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Preface

This two-volume book presents an overview of the possibilities of the Finite
Element Method (FEM) for linear static analysis of structures. The text
is a revised extension of the Spanish version of the book published by
the International Center for Numerical Methods in Engineering (CIMNE)
in 1992 and 1995 (2nd edition). The content of the book is based on the
lectures of the course on Finite Element Structural Analysis taught by the
author since 1979 to final year students in the School of Civil Engineering
at the Technical University of Catalonia (UPC) in Barcelona, Spain.
Volume 1 of the book presents the basis of the FEM and its application to
structures that can be modelled as two-dimensional (2D), axisymmetric
and three-dimensional (3D) solids using the assumptions of general linear
elasticity theory.
Volume 2 covers the FEM analysis of beam, plate, folded plate, axisym-
metric shell and arbitrary shape shell structures. Emphasis is put in the
treatment of structures with composite materials.
Each chapter of the book presents the main theoretical concepts on the
particular structural model considered, such as the kinematic description,
the constitutive relationship between stresses and strains and the equili-
brium equations expressed by the Principle of Virtual Work. This is follo-
wed by a detailed derivation of the FEM equations and some applications
to academic and practical examples of structural analysis. Complementary
topics such as error estimation, adaptive mesh refinement, mesh generation
and visualization of FEM results and computer programming of the FEM
are also covered in the last chapters of Volume 1.
The book is particularly addressed to those interested in the analysis and
design of solids and structures, understood here in a broad sense. The FEM
concepts explained in the book are therefore applicable to the analysis
of structures in civil engineering constructions, buildings and historical
constructions, mechanical components and structural parts in automotive,
naval and aerospace engineering, among many other applications.
The background knowledge required for study of the book is the stan-
dard one on mathematics, numerical analysis, elasticity and strength of



materials, matrix structural analysis and computer programming covered
in the first courses of engineering and architecture schools at technical
universities. In any case, the key theoretical concepts of each chapter are
explained in some detail so as to facilitate its study.
Chapter 1 of Volume 1 presents first the concepts of structural and compu-
tational models. Then the basic steps of matrix analysis of bar structures
are summarized. This chapter is important as the FEM follows very closely
the methodology of matrix structural analysis. Understanding clearly the
concept of splitting a structure in different elements, the equilibrium of
the individual elements and the assembly of the global equilibrium equa-
tions of the structure from the contributions of the different elements is
essential in order to follow the rest of the book.
Chapters 2 and 3 introduce the FEM formulation for the analysis of sim-
ple axially loaded bars using one-dimensional (1D) bar elements. The
key ingredients of the FEM, such as discretization, interpolation, shape
functions, numerical integration of the stiffness matrix and the equivalent
nodal force vector for the element are explained in detail, as well as other
general concepts such as the patch test, the conditions for convergence of
the FE solution, the types of errors, etc.
Chapter 4 focuses on the study of structures under the assumption of
2D elasticity. These structures include dams, tunnels, pipes and retain-
ing walls, among many others. The key ideas of 2D elasticity theory are
explained, as well as the formulation of the 3-noded triangular element.
Details of the explicit form of the element stiffness matrix and the equiv-
alent nodal force vector are given.
Chapter 5 explains the derivation of the shape functions for 2D solid ele-
ments of rectangular and triangular shape and different orders of approxi-
mation. The resulting expressions for the shape functions are applicable to
axisymmetric solid elements, as well as for many plate and shell elements
studied in Volume 2.
Chapter 6 focuses on the formulation of 2D solid elements of arbitrary
shape (i.e. irregular quadrilateral and triangular elements with straight or
curved sides) using the isoparametric formulation and numerical integra-
tion. These concepts are essential for the organization of a general FEM
computer program applicable to elements of different shape and approx-
imation order. Examples of application to civil engineering constructions
are presented.
Chapter 7 describes the formulation of axisymmetric solid elements. Use is
made of the concepts explained in the previous two chapters, such as the



derivation of the element shape functions, the isoparametric formulation
and numerical integration. Applications to the analysis of axisymmetric
solids and structures are presented.
Chapter 8 studies 3D solid elements of tetrahedral and hexahedral shapes.
3D solid elements allow the FEM analysis of any structure. Details of the
derivation of the stiffness matrix and the equivalent nodal force vector
are given for the simple 4-noded tetrahedral element. The formulation of
higher order 3D solid elements is explained using the isoparametric formu-
lation and numerical integration. Applications of 3D solid elements to a
wide range of structures such as dams, buildings, historical constructions
and mechanical parts are presented.
Chapter 9 covers miscellaneous topics of general interest for FEM analysis.
These include the treatment of inclined supports, the blending of elements
of different types, the study of structures on elastic foundations, the use
of substructuring techniques, the procedures for applying constraints on
the nodal displacements, the computation of stresses at the nodes and the
key concepts of error estimation and adaptive mesh refinement strategies.
Chapter 10 introduces the basic ideas of mesh generation and visualization
of the FEM results. The advancing front method and the Delaunay method
for generation of unstructured meshes are explained in some detail.
Chapter 11 finally describes the organization of a simple computer pro-
gram for FEM analysis of 2D structures using the 3-noded triangle and
the 4-noded quadrilateral using MATLAB as a programming tool and the
GiD pre-postprocessing system.
The four annexes cover the basic concepts of matrix algebra (Annex A),
the solution of simultaneous linear algebraic equations (Annex B), the
computation of the parameters for adaptive mesh refinement analysis (An-
nex C) and details of the GiD pre-postprocessing system developed at
CIMNE (Annex D).
I want to express my gratitude to Dr. Francisco Zárate who was responsible
for writing the computer program Mat-fem explained in Chapter 11 and
also undertook the task of the writing this chapter.
Many thanks also to my colleagues in the Department of Continuum Me-
chanics and Structural Analysis at the Civil Engineering School of UPC for
their support and cooperation over many years. Special thanks to Profs.
Benjamı́n Suárez, Miguel Cervera and Juan Miquel and Drs. Francisco
Zárate and Daniel di Capua with whom I have shared the teaching of the
course on Finite Element Structural Analysis at UPC.



Many examples included in the book are the result of problems solved
by academics and research students at UPC and CIMNE in cooperation
with companies which are acknowledged in the text. I thank all of them
for their contributions. Special thanks to the GiD team at CIMNE for
providing the text for Annex D and many pictures shown in the book.
Many thanks also to my colleagues and staff at CIMNE for their coo-
peration and support during so many years that has made possible the
publication of this book.
I am particularly grateful to Prof. O.C. Zienkiewicz from University of
Swansea (UK) and Prof. R.L. Taylor from University of California at
Berkeley (USA). Their ideas and suggestions during many visits at CIMNE
and UPC in the period 1987-2007 have been a source of inspiration for
the writing of this book.
Prof. Zienkiewicz, one of the giants in the field of computational mecha-
nics, unfortunately passed away on January 2nd 2009 and has been unable
to see the publication of this book. I express my deep sorrow for such a
big loss and my recognition and gratitude for his support and friendship
throughout my career.
Thanks also to Mrs. Adriana Hanganu from CIMNE for supervising the
joint publication of the book by CIMNE and Springer.
Finally, my special thanks to Mrs. Maŕıa Jesús Samper from CIMNE for
her excellent work in the typing and editing of the manuscript.

Eugenio Oñate
Barcelona, January 2009



Foreword

It is just over one-half century since papers on element based approximate
solutions to structural problems first appeared in print. The term Finite
Element Method was introduced in 1960 by Professor R.W. Clough to
define this class of solution methods. In 1967, Professor O.C. Zienkiewicz
published the first book describing applications of the method. Since these
early contributions the finite element method has become indispensable
to engineers and scientists involved in the analysis and design of a very
wide range of practical structural problems: These include concrete dams,
automobiles, aircraft, electronic parts, and medical devices, to name a few.
Professor Eugenio Oñate, the author of Structural Analysis with the Finite
Element Method, is a well recognized educator and research scholar in the
area of computational mechanics. He completed his doctoral studies under
the supervision of Professor O.C. Zienkiewicz at the University of Wales,
Swansea. Professor Oñate is the founder and director of the International
Center for Numerical Methods in Engineering (CIMNE) at the Universitat
Politècnica de Catalunya in Barcelona, Spain. He has more than thirty
years experience in development of finite element methods and related
software.
This two volume book presents the results of the author’s extensive expe-
rience in teaching and research on the finite element method. The content
of the book develops the theory and practical implementation of the fi-
nite element method for application to linear structural problems. In the
first volume, the finite element method is described to solve linear elastic
problems for solids. The second volume extends the method to solve beam,
plate and shell structures.
The style of presentation allows the reader to fully comprehend the fun-
damental steps in a finite element solution process. In the first volume,
the equations of elasticity are developed explicitly and are combined with
the principal of virtual work to describe the matrix problem to be solved.
The book starts with one dimensional problems and builds systemati-
cally through two and three dimensional applications for solids. The first
nine chapters present the theory of finite element analysis in detail – inclu-



ding the required steps to approximate element variables by isoparametric
shape functions, to carry out numerical integration, and to perform assem-
bly of final equations. Numerous examples are completely worked out and
are complemented by color plates of results from analyses of practical
problems. The first volume concludes with a chapter on mesh genera-
tion and visualization and a chapter on programming the finite element
method. Use of the GiD program permits the reader to rapidly generate
a mesh, while the chapter on programming describes how the reader can
combine the computational advantages of MATLAB with the graphical
capabilities of GiD to solve problems and visualize results. The reader can
attain a deeper understanding of the finite element method by studying
these chapters in parallel with the earlier theoretical chapters.
The second volume builds on the first to develop finite element formu-
lations for beam, plate and shell problems. The pattern of development
is identical with the first volume – namely starting with beam theories
and building systematically through the development of various plate and
shell finite element forms.
These two volumes enhance the reader’s ability to master the basic con-
cepts of the finite element method. Moreover, they provide the necessary
background for further study on inelastic material behavior, contact inte-
ractions, and large deformation of solids and shells. Thus, the book is an
extremely valuable contribution toward practical application of the finite
element method in analysis and design of structures.

Robert L. Taylor
University of California, Berkeley, USA
December 2008
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1

INTRODUCTION TO THE FINITE
ELEMENT METHOD FOR
STRUCTURAL ANALYSIS

1.1 WHAT IS THE FINITE ELEMENT METHOD?

The Finite Element Method (FEM) is a procedure for the numerical solu-
tion of the equations that govern the problems found in nature. Usually the
behaviour of nature can be described by equations expressed in differential
or integral form. For this reason the FEM is understood in mathematical
circles as a numerical technique for solving partial differential or integral
equations. Generally, the FEM allows users to obtain the evolution in
space and/or time of one or more variables representing the behaviour of
a physical system.

When referred to the analysis of structures the FEM is a powerful
method for computing the displacements, stresses and strains in a struc-
ture under a set of loads. This is precisely what we aim to study in this
book.

1.2 ANALYTICAL AND NUMERICAL METHODS

The conceptual difference between analytical and numerical methods is
that the former search for the universal mathematical expressions repre-
senting the general and “exact” solution of a problem governed typically by
mathematical equations. Unfortunately exact solutions are only possible
for a few particular cases which frequently represent coarse simplifications
of reality.

On the other hand, numerical methods such as the FEM aim to pro-
viding a solution, in the form of a set of numbers, to the mathematical
equations governing a problem. The strategy followed by most numerical
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methods is to transform the mathematical expressions into a set of alge-
braic equations which depend on a finite set of parameters. For practical
problems these equations involve many thousands (or even millions) of un-
knowns and therefore the final system of algebraic equations can only be
solved with the help of computers. This explains why even though many
numerical methods were known since the XVIII century, their develop-
ment and popularity has occurred in tandem to the progress of modern
computers in the XX century. The term numerical method is synonymous
of computational method in this text.

Numerical methods represent, in fact, the return of numbers as the true
protagonists in the solution of a problem. The loop initiated by Pythagoras
some 25 centuries ago has been closed in the last few decades with the
evidence that, with the help of numerical methods, we can find precise
answers to any problem in science and engineering.

We should keep in mind that numerical methods for structural engi-
neering are inseparable from mathematics, material modelling and com-
puter science. Nowadays it is unthinkable to attempt the development of
a numerical method for structural analysis without referring to those dis-
ciplines. As an example, any method for solving a large scale structural
problem has to take into account the hardware environment where it will
be implemented (most frequently using parallel computing facilities). Also
a modern computer program for structural analysis should be able to in-
corporate the continuous advances in the modelling of new materials.

The concept which perhaps best synthesizes the immediate future of
numerical methods is “multidisciplinary computations”. The solution of
problems will not be attempted from the perspective of a single discipline
and it will involve all the couplings which characterize the complexity of
reality. For instance, the design of a structural component for a vehicle (an
automobile, an aeroplane, etc.) will take into account the manufacturing
process and the function which the component will play throughout its
life time. Structures in civil engineering will be studied considering the
surrounding environment (soil, water, air). Similar examples are found in
mechanical, naval and aeronautical engineering and indeed in practically
all branches of engineering science. Accounting for the non-deterministic
character of data will be essential for estimating the probability that the
new products and processes conceived by men behave as planned. The
huge computational needs resulting from a stochastic multidisciplinary
viewpoint will demand better numerical methods, new material models
and, indeed, faster computers.
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It is only through the integration of a deep knowledge of the physi-
cal and mathematical basis of a problem and of numerical methods and
informatics, that effective solutions will be found for the large-scale multi-
disciplinary problems in structural engineering of the twenty-first century.

1.3 WHAT IS A FINITE ELEMENT?

A finite element can be visualized as a small portion of a continuum (in this
book a solid or a structure). The word “finite” distinguishes such a portion
from the “infinitesimal” elements of differential calculus. The geometry of
the continuum is considered to be formed by the assembly of a collection
of non-overlapping domains with simple geometry termed finite elements.
Triangles and quadrilaterals in two dimensions (2D) or tetrahedra and
hexahedra in three dimensions (3D) are typically chosen to represent the
“elements”. It is usually said that a “mesh” of finite elements “discretizes”
the continuum (Figure 1.1). The space variation of the problem parameters
(i.e. the displacements in a structure) is expressed within each element by
means of a polynomial expansion. Since the “exact” analytical variation of
such parameters is more complex and generally unknown, the FEM only
provides an approximation to the exact solution.

1.4 STRUCTURAL MODELLING AND FEM ANALYSIS

1.4.1 Classification of the problem

The first step in the solution of a problem is the identification of the pro-
blem itself. Hence, before we can analyze a structure we must ask ourselves
the following questions: Which are the more relevant physical phenomena
influencing the structure? Is the problem of static or dynamic nature?
Are the kinematics or the material properties linear or non-linear? Which
are the key results requested? What is the level of accuracy sought? The
answers to these questions are essential for selecting a structural model
and the adequate computational method.

1.4.2 Conceptual, structural and computational models

Computational methods, such as the FEM, are applied to conceptual mo-
dels of a real problem, and not to the actual problem itself. Even experi-
mental methods in structural laboratories make use of scale reproductions
of the conceptual model chosen (also called physical models) unless the
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Fig. 1.1 Discretization of different solids and structures with finite elements
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actual structure is tested in real size, which rarely occurs. A conceptual
model can be developed once the physical nature of a problem is clearly
understood. In the derivation of a conceptual model we should aim to
exclude superfluous details and include all the relevant features of the
problem under consideration so that the model can describe reality with
enough accuracy.

A conceptual model for the study of a structure should include all the
data necessary for its representation and analysis. Clearly different persons
will have different perceptions of reality and, consequently, the conceptual
model for the same structure can take a variety of forms.

After selecting a conceptual model of a structure, the next step for the
numerical (and analytical) study is the definition of a structural model
(sometimes called mathematical model).

A structural model must include three fundamental aspects. The geo-
metric description of the structure by means of its geometrical compo-
nents (points, lines, surfaces, volumes), the mathematical expression of
the basic physical laws governing the behaviour of the structure (i.e. the
force-equilibrium equations and the boundary conditions) usually written
in terms of differential and/or integral equations and the specification of
the properties of the materials and of the loads acting on the structure.
Clearly the same conceptual model of a structure can be analyzed using
different structural models depending on the accuracy and/or simplicity
sought in the analysis. As an example, a beam can be modelled using the
general 3D elasticity theory, the 2D plane stress theory or the simpler
beam theory. Each structural model provides a different set out for the
analysis of the actual structure. We should bear in mind that a solution
found by starting from an incorrect conceptual or structural model will be
a wrong solution, far from correct physical values, even if obtained with
the most accurate numerical method.

The next step in the structural analysis sequence is the definition of
a numerical method, such as the FEM. The application of the FEM in-
variably requires its implementation in a computer code. The analysis of
a structure with the FEM implies feeding the code with quantitative in-
formation on the mechanical properties of the materials, the boundary
conditions and the applied loads (the physical parameters) as well as the
features of the discretization chosen (i.e. element type, mesh size, etc).
The outcome of this process is what we call a computational model for the
analysis of a structure (Figure 1.2).
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Fig. 1.2 The path from the real structure to the computational model

In this book we will study the application of the FEM to a number
of structural models covering most structures found in the engineering
practice. The material properties will be considered to be linear elastic.
Furthermore the analysis will be restricted to linear kinematics and to
static loading. The structures are therefore analyzed under linearlinear staticstatic
conditionsconditions. Despite their simplicity, these assumptions are applicable to
most of the situations found in the everyday practice of structural analysis
and design.

The structural models considered in this book are classified as solid
models (2D/3D solids and axisymmetric solids), beam and plate models
and shell models (faceted shells, axisymmetric shells and curved shells).
Figure 1.3 shows the general features of a typical member of each struc-
tural model family. The structures that can be analyzed with these models
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Fig. 1.3 Structural models for some structures

include frames, buildings, slabs, foundations, retaining walls, dams, tun-
nels, bridges, cylindrical tanks, shell roofs, ship hulls, mechanical parts,
airplane fuselages, vehicle components, etc.

Volume 1 of this book studies structures that can be analyzed using
solid finite element models. The finite element analysis of beam, plate and
shell structures is covered in Volume 2 [On].
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1.4.3 Structural analysis by the FEM

The geometry of a structure is discretized when it is split into a mesh of
finite elements of a certain accuracy. Clearly the discretization introduces
another approximation. With respect to reality we have therefore two error
sources from the outset: the modelling error and the discretization error.
The former can be reduced by improving the conceptual and structural
models which describe the actual behaviour of the structure, as previously
explained. The discretization error, on the other hand, can be reduced by
using a finer mesh (i.e. more elements), or else by increasing the accuracy
of the finite elements chosen using higher order polynomial expansions for
approximating the displacement field within each element.

Additionally, the use of computers introduces numerical errors asso-
ciated with their ability to represent data accurately with numbers of
finite precision. The numerical error is usually small, although it can be
large in some problems, such as when some parts of the structure have
very different physical properties. The sum of discretization and numerical
errors contribute to the error of the computational model. Note that even
if we could reduce the computational error to zero, we would not be able
to reproduce accurately the actual behaviour of the structure, unless the
conceptual and structural models were perfect.

Figure 1.4 shows schematically the discretization of some geometrical
models of structures using finite elements. Figure 1.5 shows the actual
image of a car panel, the geometrical definition of the panel surface by
means of NURBS (non-uniform rational B-splines) patches [PT] using
computer-aided design (CAD) tools (see Chapter 10), the discretization
of the surface by a mesh of 3-noded shell triangles and some numerical
results of the FEM analysis. The differences between the real structure
of the panel, the geometrical description and the analysis mesh can be
seen clearly. A similar example of the FEM analysis of an office building
is shown in Figure 1.6.

1.4.4 Verification and validation of FEM results

Developers of structural finite element computer codes, analysts who use
the codes and decision makers who rely on the results of the analysis face
a critical question: How should confidence in modelling and computation
be critically assessed? Validation and verification of FEM results are the
primary methods for building and quantifying this confidence. In essence,
validation is the assessment of the accuracy of the structural and compu-
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Fig. 1.4 Discretization of structural models into finite elements

tational models by comparison of the numerical results with experimental
data. Experiments are usually performed in laboratory using scale models



10 Introduction to the finite element method for structural analysis

Fig. 1.5 (a) Actual geometry of an automotive panel. (b) CAD geometrical des-
cription by NURBS patches. (c) Finite element mesh of 3-noded shell triangles
discretizing the panel geometry. (d) FEM numerical results of the structural ana-
lysis showing the equivalent strain distribution. Images by courtesy of Quantech
ATZ S.A., www.quantech.es

of a structure, and in special occasions on actual structures. The correct
definition of the experimental tests and the reliability of the experimental
results are crucial issues in the validation process.

Verification, on the other hand, is the process of determining that
a computational model accurately represents the underlying structural
model and its solution. In verification, therefore, the relationship between
the numerical results to the real world is not an issue. The verification of
FEM computations is made by comparing the numerical results for sim-
ple benchmark problems with “exact” solutions obtained analytically, or
using more accurate numerical methods. Figure 1.7 shows an scheme of
the verification and validation steps [ASME,Sch].

A careful examination of the verification process indicates that there
are two fundamental parts of verification: 1) code verification, in order
to establish confidence that the mathematical model and the solution al-
gorithms are working correctly, and 2) calculation verification aiming to
establish confidence that the discrete solution of the mathematical model
is accurate.

Among the code verification techniques, the most popular one is to
compare code outputs with analytical solutions. As the number of such
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Fig. 1.6 FEM analysis of the Agbar tower (Barcelona). Actual structure and dis-
cretization into shell and 3D beam elements. Deformed mesh (amplified) under
wind load. Images are courtesy of Compass Ingenieŕıa y Sistemas SA,
www.compassis.com and Robert Brufau i Associats, S.A. www.robertbrufau.com

solutions is very limited, a code verification procedure with the potential
to greatly expand is the use of manufactured solutions.

The basic concept of a manufactured solution is simple. Given a partial
differential equation (PDE) and a code that provides general solutions of
that PDE, an arbitrary solution to the PDE is manufactured, i.e. made
up, then substituted into the PDE along with associated boundary condi-
tions, also manufactured. The result is a forcing function (right-hand side)
that exactly reproduces the originally selected manufactured solution. The
code is then subjected to this forcing function and the numerical results
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Fig. 1.7 Scheme of the verification and validation processes in the FEM. Flowchart
concept taken from [ASME,Sch] and reprinted by permission of the American
Society of Mechanical Engineering (ASME)

compared with the manufactured solution. If the code has no errors the
two solutions should agree [Sch].

As an illustration of a manufactured solution, let us consider the ordi-
nary differential equations for an Euler-Bernouilli beam of length L with
a constant cross section (Chapter 1 of Volume 2 [On] and [Ti])

EI
d4w

dx4
= f(x)

where w is the beam deflection, E and I are the Young modulus and the
inertia of the beam cross section, respectively and f(x) is a uniformly
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distributed loading. The following manufactured solution is assumed

w(x) = A sin
αx

L
+ Bex/L + C

where the four constants A, α, B and C are determined from the boun-
dary conditions. Substitution of the manufactured solution into the beam
equation results in the following expression for the loading term

f(x) = EI

[
A

(α

L

)4
sin

αx

L
+

B

L4
ex/L

]

This loading function would be prescribed as input data to the discrete
beam finite element code and the code’s solution for w(x) is then compared
with the selected manufactured solution.

Code verification is only half of the verification effort. The other half
is the calculation verification, or, in other words, estimating the error in
the numerical solution due to discretization. These errors can be appraised
using error estimation techniques (Chapter 9). A more accurate numerical
solution can be found with a finer discretization or by using higher order
elements.

The subsequent validation step (Figure 1.7) has the goal of assessing
the predictive capability of the model. This assessment is made by com-
paring the numerical results with validation experiments performed on
physical models in laboratory or in real structures. If these comparisons
are satisfactory, the model is deemed validated for its intended use. In
summary, the validation exercise provides insight on the capacity of the
overall structural model to reproduce the behaviour of a real structure (or
the physical model chosen) with enough precision. Although both the ac-
curacy of the structural model and the computational method are assessed
in a validation process, a large validation error for an already verified code
typically means that the structural model chosen is not adequate and that
a better structural model should be used.

In conclusion, verification serves to check that we are solving structural
problems accurately, while validation tell us that we are solving the right
problem. Simply put, if the model passes the tests in the verification and
validation plan, then it can be used to make the desired predictions with
confidence. More details on the issue of verification and validation of the
FEM in solid mechanics can be found in [ASME,Ro,Sch].

In the following sections we will revisit the basic concepts of the matrix
analysis of bar structures, considered here as a particular class of the so-
called discrete systems. Then we will summarize the general steps in the
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Fig. 1.8 Some discrete systems. Elements and joint points (nodes)

analysis of “continuous” structures by the FEM. The interest of classical
matrix structural analysis is that it provides a general solution framework
which reassembles very closely that followed in the FEM.

1.5 DISCRETE SYSTEMS. BAR STRUCTURES

The solution of many technical problems requires the analysis of a network
system formed by different “elements”connected by their extremities or
joints, and subjected to a set of “loads” which are usually external to the
system. Examples of such systems, which we will call discrete systems,
are common in structural engineering (pin-jointed bar structures, frames,
grillages, etc.) and in many other different engineering problems, e.g.:
hydraulic piping networks, electric networks, transport planning networks,
production organization systems (PERT, etc) amongst others. Figure 1.8
shows some of these discrete systems.

Discrete systems can be studied using matrix analysis procedures which
have a very close resemblance to the FEM. In Appendix A the basic con-
cepts of matrix algebra are summarized. An outline of matrix analysis
techniques for bar structures and other discrete systems such as electric
and hydraulic networks is presented in the next section.

1.5.1 Basic concepts of matrix analysis of bar structures

Matrix analysis is the most popular technique for the solution of bar struc-
tures [Li,Pr]. Matrix analysis also provides a general methodology for the
application of the FEM to other structural problems. A good knowledge
of matrix analysis is essential for the study of this book.
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Fig. 1.9 Deformation of a bar subjected to axial end forces. Number in brackets
at joints denotes global joint number

The matrix equations for a bar structure are obtained from the equa-
tions expressing the equilibrium of forces for each bar and for the structure
as a whole. Let us consider an isolated bar, e, of length l(e) subjected to
axial forces F

(e)
x1 and F

(e)
x2 acting at the beam joints (Figure 1.9). The x

axis has the direction of the bar. Strength of Materials defines the strain
at any point in the bar by the relative elongation [Ti], i.e.

ε =
∆l(e)

l(e)
=

u
(e)
2 − u

(e)
1

l(e)
(1.1)

where u
(e)
1 and u

(e)
2 are the displacements of the joint points 1 and 2 in

the x direction, respectively. In Eq.(1.1) and the following the superindex
e denotes values associated to an individual bar. Generally indexes 1 and
2 are local joint numbers for the bar and correspond to the actual global
numbers i, j of the joints in the structure. Hence u

(e)
1 = ui and u

(e)
2 = uj

(Figure 1.9 and Example 1.1).
The axial stress σ is related to the strain ε by Hooke law [Ti] as

σ = Eε = E
u

(e)
2 − u

(e)
1

l(e)
(1.2)

where E is the Young modulus of the material. The axial force N at each
section is obtained by integrating the stress over the cross sectional area.
The axial force N is transmitted to the adjacent bars through the joints.
For homogeneous material we have (Figure 1.9)

N (e)
2 = A(e)σ = (EA)(e)

u
(e)
2 − u

(e)
1

l(e)
= N (e)

1 (1.3)

The force equilibrium equation for the bar of Figure 1.9 is simply

F (e)
x1

+ F (e)
x2

= 0 (1.4a)
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F (e)
x1 +

(ltx)(e)

2
= k(e)(u

(e)
1 − u

(e)
2 )

F (e)
x2 +

(ltx)(e)

2
= k(e)(u

(e)
2 − u

(e)
1 ) , k(e) =

(
EA

l

)(e)

Fig. 1.10 Equilibrium equations for a bar subjected to axial joint forces and a
uniformly distributed axial load t

(e)
x

with
F

(e)
x2 = N (e)

2 = (EA)(e) u
(e)
2 −u

(e)
1

l(e)
= k(e)(u(e)

2 − u
(e)
1 )

and

F
(e)
x1 = −F

(e)
x2 = k(e)(u(e)

1 − u
(e)
2 ) = −N (e)

1

(1.4b)

where k(e) =
(

EA
l

)(e). Eqs.(1.4b) can be written in matrix form as

q(e) =

{
F

(e)
x1

F
(e)
x2

}
= k(e)

[
1 −1
−1 1

]{
u

(e)
1

u
(e)
2

}
= K(e)a(e) (1.5a)

where

K(e) = k(e)

[
1 −1
−1 1

]
(1.5b)

is the stiffness matrix of the bar, which depends on the geometry of the
bar (l(e), A(e)) and its mechanical properties (E(e)) only; a(e) = [u(e)

1 , u
(e)
2 ]T

and q(e) = [F (e)
x1 , F

(e)
x2 ]T are the joint displacement vector and the joint

equilibrating force vector for the bar, respectively.
A uniformly distributed external axial load of intensity t

(e)
x can easily

be taken into account by adding one half of the total external load to
each axial force at the bar joints. The equilibrium equations now read
(Figure 1.10)

q(e) =

{
F

(e)
x1

F
(e)
x2

}
= k(e)

[
1 −1
−1 1

] {
u

(e)
1

u
(e)
2

}
− (ltx)(e)

2

{
1
1

}
= K(e)a(e) − f (e)

(1.6a)
where

f (e) =





f
(e)
x1

f
(e)
x2



 =

(ltx)(e)

2

{
1
1

}
(1.6b)
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Px2 − F (1)
x2 − F (2)

x1 = 0 , or F
(1)
x2 + F

(2)
x1 = Px2

Fig. 1.11 Equilibrium of axial forces F
(1)
x2 and F

(2)
x1 and external force Px2 at joint 2

connecting bars 1 and 2. Number in brackets at joint denotes global joint number

is the vector of forces at the beam joints due to the distributed loading.
The equilibrium equations for the whole structure are obtained by im-

posing the equilibrium of axial and external forces at each of the N joints.
This condition can be written as [Li,Pr]

ne∑

e=1

F (e)
xi

= Pxj , j = 1, N (1.7)

The sum on the left hand side (l.h.s.) of Eq.(1.7) extends over all bars
ne sharing the joint with global number j and Pxj represents the external

point load acting at that joint (Figure 1.11). The joint forces F
(e)
xi for each

bar are expressed in terms of the joint displacements using Eq.(1.6). This
process leads to the system of global equilibrium equations. In matrix form




K11 K12 · · · · · · K1N
K21 K22 · · · · · · K2N

...
KN1 KN2 · · · · · · KNN








u1
u2
...

uN





=





f1
f2
...

fN





or
Ka = f (1.8a)

where K is the global stiffness matrix of the structure and a and f are
the global joint displacement vector and the global joint force vector,
respectively. The derivation of Eq.(1.8a) is termed the assembly process.
Solution of Eq.(1.8a) yields the displacements at all joint points from
which the value of the axial force in each bar can be computed as

N (e) = (EA)(e)
u

(e)
2 − u

(e)
1

l(e)
(1.8b)

The axial forces at the joints can be computed from Eqs.(1.4b) and
(1.6a) as

q(e) =

{
−N (e)

1

N (e)
2

}
= K(e)a(e) − f (e) (1.9)
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Note that N (e)
2 = −N (e)

1 = N (e).
The components of q(e) can therefore be interpreted as the joint equi-

librating forces for each bar necessary for imposing global equilibrium of
forces at the joints (Eq.(1.6a)), or as the axial forces at the bar joints
(Eq.(1.9)) which are useful for design purposes. This coincidence will be
exploited later in the book for computing the resultant stresses at each
node for bar and beam finite elements by expressions similar to Eq.(1.9).

The assembled expression for vector q(e) yields the reactions at the
nodes with constrained displacements. The vector of nodal reactions can
be computed from the global stiffness equations as

r = q = Ka− fext (1.10a)

where r contains the reactions at the constrained nodes and f ext contains
global joint forces due to external loads only. Clearly the sum of the re-
actions and the external joint forces gives the global joint force vector f,
i.e.

f = f ext + r (1.10b)

1.5.2 Analogy with the matrix analysis of other discrete systems

The steps between Eqs.(1.1) and (1.8) are very similar for many discrete
systems. For instance, the study of a single resistance element 1-2 in an
electric network (Figure 1.12a) yields the following relationship between
the currents entering the resistance element and the voltages at the end
points of the resistance (Ohm law)

I
(e)
1 = −I

(e)
2 =

1
R(e)

(V (e)
1 − V

(e)
2 ) = k(e)(V (e)

1 − V
(e)
2 ) (1.11a)

This equation is identical to Eq.(1.4) for the bar element if the current
intensities and the voltages are replaced by the joint forces and the joint
displacements, respectively, and 1/R(e) by

(
EA
l

)(e). Indeed, if uniformly
distributed external currents t

(e)
x are supplied along the length of the ele-

ment, the force term f (e) of Eq.(1.6a) is found. The “assembly rule” is the
well known Kirchhoff law stating that the sum of all the current intensities
arriving at a joint must be equal to zero, i.e.

ne∑

e=1

I
(e)
i = Ij , j = 1, N (1.11b)
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Fig. 1.12 a) Electrical resistance, b) Fluid carrying pipe. Equations of equilibrium

where Ii is the external current intensity entering joint i and N is the
total number of joints. Note the analogy between Eqs.(1.11b) and (1.7).

The same analogy can be found for fluid carrying pipe networks. The
equilibrium equation relating fluid flow q and hydraulic head h at the ends
of a single pipe element can be written as (Figure 1.12b)

q
(e)
1 = −q

(e)
2 = k(e)(h(e)

1 − h
(e)
2 ) (1.12a)

where k(e) is a parameter which is a function of the pipe roughness and
the hydraulic head. This implies that the terms of the stiffness matrix
K(e) for a pipe element are known functions of the joint heads h

(e)
i . The

equilibrium equation for each pipe element is written as in Eq.(1.6) where
u

(e)
i and F

(e)
xi are replaced by h

(e)
i and q

(e)
i , respectively and t

(e)
x represents

the input of a uniformly distributed flow source along the pipe length.
The assembly rule simply states that at each of the N pipe joints the

sum of the flow contributed by the adjacent pipe elements should equal
the external flow source, i.e.

ne∑

e=1

q
(e)
i = qj , j = 1, N (1.12b)

The global equilibrium equations are assembled similarly as for the bar
element yielding the system of Eqs.(1.8a). In the general problem matrix K
will be a function of the nodal hydraulic head via the k(e) parameter. Ite-
rative techniques for solving the resulting non-linear system of equations
are needed in this case.
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1.5.3 Basic steps for matrix analysis of discrete systems

What we have seen this far leads us to conclude that the analysis of a
discrete system (i.e. a bar structure) involves the following steps:

a) Definition of a network of discrete elements (bars) connected among
themselves by joints adequately numbered. Each element e has known
geometrical and mechanical properties. All these characteristics con-
stitute the problem data and should be defined in the simplest possible
way (preprocessing step).

b) Computation of the stiffness matrix K(e) and the joint force vector
f (e) for each element of the system.

c) Assembly and solution of the resulting global matrix equilibrium equa-
tion (Ka = f) to compute the unknown parameters at each joint, i.e.
the displacements for the bar system.

d) Computation of other relevant parameters for each element, i.e. the
axial strain and the axial force, in terms of the joint parameters.

The results of the analysis should be presented in graphical form to fa-
cilitate the assessment of the system’s performance (postprocessing step).

Example 1.1: Compute the displacements and axial forces in the three-bar
structure of Figure 1.13 subjected to an horizontal force P acting at its
right hand end.

Fig. 1.13 Analysis of a simple three-bar structure under an axial load

- Solution- Solution

The equilibrium equations for each joint are (see Eq.(1.5a))

Bar 1

{
F

(1)
x1

F
(1)
x2

}
= k(1)

[
1 −1
−1 1

] {
u

(1)
1

u
(1)
2

}
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Bar 2

{
F

(2)
x1

F
(2)
x2

}
= k(2)

[
1 −1
−1 1

] {
u

(2)
1

u
(2)
2

}

Bar 3

{
F

(3)
x1

F
(3)
x2

}
= k(3)

[
1 −1
−1 1

] {
u

(3)
1

u
(3)
2

}

with k(1) = k(2) = EA
l and k(3) = 2EA

l .
The compatibility equations between local and global displacements are

u
(1)
1 = u1 ; u

(1)
2 = u3 ; u

(2)
1 = u2

u
(2)
2 = u3 ; u

(3)
1 = u3 ; u

(3)
2 = u4

Applying the assembly equation (1.7) to each of the four joints we have

joint 1:
3∑

e=1

F (1)
xi

= −R1 , joint 2:
3∑

e=1

F (1)
xi

= −R2

joint 3:
3∑

e=1

F (1)
xi

= 0 , joint 4:
3∑

e=1

F (1)
xi

= P

Substituting the values of F
(e)
xi from the bar equilibrium equations gives

joint 1 : k(1)(u(1)
1 − u

(1)
2 ) = −R1 , joint 2 : k(2)(u(2)

1 − u
(2)
2 ) = −R2

joint 3 : k(1)(−u
(1)
1 + u

(1)
2 ) + k(2)(−u

(2)
1 + u

(2)
2 ) + k(3)(u(3)

1 + u
(3)
2 ) = 0

joint 4 : k(3)(−u
(3)
1 + u

(1)
2 ) = P

Above equations can be written in matrix form using the displacement com-
patibility conditions as

1 2 3 4

1
2
3
4




k(1) 0 −k(1) 0
0 k(2) −k(2) 0

−k(1) −k(2) (k(1) + k(2) + k(3)) −k(3)

0 0 −k(3) k(3)








u1

u2

u3

u4





=





−R1

−R2

0
P





Note that an external point load acting at node j can be placed directly in
the jth position of the global joint force vector f .
Substituting the values of k(e) for each bar and imposing the boundary con-
ditions u1 = u2 = 0, the previous system can be solved to give

u3 =
Pl

2EA
; u4 =

Pl

EA
; R1 = R2 =

P

2
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The axial forces in each bar are finally obtained as

Bar 1 : N (1) =
EA

l
(u3−u1) =

P

2
, Bar 2 : N (2) =

EA

l
(u3−u2) =

P

2

Bar 3 : N (3) =
2EA

l
(u4 − u3) = P

The joint axial force for each bar is computed from Eq.(1.8c) giving

N (1)
2 = −N (1)

1 = P/2 ; N (2)
2 = −N (2)

1 = P/2 ; N (3)
2 = −N (3)

1 = P

1.6 DIRECT ASSEMBLY OF THE GLOBAL STIFFNESS MATRIX

The stiffness and force contributions of each individual bar can be di-
rectly assembled in the global stiffness matrix by the following procedure.
Consider a bar e connecting two joints with global numbers i and m
(Figure 1.14). Each term in the position (i,m) of the bar stiffness ma-
trix contributes to the same position (i,m) of the global stiffness matrix.
Similarly, the nodal force components f

(e)
x1 and f

(e)
x2 corresponding to the

Fig. 1.14 Contributions to the global stiffness matrix and the global joint force
vector from an individual bar
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global joint numbers i and m are respectively placed in rows i and m of
the global joint force vector f . Also an external point load Pxi acting at
joint i is directly added to the component of the ith row of f (Figure 1.14).
Thus, the global stiffness matrix and the global joint force vector can be
computed by systematically adding the contributions from the different
bars using information from the joint numbers. This assembly process can
be programmed in a simple and general form [Hu,HO,HO2].

The cost of solving the global system of equations (1.8a) using a direct
solver (Appendix B) is approximately equal to N B2

4 , where N is the order
of K and B its bandwidth [CMPW]. For each row i of K, the semibandwidth
Bi
2 is equal to the number of columns from the diagonal to the right-most

non zero term plus one. A root mean-square average of the Bi may be
taken as representative B for the entire matrix (Example 1.2).

Example 1.2: Obtain the bandwidth of the stiffness matrix for the structure of
the figure with the node numbering indicated below.

- Solution- Solution- Solution- Solution

Numbering a)

The local numbering for each bar element is always taken from left to right

K(e) =




k
(1)
11 k

(1)
12 0 0

k
(1)
21 (k(1)

22 + k
(2)
22 + k

(3)
11 ) k

(2)
21 k

(3)
12

0 k
(2)
12 k

(2)
11 0

0 k
(3)
21 0 k

(3)
22




Numbering b)
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K(e) =




k(1)
11 0 0 k(1)

12

0 k(3)
22 0 k(3)

21

0 0 k(2)
11 k(2)

12

k(1)
21 0 k(2)

21 (k(1)
11 + k(2)

22 + k(3)
11 )




In numbering (a) the nodal bandwidths Bi are [4,6,4,2] and B ' 4.1. In
numbering (b) the banded structure is lost and the bandwidths Bi are [8,6,4,2]
and B ' 5.5. These differences can be very significant in practical problems
where the order of K is much larger.

1.7 DERIVATION OF THE MATRIX EQUILIBRIUM EQUATIONS
FOR THE BAR USING THE PRINCIPLE OF VIRTUAL WORK

A key step in the matrix analysis of bar structures is the derivation of the
stiffness equations for the single bar element. These equations express the
equilibrium between the loads acting at the bar joints and the displace-
ments of the joint points (Eq.(1.5)). For the simple axially loaded bar
these equations can be directly obtained using concepts from Strength of
Materials [Ti,Ti2]. For complex structures more general procedures are
needed. Among these, the Principle of Virtual Work (PVW) is the more
powerful and widespread technique. This well known principle states that:
“A structure is in equilibrium under a set of external loads if after impo-
sing to the structure arbitrary (virtual) displacements compatible with
the boundary conditions, the work performed by the external loads on the
virtual displacements equals the work performed by the actual stresses on
the strains induced by the virtual displacements”.

The PVW is a necessary and sufficient condition for the equilibrium of
the whole structure or any of its parts [Ti,Ti2,Was,ZT,ZTZ]. Next, we will
apply this technique to the axially loaded bar of Figure 1.9. The PVW in
this case is written as

∫ ∫ ∫

V (e)

δεσdV = δu
(e)
1 F (e)

x1
+ δu

(e)
2 F (e)

x2
(1.13)

where δu
(e)
1 and δu

(e)
2 are, respectively, the virtual displacements of ends

1 and 2 of a bar with volume V (e), and δε is the corresponding virtual
strain which can be obtained in terms of δu

(e)
1 and δu

(e)
2 as

δε =
δu

(e)
2 − δu

(e)
1

l(e)
(1.14)
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Substituting the values of σ and δε of Eqs.(1.2) and (1.14) into (1.13)
and integrating the stresses over the cross sectional area of the bar gives
∫

l(e)

1
l(e)

[
δu

(e)
2 − δu

(e)
1

]
(EA)(e)

1
l(e)

[
u

(e)
2 − u

(e)
1

]
dx = δu

(e)
1 F (e)

x1
+ δu

(e)
2 F (e)

x2

(1.15)
Integrating over the bar length, assuming the Young modulus E(e) and

the area A(e) to be constant, yields
(

EA

l

)(e) [
u

(e)
1 − u

(e)
2

]
δu

(e)
1 +

(
EA

l

)(e) [
u

(e)
2 − u

(e)
1

]
δu

(e)
2 =

= δu
(e)
1 F (e)

x1
+ δu

(e)
2 F (e)

x2
(1.16)

Since the virtual displacements are arbitrary , the satisfaction of Eq.(1.16)
for any value of δu

(e)
1 and δu

(e)
2 requires that the terms multiplying each

virtual displacement at each side of the equation should be identical. This
leads to the following system of two equations

For δu
(e)
1 :

(
EA

l

)(e) [
u

(e)
1 − u

(e)
2

]
= F (e)

x1
(1.17a)

For δu
(e)
2 :

(
EA

l

)(e) [
u

(e)
2 − u

(e)
1

]
= F (e)

x2
(1.17b)

which are the equilibrium equations we are looking for.
These equations, written in matrix form, coincide with Eqs.(1.5a) di-

rectly obtained using more physical arguments. The effect of a uniformly
distributed load (Figure 1.10) can easily be taken into account by adding
to the right hand side (r.h.s.) of Eq.(1.13) the term

∫
l(e) δut

(e)
x dx. Assu-

ming a linear distribution of the virtual displacements in terms of the joint
displacement values, the expression of Eq.(1.6a) is recovered is it can be
verified by the reader.

The PVW will be used throughout this book to derive the matrix
equilibrium equations for the different structures studied with the FEM.

1.8 DERIVATION OF THE BAR EQUILIBRIUM EQUATIONS VIA
THE MINIMUM TOTAL POTENTIAL ENERGY PRINCIPLE

The equilibrium equations for a structure can also be derived via the prin-
ciple of Minimum Total Potential Energy (MTPE). The resulting equa-
tions are identical to those obtained via the PVW. The applications of
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the MTPE principle are generally limited to elastic materials for which
simple forms of the total potential energy can be derived [TG,Ti]. The
PVW is more general as it is applicable to non linear problems (including
both material and geometrical non linearities) and it is usually chosen as
the starting variational form for deriving the finite element equations.

The total potential energy for a single bar e under joint forces F
(e)
xi is

Π(e) =
1
2

∫

l(e)
εNdx−

2∑

i=1

u
(e)
i F (e)

xi
(1.18)

Substituting into Eq.(1.18) the expression for the elongation ε and the
axial forces N in terms of the end displacements, i.e.

ε =
u

(e)
2 − u

(e)
1

l(e)
, N = (EA)(e)

u
(e)
2 − u

(e)
1

l(e)
(1.19)

gives

Π(e) =
1
2

∫

l(e)

(
u

(e)
2 − u

(e)
1

l(e)

)
(EA)(e)

(
u

(e)
2 − u

(e)
1

l(e)

)
dx−

(
u

(e)
1 F (e)

x1
+u

(e)
2 F (e)

x2

)

(1.20)
The MTPE principle states that a structure is in equilibrium for values

of the displacement making Π stationary. The MTPE also holds for the
equilibrium of any part of the structure. The equilibrium condition for the
single bar is written as

∂Π(e)

∂u
(e)
i

= 0 i = 1, 2 (1.21)

i.e.

∂Π(e)

∂u
(e)
1

= − 1
l(e)

∫

l(e)
(EA)(e)

(
u

(e)
2 − u

(e)
1

l(e)

)
dx− F (e)

x1
= 0

∂Π(e)

∂u
(e)
2

=
1

l(e)

∫

l(e)
(EA)(e)

(
u

(e)
2 − u

(e)
1

l(e)

)
dx− F (e)

x2
= 0

(1.22)

For a linear material, the above equations simplify to
(

EA

l

)(e) [
u

(e)
1 − u

(e)
2

]
= F

(e)
x1

(
EA

l

)(e) [
u

(e)
2 − u

(e)
1

]
= F

(e)
x2

(1.23)
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Note the coincidence between the above end force-displacement equi-
librium equations and those obtained via the PVW (Eqs.(1.17)).

Eq.(1.20) can be rewritten as

Π(e) =
l

2
[a(e)]TK(e)a(e) − [a(e)]Tq(e) (1.24)

where K(e), a(e) and q(e) are respectively the stiffness matrix, the joint
displacement vector and the joint equilibrium force vector for the bar.

The stationarity of Π(e) with respect to the joint displacements gives

∂Π(e)

∂a(e)
= 0 → K(e)a(e) = q(e) (1.25)

Eq.(1.25) is the same matrix equilibrium equation between forces and dis-
placements at the bar joints obtained in the previous section (Eq.(1.5a)).

The total potential energy for a bar structure can be written in a form
analogous to Eq.(1.24) as

Π =
1
2
aTKa− aT f (1.26)

where K, a and f are respectively the stiffness matrix, the joint displace-
ment vector and the external joint force vector for the whole structure.
The stationarity of Π with respect to a gives

∂Π

∂a
= 0 → Ka = f (1.27)

Eq.(1.27) is the global matrix equilibrium equation relating the dis-
placements and the external forces at all the joints of the structure. The
global matrix equations can be obtained by assembly of the contributions
from the individual bars, as previously explained.

1.9 PLANE FRAMEWORKS

1.9.1 Plane pin-jointed frameworks

We will briefly treat the case of plane pin-jointed frameworks as an exten-
sion of the concepts previously studied. Each joint has now two degrees of
freedom (DOFs) corresponding to the displacements along the two carte-
sian axes. Eqs.(1.4) relating the joint displacements and the axial forces
in the local axis of each bar still holds. However, the sum of the joint
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Fig. 1.15 Forces and displacements at the end points of a plane pin-jointed bar

forces for the different bars sharing a joint requires the force-displacement
relationships to be expressed in a global cartesian system x, y.

Let us consider a bar 1-2 inclined an angle α with respect to the global
axis x, as shown in Figure 1.15. For joint 1 we have

F
(e)
x′i

= F
(e)
x1 cosα + F

(e)
y1 sin α , u

′(e)
1 = u

(e)
1 cosα + v

(e)
1 sin α (1.28)

where the primes denote the components in the direction of the local axis
x′. In matrix form

F
(e)
x′1

= [cosα, sinα]
{

Fx1

Fy1

}(e)

= L(e)q(e)
1

u
′(e)
1 = [cos α, sinα]

{
u1

v1

}(e)

= L(e)u(e)
1

(1.29)

where u(e)
1 and q(e)

1 contain the two displacements and the two forces of
joint 1 expressed in the global cartesian system x, y, respectively and
L(e) = [cos α, sinα].

Analogous expressions can be found for node 2 as

F
(e)
x′2

= L(e)q(e)
2 and u

′(e)
2 = L(e)u(e)

2 (1.30)
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with
q(e)

2 =
[
F (e)

x2
, F (e)

y2

]T

and u(e)
2 =

[
u

(e)
2 , v

(e)
2

]T

From Figure 1.15, we deduce

F
(e)
x′1

= −F
(e)
x′2

= k(e)[u′(e)1 − u
′(e)
2 ] with k(e) =

(
EA

l

)(e)

(1.31)

Note that the local nodal forces F
(e)
x′1

and F
(e)
x′2

coincide, with the appro-

priate sign, with the nodal axial forces, i.e. F
(e)
x′1

= −N (e)
1 and F

(e)
x′2

= N (e)
2

(Figure 1.15).
Nothing that q(e)

i = [L(e)]T F
(e)
x′i

, i = 1, 2 and using Eqs.(1.29)–(1.31) the
following two equations are obtained

q(e)
1 =

[
L(e)

]T
k(e)L(e)u(e)

1 − [
L(e)

]T
k(e)L(e)u(e)

2

q(e)
2 = − [

L(e)
]T

k(e)L(e)u(e)
1 +

[
L(e)

]T
k(e)L(e)u(e)

2

(1.32)

In matrix form




q(e)
1

q(e)
2





=



K(e)

11 K(e)
12

K(e)
21 K(e)

22








u(e)
1

u(e)
2





(1.33a)

where

K(e)
11 = K(e)

22 = −K(e)
12 = −K(e)

21 =
[
L(e)

]T
k(e)L(e) =

= k(e)

[
cos2 α sin α cosα

sin α cosα sin2 α

]
(1.33b)

The assembly of the contributions of the individual bars into the global
stiffness matrix follows precisely the steps explained in Section 1.6. Each
joint contributes now a 2× 2 matrix as shown in Figure 1.16. An example
of the assembly process is presented in Figure 1.17.

1.9.2 Plane rigid jointed frames

The principles discussed above for pin-jointed frameworks can be readily
extended to the case where the joints are all rigidly connected. A typical
member (coinciding with a bar element) is shown in Figure 1.18 where
the displacements and forces acting at the joints are illustrated. Now we
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K(e) =



K

(e)
11 K

(e)
12

K
(e)
21 K

(e)
22




K
(e)
11 = K

(e)
22 = −K

(e)
12 = −K

(e)
21 =

(
EA

l

)(e) [
cos2 α sinα cos α

sinα cos α sin2α

]

i m

i

m




K
(e)
11 K

(e)
12

K
(e)
21 K

(e)
22







u1

v1

u2

v2




(e)

=





Fx1

Fy1

Fx2

Fy2





(e)

Fig. 1.16 Contributions to the global stiffness matrix from a general member of a
pin-jointed framework

have three independent displacement and force components at each joint
which can be collectively written as

q′(e) =





Fx′i
Fy′i
Mi





(e)

; u′(e)i =





u′i
v′i
θi





(e)

; i = 1, 2 (1.34)

where F
(e)
x′i

, F
(e)
y′i

and u
′(e)
i , v

′(e)
i are, respectively, the force and displace-

ment components of joint i in the local directions x′, y′ aligned as shown in
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1 2

K(1) =



K(1)

11 K(1)
12

K(1)
21 K(1)

22




1

2

;

2 3

K(2) =



K(2)

11 K(2)
12

K(2)
21 K(2)

22




2

3

1 2 3

Ka =

1

2

3




K(1)
11 K(1)

12 0

K(1)
21 K(1)

22 + K(2)
11 K(2)

12

0 K(2)
21 K(2)

22








a1

−−−
a2

−−−
a3





=





r1

−−−
p2

−−−
r2





= f

ai = [ui, vi]
T , f

(e)
i = [Fxi , Fyi ]

T , p2 = [Px2 , Py2 ]
T , K

(e)
ij as in Eq.(1.33b)

ri = [Rxi , Ryi ]
T are the reactions at node i

Fig. 1.17 Plane pin-jointed framework. Equation of global equilibrium

Figure 1.18a and M
(e)
i and θ

(e)
i are, respectively, the bending moment and

the rotation of joint i, where a positive sign corresponds to an anticlock-
wise direction. The relationship between the local joint forces F

(e)
x′i

, F
(e)
y′i

and the joint bending moment M
(e)
i with the resultant stresses N (e)

i , Q
(e)
i

and M
(e)
i at the bar joint is shown in Figure 1.18b.



32 Introduction to the finite element method for structural analysis

N (e)
1 : axial force Q

(e)
1 : shear force M(e)

1 : bending moment

[
N (e)

1 , Q
(e)
1 ,M(e)

1 ,N (e)
2 , Q

(e)
2 ,M(e)

2

]T

=
[
−F

(e)

x′1
,−F

(e)

y′1
,−M

(e)
1 , F

(e)

x′2
, F

(e)

y′2
, M

(e)
2

]T

resultant stresses at bar ends end forces and moments

Fig. 1.18 (a) Components of end displacements, forces and moments for a gene-
ral member in a rigid jointed plane framework; (b) Relationship between the
resultant stresses and the forces and bending moments at the member ends

The axial behaviour of the member is identical to that of the axial bar
and is defined by Eq.(1.3). Under the assumption of small displacements,
the end moments are related to the end rotations and displacements by
the well known slope-deflection equations of beam theory [Li,Pr,TY]

M
(e)
1 = 2

(
EI

l

)(e)
[
2θ

(e)
1 + θ

(e)
2 +

3(v′(e)1 − v
′(e)
2 )

l(e)

]
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M
(e)
2 = 2

(
EI

l

)(e)
[
2θ

(e)
2 + θ

(e)
1 +

3(v′(e)1 − v
′(e)
2 )

l(e)

]
(1.35)

The equilibrium of moments at either end of the member requires that

F
(e)
y′1

= −F
(e)
y′2

=
(M (e)

1 + M
(e)
2 )

l(e)
=

=
(

12EI

l3

)(e)

(v′(e)1 − v
′(e)
2 ) +

(
6EI

l2

)(e)

(θ(e)
1 + θ

(e)
2 ) (1.36)

Equations (1.34), (1.35) and (1.36) can be written in matrix form as

q′(e) =
{
q′1
q′2

}(e)

=

[
K′(e)

11 K′(e)
12

K′(e)
21 K′(e)

22

] {
u′1
u′2

}(e)

= K′(e)u′(e) (1.37a)

where K′(e) is the local stiffness matrix of the rigid jointed member, and

K′(e)
11 =




EA

l
0 0

0
12EI

l3
6EI

l2

0
6EI

l2
4EI

l




(e)

; K′(e)
12 =




−EA

l
0 0

0
−12EI

l3
6EI

l2

0
−6EI

l2
2EI

l




(e)

K′(e)
21 =




−EA

l
0 0

0
−12EI

l3
−6EI

l2

0
6EI

l2
2EI

l




(e)

; K′(e)
22 =




EA

l
0 0

0
12EI

l3
−6EI

l2

0 −6EI

l2
4EI

l




(e)

(1.37b)
Note that K′(e) is symmetrical, as expected. The process by which

these equations are transformed to a global coordinate system x, y for the
assembly operations is identical to that described in the previous section.
The local force and displacement components for each joint are expressed
in terms of their global values as

q′(e)i = L(e)
i q(e)

i and u′(e)i = L(e)
i u(e)

i (1.38)

where

q(e) =
[
F (e)

xi
, F (e)

yi
,M

(e)
i

]T

; u(e)
i =

[
u

(e)
i , v

(e)
i , θ

(e)
i

]T

(1.39)
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and L(e)
i is the transformation matrix of joint i. Since the member is

straight L(e)
i = L(e)

j = L(e), with (Figure 1.18)

L(e) =




cosα sinα 0
−sinα cosα 0

0 0 1


 (1.40)

From Eqs.(1.37) and (1.38) we deduce that

q(e) =
[
[L(e)]T 0

0 [L(e)]T

]
q′(e) =

[
T(e)

]T

K′(e)u′(e) =

=
[
T(e)

]T

K′(e)T(e)u(e) = K(e)u(e) (1.41)

where

T(e) =
[
L(e) 0
0 L(e)

]
(1.42)

and
K(e) =

[
T(e)

]T

K′(e)T(e) (1.43)

is the global stiffness matrix of the member.
Eq.(1.41) can be written as

{
q1

q2

}(e)

=


K(e)

11 K(e)
12

K(e)
21 K(e)

22




{
u1

u2

}(e)

(1.44)

A typical submatrix K(e)
ij in global axes is given by

K(e)
ij =

[
L(e)

]T

K′(e)
ij L(e) (1.45)

The assembly of the contributions from the individual members into the
global stiffness matrix follows the steps described in the previous sections.

The analysis of rigid jointed bar structures will be dealt with again
when we study beams, arches and rods in Volume 2 [On].

1.10 TREATMENT OF PRESCRIBED DISPLACEMENTS AND
COMPUTATION OF REACTIONS

In this book we will not enter into the details of techniques for solving the
system of algebraic equations Ka = f . This is a problem typical of matrix
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algebra and many well known direct and iterative solution procedures
are available (i.e.: Gauss reduction, Choleski, modified Choleski, Frontal;
Profile, etc.) [HO,PFTV,Ral]. A brief discussion of some of these methods
is presented in Appendix B. We will just treat here briefly the problem
of prescribed displacements and the computation of the corresponding
reactions, as these are issues of general interest for the study of this book.

Let us consider the following system of algebraic equations

k11u1 + k12u2 + k13u3 + . . . + k1nun = f1

k21u1 + k22u2 + k23u3 + . . . + k2nun = f2

k31u1 + k32u2 + k33u3 + . . . + k3nun = f3
...

...
...

...
...

kn1u1 + kn2u2 + kn3u3 + . . . + knnun = fn

(1.46)

where fi are external forces (which can be equal to zero) or reactions at
points where the displacement is prescribed.

Let us assume that a displacement, for example u2, is prescribed to the
value u2, i.e.

u2 = u2 (1.47)

There are two basic procedures to introduce this condition in the above
system of equations:

a) The second row and column of Eq.(1.46) are eliminated and the values
of fi in the r.h.s. are substituted by fi − ki2u2. That is, the system
of n equations with n unknowns is reduced in one equation and one
unknown as follows

k11u1 + k13u3 + . . . + k1nun = f1 − k12u2

k31u1 + k33u3 + . . . + k3nun = f3 − k32u2
...

...
...

...
...

kn1u1 + kn3u3 + . . . + knnun = fn − kn2u2

(1.48)

Once the values of u1, u3, . . . , un are obtained, the reaction f2 is
computed by the following equation (in the case that the external force
acting at node 2 is equal to zero)

f2 = k21u1 + k22u2 + k23u3 + . . . + k2nun (1.49)

If u2 is zero, the procedure remains the same, although the values of
fi are not modified and f2 is obtained by Eq.(1.49) with u2 = 0.
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b) An alternative procedure which does not require the original system of
equations to be modified substantially, is to add a very large number
to the term of the main diagonal corresponding to the prescribed dis-
placement. The force term in the modified row is substituted by the
value of the prescribed displacement multiplied by the large number
chosen. Thus, if we have u2 = u2 we substitute k22 by k22 + 1015k22

(for instance), and f2 by 1015k22× u2. The final system of equations is

k11u1 + k12u2 + k13u3 + . . . + k1nun = f1

k21u2 + (1 + 1015)k22u2 + k23u3 + . . . + k2nun = 1015k22u2

k31u1 + k32u2 + k33u3 + . . . + k3nun = f3
...

...
...

...
...

kn1u1 + kn2u2 + kn3u3 + . . . + knnun = fn

(1.50)
In this way, the second equation is equivalent to

1015k22u2 = 1015k22u2 or u2 = u2 (1.51)

which is the prescribed condition. The value of the reaction f2 is com-
puted “a posteriori” by Eq.(1.49).
The issue of prescribed displacements will be treated again in Chap-
ter 9.

1.11 INTRODUCTION TO THE FINITE ELEMENT METHOD FOR
STRUCTURAL ANALYSIS

Most structures in practice are of continuous nature and can not be accu-
rately modelled by a collection of bars. Examples of “continuous” struc-
tures are standard in civil, mechanical, aeronautical and naval engineering.
Amongst the more common we can list: plates, foundations, roofs, contai-
ners, bridges, dams, airplane fuselages, car bodies, ship hulls, mechanical
components, etc. (Figure 1.19).

Although a continuous structure is inherently three-dimensional (3D),
its behaviour can be accurately described in some cases by one- (1D) or
two-dimensional (2D) structural models. This occurs, for instance, in the
analysis of plates in bending, where only the deformation of the plate
mid-plane is considered. Other examples are the structures modelled as
2D solids or as axisymmetric solids (i.e. dams, tunnels, water tanks, etc.)
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Fig. 1.19 Continuous structures: a) Dam, b) Shell, c) Bridge, d) Plate

The analytical solution of a continuous structure is very difficult (ge-
nerally impossible) due to the complexities of the geometry, the boundary
conditions, the material properties, the loading, etc. This explains the
need for computational models to analyse continuous structures.

The FEM is the simpler and more powerful computational procedure
for the analysis of structures with arbitrary geometry and general material
properties subjected to any type of loading.

The FEM allows one the behaviour of a structure with an infinite num-
ber of DOFs to be modelled by that of another one with approximately the
same geometrical and mechanical properties, but with a finite number of
DOFs. The latter are related to the external forces by a system of algebraic
equations expressing the equilibrium of the structure. We will find that
the basic finite element methodology is analogous to the matrix analysis
technique studied for bar structures. The analogies can be summarized by
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Fig. 1.20 Analysis of a bridge by the finite element method

considering the bridge shown in Figure 1.20. Without entering into the
details, the basic steps in the finite element analysis are the following:

Step 1 : Starting with the geometrical description of the bridge, its
supports and the loading, the first step is to select a structural model. For
example, we could use a 3D solid model (Chapter 8), a stiffened plate
model (Chapter 10, Vol. 2 [On]) or a facet shell model (Chapter 7, Vol. 2
[On]). The material properties must also be defined, as well as the scope
of the analysis (small or large displacements, static or dynamic analysis,
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etc.). As mentioned earlier, in this book we will focus on linear static
analysis only.

Step 2 : The structure is subdivided into a mesh of non-intersecting
domains termed finite elements (discretization process). The problem va-
riables (displacements) are interpolated within each element in terms of
their values at a known set of points of the element called nodes. The
number of nodes defines the approximation of the solution within each ele-
ment. Some nodes are placed at the element boundaries and they can be
interpreted as linking points between adjacent elements. However, nodes
in the interior of the elements are needed for higher-order approximations
and, hence, the nodes do not have a physical meaning as the connecting
joints in bar structures. The mesh can include elements with different
geometry, such as 2D plate elements coupled with 1D beam elements.
The discretization process is an essential part of the preprocessing step
which includes the definition of all the analysis data. The preprocessing
step typically consumes a considerable amount of human effort. The use
of efficient preprocessing tools is essential for the analysis of practical
structures in competitive times. More details are given in Chapter 10.

Step 3 : The stiffness matrices K(e) and the load vectors f (e) are ob-
tained for each element. The computation of K(e) and f (e) is more complex
than for bar structures and it usually requires the evaluation of integrals
over the element domain.

Step 4 : The element stiffness and the load terms are assembled into
the overall stiffness matrix K and the load vector f for the structure.

Step 5 : The global system of linear simultaneous equations Ka = f is
solved for the unknown displacement variables a.

Step 6 : Once the displacements a are computed, the strains and the
stresses are evaluated within each element. Reactions at the nodes restrai-
ned against movement are also computed.

Step 7 : Solving steps 3-6 requires a computer implementation of the
FEM by means of a standard or specially developed program.

Step 8 : After a successful computer run, the next step is the interpre-
tation and presentation of results. Results are presented graphically to aid
their interpretation and checking (postprocessing step). The use of spe-
cialized graphic software is essential in practice. More details are given in
Chapter 10.
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Step 9 : Having assessed the finite element results, the analyst may
consider several modifications which may be introduced at various stages
of the analysis. For example, it may be found that the structural model
selected is inappropriate and hence it should be adequately modified. Al-
ternatively, the finite element mesh chosen may turn out to be too coarse
to capture the expected stress distributions and must therefore be refined
or a different, more accurate element used. Round-off problems arising
from ill-conditioned equations, the equations solving algorithm or the com-
puter word length employed in the analysis may cause difficulties and can
require the use of double-precision arithmetic or some other techniques.
Input data errors which occur quite frequently must be also corrected.

All these possible modifications are indicated by the feedback loop
shown in Figure 1.21 taken from [HO2].

From the structural engineer’s point of view, the FEM can be consi-
dered as an extension to continuous systems of the matrix analysis pro-
cedures for bar structures. The origins of the FEM go back to the early
1940’s with the first attempts to solve problems of 2D elasticity using ma-
trix analysis techniques by subdividing the continuum into bar elements
[Hr,Mc]. In 1946 Courant [Co] introduced for the first time the concept of
“continuum element” to solve 2D elasticity problems using a subdivision
into triangular elements with an assumed displacement field. The arrival
of digital computers in the 1960’s contributed to the fast development of
matrix analysis based techniques, free from the limitations imposed by
the need to solve large systems of equations. It was during this period
that the FEM rapidly established itself as a powerful approach to solve
many problems in mathematics and physics. It is interesting that the first
applications of the FEM were related to structural analysis and, in par-
ticular, to aeronautical engineering [AK,TCMT]. It is acknowledged that
Clough first used the name “finite elements” in relation to the solution of
2D elasticity problems in 1960 [Cl]. Since then the FEM has had a tremen-
dous expansion in its application to many different fields. Supported by
the continuous upgrading of computers and by the increasing complexity
of many areas in science and technology, today the FEM enjoys a unique
position as a powerful technique for solving the most difficult problems in
engineering and applied sciences.

It would be an impossible task to list here all the significant published
work since the origins of the FEM. Only in 2008, the scientific publications
in this field were estimated to number in excess of 25,000. The reader in-
terested in bibliography on the FEM should consult the references listed
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Fig. 1.21 Flow chart of the analysis of a structure by the FEM [HO2]
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in [No,ZT,ZTZ] and in the Encyclopedia of Computational Mechanics
[SDH,SDH2].

1.12 THE VALUE OF FINITE ELEMENT COMPUTATIONS FOR
STRUCTURAL DESIGN AND VERIFICATION

The practical aim of finite element structural analysis is to verify the
strength of existing constructions and the optimum design of new ones
satisfying a number of specified criteria. A key objective is to prevent
structural failure and guarantee the safety of structures under a set of
loads.

The simpler failure criterium for bar structures states that failure will
occur when the axial stress in any structural member exceeds a specified
allowable value. In multidimensional stress fields typical of continuous
structures, failure at a point is detected when a combination of the stresses
(typically a stress invariant) reaches a critical value [ZT].

Other failure criteria for structures are based on setting up limits to
the maximum displacement at any point in the structure. Alternatively
the maximum strain at a point is used to control the onset of failure. For
multidimensional stress states the failure bound is set on the value of an
appropriate strain invariant (Section 8.2.5).

The optimum design of a safe structure typically involves a trial and
error process in order to ensure that the shape, dimensions and mate-
rials chosen for the different structural members comply with the specified
safety requirements.

1.13 CONCLUDING REMARKS

From the practical point of view of the structural engineer it should always
be kept in mind that the FEM is a very powerful technique to obtain
approximate solutions for structural problems. In the hands of a careful
and expert user the FEM is an indispensable tool for the analysis, design
and verification of complex structures which cannot be studied otherwise.
However, being an approximate method it involves a certain error in the
numerical values and users should always look upon FEM results with
a critical eye. In this book we will try to facilitate the understanding of
the theoretical and applied aspects of the FEM for the analysis of a wide
range of structures.



2

1D FINITE ELEMENTS FOR
AXIALLY LOADED RODS

2.1 INTRODUCTION

The objective of this chapter is to introduce the basic concepts of the FEM
in its application to the analysis of simple one-dimensional (1D) axially
loaded rods.

The organization of the chapter is as follows. In the first section the
analysis of axially loaded rods using 2-noded rod elements is presented.
Particular emphasis is put in the analogies with the solution of the same
problem using the standard matrix analysis techniques studied in the pre-
vious chapter for bar structures. Here some examples of application are
given. In the last part of the chapter the matrix finite element formulation
adopted throughout this book is presented.

2.2 AXIALLY LOADED ROD

Let us consider a rod of length l subjected to a distributed axial load per
unit length tx(x) and a set of axial point loads Fxi acting at p different
points xi (Figure 2.1). The rod can also have prescribed displacements uj

at m points xj . The displacement of the rod points produces the corre-
sponding axial strain ε(x) = du/dx (also called elongation) and the normal
stress σ in the rod which are related by Hooke law, i.e.

σ = Eε = E
du

dx
(2.1)

where E is the Young modulus of the material.
The axial force (or axial resultant stress) N is defined as the integral

of the stress over the area of the transverse cross section (Figure 2.1). For
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Fig. 2.1 Axially loaded rod

homogeneous material

N =
∫∫

A
σ dA = Aσ = EA

du

dx
(2.2)

In the equilibrium configuration the stresses and the external forces
satisfy the Principle of Virtual Work (PVW) defined in Section 1.7. The
PVW for the rod is written as [Was,ZT]

∫∫∫

V
δεσ dV =

∫ l

0
δutxdx +

p∑

i=1

δuiFxi (2.3)

where δu and δε are the virtual displacement and the virtual strain of an
arbitrary point of the rod center line, δui is the virtual displacement of the
point where the point load Fxi acts, tx is the distributed axial force and
V is the rod volume. The left- and right-hand sides of Eq.(2.3) represent
the internal and external virtual work carried out by the actual stresses
and the external loads, respectively.

Eq.(2.3) can be rewritten after integration over the cross section area
(note that dV = dA · dx) and using Eq.(2.2) as

∫ l

0
δεN dx =

∫ l

0
δutx dx +

p∑

i=1

δuiFxi (2.4)

where N is the axial force which is related to the displacement field via
Eq.(2.2).

It can be proved [Ti2,Was,ZT] that the equilibrium solution of the rod
problem is reduced to finding a displacement field u(x) satisfying Eq.(2.4)
and the displacement boundary conditions (kinematic conditions). The
approximate solution using the FEM is set as follows: find an alternative
displacement field û(x) which approximates u(x) and which also satisfies
Eq.(2.4) and the kinematic conditions.
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Among the different options available to express the approximate dis-
placement field û(x) we will choose the simplest one using polinomials
locally defined for each element. Thus, after discretizing the rod in a mesh
of finite elements we can write for each element

u(x) ' û(x) = a0 + a1x + a2x
2 + · · ·+ anxn =

n∑

i=1

aix
i (2.5)

In Eq.(2.5) n is the number of points of the element where the dis-
placement is assumed to be known. These points are called nodes. The
parameters a0, a1, . . ., an depend on the nodal displacements only. In the
following we will skip the “hat” over the approximate solution and write
Eq.(2.5) in the form

u(x) = N
(e)
1 (x)u(e)

1 + N
(e)
2 (x)u(e)

2 + · · ·+ N (e)
n (x)u(e)

n =
n∑

i=1

N
(e)
i (x)u(e)

i

(2.6)
where N

(e)
1 (x), . . ., N

(e)
n (x) are the polinomial interpolating functions de-

fined over the domain of each element e and u
(e)
i is the value of the (appro-

ximate) displacement of node i. The function N
(e)
i (x) interpolates within

each element the displacement of node i and it is called the shape function
of node i. From Eq.(2.6) we deduce that N

(e)
i (x) must take the value one

at node i and zero at all other nodes so that u(xi) = u
(e)
i . These concepts

will be extended in the next section.
Substituting the displacement approximation for each element in the

PVW allows us to express the equilibrium equations in terms of the nodal
displacements of the finite element mesh. These algebraic equations can
be written in the standard matrix form

K a = f (2.7)

where, by analogy with bar systems, K is termed the stiffness matrix of
the finite element mesh, and a and f are the vectors of nodal displacements
and of equivalent nodal forces, respectively. Both K and f are obtained by
assembling the contributions from the individual elements, as in matrix
analysis of bar structures. Solving Eq.(2.7) yields the values of the dis-
placements at all the nodes in the mesh from which the axial strain, the
axial force and the normal stress within each element can be found.

These concepts will be illustrated in the next section for the analysis of
an axially loaded rod with constant cross sectional area using two meshes
of one and two linear rod elements, respectively.
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Fig. 2.2 Axially loaded rod. Discretization in a single 2-noded element. Number
in brackets at node denotes global node number

2.3 AXIALLY LOADED ROD OF CONSTANT CROSS SECTION.
DISCRETIZATION IN ONE LINEAR ROD ELEMENT

2.3.1 Approximation of the displacement field

Let us consider a rod with constant circular cross section under a dis-
tributed axial force tx(x) and an end axial point load P (Figure 2.2). The
rod is discretized in a single element with two nodes which define a linear
interpolation of the displacement field as

u(x) = α0 + α1x (2.8)

Is is clear that u(x) must take the values u
(1)
1 and u

(1)
2 at nodes 1 and

2, i.e.
u(x(1)

1 ) = u
(1)
1 and u(x(1)

2 ) = u
(1)
2 (2.9)
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where x
(1)
1 and x

(1)
2 are the coordinates of nodes 1 and 2, respectively.

Superindex 1 in Eq.(2.9) indicates that all the parameters refer to the
element number one.

From Eqs.(2.8) and (2.7) the following system of equations is obtained

u
(1)
1 = α0 + α1x

(1)
1

u
(1)
2 = α0 + α1x

(1)
2

(2.10a)

from which the parameters α0 and α1 are found as

α0 =
u

(1)
1 − u

(1)
2

x
(1)
1 − x

(1)
2

and α1 =
x

(1)
2 u

(1)
1 − x

(1)
1 u

(1)
2

x
(1)
2 x

(1)
1

(2.10b)

Substituting Eq.(2.10b) into (2.8) allows us to rewrite the latter as

u = N
(1)
1 (x)u(1)

1 + N
(1)
2 (x)u(1)

2 (2.11)

where N
(1)
1 and N

(1)
2 are the shape functions of nodes 1 and 2, respectively

given by

N
(1)
1 (x) =

x
(1)
2 − x

l(1)
; N

(1)
2 (x) =

x− x
(1)
1

l(1)
(2.12)

where l(1) = x
(1)
2 −x

(1)
1 is the element length. It is deduced from Eq.(2.12)

that the shape functions N
(1)
i (i = 1, 2) vary linearly within the element

and take the value one at node i and zero at the other node. This is a
natural consequence of the interpolatory property of the shape functions
that guarantees that the displacement u(x) takes the values u

(1)
1 and u

(1)
2

at the element nodes. This let us anticipate in most cases the geometry of
the shape functions, as it will be frequently seen throughout the book.

Before we proceed any further it is important to clarify the differences
between local and global numbering. Table 2.1 shows an example of both
numberings for the nodes, the nodal coordinate and the nodal displace-
ment for the example in Figure 2.2.

Note that since we have taken in this case a single element, the local
and global numbers coincide.

The derivatives of the shape functions are computed as

dN
(1)
1

dx
= − 1

l(1)
and

dN
(1)
2

dx
=

1
l(1)

(2.13)
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node coordinate displacement
Element local global local global local global

1 1 x(1)
1 x1 u(1)

1 u1

1

2 2 x(1)
2 x2 u(1)

2 u2

Table 2.1 Local and global parameters for the example in Figure 2.2

The axial strain and the axial force can be obtained at each point
within the element as

ε(1) =
(

du

dx

)(1)

=
dN

(1)
1

dx
u

(1)
1 +

dN
(1)
2

dx
u

(1)
2 = − 1

l(1)
u

(1)
1 +

1
l(1)

u
(1)
2 (2.14a)

N (1) = (EA)(1)ε(1) = (EA)(1)

[
dN

(1)
1

dx
u

(1)
1 +

dN
(1)
2

dx
u

(1)
2

]
=

= (EA)(1)

[
− 1

l(1)
u

(1)
1 +

1
l(1)

u
(1)
2

]
(2.14b)

Obviously, the linear approximation for the displacement yields a con-
stant field for the axial strain and the axial force over the element.

2.3.2 Derivation of equilibrium equations for the elements

The forces between elements are transmitted across the nodes. These
forces denoted as F

(e)
xi are termed equilibrating nodal forces and can be

obtained for each element using the PVW. The forces F
(e)
xi coincide with

the appropriate sign with the axial forces at the element nodes, i.e.
F

(e)
x1 = −N (e)

1 and F
(e)
x2 = N (e)

2 (Figure 2.2). For the single element of
Figure 2.2 we have

∫ x
(1)
2

x
(1)
1

δε(1)N (1) dx =
∫ x

(1)
2

x
(1)
1

δu(1)t(1)
x dx + δu

(1)
1 F (1)

x1
+ δu

(1)
2 F (1)

x1
(2.15)

where δu
(1)
1 , δu

(1)
2 , F

(1)
x1 and F

(1)
x2 are the virtual displacements and the

equilibrating nodal forces for nodes 1 and 2 of the element, respectively.
The virtual displacement can also be linearly interpolated in terms of the
nodal values as

δu(1) = N
(1)
1 δu

(1)
1 + N

(1)
2 δu

(1)
2 (2.16)
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The virtual axial strain is now expressed in terms of the virtual nodal
displacements as

δε(1) =
d

dx
(δu) =

dN
(1)
1

dx
δu

(1)
1 +

dN
(1)
2

dx
δu

(1)
2 (2.17)

Eq.(2.15) is rewritten, after substitution of (2.16) and (2.17), as
∫ x

(1)
2

x
(1)
1

[
dN

(1)
1

dx
δu

(1)
1 +

dN
(1)
2

dx
δu

(1)
2

]
N (1) −

∫ x
(1)
2

x
(1)
1

[
N

(1)
1 δu

(1)
1 + N

(1)
2 δu

(1)
2

]
tx dx

= δu
(1)
1 F (1)

x1
+ δu

(1)
2 F (1)

x2
(2.18a)

Grouping terms gives

δu
(1)
1

[∫ x
(1)
2

x
(1)
1

dN
(1)
1

dx
N (1)dx−

∫ x
(1)
2

x
(1)
1

N
(1)
1 tx dx− F (1)

x1

]
+

+ δu
(1)
2

[∫ x
(1)
2

x
(1)
1

dN
(1)
2

dx
N (1)dx−

∫ x
(1)
2

x
(1)
1

N
(1)
2 tx dx− F (1)

x2

]
= 0 (2.18b)

Since the virtual displacements are arbitrary, the satisfaction of Eq.
(2.18b) leads to the following system of two equations

∫ x
(1)
2

x
(1)
1

dN
(1)
1

dx
N (1)dx−

∫ x
(1)
2

x
(1)
1

N
(1)
1 tx dx− F (1)

x1
= 0

(2.18c)
∫ x

(1)
2

x
(1)
1

dN
(1)
2

dx
N (1) −

∫ x
(1)
2

x
(1)
1

N
(1)
2 tx dx− F (1)

x2
= 0

Substituting the expression of N (1) from Eq.(2.14b) into (2.18c) gives
∫ x

(1)
2

x
(1)
1

(
dN

(1)
1

dx
(EA)(1) dN

(1)
1

dx
u

(1)
1 +

dN
(1)
1

dx
(EA)(1) dN

(1)
2

dx
u

(1)
2

)
dx−

−
∫ x

(1)
2

x
(1)
1

N
(1)
1 tx dx− F (1)

x1
= 0

(2.19)
∫ x

(1)
2

x
(1)
1

(
dN

(1)
2

dx
(EA)(1) dN

(1)
1

dx
u

(1)
1 +

dN
(1)
2

dx
(EA)(1) dN

(1)
2

dx
u

(1)
2

)
dx

−
∫ x

(1)
2

x
(1)
1

N
(1)
2 tx dx− F (1)

x2
= 0
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From Eq.(2.19) the values of the equilibrating nodal forces F
(1)
x1 are

obtained. In matrix form




∫ x
(1)
2

x
(1)
1

(EA)(1)




(dN
(1)
1

dx

dN
(1)
1

dx

) (dN
(1)
1

dx

dN
(1)
2

dx

)

(dN
(1)
2

dx

dN
(1)
1

dx

) (dN
(1)
2

dx

dN
(1)
2

dx

)


 dx




{
u

(1)
1

u
(1)
2

}
−

−
∫ x

(1)
2

x
(1)
1

{
N

(1)
1

N
(1)
2

}
tx dx =

{
F

(1)
x1

F
(1)
x2

}
(2.20)

or

K(1) a(1) − f (1) = q(1) (2.21a)

with

K
(1)
ij =

∫ x
(1)
2

x
(1)
1

dNi
(1)

dx
(EA)(1) dNj

(1)

dx
dx

f
(1)
i = f (1)

xi
=

∫ x
(1)
2

x
(1)
1

N
(1)
i tx dx i, j = 1, 2 (2.21b)

a(1) =
[
u

(1)
1 , u

(1)
2

]T
; q(1) =

[
F (1)

x1
, F (1)

x2

]T
=

[
−N (1)

1 ,N (1)
2

]T

In Eq.(2.21a) K(1) is the element stiffness matrix and f (1) is the equi-
valent nodal force vector for the element.

Eq.(2.21a) can be used to obtain the nodal axial forcesN (1)
1 andN (1)

2 in
terms of the nodal displacements and the external nodal forces by noting
the relationship between the equilibrating nodal forces F

(e)
xi with the nodal

axial forces N (e)
i (Eq.(2.21b) and Figures 1.9 and 2.2).

If the Young modulus, the cross sectional area and the distributed
loading are constant over the element, the following is obtained

K(1) = (
EA

l
)(1)

[
1 −1

−1 1

]
; f (1) =





f
(1)
x1

f
(1)
x2



 =

(ltx)(1)

2

{
1
1

}
(2.22)

Above expressions coincide with those obtained for the axially loaded
bar in Chapter 1. This coincidence could have been anticipated if we had
observed that in both cases the same linear displacement field is assumed.
This obviously leads, via the PVW, to the same expressions for the element
stiffness matrix and the nodal load vector.
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2.3.3 Assembly of the global equilibrium equations

The global equilibrium equations K a = f are obtained by the same nodal
load balancing procedure explained for bar structures in the previous chap-
ter. Thus, for each of the N nodes in the mesh we have

∑
e

F (e)
xi

= Pxj , j = 1, N (2.23)

where the sum is extended over all the elements sharing the node with
global number j, F

(e)
xi is the equilibrating nodal force contributed by each

element and Pxj is the external point load acting at the node.
For the single element mesh considered, Eq.(2.23) is written as (see

Figure 2.2)
node 1 : F

(1)
x1 = R

node 2 : F
(1)
x2 = P

Substituting the values of the equilibrating nodal forces from Eq.(2.20)
and making use of Table 2.1 the global equilibrium equations are obtained
as

(
EA

l
)

[
1 −1

−1 1

] {
u1

u2

}
=





R +
ltx
2

P +
ltx
2





or
K a = f (2.24)

where, as usual, K, a and f are, respectively, the global stiffness matrix, the
vector containing the displacements of all nodes in the mesh and the global
equivalent nodal force vector. External point loads acting at a node j are
assigned directly to the jth position of the global vector f, as explained in
Section 1.6 (see also Figure 1.13). Note that the reaction force R at node
1 has been assembled into vector f.

Eq.(2.24) is solved after imposing the condition u1 = 0, to give

u2 =
l

EA
(P +

ltx
2

) ; R = −(P + ltx) (2.25)

2.3.4 Computation of the reactions

The reaction R in Eq.(2.25) has been directly obtained from the first
row of Eq.(2.24). In general, the reaction at the prescribed nodes can be
computed “a posteriori” from Eq.(1.10a) as

r = K a− f ext (2.26a)



52 1D finite elements for axially loaded rods

where r is the vector of nodal reactions and f ext is obtained by assembling
the equivalent nodal force vectors f (e) due to external loads only (i.e.
excluding the reactions).

Indeed the product K a can be computed by assembly of the element
contributions K(e)a(e).

An alternative and useful expression for computing the nodal reaction
vector r is

r = fint − f ext (2.26b)

where fint is the vector of internal nodal forces which can be obtained by
assembling the contributions of the individual elements given by

f (e)
int =

∫

l(e)

[
dN

(e)
1

dx
,
dN

(e)
2

dx

]T

N (e)dx (2.26c)

Eq.(2.26c) is deduced from the first integral in the l.h.s. of Eqs.(2.18c).

2.3.5 Computation of the axial strain and the axial force

The axial strain ε and the axial force N in the element are given by

ε(1) =
dN

(1)
1

dx
u

(1)
1 +

dN
(1)
2

dx
u

(1)
2 =

u
(1)
2

l
(1)
1

=
P + ltx/2

EA

N (1) = (EA)(1)ε(1) = P +
ltx
2

(2.27a)

The nodal axial forces for the element can be obtained from the com-
ponents of q(1) in the element equilibrium equations (Eqs.(2.21a) and
(2.21b))

N (1)
1 = −F (1)

x1
=

[(
EA

l

)(1)

u
(1)
2 − f (1)

x1

]
= −(P + ltx)

N (1)
2 = F (1)

x2
=

(
EA

l

)(1)

u
(1)
2 − f (1)

x2
= P

(2.27b)

The exact solution for this simple problem is [Ti]

u =
1

EA

[
−x2

2
tx + (P + ltx) x

]

ε =
1

EA
[P + (l − x)tx] , N = P + (l − x)tx

(2.28)

The finite element and the exact solutions are compared in Figure 2.3
for P = 0 and tx = 1T/m. Note that the value of the end displacement
u2 is the exact solution. This is an exceptional coincidence that only occurs
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Fig. 2.3 Rod under uniformly distributed axial loading. Exact and approximate
solutions using one and two linear rod elements and one 3-noded rod element
(Example 3.4)

on very few occasions.∗ Within the rod the single element approximation
yields a linear displacement field very different from the exact quadratic
solution. Also note that the constant axial stress value obtained differs
substantially from the linear exact solution. As expected, the numerical
solution improves as the mesh is refined and this is shown in Section 2.3
for a mesh of two elements.

2.4 DERIVATION OF THE DISCRETIZED EQUATIONS FROM
THE GLOBAL DISPLACEMENT INTERPOLATION FIELD

A general expression for the displacement interpolation field for the whole
mesh can be obtained by simple superposition of the local approximations
for each element. This let us define global shape functions which naturally
∗ It has been proved [ZTZ] that the finite element solution coincides with the exact

one for 1D problems if the interpolation chosen satisfies exactly the homogeneous
form of the differential equation of equilibrium. This is written for the rod problem
as d2u/dx2 = 0, which is obviously satisfied by the linear approximation chosen.
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coincide with the original local expressions within each element. The use
of global shape functions leads to identical results as with the simpler local
functions. It is important however to understand the conceptual differences
between using local or global shape functions. For this purpose we will
repeat the single rod element problem using a global interpolation for the
displacement field.

The axial displacement can be written in the single element mesh as

u(x) = Ng
1 (x) u1 + Ng

2 (x) u2 (2.29)

where Ng
1 (x) and Ng

2 (x) are the global shape functions of nodes 1 and 2,
respectively, and u1 and u2 are the displacements of these nodes. Note that
we skip the superindex e for the global displacements. We deduce from
Eq.(2.29) that the global function of a node takes the value one at that
node and zero at all other nodes. This provides the relationship between
global and local shape functions as

Ng
i (x) = N

(e)
i (x) if x belongs to element e

= 0 if x does not belong to element e
(2.30)

For the single element case considered, the global and local shape func-
tions coincide (Figure 2.2). Thus,

Ng
1 (x) = N

(1)
1 (x) and Ng

2 (x) = N
(1)
2 (x) (2.31)

The axial strain in the rod of Figure 2.2 can be obtained as

ε =
du

dx
=

dNg
1

dx
u1 +

dNg
2

dx
u2 (2.32)

The virtual displacement and the virtual axial strain are expressed as

δu = Ng
1 δu1 + Ng

2 δu2

δε =
dNg

1

dx
δu1 +

dNg
2

dx
δu2

(2.33)

The PVW is written for the rod as
∫ l

0

[
dNg

1

dx
δu1 +

dNg
2

dx
δu2

]
(EA)

[
dNg

1

dx
u1 +

dNg
2

dx
u2

]
dx −

−
∫ l

0
[Ng

1 δu1 + Ng
2 δu2] tx dx = δu1R + δu2 P (2.34)
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After eliminating the virtual displacements, Eq.(2.34) leads to



∫ l

0
EA




(
dNg

1

dx

dNg
1

dx

) (
dNg

1

dx

dNg
2

dx

)

(
dNg

2

dx

dNg
1

dx

) (
dNg

2

dx

dNg
2

dx

)


 dx




{
u1

u2

}
−

−
∫ l

0

{
Ng

1

Ng
2

}
tx dx =

{
R
P

}
(2.35)

The following relationships are important for the computation of the
integrals in Eq.(2.35)

Ng
1 = N

(1)
1

Ng
2 = N

(1)
2

dNg
1

dx
=

dN
(1)
1

dx

dNg
2

dx
=

dN
(1)
2

dx





0 ≤ x ≤ l (2.36)

Using Eq.(2.36) we obtain

∫ l

0

dNg
1

dx

dNg
1

dx
dx =

∫ l(1)

0

(
dN

(1)
1

dx

)2

dx =
1
l

∫ l

0

dNg
1

dx

dNg
2

dx
dx =

∫ l(1)

0

dN
(1)
1

dx

dN
(1)
2

dx
dx = −1

l

∫ l

0

dNg
2

dx

dNg
2

dx
dx =

∫ l(1)

0

(
dN

(1)
2

dx

)2

dx =
1
l

∫ l

0
Ng

i dx =
∫ l(1)

0
N

(1)
1 dx =

∫ l(1)

0
N

(1)
2 dx =

l

2

(2.37)

Substituting Eqs.(2.37) into the PVW expression (2.35) yields the
global equilibrium equation (2.24) directly. Recall that in the previous sec-
tion this equation was obtained from the assembly of the element contri-
butions. From this point onwards the solution process is identical to that
explained in Eqs.(2.24)-(2.27) and it will not be repeated here.

In the next section the same problem is solved using a mesh of two
linear elements.
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2.5 AXIALLY LOADED ROD OF CONSTANT CROSS SECTION.
DISCRETIZATION IN TWO LINEAR ROD ELEMENTS

The same rod as for the previous example is discretized now in two linear
rod elements as shown in Figure 2.4 where the local and global shape
functions are also shown.

Fig. 2.4 Axially loaded rod. Discretization in two linear elements. Number in
brackets at node denotes global node number
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The discretized equilibrium equations will be obtained first using the
local forms of the shape functions.

2.5.1 Solution using the element shape functions

The displacements within each element are interpolated as

Element 1 Element 2

u(x) = N
(1)
1 (x)u(1)

1 + N
(1)
2 (x)u(1)

2

∣∣∣∣ u(x) = N
(2)
1 (x)u(2)

1 + N
(2)
2 (x)u(2)

2

(2.38)
The shape functions and their derivatives are

N
(1)
1 =

x
(1)
2 − x

l(1)
;

dN
(1)
1

dx
= − 1

l(1)

∣∣∣∣∣ N
(2)
1 =

x
(2)
2 − x

l(2)
;

dN
(2)
1

dx
= − 1

l(2)

N
(1)
2 =

x− x
(1)
2

l(1)
;

dN
(1)
2

dx
=

1
l(1)

∣∣∣∣∣ N
(2)
2 =

x− x
(2)
1

l(2)
;

dN
(2)
2

dx
=

1
l(2)

(2.39)
The axial strain in each element is

ε =
du

dx
=

dN
(1)
1

dx
u

(1)
1 +

dN
(1)
2

dx
u

(1)
2

∣∣∣∣ ε =
du

dx
=

dN
(2)
1

dx
u

(2)
1 +

dN
(2)
2

dx
u

(2)
2

(2.40)
The discretized equilibrium equations are obtained using the PVW

as explained in the previous section for the single element case (see
Eqs.(2.15)-(2.22)). We find that

q(1) = K(1)a(1) − f (1) ; q(2) = K(2)a(2) − f (2) (2.41)

where

Element 1Element 1

K(1) =
∫ x

(1)
2

x
(1)
1

(EA)(1)




(
dN

(1)
1

dx

dN
(1)
1

dx

) (
dN

(1)
1

dx

dN
(1)
2

dx

)

(
dN

(1)
2

dx

dN
(1)
1

dx

) (
dN

(1)
2

dx

dN
(1)
2

dx

)




dx

f (1) =
[
f (1)

x1
, f (1)

x2

]T
=

∫ x
(1)
2

x
(1)
1

[
N

(1)
1 , N

(1)
2

]T
tx dx

q(1) =
[
F

(1)
x1 , F

(1)
x2

]T
=

[
−N (1)

1 ,N (1)
2

]T
, a(1) =

[
u

(1)
1 , u

(1)
2

]T

(2.42)
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Element 2Element 2

K(2) =
∫ x

(2)
2

x
(2)
1

(EA)(2)




(
dN

(2)
1

dx

dN
(2)
1

dx

) (
dN

(2)
1

dx

dN
(2)
2

dx

)

(
dN

(2)
2

dx

dN
(2)
1

dx

) (
dN

(2)
2

dx

dN
(2)
2

dx

)




dx

f (2) =
[
f (2)

x1
, f (2)

x2

]T
=

∫ x
(2)
2

x
(2)
1

[
N

(2)
1 , N

(2)
2

]T
tx dx

q(2) =
[
F

(2)
x1 , F

(2)
x2

]T
=

[
−N (2)

1 ,N (2)
2

]T
, a(2) =

[
u

(2)
1 , u

(2)
2

]T

(2.43)

are respectively the stiffness matrices, the equivalent nodal force vectors,
the equilibrating nodal force vectors and the nodal displacement vectors
for elements 1 and 2.

The integrals in Eqs.(2.42) and (2.43) are computed keeping in mind
the relationship between the local and global numbering of the element
parameters summarized in Table 2.2.

node coordinate displacement
Element

local global local global local global

1 1 x(1)
1 x1 u(1)

1 u1
1

2 2 x(1)
2 x2 u(1)

2 u2

1 2 x(2)
1 x2 u(2)

1 u2
2

2 3 x(2)
2 x3 u(2)

2 u3

Table 2.2 Local and global parameters for the example of Figure 2.4

Substituting Eqs.(2.39) into (2.42) and (2.43) and using Table 2.2 the
following expressions are obtained for homogeneous material and uni-
formly distributed loading:

K(1) =
(

EA

l

)(1) [
1 −1

−1 1

]
; K(2) =

(
EA

l

)(2) [
1 −1

−1 1

]

f (1) =
(ltx)(1)

2
[
1, 1

]T ; f (2) =
(ltx)(2)

2
[
1, 1

]T

(2.44)
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The equilibrium of nodal forces is written as (see Eq.(2.23) and Figu-
re 2.4)

Node 1 : F
(1)
x1 = R

Node 2 : F
(1)
x2 + F

(2)
x1 = 0

Node 3 : F
(2)
x2 = P

(2.45)

Substituting F
(e)
x1 from Eq.(2.42) into (2.43) the following matrix equi-

librium equation is obtained




(
EA
l

)(1) −(
EA
l

)(1) 0

−(
EA
l

)(1)
[(

EA
l

)(1) +
(

EA
l

)(2)
] (

EA
l

)(2)

0 −(
EA
l

)(2) (
EA
l

)(2)








u1

u2

u3





=





ltx
4

+ R

ltx
2

ltx
4

+ P





(2.46a)

Ka = f (2.46b)

Note that the assembly process is identical to that explained in the
previous chapter for bar structures.

Substituting
(

EA
l

)(1) =
(

EA
l

)(2) = 2EA
l into Eq.(2.46a) and solving the

equation system we find

u1 = 0 ; u2 =
l

2EA

(
P +

3ltx
4

)

u3 =
l

2EA
(2P + ltx) ; R1 = −(P + ltx)

(2.47)

The axial strain and the axial force are constant within each element
and are obtained as

Element 1 Element 2

ε(1) =
(

du

dx

)(1)

=
u2

l(1)
=

P + 3ltx
4

EA

∣∣∣∣∣ ε(2) =
(

du

dx

)(2)

=
u3 − u2

l(2)
=

1
EA

(
ltx
4

+ P

)

N (1) = (EA)(1)ε(1) = P +
3ltx
4

∣∣∣∣∣ N (2) = (EA)(2)ε(2) =
ltx
4

+ P

(2.48)
The nodal axial forces for each element can be computed from the

components of q(e) (see Eqs.(2.41)–(2.43)).
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The distribution within each element of the displacement u and the
constant axial force N (e) is shown in Figure 2.3 for P = 0 and tx = 1T/m.
For the same reasons explained in Section 2.3 the nodal displacements
coincide with the exact values. Some improvement in the approximation
of the global displacement field is also observed. However, the error in
the axial force is still considerable and its reduction requires a finer dis-
cretization and the nodal smoothing of the constant axial forces over each
element. This can be done by simply averaging the nodal axial forces.
Other stress smoothing techniques are described in Chapter 9.

A simple observation shows that the results obtained for the axial forces
(and strains) are more inaccurate than those for the displacement field.
This is a general rule which is a consequence from computing the strains
and the stresses from the derivatives of the approximate displacement field.
This, naturally, increases the solution error for those variables [ZTZ].

2.5.2 Solution using the global shape functions

The same problem is now solved using the global description of the shape
functions.

The axial displacement can be expressed globally over the two elements
mesh as (Figure 2.4)

u(x) = Ng
1 (x)u1 + Ng

2 (x)u2 + Ng
3 (x)u3 (2.49)

and the axial strain is given by

ε =
du

dx
=

dNg
1

dx
u1 +

dNg
2

dx
u2 +

dNg
3

dx
u3 (2.50)

The discretized form of the PVW is written using above equations as

∫ l

0

(
dNg

1

dx
δu1 +

dNg
2

dx
δu2 +

dNg
3

dx
δu3

)
(EA)

(
dNg

1

dx
u1 +

dNg
2

dx
u2 +

dNg
3

dx
u3

)
dx−

−
∫ l

0

(
Ng

1 δu1 + Ng
2 δu2 + Ng

3 δu3

)
tx dx = δu1R + δu3P

(2.51)
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This leads, after eliminating the virtual displacements, to the following
matrix system of equations




∫ l

0




(
dNg

1

dx

dNg
1

dx

) (
dNg

1

dx

dNg
2

dx

) (
dNg

1

dx

dNg
3

dx

)

(
dNg

2

dx

dNg
1

dx

) (
dNg

2

dx

dNg
2

dx

) (
dNg

2

dx

dNg
3

dx

)

(
dNg

3

dx

dNg
1

dx

) (
dNg

3

dx

dNg
2

dx

) (
dNg

3

dx

dNg
3

dx

)




EA dx








u1

u2

u3



 −

−
∫ l

0





Ng
1

Ng
2

Ng
3



 tx dx =





R
0
P



 (2.52)

The computation of the integrals in Eq.(2.52) requires a correspondence
between the global and local shape functions. The following relationships
are deduced from Table 2.2 and Figure 2.4

Ng
1 = N

(1)
1

dNg
1

dx
=

dN
(1)
1

dx

Ng
2 = N

(1)
2

dNg
2

dx
=

dN
(1)
2

dx
Ng

3 = 0

dNg
3

dx
= 0





0 ≤ x ≤ l

2
;

Ng
1 = 0

dNg
1

dx
= 0

Ng
2 = N

(2)
1

dNg
2

dx
=

dN
(2)
1

dx

Ng
3 = N

(2)
2

dNg
3

dx
=

dN
(2)
2

dx





l

2
< x ≤ l (2.53)

Making use of the expressions (2.53) in (2.52) the global equilibrium
equation is directly obtained. The reader can easily verify the coincidence
of this equation with Eq.(2.46a) obtained by assembly of the element con-
tributions.

This example clearly shows that the use of the global shape functions is
less systematic and requires more detailed computations than the element
by element approach. These differences are even more apparent for finer
meshes. As a consequence, the assembly of the global equations from the
elemental expressions derived via the local shape functions is the natural
way to be followed.
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2.6 GENERALIZATION OF THE SOLUTION WITH N LINEAR
ROD ELEMENTS

The solution process explained in the previous sections can easily be ge-
neralized for a discretization using a mesh of N 2-noded (linear) rod ele-
ments. The stiffness equations for each element are

K(e)a(e) − f (e) = q(e) (2.54a)

with

K(e) =
∫ x

(e)
2

x
(e)
1

(EA)(e)




(
dN

(e)
1

dx

dN
(e)
1

dx

) (
dN

(e)
1

dx

dN
(e)
2

dx

)

(
dN

(e)
2

dx

dN
(e)
1

dx

) (
dN

(e)
2

dx

dN
(e)
2

dx

)




dx

f (e) =
∫ x

(e)
2

x
(e)
1





N
(e)
1

N
(e)
2



 tx dx , q(e) =





F
(e)
x1

F
(e)
x2



 =




−N (e)

1

N (e)
2



 (2.54b)

After substitution of the shape functions and their derivatives

N
(e)
1 =

x
(e)
2 − x

l(e)
;

dN
(e)
1

dx
= − 1

l(e)

N
(e)
2 =

x− x
(e)
1

l(e)
;

dN
(e)
2

dx
=

1
l(e)

(2.55)

gives (for homogeneous material and uniformly distributed loading)

K(e) =
(

EA

l

)(e) [
1 −1

−1 1

]
; f (e) =

(ltx)(e)

2

{
1
1

}
(2.56)

As usual, the assembly process is based on the global equilibrium of
the element nodal forces q(e) (Eq.(2.23)). This leads, after small algebra,
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to the following global matrix equation



k(1) −k(1) 0 . . . 0
−k(1)

[
k(1) + k(2)

] −k(2) . . . 0
0 −k(2)

[
k(2) + k(3)

]
. . . 0

0 0 −k(3) . . .
...

...
...

. . . . . .
...

0 0 . . .
[
k(N−1) + k(N)

] −k(N)

0 0 . . . −k(N) k(N)




︸ ︷︷ ︸
K





u1
u2
u3
...
...

uN−1
uN





︸ ︷︷ ︸
a

=

=





(ltx)(1)

2
+ Px1

(ltx)(1)

2
+

(ltx)(2)

2
+ Px2

(ltx)(2)

2
+

(ltx)(3)

2
+ Px3

...
(ltx)(N−1)

2
+

(ltx)(N)

2
+ PxN−1

(ltx)(N)

2
+ PxN





︸ ︷︷ ︸
f

with k(e) =
(

EA

l

)(e)

(2.57)

Matrix K depends on the geometrical (l and A) and material (E) pa-
rameters for each element, while vector f depends on the intensity of the
distributed load tx, the element length and the external point forces Pxi

acting at the nodes. Recall that external nodal point forces are assigned
directly to the rows of vector f corresponding to the number of the global
node (Figure 1.14). The unknown reactions at the prescribed nodes are
treated as point loads and they can be computed “a posteriori” as ex-
plained in Section 2.3.4.

Example 2.1: Analyse the axially loaded rod with exponentially varying cross
sectional area of Figure 2.5 using three meshes of one, two and three linear
rod elements.

-- Solution-- Solution

The change in cross sectional area is defined by A = A0e
− x

l where A0 is the
cross sectional area at the clamped end and l is the rod length. The rod is
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Fig. 2.5 Axially loaded road with exponentially varying cross section. Discretiza-
tion in 3 meshes of two-noded rod elements

subjected to an axial force acting at the free end. The exact solution for this
simple problem is

σ =
F

A
=

F

A0
e

x
l , ε =

σ

E
=

F

EA0
e

x
l

u(x) =
∫ x

0

εdx =
∫ x

0

F

EA0
ex/l dx =

Fl

EA0
(ex/l − 1)

u(l) =
Fl

EA0
(e− 1) = 1.71828

Fl

EA0
; R = −F

Two options are possible for the finite element solution: a) to use the exact
expression for the cross sectional area, and b) to assume a constant cross
sectional area within each element. The second option has been chosen here
for simplicity. The reader is encouraged to repeat this problem as an exercise
using the first alternative.
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One element solution

The cross sectional area is assumed to be constant and equal to A = A0e
−1/2.

The element stiffness matrix is directly given by Eq.(2.56), i.e.

K(1) =
EA0

l
e−1/2

[
1 −1

−1 1

]
=

EA0

l
0.60653

[
1 −1

−1 1

]

The equilibrium equation is deduced from Eq.(2.57) (noting that the dis-
tributed loads t

(e)
x are zero) as

EA0

l
0.60653

[
1 −1

−1 1

] {
u1

u2

}
=

{
R
F

}
; u1 = 0

which when solved gives

u2 =
1

0.60653
Fl

EA0
= 1.6487

Fl

EA0
; R = −F

The percentage of error with respect to the exact solution is 4.21%. This can
be considered acceptable given the simplicity of the mesh.

Two elements solution

Now A(1) = A0e
−1/4 and A(2) = A0e

−3/4. The equilibrium equations for each
element (Figure 2.5) are obtained as explained in Section 2.6.

Element 1

1.5576
(EA0

l

) [
1 −1

−1 1

] {
u1

u2

}
=

{
F

(1)
x1

F
(1)
x2

}

Element 2

0.9447
(EA0

l

) [
1 −1

−1 1

] {
u2

u3

}
=

{
F

(2)
x1

F
(2)
x2

}

After global assembly we have

EA0

l




1.5576 −1.5576 0
−1.5576 2.5023 −0.9447

0 −0.9447 0.9447








u1

u2

u3



 =





R
0
F





u1 = 0

which gives

u3 = 1.7005
Fl

EA0
(Error = 1.04%)

u2 = 0.377541 u3 = 0.6419
Fl

EA0

R = − F
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Three element mesh

For the three element mesh (Figure 2.5) A(1) = A0e
−1/6, A(2) = A0e

−1/2 and
A(3) = A0e

−5/6. The equilibrium equations for each element are

Element 1

2.5394
EA0

l

[
1 −1

−1 1

] {
u1

u2

}
=

{
F

(1)
x1

F
(1)
x2

}

Element 2

1.8196
EA0

l

[
1 −1

−1 1

] {
u2

u3

}
=

{
F

(2)
x1

F
(2)
x2

}

Element 3

1.3028
EA0

l

[
1 −1

−1 1

] {
u3

u4

}
=

{
F

(3)
x1

F
(3)
x2

}

The global equilibrium equation after assembly is

EA0

l




2.5394 −2.5394 0 0
−2.5394 4.3590 −1.8196 0

0 −1.8196 3.1234 −1.3038
0 0 −1.3038 1.3038








u1

u2

u3

u4





=





R
0
0
F





u1 = 0

and the solution is

u4 = 1.71036
Fl

EA0
(Error = 0.46%) , u3 = 0.55156 u4 = 0.9432

Fl

EA0

u2 = 0.230241 u4 = 0.3938
Fl

EA0
, R = −F

Once the nodal displacements have been obtained, the axial strain and the
axial stress can be computed for each element. For example, at the central
point of element number 2 in the three element mesh we have

u(l/2) = N
(2)
1

(
x(2) =

l(2)

2

)
u

(2)
1 + N

(2)
2

(
x(2) =

l(2)

2

)
u

(2)
2 =

=
1
2
0.23024u4 +

1
2
0.55156u4 = 0.3909u4 = 0.6686

Fl

EA0

(Exact value = 0.6487
Fl

EA0
. Error : 3.07%).
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Fig. 2.6 Axially loaded rod with varying cross sectional area. Convergence of the
end displacement value and the stress distribution with the number of elements

ε(l/2) =
(dN

(2)
1

dx

)
x(2)= l(2)

2

u
(2)
1 +

(dN
(2)
2

dx

)
x(2)= l(2)

2

u
(2)
2 = 1.6491

F

EA0

=
(
−3

l
0.2302 +

3
l

0.5516
)

u4 = 0.9642
u4

l

σ(l/2) = EεA = 1.649
F

A0
(Exact value: 1.6487

F

A0
. Error: 0.02% )

The convergence of the end displacement value with the number of elements
is shown in Figure 2.6. We see that the simple assumption of constant cross
sectional area leads to percentage errors of less than 1% for meshes finer than
two elements.
The displacement and stress distribution along the rod for the three meshes
are plotted in Figure 2.7 together with the exact solution. The nodal dis-
placements, and even the linear displacement field within each element, are
quite accurate for the three meshes. However, the convergence of the constant
axial stress field for each element to the exact exponential solution is slow.

2.7 EXTRAPOLATION OF THE SOLUTION FROM TWO
DIFFERENT MESHES

Expanding in Taylor series the displacement in the vicinity of a node i
gives

u = ui +
(∂u

∂x

)
i
(x− xi) +

(∂2u

∂x2

)
i
(x− xi)2 + · · · (2.58)

If the shape functions Ni(x) are polynomials of pth degree it is obvious
that only the first p terms of the Taylor expansion can be approximated
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Fig. 2.7 Nodal displacements and axial stress distribution along the rod for the
three meshes

exactly as the derivatives of order p + 1, p + 2, etc. are zero. The error
of this approximation is then of the order of the first term disregarded in
the above expansion, i.e.

error = uexact − uapprox = O(x− xi)p+1 ' O(lp+1) (2.59)

where O(lp+1) is read as “of the order of lp+1” and l is the element length.
Let us now consider two solutions u1 and u2 obtained with two meshes

of uniform element sizes l and l/d, respectively. We can write

uexact − u1 = O(lp+1)

uexact − u2 = O
[
(
l

d
)p+1

] (2.60)

The approximate value of uexact is obtained in terms of u1 and u2

from Eqs.(2.60) as

uexact
∼= (dp+1)u2 − u1

(dp+1)− 1
(2.61)
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This technique is known as Richardson extrapolation [Ral]. For the rod
of Figure 2.5 we obtain for the end displacement value:

1. Extrapolated solution from meshes 1 and 2 (d = 2)

u(l) =
4u2 − u1

3
= 1.7178

Fl

EA0
(Error: 0.03%)

2. Extrapolated solution using meshes 1 and 3 (d = 3)

u(l) =
9u2 − u1

8
= 1.71807

Fl

EA0
(Error: 0.012%)

3. Extrapolated solution using meshes 2 and 3 (d = 1.5)

u(l) =
(9.5)2u2 − u1

(1.5)2 − 1
= 1.71825

Fl

EA0
(Error: 0.002% )

Richardson extrapolation is an effective technique to improve the dis-
placement solution obtained from two meshes using elements of the same
type. This simple procedure is also applicable for 2D and 3D problems.
Obviously, the enhanced nodal displacement values can be used to obtain
an improved solution for the stress field. Unfortunately the improvement
is not so relevant as for the nodal displacements.

2.8 MATRIX FORMULATION OF THE ELEMENT EQUATIONS

The methodology explained in the previous sections is very useful for
introducing the basic steps of the FEM. However, for problems with more
than one displacement variable per node, a matrix formulation is much
more convenient as it allows all variables and algebraic operations to be
grouped together in a compact form. The matrix formulation also provides
a systematic finite element methodology for all the structural problems
treated in this book. The basic concepts of the matrix formulation will be
presented next.

Most expressions used henceforth will be referred to an individual element only.
Therefore, superindex “e” denoting element values will be omitted hereafter
for simplicity, with the exception of a few significative element parameters
such as the main geometrical dimensions (l(e), A(e) and V (e)), the nodal dis-
placement vector a(e), the nodal coordinates vector x(e), the nodal force vectors
(f (e),q(e)) and the stiffness matrix K(e). All other parameters, vectors and ma-
trices appearing in the text should be interpreted, unless otherwise mentioned,
as referred also to an individual element.
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For instance, the components of the displacement vector, the nodal
force vectors and the stiffness matrix for the 2-noded rod element are
denoted hereonwards as follows

a(e) =
{

u1

u2

}
, f (e) =

{
fx1

fx2

}
, q(e) =

{
Fx1

Fx2

}
, K(e) =

[
K11 K12

K21 K22

]

In above expressions, indexes 1 and 2 refer to local node numbers for the
element. The omission of the element superindex e in ui, fxi , Fxi and Kij

will simplify the notation when dealing with problems involving several
DOFs per node.

2.8.1 Shape function matrix

Let us consider a general 2-noded rod element. The displacement field is
expressed within the element as

u = N1u1 + N2u2 (2.62)

Eq.(2.62) is written in matrix form as

u = {u} = [N1, N2]
{

u1

u2

}
= N a(e) (2.63)

where

N = [N1, N2] ; a(e) =
{

u1

u2

}
(2.64)

are the shape function matrix and the nodal displacement vector for the
element. Note that the superindex “e” denoting element values has been
omitted for most terms in Eqs.(2.62)-(2.64).

2.8.2 Strain matrix

The strain vector contains the axial elongation and is written as

εεε = {ε} =
{

du

dx

}
=

{
dN1

dx
u1 +

dN2

dx
u2

}
=

[
dN1

dx
,

dN2

dx

] {
u1

u2

}
= Ba(e)

(2.65)
where

B =
[
dN1

dx
,

dN2

dx

]
(2.66)

is the strain matrix for the element.
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2.8.3 Constitutive matrix

The stress vector contains the axial force and is expressed as

σσσ = {N} = [EA] ε = DBa(e) (2.67)

where
D = [EA] (2.68)

is the matrix of mechanical properties of the material, also called hereafter
constitutive matrix.

For the axial rod problem vectors εεε and σσσ and matrix D have a single
component only. In general σσσ and εεε will have t components. Thus, if n is
the number of nodes of an individual finite element and d the number of
DOFs for each node, the dimensions of the vectors and matrices in the
constitutive equation are

σσσ
t×1

= D
t×t
· B
[t×(n×d)]

· a(e)

[(n×d)×1]
(2.69)

2.8.4 Principle of Virtual Work

The PVW for an individual element is written in matrix form as
∫

l(e)
δεεεTσσσ dx =

∫

l(e)
δuTt dx + [δa(e)]

T
q(e) (2.70a)

with

δεεε = {δε} , δu = {δu} , δa(e) = [δu1, δu2]T

t = {tx} and q(e) = [Fx1 , Fx2 ]
T = [−N1,N2]T

(2.70b)

In above δu and δεεε are the virtual displacement vector and the virtual
strain vector, respectively, δa(e) is the virtual nodal displacement vector
for the element, t is the distributed load vector and q(e) is the equilibra-
ting nodal force vector. Once again we recall that the components of q(e)

coincide with the appropriate sign with the axial forces at the element
nodes (Figure 2.2).

The PVW is a scalar equation, i.e. both sides of Eq.(2.70a) are num-
bers representing the internal and external virtual work, respectively. This
explains the organization of the terms in Eq.(2.70a), as a scalar number
is obtained as product of a row vector times a column vector, i.e. if s is a
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scalar number we can write

s = a1b1 + · · ·+ anbn = [a1, a2, . . . , an]





b1

b2
...

bn





= aTb (2.71)

Naturally, if vectors εεε and σσσ have a single term, as in the axially loaded
rod problem, the vector product (2.71) reduces to multiplying two num-
bers. Vectors εεε and σσσ typically have several components and the matrix
form of the PVW of Eq.(2.70a) will be used.

2.8.5 Stiffness matrix and equivalent nodal force vector

From Eqs.(2.63) and (2.65) we have

[δu]T = [δa(e)]
T

NT

[δεεε]T = [δa(e)]
T

BT
(2.72)

Substituting Eqs.(2.65), (2.67) and (2.72) into the PVW written for a
single element gives

∫

l(e)
[δa(e)]

T
BTσσσ dx−

∫

l(e)
[δa(e)]

T
NTt dx = δa(e)q(e) (2.73)

where t = {tx} is the vector of distributed axial loads acting on the
element. Collecting the virtual displacements in Eq.(2.73) yields

[δa(e)]
T

[∫

l(e)
BTσσσ dx−

∫

l(e)
NTt dx− q(e)

]
= 0 (2.74)

As the virtual displacements are arbitrary, satisfaction of Eq.(2.74) implies
∫

l(e)
BTσσσ dx−

∫

l(e)
NTt dx = q(e) (2.75a)

Substituting now the constitutive equation for σσσ (Eq.(2.67)) into
Eq.(2.75a) gives

(∫

l(e)
BTDB dx

)
a(e) −

∫

l(e)
NTt dx = q(e) (2.75b)

Eq.(2.75) is a system of algebraic equations which can be written in
the standard form

K(e)a(e) − f (e) = q(e) (2.76a)
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where

K(e) =
∫

l(e)
BTDB dx

f (e) =
∫

l(e)
NTt dx

(2.76b)

are respectively the stiffness matrix and the equivalent nodal force due
to distributed loading for the element. Vector q(e) in Eq.(2.76a) is the
equilibrating nodal force vector for the element which is used for the global
assembly process.

The above derivation of K(e) and f (e) is completely general . Expressions
(2.76) will frequently appear throughout the book and will be particula-
rized for each element.

The explicit form of K(e) and f (e) for the 2-noded axially loaded rod
element is found by substituting into Eqs.(2.76b) the adequate expressions
for B,D,N and t. In this case we have

N = [N1,N2] = [N1, N2] =
[x2 − x

l(e)
,
x− x1

l(e)

]

B = [B1,B2] =
[dN1

dx
,
dN2

dx

]
=

[
− 1

l(e)
,

1
l(e)

] (2.77)

D = [EA] and t = {tx}

Substituting Eqs.(2.77) into (2.76b) gives

K(e) =
∫

l(e)

{− 1
l(e)
1

l(e)

}
(EA)

[
− 1

l(e)
,

1
l(e)

]
dx =

(EA

l

)(e) [
1 −1

−1 1

]

f (e) =
{

fx1

fx2

}
=

∫

l(e)

{
x2 − x
x− x1

} ( tx
l

)(e)

dx =
(ltx)(e)

2

{
1
1

} (2.78)

Note the coincidence of these expressions with those obtained in
Eq.(2.56).

Nodal computation of K(e) and f (e)Nodal computation of K(e) and f (e)

It is interesting and useful that the element stiffness matrix and the equi-
valent nodal force vector can be obtained from the corresponding sub-
matrices and subvectors.
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Thus, from Eqs.(2.77) and (2.76b) we have

K(e) =
∫

l(e)

{
BT

1

BT
2

}
D[B1,B2] dx =

∫

l(e)




BT
1DB1

... BT
1DB2

. . . . . . . . . . . . . . . . . . . . .

BT
2DB1

... BT
2DB2


 dx =

=

[
K(e)

11 K(e)
12

K(e)
21 K(e)

22

]

f (e) =
{

fx1

fx2

}
=

∫

l(e)

{
NT

1

NT
2

}
t dx =

∫

l(e)

{
NT

1 t
NT

2 t

}
dx (2.79)

Matrix K(e)
ij relating nodes i and j of element e is

K(e)
ij

d×d

=
∫

l(e)
BT

i
(d×t)

D
(t×t)

Bj
(t×d)

dx ; i, j = 1, 2 (2.80)

and the equivalent nodal force vector for node i of element e is

f (e)
i

(d×1)

=
∫

l(e)
NT

i
(d×d)

t
(d×1)

dx i = 1, 2 (2.81)

Recall that d is the number of DOFs for each node (i.e. d = 1 for the
axially loaded rod). For the 2-noded rod element

K
(e)
ij =

∫

l(e)

dNi

dx
EA

dNj

dx
dx = (−1)i+j

(EA

l

)(e)

f
(e)
i = fxi =

∫

l(e)
Nitx dx =

(ltx)(e)

2

(2.82)

from which the expressions of K(e) and f (e) of Eq.(2.78) can be obtained.
The computation of the element stiffness matrix K(e) and the equiva-

lent nodal force vector f (e) from the nodal contributions K(e)
ij and f (e)

i is
simple and economical and it facilitates the organization of a computer
program. We will verify this on many occasions throughout the book.

The global stiffness matrix K and the equivalent nodal force vector f
are assembled from the element contributions in the standard manner into
the global system Ka = f .

Once the nodal displacements a have been found the reactions at the
prescribed nodes can be computed by Eq.(2.26a) or, what is usually more
convenient, by Eq.(2.26b), with the following general expression for the



Summary of the steps for the analysis of a structure using the FEM 75

internal nodal force vector for the element

f (e)
int =

∫

l(e)
BTσσσ dx (2.83)

Eq.(2.83) is deduced from the first integral in the l.h.s. of Eq.(2.75a).

2.9 SUMMARY OF THE STEPS FOR THE ANALYSIS OF A
STRUCTURE USING THE FEM

Let us summarize the main steps to be followed for the finite element
analysis of a structure.

Step 1. Discretize the structure into a mesh of finite elements.
Step 2. Compute for each element the stiffness matrix and the equivalent

nodal force vector due to external loads using expressions of the type

K(e) =
∫

l(e)
BTDB dx ; K(e)

ij =
∫

l(e)
BT

i DBj dx

f (e) =
∫

l(e)
NT t dx ; f (e)

i =
∫

l(e)
NT

i t dx (2.84)

For two and three dimensional structures the element integrals are
computed over the element area and volume, respectively.

Step 3. Assemble the stiffness matrix and the equivalent nodal force vector
for each element into the global system

Ka = f (2.85a)

K = A
e

K(e) ; f = A
e

f (e) + p + r (2.85b)

where A
e

denotes the operator for the global assembly of all the indi-

vidual matrices and vectors for each element in the mesh. In Eq.(2.85b)
p is the vector of external point forces acting at the nodes and r is the
vector of nodal reaction to be computed “a posteriori” once the nodal
displacement are found.
The assembly of the reaction vector r into f is optional, as the reactions
do not influence the solution for the nodal displacements [Li,Pr].

Step 4. The nodal displacements are computed by solving the equation
system (2.85a) where the prescribed displacements must be adequately
imposed, i.e.

a = K−1f (2.86)
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The nodal reactions are obtained at the prescribed nodes.
Step 5. The strains and stresses are computed within each element from

the nodal displacements as

εεε = B a ; σσσ = D B a (2.87)

The nodal axial forces for each element can be computed from

q(e) = [−N (e)
1 ,N (e)

2 ] = K(e)a(e) − f (e) (2.88)

Details of above steps and of the precise form of the element vectors
and matrices will be given for each of the structures studied in the
book.



3

ADVANCED ROD ELEMENTS AND
REQUIREMENTS FOR THE
NUMERICAL SOLUTION

3.1 INTRODUCTION

The analysis of the simple axially loaded rod problem using the 2-noded
rod element studied in the previous chapter is of big interest as it sum-
marises the basic steps for the analysis of a structure by the FEM. Ho-
wever, a number of important questions still remain unanswered, such as:
Can higher order rod elements be effectively used? What are their advan-
tages versus the simpler 2-noded rod element? Can it be guaranteed that
the numerical solution converges to the exact one as the mesh is refined?
What are the conditions influencing the error in the numerical solution?
The reader who faces the application of the FEM for the first time will
certainly come across these and similar questions. In this chapter we will
see that there are not definitive answers for many of the questions, and
in some cases only some practical hints are possible. For simplicity we
will mostly refer to the axially loaded rod problem as it allows a simple
explanation of topics which are of general applicability to more complex
problems.

The chapter is organized as follows. In the next section the derivation of
the one-dimensional (1D) shape functions is presented. Such functions are
very useful for obtaining the shape functions for two- (2D) and three- (3D)
dimensional elements in the next chapters. An example of the derivation
of the relevant matrix expressions for a quadratic 3-noded rod element is
given. The concepts of isoparametric element and numerical integration
are presented next. These concepts are essential for the derivation of high-
order 2D and 3D elements. Finally, the requirements for the convergence
of the numerical solution are discussed, together with a description of the
more usual solution errors.
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3.2 ONE DIMENSIONAL C0 ELEMENTS. LAGRANGE
ELEMENTS

In the previous chapter we introduced the basic concepts of the FEM using
simple 2-noded 1D elements with linear shape functions. The polynomial
interpolation guarantees that the axial displacement is continuous within
the element and between adjacent elements. Elements satisfying this con-
dition are termed “Co continuous”. Additionally, we could require conti-
nuity of the first derivative of the displacement and the approximation is
then called “C1 continuous”. In general, an element is “Ck continuous” if
the displacement field has continuous the k−1 first derivatives. In Section
3.8.3 we will come back to this subject. In this section we will derive the
shape functions for Co continuous 1D elements. These ideas will be very
useful for deriving the shape functions of 2D elements in Chapter 5.

The approximation of a displacement unknown in 1D elements can be
written as

u(x) = α0 + α1x + α2x
2 + · · · (3.1)

where α0, α1, etc., are constant parameters.
Let us choose a first degree polynomial (for example, the approximation

introduced in Section 2.3)

u(x) = α0 + α1x (3.2)

The parameters α0 and α1 can be obtained from the value of u(x) at two
element points. This requires the element associated with the interpolation
(3.2) to have two nodes. For a 2-noded element of length `(e) with node 1
at x = x1 and node 2 at x = x2 (Figure 3.1), we have

u(x1) = u1 = α0 + α1x1

u(x2) = u2 = α0 + α1x2

(3.3)

where u1 and u2 are the values of the axial displacement at the two nodes.
Substituting the values of αo and α1 obtained from Eq.(3.3) into Eq.(3.1)
gives

u(x) = N1(x)u1 + N2(x)u2 (3.4a)

where

N1(x) =
(x2 − x)

l(e)
; N2(x) =

(x− x1)
l(e)

(3.4b)
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Fig. 3.1 Definition of the natural coordinate system ξ. Actual and normalized
geometries for a 2-noded element

are the element shape functions. Note the coincidence with the expressions
obtained in the previous chapter (see Eq.(2.12)).

The shape functions for Co continuous 1D elements can be simply
derived from the expressions of Lagrange polynomials. A n − 1th degree
Lagrange polynomial `n

i (x) is defined in terms of n points with coordinates
x1, x2, · · ·xn as follows

`n
i (x) = (x− x1)(x− x2) · · · (x− xi−1)(x− xi+1) · · · (x− xn) (3.5a)

Note that `n
i (xi) = yi(6= 0) and `n

i (xj) = 0 for j = 1, 2, · · ·n(j 6= i). If
the points coincide with the element nodes and the non-zero value yi is
normalized to the unity, the resulting normalized Lagrange polynomial is

lni (x) =
`n
i (x)

`n
i (xi)

=
n∏

j=1(j 6=i)

( x− xj

xi − xj

)
(3.5b)

The shape function Ni of a Lagrange element with n nodes coincides
with the normalized Lagrange polynomial, i.e.

Ni(x) = lni (x) (3.6)

This explains why C◦ continuous 1D elements are also called Lagrange
elements.
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For a two-noded element we find again that

N1 =
x− x2

x1 − x2
=

x2 − x

l(e)

N2 =
x− x1

x2 − x1
=

x− x1

l(e)

(3.7)

A natural coordinate ξ is introduced for convenience as (Figure 3.1)

ξ = 2
x− xc

l(e)
(3.8)

where xc is the cartesian coordinate of the element midpoint. Eq. (3.8)
gives

ξ = −1 at the left-hand end of the element
ξ = 0 at the element mid point
ξ = 1 at the right-hand end of the element

Eq. (3.8) transforms the actual element geometry into a normalized
geometry of length equal to 2. The shape functions can now be written in
terms of the natural coordinate ξ. By analogy with Eq.(3.6) we write

Ni(ξ) = lni (ξ) =
n∏

j=1(j 6=i)

( ξ − ξj

ξi − ξj

)
(3.9)

For a linear Lagrange rod element with two nodes at ξ = −1 and
ξ = +1 we obtain

N1 =
ξ − ξ2

ξ1 − ξ2
=

1
2

(1− ξ)

N2 =
ξ − ξ1

ξ2 − ξ1
=

1
2

(1 + ξ)
(3.10)

For a quadratic Lagrange rod element with three nodes at ξ1 = −1,
ξ = 0 and ξ = +1 (Figure 3.2) the shape functions are

N1 =
(ξ − ξ2)(ξ − ξ3)

(ξ1 − ξ2)
=

1
2
ξ(ξ − 1)

N2 =
(ξ − ξ1)(ξ − ξ3)

(ξ2 − ξ1)(ξ2 − ξ3)
= (1− ξ2)

N3 =
(ξ − ξ1)(ξ − ξ2)

(ξ3 − ξ1)(ξ3 − ξ2)
=

1
2
ξ(1 + ξ)

(3.11)
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Fig. 3.2 Quadratic and cubic 1D elements with Co continuity

For a cubic rod element with four nodes at ξ1 = −1, ξ2 = −1/3,
ξ3 = 1/3 and ξ4 = +1 (Figure 3.2) the shape functions are

N1 =
(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

(ξ1 − ξ2)(ξ1 − ξ3)(ξ1 − ξ4)
= − 9

16

(
ξ2 − 1

9

)
(ξ − 1)

N2 =
(ξ − ξ1)(ξ − ξ3)(ξ − ξ4)

(ξ2 − ξ1)(ξ2 − ξ3)(ξ2 − ξ4)
=

27
16

(
ξ − 1

3

)
(ξ2 − 1)

N3 =
(ξ − ξ1)(ξ − ξ2)(ξ − ξ4)

(ξ3 − ξ1)(ξ3 − ξ2)(ξ3 − ξ4)
= −27

16

(
ξ +

1
3

)
(ξ2 − 1)

N4 =
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)

(ξ4 − ξ1)(ξ4 − ξ2)(ξ4 − ξ3)
=

9
16

(ξ + 1)
(

ξ2 − 1
9

)

(3.12)

The cartesian expressions of the above shape functions can be obtained
from the transformation (3.8). However, only the normalized forms are
usually necessary in practice.
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The reader is encouraged to derive by him/herself the expressions of
the shape functions for higher order 1D Lagrange elements.

The shape functions for C1 continuous 1D elements will be derived in
Chapter 1 of Volume 2 when dealing with Euler-Bernouilli beams [On].

3.3 ISOPARAMETRIC FORMULATION AND NUMERICAL
INTEGRATION

3.3.1 Introduction

We will now introduce two key concepts which have been essential for
the development of the FEM. The first one is that of isoparametric inter-
polation. The basic idea is to interpolate the element geometry from the
coordinates of the nodes. Such an interpolation yields a general relation-
ship between the natural and cartesian coordinates.

The second concept is that of numerical integration. In most cases the
exact analytical computation of the element integrals is not possible and
numerical integration is the only option to evaluate them in a simple and
precise way.

The application of these two techniques to Co continuous 1D rod ele-
ments is presented in the next sections. The advantages of these procedures
will become clearer when dealing with 2D and 3D elements.

3.3.2 The concept of parametric interpolation

Let us recall the displacement interpolation for a 2-noded axial rod ele-
ment:

u(ξ) = N1(ξ)u1 + N2(ξ)u2 (3.13)

In Eq.(3.13) we have used the expression of the shape functions in
terms of the natural coordinate ξ. With a few exceptions this will be the
usual procedure throughout the book.

The axial strain in the rod element is obtained from Eq.(3.13) as

ε =
du

dx
=

dN1(ξ)
dx

u1 +
dN2(ξ)

dx
u2 (3.14)

The cartesian derivatives of the shape functions are therefore needed
to compute the strain. This would be an easy task if the shape functions
were expressed in terms of the cartesian coordinate x. However, as this
will not generally be the case, some transformations are necessary. For the
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1D problem we have

dN1(ξ)
dx

=
dN1(ξ)

dξ

dξ

dx
=

d

dξ

(1− ξ

2

) dξ

dx
= −1

2
dξ

dx

dN2(ξ)
dx

=
dN2(ξ)

dξ

dξ

dx
=

d

dξ

(1 + ξ

2

) dξ

dx
=

1
2

dξ

dx

(3.15)

and the strain is obtained by

ε = −1
2

(dξ

dx

)
u1 +

1
2

(dξ

dx

)
u2 (3.16)

Eq.(3.16) involves the evaluation of dξ
dx . This requires an explicit re-

lationship between ξ and x which can be obtained using a parametric
interpolation of the element geometry. This expresses the coordinate of
any point within the element in terms of the coordinates of m element
points x1, x2, · · · , xm by the following interpolation

x = N̂1(ξ)x1 + N̂2(ξ)x1 + · · ·+ N̂m(ξ)xm (3.17)

In Eq.(3.17) N̂i(ξ) are geometry interpolation functions which satisfy
the same requirements as the displacement shape functions; i.e. N̂i(ξ)
takes the value one at point i and zero at the other m − 1 points for
which the coordinates are known. Hence, the expression for N̂i(ξ) can be
obtained simply by changing n for m in Eq.(3.9), where ξi are the natural
coordinates of the geometry interpolating points.

Eq. (3.17) yields precisely the relationship we are looking for between
the coordinates ξ and x. This expression can also be interpreted as a
transformation between the coordinates ξ and x, such that every point in
the normalized space [-1,1] is mapped onto another point in the cartesian
space [x1, x2]. It is essential that this mapping be unique and this generally
depends on the element geometry. This issue will be discussed in some
detail when studying 2D isoparametric elements in Chapter 6.

Example 3.1: Parametric interpolation of a cubic polinomial.

-- Solution-- Solution

Let us consider the polynomial y = x3 − 2x2 − x + 4 plotted in Figure 3.3.
Such a function can represent, for instance, the geometry of a curved beam
or the boundary of a curved 2D element. We will assume that the coordinates
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Fig. 3.3 Parametric interpolation of a cubic polynomial

of the three points at x1 = 0, x2 = 1, and x3 = 2 are known.
The coordinates of the three points will be used to derive a quadratic approxi-
mation using a 3-noded 1D element. The relationship between the cartesian
(x, y) coordinates and the natural coordinate ξ is obtained as a particular
case of Eq.(3.17), i.e.

x =
3∑

i=1

Ni(ξ)xi =
1
2
ξ(ξ − 1)x1 + (1− ξ2)x2 +

1
2
ξ(ξ + 1)x3 = 1− ξ

y =
3∑

i=1

Ni(ξ)yi =
1
2
ξ(ξ − 1)y1 + (1− ξ2)y2 +

1
2
ξ(1 + ξ)y3 = ξ2 − ξ + 2

Figure 3.3 shows the approximating quadratic function. Note the error with
respect to the “exact” cubic function. Also note that this error is much larger
outside the interval [0,2] which includes the three points selected.
The accuracy can be dramatically improved by using a cubic approximation
in terms of the coordinates of four known points at x1 = 0, x2 = 2/3, x3 =
4/3, and x4 = 2.0, with y(x1) = 4.0, y(x2) = 74/27, y(x3) = 40/27, and
y(x4) = 2.0, respectively. A cubic 1D element is now used giving

x =
4∑

i=1

Ni(ξ)xi ; y =
4∑

i=1

Ni(ξ)yi
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where Ni are the cubic shape function of Eq.(3.12). After some easy algebra,
the following is obtained

x = 1 + ξ ; y = (1 + ξ)3 − 2(1 + ξ)2 − (1 + ξ) + 4

The reader can verify that the cubic field chosen exactly approximates the
original cubic function, as expected.

Example 3.1 shows that important errors in the geometry approxi-
mation can occur unless a correct interpolation of the geometry is chosen.
These errors are undesirable and should be avoided or, at least, minimized.

Two types of points must therefore be considered in an element: a)
the n points used for interpolating the displacement field (nodes) by the
shape functions Ni(ξ); and b) the m points chosen for approximating the
element geometry via the geometry interpolation functions N̂i(ξ). These
two sets of points can coincide depending on the problem. Complex struc-
tures might require a higher order interpolation of the geometry, whereas
a simple geometry can be exactly approximated using a linear field for N̂i,
independently of the interpolation used for the displacement field.

If the number of geometry points m is greater than that of element
nodes, the geometry interpolation functions N̂i will be polynomials of a
higher degree than the displacement shape functions, and the element is
termed superparametric. If m coincides with the number of nodes, then
Ni ≡ N̂i and the element is isoparametric. Finally, if the number of geome-
try points is less than that of nodes, the element is called subparametric.

In practice it is usual to choose an isoparametric formulation. However,
it is important to have a clear picture of the two other options which are
useful in some cases.

Isoparametric elements originate from the work of Taig [Ta,TK] who
derived the first 4-noded isoparametric quadrilateral. Irons [IA,Ir] ex-
tended these ideas to formulate high order isoparametric elements. In
Chapters 6 and 8 we will study 2D and 3D isoparametric elements.

3.3.3 Isoparametric formulation of the two-noded rod element

The geometry of the linear rod element is expressed in terms of the coor-
dinates of the two nodes as

x(ξ) = N1(ξ)x1 + N2(ξ)x2 (3.18)
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where N1 and N2 are the same linear shape functions used for interpolating
the displacement field (see Eq.(3.10)).

From Eq.(3.18) we obtain

dx

dξ
=

dN1

dξ
x1 +

dN2

dξ
x2 = −1

2
x1 +

1
2
x2 =

l(e)

2
(3.19)

and
dx =

l(e)

2
dξ y

dξ

dx
=

2
l(e)

(3.20)

Substituting Eq.(3.20) into (3.15) gives

dN1

dx
=

2
l(e)

dN1

dξ
= − 1

l(e)

dN2

dx
=

2
l(e)

dN2

dξ
=

1
l(e)

(3.21)

and from Eqs.(3.21) and (3.14)

ε =
[
−1/l(e), 1/l(e)

]
a(e) = B a(e) (3.22a)

with
B =

[
−1/l(e), 1/l(e)

]
(3.22b)

which naturally coincides with the expressions previously derived by a
more direct procedure. The systematic approach chosen here is useful in
order to understand the application of the isoparametric concept.

The stiffness matrix and the equivalent nodal force vector are expressed
in the natural coordinate system combining Eqs.(3.20) and (2.76b) as

K(e) =
∫ +1

−1
BT (EA)B

l(e)

2
dξ , f (e) =

∫ +1

−1
NT t

l(e)

2
dξ (3.23)

For homogeneous material and uniformly distributed loading the com-
putation of the above integrals is simple, leading to the expressions (2.78)
in the previous chapter.

3.3.4 Isoparametric formulation of the 3-noded quadratic rod element

We will now study the 3-noded rod element of Figure 3.2 with quadratic
shape functions. The axial displacement is expressed by

u = N1(ξ)u1 + N2(ξ)u2 + N3(ξ)u3 (3.24)



Isoparametric formulation and numerical integration 87

where the shape functions N1(ξ), N2(ξ) and N3(ξ)are given by Eq.(3.11).
The x coordinate of a point within the element is written in the isopara-

metric formulation as

x = N1(ξ)x1 + N2(ξ)x2 + N3(ξ)x3 (3.25)

The axial strain is obtained by

ε =
du

dx
=

3∑

i=1

dNi

dξ
ui =

[
dN1

dξ

dξ

dx
,

dN2

dξ

dξ

dx
,

dN3

dξ

dξ

dx

]



u1

u2

u3



 = B a(e)

(3.26)
From Eq.(3.11)

dN1

dξ
= ξ − 1

2
;

dN2

dξ
= −2ξ ;

dN3

dξ
= ξ +

1
2

(3.27)

and the strain matrix B is

B =
(dξ

dx

) [
(ξ − 1

2
),−2ξ, (ξ +

1
2
)
]

(3.28)

The derivative dx
dξ is computed from Eq.(3.25) as

dx

dξ
=

dN1

dξ
x1 +

dN2

dξ
x2 +

dN3

dξ
x3 = (ξ − 1

2
) x1 −

− 2ξx2 + (ξ +
1
2
) x3 =

l(e)

2
+ ξ (x1 + x3 − 2x2)

(3.29)

and dξ

dx
=

2
l(e) + 2ξ(x1 + x3 − 2x2)

(3.30)

Eq.(3.30) provides a relationship between dx and dξ in terms of the
three nodal coordinates. In the (usual) case that the central node is located
at the element midpoint, we have

dξ

dx
=

2
l(e)

(3.31)

and dx

dξ
=

2
l(e)

y dx =
l(e)

2
dξ (3.32)

In this latter case the strain matrix of Eq.(3.28) is simply

B =
2

l(e)

[
(ξ − 1

2
),−2ξ, (ξ +

1
2
)
]

(3.33)
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The expression of B for an arbitrary position of the central node is
obtained by substituting Eq.(3.30) into (3.28).

The element stiffness matrix and the equivalent nodal force vector are
obtained from the PVW as explained in Chapter 2 for the 2-noded element.
It can easily be found that the element stiffness matrix has once again the
general form

K(e) =
∫

l(e)
BT (EA) B dx (3.34)

Substituting the above expressions for dx and B in terms of ξ into
Eq.(3.34) leads to (for the case of the mid-node being central in the ele-
ment)

K(e) =
∫ +1

−1

2
l(e)





(ξ − 1
2)

−2ξ
(ξ + 1

2)



 (EA)

2
l(e)

[
(ξ − 1

2
),−2ξ, (ξ +

1
2
)
]

l(e)

2
dξ

(3.35)

The computation of the above integral is straightforward if both E and
A are constant over the element, giving

K(e) =




K11 K12 K13

K21 K22 K23

K31 K32 K33


 =

(EA

6l

)(e)




14 −16 2
−16 32 −16

2 −16 14


 (3.36)

The equivalent nodal force vector for a distributed loading of intensity
t = {tx} is

f (e) =





fx1

fx2

fx3





=
∫

l(e)
NT t dx =

∫ +1

−1





1
2ξ(ξ − 1)

1− ξ2

1
2ξ(1 + ξ)





tx
l(e)

2
dξ (3.37a)

For a uniformly distributed loading

f (e) =
(ltx)(e)

6





1
4
1



 (3.37b)

We note that the central node absorbes four times more loading than
the end nodes. This result which is not the obvious one, is a natural
consequence of the PVW and the quadratic approximation chosen.

The expressions of K(e) and f(e) for an arbitrary position of the central
node are obtained using the relationship between of dx and dξ of Eq.(3.30).
In this case rational algebraic functions in ξ are involved and, therefore,
the analytical computation of the element integrals is not so simple.
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The equilibrium equation for the 3-noded rod element is

q(e) = K(e)a(e) − f (e) (3.38a)

where the equilibrating nodal force vector is

q(e) = [Fx1 , Fx2 , Fx3 ]
T (3.38b)

The axial forces at the element nodes can be obtained from the com-
ponents of q(e) as

[−N1,N2,N3]
T = [Fx1 , Fx2 , Fx3 ]

T (3.38c)

The global stiffness matrix K and the global equivalent nodal force
vector f are assembled from the element contributions, as explained for bar
structures and for the 2-noded rod element. The process is schematically
shown in Figure 3.4. As usual Pxi denotes the external point force acting
at the node with global number i. The same assembly procedure applies
for higher order rod elements. Example 3.4 presented in a next section
shows an application of the 3-noded rod element.

The isoparametric formulation of higher order rod elements follows the
rules explained for the quadratic element. The increasing complexity of
the element integrals can be overcome by using numerical integration as
explained in the next section.

3.4 NUMERICAL INTEGRATION
In some cases the exact analytical computation of the integrals appearing
in K(e) and f (e) can be difficult and sometimes impossible. This typically
occurs for 2D and 3D isoparametric elements, due to the complexity of
the rational algebraic functions involved in the integrals. Numerical inte-
gration appears here as the only option to compute the element integrals
in a simple and accurate way.

To enter into the mathematics of numerical integration falls outside
the scope of this book. For simplicity we will only consider here the Gauss
quadrature [PFTV,Ral] as this is the more popular numerical integration
procedure used in the FEM. We will introduce the basic ideas for 1D
problems which will be extended for 2D and 3D problems in subsequent
chapters.

Let us assume that the integral of a function f(x) in the interval [-1,1]
is required, i.e.

I =
∫ +1

−1
f(ξ) dξ (3.39)
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K(e) =

global i k m
local 1 2 3



K11 K12 K13

K22 K23

Symm. K33




1 i

2 k

3 m

, f (e) =





fx1

fx2

fx3





1 i

2 k

3 m

K =

1 2 · · · i · · · k · · · m · · · N


. . .
...

...
...

K11 · · · K12 · · · K13 · · ·
. . .

...
...

K22 · · · K23 · · ·
. . .

...
Symm. K33 · · ·

...




1
2
...
i
...
k
...
m
...
N

, f =





...

fx1 + Pxi

...

fx2 + Pxk

...

fx3 + Pxm

...





1
2
...
i
...

k
...

m
...
N

Fig. 3.4 Three-noded rod element. Assembly of the global stiffness matrix K and
the global equivalent nodal force vector f from the element contributions

The Gauss integration rule, or Gauss quadrature, expresses the value
of the above integral as a sum the function values at a number of known
points multiplied by prescribed weights. For a quadrature of order q

I ' Iq =
q∑

i=1

f(ξi)Wi (3.40)

where Wi is the weight corresponding to the ith sampling point located
at ξ = ξi and q the number of sampling points. A Gauss quadrature of qth
order integrates exactly a polynomial function of degree 2q − 1 [Ral]. The
error in the computation of the integral is of the order 0(42q), where 4 is
the spacing between the sampling points. The coordinates of the sampling
points and their weights for the first eight Gauss quadratures are shown
in Table 3.1.
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q ξq Wq

1 0.0 2.0

2 ±0.5773502692 1.0

3
±0.774596697
0.0

0.5555555556
0.8888888889

4
±0.8611363116
±0.3399810436

0.3478548451
0.6521451549

5
±0.9061798459
±0.5384693101
0.0

0.2369268851
0.4786286705
0.5688888889

6
±0.9324695142
±0.6612093865
±0.2386191861

0.1713244924
0.3607615730
0.4679139346

7

±0.9491079123
±0.7415311856
±0.4058451514
0.0

0.1294849662
0.2797053915
0.3818300505
0.4179591837

8

±0.9602898565
±0.7966664774
±0.5255324099
±0.1834346425

0.1012285363
0.2223810345
0.3137066459
0.3626837834

Table 3.1 Coordinates and weights for Gauss quadratures

Note that the sampling points are all located within the normalized do-
main [-1,1]. This is useful for computing the element integrals expressed in
terms of the natural coordinate ξ. The popularity of the Gauss quadrature
derives from the fact that it requires the minimum number of sampling
points to achieve a prescribed error in the computation of an integral.
Thus, it minimizes the number of times the integrand function is com-
puted. The reader can find further details in [PFTV,Rad,Ral].

Example 3.2: Applications of the Gauss quadrature.

-- Solution-- Solution

Let us consider the fourth degree polynominal

f(x) = 1 + x + x2 + x3 + x4

The exact integral of f(x) over the interval −1 ≤ x ≤ 1 is

I =
∫ +1

−1

f(x)dx = 2 +
2
3

+
2
5

= 3.0666
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- First order Gauss quadrature:

q = 1 , x1 = 0 , W1 = 2 ; I = W1f(x1) = 2

- Second order Gauss quadrature:

q = 2

{
x1 = −0.57735 , W1 = 1
x2 = +0.57735 , W2 = 2

I = W1f(x1) + W2f(x2) = 0.67464 + 2.21424 = 2.8888

- Third order Gauss quadrature:

q = 3





x1 = −0.77459 , W1 = 0.5555
x2 =0.57735 , W2 = 0.8888

x3 = +0.77459 , W3 = 0.5555





I = W1f(x1) + W2f(x2) + W3f(x3) = 0.7204× 0.5555 +

+ 1.0× 0.8888 + 3.19931× 0.5555 = 3.0666 Exact value!

We see that the exact integration of a fourth order polynominal requires a
third order Gauss quadrature as expected.

3.5 STEPS FOR THE COMPUTATION OF MATRICES AND
VECTORS FOR AN ISOPARAMETRIC ROD ELEMENT

We will now present the basic steps for computing the stiffness matrix and
the equivalent nodal vector for an isoparametric rod element with n nodes.
The steps have been arranged so as to facilitate their implementation
within a computer program.

3.5.1 Interpolation of the axial displacement

The axial displacement within the element is expressed as

u = N1 u1 + N2 u2 + . . . + Nn un =

n∑

i=1

Niui = [N1, N2, . . . , Nn]





u1

u2
...

un





= N a(e) (3.41)
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3.5.2 Geometry interpolation

The coordinate x is interpolated using the isoparametric form as

x = N1 x1 + N2 x2 + . . . + Nn xn =
n∑

i=1

Ni xi =

= [N1, N2, . . . , Nn]





x1

x2

. . .
xn





= N x(e) (3.42)

3.5.3 Interpolation of the axial strain

The axial strain is expressed in terms of the nodal displacements as

ε =
du

dx
=

dN1

dx
u1 +

dN2

dx
u2 + . . . +

dNn

dx
un =

n∑

i=1

dNi

dx
ui =

=
[dN1

dx
,
dN2

dx
, . . . ,

dNn

dx

]




u1

u2
...

un





= B a(e) (3.43)

The cartesian derivative of the shape functions is obtained by

dNi

dx
=

dNi

dξ

dξ

dx
(3.44)

From Eq.(3.42) we deduce

dx

dξ
=

n∑

i=1

dNi

dξ
xi = J (e) (3.45)

and, therefore

dx = J (e) dξ ;
dξ

dx
=

1
J (e)

(3.46)

and

dNi

dx
=

1
J (e)

dNi

dξ
(3.47)
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Substituting Eq.(3.47) into the expression of B gives

B =
[
dNi

dx
,
dN2

dx
, . . . ,

dNn

dx

]
=

1
J (e)

[
dNi

dξ
,
dN2

dξ
, . . . ,

dNn

dξ

]
(3.48)

In Eq.(3.48) J (e) = dx
dξ is the Jacobian of the 1D transformation be-

tween dx and dξ. For 2D and 3D problems J (e) is a matrix whose deter-
minant relates the infinitesimal areas (for 2D) and volumes (for 3D) in
the cartesian and natural coordinate systems.

3.5.4 Computation of the axial force

The axial force N for the element is obtained as

N = (EA) ε = D B a(e) with D = [EA] (3.49)

3.5.5 Element stiffness matrix

The PVW leads to the following general expression for the element stiffness
matrix (Section 2.8.5)

K(e) =
∫

l(e)
BTDB dx =

∫ +1

−1
BTDB J (e) dξ (3.50)

From Eqs.(3.48) and (3.49) we deduce

K
(e)
ij =

∫ +1

−1

1
J (e)

dNi

dξ
(EA)

dNj

dξ
dξ (3.51)

The simplicity of the above integral depends on the expression of the
shape functions and of J (e). In general, K(e) is computed using the Gauss
quadrature which evaluates (3.51) as exactly as possible. For a qth order
Gauss quadrature we can write

K(e) =
q∑

r=1

[BTDBJ (e)]rWr (3.52a)

or

K
(e)
ij =

q∑

r=1

[
1

J (e)

dNi

dξ
(EA)

dNj

dξ

]

r

Wr (3.52b)

where [·]r denotes values computed at the sampling point ξ = ξr.
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3.5.6 Equivalent nodal force vector

For a distributed loading of intensity tx(x) we have

f (e) = [fx1 , fx2 , · · · , fxn ]T =
∫

l(e)
NT tx dx =

∫ +1

−1
NT txJ (e) dξ (3.53)

The computation of f (e) can be performed using numerical integration
as

f (e) =
q∑

r=1

[NT txJ (e)]rWr (3.54a)

or

fxi =
q∑

r=1

[Ni tx J (e)]r Wr , i = 1, 2, 3 (3.54b)

The global stiffness matrix K and the equivalent nodal vector f are
assembled from the element contributions K(e) and f (e), as usual (Figure
3.4).

Once the system of global equilibrium equations Ka = f has been
solved for the nodal displacements a, the reactions at the prescribed nodes
can be computed by Eq.(2.26a),or else by Eq.(2.26b) with the following
expression for the internal force vector for each element

f (e)
int =

∫

l(e)
BTσσσ dx =

∫

l(e)
BTN dx (3.55)

Example 3.3: Compute the term K
(e)
11 of K(e) for the 3-noded rod element

(Figure 3.2) using an isoparametric formulation and numerical integration.

-- Solution-- Solution

The term K
(e)
11 is obtained from Eq.(3.51) as

K
(e)
11 =

∫ +1

−1

1
J (e)

dN1

dξ
(EA)

dN1

dξ
dξ

The expression of N1 for the 3-noded rod element is (Eq. (3.11))

N1 =
1
2
(ξ − 1)ξ y

dN1

dξ
= ξ − 1

2
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Assuming that node 2 is centered in the element J (e) =
l(e)

2
.

Substituting
dN1

dξ
and J (e) into K

(e)
11 we have

K
(e)
11 =

∫ +1

−1

2EA

l(e)
(ξ − 1

2
)2 dξ

The integrand is a quadratic function and hence, the exact integral requires
a Gauss quadrature of 2nd order (q = 2). From Eq.(3.52) and Table 3.1 we
obtain

K
(e)
11 =

2∑
r=1

[2EA

l(e)
(ξ − 1

2
)2

]
r
Wr =

[2EA

l(e)
(ξ − 1

2
)2

]
ξ=−

√
3

3

+

+
[2EA

l(e)
(ξ − 1

2
)2

]
ξ=

√
3

3

=
7
3
(
EA

l
)(e)

The same procedure can be followed for computing the rest of terms of K(e).

3.6 BASIC ORGANIZATION OF A FINITE ELEMENT PROGRAM

The steps presented in the previous section for computing the stiffness
matrix and the equivalent nodal force vector for the simple rod element
are general and almost identical to those required for more complex 2D
and 3D elements. Also, these steps define naturally the basic subroutines
of a computer program for structural analysis using the FEM. The pro-
gramming aspects of the FEM will be studied in Chapter 10 and here
we will just introduce the basic format of a finite element program for
structural analysis.

Figure 3.5 shows the flow chart of a finite element program for the
analysis of axially loaded rods. The first subroutine deals with the reading
of the geometrical and material properties data required for the analy-
sis (subroutine INPUT). Then, the stiffness matrix and the equivalent
nodal force vector are computed for each element in subroutines STIFF-
NESS and LOAD, respectively. The next step is the assembly and solu-
tion of the global system of algebraic equilibrium equations to obtain the
nodal displacement values in subroutine SOLVE. Finally, the strains and
stresses are computed at selected points within each element in subrou-
tine STRESS. Note the analogy of the program skeleton with that of a
program for matrix analysis of bar structures [Hu,HO2,Li].
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SUBROUTINE INPUT
Input data defining
geometry and mechanical
properties.





Input data:
• Element type
• Mesh topology and nodal coordinates
• Material properties
• Boundary conditions
• Coordinates and weights of

Gauss quadrature
∣∣∣∣∣∣∣∣∣

SUBROUTINE STIFFNESS
Evaluate the stiffness matrix
for each element





Compute at each Gauss point r :
• Material properties (EA)

• Derivatives ∂Ni
∂ξ

• J(e) =
∑
i

∂Ni
∂ξ

xi

• B
Compute:

• K(e) =
∑
r

[J(e)BT (EA)B]rWr

∣∣∣∣∣∣∣∣
SUBROUTINE LOAD

Evaluate the equivalent nodal
force vector for each element





Compute at each Gauss point r :
• Shape functions Ni

• J (e) =
∑
i

∂Ni
∂ξ

xi

Compute:

• f (e) =
∑
r

[J(e)NT t]rWr
∣∣∣∣∣

SUBROUTINE SOLVE
Assembly and solution of
K a = f





Gaussian elimination [Ral]
Frontal method [HO2]
Profile solver [ZTZ], etc.∣∣∣

SUBROUTINE STRESS
Evaluate strains and stresses
for each element.

{
εεε = Ba
σσσ = D B a

∣∣∣
STOP

Fig. 3.5 Flow chart of a finite element program for analysis of axially loaded rods

3.7 SELECTION OF ELEMENT TYPE

The first task in the analysis of a structure by the FEM is to select the
element to be used. This is an important decision and not a simple one, as
there are many elements available for solving the same structural problem,
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and each one has different advantages and disadvantages with regard to
simplicity, accuracy,cost, etc.

In most cases, the selection of an element for a particular problem
is made by the analyst responsible for the computations. This decision
should be based on: 1) the characteristics of the structure to be analysed;
2) the elements available in comercial on in-house computer programs and
the type of computer to be used; and 3) the experience of the analyst in
the solution of similar structures by the FEM.

Several rules for the selection of the best element for each particular
structural problem will be given throughout this book. Nevertheless a few
rules of “thumb” can be summarized at this stage. These are:

1. The element chosen must be robust. This simply means that there
should be no danger of obtaining a spurious solution due to intrinsic
bad behaviour of the element under general geometrical or mechanical
conditions. A test for robustness of the element is provided by the
patch test studied in a next section.

2. The mesh should account for the probable stress gradients in the so-
lution, i.e. the mesh should be finer in zones where stress gradients
are expected to be higher. Here the use of error estimators and adap-
tive mesh refinement procedures is recommended. These topics will be
studied in Chapter 9.

3. The element should be as accurate as possible. The debate between
using few elements of high order, or a finer mesh of simpler low order
elements is still open in FEM practice. The growing popularity of
adaptive mesh refinement strategies, and the continuing increase in
computer power is favouring the use of low order elements.

The choice of low or high order order elements is schematically repre-
sented in Figure 3.6 showing the approximation of a third degree poly-
nomial function representing the solution of an axial rod problem using
different elements. Note that a large number of simple 2-noded elements
is required, whereas a single 4-noded cubic element provides the exact
solution.

An indicator to decide between two elements is the ratio between the
accuracy and the number of nodal variables. This requires a definition of
“accuracy”, which is not obvious if the exact solution is not known “a
priori” (see Chapter 9 for details). A guideline is that in case of doubt
between two elements of different order, the analyst should always choose
the simplest one (which is generally the low order one).
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Fig. 3.6 Approximation of a cubic solution with different rod elements. For sim-
plicity the finite element solution has been assumed to be exact at the nodes

A comparison between the quadratic and linear rod elements is pre-
sented next.
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Example 3.4: Solve the problem of Figure 2.4 using a single 3-noded quadratic
rod element.

-- Solution-- Solution

Since we have only one element the global equilibrium equation is written
from Eqs.(3.36), (3.37b) and Figure 3.4 as

EA

6l




14 −16 2
−16 32 −16

2 −16 14








u1

u2

u3



 =





ltx

6 + R
2ltx

3
ltx

6 + P



 , u1 = 0

Solving the above system with the condition u1 = 0, gives

u2 =
3txl2

8EA
+

Pl

2A

u3 =
txl2

2EA
+

Pl

EA

These values coincide with the exact solution (2.28) at the nodes.
The displacement field within the element is

u = (1− ξ2)u2 +
1
2
(1 + ξ)ξu3

Substituting the values for u2 and u3 and making the change of variable
(ξ = 2x−l

l ) gives
u =

1
EA

(−x2

2
tx + (P + ltx)x)

which coincides with the exact solution (2.28) everywhere. This could have
been anticipated as the assumed displacement field contains the quadratic
solution. The axial strain and axial force fields within the element are

ε(1) =
1

EA

(
P + (l − x)tx

)
, N (1) = P + (l − x)tx

which again coincide with the exact solution (see Eq.(2.28) and Figure 2.3
for P = 0 and tx = 1).
The nodal axial forces are given by

q(1) = K(1) a(1) − f (1)

giving
q(1) = [−N1,N2,N3]

T = [−(ltx + P ), 0, P ]T

The axial forces at the element ends 1 and 3 are N1 = (P + ltx) and N3 = P ,
whereas N2 = 0, as no external point force is applied to node 2. The reaction
value is R = −(P + ltx) = −N1, as expected.
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The previous example shows that the quadratic rod element has a
better performance than the linear one (Figure 2.3). This can be taken
as a general rule in favour of quadratic elements. However, in many cases
(particularly for 3D problems) the increase in accuracy is counterbalanced
by a greater complexity for mesh generation and a larger computing cost.

3.8 REQUIREMENTS FOR CONVERGENCE OF THE SOLUTION

The finite element approximation must satisfy certain conditions which
guarantee that as the mesh is refined the numerical solution converges to
the exact values. The satisfaction of these conditions is the basis for the
success of mesh refinement strategies (Chapter 9).

3.8.1 Continuity condition

The displacement must be continuous within each element. This condi-
tion is automatically satisfed by using polynomial approximations for the
displacement field. The issue of continuity of the displacements along the
element interfaces is treated in Section 3.10.1.

3.8.2 Derivativity condition

The derivatives of the polynomial approximation should exist up to the
order of the derivatives appearing in the element integrals.

For instance, for the axially loaded rod element the integrals derived
from the PVW contain first order derivatives of the displacement only.
Hence, the shape functions should be at least first order polynomials.

3.8.3 Integrability condition

Logically, the integrals appearing in the element expressions must have
a primitive function. This condition can be explained by considering the
simple example of Figure 3.7 where a continuous function f(x) and its
two first derivatives are represented. The integral of f(x) in the interval
considered exists and it is equal to the area shown in the figure. Also, the
integral of f ′(x) exists, although it is not a continuous function. Finally, we
observe that the second derivative f ′′(x) has two singular points, due to the
discontinuity of f ′(x), and it is not integrable. The general rule deduced
from this simple example is the following. The derivative of a function is
integrable if its m− 1 first derivatives are continuous (Cm−1 continuity).
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Fig. 3.7 Integral of a bilinear function and its two first derivatives

Thus, if mth order derivatives of the displacement field appear in the
PVW, the displacement field (and also the shape functions) must be Cm−1

continuous (Section 3.2). This condition ensures that the strains at the
interfaces between elements are finite (even though they are discontinuous)
[ZTZ].

As an example the PVW for the axial rod problem. (Eq.(2.3)) con-
tains only first derivatives of u and hence just displacement continuity is
required. The Co continuity is guaranteed within each element by the poly-
nomial approximation chosen, and between elements by the coincidence
of the displacement at the common nodes.

All the elements derived in this volume for analysis of 2D solids, axi-
symmetric solids and 3D solids just require Co continuity.

3.8.4 Rigid body condition

The displacement field closed should not allow straining of an element to
occur when the nodal displacements are caused by a rigid body motion.

This physical condition is satisfied for a single element if the sum of the
shape functions at any point is equal to one. To prove this, let us consider
the simple 2-noded axially loaded rod element with equal prescribed nodal
displacements ū. Within the element we have

u = N1ū + N2ū = (N1 + N2) ū (3.56)

and for u = ū then N1 + N2 = 1 must be satisfied.
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3.8.5 Constant strain condition

The displacement function has to be such that if nodal displacements
are compatible with a constant strain field, such constant strain will in
fact be obtained. Clearly, as elements get smaller, nearly constant strain
conditions will prevail in them. It is therefore desirable that a finite size
element should be able to reproduce a constant strain condition [Sa,ZTZ].

The constant strain criterion incorporates the rigid body requirement,
as a rigid body displacement is a particular case of a constant (zero) strain
field. Strictly both criteria need only be satisfied in the limit as the size
of the elements tends to zero. However, satisfaction of these criteria on
elements of finite size leads to a convergent and more accurate solution.

3.9 ASSESSMENT OF CONVERGENCE REQUIREMENTS. THE
PATCH TEST

The patch test was first introduced by Irons and Razzaque [IR] and has
since then provided a necessary and sufficient condition for convergence
[Dao,FdV,ZTZ]. The test is based on selecting an arbitrary patch of ele-
ments and imposing upon it nodal displacements corresponding to any
state of constant strain. If nodal equilibrium is achieved without imposing
external nodal forces, and if a state of constant stress is obtained, then
clearly the constant strain criterion of the previous section is satisfied. Fur-
thermore, displacement continuity is guaranteed, since no external work
is lost through the interelement interfaces [Sa].

The patch test also includes the satisfaction of the rigid body condition
by simply imposing a nodal displacement field corresponding to a zero
strain value.

An alternative patch test is to prescribe a known linear displacement
field at the boundary of the patch nodes only. It is then verified that the
displacement solution at the interior nodes coincides with the exact values
and that a constant strain field is obtained throughout the patch.

The patch test allows us to assess the convergence of elements with
shape functions which are discontinuous along the element interfaces bet-
ween adjacent elements. This issue will be discussed further in Section
3.10.1.

The application of the patch test to the simple 2-noded rod element is
shown in the next example. The patch test for 2D elements is presented
in Section 6.10.
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Fig. 3.8 Example of patch test in 2-noded rod elements

Example 3.5: Apply the patch test to the three element patch of 2-noded rod
elements shown in Figure 3.8. All elements have equal length and the same
material properties.

-- Solution-- Solution

(a) Constant strain condition (Figure 3.8a)

We will assume a displacement field u = l+x giving a constant strain field in
the whole mesh, i.e. ε = du

dx = 1. The following displacements are prescribed
at the end nodes of the patch:

u3 = l + 3l = 4l
u6 = l + 6l = 7l

We now look for the solution for the nodal displacements u4 and u5. The
equation system to be solved is

EA
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which gives u4 = 5l and u5 = 6l. These values coincide with the exact ones
given by the prescribed field. It can also be checked that

ε(3) = − 1
l
u3 +

1
l
u4 = 1

ε(4) = − 1
l
u4 +

1
l
u5 = 1

ε(5) = − 1
l
u5 +

1
l
u6 = 1

which correspond to the exact constant field imposed. Therefore, the element
satisfies the patch test.

(b) Rigid body condition (Figure 3.8b)

A particular case of the previous example is to study the patch subjected
to a the constant displacement field u = 3l, corresponding to a rigid body
movement of the patch. The FEM solution for u3 = u6 = 3l yields u4 = u5 =
3l, which is the correct answer giving a zero strain field over the patch.

3.10 OTHER REQUIREMENTS FOR THE FINITE ELEMENT
APPROXIMATION

Next, we will consider some requirements which, in fact, are not strictly
necessary for the convergence of the finite element solution. However, their
fulfilment is always desirable since, otherwise, the convergence and accu-
racy of the solution can deteriorate in some cases.

3.10.1 Compatibility condition

The elements must be compatible. This implies that the displacement
field for C0 elements, or its first derivative field for C1 elements, must be
continuous along interelemental boundaries. This is a consequence of the
more general integrability condition of Section 3.8.3. Elements satisfying
the compatibility condition are termed compatible or conforming. These
elements, when integrated exactly, always converge to the exact solution
from the stiffer side.

The compatibility condition is usually satisfied when the displacement
field is defined by a polynomial taking a unique value at the nodes. This,
however, is not sufficient in some particular cases, such as in some C1

thin plate bending elements based in Kirchhoff theory where a disconti-
nuity of the gradient of the deflection occurs at the element sides (see
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Chapter 4 of Volume 2 [On]). These elements are termed incompatible or
non-conforming. Incompatible elements can still converge to the exact so-
lution if the patch test is satisfied. This guarantees that the compatibility
condition is fulfilled in the limit as the mesh is refined.

Non-conforming elements can be still competitive in practice. The rea-
son is that interelemental discontinuities introduce a greater flexibility in
the element which counterbalances the intrinsic rigidity of the finite ele-
ment approximation. This leads in some occasions to very good solutions
with relatively coarse meshes.

In summary, the non-conformity is an undesirable deficiency which,
however, does not automatically invalidate an element. The patch test
is the critical proof for acceptance of the element for practical purposes.
Although incompatible elements can sometimes be very attractive, they
should be looked upon with caution since they can have unexpected fea-
tures. For instance, some incompatible solid elements show a spurious
dependency with the Poisson’s ratio which varies with the mesh size [Na].

3.10.2 Condition of complete polynomial

This condition can be explained by recalling that the finite element ap-
proximation can reproduce only a finite number of the Taylor expansion
terms of the exact solution, which can written in the vicinity of a point
xi as

u(x) = u(xi) +
(du

dx

)
i
(x− xi) +

(d2u

dx2

)
i
(x− xi)

2 + · · ·+
(dnu

dxn

)
i
(x− xi)

n

(3.57a)
It is obvious that the finite element approximation written as

ū(x) = a0 + a1x + a2x
2 + · · ·+ amxm (3.57b)

can only reproduce exact results up to the mth term of the Taylor expan-
sion (3.57a) when ū(x) contains all the terms of the polynomial of mth
degree. In such a case the approximation error is of the order Ohm+1 and
this can be used to derive solution extrapolation rules (Section 2.7).

Therefore, the finite element approximation depends on the higher
complete polynomial included in the shape functions. The approxima-
tion will be “optimal” if the shape functions are complete polynomials.
Unfortunately this is not always possible, and in many cases the shape
functions contain incomplete polynomial terms that do not contribute to
a higher approximation of the element.
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Example 3.6: Complete and incomplete polynomials and approximations.

-- Solution-- Solution

a) Complete approximations of 2nd degree.

1D : ū(x) = a0 + a1x + a2x
2

2D : ū(x, y) = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2

b) Incomplete approximations of 3rd degree.

1D : ū(x) = a0 + a1x + a2x
3

2D : ū(x, y) = a0 + a1x + a2y + a3x
2 + a4y

2 + a5x
3

The terms of a complete polynomial of high order can be deduced from
the Pascal triangle and the Pascal tetrahedron [Ral]. This subject will be
treated when studying the shape functions for 2D and 3D elements.

In conclusion, it is desirable for the shape functions be complete poly-
nomials, or, if this is not possible, that they contain a small number of
incomplete polynomials. An incomplete approximation does not preclude
the convergence of the element.

3.10.3 Stability condition

The analysis of a structure requires prescribing enough displacements to
prevent the appearance of unstable mechanisms. Lack of stability is usually
detected by the existence of one or more mechanisms which correspond
to the same number of zero eigenvalues in the stiffness matrix and the
associated so-called rigid body modes. The same concept applies to the
stability of an element. In consequence, the stiffness matrix of an indivi-
dual element (and also that of a patch of elements) must have the correct
rank [Ral]. This means that the number of zero eigenvalues of a single
isolated element free of external constrains must be equal to the number
of rigid body displacements of the element. The element is considered as
stable if these zero eigenvalues disappear after prescribing the appropriate
DOFs. Element stability is generally guaranteed if the stiffness matrix is
integrated exactly. The inexact computation of some terms of the stiffness
matrix (by using reduced integration, for instance) can introduce unde-
sirable internal mechanisms in addition to those of rigid body motion.
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These mechanisms should be avoided since they can lead to instability of
the solution.

The existence of internal mechanisms is not always a reason to ex-
clude an element as, in some cases, these mechanisms can not propagate
themselves throughout the mesh. Eigenvalue tests must be performed to
asses the existence of spurious mechanisms in an individual element, and
also in patches of two or more element assemblies, in order to detect the
capability of these mechanisms to propagate in a mesh.

3.10.4 Geometric –invariance condition

An element should not have preferent directions. This means that the
elements must have what is usually called “geometric-invariance”, also
known as frame-invariance and geometric or spatial isotropy.

The lack of geometric-invariance is detected if different displacements
or stresses are obtained when the element position is changed in space
without changing the relative direction of the loading. In general, an ele-
ment is geometric-invariant if all the displacement DOFs are interpolated
with the same polynomial and this is not sensitive to the interchange of
the coordinates. This can be achieved by using complete polynomial inter-
polations expressed in the natural coordinate system and an isoparametric
formulation [CMPW].

Geometric-invariance can be lost in an element by underintegration of
some of the terms in the stiffness matrix, such as in selective integration
procedures (Section 4.4.2.1). The lack of geometric-invariance is a defect
to be avoided. However, this does not necessarily destroies the convergence
of the element.

3.11 SOME REMARKS ON THE COMPATIBILITY AND
EQUILIBRIUM OF THE SOLUTION

We should keep in mind that the finite element solution is approximate and
in general does not satisfy the equilibrium and compatibility requirements
of the exact solution. In most cases we will find that:

1. The solution is compatible within the elements. This is always guaran-
teed by using continuous polynomial approximations.

2. The solution can be incompatible along the interelemental boundaries.
As previously explained interelemental continuity can be violated if
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Fig. 3.9 Example of smoothing of nodal stresses in linear rod elements

the patch test is satisfied and this guarantees compatibility in the limit
case of infinite refinement. Also, incompatible elements can sometimes
produce excellent answers.

3. Equilibrium of forces is satisfied at the nodes, since these are the points
where equilibrium is enforced during the assembly process and, there-
fore, at each node Ka − f = 0 is satisfied.

4. There is not equilibrium of stresses along interelemental boundaries.
Nodal stresses can be directly obtained for each element in terms of
the nodal displacements, or (what is more usual) by extrapolating the
values computed at the Gauss points within the element (see Section
6.7). Stresses at interface nodes are different for each element and
the global stress field is discontinuous between elements. A continu-
ous stress field can be obtained by smoothing the discontinuous nodal
values (for instance by simple nodal averaging) as shown in Figure
3.9. Also, the stresses computed at the free boundaries are usually not
zero, although they are much smaller than the values inside the mesh.
This incompatibility of the stress field is a consequence of the displace-
ment formulation, where only displacement continuity is required and
stresses can be discontinuous. Stress discontinuity does not violate the
convergence requirements and it is usually corrected as the mesh is
refined. The computation of nodal stresses is treated in Chapter 9.

5. Stresses are not in equilibrium within elements. The finite element va-
lues approximate the exact solution in an average integral form (by
means of the PVW) [ZTZ]. Therefore, the differential equations of
equilibrium in stresses are only approximately satisfied pointwise. An
exception to this rule is for elements with linear shape functions, where
the strain and stress fields are constant. The equilibrium differential
equations involve the first derivatives of stresses and therefore are au-
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tomatically satisfied for zero body forces [ZTZ]. The general lack of
equilibrium of stresses is corrected as the mesh is refined and it does
not preclude the convergence of the numerical solution.

3.12 CONVERGENCE REQUIREMENTS FOR ISOPARAMETRIC
ELEMENTS

Isoparametric elements are based on the interpolation of the geometry field
in terms of the nodal coordinate values using the same shape functions
as for the displacement field. The coordinate transformation changes the
derivatives of any function by a jacobian relation. For 1D problems we
have

du

dx
=

du

dξ

(
dx

dξ

)−1

=
1
J

du

dξ
(3.58)

Therefore the PVW can be expressed in terms of the natural coordinate
ξ with the maximum order of differentiation unchanged.

It follows immediately that if the displacement shape functions are so
chosen in the natural coordinate system as to observe the usual rules of
convergence (Section 3.8) then convergence of isoparametric elements will
occur.

Furthermore, C◦ isoparametric elements always satisfy the rigid body
conditions as defined in Section 3.8.4. The proof of this is simple; let us
prescribe the following linear displacement field

u = a1 + a2x (3.59)

over a mesh of linear rod elements. The nodal displacements will take the
values

ui = a1 + a2xi ; i = 1, 2 (3.60)

Inside the element u =
2∑

i=1
Niui. Hence, making use of the prescribed

field

u =
2∑

i=1

N1(a1 + a2xi) = a1

2∑

i=1

Ni + a2

2∑

i=1

Nixi (3.61)

Since the element is isoparametric we have

x =
2∑

i=1

Nixi (3.62)
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From Eqs.(3.61) and (3.62) we deduce that the displacement field will
coincide with the prescribed one (3.59) if

2∑

i=1

Ni = 1 (3.63)

is satisfied for any value of the natural coordinate ξ between −1 and +1.
Eq.(3.63) is the usual rigid body requirement for the shape functions (Sec-
tion 3.8.4). As a consequence, the constant derivative condition required
in the patch test (Section 3.9) is satisfied for C◦ isoparametric elements.

Further details on 2D and 3D isoparametric elements will be given in
Chapters 6 and 8.

3.13 ERROR TYPES IN THE FINITE ELEMENT SOLUTION

We recall once more that the finite element solution is approximate. This
automatically implies that some kind of error in the numerical solution is
unavoidable. Next, we will study the more usual sources of error.

3.13.1 Discretization error

This error is intrinsic to the polynomial form of the finite element appro-
ximation. We showed in Section 2.7 that the error involved in the appro-
ximation is of the order of the first term in the Taylor expansion of the
solution not included in the complete shape function polynomial. Strang
and Fix [SF] proposed the following general expression to estimate the
error for 1D problems

e(error) = uaprox − uexact ≤ Chp+1 Max
∣∣∣∣
∂p+1uexact

∂xp+1

∣∣∣∣ (3.64)

where Max denotes the maximum value of the derivative over the element,
C is a constant parameter depending on the element type, h is the ma-
ximum characteristic element dimension (i.e. the length in rod elements)
and p the degree of the highest complete polynomial contained in the
shape functions.

Eq.(3.64) shows that convergence is guaranteed if C and the n + 1th
derivative of the solution are bounded. In this case the error will tend to
zero as the element size diminishes.
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Fig. 3.10 Two rod elements of different sizes

The application of this concept to the 1D linear rod element gives for
uniformly spaced meshes

e ∝ h2 ∂2u

∂x2
(3.65)

which implies that the error is proportional to the strain (or stress) gra-
dient. Therefore, smaller elements should be used in zones where this
gradient is expected to be higher. The reduction of the error by dimini-
shing the element size is known in the mesh refinement literature as the
h method.

The error can also be reduced by increasing the approximation order
of the elements, while keeping their sizes constant. This results in a larger
value of the exponent p in Eq.(3.64). This approach is known as the p
method.

Eq.(3.64) assumed a mesh of equal element sizes. The effect of using
elements of different sizes has been studied for analysis of axially loaded
rods using linear elements of two different sizes (Figure 3.10). The error
in the satisfaction of the differential equilibrium equation at the jth node
is [SF]

e = −h

3
(1− a)

(
∂3u

∂x3

)

j

+
h2

12

(1 + a3

1 + a

)∂4u

∂x4
(xj) + · · · (3.66)

where h and a are the lengths of two adjacent elements (Figure 3.10).
Eq.(3.66) shows that the error is of the order h2 for a uniform mesh (a ' 1),
whereas a higher error of order h is obtained when the element sizes are
very different (a 6= 1). This indicates that drastic changes in the sizes of
contiguous elements in a mesh should be avoided.

The same concepts apply for 2D and 3D problems. The estimation of
the discretization error in two dimensions involves the Taylor expansion

u(x + h, y + k) = u(x, y) +
[
h

∂u

∂x
+ k

∂u

∂y

]
+

+
1
2!

[
h2 ∂2u

∂x2
+ 2hk

∂2u

∂x∂y
+ k2 ∂2u

∂y2

]
+ · · · (3.67)
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where u is the exact solution and h and k are a measure of the element
sizes in the x and y directions respectively.

It can be shown that the discretization error for 2D linear elements,
like the 3-noded triangle (Chapter 4), is proportional to the underlined
term on the right-hand side of Eq.(3.67) [SF]. The second derivatives in
Eq.(3.67) can be related to strain (or stress) gradients. Thus, for a constant
strain field the error is very small.

The discretization error can also be expressed in terms of the ratio
k
h .This is a measure of the relative dimensions of the element and it is
known as the element aspect ratio. For an equilateral element its aspect
ratio should be equal to one. However, it will take a large value for a long
triangular element. It is recommended to keep the element aspect ratio as
close to unity as possible through the mesh.

The estimation of the discretization error will be treated in more detail
in Chapter 9, together with the techniques for reducing the error using
adaptive mesh refinement.

3.13.2 Error in the geometry approximation

In many cases the interpolation of the geometry is unable to reproduce
exactly the real shape of the structure. This can be due to a geometry
approximation of a lower order than the exact one, or, what is more usual,
to the ignorance of the exact analytical form for the geometry defined by
the coordinates of a number of points. In both cases, there will be an error
in the geometry approximation. This error can be reduced by refining
the mesh, or by using higher order superparametric approximations. A
compromise between these two options is to use isoparametric elements.
This unavoidably introduces an error in the geometry approximation in
some cases. An exception are structures with linear or planar boundaries
where the geometry can always be exactly approximated.

3.13.3 Error in the computation of the element integrals

The exact numerical computation of the element integrals implies using
an appropriate quadrature. Otherwise, an error occurs due to the under-
estimation of the integral value. In many cases, the exact numerical inte-
gration is not possible due to the rational algebraic functions appearing
in the element integrals. Also, the approximation of the exact value may
require a large number of integration points, which may be very expensive.
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In such cases, it is usual to accept a certain error in the computation of
the element integrals.

Paradoxically enough, this error can, on occasions, be beneficial. Usua-
lly by under-integrating the stiffness matrix terms the element becomes
more flexible, and this balances the stiffening introduced by the appro-
ximation of the displacement field and the geometry. This explains why
sometimes good results can be obtained with coarse meshes. In the fo-
llowing chapters we will see that the “reduced integration” quadrature
is sometimes used to guarantee the correct solution. The inexact com-
putation of the stiffness matrix can however modify its correct rank and
introduce spurious mechanisms. Reduced integration is therefore a tech-
nique which should be used with extreme care.

3.13.4 Errors in the solution of the global equation system

Three type of errors are typical in the solution of the global system of
FEM equations using a direct solution method (i.e. Gaussian elimination,
Choleski, Frontal method, etc.): errors due to the ill-conditioning of the
equations; truncation errors and round-off errors [Ral].

The equation system Ka = f is ill-conditioned if small changes in
the terms of K or f induce large changes in the solution a. The main
reason for ill-conditioning is the existence of an element, or a group of
elements, of large stiffness connected to elements of much smaller stiffness.
The behaviour of such a structure can be artificially altered and, unless
the computer can store a sufficiently large number of digits, the stiffness
matrix behaves as singular or quasi-singular. The error associated with ill-
conditioning of the equation system therefore depends on the digit storage
capacity of the computer, i.e. in the truncation and round-off errors which
are the main contributors to the total error in the solution.

The truncation error is quite important. A computer using d digits to
represent a number in simple precision can only store the first d digits of
each term of K and f. It is then possible that essential information for the
correct solution is lost by truncating a number.

The round-off error is due to the adjustment automatically performed
by the computer on the last digit of each number during computations.
Experience shows that this error is less important than the truncation
error. Nevertheless, unnecessary round-off errors, such as those in some
parameters like the coordinates and weights of the numerical quadrature,
should be avoided by defining these parameters with the maximum number
of digits allowed by the computer.
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Fig. 3.11 Spring system with two degrees of freedom

Example 3.7: Study the influence of truncation error in the solution of the
spring system shown in Figure 3.11 [CMPW].

-- Solution-- Solution

The system of stiffness equations and its inverse after eliminating the pres-
cribed DOF (u3 = 0) are




K1 −K1

−K1 K1 + K2




︸ ︷︷ ︸
K

{
u1

u2

}
=

{
P
0

}
;




1
K1

+
1

K2

1
K2

1
K2

1
K2




︸ ︷︷ ︸
K−1

{
P
0

}
=

{
u1

u2

}

If K1 >> K2, K1 dominates in K. However, K2 dominates K−1 and therefore
the value of the solution. The computation of K−1 is only correct if the terms
in K are evaluated in a way such that K2 is not lost during the solution. Thus,
if K1 = 80 and K2 = 0.0023 the computer must retain at least six digits and
K1 must be represented as 80.0000 so that the last digit of K2 is retained
in the term K1 + K2. If only four digits are retained the sum K1 + K2 will
give 80.00 and K will be singular. This problem is ill conditioned since the
solution is sensitive to the changes (truncation) in the sixth digit of the term
K1 + K2.
Also, if the system Ka=f is solved using Gauss elimination (Appendix B),
the elimination of the displacement u1 changes the last diagonal term to
(K1 + K2)−K1. We see that information for a correct solution can again be
lost if K1 >> K2.

A way to avoid truncation errors and to improve the solution is to use
double precision throughout the solution process, i.e. for computing the
terms of K and f during the solution of the equation system.

An indicator of how sensitive the system Ka = f is to truncation
and round-off errors is the condition number of K. An estimation of the
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number of significative figures exactly computed in the solution process is
[Bat]

s ≈ t− log10[cond(K)] (3.68)

where t is the maximum number of digits which can be stored by the
computer and cond (K) is the condition number of K defined as

cond(K) =
|λmax|
|λmin| (3.69)

where λmax and λmin are respectively the larger and smaller eigenvalues
of K (Appendix A). Although Eq.(3.68) is only approximate, it indicates
that the accuracy of the solution decreases as the condition number in-
creases.

A low condition number of K is also important in order to speed up
the iterative solution of the system Ka = f (Appendix B) [Ral].

It is therefore desirable that the condition number of K should be as
low as possible. This can be achieved by an adequate scaling of the terms
of K [Ral,RG,RGL].

3.13.5 Errors associated with the constitutive equation

The survey of the error sources in the finite element solution of a struc-
ture would be incomplete without referring to the errors arising from a
wrong definition of the material properties. In this book only linear elastic
materials are considered. The importance of the evaluation of the relevant
parameters in the constitutive equation is obvious. For a structure with
homogeneous and isotropic material the displacements are proportional to
the Young modulus, although the stresses are not affected by this value
and they depend only on the Poisson’s ratio. For a structure with or-
thotropic or anisotropic materials both the displacements and the stresses
depend on the Young modulus and the Poisson’s ratio. We should be
aware that an incorrect definition of the material parameters can lead to
larger errors than those induced by all the error sources mentioned in the
previous sections.



4

2D SOLIDS. LINEAR TRIANGULAR
AND RECTANGULAR ELEMENTS

4.1 INTRODUCTION

This chapter initiates the application of the FEM to structures which satis-
fy the assumptions of two-dimensional (2D) elasticity (i.e. plane stress or
plane strain). Many of the concepts here studied will be useful when dea-
ling with other structural problems in the subsequent chapters. Therefore,
this chapter is introductory to the application of the FEM to continuous
2D and 3D structures.

There are a wide number of structures of practical interest which can
be analyzed following the assumptions of 2D elasticity. All these structures
have a sort of prismatic geometry. Depending on the relative dimensions
of the prism and the loading type, the following two categories can be
distinguished:

Plane stress problems. A prismatic structure is under plane stress if one
of its dimensions (thickness) is much smaller than the other two and all
the loads are contained in the middle plane of the structure. The analysis
domain is the middle section (Figure 4.1). Amongst the structural pro-
blems that can be included in the plane stress category we find the analysis
of deep beams, plates and walls under in-plane loading, buttress dams, etc.

Plane strain problems. A prismatic structure is under plane strain if
one of its dimensions (length) is larger than the other two and all the
loads are uniformly distributed along its length and they act orthogonally
to the longitudinal axis. The analysis domain is a cross section to this
axis (Figure 4.2). Amongst the structures which follow the plane strain
assumption we find containing walls, gravity dams, pressurised pipes and
many problems of geotechnical engineering (tunnels, foundations, etc.).
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Fig. 4.1 Examples of plane stress problems. Displacement field and loads acting
on the middle plane section

2D elasticity theory provides a mathematical model by which the be-
haviour of a real 3D structure is represented by that of a 2D solid. The
FEM provides us with an approximation to the “exact” solution of the
2D elasticity equations using 2D solid elements. The accuracy of the nu-
merical solution depends on the element type and the quality of the mesh
chosen.

2D elasticity theory allows the FEM analysis of plane stress and plane
strain problems in a unified manner. We should recall however that each
of the two problems conceptually represents a class of very different struc-
tural types.

The chapter starts with a brief description of the basic concepts of 2D
elasticity theory. Then the finite element solution using simple 3-noded
triangles and 4-noded quadrilaterals is presented. Most of the finite ele-
ment expressions are completely general and applicable to any other 2D
solid element. The general derivation of the element shape functions and
the formulation of higher order triangular and quadrilateral elements and
of isoparametric elements are studied in the next chapter.
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Fig. 4.2 Examples of plane strain problems. Displacement field and loads acting
on a transverse section

4.2 TWO DIMENSIONAL ELASTICITY THEORY

Next, we present the concepts of 2D elasticity theory needed for the appli-
cation of the FEM.

4.2.1 Displacement field

Both the plane stress and plane strain assumptions imply that the
transversal sections to the prismatic axis z deform in the same manner and
also that the displacement along the z axis is negligible. Therefore, only a
generic 2D transverse section in the plane x−y needs to considered for the
analysis. The displacement field of the analysis section is defined by the
displacements u(x, y) and v(x, y) in the x and y directions, respectively
(Figures 4.1 and 4.2). The displacement vector of a point is

u(x, y) =
{

u(x, y)
v(x, y)

}
(4.1)
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Fig. 4.3 Deformation of an infinitesimal 2D domain and definition of strains

4.2.2 Strain field

The displacement field (4.1) allows the corresponding strains to be derived
from standard elasticity theory [TG]. This gives

εx =
∂u

∂x
, εy =

∂v

∂y

γxy =
∂u

∂y
+

∂v

∂x
, γxz = γyz = 0

(4.2)

The longitudinal strain εz is assumed to be zero in the plane strain case.
Conversely, εz is not zero in plane stress situations, although the conjugate
stress σz is assumed to be zero. Therefore, εz needs not be considered for
either plane stress or plane strain problems as the work performed by
the longitudinal strain (i.e. σzεz) is always zero. Consequently, the strain
vector is defined in both cases simply as

εεε = [εx, εy, γxy]T (4.3)

The graphical meaning of the strains for 2D problems is shown in
Figure 4.3.
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Fig. 4.4 Definition of stresses σx, σy, τxy and principal stresses σI , σII in 2D solids

4.2.3 Stress field

It is deduced from Eq.(4.2) that the shear stresses τxz and τyz are zero.
Also, for the same reasons as explained above, the longitudinal stress σz

does not contribute to the internal work and the stress vector is defined
for both plane stress and plane strain cases as (Figure 4.4) [TG]

σσσ = [σx, σy, τxy]T (4.4)

4.2.4 Stress-strain relationship

The relationship between stresses and strains is derived from 3D elasticity
theory [TG] using the assumptions stated above (i.e. σz = 0 for plane
stress, εz = 0 for plane strain, and γxz = γyz = 0 in both cases). After
same simple algebra (Example 4.1) the following matrix relationship can
be obtained

σσσ = D εεε (4.5)

where D is the elastic material matrix (or constitutive matrix)

D =




d11 d12 0
d21 d22 0
0 0 d33


 (4.6)
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It can be proved from the Maxwell-Betti theorem that D is always
symmetrical [TG] and d12 = d21. For isotropic elasticity we have

Plane stress Plane strain

d11 = d22 =
E

1− ν2
d11 = d22 =

E(1− ν)
(1 + ν)(1− 2ν)

d12 = d21 = νd11 d12 = d21 = d11
ν

1− ν

d33 =
E

2(1 + ν)
= G d33 =

E

2(1 + ν)
= G

(4.7)

where E is the Young modulus and ν the Poisson’s ratio.
For an orthotropic material with principal orthotropy directions along

the 1, 2, 3 axes (where 3 is the out-of-plane direction), matrix D has the
following expression [BD,He,Le,TG]:

Plane-stress

D =
1

1− ν12ν21




E1 ν21E1 0
ν12E2 E2 0

0 0 (1− ν12ν21)G12


 (4.8a)

Plane strain

D =
1

ad− bc




aE1 bE1 0
cE2 dE2 0
0 0 (ad− bc)G12


 (4.8b)

where
1

G12
' 1 + ν21

E1
+

1 + ν12

E2
(4.9a)

and
a = 1− ν23ν32 ; b = ν12 + ν32ν13

c = ν21 + ν23ν31 ; d = 1− ν13ν31

(4.9b)

The symmetry of D requires [BD]

E2

E1
=

ν12

ν21
(plane stress) and

E2

E1
=

b

c
(plane strain) (4.10)

If the in-plane orthotropy directions 1, 2 are inclined an angle β with
respect to the global axes of the structure x, y (Figure 4.5) the constitutive
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Fig. 4.5 Orthotropic material with principal orthotropy directions 1, 2

relationship is derived as follows. First, the strains in local axes 1, 2 are
expressed in terms of the global strains by

εεε′ = Tεεε , εεε′ = [ε1, ε2, γ12]T (4.11a)

with [CMPW]

T =




cos2β sin2β sinβ cosβ
sin2 β cos2β − sinβ cosβ

−2sinβcosβ 2sinβ cosβ cos2β − sin2β


 (4.11b)

We note that |T| = 1.
The transformation for the stresses is obtained from the virtual work

equivalent in global and local axes, i.e.

δεεεTσσσ = δεεε′Tσσσ′ = δεεεTTTσσσ′ (4.12a)

The later equation must be true for any virtual strain vector. Hence

σσσ = TTσσσ′ and σσσ′ = [T]−Tσσσ (4.12b)

where

σσσ′ =





σ1

σ2

τ12



 , [T−1]T =




cos2 β sin2 β 2 sinβ cosβ
sin2 β cos2 β −2 sinβ cosβ

− sinβ cosβ sinβ cosβ (cos2 β − sin2 β)




(4.13)
The stress-strain relationship in the local axes is written as

σσσ′ = D′εεε′ (4.14)

where D′ is given by Eq.(4.8).
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Finally, from Eqs.(4.1), (4.12b) and (4.14) we obtain

σσσ = TTD′Tεεε = D εεε (4.15)

with
D = TTD′T (4.16)

It is easy to check that matrix D resulting from Eq.(4.16) is symme-
trical.

The dij coefficients for anisotropic elasticity can be found in [He,Le].
If the solid is subjected to initial strains such as thermal strains, the

constitutive relationship (4.5) must be modified. The total strain εεε is now
equal to the sum of the elastic (εεεe) and the initial (εεε0) strains, whereas
in Eq.(4.5) all the strains were considered to be elastic. Since the stresses
are proportional to the elastic strains, the constitutive equation is now
written as

σσσ = D εεεe = D(εεε− εεε0) (4.17)

For the case of initial strains due to thermal effects and isotropic ma-
terial, vector εεε0 has the following expressions

Plane stress Plane strain

εεε0 =





α∆T
α∆T

0



 εεε0 = (1 + ν)





α∆T
α∆T

0



 (4.18)

where α is the thermal expansion coefficient and ∆T is the temperature
increment at each point. Note that a temperature increment does not
induce a shear strain.

The difference between the values of εεε0 for plane stress and plane strain
is due to the different assumptions for σz and εz in each case (see Examples
4.2 and 4.3).

Table 4.1 shows the basic constitutive properties for standard concrete,
steel and aluminium materials. A more comprehensive list of material
properties is given in [BD,Co2,PP] and in Annex 1 of Volume 2 [On].

For anisotropic materials, the initial strains due to thermal effects are
considered first in the principal directions of the material and then are
transformed to global axes to find the global components of εεε◦. In these
cases the tangential strain τ◦xy is not longer zero [He,ZTZ].

The solid can also be initially subjected to stresses defined by a vector
σσσ0. These initial stresses can have different sources. For instance, if a part
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E×10−3 ν Density ρ α× 105 Limit tensile
Mpa kg/m3 ◦C−1 stress (MPa)

Concrete 20–40 0.15 2400 1.2 2–4
Steel 190–210 0.30 7800 1.3–1.6 400–1600
Aluminium 70 0.33 2710 2.2 140–600

Table 4.1 Basic material properties for standard concrete, steel and aluminium

of the material is removed from a deformed structure under a set of loads,
then automatically a new deformation is originated due to the existence
of initial stresses. The total stresses in the new equilibrium configuration
are obtained by the sum of the initial ones and those originated in the
deformation process. For the more general case

σσσ = D(εεε− εεε0) + σσσ0 (4.19a)

where
σσσ0 = [σ0

x, σ0
y, τ

0
xy]

T (4.19b)

is the initial stress vector. A practical example of initial stresses is the
analysis of a tunnel in geotechnical engineering, where the equilibrium of
the excavated zone depends on the initial stresses in the zone before the
excavation. Initial stresses are also very common in welded mechanical
parts and here they are usually termed “residual” stresses [ZTZ].

4.2.5 Principal stresses and failure criteria

The stress field in a 2D solid is better represented by the two principal
stresses σI and σII (Figure 4.4). In general the principal stresses are the
roots of the characteristic polynomial

det ([σ]− λI2) = 0 (4.20a)

where

[σ] =
[

σx τxy

τxy σy

]
and I2 =

[
1 0
0 1

]
(4.20b)

From Eq.(4.20a) we deduce

λ1 = σI =
σx + σy

2
+

1
2
[(σx − σy)2 + 4τ2

xy]
1/2

λ2 = σII =
σx + σy

2
− 1

2
[(σx − σy)2 + 4τ2

xy]
1/2

(4.21)
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The angle that the direction of the principal stress σI forms with the
x axis is defined by (Figure 4.4)

tan 2β =
2τxy

σx − σy
(4.22)

Failure at a point in a 2D solid can be identified when the maximum
principal stress reaches a prescribed limit value. This is typically used
for detecting the onset of fracture at a point in fragile materials (plain
concrete, glass, ceramics, etc.) [ZT]. Alternative failure criteria can be
based on verifying the limit bound for an appropriate stress invariant. For
more details see Section 8.2.5 and [ZT].

Example 4.1: Find the constitutive equation for an isotropic elastic material
under plane stress and plane strain conditions.

-- Solution-- Solution

The starting point is the constitutive equation for 3D isotropic elasticity [TG]

εx =
(σx − νσy − νσz)

E
; εy =

(σy − νσx − νσz)
E

; εz =
(σz − νσx − νσy)

E

γxy =
2(1 + ν)

E
τxy ; γxz =

2(1 + ν)
E

τxz ; γyz =
2(1 + ν)

E
τyz

These equations will be now simplified using the plane stress and plane strain
assumptions.

Plane stress: σz = 0; γxz = γyz = 0

Substituting the plane stress conditions into the above equations we have

εx =
1
E

(σx − νσy), εy =
1
E

(σy − νσx), γxy =
2(1 + ν)

E
τxy

εz = − ν

E
(σx + σy) ; τxz = τyz = 0

These equations yield the relationship between σx, σy, τxy and the correspon-
ding strains as

σx =
E

1− ν2
(εx + νεy); σy =

E

1− ν2
(εy + νεx); τxy =

E

(1 + ν)
γxy

from which the coefficients of D in Eqs.(4.6) and (4.7) can be deduced.
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Substituting the expressions of σx and σy for εz we find that

εz = −ν(εx + εy)

Therefore, the longitudinal strain εz can be obtained “a posteriori” in terms
of εx and εy.

Plane strain: εz = 0; γxz = γyz = 0

From the general equations relating strains and stresses we have

εx =
1
E

(σx − νσy − νσz); εy =
1
E

(σy − νσx − νσz) = 0

εz = 0 =
1
E

(σz−νσx−νσy) ; γxy =
2(1 + ν)

E
τxy ; τxz = τyz = 0

From the condition εz = 0 we find σz = ν(σx + σy). Substituting this value
into the other equations we find

σx =
E(1− ν)

(1 + ν)(1− 2ν)

(
εx +

ν

1− ν
εy

)

σy =
E(1− ν)

(1 + ν)(1− 2ν)

(
εy +

ν

1− ν
εx

)

τxy =
E

2(1 + ν)
γxy

from which the expression (4.7) for D can be obtained.
The same procedure can be used for orthotropic or anisotropic materials
starting from the corresponding expressions of 3D elasticity [He,Le].

Example 4.2: Find the initial strain vectors due to thermal effects for 2D
isotropic elasticity.

-- Solution-- Solution

The main assumption is that the total strains are the sum of the elastic and
the thermal ones. Also, it is assumed that a thermal expansion (or contrac-
tion) originates axial strains of value α∆T , where α is the thermal expansion
coefficient and ∆T the temperature increment. With these assumptions the
total strains for 3D isotropic elasticity can be written as (see first equation
of Example 4.1)

εx = εe
x + ε0

x =
1
E

(σx − νσy − νσz) + α∆T
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εy = εe
y + ε0

y =
1
E

(σy − νσz − νσx) + α∆T

εz = εe
z + ε0

z =
1
E

(σz − νσx − νσy) + α∆T

γxy =
2(1 + ν)

E
τxy ; γxz =

2(1 + ν)
E

τxz ; γyz =
2(1 + ν)

E
τyz

Plane stress σz = γxz = γyz = 0

Substituting these conditions into above equations we have

εx =
1
E

(σx − νσy) + α∆T ; εy =
1
E

(σy − νσx) + α∆T

εz = − ν

E
(σx + σy) + α∆T ; γxy =

2(1 + ν)
E

τxy ; τxz = τyz = 0

Solving for σx, σy and τxy gives

σx =
E

1− ν2

[
(εx − ε0

x) + ν(εy − ε0
y)

]

σy =
E

1− ν2

[
(εy − ε0

y) + ν(εx − ε0
x)

]

τxy =
E

2(1 + ν)
γxy

which can be written in the form σσσ = D (εεε − εεε0), with εεε0 = α∆T [1, 1, 0]T

being the initial strain vector and D the matrix given in (4.6) and (4.7).

Plane strain εz = γxz = γyz = 0

From the general expressions we find

εx =
1
E

(σx − νσy − νσz) + α∆T

εy =
1
E

(σy − νσx − νσz) + α∆T

0 = 1
E (σz − νσx − νσy) + α∆T

γxy =
2(1 + ν)

E
τxy ; τxz = τyz = 0

From the third equation we find

σz = ν(σx + σy)− E α ∆T
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Substituting this value into the first two equations yields

εx =
1
E

[
(1− ν2)σx − ν(1 + ν)σy

]
+ (1 + ν)α∆T

εy =
1
E

[
(1− ν2)σy − ν(1 + ν)σx

]
+ (1 + ν)α∆T

γxy =
2(1 + ν)

E
τxy

Solving for σx, σy and τxy gives

σx =
E(1− ν)

(1 + ν)(1− 2ν)

[
(εx − (1 + ν)α∆T ) +

ν

1− ν
(εy − (1 + ν)α∆T )

]

σy =
E(1− ν)

(1 + ν)(1− 1ν)

[
(εy − (1 + ν)α∆T ) +

ν

1− ν
(εx − (1 + ν)α∆T )

]

τxy =
E

2(1 + ν)
γxy

which can be written in matrix form as σσσ = D(εεε− εεε0), where

εεε0 = (1 + ν)α∆T [1, 1, 0]T

is the initial strain vector and D the matrix given in Eqs.(4.6) and (4.7).

Example 4.3: Explain the meaning of the initial strains for the bar in Figure
4.6 subjected to a uniform temperature increase.

-- Solution-- Solution

Let us assume first that the bar is clamped at one end and free at the other end
(Figure 4.6a). Under a uniform temperature increment the bar will increase
in length by the amount

∆l = α ∆T l

and the corresponding “initial” strain is

ε0
x =

∆l

l
= α ∆T

Since the bar is free to move horizontally, the total elongation is equal to that
produced by the thermal increment and, therefore, the elastic strain is equal
to zero, i.e.

εe
x = εx − ε0

x = α ∆T − α ∆T = 0
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Fig. 4.6 Interpretation of initial thermal strains, a) Clamped/free bar, b) Fully
clamped bar, c) 2D solid

Thus, from Eq.(4.17) it is deduced that the stresses in the deformed bar are
zero.
Let us consider now the fully clamped bar of Figure 4.6b. To compute the
initial strains let us assume that the bar points are free to move horizontally.
Under these conditions the “initial” elongation of the bar will coincide with
that of the clamped/free bar of Figure 4.6a, i.e. ε0

x = α∆T . However, since
the bar points have the horizontal displacement restrained (due to the two
clamped ends), the “elastic strain”is now

εe
x = εx − ε0

x = 0− α∆T = −α∆T
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and by using Eq.(4.17) it is deduced that the bar is subjected to a uniform
axial force of value N = −αEA∆T .
Therefore, the initial thermal strains can be interpreted as the strains induced
in the constraint-free body by a temperature increment occurring in some
points (Figure 4.6c). Satisfaction of the kinematic (displacement) boundary
conditions provides the values of the actual (total) strains. The difference
between total and initial strains yields the “elastic” strains responsible for
the actual stresses in the body.
It is also deduced from this example that a thermal increment produces no
stresses in a body which can move freely in space.

4.2.6 Virtual work expression

The PVW is written for 2D elasticity problems as [Was,ZTZ]
∫ ∫

A
(δεxσx + δεyσy + δγxyτxy)t dA =

∫ ∫

A
(δubx + δvby)t dA +

+
∮

l
(δutx + δvty)t ds +

∑

i

(δui Pxi + δvi Pyi) (4.23)

The terms in the r.h.s. of Eq.(4.23) represent the virtual work of the
body forces (i.e. forces per unit area) bx, by; the surface tractions tx, ty;
and the external point loads Pxi , Pyi , respectively (Figures 4.1 and 4.2).
The integral in the l.h.s. represents the work performed by the stresses
σx, σy, τxy over the virtual strains δεx, δεy y δγxy. A and l are respectively
the area and the boundary of the transverse section of the solid and t its
thickness. For plane stress problems t is the actual thickness of the solid.
For plane strain situations the analysis domain is a unit slice and t is equal
to one.

Eq.(4.23) can be written in matrix form as
∫ ∫

A
δεεεTσσσt dA =

∫ ∫

A
δuTbt dA +

∮

l
δuT tt ds +

∑

i

δuT
i pi (4.24a)

where

δεεε =
[
δεx, δεy, δγxy

]T
; δu =

[
δu, δv

]T
; b =

[
bx, by

]T

t =
[
tx, ty

]T
; δui =

[
δui, δvi

]T
; pi =

[
Pxi , Pyi

]T
(4.24b)
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The above equations show that the PVW integrals involve up to first
derivatives of the displacements only. Hence, Co continuous elements can
be used. This requirement holds for all elasticity elements studied in this
book (i.e. 2D/3D solids and axisymmetric solids).

Eq.(4.23) is the starting point to derive the finite element equations as
described in the next section.

4.3 FINITE ELEMENT FORMULATION. THREE-NODED
TRIANGULAR ELEMENT

We will study first the simple 3-noded triangular element. This is the first
element ever used for the analysis of structural problems. Prior to the finite
element era, Courant successfully used linear polynomial approximations
over triangular regions to solve differential equations in 2D domains [Co].
Some years later Turner et al. [TCMT] in their classic paper proposed the
discretization of 2D solid domains into simple triangles as a way to analyze
solids using matrix structural techniques. This explains why the 3-noded
triangle is sometimes known as the Turner element. This element soon be-
came very popular among engineers and it was widely used in the analysis
of many structures in aeronautical and civil engineering [AFS,AK,ZTZ].
We note the impact of this element in the study of gravity dams and
tunnels for practical civil engineering applications [ZT]. The key to the
success of the 3-noded triangle is its simplicity which allows the assim-
ilation of the FEM and the standard matrix method for bar structures
known to most structural engineers. Conversely, it has limited accuracy
due to the linear displacement approximation yielding constant strain and
stress fields. Hence, fine meshes are required to capture accurate solutions
in zones of high displacement gradients. This is however not a serious pro-
blem due to its versatile geometry, which is also very adequate for adaptive
mesh refinement, as shown in Chapter 9. In summary, the 3-noded trian-
gular element has the ideal features to introduce the application of the
FEM to the analysis of 2D solids.

4.3.1 Discretization of the displacement field

Figure 4.6 shows the transverse section of a solid analized under the assum-
ptions of plane elasticity. As usual the first step is the discretization of the
analysis domain as a mesh of finite elements. Figure 4.7 shows the mesh
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Fig. 4.7 Discretization of a structure in 3-noded triangular elements

of 3-noded triangles chosen. The accuracy of the finite element solution
can obviously be improved by using a finer mesh.

A typical 3-noded triangular element is characterized by the numbe-
ring of its nodes and their coordinates x, y. The three nodes have a global
numbering i, j, k which corresponds to the local numbers 1, 2, 3 respec-
tively (Figure 4.7). It is convenient to use the local numbering to compute
the element matrices and vectors and the correspondence between local
and global numbering for the assembly process, as in matrix analysis of
bar structures [HO2,Li].

Let us consider an individual triangle like that shown in Figure 4.7.
The two cartesian displacements of an arbitrary point within the element
can be expressed in terms of the nodal displacements as

u = N1u1 + N2u2 + N3u3

v = N1v1 + N2v2 + N3v3

(4.25)
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where (ui, vi) and Ni are the horizontal and vertical displacements and
the shape function of node i, respectively. There is not a fundamental
reason to choose the same approximation for the vertical and horizontal
displacements. However, the same interpolation for both displacements is
typically used in practice.

Eq.(4.25) is written in matrix form as

u =
{

u
v

}
=

[
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]





u1

v1

u2

v2

u3

v3





(4.26)

or
u = N a(e) (4.27)

where

u =
{

u
v

}
(4.28a)

is the displacement vector of a point,

N = [N1,N2,N3] ; Ni =
[
Ni 0
0 Ni

]
(4.28b)

are the shape function matrices of the element and the ith node, respec-
tively, and

a(e) =





a(e)
1

a(e)
2

a(e)
3





with a(e)
i =

{
ui

vi

}
(4.29)

are the nodal displacement vectors of the element and of the ith node,
respectively.

Note that N and a(e) contain as many matrices Ni and vectors a(e)
i as

element nodes. This is a general rule, as we will see throughout the book.
The shape functions for the 3-noded triangular element is found as

follows.
The three nodes define a linear displacement field which can be written

as
u = α1 + α2x + α3y

v = α4 + α5x + α6y
(4.30)
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Since we have assumed the same interpolation for u and v, it suffices to
derive the shape functions for one of the two displacements. For instance,
the horizontal nodal displacements are deduced from Eq.(4.30) as

u1 = α1 + α2x1 + α3y1

u2 = α1 + α2x2 + α3y2

u3 = α1 + α2x3 + α3y3

(4.31)

Solving for α1, α2 and α3 and substituting into Eq.(4.30) yields

u =
1

2A(e)

[
(a1 + b1x + c1y)u1 + (a2 + b2x + c2y)u2 + (a3 + b3x + c3y)u3

]

(4.32a)

where A(e) is the element area and

ai = xjyk − xkyj , bi = yj − yk , ci = xk − xj ; i, j, k = 1, 2, 3
(4.32b)

The parameters ai, bi and ci are obtained by cyclic permutation of the
indexes i, j, k.

Comparing Eqs.(4.32) and (4.25) the expression for the shape functions
is found as

Ni =
1

2A(e)
(ai + bix + ciy) , i = 1, 2, 3 (4.33)

The form of the linear shape functions is shown in Figure 4.8. It can
be checked that the shape function Ni takes the value one at node i and
zero at the other two nodes.

4.3.2 Discretization of the strain field

Substituting Eq.(4.25) into (4.2) gives the three characteristic strains as

εx =
∂u

∂x
=

∂N1

∂x
u1 +

∂N2

∂x
u2 +

∂N3

∂x
u3

εy =
∂v

∂y
=

∂N1

∂y
v1 +

∂N2

∂y
v2 +

∂N3

∂y
v3 (4.34)

γxy =
∂u

∂y
+

∂v

∂x
=

∂N1

∂y
u1 +

∂N1

∂x
v1 +

∂N2

∂y
u2 +

∂N2

∂x
v2 +

∂N3

∂y
u3 +

∂N3

∂x
v3
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Fig. 4.8 Shape functions for the 3-noded triangular element

In matrix form

εεε =





∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x





=




∂N1
∂x

0
... ∂N2

∂x
0

... ∂N3
∂x

0

0 ∂N1
∂y

... 0 ∂N2
∂y

... 0 ∂N3
∂y

∂N1
∂y

∂N1
∂x

... ∂N2
∂y

∂N2
∂x

... ∂N3
∂y

∂N3
∂x








u1

v1

u2

v2

u3

v3




(4.35)

or
εεε = Ba(e) (4.36)

where
B = [B1,B2,B3] (4.37)

is the element strain matrix, and

Bi =




∂Ni
∂x

0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x


 (4.38)
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is the strain matrix of node i.
The expression for Bi in Eq.(4.38) is completely general and applicable

to any 2D solid element.
Matrix B contains as many Bi matrices as element nodes. This is also

a general property. Particularizing Eqs.(4.37) and (4.38) for the 3-noded
triangle we obtain (using Eq.(4.33))

B =
1

2A(e)




b1 0
... b2 0

... b3 0

0 c1
... 0 c2

... 0 c3

c1 b1
... c2 b2

... c3 b3


 (4.39)

and, therefore

Bi =
1

2A(e)




bi 0
0 ci

ci bi


 (4.40)

4.3.3 Discretization of the stress field

The discretized expression for the stress field within the element is ob-
tained by substituting Eq.(4.36) into (4.5) as

σσσ = Dεεε = DBa(e) (4.41)

If initial strains and stresses are considered we deduce from Eq.(4.17)

σσσ = D(εεε− εεε0) + σσσ0 = DB a(e) −Dεεε0 + σσσ0 (4.42)

The strain matrix for the 3-noded triangle is constant (Eq.(4.39)). This
implies that both the strain and stress fields are constant within the ele-
ment. This is a consequence of the linear displacement interpolation chosen
which, naturally, has constant first derivatives. Therefore, a finer mesh will
be needed in zones where stress gradients are higher, so that the strain
and stress fields are accurately approximated.

4.3.4 Discretized equilibrium equations

The discretized equilibrium equations for the 3-noded triangle will be de-
rived by applying the PVW to an individual element. It is interesting that
the expressions obtained hereafter are completely general and aplicable to
any 2D solid element.
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Fig. 4.9 Forces acting on a 3-noded triangle. The sides 13 and 23 belong to the
external boundary

Let us assume that the following external forces act on the element
(Figure 4.9): a) distributed forces b acting per unit area (body forces),
and b) distributed forces t acting along the element sides belonging to a
boundary line (surface tractions).

The surface tractions due to the interaction of adjacent elements are
excluded “a priori”, as they cancel themselves out during the assembly
process.

As usual in the FEM, the equilibrium of the forces acting on the element
is enforced point-wise at the nodes only. We therefore define nodal point
loads Fxi and Fyi which balance the external forces and the internal forces
due to the element deformation (Figure 4.9). These “equilibrating nodal
forces” are obtained by applying the PVW to an individual element as

∫ ∫

A(e)

δεεεTσσσt dA =
∫ ∫

A(e)

δuTbt dA +
∮

l(e)
δuT tt ds+

+
3∑

i=1

δuiFxi +
3∑

i=1

δviFyi

(4.43)

where δui and δvi are the nodal virtual displacements and Fxi and Fyi

the equilibrating nodal forces along the horizontal and vertical directions,
respectively. The virtual work performed by these forces is obtained from
Eq.(4.43) as
∫ ∫

A(e)

δεεεTσσσt dA−
∫ ∫

A(e)

δuTbt dA−
∮

l(e)
δuT tt ds = [δa(e)]

T
q(e) (4.44)
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For the 3-noded triangular element

[δa(e)]T = [δaT
1 , δaT

2 , δaT
3 ](e) = [δu1, δv1, δu2, δv2, δu3, δv3]

[q(e)]T = [qT
1 ,qT

2 ,qT
3 ](e) = [Fx1 , Fy1 , Fx2 , Fy2 , Fx3 , Fy3 ]

(4.45)

Next we interpolate the virtual displacements in terms of the nodal
values. Following the same procedure as for deriving Eqs.(4.26) and (4.36)
we obtain

δu = Nδa(e) ; δεεε = Bδa(e) (4.46a)

and
δuT = [δa(e)]

T
NT ; δεεεT = [δa(e)]

T
BT (4.46b)

Substituting the last equations into Eq.(4.44) gives

[δa(e)]
T
[∫ ∫

A(e)

BTσσσt dA−
∫ ∫

A(e)

NTbt dA−
∮

l(e)
NT tt ds

]
= [δa(e)]

T
q(e)

(4.47)
Since the virtual displacements are arbitrary it is deduced that

∫ ∫

A(e)

BTσσσt dA−
∫ ∫

A(e)

NTbt dA−
∮

l(e)
NT tt ds = q(e) (4.48)

Eq.(4.48) yields the equilibrating nodal forces q(e) in terms of the nodal
forces due to the element deformation (first integral), the body forces
(second integral) and the surface tractions (third integral). Substituting
the stresses in terms of the nodal displacements from Eq.(4.42) gives
∫ ∫

A(e)

BT (DBa(e)−Dεεε0+σσσ0)t dA−
∫ ∫

A(e)

NTbt dA−
∮

l(e)
NT tt ds = q(e)

(4.49)
and

[∫ ∫

A(e)

BTDBt dA
]
a(e) −

∫ ∫

A(e)

BTDεεε0t dA +

+
∫ ∫

A(e)

BTσσσ0t dA−
∫ ∫

A(e)

NTbt dA−
∮

l(e)
NT tt ds = q(e)

(4.50)

or
K(e)a(e) − f (e) = q(e) (4.51)

where

K(e) =
∫ ∫

A(e)

BTD Bt dA (4.52)
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is the element stiffness matrix, and

f (e) = f (e)
ε + f (e)

σ + f (e)
b + f (e)

t (4.53)

is the equivalent nodal force vector for the element where

f (e)
ε =

∫ ∫

A(e)

BT Dεεε0t dA (4.54)

f (e)
σ = −

∫ ∫

A(e)

BT σσσ0t dA (4.55)

f (e)
b =

∫ ∫

A(e)

NTbt dA (4.56)

f (e)
t =

∮

l(e)
NT tt ds (4.57)

are the equivalent nodal force vectors due to initial strains, initial stresses,
body forces and surface tractions, respectively.

The expressions for the element stiffness matrix and the equivalent
nodal force vectors given by Eqs.(4.52) - (4.57) are completely general
and are applicable to any 2D solid element. The particularization for the
3-noded triangular element is given in the next section.

The global equilibrium equations for the whole mesh are obtained by
establishing that the nodes are in equilibrium, similarly as for 1D pro-
blems; i.e. the sum of all the equilibrating nodal forces at each node j
balance the point loads pj = [Pxj , Pyj ]

T acting at the node and
∑

e

q(e)
i = pj , j = 1, N (4.58)

where the sum refers to all elements sharing the node with global number
j and N is the total number of nodes in the mesh. Vector pj typically
includes the reactions at the prescribed nodes. Eq.(4.58) is identical to
the equation of equilibrium of joint forces in bar structures (Chapter 1).
The matrix equilibrium equations for the whole mesh can thus be obtained
following identical procedures as for bar structures as

Ka = f (4.59)

where K and f are the stiffness matrix and the equivalent nodal force
vector for the whole mesh. Both K and f are assembled from the element
contributions in the standard manner (Eq.(2.85)). The assembly process
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Fig. 4.10 Assembly of the stiffness matrix and the equivalent nodal force vector
into the global equation system for the 3-noded triangle with global node numbers
i, j, k

is schematically shown in Figure 4.10.
We note once more that the equilibrating nodal forces due to the sur-

face tractions along the element interface cancel themselves out during
the assembly process. Therefore, only the surface tractions acting on ele-
ment sides belonging to the external boundaries of the structure must be
considered in the analysis.

The reactions at the prescribed nodes are computed “a posteriori”
using Eq.(2.26a). As already mentioned an alternative procedure is to
compute the nodal reaction vector r from

r = fint − fext (4.60a)
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where fext contains contributions from the external forces only (i.e. the
body forces, the surface tractions and the point loads) and the internal
nodal force vector fint is assembled from the element contributions

f(e)int =
∫ ∫

A(e)

BTσσσt dA (4.60b)

The above expression for f(e)int is deduced from the first integral in the
l.h.s. of Eq.(4.48).

4.3.5 Stiffness matrix and equivalent nodal force vectors for the 3-noded
triangular element

Stiffness matrixStiffness matrix

Eq.(4.52) can be written for the 3-noded triangle using (4.37) as

K(e) =
∫ ∫

A(e)





BT
1

BT
2

BT
3



 D [B1,B2,B3]t dA =

=
∫ ∫

A(e)




BT
1 DB1 BT

1 DB2 BT
1 DB3

. . . BT
2 DB2 BT

2 DB3

Symm.
. . . BT

3 DB3


 t dA (4.61)

A typical element stiffness submatrix, K(e)
ij , linking nodes i and j of

the element can be obtained as

K(e)
ij =

∫ ∫

A(e)

BT
i DBjt dA (4.62a)

Substituting Eqs.(4.6) and (4.40) into Eq.(4.61) gives

K(e)
ij =

∫ ∫

A(e)

1
2A(e)

[
bi 0 ci

0 ci bi

]


d11 d12 0
d21 d22 0
0 0 d33


 1

2A(e)




bj 0
0 cj

cj bj


 t dA (4.63a)

For an homogeneous material the integrand of Eq.(4.63a) is constant
and this gives

K(e)
ij =

( t

4A

)(e)
[
bibjd11 + cicjd33 bicjd12 + bjcid33

cibjd21 + bicjd33 bibjd33 + cicjd22

]
(4.63b)
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The form of K(e)
ij for plane stress and plane strain situations is simply

obtained by introducing the adequate values of the coefficients dij from
Eq.(4.7). Note that K(e)

ij is always symmetrical as d12 = d21.

Equivalent nodal force vectorsEquivalent nodal force vectors

a) Body forces

f (e)
b =





f (e)
b1

f (e)
b2

f (e)
b3





=
∫ ∫

A(e)

NTbt dA =
∫ ∫

A(e)





NT
1 b

NT
2 b

NT
3 b



 t dA (4.64)

The nodal contribution of vector f (e)
b is

f (e)
bi

=
∫ ∫

A(e)

NT
i b t dA =

∫∫

A(e)

{
Ni bx

Ni by

}
t dA (4.65)

If the body forces b are uniformly distributed over the element we
obtain using Eq.(4.33)

f (e)
bi

=
(At)(e)

3

{
bx

by

}
(4.66)

i.e. the total force acting over the element is split into equal parts between
the three nodes of the triangle, as expected.

A particular case of body force is self-weight with gravity acting in the
direction of the y-axis. In this case bx = 0 and by = −ρg where ρ and g are
the material density and the value of the gravity constant, respectively.

b) Surface tractions

f (e)
t =

∮

l(e)
NT tt ds (4.67)

For a node i belonging to a loaded external boundary we have

f (e)
ti

=
∮

l(e)
NT

i tt ds =
∮

l(e)

{
Ni tx
Ni ty

}
t ds (4.68)

We note that the shape function of a node not belonging to the loaded
boundary takes a zero value. Thus, if the element side 1-2 is loaded with
uniformly distributed tractions tx and ty, vector f (e)

t is simply

f (e)
t =

(l12 t)(e)

2
[
tx, ty, tx, ty, 0, 0

]T (4.69)

where l
(e)
12 is the side length. Eq.(4.69) shows that the traction force ac-

ting along the element side is split in equal parts between the two side
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nodes. The expressions of f (e)
t for loaded sides 1-3 and 2-3 are

f (e)
t =

(l13t)
(e)

2
[
tx, ty, 0, 0, tx, ty

]T

f (e)
t =

(l23t)
(e)

2
[
0, 0, tx, ty, tx, ty

]T (4.70)

c) Forces due to initial strains

Substituting Eq.(4.37) into (4.54) gives

f (e)
ε =





f (e)
ε1

f (e)
ε2

f (e)
ε3





=
∫ ∫

A(e)

BTDεεε0t dA =
∫ ∫

A(e)





BT
1 Dεεε0

BT
2 Dεεε0

BT
3 Dεεε0



 t dA (4.71)

and the equivalent nodal force of node i due to the initial strains is

f (e)
εi

=
∫ ∫

A(e)

BT
i D εεε0 t dA (4.72)

If εεε0 is constant over the element and the material is homogeneous we
obtain using Eqs.(4.6) and (4.40)

f (e)
εi

=
∫ ∫

A(e)

1
2A(e)

[
bi 0 ci

0 ci bi

]


d11 d12 0
d21 d22 0
0 0 d33








ε0
x

ε0
y

γ0
xy



 t dA =

=
t(e)

2

{
bi(d11ε

0
x + d12ε

0
y) + cid33γ

0
xy

ci(d21ε
0
x + d22ε

0
y) + bid33γ

0
xy

}
(4.73)

For initial thermal strains, the expressions (4.18) for εεε0 should be used.

d) Forces due to initial stresses

Substituting Eq.(4.37) into (4.55) gives

f (e)
σ =





f (e)
σ1

f (e)
σ2

f (e)
σ3





= −
∫ ∫

A(e)

BTσσσ0t dA = −
∫ ∫

A(e)





BT
1 σσσ0

BT
2 σσσ0

BT
3 σσσ0



 t dA (4.74)

and the equivalent nodal force of node i due to the initial stresses is

f (e)
σi

= −
∫ ∫

A(e)

BT
i σσσ0t dA (4.75)
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For σσσ0 being constant over the element, we obtain using Eqs.(4.19b)
and (4.40)

f (e)
σi

= −
∫ ∫

A(e)

1
2A(e)

[
bi 0 ci

0 ci bi

]


σ0
x

σ0
y

τ 0
xy



 t dA = − t(e)

2

{
biσ

0
x + ciτ

0
xy

ciσ
0
y + biτ

0
xy

}
(4.76)

The above expressions allow us to compute explicitly the matrices and
vectors for the 3-noded triangle for 2D elasticity applications. Examples
showing the behaviour of the element are given in Section 4.7. An example
illustrating the assembly and solution process is presented next.

Example 4.4: Analyze the plane structure of the figure below under self-weight.

-- Solution-- Solution

Mesh topology

Element Nodal connections

1
2
3
4

1 4 5
1 5 2
2 5 6
2 6 3

Plane strain situation
u1 = u4 = 0

The assembly process is similar to that for matrix analysis of bar structures
(Figure 4.10). The global system of equations has the following form

1 2 3 4 5 6

1

2

3

4

5

6




(K
(1)
11 + K

(2)
11 ) K

(2)
13 0 K

(1)
12 (K

(1)
13 + K

(2)
12 ) 0

(K
(2)
33 + K

(3)
11 K

(4)
13 0 (K

(2)
32 + K

(3)
12 ) (K

(3)
13 + K

(4)
12 )

+K
(4)
11 )

K
(4)
33 0 0 K

(4)
32

K
(1)
22 K

(1)
23 0

Symm.

(K
(1)
33 + K

(2)
22 K

(3)
23

+K
(3)
22 )

(K
(4)
22 + K

(3)
33 )








a1

a2

a3

a4

a5

a6





=





(r1 + f
(1)
1 +

f
(2)
1 )

(f
(2)
3 + f

(3)
1 +

+f
(4)
1 )

f
(4)
3

r4 + f
(1)
2

(f
(1)
3 + f

(2)
2 +

+f
(3)
2 )

f
(3)
3 + f

(4)
2




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where K(e)
ij is obtained from Eq.(4.63) and f (e)

i from Eq.(4.66) with bx = 0
and by = −ρg. In both cases t = 1 should be taken.
The above system can be solved in the usual way by eliminating the rows and
columns corresponding to the prescribed displacements a1 and a4. Once the
nodal displacements have been obtained the corresponding reaction vectors
r1 and r4 can be computed.
The constant strains and stresses within each element can be found “a pos-
teriori” from the known nodal displacements by Eqs.(4.36) and (4.41).
The reader is encouraged to repeat this exercise by him/herself.

4.4 THE FOUR NODED RECTANGULAR ELEMENT

4.4.1 Basic formulation

The 4-noded rectangle is the simplest quadrilateral element. This element
was developed by Argyris and Kelsey [AK] almost simultaneously to the
3-noded triangle. The general quadrilateral form is attributed to Taig [Ta].
However, the irregular behaviour of the standard 4-noded rectangle has
motivated much research which we will summarize here.

Figure 4.11 shows a deep beam discretized in a mesh of 4-noded rectan-
gles. Let us consider an isolated element with the local coordinate system
r and s shown in Figure 4.11. The four nodal displacements define a four-
term polynomial interpolation for the displacement field. The simplest
interpolation satisfying the condition of interelement compatibility and
geometric-invariance is

u(x, y) = α1 + α2 r + α3 s + α4rs

v(x, y) = α5 + α6r + α7s + α8rs
(4.77)

Eq.(4.77) implies a linear distribution of u and v along each element
side, thus guaranteeing the continuity of the displacement field between
adjacent elements. Note that the displacements vary as an incomplete
quadratic polynomial within the element. The four constants αi for each
displacement component are obtained from the following conditions ex-
pressed in the local system r, s.

u = u1 and v = v1 for r = −a , s = −b

u = u2 and v = v2 for r = −a , s = −b

u = u3 and v = v3 for r = a , s = b

u = u4 and v = v4 for v = a , s = b

(4.78)
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Fig. 4.11 Discretization of a deep beam with 4-noded rectangular elements. Defi-
nition of the local axes r and s for an element

Substituting these conditions into Eq.(4.77) and solving for the αi pa-
rameters, Eq.(4.77) can be rewritten as follows (note that only the αi

parameters for one of the two displacements are needed, as the same in-
terpolation is used for u and v )

u =
4∑

i=1

Ni ui ; v =
4∑

i=1

Ni vi (4.79)

The shape functions Ni are

N1 =
1
4

(
1− r

a

) (
1− s

b

)
; N2 =

1
4

(
1 +

r

a

) (
1− s

b

)

N3 =
1
4

(
1 +

r

a

) (
1 +

s

b

)
; N4 =

1
4

(
1− r

a

) (
1 +

s

b

) (4.80)

Eqs.(4.79) can be rewritten in matrix form as

u =
{

u
v

}
=


N1 0

... N2 0
... N3 0

... N4 0

0 N1
... 0 N2

... 0 N3
... 0 N4








u1

v1

u2

v2

u3

v3

u4

v4





= N a(e) (4.81)

where

N = [N1,N2,N3,N4] ; Ni =
[
Ni 0
0 Ni

]
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a(e) =





a(e)
1

a(e)
2

a(e)
3

a(e)
4





; a(e)
i =

{
ui

vi

}
(4.82)

are the shape function matrix and the displacement vector for the element
and the node i, respectively.

The element strain matrix is obtained from Eqs.(4.2) and (4.79) as

εεε =
4∑

i=1

Bia
(e)
i = [B1,B2,B3,B4]





a(e)
1

a(e)
2

a(e)
3

a(e)
4





= Ba(e) (4.83)

where Bi is given by precisely the same expression (4.38) derived for the
3-noded triangle. For the computation of Bi note that

∂Ni

∂x
=

∂Ni

∂r
and

∂Ni

∂y
=

∂Ni

∂s
(4.84)

The expression of B is shown in Box 4.1.
The stiffness matrix and the equivalent nodal force vectors for the

element are obtained via the PVW as explained for the linear triangle.
The element stiffness matrix is

K(e) =
∫ ∫

A(e)

BT D Bt dr ds =

=
∫ ∫

A(e)




BT
1 DB1 BT

1 DB2 BT
1 DB3 BT

1 DB4

. . . BT
2 DB2 BT

2 DB3 BT
2 DB4

. . . BT
3 DB3 BT

3 DB4

Symm. BT
4 DB4




t dr ds (4.85)

Box 4.1 shows that the strain matrix contains linear terms in r and s.
Therefore, the integrand of Eq.(4.85) contains quadratic terms. However,
the simplicity of the element geometry allows an explicit integration of all
terms. The resulting expression for K(e) is also shown in Box 4.1.

In the same way, the equivalent nodal force vectors for the element are
obtained by Eqs.(4.54)-(4.57) using the above expressions for Ni and Bi.
The nodal contributions of a uniformly distributed load over the element
(Eq.(4.65)) are

f (e)
bi

=
(tA)(e)

4

{
bx

by

}
(4.86)
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B =



−b2 0 | b2 0 | b1 0 | −b1 0
0 −a2 | 0 −a1 | 0 a1 | 0 a2

−a2 b2 | −a1 b2 | a1 b1 | a2 b1




a1 =
1

4b
(1 +

r

a
) , a2 =

1

4b
(1− r

a
)

b1 =
1

4a
(1 +

1

b
) , b2 =

1

4a
(1− 1

b
)

K(e) =




2a11 a36 c41 b36 −a14 −a36 c14 b63

2a35 b63 c25 −a36 −a25 b36 c52

2a14 −a36 c14 b36 −a14 a63

2a25 b63 c52 a36 −a52

2a14 a36 c41 b63

Symmetric 2a25 b63 c25

2a11 −b36

2a25




aij = ai + aj , bij = ai − aj , cij = ai − 2aj

a1 =
tbd11

6a
, a2 =

tad22

6b
, a3 =

td12

4
, a4 =

tad33

6b
, a5 =

tbd33

6a
, a6 =

td33

4

Box 4.1 Strain and stiffness matrices for a 4-noded rectangular element of dimen-
sions 2a× 2b

i.e. the total force is distributed in equal parts between the four nodes,
like for the 3-noded triangle.

Similarly, a uniformly distributed traction acting over a side is dis-
tributed in equal parts between the two side nodes.

4.4.2 Some remarks on the behaviour of the 4-noded rectangle

Both the 3-noded triangle and the 4-noded rectangle perform excellently
in problems where traction (or compression) is important. Conversely, the
accuracy of both elements deteriorates in situations where bending move-
ments are involved, and very fine meshes are needed to obtain accurate
solutions in these cases (Section 4.7).

The fact that the 4-noded rectangle cannot be used to model bending
dominated fields has a very instructive explanation. Let us consider the
behaviour of an isolated element subjected to pure bending (Figure 4.12).
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(a) (b) (c)

Fig. 4.12 4-noded rectangle subjected to pure bending, a) Initial geometry,
b) Element distortion, c) Correct deformation of a beam segment in pure bending

The exact solution from beam theory is [TG]

u(r, s) =
M

EI
rs

v(r, s) =
Ma2

2EI

(
1− r2

a2

)
+

Mb2

2EI

(
1− s2

b2

) (4.87)

Since the element sides are straight, the 4-noded rectangle can only
represent the following bending mode (Figure 4.12b)

u = ūrs ; v = 0 (4.88)

It is obvious from the above that the element cannot correctly re-
produce the quadratic distribution of vertical displacements for the pure
bending case. This leads to excessive stiffness, which is a natural conse-
quence of the inability of the element sides to be curved.

Additionally it is deduced from Eq.(4.87) that

γxy =
∂u

∂y
+

∂v

∂x
= 0

i.e. the “exact” shear strain vanishes and only normal strains (and stresses)
exist.

The shear strain field for the element is obtained from Eq.(4.88) as

γxy = ūr (4.89)

i.e. the element has an “excess”of shear strain. This introduces an unde-
sirable stiffness which contributes to the poor ability of the element to
reproduce bending modes. Similar results are obtained for moments ac-
ting on the horizontal sides simply by changing the coordinate r for s in
Eq.(4.89).
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The deficiencies of the 4-noded rectangle also appear for more irregular
quadrilateral shapes. These drawbacks are usually overcome in practice by
using very fine meshes. Other alternatives are possible, however, and some
are presented in the following sections.

4.4.2.1 Reduced integration of the shear stiffness terms

Eq.(4.89) clearly shows that the shear strain is zero at the element center
only. Therefore, the excess of shear strain can be eliminated by sampling
the shear strain at the element center (r = s = 0). This is simply achieved
by using a reduced one point Gauss quadrature for the shear terms in the
stiffness matrix. For this purpose the element stiffness matrix is split as

K(e) = K(e)
a + K(e)

s (4.90)

where K(e)
a and K(e)

s include the “axial” and “shear” contributions, res-
pectively given by

K(e)
aij

=
∫ ∫

A(e)

BT
ai
DaBaj t dA ; K(e)

sij
=

∫ ∫

A(e)

BT
si
DtBsj t dA (4.91)

with

Bai =




∂Ni

∂x
0

0
∂Ni

∂y


 ; Bsi =

[
∂Ni

∂y
,

∂Ni

∂x

]

Da =
[
d11 d12

d12 d22

]
; Ds =

[
d33

]
(4.92)

Matrix K(e)
a is integrated exactly, either analytically or via a 2×2 Gauss

quadrature, whereas a single integration point is used for K(e)
s . This “selec-

tive integration” technique also improves the behaviour of 4-noded quadri-
laterals of arbitrary shape.

The reduced integration of K(e)
s can also be interpreted as a simple

procedure to mitigate the excessive influence of the shear terms in the
element stiffness matrix. A disadvantage of reduced integration is that it
produces a quadrilateral element that is not geometric-invariant (Section
3.10.4), although it passes the patch test and, therefore, it converges to
the exact solution [CMPW]. In Chapter 2 of Volume 2 [On] we will ap-
ply reduced integration to alleviate the influence of the transverse shear
stiffness in Timoshenko beam elements. However, the reduced integration
of the stiffness matrix terms should always be looked upon with extreme
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Fig. 4.13 Four-noded rectangle, a) Addition of a central node, b) Shape functions
for the incompatible modes

caution, as it can lead to internal mechanisms and to the violation of the
patch test in some cases. Reduced integration techniques will be further
studied when dealing with plates and shells in Volume 2 [On].

4.4.2.2 Addition of internal modes

The flexibility of the 4-noded rectangle can be enhanced by adding to the
original interpolation internal displacement modes which vanish at the
element boundaries. The simplest mode is a “bubble” function associa-
ted with an extra central node (Figure 4.13a). The displacement field is
expressed as

u =
5∑

i=1

Niui ; v =
5∑

i=1

Nivi (4.93)

where N1, N2, N3, N4 are the linear functions of (4.80) and

N5 =
[
1−

(r

a

)2][
1−

(s

b

)2]
(4.94)

The internal DOFs u5 and v5 (also called hierarchical DOFs [Cr]) can
be eliminated after the element stiffness matrix is obtained. Note that u5

and v5 are not absolute displacements and they represent the differen-
ce between the total displacements of the central node and the bilinear
field defined by the four corner displacements. For instance, the horizontal
displacement of the central node is given by

u(0, 0) =

(
4∑

i=1

Niui

)

0,0

+ u5 (4.95)

The behaviour of the modified 4-noded element can be improved by
using a reduced single point quadrature for the shear terms as described
in the previous section.
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4.4.2.3 Addition of incompatible modes

The 4-noded rectangle can also be improved by adding to the original

displacement field the displacement modes 1 −
(

r
a

)2
and 1 −

(
s
b

)2
(also

called incompatible modes) which are needed to reproduce the exact so-
lution (4.87) (Figure 4.12b). The new displacement field is

u =
4∑

i=1

Niui +
[
1−

(r

a

)2]
u5 +

[
1−

(s

b

)2]
u6

v =
4∑

i=1

Nivi +
[
1−

(r

a

)2]
v5 +

[
1−

(s

b

)2]
v6

(4.96)

The additional variables u5, v5, u6, v6 (also called “nodeless” DOFs)
are internal to each element and can be eliminated by static conden-
sation. However, the displacements along the interelemental boundaries
are discontinuous and the element is incompatible. Incompatible 4-noded
quadrilaterals formulated in this way fail to pass the patch test under
constant stress (or constant strain) states unless they are rectangular.

Fortunately, the element satisfies the patch test for arbitrary quadrila-
teral shapes if the shear stiffness terms are evaluated using a reduced single
point Gauss quadrature, whereas the rest of the stiffness terms can be
exactly integrated. The resulting element is geometric-invariant and does
not have spurious mechanisms. Box 4.2 shows the stiffness matrix for an
homogeneous and isotropic element of this kind with reduced integration
after eliminating the internal incompatible DOFs by static condensation
[CMPW,FNS,TBW].

The incompatible modes technique can also be successfully applied to
4-noded quadrilaterals of arbitrary shape [CMPW,ZHZ].

4.4.2.4 Use of an assumed strain field

Another procedure to enhance the performance of the 4-noded quadrilate-
ral is to impose over the element an assumed strain field compatible with
the condition γxy = 0 for the pure bending case.

Dvorkin and Vassolo [DV] proposed the following assumed strain field

εx = α1 + α2x + α3y ; εy = α4 + α5x + α6y ; γxy = α7 (4.97)

The αi parameters are expressed in terms of the nodal displacements
by sampling the assumed strains at a number of element points and equa-
ling their values to those given by the strains deduced from the original
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{
u
v

}
=

4∑
i=1

Ni

{
ui

vi

}
+

[
1−

( r

a

)2
] {

u5

v5

}
+

[
1−

( s

a

)2
] {

u6

v6

}

K(e) =
D t

12(1− α2)




C1 C5 C2 −C6 C4 −C5 C3 C6

C7 C6 C9 −C5 C10 −C6 C8

C1 −C5 C3 −C6 C4 C5

C7 C6 C8 C5 C10

C1 C5 C2 −C6

Symmetric C7 C6 C9

C1 −C5

C7




Plane stress : D = E ; α = ν

Plane strain : D =
E

1− ν2
; α =

ν

1− ν

C1 =
a

b
(−m2 − 1.5m + 5.5) , C4 =

a

b
(−m2 + 1.5m− 3.5)

C2 =
a

b
(m2 − 1.5m− 2.5) , C5 = 1.5 (1 + m)

C3 =
a

b
(m2 + 1.5m− 0.5m) , C6 = 1.5 (1 + 3m)

C7 − C10 are obtained from C1 − C4 interchanging a for b

Box 4.2 Stiffness matrix for an homogeneous and isotropic 4-noded rectangular
element of dimensions 2a×2b with incompatible modes

displacement field. This leads to a substitute strain matrix from which the
element stiffness matrix can be directly obtained on [DV].

4.5 PERFORMANCE OF THE 3-NODED TRIANGLE AND THE
4-NODED RECTANGLE

The 3-noded triangle and the 4-noded rectangle perform well under pure
tension or compression dominated situations. In general the 4-noded ele-
ment is more accurate than the 3-noded triangle for the same number of
DOFs in these cases. However, as mentioned earlier the behaviour of both
elements is relatively poor in bending situations. Still, the 4-noded element
has a superior performance for such problems. This is clearly seen in the
examples shown in Figures 4.14 and 4.15 of a thick cantilever beam under
an end point load and a simply supported beam under self weight analyzed
with different meshes of 3-noded triangles and 4-noded rectangles. All
units are in the International System. The values compared are: 1) the
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Fig. 4.14 Cantilever beam under end point load. Convergence of the vertical deflec-
tion at the free end and the horizontal stress σx at the lower fiber of the middle
section for unstructured meshes of 3-noded triangles and 4-noded rectangles

vertical deflection at the center of the free end for the clamped beam and
at the lower point of the middle section for the simply supported case, and
2) the σx stress at the lower fiber of the middle section for both problems.
Note the higher accuracy of the 4-noded rectangle in accordance with
that previously explained. The accuracy of the 4-noded rectangle increases
by adding the two incompatible modes as described in Section 4.4.2.3.
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Fig. 4.15 Simply supported beam under self-weight. Convergence of the vertical
deflection and the horizontal stress σx at the lower fiber of the middle section for
different unstructured meshes of 3-noded triangles and 4-noded rectangles

The accuracy of both elements also increases by using a higher order
approximation for the displacement field. This also allows curve sided
elements to be derived using an isoparametric formulation as described in
the next chapter.
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The poorer performance of the 3-noded triangle is compensated by
its versatility to discretize complex geometries using unstructured meshes
and so it remains very popular.

More examples of the performance of the 3-noded triangle and the 4-
noded quadrilateral, as well as of other higher order triangular and quadri-
lateral elements are presented in Section 5.7.

4.6 CONCLUDING REMARKS

This chapter has presented the basic concepts for the analysis of 2D solids
with the FEM. The steps followed in the formulation of the kinematic
variables, the strain and stress fields, the equilibrium expressions via the
PVW and the discretization process are completely general and will re-
peatedly appear when considering the finite element analysis of any other
structure. The study of this chapter is therefore essential as a general
introduction to the analysis of continuous structures with the FEM.

The procedure for deriving the element stiffness matrix and the equi-
valent nodal force vector from the PVW has been detailed. The basic
expressions for the different matrices and vectors have general applica-
bility to any element type. The particular form of these matrices for the
3-noded linear triangle and the 4-noded rectangle has been given. The li-
near triangle has limited accuracy for coarse meshes although its simplicity
and versatility for discretizing any geometrical shape make it probably the
most popular element for practical analysis of 2D solids. The standard 4-
noded rectangle has some limitations when it comes to capturing pure
bending modes. These deficiencies can be overcome by “ad hoc” proce-
dures such as reduced integration, the addition of internal nodes and the
use of an assumed strain field.

The derivation of higher order triangular and quadrilateral elements of
arbitrary shape requires a systematic procedure to obtain the shape func-
tions, the use of an isoparametric formulation and numerical integration.
These topics will be studied in the next chapter.



5

HIGHER ORDER 2D SOLID
ELEMENTS. SHAPE FUNCTIONS
AND ANALYTICAL COMPUTATION
OF INTEGRALS

5.1 INTRODUCTION

This chapter extends the concepts studied in the previous one for the
analysis of solids under the assumptions of 2D elasticity using higher order
triangular and quadrilateral elements.

The chapter is organized as follows. In the first sections we detail the
systematic derivation of the shape functions for rectangular and triangular
elements of different order of approximation. Next, some rules for the ana-
lytical computation of the element integrals over rectangles and straight
side triangles are given. Finally the performance of linear and quadratic
triangular and rectangular elements is compared in some academic exam-
ples.

5.2 DERIVATION OF THE SHAPE FUNCTIONS FOR Co TWO
DIMENSIONAL ELEMENTS

Next, we will derive the shape functions for different triangular and rec-
tangular elements with C0 continuity. The possibilities of distorting these
elements into arbitrary shapes including curve sides will be treated in
Chapter 6 using the concept of isoparametric interpolation.

5.2.1 Complete polynomials in two dimensions. Pascal triangle

The chosen displacement field can only reproduce exactly a polynomial
solution of an order equal to or less than that of the complete polynomial
contained in the shape functions (Section 3.10.2). Consequently, the solu-
tion will improve as the degree of such a complete polynomial increases.
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Fig. 5.1 Pascal triangle in two dimensions

A 2D complete polynomial of nth degree can be written as

f(x, y) =
p∑

i=1

αix
jyk ; j + k ≤ n (5.1)

where the number of terms is

p = (n + 1)(n + 2)/2 (5.2)

For a linear polynomial (p = 3)

f(x, y) = α1 + α2x + α3y (5.3a)

and for a quadratic polynomial (p = 6)

f(x, y) = α1 + α2x + α3y + α4xy + α5x
2 + α6y

2 (5.3b)

The terms of a 2D complete polynomial can be readily identified by
means of the Pascal triangle (Figure 5.1).

The shape functions of triangles and tetrahedra are complete poly-
nomials, whereas those of quadrilateral and hexahedral elements contain
incomplete polynomial terms. For instance, the shape functions of the
4-noded rectangle include the term α4xy from the quadratic polynomial
(Eq.(4.77)). These terms in general do not contribute to increasing the
order of the approximation.

5.2.2 Shape functions of Co rectangular elements. Natural coordinates in
two dimensions

A local coordinate system ξ, η is defined for each element in order to fa-
cilitate the derivation of the shape functions. Such a natural or intrinsic
coordinate system is normalized so that the element sides are located at



160 Higher order 2D solid elements

Fig. 5.2 Rectangular element. Cartesian and natural coordinate systems

ξ = ±1 and η = ±1 as shown in Figure 5.2. The natural coordinate ξ was
introduced for 1D rod elements in Section 3.2. From Figure 5.2 we deduce

ξ =
x− xc

a
; η =

y − yc

b
(5.4)

where xc and yc are the coordinates of the element centroid. Note that in
the natural coordinate system the rectangular element becomes a square
of side equal to two. From Eq.(5.4)

dξ

dx
=

1
a

;
dη

dy
=

1
b

(5.5)

The differentials of area in the cartesian and natural systems are related
by

dx dy = ab dξ dη (5.6)

The integration of a function f(x, y) over a rectangular element can be
expressed in the natural coordinate system by

∫∫

A(e)

f(x, y) dx dy =
∫ +1

−1

∫ +1

−1
g(ξ, η)ab dξ dη (5.7)

The shape functions when expressed in the natural coordinates must
satisfy the same requirements as in cartesian coordinates. Therefore, the
shape functions for C0 continuous elements must satisfy:

a) Condition of nodal compatibilitya) Condition of nodal compatibility

Ni(ξj , ηj) =
1 i = j
0 i 6= j

(5.8)
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b) Rigid body conditionb) Rigid body condition (Section (3.8.4))

n∑

i=1

Ni(ξ, η) = 1 (5.9)

Two element families can be clearly identified within C0 continuous
rectangular elements, i.e. the Lagrange family and the Serendipity family.
The derivation of the shape functions for each of these two element families
is presented next.

5.3 LAGRANGE RECTANGULAR ELEMENTS

The shape functions for 2D Lagrange elements can be obtained by the
simple product of the two normalized 1D Lagrange polynomials corres-
ponding to the natural coordinates ξ and η of the node. Thus, if liI(ξ)
is the 1D Lagrange polynomial of order I in the ξ direction for node i
and liJ(η) is the normalized 1D Lagrange polynomial of order J in the η
direction for node i, the shape function of node i is

Ni(ξ, η) = liI(ξ) liJ(η) (5.10)

The normalized 1D Lagrange polynomials for each node can be ob-
tained by Eq.(3.9) which can be indistinctly used for the coordinates ξ
and η. Figure 5.3 shows some of the more popular Lagrange rectangular
elements. Note that the number of nodes in each of the two directions ξ
and η are the same along any nodal line. This is a particular feature of
Lagrange elements.

The polynomial terms contained in the shape functions can be directly
obtained from the Pascal triangle as shown in Figure 5.3. The shape func-
tions are not complete polynomials and all contain some incomplete poly-
nomial terms.

The derivation of the shape functions for the more popular Lagrange
rectangular elements is presented next.

5.3.1 Four-noded Lagrange rectangle

This is the simplest element of the Lagrange family and it coincides pre-
cisely with that studied in Section 4.4. For consistency we will derive its
shape functions again using natural coordinates (Figure 5.4).
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Fig. 5.3 Some Lagrange rectangular elements. Polynomial terms contained in the
shape functions
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Fig. 5.4 Four-noded Lagrange rectangular element

Let us consider a generic node i. The 1D shape functions corresponding
to the local directions ξ and η coincide with the shape functions for the
2-noded bar element. Thus, it is easy to find

li1(ξ) =
1
2
(1 + ξξi) ; li1(η) =

1
2
(1 + ηηi) (5.11)

where ξi and ηi take the values given in the table of Figure 5.4. The shape
function of any node can be written in compact form as

Ni(ξ, η) = li1(ξ)l
i
1(η) =

1
4
(1 + ξξi)(1 + ηηi) (5.12)
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A simple change of coordinates shows that the above shape functions
coincide with those directly obtained in the local system r, s in Section 4.4.

Figure 5.4 shows in graphic form the shape function of node 1. It is
easy to verify that the shape functions (5.12) satisfy the conditions (5.8)
and (5.9).

5.3.2 Nine-noded quadratic Lagrange rectangle

The shape functions for the 9-noded Lagrange rectangle (Figure 5.5) are
obtained by the product of two normalized 1D quadratic polynomials in
ξ and η. These polynomials are obtained from the shape functions of the
quadratic rod element (Eq.(3.11)). Thus, for node 1

l12(ξ) =
1
2
(ξ − 1)ξ ; l12(η) =

1
2
(η − 1)η (5.13)

and the shape function is

N2(ξ, η) = l12(ξ)l
1
2(η) =

1
4
(ξ − 1)(η − 1)ξ η (5.14)

Following a similar procedure for the rest of the nodes, the shape functions
can be written in compact form as

a) Corner nodesa) Corner nodes

Ni =
1
4
(ξ2 + ξξi)(η2 + ηηi) ; i = 1, 3, 5, 7 (5.15)

b) Mid-side nodesb) Mid-side nodes

Ni =
1
2
η2

i (η
2−ηηi)(1−ξ2)+

1
2

ξ2
i (ξ2−ξξi)(1−η2) ; i = 2, 4, 6, 8 (5.16)

c) Central nodec) Central node
N9(ξ, η) = (1− ξ2)(1− η2) (5.17)

We can verify that these shape functions satisfy Eqs.(5.8) and (5.9).
Figure 5.5 shows the shape function of three characteristic nodes. These

functions contain the polynomial terms shown in Figure 5.3. The 9-noded
Lagrange rectangle contains all the terms of a complete quadratic poly-
nomial plus three additional terms of the cubic and quartic polynomials
(ξ2η, ξη2, ξ2η2). Therefore, the approximation is simply of quadratic or-
der.
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Fig. 5.5 Nine-noded quadratic Lagrange rectangle
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5.3.3 Sixteen-noded cubic Lagrange rectangle

This element has four nodes in each of the two directions ξ and η.
The shape functions are obtained by the product of two normalized
1D cubic Lagrange polynomials in the ξ and η directions deduced from
Eq.(3.12). Figure 5.6 shows the expressions for the shape functions that
are complete cubic polynomials and contain the following additional terms:
ξ3η, ξ2η2, ξη3, ξ3η2, ξ2η3 and ξ3η3 from the quartic, quintic and sextic
polynomials (Figure 5.3). The shape functions satisfy Eqs.(5.8) and (5.9).

Fig. 5.6 Shape functions for the sixteen-noded cubic Lagrange rectangle
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Fig. 5.7 Lagrange rectangles with different number of nodes in the local directions

5.3.4 Other Lagrange rectangular elements

The shape functions of higher order Lagrange rectangular elements with 5,
6, 7, etc. nodes in each of the ξ and η directions are obtained by the product
of fourth, fifth, sixth, etc. degree normalized 1D Lagrange polynomials in
ξ and η, similar to the linear, quadratic and cubic elements previously
studied. It is easy to verify that the shape functions of a Lagrange element
with n nodes in each of the two local directions ξ and η contain a complete
nth degree polynomial and n(n + 1)/2 terms of incomplete polynomials
up to a ξnηn degree which can be deduced from the Pascal triangle.

Lagrange elements can have different number of nodes in each local
direction ξ or η (Figure 5.7). The shape functions in this case are obtained
by the product of the adequate 1D polynomials in ξ and η corresponding to
the number of nodes in each direction. The shape functions now contain
a complete 2D polynomial of a degree equal to the smallest degree of
the two 1D polynomials in each local direction. Therefore, the degree of
approximation of the element does not change by simply increasing the
number of nodes in one of the two local directions only. This explains why
these elements are not very popular and they are only occasionally used
as a transition between elements of two different orders.

5.4 SERENDIPITY RECTANGULAR ELEMENTS

Serendipity elements are obtained as follows. First the number of nodes
defining a 1D polynomial of a given degree along each side is chosen.
Then, the minimum number of nodes within the element is added so that
a complete and symmetrical 2D polynomial of the same degree as the 1D
polynomial chosen along the sides is obtained. Figure 5.8 shows some of the
more popular Serendipity elements and the polynomial terms contained
in the shape functions. The simplest element of the Serendipity family, i.e.
the 4-noded rectangle, coincides with the same element of the Lagrange
family. Also note that the quadratic and cubic elements of 8 and 12 nodes,
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Fig. 5.8 Some Serendipity elements and terms contained in their shape functions

respectively, have not interior nodes, whereas the 17 node element requires
a central node to guarantee the complete quartic approximation, as is
explained next.
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The derivation of the shape functions for Serendipity elements is not as
straightforward as for Lagrange elements. In fact, some ingenuity is needed
and this explains the name Serendipity, after the ingenuous discoveries of
the Prince of Serendip quoted in the romances of Horace Walpole in the
eighteenth century [EIZ,ZTZ].

5.4.1 Eigth-noded quadratic Serendipity rectangle

The shape functions for the side nodes are readily obtained as the product
of a second degree polynomial in ξ (or η) and another one in η (or ξ). It
can be checked that this product contains the required complete quadratic
terms (Figure 5.9). For these nodes we obtain

Ni(ξ, η) =
1
2
(1 + ξξi)(1− η2) ; i = 4, 8

Ni(ξ, η) =
1
2
(1 + ηηi)(1− ξ2) ; i = 2, 6

(5.18)

Unfortunately this strategy can not be applied for the corner nodes,
since in this case the product of two quadratic polynomials will yield a zero
value at the center and thus the criterion of Eq.(5.9) would be violated.
Consequently, a different procedure is followed as detailed below.

Step 1 . The shape function for the corner node is initially assumed to be
bi-linear, i.e. for node 1 (Figure 5.9) we have

NL
1 =

1
4
(1− ξ)(1− η) (5.19)

This shape function takes the value one at the corner node and zero at
all the other nodes, except for the two nodes 2 and 8 adjacent to node 1
where it takes the value 1/2.

Step 2 . The shape function is made zero at node 2 by subtracting from
NL

1 one half of the quadratic shape function of node 2:

N1(ξ, η) = NL
1 −

1
2
N2 (5.20)

Step 3 . Function N1 still takes the value 1/2 at node 8. The final step is
to substract from N1 one half of the quadratic shape function of node 8

N1(ξ, η) = NL
1 −

1
2

N2 − 1
2
N8 (5.21)
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Fig. 5.9 8-noded quadratic Serendipity rectangle. Derivation of the shape functions
for a mid-side node and a corner node

The resulting shape function N1 satisfies the conditions (5.8) and (5.9)
and contains the desired (quadratic) polynomial terms. Therefore, it is the
shape function of node 1 we are looking for.
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Following the same procedure for the rest of the corner nodes yields
the following general expression

Ni(ξ, η) =
1
4
(1 + ξξi)(1 + ηηi)(ξξi + ηηi − 1) ; i = 1, 3, 5, 7 (5.22)

Figure 5.9 shows that the shape functions for the 8-noded Serendipi-
ty element contain a complete quadratic polynomial and two terms ξ2η
and ξη2 of the cubic polynomial. Therefore, this element has the same
approximation as the 9-noded Lagrange element and it has one node less.
This makes the 8-noded quadrilateral in principle more competitive for
practical purposes (see Section 5.9.2 for further details).

5.4.2 Twelve-noded cubic Serendipity rectangle

This element has four nodes along each side and a total of twelve side
nodes which define the twelve terms polynomial approximation shown in
Figure 5.8. The shape functions are derived following the same procedure
explained for the 8-noded element. Thus, the shape functions for the side
nodes are obtained by the simple product of two Lagrange cubic and linear
polynomials. For the corner nodes the starting point is again the bilinear
approximation. This initial shape function is forced to take a zero value at
the two side nodes adjacent to the corner node by subtracting the shape
functions of those nodes weighted by the factors 2/3 and 1/3. Figure 5.10
shows the expression of the shape functions which can be derived by the
reader as an exercise.

It is simple to check that the element satisfies conditions (5.8) and
(5.9). Figure 5.8 shows that the shape functions contain a complete cubic
approximation plus two terms (ξ3η, ξη3) of the quartic polynomial. This
element compares very favourably with the 16-noded Lagrange element,
since both have a cubic approximation but the Serendipity element has
fewer nodes (12 nodes versus 16 nodes for the cubic Lagrange rectangle).

5.4.3 Seventeen-noded quartic Serendipity rectangle

The quartic Serendipity rectangle has five nodes along each side and a
total of seventeen nodes (sixteen side nodes plus a central node, Figure
5.10). The central node is necessary to introduce the “bubble” function
(1−ξ2)(1−η2) as shown in Figure 5.5. This function contributes the term
ξ2η2 to complete a quartic approximation.

The derivation of the shape functions follows a procedure similar to
that for the 8 and 12 node Serendipity elements. The shape functions
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Fig. 5.10 Shape functions for the cubic (12 nodes) and quartic (17 nodes) Seren-
dipity rectangles

for the side nodes are obtained by the product of a quartic and a linear
polynomial. An exception are nodes 3, 7, 11 and 15 for which the function
1/2 (1− ξ2)(1− η2) is subtracted from that product so that the resulting
shape function takes a zero value at the central node. The starting point
for the corner nodes is the bilinear function to which a proportion of the
shape functions of the side nodes is subtracted so that the final shape
function takes a zero value at these nodes. Finally, the shape function
for the central node is the bubble function. Figure 5.10 shows the shape
functions for this element.

Figure 5.8 shows that the shape functions contain a complete quartic
approximation plus two additional terms (ξ4η and ξη4) from the quintic
polynomial. The corresponding quartic Lagrange element has 25 nodes
(Figure 5.3) and hence the 17-noded Serendipity rectangle is more eco-
nomical for practical purposes.
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5.5 SHAPE FUNCTIONS FOR C0 CONTINUOUS TRIANGULAR
ELEMENTS

The shape functions for the more popular C0 continuous triangular ele-
ments are complete polynomials whose terms can be readily identified by
the Pascal triangle. This also defines the position of the nodes within the
element. We recall, for instance, that the shape function for the 3-noded
triangle is linear. Similarly, the six and ten-noded triangles define the
following complete quadratic and cubic approximations

6-noded triangle6-noded triangle6-noded triangle

φ = α0 + α1x + α2y + α3xy + α4x
2 + α5y

2 (5.23)

10-noded triangle10-noded triangle10-noded triangle

φ = α0+ α1x + α2y + α3xy + α4x
2+ α5y

2+ α6x
3+ α7x

2y + α8xy2+ α9y
3

(5.24)
The αi parameters are obtained by the same procedure as described in

Section 4.3.1 for the 3-noded triangle. This method has obvious difficulties
for higher order elements and it is simpler to apply the technique based
on area coordinates that is explained below.

5.5.1 Area coordinates

Let us join a point P within a triangle of area A with the three vertices 1, 2,
3 (Figure 5.11). This defines three sub-areas A1, A2 and A3 corresponding
to the triangles P13, P12 and P23, respectively (note that A1+A2+A3 =
A). The area coordinates are defined as

L1 =
A1

A
; L2 =

A2

A
; L3 =

A3

A
(5.25)

Obviously

L1 + L2 + L3 =
A1 + A2 + A3

A
=

A

A
= 1 (5.26)

The position of point P can be defined by any two of these three co-
ordinates. The area coordinates of a node can be interpreted as the ratio
between the distance from point P to the opposite side divided by the
distance from the node to that side (Figure 5.11). Thus, area coordinates
of the centroid are L1 = L2 = L3 = 1/3. Area coordinates are also known
as barycentric, triangular or trilinear coordinates and they are typical of
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Fig. 5.11 Area coordinates for a triangle

geometry treatises [Fe]. In the FEM context area coordinates have proved
to be very useful for deriving the shape functions of triangular finite ele-
ments.

Area coordinates are also of interest to define a parametric interpo-
lation of the element geometry. For a straight side triangle the following
relationship between the area and cartesian coordinates can be written

x = L1x1 + L2x2 + L3x3

y = L1y1 + L2y2 + L3y3

(5.27)

This equation system is completed with Eq.(5.26) so that L1, L2 and
L3 can be obtained in terms of the cartesian coordinates by

Li =
1

2A(e)
(ai + bix + ciy) (5.28)

where A(e) is the area of the triangle and ai, bi, ci coincide with the values
given in Eq.(4.32b). It is therefore concluded that the area coordinates
coincide precisely with the shape functions for the 3-noded triangular ele-
ment.
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5.5.2 Derivation of the shape functions for C0 continuous triangles

The shape functions for triangles containing complete Mth degree poly-
nomials can be obtained in terms of the area coordinates as follows. Let
us consider a node i characterized by the position (I, J,K) where I, J and
K are the powers of the area coordinates L1, L2 and L3, respectively in
the expression of the shape function. Thus, I +J +K = M and the shape
function of node i is given by

Ni = liI(L1) liJ(L2) liK(L3) (5.29)

where liI(L1) is the normalized 1D Lagrange Ith degree polynomial in L1

which takes the value one at node i (Eq.(3.5b)), i.e.

liI(L1) =
∏

j=1,I
j 6=i

(
L1 − Lj

1

)
(
Li

1 − Lj
1

) (5.30)

with identical expressions for liJ(L2) and liK(L3). In Eq.(5.30) Li
1 is the

value of L1 at node i.
The values of I, J,K for each node can be deduced by noting that: a)

the shape function of a corner node depends on a single area coordinate
only and thus the corresponding I, J or K power for that node is equal
to M ; b) all nodes located on the lines L1 = constant have the same
value for I and the same occurs with L2 and J and L3 and K; and c) the
values of I, J and K associated with L1, L2 and L3, respectively, decrease
progressively from the maximum value equal to M for the lines Li = 1
at the corner nodes, to a value equal to zero at the lines Li = 0 which
coincide with the opposite side to each corner node i (Figure 5.12a).

This application of Eqs.(5.29) and (5.30) will be clarified next with
some examples.

5.5.3 Shape functions for the 3-noded linear triangle

The shape functions for the 3-noded triangle are linear polynomials (M =
1). The area coordinates and the values of I, J,K for each node can be
seen in Figure 5.12b.

Node 1

Position (I, J,K) : (1, 0, 0)
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Fig. 5.12 Linear, quadratic and cubic triangular elements. Area coordinates and
values of (I, J,K) for each node

Area coordinates: (1, 0, 0)

N1 = l11(L1) = L1 (5.31)

It is straight-forward to find N2 = L2 and N1 = L3 as expected.

5.5.4 Shape functions for the six-noded quadratic triangle

The shape functions for this element are complete quadratic polynomials
(M = 2). The area coordinates and the values of I, J and K for each node
are shown in Figure 5.12b.
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Fig. 5.13 Shape functions for a corner node and a side node for a quadratic triangle

Node 1

Position (I, J,K) : (2, 0, 0)
Area coordinates: (1, 0, 0)

N1 = l12(L1) =
(L1 − 1/2)L1

(1− 1/2) 1
= (2L1 − 1)L1 (5.32)

Node 4

Position (I, J,K) : (1, 1, 0)
Area coordinates: (1/2, 1/2, 0)

N4 = l21(L1) l21(L2) =
L1

1/2
L2

1/2
= 4L1L2 (5.33)

Following the same procedure for the rest of nodes we find

N1 = (2L1 − 1)L1 ; N2 = (2 L2 − 1)L2 ; N3 = (2L3 − 1)L3

N4 = 4L1L2 ; N5 = 4 L2L3 ; N6 = 4L1L3

(5.34)

Figure 5.13 shows two characteristic shape functions for this element.

5.5.5 Shape functions for the ten-noded cubic triangle

The shape functions for this element are complete cubic polynomials (M =
3). Figure 5.12c shows the area coordinates and the values of I, J and K
at each node:

Node 1

Position (I, J,K) : (3, 0, 0)
Area coordinates: (1, 0, 0)

N1 = l13(L1) =
(L1 − 2/3) (L1 − 1/3) L1

(1− 2/3) (1− 1/3) 1
=

1
2

L1 (3L1 − 1) (3L1 − 2)

(5.35)
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Node 4

Position (I, J,K): (2, 1, 0)
Area coordinates: (2/3, 1/3, 0)

N4 = l22(L1) l21(L2) =
(L1 − 1/3) L1

(2/3− 1/3) 2/3
· L2

1/3
=

9
2
(3L1 − 1) L1L2 (5.36)

The same procedure applied to the rest of the nodes gives

N1 =
1
2
L1(3L1 − 1)(3L1 − 2) ; N2 =

1
2
L2(3L2 − 1)(3L2 − 2)

N3 =
1
2
L3(3L3 − 1)(3L3 − 2) ; N4 =

9
2
(3L1 − 1)L1L2

N5 =
9
2
(3L2 − 1)L1 L2 ; N6 =

9
2
(3L2 − 1)L2 L3

N7 =
9
2
(3L3 − 1) L2L3 ; N8 =

9
2
(3L3 − 1)L3L1

N9 =
9
2
(3L2 − 1)L3 L1 ; N10 = 27L1L2L3

(5.37)

A similar technique can be employed to derive the shape functions for
higher order triangular elements.

5.5.6 Natural coordinates for triangles

It is convenient to define a normalized coordinate system α, β (also called
natural coordinate system), such that the triangle has the sides over the
lines α = 0, β = 0 and 1− α− β = 0 as shown in Figure 5.14. The shape
functions for the 3-noded triangle can then be written as

N1 = 1− α− β ; N2 = α , N3 = β (5.38)

Clearly as Li = Ni (Eq.(5.28)) the area coordinates L2 and L3 coincide
with the natural coordinates α and β, respectively and L1 = 1− α− β.

These coincidences allow us to express the shape functions of triangular
elements in terms of the natural coordinates. This is particularly useful
for deriving isoparametric triangular elements (Section 5.10).

5.6 ANALYTIC COMPUTATION OF INTEGRALS OVER
RECTANGLES AND STRAIGHT-SIDED TRIANGLES

For irregular and straight-sided element, the analytical computation of
the element integrals is possible as simple polynomial forms are involved
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Fig. 5.14 Natural coordinates for a triangular element

in the integrand. Some interesting analytical expressions for the element
integrals in terms of the local cartesian coordinates x, y shown in Figu-
re 5.15 exist for rectangles and straight-sided triangles. A typical integral
term such as

Cij = D

∫∫

A(e)

xmyn dA (5.39)

can be directly integrated by the following expressions:

Straight-sided triangular elementStraight-sided triangular element

Cij = D cn+1
[
am+1 − (−b)m+1

] m!n!
(m + n + 2)!

(5.40)

Rectangular elementRectangular element

Kij = D
(2a)m+1 (2b)n+1

(m + 1) (n + 1)
(5.41)

In the above m and n are integers and a, b and c are typical element
dimensions (Figure 5.15). Once K and f have been found in the local co-
ordinate system x, y using the above expressions, they can be transformed
into the global axes using the standard relationships (see Chapter 1)

Kij = TT Kij T , fi = TT f i (5.42)

where T is the 2× 2 coordinate transformation matrix

T =
[
cos (xx) cos (xy)
cos (yx) cos (yy)

]
(5.43)
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Fig. 5.15 Local coordinate system x̄, ȳ for the analytical computation of integrals
over triangular and rectangular elements

with (xx) being the angle between the local x axis and the global x axis,
etc.

Other simple analytical forms in terms of area coordinates can be found
for area integrals over straight-sided triangles. A typical stiffness matrix
term involves the cartesian derivatives of the shape functions. This is
expressed in terms of area coordinates by the standard chain rule

∂N1(L1, L2, L3)
∂x

=
∂N1

∂L1

∂L1

∂x
+

∂N1

∂L2

∂L2

∂x
+

∂N1

∂L3

∂L3

∂x
(5.44)

As the element sides are assumed to be straight, Eq.(5.28) leads to

∂Li

∂x
=

bi

2A(e)
and

∂Li

∂y
=

ci

2A(e)
(5.45)

where bi and ci are given by Eq.(4.32b). Combining Eqs.(5.44) and (5.45)
gives

∂Ni

∂x
=

1
2A(e)

3∑

i=1

bi
∂Ni

∂Li
;

∂Ni

∂y
=

1
2A(e)

3∑

i=1

ci
∂Ni

∂Li
(5.46)

Thus, the element integrals can be easily expressed in terms of area co-
ordinates and they can be directly computed by the following expressions

∫∫

A(e)

Lk
1 Ll

2 Lm
3 dA = 2A(e) k! l! m!

(2 + k + l + m)!
(5.47a)
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∮

l(e)
Lk

i Ll
j ds = l(e)

k! l!
(1 + k + l)!

(5.47b)

If one of the area coordinates is missing in the integrand, the corres-
ponding power is omitted in the denominator of Eqs.(5.47) and it is made
equal to a unit value in the numerator.

The use of the natural coordinates α and β does not introduce any
additional difficulty. Exact expressions for the integrals over straight-sided
triangles can be found as

I =
∫∫

A(e)

αmβn dA =
2A(e) Γ (m + 1) Γ (n + 1)

Γ (3 + m + n)
(5.48)

where Γ is the Gamma function [Ral]. If m and n are positive integers

I = 2A(e) m! n!
(2 + m + n)!

(5.49)

This is just a particular case of Eq.(5.47a) when one of the area coor-
dinates is missing. Similarly, it is deduced from (5.47b) that

∮

l(e)
αmds = l(e)

m!
(2 + m)!

(5.50)

For curve-sided elements the computation of the cartesian derivatives
of the shape functions requires a parametric formulation. This generally
introduces rational algebraic functions in the integrals and makes nume-
rical integration unavoidable. This topic is explained in Chapter 6.

Example 5.1: Compute the stiffness matrix K(e)
11 for a quadratic triangle with

straight sides and unit thickness.

-- Solution-- Solution

The first step is to obtain the cartesian derivatives for the shape function N1

expressed in terms of the area coordinates as

∂N1

∂x
=

∂N1

∂L1

∂L1

∂x
+

∂N1

∂L2

∂L2

∂x
+

∂N1

∂L3

∂L3

∂x

∂N1

∂y
=

∂N1

∂L1

∂L1

∂y
+

∂N1

∂L2

∂L2

∂y
+

∂N1

∂L3

∂L3

∂y
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From Eq.(5.32) we deduce

∂N1

∂L1
= 4L1 − 1 ;

∂N1

∂L2
=

∂N1

∂L3
= 0

and from Eq.(5.45)

∂Li

∂x
=

bi

2A(e)
;

∂Li

∂y
=

ci

2A(e)

Therefore

∂N1

∂x
=

b1

2A(e)
(4L1 − 1) ;

∂N1

∂y
=

c1

2A(e)
(4L1 − 1)

and

B1 =
(4L1 − 1)

2A(e)




b1 0
0 c1

c1 b1




Matrix K(e)
11 is thus obtained by

K(e)
11 =

∫∫

A(e)
BT

1 D B tdA =
t

(2A(e))2

[
b1 0 b1

0 c1 c1

]



d11 d12 0

d12 d22 0

0 0 d33


×

×



b1 0
0 c1

c1 b1




∫∫

A(e)
(4L1 − 1)2 dA

We deduce from Eq.(5.47a)

∫∫

A(e)
(4L1 − 1)2 dA = 2A(e)

[
16 · 2!

4!
− 8 · 1!

3!
+

1
2

]
= A(e)

which leads to

K(e)
11 =

1
4A(e)

[
b2
1 d11 + c2

1 d33 b1c1 (d33 + d12)

b1c1(d33 + d12) b2
1 d33 + c2

1d22

]

The rest of the K(e)
ij matrices are obtained following an identical procedure.

The complete expression of the stiffness matrix for the quadratic triangle can
be found in [CMPW] and [WJ].
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5.7 GENERAL PERFORMANCE OF TRIANGULAR AND
RECTANGULAR ELEMENTS

We present next two examples which lead us to draw some conclusions on
the behaviour of rectangular and triangular elements. The first example
shown in Figure 5.16 is the analysis of a square plate under a parabolic
traction acting symmetrically on two opposite sides. Different meshes of
3 and 6-noded triangles and 4 and 9-noded rectangles are used for the
analysis. Numerical results for the horizontal displacement of the central
point on the loaded side show that the 3-noded triangle is the less accurate
of all elements studied. Nevertheless 1% error with respect to the “exact”
analytical solution is obtained with a fine mesh [Ga,Ya].

Fig. 5.16 Square plate under parabolic traction. Analysis with 3- and 6-noded
triangles and 4 and 9-noded rectangles
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Fig. 5.17 Cantilever deep beam under parabolic edge load (ν = 0.2). Analysis with
3- and 6-noded triangles, 4- and 9-noded rectangles and the 4-noded rectangle
with two incompatible modes

The accuracy increases notably for the same number of DOFs when
6-noded triangles are used and, even more, when either the 4- or the 9-
noded rectangles are used, as shown in Figure 5.16. Similarly good results
are obtained with the 8-noded rectangle.

The second example is a cantilever deep beam under a parabolic edge
load (Figure 5.17) [HH]. The analysis is performed using the same ele-
ments as in the previous example and, in addition, the 4-noded rectangle
enhanced with two incompatible modes studied in Section 4.4.2.3. Results
plotted in Figure 5.17 show clearly the poor accuracy of the 3-noded tri-
angle for bending dominated problems. The accuracy improves slightly
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for the 6-noded quadratic triangular element. The 4-noded rectangle has
an overstiff behaviour, as expected from its inability to reproduce pure
bending situations. Its accuracy improves however when finer meshes are
used. Note the excellent performance of the 4-noded rectangle with incom-
patible modes and the 9-noded Lagrange rectangle. Similar good results
are obtained using the 8-noded quadratic Serendipity rectangle.

These results can be generalized to other situations (see for instance
Section 4.5). Typically, rectangles are more accurate than triangles for the
same number of DOFs. However, triangular elements are more versatile
due to their better ability to model complex geometries with unstructured
meshes.

As a rule, low order elements are simpler to use, although finer meshes
are needed in zones where high stress gradients exist. Higher order ele-
ments are more competitive in these regions.

5.8 ENHANCEMENT OF 2D ELASTICITY ELEMENTS USING
DRILLING ROTATIONS

The flexural behaviour of 2D elasticity elements can be substantially im-
proved by using the so-called “drilling rotations”. This technique was ori-
ginally developed to enhance the performance of plane stress triangles and
quadrilaterals for shell analysis (Chapter 7 of Volume 2 [On]). However,
it can be also applied to derive improved plane stress and plane strain
elements.

The basic idea is to introduce a mechanical in-plane rotation defined
as (Figure 4.3)

θz =
1
2

(
∂v

∂x
− ∂u

∂y

)
(5.51)

The corresponding rotational stiffness for each element is introduced
by adding to the PVW the term

∫∫

A(e)

αrEt(δθz − δθz)(θz − θz) dA (5.52)

where αr is a user-defined parameter (typically αr ' 10−2− 10−3) and θz

is a mean element in-plane rotation. Substituting Eq.(5.51) into Eq.(5.52)
allows the resulting stiffness equation to be expressed in terms of the nodal
displacement DOFs only.

Details on the derivation of triangles and quadrilaterals using this ap-
proach can be found in [ZT] and in Chapter 7 of Volume 2 [On].
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5.9 CONCLUDING REMARKS

We have presented in this chapter the derivation of the shape functions for
rectangular and triangular solid elements of any order of approximation.
The element integrals appearing in the expressions of the stiffness matrix
and the equivalent nodal force vector can be computed analytically for
rectangular elements and straight-side triangular elements and some useful
integration rules have been given.

The examples presented show the superiority of quadratic elements
versus linear ones. Also, rectangles show a better performance than trian-
gles. The simple 3-noded triangle is however the more versatile element
for modelling complex structures with unstructured meshes.



6

ISOPARAMETRIC 2D SOLID
ELEMENTS. NUMERICAL
INTEGRATION AND APPLICATIONS

6.1 INTRODUCTION

In the previous chapter we have described how to obtain the shape func-
tions for 2D solid elements of triangular and rectangular shape and how to
compute analytically the stiffness matrix and the equivalent nodal force
vector for straight-sided triangular elements and rectangular elements.

This chapter explains how to derive 2D solid elements of arbitrary
shape (i.e. irregular quadrilaterals and curve-sided triangles) using an
isoparametric formulation and numerical integration. The basis of the
isoparametric formulation for 2D solid elements is described in the next
section. Then, the quadrature rules for the numerical integration of the
stiffness matrix and the equivalent nodal force vector for triangular and
quadrilateral elements are explained. The patch test for 2D solid elements
is presented. Some hints on the organization of a computer program for
FEM analysis of 2D solids are given. The chapter concludes with examples
of the application of some of the 2D solid elements studied to the analysis
of real structures.

6.2 ISOPARAMETRIC QUADRILATERAL ELEMENTS

We recall that the term “isoparametric” means that the displacement
shape functions are used to interpolate the element geometry in terms of
the nodal coordinates. Thus, the geometry of a 2D isoparametric quadri-
lateral with n nodes is expressed as

x =
n∑

i=1

Ni(ξ, η) xi ; y =
n∑

i=1

Ni(ξ, η) yi (6.1)
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where Ni(ξ, η) are the standard displacement shape functions. Eqs.(6.1)
relate the cartesian and the natural coordinates at each point. Such a
relationship must be unique and this is satisfied if the Jacobian of the
transformation of the partial derivatives of a function in the natural and
cartesian coordinate systems has a constant positive sign over the element
[SF].

It can be shown that this condition is satisfied for linear quadrilate-
ral elements if no internal angle between two element sides is equal or
greater than 180◦ [SF]. For quadratic elements it is additionally required
that the side nodes are located within the “middle third” of the distance
between adjacent corners [Jor]. There are no practical rules for higher
order quadrilateral elements and the constant sign of the determinant of
the Jacobian matrix is the only possible verification in this case. Figure 6.1
shows some examples of 2D isoparametric elements.

Fig. 6.1 Some two-dimensional isoparametric elements
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Most of the isoparametric formulation ideas originated from the work of
Taig [Ta,TK] who derived the 4-noded isoparametric quadrilateral. These
concepts were generalized to more complex elements by Irons [IA,Ir].

Eq.(6.1) allows us to obtain a relationship between the derivatives of
the shape functions with respect to the cartesian and the natural coor-
dinates. In general, Ni is expressed in terms of the natural coordinates ξ
and η and the chain rule of derivation yields

∂Ni

∂ξ
=

∂Ni

∂x

∂x

∂ξ
+

∂Ni

∂y

∂y

∂ξ
;

∂Ni

∂η
=

∂Ni

∂x

∂x

∂η
+

∂Ni

∂y

∂y

∂η
(6.2)

In matrix form




∂Ni
∂ξ
∂Ni
∂η





=




∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η




︸ ︷︷ ︸
J(e)





∂Ni
∂x
∂Ni
∂y





= J(e)





∂Ni
∂x
∂Ni
∂y





(6.3)

where J(e) is the Jacobian matrix of the transformation of the derivatives
of Ni in the natural and global axes. The superindex e in J denotes that
this matrix is always computed at element level. We deduce from Eq.(6.3)





∂Ni
∂x
∂Ni
∂y





=

[
J(e)

]−1




∂Ni
∂ξ
∂Ni
∂η





=
1∣∣∣J(e)

∣∣∣




∂y
∂η

− ∂y
∂ξ

−∂x
∂η

∂x
∂ξ








∂Ni
∂ξ
∂Ni
∂η





(6.4)

where
∣∣∣J(e)

∣∣∣ is the determinant of the Jacobian matrix (also simply called
“the Jacobian”). This determinant relates the differential of area in the
two coordinate systems, i.e.

dx dy =
∣∣∣J(e)

∣∣∣ dξ dη (6.5)

The terms of J(e) are computed using the isoparametric approximation
(6.1), i.e.

∂x

∂ξ
=

n∑

i=1

∂Ni

∂ξ
xi ;

∂x

∂η
=

n∑

1=1

∂Ni

∂η
xi; etc. (6.6)

and

J(e) =
n∑

i=1




∂Ni
∂ξ

xi
∂Ni
∂ξ

yi

∂Ni
∂η

xi
∂Ni
∂η

yi


 (6.7)
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For a rectangular element

J(e) =
[
a 0
0 b

]
and |J(e)| = ab (6.8)

6.2.1 Stiffness matrix and load vector for the isoparametric quadrilateral

Substituting the cartesian derivatives of the shape functions from Eq.(6.4)
into (4.38) yields the general form of the strain matrix for an isoparametric
quadrilateral element in terms of the natural coordinates by

Bi(ξ, η) =




∂Ni

∂x
0

0
∂Ni

∂y
∂Ni

∂y

∂Ni

∂x




=
1∣∣∣J(e)

∣∣∣




bi 0
0 ci

ci bi


 (6.9)

where

bi =
∂y

∂η

∂Ni

∂ξ
− ∂y

∂ξ

∂Ni

∂η
; ci =

∂x

∂ξ

∂Ni

∂η
− ∂x

∂η

∂Ni

∂ξ
(6.10)

The integrals in the element stiffness matrix are transformed to the
normalized natural coordinate space as

K(e)
ij =

∫∫

A(e)

BT
i DBjt dx dy =

∫ +1

−1

∫ +1

−1
BT

i (ξ, η)DBj(ξ, η)
∣∣∣J(e)

∣∣∣t dξ dη

=
∫ +1

−1

∫ +1

−1




d11bibj + d33cicj d12bicj + d33cjbi

d21cibj + d3bicj d33bibj + d22cicj


 t∣∣∣J(e)

∣∣∣
dξ dη

=
∫ +1

−1

∫ +1

−1
Gij(ξ, η)

t∣∣∣J(e)
∣∣∣
dξ dη (6.11)

Eq.(6.11) shows that the integrand of K(e)
ij contains rational algebraic

functions in ξ and η. An exception to this rule is when the determinant
of the Jacobian matrix is constant. This only occurs for rectangular ele-
ments and for straight side triangles. In these cases the element integrals
contain simple polynomials and the analytical expressions of Section 5.6
can be applied. For general quadrilateral shapes the analytical integration
of K(e)

ij in the natural coordinate system ξ, η is difficult (and in some cases
impossible!) and the best option is to use numerical integration.
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Fig. 6.2 Four-noded isoparametric quadrilateral. Actual and normalized geometry

A similar procedure is followed to compute the equivalent nodal force
vectors for isoparametric quadrilateral elements. For example, for the case
of body forces (see Eq.(4.65))

f (e)
bi

=
∫∫

A(e)

NT
i bt dx dy =

∫ +1

−1

∫ +1

−1
NT

i b
∣∣∣J(e)

∣∣∣t dξ dη (6.12)

Numerical integration is also used to compute integrals such as that of
Eq.(6.12).

Example 6.1: Formulate an isoparametric quadrilateral of 4 nodes.

-- Solution-- Solution

The actual and normalized geometries of the element are shown in Figure 6.2.
The isoparametric description of the geometry is written as

x =
{

x
y

}
=

4∑

i=1

Ni(ξ, η)
{

xi

yi

}
(6.13)

where Ni(ξ, η) = 1
4 (1 + ξξi)(1 + ηiη).

The above expression maps the natural coordinates of each element point
onto the cartesian space. For example, the cartesian position of the central
point O with natural coordinates (0,0) is

x0 =
4∑

i=1

Ni(0, 0)
{

xi

yi

}
=

1
4

{
x1 + x2 + x3 + x4

y1 + y2 + y3 + y4

}
(6.14a)
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Point A at the center of side 1–2 with natural coordinates (0,-1) is located in
the cartesian space at

xA =
4∑

i=1

Ni(0,−1)
{

xi

yi

}
=

1
2

{
x1 + x2

y1 + y2

}
(6.14b)

The isoparametric description is useful to express all the element expressions
in the natural coordinate system.
For instance, the Jacobian matrix of Eq.(6.7) is given by

J(e) =
4∑

i=1




ξi

4
(1 + ηηi)xi

ξi

4
(1 + ηηi)yi

ηi

4
(1 + ξξi)xi

ηi

4
(1 + ξξi)yi


 (6.15)

The cartesian derivatives of the shape functions are obtained from Eq.(6.4)
as





∂Ni

∂x
∂Ni

∂y





=
1

|J(e)|
4∑

j=1




ηj

4
(1 + ξξj)yj −ξj

4
(1 + ηηj)yj

−ηj

4
(1 + ξξj)xj

ξj

4
(1 + ηηj)xj








ξi

4
(1 + ηηi)

ηi

4
(1 + ξξi)





(6.16)
From above equations we deduce





∂Ni

∂x
∂Ni

∂y





=
{

b̂i

ĉi

}
(6.17a)

with

b̂i =
αi

1 + αi
2ξ + αi

3η + αi
4ξη

βi
1 + βi

2ξ + βi
3η + βi

4ξη
, ĉi =

αi
5 + αi

6ξ + αi
7η + αi

8ξη

βi
5 + βi

6ξ + βi
7η + βi

8ξη
(6.17b)

where αi
1 · · ·αi

8, β
i
1 · · ·βi

8 are nodal parameters depending on the nodal coor-
dinates.
The strain matrix and the element stiffness matrix now contain rational al-
gebraic functions making exact integration over an arbitrary quadrilateral
domain difficult. This problem is overcome by using numerical integration
as only the numerical values of all expressions at the integration points are
needed (Section 6.4).
The above equations simplify considerably for rectangular shapes. For a rec-
tangular element of size 2a× 2b we have

J(e) =
[
a 0
0 b

]
, |J(e)| = ab and dx dy = ab dξ dη (6.18)
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The cartesian derivatives of the shape functions are now simply given by




∂Ni

∂x
∂Ni

∂y





=





ξi

4b
(1 + ηηi)

ηi

4a
(1 + ξξi)





(6.19)

The element stiffness matrix is expressed in the natural system by

K(e)
ij =

∫ +1

−1

∫ +1

−1

BT
i DBi ab dξ dη (6.20)

The integral expression of K(e)
ij now contains polynomial expressions in

ξ, η, ξ2, η2 and ξη which can be directly computed, noting that
∫ +1

−1

∫ +1

−1

C[1, ξ, η, ξ2, η2, ξη] dξ dη = C

[
4, 0, 0,

4
3
,
4
3
, 0

]
(6.21)

where C is a constant parameter.
The reader is encouraged to find matrix K(e) of Box 4.1 as an exercise.

6.2.2 A comparison between the 8- and 9-noded isoparametric
quadrilaterals

It is interesting to assess the circumstances under which the linearly dis-
torted 8 and 9-noded quadrilaterals can fully represent any quadratic
cartesian expansion. The straight-sided element geometry is exactly appro-
ximated by the bilinear (subparametric) interpolation

x =
4∑

i=1

Nixi (6.22)

where Ni = 1
4(1 + ξξi)(1 + ηηi) are the shape functions for the 4-noded

rectangle.
We wish to be able to reproduce

u = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 (6.23)

Noting that the bilinear form contains terms such as 1, ξ, η and ξη and
by substituting Eq.(6.22) into (6.23) the above can be written as

u = β1 + β2ξ + β3η + β4ξ
2 + β5ξη + β6η

2 + β7η
2 + β8ξ

2 + β9ξ
2η2 (6.24)

where β1 to β9 depend on the values of α1 to α6.
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We shall now try to match the terms arising from the quadratic ex-
pansion of the 8-noded Serendipity shown in Figure 5.9. Noting the terms
occuring in the Pascal triangle of Figure 5.8, the interpolation can be
written as

u = b1 + b2ξ + b3η + b4ξ
2 + b5ξη + b6η

2 + b7ξη
2 + b8ξ

2η (6.25)

It is evident that for arbitrary values of η1 to η9 it is impossible to
match the coefficients b1 to b8 due to the absence of the term ξ2η2 in
Eq.(6.25).

For the 9-noded Lagrange element (Figure 5.5) the expansion similar
to Eq.(6.25) gives

u = b1 + b2ξ + b3η + b4ξ
2 + b5ξη + b6η

2 + b7ξη
2 + b8ξ

2η + b9ξ
2η2 (6.26)

and the matching of the coefficients in Eqs.(6.24) and (6.26) can be made
directly.

We conclude that the 9-noded element can better represent quadratic
cartesian polynomials on linearly distorted shapes and therefore is ge-
nerally preferable for modelling smooth solutions. Figure 6.3 taken from
[ZTZ] shows an example of this for the analysis, with 8- and 9-node ele-
ments respectively, of a simple beam solution where exact answers are
quadratic. With no distorsion both elements with a full (3×3) integration
rule give exact results but when distorted only the 9-node element does so,
the 8-noded element giving a significant stress fluctuation. More examples
of this kind are presented in Section 6.10.

A similar argument leads to the conclusion that in 3D again only 27-
noded Lagrange elements are capable of reproducing fully a quadratic
function in cartesian coordinates when trilinearity distorted.

Lee and Bathe [LB] have investigated the problem for cubic and quartic
Serendipity and Lagrange quadrilaterals and showed that under bilinear
distorsions the full order cartesian polynomial terms remain in Lagrange
elements but not in Serendipity ones.

6.3 ISOPARAMETRIC TRIANGULAR ELEMENTS

The isoparametric interpolation for triangular elements is written in simi-
lar form to Eq.(6.1) by

x =
n∑

i=1

Ni(L1, L2, L3) xi ; y =
n∑

i=1

Ni(L1, L2, L3) yi (6.27)
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Fig. 6.3 Quadratic Serendipity and Lagrange 8- and 9-noded elements in regular
and distorted form. Elastic deflection of a beam under constant moment. Note
poor results of 8-noded distorted element [ZTZ]

The computation of the cartesian derivatives of Ni and the Jacobian
matrix is inmediate for straight-sided triangles (Example 6.2) giving

J(e) =
[
x2 − x1 y2 − y1

x3 − x1 y3 − y1

](e)

and |J(e)| = 2A(e) (6.28)

The computation of the element integrals in this case is simple via the
analytic expressions of Section 5.7.
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For curve-sided triangles it is convenient to use the natural coordinates
α and β defined in Section 5.5.6. This implies that L2 and L3 are replaced
by α and β, respectively, and L1 by 1 − α − β in all expressions. The
computation of the cartesian derivatives of Ni follows precisely the steps
described in the previous section, simply changing the coordinates ξ and
η for α and β, respectively. For instance





∂Ni

∂x
∂Ni

∂y





=
1

|J(e)|




∂y

∂β
− ∂y

∂α

−∂x

∂β

∂x

∂α








∂Ni

∂α
∂Ni

∂β





(6.29)

J(e) =
n∑

i=1




∂Ni

∂α
xi

∂Ni

∂α
yi

∂Ni

∂β
xi

∂Ni

∂β
yi


 (6.30)

∂x

∂α
=

n∑

i=1

∂Ni(α, β)
∂α

xi ;
∂x

∂β
=

n∑

i=1

∂Ni(α, β)
∂β

xi ; etc. (6.31)

The element stiffness matrix is obtained by an expression analogous to
Eq.(6.11) by

K(e)
ij =

∫ 1

0

∫ 1−β

0
BT

i DBj

∣∣∣J(e)
∣∣∣t dα dβ =

∫ 1

0

∫ 1−β

0
Gij (α, β)

t∣∣∣J(e)
∣∣∣
dα dβ

(6.32)
where all the terms in Bi and Gij are deduced from Eqs. (6.6)-(6.11)
simply substituting ξ and η for α and β, respectively.

For curve-sided triangles the integrand of Eq.(6.32) is a rational poly-
nomial and numerical integration is needed.

Example 6.2: Derive the expression of the Jacobian matrix for an isoparametric
triangle with straight sides.

-- Solution-- Solution

As the element sides are straight, a linear interpolation for the geometry
suffices, i.e.

x = L1x1 + L2x2 + L3x3

y = L1y1 + L2y2 + L3y3

(6.33)

where xi, yi i = 1, 2, 3 are the coordinates of the three vertex nodes.
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From Eq.(5.26) we deduce L1 = 1−L2−L3. Substituting this into the above
gives

x = x1 + (x2 − x1)L2 + (x3 − x1)L3

y = y1 + (y2 − y1)L2 + (y3 − y1)L3

(6.34)

The derivatives of Ni with respect to L2 and L3 are obtained from




∂Ni
∂L2

∂Ni
∂L3





=




∂x
∂L2

∂y
∂L2

∂x
∂L3

∂y
∂L3








∂Ni
∂x

∂Ni
∂y





= J(e)





∂Ni
∂x

∂Ni
∂y





(6.35)

The Jacobian matrix is deduced from the above two equations as

J(e) =




∂x
∂L2

∂y
∂L2

∂x
∂L3

∂y
∂L3


 =

[
x2 − x1 y2 − y1

x3 − x1 y3 − y1

]
(6.36)

The cartesian derivatives are obtained by (noting that
∣∣J(e)

∣∣ = 2A(e))




∂Ni
∂x

∂Ni
∂y





=
1

2A(e)

[
y3 − y1 y1 − y2

x1 − x3 x2 − x1

] 



∂Ni
∂L2

∂Ni
∂L3





(6.37)

Let us verify the above expression for the simple 3-noded triangle. For ins-

tance, for i = 1,
∂N1

∂L2
=

∂N1

∂L3
= −1 (as N1 = L1 = 1− L2 − L3) and





∂N1
∂x

∂N1
∂y





=
1

2A(e)

{
y2 − y3

x3 − x2

}
(6.38)

Note the coincidence with the expressions obtained using Eqs.(4.33) directly.
The expression for the cartesian derivatives obtained is completely general
for straight-sided triangles of any approximation order (i.e. quadratic, cubic,
etc.).
The reader is encouraged to repeat the process using the natural coordinates
α and β.

6.4 NUMERICAL INTEGRATION IN TWO DIMENSIONS

It has been shown in the previous section that all the element integrals can
be written in the natural coordinate space making use of the isoparametric
formulation. The numerical integration by a Gauss quadrature will be
considered next.
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Fig. 6.4 Gauss quadratures over quadrilateral elements, a) 1×1, b) 2×2, c) 3×3,
d) 4× 4 integration points

6.4.1 Numerical integration in quadrilateral domains

The integral of a term g(ξ, η) over the normalized isoparametric quadri-
lateral domain can be evaluated using a 2D Gauss quadrature by

∫ +1

−1

∫ +1

−1
g(ξ, η) dξ dη =

∫ +1

−1
dξ

[ nq∑

q=1

g(ξ, ηq)Wq

]
=

np∑

p=1

nq∑

q=1

g(ξp, ηq)WpWq

(6.39)
where np and nq are the number of integration points along each natural
coordinate ξ and η respectively; ξp and ηq are the natural coordinates of
the pth integration point and Wp,Wq are the corresponding weights.

The coordinates and weights for each natural direction are directly
deduced from those given in Table 3.1 for the 1D case. Let us recall that
a 1D quadrature of qth order integrates exactly a polynomial of degree
q ≤ 2n− 1 (Section 3.4). Figure 6.4 shows the more usual quadratures for
quadrilateral elements.

Example 6.3: Integrate numerically the function f(ξ, η) = ξ2η2 over a rectan-
gular element with dimensions 2a× 2b.

-- Solution-- Solution

Since the element is rectangular |J(e)| = ab (see Eq.(6.8)).
The integrand is a quadratic function in ξ and η and hence a 2×2 quadrature
is needed (Figure 6.4b). Thus

I =
∫∫

A

ξ2η2dA = ab

∫ +1

−1

∫ +1

−1

ξ2η2 = ab
2∑

p=1

2∑
q=1

(ξ2η2)p,qWpWq =
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= ab

[
(−
√

3
3

)2(−
√

3
3

)2 + (−
√

3
3

)2(
√

3
3

)2 + (
√

3
3

)2(−
√

3
3

)2 + (
√

3
3

)2(
√

3
3

)2
]

=
4
9
ab

which is the exact solution.

6.4.2 Numerical integration over triangles

The Gauss quadrature for triangles is written as
∫ 1

0

∫ 1−L3

0
f(L1, L2, L3) dL2 dL3 =

np∑

p=1

f(L1p , L2p , L3p) Wp (6.40)

where np is the number of integration points: L1p , L2p , L3p and Wp are
the area coordinates and the corresponding weight for the pth integration
point.

Figure 6.5 shows the more usual coordinates and weights; the term
“accuracy” in the figure refers to the highest degree polynomial which is
exactly integrated by each quadrature. Figure 6.5 is also of direct applica-
tion for computing the integrals defined in terms of the natural coordinates
α and β, simply recalling that L2 = α,L3 = β and L1 = 1− α− β.

The weights in Figure 6.5 are normalized so that their sum is 1/2.
In many references this value is changed to the unity and this requires
the sum of Eq.(6.40) to be multiplied by 1/2 so that the element area is
correctly computed in those cases.

Example 6.4: Compute the area of a triangular element with straight sides by
numerical integration.

-- Solution-- Solution

A(e) =
∫∫

A(e)
dx dy =

∫ 1

0

∫ 1−β

0

|J(e)| dα dβ = |J(e)|
∑

p

Wp =
|J(e)|

2

which corresponds with the value obtained in Eq.(6.28).

For further information on numerical integration over triangular do-
mains see [CMPW,Cow,Du,ZTZ].
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Figure n Accuracy Points L1 L2 L3 Wi

(a) 1 Linear a 1/3 1/3 1/3 1/2

a 1/2 1/2 0 1/6
(b) 3 Quadratic b 0 1/2 1/2 1/6

c 1/2 0 1/2 1/6

a 1/3 1/3 1/3 γ1

(c) 4 Cubic b 0.6 0.2 0.2 γ2

c 0.2 0.6 0.2 γ2

d 0.2 0.2 0.6 γ2

a α1 β1 β1 γ3

b β1 α1 β1 γ3

(d) 6 Quartic c β1 β1 α1 γ3

d α2 β2 β2 γ4

e β2 α2 β2 γ4

f β2 β2 α2 γ4

α1 = 0.8168475730 ; β1 = 0.0915762135 ; γ1 = −27

96
; 2γ3 = 0.1099517437

α2 = 0.1081030182 ; β2 = 0.4459484909 ; γ2 =
25

96
; 2γ4 = 0.2233815897

Fig. 6.5 Coordinates and weights for the Gauss quadrature in triangular elements

6.5 NUMERICAL INTEGRATION OF THE ELEMENT MATRICES
AND VECTORS

6.5.1 Numerical integration of the stiffness matrix

The stiffness matrix for an isoparametric quadrilateral element is com-
puted using numerical integration in the natural coordinate system as

K(e)
ij =

∫∫

A(e)

BT
i DBjt dx dy =

∫ +1

−1

∫ +1

−1
BT

i D Bj

∣∣∣J(e)
∣∣∣t dξ dη =

=
np∑

p=1

nq∑

q=1

[
BT

i DBj

∣∣∣J(e)
∣∣∣t

]
p,q

WṗWq̇ =
np∑

p=1

nq∑

q=1

[
t∣∣∣J(e)

∣∣∣
Gij

]

p,q

WpWq

(6.41)
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where Gij is the matrix deduced from Eq.(6.11).
For a triangular element we obtain from Eqs.(6.32) and (6.40)

K(e)
ij =

∫ 1

0

∫ 1−β

0
BT

i DBj |J(e)|t dα dβ =

=
np∑

p=1

[BT
i DBj |J(e)|t]pWp =

np∑

p=1

[
t

|J(e)|
Gij ]pWp (6.42)

The position of the integration points and the corresponding weights for
Eqs.(6.41) and (6.42) are obtained from Figures 6.4 and 6.5, respectively.

It is important to note that the computation of matrix Gij in the
previous expressions is not necessary in practice. This is so because the
numerical integration of the stiffness matrix just requires the evaluation
of the Jacobian matrix J(e) and its determinant, the strain matrix Bi

and the constitutive matrix D at each integration point in the natural
coordinate system. These computations can be performed in a sequential
order which facilitates the implementation of Eqs.(6.41) and (6.42) in a
computer program (Section 6.6 and Figure 6.8).

6.5.2 Numerical integration of the equivalent nodal force vector

The numerical integration of the equivalent nodal force vector due to body
forces for isoparametric quadrilateral elements (Eq.(6.12)) gives

f (e)
bi

=
∫ +1

−1

∫ +1

−1
NT

i b
∣∣∣J(e)

∣∣∣t dξ dη =
np∑

p=1

nq∑

q=1

(
NT

i b
∣∣∣J(e)

∣∣∣t
)

p,q
WṗWq̇ (6.43)

For triangular elements the double summation is replaced by the single
summation of Eq.(6.40).

The computation of the equivalent nodal force vector due to surface
tractions deserves a special comment. Let us recall that this vector has
the following expression (Eq.(4.68))

f (e)
ti

=
∮

l(e)
NT

i tt ds (6.44)

where l(e) is the loaded element boundary. In general this boundary re-
presents a line ξ = constant or η = constant in the natural coordinate
space. Therefore, the differential of length over the side η = 1 for the
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Fig. 6.6 Surface traction acting on the side η = +1

isoparametric quadrilateral element of Figure 6.6 is computed by

(ds)η=1 = (dx2 + dy2)η=1 =

[√(
dx
dξ

)2

η=1
+

(
dy
dξ

)2

η=1

]
dξ =

=

[√√√√
(

n∑
i=1

dNi
dξ xi

)2

η=1

+

(
n∑

i=1

dNi
dξ yi

) 2

η=1

]
dξ = c(ξ) dξ

(6.45)

Substituting Eq.(6.45) into (6.44) yields a line integral which is a func-
tion of the natural coordinate ξ only. This is computed using a 1D quadra-
ture by

f (e)
ti

=
∮

l(e)

(
NT

i

)
η=1

ttc(ξ) dξ =
∫ +1

−1
g(ξ) dξ =

np∑

p=1

g(ξp) Wṗ (6.46)

Surface tractions act very frequently along the tangential or normal
directions to the boundary (Figure 6.7) and this can simplify the compu-
tations. Transforming these forces to global axes gives

t =
{

tx
ty

}
=

{
τcos β − σ sin β
σcos β + τ sin β

}
(6.47)

where σ and τ are, respectively, the normal and tangential components
of the surface traction, and β is the angle between the tangent to the
boundary and the global x axis. Substituting Eq.(6.47) into the expression
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Fig. 6.7 Tangential and normal tractions acting on the side η = +1

of t of vector f (e)
ti

in Eq.(6.44) yields

f (e)
ti

=
∮

S(e)

Ni

{
τcos β − σ sin β
σcos β + τ sin β

}
t ds =

∮

s(e)

Ni

{
τ dx− σ dy
σ dx + τ dy

}
t (6.48)

On the loaded boundary

dx =
∂x

∂ξ
dξ = J11 dξ ; dy =

∂y

∂ξ
dξ = J12 dξ (6.49)

where J11 and J12 are obtained by sampling the Jacobian matrix at η = 1.
Substituting Eq.(6.49) into (6.48) gives finally

f (e)
ti

=
∫ +1

−1
Ni

{
τJ11 − σJ12

σJ11 + τJ12

}
t dξ =

np∑

p=1

[
Ni

{
τJ11 − σJ12

σJ11 + τJ12

}
t

]

p

Wp

(6.50)

6.6 COMPUTER PROGRAMMING OF K(e) AND f (e)

Previous sections provided all the necessary expressions for programming
the computation of the stiffness matrix and the equivalent nodal force
vector for each element. The basic steps involved in programming the
computation of K(e) and f (e) for quadrilateral elements are given next.
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Fig. 6.8 Flow chart for the computation of K(e)

Figure 6.8 shows the flow diagram for computing K(e) as deduced from
Eq. (6.41).

The evaluation of the constitutive matrix D can be taken out of the
numerical integration loop if the material properties are homogeneous over
the element. The same applies for the thickness if this is constant over the
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Fig. 6.9 Flow chart for computing f (e) for body forces

element. The case of D (or t) variable is treated simply by using a standard
interpolation within the element in terms of the nodal values as

D =
n∑

i=1

NiDi ; t =
n∑

i=1

Niti (6.51)

Eq.(6.51) is used to obtain the values for D and t at the Gauss points
within the numerical integration loop.

Figure 6.9 shows the flow chart for computing vector f (e) for the case
of body forces as deduced from Eq.(6.43).

The computation of the body forces at each integration point can be
taken out from the numerical integration loop if they are constant over
the element. A variable body force can be accounted for by interpolating
the known nodal values of the body force vector b, in the same way as
was done for the thickness in Eq. (6.51).
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The flow charts in Figures 6.8 and 6.9 are completely general and
applicable to all the structural problems treated in this book. Further
details of the programming aspects of the FEM are given in Chapter 11.
For more information see [Hu,HO,HO2].

6.7 OPTIMAL POINTS FOR COMPUTING STRAINS AND
STRESSES

The strains (and the stresses) are obtained from the derivatives of the
displacements. Therefore, their approximation is always of a lower order
than that for the displacements. In general, if the shape functions are
complete polynomials of pth degree the approximation for the stresses will
be a polynomial of degree p − 1 or p − 2, depending if they are obtained
as the first or second derivatives of the displacement field, respectively.

It can be proved that the stresses from the finite element solution
can be considered a least square interpolation of the exact stress field
[ZTZ]. Naturally, the exact stress field is unknown. However, an enhanced
stress distribution can be found by the following property of the Gauss
quadrature: A nth degree polynomial and a n − 1th degree polynomial,
obtained by least square fitting of the first one, take the same values
at the points of the Gauss quadrature of order n. Hence, we can obtain
an approximation of the stresses and strains that is one order higher by
computing these at the Gauss points. This important property will be
clarified with the following two examples.

Example 6.5: Verify that a second degree polynomial, and a first degree poly-
nomial obtained by a least square smoothing of the former, take the same
values at the points of the Gauss quadrature of order two.

-- Solution-- Solution

Let us consider the second degree polynomial (n = 2)

f(x) = 1 + x + x2

We will now obtain a first degree polynomial (n = 1) which approximates
f(x) in the least square sense; i.e. find a polynomial

g(x) = a + bx
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Fig. 6.10 Least square approximation of a quadratic polynomial by a linear one.
Intersection of both polynomials at the points of the Gauss quadrature of order
two

such that it minimizes the functional

M =
∫ +1

−1

[
f(x)− g(x)

]2

dx =
∫ +1

−1

[
(1− a) + (1− b)x + x2

]2

dx

The parameters a and b are obtained by making

∂M

∂a
= 0 =⇒

∫ +1

−1

−2
[
(1− a) + (1− b)x + x2

]
dx = 0

∂M

∂b
= 0 =⇒

∫ +1

−1

−2x
[
(1− a) + (1− b)x + x2

]
dx = 0

which gives a = 4
3 and b = 1 and hence g(x) = 4

3 + x.
Figure 6.10 shows the polynomials f(x) and g(x). Note that both take the
same values at the points of the Gauss quadrature of order two.

Example 6.6: Verify that a cubic polynomial and a quadratic one obtained by
least square smoothing of the former, take same values at the points of the
third order Gauss quadrature.

-- Solution-- Solution

Let us consider the third degree polynomial (n = 3)

f(x) = 1 + x + x2 + x3
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We will obtain the second degree polynomial g(x) = a + bx + cx2, such that

M =
∫ +1

−1

[
f(x)− g(x)

]2

dx =
∫ +1

−1

[
(1− a) + (1− b)x + (1− c)x2 + x3

]2

dx

is a minimum.
The three constants a, b, and c are obtained by solving the following system

∂M

∂a
= 0 =⇒ 1− a +

1− c

3
= 0

∂M

∂b
= 0 =⇒ 1− b

3
+

1
5

= 0

∂M

∂c
= 0 =⇒ 1− a

3
+

1− c

5
= 0

which gives

a = 1 , b =
8
5

, c = 1 and g(x) = 1 +
8
5
x + x2

Figure 6.11 shows that the exact and interpolating polynomials take the same
values at the three points of the 3rd order Gauss quadrature (i,e. ξ = 0 and
ξ = ±0.774596 (Table 3.1)).

The following conclusions can be drawn from what is explained:

1. If the exact distribution of the strain εεε (or stress σσσ) field is a poly-
nomial of nth degree and the approximate finite element solution is a
polynomial of n−1th degree, the computation of σσσ (or εεε) at the points
of the Gauss quadrature of nth order gives the exact values.

2. The evaluation of σσσ or εεε at the Gauss quadrature points chosen for the
integration of K(e) yields a solution of one approximation order higher
than at any other point within the element.

The evaluation of stresses and strains at the so called “optimal” quadra-
ture points is therefore of higher accuracy than at any other element point.
The nodal stress values can subsequently be obtained from a local or global
smoothing of the Gauss point values as detailed in Chapter 9.

The above concepts are rigorously true for 1D elements. For 2D and
3D elements the sampling of the strains and the stresses at the “optimal”
Gauss quadrature points leads also to a substantial improvement in the
results. Figure 6.12 shows the optimal points for computation of strains
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Fig. 6.11 Least square interpolation of a cubic polynomial by a quadratic one.
Intersection of both polynomials at the points of the Gauss quadrature of order
three

and stresses for some 1D and 2D elements. Extrapolation to the 3D case
is simple.

Figure 6.15 shows an example of the analysis of a cantilever beam
analyzed with 8-noded Serendipity rectangles. The accuracy of the shear
stress value sampled at the 2×2 Gauss points is noticeable. This example
is discussed further in the next section.

6.8 SELECTION OF THE QUADRATURE ORDER

The number of integration points is selected according to the degree of the
polynomials appearing in the element integrals. Isoparametric elements
contain rational terms within the integrals and exact integration is not
longer possible. The alternative is to choose a quadrature order which
integrates exactly the same expression for a rectangular or straight side
triangular element. This quadrature is termed in practice full integration
or exact integration. Remember that in these cases the Jacobian matrix is
constant and the element integrals have a simple analytical form.
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Fig. 6.12 Optimal points for computation of strains and stresses in some 1D and
2D elements

The minimum quadrature order for the stiffness matrix should pre-
serve the convergence rate of the element. This is achieved by choosing
a quadrature which integrates exactly all the complete polynomial terms
contained in the shape functions. For rectangular elements this quadra-
ture is of lower order than that required for the exact integration of the
element stiffness matrix and, thus, some economy is obtained. Figure 6.13
shows the exact (full) and minimum quadratures for some popular rect-
angular and triangular elements. Note that both quadratures coincide for
triangles.

Some authors associate the name “minimum quadrature” to that which
guarantees that the element can reproduce in the limit a constant strain
field [ZTZ]. This implies that the quadrature chosen should evaluate exac-
tly the element area (or volume), which simply requires the exact compu-
tation of the following integral

A(e) =
∫∫

A(e)

dA =
∫∫

A(e)

∣∣∣J(e)
∣∣∣ dξ dη

In rectangles and straight side triangles this condition is too weak as it
requires a single point quadrature which generally violates the minimum
requirement for preserving the element convergence as described above
(with the exception of the 3-noded triangle).
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Fig. 6.13 Exact (full) and minimum quadrature rules for some rectangular and
straight side triangular elements

Extreme care must also be taken so that a lower order quadrature does
not introduce internal mechanisms in the element. These mechanisms ap-
pear when the displacement field generates a strain field which vanishes
at the integration points, thus yielding a singular stiffness matrix. Some-
times these mechanisms are compatible between adjacent elements and
lead to the singularity of the global stiffness matrix and, consequently, to
an incorrect solution. A typical example are the two mechanisms induced
by the reduced one point quadrature in the four-noded rectangle as shown
in Figure 6.14a. These mechanisms invalidate the one point quadrature in
this element for practical purposes unless some stabilization techniques
are used to correct these deficiencies [BB,KZ,ZTZ]. See also Example 6.7.

In some cases, the mechanisms induced by the reduced integration of
the stiffness matrix can not propagate in the mesh, and this preserves
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Fig. 6.14 a) Propagable mechanisms in the 4-noded rectangle with a single inte-
gration point, b) Mechanisms in the 8-noded and 9-noded quadrilaterals induced
by reduced 2 × 2 quadrature. The mechanism in the 8-noded element is not
propagable in a mesh

the correctness of the solution. This happens for the single mechanism
originated by the 2 × 2 reduced quadrature in the 8-noded rectangle, as
shown in Figure 6.14b. Unfortunately this is not the case for the 9-noded
Lagrange element as the reduced integration introduces three mechanisms
(Figure 6.14b,c) two of which are propagable and can pollute the solution
and hence it is not recommended in practice.

The minimum quadrature points coincide in most cases with the opti-
mum points for the computation of stresses. This can be easily verified by
comparing the minimum and optimum quadratures shown in Figures 6.12
and 6.13, respectively. This important coincidence is shown in the analy-
sis of a cantilever beam using 8-noded Serendipity rectangles. Figure 6.15
shows that the shear force distribution within each element computed by
integrating the tangential stresses across the beam thickness is parabolic
and, therefore, far from the correct linear solution. However, the tangential
stresses at the 2× 2 Gauss quadrature coincide with the exact values and
the simple linear interpolation gives the exact shear force distribution.
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Fig. 6.15 Cantilever beam analyzed with four 8-noded Serendipity rectangles. Li-
near extrapolation of the shear force values from the transverse sections corres-
ponding to the 2× 2 Gauss quadrature

6.9 PERFORMANCE OF 2D ISOPARAMETRIC SOLID
ELEMENTS

In general, the behaviour of 2D isoparametric solid elements is similar
to that shown in the examples of Section 5.7 for rectangular and straight
side triangles. Thus, isoparametric quadrilateral elements are usually more
accurate than triangles of the same order. However, triangles are more
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convenient for modelling complex geometries. Also, the simplicity of lower
order elements has a prize in the accuracy, in particular for problems with
high stress gradients and a finer mesh is essential in the modelling of
these zones. Here adaptive mesh refinement techniques are recommended.
In practice, triangular elements are more versatile than quadrilaterals for
mesh adaption (Chapter 9).

The distortion of rectangular elements to quadrilateral shapes leads
to stiffer results [CMPW]. As mentioned earlier, extreme care should be
taken when using reduced integration, as the relative improvement in the
numerical results is sometimes at the expense of spurious mechanisms
being introduced in the element which can pollute the solution. This issue
is discussed further in the next section.

6.10 THE PATCH TEST FOR SOLID ELEMENTS

Application of the patch test to solid elements follows the general lines
described in Section 3.9 for 1D elements. Here once again the test is a
necessary and sufficient condition for the convergence of the element.

The application of the patch test to a solid element (either a 2D solid
element, an axisymmetric solid element or a 3D solid element) can take
the following three different modalities.

Patch test A. A known linear displacement field ap is prescribed at all
nodes of a patch of solid elements. For each internal node i in the patch
we verify that (Figure 6.16a)

Kija
p
j − fp

i = 0 (6.52)

where ap
j is the nodal displacement corresponding to the known field and

fp
i is a force vector resulting from any “body force” required to satisfy

the governing differential equations of elasticity for the known solution.
Generally, in problems expressed in cartesian coordinates fp

i = 0.

Patch test B. Only the values of ap corresponding to the boundaries of
the patch are inserted and ai is found as (Figure 6.16b)

ai = K−1
ii (fp

i −Kija
p
j ) i 6= j (6.53)

and compared against the exact value.
Patch tests A and B also involve the computation of the stresses within

the elements and the comparison with the expected “exact” values.
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Fig. 6.16 Patch tests of form A, B and C

Satisfaction of patch tests A and B is a necessary condition for conver-
gence of the element [ZTZ].

Patch test C. The assembled matrix system of the whole patch is written
as

Ka = fp (6.54)

where fp represents prescribed boundary forces corresponding to the
known solution. The solution for a is sought after fixing the minimum
number of displacements necessary to eliminate the rigid body motion,
i.e. three displacements for 3D elasticity problems (Figure 6.16c) and it is
compared with the known solution.

Patch test C allows us to detect any singularity in the stiffness matrix.
This test is therefore an assessment of the stability of the finite element
solution and hence provides not only a necessary but a sufficient condition
for convergence.
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When the patch is reduced to just one element the C test is termed the
single-element test [ZTZ] (Figure 6.16c). This test is a requirement for a
good finite element formulation as, on occasions, a larger patch may not
reveal the intrinsic instabilities of a single element. A typical example is the
8-noded isoparametric solid element with reduced 2×2 Gauss quadrature.
Here the singular deformation mode of a single element disappears when
several elements are assembled. The satisfaction of the single-element test
is not a sufficient condition for convergence and the test of at least one
internal element boundary needs to be tested to assess sufficiency.

Example 6.7: Patch test for the 4-noded quadrilateral.

-- Solution-- Solution

We consider a linear isotropic plane stress problem on the patch shown in
Figure (a) below. The material properties are E = 1000 and ν = 0.3.

We will verify that the patch test is satisfied for a linear displacement solution
giving a constant stress field. This obviously satisfies the differential equation
of equilibrium involving second derivatives of the displacement field.
The solution considered, taken from [ZTZ], is

u = 2× 10−3x , v = −6× 10−4y

which produces zero body forces and zero stresses except for σx = 2.
The patch test is first performed using a 2×2 Gauss quadrature. For patch test
A all nodes are restrained and nodal displacements are specified according
to the field chosen. Eq.(6.52) is satisfied at all nodes. Furthermore stresses
at the Gauss points are all exact within round-off error. The reactions at the
four boundary nodes are shown in Table 6.1.
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Coordinates Computed displacements Forces

Node a xa ya ua va Fxa Fya

1 0.0 0.0 0.0 0.0 −2 0
2 2.0 0.0 0.0040 0.0 3 0
3 2.0 3.0 0.0040 −0.00180 2 0
4 0.0 2.0 0.0 −0.00120 −3 0
5 0.4 0.4 0.0008 −0.00024 0 0
6 1.4 0.6 0.0028 −0.00036 0 0
7 1.5 2.0 0.0030 −0.00120 0 0
8 0.3 1.6 0.0006 −0.00096 0 0

Table 6.1 Patch solution for figure of Example 6.7 [ZTZ]

Patch test B is verified by restraining only nodes 1 to 4 with their displace-
ments specified according to Table 6.1. Exact results are once again recovered
to within round-off errors.
Finally, patch test C is performed with node 1 fully restrained and node 4
restrained only in the x direction. Nodal forces are applied to nodes 2 and
3 with the values given in Table 6.1. This test also produced exact solutions
for all other nodal quantities in Table 6.1 and recovered σx = 2 at all Gauss
points in each element.
Test C was repeated using a 1 × 1 reduced Gauss quadrature to compute
the element stiffness and nodal force quantities. Patch C indicated that the
global stiffness matrix contained two global zero energy nodes, thus producing
incorrect nodal displacements and, consequently, incorrect stresses, except at
the 1×1 Gauss point used in each element to compute the stiffness and forces.
Thus the 1× 1 quadrature produces a failure in the patch test and therefore,
its use is not recommended.
This deficiency can be corrected by a proper stabilization scheme [BB,KF,ZTZ]
which provides a version of the one point reduced integrated 4-noded element
useful for practical purposes.
The same conclusions are drawn after performing patch tests A, B and C on
a one-element patch using the mesh shown in Figure (b) of previous page.

Example 6.8: Patch test for quadratic elements [ZTZ].

-- Solution-- Solution

Figure 6.17 shows a two-element patch of quadratic isoparametric quadrila-
terals. Both 8-noded Serendipity and 9-noded Lagrange types are considered.
Patch test C is performed first for load case 1 (pure tension). For the 8-noded
element both 2× 2 (reduced) and (3× 3) full gaussian quadrature satisfy the
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Fig. 6.17 Patch test for 8- and 9-noded isoparametric quadrilaterals

patch test, and for the 9-noded element only the 3× 3 quadrature gives good
results, whereas the 2 × 2 reduced quadrature leads to a mechanism due to
failure in the rank of the stiffness matrix [ZTZ].
However, if we perform a one-element test for the 8-noded element with 2×2
quadrature, the spurious zero-energy mode shown in Figure 6.14 is found
and thus the one-element test fails. As a conclusion both the 8-noded and
the 9-noded elements with 2×2 quadrature are “suspect” and are to be used
with great caution.
The same plane stress problem was next solved subjected to the bending loa-
ding shown as load 2 in Figure 6.17. The pure bending solution in elasticity is
quadratic and no body forces are needed to satisfy the equilibrium equations.
The equilibrating surface loads are two point loads equal and opposite acting
on the top and bottom nodes. Table 6.2 shows results for the 8-noded and
9-noded elements for the indicated quadrature with E = 100 and ν = 0.3.
Results taken from [ZTZ] are given for a rectangular mesh (d = 0) and two
distorted meshes (d = 1 and d = 2).
We observe that the 9-noded element with 3 × 3 quadrature passes patch
test C for all meshes. On the other hand, the 8-noded element with 3 × 3
quadrature passes the test only for the rectangular mesh and its accuracy de-
teriorates very rapidly with increased mesh distorsion. This result confirms
the failure of the 8-noded element to approximate a complete quadratic dis-
placement function on linearly distorted meshes and the good performance
of the 9-noded element in these cases.
The 2×2 quadrature improves results for the 8-noded element. However, the
use of the 2× 2 quadrature should be considered with great care.
Figure 6.18 shows an example of the dangers of 2 × 2 integration for the
8-noded element [ZTZ]. Here the structure is modelled by a single quasi-rigid
element as the interest is centred in the “foundation” response. Use of 2× 2
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Element Quadrature d vA uB vB

8-noded 3× 3 0.750 0.150 0.75225
8-noded 2× 2

}
0 0.750 0.150 0.75225

9-noded 3× 3 0.750 0.150 0.75225
8-noded 3× 3 0.7448 0.1490 0.74572
8-noded 2× 2

}
1 0.750 0.150 0.75100

9-noded 3× 3 0.750 0.150 0.75225
8-noded 3× 3 0.6684 0.1333 0.66364
8-noded 2× 2

}
2 0.750 0.150 0.75225

9-noded 3× 3 0.750 0.150 0.75225
Exact — — 0.750 0.150 0.75225

Table 6.2 Patch test of Figure 6.17. Bending load case (E = 100, ν = 0.3) [ZTZ]

quadrature throughout leads to the spurious answers shown in Figure 6.18b,
while the correct results for the 3× 3 quadrature are shown in Figure 6.18c.
We note that no zero-energy mode exists since more than one element is used.
The spurious response is due to the larger variation in the elastic parameters
between structure and foundation. This situation can easily occur in other
structural problems and, therefore, use of the 8-noded 2 × 2 integrated ele-
ment should be closely monitored and avoided for problems where anomalous
behaviour is suspected.

6.11 APPLICATIONS

Some applications of plane elasticity elements to practical problems are
presented next.

6.11.1 Analysis of concrete dams

Figure 6.19a shows the geometry of the transverse section of the Mequi-
nenza gravity dam in Spain analyzed under the assumption of plane strain.
A very coarse mesh of 140 8-noded Serendipity elements was used for the
analysis. Full slip conditions were assumed in the dam base and only the
horizontal displacements of the lower node of the downstream face were
prescribed.

Figures 6.19b and c show the principal stress distribution obtained for
self-weight plus hydrostatic loading with and without the effect of a gallery
and a vertical joint, respectively. Figure 6.19b shows the stresses over the
deformed shape of the dam amplified 200 times. Note that the horizontal
constraint in just a point in the dam base leads to high stress values in
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Fig. 6.18 A propagating spurious mode for an 8-noded element mesh. (a) Problem
description. (b) 2× 2 integration. (c) 3× 3 integration

that zone. However, at a short distance from the prescribed point the
stress distribution is correct, in accordance with Saint-Venant’s principle
[Ti]. Figure 6.19d shows the stress distribution around the gallery. More
information on this study is reported in [OCOH,OOB].

Figure 6.20a shows a second gravity dam studied in Spain (Santa
Coloma dam). A mesh of 651 plane strain eight-noded Serendipity quadri-
laterals was used for discretizing the dam and the underlying foundation.
Figure 6.20b shows the deformed shape of the dam under self-weight and
hydrostatic loading. Contours of the displacement module and the stresses
are shown in Figure 6.20c [SM].
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Fig. 6.19 Mequinenza gravity dam. a) Mesh of 140 8-noded Serendipity quadri-
laterals, b) Deformed shape and principal stresses distribution under self-weight
and hydrostatic loading, c) Idem including the effect of a gallery and a vertical
joint, d) Detail of the stresses in the vicinity of the gallery

6.11.2 Analysis of an earth dam

Figure 6.21a shows the geometry of the Limonero earth dam in Málaga,
Spain analyzed including the effect of the foundation and the mesh of 82
8-noded plane strain Serendipity quadrilaterals used for the analysis.

A non-tension material model was assumed. This requires the elimi-
nation of the tension stresses which excede a prescribed threshold value
until a compression stress dominated equilibrium state is obtained via an
iterative process [ZVK].
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(c1) (c2)

(c3) (c4)

Fig. 6.20 Santa Coloma gravity dam. a) Mesh of 651 8-noded Serendipity quadri-
laterals discretizing the dam and the foundation, b) Deformed shape for self-
weight and hydrostatic loading, c) Contours of the displacement module (c1)
and the stresses σx, σy and τxy (c2-c4) under the same loading
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Fig. 6.21 Limonero earth dam. a) Mesh of 82 8-noded Serendipity quadrilaterals,
b) and c) Deformed shape and principal stresses under self-weight

Figures 6.20b and c show the deformed geometry of the dam body
under self-weight and the final stress distribution for an admissible thre-
shold value of the tension stresses of 0.5 Mpa. Further information on this
example can be found in [COHR+,HCA].

6.11.3 Analysis of an underground tunnel

This example shows some results of the analysis of an underground tunnel
in the city of Barcelona in Spain. Plane strain conditions were assumed.
Figure 6.22 shows the discretization of the transverse section analyzed
using 8-noded quadrilaterals and the contours of the displacement modu-
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(a) (b)

(c) (d)

Fig. 6.22 Underground tunnel. a) Mesh of 8-noded Serendipity quadrilaterals, b)
Detail of the mesh, c) Contours of total displacement for self-weight loading plus
the weight of adjacent buildings, d) Detail of minor principal stress contours

lus and the minor principal stresses for self-weight plus a vertical loading
equal to the weight of the adjacent buildings.

6.12 CONCLUDING REMARKS

This chapter has introduced most of the concepts necessary for the analysis
of continuous structures with the FEM using elements of arbitrary shape.
We point out once more that the underlying ideas are valid for other
problems different of plane elasticity. Thus, the concepts and methodology
explained for the isoparametric formulation, the numerical integration and
the computation of the element stiffness matrix and the equivalent nodal
force vector are applicable to other structural finite element models as a
straightforward extension of the ideas studied in this chapter.
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AXISYMMETRIC SOLIDS

7.1 INTRODUCTION

This chapter treats the analysis of solids with axial symmetry. Thus, only
solids with geometrical and material properties independent of the circum-
ferential coordinate θ are considered (Figure 7.1). This property allows the
inherent 3D behaviour of a solid to be expressed with a much simpler 2D
model.

If the loading is also axisymmetric, the displacement vector has only
two components in the radial and axial directions. The analysis of axi-
symmetric solid structures by the FEM is not difficult and follows very
similar steps to those explained in the previous chapters for plane elasti-
city problems. For arbitrary non–axisymmetric loading a full 3D analysis
is needed. However, even in these cases the axial symmetry of the struc-
ture allows important simplifications to be introduced. For instance, the
loading can be expanded in Fourier series and the effect of each harmonic
term can be evaluated by a simpler 2D analysis. The final result is ob-
tained by adding the contributions from the different 2D solutions. This
avoids costly 3D computations. This chapter focuses only on the analysis
of axisymmetric solids under axisymmetric loading. Axisymmetric solids
under arbitrary loading will be studied in Volume 2 [On].

A thin-wall axisymmetric solid is usually termed an axisymmetric shell .
The study of these structures is also covered in Volume 2 [On].

Axisymmetric solids represent a substantial percentage of engineering
structures. Examples include water and oil tanks, cooling towers, silos,
domes, cylindrical containment structures, chimneys, pressure vessels, etc.
Also, some soil mechanics problems such as the analysis of foundations
under vertical loads, can be solved using the methods explained in this
chapter. Figure 7.2 shows examples of some typical axisymmetric struc-
tures.
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Fig. 7.1 Axisymmetric solid

Fig. 7.2 Some axisymmetric structures

7.2 BASIC FORMULATION

7.2.1 Displacement field

Let us consider the axisymmetric solid under axisymmetric loading shown
in Figure 7.1. The movement of a point is defined by the radial (u) and
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Fig. 7.3 Derivation of the circumferential strain εθ

axial (w) displacements, whereas the circumferential displacement (v) is
zero due to the axial symmetry. The displacement vector is therefore

u =
{

u(r, z)
w(r, z)

}
(7.1)

7.2.2 Strain field

Due to the axial symmetry, the displacements u and w are independent of
the circumferential coordinate θ. Consequently, the tangential strains γrθ

and γzθ are zero. Also, 3D elasticity theory gives [TG]

εr =
∂u

∂r
; εz =

∂w

∂z
; γrz =

∂u

∂x
+

∂w

∂r
(7.2)

where εr, εz and γrz are the radial, axial and tangential strains, respec-
tively.

On the other hand, the points located on a circumference of radius r
move, due to the axial deformation, to a circumference of radius r + u.
This originates a circumferential strain which is defined as the relative
elongation between these two circumferences (Figure 7.3); i.e.

εθ =
2π(r + u)− 2πr

2πr
=

u

r
(7.3)

The strain vector of a point has, therefore, the four components

εεε = [εr, εz, εθ, γrz]
T =

[
∂u

∂r
,
∂w

∂z
,
u

r
,
∂u

∂z
+

∂w

∂r

]T

(7.4)
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Fig. 7.4 Stresses acting on a differential volume of an axisymmetric solid under
axisymmetric loading

7.2.3 Stress field

The stresses conjugate to the strains of Eq.(7.4) are (in vector form)

σσσ = [σr, σz, σθ, τrz]T (7.5)

where σr, σz and σθ are, respectively, the radial, axial and circumferential
stresses and τrz is the tangential stress. The rest of the stresses are zero.
The sign convention for the stresses is shown in Figure 7.4.

The representation of the two principal stresses in the plane rz follows
precisely that explained for 2D solids in Section 4.2.5.

7.2.4 Constitutive equation

The relationship between stresses and strains is deduced from 3D elasticity
theory as for the plane elasticity case. The constitutive equation is written
(in the presence of initial strains and initial stresses) as

σσσ = D (εεε− εεε0) + σσσ0 (7.6)

Matrix D for an isotropic material (recall that the axial symmetry of
the material properties is needed) is written as

D =
E

(1 + ν) (1− 2ν)




1− ν ν ν 0
ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 1− 2ν

2


 (7.7)
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Fig. 7.5 Axisymmetric stratified solid

The initial strain vector for the thermal isotropic case is [TG]

εεε0 =
α E (∆T )
(1− 2ν)

[1, 1, 1, 0]T (7.8)

where all the terms were defined in Chapter 4.

Stratified material

Stratified materials in axisymmetric solids are typically distributed in or-
thotropic layers with principal directions of orthotropy along axes 1 and 2
(Figure 7.5). The problem remains axisymmetric and D is now a function
of five parameters E1, E2, G2, ν1 and ν2 [TG,ZTZ], i.e.

D =
E2

d




n(1− ν2
2) nν2(1 + ν1) n(ν1 + nν2

2) 0

1− ν2
1 1− ν2

1 0

n(1− nν2
2) 0

Sym. md




(7.9)

where

n =
E1

E2
, m =

G2

E2
and d = (1 + ν1)(1− ν1 − 2nν2

2) (7.10)

The initial thermal strains are modified due to the existence of two
thermal expansion parameters αz and αr, corresponding to the directions
normal and parallel to the layers plane. Vector εεε0 of Eq.(7.8) is modified
accordingly as

εεε0 = ∆T [αr, αr, αz, 0]T (7.11)
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The constitutive matrix D and vector εεε0 of Eqs.(7.7) and (7.8) for an
isotropic material are obtained as a particular case of the above expressions
for

n = 1 ; m =
1

2(1 + ν)
; ν1 = ν2 and αr = αz =

αE

2(1− ν)
(7.12)

7.2.5 Principle of virtual work

The virtual work expression is analogous to Eq.(4.22) for 2D elasticity
with all the integrals now referring to the volume and the surface of the
axisymmetric solid. The differential of volume can be expressed as (Figure
7.4)

dV = (rdθ) dr dz = r dθ dA (7.13)

The PVW is therefore written as
∫∫

A

∫ 2π

0
δεεεTσσσ r dθ dA =

∫∫

A

∫ 2π

0
δuTbr dθ dA +

+
∮

l

∫ 2π

0
δuT tr dθ ds +

∑

i

∫ 2π

0
δuipiri dθ (7.14)

In the above, l and A are the boundary and area of the meridional section
and

b =
{

br

bz

}
; t =

{
tr
tz

}
; pi =

{
Pri

Pzi

}
(7.15)

are the vectors of body forces, surface tractions and point loads, respec-
tively. We recall once again that all loads have axial symmetry (Figure
7.6).

Eq.(7.14) is simplified by integrating over each circumferential line

2π

∫∫

A
δεεεTσσσr dA = 2π

∫∫

A
δuTbr dA + 2π

∮

l
δuT trds + 2π

∑

i

δuipiri

(7.16)

Note that all the terms of Eq.(7.16) are multiplied by 2π and this
number can therefore be simplified. However, it is very instructive to keep
2π in front of all the terms of Eq.(7.16) as a reminder of the axial symmetry
of the problem and also to remind us that the point loads pi refer to load
intensities per unit circumferential length (Figure 7.6).
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Fig. 7.6 Axisymmetric forces acting on an axisymmetric solid

7.3 FINITE ELEMENT FORMULATION. THREE-NODED
AXISYMMETRIC TRIANGLE

Next, we will explain the details of the finite element analysis of axisym-
metric solids. For the purpose of explanation, we will develop first the
formulation for the simple linear 3-noded axisymmetric triangle. Figure
7.7 shows that the element is a ring with triangular cross-section. We note
that all axisymmetric solid elements have an annular shape although the
element integrals are computed over the 2D meridional section as clearly
seen in Eq.(7.16).

7.3.1 Discretization of the displacement field

The displacement field is interpolated within each meridional section in a
similar way to what we did for 2D elasticity. Thus, for the 3-noded triangle
we write

u =
{

u
w

}
=

{
N1 u1 + N2 u2 + N3 u3

N1 w1 + N2 w2 + N3 w3

}
=

=
3∑

i=1

[
Ni 0
0 Ni

]{
ui

wi

}
=

3∑

i=1

Ni a(e)
i = N a(e) (7.17)

where

N = [N1,N2,N3] =




N1 0 | N2 0 | N3 0

0 N1 | 0 N2 | 0 N3


 (7.18)



232 Axisymmetric solids

Fig. 7.7 Axisymmetric 3-noded triangle. Nodal displacements (ui, wi) and equili-
brating nodal forces (Fri , Fzi). Numbers in brackets denote global node numbers

and

a(e) =





a(e)
1

a(e)
2

a(e)
3





, a(e)
i =

{
ui

wi

}
(7.19)

Note the coincidence of Eqs.(7.17), (7.18) and (7.19) with Eqs.(4.25),
(4.28) and (4.29) for the analogous case of a 2D elasticity element. The
shape functions Ni coincide with those of Eq.(4.33) simply substituting the
coordinates x, y by r, z. The extension of Eqs. (7.17)–(7.19) to a n-noded
element is straightforward as it only implies extending the summation of
Eq.(7.17) from 3 to n.

7.3.2 Discretization of the strain and stress fields

Substituting the interpolation (7.17) into the strain vector of Eq.(7.4)
gives

εεε =
3∑

i=1




∂Ni
∂r

0

0 ∂Ni
∂z

Ni
r 0

∂Ni
∂z

∂Ni
∂r




{
ui

wi

}
=

[
B1,B2,B3

]




a(e)
1

a(e)
2

a(e)
3





= B a(e) (7.20)
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where B is the strain matrix for the element and

Bi =




∂Ni
∂r

0

0 ∂Ni
∂z

Ni
r 0

∂Ni
∂z

∂Ni
∂r




(7.21)

is the strain matrix for the ith node.
The number of Bi matrices in Eq.(7.20) is extended from 3 to n for an

element with n nodes.
Note that the strain matrix contains the term Ni

r which is singular for
r = 0. The way to overcome this problem is explained below.

The explicit form of Bi for the 3-noded triangle is obtained substituting
Eq.(5.33) into (7.21) giving

Bi =
1

2A(e)




bi 0
0 ci

(ai + bir + ciz)
r

0

ci bi


 (7.22)

The stresses are obtained in terms of the displacements by substituting
Eq.(7.20) into (7.6) as

σσσ =
3∑

i=1

Bi D a(e) −D εεε0 + σσσ0 (7.23)

The computation of the circumferential strains εθ along the axis of
symmetry presents us with a problem because the term u

r leads to the
undetermined value 0

0 . This difficulty can be overcome by computing εθ

in the vicinity of the axis or, as it is more usual, by extrapolating the cir-
cumferential strain from the integration points located within the element
to the symmetry axis. An alternative is to take advantage of the fact that
εr = εθ at the axis of symmetry and simply compute the circumferential
strain at those points using the first row of Eq.(7.20).

7.3.3 Equilibrium equations

The PVW particularized for a single element is (see Eq.(7.16))

2π

∫∫

A(e)

δεεεTσσσr dA = 2π
∫∫

A(e)

δuTbr dA+2π

∮

l(e)
δuT trds+2π

∑

i

[δa(e)
i ]Tq(e)

i ri

(7.24a)
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where q(e)
i is the vector of equilibrating nodal forces given by (Figure 7.7)

q(e)
i = [Fri , Fzi ]

T (7.24b)

Assuming the standard interpolation for the virtual displacements and
the virtual strains

δu = Nδa , δεεε = Bδa (7.24c)

and substituting these into Eq.(7.24a) gives after simplification of the
virtual displacement field

2π

∫∫

A(e)

BTσσσr dA−2π

∫∫

A(e)

NTbr dA−2π

∮

l(e)
NT tr ds = q(e) (7.25a)

where the equilibrating nodal force vector for the element is

q(e) = 2π





q(e)
1 r1

q(e)
2 r2

q(e)
3 r3





(7.25b)

Substituting the constitutive equation for the stresses (Eq.(7.6)) into
(7.25a) and using Eq.(7.20) gives

2π

(∫∫

A(e)

BTDBr dA

)
a(e) − 2π

∫∫

A(e)

BTDεεε0r dA + 2π

∫∫

A(e)

BTσσσ0r dA−

− 2π

∫∫

A(e)

NTbr dA− 2π

∮

l(e)
NT tr ds = q(e) (7.25c)

or
K(e) a(e) − f (e) = q(e) (7.26)

where K(e) is the element stiffness matrix and a(e) and f (e) are the dis-
placement vector and the equivalent nodal force vector for the element.
These vectors have the following expressions

a(e) =





a(e)
1

a(e)
2

a(e)
3





, a(e)
i =

{
ui

wi

}
, f (e) =





f (e)
1

f (e)
2

f (e)
3





, f (e)
i =

{
fri

fzi

}

(7.27)
Vector q(e) in Eqs.(7.25) is the total equilibrating force vector for the

element whose components are obtained by integrating the individual force
intensities q(e)

i along a circumference with radius ri.
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The stiffness matrix and the equivalent nodal force vector for the ele-
ment are

K(e)

2n×2n
= 2π

∫∫

A(e)

BTDBr dA (7.28a)

with
K(e)

ij
2×2

= 2π

∫∫

A(e)

BT
i

2×4
D
4×4

Bj
4×2

r drdz (7.28b)

and

f (e) = 2π

∫∫

A(e)

NTbr dA + 2π

∮

l(e)
NT tr ds + 2π

∫∫

A(e)

BTDεεε0r dA−

−2π

∫∫

A(e)

BTσσσ0r dA = f (e)
b + f (e)

t + f (e)
ε + f (e)

σ (7.29)

The first integral in Eq.(7.29) corresponds to the body force vector f (e)
b ;

the second one to the surface traction vector f (e)
t ; the third one to the

initial strain force vector f (e)
ε ; and the fourth one to the initial stress force

vector f (e)
σ . Vector f (e)

i is obtained by substituting N and B by Ni and
Bi, respectively in above expressions.

The components of f (e) are the total force acting at the element nodes,
after integration over the circumferential direction at each node.

The expression of K(e) and f (e) of Eqs.(7.28) and (7.29) holds for any
axisymmetric solid element with n nodes.

The global stiffness matrix K and the global equivalent nodal force vec-
tor f are obtained by assembling the element contributions in the standard
manner. Once the global system of equation Ka = f has been solved for
the nodal displacements a, the nodal reactions are computed via Eq.(2.25),
or by Eq.(4.60a) with the following expression for the internal nodal force
vector for the element

f (e)
int = 2π

∫∫

A(e)

BTσσσr dA (7.30)

Eq.(7.30) is deduced from the first integral of Eq.(7.25a).

7.3.4 The stiffness matrix for the 3-noded triangle

Box 7.1 shows the integral expression of K(e)
ij for the 3-noded triangle.

Note that the integrand contains the terms r, z, 1
r , z

r and z2

r . The exact
integration of these terms over the element area is given in Box 7.2 [Ya,Ut].
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K
(e)
ij =

π

2(A(e))2

∫∫

A(e)




(d11bibj + d44cicj)r+ (d12bicj + d44cibj)r+

+2A(e)(d13biNj + d31bjNi)+ +2A(e)d32cjNi

+4(A(e))2d33
NiNj

r

(d21cibj + d44bicj)r+ (d22cicj + d44bibj)r

+2A(e)d23ciNj




drdz

dij : Element ij of the constitutive matrix D
bi, ci: Coefficients of the shape function Ni

Box 7.1 Stiffness matrix for a 3-noded axisymmetric triangular element

The parameters Cij , Dij and Eij of Box 7.2 are indeterminate for nodes
belonging to the axis of symmetry or to an element side parallel to it. This
problem can be overcome as follows.

Case 1. ri = 0 and ri, rj 6= 0. In this case the axial displacement ui = 0
and the element stiffness matrix can be reduced to a 5× 5 matrix by
eliminating the row and column corresponding to ui. The I4, I5 and I6

parameters of Box 7.2 are now:

I4 = Cjk − zi ln
rj

rk

I5 = Djk − 1
4
(zj − zi)(3zi + zj)− 1

4
(zi − z4)(3zi + zk)− 1

2
z2
i ln

rj

rk

I6 = Ejk − 1
18

(zj − zi)(11z2
i + 5zizj + 2z2

j )−

− 1
18

(zi − zk)(11z2
i + 5zizk + 2z2

k)− 1
3
z3
i ln

rj

rk
(7.31)

Case 2 ri = rj = 0, rk 6= 0. Now ui and uj vanish and the stiffness
matrix dimension can be reduced to 4× 4 by eliminating the rows and
columns corresponding to ui and uj . In this case Nk = r

rk
and the

integral terms I4, I5 and I6 of Box 7.2 do not appear in K(e)
ij [Ut].

Case 3. Side ij parallel to the symmetry axis z : ri − rj = 0. This
situation can be overcome simply by using the L’Hopital rule for the
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I1 =

∫∫

A(e)
drdz =

1

2

∣∣∣∣∣∣

1 1 1
r1 r2 r3

z1 z2 z3

∣∣∣∣∣∣
; I4 =

∫∫

A(e)

drdz

r
= C12 + C23 + C31

I2 =

∫∫

A(e)
rdrdz =

r1 + r2 + r3

3
I2 ; I5 =

∫∫

A(e)

z

r
drdz = D12 + D23 + D31

I3 =

∫∫

A(e)
zdrdz =

z1 + z2 + z3

3
I1 ; I6 =

∫∫

A(e)

z2

r
drdz = E12 + E23 + E31

with

Cij =
rizj − rjzi

ri − rj
ln

ri

rj

Dij =
zj − zi

4(ri − rj)
[zi(3rj − ri)− zj(3ri − rj)] +

1

2

(
rizj − rjzi

ri − rj

)2

ln
ri

rj

Eij =
zi − zj

18(ri − rj)2
[
z2

j (11r2
i − 7rirj + 2r2

j ) + zizj(5r2
i − 22rirj + 5r2

j )+

+z2
i (11r2

j − 7rirj + 2r2
i )

]
+

1

3

(
rizj − rjzi

ri − rj

)3

ln
ri

rj

Box 7.2 Exact values of some integral terms in axisymmetric straight side triangles
with vertices i, j, k

computation of Cij , Dij and Eij to give [Ya]

Cij = zj − zi ; Dij = Eij = 0

A practical rule for cases 1 and 2 is to keep the original size of K(e)

and simply make equal to zero the terms of the rows and columns corres-
ponding to the prescribed values of ui along the axis of symmetry. An
arbitrary non-zero value must be then assigned to the corresponding main
diagonal terms to avoid the singularity of the stiffness matrix.

The element integrals can also be computed numerically using a Gauss
quadrature. The singularity of the term u

r is avoided by choosing a quadra-
ture not containing points along the axis of symmetry. The approximation
of the integrals I4, I5 and I6 of Box 7.2 also requires a larger number of
integration points. Excellent results can however be obtained for the 3-
noded axisymmetric triangle (with homogeneous material properties) by
computing the element integrals with a single integration point.

The reduced one-point integration allows us to derive a simple explicit
form of the stiffness matrix for the 3-noded triangle as

K(e) = BT D B r A(e) (7.32)
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where (·) denotes values computed at the element centroid. The analytical
expression of K(e)

ij for this case can be deduced directly from Box 7.1 by
substituting r for r, Ni for 1

3 , and the integral for the integrand multiplied
by the element area. The one point quadrature is exact for all terms of
K(e)

ij with the exception of NiNj

r . The error in the evaluation of this term
does not really affect the behaviour of the element and very good results
are obtained using a finer mesh in zones where higher stresses are expected
[ZTZ].

The reduced one-point quadrature preserves the correct rank of the
stiffness matrix and hence the element is free from spurious mechanisms.

7.3.5 Equivalent nodal force vectors for the 3-noded triangle

Body forces and surface tractions

From Eq.(7.29) we deduce

fb = 2π
∫∫

A(e)

NTbr dA (7.33a)

ft = 2π

∮

l(e)
NT tr ds (7.33b)

The expressions for fb and ft for the 3-noded triangle with nodes i, j, k
of Figure 7.7 simplify if the acting forces are constant over the element.
Substituting the shape functions (Eqs.(4.33) and (7.18)) into (7.31) and
assuming that the surface load t acts on the side ij gives

f (e)
b =

πA(e)

6





(2ri + rj + rk) br

(2ri + rj + rk) bz

(ri + 2rj + rk) br

(ri + 2rj + rk) bz

(ri + rj + 2rk) br

(ri + rj + 2rk) bz





; f (e)
t =

πl
(e)
ij

3





(2ri + rj) tr

(2ri + rj) tz

(ri + 2rj) tr

(ri + 2rj) tz

0
0





(7.34a)
where l

(e)
ij is the length of side ij subjected to the surface tractions. Note

that the nodal forces due to body forces and surface tractions are not
distributed in equal parts between the nodes as it occurs for the plane
elasticity triangle. The highest load intensity now corresponds to the node
situated further from the symmetry axis.
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The expressions for f (e)
t due to surface tractions acting over the sides

jk and ik are respectively

f (e)
t =

πl
(e)
jk

3





0
0

(2rj + tk) tr
(2rj + rk) tz
(rj + 2rk) tr
(rj + 2rk) tz





; f (e)
t =

πl
(e)
ik

3





(2ri + rk) tr
(2ri + rk) tz

0
0

(ri + 2rk) tr
(ri + 2rk) tz





(7.34b)

Initial strain force vector

From Eq.(7.29) we deduce

f (e)
ε = 2π

∫∫

A(e)

BT D εεε0 r dA (7.35)

The integral in Eq.(7.35) for the 3-noded triangle can be computed
using the expressions for I1, I2 and I3 from Box 7.2. For thermal initial
strains and homogeneous material properties we find that

f (e)
εi

= π α∆T





(d11 + d12 + d13)bi r +
2A(e)

3
(d31 + d32 + d33)

(d21 + d22 + d23)ci r



 (7.36)

where r is the radial coordinate of the element centroid and dij are the
terms of the constitutive matrix of Eqs.(7.7) or (7.9).

Initial stress force vector

Eq.(7.29) gives

f (e)
σ = −2π

∫

A(e)

BT σσσ0 r dA (7.37a)

The exact form of f (e)
σi for the 3-noded triangle under a constant initial

stress field is

f (e)
σi

= −π

{
(bi σ0

r + ci τ 0
rz)r + 2

3A(e) σ0
θ

(ci σ0
z + bi τ 0

rz)r

}
(7.37b)

where again r is the radial coordinate of the element centroid.
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Circular point loads

The nodal point vector is deduced from the PVW (Eq.(7.6)) as

pi = 2πri[Pri , Pzi ]
T (7.38)

where Pri and Pzi are the intensities of the radial and vertical point loads
acting uniformly along a circumferential line at node i. Consequently, the
nodal reactions per unit circumferential length corresponding to the pre-
scribed displacements are computed by dividing the value of the total
reactions by 2πri, where ri is the radial coordinate of the node.

7.4 OTHER RECTANGULAR OR STRAIGHT-SIDED
TRIANGULAR AXISYMMETRIC SOLID ELEMENTS

Eqs.(7.28) and (7.29) provide the general expressions for the stiffness ma-
trix and the equivalent nodal force vector for any axisymmetric solid ele-
ment. The computation of these expressions for rectangular and straight-
sided triangles is simple and analytical forms can be obtained in most
cases as shown in the following examples. However, it might become more
complex when integrating terms such as zm

r . In practice it is more con-
venient to define the element integrals in terms of the natural coordinate
system and to use numerical integration.

Example 7.1: Obtain the stiffness matrix and the equivalent nodal force vector
for a 4-noded axisymmetric rectangle.

-- Solution-- Solution

Eq.(4.80) for the shape functions in cartesian coordinates will be used, i.e.

N1 =
1
4
(1− r

a
)(1− z

b
) ; N2 =

1
4
(1 +

r

a
)(1− z

b
)

N3 =
1
4
(1 +

r

a
)(1 +

z

b
) ; N4 =

1
4
(1− r

a
)(1 +

z

b
)

The strain matrix of Eq.(7.20) is

B =
[
B1,B2,B3,B4

]
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where, for instance,

B1 =




− 1
4a

(1− z

b
) 0

0 − 1
4b

(1− r

a
)

(1− r

a
)(1− z

b
)

4r
0

− 1
4b

(1− r

a
) − 1

4a
(1− z

b
)




with similar expressions for B2,B3 and B4.
The element stiffness matrix is obtained from Eq.(7.28). The expression of Bi

shows that the stiffness matrix integrals contain terms like r, z, z2, 1
r , z

r , z2

r .
The computation of the integrals over the element area can be performed
analytically as explained in Section 5.6. The expressions from Box 7.2 are
also applicable after splitting the element into two triangular regions.
The equivalent nodal force vector due to body forces is deduced from
Eq.(7.33a) as

f (e)
b = 2π

∫∫

A(e)
[N1,N2,N3,N4]

T b r dr dz

with
f (e)
bi

= 2π

∫∫

A(e)
NT

i b r dr dz

The integration of the terms in r, r2 and rz in above expression can be ob-
tained analytically as explained in Section 5.6.

Example 7.2: Compute the stiffness matrix and the equivalent nodal body force
vector for a straight-sided 6-noded axisymmetric triangle.

-- Solution-- Solution

The shape functions for the 6-noded triangle written in area coordinates are
(Eq.(5.34))

N1 = 2(L1 − 1)L1 ; N2 = 2(L2 − 1)L2 ; N3 = 2(L3 − 1)L3

N4 = 4L1L2 ; N5 = 4L2L3 ; N6 = 4L1L3

where
Li =

1
2A(e)

(ai + bi r + ci z) ; i = 1, 2, 3

and ai, bi, ci are the parameters given in Eq.(4.32b) where the x, y coordinates
are replaced now by r, z respectively.
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The element strain matrix is

B = [B1,B2,B3,B4,B5,B6]

The cartesian derivatives of the shape functions are computed by

∂Ni

∂r
=

∂Ni

∂L1

∂L1

∂r
+

∂Ni

∂L2

∂L2

∂r
+

∂Ni

∂L3

∂L3

∂r
=

=
1

2A(e)

[
b1

∂Ni

∂L1
+ b2

∂Ni

∂L2
+ b3

∂Ni

∂L3

]
= Bi

Similarly we obtain

∂Ni

∂z
=

1
2A(e)

[
c1

∂Ni

∂L1
+ c2

∂Ni

∂L2
+ c3

∂Ni

∂L3

]
= Ci

The nodal strain matrices are given by

Bi =




∂Ni

∂r
0

0
∂Ni

∂z
Ni

r
∂Ni

∂z

∂Ni

∂r




=




Bi 0

0 Ci

Ni

r
0

Ci Bi




For instance

B1 =




b1(2L1 − 1)
A(e)

0

0
c1(2L1 − 1)

Ae)

2(L1 − 1)L1

r
0

c1(2L1 − 1)
A(e)

b1(2L1 − 1)
A(e)




etc.

The element stiffness matrix is obtained by Eq.(7.28). The analytical com-
putation of the integrals can be simplified by expressing the integrands in
terms of the cartesian coordinates. The terms appearing in the integrals are
of the type rmzn and zn

r , with m = 0, 1, 2 and n = 0, 1, 2, 3, 4. The integral
of the terms rmzn is directly obtained by Eq.(5.40). The exact integration
of the terms zn

r , n = 0, 1, 2 is given in Box 7.2. The analytical integration of
the terms z3

r and z4

r is more complicated and it is simpler to use numerical
integration.
The equivalent nodal force vector for body forces is given by

f (e)
b = 2π

∫∫

A(e)
[N1, N2, N3, N4, N5, N6]

T b r dr dz
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The integrals of f (e)
bi

contain terms such as rmzn with m,n = 0, 1, 2 which
can be computed exactly by Eq.(5.40).

We conclude from the above examples that the integration of the matri-
ces and vectors for rectangular and straight-sided triangular axisymmetric
elements is simple and involves the integration of terms like rmzn and zn

r
with m,n = 0, 1, 2 . . . p (m + n ≤ p), where p is the highest degree poly-
nomial contained in the shape functions. The analytical integration of the
terms rm zn can be performed using the expressions given in Section 5.6.
The exact integration of the terms zn

r over straight side triangles is given
in Box 7.2 for n ≤ 2. For n > 2 it is recommended that the integrals are
computed approximately using numerical integration.

Numerical integration is also mandatory for arbitrary quadrilateral
shapes and curve-sided elements.

7.5 ISOPARAMETRIC AXISYMMETRIC SOLID ELEMENTS

The formulation of isoparametric axisymmetric solid elements follows pre-
cisely the lines explained for 2D solid elements (Chapter 6). The axial and
vertical coordinates of an isoparametric axisymmetric solid element with
n nodes are expressed in terms of the nodal values as

x =
{

r
z

}
=

n∑

i=1

Ni x(e)
i (7.39a)

with

Ni =
[
Ni 0
0 Ni

]
; x(e)

i =
{

ri

zi

}
(7.39b)

The cartesian derivatives of the shape functions are obtained in terms
of the natural coordinates ξ, η as explained for 2D solid elements simply
replacing the coordinates x, y by r, z, respectively. The integrals in the
element stiffness matrix are expressed in the natural coordinate system
as

K(e)
ij = 2π

∫∫

A(e)

BT
i D Bj r drdz =

= 2π

∫ +1

−1

∫ +1

−1
BT

i D Bj

(
n∑

k=1

Nk rk

)∣∣∣J(e)
∣∣∣dξ dη (7.40)
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Similarly, for the equivalent nodal force vector we have

f (e)
bi

= 2π

∫∫

A(e)

NT
i b r drdz =

= 2π

∫ +1

−1

∫ +1

−1
NT

i b

(
n∑

k=1

Nkrk

)∣∣∣J(e)
∣∣∣ dξ dη (7.41)

The expression of the Jacobian matrix J(e) is deduced from Eq.(6.3) simply
changing the coordinates x and y by r and z, respectively.

As explained for 2D solid elements the integrals in Eqs.(7.40) and (7.41)
contain rational algebraic functions in the natural coordinates. An excep-
tion is the case of rectangles and straight-sided triangles discussed previ-
ously. In general, the element integrals are computed numerically.

A np×nq quadrature over quadrilaterals gives (Sections 6.4.1 and 6.5.1)

K(e)
ij

= 2π
np∑

p=1

nq∑
q=1

[
BT

i D Bj

( n∑
k=1

Nkrk

)
|J(e)|

]

p,q

WpWq

f (e)
bi

= 2π
np∑

p=1

nq∑
q=1

[
NT

i b
( n∑

k=1

Nkrk

)
|J(e)|

]

p,q

Wp Wq

(7.42)

For triangular elements the Gauss quadrature is (Sections 6.4.2 and
6.5.2)

K(e)
ij = 2π

np∑
p=1

[
BT

i DBj

(
n∑

k=1

Nkrk

)
|J(e)|

]

p

Wp

f (e)
bi

= 2π
np∑

p=1

[
NT

i b
(

n∑
k=1

Nkrk

)
|J(e)|

]

p

Wp

(7.43)

The only difference between the Gauss quadrature for axisymmetric
solid elements and plane elasticity elements is the presence of the radial
coordinate within the integrals in the former.

7.6 ANALOGIES BETWEEN THE FINITE ELEMENT
FORMULATIONS FOR PLANE ELASTICITY AND
AXISYMMETRIC SOLIDS

Axisymmetric solids are conceptually different from plane elasticity struc-
tures. However, the finite element methodology for both cases shares many
common features. For instance, the strain matrices are very similar as
shown below.
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Bi matrix

Plane elasticity Axisymmetric solids




∂Ni

∂x
0

0
∂Ni

∂y

∂Ni

∂y

∂Ni

∂x




εx

εy

γxy




∂Ni

∂r
0

0
∂Ni

∂z

∂Ni

∂z

∂Ni

∂r
..... .....

Ni

r
0




εr

εz

γrz

εθ

(7.45)

The first three rows of both matrices coincide if the coordinates r, z
are replaced by x, y. The fourth row term Ni

r corresponding to the cir-
cumferential strain in axisymmetric solids tends to zero for large values of
r and thus in the limit case (r →∞) the non-zero terms of both matrices
coincide. This coincidence has a clear physical meaning as the behaviour of
an axisymmetric solid with a large radius resembles to that of a prismatic
solid under plane strain conditions. In fact, a prismatic solid can always
be considered as part of an axisymmetric solid with an infinite radius and
the analogy between the two problems is clear in this case.

These analogies extend to the element integrals. It is deduced from
Eqs.(4.61) and (7.28) that both expressions are identical if the term
2πrdrdz, expressing the area differential in axisymmetric solids, is re-
placed by tdxdy for plane elasticity. It is therefore very simple to write a
computer program for solving both types of problems in a unified manner.
See Chapter 11 and [Hu,HO,HO2].

7.7 EXAMPLES OF APPLICATION

7.7.1 Infinitely long cylinder under external pressure

This example shows the analysis of an infinitely long thick cylinder under
external pressure. This is a plane strain problem and, thus, only a single
slice needs to be analyzed as shown in Figure 7.8. The study has been
performed using twenty 3-noded axisymmetric triangles with the mesh
and boundary conditions shown in the figure.
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Figure 7.8 shows the results obtained for the radial circumferential
stress and the axial stress distributions along a radial line. Excellent agree-
ment with the exact solution [CR] is obtained in all cases.

Fig. 7.8 Infinitely long cylinder under external pressure
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Fig. 7.9 Cylindrical tank with spherical dome under internal pressure. (a) Geome-
try and mesh. (b) Deformed mesh. (c) Distribution of the circumferential stress
σθ along the central line. (d) Isolines for σθ in the wall-dome joint region

7.7.2 Cylindrical tank with spherical dome under internal pressure

Figure 7.9a shows the geometry of the tank and the mechanical proper-
ties. An internal pressure of 1T/m2 acts along the inner wall. Clamped
boundary conditions (u = w = 0) have been imposed on the base nodes. A
regular mesh of 381 8-noded Serendipity axisymmetric quadrilaterals has
been used. Three elements have been used to discretize the wall thickness.

The deformed mesh is plotted in Figure 7.9b. Figure 7.9c shows the
distribution of the circumferential stress along the central line of the me-
ridional section. Note that most of the cylindrical wall is subjected to
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a uniform tensile circumferential stress state, whereas high compression
stress gradients occur in the vicinity of the wall-dome joint. Figure 7.9d
shows a detail of the isolines for the circumferential stress in that region.

Fig. 7.10 Boussinesq problem. (a) Geometry and mesh. (b) Isolines for the vertical
displacement (w × E) in the vicinity of the load. (c) Radial distributions for σz
and the vertical displacement for z = −0.50 and z = −1.00 (ν = 0.20)
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7.7.3 Semi-infinite elastic space under point load

This example corresponds to the well known Boussinesq problem of a
semi-infinite elastic space under a point load. The analysis has been per-
formed for a finite domain of 4×4 mts. discretized with a mesh of 8-noded
Serendipity rectangles as shown in Figure 7.10a. The isolines for the ver-
tical displacement in the vicinity of the load are plotted in Figure 7.10b.
High displacement gradients are obtained in this region as expected, since
the theoretical value of the vertical displacement under the load is infini-
ty. Figure 7.10c shows the distributions of the stress σz and the vertical
displacement w along two horizontal lines corresponding to the distances
z = −0.50 and −1.0m. respectively. The comparison of the numerical
results with the theoretical solution [TG] is very good in both cases.

7.8 CONCLUDING REMARKS

The finite element analysis of axisymmetric solids shares many features
with that of the plane elasticity solids studied in Chapters 4–6. In par-
ticular, the displacement interpolation and the derivation of the element
stiffness matrix and the equivalent nodal force vector are very similar in
both cases. This makes it simple to organize a computer program that is
valid for both problems.

Axisymmetric solid elements behave very similarly to 2D elasticity ele-
ments: quadrilateral elements are generally more precise than triangles,
and the quadratic elements perform better than the linear ones. Here again
the simple 3-noded axisymmetric triangle is the more versatile element for
the discretization of complex axisymmetric geometries using unstructured
meshes, as well as for using adaptive mesh refinement techniques. More-
over, the linear triangle is highly accurate in tension or compression domi-
nated problems (Example 7.1). All this has contributed to the popularity
of the 3-noded triangle for the analysis of axisymmetric solids.



8

THREE DIMENSIONAL SOLIDS

8.1 INTRODUCTION

Many structures have geometrical, mechanical or loading features which
make it impossible to use the simple plane stress/plane strain and axi-
symmetric models studied in previous chapters; or even the plate and
shell models to be described in the second volume of the book [On]. The
only alternative is to perform a full three dimensional (3D) analysis based
on general 3D elasticity theory [TG].

Examples of these situations are found in solids with irregular shapes
and in the study of prismatic solids with heterogeneous material properties
or arbitrary loading. Figure 8.1 shows some examples of typical structures
requiring a full 3D analysis.

Despite its apparent complexity, the analysis of a 3D solid with the
FEM does not introduce major conceptual problems. 3D elasticity theory
is a straightforward extension of the 2D case and the steps involved in
the 3D finite element analysis of a structure are a repetition of those stu-
died in Chapters 4–7. In that respect, this chapter closes the cycle of struc-
tural problems which can be analyzed using elasticity theory, either by the
general 3D form or by any of the simplified 2D cases previously studied.

Although conceptually simple, 3D finite element computations involve
a considerable amount of work in comparison with 2D analyses. The prin-
cipal reason is the introduction of an additional space dimension, for this
leads to greater computational time as well as requiring more effort to
input data and visualize the results. Consequently, 3D analyses tend to be
avoided in practice whenever possible in favour of simpler 2D solutions.
Unfortunately this is not possible in many practical situations which re-
quire a 3D analysis.

The first part of the chapter introduces the basic concepts of 3D elasti-
city theory necessary for application of the FEM. Details of the derivation
of the element stiffness matrix and the nodal load vectors are given for
the general case and are particularized for the simple 4-noded tetrahedral
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Fig. 8.1 Structures which require a 3D analysis: (a) Double arch dam including
foundation effects. (b) Pressure vessel. (c) Prismatic solid under arbitrary loading

element. The derivation of the shape functions for hexahedral and tetrahe-
dral elements is then explained. Next, the formulation of 3D isoparametric
elements is detailed. Finally, some examples of practical application of 3D
finite element analysis are given.

8.2 BASIC THEORY

8.2.1 Displacement field

Let us consider the 3D solid shown in Figure 8.2. The movement of a point
is defined by the three components of the displacement vector, i.e.

u = [u, v, w]T (8.1)

where u, v, w are the displacements of the point in the directions of the
cartesian axes x, y, z, respectively.

8.2.2 Strain field

The strain field is defined by the standard six strain components of 3D
elasticity [TG]. The strain vector is written as

εεε =
[
εx, εy, εz, γxy, γxz, γyz

]T
(8.2)
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Fig. 8.2 3D solid. Displacements and loads

Fig. 8.3 Sign criterion for the stresses in a 3D solid

with

εx =
∂u

∂x
; εy =

∂v

∂y
; εz =

∂w

∂z

γxy =
∂u

∂y
+

∂v

∂x
; γxz =

∂u

∂z
+

∂w

∂x
; γyz =

∂v

∂z
+

∂w

∂y

(8.3)

where εx, εy, εz are the normal strains and γxy, γxz, γyz are the tangential
strains.

8.2.3 Stress field

The stress field is defined by the six stress components which are conjugate
of the six non-zero strains of Eq.(8.2). The stress vector is

σσσ =
[
σx, σy, σz, τxy, τxz, τyz

]T
(8.4)

where σx, σy, σz are the normal stresses and τxy, τxz,τyz are the tangential
stresses. Note that τij = τji. For the sign criteria see Figure 8.3.
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8.2.4 Stress-strain relationship

The stress-strain relationship is expressed for the general case of anisotropic
elasticity by a 6 × 6 symmetric constitutive matrix with 21 independent
parameters. For orthotropic materials with principal ortrotopy directions
x′, y′, z′ the constitutive equation is written as

ε′1 =
1

E1
σ′1 −

ν21

E2
σ′2 −

ν31

E3
σ′3 , ε′2 =

1
E2

σ′2 −
ν12

E1
σ′1 −

ν32

E3
σ′3

ε′3 =
1

E3
σ′3 −

ν13

E1
σ′1 −

ν23

E2
σ′2 , γ12 =

τ12

G12
; γ13 =

τ13

G13
; γ23 =

τ23

G23
(8.5a)

The symmetry of the constitutive matrix requires

E1ν21 = E2ν12 ; E2ν32 = E3ν23 ; E3ν13 = E1ν31 (8.5b)

and the total number of independent material parameters reduce to nine
for this case.

The number of material parameters reduces further to five for an or-
thotropic material in the plane 1-2 and isotropic in the plane 23. This
situation is typical of fiber-reinforced composite materials. The transfor-
mation of the local constitutive matrix from the principal orthotropy axes
to the global cartesian axes x, y, z follows the procedure explained in Sec-
tion 4.2.4 for plane problems.

Isotropic materials require two material parameters only, the Young
modulus E and the Poisson’s ratio ν. The constitutive matrix for isotropic
materials can be directly written in global cartesian axes. If initial strains
and stresses are taken into account we can write

σσσ = D (εεε− εεε0) + σσσ0 (8.6)

where the isotropic constitutive matrix D is given by

D =
E(1− ν)

(1 + ν)(1− 2ν)




1
ν

1− ν

ν

1− ν
0 0 0

1
ν

1− ν
0 0 0

1 0 0 0
1− 2ν

2(1− ν)
0 0

Symmetrical
1− 2ν

2(1− ν)
0

1− 2ν

2(1− ν)




(8.7)
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The initial strain vector due to thermal strains is

εεε0 = α(∆T ) [1, 1, 1, 0, 0, 0]T (8.8)

8.2.5 Principal stresses, stress invariants and failure criteria

The principal stresses σI , σII , σIII for 3D solids are the three roots of the
characteristic polynomial

det([σ]− λI3) = 0 (8.9a)

where

[σ] =




σx τxy τxz

τxy σy τyz

τxz τyz σz


 , I3 =




1 0 0
0 1 0
0 0 1


 (8.9b)

Eq.(8.9a) can be expressed as

λ3 − I1λ
2 + I2λ− I3 = 0 (8.10a)

where

I1 = σI + σII + σIII = σx + σy + σz = tr[σ]

I2 = σIσII + σIσIII + σIIσIII =
1
2
[(tr[σ])2 − tr[σ]2] =

= σxσy + σxσz + σyσz − τ2
xy − τ2

xz − τ2
yz

I3 = σIσIIσIII = det[σ] = σxσyσz + 2τxyτxzτyz− σxτ2
yz− σyτ

2
xz− σz− τ2

xy

(8.10b)
The three principal stresses are associated to the unit normal vectors

nI ,nII ,nIII defining the principal stress directions (Figure 8.4). These
vectors are found solving the system

[[σ]− λiI3]ni = 0 with nT
i ni = 1 , i = I, II, III (8.11)

The principal stresses are independent of the coordinate system. Hence,
I1, I2 and I3 are the invariants of tensor [σ] for an orthogonal transforma-
tion of coordinates.

The mean stress, or hydrostatic stress σn is also an invariant

σn =
1
3
(σx + σy + σz) =

1
3
(σI + σII + σIII) =

1
3
I1 (8.12)

Let us introduce now the deviatoric stress tensor

[s] = [σ]− σnI3 (8.13)
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Fig. 8.4 Principal stresses in a 3D solid

Eq.(8.10a) is written as

λ3
s − J2λs − J3 = 0 with λs = λ− σn (8.14a)

where J1, J2, J3 are the deviatoric stress invariants

J1 = tr[s] = 0

J2 =
1
6

[
(σI − σII)2 + (σI − σIII)2 + (σII − σIII)2

]
= (8.14b)

=
1
6

[
(σx − σy)2 + (σx − σz)2 + (σy − σz)2 + 6(τ2

xy + τ2
yz + τ2

xz)
]

J3 = det[s] = det([σ]− σnI3)

The quantities J2 and J3 can be expressed in terms of I1, I2, I3 as

J2 = −I2 +
1
3
I2
1 , J3 = I3 − 1

3
I1I2 +

2
27

I3
1 (8.15)

The octaedric shear stress τ0 is

τ2
0 =

2
3
J2 (8.16)

This stress is the same for all the (eight) planes inclined the same angle
with respect to the principal directions nI ,nII ,nIII (i.e. planes defined by
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the normal vectors n = 1√
3
(±1,±1,±1)). The normal stress acting on each

of these planes is the hydrostatic stress σn [ZT].
The three real roots of Eq.(8.14a) are given by [Bey]

sI =
√

2τ0 cos
(

w − 2π

3

)
; sII =

√
2τ0 cos

(
w +

2π

3

)
; sIII =

√
2τ0 cosw

(8.17a)
with

cos 3w =
√

2
J3

τ3
0

(
0 ≤ w ≤ π

3

)
(8.17b)

The principal stresses therefore are

σI = sI + σn ; σII = sII + σn ; σIII = sIII + σn (8.18)

As mentioned in previous chapters, onset of failure at a point can be
monitored by the maximum principal stress reaching a prescribed limit
value. This a usual procedure to detect fracture in fragile materials. For
most materials however, the initiation of failure at a point is governed by
the so called yield rule expressed in terms of the stress invariants. Here
we simply note that both the octaedric shear stress τ0 and the hydrostatic
stress σn play an important role in the definition of yield surfaces in elasto-
plasticity theories [ZT].

For example the equivalent stress (also called von Mises stress) σeq

used in classical Hencky-Mises elastoplasticity is defined as [ZT]

σeq = (3J2)1/2 =
3√
2
τ0 (8.19)

8.2.6 Virtual work principle

The expression of the PVW for 3D solids is
∫∫∫

V
δεεεTσσσ dV =

∫∫∫

V
δuT b dV +

∫∫

A
δuT t dA +

∑

i

δaT
i pi (8.20)

where V and A are respectively the volume and the surface of the solid
over which the body forces b = [bx, by, bz]T and the surface tractions
t = [tx, ty, tz]T act, and pi = [Pxi , Pyi , Pzi ]

T are the point loads acting at
node i. Eq.(8.20) is an extension of the PVW for 2D solids (Eq.(4.23)).

The PVW integrals involve first derivatives of the displacements only.
Thus Co continuity is required for the finite element approximation as for
2D elasticity and axisymmetric problems.
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8.3 FINITE ELEMENT FORMULATION. THE FOUR-NODED
TETRAHEDRON

The finite element formulation for 3D solid elements will be detailed next.
It is important to note that most of the expressions are general and appli-
cable to any 3D element with n nodes. However we will particularize all
matrices and vectors for the simple 4-noded tetrahedron as an example.
This element is a natural extension of the 3-noded triangle in Chapter 4.

8.3.1 Discretization of the displacement field

Let us consider a 3D solid discretized into 4-noded tetrahedra as that of
Figure 8.5. The displacement field within each element is interpolated as

u =





u
v
w



 =





N1 u1 + N2 u2 + N3 u3 + N4 u4

N1 v1 + N2 v2 + N3 v3 + N4 v4

N1 w1 + N2 w2 + N3 w3 + N4 w4



 =

4∑

i=1

Ni a
(e)
i = N a(e)

(8.21a)
where

N = [N1,N2,N3,N4] ; Ni =




Ni 0 0
0 Ni 0
0 0 Ni


 (8.21b)

and

a(e) =





a(e)
1

a(e)
2

a(e)
3

a(e)
4





; a(e)
i =





ui

vi

wi



 (8.21c)

are the shape function matrix and the displacement vector for the element
and a node i, respectively. As usual, the same interpolation has been used
for the three displacement components. The shape functions are therefore
the same for the three displacements.

The extension of above expressions for an element with n nodes simply
involves changing from 4 to n the number of matrices Ni and vectors a(e)

i

in Eqs.(8.21a).
The analytical form of the shape functions Ni is obtained in a similar

way as for the 3-noded triangle (Section 4.3.1). The four nodes define a
linear displacement field in 3D. Choosing the u displacement we can write

u = α1 + α2x + α3y + α4z (8.22)



258 Three dimensional solids

Fig. 8.5 Four-noded tetrahedral element. Nodal displacements (ui, vi, wi) and equi-
librating nodal forces (Fxi , Fyi , Fzi)

The αi parameters are obtained by substituting the nodal coordinates
into Eq.(8.22) and then making the displacements equal to their nodal
values, i.e.

u1 = α1 + α2 x1 + α3 y1 + α4 z1

u2 = α1 + α2 x2 + α3 y2 + α4 z2

u3 = α1 + α2 x3 + α3 y3 + α4 z3

u4 = α1 + α2 x4 + α3 y4 + α4 z4

(8.23)

Eq. (8.23) is used to solve for α1, α2, α3 and α4. Substituting these values
into (8.22) yields, after rearranging the terms,

u =
4∑

i=1

1
6V (e)

(ai + bix + ciy + diz)ui (8.24)

The nodal shape function Ni is obtained by comparing Eqs.(8.24) and
(8.21a) as

Ni =
1

6V (e)
(ai + bix + ciy + diz) (8.25a)
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where V (e) is the element volume and

ai = det

∣∣∣∣∣∣

xj yj zj

xk yk zk

xl yl zl

∣∣∣∣∣∣
; bi = −det

∣∣∣∣∣∣

1 yj zj

1 yk zk

1 yl zl

∣∣∣∣∣∣

ci = det

∣∣∣∣∣∣

xj 1 zj

xk 1 zk

xl 1 zl

∣∣∣∣∣∣
; di = −det

∣∣∣∣∣∣

xj yj 1
xk yk 1
xl yl 1

∣∣∣∣∣∣

(8.25b)

The different parameters for i = 1, 2, 3, 4, are obtained by adequate cyclic
permutation of the indexes i, j, k, l.

As usual, the shape function Ni has the same expression as in Eqs.(8.25)
for the other two displacement components v and w.

The graphic form of the shape functions for 3D elements is not straight-
forward since they are a functions of three variables. Note, however, that
the expression of Ni over an element face coincides precisely with the shape
function of the 2D element corresponding to that face. Thus, the shape
functions for the 4-noded tetrahedron take forms over each face that are
identical to those for the 3-noded triangle shown in Figure 4.8.

8.3.2 Strain matrix

Substituting Eq.(8.21a) into (8.2) gives for a 3D element with n nodes

εεε =
n∑

i=1





∂Ni

∂x
ui

∂Ni

∂y
vi

∂Ni

∂z
wi

∂Ni

∂y
ui +

∂Ni

∂x
vi

∂Ni

∂z
ui +

∂Ni

∂x
wi

∂Ni

∂z
vi +

∂Ni

∂y
wi





=
n∑

i=1

Bi a(e)
i = B a(e) (8.26)

where B is the element strain matrix given by

B = [B1,B2,B3, . . . ,Bn] (8.27a)
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and Bi is the strain matrix of node i, with

Bi =




∂Ni

∂x
0 0

0
∂Ni

∂y
0

0 0
∂Ni

∂z
∂Ni

∂y

∂Ni

∂x
0

∂Ni

∂z
0

∂Ni

∂x

0
∂Ni

∂z

∂Ni

∂y




(8.27b)

As usual matrix B contains as many Bi matrices as element nodes. For
the 4-noded tetrahedron

B = [B1,B2,B3,B4] (8.28a)

Making use of Eqs.(8.25a) gives for the 4-noded tetrahedron

Bi =
1

6V (e)




bi 0 0

0 ci 0

0 0 di

ci bi 0

di 0 bi

0 di ci




(8.28b)

The strain matrix is constant, as it is for the 3-noded triangle for plane
elasticity.

8.3.3 Equilibrium equations

The PVW for a single element is (Eq.(8.20))
∫∫∫

V (e)

δεεεTσσσ dV =
∫∫∫

V
δuTb dV +

∫∫

A
δuT t dA + [δa(e)]Tq(e) (8.29)

where, as usual, q(e) is the vector of equilibrating nodal forces for the
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element acting on the virtual nodal displacements δa(e) with

δa(e) =





δa(e)
1

δa(e)
2

δa(e)
3





, δa(e)
i =





δui

δvi

δwi



 , q(e) =





δq(e)
1

δq(e)
2

δq(e)
3





, q(e)
i =





Fxi

Fyi

Fzi





(8.30a)

The virtual displacements and the virtual strains are interpolated in
terms of the virtual displacement values in the standard form, i.e.

δu = Nδa , δεεε = Bδa (8.30b)

Substituting Eqs.(8.30b) into (8.29) gives after simplification of the
virtual displacements

∫∫∫

V (e)

BTσσσ dV −
∫∫∫

V (e)

NTb dV −
∫∫∫

A(e)

NT t dA = q(e) (8.31)

Substituting the constitutive equation for the stresses (Eq.(8.6)) into
(8.31) gives the equilibrium equation for the element in the standard ma-
trix form

(∫∫∫

V (e)

BTDB dV

)
a(e) −

∫∫∫

V (e)

BTDεεε0 dV +
∫∫∫

V (e)

BTσσσ0 dV

−
∫∫∫

V (e)

NTb dV −
∫∫∫

A(e)

NT t dA = q(e) (8.32a)

or

K(e) a(e) − f (e) = q(e) (8.32b)

The global system of equations Ka = f is obtained by assembling the
contributions of K(e) and f (e) for each element in the usual manner.

The reactions at the prescribed nodes can be obtained once the nodal
displacements have been found via Eq.(2.26a), or by using Eq.(4.60a) with
the vector of internal nodal forces for each element given by

f (e)
int =

∫∫∫

V (e)

BTσσσ dV (8.33)

This expression is deduced from the first integral in the l.h.s. of
Eq.(8.31).
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8.3.4 Stiffness matrix for the element

The element stiffness matrix is deduced from Eq.(8.32a) as

K(e)

3n×3n
=

∫∫∫

V (e)

BT

3n×6
D
6×6

B
6×3n

dV (8.34a)

with

K(e)
ij

3×3

=
∫∫∫

V (e)

BT
i

3×6
D
6×6

Bj
6×3

dV (8.34b)

The form of matrices K and K(e)
ij of Eqs.(8.34) is completely general

and applicable to any 3D solid element with n nodes.
The expression of K(e)

ij for the 4-noded tetrahedron with homogeneous
material properties is simple since the strain matrix is constant. This gives

K(e)
ij = BT

i DBjV
(e) (8.35)

The explicit form of K(e)
ij for this element is shown in Box 8.1.

Box 8.1 Stiffness matrix K(e)
ij for the 4-noded linear tetrahedral element
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8.3.5 Equivalent nodal force vector for the element

The equivalent nodal force vector of Eq.(8.32b) is

f (e) =
∫∫∫

V (e)

NT b dV +
∫∫

A(e)

NT t dA +
∫∫∫

V (e)

BTDεεε0 dV −

−
∫∫∫

V (e)

BTσσσ0 dV = f (e)
b + f (e)

t + f (e)
ε + f (e)

σ (8.36)

The first two integrals are contributed by the body forces and the
surface tractions, respectively, and the last two ones are due to the initial
strains and the initial stresses.

The general expression for the equivalent force vectors for an arbitrary
3D solid element is given below. The particular form for the 4-noded tetra-
hedron is detailed.

Body forces

f (e)
b

3n×1

=
∫∫∫

V (e)

NTbdV (8.37a)

For the 4-noded tetrahedron:

f (e)
b

12×1

=





f (e)
b1

f (e)
b2

f (e)
b3

f (e)
b4





with f (e)
bi

=
∫∫∫

V (e)

NT
i b dV (8.37b)

For a uniform body force:

f (e)
bi

=
V (e)

4
[
bx, by, bz

]T (8.37c)

i.e. the total body force is distributed in equal parts between the four
nodes, as expected.

Surface tractions

f (e)
t

3n×1
=

∫∫

A(e)

NT tdA (8.38a)

For the 4-noded tetrahedron:

f (e)
t

12×1
=





ft1
f (e)
t2

f (e)
t3

f (e)
t4





with f (e)
ti

=
∫∫

A(e)

NT
i t dA (8.38b)
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The components of the surface tractions vector depend on the element
face over which the external force acts; i.e.

Uniform force acting on the face defined by nodes 1-2-3

f (e)
t =

A
(e)
123

3

[
tx, ty, tz, tx, ty, tz.tx, ty, tz, 0, 0, 0

]T

(8.39)

where A
(e)
123 is the area of the face. Note that the last three terms of

Eq.(8.39) are zero as the shape function N4 vanishes on that face.

Uniform force acting on the face defined by nodes 1-2-4

f (e)
t =

A
(e)
124

3
[tx, ty, tz, tx, ty, tz, 0, 0, 0, tx, ty, tz]

T (8.40)

Uniform force acting on the face defined by nodes 2-3-4

f (e)
t =

A
(e)
234

3
[0, 0, 0, tx, ty, tz, tx, ty, tz, tx, ty, tz]

T (8.41)

and

Uniform force acting on the face defined by nodes 1-3-4

f (e)
t =

A
(e)
134

3
[tx, ty, tz, 0, 0, 0, tx, ty, tz, tx, ty, tz]

T (8.42)

Uniform surface tractions are distributed in equal parts between the
three nodes of the linear tetrahedron face affected by the loading.

Forces due to initial strains

f (e)
ε

3n×1
=

∫∫∫

V (e)

BTDεεε0 dV (8.43a)

For the 4-noded tetrahedron:

f (e)
ε

12×1
=





f (e)
ε1

f (e)
ε2

f (e)
ε3

f (e)
ε4





; f (e)
εi

=
∫∫∫

V (e)

BT
i Dεεε0 dV =

1
6





(d11ε
0
x + d12ε

0
y + d13ε

0
z)bi

(d21ε
0
x + d22ε

0
y + d23ε

0
z)ci

(d31ε
0
x + d32ε

0
y + d33ε

0
z)di

0
0
0





(8.43b)
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where dij is the element ij of matrix D. For initial strains due to thermal
effects and isotropic material we have

f (e)
εi

=
E α(∆T )
6(1− 2ν)

[bi, ci, di, 0, 0, 0]T (8.43c)

Forces due to initial stresses

f (e)
σ

3n×1
=

∫∫∫

V (e)

BTσσσ0 dV (8.44a)

For the 4-noded tetrahedron:

f (e)
σ

12×1
=





f (e)
σ1

f (e)
σ2

f (e)
σ3

f (e)
σ4





; f (e)
σi

=
∫∫∫

V (e)

Biσσσ
0 dV =

1
6





biσ
0
x + ciτ

0
xy + diτ

0
xz

ciσ
0
y + biτ

0
xy + diτ

0
yz

diσ
0
z + biτ

0
xz + ciτ

0
yz





(8.44b)

8.3.6 The performance of the 4-noded tetrahedron

The 4-noded tetrahedron behaves similarly to the 3-noded linear triangle
presented in Chapter 4. The element has a good ability to model uniform
stress fields. However, its accuracy is poor for bending dominated pro-
blems, as well as in the presence of high stress gradients and finer meshes
are needed in these zones. More details are given in Section 8.11.

We emphasize the intrinsic difficulty of discretizing a solid with tetrahe-
dra. This is a serious problem for the application of the linear tetrahedron
to arbitrary shaped solids and particularly when adaptive mesh refinement
is used. Much work has been reported in recent years on the development
of efficient mesh generators for 3D solids using linear tetrahedral elements
(see Chapter 10, Annex D and [BP,GiD,Ng,Pe,Pi,PVMZ]).

8.4 OTHER 3D SOLID ELEMENTS
The formulation presented in Section 8.3 is completely general. This means
that the expressions for the stiffness matrix and the equivalent nodal force
vector for any 3D solid element coincide with Eqs.(8.34) and (8.36), res-
pectively. The computation of the element integrals simply requires sub-
stituting the adequate element shape functions in the expressions for Bi

and f (e). In common with 2D solid elements, 3D hexahedra can be of La-
grange or Serendipity types. The shape functions for hexahedral elements
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Fig. 8.6 Right prism. Actual and normalized geometries

are obtained for a right prism in the normalized geometry in terms of
the natural coordinates (Figure 8.6) following similar rules as for 2D rec-
tangles. The modeling of arbitrary 3D geometries of irregular shape with
hexahedra is straightforward using an isoparametric formulation.

The shape functions for Lagrange right prisms are simply obtained by
the product of three Lagrange polynomials in 1D. The derivation of the
shape functions for 3D Serendipity prismatic elements is more cumber-
some, although the same rules given for the 2D case apply.

Like triangles, the shape functions for tetrahedra are complete polyno-
mials and they are more easily expressed in terms of volume and natural
coordinates.

8.5 RIGHT PRISMS
Let us consider a right prism with edges 2a × 2b × 2c, with the natural
coordinates ξ, η, ζ defined as shown in Figure 8.6. We can write

ξ =
(x− xc)

a
; η =

(y − yc)
b

; ζ =
(z − zc)

c
(8.45)

where (xc, yc, zc) are the coordinates of the centroid. Note that the prism
becomes a cube in the natural coordinate system (Figure 8.6). From
Eq.(8.45)

dξ

dx
=

1
a

;
dη

dy
=

1
b

;
dζ

dz
=

1
c

(8.46)

and a differential of volume is expressed by

dx dy dz = abc dξ dη dζ (8.47)
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The integration of a function f(x, y, z) over the element is expressed
in the natural coordinate system as

∫∫∫

V (e)

f(x, y, z) dV =
∫ +1

−1

∫ +1

−1

∫ +1

−1
f(ξ, η, ζ)abc dξ dη dζ (8.48)

Since the element is a right prism, the cartesian derivatives of the shape
functions are directly obtained by

∂Ni

∂x
=

1
a

∂Ni

∂ξ
;

∂Ni

∂y
=

1
b

∂Ni

∂η
;

∂Ni

∂z
=

1
c

∂Ni

∂ζ
(8.49)

The shape functions must satisfy the standard conditions (Section
5.2.2)

Ni(ξj , ηj , ζj) =

{
1 if i = j

0 if i 6= j
(8.50a)

and n∑

i=1

Ni (ξ, η, ζ) = 1 (8.50b)

8.5.1 Right prisms of the Lagrange family

The shape functions for Lagrange right prisms are obtained by multilying
three 1D Lagrange polynomials as

Ni(ξ, η, ζ) = liI(ξ) liI(η) liI(ζ) (8.51)

where liI(ξ) is the normalized Lagrange polynomial of Ith degree passing
by node i, etc. For the same reasons mentioned in Section 5.3.4 it is usual to
choose the same polynomial approximation in each of the three directions
ξ, η and ζ.

The terms contained in the shape functions of prismatic elements are
deduced from the Pascal tetrahedron. Figure 8.7 shows the linear and
quadratic elements of this family whose shape functions are derived next.

8.5.1.1 Linear right prism of the Lagrange family

The simplest Lagrange prismatic element is the 8-noded linear prism
shown in Figure 8.7.

The nodal shape function is obtained by multiplying the three normali-
zed linear polynomials in ξ, η and ζ, corresponding to the node. In general
form

Ni(ξ, η, ζ) =
1
8
(1 + ξiξ) (1 + ηiη) (1 + ζiζ) (8.52)
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Fig. 8.7 Linear and quadratic right prisms of the Lagrange family. Polynomial
terms contained in the shape functions deduced from the Pascal tetrahedron

Note that:

1. The shape functions contain a complete linear polynomial in ξ, η, ζ
and the incomplete quadratic and cubic terms ξη, ξζ, ηξ and ξηζ, ξηζ
(Figure 8.8).
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Fig. 8.8 Shape functions for the linear right prism

2. The shape functions satisfy conditions (8.50).

The linear hexahedron is a popular element due to the small number
of nodal variables, which is attractive for practical 3D analysis.

The linear hexahedron behaves for linear elasticity analysis similarly
as the 4-noded rectangle of Chapter 4. Its performance is excellent for
tension or compression dominated problems, whereas its accuracy is poor
for bending dominated situations. This is due to its inability to follow
curved deformation patterns and finer meshes are needed to obtain good
solutions in these cases.

The behaviour of the 8-noded hexahedron can be improved by using
reduced integration for the shear stiffness terms, by adding internal or
incompatible modes, or by using an assumed strain field, in a similar way
to the 4-noded quadrilateral (Section 4.4.2). A popular alternative is to
add incompatible internal modes to the original displacement field as





u
v
w



 =

8∑

i=1

Ni





ui

vi

wi





(e)

+





(1− ξ2)a1 + (1− η2)a2 + (1− ζ2)a3

(1− ξ2)a4 + (1− η2)a5 + (1− ζ2)a6

(1− ξ2)a7 + (1− η2)a8 + (1− ζ)a9



 (8.53)
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Fig. 8.9 Quadratic right prism of the Lagrange family with 27 nodes. Shape func-
tions for a corner node and a mid-side node

The enhanced 8-noded hexahedron requires a one point reduced quadra-
ture for the terms corresponding to the incompatible modes ai, so that the
patch test is satisfied. It can be proved that in its right form the enhanced
element reproduces pure bending states exactly [CMPW]. The internal
incompatible modes can be eliminated by static condensation to yield a
24× 24 stiffness matrix. Hence, the size of the global stiffness matrix does
not increase. An explicit form of the element stiffness matrix for right
prisms can be obtained as for the 4-noded rectangle (Box 4.2).

8.5.1.2 Quadratic right prism of the Lagrange family

The quadratic Lagrange prism has 27 nodes (Figure 8.9). The shape func-
tions are obtained by the product of three 1D normalized quadratic La-
grange polynomials. Figure 8.9 shows the derivation of the shape functions
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for a corner node and a mid-side node. It is simple to extrapolate this pro-
cedure to obtain the following general expressions

Corner nodes

Ni =
1
8
(ξ2 + ξξi)(η2 + ηηi)(ζ2 + ζζi) ; i = 1, 3, 5, 7

19, 21, 23, 25 (8.54)

Mid-side nodes

Ni =
1
4
η2

i (η
2 − ηηi)ζ2(ζ2 − ζζi)(1− ξ2) +

1
4
ζ2
i (ζ2 − ζζi)+

+ξ2
i (ξ2 − ξξi)(1− η2) +

1
4
ξ2
i (ξ2 − ξξi)η2

i (η
2 − ηηi)(1− ζ2)

; i =
2, 4, 6, 8
10, 12, 14, 16
20, 22, 24, 26

(8.55a)
Face nodes

Ni =
1
2
(1− ξ2)(1− η2)(ζ + ζiζ

2) +
1
2
(1− η2)(1− ζ2)(ξ + ξiξ

2)+

+
1
2
(1− ξ2)(1− ζ2)(η + ηiη

2) ; i = 9, 11, 13
15, 17, 27

(8.55b)
Central internal node

N18 = (1− ξ2)(1− η2)(1− ζ2) (8.55c)

8.5.1.3 Other hexahedral elements of the Lagrange family

The next members of the Lagrange family are the 64-noded cubic prism
(4 nodes along each edge) and the 125-noded quartic prism (5 nodes alone
each edge). Their shape functions are obtained by the product of three
1D normalized cubic and quartic polynomials respectively. These elements
in their right form are in general not competitive versus the analogous
Serendipity elements which have less nodal variables.

8.5.2 Serendipity prisms

Serendipity prisms are obtained by extension of the corresponding 2D
rectangular Serendipity elements. Figure 8.10 shows the first two elements
in the family, i.e. the 8- and 20-noded right prisms. Note that the 8-noded
prism is common to the Lagrange and Serendipity families and hence its
shape functions coincide with those given in Section 8.5.1.1.

8.5.2.1 20-noded quadratic Serendipity prism

The shape functions are obtained using similar criteria as for the 8-noded
rectangle (Section 5.4.1). The shape functions for the side nodes are ob-
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Fig. 8.10 8-noded and 20-noded Serendipity prisms. Polynomial terms contained
in the shape functions deduced from the Pascal’s tetrahedron

tained by multiplying a 1D normalized quadratic Lagrange polynomial
and two 1D normalized linear polynomials expressed in the natural coor-
dinates. For the corner nodes, a two step procedure is followed. The first
step involves the derivation of the trilinear function corresponding to the
node. This function is subsequently modified so that it takes a zero value
at the side nodes. This is achieved by substracting one half of the values of
the shape function of the side nodes adjacent to the relevant corner node
under consideration. See Section 5.4.1 for details.

Figure 8.11 shows the derivation of the shape function for a side node
(20) and a corner node (13). The element shape functions are written in
compact form as

Corner nodes

Ni =
1
8
(1 + ξiξ)(1 + ηiη)(1 + ζiζ)(ξiξ + ηiη + ζiζ − 2) ; i = 1, 3, 5, 7

13, 15, 17, 19

(8.56a)
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Fig. 8.11 20-noded quadratic Serendipity prism. Shape functions for a side node
and a corner node

Side nodes

Ni = 1
4(1− ξ2)(1 + ηiη)(1 + ζiζ) ; i = 2, 6, 14, 18

= 1
4(1− η2)(1 + ζiζ)(1 + ξiξ) ; i = 4, 8, 16, 20

= 1
4(1− ζ2)(1 + ηiη)(1 + ξiξ) ; i = 9, 10, 11, 12

(8.56b)
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Note that:

1. The shape functions contain a complete quadratic polynomial plus the
terms ξη2, ξ2η, ξ2ζ, ξ.ζ2, ζ2η, η2ζ, ξηζ, ξ2ηζ, ξη2ζ and ξηζ2. The
shape functions satisfy the conditions (8.50).

2. The 20-noded Serendipity prism has the same quadratic approxima-
tion as the 27-noded Lagrange prism. This means savings of 21 nodal
variables per element, which explains the popularity of the 20-noded
right prism for practical applications.

8.5.2.2 32-noded cubic Serendipity prism

This element has 8 corner nodes and 24 nodes along the edges as shown
in Figure 8.12. The 12 face nodes define a cubic polynomial over each face
as for the corresponding quadrilateral element (Section 5.4.2). The shape
functions for the side nodes are obtained by multiplying a 1D normalized
cubic Lagrange polynomial and two 1D linear polynomials expressed in
the natural coordinates. For the corner nodes the starting point is the
trilinear shape function, from which a proportion of the shape functions
of the side nodes is substracted so that the final shape function takes a
zero value at these nodes. The reader is invited to derive the expressions
of the shape functions for this element shown in Figure 8.12.

The shape functions contain a complete cubic polynomial (20 terms)
plus the following twelve terms: ξ3η, ξη3, η3ζ, ηζ3, ξζ3, ζ3ξ, ξ2ηζ, ξη2ζ,
ξηζ2, ξ3ηζ, ξη3ζ, ξηζ3. Therefore, the cubic Serendipity prism has the
same approximation as the analogous 64-noded Lagrangian prism, but
with a substantial reduction in the number of nodal variables. However,
this element is less popular than the 20-noded prism.

Example 8.1: Compute the matrix K(e)
11 for the 8-noded right prism of Fi-

gure 8.8 for homogeneous isotropic material.

-- Solution-- Solution

The cartesian derivatives of the shape function N1 are obtained using
Eqs.(8.46) and (8.49) as (note that the element sides are straight)

∂N1

∂x
=

∂N1

∂ξ

∂ξ

∂x
=

1
a

∂

∂ξ

[
1
8
(1− ξ)(1− η)(1− ξ)

]
= − 1

8a
(1− η)(1− ζ)
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Fig. 8.12 Shape functions for the 32-noded cubic Serendipity prism

and

∂N1

∂y
=

∂Ni

∂y

∂y

∂η
= − 1

8b
(1− ξ)(1− ζ) ,

∂N1

∂z
=

∂Ni

∂z

∂z

∂ζ
= − 1

8c
(1− ξ)(1− η)

The strain matrix B1 is

B1 =
1
8




−1

a
(1− η)(1− ζ) 0 0

0 −1

b
(1− ξ)(1− ζ) 0

0 0 −1

c
(1− ξ)(1− η)

−1

b
(1− ξ)(1− ζ) −1

a
(1− η)(1− ζ) 0

−1

c
(1− ξ)(1− η) 0 −1

a
(1− η)(1− ζ)

0 −1

c
(1− ζ)(1− η) −1

b
(1− ξ)(1− ζ)



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Matrix K(e)
11 is obtained by

K(e)
11 =

∫∫∫

V (e)
BT

1 DB1dV =
∫ +1

−1

∫ +1

−1

∫ +1

−1

BT
1 DB1abc dξ dη dζ

Denoting ξ = 1− ξ, η = 1− η and ζ̄ = 1− ζ we can write

D B1 =
1
8




d11 d12 d13

d12 d22 d23 0

d13 d23 d33

d44

0 d55

d66







−1

a
ηξ 0 0

0 −1

b
ξζ 0

0 0 −1

c
ξη

−1

b
ξζ −1

a
ηζ 0

−1

c
ξη̄ 0 −1

a
ηζ

0 −1

c
ξη −1

b
ξζ




=

=
1
8




−d11

a
ηζ − d12

b
ξζ −d13

c
ξη

−d12

a
ηζ −d22

b
ξζ −d23

c
ξη

−d13

a
ηζ −d23

b
ξζ −d33

c
ξη

−d44

b
ξζ −d44

a
ηζ 0

−d55

c
ξη 0 −d55

a
ηζ

0 −d66

c
ζη −d66

b
ξζ




Multiplying the previous equation by BT
1 gives

BT
1 DB1 =

=
1
64




(
d11
a2 η1 + d44

b2 ξ2 + d55
c2 ξ1)

(
d12 + d44

)
ξ3
ab

(
d13 + d55

)
ξ4
ac(

d22
b2 ξ2 + d44

a2 η1 + d66
c2 ξ1

) (
d23 + d66

)
ξ5
bc

Symmetrical
(

d33
c2 ξ1 + d55

a2 η1 + d66
b2 ξ2

)




with ξ̄1 = ξ̄2η̄2, ξ̄2 = ξ̄2ζ̄2, ξ̄3 = ξ̄η̄ζ̄2, ξ̄4 = ξ̄η̄2ζ̄, ξ̄5 = ξ̄2η̄ζ̄, η̄1 = η̄2ζ̄2.
Taking into account that

∫ +1

−1

ξ
2
dξ =

∫ +1

−1

η2dη =
∫ +1

−1

ζ
2

=
8
3

∫ +1

−1

ξ̄ dξ =
∫ +1

−1

η̄ dη =
∫ +1

−1

ζ̄ dζ = 2
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we finally obtain

K(e)
11 =

V (e)

8




2
9

(
d11
a2 + d44

b2 + d55
c2

)
1

6ab (d12 + d44) 1
6ac (d13 + d55)

2
9

(
d22
b2 + d44

a2 + d66
c2

)
1

6bc (d23 + d66)

Symmetrical 2
9

(
d33
c2 + d55

a2 + d66
b2

)




The rest of the K(e)
ij matrices are obtained following a similar procedure.

8.6 STRAIGHT-EDGED TETRAHEDRA

Straight-edged tetrahedral elements are a direct 3D extension of straight-
sided triangles. Their shape functions are also complete polynomials whose
terms can easily be deduced from the Pascal tetrahedron as shown in
Figure 8.13.

The shape functions for tetrahedral elements can be written in terms of
volume coordinates and/or natural coordinates. The volume coordinates
are identified by L1, L2, L3 and L4 and have a similar meaning to the
area coordinates in triangles. Each coordinate Li is now defined as the
ratio between the volume of the tetrahedron formed by a point inside the
element P and the face opposite to node i, and the total volume (Figu-
re 8.14). Thus

Li =
Volume Pjkl

V (e)
; i = 1, 2, 3, 4 (8.57)

Obviously, the following expression holds

L1 + L2 + L3 + L4 = 1 (8.58)

Volume coordinates can be used to define a linear interpolation of the
element geometry as

x =
4∑

i=1

Li xi, y =
4∑

i=1

Li yi, z =
4∑

i=1

Li zi (8.59)

Eqs. (8.58) and (8.59) allow us to eliminate Li in terms of the cartesian
coordinates as

Li =
l

6V (e)
(ai + bix + ciy + diz) (8.60)
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Fig. 8.13 Straight-edged tetrahedral elements: linear (4 nodes), quadratic (10
nodes), cubic (20 nodes). Polynomial terms contained in the shape functions

where ai, bi, ci, di coincide with the values given in Eq.(8.18). Therefore,
the volume coordinates coincide with the shape functions for the 4-noded
tetrahedron.

Eq.(8.60) allows us to obtain the cartesian derivatives of the volume
coordinates as

∂Li

∂x
=

l

6V (e)
bi ;

∂Li

∂y
=

l

6V (e)
ci ;

∂Li

∂z
=

l

6V (e)
di (8.61)
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Fig. 8.14 Volume coordinates in a tetrahedron

Fig. 8.15 Natural coordinate system α, β, γ in a tetrahedron

The natural coordinates α, β, γ define a normalized straight tetrahedron
of unit right edges and faces for α = 0, β = 0, γ = 0 and 1−α−β− γ = 0
(Figure 8.15). For a tetrahedron with right edges a, b, c we have

α =
x− xi

a
; β =

y − yi

b
; γ =

z − zi

c
(8.62)

where i is the node taken as origin of the natural coordinate system (i = 1
in the local numbering system). From Eq.(8.62) we deduce

dα

dx
=

1
a

;
dβ

dy
=

1
b

;
dγ

dz
=

1
c

(8.63a)
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A differential of volume can be expressed as

dV = dx dy dz = abc dα dβ dγ (8.63b)

The integral of a function f(x, y, z) over the element can be written in
the natural coordinate system as

∫∫∫

V (e)

f(x, y, z) dx dy dz =
∫ 1

0

∫ 1−α

0

∫ 1−β−γ

0
f(α, β, γ)abc dα dβ dγ

(8.64)
The shape functions for the linear tetrahedron can be expressed simply

in terms of the natural coordinates α, β, γ as

N1 = 1− α− β − γ ; N2 = α; N3 = β; N4 = γ (8.65)

The shape functions in the natural coordinate system satisfy Eqs.(8.50).
Also from Eqs.(8.63a) and (8.65) we obtain

∂Ni

∂x
=

1
a

∂Ni

∂α
;

∂Ni

∂y
=

1
b

∂Ni

∂β
;

∂Ni

∂z
=

1
c

∂Ni

∂γ
(8.66)

The relationship between the volume and natural coordinates is readily
deduced from Eqs.(8.60) and (8.65) (recalling that Ni = Li) as

L1 = 1− α− β − γ; L2 = α; L3 = β L4 = γ (8.67)

Volume coordinates allow us to express the element shape functions
for tetrahedral elements by the product of four 1D normalized Lagrange
polynomials, in a similar way as explained in Section 5.5.2 for triangular
elements. Thus the shape function of a node i with generalized coordinates
(I, J,K, L) is given by

Ni = liI(L1) liI(L2) liK(L3) liL(L4) (8.68)

where the value of the generalized coordinates I, J,K, and L coincides
with the power of each volume coordinate in the expression of Ni. Hence
I + J + K + L = M where M is the degree of the complete polynomial
contained in Ni. Also, liI(Lj) is the normalized Lagrange polynomial of Ith
degree in Lj passing by node i (Eq.(3.5b)). Figures 8.16 and 8.17 show the
values of the generalized coordinates I, J,K,L for two typical tetrahedral
elements.

The expression of the shape functions in terms of natural coordinates
α, β, γ is straightforward using the transformations (8.67).
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Fig. 8.16 10-noded quadratic tetrahedron. Generalized coordinates I, J,K,L and
natural coordinates α, β, γ for each node

8.6.1 Shape functions for the 10-noded quadratic tetrahedron

The nodal values of the generalized coordinates I, J,K,L and of the na-
tural coordinates are shown in Figure 8.16. The values of the volume co-
ordinates Li are deduced from Eq.(8.67). The shape functions are derived
next using Eq.(8.68).

Node 1

Position (I, J,K, L) : (2, 0, 0, 0). Volume coordinates : (1, 0, 0, 0)

N1 = l12(L1) =

(
L1 − 1

2

)
L1

1− 1
2

= (2L1 − 1)L1 (8.69a)
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Fig. 8.17 20-noded cubic tetrahedron. Generalized coordinates I, J,K, L and na-
tural coordinates for each node
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Node 2

Position (I, J,K,L) : (1, 1, 0, 0). Volume coordinates : (1
2 , 1

2 , 0, 0)

N2 = l21(L1) l21(L2) =
L1
1
2

L2
1
2

= 4L1 L2 (8.69b)

The same procedure gives

N3 = (2L2 − 1)L2 ; N7 = 4 L2 L4

N4 = 4L2 L3 ; N8 = 4 L3 L4

N5 = (2 L3 − 1)L3 ; N9 = 4 L1 L4

N6 = 4 L1 L3 ; N10 = (2 L4 − 1) L4

(8.69c)

The expression for Ni in terms of the natural coordinates is obtained
using Eq.(8.67). The cartesian form of Ni for a straight-edged tetrahedron
is obtained by substituting Li in terms of x, y, z using Eq.(8.60).

The shape functions for this element contain all the terms of a quadratic
polynomial (Figure 8.13) and they satisfy Eqs.(8.50).

8.6.2 Shape functions for the 20-noded quadratic tetrahedron

The nodal values of the generalized coordinates I, J,K, L and α, β, γ are
shown in Figure 8.17. From Eqs.(8.68) we obtain:

Node 1

Position (I, J,K, L) : (3, 0, 0, 0). Volume coordinates : (3, 0, 0, 0)

N1 = l13 (L1) =

(
L1 − 2

3

) (
L1 − 1

3

)
L1

(
1− 2

3

) (
1− 1

3

)
1

=
1
2
L1(3L1−1) (3L1−2) (8.70a)

Node 2

Position (I, J,K, L) : (2, 1, 0, 0). Volume coordinates : (2
3 , 1

3 , 0, 0)

N2 = l22(L1) L2
1(L2) =

(
L1 − 1

3

)
L− 1

(
2
3 − 1

3

)
2
3

L2
1
3

=
9
2
(3L1 − 1) L1 L2 (8.70b)
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Fig. 8.18 Local coordinate system x̄ȳz̄ for the analytical computation of volume
integrals over right prisms

Following a similar procedure gives

N3 =
9

2
(3L2 − 1)L1L2 ; N9 =

9

2
(3L1 − 1)L1L3 ; N15 =

9

2
(3L1 − 1)L1L4

N4 =
1

2
L2(3L2 − 1)(3L2 − 2) ; N10 = 27 L1 L2L3 ; N16 = 27L1L2L4

N5 =
9

2
(3L2 − 1)L2 3 ; N11 =

9

2
(3L2 − 1)L2 L4 ; N17 =

9

2
(3L4 − 1)L4 L2

N6 =
9

2
(3 L3 − 1)L3 L2 ; N12 = 27 L2 L3 L4 ; N18 =

9

2
(3L4 − 1)L4 L3

N7 =
1

2
L3(3L3 − 1)(3L3 − 2) ; N13 =

9

2
(3L3 − 1)L3 L4 ; N19 =

9

2
(3L4 − 1)L4 L1

N8 =
9

2
(3L3 − 1)L3L1 ; N14 = 27L1L3L4 ; N20 =

1

2
L4(3L4 − 1)(3L4 − 2)

(8.70c)
Eqs.(8.67) allow us to express Ni in terms of the natural coordinates.

The cartesian form of Ni for a straight-edged tetrahedron is obtained
substituting Eq.(8.60) into above expressions. The shape functions are
complete cubic polynomials and they satisfy Eq.(8.50).

8.7 COMPUTATION OF ELEMENT INTEGRALS

8.7.1 Analytical computation of element integrals

In general, the computation of element integrals is carried out via nu-
merical integration. Useful analytical rules can, however, be derived for
straight-edged tetrahedra or right prisms as shown below.

Volume integrals over right prisms can be computed exactly using the
local coordinate system xȳz shown in Figure 8.18. For instance, the inte-
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gral over a face with z = constant, is first obtained by Eq.(5.41) and then
a simple line integral in the z direction is performed. The resulting local
stiffness matrix K is next transformed to the global axes xyz by a trans-
formation similar to Eq.(5.42) taking into account the third cartesian axis.
This procedure is not applicable to irregular or curve-sided hexahedra for
which the use of an isoparametric formulation and numerical integration
is essential.

The integrals over straight-sided tetrahedra have simpler expressions.
Thus, the volume integral of a polynomial term expressed in volume co-
ordinates is given by

∫∫∫

V (e)

Lk
1L

l
2L

m
3 Ln

4 dV = 6V (e) k! l! m! n!
(k + l + m + n + 3)!

(8.71)

Similarly, the surface integrals over the element faces can be obtained
by Eqs.(5.40) or (5.47a).

The use of natural coordinates does not introduce any additional diffi-
culty. The volume integrals in tetrahedra are computed by

∫∫∫

V (e)

αkβlγm dV = 6V (e) k! l! m!
(k + l + m + 3)!

(8.72)

and the surface integrals can be obtained by Eq.(5.48). Recall that if any
of the coordinates is missing in the integrals of Eqs.(8.71) and (8.72) then
the corresponding power is made equal to one in the numerator and to
zero in the denominator of the corresponding right-hand side.

Curve-sided tetrahedra require an isoparametric formulation and nu-
merical integration.

Example 8.2: Compute the submatrix K(e)
11 for a 20-noded quadratic tetra-

hedron with straight sides.

-- Solution-- Solution

We compute first the cartesian derivatives of the shape function N1 expressed
in terms of volume coordinates. For instance,

∂N1

∂x
=

∂N1

∂L1

∂L1

∂x
+

∂N1

∂L2

∂L2

∂x
+

∂N1

∂L3

∂L3

∂x
+

∂N1

∂L4

∂L4

∂x

Since N1 = L1(2L1 − 1) we have, using Eq.(8.60)

∂N1

∂x
= (4L1 − 1)

bi

6V (e)
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Following a similar procedure gives

∂N1

∂y
= (4L1 − 1)

ci

6V (e)
and

∂N1

∂z
= (4L1 − 1)

di

6V (e)

The strain matrix B1 is written as

B1 =
(4L1 − 1)

6V (e)




bi 0 0
0 ci 0
0 0 di

ci bi 0
di 0 bi

0 di ci




=
(4L1 − 1)

6V (e)
B1

and matrix K(e)
11 is given by

K(e)
11 =

∫∫∫

V (e)
BT

1 DB1dV =
1

36(V (e))2
B

T

1 DB
T

1

∫∫∫

V (e)
(4L1 − 1)2 dV

Making use of Eq.(8.72) gives finally

K(e)
11 =

1
60V (e)




(d11b21 + d44c21 + d55d2
1) b1c1(d12 + d44) (d13b1d1 + d55d1c1)

(d22c21 + d44b21 + d66d2
1) c1d1(d23 + d66)

Symmetrical (d33d2
1 + d55b21 + d66c21)




The rest of the K(e)
ij matrices are obtained in a similar manner.

8.8 3D ISOPARAMETRIC ELEMENTS

3D elements with arbitrary geometry can be derived using an isoparame-
tric formulation. The element geometry is defined in the global cartesian
coordinate system in terms of the nodal coordinates, whereas the element
integrals are performed in the natural coordinate space over cubes of side
length equal to two or straight tetrahedra with right edges of unit length
using simple transformations (Figure 8.19).

Let us consider first hexahedral elements. The coordinates of a point
within a n-noded element are expressed in isoparametric form as

x =





x
y
z



 =

n∑

i=1

Ni





xi

yi

zi



 = N x(e) (8.73a)
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Fig. 8.19 3D isoparametric elements. Actual and normalized geometries
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with

N = [N1,N2, . . . ,Nn] ; Ni =




Ni

Ni

Ni


 ; Ni = f(ξ, η, ζ) (8.73b)

where Ni are the shape functions used for the displacement field.
Eq.(8.73a) relates the cartesian and the natural coordinates. This rela-

tionship is uniquely defined if the sign of the determinant of the Jacobian
matrix is positive over the element. This is usually fulfilled except for very
distorted element shapes. Typically the rules given in Section 6.2 for 2D
quadrilateral elements also apply in this case.

The cartesian derivatives of the shape functions are computed follo-
wing the same procedure as explained for 2D elements. The chain rule of
derivation gives





∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ





=




∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ








∂Ni

∂x

∂Ni

∂y

∂Ni

∂z





= J(e) ∂Ni

∂x
(8.74)

where J(e) is the Jacobian matrix. Using Eq.(8.73a) yields

J(e) =
n∑

i=1




∂Ni

∂ξ
xi

∂Ni

∂ξ
yi

∂Ni

∂ξ
zi

∂Ni

∂η
xi

∂Ni

∂η
yi

∂Ni

∂η
zi

∂Ni

∂ζ
xi

∂Ni

∂ζ
yi

∂Ni

∂ζ
zi




(8.75)

The cartesian derivatives of Ni are deduced from Eq.(8.74) as




∂Ni

∂x
∂Ni

∂y
∂Ni

∂z





=
[
J(e)

]−1





∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ





(8.76)
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Appendix A gives the analytical form of the inverse of the 3×3 Jacobian
matrix. The volume differential is expressed as

dV = dx dy dz =
∣∣∣∣J(e)

∣∣∣∣ dξ dη dζ (8.77)

The strain matrix for an isoparametric prismatic element can be ex-
pressed in terms of the natural coordinates using Eqs.(8.27b) and (8.76)
as

Bi(ξ, η, ζ) =




b̄i 0 0
0 c̄i 0
0 0 d̄i

c̄i b̄i 0
d̄i 0 b̄i

0 d̄i c̄i




(8.78a)

with




b̄i

c̄i

d̄i



 =

3∑

k=1





J
(e)
1k

J
(e)
2k

J
(e)
3k





∂Ni

∂ξk
(8.78b)

where J
(e)
ij is the term ij of the inverse Jacobian matrix [J(e)]−1, ξ1 =

ξ, ξ2 = η and ξ3 = ζ.
The stiffness matrix for a 3D isoparametric hexahedral can be com-

puted over the unit cubic domain in the normalized space by the following
expressions

K(e)
ij =

∫∫∫

V (e)

BT
i D Bj dV =

=
∫ +1

−1

∫ +1

−1

∫ +1

−1
BT

i (ξ, η, ζ)D Bj(ξ, η, ζ)
∣∣∣J(e)

∣∣∣ dξ dη dζ =

=
∫ +1

−1

∫ +1

−1

∫ +1

−1
Gij(ξ, η, ζ) dξ dη dζ (8.79a)

with

Gij =




(d11b̄ij + d44c̄ij + d55d̄ij) (d12b̄ic̄j + d44c̄ib̄j) (d13b̄id̄j + d55d̄ib̄j)

(d21c̄ib̄j + d44b̄ic̄j) (d22c̄ij + d44b̄ij + d66d̄ij) (d23c̄id̄j + d66d̄ic̄j)

(d31d̄ib̄j + d55b̄id̄j) (d32d̄ic̄j + d66c̄id̄j) (d33d̄ij + d55b̄ij + d66c̄ij)



∣∣∣J(e)

∣∣∣

(8.79b)
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where b̄ij = b̄ib̄j , c̄ij = c̄ic̄j and d̄ij = d̄id̄j , with b̄i, c̄i, d̄i as given in
Eq.(8.78b) and dij are the terms of matrix D of Eq.(8.8). Matrix G typ-
ically contains rational algebraic functions arising from the Jacobian in-
verse contributions. Numerical integration is mandatory in this case.

Isoparametric tetrahedral elements follow a similar procedure. The geo-
metry interpolation is defined by Eq.(8.73a) with Ni expressed in terms of
volume or natural coordinates. The computation of the cartesian deriva-
tives of Ni for straight-side tetrahedra is immediate from Eqs.(8.61) and
(8.66). The element integrals can be expressed in terms of volume or natu-
ral coordinates. Natural coordinates are more convenient for curved tetra-
hedra. The derivation of the stiffness matrix follows precisely the same
steps as explained above for hexahedra simply substituting the coordi-
nates ξ, η, ζ for α, β, γ, respectively. The element stiffness matrix is then
computed in the normalized tetrahedron (Figure 8.15) as

K(e)
ij =

∫ 1

0

∫ 1−α

0

∫ 1−α−β

0
Gij(α, β, γ) dα dβ dγ (8.80)

where G(α, β, γ) is deduced from Eq.(8.79b). Here again numerical inte-
gration is mandatory.

8.9 NUMERICAL INTEGRATION

8.9.1 Hexahedral elements

Let us consider the integration of a function f(x, y, z) over a hexahedral
isoparametric element. The following transformations are required

∫∫∫

V (e)

f(x, y, z) dx dy dz =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f(ξ, η, ζ)

∣∣∣J(e)
∣∣∣ dξ dη dζ =

=
∫ +1

−1

∫ +1

−1

∫ +1

−1
g(ξ, η, ζ) dξ dη dζ (8.81)

Gauss quadrature over the normalized cubic domain leads to

∫ +1

−1

∫ +1

−1

∫ +1

−1
g(ξ, η, ζ) dξ dη dζ =

∫ +1

−1

∫ +1

−1

np∑

p=1

Wp g(ξp, η, ζ) dη dζ =

=
∫ +1

−1

nq∑

q=1

np∑

p=1

WpWqg(ξp, ηq, ζ) dζ =
nr∑

r=1

nq∑

q=1

np∑

p=1

WpWqWrg(ξp, ηq, ζr)

(8.82)
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Fig. 8.20 Gauss quadratures of 1×1×1 and 2×2×2 points in hexahedral elements

where np, nq and nr are the integration points via the ξ, η, ζ directions,
respectively, ξp, ηq, ζr are the coordinates of the integration point (p, q, r)
and Wp,Wq, Wr are the weights for each natural direction.

The local coordinates and weights for each quadrature are deduced
from Table 3.1 for the 1D case. We recall that a qth order quadrature
integrates exactly a 1D polynomial of degree 2q − 1. This rule helps us
to identify the number of integration points in each natural direction.
Figure 8.20 shows the sampling points for the 1 × 1 × 1 and 2 × 2 × 2
quadratures.

8.9.2 Tetrahedral elements

Gauss quadrature for tetrahedral elements formulated in terms of volume
coordinates is written as
∫ 1

0

∫ 1−L1

0

∫ 1−L1−L2

0
f(L1, L2, L3, L4)dL1dL2dL3 =

np∑

i=1

f(L1i , L2i , L3i , L4i)Wi

(8.83)
Figure 8.21 shows the position of the integration points and the corre-

sponding weights for the linear, quadratic and cubic quadratures. Higher
order quadratures can be found in [Be,GH,SC].

The weights in Figure 8.21 have been normalized so that their sum is
1/6. In this manner, the element volume is computed exactly. Thus

V (e) =
∫∫∫

V (e)

dV =
∫ +1

−1

∫ +1

−1

∫ +1

−1
|J(e)|dξdηdζ =

= |J(e)|
∫ +1

−1

∫ +1

−1

∫ +1

−1
dξdηdζ =

= |J(e)|
np∑

i=1

Wi = 6V (e)

np∑

i=1

Wi = V(e) (8.84)
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Figure np Precision Points L1 L2 L3 L4 wi

(a) 1 Linear a 1/4 1/4 1/4 1/4 1/6

a α β β β 1/24
b β α β β 1/24

(b) 4 Quadratic c β β α β 1/24
d β β β α 1/24

a 1/4 1/4 1/4 1/4 γ
b 1/3 1/6 1/6 1/6 δ

(c) 5 Cubic c 1/6 1/3 1/6 1/6 δ
d 1/6 1/6 1/3 1/6 δ
e 1/3 1/6 1/6 1/3 δ

α = 0.58541020 ; β = 0.13819660 ; γ = − 2

15
; δ =

3

40

Fig. 8.21 Coordinates and weights for the Gauss quadrature for tetrahedra

8.10 NUMERICAL INTEGRATION OF ELEMENT MATRICES

8.10.1 Isoparametric hexahedral elements

Combining Eqs.(8.79a) and (8.82) yields the stiffness matrix for an isopara-
metric hexahedron as

K(e)
ij =

∫∫∫

V (e)

BT
i DBj dx dy dz =

∫ +1

−1

∫ +1

−1

∫ +1

−1
BT

i DBj

∣∣∣J(e)
∣∣∣ dξ dη dζ =

=
np∑

p=1

nq∑

q=1

nr∑

r=1

[
BT

i D Bj

∣∣∣J(e)
∣∣∣
]

p,q,r

WpWqWr =

=
np∑

p=1

nq∑

q=1

nr∑

r=1

[Gij ]p,q,rWpWqWr (8.85)
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where Gij was given in Eq.(8.79b).
It is important to understand that, similarly as for 2D elements, the

computation of matrix Gij is not strictly necessary. Thus, the stiffness
matrix can be simple obtained by sampling Bi, D and the Jacobian de-
terminant at each Gauss point and then performing the standard multi-
plications and summations shown in the second line of Eq.(8.85).

The computation of the equivalent nodal force vectors involving volume
integrals follows an identical procedure. For the body force vector (Eq.
(8.37b))

f (e)
b =

∫∫∫

V (e)

NT
i b dx dy dz =

∫ +1

−1

∫ +1

−1

∫ +1

−1
NT

i b
∣∣∣J(e)

∣∣∣ dξ dη dζ =

=
np∑

p=1

nq∑

q=1

nr∑

r=1

[
NT

i b
∣∣∣J(e)

∣∣∣
]

p,q,r

WpWqWr (8.86)

The flow chart of the subroutines for computing K(e)
ij and f (e)

b is basi-
cally identical to that shown in Figures 6.8 and 6.9 for the 2D case. The
only modification is the introduction of a third integration loop (r = 1, nr).

Computation of f
(e)
t for surface tractionsComputation of f
(e)
t for surface tractions

The treatment of surface tractions is more complicated. Let us assume that
a distributed force tn acts orthogonally to the element face corresponding
to ζ = +1 defined by nodes 5 to 8 (Figure 8.22). The computation of f (e)

t

requires evaluating the term t dA (Eq.(8.38b)) where t contains the global
components of the surface tractions acting on the element face and dA is
the area differential. If n is the unit normal to the face we have

t = tnn with n = [nx, ny, nz]
T (8.87)

Vector n is obtained by the cross product of vectors V1 and V2 tangent
to the lines η = constant and ξ = constant over the face, respectively
(Figure 8.22). Thus

V1 =
(∂x

∂ξ
i +

∂y

∂ξ
j +

∂z

∂ξ
k
)

ζ=+1
dξ

V2 =
(∂x

∂η
i +

∂y

∂η
j +

∂z

∂η
k
)

ζ=+1
dη

(8.88)



294 Three dimensional solids

Fig. 8.22 Normal tractions acting on a face of a hexahedral element

Eq.(8.88) shows that the components of V1 and V2 coincide with the
terms in the first and second row of the Jacobian matrix of Eq.(8.74)
computed at the face ζ = +1. The unit normal vector is

n =
V1 ×V2

|V1 ×V2| (8.89)

Noting that dA = |V1 ×V2| gives

n =
1

dA





J12J23 − J22J13

J21J13 − J11J23

J11J32 − J21J12





(e)

ζ=+1

dξ dη =
1

dA
j(e)dξ dη (8.90)

where the J
(e)
ij terms are deduced from Eq.(8.75).

The final expression for the equivalent nodal force vector is

f (e)
ti

=
∫∫

A(e)

NT
i tn n dA =

∫ +1

−1

∫ +1

−1
NT

i tn j(e) dξ dη =

=
np∑

p=1

nq∑

q=1

[NT
i j(e) tn]p,qWpWq (8.91)

where j(e) is deduced from Eq.(8.90). Also note that in Eq.(8.91)
Ni = Ni(ξ, η, ζ = +1).



Numerical integration of element matrices 295

8.10.2 Isoparametric tetrahedral elements

The element stiffness matrix and the equivalent nodal force vector for
isoparametric tetrahedra are computed by

K(e)
ij =

np∑

p=1

[
Gij(α, β, γ)

]
p
Wp (8.92a)

f (e)
i =

np∑

p=1

[
NT

i b|J(e)|
]
p
Wp (8.92b)

where

Gij = BT
i (α, β, γ)DBj(α, β, γ)|J(e)|

The expression of Gij is deduced from Eq.(8.79b) simply substituting
the coordinates ξ, η, ζ for α, β, γ, respectively.

For surface tractions we have

f (e)
ti

=
np∑

p=1

[
Ni j(e)tn

]
p
Wp (8.93)

where the different terms have the same meaning as for hexahedra.

8.10.3 Selection of the quadrature order

The selection of the quadrature order for hexahedral and tetrahedral ele-
ments follows the same rules given for 2D solid elements in Section 6.7.
The full (exact) quadrature for linear and quadratic prisms is 2 × 2 × 2
and 3× 3× 3, respectively. These quadratures are also recommended for
distorted shapes.

The reduced 1×1×1 and 2×2×2 quadratures induce spurious modes
in the 8-noded and 27-noded hexahedral element, respectively. The perfor-
mance of the 20-noded Serendipity elements generally improves with the
2×2×2 reduced quadrature. However, this quadrature must be used with
extreme care as it can lead to spurious mechanisms in certain problems,
in a similar way as for 8-noded quadrilaterals (Section 6.7).

For linear and quadratic straight-sided tetrahedra the 1 and 4 points
quadratures shown in Figure 8.21 yield exact integration. Cubic tetrahedra
require a quadrature of quartic precission for the exact integration of all
the stiffness matrix terms [Be,GH,SC].
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8.11 PERFORMANCE OF 3D SOLID ELEMENTS

3D solid elements behave very similarly to their analogous 2D elements.
Hexahedral elements are more accurate than tetrahedra of the same order.
On the other hand, low order elements like the 8-noded hexahedron or 4-
noded tetrahedron require fine meshes for bending dominated problems
and higher order elements give more satisfactory results in these cases. Fi-
gure 8.23 shows a typical example of this situation where 8- and 20-noded
prisms and 4- and 10-noded tetrahedra are compared for the analysis of a
cantilever beam subjected to a pure bending state [Cl2,Ya]. The superiori-
ty of hexahedral elements is clear in this case. In particular, the 20-noded
quadratic prism yields the exact solution of thick beam theory with 50%
fewer variables than the equivalent quadratic tetrahedron.

The 27-noded Lagrange hexahedron performs better than the 20-noded
Serendipity one for representing a quadratic function on trilinearly dis-
torted shapes. The reasons are similar to those given in Section 6.2.2 to
explain the good performance of the 9-noded quadrilateral when linearly
distorted. Hence, despite its highest cost, the 27-noded Lagrange hexahe-
dron is generally preferable for modelling smooth solutions on distorted
geometries. The performance of the 20-noded Serendipity hexahedron in
those cases can be improved by using 2×2×2 reduced integration. Howe-
ver, as noted for 2D solid elements, great care should be taken when using
a reduced quadrature for the quadratic Serendipity element (Section 6.8).

The application of the patch test to 3D solid elements follows precisely
the concepts and rules given for 2D solid elements in Section 6.10.

Mesh generation is the crucial problem for practical 3D analysis. Here,
tetrahedral elements are by far the more versatile option for the discretiza-
tion of complex 3D geometries using unstructured meshes. Much research
for the development of efficient mesh generators for tetrahedral and hexa-
hedral elements has been carried out in recent years. This issue is of even
greater importance if adaptive refinement strategies are used.

8.12 EXAMPLES

Some examples aiming to show the potential of 3D solid elements for
solving complex structural problems in engineering are presented. Readers
interested in the specific details of each example can contact the authors
in the references given.
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Fig. 8.23 Pure bending of a cantilever beam analyzed with different 3D elements
[Cl2,Ya]

8.12.1 Analysis of a gravity dam

Figure 8.24 shows a perspective view of the geometry of the Mequinenza
gravity dam in Spain and the mesh of 20-noded hexahedra used for the
analysis [COG,COHO,OCOH]. The study of this dam as a 2D solid using
8-noded quadrilaterals was presented in Section 6.11.1. Figure 8.24 dis-
plays the contours of the displacement component in the downstream di-
rection and several stress plots for a combination of self-weight and hydros-
tatic loading. The need for sophisticated graphic visualization techniques
for practical 3D analysis such as this one is clear. This topic is treated in
Chapter 10 and Annex D.
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Fig. 8.24 Mequinenza gravity dam analyzed with 20-noded isoparametric hexa-
hedra. (a) Geometry and mesh. (b) Contours of downstream displacement. (c)
Principal stresses on dam surface. (d) Contours of transversal stress σy. (e) Con-
tours of longitudinal stress σx in a cross section [CO,COHO,OCOH]

8.12.2 Analysis of a double curvature arch dam

Figure 8.25a displays the geometry of the Talvachia dam in Italy and the
mesh of isoparametric 20-noded hexahedra used for the analysis. The dam
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(a) (b)

(c)

Fig. 8.25 Talvachia double curvature arch dam analyzed with 20-noded isopara-
metric hexahedra. (a) Geometry and mesh. (b) Contours of displacement modulus
and distribution of compression stresses (N/m2) for self-weight plus hydrostatic
loading [MBBO]

foundation has also been discretized. Figure 8.25b shows the contours of
the displacement vector modulus for self-weight plus hydrostatic loading.
Also the compression principal stresses over the upstream face are dis-
played in Figure 8.25c [MBBO].

8.12.3 Analysis of arch dams

Figure 8.26 shows the analysis of the Melonares arch dam in Sevilla, Spain
using again 20-noded Serendipity hexahedra. The interest was the study
of the stress field in the spillway zone [SG2].

Figure 8.27 shows a snapshot of stress field contours for self-weight load
in the surface of an arch dam in Jaen, Spain. The dam and the surrounding
terrain were discretized with 4-noded linear tetrahedra in this case [SG3].
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Fig. 8.26 Melonares arch dam. Geometry and discretization with 20-noded
Serendipity hexahedra. Detail of stress field in one of the spillways for self-weight
load [SG2]
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Fig. 8.27 Arch dam in Jaen, Spain. Discretization of dam and terrain with 4-noded
tetrahedra. Snapshot of stress field under self-weight loading [SG3]

8.12.4 Analysis of a flat in a building

Figure 8.28 shows some results of the analysis of a whole flat in a building
in the city of Barcelona, Spain. Figures 8.28a and 8.28b respectively show
the discretization of the walls and upper and lower floors and the rein-
forced concrete beams using 20-noded hexahedra. Figures 8.28c show the
contours of the displacement modulus plotted on the deformed shape for
self-weight load (results have been amplified for visualization purposes).
More information on this example can be found in [OH,On2].

8.12.5 Analysis of prismatic cellular caissons for harbour piers

Reinforced concrete caissons of prismatic cellular shape are commonly
used for building piers in harbours. The caisson structure is typically built
in the shore and is subsequently launched into the sea and transported
as a floating body to the correct position in the pier. The caisson is then
sunk into a stable position by filling the internal cells with concrete or
rockfill material.

Figure 8.29a shows the discretization of a cellular caisson built in the
Bilbao harbour in Spain (dimensions ' 13 × 7 × 34 mts) using a mesh
of 20-noded hexahedra. Half the real geometry of the caisson has been
discretized only due to symmetry. Figures 8.29b show results of the de-
formed shape of the caisson and the contours of the von Mises stress for a
combination of lateral wave loading and internal pressure in some of the
cells due to the filling. More information on the FEM analysis of this type
of problems can be found in [PFGS,SFPC,SHM].
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(a) (b)

(c)

Fig. 8.28 Analysis of a flat in a building. Discretization of the walls and upper and
lower floors (a) and the beams (b) using 20-noded hexahedra. Deformed shape
and displacement modulus contours for self-weight loading (c). Results have been
amplified for visualization purposes [OH,On2]

8.12.6 Analysis of a nuclear containment building

Figure 8.30a shows the discretization of the containment building in the
Vandellós nuclear power plant in Spain using 20-noded hexahedra. Figure
8.30b shows the amplified deformed shape of the reinforced/prestressed
concrete structure under a high internal pressure. Colours indicate the
displacement modulus contours. Figures 8.30c,d show the damage (frac-
tured) zones for two values of the increasing internal pressure. Details of
this study can be found in [BCHC+].

8.12.7 Analysis of historical constructions

The next example presented is the structural analysis of Barcelona Cathe-
dral. The numerical study was performed using four-noded tetrahedral
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(a) (b)

(c)

Fig. 8.29 Analysis of a prismatic cellular caisson in Bilbao harbour. (a) Discretiza-
tion of half the caisson using 20-noded hexahedra. (b,c) Deformed shape of the
caisson and contours of the von Mises stress under lateral wave loading and in-
ternal pressure in some cells [PFGS,SFPC,SHM]

elements. Figure 8.31 shows the mesh used for the analysis and contours
of the displacement modulus under self-weight.

Figure 8.32 shows a similar example for the study of Saint Mark’s
Basilica in Venice. The figure shows the discretization of the five dome
masonry and stone structure using 20-noded hexahedra, the contours of
the displacement modulus under self-weight and an underneath view of
damage zones in the structure for an increased value of the self-weight.
For details see [OHBO+].

These two examples illustrate the possibilities of 3D solid elements for
analysis of historical constructions. More details of these examples and
similar ones can be found in [OHBO+,RCMR+,RGAA,RGMO,RGOL,RM,
Ro2,RPOH].
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(a) (b)

(c) (d)

Fig. 8.30 Analysis of a nuclear containment building. (a) Discretization using 20-
noded hexahedra. (b) Amplified deformed shape of the structure under inter-
nal pressure. (c,d) Damaged (fractured) zones for increasing internal pressure.
Colours indicate the normalized value of damage parameter [BCHC+]
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Fig. 8.31 Analysis of Barcelona Cathedral using 4-noded tetrahedra. Mesh and
contours of displacement modulus under self-weight [RGAA,RM,Ro2,RPOH]

Fig. 8.32 Analysis of Saint Mark’s Basilica in Venice using 20-noded hexahedra. (a)
Mesh. (b) Contours of displacement modulus under self weight. (c) Underneath
view of damaged zones for an increased value of the weight [OHBO+]
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8.12.8 Analysis of mechanical parts

The next examples show the possibilities of 3D solid elements for the study
of mechanical engineering components, such as that shown in Figure 8.33a.
A mesh of 250 20-noded hexahedra has been used for this analysis. The
loading considered is a combination of self-weight and uniform torsion.
Figure 8.33b shows the contours of the displacement modulus. The distri-
bution of tension and compression stresses are displayed in Figures 8.33c
and d respectively [SM2].

The example shown in Figure 8.34 is the analysis of a mechanical com-
ponent using 4-noded tetrahedra. The contours of the von Mises stress
(Eq.(8.19)) under thermal loading are shown as an example of output for
this type of problems.

Fig. 8.33 Mechanical component analyzed with 20-noded hexahedra. (a) Geometry
and mesh. (b) Contours of displacement modulus under self-weight and torsion
loading. (c) Principal tension stresses. (d) Principal compression stresses

(a) (b)

(c) (d)
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Fig. 8.34 Discretization of a mechanical component with 4-noded linear tetrahedra.
Contour plot of von Mises stress under thermal loading

Fig. 8.35 Thermal-stress analysis of a crankshaft during the casting process using
4-noded tetrahedra to discretize the part and the mould. Colours indicate the
von Mises stress field under thermal loading [CDOO,CVDO+,OCCO+]

Figure 8.35 finally presents a result of the thermal-mechanical analysis
of a crankshaft for an automotive during the solidification and cooling
phase of the casting process. Colours show the von Mises stress contours
at a certain time of the analysis. A mesh of 4-noded tetrahedra was used
to discretize the crankshaft and the surrounding mould. More information
can be found in [CDOO,CVDO+,OCCO+].
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8.13 FINAL REMARKS

The formulation of 3D solid elements is simple and most concepts are
a straightforward extension of those explained for 2D solid elements. 3D
solid elements also behave very similarly to the corresponding 2D elements.
The 4-noded tetrahedron and the 8-noded hexahedron are the simplest of
their respective families, although their accuracy is poorer than that of
higher order solid elements. Among these, the 20- and 27-noded hexa-
hedron and the 10-noded tetrahedron are good candidates for practical
use.

The examples presented show the difficulties inherent in the discretiza-
tion and the visualization of numerical results in 3D structural analysis
using solid elements. Here the utilization of efficient mesh generators and
advanced visualization techniques is essential. Mesh generation is the cru-
cial issue and even more if adaptive mesh refinement procedures involving
unstructured meshes of tetrahedra or hexahedra are to be used in an effec-
tive manner. This topic is treated in Chapter 10 and Appendix D.



9

MISCELLANEOUS: INCLINED
SUPPORTS, DISPLACEMENT
CONSTRAINS, ERROR ESTIMATION,
MESH ADAPTIVITY ETC.

9.1 INTRODUCTION

This chapter deals with topics of general interest in finite element struc-
tural analysis not covered in previous chapters. Boundary conditions in in-
clined supports are presented first. Then, methods to link different element
types and for prescribing general constraints in the nodal displacements
are studied. The three following sections deal with condensation and re-
covery algorithms, mesh symmetries and elastic supports. The last part of
the chapter is devoted to the computation of nodal stresses, the estimation
of the solution error and its application to adaptive mesh refinement.

9.2 BOUNDARY CONDITIONS IN INCLINED SUPPORTS

Boundary nodes may have prescribed displacements in local directions
different from those chosen for the global stiffness assembly process. Let
us consider, for instance, a boundary node k in the mesh of Figure 9.1. The
slope of the support at k enforces the node to move along the local tangent
direction x′, whereas the normal displacement v′ is zero. The problem is
solved by assembling the stiffness equation at node k in the boundary
directions x′, y′.

The global displacements of node k are transformed to the local boun-
dary system x′, y′ by

a(e)
k = [uk, vk]T = Lk[u′k, v

′
k]

T = Lka
′(e)
k (9.1a)

where

Lk =
[
cosφk −sin φk

sin φk cosφk

]
(9.1b)
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Fig. 9.1 Boundary condition in inclined supports. Mesh of linear triangles

and φk is the angle formed by axes x′ and x (Figure 9.1). The equilibrium
equations at node k are transformed as

q′(e)i = LT
i

n∑

j=1

K(e)
ij a(e)

j = LT
i

n∑

j=1

K(e)
ij Lja′j =

n∑

j=1

Kija
′(e)
j (9.2)

The stiffness matrix of the elements sharing node k is modified as

K(e)
ij = L̂T

i K
(e)
ij L̂j (9.3)

with

L̂i =
{
Lk if i = k
I2 if i 6= k

(9.4)

where I2 is the 2× 2 unit matrix. The reactions at the inclined boundary
nodes are directly computed in the local boundary system. Transformation
to the global axes can be performed using Li. An alternative and more
economical procedure is to compute the stiffness matrix of the elements
sharing node k directly using a modified nodal strain matrix given by
Bk = BkL̂k. More details on the specification of skew conditions in the
FEM are given in [MDR].

Example 9.1: Obtain the stiffness matrix of the plane stress element mnp shown
in Figure 9.2 so that the boundary conditions v′m = v′n = 0 can be prescri-
bed.

- Solution- Solution- Solution- Solution

Nodes m and n can slide along the x′ axis, while the displacements of the in-
terior node p are kept in the global coordinate system x, y. The displacements
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Fig. 9.2 Plane body sliding on inclined support

of nodes m and n are transformed to the boundary system x′, y′ by

a′m = LT am and a′n = LT an

where a′i = [u′i, v
′
i]

T , ai = [ui, vi]T and L =
[
cosφ −sinφ
sinφ cos φ

]
.

The sought element stiffness matrix is found after application of the trans-
formations of Eq.(9.3), with Lm = Ln = L as

m n p

K̄(e) =




LTK(e)
11 L LTK(e)

12 L LTK(e)
13

LTK(e)
21 L LTK(e)

22 L LTK(e)
23

K(e)
31 L K(e)

32 L K(e)
33




m

n

p

where K(e)
ij is given by Eq.(4.63b).

9.3 JOINING DISSIMILAR ELEMENTS

Many practical situations require matching elements of different types.
The key in the connection process is to express the displacement field in
one of the two elements in terms of the nodal displacements of the other
one.

Let us consider a 2-noded axial bar element connected to a 4-noded
solid quadrilateral (Figure 9.3). This procedure is typical for introducing
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Fig. 9.3 Joining different elements. 4-noded solid quadrilateral connected to a 2-
noded axial bar element [CMPW]

the effect of reinforcement steel bars in concrete solid elements. The lo-
cal displacements of the bar nodes are expressed in terms of the global
displacements of the quadrilateral. For node 5 we have

u′5 = u5 cosβ + v5sin β (9.5)

where the prime denotes the local axial displacement along the bar direc-
tion. The global displacements u5 and v5 are now linearly interpolated in
terms of the displacements of nodes 1 and 4 as

{
u5

v5

}
=

1
L1

[
a 0 b 0
0 a 0 b

]




u1

v1

u4

v4





(9.6)

Combining the last two equations and repeating the same process for
node 6 gives

[u′5, u
′
6]

T = T[u1, v1.u2, v2, u3, v3, u4, v4]T (9.7)

where

T =

[
cos β
L1

sin β
L1

0 0
0 0 cos β

L2

sin β
L2

]



a 0 0 0 0 0 b 0
0 a 0 0 0 0 0 b
0 0 c 0 d 0 0 0
0 0 0 c 0 d 0 0


 (9.8)

The stiffness matrix and the equivalent nodal force vector for the bar
element are transformed as

K
8×8

= TT Kb
2×2

T and f
8×1

= TT fb
2×1

. (9.9)
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where Kb and fb can be found in Chapter 2.
The expressions for K and f can now be directly assembled with those

for the 4-noded quadrilateral element.
A particular case is when the bar is connected to the corner nodes.

The nodal displacements in the bar coincide now with those in the solid
element and distances a, b, c, d are either zero or the side length.

Rigid elementsRigid elements

Rigid elements may be necessary to model indeformable parts within a
structure that undergoes rigid body motions. An alternative is to assume
that the elastic modulus of the rigid elements is much higher than that of
the surrounding elements. This can however introduce rounding off errors
in the solution process of the type discussed in Section 3.13.4. Conse-
quently, it is better to make the element perfectly rigid rather than stiffer.

Let us assume that the shaded triangle of Figure 9.4 is to be modelled
as a perfectly rigid solid [CMPW]. The rigid body motion can be described
by three DOFs, say u1, v1 and u2. These DOFs are related to the original
six DOFs by the transformation

a′(e) = Ta(e) or





u1

v1

u2

v2

u3

v3





=




1 0 0
0 1 0
0 0 1

−a/b 1 a/b
1 0 0

−a/b 1 a/b








u1

v1

u2



 (9.10)

with u3 = u1 and v2 = v3 = v1 − a

[
u1 − u2

b

]
, where u1−u2

b is a small

rigid body rotation. Above transformation is applied to all the elements
containing u3, v2 and v3. Hence, these DOFs no longer appear in the fi-
nal assembled system. The final result is independent of the values of the
constitutive parameters for the rigid (undeformable) triangle. Note how-
ever that the choice of the rigid body displacements u1, v1 and u2 is not
unique. Care must be taken that b = y2− y1 6= 0 to avoid division by zero
in Eq.(9.10). Also if 1-2 is a straight line, the use of u1 and u2 as inde-
pendent DOFs contradicts the rigid body assumption as the deformation
of side 1–2 is possible in this case [CMPW].
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Fig. 9.4 Rigid element

9.4 DISPLACEMENT CONSTRAINTS

The transformations of the previous section can be generalized to prescribe
any relationship (constraints) on or among nodal DOFs. Problems such
as that shown in Figure 9.3 are, in fact, examples of constraints at the
end nodes of 1D elements connected to quadrilateral elements.

A typical example of displacement constraint is the prescription of
DOFs in a mesh. Each prescribed displacement can be eliminated from
the assembled stiffness equations, thus reducing the total number of DOFs
unknowns [Li]. Figure 9.5 shows examples of more complex displacement
constraints. Nodes B and C in Figure 9.5a are considered to be separated
but having the same local displacement v′B = v′C . Nodes A and B in Figure
9.5b are pin-jointed, thus enforcing the same displacements for both nodes.
The displacements of the end nodes for the beam AB in the frame of
Figure 9.5c can be constrained so as to ignore the axial deformation in
the analysis. This implies enforcing vA = vB = 0 and uA = uB. The final
system involves only 3 DOFs for each floor (uA or uB, θA and θB),
thus allowing for a pure bending solution.

9.4.1 General procedure to eliminate constrained DOFs

Each constraint allows us to eliminate one DOF in the final assembled
system as follows. Let us write the c independent constraints on the nodal
displacements a as

C
c×n

a
n×1

= g
c×1

(9.11)
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Fig. 9.5 Examples of displacement constraints [CMPW]

where C and g contain constraints. C has more columns than rows as
there are more DOFs in a than constraints. Let us consider the following
partition

C = [Cr
c×(n−c)

Ce]
c×c

and a =
{
ar

ae

}
(n− c)

c
(9.12)

where Ce is a square non-singular matrix and indexes r and e denote
the DOFs to be retained and those to be eliminated, respectively. Let us
consider first the simplest case with g = 0. From Eqs.(9.11) and (9.12) we
have

ae = Har with H = − [Ce]−1Cr (9.13)

Therefore we can write

a = Tar with T =
{

I
H

}
(9.14)

Matrix T transforms the element stiffness matrix and the equivalent
nodal force vector as TTKT and TT f , respectively and the final system
involves the retained DOFs ar only. Once these are computed, vector ae

can be obtained from Eq.(9.13).
The selection of ae and Ce is not unique. An alternative is to choose

the last c columns of C which are linearly independent. This guarantees
that Ce is invertible. Note that an excessive number of constraints can
lock the solution giving a = 0.

If g 6= 0 the value of ae can be computed from Eqs.(9.11)-(9.13) as

ae = g + Har (9.15a)

where
g = [Ce]−1g (9.15b)
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The assembled (symmetric) stiffness matrix can be written before the
constraints are enforced as

Ka =

[
Krr Kre

KT
re Kee

]{
ar

ae

}
=

{
fr

fe

}
= f (9.16)

This equation can be transformed using Eq.(9.14) as
[
(Krr + KreH) 0

−H I

]{
ar

ae

}
=

{
fr −Kreg

g

}
(9.17)

The first row of Eq.(9.17) gives ar. Then ae can be obtained using the
second row. Note that the system (9.17) is not symmetric. Symmetry can
be recovered as follows: multiply first the second row of Eq.(9.16) by HT

and add the result to the first row of Eq.(9.17). Then multiply the second
row of Eq.(9.17) by −Kee. This yields

[
(Krr + KreH + HTKT

re) HTKee

KeeH −Kee

]{
ar

ae

}
=

{
HT fe + fr −Kreg

−Keeg

}

(9.18)

Eq.(9.18) can now be solved taking advantage of the symmetry of the
system [Pr,Ral]. The negative sign in the lower diagonal terms can intro-
duce problems in the solution process.

If g = 0, then ḡ = 0 and in Eq.(9.18) allows us to eliminate ae from
the second row. Substituting this value into the first row gives

(Krr + KreH + HTKT
re + HTKeeH)ar = HT fe + fr (9.19)

or
Krar = fr (9.20)

It is easy to verify that Kr and fr can be obtained for g = 0 by

Kr = TTKT and fr = TT f (9.21)

where K and f are given by Eq.(9.16) and T is the transformation matrix
of Eq.(9.14).
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Fig. 9.6 Bar under point loads analyzed with three linear elements

Example 9.2: Compute the displacements in the mesh of three bar elements of
Figure 9.6 imposing u1 = u2.

- Solution- Solution- Solution- Solution

The assembled stiffness equations after eliminating the displacement at the
fixed node u4 = 0 are

(
EA

l

) [ 1 −1 0
−1 2 −1
0 −1 2

]{
u1

u2

u3

}
=

{
P
P
P

}

The constraint u1 = u2 is written as

[1,
... −1, 0]

Ce

... Cr





u1

· · · · · ·
u2

u3





ae

· · · · · ·

ar

= 0

and

u1 = [1, 0]
H

{
u2

u3

}
and T =

[1 0
0 1
1 0

]

Therefore

Kr = TTKT = EA
l

[
1 −1
−1 2

]

fr = TT f =
{

2P
P

}

The final system is
EA

l

[
1 −1
−1 2

]{
u2

u3

}
=

{
2P
P

}

giving
u2 =

5Pl

EA
and u3 =

3Pl

EA
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9.4.2 Use of Lagrange multipliers

The Lagrange multipliers method is a technique to find the maximum
or minimum of a function whose variables are related by constraints
[Ral,ZTZ]. In structural mechanics the function is typically the total po-
tential energy Π, the variables are the nodal DOFs and the constraints
are those expressed by Eq.(9.11). An augmented function is written as

Π = Π + λλλλλλλλλλλλλλT (Ca− g) (9.22a)

where
Π =

1
2
aTKa− aT f (9.22b)

and λλλλλλλλλλλλλλ = [λ1, λ2, . . . , λr]T is the vector containing the Lagrange multipliers
equaling the number of constraints.

The problem is solved by imposing the stationarity of Π with respect
to λλλλλλλλλλλλλλ and a leading to the following system of equations

[
K CT

C 0

]{
a
λλλλλλλλλλλλλλ

}
=

{
f
g

}
(9.23)

from which a and λλλλλλλλλλλλλλ can be obtained. The Lagrange multipliers can be
interpreted as the linking forces necessary to enforce the constraints on
the DOFs [ZTZ].

Example 9.3: Solve the problem of Figure 9.6 using the Lagrange multipliers
method.

- Solution- Solution- Solution- Solution

Eq.(9.23) is written, noting that C = [1,−1], as



k −k 0 1
−k 2k −k −1
0 −k 2k 0
1 −1 0 0








u1

u2

u3

λ





=





P
P
P
0





with k =
EA

l

The solution is

[u1, u2, u3, λ] =
[
5P

k
,
5P

k
,
3P

k
, P

]

The multiplier λ = P coincides with the force applied along the resulting
rigid bar 1-2.
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9.4.3 Penalty method

The constraints (9.11) can be written as

p = Ca− g ; p = 0 (9.24)

The potential energy of the structure Π is now augmented by the
penalty function 1

2p[αααααααααααααα]p, where [αααααααααααααα] is a diagonal matrix of penalty numbers
αi.

Thus

Π = Π +
1
2
pT [αααααααααααααα]p (9.25)

Obviously, if p = 0 then the constraints (9.24) are satisfied and there
is no need to add anything to Π. Stationarity of Π yields

δΠ = δΠ + δpT [αααααααααααααα]p = 0 (9.26)

For αi →∞ Eq.(9.26) tends to δΠ ' δpT [αααααααααααααα]p = 0. This requires
p = 0 and the constraints are satisfied. As the αi grow the solution of
Eq.(9.26) evolves so that the constraint equation (9.24) is progressively
better satisfied. In practice it suffices to choose a sufficiently large value
for αi. The equilibrium equation for finite values of the αi’s is deduced
from Eqs.(9.22b), (9.24) and (9.26) as

[K + CT [αααααααααααααα]C]a = f + CT [αααααααααααααα]g (9.27)

from which a can be obtained.

Example 9.4: Solve the problem of Figure 9.6 using the penalty method.

- Solution- Solution- Solution- Solution

Vector p of Eq.(9.24) is

p = [1,−1, 0][u1, u2, u3]T = C a

A single value of α is needed as there is only one constraint. The matrix
CT [αααααααααααααα]C is

CT αC = [1,−1, 0]α

[ 1
−1
0

]
= α

[ 1 −1 0
−1 1 0
0 0 0

]

CT αC can be interpreted as the stiffness matrix of a bar element (with α =
EA

l ) linking nodes 1 and 2. Obviously α →∞ implies increasing the rigidity of
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this element and the constraint is approximated. The new system of equations
is [ (k + α) −(k + α) 0

−(k + α) −2k + α −k
0 −k 2k

]{
u1

u2

u3

}
=

{
P
P
P

}

which yields

u1 =
5P

k
+

P

k + α
, u2 =

5P

k
, u3 =

3P

k

Note that as α grows then P
k+α → 0 and the value of u1 tends to u2.

The penalty method, despite its simplicity, can pose numerical pro-
blems. Consider, for instance, Eq.(9.27) with g = 0 and [αααααααααααααα] = α. The
system of equilibrium equations degenerates for large values of α to

CTCa =
1
α
f ' 0 (9.28)

Clearly the solution “locks” for α → ∞ giving a = 0, unless matrix
CTC is singular. This singularity can be anticipated by observing the
number of rows and columns in this matrix. This problem is similar to the
singularity requirement for the shear stiffness matrix in order to prevent
shear locking in Timoshenko beams and Reissner-Mindlin plate and shell
elements [On,ZT,ZTZ].

9.5 NODAL CONDENSATION AND SUBSTRUCTURES

In some occasions we may want to eliminate the DOFs which are internal
to an element or a group of elements and work only with the DOFs at the
boundary. The internal DOFs, as well as any other necessary information
within the internal domain, are computed “a posteriori”.

An application of the so called nodal condensation is the analysis by
substructures treated in a next section. For the sake of clarity let us con-
sider first the techniques for condensation and recovery of nodal DOFs.

9.5.1 Nodal condensation

Let a = [ar,ae]T be the DOFs in a mesh where ar are the boundary DOFs
to be retained and ae are the internal DOFs to be eliminated (Figure 9.7).
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Fig. 9.7 Condensation of internal nodes in a quadrilateral mesh

The matrix equilibrium equation is written as
[
Krr Kre

Ker Kee

]{
ar

ae

}
=

{
fr
fe

}
(9.29)

Vector ae is obtained using the second row of Eq.(9.29) as

ae = − [Kee]−1[Kerar − fe] (9.30)

Substituting this into the first row of Eq.(9.29) gives

Krar = f r (9.31)

with
Kr = Krr −Kre[Kee]−1Ker

f r = fr −Kre[Kee]−1fe
(9.32)

If the loads act on the boundary of the element patch considered, then
fe = 0 and Eqs.(9.32) can be simplified.

The condensed element is treated as an ordinary single element and
Kr and fr are assembled into the stiffness matrix and the equivalent nodal
force vector of the remaining elements in the standard manner. The in-
ternal DOFs in the mesh ae are “recovered” using Eq.(9.30). The stresses
at any point are computed from the retained displacements ar as follows.
The stress vector is given by

σσσσσσσσσσσσσσ = [Sr,Se][ar,ae]T −Dεεεεεεεεεεεεεεo + σσσσσσσσσσσσσσo (9.33)

where
Sr = DBr, Se = DBe, with B = [Br,Be] (9.34)
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Indexes r and e in above denote the matrices associated to the retained
and eliminated DOFs, respectively. Substituting ae from Eq.(9.30) gives

σσσσσσσσσσσσσσ = S∗ar + ττττττττττττττ o (9.35)

where
S∗ = Sr − Se[Kee]−1Ker

ττττττττττττττo = Se[Kee]−1fe −Dεεεεεεεεεεεεεεo + σσσσσσσσσσσσσσo

(9.36)

It is interesting that if ae contains a single DOF, the condensation
process of Eqs.(9.29)-(9.32) coincides with the standard Gauss elimination
technique for solving systems of algebraic equations. The condensation
can, therefore, be interpreted as the first step in the solution of the original
assembled system K a = f .

9.5.2 Substructuring

Substructuring is the splitting of a structure into a number of parts (called
substructures) whose assembly forms the original structure. Each sub-
structure can be treated using the condensation technique explained in
the previous section. This considerably reduces the computational cost of
the solution.

The substructuring process includes the following steps: 1) Conden-
sating the DOFs and the loads of each substructure to the boundary
nodes. Each substructure is then transformed to a “super-element” con-
nected to the other elements (or substructures) via the boundary nodes.
2) Assembly of the stiffness and nodal force contributions from the dif-
ferent substructures into a global stiffness matrix K and a force vector f .
3) Solution of the system Ka = f . 4) Computation (recovery) of the nodal
displacements ae, the strains and the stresses for each substructure.

In some occasions the structure can be modelled by repetition of the
same substructure. This simplifies considerably the solution, since, with
an adequate nodal numbering, the condensation process needs to be per-
formed only once.

Substructuring is advantageous when a structure is formed by clearly
identifiable and repeated parts. An example is the box girder bridge of
Figure 9.8 where the substructures 1, 2 and 3 are repeated.

Substructuring has become popular as a parallel computing technique
to solve large scale structural problems. Each substructure is solved in
parallel in a different processor and hence the computational effort and
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Fig. 9.8 Substructuring analysis of a box girder bridge. Retained and eliminated
nodes in a substructure

memory requirements can be uniformly split among the processors. This
makes substructuring attractive for distributed computing in networks of
workstations and PCs working in parallel, as well as in shared memory
parallel computers.

9.6 STRUCTURAL SYMMETRY

9.6.1 Symmetric solution

A structure is symmetric if the material and geometric properties and the
boundary conditions have one or more axes or planes of symmetry. Struc-
tural symmetry can be reflective or rotational. A structure is symmetric
with respect to an axis or a plane if one or more reflections and/or ro-
tations bring the structure to a configuration indistinguishable from the
original one. For the plate of Figure 9.9a each dotted line is a reflective
symmetry axis. Also, a line normal to the plate through the central point
C is a rotational symmetry axis, as successive 90◦ rotations bring the
structure into the same position. Other examples of rotational symmetry
include axisymmetric structures and the cyclic structures described in a
next section.

A symmetric structure may carry symmetric or antisymmetric loads. A
system of loads is antisymmetric if a single reflection of the structure with
its loads followed by sign reversal of all the loads result in self coincidence
(Figure 9.9c). For both symmetric and antisymmetric loading cases it
suffices to analyze the symmetric half of the structure with the following
boundary conditions:
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Fig. 9.9 Examples of symmetries: (a) Reflective and rotational symmetries;
(b) symmetric loading and (c) antisymmetric loading in a beam

Symmetric loading

– Displacements are zero in a direction perpendicular to a symmetry
plane.

– Rotation vectors have no component on a symmetry plane (Figure
9.9b).

Antisymmetric loading

– Displacements are zero in points contained on a plane of geometrical
symmetry (Figure 9.9c).

– Rotation vectors have no component perpendicular to a plane of geo-
metric symmetry.

Loads are skew symmetric if they require a rotation or more than one
deflection to reproduce the original loading pattern. The plate of Figu-
re 9.9a has skew symmetric loading if sectors ACD and FCE carry the
same loads and the rest of the plate is unloaded. The deflection satisfies
w(r) = w(−r), where r is the radial coordinate measured from C. For
the skew antisymmetric case the loads acting on ACD and FCE have the
same module but opposite sign and the deflection satisfies w(r) = −w(−r).

Symmetric structures under arbitrary loading can be analyzed by ex-
pressing the loads as the sum of two sets of symmetric and antisymmetric
loads. One half of the structure is solved under each set of loads only
and the final result is obtained by superposition. For symmetric and anti-
symmetric loads, the resulting displacements and stresses are respectively
symmetric and antisymmetric. An example are the axisymmetric struc-
tures under arbitrary loading studied in Chapter 11 of Volume 2 [On].
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Fig. 9.10 Structures with antisymmetric and symmetric loads

Example 9.5: Impose the boundary conditions in the structures of Figure 9.10.

- Solution- Solution- Solution- Solution

Structure 1 : Plane stress wall under antisymmetric point loads (Figure 9.10a).
Half the structure can be analyzed prescribing zero vertical displacement
in the nodes along the symmetry axis AA′.

Structure 2 : Square plate under symmetric point loads (Figure 9.10b). The
double symmetry allows to analyze a quarter of plate with the following
conditions on the rotations: θx = 0 on side 2-5 and θy = 0 on side 4-5.

9.6.2 Cyclic symmetry

In some structures a repetition of geometry and loading patterns can be
identified although a symmetry axis can not be recognized as such. This
property is called cyclic symmetry and it is usual in rotational parts such
as fans, pump impellers, etc. Figure 9.11 shows a hypothetic 2D structure
of this kind [CMPW,ZS]. Each triangle is identified with a repeatable
structure. The displacements, strains and stresses have cyclic symmetry
and this suffices to analyze a single substructure as follows.
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Fig. 9.11 Plane structure with cyclic geometry [CMPW,ZS]

Let us consider the triangular substructure shown in Figure 9.11. Nodes
in the cyclic boundaries AA and BB have been equally numbered for
convenience. This numbering affects only to the assembly process and the
actual coordinates must be used for computing the element matrices.

It is also convenient to compute the stiffness matrices of the nodes
on the boundaries AA and BB in the local boundary axes x′y′ shown in
the figure. This can be done following the transformation of Section 9.2.
Observation of the displacement pattern gives

a′A = a′B (9.37)

where a′A and a′B are the local displacements on the boundaries AA and
BB, respectively. Denoting by aR the displacements of the rest of nodes
it is deduced from Eq.(9.37).





aR

a′A
a′B



 =



I 0
0 I
0 I




{
aR

a′A

}
= T

{
aR

a′A

}
(9.38)

The stiffness equations of the substructure are written as


KRR KRA KRB

KT
RA KAA KAB

KT
RB KT

AB KBB








aR

a′A
a′B



 =





fR
f ′A + r′A

r′B



 (9.39)

where f ′A and fR are the equivalent nodal forces due to external loads
(rotation, pressure, etc.) acting on AA and the rest of the structure, res-
pectively. Loads r′A and r′B are the reactions applied along AA and BB by
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the neighboring substructures. Note that loads f ′B need not be considered
as the external loads on the interface boundaries must be assigned to only
one boundary. From the condition of cyclic symmetry

r′A = − r′B (9.40)

Using Eqs.(9.38)–(9.40) and the techniques to enforce constraints des-
cribed in Section 9.4.1 gives

Kg = TTKT =
[

KRR KRA + KRB

KT
RA + KT

RB KAA + KAB + KT
AB + KBB

]
(9.41a)

fg = TT f =
{
fR
f ′A

}
(9.41b)

The resulting equation is

Kg

{
aR

a′A

}
=

{
fR
f ′A

}
(9.42)

The DOFs and forces on AA can now be transformed to the global axes.
This is not strictly necessary and Eq.(9.42) can be solved directly for the
values of a′A and f ′A [CMPW,ZS].

9.7 STRUCTURES ON ELASTIC FOUNDATION
The assumption of undeformable supports does not apply in many prac-
tical cases. Typical examples are a rail on a roadbed, a pavement slab on
soil, a dam on rock etc. The interest of the analysis is primarily concerned
with the study of the rail, the pavement or the dam. However, the de-
formability of the foundation can not be disregarded as it can affect the
response of the structure. The supporting effect of the foundation can be
accurately modelled by treating the foundation domain as an additional
structure which is discretized using standard finite elements. This allows
us to account for variable material properties in different parts of the
foundation, etc. An example of this kind is the analysis of the soil-dam
interaction using 2D or 3D solid finite elements to discretize both the dam
and the soil. The problem is more difficult if plate or shell elements are
used to model the structure, as these must be adequately coupled with the
3D solid elements needed to discretize the foundation. A simpler alterna-
tive is to use an elastic solid foundation model characterized by an elastic
modulus k. This yields a first approximation of the supporting effect of
the foundation in an easy manner as follows.
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Fig. 9.12 2D solid triangle on elastic foundation

Let us consider a 2D solid laying on an elastic foundation characterized
by an elastic modulus k assumed here to be constant, for simplicity (Figure
9.12). Proportionality between the vertical reaction pressure of the foun-
dation ty and the vertical deflection v is assumed (Winkler foundation),
i.e.

ty(x) = −kv(x) (9.43)

Note that we have assumed here v(x) to be positive in the downward
direction for clarity (Figure 9.12).

The foundation pressure generates an additional virtual external work
of amount ty(x)δv(x). The PVW for the triangle is

∫∫

A
δεεεεεεεεεεεεεεTσσσσσσσσσσσσσσdA =

∫∫

A
δuTbdA +

∫

Γ
δv ty(x) dx (9.44)

where Γ is the boundary of the domain in contact with the foundation.
In Eq.(9.44) we have assumed a unit thickness for simplicity.
Substituting Eq.(9.43) into (9.44) gives

∫∫

A
δεεεεεεεεεεεεεεTσσσσσσσσσσσσσσdA +

∫

Γ
δv k v dx
−−−−−−

=
∫∫

A
δuTbdA (9.45)

Accounting for the elastic deformation of the foundation therefore in-
creases the virtual strain energy in the term underlined in Eq.(9.45).

We introduce now a standard finite element discretization. This leads
to the following equilibrium equation for the element

[K(e) + H(e)]a(e) − f (e) = q(e) (9.46)
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where the additional stiffness matrix H(e) is given by

H(e) =




H(e)
11 H(e)

12 0
H(e)

22 0
Symm. 0


 with H(e)

ij =
∫

l(e)
k

[
0 0
0 NiNj

]
dx (9.47)

where l(e) is the length of the element side in contact with the foundation
(Figure 9.12).

The non-zero terms in matrix H(e) involve the vertical DOFs of nodes
1, 2 in contact with the foundation.

The effect of the elastic foundation therefore increases the element
stiffness. This leads to smaller nodal deflections values, as expected. For
linear elements

H(e)
ij =

[
kl

3

](e) [
0 0
0 β

]
(9.48)

with β = 1 for i + j = 2, 4 and β = 1/2 for i + j = 3.
Note that H(e) is a full matrix and this introduces a coupling between

the deflection of nodes 1 and 2. A simplification is to diagonalize H(e) by
adding up the coefficients of each row. This is equivalent to assume a spring
of elastic modulus (kl)(e)

2 acting at each node. If equal length elements are
used along the foundation, this simply implies adding the coefficient (kl)(e)

to the diagonal term corresponding to the vertical deflection of the nodes
laying on the foundation in the original element stiffness matrix.

Matrix H(e)
ij has a similar form for 3D solid elements and is given by

H(e)
ij =

∫∫

A(e)

k(e)




0 0 0
0 0 0
0 0 NiNj


 dA (9.49)

where A(e) is the area of the element side in contact with the foundation.
The case of beam and plate elements laying on an elastic foundation is
treated in Volume 2 [On].

9.8 COMPUTATION OF NODAL STRESSES
The stresses at a node can be directly computed from the nodal displace-
ments as

σσσσσσσσσσσσσσi = DB(ξi, ηi, ζi)a(e) (9.50)
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Fig. 9.13 Discontinuous and continuous (smoothed) stress field

where B(ξi, ηi, ζi) denotes the strain matrix evaluated at node i.
Eq.(9.50) gives nodal stresses which are discontinuous between the ad-

jacent elements (Figure 9.13). This is a consequence of the finite element
formulation where continuity is only required to the displacements. Stress
discontinuity is reduced as the mesh is refined. Single nodal stress values
can be obtained via nodal averaging, or by using the smoothing techniques
described in the next section.

The nodal stresses obtained via Eq.(9.50) are not as accurate as those
obtained by extrapolating to the nodes the stresses computed at the Gauss
points, which are the optimal stress sampling points within an element
(Section 6.7). Different extrapolation techniques are presented next.

9.8.1 Global smoothing of stresses

The stresses at the Gauss points can be used to define a global extrapo-
lation procedure giving directly a continuous nodal stress field. Let σσσσσσσσσσσσσσ be
the stresses at the Gauss points and σσσσσσσσσσσσσσs the sought smoothed stress field
(Figure 9.14) defined within each element as

σσσσσσσσσσσσσσs =
n∑

i=1

Niσ̂σσσσσσσσσσσσσ
(e)
si

= Nσ̂σσσσσσσσσσσσσ(e)
s (9.51)

where

Ni = NiInσ and σ̂σσσσσσσσσσσσσ(e)
s =





σ̂σσσσσσσσσσσσσ(e)
s1
...

σ̂σσσσσσσσσσσσσ(e)
sn





(9.52)

where (̂·) denotes nodal values of the smoothed stress field, nσ is the
number of stress components (i.e. 3 for 2D solids, 6 for 3D solids, etc.),
I is a unit matrix, Ni is the standard shape function of node i and n is
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Fig. 9.14 Global smoothing of the nodal stresses from the Gauss point values

the number of element nodes. Higher of lower order interpolations can be
used to define the stress field, if necessary [HC].

The error between the original and smoothed stress fields at each point
is

e = σσσσσσσσσσσσσσs − σσσσσσσσσσσσσσ = Nσ̂σσσσσσσσσσσσσ(e)
s −DBa(e) (9.53)

The values of σ̂σσσσσσσσσσσσσsi are obtained by minimizing the following functional

F =
∫∫

A
eTe dA =

∫∫

A
(σσσσσσσσσσσσσσs − σσσσσσσσσσσσσσ)T (σσσσσσσσσσσσσσs − σσσσσσσσσσσσσσ)dA (9.54)

i.e.
∂F

∂σσσσσσσσσσσσσσi
(e)

= 0 =⇒ Mσ̂σσσσσσσσσσσσσs = g (9.55)

where σ̂σσσσσσσσσσσσσs contains the stresses at all nodes and

M(e)
ij =

∫∫

A(e)

NT
i NjdA (9.56)

g(e)
i =

∫∫

A(e)

NT
i DBa(e)dA , i, j = 1, n (9.57)

The smoothing matrix M(e) and the “force” vector g(e) for each element
can be assembled in the usual manner to form the global expression of M
and g. Solution of the system (9.55) yields the stresses at all nodes. The
stress field has the same continuity than the interpolation function Ni

(typically C◦ continuity is chosen). The smoothing process can be applied
independently to each stress component, although a different system of n×
n equations must be solved for each component. The solution is simplified
by using a Jacobi iteration scheme [Ral] for solving Eq.(9.55) as

σ̂σσσσσσσσσσσσσn+1
s = M−1

D [g − (M−MD)σ̂σσσσσσσσσσσσσn
s ] (9.58)
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Fig. 9.15 Direct linear extrapolation of the two Gauss point stresses to the end
nodes of 1D quadratic elements

where MD = diag. M. Typically 4 or 5 iterations are needed to obtain a
converged solution [ZTZ].

This technique (also called L2 projection of stresses) can be applied
to each individual element. A simpler stress extrapolation procedure can
however be implemented at the element level as explained next.

9.8.2 Direct local extrapolation

Let us consider the 1D quadratic element of Figure 9.15. The Gauss point
stresses σ1 and σ2 at ξ = ±p (p =

√
3

3 ) are linearly interpolated within the
interval −p < ξ < p as

σ =
[
1− s

2
,

1 + s

2

]{
σ1

σ2

}
(9.59)

where s = ξ
p satisfies s = −1 for ξ = −p and s = 1 for ξ = p . The stresses

at the end nodes A and B are obtained making s = ±1/p in (9.59) giving
{

σA

σB

}
=

1
2

[
a b
b a

]{
σ1

σ2

}
(9.60)

where a = 1 + 1
p and b = 1− 1

p .
This technique is easily extended to two and three dimensions. For

instance, using the values at the 2 × 2 Gauss points of a quadrilateral
element (Figure 9.16) the following bilinear stress interpolation can be
written

σ(s, t) =
IV∑

i=I

Ni(s, t)σi (9.61)
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Fig. 9.16 (a) Local extrapolation of 2×2 Gauss point stresses in a 4-noded quadri-
lateral using a bilinear interpolation. (b) Local coordinates ξ, η and s, t

where i denotes the Gauss point and Ni = 1
4(1 + ssi)(1 + tti) are the

bilinear interpolation functions with s = ξ
p and t = η

p , (p =
√

3
3 ). Note

that Ni takes a unit value at the i-th Gauss point and zero at the other
three points. The values for each stress component (σx, σy, τxy) at any
point within the element are obtained by substituting the adequate values
of the coordinates s and t in Eq.(9.61). Thus, s = t = −1

p at the corner
node A of the element in Figure 9.16b and

σA =
1
4
[a2, ab, b2, ab][σI , σII , σIII , σIV ]T

where a = 1 + 1
p and b = 1− 1

p .
The procedure also applies for 8 and 9-noded quadrilaterals. Thus, for

node E of Figure 9.16b with s = 0 , t = −1
p we find

σE =
1
4
[a, a, b, b][σI , σII , σIII , σIV ]T ; etc.

This technique can be used to extrapolate to the nodes the stresses
from the n × n quadrature points using an adequate C◦ interpolation
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4-noded elements 8-noded elements

9-noded elements 12- and 16-noded elements

Element

patches

Ωs

Element patches Ωs

Nodal values determined

from the patch

Patch assembly point

Superconvergent sampling

points

3-noded elements

(linear)

6-noded elements

(quadratic)

Fig. 9.17 Interior superconvergent patches for quadrilateral elements (linear,
quadratic, and cubic) and triangles (linear and quadratic) [ZTZ]

[HC]. Thus, for a 3 × 3 quadrature the quadratic shape functions of the
9-noded Lagrange quadrilateral should be used, etc. This method is also
applicable to 3D elements.

The nodal stresses obtained using this procedure are discontinuous
between adjacent elements. A single nodal value can be obtained by nodal
averaging.

9.8.3 Superconvergent patch recovery techniques

The stress extrapolation procedure of Section 9.8.1 can be applied to a
patch of elements Ωs surrounding a node. The method, called supercon-
vergent patch recovery (SPR), yields enhanced values of the stresses at the
nodes which are internal to the patch. The name of the method refers to
the so called “superconvergence” property of the Gauss points (i.e., the
stress values sampled at these points show an error which decreases more
rapidly than elsewhere) (Section 6.7 and [ZTZ]). Figure 9.17 shows some
patches for the nodal computation of the stresses for linear and quadratic
quadrilateral and triangular elements.

For each element patch and for each stress component we minimize the
following least square functional with n sampling points (the number of
Gauss points)

Π =
1
2

n∑

k=1

[σsi(xk, yk)− σi(xk, yk)]
2 (9.62)
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where σsi and σi are respectively the ith component of the sought
smoothed stress (also called “recovered” stress in the SPR literature
[ZTZ,ZZ,ZZ2]) and the stress directly computed from the finite element
solution at the kth sampling point.

The smoothed stress σsi is interpolated within the patch as

σsi = pT (x̄, ȳ)ai (9.63a)
where

p(x̄, ȳ) = [1, x̄, ȳ, · · · x̄p, ȳp]T and ai = [a1, a2, · · · , ap]T (9.63b)

with x̄ = x − xc and ȳ = y − yc where xc, yc are the coordinates of the
interior vertex node describing the patch.

Substituting Eq.(9.63a) into (9.62) gives after minimization of Π

Aai = bi (9.64)

where

A =
n∑

k=1

pkpT
k and bi =

n∑

k=1

pkσi(xk, yk) (9.65)

Solution of Eq.(9.64) yields the values of ai from which the stresses can
be computed at any node of the patch using Eq.(9.63a).

It should be noted that at external boundaries or on interfaces where
stresses are discontinuous the nodal values should be calculated from in-
terior patches as shown in Figure 9.18. Also for the nodes belonging to
more than one patch, an average of the computed smoothed stresses is
typically performed.

The SPR procedure outlined above has proved to be a powerful tool
leading to superconvergent results on regular meshes and much improved
results on irregular meshes [ZL,ZTZ].

The SPR idea can be also used to compute an enhanced displacement
field (and from that an improved stress field) using a higher order dis-
placement interpolation over element patches [LW,WL,ZTZ]. Boroomand
and Zienkiewicz [BZ,BZ2] developed an improved nodal stress recovery
method by constraining the smoothed stress field of Eq.(9.63a) to satisfy
the discrete equilibrium equations. The smoothed nodal stresses obtained
by any of the procedures explained in this and the previous sections, are
not only useful for the analysis of the finite element results, but they also
provide an estimate of an enhanced stress field for error estimation and
adaptive mesh refinement purposes (Section 9.4) [ZTZ,ZZ2,ZZ3].
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Material I Material II

Interface

Patch assembly node for boundary interface

Recovered boundary and interface values

Fig. 9.18 Recovery of gradients at a boundary or an interface [ZTZ]

Figure 9.19 shows an example of the efficiency of the SPR technique
taken from Chapter 4 of [ZTZ]. The problem is the analysis of the stress
field around a hole in a plate under uniaxial loading. The recovered SPR
stresses show much improved values compared with the original FE solu-
tion and also with the standard L2 projection described in Section 9.8.1.

9.8.4 Iterative enhancement of the solution

Cantin et al. [CLT] proposed an iterative scheme to enhance the solution
for the displacements and stresses. The starting point is the smoothed
nodal stress field obtained by any of the procedures above explained. The
stresses are interpolated within the element via Eq.(9.53).

The interpolated stress values are used to compute the unbalanced
element nodal forces (typically called residual force vector) as

f (e)
r = f (e) −

∫

V (e)

BTσσσσσσσσσσσσσσsdV (9.66)

The element contributions are assembled to form the global residual
force vector fr. A value of fr = 0 indicates that the smoothed stress field
equilibrates the external loads f . If fn

r 6= 0, where n is an iteration count,
an enhanced solution for the displacements and stresses can be obtained
as follows

1) Solve K∆an = fn
r

2) an+1 = an + ∆an

σσσσσσσσσσσσσσn+1 = D B an+1
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Fig. 9.19 Plane stress analysis around a circular hole in a uniaxial field [ZTZ]

3) Compute the smoothed nodal stresses σ̂σσσσσσσσσσσσσn+1
s and

the smoothed stress field σσσσσσσσσσσσσσn+1
s

4) Compute fn+1
r from σσσσσσσσσσσσσσn+1

s

5) Error check

‖fn+1
r ‖
‖f‖ ≥ ε Yes. Stop the process

No. Go back to 1

(9.67)
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‖ · ‖ in above denotes a quadratic norm, i.e. ‖a‖ = (
∑
i

a2
i )

1/2, and ε is

a prescribed tolerance (typically ε ' 10−2 − 10−3 is chosen). In practice
only a few iterations are needed to improve the initial solution. Step 1 is
inexpensive as the assembly and the reduction of matrix K is available
from the initial solution.

9.9 ERROR ESTIMATION AND MESH ADAPTIVITY
9.9.1 Basic concepts of error estimation

The main error source in the finite element solution is the discretization
error. This error combines the unaccuracies introduced by the interpo-
lation and the mesh chosen. Other error sources are the limited storing
capacity of computers (round-off errors), the bad approximation of the
geometry, the unaccurate computation of the element integrals and the
choice of a wrong constitutive equation (Section 3.13). These errors are
more easily controlled and avoided a priori. We consider in this section
the discretization error and the different strategies for reducing it to ac-
ceptable figures.

The prediction and reduction of the discretization error has been
object of considerable research (see references on the subject listed in
[GBFL+,LP2,ZTZ]). Much effort has been devoted to translate the ma-
thematical concepts of error estimation into useful engineering expressions,
as a basis for obtaining improved numerical solutions in an “intelligent”
manner.

Enhanced accurate FEM solutions can be achieved by refining the mesh
using a greater number of elements of smaller size (h method) [DH2,ZTZ].
An alternative approach is keeping the mesh topology constant and using
higher order elements (p method) [ZTZ]. Obviously, a combination of h
and p techniques is possible [ROD,Ve,ZTZ]. A review of adaptive finite
element methods can be found in [LB3,SR,SRO].

The p method enjoyed some popularity among finite element practi-
tioners in the early 1980’s as it avoids the need for the redefinition of a
mesh. Simple error estimators and p-adaptive procedures can be derived
by using hierarchical procedures [KGZB,ZTZ]. However, p (and h − p)
methods are difficult to implement in practice as the classical organiza-
tion of a finite element program needs to be abandoned. The advances in
mesh generation procedures has also favoured mesh adaptive h-methods
which are increasingly popular. The main concepts behind the h-method
are presented in the next sections.
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9.9.2 Error measures

Let us consider the finite element solution of an elastic problem where the
“exact” values of displacements, strains and stresses are approximated by

u ' u = Na (9.68)

εεεεεεεεεεεεεε ' εεεεεεεεεεεεεε = Ba and σσσσσσσσσσσσσσ ' σσσσσσσσσσσσσσ = DBa (9.69)

The approximate numerical solution u, εεεεεεεεεεεεεε, σσσσσσσσσσσσσσ differs from the exact one
u, εεεεεεεεεεεεεε, σσσσσσσσσσσσσσ. The following error vectors for the displacements, strains and
stresses at each point are defined as

eu = u− u, eε = εεεεεεεεεεεεεε− εεεεεεεεεεεεεε, eσ = σσσσσσσσσσσσσσ − σσσσσσσσσσσσσσ (9.70)

A convenient global error measure is defined by the energy norm of the
error as

‖ eε ‖=
[∫

Ω
eT

ε DeεdΩ

]1/2

(9.71)

‖ eσ ‖=
[∫

Ω
eT

σD
−1eσdΩ

]1/2

(9.72)

where Ω is the area or volume of the whole mesh domain. For linear
elasticity ‖ eε ‖ = ‖ eσ ‖.

An alternative error measure is the L2 norm. This is defined for the
displacement error as

‖ eu ‖L2=
[∫

Ω
eT

ueudΩ

]1/2

(9.73)

with similar expressions for the strain and stress errors.
The square value of the integral error norms can be computed by the

sum of the element contributions. For instance

‖ eσ ‖2=
N∑

e=1

(
‖ eσ ‖(e)

)2
(9.74)

where N is the number of elements in the mesh.
The key problem is that the exact solution is not known a priori (except

for simple academic problems). It is therefore essential to find ways to
estimate the error and this is treated in the next section.

9.9.3 Error estimation techniques
It is intuitive that the smoothed continuous stress field σσσσσσσσσσσσσσs is a better
approximation than the discontinuous distribution σ̄σσσσσσσσσσσσσ directly provided by
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Fig. 9.20 Bar under uniform axial forces analyzed with linear elements. Exact
stress distribution (σ), finite element solution (σ), smoothed stresses (σs) and
estimation of the error in stresses (eσ) [ZTZ]

the finite element solution (Figure 9.20). A simple estimation of the error
in the stresses at each point can be written as [ZTZ,ZZ]

eσ ' σσσσσσσσσσσσσσs − σσσσσσσσσσσσσσ (9.75)

The approximate expression of the energy norm of the error is

‖eσ‖ '
[∫

Ω
[σσσσσσσσσσσσσσs − σσσσσσσσσσσσσσ]TD−1[σσσσσσσσσσσσσσs − σσσσσσσσσσσσσσ]dΩ

]1/2

(9.76)

The simplest procedure to obtain the smoothed stress field σσσσσσσσσσσσσσs is to use
a linear local extrapolation (Section 9.8.2) followed by a nodal averaging of
the stresses. Alternatively any of the stress recovery techniques explained
in Section 9.8 can be used.

The proof that eσ is a good estimation of the error is immediate for the
1D case. Consider, for instance, the axial bar under uniformly distributed
axial forces analyzed with 2-noded bar elements (Figure 9.20). As shown
in Chapter 2, the displacement solution for 2-noded bar elements is exact
at the nodes, whereas the stresses are constant within each element. A
linear smoothed stress field gives also a linear distribution of eσ within
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each element as the difference between the (linear) smoothed stresses and
the constant FE values (the shadowed region in Figure 9.20). Clearly, eσ

will tend to zero as the element size reduces. This is also satisfied by the
error norm ‖eσ‖ if the material properties are constant. This also applies
to higher order elements. In general ‖eσ‖ ' O(hp), where p is the order of
the displacement approximation and h is the average element size in the
mesh.

The superconvergent derivative recovery technique (Section 9.8.3) yields
a higher approximation of the stress field which increases the convergence
rate of the stresses. The alternative expression of the energy norm in this
case is ‖eσ‖ ' O(hp+α), where O ≤ α ≤ 1 [ZTZ,ZZ].

9.9.4 Mesh adaptation strategies

A finite element solution is “acceptable” if the two following conditions
are satisfied:

a) Global error condition

The energy norm of the error is less than a percentage of the total strain
energy norm, i.e.

‖ eσ ‖≤ η ‖ U ‖ (9.77)

where η is the percentage of “admissible” relative error. This value is
defined “a priori” before starting the analysis. The strain energy norm in
Eq.(9.77) is obtained by

‖ U ‖=
[∫

Ω
σσσσσσσσσσσσσσT

s D−1σσσσσσσσσσσσσσsdΩ

]1/2

(9.78)

Eq.(9.77) allows to define a global error parameter as

ξg =
‖ eσ ‖
η ‖ U ‖ (9.79)

A value of ξg = 1 means that the global error condition (9.77) is exactly
satisfied. Alternatively ξg > 1 and ξg < 1 indicate that the element sizes
must be refined of derefined, respectively.

In the following we will assume ‖ eσ ‖= O(hp), then ξg = O(hp) and
the new size of an element h̄(e) is obtained in terms of its actual size h(e)

so that ξg = 1 in the refined mesh. This leads to

ξg =

(
h(e)

h̄(e)

)p

and hence h̄(e) =
h(e)

ξ1/p
g

(9.80)
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Computation of the new element size h̄(e) from Eq.(9.80) implies that
all elements refine (or derefine) in the same proportion, as ξg is a global
parameter for the whole mesh. It is therefore important to allow for a
selective change of the element sizes aiming for an “optimal mesh” using
a local error criterion.

b) Optimum mesh condition

The element distribution in the mesh should satisfy a mesh optimality
condition defined as

‖ eσ ‖(e)=‖ eσ ‖(e)
r (9.81)

where ‖ eσ ‖(e) is the energy norm of the error for each element and
‖ eσ ‖(e)

r is the required value of this norm, defined according to a parti-
cular mesh optimality criterion.

A local error parameter is defined as

ξ̄(e) =
‖ eσ ‖(e)

‖ eσ ‖(e)
r

(9.82)

A value of ξ̄(e) = 1 indicates that the element size is “optimal” (ac-
cording to the mesh optimality criterion chosen). Values of ξ̄(e) > 1 and
ξ̄(e) < 1 indicate that the size of element e must be reduced or enlarged,
respectively.

A single error parameter for the element can be defined as

ξ(e) = ξg ξ̄
(e) =

‖eσ‖ ‖eσ‖(e)

η‖U‖ ‖eσ‖(e)
r

(9.83)

General adaptive strategyGeneral adaptive strategy

A mesh adaptive strategy can be designed so that the element sizes are
modified with the following two objectives:

• To reach an optimum distribution of element sizes satisfying Eq.(9.81).
• To reduce the global error so that Eq.(9.77) is satisfied.

Conceptually, once a finite element solution is obtained two successive
changes in the element sizes need to be made for achieving above two
objectives. First the new element sizes h

(e)

ξ̄
are defined in terms of the

actual sizes h(e) and the local error parameter ξ̄(e) as

h
(e)

ξ̄
= h(e)[ξ̄(e)]−1/q (9.84)
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where q is the convergence rate of ξ̄(e) depending on the mesh optimality
criterion chosen.

The second change aims to satisfying the global error condition. The
element sizes are now uniformly changed using Eq.(9.80) to give

h̄(e) = h
(e)

ξ̄
[ξg]−1/p (9.85)

Eqs.(9.84) and (9.85) can be combined to give the final element sizes
h̄(e) in a single step as

h̄(e) =
h(e)

β(e)
(9.86)

where the element refinement parameter β(e) is

β(e) = [ξ̄(e)]1/q ξ1/p
g (9.87a)

Clearly if q = p then
β(e) = [ξ(e)]1/p (9.87b)

where ξ(e) is the single error parameter of Eq.(9.83).
Eq.(9.86) satisfies both the local and global error conditions. A key

step is the definition of the required error for each element ‖ eσ ‖(e)
r , as

this affects the local error parameter ξ
(e) and its convergence rate. Three

typical choices for the required element error are presented next.

9.9.4.1 Mesh optimality criterion based on the equal distribution of the global
energy error

This criterion states that a mesh is optimal when the global energy error is
uniformly distributed between all elements [ZTZ,ZZ]. The required error
norm for each element is defined as the ratio between the global error
norm and the number of elements in the mesh N . Recalling that only the
square norms are additive then

‖ eσ ‖(e)
r =

‖ eσ ‖√
N

(9.88)

Combining Eqs.(9.81) and (9.88) gives the local error parameter as

ξ̄(e) =
‖ eσ ‖(e)

‖ eσ ‖ N−1/2
(9.89)

From Eq.(9.76) it is deduced

‖ eσ ‖(e)' O(hp)(Ω(e))1/2 ' O(hp+d/2) (9.90)
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where h is a characteristic element size and d is the number of dimensions
of the problem (i.e d = 3 for 3D problems). The convergence rate of

‖ eσ ‖(e) dominates that of ξ̄(e) and hence q =
2p + d

2
. The new element

size is obtained from Eq.(9.87a) with

β(e) =
[
ξ̄(e)

] 2
2p+d

ξ1/p
g (9.91)

Eq.(9.91) can be improved by taking into account that the number of
elements in the refined mesh is not equal to the number of elements in the
original mesh. The new expression for β(e) is (Appendix C)

β(e) = [ξ̄(e)]
1

p+d ξ
2

2p+d
g N

− 1
2p+d

[
N∑

e=1

[ξ̄(e)]
d

p+d

] 1
2p+d

(9.92)

where N is the number of elements in the original mesh. Eq.(9.91) can be
simplified by accepting that the local error parameter is constant over the
mesh (this is true for the optimal mesh). This gives (Appendix C)

β(e) = [ξ(e)]
2

2p+d (9.93a)

where ξ(e) is the single error parameter for the element (Eq.(9.83)). Intro-
ducing Eqs.(9.79) and (9.89) into (9.83) gives

ξ(e) = ξg ξ̄
(e) =

‖ eσ ‖(e)

η ‖ U ‖ N−1/2
(9.93b)

Eq.(9.93a) reassembles Eq.(9.91) and both lead to similar results in
practice. The definition of β(e) of Eq.(9.91) has been used for solving the
examples presented in a later section.

Some authors propose an alternative expression for β(e) as [ZTZ,ZZ]

β(e) = [ξ(e)]1/p (9.94)

Eq.(9.94) does not preserve the convergence rate of the local error norm
and it can lead to oscillations during the mesh adaption process such as
the alternate refinement/derefinement of the mesh [Bu,Bu2,OB]. These
inconsistences can be overcome by introducing a relaxation parameter c
ξ(e) = cξ̄(e)ξg, or by defining an “ad hoc” value of the power p in Eq.(9.94)
[AH,AHS,LB2,LBBB,ZTZ,ZZ,ZZ2,ZZ3]. This problem disappears if β(e)

is computed by either Eqs.(9.91), (9.92) or (9.93a) [OB].
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9.9.4.2 Mesh optimality criterion based on the global distribution of the density of
the energy error

A mesh can also be defined as optimal if the energy error per unit area
(or volume) is uniformly distributed in the mesh. In this case

‖ eσ ‖(e)

[Ω(e)]1/2
=
‖ eσ ‖
Ω1/2

(9.95)

where Ω and Ω(e) respectively denote the area (or volume) of the analysis
domain and that of an element. Comparing Eqs. (9.81) and (9.95) gives
the required element error as

‖ eσ ‖(e)
r =‖ eσ ‖

(
Ω(e)

Ω

)1/2

(9.96)

The local error parameter is deduced from Eqs. (9.82) and (9.96) as

ξ̄(e) =
‖ eσ ‖(e)

‖ eσ ‖
(

Ω

Ω(e)

)1/2

(9.97)

and the single element error parameter is obtained from Eqs.(9.79) and
(9.97) as

ξ(e) = ξ̄(e)ξg =
‖ eσ ‖(e)

η ‖ U ‖
(

Ω

Ω(e)

)1/p

(9.98)

The definition of the required element error affects the convergence
rate of ξ̄(e). This can be obtained by noting that

ξ̄(e) = O
‖ eσ ‖(e)

[Ω(e)]1/2
= O(hp) (9.99)

from which it is deduced that q = p in Eq.(9.84).
The new element size is obtained by Eq.(9.86) using the following ex-

pression for the element refinement parameter β(e)

β(e) = (ξ̄(e)ξg)1/p = (ξ(e))1/p (9.100)

The criterion of equal distribution of the specific error for mesh refine-
ment was introduced by Oñate and Bugeda [BO2,BO3,OB] and has been
successfully used by Bugeda and Oliver [BO] for structural optimization
problems and by Oñate et al. [OC,OCK] for plate and shell analysis. A
theoretical study of this criterion is reported in [LB2,LBBB]. Its advantage
is that it concentrates more elements close to the higher stress gradients,
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such as in the vicinity of singular points or of stress discontinuities. There-
fore it yields a better approximation for the stresses in those regions which
is useful from a practical point of view. Its disadvantage is that it leads
to optimal meshes with a larger number of elements than those generated
with the criterion of equal distribution of the global error. These features
are clearly shown in the examples presented in a next section.

We note again the importance of using an expression for β(e) consistent
with the mesh optimality criterion chosen, in order to avoid oscillations
in the mesh adaption process.

9.9.4.3 Mesh refinement strategy based on the point-wise error in stresses

Some refinement strategies are based on the control of a specific magnitude
whose error at each point is limited to a maximum value everywhere.
The advantage of this type of strategies is that they allow the control
of magnitudes with a clear physical meaning, such as the stresses or the
strains at each point. From an engineering perspective, the interpretation
of this type of criteria can be easier than in the previous cases.

Assuming the necessary regularity conditions, the error in stresses at
each point behaves as hp [BS2]. For any point P , and for each component
of the stress tensor σij we can therefore write

|σij(P )− σ̄ij(P )| ≤ Chp (9.101)

where C is a constant.
Expression (9.101) indicates that the size of all the elements in the

mesh should be uniformly reduced in order to provide a specific value of
the error in the component of σij at point P . A uniform reduction of the
element size h over the whole mesh ensures the reduction of the local error
in stresses [BSGU,BSUG].

Expression (9.101) can be used for the definition of adaptive mesh
refinement strategies based on the control of the stress error not only at
a specific point, but over a global set of points using the stress recovery
methods explained in the previous sections.

Expression (9.101) does not hold for zones around singularities due to
the lack of regularity. At this zones, the behaviour of the error in stresses
is governed by the intensity of the singularity λ instead of the degree of
the shape function polynomials and the p power should be substituted by
λ. In the next section we present an adaptive remeshing strategy based
on Eq.(9.101) that does not account for singularities. Nevertheless, the
substitution of p by λ at these zones provides the necessary alternative for
regions around singular points.
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Maximum error in stresses

An obvious possibility is to maintain the error in the stresses below a
certain limit everywhere. This can be done by estimating the error in
stresses eσ (Eq.(9.70)). Due to the tensorial nature of the stresses, the
error in stresses will also be a tensorial magnitude. Hence, we define

[eσ] =




eσx eτxy eτxz

eτxy eσy eτyz

eτxz eτyz eσz


 =




σx − σ̄x τxy − τ̄xy τxz − τ̄xz

τxy − τ̄xy σy − σ̄y τyz − τ̄yz

τxz − τ̄xz τyz − τ̄yz σz − σ̄z


 (9.102)

Eq.(9.102) defines the error in stresses [eσ] as the difference between
the exact and the approximated stress tensors. Clearly, the exact stresses
in Eq.(9.102) are substituted by the smoothed continuous stress field σσσσσσσσσσσσσσs

(Eq.(9.75)). Tensor [eσ] can be written in terms of its eigenvalues:



eσI 0 0
0 eσII 0
0 0 eσIII


 (9.103)

A logical refinement strategy is based in limiting the maximum error
in the stresses to a certain maximum value everywhere, i.e.

max(abs(eσI ), abs(eσII ), abs(eσIII )) ≤ eσmax (9.104)

An error parameter ξ can then be defined at each point within the
element as the ratio between the maximum error max(abs(eσI ), abs(eσII ),
abs(eσIII )) and eσmax , thus

ξ =
max(abs(eσI ), abs(eσII ), abs(eσIII ))

eσmax

(9.105)

The element error parameter ξ(e) is taken as the maximum value of ξ
for all the Gauss points in the element. The new element size is given by
Eq.(9.86) using the value of β(e) of Eq.(9.100) [Bu2].

The error parameter ξ can be computed at any point of the domain.
As the larger error in stresses typically occurs at the nodes, the safest
option is to compute ξ there. Taking into account that different values of
ξ will be obtained for each of the elements connected to a specific node, a
natural strategy is to define the nodal error parameters as the maximum
value of ξ for each node. The element error parameter is then computed
as the average of the values of ξ for the element nodes.

Other point-wise error criteria based on the maximum error in the ten-
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sile and compressive stresses and in the von Mises stress are presented in
[Bu2].

9.9.5 Construction of an adapted mesh

Once the error associated to a finite element solution has been computed,
the existing mesh has to be modified accordingly to the new element sizes
defined by Eq.(9.86) using the value of β(e) according to the mesh opti-
mality criterion chosen. For the construction of an adapted mesh there
are basically two procedures. The first one consists in regenerating a com-
pletely new mesh, so that the adapted mesh has the element sizes required
by Eq.(9.86). This option changes the topology of the initial mesh and its
success depends on the availability of a mesh generator able to generate
non-structured meshes in a robust and efficient manner. The topic of mesh
generation is studied in Chapter 10.

The second procedure is based in the simple subdivision of the elements
in the existing mesh for which β(e) takes a value greater than one, while
leaving the rest of the elements unaltered. The implementation of this
method is extremely simple for triangular and tetrahedral elements. Every
triangle and tetrahedra is split into three and four elements, respectively
by introducing a new interior node, while leaving the adjacent elements
unmodified. The disadvantage of this method is that it does not lead
to adapted meshes satisfying accurately the element size distribution as
defined by Eq.(9.86). It avoids however the regeneration of the whole mesh
during the mesh adaption process.

A number of examples of mesh adaption are presented in the next
section using the mesh regeneration procedure.

9.9.6 Examples of mesh adaptivity

Two examples have been chosen to compare the different adaptive mesh
refinement (AMR) strategies presented: (1) thick cylinder under internal
pressure and (2) hollow dam under water pressure and self-weight. The
following notation is used for the different AMR strategies.

Strategy A. This is based on the criterion of equal distribution of the
global energy error between all elements (Section 9.9.4.1) with β(e) given
by Eq.(9.91).

Strategy B. It uses the same mesh optimality criterion as strategy A
with the expression for β(e) as given by Eq.(9.94).
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Fig. 9.21 Thick circular cylinder under internal pressure. Geometry and loads

Strategy C. It is based on the criterion of equal distribution of the error
(Section 9.9.4.2) with β(e) as given by (9.100).

Strategy D. Control of the point-wise error in stresses everywhere (Sec-
tion 9.9.4.3).

9.9.6.1 Thick circular cylinder under internal pressure

The first example is the analysis of the thick circular cylinder under inter-
nal pressure shown in Figure 9.21. Due to the symmetry of the problem
only a quadrant has been studied under plane strain conditions. The ma-
terial parameters are E = 1.0× 105 and ν = 0.3 (units are in the Interna-
tional System). A value of the admisible relative error of the energy in the
mesh of η = 5% has been chosen. Standard 3-noded linear triangles were
used for the analyses. This example is typical of elliptic problems and it
has many analogies in heat flow, ground water flow, etc. [ZTZ].

Table 9.1 shows some characteristic results obtained with the mesh re-
finement strategies A, B and C defined in the previous section like the num-
ber of elements, the global error parameter ξg, the average squared value
of the local error parameter [(ξ̄(e))2]a and its mean deviation [(ξ̄(e))2]σ over
each mesh for the three AMR strategies. From the numbers shown in the
table we deduce:

• The three AMR strategies converge fast to the global permisible error
chosen characterized by ξg ≤ 1.
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Strategy NE ξg [(ξ̄(e))2]a [(ξ̄(e))2]σ

M0 200 4.133 1.000 8.401
A M1 2180 0.839 1.000 0.604

M2 1838 0.909 1.000 0.189
M3 1797 0.925 1.000 0.193

M0 200 4.133 1.000 8.401
B M1 2820 0.919 1.000 8.469

M2 2711 0.907 1.000 2.197
M3 2758 0.839 1.000 4.484

M0 200 4.133 1.190 15.37
C M1 3028 0.884 2.224 2.071

M2 6359 0.796 1.204 0.163
M3 6026 0.835 1.204 0.151

Table 9.1 Thick circular under internal pressure. NE: number of elements

• Strategies A and C converge to an “optimal” mesh characterized by
the values ξg ≤ 1, [(ξ̄(e))2]a ' 1.0 and [(ξ̄(e))2]σ ' 0. However, the
number of elements and its distribution is very different for these two
AMR strategies.

• The mean deviation of the squared value of the local error parameter
for strategy B oscillates and does not converge to zero.

More insight into the numbers of Table 9.2 can be gained by analyzing
the sequence of refined meshes obtained with the three AMR strategies
shown in Figure 9.22. First column of Figure 9.22 shows the results obtai-
ned with strategy A. The AMR process converges in a consistent manner.

Second column of Figure 9.22 depicts the results obtained with strate-
gy B. The AMR process oscillates as clearly shown by the alternate re and
derefinement of some mesh zones. This explains the lack of convergence
of the mean deviation of the squared value of the local error parameter
(Table 9.1) which precludes reaching an “optimal” mesh for this case.

Third column of Figure 9.22 shows the results for strategy C. It is seen
that: (a) the AMR process evolves without oscillations, and (b) more and
smaller elements concentrate in the vicinity of the internal edge where the
error is greater due to the higher stress gradients. Larger elements than
in Strategy A are however allowed in the rest of the mesh. The prize to
be paid by Strategy C for the higher accuracy in capturing the high stress
gradients is the larger total number of elements with respect to strategies
A and B for the same global accuracy, as shown in Table 9.1. More details
on this example can be found in [OB,BO3]. The same problem was studied
under diametral loads in [BO2] with identical conclusions.
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Fig. 9.22 Thick circular cylinder under internal pressure. Sequence of meshes
M0,M1,M2,M3 obtained with AMR strategies A, B and C

9.9.6.2 2D hollow dam under water pressure and self-weight

The behavior of the different AMR strategies A, C and D are illustrated
here through the analysis of a 2D section of a hollow gravity dam assuming
a plane strain model. Strategy B has been disregarded as it produces
oscillations in the refinement process (see previous example). Figure 9.23
shows the geometry of the dam section. All the possible corner points
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of the geometry have been conveniently rounded in order to eliminate
singularities that could mask the behavior of each strategy. The main
data used for the analysis are the following (units are in the International
System): total height of the dam h=33.5, total height of water 32.5, Young
modulus E=31.0 GPa, Poisson’s ratio ν=0.25, density of concrete ρ=2.3.

The applied loads are the water pressure and the self-weight. The dis-
placements of all the nodal points placed at the bottom line have been
prescribed to zero in both the vertical and horizontal directions, whereas
the displacements of the nodal points placed at the left and right sides
have been prescribed to zero only in the horizontal direction. Figure 9.23
also shows the initial mesh used for all the adaptive strategies. Quadratic
triangular elements have been used for the analyses.

For each AMR strategy A, C and D, the remeshing procedure has
converged to the final mesh in a few remeshing steps. The cases studied
are the following:

- The first set of results has been obtained by prescribing a 1.50% ad-
misible error for the global energy norm (η=0.015) in strategy A, and
prescribing the refinement parameters in strategies C and D in order
to obtain a final mesh with a similar number of DOFs as for strategy
A. Results for this set of meshes are displayed in Figures A1, C1 and
D1 of Figure 9.23.

- The second set of results has been obtained by prescribing a 1.50%
admisible error for the global energy norm in strategy C, and pres-
cribing the refinement parameters in strategies A and D in order to
obtain a final mesh with a similar number of DOFs as for strategy C.
Results for this set of meshes are displayed in Figures A2, C2 and D2
of Figure 9.23.

Table 9.2 shows the quality parameters obtained in the final mesh for
each strategy.

Strategy Nr. of elements Nr. of nodes % error

A1 803 1715 1,40
C1 809 1693 2.75
D1 809 1713 3.36
A2 1923 4023 0.55
C2 1896 3968 1.32
D2 1906 3982 1.34

Table 9.2 Mesh parameters and error in the final mesh for each AMR strategy
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Fig. 9.23 Geometry of the section of a hollow gravity dam and initial mesh. Final
meshes obtained in the first set of application of strategies A1, C1, D1 and final
meshes obtained in the second set of application of strategies A2, C2, D2 [Bu2]

This example shows the coincidence of the results in the total number
of elements and the percentage of error obtained with the AMR strategy
based on prescribing the equal distribution of the density of the energy
error (strategy C2) and the those obtained with the criteria based on the
control of the point-wise error in stresses (strategy D2).

Strategy A1 based on the control of the equal distribution of the global
energy error reaches the error target with less than half the number of
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elements needed for strategies C2 and D2, as expected. However, the
point-wise error in stresses (as given by strategy D1) is larger in this
case (3.36%). More details on this example can be found in [Bu2].

9.9.7 Conclusions from the examples

From the examples presented we can draw the following conclusions:

a) The AMR criterion based on the equidistribution of the energy error
density captures better the zones with high stress gradients. It also
leads to meshes with many small elements in the high gradient zones,
while it generates larger elements in regions where the stress distribu-
tion is uniform. It is therefore recommended to limit the maximum and
minimum element sizes when using this AMR criterion. This limiter
is essential in problems with stress singularities, as the optimal mesh
size in these regions tends to zero and hence the mesh adaption would
progress indefinitely.

b) The AMR criterion based on the equal distribution of the global error
leads to meshes with a smaller number of elements than those obtained
with the error density criterion. It also leads to a more uniform dis-
tribution of element sizes. This criterion tends to smooth the effect
of stress singularities over the whole mesh and hence the element size
limiters are not needed in this case. The disadvantage is its reduced ca-
pacity for accurately capturing sharp stress (or strain) gradient zones.

c) The mesh adaption criterion based on the point-wise error in stresses
leads to very similar meshes and results as with the criteria based on
the equidistribution of the energy error density.

The choice of one or other AMR criterion should be decided by the
needs of each specific analysis and the interest of the user. If a strict control
of the stresses is required, then the strategy based on the equal distribution
of the energy error density (Strategy C) or any of the equivalent strategies
based on the control of the point-wise error in stresses are preferible.

We finally note that maintaining a prescribed accuracy in the results
can lead to a very large terms of number of elements, higher memory size or
excessive computing time. Computational constraints can be introduced in
the AMR strategy in order to make it affordable for practical applications
[BCF,CB].

The topic of error estimation and mesh adaption is continuously evol-
ving. Interested readers are recommended to consult the work of the refe-
rences in Chapters 13 and 14 of [ZTZ] and also in [LP2].



10

GENERATION OF ANALYSIS DATA
AND VISUALIZATION OF
NUMERICAL RESULTS

10.1 INTRODUCTION

A significant task in the finite element analysis of a structure is the gene-
ration and the specification of all the data required for the computations.
This work, usually called “preprocessing”, includes the definition of the
geometry of the structure in parametric form, either by hand or, what is
more usual, by means of advanced computed-aided design (CAD) tools,
the generation of a mesh and the assignment of the material properties,
the boundary conditions and the loading. These tasks which are trivial
for simple academic structural shapes, can be extremely complex for real
structures. Here the use of advanced preprocessing tools is mandatory in
practice.

A similar difficulty arises for the visualization of the results from the
finite element computations. The so called “postprocessing” of the nume-
rical outputs in the form of vector isolines or contours of displacements,
strains and stresses is usually required. For practical problems these dis-
plays can only be performed with the help of modern graphical tools,
specially for 3D problems.

The issues of analysis data input and the graphic visualization of nu-
merical results cover many specialized topics which fall outside the scope
of this book. The aim of this chapter is to present a panoramic view of
the main aspects of the pre- and post-processing tasks with a particu-
lar emphasis in mesh generation. Interested readers are recommended to
download from Internet and test the GiD pre and postprocessing system
(www.gidhome.com) developed at CIMNE. GiD contains many utilities for
data input and visualization of results for finite element structural analy-
sis. GiD can be easily interfaced to any academic, research or commercial
FEM package. A more detailed description of GiD is given in Appendix
D.
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10.2 THE IMPORTANCE OF A GOOD PRE AND POST
PROCESSING SYSTEM

The practical use of computer simulation in engineering had its origin in
the 1950’s and 1960’s with the advent of numerical methods such as the
finite difference method (FDM) and the finite element method (FEM).
Aerospace engineering was the focal point of activity during that time.
By the late 1960’s the first FEM based commercial computer programs
(ASKA, NASTRAN, Stardyne, etc.) appeared. Subsequently, the FEM,
the FDM and related numerical techniques (such as the finite volume
method and the boundary element method) spread to other engineering
and scientific disciplines, and now its use is widespread and many finite
element-based commercial programs are available. Despite the fact that
geometry modelling and mesh generation is the underpinning of computer
analysis design, CAD as we know it today, had its origins later in the
1970’s and 1980’s. This perhaps explains why the geometric representa-
tion of objects in finite element analysis and CAD are so different. Many
finite element programs were technically mature long before modern CAD
was widely adopted. The typical situation in engineering practice is that
designs are encapsulated in CAD systems and finite element meshes are
generated from CAD data. This amounts to adopting a totally different
geometric description for design and one that is only approximate for ana-
lysis. In some instances mesh generation can be done automatically but in
most circumstances it can be done at best semi-automatically. There are
still situations in major industries in which drawings are made of CAD
designs and meshes are built from them. It is estimated that about 80% of
the overall analysis time is devoted to mesh generation in practical com-
puter-aided engineering work [HCB]. In the automotive industry, a mesh
for an entire vehicle typically takes nowadays about four months to create.
Design changes are made on a daily basis, limiting the utility of analysis
in design if new meshes cannot be generated within that time frame. Once
a mesh is constructed, refinement requires communication with the CAD
system during each refinement iteration. This link is not straightforward
and it is often unavailable, which perhaps justifies why, as today, adaptive
mesh refinement is still not widely used at industrial level.

Above facts explain why generation and visualisation of analysis data
for scientific and engineering computation has become the bottleneck in
the practical application of the FEM. With the increasing trend of using
networked PC’s for analysis of real life problems, the need of efficient and
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versatile pre/postprocessing systems operating under Windows, Linux and
Unix has become a universal problem. The possibility of performing com-
puter simulations from home, either for teaching, research or engineering
consultancy is becoming a habit for many graduate and undergraduate
students and engineers. This invariably increases the need for powerful
and economical procedures for preparation of analysis data for complex
geometries, probably generated by CAD elsewhere, for handling the ana-
lysis results with support from visualisation tools and for producing high
quality reports in written or electronic form.

In summary, there is a general need for efficient and affordable pre-
/post-processing systems which incorporate all the requirements for user-
friendly generation of analysis data, easy linking to any computer code
and fast visualization of numerical results.

10.3 THE GEOMETRICAL REPRESENTATION OF
STRUCTURES

A structure is typically defined by its boundary which consists of a closed
loop of curved boundary segments (in 2D) or surfaces (in 3D). Curved
boundary segments are in general represented by parametric spline curves.
C1 continuity is at least required in order to preserve a smooth stress field
on the boundary curve and to satisfy the continuity conditions required
by mesh generation algorithms. Hermite cubic splines can be used for this
purpose.

Curved surfaces can be defined in a number of ways using polynomial
functions represented by a variety of composite spline surfaces and curves
(e.g. Bézier, B-splines, etc.). A common way to define arbitrary curved
surfaces is by means of the so called Non-Uniform Rational B-Splines
(NURBS). NURBS are typically used for defining complex surfaces in
many engineering applications (Figure 10.1). A good description of the
NURBS technique and other methods for the definition of curves and
surfaces can be found in [BY,Fa,FP,Fa2,HCB,Or,PS,PT,Yam].

The efficient manipulation of geometries of objects by means of mathe-
matical models has been a permanent objective of scientists and engineers
since ancient times. The pioneer work of Descartes on analytical geometry
meant a step forward in the graphical representation of complex bodies
using mathematical expressions. Descartes work is considered by many
the seed of the modern CAD methods widely used in industry. The big
challenge nowadays is the effective linkage of CAD data with computer
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Fig. 10.1 NURBS line with 7 control points, degree=3 and knot
vector={00000.30.580.81111}

simulation codes to solve relevant problems in science and engineering.
Indeed the modern pre/post processing systems will help to make true
the dream of Descartes of a rational knowledge of the work via geometry
and mathematics, and nowadays also via computer simulations [DH].

A NURBS line is defined by its degree, a number of control points
defining a polygon, weights associated to these points and a knot vector
(Figure 10.1) [Fa,FP,HCB,PS,PT,Yam].

The NURBS curve smoothly approximates the control points poly-
gon, without interpolating them. An exception are the end control points
which are exactly interpolated. The knot vector is an increasing list of real
numbers that divides the parametric space. The degree is the polynomial
degree of each span.

The same concept can be extended to NURBS surfaces with a NxM
net of control points (Figure 10.2).

A limitation is that NURBS surfaces are topologically an square, and
can not be adapted to a general shape. To avoid this limitation usually
surfaces are trimmed by a loop of curves on the surface that act as a mask
(only the internal part is considered).

Figure 10.3 shows a trimming surface on the surface of Figure 10.2, i.e.
cutting the surface with a pentagonal prism.

Every NURBS patch is perfectly defined by a parametric function.
Typically the definition of the geometry is aimed to provide full details for
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Fig. 10.2 NURBS surface created by revolving the NURBS line of Figure 10.1
around an axis. NURBS with 7 × 3 control points, degree = 3 × 2. Two knot
vectors ={00000.30.580.81111} × {000111}. Weights = 0.81 for the middle row
of control points (marked with circle) and 1.0 for the rest. Courtesy of the GiD
Team at CIMNE

the manufacturing work and hence it aims to providing more information
than that strictly required for structural analysis. Some simplifications are
typically introduced in the NURBS data prior to mesh generation.

CAD systems allow to export the parametric definition of a line or a
surface in different formats. Some popular CAD output formats are: IGES,
DXF, VDA, STEP, ACIS, Parasolid, Solid Works, etc. [Fa,Fa2,FP,Yam].
Indeed, CAD data can contain errors or redundancies that must be
“cleaned” prior to the mesh generation step and this can be a tedious
and costly task. Preparing good CAD data suitable to the needs of the
FEM is one of the challenges in the preprocessing step.

Figures 10.4 and 10.5 show the NURBS representation of a mechanical
part and an aircraft surface and the finite element mesh of 3-noded shell
triangles generated with the advancing front method (Section 10.4.1).
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Fig. 10.3 Trimmed surface obtaining by cutting the NURBS surface of Figure 10.2
with a pentagonal prism. Courtesy of the GiD Team at CIMNE

Fig. 10.4 NURBS definition of a mechanical part. Finite element mesh of 3-noded
shell triangles generated with the advancing front method [Courtesy of Quantech
ATZ, S.A., www.quantech.es]
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Fig. 10.5 Definition of an aircraft geometry with NURBS. Surface mesh of 3-noded
triangles generated with the advancing front method and Gid [GiD]

10.4 MESH GENERATION

The generation of a finite element mesh is a key task prior to the analysis
of a structure. While the generation of 1D and 2D meshes can still be
attempted by hand, 3D mesh generation is an extremely difficult task
which requires sophisticated algorithms and specialized software. Mesh
generation has therefore become over the years a kind of science in itself.
Only the basic concepts of mesh generation will be given here and the
interested reader can found many details in papers and text books on the
subject [Ca,FG,GB,GBBF+,Ge,KS,TSW,TWM].

Finite element meshes can be globally split into structured and un-
structured meshes (Figure 10.6). A 2D structured mesh generally consists
of two sets of lines. The lines in the same set do not interest each other
and they intersect the lines in the other set only once. Structured meshes
can be of uniform or non uniform element size. The same concept extends
naturally to 3D structured meshes (Figure 10.4). Structured meshes can
be generated semi-automatically by the so called mapping methods. These
are based on isoparametric mapping techniques [ZP] by using blending
functions [GH2] or by solving a partial differential equation on simple
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Fig. 10.6 Examples of (a) structured and (b) unstructured meshes

subregions of the analysis domain created manually [TTM,TW]. These
subdomains are then mapped into regular grids to produce a mesh. This
manual process is tedious and difficult for complex 3D geometries. Despite
many efforts made to automate mapping methods no fully automatic mesh
generator using a mapping method has been achieved.

The difficulties in obtaining a universal mesh generator via mapping
methods has lead to the development of algorithms for generating un-
structured meshes. These meshes are not the result of the intersection
of sets of parallel lines and hence do not have a specific internal struc-
ture. Most of the unstructured mesh generation methods are designed for
generating triangular elements (in 2D) and tetrahedral elements (in 3D)
(Figure 10.6b). Unstructured meshes are suitable for discretizing objects
with complex irregular geometry and they typically involve elements of
different sizes. They are also ideal for adaptive mesh refinement. Abrupt
changes in the geometry or the element size locally should however be
avoided in practice.

Many automatic unstructured mesh generation algorithms have been
proposed in the literature. The most popular are the advancing front
method [GS,JT,Lo,LP,PVMZ], the Delaunay triangulation method [Ba,
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FG,Ge,GBFL+,Re,SS,WH] and the tree methods (the finite quadtree
method in 2D and the finite octree in 3D) [BWSG+,SG,YS]. All these
methods can be extended to automatically generate unstructured quadri-
lateral meshes in 2D by collapsing two adjacent triangles which share a
common edge into a quadrilateral [JSK,RSS]. Despite much research, the
automatic generation of a hexahedral mesh is still a challenge [BM,CI,Dho,
Joe,TBM].

Due to their wider applicability in the next sections we present the
basis of the advancing front method (and its variant the paving method)
and of the Delaunay method. The interested reader will find a description
of the most popular generation procedures in [CBFL+,FG,Ge,TMIP+].

10.4.1 The advancing front method

The advancing front method is a simple, intuitive and powerful algorithm
to generate meshes of triangles (2D) and tetrahedra (3D). A mesh is pro-
gressively created starting from an initial “front” formed by the elements
covering the boundary of the domain (i.e. line segments in 2D). Elements
in the interior of the domain are generated one by one by joining the nodes
laying at the front with interior nodes placed at an appropriate distance,
so as to define the specified element size. The generation of every new
element changes the front profile which advances into the region to be
discretized until the whole domain is completely covered by elements.

The advancing front method was proposed by Lo [Lo] who constructed
a triangularization over a set of a priori generated points inside the do-
main. Jin and Wiberg [JW] presented an advancing from algorithm in
2D. The procedure was improved by Peraire et al. [PVMZ] who presented
a method for generating points and elements at the same time with the
assistance of a background mesh used to define the characteristics of the
mesh. This allows to generate a non uniform distribution of element sizes,
according to a particular specification, such as the need to use a highly
refined mesh at a certain zone of the domain, as typically occurs in adap-
tive mesh refinement. Any directional orientation of the elements can be
implemented by introducing stretches in certain directions. Mesh direc-
tionality is a significant feature of the advancing front method, which
makes it superior to the Delaunay technique, in particular for adaptive
mesh refinement applications.

Extensions of the advancing front method to 3D problems where re-
ported by Moller and Hansbo [MH], Löhner and Parikh [LP] and Peraire
et al. [PPFM+]. An adaptive mesh refinement algorithm for 3D Euler
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flows was presented by Peraire et al. [PPM]. The robustness of the advan-
cing from method was studied by Jin and Tanner [JT] and by Moller and
Hansbo [MH] who proposed various techniques for increasing its robust-
ness. This improvement can also be achieved by incorporating principles
of Delaunay triangulation into the algorithm [GB]. Considerable research
has been invested with the objective of increasing the computational effi-
ciency of the advancing front method. We note, for instance, the work of
Bonet and Peraire [BP] and Kwok et al [KHK] who developed useful data
structures to aid the efficiency of the method. Similar efforts were reported
in [Ge]. Computational speed in generating a mesh obviously depends on
the efficiency of the particular mesh generation code. Indeed, the speed of
mesh generation can be considerably improved by using parallel comput-
ing techniques. The implementation of the advancing front method in a
parallel computer was presented by Topping and Khan [TK2].

The main steps of the advancing front algorithm for the generation of
a mesh of 3-noded triangles are described next.

Background meshBackground mesh. The background mesh is employed to accurately con-
trol the distribution of the geometrical characteristics of the new mesh.
Typically is formed by simple 3-noded triangular elements (in 2D) or
4-noded tetrahedra (in 3D) covering the domain to be meshed (Figu-
res 10.7 and 10.8). Mesh parameters data, such as element sizes and
stretching, are assigned to the nodes of the background mesh, and they
are subsequently interpolated linearly to any point inside the domain
or on its boundary. A sphere at each vertex shows the size that the
element is required in the definitive mesh (Figure 10.8).

Generation frontGeneration front. The initial generation front is a collection of all the sides
which form the discretized boundary of the domain (Figure 10.9). If the
domain is composed of multiple connected regions, an initial generation
front is formed for each of the regions. Once a new element is created
the generation front is updated. The updating procedure ensures that
the generation front always forms the boundary of the region to be
meshed. The sides and the nodes in the generation front are referred
to as active sides and active nodes, respectively.

Element generationElement generation. An active side with connecting nodes is selected from
the generation front to generate a new element. For instance, take side
2-11 in the upper right frame of Figure 10.9. The position of point 12
to form a new triangle 2, 11, 12 is placed over the direction normal to
side 2-11 and located at a distance he from that side. This distance is
found by interpolating the required element sizes from the background
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(a)

(a) (b)

(b)

���������	

��


Fig. 10.7 (a) Background meshes for a typical 2D domain. (b) Mesh size assigned
to a domain using a background mesh

mesh. A check is performed to verify that the sides of the new triangle
2, 11, 12 do not intersect any of the existing sides in the generation
front [ZTZ].

Mesh quality enhancementMesh quality enhancement. Mesh quality enhancement is needed to im-
prove the shape of the elements at the final stage of the mesh genera-
tion process. This is particularly important for strongly graded meshes
with element sizes varying rapidly.

Figures 10.10–10.13 show examples of meshes generated with the ad-
vancing front method.

The quality of a mesh can be improved by mesh smoothing. The method
is based on the so called Laplacian smoothing technique which repositions
the internal node at the centroid of the polygon formed by its neighboring
nodes [Ca]. The smoothing process is repeated over 3-5 iterations and
typically leads to a mesh with better shaped elements. The algorithm can



366 Generation of analysis data and visualization of numerical results

(a)

(b)

(c)

Fig. 10.8 3D background mesh. (a) A mechanical part immersed in four boxes
where sizes are assigned and sizes assigned to each volume. (b) Nodes of a back-
ground mesh of 4-noded tetrahedra. Numbers denote element size. (c) Final mesh
of linear tetrahedra for the mechanical part with the required element sizes
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Fig. 10.9 Generation front and its updating during the element generation process.
Active sides are identified by a thicker line. Active nodes at the front are listed
within the bracket in each figure

however fail for nodes adjacent to concave boundaries and the smoothing
procedure should be avoided for these nodes.
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Fig. 10.10 Generation of a mesh of triangles with the advancing front method

Fig. 10.11 Example of mesh generation with the advancing front method. Two
starting fronts originating at an external and an internal boundary

An alternative procedure to reduce element distortion to a minimum
in a generated mesh is the elimination of nodes creating elements with an
undesirable aspect ratio, or the swapping of diagonals aiming to reducing
the maximum angle of the existing elements in the mesh (Figure 10.14).
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Fig. 10.12 Generation of a mesh of tetrahedra with the advancing front method.
(a) Definition of external and internal surfaces. (b) Evolution of the front surface.
(c) Final mesh

The advancing front method can also be applied for generating a sur-
face mesh for an arbitrary 3D geometry. The basic idea is to perform the
mesh generation, according to the prescribed element size distribution,
in a 2D parametric plane using the advancing front method as described
above, and then map the 2D mesh onto the 3D surface. The process re-



370 Generation of analysis data and visualization of numerical results

e

f

i

d

c

ba

e


f


i

d

c

b
a

c

a b
(a)

e2

e3
e1

c

a b
(b)

e91

i

e1

e91

e4

e3

e2

e92

e91

e92

d

a
(a)

(b)

(c)

b

c

d

a b

c

d

a b

c

or
i

Fig. 10.13 (a) Laplacian smoothing; (b) Elimination of nodes and (c) Diagonal
swapping

quires the transformation of the mesh parameters given for the 3D surface
to the parametric plane. Details of an algorithm of this kind can be found
in [Pe,Pe2,PPM].

As mentioned above the advancing front method is extremely power-
ful to generate triangular and tetrahedral meshes in complex geometries.
Some examples are presented in Figure 10.14.

Generation of quadrilateral meshes via the advancing front method is
possible and a procedure was reported by Zhu et al. [ZZHW]. A simple
pragmatic approach is converting a triangular mesh form into mesh of
quadrilaterals by collapsing two triangles into a quadrilateral [JSK,RSS].
In any case, the generation of a “good” hexahedral mesh is still nowadays
a challenge.
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Fig. 10.14 Meshes generated with the advancing front method. Courtesy of the
GiD team at CIMNE [GiD], Compass Ingenieŕıa y Sistemas S.A.
(www.compassis.com) and Quantech ATZ S.A. (www.quantech.es)
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Fig. 10.15 The paving method. Mesh boundaries, paving fronts and node types

10.4.2 The paving method

Blacker et al. [Bl,BS,BSC] extended the advancing front technique to ge-
nerate quadrilateral meshes. The so called paving method is based on the
element by element addition of 4-noded quadrilaterals to an active front
line so that the mesh generation propagates towards the internal parts of
the mesh. An incremental smoothing technique is used during the mesh
generation to improve the quality of the final mesh. A description of the
paving method can be found in [CBMB,OSCS,TMIP+,vRBBB]. Exten-
sions of the paving method for generating triangular meshes are reported
in [vRBBB].

The paving method was initially implemented in the Sandia National
Labs. in USA [Bl,LTV]. Despite its initial success (a patent of the method
was registered in USA [Bl2]), its application to the generation of hexa-
hedral meshes is quite difficult. A possibility to obtain an unstructured
hexahedral mesh is by splitting each tetrahedral element into four hexahe-
dra. This increases very rapidly the number of elements in the mesh and
does not provide good quality hexahedra. The direct generation of good
quality hexahedral meshes on 3D solids with arbitrary geometry is one of
the current challenges of mesh generation.
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Fig. 10.16 The Voronoi diagram (in dotted lines) and the Delaunay triangulation
(in solid lines) of a group of eighteen vertices (forming points)

Higher order elements can be created easily by adding intermediate
notes to each element edge. The position of any interior node can be
interpolated from the position of the element perimeter nodes.

10.4.3 The Delaunay method

The Delaunay method is used for the generation of triangular and tetra-
hedral meshes. The method yields unstructured meshes and can also be
used for refining of existing meshes. The Delaunay technique has attracted
much attention in research and software development due to its conceptual
simplicity, mathematical rigor and algorithmic robustness.

A mesh of 3-noded triangles (the same property applies for 4-noded
tetrahedra) can be generated using the Delaunay method as the dual of
the so called Voronoi diagram [De,Vo]. The mesh generation process is
explained next for the 2D case.

Let us have a collection of distinct points Pi, i = 1, N in a 2D re-
gion. They are referred to as the forming points in the mesh generation
literature. The Voronoi region V (Pi) is defined as the set of points that
are at least as close to Pi as to any other forming point. As an exam-
ple Figure 10.17 shows the Voronoi regions defined by seventeen forming
points. The Voronoi region V (Pi) represents a convex polygonal region,
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Fig. 10.17 Generation of a mesh with the Delaunay method. (a,b,c) Voronoi dia-
gram, empty circles and Delaunay triangulation. (d) Duality between the Delau-
nay triangulation and the Voronoi diagram

possibly unbounded. The points that belong to more than one region form
the edges of the Voronoi regions. The points at which the edges intersect
are called the Voronoi vertexes. The union of the Voronoi regions is the
Voronoi diagram of the forming point set P .

The dual graph of the Voronoi diagram is formed by connecting by
straight lines joining the forming points of the neighbouring Voronoi re-
gions sharing a common edge. This graph forms the Delaunay triangula-
tion of the Voronoi forming points, i.e. the 3-noded finite element mesh
sought. There is a perfect duality between the Voronoi diagram and the
Delaunay triangulation (Figure 10.17d).
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The more relevant properties of the Delaunay triangulation for mesh
generation are the following:

1. The Delaunay method fails to generate triangles only if four of the
forming points P lay on the same circle (then a quadrilateral is
formed). This situation should be avoided if an all triangular mesh
is sought.

2. Each Delaunay triangle corresponds to a Voronoi vertex, which is the
centre of circumcircle of the triangle. This property is used to construct
data structures.

3. The interior of the circumcircle contains no forming points P . This is
the well known empty-circle-criterion which should be satisfied by any
new point introduced in the Delaunay triangulation (Figure 10.17b).

4. The boundary of the Delaunay triangulation is the convex hull of the
forming points. This is the basis for using a convex hull which contains
all the mesh points in 3D mesh generation.

Each Voronoi diagram corresponds to a set of forming points which
constitutes the Delaunay triangulation. Adding a new forming point will
inevitably result in a modification of the Voronoi diagram and the De-
launay triangulation. The process of constructing a new Voronoi diagram
and Delaunay triangulation after the insertion of a new node is frequently
used in automatic mesh generation and is illustrated here in the two di-
mensional setting shown in Figure 10.18 [ZTZ].

Let the new forming point n be inserted in the Delaunay triangula-
tion shown in Figure 10.18a. It falls into the circumcircles of Delaunay
triangles afg, abf and bef , therefore violating property 3. This causes
the removal of the three Voronoi vertices which are the centers of the cir-
cumcircles and their corresponding Delaunay triangles, as illustrated in
Figure 10.18b. The new Delaunay triangulation is constructed by linking
the new forming point n and its contiguous forming points that form a
face of the neighboring triangle followed by the construction of the new
Voronoi diagram as shown in Figure 10.18c.

As we have indicated previously, the process used in the last example
is applicable to three dimensions.

10.4.4 3D mesh generation with the Delaunay method

The crucial issues in the practical application of the Delaunay method
for mesh generation are how Delaunay triangulation can be formed effec-
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Fig. 10.18 (a) Insertion of new forming point n into Delaunay triangulation. (b)
Removal of Delaunay triangles, deleted Voronoi vertices are not shown. (c) New
Delaunay triangulation and Voronoi diagram

tively [Ba,Bo,CFF,GHS,SS,Wat,We], how to generate the points that will
be inserted in the triangulation [MW,Re,WH] and how to preserve the
boundary of a region when the forming points are from the boundary of
a concave region [GHS,We2,WH].

Indeed these problems are more relevant for 3D mesh generation. In the
following lines we summarize a procedure for 3D mesh generation using
the Voronoi method:

a) Input the triangular surface mesh and derive the topological data of
the surface mesh such as edges of surface elements and node-element
connections. Figure 10.19a shows the surface mesh of a simple 3D ob-
ject.

b) Build on convex hull that contains all the mesh points. An eight node
convex hull is shown in Figure 10.19a.

c) Perform a Delaunay triangulation using nodes of the surface mesh to
form tetrahedra. Figure 10.18b shows a Delaunay triangulation of the
surface nodes.
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Fig. 10.19 Generation of a mesh of tetrahedra around a polyhedral object with the
Delaunay method. (a) Convex hull and surface mesh. (b) Delaunay triangulation
of surface nodes. (c) Final Delaunay mesh
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d) Create interior points following a specified element size distribution,
then perform Delaunay triangulation to form tetrahedra. Details of an
automatic node generation algorithm and a 3D Delaunay triangulation
can be found in [Bo,Wat,ZTZ].

e) Recover any missing edges and triangular faces of the surface mesh
to ensure that the input surface triangulation is preserved after the
volume triangulation. A surface mesh recovery method is described in
Chapter 8 of [ZTZ].

f) Identify and remove all the tetrahedra outside the domain of interest
to give the final 3D mesh (Figure 10.19c).

Figure 10.20 shows another example of the generation of a 3D tetrahe-
dral mesh around a mechanical part with the Delaunay method. Details
of this 3D mesh generation algorithm can be found in [WH,ZTZ].

Mesh quality enhancement is crucial in 3D mesh generation using ei-
ther the Delaunay method or the advancing front method. Poorly shaped
elements (typically called slivers) can be obtained using the Delaunay
technique, therefore rendering the 3D mesh unusable for practical appli-
cations. Mesh quality can be improved by node addition or elimination, or
by mesh smoothing similarly as for 2D problems. We note that the stan-
dard Laplacian smoothing can not be applied directly to a tetrahedral
mesh as it reduces the quality of the mesh. The smoothing procedure here
is typically based in moving a node incrementally and iteratively towards
each of its connecting nodes until it reaches a position that increases the
quality of the worst adjacent element. A description of 3D mesh quality
enhancement procedures can be found in [PGH, LJ, LZG].

The Delaunay method and the advancing front method produce very
similar meshes in many cases (Figure 10.21). Indeed the application of one
or other method very much depends on the robustness and efficiency of
the computer implementation. Parallel processing may be key in the future
development of these methods for generation and adaptive refinement of
large meshes involving millions of 3D elements in affordable times.

10.5 VISUALIZATION OF NUMERICAL RESULTS

The graphical representation of the numerical results resulting from the
finite element computation is mandatory for practical purposes. Typical
results to be displayed are the mesh deformation, the displacement vector
of the nodes, the isolines or the contour fill plots of individual components
of the nodal displacement vector, the strain and the stress vectors and the
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Fig. 10.20 Generation of a tetrahedral mesh around a mechanical part with the
Delaunay method. (a) Convex hull and surface mesh. (b) Delaunay triangulation
of surface nodes. (c) Final Delaunay mesh. (d) Detail of 3D mesh near the part
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Fig. 10.21 Distribution of tetrahedral elements on the basis of the minimum dihe-
dral angle on two meshes generated with the advancing front (a) and the Delaunay
(b) method. Note the similarity of the two meshes
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Fig. 10.22 Examples of visualization of FEM results for different structures. Cour-
tesy of Compass Ingenieŕıa y Sistemas S.A. (www.compassis.com)

principal stresses. Figures 10.22 and 10.23 show examples of visualization
of results of structural analysis with the FEM.

Stresses and strains can be plotted using directly the values computed
at the element Gauss points. Alternatively the smoothed nodal values of
stresses and strains can be used (Section 9.8).

The graphical visualization of the finite element results is a complex
task which requires deep knowledge of computer graphics. A review of the
most popular techniques for the visualization of FEM results can be found
in [SS2].

FEM developers and users can make use of the visualization facili-
ties implemented in the GiD pre/postprocessing software available from
Internet [GiD] (see also Appendix D).

10.6 CONCLUDING REMARKS
Some hundred years after Descartes times, the need for controlling the
geometrical description of objects in order to solve practical problems is



382 Generation of analysis data and visualization of numerical results

 

Fig. 10.23 Results of the FEM analysis of Tarazona Cathedral (Spain). Colours in-
dicate displacement and stress contours under self-weight [RCMR+,RGAA,Ro2]

as important as in ancient times. The size of the problems has changed, our
knowledge of geometry, mathematics and computation has increased, the
available computer resources grow every day, but the need to link physical
objects with geometrical models represented by mathematical equations
has remained the same over the years. The transformation of these mod-
els into data for the finite element analysis and the graphic representa-
tion of the numerical results are nowadays the key challenges for solving
many problems of interest using the FEM. The attempt to solve these
problems has motivated much work for the development of new mathe-
matical methods, innovative and efficient algorithms and, of course, pre
and postprocessing codes facilitating the activity of academics, scientists
and engineers interested in computations, as well as in teaching the new
analysis procedures to the next generation of students. The motivation
which inspired the work of Descartes: the rational knowledge of the world
with the help of geometry and mathematics, has guided much of this work
and will continue to do so in the future.
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LEARNING TO PROGRAM THE FEM
WITH MATLAB AND GID

written by Francisco Zárate1

11.1 INTRODUCTION

As for any other numerical method, the application of the FEM is linked to
the programming language and software tools chosen. Historically the first
programming language for practical use of the FEM was FORTRAN. Since
then many routines, algorithms and programs associated to the method
have been programmed in this language. With the development of compu-
ters new languages have appeared, each one with capabilities and specific
tools for diverse fields of application. The common objective is to simplify
the coding of the algorithms and to optimize the computer resources.

Although FORTRAN continues being a language of reference for the
FEM, the new languages and programming tools allow simplifications in
the coding work. At the same time specific libraries can be used that
optimize the memory and computer resources. This is a key feature of
MATLAB that besides being a research tool, it allows us to write codes
that it can be interpreted at the time of execution. From an optimal pro-
gramming point of view, interpretive languages are quite slow. However,
MATLAB allows us to make use of all the implemented matrix routines
for optimizing the calculations up to the point to compete efficiently with
other compiled languages.

MATLAB is a software code designed to work with matrices, facilita-
ting the matrix algebra operations from the numerical and storage points
of view, while providing also a simple and easy way to handle complex
routines.

1 Dr. F. Zárate can be contacted at zarate@cimne.upc.edu
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Having an efficient analysis code is not the only requirement to work
with the FEM. It is necessary to rely on a suitable interface to prepare the
analysis data, to generate meshes adapted to the kind of problem to be
solved and to display the results so that their interpretation is clear and
simple. MATLAB is very efficient in the treatment of matrices but quite
poor in graphical capacities. An ideal complement to MATLAB is the
pre/postprocessor program GiD (www.gidhome.com and Appendix D).

GiD is a tool designed to treat any geometry via CAD and to easily
assign to it the data needed for FE computations, i.e. material properties,
boundary conditions, loads, etc. Different efforts, such as the discretization
and data writing levels in a pre-defined format become a transparent task
for the user with GiD.

Data processing by means of GiD is also a simple task. The easy vi-
sualization of the analysis data and the numerical results allows one con-
centrating in their interpretation.

MAT-fem has been written thinking on the close interaction of GiD
with MATLAB for FEM analysis. GiD allows manipulating geometries
and discretizations, writing the input data files required by MATLAB.
The calculation program is executed in MATLAB without losing any of
the MATLAB advantages. Finally GiD gathers the output data files for
graphical visualization and interpretation.

This scheme allows us understanding the development and application
of a FEM program in detail, following step by step each one of the code
lines if desired, and making it possible to solve examples that by their
dimensions would fall outside the capabilities of any program with educa-
tional aims.

In the following sections the MAT-fem program is described in some
detail. The description starts with the input data file instructions, auto-
matically generated by GiD, and it follows with the information to under-
stand the operations within MAT-fem.

Finally, the user interface implemented in GiD is described by means
of an example of application.

11.2 MAT-fem

MAT-fem is a top-down execution program. The program flow chart is
shown in Figure 11.1. The input data module is implemented in the same
file were the data is defined, as described in the next section.
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Fig. 11.1 MAT-fem flow chart

We consider that all elements have the same material properties so
the constitutive matrix is evaluated outside the loop over the elements
within which the element stiffness matrix and the body force vector are
evaluated.

To save memory the element stiffness matrix and the equivalent nodal
force vector are assembled as they are evaluated for each element.

Outside the element loop the equivalent nodal force vector is updated
with the nodal point forces and the distributed loads acting along a side.

Once the unknown DOFs are found, the program evaluates the nodal
reactions at the prescribed nodes and the smoothed stresses at the nodes.
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The final step is the writing of the numerical results to visualize them in
GiD.

Because the aim of MAT-fem is to show how a FEM code works just
two elements are implemented. The 3-noded triangular element for which
the stiffness matrix is programmed in an explicit form, and the 4-noded
quadrilateral element for which the stiffness matrix is computed by means
of numerical integration.

11.3 DATA FILES

Before executing MAT-fem it is necessary to feed it with information on
the nodal coordinates, the element discretization, the boundary condi-
tions, the material properties and the loading. In the following, the input
data file is described in order to become familiar with the programming
style and the variables used. As previously mentioned, MATLAB is an
interpreter code and we will use this property to define the input data.
This means that the input data file is in fact a subroutine of the program
in where the values corresponding to the problem are assigned directly to
the variables.

This avoids having to define a special reading syntax for the program
and the need to implement an I/O interface.

The input data file uses MATLAB syntax. The program variables are
defined directly in that file. The name of the file will take the MATLAB
extension .m.

Inside the data file we distinguish three groups of variables: those as-
sociated to the material properties, those defining the topology of the
problem and those defining the boundary conditions. With the intention
of simplifying the code, an isotropic linear elastic material for the whole
domain is used. Hence the material data appears only once in the data
file.

Figure 11.2 shows the variables associated to the material data: pstrs
indicates a plane stress (pstrs = 1) or plane strain (pstrs =0) problem.
young contains the Young modulus and poiss the Poisson’s ratio. thick
and denss define the thickness of the domain and the density of the ma-
terial, respectively. For a plane strain problem the thickness value is the
unity, as usual.

It is important to note that the program is free of data validation
mechanisms. Hence we will not check up aspects such the Poisson’s ratio
rank (0 <= poiss < 0.5) and others. The reason is that these kind of
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% 
% Material Properties 
% 
 pstrs  = 1; 
 young  = 1000.0; 
 poiss  = 0.2; 
 thick  = 0.1; 
 denss  = 1.0; 

Fig. 11.2 Input data file. Definition of material properties

% 
% Coordinates 
% 
global coordinates 
coordinates = [ 
  0.00 , 0.00; 
  0.50 , 0.00; 
 
  2.00 , 1.00; 
  2.50 , 1.00  ]; 
% 
% Elements 
% 
global elements 
elements = [ 
    1,   2,   7 ; 
    2,   3,   8 ; 
 
   17,  16,  11 ; 
   18,  17,  12 ]; 

Fig. 11.3 Input data file: topology definition

details, although they are important in practice, would hide the core of
the FEM algorithm.

The variable group that describes the problem topology is defined
with the attribute of a global variable to be accessible within the code
by any subroutine. Figure 11.3 shows the definition of the coordinates
and the nodal connectivities for each element by means of the variables
coordinates and elements.

coordinates is a matrix with as many rows as nodes in the mesh
and columns as the number of dimensions of the problem (i.e. 2 for a 2D
problem). This variable lists the coordinates for all the nodes in the mesh.
The number of any node corresponds to the position that its coordinates
have in the coordinates matrix, i.e. node number 25 has the position 25
in coordinates.

Matrix elements defines the number of elements and their nodal con-
nectivities. Each element has as many rows as number of elements in the
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% 
% Fixed Nodes 
% 
fixnodes = [ 
    1, 1, 0.0 ; 
    1, 2, 0.0 ; 
 
   13, 1, 0.0 ; 
   13, 2, 0.0 ]; 
% 
% Point loads 
% 
pointload = [ 
              6, 2, -1.0 ; 
 
             18, 2, -1.0 ]; 
% 
% Side loads 
% 
sideload = [ 
             11,12, 2.0, 3.0; 
 
             14,15, 2.0, 3.0 ]; 

Fig. 11.4 Input data file: Boundary conditions definition

mesh and columns as number of nodes (nelem × nnode). Three-noded tri-
angular elements have three columns in elements while 4-noded quadri-
lateral elements have four. The number of an element corresponds with
the row number where its nodes are stored in elements.

The last group of variables defines the boundary conditions of the pro-
blem, as shown in Figure 11.4.

The fixnodes matrix defines the DOFs prescribed for the particular
problem to be solved. fixnodes is a matrix where the number of rows
corresponds to the number of prescribed DOFs and the number of columns
describes in the following order: the prescribed node number, the fixed
DOF code (1 if the node is fixed in the x direction and 2 if it is fixed in the y
direction) and the prescribed DOF value. In this way if a node is prescribed
in both directions two lines are necessary to define this condition.

The pointload matrix is used to define nodal point loads. As for the
previous variables, this is a matrix where the number of rows is the num-
ber of point loads acting on the structure and each of the three columns
describes the number of the loaded node, the direction in which the load
acts and the magnitude of the load. Point loads are defined in the global
system of coordinates. If there are no point loads, pointload is defined
as an empty matrix by means of the command pointload = [];

Finally, sideload contains the information for uniformly distributed
loads acting on the element sides. sideload is a matrix with as many rows
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%% MAT-fem 
% 
% Clear memory and variables. 
  clear 
 
  file_name = input('Enter the file name :','s'); 
 
  tic;                   % Start clock 
  ttim = 0;              % Initialize time counter 
  eval (file_name);      % Read input file 
 
% Find basic dimensions 
  npnod  = size(coordinates,1);        % Number of nodes 
  nndof  = 2*npnod;                    % Number of total DOF 
  nelem  = size(elements,1);           % Number of elements 
  nnode  = size(elements,2);           % Number of nodes per element 
  neleq  = nnode*2;                    % Number of DOFs per element 
 
  ttim = timing('Time needed to read the input file',ttim);  
 

Fig. 11.5 Program initialization and data reading

as the number of loaded element sides. The first two columns define the
nodes on the loaded side and columns three and four list the values of the
distributed load by unit length in directions x and y, respectively. If no
uniform loads act sideload is defined as an empty matrix by means of
the command sideload = [];

The name of the data file is up to the user; nevertheless, the extension
must be .m so that MATLAB can recognize it.

11.4 START

MAT-fem begins making all variables equal to zero with the clear com-
mand. Next it asks the user the name of the input data file that he/she
will use (the .m extension in not included in the filename). Figure 11.5
shows the first lines of the code corresponding to the variables boot as
well as the clock set up, which stores the total time of execution in ttim.

Data reading, as previously said, is a direct variable allocation task in
the program. From the data matrices it is possible to extract the basic
dimensions of the problem, such as the number of nodal points, npnod,
which corresponds to the number of lines in the coordinates matrix. The
number of total DOFs of the problem, nndof, will be twice the number
of nodes (2*npnod). nelem is the number of elements and is equal to the
number of lines in the elements matrix, whereas the number of nodes for
each element nnode is the number of columns in elements. In this way
triangular elements are identified if the number of columns in elements
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% Dimension the global matrices. 
  StifMat = sparse ( nndof , nndof );  % The global stiffness matrix 
  force   = sparse ( nndof , 1 );      % The global equivalent nodal force vector 
 
%  Material properties (Constant over the domain). 
  dmat = constt(young,poiss,pstrs); 

Fig. 11.6 Initialization of the global stiffness matrix and the equivalent nodal force
vector

is three, whereas the number of columns will be four for quadrilateral
elements.

The total number of equations per element, neleq, is the number of
element nodes nnode multiplied by the number of DOFs for each node,
i.e. two for 2D problems.

Note that these variables are defined in the data structure, which sim-
plifies the code interpretation.

Throughout the program the timing routine is used to calculate the
run time between two statements in the code. In this way the user can
check the program sections that require higher computational effort. Inside
timing the tic and toc MATLAB commands are used.

11.5 STIFFNESS MATRIX AND EQUIVALENT NODAL FORCE
VECTOR FOR SELF-WEIGHT

11.5.1 Generalities

The code lines shown in Figure 11.6 define the global stiffness matrix
and the equivalent nodal force vector as a sparse matrix and vector,
respectively. MAT-fem uses sparse matrices to optimize the memory using
MATLAB tools. In this manner and without additional effort, MAT-fem
makes use of very powerful algorithms without losing its simplicity.

As the program’s main purpose is to demonstrating the implementa-
tion of the FEM, some simplifications are made like using a single material
for the whole domain. Consequently, the constitutive matrix does not vary
between adjacent elements and it is evaluated before initiating the com-
putation of the element stiffness matrix.

The subroutine constt makes use of the Young modulus, the Poisson’s
ratio and a flag that allows us to distinguish between a plane stress and
a plane strain problem to form the constitutive matrix which is stored in
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function D = constt (young,poiss,pstrs) 
 
%  Plane Stress 
   if (pstrs==1) 
       aux1 = young/(1-poiss^2); 
       aux2 = poiss*aux1; 
       aux3 = young/2/(1+poiss); 
%  Plane Strain 
   else 
       aux1 = young*(1-poiss)/(1+poiss)/(1-2*poiss); 
       aux2 = aux1*poiss/(1-poiss); 
       aux3 = young/2/(1+poiss); 
       thick= 1.0; 
  end 
    
   D = [aux1,aux2,0;aux2,aux1,0;0,0,aux3]; 

Fig. 11.7 Constitutive matrix definition

dmat as shown in Figure 11.6. In Figure 11.7 the subroutine constt shows
the explicit form of dmat for an isotropic linear elastic material.

MAT-fem recalculates the values for each variable instead of storing
them. The recalculation process is performed in a fast manner and does
not reduce significantly the program’s efficiency. This leaves more memory
for solving larger problems.

Figure 11.8 shows the element loop within which the stiffness matrix
and the equivalent nodal vector for self-weight are calculated and assem-
bled for each element. The loop begins recovering the geometrical proper-
ties for each element. Vector lnods stores the nodal connectivities for the
element and the coord matrix stores the coordinates for these nodes.

In the next step the element stiffness matrix is calculated. The sub-
routines TrStif and QdStif are called for triangular and quadrilateral
elements, respectively. The same subroutine evaluates the element stiff-
ness matrix and the equivalent nodal force vector for the element. The
use of the same integration quadrature allows this simplification. The cal-
culation of the element stiffness matrix for each one of the two elements
considered is detailed in the following section.

Before the assembly of the equations vector eqnum is defined. It contains
the global equations number for each one of the equations in the element
stiffness matrix. The number conversion is simple because two equations
correspond to each node (one for each DOF).

The equations assembly process is implemented by means of two loops
from 1 to neleq (number of equations for each element). In the first loop
the equivalent nodal force vector is assembled and in the second one the
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%  Element loop. 
  for ielem = 1 : nelem 
 
% Recover element properties 
    lnods = elements(ielem,:);                        % connectivity 
    coord(1:nnode,:) = coordinates(lnods(1:nnode),:); % coordinates 
 
% Evaluate the element stiffness matrix and the equivalent nodal force vector. 
    if (nnode == 3) 
      [ElemMat,ElemFor] = TrStif(coord,dmat ,thick,denss); % Triangle 
    else  
      [ElemMat,ElemFor] = QdStif(coord,dmat ,thick,denss); % Quadrilateral 
    end 
 
% Find the equation number list for the i-th element 
    eqnum = [];                                  % Clear the list 
    for i =1 : nnode                             % Node loop 
      eqnum = [eqnum,lnods(i)*2-1,lnods(i)*2];   % Build the equation  
    end                                          % Number list 
 
% Assemble the equivalent nodal force vector and the stiffness matrix for each 
element 
    for i = 1 : neleq 
      force(eqnum(i)) = force(eqnum(i)) + ElemFor(i); 
      for j = 1 : neleq 
         StifMat(eqnum(i),eqnum(j)) = StifMat(eqnum(i),eqnum(j)) + ... 
                                      ElemMat(i,j); 
      end 
    end 
 
  end  % End element loop 

Fig. 11.8 Evaluation and assembly of the stiffness matrix and the equivalent nodal
force vector

element stiffness matrix is assembled term by term. This scheme avoids
storing the element matrices temporarily.

11.5.2 Computation and assembly of K(e) and f (e) (self-weight) for
3-noded triangles and 4-noded quadrilaterals

The stiffness matrix for the 3-noded triangle is calculated in explicit form
while that for the 4-noded quadrilateral is calculated by numerical inte-
gration. Both routines require exactly the same input data and also return
the same variables: ElemMat for the stiffness matrix and ElemFor for the
equivalent nodal force vector.

The TrStif subroutine (called as a function) is defined for triangu-
lar elements as shown in Figure 11.9. Note that the Cartesian deriva-
tives of the linear shape functions are calculated directly. These deriva-
tives are constant over the element. In this way the strain matrix bmat is
built simply by placing each of the Cartesian derivatives (b(i)/area2 and
c(i)/area2) in the adequate position of the strain matrix (Eq.(4.39)).
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3-noded triangle: stiffness matrix and equivalent node force vector  
(self weight) 
 
function [M,F] = TrStif (nodes,dmat,thick,denss) 
 
  b(1) = nodes(2,2) - nodes(3,2);    % bi = yj - yk 
  b(2) = nodes(3,2) - nodes(1,2); 
  b(3) = nodes(1,2) - nodes(2,2); 
 
  c(1) = nodes(3,1) - nodes(2,1);    % ci = xk - xj 
  c(2) = nodes(1,1) - nodes(3,1); 
  c(3) = nodes(2,1) - nodes(1,1); 
 
  area2 = abs(b(1)*c(2) - b(2)*c(1)); 
  area = area2 / 2; 
 
  bmat = [b(1),  0 ,b(2),  0 ,b(3),  0 ;      % Matrix B 
            0 ,c(1),  0 ,c(2),  0 ,c(3); 
          c(1),b(1),c(2),b(2),c(3),b(3)]; 
 
  bmat = bmat / area2; 
 
  M = (transpose(bmat)*dmat*bmat)*area*thick;  % Element stiffness matrix 
 
  force = area*denss*thick/3; 
  F = [0,-force,0,-force,0,-force];  % Element equivalent nodal force vector 

Fig. 11.9 Stiffness matrix and equivalent nodal force vector for self-weight loading
for the 3-noded triangular element

The element stiffness matrix is calculated by the classic expression
BTDB dA and stored in matrix M. Here one of the fundamental advantages
of MATLAB is observed as the multiplication of matrices is performed by
means of a single instruction, eliminating the need for writing troublesome
loops.

The equivalent nodal force vector for self-weight loading is computed
and stored in vector F (Figure 11.9). As the gravity is defined in the
opposite direction of the y axis, this yields negative nodal forces in the y
direction.

Figure 11.10 shows the evaluation of the stiffness matrix for the quadri-
lateral element which is performed using numerical integration. Initially
the element shape functions and their natural derivatives are defined
(fform and deriv). This definition is made by means of an intrinsic func-
tion. This facility of MATLAB avoids the use of additional subroutines.

At this level also the Gauss point coordinate values (pospg) and their
weights (pespg) corresponding to the 2×2 integration rule are defined.
The loop over the Gauss points for computing the stiffness matrix and
the equivalent nodal load vector for the element are also shown in Figure
11.10.
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function [M,F] = QdStif ( nodes,dmat,thick,denss) 
 
   fform = @(s,t)[(1-s-t+s*t)/4,(1+s-t-s*t)/4,(1+s+t+s*t)/4,(1-s+t-s*t)/4]; 
   deriv = @(s,t)[(-1+t)/4,( 1-t)/4,( 1+t)/4,(-1-t)/4 ; 
                  (-1+s)/4,(-1-s)/4,( 1+s)/4,( 1-s)/4 ]; 
 
   pospg = [ -0.577350269189626E+00 , 0.577350269189626E+00 ]; 
   pespg = [  1.0E+00 , 1.0E+00]; 
   M = zeros(8,8); 
   fy = zeros(1,4); 
    
   for i=1 : 2 
      for j=1 : 2 
         lcffm = fform(pospg(i),pospg(j)) ;    % SF at gauss point 
         lcder = deriv(pospg(i),pospg(j)) ;    % SF Local derivatives 
         xjacm = lcder*nodes ;                 % Jacobian matrix 
         ctder = xjacm\lcder ;                 % SF Cartesian derivates 
         darea = det(xjacm)*pespg(i)*pespg(j)*thick; 
          
         bmat = []; 
         for inode = 1 : 4 
           bmat = [ bmat , [ctder(1,inode),            0 ; 
                                        0 ,ctder(2,inode); 
                           ctder(2,inode),ctder(1,inode) ] ] ; 
         end 
          
         M = M + (transpose(bmat)*dmat*bmat)*darea; 
          
         fy = fy + lcffm*denss*darea; 
          
      end 
   end 
   
   F = [ 0, -fy(1), 0, -fy(2), 0, -fy(3), 0, -fy(4)]; 

Fig. 11.10 Stiffness matrix and equivalent nodal force vector for the 4-noded
quadrilateral element

Once the variables are initialized two loops define the Gauss integra-
tion process. The lcffm vector contains the values of the shape functions
evaluated at the integration point i,j and the lcder matrix stores the
values for the natural derivatives of the shape functions at each integration
point. The Jacobian matrix (xcjacm) is evaluated by multiplication of the
lcder matrix by the coordinates of the element nodes. The values of the
Cartesian derivatives of the shape functions (ctder) at each integration
point are obtained by multiplying the inverse of the Jacobian matrix by
the natural derivatives of the shape functions computed at the integra-
tion point. The area differential (darea) is computed as the determinant
of the Jacobian matrix multiplied by the two weighting functions at the
integration point and the element thickness.

The strain matrix is obtained by placing the Cartesian derivates of the
shape functions in the matrix array bmat. The element stiffness matrix
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%  Add side forces to the force vector 
  for i = 1 : size(sideload,1) 
     x=coordinates(sideload(i,1),:)-coordinates(sideload(i,2),:); 
     l = sqrt(x*transpose(x));       % Finds the length of the side 
     ieqn = sideload(i,1)*2;         % Finds eq. number for the first node 
     force(ieqn-1) = force(ieqn-1) + l*sideload(i,3)/2;   % add x force  
     force(ieqn  ) = force(ieqn  ) + l*sideload(i,4)/2;   % add y force 
 
     ieqn = sideload(i,2)*2;         % Finds eq. number for the second node 
     force(ieqn-1) = force(ieqn-1) + l*sideload(i,3)/2;   % add x force  
     force(ieqn  ) = force(ieqn  ) + l*sideload(i,4)/2;   % add y force 
  end 

Fig. 11.11 Equivalent nodal force vector for a uniform distributed load acting on
the element sides

is obtained by integrating the standard BTDB expression. Numerical in-
tegration requires evaluating the sum of the product of BTDB and darea
calculated at all the Gauss points. This sum is stored in matrix M (Figu-
re 11.10).

The equivalent nodal force vector for the self-weight case requires inte-
grating over the element area the product of the shape functions and the
specific weight for the element. The vector is stored in the variable fy.

Finally the equivalent nodal force components are placed in the F vec-
tor, recalling that only the negative force component along the y axis
exists.

The routines shown in Figures 11.9 and 11.10 clearly demonstrate the
two alternatives for computing the element stiffness matrix using the ex-
plicit form (3-noded triangle) or by means of numerical integration (4-
noded quadrilateral).

11.6 EXTERNAL LOADS

Besides the self-weight load we consider uniformly distributed loads acting
on the element sides and nodal point loads.

As both the elements considered have linear shape functions, the cal-
culation of the nodal contribution for uniformly distributed side loads is
exactly the same for both cases. The evaluation is made in the main rou-
tine of the MAT-fem program after the assembly of the stiffness matrix.
The code is shown in Figure 11.11 where the loop over the number of loads
defined by sideload can be seen. The nodal contributions are the same
for each node (due the linear shape functions) and they are stored in the
force variable.



396 Learning to program the FEM with MATLAB and GID

%  Add point loads to the global equivalent nodal force vector 
  for i = 1 : size(pointload,1) 
    ieqn = (pointload(i,1)-1)*2 + pointload(i,2);       % Finds eq. number 
    force(ieqn) = force(ieqn) + pointload(i,3);         % add the force 
  end 

Fig. 11.12 Equivalent nodal force vector for point loads

%  Apply prescribed displacement conditions and adjust the right hand side. 
  u = sparse ( nndof, 1 ); 
  for i = 1 : size(fixnodes,1) 
    ieqn = (fixnodes(i,1)-1)*2 + fixnodes(i,2);  %Finds the equation number 
    u(ieqn) = fixnodes(i,3);                   %and store the solution in u 
    fix(i) = ieqn;                         % and mark the eq as a fix value 
  end 
  force = force - StifMat * u;  % adjust the rhs with the prescribed values 

Fig. 11.13 Updating of the equivalent nodal force vector due to the prescribed
DOFs

We recall that the loads are defined in the global coordinate system.
The calculation steps for nodal point loads are as simple as adding the

value of the point load acting at the node to the global equivalent nodal
force vector in the position corresponding to the adequate DOF of the
loaded node. A loop over the number of nodal point loads is implemented,
finding for each node the equation number associated to it and adding the
value of the point load to the force vector (Figure 11.12).

11.7 PRESCRIBED DISPLACEMENTS

Figure 11.13 shows the loop over the prescribed displacement DOFs and
how the values defined by the fixnodes matrix are assigned to the nodal
displacement vector u. Also the fix vector is defined to store the equation
numbers for the prescribed DOFs.

Finally the force vector is updated with the product of the StifMat
matrix and the u vector following the procedure described in Section 1.10.
Vector u at this moment contains the values of the prescribed DOFs only.

11.8 SOLUTION OF THE EQUATIONS SYSTEM

The strategy used in MAT-fem basically consists in solving the global
equation system without considering those DOFs whose values are known
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%  Compute the solution by solving StifMat * u = force for the  
%  remaining unknown values of u. 
  FreeNodes = setdiff ( 1:nndof, fix ); % Finds the free nodes list and 
                                        % solve for it. 
  u(FreeNodes) = StifMat(FreeNodes,FreeNodes) \ force(FreeNodes); 

Fig. 11.14 Solution of the equations system

%  Compute the reactions at the fixed nodes as a R = StifMat * u - F 
  reaction = sparse(nndof,1); 
  reaction(fix) = StifMat(fix,1:nndof) * u(1:nndof) - force(fix); 

Fig. 11.15 Computation of nodal reactions

(i.e. prescribed). The FreeNodes vector contains the list of the equations
to be solved (Figure 11.14).

The FreeNodes vector is used as a DOF index and allows us to write
the solution of the equations system in a simple way. MATLAB takes care
of choosing the most suitable algorithm to solve the system. The solution
step is totally transparent for the user. The routines implemented in the
MATLAB kernel nowadays compete in speed and memory optimization
with the best existing algorithms.

11.9 NODAL REACTIONS

The solution to the equations system is stored in the u vector containing
the nodal displacements (Figure 11.14). Nodal reactions are computed by
means of the expression: reaction = StifMat*u - force. Obviously the
value of the reactions at the prescribed nodes is not zero. In order to avoid
unnecessary calculations we use vector fix which contains the list of the
equations associated to the prescribed DOFs as shown in Figure 11.15.

11.10 STRESSES

11.10.1 Generalities

Once the nodal displacements have been found it is possible to evaluate the
stresses in the elements by means of the DBu expression. Since the strain
matrix B was previously computed at the integration points, the stresses
are also computed at these points which are also optimal for evaluation
of stresses (Section 6.7). The next step is to transfer the values of the
stresses from the integration points to the element nodes (Section 9.8).
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% Compute the stresses 
  Strnod = Stress(dmat,poiss,thick,pstrs,u); 

Fig. 11.16 Call for evaluating the nodal stresses

function S = Stress (dmat,poiss,thick,pstrs,u) 
 
%% Evaluates the stresses at the gauss points and smooth the values 
%         to the nodes. 
% 
  global coordinates; 
  global elements; 
  
  nelem  = size(elements,1);           % Number of elements 
  nnode  = size(elements,2);           % Number of nodes per element 
  npnod  = size(coordinates,1);        % Number of nodes 
 
  if (pstrs==1) 
      nstrs= 3;                        % Number of Strs. Sx Sy Txy 
  else 
      nstrs= 4;                        % Number of Strs. Sx Sy Sz Txy 
  end 
  nodstr = zeros(npnod,nstrs+1); 

Fig. 11.17 Variables boot for computation of stresses

Figure 11.16 shows the call for the subroutine for computing the nodal
stresses which are stored in the Strnod matrix.

11.10.2 Computation of the stresses at the nodes

The stress calculation in the elements requires the use of a specific sub-
routine, not only for the stress computation itself but also to project the
stresses from the integration points to the nodes.

The stress subroutine controls the program flow towards the element
routines. For the 3-noded triangular element the stresses are constant
and nodal extrapolation is trivial. This is not the case for the 4-noded
quadrilateral element where the stresses have a bilinear variation and the
stress extrapolation is performed using the element shape functions.

Figure 11.17 presents the initial part of the stress subroutine were
the input data are: the material constitutive matrix dmat, the Poisson’s
ratio poiss, the thickness thick, the flag for the problem type pstrs and
the nodal displacements u. Additionally the nodal coordinates and the
element connectivities will be used (defined as global variables). In order
to simplify the reading of the routine some variables are extracted like
nelem indicating the number of elements, nnode indicating the number of
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  for ielem = 1 : nelem 
 
% Recover element properties 
    lnods = elements(ielem,:); 
    coord(1:nnode,:) = coordinates(lnods(1:nnode),:); 
    eqnum = []; 
    for i =1 : nnode 
      eqnum = [eqnum,lnods(i)*2-1,lnods(i)*2]; 
    end 
    displ = u(eqnum); 
     

Fig. 11.18 Recovering the element coordinates and the nodal displacements

nodes per element and npnod defining the total number of nodes in the
mesh.

We recall the number of stresses to be computed for plain stress pro-
blems (σx, σy and τxy) and plane strain problems (σx, σy, σz and τxy)
were σz is a function of σx and σy.

The nodstr matrix is initialized to a null matrix to store the nodal
stresses. In the last column the number of elements that share a node are
stored. This is necessary for the nodal averaging of the stresses.

Similarly as for computing the stiffness matrix, the stress evaluation
requires a loop over the elements, recovering the element connectivities
(lnods), the coordinates for these nodes (coord) and the nodal displace-
ments displ, as shown in Figure 11.18.

The computation of the nodal stresses for the triangular element is
shown in Figure 11.19. Note that the B matrix is recalculated. The stresses
at the center of the element (a single Gauss point is used) are directly
computed by the DBu product.

Depending on the problem selected, the computed stresses are three for
plane stress and four for plane strain (with σz = −ν(σx + σy)) as shown
in the same figure.

The computation of the nodal stresses for the 4-noded quadrilateral
follows the direct nodal extrapolation procedure explained in Section 9.8.2.
The nodal value for each stress component σ is obtained by Eq.(9.61) as

σj =
IV∑

i=I

Ni(sj , tj)σi j = 1, 4 (11.1)

where σj is the value of the stress at the jth node (j is the local number
of the node), σi is the value of the stress component at each Gauss point
and the coordinates s and t range from 1/p to −1/p for the four element
nodes as shown in Figure 11.20 (see also Figure 9.16).
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function S = TrStrs (nodes,dmat,displ,poiss,thick,pstrs) 
 
  b(1) = nodes(2,2) - nodes(3,2); 
  b(2) = nodes(3,2) - nodes(1,2);   
  b(3) = nodes(1,2) - nodes(2,2); 
 
  c(1) = nodes(3,1) - nodes(2,1); 
  c(2) = nodes(1,1) - nodes(3,1); 
  c(3) = nodes(2,1) - nodes(1,1); 
 
  area2 = abs(b(1)*c(2) - b(2)*c(1)); 
  area = area2 / 2; 
 
  bmat = [b(1),  0 ,b(2),  0 ,b(3),  0 ; 
            0 ,c(1),  0 ,c(2),  0 ,c(3); 
          c(1),b(1),c(2),b(2),c(3),b(3)]; 
 
  se = (dmat*bmat*displ)/area2; 
%  Plane Stress 
  if (pstrs==1) 
       S = se ; 
%  Plane Strain 
   else                 
       S = [se(1),se(2),-poiss*(se(1)+se(2)),se(3)]; 
���

Fig. 11.19 Computation of stresses at the center of the element for the 3-noded
triangle

Fig. 11.20 Extrapolation of the Gauss point stresses to the nodes for a 4-noded
quadrilateral

Figure 11.21 shows the code for computing the nodal stresses for the 4-
noded quadrilateral. The stresses are computed first at the Gauss points
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function S = QdStif (nodes,dmat,displ,poiss,thick,pstrs) 
 
    fform = @(s,t)[(1-s-t+s*t)/4,(1+s-t-s*t)/4,(1+s+t+s*t)/4,(1-s+t-
s*t)/4]; 
    deriv = @(s,t)[(-1+t)/4,( 1-t)/4,( 1+t)/4,(-1-t)/4 ; 
                   (-1+s)/4,(-1-s)/4,( 1+s)/4,( 1-s)/4 ]; 
 
    pospg = [ -0.577350269189626E+00 , 0.577350269189626E+00 ]; 
    pespg = [  1.0E+00 , 1.0E+00]; 
 
    strsg = []; 
    extrap = []; 
    order = [ 1 , 4 ; 2 , 3 ]; % Align the Gauss points with the element 
corners 
     
    for i=1 : 2 
       for j=1 : 2 
          lcder = deriv(pospg(i),pospg(j)) ;    % SF Local derivatives 
          xjacm = lcder*nodes ;                 % Jacobian matrix 
          ctder = xjacm\lcder ;                 % SF Cartesian derivates 
           
          bmat = []; 
          for inode = 1 : 4 
            bmat = [ bmat , [ctder(1,inode),            0 ; 
                                         0 ,ctder(2,inode); 
                            ctder(2,inode),ctder(1,inode) ] ] ; 
          end 
           
          strsg(:,order(i,j)) = (dmat*bmat*displ) ; 
           
          a = 1/pospg(i); 
          b = 1/pospg(j); 
  
         extrap(order(i,j),:) = fform(a,b) ; 
       end 
    end 
    
    se = transpose(extrap*transpose(strsg)); 
%  Plane Sress 
  if (pstrs==1) 
       S = se ; 
%  Plane Strain 
   else                 
       S = [se(1,:) ; se(2,:) ; -poiss*(se(1,:)+se(2,:)) ; se(3,:)]; 
   end 

Fig. 11.21 Computation of nodal stresses for the 4-noded quadrilateral

using the B matrix and then they are extrapolated to the nodes using
Eq.(11.1).

Like for the triangular element case, the stresses are calculated for plain
stress or plane strain problems.

Figure 11.22 shows the general steps for computing the stresses at
the nodes in a mesh of 3-noded triangles and 4-noded quadrilaterals by
nodal averaging. For triangular elements the routine builds the ElemStr
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% Computation of stresses at the nodes. 
    if (nnode == 3) 
 
% Triangular element 
      ElemStr = TrStrs(coord,dmat,displ,poiss,thick,pstrs); 
 
      for j=1 : nstrs 
        nodstr(lnods,j) = nodstr(lnods,j) + ElemStr(j); 
      end 
      nodstr(lnods,nstrs+1) = nodstr(lnods,nstrs+1) + 1; 
 
    else  
% Quadrilateral element 
      ElemStr = QdStrs(coord,dmat,displ,poiss,thick,pstrs); 
 
      for j=1 : 4 
        for i = 1 : nstrs 
          nodstr(lnods(j),i) = nodstr(lnods(j),i) + ElemStr(i,j); 
        end 
      end 
      nodstr(lnods,nstrs+1) = nodstr(lnods,nstrs+1) + 1; 
    end 
  end 
% Find the mean stress value at the nodes 
 
  S = []; 
  for i = 1 : npnod 
   S = [S ; nodstr(i,1:nstrs)/nodstr(i,nstrs+1)]; 
  end 
 

Fig. 11.22 Computation of nodal stresses by nodal averaging

vector that contains the nodal stresses for the element. These values are
accumulated in nodstr were the last column is the number of elements
that share the node. This is needed in order to evaluate the nodal average
of the stresses in a final stage as shown in the last lines of Figure 11.22.

For quadrilateral elements ElemStr is a matrix that contains the
stresses at each one of the element nodes (computed as shown in Figure
11.21). Like in the previous case. The last column of ElemStr contains
the number of elements that share the node. Once the stresses at all the
element nodes have been calculated and accumulated in nodstr, a nodal
averaging is performed to compute a smoothed stress field at the nodes.

11.11 POSTPROCESSING STEP

Once the nodal displacements, the reactions and the stresses have been cal-
culated their values are transferred to the postprocessing files from where
GiD will be able to display them in graphical form. This is performed in
the subroutine ToGiD shown in Figure 11.23.
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% Graphic representation. 
  ToGiD (file_name,u,reaction,Strnod); 
 

Fig. 11.23 Call for the postprocessing step

During the program execution the total time used by the program
will appear in the MATLAB console as well as the time consumed in each
subroutine. The largest time consumption in the academic problems solved
with MAT-fem is invested in the calculation and assembly of the global
stiffness matrix, whereas the solution of the equations system represents
a small percentage of the consumed time. This is not typically the case
for the solution of larger problems for real size structures.

Once the program execution is finished, the variables are still recorded
inside MATLAB in order to experiment with the collection of internal
functions available.

11.12 GRAPHICAL USER INTERFACE

11.12.1 Preprocessing

In this section the Graphical User Interface (GUI) implemented in GiD
is described. In order to access the GUI is necessary to select from the
GiD’s DATA menu the module corresponding to MAT-fem in the option
Problem Type. When selected, the image shown in Figure 11.24 appears.

All the GiD capabilities are part of the MAT-fem module: geometry
generation, import and handling, as well as the GiD discretización tech-
niques provide MAT-fem with capacities difficult to surpass for an educa-
tional code.

There is plenty of information on GiD available in Internet. We recom-
mend visiting the GiD web site at www.gidhome.com. However, solving a
problem with MAT-fem is very simple once the geometry has been defined.
Just follow the icons of the MAT-fem graphical menu.

Figure 11.25 shows the graphical menu that appears when MAT-fem
is activated. The first button works to identify the geometrical elements
(point or lines) that have nodes with prescribed displacements. When
pressing on, an emergent window will appear to select the points or lines
where the displacements are prescribed (Figure 11.26) The check boxes
identify the prescribed directions. Also it is possible to assign a non-zero
value to the constraint.
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Fig. 11.24 MAT-fem GUI start up page

Fig. 11.25 MAT-fem graphical menu

Fig. 11.26 Fixed displacement conditions

The second button shown in Figure 11.25 is used for point loads allo-
cation. When selected, an emergent window (Figure 11.27a) allows intro-
ducing the point load value in the global coordinate system. Then it is
necessary to select the nodes were the load is applied.

The third button is associated to uniformly distributed loads along the
element sides and permits to assign this condition on geometry lines. The
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Fig. 11.27 Point load condition

Fig. 11.28 Material properties definition

emergent window (Figure 11.27b) allows introducing the value of the side
load per unit length referred to the global coordinate system.

The material properties are defined with the fourth button in Figure
11.25 which leads to the emergent window shown in Figure 11.28a. This
allows defining the material parameters like the Young modulus, the Pois-
son’s ratio, the density and the thickness. It is necessary to assign these
properties over the surfaces that define the domain. As mention earlier,
only one type of material is allowed in MAT-fem for the sake of simplicity.
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Fig. 11.29 Input data file definition

The general properties button (the fifth button in Figure 11.25) allows
to access the window shown in Figure 11.28b were the title of the problem
is defined as well as the problem type (plane stress or plane strain), the
self-weight load option and the units for the results.

Once the boundary conditions and the material properties have been
defined it is necessary to generate the mesh. The sixth button shown in
Figure 11.25 is used to create the mesh with the GiD toolbox facilities.

The data file writing is made when pressing the last button shown in
Figure 11.25. All the geometrical and material properties of the problem
as well as the boundary conditions and the loads are written on the data
file in the specific reading format for MAT-fem. Recall that the file name
needs the .m extension as shown in Figure 11.29.

11.12.2 Program execution

The problem calculation is performed with MATLAB. The execution does
not have other complications than knowing the directory where the output
file will be written. A good practice is to set this directory as the working
directory were the postprocessing file will be also written.

11.12.3 Postprocessing

Once the problem execution in MATLAB is concluded it is necessary to
return to GiD for the file postprocessing step in order to analyze the
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Fig. 11.30 Postprocessing file reading

Fig. 11.31 Iso values of the stress σx for a plane beam

results. The next step is therefore to open any of the generated files that
contain the extension *.flavia.msh or *.flavia.res.

The results visualization step is performed using the GiD graphical
possibilities which permit to visualize the results by means of iso-lines, cuts
and graphs. This facilitates the interpretation of the MAT-fem results.

Figure 11.31 shows an example showing the contours of the stress σx

in a deep beam clamped at its left end and loaded by a vertical point load
acting on its right end.
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Fig. 11.32 Circular ring under point load. NAFEMS IC6 test [HKD]

11.13 EXAMPLE

An example is presented to show the simplicity of using MAT-fem for
computing the displacements and stresses in a circular thick ring subjected
to two opposite point loads acting along a diametral line.

In the following the input data file of this simple example is described
in detail for quadrilateral elements. Also the convergence of the results is
presented using triangular and quadrilateral elements.

The example is the NAFEMS IC6 benchmark proposed in [HKD]. Fi-
gure 11.32 shows the geometry of the problem and the material properties.
The problem is solved under plain strain conditions. Only one quarter of
the ring is analyzed due to symmetry.

The ring is fixed at both ends (the normal displacement is zero). The
point load is applied at 45◦ in the center of the outer middle side. The
goal is to compute σx at point A in the lower fibre of the upper clamped
end (Figure 11.32). The exact value is σx = −53.2 MPa.

The problem definition for MAT-fem is done using the menu described
in the GUI section. The prescribed displacements, point loads, material
properties and boundary conditions are shown in Figures 11.33 and 11.34.

The finite element mesh and the input data files are created with the
last two buttons of the MAT-fem menu.
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Fig. 11.33 Boundary conditions and loads over the ring

Fig. 11.34 Definition of material parameters and problem type

The problem has been solved first with different structured meshes of
4-noded quadrilateral elements. Figure 11.35 shows the numbering of the
nodes and the elements for a mesh of 8 elements and 15 nodes. In the
same figure the input data file is presented.

The file contains all the information necessary for the analysis: the
nodal coordinates, the material properties, the coordinates, the element
connectivity, the boundary conditions, the point load and the uniform side
loads that are defined here by an empty matrix.

The program execution is performed with the MAT-fem command.
Figure 11.36 shows that the larger time consumption is in the stiffness
matrix assembly. This is due to the storage system where the internal
indices of the sparse matrix must be updated. The total running time for
this problem is about 0,15 seconds.
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%======================================================================= 
% MAT-fem 1.0  - MAT-fem is a learning tool for understanding  
%                the Finite Element Method with MATLAB and GiD 
%======================================================================= 
% PROBLEM TITLE = NAFEMS IC6  
%  Material Properties 
% 
  young =      210103000.00000 ; 
  poiss =              0.30000 ; 
  denss = 0.00 ; 
  pstrs =  0 ; 
  thick =  1 ; 
% 
% Coordinates 
% 
global coordinates 
coordinates = [ 
        11.00000   ,         0.00000  ; 
        10.50000   ,         0.00000  ; 
        10.00000   ,         0.00000  ; 
         9.23880   ,         3.82683  ; 
         9.70074   ,         4.01818  ; 
        10.16267   ,         4.20952  ; 
         7.07107   ,         7.07107  ; 
         7.42462   ,         7.42462  ; 
         7.77817   ,         7.77817  ; 
         3.82683   ,         9.23880  ; 
         4.01818   ,         9.70074  ; 
         4.20952   ,        10.16267  ; 
         0.00000   ,        10.00000  ; 
         0.00000   ,        10.50000  ; 
         0.00000   ,        11.00000  ] ;  
% 
% Elements 
% 
global elements 
elements = [ 
      2   ,      5   ,      4   ,      3   ;  
      1   ,      6   ,      5   ,      2   ;  
      5   ,      8   ,      7   ,      4   ;  
      6   ,      9   ,      8   ,      5   ;  
      8   ,     11   ,     10   ,      7   ;  
      9   ,     12   ,     11   ,      8   ;  
     11   ,     14   ,     13   ,     10   ;  
     12   ,     15   ,     14   ,     11   ] ;  
% 
% Fixed Nodes 
% 
fixnodes = [ 
      1  , 2 ,    0.00000  ; 
      2  , 2 ,    0.00000  ; 
      3  , 2 ,    0.00000  ; 
     13  , 1 ,    0.00000  ; 
     14  , 1 ,    0.00000  ; 
     15  , 1 ,    0.00000  ] ; 
% 
% Point loads 
% 
pointload = [ 
      9  , 1 , -7071067.81200  ; 
      9  , 2 , -7071067.81200  ] ; 
% 
% Side loads 
% 
sideload = [ ]; 

 

 
Fig. 11.35 Input data file for the circular thick ring problem
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Fig. 11.36 MATLAB console for running the circular ring problem

Fig. 11.37 Stiffness matrix profile

Some of the facilities given by MATLAB are shown in Figure 11.37
where the spy(StifMat) command allows to visualize the profile of the
global stiffness matrix. With the aid of other commands it is possible to
know the properties of this matrix, such as its rank, eigenvectors, deter-
minant, etc.

Figure 11.38 shows some of the meshes of 3-noded triangles and 4-
noded quadrilaterals used for the analysis. In Figure 11.39 the deformed
mesh is presented as well as the distribution of the σx stress inside the
ring for the simple mesh of 8 quadrilateral element.

For the coarse eight element mesh the σx stress at point A has a value
of -14.186 MPa, far from the reference solution. The solution however
converges to the target value as the number of elements (and DOFs) is
increased, as shown in Table 11.1 where the convergence of the vertical dis-
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Triangular meshes for a) 16 elements, b) 32 elements, c) 64 elements and d) 196 elements

Fig. 11.38 Different meshes for quadrilateral and triangular elements

Fig. 11.39 Deformed mesh and σx stress distribution

placement at point B and the σx stress at point A is presented for meshes
of 3-noded triangles and 4-noded quadrilaterals. A plot of the conver-
gence of (σx)A with the number of DOFs for the two elements considered
is shown in Figure 11.40.

Note that the convergence is slower for the triangular element, as ex-
pected (see Sections 4.5 and 5.7).

Quadrilateral meshes for a) 8 elements, b) 18 elements, c) 32 elements and d) 98 elements
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TRIANGLES QUADRILATERALS

Elem. Nodes DOF vA (σx)A Elem. Nodes DOF vA (σx)A

16 15 30 0.586 -7.88E+06 8 15 30 0.803 -1.41E+07
36 28 56 0.808 -9.84E+06 18 28 56 1.308 -2.14E+07
64 45 90 1.069 -1.25E+07 32 45 90 1.799 -2.75E+07

100 66 132 1.348 -1.56E+07 50 66 132 2.222 -3.27E+07
196 120 240 1.888 -2.21E+07 98 120 240 2.842 -4.00E+07
400 231 462 2.540 -3.05E+07 200 231 462 3.368 -4.58E+07

2500 1326 2652 3.733 -4.68E+07 800 861 1722 3.911 -5.15E+07
3600 1891 3782 3.848 -4.84E+07 1800 1891 3782 4.039 -5.26E+07
6400 3321 6642 3.972 -5.03E+07 3200 3321 6642 4.090 -5.30E+07

Table 11.1 Convergence of the vertical displacement and σx (Pa) at point A

Fig. 11.40 Convergence of σx at point A with the number of DOFs



APPENDIX A. MATRIX ALGEBRA

We present the basic concepts of matrix algebra needed for the study of
the book.

A.1 DEFINITION OF MATRIX

The linear relationship between a system of variables xi and bi

a11x1 + a12x2 + a13x3 + a14x4 = b1

a21x1 + a22x2 + a23x3 + a24x4 = b2

a31x1 + a32x2 + a33x3 + a34x4 = b3

(A.1)

can be written in abbreviated form as

Ax = b (A.2)

where

A =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34


 , x =





x1

x2

x3

x4





, b =





b1

b2

b3



 (A.3)

Eq.(A.1) contains the definition of matrix and the multiplication pro-
cess. Matrices are defined as sets of numbers organized in rows and
columns as in Eq.(A.3). Thus, matrix A has twelve elements organized
in three rows and four columns. A matrix of order m× n has m rows and
n columns.

A vector, or a column matrix, is a particular case of a matrix where all
numbers are grouped in a column (i.e. the matrix is of order m×1). Hence
x and b in Eq.(A.2) are vectors containing 4 and 3 elements, respectively.
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In the book we denote matrices by bold capital letters and vectors by bold
lower case letters.

A row matrix of order n is a matrix containing a single row and n
columns. Hence

cT = [c11, c12, · · · , cin] (A.4a)

where cT is the “transpose” of vector c

c =





c11

c12
...

cin





(A.4b)

A.1.1 Transpose of a matrix

The transpose of a matrix A of order (m × n) (denoted by AT ) has the
rows equal to the columns of the original matrix. Thus

AT =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · · ...

am1 am2 · · · amn




T

=




a11 a21 · · · am1

a12 a22 · · · am2

...
... · · · ...

a1n a2n · · · amn


 (A.5)

A.1.2 Square matrix

A matrix is square if it has as many rows as columns. The square matrix
of order 3 is

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 (A.6)

As an example, the stiffness matrix of an element or of the whole
structure is always a square matrix.

A.1.3 Symmetric and antisymmetric matrix

A matrix is symmetric if is square and

aij = aji (A.7)
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Example

A =




a11 a12 a13

a12 a22 a23

a13 a23 a33




The transpose of a symmetric matrix coincides with itself. Hence

AT = A (A.8)

As an example, the stiffness matrix of an element (or of the structure)
is always square and symmetric.

A matrix is antisymmetric if it is square and its elements satisfy the
conditions

aii = 0 and aij = −aji (A.9)

A.1.4 Null matrix

A null matrix has all its elements equal to zero, i.e. aij = 0 for i =
1, 2, · · · ,m and j = 1, 2, · · · , n.

A.1.5 Diagonal matrix

It is a square matrix which elements satisfy

aij = 0 for i 6= j
aij 6= 0 for i = j

(A.10)

A.1.6 Identity matrix

It is a diagonal matrix with aij = 1 for i = 1, 2, · · · , n. In the book it is
represented as I. The unit matrix of order 3× 3 is

I =




1 0 0
0 1 0
0 0 1


 (A.11)

A.1.7 Triangular matrix

It is a square matrix which elements satisfy the conditions

aij = 0 for i > j (A.12a)

or
aji 6= 0 for j > i (A.12b)
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A.2 OPERATION WITH MATRICES

A.2.1 Multiplication of matrices

Let us assume that a relationship similar to (A.1) exists for a set of vari-
ables x′i and b′i as

a11x
′
1 + a12x

′
2 + a13x

′
3 + a14x

′
4 = b′1

a21x
′
1 + a22x

′
2 + a23x

′
3 + a24x

′
4 = b′2

a31x
′
1 + a32x

′
2 + a33x

′
3 + a34x

′
4 = b′3

(A.13)

We can therefore write

AX = B (A.14)

where

X =




x1 x′1
x2 x′2
x3 x′3
x4 x′4


 , B =




b1 b′1
b2 b′2
b3 b′3
b4 b′4


 (A.15)

which implies grouping expressions (A.1) and (A.13) as




a11x1 + · · ·+ a14x4 , a11x
′
1 + · · ·+ a11x

′
4

a21x1 + · · ·+ a24x4 , a21x
′
1 + · · ·+ a24x

′
4

a31x1 + · · ·+ a34x4 , a31x
′
1 + · · ·+ a34x

′
4


 =




b1 b′1
b2 b′2
b4 b′3


 (A.16)

Expression (A.14) defines the multiplication of matrices and it obvi-
ously has a meaning only if the number of columns of A is equal to the
number of rows of X.

More generally we can define the multiplication of a matrix A of order
n ×m by a matrix X of order m × r, as a new matrix B of order n × r
which elements are obtained as

bij =
m∑

k=1

aikxkj
i = 1, 2, · · · , n
j = 1, 2, · · · , r

(A.17)

The multiplication of matrices is not commutative, this means that

AB 6= BA (A.18)

The following rules are however satisfied.



418 Appendix A. Matrix algebra

A.2.2 Associative rule

(AB)C = A(BC) = ABC (A.19)

A.2.3 Distributive rule

A(B + C) = AB + AC (A.20)

The product of the identity matrix by a matrix A gives the same matrix
A, i.e.

IA = AI = A (A.21)

The product of the transpose of two matrices AT and BT is

ATBT = (BA)T (A.22a)

Obviously it is also satisfied

(AB)T = BTAT (A.22b)

A.2.4 Product of a matrix by a vector and a scalar

As shown in Eq.(A.2), the product of matrix A of order n×m and a vector
x of order m× 1 is a vector b of order n× 1 defined by the expression

b = Ax con bi =
m∑

k=1

aikxk , i = 1, 2, · · · ,m (A.23)

The product of a matrix A by a scalar α is another matrix B obtained
by multiplying all the elements of A by α, i.e.

B = αA con bij = αaij (A.24)

We finally note that the product of a file vector and a column vector
of equal order is a scalar number. Thus

aTb = [a11, a12, · · · , a1n]




b11

b12

...
b1n


 = a11b11 + a12b12 + · · ·+ a1nb1n = c (A.25)
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This type of product appears frequently in the book. An example is
the expression of the virtual work principle.

A.2.5 Sum and subtraction of matrices

The sum or subtraction of two matrices A and B is a new matrix C which
terms are the sum or the subtraction of matrices A and B. Thus

A + B = C with cij = aij + bij

A−B = C with cij = aij − bij
(A.26)

Obviously, these operations are only possible if A and B are of equal
order.

A.2.6 Partition of a matrix

A matrix can be partitioned into submatrices. For example we can write

A =




a11 a12 a13 | a14 · · · a15

a21 a22 a23 | a24 · · · a25
— — — — — — — —
a31 a32 a33 | a34 · · · a35


 =

[
A11 | A12
— — — — —
A21 | A22

]
(A.27)

where matrices A11,A12,A21 and A22 have the elements contained within
each of the four partitions marked in Eq.(A.27). Thus

A11 =
[
a11 a12 a13

a21 a22 a23

]
etc. (A.28)

The partition of a matrix is useful in order to simplify to product of
two matrices. Thus the product of matrix A of Eq.(A.27) and matrix B
defined as

B =




b11 b12

b21 b22

b31 b32
— — —
b41 b42

b51 b52




=
[
B1

B2

]
(A.29)

can be obtained by

AB =
[
A11 A12

A21 A22

] [
B1

B2

]
=

[
A11B1 + A12B2

A21B1 + A22B2

]
(A.30)
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The identity in expression (A.30) requires that the products AijBj are
computable, which means that the number of columns of Aij is equal to
the number of rows of Bj . If this condition holds then the product of A
and B can be computed in terms of the submatrices AijBi, treating each
one of them as an scalar number.

A.2.7 Determinant of a matrix

The determinant of a square matrix A of order n is denoted as |A| and
can be obtained by [Ral]

|A| =
n∑

i=1

(−1)i+1a1i|A1i| (A.31)

where A1i is the matrix of order (n − 1)(n − 1) resulting from the eli-
mination of the first row and the ith column of A. The computation of
the determinants |A1i| can be performed by the recusive application of
Eq.(A.31).

A.2.8 Inverse of a matrix

If A is a square matrix in Eq.(A.2), i.e. the number of unknowns xi is
equal to that of the number of simultaneous equations, then it is possible
to compute the elements of the unknown vector x in terms of those of
vector b. This operation can be written as

x = A−1b (A.32)

where A−1 is the inverse of the square matrix A. Clearly A−1 is also a
square matrix and has the same order as A.

The obvious property of the inverse matrix is

AA−1 = A−1A = I (A.33)

where I is the identity matrix.
The necessary conditions for the existence of the inverse of a square

matrix of A is that its determinant has a non zero value.
Eq.(A.32) can be obtained by multiplying both sides of Eq.(A.2) by

A−1. This gives
A−1Ax = A−1b (A.34)

and since A−1A = I, then x = A−1b (as Ix = x).
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A =

[
a11 a12

a21 a22

]

A−1 =
1

|A|
[

a22 −a12

−a21 a11

]

con |A| = a11a22 − a12a21

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33




A−1 =
1

|A|




A11 A12 A13

A21 A22 A23

A31 A32 A33




A11 = a22a33 − a32a23 A23 = −(a11a23 − a21a13)
A12 = −(a12a33 − a13a32) A31 = a21a32 − a31a22)
A13 = a12a23 − a22a13 A32 = −(a11a32 − a31a12)
A21 = −(a21a33 − a31a23) A33 = a11a22 − a12a21

A22 = a11a33 − a13a31

|A| = a11a22a33 + a13a21a32 + a31a12a23 − a31a22a13 − a33a12a21 − a11a23a32

Box A.1 Inverse of 2× 2 and 3× 3 matrices

Other properties of the inverse matrix are

• the inverse of a product of two matrices is

(AB)−1 = B−1A−1 (A.35)

• the inverse of a symmetric matrix is also symmetric
• the inverse of the transpose of a matrix is the transpose of the inverse

of the original matrix, i.e.

[
AT

]−1
=

[
A−1

]T (A.36)

The general expression of the inverse of a matrix is quite elaborate
and it is not given here. On the other hand the solution of systems of
equations such as that of Eq.(A.2) is performed in practice by numerical
techniques such as the Gauss elimination method, which does not require
the knowledge of the inverse matrix (Appendix B). Box A.1 shows the
expression for the inverse of the Jacobian matrix for 2D and 3D solid
elements. The readers interested in the general expression for the inverse
of a matrix are addressed to references [Ral,PFTW].
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A.3 EIGENVALUES AND EIGENVECTORS OF A MATRIX

An eigenvalue of a symmetric matrix A of size n× n is a scalar λi which
allows the solution of

(A− λi I) φφφi = 0 and det | A− λi I |= 0 (A.37)

where φi is called the eigenvector.
There are, of course, n such eigenvalues λi to each of which corresponds

an eigenvector φi. Such vectors can be shown to be orthonormal and we
write

φT
i φj = δij =

{
1 for i = j
0 for i 6= j

.

The full set of eigenvalues and eigenvectors can be written as

Λ =




λ1 0
. . .

0 λn


 Φ =

[
φ1, . . . φn

]
.

Using these the matrix A may be written in its spectral form by noting
from the orthonormality conditions on the eigenvectors that

Φ−1 = ΦT

then from
AΦ = ΦΛ

it follows immediately that

A = ΦΛ ΦT . (A.38)

The condition number of A which is related to the equation solution
roundoff error (Section 3.13.4) is defined as

cond(A) =
| λmax |
| λmin | . (A.39)



APPENDIX B. SOLUTION OF
SIMULTANEOUS LINEAR
ALGEBRAIC EQUATIONS

A finite element problem leads to a large set of simultaneous linear alge-
braic equations whose solution provides the nodal and element parameters
in the formulation. In this section methods to solve the simultaneous alge-
braic equations are summarized. We consider both direct methods where
an a priori calculation of the number of numerical operations can be made,
and indirect or iterative methods where no such estimate can be made.

B.1 DIRECT SOLUTION

Consider first the general problem of direct solution of a set of algebraic
equations given by

Ka = f (B.1)

where K is a square coefficient matrix, a is a vector of unknown parameters
and f is a vector of known values. The reader can associate these with the
quantities described previously: namely, the stiffness matrix, the nodal
displacement unknowns and the equivalent nodal forces.

In the discussion to follow it is assumed that the coefficient matrix K
has properties such that row and/or column interchanges are unnecessary
to achieve an accurate solution. This is true in cases where K is symmetric
positive (or negative) definite. Pivoting may or may not be required with
unsymmetric, or indefinite, conditions which can occur when the finite
element formulation is based on some weighted residual methods [ZTZ].
In these cases some checks or modifications may be necessary to ensure
that the equations can be solved accurately.

Let us assume that the coefficient matrix can be written as the product
of a lower triangular matrix with unit diagonals and an upper triangular
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matrix. Accordingly,
K = LU (B.2)

where

L =




1 0 · · · 0
L21 1 · · · 0
...

. . .
...

Ln1 Ln2 · · · 1


 (B.3)

and

U =




U11 U12 · · · U1n

0 U22 · · · U2n
...

. . .
...

0 0 · · · Unn


 (B.4)

This form is called a triangular decomposition of K. The solution to the
equations can now be obtained by solving the pair of equations

Ly = f (B.5)

and
Ua = y (B.6)

where y is introduced to facilitate the separation [Ral,ZTZ].
The reader can easily observe that the solution to these equations is

trivial. In terms of the individual equations the solution is given by

y1 = f1

yi = fi −
i−1∑

j=1

Lijyj i = 2, 3, . . . , n
(B.7)

and
an =

yn

Unn

ai =
1

Uii


yi −

n∑

j=i+1

Uijaj


 i = n− 1, n− 2, · · · , 1

(B.8)

Equation (B.7) is commonly called forward elimination, while Eq. (B.8)
is called back substitution.

The problem remains to construct the triangular decomposition of the
coefficient matrix. This step is accomplished using variations on the Gaus-
sian elimination method. In practice, the operations necessary for the tri-
angular decomposition are performed directly in the coefficient array. De-
tails on this step may be found in [ZTZ].
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Once the triangular decomposition of the coefficient matrix is com-
puted, several solutions for different right-hand sides f can be obtained
using Eqs (B.7) and (B.8). This process is often called a resolution since it
is not necessary to recompute the L and U arrays. For large size coefficient
matrices the triangular decomposition step is very costly while a resolution
is relatively cheap; consequently, a resolution capability is necessary in any
finite element solution system using a direct method [Dem,Str,Tay,WR].

The above discussion considered the general case of equation solving
(without row or column interchanges). In coefficient matrices resulting
from a finite element formulation some special properties are usually
present. Typically the coefficient matrix is symmetric (Kij = Kji) and
it is easy to verify in this case that

Uij = LjiUii (B.9)

For this problem class it is not necessary to store the entire coefficient
matrix. It is sufficient to store only the coefficients above (or below) the
principal diagonal and the diagonal coefficients. This reduces by almost
half the required storage for the coefficient array as well as the computa-
tional effort to compute the triangular decomposition.

The required storage can be further reduced by storing only those
rows and columns which lie within the region of non-zero entries of the
coefficient array. Structural problems formulated by the finite element
method normally have a symmetric profile which further simplifies the
storage form [Tay].

In 2D formulations, problems with many thousand DOFs can be solved
on today’s personal computers. In 3D however problems are restricted to
several hundred thousand equations. To solve larger size problems there
are several options. The first is to retain only part of the coefficient matrix
in the main array with the rest saved on backing store (e.g., hard disk).
This can be quite easily achieved but the size of problem is not greatly
increased due to the very large solve times required and the rapid growth
in the size of the profile-stored coefficient matrix in 3D problems.

A second option is to use sparse solution schemes. These lead to sig-
nificant program complexity over the procedure discussed above but can
lead to significant savings in storage demands and computing time – spe-
cially for 3D problems [Dem,Ral,WR]. Nevertheless, capacity limitations
in terms of storage and computing time are again rapidly encountered and
alternatives are needed.
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B.2 ITERATIVE SOLUTION

One of the main problems in direct solution methods is that terms within
the stiffness matrix which are zero from a finite element formulation be-
come non-zero during the triangular decomposition step. This leads to a
very large increase in the number of non-zero terms in the factored coef-
ficient matrix. To be more specific consider the case of a 3D linear elastic
problem solved using 8-noded isoparametric hexahedron elements. In a
regular mesh each interior node is associated with 26 other nodes, thus,
the equation of such a node has 81 non-zero coefficients – three for each
of the 27 associated nodes. On the other hand, for a rectangular block of
elements with n nodes on each of the sides the typical column height in
the stiffness matrix is approximately proportional to n2 and the number
of equations to n3.

Typically, the demands for a direct solution grow very rapidly (storage
is approximately proportional to n5) while at the same time the demands
for storing the non-zero terms in the stiffness matrix grows proportional
to the number of equations (i.e., proportional to n3 for the block).

Iterative solution methods use the terms in the stiffness matrix directly
and thus for large problems have the potential to be very efficient for large
3D problems. On the other hand, iterative methods require the resolution
of a set of equations until the residual of the linear equations, given by

ΨΨΨ (i) = f −Ka(i) (B.10)

becomes less than a specified tolerance [Dem,Ral,WR]. Index i in Eq.(B.10)
denotes the number of iterations in the iterative solution process.

In order to be effective the number of iterations i to achieve a solution
must be quite small – generally no larger than a few hundred. Otherwise,
excessive solution costs will result. The subject of iterative solution for
general finite element problems remains a topic of intense research. There
are some impressive results available for the case where K is symme-
tric positive (or negative) definite; however, those for other classes (e.g.,
unsymmetric or indefinite forms) are generally not efficient enough for
reliable use of iterative methods in the solution of general problems.

For the symmetric positive definite case methods based on a precondi-
tioned conjugate gradient method are particularly effective [Dem,Ral,ZTZ].
The convergence of the method depends on the condition number of the
matrix K (Eq.(A.39)) – the larger the condition number, the slower the
convergence [Ral].
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Usually, the condition number for an elasticity problem modelled by
the finite element method is too large to achieve rapid convergence and
a preconditioned conjugate gradient method (PCG) is used. A symmetric
form of preconditioned system for Eq.(B.1) is written as

Kpz = PKPTz = Pf (B.11)

where P is the preconditioner matrix, and

PTz = a (B.12)

The convergence of the PCG algorithm depends on the condition num-
ber of Kp. The problem remains to construct a preconditioner matrix
which adequately reduces the condition number of Kp. The simplest op-
tion is to use the diagonal of K. More efficient schemes are discussed in
[Dem,Fe2,Ral,Str].



APPENDIX C. COMPUTATION OF
THE ELEMENT REFINEMENT
PARAMETER FOR AN EQUAL
DISTRIBUTION OF THE ERROR
AND ACCOUNTING FOR THE
CHANGE IN THE NUMBER OF
ELEMENTS

The discretization error in energy norm is (Section 9.9.1)

‖eσ‖ =

[
N∑

e=1

(
‖eσ‖(e)

)2
]1/2

(C.1)

where N is the actual number of elements in the mesh where the error is
computed and

‖eσ‖(e) =
∫

Ω(e)

[e(e)
σ ]TD−1e(e)

σ dΩ (C.2)

with
e(e)

σ = σσσs − σ̄σσ (C.3)

where σσσs are the smoothed stresses (Section (9.8)).
We will assume that the optimal mesh satisfies the criterion of equal

distribution of the global error.
Let us call Nopt the number of elements in the optimal refined mesh,

‖ep
σ‖ the prescribed (global) discretization error for the optimal mesh and

‖ēσ‖uni the uniform value of the discretization error for each element of
the optimal mesh. Then

‖ep
σ‖ = N

1/2
opt ‖eσ‖uni (C.4)

Typically ‖ep
σ‖ ≡ η‖U‖ where is user defined global error parameter

and ‖U‖ is the strain energy norm (see Eq.(9.78)).



C Appendix C. Computation of the element refinement parameter for an equal distribution 429

The optimal number of elements can be estimated as

Nopt =
n∑

e=1

(
h(e)

h̄(e)

)d

(C.5)

where h(e) and h̄(e) are the actual and optimal element sizes, respectively
and d is the number of space dimensions of the problem (i.e. d = 2 for 2D
problems, etc.).

Clearly for a single element

‖eopt
σ ‖(e) =

(
h(e)

h̄(e)

)d/2

‖eσ‖uni (C.6)

where ‖eopt
σ ‖(e) is the error on the element e (belonging to the initial mesh)

after refinement. From (C.2) and (C.4)

‖ep
σ‖ = ‖eσ‖uni




N∑

e=1

(
h(e)

h̄(e)

)d



1/2

=

[
N∑

e=1

(
‖eopt

σ ‖(e)
)2

]1/2

(C.7)

The convergence ratio of the element error norm is (Eq.(9.90)) ‖eσ‖(e) =
O(hp)(Ω(e))1/2 ' O(hp+d/2). This gives

‖eopt
σ ‖(e)

‖eσ‖(e)
=

(
h̄(e)

h(e)

)p+d/2

(C.8)

Combining Eqs.(C.6) and (C.8) gives

‖eσ‖uni

‖eσ‖(e)
=

(
h̄(e)

h(e)

)p+d

(C.9)

and hence

h̄(e) = h(e)

(‖eσ‖uni

‖eσ‖(e)

) 1
p+d

(C.10)

From Eq.(C.7)

‖eσ‖uni = ‖ep
σ‖




N∑

e=1

(
h(e)

h̄(e)

)d


−1/2

= ‖ep
σ‖




N∑

e=1

(
‖eσ‖(e)

‖eσ‖uni

) d
p+d



−1/2

(C.11)
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Hence

‖eσ‖uni = ‖ep
σ‖

2(p+d)
2p+d

[
N∑

e=1

(
‖eσ‖(e)

) d
p+d

]− p+d
2p+d

(C.12)

Substituting (C.12) into (C.10) gives

h̄(e) =
h(e)

β(e)
(C.13)

with

β(e) = ‖ep
σ‖−

2
2p+d

(
‖eσ‖(e)

) 1
p+d

[
N∑

e=1

(
‖eσ‖(e)

) d
p+d

] 1
2p+d

(C.14)

Expression (C.14) can be written in terms of the global and local error
parameters. From Eqs.(9.77) and (9.89)

‖ep
σ‖ = η‖U‖ = ξ−1

g ‖eσ‖
‖eσ‖(e) = ξ̄(e)‖eσ‖N−1/2

(C.15)

Substituting (C.13) and (C.15) into (C.12) gives

β(e) = ξ
2

2p+d
g ‖eσ‖−

2
2p+d [ξ̄(e)]

1
p+d N

− 1
2(p+d)

[
N∑

e=1

[̄ξ(e)]
d

p+d ‖eσ‖
d

p+d N
− d

2(p+d)

] 1
2p+d

= ξ
2

2p+d
g ‖eσ‖−

d
(2p+d)(p+d) [ξ̄(e)]

1
p+d N− 1

2p+d ‖eσ‖
d

(2p+d)(p+d) N
− d

2(2p+d)(p+d)

[
N∑

e=1
[ξ̄(e)]

d
p+d

] 1
2p+d

= ξ
2

2p+d
g [ξ̄(e)]

1
p+d N− 1

2p+d

[
N∑

e=1

[ξ̄(e)]
d

p+d

] 1
2p+d

(C.16)
which coincides with Eq.(9.92). Accepting that ξ̄(e) is constant gives

β(e) = ξ
2

2p+d
g [ξ̄(e)]

1
p+d N− 1

2p+d N
1

2p+d [ξ̄(e)]
d

(2p+d)(p+d) = ξ
2

2p+d
g [ξ̄(e)]

2
2p+d = [ξ(e)]

2
2p+d

(C.17)
with

ξ(e) = ξg ξ̄
(e) (C.18)

Eq.(C.17) coincides with Eq.(9.93a).
Above derivation is based on the ideas presented in [Fu].
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D.1 THE GID PRE/POSTPROCESSING SYSTEM

Extensive research has been carried out in the last twenty years at the
International Center for Numerical Methods in Engineering (CIMNE,
www.cimne.com) in the development of advanced mathematical and nu-
merical methods and software tools for: (a) the adaptation of geometrical
models to the need of computer simulation codes, (b) the user-friendly
definition of analysis data for the numerical solution of problems in sci-
ence and engineering, (c) the interfacing of the analysis data with any
academic or commercial computer simulation code, and (d) the graphic
visualization of the results from the computation.

The outcome of this research has lead to software tools which were
progressively integrated over the years into an innovative computer system
named GiD (for Geometry Integration with Data) [GiD,OPSE]. GiD is
downloadable from www.gidhome.com.

GiD is a pre/postprocessing system which incorporates all the func-
tionalities for the user-friendly generation of finite element analysis data,
for the simple linking to any FEM code and for the fast visualization of
numerical results from finite element computations (Figure D.1).

A good pre/post processing system should invariably provide the ana-
lyst with a fast overview of the simulation data: geometry, material proper-
ties, boundary and loading conditions and numerical results at a glimpse,
thus allowing its integration in critical decision loops and systems.

Until GiD was created, research teams around the world were grouped
in the following categories: the ones that developed its own pre and post-
processing tools because the programs available on the market were expen-
sive and hard, if ever possible, to personalize, and the ones who developed
interfaces between its analysis programs and the existing professional pre
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Fig. D.1 From geometry to results with GiD. From above: Aerodynamic analysis
of a large telescope building [CMOS]. Aerodynamic and structural analysis of an
airplane [FO,FO2,REMFI]. Aerodynamic analysis of a racing car
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and postprocessors. And there is yet a third group: the undergraduate and
graduate students who want to learn about computer simulation methods
(such as FEM) but can not afford costly pre and postprocessing products.

For a research center such as CIMNE, employing some 180 scientists
working in the development of new numerical methods and software, there
was no such altruist philosophy, but the urgency to solve a practical need.

In any research centre involved in computer simulation, the develop-
ment of state of the art simulation techniques requires innovative data
management and visualization tools that generally are not available in
commercial codes until several years later. These techniques are easily in-
corporated into GiD, as a software product in constant evolution, which
can be customized by the user. The development of GiD is therefore feed
by the comments and suggestions from its users.

GiD has become nowadays an indispensable tool for the widespread
development and use of computer simulation codes in many research or-
ganizations and universities worldwide, as well as in industry. GiD has
also proven to be the ideal partner for software developers in academic
and industrial environments. A unique advantage of GiD is its capabi-
lity for providing the indispensable pre and postprocessing modules to
existing and emerging software codes in order to create integrated com-
puter simulation packages in a simple and user-friendly manner. GiD has
been successfully applied to a wide range of problems in science and engi-
neering including civil, mechanical, aerospace, naval, telecommunications,
bio-medical and food processing engineering, architecture, computational
physics and chemistry, computational biology and others.

D.1.1 General features of GiD

The key features of GiD can be summarized as being: universal, adap-
tive, user friendly, product generator and a tool for engineering practice,
teaching and research.

UniversalUniversal. GiD is ideal for generating all the information (structured and
unstructured meshes, boundary and loading conditions, material parame-
ters, visualisation of results, computational parameters etc.) required for
the analysis of any problem in science and engineering using numerical
methods. Typical problems that can be successfully tackled with GiD in-
clude most situations in solid and structural mechanics, fluid dynamics,
electromagnetics, heat transfer, geomechanics, etc. using finite element, fi-
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Fig. D.2 GiD can be linked to any numerical simulation code

nite volume, boundary element, finite difference or point-based (meshless)
numerical procedures (Figure D.2).

AdaptiveAdaptive. GiD is extremely easy to adapt to any numerical simulation
code. In fact, GiD can be customized by the user to read and write data
in an unlimited number of formats. GiD’s input and output formats can be
made compatible with any existing in-house software. The different menus
for data input and results visualisation can be tailored to the specific needs
of the user.

User friendlyUser friendly. The development of GiD has been focused on the needs of
the user and on the simplicity, speed, effectiveness and accuracy he or she
demands at input data preparation and results visualisation levels. GiD
can read and write data accordingly to the specific needs of each individual
code. The GiD environment can therefore support an unlimited number
of numerical simulation codes.

Product generatorProduct generator. GiD is the ideal complement to any software code in
order to create a new integrated computer simulation package with full
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pre and postprocessing facilities. An example of this facility is the diffe-
rent simulation packages developed by industrial partners containing “GiD
inside” (see www.gidhome.com).

AA tooltool forfor engineeringengineering practicepractice. GiD is the ideal tool for interfacing all
analysis codes typically used in a company. This enables the unification of
the pre and postprocessing tasks in a common environment (GiD) while
the analysis can be performed in different software codes launched from
GiD (Figure D.2).

A uniqueA unique tooltool forfor teachingteaching andand researchresearch. GiD allows research and under-
graduate students to introduce themselves in the solution of practical
problems of any complexity level. This indeed simplifies enormously the
teaching process in computational science and engineering in a simple
manner (Figure D.3). The capability of using GiD via internet facilitates
the work for multi-site organizations, as well as the academic and research
tasks (Figure D.4).

The many features of GiD help students to enter into the fascinating
world of computer simulation beyond the simple academic examples.

Fig. D.3 GiD is a multidisciplinary tool
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Fig. D.4 GiD allows computing via internet

D.1.2 More features of GiD

GiD is easy to adapt to any calculation code, including those developed
by students, research centers and indeed commercial codes like NE NAS-
TRAN, BEASY, TDYN, RAM-SERIES, STAMPACK, VULCAN, etc [see
www.gidhome.com for details]. The adaptation reaches so far that the user
can run the code from within GiD. This code can be executed locally or
remotely in a manner fully transparent to the users. The transferred data
are protected by an encryption system. This remote data export feature
allows running multiple problems on several machines in a distributed
mode using grid computing facilities via intranet or internet [Figure D.4].
This utility is essential for optimisation processes involving massive large
scale computations. The user can also group several frequent used actions
into macros, which can be executed just by clicking a button.

GiD implements the idea of a C++/OpenGL kernel together with a
Tcl/Tk GUI interface which has become a standard for the customization
of FEM interfaces.

One of the advantages of GiD is that it runs on a simple PC. Therefore
it does not need a sophisticated computer and can exploit the continuous
advances in computer technology, such as GPU’s (Graphical Processing
Units) which incorporate the latest technology in parallelism into graphi-
cal cards.

Special effort has been invested in making of GiD a multi-platform
tool. As such it runs on PCs equipped with Linux, Microsoft Windows,
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SGI, Sun Hp workstations, each machine running UNIX and OpenGL.
GiD is also available on a PDA, so that, for instance, a user can verify the
computational results remotely.

The use of innovative tools and macros allows the translation of GiD
in several languages (english, spanish, japanese, french and russian are
already available). The advanced customization tools have made of GiD a
‘product generator’. Moreover, the ‘look and feel’ of GiD can be changed
to create, when linked to an analysis code, a completely new software
package.

This approach for developing GiD via OpenGL, a C++ kernel and
a Tcl/Tk GUI interface has allowed GiD to be cross-platform. GiD now
runs on every UNIX/Linux + OpenGL machines like Sun, SGI, Macintosh,
Hewlett Packard, PC’s and on Microsoft Windows.

D.1.3 The handling of geometrical data with GiD

One of the main problems in industry is to prepare/adapt the geometrical
models from the design room to the simulation stage. This process needs
specific tools to sew (join) surfaces and simplify the model.

Among other tools, GiD incorporates several facilities for geometri-
cal model discretizations using NURBS technology (Chapter 10). Its own
NURBS modelling library is the basis of the internal powerful geometri-
cal modelling engine which enables GiD to communicate with the most
widespread CAD and CAE programs on the market. This allows GiD to
be used in state of the art research fields of numerical simulation dealing
with standard mesh-based method (finite element, finite volume, finite
differences, etc.), as well as with meshless methods, particle methods, dis-
crete element methods and others.

Within its own NURBS library, GiD uses a hierarchical model of enti-
ties, so that a volume is a closed group of surfaces, and each surface is a
closed group of lines. This hierarchy is automatically reflected in the mesh
used for the numerical simulation.

The internal library also allows the intersection, trimming and joining
of surfaces, and all other necessary geometrical management operations
needed for the preparation of analysis data. User-friendly connectivity
with geometrical data emanating from existing CAD system is an essential
feature of GiD. GiD can import and export in the most common used
geometry interchange formats (IGES, ACIS, VDA, Parasolid, DXF,STL,
VRML, Shapefile, etc.).
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Generally the designers of new products, like cars, airplanes or ships
do not work thinking on the subsequent simulation step. Therefore the
geometrical models created in CAD systems are too detailed and too fo-
cused on visualization rather than in a correct spatial specification. Several
hours (days or months in some cases) must be spent to prepare the geo-
metrical models for the simulation to allow a proper generation of meshes.
GiD incorporates several innovative tools that simplify and automate the
geometry preparation process and, if the process fails, the problematic
geometrical areas can be easily and graphically localized and corrected.

GiD also incorporates the latest technology in mesh generation based
on state of the art advancing front and Delaunay meshing algorithms
(Chapter 10). Specially focused on automatic mesh generation, GiD in-
cludes several element types, detailed size control and innovative methods
to create adaptive structured and unstructured meshes, also incorporating
possibilities for element re-generation over a previous mesh (Figures D.5
and D.6).

The research on mesh edition tools includes the control of coherent
orientations, mesh smoothing to optimise an specific objective function,
edge collapse, split, mapping over a geometry, element check and correc-
tion determinant check and tools to display the mesh quality graphically.

D.1.4 Generation of analysis data and interfacing with computer
simulation codes via GiD

The adaptation of GiD to a code in order to create the data for a computer
simulation run, is as easy as just filling a couple of text files. Specific
algorithms have been developed to create automatically the boundary
and loading conditions, material properties and problem data windows,
so that they can be directly applied to the geometry. When meshing,
these properties are automatically transferred to the mesh used for the
computations. A template file provides the format to write the data to
be exported to the simulation code. With this approach the data inside
GiD can be exported to an infinite number of data input formats, just by
providing the appropriate template.

This adaptation is called problem type. This concept allows creating the
input data for almost every existent simulation code and the future ones.
Typically each research student involved in code development can generate
a problem type for his/her own code in a matter of few hours (sometimes
minutes). Although widely used by code developers and research organi-
zations, the problem type concept is not restricted to research codes. It
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Fig. D.5 Meshes generated with GiD. Courtesy of Quantech ATZ S.A.
(www.quantech.es), Compass Ingenieŕıa y Sistemas S.A. (www.compassis.com)
and the GiD team at CIMNE

can also be implemented into commercial codes, such as the NASTRAN
problemtype which interfaces GiD with the commercial code NASTRAN.
Some of the GiD “problemtypes” are available on-line and can be down-
loaded directly from www.gidhome.com.



440 Appendix D

Fig. D.5 Cont. Meshes generated with GiD for analysis of casting and sheet stam-
ping processes and aerodynamic and structural analysis of helicopter and air-
plane. Courtesy of Quantech ATZ S.A. (www.quantech.es), Compass Ingenieŕıa
y Sistemas S.A. (www.compassis.com) and the GiD team at CIMNE

The customisation tools in GiD go even further by allowing the creation
of new windows and macros. These options allow the user to automatically
create the geometry in a parametric form.

The appearance (look and feel) of GiD can also be completely changed
to create the image for a new computer simulation package.
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The success of this customisation approach is demonstrated by the big
acceptance of GiD around the world: from South America to Japan, many
universities, research centres and small, medium and large size companies
use GiD as their favourite pre/postprocessing system for a wide number
of applications.

GiD is a code in constant evolution and is a bridge between the re-
search and the industrial world. The GiD RTD team is happy to receive
comments, suggestions and feedback from the users and tries to incorpo-
rate these into the future versions of GiD. The GiD team can be reached
via www.gidhome.com.

D.1.5 Visualization of numerical results with GiD

Easy to use, easy to see. Special emphasis has been put in making GiD
practical for educational purposes. Students interested in computer simu-
lation using GiD do not need to read voluminous handbooks, nor have
to click on several windows to visualize their results. The visualization
options available in GiD like contour fill, animations, isosurfaces, stream
lines, etc. are one or two clicks away. Much research work was invested so
that the visualization facilities do not decrease the performance of GiD
when handling huge amount of data (over 5 Gigabytes), like the ones
which are typical in industrial applications such as aerospace or metal
forming processes. Powerful options to customize the visualization step
with specific tools suitable for each problem have been developed. GiD
incorporates state of the art 3D techniques to visualize complex results,
like gluing a texture to a surface so that a deformed metal sheet can be
compared with experimental data obtained in laboratory.

Other specific visualization facilities developed within GiD include: de-
formed shapes, vector and contour plots, beam diagrams and isosurfaces
from static and dynamic analyses; animated sequences; graphs of quan-
tities along geometrical lines; particle line flow diagrams; user-definable
interfaces; import of neutral files containing results produced by other
codes; customisable menus, etc. (Figure D.6).

D.1.6 Who can benefit from using GiD?

GiD is an extremely useful tool for:

• Engineering companies wanting to unify their input data and results
visualisation environment for a variety of numerical simulation codes.
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Fig. D.6 Visualization of FEM results with GiD of ship hydrodynamic analysis and
aerodynamic analysis of sailing boat, telescope building, aircraft, racing car and
motorbike. Images in first three rows taken from [OGI,CMOS,FO,FO2,REMFI]
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Fig. D.6 Cont. Visualization of FEM results with GiD for casting and sheet stamp-
ing process analyses. Courtesy of Quantech ATZ S.A. (www.quantech.es)

• Universities and RTD centers wishing to provide a multi-user envi-
ronment for pre/post processing allowing the development and appli-
cation of a diversity of software in computational science and engi-
neering by students and RTD staff. The availability of such a “per-
sonal” pre/postprocessing system will invariantly help universities and
research centres for the widespread use of numerical methods by un-
dergraduate and graduate students wanting to solve practical problems
using commercial or in-house software tools.

• Engineers and scientists wanting to have individual access from home or
the office to a powerful pre and post processing system for research and
applications of numerical simulation codes in either UNIX workstations
or the simplest PC. The possibility of e-work is becoming for many en-
gineers and scientists a habit. This invariably increases the need for new
powerful and economical distributed computing procedures (generally
via internet) for preparation of analysis data for complex geometries,
probably generated via CAD elsewhere, and for handling the analysis
results with support from visualisation tools for preparation of high
quality reports in written or electronic form. GiD is the ideal tool for
solving these problems.
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D.1.7 Which are the advantages of using GiD?

• Reduces time and cost associated with numerical analysis through high
performance data input and post processing in the simplest computer
environment.

• High speed, high quality meshing and data input definition reduces the
analysis time for complex geometries and large models.

• Direct use of CAD data combined with GiD geometric modelling facili-
ties reduces redundancy and costs associated with model development.

• Allows easy interface with in-house software codes and CAD systems.
• Reduces learning time and improves efficiency with an intuitive graph-

ical interface.

D.1.8 Why is it worth using GiD?

The GiD system incorporate a comprehensive collection of methods and
software tools which solve the three main bottlenecks for the practical
solution of complex problems using computer simulation: the user friendly
preparation of analysis data, the easy link to any computer simulation code
and the graphic visualisation of numerical results using either windows,
Linux and Unix in a single computer, in an intranet or via internet.

This will help to change the order of magnitude of problems in sci-
ence and engineering to be solved from office and/or home using com-
puter simulation tools either in PC’s, or supercomputers with the help
fast communication networking tools and internet.

D.1.9 How can one learn to use GiD?

A number of tutorials with the aim of introducing newcomers to the use
of GiD are available in the GiD web page (www.gidhome.com). Questions
on the use of GiD can also be addressed to the GiD developing team via
the GiD web page.

D.1.10 How can one access GiD?

GiD is freely downloadable from Internet (www.gidhome.com). An aca-
demic version of GiD suitable for research and university type projects
can be freely used for an unlimited period.

The professional version of GiD requires a permanent password which
can be purchased for the web page. It is the policy of GiD that passwords
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Fig. D.7 Version 9.0 of GiD available from www.gidhome.com

have an unlimited duration and have an affordable prize for individuals
and organizations. For details visit www.gidhome.com.

D.1.11 The GiD team

The GiD team is formed by the following group of researchers and engi-
neers from CIMNE. In alphabetic order:

Abel Coll
Enrique Escolano
Sergio González
Adrià Melendo
Anna Monros
Miguel Pasenau
Jorge Suit

External adviser: Dr. Ramón Ribó (Compass Ingenieŕıa y Sistemas,
S.A., www.compassis.com).

You are welcomed to contact the GiD team at gid@cimne.upc.edu and
www.gidhome.com.
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Hirsch, O.C. Zienkiewicz and E. Oñate (Eds.), pp. 135–142, Elsevier, 7–11
September 1992.
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[OB]. Private Communication, 1995.



452 References

[Ga] Gallagher, R.H., Finite Element Analysis Fundamentals. Prentice–Hall,
Englewood Cliffs, N.J., 1975.

[GB] George, P.L. and Borouchaki, H., Delaunay Triangulation and Meshing.
Application to Finite Elements. Editions Hermes, Paris, 1998.

[GBFL+] George, P.L., Borouchaki, H., Frey, P.J., Laug, P. and Saltel, E.,
Mesh Generation and Mesh Adaptivity. In Encyclopedia of Computational
Mechanics. Chapter 17, 1 Fundamentals, E. Stein, R. De Borst, J.R. Thomas
(Eds.), J. Wiley, 2004.

[Ge] George, P.L., Automatic mesh generation. Applications to the finite element
method. J. Wiley, 1991.

[GH] Geller, M. and Harbord, R., Moderate degree cubature formulas for 3D
tetrahedral finite element approximations. Communications in Applied Nu-
merical Methods, 7(6), 487–495, 1991.

[GH2] Gordon, W.J. and Hall, C.A., Construction of curvilinear co-ordinate
systems and application to mesh generation. Int. J. Num. Meth, Engrg., 3,
461–477, 1973.

[GHS] George, P.L., Hecht, F. and Saltel, E., Automatic mesh generator with
specified boundary. Comput. Meth. in Appl. Mech. Engrg, 92, 269–288, 1991.

[GiD] GiD. The personal pre and postprocessor. CIMNE, Barcelona, 2008,
www.gidhome.com.

[GS] George, P.L. and Seveno, E., The advancing-front mesh generation method
revisited. Int. J. Num. Meth, Engrg., 37, 3605–3619, 1994.

[HC] Hinton, E. and Cambell, J.S., Local and global smoothing of discontinous
element functions using a least square method. Int. J. Num. Meth. Engrg.,
8, 461–80, 1979.

[HCA] Huerta, A., Casteleiro, M. and Alonso, E., Non linear numerical analysis
of earth dam constructions, in Numerical Methods for non Linear Problems,
C. Taylor, E. Hinton, R. Owen y E. Oñate (Eds.), Pineridge Press, 1984.
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