weibull model with the shape parameter fixed

at 1. The parameter estimate is 4.489. The average waiting time to a job exit is exp

(4.489)¼ 89 months and the monthly job exit rate is exp(�4.489)¼ 0.01124.

The Weibull model without covariates is:

z<- aftreg(Surv(time,status)~1,
dist="weibull",
data=DJ600,
shape=0)

The argument shape of the function is 0, indicating that the shape parameter

needs to be estimated. The results are shown in Box 6.8.

The results of the Weibull regression with one covariate and with several

covariates are also shown in Box 6.9. The Weibull model with all covariates

considered by Blossfeld and Rohwer (2002) is estimated using the following code:

z<- aftreg(Surv(time,status)~
edu+cohort+LFX+PNOJ+pres,
dist="weibull",
data=DJ600)

The results are similar to those presented by Blossfeld and Rohwer (2002,

p. 195). The coefficients include the two parameters of the Weibull function (the

scale parameter and the shape parameter) and the effects of the covariates. The sign

of the scale parameters is opposite to that in the model presented by Blossfeld and

Rohwer. The reason is that TDA considers the job exit rate as the dependent variable

in the transition rate model, whereas eha considers the failure time, or waiting time,

as the dependent variable. The job exit rate is r(t)¼ b ab tb� 1 where a is the scale

parameter and b the shape parameter. The scale parameter depends on the

covariates. Consider the individual with ID¼ 2 entering the labour market,

i.e. the first job episode. The respondent is born in 1929–1931 and has 10 years

of education. The first job has a prestige score of 22. The scale parameter is:

Box 6.8: Weibull Regression Model (eha), Without Covariates. GLHS

Call:
aftreg(formula = Surv(time, status) ~ 1, data = D, dist = "weibull")

Covariate          W.mean      Coef Time-Accn  se(Coef)    Wald p
Baseline parameters:
log(scale)                    4.461    86.568     0.054     0.000 
log(shape)                   -0.149     0.862     0.036     0.000 
Baseline mean:  

Events                    458 
Total time at risk         40762 
Max. log. likelihood      -2504.6 
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a = exp(-4.38702+0.0778*10-0.029169*22) = 0.01425

The shape parameter is:

b = exp(-0.091) = 0.913

The job exit rate varies with job duration following the Weibull distribution:

r tð Þ ¼ 0:913 � 0:014250:913 t0:913�1

The function hweibull of eha calculates the hazard rate at different durations of

the job spell. The code is:

w <- hweibull(x=1:428,shape=exp(-0.091),
scale=1/0.01425)

The first argument is a vector or quantiles. The function Hweibull calculates

the cumulative hazard rates. Note that in this model specification the scale param-

eter is 1 over the scale parameter in the Blossfeld and Rohwer specification of the

Weibull model. The function plot.aftreg plots the Weibull hazard rate (not

shown):

Box 6.9: Weibull Regression Model (eha), with Covariates. GLHS

a. With one covariate (sex)
Covariate          W.mean      Coef Time-Accn  se(Coef)    Wald p
sex 

Males    0.671     0         1           (reference)
Females    0.329     0.586     1.797     0.106     0.000 

Baseline parameters:
log(scale)      4.701   110.049     0.072     0.000 
log(shape)                   -0.119     0.888     0.036     0.001 

c. With several covariates (full model)
Covariate          W.mean      Coef Time-Accn  se(Coef)    Wald p
edu                11.098     0.078     1.081     0.027     0.004 
cohort 

1929-31    0.543     0         1           (reference)
1939-41    0.256     0.606     1.833     0.124     0.000 
1949-51    0.201     0.578     1.783     0.130     0.000 

LFX           74.943    -0.004     0.996     0.001     0.000 
PNOJ                1.405     0.064     1.066     0.048     0.184 
pres               39.103    -0.029     0.971     0.006     0.000 

Baseline parameters:
log(scale)                    4.405    81.858  0.307     0.000 
log(shape)                   -0.091     0.913     0.036     0.012 
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plot.aftreg(z,fn="haz",
ylim=c(0.01,0.018),
ylab="Job exit rate",
xlab="Job duration (months)")

6.3.2 The Cox Model with Parametric Baseline Hazard

Now I introduce covariates to determine the effect of covariates on the hazard rates.

Consider a Cox model with a single covariate (sex). The code is:

zs<- coxreg(Surv(time,status)~sex,data=DJ600)

The result is shown in Box 6.10. Females leave their job at a rate that is 53 %

higher than the job exit rate of males. The same result was obtained with coxph
function of the survival package. The baseline remains unspecified. The hazard

rates are in Cox_s$hazards.
The stratified Cox model, with sex as a covariate, is:

Cox_s <- coxreg(Surv(time,status)~strata(sex),
data=DJ600,
method="breslow")

The number of events in the data is Cox_s$events (458) and the observed

total exposure time is Cox_s$ttr (40,762 months). The same figures are pro-

duced by the function pyears of the survival package. The estimated baseline

hazard (not cumulative) is included in the object Cox_s.
The full model, as specified by Blossfeld and Rohwer, is:

Cox_full <- coxreg(Surv(time,status)~
edu+
as.factor(cohort)+
LFX+PNOJ+pres,
data=DJ600,
method="breslow",
na.action=na.exclude)

The results are shown in Box 6.11. The package has a function for printing the

results of the Cox model. It is print.coxreg(Cox_full).
The function phreg estimates a proportional hazard model with parametric

baseline hazard. The Weibull distribution is one of the functions describing dura-

tion dependence.

Assume that the duration dependence of the job exit rate (i.e. baseline) can be

described by a Weibull model. The following command fits a proportional hazard

model with a baseline following the shape of a Weibull distribution:
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w <- phreg (Surv(time,status) ~ sex,
data=DJ600,
dist="weibull",
shape=0)

The argument shape of the function is 0, indicating that the shape parameter

needs to be estimated. The result, obtained by print(w) or print.phreg(w),
is shown in Box 6.12. The job exit rates are obtained with w$hazards.

Box 6.10: Impact of Gender on Job Exit Rate: Cox Regression

Model. GLHS

Covariate           Mean       Coef     Rel.Risk   S.E.    Wald p
sex 

Male    0.673     0         1 (reference)
Female    0.327     0.428     1.535     0.095     0.000

Events                    458 
Total time at risk        -40304 
Max. log. likelihood      -2570.6 
LR test statistic         20.1 
Degrees of freedom        1 
Overall p-value           7.31958e-06

Box 6.11: Impact of Several Covariates on Job Exit Rate: Cox Model

(eha). GLHS

Call:
coxreg(formula = Surv(time, status) ~ edu + as.factor(cohort) + 

LFX + PNOJ + pres, data = D, na.action = na.exclude, method =
"breslow")

Covariate           Mean       Coef     Rel.Risk   S.E.    Wald p
edu                11.098     0.067     1.069     0.025     0.007
as.factor(cohort) 

1929-31    0.543     0         1 (reference)
1939-41    0.256     0.410     1.507     0.115     0.000
1949-51    0.201     0.306     1.357     0.122     0.012

LFX                74.943    -0.004     0.996     0.001     0.000
PNOJ                1.405     0.069     1.071     0.044     0.120
pres               39.103    -0.026     0.974     0.005     0.000

Events                    458 
Total time at risk         40762 
Max. log. likelihood       -2547 
LR test statistic         75.2 
Degrees of freedom        6 
Overall p-value           3.4861e-14
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The function check.disk is used to compare the semi-parametric model

(unspecified baseline hazard) with the parametric model (baseline hazard described

by a parametric model of duration dependence).

The following command produces the same results as the Weibull regression

model without covariates.3 The results are shown in Box 6.13.

Box 6.12: Impact of Several Covariates on Job Exit Rate: Cox

Proportional Hazard Model with Weibull Baseline Hazard (eha). GLHS

a. Single covariate
Call:
phreg(formula = Surv(D$time, D$status) ~ sex, data = D, dist = 
"weibull", 

shape = 0)

Covariate        W.mean      Coef Exp(Coef)  se(Coef)    Wald p
sex 

Males    0.671     0         1           (reference)
Females    0.329     0.521     1.683     0.095     0.000

log(scale)                    4.701   110.044     0.072     0.000
log(shape)                   -0.119     0.888     0.036     0.001

Events                    458 
Total time at risk         40762 
Max. log. likelihood      -2489.8 
LR test statistic         29.5 
Degrees of freedom        1 
Overall p-value           5.65384e-08

b. Full model
Call:
phreg(formula = Surv(D$time, D$status) ~ edu + as.factor(cohort) +

LFX + PNOJ + pres, data = D)

Covariate          W.mean      Coef Exp(Coef)  se(Coef)    Wald p
edu                11.098     0.071     1.074     0.025    0.004
as.factor(cohort) 

1929-31    0.543     0         1           (reference)
1939-41    0.256     0.553     1.739     0.115     0.000
1949-51    0.201     0.528     1.696     0.123     0.000

LFX                74.943    -0.003     0.997     0.001     0.000
PNOJ                1.405     0.058     1.060     0.044     0.187
pres               39.103    -0.027     0.974     0.006     0.000

log(scale)                    4.404    81.808     0.306     0.000
log(shape)        -0.091     0.913     0.036     0.012

Events                    458 
Total time at risk         40762 
Max. log. likelihood      -2462.5 
LR test statistic         84.1 
Degrees of freedom        6 
Overall p-value           5.55112e-16

3 The model is also discussed by Blossfeld and Rohwer (2002).
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w <- weibreg (Surv(Tstop-Tstart,status) ~ 1,
data=DJ600)

Note that the scale parameter is minus the value shown by Blossfeld and Rohwer

(2002, p. 193). The reason is that in eha (as in survival) the dependent variable is the
time to job exit rather than the job exit rate. The shape parameter, however, has the

same sign.

To get the exponential model, the shape parameter is fixed to unity:

weibreg (Surv(Tstop-Tstart,status) ~ 1,
shape=1,
data=DJ600)

The regression coefficient is 4.489, which is minus the value shown by Blossfeld

and Rohwer (2002, p. 93), for the same reason given before.

The following command estimates the transition rate model with Gompertz

hazard:

g <- aftreg (Surv(Tstart,Tstop,status) ~ sex,
data=DJ600,
dist="gompertz")

The function piecewise produces event counts and exposure times for given

time intervals. It also calculates piecewise constant transition rates (occurrence-

exposure rates). The command

piecewise(DJ600$Tstart,DJ600$Tstop,DJ600$status,c(0,10000))

gives the number of job exits (458) during the entire observation period (from time

0 to a very large number, in this case 10,000), the total exposure time (40,762) and

the job exit rate (0.01124). The same results are produced by Biograph. To calculate

Box 6.13: Weibull Model of Job Exit Rates; Null Model Without

Covariates. GLHS

Call:
weibreg(formula = Surv(Tstop – Tstart, status) ~ 

1, data = DJ600)

Covariate           Mean       Coef Exp(Coef)  se(Coef)    Wald p
log(scale)                    4.461    86.569     0.054     0.000
log(shape)                   -0.149     0.862     0.036     0.000

Events                    458 
Total time at risk         40762 
Max. log. likelihood      -2504.6 
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job exit rates by duration on the job in single years, the following command may be

used:

piecewise(enter=0,exit=DJ600$Tstop-DJ600$Tstart,
event=DJ600$status, 
cutpoints=seq(0,430,by=12))

Note that the maximum job episode is 428 months. The results are shown in

Box 6.14.

An alternative way to generate the number of events by duration intervals of

1 year is:

DJ600$period<-cut((DJ600$Tstop-DJ600$Tstart),
breaks=seq(0,440,by=12),
include.lowest=T)

table(DJ600$status,DJ600$period)

The eha package includes a number of utilities for data checking and data

exploration. The check.surv function checks whether the ending time of an

episode is not before the starting time and that each individual experiences at most

one event. The function has been applied to the GLHS with data in Biograph format

(wide format) and to the data set DJ600, which is the episode file of job episodes

used by Blossfeld and Rohwer (2002) (long format). For the first application, a

status variable of one has been added to the data file. The first application is evoked

by the statement:

Z <- GLHS
Z$status <- 1
check.surv(Z$start,Z$end,Z$status,Z$ID)

Box 6.14: Numbers of Job Exits, Exposure Times and Job Exit Rates,

by Duration Intervals of 1 Year. GLHS

$events
0 88 94 82 40 41 24 13 10 11 10 11 10  5  2  4  2  1  3  1  0  0  0  1  0  1
1  0  2  0  1  0  0  0  0  0 0

$exposure
0 6808 5458 4181 3300 2788 2290 1921 1769 1582 1368 1116  965  803  726  664
617  546  481  426  388  368  336  319  285  232  206  168  139  112 98   
91   77   64   44   18    8

$intensity
NA 0.012925969 0.017222426 0.019612533 0.012121212 0.014705882 0.010480349 
0.006767309 0.005652911 0.006953224 0.007309942 0.009856631 0.010362694 
0.006226650 0.002754821 0.006024096 0.003241491 0.001831502 0.006237006 
0.002347418 0.000000000 0.000000000 0.000000000 0.003134796 0.000000000 
0.004310345 0.004854369 0.000000000 0.014388489 0.000000000 0.010204082 
0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
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The application responds with TRUE meaning that there are no inconsistencies

identified in the data.

6.3.3 Change Observation Window

The functions age.window and cal.window are particularly useful to change

the observation window to an age interval or a time interval. The function age.
window cuts episodes or spells in age intervals and cal.window cuts episodes in

time intervals. The function requires a specification of the age and time interval and

a list of age and time cutpoints. The function cannot be applied to data in the

Biograph format (wide format) because it does not adjust the state sequence and the

transition dates. It can be applied, however, to data in the long format. Consider the

data file DJ600 (long format). The variable Tstart gives the data in CMC at

onset of an episode and Tstop gives the ending date in CMC. To be able to cut

episodes in age intervals and time intervals, we change the date of birth in year and

fraction of year and calculate the ages at start and end of episodes. The year of birth

is:

DJ600$birthY <- cmc_as_year(DJ600$born)

The ages at onset and end of the episode are:

DJ600$Tstarta <-
cmc_as_age(DJ600$Tstart,DJ600$born,"cmc")$age

DJ600$Tstopa  <-
(cmc_as_age(DJ600$Tstop,DJ600$born,"cmc")$age

The age Tstarta is the age a person reaches during the month in which the

transition occurs. The following command creates an observation window that

starts at age 20 and ends at age 40:

D.agew <- age.window(DJ600,c(20,40),
surv=c("Tstarta","Tstopa","status"))

surv is the survival object, which includes the age at onset of the episode, the

age at the end of the episode and the status at the end. Records with data on episodes

that end before age 20 or start after age 40 are removed from the data file. The data

set that results contains observations on exposures and transitions between ages

20 and 40. Note that the variables Tstart and Tstop are not adjusted. They do

not need to be adjusted as long as they are not used in subsequent analysis. The

following code may be used to change Tstart and Tstop to be consistent with

the new observation window:
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D.agew$Tstartnew <- (D.agew$birthY
+D.agew$Tstarta-1900)*12

D.agew$Tstopnew <- (D.agew$birthY
+D.agew$Tstopa-1900)*12

The same function may be used to select an observation window between given

values of Tstart and Tstop. For instance, the following command selects

observations between CMC 500 and 600:

D.cmcw <- age.window(DJ600,c(500,600),
surv=c("Tstart","Tstop","status"))

The following code cuts the time in the interval from 1 January 1950 to 1 January

1970:

D.calw <- cal.window(DJ600,c(1950,1970),
surv=c("Tstarta","Tstopa","status","birthY"))

In this case surv is a survival object with additional information. It includes the

date of birth. In eha, it is referred to as the extended survival object.

To adjust the CMC at entry and CMC at exit, the following code may be used:

D.calw$Tstartnew <- (D.calw$birthY
+D.calw$Tstarta-1900)*12 + 1

D.calw$Tstopnew <- (D.calw$birthY
+D.calw$Tstopa-1900)*12 

Note that January 1950 is CMC 601 (¼50*12 + 1) and December 1970 CMC

840 (¼70 * 12). Recall that the first month (CMC¼ 1) is January 1900. Consider

respondent with ID 4. He is born in CMC 604 (April 1950) and enters the labour

market in CMC 872 (August 1972), which is after the end of the 1950–1970

observation period. The observation on the first episode of life is censored on

1 January 1970, which is at CMC 840 (¼70*12). At that date he is 19.67 years of

age. Respondent with ID 4 contributes only one spell to the new data set. Note that

the function cal.window changes the status variable from 1 to 0 because the first

episode no longer ends in an event but in censoring. The destination state (DES) is

not changed from J to cens because cal.window does not consider the destina-

tion state.

The function perstat calculates, for a given time period and age interval, the

number of events, the duration at risk or exposure time and the occurrence-exposure

rate. Suppose we want to estimate the number of job exits, the total exposure time in

a job and the job exit rate for individuals aged between 20 and 30 years during the

period from 1970 to 1980. The input is an extended survival object (see above). The

following code creates the extended survival object surv.extended:
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surv.extended <- cbind(enter=DJ600$Tstarta,
exit=DJ600$Tstopa,
event=DJ600$status,
birthdate=DJ600$birthyear)

By way of control, let us compute the total number of job exits, the total duration

of employment and the job exit rate during the entire period for all ages. It is:

z <- perstat (surv.extended,
period=c(1920,2000),
age=c(0,100))

The total number of job exits is 458, the total exposure time is 3,397 years and

the job exit rate is 0.1348 per year. The sojourn time is expressed in the time unit

used in the extended survival objects, which is years. Hence, although the month is

the time unit in the original data, the intensity is the number of transitions per

person-years. The same results may be obtained by Biograph. Table 4.2 shows an

exposure time of 40,762 months, which is 3,397 years.

The job exit rate (occurrence-exposure rate) for individuals aged 20–30 years

during the period 1970–1980 is computed by the code:

z <- perstat (surv.extended,
period=c(1970,1980),
age=c(20,30))

The result is shown in Box 6.15. The observation window is an age-period

observation window. During the period 1970–1980, persons aged 20–30 spent a

total of 479 years employed; 95 left their job, resulting in a job exit rate of 0.20. The

job exit rate between 1950 and 1970 was lower, 0.17.

Box 6.15: Transitions, Exposure Times and Occurrence-Exposure Rates

of Respondents Who Are Aged 20–30 Years During the Period

1970–1980. GLHS

$events
[,1]

(1970 - 1980]   95

$exposure
[,1]

(1970 - 1980] 479.1667

$intensity
[,1]

(1970 - 1980] 0.1982609
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The function may be used to compute age-specific transition rates from transi-

tions and durations of exposure. If age intervals are 1 year, the measures produced

by the perstat function are the same as those produced by Biograph and shown

in Table 4.8. Consider persons aged between 40 and 41. The function perstat
computes an exposure time of 83.17 months and three job exits, the same figures

obtained by Biograph (see Table 4.8).

6.4 The mvna and etm Packages

The mvna and etm packages were developed by Allignol (2013, 2014). The mvna

package generates Nelson-Aalen estimates of the cumulative hazard in multistate

models from data that may be right censored and left truncated (see also Allignol

et al. 2008). The etm package generates Aalen-Johansen estimates of transition

probabilities (Allignol et al. 2011). The two packages are documented in

Beyersmann et al. (2012). The Aalen-Johansen estimator is also called the empir-

ical transition matrix. The transition probabilities are derived from the Nelson-

Aalen estimates. For that reason they are combined in this section. I present the

Nelson-Aalen estimator first, followed by the Aalen-Johansen estimator.

6.4.1 mvna: Nelson-Aalen Estimator in Multistate Models

The Nelson-Aalen estimator is a non-parametric estimator (see Chap. 2). It is an

increasing right-continuous step function with increments dj/rj at observation time j,

with dj the number of transitions at j and rj the number of individuals at risk just

prior to j. For a discussion of the estimator in the context of multistate models, see

Andersen and Keiding (2002), Andersen et al. (1993), Aalen et al. (2008) and

Beyersmann et al. (2012). For a comparison with related estimators (Kaplan-Meier

and Aalen-Johansen), see Borgan (1998). The mvna package allows time-

dependent covariates.

The Biograph.mvna function prepares the input data for the mvna package

(see Chap. 3):

Dmvna <- Biograph.mvna(GLHS)

The object returned by the function is Dmvna and the data are in the component

Dmvna$D. Transitions from one job to another job (intrastate transitions) are

removed, as required by the mvna and etm packages.

The mvna package is called by the following expression:
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na <- mvna(data=Dmvna$D,
state.names=c("N","J"),
tra=attr(Dmvna$D,"param")$trans_possible,
cens.name=Dmvna$cens)

The output of mvna includes the number of individuals at risk in each state just

prior to a given transition (n.risk), the number of transitions at each event time

(n.event) and the number of censored cases at each censoring time (n.cens).
That information may be used to construct a table similar to the ratetable
$Stable table produced by the Ratetable function of Biograph. The table

includes event counts and exposure times. To produce the table frommvna output, a
few steps need to be taken. In the first step, create a data frame with the variables

that are required. Note that in this application, age is the time variable. The vari-

ables are: age (time) at transition, risk set in each state at that point in time, number

of transitions and number of censored cases at each age. The code is:

# risk set at event time
am <-cbind(round(na$time,4),na$n.risk) 
#transitions at event time
ab <- aperm(na$n.event,c(3,1,2))  
hh <- data.frame(row.names=c(1:nrow(am)),

cbind(Time=am[,1],
AtRisk_N=am[,2],
AtRisk_J=am[,3],
NJ=ab[,1,2],
JN=ab[,2,1],
NC=na$n.cens[,1],
JC=na$n.cens[,2]))

In the second step, numbers of events by single years of age are computed.

Records with event times in the same age are combined. The code is:

hh$Time2 <- cut(hh$Time,
breaks=c(0,seq(10,55,by=1)),
include.lowest=TRUE,
right=FALSE)

hh$Time3 <- match (hh$Time2,unique(hh$Time2))  
tt<- aggregate(hh[,4:7],list(Count=hh$Time2),sum)

An individual of exact age x is included in the age interval [x,x + 1). In demo-

graphic analysis and most other studies, the lowest value is included in the interval

and the highest value is excluded. The interval is said to be closed on the right and

open on the left. That requirement is operationalised with the arguments

include.lowest¼TRUE and right¼FALSE. The variable Time3 is an

indicator variable. It is one if the record in the data object is the first of an age

interval (of one year) and it is zero otherwise. It is produced to select the first record
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of each age interval. The function aggregate determines the number of events in

an age interval.

The third step is to determine the population at risk at the beginning of each age

interval. The code is:

hh$test <- rep(1,length(hh$Time3))
hh$test[2:length(hh$Time3)] <- ifelse

(diff(hh$Time3[1:length(hh$Time3)],lag=1)==0,
0,1)

hh2 <- subset(hh,hh$test==1)

In the fourth step, the relevant data are combined into a data frame:

Stable <- cbind(Age=trunc(hh2$Time),
AtRiskN=hh2$AtRisk_N,
AtRiskJ=hh2$AtRisk_J,
tt[,2:5])

The results are shown in Table 6.1 (selected ages). Note that mvna excludes

transitions to the same state.

Table 6.2 shows ratetable$Stable (produced by Biograph) for selected
ages.

The Nelson-Aalen estimator of the cumulative hazard is shown in Fig. 6.7. The

plot is produced by the xyplot.mvna function. This function also plots several

types of pointwise confidence intervals (Andersen et al. 1993, p. 208). For details,

see the description of the mvna package. The xyplot function is from the lattice
package.

Table 6.1 Sample population at risk, by age, and transitions, by age, produced by mvna. GLHS

Age AtRiskN AtRiskJ NJ NC JN JC
1    0     201       0  0  0  0  0
2   13     201       0  6  0  0  0
3   14     195       6 24  0  2  0
4   15     173      28 12  0  3  0
5   16     164      37 21  0  6  0
6   17     149      52 44  0  1  0
7   18     106      95 37  0  9  0
8   19      78     123 34  0 11  0
9   20      55     146 16  0 24  0
10  21      63     138 20  0 17  0
11  22      60     141 19  0  9  0
12  23      50     151 10  0 10  0
13  24      50     151  7  0 15  0
14  25      58     143  3  0 11  0
15  26      66     135  8  0 14  0
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Table 6.2 Sample population at risk, by age, and transitions, by age, produced by

Biograph. GLHS

, , State = N

Case
Age       Occup      PY Leaving   N      J Censored

0         201  201.00       0   0 0.00     0.00
13        201  199.17       6   0   6.00     0.00
14        195  181.42      24   0  24.00     0.00
15        173  167.50      12   0  12.00     0.00
16        164  157.83      21   0  21.00     0.00
17        149  122.75      44 0  44.00     0.00
18        106   89.75      37   0  37.00     0.00
19         78   63.08      34   0  34.00     0.00
20         55   62.75      16   0  16.00     0.00
21         63   56.92      20   0  20.00     0.00
22         60   50.83     19   0  19.00     0.00
23         50   50.50      10   0  10.00     0.00
24         50   55.17       7   0   7.00     0.00
25         58   62.00       3   0   3.00     0.00
26         66   66.08       8   0   8.00     0.00

, , State = J

Case
Age       Occup      PY Leaving      N      J Censored

0           0    0.00       0   0.00   0.00     0.00
13          0    1.83       1   0.00   1.00     0.00
14          6   19.58       4   2.00   2.00     0.00
15         28   33.50       7   3.00   4.00     0.00
16         37   43.17       8   6.00   2.00     0.00
17         52   78.25       9   1.00   8.00     0.00
18         95  111.25      22   9.00  13.00     0.00
19        123  137.92      36  11.00  25.00     0.00
20       146  138.25      41  24.00  17.00     0.00
21        138  144.08      34  17.00  17.00     0.00
22        141  150.17      32   9.00  23.00     0.00
23        151  150.50      22  10.00  12.00     0.00
24        151  145.83      28  15.00  13.00  0.00
25        143  139.00      21  11.00  10.00     0.00
26        135  134.92      25  14.00  11.00     0.00
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library (lattice)
xyplot(na,tr.choice=c("N J","J N"),

aspect=1,
strip=strip.custom(bg="white",
factor.levels=c("NoJob to Job",

"Job to NoJob"),
par.strip.text=list(cex=0.9)),
scales=list(alternating=1),
xlab="Age in years", 
xlim=c(10,60),
ylab="Nelson-Aalen esimates")

Fig. 6.7 Trellis plot of cumulative hazard rates, produced by mvna. GLHS

6.4 The mvna and etm Packages 169



The function plot.mvna plots the cumulative transition rates in one panel:

plot(na). It does not show confidence intervals.

The following code produces a similar plot (Fig. 6.8) but does not require the

lattice package:

Fig. 6.8 Cumulative hazard rates. GLHS
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plot(c(0, na$'N J'$time),c(0,na$'N J'$na),
type="l",
xlab="Age (years)",
ylab="cumulative hazard",
xlim=c(10,50), 
main="GLHS Labour market transitions",
col="red",
axes=F,
lwd=2)

lines (c(0, na$'N J'$time),
c(0,na$'N J'$na-sqrt(na$'N J'$var.aalen)),
col="red",lty=2,lwd=1)

lines (c(0, na$'N J'$time),
c(0,na$'N J'$na+sqrt(na$'N J'$var.aalen)),
col="red",lty=2,lwd=1)

axis (side=1,at=seq(10,50,by=5),
labels=seq(10,50,by=5),
cex.axis=0.8)

axis (side=2,las=1,at=seq(0,max(na$'N J'$na),by=0.5),
labels=seq(0,max(na$'N J'$na),by=0.5),
cex.axis=0.8)

box()

age

abline (h=seq(0,max(na$'N J'$na),by=0.5),lty=2,col="lightgrey")
abline (v=seq(10,50,by=5),lty=2,col="lightgrey")  # line at median

lines (c(0,na$'J N'$time),c(0,na$'J N'$na),
col="darkgreen",
lty=1,
lwd=2)

lines (c(0,na$'J N'$time),c(0,na$'J N'$na-sqrt(na$'J N'$var.aalen)),
col="darkgreen",
lty=2)

lines (c(0,na$'J N'$time),c(0,na$'J N'$na+sqrt(na$'J N'$var.aalen)),
col="darkgreen",
lty=2)

legend(10,4,c("NJ","JN"),
col=c("red","darkgreen"),
fill=c("red","darkgreen"),
cex=0.9,
bg="white")

The cumulative hazard rates at given ages may be derived using the predict
function of the mvna package. The cumulative hazard rate at consecutive birthdays

from 0 to 53 is obtained by:

cumh.1 <- predict (na,times=seq(0,53,by=1)) 

The cumulative rates of transition from NoJob to Job are cumh.1$’N J’$na;
the rates for the Job to NoJob transition are cumh.1$’J N’$na. Note that, while
close in value to each other, the cumulative transition rate at a given age differs

from the cumulative occurrence-exposure rate. The latter is the sum of transition

rates that are averages in age intervals. From the cumulative transition rates,

age-specific transition rates may be derived for further analysis, e.g. for the con-

struction of multistate life tables.
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Figure 6.9 shows the Nelson-Aalen estimators of the age-specific transition

rates, produced by the mvna package, and the occurrence-exposure rates by single

years of age, produced by Biograph. The two sets of rates are very similar as

expected (Borgan and Hoem 1988, p. 888). The figure also shows the values of the

occurrence-exposure rates smoothed by a cubic spline.

The cumulative transition rates are the basis for the multistate survival function

and the sojourn time function. These functions and the multistate life table (MSLT),

of which they are part, are discussed in Chaps. 2 and 7.

6.4.2 etm: Aalen-Johansen Estimator in Multistate Models

The transition rates are input to transition probabilities. The empirical transition

probabilities or Aalen-Johansen estimators are obtained by product integration

(Allignol et al. 2011; Beyersmann et al. 2012, p. 32ff), implemented in the etm
package. The packages etm and mvna use the same input data. The following code

produces the probability that an individual has a job at age 26.

etm <- etm::etm(data=Dmvna$D,
state.names=c("N","J"),
tra=attr(Dmvna$D,"param")$trans_possible,
cens.name=Dmvna$cens,
s=0,t=26)

The probability of being employed at 26 is 67.66 %. The probability may also be

computed using the multistate life table. The multistate life table is also based on

Fig. 6.9 Age-specific

transition rates from NoJob

to Job (NJ) and from Job to

NoJob (JN): Nelson-Aalen

estimates and occurrence-

exposure rates. GLHS
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transition rates. The multistate life table based on Nelson-Aalen estimates of the

cumulative hazard gives 70.41 % and the multistate life table based on occurrence-

exposure rates gives 67.62 %. The latter is very close to the Aalen-Johansen

estimate at age 26. The Aalen-Johansen estimator of being employed at age 50 is

69.41 %; the multistate life table gives 69.22 % if based on the Nelson-Aalen

estimator and 69.74 % if based on the occurrence-exposure rates.

6.5 The mstate Package

The mstate package was developed by Putter and colleagues (Putter 2014; Putter

et al. 2007, 2011; de Wreede et al. 2011). It estimates multistate models by using a

Cox proportional hazard model for the transition rates. The method is described by

Therneau and Grambsch (2000) and implemented in the coxph function of the

survival package (see Sect. 6.2). In the proportional hazard model, the transition

rate for an individual with given covariates is proportional to the transition rate of a

reference individual, i.e. an individual with all covariate values equal to reference

categories (see Putter et al. 2007, p. 2418). To accommodate different baseline

hazards for different transitions, the data are stratified by transition.

Putter et al. discuss a particularly interesting application of multistate models,

namely, the estimation of transition rates in the presence of a time-dependent

covariate. The mstate package includes a function to predict the outcome of a

process for persons with particular characteristics and histories. The process Putter

et al. consider is a disease process. The prediction is in terms of conditional

probabilities of some future events, given an event history and possibly a set of

values for prognostic variables of the subject being considered. The prediction

probabilities are special cases of the Aalen-Johansen estimator.

The mstate package requires data in the ‘msdata’ format (see Chap. 3). An

object of class ‘msdata’ is a data frame with one row for each possible transition,
i.e. for each transition for which the subject is at risk. In other words, there is one

record of data for each competing risk. In addition, the data frame has the transition

matrix as a ‘trans’ attribute. Note that the data frame in the Biograph format has

the same attribute, inspired by Putter et al. The need for one record for each

transition for which the subject is at risk implies that several records refer to

transitions that do not occur (indicator variable 0). That data requirement serves

the flexibility in model specification. In mstate it is particularly easy to specify

different transition models and to estimate the parameters of the models. That

flexibility is a major strength of mstate.
The Biograph.mstate function produces a data frame in the ‘msdata’

format:

Dmstate <- Biograph.mstate (GLHS)
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The function removes intrastate transitions, calls the Parameters function

to determine the transition matrix, calls the Biograph.long function to

produce a data frame in the long format and adds the attributes ‘param’,
‘trans’, ‘format.date’, and ‘format.born’ to create a data frame of

class ‘msdata’:

attr(Dmstate, "param") <- Parameters(GLHS)
attr(Dmstate, "trans") <- Parameters(GLHS)$tmat
attr(Dmstate, "format.date") <- attr(GLHS,"format.date")
attr(Dmstate, "format.born") <- attr(GLHS,"format.born")
class(Dmstate) <- c("msdata", "data.frame")

The third command defines the class of the object. These three expressions are

part of Biograph.mstate. The data frame Dmstate is of class ‘mstate’
(to check, use str(Dmstate)). The long format differs from that required by the

survival package and mvna package. The mstate package requires one line for each
possible transition. It implies that for every censored observation, one record is

included for every possible destination. For instance, if a job episode is censored,

one record is included for the transition from Job to NoJob (Job to Job is not

possible). In that record the status variable is 0 indicating that the observation is

censored. The transition matrix shows the transition numbers and is returned by the

Parameters function as the ‘tmat’ component. In mstate, the intrastate transi-
tions should be omitted. In the transition matrix, only NAs are allowed on the

diagonal.

The msprep function ofmstate creates an object of class ‘msdata’ from a data

frame in a wide format, provided the Markov chain is irreversible acyclic (Putter

et al. 2011, p. 18). States cannot be visited more than once. The illness-death model

is an illustration of an irreversible Markov chain. The wide format has one record

per subject. A record includes a subject identification number and the following

information for each of the possible transitions: (a) time at transition or censoring

and (b) indicator variable (status variable), which is 1 if the transition occurs and

0 otherwise. The wide format also contains covariates. In the long format (episode

file), a record includes a subject identification number, the starting time and

stopping time of the episode, a status variable to denote whether the episode ends

in a transition (1) or not (0), the origin state and the destination state. A selection of

covariates is copied to the long format. The selection is determined by the keep
argument of the msprep function. If a (from-to)transition occurs, the destination

state (receiving state) is visited. The transition time is equivalent to the time at

which a state is visited.

Consider two illustrations. The first is an irreversible Markov chain. The illness-

death model, extensively studied by Putter and colleagues, belongs to this category.

The second is a reversible Markov chain, where subjects may leave a state and enter

the state again at a later date. Most attention is paid to the first illustration.
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6.5.1 Illness-Death Model

Suppose we want to study the employment path that starts at labour market entry

(first job), includes second and higher-order jobs, and ends with entry in the NoJob

state. Some persons exit their first job (J1) for the NoJob (N) state, while others have

a second or third job (J2) before they enter the NoJob state. The second and higher-

order jobs are denoted by second+ job. Some persons never enter the NoJob state.

They are with a job at time of survey and they never experience a jobless period.

The NoJob state is an absorbing state, which, once entered, cannot be left. We do

not distinguish between second and higher-order jobs. This case is analogous to a

model widely studied in epidemiology and known as the illness-death model, which

has three states: healthy, diseased and death. It is shown in Fig. 6.10.

The transition matrix of the above diagram is shown below:

to
from    Job1(J1) Job2(J2) NoJob(N)
Job1(J1) NA   1   2
Job2(J2) NA  NA    3
NoJob(N) NA  NA   NA

Transition 1 is the transition from the first job to a second job. It is also denoted

as J1J. Transition 2, also denoted as J1N, is the transition from the first job to an

episode without a job. Transition 3, also denoted as J2N, is the transition from the

second or higher-order job to an episode without a job. We first discuss the data

preparation. Data analysis is illustrated next. The transition matrix is produced by

the function GLHS.trans():

trans <- GLHS.trans()

The function returns the transition matrix, which is stored in the object trans.
The function GLHS.IllnessDeath derives from the GLHS data the input

data for the illness-death model with the three states Job1, Job2 and NoJob. The

duration variable measures time since labour market entry. The function is included

in Biograph. The following code produces a data frame in wide format to be used as

input in the illness-death model:

tg <- GLHS.IllnessDeath (GLHS) 

The data for the first 10 respondents in the wide format are shown in Table 6.3.

ID is the identification number, and J1Jt is the time at transition from the first job to

the second job or censoring. J1Js is the status variable indicating whether the

respondent had a second job. JNt is the time at transition from Job (first or second+)

to NoJob or from Job to censoring, and JNs is the status variable that indicates

whether the NoJob state was ever entered. Several covariates are included in the

data. The CMC at labour market entry is now treated as a covariate. From that
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covariate, the age at labour market entry is calculated because later we want to

assess whether persons who enter the labour market early have different transition

rates than persons who enter at higher ages. A total of 30 persons enter the labour

market before age 15 and 102 before age 18. The first respondent enters the labour

market at age 17 with a professional college qualification, equivalent to 17 years of

education. There is clearly a problem with the data. Although the variable edu is

defined as the highest educational attainment before entry into the labour market

(Blossfeld and Rohwer 2002, p. 44), it is likely that the variable was measured

differently. The age at labour market entry is denoted by age_entry.
The following code produces the data in long msdata format:

library(mstate)
tmat <- attr(tg,"param")$tmat
tglong <- msprep(

time=c(NA,"J1Jt","JNt"),
status=c(NA,"J1Js","JNs"),
data=tg,
keep=c("sex","cohort","born",
"age_entry","edu"),
trans=tmat)

where tg is the object with the data in the wide format. The argument time is a

character vector containing the column names indicating the transition times. Some

elements of time may be missing (NA). Status is a character vector containing

the column names with the status variables. The wide data structure has 201 records,

the long structure 498. The keep argument lists the covariates to be kept in the long

format. Data in the long format (tglong) are shown in Table 6.4 (the first

4 respondents).

First job (J1)
(state 1)

NoJob (N)
(state 3)

Second+  job(J2)
(state 2)

Fig. 6.10 Illness-death

model of job change. GLHS

Table 6.3 GLHS data in wide format to be used as input in mstate

ID J1Jt J1Js JNt JNs    sex  cohort born age_entry edu
1   1  428    0 428   0   Male 1929-31  351    17.00  17
2   2   46    1 300   1 Female 1929-31  357     19.67  10
3   3   12    1 141   1 Female 1939-41  473     17.92  11
4   4   55    0  55   1 Female 1949-51  604     22.33  13
5   5   68    1 400   0   Male 1929-31  377     17.17  11
6   6   26   0  26   1   Male 1939-41  492     16.58  11
7   7   53    1  99   1 Female 1939-41  476     14.67   9
8   8    6    1 145   0   Male 1949-51  609     19.08  11
9   9   11    1 392   0   Male 1929-31  377     17.83  12
10 10  121    1 263   1   Male 1929-31  382     16.50  11
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The first respondent (male) is in his first job when the observation is censored,

428 months after labour market entry. He did not move to a second job or the NoJob

status. The second respondent (female) entered the labour market at CMC

593, changed jobs 46 months after labour market entry (at CMC 639). The com-

peting risk (transition from J1 to N) did not materialise at that time. She left a job

episode for an episode without a job in CMC 893, which is 300 months after she

entered the labour market and 254 months since she started her second job.

The data in msdata format are used for analysis. For illustrative purposes, a

few functions of the mstate package are considered. The number of transitions by

origin and destination is produced by the following code:

z <- events(tglong)

Among the sample population, 96 left the first job for a second job, 89 left the

first job for an episode without a job and 16 were censored while in their first job. Of

those 96 with a second+ job, 45 moved to a period without a job before the survey

and 51 had a job continuously between the start of the first job and the survey. The

different trajectories that are possible in the multistate model, provided one cannot

enter a state more than once, are given by paths(trans) of the mstate package.
They are:

[,1] [,2] [,3]
[1,]    1   NA   NA
[2,]  1    2   NA
[3,]    1    2    3
[4,]    1    3   NA

A major strength of the mstate package is the flexible approach to estimating

transition models. The flexibility is largely the result of being able to associate

covariates with each transition. Covariates may affect transitions differently.

The expand.covs function expands the data set (long format) by adding

transition-specific covariates (also called type-specific covariates, Putter

et al. 2007, p. 2403). The covariate cov associated with transition s is called

cov.s, where s¼ 1, 2, . . ., n with n the number of transitions. The extension s

refers to a specific transition. The transition number is given in the transition matrix

Table 6.4 GLHS data in long format to be used as input in mstate

id from to trans Tstart Tstop time status    sex  cohort born age_entry edu
1   1    1  2     1      0   428  428      0   Male 1929-31  351     17.00  17
2   1    1  3     2     0   428  428      0   Male 1929-31  351     17.00  17
3   2    1  2     1      0    46   46      1 Female 1929-31  357     19.67  10
4   2    1  3     2      0    46   46      0 Female 1929-31  357     19.67  10
5   2    2  3     3     46   300  254      1 Female 1929-31  357     19.67  10
6   3    1  2     1      0    12   12      1 Female 1939-41  473     17.92  11
7   3    1  3     2      0    12   12      0 Female 1939-41  473     17.92  11
8   3    2  3     3     12   141  129      1 Female 1939-41  473     17.92  11
9   4    1  2     1      0    55   55      0 Female 1949-51  604     22.33  13
10  4    1  3     2      0    55   55      1 Female 1949-51  604     22.33  13
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trans. For example, for the covariate sex, sex.1 is the covariate associated

with the first transition (J1J), sex.2 the covariate associated with the second

transition (J1N), etc. The expanded long format is produced by the following code:

tglonge <- expand.covs(tglong,
c("sex","cohort","age_entry","edu"))

where the covariates are specified in the argument list. The expanded covariates

data set can be used in regression models. The object may become quite large. A

version with a single covariate is illustrated in Table 6.5. The covariate

sexFemale.1 (s.1) impacts on transition 1, covariate sexFemale.2
(s.2) on transition 2 and sexFemale.3 (s.3) on transition 3. The value of

sexFemale is 0 if the respondent is male and 1 if the respondent is female. The

regression coefficient associated with the covariate gives the effect on the transition

rate of being a female relative to the effect of being a male (reference category).

Suppose we want to know whether the effect of gender on the rate of transition

varies between transitions. Assume that the three transitions have different baseline

hazards, which is implemented by stratifying the data by transition. The line

number of a transition is the stratification variable: strata (trans). For a

given transition, the rates for males and females are proportional, however. The

model is:

cx.s <- coxph(Surv(Tstart,Tstop,status)~
sexFemale.1+sexFemale.2+sexFemale.3
+strata(trans),
data=tglonge,method="breslow")

Table 6.5 GLHS data in expanded format of mstate

id from to trans Tstart Tstop time status    sex  cohort born age_entry edu
1   1    1  2     1      0  428  428      0   Male 1929-31  351     17.00  17
2   1    1  3     2      0   428  428      0   Male 1929-31  351     17.00  17
3   2    1  2     1      0    46   46      1 Female 1929-31  357     19.67  10
4   2    1  3     2      0    46   46      0 Female 1929-31  357     19.67  10
5   2    2  3     3     46   300  254      1 Female 1929-31  357     19.67  10
6   3    1  2     1      0    12   12      1 Female 1939-41  473     17.92  11
7   3    1  3     2      0    12   12      0 Female 1939-41  473  17.92  11
8   3    2  3     3     12   141  129      1 Female 1939-41  473     17.92  11
9   4    1  2     1      0    55   55      0 Female 1949-51  604     22.33  13
10  4    1  3     2      0    55   55      1 Female 1949-51  604     22.33  13

(continued)
sexFemale.1 sexFemale.2 sexFemale.3

1            0           0           0
2            0           0           0
3            1           0           0
4            0           1           0
5            0           0           1
6            1 0           0
7            0           1           0
8            0           0           1
9            1           0           0
10           0           1           0
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Putter et al. (2007) refer to the model as the Markov stratified hazards model.

The results are shown in Box 6.16. The exponentiated coefficients exp(coef) are

hazard ratios, i.e. ratios of hazard rates of females over hazard rates of males

(reference category). Hazard ratios are interpretable as multiplicative effects on the

hazard. The example shows that gender has no significant effect on the rate of job

change (J1J), but a significant effect on the rate of leaving employment, particularly

after the second or higher-order jobs (J2N). The J1N transition rate for women is

82 % higher than the rate for men. For the J2N transition, the rate is 189 % higher.

Hence, the effect of gender on the transitions is quite different. The results in the

box are produced by summary(cx.s). The cumulative baseline hazards are

produced by the basehaz(cx.s) function, which is part of the survival package.
The results shown in Box 6.16a may also be obtained by applying the Cox model

to subsets of data and by applying an interaction term. First, consider subsets of data

and consider the second transition, which is J1N. The following code produces the

same effect of gender on the J1N transition rate as the expanded model (regression

coefficient 0.599):

tg2 <- subset(tglong,tglong$trans==2)
cx.2 <- coxph(Surv(Tstart,Tstop,status)~sex,

data=tg2,
method="breslow")

The model with an interaction term between gender and the transition is:

Box 6.16: The Effect of Gender on Transition Rates. Cox Model. GLHS

a. Output cx.s
Call:
coxph(formula = Surv(Tstart, Tstop, status) ~ sexFemale.1 + 
sexFemale.2 + sexFemale.3 + strata(trans), data = tglonge, 
method = "breslow")

coef exp(coef) se(coef)       z       p
sexFemale.1 -0.0105      0.99    0.212 -0.0494 0.96000
sexFemale.2  0.5995      1.82    0.219  2.7330 0.00630
sexFemale.3  1.0610      2.89    0.314  3.3781 0.00073

Likelihood ratio test=19.5  on 3 df, p=0.000211  n= 498, 
number of events= 230

b. Output cx.s2
coef se(coef)      p

as.factor(sex)Female    -0.0105     0.212 0.96
as.factor(trans)2                           NA        NA NA
as.factor(trans)3                           NA        NA NA
as.factor(sex)Female:as.factor(trans)2  0.6099     0.305   0.0450
as.factor(sex)Female:as.factor(trans)3  1.0715 0.379 0.0047
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cx.s2 <- coxph(Surv(Tstart,Tstop,status)~
as.factor(sex)+strata(trans)
+as.factor(sex)*as.factor(trans),    
data=tglong,method="breslow")

The result is shown in Box 6.16b. The coefficient�0.0105 is the effect of gender

on the transition rate J1J (transition 1). Transition is a categorical variable and

transition J1J is the reference category. Females are a little less mobile than males

(100*(exp(�0.0105) �1)¼ 1%). The effect on transition 2 is the effect on the first

transition plus the effect of the interaction between gender and transition,

�0.0105 + 0.6099¼ 0.5995, which is the coefficient obtained in the model with

expanded covariates. The interaction term is significant, indicating that gender

influences transitions 1 (J1J) and 2 (J1N) differently. The NAs in the second and

third rows are due to the fact that the main effects of the transition type cannot be

estimated since, for each transition, the baseline hazard is freely estimated. By

stratifying the data by transition, the transition-specific baseline hazards are not

restricted in any way.

For each of the three transitions J1J, J1N and J2N, the cumulative hazard rates

are obtained by the basehaz function from the survival package.

z<- basehaz(cx.s,centered=FALSE)

The object z contains the cumulative hazard rates for males (reference category)

for durations at which transitions occur (z$time) and for each stratum

(z$strata). The cumulative hazards for females are obtained by multiplying

the male hazards by the exponent of the appropriate coefficient of the Cox model.

For instance, the cumulative J1N transition rates for females are z$hazard[z
$strata¼¼"trans ¼ 2"]*exp(0.5995).

The predicted survival functions for the Cox model (the probability that a job

duration exceeds a given value) and for each transition are produced by the

survfit function, which is part of the survival package:

y <- survfit (cx.s)

The numeric values of the survival function and the confidence intervals are

given by summary(y). By default, Survfit estimates the survival function for

the average value of the covariates. Average values are not meaningful for cate-

gorical variables. Therefore, the survival function needs to be estimated for specific

values of the covariates, specified in the newdata argument of the survfit
function. The following code estimates survival functions for males (ym) and

females (yf):
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ym <- survfit (cx.s,
newdata=data.frame(sexFemale.1=0,sexFemale.2=0,
sexFemale.3=0),individual=FALSE)

yf <- survfit (cx.s,
newdata=data.frame(sexFemale.1=1,sexFemale.2=1,
sexFemale.3=1),individual=FALSE)

The plot function is the plot.msfit function, which plots an object of class

‘msfit’.

plot(ym$time[1:ym$strata[1]],
ym$surv[1:ym$strata[1]],
type="s",col="red",
xlab="Months since labour market entry",
ylab="Survival probability",
ylim=c(0,1),las=1)    # J1J males

lines (ym$time[(ym$strata[1]+1):(ym$strata[1]+ym$strata[2])],
ym$surv[(ym$strata[1]+1):(ym$strata[1]+ym$strata[2])],
type="s",col="blue") # J1N males

lines (ym$time[(ym$strata[1]+ym$strata[2]+1):
(ym$strata[1]+ym$strata[2]+ym$strata[3])],
ym$surv[(ym$strata[1]+ym$strata[2]+1):

(ym$strata[1]+ym$strata[2]+ym$strata[3])],
type="s",col="green") # J2N males

lines (yf$time[1:yf$strata[1]],yf$surv[1:yf$strata[1]],
type="s",col="red",lty=2) # J1J females

lines (yf$time[(yf$strata[1]+1):(yf$strata[1]+yf$strata[2])],
yf$surv[(yf$strata[1]+1):(yf$strata[1]+yf$strata[2])],

type="s",col="blue",lty=2) # J1N females
lines (yf$time[(yf$strata[1]+yf$strata[2]+1):

(yf$strata[1]+yf$strata[2]+yf$strata[3])],
yf$surv[(yf$strata[1]+yf$strata[2]+1):

(yf$strata[1]+yf$strata[2]+yf$strata[3])],
type="s",col="green",lty=2) # J2N females

legend ("topright",
legend=c("J1J","J1N","J2N"),
col=c("red","blue","green"),
fil=c("red","blue","green"),
cex=0.9,bg="white")

legend (180,1,
legend=c("Males","Females"),
lty=1:2,bg="white")

The resulting survival functions are shown in Fig. 6.11.

An alternative to survfit is the msfit function in the mstate package.

The msfit function estimates individual cumulative hazards. An individual is

characterised by covariate values. Consider a single covariate: sex. The following

code produces the estimated cumulative hazard for each transition together with the

estimated variances and covariances. The measures are evaluated at the durations at

which transitions occur in any of the strata. The code is:
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newdm <- data.frame(trans=1:3,
sexFemale.1=c(0,0,0),sexFemale.2=c(0,0,0),
sexFemale.3=c(0,0,0),strata=1:3)

msfm <-msfit(cx.s,newdata=newdm,
trans= attr(tglonge,"trans"))

newdf <- data.frame(trans=1:3,
sexFemale.1=c(1,0,0),sexFemale.2=c(0,1,0),
sexFemale.3=c(0,0,1),strata=1:3)

msff <-msfit(cx.s,newdata=newdf,
trans= attr(tglonge,"trans"))

The individual characteristics are specified in the newdata frame. The data

frame newdm has the information for males and newdf has the information for

females. The first column shows the line number of the transitions. The second,

third and fourth columns show the covariate values of males (newdm) and females

(newdf). Since ‘males’ is the reference category, the values are 0. The last column

of the newdata frame specifies to which stratum in the coxph object a transition

belongs. This is needed in msfit but not in survfit.
In the previous application (model cx.s), I assumed that each transition

corresponds to a separate stratum (stratification variable trans). Suppose now

that two transitions have a common baseline hazard. The research question is: What

are the rates of leaving a second or higher-order job for a jobless period by job

duration if the rates are proportional to the rates of leaving for persons in their first

job (first-job holders)? The assumption of proportionality is introduced by grouping

the J1N and J2N transitions in the same stratum. The transitions J1N and J2N have a

common destination state (N). Therefore, the stratum variable is the destination

state (to). The interpretation of common baseline hazard is: Persons in their second

or higher-order job have a rate of leaving that job for a jobless period that is

Fig. 6.11 Survival

functions for J1J, J1N and

J2N transitions, by

sex. GLHS
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proportional to the rate of leaving for first-job holders. The proportionality holds

irrespective of job duration. Persons in their second or higher-order job have z times

the rate of first-job holders. Persons are at risk of the J2N transition only after

entering a second or higher-order job. J1J is an intermediate event that impacts on

the rate of transition to N. The occurrence of the intermediate event (J1J) is a time-

dependent covariate (Putter et al. 2007, p. 2418; Putter 2014, p. 7). The time-

dependent covariate (newjob) equals 0 before the transition from the first to the

second job (J1J) and 1 after the job change. It means that the time-dependent

covariate equals 0 when the subject is at risk for the J1J and J1N transitions, and

it is 1 if the subject is at risk of the J2N transition. Hence,

tglonge$newjob <- ifelse(tglonge$trans==3,1,0)

I first consider the model without covariates. The model is:

vv <- coxph(Surv(Tstart,Tstop,status)~ 
newjob+ strata(to),
data=tglonge,method="breslow")

The model predicts three transition rates (J1J, J1N and J2N) for various job

durations when the rates of transitions J1N and J2N are forced to be proportional.

The coefficient of newjob is the effect of being in a second or higher-order job on

the rate of leaving a job for a jobless period. It is -0.278. The baseline hazards are

given by the basehaz (vv) function. The baseline hazard in the (to¼2) stratum
gives the cumulative rates of J1J transition by job duration. The baseline hazard in

the (to¼3) stratum gives the cumulative rates of transition J1N, which is the

reference category (newjob ¼ 0). The cumulative rates of transition J2N are the

cumulative rates of transition J1J multiplied by exp(�0.278). The cumulative

transition rates are shown in Fig. 6.12.

Now I distinguish males and females. The research question is: Do males and

females have different rates of transition if the rate of moving to a jobless period

from a second or higher-order job is proportional to the rate of moving to a jobless

period from the first job? The combination of the two transitions results in the

following model:

cx.s.p <- coxph(Surv(Tstart,Tstop,status)~
sexFemale.1+sexFemale.2+sexFemale.3
+ newjob + strata(to),
data=tglonge,method="breslow")

The model predicts the effect of sex on the three transition rates (J1J, J1N and

J2N), when the J1N and J2N transitions are forced to share a common baseline

hazard. It means that the rates of the transitions J1N and J2N are proportional. The

output is shown in Box 6.17. The effect of sex on the J1J transition is the same as in

the Cox model with the data stratified by transition (Box 6.16). The baseline hazard
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of the J1N and J2N transitions does not affect the J1J transition. The regression

coefficients associated with the J1N and J2N transitions are comparable to the those

of the Cox model with data stratified by transition, as expected (Putter et al. 2007,

p. 2420). The hazard ratio of newjob (0.582) indicates that respondents (male or

female) are less likely to leave a job for a jobless period if they are in the second or a

higher-order job. The effect of job change on the rate of leaving a job for a jobless

period is however not statistically significant.

The validity of the proportionality assumption can be inspected graphically or

tested more formally using the cox.zph function from the survival package

(result not shown):

Box 6.17: Effect of Gender on J1J, J1N and J2N Transition Rates.

Cox Model with Stratification by Destination State. GLHS

Call:
coxph(formula = Surv(Tstart, Tstop, status) ~ sexFemale.1 + 
sexFemale.2 + sexFemale.3 + newjob + strata(to), 
data = tglonge, method = "breslow")

coef exp(coef) se(coef)       z      p
sexFemale.1 -0.0105     0.990    0.212 -0.0494 0.9600
sexFemale.2  0.6074     1.836    0.217  2.7944 0.0052
sexFemale.3  1.0547     2.871    0.311  3.3883 0.0007
newjob      -0.5411     0.582    0.303 -1.7842 0.0740

Likelihood ratio test=21.6  on 4 df, p=0.000238  n= 498, 
number of events= 230

Fig. 6.12 Cumulative

hazards of J1J, J1N and J2N

transitions. GLHS
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cox.zph(cx.s.p)

Although a transition from a first to a second job does not affect the rate of

transition to a jobless period significantly, the time of job change may. Time is

measured as the duration since entry in the first job (labour market entry). Persons

who leave their first job at short durations may have a higher risk of becoming

jobless than persons who stay relatively long with their first job. The start of a

second job is the onset (Tstart) of the risk period for the J2N transition. Hence,

tglonge$tnewjob.3 <- ifelse (tglong$trans==3,
tglonge$Tstart[tglonge$trans==3],0)

The model is:

cx.s.p2 <- coxph(Surv(Tstart,Tstop,status)~
sexFemale.1+sexFemale.2+sexFemale.3 
+ newjob + tnewjob.3 
+ strata(to),
data=tglonge,
method="breslow")

The result is not shown. The coefficients for sex and the move to a second or

higher-order job are about the same as in the previous model. The timing of job

change has no effect.

Stratification results in separate and unrelated baseline hazards. If we assume

that the baseline hazards are proportional, then the transitions are not used as strata

but as covariates for which relative risks are estimated. The model is:

cx.s3 <- coxph(Surv(Tstart,Tstop,status)~
as.factor(sex)+
as.factor(trans),
data=tglong,method="breslow")

The regression coefficients are not shown. For a discussion of these and other

models, see Putter et al. (2007).

Males and females may have different transition rates because of other

covariates, such as birth cohort, level of education, age at entry in the labour market

and marital status. Marital status is a time-varying covariate. Consider the addi-

tional effects of birth cohort and education. The following code estimates a separate

Cox model for each transition (transition 1 is J1J, 2 is J1N and 3 is J2N):
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cx.sce <- coxph(Surv(Tstart,Tstop,status)~
sexFemale.1+cohort1939.41.1+cohort1949.51.1 + edu.1
+sexFemale.2+cohort1939.41.2+cohort1949.51.2 + edu.2
+sexFemale.3+cohort1939.41.3+cohort1949.51.3 + edu.3
+strata(trans),
data=tglonge,method="breslow")

The result of this model estimation is shown in Box 6.18. The introduction of

period of birth and level of education does change the effect of sex, but not much. If

one controls for birth period and level of education, then the rate at which females

leave a first job for a jobless period relative to males increases slightly (91 %

compared to 82 %; compare Boxes 6.18 and 6.16). The effect of education on

leaving the first job for a jobless period is statistically significant with each year of

education raising the rate of leaving by 10 %. Education has no effect on the rate of

changing jobs, however.

The model may be used to predict the cumulative transition rates for two groups

of males, born in 1939–1941. The first group has 17 years of education (profes-

sional college). The second group has 11 years of education (lower secondary

school with vocational training). The characteristics of the subpopulation selected

are provided in the newdat object:

Box 6.18: Effect of Gender, Birth Cohort and Level of Education

on Timing of Job Change. Cox Model. GLHS

Call:
coxph(formula = Surv(Tstart, Tstop, status) ~ sexFemale.1 + 
cohort1939.41.1 + cohort1949.51.1 + edu.1 + 
sexFemale.2 + cohort1939.41.2 + cohort1949.51.2 + edu.2 + 
sexFemale.3 + cohort1939.41.3 + cohort1949.51.3 + edu.3 +
strata(trans), data = tglonge, method = "breslow")

coef exp(coef) se(coef)      z       p
sexFemale.1     -0.0323     0.968   0.2181 -0.148 0.88000
cohort1939.41.1  0.3838     1.468   0.2607  1.472 0.14000
cohort1949.51.1  0.2910     1.338   0.2524  1.153 0.25000
edu.1            0.0230     1.023   0.0453  0.508 0.61000
sexFemale.2      0.6457 1.907   0.2284  2.826 0.00470
cohort1939.41.2  0.5295     1.698   0.2768  1.913 0.05600
cohort1949.51.2  0.3727     1.452   0.2582  1.443 0.15000
edu.2            0.1003     1.106   0.0430  2.333 0.02000
sexFemale.3      1.0799     2.944   0.3154  3.424 0.00062
cohort1939.41.3  0.2745     1.316   0.3800  0.722 0.47000
cohort1949.51.3  0.1849     1.203   0.3972  0.465 0.64000
edu.3           -0.0546     0.947   0.0797 -0.685 0.49000

Likelihood ratio test=31.6  on 12 df, p=0.00159  n= 498, number of 
events= 230
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# Male born in 1939-41, with professional college
# qualification  

# Male, born in 1939-41 with secondary school
# qualifications with vocational training 

newdat11 <- data.frame(trans=1:3,
sexFemale.1=c(0,0,0),
cohort1939.41.1=c(1,0,0),
cohort1949.51.1=c(0,0,0),
edu.1=11,  
sexFemale.2=c(0,0,0),
cohort1939.41.2=c(0,1,0),
cohort1949.51.2=c(0,0,0),
edu.2=11,
sexFemale.3=c(0,0,0),
cohort1939.41.3=c(0,0,1),
cohort1949.51.3=c(0,0,0),
edu.3=11,
strata=1:3)

newdat17 <- data.frame(trans=1:3,
sexFemale.1=c(0,0,0),
cohort1939.41.1=c(0,1,0),
cohort1949.51.1=c(0,0,0),
edu.1=17,
sexFemale.2=c(0,0,0),
cohort1939.41.2=c(0,1,0),
cohort1949.51.2=c(0,0,0),
edu.2=17,
sexFemale.3=c(0,0,0),
cohort1939.41.3=c(0,0,1),
cohort1949.51.3=c(0,0,0),
edu.3=17,
strata=1:3)

The following code produces the cumulative transition rates and the variances:

msf.sce17 <-msfit(cx.sce,newdata=newdat17,
trans= attr(tglonge,"trans"))

msf.sce11 <-msfit(cx.sce,newdata=newdat11,
trans= attr(tglonge,"trans"))

The cumulative transition rates are not shown.

The mstate package includes a function that predicts state and transition prob-

abilities for subjects with a given set of covariates (including prognostic factors and

life history or medical history) (Putter et al. 2007, p. 2421ff). For example, consider

a male born in 1939–1941 with a professional college qualification and another

person with the same characteristics except for the level of education. The follow-

ing code predicts the state probabilities. The prediction starts at labour market entry

(predt ¼ 0) and yields state probabilities for successive points in time (direction

forward).
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pt17 <- probtrans(msf.sce17,direction="forward",predt=0)
pt11 <- probtrans(msf.sce11,direction="forward",predt=0)

The probtrans function produces a list object with probabilities of transition

from the state [[s]] at time predt to the states listed in the columns at durations

listed in the rows. The object pt17[[1]] shows the state probabilities (state

occupation probabilities) and their standard errors for males born in 1939–1941 and

with professional college qualification. After 12 months of entry into the first job,

the probability that a member of that group is still in the first job is 0.70 or 70% with

a very large standard error (0.7). The probability that he is without a job is 11 % and

the probability that he is in a second or higher-order job is 19 %. The standard errors

are exceptionally high, however, due to the small sample size (201 respondents) and

the small number of transitions. After 10 years (120 months), the probability of

having entered the absorbing jobless state is 87 %. Note that a return from a jobless

state to a job is not accounted for in this ‘illness-death’ model. A male born in the

same period but with lower secondary school vocational training has a probability

of 76 % to be in the first job 12 months after entry, 18 % to be in a second or higher-

order job and 6 % to be without a job. The multistate survival function for a male,

born in 1939–1941 and with lower secondary school with vocational training, is

displayed in Fig. 6.13. The plot is produced by the function plot.probtrans,
which plots an object of class ‘probtrans’:

plot (pt11,type="filled",ord=c(1,2,3),las=1,
xlab="Months since labour market entry",
ylab="State probability",
cex.main=0.9)

Fig. 6.13 Multistate

survival curve for male,

born in 1939–1941 and with

lower secondary school

with vocational

training. GLHS
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6.5.2 Reversible Markov Chain

The second application is a reversible Markov chain in which a state may be left and

entered again at a later date. It is sometimes viewed as an illness-death model with

recovery. It was considered by de Wreede et al. (2010). Reversible Markov chains

have been studied extensively in mobility (e.g. migration) modelling. The state

space is shown in Fig. 6.14. There are 323 NJ transitions and 181 JN transitions.

Intrastate transitions are removed.

Biograph.mstate produces a data structure in ‘msdata’ format, excluding

transitions to the same state. The param, trans and format.date attributes of

the Biograph object are transferred to the object of class ‘msdata’:

Dmstate <- Biograph.mstate (GLHS)

The transition matrix of the reversible Markov chain can be retrieved from the

Dmstate object as follows:

trans <- attr(Dmstate,"trans")

The transition matrix is:

To
From  N  J

N NA  1
J  2 NA

The first transition is the NJ transition; the second is JN. The transition count is

produced by the events function ofmstate, i.e. events(Dmstate) (Box 6.19).

Note that for 142 Job episodes and 59 NoJob episodes, observation ends at

survey date. The function paths does not produce the sample paths in the

multistate model, but gives an error message (infinite recursion). The reason is

the infinite number of possible paths in a reversible Markov chain.

To study the impact of covariates on each of the NJ and JN transitions separately,

the data set must be expanded by specifying transition-specific covariates. The

expanded data set is created by the expand.covs function of the mstate package.
Four covariates are considered for illustration: sex, birth cohort, level of education

and age at marriage.

To facilitate the interpretation of the regression coefficients, Dmstate includes

age. The ages at start and end of episodes with and without a job are:

Dmstate$Tstarta <-
round(cmc_as_age(Dmstate$Tstart,Dmstate$born,"cmc")$age,2)
Dmstate$Tstopa <-
round(cmc_as_age(Dmstate$Tstop,Dmstate$born,"cmc")$age,2)
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Age at marriage is specified as:

Dmstate$agem <- round ((Dmstate$marriage-
Dmstate$born)/12,2)

Redundant variables are removed:

Dmstate$Tstart <- Dmstate$Tstop <-
Dmstate$pres <- Dmstate$NOJ <-
Dmstate$TE <- Dmstate$marriage <- NULL

The code that produces the expanded data set is:

Dcov <- expand.covs(Dmstate,
c("sex","cohort","edu","agem"))

A selection of the expanded data set is shown in Table 6.6.

First, we estimate the NJ and JN transition rates separately by specifying a Cox

model with stratum variable and without covariates. The msfit function is used to

create data frames containing cumulative hazards:

No Job (N)
(state 1)

Job (J)
(state 2)

Fig. 6.14 The reversible

Markov chain model

Box 6.19: Transitions in the Reversible Markov Chain Model. GLHS

$Frequencies
to

from   N   J no event total entering
N   0 323       59            382
J 181   0      142            323

$Proportions
to

from         N         J  no event
N 0.0000000 0.8455497 0.1544503
J 0.5603715 0.0000000 0.4396285
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c1 <- coxph(Surv(Tstarta,Tstopa,status) ~
strata(trans),
data=Dmstate,
method="breslow")

fit1 <- msfit (c1,trans= attr(Dmstate,"trans"),
vartype="aalen")

Now we consider covariates by using the following code:

cs <- coxph(Surv(Tstarta,Tstopa,status) ~
sexFemale.1+sexFemale.2
+cohort1939.41.1+cohort1939.41.2
+cohort1949.51.1+cohort1949.51.2
+edu.1+edu.2 
+strata(trans),
data=Dcov,
method="breslow")

The results are shown in Box 6.20. To interpret the figures, note that all

respondents entered the labour market, i.e. they have at least one job episode.

Box 6.20: Cox Proportional Hazard Model for the NJ and JN

Transitions. GLHS

Call:
coxph(formula = Surv(Tstarta, Tstopa, status) ~ sexFemale.1 + 

sexFemale.2 + cohort1939.41.1 + cohort1939.41.2 + cohort1949.51.1 + 
cohort1949.51.2 + edu.1 + edu.2 + strata(trans), data = Dcov, 
method = "breslow")

coef exp(coef) se(coef)      z       p
sexFemale.1     -0.7940     0.452   0.1345 -5.904 3.5e-09
sexFemale.2      0.9872     2.684   0.1571  6.285 3.3e-10
cohort1939.41.1  0.1328     1.142   0.1386  0.958 3.4e-01
cohort1939.41.2  0.4613     1.586   0.1866  2.472 1.3e-02
cohort1949.51.1  0.0868     1.091   0.1408  0.616 5.4e-01
cohort1949.51.2  0.2576     1.294   0.1977  1.303 1.9e-01
edu.1           -0.1441     0.866   0.0280 -5.139 2.8e-07
edu.2            0.0883     1.092   0.0344 2.564 1.0e-02

Likelihood ratio test=110  on 8 df, p=0  n= 705, number of events= 504

Table 6.6 Expanded data set for reversible Markov chain model, with selection of

covariates. GLHS

ID OR DES status trans edu LMentry  cohort   OD Episode  Tstarta   Tstopa from to  agem sexFemale.1 sexFemale.2
1.2   1  N   J      1     1  17     555 1929-31   NJ       1  0.00000 17.00000    1  2 27.33           0           0
1.15  1  J   N      0     2  17     555 1929-31 cens       2 17.00000 52.66667    2  1 27.33           0           0
2.2   2  N   J      1     1  10     593 1929-31   NJ       1  0.00000 19.66667    1  2 33.75           1           0
2.3   2  J   N      1     2  10     593 1929-31   JN       2 19.66667 44.66667    2  1 33.75           0           1
2.15  2  N   J      0     1  10     593 1929-31 cens       3 44.66667 52.16667    1  2 33.75           1         0
3.2   3  N   J      1     1  11     688 1939-41   NJ       1  0.00000 17.91667    1  2 33.08           1           0
3.3   3  J   N      1     2  11     688 1939-41   JN       2 17.91667 29.66667    2  1 33.08           0           1
3.15  3  N   J    0     1  11     688 1939-41 cens       3 29.66667 42.50000    1  2 33.08           1           0
4.2   4  N   J      1     1  13     872 1949-51   NJ       1  0.00000 22.33333    1  2 22.33           1           0
4.3   4  J   N      1     2  13     872 1949-51   JN       2 22.33333 26.91667    2  1 22.33           0           1
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Persons who never got a job are excluded from the data. The data show that for

females the rate of job entry from a position without a job is 54 % less than the rate

for males. Since all females in the data had at least one job, it means that, once they

leave a job for a jobless period, they are considerably less likely than males to enter

a new job. Their rate of leaving a job for an episode without a job is 168 % larger

than for males. The cohort effect is not statistically significant but the effect of

education is. Education seems to reduce job entry (NJ) and increase job exit (JN),

which is not expected. The effect of education is even stronger and in the same

direction if the interaction between gender and education level is introduced in the

model. Since all persons in the sample experienced at least one job episode, it

means that persons with more education are a little less likely to leave a job, and

they are less likely to get a new job once they left a job for a jobless period.

One may expect that, in the cohorts studied, females are likely to leave employ-

ment after marriage and never return to a job. Marital status is a time-varying

covariate. The following code generates the variable mar for marital status and the

variables mar.1 and mar.2 to assess the effect of marital status change on the NJ

and JN transitions:

Dcov$mar <- ifelse(Dcov$Tstarta >= Dcov$agem,1,0)
Dcov$mar.1 <- ifelse (Dcov$trans==1,Dcov$mar,0)
Dcov$mar.2 <- ifelse (Dcov$trans==2,Dcov$mar,0)

The following model estimates the effect of gender, marital status and their

interaction on the NJ and JN transition rates:

cs.sm <- coxph(Surv(Tstarta,Tstopa,status) ~
sexFemale.1+sexFemale.2+
+mar.1+mar.2 
+sexFemale.1*mar.1 +sexFemale.2*mar.2
+ strata(trans),
data=Dcov,
method="breslow")

Box 6.21 shows the result.

The analysis reveals that the reason for a lower NJ transition rate for females is

marital status. Females have a lower NJ rate than males, but the gender effect is not

statistically significant. Note that all persons in the subsample have at least one job.

Married persons have an NJ rate that is almost twice that of not married persons. It

means that married persons are very likely to get another job once they have left a

job. This observation applies much less to females than to males, however. Married

females have an NJ transition rate that is only 13 % of that of married males. The

cumulative hazard rates for females show an interesting pattern. Non-married

females have a relatively low rate of job exit and a high rate of job re-entry. The

cumulative rate of job entry increases in an approximately linear fashion, meaning

that the rate of leaving a jobless period does not decline with age. Married females

192 6 Statistical Packages for Multistate Life History Analysis



have a high rate of job exit and a rather low rate of job entry (exit from jobless

episode) (see Fig. 6.15). Note that the data used for the illustration were collected in

the early 1980s in Germany and covered cohorts born before 1952. At that time and

for that cohort, female labour force participation was less than today and many

women left the labour force at time of marriage or childbirth.

The figure is produced by the following code:

Box 6.21: Effect of Gender and Marital Status on NJ and JN Transition

Rates. GLHS

coef exp(coef) se(coef)      z       p
sexFemale.1       -0.0708     0.932    0.129 -0.550 5.8e-01
sexFemale.2        0.8764     2.402    0.169  5.177 2.2e-07
mar.1              0.5914     1.807    0.234  2.527 1.1e-02
mar.2             -0.4107     0.663    0.466 -0.882 3.8e-01
sexFemale.1:mar.1 -2.0216     0.132    0.285 -7.084 1.4e-12
sexFemale.2:mar.2  0.7027     2.019    0.522  1.346 1.8e-01

Likelihood ratio test=128  on 6 df, p=0  n= 705, number of events= 
504 

Fig. 6.15 Cumulative job

entry and job exit rates of

females, predicted by Cox

model with predictors

gender and marital status,

using the msfit function of

the mstate package. GLHS
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# married persons
newdat <- data.frame(trans=1:2,

sexFemale.1=c(1,0),
mar.1=c(1,0),
sexFemale.2=c(0,1),
mar.2=c(0,1),
strata=1:2)

fit.sm1 <- msfit (cs.sm,trans= attr(Dmstate,"trans"),
vartype="aalen",newdata=newdat)

plot(fit.sm1,las=1,xlab="Age",
ylab="Cumulative transition rate",
legend=c("NJ","JN"),legend.pos="topleft",
col=c("red","blue"),
cex.main=0.9,ylim=c(0,7))

# no-married persons
newdat <- data.frame(trans=1:2,

sexFemale.1=c(1,0),
mar.1=c(0,0),
sexFemale.2=c(0,1),
mar.2=c(0,0),
strata=1:2)

fit.sm2 <- msfit (cs.sm,trans= attr(Dmstate,"trans"),
vartype="aalen",newdata=newdat)

lines (fit.sm2$Haz$time[fit.sm2$Haz$trans==1],
fit.sm2$Haz$Haz[fit.sm2$Haz$trans==1],
lty=2,col="red")

lines (fit.sm2$Haz$time[fit.sm2$Haz$trans==2],
fit.sm2$Haz$Haz[fit.sm2$Haz$trans==2],
lty=2,col="blue")

legend ("topright",
legend=c("Married","Not Married"),
lty=1:2,bg="white")

In this section I illustrated the mstate package using an illness-death model with

three states and unidirectional moves (no re-entry) and a model with two states and

re-entry. A major strength of the mstate package is the flexible approach to

estimating transition models. The long format, in combination with type-specific

covariates (expanded data set) and stratified Cox regression, offers great flexibility

in modelling the effect of covariates on the different transition rates, while using

standard statistical software (the survival package). Covariates may affect transi-

tions differently.

194 6 Statistical Packages for Multistate Life History Analysis



6.6 The msm Package

Themsm package was developed by Jackson (2011, 2014a, 2014b). It fits multistate

Markov and hidden Markov models in continuous time by maximum likelihood. A

variety of observation schemes are supported. Processes may be observed at

arbitrary times (panel data) or continuously. In the latter case, the exact times at

transition are known. It follows the counting process approach. When data consist

of observations at arbitrary times, the likelihood is calculated in terms of transition

probabilities, and transition intensities are determined using the method proposed

by Kalbfleisch and Lawless (1985). The msm package includes a microsimulation

utility that simulates Markov processes with piecewise constant intensities that

depend on time-varying covariates. A time-varying covariate is described by a step

function that remains constant in between observation times. Expected sojourn

times in transient states are estimated by using a simple algorithm: the inverse of

the rate of exit from the state. The method used in msm is described in detail in

Jackson (2011, 2014b).

The function Biograph.msm produces a data file for the msm package:

Dmsm <- Biograph.msm(GLHS)

The Dmsm object has three attributes. The first, ‘reshapeLong’, is given by

the reshape function to simplify the reshaping of the long format back to the

original wide format (see documentation of reshape function). The other attributes

are ‘param’ and ‘format.date’, taken from GLHS. The format of the dates

of birth is included in the param attribute. The GLHS data in msm format are

shown in Chap. 2.

In this section some functions of the msm package are used. The function

statetable.msm creates a table of transitions:

transitions <- statetable.msm(state,
ID, 
data=Dmsm)

The transition table is shown in Table 6.7. The transitions are shown in the

off-diagonal elements. During the period of observation, the 201 subjects in the

sample experience a total of 323 transitions from NoJob to Job and 181 transitions

from Job to NoJob. The diagonal elements show the sum of intrastate transitions

and censored cases. A total of 59 subjects are out of a job at the time of censoring

and 419 leave a job for another job (277) or are interviewed while having a job

(censoring) (142). The same transition counts are produced by a Biograph function:
OverviewTransitions (GLHS).
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6.6.1 Multistate Transition Rate Models

The msm function estimates the transition rates of the multistate model. The

transition rates are the basis for transition probabilities, expected state probabilities

(or state occupation probabilities) and expected state occupation times. These

measures are discussed in this section using two illustrations that differ in the

time scale used. The first uses calendar time. The second uses age as the time

scale. The same data set is used in both cases. The object Dmsm has calendar time,

denoted by date (and expressed in Century Month Code), and age, denoted by

age. The function needs starting values for the maximum likelihood estimation of

transition rates. They are given in the intensity matrix twoway2.q:

twoway2.q <- rbind(c(-0.0055,0.0055),c(0.008,-0.008)). 

For transitions that are not possible, the entry in the initial intensity matrix

is zero.

Since the exact transition times are known, the following code estimates the

labour market transition rates from the GLHS data (exact time¼TRUE and method

is BFGS):

out.msm <- msm( state ~ date, 
subject=ID, 
data = Dmsm,
qmatrix = twoway2.q, 
method="BFGS", 
use.deriv=TRUE, 
exacttimes=TRUE,
control = list (trace = 2, REPORT = 1 ) )

The object out.msm has a large number of components. To see the list, use

str(out.smsm) and use ?msm for the description of each component. The

transition rates and the 95 % confidence intervals are shown in Table 6.8.

The rate of transition from NoJob to Job (NJ) is 0.005455 per month and the rate

of transition from Job to NoJob (JN) is 0.004441 per month. The confidence

intervals are shown in brackets. The table is produced by the qmatrix.msm
(out.msm) function of the msm package. The figures are also contained in the

objects out.msm$Qmatrices. Note the difference between the JN transition

Table 6.7 Number of transitions between states, reported by msm package. GLHS

To
from   1        2

1   59     323
2  181    419
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rate and the job exit rate shown in Blossfeld and Rohwer (2002). The job exit rate,

which is 0.01123 per month, is the rate of leaving a job irrespective of the

destination (another job or a period without a job). The JN transition rate is the

rate of leaving a job for a period without a job. These rates may be compared with

the rates produced by Biograph. Biograph obtains the transition rates by dividing

the number of transitions by the person-years (see the Stable object produced by

the RateTable function in Biograph). Biograph gives an NJ rate of

323/4,934¼ 0.06546 per year (since the sojourn time is given in years) and a JN

rate of 181/3,397¼ 0.05328 per year. These values, divided by 12, are the same as

the estimates obtained by the msm package. It demonstrates that Biograph and msm
(method BFGS with exact transition times known) yield the same point estimates of

the transition rates. Biograph does not provide confidence intervals, however. Note
that the transition rate matrix produced by msm differs from the transition rate

matrix in Biograph in two ways: (1) the diagonal elements are negative

(in Biograph they are positive and the off-diagonal elements are negative) and

(2) the row variable is the state of origin and the column variable is the state of

destination (Biograph uses the transpose, i.e. origin in column and destination in

row).

The transition rates are the basis for transition probabilities and state probabil-

ities. The probability that an individual in a given state is in another given state t

months later is produced by the pmatrix.msm function. The following statement

produces probabilities of discrete-time transition during a period of 12 months:

p.12 <- pmatrix.msm(out.msm,t=12)

The resulting transition rates are shown in Table 6.9.

The probability that a person without a job has a job after a period of 12 months

is 6.2 %. The probability that a person with a job is without a job 12 months later is

5.0 %. Transition probabilities are determined by the exponential model assuming

that the transition rates are constant during the period (0,t): P¼ exp[M * t], with

M being the transition rate matrix produced by the msm package and t being the

length of the period. The same method is used in the multistate life table (see next

chapter).

Discrete-time transitions should be distinguished from direct transitions and the

probabilities have a different interpretation. The probability of a discrete-time

Table 6.8 NJ and JN transition rates, estimated by msm. No covariates and time unit is

month. GLHS

From\To       State 1                                            State 2                        
State 1 -0.005455 (-0.006084,-0.004892)     0.005455 (0.004892,0.006084)   
State 2  0.004441 (0.003839,0.005137)       -0.004441 (-0.005137,-0.003839)

-2 * log-likelihood:  6335.366
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transition is the probability that a person who is in a state (i) at time t0 is in another

state (j) at time t0 + t where t is the length of the interval. The probability of a direct

transition is the probability that the individual transfers from i to j at least once

during the interval.

The expected state probabilities (state occupation probabilities) at a given point

in time are obtained by multiplying the transition probability matrix and the vector

of state probabilities at the beginning of the interval. Suppose that everyone is in the

state N (NoJob), which is the first state, at the start of the interval. The state

probabilities after a period of 48 months are:

t(pmatrix.msm(out.msm,t=48)) %*% c(1,0)

The transpose of the transition probability matrix is used because the matrix is

postmultiplied by the state vector at the beginning of the interval. The probability of

being in N after 48 months is 79 % and the probability of being in J is 21 %.

The expected state probabilities are also produced by the prevalence.msm
function. The function gives the state probabilities during the entire period of

observation. In the GLHS data it is more than 50 years. State probabilities are

produced by the following code:

z <- prevalence.msm (out.msm)

The state probabilities at intervals of 12 months, starting at CMC 349, are

estimated by the function:

z <- prevalence.msm(out.msm,
timezero=349,
initstates=c(1,0),
times=seq(349+0,349+600,by=12))

The object z has four components: the observed state occupancies, i.e. the

observed number of respondents in a state at different points in time, the expected

state occupancies, the observed percentages in each state and the expected state

probabilities.

msm uses the sample population at the initial time to generate state probabilities.

The initial distribution is multiplied by the transition probability matrix. The initial

time is the first time when the subjects are recorded. In the GLHS data set, it is CMC

Table 6.9 NJ and JN transition probabilities for periods of 12 months, estimated by msm. GLHS

From\To State 1    State 2
State 1 0.93827344 0.06172656
State 2 0.05024472 0.94975528
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349. In that month, the two oldest persons in the sample are born (¼min(survey
$born)) and are in state N (no job). The IDs of these two persons are 119 and 161.

The state probabilities in CMC 361, i.e. after 12 months, are estimated by

prevalence.msm, but they may also be obtained by the equation:

t(pmatrix.msm(out.msm,t=12)) %*% c(100,0)

The state probabilities in CMC 601 are 49.4 % in state N and 50.6 % in state J:

t(pmatrix.msm(out.msm,t=(601-349))) %*% c(100,0)

The time scale used has been calendar time, expressed in CMC. Switching to age

as the time scale is easy since age is included in the data set. The time variable is set

to age:

out_a.msm <- msm( state ~ age, 
subject=ID, 
data = Dmsm,
qmatrix = twoway2.q, 
method="BFGS", 
use.deriv=TRUE, 
exacttimes=TRUE,
control = list (trace = 2, REPORT = 1 ) )

The estimates are shown in Table 6.10. The estimates do not differ from previous

estimates with month as the time unit. The values are those shown in Table 6.8

multiplied by 12.

The state probabilities by single years of age from 0 to 53 are produced by the

following code:

z <- prevalence.msm(out_a.msm,
timezero=0,
initstates=c(1,0),
times=c(0:53))

The plot.prevalence.msm function plots the state probabilities by age:

plot.prevalence.msm(out_a.msm,legend.pos=c(10,100))

Table 6.10 NJ and JN transition rates. No covariates and time unit is year. GLHS

From\To State 1                     State 2
State 1 -0.06546 (-0.07301,-0.0587) 0.06546 (0.0587,0.07301)    
State 2 0.05328 (0.04606,0.06164)   -0.05328 (-0.06164,-0.04606)
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The results are shown in Fig. 6.16. State N is state 1 and J is state 2.

Labour market attachment differs between males and females and between birth

cohorts. The following code estimates transition rates by sex and birth cohort:

out_s.msm <- msm( state ~ age, 
subject=ID, 
data = Dmsm,
qmatrix = twoway2.q, 
method="BFGS",
use.deriv=TRUE,
exacttimes=TRUE, 
covariates  = ~ sex+cohort, 
control = list (trace = 2, REPORT = 1 ) )

The extractor functions qmatrix.msm, pmatrix.msm and sojourn.msm
display transition rates, expected transition probabilities and expected sojourn

times, respectively. By default qmatrix.msm (out_s.msm) shows the transi-

tion rates at the mean values of the covariates, which is meaningless if the

covariates are categorical variables. To get meaningful transition rates, a covariate

list should be added. The transition rates of males born in 1949–1951 are

qmatrix.msm (out_s.msm,
covariates=list(sex="Male", cohort="1949-51"))

Fig. 6.16 Observed and predicted state occupation probabilities by age. GLHS
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and of females

qmatrix.msm (out_s.msm,
covariates=list(sex="Female",cohort="1949-51"))

The transition rates are shown in Table 6.11. Females have a much higher rate of

job exit for jobless periods than males (0.14 vs. 0.05).

The transition rates of the reference category (males) are produced by the code:

qmatrix.msm (out_s.msm,covariates=0)

It gives the same results as:

qmatrix.msm (out_s.msm,
covariates=list(sex="Male",cohort="1929-31"))

The job exit rates may also be derived using the regression coefficients. The

expected JN transition rate of females is:

JN-rate for males * exp(1.12) = 0.0212*exp(1.2) = 0.065

Women have a rate of leaving a job for a spell without a job that is more than

three times that of males.

A very useful indicator is the expected sojourn time in a state. The time a male

born in 1949–1951 may expect to spend in the transient states is produced by the

following code:

sojourn.msm(out_s.msm,
covariates=list(sex="Male",cohort="1949-51"))

Males may expect to spend 1/rate(NJ)¼ 1/0.08413¼ 11.9 years in state N and

1/rate(JN)¼ 1/0.04597¼ 21.8 years in state J as shown in Table 6.12.

Table 6.11 NJ and JN transition rates of birth cohort 1949–1951, by sex, predicted by exponential

transition rate model (msm). GLHS

a. Males
State 1                     State 2 

State 1 -0.08413 (-0.1044,-0.06781) 0.08413 (0.06873,0.103)
State 2 0.04597 (0.03313,0.0638)    -0.04597 (-0.06198,-
0.0341)
b. Females

State 1                     State 2
State 1 -0.05402 (-0.0686,-0.04254) 0.05402 (0.04254,0.0686) 
State 2 0.1409 (0.1063,0.1868)      -0.1409 (-0.1868,-0.1063)

Time unit is year
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In the above table, SE is the standard error and L and U are lower and upper

confidence limits (95 % confidence interval). The expected sojourn times are

obtained by 1/mi+, where mi+ is the rate of leaving state i. It is the sum of

destination-specific transition rates from i.

6.6.2 Synthetic Individual Life Histories

A particularly interesting function in msm is sim.msm. It simulates individual

trajectories or life paths. The trajectory is determined by the estimated transition

rates and random values drawn from an exponential distribution. The following

code simulates an employment career between ages 0 and 53 from time-invariant

transition rates estimated from the GLHS data:

sim <- sim.msm(qmatrix.msm(out.msm)$estimates,
mintime=0,
maxtime=53,
start=1)

The object has three components: the state sequence (sim$states), the

sequence of transition times (sim$times) and the transition rate matrix (sim
$qmatrix). At age 0, a person occupies state 1 (N). The sim.msm function may

include a matrix of time-dependent covariates. Table 6.13 shows a trajectory for an

average individual.

The virtual individual enters the first job at age 31 and leaves employment at age

47. The output also shows the transition rate matrix (qmatrix) from which the

trajectory is produced.

The msm package was designed for panel data but accommodates empirical

studies with known exact dates of transitions. In this chapter, two illustrations of the

package were presented. They differ in time unit used. Transition rates, estimated

Table 6.12 Expected state occupation times, by sex, predicted by exponential transition rate

model (msm). GLHS

a. Males 
estimates       SE         L        U

State 1  11.88682 1.514860  9.581233 14.74720
State 2  21.75150 7.176548 16.135475 29.32221
b. Females 

estimates       SE         L         U
State 1 18.512009 2.256791 14.577531 23.508404
State 2  7.097741 1.021640  5.353025  9.411114
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from the data, are used to determine transition probabilities, expected state proba-

bilities and expected sojourn time in each of the states.

Table 6.13 Simulated individual employment career, generated by msm based on aggregate

GLHS transition rates

$states
[1] 1 2 1 1

$times
[1]  0.00000 31.35283 47.83234 53.00000

$qmatrix
State 1      State 2

State 1 -0.005455344  0.005455344
State 2  0.004440588 -0.004440588
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Chapter 7

The Multistate Life Table

7.1 Introduction

The multistate life table is a method developed in demography to describe the

mortality and mobility experience of a cohort, a group of people born in a same

period. The multistate life table is an extension of the life table, which describes the

mortality experience. The life table was first developed in the seventeenth century

by John Graunt. Graunt was interested in estimating probabilities of survival from

observations on deaths. The life table is an established method in demography (see,

e.g. Preston et al. 2001). In the 1970s Andrei Rogers extended the life table to

include migrations between regions in addition to mortality (Rogers 1975). It soon

became clear that regions may be replaced by states and interregional migrations by

transitions between states. That resulted in the multistate life table and the wider

field of multistate demography (Land and Rogers 1982). Today the multistate life

table is used to describe life histories from birth to death. In this chapter I present

functions for estimating multistate life table indicators. Age is the duration variable

used throughout the chapter. The age intervals considered are of 1-year length.

In this chapter the life table method is used to generate cohort employment

careers. Cohort careers show the distribution of cohort members by state and age.

They also indicate the expected time spent in a state. Microsimulation is used to

generate individual employment careers. Aggregation of individual careers of

cohort members leads to cohort careers. The aggregate may differ slightly from

the expected cohort career produced by the multistate life table because of sample

variation.

The data are from the GLHS. The oldest respondent was 52 at survey date. The

employment careers are from birth to age 53. The employment career is inferred

from transition rates estimated from the GLHS subsample of 201 respondents. Each

respondent in the sample contributes data on part of the employment career from

age 0 to age 53. By combining data from several respondents, transition rates can be

estimated for the entire age range. Since the employment career is estimated using
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data from different respondents, the cohort experiencing the employment career is a

synthetic cohort and the individual is a synthetic individual. The multistate life table

(MSLT) describes the employment experience of that synthetic cohort and the

microsimulation describes the employment experience of a synthetic individual.

Three classes of indicators are distinguished: counts (cohort members), probabili-

ties and durations (sojourn times). Two types of probabilities are distinguished:

state probabilities and transition probabilities. Probabilities and sojourn times may

be conditioned on the state occupied at a reference age.

The chapter consists of six sections. The estimation of transition rates is covered

in Sect. 7.2. Two estimation methods are implemented. The first is the

non-parametric method that yields Nelson-Aalen estimators. The second is the

partly parametric method that produces occurrence-exposure rates. The multistate

survival function is presented in Sect. 7.3. The multistate survival function gives

state occupation probabilities at consecutive ages. Expected state occupation times

are derived in Sect. 7.4. The sum of state occupation times beyond a given age for

individuals of that age is the life expectancy at that age. Section 7.5 covers the

microsimulation and presents distributions of individual employment careers in the

synthetic cohort. The last section is a summary with some conclusions.

7.2 Transition Rates

In Chap. 2, two methods were discussed for estimating transition rates: a

non-parametric method yielding Nelson-Aalen estimates of cumulative transition

rates and a partly parametric method yielding occurrence-exposure rates. The

software for estimating transition rates is presented in Chap. 4 (the RateTable
function to estimate occurrence-exposure rates) and in Chap. 6 (Nelson-Aalen

estimator). The two methods are combined in the Cumrates function of Biograph.
That function is a shortcut to the multistate life table.

Cumrates uses the mvna package to obtain the Nelson-Aalen estimator. The

mvna function of the mvna package estimates cumulative transition rates for any

age where a transition occurs. The multistate life table does not need cumulative

transition rates at ages where transitions occur. It needs cumulative transition rates

at the beginning of age intervals because age-specific transition rates can be derived

from these cumulative transition rates. The mvna function predict is used to

generate cumulative transition rates at the start of age intervals.

The function Rates.ac of Biograph estimates occurrence-exposure rates. The

function can be used separately or as part of Cumrates. The Rates.ac function

produces age-specific occurrence-exposure rates by origin and destination from the

information in the Stable object produced by the RateTable function (see

Chap. 3). The function produces transition rates of the age-cohort type. Age-cohort

rates are for life tables. They differ from period-cohort rates that are used in

population projections (for an introduction, see, e.g. Preston et al. 2001). The

following code produces estimates of age-cohort occurrence-exposure rates:
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occup <- Occup(GLHS)
seq.ind <- Sequences.ind

 (GLHS$path,attr(GLHS,"param")$namstates)
trans <- Trans (GLHS)
ratetable <- RateTable(GLHS,occup=occup,trans=trans)
rates <- Rates.ac (Stable=ratetable$Stable)

The object ratetable is produced by the RateTable function. The object

rates contains the transition rates by age (row variable), state of destination

(column variable) and state of origin (layer variable).

The following code generates Nelson-Aalen estimators of the cumulative tran-

sition rates for the NJ and JN transitions:

GLHSd <- Remove.intrastate(GLHS)
cr <- Cumrates (irate=1,Bdata=GLHSd)

The parameter irate selects the method. If irate is one, the Nelson-Aalen

estimator is produced using the mvna package. The output includes the expected

value of the cumulative hazard and the upper and lower 95 % confidence intervals.

If irate ¼ 2, the occurrence-exposure rate is generated. A value of 3 instructs

the function to produce both the Nelson-Aalen estimator and the occurrence-

exposure rate. The object cr is an object of class cumrates. It has seven

components:

(a) cr$D: the Biograph object (the data).

(b) cr$irate: the method used.

(c) cr$NeAa: the Nelson-Aalen estimator, i.e. estimates of cumulative transition

rates.

(d) cr$predicted: Nelson-Aalen estimates predicted at consecutive

birthdays. They are produced by the function predict.mvna of the mvna
package.

(e) cr$astr: age-specific transition rates derived from the Nelson-Aalen esti-

mates of cumulative transition rates predicted at consecutive birthdays. Age

intervals are 1 year.

(f) cr$oeCum: cumulative occurrence-exposure rates.

(g) cr$oe: occurrence-exposure rates.

The object cr$NeAa is a four-dimensional array with age as the row variable

and destination as the column variable. Origin is the third dimension and the variant

of the cumulative transition rate is the fourth dimension. The three variants are:

expected value, upper 95 % confidence interval and lower 95 % confidence interval.

The command cr$NeAa[,2,1,1] displays the expected values of the cumula-

tive transition rates by age from origin state N (state 1) to destination state J (state

2). The object cr$predicted is a list of two-dimensional arrays, one for each

transition. For instance, cr$predict$"N J"[21:31,] shows the Nelson-

Aalen estimator of transition rates at exact ages from 20 to 30, the variance, the
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upper and lower 95 % confidence intervals, the number of respondents at risk at that

age (risk set) and the number of transitions during the age interval. The objects cr
$oeCum and cr$oe are three-dimensional arrays with age as the row variable,

destination as the column variable and origin as the layer variable.

The function plot.cumrates plots the cumulative transition rates. The

following code computes and plots age-specific cumulative transition rates

(Nelson-Aalen estimators and occurrence-exposure rates):

cumrates <- Cumrates (irate = 3,Bdata=GLHS)
z<- plot (x=cumrates,ptrans=c("NJ","JN"),title=NULL)

The plot is shown in Fig. 7.1. The occurrence-exposure rates do not differ from

the age-specific rates predicted by the Nelson-Aalen estimator. The confidence

intervals of the Nelson-Aalen estimates are also shown.

7.3 The Multistate Survival Function

The multistate survival function is derived from transition rates. The function

MSLT.S produces the multistate survival function:

S.na <- MSLT.S(cumrates$astr[,,,1])

where cr$astr[,,,1] is the set of age-specific transition rates computed

from the expected cumulative transition rates at consecutive birthdays derived from

Fig. 7.1 Cumulative NJ

and JN transition rates by

age: Nelson-Aalen

estimator and cumulative

occurrence-exposure

rates. GLHS
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Nelson-Aalen estimators. The multistate survival function may also be computed

from occurrence-exposure rates:

S.oe <- MSLT.S(cumrates$oe)

The object S.*, with * denoting na or oe, has two components. The first, S.*
$S, is the multistate survival function. The second, S.*$P, is the set of

age-specific transition probabilities.

The multistate survival function is a table of state occupation probabilities by

age and origin state. The table has three dimensions: age, origin state and current

state. In the GLHS, the origin state is the state at birth. At birth, all respondents are

outside of employment at birth. The multistate survival function is derived from

age-specific transition probabilities using the recursive formula:

l xþ 1ð Þ ¼ bP x, xþ 1ð Þ l xð Þ

where l(x) is the vector of state occupation probabilities at exact age x and bP x; yð Þ is
the estimate of transition probabilities at age x (see Chap. 2). The (i,j)-element p̂ ij

x, xþ 1ð Þ of bP x, xþ 1ð Þ is the probability that an individual in state i at exact age x

will be in state j 1 year later, at exact age x + 1. At the lowest age, state occupation

probabilities are fixed exogenously. Since in the GLHS all respondents are outside

of employment at birth, the state occupation probability at age 0 is one for N (first

state) and 0 for J (second state). It is often convenient to consider a birth cohort and

multiply the state occupation probabilities at birth by the cohort size. The measure

that results is known as radix. The measure is commonly used in demography.

Transition probabilities are estimated from transition rates:

bP x, xþ 1ð Þ ¼ exp �bm x, xþ 1ð Þ½ �

(see Chap. 2). The age-specific transition rates are either derived from cumulative

transition rates at consecutive birthdays (Nelson-Aalen estimators) (cr$astr) or
they are occurrence-exposure rates (cr$oe).

Since in this application all subjects originate in a single state (state N), only the

state probabilities S.*$S[,,1] have meaning. Consider reference age 0 and the

state probability at age 30. The object S.*$S[30,2,1] is the probability that a

subject who starts in state 1 is in state 2 at age 30. The probability that at age 30 the

subject is in state 1 is S.*$S[30,1,1].
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7.4 Expected State Occupation Times

The function MSLT.e produces expected state occupation times by state and age.

They are estimated from the multistate survival function. Because transition rates

are assumed to be piecewise constant, the survival function is piecewise exponen-

tial. For computation purposes, a piecewise linear survival function is assumed.

Since the length of an age interval is 1 year, the approximation is generally

adequate. The multistate survival function can be S.na$S or S.oe$S. The

function is invoked by the command

e <- MSLT.e (S.*$S,radix)

where radix is the number of subjects by state at the start of the process (age

0). In this application,

radix <- c(10000,0)

The object e has four components:

(a) e$L: the time a cohort member may expect to spend in each state between two

consecutive ages that is during an age interval. The element L[30,2,1] gives

the number of years a subject who is in state 1 (N) at birth may expect to spend

in state 2 (J) between exact ages 30 and 31.

(b) e$e0: expected number of years a newborn may expect to spend in each state.

It is the life expectancy at birth by state.

(c) e$e.p: expected number of years an individual aged x may expect to spend in

each state beyond age x. It is the population-based life expectancy, which

depends on reaching age x and does not depend on the state occupied at age x.

(d) e$e.s: expected number of years an individual aged x and occupying a given

state may expect to spend in each state beyond age x. It is the status-based life

expectancy, which depends on survival to age x and on the state occupied at

age x.

For the distinction between population-based and status-based life table mea-

sures, see Willekens (1987) and Chap. 2.

Consider an application to the GLHS data. In these data mortality is absent and

transition rates are given for all ages up to 52. The highest age is 53, i.e. at

53 observation is censored. If occurrence-exposure rates are used to determine

expected state occupation times, then the number of years a newborn may expect to

spend outside of employment (state N) is 27.93 years and the number of years with
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employment (state J) 25.07 years. A member of a synthetic cohort, whose labour

market mobility is governed by the age-specific occurrence-exposure rates esti-

mated from the GLHS subsample, may expect to spend 27.93 years without

employment and 25.07 years being employed before reaching age 53 (e.oe$e0
or e.oe$e.p[1,,1]). If age-specific rates are derived from predicted Nelson-

Aalen estimates at birthdays, then the expected state occupation times are 27.97 and

25.03, respectively. The difference is negligible.

An individual of age 30 spends 23 years before reaching age 53, 16.6 years with

a job and 6.4 years without employment (e$e.p). If the 30-year-old is not

employed, the expected years in employment are lower (14.7 years) and the years

without employment much higher (8.27 years). If the individual of age 30 is

employed, the expected number of years beyond age 30 with a job is 19.7 years

and without a job 3.31 years. A 30-year-old person without a job is likely to spend

less time employed than a person of the same age who has a job, even if the

transition rates at ages above 30 do not depend on the employment status at age 30.

The figures for a 30-year-old who is employed are produced by the code:

If, on the other hand, the individual of age 30 has no job, he or she may expect to

spend 15.0 years without employment and 8.0 years with employment. The code is:

e.oe$e.s[which(dimnames(e.oe$e.s)[[1]]=="30"), ,1]

Those without employment at age 30 are more likely to be women who left the

labour force than unemployed men. In the subsample, 61 persons are without a job

at age 30 and 138 with a job (Occup(GLHSd)$state_occup[31,]). Of the
61 persons without a job, 56 are women and 5 are men. The following code

computes the figures:

z.f <- state_age (Bdata=GLHSd,age=29.999,
ID=GLHSd$ID[GLHSd$sex=="Female"])

z.m <- state_age (Bdata=GLHSd,age=29.999,
ID=GLHSd$ID[GLHSd$sex=="Male"])

z.f$state.n
z.m$state.n

Note that 3 persons are exactly 30 years old at time of survey (the survey month

was the month of their 30th birthday): 1 woman and 2 men. The state_age
function allocates the individuals to the state ‘censored’ because censoring is

assumed to occur at the beginning of the month, not different from the age

measurement of other transitions.

The expected state occupation times beyond age 30 by state occupied at that

reference age are estimated assuming that the transition rates beyond age 30 do not

depend on the state occupied at age 30. The transition rates only depend on state

occupied just before the transition. This is the Markov assumption. If the transition

7.4 Expected State Occupation Times 211



rate at an age beyond 30 depends on the state occupied just before the transition and

on the state occupied at age 30, then the result will differ.

The function plot.MSLT.S plots the cumulative hazard:

z<- plot (x=S.oe$S,e.oe$e0,
title = NULL,
area=TRUE,
order=c("N","J"))

where S.oe$S is an object of class MSLT.S created by MLT.S and e.oe$e0
is a numeric object created by MSLT.e. The package ggplot2 is used for plotting.

State occupation probabilities and life expectancies by state are shown in Fig. 7.2.

Since the plot also shows the expected sojourn times in each state, MSLT.e should

be called before plotting.

7.5 Synthetic Individual Life Histories

Individual life histories (employment careers) are realisations from continuous-

time Markov processes. The parameters are age-specific (i.e. piecewise constant)

transition rates, in this chapter occurrence-exposure rates. Microsimulation is used

Fig. 7.2 The multistate

survival function: state

occupation probabilities in

N and J, predicted by the

multistate life table from

empirical transition

rates. GLHS
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to generate the individual life histories. Since transition rates are available for ages

0–53, we could generate employment careers between ages 0 and 54. To compare

the aggregation of individual careers over cohort members and the expected cohort

employment career produced by the MSLT, 201 individual life histories are pro-

duced and individual age ranges are taken from the GLHS subsample. Table 7.1

shows the birth dates and interview dates used in the microsimulation, the age

range, the state occupied at the start of the microsimulation (st_entry) and the

sex of the individual. The sex is not used. These data are taken from the GLHS

subsample. Intrastate transitions, i.e. job changes, are removed.

The function sim.bio is used to generate individual biographies. The function

produces a life history for a single individual between two given ages and in a given

state at the lowest age. The sequences of states and transitions are based on

age-specific transition rates (single years of age). The transition rates may depend

on covariates. The two given ages can be any two ages in the age range for which

transition rates are available (0 and 53 in the case of the GLHS data). The sim.
bio function is based on the sim.msm function of the msm package. The function

sim.pop coordinates the microsimulation. It calls sim.bio for each individual

in the virtual population and saves the individual life histories in a Biograph object.
The Biograph package may then be used to analyse the simulated life histories. The

functions sim.bio and sim.pop are not included in Biograph (version 2). They
may be included in a later version. They are available from the author. The

following code produces simulated life histories:

Table 7.1 Data for generation of employment careers of synthetic individuals

   ID      birth  interview Start Stop st_entry    Sex
1   1 01/03/1929 01/11/1981     0   53        N   Male
2   2 01/09/1929 01/11/1981     0   53        N Female
3   3 01/05/1939 01/11/1981     0   43        N Female
4   4 01/04/1950 01/11/1981     0   32        N Female
5   5 01/05/1931 01/11/1981     0   51        N   Male
6   6 01/12/1940 01/11/1981     0   41        N   Male
7   7 01/08/1939 01/11/1981     0   43        N Female
8   8 01/09/1950 01/11/1981     0   32        N   Male
9   9 01/05/1931 01/11/1981     0   51        N   Male
10 10 01/10/1931 01/11/1981     0   51        N   Male
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born.date <- date_convert (d=GLHSd$born,
format.in="CMC",
selectday=1,
format.out="%d/%m/%Y") 

born.yr <- date_convert (GLHS$born,
format.in="CMC",
selectday=1,
format.out="year") 

interview.date <- date_convert (d=GLHSd$end,
format.in="CMC",
selectday=1,
format.out="%d/%m/%Y") 

Age.interview <- trunc(date_convert (d=GLHSd$end,
format.in="CMC",
selectday=1,
format.out="age",
born=GLHSd$born,
format.born="CMC"))+1

Age.start <- rep(0,nrow(GLHSd))
state_at_entry <- substr (GLHSd$path,1,1)
V <- data.frame (ID=1:nrow(GLHS),

birth=born.date,
born=born.yr,
interview=interview.date,
Start=Age.start,
Stop=Age.interview,
st_entry=state_at_entry,
Sex=GLHSd$sex,
stringsAsFactors=FALSE)

GLHSd.sim <- sim.pop (
V=V,
ratesM=rates$M,
covs=c("Sex","st_entry"))

GLHSd is GLHS with the intrastate transitions removed. The first four state-

ments convert dates in a desired format. The dates of birth, the interview dates and

the age at interview are determined using functions included in Biograph. The
decimal year of birth born.yr is not needed in the simulation, but will be included

in the Biograph object. The data frame V combines the relevant data and is an input

to the microsimulation, together with the age-specific transition rates, the states at

entry and the covariates. The object rates$M is a component of the object

produced by the Rates.ac function of Biograph. The object GLHS.sim is a

Biograph object.

State occupancies of the simulated population are similar to those of the

observed population. Of the 201 individuals of age 20, 142 are employed in the

simulated population and 146 in the observed sample. Among the individuals aged

30, 139 are employed in the simulated population and 138 in the observed sample.

Let us compare the distribution of state sequences in the observed and the simulated

populations.

seq.sim <- Sequences (GLHSd.sim,mean_median="median")
seq.obs <- Sequences(GLHSd)
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Table 7.2 shows the most frequent state sequences in the GLHS subsample and

the simulated population. The difference is considerable because of small sample

size.

The transition rates may be used to generate individual employment histories

from birth to a highest age (53 in this case). The results of the microsimulation may

be compared to the MSLT. The MSLT indicates that 73 % of the synthetic cohort is

employed at age 20 and 70 % at age 30. In the microsimulation of 201 individual

life histories, it is 74 % at age 20 and 67 % at age 30.

7.6 Summary

The multistate life table summarises the mobility experience of a synthetic cohort.

The life table method is sometimes referred to as a non-parametric method for

estimating transition rates for age intervals of fixed length. The life table method is

not really non-parametric because it implies an assumption on the distribution of

events during unit age intervals. In this chapter, it has been assumed that the

transition rate is constant during an interval, which implies a piecewise exponential

distribution of events between birth and death or the highest age. Another common

assumption in demography, epidemiology and actuarial science is that events are

uniformly distributed during a unit interval, which implies a piecewise linear

survival function from birth to death or the highest age. In both cases, transition

rates are referred to as occurrence-exposure rates because they relate an event count

to an exposure time. The truly non-parametric method estimates transition rates

each time an event occurs without making any assumption about the variation of the

likelihood of event occurrence with age. The non-parametric estimator of transition

Table 7.2 State sequences: observed and simulated. GLHS

a. Most frequent sequences in GLHS sample population (no intrastate transition)
     ncase        %  cum%    age_en    age_ex  ns       case            tr1           tr2           tr3
1    67 33.33 33.33      0   41.75  2     NJ 18.08>J               
2    54 26.87 60.20      0   40.96  4   NJNJ 17.88>J 21.71>N 26.17>J
3    44 21.89 82.09      0   42.08  3    NJN 18.17>J 24.88>N        
4    16  7.96 90.05      0   40.42  6 NJNJNJ 17.83>J 20.83>N 23.96>J
5    10  4.98 95.02      0   41.71  5  NJNJN 17.29>J 20.12>N 21.21>J

b. Most frequent sequences in simulated population (no intrastate transition)
     ncase        %  cum%    age_en    age_ex  ns       case            tr1           tr2           tr3
1    61 30.35 30.35      0    43.0  4   NJNJ 17.59>J 21.88>N 25.08>J
2    59 29.35 59.70      0    41.0  2     NJ 18.42>J                
3    35 17.41 77.11      0    42.0  3    NJN 18.51>J 26.05>N        
4    22 10.95 88.06      0    42.0  5  NJNJN 17.21>J 21.51>N 23.91>J
5    12  5.97 94.03      0    41.5  6 NJNJNJ 16.38>J  20.1>N 21.76>J
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rates is known as the Nelson-Aalen estimator. The occurrence-exposure rate and the

Nelson-Aalen estimator are considered in this chapter.

Age-specific transition rates are used to produce estimates of state occupation

probabilities by age and state occupation times by age. Biograph incorporates an

option to estimate state probabilities and occupation times from occurrence-

exposure rates or from Nelson-Aalen estimates. The results differ only slightly.

The multistate life table translates transition rates into probability and duration

measures that can be interpreted more easily. Other life history indicators may be

derived from these measures. The multistate life table indicators are for a synthetic

cohort. They are expected values derived from the continuous-time Markov process

model. Distributions of individual values around the expected values are obtained

by microsimulation. In this chapter, microsimulation was used to generate individ-

ual employment histories. In general, the simulated individual employment histo-

ries are similar to observed employment histories, and aggregation of individual

employment histories is comparable to the expected employment history of the

synthetic cohort. The increased availability of longitudinal data triggered a growing

interest in synthetic life histories and the microsimulation technique. A discussion

of these developments is beyond the scope of this book. CRAN now includes

packages designed to predict individual life trajectories using microsimulation.

They include the general-purpose MicSim package developed by Zinn (2014) and

the MILC (Microsimulation Lung Cancer Model) package developed by

Chrysanthopoulou (2014) for lung cancer trajectories. MicSim is a multistate

model and MILC is a staging model developed in a competing risk framework.
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Chapter 8

Application to the Netherlands Family

and Fertility Survey

8.1 Introduction

The aim of this chapter is to illustrate Biograph with data from the Netherlands

Family and Fertility Survey of 1998 (Onderzoek Gezinsvorming 1998 or

NLOG98). Statistics Netherlands organised the survey for information on partner-

ships, marriage and family. In this chapter Biograph is used to study pathways to

first birth. What life paths do women in the Netherlands follow between leaving

parental home and motherhood? Some leave the parental home for marriage and

have a child soon after marriage. Most women have a different pathway, however.

The trajectory women follow determines to a large extent the age at which they

become a mother. Differences in pathways can be associated with background

characteristics. Three covariates are considered: religious denomination (kerk),

level of education (educ) and birth cohort (cohort). The pathway to the first child

was studied by Matsuo (2003).

The chapter consists of six sections. In Sect. 8.2 I briefly describe the data and

review the five steps required to create a Biograph object. In Sect. 8.3, summary

measures that characterise the data are presented. The summary measures include

indicators on episodes, transitions and state sequences. The estimation of

occurrence-exposure rates is also discussed. Section 8.4 covers transition rate

models. It illustrates the packages survival, mvna and mstate. Multistate life table

analysis is discussed in Sect. 8.5. Section 8.6 concludes the chapter.

8.2 Data and Preparation of Biograph Object

Between February and May 1998, Statistics Netherlands (CBS) conducted the

Netherlands Family and Fertility Survey. Data were collected on 5,450 women

and 4,717 men in the Netherlands, born in the period 1945–1979. They were
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18–52 years at time of survey. The sample frame consisted of the Municipal

Population Administration (Gemeentelijke Bevolkingsadministratie or GBA). The

GBA is the main source of statistical information on the population in the Nether-

lands. The random sample survey was done in two steps. In the first step 262 munic-

ipalities were selected from 572 municipalities. GBA data of the selected

municipalities were then used to randomly select 14,000 addresses and subse-

quently men and women born in the period of 1945–1979. (For details on the

sampling, see de Graaf and Steenhof 1999, p. 36.) Eventually, 5,450 women and

4,717 men were interviewed using structured questionnaires. About two thirds of

women in the sample became a mother before survey date.

DANS (Data Archiving and Networked Services) distributes the survey data for

public use (https://easy.dans.knaw.nl/; search for gezinsvorming). The data are

distributed in two SPSS files. The file BOAV98.SAV contains the data for females,

and the file BOAM98.SAV contains the data for males. In this chapter, data on

females are used.

The Netherlands Family and Fertility Survey provides extensive information on

marital status, living arrangements, partnership and fertility. The information is

collected retrospectively and covers the period from birth to survey date. For each

respondent, the OG98 reports up to three marriages and up to six cohabitations.

Each marriage may be followed by a divorce or widowhood.

The raw data need considerable processing to be useful for Biograph. First, the
public use file does not include the survey month. Although we know that the

survey took place in the period from February to May 1998, the month of interview

is not included in the data and is not available to researchers. The age of the

respondent at the time of survey is available, however. The survey month is

estimated from the age at survey, the month of birth of the respondent and the

months in which transitions occur. No transition may occur after the survey date.

The estimation procedure includes a random number generation to allocate the

survey date to one of several plausible months, taking into account that transitions

reported by the respondent could not have taken place after the survey date.

Second, the public use data file is not well suited for life history data analysis.

The focus of the questionnaire is on partnership and not on timing of transitions.

Life history data analysis requires that the transitions are ordered and defined in

terms of origin state, destination state and date of occurrence. The conversion of

raw data into an event history data structure is a tedious process that was completed

by Matsuo and Willekens (2003). The dates of transitions are recoded in Century

Month Codes (CMC). In some cases imputation was necessary. The emphasis on

the sequence and timing of transitions did reveal several inconsistencies in the data.

Some sequences of transitions are not possible (e.g. the second child is born before

the first child) or are not plausible (e.g. remarriage before a divorce). Transitions

may be missing (e.g. second marriage is reported, while information on dissolution

of first marriage is missing). The inconsistencies were investigated in detail and

corrected if it was clear that the inconsistent sequence or timing of transitions was

due to errors in recording or coding. The report by Matsuo and Willekens (2003) is

limited to the data for females. Starting from the public use file BOAV98.SAV,
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inconsistencies are removed and an event history data file prepared in 10 steps.

Each step is documented in an SPSS syntax file. The report by Matsuo and

Willekens and the SPSS syntax files are available on request. The name of the

SPSS file with the event histories is NLOG98_F_CMC.sav. The syntax file also

creates a text file in Biograph format to be used as input in Biograph. The name of

that data file is NLOG98cov.DAT. For the illustrations in this chapter, a subsample

of 500 women was selected from the 5,450 women in the NLOG98 sample. That R

data file is included in the Biograph package under the name NLOG98.Rdata.
The command data(NLOG98) loads the data set. For convenience, the data

object is renamed to OG.
A Biograph object is created in five steps. The steps are implemented in the

programme create.NLOG98.r, which is distributed with the Biograph package
(see Documentation folder of the package source Biograph_2.0.2.tar.gz
or later version). The first step is the specification of the state space and the possible

transitions. The second step is the selection of covariates. The third step is the

specification of the observation window for each subject. In the fourth step, the state

sequence is determined and the dates at transition are determined. In the fifth and

final step, all data are stored in a data frame and three data attributes are attached to

the data frame. The state space describes the pathways to the first child, i.e. the set

of states a woman may occupy before the first child is born. Figure 8.1 presents the

state space and the associated transitions. The path starts with the state of living at

the parental home. We assume that the parental home may be left only once,

although in reality persons may leave the parental home and return later at least

for some time. A respondent may leave home for one of three reasons. The first is

independence, which is manifested by leaving home to live alone. The second

reason is marriage and the third is cohabitation. Childbearing may occur in any of

these states. The state space is determined by a composite variable that combines

three domains of life. The first domain of life is the living arrangement with three

possibilities: living at the parental home, living alone and living with someone. The

second domain of life is the marital status: not married or married. The third domain

is motherhood (fertility). The three domains of life are combined into a single state

space. Some combinations of states are excluded (e.g. cohabitating at the parental

home, married while living at the parental home). The primary states of interest are:

1. Living at parental home (H)

2. Living alone (independently) (A)

3. Married (M)

4. Cohabiting (C)

5. First child (K)

The specification of the state space determines the sequence of states and

transitions that can be studied. In this example, a married woman may start

cohabitation upon marriage dissolution. She may start living alone instead, but

she may not move back to the parental home. Some living arrangements, such as

Living Apart Together (LAT) (commuting marriage), are not considered in the state
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space and can therefore not be studied. To include that arrangement a distinction

must be made between partnership status (union status) and residence status, and

the timing of the transitions between the states should be known. The focus on

pathways to first birth implies that the transitions that occur after the birth of a child

are not considered in the analysis. The birth of a child implies entry into an

absorbing state.

The NLOG98 reveals some uncommon living arrangements. For instance, some

married women do not live with their husband; some live alone and some live with

another partner. These living arrangements are not considered in this chapter since

we lack information and the state space is too restrictive. To capture these living

arrangements, the state space would need to be extended.

The state space has five states with the names ‘H’ (living at the parental home),

‘A’ (living alone), ‘C’ (cohabiting), ‘M’ (married) and ‘K’ (with at least one child).

The number of possible transitions is 16: HA, HM, HC, HK, AM, AC, AK, CA,

CM, CK, MA, MC, MK, AA, CC and MM. Cohabiting or married respondents may

change partner without a period of independent living, resulting in transitions CC

andMM. That transition is maintained in the data set, but it is disregarded because it

is a transition to the same state. In the subsample, 2 women reported a CC transition.

The feasible transitions are identified in the transition matrix:

1. Living at 
parental home

(no child)
(H)

5. First child
(K)

3. Married
(no child)

(M)

4. Cohabiting
(no child)

(C)

2. Living alone
(no child)

(A)

Fig. 8.1 Schematic representation of pathways to the first child
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Destination
Origin     H     A     C     M     K

H FALSE  TRUE  TRUE  TRUE  TRUE
A FALSE FALSE  TRUE  TRUE  TRUE
C FALSE  TRUE  TRUE  TRUE  TRUE
M FALSE  TRUE  TRUE FALSE  TRUE
K FALSE FALSE FALSE FALSE FALSE

Most packages for multistate analysis with R use a transition matrix. In

Biograph, the transition matrix is contained in the object attr (OG,"param")
$trans_possible (see below). The calendar dates of transitions are expressed

in Century Month Code (CMC).

To determine the dates at transition, the following date variables are extracted

from the data file. NLO98_F_CMC

Variable name Meaning

CMCINT CMC at interview

CMCB_OP CMC at birth

CMCLEAVE CMC at leaving parental home

CMCCO1 CMC at first cohabitation

CMCE1CO CMC at end first cohabitation

CMCCO2 CMC at second cohabitation

CMCE2CO CMC at end second cohabitation

CMCCO3 CMC at third cohabitation

CMCE3CO CMC at end third cohabitation

CMCCO4 CMC at fourth cohabitation

CMCCO5 CMC at fifth cohabitation

CMCMA1 CMC at first marriage

CMCE1MA CMC at end of first marriage

CMCMA2 CMC at second marriage

CMCE2MA CMC at end of second marriage

CMCMA3 CMC at third marriage

CMCE3MA CMC at end of third marriage

CMC_K1 CMC at birth of first child

The second step is the selection of covariates. Two covariates are selected and

included in the Biograph object: religious denomination (kerk) and level of educa-

tion (educ). The first covariate is religion (labelled KERKGEZ in the original data

distributed by Statistics Netherlands). The following categories are distinguished,

with the original code in brackets and the number of respondents n in the original

sample of 5,450 respondents:

1. No religion [1] (n¼ 2,395)

2. Roman Catholic [2] (n¼ 1,677)

3. Protestant [3, 4, 5 and 6] (n¼ 1,014)

4. Other religion [7, 8, 9 and 10] (n¼ 357)

NA. Missing data [98, 99] (n¼ 7)
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The second covariate is the highest completed education. In the original data set,

the covariate is called OPL_HB. The following categories are distinguished, with

the original codes in brackets and the number of respondents n:

1. Primary [2] (n¼ 363)

2. Secondary lower [3] (n¼ 1,250)

3. Secondary higher [4] (n¼ 2,489)

4. First step high [5] (n¼ 869)

5. Second step high [6] (n¼ 238)

6. Third step high [7] (n¼ 20)

NA. Missing data [9] (n¼ 221)

In addition, two birth cohorts are derived from the dates of birth. The first cohort

is born before 1960, and the second cohort is born in 1960 or later.

The third step is the specification of the observation window for each subject.

The life history is recorded retrospectively starting at birth and ending at interview

date. The interview date is given in CMC, and the assumption is made that

interview is at the end of the month, estimated using the procedure described

above. Since Biograph assumes that transitions, including censoring, occur at the

beginning of a month, a one is added to the interview month.

In the fourth step, the state sequence is determined and the dates at transition are

recorded. The Biograph function Sequences.ind.0 is used. The function

orders dates chronologically and determines the state sequence. The output is an

object with three components. The first component is the state space. The second is

a character string denoting the state sequence (Sequences.ind.0$path). The
third is the sequence of the CMCs at transition (Sequences.ind.0$d).

In the fifth and final step, all data are stored in a data frame and three data

attributes are attached to the data frame: the format of the dates at transition

(‘format.date’), the format of the date of birth (‘format.born’) and the

output produced by the Parameters function of Biograph (‘param’).
A selection of the subsample of 500 respondents is shown in Table 8.1. The

variables ID, born, start, end and Tr* are numeric. The variable path is a

character variable and the covariates are factors.

Table 8.1 Biograph object: selection of NLOG98 data

ID born start  end           kerk educ cohort   path  Tr1  Tr2  Tr3  Tr4  Tr5
2   2  630   630 1184    no religion    5  <1960    HAC  966 1002   NA   NA   NA
8   8  707   707 1180 Roman Catholic   NA  <1960   HCMK  894  906  910   NA   NA
24 24  813   813 1179 Roman Catholic    4  1960+    HCK 1004 1040   NA   NA   NA
28 28  673   673 1180    no religion    2  <1960   HMCK  939  990 1066   NA   NA
34 34  789   789 1179    no religion    6  1960+   HACA 1016 1105 1150   NA   NA
43 43  609   609 1179     Protestant   NA  <1960     HK  840   NA   NA   NA   NA
52 52  895   895 1182    no religion    5  1960+     HA 1118   NA   NA   NA   NA
82 82  689   689 1181    no religion    6  <1960   HACM  973 1003 1013   NA   NA
96 96  721   721 1182    no religion    4  <1960 HACACK 1034 1038 1111 1128 1140
99 99  862   862 1181    no religion    4  1960+    HAC 1089 1105   NA   NA   NA
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8.3 Exploratory Analysis

In this section, useful descriptive statistics are presented. They include summary

indicators on episodes and transitions, individual and collective life histories (state

sequences) and age profiles of transitions. The section also includes a Lexis

diagram and state sequence plots. A separate subsection covers the estimation of

occurrence-exposure rates.

8.3.1 Summary Indicators

The state space and relevant parameters are derived from the data by the function

Parameters:

library (Biograph)
data (NLOG98)
OG <- NLOG98
param <- Parameters (OG)

The object param has 19 components. The number of states is param
$numstates. The names of the states are stored in the vector param
$namstates. The number of feasible transitions is found with param$ntrans,
and the line numbers of the transitions are given by the object param$tmat:

To
From  H  A  C  M  K

H NA  1  2  3  4
A NA NA  5  6  7
C NA  8  9 10 11
M NA 12 13 NA 14
K NA NA NA NA NA

Transition number 9 originates and ends in the same state. If intrastate transitions

are omitted, the number of transitions reduces to 13. The transition matrix can be

recovered using the following code:

tmat <- attr(OG,"param")$tmat

The object param$transitions shows the transitions in different ways:
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Trans OR DES ORN DESN ODN
1      1  1   2   H    A  HA
2      2  1   3   H    C  HC
3      3  1   4   H    M  HM
4      4  1   5   H    K  HK
5      5  2   3   A    C  AC
6      6  2   4   A    M  AM
7      7  2   5   A    K  AK
8      8  3   2   C    A  CA
9      9  3   3   C    C  CC
10    10  3   4   C    M  CM
11    11  3   5   C    K  CK
12    12  4   2   M    A  MA
13    13  4   3   M    C  MC
14    14  4   5   M    K  MK

where Trans denotes the transition number, OR and ORN the origin, DES and

DESN the destination and ODN the origin and destination.

The 500 respondents experience a total of 975 transitions. The number of

transitions by origin and destination is given by param$nntrans:

Destination
Origin H   A   C   M   K

H 0 172 106 172   6
A 0   0 131  44   5
C 0  46   2 132  19
M 0  19   2   0 291
K 0   0   0   0   0

The above table shows that most first births (291) occur in marriage and that

19 first-born children have mothers who cohabit, 5 have mothers living alone and

6 have mothers living at the parental home.

Individual state sequences are produced by the function Sequences.ind:

seq.ind <- Sequences.ind (OG$path,
attr(OG,"param")$namstates)

The different types of episodes are obtained by the function:

overviewE <- OverviewEpisodes(OG,seq.ind)

The information on the episodes is stored in object overviewE. Four types of
episodes are distinguished:

(a) LROpen: episodes that start before or at the onset of observation and end when

the observation is discontinued at survey date. A total of 44 episodes belong to
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this class. They refer to respondents who occupy a single state throughout the

observation window and are still living at the parental home at survey date.

(b) LOpen: episodes that start before or at the onset of observation and end during

the observation. The 456 episodes refer to respondents who experience at least

one transition during the observation period.

(c) ROpen: episodes that start during the observation period and continue at the end

of observation. The total is 456. Of them, 42 women are cohabiting and

childless at survey date and 321 have at least one child.

(d) Closed: episodes that start and end during the observation period. The number

of episodes of this type is 691. Note that, since K represents an absorbing state,

an individual who enters that state remains in that state and occupies it at

survey date.

The numbers of episodes and the total durations of episodes are shown in

Table 8.2. The overall observation time is 216.5 thousand months, and the average

duration of an episode is 131.5 months. Note that open episodes are considerably

longer than closed episodes.

The number of transitions by origin and destination and the number of censored

cases by state are computed by the function OverviewTransitions. The
function requires the ages at transition, which are computed by function

AgeTrans:

agetrans <- AgeTrans (Bdata=OG)

Table 8.2 Overview of episodes observed in OG data

A. Number of episodes, by type
Type

Episode LROpen LOpen ROpen Closed Total
H         44   456     0      0   500
A          0     0    57    180   237
C          0     0    42    199   241
M          0     0    36    312   348
K          0     0   321      0   321
Total     44   456   456    691  1647

B. Total duration of episodes, by type
Type

Episode LROpen  LOpen ROpen Closed  Total
H      11431 114882     0      0 126313
A          0      0  3075   7916  10991
C          0      0  1905   7348   9253
M          0      0  3915  10402  14317
K          0      0 55637      0  55637
Total  11431 114882 64532  25666 216511
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The object agetrans has five components:

(a) agetrans: ages at transition
(b) ageentry: age at entry into observation (in this case 0)

(c) agecens: age at censoring
(d) st_entry: state at entry into observation (in this case H)

(e) st_censoring: state at survey date

The function OverviewTransitions produces numbers of transitions and

mean ages at transition:

overviewT <- OverviewTransitions
(Bdata=OG,
seq.ind=seq.ind,
agetrans=agetrans)

The transitions are direct transitions. They should not be confused with discrete-

time transitions that are obtained by comparing states occupied at two points in

time. The number of transitions by origin and destination, the number of censored

cases and the mean ages at transition and censoring are stored in overviewT
$Ttrans, shown in Table 8.3:

From the direct transitions in Table 8.3 and the exposure times in Table 8.2,

aggregate transition rates may be computed by dividing the numbers of transitions

and the exposure times (in years):

Table 8.3 Number of transitions and mean ages, by origin and destination. OG

A. Number of transitions                 
Destination

Origin  H   A   C   M   K Total Censored TOTAL
H     0 172 106 172   6   456       44   500
A     0   0 131  44   5   180       57   237
C     0  46   2 132  19   199       42   241
M     0  19   2   0 291   312       36   348
K     0   0   0   0   0     0      321   321
Total 0 237 241 348 321  1147      500  1647

B. Mean age at transition
Destination

Origin   H     A C     M     K censored
H NaN 19.05 20.70 20.62 19.83    20.64
A NaN   NaN 24.33 23.14 25.70    27.31
C NaN 25.26 22.00 25.49 24.39    29.12
M NaN 28.50 28.00   NaN 25.04    34.47
K NaN   NaN   NaN   NaN   NaN    39.35
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d <- solve(diag(overviewE$sojourn[1:5,5]/12))
M <- d%*%overviewT$Ttrans[1:5,1:5]

These transition rates are the off-diagonal elements of the M-matrix, which is

the matrix of transition rates used in multistate modelling (see Chap. 2). The

diagonal elements are minus the total rate of leaving a state (exit rate). They are

obtained by the following expressions:

diag(M) <- 0
diag(M) <- -apply(M,1,sum)
dimnames(M) <- dimnames (overviewT$Ttrans[1:5,1:5])

The M-matrix is shown in Table 8.4:

8.3.2 State Sequences

The function

sequences <- Sequences (OG,mean_median="mean")

identifies the different sequences or trajectories recorded during the observation

period. The object sequences has two components. The first indicates the

measure used to display the central age at transition: the mean age or the median

age. In this case, it is the mean age. The second component contains the sequences.

The OG data reveal 48 different sequences. The 10 most prevalent sequences are

shown in Table 8.5. The first column shows the trajectory number. The number of

respondents experiencing the trajectory is shown in column 2. The share in the total

sample population of that particular trajectory and the cumulative percentages are

shown next. The mean ages at entry into and exit from observation are shown in

columns 5 and 6. Column 7 shows the number of states in the trajectory. The

trajectory is displayed in column 8. The next columns show the mean (or median)

ages at transition and the destination states. The pathway HMK is most prevalent.

Thirty percent of the subsample population leaves the parental home for marriage

Table 8.4 Aggregate yearly transition rates. OG

Destination
Origin        H        A        C        M       K

H -0.04332  0.01634  0.01007  0.01634 0.00057
A  0.00000 -0.19652  0.14303  0.04804 0.00546
C  0.00000  0.05966 -0.25548  0.17119 0.02464
M  0.00000  0.01593  0.00168 -0.26151 0.24391
K  0.00000  0.00000  0.00000  0.00000 0.00000
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and have their first child in their first marriage. More than 80 % of the subsample

population experiences one of the ten trajectories shown in Table 8.5.

The pathways by birth cohort and the median ages at transition are obtained by

the following commands:

z1 <- Sequences (OG[OG$cohort=="<1960",])
z2 <- Sequences (OG[OG$cohort=="1960+",])

The most prevalent pathways are shown in Table 8.6. In the older cohort, born

before 1960, 50 % of the women experience the HMK sequence. In the younger

cohort, born in 1960 or later, it is 16 %.

Among women born before 1960, those who do not practise a religion are less

likely to experience the HMK sequence than women who practise a religion. The

figure is obtained by the following code:

z1 <- Sequences (OG[OG$cohort=="<1960"
&OG$kerk=="no religion",])

The proportion of women in the sample experiencing the HMK sequence is 41 %

for women not practising a religion, 52 % for Protestants and 64 % for Roman

Catholics.

The age profile at first marriage by birth cohort is obtained by the code:

z.c1 <- TransitionAB(OG[OG$cohort=="<1960",],"*M")
z.c2 <- TransitionAB(OG[OG$cohort=="1960+",],"*M")

The object produced by TransitionAB has eight components. The first

(z.c1$ncase) identifies the origin and destination states of the transition. The

second (z.c1$n) is the number of transitions (marriages). It is 193 in the oldest

cohort and 146 in the youngest cohort. The third (z.c1$id) lists the identification
numbers of respondents who experience the transition. The fourth (z.c1$pos)
gives the position of first marriage in the state sequence. The fifth (z.c1$date)

Table 8.5 Event and state sequences in OG

ncase    % cum% M_age_entry M_age_exit ns  case     tr1     tr2     tr3     tr4
1    151 30.2 30.2           0      42.84  3   HMK 21.62>M 24.63>K                
2     50 10.0 40.2           0      34.88  4  HCMK 21.77>C 24.62>M 26.86>K        
3     44  8.8 49.0           0      21.65  1     H                                
4     39  7.8 56.8           0      25.42  2    HA 20.37>A                        
5     39  7.8 64.6           0      43.89  4  HAMK 19.05>A 23.02>M  25.9>K        
6     33  6.6 71.2           0      38.05  5 HACMK 19.34>A 22.63>C 26.48>M 28.55>K
7     17  3.4 74.6           0      31.75  3   HAC 21.64>A 27.33>C                
8     17  3.4 78.0           0      26.47  2    HC 22.78>C                        
9     12  2.4 80.4           0      31.47  3   HCK 21.16>C 24.75>K                
10    12  2.4 82.8           0      35.32  2    HM 22.83>M                        
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contains for each respondent in the group the date of marriage (in CMC), the sixth

(z.c1$age) the age at marriage, the seventh (z.c1$year) the year of marriage and

the last one the birth cohort to which a respondent belongs.

The life path of respondent 8 is shown in Box 8.1. The respondent is born in

CMC 707, which is November 1958. She left the parental home in June 1974 at age

15 to cohabit. She married 1 year later and had a child in October 1975 at age 16.

The observation ended at age 39.

Box 8.1: Life Path of Respondent with ID 8. OG

[[1]]
[[1]]$ID
[1] 8

[[1]]$born
[1] "Subject ID = 8  Date of birth 707 (01Nov58)"

[[1]]$path
Episode State EntryDate1 EntryDate2 EntryAge Durat OR DE

1       1     H        707    01Nov58     0.00   187  0  1
2       2     C        894    01Jun74    15.58    12  1  3
3       3     M        906    01Jun75    16.58     4  3  4
4       4     K        910    01Oct75    16.92   270  4  5
5       5  Cens       1180    01Apr98    39.41    NA  5  0

The life path is produced by SamplePath (OG,8).
To produce the life paths for a selection of individuals, the IDs must be given,

e.g.

subjectsID <- c(8,96,980,1056,1496,2883)

Table 8.6 Pathways in OG, by birth cohort

a. Born before 1960
ncase     %  cum% M_age_entry M_age_exit ns  case     tr1     tr2     tr3     tr4

1   106 50.24 50.24           0      47.17  3   HMK 20.88>M  23.5>K                
2    30 14.22 64.45           0      47.17  4  HAMK  18.5>A 22.75>M 25.67>K        
3    16  7.58 72.04           0      42.29  5 HACMK 18.42>A 22.25>C 25.79>M 29.54>K
4    12  5.69 77.73           0      39.25  4  HCMK 22.25>C 23.67>M 26.08>K        
5     4  1.90 79.62           0      45.21  3   HAC 27.25>A 32.62>C     

b. Born in 1960 or later
ncase     %  cum% M_age_entry M_age_exit ns  case     tr1     tr2     tr3     tr4

1    45 15.57 15.57           0      33.83  3   HMK 22.17>M 26.42>K                
2    44 15.22 30.80           0      20.75  1     H                                
3    38 13.15 43.94           0      33.83  4  HCMK 20.79>C 24.25>M 27.46>K        
4    37 12.80 56.75           0      23.67  2    HA 19.17>A                        
5    17  5.88 62.63           0      32.58  5 HACMK 19.17>A 21.83>C 27.58>M 28.83>K

8.3 Exploratory Analysis 229



To display the lifelines, the data should be in the long format (episode data

structure). The long format is produced by

Dlong <- Biograph.long(OG)

and stored in Dlong$Depisode.
Figure 8.2 shows the lifelines of a selection of subjects, including subject with

ID 8. The code is:

title1 ="Living arrangements. OG98"
z<- Lexislines.episodes (OG,Dlong$Depisode,

subjectsID,title=title1)

The function Lexislines.episodes uses functions of the Epi package
developed by Carstensen (2007, 2009). Colours represent stages of life. Transitions

are marked and the identification number of a subject is added to the lifeline.

Subjects 980 and 1,496 do not have a child at survey date. Subjects 8 and 1,056

have a child, which they both received soon after marriage. Respondent 96 got a

child while cohabiting.

Fig. 8.2 Lifelines for selected subjects. OG
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The following command plots the Lexis diagram showing the ages at leaving the

parental home for marriage and the years of leaving home, by religious

denomination:

z<- Lexispoints (Bdata=OG,transition="HM",
title="Leaving home for marriage",
cov="kerk",legend="topleft")

The result is shown in Fig. 8.3.

The cohort biography, i.e. the average life course of cohort members, is

represented by state occupancies of the sample population at consecutive ages.

The state occupancies are contained in the object occup$state_occup pro-

duced by the function

occup <- Occup (OG)

The data processing may take relatively long (few minutes) if the sample size is

large. The object occup has four components. The state occupancies (occup
$state_occup) are shown in Table 8.7 for selected ages and in Fig. 8.4 for all

ages.

The following code produces Fig. 8.4:

Fig. 8.3 Lexis diagram:

leaving parental home for

marriage, by age and

calendar year. OG
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Table 8.7 State occupancies by age. Selected ages. OG

age    H   A  C   M   K Censored Total
0  500   0  0   0   0        0   500
12 500   0  0   0   0        0   500
15 498   1  0   1   0        0   500
16 494   3  3   0   0        0   500
17 483   9  2   2   4        0   500
18 452  26  9   8   5        0   500
19 374  75 16  15  10       10   500
20 295  97 29  34  22       23   500
21 216 108 46  57  41       32   500
22 165  94 57  91  52       41   500
23 112  75 77 104  82       50   500
24  74  63 78 110 111       64   500
25  46  49 78 112 135       80   500
30   8  31 29  45 243      144   500
35   1   9 10  20 230      230   500
40   0   5  4  15 159      317   500
50   0   1  1   1  44      453   500
54   0   0  0   0   0      500   500

Fig. 8.4 State occupancies

by age. OG
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z<- plot (x=occup$state_occup,
namstates.desired=c("H","A","C","M","K",

"Censored"),
colours=c("yellow","green","blue","red",

"purple","lightgrey"),
title="States occupancies by age. OG",
area=TRUE,
xmin=15,
xmax=55)

The component occup$st_age_1[,] gives for each respondent the states

occupied at consecutive birthdays. The object can be used as an input to the

TraMineR package. In the TraMineR terminology, the format of occup
$st_age_1[,]is the extended format. The extended format can be converted

to a compressed format by the seqconc function of the TraMineR package:

library (TraMineR)
DTraMineR <- seqconc (occup$st_age_1,sep="-")

In the object occup$st_age_1[,] the states are identified by numbers. The

state of a person who no longer is under observation is denoted by +.

A state sequence object is the main object of the TraMineR package. Most

TriMineR functions require a state sequence object as an input argument. It is

produced by the seqdef function of the TraMineR package:

namst <- c(param$namstates,"-")
og.seq <- seqdef(occup$st_age_1,

1:ncol(occup$st_age_1),
informat='STS',
alphabet=c(param$namstates,"+"))

where param is produced in Sect. 8.3.1. The expression shows that the Biograph
object occup$st_age_1 can easily be converted into a state sequence object to

be used as input in TraMineR. The labels of the states included in the state sequence
object are given by the TriMineR function alphabet(og.seq).

TraMineR has functions to produce several types of plots such as the state index

plot, which displays the state sequence for selected respondents; the state frequency

plot, which displays the most frequent sequences; and the state distribution plot,

which displays the state distribution (state occupancies) by age. Suppose we want to

graph the state sequences for selected respondents. The code is:
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namstatest <- c("H","A","C","M","K","X")
subjectsID <- c(8,96,980,1056,1496,2883)
ids <- which (OG$ID%in%subjectsID)
seqplot(og.seq,type="i",

tlim=ids,
ltext=namstatest,
xtlab=c(0:54),
withlegend="right")

where tlim is a vector of seven respondents with selected IDs. The figure is shown

in Fig. 8.5. The number on the left of each sequence is the line number of the record

associated with a particular identification number.

The state frequency plot considers the frequencies of state sequences taking into

account the ages at transition. The TraMineR command

seqplot(og.seq, type="f")

plots the 10 most frequent sequences. They comprise 11 % of all sequences. The

frequency table is computed by the functionseqtab. The share of these sequences is:

sum(attr(seqtab(og.seq),"freq")$Percent)

The frequency table produced by TraMineR differs from that produced by the

Sequences function of Biograph, which disregards the ages at transition in

determining the frequency of a state sequence. Figure 8.6 shows the state distribu-

tion by age. It is produced by the following code:

Fig. 8.5 State sequences of

selected respondents,

produced by TraMineR. OG
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seqplot(og.seq, type="d", 
title="State distribution. NLOG98",
ylab="Count",
xtlab=0:54)

The state distributions by age for the two birth cohorts are shown in Fig. 8.7. The

code is:

Fig. 8.6 Observed state occupancies by age, produced by TraMineR. OG sample population

Fig. 8.7 Observed state occupancies by age and cohort, produced by TraMineR. OG sample

population
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seqplot(og.seq, type="d", 
group=OG$cohort,
title="State distribution.OG, by birth
cohort",ylab="Count",xtlab=0:54)

Here, we see that very few members of the youngest cohort have children, partly

due to censoring. Members of the youngest cohort are at most 37 years of age at

survey date and about half is less than 30.

The seqrtrate function of TraMineR computes transition rates. Note that

these ‘rates’ are probabilities and not occurrence-exposure rates. They are ‘proba-

bilities of transition from one state to another observed in the sequence data’ (see

documentation of the seqtrate function). The transition probabilities (called

rates in TraMineR) are obtained by comparing the state occupied at time t and the

state occupied at time t + 1 (Gabadinho et al. 2011, p. 17). They also include

probabilities of leaving states due to censoring. However, those probabilities have

no particularly useful meaning in the analysis of transition data. Table 8.8 shows the

empirical transition probabilities produced by the code:

tr <- round(seqtrate(og.seq),5)

Transition probabilities may also be computed by taking the exponent of matrix

M of occurrence-exposure rates (see above):

Require (msm)
P <- MatrixExp(M,t=1)
P <- round(P,5)
dimnames(P)= dimnames(M)

where MatrixExp is a function of the msm package and M is the transition rate

matrix shown in Table 8.9.

Table 8.8 Rates (probabilities) of transition between marital status/living arrangement, produced

by TraMineR. OG

[-> H]  [-> A]  [-> C]  [-> M]  [-> K]  [-> +]
[H ->] 0.95369 0.01519 0.00917 0.01565 0.00157 0.00472
[A ->] 0.00000 0.76030 0.12148 0.04881 0.00868 0.06074
[C ->] 0.00000 0.05277 0.72329 0.12741 0.04376 0.05277
[M ->] 0.00000 0.01340 0.00335 0.73786 0.21441 0.03099
[K ->] 0.00000 0.00000 0.00000 0.00000 0.93199 0.06801
[+ ->] 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

236 8 Application to the Netherlands Family and Fertility Survey



8.3.3 Age Profiles

The function TransitionAB gives characteristics of subjects who experience a

selected transition. The following commands select data on the event from the

Biograph object OG:

z1<- TransitionAB(OG,"MK")
z2<- TransitionAB(OG,"*K")
z3<- TransitionAB(OG,"H*")

The first command focuses on transitions from marriage to first birth. It produces

information on the 291 married women who have their first child in their first

marriage. The second produces information on the 321 women who have a first

birth before survey date, irrespective of the marital status and living arrangement.

The third produces information on the 456 persons who leave the parental home

before the survey date, regardless of destination. The * indicates any state. The

object produced by the function has seven components:

(a) z1$case: The transition selected.

(b) z1$n: The number of subjects experiencing the transition selected.

(c) z1$id: Identification numbers of subjects who experience the selected

transition.

(d) z1$pos: For each subject experiencing the transition, the position of the

transition in the character variable path.
(e) z1$date: For each subject, the date at the transition. The date is given in the

time unit used in the original data. An NA indicates that a subject did not

experience the transition.

(f) z1$age: For each subject, the age at the transition.

(g) z1$year: For each subject, the calendar year in which the transition occurs.

(h) z1$cohort: The birth cohort of the subject experiencing the transition.

Note that a respondent may have reported several occurrences of the given

transition. For instance, a person may experience the transition from cohabitation

Table 8.9 Probabilities of transition between marital status/living arrangement, derived from

occurrence-exposure rates. OG

Destination
Origin      H       A       C       M       K

H 0.9576 0.01490 0.00971 0.01517 0.00262
A 0.0000 0.82538 0.11433 0.04793 0.01236
C 0.0000 0.04875 0.77808 0.13354 0.03963
M 0.0000 0.01273 0.00220 0.77035 0.21472
K 0.0000 0.00000 0.00000 0.00000 1.00000
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to marriage (CM) more than once during the period of observation. Biograph
selects the first occurrence.

The mean age at which married women with children have their first child is

obtained by using the following two commands:

z<- TransitionAB(OG,"MK")
meanage <- mean(z$age,na.rm=TRUE)

The resulting mean age is 26.44 years. Married women born before 1960 had

their first child at age 25.79 on average. That figure is produced by:

mean(z$age[OG$cohort=="<1960"],na.r=TRUE)

The younger cohort of married women had the first child at a higher age

(26.88 years):

mean(z$age[OG$cohort=="1960+"],na.r=TRUE)

The mean age at first birth for the 291 married women who have their first child

in their first marriage, differentiated by birth cohort and religion, is obtained as

follows:

meanages <- aggregate(z$age,
list(cohort=OG[OG$ID%in%z$id,]$cohort,

Religion=OG[OG$ID%in%z$id,]$kerk),
mean,na.rm=TRUE)

The aggregate function, which is part of the stats package, splits the data in
subsets and computes summary statistics for each. The results are not shown for

space reasons.

The mean age at first birth for all women, irrespective of marital status, is

26.32 years. It is produced by the code:

z<- TransitionAB(OG,"*K")
meanage <- mean(z$age,na.rm=TRUE)

The function table(trunc(z$age)) tabulates the ages at first birth, and

the command hist(z$age,breaks¼50) produces the histogram, with

breaks the number of cells for the histogram. An alternative is to use a Trellis

plot, i.e. a panel of graphic displays. The age distribution of the 172 respondents in

the subsample who leave the parental home for first marriage, by birth cohort and

level of education, is shown in Fig. 8.8. Of the 172 respondents, 11 did not report

level of education (table(zzz$educ,zzz$cohort,useNA¼"always")).
The code to produce the plot, which is a density plot, is:
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library (lattice)
transition <- "HM"
z <- TransitionAB(OG,transition) 

# ages at leaving home for marriage
zzz <- data.frame(cbind 
(ID=OG[OG$ID%in%z$id,]$ID,cohort=OG[OG$ID%in%z$id,]$cohort,ed
uc=OG[OG$ID%in%z$id,]$educ,trans=z$age))
zzz$cohort <- factor(zzz$cohort,

labels=c("Born <1960","Born 1960+"))
zzz$educ <- ifelse (zzz$educ>4,5,zzz$educ) # recode
zzz$educ <- factor (zzz$educ,

labels=c("Primary","Secondary lower",
"Secondary higher","High"))

table(zzz$educ,zzz$cohort)
densityplot (~trans|educ,data=zzz,plot.points="rug",

# main="Age at first marriage",
sub= paste("Total number of first marriages with known 

covariates is ",length (na.omit(zzz$educ)),sep=""),
xlab="Age",
scale=list(x=list(alternating=FALSE)),

groups=cohort,ref=TRUE,
auto.key=TRUE)

Figure 8.8 shows that members of the younger cohort marry later, except for

those with primary education. The figure clearly reveals that, for a given birth

cohort and level of education, the age profile of first marriage is a mixture of two

age profiles. Note that the density shows the proportion of women in a particular

covariate class that marries at a given age. To display the number of marriages by

age (and covariate class), a histogram should be used rather than a density plot.

8.3.4 Occurrence-Exposure Rates

The basic table for the estimation of age-specific transition rates is produced by the

RateTable function, which requires objects produced by the Occup and Trans
functions:

occup <- Occup (OG)
trans <- Trans (OG)
ratetable <- RateTable (OG, occup,trans)

The basic table is ratetable$Stable. A selection of the table is presented

in Table 8.10.

On their 20th birthday, 295 respondents in the subsample live at the parental

home. At that age, 97 live alone, 29 cohabit and 34 are married. Finally, 22 respon-

dents have a first child. The total number of years the sample populations spend in

marriage between exact ages 20 and 21 is 51.58 years. That number is the result of

8.3 Exploratory Analysis 239



(1) persons married at age 20 and remaining married and without children through-

out the year, (2) persons who enter marriage at age 20 in completed years and

remain childless at least until their next birthday, (3) persons married at age 20 who

dissolve the marriage before reaching age 21, (4) persons married at age 20 who

have a first child before age 21 and (5) married persons who are aged 20 at survey

date. The transitions are shown in Table 8.10. The origin state is shown as the layer

variable, and the destination is shown as the column variable. For instance, between

ages 20 and 21, there were 26 respondents who left the parental home to live alone

and 34 who left home for marriage.

The object ratetable$Stable is probably the most useful one produced by

Biograph. The table is the basis for the occurrence-exposure rates. Consider the

situation of respondents at age 25. Of the respondents in the subsample, 46 were

living at their parental home, 49 were living alone, 78 were cohabiting, 112 were

married (without children) and 135 had at least one child. The number of years lived

at the parental home between the 25th and the 26th birthday by all respondents

combined is 34.17 years. The number of years spent living alone is 47.17, in

cohabitation is 69.42, in marriage (without children) is 113.08 and with at least

Fig. 8.8 Trellis plot of age at first marriage, by birth cohort and level of education. OG
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one child is 146.83 years. Of the persons at the parental home on their 25th birthday,

18 left the parental home within a year, 5 to live independently, 3 to cohabit,

6 because of marriage and 4 were lost to observation because they were aged 25 at

time of interview. The age-specific transition rates (occurrence-exposure rates) can

Table 8.10 Data for estimation of occurrence-exposure rates, by age. OG

, , State = H
Case

Age  Occup     PY Leaving H  A  C  M K Censored
0    500 500.00       0 0  0  0  0 0        0
15   498 496.58       4 0  1  3  0 0        0
20   295 252.83      79 0 26 13 34 1        5
25    46  34.17      18 0  5  3  6 0        4

, , State = A
Case

Age  Occup     PY Leaving H A  C M K Censored
0      0   0.00       0 0 0  0 0 0        0
15     1   2.00       0 0 0  0 0 0        0
20    97 103.58      20 0 0 10 4 2        4
25    49  47.17      12 0 0  8 1 0        3
30    31  29.50       5 0 0  2 1 0        2

, , State = C
Case

Age  Occup    PY Leaving H A C  M K Censored
20    29 36.92       6 0 3 0  1 2        0
25    78 69.42      25 0 2 0 16 3        4
30    29 24.67      12 0 3 0  7 1        1
35    10  9.50       3 0 0 0  3 0        0
40     4  3.58       2 0 0 0  0 0        2

, , State = M
Case

Age  Occup     PY Leaving H A C M  K Censored
20    34  51.58      16 0 1 0 0 15        0
25   112 113.08      29 0 0 0 0 25        4
30    45  39.75      17 0 1 0 0 14        2
35    20  20.33       3 0 0 0 0  2        1
40    15  13.58       3 0 1 0 0  0        2

, , State = K
Case

Age  Occup     PY Leaving H A C M K Censored
20    22  28.58       0 0 0 0 0 0        0
25   135 146.83       2 0 0 0 0 0        2
30   243 244.83      14 0 0 0 0 0       14
35   230 224.58      13 0 0 0 0 0       13
40   159 151.92      10 0 0 0 0 0       10
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be determined directly from these data. For instance, the marriage rate of a 25-year-

old living at the parental home is 6/34.17¼ 0.1756, and the marriage rate for

someone of the same age but cohabiting is not much different:

16/69.42¼ 0.2305. The transition rates for selected ages are shown later in the

chapter.

The ages at transition are stored in object agetrans$ages, produced by the

function AgeTrans. The following command tabulates the age profile of the

transitions:

agetrans <- AgeTrans(OG)
ztab <- apply(agetrans$ages,2,function(x)

table(trunc(x)))

with ztab$tr1 representing the age profile of the first transition, ztab$tr2
representing the age profile of the second transition, etc.

The sojourn times in the different states by age are contained in object occup
$tsjt. The total number of years of observation in each state is apply (occup
$tsjt,2,sum). The total number of years of observation is 27,500 years. A

large part (38 %) relates to time spent at the parental home.

Sojourn times and other measures that are recorded in the survey can be

displayed for each individual. For example, the following command displays for

individual with ID¼ 8 the sojourn time in each state and at each age. The time is

with three decimal digits:

print (round(occup$sjt_age_1[OG$ID==8,,],3))

The transition rates by age, state of origin and state of destination are computed

by dividing the number of occurrences by the exposure time, i.e. the sojourn time in

the origin state. Table 8.11 shows the transition rates for selected ages. The

off-diagonal elements of the transition matrix M(x) show the rates. The figures

shown on the diagonal (e.g. from H to H) are minus the sum of the rates of leaving

the state.
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Table 8.11 Occurrence-exposure rates (M-matrix: age-cohort rates). OG

, , origin = H destination
age             H           A           C         M           K
15 -0.008055097 0.002013774 0.006041323 0.0000000 0.000000000
20 -0.292686786 0.102835898 0.051417949 0.1344777 0.003955227
21 -0.246318608 0.037483266 0.058902276 0.1499331 0.000000000
22 -0.372439479 0.059590317 0.141527002 0.1638734 0.007448790
23 -0.390243902 0.097560976 0.108401084 0.1842818 0.000000000
24 -0.410256410 0.068376068 0.153846154 0.1880342 0.000000000
25 -0.409716125 0.146327188 0.087796313 0.1755926 0.000000000
26 -0.472366556 0.188946623 0.094473311 0.1889466 0.000000000
27 -0.189513582 0.000000000 0.063171194 0.1263424 0.000000000
28 -0.169061708 0.169061708 0.000000000 0.0000000 0.000000000
29 -0.300000000 0.000000000 0.000000000 0.2000000 0.100000000
30 -0.545454545 0.000000000 0.363636364 0.1818182 0.000000000

, , origin = A destination
age  H           A          C          M          K
15 0  0.00000000 0.00000000 0.00000000 0.00000000
20 0 -0.15446997 0.09654373 0.03861749 0.01930875
21 0 -0.23150381 0.16398187 0.06752194 0.00000000
22 0 -0.33949895 0.16389604 0.17560290 0.00000000
23 0 -0.25092251 0.16236162 0.07380074 0.01476015
24 0 -0.29357798 0.25688073 0.03669725 0.00000000
25 0 -0.19079924 0.16959932 0.02119992 0.00000000
26 0 -0.34146341 0.26829268 0.07317073 0.00000000
27 0 -0.26865672 0.26865672 0.00000000 0.00000000
28 0 -0.13258204 0.09943653 0.03314551 0.00000000
29 0 -0.09730782 0.03243594 0.06487188 0.00000000
30 0 -0.10169492 0.06779661 0.03389831 0.00000000

, , origin = C destination
age  H          A          C          M          K
15 0 0.00000000  0.0000000 0.00000000 0.00000000
20 0 0.08125677 -0.1625135 0.02708559 0.05417118
21 0 0.11940299 -0.3184080 0.15920398 0.03980100
22 0 0.02853881 -0.1426941 0.09988584 0.01426941
23 0 0.06500260 -0.2340094 0.16900676 0.00000000
24 0 0.02566735 -0.2181725 0.17967146 0.01283368
25 0 0.02881014 -0.3025065 0.23048113 0.04321521
26 0 0.01673640 -0.2677824 0.21757322 0.03347280
27 0 0.05504587 -0.2752294 0.18348624 0.03669725
28 0 0.13043478 -0.1956522 0.06521739 0.00000000
29 0 0.09022556 -0.4210526 0.33082707 0.00000000
30 0 0.12160519 -0.4458857 0.28374544 0.04053506

, , origin = M destination
age  H           A           C          M         K
15 0 1.204819277 0.000000000 -1.2048193 0.0000000
20 0 0.019387359 0.000000000 -0.3101978 0.2908104
21 0 0.000000000 0.000000000 -0.1228669 0.1228669
22 0 0.020761964 0.000000000 -0.3114295 0.2906675
23 0 0.000000000 0.000000000 -0.2712308 0.2712308
24 0 0.008816787 0.000000000 -0.2116029 0.2027861
25 0 0.000000000 0.000000000 -0.2210824 0.2210824
26 0 0.029460866 0.009820289 -0.2651478 0.2258666
27 0 0.000000000 0.000000000 -0.3481490 0.3481490
28 0 0.015484670 0.000000000 -0.4180861 0.4026014
29 0 0.020374898 0.000000000 -0.4686227 0.4482478
30 0 0.025157233 0.000000000 -0.3773585 0.3522013
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8.4 Transition Rate Models

The packages survival, mvna and mstate are illustrated using data from the sub-

sample of the Netherlands Family and Fertility Survey (NLOG98), included in the

Biograph package. The subsample is a random selection of 500 women. Three

subsections are distinguished. The first subsection covers data preparation. The

estimation of cumulative hazard rates is covered in the second subsection. The third

subsection illustrates the estimation of regression models to determine covariate

effects.

8.4.1 Data Preparation

The first step in the implementation of transition rate models is the preparation of

data in the long format. Biograph has several utilities that facilitate the conversion.
Biograph.long is a generic function. It produces a long format accepted by the

survival and eha packages. Biograph.mvna produces the long format required

by themvna package, and Biograph.mstate produces the format for themstate
package.

Intrastate transitions are removed since they are not of interest:

OGd <- Remove.intrastate(OG)

The packages mvna and mstate require that intrastate transition is omitted. The

object OGd has 13 possible transitions. The transition matrix is part of the

parameters:

param <- Parameters (OGd).

The transition matrix is (param$tmat):

To
From  H  A  C  M  K

H NA  1  2  3  4
A NA NA  5  6  7
C NA  8 NA  9 10
M NA 11 12 NA 13
K NA NA NA NA NA

The number of transitions is included in the object param$nntrans:
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Destination
Origin H   A   C   M   K

H 0 172 106 172   6
A 0   0 131  44   5
C 0  46   0 132  19
M 0  19   2   0 291
K 0   0   0   0   0

Of the 500 respondents, 321 have at least one child, most during marriage.

44 respondents are still living at the parental home at time of interview.

The ‘missing data’ category of the covariate religious denomination (kerk) is

replaced by NA to exclude the respondents from the assessment of effects of

religion:

OGd$kerk[OGd$kerk=="missing data"] <- NA
OGd$kerk <- factor(OGd$kerk,exclude="missing data")

In the subsample, one person did not report religious denomination (ID 289).

The following expression converts the data in wide format to data in long format.

Dlong <- Biograph.long(OGd)

The Dlong object has two components: Dlong$Devent and Dlong
$Depisode. The latter object is used in the survival package. It is renamed

for convenience:

Depisode <- Dlong$Depisode

The object Depisode carries two attributes: the parameters (attr
(Depisode,"param")) and the date format (attr(Depisode, "for-
mat.date")). The format of the birth date is included in the param attribute.

An additional variable is defined:

Depisode$one <- rep(1,nrow(Depisode))

The object Depisode contains information on 13 different transitions. The

number of respondents included in the analysis is 494.

The function Biograph.mvna converts a Biograph object into an object that

is accepted by the mvna package:

Dmvna <- Biograph.mvna (OG)

The function removes intrastate transitions, calls the Parameters function,

creates data in a long format using the Biograph.long function and adjusts that

data file to meet the mvna requirements. The mvna package requires a data set that

8.4 Transition Rate Models 245



includes the following variables: id, from, to, entry and exit. The variable

names are not free. They must be id, from, to, entry and exit. The origin and
destination are character variables.

The object Dmvna has three components: Dmvna$D, Dmvna$Dcov and

Dmvna$cens. The first omits the covariates, the second includes the covariates

and the third is the label used to indicate censoring.

The packagemvna requires that absorbing states receive special attention (in this
example, state K). In mvna entry into an absorbing state is treated as censoring.

State K needs to be marked as an absorbing state, and episodes censored in state K
need to be removed from the data set. If the package encounters a respondent who is
censored in an absorbing state, the following error message is generated:"There
is an undefined transition in the data set" and the computation

stops. The following code is used to remove redundant records:

zz1 = attr(Dmvna$D,"param")
zz2 = attr(Dmvna$D,"format.date")
Dmvna$D <- subset (Dmvna$D,Dmvna$D$from!="K")
attr(Dmvna$D,"param") = zz1
attr (Dmvna$D,'format.date') <- zz2

The subset function removes attributes of the object. Hence the attributes

need to be added later.

The function Biograph.mstate converts a Biograph object into an object

that is accepted by the mstate package:

Dmstate <- Biograph.mstate (OG)

The function removes intrastate transitions, calls the Parameters function,

creates data in a long format using the Biograph.long function and adjusts that

data file to meet the mstate requirements. The object Dmstate carries three

attributes: the parameters (attr(Dmstate, "param")), the data format used

in the data (attr(Dmstate, "format.date")) and the transition matrix

(attr(Dmstate, "trans")), which is the same as attr
(Dmstate,"param")$tmat. The dates of transitions are expressed in CMC.

Ages at transitions are included too.

8.4.2 Cumulative Transition Rates

The mvna package implements a non-parametric estimation of the cumulative

transition rates (Nelson-Aalen estimates). The following code computes the cumu-

lative transition hazards for each possible transition in the multistate model:
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na <- mvna(data=Dmvna$D,
state.names=c("H","A","C","M","K"),
tra=attr(Dmvna$D,"param")$trans_possible,
cens.name=Dmvna$cens)

The object na has a large number of components. For each of the 13 transitions,

it gives the cumulative hazard and two variance estimators: the Aalen estimator and

the Greenwood estimator. The cumulative hazards are computed at the ages at

which transitions occur. The cumulative transition rates from H to A produced by

mvna are in object na$’H A’$na.
Consider the first respondent (ID¼ 2). She left the parental home at exact age

28 to live independently. That age is shown in Dmvna$D and can be derived from

the original data OGd by the function cmc_as_age(OGd$Tr1[1],OGd$born
[1],"cmc"). It is the 693rd element of na$time (obtained by which (na
$time¼¼28.00)). She was the only person in the sample who left home at

exact age 28.00. At age 28, 13 persons are at risk of leaving home (na$n.risk
[693,1]). It is the number of persons living at home just before the event (see the

definition of n.risk in the documentation of the mvna function and the theory in

Beyersmann et al. 2012, p. 57 and Aalen et al. 2008, p. 71). The rate of transition

from state H to state A at age 28.00 is 1/13¼ 0.07692. The cumulative transition

rate at age 28 includes the transition rate at exact age 28. The cumulative transition

rate at that age is 0.9865. The cumulative transition rate from H to A at the age at

which the previous HA transition occurred (age 26.499) is 0.9096. The difference is

0.0769. The cumulative HA transition rates by age are displayed by the expression

k<- cbind(time=na$'H A'$time,na=na$'H A'$na)

The risk set and numbers of transitions by age are displayed by the expression:

z<- cbind(Age=na$time,
RiskSet=na$n.risk[,1],
Trans=aperm(na$n.event,c(3,1,2))[,1,],
Cens=na$n.cens)

Note that in na$n.risk and na$n.cens, age is the first dimension, whereas

in na$n.event age is the third dimension. That explains the aperm function in

the expression. Note that the object k has 900 rows, whereas z has 938 rows. In

both objects, row 693 shows data for age 28.00. For that age the two objects may be

combined to produce an object that contains all the relevant information:

x<- cbind (z[690:695,],k[690:695,])

Table 8.12 shows, for selected ages around age 28.00, the risk set, the number of

transitions and the cumulative hazard rate. At age 28.00, one female leaves the
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parental home, and one is interviewed and the observation censored. At time of

survey, that woman lives independently.

Figure 8.9 shows the cumulative transition rates and their 95 % confidence

intervals for the 13 transitions considered in this illustration. The figure is produced

by the xyplot.mvna function, which uses the lattice package:

xyplot(na,tr.choice=c("H A","H C","H M",
"H K","A C","A M","A K","C A",
"C M","C K","M A","M C","M K"),
aspect=1,
strip=strip.custom(bg="white",
factor.levels=c("HC","HA","HM",
"HK","CA","CM","CK","AC","AM",
"AK","AC","MA","MK"),
par.strip.text=list(cex=0.9)),
scales=list(alternating=1),
xlab="Age in years", 
xlim=c(10,60),
ylab="Nelson-Aalen estimates")

The Nelson-Aalen estimates of the cumulative transition rates, produced by

mvna, may be compared with the cumulative transition rates produces by the

survival and mstate packages. The Cox model in survival produces results that

are considerably different. To obtain the cumulative hazard for each of the 13 tran-

sitions, the Cox model is estimated with the line numbers of transitions as stratifi-

cation variables:

coxa <- coxph(Surv(Depisode$Tstopa,status)
~strata(trans),
data=Depisode,method="breslow")

The cumulative transition rates are produced by the expression:

zh<- basehaz(coxa)

Table 8.12 Risk set and transition count for estimating (cumulative) rate of leaving parental

home to live independently at age 28. Data produced by mvna. OG

Leave home  Censored
to state    in state

Age RiskSet 1 2 3 4 5 1 2 3 4 5          cumHazard
27.91530      14 0 0 0 0 0 0 0 0 0 0 27.91530 0.9096176
27.91781      14 0 0 0 0 0 1 0 0 0 0 27.91781 0.9096176
27.91803      13 0 0 0 0 0 0 0 0 0 0 27.91803 0.9096176
28.00000      13 0 1 0 0 0 0 1 0 0 0 28.00000 0.9865407
28.08219      12 0 0 0 0 0 0 0 0 0 0 28.08219 0.9865407
28.08470      12 0 0 0 0 0 0 0 0 0 0 28.08470 0.9865407
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The object zh has three components: the cumulative hazard rate at each transi-

tion (zh$hazard), the time at each transition (zh$time) and the strata used (zh
$strata). The cumulative transition rates from H to A produced by the Cox

model are contained in the object:

zh1 <- zh[zh$strata=="trans=1",]

To illustrate the difference, consider the lowest age at HA transition. In the OG

data, the minimum age at leaving home is 12.00 years, which is produced by:

Fig. 8.9 Trellis plot of cumulative transition rates (Nelson-Aalen estimator), 13 transitions. OG
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min(Depisode$Tstopa[Depisode$trans==1])

The respondent leaves home to live independently. The age of 12.00 is probably

misreported, but that is not a concern in this particular discussion. The information

about the respondent who left home at that age, including her ID (4922), is:

aa<- min(Depisode$Tstopa[Depisode$trans==1])
Depisode[Depisode$Tstopa==aa,]

At age 12.00, the HA transition rate is 0.0020 in mvna. Since all respondents live
at the parental home just before that age, the risk set is 500. The transition rate is

1/500¼ 0.002. To see all elements of the calculation, use:

cbind (z[1:10,],k[1:10,]).

In the stratified Cox model, the HA transition rate at age 12.00, produced by the

function basehaz(coxb), is 1/216¼ 0.0046. The risk set consists of the

172 respondents who leave home to live independently and the 44 respondents

who live at the parental home at time of survey. The transition of the latter category

is coded as 1. The cumulative hazard for transition HA produced by mvna should

be compared to the cumulative hazard produced by the Cox model with the

transitions as factors rather than strata. Notice that the rates produced by the Cox

model differ slightly from the empirical rates produced by mvna.
The mstate package uses the stratified Cox proportional hazard model to com-

pute the empirical cumulative hazard by age for each of the 13 transitions. Age is

used as duration variable, and 13 strata are distinguished, one stratum for each

transition:

c1 <- coxph(Surv(Tstarta,Tstopa,status) ~
strata(trans),
data=Dmstate,
method="breslow")

fit1 <- msfit (c1,trans=attr(Dmstate,"trans"),
vartype="aalen")

The function msfit ofmstate computes cumulative transition hazards for each of

the possible transitions. It also estimates the variance by using the method proposed

by Aalen. The object fit1 has three components: the cumulative hazard (fit1
$Haz), the variance of the cumulative hazard (fit1$varHaz) and the transition

matrix with the line numbers of the transitions (fit1$trans). The cumulative

hazard at exact age 12 is 0.002. The value is contained in the object fit1$Haz
[1,]. The cumulative hazard produced by the basehaz function of the survival
package gives the same result, if the object c1 is used:
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ch3 <- basehaz(c1)
ch3[ch3$strata=="trans=1",]

To select the cumulative hazards for the MK transition, use fit1$Haz[fit1
$Haz$trans¼¼13,]. The first column shows the age; the second, the cumula-

tive hazard; and the third, the transition. The maximum of the cumulative hazard is

max(fit1$Haz[fit1$Haz$trans¼¼13,2])¼6.257. Compare this with the

maximum produced by the mvna package: max(na$’MK’$na)¼6.242. The

cumulative hazard produced by the basehaz function of the survival package
gives the same result, if the object c1 is used:

ch3 <- basehaz(c1)
ch3[ch3$strata=="trans=13",]

The maximum of the cumulative hazard is max(ch3[ch3
$strata¼¼"trans¼13",1]), which is 6.257.

To plot the 13 cumulative hazards estimated in the mstate package, use plot
(fit1).

Summary information on the strata is given by:

kk <- survfit (c1)

The following code displays more detailed output of the Cox model. It includes

for each of the possible transitions the ages at transition, the risk set at each

transition (number of respondents at risk just prior to a transition), the value of

the survival function and the cumulative hazard.

zhh <- cbind(Time=kk$time,
RiskSet=kk$n.risk,
Trans=kk$n.event,
Surv=kk$surv,
CumHaz=ch3$hazard,
Strata=ch3$strata)

The object zhh has all the necessary information to compute empirical transi-

tion rates. The object is comparable to the object Stable produced by the

Biograph function RateTable.

8.4.3 Regression Models

In this section, two applications are presented. The first is the effect of reason for

leaving home on the rate of leaving home. The second is the effect of birth cohort
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and religious denomination on the rate at which cohabitating and married couples

have a first child. The substantive question is whether the concepts of cohabitation

and marriage vary between cohorts and religious denominations.

Suppose we are interested in the effect of reason for leaving home on the rate of

leaving home and on the shape of the age pattern of leaving home. The reasons for

leaving home are independent living, cohabitation and marriage. Do young adults

who leave home to live independently leave home earlier than those who leave for

marriage or to cohabit? The model is essentially a competing risks model

(Beyersmann et al. 2012). Six respondents have their first child while living at the

parental home; they are excluded from the analysis.

H. <- subset (Depisode,Depisode$OR=="H" &
Depisode$trans!=4)

The remaining 494 respondents are divided in three strata: those experiencing

the HA transition, those experiencing the HC transition and those with the HM

transition.

A Cox proportional hazards regression model of the survival package is applied
to study the effect of the reason for leaving home on the rate of leaving home:

coxa<- coxph(Surv(H.$Tstopa,status)
~as.factor(trans),
data=H.,
method="breslow")

The transitions 1 (HA), 2 (HC) and 3 (HM) are specified as categorical variable.

The first category is the reference category. Box 8.2 shows the results. The rate of

leaving home for respondents who leave home to cohabit is 82 % of the rate of

leaving home to live independently. The rate of leaving home for marriage is 14 %

lower than the rate of leaving home to live independently.

Box 8.2: Effect Reason for Leaving Home on Rate of Leaving Parental

Home. Cox Competing Risks Model. OG

Call:
coxph(formula = Surv(H.$Tstopa, status) ~ as.factor(trans), 
data = H., method = "breslow")

coef exp(coef) se(coef)     z    p
as.factor(trans)2 -0.194     0.824    0.124 -1.56 0.12
as.factor(trans)3 -0.148     0.863    0.109 -1.36 0.17

Likelihood ratio test=2.96  on 2 df, p=0.228  n= 494, number 
of events= 450 
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This model assumes that the age profile of leaving home (baseline hazard) is the

same for the three reasons, implying that the effect of reason on the rate of leaving

does not vary with age. The expression z<- basehaz(coxa) produces a table

with the cumulative baseline hazard at ages at which transitions occur. The function

plot(z$time,z$hazard,type¼"l") plots the baseline hazard. The

assumption that the baseline hazard is the same for all three reasons, i.e. that the

effects are proportional, may be tested graphically. The Schoenfeld residual plot is

produced by the following code:

coxa.zph <- cox.zph(coxa,
transform="identity",global=TRUE)

plot (coxa.zph[1])

The rate of leaving home for cohabitation or marriage is not proportional to the

baseline hazard, which is the rate of leaving home to live independently (reference

category). The effects of cohabitation (coxa.zph[1]) and marriage (coxa.zph
[2]) increase with age, up to about age 25.

The following model yields separate cumulative hazard rates for each of the

reasons for leaving home:

coxb<- coxph(Surv(H.$Tstopa,status)
~ strata(trans),
data=H.,method="breslow")

The cumulative transition rates are produced by the expression:

zh<- basehaz(coxb)

Note that the rates are specified per year. If rates are expressed per month, the

cumulative hazard is considerably lower.

The following code plots the baseline hazards with their 95 % confidence

intervals:

zz <- survfit (coxb)
plot(zz,fun="cumhaz",

xlim=c(15,30),
main="Leaving parental home. OG.",
xlab="Age",ylab="Cumulative hazard",
col=c("red","blue","green"),
conf=TRUE)

legend(15,5,legend=c("HA","HC","HM"),
fill=c("red","blue","green"))
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The plot is not shown. Persons who leave home to live independently leave at

younger ages than those who leave home for another reason. The rate of leaving

home to live independently is relatively constant, i.e. does not vary with age.

Persons who leave home for cohabitation or marriage leave at higher ages, but, if

the reason is marriage, they catch up with respondents who leave home to live

alone.

To address the second question, I use mstate. Two transitions are of interest: the

CK transition (transition number 10) and the MK transition (transition number 13).

To facilitate model specifications, two expanded (transition-specific) covariates are

created: birth cohort and religious denomination (kerk):

Dcov <- expand.covs(data=Dmstate,covs=c("cohort","kerk"))

Dcov is the expanded covariate data set. The expanded covariates are a combi-

nation of (1) the covariate name, (2) the level and (3) the transition number. If the

use of the function expand.covs produces an error message, a likely cause is

that the transition matrix has at least one non-missing diagonal element (check with

attr(Dmstate,"trans")).
The effect of birth cohort and religion on the rate at which cohabiting and

married couples have a first child is obtained by the model:

ck <- coxph(Surv(Tstarta,Tstopa,status) ~
+cohort1960..10+cohort1960..13
+kerkRoman.Catholic.10+kerkRoman.Catholic.13
+kerkProtestant.10+kerkProtestant.13
+kerkother.10+kerkother.13
+strata(trans),
data=Dcov,
method="breslow")

Notice that respondent with ID 558 ends cohabitation in CMC 1975 to live

independently and has a first child in that same month. The coxh function gives a

warning: ‘Stop time must be>start time, NA created’, which means

that the case is omitted.

The model specification implies that the covariates cohort and kerk affect

the CK and MK transitions but not the other transitions. The cumulative hazards

associated with other transitions (1 to 9, 11 and 12) are not affected by the

covariates. They differ between strata, however. It implies that for these transitions

the cumulative hazards are the same for all respondents.

The rate at which cohabiting and married women enter motherhood depends on

birth cohort and religious denomination. Box 8.3 shows the results of the Cox

regression, stored in object ck. The reference category of the covariate ‘cohort’ is
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the cohort born before 1960, and the reference category for ‘kerk’ consists of

persons without a religion. The rate at which married women have a first child is

about the same in the two birth cohorts. In the younger cohort born in 1960 or later,

it is 20 % lower than in the cohort born before 1960. The finding is consistent with a

lower marital fertility and postponement in recent birth cohorts. Among cohabiting

women, the rate is quite different: those born in 1960 or later have a rate that is 53 %

higher than the rate for cohabiting women born before 1960. It shows that in the

Netherlands, cohabitation has become more similar to marriage. Protestant women

who cohabit become mothers at a rate that is 4 % higher than cohabiting women

without a religion. Protestant women who are married become mothers at a rate that

is 27 % higher than the rate for married women without a religion. Among

Protestant women, the marriage institution remains an important factor in fertility.

Box 8.3: Effect of Birth Cohort and Religion on First Birth Rate

for Cohabiting and Married Women. Cox Model, Using mstate
Package. OG

Call:
coxph(formula = Surv(Tstarta, Tstopa, status) ~ +cohort1960..10 + 

cohort1960..13 + kerkRoman.Catholic.10 + kerkRoman.Catholic.13 + 
kerkProtestant.10 + kerkProtestant.13 + kerkother.10 + kerkother.13
+ strata(trans), data = Dcov, method = "breslow")

coef exp(coef) se(coef)        z     p
cohort1960..10         0.42438     1.529    0.595  0.71364 0.480
cohort1960..13        -0.22951     0.795    0.124 -1.85813 0.063
kerkRoman.Catholic.10  0.55840     1.748    0.535  1.04437 0.300
kerkRoman.Catholic.13  0.07330     1.076    0.139  0.52608 0.600
kerkProtestant.10      0.03682     1.038    0.782  0.04710 0.960
kerkProtestant.13      0.23948     1.271    0.160  1.49494 0.130
kerkother.10          -0.00769     0.992    1.071 -0.00718 0.990
kerkother.13          -0.06997     0.932    0.288 -0.24294 0.810

Likelihood ratio test=7.97  on 8 df, p=0.436  n= 4462, 
number of events= 1142 (10 observations deleted due to missingness)

Transition rate models predict transition rates from information on transitions

and covariates. In this section, the semi-parametric Cox model is applied, using

functions of the survival package. Since our interest is in transition rates, the Cox

model needs to be combined with the baseline hazard to produce age-specific

transition rates. The Cox model and other transition rate models estimate effects

of covariates on transition rates. In multistate modelling, several transitions are

distinguished and covariates may affect transitions differently. The mstate package
incorporates a method to flexibly specify transition rate models and to test different
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hypotheses about the impact of covariates on transitions. By way of example, the

effects of birth cohort and religious denomination on birth rates of cohabiting and

married women are estimated. The analysis sheds light on the evolving concept of

marriage and the impact of religious denomination on the pace of change.

8.5 The Multistate Life Table

A multistate life table describes the biography of a cohort of people moving

between states. Transitions are governed by transition rates estimated from data.

Since the empirical rates are estimated from data on different people passing

through different segments of life, the cohort is a synthetic cohort (for details, see
Chap. 2). Three classes of indicators describe the cohort biography: counts, prob-

abilities and durations (state occupation times; sojourn times). Two types of

probabilities are distinguished: state probabilities and transition probabilities. The

state probability at a given age is the probability of being in a given state at that age.

The transition probability is the probability that an individual who is in a state (i) at

a given reference age (x) is in another state (j) at a given later age (y). The state

probability at a given age may be conditional on being present (alive) at a previous

age and on the state occupied at that age. Probabilities and sojourn times may be

conditional or unconditional.

The first step in computing the multistate life table consists of estimating

age-specific (cumulative) transition rates. The subsample of 500 respondents in

the Netherlands Family and Fertility Survey 1998 is used for the estimation. The

function Cumrates is used to obtain Nelson-Aalen estimates and occurrence-

exposure rates.

The following function produces Nelson-Aalen estimates of the cumulative

hazard (irate¼ 1):

cumrates <- Cumrates(irate=1,Bdata=OGd)

where OGd is the data with intrastate transitions removed.

The function Cumrates uses the mvna function of the mvna package.

Cumrates returns an object with seven components: the data (cumrates$D),
the value of irate (cumrates$irate), the Nelson-Aalen estimates

(cumrates$NeAa), the predicted transition rates and their 95 % confidence

intervals (cumrates$predicted), the age-specific transition rates computed

from the Nelson-Aalen estimates (cumrates$astr), the cumulative occurrence-

exposure rates (cumrates$oeCum) (NULL in this case) and the occurrence-

exposure rates (cumrates$oe) (NULL in this case). Since in this illustration,

occurrence-exposure rates are not computed, their values are zero. For our

analysis, we use the expected value (cumrates$NeAa[,,,1]) of the
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cumulative hazards. The cumulative HA transition rates by age are cumrates
$predicted$"H A".

Transition rates may also be computed as occurrence-exposure rates using:

cumrates.oe <- Cumrates(irate=2,Bdata=OGd)

The transition rates are stored in object cumrates.oe$oe. The function uses

the Rates.ac function of Biograph. An alternative is to use the Rates.ac
function directly:

rates <- Rates.ac(Stable=ratetable$Stable)

where ratetable is the object produced by the RateTable function.

The multistate survival function is one of the multistate life table indicators. It is

shown in Fig. 8.10. The multistate survival function is a stack diagram. At a given

age, the distance between two curves gives the probability that a member of the

synthetic cohort is in a given state. The function MSLT.S computes the multistate

survival function. The argument of the function is a set of transition rates, in this

case Nelson-Aalen estimators:

s <- MSLT.S (cumrates$astr[,,,1])

Notice that the arguments are transition rates and not cumulative transition rates.

Fig. 8.10 Multistate

survival function: state

occupation probabilities by

age. OG
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The figure also shows the expected sojourn time in each state. The expected

sojourn time in a state is the area between two curves in the multistate survival

function. The function MSLT.e computes the expected sojourn times in the

different states. The arguments are the multistate survival function and the radix.

The radix gives the number of cohort members by state occupied at the initial age.

Since at birth, all persons live at the parental home, the radix is:

radix <- c(10000,0,0,0,0)

The expected sojourn times are computed as follows:

e <- MSLT.e (s,radix)

The total time a newborn may expect to spend in each state is contained in the

component e$e0. These figures may also be computed from the sojourn times by

state and age interval: apply(e$L[,,1],2,sum). In this illustration, the total

expected sojourn time is 54 years. That figure is a consequence of truncating
observations at age 54 and omitting mortality. In the absence of mortality, every

member of the synthetic cohort is followed for 54 years. The expected age at which

a cohort member leaves the parental home is 21.4 years. The expected duration of

independent living is 3.2 years, the expected number of years of cohabitation is 3.0

and the expected duration of marriage before marriage dissolution or birth of a child

is 4.1 years. The durations in these states depend on the ages at which states are

entered and the reasons for leaving. In this state space, cohabitation is ended

because of marriage, separation (to live alone) and childbirth. In this example no

transitions are considered after the birth of the first child. Hence the mean age at

birth of the first child is 54�22.3¼ 31.7 years.

The following code draws Fig. 8.10:

z<- plot (x=s$S,e$e0,
title="Multistate survival function",
area=TRUE,order=c("H","A","C","M","K"))

In the sample the mean age at birth of the first child, irrespective or marital status

and living arrangement, is 26.3 years. That figure is obtained by the following code:

z<- TransitionAB (OGd,"*K")
mean(z$age,na.rm=TRUE)

In the synthetic cohort, the mean age is higher because (1) some women remain

childless and (2) observations are not censored at survey date but continue until

cohort members reach age 54. The mean age at censoring (survey date) is 36 years:

mean(AgeTrans(OGd)$agecens) or:
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agetrans <- AgeTrans(OGd)
mean (agetrans$agecens)

Transition probabilities are informative life table indicators. Transition proba-

bilities are computed for a reference period, usually 1 or 10 years. The period may

also be variable, e.g. remaining lifetime. The probability that a woman who

cohabits at age 20 is married at age 21 is obtained by solving the matrix exponent.

The function MatrixExp is part of the msm package. The transition probabilities

are:

P <- MatrixExp(
cumrates$astr[namage="20",,,1], 
t=1,n=5,k=3,method="series")

where cumrates$astr are age-specific transition rates, produced by the follow-

ing code:

library(mvna)
zz<- Cumrates (irate=1,OGd)
rates.na <- zz$astr[,,,1]

The transition probabilities may also be computed from the age-specific occur-

rence-exposure rates:

rates <- Rates.ac(Stable=ratetable$Stable)
library(msm)
P <- MatrixExp(rates$M[namage="20",,],

t=1,n=5,k=3,method="series")

Transition probabilities are shown in Table 8.13.

The probability that a woman, who cohabits on her 20th birthday, is married

exactly 1 year later and has not yet a child at that age is a little less than 2 %. The

probability that a 20-year-old married woman has a first child within a year is 25 %.

In comparing of Nelson-Aalen estimates of transition rates with occurrence-

exposure rates, one should note differences in the treatment of age. Consider an

example. One respondent left the parental home exactly at age 12. The Nelson-

Aalen estimator of the cumulative transition rate exactly at age 12 is nonzero,

because the transition is related to the population at risk just before age 12. If the

difference between the cumulative transition rate at exact age x and the cumulative

transition rate at exact age x�1 is computed to determine the transition rate at age

x�1, then the transition rate at age 11 is nonzero. It should be zero because the

transition takes place at age 12. The occurrence-exposure rate at age 11 is zero. The

difference is due to the definition of an age interval. In the first method, the lowest

age is excluded and the highest age is included. In the second method, which is

common in demography, the lowest age is included and the highest age is excluded.
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The 10-year transition probabilities based on the Nelson-Aalen estimators, for

persons aged 20, can be obtained with the following code:

P <- MatrixExp(cumrates$NeAa[namage="30",,,1]-
cumrates$NeAa[namage="20",,,1],
t=1,n=5,k=3,method="series")

The function MatrixExp, which is from the msm package, computes the

exponent of a matrix. Table 8.14 shows the probabilities of being in a state at age

30 by state occupied at age 20. The cumulative transition rates are Nelson-Aalen

estimators. The probability that a childless and cohabiting woman aged 20 has at least

one child at age 30 is 63 %. The percentage is considerably higher if the woman is

married at age 20 (92 %). To obtain the probability that she will ever have a child

(at least one), age 30 should be replaced by age 54, which is the maximum age.

The probabilities differ slightly when cumulative occurrence-exposure rates are

used (rate¼ 2). One could easily introduce covariates to determine the probabilities

Table 8.13 One-year probabilities of transition between marital status/living arrangement for

females aged 20. Comparison of Nelson-Aalen estimator and occurrence-exposure rates. OG

a. Based on occurrence-exposure rates
origin

destination      H      A      C      M K
H 0.7463 0.0000 0.0000 0.0000 0
A 0.0851 0.8605 0.0697 0.0154 0
C 0.0451 0.0825 0.8534 0.0008 0
M 0.1016 0.0318 0.0227 0.7336 0
K 0.0218 0.0252 0.0543 0.2502 1

b. Based on Nelson-Aalen estimator
origin

destination      H      A      C      M K
H 0.7504 0.0000 0.0000 0.0000 0
A 0.0819 0.8839 0.0763 0.0144 0
C 0.0423 0.0749 0.8279 0.0006 0
M 0.1031 0.0247 0.0233 0.7332 0
K 0.0223 0.0164 0.0724 0.2518 1

Table 8.14 Ten-year probabilities of transition between marital status/living arrangement for

females aged 20, based on Nelson-Aalen estimator combined with assumption of time-invariant

rates. OG

origin
destination          H         A          C           M K

H 0.04119894 0.0000000 0.00000000 0.000000000 0
A 0.09337932 0.1673202 0.08049936 0.010627939 0
C 0.11139482 0.1869962 0.14072561 0.008747751 0
M 0.15906774 0.1699861 0.15203619 0.060643236 0
K 0.59495918 0.4756975 0.62673884 0.919981075 1
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for women with given attributes. For example, the probability that a woman of age

20, born before 1960, Protestant, married and childless has at least one child at age

30 is 95.5 % if the Nelson-Aalen estimator is applied and 95.8 % if the probability is

derived from the occurrence-exposure rates. They are obtained using the following

code:

OGdd <- OGd[OGd$cohort=="<1960"&
OGd$kerk=="Protestant",]
OGdd <- OGdd[!is.na(OGdd$ID),]
zz<- Cumrates (irate=1,OGdd)
Pna10 <- MatrixExp(zz$NeAa[namage="30",,,1]-

zz$NeAa[namage="20",,,1],
t=1,n=5,k=3,method="series")

oe <- Cumrates (irate=2,OGdd)
Poe10 <- MatrixExp(oe$oeCum[namage="30",,]-

oe$oeCum[namage="20",,],
t=1,n=5,k=3,method="series")

An alternative method for estimating x-year transition probabilities is to use the

probtrans function of the mstate package. Consider the Cox model that deter-

mines the effect of birth cohort and religion on the rate at which cohabiting and

married couples have a first child. It is given in the previous section. The cumula-

tive transition rates for each of the possible transitions are computed by the msfit
function of the mstate package. We fit a different cumulative hazard for each

possible transition and assume that the population is homogeneous, i.e. no

covariates are considered. The Cox model is:

Dmstate <- Biograph.mstate (OGd)
c1 <- coxph(Surv(Tstarta,Tstopa,status) ~

strata(trans),
data=Dmstate,
method="breslow")

The cumulative hazard rates are produced by the msfit function:

fit1 <- msfit (c1,
trans=attr(Dmstate,"param")$tmat,
vartype="aalen")

The following code predicts the state probabilities:

Prob0 <- probtrans(fit1,direction="forward",predt=20)

The prediction starts at age 20 (predt¼20) and yields state probabilities for

successive ages at which transitions occur (direction forward). For example, the

probability that a childless woman of age 20 who cohabits has at least one child at
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age 30 is 64 %. The probability that a married childless woman of age 20 has at least

one child at age 30 is 92 %. A woman who lives at the parental home at age 20 has a

probability of 62 %, and a woman who lives alone has a probability of 54 %. These

probabilities are comparable to those given in Table 8.14. The probabilities are

produced by the following code:

for (i in 1:5)
{ z<- cbind(Age=Prob0[[i]]$time,

ProbK = Prob0[[i]]$pstate5)[121,]
print (c(i,z))  }

The probabilities associated with age 30 are in the 120th line of Prob0[[1]]
which shows the time at which a transition occurs and the probability that a 20-year-

old woman in state i has at least one child at that age, i.e. is in state 5 (pstate5).
Consider the effect of birth cohort and religion on the probability that a woman

of age 20 has at least one child at age 30. Since we are not interested in effects on

other transitions, the covariates are defined for transition 10 (CK) and

13 (MK) only. Consider a woman born before 1960, with a religion other than

Roman Catholic or Protestant. The relevant characteristics are defined in the

newdata data frame:

newdat <- data.frame(trans=1:13,
cohort1960..10=c(0,0,0,0,0,0,0,0,0,0,0,0,0),
kerkRoman.Catholic.10=c(0,0,0,0,0,0,0,0,0,0,0,0,0),
kerkProtestant.10=c(0,0,0,0,0,0,0,0,0,0,0,0,0),
kerkother.10=     c(0,0,0,0,0,0,0,0,0,1,0,0,0),
cohort1960..13=c(0,0,0,0,0,0,0,0,0,0,0,0,0),
kerkRoman.Catholic.13=c(0,0,0,0,0,0,0,0,0,0,0,0,0),
kerkProtestant.13=c(0,0,0,0,0,0,0,0,0,0,0,0,0),
kerkother.13=     c(0,0,0,0,0,0,0,0,0,1,0,0,0),
strata=1:13)

attr(Dcov,"param") <- Parameters (OGd)
msck <-msfit(ck,newdata=newdat,

trans=attr(Dcov,"param")$tmat)

where ck was estimated using mstate (Sect. 8.4.3). The following code predicts the
state probabilities:

probck <- probtrans(msck,direction="forward",predt=20)

The probability that a cohabiting woman of age 20, who is born before 1960 with

a religion other than Roman Catholic or Protestant, has at least one child at age 30 is

62 %, with standard deviation of 6.95 % (line 120 of probck[[3]]). The
probability is 93 % with a standard deviation of 2.65 % if she is married at age

20 (line 120 of probck[[4]]). The probability of having at least one child during
a lifetime is 81.5 %, with a standard deviation of 4.52 %, if the woman cohabits at
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age 20 and 97 %, with standard deviation of 1.05 %, if she is married at age 20. If

she lives at the parental home at age 20, the probability is also 81 %, but the

standard deviation is larger (3.63 %).

The multistate survival function for a woman born before 1960 having a religion

other than Roman Catholic or Protestant is shown in Fig. 8.11. The figure is

produced by the plot.probtrans function, which plots an object of class

‘probtrans’. The code is:

plot (probck,type="filled",ord=c(1:5),las=1,
xlab="Age",
ylab="State probability",
main="Multistate survival curves. Women of a 
religion other than R. Catholic or Protestant, born
before 1960",
cex.main=0.8)

The multistate life table describes the life history that results from age-specific

rates of transition. Transition rates are estimated from data, in this illustration a

subsample of the Netherlands Family and Fertility Survey of 1998. In this section,

two approaches to estimating transition rates are considered: the non-parametric

method, which estimates transition rates any time a transition occurs (Nelson-Aalen

estimator), and the method that defines age intervals and estimates transition rates

for each interval separately (occurrence-exposure rate). The transition rates are very

similar. Transition rates are input to the estimation of life history indicators. Three

classes of indicators are considered: state occupation probabilities, transition prob-

abilities and expected state occupation times. State occupation probabilities by age

define the multistate survival function. They extend the conventional survival

Fig. 8.11 Multistate

survival function: state

occupation probabilities for

women born before 1960

and with a religion other

than Roman Catholic or

Protestant. Produced by

mstate package. OG
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function, which gives probabilities of being alive at consecutive ages. The multi-

state survival function shows how state occupancies evolve with age. Transition

probabilities may be viewed as state occupation probabilities that are conditional on

the state occupancy at a reference age. Expected state occupation times summarise

multistate survival functions in terms of expected years spent in each state.

8.6 Conclusion

In this chapter, Biographwas used to investigate the path women in the Netherlands

follow between leaving parental home and motherhood. The chapter is based on a

subsample of 500 women. The original sample was more than 5,000 women. The

life course is described in terms of marital status and living arrangement. After

leaving the parental home, a person may live alone (independently), cohabit

(non-married cohabitation) or be married. In any of these states, a child may be

born. Of the 500 respondents, one third does not have a child before the end of the

observation period. That is considerably higher than one would expect from the

official statistics on the proportion remaining childless. The reason is that respon-

dents are relatively young.

About 90 % of the respondents with a child had their first child in marriage.

Women who left the parental home to marry had their first child at age 24, and those

who lived independently and cohabited before marriage had the child at 28 or later.

The trajectory of living arrangements has a considerable influence on the age at

birth of the first child. Pathways to motherhood differ greatly among women.

Biograph identifies 48 different pathways in the subsample of 500 women, but

the pathways are not evenly distributed among women. Two thirds of women in the

subsample experienced one of 5 pathways.

The analysis reveals that women born in 1960 or later have a much larger variety

of pathways than women born before 1960. Half of the women born before 1960

left the parental home for marriage (HMK), and they had a first child at a median

age of 23.5 years. In the younger cohort, only 15 % experienced the HMK

trajectory, and those who did had the first child at a median age of 26.4 years,

mostly as a result of postponement of marriage. Women with an HACMK trajectory

had the first child around age 29; the difference between the two cohorts is small,

about half a year.

If respondents who were interviewed at relatively young age would experience

the rates of transition that were observed among the older women in the sample,

then about 18 % of the sample population would remain childless, and those who

have a child would give birth on age 29.7, on average.

The meaning of marriage as an institution for raising children has eroded. The

fertility rate of cohabiting women is tending to the fertility rate of married couples.

The rate at which married women have a first child is about the same in the two birth

cohorts. In the younger cohort born in 1960 or later, it is 20 % lower than in the
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cohort born before 1960. The finding is consistent with a lower marital fertility and

postponement in recent birth cohorts. Among cohabiting women, the rate is quite

different: those born in 1960 or later have a rate that is 53 % higher than the rate for

cohabiting women born before 1960. It shows that in the Netherlands, cohabitation

has become more similar to marriage. Religious denomination influences the trend,

however. For instance, among protestant women the meaning of marriage is much

stronger than among women without a religion. Protestant women who cohabit

become mothers at a rate that is 4 % higher than cohabiting women without a

religion. Protestant women who are married become mothers at a rate that is 27 %

higher than the rate for married women without a religion.

The findings illustrate the types of insight that can be obtained using Biograph
and related packages in CRAN.
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Chapter 9

Summary

As life unfolds people move between states and enter new stages of life. The path

taken depends on personal characteristics, early life experiences, context and

chance. The life course can be represented as a sequence of states and modelled

as a multistate process, governed by transition rates. In this book, the continuous-

time Markov process is used to model life histories. Transition rates may depend on

covariates.

Biograph is designed to facilitate the study of the life course as a multistate

process. The package serves three important purposes. The first is to assist the user

who tries to comprehend life history data. The second is to document, as fully as

possible, the computation of transition rates. The third is to facilitate the use of

advanced statistical techniques for life history analysis.

Graphics and summary measures are useful means to characterise data. Life

histories of individuals and sets of individuals can be displayed and patterns

identified. Summary indicators of transitions, episodes and state sequences can be

produced for the entire sample population or for a subset of people with similar

characteristics. It should facilitate a comparison of subpopulations.

Observations on life histories are usually incomplete. Information on the entire

life span is usually not available; information is limited to parts of the life course

and relevant transitions may occur before observation starts or after observation

ends. Transitions outside of the observation window are not recorded. For each

individual under observation, Biograph identifies which segment of life is observed

and when, i.e. in which calendar years, it is observed. For instance, information on

persons in their thirties may be available for a few years only or for many years,

enabling the study of cohort effects. The Lexis diagram is used to display segments

in an age-time framework.

A particularly useful feature of Biograph is the information it provides on

exposure time during periods of observation. In order to comprehend how transition

rates are estimated from data and to determine the contribution of each individual

observation to the transition rate, transitions during a period of observation should

be related to exposure time during that same period. An individual is exposed to the
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risk of a transition if he occupies a state that may end in that transition. Biograph
tracks individual transitions and episodes of state occupancy and exposure. That

ability to track transitions and exposure time for individuals and user-defined

groups of individuals is an important feature of the package. One could, for

instance, identify which subjects are under observation at a given age or time and

contribute to the likelihood function, which expresses the likelihood of the data

given a probability model of the transition rate. One could identify the types of

episodes (open or closed) at that time. The distinction between open and closed

intervals is important in the maximum likelihood estimation of multistate models.

Biograph also identifies common state sequences and how state sequences are

affected by changes in the observation window.

Biograph facilitates the reconstruction of life histories from the empirical

evidence in the sample population. The package uses the multistate life table

(MSLT) method to produce synthetic biographies by combining information on

different individuals. Since the observation usually records the experience of

people of different ages during a relatively short period of time, 5 or 10 years

say, information on different individuals should be combined to produce an entire

life history. Biograph estimates transition rates for use as inputs to the multistate

life table. Two estimation methods are considered in the multistate life table: the

non-parametric method, which yields the Nelson-Aalen estimator, and the partly

parametric method, which produces occurrence-exposure rate. The MSLT gener-

ates a number of useful measures: discrete-time transition probabilities, state

probabilities, expected state occupancies (number of cohort members by age and

state occupied at that age) and expected state occupation times (sojourn times,

exposure times). The indicators are given by age and selected covariates. They may

be conditioned on the state occupied at a reference age. The synthetic biographies

produced by the MSLT are the basis for a range of life history indicators.

The package also facilitates the use of advanced statistical techniques for life

history analysis. Biograph does not include advanced statistical methods but pro-

vides links to packages in R that implement advanced statistical methods. These

packages require data in a particular long format that usually vary between pack-

ages. Users often spend much time to prepare data in the required format. Biograph
reduces the burden on the user by providing functions that convert data to a desired

format. Biograph includes conversion utilities for several packages: survival, msm,
mvna, etm, mstate, Epi and TraMineR. Because of the adaptors it is sufficient to

convert the data only once.

Biograph accepts data in a particular wide format. A Biograph object has that

data structure. The preparation of the data in the right format and the creation of a

Biograph object can be cumbersome. Five steps are required. First, the state space

and the possible transitions are defined. Second, relevant covariates are selected.

Third, the observation window is set for each subject. Fourth, the state sequence is

determined and the dates at transition are recorded. In the fifth and final step, all

data are stored in a data frame and three data attributes are attached to the data

frame. A utility included in Biograph may be used for steps four and five.
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In the book two data sets are used to illustrate the Biograph package. The first is
a subsample of the German Life History Survey (GLHS). The subsample was used

by Blossfeld and Rohwer (2002) to illustrate event history modelling. That data set

is used in Chaps. 2, 3, 4, 5, 6 and 7. In Chap. 8, another data set is used: a subsample

of the Netherlands Family and Fertility Survey 1998 (NLOG98). An additional six

data sets are used to demonstrate the creation of a Biograph object. Two are very

simple and hypothetical data sets to demonstrate the steps as clearly as possible.

One data set consists of simulated life histories. The other data sets are real

retrospective surveys and follow-up studies: the Survey of Health, Ageing and

Retirement in Europe (SHARELIFE), conducted in 2010; the National Family

Healthy Survey of India (2005–2006); and a subset of the European Group for

Blood and Marrow Transplantation (EBMT). The subset was used by Putter and

colleagues (see de Wreede et al. 2011) to illustrate the mstate package.
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Annexes

Annex A: How to Create a Biograph Object

A.1 Introduction

The purpose of this annex is to show how to create a Biograph object. The R code is

included in the online documentation of the Biograph package (Version 2). In this

book, several data sets are used to illustrate the method. The preparation of a

Biograph object starting from the published GLHS data is described in Chap. 3

and the preparation of a Biograph object starting from the public use file of the

Netherlands Family and Fertility Survey 1989 (NLOG98) in Chap. 8. In this annex,

the conversion of another six data sets is documented. Two are hypothetical data

sets, the first carries information on three subjects and the second on 22 subjects. In

the third example of how to prepare a Biograph object, data from the Survey of

Health, Ageing and Retirement in Europe (SHARE) are used. The SHARE survey

is modelled after the US Health and Retirement Survey (HRS). Data from the

National Family Health Survey of India are used in the fourth example. The NFHS

is one of the many Demographic and Health Surveys (DHS) organised in Third

World countries and countries in transition. In the fifth example, medical data are

used. They are included in the mstate package for multistate modelling in R,

developed by Putter and colleagues at Leiden University Medical Centre. The

data cover 2,279 leukaemia patients who had a bone marrow transplant. The final

example consists of simulated life histories. A separate R programme is written for

each data set. The source code is distributed with the Biograph package. The code is
included in the documentation file (inst/doc) of the package source (extension .tar.

gz).

The Biograph object carries information on (1) subjects, (2) transitions and

(3) observation period. The subject data consist of dates of birth and covariates,

which may include time-varying covariates. In the GLHS data, marital status is a

time-varying attribute. The age at marriage is included in the data. Information on
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transitions includes state sequences and dates of transition or ages at transition. The

state sequence is the sequence of states occupied by a subject during the period of

observation. The dates or ages are ordered chronologically, with the date or age at

the first transition displayed first, followed by the date or age at the second

transition, etc.

A Biograph object is created in five steps. The first is the specification of the

state space and the transitions between states. Transitions that are not possible or

not relevant for the study are excluded. The transitions that are included are feasible

and relevant. The second step is the selection of covariates. The observation

window for each subject in the observation is specified in the third step. It requires

the dates at start and end of observation. In the fourth step, the state sequence is

determined, and the dates or ages at transition are determined. In the fifth and final

step, data are stored in a data frame and three data attributes are attached. The first is

the object produced by the Parameters function of the Biograph package. The

object includes the state space. The second indicates how dates at transition are

represented (e.g. calendar time, CMC or age). The third indicates how dates of birth

are represented.

A.2 Hypothetical Data A

Consider three individuals, one male and two females. Two have medium levels of

education and one completed higher education. The three individuals are born in

1986. The first person is born on 5 April 1986, the second on 8 August 1986 and the

third on 28 November 1986. Assume that during an interview on 9 May 2012, life

history data were collected on living arrangements. Consider four living arrange-

ments: living at the parental home (H), living alone (A), cohabiting (C) and married

(M). The set of possible living arrangements constitutes the state space, which is

denoted as {H, A, C, M}. The first person starts living independently on 20 August

2004 at the age of 18. It is her first transition, i.e. she leaves the parental home to

live independently. She starts cohabitation on 1 December 2011 and is still

cohabiting at the time of interview. The second person starts living independently

in September 2011. The exact date is not known. He is still living independently at

survey date. The third person starts living independently on 10 August 2006 and

marries on 16 March 2012. If the month of transition is known, but not the date, it is

assumed that the transition takes place on the 15th of that month. The information

on the transitions is shown in Table A.1. A row carries information on an individual.

A column has the date of entry in a given state.

The covariates are sex and level of education. The observation period differs

between individuals. Observation starts at birth and ends at interview. The data are

shown in Table A.2

The first column is the line number. The second column is the subject’s identi-

fication number (ID). The third and fourth columns delineate the observation

window. The dates are objects of class ‘Date’, which enables arithmetic and logical
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operations on the dates. The fifth and sixth columns show the covariates. The

covariates are factors.

The code to produce a Biograph object is shown in create.Simple1a.r
and create.Simple1b.r. The first step in the creation of a Biograph object is

the specification of the state space. The state space is {H, A, C, M}. The second step

is the selection of covariates. They are sex and education. The third step is the

specification of the observation period for each individual in the study. They are

shown in Table A.2. In the fourth step, state sequences and the transition dates are

determined. To determine the state sequence, the transition dates need to be ordered

chronologically, i.e. the event that occurred first is listed first. The subsequent event

is listed second, etc. The second event is not the same for everyone. In the data

above, it is cohabitation for the first person and marriage for the third person. The

function Sequences.ind.0 orders the dates chronologically and derives state

sequences. The raw transition dates (shown above) are stored in a data frame with

the dates as character variables. The function as.Date of base R is used to convert

the character dates in Julian dates. The function is evoked using the code:

f <- Sequences.ind.0(d=dd,namstates=namstates,absorb=NULL)

where dd is the data frame with the transition dates and namstates is the state

space. The function produces an object with three components, but two are of

particular importance. They are the state sequence (f$path) and the sorted

transition dates (f$d). Table A.3 shows the object produced by the function

Sequences.ind.0.
The Julian dates are converted back to calendar dates (class ‘Date’) using the

as.Date function. The results is a data frame, which in the code is called dates.
The code is:

Table A.1 Transition dates for three hypothetical individuals

A         C          M
1 2004-08-20 2011-12-1       <NA>
2 2011-09-15      <NA>       <NA>
3 2006-08-10      <NA> 2012-03-16

Table A.2 Data on three hypothetical individuals

ID      start        end sex   educ
1  1 1986-04-05 2019-05-09   F   High
2  2 1986-08-08 2019-05-09   M Medium
3  3 1986-11-28 2019-05-09   F Medium
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dates <- data.frame (f$d)
for (i in 1:3)

{dates[,i] <- as.Date(dates[,i],origin="1970-01-01")}
path <- as.character(f$path)

The final step is to assemble the data in a data frame and to add the date format

and the parameters as attributes. The following code produces the Biograph object

(Table A.4):

bio  <- data.frame (
ID=id,
born=born,
start=start,
end=interview,
sex=sex,educ=educ,
path=as.character(path),
dates[,1:(max(nchar(path))-1)]1)],
stringsAsFactors=FALSE)

attr(bio,"format.date") <- "%Y-%m-%d"
attr(bio,"format.born") <- "%Y-%m-%d"
param <- Parameters (bio)
attr (bio,"param") <- Parameters (bio)

The data frame has different data types. The function str(bio) displays the

data types (Table A.5):

Note that the path variable must be a character variable. It should not be a factor

variable. The covariates are factor variables.

Table A.3 Object produced by the Biograph function Sequences.ind.0

$namstates
[1] "H" "A" "C" "M"

$d
[,1]  [,2] [,3]

[1,] 12650 15309   NA
[2,] 15232    NA   NA
[3,] 13370 15415   NA

$path
[1] "HAC" "HA"  "HAM"

Table A.4 Biograph object: hypothetical data A

ID       born      start        end sex   educ path        Tr1        Tr2
1  1 1986-04-05 1986-04-05 2019-05-09   F   High  HAC 2004-08-20 2011-12-01
2  2 1986-08-08 1986-08-08 2019-05-09   M Medium   HA 2011-09-15       <NA>
3  3 1986-11-28 1986-11-28 2019-05-09   F Medium  HAM 2006-08-10 2012-03-16
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The Biograph function Parameters can be invoked to check whether the

Biograph object is correctly specified: Parameters (bio). The function pro-

duces an object that lists the states in the state space and identifies absorbing states.

The latter are states that are entered but not left during the observation period. The

Parameters function also shows the lowest age and the highest age in the

observation period. It also shows the transition matrix, which consists of logical

values: a ‘TRUE’ indicates the transitions that occur during the observation period,

and a ‘FALSE’ identifies the transitions that do not occur during the observation

period. It shows the line numbers of the transitions and the frequency of transitions

Table A.5 Biograph object: data types

'data.frame': 3 obs. of  9 variables:
$ ID   : num  1 2 3
$ born : Date, format: "1986-04-05" "1986-08-08" "1986-11-28"
$ start: Date, format: "1986-04-05" "1986-08-08" "1986-11-28"
$ end  : Date, format: "2019-05-09" "2019-05-09" "2019-05-09"
$ sex  : Factor w/ 2 levels "F","M": 1 2 1
$ educ : Factor w/ 2 levels "High","Medium": 1 2 2
$ path : chr  "HAC" "HA" "HAM"
$ Tr1  : Date, format: "2004-08-20" "2011-09-15" "2006-08-10"
$ Tr2  : Date, format: "2011-12-01" NA "2012-03-16"
- attr(*, "format.date")= chr "%Y-%m-%d"
- attr(*, "format.born")= chr "%Y-%m-%d"
- attr(*, "param")=List of 18
..$ nsample       : int 3
..$ numstates     : int 4
..$ namstates     : chr [1:4(1d)] "H" "A" "C" "M"
..$ absorbstates  : chr [1:2(1d)] "C" "M"
..$ iagelow       : num 0
..$ iagehigh      : num 34
..$ namage        : int  0 1 2 3 4 5 6 7 8 9 ...
..$ nage          : num 35
..$ maxtrans      : num 2
..$ ntrans        : int 3
..$ trans_possible: logi [1:4, 1:4] FALSE FALSE FALSE FALSE TRUE FALSE
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ Origin     : chr [1:4(1d)] "H" "A" "C" "M"
.. .. ..$ Destination: chr [1:4(1d)] "H" "A" "C" "M"
..$ tmat          : num [1:4, 1:4] NA NA NA NA 1 NA NA NA NA 2 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ From: chr [1:4(1d)] "H" "A" "C" "M"
.. .. ..$ To  : chr [1:4(1d)] "H" "A" "C" "M"
..$ transitions   :'data.frame': 3 obs. of  6 variables:
.. ..$ Trans: Factor w/ 3 levels "1","2","3": 1 2 3
.. ..$ OR   : Factor w/ 2 levels "1","2": 1 2 2
.. ..$ DES  : Factor w/ 3 levels "2","3","4": 1 2 3
.. ..$ ORN  : Factor w/ 2 levels "A","H": 2 1 1
.. ..$ DESN : Factor w/ 3 levels "A","C","M": 1 2 3
.. ..$ ODN  : chr  "HA" "AC" "AM"
..$ nntrans       : num [1:4, 1:4] 0 0 0 0 3 0 0 0 0 1 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ Origin     : chr [1:4(1d)] "H" "A" "C" "M"
.. .. ..$ Destination: chr [1:4(1d)] "H" "A" "C" "M"
..$ locpat        : int 7
..$ ncovariates   : num 2
..$ covariates    : chr  "sex" "educ"
..$ format.date   : chr "%Y-%m-%d"
..$ format.born : chr "%Y-%m-%d"

Annexes 275



($nntrans). Finally, it lists the covariates and displays the format of dates of

birth and dates at transition. In this case, the dates are of class ‘Date’, and a

character string "%Y-%m-%d" gives the date format.

Dates are often expressed in CMC. The preparation of a Biograph object

requires the same procedure. Let’s convert the calendar dates to CMC, using the

function Date_as_cmc of the Biograph package:

bio.cmc <- date.b (
Bdata=bio,
format.in="%Y-%m-%d",
selectday=15,
format.out="cmc",
covs=NULL)

The Biograph object is shown in Table A.6.

A.3 Hypothetical Data B

Suppose we have information on 22 individuals. The state space consists of four

fictitious states {H, A, B, C}. C is an absorbing state. Suppose that three transitions

are possible: HA, AB and BC. Return transitions are not allowed (Fig. A.1).

Assume that the information is collected retrospectively as part of a cross-

sectional survey. The date of interview is the end of the observation period. Since

the data are collected retrospectively, no one drops out during observation. The

respondents are born in 1991 and start in state H. The exact date of birth is

unknown, but it is assumed that births are uniformly distributed throughout the

year. The date of birth is obtained by adding a random number between 0 and 365 to

1 January 1991. For each individual, six dates are given: the date of birth, the date at

entry into observation, the date of interview and the dates of transitions between the

states. Of the 22 individuals, 10 do not experience a transition during the observa-

tion period, 4 experience one transition, 2 experience 2 transitions and 6 three.

Table A.6 Biograph object with dates in CMC

ID born start  end sex   educ idim ns path  Tr1  Tr2
1  1 1036  1036 1433   F  High    1  3  HAC 1256 1344
2  2 1040  1040 1433   M Medium    1  2   HA 1341   NA
3  3 1043  1043 1433   F Medium    1  3  HAM 1280 1347

H B CA

Fig. A.1 State space and transitions. Hypothetical case B
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Respondent 1 is born on 31 July 1991 and enters observation on 2 January 2007. He

experiences the first event on 11th February of that year, when he leaves H and

enters A. On 23rd March, he experiences the second event to state B. On 5th May,

he makes a transition to state C. He stays in that state until the end of observation on

25 May 2007. The data are shown in Table A.7.

The function Sequences.ind.0 orders the dates chronologically and derives

the state sequence. The components f$d and f$path are included in the Biograph
object. The following code produces the Biograph object:

RS <- data.frame (ID=id,
born=birth,
start=as.Date(entry,"%d/%m/%Y"),
end=as.Date(interview,"%d/%m/%Y"),
cov=cov,
path=as.character(path),
dates[,1:(maxns-1)],
stringsAsFactors=FALSE)
attr(RS,"format.date") <- "%Y-%m-%d"
attr(RS,"format.born") <- "%Y-%m-%d"
attr(RS,"param") <- Parameters (RS)

The Biograph object is shown in Table A.8. The data types in the data frame are

shown in Table A.9. The code to produce the Biograph object is shown in cre-
ate.Simple2.r.

Table A.7 Hypothetical survey data: multiple transitions

ID       Born      Start       Stop          A          B          C
11   1 31/07/1991 02/01/2007 25/05/2007 11/02/2007 23/03/2007 05/05/2007
2   2 31/12/1991 17/01/2007 17/05/2007 04/05/2007         NA         NA
3   3 21/04/1991 18/01/2007 10/05/2007         NA         NA         NA
4   4 11/08/1991 22/01/2007 13/05/2007 28/02/2007 10/04/2007 10/05/2007
5   5 17/07/1991 10/02/2007 23/05/2007 17/05/2007         NA         NA
6   6 28/06/1991 30/01/2007 15/05/2007 12/02/2007 05/03/2007 17/04/2007
7   7 01/09/1991 04/04/2007 06/05/2007         NA         NA         NA
8   8 06/11/1991 29/04/2007 27/05/2007         NA         NA         NA
9   9 24/01/1991 18/05/2007 29/05/2007         NA         NA         NA
10 10 25/03/1991 20/05/2007 31/05/2007 NA         NA         NA
11 11 29/04/1991 15/05/2007 18/05/2007         NA         NA         NA
12 12 14/11/1991 05/02/2007 19/05/2007 25/02/2007 01/04/2007 02/05/2007
13 13 07/01/1991 05/02/2007 10/05/2007 18/04/2007 30/04/2007         NA
14 14 14/02/1991 06/02/2007 28/05/2007 18/05/2007 20/05/2007         NA
15 15 27/04/1991 26/02/2007 22/05/2007         NA         NA         NA
16 16 08/08/1991 10/03/2007 25/05/2007         NA         NA         NA
17 17 04/02/1991 11/03/2007 12/05/2007 08/05/2007         NA         NA
18 18 05/11/1991 28/03/2007 29/05/2007         NA         NA         NA
19 19 09/04/1991 15/03/2007 10/05/2007 23/03/2007 08/04/2007 20/04/2007
20 20 24/12/1991 13/04/2007 20/05/2007         NA         NA         NA
21 21 16/04/1991 04/04/2007 11/05/2007 09/05/2007         NA         NA
22 22 31/03/1991 25/04/2007 31/05/2007 16/05/2007 20/05/2007 26/05/2007
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A.4 Survey of Health, Ageing and Retirement in Europe
(SHARE)

The Survey of Health, Ageing and Retirement in Europe (SHARE) (http://www.

share-project.org/) is a multidisciplinary and cross-national panel database of

individual data on health, socio-economic status and social and family networks

of more than 55,000 individuals aged 50 or over from 20 European countries.

SHARE is harmonised with the US Health and Retirement Study (HRS) and the

English Longitudinal Study of Ageing (ELSA). The SHARE baseline study (wave

1) was carried out in 2004. The third wave of data collection for SHARE (2008–

2009) focused on people’s life histories from birth to survey date. The survey is

referred to as SHARELIFE. Almost 30,000 men and women across 13 European

countries took part in this round of the survey. The respondents are representative

for the European population aged 50 and over in Scandinavia (Denmark and

Sweden), Central Europe (Austria, France, Germany, Switzerland, Belgium and

the Netherlands) and the Mediterranean (Spain, Italy and Greece), as well as two

transition countries (the Czech Republic and Poland). The SHARELIFE question-

naire covers different domains of life, ranging from partners and children over

housing and work history to health and health care. The SHARELIFE questionnaire

has several modules. The data from each module are stored in a different data file.

The following modules and data files are distinguished:

ac Accommodation section

cs Childhood section

dq Disability

fs Financial history

gl General life questions

gs Grip strength

Table A.8 Biograph object: hypothetical data B

ID       born      start        end cov path        Tr1        Tr2       Tr3
1   1 1991-05-14 2007-01-02 2007-05-25   X HABC 2007-02-11 2007-03-23 2007-05-05
2   2 1991-05-22 2007-01-17 2007-05-17   X   HA 2007-05-04       <NA>       <NA>
3   3 1991-12-27 2007-01-18 2007-05-10   X    H       <NA>       <NA>       <NA>
4   4 1991-01-01 2007-01-22 2007-05-13   X HABC 2007-02-28 2007-04-10 2007-05-10
5   5 1991-02-02 2007-02-10 2007-05-23   X   HA 2007-05-17       <NA>       <NA>
6   6 1991-06-08 2007-01-30 2007-05-15   X HABC 2007-02-12 2007-03-05 2007-04-17
7   7 1991-06-23 2007-04-04 2007-05-06   X    H       <NA>       <NA>       <NA>
8   8 1991-09-14 2007-04-29 2007-05-27   X    H       <NA>       <NA>       <NA>
9   9 1991-10-06 2007-05-18 2007-05-29   X    H       <NA>       <NA>       <NA>
10 10 1991-03-10 2007-05-20 2007-05-31   X    H       <NA>       <NA>       <NA>
11 11 1991-06-24 2007-05-15 2007-05-18   X    H       <NA>       <NA>       <NA>
12 12 1991-02-07 2007-02-05 2007-05-19   X HABC 2007-02-25 2007-04-01 2007-05-02
13 13 1991-06-01 2007-02-05 2007-05-10   X  HAB 2007-04-18 2007-04-30       <NA>
14 14 1991-06-14 2007-02-06 2007-05-28   X  HAB 2007-05-18 2007-05-20       <NA>
15 15 1991-10-07 2007-02-26 2007-05-22   X    H       <NA>       <NA>       <NA>
16 16 1991-04-07 2007-03-10 2007-05-25   X    H       <NA>  <NA>       <NA>
17 17 1991-10-21 2007-03-11 2007-05-12   X   HA 2007-05-08       <NA>       <NA>
18 18 1991-05-07 2007-03-28 2007-05-29   X    H       <NA>       <NA>       <NA>
19 19 1991-07-20 2007-03-15 2007-05-10   X HABC 2007-03-23 2007-04-08 2007-04-20
20 20 1991-09-05 2007-04-13 2007-05-20   X    H       <NA>       <NA>       <NA>
21 21 1991-09-15 2007-04-04 2007-05-11   X   HA 2007-05-09       <NA>       <NA>
22 22 1991-07-07 2007-04-25 2007-05-31   X HABC 2007-05-16 2007-05-20 2007-05-26
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hc Childhood health care

hs Childhood health section

iv Interviewer

rc Retrospective children

re Work history

rp Partner section

st Demographics

wq Work quality

xt End of life interview

Table A.9 Biograph object: data types

'data.frame': 22 obs. of  9 variables:
$ ID   : int  1 2 3 4 5 6 7 8 9 10 ...
$ born : Date, format: "1991-07-06" "1991-10-03" "1991-12-05" ...
$ start: Date, format: "2007-01-02" "2007-01-17" "2007-01-18" ...
$ end  : Date, format: "2007-05-25" "2007-05-17" "2007-05-10" ...
$ cov  : chr  "X" "X" "X" "X" ...
$ path : chr  "HABC" "HA" "H" "HABC" ...
$ Tr1  : Date, format: "2007-02-11" "2007-05-04" NA ...
$ Tr2  : Date, format: "2007-03-23" NA NA ...
$ Tr3  : Date, format: "2007-05-05" NA NA ...
- attr(*, "format.date")= chr "%Y-%m-%d"
- attr(*, "format.born")= chr "%Y-%m-%d"
- attr(*, "param")=List of 19
..$ nsample       : int 22
..$ numstates     : int 4
..$ namstates     : chr [1:4(1d)] "H" "A" "B" "C"
..$ absorbstates  : chr "C"
..$ iagelow       : num 15
..$ iagehigh      : num 17
..$ namage        : int  15 16 17
..$ nage          : num 3
..$ maxtrans      : num 3
..$ ntrans        : int 3
..$ trans_possible: logi [1:4, 1:4] FALSE FALSE FALSE FALSE TRUE 

FALSE ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ Origin     : chr [1:4(1d)] "H" "A" "B" "C"
.. .. ..$ Destination: chr [1:4(1d)] "H" "A" "B" "C"
..$ tmat          : num [1:4, 1:4] NA NA NA NA 1 NA NA NA NA 2 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ From: chr [1:4(1d)] "H" "A" "B" "C"
.. .. ..$ To  : chr [1:4(1d)] "H" "A" "B" "C"
..$ transitions   :'data.frame': 3 obs. of  6 variables:
.. ..$ Trans: Factor w/ 3 levels "1","2","3": 1 2 3
.. ..$ OR   : Factor w/ 3 levels "1","2","3": 1 2 3
.. ..$ DES  : Factor w/ 3 levels "2","3","4": 1 2 3
.. ..$ ORN  : Factor w/ 3 levels "A","B","H": 3 1 2
.. ..$ DESN : Factor w/ 3 levels "A","B","C": 1 2 3
.. ..$ ODN  : chr  "HA" "AB" "BC"
..$ nntrans       : num [1:4, 1:4] 0 0 0 0 12 0 0 0 0 8 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ Origin     : chr [1:4(1d)] "H" "A" "B" "C"
.. .. ..$ Destination: chr [1:4(1d)] "H" "A" "B" "C"
..$ locpat        : int 6
..$ ncovariates   : num 1
..$ covariates    : chr "cov"
..$ format.date   : chr "%Y-%m-%d"
..$ format.born   : chr "%Y-%m-%d"
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The data are available for download after registration. Data are available as

SPSS and STATA files.

For the illustration of Biograph, I selected data on partnerships and living

arrangement and downloaded the STATA files. The code to prepare the Biograph
object is shown in create.SHARElife.r. The code to read the downloaded

data, with the STATA files in the current directory, is:

d.st <- data.frame(read.dta (“sharew3_rel1_st.dta”,
convert.dates=TRUE,convert.underscore=TRUE))

d.rp <- data.frame(read.dta (“sharew3_rel1_rp.dta”,
convert.dates=TRUE,convert.underscore=TRUE))

d.ac <- data.frame(read.dta (“sharew3_rel1_ac.dta”,
convert.dates=TRUE,convert.underscore=TRUE))

d.re <- data.frame(read.dta (“ / sharew3_rel1_re.dta”,
convert.dates=TRUE,convert.underscore=TRUE)) 

d.rc <- data.frame(read.dta (“sharew3_rel1_rc.dta”,
convert.dates=TRUE,convert.underscore=TRUE))

Consider the following state space:

• Living at parental home (H)

• Living alone (independently) (A)

• Cohabiting (C)

• Married (M)

In the SHARELIFE data file, the following transitions and their dates are

relevant:

(a) Year in which separate household was established, i.e. first household after

leaving parental home (d.ac$sl.ac003)
(b) Date of marriage (first to 6th marriage) (d.rp$sl.rp008.k), with k¼ 1 to 6

(c) Year started living with a partner who was later married (first to 6th cohabita-

tion) (d.rp$sl.rp004b.k, with k¼ 1 to 6)

(d) Year stopped living with partner (first to 6th cohabitation) (d.rp$sl.rp012.k)
(e) Year of divorce (first to 4th divorce) (d.rp$sl.rp014.k)
(f) Year started living with a partner (not related to marriage) (d.rp$sl.rp003.k, with

k¼ 11 to 18)

Five covariates are considered:

• Country: country of residence at survey date

• Sex

• Education: year in which full-time education is ended

• Year in which respondent starts first job

• Birth cohort: four birth cohorts, <1930, 1930–1939, 1940–1949, 1950+

The variables that are extracted from the raw data are identification number, date

of birth, date of interview, dates of transitions and selected covariates. The variable

name is the name in the STATA file. The variables are as follows.
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Dates

Variable name Meaning

d.st$mergeid Identification number

d.st$sl.st007 Year of birth

d.st$sl.st006 Month of birth

d.ac$sl.ac003. Year of leaving parental home

d.rp$sl.rp008.1 Year of first marriage

d.rp$sl.rp008.k Year of k-th marriage (k¼ 1 to 6)

d.rp$sl.rp013.k Divorce (k¼ 1 to 4) (yes/no)

d.rp$sl.rp014.k Year of k-th divorce (k¼ 1 to 4)

d.rp$sl.rp004b.k Year in which k-th cohabitation before a marriage

started (k¼ 1 to 6)

d.rp$sl.rp012.k Year in which k-th cohabitation ended (k¼ 1 to 4)

d.rp$sl.rp003.n Year in which cohabitation NOT related to marriage

started (n¼ 11 to 18)

d.rp$sl.rp012.n Year in which cohabitation NOT related to marriage

ended

Covariates:

Variable name Meaning

d.st$country Country

d.st$sl.st011. Sex

d.re$sl.re002. Year in which full-time education is finished

d.rc$sl.rc023. Number of children at survey date

d.re$sl.re011.1 Year of entry in labour market

First, a data frame of transition dates is constructed. The dates of transitions are

taken from the SHARELIFE data files. A new transition label is added to indicate

the destination state. Leaving the parental home and the dissolution of marriage or

cohabitation are assumed to be followed by independent living (living alone),

unless cohabitation or marriage starts in the same month. Table A.10 shows the

years at transition for a selected number of respondents. The person identification

number is shown in the column, and the destination state is shown in the row.

The first respondent, who is the seventh respondent in the data file and has

identification number AT-010768-01, married in 1960 and started a separate house-

hold in 1962. The marriage was dissolved (divorce) in 1973. The person lived alone

after the divorce until the start of a cohabitation in 1977 (unrelated to marriage).

That cohabitation ended in 1979 and was followed by a new cohabitation (related to

marriage) in the same year. The respondent married for the second time in 1981.
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The transitions have to be ordered chronologically and the state sequence

(path) needs to be determined. The function Sequence.ind.0 is used. For

the selected respondents, the result is shown in Table A.11.

These respondents experience the following state sequences: HMACACCAM,

HACM, HMACACA, HCAMAC and HACAM.

These data, the covariates, the years of birth and the year of survey are stored in a

Biograph data frame. Three attributes are added to the data frame: the format of the

transition dates (year), the format of the dates of birth (year) and the object

produced by the Parameters function. For one respondent, the date of birth is

missing; he is removed from the data. Table A.12 shows a selection of rows of the

SHARELIFE data in the Biograph format.

Table A.10 Changes in living arrangements. SHARELIFE. A selection of respondents

AT-010768-01 AT-010904-02 AT-015615-01 AT-020895-01 AT-024225-01
A           NA           NA           NA           NA           NA
M         1960         1964         1965         1973         1983
M         1981           NA           NA           NA           NA
M           NA           NA           NA           NA           NA
M           NA           NA           NA           NA           NA
M           NA          NA           NA           NA           NA
M           NA           NA           NA           NA           NA
C         1962         1963           NA         1974           NA
C         1979           NA           NA           NA           NA
C           NA           NA           NA           NA           NA
C           NA           NA           NA           NA           NA
C           NA           NA           NA           NA           NA
C           NA           NA           NA           NA           NA
A           NA           NA           NA           NA           NA
A           NA           NA           NA           NA           NA
A           NA           NA           NA           NA           NA
A           NA           NA           NA           NA  NA
A         1973           NA         1976           NA           NA
A           NA           NA           NA           NA           NA
A           NA           NA           NA           NA           NA
A           NA           NA           NA   NA           NA
C         1977           NA         1980         1971         1969
C           NA           NA         1986           NA           NA
C           NA           NA           NA           NA           NA
C           NA           NA    NA           NA           NA
C           NA           NA           NA           NA           NA
C           NA           NA           NA           NA           NA
C           NA           NA           NA           NA           NA
C           NA     NA           NA           NA           NA
A         1979           NA         1980         1971         1979
A           NA           NA         1987           NA           NA
A           NA           NA           NA           NA           NA
A      NA           NA           NA           NA           NA
A           NA           NA           NA           NA           NA
A           NA           NA           NA           NA           NA
A           NA           NA           NA           NA         NA
A           NA           NA           NA           NA           NA
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A.5 National Family Health Survey of India 2005–2006
(NFHS): Andhra Pradesh

The National Family Health Survey (NFHS) (http://www.nfhsindia.org/) is a large-

scale, multi-round survey conducted in a representative sample of households

throughout India. In total, 109,041 households were interviewed. The survey pro-

vides state and national information for India on fertility, infant and child mortality,

the practice of family planning, maternal and child health, reproductive health,

nutrition, anaemia, utilisation and quality of health and family planning services.

NFHS surveys are conducted under the stewardship of the Ministry of Health and

Family Welfare (MOHFW), Government of India. The agency, responsible for

coordination and technical guidance is the International Institute for Population

Sciences (IIPS) in Mumbai.

Three rounds of surveys have been conducted since the first survey in 1992–

1993. The second survey was organised in 1998–1999 and the third in 2005–2006.

Table A.11 Sorted transition dates. Selection of respondents

AT-010768-01 AT-010904-02 AT-015615-01 AT-020895-01 AT-024225-01
[1,]         1960         1963         1965         1971         1969
[2,]         1962         1964         1976         1971         1979
[3,]         1973           NA         1980         1973         1983
[4,]         1977           NA         1980         1974           NA
[5,]         1979           NA         1986           NA           NA
[6,]         1979           NA         1987           NA           NA
[7,]         1981           NA           NA           NA           NA
[8,]           NA           NA           NA           NA           NA
[9,]          NA           NA           NA           NA           NA

[10,]           NA           NA           NA           NA           NA

Table A.12 Biograph object (transposed) with SHARELIFE data. Selected respondents

ID        8           14           26           28          
born     1942.333     1946.333     1952.417     1947.000    
start    1942.333     1946.333     1952.417     1947.000    
end      2008.5       2008.5       2008.5       2008.5      
country  Austria      Austria      Austria      Austria     
IDc      AT-010904-02 AT-015615-01 AT-020895-01 AT-024225-01
cohort   1940-49      1940-49      1950+        1940-49     
sex      female       female       female       male        
eduf     1959         1964         1971         1961        
job1     1959         1964         1971         1961        
children 1            2            3            2           
path     HCM          HMACACA      HCAMC        HCAM        
Tr1      1963         1965         1971         1969        
Tr2      1964         1976         1971         1979        
Tr3      <NA>         1980         1973         1983        
Tr4      <NA>         1980         1974         <NA>        
Tr5      <NA>         1986         <NA>        <NA>        
Tr6      <NA>         1987         <NA>         <NA>        
Tr7      <NA>         <NA>         <NA>         <NA>        
Tr8      <NA>         <NA>         <NA>         <NA>        
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The third survey (NFHS-3) covered all 29 states in India, which comprise more than

99 % of India’s population. The survey included 124,385 women and 74,369 men

with completed interview (married and unmarried). Women interviewed were

between ages 15 and 49, while men were between 15 and 54. All dates are in

Century Month Code (CMC).

The data are available from the Demographic and Health Survey (DHS) data

distribution system (http://www.measuredhs.com). Data files are available in user-

friendly formats for SPSS, SAS and STATA users. For the illustration of Biograph,
I used the 2005–2006 data file named APIR42RT.SAV and more particularly the

data for women from the state of Andhra Pradesh (AP). The survey covered 5,153

women. The number of variables is 4,386. For the main survey report, see IIPS and

Macro International (2007).

Suppose we are interested in the fertility career of women: when they marry,

whether and when they have children, and whether and when they opt for

sterilisation. The state space is:

• Never married (N)

• Married without children (M)

• One child (a)

• Two children (b)

• Three children up to 20 children (c, d, e, . . ., m)

• Sterilised (S)

The following variables are extracted from the raw data.

Dates

Variable name Meaning

v011 Date of birth

v008 Date of interview

v509 Date of first marriage

b3.* Date of birth of child (from youngest to oldest)

bord.* Birth order of child

v312 Contraceptive method (sterilisation¼ 6 (female) or 7 (male))

v317 Date of sterilisation

Covariates

Variable name Meaning

v106 Level of education

v190 Wealth index

v102 Place of residence (urban/rural)

v201 Number of children ever born (nCEB)

In addition, three birth cohorts (COH) are distinguished: born before 1970,

between 1970 and 1979 and in 1980 or later.
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The observation window starts at birth and ends at time of interview. The date of

interview is given in CMC. I assume that the interview takes place at the beginning

of the month. Therefore, one is added to variable v008.

The raw data present the months of birth of the children starting with the

youngest child. In Biograph, the dates should be ordered chronologically,

i.e. from the birth of the oldest child to the birth of the youngest and last child.

The first step is to arrange the CMCs at birth of children from the oldest child to the

youngest child. The result is the object cmc_k06. The CMC at first marriage and

the CMC at sterilisation of the woman or her spouse are added next. A missing

value (NA) indicates the absence of sterilisation. The dates are stored in the data

frame cmc. The next step is to sort the dates at transitions, using the standard

Sequence.ind.0 function. The function produces state sequences and the

sequence of dates at transition.

The data are stored in a data frame (AP). Table A.13 shows a selection of rows.

The code is shown in create.NFHS.r.

A.6 European Registry for Blood and Marrow Transplantation
(EBMT)

(a) Introduction

The EBMT data are included in the mstate package, developed by Putter and

colleagues (see de Wreede et al. 2011).

The haematopoietic stem cells in bone marrow in large bones produce new blood

cells. Bone marrow transplantation is a treatment for people with certain forms of

cancer such as leukaemia and lymphoma. High doses of chemotherapy or radiation

therapy can effectively kill cancer cells but they also destroy bone marrow, where

blood cells are made. The purpose of a bone marrow transplant is to replenish the

body with healthy bone marrow after a high-dose chemotherapy or radiation

therapy. Transplanted cells are able to rebuild the patient’s bone marrow. After a

successful transplant, the bone marrow will start to produce new blood cells.

Engraftment is the process of transplanted stem cells reproducing new cells. Bone

marrow transplantation is also a treatment of acute leukaemia patients whose bone

marrow contains malignant cells.

The goal of cancer therapy is to bring the disease into remission. Remission is

when the patient’s blood counts return to normal and (in case of leukaemia) bone

marrow samples show no sign of disease. Patients may fail to attain a complete

remission (CR) because of drug resistance or death. A percentage of patients who

initially attain a CR will relapse. Relapse is the reoccurrence of the cancer. If the

doses of therapy are not sufficiently high, they are not generally curative. They

induce remission but the patient usually relapses. The purpose of bone marrow

transplants is to provide the patient with healthy marrow so as to allow massive, and

hopefully, curative doses of therapy.
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There are two types of bone marrow transplants:

• Autologous bone marrow transplant – The donor of the bone marrow

(haematopoietic stem cells) is the person himself/herself.

• Allogeneic bone marrow transplant – The donor is another person whose tissue

has the same genetic type as the person needing the transplant (recipient).

Because tissue types are inherited, it is more likely that the patient’s brother

and sister are suitable donors. If a family member does not match the recipient,

the Marrow Donor Program Registry database is searched for an unrelated

individual whose tissue type is a close match. If the donor and recipient are

compatible, the infused cells will then travel to the bone marrow and initiate

blood cell production.

The European Group for Blood and Marrow Transplantation (EBMT) (http://

www.ebmt.org/) maintains a patient database known as the EBMT Registry. The

Registry goes back to the beginning of the 1970s and contains patient clinical data.

The population covered consists of patients who have undergone a haematopoietic

stem cell transplantation (HSCT) procedure; patients with bone marrow failures

receiving immunosuppressive therapies; and patients receiving non-haematopoietic

cell therapies. Patients are followed up indefinitely. The database has data on close

to 400 thousand patients. The data cover aspects of the diagnosis, first-line treat-

ments, HSCT (haematopoietic stem cell transplantation) or cell therapy-associated

procedures, complications and outcome. The transplant data are submitted to the

central registry by EBMT member centres performing any of the above treatments.

The purpose of the Registry is to provide a pool of data to perform retrospective

studies, assess epidemiological trends or prepare prospective trials.

(b) The Data

The data, in a file name ebmt4included in the mstate package, are from 2,279

acute lymphoid leukaemia (ALL) patients who had an allogeneic bone marrow

transplant from an HLA-identical sibling donor between 1985 and 1998. An

HLA-identical donor is a donor who shares the same human leukocyte antigens

(HLA). The data were extracted from the EBMT database in 2004. All patients

were transplanted in first complete remission. Events recorded during the follow-up

of these patients were:

Table A.13 Biograph object: NFHS-AP

ID born start  end     COH EDU WEAL U_R CEB path  Tr1  Tr2  Tr3  Tr4  Tr5  Tr6
1   1  709   709 1274   <1970   0    2   2   4  HMabcdS  936  937  964 1006 1045 1045
2   2  997   997 1274  >=1980   1    2   2   2    HMabS 1200 1210 1238 1238   NA   NA
3   3 1033  1033 1276  >=1980   0    2   2   1      HMa 1172 1197   NA   NA   NA   NA
4   4 1009  1009 1274  >=1980   0    3   2   2    HMabS 1193 1202 1221 1221   NA   NA
5   5  973   973 1274  >=1980   2    3   2   2    HMabS 1169 1200 1211 1211   NA   NA
6   6  733   733 1274   <1970   0    4   2 3   HMabcS  919  949  997 1040 1046   NA
7   7  985   985 1274  >=1980   2    4   2   2    HMabS 1241 1250 1262 1263   NA   NA
8   8 1011  1011 1274  >=1980   0    3   2   1      HMa 1205 1238   NA   NA   NA   NA
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(i) Acute graft-versus-host disease (AGvHD). AGvHD is a GvHD of grade 2 or

higher, appearing before 100 days posttransplant.

(ii) Platelet recovery. A platelet is a particle in the blood that is an important part

of blood clotting. The bone marrow produces a large number of platelets per

mm3 of blood daily. During chemotherapy, the platelet count drops signifi-

cantly. Platelet recovery is the recovery of platelet count.

(iii) Relapse and death.

Four prognostic factors are known at baseline for all patients. They are: donor-

recipient gender match (where gender mismatch is defined as female donor, male

recipient), prophylaxis, year of transplant and age at transplant in years. All these

covariates are treated as time-fixed categorical covariates. Younger patients have a

better prognosis and transplantation before 1990 had a worse prognosis. Donor-

recipient gender mismatch seems to be of minor importance, while T-cell depletion

(TCD) shows a clear negative effect on failure-free survival.

The data were used in Fiocco et al. (2008) and van Houwelingen and Putter

(2008). The included variables are

id Patient identification number

Rec Time in days from transplantation to recovery or last follow-up

rec.s Recovery status; 1¼ recovery, 0¼ censored

ae Time in days from transplantation to adverse event (AE) or last follow-

up

ae.s Adverse event status; 1¼ adverse event, 0¼ censored

recae Time in days from transplantation to both recovery and AE or last

follow-up

plag.s Recovery and AE status; 1¼ both recovery and AE, 0¼ no recovery or

no AE or censored

rel Time in days from transplantation to relapse or last follow-up

rel.s Relapse status; 1¼ relapse, 0¼ censored

srv Time in days from transplantation to death or last follow-up

srv.s Relapse status; 1¼ dead, 0¼ censored

year Year of transplantation; factor with levels ‘1985–1989’, ‘1990–1994’ and

‘1995–1998’

agecl Patient age at transplant; factor with levels ‘<¼20’, ‘20�40’ and ‘>40’

proph Prophylaxis; factor with levels ‘no’ and ‘yes’

match Donor-recipient gender match; factor with levels ‘no gender

mismatch’ and ‘gender mismatch’

(c) The Model

In their research, the authors opt for a multistate approach because it enables the

distinction between disease-related and the treatment-related morbidity and mor-

tality. Information on the occurrence of two intermediate events (recovery and an

adverse event) is used to update the prognoses of the patients. An example of an
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adverse event is an acute graft-versus-host disease (AGVHD). It is a complication

that can occur after a bone marrow transplant in which the newly transplanted

material attacks the transplant recipient’s body. Instead of recovery, engraftment or

platelet recovery can be included. The multistate model considers six states (with

the multicharacter state labels used in mstate and the single-character state labels

used in Biograph in parentheses):

• Alive and in remission, no recovery or adverse event (Tx, T)

• Alive in remission, recovered from the treatment (Rec, P)

• Alive in remission, occurrence of the adverse event (AE, A)

• Alive, both recovered and adverse event occurred (Rec+AE, Z)

• Alive, in relapse (treatment failure) (Rel, R)

• Dead (treatment failure) (Death, D)

All patients start in state Tx. States Rel and Death are called absorbing: once the

patient has entered one of them, she/he stays there. This leaves us with a model with

12 transitions. Time is measured in days since transplant. Status variables (.s)

indicate the (non)occurrence of a transition. For instance, patient 2 experiences

the adverse event after 12 days (transition from state Tx to state AE), then recovery

after 29 days (transition from state AE to state ‘Rec+AE’) and a relapse after

422 days (transition from state ‘Rec+AE’ to state Rel). Finally, he/she dies after

579 days. The last event is not relevant to the model because the patient has already

reached an absorbing state.

Putter et al. make a few adjustments of the data for a multistate analysis. Since

the model does not allow patients to enter two states at the same time, a patient who

experiences relapse and death on the same day is assumed to have entered the

absorbing state of relapse rather than death because the patients experience relapse

before death. Patients who experience the adverse event and recovery on the same

day are assumed to experience the AE half a day before Rec. Two new variables

have been created to express the time of entry in state ‘Rec+AE’ and the accom-

panying status indicator: recae and recae.s, respectively.

For modelling, the events relapse and death are combined into a single event

‘failure’. Three intermediate events are included in the model: recovery (Rec), an

adverse event (AE) and a combination of the two (AE and Rec). To avoid misin-

terpretation, the authors have abstracted from the actual disease, covariate values

and intermediate events. The data include four covariates: year at transplantation,

age at transplantation, donor-recipient gender match and prophylaxis.

(d) Preparation of Biograph Object

The preparation of a Biograph object involves the five steps listed in previous

sections of the annex. The code is shown in create.ebmt.r. The state space

includes the six states shown above: {T, P, A, Z, R, D}. All patients start in state

T. In Biograph, transitions are specified a little different from the specification of

transitions in the data (ebmt4). In case an event occurs, both anmstate object and a
Biograph object show the date of the event. In case an event does not occur, the

mstate object lists the date at censoring, which is the end of exposure to the risk of
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experiencing that event. A Biograph object shows NA for not applicable. The

preparation of a Biograph object involves the removal of censoring dates in cases

of nonoccurrence of transitions. Note that in Biograph, a transition is defined by the
state of destination. The transition dates are stored in the data frame days.
Table A.14 shows the first rows of the data frame. The maximum number of

transitions patients experience is 3.

The first patient recovers 22 days after transplantation. The second patient

experiences an adverse event 12 days after transplantation, recovers at 29 days

and experiences a relapse 422 days after transplantation. Patient 4 enters relapse

84 days after transplantation. The observation ends at that time.

The covariates are

The observation window is from date of transplantation to date of entry into the

absorbing state. Time is measured in days since transplantation. The function

Sequences.ind.0 arranges event dates chronologically and determines the

state sequence:

f<- Sequences.ind.0 (days,namstates,absorb=c("R","D"))

Note the two absorbing states. The output component f$path gives for each

patient the state sequences. The event dates in days since transplantation are given

in f$d.
The data frame with all the data is produced by the code:

Table A.14 Data frame with event dates in days since transplantation. EBMT

P    A  Z   R   D
1  22   NA NA  NA  NA
2  NA 12.0 29 422  NA
3  NA 27.0 NA  NA  NA
4  NA 42.0 50  84  NA
5  22   NA NA 114  NA

Variable name Meaning

match Donor-recipient gender match

proph Prophylaxis

year Year of transplantation

agecl Patient age at transplant
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EBMT <- data.frame (ID=id,
born=rep(0,nsample),
start=rep(0,nsample),
end=end,
year=year,
agecl=agecl,
proph=proph,
match=match,
path=as.character(path),
f$d[,1:(max(ns)-1)])

Three attributes are added: the format of the event dates (days), the format of the

date of birth and the set of parameters. Table A.15 shows the first rows of the data

frame.

A.7 Simulated Life Histories

Life histories of 200 individuals are simulated from age 20 to age 40. Individuals

can occupy one of three states, labelled A, B and C. A state is selected randomly for

each of the 200 individuals. Transition rates are constant between ages 20 and 40.

The transition matrix M, with origin in column and destination in row, is:

M ¼
0:15 �0:07 �0:02
�0:10 0:10 �0:05
�0:05 �0:03 0:07

2
4

3
5

To generate the life history of a single individual, the function sim.msm of the

msm package is used. The function simulates an individual trajectory from a

continuous-time Markov model (Jackson 2014b). The function requires the transi-

tion matrix in a different format than shown above and used in this book. The row

variable should indicate origin and the column variable destination. The

off-diagonal elements should be transition rates rather than minus transition rates.

The required format is produced by �t(M), where t() denotes transpose. The

function also requires that a numeric value rather than a character denotes a state.

Table A.15 Biograph object: EBMT data

ID born start  end      year agecl proph              match path   Tr1 Tr2 Tr3
1   1    0     0  995 1995-1998 20-40    no no gender mismatch   TP  22.0  NA  NA
2   2    0 0  422 1995-1998 20-40    no no gender mismatch TAZR  12.0  29 422
3   3    0     0 1264 1995-1998 20-40    no no gender mismatch   TA  27.0  NA  NA
4   4    0     0   84 1995-1998 20-40    no    gender mismatch TAZR  42.0  50  84
5   5    0     0  114 1995-1998   >40    no    gender mismatch  TPR  22.0 114  NA
6   6    0     0 1427 1995-1998 20-40    no no gender mismatch  TAZ  27.0  33  NA
7   7    0     0  775 1995-1998   >40    no no gender mismatch TAZD  28.5  29 775
8   8    0     0 1618 1995-1998 20-40    no no gender mismatch   TP  31.0  NA  NA
9   9    0     0 1111 1995-1998 20-40    no    gender mismatch  TAZ  29.0  87  NA
10 10    0     0  255 1995-1998 20-40    no no gender mismatch   TR 255.0  NA  NA
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A is replaced by 1, B by 2 and C by 3. The simulation is an application of dynamic

microsimulation in continuous time. For background information, see,

e.g. Willekens (2009).

The following code generates a trajectory for an individual starting in state A

(state 1) at age 20:

bio <- sim.msm (-t(M),mintime=20,maxtime=40,start=1)

The object produced by sim.msm has three components. The first is the state

sequence. The second provides information on the start of the observation window,

transition times and end of the observation window. The third is the matrix of

transition rates. The result is:

$states
[1] 1 3 1 2 2
$times
[1] 20.00000 21.57682 38.39406 39.17881 40.00000
$qmatrix

destination
origin     A     B     C

A -0.15  0.10  0.05
B  0.07 -0.10  0.03
C  0.02  0.05 -0.07

The subject starts in A, moves to C, back to A and continues to B. At the end of

the observation period, the individual is in B. The first transition is at age 21.58, the

second at 38.39 and the third at 39.18. The character string showing the state

sequence is ACAB.

The code Create.simul.r generates trajectories for 200 individuals.

Table A.16 shows the data for the first 10 individuals.

Table A.16 Biograph object: simulated life histories

ID born start end cov1   path   Tr1   Tr2   Tr3   Tr4   Tr5 
1    0    20  40    X     AB 28.14    NA    NA    NA    NA 
3    0    20  40    X     AB 23.69    NA    NA    NA    NA  
4    0    20  40    X     BA 24.56    NA    NA    NA    NA  
5    0    20  40    X   ACBC 20.73 27.79 37.81    NA    NA  
6    0  20  40    X BACABC 30.15 33.33 34.29 35.87 38.00  
7    0    20  40    X    CAC 29.44 34.39    NA    NA    NA  
8    0    20  40    X   CBCB 34.32 35.56 39.44    NA    NA  
9    0    20  40    X      B    NA    NA    NA    NA    NA  

10    0    20  40 X  ABABA 22.80 25.29 26.73 39.37    NA
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Annex B: List of Biograph Functions and Data

This annex lists (a) all Biograph functions and their main task and (b) the data sets

included in the package.

Biograph function Task

age_as_year Converts age to decimal year (utility)

age_as_Date Converts age to object of class ‘Date’ (utility)

Agetrans Computes ages at transition from transition dates

Biograph.long Converts Biograph object to long format

Biograph.msm Converts Biograph object to msm format

Biograph.mstate Converts Biograph object to mstate format

Biograph.mvna Converts Biograph object to mvna format

ChangeObservationWindow.e Changes observation window to period between two transitions

ChangeObservationWindow.t Changes observation window to period between two points in

time

check.par Checks major characteristics of Biograph object (utility)

cmc_as_age Converts dates in Century Month Code (CMC) to age (utility)

cmc_as_Date Converts dates in Century Month Code (CMC) to object of

class ‘Date’ (utility)

cmc_as_year Converts dates in Century Month Code (CMC) to dates in

decimal year (calendar year and fraction of year) (utility)

Cumrates Computes cumulative hazard rates (Nelson-Aalen estimator

and occurrence-exposure rates)

Date_as_age Converts dates (class ‘Date’) to age (utility)

Date_as_year Converts dates (class ‘Date’) to decimal years (calendar years

and fraction of year) (utility)

Date_as_cmc Converts dates (class ‘Date’) to CMC (utility)

date_b Converts dates in Biograph object to dates in a desired format

(utility)

date_convert A generic function that converts dates in one format to another

format (utility)

GLHS.IllnessDeath Illness-death model of job transitions

GLHS.trans Obtains transition matrix of illness-death model

Lexis.lines Draws Lexis diagram with lifelines for selected subjects (using

ggplot2 package)

Lexislines.episodes Draws Lexis diagram with lifelines for selected subjects (using

EPI package)

LexisOccExp Displays event counts, exposure times and transition rates in

Lexis diagram (using EPI package)

Lexis.points Plots observations in Lexis diagram (scatter plot) (using

ggplot2 package)

Lexispoints Plots observations in Lexis diagram (scatter plot) (using EPI

package)

(continued)
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Biograph function Task

Locpath Determines location of state sequence in Biograph object

(utility)

MSLT.S Computes multistage life table: multistage survival function

(MSLT.S)

MSLT.e Computes multistage life table: exposure function (MSLT.e)

Occup Determines state occupancies and sojourn times by age for each

subject under observation and groups of subjects

OverviewEpisodes Displays summary information on episodes

OverviewTransitions Displays summary information on transitions

Parameters Derives several indicators from the data, e.g. sample size, state

space, absorbing states and transition matrix

plot.cumrates Plots cumulative hazard rates

plot.MSLT.S Plots the multistage survival function

plot.occup.S Plots state occupancies by age for the sample population (sub-

jects under observation)

pos.char Determines the position of a character in a string variable

(utility)

pos.charstr Determines the position of a character string in a string variable

(utility)

Rates.ac Computes occurrence-exposure rates (age-cohort rates)

RateTable Produces a table with necessary information to compute

occurrence-exposure rates

Remove.intrastate Removes intrastate transitions from Biograph object (utility)

SamplePath Obtains the life path for a selection of subjects under

observation

Sequences Determines the state sequences in the data

Sequences.ind Determines for each subject under observation the state trajec-

tory from onset to end of observation

Sequences.ind.0 Determines for each subject under observation event dates

sorted in ascending order and generates state sequence (this

function is used to produce a Biograph object)

state_age Determines for given individuals state occupied at given ages

state_time Determines for given individuals state occupation times by

single years of age (in years)

StateSpace Gets the state space from the data. This function allows the user

to change the sequence of states in the state space

string.blank.omit Removes blanks in character string, including leading and

trailing white spaces (utility)

Stringf Converts a character string to a character vector (utility)

Trans Computes the number of transitions by origin and destination

(total and by age)

TransitionAB Computes for a selected transition (by origin and destination)

the number of occurrences by age. This function is basis for age

profile of transition

Transitions Generates several useful measures of transitions by origin and

destination (utility)

(continued)
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Biograph function Task

year_as_age Determines ages from event years and birth years (utility)

year_as_cmc Converts decimal years to Century Month Code (CMC)

(utility)

year_as_Date Converts decimal years to dates in Gregorian calendar (utility)

YearTrans Computes decimal years of transition from transition dates

Data

GLHS The German Life History Survey (GLHS) data

NLOG98 The Netherlands Family and Fertility Survey 1989 (NLOG98)

rrdat German Life History Survey subsample (raw data)

Annex C: Biograph Functions and the Functions They

Depend On

This annex lists Biograph function together with the functions they call (excluding

Base R functions).

A distinction is made between main functions and utilities that are included in

Biograph.

Function Depends on

Agetrans date.b

locpath

Biograph.long Parameters

locpath

reshape

Biograph.msm check.par

reshape

Biograph.mstate check.par

Parameters

Biograph.long

Biograph.mvna Remove.intrastate

Biograph.long

ChangeObservationWindow.e

ChangeObservationWindow.t check.par

locpath

Cumrates Biograph.mvna

mvna (mvna)

predict (mvna)

locpath

Remove.intrastate

statesequence.ind

(continued)
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Occup

Trans

RateTable

Rates.ac

GLHS.IllnessDeath locpath

GLHS.trans

GLHS.Biograph locpath

Parameters

GLHS.trans

Lexis.lines ggplot2

check.par

date.b

Biograph.long

date.convert

Lexislines.episodes Lexis (Epi)

rainbow

LexisOccExp locpath

Parameters.check

Lexis (Epi)

splitLexis (Epi)

timeBand (Epi)

Lexis.diagram (Epi)

Surv (survival)

Lexispoints TransitionAB

Lexis (Epi)

Lexis.diagram (Epi)

Lexis.points ggplot2

check.par

date.b

TransitionAB

MSLT.e

MSLT.S MatrixExp (msm)

NLOG98

Occup check.par

Parameters

state_age

state_time

OverviewEpisodes locpath

OverviewTransitions Parameters

SamplePath statesequence.ind

locpath

date.b

AgeTrans

Parameters StateSpace

(continued)
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transitions

check.par Parameters

StateSpace

plot.cumrates

plot.MSLT.S ggplot (ggplot2)

melt (reshape)

plot.occup ggplot (ggplot2)

Occup

reshape

Rates.ac

RateTable

Remove.intrastate transitions

Sequences AgeTrans

Sequences.ind check.par

Sequences.ind.0

state_age Agetrans

stringf

StateSpace

state_time Parameters

AgeTrans

state_age

Trans AgeTrans

statesequence.ind

TransitionAB locpath

transitions check.par

stringf

Utilities

1. Dates

Function Depends on

age_as_Date Date_as_year

year_as_Date

age_as_year cmc_as_Date

Date_as_year

cmc_as_age cmc_as_year

Date_as_year

cmc_as_Date

cmc_as_year cmc_as_Date

Date_as_year

Date_as_age as.interval (lubridate)

as.period (lubridate)

as.duration (lubridate)

Date_as_year

Date_as_year

Date_as_cmc

(continued)
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date_b locpath

date.convert

date_convert age_as_year

age_as_Date

cmc_as_age

cmc_a-.Date

cmc_as_year

Date_as_age

Date_as_cmc

Date_as_year

year_as_age

year_as_cmc

year_as_Date

year_as_age Date_as_year

year_as_cmc Date_as_cmc

year_as_Date

2. Text

Function Depends on

check.par Parameters

StateSpace

pos.char stringf

pos.charstr stringf

string.blank.omit

stringf

3. Other

Function Depends on

locpath
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