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S
TO TEACHERS About This Book

tatistics is the science of data. Introduction to the Practice of Statistics (IPS) is
an introductory text based on this principle. We present methods of basic

statistics in a way that emphasizes working with data and mastering statistical
reasoning. IPS is elementary in mathematical level but conceptually rich in
statistical ideas. After completing a course based on our text, we would like
students to be able to think objectively about conclusions drawn from data and use
statistical methods in their own work.

In IPS we combine attention to basic statistical concepts with a comprehensive
presentation of the elementary statistical methods that students will find useful in
their work. IPS has been successful for several reasons:

1. IPS examines the nature of modern statistical practice at a level suitable for
beginners. We focus on the production and analysis of data as well as the
traditional topics of probability and inference.

2. IPS has a logical overall progression, so data production and data analysis are a
major focus, while inference is treated as a tool that helps us draw conclusions
from data in an appropriate way.

3. IPS presents data analysis as more than a collection of techniques for exploring
data. We emphasize systematic ways of thinking about data. Simple principles
guide the analysis: always plot your data; look for overall patterns and
deviations from them; when looking at the overall pattern of a distribution for
one variable, consider shape, center, and spread; for relations between two
variables, consider form, direction, and strength; always ask whether a
relationship between variables is influenced by other variables lurking in the
background. We warn students about pitfalls in clear cautionary discussions.

4. IPS uses real examples to drive the exposition. Students learn the technique of
least-squares regression and how to interpret the regression slope. But they also
learn the conceptual ties between regression and correlation and the importance
of looking for influential observations.

5. IPS is aware of current developments both in statistical science and in teaching
statistics. Brief optional Beyond the Basics sections give quick overviews of
topics such as density estimation, scatterplot smoothers, data mining, nonlinear
regression, and meta-analysis. Chapter 16 gives an elementary introduction to
the bootstrap and other computer-intensive statistical methods.

The title of the book expresses our intent to introduce readers to statistics as it is
used in practice. Statistics in practice is concerned with drawing conclusions from
data. We focus on problem solving rather than on methods that may be useful in
specific settings.
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GAISE The College Report of the Guidelines for Assessment and Instruction in Statistics Education
(GAISE) Project (http://www.amstat.org/education/gaise/) was funded by the American Statistical
Association to make recommendations for how introductory statistics courses should be taught. This report
contains many interesting teaching suggestions and we strongly recommend that you read it. The
philosophy and approach of IPS closely reflect the GAISE recommendations. Let’s examine each of the
recommendations in the context of IPS.

1. Emphasize statistical literacy and develop statistical thinking. Through our
experiences as applied statisticians, we are very familiar with the components
that are needed for the appropriate use of statistical methods. We focus on
collecting and finding data, evaluating the quality of data, performing statistical
analyses, and drawing conclusions. In examples and exercises throughout the
text, we emphasize putting the analysis in the proper context and translating
numerical and graphical summaries into conclusions.

2. Use real data. Many of the examples and exercises in IPS include data that we
have obtained from collaborators or consulting clients. Other data sets have
come from research related to these activities. We have also used the Internet as
a data source, particularly for data related to social media and other topics of
interest to undergraduates. With our emphasis on real data, rather than artificial
data chosen to illustrate a calculation, we frequently encounter interesting issues
that we explore. These include outliers and nonlinear relationships. All data sets
are available from the text website.

3. Stress conceptual understanding rather than mere knowledge of
procedures. With the software available today, it is very easy for almost
anyone to apply a wide variety of statistical procedures, both simple and
complex, to a set of data. Without a firm grasp of the concepts, such
applications are frequently meaningless. By using the methods that we present
on real sets of data, we believe that students will gain an excellent
understanding of these concepts. Our emphasis is on the input (questions of
interest, collecting or finding data, examining data) and the output (conclusions)
for a statistical analysis. Formulas are given only where they will provide some
insight into concepts.

4. Foster active learning in the classroom. As we mentioned above, we believe
that statistics is exciting as something to do rather than something to talk about.
Throughout the text we provide exercises in Use Your Knowledge sections that
ask the students to perform some relatively simple tasks that reinforce the
material just presented. Other exercises are particularly suited to being worked
and discussed within a classroom setting.

5. Use technology for developing concepts and analyzing data. Technology has
altered statistical practice in a fundamental way. In the past, some of the
calculations that we performed were particularly difficult and tedious. In other
words, they were not fun. Today, freed from the burden of computation by
software, we can concentrate our efforts on the big picture: what questions are
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we trying to address with a study and what can we conclude from our analysis?

6. Use assessments to improve and evaluate student learning. Our goal for
students who complete a course based on IPS is that they are able to design and
carry out a statistical study for a project in their capstone course or other setting.
Our exercises are oriented toward this goal. Many ask about the design of a
statistical study and the collection of data. Others ask for a paragraph
summarizing the results of an analysis. This recommendation includes the use
of projects, oral presentations, article critiques, and written reports. We believe
that students using this text will be well prepared to undertake these kinds of
activities. Furthermore, we view these activities not only as assessments but
also as valuable tools for learning statistics.

Teaching Recommendations We have used IPS in courses taught to a variety of student
audiences. For general undergraduates from mixed disciplines, we recommend covering Chapters 1 to 8
and Chapters 9, 10, or 12. For a quantitatively strong audience—sophomores planning to major in actuarial
science or statistics—we recommend moving more quickly. Add Chapters 10 and 11 to the core material in
Chapters 1 to 8. In general, we recommend de-emphasizing the material on probability because these
students will take a probability course later in their program. For beginning graduate students in such fields
as education, family studies, and retailing, we recommend that the students read the entire text (Chapters
11 and 13 lightly), again with reduced emphasis on Chapter 4 and some parts of Chapter 5. In all cases,
beginning with data analysis and data production (Part I) helps students overcome their fear of statistics
and builds a sound base for studying inference. We believe that IPS can easily be adapted to a wide variety
of audiences.
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The Eighth Edition: What’s New?

• Text Organization Each section now begins with the phrase “When you
complete this section, you will be able to” followed by a bulleted list of behavioral
objectives that the students should be able to master. Exercises that focus on these
objectives appear at the beginning of the section exercises. The long introduction
to Chapter 1 has been replaced by a short introduction and a new section titled
“Data,” which gives an overview of the basic ideas on the key characteristics of a
set of data. The same approach has been taken with Chapters 2 and 3, which now
have new sections titled “Relationships” and “Sources of Data,” respectively. A
short introduction to the Poisson distribution has been added to Section 5.2.
Sections 9.1 and 9.2 have been combined with a more concise presentation of the
material on computation and models from Section 5.2 of the seventh edition. In
Chapter 16, the use of S-PLUS software has been replaced by R. Sections
previously marked as optional are no longer given this designation. We have
found that instructors make a variety of choices regarding what to include in their
courses. General guidelines for different types of students are given in the
Teaching Recommendations paragraph above.

• Design A new design incorporates colorful, revised figures throughout to aid the
students’ understanding of text material. Photographs related to chapter examples
and exercises make connections to real-life applications and provide a visual
context for topics. More figures with software output have been included.

• Exercises and Examples Over 50% of the exercises are new or revised. There
are more than 1700 exercises, a slight increase over the total in the seventh edition.
To maintain the attractiveness of the examples to students, we have replaced or
updated a large number of them. Over 35% of the 422 examples are new or
revised. A list of exercises and examples categorized by application area is
provided on the inside of the front cover.

In addition to the new eighth edition enhancements, IPS has retained the
successful pedagogical features from previous editions:

• Look Back At key points in the text, Look Back margin notes direct the reader to
the first explanation of a topic, providing page numbers for easy reference.

• Caution Warnings in the text, signaled by a caution icon, help students avoid
common errors and misconceptions.
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• Challenge Exercises More challenging exercises are signaled with an icon.
Challenge exercises are varied: some are mathematical, some require open-ended
investigation, and others require deeper thought about the basic concepts.

• Applets Applet icons are used throughout the text to signal where related
interactive statistical applets can be found on the IPS website.

• Use Your Knowledge Exercises We have found these to be a very useful
learning tool. Therefore, we have increased the number and variety of these
exercises. These exercises are listed, with page numbers, before the section-ending
exercises.

USE YOUR KNOWLEDGE
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MEDIA AND SUPPLEMENTS

W. H. Freeman’s new online homework system, LaunchPad, offers our quality
content curated and organized for easy assignability in a simple but powerful
interface. We’ve taken what we’ve learned from thousands of instructors and
hundreds of thousands of students to create a new generation of W. H.
Freeman/Macmillan technology.

Curated Units. Combining a curated collection of videos, homework sets,
tutorials, applets, and e-Book content, LaunchPad’s interactive units give you a
building block to use as is or as a starting point for your own learning units.
Thousands of exercises from the text can be assigned as online homework,
including many algorithmic exercises. An entire unit’s worth of work can be
assigned in seconds, drastically reducing the amount of time it takes for you to
have your course up and running.

Easily customizable. You can customize the LaunchPad Units by adding quizzes
and other activities from our vast wealth of resources. You can also add a
discussion board, a dropbox, and RSS feed, with a few clicks. LaunchPad allows
you to customize your students’ experience as much or as little as you like.

Useful analytics. The gradebook quickly and easily allows you to look up
performance metrics for classes, individual students, and individual assignments.

Intuitive interface and design. The student experience is simplified. Students’
navigation options and expectations are clearly laid out at all times, ensuring they
can never get lost in the system.

Assets integrated into LaunchPad include:
Interactive e-Book. Every LaunchPad e-Book comes with powerful study tools
for students, video and multimedia content, and easy customization for instructors.
Students can search, highlight, and bookmark, making it easier to study and access
key content. And teachers can ensure that their classes get just the book they want
to deliver: customize and rearrange chapters, add and share notes and discussions,
and link to quizzes, activities, and other resources.

LearningCurve provides students and instructors with powerful adaptive
quizzing, a game-like format, direct links to the e-Book, and instant feedback. The
quizzing system features questions tailored specifically to the text and adapts to
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students’ responses, providing material at different difficulty levels and topics
based on student performance.

SolutionMaster offers an easy-to-use web-based version of the instructor’s
solutions, allowing instructors to generate a solution file for any set of homework
exercises.

New Stepped Tutorials are centered on algorithmically generated quizzing with
step-by-step feedback to help students work their way toward the correct solution.
These new exercise tutorials (two to three per chapter) are easily assignable and
assessable.

Statistical Video Series consists of StatClips, StatClips Examples, and
Statistically Speaking “Snapshots.” View animated lecture videos, whiteboard
lessons, and documentary-style footage that illustrate key statistical concepts and
help students visualize statistics in real-world scenarios.

New Video Technology Manuals available for TI-83/84 calculators, Minitab,
Excel, JMP, SPSS, R, Rcmdr, and CrunchIT!® provide brief instructions for using
specific statistical software.

Updated StatTutor Tutorials offer multimedia tutorials that explore important
concepts and procedures in a presentation that combines video, audio, and
interactive features. The newly revised format includes built-in, assignable
assessments and a bright new interface.

Updated Statistical Applets give students hands-on opportunities to familiarize
themselves with important statistical concepts and procedures, in an interactive
setting that allows them to manipulate variables and see the results graphically.
Icons in the textbook indicate when an applet is available for the material being
covered.

CrunchIT!® is a web-based statistical program that allows users to perform all the
statistical operations and graphing needed for an introductory statistics course and
more. It saves users time by automatically loading data from IPS 8e, and it
provides the flexibility to edit and import additional data.

Stats@Work Simulations put students in the role of the statistical consultant,
helping them better understand statistics interactively within the context of real-life
scenarios.

EESEE Case Studies (Electronic Encyclopedia of Statistical Examples and
Exercises), developed by The Ohio State University Statistics Department, teach
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students to apply their statistical skills by exploring actual case studies using real
data.

Data files are available in ASCII, Excel, TI, Minitab, SPSS (an IBM Company),*
and JMP formats.

*SPSS was acquired by IBM in October 2009.

Student Solutions Manual provides solutions to the odd-numbered exercises in
the text. Available electronically within LaunchPad, as well as in print form.

Interactive Table Reader allows students to use statistical tables interactively to
seek the information they need.

Instructor’s Guide with Full Solutions includes teaching suggestions, chapter
comments, and detailed solutions to all exercises. Available electronically within
LaunchPad, as well as on the IRCD and in print form.

Test Bank offers hundreds of multiple-choice questions. Also available on CD-
ROM (for Windows and Mac), where questions can be downloaded, edited, and
resequenced to suit each instructor’s needs.

Lecture PowerPoint Slides offer a detailed lecture presentation of statistical
concepts covered in each chapter of IPS.

Additional Resources Available with IPS 8e

Companion Website www.whfreeman.com/ips8e This open-access website includes
statistical applets, data files, supplementary exercises, and self-quizzes. The website also offers four
optional companion chapters covering logistic regression, nonparametric tests, bootstrap methods and
permutation tests, and statistics for quality control and capability.

Instructor access to the Companion Website requires user registration as an
instructor and features all of the open-access student web materials, plus:

• Instructor version of EESEE with solutions to the exercises in the student
version.

• PowerPoint Slides containing all textbook figures and tables.

• Lecture PowerPoint Slides

Special Software Packages Student versions of JMP and Minitab are available for packaging with
the text. Contact your W. H. Freeman representative for information or visit www.whfreeman.com.

Enhanced Instructor’s Resource CD-ROM, ISBN: 1-4641-3360-3 Allows
instructors to search and export (by key term or chapter) all the resources available on the student
companion website plus the following:

• All text images and tables

• Instructor’s Guide with Full Solutions

• PowerPoint files and lecture slides

58

http://www.whfreeman.com


• Test Bank files

Course Management Systems W. H. Freeman and Company provides courses for Blackboard,
Angel, Desire2Learn, Canvas, Moodle, and Sakai course management systems. These are completely
integrated solutions that you can easily customize and adapt to meet your teaching goals and course
objectives. Visit macmillanhighered.com/Catalog/other/Coursepack for more information.

iClicker is a two-way radio-frequency classroom response solution developed by educators for educators.
Each step of i-clicker’s development has been informed by teaching and learning. To learn more about
packaging i-clicker with this textbook, please contact your local sales rep or visit www.iclicker.com.
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S
TO STUDENTS What Is Statistics?

tatistics is the science of collecting, organizing, and interpreting numerical facts, which we call data.
We are bombarded by data in our everyday lives. The news mentions movie box-office sales, the latest

poll of the president’s popularity, and the average high temperature for today’s date. Advertisements claim
that data show the superiority of the advertiser’s product. All sides in public debates about economics,
education, and social policy argue from data. A knowledge of statistics helps separate sense from nonsense
in this flood of data.

The study and collection of data are also important in the work of many
professions, so training in the science of statistics is valuable preparation for a
variety of careers. Each month, for example, government statistical offices release
the latest numerical information on unemployment and inflation. Economists and
financial advisers, as well as policy makers in government and business, study
these data in order to make informed decisions. Doctors must understand the origin
and trustworthiness of the data that appear in medical journals. Politicians rely on
data from polls of public opinion. Business decisions are based on market research
data that reveal consumer tastes and preferences. Engineers gather data on the
quality and reliability of manufactured products. Most areas of academic study
make use of numbers and, therefore, also make use of the methods of statistics.
This means it is extremely likely that your undergraduate research projects will
involve, at some level, the use of statistics.
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Learning from Data

The goal of statistics is to learn from data. To learn, we often perform calculations
or make graphs based on a set of numbers. But to learn from data, we must do
more than calculate and plot, because data are not just numbers; they are numbers
that have some context that helps us learn from them.

Two-thirds of Americans are overweight or obese according to the Centers for
Disease Control and Prevention (CDC) website (www.cdc.gov/nchs/nhanes.htm).
What does it mean to be obese or to be overweight? To answer this question we
need to talk about body mass index (BMI). Your weight in kilograms divided by
the square of your height in meters is your BMI. A man who is 6 feet tall (1.83
meters) and weighs 180 pounds (81.65 kilograms) will have a BMI of
81.65/(1.83)2 = 24.4 kg/m2. How do we interpret this number? According to the
CDC, a person is classified as overweight if his or her BMI is between 25 and 29
kg/m2 and as obese if his or her BMI is 30 kg/m2 or more. Therefore, two-thirds of
Americans have a BMI of 25 kg/m2 or more. The man who weighs 180 pounds and
is 6 feet tall is not overweight or obese, but if he gains 5 pounds, his BMI would
increase to 25.1, and he would be classified as overweight.

When you do statistical problems, even straightforward textbook problems,
don’t just graph or calculate. Think about the context and state your conclusions in
the specific setting of the problem. As you are learning how to do statistical
calculations and graphs, remember that the goal of statistics is not calculation for
its own sake but gaining understanding from numbers. The calculations and graphs
can be automated by a calculator or software, but you must supply the
understanding. This book presents only the most common specific procedures for
statistical analysis. A thorough grasp of the principles of statistics will enable you
to quickly learn more advanced methods as needed. On the other hand, a fancy
computer analysis carried out without attention to basic principles will often
produce elaborate nonsense. As you read, seek to understand the principles as well
as the necessary details of methods and recipes.
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The Rise of Statistics

Historically, the ideas and methods of statistics developed gradually as society
grew interested in collecting and using data for a variety of applications. The
earliest origins of statistics lie in the desire of rulers to count the number of
inhabitants or measure the value of taxable land in their domains. As the physical
sciences developed in the seventeenth and eighteenth centuries, the importance of
careful measurements of weights, distances, and other physical quantities grew.
Astronomers and surveyors striving for exactness had to deal with variation in their
measurements. Many measurements should be better than a single measurement,
even though they vary among themselves. How can we best combine many varying
observations? Statistical methods that are still important were invented in order to
analyze scientific measurements.

By the nineteenth century, the agricultural, life, and behavioral sciences also
began to rely on data to answer fundamental questions. How are the heights of
parents and children related? Does a new variety of wheat produce higher yields
than the old, and under what conditions of rainfall and fertilizer? Can a person’s
mental ability and behavior be measured just as we measure height and reaction
time? Effective methods for dealing with such questions developed slowly and
with much debate.

As methods for producing and understanding data grew in number and
sophistication, the new discipline of statistics took shape in the twentieth century.
Ideas and techniques that originated in the collection of government data, in the
study of astronomical or biological measurements, and in the attempt to understand
heredity or intelligence came together to form a unified “science of data.” That
science of data—statistics—is the topic of this text.
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The Organization of This Book

Part I of this book, called simply “Looking at Data,” concerns data analysis and
data production. The first two chapters deal with statistical methods for organizing
and describing data. These chapters progress from simpler to more complex data.
Chapter 1 examines data on a single variable, Chapter 2 is devoted to relationships
among two or more variables. You will learn both how to examine data produced
by others and how to organize and summarize your own data. These summaries
will first be graphical, then numerical, and then, when appropriate, in the form of a
mathematical model that gives a compact description of the overall pattern of the
data. Chapter 3 outlines arrangements (called designs) for producing data that
answer specific questions. The principles presented in this chapter will help you to
design proper samples and experiments for your research projects and to evaluate
other such investigations in your field of study.

Part II, consisting of Chapters 4 to 8, introduces statistical inference— formal
methods for drawing conclusions from properly produced data. Statistical inference
uses the language of probability to describe how reliable its conclusions are, so
some basic facts about probability are needed to understand inference. Probability
is the subject of Chapters 4 and 5. Chapter 6, perhaps the most important chapter in
the text, introduces the reasoning of statistical inference. Effective inference is
based on good procedures for producing data (Chapter 3), careful examination of
the data (Chapters 1 and 2), and an understanding of the nature of statistical
inference as discussed in Chapter 6. Chapters 7 and 8 describe some of the most
common specific methods of inference, for drawing conclusions about means and
proportions from one and two samples.

The five shorter chapters in Part III introduce somewhat more advanced
methods of inference, dealing with relations in categorical data, regression and
correlation, and analysis of variance. Four supplementary chapters, available from
the text website, present additional statistical topics.

What Lies Ahead
Introduction to the Practice of Statistics is full of data from many different areas of
life and study. Many exercises ask you to express briefly some understanding
gained from the data. In practice, you would know much more about the
background of the data you work with and about the questions you hope the data
will answer. No textbook can be fully realistic. But it is important to form the habit
of asking, “What do the data tell me?” rather than just concentrating on making
graphs and doing calculations.

You should have some help in automating many of the graphs and calculations.
You should certainly have a calculator with basic statistical functions. Look for
keywords such as “two-variable statistics” or “regression” when you shop for a
calculator. More advanced (and more expensive) calculators will do much more,
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including some statistical graphs. You may be asked to use software as well. There
are many kinds of statistical software, from spreadsheets to large programs for
advanced users of statistics. The kind of computing available to learners varies a
great deal from place to place—but the big ideas of statistics don’t depend on any
particular level of access to computing.

Because graphing and calculating are automated in statistical practice, the most
important assets you can gain from the study of statistics are an understanding of
the big ideas and the beginnings of good judgment in working with data. Ideas and
judgment can’t (at least yet) be automated. They guide you in telling the computer
what to do and in interpreting its output. This book tries to explain the most
important ideas of statistics, not just teach methods. Some examples of big ideas
that you will meet are “always plot your data,” “randomized comparative
experiments,” and “statistical significance.”

You learn statistics by doing statistical problems. “Practice, practice, practice.”
Be prepared to work problems. The basic principle of learning is persistence. Being
organized and persistent is more helpful in reading this book than knowing lots of
math. The main ideas of statistics, like the main ideas of any important subject,
took a long time to discover and take some time to master. The gain will be worth
the pain.
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Introduction

Statistics is the science of learning from data. Data are numerical or qualitative
descriptions of the objects that we want to study. In this chapter, we will master the
art of examining data.

We begin in Section 1.1 with some basic ideas about data. We will learn about
the different types of data that are collected and how data sets are organized.

Section 1.2 starts our process of learning from data by looking at graphs. These
visual displays give us a picture of the overall patterns in a set of data. We have
excellent software tools that help us make these graphs. However, it takes a little
experience and a lot of judgment to study the graphs carefully and to explain what
they tell us about our data.

Section 1.3 continues our process of learning from data by computing
numerical summaries. These sets of numbers describe key characteristics of the
patterns that we saw in our graphical summaries.

A final section in this chapter helps us make the transition from data summaries
to statistical models. We learn about using density curves to describe a set of data.
The Normal distributions are also introduced in this section. These distributions
can be used to describe many sets of data that we will encounter. They also play a
fundamental role in the methods that we will use to draw conclusions from many
sets of data.
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1.1 Data

When you complete this section, you will be able to

• Give examples of cases in a data set.

• Identify the variables in a data set.

• Demonstrate how a label can be used as a variable in a data set.

• Identify the values of a variable.

• Classify variables as categorical or quantitative.

• Describe the key characteristics of a set of data.

• Explain how a rate is the result of adjusting one variable to create
another.

A statistical analysis starts with a set of data. We construct a set of data by first
deciding what cases, or units, we want to study. For each case, we record
information about characteristics that we call variables.

CASES, LABELS, VARIABLES, AND VALUES

Cases are the objects described by a set of data. Cases may be customers,
companies, subjects in a study, units in an experiment, or other objects.
A label is a special variable used in some data sets to distinguish the different
cases.
A variable is a characteristic of a case.
Different cases can have different values of the variables.

EXAMPLE

1.1 Over 12 billion sold.

Apple’s music-related products and services generated $1.8 billion in the third
quarter of 2012. Since Apple started marketing iTunes in 2003, they have sold
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over 12 billion songs. Let’s take a look at this remarkable product. Figure 1.1
is part of an iTunes playlist named IPS. The six songs shown are cases. They
are numbered from 1 to 6 in the first column. These numbers are the labels
that distinguish the six songs. The following five columns give name (of the
song), time (the length of time it takes to play the song), artist, album, and
genre.

Some variables, like the name of a song and the artist simply place cases into
categories. Others, like the length of a song, take numerical values for which we
can do arithmetic. It makes sense to give an average length of time for a collection
of songs, but it does not make sense to give an “average” album. We can, however,
count the numbers of songs on different albums, and we can do arithmetic with
these counts.

FIGURE 1.1
Part of an iTunes playlist, for Example 1.1.

CATEGORICAL AND QUANTITATIVE VARIABLES

A categorical variable places a case into one of several groups or categories.
A quantitative variable takes numerical values for which arithmetic
operations such as adding and averaging make sense.
The distribution of a variable tells us what values it takes and how often it
takes these values.

EXAMPLE

1.2 Categorical and quantitative variables in iTunes playlist.
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The IPS iTunes playlist contains five variables. These are the name, time,
artist, album, and genre. The time is a quantitative variable. Name, artist,
album, and genre are categorical variables.

An appropriate label for your cases should be chosen carefully. In our iTunes
example, a natural choice of a label would be the name of the song. However, if
you have more than one artist performing the same song, or the same artist
performing the same song on different albums, then the name of the song would
not uniquely label each of the songs in your playlist.

A quantitative variable such as the time in the iTunes playlist requires some
special attention before we can do arithmetic with its values. The first song in the
playlist has time equal to 3:32—that is, 3 minutes and 32 seconds. To do arithmetic
with this variable, we should first convert all the values so that they have a single
unit. We could convert to seconds; 3 minutes is 180 seconds, so the total time is
180 + 32, or 212 seconds. An alternative would be to convert to minutes; 32
seconds is 0.533 minute, so time written in this way is 3.533 minutes.

USE YOUR KNOWLEDGE

1.1 Time in the iTunes playlist.

In the iTunes playlist, do you prefer to convert the time to seconds or
minutes? Give a reason for your answer.

We use the term units of measurement to refer to the seconds or minutes that
tell us how the variable time is measured. If we were measuring heights of
children, we might choose to use either inches or centimeters. The units of
measurement are an important part of the description of a quantitative variable.

units of measurement
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Key characteristics of a data set

In practice, any set of data is accompanied by background information that helps us
understand the data. When you plan a statistical study or explore data from
someone else’s work, ask yourself the following questions:

1. Who? What cases do the data describe? How many cases does the data set
contain?

2. What? How many variables do the data contain? What are the exact
definitions of these variables? What are the units of measurement for each
quantitative variable?

3. Why? What purpose do the data have? Do we hope to answer some specific
questions? Do we want to draw conclusions about cases other than the ones we
actually have data for? Are the variables that are recorded suitable for the
intended purpose?

EXAMPLE

1.3 Data for students in a statistics class.

Figure 1.2 shows part of a data set for students enrolled in an introductory
statistics class. Each row gives the data on one student. The values for the
different variables are in the columns. This data set has eight variables. ID is a
label for each student. Exam1, Exam2, Homework, Final, and Project give the
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points earned, out of a total of 100 possible, for each of these course
requirements. Final grades are based on a possible 200 points for each exam
and the Final, 300 points for Homework, and 100 points for Project.
TotalPoints is the variable that gives the composite score. It is computed by
adding 2 times Exam1, Exam2, and Final, 3 times Homework, and 1 times
Project. Grade is the grade earned in the course. This instructor used cutoffs of
900, 800, 700, etc. for the letter grades.

USE YOUR KNOWLEDGE

1.2 Who, what, and why for the statistics class data.

Answer the who, what, and why questions for the statistics class data
set.

1.3 Read the spreadsheet.

Refer to Figure 1.2. Give the values of the variables Exam1, Exam2, and
Final for the student with ID equal to 104.

FIGURE 1.2
Spreadsheet for Example 1.3.

1.4 Calculate the grade.

A student whose data do not appear on the spreadsheet scored 83 on
Exam1, 82 on Exam2, 77 for Homework, 90 on the Final, and 80 on the
Project. Find TotalPoints for this student and give the grade earned.
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The display in Figure 1.2 is from an Excel spreadsheet. Spreadsheets are very
useful for doing the kind of simple computations that you did in Exercise 1.4. You
can type in a formula and have the same computation performed for each row.

spreadsheet

Note that the names we have chosen for the variables in our spreadsheet do not
have spaces. For example, we could have used the name “Exam 1” for the first-
exam score rather than Exam1. In some statistical software packages, however,
spaces are not allowed in variable names. For this reason, when creating
spreadsheets for eventual use with statistical software, it is best to avoid spaces in
variable names. Another convention is to use an underscore (_) where you would
normally use a space. For our data set, we could use Exam_1, Exam_2, and
Final_Exam.

EXAMPLE

1.4 Cases and variables for the statistics class data.

The data set in Figure 1.2 was constructed to keep track of the grades for
students in an introductory statistics course. The cases are the students in the
class. There are eight variables in this data set. These include a label for each
student and scores for the various course requirements. There are no units for
ID and grade. The other variables all have “points” as the unit.

EXAMPLE

1.5 Statistics class data for a different purpose.
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FIGURE 1.3
Spreadsheet for Example 1.5.

Suppose that the data for the students in the introductory statistics class were
also to be used to study relationships between student characteristics and
success in the course. For this purpose, we might want to use a data set like the
spreadsheet in Figure 1.3. Here, we have decided to focus on the TotalPoints
and Grade as the outcomes of interest. Other variables of interest have been
included: Gender, PrevStat (whether or not the student has taken a statistics
course previously), and Year (student classification as first, second, third, or
fourth year). ID is a categorical variable, TotalPoints is a quantitative variable,
and the remaining variables are all categorical.

In our example, the possible values for the grade variable are A, B, C, D, and F.
When computing grade point averages, many colleges and universities translate
these letter grades into numbers using A = 4, B = 3, C = 2, D = 1, and F = 0. The
transformed variable with numeric values is considered to be quantitative because
we can average the numerical values across different courses to obtain a grade
point average.

Sometimes, experts argue about numerical scales such as this. They ask whether
or not the difference between an A and a B is the same as the difference between a
D and an F. Similarly, many questionnaires ask people to respond on a 1 to 5 scale
with 1 representing strongly agree, 2 representing agree, etc. Again, we could ask
whether or not the five possible values for this scale are equally spaced in some
sense. From a practical point of view, however, the averages that can be computed
when we convert categorical scales such as these to numerical values frequently
provide a very useful way to summarize data.
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USE YOUR KNOWLEDGE

1.5 Apartment rentals.

A data set lists apartments available for students to rent. Information
provided includes the monthly rent, whether or not cable is included free
of charge, whether or not pets are allowed, the number of bedrooms, and
the distance to the campus. Describe the cases in the data set, give the
number of variables, and specify whether each variable is categorical or
quantitative.

Often the variables in a statistical study are easy to understand: height in
centimeters, study time in minutes, and so on. But each area of work also has its
own special variables. A psychologist uses the Minnesota Multiphasic Personality
Inventory (MMPI), and a physical fitness expert measures “VO2 max,” the volume
of oxygen consumed per minute while exercising at your maximum capacity. Both
of these variables are measured with special instruments. VO2 max is measured by
exercising while breathing into a mouthpiece connected to an apparatus that
measures oxygen consumed. Scores on the MMPI are based on a long
questionnaire, which is also an instrument.

instrument

Part of mastering your field of work is learning what variables are important
and how they are best measured. Because details of particular measurements
usually require knowledge of the particular field of study, we will say little about
them.

Be sure that each variable really does measure what you want it to. A poor
choice of variables can lead to misleading conclusions. Often, for example, the
rate at which something occurs is a more meaningful measure than a simple count
of occurrences.

rate
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EXAMPLE

1.6 Comparing colleges based on graduates.

Think about comparing colleges based on the numbers of graduates. This view
tells you something about the relative sizes of different colleges. However, if
you are interested in how well colleges succeed at graduating students whom
they admit, it would be better to use a rate. For example, you can find data on
the Internet on the six-year graduation rates of different colleges. These rates
are computed by examining the progress of first-year students who enroll in a
given year. Suppose that at College A there were 1000 first-year students in a
particular year, and 800 graduated within six years. The graduation rate is

8001000=0.80

or 80%. College B has 2000 students who entered in the same year, and 1200
graduated within six years. The graduation rate is

12002000=0.60

or 60%. How do we compare these two colleges? College B has more
graduates, but College A has a better graduation rate.

USE YOUR KNOWLEDGE

1.6 How should you express the change?

Between the first exam and the second exam in your statistics course
you increased the amount of time that you spent working exercises.
Which of the following three ways would you choose to express the
results of your increased work: (a) give the grades on the two exams, (b)
give the ratio of the grade on the second exam divided by the grade on
the first exam, or (c) take the difference between the grade on the second
exam and the grade on the first exam, and express this as a percent of
the grade on the first exam. Give reasons for your answer.

1.7 Which variable would you choose.

Refer to Example 1-6, on colleges and their graduates.
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(a) Give a setting where you would prefer to evaluate the colleges based on the numbers of
graduates. Give a reason for your choice.

(b) Give a setting where you would prefer to evaluate the colleges based on the graduation
rates. Give a reason for your choice.

In Example 1.6, when we computed the graduation rate, we used the total
number of students to adjust the number of graduates. We constructed a new
variable by dividing the number of graduates by the total number of students.
Computing a rate is just one of several ways of adjusting one variable to create
another. We often divide one variable by another to compute a more meaningful
variable to study. Example 1.20 (page 22) is another type of adjustment.

adjusting one variable to create another

Exercises 1.6 and 1.7 illustrate an important point about presenting the results
of your statistical calculations. Always consider how to best communicate your
results to a general audience. For example, the numbers produced by your
calculator or by statistical software frequently contain more digits than are needed.
Be sure that you do not include extra information generated by software that will
distract from a clear explanation of what you have found.

SECTION 1.1 Summary

A data set contains information on a number of cases. Cases may be customers,
companies, subjects in a study, units in an experiment, or other objects.

For each case, the data give values for one or more variables. A variable
describes some characteristic of a case, such as a person’s height, gender, or salary.
Variables can have different values for different cases.

A label is a special variable used to identify cases in a data set.
Some variables are categorical and others are quantitative. A categorical

variable places each individual into a category, such as male or female. A
quantitative variable has numerical values that measure some characteristic of each
case, such as height in centimeters or annual salary in dollars.

The key characteristics of a data set answer the questions Who?, What?, and
Why?

SECTION 1.1 Exercises
For Exercise 1.1, see page 3; for Exercises 1.2 to 1.4, see pages 4–5; for Exercise 1.5, see page 6; and for
Exercises 1.6 and 1.7, see page 7.
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1.8 Summer jobs.

You are collecting information about summer jobs that are available for college students in your area.
Describe a data set that you could use to organize the information that you collect.

(a) What are the cases?

(b) Identify the variables and their possible values.

(c) Classify each variable as categorical or quantitative. Be sure to include at least one of each.

(d) Use a label and explain how you chose it.

(e) Summarize the key characteristics of your data set.

1.9 Employee application data.

The personnel department keeps records on all employees in a company. Here is the information that they
keep in one of their data files: employee identification number, last name, first name, middle initial,
department, number of years with the company, salary, education (coded as high school, some college, or
college degree), and age.

(a) What are the cases for this data set?

(b) Describe each type of information as a label, a quantitative variable, or a categorical variable.

(c) Set up a spreadsheet that could be used to record the data. Give appropriate column headings and five
sample cases.

1.10 How would you rank cities?

Various organizations rank cities and produce lists of the 10 or the 100 best based on various measures.
Create a list of criteria that you would use to rank cities. Include at least eight variables and give reasons
for your choices. Say whether each variable is quantitative or categorical.

1.11 Survey of students.

A survey of students in an introductory statistics class asked the following questions: (1) age; (2) do you
like to sing? (Yes, No); (3) can you play a musical instrument (not at all, a little, pretty well); (4) how
much did you spend on food last week? (5) height.

(a) Classify each of these variables as categorical or quantitative and give reasons for your answers.

(b) For each variable give the possible values.

1.12 What questions would you ask?

Refer to the previous exercise. Make up your own survey questions with at least six questions. Include at
least two categorical variables and at least two quantitative variables. Tell which variables are categorical
and which are quantitative. Give reasons for your answers. For each variable give the possible values.

1.13 How would you rate colleges?
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Popular magazines rank colleges and universities on their “academic quality” in serving undergraduate
students. Describe five variables that you would like to see measured for each college if you were choosing
where to study. Give reasons for each of your choices.

1.14 Attending college in your state or in another state.

The U.S. Census Bureau collects a large amount of information concerning higher education.1 For
example, the bureau provides a table that includes the following variables: state, number of students from
the state who attend college, number of students who attend college in their home state.

(a) What are the cases for this set of data?

(b) Is there a label variable? If yes, what is it?

(c) Identify each variable as categorical or quantitative.

(d) Explain how you might use each of the quantitative variables to explain something about the states.

(e) Consider a variable computed as the number of students in each state who attend college in the state
divided by the total number of students from the state who attend college. Explain how you would use this
variable explain something about the states.

1.15 Alcohol-impaired driving fatalities.

A report on drunk-driving fatalities in the United States gives the number of alcohol-impaired driving
fatalities for each state.2 Discuss at least three different ways that these numbers could be converted to
rates. Give the advantages and disadvantages of each.
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1.2 Displaying Distributions with Graphs

When you complete this section, you will be able to

• Analyze the distribution of a categorical variable using a bar graph.

• Analyze the distribution of a categorical variable using a pie chart.

• Analyze the distribution of a quantitative variable using a stemplot.

• Analyze the distribution of a quantitative variable using a histogram.

• Examine the distribution of a quantitative variable with respect to the
overall pattern of the data and deviations from that pattern.

• Identify the shape, center, and spread of the distribution of a quantitative
variable.

• Identify and describe any outliers in the distribution of a quantitative
variable.

• Use a time plot to describe the distribution of a quantitative variable that
is measured over time.

Statistical tools and ideas help us examine data to describe their main features.
This examination is called exploratory data analysis. Like an explorer crossing
unknown lands, we want first to simply describe what we see. Here are two basic
strategies that help us organize our exploration of a set of data:

exploratory data analysis

• Begin by examining each variable by itself. Then move on to study the
relationships among the variables.

• Begin with a graph or graphs. Then add numerical summaries of specific aspects
of the data.

We will follow these principles in organizing our learning. This chapter presents
methods for describing a single variable. We will study relationships among
several variables in Chapter 2. Within each chapter, we will begin with graphical
displays, then add numerical summaries for a more complete description.

Categorical variables: bar graphs and pie charts

The values of a categorical variable are labels for the categories, such as “Yes” and
“No.” The distribution of a categorical variable lists the categories and gives
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either the count or the percent of cases that fall in each category.

distribution of a categorical variable

EXAMPLE

1.7 How do you do online research?

ONLINE

A study of 552 first-year college students asked about their preferences for
online resources. One question asked them to pick their favorite.3 Here are the
results:

Resource Count (n)
Google or Google Scholar 406
Library database or website 75
Wikipedia or online encyclopedia 52
Other 19
Total 552

Resource is the categorical variable in this example, and the values are the
names of the online resources.

Note that the last value of the variable resource is “Other,” which includes all
other online resources that were given as selection options. For data sets that have
a large number of values for a categorical variable, we often create a category such
as this that includes categories that have relatively small counts or percents.
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Careful judgment is needed when doing this. You don’t want to cover up some
important piece of information contained in the data by combining data in this way.

EXAMPLE

1.8 Favorites as percents.

ONLINE

When we look at the online resources data set, we see that Google is the clear
winner. We see that 406 reported Google or Google Scholar as their favorite.
To interpret this number, we need to know that the total number of students
polled was 552. When we say that Google is the winner, we can describe this
win by saying that 73.6% (406 divided by 552, expressed as a percent) of the
students reported Google as their favorite. Here is a table of the preference
percents:

Resource Percent (%)
Google or Google Scholar 73.6
Library database or website 13.6
Wikipedia or online encyclopedia 9.4
Other 3.4
Total 100.0

The use of graphical methods will allow us to see this information and other
characteristics of the data easily. We now examine two types of graph.

EXAMPLE
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1.9 Bar graph for the online resource preference data.

ONLINE

Figure 1.4 displays the online resource preference data using a bar graph. The
heights of the four bars show the percents of the students who reported each of
the resources as their favorite.

bar graph

FIGURE 1.4
Bar graph for the online resource preference data, for Example 1.9.

The categories in a bar graph can be put in any order. In Figure 1.4, we ordered
the resources based on their preference percents. For other data sets, an
alphabetical ordering or some other arrangement might produce a more useful
graphical display.

You should always consider the best way to order the values of the categorical
variable in a bar graph. Choose an ordering that will be useful to you. If you have
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difficulty, ask a friend if your choice communicates what you expect.

EXAMPLE

1.10 Pie chart for the online resource preference data.

ONLINE

The pie chart in Figure 1.5 helps us see what part of the whole each group
forms. Here it is very easy to see that Google is the favorite for about three-
quarters of the students.

pie chart
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FIGURE 1.5
Pie chart for the online resource preference data, for Example 1.10.

USE YOUR KNOWLEDGE

1.16 Compare the bar graph with the pie chart.

ONLINE

Refer to the bar graph in Figure 1.4 and the pie chart in Figure 1.5 for
the online resource preference data. Which graphical display does a
better job of describing the data? Give reasons for your answer.

To make a pie chart, you must include all the categories that make up a whole.
A category such as “Other” in this example can be used, but the sum of the
percents for all the categories should be 100%.
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This constraint makes bar graphs more flexible. For example, you can use a bar
graph to compare the numbers of students at your college majoring in biology,
business, and political science. A pie chart cannot make this comparison because
not all students fall into one of these three majors.

Quantitative variables: stemplots

A stemplot (also called a stem-and-leaf plot) gives a quick picture of the shape of a
distribution while including the actual numerical values in the graph. Stemplots
work best for small numbers of observations that are all greater than 0.

STEMPLOT

To make a stemplot,

1. Separate each observation into a stem consisting of all but the final
(rightmost) digit and a leaf, the final digit. Stems may have as many digits
as needed, but each leaf contains only a single digit.

2. Write the stems in a vertical column with the smallest at the top, and draw a
vertical line at the right of this column.

3. Write each leaf in the row to the right of its stem, in increasing order out
from the stem.

EXAMPLE

1.11 How much vitamin D do they have?

VITDG
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Your body needs vitamin D to use calcium when building bones. It is
particularly important that young adolescents have adequate supplies of this
vitamin because their bodies are growing rapidly. Vitamin D in the form 25-
hydroxy vitamin D is measured in the blood and represents the stores available
for the body to use. The units of measurement are nanograms per milliliter
(ng/ml) of blood. Here are some values measured on a sample of 20 adolescent
girls aged 11 to 14 years:4

16 43 38 48 42 23 36 35 37 34
25 28 26 43 51 33 40 35 41 42

FIGURE 1.6
Making a stemplot of the data in Example 1.11. (a) Write the stems. (b) Go through the
data and write each leaf on the proper stem. For example, the values on the 2 stem are 23,
25, 28, and 26 in the order given in the display for the example. (c) Arrange the leaves on
each stem in order out from the stem. The 2 stem now has leaves 3, 5, 6, and 8.

To make a stemplot of these data, use the first digits as stems and the second
digits as leaves. Figure 1.6 shows the steps in making the plot. The girl with a
measured value of 16 ng/ml for vitamin D appears on the first stem with a leaf
of 6, while the girl with a measured value of 43 ng/ml appears on the stem
labeled 4 with a leaf of 3.

The lowest value, 16 ng/ml, is somewhat far away from the next-highest
value, 23. However, it is not particularly extreme.

USE YOUR KNOWLEDGE

1.17 Make a stemplot.

STAT
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Here are the scores on the first exam in an introductory statistics course
for 30 students in one section of the course:

81 73 93 85 75 98 93 55 80 90 92 80 87 90 72
65 70 85 83 60 70 90 75 75 58 68 85 78 80 93

Use these data to make a stemplot. Then use the stemplot to describe the
distribution of the first-exam scores for this course.

When you wish to compare two related distributions, a back-to-back stemplot
with common stems is useful. The leaves on each side are ordered out from the
common stem.

back-to-back stemplot

EXAMPLE

1.12 Vitamin D for boys.

VITDB

Here are the 25-hydroxy vitamin D values for a sample of 20 adolescent boys
aged 11 to 14 years:

18 28 28 28 37 31 24 29 8 27
24 12 21 32 27 24 23 33 31 29

Figure 1.7 gives the back-to-back stemplot for the girls and the boys. The
values on the left give the vitamin D measures for the girls, while the values
on the right give the measures for the boys. The values for the boys tend to be
lower than those for the girls.

There are two modifications of the basic stemplot that can be helpful in
different situations. You can double the number of stems in a plot by splitting each
stem into two: one with leaves 0 to 4 and the other with leaves 5 through 9. When
the observed values have many digits, it is often best to trim the numbers by
removing the last digit or digits before making a stemplot.
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splitting stem

trimming

FIGURE 1.7
A back-to-back stemplot to compare the distributions of vitamin D for samples of adolescent
girls and boys, for Example 1.12.

You must use your judgment in deciding whether to split stems and whether to
trim, though statistical software will often make these choices for you. Remember
that the purpose of a stemplot is to display the shape of a distribution. If there are
many stems with no leaves or only one leaf, trimming will reduce the number of
stems. Let’s take a look at the effect of splitting the stems for our vitamin D data.

EXAMPLE

1.13 Stemplot with split stems for vitamin D.

VITDB

Figure 1.8 presents the data from Examples 1.11 and 1.12 in a stemplot with
split stems. Notice that we needed only one stem for 0 because there are no
values between 0 and 4.
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FIGURE 1.8
A back-to-back stemplot with split stems to compare the distributions of vitamin D for samples
of adolescent girls and boys, for Example 1.13.

USE YOUR KNOWLEDGE

1.18 Which stemplot do you prefer?

Look carefully at the stemplots for the vitamin D data in Figures 1.7 and
1.8. Which do you prefer? Give reasons for your answer.

1.19 Why should you keep the space?

Suppose that you had a data set for girls similar to the one given in
Example 1.11, but in which the observations of 33 ng/ml and 34 ng/ml
were both changed to 35 ng/ml.

(a) Make a stemplot of these data for girls using split stems.

(b) Should you use one stem or two stems for the 30s? Give a reason for your answer. (Hint:
How would your choice reveal or conceal a potentially important characteristic of the data?)

Histograms

Stemplots display the actual values of the observations. This feature makes
stemplots awkward for large data sets. Moreover, the picture presented by a
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TABLE 1.1  IQ Test Scores for 60 Randomly Chosen Fifth-Grade Students

stemplot divides the observations into groups (stems) determined by the number
system rather than by judgment.

Histograms do not have these limitations. A histogram breaks the range of
values of a variable into classes and displays only the count or percent of the
observations that fall into each class. You can choose any convenient number of
classes, but you should always choose classes of equal width.

histogram

145 139 126 122 125 130 96 110 118 118
101 142 134 124 112 109 134 113 81 113
123 94 100 136 109 131 117 110 127 124
106 124 115 133 116 102 127 117 109 137
117 90 103 114 139 101 122 105 97 89
102 108 110 128 114 112 114 102 82 101

Making a histogram by hand requires more work than a stemplot. Histograms
do not display the actual values observed. For these reasons we prefer stemplots for
small data sets.

The construction of a histogram is best shown by example. Most statistical
software packages will make a histogram for you.

EXAMPLE

1.14 Distribution of IQ scores.

IQ

You have probably heard that the distribution of scores on IQ tests is supposed
to be roughly “bell-shaped.” Let’s look at some actual IQ scores. Table 1.1
displays the IQ scores of 60 fifth-grade students chosen at random from one
school.

1. Divide the range of the data into classes of equal width. The scores in Table
1.1 range from 81 to 145, so we choose as our classes
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                                                                                             75 ≤ IQ score <
85
                                                                                             85 ≤ IQ score <
95
                                                                                                           ⋮
                                                                                           145 ≤ IQ score <
155
Be sure to specify the classes precisely so that each individual falls into
exactly one class. A student with IQ 84 would fall into the first class, but IQ
85 falls into the second.

2. Count the number of individuals in each class. These counts are called
frequencies, frequency and a table of frequencies for all classes is a
frequency table.

frequency

frequency table

Class Count Class Count
75 ≤ IQ score < 85 2 115 ≤ IQ score < 125 13
85 ≤ IQ score < 95 3 125 ≤ IQ score < 135 10
95 ≤ IQ score < 105 10 135 ≤ IQ score < 145 5

105 ≤ IQ score < 115 16 145 ≤ IQ score < 155 1

3. Draw the histogram. First, on the horizontal axis mark the scale for the
variable whose distribution you are displaying. That’s the IQ score. The
scale runs from 75 to 155 because that is the span of the classes we chose.
The vertical axis contains the scale of counts. Each bar represents a class.
The base of the bar covers the class, and the bar height is the class count.
There is no horizontal space between the bars unless a class is empty, so that
its bar has height zero. Figure 1.9 is our histogram. It does look roughly
“bell-shaped.”
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FIGURE 1.9
Histogram of the IQ scores of 60 fifth-grade students, for Example 1.14.

Large sets of data are often reported in the form of frequency tables when it is
not practical to publish the individual observations. In addition to the frequency
(count) for each class, we may be interested in the fraction or percent of the
observations that fall in each class. A histogram of percents looks just like a
frequency histogram such as Figure 1.9. Simply relabel the vertical scale to read in
percents. Use histograms of percents for comparing several distributions that have
different numbers of observations.

USE YOUR KNOWLEDGE

1.20 Make a histogram.

STAT

Refer to the first-exam scores from Exercise 1.17 (page 14). Use these
data to make a histogram with classes 50 to 59, 60 to 69, etc. Compare
the histogram with the stemplot as a way of describing this distribution.
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Which do you prefer for these data?

Our eyes respond to the area of the bars in a histogram. Because the classes are
all the same width, area is determined by height, and all classes are fairly
represented. There is no one right choice of the classes in a histogram. Too few
classes will give a “skyscraper” graph, with all values in a few classes with tall
bars. Too many will produce a “pancake” graph, with most classes having one or
no observations. Neither choice will give a good picture of the shape of the
distribution. You must use your judgment in choosing classes to display the shape.
Statistical software will choose the classes for you. The software’s choice is often a
good one, but you can change it if you want.

You should be aware that the appearance of a histogram can change when you
change the classes. The histogram function in the One-Variable Statistical
Calculator applet on the text website allows you to change the number of classes
by dragging with the mouse, so that it is easy to see how the choice of classes
affects the histogram.

USE YOUR KNOWLEDGE

1.21 Change the classes in the histogram.

Refer to the first-exam scores from Exercise 1.17 (page 14) and the
histogram that you produced in Exercise 1.20. Now make a histogram
for these data using classes 40 to 59, 60 to 79, and 80 to 99. Compare
this histogram with the one that you produced in Exercise 1.20. Which
do you prefer? Give a reason for your answer.

STAT
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1.22 Use smaller classes.

Repeat the previous exercise using classes 55 to 59, 60 to 64, 65 to 69,
etc.

Although histograms resemble bar graphs, their details and uses are distinct. A
histogram shows the distribution of counts or percents among the values of a single
variable. A bar graph compares the counts of different items. The horizontal axis of
a bar graph need not have any measurement scale but simply identifies the items
being compared. Draw bar graphs with blank space between the bars to separate
the items being compared. Draw histograms with no space, to indicate that all
values of the variable are covered. Some spreadsheet programs, which are not
primarily intended for statistics, will draw histograms as if they were bar graphs,
with space between the bars. Often, you can tell the software to eliminate the space
to produce a proper histogram.

Data analysis in action: don’t hang up on me

Many businesses operate call centers to serve customers who want to place an
order or make an inquiry. Customers want their requests handled thoroughly.
Businesses want to treat customers well, but they also want to avoid wasted time
on the phone. They therefore monitor the length of calls and encourage their
representatives to keep calls short.

EXAMPLE

1.15 How long are customer service center calls?

We have data on the lengths of all 31,492 calls made to the customer service
center of a small bank in a month. Table 1.2 displays the lengths of the first 80
calls.5
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TABLE 1.2  Service Times (Seconds) for Calls to a Customer Service Center

CALLS80

Take a look at the data in Table 1.2. In this data set the cases are calls made
to the bank’s call center. The variable recorded is the length of each call. The
units are seconds. We see that the call lengths vary a great deal. The longest
call lasted 2631 seconds, almost 44 minutes. More striking is that 8 of these 80
calls lasted less than 10 seconds. What’s going on?

We started our study of the customer service center data by examining a few
cases, the ones displayed in Table 1.2. It would be very difficult to examine all
31,492 cases in this way. How can we do this? Let’s try a histogram.

EXAMPLE

1.16 Histogram for customer service center call lengths.

CALLS

Figure 1.10 is a histogram of the lengths of all 31,492 calls. We did not plot
the few lengths greater than 1200 seconds (20 minutes). As expected, the
graph shows that most calls last between about 1 and 5 minutes, with some
lasting much longer when customers have complicated problems. More
striking is the fact that 7.6% of all calls are no more than 10 seconds long. It
turned out that the bank penalized representatives whose average call length
was too long—so some representatives just hung up on customers to bring
their average length down. Neither the customers nor the bank were happy
about this. The bank changed its policy, and later data showed that calls under
10 seconds had almost disappeared.

77 289 128 59 19 148 157 203
126 118 104 141 290 48 3 2
372 140 438 56 44 274 479 211
179 1 68 386 2631 90 30 57

89 116 225 700 40 73 75 51
148 9 115 19 76 138 178 76
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67 102 35 80 143 951 106 55

4 54 137 367 277 201 52 9
700 182 73 199 325 75 103 64
121 11 9 88 1148 2 465 25

The extreme values of a distribution are in the tails of the distribution. The high
values are in the upper, or right, tail, and the low values are in the lower, or left,
tail. The overall pattern in Figure 1.10 is made up of the many moderate call
lengths and the long right tail of more lengthy calls. The striking deviation from
the overall pattern is the surprising number of very short calls in the left tail.

tails

FIGURE 1.10
The distribution of call lengths for 31,492 calls to a bank’s customer service center, for Example
1.16. The data show a surprising number of very short calls. These are mostly due to
representatives deliberately hanging up in order to bring down their average call length.

Our examination of the call center data illustrates some important principles:

• After you understand the background of your data (cases, variables, units of
measurement), the first thing to do is plot your data.

• When you look at a plot, look for an overall pattern and also for any striking
deviations from the pattern.
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Examining distributions

Making a statistical graph is not an end in itself. The purpose of the graph is to help
us understand the data. After you make a graph, always ask, “What do I see?”
Once you have displayed a distribution, you can see its important features as
follows.

EXAMINING A DISTRIBUTION

In any graph of data, look for the overall pattern and for striking deviations
from that pattern.
You can describe the overall pattern of a distribution by its shape, center, and
spread.
An important kind of deviation is an outlier, an individual value that falls
outside the overall pattern.

In Section 1.3, we will learn how to describe center and spread numerically. For
now, we can describe the center of a distribution by its midpoint, the value with
roughly half the observations taking smaller values and half taking larger values.
We can describe the spread of a distribution by giving the smallest and largest
values. Stemplots and histograms display the shape of a distribution in the same
way. Just imagine a stemplot turned on its side so that the larger values lie to the
right.

Some things to look for in describing shape are

• Does the distribution have one or several major peaks, called modes? A
distribution with one major peak is called unimodal.

modes

unimodal

• Is it approximately symmetric or is it skewed in one direction? A distribution is
symmetric if the values smaller and larger than its midpoint are mirror images of
each other. It is skewed to the right if the right tail (larger values) is much longer
than the left tail (smaller values).

symmetric

skewed

Some variables commonly have distributions with predictable shapes. Many
biological measurements on specimens from the same species and sex—lengths of
bird bills, heights of young women—have symmetric distributions. Money
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amounts, on the other hand, usually have right-skewed distributions. There are
many moderately priced houses, for example, but the few very expensive mansions
give the distribution of house prices a strong right-skew.

EXAMPLE

1.17 Examine the histogram of IQ scores.

What does the histogram of IQ scores (Figure 1.9, page 17) tell us?

IQ

Shape: The distribution is roughly symmetric with a single peak in the
center. We don’t expect real data to be perfectly symmetric, so in judging
symmetry, we are satisfied if the two sides of the histogram are roughly
similar in shape and extent.

Center: You can see from the histogram that the midpoint is not far from
110. Looking at the actual data shows that the midpoint is 114.

Spread: The histogram has a spread from 75 to 155. Looking at the actual
data shows that the spread is from 81 to 145. There are no outliers or other
strong deviations from the symmetric, unimodal pattern.

EXAMPLE

1.18 Examine the histogram of call lengths.

The distribution of call lengths in Figure 1.10 (page 19), on the other hand, is
strongly skewed to the right. The midpoint, the length of a typical call, is about
115 seconds, or just under 2 minutes. The spread is very large, from 1 second
to 28,739 seconds.

The longest few calls are outliers. They stand apart from the long right tail
of the distribution, though we can’t see this from Figure 1.10, which omits the
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largest observations. The longest call lasted almost 8 hours—that may well be
due to equipment failure rather than an actual customer call.

USE YOUR KNOWLEDGE

1.23 Describe the first-exam scores.

STAT

Refer to the first-exam scores from Exercise 1.17 (page 14). Use your
favorite graphical display to describe the shape, the center, and the
spread of these data. Are there any outliers?

Dealing with outliers

In data sets smaller than the service call data, you can spot outliers by looking for
observations that stand apart (either high or low) from the overall pattern of a
histogram or stemplot. Identifying outliers is a matter for judgment. Look for points
that are clearly apart from the body of the data, not just the most extreme
observations in a distribution. You should search for an explanation for any
outlier. Sometimes outliers point to errors made in recording the data. In other
cases, the outlying observation may be caused by equipment failure or other
unusual circumstances.

EXAMPLE

1.19 College students.
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COLLEGE

How does the number of undergraduate college students vary by state? Figure
1.11 is a histogram of the numbers of undergraduate students in each of the
states.6 Notice that over 50% of the states are included in the first bar of the
histogram. These states have fewer than 300,000 undergraduates. The next bar
includes another 30% of the states. These have between 300,000 and 600,000
students. The bar at the far right of the histogram corresponds to the state of
California, which has 2,685,893 undergraduates. California certainly stands
apart from the other states for this variable. It is an outlier.

The state of California is an outlier in the previous example because it has a
very large number of undergraduate students. Since California has the largest
population of all the states, we might expect it to have a large number of
undergraduate students. Let’s look at these data in a different way.

FIGURE 1.11
The distribution of the numbers of undergraduate college students for the 50 states, for Example
1.19.
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EXAMPLE

1.20 College students per 1000.

To account for the fact that there is large variation in the populations of the
states, for each state we divide the number of undergraduate students by the
population and then multiply by 1000. This gives the undergraduate college
enrollment expressed as the number of students per 1000 people in each state.
Figure 1.12 gives a stemplot of the distribution. California has 60
undergraduate students per 1000 people. This is one of the higher values in the
distribution but it is clearly not an outlier.

FIGURE 1.12
Stemplot of the numbers of undergraduate college students per 1000 people in each of the 50
states, for Example 1.20.

USE YOUR KNOWLEDGE

1.24 Four states with large populations.

There are four states with populations greater that 15 million.

COLLEGE

(a) Examine the data file and report the names of these four states.
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(b) Find these states in the distribution of number of undergraduate students per 1000 people.
To what extent do these four states influence the distribution of number of undergraduate
students per 1000 people?

In Example 1.19 we looked at the distribution of the number of undergraduate
students, while in Example 1.20 we adjusted these data by expressing the counts as
number per 1000 people in each state. Which way is correct? The answer depends
upon why you are examining the data.

If you are interested in marketing a product to undergraduate students, the
unadjusted numbers would be of interest. On the other hand, if you are interested in
comparing states with respect to how well they provide opportunities for higher
education to their residents, the population-adjusted values would be more suitable.
Always think about why you are doing a statistical analysis, and this will guide you
in choosing an appropriate analytic strategy.

Here is an example with a different kind of outlier.

EXAMPLE

1.21 Healthy bones and PTH.

PTH

Bones are constantly being built up (bone formation) and torn down (bone
resorption). Young people who are growing have more formation than
resorption. When we age, resorption increases to the point where it exceeds
formation. (The same phenomenon occurs when astronauts travel in space.)
The result is osteoporosis, a disease associated with fragile bones that are more
likely to break. The underlying mechanisms that control these processes are
complex and involve a variety of substances. One of these is parathyroid
hormone (PTH). Here are the values of PTH measured on a sample of 29 boys
and girls aged 12 to 15 years:7
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39 59 30 48 71 31 25 31 71 50 38 63 49 45 31
33 28 40 127 49 59 50 64 28 46 35 28 19 29  

The data are measured in picograms per milliliter (pg/ml) of blood. The
original data were recorded with one digit after the decimal point. They have
been rounded to simplify our presentation here. Here is a stemplot of the data:

The observation 127 clearly stands out from the rest of the distribution. A PTH
measurement on this individual taken on a different day was similar to the rest
of the values in the data set. We conclude that this outlier was caused by a
laboratory error or a recording error, and we are confident in discarding it for
any additional analysis.

Time plots

Whenever data are collected over time, it is a good idea to plot the observations in
time order. Displays of the distribution of a variable that ignore time order, such
as stemplots and histograms, can be misleading when there is systematic change
over time.

TIME PLOT

A time plot of a variable plots each observation against the time at which it
was measured. Always put time on the horizontal scale of your plot and the
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variable you are measuring on the vertical scale.

EXAMPLE

1.22 Seasonal variation in vitamin D.

VITDS

Although we get some of our vitamin D from food, most of us get about 75%
of what we need from the sun. Cells in the skin make vitamin D in response to
sunlight. If people do not get enough exposure to the sun, they can become
deficient in vitamin D, resulting in weakened bones and other health problems.
The elderly, who need more vitamin D than younger people, and people who
live in northern areas where there is relatively little sunlight in the winter, are
particularly vulnerable to these problems.

Figure 1.13 is a plot of the serum levels of vitamin D versus time of year
for samples of subjects from Switzerland.8 The units for measuring vitamin D
are nanomoles per liter (nmol/l) of blood. The observations are grouped into
periods of two months for the plot. Means are marked by filled-in circles and
are connected by a line in the plot. The effect of the lack of sunlight in the
winter months on vitamin D levels is clearly evident in the plot.

The data described in the example above are based on a subset of the subjects in
a study of 248 subjects. The researchers were particularly concerned about subjects
whose levels were deficient, defined as a serum vitamin D level of less than 50
nmol/l. They found that there was a 3.8-fold higher deficiency rate in February–
March than in August–September: 91.2% versus 24.3%. To ensure that individuals
from this population have adequate levels of vitamin D, some form of
supplementation is needed, particularly during certain times of the year.
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FIGURE 1.13
Plot of vitamin D versus months of the year, for Example 1.22.

SECTION 1.2 Summary

Exploratory data analysis uses graphs and numerical summaries to describe the
variables in a data set and the relations among them.

The distribution of a variable tells us what values it takes and how often it
takes these values.

Bar graphs and pie charts display the distributions of categorical variables.
These graphs use the counts or percents of the categories.

Stemplots and histograms display the distributions of quantitative variables.
Stemplots separate each observation into a stem and a one-digit leaf. Histograms
plot the frequencies (counts) or the percents of equal-width classes of values.

When examining a distribution, look for shape, center, and spread and for
clear deviations from the overall shape.

Some distributions have simple shapes, such as symmetric or skewed. The
number of modes (major peaks) is another aspect of overall shape. Not all
distributions have a simple overall shape, especially when there are few
observations.

Outliers are observations that lie outside the overall pattern of a distribution.
Always look for outliers and try to explain them.

When observations on a variable are taken over time, make a time plot that
graphs time horizontally and the values of the variable vertically. A time plot can
reveal changes over time.

SECTION 1.2 Exercises
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For Exercise 1.16, see page 12; for Exercise 1.17, see page 14; for Exercises 1.18
and 1.19, see page 15; for Exercise 1.20, see page 17; for Exercises 1.21 and 1.22,
see page 18; for Exercise 1.23, see page 21; and for Exercise 1.24, see page 22.

1.25 The Titanic and class.

On April 15, 1912, on her maiden voyage, the Titanic collided with an iceberg and sank. The ship was
luxurious but did not have enough lifeboats for the 2224 passengers and crew. As a result of the collision,
1502 people died.9 The ship had three classes of passengers. The level of luxury and the price of the ticket
varied with the class, with first class being the most luxurious. There were 323 passengers in first class,

277 in second class, and 709 in third class.10  TITANIC

(a) Make a bar graph of these data.

(b) Give a short summary of how the number of passengers varied with class.

(c) If you made a bar graph of the percents of passengers in each class, would the general features of the
graph differ from the one you made in part (a)? Explain your answer.

1.26 Another look at the Titanic and class.

Refer to the previous exercise.  TITANIC

(a) Make a pie chart to display the data.

(b) Compare the pie chart with the bar graph. Which do you prefer? Give reasons for your answer.

1.27 Who survived?

Refer to the two previous exercises. The number of first-class passengers who survived was 200. For
second and third class, the numbers were 119 and 181, respectively. Create a graphical summary that

shows how the survival of passengers depended on class.  TITANIC

1.28 Do you use your Twitter account?

Although Twitter has more than 500,000,000 users, only about 170,000,000 are active. A study of Twitter
account usage defined an active account as one with at least one message posted within a three-month

period. Here are the percents of active accounts for 20 countries:11  TWITTC

Country Percent Country Percent Country Percent
Argentina 25 India 19 South Korea 24
Brazil 25 Indonesia 28 Spain 29
Canada 28 Japan 30 Turkey 25
Chile 24 Mexico 26 United Kingdom 26
Colombia 26 Netherlands 33 United States 28
France 24 Philippines 22 Venezuela 28
Germany 23 Russia 26   
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(a) Make a stemplot of the distribution of percents of active accounts.

(b) Describe the overall pattern of the data and any deviations from that pattern.

(c) Identify the shape, center, and spread of the distribution.

(d) Identify and describe any outliers.

1.29 Another look at Twitter account usage.

Refer to the previous exercise.  TWITTC

(a) Use a histogram to summarize the distribution.

(b) Use this histogram to answer parts (b), (c), and (d) of the previous exercise.

(c) Which graphical display, stemplot or histogram, is more useful for describing this distribution? Give
reasons for your answer.

1.30 Energy consumption.

The U.S. Energy Information Administration reports data summaries of various energy statistics. Let’s
look at the total amount of energy consumed, in quadrillions of British thermal units (Btu), for each month

in 2011. Here are the data:12  ENERGY

Month Energy (quadrillion Btu) Month Energy (quadrillion Btu)
January 9.33 July 8.41
February 8.13 August 8.43
March 8.38 September 7.58
April 7.54 October 7.61
May 7.61 November 7.81
June 7.92 December 8.60

(a) Look at the table and describe how the energy consumption varies from month to month.

(b) Make a time plot of the data and describe the patterns.

(c) Suppose you wanted to communicate information about the month-to-month variation in energy
consumption. Which would be more effective, the table of the data or the graph? Give reasons for your
answer.

1.31 Energy consumption in a different year.

Refer to the previous exercise. Here are the data for 2010:  ENERGY

Month Energy (quadrillion Btu) Month Energy (quadrillion Btu)
January 9.13 July 8.38
February 8.21 August 8.44
March 8.21 September 7.69
April 7.37 October 7.51
May 7.68 November 7.80
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June 8.01 December 9.23

(a) Analyze these data using the questions in the previous exercise as a guide.

(b) Compare the patterns in 2010 with those in 2011. Describe any similarities and differences.

1.32 Favorite colors.

What is your favorite color? One survey produced the following summary of responses to that question:
blue, 42%; green, 14%; purple, 14%; red, 8%; black, 7%; orange, 5%; yellow, 3%; brown, 3%; gray, 2%;
and white, 2%.13 Make a bar graph of the percents and write a short summary of the major features of

your graph.  FAVCOL

1.33 Least-favorite colors.

Refer to the previous exercise. The same study also asked people about their least-favorite color. Here are
the results: orange, 30%; brown, 23%; purple, 13%; yellow, 13%; gray, 12%; green, 4%; white, 4%; red,

1%; black, 0%; and blue, 0%. Make a bar graph of these percents and write a summary of the results. 
LFAVCOL

1.34 Garbage.

The formal name for garbage is “municipal solid waste.” Here is a breakdown of the materials that make

up American municipal solid waste:14  GARBAGE

Material Weight (million tons) Percent of total (%)
Food scraps 34.8 13.9
Glass 11.5 4.6
Metals 22.4 9.0
Paper, paperboard 71.3 28.5
Plastics 31.0 12.4
Rubber, leather, textiles 20.9 8.4
Wood 15.9 6.4
Yard trimmings 33.4 13.4
Other 8.6 3.2
Total 249.6 100.0

(a) Add the weights and then the percents for the nine types of material given, including “Other.” Each
entry, including the total, is separately rounded to the nearest tenth. So the sum and the total may slightly
because of roundoff error.

(b) Make a bar graph of the percents. The graph gives a clearer picture of the main contributors to garbage
if you order the bars from tallest to shortest.

(c) Make a pie chart of the percents. Compare the advantages and disadvantages of each graphical
summary. Which do you prefer? Give reasons for your answer.

1.35 Recycled garbage.
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Refer to the previous exercise. The following table gives the percent of the weight that was recycled for

each of the categories.  GARBAGE

Material Weight (million tons) Percent recycled (%)
Food scraps 34.8 2.8
Glass 11.5 27.1
Metals 22.4 35.1
Paper, paperboard 71.3 62.5
Plastics 31.0 8.2
Rubber, leather, textiles 20.9 15.0
Wood 15.9 14.5
Yard trimmings 33.4 57.5
Other 8.6 16.3
Total 249.6  

(a) Use a bar graph to display the percent recycled for these materials. Use the order of the materials given
in the table above.

(b) Make another bar graph where the materials are ordered by the percent recycled, largest percent to
smallest percent.

(c) Which bar graph, (a) or (b), do you prefer? Give a reason for your answer.

(d) Explain why it is inappropriate to use a pie chart to display these data.

1.36 Market share for desktop browsers.

The following table gives the market share for the browsers used on desktop computers.15 
BROWSED

Search engine Market share (%) Search engine Market share (%)
Internet Explorer 54.76 Internet Explorer 5.33
Firefox 20.44 Opera 1.67
Chrome 17.24 Other 0.56

(a) Use a bar graph to display the market shares.

(b) Use a pie chart to display the market shares.

(c) Summarize what these graphical summaries tell you about market shares for browsers on desktops.

(d) Which graphical display do you prefer? Give reasons for your answer.

1.37 Market share for mobiles and tablet browsers.

The following table gives the market share for the browsers used on mobiles and tablets.  BROWSEM

Search engine Market share (%) Search engine Market share (%)
Safari 61.50 Chrome 1.14
Android 26.09 Blackberry 1.09
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Opera 7.02 Other 3.16

(a) Use a bar graph to display the market shares.

(b) Use a pie chart to display the market shares.

(c) Summarize what these graphical summaries tell you about market shares for browsers on mobiles and
tablets.

(d) Which graphical display do you prefer? Give reasons for your answer.

1.38 Compare the market shares for browsers.

Refer to the previous two exercises. Using the analyses that you have done for browsers for desktops and
browsers for mobiles and tablets, write a short report comparing the market shares for these two types of

devices.  BROWSED, BROWSEM

1.39 Vehicle colors.

Vehicle colors differ among regions of the world. Here are data on the most popular colors for vehicles in

North America and Europe:16  VCOLORS

Color North America (%) Europe (%)
White 23 20
Black 18 25
Silver 16 15
Gray 13 18
Red 10 6
Blue 9 7
Brown/beige 5 5
Yellow/gold 3 1
Other 3 3

(a) Make a bar graph for the North America percents.

(b) Make a bar graph for the Europe percents.

(c) Now, be creative: make one bar graph that compares the two regions as well as the colors. Arrange your
graph so that it is easy to compare the two regions.

1.40 Facebook users by region.

The following table gives the numbers of Facebook users by region of the world as of November 2012:17 

 FACER

Region Facebook users (in millions) Region Facebook users (in millions)
Africa 40 Middle East 20
Asia 195 North America 173
Caribbean 6 Oceania/Australia 14
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Central America 41 South America 113
Europe 233   

(a) Use a bar graph to describe these data.

(b) Describe the major features of your graph in a short paragraph.

1.41 Facebook ratios.

One way to compare the numbers of Facebook users for different regions of the world is to take into
account the populations of these regions. The market penetration for a product is the number of users
divided by the number of potential users, expressed as a percent. For Facebook, we use the population as
the number of potential users. Here are estimates of the populations in 2012 of the same geographic regions

that we studied in the previous exercise:18  FACER

Region Population (in millions) Region Population (in millions)
Africa 1026 Middle East 213
Asia 3900 North America 347
Caribbean 39 Oceania/Australia 36
Central America 155 South America 402
Europe 818   

(a) Compute the market penetration for each region by dividing the number of users from the previous
exercise by the population size given in this exercise. Multiply these ratios by 100 to make the ratios
similar to percents, and make a table of the results. Use the values in this table to answer the remaining
parts of this exercise.

(b) Carefully examine your table, and summarize what it shows. Are there any extreme outliers? Which
ones would you classify in this way?

(c) Use a stemplot to describe these data. You can list any extreme outliers separately from the plot.

(d) Describe the major features of these data using your plot and your list of outliers.

(e) How effective is the stemplot for summarizing these data? Give reasons for your answer.

(f) Explain why the values in the table that you constructed in part (a) are not the same as the percents of
the population in each region who are users.

1.42 Sketch a skewed distribution.

Sketch a histogram for a distribution that is skewed to the left. Suppose that you and your friends emptied
your pockets of coins and recorded the year marked on each coin. The distribution of dates would be
skewed to the left. Explain why.

1.43 Grades and self-concept.

Table 1.3 presents data on 78 seventh-grade students in a rural midwestern school.19 The researcher was
interested in the relationship between the students’ “self-concept” and their academic performance. The
data we give here include each student’s grade point average (GPA), score on a standard IQ test, and
gender, taken from school records. Gender is coded as F for female and M for male. The students are
identified only by an observation number (OBS). The missing OBS numbers show that some students
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TABLE 1.3  Educational Data for 78 Seventh-Grade Students

dropped out of the study. The final variable is each student’s score on the Piers-Harris Children’s Self-

Concept Scale, a psychological test administered by the researcher.  SEVENGR

(a) How many variables does this data set contain? Which are categorical variables and which are
quantitative variables?

(b) Make a stemplot of the distribution of GPA, after rounding to the nearest tenth of a point.

(c) Describe the shape, center, and spread of the GPA distribution. Identify any suspected outliers from the
overall pattern.

(d) Make a back-to-back stemplot of the rounded GPAs for female and male students. Write a brief
comparison of the two distributions.

1.44 Describe the IQ scores.

Make a graph of the distribution of IQ scores for the seventh-grade students in Table 1.3. Describe the
shape, center, and spread of the distribution, as well as any outliers. IQ scores are usually said to be

centered at 100. Is the midpoint for these students close to 100, clearly above, or clearly below? 
SEVENGR

1.45 Describe the self-concept scores.

Based on a suitable graph, briefly describe the distribution of self-concept scores for the students in Table

1.3. Be sure to identify any suspected outliers.  SEVENGR

OBS GPA IQ Gender Selfconcept OBS GPA IQ Gender Selfconcept
001 7.940 111 M 67 043 10.760 123 M 64
002 8.292 107 M 43 044 9.763 124 M 58
003 4.643 100 M 52 045 9.410 126 M 70
004 7.470 107 M 66 046 9.167 116 M 72
005 8.882 114 F 58 047 9.348 127 M 70
006 7.585 115 M 51 048 8.167 119 M 47
007 7.650 111 M 71 050 3.647 97 M 52
008 2.412 97 M 51 051 3.408 86 F 46
009 6.000 100 F 49 052 3.936 102 M 66
010 8.833 112 M 51 053 7.167 110 M 67
011 7.470 104 F 35 054 7.647 120 M 63
012 5.528 89 F 54 055 0.530 103 M 53
013 7.167 104 M 54 056 6.173 115 M 67
014 7.571 102 F 64 057 7.295 93 M 61
015 4.700 91 F 56 058 7.295 72 F 54
016 8.167 114 F 69 059 8.938 111 F 60
017 7.822 114 F 55 060 7.882 103 F 60
018 7.598 103 F 65 061 8.353 123 M 63
019 4.000 106 M 40 062 5.062 79 M 30
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020 6.231 105 F 66 063 8.175 119 M 54

021 7.643 113 M 55 064 8.235 110 M 66
022 1.760 109 M 20 065 7.588 110 M 44
024 6.419 108 F 56 068 7.647 107 M 49
026 9.648 113 M 68 069 5.237 74 F 44
027 10.700 130 F 69 071 7.825 105 M 67
028 10.580 128 M 70 072 7.333 112 F 64
029 9.429 128 M 80 074 9.167 105 M 73
030 8.000 118 M 53 076 7.996 110 M 59
031 9.585 113 M 65 077 8.714 107 F 37
032 9.571 120 F 67 078 7.833 103 F 63
033 8.998 132 F 62 079 4.885 77 M 36
034 8.333 111 F 39 080 7.998 98 F 64
035 8.175 124 M 71 083 3.820 90 M 42
036 8.000 127 M 59 084 5.936 96 F 28
037 9.333 128 F 60 085 9.000 112 F 60
038 9.500 136 M 64 086 9.500 112 F 70
039 9.167 106 M 71 087 6.057 114 M 51
040 10.140 118 F 72 088 6.057 93 F 21
041 9.999 119 F 54 089 6.938 106 M 56

1.46 The Boston Marathon.

Women were allowed to enter the Boston Marathon in 1972. Here are the times (in minutes, rounded to the
nearest minute) for the winning women from 1972 to 2012:

Year Time Year Time Year Time Year Time
1972 190 1983 143 1994 142 2005 145
1973 186 1984 149 1995 145 2006 143
1974 167 1985 154 1996 147 2007 149
1975 162 1986 145 1997 146 2008 145
1976 167 1987 146 1998 143 2009 152
1977 168 1988 145 1999 143 2010 146
1978 165 1989 144 2000 146 2011 142
1979 155 1990 145 2001 144 2012 151
1980 154 1991 144 2002 141   
1981 147 1992 144 2003 145   
1982 150 1993 145 2004 144   

Make a graph that shows change over time. What overall pattern do you see? Have times stopped

improving in recent years? If so, when did improvement end?  MARATH
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1.3 Describing Distributions with Numbers

When you complete this section, you will be able to

• Describe the center of a distribution by using the mean.

• Describe the center of a distribution by using the median.

• Compare the mean and the median as measures of center for a particular
set of data.

• Describe the spread of a distribution by using quartiles.

• Describe a distribution by using the five-number summary.

• Describe a distribution by using a boxplot and a modified boxplot.

• Compare one or more sets of data measured on the same variable by
using side-by-side boxplots.

• Identify outliers by using the 1.5 × IQR rule.

• Describe the spread of a distribution by using the standard deviation.

• Choose measures of center and spread for a particular set of data.

• Compute the effects of a linear transformation on the mean, the median,
the standard deviation, and the interquartile range.

We can begin our data exploration with graphs, but numerical summaries make
our analysis more specific. A brief description of a distribution should include its
shape and numbers describing its center and spread. We describe the shape of a
distribution based on inspection of a histogram or a stemplot. Now we will learn
specific ways to use numbers to measure the center and spread of a distribution.
We can calculate these numerical measures for any quantitative variable. But to
interpret measures of center and spread, and to choose among the several measures
we will learn, you must think about the shape of the distribution and the meaning
of the data. The numbers, like graphs, are aids to understanding, not “the answer”
in themselves.

EXAMPLE
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1.23 The distribution of business start times.

TIME24

An entrepreneur faces many bureaucratic and legal hurdles when starting a
new business. The World Bank collects information about starting businesses
throughout the world. They have determined the time, in days, to complete all
the procedures required to start a business.20 Data for 184 countries are
included in the data file TIME. In this section we will examine data for a
sample of 24 of these countries. Here are the data (start times, in days):

13 66 36 12 8 27 6 7 5 7 52 48
15 7 12 94 28 5 13 60 5 5 18 18

FIGURE 1.14
Stemplot for the sample of 24 business start times, for Example 1.23.

The stemplot in Figure 1.14 shows us the shape, center, and spread of the
business start times. The stems are tens of days and the leaves are days. The
distribution is highly skewed to the right. The largest value, 94, is separated
from the rest of the distribution. We could consider this observation to be an
outlier, but it appears to be part of a very long right tail. The values range from
5 to 94 days with a center somewhere around 10.

Measuring center: the mean

Numerical description of a distribution begins with a measure of its center or
average. The two common measures of center are the mean and the median. The
mean is the “average value” and the median is the “middle value.” These are two
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different ideas for “center,” and the two measures behave differently. We need
precise recipes for the mean and the median.

THE MEAN x¯

To find the mean x¯ of a set of observations, add their values and divide by
the number of observations. If the n observations are x1, x2, . . . , xn, their mean
is

x¯=x1+x2+⋯+xnn

or, in more compact notation,

x¯=1nΣxi

The Σ (capital Greek sigma) in the formula for the mean is short for “add them
all up.” The bar over the x indicates the mean of all the x-values. Pronounce the
mean x¯ as “x-bar.” This notation is so common that writers who are discussing
data use x¯, y¯, etc. without additional explanation. The subscripts on the
observations xi are a way of keeping the n observations separate.

EXAMPLE

1.24 Mean time to start a business.

TIME24

The mean time to start a business is

x¯=x1+x2+⋯+xnn

=13+66+⋯+1824

=56724=23.625

The mean time to start a business for the 24 countries in our data set is 23.6
days. Note that we have rounded the answer. Our goal is to use the mean to
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describe the center of a distribution; it is not to demonstrate that we can
compute with great accuracy. The extra digits do not provide any additional
useful information. In fact, they distract our attention from the important digits
that are meaningful. Do you think it would be better to report the mean as 24
days?

The value of the mean will not necessarily be equal to the value of one of the
observations in the data set. Our example of time to start a business illustrates this
fact.

USE YOUR KNOWLEDGE

1.47 Include the outlier.

The complete business start time data set with 184 countries has a few
with very large start times. In constructing the data set for Example 1.23,
a random sample of 25 countries was selected. This sample included the
South American country of Suriname, where the start time is 694 days.
This country was deleted for Example 1.23. Reconstruct the original
random sample by including Suriname. Show that the mean has
increased to 50 days. (This is a rounded number. You should report the
mean with one digit after the decimal.) The effect of the outlier is to
more than double the mean.

TIME25

1.48 Find the mean.

STAT

Here are the scores on the first exam in an introductory statistics course
for 10 students:

81    73    93    85    75    98    93    55    80    90

Find the mean first-exam score for these students.
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Exercise 1.47 illustrates an important weakness of the mean as a measure of
center: the mean is sensitive to the influence of a few extreme observations. These
may be outliers, but a skewed distribution that has no outliers will also pull the
mean toward its long tail. Because the mean cannot resist the influence of extreme
observations, we say that it is not a resistant measure of center.

resistant measure

A measure that is resistant does more than limit the influence of outliers. Its
value does not respond strongly to changes in a few observations, no matter how
large those changes may be. The mean fails this requirement because we can make
the mean as large as we wish by making a large enough increase in just one
observation. A resistant measure is sometimes called a robust measure.

robust measure

Measuring center: the median

We used the midpoint of a distribution as an informal measure of center in Section
1.2. The median is the formal version of the midpoint, with a specific rule for
calculation.

THE MEDIAN M

The median M is the midpoint of a distribution. Half the observations are
smaller than the median, and the other half are larger than the median. Here is
a rule for finding the median:

1. Arrange all observations in order of size, from smallest to largest.

2. If the number of observations n is odd, the median M is the center
observation in the ordered list. Find the location of the median by counting
(n + 1)/2 observations up from the bottom of the list.

3. If the number of observations n is even, the median M is the mean of the
two center observations in the ordered list. The location of the median is
again (n + 1)/2 from the bottom of the list.

Note that the formula (n + 1)/2 does not give the median, just the location of the
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median in the ordered list. Medians require little arithmetic, so they are easy to
find by hand for small sets of data. Arranging even a moderate number of
observations in order is tedious, however, so that finding the median by hand for
larger sets of data is unpleasant. Even simple calculators have an x¯ button, but
you will need computer software or a graphing calculator to automate finding the
median.

EXAMPLE

1.25 Median time to start a business.

To find the median time to start a business for our 24 countries, we first
arrange the data in order from smallest to largest.

TIME24

5 5 5 5 6 7 7 7 8 12 12 13
13 15 18 18 27 28 36 48 52 60 66 94

The count of observations n = 24 is even. The median, then, is the average of
the two center observations in the ordered list. To find the location of the
center observations, we first compute

location of M=n+12=252=12.5

Therefore, the center observations are the 12th and 13th observations in the
ordered list. The median is

M=13+132=13

Note that you can use the stemplot in Figure 1.14 directly to compute the
median. In the stemplot the cases are already ordered and you simply need to count
from the top or the bottom to the desired location.
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USE YOUR KNOWLEDGE

1.49 Include the outlier.

Include Suriname, where the start time is 694 days, in the data set, and
show that the median is 13 days. Note that with this case included, the
sample size is now 25 and the median is the 13th observation in the
ordered list. Write out the ordered list and circle the outlier. Describe the
effect of the outlier on the median for this set of data.

TIME25

1.50 Calls to a customer service center.

The service times for 80 calls to a customer service center are given in
Table 1.2 (page 19). Use these data to compute the median service time.

CALLS80

1.51 Find the median.

STAT

Here are the scores on the first exam in an introductory statistics course
for 10 students:

81    73    93    85    75    98    93    55    80    90

Find the median first-exam score for these students.

Mean versus median

Exercises 1.47 and 1.49 illustrate an important difference between the mean and
the median. Suriname is an outlier. It pulls the mean time to start a business up
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from 24 days to 54 days. The median remained at 13 days.
The median is more resistant than the mean. If the largest start time in the data

set was 1200 days, the median for all 25 countries would still be 13 days. The
largest observation just counts as one observation above the center, no matter how
far above the center it lies. The mean uses the actual value of each observation and
so will chase a single large observation upward.

The best way to compare the response of the mean and median to extreme
observations is to use an interactive applet that allows you to place points on a line
and then drag them with your computer’s mouse. Exercises 1.85 to 1.87 use the
Mean and Median applet on the website for this book, whfreeman.com/ips8e, to
compare the mean and the median.

The median and mean are the most common measures of the center of a
distribution. The mean and median of a symmetric distribution are close together.
If the distribution is exactly symmetric, the mean and median are exactly the same.
In a skewed distribution, the mean is farther out in the long tail than is the median.

The endowment for a college or university is money set aside and invested. The
income from the endowment is usually used to support various programs. The
distribution of the sizes of the endowments of colleges and universities is strongly
skewed to the right. Most institutions have modest endowments, but a few are very
wealthy. The median endowment of colleges and universities in a recent year was
$93 million—but the mean endowment was $498 million.21 The few wealthy
institutions pull the mean up but do not affect the median. Don’t confuse the
“average” value of a variable (the mean) with its “typical” value, which we might
describe by the median.

We can now give a better answer to the question of how to deal with outliers in
data. First, look at the data to identify outliers and investigate their causes. You can
then correct outliers if they are wrongly recorded, delete them for good reason, or
otherwise give them individual attention. The outlier in Example 1.21 (page 23)
can be dropped from the data once we discover that it is an error. If you have no
clear reason to drop outliers, you may want to use resistant methods in your
analysis, so that outliers have little influence over your conclusions. The choice is
often a matter for judgment.

Measuring spread: the quartiles
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A measure of center alone can be misleading. Two countries with the same median
family income are very different if one has extremes of wealth and poverty and the
other has little variation among families. A drug manufactured with the correct
mean concentration of active ingredient is dangerous if some batches are much too
high and others much too low.

We are interested in the spread or variability of incomes and drug potencies as
well as their centers. The simplest useful numerical description of a distribution
consists of both a measure of center and a measure of spread.

We can describe the spread or variability of a distribution by giving several
percentiles. The median divides the data in two; half of the observations are above
the median and half are below the median. We could call the median the 50th
percentile. The upper quartile is the median of the upper half of the data. Similarly,
the lower quartile is the median of the lower half of the data. With the median, the
quartiles divide the data into four equal parts; 25% of the data are in each part.

quartile

We can do a similar calculation for any percent. The pth percentile of a
distribution is the value that has p percent of the observations fall at or below it. To
calculate a percentile, arrange the observations in increasing order and count up the
required percent from the bottom of the list.

percentile

Our definition of percentiles is a bit inexact because there is not always a value
with exactly p percent of the data at or below it. We will be content to take the
nearest observation for most percentiles, but the quartiles are important enough to
require an exact rule.

THE QUARTILES Q1 AND Q3

To calculate the quartiles:

1. Arrange the observations in increasing order and locate the median M in the
ordered list of observations.

2. The first quartile Q1 is the median of the observations whose positions in
the ordered list are to the left of the location of the overall median.

3. The third quartile Q3 is the median of the observations whose positions in
the ordered list are to the right of the location of the overall median.

Here is an example.
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EXAMPLE

1.26 Finding the quartiles.

TIME24

Here is the ordered list of the times to start a business in our sample of 24
countries:

5 5 5 5 6 7 7 7 8 12 12 13
13 15 18 18 27 28 36 48 52 60 66 94

The count of observations n = 24 is even, so the median is at position (24 +
1)/2 = 12.5, that is, between the 12th and the 13th observation in the ordered
list. There are 12 cases above this position and 12 below it. The first quartile is
the median of the first 12 observations, and the third quartile is the median of
the last 12 observations. Check that Q1 = 7 and Q3 = 32.

Notice that the quartiles are resistant. For example, Q3 would have the same
value if the highest start time was 940 days rather than 94 days.

Be careful when several observations take the same numerical value. Write
down all the observations and apply the rules just as if they all had distinct values.

USE YOUR KNOWLEDGE

1.52 Find the quartiles.

STAT
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Here are the scores on the first exam in an introductory statistics course
for 10 students:

81    73    93    85    75    98    93    55    80    90

Find the quartiles for these first-exam scores.

EXAMPLE

1.27 Results from software.

TIME24

Statistical software often provides several numerical measures in response to a
single command. Figure 1.15 displays such output from Minitab, JMP, and
SPSS software for the data on the time to start a business. Examine the outputs
carefully. Notice that they give different numbers of significant digits for some
of these numerical summaries. Which output do you prefer?
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FIGURE 1.15
Descriptive statistics from (a) Minitab (b) JMP, and (c) SPSS for the time to start a
business, for Example 1.27.

There are several rules for calculating quartiles, which often give slightly
different values. The differences are generally small. For describing data, just
report the values that your software gives.
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The five-number summary and boxplots

In Section 1.2, we used the smallest and largest observations to indicate the spread
of a distribution. These single observations tell us little about the distribution as a
whole, but they give information about the tails of the distribution that is missing if
we know only Q1, M, and Q3. To get a quick summary of both center and spread,
use all five numbers.

THE FIVE-NUMBER SUMMARY

The five-number summary of a set of observations consists of the smallest
observation, the first quartile, the median, the third quartile, and the largest
observation, written in order from smallest to largest. In symbols, the five-
number summary is

Minimum    Q1    M    Q3    Maximum

EXAMPLE

1.28 Service center call lengths.

CALLS80

Table 1.2 (page 19) gives the service center call lengths for the sample of 80
calls that we discussed in Example 1.15. The five-number summary for these
data is 1.0, 54.5, 103.5, 200, and 2631. The distribution is highly skewed. The
mean is 197 seconds, a value that is very close to the third quartile.
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USE YOUR KNOWLEDGE

1.53 Verify the calculations.

Refer to the five-number summary and the mean for service center call
lengths given in Example 1.28. Verify these results. Do not use software
for this exercise and be sure to show all your work.

CALLS80

1.54 Find the five-number summary.

Here are the scores on the first exam in an introductory statistics course
for 10 students:

81    73    93    85    75    98    93    55    80    90

STAT

Find the five-number summary for these first-exam scores.

The five-number summary leads to another visual representation of a
distribution, the boxplot.

BOXPLOT

A boxplot is a graph of the five-number summary.

• A central box spans the quartiles Q1 and Q3

• A line in the box marks the median M

• Lines extend from the box out to the smallest and largest observations.

The lines extending to the smallest and largest observations are sometimes
called whiskers, and boxplots are sometimes called box-and-whisker plots.
Software provides many varieties of boxplots, some of which use different choices
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for the placement of the whiskers.

whiskers

box-and-whisker plots

When you look at a boxplot, first locate the median, which marks the center of
the distribution. Then look at the spread. The quartiles show the spread of the
middle half of the data, and the extremes (the smallest and largest observations)
show the spread of the entire data set.

EXAMPLE

1.29 IQ scores.

IQ

In Example 1.14 (page 16), we used a histogram to examine the distribution of
a sample of 60 IQ scores. A boxplot for these data is given in Figure 1.16.
Note that the mean is marked with a “+” and appears very close to the median.
The two quartiles are each approximately the same distance from the median,
and the two whiskers are approximately the same distance from the
corresponding quartiles. All these characteristics are consistent with a
symmetric distribution, as illustrated by the histogram in Figure 1.9.

USE YOUR KNOWLEDGE

1.55 Make a boxplot.

Here are the scores on the first exam in an introductory statistics course
for 10 students:

81    73    93    85    75    98    93    55    80    90
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STAT

Make a boxplot for these first-exam scores.

The 1.5 × IQR rule for suspected outliers

FIGURE 1.16
Boxplot for sample of 60 IQ scores, for Example 1.29.

If we look at the data in Table 1.2 (page 19), we can spot a clear outlier, a call
lasting 2631 seconds, more than twice the length of any other call. How can we
describe the spread of this distribution? The smallest and largest observations are
extremes that do not describe the spread of the majority of the data. The distance
between the quartiles (the range of the center half of the data) is a more resistant
measure of spread than the range. This distance is called the interquartile range.

THE INTERQUARTILE RANGE IQR

The interquartile range IQR is the distance between the first and third
quartiles:
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IQR = Q3 – Q1

EXAMPLE

1.30 IQR for service center call length data.

In Exercise 1.53 (page 38) you verified that the five-number summary for our
data on service center call lengths was 1.0, 54.5, 103.5, 200, and 2631.
Therefore, we calculate

IQR = Q3 – Q1

    IQR = 200 – 54.5

    = 145.5

The quartiles and the IQR are not affected by changes in either tail of the
distribution. They are therefore resistant, because changes in a few data points have
no further effect once these points move outside the quartiles.

However, no single numerical measure of spread, such as IQR, is very useful
for describing skewed distributions. The two sides of a skewed distribution have
different spreads, so one number can’t summarize them. We can often detect
skewness from the five-number summary by comparing how far the first quartile
and the minimum are from the median (left tail) with how far the third quartile and
the maximum are from the median (right tail). The interquartile range is mainly
used as the basis for a rule of thumb for identifying suspected outliers.

THE 1.5 × IQR RULE FOR OUTLIERS

Call an observation a suspected outlier if it falls more than 1.5 × IQR above
the third quartile or below the first quartile.
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EXAMPLE

1.31 Outliers for call length data.

For the call length data in Table 1.2 (page 19),

1.5 × IQR = 1.5 × 145.5 = 218.25

CALLS80

Any values below 54.5 – 218.25 = –163.75 or above 200 + 218.25 = 418.25
are flagged as possible outliers. There are no low outliers, but the 8 longest
calls are flagged as possible high outliers. Their lengths are

438    465    479    700    700    951    1148    2631

USE YOUR KNOWLEDGE

1.56 Find the IQR.

STAT

Here are the scores on the first exam in an introductory statistics course
for 10 students:

81    73    93    85    75    98    93    55    80    90

Find the interquartile range and use the 1.5 × IQR rule to check for
outliers. How low would the lowest score need to be for it to be an
outlier according to this rule?

Two variations on the basic boxplot can be very useful. The first, called a
modified boxplot, uses the 1.5 × IQR rule. The lines that extend out from the
quartiles are terminated in whiskers that are 1.5 × IQR in length. Points beyond the
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whiskers are plotted individually and are classified as outliers according to the 1.5
× IQR rule.

modified boxplot

The other variation is to use two or more boxplots in the same graph to compare
groups measured on the same variable. These are called side-by-side boxplots. The
following example illustrates these two variations.

side-by-side boxplots

EXAMPLE

1.32 Do poets die young?

According to William Butler Yeats, “She is the Gaelic muse, for she gives
inspiration to those she persecutes. The Gaelic poets die young, for she is
restless, and will not let them remain long on earth.” One study designed to
investigate this issue examined the age at death for writers from different
cultures and genders.22

POETS

Three categories of writers examined were novelists, poets, and nonfiction
writers. We examine the ages at death for female writers in these categories
from North America. Figure 1.17 shows modified side-by-side boxplots for the
three categories of writers.
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FIGURE 1.17
Modified side-by-side boxplots for the data on writers’ age at death, for Example 1.32.

Displaying the boxplots for the three categories of writers lets us compare
the three distributions. We see that nonfiction writers tend to live the longest,
followed by novelists. The poets do appear to die young! There is one outlier
among the nonfiction writers, which is plotted individually along with the
value of its label. This writer died at the age of 40, young for a nonfiction
writer, but not for a novelist or a poet!

Measuring spread: the standard deviation

The five-number summary is not the most common numerical description of a
distribution. That distinction belongs to the combination of the mean to measure
center and the standard deviation to measure spread, or variability. The standard
deviation measures spread by looking at how far the observations are from their
mean.

THE STANDARD DEVIATION s

The variance s2 of a set of observations is the average of the squares of the
deviations of the observations from their mean. In symbols, the variance of n
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observations x1, x2, . . . , xn is

s2=(x1−x¯)2+ (x2−x¯)2+⋯+(xn−x¯)2n−1

or, in more compact notation,

s2=1n−1Σ(xi−x¯)2

The standard deviation s is the square root of the variance s2:

s=1n−1Σ(xi−x¯)2

The idea behind the variance and the standard deviation as measures of spread
is as follows: The deviations xi−x¯ display the spread of the values xi about their
mean x¯. Some of these deviations will be positive and some negative because
some of the observations fall on each side of the mean. In fact, the sum of the
deviations of the observations from their mean will always be zero. Squaring the
deviations makes the negative deviations positive, so that observations far from the
mean in either direction have large positive squared deviations. The variance is the
average squared deviation. Therefore, s2 and s will be large if the observations are
widely spread about their mean, and small if the observations are all close to the
mean.

EXAMPLE

1.33 Metabolic rate.

METABOL

A person’s metabolic rate is the rate at which the body consumes energy.
Metabolic rate is important in studies of weight gain, dieting, and exercise.
Here are the metabolic rates of 7 men who took part in a study of dieting. (The
units are calories per 24 hours. These are the same calories used to describe the
energy content of foods.)
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FIGURE 1.18
Metabolic rates for seven men, with the mean (*) and the deviations of two observations
from the mean, for Example 1.33.

1792    1666    1362    1614    1460    1867    1439

Enter these data into your calculator or software and verify that

x¯ = 1600 calories      s = 189.24 calories

Figure 1.18 plots these data as dots on the calorie scale, with their mean
marked by an asterisk (*). The arrows mark two of the deviations from the
mean. If you were calculating s by hand, you would find the first deviation as

xi−x¯=1792−1600=192

Exercise 1.82 asks you to calculate the seven deviations from Example 1.33,
square them, and find s2 and s directly from the deviations. Working one or two
short examples by hand helps you understand how the standard deviation is
obtained. In practice, you will use either software or a calculator that will find s.
The software outputs in Figure 1.15 (page 37) give the standard deviation for the
data on the time to start a business.

USE YOUR KNOWLEDGE

1.57 Find the variance and the standard deviation.

STAT

Here are the scores on the first exam in an introductory statistics course
for 10 students:

81    73    93    85    75    98    93    55    80    90

Find the variance and the standard deviation for these first-exam scores.
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The idea of the variance is straightforward: it is the average of the squares of
the deviations of the observations from their mean. The details we have just
presented, however, raise some questions.
Why do we square the deviations?

• First, the sum of the squared deviations of any set of observations from their
mean is the smallest that the sum of squared deviations from any number can
possibly be. This is not true of the unsquared distances. So squared deviations
point to the mean as center in a way that distances do not.

• Second, the standard deviation turns out to be the natural measure of spread for a
particularly important class of symmetric unimodal distributions, the Normal
distributions. We will meet the Normal distributions in the next section.

Why do we emphasize the standard deviation rather than the variance?

• One reason is that s, not s2, is the natural measure of spread for Normal
distributions, which are introduced in the next section.

• There is also a more general reason to prefer s to s2. Because the variance
involves squaring the deviations, it does not have the same unit of measurement as
the original observations. The variance of the metabolic rates, for example, is
measured in squared calories. Taking the square root gives us a description of the
spread of the distribution in the original measurement units.

Why do we average by dividing by n – 1 rather than n in calculating the variance?

• Because the sum of the deviations is always zero, the last deviation can be found
once we know the other n – 1. So we are not averaging n unrelated numbers. Only
n – 1 of the squared deviations can vary freely, and we average by dividing the
total by n – 1.

• The number n – 1 is called the degrees of freedom of the variance or standard
deviation. Many calculators offer a choice between dividing by n and dividing by n
– 1, so be sure to use n – 1.

degrees of freedom

Properties of the standard deviation

Here are the basic properties of the standard deviation s as a measure of spread.

PROPERTIES OF THE STANDARD DEVIATION

• s measures spread about the mean and should be used only when the mean is
chosen as the measure of center.
• s = 0 only when there is no spread. This happens only when all observations
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have the same value. Otherwise, s > 0. As the observations become more
spread out about their mean, s gets larger.
• s, like the mean x¯, is not resistant. A few outliers can make s very large.

USE YOUR KNOWLEDGE

1.58 A standard deviation of zero.

Construct a data set with 5 cases that has a variable with s = 0.

The use of squared deviations renders s even more sensitive than x¯ to a few
extreme observations. For example, when we add Suriname to our sample of 24
countries for the analysis of the time to start a business (Example 1.24 and
Exercise 1.47), we increase the standard deviation from 23.8 to 137.9!
Distributions with outliers and strongly skewed distributions have standard
deviations that do not give much helpful information about such distributions.

USE YOUR KNOWLEDGE

1.59 Effect of an outlier on the IQR.

Find the IQR for the time to start a business with and without Suriname.
What do you conclude about the sensitivity of this measure of spread to
the inclusion of an outlier?

TIME24, TIME25

Choosing measures of center and spread
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How do we choose between the five-number summary and x¯ and s to describe the
center and spread of a distribution? Because the two sides of a strongly skewed
distribution have different spreads, no single number such as s describes the spread
well. The five-number summary, with its two quartiles and two extremes, does a
better job.

CHOOSING A SUMMARY

The five-number summary is usually better than the mean and standard
deviation for describing a skewed distribution or a distribution with strong
outliers. Use x¯ and s for reasonably symmetric distributions that are free of
outliers.

Remember that a graph gives the best overall picture of a distribution.
Numerical measures of center and spread report specific facts about a distribution,
but they do not describe its shape. Numerical summaries do not disclose the
presence of multiple modes or gaps, for example. Always plot your data.

Changing the unit of measurement

The same variable can be recorded in different units of measurement. Americans
commonly record distances in miles and temperatures in degrees Fahrenheit, while
the rest of the world measures distances in kilometers and temperatures in degrees
Celsius. Fortunately, it is easy to convert numerical descriptions of a distribution
from one unit of measurement to another. This is true because a change in the
measurement unit is a linear transformation of the measurements.

LINEAR TRANSFORMATIONS

A linear transformation changes the original variable x into the new variable
xnew given by an equation of the form

xnew = a + bx

Adding the constant a shifts all values of x upward or downward by the same
amount. In particular, such a shift changes the origin (zero point) of the
variable. Multiplying by the positive constant b changes the size of the unit of
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measurement.

EXAMPLE

1.34 Change the units.

(a) If a distance x is measured in kilometers, the same distance in miles is

xnew = 0.62x

For example, a 10-kilometer race covers 6.2 miles. This transformation
changes the units without changing the origin—a distance of 0 kilometers is
the same as a distance of 0 miles.

(b) A temperature x measured in degrees Fahrenheit must be reexpressed in degrees Celsius to be
easily understood by the rest of the world. The transformation is

xnew=59(x−32)=−1609+59x

Thus, the high of 95°F on a hot American summer day translates into 35°C. In
this case

a=−1609and b=59

This linear transformation changes both the unit size and the origin of the
measurements. The origin in the Celsius scale (0°C, the temperature at which
water freezes) is 32° in the Fahrenheit scale.

Linear transformations do not change the shape of a distribution. If
measurements on a variable x have a right-skewed distribution, any new variable
xnew obtained by a linear transformation xnew = a + bx (for b > 0) will also have a
right-skewed distribution. If the distribution of x is symmetric and unimodal, the
distribution of xnew remains symmetric and unimodal.

Although a linear transformation preserves the basic shape of a distribution, the
center and spread will change. Because linear changes of measurement scale are
common, we must be aware of their effect on numerical descriptive measures of
center and spread. Fortunately, the changes follow a simple pattern.
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EXAMPLE

1.35 Use scores to find the points.

In an introductory statistics course, homework counts for 300 points out of a
total of 1000 possible points for all course requirements. During the semester
there were 12 homework assignments, and each was given a grade on a scale
of 0 to 100. The maximum total score for the 12 homework assignments is
therefore 1200. To convert the homework scores to final grade points, we need
to convert the scale of 0 to 1200 to a scale of 0 to 300. We do this by
multiplying the homework scores by 300/1200. In other words, we divide the
homework scores by 4. Here are the homework scores and the corresponding
final grade points for 5 students:

Student 1 2 3 4 5
Score 1056 1080 900 1164 1020
Points 264 270 225 291 255

These two sets of numbers measure the same performance on homework for
the course. Since we obtained the points by dividing the scores by 4, the mean
of the points will be the mean of the scores divided by 4. Similarly, the
standard deviation of points will be the standard deviation of the scores
divided by 4.

USE YOUR KNOWLEDGE

1.60 Calculate the points for a student.

Use the setting of Example 1.35 to find the points for a student whose
score is 850.

Here is a summary of the rules for linear transformations.

EFFECT OF A LINEAR TRANSFORMATION

To see the effect of a linear transformation on measures of center and spread,
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apply these rules:
• Multiplying each observation by a positive number b multiplies both
measures of center (mean and median) and measures of spread (interquartile
range and standard deviation) by b.

• Adding the same number a (either positive or negative) to each observation
adds a to measures of center and to quartiles and other percentiles but does not
change measures of spread.

In Example 1.35, when we converted from score to points, we described the
transformation as dividing by 4. The multiplication part of the summary of the
effect of a linear transformation applies to this case because division by 4 is the
same as multiplication by 0.25. Similarly, the second part of the summary applies
to subtraction as well as addition because subtraction is simply the addition of a
negative number.

The measures of spread IQR and s do not change when we add the same
number a to all the observations because adding a constant changes the location of
the distribution but leaves the spread unaltered. You can find the effect of a linear
transformation xnew = a + bx by combining these rules. For example, if x has mean
x¯, the transformed variable xnew has mean a+bx¯.

SECTION 1.3 Summary

A numerical summary of a distribution should report its center and its spread, or
variability.

The mean x¯ and the median M describe the center of a distribution in
different ways. The mean is the arithmetic average of the observations, and the
median is their midpoint.

When you use the median to describe the center of a distribution, describe its
spread by giving the quartiles. The first quartile Q1 has one-fourth of the
observations below it, and the third quartile Q3 has three-fourths of the
observations below it.

The interquartile range is the difference between the quartiles. It is the spread
of the center half of the data. The 1.5 × IQR rule flags observations more than 1.5
× IQR beyond the quartiles as possible outliers.

The five-number summary consisting of the median, the quartiles, and the
smallest and largest individual observations provides a quick overall description of
a distribution. The median describes the center, and the quartiles and extremes
show the spread.

Boxplots based on the five-number summary are useful for comparing several
distributions. The box spans the quartiles and shows the spread of the central half
of the distribution. The median is marked within the box. Lines extend from the
box to the extremes and show the full spread of the data. In a modified boxplot,
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points identified by the 1.5 × IQR rule are plotted individually. Side-by-side
boxplots can be used to display boxplots for more than one group on the same
graph.

The variance s2 and especially its square root, the standard deviation s, are
common measures of spread about the mean as center. The standard deviation s is
zero when there is no spread and gets larger as the spread increases.

A resistant measure of any aspect of a distribution is relatively unaffected by
changes in the numerical value of a small proportion of the total number of
observations, no matter how large these changes are. The median and quartiles are
resistant, but the mean and the standard deviation are not.

The mean and standard deviation are good descriptions for symmetric
distributions without outliers. They are most useful for the Normal distributions
introduced in the next section. The five-number summary is a better exploratory
description for skewed distributions.

Linear transformations have the form xnew = a + bx. A linear transformation
changes the origin if a≠0 and changes the size of the unit of measurement if b > 0.
Linear transformations do not change the overall shape of a distribution. A linear
transformation multiplies a measure of spread by b and changes a percentile or
measure of center m into a + bm.

Numerical measures of particular aspects of a distribution, such as center and
spread, do not report the entire shape of most distributions. In some cases,
particularly distributions with multiple peaks and gaps, these measures may not be
very informative.

SECTION 1.3 Exercises
For Exercises 1.47 and 1.48, see page 32; for Exercises 1.49 to 1.51, see page 34; for Exercise 1.52, see
page 36; for Exercises 1.53 and 1.54, see page 38; for Exercise 1.55, see page 39; for Exercise 1.56, see
page 41; for Exercise 1.57, see page 43; for Exercise 1.58, see page 44; for Exercise 1.59, see page 45;
and for Exercise 1.60, see page 47.

1.61 Gosset’s data on double stout sales.

William Sealy Gosset worked at the Guinness Brewery in Dublin and made substantial contributions to the
practice of statistics.23 In his work at the brewery he collected and analyzed a great deal of data. Archives
with Gosset’s handwritten tables, graphs, and notes have been preserved at the Guinness Storehouse in
Dublin.24 In one study, Gosset examined the change in the double stout market before and after World
War I (1914–1918). For various regions in England and Scotland, he calculated the ratio of sales in 1925,

after the war, as a percent of sales in 1913, before the war. Here are the data:  STOUT

Bristol 94 Glasgow 66
Cardiff 112 Liverpool 140
English Agents 78 London 428
English O 68 Manchester 190
English P 46 Newcastle-on-Tyne 118
English R 111 Scottish 24
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(a) Compute the mean for these data.

(b) Compute the median for these data.

(c) Which measure do you prefer for describing the center of this distribution? Explain your answer. (You
may include a graphical summary as part of your explanation.)

1.62 Measures of spread for the double stout data.

Refer to the previous exercise.  STOUT

(a) Compute the standard deviation for these data.

(b) Compute the quartiles for these data.

(c) Which measure do you prefer for describing the spread of this distribution? Explain your answer. (You
may include a graphical summary as part of your explanation.)

1.63 Are there outliers in the double stout data?

Refer to Exercise 1.61.  STOUT

(a) Find the IQR for these data.

(b) Use the 1.5 × IQR rule to identify and name any outliers.

(c) Make a boxplot for these data and describe the distribution using only the information in the boxplot.

(d) Make a modified boxplot for these data and describe the distribution using only the information in the
boxplot.

(e) Make a stemplot for these data.

(f) Compare the boxplot, the modified boxplot, and the stemplot. Evaluate the advantages and
disadvantages of each graphical summary for describing the distribution of the double stout data.

1.64 Smolts.

Smolts are young salmon at a stage when their skin becomes covered with silvery scales and they start to
migrate from freshwater to the sea. The reflectance of a light shined on a smolt’s skin is a measure of the

smolt’s readiness for the migration. Here are the reflectances, in percents, for a sample of 50 smolts:25 
SMOLTS

57.6 54.8 63.4 57.0 54.7 42.3 63.6 55.5 33.5 63.3
58.3 42.1 56.1 47.8 56.1 55.9 38.8 49.7 42.3 45.6
69.0 50.4 53.0 38.3 60.4 49.3 42.8 44.5 46.4 44.3
58.9 42.1 47.6 47.9 69.2 46.6 68.1 42.8 45.6 47.3
59.6 37.8 53.9 43.2 51.4 64.5 43.8 42.7 50.9 43.8

(a) Find the mean reflectance for these smolts.

(b) Find the median reflectance for these smolts.
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(c) Do you prefer the mean or the median as a measure of center for these data? Give reasons for your
preference.

1.65 Measures of spread for smolts.

Refer to the previous exercise.  SMOLTS

(a) Find the standard deviation of the reflectance for these smolts.

(b) Find the quartiles of the reflectance for these smolts.

(c) Do you prefer the standard deviation or the quartiles as a measure of spread for these data? Give
reasons for your preference.

1.66 Are there outliers in the smolt data?

Refer to Exercise 1.64.  SMOLTS

(a) Find the IQR for the smolt data.

(b) Use the 1.5 × IQR rule to identify any outliers.

(c) Make a boxplot for the smolt data and describe the distribution using only the information in the
boxplot.

(d) Make a modified boxplot for these data and describe the distribution using only the information in the
boxplot.

(e) Make a stemplot for these data.

(f) Compare the boxplot, the modified boxplot, and the stemplot. Evaluate the advantages and
disadvantages of each graphical summary for describing the distribution of the smolt reflectance data.

1.67 The value of brands.

A brand is a symbol or images that are associated with a company. An effective brand identifies the
company and its products. Using a variety of measures, dollar values for brands can be calculated.26 The
most valuable brand is Apple, with a value of $76.568 million. Apple is followed by Google at $69.726
million, Coca-Cola at $67.839 million, Microsoft at $57.853 million, and IBM at $57.532 million. For this
exercise you will use the brand values (in millions of dollars) for the top 100 brands in the data file

BRANDS.  BRANDS

(a) Graphically display the distribution of the values of these brands.

(b) Use numerical measures to summarize the distribution.

(c) Write a short paragraph discussing the dollar values of the top 100 brands. Include the results of your
analysis.

1.68 Alcohol content of beer.

Brewing beer involves a variety of steps that can affect the alcohol content. The data file BEER gives the
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percent alcohol for 153 domestic brands of beer.27  BEER

(a) Use graphical and numerical summaries of your choice to describe these data. Give reasons for your
choices.

(b) Give the alcohol content and the brand of any outliers. Explain how you determined that they were
outliers.

1.69 Remove the outliers for alcohol content of beer.

Refer to the previous exercise.  BEER

(a) Calculate the mean with and without the outliers. Do the same for the median. Explain how these
statistics change when the outliers are excluded.

(b) Calculate the standard deviation with and without the outliers. Do the same for the quartiles. Explain
how these statistics change when the outliers are excluded.

(c) Write a short paragraph summarizing what you have learned in this exercise.

1.70 Calories in beer.

Refer to the previous two exercises. The data file also gives the calories per 12 ounces of beverage. 
BEER

(a) Analyze the data and summarize the distribution of calories for these 153 brands of beer.

(b) In Exercise 1.68 you identified outliers. To what extent are these brands outliers in the distribution of
calories? Explain your answer.

1.71 Potatoes.

A quality product is one that is consistent and has very little variability in its characteristics. Controlling
variability can be more difficult with agricultural products than with those that are manufactured. The

following table gives the weights, in ounces, of the 25 potatoes sold in a 10-pound bag.  POTATO

7.6 7.9 8.0 6.9 6.7 7.9 7.9 7.9 7.6 7.8 7.0 4.7 7.6
6.3 4.7 4.7 4.7 6.3 6.0 5.3 4.3 7.9 5.2 6.0 3.7  

(a) Summarize the data graphically and numerically. Give reasons for the methods you chose to use in your
summaries.

(b) Do you think that your numerical summaries do an effective job of describing these data? Why or why
not?

(c) There appear to be two distinct clusters of weights for these potatoes. Divide the sample into two
subsamples based on the clustering. Give the mean and standard deviation for each subsample. Do you
think that this way of summarizing these data is better than a numerical summary that uses all the data as a
single sample? Give a reason for your answer.

1.72 Longleaf pine trees.
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The Wade Tract in Thomas County, Georgia, is an old-growth forest of longleaf pine trees (Pinus
palustris) that has survived in a relatively undisturbed state since before the settlement of the area by
Europeans. A study collected data on 584 of these trees.28 One of the variables measured was the diameter
at breast height (DBH). This is the diameter of the tree at 4.5 feet and the units are centimeters (cm). Only
trees with DBH greater than 1.5 cm were sampled. Here are the diameters of a random sample of 40 of

these trees:  PINES

10.5 13.3 26.0 18.3 52.2 9.2 26.1 17.6 40.5 31.8
47.2 11.4 2.7 69.3 44.4 16.9 35.7 5.4 44.2 2.2

4.3 7.8 38.1 2.2 11.4 51.5 4.9 39.7 32.6 51.8
43.6 2.3 44.6 31.5 40.3 22.3 43.3 37.5 29.1 27.9

(a) Find the five-number summary for these data.

(b) Make a boxplot.

(c) Make a histogram.

(d) Write a short summary of the major features of this distribution. Do you prefer the boxplot or the
histogram for these data?

1.73 Blood proteins in children from Papua New Guinea.

C-reactive protein (CRP) is a substance that can be measured in the blood. Values increase substantially
within 6 hours of an infection and reach a peak within 24 to 48 hours. In adults, chronically high values
have been linked to an increased risk of cardiovascular disease. In a study of apparently healthy children
aged 6 to 60 months in Papua New Guinea, CRP was measured in 90 children.29 The units are milligrams

per liter (mg/l). Here are the data from a random sample of 40 of these children:  CRP

0.00 3.90 5.64 8.22 0.00 5.62 3.92 6.81 30.61 0.00
73.20 0.00 46.70 0.00 0.00 26.41 22.82 0.00 0.00 3.49

0.00 0.00 4.81 9.57 5.36 0.00 5.66 0.00 59.76 12.38
15.74 0.00 0.00 0.00 0.00 9.37 20.78 7.10 7.89 5.53

(a) Find the five-number summary for these data.

(b) Make a boxplot.

(c) Make a histogram.

(d) Write a short summary of the major features of this distribution. Do you prefer the boxplot or the
histogram for these data?

 1.74 Does a log transform reduce the skewness?

Refer to the previous exercise. With strongly skewed distributions such as this, we frequently reduce the
skewness by taking a log transformation. We have a bit of a problem here, however, because some of the
data are recorded as 0.00, and the logarithm of zero is not defined. For this variable, the value 0.00 is
recorded whenever the amount of CRP in the blood is below the level that the measuring instrument is
capable of detecting. The usual procedure in this circumstance is to add a small number to each observation
before taking the logs. Transform these data by adding 1 to each observation and then taking the logarithm.
Use the questions in the previous exercise as a guide to your analysis, and prepare a summary contrasting
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this analysis with the one that you performed in the previous exercise.  CRP

 1.75 Vitamin A deficiency in children from Papua New Guinea.

In the Papua New Guinea study that provided the data for the previous two exercises, the researchers also
measured serum retinol. A low value of this variable can be an indicator of vitamin A deficiency. Here are
the data on the same sample of 40 children from this study. The units are micromoles per liter μmol/l).

1.15 1.36 0.38 0.34 0.35 0.37 1.17 0.97 0.97 0.67
0.31 0.99 0.52 0.70 0.88 0.36 0.24 1.00 1.13 0.31
1.44 0.35 0.34 1.90 1.19 0.94 0.34 0.35 0.33 0.69
0.69 1.04 0.83 1.11 1.02 0.56 0.82 1.20 0.87 0.41

Analyze these data. Use the questions in the previous two exercises as a guide.  VITA

1.76 Luck and puzzle solving.

Children in a psychology study were asked to solve some puzzles and were then given feedback on their
performance. They then were asked to rate how luck played a role in determining their scores.30 This
variable was recorded on a 1 to 10 scale with 1 corresponding to very lucky and 10 corresponding to very
unlucky. Here are the scores for 60 children:

1 10 1 10 1 1 10 5 1 1 8 1 10 2 1
9 5 2 1 8 10 5 9 10 10 9 6 10 1 5
1 9 2 1 7 10 9 5 10 10 10 1 8 1 6

10 1 6 10 10 8 10 3 10 8 1 8 10 4 2

Use numerical and graphical methods to describe these data. Write a short report summarizing your work. 

 LUCK

1.77 Median versus mean for net worth.

A report on the assets of American households says that the median net worth of U.S. families is $77,300.
The mean net worth of these families is $498,800.31 What explains the difference between these two
measures of center?

1.78 Create a data set.

Create a data set with 9 observations for which the median would change by a large amount if the smallest
observation were deleted.

1.79 Mean versus median.

A small accounting firm pays each of its six clerks $45,000, two junior accountants $70,000 each, and the
firm’s owner $420,000. What is the mean salary paid at this firm? How many of the employees earn less
than the mean? What is the median salary?
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1.80 Be careful about how you treat the zeros.

In computing the median income of any group, some federal agencies omit all members of the group who
had no income. Give an example to show that the reported median income of a group can go down even
though the group becomes economically better off. Is this also true of the mean income?

1.81 How does the median change?

The firm in Exercise 1.79 gives no raises to the clerks and junior accountants, while the owner’s take
increases to $500,000. How does this change affect the mean? How does it affect the median?

1.82 Metabolic rates.

Calculate the mean and standard deviation of the metabolic rates in Example 1.33 (page 42), showing each
step in detail. First find the mean x¯ by summing the 7 observations and dividing by 7. Then find each of
the deviations xi−x¯ and their squares. Check that the deviations have sum 0. Calculate the variance as an
average of the squared deviations (remember to divide by n – 1). Finally, obtain s as the square root of the

variance.  METABOL

 1.83 Earthquakes.

Each year there are about 900,000 earthquakes of magnitude 2.5 or less that are usually not felt. In contrast,
there are about 10 of magnitude 7.0 that cause serious damage.32 Explain why the average magnitude of
earthquakes is not a good measure of their impact.

1.84 IQ scores.

Many standard statistical methods that you will study in Part II of this book are intended for use with
distributions that are symmetric and have no outliers. These methods start with the mean and standard
deviation, x¯ and s. For example, standard methods would typically be used for the IQ and GPA data in

Table 1.3 (page 29).  IQGPA

(a) Find x¯ and s for the IQ data. In large populations, IQ scores are standardized to have mean 100 and
standard deviation 15. In what way does the distribution of IQ among these students differ from the overall
population?

(b) Find the median IQ score. It is, as we expect, close to the mean.

(c) Find the mean and median for the GPA data. The two measures of center differ a bit. What feature of
the data (see your stemplot in Exercise 1.43 or make a new stemplot) explains the difference?

 1.85 Mean and median for two observations.

The Mean and Median applet allows you to place observations on a line and see their mean and median
visually. Place two observations on the line by clicking below it. Why does only one arrow appear?

 1.86 Mean and median for three observations.
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In the Mean and Median applet, place three observations on the line by clicking below it, two close
together near the center of the line and one somewhat to the right of these two.

(a) Pull the single rightmost observation out to the right. (Place the cursor on the point, hold down a mouse
button, and drag the point.) How does the mean behave? How does the median behave? Explain briefly
why each measure acts as it does.

(b) Now drag the rightmost point to the left as far as you can. What happens to the mean? What happens to
the median as you drag this point past the other two (watch carefully)?

 1.87 Mean and median for five observations.

Place five observations on the line in the Mean and Median applet by clicking below it.

(a) Add one additional observation without changing the median. Where is your new point?

(b) Use the applet to convince yourself that when you add yet another observation (there are now seven in
all), the median does not change no matter where you put the seventh point. Explain why this must be true.

1.88 Hummingbirds and flowers.

Different varieties of the tropical flower Heliconia are fertilized by different species of hummingbirds.
Over time, the lengths of the flowers and the form of the hummingbirds’ beaks have evolved to match each
other. Here are data on the lengths in millimeters of three varieties of these flowers on the island of
Dominica:33

H. bihai
47.12 46.75 46.81 47.12 46.67 47.43 46.44 46.64
48.07 48.34 48.15 50.26 50.12 46.34 46.94 48.36

H. caribaea red
41.90 42.01 41.93 43.09 41.47 41.69 39.78 40.57
39.63 42.18 40.66 37.87 39.16 37.40 38.20 38.07
38.10 37.97 38.79 38.23 38.87 37.78 38.01

H. caribaea yellow
36.78 37.02 36.52 36.11 36.03 35.45 38.13 37.1
35.17 36.82 36.66 35.68 36.03 34.57 34.63

Make boxplots to compare the three distributions. Report the five-number summaries along with your

graph. What are the most important differences among the three varieties of flowers?  HELICON

1.89 Compare the three varieties of flowers.

The biologists who collected the flower length data in the previous exercise compared the three Heliconia

varieties using statistical methods based on x¯ and s.  HELICON

(a) Find x¯ and s for each variety.

(b) Make a stemplot of each set of flower lengths. Do the distributions appear suitable for use of x¯ and s
as summaries?
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1.90 Imputation.

Various problems with data collection can cause some observations to be missing. Suppose a data set has

20 cases. Here are the values of the variable x for 10 of these cases:  IMPUTE

17    6    12    14    20    23    9    12    16    21
The values for the other 10 cases are missing. One way to deal with missing data is called imputation. The
basic idea is that missing values are replaced, or imputed, with values that are based on an analysis of the
data that are not missing. For a data set with a single variable, the usual choice of a value for imputation is
the mean of the values that are not missing. The mean for this data set is 15.

(a) Verify that the mean is 15 and find the standard deviation for the 10 cases for which x is not missing.

(b) Create a new data set with 20 cases by setting the values for the 10 missing cases to 15. Compute the
mean and standard deviation for this data set.

(c) Summarize what you have learned about the possible effects of this type of imputation on the mean and
the standard deviation.

 1.91 Create a data set.

Give an example of a small set of data for which the mean is smaller than the third quartile.

1.92 Create another data set.

Create a set of 5 positive numbers (repeats allowed) that have median 11 and mean 8. What thought
process did you use to create your numbers?

 1.93 A standard deviation contest.

This is a standard deviation contest. You must choose four numbers from the whole numbers 0 to 20, with
repeats allowed.

(a) Choose four numbers that have the smallest possible standard deviation.

(b) Choose four numbers that have the largest possible standard deviation.

(c) Is more than one choice possible in either (a) or (b)? Explain.

 1.94 Deviations from the mean sum to zero.

Use the definition of the mean x¯ to show that the sum of the deviations xi−x¯ of the observations from
their mean is always zero. This is one reason why the variance and standard deviation use squared
deviations.

1.95 Does your software give incorrect answers?

This exercise requires a calculator with a standard deviation button or statistical software on a computer.
The observations
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30,001    30,002    30,003

have mean x¯=30,002 and standard deviation s = 1. Adding a 0 in the center of each number, the next set
becomes

300,001    300,003    300,003

The standard deviation remains s = 1 as more 0s are added. Use your calculator or computer to calculate
the standard deviation of these numbers, adding extra 0s until you get an incorrect answer. How soon did
you go wrong? This demonstrates that calculators and computers cannot handle an arbitrary number of
digits correctly.

1.96 Compare three varieties of flowers.

Exercise 1.88 reports data on the lengths in millimeters of flowers of three varieties of Heliconia. In
Exercise 1.89 you found the mean and standard deviation for each variety. Starting from the x¯- and s-
values in millimeters, find the means and standard deviations in inches. (A millimeter is 1/1000 of a meter.
A meter is 39.37 inches.)

1.97 Weight gain.

A study of diet and weight gain deliberately overfed 12 volunteers for eight weeks. The mean increase in
fat was x¯=2.32 kilograms, and the standard deviation was s = 1.21 kilograms. What are x¯ and s in
pounds? (A kilogram is 2.2 pounds.)

 1.98 Changing units from inches to centimeters.

Changing the unit of length from inches to centimeters multiplies each length by 2.54 because there are
2.54 centimeters in an inch. This change of units multiplies our usual measures of spread by 2.54. This is
true of IQR and the standard deviation. What happens to the variance when we change units in this way?

1.99 A different type of mean.

The trimmed mean is a measure of center that is more resistant than the mean but uses more of the
available information than the median. To compute the 10% trimmed mean, discard the highest 10% and
the lowest 10% of the observations and compute the mean of the remaining 80%. Trimming eliminates the
effect of a small number of outliers. Compute the 10% trimmed mean of the service time data in Table 1.2
(page 19). Then compute the 20% trimmed mean. Compare the values of these measures with the median
and the ordinary untrimmed mean.

 1.100 Changing units from centimeters to inches.

Refer to Exercise 1.72 (page 50). Change the measurements from centimeters to inches by multiplying
each value by 0.39. Answer the questions from that exercise and explain the effect of the transformation on
these data.
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1.4 Density Curves and Normal Distributions

When you complete this section, you will be able to

• Compare the mean and the median for symmetric and skewed
distributions.

• Sketch a Normal distribution for any given mean and standard deviation.

• Apply the 68–95–99.7 rule to find proportions of observations within 1, 2,
and 3 standard deviations of the mean for any Normal distribution.

• Transform values of a variable from a general Normal distribution to the
standard Normal distribution.

• Compute areas under a Normal curve using software or Table A.

• Perform inverse Normal calculations to find values of a Normal variable
corresponding to various areas.

• Assess the extent to which the distribution of a set of data can be
approximated by a Normal distribution.

We now have a kit of graphical and numerical tools for describing distributions.
What is more, we have a clear strategy for exploring data on a single quantitative
variable:

1. Always plot your data: make a graph, usually a stemplot or a histogram.

2. Look for the overall pattern and for striking deviations such as outliers.

3. Calculate an appropriate numerical summary to briefly describe center and
spread.

Technology has expanded the set of graphs that we can choose for Step 1. It is
possible, though painful, to make histograms by hand. Using software, clever
algorithms can describe a distribution in a way that is not feasible by hand, by
fitting a smooth curve to the data in addition to or instead of a histogram. The
curves used are called density curves. Before we examine density curves in detail,
here is an example of what software can do.

density curve
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EXAMPLE

1.36 Density curves for times to start a business and Titanic passenger
ages.

TIME
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FIGURE 1.19
(a) The distribution of the time to start a business, for Example 1.36. The distribution is
pictured with both a histogram and a density curve. (b) The distribution of the ages of the
Titanic passengers, for Example 1.36. These distributions have a single mode with tails of
two different lengths.

Figure 1.19 illustrates the use of density curves along with histograms to
describe distributions. Figure 1.19(a) shows the distribution of the times to
start a business for 194 countries (see Example 1.23, page 31). The outlier,
Surinam, described in Exercise 1.47 (page 32), has been deleted from the data
set. The distribution is highly skewed to the right. Most of the data are in the
first two classes, with 40 or fewer days to start a business.

Exercise 1.25 (page 33) describes data on the class of the ticket of the
Titanic passengers, and Figure 1.19(b) shows the distribution of the ages of
these passengers. It has a single mode, a long right tail, and a relatively short
left tail.

TITANIC

A smooth density curve is an idealization that gives the overall pattern of the
data but ignores minor irregularities. We turn now to a special class of density
curves, the bell-shaped Normal curves.
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Density curves

One way to think of a density curve is as a smooth approximation to the irregular
bars of a histogram. Figure 1.20 shows a histogram of the scores of all 947
seventh-grade students in Gary, Indiana, on the vocabulary part of the Iowa Test of
Basic Skills. Scores of many students on this national test have a very regular
distribution. The histogram is symmetric, and both tails fall off quite smoothly
from a single center peak. There are no large gaps or obvious outliers. The curve
drawn through the tops of the histogram bars in Figure 1.20 is a good description
of the overall pattern of the data.

EXAMPLE

1.37 Vocabulary scores.
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FIGURE 1.20
(a) The distribution of Iowa Test vocabulary scores for Gary, Indiana, seventh-graders, for
Example 1.37. The shaded bars in the histogram represent scores less than or equal to 6.0.
(b) The shaded area under the Normal density curve also represents scores less than or
equal to 6.0. This area is 0.293, close to the true 0.303 for the actual data.

In a histogram, the areas of the bars represent either counts or proportions of
the observations. In Figure 1.20(a) we have shaded the bars that represent
students with vocabulary scores 6.0 or lower. There are 287 such students,
who make up the proportion 287/947 = 0.303 of all Gary seventh-graders. The
shaded bars in Figure 1.20(a) make up proportion 0.303 of the total area under
all the bars. If we adjust the scale so that the total area of the bars is 1, the area
of the shaded bars will also be 0.303.

In Figure 1.20(b), we have shaded the area under the curve to the left of
6.0. If we adjust the scale so that the total area under the curve is exactly 1,
areas under the curve will then represent proportions of the observations. That
is, area = proportion. The curve is then a density curve. The shaded area under
the density curve in Figure 1.20(b) represents the proportion of students with
score 6.0 or lower. This area is 0.293, only 0.010 away from the histogram
result. You can see that areas under the density curve give quite good
approximations of areas given by the histogram.

DENSITY CURVE
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A density curve is a curve that

• is always on or above the horizontal axis and

• has area exactly 1 underneath it.

A density curve describes the overall pattern of a distribution. The area under
the curve and above any range of values is the proportion of all observations
that fall in that range.

The density curve in Figure 1.20 is a Normal curve. Density curves, like
distributions, come in many shapes. Figure 1.21 shows two density curves, a
symmetric Normal density curve and a right-skewed curve.

We will discuss Normal density curves in detail in this section because of the
important role that they play in statistics. There are, however, many applications
where the use of other families of density curves are essential.

A density curve of an appropriate shape is often an adequate description of the
overall pattern of a distribution. Outliers, which are deviations from the overall
pattern, are not described by the curve.

Measuring center and spread for density curves
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FIGURE 1.21
(a) A symmetric Normal density curve with its mean and median marked. (b) A right-skewed
density curve with its mean and median marked.

Our measures of center and spread apply to density curves as well as to actual sets
of observations, but only some of these measures are easily seen from the curve. A
mode of a distribution described by a density curve is a peak point of the curve, the
location where the curve is highest. Because areas under a density curve represent
proportions of the observations, the median is the point with half the total area on
each side. You can roughly locate the quartiles by dividing the area under the
curve into quarters as accurately as possible by eye. The IQR is the distance
between the first and third quartiles. There are mathematical ways of calculating
areas under curves. These allow us to locate the median and quartiles exactly on
any density curve.

FIGURE 1.22
The mean of a density curve is the point at which it would balance.

What about the mean and standard deviation? The mean of a set of observations
is their arithmetic average. If we think of the observations as weights strung out
along a thin rod, the mean is the point at which the rod would balance. This fact is
also true of density curves. The mean is the point at which the curve would balance
if it were made out of solid material. Figure 1.22 illustrates this interpretation of
the mean.

A symmetric curve, such as the Normal curve in Figure 1.21(a), balances at its
center of symmetry. Half the area under a symmetric curve lies on either side of its
center, so this is also the median.
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For a right-skewed curve, such as those shown in Figures 1.21(b) and 1.22, the
small area in the long right tail tips the curve more than the same area near the
center. The mean (the balance point) therefore lies to the right of the median. It is
hard to locate the balance point by eye on a skewed curve. There are mathematical
ways of calculating the mean for any density curve, so we are able to mark the
mean as well as the median in Figure 1.21(b). The standard deviation can also be
calculated mathematically, but it can’t be located by eye on most density curves.

MEDIAN AND MEAN OF A DENSITY CURVE

The median of a density curve is the equal-areas point, the point that divides the area under the curve
in half.

The mean of a density curve is the balance point, at which the curve would balance if made of solid
material.

The median and mean are the same for a symmetric density curve. They both lie at the center of the
curve. The mean of a skewed curve is pulled away from the median in the direction of the long tail.

A density curve is an idealized description of a distribution of data. For
example, the density curve in Figure 1.20 is exactly symmetric, but the histogram
of vocabulary scores is only approximately symmetric. We therefore need to
distinguish between the mean and standard deviation of the density curve and the
numbers x¯ and s computed from the actual observations. The usual notation for
the mean of an idealized distribution is μ (the Greek letter mu). We write the
standard deviation of a density curve as σ (the Greek letter sigma).

mean μ

standard deviation σ

Normal distributions

One particularly important class of density curves has already appeared in Figures
1.20 and 1.21(a). These density curves are symmetric, unimodal, and bell-shaped.
They are called Normal curves, and they describe Normal distributions. All
Normal distributions have the same overall shape.

Normal curves

Normal distributions

The exact density curve for a particular Normal distribution is specified by
giving the distribution’s mean μ and its standard deviation σ. The mean is located
at the center of the symmetric curve and is the same as the median. Changing μ
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without changing σ moves the Normal curve along the horizontal axis without
changing its spread.

The standard deviation σ controls the spread of a Normal curve. Figure 1.23
shows two Normal curves with different values of σ. The curve with the larger
standard deviation is more spread out.

The standard deviation σ is the natural measure of spread for Normal
distributions. Not only do μ and σ completely determine the shape of a Normal
curve, but we can locate σ by eye on the curve. Here’s how. As we move out in
either direction from the center μ, the curve changes from falling ever more steeply

The points at which this change of curvature takes place are located at distance σ
on either side of the mean μ. You can feel the change as you run your finger along
a Normal curve, and so find the standard deviation. Remember that μ and σ alone
do not specify the shape of most distributions, and that the shape of density curves
in general does not reveal σ. These are special properties of Normal distributions.

FIGURE 1.23
Two Normal curves, showing the mean μ and the standard deviation σ.

There are other symmetric bell-shaped density curves that are not Normal. The
Normal density curves are specified by a particular equation. The height of the
density curve at any point x is given by

1σ2πe−12(x−μσ)2

We will not make direct use of this fact, although it is the basis of mathematical
work with Normal distributions. Notice that the equation of the curve is completely
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determined by the mean μ and the standard deviation σ.
Why are the Normal distributions important in statistics? Here are three reasons.

1. Normal distributions are good descriptions for some distributions of real data.
Distributions that are often close to Normal include scores on tests taken by
many people (such as the Iowa Test of Figure 1.20, page 55), repeated careful
measurements of the same quantity, and characteristics of biological populations
(such as lengths of baby pythons and yields of corn).

2. Normal distributions are good approximations to the results of many kinds of
chance outcomes, such as tossing a coin many times.

3. Many statistical inference procedures based on Normal distributions work well
for other roughly symmetric distributions.

However, even though many sets of data follow a Normal distribution, many do
not. Most income distributions, for example, are skewed to the right and so are not
Normal. Non-Normal data, like nonnormal people, not only are common but are
also sometimes more interesting than their Normal counterparts.

The 68–95–99.7 rule

Although there are many Normal curves, they all have common properties. Here is
one of the most important.

THE 68–95–99.7 RULE

In the Normal distribution with mean μ and standard deviation σ:

• Approximately 68% of the observations fall within σ of the mean μ.

• Approximately 95% of the observations fall within 2σ of μ.

• Approximately 99.7% of the observations fall within 3σ of μ.

Figure 1.24 illustrates the 68–95–99.7 rule. By remembering these three
numbers, you can think about Normal distributions without constantly making
detailed calculations.
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EXAMPLE

1.38 Heights of young women.

The distribution of heights of young women aged 18 to 24 is approximately
Normal with mean μ = 64.5 inches and standard deviation σ = 2.5 inches.
Figure 1.25 shows what the 68–95–99.7 rule says about this distribution.

FIGURE 1.24
The 68–95–99.7 rule for Normal distributions.

Two standard deviations equals 5 inches for this distribution. The 95 part of
the 68–95–99.7 rule says that the middle 95% of young women are between
64.5 – 5 and 64.5 + 5 inches tall, that is, between 59.5 and 69.5 inches. This
fact is exactly true for an exactly Normal distribution. It is approximately true
for the heights of young women because the distribution of heights is
approximately Normal.

The other 5% of young women have heights outside the range from 59.5 to
69.5 inches. Because the Normal distributions are symmetric, half of these
women are on the tall side. So the tallest 2.5% of young women are taller than
69.5 inches.

Because we will mention Normal distributions often, a short notation is helpful.
We abbreviate the Normal distribution with mean μ and standard deviation σ as
N(μ, σ). For example, the distribution of young women’s heights is N(64.5, 2.5).
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N(μ, σ)

FIGURE 1.25
The 68–95–99.7 rule applied to the heights of young women, for Example 1.38.

USE YOUR KNOWLEDGE

1.101 Test scores.

Many states assess the skills of their students in various grades. One
program that is available for this purpose is the National Assessment of
Educational Progress (NAEP).34 One of the tests provided by the NAEP
assesses the reading skills of twelfth-grade students. In a recent year, the
national mean score was 288 and the standard deviation was 38.
Assuming that these scores are approximately Normally distributed,
N(288, 38), use the 68–95–99.7 rule to give a range of scores that
includes 95% of these students.

1.102 Use the 68–95–99.7 rule.

Refer to the previous exercise. Use the 68–95–99.7 rule to give a range
of scores that includes 99.7% of these students.
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Standardizing observations

As the 68–95–99.7 rule suggests, all Normal distributions share many properties.
In fact, all Normal distributions are the same if we measure in units of size σ about
the mean μ as center. Changing to these units is called standardizing. To
standardize a value, subtract the mean of the distribution and then divide by the
standard deviation.

STANDARDIZING AND z-SCORES

If x is an observation from a distribution that has mean μ and standard
deviation σ, the standardized value of x is

z=x−μσ

A standardized value is often called a z-score.

A z-score tells us how many standard deviations the original observation falls
away from the mean, and in which direction. Observations larger than the mean are
positive when standardized, and observations smaller than the mean are negative.

To compare scores based on different measures, z-scores can be very useful. For
example, see Exercise 1.134 (page 75), where you are asked to compare an SAT
score with an ACT score.

EXAMPLE

1.39 Find some z-scores.

The heights of young women are approximately Normal with μ = 64.5 inches
and σ = 2.5 inches. The z-score for height is

z=height − 64.52.5

A woman’s standardized height is the number of standard deviations by which
her height differs from the mean height of all young women. A woman 68
inches tall, for example, has z-score

z=68−64.52.5=1.4

or 1.4 standard deviations above the mean. Similarly, a woman 5 feet (60
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inches) tall has z-score

z=60−64.52.5=1.8

or 1.8 standard deviations less than the mean height.

USE YOUR KNOWLEDGE

1.103 Find the z-score.

Consider the NAEP scores (see Exercise 1.101), which we assume are
approximately Normal, N(288, 38). Give the z-score for a student who
received a score of 365.

1.104 Find another z-score.

Consider the NAEP scores, which we assume are approximately
Normal, N(288, 38). Give the z-score for a student who received a score
of 250. Explain why your answer is negative even though all the test
scores are positive.

We need a way to write variables, such as “height” in Example 1.38, that follow
a theoretical distribution such as a Normal distribution. We use capital letters near
the end of the alphabet for such variables. If X is the height of a young woman, we
can then shorten “the height of a young woman is less than 68 inches” to “X < 68.”
We will use lowercase x to stand for any specific value of the variable X.

We often standardize observations from symmetric distributions to express
them in a common scale. We might, for example, compare the heights of two
children of different ages by calculating their z-scores. The standardized heights
tell us where each child stands in the distribution for his or her age group.

Standardizing is a linear transformation that transforms the data into the
standard scale of z-scores. We know that a linear transformation does not change
the shape of a distribution, and that the mean and standard deviation change in a
simple manner. In particular, the standardized values for any distribution always
have mean 0 and standard deviation 1.

If the variable we standardize has a Normal distribution, standardizing does
more than give a common scale. It makes all Normal distributions into a single
distribution, and this distribution is still Normal. Standardizing a variable that has
any Normal distribution produces a new variable that has the standard Normal
distribution.
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THE STANDARD NORMAL DISTRIBUTION

The standard Normal distribution is the Normal distribution N(0, 1) with
mean 0 and standard deviation 1.

If a variable X has any Normal distribution N(μ,σ) with mean μ and standard deviation σ, then the
standardized variable

z=X−μσ

has the standard Normal distribution.

Normal distribution calculations

Areas under a Normal curve represent proportions of observations from that
Normal distribution. There is no formula for areas under a Normal curve.
Calculations use either software that calculates areas or a table of areas. The table
and most software calculate one kind of area: cumulative proportions. A
cumulative proportion is the proportion of observations in a distribution that lie at
or below a given value. When the distribution is given by a density curve, the
cumulative proportion is the area under the curve to the left of a given value.
Figure 1.26 shows the idea more clearly than words do.

cumulative proportion

The key to calculating Normal proportions is to match the area you want with
areas that represent cumulative proportions. Then get areas for cumulative
proportions either from software or (with an extra step) from a table. The following
examples show the method in pictures.

EXAMPLE

1.40 NCAA eligibility for competition.
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To be eligible to compete in their first year of college, the National Collegiate
Athletic Association (NCAA) requires Division I athletes to meet certain
academic standards. These are based on their grade point average (GPA) in
certain courses and combined scores on the SAT Critical Reading and
Mathematics sections or the ACT composite score.35

FIGURE 1.26
The cumulative proportion for a value x is the proportion of all observations from the
distribution that are less than or equal to x. This is the area to the left of x under the Normal
curve.

For a student with a 3.0 GPA, the combined SAT score must be 800 or
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higher. Based on the distribution of SAT scores for college-bound students, we
assume that the distribution of the combined Critical Reading and
Mathematics scores is approximately Normal with mean 1010 and standard
deviation 225.36 What proportion of college-bound students have SAT scores
of 800 or more?

Here is the calculation in pictures: the proportion of scores above 800 is the
area under the curve to the right of 800. That’s the total area under the curve
(which is always 1) minus the cumulative proportion up to 800.

That is, the proportion of college-bound SAT takers with a 3.0 GPA who are
eligible to compete is 0.8247, or about 82%.

There is no area under a smooth curve that is exactly over the point 800.
Consequently, the area to the right of 800 (the proportion of scores > 800) is the
same as the area at or to the right of this point (the proportion of scores ≥ 800). The
actual data may contain a student who scored exactly 800 on the SAT. That the
proportion of scores exactly equal to 800 is 0 for a Normal distribution is a
consequence of the idealized smoothing of Normal distributions for data.

EXAMPLE

1.41 NCAA eligibility for aid and practice.

The NCAA has a category of eligibility in which a first-year student may not
compete but is still eligible to receive an athletic scholarship and to practice
with the team. The requirements for this category are a 3.0 GPA and combined
SAT Critical Reading and Mathematics scores of at least 620.

What proportion of college-bound students who take the SAT would be
eligible to receive an athletic scholarship and to practice with the team but
would not be eligible to compete? That is, what proportion have scores
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between 620 and 800? Here are the pictures:

About 13% of college-bound students with a 3.0 GPA have SAT scores
between 620 and 800.

How do we find the numerical values of the areas in Examples 1.40 and 1.41? If
you use software, just plug in mean 1010 and standard deviation 225. Then ask for
the cumulative proportions for 800 and for 620. (Your software will probably refer
to these as “cumulative probabilities.” We will learn in Chapter 4 why the language
of probability fits.) Sketches of the areas that you want similar to the ones in
Examples 1.40 and 1.41 are very helpful in making sure that you are doing the
correct calculations.

You can use the Normal Curve applet on the text website,
whfreeman.com/ips8e, to find Normal proportions. The applet is more flexible
than most software—it will find any Normal proportion, not just cumulative
proportions. The applet is an excellent way to understand Normal curves. But,
because of the limitations of web browsers, the applet is not as accurate as
statistical software.

If you are not using software, you can find cumulative proportions for Normal
curves from a table. That requires an extra step, as we now explain.

Using the standard Normal table

The extra step in finding cumulative proportions from a table is that we must first
standardize to express the problem in the standard scale of z-scores. This allows us
to get by with just one table, a table of standard Normal cumulative proportions.
Table A in the back of the book gives standard Normal probabilities. Table A also
appears on the last two pages of the text. The picture at the top of the table reminds
us that the entries are cumulative proportions, areas under the curve to the left of a
value z.

174



EXAMPLE

1.42 Find the proportion from z.

What proportion of observations on a standard Normal variable Z take values
less than 1.47?

Solution: To find the area to the left of 1.47, locate 1.4 in the left-hand
column of Table A and then locate the remaining digit 7 as .07 in the top row.
The entry opposite 1.4 and under .07 is 0.9292. This is the cumulative
proportion we seek. Figure 1.27 illustrates this area.

Now that you see how Table A works, let’s redo the NCAA Examples 1.40 and
1.41 using the table.

FIGURE 1.27
The area under a standard Normal curve to the left of the point z = 1.47 is 0.9292, for Example
1.42.

EXAMPLE

1.43 Find the proportion from x.
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What proportion of college-bound students who take the SAT have scores of at
least 800? The picture that leads to the answer is exactly the same as in
Example 1.40. The extra step is that we first standardize to read cumulative
proportions from Table A. If X is SAT score, we want the proportion of
students for whom X ≥ x, where x = 800.

1. Standardize. Subtract the mean, then divide by the standard deviation, to
transform the problem about X into a problem about a standard Normal Z:

X≥800

X−1010225≥800−1010225

Z≥−0.93

2. Use the table. Look at the pictures in Example 1.40. From Table A, we see
that the proportion of observations less than –0.93 is 0.1762. The area to the
right of –0.93 is therefore 1 – 0.1762 = 0.8238. This is about 82%.

The area from the table in Example 1.43 (0.8238) is slightly less accurate than
the area from software in Example 1.40 (0.8247) because we must round z to two
places when we use Table A. The difference is rarely important in practice.

EXAMPLE

1.44 Eligibility for aid and practice.

What proportion of all students who take the SAT would be eligible to receive
athletic scholarships and to practice with the team but would not be eligible to
compete in the eyes of the NCAA? That is, what proportion of students have
SAT scores between 620 and 800? First, sketch the areas, exactly as in
Example 1.41. We again use X as shorthand for an SAT score.
1. Standardize.

620≤X<800

620−1010225≤X−1010225<800−1010225

−1.73≤Z<−0.93

2. Use the table.

area between –1.73 and –0.93 = (area left of –0.93) – (area left of –1.73)
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                          = 0.1762 – 0.0418 = 0.1344

As in Example 1.41, about 13% of students would be eligible to receive
athletic scholarships and to practice with the team.

Sometimes we encounter a value of z more extreme than those appearing in
Table A. For example, the area to the left of z = –4 is not given in the table. The z-
values in Table A leave only area 0.0002 in each tail unaccounted for. For practical
purposes, we can act as if there is zero area outside the range of Table A.

USE YOUR KNOWLEDGE

1.105 Find the proportion.

Consider the NAEP scores, which are approximately Normal, N(288,
38). Find the proportion of students who have scores less than 340. Find
the proportion of students who have scores greater than or equal to 340.
Sketch the relationship between these two calculations using pictures of
Normal curves similar to the ones given in Example 1.40 (page 63).

1.106 Find another proportion.

Consider the NAEP scores, which are approximately Normal, N(288,
38). Find the proportion of students who have scores between 340 and
370. Use pictures of Normal curves similar to the ones given in Example
1.41 (page 64) to illustrate your calculations.

Inverse Normal calculations

Examples 1.40 to 1.44 illustrate the use of Normal distributions to find the
proportion of observations in a given event, such as “SAT score between 620 and
800.” We may instead want to find the observed value corresponding to a given
proportion.

Statistical software will do this directly. Without software, use Table A
backward, finding the desired proportion in the body of the table and then reading
the corresponding z from the left column and top row.
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EXAMPLE

1.45 How high for the top 10%?

Scores for college-bound students on the SAT Critical Reading test in recent
years follow approximately the N(500,120) distribution.37 How high must a
student score to place in the top 10% of all students taking the SAT?

Again, the key to the problem is to draw a picture. Figure 1.28 shows that
we want the score x with an area of 0.10 above it. That’s the same as area
below x equal to 0.90.

FIGURE 1.28
Locating the point on a Normal curve with area 0.10 to its right, for Example 1.45.

Statistical software has a function that will give you the x for any
cumulative proportion you specify. The function often has a name such as
“inverse cumulative probability.” Plug in mean 500, standard deviation 120,
and cumulative proportion 0.9. The software tells you that x = 653.786. We
see that a student must score at least 654 to place in the highest 10%.

Without software, first find the standard score z with cumulative proportion
0.9, then “unstandardize” to find x. Here is the two-step process:

1. Use the table. Look in the body of Table A for the entry closest to 0.9. It is
0.8997. This is the entry corresponding to z = 1.28. So z = 1.28 is the
standardized value with area 0.9 to its left.

2. Unstandardize to transform the solution from z back to the original x scale.
We know that the standardized value of the unknown x is z = 1.28. So x
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itself satisfies

x−500120=1.28

Solving this equation for x gives

x = 500 + (1.28)(120) = 653.6

This equation should make sense: it finds the x that lies 1.28 standard
deviations above the mean on this particular Normal curve. That is the
“unstandardized” meaning of z = 1.28. The general rule for unstandardizing a
z-score is

x = μ + zσ

USE YOUR KNOWLEDGE

1.107 What score is needed to be in the top 25%?

Consider the NAEP scores, which are approximately Normal, N(288,
38). How high a score is needed to be in the top 25% of students who
take this exam?

1.108 Find the score that 80% of students will exceed.

Consider the NAEP scores, which are approximately Normal,
N(288, 38). Eighty percent of the students will score above x on this
exam. Find x.

Normal quantile plots

The Normal distributions provide good descriptions of some distributions of real
data, such as the Iowa Test vocabulary scores. The distributions of some other
common variables are usually skewed and therefore distinctly non-Normal.
Examples include economic variables such as personal income and gross sales of
business firms, the survival times of cancer patients after treatment, and the service
lifetime of mechanical or electronic components. While experience can suggest
whether or not a Normal distribution is plausible in a particular case, it is risky to
assume that a distribution is Normal without actually inspecting the data.

A histogram or stemplot can reveal distinctly non-Normal features of a
distribution, such as outliers, pronounced skewness, or gaps and clusters. If the

179



stemplot or histogram appears roughly symmetric and unimodal, however, we need
a more sensitive way to judge the adequacy of a Normal model. The most useful
tool for assessing Normality is another graph, the Normal quantile plot.

Normal quantile plot

Here is the basic idea of a Normal quantile plot. The graphs produced by
software use more sophisticated versions of this idea. It is not practical to make
Normal quantile plots by hand.

1. Arrange the observed data values from smallest to largest. Record what
percentile of the data each value occupies. For example, the smallest observation
in a set of 20 is at the 5% point, the second smallest is at the 10% point, and so
on.

2. Do Normal distribution calculations to find the values of z corresponding to
these same percentiles. For example, z = –1.645 is the 5% point of the standard
Normal distribution, and z = –1.282 is the 10% point. We call these values of Z
Normal scores.

Normal scores

3. Plot each data point x against the corresponding Normal score. If the data
distribution is close to any Normal distribution, the plotted points will lie close
to a straight line.

Any Normal distribution produces a straight line on the plot because
standardizing turns any Normal distribution into a standard Normal distribution.
Standardizing is a linear transformation that can change the slope and intercept of
the line in our plot but cannot turn a line into a curved pattern.

USE OF NORMAL QUANTILE PLOTS

If the points on a Normal quantile plot lie close to a straight line, the plot
indicates that the data are Normal. Systematic deviations from a straight line
indicate a non-Normal distribution. Outliers appear as points that are far away
from the overall pattern of the plot. An optional line can be drawn on the plot
that corresponds to the Normal distribution with mean equal to the mean of the
data and standard deviation equal to the standard deviation of the data.

Figures 1.29 and 1.30 are Normal quantile plots for data we have met earlier.
The data x are plotted vertically against the corresponding standard Normal z-score
plotted horizontally. The z-score scale generally extends from –3 to 3 because
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almost all of a standard Normal curve lies between these values. These figures
show how Normal quantile plots behave.

EXAMPLE

1.46 IQ scores are approximately Normal.

IQ

Figure 1.29 is a Normal quantile plot of the 60 fifth-grade IQ scores from
Table 1.1 (page 16). The points lie very close to the straight line drawn on the
plot. We conclude that the distribution of IQ data is approximately Normal.

EXAMPLE

1.47 Times to start a business are skewed.

TIME

Figure 1.30 is a Normal quantile plot of the data on times to start a business
from Example 1.23. We have excluded Suriname, the outlier that you
examined in Exercise 1.47. The line drawn on the plot shows clearly that the
plot of the data is curved. We conclude that these data are not Normally
distributed. The shape of the curve is what we typically see with a distribution
that is strongly skewed to the right.
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FIGURE 1.29
Normal quantile plot of IQ scores, for Example 1.46. This distribution is approximately
Normal.
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FIGURE 1.30
Normal quantile plot of 184 times to start a business, with the outlier, Suriname, excluded, for
Example 1.47. This distribution is highly skewed.

Real data often show some departure from the theoretical Normal model. When
you examine a Normal quantile plot, look for shapes that show clear departures
from Normality. Don’t overreact to minor wiggles in the plot. When we discuss
statistical methods that are based on the Normal model, we are interested in
whether or not the data are sufficiently Normal for these procedures to work
properly. We are not concerned about minor deviations from Normality. Many
common methods work well as long as the data are approximately Normal and
outliers are not present.

BEYOND THE BASICS

Density Estimation
A density curve gives a compact summary of the overall shape of a
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distribution. Many distributions do not have the Normal shape. There are other
families of density curves that are used as mathematical models for various
distribution shapes. Modern software offers more flexible options. A density
estimator does not start with any specific shape, such as the Normal shape. It
looks at the data and draws a density curve that describes the overall shape of
the data. Density estimators join stemplots and histograms as useful graphical
tools for exploratory data analysis.

density estimator

Density estimates can capture other unusual features of a distribution. Here
is an example.

EXAMPLE

1.48 StubHub!

STUBHUB

StubHub! is a website where fans can buy and sell tickets to sporting events.
Ticket holders wanting to sell their tickets provide the location of their seats
and the selling price. People wanting to buy tickets can choose from among
the tickets offered for a given event.38
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FIGURE 1.31
Histogram of StubHub! price per seat for tickets to the 2013 NCAA Women’s Final Four
Basketball Championship in New Orleans, with a density estimate, for Example 1.48.

There were 186 tickets for the NCAA Women’s Final Four Basketball
Championship in New Orleans posted for sale on StubHub! on January 2,
2013. A histogram with a density estimate is given in Figure 1.31. The
distribution has three peaks, one around $300, another around $600, and a
third around $1100. Inspection of the data suggests that these correspond
roughly to three different types of seats: lower-level seats, club seats, and
special luxury seats.

Many distributions that we have met have a single peak, or mode. The
distribution described in Example 1.48 has three modes and is called a trimodal
distribution. A distribution that has two modes is called a bimodal distribution.

trimodal distribution

bimodal distribution
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The previous example reminds of a continuing theme for data analysis. We
looked at a histogram and a density estimate and saw something interesting. This
led us to speculation. Additional data on the type and location of the seats may
explain more about the prices than we see in Figure 1.31.

SECTION 1.4 Summary

The overall pattern of a distribution can often be described compactly by a density
curve. A density curve has total area 1 underneath it. Areas under a density curve
give proportions of observations for the distribution.

The mean μ (balance point), the median (equal-areas point), and the quartiles
can be approximately located by eye on a density curve. The standard deviation σ
cannot be located by eye on most density curves. The mean and median are equal
for symmetric density curves, but the mean of a skewed curve is located farther
toward the long tail than is the median.

The Normal distributions are described by bell-shaped, symmetric, unimodal
density curves. The mean μ and standard deviation σ completely specify the
Normal distribution N(μ, σ). The mean is the center of symmetry, and σ is the
distance from μ to the change-of-curvature points on either side. All Normal
distributions satisfy the 68–95–99.7 rule.

To standardize any observation x, subtract the mean of the distribution and
then divide by the standard deviation. The resulting z-score z = (x – μ)/σ says how
many standard deviations x lies from the distribution mean. All Normal
distributions are the same when measurements are transformed to the standardized
scale.

If X has the N(μ, σ) distribution, then the standardized variable Z = (X – μ)/σ has
the standard Normal distribution N(0, 1). Proportions for any Normal
distribution can be calculated by software or from the standard Normal table
(Table A), which gives the cumulative proportions of Z < z for many values of z.

The adequacy of a Normal model for describing a distribution of data is best
assessed by a Normal quantile plot, which is available in most statistical software
packages. A pattern on such a plot that deviates substantially from a straight line
indicates that the data are not Normal.

SECTION 1.4 Exercises
For Exercises 1.101 and 1.102, see page 61; for Exercises 1.103 and 1.104, see page 62; for Exercises
1.105 and 1.106, see page 67; and for Exercises 1.107 and 1.108, see page 68.

1.109 Means and medians.

(a) Sketch a symmetric distribution that is not Normal. Mark the location of the mean and the median.

(b) Sketch a distribution that is skewed to the left. Mark the location of the mean and the median.
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1.110 The effect of changing the standard deviation.

(a) Sketch a Normal curve that has mean 20 and standard deviation 5.

(b) On the same x axis, sketch a Normal curve that has mean 20 and standard deviation 10.

(c) How does the Normal curve change when the standard deviation is varied but the mean stays the same?

1.111 The effect of changing the mean.

(a) Sketch a Normal curve that has mean 20 and standard deviation 5.

(b) On the same x axis, sketch a Normal curve that has mean 30 and standard deviation 5.

(c) How does the Normal curve change when the mean is varied but the standard deviation stays the same?

1.112 NAEP music scores.

In Exercise 1.101 (page 61) we examined the distribution of NAEP scores for the twelfth-grade reading
skills assessment. For eighth-grade students the average music score is approximately Normal with mean
150 and standard deviation 35.

(a) Sketch this Normal distribution.

(b) Make a table that includes values of the scores corresponding to plus or minus one, two, and three
standard deviations from the mean. Mark these points on your sketch along with the mean.

(c) Apply the 68–95–99.7 rule to this distribution. Give the ranges of reading score values that are within
one, two, and three standard deviations of the mean.

1.113 NAEP U.S. history scores.

Refer to the previous exercise. The scores for twelfth-grade students on the U.S. history assessment are
approximately N(288, 32). Answer the questions in the previous exercise for this assessment.

1.114 Standardize some NAEP music scores.

The NAEP music assessment scores for eighth-grade students are approximately N(150, 35). Find z-scores
by standardizing the following scores: 150, 140, 100, 180, 230.

1.115 Compute the percentile scores.

Refer to the previous exercise. When scores such as the NAEP assessment scores are reported for
individual students, the actual values of the scores are not particularly meaningful. Usually, they are
transformed into percentile scores. The percentile score is the proportion of students who would score less
than or equal to the score for the individual student. Compute the percentile scores for the five scores in the
previous exercise. State whether you used software or Table A for these computations.

 1.116 Are the NAEP U.S. history scores approximately Normal?
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In Exercise 1.113, we assumed that the NAEP U.S. history scores for twelfth-grade students are
approximately Normal with the reported mean and standard deviation, N(288, 32). Let’s check that
assumption. In addition to means and standard deviations, you can find selected percentiles for the NAEP
assessments (see previous exercise). For the twelfth-grade U.S. history scores, the following percentiles are
reported:

Percentile Score
10% 246
25% 276
50% 290
75% 311
90% 328

Use these percentiles to assess whether or not the NAEP U.S. history scores for twelfth-grade students are
approximately Normal. Write a short report describing your methods and conclusions.

 1.117 Are the NAEP mathematics scores approximately Normal?

Refer to the previous exercise. For the NAEP mathematics scores for twelfth-graders the mean is 153 and
the standard deviation is 34. Here are the reported percentiles:

Percentile Score
10% 110
25% 130
50% 154
75% 177
90% 197

Is the N(153, 34) distribution a good approximation for the NAEP mathematics scores? Write a short report
describing your methods and conclusions.

1.118 Do women talk more?

Conventional wisdom suggests that women are more talkative than men. One study designed to examine

this stereotype collected data on the speech of 42 women and 37 men in the United States.39  TALK

(a) The mean number of words spoken per day by the women was 14,297 with a standard deviation of
6441. Use the 68–95–99.7 rule to describe this distribution.

(b) Do you think that applying the rule in this situation is reasonable? Explain your answer.

(c) The men averaged 14,060 words per day with a standard deviation of 9056. Answer the questions in
parts (a) and (b) for the men.

(d) Do you think that the data support the conventional wisdom? Explain your answer. Note that in Section
7.2 we will learn formal statistical methods to answer this type of question.

1.119 Data from Mexico.

Refer to the previous exercise. A similar study in Mexico was conducted with 31 women and 20 men. The
women averaged 14,704 words per day with a standard deviation of 6215. For men the mean was 15,022
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and the standard deviation was 7864.  TALKM

(a) Answer the questions from the previous exercise for the Mexican study.

(b) The means for both men and women are higher for the Mexican study than for the U.S. study. What
conclusions can you draw from this observation?

1.120 Total scores.

Here are the total scores of 10 students in an introductory statistics course:

62    93    54    76    73    98    64    55    80    71

Previous experience with this course suggests that these scores should come from a distribution that is
approximately Normal with mean 72 and standard deviation 10.

(a) Using these values for μ and σ, standardize the scores of these 10 students.

(b) If the grading policy is to give a grade of A to the top 15% of scores based on the Normal distribution
with mean 72 and standard deviation 10, what is the cutoff for an A in terms of a standardized score?

(c) Which of the 10 students earned a grade of A in the course? Show your work.

1.121 Assign more grades.

Refer to the previous exercise. The grading policy says that the cutoffs for the other grades correspond to
the following: bottom 5% receive F, next 10% receive D, next 40% receive C, and next 30% receive B.
These cutoffs are based on the N(72, 10) distribution.

(a) Give the cutoffs for the grades in this course in terms of standardized scores.

(b) Give the cutoffs in terms of actual total scores.

(c) Do you think that this method of assigning grades is a good one? Give reasons for your answer.

1.122 A uniform distribution.

If you ask a computer to generate “random numbers” between 0 and 1, you will get observations from a
uniform distribution. Figure 1.32 graphs the density curve for a uniform distribution. Use areas under this
density curve to answer the following questions.

FIGURE 1.32
The density curve of a uniform distribution, for Exercise 1.122.
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(a) Why is the total area under this curve equal to 1?

(b) What proportion of the observations lie below 0.34?

(c) What proportion of the observations lie between 0.34 and 0.60?

1.123 Use a different range for the uniform distribution.

Many random number generators allow users to specify the range of the random numbers to be produced.
Suppose that you specify that the outcomes are to be distributed uniformly between 0 and 5. Then the
density curve of the outcomes has constant height between 0 and 5, and height 0 elsewhere.

(a) What is the height of the density curve between 0 and 5? Draw a graph of the density curve.

(b) Use your graph from (a) and the fact that areas under the curve are proportions of outcomes to find the
proportion of outcomes that are less than 1.

(c) Find the proportion of outcomes that lie between 0.5 and 2.5.

1.124 Find the mean, the median, and the quartiles.

What are the mean and the median of the uniform distribution in Figure 1.32? What are the quartiles?

1.125 Three density curves.

Figure 1.33 displays three density curves, each with three points marked on it. At which of these points on
each curve do the mean and the median fall?

 1.126 Use the Normal Curve applet.

Use the Normal Curve applet for the standard Normal distribution to say how many standard deviations
above and below the mean the quartiles of any Normal distribution lie.

 1.127 Use the Normal Curve applet.

The 68–95–99.7 rule for Normal distributions is a useful approximation. You can use the Normal Curve
applet on the text website, whfreeman.com/ips8e, to see how accurate the rule is. Drag one flag across the
other so that the applet shows the area under the curve between the two flags.
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FIGURE 1.33
Three density curves, for Exercise 1.125.

(a) Place the flags one standard deviation on either side of the mean. What is the area between these two
values? What does the 68–95–99.7 rule say this area is?

(b) Repeat for locations two and three standard deviations on either side of the mean. Again compare the
68–95–99.7 rule with the area given by the applet.

1.128 Find some proportions.

Using either Table A or your calculator or software, find the proportion of observations from a standard
Normal distribution that satisfies each of the following statements. In each case, sketch a standard Normal
curve and shade the area under the curve that is the answer to the question.

(a) Z > 1.55

(b) Z < 1.55

(c) Z > –0.70

(d) –0.70 < Z < 1.55

1.129 Find more proportions.

Using either Table A or your calculator or software, find the proportion of observations from a standard
Normal distribution for each of the following events. In each case, sketch a standard Normal curve and
shade the area representing the proportion.

(a) Z ≤ –1.7

(b) Z ≥ –1.7

(c) Z > 1.9

(d) –1.7 < Z < 1.9

1.130 Find some values of z.

Find the value z of a standard Normal variable Z that satisfies each of the following conditions. (If you use
Table A, report the value of z that comes closest to satisfying the condition.) In each case, sketch a standard
Normal curve with your value of z marked on the axis.

(a) 28% of the observations fall below z.

(b) 60% of the observations fall above z.
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1.131 Find more values of z.

The variable Z has a standard Normal distribution.

(a) Find the number z that has cumulative proportion 0.78.

(b) Find the number z such that the event Z > z has proportion 0.22.

1.132 Find some values of z.

The Wechsler Adult Intelligence Scale (WAIS) is the most common IQ test. The scale of scores is set
separately for each age group, and the scores are approximately Normal with mean 100 and standard
deviation 15. People with WAIS scores below 70 are considered developmentally disabled when, for
example, applying for Social Security disability benefits. What percent of adults are developmentally
disabled by this criterion?

1.133 High IQ scores.

The Wechsler Adult Intelligence Scale (WAIS) is the most common IQ test. The scale of scores is set
separately for each age group, and the scores are approximately Normal with mean 100 and standard
deviation 15. The organization MENSA, which calls itself “the high-IQ society,” requires a WAIS score of
130 or higher for membership. What percent of adults would qualify for membership?

There are two major tests of readiness for college, the ACT and the SAT. ACT scores are reported on a
scale from 1 to 36. The distribution of ACT scores is approximately Normal with mean μ = 21.5 and
standard deviation σ = 5.4. SAT scores are reported on a scale from 600 to 2400. The distribution of SAT
scores is approximately Normal with mean μ = 1498 and standard deviation σ = 316. Exercises 1.134 to
1.143 are based on this information.

1.134 Compare an SAT score with an ACT score.

Jessica scores 1825 on the SAT. Ashley scores 28 on the ACT. Assuming that both tests measure the same
thing, who has the higher score? Report the z-scores for both students.

1.135 Make another comparison.

Joshua scores 17 on the ACT. Anthony scores 1030 on the SAT. Assuming that both tests measure the
same thing, who has the higher score? Report the z-scores for both students.

1.136 Find the ACT equivalent.

Jorge scores 2060 on the SAT. Assuming that both tests measure the same thing, what score on the ACT is
equivalent to Jorge’s SAT score?

1.137 Find the SAT equivalent.

Alyssa scores 32 on the ACT. Assuming that both tests measure the same thing, what score on the SAT is
equivalent to Alyssa’s ACT score?
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1.138 Find an SAT percentile.

Reports on a student’s ACT or SAT results usually give the percentile as well as the actual score. The
percentile is just the cumulative proportion stated as a percent: the percent of all scores that were lower
than or equal to this one. Renee scores 2040 on the SAT. What is her percentile?

1.139 Find an ACT percentile.

Reports on a student’s ACT or SAT results usually give the percentile as well as the actual score. The
percentile is just the cumulative proportion stated as a percent: the percent of all scores that were lower
than or equal to this one. Joshua scores 17 on the ACT. What is his percentile?

1.140 How high is the top 15%?

What SAT scores make up the top 15% of all scores?

1.141 How low is the bottom 10%?

What SAT scores make up the bottom 10% of all scores?

1.142 Find the ACT quintiles.

The quintiles of any distribution are the values with cumulative proportions 0.20, 0.40, 0.60, and 0.80.
What are the quintiles of the distribution of ACT scores?

1.143 Find the SAT quartiles.

The quartiles of any distribution are the values with cumulative proportions 0.25 and 0.75. What are the
quartiles of the distribution of SAT scores?

1.144 Do you have enough “good cholesterol?”

High-density lipoprotein (HDL) is sometimes called the “good cholesterol” because low values are
associated with a higher risk of heart disease. According to the American Heart Association, people over
the age of 20 years should have at least 40 milligrams per deciliter (mg/dl) of HDL cholesterol.40 U.S.
women aged 20 and over have a mean HDL of 55 mg/dl with a standard deviation of 15.5 mg/dl. Assume
that the distribution is Normal.

(a) What percent of women have low values of HDL (40 mg/dl or less)?

(b) HDL levels of 60 mg/dl and higher are believed to protect people from heart disease. What percent of
women have protective levels of HDL?

(c) Women with more than 40 mg/dl but less than 60 mg/dl of HDL are in the intermediate range, neither
very good or very bad. What proportion are in this category?

1.145 Men and HDL cholesterol.
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HDL cholesterol levels for men have a mean of 46 mg/dl with a standard deviation of 13.6 mg/dl. Answer
the questions given in the previous exercise for the population of men.

1.146 Diagnosing osteoporosis.

Osteoporosis is a condition in which the bones become brittle due to loss of minerals. To diagnose
osteoporosis, an elaborate apparatus measures bone mineral density (BMD). BMD is usually reported in
standardized form. The standardization is based on a population of healthy young adults. The World Health
Organization (WHO) criterion for osteoporosis is a BMD 2.5 standard deviations below the mean for
young adults. BMD measurements in a population of people similar in age and sex roughly follow a
Normal distribution.

(a) What percent of healthy young adults have osteoporosis by the WHO criterion?

(b) Women aged 70 to 79 are of course not young adults. The mean BMD in this age is about –2 on the
standard scale for young adults. Suppose that the standard deviation is the same as for young adults. What
percent of this older population has osteoporosis?

1.147 Deciles of Normal distributions.

The deciles of any distribution are the 10th, 20th, . . . , 90th percentiles. The first and last deciles are the
10th and 90th percentiles, respectively.

(a) What are the first and last deciles of the standard Normal distribution?

(b) The weights of 9-ounce potato chip bags are approximately Normal with mean 9.12 ounces and
standard deviation 0.15 ounce. What are the first and last deciles of this distribution?

 1.148 Quartiles for Normal distributions.

The quartiles of any distribution are the values with cumulative proportions 0.25 and 0.75.

(a) What are the quartiles of the standard Normal distribution?

(b) Using your numerical values from (a), write an equation that gives the quartiles of the N(μ, σ)
distribution in terms of μ and σ

 1.149 IQR for Normal distributions.

Continue your work from the previous exercise. The interquartile range IQR is the distance between the
first and third quartiles of a distribution.

(a) What is the value of the IQR for the standard Normal distribution?

(b) There is a constant c such that IQR = cσ for any Normal distribution N(μ, σ). What is the value of c?

 1.150 Outliers for Normal distributions.

Continue your work from the previous two exercises. The percent of the observations that are suspected
outliers according to the 1.5 × IQR rule is the same for any Normal distribution. What is this percent?
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1.151 Deciles of HDL cholesterol.

The deciles of any distribution are the 10th, 20th, . . . , 90th percentiles. Refer to Exercise 1.144 where we
assumed that the distribution of HDL cholesterol in U.S. women aged 20 and over is Normal with mean 55
mg/dl and standard deviation 15.5 mg/dl. Find the deciles for this distribution.

The remaining exercises for this section require the use of software that will make Normal quantile plots.

1.152 Longleaf pine trees.

Exercise 1.72 (page 50) gives the diameter at breast height (DBH) for 40 longleaf pine trees from the Wade
Tract in Thomas County, Georgia. Make a Normal quantile plot for these data and write a short paragraph

interpreting what it describes.  PINES

1.153 Three varieties of flowers.

The study of tropical flowers and their hummingbird pollinators (Exercise 1.88, page 52) measured the
lengths of three varieties of Heliconia flowers. We expect that such biological measurements will have

roughly Normal distributions.  HELICON

(a) Make Normal quantile plots for each of the three flower varieties. Which distribution is closest to
Normal?

(b) The other two distributions show the same kind of mild deviation from Normality. In what way are
these distributions non-Normal?

(c) Compute the mean for each variety. For each flower, subtract the mean for its variety. Make a single
data set for all varieties that contains the deviations from the means. Use this data set to create a Normal
quantile plot. Examine the plot and summarize your conclusions.

1.154 Use software to generate some data.

Use software to generate 200 observations from the standard Normal distribution. Make a histogram of
these observations. How does the shape of the histogram compare with a Normal density curve? Make a
Normal quantile plot of the data. Does the plot suggest any important deviations from Normality?
(Repeating this exercise several times is a good way to become familiar with how histograms and Normal
quantile plots look when data actually are close to Normal.)

1.155 Use software to generate more data.

Use software to generate 200 observations from the uniform distribution described in Exercise 1.122.
Make a histogram of these observations. How does the histogram compare with the density curve in Figure
1.32? Make a Normal quantile plot of your data. According to this plot, how does the uniform distribution
deviate from Normality?
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CHAPTER 1 Exercises

 1.156 Comparing fuel efficiency.

Let’s compare the fuel efficiencies (mpg) of small cars and sporty cars for model year 2013.41 Here
are the data:

Small Cars
50 45 37 37 37 36 35 34 34 34
34 34 34 34 33 33 33 33   

Sporty Cars
33 32 32 32 32 31 31 31 31 31
31 30 30 30 30 30 30 30 29 29
29 29 29 29 29      

Give graphical and numerical descriptions of the fuel efficiencies for these two types of vehicles.
What are the main features of the distributions? Compare the two distributions and summarize your

results in a short paragraph.  MPGSS

1.157 Smoking.

The Behavioral Risk Factor Surveillance System (BRFSS) conducts a large survey of health
conditions and risk behaviors in the United States.42 The BRFSS data file contains data on 23
demographic factors and risk factors for each state. Use the percent of smokers (SmokeEveryDay)

for this exercise.  BRFSS

(a) Prepare a graphical display of the distribution and use your display to describe the major features
of the distribution.

(b) Calculate numerical summaries. Give reasons for your choices.

(c) Write a short paragraph summarizing what the data tell us about smoking in the United States.

1.158 Eat your fruits and vegetables.

Nutrition experts recommend that we eat five servings of fruits and vegetables each day. The BRFSS
data file described in the previous exercise includes a variable that gives the percent of people who
regularly eat five or more servings of fruits and vegetables (FruitVeg5). Answer the questions given

in the previous exercise for this variable.  BRFSS

 1.159 Vehicle colors.

Vehicle colors differ among types of vehicle in different regions. Here are data on the most popular
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colors in 2011 for several different regions of the world:43

Color
North America

percent
South America

percent
Europe
percent

China
percent

South Korea
percent

Japan
percent

Silver 16 30 15 26 30 19
White 23 17 20 15 25 26
Gray 13 15 18 10 12 9
Black 18 19 25 21 15 20
Blue 9 1 7 9 4 9
Red 10 11 6 7 4 5
Brown 5 5 5 4 4 4
Yellow 3 1 1 2 1 1
Green 2 1 1 1 1 1
Other 1 0 2 5 4 6

Use the methods you learned in this chapter to compare the vehicle color preferences for the regions
of the world presented in this table. Write a report summarizing your findings with an emphasis on
similarities and differences across regions. Include recommendations related to marketing and

advertising of vehicles in these regions.  VCOLORS

 1.160 Canadian international trade.

The government organization Statistics Canada provides data on many topics related to Canada’s
population, resources, economy, society, and culture. Go to the web page statcan.gc.ca/start-debut-
eng.html. Under the “Subject” tab, choose “International trade.” Pick some data from the resources
listed and use the methods that you learned in this chapter to create graphical and numerical
summaries. Write a report summarizing your findings that includes supporting evidence from your
analyses.

 1.161 Travel and tourism in Canada.

Refer to the previous exercise. Under the “Subject” tab, choose “Travel and tourism.” Pick some
data from the resources listed and use the methods that you learned in this chapter to create graphical
and numerical summaries. Write a report summarizing your findings that includes supporting
evidence from your analyses.

1.162 Internet use.

The World Bank collects data on many variables related to development for countries throughout the
world.44 One of these is Internet use, expressed as the number of users per 100 people. The data file
for this exercise gives 2011 values of this variable for 185 countries. Use graphical and numerical
methods to describe this distribution. Write a short report summarizing what the data tell about

worldwide Internet use.  INETUSE

1.163 Change Internet use.

Refer to the previous exercise. The data file also contains the numbers of users per 100 people for

2010.  INETUSE
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(a) Analyze the 2010 data.

(b) Compute the change in the number of users per 100 people from 2010 to 2011. Analyze the
changes.

(c) Compute the percent change in the number of users per 100 people from 2010 to 2011. Analyze
the percent changes.

(d) Write a summary of your analyses in parts (a) to (c). Include a comparison of the changes versus
the percent changes.

1.164 Leisure time for college students.

You want to measure the amount of “leisure time” that college students enjoy. Write a brief
discussion of two issues:

(a) How will you define “leisure time”?

(b) Once you have defined leisure time, how will you measure Sally’s leisure time this week?

1.165 Internet service.

Providing Internet service is a very competitive business in the United States. The numbers of
subscribers claimed by the top 10 providers of service were as follows:45

Service provider Subscribers (millions) Service provider Subscribers (millions)
Comcast 17.0 Charter 5.5
Time Warner 9.7 Verizon 4.3
AT&T 17.8 CenturyLink 6.4
Cox 3.9 SuddenLink 1.4
Optimum 3.3 EarthLink 1.6

Display these data in a graph. Write a short summary describing the distribution of subscribers for
these 10 providers. Business people looking at this graph see an industry that offers opportunities for

larger companies to take over.  INETPRO

1.166 Internet service provider ratings.

Refer to the previous exercise. The following table gives overall ratings, on a 10-point scale, for

these providers. These were posted on the TopTenREVIEWS website.46  INETPRO

Service provider Rating Service provider Rating
Comcast 9.25 Charter 7.88
Time Warner 8.60 Verizon 7.63
AT&T 8.53 CenturyLink 7.58
Cox 8.38 SuddenLink 7.38
Optimum 8.20 EarthLink 7.20

Display these data in a graph. Write a short summary describing the distribution of ratings for these

10 providers.  INETPRO
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1.167 What graph would you use?

What type of graph or graphs would you plan to make in a study of each of the following issues?

(a) What makes of cars do students drive? How old are their cars?

(b) How many hours per week do students study? How does the number of study hours change
during a semester?

(c) Which radio stations are most popular with students?

(d) When many students measure the concentration of the same solution for a chemistry course
laboratory assignment, do their measurements follow a Normal distribution?

1.168 Spam filters.

A university department installed a spam filter on its computer system. During a 21-day period, 6693
messages were tagged as spam. How much spam you get depends on what your online habits are.
Here are the counts for some students and faculty in this department (with log-in IDs changed, of
course):

ID Count ID Count ID Count ID Count
AA 1818 BB 1358 CC 442 DD 416
EE 399 FF 389 GG 304 HH 251
II 251 JJ 178 KK 158 LL 103

All other department members received fewer than 100 spam messages. How many did the others

receive in total? Make a graph and comment on what you learn from these data.  SPAM

 1.169 How much vitamin C do you need?

The Food and Nutrition Board of the Institute of Medicine working in cooperation with scientists
from Canada have used scientific data to answer this question for a variety of vitamins and
minerals.47 Their methodology assumes that needs, or requirements, follow a distribution. They
have produced guidelines called dietary reference intakes for different gender-by-age combinations.
For vitamin C, there are three dietary reference intakes: the estimated average requirement (EAR),
which is the mean of the requirement distribution; the recommended dietary allowance (RDA),
which is the intake that would be sufficient for 97% to 98% of the population; and the tolerable
upper level (UL), the intake that is unlikely to pose health risks. For women aged 19 to 30 years, the
EAR is 60 milligrams per day (mg/d), the RDA is 75 mg/d, and the UL is 2000 mg/d.48

(a) The researchers assumed that the distribution of requirements for vitamin C is Normal. The EAR
gives the mean. From the definition of the RDA, let’s assume that its value is the 97.72 percentile.
Use this information to determine the standard deviation of the requirement distribution.

(b) Sketch the distribution of vitamin C requirements for 19- to 30-year-old women. Mark the EAR,
the RDA, and the UL on your plot.

 1.170 How much vitamin C do men need?

Refer to the previous exercise. For men aged 19 to 30 years, the EAR is 75 milligrams per day
(mg/d), the RDA is 90 mg/d, and the UL is 2000 mg/d. Answer the questions in the previous
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exercise for this population.

 1.171 How much vitamin C do women consume?

To evaluate whether or not the intake of a vitamin or mineral is adequate, comparisons are made
between the intake distribution and the requirement distribution. Here is some information about the
distribution of vitamin C intake, in milligrams per day, for women aged 19 to 30 years:49

Percentile (mg/d)
Mean 1st 5th 19th 25th 50th 75th 90th 95th 99th

84.1 31 42 48 61 79 102 126 142 179

(a) Use the 5th, the 50th, and the 95th percentiles of this distribution to estimate the mean and
standard deviation of this distribution assuming that the distribution is Normal. Explain your method
for doing this.

(b) Sketch your Normal intake distribution on the same graph with a sketch of the requirement
distribution that you produced in part (b) of Exercise 1.69.

(c) Do you think that many women aged 19 to 30 years are getting the amount of vitamin C that they
need? Explain your answer.

 1.172 How much vitamin C do men consume?

To evaluate whether or not the intake of a vitamin or mineral is adequate, comparisons are made
between the intake distribution and the requirement distribution. Here is some information about the
distribution of vitamin C intake, in milligrams per day, for men aged 19 to 30 years:

Percentile (mg/d)
Mean 1st 5th 19th 25th 50th 75th 90th 95th 99th
122.2 39 55 65 85 114 150 190 217 278

(a) Use the 5th, the 50th, and the 95th percentiles of this distribution to estimate the mean and
standard deviation of this distribution assuming that the distribution is Normal. Explain your method
for doing this.

(b) Sketch your Normal intake distribution on the same graph with a sketch of the requirement
distribution that you produced in Exercise 1.70.

(c) Do you think that many men aged 19 to 30 years are getting the amount of vitamin C that they
need? Explain your answer.

1.173 Time spent studying.

Do women study more than men? We asked the students in a large first-year college class how many
minutes they studied on a typical weeknight. Here are the responses of random samples of 30

women and 30 men from the class:  STUDY

Women Men
170 120 180 360 240 80 120 30 90 200
120 180 120 240 170 90 45 30 120 75
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150 120 180 180 150 150 120 60 240 300
200 150 180 150 180 240 60 120 60 30

120 60 120 180 180 30 230 120 95 150
90 240 180 115 120 0 200 120 120 180

(a) Examine the data. Why are you not surprised that most responses are multiples of 10 minutes?
We eliminated one student who claimed to study 30,000 minutes per night. Are there any other
responses that you consider suspicious?

(b) Make a back-to-back stemplot of these data. Report the approximate midpoints of both groups.
Does it appear that women study more than men (or at least claim that they do)?

(c) Make side-by-side boxplots of these data. Compare the boxplots with the stemplot you made in
part (b). Which to you prefer? Give reasons for your answer.

1.174 Product preference.

Product preference depends in part on the age, income, and gender of the consumer. A market
researcher selects a large sample of potential car buyers. For each consumer, she records gender,
age, household income, and automobile preference. Which of these variables are categorical and
which are quantitative?

1.175 Two distributions.

If two distributions have exactly the same mean and standard deviation, must their histograms have
the same shape? If they have the same five-number summary, must their histograms have the same
shape? Explain.

 1.176 Norms for reading scores.

Raw scores on behavioral tests are often transformed for easier comparison. A test of reading ability
has mean 70 and standard deviation 10 when given to third-graders. Sixth-graders have mean score
80 and standard deviation 11 on the same test. To provide separate “norms” for each grade, we want
scores in each grade to have mean 100 and standard deviation 20.

(a) What linear transformation will change third-grade scores x into new scores xnew = a + bx that
have the desired mean and standard deviation? (Use b > 0 to preserve the order of the scores.)

(b) Do the same for the sixth-grade scores.

(c) David is a third-grade student who scores 72 on the test. Find David’s transformed score. Nancy
is a sixth-grade student who scores 78. What is her transformed score? Who scores higher within his
or her grade?

(d) Suppose that the distribution of scores in each grade is Normal. Then both sets of transformed
scores have the N(100, 20) distribution. What percent of third-graders have scores less than 75?
What percent of sixth-graders have scores less than 75?

1.177 Use software to generate some data.

Most statistical software packages have routines for generating values of variables having specified
distributions. Use your statistical software to generate 30 observations from the N(25, 8) distribution.
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Compute the mean and standard deviation x¯ and s of the 30 values you obtain. How close are x¯
and s to the μ and σ of the distribution from which the observations were drawn? Repeat 19 more
times the process of generating 30 observations from the N(25, 8) distribution and recording x¯ and
s. Make a stemplot of the 20 values of x¯ and another stemplot of the 20 values of s. Make Normal
quantile plots of both sets of data. Briefly describe each of these distributions. Are they symmetric or
skewed? Are they roughly Normal? Where are their centers? (The distributions of measures like x¯
and s when repeated sets of observations are made from the same theoretical distribution will be
very important in later chapters.)
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CHAPTER2 Looking at Data—
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Introduction

In Chapter 1 we learned to use graphical and numerical methods to describe the
distribution of a single variable. Many of the interesting examples of the use of
statistics involve relationships between pairs of variables. Learning ways to
describe relationships with graphical and numerical methods is the focus of this
chapter.

In Section 2.2 we focus on graphical descriptions. The scatterplot is our
fundamental graphical tool for displaying the relationship between two quantitative
variables. Sections 2.3 and 2.4 move on to numerical summaries for these
relationships. Cautions about the use of these methods are discussed in Section 2.5.
Graphical and numerical methods for describing the relationship between two
categorical variables are presented in Section 2.6. We conclude with Section 2.7, a
brief overview of issues related to the distinction between associations and
causation.
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2.1 Relationships

When you complete this section, you will be able to

Identify the key characteristics of a data set to be used to explore a
relationship between two variables.

Categorize variables as response variables or explanatory variables.

In Chapter 1 (page 4) we discussed the key characteristics of a data set. Cases
are the objects described by a set of data, and a variable is a characteristic of a case.
We also learned to categorize variables as categorical or quantitative. For Chapter
2, we focus on data sets that have two variables.

Example

2.1 Stress and lack of sleep.

Stress is a common problem for college students. Exploring factors that are
associated with stress may lead to strategies that will help students to relieve
some of the stress that they experience. Recent studies have suggested that a
lack of sleep is associated with stress.1 The two variables involved in the
relationship here are lack of sleep and stress. The cases are the students who
are the subjects for a particular study.

When we study relationships between two variables, it is not sufficient to
collect data on the two variables. A key idea for this chapter is that both variables
must be measured on the same cases.

USE YOUR KNOWLEDGE
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2.1 Relationship between attendance at class and final exam.

You want to study the relationship between the attendance at class and
the score on the final for the 30 students enrolled in an elementary
statistics class.

(a) Who are the cases for your study?

(b) What are the variables?

(c) Are the variables quantitative or categorical? Explain your answer.

We use the term associated to describe the relationship between two variables,
such as stress and lack of sleep in Example 2.1. Here is another example where two
variables are associated.

Example

2.2 Size and price of a coffee beverage.

You visit a local Starbucks to buy a Mocha Frappuccino®. The barista explains
that this blended coffee beverage comes in three sizes and asks if you want a
Tall, a Grande, or a Venti. The prices are $3.75, $4.35, and $4.85, respectively.
There is a clear association between the size of the Mocha Frappuccino and its
price.

ASSOCIATION BETWEEN VARIABLES

Two variables measured on the same cases are associated if knowing the
values of one of the variables tells you something about the values of the other
variable that you would not know without this information.
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In the Mocha Frappuccino example, knowing the size tells you the exact price,
so the association here is very strong. Many statistical associations, however, are
simply overall tendencies that allow exceptions. Some people get adequate sleep
and are highly stressed. Others get little sleep and do not experience much stress.
The association here is much weaker than the one in the Mocha Frappuccino
example.

Examining relationships

To examine the relationship between two or more variables, we first need to know
some basic characteristics of the data. Here is an example.
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Example

2.3 Stress and lack of sleep.

A study of stress and lack of sleep collected data on 1125 students from an
urban midwestern university. Two of the variables measured were the
Pittsburgh Sleep Quality Index (PSQI) and the Subjective Units of Distress
Scale (SUDS). In this study the cases are the 1125 students studied.2 The PSQI
is based on responses to a large number of questions that are summarized in a
single variable that has a value between 0 and 21 for each subject. Therefore,
we will treat the PSQI as a quantitative variable. The SUDS is a similar scale
with values between 0 and 100 for each subject. We will treat the SUDS as a
quantitative variable also.

In many situations, we measure a collection of categorical variables and then
combine them in a scale that can be viewed as a quantitative variable. The PSQI is
an example. We can also turn the tables in the other direction. Here is an example.

Example

2.4 Hemoglobin and anemia.

Hemoglobin is a measure of iron in the blood. The units are grams of
hemoglobin per deciliter of blood (g/dl). Typical values depend on age and
gender. Adult women typically have values between 12 and 16 g/dl.

Anemia is a major problem in developing countries, and many studies have
been designed to address the problem. In these studies, computing the mean
hemoglobin is not particularly useful. For studies like these, it is more
appropriate to use a definition of severe anemia (a hemoglobin level of less
than 8 g/dl). Thus, for example, researchers can compare the proportions of
subjects who are severely anemic for two treatments rather than the difference
in the mean hemoglobin levels. In this situation, the categorical variable,
severely anemic or not, is much more useful than the quantitative variable,
hemoglobin.
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When analyzing data to draw conclusions it is important to carefully consider
the best way to summarize the data. Just because a variable is measured as a
quantitative variable, it does not necessarily follow that the best summary is based
on the mean (or the median). As the previous example illustrates, converting a
quantitative variable to a categorical variable is a very useful option to keep in
mind.

USE YOUR KNOWLEDGE

2.2 Create a categorical variable from a quantitative variable.

Consider the study described in Example 2.3. Some analyses compared
three groups of students. The students were classified as having optimal
sleep quality (a PSQI of 5 or less), borderline sleep quality (a PSQI of 6
or 7), or poor sleep quality (a PSQI of 8 or more). When the three
groups of students are compared, is the PSQI being used as a
quantitative variable or as a categorical variable? Explain your answer
and describe some advantages to using the optimal, borderline, and poor
categories in explaining the results of a study such as this.

2.3 Replace names by ounces.

In the Mocha Frappuccino example, the variable size is categorical, with
Tall, Grande, and Venti as the possible values. Suppose that you
converted these values to the number of ounces: Tall is 12 ounces,
Grande is 16 ounces, and Venti is 24 ounces. For studying the
relationship between ounces and price, describe the cases and the
variables, and state whether each is quantitative or categorical.

When you examine the relationship between two variables, a new question
becomes important:

• Is your purpose simply to explore the nature of the relationship, or do you hope to
show that one of the variables can explain variation in the other? Is one of the
variables a response variable and the other an explanatory variable?
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RESPONSE VARIABLE, EXPLANATORY VARIABLE

A response variable measures an outcome of a study. An explanatory
variable explains or causes changes in the response variable.

Example

2.5 Stress and lack of sleep.

Refer to the study of stress and lack of sleep in Example 2.3. Here, the
explanatory variable is the Pittsburgh Sleep Quality Index, and the response
variable is the Subjective Units of Distress Scale.

USE YOUR KNOWLEDGE

2.4 Sleep and stress or stress and sleep?

Consider the scenario described in the previous example. Make an
argument for treating the Subjective Units of Distress Scale as the
explanatory variable and the Pittsburgh Sleep Quality Index as the
response variable.

In some studies it is easy to identify explanatory and response variables. The
following example illustrates one situation where this is true: when we actually set
values of one variable to see how it affects another variable.

Example

2.6 How much calcium do you need?
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Adolescence is a time when bones are growing very actively. If young people
do not have enough calcium, their bones will not grow properly. How much
calcium is enough? Research designed to answer this question has been
performed for many years at events called “Camp Calcium.”3 At these camps,
subjects eat controlled diets that are identical except for the amount of
calcium. The amount of calcium retained by the body is the major response
variable of interest. Since the amount of calcium consumed is controlled by the
researchers, this variable is the explanatory variable.

When you don’t set the values of either variable but just observe both variables,
there may or may not be explanatory and response variables. Whether there are
depends on how you plan to use the data.

Example

2.7 Student loans.

A college student aid officer looks at the findings of the National Student Loan
Survey. She notes data on the amount of debt of recent graduates, their current
income, and how stressful they feel about college debt. She isn’t interested in
predictions but is simply trying to understand the situation of recent college
graduates.

A sociologist looks at the same data with an eye to using amount of debt
and income, along with other variables, to explain the stress caused by college
debt. Now, amount of debt and income are explanatory variables, and stress
level is the response variable.

In many studies, the goal is to show that changes in one or more explanatory
variables actually cause changes in a response variable. But many explanatory-
response relationships do not involve direct causation. The SAT scores of high
school students help predict the students’ future college grades, but high SAT
scores certainly don’t cause high college grades.

KEY CHARACTERISTICS OF DATA FOR RELATIONSHIPS

A description of the key characteristics of a data set that will be used to
explore a relationship between two variables should include

• Cases. Identify the cases and how many there are in the data set.
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• Label. Identify what is used as a label variable if one is present.

• Categorical or quantitative. Classify each variable as categorical or
quantitative.

• Values. Identify the possible values for each variable.

• Explanatory or response. If appropriate, classify each variable as
explanatory or response.

Some of the statistical techniques in this chapter require us to distinguish
explanatory from response variables; others make no use of this distinction. You
will often see explanatory variables called independent variables and response
variables called dependent variables. These terms express mathematical ideas;
they are not statistical terms. The concept that underlies this language is that
response variables depend on explanatory variables. Because the words
“independent” and “dependent” have other meanings in statistics that are unrelated
to the explanatory-response distinction, we prefer to avoid those words.

independent variable

dependent variable

Most statistical studies examine data on more than one variable. Fortunately,
statistical analysis of several-variable data builds on the tools used for examining
individual variables. The principles that guide our work also remain the same:

• Start with a graphical display of the data.

• Look for overall patterns and deviations from those patterns.

• Based on what you see, use numerical summaries to describe specific aspects of
the data.

SECTION 2.1 Summary

To study relationships between variables, we must measure the variables on the
same cases.

If we think that a variable x may explain or even cause changes in another
variable y, we call x an explanatory variable and y a response variable.

SECTION 2.1 Exercises
For Exercise 2.1, see page 82; for Exercises 2.2 and 2.3, see page 84; and for Exercise 2.4, see page 84.

2.5 High click counts on Twitter.

A study was done to identify variables that might produce high click counts on Twitter. You and 9 of your
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friends collect data on all of your tweets for a week. You record the number of click counts, the time of
day, the day of the week, the gender of the person posting the tweet, and the length of the tweet.

(a) What are the cases for this study?

(b) Classify each of the variables as categorical or quantitative.

(c) Classify each of the variables as explanatory, response, or neither. Explain your answers.

2.6 Explanatory or response?

For each of the following scenarios, classify each of the pair of variables as explanatory or response or
neither. Give reasons for your answers.

(a) The amount of calcium per day in your diet and the amount of vitamin A per day in your diet.

(b) The number of bedrooms in an apartment and the monthly rent of the apartment.

(c) The diameter of an apple and the weight of the apple.

(d) The length of time that you spend in the sun and the amount of vitamin D that is produced by your skin.

2.7 Buy and sell prices of used textbooks.

Think about a study designed to compare the prices of textbooks for third- and fourth-year college courses
in five different majors. For the five majors, you want to examine the relationship between the difference
in the price that you pay for a used textbook and the price that the seller gives back to you when you return
the textbook. Describe a data set that could be used for this study, and give the key characteristics of the
data.

2.8 Protein and carbohydrates.

Think about a study designed to examine the relationship between protein intake and carbohydrate intake
in the diets of college sophomores. Describe a data set that could be used for this study, and give the key
characteristics of the data.

2.9 Can you examine the relationship?

For each of the following scenarios, determine whether or not the data would allow you to examine a
relationship between two variables. If your answer is Yes, give the key characteristics of a data set that
could be analyzed. If your answer is No, explain your answer.

(a) The temperature where you live yesterday and the temperature where you live today.

(b) The average high school grade point averages of the first-year students at your college and the college
grade point averages of the students who will graduate this year.

(c) A consumer study reported the price per load and an overall quality score for 24 brands of laundry
detergents.

215



2.2 Scatterplots

When you complete this section, you will be able to

• Make a scatterplot to examine a relationship between two quantitative
variables.

• Describe the overall pattern in a scatterplot and any striking deviations
from that pattern.

• Use a scatterplot to describe the form, direction, and strength of a
relationship.

• Use a scatterplot to identify outliers.

• Identify a linear pattern in a scatterplot.

• Explain the effect of a change of units on a scatterplot.

• Use a log transformation to change a curved relationship into a linear
relationship.

• Use different plotting symbols to include information about a categorical
variable in a scatterplot.

Example

2.8 Laundry detergents.

Consumers Union provides ratings on a large variety of consumer products.
They use sophisticated testing methods as well as surveys of their members to
create these ratings. The ratings are published in their magazine, Consumer
Reports.4

LAUNDRY

One recent article rated laundry detergents on a scale from 1 to 100. Here
are the ratings along with the price per load, in cents, for 24 laundry
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detergents:5

Rating Price (cents) Rating Price (cents) Rating Price (cents) Rating Price (cents)
61 17 59 22 56 22 55 16
55 30 52 23 51 11 50 15
50 9 48 16 48 15 48 18
46 13 46 13 45 17 36 8
35 8 34 12 33 7 32 6
32 5 29 14 26 11 26 13

We will examine the relationship between rating and price per load for
these laundry detergents. We expect that the higher-priced detergents will tend
to have higher ratings.

USE YOUR KNOWLEDGE

2.10 Examine the spreadsheet.

Examine the spreadsheet that gives the laundry detergent data in the data
file LAUNDRY.

LAUNDRY

(a) How many cases are in the data set?
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(b) Describe the labels, variables, and values.

(c) Which columns represent quantitative variables? Which columns represent categorical
variables?

(d) Is there an explanatory variable? A response variable? Explain your answer.

2.11 Use the data set.

LAUNDRY

Using the data set from the previous exercise, create graphical and
numerical summaries for the rating and for the price per load.

The most common way to display the relationship between two quantitative
variables is a scatterplot.

SCATTERPLOT

A scatterplot shows the relationship between two quantitative variables
measured on the same individuals. The values of one variable appear on the
horizontal axis, and the values of the other variable appear on the vertical axis.
Each individual in the data appears as the point in the plot fixed by the values
of both variables for that individual.

Example

2.9 Laundry detergents.

A higher price for a product should be associated with a better product.
Therefore, let’s treat price per load as the explanatory variable and rating as
the response variable in our examination of the relationship between these two
variables. We begin with a graphical display.
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LAUNDRY

Figure 2.1 gives a scatterplot that displays the relationship between the
response variable, rating, and the explanatory variable, price per load. The plot
confirms our idea that a higher price should be associated with a better rating.

FIGURE 2.1
Scatterplot of price per load (in cents) versus rating for 24 laundry detergents, for Example 2.9.

Always plot the explanatory variable, if there is one, on the horizontal axis (the
x axis) of a scatterplot. We usually call the explanatory variable x and the response
variable y. If there is no explanatory-response distinction, either variable can go on
the horizontal axis. Time plots, such as the one in Figure 1.13 (page 24), are
special scatterplots where the explanatory variable x is a measure of time.

USE YOUR KNOWLEDGE

2.12 Make a scatterplot.

219



LAUNDRY

(a) Make a scatterplot similar to Figure 2.1 for the laundry detergent data.

(b) Two of the laundry detergents are gels. These products are made by the same
manufacturer, and one of them has an additive for stain removal. The ratings and prices per
load are the same; the rating is 46 and the price is 13. Mark the location of these gels on your
plot.

(c) Cases with identical values for both variables are generally indistinguishable in a
scatterplot. To what extent do you think that this could give a distorted picture of the
relationship between two variables for a data set that has a large number of duplicate values?
Explain your answer.

2.13 Change the units.

LAUNDRY

(a) Create a spreadsheet for the laundry detergent data with the price per load expressed in
dollars.

(b) Make a scatterplot for the data in your spreadsheet.

(c) Describe how this scatterplot differs from Figure 2.1.

Interpreting scatterplots

To look more closely at a scatterplot such as Figure 2.1, apply the strategies of
exploratory analysis learned in Chapter 1.

EXAMINING A SCATTERPLOT

In any graph of data, look for the overall pattern and for striking deviations
from that pattern.

You can describe the overall pattern of a scatterplot by the form, direction, and strength of the
relationship.

An important kind of deviation is an outlier, an individual value that falls outside the overall pattern
of the relationship.

Figure 2.1 shows a clear form: the data lie in a roughly straight-line, or linear,
pattern. To help us see this relationship, we can use software to put a straight line
through the data. We will see more details about how this is done in Section 2.4.
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linear relationship

Example

2.10 Scatterplot with a straight line.

Figure 2.2 plots the laundry detergent data with a fitted straight line. The line
helps us to see and to evaluate the linear form of the relationship.

LAUNDRY

There is a large amount of scatter about the line. Referring to the data given
in Example 2.8, we see that for 11 cents per load, one detergent has a rating of
26, while another has a rating of 51, almost twice as large. No clear outliers
are evident.

FIGURE 2.2
Scatterplot of rating versus price per load (in cents) with a fitted straight line, for Example 2.10.

The relationship in Figure 2.2 has a clear direction: laundry detergents that cost
more generally have higher ratings. This is a positive association between the two
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variables.

POSITIVE ASSOCIATION, NEGATIVE ASSOCIATION

Two variables are positively associated when above-average values of one
tend to accompany above-average values of the other and below-average
values also tend to occur together.

Two variables are negatively associated when above-average values of one tend to accompany
below-average values of the other, and vice versa.

The strength of a relationship in a scatterplot is determined by how closely the
points follow a clear form. The overall relationship in Figure 2.2 is fairly moderate.
Here is an example of a stronger linear relationship.

Example

2.11 Debt for 33 countries.

The amount of debt owed by a country is a measure of its economic health.
The Organisation for Economic Co-operation and Development collects data
on the central government debt for many countries. One of their tables gives
the debt for countries over several years.6

DEBT

Figure 2.3 is a spreadsheet giving the government debt for 33 countries that
have data for the years 2005 to 2010. Since countries that have large
economies tend to have large debts, we have chosen a table that expresses the
debt as a percent of the gross domestic product (GDP).
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FIGURE 2.3
Central government debt in the years 2005 to 2010 for 33 countries, in percent of GDP, for
Example 2.11.
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FIGURE 2.4
Scatterplot of debt in 2010 (percent of GDP) versus debt in 2009 (percent of GDP) for 33
countries, for Example 2.11.

Figure 2.4 is a scatterplot of the central government debt in 2010 versus the
central government debt in 2009. The scatterplot shows a strong positive
relationship between the debt in these two years.

USE YOUR KNOWLEDGE

2.14 Make a scatterplot.

In our Mocha Frappuccino example, the 12-ounce drink costs $3.75, the
16-ounce drink costs $4.35, and the 24-ounce drink costs $4.85. Explain
which variable should be used as the explanatory variable, and make a
scatterplot. Describe the scatterplot and the association between these
two variables.

Can we conclude that the strong linear relationship that we found between the
central government debt in 2009 and 2010 is evidence that the debt for each
country is approximately the same in the two years? The answer is No. The first
exercise below asks you to explore this issue.
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USE YOUR KNOWLEDGE

2.15 Are the debts in 2009 and 2010 approximately the same?

Use the methods you learned in Chapter 1 to examine whether or not the
central government debts in 2009 and 2010 are approximately the same.
(Hint: Think about creating a new variable that would help you to
answer this question.)

DEBT

2.16 The relationship between debt in 2005 and debt in 2010.

Make a plot similar to Figure 2.4 to examine the relationship between
debt in 2010 and debt in 2005.

DEBT

(a) Describe the relationship and compare it with the relationship between debt in 2010 and
debt in 2009.

(b) Answer the question posed in the previous exercise for these data.

Of course, not all relationships are linear. Here is an example where the
relationship is described by a curve.

Example

2.12 Calcium retention.

Our bodies need calcium to build strong bones. How much calcium do we
need? Does the amount that we need depend on our age? Questions like these
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are studied by nutrition researchers. One series of studies used the amount of
calcium retained by the body as a response variable and the amount of calcium
consumed as an explanatory variable.7

CALCIUM

Figure 2.5 is a scatterplot of calcium retention in milligrams per day (mg/d)
versus calcium intake (mg/d) for 56 children aged 11 to 15 years. A smooth
curve generated by software helps us see the relationship between the two
variables.

There is clearly a relationship here. As calcium intake increases, the body
retains more calcium. However, the relationship is not linear. The curve is
approximately linear for low values of intake, but then the line curves more
and becomes almost level.

FIGURE 2.5
Scatterplot of calcium retention (mg/d) versus calcium intake (mg/d) for 56 children with a
fitted curve, for Example 2.12. There is a positive relationship between these two variables but it
is not linear.

There are many kinds of curved relationships like that in Figure 2.5. For some
of these, we can apply a transformation to the data that will make the relationship
approximately linear. To do this, we replace the original values with the
transformed values and then use the transformed values for our analysis.

transformation
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Transforming data is common in statistical practice. There are systematic
principles that describe how transformations behave and guide the search for
transformations that will, for example, make a distribution more Normal or a
curved relationship more linear.

The log transformation

The most important transformation that we will use is the log transformation. This
transformation can be used for variables that have positive values only.
Occasionally, we use it when there are zeros, but in this case we first replace the
zero values by some small value, often one-half of the smallest positive value in
the data set.

log transformation

You have probably encountered logarithms in one of your high school
mathematics courses as a way to do certain kinds of arithmetic. Logarithms are a
lot more fun when used in statistical analyses. We will use natural logarithms.
Statistical software and statistical calculators generally provide easy ways to
perform this transformation.

Let’s try a log transformation on our calcium retention data. Here are the
details.

Example

2.13 Calcium retention with logarithms.

CALCIUM

Figure 2.6 is a scatterplot of the log of calcium retention versus calcium intake.
The plot includes a fitted straight line to help us see the relationship. We see
that the transformation has worked. Our relationship is now approximately
linear.
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FIGURE 2.6
Scatterplot of log calcium retention versus calcium intake, with a fitted line, for 56 children, for
Example 2.13. The relationship is approximately linear.

Our analysis of the calcium retention data in Examples 2.12 and 2.13 reminds
us of an important issue when describing relationships. In Example 2.12 we noted
that the relationship appeared to become approximately flat. Biological processes
are consistent with this observation. There is probably a point where additional
intake does not result in any additional retention. With our transformed relationship
in Figure 2.6, however, there is no leveling off as we saw in Figure 2.5, even
though we appear to have a good fit to the data. The relationship and fit apply to
the range of data that are analyzed. We cannot assume that the relationship extends
beyond the range of the data.

Use of transformations and the interpretation of scatterplots are an art that
requires judgment and knowledge about the variables that we are studying. Always
ask yourself if the relationship that you see makes sense. If it does not, then
additional analyses are needed to understand the data.

Adding categorical variables to scatterplots
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In Example 2.9 (page 88) we looked at the relationship between the rating and the
price per load for 24 laundry detergents. A more detailed look at the data shows
that there are three different types of laundry detergent included in this data set. In
Exercise 2.12 we saw that two of the detergents were gels. The other two types are
liquid and powder. Let’s examine where these three types of laundry detergents are
in our plot.

CATEGORICAL VARIABLES IN SCATTERPLOTS

To add a categorical variable to a scatterplot, use a different plot color or
symbol for each category.

Example

2.14 Rating versus price and type of laundry detergent.

In our scatterplot, we use the symbol “G” for gels, “L” for liquids, and “P” for
powders. The scatterplot with these plotting symbols is given in Figure 2.7.

LAUNDRY

The two gels appear in the middle of the plot as a single point because the
ratings and prices are identical. There is a tendency for the liquids to be
clustered in the upper right of the plot, with high ratings and high prices. In
contrast, the powders tend to be in the left, with low ratings and low prices.

In this example, we used a categorical variable, type, to distinguish the three
types of laundry detergents in our plot. Suppose that the additional variable that we
want to investigate is quantitative. In this situation, we sometimes can combine the
values into ranges of the quantitative variable, such as high, medium, and low, to
create a categorical variable.

Careful judgment is needed in using this graphical method. Don’t be
discouraged if your first attempt is not very successful. In performing a good data
analysis, you will often produce several plots before you find the one that you
believe to be the most effective in describing the data.8
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FIGURE 2.7
Scatterplot of rating versus price per load (in cents), with a fitted straight line, for 24 laundry
detergents, for Example 2.14. The type of detergent is indicated by the plotting symbol; “G” for
gel, “L” for liquid, and “P” for powder.

USE YOUR KNOWLEDGE

2.17 Is a linear relationship the best description?

Look carefully at the plot in Figure 2.7.

LAUNDRY

(a) Do you think that the linear relationship we found between rating and price is mostly due
to the difference between liquid and powder detergents? Explain your answer.

(b) In describing the laundry detergent data would you say that (i) there is a linear
relationship between rating and price or (ii) powders cost less and have lower ratings; liquids
cost more and have higher ratings; and gels are somewhere in the middle? Give reasons for
your answer.
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BEYOND THE BASICS

Scatterplot smoothers
The relationship in Figure 2.4 (page 92) appears to be linear. Some statistical
software packages provide a tool to help us make this kind of judgment. These
use computer-intensive methods called algorithms that calculate a smooth
curve that gives an approximate fit to the points in a scatterplot. This is called
smoothing a scatterplot. Usually, these methods use a smoothing parameter
that determines how smooth the fit will be. You can vary it until you have a fit
that you judge suitable for your data. Here is an example.

algorithms

smoothing

Example

2.15 Debt for 33 countries with a smooth fit.

DEBT

Figure 2.8 gives the scatterplot that we examined in Figure 2.4 with a smooth
fit. Notice that the smooth curve fits almost all the points. However, the curve
is too wavy and does not provide a good summary of the relationship.
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FIGURE 2.8
Scatterplot of debt in 2010 (percent of GDP) versus debt in 2009 (percent of GDP), with a
smooth curve fitted to the data, for 33 countries, for Example 2.15. This smooth curve fits the
data too well and does not provide a good summary of the relationship.

FIGURE 2.9
Scatterplot of debt in 2010 (percent of GDP) versus debt in 2009 (percent of GDP), with a
smooth curve fitted to the data, for 33 countries, for Example 2.16. This smooth curve gives a
good summary of the relationship. It is approximately linear.

Our first attempt at smoothing the data was not very successful. This scenario
happens frequently when we use data analysis methods to learn something from
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our data. Don’t be discouraged when your first attempt at summarizing data
produces unsatisfactory results. Take what you learn and refine your analysis until
you are satisfied that you have found a good summary. It is your last attempt, not
your first, that is most important.

Example

2.16 A better smooth fit for the debt data.

DEBT

By varying the smoothing parameter, we can make the curve more or less
smooth. Figure 2.9 gives the same data as in the previous figure but with a
better smooth fit. The smooth curve is very close to a straight line. In this way
we have confirmed our original impression that the relationship between these
two variables is approximately linear.

Categorical explanatory variables

Scatterplots display the association between two quantitative variables. To display
a relationship between a categorical variable and a quantitative variable, make a
side-by-side comparison of the distributions of the response for each category.
Back-to-back stemplots (page 14) and side-by-side boxplots (page 41) are useful
tools for this purpose.

We will study methods for describing the association between two categorical
variables in Section 2.6 (page 139).

SECTION 2.2 Summary

A scatterplot displays the relationship between two quantitative variables. Mark
values of one variable on the horizontal axis (x axis) and values of the other
variable on the vertical axis (y axis). Plot each individual’s data as a point on the
graph.
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Always plot the explanatory variable, if there is one, on the x axis of a
scatterplot. Plot the response variable on the y axis.

Plot points with different colors or symbols to see the effect of a categorical
variable in a scatterplot.

In examining a scatterplot, look for an overall pattern showing the form,
direction, and strength of the relationship, and then for outliers or other
deviations from this pattern.

Form: Linear relationships, where the points show a straight-line pattern, are
an important form of relationship between two variables. Curved relationships are
other forms to watch for.

Direction: If the relationship has a clear direction, we speak of either positive
association (high values of the two variables tend to occur together) or negative
association (high values of one variable tend to occur with low values of the other
variable).

Strength: The strength of a relationship is determined by how close the points
in the scatterplot lie to a simple form such as a line.

To display the relationship between a categorical explanatory variable and a
quantitative response variable, make a graph that compares the distributions of the
response for each category of the explanatory variable.

SECTION 2.2 Exercises
For Exercises 2.10 and 2.11, see page 88; for Exercises 2.12 and 2.13, see page 89; for Exercise 2.14, see
page 92; for Exercises 2.15 and 2.16, see page 92; and for Exercise 2.17, see page 96.

2.18 Bone strength.

Osteoporosis is a condition where bones become weak. It affects more than 200 million people worldwide.
Exercise is one way to produce strong bones and to prevent osteoporosis. Since we use our dominant arm
(the right arm for most people) more than our nondominant arm, we expect the bone in our dominant arm
to be stronger than the bone in our nondominant arm. By comparing the strengths, we can get an idea of
the effect that exercise can have on bone strength. Here are some data on the strength of bones, measured

in cm4/1000, for the arms of 15 young men:9  ARMSTR

ID Nondominant Dominant ID Nondominant Dominant
1 15.7 16.3 9 15.9 20.1
2 25.2 26.9 10 13.7 18.7
3 17.9 18.7 11 17.7 18.7
4 19.1 22.0 12 15.5 15.2
5 12.0 14.8 13 14.4 16.2
6 20.0 19.8 14 14.1 15.0
7 12.3 13.1 15 12.3 12.9
8 14.4 17.5

Before attempting to compare the arm strengths of the dominant and nondominant arms, let’s take a careful
look at the data for these two variables.
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(a) Make a scatterplot of the data with the nondominant arm strength on the x axis and the dominant arm
strength on the y axis.

(b) Describe the overall pattern in the scatterplot and any striking deviations from the pattern.

(c) Describe the form, direction, and strength of the relationship.

(d) Identify any outliers.

(e) Is the relationship approximately linear?

2.19 Bone strength for baseball players.

Refer to the previous exercise. The study collected arm bone strength information for two groups of young
men. The data in the previous exercise were for a control group. The second group in the study comprised
men who played baseball. We know that these baseball players use their dominant arm in throwing (those
who throw with their nondominant arm were excluded), so they get more arm exercise than the controls.

Here are the data for the baseball players:  ARMSTR

ID Nondominant Dominant ID Nondominant Dominant
16 17.0 19.3 24 15.1 19.4
17 16.9 19.0 25 13.5 20.4
18 17.7 25.2 26 13.6 17.1
19 21.2 37.7 27 20.3 26.5
20 21.0 40.3 28 17.3 30.3
21 14.6 20.8 29 14.6 17.4
22 31.5 36.9 30 22.6 35.0
23 14.9 21.2

Answer the questions in the previous exercise for the baseball players.

2.20 Compare the baseball players with the controls.

Refer to the previous two exercises.  ARMSTR

(a) Plot the data for the two groups on the same graph using different symbols for the baseball players and
the controls.

(b) Use your plot to describe and compare the relationships for the two variables. Write a short paragraph
summarizing what you have found.

2.21 College students by state.

In Example 1.19 (page 21) we examined the distribution of undergraduate college students in the United
States and displayed the histogram for these data in Figure 1.11. We noted that we could explain some of
the variation in this distribution by considering the populations of the states. In Example 1.20, we
transformed the number of undergraduate college students into the number of undergraduates per 1000
population. Let’s look at these data a little differently. Let’s examine the relationship between two

variables: number of college students and population of the state.  COLLEGE

(a) Which variable do you choose to be the explanatory variable? Which variable do you choose to be the
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response variable? Give reasons for your choices.

(b) Make a scatterplot of the two variables and write a short paragraph describing the relationship.

2.22 Decay of a radioactive element.

Barium-137m is a radioactive form of the element barium that decays very rapidly. It is easy and safe to
use for lab experiments in schools and colleges.10 In a typical experiment, the radioactivity of a sample of
barium-137m is measured for one minute. It is then measured for three additional one-minute periods,
separated by two minutes. So data are recorded at 1, 3, 5, and 7 minutes after the start of the first counting

period. The measurement units are counts. Here are the data for one of these experiments:11  DECAY

Time 1 3 5 7
Count 578 317 203 118

(a) Make a scatterplot of the data. Give reasons for the choice of which variables to use on the x and y axes.

(b) Describe the overall pattern in the scatterplot and any striking deviations from the pattern.

(c) Describe the form, direction, and strength of the relationship.

(d) Identify any outliers.

(e) Is the relationship approximately linear?

2.23 Use a log for the radioactive decay.

Refer to the previous exercise. Transform the counts using a log transformation. Then repeat parts (a)

through (e) for the transformed data and compare your results with those from the previous exercise. 
DECAY

2.24 Make some sketches.

For each of the following situations, make a scatterplot that illustrates the given relationship between two
variables.

(a) A weak negative relationship.

(b) No apparent relationship.

(c) A strong positive linear relationship.

(d) A more complicated relationship. Explain the relationship.

2.25 What’s wrong?

Explain what is wrong with each of the following:

(a) If two variables are negatively associated, then high values of one variable are associated with high
values of the other variable.

(b) In a scatterplot we put the response variable on the x axis and the explanatory variable on the y axis.
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(c) A histogram can be used to examine the relationship between two variables.

2.26 What’s in the beer?

The website beer100.com advertises itself as “Your Place for All Things Beer.” One of their “things” is a
list of 153 domestic beer brands with the percent alcohol, calories per 12 ounces, and carbohydrates per 12

ounces (in grams).12  BEER

(a) Figure 2.10 gives a scatterplot of carbohydrates versus percent alcohol. Give a short summary of what
can be learned from the plot.

(b) One of the points is an outlier. Use the data file to find the outlier brand of beer. How is this brand of
beer marketed compared with the other brands?

(c) Remove the outlier from the data set and generate a scatterplot of the remaining data.

(d) Describe the relationship between carbohydrates and percent alcohol based on what you see in your
scatterplot.

FIGURE 2.10
Scatterplot of carbohydrates versus percent alcohol for 153 brands of beer, for Exercise 2.26.

2.27 More beer.

Refer to the previous exercise.  BEER

(a) Make a scatterplot of calories versus percent alcohol using the data set without the outlier.

(b) Describe the relationship between these two variables.

2.28 Internet use and babies.

The World Bank collects data on many variables related to world development for countries throughout the
world. Two of these are Internet use, in number of users per 100 people, and birthrate, in births per 1000
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people.13 Figure 2.11 is a scatterplot of birthrate versus Internet use for the 106 countries that have data

available for both variables.  INBIRTH

(a) Describe the relationship between these two variables.

(b) A friend looks at this plot and concludes that using the Internet will decrease the number of babies
born. Write a short paragraph explaining why the association seen in the scatterplot does not provide a
reason to draw this conclusion.

FIGURE 2.11
Scatterplot of births (per 1000 people) versus Internet users (per 100 people) for 106 countries,
for Exercise 2.28.

2.29 Try a log.

Refer to the previous exercise.  INBIRTH

(a) Make a scatterplot of the log of births per 1000 people versus Internet users per 100 people.

(b) Describe the relationship that you see in this plot and compare it with Figure 2.11.

(c) Which plot do you prefer? Give reasons for your answer.

2.30 Make another plot.

Refer to Exercise 2.28.  INBIRTH

(a) Make a new data set that has Internet users expressed as users per 10,000 people and births as births per
10,000 people.

(b) Explain why these transformations to give new variables are linear transformations. (Hint: See linear
transformations on page 45.)
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(c) Make a scatterplot using the transformed variables.

(d) Compare your new plot with the one in Figure 2.11.

(e) Why do you think that the analysts at the World Bank chose to express births as births per 1000 people
and Internet users as users per 100 people?

2.31 Explanatory and response variables.

In each of the following situations, is it more reasonable to simply explore the relationship between the two
variables or to view one of the variables as an explanatory variable and the other as a response variable? In
the latter case, which is the explanatory variable and which is the response variable?

(a) The reading ability of a child and the shoe size of the child.

(b) College grade point average and high school grade point average.

(c) The rental price of an apartment and the number of square feet in the apartment.

(d) The amount of sugar added to a cup of coffee and how sweet the coffee tastes.

(e) The temperature outside today at noon and the temperature outside yesterday at noon.

2.32 Parents’ income and student loans.

How well does the income of a college student’s parents predict how much the student will borrow to pay
for college? We have data on parents’ income and college debt for a sample of 1200 recent college
graduates. What are the explanatory and response variables? Are these variables categorical or
quantitative? Do you expect a positive or negative association between these variables? Why?

2.33 Reading ability and IQ.

A study of reading ability in schoolchildren chose 60 fifth-grade children at random from a school. The
researchers had the children’s scores on an IQ test and on a test of reading ability.14 Figure 2.12 plots
reading test score (response) against IQ score (explanatory).
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FIGURE 2.12
IQ and reading test scores for 60 fifth-grade children, for Exercise 2.33.

(a) Explain why we should expect a positive association between IQ and reading score for children in the
same grade. Does the scatterplot show a positive association?

(b) A group of four points appear to be outliers. In what way do these children’s IQ and reading scores
deviate from the overall pattern?

(c) Ignoring the outliers, is the association between IQ and reading score roughly linear? Is it very strong?
Explain your answers.

2.34 Can children estimate their reading ability?

The main purpose of the study cited in Exercise 2.33 was to ask whether schoolchildren can estimate their
own reading ability. The researchers had the children’s scores on a test of reading ability. They asked each
child to estimate his or her reading level, on a scale from 1 (low) to 5 (high). Figure 2.13 is a scatterplot of
the children’s estimates (response) against their reading scores (explanatory).

(a) What explains the “stair-step” pattern in the plot?

(b) Is there an overall positive association between reading score and self-estimate?

(c) There is one clear outlier. What is this child’s self-estimated reading level? Does this appear to over- or
underestimate the level as measured by the test?

 2.35 Body mass and metabolic rate.

Metabolic rate, the rate at which the body consumes energy, is important in studies of weight gain, dieting,
and exercise. The following table gives data on the lean body mass and resting metabolic rate for 12
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women and 7 men who are subjects in a study of dieting. Lean body mass, given in kilograms, is a person’s
weight leaving out all fat. Metabolic rate is measured in calories burned per 24 hours, the same calories
used to describe the energy content of foods. The researchers believe that lean body mass is an important

influence on metabolic rate.  BMASS

FIGURE 2.13
Reading test scores for 60 fifth-grade children and the children’s estimates of their own reading
levels, for Exercise 2.34.

Subject Sex Mass Rate Subject Sex Mass Rate
1 M 62.0 1792 11 F 40.3 1189
2 M 62.9 1666 12 F 33.1 913
3 F 36.1 995 13 M 51.9 1460
4 F 54.6 1425 14 F 42.4 1124
5 F 48.5 1396 15 F 34.5 1052
6 F 42.0 1418 16 F 51.1 1347
7 M 47.4 1362 17 F 41.2 1204
8 F 50.6 1502 18 M 51.9 1867
9 F 42.0 1256 19 M 46.9 1439

10 M 48.7 1614

(a) Make a scatterplot of the data, using different symbols or colors for men and women.

(b) Is the association between these variables positive or negative? What is the form of the relationship?
How strong is the relationship? Does the pattern of the relationship differ for women and men? How do the
male subjects as a group differ from the female subjects as a group?
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TABLE 2.1  World Record Times for the 10,000-Meter Run

2.36 Team value in the NFL.

Management theory says that the value of a business should depend on its operating income, the income
produced by the business after taxes. (Operating income excludes income from sales of assets and
investments, which don’t reflect the actual business.) Total revenue, which ignores costs, should be less
important. Debt includes borrowing for the construction of a new arena. The data file NFL gives the value
(in millions of dollars), debt (as percent of value), revenue (in millions of dollars), and operating income

(in millions of dollars) of the 32 teams in the National Football League (NFL).15  NFL

(a) Plot team value against revenue. Describe the relationship.

(b) Plot team value against debt. Describe the relationship.

(c) Plot team value against operating income. Describe the relationship.

(d) Write a short summary comparing the relationships that you described in parts (a), (b), and (c) of this
exercise.

 2.37 Records for men and women in the 10K.

Table 2.1 shows the progress of world record times (in seconds) for the 10,000-meter run for both men and

women.16  TENK

(a) Make a scatterplot of world record time against year, using separate symbols for men and women.
Describe the pattern for each sex. Then compare the progress of men and women.

(b) Women began running this long distance later than men, so we might expect their improvement to be
more rapid. Moreover, it is often said that men have little advantage over women in distance running as
opposed to sprints, where muscular strength plays a greater role. Do the data appear to support these
claims?

Men Women
Record year Time (seconds) Record year Time (seconds) Record year Time (seconds)

1912 1880.8 1963 1695.6 1967 2286.4
1921 1840.2 1965 1659.3 1970 2130.5
1924 1835.4 1972 1658.4 1975 2100.4
1924 1823.2 1973 1650.8 1975 2041.4
1924 1806.2 1977 1650.5 1977 1995.1
1937 1805.6 1978 1642.4 1979 1972.5
1938 1802.0 1984 1633.8 1981 1950.8
1939 1792.6 1989 1628.2 1981 1937.2
1944 1775.4 1993 1627.9 1982 1895.3
1949 1768.2 1993 1618.4 1983 1895.0
1949 1767.2 1994 1612.2 1983 1887.6
1949 1761.2 1995 1603.5 1984 1873.8
1950 1742.6 1996 1598.1 1985 1859.4
1953 1741.6 1997 1591.3 1986 1813.7
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1954 1734.2 1997 1587.8 1993 1771.8
1956 1722.8 1998 1582.7

1956 1710.4 2004 1580.3
1960 1698.8 2005 1577.3
1962 1698.2
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2.3 Correlation

When you complete this section, you will be able to

• Use a correlation to describe the direction and strength of a linear
relationship between two quantitative variables.

• Interpret the sign of a correlation.

• Identify situations where the correlation is not a good measure of
association between two quantitative variables.

• Identify a linear pattern in a scatterplot.

• For describing the relationship between two quantitative variables,
identify the roles of the correlation, a numerical summary, and the
scatterplot (a graphical summary).

A scatterplot displays the form, direction, and strength of the relationship
between two quantitative variables. Linear (straight-line) relations are particularly
important because a straight line is a simple pattern that is quite common. We say a
linear relationship is strong if the points lie close to a straight line, and weak if they
are widely scattered about a line. Our eyes are not good judges of how strong a
relationship is. The two scatterplots in Figure 2.14 depict exactly the same data, but
the plot on the right is drawn smaller in a large field. The plot on the right seems to
show a stronger relationship.

Our eyes can be fooled by changing the plotting scales or the amount of white
space around the cloud of points in a scatterplot.17 We need to follow our strategy
for data analysis by using a numerical measure to supplement the graph.
Correlation is the measure we use.

The correlation r

We have data on variables x and y for n individuals. Think, for example, of
measuring height and weight for n people. Then x1 and y1 are your height and your
weight, x2 and y2 are my height and my weight, and so on. For the ith individual,
height xi goes with weight y1 Here is the definition of correlation.
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FIGURE 2.14
Two scatterplots of the same data. The linear pattern in the plot on the right appears stronger
because of the surrounding space.

CORRELATION

The correlation measures the direction and strength of the linear relationship
between two quantitative variables. Correlation is usually written as r.

Suppose that we have data on variables x and y for n individuals. The means and standard deviations
of the two variables are x¯ and sx for the x-values, and y¯ and xy for the y-values. The correlation r
between x and y is

r= 1n− 1Σ(xi− x¯sx) (yi− y¯sy)
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As always, the summation sign Σ means “add these terms for all the
individuals.” The formula for the correlation r is a bit complex. It helps us see what
correlation is but is not convenient for actually calculating r. In practice you should
use software or a calculator that finds r from keyed-in values of two variables x
and y.

The formula for r begins by standardizing the observations. Suppose, for
example, that x is height in centimeters and y is weight in kilograms and that we
have height and weight measurements for n people. Then x¯ and sx are the mean
and standard deviation of the n heights, both in centimeters. The value

xi− x¯sx

is the standardized height of the ith person. The standardized height says how
many standard deviations above or below the mean a person’s height lies.
Standardized values have no units—in this example, they are no longer measured
in centimeters. Standardize the weights also. The correlation r is an average of the
products of the standardized height and the standardized weight for the n people.

USE YOUR KNOWLEDGE

2.38 Laundry detergents.

Example 2.8 describes data on the rating and price per load for 24
laundry detergents. Use these data to compute the correlation between
rating and the price per load.

LAUNDRY

2.39 Change the units.

Refer to the previous exercise. Express the price per load in dollars.

LAUNDRY

(a) Is the transformation from cents to dollars a linear transformation? Explain your answer.
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(b) Compute the correlation between rating and price per load expressed in dollars.

(c) How does the correlation that you computed in part (b) compare with the one you
computed in the previous exercise?

(d) What can you say in general about the effect of changing units using linear
transformations on the size of the correlation?

Properties of correlation

The formula for correlation helps us see that r is positive when there is a positive
association between the variables. Height and weight, for example, have a positive
association. People who are above average in height tend to also be above average
in weight. Both the standardized height and the standardized weight for such a
person are positive. People who are below average in height tend also to have
below-average weight. Then both standardized height and standardized weight are
negative. In both cases, the products in the formula for r are mostly positive and so
r is positive. In the same way, we can see that r is negative when the association
between x and y is negative. More detailed study of the formula gives more
detailed properties of r Here is what you need to know in order to interpret
correlation:

• Correlation makes no use of the distinction between explanatory and response
variables. It makes no difference which variable you call x and which you call y in
calculating the correlation.

• Correlation requires that both variables be quantitative. For example, we cannot
calculate a correlation between the incomes of a group of people and what city they
live in, because city is a categorical variable.

• Because r uses the standardized values of the observations, r does not change
when we change the units of measurement (a linear transformation) of x, y, or both.
Measuring height in inches rather than centimeters and weight in pounds rather
than kilograms does not change the correlation between height and weight. The
correlation r itself has no unit of measurement; it is just a number.

• Positive r indicates positive association between the variables, and negative r
indicates negative association.

• The correlation r is always a number between –1 and 1. Values of r near 0
indicate a very weak linear relationship. The strength of the relationship increases
as r moves away from 0 toward either –1 or 1. Values of r close to –1 or 1 indicate
that the points lie close to a straight line. The extreme values r = –1 and r = 1 occur
only when the points in a scatterplot lie exactly along a straight line.
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• Correlation measures the strength of only the linear relationship between two
variables. Correlation does not describe curved relationships between variables,
no matter how strong they are.

• Like the mean and standard deviation, the correlation is not resistant: r is
strongly affected by a few outlying observations. Use r with caution when outliers
appear in the scatterplot.

The scatterplots in Figure 2.15 illustrate how values of r closer to 1 or –1
correspond to stronger linear relationships. To make the essential meaning of r
clear, the standard deviations of both variables in these plots are equal and the
horizontal and vertical scales are the same. In general, it is not so easy to guess the
value of r from the appearance of a scatterplot. Remember that changing the
plotting scales in a scatterplot may mislead our eyes, but it does not change the
standardized values of the variables and therefore cannot change the correlation.
To explore how extreme observations can influence r, use the Correlation and
Regression applet available on the text website.
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FIGURE 2.15
How the correlation r measures the direction and strength of a linear association.

Finally, remember that correlation is not a complete description of two-
variable data, even when the relationship between the variables is linear. You
should give the means and standard deviations of both x and y along with the
correlation. (Because the formula for correlation uses the means and standard
deviations, these measures are the proper choices to accompany a correlation.)
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Conclusions based on correlations alone may require rethinking in the light of a
more complete description of the data.

Example

2.17 Scoring of figure skating in the Olympics.

Until a scandal at the 2002 Olympics brought change, figure skating was
scored by judges on a scale from 0.0 to 6.0. The scores were often
controversial. We have the scores awarded by two judges, Pierre and Elena, to
many skaters. How well do they agree? We calculate that the correlation
between their scores is r = 0.9. But the mean of Pierre’s scores is 0.8 point
lower than Elena’s mean.

These facts in the example above do not contradict each other. They are simply
different kinds of information. The mean scores show that Pierre awards lower
scores than Elena. But because Pierre gives every skater a score about 0.8 point
lower than Elena, the correlation remains high. Adding the same number to all
values of either x or y does not change the correlation. If both judges score the
same skaters, the competition is scored consistently because Pierre and Elena agree
on which performances are better than others. The high r shows their agreement.
But if Pierre scores some skaters and Elena others, we must add 0.8 point to
Pierre’s scores to arrive at a fair comparison.

SECTION 2.3 Summary

The correlation r measures the direction and strength of the linear (straight line)
association between two quantitative variables x and y. Although you can calculate
a correlation for any scatterplot, r measures only linear relationships.

Correlation indicates the direction of a linear relationship by its sign: r > 0 for a
positive association and r < 0 for a negative association.

Correlation always satisfies –1 ≤ r ≤ 1 and indicates the strength of a
relationship by how close it is to –1 or 1. Perfect correlation, r = ±1, occurs only
when the points lie exactly on a straight line.

Correlation ignores the distinction between explanatory and response variables.
The value of r is not affected by changes in the unit of measurement of either
variable. Correlation is not resistant, so outliers can greatly change the value of r.

SECTION 2.3 Exercises
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For Exercises 2.38 and 2.39, see page 104.

2.40 Correlations and scatterplots.

Explain why you should always look at a scatterplot when you want to use a correlation to describe the
relationship between two quantitative variables.

2.41 Interpret some correlations.

For each of the following correlations, describe the relationship between the two quantitative variables in
terms of the direction and the strength of the linear relationship.

(a) r = 0.0

(b) r = –0.9

(c) r = 0.3

(d) r = 0.8

2.42 When should you not use a correlation?

Describe two situations where a correlation would not give a good numerical summary of the relationship
between two quantitative variables. Illustrate each situation with a scatterplot and write a short paragraph
explaining why the correlation would not be appropriate in each of these situations.

2.43 Bone strength.

Exercise 2.18 (page 98) gives the bone strengths of the dominant and the nondominant arms for 15 men

who were controls in a study.  ARMSTR

(a) Find the correlation between the bone strength of the dominant arm and the bone strength of the
nondominant arm.

(b) Look at the scatterplot for these data that you made in part (a) of Exercise 2.18 (or make one if you did
not do that exercise). Is the correlation a good numerical summary of the graphical display in the
scatterplot? Explain your answer.

2.44 Bone strength for baseball players.

Refer to the previous exercise. Similar data for baseball players is given in Exercise 2.19 (page 98).

Answer parts (a) and (b) of the previous exercise for these data.  ARMSTR

2.45 College students by state.

In Exercise 2.21 (page 99) you used a scatterplot to display the relationship between the number of

undergraduates and the populations of the states.  COLLEGE, COL46

(a) What is the correlation between these two variables?
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(b) Does the correlation give a good numerical summary of the relationship between these two variables?
Explain your answer.

(c) Eliminate the four states with populations greater than 15 million and find the correlation for the other
46 states. How does this correlation differ from the one that you found in part (a)? What does this tell you
about how the range of the values of the variables in a data set can affect the magnitude of a correlation?

2.46 Decay of a radioactive element.

Data for an experiment on the decay of barium-137m is given in Exercise 2.22 (page 99).  DECAY

(a) Find the correlation between the radioactive counts and the time after the start of the first counting
period.

(b) Does the correlation give a good numerical summary of the relationship between these two variables?
Explain your answer.

2.47 Decay in the log scale.

Refer to the previous exercise and to Exercise 2.23 (page 99), where the counts were transformed by a log. 

 DECAY

(a) Find the correlation between the log counts and the time after the start of the first counting period.

(b) Does the correlation give a good numerical summary of the relationship between these two variables?
Explain your answer.

(c) Compare your results for this exercise with those from the previous exercise.

2.48 Thinking about correlation.

Figure 2.9 (page 97) is a scatterplot of 2010 debt versus 2009 debt for 33 countries. Is the correlation r for
these data near –1, clearly negative but not near –1, near 0, clearly positive but not near 1, or near 1?

Explain your answer. Verify your answer by doing the calculation.  DEBT

2.49 Brand names and generic products.

(a) If a store always prices its generic “store brand” products at 80% of the brand name products’ prices,
what would be the correlation between the prices of the brand name products and the store brand products?
(Hint: Draw a scatterplot for several prices.)

(b) If the store always prices its generic products $2 less than the corresponding brand name products, then
what would be the correlation between the prices of the brand name products and the store brand products?

2.50 Strong association but no correlation.

Here is a data set that illustrates an important point about correlation:

X 25 35 45 55 65
Y 10 30 50 30 10
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(a) Make a scatterplot of Y versus X.

(b) Describe the relationship between Y and X. Is it weak or strong? Is it linear?

(c) Find the correlation between Y and X.

(d) What important point about correlation does this exercise illustrate?

2.51 Alcohol and carbohydrates in beer.

Figure 2.10 (page 100) gives a scatterplot of the percent alcohol versus carbohydrates in 153 brands of

beer. Compute the correlation for these data.  BEER

2.52 Alcohol and carbohydrates in beer revisited.

Refer to the previous exercise. The data that you used to compute the correlation includes an outlier. 
BEER

(a) Remove the outlier and recompute the correlation.

(b) Write a short paragraph about the possible effects of outliers on a correlation using this example to
illustrate your ideas.

2.53 Internet use and babies.

Figure 2.11 (page 100) is a scatterplot of the number of births per 1000 people versus Internet users per

100 people for 106 countries. In Exercise 2.28 (page 100) you described this relationship.  INBIRTH

(a) Make a plot of the data similar to Figure 2.11 and report the correlation.

(b) Is the correlation a good numerical summary for this relationship? Explain your answer.

2.54 NFL teams.

In Exercise 2.36 (page 102) you used graphical summaries to examine the relationship between team value
and three possible explanatory variables for 32 National Football League teams. Find the correlations for
these variables. Do you think that these correlations provide good numerical summaries for the

relationships? Explain your answers.  NFL

 2.55 Use the applet.

You are going to use the Correlation and Regression applet to make different scatterplots with 10 points
that have correlation close to 0.8. Many patterns can have the same correlation. Always plot your data
before you trust a correlation.

(a) Stop after adding the first 2 points. What is the value of the correlation? Why does it have this value no
matter where the 2 points are located?

(b) Make a lower-left to upper-right pattern of 10 points with correlation about r = 0.8. (You can drag
points up or down to adjust r after you have 10 points.) Make a rough sketch of your scatterplot.
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(c) Make another scatterplot, this time with 9 points in a vertical stack at the left of the plot. Add one point
far to the right and move it until the correlation is close to 0.8. Make a rough sketch of your scatterplot.

(d) Make yet another scatterplot, this time with 10 points in a curved pattern that starts at the lower left,
rises to the right, then falls again at the far right. Adjust the points up or down until you have a quite
smooth curve with correlation close to 0.8. Make a rough sketch of this scatterplot also.

 2.56 Use the applet.

Go to the Correlation and Regression applet. Click on the scatterplot to create a group of 10 points in the
lower-right corner of the scatterplot with a strong straight-line negative pattern (correlation about –0.9).

(a) Add one point at the upper left that is in line with the first 10. How does the correlation change?

(b) Drag this last point down until it is opposite the group of 10 points. How small can you make the
correlation? Can you make the correlation positive? A single outlier can greatly strengthen or weaken a
correlation. Always plot your data to check for outlying points.

2.57 An interesting set of data.

Make a scatterplot of the following data:  INTER

x 1 2 3 4 10 10
y 1 3 3 5 1 11

Use your calculator to show that the correlation is about 0.5. What feature of the
data is responsible for reducing the correlation to this value despite a strong
straight-line association between x and y in most of the observations?

 2.58 High correlation does not mean that the values are the same.

Investment reports often include correlations. Following a table of correlations among mutual funds, a
report adds, “Two funds can have perfect correlation, yet different levels of risk. For example, Fund A and
Fund B may be perfectly correlated, yet Fund A moves 20% whenever Fund B moves 10%.” Write a brief
explanation, for someone who knows no statistics, of how this can happen. Include a sketch to illustrate
your explanation.

2.59 Student ratings of teachers.

A college newspaper interviews a psychologist about student ratings of the teaching of faculty members.
The psychologist says, “The evidence indicates that the correlation between the research productivity and
teaching rating of faculty members is close to zero.” The paper reports this as “Professor McDaniel said
that good researchers tend to be poor teachers, and vice versa.” Explain why the paper’s report is wrong.
Write a statement in plain language (don’t use the word “correlation”) to explain the psychologist’s
meaning.

2.60 What’s wrong?

Each of the following statements contains a blunder. Explain in each case what is wrong.
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(a) “There is a high correlation between the age of American workers and their occupation.”

(b) “We found a high correlation (r = 1.19) between students’ ratings of faculty teaching and ratings made
by other faculty members.”

(c) “The correlation between the gender of a group of students and the color of their cell phone was r =
0.23.”

 2.61 IQ and GPA.

Table 1.3 (page 29) reports data on 78 seventh-grade students. We expect a positive association between
IQ and GPA. Moreover, some people think that self-concept is related to school performance. Examine in
detail the relationships between GPA and the two explanatory variables IQ and self-concept. Are the
relationships roughly linear? How strong are they? Are there unusual points? What is the effect of

removing these points?  SEVENGR
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2.4 Least-Squares Regression

When you complete this section, you will be able to

• Draw a straight line on a scatterplot of a set of data, given the equation of
the line.

• Predict a value of the response variable y for a given value of the
explanatory variable x using a regression equation.

• Explain the meaning of the term “least squares.”

• Calculate the equation of a least-squares regression line from the means
and standard deviations of the explanatory and response variables and
their correlation.

• Read the output of statistical software to find the equation of the least-
squares regression line and the value of r2.

• Explain the meaning of r2 in the regression setting.

Correlation measures the direction and strength of the linear (straight-line)
relationship between two quantitative variables. If a scatterplot shows a linear
relationship, we would like to summarize this overall pattern by drawing a line on
the scatterplot. A regression line summarizes the relationship between two
variables, but only in a specific setting: when one of the variables helps explain or
predict the other. That is, regression describes a relationship between an
explanatory variable and a response variable.

REGRESSION LINE

A regression line is a straight line that describes how a response variable y
changes as an explanatory variable x changes. We often use a regression line
to predict the value of y for a given value of x. Regression, unlike correlation,
requires that we have an explanatory variable and a response variable.

Example
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2.18 Fidgeting and fat gain.

Does fidgeting keep you slim? Some people don’t gain weight even when they
overeat. Perhaps fidgeting and other “nonexercise activity” (NEA) explains
why—the body might spontaneously increase nonexercise activity when fed
more. Researchers deliberately overfed 16 healthy young adults for 8 weeks.
They measured fat gain (in kilograms) and, as an explanatory variable,
increase in energy use (in calories) from activity other than deliberate exercise
—fidgeting, daily living, and the like. Here are the data:18

FIDGET

NEA increase (cal) –94 –57 –29 135 143 151 245 355
Fat gain (kg) 4.2 3.0 3.7 2.7 3.2 3.6 2.4 1.3
NEA increase (cal) 392 473 486 535 571 580 620 690
Fat gain (kg) 3.8 1.7 1.6 2.2 1.0 0.4 2.3 1.1

Figure 2.16 is a scatterplot of these data. The plot shows a moderately strong
negative linear association with no outliers. The correlation is r = –0.7786.
People with larger increases in nonexercise activity do indeed gain less fat. A
line drawn through the points will describe the overall pattern well.

Fitting a line to data

When a scatterplot displays a linear pattern, we can describe the overall pattern by
drawing a straight line through the points. Of course, no straight line passes exactly
through all the points. Fitting a line to data means drawing a line that comes as
close as possible to the points. The equation of a line fitted to the data gives a
concise description of the relationship between the response variable y and the
explanatory variable x. It is the numerical summary that supports the scatterplot,
our graphical summary.

fitting a line
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FIGURE 2.16
Fat gain after 8 weeks of overeating plotted against the increase in nonexercise activity over the
same period, for Example 2.18.

STRAIGHT LINES

Suppose that y is a response variable (plotted on the vertical axis) and x is an
explanatory variable (plotted on the horizontal axis). A straight line relating y
to x has an equation of the form

y = b0 + b1x

In this equation, b1 is the slope, the amount by which y changes when x
increases by one unit. The number b0 is the intercept, the value of y when x =
0.

In practice, we will use software to obtain values of b0 and b1 for a given set of
data.
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Example

2.19 Regression line for fat gain.

Any straight line describing the nonexercise activity data has the form

fat gain = b0 + (b1 × NEA increase)

In Figure 2.17 we have drawn the regression line with the equation

fat gain = 3.505 – (0.00344 × NEA increase)

The figure shows that this line fits the data well. The slope b1 = –0.00344 tells
us that fat gained goes down by 0.00344 kilogram for each added calorie of
NEA increase.

The slope b1 of a line y = b0 + b1x is the rate of change in the response y as the
explanatory variable x changes. The slope of a regression line is an important
numerical description of the relationship between the two variables. For Example
2.19, the intercept, b0 = 3.505 kilograms. This value is the estimated fat gain if
NEA does not change. When we substitute the value zero for the NEA increase, the
regression equation gives 3.505 (the intercept) as the predicted value of the fat
gain.
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FIGURE 2.17
A regression line fitted to the nonexercise activity data and used to predict fat gain for an NEA
increase of 400 calories, for Examples 2.19 and 2.20.

USE YOUR KNOWLEDGE

2.62 Plot the line.

Make a sketch of the data in Example 2.18 and plot the line

fat gain = 2.505 – (0.00344 × NEA increase)

on your sketch. Explain why this line does not give a good fit to the
data.

Prediction

We can use a regression line to predict the response y for a specific value of the
explanatory variable x.

prediction

Example

2.20 Prediction for fat gain.

Based on the linear pattern, we want to predict the fat gain for an individual
whose NEA increases by 400 calories when she overeats. To use the fitted line
to predict fat gain, go “up and over” on the graph in Figure 2.17. From 400
calories on the x axis, go up to the fitted line and over to the y axis. The graph
shows that the predicted gain in fat is a bit more than 2 kilograms.

If we have the equation of the line, it is faster and more accurate to
substitute x = 400 in the equation. The predicted fat gain is

fat gain = 3.505 – (0.00344 × 400) = 2.13 kilograms
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The accuracy of predictions from a regression line depends on how much
scatter about the line the data show. In Figure 2.17, fat gains for similar increases
in NEA show a spread of 1 or 2 kilograms. The regression line summarizes the
pattern but gives only roughly accurate predictions.

USE YOUR KNOWLEDGE

2.63 Predict the fat gain.

Use the regression equation in Example 2.19 to predict the fat gain for a
person whose NEA increases by 500 calories.

Example

2.21 Is this prediction reasonable?

Can we predict the fat gain for someone whose nonexercise activity increases
by 1500 calories when she overeats? We can certainly substitute 1500 calories
into the equation of the line. The prediction is

fat gain = 3.505 – (0.00344 × 1500) = –1.66 kilograms

That is, we predict that this individual loses fat when she overeats. This
prediction is not trustworthy. Look again at Figure 2.17. An NEA increase of
1500 calories is far outside the range of our data. We can’t say whether
increases this large ever occur, or whether the relationship remains linear at
such extreme values. Predicting fat gain when NEA increases by 1500 calories
extrapolates the relationship beyond what the data show.

EXTRAPOLATION

Extrapolation is the use of a regression line for prediction far outside the
range of values of the explanatory variable x used to obtain the line. Such
predictions are often not accurate and should be avoided.
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USE YOUR KNOWLEDGE

2.64 Would you use the regression equation to predict?

Consider the following values for NEA increase: –400, 200, 500, 1000.
For each, decide whether you would use the regression equation in
Example 2.19 to predict fat gain or whether you would be concerned
that the prediction would not be trustworthy because of extrapolation.
Give reasons for your answers.

Least-squares regression

Different people might draw different lines by eye on a scatterplot. This is
especially true when the points are widely scattered. We need a way to draw a
regression line that doesn’t depend on our guess as to where the line should go. No
line will pass exactly through all the points, but we want one that is as close as
possible. We will use the line to predict y from x, so we want a line that is as close
as possible to the points in the vertical direction. That’s because the prediction
errors we make are errors in y, which is the vertical direction in the scatterplot.

The line in Figure 2.17 predicts 2.13 kilograms of fat gain for an increase in
nonexercise activity of 400 calories. If the actual fat gain turns out to be 2.3
kilograms, the error is

error = observed gain – predicted gain

    = 2.3 – 2.13 = 0.17 kilograms

Errors are positive if the observed response lies above the line, and negative if the
response lies below the line. We want a regression line that makes these prediction
errors as small as possible. Figure 2.18 illustrates the idea. For clarity, the plot
shows only three of the points from Figure 2.17, along with the line, on an
expanded scale. The line passes below two of the points and above one of them.
The vertical distances of the data points from the line appear as vertical line
segments. A “good” regression line makes these distances as small as possible.
There are many ways to make “as small as possible” precise. The most common is
the least-squares idea. The line in Figures 2.17 and 2.18 is in fact the least-squares
regression line.

262



FIGURE 2.18
The least-squares idea: make the errors in predicting y as small as possible by minimizing the
sum of their squares.

LEAST-SQUARES REGRESSION LINE

The least-squares regression line of y on x is the line that makes the sum of
the squares of the vertical distances of the data points from the line as small as
possible.

Here is the least-squares idea expressed as a mathematical problem. We
represent n observations on two variables x and y as

(x1, y1), (x2, y2), . . . , (xn, yn)

If we draw a line y = b0 + b1x through the scatterplot of these observations, the line
predicts the value of y corresponding to xi as yˆi= b0 + b1xi. We write yˆ (read
“y-hat”) in the equation of a regression line to emphasize that the line gives a
predicted response yˆ for any x. The predicted response will usually not be exactly
the same as the actually observed response y. The method of least squares chooses
the line that makes the sum of the squares of these errors as small as possible. To
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find this line, we must find the values of the intercept b0 and the slope b1 that
minimize

Σ (error)2 = Σ (yi – b0 – b1xi)2

for the given observations xi and yi. For the NEA data, for example, we must find
the b0 and b1 that minimize

(4.2 – b0 + 94b1)2 + (3.0 – b0 + 57b1)2 + … + (1.1 – b0 – 690b1)2

These values are the intercept and slope of the least-squares line.
You will use software or a calculator with a regression function to find the

equation of the least-squares regression line from data on x and y. We will
therefore give the equation of the least-squares line in a form that helps our
understanding but is not efficient for calculation.

EQUATION OF THE LEAST-SQUARES REGRESSION LINE

We have data on an explanatory variable x and a response variable y for n
individuals. The means and standard deviations of the sample data are x¯ and
sx for x and yˆ and sy for y, and the correlation between x and y is r. The
equation of the least-squares regression line of y on x is

yˆ= b0+b1x

with slope

b1= rsysx

and intercept

b0= y¯− b1x¯

Example

2.22 Check the calculations.

Verify from the data in Example 2.18 that the mean and standard deviation of
the 16 increases in NEA are
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x¯=324.8 calories   and   sx=257.66 calories

The mean and standard deviation of the 16 fat gains are

y¯=2.388 kg   and   sy=1.1389 kg

The correlation between fat gain and NEA increase is r = –0.7786. The least-
squares regression line of fat gain y on NEA increase x therefore has slope

b1=rsysx=−0.77861.1389257.66

=−0.00344kg per calorie

and intercept

b0=y¯−b1x¯

=2.388− (−0.00344)(324.8)=3.505kg

The equation of the least-squares line is

yˆ=3.505−0.00344x

When doing calculations like this by hand, you may need to carry extra
decimal places in the preliminary calculations to get accurate values of the
slope and intercept. Using software or a calculator with a regression function
eliminates this worry.

Interpreting the regression line

The slope b1 = –0.00344 kilograms per calorie in Example 2.22 is the change in fat
gain as NEA increases. The units “kilograms of fat gained per calorie of NEA”
come from the units of y (kilograms) and x (calories). Although the correlation
does not change when we change the units of measurement, the equation of the
least-squares line does change. The slope in grams per calorie would be 1000 times
as large as the slope in kilograms per calorie, because there are 1000 grams in a
kilogram. The small value of the slope, b1 = –0.00344, does not mean that the
effect of increased NEA on fat gain is small—it just reflects the choice of
kilograms as the unit for fat gain. The slope and intercept of the least-squares line
depend on the units of measurement—you can’t conclude anything from their size.
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Example

2.23 Regression using software.

Figure 2.19 displays the basic regression output for the nonexercise activity
data from three statistical software packages. Other software produces very
similar output. You can find the slope and intercept of the least-squares line,
calculated to more decimal places than we need, in each output. The software
also provides information that we do not yet need, including some that we
trimmed from Figure 2.19.

Part of the art of using software is to ignore the extra information that is almost
always present. Look for the results that you need. Once you understand a
statistical method, you can read output from almost any software.
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FIGURE 2.19
Regression results for the nonexercise activity data from three statistical software packages: (a)
Minitab, (b) SPSS, and (c) JMP. Other software produces similar output.

Facts about least-squares regression

Regression is one of the most common statistical settings, and least squares is the
most common method for fitting a regression line to data. Here are some facts
about least-squares regression lines.

Fact 1. There is a close connection between correlation and the slope of the
least-squares line. The slope is

b1=rsysx

This equation says that along the regression line, a change of one standard
deviation in x corresponds to a change of r standard deviations in y. When the
variables are perfectly correlated (r = 1 or r = –1), the change in the predicted
response yˆ is the same (in standard deviation units) as the change in x. Otherwise,
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because –1 ≤ r ≤ 1, the change in yˆ is less than the change in x. As the correlation
grows less strong, the prediction yˆ moves less in response to changes in x. Note
that if the correlation is zero, then the slope of the least-squares regression line will
be zero.

Fact 2. The least-squares regression line always passes through the point
(x¯,y¯) on the graph of y against x. So the least-squares regression line of y on x is
the line with slope rsy/sx that passes through the point (x¯,y¯). We can describe
regression entirely in terms of the basic descriptive measures x¯, sx, y¯, sy, and r.

Fact 3. The distinction between explanatory and response variables is
essential in regression. Least-squares regression looks at the distances of the data
points from the line only in the y direction. If we reverse the roles of the two
variables, we get a different least-squares regression line.

Correlation and regression

Least-squares regression looks at the distances of the data points from the line only
in the y direction. So the two variables x and y play different roles in regression.

Example

2.24 Laundry detergents.

LAUNDRY

Figure 2.20 is a scatterplot of the laundry detergent data described in Example
2.8 (page 87). There is a positive linear relationship. The two lines on the plot
are the two least-squares regression lines. The regression line using price to
predict rating is red. The regression line using rating to predict price is blue.
Regression of rating on price and regression of price on rating give different
lines. In the regression setting, you must decide which variable is explanatory.

Even though the correlation r ignores the distinction between explanatory and
response variables, there is a close connection between correlation and regression.
We saw that the slope of the least-squares line involves r. Another connection
between correlation and regression is even more important. In fact, the numerical
value of r as a measure of the strength of a linear relationship is best interpreted by
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thinking about regression. Here is the fact we need.

r2 IN REGRESSION

The square of the correlation, r2, is the fraction of the variation in the values
of y that is explained by the least-squares regression of y on x.

The correlation between NEA increase and fat gain for the 16 subjects in
Example 2.18 (page 110) is r = – 0.7786. Because r2 = 0.606, the straight-line
relationship between NEA and fat gain explains about 61% of the vertical scatter in
fat gains in Figure 2.17 (page 112).

FIGURE 2.20
Scatterplot of price per load versus rating for 24 laundry detergents, from Example 2.8. The two
lines are the two least-squares regression lines: using price per load to predict rating (red) and
using rating to predict price per load (blue), for Example 2.24.

When you report a regression, give r2 as a measure of how successfully the
regression explains the response. All three software outputs in Figure 2.19 include
r2, either in decimal form or as a percent.

When you see a correlation, square it to get a better feel for the strength of the
association. Perfect correlation (r = –1 or r = 1) means that the points lie exactly on
a line. Then r2 = 1 and all the variation in one variable is accounted for by the
linear relationship with the other variable. If r = –0.7 or r2 = 0.7, r2 = 0.49 and
about half the variation is accounted for by the linear relationship. In the r2 scale,
correlation ±0.7 is about halfway between 0 and ±1.
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USE YOUR KNOWLEDGE

2.65 What fraction of the variation is explained?

Consider the following correlations: –0.8, –0.4, –0.2, 0, 0.3, 0.5, and 0.9.
For each give the fraction of the variation in y that is explained by the
least-squares regression of y on x. Summarize what you have found from
performing these calculations.

The use of r2 to describe the success of regression in explaining the response y
is very common. It rests on the fact that there are two sources of variation in the
responses y in a regression setting. Figure 2.17 (page 112) gives a rough visual
picture of the two sources. The first reason for the variation in fat gains is that there
is a relationship between fat gain y and increase in NEA x. As x increases from –94
to 690 calories among the 16 subjects, it pulls fat gain y with it along the regression
line in the figure. The linear relationship explains this part of the variation in fat
gains.

The fat gains do not lie exactly on the line, however, but are scattered above
and below it. This is the second source of variation in y, and the regression line
tells us nothing about how large it is. The dashed lines in Figure 2.17 show a rough
average for y when we fix a value of x. We use r2 to measure variation along the
line as a fraction of the total variation in the fat gains. In Figure 2.17, about 61% of
the variation in fat gains among the 16 subjects is due to the straight-line
relationship between y and x. The remaining 39% is vertical scatter in the observed
responses remaining after the line has fixed the predicted responses.

Another view of r2

Here is a more specific interpretation of r2. The fat gains y in Figure 2.17 range
from 0.4 to 4.2 kilograms. The variance of these responses, a measure of how
variable they are, is

variance of observed values y = 1.297

Much of this variability is due to the fact that as x increases from –94 to 690
calories it pulls y along with it. If the only variability in the observed responses
were due to the straight-line dependence of fat gain on NEA, the observed gains
would lie exactly on the regression line. That is, they would be the same as the
predicted gains yˆ. We can compute the predicted gains by substituting the NEA
values for each subject into the equation of the least-squares line. Their variance
describes the variability in the predicted responses. The result is
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variance of predicted values yˆ=0.786

This is what the variance would be if the responses fell exactly on the line, that is,
if the linear relationship explained 100% of the observed variation in y. Because
the responses don’t fall exactly on the line, the variance of the predicted values is
smaller than the variance of the observed values. Here is the fact we need:

r2=variance of predicted values yˆvarience of observed values y

=0.7861.297=0.606

This fact is always true. The squared correlation gives the variance that the
responses would have if there were no scatter about the least-squares line as a
fraction of the variance of the actual responses. This is the exact meaning of
“fraction of variation explained” as an interpretation of r2.

These connections with correlation are special properties of least-squares
regression. They are not true for other methods of fitting a line to data. One reason
that least squares is the most common method for fitting a regression line to data is
that it has many convenient special properties.

SECTION 2.4 Summary

A regression line is a straight line that describes how a response variable y
changes as an explanatory variable x changes.

The most common method of fitting a line to a scatterplot is least squares. The
least-squares regression line is the straight line yˆ=b0+b1x that minimizes the
sum of the squares of the vertical distances of the observed y-values from the line.

You can use a regression line to predict the value of y for any value of x by
substituting this x into the equation of the line. Extrapolation beyond the range of
x-values spanned by the data is risky.

The slope b1 of a regression line yˆ=b0+b1x is the rate at which the predicted
response yˆ changes along the line as the explanatory variable x changes.
Specifically, b1 is the change in yˆ when x increases by 1. The numerical value of
the slope depends on the units used to measure x and y.

The intercept b0 of a regression line yˆ=b0+b1x is the predicted response yˆ
when the explanatory variable x = 0. This prediction is not particularly useful
unless x can actually take values near 0.

The least-squares regression line of y on x is the line with slope b1 = rsy/sx and
intercept b0=y¯−b1x¯. This line always passes through the point (x¯,y¯).

Correlation and regression are closely connected. The correlation r is the
slope of the least-squares regression line when we measure both x and y in
standardized units. The square of the correlation r2 is the fraction of the variance of
one variable that is explained by least-squares regression on the other variable.

SECTION 2.4 Exercises

273



For Exercise 2.62, see page 112; for Exercise 2.63, see page 113; for Exercise 2.64, see page 113; and for
Exercise 2.65, see page 120.

2.66 Bone strength.

Exercise 2.18 (page 98) gives the bone strengths of the dominant and the nondominant arms for 15 men

who were controls in a study.  ARMSTR

(a) Plot the data. Use the bone strength in the nondominant arm as the explanatory variable and bone
strength in the dominant arm as the response variable.

(b) The least-squares regression line for these data is

dominant = 2.74 + (0.936 × nondominant)

Add this line to your plot.

(c) Use the scatterplot (a graphical summary) with the least-squares line (a graphical display of a numerical
summary) to write a short paragraph describing this relationship.

2.67 Bone strength for baseball players.

Refer to the previous exercise. Similar data for baseball players is given in Exercise 2.19 (page 98). Here is
the equation of the least-squares line for the baseball players:

dominant = 0.886 + (1.373 × nondominant)

Answer parts (a) and (c) of the previous exercise for these data.  ARMSTR

2.68 Predict the bone strength.

Refer to Exercise 2.66. A young male who is not a baseball player has a bone strength of 16.0 cm4/1000 in

his nondominant arm. Predict the bone strength in the dominant arm for this person.  ARMSTR

2.69 Predict the bone strength for a baseball player.

Refer to Exercise 2.67. A young male who is a baseball player has a bone strength of 16.0 cm4/1000 in his

nondominant arm. Predict the bone strength in the dominant arm for this person.  ARMSTR

2.70 Compare the predictions.

Refer to the two previous exercises. You have predicted two dominant-arm bone strengths, one for a
baseball player and one for a person who is not a baseball player. The nondominant bone strengths are both

16.0 cm4/1000.  ARMSTR

(a) Compare the two predictions, baseball player minus control.

(b) Explain how the difference in the two predictions is an estimate of the effect of baseball-throwing
exercise on the strength of arm bones.
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(c) For nondominant-arm strengths of 12 and 20 cm4/1000, repeat your predictions and take the
differences. Make a table of the results of all three calculations (for 12, 16, and 20 cm4/1000).

(d) Write a short summary of the results of your calculations for the three different nondominant-arm
strengths. Be sure to include an explanation of why the differences are not the same for the three
nondominant-arm strengths.

2.71 Least-squares regression for radioactive decay.

Refer to Exercise 2.22 (page 99) for the data on radioactive decay of barium-137m. Here are the data: 
DECAY

Time 1 3 5 7
Count 578 317 203 118

(a) Using the least-squares regression equation

count = 602.8 – (74.7 × time)

find the predicted values for the counts.

(b) Compute the differences, observed count minus predicted count. How many of these are positive; how
many are negative?

(c) Square and sum the differences that you found in part (b).

(d) Repeat the calculations that you performed in parts (a) to (c) using the equation

count = 500 – (100 × time)

(e) In a short paragraph, explain the least-squares idea using the calculations that you performed in this
exercise.

2.72 Least-squares regression for the log counts.

Refer to Exercise 2.23 (page 99), where you analyzed the radioactive decay of barium-137m data using log

counts. Here are the data:  DECAY

Time 1 3 5 7
Log count 6.35957 5.75890 5.31321 4.77068

(a) Using the least-squares regression equation

log count = 6.593 – (0.2606 × time)
find the predicted values for the log counts.

(b) Compute the differences, observed count minus predicted count. How many of these are positive; how
many are negative?

(c) Square and sum the differences that you found in part (b).

(d) Repeat the calculations that you performed in parts (a) to (c) using the equation
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log count = 7 – (0.2 × time)

(e) In a short paragraph, explain the least-squares idea using the calculations that you performed in this
exercise.

2.73 College students by state.

Refer to Exercise 2.21 (page 99) and Figure 2.11 (page 100), where you examined the relationship between
the number of undergraduate college students and the populations for the 50 states. In Exercise 2.45 (page
107) you calculated the correlation between these two variables. Here are some numerical summaries for
these variables: for number of undergraduate college students, the mean is 302,136 and the standard
deviation is 358,460; for population, the mean is 5,955,551 and the standard deviation is 6,620,733. The
correlation between the number of undergraduate college students and the population is 0.98367. Use this
information to find the least-squares regression line. Show your work.

2.74 College students by state without the four largest states.

Refer to the previous exercise. Let’s eliminate the four largest states, which have populations greater than
15 million. Here are the numerical summaries: for number of undergraduate college students, the mean is
220,134 and the standard deviation is 165,270; for population, the mean is 4,367,448 and the standard
deviation is 3,310,957. The correlation between the number of undergraduate college students and the
population is 0.97081. Use this information to find the least-squares regression line. Show your work.

2.75 Make predictions and compare.

Refer to the two previous exercises. Consider a state with a population of 6 million (this value is
approximately the median population for the 50 states).

(a) Using the least-squares regression equation for all 50 states, find the predicted number of undergraduate
college students.

(b) Do the same using the least-squares regression equation for the 46 states with population less than 15
million.

(c) Compare the predictions that you made in parts (a) and (b). Write a short summary of your results and
conclusions. Pay particular attention to the effect of including the four states with the largest populations in
the prediction equation for a median-sized state.

2.76 College students by state.

Refer to Exercise 2.21 (page 99), where you examined the relationship between the number of
undergraduate college students and the populations for the 50 states. Figure 2.22 gives the output from a

software package for the regression. Use this output to answer the following questions:  COLLEGE

(a) What is the equation of the least-squares regression line?

(b) What is the value of r2 ?

(c) Interpret the value of r2.

(d) Does the software output tell you that the relationship is linear and not, for example, curved? Explain
your answer.
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FIGURE 2.21
SPSS output for predicting number of undergraduate college students using population for the
50 states, for Exercise 2.73.

FIGURE 2.22
SPSS output for predicting number of undergraduate college students using population, with the
four largest states deleted, for Exercise 2.76.
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2.77 College students by state without the four largest states.

Refer to Exercise 2.74 where you eliminated the four largest states that have populations greater than 15

million. Answer the questions in the previous exercise for the data set with the 46 states.  COL46

2.78 Data generated by software.

The following 20 observations on Y and X were generated by a computer program.  GENDATA

Y X Y X
34.38 22.06 27.07 17.75
30.38 19.88 31.17 19.96
26.13 18.83 27.74 17.87
31.85 22.09 30.01 20.20
26.77 17.19 29.61 20.65
29.00 20.72 31.78 20.32
28.92 18.10 32.93 21.37
26.30 18.01 30.29 17.31
29.49 18.69 28.57 23.50
31.36 18.05 29.80 22.02

(a) Make a scatterplot and describe the relationship between Y and X.

(b) Find the equation of the least-squares regression line and add the line to your plot.

(c) What percent of the variability in Y is explained by X?

(d) Summarize your analysis of these data in a short paragraph.

2.79 Alcohol and carbohydrates in beer.

Figure 2.10 (page 100) gives a scatterplot of carbohydrates versus percent alcohol in 153 brands of beer. 

 BEER

(a) Find the equation of the least-squares regression line for these data.

(b) Find the value of r2 and interpret it in the regression context.

(c) Write a short report on the relationship between carbohydrates and percent alcohol in beer. Include
graphical and numerical summaries for each variable separately as well as graphical and numerical
summaries for the relationship in your report.

2.80 Alcohol and carbohydrates in beer revisited.

Refer to the previous exercise. The data that you used includes an outlier.  BEER

(a) Remove the outlier and answer parts (a) through (c) for the new set of data.

(b) Write a short paragraph about the possible effects of outliers on a least-squares regression line and the
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TABLE 2.2  Four Data Sets for Exploring Correlation and Regression

value of r2, using this example to illustrate your ideas.

2.81 Always plot your data!

Table 2.2 presents four sets of data prepared by the statistician Frank Anscombe to illustrate the dangers of

calculating without first plotting the data.19  ANSC

Data Set A
x 10 8 13 9 11 14 6 4 12 7 5
y 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68

    Data Set B
x 10 8 13 9 11 14 6 4 12 7 5
y 9.14 8.14 8.74 8.77 9.26 8.10 6.13 3.10 9.13 7.26 4.74

    Data Set C
x 10 8 13 9 11 14 6 4 12 7 5
y 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73

    Data Set D
x 8 8 8 8 8 8 8 8 8 8 19
y 6.58 5.76 7.71 8.84 8.47 7.04 5.25 5.56 7.91 6.89 12.50

(a) Without making scatterplots, find the correlation and the least-squares regression line for all four data
sets. What do you notice? Use the regression line to predict y for x = 10.

(b) Make a scatterplot for each of the data sets and add the regression line to each plot.

(c) In which of the four cases would you be willing to use the regression line to describe the dependence of
y on x? Explain your answer in each case.

2.82 Add an outlier.

Refer to Exercise 2.78. Add an additional observation with Y = 44 and X = 40 to the data set. Repeat the
analysis that you performed in Exercise 2.78 and summarize your results paying particular attention to the

effect of this outlier.  GEN21A

2.83 Add a different outlier.

Refer to Exercise 2.78 and the previous exercise. Add an additional observation with Y = 30 and X = 40 to

the original data set.  GEN21B

(a) Repeat the analysis that you performed in Exercise 2.78 and summarize your results paying particular
attention to the effect of this outlier.
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(b) In this exercise and in the previous one, you added an outlier to the original data set and reanalyzed the
data. Write a short summary of the changes in correlations that can result from different kinds of outliers.

2.84 Progress in math scores.

Every few years, the National Assessment of Educational Progress asks a national sample of eighth-graders
to perform the same math tasks. The goal is to get an honest picture of progress in math. Here are the last

few national mean scores, on a scale of 0 to 500:20  NAEP

Year 1990 1992 1996 2000 2003 2005 2008 2011
Score 263 268 272 273 278 279 281 283

(a) Make a time plot of the mean scores, by hand. This is just a scatterplot of score against year. There is a
slow linear increasing trend.

(b) Find the regression line of mean score on time step-by-step. First calculate the mean and standard
deviation of each variable and their correlation (use a calculator with these functions). Then find the
equation of the least-squares line from these. Draw the line on your scatterplot. What percent of the year-
to-year variation in scores is explained by the linear trend?

(c) Now use software or the regression function on your calculator to verify your regression line.

2.85 The regression equation.

The equation of a least-squares regression line is y = 12 + 8x.

(a) What is the value of y for x = 3?

(b) If x increases by one unit, what is the corresponding increase in y?

(c) What is the intercept for this equation?

2.86 Metabolic rate and lean body mass.

Compute the mean and the standard deviation of the metabolic rates and lean body masses in Exercise 2.35
(page 101) and the correlation between these two variables. Use these values to find the slope of the
regression line of metabolic rate on lean body mass. Also find the slope of the regression line of lean body

mass on metabolic rate. What are the units for each of the two slopes?  BMASS

2.87 IQ and self-concept.

Table 1.3 (page 29) reports data on 78 seventh-grade students. We want to know how well each of IQ score
and self-concept score predicts GPA using least-squares regression. We also want to know which of these
explanatory variables predicts GPA better. Give numerical measures that answer these questions, and

explain your answers.  SEVENGR

 2.88 Use an applet for progress in math scores.

Go to the Two-Variable Statistical Calculator applet. Enter the data for the progress in math scores from
Exercise 2.84 using the “User-entered data” option in the “Data” tab. Explore the data by clicking the other
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tabs in the applet. Using only the results provided by the applet, write a short report summarizing the
analysis of these data.

 2.89 A property of the least-squares regression line.

Use the equation for the least-squares regression line to show that this line always passes through the point
(x¯,y¯).

 2.90 Class attendance and grades.

A study of class attendance and grades among first-year students at a state university showed that in
general students who attended a higher percent of their classes earned higher grades. Class attendance
explained 16% of the variation in grade index among the students. What is the numerical value of the
correlation between percent of classes attended and grade index?

 2.91 Revenue and value of NFL teams.

In Exercises 2.36 and 2.54, you used scatterplots and correlations to examine the prediction of team value
for 32 NFL teams using three different predictors. Now, find the least-squares regression equations. Write
a short report summarizing your findings. Include plots, correlations, and the least-squares regression lines

and a summary of your conclusions.  NFL
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2.5 Cautions about Correlation and Regression

When you complete this section, you will be able to

• Calculate the residuals for a set of data using the equation of the least-
squares regression line and the observed values of the explanatory
variable.

• Use a plot of the residuals versus the explanatory variable to assess the fit
of a regression line.

• Identify outliers and influential observations by examining scatterplots
and residual plots.

• Identify lurking variables that can influence the interpretation of
relationships between two variables.

• Explain the difference between association and causality when
interpreting the relationship between two variables.

Correlation and regression are among the most common statistical tools. They
are used in more elaborate form to study relationships among many variables, a
situation in which we cannot see the essentials by studying a single scatterplot. We
need a firm grasp of the use and limitations of these tools, both now and as a
foundation for more advanced statistics.

Residuals

A regression line describes the overall pattern of a linear relationship between an
explanatory variable and a response variable. Deviations from the overall pattern
are also important. In the regression setting, we see deviations by looking at the
scatter of the data points about the regression line. The vertical distances from the
points to the least-squares regression line are as small as possible in the sense that
they have the smallest possible sum of squares. Because they represent “leftover”
variation in the response after fitting the regression line, these distances are called
residuals.

RESIDUALS

A residual is the difference between an observed value of the response
variable and the value predicted by the regression line. That is,
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residual = observed y−predicted y

=y−yˆ

Example

2.25 Residuals for fat gain.

Example 2.18 (page 110) describes measurements on 16 young people who
volunteered to overeat for 8 weeks. Those whose nonexercise activity (NEA)
spontaneously rose substantially gained less fat than others. Figure 2.23(a) is a
scatterplot of these data. The pattern is linear. The least-squares line is

fat gain = 3.505 – (0.00344 × NEA increase)

One subject’s NEA rose by 135 calories. That subject gained 2.7 kilograms of
fat. The predicted gain for 135 calories is

yˆ=3.505−(0.00344×135)=3.04 kg
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FIGURE 2.23
(a) Scatterplot of fat gain versus increase in nonexercise activity, with the least-squares
regression line, for Example 2.25. (b) Residual plot for the regression displayed in (a). The
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line at y = 0 marks the mean of the residuals.

The residual for this subject is therefore

residual = observed y−predicted y

=y−yˆ

=2.7−3.04=−0.34kg

Most regression software will calculate and store residuals for you.

USE YOUR KNOWLEDGE

2.92 Find the predicted value and the residual.

Let’s say that we have an individual in the NEA data set who has NEA
increase equal to 144 calories and fat gain equal to 3.1 kg. Find the
predicted value of fat gain for this individual and then calculate the
residual. Explain why this residual is positive.

Because the residuals show how far the data fall from our regression line,
examining the residuals helps us assess how well the line describes the data.
Although residuals can be calculated from any model fitted to the data, the
residuals from the least-squares line have a special property: the mean of the
least-squares residuals is always zero.

USE YOUR KNOWLEDGE

2.93 Find the sum of the residuals.

Here are the 16 residuals for the NEA data rounded to two decimal
places:

FIDGET
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0.37 –0.70 0.10 –0.34 0.19 0.61 –0.26 –0.98
1.64 –0.18 –0.23 0.54 –0.54 –1.11 0.93 –0.03

Find the sum of these residuals. Note that the sum is not exactly zero
because of roundoff error.

You can see the residuals in the scatterplot of Figure 2.23(a) by looking at the
vertical deviations of the points from the line. The residual plot in Figure 2.23(b)
makes it easier to study the residuals by plotting them against the explanatory
variable, increase in NEA.

RESIDUAL PLOTS

A residual plot is a scatterplot of the regression residuals against the
explanatory variable. Residual plots help us assess the fit of a regression line.

Because the mean of the residuals is always zero, the horizontal line at zero in
Figure 2.23(b) helps orient us. This line (residual = 0) corresponds to the fitted line
in Figure 2.23(a). The residual plot magnifies the deviations from the line to make
patterns easier to see. If the regression line catches the overall pattern of the data,
there should be no pattern in the residuals. That is, the residual plot should show
an unstructured horizontal band centered at zero. The residuals in Figure 2.23(b) do
have this irregular scatter.

You can see the same thing in the scatterplot of Figure 2.23(a) and the residual
plot of Figure 2.23(b). It’s just a bit easier in the residual plot. Deviations from an
irregular horizontal pattern point out ways in which the regression line fails to
catch the overall pattern. Here is an example.

Example

2.26 Patterns in birthrate and Internet user residuals.

In Exercise 2.28 (page 100) we used a scatterplot to study the relationship
between birthrate and Internet users for 106 countries. In this scatterplot,
Figure 2.11, we see that there are many countries with low numbers of Internet
users. In addition, the relationship between births and Internet users appears to
be curved. For low values of Internet users, there is a clear relationship, while
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for higher values, the curve becomes relatively flat.

INBIRTH

Figure 2.24(a) gives the data with the least-squares regression line, and
Figure 2.24(b) plots the residuals. Look at the right part of Figure 2.24(b),
where the values of Internet users are high. Here we see that the residuals tend
to be positive.

The residual pattern in Figure 2.24(b) is characteristic of a simple curved
relationship. There are many ways in which a relationship can deviate from a
linear pattern. We now have an important tool for examining these deviations. Use
it frequently and carefully when you study relationships.
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FIGURE 2.24
(a) Scatterplot of birthrate versus Internet users, with the least-squares regression line, for
Example 2.26. (b) Residual plot for the regression displayed in (a). The line at y = 0 marks the
mean of the residuals.

Outliers and influential observations

When you look at scatterplots and residual plots, look for striking individual points
as well as for an overall pattern. Here is an example of data that contain some
unusual cases.

Example

2.27 Diabetes and blood sugar.

People with diabetes must manage their blood sugar levels carefully. They
measure their fasting plasma glucose (FPG) several times a day with a glucose
meter. Another measurement, made at regular medical checkups, is called
HbA1c. This is roughly the percent of red blood cells that have a glucose
molecule attached. It measures average exposure to glucose over a period of
several months.

This diagnostic test is becoming widely used and is sometimes called A1c
by health care professionals. Table 2.3 gives data on both HbA1c and FPG for
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TABLE 2.3  Two Measures of Glucose Level in Diabetics

18 diabetics five months after they completed a diabetes education class.21

Because both FPG and HbA1c measure blood glucose, we expect a positive
association. The scatterplot in Figure 2.25(a) shows a surprisingly weak
relationship, with correlation r = 0.4819. The line on the plot is the least-
squares regression line for predicting FPG from HbA1c. Its equation is

yˆ=66.4+10.41x

It appears that one-time measurements of FPG can vary quite a bit among
people with similar long-term levels, as measured by HbA1c. This is why A1c
is an important new diagnostic test.

Two unusual cases are marked in Figure 2.25(a). Subjects 15 and 18 are
unusual in different ways. Subject 15 has dangerously high FPG and lies far from
the regression line in the y direction. Subject 18 is close to the line but far out in
the x direction. The residual plot in Figure 2.25(b) confirms that Subject 15 has a
large residual and that Subject 18 does not.

Points that are outliers in the x direction, like Subject 18, can have a strong
influence on the position of the regression line. Least-squares lines make the sum
of squares of the vertical distances to the points as small as possible. A point that is
extreme in the x direction with no other points near it pulls the line toward itself.

Subject
HbA1c

(%)
FPG

(mg/ml) Subject
HbA1c

(%)
FPG

(mg/ml) Subject
HbA1c

(%)
FPG

(mg/ml)
1 6.1 141 7 7.5 96 13 10.6 103
2 6.3 158 8 7.7 78 14 10.7 172
3 6.4 112 9 7.9 148 15 10.7 359
4 6.8 153 10 8.7 172 16 11.2 145
5 7.0 134 11 9.4 200 17 13.7 147
6 7.1 95 12 10.4 271 18 19.3 255
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FIGURE 2.25
(a) Scatterplot of fasting plasma glucose against HbA1c (which measures long-term blood
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glucose), with the least-squares regression line, for Example 2.27. (b) Residual plot for the
regression of fasting plasma glucose on HbA1c. Subject 15 is an outlier in fasting plasma
glucose. Subject 18 is an outlier in HbA1c that may be influential but does not have a large
residual.

OUTLIERS AND INFLUENTIAL OBSERVATIONS IN
REGRESSION

An outlier is an observation that lies outside the overall pattern of the other
observations. Points that are outliers in the y direction of a scatterplot have
large regression residuals, but other outliers need not have large residuals.

An observation is influential for a statistical calculation if removing it would markedly change the
result of the calculation. Points that are out-liers in the x direction of a scatterplot are often influential
for the least-squares regression line.

Influence is a matter of degree—how much does a calculation change when we
remove an observation? It is difficult to assess influence on a regression line
without actually doing the regression both with and without the suspicious
observation. A point that is an outlier in x is often influential. But if the point
happens to lie close to the regression line calculated from the other observations,
then its presence will move the line only a little and the point will not be
influential.

The influence of a point that is an outlier in y depends on whether there are
many other points with similar values of x that hold the line in place. Figures
2.25(a) and (b) identify two unusual observations. How influential are they?

Example

2.28 Influential observations.

Subjects 15 and 18 both influence the correlation between FPG and HbA1c, in
opposite directions. Subject 15 weakens the linear pattern; if we drop this
point, the correlation increases from r = 0.4819 to r = 0.5684. Subject 18
extends the linear pattern; if we omit this subject, the correlation drops from r
= 0.4819 to r = 0.3837.
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FIGURE 2.26
Three regression lines for predicting fasting plasma glucose from HbA1c, for Example
2.28. The solid line uses all 18 subjects. The dotted line leaves out Subject 18. The dashed
line leaves out Subject 15. “Leaving one out” calculations are the surest way to assess
influence.

To assess influence on the least-squares line, we recalculate the line leaving
out a suspicious point. Figure 2.26 shows three least-squares lines. The solid
line is the regression line of FPG on HbA1c based on all 18 subjects. This is
the same line that appears in Figure 2.25(a). The dotted line is calculated from
all subjects except Subject 18. You see that point 18 does pull the line down
toward itself. But the influence of Subject 18 is not very large—the dotted and
solid lines are close together for HbA1c values between 6 and 14, the range of
all except Subject 18.

The dashed line omits Subject 15, the outlier in y. Comparing the solid and
dashed lines, we see that Subject 15 pulls the regression line up. The influence
is again not large, but it exceeds the influence of Subject 18.

We did not need the distinction between outliers and influential observations in
Chapter 1. A single large salary that pulls up the mean salary x¯ for a group of
workers is an outlier because it lies far above the other salaries. It is also influential
because the mean changes when it is removed. In the regression setting, however,
not all outliers are influential. Because influential observations draw the regression
line toward themselves, we may not be able to spot them by looking for large
residuals.
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Beware of the lurking variable

Correlation and regression are powerful tools for measuring the association
between two variables and for expressing the dependence of one variable on the
other. These tools must be used with an awareness of their limitations. We have
seen that

• Correlation measures only linear association, and fitting a straight line makes
sense only when the overall pattern of the relationship is linear. Always plot your
data before calculating.

• Extrapolation (using a fitted model far outside the range of the data that we used
to fit it) often produces unreliable predictions.

• Correlation and least-squares regression are not resistant. Always plot your data
and look for potentially influential points.

Another caution is even more important: the relationship between two variables
can often be understood only by taking other variables into account. Lurking
variables can make a correlation or regression misleading.

LURKING VARIABLE

A lurking variable is a variable that is not among the explanatory or response
variables in a study and yet may influence the interpretation of relationships
among those variables.

Example

2.29 Discrimination in medical treatment?

Studies show that men who complain of chest pain are more likely to get
detailed tests and aggressive treatment such as bypass surgery than are women
with similar complaints. Is this association between gender and treatment due
to discrimination?

Perhaps not. Men and women develop heart problems at different ages—
women are, on the average, between 10 and 15 years older than men.
Aggressive treatments are more risky for older patients, so doctors may
hesitate to recommend them. Lurking variables—the patient’s age and
condition—may explain the relationship between gender and doctors’
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decisions.

Here is an example of a different type of lurking variable.

Example

2.30 Gas and electricity bills.

A single-family household receives bills for gas and electricity each month.
The 12 observations for a recent year are plotted with the least-squares
regression line in Figure 2.27. We have arbitrarily chosen to put the electricity
bill on the x axis and the gas bill on the y axis. There is a clear negative
association. Does this mean that a high electricity bill causes the gas bill to be
low and vice versa?

FIGURE 2.27
Scatterplot with least-squares regression line for predicting a household’s monthly charges
for gas using its monthly charges for electricity, for Example 2.30.

To understand the association in this example, we need to know a little
more about the two variables. In this household, heating is done by gas and
cooling is done by electricity. Therefore, in the winter months the gas bill will
be relatively high and the electricity bill will be relatively low. The pattern is
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reversed in the summer months. The association that we see in this example is
due to a lurking variable: time of year.

Correlations that are due to lurking variables are sometimes called “nonsense
correlations.” The correlation is real. What is nonsense is the suggestion that the
variables are directly related so that changing one of the variables causes changes
in the other. The question of causation is important enough to merit separate
treatment in Section 2.7. For now, just remember that an association between two
variables x and y can reflect many types of relationship among x, y, and one or
more lurking variables.

ASSOCIATION DOES NOT IMPLY CAUSATION

An association between an explanatory variable x and a response variable y,
even if it is very strong, is not by itself good evidence that changes in x
actually cause changes in y.

Lurking variables sometimes create a correlation between x and y, as in
Examples 2.29 and 2.30. When you observe an association between two variables,
always ask yourself if the relationship that you see might be due to a lurking
variable. As in Example 2.30, time is often a likely candidate.

Beware of correlations based on averaged data

Regression or correlation studies sometimes work with averages or other measures
that combine information from many individuals. For example, if we plot the
average height of young children against their age in months, we will see a very
strong positive association with correlation near 1. But individual children of the
same age vary a great deal in height. A plot of height against age for individual
children will show much more scatter and lower correlation than the plot of
average height against age.
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A correlation based on averages over many individuals is usually higher than
the correlation between the same variables based on data for individuals. This fact
reminds us again of the importance of noting exactly what variables a statistical
study involves.

Beware of restricted ranges

The range of values for the explanatory variable in a regression can have a large
impact on the strength of the relationship. For example, if we use age as a predictor
of reading ability for a sample of students in the third grade, we will probably see
little or no relationship. However, if our sample includes students from grades 1
through 8, we would expect to see a relatively strong relationship. We call this
phenomenon the restricted-range problem.

restricted-range problem

Example

2.31 A test for job applicants.

Your company gives a test of cognitive ability to job applicants before
deciding whom to hire. Your boss has asked you to use company records to
see if this test really helps predict the performance ratings of employees. The
restricted-range problem may make it difficult to see a strong relationship
between test scores and performance ratings. The current employees were
selected by a mechanism that is likely to result in scores that tend to be higher
than those of the entire pool of applicants.

BEYOND THE BASICS

Data mining
Chapters 1 and 2 of this text are devoted to the important aspect of statistics
called exploratory data analysis (EDA). We use graphs and numerical
summaries to examine data, searching for patterns and paying attention to
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striking deviations from the patterns we find. In discussing regression, we
advanced to using the pattern we find (in this case, a linear pattern) for
prediction.

Suppose now that we have a truly enormous database, such as all purchases
recorded by the cash register scanners of a national retail chain during the past
week. Surely this treasure chest of data contains patterns that might guide
business decisions. If we could see clearly the types of activewear preferred in
large California cities and compare the preferences of small Midwest cities—
right now, not at the end of the season—we might improve profits in both parts
of the country by matching stock with demand. This sounds much like EDA,
and indeed it is. Exploring really large databases in the hope of finding useful
patterns is called data mining. Here are some distinctive features of data
mining:

data mining

• When you have terabytes of data, even straightforward calculations and
graphics become very time-consuming. So efficient algorithms are very
important.

• The structure of the database and the process of storing the data (the
fashionable term is data warehousing), perhaps by unifying data scattered
across many departments of a large corporation, require careful consideration.

• Data mining requires automated tools that work based on only vague queries
by the user. The process is too complex to do step-by-step as we have done in
EDA.

All these features point to the need for sophisticated computer science as a
basis for data mining. Indeed, data mining is often viewed as a part of
computer science. Yet many statistical ideas and tools—mostly tools for
dealing with multidimensional data, not the sort of thing that appears in a first
statistics course—are very helpful. Like many other modern developments,
data mining crosses the boundaries of traditional fields of study.

Do remember that the perils we associate with blind use of correlation and
regression are yet more perilous in data mining, where the fog of an immense
database can prevent clear vision. Extrapolation, ignoring lurking variables,
and confusing association with causation are traps for the unwary data miner.

SECTION 2.5 Summary

You can examine the fit of a regression line by plotting the residuals, which are
the differences between the observed and predicted values of y. Be on the lookout
for points with unusually large residuals and also for nonlinear patterns and uneven
variation about the line.
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Also look for influential observations, individual points that substantially
change the regression line. Influential observations are often outliers in the x
direction, but they need not have large residuals.

Correlation and regression must be interpreted with caution. Plot the data to
be sure that the relationship is roughly linear and to detect outliers and influential
observations.

Lurking variables may explain the relationship between the explanatory and
response variables. Correlation and regression can be misleading if you ignore
important lurking variables.

We cannot conclude that there is a cause-and-effect relationship between two
variables just because they are strongly associated. High correlation does not
imply causation.

A correlation based on averages is usually higher than if we used data for
individuals.

SECTION 2.5 Exercises
For Exercise 2.92, see page 128; and for Exercise 2.93, see page 128.

2.94 Bone strength.

Exercise 2.18 (page 98) gives the bone strengths of the dominant and the nondominant arms for 15 men
who were controls in a study. The least-squares regression line for these data is

dominant = 2.74 + (0.936 × nondominant)

Here are the data for the first four cases:

ID Nondominant Dominant ID Nondominant Dominant
1 16.3 15.7 3 18.7 17.9
2 26.9 25.2 4 22.0 19.1

Calculate the residuals for these four cases.  ARMSTR

2.95 Bone strength for baseball players.

Refer to the previous exercise. Similar data for baseball players is given in Exercise 2.19 (page 98). The
equation of the least-squares line for the baseball players is

dominant = 0.886 + (1.373 × nondominant)
Here are the data for the first four cases:

ID Nondominant Dominant ID Nondominant Dominant
16 19.3 17.0 18 25.2 17.7
17 19.0 16.9 19 40.3 21.2

Calculate the residuals for these four cases.  ARMSTR

298



2.96 Least-squares regression for radioactive decay.

Refer to Exercise 2.22 (page 99) for the data on radioactive decay of barium-137m. Here are the data: 
DECAY

Time 1 3 5 7
Count 578 317 203 118

(a) Using the least-squares regression equation

count = 602.8 – (74.7 × time)
and the observed data, find the residuals for the counts.

(b) Plot the residuals versus time.

(c) Write a short paragraph assessing the fit of the least-squares regression line to these data based on your
interpretation of the residual plot.

2.97 Least-squares regression for the log counts.

Refer to Exercise 2.23 (page 99), where you analyzed the radioactive decay of barium-137m data using log

counts. Here are the data:  DECAY

Time 1 3 5 7
Log count 6.35957 5.75890 5.31321 4.77068

(a) Using the least-squares regression equation

log count = 6.593 – (0.2606 × time)
and the observed data, find the residuals for the counts.

(b) Plot the residuals versus time.

(c) Write a short paragraph assessing the fit of the least-squares regression line to these data based on your
interpretation of the residual plot.

2.98 College students by state.

Refer to Exercise 2.21 (page 99), where you examined the relationship between the number of

undergraduate college students and the populations for the 50 states.  COLLEGE

(a) Make a scatterplot of the data with the least-squares regression line.

(b) Plot the residuals versus population.

(c) Focus on California, the state with the largest population. Is this state an outlier when you consider only
the distribution of population? Explain your answer and describe what graphical and numerical summaries
you used as the basis for your conclusion.

(d) Is California an outlier in the distribution of undergraduate college students? Explain your answer and
describe what graphical and numerical summaries you used as the basis for your conclusion.
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(e) Is California an outlier when viewed in terms of the relationship between number of undergraduate
college students and population? Explain your answer and describe what graphical and numerical
summaries you used as the basis for your conclusion.

(f) Is California influential in terms of the relationship between number of undergraduate college students
and population? Explain your answer and describe what graphical and numerical summaries you used as
the basis for your conclusion.

2.99 College students by state using logs.

Refer to the previous exercise. Answer parts (a) through (f) for that exercise using the logs of both
variables. Write a short paragraph summarizing your findings and comparing them with those from the

previous exercise.  COLLEGE

2.100 Compare numbers of college students over time.

The data file COLYEAR gives the numbers of college undergraduate students for the years 1970, 1980,
1990, 2000, 2006, 2007, 2008, 2009, and 2011 for each of the 50 states. For this exercise, we will focus on

the years 2011 and 2006.22  COLYEAR

(a) Make a scatterplot of the data with number of undergraduate students in year 2006 as the explanatory
variable and number of undergraduate students in year 2011 as the response variable. Include the least-
squares regression line on your plot.

(b) Plot the residuals versus the number of undergraduate students in 2006.

(c) Give a simple explanation of what it means for a state to have a positive residual.

(d) Are there any outliers or influential observations? Give reasons for your answers.

(e) Compare the scatterplot with the residual plot as a graphical tool for detecting outliers.

2.101 College students over time using logs.

Refer to the previous exercise. Let’s examine the effect of using a log transformation on the numbers of

undergraduate college students.  COLYEAR

(a) Make a scatterplot of the data with the least-squares regression line.

(b) Plot the residuals versus the log of the number of undergraduate students in 2006.

(c) Are there any outliers or influential observations? Give reasons for your answers.

(d) Compare your results for this exercise with those for the previous exercise.

(e) Discuss some advantages and disadvantages of using logs for these data.

2.102 Make some scatterplots.

For each of the following scenarios, make a scatterplot with 10 observations that show a moderate positive
association, plus one that illustrates the unusual case. Explain each of your answers.

(a) An outlier in x that is not influential for the regression.
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(b) An outlier in x that is influential for the regression.

(c) An influential observation that is not an outlier in x.

(d) An observation that is influential for the intercept but not for the slope.

2.103 What’s wrong?

Each of the following statements contains an error. Describe each error and explain why the statement is
wrong.

(a) An influential observation will always have a large residual.

(b) High correlation is never present when there is causation.

(c) If we have data at values of x equal to 1, 2, 3, 4, and 5, and we try to predict the value of y for x = 2.5
using a least-squares regression equation, we are doing an extrapolation.

2.104 What’s wrong?

Each of the following statements contains an error. Describe each error and explain why the statement is
wrong.

(a) If the residuals are all negative, this implies that there is a negative relationship between the response
variable and the explanatory variable.

(b) A strong negative relationship does not imply that there is an association between the explanatory
variable and the response variable.

(c) A lurking variable is always something that can be measured.

2.105 Internet use and babies.

Exercise 2.28 (page 100) explores the relationship between Internet use and birthrate for 106 countries.
Figure 2.11 (page 100) is a scatterplot of the data. It shows a negative association between these two
variables. Do you think that this plot indicates that Internet use causes people to have fewer babies? Give

another possible explanation for why these two variables are negatively associated.  INBIRTH

 2.106 A lurking variable.

The effect of a lurking variable can be surprising when individuals are divided into groups. In recent years,
the mean SAT score of all high school seniors has increased. But the mean SAT score has decreased for
students at each level of high school grades (A, B, C, and so on). Explain how grade inflation in high
school (the lurking variable) can account for this pattern. A relationship that holds for each group within a
population need not hold for the population as a whole. In fact, the relationship can even change direction.

2.107 How’s your self-esteem?

People who do well tend to feel good about themselves. Perhaps helping people feel good about
themselves will help them do better in their jobs and in life. For a time, raising self-esteem became a goal
in many schools and companies. Can you think of explanations for the association between high self-
esteem and good performance other than “Self-esteem causes better work”?
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2.108 Are big hospitals bad for you?

A study shows that there is a positive correlation between the size of a hospital (measured by its number of
beds x) and the median number of days y that patients remain in the hospital. Does this mean that you can
shorten a hospital stay by choosing a small hospital? Why?

2.109 Does herbal tea help nursing-home residents?

A group of college students believes that herbal tea has remarkable powers. To test this belief, they make
weekly visits to a local nursing home, where they visit with the residents and serve them herbal tea. The
nursing-home staff reports that after several months many of the residents are healthier and more cheerful.
We should commend the students for their good deeds but doubt that herbal tea helped the residents.
Identify the explanatory and response variables in this informal study. Then explain what lurking variables
account for the observed association.

2.110 Price and ounces.

In Example 2.2 (page 82) and Exercise 2.3 (page 84) we examined the relationship between the price and
the size of a Mocha Frappuccino. The 12-ounce Tall drink costs $3.75, the 16-ounce Grande is $4.35, and
the 24-ounce Venti is $4.85.

(a) Plot the data and describe the relationship. (Explain why you should plot size in ounces on the x axis.)

(b) Find the least-squares regression line for predicting the price using size. Add the line to your plot.

(c) Draw a vertical line from the least-squares line to each data point. This gives a graphical picture of the
residuals.

(d) Find the residuals and verify that they sum to zero.

(e) Plot the residuals versus size. Interpret this plot.

 2.111 Use the applet.

It isn’t easy to guess the position of the least-squares line by eye. Use the Correlation and Regression
applet to compare a line you draw with the least-squares line. Click on the scatterplot to create a group of
15 to 20 points from lower left to upper right with a clear positive straight-line pattern (correlation around
0.7). Click the “Draw line” button and use the mouse to draw a line through the middle of the cloud of
points from lower left to upper right. Note the “thermometer” that appears above the plot. The red portion
is the sum of the squared vertical distances from the points in the plot to the least-squares line. The green
portion is the “extra” sum of squares for your line—it shows by how much your line misses the smallest
possible sum of squares.

(a) You drew a line by eye through the middle of the pattern. Yet the right-hand part of the bar is probably
almost entirely green. What does that tell you?

(b) Now click the “Show least-squares line” box. Is the slope of the least-squares line smaller (the new line
is less steep) or larger (line is steeper) than that of your line? If you repeat this exercise several times, you
will consistently get the same result. The least-squares line minimizes the vertical distances of the points
from the line. It is not the line through the “middle” of the cloud of points. This is one reason why it is hard
to draw a good regression line by eye.

 2.112 Use the applet.

302



Go to the Correlation and Regression applet. Click on the scatterplot to create a group of 10 points in the
lower-right corner of the scatterplot with a strong straight-line pattern (correlation about –0.9). Now click
the “Show least-squares line” box to display the regression line.

(a) Add one point at the upper left that is far from the other 10 points but exactly on the regression line.
Why does this outlier have no effect on the line even though it changes the correlation?

(b) Now drag this last point down until it is opposite the group of 10 points. You see that one end of the
least-squares line chases this single point, while the other end remains near the middle of the original group
of 10. What makes the last point so influential?

2.113 Education and income.

There is a strong positive correlation between years of education and income for economists employed by
business firms. (In particular, economists with doctorates earn more than economists with only a bachelor’s
degree.) There is also a strong positive correlation between years of education and income for economists
employed by colleges and universities. But when all economists are considered, there is a negative
correlation between education and income. The explanation for this is that business pays high salaries and
employs mostly economists with bachelor’s degrees, while colleges pay lower salaries and employ mostly
economists with doctorates. Sketch a scatterplot with two groups of cases (business and academic) that
illustrates how a strong positive correlation within each group and a negative overall correlation can occur
together.

2.114 Dangers of not looking at a plot.

Table 2.2 (page 125) presents four sets of data prepared by the statistician Frank Anscombe to illustrate the

dangers of calculating without first plotting the data.23  ANSC

(a) Use x to predict y for each of the four data sets. Find the predicted values and residuals for each of the
four regression equations.

(b) Plot the residuals versus x for each of the four data sets.

(c) Write a summary of what the residuals tell you for each data set, and explain how the residuals help you
to understand these data.
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2.6 Data Analysis for Two-Way Tables

When you complete this section, you will be able to

• Identify the row variable, the column variable, and the cells in a two-way
table.

• Find and interpret the joint distribution in a two-way table.

• Find and interpret the marginal distributions in a two-way table.

• Use the conditional distributions to describe the relationship displayed in
a two-way table.

• Determine the joint distribution, the marginal distributions, and the
conditional distributions in a two-way table from software output.

• Interpret examples of Simpson’s paradox.

When we study relationships between two variables, one of the first questions
we ask is whether each variable is quantitative or categorical. For two quantitative
variables, we use a scatterplot to examine the relationship, and we fit a line to the
data if the relationship is approximately linear. If one of the variables is
quantitative and the other is categorical, we can use the methods in Chapter 1 to
describe the distribution of the quantitative variable for each value of the
categorical variable. This leaves us with the situation where both variables are
categorical. In this section we discuss methods for studying these relationships.

Some variables—such as gender, race, and occupation—are inherently
categorical. Other categorical variables are created by grouping values of a
quantitative variable into classes. Published data are often reported in grouped
form to save space. To describe categorical data, we use the counts (frequencies) or
percents (relative frequencies) of individuals that fall into various categories.

quantitative and categorical variables, p. 3

The two-way table

A key idea in studying relationships between two variables is that both variables
must be measured on the same individuals or cases. When both variables are
categorical, the raw data are summarized in a two-way table that gives counts of
observations for each combination of values of the two categorical variables. Here
is an example.
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two-way table

Example

2.32 Is the calcium intake adequate?

IOM

Young children need calcium in their diet to support the growth of their bones.
The Institute of Medicine provides guidelines on how much calcium should be
consumed for people of different ages.24 One study examined whether or not a
sample of children consumed an adequate amount of calcium, based on these
guidelines. Since there are different requirements for children aged 5 to 10
years and for children aged 11 to 13 years, the children were classified into
these two age groups. For each student, his or her calcium intake was
classified as meeting or not meeting the requirement. There were 2029
children in the study. Here are the data:25

Two-way table for “met requirement” and age
Age (years)

Met requirement 5 to 10 11 to 13
No 194 557
Yes 861 417

We see that 194 children aged 5 to 10 did not meet the calcium requirement,
and 861 children aged 5 to 10 years met the calcium requirement.

USE YOUR KNOWLEDGE

2.115 Read the table.
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IOM

How many children aged 11 to 13 met the requirement? How many did
not?

For the calcium requirement example, we could view age as an explanatory
variable and “met requirement” as a response variable. This is why we put age in
the columns (like the x axis in a scatterplot) and “met requirement” in the rows
(like the y axis in a scatterplot). We call “met requirement” the row variable
because each horizontal row in the table describes whether or not the requirement
was met. Age is the column variable because each vertical column describes one
age group. Each combination of values for these two variables is called a cell. For
example, the cell corresponding to children who are 5 to 10 years old and who
have not met the requirement contains the number 194. This table is called a 2 × 2
table because there are 2 rows and 2 columns.

row variable

column variable

cell

To describe relationships between two categorical variables, we compute
different types of percents. Our job is easier if we expand the basic two-way table
by adding various totals. We illustrate the idea with our calcium requirement
example.

Example

2.33 Add the margins to the table.

IOM

We expand the table in Example 2.32 by adding the totals for each row, for
each column, and the total number of all the observations. Here is the result:

Two-way table for “met requirement” and age
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Age (years)
Met requirement 5 to 10 11 to 13 Total
No 194 557 751
Yes 861 417 1278
Total 1055 974 2029

In this study there were 1055 children aged 5 to 10. The total number of
children who did not meet the calcium requirement is 751, and the total
number of children in the study is 2029.

USE YOUR KNOWLEDGE

2.116 Read the margins of the table.

IOM

How many children aged 5 to 10 were subjects in the calcium
requirement study? What is the total number of children who did not
meet the calcium requirement?

In this example, be sure that you understand how the table is obtained from the
raw data. Think about a data file with one line per subject. There would be 2029
lines or records in this data set. In the two-way table, each individual is counted
once and only once. As a result, the sum of the counts in the table is the total
number of individuals in the data set. Most errors in the use of categorical-data
methods come from a misunderstanding of how these tables are constructed.

Joint distribution

We are now ready to compute some proportions that help us understand the data in
a two-way table. Suppose that we are interested in the children aged 5 to 10 years
who do not meet the calcium requirement. The proportion of these is simply 194
divided by 2029, or 0.0956. We would estimate that 9.56% of children in the
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population from which this sample was drawn are 5- to 10-year-olds who do not
meet the calcium requirement. For each cell, we can compute a proportion by
dividing the cell entry by the total sample size. The collection of these proportions
is the joint distribution of the two categorical variables.

joint distribution

Example

2.34 The joint distribution.

For the calcium requirement example, the joint distribution of “met
requirement” and age is

IOM

Joint distribution of “met requirement” and age
Age (years)

Met requirement 5 to 10 11 to 13
No 0.0956 0.2745
Yes 0.4243 0.2055

Because this is a distribution, the sum of the proportions should be 1. For this
example the sum is 0.9999. The difference is due to roundoff error.

USE YOUR KNOWLEDGE

2.117 Explain the computation.

IOM
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Explain how the entry for the children aged 11 to 13 who met the
calcium requirement in Example 2.34 is computed from the table in
Example 2.33.

How might we use the information in the joint distribution for this example?
Suppose that we were to develop an outreach unit to increase the consumption of
calcium. The distribution suggests that the older students should be targeted if we
have to make a choice because of limited funds. Of the children aged 11 to 13
years, 27.45% do not meet the calcium requirement; but only 9.56% of the children
aged 5 to 10 years do not meet the requirement. For other uses of these data, we
may need to calculate different numerical summaries. Let’s look at the distribution
of age.

Marginal distributions

When we examine the distribution of a single variable in a two-way table, we are
looking at a marginal distribution. There are two marginal distributions, one for
each categorical variable in the two-way table. They are very easy to compute.

marginal distribution

Example

2.35 The marginal distribution of age.

Look at the table in Example 2.33. The total numbers of children aged 5 to 10
and children aged 11 to 13 are given in the bottom row, labeled “Total.” Our
sample has 1055 children aged 5 to 10 and 974 children aged 11 to 13. To find
the marginal distribution of age we simply divide these numbers by the total
sample size, 2029. The marginal distribution of age is

IOM

Marginal distribution of age
5 to 10 11 to 13

Proportion 0.52 0.48
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Note that the proportions sum to 1; there is no roundoff error.

Often we prefer to use percents rather than proportions. Here is the marginal
distribution of age described with percents:

Marginal distribution of age
5 to 10 11 to 13

Percent 52% 48%

Which form do you prefer?
The percent of children in each age group is approximately the same. This is

interesting because the first category includes six ages (5, 6, 7, 8, 9, and 10);
whereas the second includes only three ages (11, 12, and 13). Recall that the age
categories were chosen in this way because the Institute of Medicine defined the
calcium requirement differently for these age groups. In this study, the children
were selected from grades 4, 5, and 6. The distribution of ages within these grades
explains the marginal distribution of age for our sample.

The other marginal distribution for this example is the distribution of “met
requirement.”

Example

2.36 The marginal distribution of “met requirement.”

Here is the marginal distribution of “met requirement,” in percents:

IOM

Marginal distribution of “met requirement”
No Yes

Percent 37.01% 62.99%

USE YOUR KNOWLEDGE
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2.118 Explain the marginal distribution.

IOM

Explain how the marginal distribution of “met requirement” given in
Example 2.36 is computed from the entries in the table given in
Example 2.33.

Each marginal distribution from a two-way table is a distribution for a single
categorical variable. We can use a bar graph or a pie chart to display such a
distribution. For our two-way table, we will be content with numerical summaries:
for example, 52% of the children are aged 5 to 10, and 37% of the children are not
meeting their calcium requirement. When we have more rows or columns, the
graphical displays are particularly useful.

bar graphs and pie charts, p. 9

Describing relations in two-way tables

The table in Example 2.33 contains much more information than the two marginal
distributions of age alone and “met requirement” alone. We need to do a little more
work to examine the relationship. Relationships among categorical variables are
described by calculating appropriate percents from the counts given. What
percents do you think we should use to describe the relationship between age and
meeting the calcium requirement?

Example

2.37 Meeting the calcium requirement for children aged 5 to 10.

IOM
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What percent of the children aged 5 to 10 in our sample met the calcium
requirement? This is the count of the children who are 5 to 10 years old and
who met the calcium requirement as a percent of the number children who are
5 to 10 years old:

8611055=0.8161=82%

USE YOUR KNOWLEDGE

2.119 Find the percent.

IOM

Show that the percent of children 11 to 13 years old who met the
calcium requirement is 43%.

Conditional distributions

In Example 2.37 we looked at the children aged 5 to 10 alone and examined the
distribution of the other categorical variable, “met requirement.” Another way to
say this is that we conditioned on the value of age, 5 to 10 years old. Similarly, we
can condition on the value of age being 11 to 13 years old. When we condition on
the value of one variable and calculate the distribution of the other variable, we
obtain a conditional distribution. Note that in Example 2.37 we calculated only the
percent for children aged 5 to 10 years. The complete conditional distribution gives
the proportions or percents for all possible values of the conditioning variable.

conditional distribution

Example

2.38 Conditional distribution of “met requirement” for children aged 5 to
10.
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For children aged 5 to 10 years, the conditional distribution of the “met
requirement” variable in terms of percents is

IOM

Conditional distribution of “met requirement” for children aged 5 to 10
No Yes

Percent 18.39% 81.61%

Note that we have included the percents for both of the possible values, Yes
and No, of the “met requirement” variable. These percents sum to 100%.

USE YOUR KNOWLEDGE

2.120 A conditional distribution.

Perform the calculations to show that the conditional distribution of
“met requirement” for children aged 11 to 13 years is

IOM

Conditional distribution of “met requirement” for children aged 11 to 13
No Yes

Percent 57.19% 42.81%

Comparing the conditional distributions (Example 2.38 and Exercise 2.120)
reveals the nature of the association between age and meeting the calcium
requirement. In this set of data the older children are more likely to fail to meet the
calcium requirement.

Bar graphs can help us to see relationships between two categorical variables.
No single graph (such as a scatterplot) portrays the form of the relationship
between categorical variables, and no single numerical measure (such as the
correlation) summarizes the strength of an association. Bar graphs are flexible
enough to be helpful, but you must think about what comparisons you want to
display. For numerical measures, we must rely on well-chosen percents or on more
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advanced statistical methods.26

A two-way table contains a great deal of information in compact form. Making
that information clear almost always requires finding percents. You must decide
which percents you need. Of course, we prefer to use software to compute the joint,
marginal, and conditional distributions.

Example

2.39 Software output.

IOM

Figure 2.28 gives computer output for the data in Example 2.32 using Minitab,
SPSS, and JMP. There are minor variations among software packages, but
these outputs are typical of what is usually produced. Each cell in the 2 × 2
table has four entries. These are the count (the number of observations in the
cell), the conditional distributions for rows and columns, and the joint
distribution. Note that all of these are expressed as percents rather than
proportions. Marginal totals and distributions are given in the rightmost
column and the bottom row.

Most software packages order the row and column labels numerically or
alphabetically. In general, it is better to use words rather than numbers for the
column labels. This sometimes involves some additional work, but it avoids the
kind of confusion that can result when you forget the real values associated with
each numerical value. You should verify that the entries in Figure 2.28 correspond
to the calculations that we performed in Examples 2.34 to 2.38. In addition, verify
the calculations for the conditional distributions of age for each value of “met
requirement.”
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FIGURE 2.28
Computer output for the calcium requirement study, for Example 2.39.(a) Minitab, (b) SPSS, (c)
JMP.

Simpson’s paradox

As is the case with quantitative variables, the effects of lurking variables can
strongly influence relationships between two categorical variables. Here is an
example that demonstrates the surprises that can await the unsuspecting consumer
of data.

Example

2.40 Which customer service representative is better?
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CUSTSER

A customer service center has a goal of resolving customer questions in 10
minutes or less. Here are the records for two representatives:

Representative
Goal met Alexis Peyton
Yes 172 118
No 28 82
Total 200 200

Alexis has met the goal 172 times out of 200, a success rate of 86%. For
Peyton, the success rate is 118 out of 200, or 59%. Alexis clearly has the better
success rate.

Let’s look at the data in a little more detail. The data summarized come from
two different weeks in the year.

Example

2.41 Look at the data more carefully.

CUSTSER

Here are the counts broken down by week:

Week 1 Week 2
Goal met Alexis Peyton Alexis Peyton
Yes 162 19 10 99
No 18 1 10 81
Total 180 20 20 180

For Week 1, Alexis met the goal 90% of the time (162/180), while Peyton met
the goal 95% of the time (19/20). Peyton had the better performance in Week
1. What about Week 2? Here Alexis met the goal 50% of the time (10/20),
while the success rate for Peyton was 55% (99/180). Peyton again had the
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better performance. How does this analysis compare with the analysis that
combined the counts for the two weeks? That analysis clearly showed that
Alexis had the better performance, 59% versus 86%.

These results can be explained by a lurking variable, Week. The first week was
during a period when the product had been in use for several months. Most of the
calls to the customer service center concerned problems that had been encountered
before. The representatives were trained to answer these questions and usually had
no trouble in meeting the goal of resolving the problems quickly. On the other
hand, the second week occurred shortly after the release of a new version of the
product. Most of the calls during this week concerned new problems that the
representatives had not yet encountered. Many more of these questions took longer
than the 10-minute goal to resolve.

Look at the totals in the bottom row of the detailed table. During the first week,
when calls were easy to resolve, Alexis handled 180 calls and Peyton handled 20.
The situation was exactly the opposite during the second week, when the calls were
difficult to resolve. There were 20 calls for Alexis and 180 for Peyton.

The original two-way table, which did not take account of week, was
misleading. This example illustrates Simpson’s paradox.

SIMPSON’S PARADOX

An association or comparison that holds for all of several groups can reverse
direction when the data are combined to form a single group. This reversal is
called Simpson’s paradox.

The lurking variables in our Simpson’s paradox example, week and problem
difficulty, are categorical. That is, they break the observations into groups by, work
week. Simpson’s paradox is an extreme form of the fact that observed associations
can be misleading when there are lurking variables.

The data in Example 2.41 are given in a three-way table that reports counts for
each combination of three categorical variables: week, representative, and whether
or not the goal was met. In our example, we constructed the three-way table by
constructing two two-way tables for representative by goal, one for each week. The
original table in Example 2.40 can be obtained by adding the corresponding counts
for these two tables. This process is called aggregating the data. When we
aggregated data in Example 2.40 we ignored the variable week, which then became
a lurking variable. Conclusions that seem obvious when we look only at aggregated
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data can become quite different when the data are examined in more detail.

three-way table

aggregation

SECTION 2.6 Summary

A two-way table of counts organizes data about two categorical variables. Values
of the row variable label the rows that run across the table, and values of the
column variable label the columns that run down the table. Two-way tables are
often used to summarize large amounts of data by grouping outcomes into
categories.

The joint distribution of the row and column variables is found by dividing the
count in each cell by the total number of observations.

The row totals and column totals in a two-way table give the marginal
distributions of the two variables separately. It is clearer to present these
distributions as percents of the table total. Marginal distributions do not give any
information about the relationship between the variables.

To find the conditional distribution of the row variable for one specific value
of the column variable, look only at that one column in the table. Find each entry in
the column as a percent of the column total.

There is a conditional distribution of the row variable for each column in the
table. Comparing these conditional distributions is one way to describe the
association between the row and the column variables. It is particularly useful
when the column variable is the explanatory variable. When the row variable is
explanatory, find the conditional distribution of the column variable for each row
and compare these distributions.

Bar graphs are a flexible means of presenting categorical data. There is no
single best way to describe an association between two categorical variables.

We present data on three categorical variables in a three-way table, printed as
separate two-way tables for each level of the third variable. A comparison between
two variables that holds for each level of a third variable can be changed or even
reversed when the data are aggregated by summing over all levels of the third
variable. Simpson’s paradox refers to the reversal of a comparison by
aggregation. It is an example of the potential effect of lurking variables on an
observed association.

SECTION 2.6 Exercises
For Exercise 2.115, see page 140; for 2.116, see page 141; for 2.117, see page 142; for 2.118, see page
143; for 2.119, see page 144; and for 2.120, see page 144.
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2.121 Does drivers ed help?

A study is planned to look at the effect of drivers education programs on accidents. The driving records of
all drivers under 18 in a given year will classify each driver as having taken a drivers education course or
not. The drivers will also be classified with respect to the number of accidents that they had in the year
after they received their license. The categories are zero, one, and two or more accidents.

(a) There are two variables in this study. Do you think that one is an explanatory variable and that the other
is a response variable? Explain your answer.

(b) Sketch a two-way table that could be used to organize the data. Which variable is the row variable?
Which variable is the column variable?

(c) How many cells are in the table? Describe in words what each of the cells will contain when the data
are collected.

2.122 Music and video games.

You are planning a study of undergraduates in which you will examine the relationship between listening
to music and playing video games. The study subjects will be asked how much time they spend in each of
these activities during a typical day. The choices for both activities will be a half hour or less, more than a
half hour but less than an hour, and more than an hour.

(a) There are two variables in this study. Do you think that one is an explanatory variable and that the other
is a response variable? Explain your answer.

(b) Sketch a two-way table that could be used to organize the data. Which variable is the row variable?
Which variable is the column variable?

(c) How many cells are in the table? Describe in words what each of the cells will contain when the data
are collected.

2.123 Eight is enough.

A healthy body needs good food, and healthy teeth are needed to chew our food so that it can nourish our
bodies. The U.S. Army has recognized this fact and requires recruits to pass a dental examination. If you
wanted to be a soldier in the Spanish American War, which took place in 1898, you needed to have at least

eight teeth. Here is the statement of the requirement:  TEETH

Unless an applicant has at least four sound double teeth, one above and one
below on each side of the mouth, and so opposed as to serve the purpose of
mastication, he should be rejected.

A study reported the rejection data for enlistment candidates classified by age. Here are the data:27

Age (years)
Rejected Under 20 20 to 25 25 to 30 30 to 35 35 to 40 Over 40
Yes 68 647 1,114 1,783 2,887 3,801
No 58,884 77,992 55,597 43,994 47,569 39,985

(a) Which variable is the explanatory variable? Which variable is the response variable? Give reasons for
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your answer.

(b) Find the joint distribution. Write a brief summary explaining the major features of this distribution.

(c) Find the two marginal distributions. Write a brief summary explaining the major features of these
distributions.

(d) Which conditional distribution would you choose to explain the relationship between these two
variables? Explain your answer.

(e) Find the conditional distribution that you chose in part (d), and write a summary that includes your
interpretation of the relationship based on this conditional distribution.

2.124 Survival and class on the Titanic.

In Exercise 1.27 (page 25) you created a graphical summary of the number of passengers who survived
classified by the accommodations that they had on the ship: first, second, or third class. Let’s look at these

data with a two-way table.  TITANIC

(a) Create a two-way table that you could use to explore the relationship between survival and class.

(b) Which variable is the explanatory variable and which is the response variable? Give reasons for your
answers.

(c) Find the two marginal distributions. Write a brief summary explaining the major features of these
distributions.

(d) Which conditional distribution would you choose to explain the relationship between these two
variables? Explain your answer.

(e) Find the conditional distribution that you chose in part (d), and write a summary that includes your
interpretation of the relationship based on this conditional distribution.

2.125 Number of credits and grade point average.

A study of undergraduate students examined the relationship between the number of credits taken in a
semester and the grade point average. Credits were classified as less than 12, 12 to 14, and 15 or more. For
grade point average, three categories were used: less than 2.0, 2.0 to 3.0, and 3.0 and higher.28 Figure 2.29
gives software output for these data. Use this output to analyze these data, and write a report summarizing
your work. Be sure to include a discussion of whether or not you consider this relationship to involve an
explanatory variable and a response variable.

2.126 Punxsutawney Phil.

At Gobbler’s Knob in Punxsutawney, Pennsylvania, there is a gathering every year on February 2. A
groundhog, always named Phil, is the center of attraction. If Phil sees his shadow when he emerges from
his burrow, tradition says that there will be six more weeks of winter. If he does not see his shadow, spring
has arrived. How well has Phil done at predicting the arrival of spring for the past several years? The
National Oceanic and Atmospheric Administration has collected data for the 24 years from 1988 to 2011.
For each year, whether or not Phil sees his shadow is recorded. This is compared with the February
temperature for that year, classified as above or below normal.29 Figure 2.30 gives software output for
these data. Use this output to analyze these data, and write a report summarizing your work. Be sure to
include a discussion of whether or not you consider this relationship to involve an explanatory variable and
a response variable.
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FIGURE 2.29
Computer output for the credit and grade point data, for Exercise 2.125.

2.127 Exercise and adequate sleep.

A survey of 656 boys and girls who were 13 to 18 years old asked about adequate sleep and other health-
related behaviors. The recommended amount of sleep is six to eight hours per night.30 In the survey 59%
of the respondents reported that they got less than this amount of sleep on school nights. An exercise scale
was developed and was used to classify the students as above or below the median in this domain. Here is
the 2 × 2 table of counts with students classified as getting or not getting adequate sleep and by the

exercise variable:  SLEEP

Exercise
Enough sleep High Low
Yes 151 115
No 148 242

(a) Find the distribution of adequate sleep for the high exercisers.

(b) Do the same for the low exercisers.

(c) Summarize the relationship between adequate sleep and exercise using the results of parts (a) and (b).
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2.128 Adequate sleep and exercise.

Refer to the previous exercise.  SLEEP

(a) Find the distribution of exercise for those who get adequate sleep.

(b) Do the same for those who do not get adequate sleep.

(c) Write a short summary of the relationship between adequate sleep and exercise using the results of parts
(a) and (b).

(d) Compare this summary with your summary from part (c) of the previous exercise. Which do you
prefer? Give a reason for your answer.

2.129 Which hospital is safer?

Insurance companies and consumers are interested in the performance of hospitals. The government
releases data about patient outcomes in hospitals that can be useful in making informed health care
decisions. Here is a two-way table of data on the survival of patients after surgery in two hospitals. All
patients undergoing surgery in a recent time period are included. “Survived” means that the patient lived at

least 6 weeks following surgery.  HOSP

FIGURE 2.30
Computer output for the Punxsutawney Phil data, for Exercise 2.126.

Hospital A Hospital B
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Died 63 16
Survived 2037 784

Total 2100 800

What percent of Hospital A patients died? What percent of Hospital B patients died? These are the
numbers one might see reported in the media.

2.130 Patients in “poor” or “good” condition.

Refer to the previous exercise. Not all surgery cases are equally serious, however. Patients are classified as
being in either “poor” or “good” condition before surgery. Here are the data broken down by patient
condition. The entries in the original two-way table are just the sums of the “poor” and “good” entries in

this pair of tables.  HOSP

Good Condition
Hospital A Hospital B

Died 6 8
Survived 594 592
Total 600 600

Poor Condition
Hospital A Hospital B

Died 57 8
Survived 1443 192
Total 1500 200

(a) Find the death rate for Hospital A patients who were classified as “poor” before surgery. Do the same
for Hospital B. In which hospital do “poor” patients fare better?

(b) Repeat (a) for patients classified as “good” before surgery.

(c) What is your recommendation to someone facing surgery and choosing between these two hospitals?

(d) How can Hospital A do better in both groups, yet do worse overall? Look at the data and carefully
explain how this can happen.

2.131 Complete the table.

Here are the row and column totals for a two-way table with two rows and two columns:

a b 200
c b 200

200 200 400

Find two different sets of counts a, b, c, and d for the body of the table that give these same totals. This
shows that the relationship between two variables cannot be obtained from the two individual distributions
of the variables.

2.132 Construct a table with no association.
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Construct a 3 × 3 table of counts where there is no apparent association between the row and column
variables.
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2.7 The Question of Causation

When you complete this section, you will be able to

• Identify the differences among causation, common response, and
confounding in explaining an association.

• Apply the five criteria for establishing causation.

In many studies of the relationship between two variables, the goal is to
establish that changes in the explanatory variable cause changes in the response
variable. Even when a strong association is present, however, the conclusion that
this association is due to a causal link between the variables is often hard to justify.
What ties between two variables (and others lurking in the background) can
explain an observed association? What constitutes good evidence for causation?
We begin our consideration of these questions with a set of observed associations.
In each case, there is a clear association between variable x and variable y.
Moreover, the association is positive whenever the direction makes sense.

Explaining Association

Example

2.42 Observed associations.

Here are some examples of observed association between x and y:

1. x = mother’s body mass index
y = daughter’s body mass index

2. x = amount of the artificial sweetener saccharin in a rat’s diet
y = count of tumors in the rat’s bladder

3. x = a student’s SAT score as a high school senior
y = a student’s first-year college grade point average

4. x = monthly flow of money into stock mutual funds
y = monthly rate of return for the stock market
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5. x = whether a person regularly attends religious services
y = how long the person lives

6. x = the number of years of education a worker has
y = the worker’s income

FIGURE 2.31
Possible explanations for an observed association. The dashed double-arrow lines show an
association. The solid arrows show a cause-and-effect link. The variable x is explanatory, y is a
response variable, and z is a lurking variable.

Explaining association: causation

Figure 2.31 shows in outline form how a variety of underlying links between
variables can explain association. The dashed double-arrow line represents an
observed association between the variables x and y. Some associations are
explained by a direct cause-and-effect link between these variables. The first
diagram in Figure 2.31 shows “x causes y” by a solid arrow running from x to y.

Items 1 and 2 in Example 2.42 are examples of direct causation. Even when
direct causation is present, very often it is not a complete explanation of an
association between two variables. The best evidence for causation comes from
experiments that actually change x while holding all other factors fixed. If y
changes, we have good reason to think that x caused the change in y.

Explaining association: common response

“Beware of the lurking variable” is good advice when thinking about an
association between two variables. The second diagram in Figure 2.31 illustrates
common response. The observed association between the variables x and y is
explained by a lurking variable z. Both x and y change in response to changes in z.
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This common response creates an association even though there may be no direct
causal link between x and y.

common response

The third and fourth items in Example 2.42 illustrate how common response
can create an association.

Explaining association: confounding

For the first item in Example 2.42 we expect that inheritance explains part of the
association between the body mass indexes (BMIs) of daughters and their mothers.
Can we use r or r2 to say how much inheritance contributes to the daughters’
BMIs? No. It may well be that mothers who are overweight also set an example of
little exercise, poor eating habits, and lots of television. Their daughters pick up
these habits to some extent, so the influence of heredity is mixed up with
influences from the girls’ environment. We call this mixing of influences
confounding.

CONFOUNDING

Two variables are confounded when their effects on a response variable
cannot be distinguished from each other. The confounded variables may be
either explanatory variables or lurking variables or both.

When many uncontrolled variables are related to a response variable, you
should always ask whether or not confounding of several variables prevents you
from drawing conclusions about causation. The third diagram in Figure 2.31
illustrates confounding. Both the explanatory variable x and the lurking variable z
may influence the response variable y. Because x is confounded with z, we cannot
distinguish the influence of x from the influence of z. We cannot say how strong
the direct effect of x on y is. In fact, it can be hard to say if x influences y at all.

The last two associations in Example 2.42 (Items 5 and 6) are explained in part
by confounding.

Many observed associations are at least partly explained by lurking variables.
Both common response and confounding involve the influence of a lurking
variable (or variables) z on the response variable y. The distinction between these
two types of relationship is less important than the common element, the influence
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of lurking variables. The most important lesson of these examples is one we have
already emphasized: even a very strong association between two variables is not
by itself good evidence that there is a cause-and-effect link between the
variables.

Establishing causation

How can a direct causal link between x and y be established? The best method—
indeed, the only fully compelling method—of establishing causation is to conduct
a carefully designed experiment in which the effects of possible lurking variables
are controlled. Chapter 3 explains how to design convincing experiments.

Many of the sharpest disputes in which statistics plays a role involve questions
of causation that cannot be settled by experiment. Does gun control reduce violent
crime? Does living near power lines cause cancer? Has “outsourcing” work to
overseas locations reduced overall employment in the United States? All these
questions have become public issues. All concern associations among variables.
And all have this in common: they try to pinpoint cause and effect in a setting
involving complex relations among many interacting variables. Common response
and confounding, along with the number of potential lurking variables, make
observed associations misleading. Experiments are not possible for ethical or
practical reasons. We can’t assign some people to live near power lines or compare
the same nation with and without strong gun controls.

Example

2.43 Power lines and leukemia.

Electric currents generate magnetic fields. So living with electricity exposes
people to magnetic fields. Living near power lines increases exposure to these
fields. Really strong fields can disturb living cells in laboratory studies. Some
people claim that the weaker fields we experience if we live near power lines
cause leukemia in children.
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It isn’t ethical to do experiments that expose children to magnetic fields.
It’s hard to compare cancer rates among children who happen to live in more
and less exposed locations because leukemia is rare and locations vary in
many ways other than magnetic fields. We must rely on studies that compare
children who have leukemia with children who don’t.

A careful study of the effect of magnetic fields on children took five years
and cost $5 million. The researchers compared 638 children who had leukemia
and 620 who did not. They went into the homes and actually measured the
magnetic fields in the children’s bedrooms, in other rooms, and at the front
door. They recorded facts about nearby power lines for the family home and
also for the mother’s residence when she was pregnant. Result: no evidence of
more than a chance connection between magnetic fields and childhood
leukemia.31

“No evidence” that magnetic fields are connected with childhood leukemia
doesn’t prove that there is no risk. It says only that a careful study could not find
any risk that stands out from the play of chance that distributes leukemia cases
across the landscape. Critics continue to argue that the study failed to measure
some lurking variables, or that the children studied don’t fairly represent all
children. Nonetheless, a carefully designed study comparing children with and
without leukemia is a great advance over haphazard and sometimes emotional
counting of cancer cases.

Example

2.44 Smoking and lung cancer.

Despite the difficulties, it is sometimes possible to build a strong case for
causation in the absence of experiments. The evidence that smoking causes
lung cancer is about as strong as nonexperimental evidence can be.
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Doctors had long observed that most lung cancer patients were smokers.
Comparison of smokers and similar nonsmokers showed a very strong
association between smoking and death from lung cancer. Could the
association be due to common response? Might there be, for example, a
genetic factor that predisposes people both to nicotine addiction and to lung
cancer? Smoking and lung cancer would then be positively associated even if
smoking had no direct effect on the lungs. Or perhaps confounding is to blame.
It might be that smokers live unhealthy lives in other ways (diet, alcohol, lack
of exercise) and that some other habit confounded with smoking is a cause of
lung cancer. How were these objections overcome?

Let’s answer this question in general terms: what are the criteria for establishing
causation when we cannot do an experiment?

• The association is strong. The association between smoking and lung cancer is
very strong.

• The association is consistent. Many studies of different kinds of people in many
countries link smoking to lung cancer. That reduces the chance that a lurking
variable specific to one group or one study explains the association.

• Higher doses are associated with stronger responses. People who smoke more
cigarettes per day or who smoke over a longer period get lung cancer more often.
People who stop smoking reduce their risk.

• The alleged cause precedes the effect in time. Lung cancer develops after years of
smoking.

• The alleged cause is plausible. Experiments show that tars from cigarette smoke
cause cancer when applied to the backs of mice.

Medical authorities do not hesitate to say that smoking causes lung cancer. The
U.S. Surgeon General states that cigarette smoking is “the largest avoidable cause
of death and disability in the United States.”32 The evidence for causation is strong
—but it is not as strong as the evidence provided by well-designed experiments.

SECTION 2.7 Summary

Some observed associations between two variables are due to a cause-and-effect
relationship between these variables, but others are explained by lurking
variables.

The effect of lurking variables can operate through common response if
changes in both the explanatory and the response variables are caused by changes
in lurking variables. Confounding of two variables (either explanatory or lurking
variables or both) means that we cannot distinguish their effects on the response
variable.

Establishing that an association is due to causation is best accomplished by
conducting an experiment that changes the explanatory variable while controlling
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other influences on the response.
In the absence of experimental evidence, be cautious in accepting claims of

causation. Good evidence of causation requires (1) a strong association, (2) that
appears consistently in many studies, (3) that has higher doses associated with
stronger responses, (4) with the alleged cause preceding the effect in time, and (5)
that is plausible.

SECTION 2.7 Exercises

2.133 Examples of association.

Give three examples of association: one due to causation, one due to common response, and one due to
confounding. Use your examples to write a short paragraph explaining the differences among these three
explanations for an observed association.

2.134 The five criteria for establishing causation.

Consider the five criteria for establishing causation. Explain how each of these, if not established, seriously
weakens the case that an association is due to causation.

2.135 Iron and anemia.

A lack of adequate iron in the diet is associated with anemia, a condition in which the body does not have
enough red blood cells. However, anemia is also associated with malaria and infections with worms called
helminths. Discuss these observed associations using the framework of Figure 2.31.

2.136 Stress and lack of sleep in college students.

Studies of college students have shown that stress and lack of sleep are associated. Do you think that lack
of sleep causes stress or that stress causes lack of sleep? Write a short paragraph summarizing your
opinions.

2.137 Online courses.

Many colleges offer online versions of some courses that are also taught in the classroom. It often happens
that the students who enroll in the online version do better than the classroom students on the course
exams. This does not show that online instruction is more effective than classroom teaching, because the
people who sign up for online courses are often quite different from the classroom students. Suggest some
student characteristics that you think could be confounded with online versus classroom. Use a diagram
like Figure 2.31(c) to illustrate your ideas.

2.138 Marriage and income.

Data show that men who are married, and also divorced or widowed men, earn quite a bit more than men
who have never been married. This does not mean that a man can raise his income by getting married.
Suggest several lurking variables that you think are confounded with marital status and that help explain
the association between marital status and income. Use a diagram like Figure 2.31(c) to illustrate your
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ideas.

2.139 Exercise and self-confidence.

A college fitness center offers an exercise program for staff members who choose to participate. The
program assesses each participant’s fitness, using a treadmill test, and also administers a personality
questionnaire. There is a moderately strong positive correlation between fitness score and score for self-
confidence. Is this good evidence that improving fitness increases self-confidence? Explain why or why
not.

2.140 Computer chip manufacturing and miscarriages.

A study showed that women who work in the production of computer chips have abnormally high numbers
of miscarriages. The union claimed that exposure to chemicals used in production caused the miscarriages.
Another possible explanation is that these workers spend most of their work time standing up. Illustrate
these relationships in a diagram like one of those in Figure 2.31.

2.141 Hospital size and length of stay.

A study shows that there is a positive correlation between the size of a hospital (measured by its number of
beds x) and the median number of days y that patients remain in the hospital. Does this mean that you can
shorten a hospital stay by choosing a small hospital? Use a diagram like one of those in Figure 2.31 to
explain the association.

2.142 Watching TV and low grades.

Children who watch many hours of television get lower grades in school, on the average, than those who
watch less TV. Explain clearly why this fact does not show that watching TV causes poor grades. In
particular, suggest some other variables that may be confounded with heavy TV viewing and may
contribute to poor grades.

2.143 Artificial sweeteners.

People who use artificial sweeteners in place of sugar tend to be heavier than people who use sugar. Does
this mean that artificial sweeteners cause weight gain? Give a more plausible explanation for this
association.

2.144 Exercise and mortality.

A sign in a fitness center says, “Mortality is halved for men over 65 who walk at least 2 miles a day.”

(a) Mortality is eventually 100% for everyone. What do you think “mortality is halved” means?

(b) Assuming that the claim is true, explain why this fact does not show that exercise causes lower
mortality.

2.145 Effect of a math skills refresher initiative.

Students enrolling in an elementary statistics course take a pretest that assesses their math skills. Those

334



who receive low scores are given the opportunity to take three one-hour refresher sessions designed to
review the basic math skills needed for the statistics course. Those who took the refresher sessions
performed worse than those who did not on the final exam in the statistics course. Can you conclude that
the refresher course has a negative impact on performance in the statistics course? Explain your answer.
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CHAPTER 2 Exercises

2.146 Survival and gender on the Titanic.

In Exercise 2.124 (page 149) you examined the relationship between survival and class on the
Titanic. The data file TITANIC contains data on the gender of the Titanic passengers. Examine the

relationship between survival and gender and write a short summary of your findings. 
TITANIC

2.147 Survival, class, and gender on the Titanic.

Refer to the previous exercise and Exercise 2.124 (page 149). When we looked at survival and class,
we ignored gender. When we looked at survival and gender, we ignored class. Are we missing
something interesting about these data when we choose this approach to the analysis? Here is one

way to answer this question.  TITANIC

(a) Create two separate two-way tables. One for survival and class for the women and another for
survival and class for the men.

(b) Perform an analysis of the relationship between survival and class for the women. Summarize
your findings.

(c) Perform an analysis of the relationship between survival and class for the men. Summarize your
findings.

(d) Compare the analyses that you performed in parts (b) and (c). Write a short report on the
relationship between survival and the two explanatory variables, class and gender.

2.148 Fan loyalty.

A study of fan loyalty compared Chicago Cubs fans with Arizona Diamondbacks fans. Fans of each
team were classified as diehard, more loyal than most, or less loyal than most. A report of the study
included the following results. For the Chicago Cubs, 43.3% of the fans were diehards, 34.1% of the
fans were more loyal than most, and 22.6% were less loyal than most. For the Arizona
Diamondbacks, 26.9% of the fans were diehards, 61.2% of the fans were more loyal than most, and
11.9% were less loyal than most. The report said that there were 115 fans who provided data for the
study.33

(a) Write a short summary of what the data presented tell you about the Cubs fans and the
Diamondbacks fans. Use graphical and numerical summaries.

(b) Can you construct a two-way table that could be used to compare fans of these two teams? If yes,
construct the table. If no, explain what additional information you would need to construct the table.

2.149 Marketing in Canada.
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Many consumer items are marketed to particular age groups in a population. To plan such marketing
strategies, it is helpful to know the demographic profile for different areas. Statistics Canada
provides a great deal of demographic data organized in different ways.34 Figure 2.32 gives the
percent of the population over 65 years and the percent under 15 years for each of the 13 Canadian
provinces and territories. Figure 2.33 is a scatterplot of the percent of the population over 65 versus

the percent under 15.  TITANIC

(a) Write a short paragraph explaining what the plot tells you about these two demographic groups in
the 13 Canadian provinces and territories.

FIGURE 2.32
Percent of the population over 65 years and percent of the population under 15 years in the
13 Canadian provinces and territories, for Exercise 2.149.

(b) Find the correlation between the percent of the population over 65 and the percent under 15.
Does the correlation give a good numerical summary of the strength of this relationship? Explain
your answer.

2.150 Nunavut.

Refer to the previous exercise and Figures 2.32 and 2.33.  CANADAP

(a) Do you think that Nunavut is an outlier?

(b) Make a residual plot for these data. Comment on the size of the residual for Nunavut. Use this
information to expand on your answer to part (a).

(c) Find the value of the correlation without Nunavut. How does this compare with the value you
computed in part (b) of the previous exercise?

(d) Write a short paragraph about Nunavut based on what you have found in this exercise and the
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TABLE 2.4  Dwelling Permits, Sales, and Production for 21 European Countries

previous one.

FIGURE 2.33
Scatterplot of percent of the population over 65 years versus percent of the population
under 15 years for the 13 Canadian provinces and territories, for Exercise 2.149.

Country Dwelling permits Sales Production
Australia 116 137 109
Belgium 125 105 112
Canada 224 122 101
Czech Republic 178 134 162
Denmark 121 126 109
Finland 105 136 125
France 145 121 104
Germany 54 100 119
Greece 117 136 102
Hungary 109 140 155
Ireland 92 123 144
Japan 86 99 109
Korea (South) 158 110 156
Luxembourg 145 161 118
Netherlands 160 107 109
New Zealand 127 139 112
Norway 125 136 94

338



Poland 163 139 159
Portugal 53 112 105
Spain 122 123 108
Sweden 180 142 116

2.151 Compare the provinces with the territories.

Refer to the previous exercise. The three Canadian territories are the Northwest Territories, Nunavut,

and the Yukon Territories. All the other entries in Figure 2.32 are provinces.  CANADAP

(a) Generate a scatterplot of the Canadian demographic data similar to Figure 2.33 but with the
points labeled “P” for provinces and “T” for territories.

(b) Use your new scatterplot to write a new summary of the demographics for the 13 Canadian
provinces and territories.

2.152 Dwelling permits and sales for 21 European countries.

The Organisation for Economic Co-operation and Development collects data on Main Economic
Indicators (MEIs) for many countries. Each variable is recorded as an index with the year 2000
serving as a base year. This means that the variable for each year is reported as a ratio of the value
for the year divided by the value for 2000. Use of indices in this way makes it easier to compare

values for different countries. Table 2.4 gives the values of three MEIs for 21 countries.35 
MEIS

(a) Make a scatterplot with sales as the response variable and permits issued for new dwellings as the
explanatory variable. Describe the relationship. Are there any outliers or influential observations?

(b) Find the least-squares regression line and add it to your plot.

(c) What is the predicted value of sales for a country that has an index of 160 for dwelling permits?

(d) The Netherlands has an index of 160 for dwelling permits. Find the residual for this country.

(e) What percent of the variation in sales is explained by dwelling permits?

2.153 Dwelling permits and production.

Refer to the previous exercise.  MEIS

(a) Make a scatterplot with production as the response variable and permits issued for new dwellings
as the explanatory variable. Describe the relationship. Are there any outliers or influential
observations?

(b) Find the least-squares regression line and add it to your plot.

(c) What is the predicted value of production for a country that has an index of 160 for dwelling
permits?

(d) The Netherlands has an index of 160 for dwelling permits. Find the residual for this country.

(e) What percent of the variation in production is explained by dwelling permits? How does this
value compare with the value that you found in the previous exercise for the percent of variation in
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sales that is explained by building permits?

2.154 Sales and production.

Refer to the previous two exercises.  MEIS

(a) Make a scatterplot with sales as the response variable and production as the explanatory variable.
Describe the relationship. Are there any outliers or influential observations?

(b) Find the least-squares regression line and add it to your plot.

(c) What is the predicted value of sales for a country that has an index of 125 for production?

(d) Finland has an index of 125 for production. Find the residual for this country.

(e) What percent of the variation in sales is explained by production? How does this value compare
with the percents of variation that you calculated in the two previous exercises?

2.155 Remote deposit capture.

The Federal Reserve has called remote deposit capture (RDC) “the most important development the
[U.S.] banking industry has seen in years.” This service allows users to scan checks and to transmit
the scanned images to a bank for posting.36 In its annual survey of community banks, the American
Bankers Association asked banks whether or not they offered this service.37 Here are the results

classified by the asset size (in millions of dollars) of the bank:  RDCSIZE

Offer RDC
Asset size Yes No
Under $100 63 309
$101 to $200 59 132
$201 or more 112 85

Summarize the results of this survey question numerically and graphically. Write a short paragraph
explaining the relationship between the size of a bank, measured by assets, and whether or not RDC
is offered.

2.156 How does RDC vary across the country?

The survey described in the previous exercise also classified community banks by region. Here is the

6 × 2 table of counts:38  RDCREG

Offer RDC
Region size Yes No
Northeast 28 38
Southeast 57 61
Central 53 84
Midwest 63 181
Southwest 27 51
West 61 76
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Summarize the results of this survey question numerically and graphically. Write a short paragraph
explaining the relationship between the location of a bank and whether or not RDC is offered.

2.157 Fields of study for college students.

The following table gives the number of students (in thousands) graduating from college with

degrees in several fields of study for seven countries:39  FOS

Field of study Canada France Germany Italy Japan U.K. U.S.
Social sciences, business, law 64 153 66 125 250 152 878
Science, mathematics, engineering 35 111 66 80 136 128 355
Arts and humanities 27 74 33 42 123 105 397
Education 20 45 18 16 39 14 167
Other 30 289 35 58 97 76 272

(a) Calculate the marginal totals and add them to the table.

(b) Find the marginal distribution of country and give a graphical display of the distribution.

(c) Do the same for the marginal distribution of field of study.

2.158 Fields of study by country for college students.

In the previous exercise you examined data on fields of study for graduating college students from

seven countries.  FOS

(a) Find the seven conditional distributions giving the distribution of graduates in the different fields
of study for each country.

(b) Display the conditional distributions graphically.

(c) Write a paragraph summarizing the relationship between field of study and country.

2.159 Graduation rates.

One of the factors used to evaluate undergraduate programs is the proportion of incoming students
who graduate. This quantity, called the graduation rate, can be predicted by other variables such as
the SAT or ACT scores and the high school records of the incoming students. One of the
components that U.S. News & World Report uses when evaluating colleges is the difference between
the actual graduation rate and the rate predicted by a regression equation.40 In this chapter, we call
this quantity the residual. Explain why the residual is a better measure to evaluate college graduation
rates than the raw graduation rate.

2.160 Popularity of a first name.

The Social Security Administration maintains lists of the top 1000 names for boys and girls born
each year since 1879.41 The name “Atticus” made the list in five recent years. Here are the ranks for

those years:  ATTICUS

Year 2004 2005 2006 2007 2008 2009 2010 2011
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Rank 937 792 768 685 686 608 558 462

(a) Plot rank versus year.

(b) Find the equation of the least-squares regression line and add it to your plot.

(c) Do these data suggest that the name “Atticus” has become more popular, less popular, or stayed
the same in popularity over this period of time? Give reasons for your answer.

2.161 You select the name.

Refer to the previous exercise. Choose a first name and find the rank of this name for the past
several years from the Social Security website, ssa.gov/OACT/babynames. Answer the questions
from the previous exercise for this name.

2.162 Salaries and raises.

For this exercise we consider a hypothetical employee who starts working in Year 1 with a salary of
$50,000. Each year her salary increases by approximately 5%. By Year 20, she is earning $126,000.

The following table gives her salary for each year (in thousands of dollars):  RAISES

Year Salary Year Salary Year Salary Year Salary
1 50 6 63 11 81 16 104
2 53 7 67 12 85 17 109
3 56 8 70 13 90 18 114
4 58 9 74 14 93 19 120
5 61 10 78 15 99 20 126

(a) Figure 2.34 is a scatterplot of salary versus year, with the least-squares regression line. Describe
the relationship between salary and year for this person.

(b) The value of r2 for these data is 0.9832. What percent of the variation in salary is explained by
year? Would you say that this is an indication of a strong linear relationship? Explain your answer.
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FIGURE 2.34
Plot of salary versus year for an individual who receives approximately a 5% raise each
year for 20 years, with the least-squares regression line, for Exercise 2.162.

2.163 Look at the residuals.

Refer to the previous exercise. Figure 2.35 is a plot of the residuals versus year.  RAISES

(a) Interpret the residual plot.

(b) Explain how this plot highlights the deviations from the least-squares regression line that you can
see in Figure 2.34.

2.164 Try logs.

Refer to the previous two exercises. Figure 2.36 is a scatterplot with the least-squares regression line

for log salary versus year. For this model, r2 = 0.9995.  RAISES
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FIGURE 2.35
Plot of residuals versus year for an individual who receives approximately a 5% raise each
year for 20 years, for Exercise 2.163.

(a) Compare this plot with Figure 2.34. Write a short summary of the similarities and the differences.

(b) Figure 2.37 is a plot of the residuals for the model using year to predict log salary. Compare this
plot with Figure 2.35 and summarize your findings.

FIGURE 2.36
Plot of log salary versus year for an individual who receives approximately a 5% raise
each year for 20 years, with the least-squares regression line, for Exercise 2.164.

2.165 Make some predictions.
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The individual whose salary we have been studying wants to do some financial planning.
Specifically, she would like to predict her salary 5 years into the future, that is, for Year 25. She is
willing to assume that her employment situation will be stable for the next 5 years and that it will be

similar to the last 20 years.  RAISES

(a) Predict her salary for Year 25 using the least-squares regression equation constructed to predict
salary from year.

FIGURE 2.37
Plot of residuals, based on log salary, versus year for an individual who receives
approximately a 5% raise each year for 20 years, for Exercise 2.164.

(b) Predict her salary for Year 25 using the least-squares regression equation constructed to predict
log salary from year. Note that you will need to take the predicted log salary and convert this value
back to the predicted salary. Many calculators have a function that will perform this operation.

(c) Which prediction do you prefer? Explain your answer.

(d) Someone looking at the numerical summaries and not the plots for these analyses says that
because both models have very high values of r2, they should perform equally well in doing this
prediction. Write a response to this comment.

(e) Discuss the value of graphical summaries and the problems of extrapolation using what you have
learned in studying these salary data.

2.166 Faculty salaries.

Here are the salaries for a sample of professors in a mathematics department at a large midwestern

university for the academic years 2012–2013 and 2013–2014.  FACULTY

2012–2013 salary ($) 2013–2014 salary ($) 2012–2013 salary ($) 2013–2014 salary ($)
146,600 147,700 139,650 142,350
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115,800 118,600 135,160 138,485
112,000 115,500 77,792 82,072
101,700 105,800 76,000 82,000
115,000 117,180 85,500 88,700
114,790 117,240 144,850 147,830
106,500 111,100 125,506 128,906
152,000 156,080 118,100 121,200

(a) Construct a scatterplot with the 2013–2014 salaries on the vertical axis and the 2012–2013
salaries on the horizontal axis.

(b) Comment on the form, direction, and strength of the relationship in your scatterplot.

(c) What proportion of the variation in 2013–2014 salaries is explained by 2012–2013 salaries?

2.167 Find the line and examine the residuals.

Refer to the previous exercise.  FACULTY

(a) Find the least-squares regression line for predicting 2013–2014 salaries from 2012–2013 salaries.

(b) Analyze the residuals, paying attention to any outliers or influential observations. Write a
summary of your findings.

2.168 Bigger raises for those earning less.

Refer to the previous two exercises. The 2012–2013 salaries do an excellent job of predicting the
2013–2014 salaries. Is there anything more that we can learn from these data? In this department
there is a tradition of giving higher-than-average percent raises to those whose salaries are lower.

Let’s see if we can find evidence to support this idea in the data.  FACULTY

(a) Compute the percent raise for each faculty member. Take the difference between the 2013–2014
salary and the 2012–2013 salary, divide by the 2012–2013 salary, and then multiply by 100. Make a
scatterplot with raise as the response variable and the 2012–2013 salary as the explanatory variable.
Describe the relationship that you see in your plot.

(b) Find the least-squares regression line and add it to your plot.

(c) Analyze the residuals. Are there any outliers or influential cases? Make a graphical display and
include this in a short summary of your conclusions.

(d) Is there evidence in the data to support the idea that greater percent raises are given to those with
lower salaries? Include numerical and graphical summaries to support your conclusion.

2.169 Firefighters and fire damage.

Someone says, “There is a strong positive correlation between the number of firefighters at a fire and
the amount of damage the fire does. So sending lots of firefighters just causes more damage.”
Explain why this reasoning is wrong.

 2.170 Eating fruits and vegetables and smoking.
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The Centers for Disease Prevention and Control Behavior Risk Factor Surveillance System (BRFSS)
collects data related to health conditions and risk behaviors.42 Aggregated data by state are in the
BRFSS data file. Figure 2.38 is a plot of two of the BRFSS variables. “5 Fruits or veg per day” is the
percent of adults in the state who report eating at least five servings of fruits or vegetables per day;

“Smoke everyday” is the percent who smoke every day.  BRFSS

FIGURE 2.38
Fruit and vegetable consumption versus smoking, with least-squares regression line, for
Example 2.170.

(a) Describe the relationship between “5 Fruits or veg per day” and “Smoke everyday.” Explain why
you might expect this type of association.

(b) Find the correlation between the two variables.

(c) For Utah, 23.3% eat at least five servings of fruits or vegetables per day and 8.5% smoke every
day. Find Utah on the plot and describe its position relative to the other states.

(d) For California, the percents are 27.7% for fruits or vegetables and 8.6% for smoking. Find
California on the plot and describe its position relative to the other states.

(e) Pick your favorite state and write a short summary of its position relative to states that you would
consider to be similar. Then use Table 2.5 to determine if your idea is supported by the data.
Summarize your results.

 2.171 Education and eating fruits and vegetables.

Refer to the previous exercise. The BRFSS data file contains a variable called EdCollege, the

proportion of adults who have completed college.  BRFSS

(a) Plot the data with 5 Fruits and vegetables per day on the x axis and EdCollege on the y axis.
Describe the overall pattern of the data.
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TABLE 2.5  Fruit and Vegetable Consumption and Smoking

(b) Add the least-squares regression line to your plot. Does the line give a summary of the overall
pattern? Explain your answer.

State
Fruits &

vegetables (%)
Smoking

(%) State

Fruits &
vegetables

(%)
Smoking

(%)
Alabama 20.3 18.6 Montana 25.7 16.4
Alaska 23.4 15.9 Nebraska 20.9 14.5
Arizona 24.1 13.1 Nevada 23.7 18.0

Arkansas 20.4 20.1
New

Hampshire 27.9 15.4
California 27.7 8.6 New Jersey 26.4 11.4
Colorado 24.8 12.3 New Mexico 23.2 13.5
Connecticut 28.3 11.8 New York 26.8 12.1

Delaware 25.0 16.3
North

Carolina 20.6 15.6
District of

Columbia 31.5 12.8
North

Dakota 22.5 15.9
Florida 24.4 13.5 Ohio 21.0 19.1
Georgia 24.5 14.3 Oklahoma 14.6 19.9
Guam 24.3 21.1 Oregon 26.3 14.4
Hawaii 23.5 12.2 Pennsylvania 24.1 16.9
Idaho 24.6 12.4 Puerto Rico 17.7 10.8
Illinois 22.5 14.3 Rhode Island 26.1 14.4

Indiana 20.6 19.4
South

Carolina 17.4 16.6

Iowa 18.5 15.5
South

Dakota 15.7 15.5
Kansas 18.6 16.9 Tennessee 23.3 18.3
Kentucky 21.1 23.6 Texas 23.8 12.0
Louisiana 16.9 19.3 Utah 23.3 8.5
Maine 28.0 17.6 Vermont 29.3 14.7
Maryland 27.6 13.7 Virginia 27.3 15.0
Massachusetts 26.2 13.3 Washington 25.1 12.1

Michigan 22.6 17.3
West

Virginia 16.2 23.8
Minnesota 21.9 13.2 Wisconsin 22.7 14.9
Mississippi 16.8 18.8 Wyoming 23.3 17.5
Missouri 19.9 19.4

(c) Pick out a few states and use their position in the graph to write a short summary of how they
compare with other states.

(d) Can you conclude that earning a college degree will cause you to eat five servings of fruits and
vegetables per day? Explain your answer.
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2.172 Predicting text pages.

The editor of a statistics text would like to plan for the next edition. A key variable is the number of
pages that will be in the final version. Text files are prepared by the authors using a word processor
called LaTeX, and separate files contain figures and tables. For the previous edition of the text, the
number of pages in the LaTeX files can easily be determined, as well as the number of pages in the

final version of the text. Here are the data:  TEXTP

Chapter 1 2 3 4 5 6 7 8 9 10 11 12 13
LaTeX pages 77 73 59 80 45 66 81 45 47 43 31 46 26
Text pages 99 89 61 82 47 68 87 45 53 50 36 52 19

(a) Plot the data and describe the overall pattern.

(b) Find the equation of the least-squares regression line and add the line to your plot.

(c) Find the predicted number of pages for the next edition if the number of LaTeX pages is 62.

(d) Write a short report for the editor explaining to her how you constructed the regression equation
and how she could use it to estimate the number of pages in the next edition of the text.

 2.173 Plywood strength.

How strong is a building material such as plywood? To be specific, support a 24-inch by 2-inch strip
of plywood at both ends and apply force in the middle until the strip breaks. The modulus of rupture
(MOR) is the force needed to break the strip. We would like to be able to predict MOR without
actually breaking the wood. The modulus of elasticity (MOE) is found by bending the wood without
breaking it. Both MOE and MOR are measured in pounds per square inch. Here are data for 32

specimens of the same type of plywood:43  MOEMOR

MOE MOR MOE MOR MOE MOR MOE MOR
2,005,400 11,591 1,774,850 10,541 2,181,910 12,702 1,747,010 11,794
1,166,360 8,542 1,457,020 10,314 1,559,700 11,209 1,791,150 11,413
1,842,180 12,750 1,959,590 11,983 2,372,660 12,799 2,535,170 13,920
2,088,370 14,512 1,720,930 10,232 1,580,930 12,062 1,355,720 9,286
1,615,070 9,244 1,355,960 8,395 1,879,900 11,357 1,646,010 8,814
1,938,440 11,904 1,411,210 10,654 1,594,750 8,889 1,472,310 6,326
2,047,700 11,208 1,842,630 10,223 1,558,770 11,565 1,488,440 9,214
2,037,520 12,004 1,984,690 13,499 2,212,310 15,317 2,349,090 13,645

Can we use MOE to predict MOR accurately? Use the data to write a discussion of this question.

2.174 Distribution of the residuals.

Some statistical methods require that the residuals from a regression line have a Normal distribution.
The residuals for the nonexercise activity example are given in Exercise 2.93 (page 128). Is their
distribution close to Normal? Make a Normal quantile plot to find out.

2.175 An example of Simpson’s paradox.
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Mountain View University has professional schools in business and law. Here is a three-way table of
applicants to these professional schools, categorized by gender, school, and admission decision:44 

 ADMITS

Business Law
Admit Admit

Gender Yes No Gender Yes No
Male 400 200 Male 90 110
Female 200 100 Female 200 200

(a) Make a two-way table of gender by admission decision for the combined professional schools by
summing entries in the three-way table.

(b) From your two-way table, compute separately the percents of male and female applicants
admitted. Male applicants are admitted to Mountain View’s professional schools at a higher rate than
female applicants.

(c) Now compute separately the percents of male and female applicants admitted by the business
school and by the law school.

(d) Explain carefully, as if speaking to a skeptical reporter, how it can happen that Mountain View
appears to favor males when this is not true within each of the professional schools.

2.176 Construct an example with four schools.

Refer to the previous exercise. Make a similar table that illustrates the same point for a hypothetical
university having four different schools. Carefully summarize your table with the appropriate
percents.

 2.177 Class size and class level.

A university classifies its classes as either “small” (fewer than 40 students) or “large.” A dean sees
that 62% of Department A’s classes are small, while Department B has only 40% small classes. She
wonders if she should cut Department A’s budget and insist on larger classes. Department A
responds to the dean by pointing out that classes for third- and fourth-year students tend to be
smaller than classes for first- and second-year students. The following three-way table gives the
counts of classes by department, size, and student audience. Write a short report for the dean that
summarizes these data. Start by computing the percents of small classes in the two departments and
include other numerical and graphical comparisons as needed. Here are the numbers of classes to be

analyzed:  CSIZE

Department A Department B
Year Large Small Total Large Small Total
First 2 0 2 18 2 20
Second 9 1 10 40 10 50
Third 5 15 20 4 16 20
Fourth 4 16 20 2 14 16

 2.178 Health conditions and risk behaviors.
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The data file BRFSS gives several variables related to health conditions and risk behaviors as well as
demographic information for the 50 states, the District of Columbia, Guam, and Puerto Rico. Pick at

least three pairs of variables to analyze. Write a short report on your findings.  BRFSS
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Introduction

In Chapters 1 and 2 we learned some basic tools of data analysis. We used graphs
and numbers to describe data. When we do exploratory data analysis, we rely
heavily on plotting the data. We look for patterns that suggest interesting
conclusions or questions for further study. However, exploratory analysis alone
can rarely provide convincing evidence for its conclusions, because striking
patterns that we find in data can arise from many sources.

exploratory data analysis

The validity of the conclusions that we draw from an analysis of data depends
not only on the use of the best methods to perform the analysis but also on the
quality of the data. Therefore, Section 3.1 begins this chapter with a short overview
on sources of data.

The two main sources for quality data are designed experiments and sample
surveys. We study these two sources in Sections 3.2 and 3.3, respectively.

Statistical techniques for producing data are the foundation for statistical
inference, which answers specific questions with a known degree of confidence. In
Section 3.4, we discuss some basic ideas related to inference.

statistical inference

Should an experiment or sample survey that could possibly provide interesting
and important information always be performed? How can we safeguard the
privacy of subjects in a sample survey? What constitutes the mistreatment of
people or animals who are studied in an experiment? These are questions of ethics.
In Section 3.5, we address ethical issues related to the design of studies and the
analysis of data.

ethics
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3.1 Sources of Data

When you complete this section, you will be able to

• Identify anecdotal data and, using specific examples, explain why they
have limited value.

• Identify available data and explain how they can be used in specific
examples.

• Identify data collected from sample surveys and explain how they can be
used in specific examples.

• Identify data collected from experiments and explain how they can be
used in specific examples.

• Distinguish data that are from experiments, from observational studies
that are sample surveys, and from observational studies that are not
sample surveys.

• Identify the treatment in an experiment.

There are many sources of data. Some data are very easy to collect but they may
not be very useful. Other data require careful planning and need professional staff
to gather. These can be much more useful. Whatever the source, a good statistical
analysis will start with a careful study of the source of the data. Here is one type of
source.

Anecdotal data

It is tempting to simply draw conclusions from our own experience, making no use
of more broadly representative data. A magazine article about Pilates says that men
need this form of exercise even more than women do. The article describes the
benefits that two men received from taking Pilates classes. A newspaper ad states
that a particular brand of windows is “considered to be the best” and says that
“now is the best time to replace your windows and doors.” These types of stories,
or anecdotes, sometimes provide quantitative data. However, this type of data does
not give us a sound basis for drawing conclusions.

ANECDOTAL DATA

Anecdotal data represent individual cases, which often come to our attention
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because they are striking in some way. These cases are not necessarily
representative of any larger group of cases.

USE YOUR KNOWLEDGE

3.1 Do flu shots work?

A friend tells you that she received a flu shot and then got the flu. Can
you conclude that flu shots don’t work? Explain your answer.

3.2 Describe an anecdote.

Find an example from some recent experience where anecdotal evidence
was used to draw a conclusion that is not justified. Describe the example
and explain why it should not be used in this way.

3.3 I didn’t do it.

A professional athlete is accused of using performance-enhancing drugs.
He calls a news conference and denies the charges. Is this sufficient
information to conclude that he did not use performance-enhancing
drugs? Explain your answer.

3.4 Are all vehicles this good?

A friend has driven a Toyota Camry for more than 200,000 miles and
with only the usual service maintenance expenses. Explain why not all
Camry owners can expect this kind of performance.

Not all anecdotal data are bad. The experiences of an individual or a small
group of individuals might suggest an interesting study that could be performed
using more carefully collected data.

Available data

Occasionally, data are collected for a particular purpose but can also serve as the
basis for drawing sound conclusions about other research questions. We use the
term available data for this type of data.
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AVAILABLE DATA

Available data are data that were produced for some other purpose but that
may help answer a question of interest.

The library and the Internet can be good sources of available data. Because
producing new data is expensive, we all use available data whenever possible. Here
are two examples.

Example

3.1 Wages of U.S. workers.

If you visit the U.S. Bureau of Labor Statistics website, bls.gov, you will find
many interesting sets of data and statistical summaries. One recent study
reported that wages and salary for workers in the United States averaged
$20.36 per hour, and benefits averaged $8.58 per hour.

Example

3.2 Math skills.

At the website of the National Center for Education Statistics, nces.ed.gov,
you will find full details about the math skills of schoolchildren as determined
by the latest National Assessment of Educational Progress (Figure 3.1).
Mathematics scores have slowly but steadily increased since 1990. All
racial/ethnic groups, both boys and girls, and students in most states are
getting better in math.
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FIGURE 3.1
Websites of government statistical offices are prime sources of data. Here is a page from the
National Center for Education Statistics website.

Many nations have a single national statistical office, such as Statistics Canada
(statcan.gc.ca) and Mexico’s INEGI (www.inegi.org.mx). More than 70 different
U.S. agencies collect data. You can reach most of them through the U.S.
government’s FedStats site (fedstats.gov).

USE YOUR KNOWLEDGE
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3.5 What more do you need?

A website claims that millenial generation consumers are very loyal to
the brands that they prefer. What additional information do you need to
evaluate this claim?

A survey of college athletes is designed to estimate the percent who gamble. Do
restaurant patrons give higher tips when their server repeats their order carefully?
The validity of our conclusions from the analysis of data collected to address these
issues rests on a foundation of carefully collected data.

In this chapter, we will develop the skills needed to produce trustworthy data
and to judge the quality of data produced by others. The techniques for producing
data that we will study require no formulas, but they are among the most important
ideas in statistics. Statistical designs for producing data rely on either sampling or
experiments.

Sample surveys and experiments

How have the attitudes of Americans, on issues ranging from abortion to work,
changed over time? Sample surveys are the usual tool for answering questions like
these.

Example

3.3 The General Social Survey.

One of the most important sample surveys is the General Social Survey (GSS)
conducted by the National Opinion Research Center (NORC), an organization
affiliated with the University of Chicago.1 The GSS interviews about 3000
adult residents of the United States every other year.

The GSS selects a sample of adults to represent the larger population of all
English-speaking adults living in the United States. The idea of sampling is to
study a part in order to gain information about the whole. Data are often produced
by sampling a population of people or things. Opinion polls, for example, may
report the views of the entire country based on interviews with a sample of about
1000 people. Government reports on employment and unemployment are produced
from a monthly sample of about 60,000 households. The quality of manufactured
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items is monitored by inspecting small samples each hour or each shift.

sample

population

USE YOUR KNOWLEDGE

3.6 Check out the General Social Survey.

Visit the General Social Survey website at www3.norc.org/gss. Write a
short summary of one of their reports, paying particular attention to the
methods used to collect the data.

In all our examples, the expense of examining every item in the population
makes sampling a practical necessity. Timeliness is another reason for preferring a
sample to a census, which is an attempt to contact every individual in the
population. We want information on current unemployment and public opinion
next week, not next year. Moreover, a carefully conducted sample is often more
accurate than a census. Accountants, for example, sample a firm’s inventory to
verify the accuracy of the records. Attempting to count every last item in the
warehouse would be not only expensive but also inaccurate. Bored people do not
count carefully.

census

If conclusions based on a sample are to be valid for the entire population, a
sound design for selecting the sample is required. Sampling designs are the topic of
Section 3.3.

A sample survey collects information about a population by selecting and
measuring a sample from the population. The goal is a picture of the population,
disturbed as little as possible by the act of gathering information. Sample surveys
are one kind of observational study.

OBSERVATION VERSUS EXPERIMENT

In an observational study we observe individuals and measure variables of
interest but do not attempt to influence the responses.
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In an experiment we deliberately impose some treatment on individuals and we observe their
responses.

Example

3.4 Baseball players have strong bones in their throwing arms.

A study of young baseball players measured the strength of the bones in their
throwing arms. A control group of subjects who were matched with the
baseball players based on age were also measured. This is an example of an
observational study that is not a sample survey. The study reported that bone
strength was 30% higher in the baseball players.2

What can we conclude from this study? If you start to play baseball, will you
have stronger bones in your throwing arm?

Example

3.5 Is there a cause-and-effect relationship?

Example 3.4 describes an observational study. People choose to participate in
baseball or not. Is it possible that those who choose to play baseball have
stronger arms than those who do not? The study does not address this question.

We can imagine an experiment that would remove these difficulties. From a
large group of subjects, require some to play baseball and forbid the rest from
playing. This is an experiment because the treatment (play baseball or not) is
imposed on the subjects. Of course, this particular experiment is neither practical
nor ethical.
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Example

3.6 It’s not really about baseball.

Example 3.4 compared the arm bone strengths of baseball players with those
of age-matched controls. Although the study tells us something about baseball
players, the results are particularly interesting because they suggest that certain
kinds of exercise can help us to build strong bones.

USE YOUR KNOWLEDGE

3.7 Available data.

Can available data be from an observational study? Can available data
be from an experiment? Explain your answers.

3.8 Picky eaters.

A study of 2049 children in grades 4 to 6 in 33 schools recorded their
behaviors in the lunchroom. One of the conclusions of the study was
that girls discarded more food than boys.3 Is this an observational study
or an experiment? Is it a sample survey? If it is an experiment, what is
the treatment? Explain your answers.

3.9 Automatic soap dispensers.

A study compared several brands of automatic soap dispensers. For one
test, the dispensers were run until their AA batteries failed. The times to
failure were compared for the different brands.4 Is this an observational
study or an experiment? Is it a sample survey? If it is an experiment,
what is the treatment? Explain your answers.

An observational study, even one based on a carefully chosen sample, is a poor
way to determine what will happen if we change something. The best way to see
the effects of a change is to do an intervention—where we actually impose the
change. When our goal is to understand cause and effect, experiments are the only
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source of fully convincing data.

intervention

In Example 3.4, the effect of baseball playing on arm bone strength is
confounded with (mixed up with) other characteristics of the subjects in the study.
Observational studies that examine the effect of a single variable on an outcome
can be misleading when the effects of the explanatory variable are confounded
with those of other variables. Because experiments allow us to isolate the effects of
specific variables, we generally prefer them. Here is an example.

confounded

Example

3.7 Which web page design sells more?

A company that sells products on the Internet wants to decide which of two
possible web page designs to use. During a two-week period they will use both
designs and collect data on sales. They randomly select one of the designs to
be used on the first day and then alternate the two designs on each of the
following days. At the end of this period they compare the sales for the two
designs.

Experiments usually require some sort of randomization, as in this example. We
begin the discussion of statistical designs for data collection in Section 3.2 with the
principles underlying the design of experiments.

USE YOUR KNOWLEDGE

3.10 Software for teaching creative writing.

An educational software company wants to compare the effectiveness of
its computer animation for teaching creative writing with that of a
textbook presentation. The company tests the creative-writing skills of a
number of second-year college students and then randomly divides them
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into two groups. One group uses the animation, and the other studies the
text. The company retests all the students and compares the increase in
creative-writing skills in the two groups. Is this an experiment? Why or
why not? What are the explanatory and response variables?

3.11 Apples or apple juice?

Food rheologists study different forms of foods and how the form of a
food affects how full we feel when we eat it. One study prepared
samples of apple juice and samples of apples with the same number of
calories. Half of the subjects were fed apples on one day followed by
apple juice on a later day; the other half received the apple juice
followed by the apples. After eating, the subjects were asked about how
full they felt. Is this an experiment? Why or why not? What are the
explanatory and response variables?

SECTION 3.1 Summary

Anecdotal data come from stories or reports about cases that do not necessarily represent a larger group of
cases.

Available data are data that were produced for some other purpose but that
may help answer a question of interest.

A sample survey collects data from a sample of cases that represent some
larger population of cases.

A census collects data from all cases in the population of interest.
In an experiment, a treatment is imposed and the responses are recorded.
Confounding occurs when the effects of two or more variables are related in

such a way that we need to take care in assigning the effect to one or to the other.

SECTION 3.1 Exercises
For Exercises 3.1 to 3.4, see pages 168–169; for Exercise 3.5, see page 170; for Exercise 3.6, see page
171; for Exercises 3.7 to 3.9, see pages 172–173; and for Exercises 3.10 and 3.11, see page 173.

In several of the following exercises you are asked to identify the type of data that
is described. Possible answers include anecdotal data, available data,
observational data that are from sample surveys, observational data that are not
from sample surveys, and data that are from experiments. It is possible for some
data to be classified in more than one category.

3.12 Not enough tuna.

You like to eat tuna fish sandwiches. Recently you have noticed that there does not seem to be as much
tuna as you expect when you open the can. Identify the type of data that this represents and describe how it
can or cannot be used to reach a conclusion about the amount of tuna in cans of tuna fish.
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3.13 More about tuna.

According to a story in Consumer Reports, three major producers of canned tuna agreed to pay $3,300,000
to settle claims in California that the amount of tuna in their cans was less than the amount printed on the
label of the cans.5 What kind of data do you think was used in this situation to convince the producers to
pay this amount of money to settle the claims? Explain your answer fully.

3.14 Growth of adolescents.

A study was conducted to study the effect of additional milk in the diet of adolescents over a period of 18
months. A control group received no extra milk. Growth rates of total body bone mineral content
(TBBMC) over the study period were calculated for each subject. Data for the control group were used to
examine the relationship between growth rate of TBBMC and age.

(a) How would you classify the data used to evaluate the effect of the additional milk in the diet? Explain
your answer.

(b) How would you classify the control group data on growth rate of TBBMC and age for the study of this
relationship? Explain your answer.

(c) Can you classify the variables growth rate of TBBMC and age as explanatory and response? If so,
which is the explanatory variable? Give reasons for your answer.

3.15 Satisfaction with allocation of concert tickets.

Your college sponsored a concert that sold out.

(a) After the concert, an article in the student newspaper reported interviews with three students who were
unable to get tickets and were very upset with that fact. What kind of data does this represent? Explain
your answer.

(b) A week later the student organization that sponsored the concert set up a website where students could
rank their satisfaction with the way that the tickets were allocated using a 5-point scale with values “very
satisfied,” “satisfied,” “neither satisfied nor unsatisfied,” “dissatisfied,” and “very dissatisfied.” The
website was open to any students who chose to provide their opinion. How would you classify these data?
Give reasons for your answer.

(c) Suppose that the website in part (b) was changed so that only a sample of students from the college
were invited by a text message to respond, and those who did not respond within 3 days were sent an
additional text message reminding them to respond. How would your answer to part (b) change, if at all?

(d) Write a short summary contrasting different types of data using your answers to parts (a), (b), and (c) of
this exercise.

3.16 Does echinacea reduce the severity of the common cold?

In a study designed to evaluate the benefits of taking echinacea when you have a cold, 719 patients were
randomly divided into four groups. The groups were (1) no pills, (2) pills that had no echinacea, (3) pills
that had echinacea but the subjects did not know whether or not the pills contained echinacea, and (4) pills
that had echinacea and the bottle containing the pills stated that the contents included echinacea. The
outcome was a measure of the severity of the cold.6 Identify the type of data collected in this study. Give
reasons for your answer.
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3.17 Are there treatments?

Refer to Exercises 3.12 to 3.16. For any of these that involve an experiment, describe the treatment that is
used.
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3.2 Design of Experiments

When you complete this section, you will be able to

• Identify experimental units, subjects, treatments, and outcomes for an
experiment.

• Identify a comparative experiment.

• Describe a placebo effect in an experiment.

• Identify bias in an experiment.

• Explain the need for a control group in an experiment.

• Explain the need for randomization in an experiment.

• When evaluating an experiment, apply the basic principles of
experimental design: compare, randomize, and repeat.

• Use a table of random digits to randomly assign experimental units to
treatments in an experiment.

• Use software to randomly assign experimental units to treatments in an
experiment.

• Identify a matched pairs design.

• Identify a block design.

An experiment is a study in which we actually do something to people, animals,
or objects in order to observe the response. Here is the basic vocabulary of
experiments.

EXPERIMENTAL UNITS, SUBJECTS, TREATMENTS,
OUTCOMES

The individuals on which the experiment is done are the experimental units.
When the units are human beings, they are called subjects. Experimental
conditions applied to the units are called treatments. The outcomes are the
measured variables that are used to compare the treatments.

Because the purpose of an experiment is to reveal the response of one variable
to changes in one or more other variables, the distinction between explanatory and
response variables is important. The explanatory variables in an experiment are
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often called factors. Many experiments study the joint effects of several factors. In
such an experiment, each treatment is formed by combining a specific value (often
called a level) of each of the factors.

factors

level of a factor

Example

3.8 Are smaller class sizes better?

Do smaller classes in elementary school really benefit students in areas such as
scores on standard tests, staying in school, and going on to college? We might
do an observational study that compares students who happened to be in
smaller classes with those who happened to be in larger classes in their early
school years. Small classes are expensive, so they are more common in
schools that serve richer communities. Students in small classes tend to also
have other advantages: their schools have more resources, their parents are
better educated, and so on. Confounding makes it impossible to isolate the
effects of small classes.

The Tennessee STAR program was an experiment on the effects of class
size. It has been called “one of the most important educational investigations
ever carried out.” The subjects were 6385 students who were beginning
kindergarten. Each student was assigned to one of three treatments: regular
class (22 to 25 students) with one teacher, regular class (22 to 25 students)
with a teacher and a full-time teacher’s aide, and small class (13 to 17
students). These treatments are levels of a single factor, the type of class. The
students stayed in the same type of class for four years, then all returned to
regular classes. In later years, students from the small classes had higher
scores on the outcomes, standard tests. The benefits of small classes were
greatest for minority students.7

Example 3.8 illustrates the big advantage of experiments over observational
studies. In principle, experiments can give good evidence for causation. In an
experiment, we study the specific factors we are interested in while controlling the
effects of lurking variables. All the students in the Tennessee STAR program
followed the usual curriculum at their schools. Because students were assigned to
different class types within their schools, school resources and family backgrounds
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were not confounded with class type. The only systematic difference was the type
of class. When students from the small classes did better than those in the other
two types, we can be confident that class size made the difference.

Example

3.9 Repeated exposure to advertising.

What are the effects of repeated exposure to an advertising message? The
answer may depend both on the length of the ad and on how often it is
repeated. An experiment investigated this question using undergraduate
students as subjects. All subjects viewed a 40-minute television program that
included ads for a digital camera. Some subjects saw a 30-second commercial;
others, a 90-second version. The same commercial was shown either 1, 3, or 5
times during the program.

This experiment has two factors: length of the commercial, with 2 levels,
and repetitions, with 3 levels. The 6 combinations of one level of each factor
form 6 treatments. Figure 3.2 shows the layout of the treatments. After
viewing the TV program, all the subjects answered questions about their recall
of the ad, their attitude toward the camera, and their intention to purchase it.
These are the outcomes.

Example 3.9 shows how experiments allow us to study the combined effects of
more than one factor. The interaction of several factors can produce effects that
cannot be predicted from looking at the effects of each factor alone. Perhaps longer
commercials increase interest in a product, and more commercials also increase
interest, but if we both make a commercial longer and show it more often, viewers
get annoyed and their interest in the product drops. The two-factor experiment in
Example 3.9 will help us find out.
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FIGURE 3.2
The treatments in the study of advertising, for Example 3.9. Combining the levels of the two
factors forms six treatments.

USE YOUR KNOWLEDGE

3.18 Does echinacea reduce the severity of the common cold?

In a study designed to evaluate the benefits of taking echinacea when
you have a cold, 719 patients were randomly divided into four groups.
The groups were (1) no pills, (2) pills that had no echinacea, (3) pills
that had echinacea but the subjects did not know whether or not the pills
contained echinacea, and (4) pills that had echinacea and the bottle
containing the pills stated that the contents included echinacea. The
outcome was a measure of the severity of the cold.8 Identify the
experimental units, the treatments, and the outcome. Describe the factor
and its levels. The study subjects were aged 12 to 80 years. To what
extent do you think the results of this experiment can be generalized to
young children?

3.19 Can coaching via mobile technology change diet and exercise?

A study was designed to determine the extent to which diet and exercise
can be changed through coaching. At the start of the study, the subjects
had high saturated-fat intakes, low fruit and vegetable intakes, and low
physical activity. Each subject was assigned to one of four coaching
groups with different goals: (1) increase fruit and vegetable intake and
physical activity, (2) decrease fat intake and sedentary leisure, (3)
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decrease fat intake and increase physical activity, and (4) increase fruit
and vegetable intake and decrease sedentary leisure. After three weeks
of remote coaching, a combined measure of diet and activity
improvement was calculated.9 Explain why this study is an experiment,
and identify the experimental units, the treatments, and the response
variable. Describe the factor and its levels. What are the outcomes? Of
the 204 people who were assigned to mobile coaching, 200 completed
the study. Do you think that this fact is important to consider when
interpreting the results of the study? Explain your answer.

Comparative experiments

Laboratory experiments in science and engineering often have a simple design with
only a single treatment, which is applied to all experimental units. The design of
such an experiment can be outlined as

Treatment → Observe response

For example, we may subject a beam to a load (treatment) and measure its
deflection (observation). We rely on the controlled environment of the laboratory
to protect us from lurking variables. When experiments are conducted outside the
laboratory or with living subjects, such simple designs often yield invalid data.
That is, we cannot tell whether the response was due to the treatment or to lurking
variables.

Example

3.10 Will writing about it reduce test anxiety?

A study designed to reduce test anxiety had students write an essay about their
feelings concerning an upcoming exam.10 The scores on this exam, the second
of the semester, were compared with those on the first exam in the course. The
mean scores on the second exam were higher than the mean scores on the first
exam.

Write about feelings → Observe exam scores

The test anxiety experiment of Example 3.10 was poorly designed to evaluate
the effect of the writing exercise. Perhaps exam scores would have increased on the
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second exam because the students became more familiar with the exam style of
this particular instructor even without the writing exercise. Another possible
explanation is that the increase is due to the personal attention that the students
received by the person who explained how to write about their feelings regarding
the exam.

In medical settings this phenomenon is called the placebo effect. In medicine, a
placebo is a dummy treatment, such as a sugar pill. People respond favorably to
personal attention or to any treatment that they hope will help them. On the other
hand, the writing exercise may have been very effective in improving exam scores.

placebo effect

For this experiment we don’t know whether the change was due to writing the
essay, to the personal contacts with the study personnel, or to greater familiarity
with the way the instructor designed exams.

The test anxiety experiment gave inconclusive results because the effect of
writing the essay was confounded with other factors that could have had an effect
on exam scores. The best way to avoid confounding is to do a comparative
experiment. Think about a study in which some students performed the writing
exercise and others did not. A comparison of the exam scores of these two groups
of students would provide an evaluation of the effect of the writing exercise.

comparative experiment

In medical settings, it is standard practice to randomly assign patients to either a
control group or a treatment group. All patients are treated the same in every
way except that the treatment group receives the product that is being evaluated.

control group

treatment group

Uncontrolled experiments (that is, experiments that don’t include a control
group) in medicine and the behavioral sciences can be dominated by such
influences as the details of the experimental arrangement, the selection of subjects,
and the placebo effect. The result is often bias.

BIAS

The design of a study is biased if it systematically favors certain outcomes.
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An uncontrolled study of a new medical therapy, for example, is biased in favor
of finding the treatment effective because of the placebo effect. Uncontrolled
studies in medicine give new therapies a much higher success rate than proper
comparative experiments do. Well-designed experiments usually compare several
treatments.

USE YOUR KNOWLEDGE

3.20 Are the teacher evaluations biased?

The evaluations of two instructors by their students are compared when
it is time to decide raises for the coming year. One teacher always hands
out the evaluation forms in class when the grades on the first exam are
given to students. The other instructor always hands out the evaluation
forms at the end of a class in which a very interesting film clip is shown.
Discuss the possibility of bias in this context.

Randomization

The design of an experiment first describes the response variable or variables, the
factors (explanatory variables), and the treatments, with comparison as the leading
principle. Figure 3.2 (page 177) illustrates this aspect of the design of a study of
response to advertising. The second aspect of experimental design is how the
experimental units are assigned to the treatments. Comparison of the effects of
several treatments is valid only when all treatments are applied to similar groups of
experimental units. If one corn variety is planted on more fertile ground, or if one
cancer drug is given to more seriously ill patients, comparisons among treatments
are meaningless. If groups assigned to treatments are quite different in a
comparative experiment, we should be concerned that our experiment will be
biased. How can we assign experimental units to treatments in a way that is fair to
all treatments?

experimental design

Experimenters often attempt to match groups by elaborate balancing acts.
Medical researchers, for example, try to match the patients in a “new drug”
experimental group and a “standard drug” control group by age, sex, physical
condition, smoker or not, and so on. Matching is helpful but not adequate—there
are too many lurking variables that might affect the outcome. The experimenter is
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unable to measure some of these variables and will not think of others until after
the experiment.

Some important variables, such as how advanced a cancer patient’s disease is,
are so subjective that they can’t be measured. In other cases, an experimenter
might unconsciously bias a study by assigning those patients who seemed the
sickest to a promising new treatment in the (unconscious) hope that it would help
them.

The statistician’s remedy is to rely on chance to make an assignment that does
not depend on any characteristic of the experimental units and that does not rely
on the judgment of the experimenter in any way. The use of chance can be
combined with matching, but the simplest experimental design creates groups by
chance alone. Here is an example.

Example

3.11 Which smartphone should be marketed?

Two teams have each prepared a prototype for a new smartphone. Before
deciding which one will be marketed, the smartphone will be evaluated by
college students. Forty students will receive a new phone. They will use it for
two weeks and then answer some questions about how well they like the
phone. The 40 students will be randomized with 20 receiving each phone.

This experiment has a single factor (prototype) with two levels. The
researchers must divide the 40 student subjects into two groups of 20. To do
this in a completely unbiased fashion, put the names of the 40 students in a
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hat, mix them up, and draw 20. These students will receive Phone 1, and the
remaining 20 will receive Phone 2. Figure 3.3 outlines the design of this
experiment.

The use of chance to divide experimental units into groups is called
randomization. The design in Figure 3.3 combines comparison and randomization
to arrive at the simplest randomized comparative design. This “flowchart” outline
presents all the essentials: randomization, the sizes of the groups and which
treatment they receive, and the response variable. There are, as we will see later,
statistical reasons for using treatment groups that are about equal in size.

randomization

USE YOUR KNOWLEDGE

3.21 Diagram the echinacea experiment.

Refer to Exercise 3.18 (page 177). Draw a diagram similar to Figure 3.3
that describes the experiment.

3.22 Diagram the coaching via mobile technology experiment.

Refer to Exercise 3.19 (page 177). Draw a diagram similar to Figure 3.3
that describes the experiment.

FIGURE 3.3
Outline of a randomized comparative experiment, for Example 3.11.

Randomized comparative experiments

The logic behind the randomized comparative design in Figure 3.3 is as follows:
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• Randomization produces two groups of subjects that we expect to be similar in all
respects before the treatments are applied.

• Comparative design helps ensure that influences other than the characteristics of
the smartphone operate equally on both groups.

• Therefore, differences in the satisfaction with the smartphone must be due either
to the characteristics of the phone or to the chance assignment of subjects to the
two groups.

That “either-or” deserves more comment. We cannot say that all the difference
in the satisfaction with the two smartphones is caused by the characteristics of the
phones. There would be some difference even if both groups used the same phone.
Some students would be more likely to be highly favorable of any new phone.
Chance can assign more of these students to one of the phones, so that there is a
chance difference between the groups. We would not trust an experiment with just
one subject in each group, for example. The results would depend too much on
which phone got lucky and received the subject who was more likely to be highly
satisfied. If we assign many students to each group, however, the effects of chance
will average out. There will be little difference in the satisfaction between the two
groups unless the phone characteristics causes a difference. “Use enough subjects
to reduce chance variation” is the third big idea of statistical design of experiments.

PRINCIPLES OF EXPERIMENTAL DESIGN

The basic principles of statistical design of experiments are

1. Compare two or more treatments. This will control the effects of lurking
variables on the response.

2. Randomize—use impersonal chance to assign experimental units to
treatments.

3. Repeat each treatment on many units to reduce chance variation in the
results.

How to randomize

The idea of randomization is to assign subjects to treatments by drawing names
from a hat. In practice, experimenters use software to carry out randomization.
Most statistical software will choose 20 out of a list of 40 at random, for example.
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The list might contain the names of 40 human subjects. The 20 chosen form one
group, and the 20 that remain form the second group. The Simple Random Sample
applet on the text website makes it particularly easy to choose treatment groups at
random.

You can randomize without software by using a table of random digits.
Thinking about random digits helps you to understand randomization even if you
will use software in practice. Table B at the back of the book is a table of random
digits.

RANDOM DIGITS

A table of random digits is a list of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 that has
the following properties:

1. The digit in any position in the list has the same chance of being any one of
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

2. The digits in different positions are independent in the sense that the value
of one has no influence on the value of any other.

You can think of Table B as the result of asking an assistant (or a computer) to
mix the digits 0 to 9 in a hat, draw one, then replace the digit drawn, mix again,
draw a second digit, and so on. The assistant’s mixing and drawing save us the
work of mixing and drawing when we need to randomize. Table B begins with the
digits 19223950340575628713. To make the table easier to read, the digits appear
in groups of five and in numbered rows. The groups and rows have no meaning—
the table is just a long list of digits having Properties 1 and 2 described above.

Our goal is to use random digits for experimental randomization. We need the
following facts about random digits, which are consequences of Properties 1 and 2:

• Any pair of random digits has the same chance of being any of the 100 possible
pairs: 00, 01, 02, . . . , 98, 99.

• Any triple of random digits has the same chance of being any of the 1000
possible triples: 000, 001, 002, . . . , 998, 999.

• . . . and so on for groups of four or more random digits.

Example
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3.12 Randomize the students.

In the smartphone experiment of Example 3.11, we must divide 40 students at
random into two groups of 20 students each.
Step 1: Label. Give each student a numerical label, using as few digits as
possible. Two digits are needed to label 40 students, so we use labels

01, 02, 03, . . . , 39, 40

It is also correct to use labels 00 to 39 or some other choice of 40 two-digit
labels.
Step 2: Table. Start anywhere in Table B and read two-digit groups. Suppose
we begin at line 130, which is

69051   64817   87174   09517   84534   06489   87201   97245

The first 10 two-digit groups in this line are

69   05   16   48   17   87   17   40   95   17

Each of these two-digit groups is a label. The labels 00 and 41 to 99 are not
used in this example, so we ignore them. The first 20 labels between 01 and 40
that we encounter in the table choose students for the first phone. Of the first
10 labels in line 130, we ignore four because they are too high (over 40). The
others are 05, 16, 17, 17, 40, and 17. The students labeled 05, 16, 17, and 40
will evaluate the first phone. Ignore the second and third 17s because that
student is already in the group. Run your finger across line 130 (and continue
to the following lines) until you have chosen 20 students. They are the students
labeled

05, 16, 17, 40, 20, 19, 32, 04, 25, 29, 37, 39, 31, 18, 07, 13, 33, 02, 36, 23

You should check at least the first few of these. These students will receive the
first phone. The remaining 20 will evaluate the second phone.

As Example 3.12 illustrates, randomization requires two steps: assign labels to
the experimental units and then use Table B to select labels at random. Be sure that
all labels are the same length so that all have the same chance to be chosen. Use the
shortest possible labels—one digit for 10 or fewer individuals, two digits for 11 to
100 individuals, and so on. Don’t try to scramble the labels as you assign them.
Table B will do the required randomizing, so assign labels in any convenient
manner, such as in alphabetical order for human subjects. You can read digits from
Table B in any order—along a row, down a column, and so on—because the table
has no order. As an easy standard practice, we recommend reading along rows.

It is easy to use statistical software or Excel to randomize. Here are the steps:

Step 1: Label. The first step in assigning labels to the experimental units is similar
to the procedure we described previously. One difference, however, is that we
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are not restricted to using numerical labels. Any system where each
experimental unit has a unique label identifier will work.

Step 2: Use the computer. Once we have the labels, we then create a data set with
the labels and generate a random number for each label. In Excel, this can be
done with the RAND() function. Finally, we sort the entire data set based on the
random numbers. Groups are formed by selecting units in order from the sorted
list.
This process is essentially the same as writing the labels on a deck of cards,

shuffling the cards, and dealing them out one at a time.

Example

3.13 Using software for the randomization.

Let’s do a randomization similar to the one we did in Example 3.12, but this
time using Excel. Here we will use 10 experimental units. We will assign 5 to
the treatment group and 5 to the control group. We first create a data set with
the numbers 1 to 10 in the first column. See Figure 3.4(a). Then we use
RAND() to generate 10 random numbers in the second column. See Figure
3.4(b). Finally, we sort the data set based on the numbers in the second
column. See Figure 3.4(c). The first 5 labels (7, 1, 10, 4, and 6) are assigned to
the experimental group. The remaining 5 labels (8, 2, 3, 9, and 5) correspond
to the control group.
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FIGURE 3.4
Randomization of 10 experimental units using an Excel spreadsheet, for Example 3.13.
(a) Labels. (b) Random numbers. (c) Sorted list of labels.

When all experimental units are allocated at random among all treatments, as in
Example 3.13, the experimental design is completely randomized. Completely
randomized designs can compare any number of treatments. The treatments can be
formed by levels of a single factor or by more than one factor.
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completely randomized design

Example

3.14 Randomization for the TV commercial experiment.

Figure 3.2 (page 177) displays six treatments formed by the two factors in an
experiment on response to a TV commercial. Suppose that we have 150
students who are willing to serve as subjects. We must assign 25 students at
random to each group. Figure 3.5 outlines the completely randomized design.

To carry out the random assignment, label the 150 students 001 to 150.
(Three digits are needed to label 150 subjects.) Enter Table B and read three-
digit groups until you have selected 25 students to receive Treatment 1 (a 30-
second ad shown once). If you start at line 140, the first few labels for
Treatment 1 subjects are 129, 048, and 003.

FIGURE 3.5
Outline of a completely randomized design comparing six treatments, for Example 3.14.

Continue in Table B to select 25 more students to receive Treatment 2 (a
30-second ad shown 3 times). Then select another 25 for Treatment 3 and so
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on until you have assigned 125 of the 150 students to Treatments 1 through 5.
The 25 students who remain get Treatment 6.

The randomization is straightforward but very tedious to do by hand. We
recommend the Simple Random Sample applet. Exercise 3.41 (page 191)
shows how to use the applet to do the randomization for this example.

USE YOUR KNOWLEDGE

3.23 Do the randomization.

Use computer software to carry out the randomization in Example 3.14.

Cautions about experimentation

The logic of a randomized comparative experiment depends on our ability to treat
all the experimental units identically in every way except for the actual treatments
being compared. Good experiments therefore require careful attention to details.
The ideal situation is where a study is double-blind—neither the subjects
themselves nor the experimenters know which treatment any subject has received.
The double-blind method avoids unconscious bias by, for example, a doctor who
doesn’t think that “just a placebo” can benefit a patient.

double-blind

Many—perhaps most—experiments have some weaknesses in detail. The
environment of an experiment can influence the outcomes in unexpected ways.
Although experiments are the gold standard for evidence of cause and effect, really
convincing evidence usually requires that a number of studies in different places
with different details produce similar results. Here are some brief examples of what
can go wrong.
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Example

3.15 Placebo for a marijuana experiment.

A study of the effects of marijuana recruited young men who used marijuana.
Some were randomly assigned to smoke marijuana cigarettes, while others
were given placebo cigarettes. This failed: the control group recognized that
their cigarettes were phony and complained loudly. It may be quite common
for blindness to fail because the subjects can tell which treatment they are
receiving.11

The most serious potential weakness of experiments is lack of realism. The
subjects or treatments or setting of an experiment may not realistically duplicate
the conditions we really want to study. Here is an example.

lack of realism

Example

3.16 Layoffs and feeling bad.

How do layoffs at a workplace affect the workers who remain on the job? To
try to answer this question, psychologists asked student subjects to proofread
text for extra course credit, then “let go” some of the workers (who were
actually accomplices of the experimenters). Some subjects were told that those
let go had performed poorly (Treatment 1). Others were told that not all could
be kept and that it was just luck that they were kept and others let go
(Treatment 2). We can’t be sure that the reactions of the students are the same
as those of workers who survive a layoff in which other workers lose their
jobs. Many behavioral science experiments use student subjects in a campus
setting. Do the conclusions apply to the real world?

Lack of realism can limit our ability to apply the conclusions of an experiment
to the settings of greatest interest. Most experimenters want to generalize their
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conclusions to some setting wider than that of the actual experiment. Statistical
analysis of an experiment cannot tell us how far the results will generalize to other
settings. Nonetheless, the randomized comparative experiment, because of its
ability to give convincing evidence for causation, is one of the most important
ideas in statistics.

Matched pairs designs

Completely randomized designs are the simplest statistical designs for
experiments. They illustrate clearly the principles of control, randomization, and
repetition. However, completely randomized designs are often inferior to more
elaborate statistical designs. In particular, matching the subjects in various ways
can produce more precise results than simple randomization.

The simplest use of matching is a matched pairs design, which compares just
two treatments. The subjects are matched in pairs. For example, an experiment to
compare two advertisements for the same product might use pairs of subjects with
the same age, sex, and income. The idea is that matched subjects are more similar
than unmatched subjects, so that comparing responses within a number of pairs is
more efficient than comparing the responses of groups of randomly assigned
subjects. Randomization remains important: which one of a matched pair sees the
first ad is decided at random. One common variation of the matched pairs design
imposes both treatments on the same subjects, so that each subject serves as his or
her own control. Here is an example.

matched pairs design

Example

3.17 Matched pairs for the smartphone prototype experiment.

Example 3.11 describes an experiment to compare two prototypes of a new
smartphone. The experiment compared two treatments: Phone 1 and Phone 2.
The response variable is the satisfaction of the college student participant with
the new smartphone. In Example 3.11, 40 student subjects were assigned at
random, 20 students to each phone. This is a completely randomized design,
outlined in Figure 3.3. Subjects differ in how satisfied they are with
smartphones in general. The completely randomized design relies on chance to
create two similar groups of subjects.

If we wanted to do a matched pairs version of this experiment, we would
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have each college student use each phone for two weeks. An effective design
would randomize the order in which the phones are evaluated by each student.
This will eliminate bias due to the possibility that the first phone evaluated will
be systematically evaluated higher or lower than the second phone evaluated.

The completely randomized design uses chance to decide which subjects will
evaluate each smartphone prototype. The matched pairs design uses chance to
decide which 20 subjects will evaluate Phone 1 first. The other 20 will evaluate
Phone 2 first.

Block designs

The matched pairs design of Example 3.17 uses the principles of comparison of
treatments, randomization, and repetition on several experimental units. However,
the randomization is not complete (all subjects randomly assigned to treatment
groups) but is restricted to assigning the order of the treatments for each subject.
Block designs extend the use of “similar subjects” from pairs to larger groups.

BLOCK DESIGN

A block is a group of experimental units or subjects that are known before the
experiment to be similar in some way that is expected to affect the response to
the treatments. In a block design, the random assignment of units to
treatments is carried out separately within each block.

Block designs can have blocks of any size. A block design combines the idea of
creating equivalent treatment groups by matching with the principle of forming
treatment groups at random. Blocks are another form of control. They control the
effects of some outside variables by bringing those variables into the experiment to
form the blocks. Here are some typical examples of block designs.

Example

3.18 Blocking in a cancer experiment.

The progress of a type of cancer differs in women and men. A clinical
experiment to compare three therapies for this cancer therefore treats sex as a
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blocking variable. Two separate randomizations are done, one assigning the
female subjects to the treatments and the other assigning the male subjects.
Figure 3.6 outlines the design of this experiment. Note that there is no
randomization involved in making up the blocks. They are groups of subjects
who differ in some way (sex in this case) that is apparent before the
experiment begins.

FIGURE 3.6
Outline of a block design, for Example 3.18. The blocks consist of male and female subjects.
The treatments are the three therapies for cancer.

Example

3.19 Blocking in an agriculture experiment.

The soil type and fertility of farmland differ by location. Because of this, a test
of the effect of tillage type (two types) and pesticide application (three
application schedules) on soybean yields uses small fields as blocks. Each
block is divided into six plots, and the six treatments are randomly assigned to
plots separately within each block.

Example
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3.20 Blocking in an education experiment.

The Tennessee STAR class size experiment (Example 3.8, page 176) used a
block design. It was important to compare different class types in the same
school because the children in a school come from the same neighborhood,
follow the same curriculum, and have the same school environment outside
class. In all, 79 schools across Tennessee participated in the program. That is,
there were 79 blocks. New kindergarten students were randomly placed in the
three types of class separately within each school.

Blocks allow us to draw separate conclusions about each block, for example,
about men and women in the cancer study in Example 3.18. Blocking also allows
more precise overall conclusions because the systematic differences between men
and women can be removed when we study the overall effects of the three
therapies. The idea of blocking is an important additional principle of statistical
design of experiments. A wise experimenter will form blocks based on the most
important unavoidable sources of variability among the experimental units.
Randomization will then average out the effects of the remaining variation and
allow an unbiased comparison of the treatments.

SECTION 3.2 Summary

In an experiment, one or more treatments are imposed on the experimental units
or subjects. Each treatment is a combination of levels of the explanatory variables,
which we call factors. Outcomes are the measured variables that are used to
compare the treatments.

The design of an experiment refers to the choice of treatments and the manner
in which the experimental units or subjects are assigned to the treatments.

The basic principles of statistical design of experiments are compare,
randomization, and repetition.

The simplest form of control is comparison. Experiments should compare two
or more treatments in order to prevent confounding the effect of a treatment with
other influences, such as lurking variables.

Randomization uses chance to assign subjects to the treatments.
Randomization creates treatment groups that are similar (except for chance
variation) before the treatments are applied. Randomization and comparison
together prevent bias, or systematic favoritism, in experiments.

You can carry out randomization by giving numerical labels to the experimental
units and using a table of random digits to choose treatment groups.

Repetition of the treatments on many units reduces the role of chance variation
and makes the experiment more sensitive to differences among the treatments.

Good experiments require attention to detail as well as good statistical design.
Many behavioral and medical experiments are double-blind. Lack of realism in
an experiment can prevent us from generalizing its results.
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In addition to comparison, a second form of control is to restrict randomization
by forming blocks of experimental units that are similar in some way that is
important to the response. Randomization is then carried out separately within each
block.

Matched pairs are a common form of blocking for comparing just two
treatments. In some matched pairs designs, each subject receives both treatments in
a random order. In others, the subjects are matched in pairs as closely as possible,
and one subject in each pair receives each treatment.

SECTION 3.2 Exercises
For Exercises 3.18 and 3.19, see page 177; for Exercise 3.20, see page 179; for Exercises 3.21 and 3.22,
see page 180; and for Exercise 3.23, see page 185.

3.24 How to relax.

An experiment compared three ways to relax before an exam. Sixty college students were randomly
assigned to use one of three methods to relax before an exam. The methods were (1) take a slow walk for
15 minutes, (2) do a yoga exercise for 15 minutes, and (3) lie down and listen to soothing music. What are
the experimental units, the treatments, and the outcomes for this experiment? Can we use the term
“subjects” for the experimental units? Explain your answers.

3.25 Online homework.

Thirty students participated in a study designed to evaluate a new online homework system. None of the
students had used an online homework system in the past. After using the system for a month, they were
asked to rate their satisfaction with the system using a 5-point scale.

(a) What are the experimental units, the treatment, and the outcome for this experiment? Can we use the
term “subjects” for the experimental units? Explain your answers.

(b) Is this a comparative experiment? If your answer is Yes, explain why. If your answer is No, describe
how you would change the design so that it would be a comparative experiment.

(c) Suggest some different outcomes that you think would be appropriate for this experiment.

3.26 Coaching using mobile technology.

Refer to Exercise 3.19 (page 177), where an experiment using mobile technology
to improve diet and exercise behavior is described.

(a) Why would a control group with a placebo treatment be useful in this experiment?

(b) Explain what the placebo effect is in this setting.

(c) Describe a treatment that would serve as a placebo for this experiment.

3.27 Online sales of running shoes.

A company that sells running shoes online wants to compare two new marketing strategies. They will test
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the strategies on 10 weekdays. In the morning of each day, a web page describing the comfort of the
running shoes will be displayed. In the afternoon of each day, a web page describing the discounted price
for the shoes will be displayed. Sales of the featured running shoes will be compared at the end of the
experiment.

(a) What are the experimental units, the treatments, and the outcomes for this experiment? Explain your
answers.

(b) Is this a comparative experiment? Why or why not?

(c) Could the experiment be improved by using randomization? Explain your answer.

(d) Could the experiment be improved by using a placebo treatment? Explain your answer.

3.28 Online sales of running shoes.

Refer to the previous exercise. Suppose that for each day, you randomized the web pages, showing one in
the morning and the other in the afternoon. Can you view this experiment as a block design? Explain your
answer.

3.29 Randomize the web pages for the running shoes.

Refer to the previous exercise. Use Table B to randomize the treatments. Report
the place in the table where you started, and list the random numbers that you used
to determine when to display the web pages.

3.30 Randomize the web pages for the running shoes.

Refer to the previous exercise. Use software to carry out the randomization.

3.31 Online sales of running shoes.

Refer to Exercise 3.27. Here is another way in which the experiment could be
designed. Suppose that you alternate the display each time a customer visits the
website. Can you view this experiment as a matched pairs design? Explain your
answer.

3.32 The Sports Illustrated jinx.

Some people believe that teams or individual athletes who appear on the cover of Sports Illustrated
magazine will experience bad luck soon after they appear. Can you evaluate this belief with an
experiment? Explain your answer.

3.33 What is needed?

Explain what is deficient in each of the following proposed experiments and explain how you would
improve the experiment.
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(a) Two product promotion offers are to be compared. The first, which offers two items for $2 will be used
in a store on Friday. The second, which offers three items for $3, will be used in the same store on
Saturday.

(b) A study compares two marketing campaigns to encourage individuals to eat more fruits and vegetables.
The first campaign is launched in Florida at the same time that the second campaign is launched in
Minnesota.

(c) You want to evaluate the effectiveness of a new investment strategy. You try the strategy for one year
and evaluate the performance of the strategy.

3.34 What is wrong?

Explain what is wrong with each of the following randomization procedures and describe how you would
do the randomization correctly.

(a) Twenty students are to be used to evaluate a new treatment. Ten men are assigned to receive the
treatment, and 10 women are assigned to be the controls.

(b) Ten subjects are to be assigned to two treatments, 5 to each. For each subject, a coin is tossed. If the
coin comes up heads, the subject is assigned to the first treatment; if the coin comes up tails, the subject is
assigned to the second treatment.

(c) An experiment will assign 40 rats to four different treatment conditions. The rats arrive from the
supplier in batches of 10 and the treatment lasts two weeks. The first batch of 10 rats is randomly assigned
to one of the four treatments, and data for these rats are collected. After a one-week break, another batch of
10 rats arrives and is assigned to one of the three remaining treatments. The process continues until the last
batch of rats is given the treatment that has not been assigned to the three previous batches.

3.35 Evaluate a new orientation program.

Your company runs a two-day orientation program Monday and Tuesday each week for new employees. A
new program is to be compared with the current one. Set up an experiment to compare the new program
with the old. Be sure to provide details regarding randomization and what outcome variables you will
measure.

3.36 Do magnets reduce pain?

Some claim that magnets can be used to reduce pain. Design a double-blind experiment to test this claim.
Write a proposal requesting funding for your study giving all the important details, including the number of
subjects, issues concerning randomization, and how you will make the study double-blind.

3.37 Calcium and vitamin D.

Vitamin D is needed for the body to use calcium. An experiment is designed to study the effects of calcium
and vitamin D supplements on the bones of first-year college students. The outcome measure is the total
body bone mineral content (TBBMC), a measure of bone health. Three doses of calcium will be used: 0,
200, and 400 milligrams per day (mg/day). The doses of vitamin D will be 0, 50, and 100 international
units (IU) per day. The calcium and vitamin D will be given in a single tablet. All tablets, including those
with no calcium and no vitamin D, will look identical. Subjects for the study will be 90 men and 90
women.

(a) What are the factors and the treatments for this experiment?
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(b) Draw a picture explaining how you would randomize the 180 college students to the treatments.

(c) Use a spreadsheet to carry out the randomization.

(d) Is there a placebo in this experiment? Explain your answer.

3.38 Does oxygen help football players?

We often see players on the sidelines of a football game inhaling oxygen. Their coaches think this will
speed their recovery. We might measure recovery from intense exercise as follows: Have a football player
run 100 yards three times in quick succession. Then allow three minutes to rest before running 100 yards
again. Time the final run. Because players vary greatly in speed, you plan a matched pairs experiment
using 30 football players as subjects. Describe the design of such an experiment to investigate the effect of
inhaling oxygen during the rest period. Why should each player’s two trials be on different days? Use
Table B at line 135 to decide which players will get oxygen on their first trial.

3.39 Five-digit zip codes and delivery time of mail.

Does adding the five-digit postal zip code to an address really speed up delivery of letters? Does adding the
four more digits that make up “zip + 4” speed delivery yet more? What about mailing a letter on Monday,
Thursday, or Saturday? Describe the design of an experiment on the speed of first-class mail delivery. For
simplicity, suppose that all letters go from you to a friend, so that the sending and receiving locations are
fixed.

 3.40 Which coffee is preferred?

A coffeehouse wants to compare two new varieties of coffee.

(a) Describe an experiment in which different customers evaluate each variety. Be sure to provide details,
including how many customers you will use, issues related to randomization, and what evaluation data you
will collect.

(b) Do the same for an experiment in which each customer evaluates both varieties of coffee.

(c) Which experiment do you prefer? Give reasons for your answer.

 3.41 Use the Simple Random Sample applet.

The Simple Random Sample applet allows you to randomly assign experimental units to more than two
groups without difficulty. Example 3.14 (page 184) describes a randomized comparative experiment in
which 150 students are randomly assigned to six groups of 25.

(a) Use the applet to randomly choose 25 out of 150 students to form the first group. Which students are in
this group?

(b) The “Population hopper” now contains the 125 students who were not chosen, in scrambled order.
Click “Sample” again to choose 25 of these remaining students to make up the second group. Which
students were chosen?

(c) Click “Sample” three more times to choose the third, fourth, and fifth groups. Don’t take the time to
write down these groups. Check that there are only 25 students remaining in the “Population hopper.”
These subjects get Treatment 6. Which students are they?
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 3.42 Use the Simple Random Sample applet.

You can use the Simple Random Sample applet to choose a group at random once you have labeled the
subjects. Example 3.12 (page 182) uses Table B to choose 20 students from a group of 40 for a study of
smartphone preferences. Use the applet to choose 20 students. Which students did you choose?

 3.43 Health benefits of bee pollen.

“Bee pollen is effective for combating fatigue, depression, cancer, and colon disorders.” So says a website
that offers the pollen for sale. We wonder if bee pollen really does prevent colon disorders. Here are two
ways to study this question. Explain why the first design will produce more trustworthy data.

(a) Find 400 women who do not have colon disorders. Randomly assign 200 to take bee pollen capsules
and the other 200 to take placebo capsules that are identical in appearance. Follow both groups for 5 years.

(b) Find 200 women who take bee pollen regularly. Match each with a woman of the same age, race, and
occupation who does not take bee pollen. Follow both groups for 5 years.

 3.44 Use the Simple Random Sample applet.

The Simple Random Sample applet can demonstrate how randomization works to create similar groups for
comparative experiments. Suppose that (unknown to the experimenters) the 20 even-numbered students
among the 40 subjects for the smartphone study in Example 3.12 (page 182) tend to send more text
messages than the odd-numbered students. We would like the two groups to be similar with respect to text
messaging. Use the applet to choose 10 samples of size 20 from the 40 students. (Be sure to click “Reset”
after each sample.) Record the counts of even-numbered students in each of your 10 samples. You see that
there is considerable chance variation but no systematic bias in favor of one or the other group in assigning
the fast-reacting students. Larger samples from larger populations will on the average do a better job of
making the two groups equivalent.

 3.45 Calcium and the bones of young girls.

Calcium is important to the bone development of young girls. To study how the bodies of young girls
process calcium, investigators used the setting of a summer camp. Calcium was given in punch at either a
high or a low level. The camp diet was otherwise the same for all girls. Suppose that there are 40 campers.

(a) Outline a completely randomized design for this experiment.

(b) Describe a matched pairs design in which each girl receives both levels of calcium (with a “washout
period” in which no calcium supplementation was given between the two treatment periods). What is the
advantage of the matched pairs design over the completely randomized design?

(c) The same randomization can be used in different ways for both designs. Label the subjects 01 to 40.
You must choose 20 of the 40. Use Table B at line 120 to choose just the first 5 of the 20. How are the 20
subjects chosen treated in the completely randomized design? How are they treated in the matched pairs
design?

 3.46 Random digits.

Table B is a table of random digits. Which of the following statements are true of a table of random digits,
and which are false? Explain your answers.
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(a) There are exactly four 0s in each row of 40 digits.

(b) Each pair of digits has chance 1/100 of being 00.

(c) The digits 0000 can never appear as a group, because this pattern is not random.

 3.47 Measuring water quality in streams and lakes.

Water quality of streams and lakes is an issue of concern to the public. Although trained professionals
typically are used to take reliable measurements, many volunteer groups are gathering and distributing
information based on data that they collect.12 You are part of a team to train volunteers to collect accurate
water quality data. Design an experiment to evaluate the effectiveness of the training. Write a summary of
your proposed design to present to your team. Be sure to include all the details that they will need to
evaluate your proposal.

392



3.3 Sampling Design

When you complete this section, you will be able to

• Distinguish between a population and a sample.

• Use the response rate to evaluate a survey.

• Use Table B to generate a simple random sample (SRS).

• Use software to generate a simple random sample.

• Construct a stratified random sample, using Table B or software to select
the samples from the strata.

• Identify sample designs as voluntary response samples, simple random
samples, stratified random samples, or multistage random samples.

• Identify characteristics of samples that limit their usefulness, including
undercoverage, nonresponse, response bias, and the wording of questions.

A political scientist wants to know what percent of college-age adults consider
themselves conservatives. An automaker hires a market research firm to learn what
percent of adults aged 18 to 35 recall seeing television advertisements for a new
sport utility vehicle. Government economists inquire about average household
income.

In all these cases, we want to gather information about a large group of
individuals. We will not, as in an experiment, impose a treatment in order to
observe the response. Also, time, cost, and inconvenience forbid contacting every
individual. In such cases, we gather information about only part of the group—a
sample—in order to draw conclusions about the whole. Sample surveys are an
important kind of observational study.

sample survey

POPULATION AND SAMPLE

The entire group of individuals that we want information about is called the
population.

A sample is a part of the population that we actually examine in order to gather information.

Notice that “population” is defined in terms of our desire for knowledge. If we
wish to draw conclusions about all U.S. college students, that group is our
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population even if only local students are available for questioning. The sample is
the part from which we draw conclusions about the whole. The design of a sample
survey refers to the method used to choose the sample from the population.

sample design

Example

3.21 The Reading Recovery program.

The Reading Recovery (RR) program has specially trained teachers work one-
on-one with at-risk first-grade students to help them learn to read. A study was
designed to examine the relationship between the RR teachers’ beliefs about
their ability to motivate students and the progress of the students whom they
teach.13 The Reading Recovery International Data Evaluation Center website
(www.idecweb.us) says that there are 13,823 RR teachers. The researchers
send a questionnaire to a random sample of 200 of these. The population
consists of all 13,823 RR teachers, and the sample is the 200 that were
randomly selected.

Unfortunately, our idealized framework of population and sample does not
exactly correspond to the situations that we face in many cases. In Example 3.21,
the list of teachers was prepared at a particular time in the past. It is very likely that
some of the teachers on the list are no longer working as RR teachers today. New
teachers have been trained in RR methods and are not on the list. Despite these
difficulties, we still view the list as the population. Also, we may have out-of-date
addresses for some who are still working as RR teachers, and some teachers may
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choose not to respond to our survey questions.
In reporting the results of a sample survey, it is important to include all details

regarding the procedures used. Follow-up mailings or phone calls to those who do
not initially respond can help increase the response rate. The proportion of the
original sample who actually provide usable data is called the response rate and
should be reported for all surveys. If only 150 of the teachers who were sent
questionnaires provided usable data, the response rate would be 150/200, or 75%.

response rate

USE YOUR KNOWLEDGE

3.48 Are they satisfied?

An educational research team wanted to examine the relationship
between faculty participation in decision making and job satisfaction in
Mongolian public universities. They are planning to randomly select 300
faculty members from a list of 2500 faculty members in these
universities. The Job Descriptive Index will be used to measure job
satisfaction, and the Conway Adaptation of the Alutto-Belasco
Decisional Participation Scale will be used to measure decision
participation. Describe the population and the sample for this study. Can
you determine the response rate?

3.49 What is the impact of the taxes?

A study was designed to assess the impact of taxes on forestland usage
in part of the Upper Wabash River Watershed in Indiana.14 A survey
was sent to 772 forest owners from this region and 348 were returned.
Consider the population, the sample, and the response rate for this study.
Describe these on the basis of the information given and indicate any
additional information that you would need to assess the impact of taxes.

Poor sample designs can produce misleading conclusions. Here is an example.
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Example

3.22 Sampling pieces of steel.

A mill produces large coils of thin steel for use in manufacturing home
appliances. The quality engineer wants to submit a sample of 5-centimeter
squares to detailed laboratory examination. She asks a technician to cut a
sample of 10 such squares. Wanting to provide “good” pieces of steel, the
technician carefully avoids the visible defects in the coil material when cutting
the sample. The laboratory results are wonderful, but the customers complain
about the material they are receiving.

In Example 3.22, the sample was selected in a manner that guaranteed that it
would not be representative of the entire population. This sampling scheme
displays bias, or systematic error, in favoring some parts of the population over
others.

Online opinion polls use voluntary response samples, a particularly common
form of biased sample. The sample who respond are not representative of the
population at large. People who take the trouble to respond to an open invitation
are not representative of the entire population.

VOLUNTARY RESPONSE SAMPLE

A voluntary response sample consists of people who choose themselves by
responding to a general appeal. Voluntary response samples are biased
because people with strong opinions, especially negative opinions, are most
likely to respond.

The remedy for bias in choosing a sample is to allow impersonal chance to do
the choosing, so that there is neither favoritism by the sampler (Example 3.22) nor
voluntary response (online opinion polls). Random selection of a sample eliminates
bias by giving all individuals an equal chance to be chosen, just as randomization
eliminates bias in assigning experimental units.

Simple random samples

The simplest sampling design amounts to placing names in a hat (the population)
and drawing out a handful (the sample). This is simple random sampling.
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SIMPLE RANDOM SAMPLE

A simple random sample (SRS) of size n consists of n individuals from the
population chosen in such a way that every set of n individuals has an equal
chance to be the sample actually selected.

Each treatment group in a completely randomized experimental design is an
SRS drawn from the available experimental units. We select an SRS by labeling all
the individuals in the population and using software or a table of random digits to
select a sample of the desired size, just as in experimental randomization. Notice
that an SRS not only gives every possible sample an equal chance to be chosen but
also gives each individual an equal chance to be chosen. There are other random
sampling designs that give each individual, but not each sample, an equal chance.
One such design, systematic random sampling, is described in Exercise 3.70 (page
204).

Example

3.23 Brands.

BRANDS

A brand is a symbol or images that are associated with a company. An
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effective brand identifies the company and its products. Using a variety of
measures, dollar values for brands can be calculated. In Exercise 1.67 (page
78), you examined the distribution of the values of the top 100 brands.

Suppose that you want to write a research report on some of the
characteristics of the companies in this elite group. You decide to look
carefully at the websites of 10 companies from the list. One way to select the
companies is to use a simple random sample. Here are some details about how
to do this using Table B. We start with a list of the companies with the top 100
brands. This is given in the data file BRANDS. Next we need to label the
companies. In the data file they are listed with their ranks, 1 to 100. Let’s
assign the labels 01 to 09 to the first nine companies, and 00 to the company
with rank 100. With these labels, we can use Table B to select the SRS.

Let’s start with line 156 of Table B. This line has the entries 55494 67690
88131 81800 11188 28552 25752 21953. These are grouped in sets of five
digits, but we need to use sets of two digits for our randomization. Here is line
156 of Table B in sets of two digits: 55 49 46 76 90 88 13 18 18 00 11 18 82
85 52 25 75 22 19 53.

Using these random digits, we select Audi (55), Dell (49), Heinz (46),
Santander (76), Smirnoff (90), Starbucks (88), Disney (13), Oracle (18; we
skip the second 18 because we have already selected Oracle to be in our SRS),
Gap (00; recoded from rank 100), and Mercedes-Benz (11).

Most statistical software will select an SRS for you, eliminating the need for
Table B. The Simple Random Sample applet on the text website is another
convenient way to automate this task.

Excel can do the job in a way similar to how we randomized experimental units
to treatments in designed experiments. There are four steps:

1. Create a data set with all the elements of the population in one column.

2. Generate a random number for each element of the population; put these in
another column.

3. Sort the data set by the random number column.

4. The simple random sample is obtained by taking elements in the sorted list in
order until the desired sample size is reached.

We illustrate the procedure with the brands in Example 3.24.
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Example

3.24 Select a random sample.

Figure 3.7(a) gives the spreadsheet with the company names in column B.
Only the first 11 of the 100 companies in the top 100 brands list are shown.

The random numbers generated by the RAND() function are given in the
next column in Figure 3.7(b). The sorted (smallest to largest) data set is given
in Figure 3.7(c). The 10 resorts that were selected for our random sample are
HP, Dell, Philips, Nestle, Hermes, AXA, Gucci, SAP, Nescafe, and Pizza Hut.
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FIGURE 3.7
Selection of a simple random sample of companies in the list of top 100 brands, for Example
3.24.

USE YOUR KNOWLEDGE

3.50 Ringtones for cell phones.
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You decide to change the ringtones for your cell phone by choosing 2
from a list of the 10 most popular ringtones.15 Here is the list:

Gangnam Style Cruise Girl on Fire I’m Different
I Knew You Were Trouble Diamonds Pontoon Better Dig Two
Locked Out of Heaven No Worries

Select your two ringtones using a simple random sample. Show your
work.

3.51 Listen to three songs.

The walk to your statistics class takes about 10 minutes, about the
amount of time needed to listen to three songs on your iPod. You decide
to take a simple random sample of songs from a Billboard List of Rock
Songs.16 Here is the list:

Ho Hey Home It’s Time Some Nights
The A Team Little Talks I Will Wait Radioactive
Too Close Madness

Select the three songs for your iPod using a simple random sample.
Show your work.

Stratified random samples

The general framework for designs that use chance to choose a sample is a
probability sample.

PROBABILITY SAMPLE

A probability sample is a sample chosen by chance. We must know what
samples are possible and what chance, or probability, each possible sample
has.

Some probability sampling designs (such as an SRS) give each member of the
population an equal chance to be selected. This may not be true in more elaborate
sampling designs. In every case, however, the use of chance to select the sample is
the essential principle of statistical sampling.

Designs for sampling from large populations spread out over a wide area are
usually more complex than an SRS. For example, it is common to sample
important groups within the population separately, then combine these samples.
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This is the idea of a stratified sample.

STRATIFIED RANDOM SAMPLE

To select a stratified random sample, first divide the population into groups
of similar individuals, called strata. Then choose a separate SRS in each
stratum and combine these SRSs to form the full sample.

Choose the strata based on facts known before the sample is taken. For
example, a population of election districts might be divided into urban, suburban,
and rural strata.

A stratified design can produce more exact information than an SRS of the
same size by taking advantage of the fact that individuals in the same stratum are
similar to one another. Think of the extreme case in which all individuals in each
stratum are identical: just one individual from each stratum is then enough to
completely describe the population.

Strata for sampling are similar to blocks in experiments. We have two names
because the idea of grouping similar units before randomizing arose separately in
sampling and in experiments.

Example

3.25 A stratified sample of companies from the top 100 brands list.

In Examples 3.23 and 3.24, you selected SRSs of size 10 from the companies
in the list of the top 100 brands. Let’s think about using a stratified sample.
You still want to select 10 companies to examine for your report.

Let’s classify the population of the 100 top brand companies into five strata
based on the value of their brand ranks. The first stratum contains the
companies with ranks 1 to 20, the second has ranks 21 to 40, the third has
ranks 41 to 60, the fourth has ranks 61 to 80, and the fifth has ranks 81 to 100.

We have five strata and we want a total of 10 companies to study for a
report. Therefore, we need to sample 2 companies from each stratum. We take
an SRS of size 2 from each of these strata.

Multistage random samples
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Another common means of restricting random selection is to choose the sample in
stages. These designs are called multistage designs. They are widely used in
national samples of households or people. For example, data on employment and
unemployment are gathered by the government’s Current Population Survey,
which conducts interviews in about 60,000 households each month. The cost of
sending interviewers to the widely scattered households in an SRS would be too
high. Moreover, the government wants data broken down by states and large cities.

multistage random sample

The Current Population Survey therefore uses a multistage random sampling
design. The final sample consists of groups of nearby households, called clusters,
that an interviewer can easily visit. Most opinion polls and other national samples
are also multistage, though interviewing in most national samples today is done by
telephone rather than in person, eliminating the economic need for clustering. The
Current Population Survey sampling design is roughly as follows:17

clusters

Stage 1. Divide the United States into 2007 geographical areas called Primary
Sampling Units, or PSUs. PSUs do not cross state lines. Select a sample of 754
PSUs. This sample includes the 428 PSUs with the largest population and a
stratified sample of 326 of the others.
Stage 2. Divide each PSU selected into smaller areas called “blocks.” Stratify the
blocks using ethnic and other information and take a stratified sample of the blocks
in each PSU.
Stage 3. Sort the housing units in each block into clusters of four nearby units.
Interview the households in a probability sample of these clusters.

Analysis of data from sampling designs more complex than an SRS takes us
beyond basic statistics. But the SRS is the building block of more elaborate
designs, and analysis of other designs differs more in complexity of detail than in
fundamental concepts.

Cautions about sample surveys

Random selection eliminates bias in the choice of a sample from a list of the
population. Sample surveys of large human populations, however, require much
more than a good sampling design.18 To begin, we need an accurate and complete
list of the population. Because such a list is rarely available, most samples suffer
from some degree of undercoverage. A sample survey of households, for example,
will miss not only homeless people but also prison inmates and students in
dormitories. An opinion poll conducted by telephone will miss the large number of
American households without residential phones. The results of national sample
surveys therefore have some bias if the people not covered—who most often are

403



poor people—differ from the rest of the population.
A more serious source of bias in most sample surveys is nonresponse, which

occurs when a selected individual cannot be contacted or refuses to cooperate.
Nonresponse to sample surveys often reaches 50% or more, even with careful
planning and several callbacks. Because nonresponse is higher in urban areas, most
sample surveys substitute other people in the same area to avoid favoring rural
areas in the final sample. If the people contacted differ from those who are rarely at
home or who refuse to answer questions, some bias remains.

UNDERCOVERAGE AND NONRESPONSE

Undercoverage occurs when some groups in the population are left out of the
process of choosing the sample.

Nonresponse occurs when an individual chosen for the sample can’t be contacted or does not
cooperate.

Example

3.26 Nonresponse in the Current Population Survey.

How bad is nonresponse? The Current Population Survey (CPS) has the lowest
nonresponse rate of any poll we know: only about 5% of the households in the
CPS sample refuse to take part, and another 2% or 3% can’t be contacted.
People are more likely to respond to a government survey such as the CPS,
and the CPS contacts its sample in person before doing later interviews by
phone.

The General Social Survey (Figure 3.8) is the nation’s most important
social science research survey. The GSS also contacts its sample in person,
and it is run by a university. Despite these advantages, its most recent survey
had a 30% rate of nonresponse.20

What about polls done by the media and by market research and opinion-
polling firms? We don’t know their rates of nonresponse, because they won’t say.
That itself is a bad sign.
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FIGURE 3.8
Part of the home page for the General Social Survey (GSS). The GSS has assessed attitudes on a
wide variety of topics since 1972. Its continuity over time makes the GSS a valuable source for
studies of changing attitudes.

Example

3.27 Change in nonresponse in Pew surveys.
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The Pew Research Center conducts research using surveys on a variety of
issues, attitudes, and trends.21 A study by the center examined the decline in
the response rates to their surveys over time. The changes are dramatic and
there is a consistent pattern over time. Here are some data from the report:22

Year 1997 2000 2003 2006 2009 2012
Nonresponse rate 64% 72% 75% 79% 85% 91%

The center is devising alternative methods that show some promise of
improving the response rates of their surveys.

Most sample surveys, and almost all opinion polls, are now carried out by
telephone. This and other details of the interview method can affect the results.
When presented with several options for a reply, such as “completely agree,”
“mostly agree,” “mostly disagree,” and “completely disagree,” people tend to be a
little more likely to respond to the first one or two options presented.

The behavior of the respondent or of the interviewer can cause response bias in
sample results. Respondents may lie, especially if asked about illegal or unpopular
behavior. The race or sex of the interviewer can influence responses to questions
about race relations or attitudes toward feminism. Answers to questions that ask
respondents to recall past events are often inaccurate because of faulty memory.
For example, many people “telescope” events in the past, bringing them forward in
memory to more recent time periods. “Have you visited a dentist in the last 6
months?” will often elicit a “Yes” from someone who last visited a dentist 8
months ago.

response bias

The wording of questions is the most important influence on the answers given
to a sample survey. Confusing or leading questions can introduce strong bias, and
even minor changes in wording can change a survey’s outcome. Here are some
examples.

wording of questions

Example

3.28 The form of the question is important.

In response to the question “Are you heterosexual, homosexual, or bisexual?”
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in a social science research survey, one woman answered, “It’s just me and my
husband, so bisexual.” The issue is serious, even if the example seems silly:
reporting about sexual behavior is difficult because people understand and
misunderstand sexual terms in many ways.

How do Americans feel about government help for the poor? Only 13%
think we are spending too much on “assistance to the poor,” but 44% think we
are spending too much on “welfare.” How do the Scots feel about the
movement to become independent from England? Well, 51% would vote for
“independence for Scotland,” but only 34% support “an independent Scotland
separate from the United Kingdom.” It seems that “assistance to the poor” and
“independence” are nice, hopeful words. “Welfare” and “separate” are
negative words.23

The statistical design of sample surveys is a science, but this science is only part
of the art of sampling. Because of nonresponse, response bias, and the difficulty of
posing clear and neutral questions, you should hesitate to fully trust reports about
complicated issues based on surveys of large human populations. Insist on knowing
the exact questions asked, the rate of nonresponse, and the date and method of the
survey before you trust a poll result.

SECTION 3.3 Summary

A sample survey selects a sample from the population of all individuals about
which we desire information. We base conclusions about the population on data
about the sample.

The design of a sample refers to the method used to select the sample from the
population. Probability sampling designs use impersonal chance to select a
sample.

The basic probability sample is a simple random sample (SRS). An SRS gives
every possible sample of a given size the same chance to be chosen.

Choose an SRS by labeling the members of the population and using a table of
random digits to select the sample. Software can automate this process.

To choose a stratified random sample, divide the population into strata,
groups of individuals that are similar in some way that is important to the response.
Then choose a separate SRS from each stratum and combine them to form the full
sample.

Multistage random samples select successively smaller groups within the
population in stages, resulting in a sample consisting of clusters of individuals.
Each stage may employ an SRS, a stratified sample, or another type of sample.

Failure to use probability sampling often results in bias, or systematic errors in
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the way the sample represents the population. Voluntary response samples, in
which the respondents choose themselves, are particularly prone to large bias.

In human populations, even probability samples can suffer from bias due to
undercoverage or nonresponse, from response bias due to the behavior of the
interviewer or the respondent, or from misleading results due to poorly worded
questions.

SECTION 3.3 Exercises
For Exercises 3.48 and 3.49, see page 193; and for Exercises 3.50 and 3.51, see pages 196.

3.52 What population and sample?

Twenty fourth-year students from your college who are majoring in English are randomly selected to be on
a committee to evaluate changes in the statistics requirement for the major. There are 76 fourth-year
English majors at your college.

(a) Describe the population for this setting.

(b) What is the sample?

(c) Discuss the rationale for using fourth-year students for this study. Do you think that another group—for
example, first-year students—would be better? Explain your answer.

3.53 Response rate?

A survey designed to assess satisfaction with food items sold at a college’s football games was sent to 150
fans who had season tickets. The total number of fans who have season tickets is 5674. Responses to the
survey were received from 98 fans.

(a) Describe the population for this survey.

(b) What is the sample?

(c) What is the response rate?

(d) What is the nonresponse rate?

(e) Suggest some ways that could be used in a future survey to increase the response rate.

3.54 Who gets the dinner?

You are a member of a student organization that volunteers to work with third-grade students in your
community who need help with their reading. Your organization will receive an award for its work. Three
members of your organization will attend a dinner and ceremony where they will be given the award.
There are 18 students in the organization.

(a) What is the population for this setting?

(b) What is the sample?

(c) You have a spreadsheet with the names of the students. Explain how you would use the spreadsheet to
select the students who will attend the dinner and ceremony. Give details.
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(d) Use Table B to select the students. Give details.

3.55 Who gets the dinner using software?

Refer to the previous exercise.

(a) Use software to select the students. Explain the steps that you used in sufficient detail so that another
person could repeat your work.

(b) Compare the use of Table B with software for selecting the students. Which do you prefer? Give
reasons for your answer.

3.56 What kind of sample?

In each of the following situations, identify the sample as either an SRS, a stratified random sample, a
multistage random sample, or a voluntary response sample. Explain your answers.

(a) There are seven sections of an introductory statistics course. A random sample of three sections is
chosen, and then random samples of 8 students from each of these sections are chosen.

(b) A student organization has 55 members. A table of random numbers is used to select a sample of 5.

(c) An online poll asks people who visit this site to choose their favorite television show.

(d) Separate random samples of male and female first-year college students in an introductory psychology
course are selected to receive a one-week alternative instructional method.

3.57 What’s wrong?

Explain what is wrong in each of the following scenarios.

(a) The population consists of all individuals selected in a simple random sample.

(b) In a poll of an SRS of residents in a local community, respondents are asked to indicate the level of
their concern about the dangers of dihydrogen monoxide, a substance that is a major component of acid
rain and in its gaseous state can cause severe burns. (Hint: Ask a friend who is majoring in chemistry about
this substance or search the Internet for information about it.)

(c) Students in a class are asked to raise their hands if they have cheated on an exam one or more times
within the past year.

3.58 What’s wrong?

Explain what is wrong with each of the following random selection procedures and
explain how you would do the randomization correctly.

(a) To determine the reading level of an introductory statistics text, you evaluate all the written material in
the third chapter.

(b) You want to sample student opinions about a proposed change in procedures for changing majors. You
hand out questionnaires to 100 students as they arrive for class at 7:30A.M.

(c) A population of subjects is put in alphabetical order and a simple random sample of size 10 is taken by
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selecting the first 10 subjects in the list.

3.59 Importance of students as customers.

A committee on community relations in a college town plans to survey local
businesses about the importance of students as customers. From telephone book
listings, the committee chooses 160 businesses at random. Of these, 72 return the
questionnaire mailed by the committee. What is the population for this sample
survey? What is the sample? What is the rate (percent) of nonresponse?

 3.60 Consumer spending.

A Gallup Poll used telephone interviews to collect data on consumer spending on
different days of the week.24 Here are the averages (in dollars) for each day of the
week:

Monday 59    Friday 63
Tuesday 56    Saturday 73
Wednesday 55    Sunday 76
Thursday 59

(a) Display the data graphically and write a short paragraph describing these averages.

(b) The data were collected between January 2 and October 21, 2009. Discuss how this choice may have
affected the results.

 3.61 Which channel do you watch for news?

A Pew Research Center survey asked people what channel they regularly watch for news and their political
party identification.25 For one analysis they focused on those who regularly watch the Fox News Channel,
CNN, MSNBC, and nightly network news. Here are the political profiles (in percents) for each of these
news sources:

Party Fox CNN MSNBC Network
Republican 39 18 18 22
Democratic 33 51 45 45
Independent 22 23 27 26
Other/Don’t know 6 8 10 7

Display the data graphically and write a report summarizing the results.

3.62 Identify the populations.

For each of the following sampling situations, identify the population as exactly as possible. That is, say
what kind of individuals the population consists of and say exactly which individuals fall in the population.
If the information given is not complete, complete the description of the population in a reasonable way.
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(a) A college has changed its core curriculum and wants to obtain detailed feedback information from the
students during each of the first 12 weeks of the coming semester. Each week, a random sample of 5
students will be selected to be interviewed.

(b) The American Community Survey (ACS) replaced the census “long form” starting with the 2010
census. The ACS contacts 250,000 addresses by mail each month, with follow-up by phone and in person
if there is no response. Each household answers questions about their housing, economic, and social status.

(c) An opinion poll contacts 1161 adults and asks them, “Which political party do you think has better
ideas for leading the country in the twenty-first century?”

3.63 Interview residents of apartment complexes.

You are planning a report on apartment living in a college town. You decide to
select 5 apartment complexes at random for in-depth interviews with residents.
Select a simple random sample of 5 of the following apartment complexes. If you
use Table B, start at line 126.  RESIDEN

Ashley Oaks    Country View    Mayfair Village
Bay Pointe    Country Villa    Nobb Hill
Beau Jardin    Crestview    Pemberly Courts
Bluffs    Del-Lynn    Peppermill
Brandon Place    Fairington    Pheasant Run
Briarwood    Fairway Knolls    Richfield
Brownstone    Fowler    Sagamore Ridge
Burberry    Franklin Park    Salem Courthouse
Cambridge    Georgetown    Village Manor
Chauncey Village    Greenacres    Waterford Court
Country Squire    Lahr House    Williamsburg

3.64 Using GIS to identify mint field conditions.

A Geographic Information System (GIS) is to be used to distinguish different conditions in mint fields.
Ground observations will be used to classify regions of each field as either healthy mint, diseased mint, or
weed-infested mint. The GIS divides mint-growing areas into regions called pixels. An experimental area
contains 200 pixels. For a random sample of 20 pixels, ground measurements will be made to determine
the status of the mint, and these observations will be compared with information obtained by the GIS.
Select the random sample. If you use Table B, start at line 122 and choose only the first 10 pixels in the
sample.

 3.65 Use the Simple Random Sample applet.

After you have labeled the individuals in a population, the Simple Random Sample applet automates the
task of choosing an SRS. Use the applet to choose the sample in the previous exercise.

 3.66 Use the Simple Random Sample applet.
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There are approximately 405 active telephone area codes covering Canada, the United States, and some
Caribbean areas. (More are created regularly.) You want to choose an SRS of 30 of these area codes for a
study of available telephone numbers. Label the codes 001 to 405 and use the Simple Random Sample
applet or software to choose your sample. (If you use Table B, start at line 121 and choose only the first 8
codes in the sample.)

3.67 Census tracts.

The U.S. Census Bureau divides the entire country into “census tracts” that contain about 4000 people.
Each tract is in turn divided into small “blocks,” which in urban areas are bounded by local streets. An SRS
of blocks from a census tract is often the next-to-last stage in a multistage sample. Figure 3.9 shows part of
census tract 8051.12, in Cook County, Illinois, west of Chicago. The 44 blocks in this tract are divided into
three “block groups.” Group 1 contains 6 blocks numbered 1000 to 1005; Group 2 (outlined in Figure 3.9)
contains 12 blocks numbered 2000 to 2011; Group 3 contains 26 blocks numbered 3000 to 3025. Use
software or Table B, beginning at line 125, to choose an SRS of 9 of the 44 blocks in this census tract.
Explain carefully how you labeled the blocks.

FIGURE 3.9
Census blocks in Cook County, Illinois, for Exercises 3.67 and 3.69. The outlined area is a
block group.

3.68 Repeated use of Table B.

In using Table B repeatedly to choose samples or do randomization for experiments, you should not always
begin at the same place, such as line 101. Why not?

3.69 A stratified sample.

Exercise 3.67 asks you to choose an SRS of blocks from the census tract pictured
in Figure 3.9. You might instead choose a stratified sample of two blocks from the
6 blocks in Group 1, two from the 12 blocks in Group 2, and three from the 26
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blocks in Group 3. Choose such a sample, explaining carefully how you labeled
blocks and used software or Table B.

3.70 Systematic random samples.

Systematic random samples are often used to choose a sample of apartments in a large building or
dwelling units in a block at the last stage of a multistage sample. An example will illustrate the idea of a
systematic sample. Suppose that we must choose 5 addresses out of 125. Because 125/5 = 25, we can think
of the list as five lists of 25 addresses. Choose 1 of the first 25 at random, using software or Table B. The
sample contains this address and the addresses 25, 50, 75, and 100 places down the list from it. If 13 is
chosen, for example, then the systematic random sample consists of the addresses numbered 13, 38, 63, 88,
and 113.

(a) A study of dating among college students wanted a sample of 200 of the 8000 single male students on
campus. The sample consisted of every 40th name from a list of the 8000 students. Explain why the survey
chooses every 40th name.

(b) Use software or Table B at line 112 to choose the starting point for this systematic sample.

 3.71 Systematic random samples versus simple random samples.

The previous exercise introduces systematic random samples. Explain carefully why a systematic random
sample does give every individual the same chance to be chosen but is not a simple random sample.

3.72 Random digit telephone dialing.

An opinion poll in California uses random digit dialing to choose telephone numbers at random. Numbers
are selected separately within each California area code. The size of the sample in each area code is

proportional to the population living there.  AREACOD

(a) What is the name for this kind of sampling design?

(b) California area codes, in rough order from north to south, are

209 213 310 323 341 369 408 415 424 442
510 530 559 562 619 626 627 628 650 657
661 669 707 714 747 752 760 764 805 818
831 858 909 916 925 935 949 951

Another California survey does not call numbers in all area codes but starts with an SRS of 10 area codes.
Choose such an SRS. If you use Table B, start at line 122.

3.73 Stratified samples of forest areas.

Stratified samples are widely used to study large areas of forest. Based on satellite images, a forest area in
the Amazon basin is divided into 14 types. Foresters studied the four most commercially valuable types:
alluvial climax forests of quality levels 1, 2, and 3, and mature secondary forest. They divided the area of
each type into large parcels, chose parcels of each type at random, and counted tree species in a 20- by 25-
meter rectangle randomly placed within each parcel selected. Here is some detail:

Forest type Total parcels Sample size
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Climax 1 46 5
Climax 2 62 6
Climax 3 32 3
Secondary 43 4

Choose the stratified sample of 18 parcels. Be sure to explain how you assigned labels to parcels. If you
use Table B, start at line 130.

3.74 Select club members to go to a convention.

A club has 30 student members and 10 faculty members. The students are

Abel    Fisher    Huber    Moran    Reinmann
Carson    Golomb    Jimenez    Moskowitz    Santos
Chen    Griswold    Jones    Neyman    Shaw
David    Hein    Kiefer    O’Brien    Thompson
Deming    Hernandez    Klotz    Pearl    Utts
Elashoff    Holland    Liu    Potter    Vlasic

and the faculty members are

Andrews    Fernandez    Kim    Moore    Rabinowitz
Besicovitch    Gupta    Lightman    Phillips    Yang

The club can send 6 students and 2 faculty members to a convention and decides to choose those who will
go by random selection. Select a stratified random sample of 6 students and 2 faculty members.

 3.75 Stratified samples for attitudes about alcohol.

At a party there are 32 students over age 21 and 16 students under age 21. You choose at random 4 of those
over 21 and separately choose at random 2 of those under 21 to interview about attitudes toward alcohol.
You have given every student at the party the same chance to be interviewed: what is that chance? Why is
your sample not an SRS?

3.76 Stratified samples for accounting audits.

Accountants use stratified samples during audits to verify a company’s records of such things as accounts
receivable. The stratification is based on the dollar amount of the item and often includes 100% sampling
of the largest items. One company reports 5000 accounts receivable. Of these, 100 are in amounts over
$50,000; 500 are in amounts between $1000 and $50,000; and the remaining 4400 are in amounts under
$1000. Using these groups as strata, you decide to verify all of the largest accounts and to sample 5% of
the midsize accounts and 1% of the small accounts. How would you label the two strata from which you
will sample? Use software or Table B, starting at line 125, to select the first 6 accounts from each of these
strata.

3.77 The sampling frame.

The list of individuals from which a sample is actually selected is called the sampling frame. Ideally, the
frame should list every individual in the population, but in practice this is often difficult. A frame that
leaves out part of the population is a common source of undercoverage.
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(a) Suppose that a sample of households in a community is selected at random from the telephone
directory. What households are omitted from this frame? What types of people do you think are likely to
live in these households? These people will probably be underrepresented in the sample.

(b) It is usual in telephone surveys to use random digit dialing equipment that selects the last four digits of
a telephone number at random after being given the area code and the exchange. The exchange is the first
three digits of the telephone number. Which of the households that you mentioned in your answer to (a)
will be included in the sampling frame by random digit dialing?

3.78 Survey questions.

Comment on each of the following as a potential sample survey question. Is the question clear? Is it slanted
toward a desired response?

(a) “Some cell phone users have developed brain cancer. Should all cell phones come with a warning label
explaining the danger of using cell phones?”

(b) “Do you agree that a national system of health insurance should be favored because it would provide
health insurance for everyone and would reduce administrative costs?”

(c) “In view of escalating environmental degradation and incipient resource depletion, would you favor
economic incentives for recycling of resource-intensive consumer goods?”
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3.4 Toward Statistical Inference

When you complete this section, you will be able to

• Identify parameters, populations, statistics, and samples and the
relationships among these items.

• Use simulation to study a sampling distribution.

• Interpret and use a sampling distribution to describe a property of a
statistic.

• Identify bias in a statistic by examining its sampling distribution, and
characterize an unbiased estimator of a parameter.

• Describe the relationship between the sample size and the variability of a
statistic.

• Identify ways to reduce bias and variability of a statistic.

• Use the margin of error to describe the variability of a statistic.

A market research firm interviews a random sample of 2500 adults. Result:
66% find shopping for clothes frustrating and time-consuming. That’s the truth
about the 2500 people in the sample. What is the truth about the 235 million
American adults who make up the population? Because the sample was chosen at
random, it’s reasonable to think that these 2500 people represent the entire
population fairly well. So the market researchers turn the fact that 66% of the
sample find shopping frustrating into an estimate that about 66% of all adults feel
this way.

That’s a basic idea in statistics: use a fact about a sample to estimate the truth
about the whole population. We call this statistical inference because we infer
conclusions about the wider population from data on selected individuals. To think
about inference, we must keep straight whether a number describes a sample or a
population. Here is the vocabulary we use.

statistical inference

PARAMETERS AND STATISTICS

A parameter is a number that describes the population. A parameter is a
fixed number, but in practice we do not know its value.

A statistic is a number that describes a sample. The value of a statistic is known when we have taken
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a sample, but it can change from sample to sample. We often use a statistic to estimate an unknown
parameter.

Example

3.29 Building a customer base.

The Futures Company provides clients with research about maintaining and
improving their business. They use a web interface to collect data from
between 1000 and 2500 potential customers using 30- to 40-minute surveys.26

Let’s assume that 1650 out of 2500 potential customers in a sample show
strong interest in a product. The proportion of the sample who are interested is

p^=16502500=0.66=66%

The number p^=0.66 is a statistic. The corresponding parameter is the
proportion (call it p) of all potential customers who would have expressed
interest in this product if they had been asked. We don’t know the value of the
parameter p, so we use the statistic p^ to estimate it.

USE YOUR KNOWLEDGE

3.79 Sexual harassment of college students.

A recent survey of undergraduate college students reports that 62% of
female college students and 61% of male college students say they have
encountered some type of sexual harassment at their college.27 Describe
the samples and the populations for the survey.

3.80 Web polls.

If you connect to the website boston.cbslocal.com/wbz-
daily-poll, you will be given the opportunity to give your opinion about
a different question of public interest each day. Can you apply the ideas
about populations and samples that we have just discussed to this poll?
Explain why or why not.
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Sampling variability

If the Futures Company took a second random sample of 2500 customers, the
new sample would have different people in it. It is almost certain that there would
not be exactly 1650 positive responses. That is, the value of the statistic p^ will
vary from sample to sample. This basic fact is called sampling variability: the
value of a statistic varies in repeated random sampling. Could it happen that one
random sample finds that 66% of potential customers are interested in this product
and a second random sample finds that only 42% expressed interest?

sampling variability

Random samples eliminate bias from the act of choosing a sample, but they can
still be wrong because of the variability that results when we choose at random. If
the variation when we take repeat samples from the same population is too great,
we can’t trust the results of any one sample.

We are saved by the second great advantage of random samples. The first
advantage is that choosing at random eliminates favoritism. That is, random
sampling attacks bias. The second advantage is that if we take lots of random
samples of the same size from the same population, the variation from sample to
sample will follow a predictable pattern. All statistical inference is based on one
idea: to see how trustworthy a procedure is, ask what would happen if we
repeated it many times.

To understand why sampling variability is not fatal, we ask, “What would
happen if we took many samples?” Here’s how to answer that question:

• Take a large number of samples from the same population.

• Calculate the sample proportion p^ for each sample.

• Make a histogram of the values of p^.

• Examine the distribution displayed in the histogram for shape, center, and spread,
as well as outliers or other deviations.

In practice it is too expensive to take many samples from a large population
such as all adult U.S. residents. But we can imitate taking many samples by using
random digits. Using random digits from a table or computer software to imitate
chance behavior is called simulation.

simulation

Example
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3.30 Simulate a random sample.

We will simulate drawing simple random samples (SRSs) of size 100 from the
population of potential customers. Suppose that in fact 60% of the population
have interest in the product. Then the true value of the parameter we want to
estimate is p = 0.6. (Of course, we would not sample in practice if we already
knew that p = 0.6. We are sampling here to understand how sampling
behaves.)

We can imitate the population by a table of random digits, with each entry
standing for a person. Six of the 10 digits (say 0 to 5) stand for people who
have interest in the product. The remaining four digits, 6 to 9, stand for those
who do not. Because all digits in a random number table are equally likely,
this assignment produces a population proportion of potential customers equal
to p = 0.6. We then simulate an SRS of 100 people from the population by
taking 100 consecutive digits from Table B. The statistic p^ is the proportion
of 0s to 5s in the sample.

Here are the first 100 entries in Table B, with digits 0 to 5 highlighted:

19223 95034 05756 28713 96409 12531 42544 82853
73676 47150 99400 01927 27754 42648 82425 36290
45467 71709 77558 00095

There are 64 digits between 0 and 5, so p^=64/100=0.64. A second SRS based
on the second 100 entries in Table B gives a different result, p^=0.55. The two
sample results are different, and neither is equal to the true population value p
= 0.6. That’s sampling variability.

Sampling distributions

Simulation is a powerful tool for studying chance. Now that we see how simulation
works, it is faster to abandon Table B and to use a computer programmed to
generate random numbers.

Example

3.31 Take many random samples.

Figure 3.10 illustrates the process of choosing many samples and finding the
sample proportion p^ for each one. Follow the flow of the figure from the
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population at the left, to choosing an SRS and finding the p^ for this sample, to
collecting together the p^’s from many samples. The histogram at the right of
the figure shows the distribution of the values of p^ from 1000 separate SRSs
of size 100 drawn from a population with p = 0.6.

Of course, the Futures Company samples 2500 people, not just 100. Figure
3.11 is parallel to Figure 3.10. It shows the process of choosing 1000 SRSs,
each of size 2500, from a population in which the true proportion is p = 0.6.
The 1000 values of p^ from these samples form the histogram at the right of
the figure. Figures 3.10 and 3.11 are drawn on the same scale. Comparing
them shows what happens when we increase the size of our samples from 100
to 2500. These histograms display the sampling distribution of the statistic p^
for two sample sizes.

FIGURE 3.10
The results of many SRSs have a regular pattern. Here we draw 1000 SRSs of size 100 from the
same population. The population proportion is p = 0.60. The histogram shows the distribution of
1000 sample proportions.

FIGURE 3.11
The distribution of sample proportions for 1000 SRSs of size 2500 drawn from the same
population as in Figure 3.10. The two histograms have the same scale. The statistic from the
larger sample is less variable.
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SAMPLING DISTRIBUTION

The sampling distribution of a statistic is the distribution of values taken by
the statistic in all possible samples of the same size from the same population.

Strictly speaking, the sampling distribution is the ideal pattern that would
emerge if we looked at all possible samples of the same size from our population.
A distribution obtained from a fixed number of trials, like the 1000 trials in Figures
3.10 and 3.11, is only an approximation to the sampling distribution.

We will see that probability theory, the mathematics of chance behavior, can
sometimes describe sampling distributions exactly. The interpretation of a
sampling distribution is the same, however, whether we obtain it by simulation or
by the mathematics of probability.

We can use the tools of data analysis to describe any distribution. Let’s apply
those tools to Figures 3.10 and 3.11.

• Shape: The histograms look Normal. Figure 3.12 is a Normal quantile plot of the
values p^ for our samples of size 100. It confirms that the distribution in Figure
3.10 is close to Normal. The 1000 values for samples of size 2500 in Figure 3.11
are even closer to Normal. The Normal curves drawn through the histograms
describe the overall shapes quite well.

• Center: In both cases, the values of the sample proportion p^ vary from sample
to sample, but the values are centered at 0.6. Recall that p = 0.6. is the true
population parameter. Some samples have a p^ less than 0.6 and some greater, but
there is no tendency to be always low or always high. That is, p^ has no bias as an
estimator of p. This is true for both large and small samples. (Want the details? The
mean of the 1000 values of p^ is 0.598 for samples of size 100 and 0.6002 for
samples of size 2500. The median value of p^ is exactly 0.6 for samples of both
sizes.)
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FIGURE 3.12
Normal quantile plot of the sample proportions in Figure 3.10. The distribution is close to
Normal except for some clustering due to the fact that sample proportions from a sample size of
100 can take only values that are multiples of 0.01. Because a plot of 1000 points is hard to read,
this plot presents only every 10th value.

• Spread: The values of p^ from samples of size 2500 are much less spread out
than the values from samples of size 100. In fact, the standard deviations are 0.051
for Figure 3.10 and 0.0097, or about 0.01, for Figure 3.11.

Although these results describe just two sets of simulations, they reflect facts
that are true whenever we use random sampling.

USE YOUR KNOWLEDGE

3.81 Should you choose 300 observations or 700 observations?

You are planning a study and are considering taking an SRS of either
300 or 700 observations. Explain how the sampling distribution would
differ for these two scenarios.
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Bias and variability

Our simulations show that a sample of size 2500 will almost always give an
estimate p^ that is close to the truth about the population. Figure 3.11 illustrates
this fact for just one value of the population proportion, but it is true for any
proportion. Samples of size 100, on the other hand, might give an estimate of 50%
or 70% when the truth is 60%.

Thinking about Figures 3.10 and 3.11 helps us restate the idea of bias when we
use a statistic like p^ to estimate a parameter like p. It also reminds us that
variability matters as much as bias.

BIAS AND VARIABILITY OF A STATISTIC

Bias concerns the center of the sampling distribution. A statistic used to
estimate a parameter is an unbiased estimator if the mean of its sampling
distribution is equal to the true value of the parameter being estimated.

The variability of a statistic is described by the spread of its sampling distribution. This spread is
determined by the sampling design and the sample size n. Statistics from larger probability samples
have smaller spreads.

The margin of error is a numerical measure of the spread of a sampling distribution. It can be used
to set bounds on the size of the likely error in using the statistic as an estimator of a population
parameter.

We can think of the true value of the population parameter as the bull’s-eye on
a target, and of the sample statistic as an arrow fired at the bull’s-eye. Bias and
variability describe what happens when an archer fires many arrows at the target.
Bias means that the aim is off, and the arrows land consistently off the bull’s-eye in
the same direction. The sample values do not center about the population value.
Large variability means that repeated shots are widely scattered on the target.
Repeated samples do not give similar results but differ widely among themselves.
Figure 3.13 shows this target illustration of the two types of error.
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FIGURE 3.13
Bias and variability in shooting arrows at a target. Bias means the archer systematically misses
in the same direction. Variability means that the arrows are scattered.

Notice that small variability (repeated shots are close together) can accompany
large bias (the arrows are consistently away from the bull’s-eye in one direction).
And small bias (the arrows center on the bull’s-eye) can accompany large
variability (repeated shots are widely scattered). A good sampling scheme, like a
good archer, must have both small bias and small variability. Here’s how we do
this.

MANAGING BIAS AND VARIABILITY
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To reduce bias, use random sampling. When we start with a list of the entire
population, simple random sampling produces unbiased estimates—the values
of a statistic computed from an SRS neither consistently overestimate nor
consistently underestimate the value of the population parameter.

To reduce the variability of a statistic from an SRS, use a larger sample. You can make the
variability as small as you want by taking a large enough sample.

In practice, the Futures Company takes only one sample. We don’t know how
close to the truth an estimate from this one sample is because we don’t know what
the truth about the population is. But large random samples almost always give an
estimate that is close to the truth. Looking at the pattern of many samples shows
that we can trust the result of one sample.

The Current Population Survey’s sample of 60,000 households estimates the
national unemployment rate very accurately. Of course, only probability samples
carry this guarantee. Using a probability sampling design and taking care to deal
with practical difficulties reduce bias in a sample.

The size of the sample then determines how close to the population truth the
sample result is likely to fall. Results from a sample survey usually come with a
margin of error that sets bounds on the size of the likely error. The margin of error
directly reflects the variability of the sample statistic, so it is smaller for larger
samples. We will describe the details in later chapters.

In many areas where statistical methods are used, there is another way to reduce
variability. The trick is to redefine the problem. Here is an example.

Example

3.32 Study protocols.

Many studies that involve people start with a very clear definition of the
characteristics of the individuals who are eligible to be subjects in the study.
So, for example, a study designed to evaluate a new treatment for high blood
pressure might exclude persons who have had a heart attack and persons under
the age of 30 or over the age of 60. Exclusions of this type reduce the
variability of the population and thereby generally reduce the variability of the
statistics that are computed from the data provided by the subjects in the study.

Sampling from large populations
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The Futures Company’s sample of 2500 adults is only about 1 out of every 94,000
adults in the United States. Does it matter whether we sample 1-in-100 individuals
in the population or 1-in-94,000?

POPULATION SIZE DOESN’T MATTER

The variability of a statistic from a random sample does not depend on the size
of the population, as long as the population is at least 100 times larger than the
sample.

Why does the size of the population have little influence on the behavior of
statistics from random samples? To see why this is plausible, imagine sampling
harvested corn by thrusting a scoop into a lot of corn kernels. The scoop doesn’t
know whether it is surrounded by a bag of corn or by an entire truckload. As long
as the corn is well mixed (so that the scoop selects a random sample), the
variability of the result depends only on the size of the scoop.

The fact that the variability of sample results is controlled by the size of the
sample has important consequences for sampling design. An SRS of size 2500
from the 235 million adult residents of the United States gives results as precise as
an SRS of size 2500 from the 665,000 adult inhabitants of San Francisco. This is
good news for designers of national samples but bad news for those who want
accurate information about the citizens of San Francisco. If both use an SRS, both
must use the same size sample to obtain equally trustworthy results.

Why randomize?

Why randomize? The act of randomizing guarantees that the results of analyzing
our data are subject to the laws of probability. The behavior of statistics is
described by a sampling distribution. The form of the distribution is known, and in
many cases is approximately Normal. Often the center of the distribution lies at the
true parameter value, so that the notion that randomization eliminates bias is made
more precise. The spread of the distribution describes the variability of the statistic
and can be made as small as we wish by choosing a large enough sample. In a
randomized experiment, we can reduce variability by choosing larger groups of
subjects for each treatment.

These facts are at the heart of formal statistical inference. Later chapters will
have much to say in more technical language about sampling distributions and the
way statistical conclusions are based on them. What any user of statistics must
understand is that all the technical talk has its basis in a simple question: What
would happen if the sample or the experiment were repeated many times? The
reasoning applies not only to an SRS but also to the complex sampling designs
actually used by opinion polls and other national sample surveys. The same
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conclusions hold as well for randomized experimental designs. The details vary
with the design but the basic facts are true whenever randomization is used to
produce data.

Remember that proper statistical design is not the only aspect of a good sample
or experiment. The sampling distribution shows only how a statistic varies due to
the operation of chance in randomization. It reveals nothing about possible bias
due to undercoverage or nonresponse in a sample or to lack of realism in an
experiment. The actual error in estimating a parameter by a statistic can be much
larger than the sampling distribution suggests. What is worse, there is no way to
say how large the added error is. The real world is less orderly than statistics
textbooks imply.

BEYOND THE BASICS

Capture-recapture sampling
Sockeye salmon return to reproduce in the river where they were hatched four
years earlier. How many salmon survived natural perils and heavy fishing to
make it back this year? How many mountain sheep are there in Colorado? Are
migratory songbird populations in North America decreasing or holding their
own? These questions concern the size of animal populations. Biologists
address them with a special kind of repeated sampling, called capture-
recapture sampling.

Example

3.33 Estimate the number of least flycatchers.
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You are interested in the number of least flycatchers migrating along a major
route in the north-central United States. You set up “mist nets” that capture the
birds but do not harm them. The birds caught in the net are fitted with a small
aluminum leg band and released. Last year you banded and released 200 least
flycatchers. This year you repeat the process. Your net catches 120 least
flycatchers, 12 of which have tags from last year’s catch.

The proportion of your second sample that have bands should estimate the
proportion in the entire population that are banded. So if N is the unknown
number of least flycatchers, we should have approximately

proportion banded in sample = proportion banded in population

12120=200N

Solve for N to estimate that the total number of flycatchers migrating while
your net was up this year is approximately

N=200×12012=2000

The capture-recapture idea extends the use of a sample proportion to
estimate a population proportion. The idea works well if both samples are
SRSs from the population and the population remains unchanged between
samples. In practice, complications arise because, for example, some of the
birds tagged last year died before this year’s migration.

Variations on capture-recapture samples are widely used in wildlife studies
and are now finding other applications. One way to estimate the census
undercount in a district is to consider the census as “capturing and marking”
the households that respond. Census workers then visit the district, take an
SRS of households, and see how many of those counted by the census show up
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in the sample. Capture-recapture estimates the total count of households in the
district. As with estimating wildlife populations, there are many practical
pitfalls. Our final word is as before: the real world is less orderly than statistics
textbooks imply.

SECTION 3.4 Summary

A number that describes a population is a parameter. A number that can be
computed from the data is a statistic. The purpose of sampling or experimentation
is usually inference: use sample statistics to make statements about unknown
population parameters.

A statistic from a probability sample or randomized experiment has a sampling
distribution that describes how the statistic varies in repeated data production. The
sampling distribution answers the question “What would happen if we repeated the
sample or experiment many times?” Formal statistical inference is based on the
sampling distributions of statistics.

A statistic as an estimator of a parameter may suffer from bias or from high
variability. Bias means that the center of the sampling distribution is not equal to
the true value of the parameter. The variability of the statistic is described by the
spread of its sampling distribution. Variability is usually reported by giving a
margin of error for conclusions based on sample results.

Properly chosen statistics from randomized data production designs have no
bias resulting from the way the sample is selected or the way the experimental
units are assigned to treatments. We can reduce the variability of the statistic by
increasing the size of the sample or the size of the experimental groups.

SECTION 3.4 Exercises
For Exercises 3.79 and 3.80, see page 206; and for Exercise 3.81, see page 210.

3.82 What population and sample?

Twenty fourth-year students from your college who are majoring in English are randomly selected to be on
a committee to evaluate changes in the statistics requirement for the major. There are 76 fourth-year
English majors at your college. The current rules say that a statistics course is one of four options for a
quantitative competency requirement. The proposed change would be to require a statistics course. Each of
the committee members is asked to vote Yes or No on the new requirement.

(a) Describe the population for this setting.

(b) What is the sample?

(c) Describe the statistic and how it would be calculated.

(d) What is the population parameter?

(e) Write a short summary based on your answers to parts (a) to (d) using this setting to explain population,
sample, parameter, statistic, and the relationships among these items.

429



3.83 Simulate a sampling distribution.

In Exercise 1.122 (page 74), you examined the density curve for a uniform distribution. Let’s simulate
taking samples of size 2 from this distribution.

(a) Use the RAND() function in Excel or similar software to generate 100 samples from this distribution.
Put these in the first column. Generate another 100 samples from this distribution and put these in the
second sample in the second column. Calculate the mean of the entries in the first and second columns and
put these in the third column. Now, you have 100 samples of the mean of two uniform variables in the
third column of your spreadsheet.

(b) Examine the distribution of the means of samples of size 2 from the uniform distribution using your
simulation of 100 samples. Using the graphical and numerical summaries that you learned in Chapter 1,
describe the shape, center, and spread of this distribution.

(c) The theoretical (population) mean for this distribution is 0.5. How close is your simulation estimate to
this parameter value?

(d) The theoretical (population) standard deviation for this distribution is the square root of 1/24. How
close is your simulation estimate to this parameter value?

3.84 What is the effect of increasing the number of simulations?

Refer to the previous exercise. Increase the number of simulations from 100 to 500. Compare your results
with those that you found in the previous exercise. Write a report summarizing your findings. Include a
comparison with the results from the previous exercise and a recommendation regarding whether or not a
larger number of simulations is needed to answer the questions that we have regarding this sampling
distribution.

3.85 Change the sample size to 12.

Refer to Exercise 3.83. Change the sample size to 12 and answer parts (a) through (d) of that exercise. Note
that the population mean is still 0.5 but the population standard deviation is 1. Explain the effect of
increasing the sample size from 2 to 12 using the results from Exercise 3.83 and what you have found in
this exercise.

3.86 Increase the number of simulations.

Refer to the previous exercise and to Exercise 3.84. Use 500 simulations to study the sampling distribution
of the mean of a sample of size 12 from a uniform distribution. Write a summary of what you have found.

3.87 Normal distributions.

Many software packages generate standard Normal variables by taking the sum of 12 uniform variables
and subtracting 6.

(a) Simulate this distribution.

(b) Use numerical and graphical summaries to assess how well this distribution approximates the standard
Normal distribution.

(c) Write a short summary of your work. Include details of your simulation.
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3.88 Is it unbiased?

A statistic has a sampling distribution that is somewhat skewed. The median is 5 and the quartiles are 2 and
10. The mean is 8.

(a) If the population parameter is 5, is the estimator unbiased?

(b) If the population parameter is 10, is the estimator unbiased?

(c) If the population parameter is 8, is the estimator unbiased?

(d) Write a short summary of your results in parts (a) to (c) and include a discussion of bias and unbiased
estimators.

3.89 The effect of the sample size.

Refer to Exercise 3.83 where you simulated the sampling distribution of the mean of two uniform variables
and Exercise 3.85 where you simulated the sampling distribution of the mean of 12 uniform variables.

(a) Based on what you know about the effect of the sample size on the sampling distribution, which
simulation should have the smaller variability?

(b) Did your simulations confirm your answer in part (a)? Write a short paragraph about the effect of the
sample size on the variability of a sampling distribution using these simulations to illustrate the basic idea.
Be sure to include how you assessed the variability of the sampling distributions.

3.90 What’s wrong?

State what is wrong in each of the following scenarios.

(a) A parameter describes a sample.

(b) Bias and variability are two names for the same thing.

(c) Large samples are always better than small samples.

(d) A sampling distribution is something generated by a computer.

3.91 Describe the population and the sample.

For each of the following situations, describe the population and the sample.

(a) A survey of 17,096 students in U.S. four-year colleges reported that 19.4% were binge drinkers.

(b) In a study of work stress, 100 restaurant workers were asked about the impact of work stress on their
personal lives.

(c) A tract of forest has 584 longleaf pine trees. The diameters of 40 of these trees were measured.

3.92 Bias and variability.

Figure 3.14 shows histograms of four sampling distributions of statistics intended to estimate the same
parameter. Label each distribution relative to the others as high or low bias and as high or low variability.
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FIGURE 3.14
Determine which of these sampling distributions displays high or low bias and high or low
variability, for Exercise 3.92.

 3.93 Use the Probability applet.

The Probability applet simulates tossing a coin, with the advantage that you can choose the true long-term
proportion, or probability, of a head. Suppose that we have a population in which proportion p = 0.6 (the
parameter) approve of legal gambling. Tossing a coin with probability p = 0.6 of a head simulates this
situation: each head is a person who approves of legal gambling, and each tail is a person who does not.
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Set the “Probability of heads” in the applet to 0.6 and the number of tosses to 25. This simulates an SRS of
size 25 from this population. By alternating between “Toss” and “Reset” you can take many samples
quickly.

(a) Take 50 samples, recording the number of heads in each sample. Make a histogram of the 50 sample
proportions (count of heads divided by 25). You are constructing the sampling distribution of this statistic.

(b) Another population contains only 20% who approve of legal gambling. Take 50 samples of size 25
from this population, record the number in each sample who approve, and make a histogram of the 50
sample proportions. How do the centers of your two histograms reflect the differing truths about the two
populations?

 3.94 Use statistical software for simulations.

Statistical software can speed simulations. We are interested in the sampling distribution of the proportion
p^ of people who find shopping frustrating in an SRS from a population in which proportion p find
shopping frustrating. Here, p is a parameter and p^ is a statistic used to estimate p. We will see in Chapter
5 that “binomial” is the key word to look for in the software menus.

(a) Set n = 50 and p = 0.6 and generate 100 binomial observations. These are the counts for 100 SRSs of
size 50 when 60% of the population find shopping frustrating. Save these counts and divide them by 50 to
get values of p^ from 100 SRSs. Make a stemplot of the 100 values of p^.

(b) Repeat this process with p = 0.3, representing a population in which only 30% of people find shopping
frustrating. Compare your two stemplots. How does changing the parameter p affect the center and spread
of the sampling distribution?

(c) Now generate 100 binomial observations with n = 200 and p = 0.6. This simulates 100 SRSs, each of
size 200. Obtain the 100 sample proportions p^ and make a stemplot. Compare this with your stemplot
from (a). How does changing the sample size n affect the center and spread of the sampling distribution?

 3.95 Use the Simple Random Sample applet.

The Simple Random Sample applet can illustrate the idea of a sampling distribution. Form a population
labeled 1 to 100. We will choose an SRS of 10 of these numbers. That is, in this exercise, the numbers
themselves are the population, not just labels for 100 individuals. The mean of the whole numbers 1 to 100
is 50.5. This is the parameter, the mean of the population.

(a) Use the applet to choose an SRS of size 10. Which 10 numbers were chosen? What is their mean? This
is a statistic, the sample mean x¯.

(b) Although the population and its mean 50.5 remain fixed, the sample mean changes as we take more
samples. Take another SRS of size 10. (Use the “Reset” button to return to the original population before
taking the second sample.) What are the 10 numbers in your sample? What is their mean? This is another
value of x¯.

(c) Take 8 more SRSs from this same population and record their means. You now have 10 values of the
sample mean x¯ from 10 SRSs of the same size from the same population. Make a histogram of the 10
values and mark the population mean 50.5 on the horizontal axis. Are your 10 sample values roughly
centered at the population value? (If you kept going forever, your x¯-values would form the sampling
distribution of the sample mean; the population mean would indeed be the center of this distribution.)
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3.5 Ethics

When you complete this section, you will be able to

• Describe the purpose of an institutional review board and what kinds of
expertise its members require.

• Describe informed consent and evaluate whether or not it has been given
in specific examples.

• Determine when data have been kept confidential in a study.

• Evaluate a clinical trial from the viewpoint of ethics.

The production and use of data, like all human endeavors, raise ethical
questions. We won’t discuss the telemarketer who begins a telephone sales pitch
with “I’m conducting a survey.” Such deception is clearly unethical. It enrages
legitimate survey organizations, which find the public less willing to talk with
them. Neither will we discuss those few researchers who, in the pursuit of
professional advancement, publish fake data. There is no ethical question here—
faking data to advance your career is just wrong. It will end your career when
uncovered.

But just how honest must researchers be about real, unfaked data? Here is an
example that suggests the answer is “More honest than they often are.”

Example

3.34 Provide all the critical information.

Papers reporting scientific research are supposed to be short, with no extra baggage. But brevity can
allow the researchers to avoid complete honesty about their data. Did they choose their subjects in a
biased way? Did they report data on only some of their subjects? Did they try several statistical
analyses and report only the ones that looked best? The statistician John Bailar screened more than
4000 medical papers in more than a decade as consultant to the New England Journal of Medicine.
He says, “When it came to the statistical review, it was often clear that critical information was
lacking, and the gaps nearly always had the practical effect of making the authors’ conclusions look
stronger than they should have.’28 The situation is no doubt worse in fields that screen published
work less carefully.

The most complex issues of data ethics arise when we collect data from people.

434



The ethical difficulties are more severe for experiments that impose some
treatment on people than for sample surveys that simply gather information. Trials
of new medical treatments, for example, can do harm as well as good to their
subjects. Here are some basic standards of data ethics that must be obeyed by any
study that gathers data from human subjects, whether sample survey or experiment.

BASIC DATA ETHICS

The organization that carries out the study must have an institutional review
board that reviews all planned studies in advance in order to protect the
subjects from possible harm.

All individuals who are subjects in a study must give their informed consent before data are
collected.

All individual data must be kept confidential. Only statistical summaries for groups of subjects may
be made public.

The law requires that studies funded by the federal government obey these
principles. But neither the law nor the consensus of experts is completely clear
about the details of their application.

Institutional review boards

The purpose of an institutional review board is not to decide whether a proposed
study will produce valuable information or whether it is statistically sound. The
board’s purpose is, in the words of one university’s board, “to protect the rights
and welfare of human subjects (including patients) recruited to participate in
research activities.”

The board reviews the plan of the study and can require changes. It reviews the
consent form to be sure that subjects are informed about the nature of the study and
about any potential risks. Once research begins, the board monitors its progress at
least once a year.

The most pressing issue concerning institutional review boards is whether their
workload has become so large that their effectiveness in protecting subjects drops.
There are shorter review procedures for projects that involve only minimal risks to
subjects, such as most sample surveys. When a board is overloaded, there is a
temptation to put more proposals in the minimal-risk category to speed the work.

USE YOUR KNOWLEDGE
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The exercises in this section on ethics are designed to help you think about the
issues that we are discussing and to formulate some opinions. In general, there
are no wrong or right answers, but you need to give reasons for your answers.

3.96 Do these proposals involve minimal risk?

You are a member of your college’s institutional review board. You
must decide whether several research proposals qualify for lighter
review because they involve only minimal risk to subjects. Federal
regulations say that “minimal risk” means that the risks are no greater
than “those ordinarily encountered in daily life or during the
performance of routine physical or psychological examinations or tests.”
That’s vague. Which of these do you think qualifies as “minimal risk”?

(a) Draw a drop of blood by pricking a finger in order to measure blood sugar.

(b) Draw blood from the arm for a full set of blood tests.

(c) Insert a tube that remains in the arm, so that blood can be drawn regularly.

3.97 Who should be on an institutional review board?

Government regulations require that institutional review boards consist
of at least five people, including at least one scientist, one nonscientist,
and one person from outside the institution. Most boards are larger, but
many contain just one outsider.

(a) Why should review boards contain people who are not scientists?

(b) Do you think that one outside member is enough? How would you choose that member?
(For example, would you prefer a medical doctor? A member of the clergy? An activist for
patients’ rights?)

Informed consent

Both words in the phrase “informed consent” are important, and both can be
controversial. Subjects must be informed in advance about the nature of a study
and any risk of harm it may bring. In the case of a sample survey, physical harm is
not possible. The subjects should be told what kinds of questions the survey will
ask and about how much of their time it will take. Experimenters must tell subjects
the nature and purpose of the study and outline possible risks. Subjects must then
consent in writing.
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Example

3.35 Who can give informed consent?

Are there some subjects who can’t give informed consent? It was once
common, for example, to test new vaccines on prison inmates who gave their
consent in return for good-behavior credit. Now we worry that prisoners are
not really free to refuse, and the law forbids medical experiments in prisons.

Young children can’t give fully informed consent, so the usual procedure is
to ask their parents. A study of new ways to teach reading is about to start at a
local elementary school, so the study team sends consent forms home to
parents. Many parents don’t return the forms. Can their children take part in
the study because the parents did not say “No,” or should we allow only
children whose parents returned the form and said “Yes”?

What about research into new medical treatments for people with mental
disorders? What about studies of new ways to help emergency room patients
who may be unconscious or have suffered a stroke? In most cases, there is not
time even to get the consent of the family. Does the principle of informed
consent bar realistic trials of new treatments for unconscious patients?

These are questions without clear answers. Reasonable people differ
strongly on all of them. There is nothing simple about informed consent.29

The difficulties of informed consent do not vanish even for capable subjects.
Some researchers, especially in medical trials, regard consent as a barrier to getting
patients to participate in research. They may not explain all possible risks; they
may not point out that there are other therapies that might be better than those
being studied; they may be too optimistic in talking with patients even when the
consent form has all the right details.

On the other hand, mentioning every possible risk leads to very long consent
forms that really are barriers. “They are like rental car contracts,” one lawyer said.
Some subjects don’t read forms that run five or six printed pages. Others are
frightened by the large number of possible (but unlikely) disasters that might
happen and so refuse to participate. Of course, unlikely disasters sometimes
happen. When they do, lawsuits follow and the consent forms become yet longer
and more detailed.

Confidentiality

Ethical problems do not disappear once a study has been cleared by the review
board, has obtained consent from its subjects, and has actually collected data about
the subjects. Confidentiality means that only the researchers can identify
responses of individual subjects. The report of an opinion poll may say what
percent of the 1500 respondents felt that legal immigration should be reduced. It
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may not report what you said about this or any other issue.

confidentiality

Confidentiality is not the same as anonymity. Anonymity means that subjects
are anonymous—their names are not known even to the director of the study.
Anonymity is rare in statistical studies. Even where anonymity is possible (mainly
in surveys conducted by mail), it prevents any follow-up to improve nonresponse
or inform subjects of results.

anonymity

Any breach of confidentiality is a serious violation of data ethics. The best
practice is to separate the identity of the subjects from the rest of the data at once.
Sample surveys, for example, use the identification only to check on who did or
did not respond. In an era of advanced technology, however, it is no longer enough
to be sure that each individual set of data protects people’s privacy.

The government, for example, maintains a vast amount of information about
citizens in many separate databases—census responses, tax returns, Social Security
information, data from surveys such as the Current Population Survey, and so on.
Many of these databases can be searched by computers for statistical studies.

A clever computer search of several databases might be able, by combining
information, to identify you and learn a great deal about you even if your name and
other identification have been removed from the data available for search. A
colleague from Germany once remarked that “female full professor of statistics
with a PhD from the United States” was enough to identify her among all the
citizens of Germany. Privacy and confidentiality of data are hot issues among
statisticians in the computer age.

Example

3.36 Data collected by the government.

Citizens are required to give information to the government. Think of tax
returns and Social Security contributions. The government needs these data for
administrative purposes—to see if we paid the right amount of tax and how
large a Social Security benefit we are owed when we retire. Some people feel
that individuals should be able to forbid any other use of their data, even with
all identification removed. This would prevent using government records to
study, say, the ages, incomes, and household sizes of Social Security
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recipients. Such a study could well be vital to debates on reforming Social
Security.

USE YOUR KNOWLEDGE

3.98 How can we obtain informed consent?

A researcher suspects that traditional religious beliefs tend to be
associated with an authoritarian personality. She prepares a
questionnaire that measures authoritarian tendencies and also asks many
religious questions. Write a description of the purpose of this research to
be read by subjects in order to obtain their informed consent. You must
balance the conflicting goals of not deceiving the subjects as to what the
questionnaire will tell about them and of not biasing the sample by
scaring off religious people.

3.99 Should we allow this personal information to be collected?

In which of the following circumstances would you allow collecting
personal information without the subjects’ consent?

(a) A government agency takes a random sample of income tax returns to obtain information
on the average income of people in different occupations. Only the incomes and occupations
are recorded from the returns, not the names.

(b) A social psychologist attends public meetings of a religious group to study the behavior
patterns of members.

(c) A social psychologist pretends to be converted to membership in a religious group and
attends private meetings to study the behavior patterns of members.

Clinical trials

Clinical trials are experiments that study the effectiveness of medical treatments
on actual patients. Medical treatments can harm as well as heal, so clinical trials
spotlight the ethical problems of experiments with human subjects. Here are the
starting points for a discussion:

• Randomized comparative experiments are the only way to see the true effects of
new treatments. Without them, risky treatments that are no better than placebos
will become common.

• Clinical trials produce great benefits, but most of these benefits go to future
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patients. The trials also pose risks, and these risks are borne by the subjects of the
trial. So we must balance future benefits against present risks.

• Both medical ethics and international human rights standards say that “the
interests of the subject must always prevail over the interests of science and
society.”

The quoted words are from the 1964 Helsinki Declaration of the World Medical
Association, the most respected international standard. The most outrageous
examples of unethical experiments are those that ignore the interests of the
subjects.

Example

3.37 The Tuskegee study.

In the 1930s, syphilis was common among black men in the rural South, a
group that had almost no access to medical care. The Public Health Service
Tuskegee study recruited 399 poor black sharecroppers with syphilis and 201
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others without the disease in order to observe how syphilis progressed when
no treatment was given. Beginning in 1943, penicillin became available to
treat syphilis. The study subjects were not treated. In fact, the Public Health
Service prevented any treatment until word leaked out and forced an end to the
study in the 1970s.

The Tuskegee study is an extreme example of investigators following their
own interests and ignoring the well-being of their subjects. A 1996 review
said, “It has come to symbolize racism in medicine, ethical misconduct in
human research, paternalism by physicians, and government abuse of
vulnerable people.” In 1997, President Clinton formally apologized to the
surviving participants in a White House ceremony.30

Because “the interests of the subject must always prevail,” medical treatments
can be tested in clinical trials only when there is reason to hope that they will help
the patients who are subjects in the trials. Future benefits aren’t enough to justify
experiments with human subjects. Of course, if there is already strong evidence
that a treatment works and is safe, it is unethical not to give it.

Here are the words of Dr. Charles Hennekens of the Harvard Medical School,
who directed the large clinical trial that showed that aspirin reduces the risk of
heart attacks:

There’s a delicate balance between when to do or not do a randomized trial. On
the one hand, there must be sufficient belief in the agent’s potential to justify
exposing half the subjects to it. On the other hand, there must be sufficient doubt
about its efficacy to justify withholding it from the other half of subjects who might
be assigned to placebos.31

Why is it ethical to give a control group of patients a placebo? Well, we know
that placebos often work. What is more, placebos have no harmful side effects. So
in the state of balanced doubt described by Dr. Hennekens, the placebo group may
be getting a better treatment than the drug group. If we knew which treatment was
better, we would give it to everyone. When we don’t know, it is ethical to try both
and compare them.

The idea of using a control or placebo is a fundamental principle to be
considered in designing experiments. In many situations, deciding what to use as
an appropriate control requires some careful thought.

The choice of the control can have a substantial impact on how the results of an
experiment are interpreted. Here is an example.
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Example

3.38 Attentiveness improves by nearly 20%.

The manufacturer of a breakfast cereal designed for children claims that eating
this cereal has been clinically shown to improve attentiveness by nearly 20%.
The study used two groups of children who were tested before and after
breakfast. One group received the cereal for breakfast, while breakfast for the
control group was water. The results of the tests taken three hours after
breakfast were used in the claim.

The Federal Trade Commission investigated the marketing of this product.
They charged that the claim was false and violated federal law. The charges
were settled and the company agreed to not use misleading claims in their
advertising.32

It is not sufficient to obtain appropriate controls. The data must be collected
from all groups in the same way. Here is an example of this type of flawed design:

Example

3.39 Accurate identification of ovarian cancer.

Two scientists published a paper claiming to have developed a very exciting
new method to detect ovarian cancer using blood samples. When other
scientists were unable to reproduce the results in different labs, the original
work was examined more carefully. In the original study there were samples
for women with ovarian cancer and for healthy controls. The blood samples
were all analyzed using a mass spectrometer. The control samples were
analyzed on one day, and the cancer samples were analyzed on the next day.
This design was flawed in that it could not control for changes over time in the
measuring instrument.33

USE YOUR KNOWLEDGE

442



3.100 Is this study ethical?

Researchers on aging proposed to investigate the effect of supplemental
health services on the quality of life of older people. Eligible patients on
the rolls of a large medical clinic were to be randomly assigned to
treatment and control groups. The treatment group would be offered
hearing aids, dentures, transportation, and other services not available
without charge to the control group. The review board felt that providing
these services to some but not other persons in the same institution
raised ethical questions. Do you agree?

3.101 Should the treatments be given to everyone?

Effective drugs for treating AIDS are very expensive, so most African
nations cannot afford to give them to large numbers of people. Yet
AIDS is more common in parts of Africa than anywhere else. Several
clinical trials are looking at ways to prevent pregnant mothers infected
with HIV from passing the infection to their unborn children, a major
source of HIV infections in Africa. Some people say these trials are
unethical because they do not give effective AIDS drugs to their
subjects, as would be required in rich nations. Others reply that the trials
are looking for treatments that can work in the real world in Africa and
that they promise benefits at least to the children of their subjects. What
do you think?

Behavioral and social science experiments

When we move from medicine to the behavioral and social sciences, the direct
risks to experimental subjects are less acute, but so are the possible benefits to the
subjects. Consider, for example, the experiments conducted by psychologists in
their study of human behavior.

Example

3.40 Personal space.

Psychologists observe that people have a “personal space” and get annoyed if
others come too close to them. We don’t like strangers to sit at our table in a
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coffee shop if other tables are available, and we see people move apart in
elevators if there is room to do so. Americans tend to require more personal
space than people in most other cultures. Can violations of personal space have
physical, as well as emotional, effects?

Investigators set up shop in a men’s public rest room. They blocked off
urinals to force men walking in to use either a urinal next to an experimenter
(treatment group) or a urinal separated from the experimenter (control group).
Another experimenter, using a periscope from a toilet stall, measured how long
the subject took to start urinating and how long he kept at it.34

This personal space experiment illustrates the difficulties facing those who plan
and review behavioral studies.

• There is no risk of harm to the subjects, although they would certainly object to
being watched through a periscope. What should we protect subjects from when
physical harm is unlikely? Possible emotional harm? Undignified situations?
Invasion of privacy?

• What about informed consent? The subjects in Example 3.40 did not even know
they were participating in an experiment. Many behavioral experiments rely on
hiding the true purpose of the study. The subjects would change their behavior if
told in advance what the investigators were looking for. Subjects are asked to
consent on the basis of vague information. They receive full information only after
the experiment.

The “Ethical Principles” of the American Psychological Association require
consent unless a study merely observes behavior in a public place. They allow
deception only when it is necessary to the study, does not hide information that
might influence a subject’s willingness to participate, and is explained to subjects
as soon as possible. The personal space study (from the 1970s) does not meet
current ethical standards.

We see that the basic requirement for informed consent is understood
differently in medicine and psychology. Here is an example of another setting with
yet another interpretation of what is ethical. The subjects get no information and
give no consent. They don’t even know that an experiment may be sending them to
jail for the night.

Example

3.41 Domestic violence.
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How should police respond to domestic-violence calls? In the past, the usual
practice was to remove the offender and order him to stay out of the household
overnight. Police were reluctant to make arrests because the victims rarely
pressed charges. Women’s groups argued that arresting offenders would help
prevent future violence even if no charges were filed. Is there evidence that
arrest will reduce future offenses? That’s a question that experiments have
tried to answer.

A typical domestic-violence experiment compares two treatments: arrest
the suspect and hold him overnight, or warn the suspect and release him. When
police officers reach the scene of a domestic-violence call, they calm the
participants and investigate. Weapons or death threats require an arrest. If the
facts permit an arrest but do not require it, an officer radios headquarters for
instructions. The person on duty opens the next envelope in a file prepared in
advance by a statistician. The envelopes contain the treatments in random
order. The police either arrest the suspect or warn and release him, depending
on the contents of the envelope. The researchers then watch police records and
visit the victim to see if the domestic violence reoccurs.

The first such experiment appeared to show that arresting domestic-
violence suspects does reduce their future violent behavior. As a result of this
evidence, arrest has become the common police response to domestic violence.

The domestic-violence experiments shed light on an important issue of public
policy. Because there is no informed consent, the ethical rules that govern clinical
trials and most social science studies would forbid these experiments. They were
cleared by review boards because, in the words of one domestic-violence
researcher, “These people became subjects by committing acts that allow the police
to arrest them. You don’t need consent to arrest someone.”

SECTION 3.5 Summary

Approval of an institutional review board is required for studies that involve
humans or animals as subjects.

Human subjects must give informed consent if they are to participate in
experiments.

Data on human subjects must be kept confidential.

SECTION 3.5 Exercises
For Exercises 3.96 and 3.97, see page 219; for Exercises 3.98 and 3.99, see pages 221–222; and for
Exercises 3.100 and 3.101, see page 224.

3.102 Apply for the IRB.

You have been asked to apply to become a member of the institutional review board (IRB) of your college.
Write a short essay explaining your understanding of the purpose of the IRB and how your perspective as a
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student would be a valuable addition to the IRB in accomplishing its mission.

3.103 Did you give informed consent?

You were asked to participate in a study by a friend who is recruiting subjects. You trust your friend and
you tell her that you are willing to do whatever is needed for the study. Have you given informed consent?
Explain your answer.

3.104 Are the data confidential?

You have participated in a study, and the results were published in an article in a very prestigious journal.
Only summary information was published. The policy of the journal requires that all data used in the
articles they publish be available to the public, and they archive the data on a website. When you examine
the data, you realize that you have a unique set of characteristics that would allow someone who knows
you very well to identify which data are from you. Someone who does not know you would not be able to
do this. Are the data confidential? Explain your answer.

3.105 One of the subjects died.

A subject in a corrective gene study died during the study. A lawsuit, Gelsinger v. Trustees of the
University of Pennsylvania, was filed claiming wrongful death, assault and battery linked to a lack of
informed consent, and common-law fraud linked to the informed-consent process.35 Discuss this case
from the point of view of ethics. Describe any additional information that you would need to form your
opinion.

3.106 Is the IRB responsible?

An institutional review board (IRB) approved an experimental cancer vaccine for use in a clinical trial. The
subjects were patients who had advanced disease and had received standard treatments with no success. Of
the 94 subjects who received the vaccine, 26 died during the study. Their deaths were not due to the
vaccine. Some family members of the subjects sued the hospital, the study director, the company that made
the vaccine, a university official, individual members of the IRB, and the university bioethicist who
consulted with the IRB.36 Discuss this case from the point of view of ethics. Discuss any additional
information that you would need to form your opinion.

3.107 Facebook and academic performance.

First Monday is a peer-reviewed journal on the Internet. It published two articles concerning Facebook and
academic performance. Visit their website, firstmonday.org, and look at the first three articles in Volume
14, Number 5 (May 4, 2009). Identify the key controversial issues that involve the use of statistics
addressed in these articles, and write a report summarizing the facts as you see them. Be sure to include
your opinions regarding ethical issues related to this work.

3.108 What is wrong?

Explain what is wrong in each of the following scenarios.

(a) Clinical trials are always ethical as long as they randomly assign patients to the treatments.

(b) The job of an institutional review board is complete when they decide to allow a study to be conducted.
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(c) A treatment that has no risk of physical harm to subjects is always ethical.

3.109 How should the samples have been analyzed?

Refer to the ovarian cancer diagnostic test study in Example 3.39 (page 223). Describe how you would
process the samples through the mass spectrometer.

3.110 The Vytorin controversy.

Vytorin is a combination pill designed to lower cholesterol. It consists of a relatively inexpensive and
widely used drug, Zocor, and a newer drug called Zetia. Early study results suggested that Vytorin was no
more effective than Zetia. Critics claimed that the makers of the drugs tried to change the response variable
for the study, and two congressional panels investigated why there was a two-year delay in the release of
the results. Use the Internet to search for more information about this controversy and write a report about
what you find. Include an evaluation in the framework of ethical use of experiments and data. A good place
to start your search would be to look for the phrase “Vytorin’s shortcomings.”

3.111 The General Social Survey.

One of the most important nongovernment surveys in the United States is the National Opinion Research
Center’s General Social Survey. The GSS regularly monitors public opinion on a wide variety of political
and social issues. Interviews are conducted in person in the subject’s home. Are a subject’s responses to
GSS questions anonymous, confidential, or both? Explain your answer.

3.112 Anonymity and confidentiality in health screening.

Texas A&M, like many universities, offers free screening for HIV, the virus that causes AIDS. The
announcement says, “Persons who sign up for the HIV Screening will be assigned a number so that they do
not have to give their name.” They can learn the results of the test by telephone, still without giving their
name. Does this practice offer anonymity or just confidentiality?

3.113 Anonymity and confidentiality in mail surveys.

Some common practices may appear to offer anonymity while actually delivering only confidentiality.
Market researchers often use mail surveys that do not ask the respondent’s identity but contain hidden
codes on the questionnaire that identify the respondent. A false claim of anonymity is clearly unethical. If
only confidentiality is promised, is it also unethical to say nothing about the identifying code, perhaps
causing respondents to believe their replies are anonymous?

3.114 Use of stored blood.

Long ago, doctors drew a blood specimen from you as part of treating minor anemia. Unknown to you, the
sample was stored. Now researchers plan to use stored samples from you and many other people to look
for genetic factors that may influence anemia. It is no longer possible to ask your consent. Modern
technology can read your entire genetic makeup from the blood sample.

(a) Do you think it violates the principle of informed consent to use your blood sample if your name is on it
but you were not told that it might be saved and studied later?

(b) Suppose that your identity is not attached. The blood sample is known only to come from (say) “a 20-
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year-old white female being treated for anemia.” Is it now OK to use the sample for research?

(c) Perhaps we should use biological materials such as blood samples only from patients who have agreed
to allow the material to be stored for later use in research. It isn’t possible to say in advance what kind of
research, so this falls short of the usual standard for informed consent. Is it nonetheless acceptable, given
complete confidentiality and the fact that using the sample can’t physically harm the patient?

3.115 Political polls.

The presidential election campaign is in full swing, and the candidates have hired polling organizations to
take regular polls to find out what the voters think about the issues. What information should the pollsters
be required to give out?

(a) What does the standard of informed consent require the pollsters to tell potential respondents?

(b) The standards accepted by polling organizations also require giving respondents the name and address
of the organization that carries out the poll. Why do you think this is required?

(c) The polling organization usually has a professional name such as “Samples Incorporated,” so
respondents don’t know that the poll is being paid for by a political party or candidate. Would revealing the
sponsor to respondents bias the poll? Should the sponsor always be announced whenever poll results are
made public?

3.116 Should poll results be made public?

Some people think that the law should require that all political poll results be made public. Otherwise, the
possessors of poll results can use the information to their own advantage. They can act on the information,
release only selected parts of it, or time the release for best effect. A candidate’s organization replies that
they are paying for the poll in order to gain information for their own use, not to amuse the public. Do you
favor requiring complete disclosure of political poll results? What about other private surveys, such as
market research surveys of consumer tastes?

3.117 Informed consent to take blood samples.

Researchers from Yale, working with medical teams in Tanzania, wanted to know how common infection
with the AIDS virus is among pregnant women in that country. To do this, they planned to test blood
samples drawn from pregnant women.

Yale’s institutional review board insisted that the researchers get the informed consent of each woman
and tell her the results of the test. This is the usual procedure in developed nations. The Tanzanian
government did not want to tell the women why blood was drawn or tell them the test results. The
government feared panic if many people turned out to have an incurable disease for which the country’s
medical system could not provide care. The study was canceled. Do you think that Yale was right to apply
its usual standards for protecting subjects?
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CHAPTER 3 Exercises

3.118 Experiments and surveys.

Write a short report describing the differences and similarities between experiments and surveys.
Include a discussion of the advantages and disadvantages of each.

3.119 Online behavioral advertising.

The Federal Trade Commission Staff Report “Self-Regulatory Principles for Online Behavioral
Advertising” defines behavioral advertising as “the tracking of a consumer’s online activities over
time—including the searches the consumer has conducted, the Web pages visited and the content
viewed— in order to deliver advertising targeted to the individual consumer’s interests.” The report
suggests four governing concepts for their proposals. These are (1) transparency and control: when
companies collect information from consumers for advertising, they should tell consumers how the
data will be collected, and consumers should be given a choice about whether to allow the data to be
collected; (2) security and data retention: data should be kept secure and should be retained only as
long as they are needed; (3) privacy: before data are used in a way that differs from promises made
when they were collected, consent should be obtained from the consumer; and (4) sensitive data:
affirmative express consent should be obtained before using any sensitive data.37 Write a report
discussing your opinions concerning online behavioral advertising and the four governing concepts.
Pay particular attention to issues related to the ethical collection and use of statistical data.

3.120 Confidentiality at NORC.

The National Opinion Research Center conducts a large number of surveys and has established
procedures for protecting the confidentiality of their survey participants. For their Survey of
Consumer Finances, they provide a pledge to participants regarding confidentiality. This pledge is
available at norc.org. Review the pledge and summarize its key parts. Do you think that the pledge
adequately addresses issues related to the ethical collection and use of data? Explain your answer.

3.121 Make it an experiment!

In the following observational studies, describe changes that could be made to the data collection
process that would result in an experiment rather than an observational study. Also, offer
suggestions about unseen biases or lurking variables that may be present in the studies as they are
described here.

(a) A friend of yours likes to play Texas hold ’em. Every time that he tells you about his playing, he
says that he won.

(b) In an introductory statistics class you notice that the students who sit in the first two rows of seats
had higher scores on the first exam than the other students in the class.

3.122 Name the designs.
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What is the name for each of these study designs?

(a) A study to compare two methods of preserving wood started with boards of southern white pine.
Each board was ripped from end to end to form two edge-matched specimens. One was assigned to
Method A; the other, to Method B.

(b) A survey on youth and smoking contacted by telephone 300 smokers and 300 nonsmokers, all 14
to 22 years of age.

(c) Does air pollution induce DNA mutations in mice? Starting with 40 male and 40 female mice, 20
of each sex were housed in a polluted industrial area downwind from a steel mill. The other 20 of
each sex were housed at an unpolluted rural location 30 kilometers away.

3.123 Price promotions and consumer expectations.

A researcher studying the effect of price promotions on consumer expectations makes up two
different histories of the store price of a hypothetical brand of laundry detergent for the past year.
Students in a marketing course view one or the other price history on a computer.Some students see
a steady price, while others see regular promotions that temporarily cut the price. Then the students
are asked what price they would expect to pay for the detergent. Is this study an experiment? Why?
What are the explanatory and response variables?

3.124 Calcium and healthy bones.

Adults need to eat foods or supplements that contain enough calcium to maintain healthy bones.
Calcium intake is generally measured in milligrams per day (mg/d), and one measure of healthy
bones is total body bone mineral density measured in grams per centimeter squared (TBBMD,
g/cm2). Suppose that you want to study the relationship between calcium intake and TBBMD.

(a) Design an observational study to study the relationship.

(b) Design an experiment to study the relationship.

(c) Compare the relative merits of your two designs. Which do you prefer? Give reasons for your
answer.

3.125 Choose the type of study.

Give an example of a question about pets and their owners, their behavior, or their opinions that
would best be answered by

(a) a sample survey.

(b) an observational study that is not a sample survey.

(c) an experiment.

3.126 Compare the fries.

Do consumers prefer the fries from Burger King or from McDonald’s? Design a blind test in which
the source of the fries is not identified. Describe briefly the design of a matched pairs experiment to
investigate this question. How will you use randomization?
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3.127 Bicycle gears.

How does the time it takes a bicycle rider to travel 100 meters depend on which gear is used and
how steep the course is? It may be, for example, that higher gears are faster on level ground but
lower gears are faster on steep inclines. Discuss the design of a two-factor experiment to investigate
this issue, using one bicycle with three gears and one rider. How will you use randomization?

 3.128 Design an experiment.

The previous two exercises illustrate the use of statistically designed experiments to answer
questions that arise in everyday life. Select a question of interest to you that an experiment might
answer and carefully discuss the design of an appropriate experiment.

 3.129 Design a survey.

You want to investigate the attitudes of students at your school about the faculty’s commitment to
teaching. The student government will pay the costs of contacting about 500 students.

(a) Specify the exact population for your study; for example, will you include part-time students?

(b) Describe your sample design. Will you use a stratified sample?

(c) Briefly discuss the practical difficulties that you anticipate; for example, how will you contact the
students in your sample?

3.130 Compare two doses of a drug.

A drug manufacturer is studying how a new drug behaves in patients. Investigators compare two
doses: 5 milligrams (mg) and 10 mg. The drug can be administered by injection, by a skin patch, or
by intravenous drip. Concentration in the blood after 30 minutes (the response variable) may depend
both on the dose and on the method of administration.

(a) Make a sketch that describes the treatments formed by combining dose and method. Then use a
diagram to outline a completely randomized design for this two-factor experiment.

(b) “How many subjects?” is a tough issue. We will explain the basic ideas in Chapter 6. What can
you say now about the advantage of using larger groups of subjects?

3.131 Would the results be different for men and women?

The drug that is the subject of the experiment in Exercise 3.130 may behave differently in men and
women. How would you modify your experimental design to take this into account?

 3.132 Informed consent.

The requirement that human subjects give their informed consent to participate in an experiment can
greatly reduce the number of available subjects. For example, a study of new teaching methods asks
the consent of parents for their children to be randomly assigned to be taught by either a new method
or the standard method. Many parents do not return the forms, so their children must continue to be
taught by the standard method. Why is it not correct to consider these children as part of the control
group along with children who are randomly assigned to the standard method?
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 3.133 Two ways to ask sensitive questions.

Sample survey questions are usually read from a computer screen. In a Computer Aided Personal
Interview (CAPI), the interviewer reads the questions and enters the responses. In a Computer Aided
Self Interview (CASI), the interviewer stands aside and the respondent reads the questions and enters
responses. One method almost always shows a higher percent of subjects admitting use of illegal
drugs. Which method? Explain why.

3.134 Your institutional review board.

Your college or university has an institutional review board that screens all studies that use human
subjects. Get a copy of the document that describes this board (you can probably find it online).

(a) According to this document, what are the duties of the board?

(b) How are members of the board chosen? How many members are not scientists? How many
members are not employees of the college? Do these members have some special expertise, or are
they simply members of the “general public”?

3.135 Use of data produced by the government.

Data produced by the government are often available free or at low cost to private users. For
example, satellite weather data produced by the U.S. National Weather Service are available free to
TV stations for their weather reports and to anyone on the Internet. Opinion 1: Government data
should be available to everyone at minimal cost. Opinion 2: The satellites are expensive, and the TV
stations are making a profit from their weather services, so they should share the cost. European
governments, for example, charge TV stations for weather data. Which opinion do you support, and
why?

3.136 Should we ask for the consent of the parents?

The Centers for Disease Control and Prevention, in a survey of teenagers, asked the subjects if they
were sexually active. Those who said “Yes” were then asked, “How old were you when you had
sexual intercourse for the first time?” Should consent of parents be required to ask minors about sex,
drugs, and other such issues, or is consent of the minors themselves enough? Give reasons for your
opinion.

3.137 A theft experiment.

Students sign up to be subjects in a psychology experiment. When they arrive, they are told that
interviews are running late and are taken to a waiting room. The experimenters then stage a theft of a
valuable object left in the waiting room. Some subjects are alone with the thief, and others are in
pairs—these are the treatments being compared. Will the subject report the theft? The students had
agreed to take part in an unspecified study, and the true nature of the experiment is explained to
them afterward. Do you think this study is ethically OK?

3.138 A cheating experiment.

A psychologist conducts the following experiment. She measures the attitude of subjects toward
cheating and then has them play a game rigged so that winning without cheating is impossible. The
computer that organizes the game also records—unknown to the subjects—whether or not they
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cheat. Then attitude toward cheating is retested. Subjects who cheat tend to change their attitudes to
find cheating more acceptable. Those who resist the temptation to cheat tend to condemn cheating
more strongly on the second test of attitude. These results confirm the psychologist’s theory. This
experiment tempts subjects to cheat. The subjects are led to believe that they can cheat secretly when
in fact they are observed. Is this experiment ethically objectionable? Explain your position.
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CHAPTER4 Probability: The Study of
Randomness
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Introduction

The reasoning of statistical inference rests on asking, “How often would this
method give a correct answer if I used it very many times?” When we produce data
by random sampling or randomized comparative experiments, the laws of
probability answer the question “What would happen if we did this many times?”
Games of chance like Texas hold ’em are exciting because the outcomes are
determined by the rules of probability.
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4.1 Randomness

When you complete this section, you will be able to

• Identify random phenomena.

• Interpret the term “probability” for particular examples.

• Identify trials as independent or not.

Toss a coin, or choose an SRS. The result can’t be predicted in advance,
because the result will vary when you toss the coin or choose the sample
repeatedly. But there is nonetheless a regular pattern in the results, a pattern that
emerges clearly only after many repetitions. This remarkable fact is the basis for
the idea of probability.

sampling distributions, p. 209

Example

4.1 Toss a coin 5000 times.

When you toss a coin, there are only two possible outcomes, heads or tails.
Figure 4.1 shows the results of tossing a coin 5000 times twice. For each
number of tosses from 1 to 5000, we have plotted the proportion of those
tosses that gave a head. Trial A (red line) begins tail, head, tail, tail.

You can see that the proportion of heads for Trial A starts at 0 on the first
toss, rises to 0.5 when the second toss gives a head, then falls to 0.33 and 0.25
as we get two more tails. Trial B (blue dotted line), on the other hand, starts
with five straight heads, so the proportion of heads is 1 until the sixth toss.

The proportion of tosses that produce heads is quite variable at first. Trial A
starts low and Trial B starts high. As we make more and more tosses, however,
the proportions of heads for both trials get close to 0.5 and stay there.

If we made yet a third trial at tossing the coin a great many times, the
proportion of heads would again settle down to 0.5 in the long run. We say
that 0.5 is the probability of a head. The probability 0.5 appears as a
horizontal line on the graph.
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probability

The Probability applet on the text website animates Figure 4.1. It allows you to
choose the probability of a head and simulate any number of tosses of a coin with
that probability. Try it. You will see that the proportion of heads gradually settles
down close to the chosen probability. Equally important, you will also see that the
proportion in a small or moderate number of tosses can be far from the probability.
Probability describes only what happens in the long run. Most people expect
chance outcomes to show more short-term regularity than is actually true.

FIGURE 4.1
The proportion of tosses of a coin that give a head varies as we make more tosses. Eventually,
however, the proportion approaches 0.5, the probability of a head. This figure shows the results
of two trials of 5000 tosses each, for Example 4.1.
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Example

4.2 Significance testing and Type I errors.

In Chapter 6 we will learn about significance testing and Type I errors. When
we perform a significance test, we have the possibility of making a Type I
error under certain circumstances. The significance-testing procedure is set up
so that the probability of making this kind of error is small, usually 5%. If we
perform a large number of significance tests under this set of circumstances,
the proportion of times that we will make a Type I error is 0.05.

In the coin toss setting, the probability of a head is a characteristic of the coin
being tossed. A coin is called fair if the probability of a head is 0.5; that is, it is
equally likely to come up heads or tails. If we toss a coin five times and it comes
up heads for all five tosses, we suspect that the coin is not fair. Is this outcome
likely if, in fact, the coin is fair? We will learn a lot more about significance testing
in later chapters. For now, we are content with some very general ideas.

fair coin

When the Type I error of a statistical significance procedure is set at 0.05, this
probability is a characteristic of the procedure. If we roll a pair of dice once, we do
not know whether the sum of the faces will be seven or not. Similarly, if we
perform a significance test once, we do not know if we will make a Type I error or
not. However, if the procedure is designed to have a Type I error probability of
0.05, then we are much less likely than not to make a Type I error.

The language of probability

“Random” in statistics is not a synonym for “haphazard” but a description of a kind
of order that emerges in the long run. We often encounter the unpredictable side of
randomness in our everyday experience, but we rarely see enough repetitions of the
same random phenomenon to observe the long-term regularity that probability
describes. You can see that regularity emerging in Figure 4.1. In the very long run,
the proportion of tosses that give a head is 0.5. This is the intuitive idea of
probability. Probability 0.5 means “occurs half the time in a very large number of
trials.”

RANDOMNESS AND PROBABILITY
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We call a phenomenon random if individual outcomes are uncertain but there
is nonetheless a regular distribution of outcomes in a large number of
repetitions.

The probability of any outcome of a random phenomenon is the proportion of times the outcome
would occur in a very long series of repetitions.

Not all coins are fair. In fact, most real coins have bumps and imperfections that
make the probability of heads a little different from 0.5. The probability might be
0.499999 or 0.500002. For our study of probability in this chapter, we will assume
that we know the actual values of probabilities. Thus, we assume things like fair
coins, even though we know that real coins are not exactly fair. We do this to learn
what kinds of outcomes we are likely to see when we make such assumptions.
When we study statistical inference in later chapters, we look at the situation from
the opposite point of view: given that we have observed certain outcomes, what
can we say about the probabilities that generated these outcomes?

USE YOUR KNOWLEDGE

4.1 Use Table B.

We can use the random digits in Table B in the back of the book to
simulate tossing a fair coin. Start at line 121 and read the numbers from
left to right. If the number is 0, 2, 4, 6, or 8, you will say that the coin
toss resulted in a head; if the number is a 1, 3, 5, 7, or 9, the outcome is
tails. Use the first 20 random digits on line 121 to simulate 20 tosses of a
fair coin. What is the actual proportion of heads in your simulated
sample? Explain why you did not get exactly 10 heads.

Probability describes what happens in very many trials, and we must actually
observe many trials to pin down a probability. In the case of tossing a coin, some
diligent people have in fact made thousands of tosses.

Example
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4.3 Many tosses of a coin.

The French naturalist Count Buffon (1707–1788) tossed a coin 4040 times.
Result: 2048 heads, or proportion 2048/4040 = 0.5069 for heads.

Around 1900, the English statistician Karl Pearson heroically tossed a coin
24,000 times. Result: 12,012 heads, a proportion of 0.5005.

While imprisoned by the Germans during World War II, the South African
statistician John Kerrich tossed a coin 10,000 times. Result: 5067 heads,
proportion of heads 0.5067.

Thinking about randomness

That some things are random is an observed fact about the world. The outcome of a
coin toss, the time between emissions of particles by a radioactive source, and the
sexes of the next litter of lab rats are all random. So is the outcome of a random
sample or a randomized experiment. Probability theory is the branch of
mathematics that describes random behavior. Of course, we can never observe a
probability exactly. We could always continue tossing the coin, for example.
Mathematical probability is an idealization based on imagining what would happen
in an indefinitely long series of trials.

The best way to understand randomness is to observe random behavior—not
only the long-run regularity but the unpredictable results of short runs. You can do
this with physical devices such as coins and dice, but software simulations of
random behavior allow faster exploration. As you explore randomness, remember:

• You must have a long series of independent trials. That is, the outcome of one
trial must not influence the outcome of any other. Imagine a crooked gambling
house where the operator of a roulette wheel can stop it where she chooses—she
can prevent the proportion of “red” from settling down to a fixed number. These
trials are not independent.

independence

• The idea of probability is empirical. Simulations start with given probabilities and
imitate random behavior, but we can estimate a real-world probability only by
actually observing many trials.

• Nonetheless, simulations are very useful because we need long runs of trials. In
situations such as coin tossing, the proportion of an outcome often requires several
hundred trials to settle down to the probability of that outcome. The kinds of
physical random devices suggested in the exercises are too slow to make
performing so many trials practical. Short runs give only rough estimates of a
probability.
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The uses of probability

Probability theory originated in the study of games of chance. Tossing dice,
dealing shuffled cards, and spinning a roulette wheel are examples of deliberate
randomization. In that respect, they are similar to random sampling. Although
games of chance are ancient, they were not studied by mathematicians until the
sixteenth and seventeenth centuries.

It is only a mild simplification to say that probability as a branch of
mathematics arose when seventeenth-century French gamblers asked the
mathematicians Blaise Pascal and Pierre de Fermat for help. Gambling is still with
us, in casinos and state lotteries. We will make use of games of chance as simple
examples that illustrate the principles of probability.

Careful measurements in astronomy and surveying led to further advances in
probability in the eighteenth and nineteenth centuries because the results of
repeated measurements are random and can be described by distributions much
like those arising from random sampling. Similar distributions appear in data on
human life span (mortality tables) and in data on lengths or weights in a population
of skulls, leaves, or cockroaches.1

Now, we employ the mathematics of probability to describe the flow of traffic
through a highway system, the Internet, or a computer processor; the genetic
makeup of individuals or populations; the energy states of subatomic particles; the
spread of epidemics or tweets; and the rate of return on risky investments.
Although we are interested in probability because of its usefulness in statistics, the
mathematics of chance is important in many fields of study.

SECTION 4.1 Summary

A random phenomenon has outcomes that we cannot predict but that nonetheless
have a regular distribution in very many repetitions.

The probability of an event is the proportion of times the event occurs in many
repeated trials of a random phenomenon.

Trials are independent if the outcome of one trial does not influence the
outcome of any other trial.

SECTION 4.1 Exercises

For Exercise 4.1, see page 234.

4.2 Are these phenomena random?

Identify each of the following phenomena as random or not. Give reasons for your answers.

(a) The outside temperature in your town at noon on Groundhog Day, February 2.

(b) The first digit in your student identification number.
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(c) You draw an ace from a well-shuffled deck of 52 cards.

4.3 Interpret the probabilities.

Refer to the previous exercise. In each case, interpret the term “probability” for the phenomena that are
random. For those that are not random, explain why the term “probability” does not apply.

4.4 Are the trials independent?

For each of the following situations, identify the trials as independent or not. Explain your answers.

(a) You record the outside temperature in your town at noon on Groundhog Day, February 2, each year for
the next 5 years.

(b) The number of tweets that you receive on the next 10 Mondays.

(c) Your grades in the five courses that you are taking this semester.

4.5 Winning at craps.

The game of craps starts with a “come-out” roll, in which the shooter rolls a pair of dice. If the total of the
“spots” on the up-faces is 7 or 11, the shooter wins immediately (there are ways that the shooter can win on
later rolls if other numbers are rolled on the come-out roll). Roll a pair of dice 25 times and estimate the
probability that the shooter wins immediately on the come-out roll. For a pair of perfectly made dice, the
probability is 0.2222.

4.6 Is music playing on the radio?

Turn on your favorite music radio station 8 times at least 10 minutes apart. Each time record whether or not
music is playing. Calculate the number of times music is playing divided by 8. This number is an estimate
of the probability that music is playing when you turn on this station. It is also an estimate of the
proportion of time that music is playing on this station.

4.7 Wait 5 seconds between each observation.

Refer to the previous exercise. Explain why you would not want to wait only 5 seconds between each time
you turn the radio station on.

 4.8 Use the Probability applet.

The idea of probability is that the proportion of heads in many tosses of a balanced coin eventually gets
close to 0.5. But does the actual count of heads get close to one-half the number of tosses? Let’s find out.
Set the “Probability of Heads” in the Probability applet to 0.5 and the number of tosses to 50. You can
extend the number of tosses by clicking “Toss” again to get 50 more. Don’t click “Reset” during this
exercise.

(a) After 50 tosses, what is the proportion of heads? What is the count of heads? What is the difference
between the count of heads and 25 (one-half the number of tosses)?

(b) Keep going to 150 tosses. Again record the proportion and count of heads and the difference between
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the count and 75 (half the number of tosses).

(c) Keep going. Stop at 300 tosses and again at 600 tosses to record the same facts. Although it may take a
long time, the laws of probability say that the proportion of heads will always get close to 0.5 and also that
the difference between the count of heads and half the number of tosses will always grow without limit.

 4.9 A question about dice.

Here is a question that a French gambler asked the mathematicians Fermat and Pascal at the very beginning
of probability theory: what is the probability of getting at least one 6 in rolling four dice? The Law of
Large Numbers applet allows you to roll several dice and watch the outcomes. (Ignore the title of the
applet for now.) Because simulation—just like real random phenomena—often takes very many trials to
estimate a probability accurately, let’s simplify the question: is this probability clearly greater than 0.5,
clearly less than 0.5, or quite close to 0.5? Use the applet to roll four dice until you can confidently answer
this question. You will have to set “Rolls” to 1 so that you have time to look at the four up-faces. Keep
clicking “Roll dice” to roll again and again. How many times did you roll four dice? What percent of your
rolls produced at least one 6?
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4.2 Probability Models

When you complete this section, you will be able to

• Describe a sample space from a description of a random phenomenon.

• Apply the five probability rules.

• Identify random phenomena that have equally likely outcomes and
distinguish them from those that do not.

The idea of probability as a proportion of outcomes in very many repeated trials
guides our intuition but is hard to express in mathematical form. A description of a
random phenomenon in the language of mathematics is called a probability
model. To see how to proceed, think first about a very simple random
phenomenon, tossing a coin once. When we toss a coin, we cannot know the
outcome in advance. What do we know? We are willing to say that the outcome
will be either heads or tails. Because the coin appears to be balanced, we believe
that each of these outcomes has probability 1/2. This description of coin tossing
has two parts:

probability model

• A list of possible outcomes

• A probability for each outcome

This two-part description is the starting point for a probability model. We will
begin by describing the outcomes of a random phenomenon and then learn how to
assign probabilities to the outcomes.

Sample spaces

A probability model first tells us what outcomes are possible.

SAMPLE SPACE

The sample space S of a random phenomenon is the set of all possible
outcomes.

The name “sample space” is natural in random sampling, where each possible
outcome is a sample and the sample space contains all possible samples. To specify
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S, we must state what constitutes an individual outcome and then state which
outcomes can occur. We often have some freedom in defining the sample space, so
the choice of S is a matter of convenience as well as correctness. The idea of a
sample space, and the freedom we may have in specifying it, are best illustrated by
examples.

Example

4.4 Sample space for tossing a coin.

Toss a coin. There are only two possible outcomes, and the sample space is

S = {heads, tails}

or, more briefly, S = {H, T}.

Example

4.5 Sample space for random digits.

Let your pencil point fall blindly into Table B of random digits. Record the
value of the digit it lands on. The possible outcomes are

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Example

4.6 Sample space for tossing a coin four times.

Toss a coin four times and record the results. That’s a bit vague. To be exact,
record the results of each of the four tosses in order. A typical outcome is then
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HTTH. Counting shows that there are 16 possible outcomes. The sample space
S is the set of all 16 strings of four H’s and T’s.

Suppose that our only interest is the number of heads in four tosses. Now
we can be exact in a simpler fashion. The random phenomenon is to toss a
coin four times and count the number of heads. The sample space contains
only five outcomes:

S = {0, 1, 2, 3, 4}

This example illustrates the importance of carefully specifying what
constitutes an individual outcome.

Although these examples seem remote from the practice of statistics, the
connection is surprisingly close. Suppose that in conducting an opinion poll you
select four people at random from a large population and ask each if he or she
favors reducing federal spending on low-interest student loans. The answers are
“Yes” or “No.” The possible outcomes—the sample space—are exactly as in
Example 4.4 if we replace heads by “Yes” and tails by “No.” Similarly, the
possible outcomes of an SRS of 1500 people are the same in principle as the
possible outcomes of tossing a coin 1500 times. One of the great advantages of
mathematics is that the essential features of quite different phenomena can be
described by the same mathematical model.

USE YOUR KNOWLEDGE

4.10 What color are your eyes?

A student is asked what color eyes he or she has. Set up an appropriate
sample space for this setting. Note that there is not a single correct
answer to this exercise, so give reasons for your choice.

The sample spaces described above correspond to categorical variables where
we can list all the possible values. Other sample spaces correspond to quantitative
variables. Here is an example.

Example
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4.7 Using software.

Most statistical software has a function that will generate a random number
between 0 and 1. The sample space is

S = {all numbers between 0 and 1}

This S is a mathematical idealization. Any specific random number generator
produces numbers with some limited number of decimal places so that, strictly
speaking, not all numbers between 0 and 1 are possible outcomes. For
example, Minitab generates random numbers like 0.736891, with six decimal
places. The entire interval from 0 to 1 is easier to think about. It also has the
advantage of being a suitable sample space for different software systems that
produce random numbers with different numbers of digits.

USE YOUR KNOWLEDGE

4.11 How many hours do you text?

You record the number of hours per week that a randomly selected
student spends texting. What is the sample space?

A sample space S lists the possible outcomes of a random phenomenon. To
complete a mathematical description of the random phenomenon, we must also
give the probabilities with which these outcomes occur.

The true long-term proportion of any outcome—say, “exactly 2 heads in four
tosses of a coin”—can be found only empirically, and then only approximately.
How then can we describe probability mathematically? Rather than immediately
attempting to give “correct” probabilities, let’s confront the easier task of laying
down rules that any assignment of probabilities must satisfy. We need to assign
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probabilities not only to single outcomes but also to sets of outcomes.

EVENT

An event is an outcome or a set of outcomes of a random phenomenon. That
is, an event is a subset of the sample space.

Example

4.8 Exactly 2 heads in four tosses.

Take the sample space S for four tosses of a coin to be the 16 possible
outcomes in the form HTHH. Then “exactly 2 heads” is an event. Call this
event A. The event A expressed as a set of outcomes is

A = {TTHH, THTH, THHT, HTTH, HTHT, HHTT}

In a probability model, events have probabilities. What properties must any
assignment of probabilities to events have? Here are some basic facts about any
probability model. These facts follow from the idea of probability as “the long-run
proportion of repetitions on which an event occurs.”

1. Any probability is a number between 0 and 1. Any proportion is a number
between 0 and 1, so any probability is also a number between 0 and 1. An event
with probability 0 never occurs, and an event with probability 1 occurs on every
trial. An event with probability 0.5 occurs in half the trials in the long run.

2. All possible outcomes together must have probability 1. Because every trial
will produce an outcome, the sum of the probabilities for all possible outcomes
must be exactly 1.

3. If two events have no outcomes in common, the probability that one or the
other occurs is the sum of their individual probabilities. If one event occurs
in 40% of all trials, a different event occurs in 25% of all trials, and the two can
never occur together, then one or the other occurs on 65% of all trials because
40% + 25% = 65%.

4. The probability that an event does not occur is 1 minus the probability that
the event does occur. If an event occurs in (say) 70% of all trials, it fails to
occur in the other 30%. The probability that an event occurs and the probability
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that it does not occur always add to 100%, or 1.

Probability rules

Formal probability uses mathematical notation to state Facts 1 to 4 more concisely.
We use capital letters near the beginning of the alphabet to denote events. If A is
any event, we write its probability as P(A). Here are our probability facts in formal
language. As you apply these rules, remember that they are just another form of
intuitively true facts about long-run proportions.

PROBABILITY RULES

Rule 1. The probability P(A) of any event A satisfies 0 ≤ P(A) ≤ 1.

Rule 2. If S is the sample space in a probability model, then P(S) = 1.

Rule 3. Two events A and B are disjoint if they have no outcomes in common and so can never
occur together. If A and B are disjoint,

P(A or B) = P(A) + P(B)

This is the addition rule for disjoint events.

Rule 4. The complement of any event A is the event that A does not occur, written as Ac The
complement rule states that

P(Ac) = 1 − P(A)

You may find it helpful to draw a picture to remind yourself of the meaning of
complements and disjoint events. A picture like Figure 4.2 that shows the sample
space S as a rectangular area and events as areas within S is called a Venn
diagram. The events A and B in Figure 4.2 are disjoint because they do not
overlap. As Figure 4.3 shows, the complement Ac contains exactly the outcomes
that are not in A.

Venn diagram
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FIGURE 4.2
Venn diagram showing disjoint events A and B. Disjoint events have no common outcomes.

FIGURE 4.3
Venn diagram showing the complement Ac of an event A. The complement consists of all
outcomes that are not in A.

Example

4.9 Favorite vehicle colors.
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What is your favorite color for a vehicle? Our preferences can be related to our
personality, our moods, or particular objects. Here is a probability model for
color preferences.2

Color White Black Silver Gray
Probability 0.23 0.18 0.16 0.13

Color Red Blue Brown Other
Probability 0.10 0.09 0.05 0.06

Each probability is between 0 and 1. The probabilities add to 1 because these
outcomes together make up the sample space S. Our probability model
corresponds to selecting a person at random and asking what is their favorite
color.

Let’s use the probability Rules 3 and 4 to find some probabilities for favorite
vehicle colors.

Example

4.10 Black or silver?

What is the probability that a person’s favorite vehicle color is black or silver?
If the favorite is black, it cannot be silver, so these two events are disjoint.
Using Rule 3, we find

P(black or silver) = P(black) + P(silver)

= 0.18 + 0.16 = 0.34

There is a 34% chance that a randomly selected person will choose black or
silver as their favorite color. Suppose that we want to find the probability that the
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favorite color is not blue.

Example

4.11 Use the complement rule.

To solve this problem, we could use Rule 3 and add the probabilities for white,
black, silver, gray, red, brown and other. However, it is easier to use the
probability that we have for blue and Rule 4. The event that the favorite is not
blue is the complement of the event that the favorite is blue. Using our
notation for events, we have

P(not blue) = 1 − P(blue)

= 1 − 0.09 = 0.91

We see that 91% of people have a favorite vehicle color that is not blue.

USE YOUR KNOWLEDGE

4.12 Red or brown.

Find the probability that the favorite color is red or brown.

4.13 White, black, silver, gray, or red.

Find the probability that the favorite color is white, black, silver, gray,
or red using Rule 4. Explain why this calculation is easier than finding
the answer using Rule 3.

Assigning probabilities: finite number of outcomes

The individual outcomes of a random phenomenon are always disjoint. So the
addition rule provides a way to assign probabilities to events with more than one
outcome: start with probabilities for individual outcomes and add to get
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probabilities for events. This idea works well when there are only a finite (fixed
and limited) number of outcomes.

PROBABILITIES IN A FINITE SAMPLE SPACE

Assign a probability to each individual outcome. These probabilities must be
numbers between 0 and 1 and must have sum 1.

The probability of any event is the sum of the probabilities of the outcomes making up the event.

Example

4.12 Benford’s law.

Faked numbers in tax returns, payment records, invoices, expense account
claims, and many other settings often display patterns that aren’t present in
legitimate records. Some patterns, such as too many round numbers, are
obvious and easily avoided by a clever crook. Others are more subtle. It is a
striking fact that the first digits of numbers in legitimate records often follow a
distribution known as Benford’s law. Here it is (note that a first digit can’t be
0):3

Benford’s law

First digit 1 2 3 4 5 6 7 8 9
Probability 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

Benford’s law usually applies to the first digits of the sizes of similar quantities,
such as invoices, expense account claims, and county populations. Investigators
can detect fraud by comparing the first digits in records, such as invoices paid by a
business, with these probabilities.

Example
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4.13 Find some probabilities for Benford’s law.

Consider the events

A = {first digit is 5}

B = {first digit is 3 or less}

From the table of probabilities in Example 4.12,

P(A) = P(5) = 0.079

P(B) = P(1) + P(2) +P(3)

= 0.301 + 0.176 + 0.125 = 0.602

Note that P(B) is not the same as the probability that a first digit is strictly less
than 3. The probability P(3) that a first digit is 3 is included in “3 or less” but not in
“less than 3.”

USE YOUR KNOWLEDGE

4.14 Benford’s law.

Using the probabilities for Benford’s law, find the probability that a first
digit is anything other than 4.

4.15 Use the addition rule.

Use the addition rule with the probabilities for the events A and B from
Example 4.13 to find the probability that a first digit is either 5 or 3 or
less.

Be careful to apply the addition rule only to disjoint events.

Example
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4.14 Find more probabilities for Benford’s law.

Check that the probability of the event C that a first digit is even is

P(C) = P(2) + P(4) + P(6) + P(8) = 0.391

The probability

P(B or C) = P(1) + P(2) + P(3) + P(4) + P(6) + P(8) = 0.817

is not the sum of P(B) and P(C), because events B and C are not disjoint.
Outcomes 2 is common to both events.

Assigning probabilities: equally likely outcomes

Assigning correct probabilities to individual outcomes often requires long
observation of the random phenomenon. In some circumstances, however, we are
willing to assume that individual outcomes are equally likely because of some
balance in the phenomenon. Ordinary coins have a physical balance that should
make heads and tails equally likely, for example, and the table of random digits
comes from a deliberate randomization.

Example

4.15 First digits that are equally likely.

You might think that first digits are distributed “at random” among the digits 1
to 9 in business records. The 9 possible outcomes would then be equally
likely. The sample space for a single digit is

S = {1, 2, 3, 4, 5, 6, 7, 8, 9}

Because the total probability must be 1, the probability of each of the 9
outcomes must be 1/9. That is, the assignment of probabilities to outcomes is

First digit 1 2 3 4 5 6 7 8 9
Probability 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

The probability of the event B that a randomly chosen first digit is 3 or less is

P(B) = P(1) + P(2) + P(3)

=19+19+19=39=0.333
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Compare this with the Benford’s law probability in Example 4.13. A crook
who fakes data by using “random” digits will end up with too few first digits
that are 3 or less.

In Example 4.15 all outcomes have the same probability. Because there are 9
equally likely outcomes, each must have probability 1/9. Because exactly 3 of the 9
equally likely outcomes are 3 or less, the probability of this event is 3/9. In the
special situation where all outcomes are equally likely, we have a simple rule for
assigning probabilities to events.

EQUALLY LIKELY OUTCOMES

If a random phenomenon has k possible outcomes, all equally likely, then each
individual outcome has probability 1/k. The probability of any event A is

P(A)=count of outcomes in Acount of outcomes in S

P(A)=count of outcomes in Ak

Most random phenomena do not have equally likely outcomes, so the general
rule for finite sample spaces (page 282) is more important than the special rule for
equally likely outcomes.

USE YOUR KNOWLEDGE

4.16 Possible outcomes for rolling a die.

A die has six sides with 1 to 6 spots on the sides. Give the probability
distribution for the six possible outcomes that can result when a perfect
die is rolled.

Independence and the multiplication rule

Rule 3, the addition rule for disjoint events, describes the probability that one or
the other of two events A and B will occur in the special situation when A and B
cannot occur together because they are disjoint. Our final rule describes the
probability that both events A and B occur, again only in a special situation. More
general rules appear in Section 4.5, but in our study of statistics we will need only
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the rules that apply to special situations.
Suppose that you toss a fair coin twice. You are counting heads, so two events

of interest are

A = {first toss is a head}

B = {second toss is a head}

The events A and B are not disjoint. They occur together whenever both tosses give
heads. We want to compute the probability of the event {A and B} that both tosses
are heads. The Venn diagram in Figure 4.4 illustrates the event {A and B} as the
overlapping area that is common to both A and B.

FIGURE 4.4
Venn diagram showing the event {A and B}. This event consists of outcomes common to A and
B.

The coin tossing of Buffon, Pearson, and Kerrich described in Example 4.3
makes us willing to assign probability 1/2 to a head when we toss a coin. So

P(A) = 0.5

P(B) = 0.5

What is P(A and B)? Our common sense says that it is 1/4. The first toss will give a
head half the time and the second toss will give a head half the time, so both tosses
will give heads on 1/2 × 1/2 = 1/4 of all trials in the long run. This reasoning
assumes that the second toss still has probability 1/2 of a head after the first has
given a head. This is true—we can verify it by tossing a coin twice many times and
observing the proportion of heads on the second toss after the first toss has
produced a head. We say that the events “head on the first toss” and “head on the
second toss” are independent. Here is our final probability rule.

MULTIPLICATION RULE FOR INDEPENDENT EVENTS
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Rule 5. Two events A and B are independent if knowing that one occurs does
not change the probability that the other occurs. If A and B are independent,

P(A and B) = P(A)P(B)

This is the multiplication rule for independent events.

Our definition of independence is rather informal. We will make this informal
idea precise in Section 4.5. In practice, though, we rarely need a precise definition
of independence, because independence is usually assumed as part of a probability
model when we want to describe random phenomena that seem to be physically
unrelated to each other. Here is an example of independence.

Example

4.16 Coins do not have memory.

Because a coin has no memory, we assume that successive coin tosses are
independent. For a fair coin, this means that the outcome of the first toss does
not influence the outcome of any other toss.

USE YOUR KNOWLEDGE

4.17 A head and then a tail in two tosses.

What is the probability of obtaining a head and then a tail on two tosses
of a fair coin?

Here is an example of a situation where there are dependent events.

Example
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4.17 Dependent events in cards.

The colors of successive cards dealt from the same deck are not independent.
A standard 52-card deck contains 26 red and 26 black cards. For the first card
dealt from a shuffled deck, the probability of a red card is 26/52 = 0.50
because the 52 possible cards are equally likely. Once we see that the first card
is red, we know that there are only 25 reds among the remaining 51 cards. The
probability that the second card is red is therefore only 25/51 = 0.49. Knowing
the outcome of the first deal changes the probabilities for the second.

USE YOUR KNOWLEDGE

4.18 The probability of a second ace.

A deck of 52 cards contains 4 aces, so the probability that a card drawn
from this deck is an ace is 4/52. If we know that the first card drawn is
an ace, what is the probability that the second card drawn is also an ace?
Using the idea of independence, explain why this probability is not 4/52.

Here is another example of a situation where events are dependent.

Example

4.18 Taking a test twice.

If you take an IQ test or other mental test twice in succession, the two test
scores are not independent. The learning that occurs on the first attempt
influences your second attempt. If you learn a lot, then your second test score
might be a lot higher than your first test score.

When independence is part of a probability model, the multiplication rule
applies. Here is an example.

480



Example

4.19 Mendel’s peas.

Gregor Mendel used garden peas in some of the experiments that revealed that
inheritance operates randomly. The seed color of Mendel’s peas can be either
green or yellow. Two parent plants are “crossed” (one pollinates the other) to
produce seeds.

Each parent plant carries two genes for seed color, and each of these genes
has probability 1/2 of being passed to a seed. The two genes that the seed
receives, one from each parent, determine its color. The parents contribute
their genes independently of each other.

Suppose that both parents carry the G and the Y genes. The seed will be
green if both parents contribute a G gene; otherwise, it will be yellow. If M is
the event that the male contributes a G gene and F is the event that the female
contributes a G gene, then the probability of a green seed is

P(M and F) = P(M)(P(F)

= (0.5) (0.5) = 0.25

In the long run, 1/4 of all seeds produced by crossing these plants will be
green.

The multiplication rule applies only to independent events; you cannot use it if
events are not independent. Here is a distressing example of misuse of the
multiplication rule.
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Example

4.20 Sudden infant death syndrome.

Sudden infant death syndrome (SIDS) causes babies to die suddenly (often in
their cribs) with no explanation. Deaths from SIDS have been greatly reduced
by placing babies on their backs, but as yet no cause is known.

When more than one SIDS death occurs in a family, the parents are
sometimes accused. One “expert witness” popular with prosecutors in England
told juries that there is only a 1 in 73 million chance that two children in the
same family could have died from SIDS. Here’s his calculation: the rate of
SIDS in a nonsmoking middle-class family is 1 in 8500. So the probability of
two deaths is

18500×18500=172,250,000

Several women were convicted of murder on this basis, without any direct
evidence that they harmed their children.

As the Royal Statistical Society said, this reasoning is nonsense. It assumes
that SIDS deaths in the same family are independent events. The cause of
SIDS is unknown: “There may well be unknown genetic or environmental
factors that predispose families to SIDS, so that a second case within the
family becomes much more likely.”4 The British government decided to
review the cases of 258 parents convicted of murdering their babies.

The multiplication rule P(A and B) = P(A) P(B) holds if A and B are
independent but not otherwise. The addition rule P(A or B) = P(A) + P(B) holds if
A and B are disjoint but not otherwise. Resist the temptation to use these simple
formulas when the circumstances that justify them are not present. You must also
be certain not to confuse disjointness and independence. Disjoint events cannot be
independent. If A and B are disjoint, then the fact that A occurs tells us that B
cannot occur—look again at Figure 4.2 (page 240). Unlike disjointness or
complements, independence cannot be pictured by a Venn diagram, because it
involves the probabilities of the events rather than just the outcomes that make up
the events.

Applying the probability rules
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If two events A and B are independent, then their complements Ac and Bc are also
independent and Ac is independent of B Suppose, for example, that 75% of all
registered voters in a suburban district are Republicans. If an opinion poll
interviews two voters chosen independently, the probability that the first is a
Republican and the second is not a Republican is (0.75)(0.25) = 0.1875.

The multiplication rule also extends to collections of more than two events,
provided that all are independent. Independence of events A, B, and C means that
no information about any one or any two can change the probability of the
remaining events. The formal definition is a bit messy. Fortunately, independence
is usually assumed in setting up a probability model. We can then use the
multiplication rule freely.

By combining the rules we have learned, we can compute probabilities for
rather complex events. Here is an example.

Example

4.21 HIV testing.

Many people who come to clinics to be tested for HIV, the virus that causes
AIDS, don’t come back to learn the test results. Clinics now use “rapid HIV
tests” that give a result in a few minutes. The false-positive rate for a
diagnostic test is the probability that a person with no disease will have a
positive test result. For the rapid HIV tests, the Food and Drug Administration
(FDA) has established 2% as the maximum false-positive rate allowed for a
rapid HIV test.5 If a clinic uses a test that meets the FDA standard and tests 50
people who are free of HIV antibodies, what is the probability that at least 1
false-positive will occur?

It is reasonable to assume as part of the probability model that the test
results for different individuals are independent. The probability that the test is
positive for a single person is 0.02, so the probability of a negative result is 1 −
0.02 = 0.98 by the complement rule. The probability of at least 1 false-positive
among the 50 people tested is therefore

P(at least 1 positive) = 1 − P(no positives)

= 1 − P(50 negatives)

= 1 − 0.9850

= 1 − 0.3642 = 0.6358
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There is approximately a 64% chance that at least 1 of the 50 people will test
positive for HIV even though none of them has the virus.

Concern about excessive numbers of false-positives led the New York City
Department of Health and Mental Hygiene to suspend the use of one particular
rapid HIV test.6

SECTION 4.2 Summary

A probability model for a random phenomenon consists of a sample space S and
an assignment of probabilities P.

The sample space S is the set of all possible outcomes of the random
phenomenon. Sets of outcomes are called events. P assigns a number P(A) to an
event A as its probability.

The complement Ac of an event A consists of exactly the outcomes that are not
in A. Events A and B are disjoint if they have no outcomes in common. Events A
and B are independent if knowing that one event occurs does not change the
probability we would assign to the other event.

Any assignment of probability must obey the rules that state the basic properties
of probability:

Rule 1. 0 ≤ P(A) ≤ 1 for any event A
Rule 2. P(S) = 1.
Rule 3. Addition rule: If events A and B are disjoint, then P(A or B) = P(A) +

P(B).
Rule 4. Complement rule: For any event A, P(Ac) = 1 − P(A).
Rule 5. Multiplication rule: If events A and B are independent, then P(A and

B) = P(A) P(B)

SECTION 4.2 Exercises

For Exercise 4.10, see page 238; for Exercise 4.11, see page 239; for Exercises
4.12 and 4.13, see page 241; for Exercises 4.14 and 4.15, see page 243; for
Exercise 4.16, see page 244; for Exercise 4.17, see page 246; and for Exercise
4.18, see page 246.

4.19 What is the sample space?

For each of the following questions, define a sample space for the associated random phenomenon. Explain
your answers. Be sure to specify units if that is appropriate.

(a) Will it rain tomorrow?

(b) How many times do you tweet in a typical day?

(c) What is the average age of your Facebook friends?

(d) What are the majors for students at your college?
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4.20 Probability rules.

For each of the following situations, state the probability rule or rules that you would use and apply it or
them. Write a sentence explaining how the situation illustrates the use of the probability rules.

(a) The probability of event A is 0.224. What is the probability that event A does not occur?

(b) A coin is tossed three times. The probability of zero heads is 1/8 and the probability of zero tails is 1/8.
What is the probability that all three tosses result in the same outcome?

(c) Refer to part (b). What is the probability that there is at least one head and at least one tail?

(d) The probability of event A is 0.5 and the probability of event B is 0.6. Events A and B are disjoint. Can
this happen?

(e) Event A is very rare. Its probability is −0.01. Can this happen?

4.21 Equally likely events.

For each of the following situations, explain why you think that the events are equally likely or not.
Explain your answers.

(a) The outcome of the next tennis match for Victoria Azarenka is either a win or a loss. (You might want
to check the Internet for information about this tennis player.)

(b) You draw a king or a two from a shuffled deck of 52 cards.

(c) You are observing turns at an intersection. You classify each turn as a right turn or a left turn.

(d) For college basketball games, you record the times that the home team wins and the times that the home
team loses.

4.22 The multiplication rule for independent events.

The probability that a randomly selected person prefers the vehicle color white is 0.23. Can you apply the
multiplication rule for independent events in the situations described in parts (a) and (b)? If your answer is
Yes, apply the rule.

(a) Two people are chosen at random from the population. What is the probability that both prefer white?

(b) Two people who are sisters are chosen. What is the probability that both prefer white?

(c) Write a short summary about the multiplication rule for independent events using your answers to parts
(a) and (b) to illustrate the basic idea.

4.23 What’s wrong?

In each of the following scenarios, there is something wrong. Describe what is wrong and give a reason for
your answer.

(a) If two events are disjoint, we can multiply their probabilities to determine the probability that they will
both occur.

(b) If the probability of A is 0.2 and the probability of B is 0.5, the probability of both A and B happening is
1.1.
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(c) If the probability of A is 0.35, then the probability of the complement of A is −0.35.

4.24 What’s wrong?

In each of the following scenarios, there is something wrong. Describe what is wrong and give a reason for
your answer.

(a) If the sample space consists of two outcomes, then each outcome has probability 0.5.

(b) If we select a digit at random, then the probability of selecting a 2 is 0.2.

(c) If the probability of A is 0.2, the probability of B is 0.3, and the probability of A and B is 0.5, then A and
B are independent.

4.25 Evaluating web page designs.

You are a web page designer and you set up a page with five different links. A user of the page can click
on one of the links or he or she can leave that page. Describe the sample space for the outcome of someone
visiting your web page.

4.26 Record the length of time spent on the page.

Refer to the previous exercise. You also decide to measure the length of time a visitor spends on your page.
Give the sample space for this measure.

4.27 Ringtones.

What are the popular ringtones? The website funtonia.com updates its list of top ringtones frequently.
Here are probabilities for the top 10 ringtones recently listed by the site:7

Ringtone Probability   Ringtone Probability
No Worries 0.182   Gangnam Style 0.086
Adorn 0.153   Try 0.081
Girl on Fire 0.134   Better Dig Two 0.062
The Only Way I Know 0.096   Thinkin Bout You 0.062
Wanted 0.086   Diamonds 0.058

(a) What is the probability that a randomly selected ringtone from this list is either Wanted or Gangnam
Style?

(b) What is the probability that a randomly selected ringtone from this list is not Wanted and not Gangnam
Style? Be sure to show how you computed your answer.

4.28 More ringtones.

Refer to the previous exercise.

(a) If two ringtones are selected independently, what is the probability that both are Girl on Fire?

(b) Describe in words the complement of the event described in part (a) of this exercise. Find the

486



probability of this event.

4.29 Distribution of blood types.

All human blood can be “ABO-typed” as one of O, A, B, or AB, but the distribution of the types varies a
bit among groups of people. Here is the distribution of blood types for a randomly chosen person in the
United States:8

Blood type A B AB O
U.S. probability 0.42 0.11 ? 0.44

(a) What is the probability of type AB blood in the United States?

(b) Maria has type B blood. She can safely receive blood transfusions from people with blood types O and
B. What is the probability that a randomly chosen person from the United States can donate blood to
Maria?

4.30 Blood types in Ireland.

The distribution of blood types in Ireland differs from the U.S. distribution given in the previous exercise:

Blood type A B AB O
Ireland probability 0.35 0.10 0.03 0.52

Choose a person from the United States and a person from Ireland at random, independently of each other.
What is the probability that both have type O blood? What is the probability that both have the same blood
type?

4.31 Are the probabilities legitimate?

In each of the following situations, state whether or not the given assignment of probabilities to individual
outcomes is legitimate, that is, satisfies the rules of probability. If not, give specific reasons for your
answer.

(a) Choose a college student at random and record gender and enrollment status: P(female full-time) =
0.44, P(female part-time) = 0.56, P(male full-time) = 0.46, P(male part-time) = 0.54.

(b) Deal a card from a shuffled deck: P(clubs) = 16/52, P(diamonds) = 12/52, P(hearts) = 12/52, P(spades)
= 12/52.

(c) Roll a die and record the count of spots on the up-face: P(1) = 1/3, P(2) = 0, P(3) = 1/6, P(4) = 1/3,
P(5) = 1/6, P(6) = 0,

4.32 French and English in Canada.

Canada has two official languages, English and French. Choose a Canadian at random and ask, “What is
your mother tongue?” Here is the distribution of responses, combining many separate languages from the
broad Asian/Pacific region:9

Language English French Asian/Pacific Other
Probability 0.59 ? 0.07 0.11
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(a) What probability should replace “?” in the distribution?

(b) What is the probability that a Canadian’s mother tongue is not English? Explain how you computed
your answer.

4.33 Education levels of young adults.

Choose a young adult (age 25 to 34 years) at random. The probability is 0.12 that the person chosen did not
complete high school, 0.31 that the person has a high school diploma but no further education, and 0.29
that the person has at least a bachelor’s degree.

(a) What must be the probability that a randomly chosen young adult has some education beyond high
school but does not have a bachelor’s degree?

(b) What is the probability that a randomly chosen young adult has at least a high school education?

 4.34 Loaded dice.

There are many ways to produce crooked dice. To load a die so that 6 comes up too often and 1 (which is
opposite 6) comes up too seldom, add a bit of lead to the filling of the spot on the 1 face. Because the spot
is solid plastic, this works even with transparent dice. If a die is loaded so that 6 comes up with probability
0.21 and the probabilities of the 2, 3, 4, and 5 faces are not affected, what is the assignment of probabilities
to the six faces?

4.35 Rh blood types.

Human blood is typed as O, A, B, or AB and also as Rh-positive or Rh-negative. ABO type and Rh-factor
type are independent because they are governed by different genes. In the American population, 84% of
people are Rh-positive. Use the information about ABO type in Exercise 4.29 to give the probability
distribution of blood type (ABO and Rh) for a randomly chosen American.

4.36 Roulette.

A roulette wheel has 38 slots, numbered 0, 00, and 1 to 36. The slots 0 and 00 are colored green, 18 of the
others are red, and 18 are black. The dealer spins the wheel and at the same time rolls a small ball along the
wheel in the opposite direction. The wheel is carefully balanced so that the ball is equally likely to land in
any slot when the wheel slows. Gamblers can bet on various combinations of numbers and colors.

(a) What is the probability that the ball will land in any one slot?

(b) If you bet on “red,” you win if the ball lands in a red slot. What is the probability of winning?

(c) The slot numbers are laid out on a board on which gamblers place their bets. One column of numbers
on the board contains all multiples of 3, that is, 3, 6, 9, . . . , 36. You place a “column bet” that wins if any
of these numbers comes up. What is your probability of winning?

4.37 Winning the lottery.

A state lottery’s Pick 3 game asks players to choose a three-digit number, 000 to 999. The state chooses the
winning three-digit number at random, so that each number has probability 1/1000. You win if the winning
number contains the digits in your number, in any order.
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(a) Your number is 491. What is your probability of winning?

(b) Your number is 222. What is your probability of winning?

4.38 PINs.

The personal identification numbers (PINs) for automatic teller machines usually consist of four digits.
You notice that most of your PINs have at least one 0, and you wonder if the issuers use lots of 0s to make
the numbers easy to remember. Suppose that PINs are assigned at random, so that all four-digit numbers
are equally likely.

(a) How many possible PINs are there?

(b) What is the probability that a PIN assigned at random has at least one 0?

4.39 Universal blood donors.

People with type O-negative blood are universal donors. That is, any patient can receive a transfusion of O-
negative blood. Only 7% of the American population have O-negative blood. If 10 people appear at
random to give blood, what is the probability that at least 1 of them is a universal donor?

 4.40 Axioms of probability.

Show that any assignment of probabilities to events that obeys Rules 2 and 3 on page 239 automatically
obeys the complement rule (Rule 4). This implies that a mathematical treatment of probability can start
from just Rules 1, 2, and 3. These rules are sometimes called axioms of probability.

 4.41 Independence of complements.

Show that if events A and B obey the multiplication rule, P(A and B) = P(A) P(B), then A and the
complement Bc of B also obey the multiplication rule, P(A and Bc) = P(A) P(Bc). That is, if events A and B
are independent, then A and Bc are also independent. (Hint: Start by drawing a Venn diagram and noticing
that the events “A and B” and “A and Bc” are disjoint.)

Mendelian inheritance.

Some traits of plants and animals depend on inheritance of a single gene. This is
called Mendelian inheritance, after Gregor Mendel (1822–1884). Exercises 4.42 to
4.45 are based on the following information about Mendelian inheritance of blood
type.

Each of us has an ABO blood type, which describes whether two
characteristics called A and B are present. Every human being has two blood type
alleles (gene forms), one inherited from our mother and one from our father. Each
of these alleles can be A, B, or O. Which two we inherit determines our blood type.
Here is a table that shows what our blood type is for each combination of two
alleles:

489



Alleles inherited  Blood type
A and A A
A and B AB
A and O A
B and B B
B and O B
O and O O

We inherit each of a parent’s two alleles with probability 0.5. We inherit
independently from our mother and father.

4.42 Blood types of children.

Hannah and Jacob both have alleles A and B.

(a) What blood types can their children have?

(b) What is the probability that their next child has each of these blood types?

4.43 Parents with alleles B and O.

Nancy and David both have alleles B and O.

(a) What blood types can their children have?

(b) What is the probability that their next child has each of these blood types?

4.44 Two children.

Jennifer has alleles A and O. José has alleles A and B. They have two children. What is the probability that
both children have blood type A? What is the probability that both children have the same blood type?

4.45 Three children.

Jasmine has alleles A and O. Joshua has alleles B and O.

(a) What is the probability that a child of these parents has blood type O?

(b) If Jasmine and Joshua have three children, what is the probability that all three have blood type O?
What is the probability that the first child has blood type O and the next two do not?
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4.3 Random Variables

When you complete this section, you will be able to

• Describe the probability distribution of a discrete random variable.

• Use a probability histogram to provide a graphical description of the
probability distribution of a discrete random variable.

• Use the distribution of a discrete random variable to calculate
probabilities of events.

• Find probabilities of events for the uniform distribution.

Sample spaces need not consist of numbers. When we toss a coin four times, we
can record the outcome as a string of heads and tails, such as HTTH. In statistics,
however, we are most often interested in numerical outcomes such as the count of
heads in the four tosses. It is convenient to use a shorthand notation: Let X be the
number of heads. If our outcome is HTTH, then X = 2. If the next outcome is
TTTH, the value of X changes to X = 1. The possible values of X are 0, 1, 2, 3, and
4. Tossing a coin four times will give X one of these possible values. Tossing four
more times will give X another and probably different value. We call X a random
variable because its values vary when the coin tossing is repeated.

RANDOM VARIABLE

A random variable is a variable whose value is a numerical outcome of a
random process.

In our coin-tossing example above, the process is the tossing of a coin four
times. The random variable is the number of heads in the four tosses.

We usually denote random variables by capital letters near the end of the
alphabet, such as X or Y. Of course, the random variables of greatest interest to us
are outcomes such as the mean x¯ of a random sample, for which we will keep the
familiar notation.10 As we progress from general rules of probability toward
statistical inference, we will concentrate on random variables.

When a random variable X describes a random process, the sample space S just
lists the possible values of the random variable. We usually do not mention S
separately. There remains the second part of any probability model, the assignment
of probabilities to events. There are two main ways of assigning probabilities to the
values of a random variable. The two types of probability models that result will
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dominate our application of probability to statistical inference.

Discrete random variables

We have learned several rules of probability, but only one method of assigning
probabilities: state the probabilities of the individual outcomes and assign
probabilities to events by summing over the outcomes. The outcome probabilities
must be between 0 and 1 and have sum 1. When the outcomes are numerical, they
are values of a random variable. We will now attach a name to random variables
having probability assigned in this way.11

DISCRETE RANDOM VARIABLE

A discrete random variable X has possible values that can be given in an
ordered list. The probability distribution of X lists the values and their
probabilities:

Value of X x1 x2 x3 …

Probability p1 p2 p3 …

The probabilities pi must satisfy two requirements:

1. Every probability pi is a number between 0 and 1.

2. p1 + p2 + … = 1.
Find the probability of any event by adding the probabilities pi of the
particular values xi that make up the event.

In most of the situations that we will study, the number of possible values is a
finite number, k. Think about the number of heads in four tosses of a coin. There
are k = 5 possible values: 0, 1, 2, 3, and 4.

However, there are settings in which the number of possible values is infinite.
Think about tossing a fair coin until you get a head.

Example

4.22 Grade distributions.
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A liberal arts college posts the grade distributions for its courses. In a recent
semester, students in one section of English 130 received 31% A’s, 40% B’s,
20% C’s, 4% D’s, and 5% F’s. Choose an English 130 student at random. To
“choose at random” means to give every student the same chance to be chosen.
The student’s grade on a five-point scale (with A = 4) is a random variable X

The value of X changes when we repeatedly choose students at random, but
it is always one of 0, 1, 2, 3, or 4. Here is the distribution of X

Value of X 0 1 2 3 4
Probability 0.05 0.04 0.20 0.40 0.31

The probability that the student got a B or better is the sum of the probabilities
of an A and a B. In the language of random variables,

P(X ≥ 3) = P(X = 3) + P(X = 4)

= 0.40 + 0.31 = 0.71

USE YOUR KNOWLEDGE

4.46 Will the course satisfy the requirement?

Refer to Example 4.22. Suppose that a grade of D or F in English 130
will not count as satisfying a requirement for a major in linguistics.
What is the probability that a randomly selected student will not satisfy
this requirement?

We can use histograms to show probability distributions as well as distributions
of data. Figure 4.5 displays probability histograms that compare the probability
model for equally likely random digits (Example 4.15) with the model given by
Benford’s law (Example 4.12). The height of each bar shows the probability of the
outcome at its base. Because the heights are probabilities, they add to 1. As usual,
all the bars in a histogram have the same width. So the areas also display the
assignment of probability to outcomes. Think of these histograms as idealized
pictures of the results of very many trials. The histograms make it easy to quickly
compare the two distributions.

probability histogram
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FIGURE 4.5
Probability histograms for (a) equally likely random digits 1 to 9 and (b) Benford’s law. The
height of each bar shows the probability assigned to a single outcome.

Example

4.23 Number of heads in four tosses of a coin.

What is the probability distribution of the discrete random variable X that
counts the number of heads in four tosses of a coin? We can derive this
distribution if we make two reasonable assumptions:

• The coin is balanced, so it is fair and each toss is equally likely to give H or
T.

• The coin has no memory, so tosses are independent.

The outcome of four tosses is a sequence of heads and tails such as HTTH.
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There are 16 possible outcomes in all. Figure 4.6 lists these outcomes along
with the value of X for each outcome. The multiplication rule for independent
events tells us that, for example,

P(HTTH)=12×12×12×12=116

Each of the 16 possible outcomes similarly has probability 1/16. That is, these
outcomes are equally likely.

The number of heads X has possible values 0, 1, 2, 3, and 4. These values
are not equally likely. As Figure 4.6 shows, there is only one way that X = 0
can occur: namely, when the outcome is TTTT. So

P(X=0)=116=0.0625

The event {X = 2} can occur in six different ways, so that

P(X=2)=count of ways X=2 can occur16

=616=0.375

We can find the probability of each value of X from Figure 4.6 in the same
way. Here is the result:

Value of X 0 1 2 3 4
Probability 0.0625 0.25 0.375 0.25 0.0625

FIGURE 4.6
Possible outcomes in four tosses of a coin, for Example 4.23. The outcomes are arranged by the
values of the random variable X, the number of heads.
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FIGURE 4.7
Probability histogram for the number of heads in four tosses of a coin.

Figure 4.7 is a probability histogram for the distribution in Example 4.23. The
probability distribution is exactly symmetric. The probabilities (bar heights) are
idealizations of the proportions after very many tosses of four coins. The actual
distribution of proportions observed would be nearly symmetric but is unlikely to
be exactly symmetric.

Example

4.24 Probability of at least two heads.

Any event involving the number of heads observed can be expressed in terms
of X, and its probability can be found from the distribution of X. For example,
the probability of tossing at least two heads is

P(X ≥ 2) = 0.375 + 0.25 + 0.0625 = 0.6875

The probability of at least one head is most simply found by use of the
complement rule:

P(X ≥ 1) = 1 − P(X = 0)

= 1 − 0.0625 = 0.9375

Recall that tossing a coin n times is similar to choosing an SRS of size n from a
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large population and asking a Yes or No question. We will extend the results of
Example 4.23 when we return to sampling distributions in the next chapter.

USE YOUR KNOWLEDGE

4.47 Two tosses of a fair coin.

Find the probability distribution for the number of heads that appear in
two tosses of a fair coin.

Continuous random variables

When we use the table of random digits to select a digit between 0 and 9, the result
is a discrete random variable. The probability model assigns probability 1/10 to
each of the 10 possible outcomes. Suppose that we want to choose a number at
random between 0 and 1, allowing any number between 0 and 1 as the outcome.
Software random number generators will do this.

FIGURE 4.8
A spinner that generates a random number between 0 and 1.

You can visualize such a random number by thinking of a spinner (Figure 4.8)
that turns freely on its axis and slowly comes to a stop. The pointer can come to
rest anywhere on a circle that is marked from 0 to 1. The sample space is now an
entire interval of numbers:
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S = {all numbers x such that 0 ≤ x ≤ 1}

How can we assign probabilities to events such as {0.3 ≤ x ≤ 0.7}? As in the
case of selecting a random digit, we would like all possible outcomes to be equally
likely. But we cannot assign probabilities to each individual value of x and then
sum, because there are infinitely many possible values. Instead, we use a new way
of assigning probabilities directly to events—as areas under a density curve. Any
density curve has area exactly 1 underneath it, corresponding to total probability 1.

Example

4.25 Uniform random numbers.

The random number generator will spread its output uniformly across the
entire interval from 0 to 1 as we allow it to generate a long sequence of
numbers. The results of many trials are represented by the density curve of a
uniform distribution.

uniform distribution

This density curve appears in red in Figure 4.9. It has height 1 over the
interval from 0 to 1, and height 0 everywhere else. The area under the density
curve is 1: the area of a square with base 1 and height 1. The probability of any
event is the area under the density curve and above the event in question.

As Figure 4.9(a) illustrates, the probability that the random number
generator produces a number X between 0.3 and 0.7 is

P(0.3 ≤ X ≤ 0.72 = 0.4

because the area under the density curve and above the interval from 0.3 to 0.7
is 0.4. The height of the density curve is 1, and the area of a rectangle is the
product of height and length, so the probability of any interval of outcomes is
just the length of the interval.
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FIGURE 4.9
Assigning probabilities for generating a random number between 0 and 1, for Example
4.25. The probability of any interval of numbers is the area above the interval and under
the density curve.

Similarly,

P(X ≤ 0.5) = 0.5

P(X > 0.8) = 0.2

P(X ≤ 0.5 or X > 0.8) = 0.7

Notice that the last event consists of two nonoverlapping intervals, so the total
area above the event is found by adding two areas, as illustrated by Figure
4.9(b). This assignment of probabilities obeys all of our rules for probability.

USE YOUR KNOWLEDGE

4.48 Find the probability.

For the uniform distribution described in Example 4.25, find the
probability that X is between 0.2 and 0.7.

Probability as area under a density curve is a second important way of assigning
probabilities to events. Figure 4.10 illustrates this idea in general form. We call X
in Example 4.25 a continuous random variable because its values are not isolated
numbers but an entire interval of numbers.
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FIGURE 4.10
The probability distribution of a continuous random variable assigns probabilities as areas under
a density curve. The total area under any density curve is 1.

CONTINUOUS RANDOM VARIABLE

A continuous random variable X takes all values in an interval of numbers.
The probability distribution of X is described by a density curve. The
probability of any event is the area under the density curve and above the
values of X that make up the event.

The probability model for a continuous random variable assigns probabilities to
intervals of outcomes rather than to individual outcomes. In fact, all continuous
probability distributions assign probability 0 to every individual outcome.
Only intervals of values have positive probability. To see that this is true, consider
a specific outcome such as P(X = 0.8) in the context of Example 4.25. The
probability of any interval is the same as its length. The point 0.8 has no length, so
its probability is 0.

Although this fact may seem odd, it makes intuitive, as well as mathematical,
sense. The random number generator produces a number between 0.79 and 0.81
with probability 0.02. An outcome between 0.799 and 0.801 has probability 0.002.
A result between 0.799999 and 0.800001 has probability 0.000002. You see that as
we approach 0.8 the probability gets closer to 0.

To be consistent, the probability of an outcome exactly equal to 0.8 must be 0.
Because there is no probability exactly at X = 0.8, the two events {X > 0.8} and {X
≥ 0.8} have the same probability. We can ignore the distinction between > and ≥
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when finding probabilities for continuous (but not discrete) random variables.

Normal distributions as probability distributions

The density curves that are most familiar to us are the Normal curves. Because any
density curve describes an assignment of probabilities, Normal distributions are
probability distributions. Recall that N(μ, σ) is our shorthand for the Normal
distribution having mean μ and standard deviation σ In the language of random
variables, if X has the N(μ, σ) distribution, then the standardized variable

Z=X−μσ

is a standard Normal random variable having the distribution N(0, 1)

Example

4.26 Texting while driving.

parameter, statistic, p. 206

Texting while driving can be dangerous, but young people want to remain
connected. Suppose that 26% of teen drivers text while driving. If we take a
sample of 500 teen drivers, what percent would we expect to say that they text
while driving?12

The proportion p = 0.26 is a parameter that describes the population of teen
drivers. The proportion p^ of the sample who say that they text while driving
is a statistic used to estimate p The statistic p^ is a random variable because
repeating the SRS would give a different sample of 500 teen drivers and a
different value of p^.
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FIGURE 4.11
Probability in Example 4.26 as area under a Normal density curve.

The statistic p^ has approximately the N(0.26, 0.0196) distribution. The
mean 0.26 of this distribution is the same as the population parameter because
p^ is an unbiased estimate of p. The standard deviation is controlled mainly by
the size of the sample.

Normal distribution calculations, p. 63

What is the probability that the survey result differs from the truth about
the population by no more than 3 percentage points? We can use what we
learned about Normal distribution calculations to answer this question.
Because p = 0.26, the survey misses by no more than 3 percentage points if the
sample proportion is between 0.23 and 0.29.

Figure 4.11 shows this probability as an area under a Normal density curve.
You can find it by software or by standardizing and using Table A. From
Table A,

P(0.23≤p^≤0.29)=P(0.23−0.260.0196≤p^−0.260.0196≤0.29−0.260.0196)

= P (−1.53 ≤ Z ≤ 1.53)

= 0.9370 − 0.0630 = 0.8740

About 87% of the time, the sample p^ will be within 3 percentage points of the
parameter p.

We began this chapter with a general discussion of the idea of probability and
the properties of probability models. Two very useful specific types of probability
models are distributions of discrete and continuous random variables. In our study
of statistics we will employ only these two types of probability models.
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SECTION 4.3 Summary

A random variable is a variable taking numerical values determined by the
outcome of a random phenomenon. The probability distribution of a random
variable X tells us what the possible values of X are and how probabilities are
assigned to those values.

A random variable X and its distribution can be discrete or continuous.
A discrete random variable has possible values that can be given in an

ordered list. The probability distribution assigns each of these values a probability
between 0 and 1 such that the sum of all the probabilities is exactly 1. The
probability of any event is the sum of the probabilities of all the values that make
up the event.

A continuous random variable takes all values in some interval of numbers. A
density curve describes the probability distribution of a continuous random
variable. The probability of any event is the area under the curve and above the
values that make up the event.

Normal distributions are one type of continuous probability distribution.
You can picture a probability distribution by drawing a probability histogram

in the discrete case or by graphing the density curve in the continuous case.

SECTION 4.3 Exercises
For Exercise 4.46, see page 254; for Exercise 4.47, see page 256; and for Exercise 4.48, see page 258.

4.49 How many courses?

At a small liberal arts college, students can register for one to six courses. Let X be the number of courses
taken in the fall by a randomly selected student from this college. In a typical fall semester, 5% take one
course, 5% take two courses, 13% take three courses, 26% take four courses, 36% take five courses, and
15% take six courses. Let X be the number of courses taken in the fall by a randomly selected student from
this college. Describe the probability distribution of this random variable.

4.50 Make a graphical display.

Refer to the previous exercise. Use a probability histogram to provide a graphical description of the
distribution of X.

4.51 Find some probabilities.

Refer to Exercise 4.49.

(a) Find the probability that a randomly selected student takes three or fewer courses.

(b Find the probability that a randomly selected student takes four or five courses.

(c) Find the probability that a randomly selected student takes eight courses.

4.52 Use the uniform distribution.
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Suppose that a random variable X follows the uniform distribution described in Example 4.25 (page 257).
For each of the following events, find the probability and illustrate your calculations with a sketch of the
density curve similar to the ones in Figure 4.9 (page 258).

(a) The probability that X is less than 0.1.

(b) The probability that X is greater than or equal to 0.8.

(c) The probability that X is less than 0.7 and greater than 0.5.

(d) The probability that X is 0.5.

4.53 What’s wrong?

In each of the following scenarios, there is something wrong. Describe what is wrong and give a reason for
your answer.

(a) The probabilities for a discrete statistic always add to 1.

(b) A continuous random variable can take any value between 0 and 1.

(c) Normal distributions are discrete random variables.

4.54 Use of Twitter.

Suppose that the population proportion of Internet users who say that they use Twitter or another service to
post updates about themselves or to see updates about others is 19%.13 Think about selecting random
samples from a population in which 19% are Twitter users.

(a) Describe the sample space for selecting a single person.

(b) If you select three people, describe the sample space.

(c) Using the results of (b), define the sample space for the random variable that expresses the number of
Twitter users in the sample of size 3.

(d) What information is contained in the sample space for part (b) that is not contained in the sample space
for part (c)? Do you think this information is important? Explain your answer.

4.55 Use of Twitter.

Find the probabilities for parts (a), (b), and (c) of the previous exercise.

4.56 Households and families in government data.

In government data, a household consists of all occupants of a dwelling unit, while a family consists of two
or more persons who live together and are related by blood or marriage. So all families form households,
but some households are not families. Here are the distributions of household size and of family size in the
United States:

Number of persons 1 2 3 4 5 6 7
Household probability 0.27 0.33 0.16 0.14 0.06 0.03 0.01
Family Probability 0 0.44 0.22 0.20 0.09 0.03 0.02
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Make probability histograms for these two discrete distributions, using the same scales. What are the most
important differences between the sizes of households and families?

4.57 Discrete or continuous?

In each of the following situations decide whether the random variable is discrete or continuous and give a
reason for your answer.

(a) Your web page has five different links, and a user can click on one of the links or can leave the page.
You record the length of time that a user spends on the web page before clicking one of the links or leaving
the page.

(b) The number of hits on your web page.

(c) The yearly income of a visitor to your web page.

4.58 Texas hold ’em.

The game of Texas hold ’em starts with each player receiving two cards. Here is the probability
distribution for the number of aces in two-card hands:

Number of aces 0 1 2
Probability 0.8507 0.1448 0.0045

(a) Verify that this assignment of probabilities satisfies the requirement that the sum of the probabilities for
a discrete distribution must be 1.

(b) Make a probability histogram for this distribution.

(c) What is the probability that a hand contains at least one ace? Show two different ways to calculate this
probability.

4.59 Tossing two dice.

Some games of chance rely on tossing two dice. Each die has six faces, marked with 1, 2, . . . , 6 spots
called pips. The dice used in casinos are carefully balanced so that each face is equally likely to come up.
When two dice are tossed, each of the 36 possible pairs of faces is equally likely to come up. The outcome
of interest to a gambler is the sum of the pips on the two up-faces. Call this random variable X.

(a) Write down all 36 possible pairs of up-faces.

(b) If all pairs have the same probability, what must be the probability of each pair?

(c) Write the value of X next to each pair of up-faces and use this information with the result of (b) to give
the probability distribution of X. Draw a probability histogram to display the distribution.

(d) One bet available in the game called craps wins if a 7 or an 11 comes up on the next roll of two dice.
What is the probability of rolling a 7 or an 11 on the next roll?

(e) Several bets in craps lose if a 7 is rolled. If any outcome other than 7 occurs, these bets either win or
continue to the next roll. What is the probability that anything other than a 7 is rolled?

 4.60 Nonstandard dice.
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Nonstandard dice can produce interesting distributions of outcomes. You have two balanced, six-sided
dice. One is a standard die, with faces having 1, 2, 3, 4, 5, and 6 spots. The other die has three faces with 0
spots and three faces with 6 spots. Find the probability distribution for the total number of spots Y on the
up-faces when you roll these two dice.

4.61 Spell-checking software.

Spell-checking software catches “nonword errors,” which are strings of letters that are not words, as when
“the” is typed as “eth.” When undergraduates are asked to write a 250-word essay (without spell-
checking), the number X of nonword errors has the following distribution:

Value of X 0 1 2 3 4
Probability 0.1 0.3 0.3 0.2 0.1

(a) Sketch the probability distribution for this random variable.

(b) Write the event “at least one nonword error” in terms of X. What is the probability of this event?

(c) Describe the event X ≤ 2 in words. What is its probability? What is the probability that X < 2?

4.62 Find the probabilities.

Let the random variable X be a random number with the uniform density curve in Figure 4.9 (page 258).
Find the following probabilities:

(a) P(X ≥ 0.30)

(b) P(X = 0.30)

(c) P(0.30 < X < 1.30)

(d) P(0.20 ≤ X ≤ 0.25 or 0.7 ≤ X ≤ 0.92

(e) X is not in the interval 0.4 to 0.7

4.63 Uniform numbers between 0 and 2.

Many random number generators allow users to specify the range of the random numbers to be produced.
Suppose that you specify that the range is to be all numbers between 0 and 2. Call the random number
generated Y. Then the density curve of the random variable Y has constant height between 0 and 2, and
height 0 elsewhere.

(a) What is the height of the density curve between 0 and 2? Draw a graph of the density curve.

(b) Use your graph from (a) and the fact that probability is area under the curve to find P(Y ≤ 1.6).

(c) Find P(0.5 < Y < 1.7).

(d) Find P(Y ≥ 0.95).

4.64 The sum of two uniform random numbers.
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FIGURE 4.12
The density curve for the sum Y of two random numbers, for Exercise 4.64.

Generate two random numbers between 0 and 1 and take Y to be their sum. Then Y is a continuous random
variable that can take any value between 0 and 2. The density curve of Y is the triangle shown in Figure
4.12.

(a) Verify by geometry that the area under this curve is 1.

(b) What is the probability that Y is less than 1? (Sketch the density curve, shade the area that represents
the probability, then find that area. Do this for (c) also.)

(c) What is the probability that Y is greater than 0.6?

4.65 How many close friends?

How many close friends do you have? Suppose that the number of close friends adults claim to have varies
from person to person with mean μ = 9 and standard deviation σ = 2.4. An opinion poll asks this question
of an SRS of 1100 adults. We will see in the next chapter that in this situation the sample mean response x¯
has approximately the Normal distribution with mean 9 and standard deviation 0.0724. What is
P(8≤x¯≤10) the probability that the statistic x¯ estimates the parameter μ to within ±1?.

4.66 Normal approximation for a sample proportion.

A sample survey contacted an SRS of 700 registered voters in Oregon shortly after an election and asked
respondents whether they had voted. Voter records show that 56% of registered voters had actually voted.
We will see in the next chapter that in this situation the proportion p^ of the sample who voted has
approximately the Normal distribution with mean μ = 0.56 and standard deviation σ = 0.019.

(a) If the respondents answer truthfully, what is P(0.52≤p^≤0.60) This is the probability that the statistic p^
estimates the parameter 0.56 within plus or minus 0.04.

(b) In fact, 72% of the respondents said they had voted (p^=0.72). If respondents answer truthfully, what is
P(p^≥0.72)? This probability is so small that it is good evidence that some people who did not vote claimed
that they did vote.
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4.4 Means and Variances of Random Variables

When you complete this section, you will be able to

• Use a probability distribution to find the mean of a discrete random
variable.

• Apply the law of large numbers to describe the behavior of the sample
mean as the sample size increases.

• Find means using the rules for means of linear transformations, sums,
and differences.

• Use a probability distribution to find the variance and the standard
deviation of a discrete random variable.

• Find variances and standard deviations using the rules for variances and
standard deviations for linear transformations.

• Find variances and standard deviations using the rules for variances and
standard deviations for sums of and differences between two random
variables, for uncorrelated and for correlated random variables.

The probability histograms and density curves that picture the probability
distributions of random variables resemble our earlier pictures of distributions of
data. In describing data, we moved from graphs to numerical measures such as
means and standard deviations. Now we will make the same move to expand our
descriptions of the distributions of random variables. We can speak of the mean
winnings in a game of chance or the standard deviation of the randomly varying
number of calls a travel agency receives in an hour. In this section we will learn
more about how to compute these descriptive measures and about the laws they
obey.

The mean of a random variable

In Chapter 1 (page 31), we learned that the mean x¯ is the average of the
observations in a sample. Recall that a random variable X is a numerical outcome
of a random process. Think about repeating the random process many times and
recording the resulting values of the random variable. You can think of the value of
a random variable as the average of a very large sample where the relative
frequencies of the values are the same as their probabilities.

If we think of the random process as corresponding to the population, then the
mean of the random variable is a parameter of this population. Here is an example.
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Example

4.27 The Tri-State Pick 3 lottery.

Most states and Canadian provinces have government-sponsored lotteries.
Here is a simple lottery wager, from the Tri-State Pick 3 game that New
Hampshire shares with Maine and Vermont. You choose a three-digit number,
000 to 999. The state chooses a three-digit winning number at random and
pays you $500 if your number is chosen.

Because there are 1000 three-digit numbers, you have probability 1/1000 of
winning. Taking X to be the amount your ticket pays you, the probability
distribution of X is

Payoff X $0 $500
Probability 0.999 0.001

The random process consists of drawing a three-digit number. The population
consists of the numbers 000 to 999. Each of these possible outcomes is equally
likely in this example. In the setting of sampling in Chapter 3 (page 194), we
can view the random process as selecting an SRS of size 1 from the
population. The random variable X is 1 if the selected number is equal to the
one that you chose and is 0 if it is not.

What is your average payoff from many tickets? The ordinary average of
the two possible outcomes $0 and $500 is $250, but that makes no sense as the
average because $500 is much less likely than $0. In the long run you receive
$500 once in every 1000 tickets and $0 on the remaining 999 of 1000 tickets.
The long-run average payoff is

$50011000+$09991000=$0.50

or 50 cents. That number is the mean of the random variable X. (Tickets cost
$1, so in the long run the state keeps half the money you wager.)

If you play Tri-State Pick 3 several times, we would as usual call the mean of
the actual amounts you win x¯. The mean in Example 4.27 is a different quantity—
it is the long-run average winnings you expect if you play a very large number of
times.

USE YOUR KNOWLEDGE
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4.67 Find the mean of the probability distribution.

You toss a fair coin. If the outcome is heads, you win $5.00; if the
outcome is tails, you win nothing. Let X be the amount that you win in a
single toss of a coin. Find the probability distribution of this random
variable and its mean.

Just as probabilities are an idealized description of long-run proportions, the
mean of a probability distribution describes the long-run average outcome. We
can’t call this mean x¯, so we need a different symbol. The common symbol for
the mean of a probability distribution is μ the Greek letter mu. We used μ in
Chapter 1 for the mean of a Normal distribution, so this is not a new notation. We
will often be interested in several random variables, each having a different
probability distribution with a different mean.

mean μ

To remind ourselves that we are talking about the mean of X we often write μX
rather than simply μ. In Example 4.27, μX = $0.50. Notice that, as often happens,
the mean is not a possible value of X. You will often find the mean of a random
variable X called the expected value of X. This term can be misleading, for we
don’t necessarily expect one observation on X to be close to its expected value.

expected value

The mean of any discrete random variable is found just as in Example 4.27. It is
an average of the possible outcomes, but a weighted average in which each
outcome is weighted by its probability. Because the probabilities add to 1, we have
total weight 1 to distribute among the outcomes. An outcome that occurs half the
time has probability one-half and gets one-half the weight in calculating the mean.
Here is the general definition.

MEAN OF A DISCRETE RANDOM VARIABLE

Suppose that X is a discrete random variable whose distribution is

Value of X x1 x2 x3 … xk

Probability p1 p2 p3 … pk

To find the mean of X multiply each possible value by its probability, then add all the products:

μX = x1 p1 + x2 p2 + … + xk pk
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= ∑ xi pi

Example

4.28 The mean of equally likely first digits.

If first digits in a set of data all have the same probability, the probability
distribution of the first digit X is then

First digit X 1 2 3 4 5 6 7 8 9
Probability 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

The mean of this distribution is

μX=1×19+2×19+3×19+4×19+5×19

+6×19+7×19+8×19+9×19

=45×19=5

Suppose that the random digits in Example 4.28 had a different probability
distribution. In Example 4.12 (page 242) we described Benford’s law as a
probability distribution that describes first digits of numbers in many real
situations. Let’s calculate the mean for Benford’s law.

Example

4.29 The mean of first digits that follow Benford’s law.

Here is the distribution of the first digit for data that follow Benford’s law. We
use the letter V for this random variable to distinguish it from the one that we
studied in Example 4.28. The distribution of V is

First digit V 1 2 3 4 5 6 7 8 9
Probability 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046
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The mean of V is

μV = (1) (0.301) + (2) (0.176) + (3) (0.125) + (4) (0.097) + (5) (0.079) + (6)
(0.067) + (7) (0.058) + (8) (0.051) + (9) (0.046)

= 3.441

The mean reflects the greater probability of smaller first digits under Benford’s
law than when first digits 1 to 9 are equally likely.

Figure 4.13 locates the means of X and V on the two probability histograms.
Because the discrete uniform distribution of Figure 4.13(a) is symmetric, the mean
lies at the center of symmetry. We can’t locate the mean of the right-skewed
distribution of Figure 4.13(b) by eye—calculation is needed.

FIGURE 4.13
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Locating the mean of a discrete random variable on the probability histogram for (a) digits
between 1 and 9 chosen at random; (b) digits between 1 and 9 chosen from records that obey
Benford’s law.

What about continuous random variables? The probability distribution of a
continuous random variable X is described by a density curve. Chapter 1 (page 56)
showed how to find the mean of the distribution: it is the point at which the area
under the density curve would balance if it were made out of solid material. The
mean lies at the center of symmetric density curves such as the Normal curves.
Exact calculation of the mean of a distribution with a skewed density curve
requires advanced mathematics.14 The idea that the mean is the balance point of
the distribution applies to discrete random variables as well, but in the discrete case
we have a formula that gives us this point.

Statistical estimation and the law of large numbers

We would like to estimate the mean height μ of the population of all American
women between the ages of 18 and 24 years. This μ is the mean μX of the random
variable X obtained by choosing a young woman at random and measuring her
height. To estimate μ we choose an SRS of young women and use the sample mean
x¯ to estimate the unknown population mean μ. In the language of Section 3.4
(page 205), μ is a parameter and x¯ is a statistic.

sampling distributions, p. 208

Statistics obtained from probability samples are random variables because their
values vary in repeated sampling. The sampling distributions of statistics are just
the probability distributions of these random variables.

It seems reasonable to use x¯ to estimate μ An SRS should fairly represent the
population, so the mean x¯ of the sample should be somewhere near the mean μ of
the population. Of course, we don’t expect x¯ to be exactly equal to μ and we
realize that if we choose another SRS, the luck of the draw will probably produce a
different x¯.

If x¯ is rarely exactly right and varies from sample to sample, why is it
nonetheless a reasonable estimate of the population mean μ? We gave one answer
in Section 3.4: x¯ is unbiased and we can control its variability by choosing the
sample size. Here is another answer: if we keep on adding observations to our
random sample, the statistic x¯ is guaranteed to get as close as we wish to the
parameter μ and then stay that close. We have the comfort of knowing that if we
can afford to keep on measuring more women, eventually we will estimate the
mean height of all young women very accurately. This remarkable fact is called the
law of large numbers. It is remarkable because it holds for any population, not just
for some special class such as Normal distributions.
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LAW OF LARGE NUMBERS

Draw independent observations at random from any population with finite
mean μ. Decide how accurately you would like to estimate μ. As the number of
observations drawn increases, the mean x¯ of the observed values eventually
approaches the mean μ of the population as closely as you specified and then
stays that close.

The behavior of x¯ is similar to the idea of probability. In the long run, the
proportion of outcomes taking any value gets close to the probability of that value,
and the average outcome gets close to the distribution mean. Figure 4.1 (page 232)
shows how proportions approach probability in one example. Here is an example
of how sample means approach the distribution mean.

Example

4.30 Heights of young women.

The distribution of the heights of all young women is close to the Normal
distribution with mean 64.5 inches and standard deviation 2.5 inches. Suppose
that μ = 64.5 were exactly true.
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FIGURE 4.14
The law of large numbers in action. As we take more observations, the sample mean
always approaches the mean of the population.

Figure 4.14 shows the behavior of the mean height x¯ of n women chosen
at random from a population whose heights follow the N(64.5, 2.5)
distribution. The graph plots the values of x¯ as we add women to our sample.
The first woman drawn had height 64.21 inches, so the line starts there. The
second had height 64.35 inches, so for n = 2 the mean is

x¯=64.21+64.352=64.28

This is the second point on the line in the graph.
At first, the graph shows that the mean of the sample changes as we take

more observations. Eventually, however, the mean of the observations gets
close to the population mean μ = 64.5 and settles down at that value. The law
of large numbers says that this always happens.

USE YOUR KNOWLEDGE

4.68 Use the Law of Large Numbers applet.
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The Law of Large Numbers applet animates a graph like Figure 4.14 for
rolling dice. Use it to better understand the law of large numbers by
making a similar graph.

The mean μ of a random variable is the average value of the variable in two
senses. By its definition, μ is the average of the possible values, weighted by their
probability of occurring. The law of large numbers says that μ is also the long-run
average of many independent observations on the variable. The law of large
numbers can be proved mathematically starting from the basic laws of probability.

Thinking about the law of large numbers

The law of large numbers says broadly that the average results of many
independent observations are stable and predictable. The gamblers in a casino may
win or lose, but the casino will win in the long run because the law of large
numbers says what the average outcome of many thousands of bets will be. An
insurance company deciding how much to charge for life insurance and a fast-food
restaurant deciding how many beef patties to prepare also rely on the fact that
averaging over many individuals produces a stable result. It is worth the effort to
think a bit more closely about so important a fact.

The “law of small numbers”

Both the rules of probability and the law of large numbers describe the regular
behavior of chance phenomena in the long run. Psychologists have discovered that
our intuitive understanding of randomness is quite different from the true laws of
chance.15 For example, most people believe in an incorrect “law of small
numbers.” That is, we expect even short sequences of random events to show the
kind of average behavior that in fact appears only in the long run.

Some teachers of statistics begin a course by asking students to toss a coin 50
times and bring the sequence of heads and tails to the next class. The teacher then
announces which students just wrote down a random-looking sequence rather than
actually tossing a coin. The faked tosses don’t have enough “runs” of consecutive
heads or consecutive tails. Runs of the same outcome don’t look random to us but
are in fact common. For example, the probability of a run of three or more
consecutive heads or tails in just 10 tosses is greater than 0.8.16 The runs of
consecutive heads or consecutive tails that appear in real coin tossing (and that are
predicted by the mathematics of probability) seem surprising to us. Because we
don’t expect to see long runs, we may conclude that the coin tosses are not
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independent or that some influence is disturbing the random behavior of the coin.

Example

4.31 The “hot hand” in basketball.

Belief in the law of small numbers influences behavior. If a basketball player
makes several consecutive shots, both the fans and her teammates believe that
she has a “hot hand” and is more likely to make the next shot. This is doubtful.

Careful study suggests that runs of baskets made or missed are no more
frequent in basketball than would be expected if each shot were independent of
the player’s previous shots. Baskets made or missed are just like heads and
tails in tossing a coin. (Of course, some players make 30% of their shots in the
long run and others make 50%, so a coin-toss model for basketball must allow
coins with different probabilities of a head.) Our perception of hot or cold
streaks simply shows that we don’t perceive random behavior very well.17

Our intuition doesn’t do a good job of distinguishing random behavior from
systematic influences. This is also true when we look at data. We need statistical
inference to supplement exploratory analysis of data because probability
calculations can help verify that what we see in the data is more than a random
pattern.

How large is a large number?

The law of large numbers says that the actual mean outcome of many trials gets
close to the distribution mean μ as more trials are made. It doesn’t say how many
trials are needed to guarantee a mean outcome close to μ. That depends on the
variability of the random outcomes. The more variable the outcomes, the more
trials are needed to ensure that the mean outcome x¯ is close to the distribution
mean μ. Casinos understand this: the outcomes of games of chance are variable
enough to hold the interest of gamblers. Only the casino plays often enough to rely
on the law of large numbers. Gamblers get entertainment; the casino has a
business.

517



BEYOND THE BASICS

More laws of large numbers
The law of large numbers is one of the central facts about probability. It helps
us understand the mean μ. of a random variable. It explains why gambling
casinos and insurance companies make money. It assures us that statistical
estimation will be accurate if we can afford enough observations. The basic
law of large numbers applies to independent observations that all have the
same distribution. Mathematicians have extended the law to many more
general settings. Here are two of these.

Is there a winning system for gambling? Serious gamblers often follow a
system of betting in which the amount bet on each play depends on the
outcome of previous plays. You might, for example, double your bet on each
spin of the roulette wheel until you win—or, of course, until your fortune is
exhausted. Such a system tries to take advantage of the fact that you have a
memory even though the roulette wheel does not. Can you beat the odds with a
system based on the outcomes of past plays? No. Mathematicians have
established a stronger version of the law of large numbers that says that, if you
do not have an infinite fortune to gamble with, your long-run average winnings
μ remain the same as long as successive trials of the game (such as spins of the
roulette wheel) are independent.

What if observations are not independent? You are in charge of a process
that manufactures video screens for computer monitors. Your equipment
measures the tension on the metal mesh that lies behind each screen and is
critical to its image quality. You want to estimate the mean tension μ for the
process by the average x¯ of the measurements. Alas, the tension
measurements are not independent. If the tension on one screen is a bit too
high, the tension on the next is more likely to also be high. Many real-world
processes are like this—the process stays stable in the long run, but two
observations made close together are likely to both be above or both be below
the long-run mean. Again the mathematicians come to the rescue: as long as
the dependence dies out fast enough as we take measurements farther and
farther apart in time, the law of large numbers still holds.

Rules for means

You are studying flaws in the painted finish of refrigerators made by your firm.
Dimples and paint sags are two kinds of surface flaw. Not all refrigerators have the
same number of dimples: many have none, some have one, some two, and so on.
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You ask for the average number of imperfections on a refrigerator. The inspectors
report finding an average of 0.7 dimples and 1.4 sags per refrigerator. How many
total imperfections of both kinds (on the average) are there on a refrigerator?
That’s easy: if the average number of dimples is 0.7 and the average number of
sags is 1.4, then counting both gives an average of 0.7 + 1.4 = 2.1 flaws.

In more formal language, the number of dimples on a refrigerator is a random
variable X that varies as we inspect one refrigerator after another. We know only
that the mean number of dimples is μX = 0.7. The number of paint sags is a second
random variable Y having mean μY = 1.4. (As usual, the subscripts keep straight
which variable we are talking about.) The total number of both dimples and sags is
another random variable, the sum X + Y. Its mean μX + Y is the average number of
dimples and sags together. It is just the sum of the individual means μX and μY.
That’s an important rule for how means of random variables behave.

Here’s another rule. The crickets living in a field have mean length 1.2 inches.
What is the mean in centimeters? There are 2.54 centimeters in an inch, so the
length of a cricket in centimeters is 2.54 times its length in inches. If we multiply
every observation by 2.54, we also multiply their average by 2.54. The mean in
centimeters must be 2.54 × 1.2, or about 3.05 centimeters. More formally, the
length in inches of a cricket chosen at random from the field is a random variable X
with mean μX. The length in centimeters is 2.54X, and this new random variable
has mean 2.54μX.

The point of these examples is that means behave like averages. Here are the
rules we need.

RULES FOR MEANS OF LINEAR TRANSFORMATIONS,
SUMS, AND DIFFERENCES

Rule 1. If X is a random variable and a and b are fixed numbers, then

μa + bX = a + bμX

Rule 2. If X and Y are random variables, then

μX + Y = μX + μY

Rule 3. If X and Y are random variables, then

μX − Y = μX − μY

linear transformation, p. 45
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Note that a + bX is a linear transformation of the random variable X.

Example

4.32 How many courses?

In Exercise 4.49 (page 261) you described the probability distribution of the
number of courses taken in the fall by students at a small liberal arts college.
Here is the distribution:

Courses in the fall 1 2 3 4 5 6
Probability 0.05 0.05 0.13 0.26 0.36 0.15

For the spring semester, the distribution is a little different.

Courses in the spring 1 2 3 4 5 6
Probability 0.06 0.08 0.15 0.25 0.34 0.12

For a randomly selected student, let X be the number of courses taken in the
fall semester, and let Y be the number of courses taken in the spring semester.
The means of these random variables are

μX = (1) (0.05) + (2) (0.05) + (3) (0.13) + (4) (0.26) + (5) (0.36) + (6) (0.15)

= 4.28

μY = (1) (0.06) + (2) (0.08) + (3) (0.15) + (4) (0.25) + (5) (0.34) + (6) (0.12)

= 4.09

The mean course load for the fall is 4.28 courses and the mean course load for
the spring is 4.09 courses. We assume that these distributions apply to students
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who earned credit for courses taken in the fall and the spring semesters. The
mean of the total number of courses taken for the academic year is X + Y.
Using Rule 2, we calculate the mean of the total number of courses:

μZ = μX + μY

= 4.28 + 4.09 = 8.37

Note that it is not possible for a student to take 8.37 courses in an academic
year. This number is the mean of the probability distribution.

Example

4.33 What about credit hours?

In the previous exercise, we examined the number of courses taken in the fall
and in the spring at a small liberal arts college. Suppose that we were
interested in the total number of credit hours earned for the academic year. We
assume that for each course taken at this college, three credit hours are earned.
Let T be the mean of the distribution of the total number of credit hours earned
for the academic year. What is the mean of the distribution of T? To find the
answer, we can use Rule 1 with a = 0 and b = 3. Here is the calculation:

μT = μa + bZ

= a + b μZ

= 0 + (3) (8.37) = 25.11

The mean of the distribution of the total number of credit hours earned is
25.11.

USE YOUR KNOWLEDGE

4.69 Find μY.

The random variable X has mean μX = 8. If Y = 12 + 7X, what is μY?
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4.70 Find μW.

The random variable U has mean μU = 22, and the random variable V
has mean μV = 22. If W + 0.5U + 0.5V, find μW.

The variance of a random variable

The mean is a measure of the center of a distribution. A basic numerical
description requires in addition a measure of the spread or variability of the
distribution. The variance and the standard deviation are the measures of spread
that accompany the choice of the mean to measure center. Just as for the mean, we
need a distinct symbol to distinguish the variance of a random variable from the
variance s2 of a data set. We write the variance of a random variable X as σX2.
Once again the subscript reminds us which variable we have in mind. The
definition of the variance σX2 of a random variable is similar to the definition of
the sample variance s2 given in Chapter 1. That is, the variance is an average value
of the squared deviation (X − μX)2 of the variable X from its mean μX. As for the
mean, the average we use is a weighted average in which each outcome is
weighted by its probability in order to take account of outcomes that are not
equally likely. Calculating this weighted average is straightforward for discrete
random variables but requires advanced mathematics in the continuous case. Here
is the definition.

VARIANCE OF A DISCRETE RANDOM VARIABLE

Suppose that X is a discrete random variable whose distribution is

Value of X x1 x2 x3 … xk

Probability p1 p2 p3 … pk

and that μX is the mean of X. The variance of X is

σX2=(x1−μX)2p1+(x2−μX)2p2+…+(xk−μX)2pk

= ∑ (xi − μX)2pi

The standard deviation σX of X is the square root of the variance.
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Example

4.34 Find the mean and the variance.

In Example 4.32 we saw that the distribution of the number X of fall courses
taken by students at a small liberal arts college is

Courses in the fall 1 2 3 4 5 6
Probability 0.05 0.05 0.13 0.26 0.36 0.15

We can find the mean and variance of X by arranging the calculation in the
form of a table. Both μX and σX2 are sums of columns in this table.

xi pi xi pi (xi − μx)2 pi

1 0.05 0.05 (1 − 4.28)2(0.05) = 0.53792

2 0.05 0.10 (2 − 4.28)2(0.05) = 0.25992

3 0.13 0.39 (3 − 4.28)2(0.13) = 0.21299

4 0.26 1.04 (4 − 4.28)2(0.26) = 0.02038

5 0.36 1.80 (5 − 4.28)2(0.36) = 0.18662

6 0.15 0.90 (6 − 4.28)2(0.15) = 0.44376
μX = 4.28 σX2=1.662

We see that σX2=1.662 The standard deviation of X is σX=1.662=1.289. The
standard deviation is a measure of the variability of the number of fall courses
taken by the students at the small liberal arts college. As in the case of
distributions for data, the standard deviation of a probability distribution is
easiest to understand for Normal distributions.

USE YOUR KNOWLEDGE

4.71 Find the variance and the standard deviation.

The random variable X has the following probability distribution:

Value of X $0 3
Probability 0.4 0.6

Find the variance σX2 and the standard deviation σX for this random
variable.
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Rules for variances and standard deviations

What are the facts for variances that parallel Rules 1, 2, and 3 for means? The
mean of a sum of random variables is always the sum of their means, but this
addition rule is true for variances only in special situations. To understand why,
take X to be the percent of a family’s after-tax income that is spent, and take Y to
be the percent that is saved. When X increases, Y decreases by the same amount.
Though X and Y may vary widely from year to year, their sum X + Y is always
100% and does not vary at all. It is the association between the variables X and Y
that prevents their variances from adding.

If random variables are independent, this kind of association between their
values is ruled out and their variances do add. Two random variables X and Y are
independent if knowing that any event involving X alone did or did not occur tells
us nothing about the occurrence of any event involving Y alone.

independence

Probability models often assume independence when the random variables
describe outcomes that appear unrelated to each other. You should ask in each
instance whether the assumption of independence seems reasonable.

When random variables are not independent, the variance of their sum depends
on the correlation between them as well as on their individual variances. In
Chapter 2, we met the correlation r between two observed variables measured on
the same individuals. We defined (page 104) the correlation r as an average of the
products of the standardized x and y observations. The correlation between two
random variables is defined in the same way, once again using a weighted average
with probabilities as weights. We won’t give the details—it is enough to know that
the correlation between two random variables has the same basic properties as the
correlation r calculated from data. We use ρ, the Greek letter rho, for the
correlation between two random variables. The correlation ρ is a number between
−1 and 1 that measures the direction and strength of the linear relationship between
two variables. The correlation between two independent random variables is
zero.

correlation

Returning to family finances, if X is the percent of a family’s after-tax income
that is spent and Y is the percent that is saved, then Y = 100 − X. This is a perfect
linear relationship with a negative slope, so the correlation between X and Y is ρ =
−1. With the correlation at hand, we can state the rules for manipulating variances.
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RULES FOR VARIANCES AND STANDARD DEVIATIONS OF
LINEAR TRANSFORMATIONS, SUMS, AND DIFFERENCES

Rule 1. If X is a random variable and a and b are fixed numbers, then

σa+bX2=b2σX2

Rule 2. If X and Y are independent random variables, then

σX+Y2=σX2+σY2

σX−Y2=σX2+σY2

This is the addition rule for variances of independent random variables.

Rule 3. If X and Y have correlation σ, then

σX+Y2=σX2+σY2+2ρσXσY

σX−Y2=σX2+σY2−2ρσXσY

This is the general addition rule for variances of random variables.

To find the standard deviation, take the square root of the variance.

Because a variance is the average of squared deviations from the mean,
multiplying X by a constant b multiplies σX2 by the square of the constant. Adding
a constant a to a random variable changes its mean but does not change its
variability. The variance of X + a is therefore the same as the variance of X.
Because the square of −1 is 1, the addition rule says that the variance of a
difference between independent random variables is the sum of the variances. For
independent random variables, the difference X − Y is more variable than either X
or Y alone because variations in both X and Y contribute to variation in their
difference.

As with data, we prefer the standard deviation to the variance as a measure of
the variability of a random variable. Rule 2 for variances implies that standard
deviations of independent random variables do not add. To combine standard
deviations, use the rules for variances. For example, the standard deviations of 2X
and −2X are both equal to 2σXρ because this is the square root of the variance
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4σX2.

Example

4.35 Payoff in the Tri-State Pick 3 lottery.

The payoff X of a $1 ticket in the Tri-State Pick 3 game is $500 with
probability 1/1000 and 0 the rest of the time. Here is the combined calculation
of mean and variance:

xi pi xi pi (xi − μx)2 pi

0 0.999 0 (0 − 0.05)2(0.999) = 0.24975

500 0.001 0.5 (500 − 0.05)2(0.001) = 249.50025
μX = 0.5 σX2=249.75

The mean payoff is 50 cents. The standard deviation is σX=249.75=$15.80. It
is usual for games of chance to have large standard deviations because large
variability makes gambling exciting.

If you buy a Pick 3 ticket, your winnings are W = X − 1 because the dollar you
paid for the ticket must be subtracted from the payoff. Let’s find the mean and
variance for this random variable.

Example

4.36 Winnings in the Tri-State Pick 3 lottery.

By the rules for means, the mean amount you win is

μW = μX − 1 = −$0.50

That is, you lose an average of 50 cents on a ticket. The rules for variances
remind us that the variance and standard deviation of the winnings W = X − 1
are the same as those of X. Subtracting a fixed number changes the mean but
not the variance.
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Suppose now that you buy a $1 ticket on each of two different days. The
payoffs X and Y on the two tickets are independent because separate drawings are
held each day. Your total payoff is X + Y. Let’s find the mean and standard
deviation for this payoff.

Example

4.37 Two tickets.

The mean for the payoff for the two tickets is

μX + Y = μX + μY = $0.50 + $0.50 = $1.00

Because X and Y are independent, the variance of X + Y is

σX+Y2=σX2+σY2=249.75+249.75=499.5

The standard deviation of the total payoff is

σX+Y=499.5=$22.35

This is not the same as the sum of the individual standard deviations, which is
$15.80 + $15.80 = $31.60. Variances of independent random variables add;
standard deviations do not.

When we add random variables that are correlated, we need to use the
correlation for the calculation of the variance, but not for the calculation of the
mean. Here is an example.

Example

4.38 Utility bills.

Consider a household where the monthly bill for natural gas averages $125
with a standard deviation of $75, while the monthly bill for electricity averages
$174 with a standard deviation of $41. The correlation between the two bills is
−0.55.
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Let’s compute the mean and standard deviation of the sum of the natural-
gas bill and the electricity bill. We let X stand for the natural-gas bill and Y
stand for the electricity bill. Then the total is X + Y. Using the rules for means,
we have

μX + Y = μX + μY = 125 + 174 = 299

To find the standard deviation we first find the variance and then take the
square root to determine the standard deviation. From the general addition rule
for variances of random variables,

σX+Y2=σX2+σY2+2ρσXσY

= (75)2 + (41)2 + (2) (−0.55) (75) (41)

= 3923.5

Therefore, the standard deviation is

σX+Y=3923.5=63

The total of the natural-gas bill and the electricity bill has mean $299 and
standard deviation $63.

The negative correlation in Example 4.38 is due to the fact that, in this
household, natural gas is used for heating and electricity is used for air-
conditioning. So, when it is warm, the electricity charges are high and the natural-
gas charges are low. When it is cool, the reverse is true. This causes the standard
deviation of the sum to be less than it would be if the two bills were uncorrelated
(see Exercise 4.83, on page 281).

There are situations where we need to combine several of our rules to find
means and standard deviations. Here is an example.

Example

4.39 Calcium intake.

To get enough calcium for optimal bone health, tablets containing calcium are
often recommended to supplement the calcium in the diet. One study designed
to evaluate the effectiveness of a supplement followed a group of young
people for seven years. Each subject was assigned to take either a tablet
containing 1000 milligrams of calcium per day (mg/d) or a placebo tablet that
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was identical except that it had no calcium.18 A major problem with studies
like this one is compliance: subjects do not always take the treatments
assigned to them.

In this study, the compliance rate declined to about 47% toward the end of
the seven-year period. The standard deviation of compliance was 22%.
Calcium from the diet averaged 850 mg/d with a standard deviation of 330
mg/d. The correlation between compliance and dietary intake was 0.68. Let’s
find the mean and standard deviation for the total calcium intake. We let S
stand for the intake from the supplement and D stand for the intake from the
diet.

We start with the intake from the supplement. Since the compliance is 47%
and the amount in each tablet is 1000 mg, the mean for S is

μS = 1000(0.47) = 470

Since the standard deviation of the compliance is 22%, the variance of S is

σS2=10002(0.22)2=48,400

The standard deviation is

σS=48,400=220

Be sure to verify which rules for means and variances are used in these
calculations.

We can now find the mean and standard deviation for the total intake. The
mean is

μS + D = μS + μD = 470 + 850 = 1320

and the variance is

σS+D2=σS2+σD2+2ρσSσD=(220)2+(330)2+2(0.68)(220)(330)=256,036

and the standard deviation is

σS+D=256,036=506

The mean of the total calcium intake is 1320 mg/d and the standard deviation
is 506 mg/d.

The correlation in this example illustrates an unfortunate fact about compliance
and having an adequate diet. Some of the subjects in this study have diets that
provide an adequate amount of calcium while others do not. The positive
correlation between compliance and dietary intake tells us that those who have
relatively high dietary intakes are more likely to take the assigned supplements. On
the other hand, those subjects with relatively low dietary intakes, the ones who
need the supplement the most, are less likely to take the assigned supplements.
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Section 4.4 Summary

The probability distribution of a random variable X, like a distribution of data, has
a mean μX and a standard deviation σX.

The law of large numbers says that the average of the values of X observed in
many trials must approach μ.

The mean μ is the balance point of the probability histogram or density curve.
If X is discrete with possible values xi having probabilities pi, the mean is the
average of the values of X, each weighted by its probability:

μX = x1 p1 + x2 p2 + … + xk pk

The variance σX2 is the average squared deviation of the values of the variable
from their mean. For a discrete random variable,

σX2=(x1−μX)2p1+(x2−μX)2p2+…+(xk−μX)2pk

The standard deviation ρX is the square root of the variance. The standard
deviation measures the variability of the distribution about the mean. It is easiest to
interpret for Normal distributions.

The mean and variance of a continuous random variable can be computed
from the density curve, but to do so requires more advanced mathematics.

The means and variances of random variables obey the following rules. If a and
b are fixed numbers, then

μa + bX = a + bμX

σa+bX2=b2σX2

If X and Y are any two random variables having correlation ρ then

μX + Y = μX + μY

μX − Y = μX − μY

σX+Y2=σX2+σY2+2ρσXσY

σX−Y2=σX2+σY2−2ρσXσY

If X and Y are independent, then ρ = 0 In this case,

σX+Y2=σX2+σY2

σX−Y2=σX2+σY2

To find the standard deviation, take the square root of the variance.

SECTION 4.4 Exercises
For Exercise 4.67, see page 265; for Exercise 4.68, see page 269; for Exercises 4.69 and 4.70, see page
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273; and for Exercise 4.71, see page 274.

4.72 Find the mean of the random variable.

A random variable X has the following distribution.

X −1 0 1 2
Probability 0.3 0.2 0.2 0.3

Find the mean for this random variable. Show your work.

4.73 Explain what happens when the sample size gets large.

Consider the following scenarios: (1) You take a sample of two observations on a random variable and
compute the sample mean, (2) you take a sample of 100 observations on the same random variable and
compute the sample mean, (3) you take a sample of 1000 observations on the same random variable and
compute the sample mean. Explain in simple language how close you expect the sample mean to be to the
mean of the random variable as you move from Scenario 1 to Scenario 2 to Scenario 3.

4.74 Find some means.

Suppose that X is a random variable with mean 20 and standard deviation 5. Also suppose that Y is a
random variable with mean 40 and standard deviation 10. Find the mean of the random variable Z for each
of the following cases. Be sure to show your work.

(a) Z = 2 + 10X.

(b) Z = 10X − 2.

(c) Z = X + Y.

(d) Z = X − Y.

(e) Z = −3X −2Y.

4.75 Find the variance and the standard deviation.

A random variable X has the following distribution.

X −1 0 1 2
Probability 0.3 0.2 0.2 0.3

Find the variance and the standard deviation for this random variable. Show your
work.

4.76 Find some variances and standard deviations.

Suppose that X is a random variable with mean 20 and standard deviation 5. Also suppose that Y is a
random variable with mean 40 and standard deviation 10. Find the variance and standard deviation of the
random variable Z for each of the following cases. Be sure to show your work.
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(a) Z = 2 + 10X.

(b) Z = 10X − 2.

(c) Z = X + Y.

(d) Z = X − Y.

(e) Z = −3X −2Y.

4.77 What happens if the correlation is not zero?

Suppose that X is a random variable with mean 20 and standard deviation 5. Also suppose that Y is a
random variable with mean 40 and standard deviation 10. Assume that the correlation between X and Y is
0.5. Find the mean of the random variable Z for each of the following cases. Be sure to show your work.

(a) Z = 2 + 10X.

(b) Z = 10X − 2.

(c) Z = X + Y.

(d) Z = X − Y.

(e) Z = −3X −2Y.

4.78 What’s wrong?

In each of the following scenarios, there is something wrong. Describe what is wrong and give a reason for
your answer.

(a) If you toss a fair coin three times and get heads all three times, then the probability of getting a tail on
the next toss is much greater than one-half.

(b) If you multiply a random variable by 10, then the mean is multiplied by 10 and the variance is
multiplied by 10.

(c) When finding the mean of the sum of two random variables, you need to know the correlation between
them.

4.79 Servings of fruits and vegetables.

The following table gives the distribution of the number of servings of fruits and
vegetables consumed per day in a population.

Number of servings X 0 1 2 3 4 5
Probability 0.3 0.1 0.1 0.2 0.2 0.1

Find the mean for this random variable.

4.80 Mean of the distribution for the number of aces.

In Exercise 4.58 (page 262) you examined the probability distribution for the number of aces when you are
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dealt two cards in the game of Texas hold ’em. Let X represent the number of aces in a randomly selected
deal of two cards in this game. Here is the probability distribution for the random variable X:

Value of X 0 1 2
Probability 0.8507 0.1448 0.0045

Find μX, the mean of the probability distribution of X.

4.81 Standard deviation of the number of aces.

Refer to Exercise 4.80. Find the standard deviation of the number of aces.

4.82 Standard deviation for fruits and vegetables.

Refer to Exercise 4.79. Find the variance and the standard deviation for the distribution of the number of
servings of fruits and vegetables.

4.83 Suppose that the correlation is zero.

Refer to Example 4.38 (page 277).

(a) Recompute the standard deviation for the total of the natural-gas bill and the electricity bill assuming
that the correlation is zero.

(b) Is this standard deviation larger or smaller than the standard deviation computed in Example 4.38?
Explain why.

4.84 Find the mean of the sum.

Figure 4.12 (page 263) displays the density curve of the sum Y = X1 + X2 of two independent random
numbers, each uniformly distributed between 0 and 1.

(a) The mean of a continuous random variable is the balance point of its density curve. Use this fact to find
the mean of Y from Figure 4.12.

(b) Use the same fact to find the means of X1 and X2. (They have the density curve pictured in Figure 4.9,
page 258.) Verify that the mean of Y is the sum of the mean of X1 and the mean of X2.

4.85 Calcium supplements and calcium in the diet.

Refer to Example 4.39 (page 278). Suppose that people who have high intakes of calcium in their diets are
more compliant than those who have low intakes. What effect would this have on the calculation of the
standard deviation for the total calcium intake? Explain your answer.

 4.86 Toss a four-sided die twice.

Role-playing games like Dungeons & Dragons use many different types of dice. Suppose that a four-sided
die has faces marked 1, 2, 3, and 4. The intelligence of a character is determined by rolling this die twice
and adding 1 to the sum of the spots. The faces are equally likely and the two rolls are independent. What
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is the average (mean) intelligence for such characters? How spread out are their intelligences, as measured
by the standard deviation of the distribution?

4.87 Means and variances of sums.

The rules for means and variances allow you to find the mean and variance of a sum of random variables
without first finding the distribution of the sum, which is usually much harder to do.

(a) A single toss of a balanced coin has either 0 or 1 head, each with probability 1/2. What are the mean
and standard deviation of the number of heads?

(b) Toss a coin four times. Use the rules for means and variances to find the mean and standard deviation
of the total number of heads.

(c) Example 4.23 (page 255) finds the distribution of the number of heads in four tosses. Find the mean and
standard deviation from this distribution. Your results in parts (b) and (c) should agree.

4.88 What happens when the correlation is 1?

We know that variances add if the random variables involved are uncorrelated (ρ = 0), but not otherwise.
The opposite extreme is perfect positive correlation (ρ = 1). Show by using the general addition rule for
variances that in this case the standard deviations add. That is, σX + Y + σX + σY if ρXY = 1.

4.89 Will you assume independence?

In which of the following games of chance would you be willing to assume independence of X and Y in
making a probability model? Explain your answer in each case.

(a) In blackjack, you are dealt two cards and examine the total points X on the cards (face cards count 10
points). You can choose to be dealt another card and compete based on the total points Y on all three cards.

(b) In craps, the betting is based on successive rolls of two dice. X is the sum of the faces on the first roll,
and Y the sum of the faces on the next roll.

4.90 Transform the distribution of heights from centimeters to inches.

A report of the National Center for Health Statistics says that the heights of 20-year-old men have mean
176.8 centimeters (cm) and standard deviation 7.2 cm. There are 2.54 centimeters in an inch. What are the
mean and standard deviation in inches?

Insurance.

The business of selling insurance is based on probability and the law of large
numbers. Consumers buy insurance because we all face risks that are unlikely but
carry high cost. Think of a fire destroying your home. So we form a group to share
the risk: we all pay a small amount, and the insurance policy pays a large amount
to those few of us whose homes burn down. The insurance company sells many
policies, so it can rely on the law of large numbers. Exercises 4.91 to 4.94 explore
aspects of insurance.
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4.91 Fire insurance.

An insurance company looks at the records for millions of homeowners and sees that the mean loss from
fire in a year is μ = $300 per person. (Most of us have no loss, but a few lose their homes. The $300 is the
average loss.) The company plans to sell fire insurance for $300 plus enough to cover its costs and profit.
Explain clearly why it would be stupid to sell only 10 policies. Then explain why selling thousands of such
policies is a safe business.

4.92 Mean and standard deviation for 10 and for 12 policies.

In fact, the insurance company sees that in the entire population of homeowners, the mean loss from fire is
μ = $300 and the standard deviation of the loss is σ = $400 What are the mean and standard deviation of
the average loss for 10 policies? (Losses on separate policies are independent.) What are the mean and
standard deviation of the average loss for 12 policies?

4.93 Life insurance.

Assume that a 25-year-old man has these probabilities of dying during the next five years:

Age at death 25 26 27 28 29
Probability 0.00039 0.00044 0.00051 0.00057 0.00060

(a) What is the probability that the man does not die in the next five years?

(b) An online insurance site offers a term insurance policy that will pay $100,000 if a 25-year-old man dies
within the next five years. The cost is $175 per year. So the insurance company will take in $875 from this
policy if the man does not die within five years. If he does die, the company must pay $100,000. Its loss
depends on how many premiums the man paid, as follows:

Age at death 25 26 27 28 29
Probability $99,825 $99,650 $99,475 $99,300 $99,125

What is the insurance company’s mean cash intake from such polices?

4.94 Risk for one versus thousands of life insurance policies.

It would be quite risky for you to insure the life of a 25-year-old friend under the terms of Exercise 4.93.
There is a high probability that your friend would live and you would gain $875 in premiums. But if he
were to die, you would lose almost $100,000. Explain carefully why selling insurance is not risky for an
insurance company that insures many thousands of 25-year-old men.
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4.5 General Probability Rules

When you complete this section, you will be able to

• Apply the five rules of probability.

• Apply the general addition rule for unions of two or more events.

• Find conditional probabilities.

• Apply the multiplication rule.

• Use a tree diagram to find probabilities.

• Use Bayes’s rule to find probabilities.

• Determine whether or not two events that both have positive probability
are independent.

Our study of probability has concentrated on random variables and their
distributions. Now we return to the laws that govern any assignment of
probabilities. The purpose of learning more laws of probability is to be able to give
probability models for more complex random phenomena. We have already met
and used five rules.

PROBABILITY RULES

Rule 1. 0 ≤ P(A) ≤ 1 for any event A

Rule 2.P(S) = 1

Rule 3. Addition rule: If A and B are disjoint events, then

P(A or B) = P(A) + P(B)

Rule 4. Complement rule: For any event A

P(Ac) = 1 − P(A)

Rule 5. Multiplication rule: If A and B are independent events, then

P(A and B) = P(A) P(B)

General addition rules
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Probability has the property that if A and B are disjoint events, then P(A or B) =
P(A) + P(B). What if there are more than two events, or if the events are not
disjoint? These circumstances are covered by more general addition rules for
probability.

UNION

The union of any collection of events is the event that at least one of the
collection occurs.

For two events A and B the union is the event {A or B} that A or B or both
occur. From the addition rule for two disjoint events we can obtain rules for more
general unions. Suppose first that we have several events—say A, B and C—that
are disjoint in pairs. That is, no two can occur simultaneously. The Venn diagram
in Figure 4.15 illustrates three disjoint events. The addition rule for two disjoint
events extends to the following law.

ADDITION RULE FOR DISJOINT EVENTS

If events A, B and C are disjoint in the sense that no two have any outcomes in
common, then

P(one or more of A, B, C) = P(A) + P(B) + P(C)

This rule extends to any number of disjoint events.

FIGURE 4.15
The addition rule for disjoint events: P(A or B or C) = P(A) + P(B) + P(C) when events A, B,
and C are disjoint.
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Example

4.40 Probabilities as areas.

Generate a random number X between 0 and 1. What is the probability that the
first digit after the decimal point will be odd? The random number X is a
continuous random variable whose density curve has constant height 1
between 0 and 1 and is 0 elsewhere. The event that the first digit of X is odd is
the union of five disjoint events. These events are

0.10 ≤ X < 0.20

0.30 ≤ X < 0.40

0.50 ≤ X < 0.60

0.70 ≤ X < 0.80

0.90 ≤ X < 1.00

Figure 4.16 illustrates the probabilities of these events as areas under the
density curve. Each area is 0.1. The union of the five therefore has probability
equal to the sum, or 0.5. As we should expect, a random number is equally
likely to begin with an odd or an even digit.
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FIGURE 4.16
The probability that the first digit after the decimal point of a random number is odd is the sum
of the probabilities of the 5 disjoint events shown. See Example 4.40.

USE YOUR KNOWLEDGE

4.95 Probability that you roll a 2 or a 4 or a 5.

If you roll a die, the probability of each of the six possible outcomes (1,
2, 3, 4, 5, 6) is 1/6. What is the probability that you roll a 2 or a 4 or a 5?

If events A and B are not disjoint, they can occur simultaneously. The
probability of their union is then less than the sum of their probabilities. As Figure
4.17 suggests, the outcomes common to both are counted twice when we add
probabilities, so we must subtract this probability once. Here is the addition rule
for the union of any two events, disjoint or not.

FIGURE 4.17
The union of two events that are not disjoint. The general addition rule says that P(A or B) =
P(A) + P(B) − P(A and B).

GENERAL ADDITION RULE FOR UNIONS OF TWO EVENTS

For any two events A and B,

P(A or B) = P(A) + P(B) − P(A and B)

If A and B are disjoint, the event {A or B} that both occur has no outcomes in it.
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This empty event is the complement of the sample space S and must have
probability 0. So the general addition rule includes Rule 3, the addition rule for
disjoint events.

Example

4.41 Adequate sleep and exercise.

Suppose that 40% of adults get enough sleep and 46% exercise regularly.
What is the probability that an adult gets enough sleep or exercises regularly?
To find this probability, we also need to know the percent who get enough
sleep and exercise. Let’s assume that 24% do both.

We will use the notation of the general addition rule for unions of two
events. Let A be the event that an adult gets enough sleep and let B be the
event that a person exercises regularly. We are given that P(A) = 0.40, P(B) =
0.46, and P(A and B) = 0.24. Therefore,

P(A or B) = P(A) + P(B) − P(A and B)

= 0.40 + 0.46 − 0.24

= 0.62

The probability that an adult gets enough sleep or exercises regularly is 0.62,
or 62%.

USE YOUR KNOWLEDGE
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4.96 Probability that your roll is odd or greater than 4.

If you roll a die, the probability of each of the six possible outcomes (1,
2, 3, 4, 5, 6) is 1/6. What is the probability that your roll is odd or
greater than 4?

Venn diagrams are a great help in finding probabilities for unions because you
can just think of adding and subtracting areas. Figure 4.18 shows some events and
their probabilities for Example 4.41. What is the probability that an adult gets
adequate sleep and does not exercise?

FIGURE 4.18
Venn diagram and probabilities for Example 4.41.

The Venn diagram shows that this is the probability that an adult gets adequate
sleep minus the probability that an adult gets adequate sleep and exercises
regularly, 0.40 − 0.24 = 0.16. Similarly, the probability that an adult does not get
adequate sleep and exercises regularly is 0.46 − 0.24 = 0.22. The four probabilities
that appear in the figure add to 1 because they refer to four disjoint events whose
union is the entire sample space.

Conditional probability

The probability we assign to an event can change if we know that some other event
has occurred. This idea is the key to many applications of probability.
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Example

4.42 Probability of being dealt an ace.

Slim is a professional poker player. He stares at the dealer, who prepares to
deal. What is the probability that the card dealt to Slim is an ace? There are 52
cards in the deck. Because the deck was carefully shuffled, the next card dealt
is equally likely to be any of the cards that Slim has not seen. Four of the 52
cards are aces. So

P(ace)=452=113

This calculation assumes that Slim knows nothing about any cards already
dealt. Suppose now that he is looking at 4 cards already in his hand, and that
one of them is an ace. He knows nothing about the other 48 cards except that
exactly 3 aces are among them. Slim’s probability of being dealt an ace given
what he knows is now

P(ace | 1 ace in 4 visible cards)=348=116

Knowing that there is 1 ace among the 4 cards Slim can see changes the
probability that the next card dealt is an ace.

The new notation P(A | B) is a conditional probability. That is, it gives the
probability of one event (the next card dealt is an ace) under the condition that we
know another event (exactly 1 of the 4 visible cards is an ace). You can read the
bar | as “given the information that.”

conditional probability

MULTIPLICATION RULE

The probability that both of two events A and B happen together can be found
by

P(A and B) = P(A)P(B | A)

Here P(B | A) is the conditional probability that B occurs, given the information that A occurs.

USE YOUR KNOWLEDGE
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4.97 The probability of another ace.

Refer to Example 4.42. Suppose that two of the four cards in Slim’s
hand are aces. What is the probability that the next card dealt to him is
an ace?

Example

4.43 Downloading music from the Internet.

The multiplication rule is just common sense made formal. For example,
suppose that 29% of Internet users download music files, and 67% of
downloaders say they don’t care if the music is copyrighted. So the percent of
Internet users who download music (event A and don’t care about copyright
(event B is 67% of the 29% who download, or

(0.67) (0.29) = 0.1943 = 19.43%

The multiplication rule expresses this as

P(A and B) = P(A) × P(B | A)

= (0.29) (0.67) = 0.1943

Here is another example that uses conditional probability.

Example

4.44 Probability of a favorable draw.

Slim is still at the poker table. At the moment, he wants very much to draw
two diamonds in a row. As he sits at the table looking at his hand and at the
upturned cards on the table, Slim sees 11 cards. Of these, 4 are diamonds. The
full deck contains 13 diamonds among its 52 cards, so 9 of the 41 unseen cards
are diamonds. To find Slim’s probability of drawing two diamonds, first
calculate
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P(first card diamond)=941

P(second card diamond | first card diamond)=840

Slim finds both probabilities by counting cards. The probability that the first
card drawn is a diamond is 9/41 because 9 of the 41 unseen cards are
diamonds. If the first card is a diamond, that leaves 8 diamonds among the 40
remaining cards. So the conditional probability of another diamond is 8/40.
The multiplication rule now says that

P(both cards diamonds)=941×840=0.044

Slim will need luck to draw his diamonds.

USE YOUR KNOWLEDGE

4.98 The probability that the next two cards are diamonds.

In the setting of Example 4.42, suppose that Slim sees 23 cards and the
only diamonds are the 3 in his hand. What is the probability that the next
2 cards dealt to Slim will be diamonds? This outcome would give him 5
cards from the same suit, a hand that is called a flush.

If P(A) and P(A and B) are given, we can rearrange the multiplication rule to
produce a definition of the conditional probability P(B | A) in terms of
unconditional probabilities.

DEFINITION OF CONDITIONAL PROBABILITY

When P(A) > 0, the conditional probability of B given A is

P(B | A)=P(A and B)P(A)

Be sure to keep in mind the distinct roles in P(B | A) of the event B whose
probability we are computing and the event A that represents the information we
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are given. The conditional probability P(B | A) makes no sense if the event A can
never occur, so we require that P(A) > 0 whenever we talk about P(B | A).

Example

4.45 College students.

Here is the distribution of U.S. college students classified by age and full-time
or part-time status:

Age (years) Full-time Part-time
15 to 19 0.21 0.02
20 to 24 0.32 0.07
25 to 29 0.10 0.10
30 and over 0.05 0.13

Let’s compute the probability that a student is aged 15 to 19, given that the
student is full-time. We know that the probability that a student is full-time
and aged 15 to 19 is 0.21 from the table of probabilities. But what we want
here is a conditional probability, given that a student is full-time. Rather than
asking about age among all students, we restrict our attention to the
subpopulation of students who are full-time. Let

A = the student is between 15 and 19 years of age

B = the student is a full-time student

Our formula is

P(A | B)=P(A and B)P(B)

We read P(A and B) = 0.21 from the table as we mentioned previously. What
about P(B)? This is the probability that a student is full-time. Notice that there
are four groups of students in our table that fit this description. To find the
probability needed, we add the entries:

P(B) = 0.21 + 0.32 + 0.10 + 0.05 = 0.68

We are now ready to complete the calculation of the conditional probability:

P(A | B)=P(A and B)P(B)

=0.210.68
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= 0.31

The probability that a student is 15 to 19 years of age, given that the student is
full-time, is 0.31.

Here is another way to give the information in the last sentence of this example:
31% of full-time college students are 15 to 19 years old. Which way do you prefer?

USE YOUR KNOWLEDGE

4.99 What rule did we use?

In Example 4.45, we calculated P(B). What rule did we use for this
calculation? Explain why this rule applies in this setting.

4.100 Find the conditional probability.

Refer to Example 4.45. What is the probability that a student is part-
time, given that the student is 15 to 19 years old? Explain in your own
words the difference between this calculation and the one that we did in
Example 4.45.

General multiplication rules

The definition of conditional probability reminds us that in principle all
probabilities, including conditional probabilities, can be found from the assignment
of probabilities to events that describe random phenomena. More often, however,
conditional probabilities are part of the information given to us in a probability
model, and the multiplication rule is used to compute P(A and B). This rule extends
to more than two events.

The union of a collection of events is the event that any of them occur. Here is
the corresponding term for the event that all of them occur.

INTERSECTION

The intersection of any collection of events is the event that all the events
occur.
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To extend the multiplication rule to the probability that all of several events
occur, the key is to condition each event on the occurrence of all the preceding
events. For example, the intersection of three events A, B and C has probability

P(A and B and C) = P(A)P(B | A)P(C | A and B)

Example

4.46 High school athletes and professional careers.

Only 5% of male high school basketball, baseball, and football players go on
to play at the college level. Of these, only 1.7% enter major league
professional sports. About 40% of the athletes who compete in college and
then reach the pros have a career of more than three years. Define these events:

A = {competes in college}

B = {competes professionally}

C = {pro career longer than 3 years}

What is the probability that a high school athlete competes in college and then
goes on to have a pro career of more than three years? We know that

P(A) = 0.05

P(B | A) = 0.017

P(C | A and B) = 0.4

The probability we want is therefore

P(A and B and C) = P(A)P(B | A)P(C | A and B)

= 0.05 × 0.017 × 0.4 = 0.00034

Only about 3 of every 10,000 high school athletes can expect to compete in
college and have a professional career of more than three years. High school
students would be wise to concentrate on studies rather than on unrealistic
hopes of fortune from pro sports.

Tree diagrams

Probability problems often require us to combine several of the basic rules into a
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more elaborate calculation. Here is an example that illustrates how to solve
problems that have several stages.

Example

4.47 Online chat rooms.

Online chat rooms are dominated by the young. Teens are the biggest users. If
we look only at adult Internet users (aged 18 and over), 47% of the 18 to 29
age group chat, as do 21% of the 30 to 49 age group and just 7% of those 50
and over. To learn what percent of all Internet users participate in chat, we also
need the age breakdown of users. Here it is: 29% of adult Internet users are 18
to 29 years old (event A1,) another 47% are 30 to 49 (event A2,) and the
remaining 24% are 50 and over (event A3).

What is the probability that a randomly chosen adult user of the Internet
participates in chat rooms (event C)? To find out, use the tree diagram in
Figure 4.19 to organize your thinking. Each segment in the tree is one stage of
the problem. Each complete branch shows a path through the two stages. The
probability written on each segment is the conditional probability of an
Internet user following that segment, given that he or she has reached the node
from which it branches.

tree diagram

Starting at the left, an Internet user falls into one of the three age groups.
The probabilities of these groups

P(A1) = 0.29 P(A2) = 0.47 P(A3) = 0.24

mark the leftmost branches in the tree. Conditional on being 18 to 29 years
old, the probability of participating in chat is P(C | A1) = 0.47. So the
conditional probability of not participating is

P(Cc | A1) = 1 − 0.47 = 0.53

These conditional probabilities mark the paths branching out from the A1 node
in Figure 4.19. The other two age group nodes similarly lead to two branches
marked with the conditional probabilities of chatting or not. The probabilities
on the branches from any node add to 1 because they cover all possibilities,
given that this node was reached.
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There are three disjoint paths to C one for each age group. By the addition
rule, P(C) is the sum of their probabilities. The probability of reaching C
through the 18 to 29 age group is

P(C and A1) = P(A1)P(C | A1)

= 0.29 × 0.47 = 0.1363

FIGURE 4.19
Tree diagram for Example 4.47. The probability P (C) is the sum of the probabilities of the
three branches marked with asterisks (*).

Follow the paths to C through the other two age groups. The probabilities of
these paths are

P(C and A2) = P(A2)P(C | A2) = (0.47) (0.21) = 0.0987

P(C and A3) = P(A3)P(C | A3) = (0.24) (0.07) = 0.0168

The final result is

P(C) = 0.1363 + 0.0987 + 0.0168 = 0.2518

About 25% of all adult Internet users take part in chat rooms.

It takes longer to explain a tree diagram than it does to use it. Once you have
understood a problem well enough to draw the tree, the rest is easy. Tree diagrams
combine the addition and multiplication rules. The multiplication rule says that the
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probability of reaching the end of any complete branch is the product of the
probabilities written on its segments. The probability of any outcome, such as the
event C that an adult Internet user takes part in chat rooms, is then found by adding
the probabilities of all branches that are part of that event.

USE YOUR KNOWLEDGE

4.101 Draw a tree diagram.

Refer to Slim’s chances of a flush in Exercise 4.98 (page 288). Draw a
tree diagram to describe the outcomes for the two cards that he will be
dealt. At the first stage, his draw can be a diamond or a nondiamond. At
the second stage, he has the same possible outcomes but the
probabilities are different.

Bayes’s rule

There is another kind of probability question that we might ask in the context of
thinking about online chat. What percent of adult chat room participants are aged
18 to 29?

Example

4.48 Conditional versus unconditional probabilities.

In the notation of Example 4.47 this is the conditional probability P(A1 | C).
Start from the definition of conditional probability and then apply the results
of Example 4.46:

P(A1|C)=P(A1 and C)P(C)

=0.13630.2518=0.5413

Over half of adult chat room participants are between 18 and 29 years old.
Compare this conditional probability with the original information
(unconditional) that 29% of adult Internet users are between 18 and 29 years
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old. Knowing that a person chats increases the probability that he or she is
young.

We know the probabilities P(A1), P(A2), and P(A3) that give the age distribution
of adult Internet users. We also know the conditional probabilities P(C | A1), P(C |
A2), and P(C | A3), that a person from each age group chats. Example 4.47 shows
how to use this information to calculate P(C). The method can be summarized in a
single expression that adds the probabilities of the three paths to C in the tree
diagram:

P(C) = P(A1) P(C | A1) + P(A2) P(C | A2) + P(A3) P(C | A3)

In Example 4.48 we calculated the “reverse” conditional probability P(A1 | C). The
denominator 0.2518 in that example came from the previous expression. Put in this
general notation, we have another probability law.

BAYES’S RULE

Suppose that A1, A2, … , Ak are disjoint events whose probabilities are not 0
and add to exactly 1. That is, any outcome is in exactly one of these events.
Then if C is any other event whose probability is not 0 or 1,

P(Ai | C)=P(C | Ai)P(Ai)P(C | A1)P(A1)+P(C | A2)P(A2)+…+P(Ak)P(C | Ak)

The numerator in Bayes’s rule is always one of the terms in the sum that makes
up the denominator. The rule is named after Thomas Bayes, who wrestled with
arguing from outcomes like C back to the Ai in a book published in 1763. It is far
better to think your way through problems like Examples 4.47 and 4.48 than to
memorize these formal expressions.

Independence again

The conditional probability P(B | A) is generally not equal to the unconditional
probability P(B). That is because the occurrence of event A generally gives us
some additional information about whether or not event B occurs. If knowing that
A occurs gives no additional information about B, then A and B are independent
events. The formal definition of independence is expressed in terms of conditional
probability.

INDEPENDENT EVENTS

551



Two events A and B that both have positive probability are independent if

P(B | A) = P(B)

This definition makes precise the informal description of independence given in
Section 4.2. We now see that the multiplication rule for independent events, P(A
and B) = P(A) P(B), is a special case of the general multiplication rule, P(A and B)
= P(A) P(B | A), just as the addition rule for disjoint events is a special case of the
general addition rule.

Section 4.5 Summary

The complement Ac of an event A contains all outcomes that are not in A The
union {A or B} of events A and B contains all outcomes in A, in B, and in both A
and B The intersection {A and B} contains all outcomes that are in both A and B
but not outcomes in A alone or B alone.

The conditional probability P(B | A) of an event B, given an event A, is
defined by

P(B | A)=P(A and B)P(A)

when P(A) > 0. In practice, conditional probabilities are most often found from
directly available information.

The essential general rules of elementary probability are
Legitimate values: 0 ≤ P(A) ≤ 1 for any event A
Total probability 1: P(S) = 1
Complement rule: P(Ac) = 1 − P(A)
Addition rule: P(A or B) = P(A) + P(B) − P(A and B)
Multiplication rule: P(A and B) = P(A) P(B | A)
If A and B are disjoint, then P(A and B) = 0. The general addition rule for

unions then becomes the special addition rule, P(A or B) = P(A) + P(B).
A and B are independent when P(B | A) = P(B). The multiplication rule for

intersections then becomes P(A and B) = P(A) P(B).
In problems with several stages, draw a tree diagram to organize use of the

multiplication and addition rules.

SECTION 4.5 Exercises
For Exercise 4.95, see page 284; for Exercise 4.96, see page 285; for Exercise 4.97, see page 287; for
Exercise 4.98, see page 288; for Exercises 4.99 and 4.100, see page 289; and for Exercise 4.101, see page
292.

4.102 Find and explain some probabilities.

(a) Can we have an event A that has negative probability? Explain your answer.
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(b) Suppose P(A) = 0.2 and P(B) = 0.4. Explain what it means for A and B to be disjoint. Assuming that
they are disjoint, find the probability that A or B occurs.

(c) Explain in your own words the meaning of the rule P(S) = 1.

(d) Consider an event A. What is the name for the event that A does not occur? If P(A) = 0.3, what is the
probability that A does not occur?

(e) Suppose that A and B are independent and that P(A) = 0.2 and P(B) = 0.5. Explain the meaning of the
event {A and B }, and find its probability.

4.103 Unions.

(a) Assume that P(A) = 0.4, P(B) = 0.3, and P(C) = 0.1. If the events A, B, and C are disjoint, find the
probability that the union of these events occurs.

(b) Draw a Venn diagram to illustrate your answer to part (a).

(c) Find the probability of the complement of the union of A, B, and C.

4.104 Conditional probabilities.

Suppose that P(A) = 0.5, P(B) = 0.3, and P(B | A) = 0.2.

(a) Find the probability that both A and B occur.

(b) Use a Venn diagram to explain your calculation.

(c) What is the probability of the event that B occurs and B does not?

4.105 Find the probabilities.

Suppose that the probability that A occurs is 0.6 and the probability that A and B occur is 0.5.

(a) Find the probability that B occurs given that A occurs.

(b) Illustrate your calculations in part (a) using a Venn diagram.

4.106 Why not?

Suppose that P(A) = 0.4. Explain why P(A and B) cannot be 0.5.

4.107 Is the calcium intake adequate?

In the population of young children eligible to participate in a study of whether or not their calcium intake
is adequate, 52% are 5 to 10 years of age and 48% are 11 to 13 years of age. For those who are 5 to 10
years of age, 18% have inadequate calcium intake. For those who are 11 to 13 years of age, 57% have
inadequate calcium intake.19

(a) Use letters to define the events of interest in this exercise.

(b) Convert the percents given to probabilities of the events you have defined.

553



(c) Use a tree diagram similar to Figure 4.19 (page 291) to calculate the probability that a randomly
selected child from this population has an inadequate intake of calcium.

4.108 Use Bayes’s rule.

Refer to the previous exercise. Use Bayes’s rule to find the probability that a child from this population
who has inadequate intake is 11 to 13 years old.

4.109 Are the events independent?

Refer to the previous two exercises. Are the age of the child and whether or not the child has adequate
calcium intake independent? Calculate the probabilities that you need to answer this question, and write a
short summary of your conclusion.

4.110 What’s wrong?

In each of the following scenarios, there is something wrong. Describe what is wrong and give a reason for
your answer.

(a) P(A or B) is always equal to the sum of P(A) and P(B).

(b) The probability of an event minus the probability of its complement is always equal to 1.

(c) Two events are disjoint if P(B | A) = P(B).

4.111 Exercise and sleep.

Suppose that 40% of adults get enough sleep, 46% get enough exercise, and 24% do both. Find the
probabilities of the following events:

(a) enough sleep and not enough exercise

(b) not enough sleep and enough exercise

(c) not enough sleep and not enough exercise

(d) For each of parts (a), (b), and (c), state the rule that you used to find your answer.

4.112 Exercise and sleep.

Refer to the previous exercise. Draw a Venn diagram showing the probabilities for exercise and sleep.

4.113 Lying to a teacher.

Suppose that 48% of high school students would admit to lying at least once to a teacher during the past
year and that 25% of students are male and would admit to lying at least once to a teacher during the past
year.20 Assume that 50% of the students are male. What is the probability that a randomly selected student
is either male or would admit to lying to a teacher, during the past year? Be sure to show your work and
indicate all the rules that you use to find your answer.
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4.114 Lying to a teacher.

Refer to the previous exercise. Suppose that you select a student from the subpopulation of those who
would admit to lying to a teacher during the past year. What is the probability that the student is female?
Be sure to show your work and indicate all the rules that you use to find your answer.

4.115 Attendance at two-year and four-year colleges.

In a large national population of college students, 61% attend four-year institutions and the rest attend two-
year institutions. Males make up 44% of the students in the four-year institutions and 41% of the students
in the two-year institutions.

(a) Find the four probabilities for each combination of gender and type of institution in the following table.
Be sure that your probabilities sum to 1.

Men Women
Four-year institution
Two-year institution

(b) Consider randomly selecting a female student from this population. What is the probability that she
attends a four-year institution?

4.116 Draw a tree diagram.

Refer to the previous exercise. Draw a tree diagram to illustrate the probabilities in a situation where you
first identify the type of institution attended and then identify the gender of the student.

4.117 Draw a different tree diagram for the same setting.

Refer to the previous two exercises. Draw a tree diagram to illustrate the probabilities in a situation where
you first identify the gender of the student and then identify the type of institution attended. Explain why
the probabilities in this tree diagram are different from those that you used in the previous exercise.

4.118 Education and income.

Call a household prosperous if its income exceeds $100,000. Call the household educated if the
householder completed college. Select an American household at random, and let A be the event that the
selected household is prosperous and B the event that it is educated. According to the Current Population
Survey, P(A) = 0.138, P(B) = 0.261, and the probability that a household is both prosperous and educated
is P(A and B) = 0.082. What is the probability P(A or B) that the household selected is either prosperous or
educated?

4.119 Find a conditional probability.

In the setting of the previous exercise, what is the conditional probability that a household is prosperous,
given that it is educated? Explain why your result shows that events A and B are not independent.

4.120 Draw a Venn diagram.
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Draw a Venn diagram that shows the relation between the events A and B in Exercise 4.118. Indicate each
of the following events on your diagram and use the information in Exercise 4.118 to calculate the
probability of each event. Finally, describe in words what each event is.

(a) {A and B}

(b) {Ac and B}

(c) {A and Bc}

(d) {Ac and Bc}

4.121 Sales of cars and light trucks.

Motor vehicles sold to individuals are classified as either cars or light trucks (including SUVs) and as
either domestic or imported. In a recent year, 69% of vehicles sold were light trucks, 78% were domestic,
and 55% were domestic light trucks. Let A be the event that a vehicle is a car and B the event that it is
imported. Write each of the following events in set notation and give its probability.

(a) The vehicle is a light truck.

(b) The vehicle is an imported car.

4.122 Job offers.

Julie is graduating from college. She has studied biology, chemistry, and computing and hopes to work as a
forensic scientist applying her science background to crime investigation. Late one night she thinks about
some jobs she has applied for. Let A, B, and C be the events that Julie is offered a job by

A = the Connecticut Office of the Chief Medical Examiner

B = the New Jersey Division of Criminal Justice

C = the federal Disaster Mortuary Operations Response Team
Julie writes down her personal probabilities for being offered these jobs:

P(A) = 0.7

P(B) = 0.5

P(C) = 0.3

P(A and B) = 0.3

P(A and C) = 0.1

P(B and C) = 0.1

P(A and B and C) = 0
Make a Venn diagram of the events A, B, and C. As in Figure 4.18 (page 286), mark the probabilities of
every intersection involving these events and their complements. Use this diagram for Exercises 4.123 to
4.125.

4.123 Find the probability of at least one offer.
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What is the probability that Julie is offered at least one of the three jobs?

4.124 Find the probability of another event.

What is the probability that Julie is offered both the Connecticut and New Jersey jobs, but not the federal
job?

4.125 Find a conditional probability.

If Julie is offered the federal job, what is the conditional probability that she is also offered the New Jersey
job? If Julie is offered the New Jersey job, what is the conditional probability that she is also offered the
federal job?

4.126 Academic degrees and gender.

Here are the projected numbers (in thousands) of earned degrees in the United States in the 2010–2011
academic year, classified by level and by the sex of the degree recipient:21

Bachelor’s Master’s Professional Doctorate
Female 933 502 51 26
Male 661 260 44 26

(a) Convert this table to a table giving the probabilities for selecting a degree earned and classifying the
recipient by gender and the degree by the levels given above.

(b) If you choose a degree recipient at random, what is the probability that the person you choose is a
woman?

(c) What is the conditional probability that you choose a woman, given that the person chosen received a
professional degree?

(d) Are the events “choose a woman” and “choose a professional degree recipient” independent? How do
you know?

4.127 Find some probabilities.

The previous exercise gives the projected number (in thousands) of earned degrees in the United States in
the 2010–2011 academic year. Use these data to answer the following questions.

(a) What is the probability that a randomly chosen degree recipient is a man?

(b) What is the conditional probability that the person chosen received a bachelor’s degree, given that he is
a man?

(c) Use the multiplication rule to find the probability of choosing a male bachelor’s degree recipient. Check
your result by finding this probability directly from the table of counts.

4.128 Conditional probabilities and independence.

Using the information in Exercise 4.121, answer these questions.
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(a) Given that a vehicle is imported, what is the conditional probability that it is a light truck?

(b) Are the events “vehicle is a light truck” and “vehicle is imported” independent? Justify your answer.

Genetic counseling.

Conditional probabilities and Bayes’s rule are a basis for counseling people who
may have genetic defects that can be passed to their children. Exercises 4.129 to
4.131 concern genetic counseling settings.

4.129 Albinism.

People with albinism have little pigment in their skin, hair, and eyes. The gene that governs albinism has
two forms (called alleles), which we denote by a and A. Each person has a pair of these genes, one
inherited from each parent. A child inherits one of each parent’s two alleles independently with probability
0.5. Albinism is a recessive trait, so a person is albino only if the inherited pair is aa.

(a) Beth’s parents are not albino but she has an albino brother. This implies that both of Beth’s parents
have type Aa. Why?

(b) Which of the types aa, Aa, AA could a child of Beth’s parents have? What is the probability of each
type?

(c) Beth is not albino. What are the conditional probabilities for Beth’s possible genetic types, given this
fact? (Use the definition of conditional probability.)

4.130 Find some conditional probabilities.

Beth knows the probabilities for her genetic types from part (c) of the previous exercise. She marries Bob,
who is albino. Bob’s genetic type must be aa.

(a) What is the conditional probability that a child of Beth and Bob is non-albino if Beth has type Aa?
What is the conditional probability of a non-albino child if Beth has type AA?

(b) Beth and Bob’s first child is non-albino. What is the conditional probability that Beth is a carrier, type
Aa?

4.131 Muscular dystrophy.

Muscular dystrophy is an incurable muscle-wasting disease. The most common and serious type, called
DMD, is caused by a sex-linked recessive mutation. Specifically, women can be carriers but do not get the
disease; a son of a carrier has probability 0.5 of having DMD; a daughter has probability 0.5 of being a
carrier. As many as one-third of DMD cases, however, are due to spontaneous mutations in sons of
mothers who are not carriers. Toni has one son, who has DMD.

In the absence of other information, the probability is 1/3 that the son is the victim of a spontaneous
mutation and 2/3 that Toni is a carrier. There is a screening test called the CK test that is positive with
probability 0.7 if a woman is a carrier and with probability 0.1 if she is not. Toni’s CK test is positive.
What is the probability that she is a carrier?
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CHAPTER 4 Exercises

4.132 Repeat the experiment many times.

Here is a probability distribution for a random variable X:

Value of X −1 2
Probability 0.4 0.6

A single experiment generates a random value from this distribution. If the experiment is repeated
many times, what will be the approximate proportion of times that the value is −1? Give a reason for
your answer.

4.133 Repeat the experiment many times and take the mean.

Here is a probability distribution for a random variable X:

Value of X −1 2
Probability 0.2 0.8

A single experiment generates a random value from this distribution. If the experiment is repeated
many times, what will be the approximate value of the mean of these random variables? Give a
reason for your answer.

4.134 Work with a transformation.

Here is a probability distribution for a random variable X

Value of X 1 2
Probability 0.4 0.6

(a) Find the mean and the standard deviation of this distribution.

(b) Let Y = 4X − 2. Use the rules for means and variances to find the mean and the standard
deviation of the distribution of Y.

(c) For part (b) give the rules that you used to find your answer.

 4.135 A different transformation.

Refer to the previous exercise. Now let Y = 4X2 − 2.

(a) Find the distribution of Y.

(b) Find the mean and standard deviation for the distribution of Y.
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(c) Explain why the rules that you used for part (b) of the previous exercise do not work for this
transformation.

4.136 Roll a pair of dice two times.

Consider rolling a pair of fair dice two times. Let A be the total on the up-faces for the first roll and
let B be the total on the up-faces for the second roll. For each of the following pairs of events, tell
whether they are disjoint, independent, or neither.

(a) A = 2 on the first roll, B = 8 or more on the first roll.

(b) A = 2 on the first roll, B = 8 or more on the second roll.

(c) A = 5 or less on the second roll, B = 4 or less on the first roll.

(d) A = 5 or less on the second roll, B = 4 or less on the second roll.

4.137 Find the probabilities.

Refer to the previous exercise. Find the probabilities for each event.

4.138 Some probability distributions.

Here is a probability distribution for a random variable X:

Value of X 2 3 4
Probability 0.2 0.4 0.4

(a) Find the mean and standard deviation for this distribution.

(b) Construct a different probability distribution with the same possible values, the same mean, and a
larger standard deviation. Show your work and report the standard deviation of your new
distribution.

(c) Construct a different probability distribution with the same possible values, the same mean, and a
smaller standard deviation. Show your work and report the standard deviation of your new
distribution.

4.139 A fair bet at craps.

Almost all bets made at gambling casinos favor the house. In other words, the difference between
the amount bet and the mean of the distribution of the payoff is a positive number. An exception is
“taking the odds” at the game of craps, a bet that a player can make under certain circumstances. The
bet becomes available when a shooter throws a 4, 5, 6, 8, 9, or 10 on the initial roll. This number is
called the “point”; when a point is rolled, we say that a point has been established. If a 4 is the point,
an odds bet can be made that wins if a 4 is rolled before a 7 is rolled. The probability of winning this
bet is 1/3 and the payoff for a $10 bet is $20 (you keep the $10 you bet and you receive an additional
$20). The same probability of winning and the same payoff apply for an odds bet on a 10. For an
initial roll of 5 or 9, the odds bet has a winning probability of 2/5 and the payoff for a $10 bet is $15.
Similarly, when the initial roll is 6 or 8, the odds bet has a winning probability of 5/11 and the
payoff for a $10 bet is $12. Find the mean of the payoff distribution for each of these bets. Then
confirm that the bets are fair by showing that the difference between the amount bet and the mean of
the distribution of the payoff is zero.
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4.140 An ancient Korean drinking game.

An ancient Korean drinking game involves a 14-sided die. The players roll the die in turn and must
submit to whatever humiliation is written on the up-face: something like “Keep still when tickled on
face.” Six of the 14 faces are squares. Let’s call them A, B, C, D, E, and F for short. The other eight
faces are triangles, which we will call 1, 2, 3, 4, 5, 6, 7, and 8. Each of the squares is equally likely.
Each of the triangles is also equally likely, but the triangle probability differs from the square
probability. The probability of getting a square is 0.72. Give the probability model for the 14
possible outcomes.

4.141 Wine tasters.

Two wine tasters rate each wine they taste on a scale of 1 to 5. From data on their ratings of a large
number of wines, we obtain the following probabilities for both tasters’ ratings of a randomly chosen
wine:

Taster 2
Taster 1 1 2 3 4 5

1 0.03 0.02 0.01 0.00 0.00
2 0.02 0.07 0.06 0.02 0.01
3 0.01 0.05 0.25 0.05 0.01
4 0.00 0.02 0.05 0.20 0.02
5 0.00 0.01 0.01 0.02 0.06

(a) Why is this a legitimate assignment of probabilities to outcomes?

(b) What is the probability that the tasters agree when rating a wine?

(c) What is the probability that Taster 1 rates a wine higher than 3? What is the probability that
Taster 2 rates a wine higher than 3?

 4.142 SAT scores.

The College Board finds that the distribution of students’ SAT scores depends on the level of
education their parents have. Children of parents who did not finish high school have SAT Math
scores X with mean 445 and standard deviation 106. Scores Y of children of parents with graduate
degrees have mean 566 and standard deviation 109. Perhaps we should standardize to a common
scale for equity. Find positive numbers a, b, and c, such that a + bX and c + dY both have mean 500
and standard deviation 100.

 4.143 Lottery tickets.

Joe buys a ticket in the Tri-State Pick 3 lottery every day, always betting on 956. He will win
something if the winning number contains 9, 5, and 6 in any order. Each day, Joe has probability
0.006 of winning, and he wins (or not) independently of other days because a new drawing is held
each day. What is the probability that Joe’s first winning ticket comes on the 20th day?

 4.144 Slot machines.

Slot machines are now video games, with winning determined by electronic random number
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generators. In the old days, slot machines were like this: you pull the lever to spin three wheels; each
wheel has 20 symbols, all equally likely to show when the wheel stops spinning; the three wheels are
independent of each other. Suppose that the middle wheel has 8 bells among its 20 symbols, and the
left and right wheels have 1 bell each.

(a) You win the jackpot if all three wheels show bells. What is the probability of winning the
jackpot?

(b) What is the probability that the wheels stop with exactly 2 bells showing?
The following exercises require familiarity with the material presented in the optional Section 4.5.

 4.145 Bachelor’s degrees by gender.

Of the 2,325,000 bachelor’s, master’s, and doctoral degrees given by U.S. colleges and universities
in a recent year, 69% were bachelor’s degrees, 28% were master’s degrees, and the rest were
doctorates. Moreover, women earned 57% of the bachelor’s degrees, 60% of the master’s degrees,
and 52% of the doctorates.22 You choose a degree at random and find that it was awarded to a
woman. What is the probability that it is a bachelor’s degree?

4.146 Higher education at two-year and four-year institutions.

The following table gives the counts of U.S. institutions of higher education classified as public or
private and as two-year or four-year:23

Public Private
Two-year 1000 721
Four-year 2774 672

Convert the counts to probabilities and summarize the relationship between these two variables
using conditional probabilities.

4.147 Odds bets at craps.

Refer to the odds bets at craps in Exercise 4.139. Suppose that whenever the shooter has an initial
roll of 4, 5, 6, 8, 9, or 10, you take the odds. Here are the probabilities for these initial rolls:

Point 4 5 6 8 9 10
Probability 3/36 4/36 5/36 5/36 4/36 3/36

Draw a tree diagram with the first stage showing the point rolled and the second stage showing
whether the point is again rolled before a 7 is rolled. Include a firststage branch showing the
outcome that a point is not established. In this case, the amount bet is zero and the distribution of the
winnings is the special random variable that has P(X = 0) = 1. For the combined betting system
where the player always makes a $10 odds bet when it is available, show that the game is fair.

4.148 Weights and heights of children adjusted for age.

The idea of conditional probabilities has many interesting applications, including the idea of a
conditional distribution. For example, the National Center for Health Statistics produces
distributions for weight and height for children while conditioning on other variables. Visit the
website cdc.gov/growthcharts/ and describe the different ways that weight and height distributions
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are conditioned on other variables.

4.149 Wine tasting.

In the setting of Exercise 4.141, Taster 1’s rating for a wine is 3. What is the conditional probability
that Taster 2’s rating is higher than 3?

4.150 An interesting case of independence.

Independence of events is not always obvious. Toss two balanced coins independently. The four
possible combinations of heads and tails in order each have probability 0.25. The events

A = head on the first toss

B = both tosses have the same outcome

may seem intuitively related. Show that P(B | A) = P(B), so that A and B are in fact independent.

4.151 Find some conditional probabilities.

Choose a point at random in the square with sides 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. This means that the
probability that the point falls in any region within the square is the area of that region. Let X be the
x coordinate and Y the y coordinate of the point chosen. Find the conditional probability P(Y < 1/3 |
Y > X). (Hint: Sketch the square and the events Y < 1/3 and Y > X.)

 4.152 Sample surveys for sensitive issues.

It is difficult to conduct sample surveys on sensitive issues because many people will not answer
questions if the answers might embarrass them. Randomized response is an effective way to
guarantee anonymity while collecting information on topics such as student cheating or sexual
behavior. Here is the idea. To ask a sample of students whether they have plagiarized a term paper
while in college, have each student toss a coin in private. If the coin lands heads and they have not
plagiarized, they are to answer “No.” Otherwise, they are to give “Yes” as their answer. Only the
student knows whether the answer reflects the truth or just the coin toss, but the researchers can use
a proper random sample with follow-up for nonresponse and other good sampling practices.

Suppose that in fact the probability is 0.3 that a randomly chosen student has plagiarized a paper.
Draw a tree diagram in which the first stage is tossing the coin and the second is the truth about
plagiarism. The outcome at the end of each branch is the answer given to the randomized-response
question. What is the probability of a “No” answer in the randomized-response poll? If the
probability of plagiarism were 0.2, what would be the probability of a “No” response on the poll?
Now suppose that you get 39% “No” answers in a randomized-response poll of a large sample of
students at your college. What do you estimate to be the percent of the population who have
plagiarized a paper?
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Introduction

Statistical inference draws conclusions about a population or process from data. It
emphasizes substantiating these conclusions via probability calculations, as
probability allows us to take chance variation into account. We have already
examined data and arrived at conclusions many times. How do we move from
summarizing a single data set to formal inference involving probability
calculations?

parameters and statistics, p. 206

The foundation for this was described in Section 3.4 (page 205). There, we not
only discussed the use of statistics as estimates of population parameters but also
described the chance variation of a statistic when the data are produced by random
sampling or randomized experimentation.

sampling distribution, p. 208

The sampling distribution of a statistic shows how it would vary in these
identical repeated data collections. That is, the sampling distribution is a
probability distribution that answers the question “What would happen if we did
this experiment or sampling many times?” It is these distributions that provide the
necessary link between probability and the data in your sample or from your
experiment. They are the key to understanding statistical inference.

Suppose that you plan to survey 1000 students at your university about their
sleeping habits. The sampling distribution of the average hours of sleep per night
describes what this average would be if many simple random samples of 1000
students were drawn from the population of students at your university. In other
words, it gives you an idea of what you are likely to see from your survey. It tells
you whether you should expect this average to be near the population mean and
whether the variation of the statistic is roughly ±2 hours or ±2 minutes.

THE DISTRIBUTION OF A STATISTIC

A statistic from a random sample or randomized experiment is a random
variable. The probability distribution of the statistic is its sampling
distribution.

To help in the transition from probability as a topic in itself to probability as a
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foundation for inference, in this chapter we will study the sampling distributions of
some common statistics. The general framework for constructing a sampling
distribution is the same for all statistics, so our focus here will be on those statistics
commonly used in inference.

density curves, p. 56

Before doing so, however, we need to consider another set of probability
distributions that also play a role in statistical inference. Any quantity that can be
measured on each member of a population is described by the distribution of its
values for all members of the population. This is the context in which we first met
distributions, as density curves that provide models for the overall pattern of data.

Imagine choosing one individual at random from a population and measuring a
quantity. The quantities obtained from repeated draws of one individual from a
population have a probability distribution that is the distribution of the population.

Example

5.1 Total sleep time of college students.

A recent survey describes the distribution of total sleep time among college
students as approximately Normal with a mean of 6.78 hours and standard
deviation of 1.24 hours.1 Suppose that we select a college student at random
and obtain his or her sleep time. This result is a random variable X because
prior to the random sampling, we don’t know the sleep time. We do know,
however, that in repeated sampling X will have the same N(6.78, 1.24)
distribution that describes the pattern of sleep time in the entire population. We
call N(6.78, 1.24) the population distribution.

POPULATION DISTRIBUTION

The population distribution of a variable is the distribution of its values for
all members of the population. The population distribution is also the
probability distribution of the variable when we choose one individual at
random from the population.
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SRS, p. 194

In this example, the population of all college students actually exists, so that we
can in principle draw an SRS of students from it. Sometimes our population of
interest does not actually exist. For example, suppose that we are interested in
studying final-exam scores in a statistics course, and we have the scores of the 34
students who took the course last semester. For the purposes of statistical
inference, we might want to consider these 34 students as part of a hypothetical
population of similar students who would take this course. In this sense, these 34
students represent not only themselves but also a larger population of similar
students. The key idea is to think of the observations that you have as coming from
a population with a probability distribution.

USE YOUR KNOWLEDGE

5.1 Number of apps on an iOS device.

AppsFire is a service that shares the names of the apps on an iOS device
with everyone else using the service. This, in a sense, creates an iOS
device app recommendation system. Recently, the service drew a sample
of 1000 AppsFire users and reported a median of 108 apps per device.2
State the population that this survey describes, the statistic, and some
likely values from the population distribution.

In the next two sections, we will study the sampling distributions of two
common statistics, the sample mean and the sample proportion. The focus will be
on the important features of these distributions so that we can quickly describe and
use them in the later chapters on statistical inference. We will see that in each case
the sampling distribution depends on both the population distribution and the way
we collect the data from the population.
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5.1 The Sampling Distribution of a Sample Mean

When you complete this section, you will be able to

• Explain the difference between the sampling distribution of x¯ and the
population distribution.

• Determine the mean and standard deviation of x¯ for an SRS of size n
from a population with mean μ and standard deviation σ .

• Describe how much larger n has to be to reduce the standard deviation of
x¯ by a certain factor.

• Utilize the central limit theorem to approximate the sampling
distribution of x¯ and perform various probability calculations.

A variety of statistics are used to describe quantitative data. The sample mean,
median, and standard deviation are all examples of statistics based on quantitative
data. Statistical theory describes the sampling distributions of these statistics.
However, the general framework for constructing a sampling distribution is the
same for all statistics. In this section we will concentrate on the sample mean.
Because sample means are just averages of observations, they are among the most
frequently used statistics.

FIGURE 5.1
(a) The distribution of lengths of all customer service calls received by a bank in a month, for
Example 5.2. (b) The distribution of the sample means x¯ for 500 random samples of size 80
from this population. The scales and histogram classes are exactly the same in both panels.
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Example

5.2 Sample means are approximately Normal.

CALLS80

Figure 5.1 illustrates two striking facts about the sampling distribution of a
sample mean. Figure 5.1(a) displays the distribution of customer service call
lengths for a bank service center for a month. There are more than 30,000 calls
in this population.3 (We omitted a few extreme outliers, calls that lasted more
than 20 minutes.) The distribution is extremely skewed to the right. The
population mean is μ = 173.95 seconds.

Table 1.2 (page 19) contains the lengths of a random sample of 80 calls
from this population. The mean of these 80 calls is x¯=196.6 seconds. If we
were to take another sample of size 80, we would likely get a different value of
x¯ This is because this new sample would contain a different set of calls. To
find the sampling distribution of x¯, we take many SRSs of size 80 and
calculate x¯ for each sample. Figure 5.1(b) is the distribution of the values of
x¯ for 500 random samples. The scales and choice of classes are exactly the
same as in Figure 5.1(a), so that we can make a direct comparison.

The sample means are much less spread out than the individual call lengths.
What is more, the distribution in Figure 5.1(b) is roughly symmetric rather
than skewed. The Normal quantile plot in Figure 5.2 confirms that the
distribution is close to Normal.

This example illustrates two important facts about sample means that we will
discuss in this section.

FACTS ABOUT SAMPLE MEANS

1. Sample means are less variable than individual observations.

2. Sample means are more Normal than individual observations.

These two facts contribute to the popularity of sample means in statistical
inference.
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FIGURE 5.2
Normal quantile plot of the 500 sample means in Figure 5.1(b). The distribution is close to
Normal.

The mean and standard deviation of x¯

The sample mean x¯ from a sample or an experiment is an estimate of the mean μ
of the underlying population. The sampling distribution of x¯ is determined by the
design used to produce the data, the sample size n, and the population distribution.

Select an SRS of size n from a population, and measure a variable X on each
individual in the sample. The n measurements are values of n random variables X1,
X2, …, Xn. A single Xi is a measurement on one individual selected at random from
the population and therefore has the distribution of the population. If the
population is large relative to the sample, we can consider X1, X2, …, Xn. to be
independent random variables each having the same distribution. This is our
probability model for measurements on each individual in an SRS.

The sample mean of an SRS of size n is

x¯=1n(X1+X2+…+Xn)

rules for means, p. 272

If the population has mean μ then μ is the mean of the distribution of each
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observation Xi. To get the mean of x¯, we use the rules for means of random
variables. Specifically,

μx¯=1n(μX1+μX2+… μXn)

=1n(μ+μ+…+μ)=μ

unbiased estimator, p. 210

That is, the mean of x¯ is the same as the mean of the population. The sample
mean x¯ is therefore an unbiased estimator of the unknown population mean μ

sampling distribution, p. 275

The observations are independent, so the addition rule for variances also
applies:

σx¯2=(1n)2(σX12+σX22+…+σXn2)

=(1n)2(σ2+σ2+…+σ2)

=σ2n

With n in the denominator, the variability of x¯ about its mean decreases as the
sample size grows. Thus, a sample mean from a large sample will usually be very
close to the true population mean μ. Here is a summary of these facts.

MEAN AND STANDARD DEVIATION OF A SAMPLE MEAN

Let x¯ be the mean of an SRS of size n from a population having mean μ and
standard deviation σ. The mean and standard deviation of x¯ are

μx¯=μ

σx¯=σn

How precisely does a sample mean x¯ estimate a population mean μ? Because
the values of x¯ vary from sample to sample, we must give an answer in terms of
the sampling distribution. We know that x¯ is an unbiased estimator of μ, so its
values in repeated samples are not systematically too high or too low. Most
samples will give an x¯-value close to μ if the sampling distribution is concentrated
close to its mean μ. So the precision of estimation depends on the spread of the
sampling distribution.
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Because the standard deviation of x¯ is σ/n, the standard deviation of the
statistic decreases in proportion to the square root of the sample size. This means,
for example, that a sample size must be multiplied by 4 in order to divide the
statistic’s standard deviation in half. By comparison, a sample size must be
multiplied by 100 in order to reduce the standard deviation by a factor of 10.

Example

5.3 Standard deviations for sample means of service call lengths.

The standard deviation of the population of service call lengths in Figure
5.1(a) is σ = 184.81. seconds. The length of a single call will often be far from
the population mean. If we choose an SRS of 20 calls, the standard deviation
of their mean length is

σx¯=184.8120=41.32 seconds

Averaging over more calls reduces the variability and makes it more likely that
x¯ is close to μ. Our sample size of 80 calls is 4 times 20, so the standard
deviation will be half as large:

σx¯=184.8180=20.66 seconds
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USE YOUR KNOWLEDGE

5.2 Find the mean and the standard deviation of the sampling
distribution.

Compute the mean and standard deviation of the sampling distribution
of the sample mean when you plan to take an SRS of size 49 from a
population with mean 420 and standard deviation 21.

5.3 The effect of increasing the sample size.

In the setting of the previous exercise, repeat the calculations for a
sample size of 441. Explain the effect of the sample size increase on the
mean and standard deviation of the sampling distribution.

The central limit theorem

We have described the center and spread of the probability distribution of a sample
mean x¯, but not its shape. The shape of the distribution of x¯ depends on the
shape of the population distribution. Here is one important case: if the population
distribution is Normal, then so is the distribution of the sample mean.

SAMPLING DISTRIBUTION OF A SAMPLE MEAN

If a population has the N(μ, σ) distribution, then the sample mean x¯ of n
independent observations has the N(μ, σ/n) distribution.

This is a somewhat special result. Many population distributions are not
Normal. The service call lengths in Figure 5.1(a), for example, are strongly
skewed. Yet Figures 5.1(b) and 5.2 show that means of samples of size 80 are close
to Normal. One of the most famous facts of probability theory says that, for large
sample sizes, the distribution of x¯ is close to a Normal distribution. This is true no
matter what shape the population distribution has, as long as the population has a
finite standard deviation σ. This is the central limit theorem. It is much more
useful than the fact that the distribution of x¯ is exactly Normal if the population is
exactly Normal.

central limit theorem
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CENTRAL LIMIT THEOREM

Draw an SRS of size n from any population with mean μ and finite standard
deviation σ. When n is large, the sampling distribution of the sample mean x¯
is approximately Normal:

x¯   is  approximately N(μ,σn)

Example

5.4 How close will the sample mean be to the population mean?

With the Normal distribution to work with, we can better describe how
precisely a random sample of 80 calls estimates the mean length of all the calls
in the population. The population standard deviation for the more than 30,000
calls in the population of Figure 5.1(a) is σ = 184.81 seconds. From Example
5.3 we know σx¯=20.66 seconds. By the 95 part of the 68–95–99.7 rule, about
95% of all samples will have mean x¯ within two standard deviations of μ that
is, withi ±41.32 seconds of μ.

USE YOUR KNOWLEDGE

5.4 Use the 68–95–99.7 rule.

You take an SRS of size 49 from a population with mean 185 and
standard deviation 70. According to the central limit theorem, what is
the approximate sampling distribution of the sample mean? Use the 95
part of the 68–95–99.7 rule to describe the variability of x¯.

For the sample size of n = 80 in Example 5.4, the sample mean is not
very precise. The population of service call lengths is very spread out, so
the sampling distribution of x¯ has a large standard deviation.
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Example

5.5 How can we reduce the standard deviation?

In the setting of Example 5.4, if we want to reduce the standard deviation of x¯
by a factor of 4, we must take a sample 16 times as large, n = 16 × 80, or 1280.
Then

σx¯=184.811280=5.166 seconds

For samples of size 1280, about 95% of the sample means will be within twice
5.166, or 10.33 seconds, of the population mean μ.

USE YOUR KNOWLEDGE

5.5 The effect of increasing the sample size.

In the setting of Exercise 5.4, suppose that we increase the sample size
to 1225. Use the 95 part of the 68–95–99.7 rule to describe the
variability of this sample mean. Compare your results with those you
found in Exercise 5.4.

Example 5.5 reminds us that if the population is very spread out, the n in the
standard deviation of x¯ implies that very large samples are needed to estimate the
population mean precisely. The main point of the example, however, is that the
central limit theorem allows us to use Normal probability calculations to answer
questions about sample means even when the population distribution is not
Normal.

How large a sample size n is needed for x¯ to be close to Normal depends on
the population distribution. More observations are required if the shape of the
population distribution is far from Normal. For the very skewed call length
population, samples of size 80 are large enough. Further study would be needed to
see if the distribution of x¯ is close to Normal for smaller samples like n = 20 or n
= 40. Here is a more detailed study of another skewed distribution.
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FIGURE 5.3
The central limit theorem in action: the sampling distribution of sample means from a strongly
non-Normal population becomes more Normal as the sample size increases. (a) The distribution
of 1 observation. (b) The distribution of x¯ for 2 observations. (c) The distribution of x¯ for 10
observations. (d) The distribution of x¯ for 25 observations.

Example

5.6 The central limit theorem in action.

Figure 5.3 shows the central limit theorem in action for another very non-
Normal population. Figure 5.3(a) displays the density curve of a single
observation from the population. The distribution is strongly right-skewed, and
the most probable outcomes are near 0. The mean μ of this distribution is 1,
and its standard deviation σ is also 1. This particular continuous distribution is
called an exponential distribution. Exponential distributions are used as
models for how long an iOS device, for example, will last and for the time
between text messages sent on your cell phone.
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Figures 5.3(b), (c), and (d) are the density curves of the sample means of 2,
10, and 25 observations from this population. As n increases, the shape
becomes more Normal. The mean remains at μ = 1, but the standard deviation
decreases, taking the value 1/n. The density curve for 10 observations is still
somewhat skewed to the right but already resembles a Normal curve having μ
= 1 and σ=110=0.32. The density curve for n = 25 is yet more Normal. The
contrast between the shape of the population distribution and of the
distribution of the mean of 10 or 25 observations is striking.

You can also use the Central Limit Theorem applet to study the sampling
distribution of x¯. From one of three population distributions, 10,000 SRSs of a
user-specified sample size n are generated, and a histogram of the sample means is
constructed. You can then compare this estimated sampling distribution with the
Normal curve that is based on the central limit theorem.

Example

5.7 Using the Central Limit Theorem applet.

In Example 5.6, we considered sample sizes of n = 2, 10, and 25 from an
exponential distribution. Figure 5.4 shows a screenshot of the Central Limit
Theorem applet for the exponential distribution when n = 10. The mean and
standard deviation of this sampling distribution are 1 and 1/10=0.316,
respectively. From the 10,000 SRSs, the mean is estimated to be 1.001 and the
estimated standard deviation is 0.319. These are both quite close to the true
values. In Figure 5.3(c) we saw that the density curve for 10 observations is
still somewhat skewed to the right. We can see this same behavior in Figure
5.4 when we compare the histogram with the Normal curve based on the
central limit theorem.

577



FIGURE 5.4
Screenshot of the Central Limit Theorem applet for the exponential distribution when n = 10, for
Example 5.7.

Try using the applet for the other sample sizes in Example 5.6. You should get
histograms shaped like the density curves shown in Figure 5.3. You can also
consider other sample sizes by sliding n from 1 to 100. As you increase n, the
shape of the histogram moves closer to the Normal curve that is based on the
central limit theorem.

USE YOUR KNOWLEDGE

5.6 Use the Central Limit Theorem applet.

Let’s consider the uniform distribution between 0 and 10. For this
distribution, all intervals of the same length between 0 and 10 are
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equally likely. This distribution has a mean of 5 and standard deviation
of 2.89.

(a) Approximate the population distribution by setting n = 1 and clicking the “Generate
samples” button.

(b) What are your estimates of the population mean and population standard deviation based
on the 10,000 SRSs? Are these population estimates close to the true values?

(c) Describe the shape of the histogram and compare it with the Normal curve.

5.7 Use the Central Limit Theorem applet again.

Refer to the previous exercise. In the setting of Example 5.6, let’s
approximate the sampling distribution for samples of size n = 2, 10, and
25 observations.

(a) For each sample size, compute the mean and standard deviation of x¯.

(b) For each sample size, use the applet to approximate the sampling distribution. Report the
estimated mean and standard deviation. Are they close to the true values calculated in (a)?

(c) For each sample size, compare the shape of the sampling distribution with the Normal
curve based on the central limit theorem.

(d) For this population distribution, what sample size do you think is needed to make you feel
comfortable using the central limit theorem to approximate the sampling distribution of x¯?
Explain your answer.

Now that we know that the sampling distribution of the sample mean x¯ is
approximately Normal for a sufficiently large n let’s consider some probability
calculations.

Example

5.8 Time between sent text messages.

Americans aged 18 to 29 years send an average of almost 88 text messages a
day.4 Suppose that the time X between text messages sent from your cell
phone is governed by the exponential distribution with mean μ = 15 minutes
and standard deviation σ = 15 minutes. You record the next 50 times between
sent text messages. What is the probability that their average exceeds 13
minutes?

The central limit theorem says that the sample mean time x¯ (in minutes)
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between text messages has approximately the Normal distribution with mean
equal to the population mean μ = 15 minutes and standard deviation

σ5=1550=2.12 minutes

The sampling distribution of x¯ is therefore approximately N(15, 2, 12). Figure
5.5 shows this Normal curve (solid) and also the actual density curve of x¯
(dashed).

FIGURE 5.5
The exact distribution (dashed) and the Normal approximation from the central limit
theorem (solid) for the average time between text messages sent on your cell phone, for
Example 5.8.

The probability we want is P(x¯>13.0). This is the area to the right of 13
under the solid Normal curve in Figure 5.5. A Normal distribution calculation
gives

P(x¯>13.0)=P(x¯−152.12>13.0−152.12)

= P(Z > −0.942 = 0.8264

The exactly correct probability is the area under the dashed density curve in
the figure. It is 0.8271. The central limit theorem Normal approximation is off
by only about 0.0007.

We can also use this sampling distribution to talk about the total time between
the 1st and 51st text message sent from your phone.
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5.9 Convert the results to the total time.

There are 50 time intervals between the 1st and 51st text message. According
to the central limit theorem calculations in Example 5.8,

P(x¯>13.0)=0.8264

We know that the sample mean is the total time divided by 50, so the event
{x¯>13.0} is the same as the event {50x¯>50(13.0)}. We can say that the
probability is 0.8264 that the total time is 50(13.0) = 650 minutes (10.8 hours)
or greater.

USE YOUR KNOWLEDGE

5.8 Find a probability.

Refer to Example 5.8. Find the probability that the mean time between
text messages is less than 16 minutes. The exact probability is 0.6944.
Compare your answer with the exact one.

Figure 5.6 summarizes the facts about the sampling distribution of x¯ in a way
that emphasizes the big idea of a sampling distribution. The general framework for
constructing the sampling distribution of x¯ is shown on the left.

• Take many random samples of size n from a population with mean μ and
standard deviation σ.

• Find the sample mean x¯ for each sample.

• Collect all the x¯’s and display their distribution.

The sampling distribution of x¯ is shown on the right. Keep this figure in mind as
you go forward.
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FIGURE 5.6
The sampling distribution of a sample mean x¯ has mean μ and standard deviation σ/n. The
sampling distribution is Normal if the population distribution is Normal; it is approximately
Normal for large samples in any case.

A few more facts

The central limit theorem is the big fact of probability theory in this section. Here
are three additional facts related to our investigations that will be useful in
describing methods of inference in later chapters.

rules for means, p. 272
rules for variances, p. 275

The fact that the sample mean of an SRS from a Normal population has a
Normal distribution is a special case of a more general fact: any linear
combination of independent Normal random variables is also Normally
distributed. That is, if X and Y are independent Normal random variables and a
and b are any fixed numbers, aX + bY is also Normally distributed, and this is true
for any number of Normal random variables. In particular, the sum or difference of
independent Normal random variables has a Normal distribution. The mean and
standard deviation of aX + bY are found as usual from the rules for means and
variances. These facts are often used in statistical calculations. Here is an example.

Example

5.10 Getting to and from campus.

You live off campus and take the shuttle, provided by your apartment
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complex, to and from campus. Your time on the shuttle in minutes varies from
day to day. The time going to campus X has the N(20, 4) distribution, and the
time returning from campus Y varies according to the N(18, 8) distribution. If
they vary independently, what is the probability that you will be on the shuttle
for less time going to campus?

The difference in times X − Y is Normally distributed, with mean and
variance

μX −Y = μX − μY = 20 − 18 = 2

σX−Y2=σX2+σY2=42+82=80

Because 80=8.94,X−Y, X − Y has the N(2, 8.94) distribution. Figure 5.7
illustrates the probability computation:

P(X < Y) = P(X − Y < 0)

=P((X−Y)−28.94<0−28.94)

P(Z < −0.22) = 0.4129

Although on average it takes longer to go to campus than return, the trip to
campus will take less time on roughly two of every five days.

FIGURE 5.7
The Normal probability calculation for Example 5.10. The difference in times going to campus
and returning from campus (X − Y) is Normal with mean 2 minutes and standard deviation 8.94
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minutes.

The second useful fact is that more general versions of the central limit
theorem say that the distribution of a sum or average of many small random
quantities is close to Normal. This is true even if the quantities are not
independent (as long as they are not too highly correlated) and even if they have
different distributions (as long as no single random quantity is so large that it
dominates the others). These more general versions of the central limit theorem
suggest why the Normal distributions are common models for observed data. Any
variable that is a sum of many small random influences will have approximately a
Normal distribution.

Finally, the central limit theorem also applies to discrete random variables.
An average of discrete random variables will never result in a continuous sampling
distribution, but the Normal distribution often serves as a good approximation. In
Section 5.2, we will discuss the sampling distribution and Normal approximation
for counts and proportions. This Normal approximation is just an example of the
central limit theorem applied to these discrete random variables.

BEYOND THE BASICS

Weibull distributions
Our discussion of sampling distributions so far has concentrated on the Normal
model to approximate the sampling distribution of the sample mean x¯. This
model is important in statistical practice because of the central limit theorem
and the fact that sample means are among the most frequently used statistics.
Simplicity also contributes to its popularity. The parameter μ is easy to
understand, and to estimate it, we use a statistic x¯ that is also easy to
understand and compute.

There are, however, many other probability distributions that are used to
model data in various circumstances. The time that a product, such as a
computer hard drive, lasts before failing rarely has a Normal distribution.
Earlier we mentioned the use of the exponential distribution to model time to
failure. Another class of continuous distributions, the Weibull distributions, is
more commonly used in these situations.

Weibull distributions
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Example

5.11 Weibull density curves.

Figure 5.8 shows the density curves of three members of the Weibull family.
Each describes a different type of distribution for the time to failure of a
product.

1. The top curve in Figure 5.8 is a model for infant mortality. This describes
products that often fail immediately, prior to delivery to the customer.
However, if the product does not fail right away, it will likely last a long
time. For products like this, a manufacturer might test them and ship only
the ones that do not fail immediately.

FIGURE 5.8
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Density curves for three members of the Weibull family of distributions, for Example
5.11.

2. The middle curve in Figure 5.8 is a model for early failure. These products
do not fail immediately, but many fail early in their lives after they are in
the hands of customers. This is disastrous—the product or the process that
makes it must be changed at once.

3. The bottom curve in Figure 5.8 is a model for old-age wear-out. Most of
these products fail only when they begin to wear out, and then many fail at
about the same age.

A manufacturer certainly wants to know to which of these classes a new
product belongs. To find out, engineers operate a random sample of products
until they fail. From the failure time data we can estimate the parameter (called
the “shape parameter”) that distinguishes among the three Weibull
distributions in Figure 5.8. The shape parameter has no simple definition like
that of a population proportion or mean, and it cannot be estimated by a simple
statistic such as p^ or x¯.

Two things save the situation. First, statistical theory provides general
approaches for finding good estimates of any parameter. These general
methods not only tell us how to use x¯ in the Normal settings but also tell us
how to estimate the Weibull shape parameter. Second, software can calculate
the estimate from data even though there is no algebraic formula that we can
write for the estimate. Statistical practice often relies on both mathematical
theory and methods of computation more elaborate than the ones we will meet
in this book. Fortunately, big ideas such as sampling distributions carry over to
more complicated situations.5

SECTION 5.1 Summary

The sample mean x¯ of an SRS of size n drawn from a large population with mean
μ and standard deviation σ has a sampling distribution with mean and standard
deviation

μx¯=μ

σx¯=σn

The sample mean x¯ is an unbiased estimator of the population mean μ and is less
variable than a single observation. The standard deviation decreases in proportion
to the square root of the sample size n. This means that to reduce the standard
deviation by a factor of C, we need to increase the sample size by a factor of C2.

The central limit theorem states that for large n the sampling distribution of x¯
is approximately N(μ,σ/n) for any population with mean μ and finite standard
deviation σ. This allows us to approximate probability calculations about x¯ using
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the Normal distribution.
Linear combinations of independent Normal random variables have Normal

distributions. In particular, if the population has a Normal distribution, so does x¯.

SECTION 5.1 Exercises

For Exercise 5.1, see page 303; for Exercises 5.2 and 5.3, see page 307; for
Exercise 5.4, see page 308; for Exercise 5.5, see page308; for Exercises 5.6 and
5.7, see pages 310–311; and for Exercise 5.8, see page 312.

5.9 What is wrong?

Explain what is wrong in each of the following statements.

(a) If the population standard deviation is 20, then the standard deviation of x¯ for an SRS of 10
observations will be 20/10 = 2.

(b) When taking SRSs from a large population, larger sample sizes will result in larger standard deviations
of x¯.

(c) For an SRS from a large population, both the mean and the standard deviation of x¯ depend on the
sample size n.

5.10 What is wrong?

Explain what is wrong in each of the following statements.

(a) The central limit theorem states that for large n, the population mean μ is approximately Normal.

(b) For large n, the distribution of observed values will be approximately Normal.

(c) For sufficiently large n, the 68–95–99.7 rule says that x¯ should be within μ ± 2σ about 95% of the
time.

5.11 Generating a sampling distribution.

Let’s illustrate the idea of a sampling distribution in the case of a very small sample from a very small
population. The population is the 10 scholarship players currently on your women’s basketball team. For
convenience, the 10 players have been labeled with the integers 0 to 9. For each player, the total amount of
time spent (in minutes) on Facebook during the last week is recorded in the table below.

Player 0 1 2 3 4 5 6 7 8 9
Total time (min) 108 63 127 210 92 88 161 133 105 168

The parameter of interest is the average amount of time on Facebook. The sample is an SRS of size n = 3
drawn from this population of players. Because the players are labeled 0 to 9, a single random digit from
Table B chooses one player for the sample.

(a) Find the mean for the 10 players in the population. This is the population mean μ.

(b) Use Table B to draw an SRS of size 3 from this population. (Note: You may sample the same player’s
time more than once.) Write down the three times in your sample and calculate the sample mean x¯. This
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statistic is an estimate of μ.

(c) Repeat this process 9 more times using different parts of Table B. Make a histogram of the 10 values of
x¯. You are approximating the sampling distribution of x¯.

(d) Is the center of your histogram close to μ? Explain why you’d expect it to get closer to μ the more times
you repeated this sampling process.

5.12 Number of apps on a Smartphone.

At a recent Appnation conference, Nielsen reported an average of 41 apps per smartphone among U.S.
smartphone subscribers.6 State the population for this survey, the statistic, and some likely values from the
population distribution.

5.13 Why the difference?

Refer to the previous exercise. In Exercise 5.1 (page 303), a survey by AppsFire reported a median of 108
apps per device. This is very different from the average reported in the previous exercise.

(a) Do you think that the two populations are comparable? Explain your answer.

(b) The AppsFire report provides a footnote stating that their data exclude users who do not use any apps at
all. Explain how this might contribute to the difference in the two reported statistics.

5.14 Total sleep time of college students.

In Example 5.1, the total sleep time per night among college students was approximately Normally
distributed with mean μ = 6.78 hours and standard deviation σ = 1.24 hours. You plan to take an SRS of
size n = 150 and compute the average total sleep time.

(a) What is the standard deviation for the average time?

(b) Use the 95 part of the 68–95–99.7 rule to describe the variability of this sample mean.

(c) What is the probability that your average will be below 6.9 hours?

5.15 Determining sample size.

Refer to the previous exercise. Now you want to use a sample size such that about 95% of the averages fall
within ±10 minutes (0.17 hours) of the true mean μ = 6.78.

(a) Based on your answer to part (b) in Exercise 5.14, should the sample size be larger or smaller than 150?
Explain.

(b) What standard deviation of x¯ do you need such that 95% of all samples will have a mean within 10
minutes of μ?

(c) Using the standard deviation you calculated in part (b), determine the number of students you need to
sample.

5.16 File size on a tablet PC.
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A tablet PC contains 8152 music and video files. The distribution of file size is highly skewed. Assume
that the standard deviation for this population is 0.82 megabytes (MB).

(a) What is the standard deviation of the average file size when you take an SRS of 16 files from this
population?

(b) How many files would you need to sample if you wanted the standard deviation of x¯ to be no larger
than 0.10 MB?

5.17 Bottling an energy drink.

A bottling company uses a filling machine to fill cans with an energy drink. The cans are supposed to
contain 250 milliliters (ml). The machine, however, has some variability, so the standard deviation of the
volume is σ = 0.5 ml. A sample of 4 cans is inspected each hour for process control purposes, and records
are kept of the sample mean volume. If the process mean is exactly equal to the target value, what will be
the mean and standard deviation of the numbers recorded?

5.18 Average file size on a tablet.

Refer to Exercise 5.16. Suppose that the true mean file size of the music and video files on the tablet is 7.4
MB and you plan to take an SRS of n = 40 files.

(a) Explain why it may be reasonable to assume that the average x¯ is approximately Normal even though
the population distribution is highly skewed.

(b) Sketch the approximate Normal curve for the sample mean, making sure to specify the mean and
standard deviation.

(c) What is the probability that your sample mean will differ from the population mean by more than 0.15
MB?

5.19 Can volumes.

Averages are less variable than individual observations. It is reasonable to assume that the can volumes in
Exercise 5.17 vary according to a Normal distribution. In that case, the mean x¯ of an SRS of cans also has
a Normal distribution.

(a) Make a sketch of the Normal curve for a single can. Add the Normal curve for the mean of an SRS of 4
cans on the same sketch.

(b) What is the probability that the volume of a single randomly chosen can differs from the target value by
1 ml or more?

(c) What is the probability that the mean volume of an SRS of 4 cans differs from the target value by 1 ml
or more?

5.20 Number of friends on Facebook.

Facebook recently examined all active Facebook users (more than 10% of the global population) and
determined that the average user has 190 friends. This distribution takes only integer values, so it is
certainly not Normal. It is also highly skewed to the right, with a median of 100 friends.7 Suppose that σ =
288 and you take an SRS of 70 Facebook users.

(a) For your sample, what are the mean and standard deviation of x¯, the mean number of friends per user?
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(b) Use the central limit theorem to find the probability that the average number of friends for 70 Facebook
users is greater than 250.

(c) What are the mean and standard deviation of the total number of friends in your sample?

(d) What is the probability that the total number of friends among your sample of 70 Facebook users is
greater than 17,500?

 5.21 Cholesterol levels of teenagers.

A study of the health of teenagers plans to measure the blood cholesterol level of an SRS of 13- to 16-year-
olds. The researchers will report the mean x¯ from their sample as an estimate of the mean cholesterol
level μ in this population.

(a) Explain to someone who knows no statistics what it means to say that x¯ is an “unbiased” estimator of
μ

(b) The sample result x¯ is an unbiased estimator of the population truth μ no matter what size SRS the
study chooses. Explain to someone who knows no statistics why a large sample gives more trustworthy
results than a small sample.

5.22 ACT scores of high school seniors.

The scores of your state’s high school seniors on the ACT college entrance examination in a recent year
had mean μ = 22.3 and standard deviation σ = 5.2. The distribution of scores is only roughly Normal.

(a) What is the approximate probability that a single student randomly chosen from all those taking the test
scores 27 or higher?

(b) Now consider an SRS of 16 students who took the test. What are the mean and standard deviation of
the sample mean score x¯ of these 16 students?

(c) What is the approximate probability that the mean score x¯ of these 16 students is 27 or higher?

(d) Which of your two Normal probability calculations in parts (a) and (c) is more accurate? Why?

5.23 Monitoring the emerald ash borer.

The emerald ash borer is a beetle that poses a serious threat to ash trees. Purple traps are often used to
detect or monitor populations of this pest. In the counties of your state where the beetle is present,
thousands of traps are used to monitor the population. These traps are checked periodically. The
distribution of beetle counts per trap is discrete and strongly skewed. A majority of traps have no beetles,
and only a few will have more than 1 beetle. For this exercise, assume that the mean number of beetles
trapped is 0.3 with a standard deviation of 0.8.

(a) Suppose that your state does not have the resources to check all the traps, and so it plans to check only
an SRS of n = 100 traps. What are the mean and standard deviation of the average number of beetles x¯ in
100 traps?

(b) Use the central limit theorem to find the probability that the average number of beetles in 100 traps is
greater than 0.5.

(c) Do you think it is appropriate in this situation to use the central limit theorem? Explain your answer.

5.24 Grades in a math course.
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Indiana University posts the grade distributions for its courses online.8 Students in one section of Math 118
in the fall 2012 semester received 33% A’s, 33% B’s, 20% C’s, 12% D’s, and 2% F’s.

(a) Using the common scale A = 4, B = 3, C = 2, D = 1, F = 0, take X to be the grade of a randomly chosen
Math 118 student. Use the definitions of the mean (page 265) and standard deviation (page 273) for
discrete random variables to find the mean μ and the standard deviation σ of grades in this course.

(b) Math 118 is a large enough course that we can take the grades of an SRS of 25 students to be
independent of each other. If x¯ is the average of these 25 grades, what are the mean and standard
deviation of x¯?

(c) What is the probability that a randomly chosen Math 118 student gets a B or better, P(X ≥ 3)?

(d) What is the approximate probability P(x¯≥3) that the grade point average for 25 randomly chosen Math
118 students is B or better?

5.25 Diabetes during pregnancy.

Sheila’s doctor is concerned that she may suffer from gestational diabetes (high blood glucose levels
during pregnancy). There is variation both in the actual glucose level and in the results of the blood test
that measures the level. A patient is classified as having gestational diabetes if her glucose level is above
140 milligrams per deciliter (mg/dl) one hour after a sugary drink is ingested. Sheila’s measured glucose
level one hour after ingesting the sugary drink varies according to the Normal distribution with μ = 125
mg/dl and σ = 10 mg/dl.

(a) If a single glucose measurement is made, what is the probability that Sheila is diagnosed as having
gestational diabetes?

(b) If measurements are made instead on three separate days and the mean result is compared with the
criterion 140 mg/dl, what is the probability that Sheila is diagnosed as having gestational diabetes?

5.26 A roulette payoff.

A $1 bet on a single number on a casino’s roulette wheel pays $35 if the ball ends up in the number slot
you choose. Here is the distribution of the payoff X:

Payoff X $0 $35
Probability 0.974 0.026

Each spin of the roulette wheel is independent of other spins.

(a) What are the mean and standard deviation of X ?

(b) Sam comes to the casino weekly and bets on 10 spins of the roulette wheel. What does the law of large
numbers say about the average payoff Sam receives from his bets each visit?

(c) What does the central limit theorem say about the distribution of Sam’s average payoff after betting on
520 spins in a year?

(d) Sam comes out ahead for the year if his average payoff is greater than $1 (the amount he bet on each
spin). What is the probability that Sam ends the year ahead? The true probability is 0.396. Does using the
central limit theorem provide a reasonable approximation? We will return to this problem in the next
section.

5.27 Defining a high glucose reading.
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In Exercise 5.25, Sheila’s measured glucose level one hour after ingesting the sugary drink varies
according to the Normal distribution with μ = 125 mg/dl and σ = 10 mg/dl. What is the level L such that
there is probability only 0.05 that the mean glucose level of three test results falls above L for Sheila’s
glucose level distribution?

5.28 Risks and insurance.

The idea of insurance is that we all face risks that are unlikely but carry high cost. Think of a fire
destroying your home. So we form a group to share the risk: we all pay a small amount, and the insurance
policy pays a large amount to those few of us whose homes burn down. An insurance company looks at the
records for millions of homeowners and sees that the mean loss from fire in a year is μ = $250 per house
and that the standard deviation of the loss is σ = $1000. (The distribution of losses is extremely right-
skewed: most people have $0 loss, but a few have large losses.) The company plans to sell fire insurance
for $250 plus enough to cover its costs and profit.

(a) Explain clearly why it would be unwise to sell only 12 policies. Then explain why selling many
thousands of such policies is a safe business.

(b) If the company sells 25,000 policies, what is the approximate probability that the average loss in a year
will be greater than $270?

5.29 Weights of airline passengers.

In response to the increasing weight of airline passengers, the Federal Aviation Administration told airlines
to assume that passengers average 190 pounds in the summer, including clothing and carry-on baggage.
But passengers vary: the FAA gave a mean but not a standard deviation. A reasonable standard deviation is
35 pounds. Weights are not Normally distributed, especially when the population includes both men and
women, but they are not very non-Normal. A commuter plane carries 25 passengers. What is the
approximate probability that the total weight of the passengers exceeds 5200 pounds? (Hint: To apply the
central limit theorem, restate the problem in terms of the mean weight.)

5.30 Trustworthiness and eye color.

Various studies have shown that facial appearance affects social interactions. One recent study looked at
the relationship between eye color and trustworthiness.9 In this study, there were 238 participants, 78 with
brown eyes and 160 with blue or green eyes. Each participant was asked to rate a set of student photos in
terms of trustworthiness on a 10-point scale, where 1 means very trustworthy and 10 very untrustworthy.
All photos showed a student who was seated in front of a white background and looking directly at the
camera with a neutral expression. The photos were cropped so that the eyes were at the same height on
each photo and a neckline was visible.

Suppose that for the population of all brown-eyed participants, a photo of a blue-eyed female student has
a mean score of 5.8 and a standard deviation of 2.5. That same photo for the population of all blue- or
green-eyed participants has a mean score of 6.3 and a standard deviation of 2.2.

(a) Although each participant’s score is discrete, the mean score for each eye color group will be close to
Normal. Why?

(b) What are the means and standard deviations of the sample means of the scores for the two eye color
groups in this study?

5.31 Trustworthiness and eye color, continued.

Refer to the previous exercise.

592



(a) We can take all 238 scores to be independent because participants are not told each other’s scores.
What is the distribution of the difference between the mean scores in the two groups?

(b) Find the probability that the mean score for the brown-eyed group is less than the mean score for the
other group.

5.32 Iron depletion without anemia and physical performance.

Several studies have shown a link between iron depletion without anemia (IDNA) and physical
performance. In one recent study, the physical performance of 24 female collegiate rowers with IDNA was
compared with 24 female collegiate rowers with normal iron status.10 Several different measures of
physical performance were studied, but we’ll focus here on training-session duration. Assume that training-
session duration of female rowers with IDNA is Normally distributed with mean 58 minutes and standard
deviation 11 minutes. Training-session duration of female rowers with normal iron status is Normally
distributed with mean 69 minutes and standard deviation 18 minutes.

(a) What is the probability that the mean duration of the 24 rowers with IDNA exceeds 63 minutes?

(b) What is the probability that the mean duration of the 24 rowers with normal iron status is less than 63
minutes?

(c) What is the probability that the mean duration of the 24 rowers with IDNA is greater than the mean
duration of the 24 rowers with normal iron status?

 5.33 Treatment and control groups.

The previous exercise illustrates a common setting for statistical inference. This exercise gives the general
form of the sampling distribution needed in this setting. We have a sample of n observations from a
treatment group and an independent sample of m observations from a control group. Suppose that the
response to the treatment has the N(μX, σX) distribution and that the response of control subjects has the
N(μY, σY) distribution. Inference about the difference μY − μX between the population means is based on
the difference y¯−x¯ between the sample means in the two groups.

(a) Under the assumptions given, what is the distribution of ȳ? Of x¯?

(b) What is the distribution of y¯−x¯?

 5.34 Investments in two funds.

Jennifer invests her money in a portfolio that consists of 70% Fidelity 500 Index Fund and 30% Fidelity
Diversified International Fund. Suppose that in the long run the annual real return X on the 500 Index Fund
has mean 9% and standard deviation 19%, the annual real return Y on the Diversified International Fund
has mean 11% and standard deviation 17%, and the correlation between X and Y is 0.6.

(a) The return on Jennifer’s portfolio is R = 0.7X + 0.3Y. What are the mean and standard deviation of R?

(b) The distribution of returns is typically roughly symmetric but with more extreme high and low
observations than a Normal distribution. The average return over a number of years, however, is close to
Normal. If Jennifer holds her portfolio for 20 years, what is the approximate probability that her average
return is less than 5%?

(c) The calculation you just made is not overly helpful, because Jennifer isn’t really concerned about the
mean return R¯. To see why, suppose that her portfolio returns 12% this year and 6% next year. The mean
return for the two years is 9%. If Jennifer starts with $1000, how much does she have at the end of the first
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year? At the end of the second year? How does this amount compare with what she would have if both
years had the mean return, 9%? Over 20 years, there may be a large difference between the ordinary mean
R¯ and the geometric mean, which reflects the fact that returns in successive years multiply rather than
add.
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5.2 Sampling Distributions for Counts and
Proportions

When you complete this section, you will be able to

• Determine when the count X can be modeled using the binomial
distribution.

• Determine when the sampling distribution of X can be modeled using the
binomial distribution.

• Calculate the mean and standard deviation of X when it has the B(n,p)
distribution.

• Explain the differences in the sampling distributions of a count X and the
associated sample proportion p^=X/n.

• Determine when one can utilize the Normal approximation to describe
the sampling distribution of the count or the sampling distribution of the
sample proportion.

• Use the Normal approximation for counts and proportions to perform
probability calculations about the statistics.

categorical variable, p. 3

In the previous section, we discussed the probability distribution of the sample
mean, which meant a focus on population values that were quantitative. We will
now shift our focus to population values that are categorical. Counts and
proportions are discrete statistics that describe categorical data. We focus our
discussion on the simplest case of a random variable with only two possible
categories. Here is an example.

Example

5.12 Work hours make it difficult to spend time with children.
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A sample survey asks 1006 British parents whether they think long working
hours are making it difficult to spend enough time with their children. 11 We
would like to view the responses of these parents as representative of a larger
population of British parents who hold similar beliefs. That is, we will view
the responses of the sampled parents as an SRS from a population.

When there are only two possible outcomes for a random variable, we can
summarize the results by giving the count for one of the possible outcomes. We let
n represent the sample size, and we use X to represent the random variable that
gives the count for the outcome of interest.

Example

5.13 The random variable of interest.

In our sample survey of British parents, n = 1006. We will ask each parent in
our sample whether he or she feels long working hours make it difficult to
spend enough time with their children. The variable X is the number of parents
who think that long working hours make it difficult to spend enough time with
their children. In this case, X = 755.

In our example, we chose the random variable X to be the number of parents
who think that long working hours make it difficult to spend enough time with
their children. We could have chosen X to be the number of parents who do not
think that long working hours make it difficult to spend enough time with their
children. The choice is yours. Often we make the choice based on how we would
like to describe the results in a summary. Which choice do you prefer in this case?

When a random variable has only two possible outcomes, we can also use the
sample proportion p^=X/n as a summary.
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sample proportion

Example

5.14 The sample proportion.

The sample proportion of parents surveyed who think that long working hours
make it difficult to spend enough time with their children is

p^=7551006=0.75

Notice that this summary takes into account the sample size n We need to know
n in order to properly interpret the meaning of the random variable X. For example,
the conclusion we would draw about parent opinions in this survey would be quite
different if we had observed X = 755 from a sample twice as large, n = 2012.

USE YOUR KNOWLEDGE

5.35 Sexual harassment in middle school and high school.

A survey of 1965 students in grades 7 to 12 reports that 48% of the
students say they have encountered some type of sexual harassment
while at school.12 Give n, X, and p^ for this survey.

5.36 Seniors who have taken a statistics course.

In a random sample of 300 senior students from your college, 63%
reported that they had taken a statistics course. Give n, X, and p^ for this
setting.

5.37 Use of the Internet to find a place to live.

A poll of 1500 college students asked whether or not they have used the
Internet to find a place to live sometime within the past year. There were
1025 students who answered “Yes”; the other 475 answered “No.”
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(a) What is n?

(b) Choose one of the two possible outcomes to define the random variable, X. Give a reason
for your choice.

(c) What is the value of X?

(d) Find the sample proportion, p^.

Just like the sample mean, sample counts and sample proportions are commonly
used statistics, and understanding their sampling distributions is important for
statistical inference. These statistics, however, are discrete random variables and
thus introduce us to a new family of probability distributions.

The binomial distributions for sample counts

The distribution of a count X depends on how the data are produced. Here is a
simple but common situation.

THE BINOMIAL SETTING

1. There is a fixed number of observations n

2. The n observations are all independent.

3. Each observation falls into one of just two categories, which for
convenience we call “success” and “failure.”

4. The probability of a success, call it p is the same for each observation.

Think of tossing a coin n times as an example of the binomial setting. Each toss
gives either heads or tails and the outcomes of successive tosses are independent. If
we call heads a success, then p is the probability of a head and remains the same as
long as we toss the same coin. The number of heads we count is a random variable
X. The distribution of X (and, more generally, the distribution of the count of
successes in any binomial setting) is completely determined by the number of
observations n and the success probability p

BINOMIAL DISTRIBUTIONS

The distribution of the count X of successes in the binomial setting is called
the binomial distribution with parameters n and p. The parameter n is the
number of observations, and p is the probability of a success on any one
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observation. The possible values of X are the whole numbers from 0 to n. As
an abbreviation, we say that the distribution of X is B(n, p).

The binomial distributions are an important class of discrete probability
distributions. Later in this section we will learn how to assign probabilities to
outcomes and how to find the mean and standard deviation of binomial
distributions. That said, the most important skill for using binomial distributions is
the ability to recognize situations to which they do and do not apply. This can be
done by checking all the facets of the binomial setting.

Example

5.15 Binomial examples?

(a) Genetics says that children receive genes from each of their parents
independently. Each child of a particular pair of parents has probability 0.25 of
having type O blood. If these parents have 3 children, the number who have
type O blood is the count X of successes in 3 independent trials with
probability 0.25 of a success on each trial. So X has the B(3, 0.25) distribution.

(b) Engineers define reliability as the probability that an item will perform
its function under specific conditions for a specific period of time.
Replacement heart valves made of animal tissue, for example, have probability
0.77 of performing well for 15 years.13 The probability of failure within 15
years is therefore 0.23. It is reasonable to assume that valves in different
patients fail (or not) independently of each other. The number of patients in a
group of 500 who will need another valve replacement within 15 years has the
B(500, 0.23) distribution.

(c) A multicenter trial is designed to assess a new surgical procedure. A
total of 540 patients will undergo the procedure, and the count of patients X
who suffer a major adverse cardiac event (MACE) within 30 days of surgery
will be recorded. Because these patients will receive this procedure from
different surgeons at different hospitals, it may not be true that the probability
of a MACE is the same for each patient. Thus, X may not have the binomial
distribution.
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USE YOUR KNOWLEDGE

5.38 Genetics and blood types.

Genetics says that children receive genes from each of their parents
independently. Suppose that each child of a particular pair of parents has
probability 0.5 of having type AB blood. If these parents have 4
children, what is the distribution of the number who have type AB
blood? Explain your answer.

5.39 Toss a coin.

Toss a fair coin 10 times. Give the distribution of X, the number of
heads that you observe.

Binomial distributions in statistical sampling

The binomial distributions are important in statistics when we wish to make
inferences about the proportion p of “successes” in a population. Here is a typical
example.

Example

5.16 Audits of financial records.

The financial records of businesses may be audited by state tax authorities to
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test compliance with tax laws. It is too time-consuming to examine all sales
and purchases made by a company during the period covered by the audit.
Suppose that the auditor examines an SRS of 150 sales records out of 10,000
available. One issue is whether each sale was correctly classified as subject to
state sales tax or not. Suppose that 800 of the 10,000 sales are incorrectly
classified. Is the count X of misclassified records in the sample a binomial
random variable?

Choosing an SRS from a population is not quite a binomial setting. Removing
one record in Example 5.16 changes the proportion of bad records in the remaining
population, so the state of the second record chosen is not independent of the first.
Because the population is large, however, removing a few items has a very small
effect on the composition of the remaining population. Successive inspection
results are very nearly independent. The population proportion of misclassified
records is

p=80010,000=0.08

If the first record chosen is bad, the proportion of bad records remaining is
799/9999 = 0.079908. If the first record is good, the proportion of bad records left
is 800/9999 = 0.080008. These proportions are so close to 0.08 that for practical
purposes we can act as if removing one record has no effect on the proportion of
misclassified records remaining. We act as if the count X of misclassified sales
records in the audit sample has the binomial distribution B(150, 0.08).

stratified sample, p. 197

Populations like the one described in Example 5.16 often contain a relatively
small number of items with very large values. For this example, these values would
be very large sale amounts and likely represent an important group of items to the
auditor. An SRS taken from such a population will likely include very few items of
this type. Therefore, it is common to use a stratified sample in settings like this.
Strata are defined based on dollar value of the sale, and within each stratum, an
SRS is taken. The results are then combined to obtain an estimate for the entire
population.

SAMPLING DISTRIBUTION OF A COUNT

A population contains proportion p of successes. If the population is much
larger than the sample, the count X of successes in an SRS of size n has
approximately the binomial distribution B(n, p).

The accuracy of this approximation improves as the size of the population increases relative to the
size of the sample. As a rule of thumb, we will use the binomial sampling distribution for counts
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when the population is at least 20 times as large as the sample.

Finding binomial probabilities

We will later give a formula for the probability that a binomial random variable
takes any of its values. In practice, you will rarely have to use this formula for
calculations because some calculators and most statistical software packages will
calculate binomial probabilities for you.

Example

5.17 Probabilities for misclassified sales records.

In the audit setting of Example 5.16, what is the probability that the audit finds
exactly 10 misclassified sales records? What is the probability that the audit
finds no more than 10 misclassified records? Figure 5.9 shows the output from
one statistical software system. You see that if the count X has the B(150, 0.08)
distribution,

P(X = 10) = 0.106959

P(X ≤ 10) = 0.338427

It was easy to request these calculations in the software’s menus. For the TI-
83/84 calculator, the functions binompdf and binomcdf would be used. In R,
the functions dbinom and pbinom would be used. Typically, the output
supplies more decimal places than we need and uses labels that may not be
helpful (for example, “Probability Density Function” when the distribution is
discrete, not continuous). But, as usual with software, we can ignore
distractions and find the results we need.
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FIGURE 5.9
Binomial probabilities for Example 5.17: output from the Minitab statistical software.

If you do not have suitable computing facilities, you can still shorten the work
of calculating binomial probabilities for some values of n and p by looking up
probabilities in Table C in the back of this book. The entries in the table are the
probabilities P(X = k) of individual outcomes for a binomial random variable X.

Example

5.18 The probability histogram.

Suppose that the audit in Example 5.16 chose just 15 sales records. What is the
probability that no more than 1 of the 15 is misclassified? The count X of
misclassified records in the sample has approximately the B(15, 0.08)
distribution. Figure 5.10 is a probability histogram for this distribution. The
distribution is strongly skewed. Although X can take any whole-number value
from 0 to 15, the probabilities of values larger than 5 are so small that they do
not appear in the histogram.

We want to calculate
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P(X ≤ 1) = P(X = 0) + P(X = 1)

when X has the B(15, 0.08) distribution. To use Table C for this calculation,
look opposite n = 15 and under p = 0.08. The entries in the rows for each k are
P(X = k). Blank cells in the table are 0 to four decimal places. You see that

P(X ≤ 1) = P(X = 0) + P(X = 1)

= 0.2863 + 0.3734 = 0.6597

About two-thirds of all samples will contain no more than 1 bad record. In
fact, almost 29% of the samples will contain no bad records. The sample of
size 15 cannot be trusted to provide adequate evidence about misclassified
sales records. A larger number of observations is needed.

p
   n   k     .08
  15 0   .2863

1   .3734
2   .2273
3   .0857
4   .0223
5   .0043
6   .0006
7   .0001
8
9
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FIGURE 5.10
Probability histogram for the binomial distribution with n = 15 and p = 0.08, for Example 5.18.

The values of p that appear in Table C are all 0.5 or smaller. When the
probability of a success is greater than 0.5, restate the problem in terms of the
number of failures. The probability of a failure is less than 0.5 when the probability
of a success exceeds 0.5. When using the table, always stop to ask whether you
must count successes or failures.

Example

5.19 Falling asleep in class.

In the survey of 4513 college students described in Example 5.1, 46% of the
respondents reported falling asleep in class due to poor sleep. You randomly
sample 12 students in your dormitory, and 9 state that they fell asleep in class
during the last week due to poor sleep. Relative to the survey results, is this an
unusually high number of students?

To answer this question, assume that the students’ actions (falling asleep or
not) are independent, with the probability of falling asleep equal to 0.46. This
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independence assumption may not be reasonable if the students study and
socialize together or if there is a loud student in the dormitory who keeps
everyone up. We’ll assume this is not an issue here, so the number X of
students who fell asleep in class out of 12 students has the B(12, 0.46)
distribution.

We want the probability of classifying at least 9 students as having fallen
asleep in class. Using software, we find

P(X ≥ 9) = P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12)

= 0.0319 + 0.0082 + 0.0013 + 0.0001 = 0.0415

We would expect to find 9 or more students falling asleep in class about 4% of
the time, in fewer than 1 of every 20 surveys. This is a pretty rare outcome and
falls outside the range of the usual chance variation due to random sampling.

USE YOUR KNOWLEDGE

5.40 Free-throw shooting.

Courtney is a basketball player who makes 90% of her free throws. In a
recent game, she had 10 free throws and missed 3 of them. How unusual
is this outcome? Using software, calculator, or Table C, compute 1 −
P(X ≤ 2), where X is the number of free throws missed in 10 shots.
Explain your answer.

5.41 Find the probabilities.

(a) Suppose that X has the B(6, 0.4) distribution. Use software, calculator, or Table C to find
P(X = 0) and P(X ≥ 4).

(b) Suppose that X has the B(6, 0.6) distribution. Use software, calculator, or Table C to find
P(X = 6) and P(X ≤ 2).

(c) Explain the relationship between your answers to parts (a) and (b) of this exercise.

Binomial mean and standard deviation

If a count Xhas the B(n, p) distribution, what are the mean μX and the standard
deviation σX? We can guess the mean. If we expect 46% of the students to have
fallen asleep in class due to poor sleep, the mean number in 12 students should be
46% of 12, or 5.5. That’s μX when X has the B(12, 0.46) distribution.
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means and variances of random variables, p. 263

Intuition suggests more generally that the mean of the B(n, p) distribution
should be np. Can we show that this is correct and also obtain a short formula for
the standard deviation? Because binomial distributions are discrete probability
distributions, we could find the mean and variance by using the definitions in
Section 4.4. Here is an easier way.

A binomial random variable X is the count of successes in n independent
observations that each have the same probability p of success. Let the random
variable Si indicate whether the ith observation is a success or failure by taking the
values Si = 1 if a success occurs and Si = 0 if the outcome is a failure. The Si are
independent because the observations are, and each Si has the same simple
distribution:

Outcome 1 0
Probability p 1 −p

mean and variance of a discrete random variable, p. 279

From the definition of the mean of a discrete random variable, we know that the
mean of each Si is

μs = (1) (p) + (0) (1 − p) = p

Similarly, the definition of the variance shows that σS2=p(1−p). Because each Si is
1 for a success and 0 for a failure, to find the total number of successes X we add
the Si’s:

X = S1 + S2 + . . . + Sn

Apply the addition rules for means and variances to this sum. To find the mean of
X we add the means of the Si’s:

μX = μS1 + μS2 + . . . + μSn

= nμS = np

Similarly, the variance is n times the variance of a single S, so that σX2=np(1−p).
The standard deviation σX is the square root of the variance. Here is the result.

BINOMIAL MEAN AND STANDARD DEVIATION
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If a count X has the binomial distribution B(n, p), then

μX = np

σX=np(1−p)

Example

5.20 The Helsinki Heart Study.

The Helsinki Heart Study asked whether the anticholesterol drug gemfibrozil
reduces heart attacks. In planning such an experiment, the researchers must be
confident that the sample sizes are large enough to enable them to observe
enough heart attacks. The Helsinki study planned to give gemfibrozil to about
2000 men aged 40 to 55 and a placebo to another 2000. The probability of a
heart attack during the five-year period of the study for men this age is about
0.04. What are the mean and standard deviation of the number of heart attacks
that will be observed in one group if the treatment does not change this
probability?

There are 2000 independent observations, each having probability p = 0.04
of a heart attack. The count X of heart attacks has the B(2000, 0.04)
distribution, so that

μX = np = (2000) (0.04) = 80

σX=np(1−p)=(2000)(0.04)(0.96)=8.76

The expected number of heart attacks is large enough to permit conclusions
about the effectiveness of the drug. In fact, there were 84 heart attacks among
the 2035 men actually assigned to the placebo, quite close to the mean. The
gemfibrozil group of 2046 men suffered only 56 heart attacks. This is evidence
that the drug reduces the chance of a heart attack. In a later chapter we will
learn how to determine if this is strong enough evidence to conclude that the
drug is effective.

Sample proportions

What proportion of a company’s sales records have an incorrect sales tax
classification? What percent of adults favor stronger laws restricting firearms? In
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statistical sampling we often want to estimate the proportion p of “successes” in a
population. Our estimator is the sample proportion of successes:

proportion

p^=count ofsuccesses insamplesizeofsample

=Xn

Be sure to distinguish between the proportion p^ and the count X. The count takes
whole-number values between 0 and n, but a proportion is always a number
between 0 and 1. In the binomial setting, the count X has a binomial distribution.
The proportion p^ does not have a binomial distribution. We can, however, do
probability calculations about p^ by restating them in terms of the count X and
using binomial methods. In Example 5.9 (page 312) we took a similar approach for
the sum, restating the problem in terms of the sample mean and then using the
Normal distribution to calculate the probability.

Example

5.21 Buying clothes online.

A survey by the Consumer Reports National Research Center revealed that
85% of all respondents were very or completely satisfied with their online
clothes-shopping experience.14 It was also reported, however, that people over
the age of 40 were generally more satisfied than younger respondents. You
decide to take a nationwide random sample of 2500 college students and ask if
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they agree or disagree that “I am very or completely satisfied with my online
clothes-shopping experience.” Suppose that 60% of all college students would
agree if asked this question. What is the probability that the sample proportion
who agree is at least 58%?

The count X who agree has the binomial distribution B(2500, 0.6). The
sample proportion p^=X/2500 does not have a binomial distribution, because it
is not a count. But we can translate any question about a sample proportion p^
into a question about the count X. Because 58% of 2500 is 1450,

P(p^≥0.58)=P(X≥1450)

= P(X = 1450) + P(X = 1451) + . . . + P(X = 2500)

This is a rather elaborate calculation. We must add more than 1000 binomial
probabilities. Software tells us that P(p^≥0.58)=0.9802. But what do we do if
we don’t have access to software?

rules for means, p. 272
rules for variances, p. 275

As a first step, find the mean and standard deviation of a sample proportion. We
know the mean and standard deviation of a sample count, so apply the rules from
Section 4.4 for the mean and variance of a constant times a random variable. Here
is the result.

MEAN AND STANDARD DEVIATION OF A SAMPLE
PROPORTION

Let p^ be the sample proportion of successes in an SRS of size n drawn from a
large population having population proportion p of successes. The mean and
standard deviation of p^ are

μp^=p

σp^=p(1−p)n

The formula for σp^ is exactly correct in the binomial setting. It is approximately correct for an SRS
from a large population. We will use it when the population is at least 20 times as large as the
sample.

Let’s now use these formulas to calculate the mean and standard deviation for
Example 5.21.
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Example

5.22 The mean and the standard deviation.

The mean and standard deviation of the proportion of the survey respondents
in Example 5.21 who are satisfied with their online clothes-shopping
experience are

μp^=p=0.6

σp^=p(1−p)n=(0.6)(0.4)2500=0.0098

USE YOUR KNOWLEDGE

5.42 Find the mean and the standard deviation.

If we toss a fair coin 200 times, the number of heads is a random
variable that is binomial.

(a) Find the mean and the standard deviation of the sample proportion of heads.

(b) Is your answer to part (a) the same as the mean and the standard deviation of the sample
count of heads? Explain your answer.

unbiased estimator, p. 210

The fact that the mean of p^ is p states in statistical language that the sample
proportion p^ in an SRS is an unbiased estimator of the population proportion p.
When a sample is drawn from a new population having a different value of the
population proportion p, the sampling distribution of the unbiased estimator p^
changes so that its mean moves to the new value of p. We observed this fact
empirically in Section 3.4 and have now verified it from the laws of probability.

The variability of p^ about its mean, as described by the variance or standard
deviation, gets smaller as the sample size increases. So a sample proportion from a
large sample will usually lie quite close to the population proportion p. We
observed this in the simulation experiment on page 208 in Section 3.4. Now we
have discovered exactly how the variability decreases: the standard deviation is
p(1−p)/n. Similar to what we observed in the previous section, the n in the
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denominator means that the sample size must be multiplied by 4 if we wish to
divide the standard deviation in half.

Normal approximation for counts and proportions

Using simulation, we discovered in Section 3.4 that the sampling distribution of a
sample proportion p^ is close to Normal. Now we know that the distribution of p^
is that of a binomial count divided by the sample size n. This seems at first to be a
contradiction. To clear up the matter, look at Figure 5.11. This is a probability
histogram of the exact distribution of the proportion of frustrated shoppers p^
based on the binomial distribution B(2500, 0.6). There are hundreds of narrow
bars, one for each of the 2501 possible values of p^. Most have probabilities too
small to show in a graph. The probability histogram looks very Normal! In fact,
both the count X and the sample proportion p^ are approximately Normal in large
samples.

FIGURE 5.11
Probability histogram of the sample proportio p^ based on a binomial count with n = 2500 and p
= 0.6. The distribution is very close to Normal.

central limit theorem, p. 307
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We also know this to be true as a result of the central limit theorem discussed in
the previous section. Recall that we can consider the count X as a sum

X = S1 + S2 + . . . + Sn

of independent random variables Si that take the value 1 if a success occurs on the
ith trial and the value 0 otherwise. The proportion of successes p^=X/n can then be
thought of as the sample mean of the Si and, like all sample means, is
approximately Normal when n is large. Given that p^ is approximately Normal, the
count will also be approximately Normal since it is just a constant n times p^, an
approximately Normal random variable.

NORMAL APPROXIMATION FOR COUNTS AND
PROPORTIONS

Draw an SRS of size n from a large population having population proportion p
of successes. Let X be the count of successes in the sample and p^=X/n be the
sample proportion of successes. When n is large, the sampling distributions of
these statistics are approximately Normal:

XisapproximatelyN(np,np(1−p))

p^isapproximatelyN(p,p(1−p)n)

As a rule of thumb, we will use this approximation for values of n and p that satisfy np ≥ 10 and n(1
− p) ≥ 10.

These Normal approximations are easy to remember because they say that p^
and X are Normal, with their usual means and standard deviations. Whether or not
you use the Normal approximations should depend on how accurate your
calculations need to be. For most statistical purposes great accuracy is not required.
Our “rule of thumb” for use of the Normal approximations reflects this judgment.

FIGURE 5.12
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The sampling distribution of a sample proportion p^ is approximately Normal with mean p and
standard deviation p(1−p)/n.

The accuracy of the Normal approximations improves as the sample size n
increases. They are most accurate for any fixed n when p is close to 1/2, and least
accurate when p is near 0 or 1. You can compare binomial distributions with their
Normal approximations by using the Normal Approximation to Binomial applet.
This applet allows you to change n or p while watching the effect on the binomial
probability histogram and the Normal curve that approximates it.

Figure 5.12 summarizes the distribution of a sample proportion in a form that
emphasizes the big idea of a sampling distribution. Just as with Figure 5.6, the
general framework for constructing a sampling distribution is shown on the left.

• Take many random samples of size n from a population that contains
proportion p of successes.

• Find the sample proportion p^ for each sample.

• Collect all the p^’s and display their distribution.

The sampling distribution of p^ is shown on the right. Keep this figure in mind as
you move toward statistical inference.

Example

5.23 Compare the Normal approximation with the exact calculation.

Let’s compare the Normal approximation for the calculation of Example 5.21
with the exact calculation from software. We want to calculate P(p^≥0.58)
when the sample size is n = 2500 and the population proportion is p = 0.6.
Example 5.22 shows that

μp^=p=0.6

σp^=p(1−p)n=0.0098

Act as if p^ were Normal with mean 0.6 and standard deviation 0.0098. The
approximate probability, as illustrated in Figure 5.13, is

P(p^≥0.58)=p(p^−0.60.0098≥0.58−0.60.0098)
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≐ P (Z ≥ −2.04) = 0.9793

That is, about 98% of all samples have a sample proportion that is at least
0.58. Because the sample was large, this Normal approximation is quite
accurate. It misses the software value 0.9802 by only 0.0009.

FIGURE 5.13
The Normal probability calculation for Example 5.23.

Example

5.24 Using the Normal approximation.

The audit described in Example 5.16 examined an SRS of 150 sales records
for compliance with sales tax laws. In fact, 8% of all the company’s sales
records have an incorrect sales tax classification. The count X of bad records in
the sample has approximately the B(150, 0.08) distribution.

According to the Normal approximation to the binomial distributions, the
count X is approximately Normal with mean and standard deviation

μX = np = (150) (0.08) = 12
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σX=np(1−p)=(150)(0.08)(0.92)=3.3226

The Normal approximation for the probability of no more than 10
misclassified records is the area to the left of X = 10 under the Normal curve.
Using Table A,

P(X≤10)=P(X−123.3226≤10−123.3226)

≐ P(Z ≤ −0.60) = 0.2743

Software tells us that the actual binomial probability that no more than 10 of
the records in the sample are misclassified is P(X ≤ 10) = 0.3384. The Normal
approximation is only roughly accurate. Because np = 12, this combination of
n and p is close to the border of the values for which we are willing to use the
approximation.

FIGURE 5.14
Probability histogram and Normal approximation for the binomial distribution with n = 150 and
p = 0.08, for Example 5.24.

The distribution of the count of bad records in a sample of 15 is distinctly non-
Normal, as Figure 5.10 showed. When we increase the sample size to 150,
however, the shape of the binomial distribution becomes roughly Normal. Figure
5.14 displays the probability histogram of the binomial distribution with the
density curve of the approximating Normal distribution superimposed. Both
distributions have the same mean and standard deviation, and both the area under
the histogram and the area under the curve are 1. The Normal curve fits the
histogram reasonably well. Look closely: the histogram is slightly skewed to the
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right, a property that the symmetric Normal curve can’t match.

USE YOUR KNOWLEDGE

5.43 Use the Normal approximation.

Suppose that we toss a fair coin 200 times. Use the Normal
approximation to find the probability that the sample proportion of
heads is

(a) between 0.4 and 0.6.

(b) between 0.45 and 0.55.

The continuity correction

Figure 5.15 illustrates an idea that greatly improves the accuracy of the Normal
approximation to binomial probabilities. The binomial probability P(X ≤ 10) is the
area of the histogram bars for values 0 to 10. The bar for X = 10 actually extends
from 9.5 to 10.5. Because the discrete binomial distribution puts probability only
on whole numbers, the probabilities P(X ≤ 10) and P(X ≤ 10.5) are the same. The
Normal distribution spreads probability continuously, so these two Normal
probabilities are different. The Normal approximation is more accurate if we
consider X = 10 to extend from 9.5 to 10.5, matching the bar in the probability
histogram.
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FIGURE 5.15
Area under the Normal approximation curve for the probability in Example 5.24

The event {X ≤ 10} includes the outcome X = 10. Figure 5.15 shades the area
under the Normal curve that matches all the histogram bars for outcomes 0 to 10,
bounded on the right not by 10, but by 10.5. So P(X ≤ 10) is calculated as P(X ≤
10.5). On the other hand, P(X < 10) excludes the outcome X = 10, so we exclude
the entire interval from 9.5 to 10.5 and calculate P(X ≤ 9.5) from the Normal table.
Here is the result of the Normal calculation in Example 5.24 improved in this way:

P(X ≤ 10) = P(X ≤ 10.5)

=P(X−123.3226≤10.5−123.3226)

≐ P(Z ≤ −0.45) = 0.3264

The improved approximation misses the binomial probability by only 0.012.
Acting as though a whole number occupies the interval from 0.5 below to 0.5
above the number is called the continuity correction to the Normal
approximation. If you need accurate values for binomial probabilities, try to use
software to do exact calculations. If no software is available, use the continuity
correction unless n is very large. Because most statistical purposes do not require
extremely accurate probability calculations, we do not emphasize use of the
continuity correction.

continuity correction
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Binomial formula

We can find a formula for the probability that a binomial random variable takes
any value by adding probabilities for the different ways of getting exactly that
many successes in n observations. Here is the example we will use to show the
idea.

Example

5.25 Blood types of children.

Each child born to a particular set of parents has probability 0.25 of having
blood type O. If these parents have 5 children, what is the probability that
exactly 2 of them have type O blood?

The count of children with type O blood is a binomial random variable X
with n = 5 tries and probability p = 0.25 of a success on each try. We want P(X
= 2).

Because the method doesn’t depend on the specific example, we will use “S”
for success and “F” for failure. In Example 5.25, “S” would stand for type O blood.
Do the work in two steps.

Step 1: Find the probability that a specific 2 of the 5 tries give successes, say
the first and the third. This is the outcome SFSFF. The multiplication rule for
independent events tells us that

P(SFSFF) = P(S)P(F)P(S)P(F)P(F)

= (0.25)(0.75)(0.25)(0.75)(0.75)

= (0.25)2 (0.75)3

Step 2: Observe that the probability of any one arrangement of 2 S’s and 3 F’s
has this same probability. That’s true because we multiply together 0.25 twice and
0.75 three times whenever we have 2 S’s and 3 F’s. The probability that X = 2 is
the probability of getting 2 S’s and 3 F’s in any arrangement whatsoever. Here are
all the possible arrangements:

SSFFF    SFSFF    SFFSF    SFFFS    FSSFF

FSFSF    FSFFS    FFSSF    FFSFS    FFFSS

There are 10 of them, all with the same probability. The overall probability of 2
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successes is therefore

P(X = 2) = 10 (0.25)2 (0.75)3 = 0.2637

The pattern of this calculation works for any binomial probability. To use it, we
need to be able to count the number of arrangements of k successes in n
observations without actually listing them. We use the following fact to do the
counting.

BINOMIAL COEFFICIENT

The number of ways of arranging k successes among n observations is given
by the binomial coefficient

(nk)=n!k!(n−k)!

for k = 0, 1, 2, . . . , n.

The formula for binomial coefficients uses the factorial notation. The factorial
n! for any positive whole number n is

factorial

n! = n × (n − 1) × (n − 2) × . . . × 3 × 2 × 1

Also, 0! = 1. Notice that the larger of the two factorials in the denominator of a
binomial coefficient will cancel much of the n! in the numerator. For example, the
binomial coefficient we need for Example 5.25 is

(52)=5!2!3!

=(5)(4)(3)(2)(1)(2)(1)×(3)(2)(1)

=(5)(4)(2)(1)=202=10

This agrees with our previous calculation.

The notation (nk) is not related to the fraction nk. A helpful way to remember
its meaning is to read it as “binomial coefficient n choose k” Binomial coefficients
have many uses in mathematics, but we are interested in them only as an aid to
finding binomial probabilities. The binomial coefficient (nk) counts the number of
ways in which k successes can be distributed among n observations. The binomial
probability P(X = k) is this count multiplied by the probability of any specific
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arrangement of the k successes. Here is the formula we seek.

BINOMIAL PROBABILITY

If X has the binomial distribution B(n, p) with n observations and probability p
of success on each observation, the possible values of X are 0, 1, 2, . . . , n If k
is any one of these values, the binomial probability is

P(X=k)=(nk)pk(1−p)n−k

Here is an example of the use of the binomial probability formula.

Example

5.26 Using the binomial probability formula.

The number X of misclassified sales records in the auditor’s sample in
Example 5.18 has the B(15, 0.08) distribution. The probability of finding no
more than 1 misclassified record is

P(X ≤ 1) = P(X = 0) + P(X = 1)

=(150)(0.08)0(0.92)15+(151)(0.08)1(0.92)14

=15!0!15!(1)(0.2863)+15!1!14!(0.08)(0.3112)

= (1) (1) (0.2863) + (15) (0.08) (0.3112)

= 0.2863 + 0.3734 = 0.6597

The calculation used the facts that 0! = 1 and that a0 = 1 for any number a ≠ 0.
The result agrees with that obtained from Table C in Example 5.18.

USE YOUR KNOWLEDGE

5.44 An unfair coin.
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A coin is slightly bent, and as a result the probability of a head is 0.54.
Suppose that you toss the coin four times.

(a) Use the binomial formula to find the probability of 3 or more heads.

(b) Compare your answer with the one that you would obtain if the coin were fair.

The Poisson distributions

A count X has a binomial distribution when it is produced under the binomial
setting. If one or more facets of this setting do not hold, the count X will have a
different distribution. In this subsection, we discuss one of these distributions.

Frequently, we meet counts that are open-ended, that is, are not based on a fixed
number of n observations: the number of customers at a popular cafe between
12:00 P.M. and 1:00 P.M.; the number of dings on your car door; the number of
reported pedestrian/bicyclist collisions on campus during the academic year. These
are all counts that could be 0, 1, 2, 3, and so on indefinitely.

The Poisson distribution is another model for a count and can often be used in
these open-ended situations. The count represents the number of events (call them
“successes”) that occur in some fixed unit of measure such as a period of time or
region of space. The Poisson distribution is appropriate under the following
conditions.

THE POISSON SETTING

1. The number of successes that occur in two nonoverlapping units of measure
are independent.

2. The probability that a success will occur in a unit of measure is the same for
all units of equal size and is proportional to the size of the unit.

3. The probability that more than one event occurs in a unit of measure is
negligible for very small-sized units. In other words, the events occur one at
a time.

For binomial distributions, the important quantities were n, the fixed number of
observations, and p, the probability of success on any given observation. For
Poisson distributions, the only important quantity is the mean number of successes
μ occurring per unit of measure.

POISSON DISTRIBUTION
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The distribution of the count X of successes in the Poisson setting is the
Poisson distribution with mean μ. The parameter μ is the mean number of
successes per unit of measure. The possible values of X are the whole numbers
0, 1, 2, 3, ... If k is any whole number, then*

P(X=k)=e−μμkk!

The standard deviation of the distribution is μ.

__________
* The e in the Poisson probability formula is a mathematical constant equal to 2.71828 to six decimal
places. Many calculators have an ex function.

Example

5.27 Number of dropped calls.

Suppose that the number of dropped calls on your cell phone varies, with an
average of 2.1 calls per day. If we assume that the Poisson setting is
reasonable for this situation, we can model the daily count of dropped calls X
using the Poisson distribution with μ = 2.1. What is the probability of having
no more than 2 dropped calls tomorrow?

We can calculate P(X ≤ 2) using either software or the Poisson probability
formula. Using the probability formula:

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 1)

=e−2.1(2.1)00!+e−2.1(2.1)11!+e−2.1(2.1)22!

= 0.1225 + 0.2572 + 0.2700

= 0.6497

Using the R software, the probability is

dpois(0,2.1) + dpois(1,2.1) + dpois(2,2.1)

[1] 0.6496314

These two answers differ slightly due to roundoff error in the hand calculation.
There is roughly a 65% chance that you will have no more than 2 dropped
calls tomorrow.
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Similar to the binomial, Poisson probability calculations are rarely done by
hand if the event includes numerous possible values for X. Most software provides
functions to calculate P(X = k) and the cumulative probabilities of the form P(X ≤
k). These cumulative probability calculations make solving many problems less
tedious. Here’s an example.

Example

5.28 Counting software remote users.

Your university supplies online remote access to various software programs
used in courses. Suppose that the number of students remotely accessing these
programs in any given hour can be modeled by a Poisson distribution with μ =
17.2. What is the probability that more than 25 students will remotely access
these programs in the next hour?

Calculating this probability requires two steps.

1. Write P(X > 25) as an expression involving a cumulative probability:
P(X > 25) = 1 − P(X ≤ 25)

2. Obtain P(X ≤ 25) and subtract the value from 1. Again using R,
1- ppois(25,17.2)
[1] 0.02847261

The probability that more than 25 students will use this remote access in
the next hour is only 0.028. Relying on software to get the cumulative
probability is much quicker and less prone to error than the method of
Example 5.27. For this case, that method would involve determining 26
probabilities and then summing their values.

Under the Poisson setting, this probability of 0.028 applies not only to the next
hour but any other hour in the future. The probability does not change because the
units of measure are the same size and nonoverlapping.

USE YOUR KNOWLEDGE

5.45 Number of aphids.
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The milkweed aphid is a common pest to many ornamental plants.
Suppose that the number of aphids on a shoot of a Mexican butterfly
weed follows a Poisson distribution with μ = 4 aphids.

(a) What is the probability of observing exactly 5 aphids on a shoot?

(b) What is the probability of observing 5 or fewer aphids on a shoot?

5.46 Number of aphids, continued.

Refer to the previous exercise.

(a) What proportion of shoots would you expect to have no aphids present?

(b) If you do not observe any aphids on a shoot, is the probability that a nearby shoot has no
aphids smaller than, equal to, or larger than your answer in part (a)? Explain your reasoning.

If we add counts from successive nonoverlapping areas, we are just counting
the successes in a larger area. That count still meets the conditions of the Poisson
setting. However, since our unit of measure has doubled, the mean of this new
count is twice as large. Put more formally, if X is a Poisson random variable with
mean μX and Y is a Poisson random variable with mean μY and Y is independent of
X, then X + Y is a Poisson random variable with mean μX + μY. This fact means that
we can combine areas or look at a portion of an area and still use Poisson
distributions to model the count.

Example

5.29 Number of potholes.

The Automobile Association (AA) in Britain had member volunteers make a
60-minute, two-mile walk around their neighborhoods and survey the
condition of their roads and sidewalks. One outcome was the number of
potholes, defined as being at least 2 inches deep and at least 6 inches in
diameter, in their roads.15 It was reported that Scotland averages 8.9 potholes
per mile of road and London averages 4.9 potholes per mile of road. Suppose
that the number of potholes per mile in each of these two regions follow the
Poisson distribution. Then

• The number of potholes per 20 miles of road in Scotland is a Poisson random
variable with mean 20 × 8.9 = 178.
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• The number of potholes per half mile of road in London is a Poisson random
variable with mean 0.5 × 4.9 = 2.45.

• The number of potholes per 500 miles of road in Scotland is a Poisson
random variable with mean 500 × 8.9 = 4450.

• If we examined 2 miles of road in Scotland and 5 miles of road in London,
the total number of potholes would be a Poisson random variable with mean 2
× 8.9 + 5 × 4.9 = 42.3.

When the mean of the Poisson distribution is large, it may be difficult to
calculate Poisson probabilities using a calculator or software. Fortunately, when μ
is large, Poisson probabilities can be approximated using the Normal distribution
with mean μ and standard deviation μ. Here is an example.

Example

5.30 Number of text messages sent.

In Example 5.8 (page 311), it was reported that Americans aged 18 to 29 years
send an average of almost 88 text messages a day. Suppose that the number of
text messages you send per day follows a Poisson distribution with mean 88.
What is the probability that over a week you would send more than 650 text
messages?

To answer this using software, we first compute the mean number of text
messages sent per week. Since there are 7 days in a week, the mean is 7 × 88 =
616. Plugging this into R tells us that there is slightly more than an 8% chance
of sending this many texts:

1-ppois(650,616)

[1] 0.08317643

For the Normal approximation we compute

P(X>650)=P(X−616616>650−616616)

= P(Z > 1.37)

= 1 − P(Z < 1.37)

= 1 − 0.9147 = 0.0853

The approximation is quite accurate, differing from the actual probability by
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only 0.0021.

While the Normal approximation is adequate for many practical purposes, we
recommend using statistical software when possible so you can get exact Poisson
probabilities.

There is one other approximation associated with the Poisson distribution that is
worth mentioning. It is related to the binomial distribution. Previously, we
recommended using the Normal distribution to approximate the binomial
distribution when n and p satisfy np ≥ 10 and n(1 − p) ≥ 10. In cases where n is
large but p is so small that np < 10, the Poisson distribution with μ = np yields
more accurate results. For example, suppose that you wanted to calculate P(X ≤ 2)
when X has the B(1000, 0.001) distribution. Using R, the actual binomial
probability and the Poisson approximation are

pbinom(2,1000,.001) ppois(2,1)

[1] 0.9197907 [1] 0.9196986

The Poisson approximation gives a very accurate probability calculation for the
binomial distribution in this case.

SECTION 5.2 Summary

A count X of successes has the binomial distribution B(n, p) in the binomial
setting: there are n trials, all independent, each resulting in a success or a failure,
and each having the same probability p of a success.

The binomial distribution B(n, p) is a good approximation to the sampling
distribution of the count of successes in an SRS of size n from a large population
containing proportion p of successes. We will use this approximation when the
population is at least 20 times larger than the sample.

The sample proportion of successes p^=X/n is an estimator of the population
proportion p. It does not have a binomial distribution, but we can do probability
calculations about p^ by restating them in terms of X.

Binomial probabilities are most easily found by software. There is an exact
formula that is practical for calculations when n is small. Table C contains
binomial probabilities for some values of n and p For large n, you can use the
Normal approximation.

The mean and standard deviation of a binomial count X and a sample
proportion p^=X/n are

μX = np

μp^=p

σX=np(1−p)

σp^=p(1−p)n
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The sample proportion p^ is therefore an unbiased estimator of the population
proportion p.

The Normal approximation to the binomial distribution says that if X is a
count having the B(n, p) distribution, then when n is large,

XisapproximatelyN(np,np(1−p))

p^ is approximately N(p,p(1−p)n)

We will use this approximation when np ≥ 10 and n(1 − p) ≥ 10. It allows us to
approximate probability calculations about X and p^ using the Normal distribution.

The continuity correction improves the accuracy of the Normal
approximations. The exact binomial probability formula is

P(X=k)=(nk)pk(1−p)n−k

where the possible values of X are k = 0, 1, . . . , n. The binomial probability
formula uses the binomial coefficient

(nk)=n!k!(n−k)

Here the factorial n! is

n! = n × (n − 1) × (n − 2) × . . . × 3 × 2 × 1

for positive whole numbers n and 0! = 1. The binomial coefficient counts the
number of ways of distributing k successes among n trials.

A count X of successes has a Poisson distribution in the Poisson setting: the
number of successes that occur in two nonoverlapping units of measure are
independent; the probability that a success will occur in a unit of measure is the
same for all units of equal size and is proportional to the size of the unit; the
probability that more than one event occurs in a unit of measure is negligible for
very small-sized units. In other words, the events occur one at a time.

If X has the Poisson distribution with mean μ, then the standard deviation of X
is μ, and the possible values of X are the whole numbers 0, 1, 2, 3, and so on.

The Poisson probability that X takes any of these values is

P(X=k)=e−μμkk!                       k=0,1,2,3,...

Sums of independent Poisson random variables also have the Poisson distribution.
For example, in a Poisson model with mean μ per unit of measure, the count of
successes in a units is a Poisson random variable with mean a μ.

SECTION 5.2 Summary
For Exercises 5.35 to 5.37, see page 322; for Exercises 5.38 and 5.39, see page 324; for Exercises 5.40
and 5.41, see page 327; for Exercise 5.42, see page 331; for Exercise 5.43, see page 335; for Exercise
5.44, see page 339; and for Exercises 5.45 and 5.46, see page 341.
Most binomial probability calculations required in these exercises can be done by using Table C or the
Normal approximation. Your instructor may request that you use the binomial probability formula or
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software. In exercises requiring the Normal approximation, you should use the continuity correction if you
studied that topic.

5.47 What is wrong?

Explain what is wrong in each of the following scenarios.

(a) If you toss a fair coin four times and a head appears each time, then the next toss is more likely to be a
tail than a head.

(b) If you toss a fair coin four times and observe the pattern HTHT, then the next toss is more likely to be a
head than a tail.

(c) The quantity p^ is one of the parameters for a binomial distribution.

(d) The binomial distribution can be used to model the daily number of pedestrian/cyclist near-crash events
on campus.

5.48 What is wrong?

Explain what is wrong in each of the following scenarios.

(a) In the binomial setting, X is a proportion.

(b) The variance for a binomial count is p(1−p)/n.

(c) The Normal approximation to the binomial distribution is always accurate when n is greater than 1000.

(d) We can use the binomial distribution to approximate the sampling distribution of p^ when we draw an
SRS of size n = 50 students from a population of 500 students.

5.49 you use the binomial distribution?

In each of the following situations, is it reasonable to use a binomial distribution for the random variable
X? Give reasons for your answer in each case. If a binomial distribution applies, give the values of n and p.

(a) A poll of 200 college students asks whether or not you usually feel irritable in the morning. X is the
number who reply that they do usually feel irritable in the morning.

(b) You toss a fair coin until a head appears. X is the count of the number of tosses that you make.

(c) Most calls made at random by sample surveys don’t succeed in talking with a person. Of calls to New
York City, only one-twelfth succeed. A survey calls 500 randomly selected numbers in New York City. X
is the number of times that a person is reached.

(d) You deal 10 cards from a shuffled deck of standard playing cards and count the number X of black
cards.

5.50 Should you use the binomial distribution?

In each of the following situations, is it reasonable to use a binomial distribution for the random variable
X? Give reasons for your answer in each case.

(a) In a random sample of students in a fitness study, X is the mean daily exercise time of the sample.
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(b) A manufacturer of running shoes picks a random sample of 20 shoes from the production of shoes each
day for a detailed inspection. X is the number of pairs of shoes with a defect.

(c) A nutrition study chooses an SRS of college students. They are asked whether or not they usually eat at
least five servings of fruits or vegetables per day. X is the number who say that they do.

(d) X is the number of days during the school year when you skip a class.

5.51 Stealing from a store.

A survey of over 20,000 U.S. high school students revealed that 20% of the students say that they stole
something from a store in the past year.16 This is down 7% from the last survey, which was performed two
years earlier. You decide to take a random sample of 10 high school students from your city and ask them
this question.

(a) If the high school students in your city match this 20% rate, what is the distribution of the number of
students who say that they stole something from a store in the past year? What is the distribution of the
number of students who do not say that they stole something from a store in the past year?

(b) What is the probability that 4 or more of the 10 students in your sample say that they stole something
from a store in the past year?

5.52 Paying for music downloads.

A survey of Canadian teens aged 12 to 17 years reported that roughly 75% of them used a fee-based
website to download music.17 You decide to interview a random sample of 15 U.S. teenagers. For now,
assume that they behave similarly to the Canadian teenagers.

(a) What is the distribution of the number X who used a fee-based website to download music? Explain
your answer.

(b) What is the probability that at least 12 of the 15 teenagers in your sample used a fee-based website to
download music.

5.53 Stealing from a store, continued.

Refer to Exercise 5.51.

(a) What is the mean number of students in your sample who say that they stole something from a store in
the past year? What is the mean number of students who do not say that they stole? You should see that
these two means add to 10, the total number of students.

(b) What is the standard deviation σ of the number of students in your sample who say that they stole
something?

(c) Suppose that you live in a city where only 10% of the high school students say that they stole
something from a store in the past year. What is σ in this case? What is σ if p = 0.01? What happens to the
standard deviation of a binomial distribution as the probability of a success gets close to 0?

5.54 Paying for music downloads, continued.

Refer to Exercise 5.52. Suppose that only 60% of the U.S. teenagers used a fee-based website to download
music.
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(a) If you interview 15 U.S. teenagers at random, what is the mean of the count X who used a fee-based
website to download music? What is the mean of the proportion p^ in your sample who used a fee-based
website to download music?

(b) Repeat the calculations in part (a) for samples of size 150 and 1500. What happens to the mean count of
successes as the sample size increases? What happens to the mean proportion of successes?

 5.55 More on paying for music downloads.

Consider the settings of Exercises 5.52 and 5.54.

(a) Using the 75% rate of the Canadian teenagers, what is the smallest number m out of n = 15 U.S.
teenagers such that P(X ≤ m) is no larger than 0.05? You might consider m or fewer students as evidence
that the rate in your sample is lower than the 75% rate of the Canadian teenagers.

(b) Now using the 60% rate of the U.S. teenagers and your answer to part (a), what is P(X ≤ m)? This
represents the chance of obtaining enough evidence given that the rate is 60%.

(c) If you were to increase the sample size from n = 15 to n = 100 and repeat parts (a) and (b), would you
expect the probability in (b) to increase or decrease? Explain your answer.

 5.56 Attitudes toward drinking and studies of behavior.

Some of the methods in this section are approximations rather than exact probability results. We have
given rules of thumb for safe use of these approximations.

(a) You are interested in attitudes toward drinking among the 75 members of a fraternity. You choose 30
members at random to interview. One question is “Have you had five or more drinks at one time during the
last week?” Suppose that in fact 30% of the 75 members would say “Yes.” Explain why you cannot safely
use the B(30, 0.3) distribution for the count X in your sample who say “Yes.”

(b) The National AIDS Behavioral Surveys found that 0.2% (that’s 0.002 as a decimal fraction) of adult
heterosexuals had both received a blood transfusion and had a sexual partner from a group at high risk of
AIDS. Suppose that this national proportion holds for your region. Explain why you cannot safely use the
Normal approximation for the sample proportion who fall in this group when you interview an SRS of
1000 adults.

5.57 Random digits.

Each entry in a table of random digits like Table B has probability 0.1 of being a 0, and digits are
independent of each other.

(a) What is the probability that a group of six digits from the table will contain at least one 5?

(b) What is the mean number of 5s in lines 40 digits long?

 5.58 Use the Probability applet.

The Probability applet simulates tosses of a coin. You can choose the number of tosses n. and the
probability p of a head. You can therefore use the applet to simulate binomial random variables.

The count of misclassified sales records in Example 5.18 (page 326) has the binomial distribution with n
= 15 and p = 0.08. Set these values for the number of tosses and probability of heads in the applet. Table C
shows that the probability of getting a sample with exactly 0 misclassified records is 0.2863. This is the
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long-run proportion of samples with no bad records. Click “Toss” and “Reset” repeatedly to simulate 25
samples of 15 tosses. Record the number of bad records
(the count of heads) in each of the 25 samples.

(a) What proportion of the 25 samples had exactly 0 bad records? Do you think this sample proportion is
close to the probability?

(b) Remember that this probability of 0.2863 tells us only what happens in the long run. Here we’re
considering only 25 samples. If X is the number of samples out of 25 with exactly 0 misclassified records,
what is the distribution of X?

(c) Explain how to use the distribution in part (b) to describe the sampling distribution of p^ in part (a).

5.59 Illegal file sharing.

Would you stop illegal file sharing if you received a warning with a penalty notice attached? More than
1000 adult New Zealanders (aged 15 to 50 years) were asked this. Of those who have illegally file-shared
content 70% said that they would stop.18 You randomly sample 4 New Zealanders who have illegally file-
shared content and ask them this question. Let X be the number who say “Yes.”

(a) What are n and p in the binomial distribution of X?

(b) Find the probability of each possible value of X, and draw a probability histogram for this distribution.

(c) Find the mean number of positive responders and mark the location of this value on your histogram.

5.60 The ideal number of children.

“What do you think is the ideal number of children for a family to have?” A Gallup Poll asked this
question of 1020 randomly chosen adults. Over half (53%) thought that a total of two children was ideal.19
Suppose that p = 0.53 is exactly true for the population of all adults. Gallup announced a margin of error of
±4 percentage points for this poll. What is the probability that the sample proportion p^ for an SRS of size
n = 1020 falls between 0.49 and 0.57? You see that it is likely, but not certain, that polls like this give
results that are correct within their margin of error. We will say more about margins of error in Chapter 6.

5.61 Illegal file sharing, continued.

Refer to Exercise 5.59. Roughly 30% of those surveyed had illegally file-shared content. Assume that you
sample n = 300 New Zealanders.

(a) What is the probability that the sample proportion p^ of those who would stop after being given a
warning is between 0.67 and 0.73 if the population proportion is p = 0.70?

(b) What is the probability that the sample proportion p^ is between 0.87 and 0.93 if the population
proportion is p = 0.90?

(c) Using the results from parts (a) and (b), how does the probability that p^ falls within ±0.03 of the true p
change as p gets closer to 1?

5.62 How do the results depend on the sample size?

Return to the Gallup Poll setting of Exercise 5.60. We are supposing that the proportion of all adults who
think that having two children is ideal is p = 0.53. What is the probability that a sample proportion p^ falls
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between 0.49 and 0.57 (that is, within ±4 percentage points of the true p) if the sample is an SRS of size n
= 300? Of size n = 5000? Combine these results with your work in Exercise 5.60 to make a general
statement about the effect of larger samples in a sample survey.

5.63 Shooting free throws.

Since the mid-1960s, the overall free-throw percent at all college levels, for both men and women, has
remained pretty consistent. For men, players have been successful on roughly 69% of their free throws,
with the season percent never falling below 67% or above 70%.20 Assume that 300,000 free throws will be
attempted in the upcoming season.

(a) What are the mean and standard deviation of p^ if the population proportion is p = 0.69?

(b) Using the 68–95–99.7 rule, we expect p^ to fall between what two percents about 95% of the time?

(c) Given the width of the interval in part (b) and the range of season percents, do you think that it is
reasonable to assume that the population proportion has been the same over the last 50 seasons? Explain
your answer.

5.64 Online learning.

Recently the U.S. Department of Education released a report on online learning stating that blended
instruction, a combination of conventional face-to-face and online instruction, appears more effective in
terms of student performance than conventional teaching.21 You decide to poll the incoming students at
your institution to see if they prefer courses that blend face-to-face instruction with online components. In
an SRS of 400 incoming students, you find that 311 prefer this type of course.

(a) What is the sample proportion who prefer this type of blended instruction?

(b) If the population proportion for all students nationwide is 85%, what is the standard deviation of p^?

(c) Using the 68–95–99.7 rule, if you had drawn an SRS from the United States, you would expect p^ to
fall between what two percents about 95% of the time?

(d) Based on your result in part (a), do you think that the incoming students at your institution prefer this
type of instruction more, less, or about the same as students nationally? Explain your answer.

 5.65 Binge drinking among women.

The Centers for Disease Control and Prevention finds that 24.2% of women aged 18 to 24 years binge
drank. Binge drinking for women is defined as consuming at least 4 alcoholic drinks per episode during the
past 30 days. Those who binge drank averaged 6.4 drinks per episode and 3.6 episodes per month. The
study took a sample of almost 11,000 women aged 18 to 24 years, so the population proportion of women
who binge drank is very close to p = 0.24.22 The administration of your college surveys an SRS of 200
female students and finds that 56 binge drink.

(a) What is the sample proportion of women at your college who binge drink?

(b) If, in fact, the proportion of all women on your campus who binge drink is the same as the national
24%, what is the probability that the proportion in an SRS of 200 students is as large or larger than the
result of the administration’s sample?

(c) A writer for the student paper says that the percent of women who binge brink is higher on your
campus than nationally. Write a short letter to the editor explaining why the survey does not support this
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conclusion.

 5.66 How large a sample is needed?

The changing probabilities you found in Exercises 5.60 and 5.62 are due to the fact that the standard
deviation of the sample proportion p^ gets smaller as the sample size n increases. If the population
proportion is p = 0.53, how large a sample is needed to reduce the standard deviation of p^ to σp^=0.005??
(The 68–95–99.7 rule then says that about 95% of all samples will have p^ within 0.01 of the true p.)

5.67 A test for ESP.

In a test for ESP (extrasensory perception), the experimenter looks at cards that are hidden from the
subject. Each card contains either a star, a circle, a wave, or a square. As the experimenter looks at each of
20 cards in turn, the subject names the shape on the card.

(a) If a subject simply guesses the shape on each card, what is the probability of a successful guess on a
single card? Because the cards are independent, the count of successes in 20 cards has a binomial
distribution.

(b) What is the probability that a subject correctly guesses at least 10 of the 20 shapes?

(c) In many repetitions of this experiment with a subject who is guessing, how many cards will the subject
guess correctly on the average? What is the standard deviation of the number of correct guesses?

(d) A standard ESP deck actually contains 25 cards. There are five different shapes, each of which appears
on 5 cards. The subject knows that the deck has this makeup. Is a binomial model still appropriate for the
count of correct guesses in one pass through this deck? If so, what are n and p? If not, why not?

5.68 Admitting students to college.

A selective college would like to have an entering class of 950 students. Because not all students who are
offered admission accept, the college admits more than 950 students. Past experience shows that about
75% of the students admitted will accept. The college decides to admit 1200 students. Assuming that
students make their decisions independently, the number who accept has the B(1200, 0.75) distribution. If
this number is less than 950, the college will admit students from its waiting list.

(a) What are the mean and the standard deviation of the number X of students who accept?

(b) Use the Normal approximation to find the probability that at least 800 students accept.

(c) The college does not want more than 950 students. What is the probability that more than 950 will
accept?

(d) If the college decides to increase the number of admission offers to 1300, what is the probability that
more than 950 will accept?

 5.69 Is the ESP result better than guessing?

When the ESP study of Exercise 5.67 discovers a subject whose performance appears to be better than
guessing, the study continues at greater length. The experimenter looks at many cards bearing one of five
shapes (star, square, circle, wave, and cross) in an order determined by random numbers. The subject
cannot see the experimenter as the experimenter looks at each card in turn, in order to avoid any possible
nonverbal clues. The answers of a subject who does not have ESP should be independent observations,
each with probability 1/5 of success. We record 900 attempts.
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(a) What are the mean and the standard deviation of the count of successes?

(b) What are the mean and the standard deviation of the proportion of successes among the 900 attempts?

(c) What is the probability that a subject without ESP will be successful in at least 24% of 900 attempts?

(d) The researcher considers evidence of ESP to be a proportion of successes so large that there is only
probability 0.01 that a subject could do this well or better by guessing. What proportion of successes must
a subject have to meet this standard? (Example 1.45, on page 67, shows how to do an inverse calculation
for the Normal distribution that is similar to the type required here.)

 5.70 Show that these facts are true.

Use the definition of binomial coefficients to show that each of the following facts is true. Then restate
each fact in words in terms of the number of ways that k successes can be distributed among n
observations.

(a) (nn)=1for any whole number n≥1.

(b) (nn−1)=n  for any whole number n≥1.

(c) (nk)=(nn−k)  for any n and  k with   k≤n.

5.71 Multiple-choice tests.

Here is a simple probability model for multiple-choice tests. Suppose that each student has probability p of
correctly answering a question chosen at random from a universe of possible questions. (A strong student
has a higher p than a weak student.) The correctness of an answer to a question is independent of the
correctness of answers to other questions. Jodi is a good student for whom p = 0.88.

(a) Use the Normal approximation to find the probability that Jodi scores 85% or lower on a 100-question
test.

(b) If the test contains 250 questions, what is the probability that Jodi will score 85% or lower?

(c) How many questions must the test contain in order to reduce the standard deviation of Jodi’s proportion
of correct answers to half its value for a 100-item test?

(d) Laura is a weaker student for whom p = 0.72 Does the answer you gave in part (c) for the standard
deviation of Jodi’s score apply to Laura’s standard deviation also?

5.72 Tossing a die.

You are tossing a balanced die that has probability 1/6 of coming up 1 on each toss. Tosses are
independent. We are interested in how long we must wait to get the first 1.

(a) The probability of a 1 on the first toss is 1/6. What is the probability that the first toss is not a 1 and the
second toss is a 1?

(b) What is the probability that the first two tosses are not 1s and the third toss is a 1? This is the
probability that the first 1 occurs on the third toss.

(c) Now you see the pattern. What is the probability that the first 1 occurs on the fourth toss? On the fifth
toss?
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 5.73 The geometric distribution.

Generalize your work in Exercise 5.72. You have independent trials, each resulting in a success or a
failure. The probability of a success is p on each trial. The binomial distribution describes the count of
successes in a fixed number of trials. Now the number of trials is not fixed; instead, continue until you get
a success. The random variable Y is the number of the trial on which the first success occurs. What are the
possible values of Y? What is the probability P(Y = k) for any of these values? (Comment: The distribution
of the number of trials to the first success is called a geometric distribution.)

5.74 Number of colony-forming units.

In microbiology, colony-forming units (CFUs) are used to measure the number of microorganisms present
in a sample. To determine the number of CFUs, the sample is prepared, spread uniformly on an agar plate,
and then incubated at some suitable temperature. Suppose that the number of CFUs that appear after
incubation follows a Poisson distribution with μ = 15.

(a) If the area of the agar plate is 75 square centimeters (cm2), what is the probability of observing fewer
than 4 CFUs in a 25 cm2 area of the plate?

(b) If you were to count the total number of CFUs in 5 plates, what is the probability you would observe
more than 90 CFUs? Use the Poisson distribution to obtain this probability.

(c) Repeat the probability calculation in part (b) but now use the Normal approximation. How close is your
answer to your answer in part (b)?

5.75 Metal fatigue.

Metal fatigue refers to the gradual weakening and eventual failure of metal that undergoes cyclic loads.
The wings of an aircraft, for example, are subject to cyclic loads when in the air, and cracks can form. It is
thought that these cracks start at large particles found in the metal. Suppose that the number of particles
large enough to initiate a crack follows a Poisson distribution with mean μ = 0.5 per square centimeter
(cm2).

(a) What is the mean of the Poisson distribution if we consider a 100 cm2 area?

(b) Using the Normal approximation, what is the probability that this section has more than 60 of these
large particles?
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CHAPTER 5 Exercises

5.76 The cost of Internet access.

In Canada, households spent an average of $68 monthly for high-speed broadband access.23
Assume that the standard deviation is $22. If you ask an SRS of 500 Canadian households with
broadband access how much they pay, what is the probability that the average amount will exceed
$70?

5.77 Dust in coal mines.

A laboratory weighs filters from a coal mine to measure the amount of dust in the mine atmosphere.
Repeated measurements of the weight of dust on the same filter vary Normally with standard
deviation σ = 0.08 milligram (mg) because the weighing is not perfectly precise. The dust on a
particular filter actually weighs 123 mg.

(a) The laboratory reports the mean of 3 weighings of this filter. What is the distribution of this
mean?

(b) What is the probability that the laboratory reports a weight of 124 mg or higher for this filter?

5.78 The effect of sample size on the standard deviation.

Assume that the standard deviation in a very large population is 100.

(a) Calculate the standard deviation for the sample mean for samples of size 1, 4, 25, 100, 250, 500,
1000, and 5000.

(b) Graph your results with the sample size on the x axis and the standard deviation on the y axis.

(c) Summarize the relationship between the sample size and the standard deviation that your graph
shows.

5.79 Marks per round in cricket.

Cricket is a dart game that uses the numbers 15 to 20 and the bull’s-eye. Each time you hit one of
these regions you score either 0, 1, 2, or 3 marks. Thus, in a round of three throws, a person can
score 0 to 9 marks. Lex plans to play 20 games. Her distribution of marks per round is discrete and
strongly skewed. A majority of her rounds result in 0, 1, or 2 marks and only a few are more than 4
marks. Assume that her mean is 2.13 marks per round with a standard deviation of 1.88.

(a) Her 20 games involve 140 rounds of three throws each. What are the mean and standard
deviation of the average number of marks x¯ in 140 rounds?

(b) Using the central limit theorem, what is the probability that she averages fewer than 2 marks per
round?

(c) Do you think that the central limit theorem can be used in this setting? Explain your answer.
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5.80 Common last names.

The U.S. Census Bureau says that the 10 most common names in the United States are (in order)
Smith, Johnson, Williams, Brown, Jones, Miller, Davis, Garcia, Rodriguez, and Wilson.24 These
names account for 4.9% of all U.S. residents. Out of curiosity, you look at the authors of the
textbooks for your current courses. There are 12 authors in all. Would you be surprised if none of the
names of these authors were among the 10 most common? Give a probability to support your answer
and explain the reasoning behind your calculation.

5.81 Benford’s law.

It is a striking fact that the first digits of numbers in legitimate records often follow a distribution
known as Benford’s law. Here it is:

First digit 1 2 3 4 5 6 7 8 9
Proportion 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

Fake records usually have fewer first digits 1, 2, and 3. What is the approximate probability, if
Benford’s law holds, that among 1000 randomly chosen invoices there are 560 or fewer in amounts
with first digit 1, 2, or 3?

5.82 Genetics of peas.

According to genetic theory, the blossom color in the second generation of a certain cross of sweet
peas should be red or white in a 3:1 ratio. That is, each plant has probability 3/4 of having red
blossoms, and the blossom colors of separate plants are independent.

(a) What is the probability that exactly 9 out of 12 of these plants have red blossoms?

(b) What is the mean number of red-blossomed plants when 120 plants of this type are grown from
seeds?

(c) What is the probability of obtaining at least 80 red-blossomed plants when 120 plants are grown
from seeds?

5.83 The weight of a dozen eggs.

The weight of the eggs produced by a certain breed of hen is Normally distributed with mean 66
grams (g) and standard deviation 6 g. If cartons of such eggs can be considered to be SRSs of size 12
from the population of all eggs, what is the probability that the weight of a carton falls between 755
and 830 g?

5.84 Plastic caps for motor oil containers.

A machine fastens plastic screw-on caps onto containers of motor oil. If the machine applies more
torque than the cap can withstand, the cap will break. Both the torque applied and the strength of the
caps vary. The capping-machine torque has the Normal distribution with mean 7.0 inch-pounds and
standard deviation 0.9 inch-pounds. The cap strength (the torque that would break the cap) has the
Normal distribution with mean 10.1 inch-pounds and standard deviation 1.2 inch-pounds.

(a) Explain why it is reasonable to assume that the cap strength and the torque applied by the
machine are independent.
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(b) What is the probability that a cap will break while being fastened by the capping machine?

5.85 A roulette payoff revisited.

Refer to Exercise 5.26 (page 319). In part (d), the central limit theorem was used to approximate the
probability that Sam ends the year ahead. The estimate was about 0.10 too large. Let’s see if we can
get closer using the Normal approximation to the binomial with the continuity correction.

(a) If Sam plans to bet on 520 roulette spins, he needs to win at least $520 to break even. If each win
gives him $35, what is the minimum number of wins m he must have?

(b) Given p = 1/38 = 0.026, what are the mean and standard deviation of X, the number of wins in
520 roulette spins?

(c) Use the information in the previous two parts to compute P(X ≥ m) with the continuity
correction. Does your answer get closer to the exact probability 0.396?

 5.86 Learning a foreign language.

Does delaying oral practice hinder learning a foreign language? Researchers randomly assigned 25
beginning students of Russian to begin speaking practice immediately and another 25 to delay
speaking for four weeks. At the end of the semester both groups took a standard test of
comprehension of spoken Russian. Suppose that in the population of all beginning students, the test
scores for early speaking vary according to the N(32, 6) distribution and scores for delayed speaking
have the N(29, 5) distribution.

(a) What is the sampling distribution of the mean score x¯ in the early-speaking group in many
repetitions of the experiment? What is the sampling distribution of the mean score ȳ in the delayed-
speaking group?

(b) If the experiment were repeated many times, what would be the sampling distribution of the
difference y¯−x¯ between the mean scores in the two groups?

(c) What is the probability that the experiment will find (misleadingly) that the mean score for
delayed speaking is at least as large as that for early speaking?

 5.87 Summer employment of college students.

Suppose (as is roughly true) that 88% of college men and 82% of college women were employed last
summer. A sample survey interviews SRSs of 400 college men and 400 college women. The two
samples are of course independent.

(a) What is the approximate distribution of the proportion p^F of women who worked last summer?
What is the approximate distribution of the proportion p^M of men who worked?

(b) The survey wants to compare men and women. What is the approximate distribution of the
difference in the proportions who worked, p^M−p^F? Explain the reasoning behind your answer.

(c) What is the probability that in the sample a higher proportion of women than men worked last
summer?

5.88 Income of working couples.
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A study of working couples measures the income X of the husband and the income Y of the wife in a
large number of couples in which both partners are employed. Suppose that you knew the means μX
and μY and the variances σX2 and σY2 of both variables in the population.

(a) Is it reasonable to take the mean of the total income X + Y to be μX + μY? Explain your answer.

(b) Is it reasonable to take the variance of the total income to be σX2+σY2? Explain your answer.

 5.89 A random walk.

A particle moves along the line in a random walk. That is, the particle starts at the origin (position 0)
and moves either right or left in independent steps of length 1. If the particle moves to the right with
probability 0.6, its movement at the ith step is a random variable Xi with distribution

P(Xi = 1) = 0.6

P(Xi = 1) = 0.4

The position of the particle after k steps is the sum of these random movements,

Y = X1 + X2 + . . . + Xk

Use the central limit theorem to find the approximate probability that the position of the particle
after 500 steps is at least 200 to the right.

5.90 A lottery payoff.

A $1 bet in a state lottery’s Pick 3 game pays $500 if the three-digit number you choose exactly
matches the winning number, which is drawn at random. Here is the distribution of the payoff X:

  Payoff X    $0     $500
  Probability    0.999     0.001

Each day’s drawing is independent of other drawings.

(a) Joe buys a Pick 3 ticket twice a week. The number of times he wins follows a B(104, 0.001)
distribution. Using the Poisson approximation to the binomial, what is the probability that he wins at
least once?

(b) The exact binomial probability is 0.0988. How accurate is the Poisson approximation here?

(c) If Joe pays $5 a ticket, he needs to win at least twice a year to come out ahead. Using the Poisson
approximation, what is the probability that Joe comes out ahead?
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CHAPTER6 Introduction to Inference
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Introduction

Statistical inference draws conclusions about a population or process from sample
data. It also provides a statement of how much confidence we can place in our
conclusions. Although there are numerous methods for inference, there are only a
few general types of statistical inference. This chapter introduces the two most
common types: confidence intervals and tests of significance.

Because the underlying reasoning for these two types of inference remains the
same across different settings, this chapter considers just one simple setting that is
closely related to our study of the sampling distributions of x¯ in Section 5.1 (page
303): inference about the mean of a large population whose standard deviation is
known. This setting, although unrealistic, allows us the opportunity to focus on the
underlying rationale of these types of statistical inference rather than the
calculations.

Later chapters will present inference methods to use in most of the settings we
met in learning to explore data. In fact, there are libraries—both of books and of
computer software—full of more elaborate statistical techniques. Informed use of
any of these methods, however, requires a firm understanding of the underlying
reasoning. That is the goal of this chapter. A computer or calculator will do the
arithmetic, but you must still exercise sound judgment based on understanding.

Overview of Inference

The purpose of statistical inference is to draw conclusions from data. Formal
inference emphasizes substantiating our conclusions via probability calculations.
Probability allows us to take chance variation into account. Here is an example.

Example

6.1 Clustering of trees in a forest

WADE

The Wade Tract in Thomas County, Georgia, is an old-growth forest of
longleaf pine trees (Pinus palustris) that has survived in a relatively
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undisturbed state since before the settlement of the area by Europeans.
Foresters who study these trees are interested in how the trees are distributed
in the forest. Is there some sort of clustering, resulting in regions of the forest
with more trees than others? Or are the tree locations random, resulting in no
particular patterns? Figure 6.1 gives a plot of the locations of all 584 longleaf
pine trees in a 200-meter by 200-meter region in the Wade Tract.1

Do the locations appear to be random, or do there appear to be clusters of
trees? One approach to the analysis of these data indicates that a pattern as
clustered as, or more clustered than, the one in Figure 6.1 would occur only
4% of the time if, in fact, the locations of longleaf pine trees in the Wade Tract
are random. Because this chance is fairly small, we conclude that there is some
clustering of these trees.

Figure 6.1
The distribution of longleaf pine trees, for Example 6.1.

This probability calculation helps us to distinguish between patterns that are
consistent or inconsistent with the random location scenario. Here is an example

644



assessing a new cold medication—with a different conclusion.

Example

6.2 Effectiveness of a new cold medication

Researchers want to know if a new medication is more effective in relieving
cold symptoms than a popular over-the-counter medication. Twenty patients
are randomly assigned to receive the new medication, and another 20 receive
the popular over-the-counter medication. Fifteen (75%) of those taking the
new medication find satisfactory symptom relief versus only 11 (55%) of the
popular medication patients.

Our unaided judgment suggests that the new medication is better. However,
probability calculations tell us that a difference this large or larger between the
results in the two groups of 20 patients would occur about one time in five
simply because of chance variation. In this case, it is better to conclude that the
data fail to establish a real difference between the two treatments. This
probability (nearly 0.19) is too large to ignore.

In this chapter we introduce the two most prominent types of formal statistical
inference. Section 6.1 concerns confidence intervals for estimating the value of a
population parameter. Section 6.2 presents tests of significance, which assess the
evidence for a claim, such as those in Examples 6.1 and 6.2. Both types of
inference are based on the sampling distributions of statistics. That is, both report
probabilities that state what would happen if we used the inference method many
times.

sampling distribution, p. 208

This kind of probability statement is characteristic of standard statistical
inference. Users of statistics must understand the nature of this reasoning and the
meaning of the probability statements that appear, for example, online and in
journal articles and statistical software output.

Because the methods of formal inference are based on sampling distributions,
they require a probability model for the data. Trustworthy probability models can
arise in many ways, but the model is most secure and inference is most reliable
when the data are produced by a properly randomized design.

645



When you use statistical inference, you are acting as if the data come from a
random sample or a randomized experiment. If this is not true, your conclusions
may be open to challenge. Do not be overly impressed by the complex details of
formal inference. This elaborate machinery cannot remedy basic flaws in
producing the data such as voluntary response samples and confounded
experiments. Use the common sense developed in your study of the first three
chapters of this book, and proceed to detailed formal inference only when you are
satisfied that the data deserve such analysis.
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6.1 Estimating with Confidence

When you complete this section, you will be able to

• Describe a level C confidence interval for a population parameter in
terms of an estimate and its margin of error.

• Construct a level C confidence interval for μ from an SRS of size n from a
large population having known standard deviation σ.

• Explain how the margin of error changes with a change in the confidence
level C.

• Determine the sample size needed to obtain a specified margin of error
for a level C confidence interval for μ.

• Identify situations where inference about μ based on the confidence
interval x¯ ± z* σ/ n may be suspect.

The SAT is a widely used measure of readiness for college study. It consists of
three sections, one for mathematical reasoning ability (SATM), one for verbal
reasoning ability (SATV), and one for writing ability (SATW). Possible scores on
each section range from 200 to 800, for a total range of 600 to 2400. Since 1995,
section scores have been recentered so that the mean is approximately 500 with a
standard deviation of 100 in a large “standardized group.” This scale has been
maintained so that scores have a constant interpretation.

linear transformations, p. 45

Example

6.3 Estimating the mean SATM score for seniors in California
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law of large numbers, p. 268

Suppose that you want to estimate the mean SATM score for the 486, 549 high
school seniors in California.2 You know better than to trust data from the
students who choose to take the SAT. Only about 38% of California students
typically take the SAT. These self-selected students are planning to attend
college and are not representative of all California seniors. At considerable
effort and expense, you give the test to a simple random sample (SRS) of 500
California high school seniors. The mean score for your sample is x¯  = 485
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What can you say about the mean score μ in the population of all 486, 549
seniors?

The sample mean x¯ is the natural estimator of the unknown population mean
μ. We know that x¯ is an unbiased estimator of μ More important, the law of large
numbers says that the sample mean must approach the population mean as the size
of the sample grows. The value x¯ = 485 therefore appears to be a reasonable
estimate of the mean score μ that all 486, 549 students would achieve if they took
the test.

But how reliable is this estimate? A second sample of 500 students would
surely not give a sample mean of 485 again. Unbiasedness says only that there is
no systematic tendency to underestimate or overestimate the truth. Could we
plausibly get a sample mean of 465 or 510 in repeated samples? An estimate
without an indication of its variability is of little value.

Statistical confidence

unbiased estimator, p. 210

The unbiasedness of an estimator concerns the center of its sampling distribution,
but questions about variation are answered by looking at its spread. We know that
if the entire population of SATM scores has mean μ and standard deviation σ then
in repeated samples of size 500 the sample mean x¯ is approximately N(μ,σ/500).
Let us suppose that we know that the standard deviation σ of SATM scores in our
California population is σ = 100. (We will see in the next chapter how to proceed
when σ is not known. For now, we are more interested in statistical reasoning than
in details of realistic methods.) This means that in repeated sampling the sample
mean x¯ has an approximately Normal distribution centered at the unknown
population mean μ and a standard deviation of

σx¯=100500=4.5

central limit theorem, p. 307

Now we are ready to proceed. Consider this line of thought, which is illustrated
by Figure 6.2:
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Figure 6.2
Distribution of the sample mean for Example 6.3. x¯ lies within ±9 points of μ in 95% of all
samples. This also means that μ is within ±9 points of x¯ in those samples.

• The 68–95–99.7 rule says that the probability is about 0.95 that x¯ will be within
9 points (that is, two standard deviations of x¯) of the population mean score μ.

• To say that x¯ lies within 9 points of μ is the same as saying that μ is within 9
points of x¯

• So about 95% of all samples will contain the true μ in the interval from x¯−9 to
x¯+9.

We have simply restated a fact about the sampling distribution of x¯. The
language of statistical inference uses this fact about what would happen in the long
run to express our confidence in the results of any one sample. Our sample gave
x¯=485. We say that we are 95% confident that the unknown mean score for all
California seniors lies between

x¯−9=485−9=476

and

x¯+9=485+9=494

Be sure you understand the grounds for our confidence. There are only two
possibilities for our SRS:

1. The interval between 476 and 494 contains the true μ.

2. The interval between 476 and 494 does not contain the true μ.

We cannot know whether our sample is one of the 95% for which the interval x¯±9
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contains μ or one of the unlucky 5% for which it does not contain μ. The statement
that we are 95% confident is shorthand for saying, “We arrived at these numbers
by a method that gives correct results 95% of the time.”

USE YOUR KNOWLEDGE

6.1 How much do you spend on lunch?

The average amount you spend on a lunch during the week is not
known. Based on past experience, you are willing to assume that the
standard deviation is $2.40. If you take a random sample of 36 lunches,
what is the value of the standard deviation of x¯?

6.2 Applying the 68–95–99.7 rule

In the setting of the previous exercise, the 68–95–99.7 rule says that the
probability is about 0.95 that x¯ is within $________ of the population
mean μ. Fill in the blank.

6.3 Constructing a 95% confidence interval

In the setting of the previous two exercises, about 95% of all samples
will capture the true mean in the interval x¯ plus or minus $________.
Fill in the blank.

Confidence intervals

In the setting of Example 6.3, the interval of numbers between the values x¯±9 is
called a 95% confidence interval for μ. Like most confidence intervals we will
discuss, this one has the form

estimate±margin of error

The estimate (x¯=485 in this case) is our guess for the value of the unknown
parameter. The margin of error (9 here) reflects how accurate we believe our
guess is, based on the variability of the estimate, and how confident we are that the
procedure will produce an interval that will contain the true population mean μ.

margin of error
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Figure 6.3 illustrates the behavior of 95% confidence intervals in repeated
sampling from a Normal distribution with mean μ. The center of each interval
(marked by a dot) is at x¯ and varies from sample to sample. The sampling
distribution of x¯ (also Normal) appears at the top of the figure to show the long-
term pattern of this variation.

The 95% confidence intervals, x¯±margin of error, from 25 SRSs appear below
the sampling distribution. The arrows on either side of the dot (x¯) span the
confidence interval. All except one of the 25 intervals contain the true value of μ.
In those intervals that contain μ sometimes μ is near the middle of the interval and
sometimes it is closer to one of the ends. This again reflects the variation of x¯. In
practice, we don’t know the value of μ, but we have a method such that, in a very
large number of samples, 95% of the confidence intervals will contain μ.

Statisticians have constructed confidence intervals for many different
parameters based on a variety of designs for data collection. We will meet a
number of these in later chapters. Two important things about a confidence interval
are common to all settings:

1. It is an interval of the form (a,b), where a and b are numbers computed from the
sample data.

2. It has a property called a confidence level that gives the probability of producing
an interval that contains the unknown parameter.

Users can choose the confidence level, but 95% is the standard for most
situations. Occasionally, 90% or 99% is used. We will use C to stand for the
confidence level in decimal form. For example, a 95% confidence level
corresponds to C=0.95.

CONFIDENCE INTERVAL

A level C confidence interval for a parameter is an interval computed from
sample data by a method that has probability C of producing an interval
containing the true value of the parameter.

With the Confidence Interval applet, you can construct diagrams similar to the
one displayed in Figure 6.3. The only difference is that the applet displays the
Normal population distribution at the top rather than the Normal sampling
distribution of x¯. You choose the confidence level C, the sample size n, and
whether you want to generate 1 or 25 samples at a time. A running total (and
percent) of the number of intervals that contain μ is displayed so you can consider
a larger number of samples.
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Figure 6.3
Twenty-five samples form the same population gave these 95% confidence intervals. In the long
run, 95% of all samples give an interval that covers μ. The sampling distribution of x¯ is shown
at the top.

When generating single samples, the data for the latest SRS are shown below
the confidence interval. The spread in these data reflects the spread of the
population distribution. This spread is assumed known, and it does not change with
sample size. What does change, as you vary x¯ is the margin of error, since it
reflects the uncertainty in the estimate of μ. As you increase n, you’ll find that the
span of the confidence interval gets smaller and smaller.
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USE YOUR KNOWLEDGE

6.4 Generating a single confidence interval

Using the default settings in the Confidence Interval applet (95%
confidence level and n=20), click “Sample” to choose an SRS and
display its confidence interval.

(a) Is the spread in the data, shown as yellow dots below the confidence
interval, larger than the span of the confidence interval? Explain why
this would typically be the case.

(b) For the same data set, you can compare the span of the confidence
interval for different values of C by sliding the confidence level to a new
value. For the SRS you generated in part (a), what happens to the span
of the interval when you move C to 99%? What about 90%? Describe
the relationship you find between the confidence level C and the span of
the confidence interval.

6.5 80% confidence intervals

The idea of an 80% confidence interval is that the interval captures the
true parameter value in 80% of all samples. That’s not high enough
confidence for practical use, but 80% hits and 20% misses make it easy
to see how a confidence interval behaves in repeated samples from the
same population.

(a) Set the confidence level in the Confidence Interval applet to 80%.
Click “Sample 25” to choose 25 SRSs and display their confidence
intervals. How many of the 25 intervals contain the true mean μ? What
proportion contain the true mean?

(b) We can’t determine whether a new SRS will result in an interval that
contains μ or not. The confidence level only tells us what percent will
contain μ in the long run. Click “Sample 25” again to get the confidence
intervals from 50 SRSs. What proportion hit? Keep clicking “Sample
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25” and record the proportion of hits among 100, 200, 300, 400, and 500
SRSs. As the number of samples increases, we expect the percent of
captures to get closer to the confidence level, 80%. Do you find this
pattern in your results?

Confidence interval for a population mean

We will now construct a level C confidence interval for the mean μ of a population
when the data are an SRS of size n. The construction is based on the sampling
distribution of the sample mean x¯. This distribution is exactly N(μ,σ/n) when the
population has the N(μ,σ) distribution. The central limit theorem says that this
same sampling distribution is approximately correct for large samples whenever
the population mean and standard deviation are μ and σ For now, we will assume
we are in one of these two situations. We will discuss what we mean by “large
sample” after we briefly study these intervals.

central limit theorem, p. 307

Our construction of a 95% confidence interval for the mean SATM score began
by noting that any Normal distribution has probability about 0.95 within ±2
standard deviations of its mean. To construct a level C confidence interval we first
catch the central C area under a Normal curve. That is, we must find the number z*
such that any Normal distribution has probability C within ±z* standard deviations
of its mean.

Because all Normal distributions have the same standardized form, we can
obtain everything we need from the standard Normal curve. Figure 6.4 shows how
C and z* are related. Values of z* for many choices of C appear in the row labeled
z* at the bottom of Table D. Here are the most important entries from that row:

z* 1.645 1.960 2.576
C 90% 95% 99%

655



Figure 6.4
To construct a level C confidence interval, we must find the number z*. The area between −z*
and z* under the standard Normal curve is C.

Notice that for 95% confidence the value 2 obtained from the 68-95-99.7 rule is
replaced with the more precise 1.96.

As Figure 6.4 reminds us, any Normal curve has probability C between the
point z* standard deviations below the mean and the point z* standard deviations
above the mean. The sample mean x¯ has the Normal distribution with mean μ and
standard deviation σ/n, so there is probability C that x¯ lies between

μ−z*σn      and        μ+z*σn

This is exactly the same as saying that the unknown population mean μ lies
between

x¯−z*σn      and        x¯+z*σn

That is, there is probability C that the interval x¯±z*σ/n contains μ This is our
confidence interval. The estimate of the unknown μ is x¯ and the margin of error is
z*σ/n.

CONFIDENCE INTERVAL FOR A POPULATION MEAN

Choose an SRS of size n from a population having unknown mean μ and
known standard deviation σ. The margin of error for a level C confidence
interval for μ is

m=z*σn
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Here z* is the value on the standard Normal curve with area C between the
critical points −z* and z*. The level C confidence interval for μ is

x¯±m

The confidence level of this interval is exactly C when the population
distribution is Normal and is approximately C when n is large in other cases.

Example

6.4 Average credit card balance among college students

Starting in 2008, Sallie Mae, a major provider of education loans and savings
programs, has conducted an annual study titled “How America Pays for
College.” Unlike other studies on college funding, this study assesses all
aspects of spending and borrowing, for both educational and noneducational
purposes. In the 2012 survey, 1601 randomly selected individuals (817 parents
of undergraduate students and 784 undergraduate students) were surveyed by
telephone.3

Many of the survey questions focused on the undergraduate student, so the
parents in the survey were responding for their children. Do you think we
should combine responses across these two groups? Do you think your parents
are fully aware of your spending and borrowing habits? The authors reported
overall averages and percents in their report but did break things down by
group in their data tables. For now, we will consider this a sample from one
population, but we will revisit this issue later.

One survey question asked about the undergraduate’s current total
outstanding balance on credit cards. Of the 1601 who were surveyed, only
n=532 provided an answer. Nonresponse should always be considered as a
source of bias. In this case, the authors believed this nonresponse to be an
ignorable source of bias and proceeded by treating the n=532 sample as if it
were a random sample. We will do the same.

The average credit card balance was $755. The median balance was $196,
so this distribution is clearly skewed. Nevertheless, because the sample size is
quite large, we can rely on the central limit theorem to assure us that the
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confidence interval based on the Normal distribution will be a good
approximation.

Let’s compute an approximate 95% confidence interval for the true mean
credit card balance among all undergraduates. We’ll assume that the standard
deviation for the population of credit card debts is $1130. For 95% confidence,
we see from Table D that z*=1.960. The margin of error for the 95%
confidence interval for μ is therefore

m=z*σn

=1.9601130532

=96.02

We have computed the margin of error with more digits than we really
need. Our mean is rounded to the nearest $1, so we will do the same for the
margin of error. Keeping additional digits would provide no additional useful
information. Therefore, we will use m=96. The approximate 95% confidence
interval is

x±m=755±96

(659,851)

We are 95% confident that the average credit card debt among all
undergraduates is between $659 and $851.

Suppose that the researchers who designed this study had used a different
sample size. How would this affect the confidence interval? We can answer this
question by changing the sample size in our calculations and assuming that the
sample mean is the same.

Example

6.5 How sample size affects the confidence interval

As in Example 6.4, the sample mean of the credit card debt is $755 and the
population standard deviation is $1130. Suppose that the sample size is only
133 but still large enough for us to rely on the central limit theorem. In this
case, the margin of error for 95% confidence is

m=z*σn

=1.9601130133
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=192.05

and the approximate 95% confidence interval is

x±m=755±192

(563,947)

Notice that the margin of error for this example is twice as large as the margin
of error that we computed in Example 6.4. The only change that we made was to
assume that the sample size is 133 rather than 532. This sample size is one-fourth
of the original 532. Thus, we double the margin of error when we reduce the
sample size to one-fourth of the original value. Figure 6.5 illustrates the effect in
terms of the intervals.

Figure 6.5
Confidence intervals for n = 532 and n = 133, for Example 6.4 and 6.5. A sample size 4 times as
large results in a confidence interval that is half as wide.

USE YOUR KNOWLEDGE

6.6 Average amount paid for college

Refer to Example 6.4 (page 360). The average annual amount the n =
1601 families paid for college was $20,902.4 If the population standard
deviation is $7500, give the 95% confidence interval for μ the average
amount a family pays for a college undergraduate.

6.7 Changing the sample size

In the setting of the previous exercise, would the margin of error for
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95% confidence be roughly doubled or halved if the sample size were
raised to n = 6400? Verify your answer by performing the calculations.

6.8 Changing the confidence level

In the setting of Exercise 6.6, would the margin of error for 99%
confidence be larger or smaller? Verify your answer by performing the
calculations.

The argument leading to the form of confidence intervals for the population
mean μ rested on the fact that the statistic x¯ used to estimate μ has a Normal
distribution. Because many sample estimates have Normal distributions (at least
approximately), it is useful to notice that the confidence interval has the form

estimate±z*σestimate

The estimate based on the sample is the center of the confidence interval. The
margin of error is z*σestimate. The desired confidence level determines z* from
Table D. The standard deviation of the estimate is found from knowledge of the
sampling distribution in a particular case. When the estimate is x¯ from an SRS,
the standard deviation of the estimate is σestimate=σ/n. We will return to this
general form numerous times in the following chapters.

How confidence intervals behave

The margin of error z*σ/n for the mean of a Normal population illustrates several
important properties that are shared by all confidence intervals in common use.
The user chooses the confidence level, and the margin of error follows from this
choice.

Both high confidence and a small margin of error are desirable characteristics of
a confidence interval. High confidence says that our method almost always gives
correct answers. A small margin of error says that we have pinned down the
parameter quite precisely.

Suppose that in planning a study you calculate the margin of error and decide
that it is too large. Here are your choices to reduce it:

• Use a lower level of confidence (smaller C).

• Choose a larger sample size (larger n).

• Reduce σ.

For most problems, you would choose a confidence level of 90%, 95%, or 99%,
so z* will be 1.645, 1.960, or 2.576, respectively. Figure 6.4 shows that z* will be
smaller for lower confidence (smaller C). The bottom row of Table D also shows
this. If n and σ are unchanged, a smaller z* leads to a smaller margin of error.
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Example

6.6 How the confidence level affects the confidence interval

Suppose that for the student credit card data in Example 6.4 (page 360), we
wanted 99% confidence. Table D tells us that for 99% confidence, z*=2.576
The margin of error for 99% confidence based on 532 observations is

=2.5761130532

m=z*σn

=126.20

and the 99% confidence interval is

x±m=755±126

(629,881)

Requiring 99%, rather than 95%, confidence has increased the margin of error
from 96 to 126 Figure 6.6 compares the two intervals.

Figure 6.6
Confidence intervals for Examples 6.4 and 6.6. The larger the value of C, the wider the interval.

Similarly, choosing a larger the sample size n reduces the margin of error for
any fixed confidence level. The square root in the formula implies that we must
multiply the number of observations by 4 in order to cut the margin of error in half.
Likewise, if we want to reduce the standard deviation of x¯ by a factor of 4, we
must take a sample 16 times as large.

The standard deviation σ measures the variation in the population. You can
think of the variation among individuals in the population as noise that obscures
the average value μ. It is harder to pin down the mean μ of a highly variable
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population; that is why the margin of error of a confidence interval increases with
σ.

In practice, we can sometimes reduce σ by carefully controlling the
measurement process. We also might change the mean of interest by restricting our
attention to only part of a large population. Focusing on a subpopulation will often
result in a smaller σ.

Choosing the sample size

A wise user of statistics never plans data collection without, at the same time,
planning the inference. You can arrange to have both high confidence and a small
margin of error. The margin of error of the confidence interval for a population
mean is

n=(z*σm)2

Do notice once again that it is the size of the sample that determines the margin of
error. The size of the population (as long as the population is much larger than the
sample) does not influence the sample size we need.

To obtain a desired margin of error m, plug in the value of σ and the value of z*
for your desired confidence level, and solve for the sample size n. Here is the
result.

SAMPLE SIZE FOR DESIRED MARGIN OF ERROR

The confidence interval for a population mean will have a specified margin of
error m when the sample size is

n=(z*σm)2=(1.96×113050)2=1962.14

This formula also does not account for collection costs. In practice, taking
observations costs time and money. The required sample size may be impossibly
expensive. In those situations, you might consider a larger margin of error and/or a
lower confidence level to find a workable sample size.

Example

6.7 How many undergraduates should we survey?
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Suppose that we are planning a credit card use survey similar to the one
described in Example 6.4. If we want the margin of error to be $50 with 95%
confidence, what sample size n do we need? For 95% confidence, Table D
gives z*=1.960. For σ we will use the value from the previous study, $1130. If
the margin of error is $50, we have

n=(z*σm)2=(1.96×113040)2=3065.84

Because 1962 measurements will give a slightly wider interval than desired
and 1963 measurements a slightly narrower interval, we should choose
n=1963. We need information from 1963 undergraduates to determine an
estimate of mean debt with the desired margin of error.

It is always safe to round up to the next higher whole number when finding n
because this will give us a smaller margin of error. The purpose of this calculation
is to determine a sample size that is sufficient to provide useful results, but the
determination of what is useful is a matter of judgment.

Would we need a much larger sample size to obtain a margin of error of $40?
Here is the calculation:

m=z*σn

A sample of n=3066 is much larger, and the costs of such a large sample may
be prohibitive.

Unfortunately, the actual number of usable observations is often less than what
we plan at the beginning of a study. This is particularly true of data collected in
surveys but is an important consideration in most studies. Careful study designers
often assume a nonresponse rate or dropout rate that specifies what proportion of
the originally planned sample will fail to provide data. We use this information to
calculate the sample size to be used at the start of the study.

For example, if in the preceding survey we expect only 25% of those contacted
to respond, we would need to start with a sample size of 4×1963=7852 to obtain
usable information from 1963 undergraduates and parents of undergraduates.

USE YOUR KNOWLEDGE

6.9 Starting salaries
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You are planning a survey of starting salaries for recent computer
science majors. In the latest survey by the National Association of
Colleges and Employers, the average starting salary was reported to be
$60,038.5 If you assume that the standard deviation is $4300, what
sample size do you need to have a margin of error equal to $500 with
95% confidence?

6.10 Changes in sample size

Suppose that in the setting of the previous exercise you have the
resources to contact 400 recent graduates. If all respond, will your
margin of error be larger or smaller than $500? What if only 50%
respond? Verify your answers by performing the calculations.

Some cautions

We have already seen that small margins of error and high confidence can require
large numbers of observations. You should also be keenly aware that any formula
for inference is correct only in specific circumstances. If the government required
statistical procedures to carry warning labels like those on drugs, most inference
methods would have long labels. Our handy formula x¯±z*σ/n for estimating a
population mean comes with the following list of warnings for the user:

• The data should be an SRS from the population. We are completely safe if we
actually did a randomization and drew an SRS. We are not in great danger if the
data can plausibly be thought of as independent observations from a population.
That is the case in Examples 6.4 to 6.7, where we redefine our population to
correspond to survey respondents.

• The formula is not correct for probability sampling designs more complex than an
SRS. Correct methods for other designs are available. We will not discuss
confidence intervals based on multistage or stratified samples (page 197). If you
plan such samples, be sure that you (or your statistical consultant) know how to
carry out the inference you desire.

• There is no correct method for inference from data haphazardly collected with
bias of unknown size. Fancy formulas cannot rescue badly produced data.

resistant measure, p. 32
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• Because x¯ is not a resistant measure, outliers can have a large effect on the
confidence interval. You should search for outliers and try to correct them or
justify their removal before computing the interval. If the outliers cannot be
removed, ask your statistical consultant about procedures that are not sensitive to
outliers.

• If the sample size is small and the population is not Normal, the true confidence
level will be different from the value C used in computing the interval. Prior to any
calculations, examine your data carefully for skewness and other signs of non-
Normality. Remember though that the interval relies only on the distribution of x¯,
which even for quite small sample sizes is much closer to Normal than is the
distribution of the individual observations. When n≥15, the confidence level is not
greatly disturbed by non-Normal populations unless extreme outliers or quite
strong skewness are present. Our debt data in Example 6.4 are clearly skewed, but
because of the large sample size, we are confident that the distribution of the
sample mean will be approximately Normal.

• The interval x¯±z*σ/n assumes that the standard deviation σ of the population is
known. This unrealistic requirement renders the interval of little use in statistical
practice. We will learn in the next chapter what to do when σ is unknown. If,
however, the sample is large, the sample standard deviation s will be close to the
unknown σ. The interval x¯±z*s/n is then an approximate confidence interval for μ.

standard deviation s, p. 42

The most important caution concerning confidence intervals is a consequence of
the first of these warnings. The margin of error in a confidence interval covers
only random sampling errors. The margin of error is obtained from the sampling
distribution and indicates how much error can be expected because of chance
variation in randomized data production.

Practical difficulties such as undercoverage and nonresponse in a sample
survey cause additional errors. These errors can be larger than the random
sampling error. This often happens when the sample size is large (so that σ/n is
small). Remember this unpleasant fact when reading the results of an opinion poll
or other sample survey. The practical conduct of the survey influences the
trustworthiness of its results in ways that are not included in the announced margin
of error.

Every inference procedure that we will meet has its own list of warnings.
Because many of the warnings are similar to those we have mentioned, we will not
print the full warning label each time. It is easy to state (from the mathematics of
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probability) conditions under which a method of inference is exactly correct. These
conditions are never fully met in practice.

For example, no population is exactly Normal. Deciding when a statistical
procedure should be used in practice often requires judgment assisted by
exploratory analysis of the data. Mathematical facts are therefore only a part of
statistics. The difference between statistics and mathematics can be stated thusly:
mathematical theorems are true; statistical methods are often effective when used
with skill.

Finally, you should understand what statistical confidence does not say. Based
on our SRS in Example 6.3, we are 95% confident that the mean SATM score for
the California students lies between 476 and 494. This says that this interval was
calculated by a method that gives correct results in 95% of all possible samples. It
does not say that the probability is 0.95 that the true mean falls between 476 and
494. No randomness remains after we draw a particular sample and compute the
interval. The true mean either is or is not between 476 and 494. The probability
calculations of standard statistical inference describe how often the method, not a
particular sample, gives correct answers.

USE YOUR KNOWLEDGE

6.11 Nonresponse in a survey

Let’s revisit Example 6.4 (page 360). Of the 1601 participants in the
survey, only 532 reported the undergraduate’s outstanding credit card
balance. For that example, we proceeded as if we had a random sample
and calculated a margin of error at 95% confidence of $96. Provide a
couple of reasons why a survey respondent might not provide an
estimate. Based on these reasons, do you think that this margin of error
of $96 is a good measure of the accuracy of the survey’s results?
Explain your answer.

BEYOND THE BASICS

The bootstrap
Confidence intervals are based on sampling distributions. In this section we
have used the fact that the sampling distribution of x¯ is N(μ,σ/n) when the
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data are an SRS from an N(μ,σ) population. If the data are not Normal, the
central limit theorem tells us that this sampling distribution is still a reasonable
approximation as long as the distribution of the data is not strongly skewed and
there are no outliers. Even a fair amount of skewness can be tolerated when the
sample size is large.

What if the population does not appear to be Normal and we have only a
small sample? Then we do not know what the sampling distribution of x¯
looks like. The bootstrap is a procedure for approximating sampling
distributions when theory cannot tell us their shape.6

bootstrap

The basic idea is to act as if our sample were the population. We take many
samples from it. Each of these is called a resample. We calculate the mean x¯
for each resample. We get different results from different resamples because
we sample with replacement. An individual observation in the original sample
can appear more than once in the resample.

resample

For example, suppose that we have four measurements of a student’s daily
time spent online last month (in minutes):

190.5   109.0   95.5   137.0

one resample could be

109.0   95.5   137.0   109.0

with x¯=112.625. Collect the x¯’s from 1000 such resamples. Their
distribution will be close to what we would get if we took 1000 samples from
the entire population. We treat the distribution of x¯’s from our 1000 resamples
as if it were the sampling distribution. If we want a 95% confidence interval,
for example, we could use the middle 95% of this distribution.

The bootstrap is practical only when you can use a computer to take 1000 or
more samples quickly. It is an example of how the use of fast and easy
computing is changing the way we do statistics. More details about the
bootstrap can be found in Chapter 16.

SECTION 6.1 Summary

The purpose of a confidence interval is to estimate an unknown parameter with an
indication of how accurate the estimate is and of how confident we are that the
result is correct.

Any confidence interval has two parts: an interval computed from the data and a
confidence level. The interval often has the form
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estimate±margin of error

The confidence level states the probability that the method will give a correct
answer. That is, if you use 95% confidence intervals, in the long run 95% of your
intervals will contain the true parameter value. When you apply the method once
(that is, to a single sample), you do not know if your interval gave a correct answer
(this happens 95% of the time) or not (this happens 5% of the time).

The margin of error for a level C confidence interval for the mean μ of a
Normal population with known standard deviation σ, based on an SRS of size n, is
given by

n=(z*σm)2

Here z* is obtained from the row labeled z* at the bottom of Table D. The
probability is C that a standard Normal random variable takes a value between −z*
and z*. The confidence interval is

x¯±m

If the population is not Normal and n is large, the confidence level of this interval
is approximately correct.

Other things being equal, the margin of error of a confidence interval decreases
as

• the confidence level C decreases,

• the sample size n increases, and

• the population standard deviation σ decreases.

The sample size n required to obtain a confidence interval of specified margin
of error m for a population mean is

z=estimate−hypothesized valuestandard deviation of the estimate

where z* is the critical point for the desired level of confidence.
A specific confidence interval formula is correct only under specific conditions.

The most important conditions concern the method used to produce the data. Other
factors such as the form of the population distribution may also be important.
These conditions should be investigated prior to any calculations.

SECTION 6.1 Exercises

For Exercise 6.1 to 6.3, see page 356; for Exercises 6.4 and 6.5, see page 358; for
Exercises 6.6 to 6.8, see page 362; for Exercises 6.9 and 6.10, see page 365; and
for Exercise 6.11, see page 367.

6.12 Margin of error and the confidence interval.

A stress level study based on a random sample of 49 undergraduates at your university reported a mean of
73 (on a 0 to 100 scale) with a margin of error of 8 for 95% confidence.
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(a) Give the 95% confidence interval.

(b) If you wanted 99% confidence for the same study, would your margin of error be greater than, equal to,
or less than 8? Explain your answer.

6.13 Changing the sample size.

Consider the setting of the previous exercise. Suppose that the sample mean is again 73 and the population
standard deviation is 28. Make a diagram similar to Figure 6.5 (page 361) that illustrates the effect of
sample size on the width of a 95% interval. Use the following sample sizes: 10, 20, 40, and 80. Summarize
what the diagram shows.

6.14 Changing the confidence level.

Consider the setting of the previous two exercises. Suppose that the sample mean is still 73, the sample size
is 49, and the population standard deviation is 28. Make a diagram similar to Figure 6.6 (page 363) that
illustrates the effect of the confidence level on the width of the interval. Use 80%, 90%, 95%, and 99%.
Summarize what the diagram shows.

6.15 Confidence interval mistakes and misunderstandings.

Suppose that 500 randomly selected alumni of the University of Okoboji were asked to rate the
university’s academic advising services on a 1 to 10 scale. The sample mean x¯ was found to be 8.6.
Assume that the population standard deviation is known to be σ=2.2.

(a) Ima Bitlost computes the 95% confidence interval for the average satisfaction score as 8.6±1.96(2.2)
What is her mistake?

(b) After correcting her mistake in part (a), she states, “I am 95% confident that the sample mean falls
between 8.4 and 8.8.” What is wrong with this statement?

(c) She quickly realizes her mistake in part (b) and instead states, “The probability that the true mean is
between 8.4 and 8.8 is 0.95.” What misinterpretation is she making now?

(d) Finally, in her defense for using the Normal distribution to determine the confidence interval she says,
“Because the sample size is quite large, the population of alumni ratings will be approximately Normal.”
Explain to Ima her misunderstanding and correct this statement.

6.16 More confidence interval mistakes and misunderstandings.

Suppose that 100 randomly selected members of the Karaoke Channel were asked how much time they
typically spend on the site during the week.7 The sample mean x¯ was found to be 3.8 hours. Assume that
the population standard deviation is known to be σ=2.9

(a) Cary Oakey computes the 95% confidence interval for the average time on the site as
3.8±1.96(2.9/100). What is his mistake?

(b) He corrects this mistake and then states that “95% of the members spend between 3.23 and 4.37 hours a
week on the site.” What is wrong with his interpretation of this interval?

(c) The margin of error is slightly larger than half an hour. To reduce this to roughly 15 minutes, Cary says
that the sample size needs to be doubled to 200. What is wrong with this statement?
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6.17 The state of stress in the United States.

Since 2007, the American Psychological Association has supported an annual nationwide survey to
examine stress across the United States.8 A total of 340 Millennials (18- to 33-year-olds) were asked to
indicate their average stress level (on a 10-point scale) during the past month. The mean score was 5.4.
Assume that the population standard deviation is 2.3.

(a) Give the margin of error and find the 95% confidence interval for this sample.

(b) Repeat these calculations for a 99% confidence interval. How do the results compare with those in part
(a)?

6.18 Inference based on integer values.

Refer to Exercise 6.17. The data for this study are integer values between 1 and 10. Explain why the
confidence interval based on the Normal distribution should be a good approximation.

6.19 Mean TRAP in young women.

For many important processes that occur in the body, direct measurement of characteristics of the process
is not possible. In many cases, however, we can measure a biomarker, a biochemical substance that is
relatively easy to measure and is associated with the process of interest. Bone turnover is the net effect of
two processes: the breaking down of old bone, called resorption, and the building of new bone, called
formation. One biochemical measure of bone resorption is tartrate-resistant acid phosphatase (TRAP),
which can be measured in blood. In a study of bone turnover in young women, serum TRAP was measured
in 31 subjects.9 The mean was 13.2 units per liter (U/l). Assume that the standard deviation is known to be
6.5 U/l. Give the margin of error and find a 95% confidence interval for the mean TRAP amount in young
women represented by this sample.

6.20 Mean OC in young women.

Refer to the previous exercise. A biomarker for bone formation measured in the same study was
osteocalcin (OC), measured in the blood. For the 31 subjects in the study, the mean was 33.4 nanograms
per milliliter (ng/ml). Assume that the standard deviation is known to be 19.6 ng/ml. Report the 95%
confidence interval.

6.21 Populations sampled and margins of error.

Consider the following two scenarios. (A) Take a simple random sample of 100 sophomore students at
your college or university. (B) Take a simple random sample of 100 students at your college or university.
For each of these samples you will record the amount spent on textbooks used for classes during the fall
semester. Which sample should have the smaller margin of error? Explain your answer.

 6.22 Average starting salary.

The National Association of Colleges and Employers (NACE) Fall Salary Survey shows that the current
class of college graduates received an average starting-salary offer of $44,259.10 Your institution collected
an SRS (n=400) of its recent graduates and obtained a 95% confidence interval of ($44,793, $47,157).
What can we conclude about the difference between the average starting salary of recent graduates at your
institution and the overall NACE average? Write a short summary.
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6.23 Consumption of sugar-sweetened beverages.

A recent study estimated that the U.S. per capita consumption of sugar-sweetened beverages among adults
aged 20 to 34 years is 338 kilocalories per day (kcal/d).11 Suppose that the population distribution is
heavily skewed, with a standard deviation equal to 300 kcal/d. If you plan to take an SRS of 1000 young
adults,

(a) the 68–95–99.7 rule says that the probability is about 0.95 that x¯ is within ____________ kcal/d of the
population mean μ. (Fill in the blank.)

(b) about 95% of all samples will capture the true mean of kilocalories consumed per day in the interval x¯
plus or minus ____________ kcal/d. (Fill in the blank.)

6.24 Apartment rental rates.

You want to rent an unfurnished two-bedroom apartment in Dallas next year. The mean monthly rent for a
random sample of 10 apartments advertised in the local newspaper is $1050. Assume that the monthly
rents in Dallas follow a Normal distribution with a standard deviation of $220. Find a 95% confidence
interval for the mean monthly rent for unfurnished two-bedroom apartments available in Dallas.

6.25 More on apartment rental rates.

Refer to the previous exercise. Will the 95% confidence interval include approximately 95% of the rents
for all unfurnished two-bedroom apartments in this area? Explain why or why not.

 6.26 Inference based on skewed data.

The mean OC for the 31 subjects in Exercise 6.20 was 33.4 ng/ml. In our calculations, we assumed that the
standard deviation was known to be 19.6 ng/ml. Use the 68–95–99.7 rule from Chapter 1 (page xx) to find
the approximate bounds on the values of OC that would include these percents of the population. If the
assumed standard deviation is correct, this distribution may be highly skewed. Why? (Hint: The measured
values for a variable such as this are all positive.) Do you think that this skewness will invalidate the use of
the Normal confidence interval in this case? Explain your answer.

6.27 Average hours per week listening to the radio.

The Student Monitor surveys 1200 undergraduates from four-year colleges and universities throughout the
United States semiannually to understand trends among college students.12 Recently, the Student Monitor
reported that the average amount of time listening to the radio per week was 11.5 hours. Of the 1200
students surveyed, 83% said that they listened to the radio, so this collection of listening times has around
204 (17%×1200) zeros. Assume that the standard deviation is 8.3 hours.

(a) Give a 95% confidence interval for the mean time spent per week listening to the radio.

(b) Is it true that 95% of the 1200 students reported weekly times that lie in the interval you found in part
(a)? Explain your answer.

(c) It appears that the population distribution has many zeros and is skewed to the right. Explain why the
confidence interval based on the Normal distribution should nevertheless be a good approximation.

6.28 Average minutes per week listening to the radio.
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Refer to the previous exercise.

(a) Give the mean and standard deviation in minutes.

(b) Calculate the 95% confidence interval in minutes from your answer to part (a).

(c) Explain how you could have directly calculated this interval from the 95% interval that you calculated
in the previous exercise.

6.29 Satisfied with your job?

Job satisfaction is one of four workplace measures that the Gallup-Healthways Well-Being Index tracks
among U.S. workers. The question asked is “Are you satisfied or dissatisfied with your job or the work that
you do?” In 2011, 87.5% responded that they were satisfied. Material provided with the results of the poll
noted:

Results are based on telephone interviews conducted as part of the Gallup-Healthways Well-Being Index
survey Jan. 1–April 30, 2011, with a random sample of 61, 889 adults, aged 18 and older, living in all
50 U.S. states and the District of Columbia, selected using random-digit-dial sampling.

For results based on the total sample of national adults, one can say with 95% confidence that the
maximum margin of sampling error is 1 percentage point.13

The poll uses a complex multistage sample design, but the sample percent has approximately a Normal
sampling distribution.

(a) The announced poll result was 87.5%±1%. Can we be certain that the true population percent falls in
this interval? Explain your answer.

(b) Explain to someone who knows no statistics what the announced result 87.5%±1% means.

(c) This confidence interval has the same form we have met earlier:

estimate±z*σestimate
What is the standard deviation σestimate of the estimated percent?

(d) Does the announced margin of error include errors due to practical problems such as nonresponse?
Explain your answer.

6.30 Fuel efficiency.

Computers in some vehicles calculate various quantities related to performance. One of these is the fuel
efficiency, or gas mileage, usually expressed as miles per gallon (mpg). For one vehicle equipped in this
way, the miles per gallon were recorded each time the gas tank was filled, and the computer was then

reset.14 Here are the mpg values for a random sample of 20 of these records:  MPG

41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2
43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3

Suppose that the standard deviation is known to be σ=3.5 mpg.

(a) What is σx¯ the standard deviation of x¯?

(b) Examine the data for skewness and other signs of non-Normality. Show your plots and numerical
summaries. Do you think it is reasonable to construct a confidence interval based on the Normal
distribution? Explain your answer.
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(c) Give a 95% confidence interval for μ, the mean miles per gallon for this vehicle.

6.31 Fuel efficiency in metric units.

In the previous exercise you found an estimate with a margin of error for the average miles per gallon.
Convert your estimate and margin of error to the metric units kilometers per liter (kpl). To change mpg to
kpl, use the fact that 1 mile = 1.609 kilometers and 1 gallon = 3.785 liters.

 6.32 How many “hits”?

The Confidence Interval applet lets you simulate large numbers of confidence intervals quickly. Select
95% confidence and then sample 50 intervals. Record the number of intervals that cover the true value (this
appears in the “Hit” box in the applet). Press the “Reset” button and repeat 30 times. Make a stemplot of
the results and find the mean. Describe the results. If you repeated this experiment very many times, what
would you expect the average number of hits to be?

6.33 Required sample size for specified margin of error.

A new bone study is being planned that will measure the biomarker TRAP described in Exercise 6.19.
Using the value of σ given there, 6.5 U/l, find the sample size required to provide an estimate of the mean
TRAP with a margin of error of 1.5 U/l for 95% confidence.

 6.34 Adjusting required sample size for dropouts.

Refer to the previous exercise. In similar previous studies, about 20% of the subjects drop out before the
study is completed. Adjust your sample size requirement so that you will have enough subjects at the end
of the study to meet the margin of error criterion.

6.35 Radio poll.

A college radio station invites listeners to enter a dispute about a proposed “pay as you throw” waste
collection program. The station asks listeners to call in and state how much each 10 gallons of trash should
cost. A total of 617 listeners call in. The station calculates the 95% confidence interval for the average fee
desired by city residents to be $1.03 to $1.39. Is this result trustworthy? Explain your answer.

6.36 Accuracy of a laboratory scale.

To assess the accuracy of a laboratory scale, a standard weight known to weigh 10 grams is weighed
repeatedly. The scale readings are Normally distributed with unknown mean (this mean is 10 grams if the
scale has no bias). The standard deviation of the scale readings is known to be 0.0002 gram.

(a) The weight is measured five times. The mean result is 10.0023 grams. Give a 98% confidence interval
for the mean of repeated measurements of the weight.

(b) How many measurements must be averaged to get a margin of error of ±0.0001 with 98% confidence?

 6.37 More than one confidence interval.

As we prepare to take a sample and compute a 95% confidence interval, we know that the probability that
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the interval we compute will cover the parameter is 0.95. That’s the meaning of 95% confidence. If we
plan to use several such intervals, however, our confidence that all of them will give correct results is less
than 95%. Suppose that we plan to take independent samples each month for five months and report a 95%
confidence interval for each set of data.

(a) What is the probability that all five intervals will cover the true means? This probability (expressed as a
percent) is our overall confidence level for the five simultaneous statements.

(b) What is the probability that at least four of the five intervals will cover the true means?
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6.2 Tests of Significance

When you complete this section, you will be able to

• Outline the four steps common to all tests of significance.

• Formulate the null and alternative hypotheses of a significance test.

• Describe a common form for the test statistic in terms of the parameter
estimate, its standard deviation, and the hypothesized value.

• Define what a P-value is and explain whether a small P-value provides
evidence for or against the null hypothesis.

• Draw a conclusion from a test of significance based on the test’s P-value
and significance level α.

• Describe the relationship between a level α two-sided significance test for
μ and the 1 − α confidence interval.

The confidence interval is appropriate when our goal is to estimate population
parameters. The second common type of inference is directed at a quite different
goal: to assess the evidence provided by the data in favor of some claim about the
population parameters.

The reasoning of significance tests

A significance test is a formal procedure for comparing observed data with a
hypothesis whose truth we want to assess. The hypothesis is a statement about the
population parameters. The results of a test are expressed in terms of a probability
that measures how well the data and the hypothesis agree. We use the following
examples to illustrate these concepts.

Example

6.8 Credit card debt by grade level

One purpose of Sallie Mae’s annual study described in Example 6.4 (page
360) is to allow comparisons of different subgroups of undergraduates. For
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example, the average outstanding credit card balance of freshmen is $642,
while the average outstanding balance for seniors is $516. The difference of
$126 is fairly large, but we know that these numbers are estimates of the
population means. If we took different samples, we would get different
estimates.

Can we conclude from these data that the average outstanding balances of
undergraduates in these two grade levels are different? One way to answer this
question is to compute the probability of obtaining a difference as large or
larger than the observed $126 assuming that, in fact, there is no difference in
the population means. This probability is 0.18. Because this probability is not
particularly small, we conclude that observing a difference of $126 is not very
surprising when the population means are equal. The data do not provide
enough evidence for us to conclude that the average outstanding credit card
balances for freshmen and seniors differ.

Here is an example with a different conclusion.

Example

6.9 Credit card debt by U.S. region

Sallie Mae’s study also reports that the average outstanding balance among
undergraduates in the South is $771, while it is $478 among undergraduates in
the Midwest. Is the average balance among undergraduates in the South higher
than the average balance among undergraduates in the Midwest? The observed
difference is $293, but as we learned in the previous example, an observed
difference in means is not necessarily sufficient for us to conclude that the
population means are different.

Again, we answer this question with a probability calculated under the
assumption that there is no difference in the population means. The probability
is 0.0002 of observing a difference in mean debt that is $293 or more when
there really is no difference. Because this probability is so small, we have
sufficient evidence in the data to conclude that the average outstanding balance
among undergraduates in the South is higher than the average balance among
undergraduates in the Midwest.

What are the key steps in these examples?

• We started each with a question about the difference between two means. In
Example 6.8, we compare freshmen with seniors. In Example 6.9, we compare
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undergraduates in the South and Midwest. In both cases, we ask whether or not the
data are compatible with “no difference,” that is, a difference of $0.

• Next we compared the difference given by the data, $126 in the first case and
$293 in the second, with the value assumed in the question, $0.

• The results of the comparisons are probabilities, 0.18 in the first case and 0.0002
in the second.

The 0.18 probability is not particularly small, so we have limited evidence to
question the possibility that the true difference is zero. In the second case,
however, the probability is very small. Something that happens with probability
0.0002 occurs only about 2 times out of 10,000. In this case we have two possible
explanations:

1. We have observed something that is very unusual, or

2. The assumption that underlies the calculation, no difference in mean balance, is
not true.

Because this probability is so small, we prefer the second conclusion: the average
outstanding credit card balances for undergraduates in the South and for
undergraduates in the Midwest are different, with the South balance higher than
that of the Midwest.

The probabilities in Examples 6.8 and 6.9 are measures of the compatibility of
the data (a difference in means of $126 and $293) with the null hypothesis that
there is no difference in the population means. Figures 6.7 and 6.8 compare the two
results graphically. For each a Normal curve centered at 0 is the sampling
distribution. You can see from Figure 6.7 that we should not be particularly
surprised to observe the difference $126, but the difference $293 in Figure 6.8 is
clearly an unusual observation. We will now consider some of the formal aspects
of significance testing.
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Figure 6.7
Comparison of the sample mean in Example 6.8 with the null hypothesized value 0.
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Figure 6.8
Comparison of the sample mean in Example 6.9 with the null hypothesized value 0.

Generic curve with area to the left and right of absolute value of z shaded."Generic
curve with area to the left of z shaded."Generic curve with area to the right of z
shaded."Generic curve with area to the left and right of absolute value of z
shaded."Generic curve with area to the left of z shaded."Generic curve with area to
the right of z shaded."

Stating hypotheses

In Example 6.8 and 6.9, we asked whether the difference in the observed means is
reasonable if, in fact, there is no difference in the population means. To answer
this, we begin by supposing that the statement following the “if” in the previous
sentence is true. In other words, we suppose that the true difference is $0. We then
ask whether the data provide evidence against the supposition we have made. If so,
we have evidence in favor of an effect (the means are different) we are seeking.
Often, the first step in a test of significance is to state a claim that we will try to

679



find evidence against.

NULL HYPOTHESIS

The statement being tested in a test of significance is called the null
hypothesis. The test of significance is designed to assess the strength of the
evidence against the null hypothesis. Usually the null hypothesis is a statement
of “no effect” or “no difference.”

We abbreviate “null hypothesis” as H0. A null hypothesis is a statement about
the population parameters. For example, our null hypothesis for Example 6.8 is

H0:there is no difference in the population means

Note that the null hypothesis refers to the population means for all undergraduates,
including those for whom we do not have data.

alternative hypothesis

It is convenient also to give a name to the statement we hope or suspect is true
instead of H0. This is called the alternative hypothesis and is abbreviated as Ha.
In Example 6.8, the alternative hypothesis states that the means are different. We
write this as

Ha:the population means are not the same

Hypotheses always refer to some populations or a model, not to a particular
outcome. For this reason, we must state H0 and Ha in terms of population
parameters.

Because Ha expresses the effect that we hope to find evidence for, we will
sometimes begin with Ha and then set up H0 as the statement that the hoped-for
effect is not present. Stating Ha, however, is often the more difficult task. It is not
always clear, in particular, whether Ha should be one-sided or two-sided, which
refers to whether a parameter differs from its null hypothesis value in a specific
direction or in either direction.

one-sided or two-sided alternatives

The alternative hypothesis should express the hopes or suspicions we bring to
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the data. It is cheating to first look at the data and then frame Ha to fit what the
data show. If you do not have a specific direction firmly in mind in advance, you
must use a two-sided alternative. Moreover, some users of statistics argue that we
should always use a two-sided alternative.

USE YOUR KNOWLEDGE

6.38 Food court survey

The food court closest to your dormitory has been redesigned. A survey
is planned to assess whether or not students think that the new design is
an improvement. It will contain 8 questions; a seven-point scale will be
used for the answers, with scores less than 4 favoring the previous food
court and scores greater than 4 favoring the new design (to varying
degrees). The average of these 8 questions will be used as the student’s
opinion. State the null and alternative hypotheses you would use for
examining whether or not the new design is viewed as an improvement.

6.39 DXA scanners

A dual-energy X-ray absorptiometry (DXA) scanner is used to measure
bone mineral density for people who may be at risk for osteoporosis.
One company believes that its scanner is not giving accurate readings.
To assess this, the company uses an object called a “phantom” that has
known mineral density μ=1.4 grams per square centimeter. The
company scans the phantom 10 times and compares the sample mean
reading x¯ with the theoretical mean μ using a significance test. State the
null and alternative hypotheses for this test.

Test statistics

We will learn the form of significance tests in a number of common situations.
Here are some principles that apply to most tests and that help in understanding
these tests:

• The test is based on a statistic that estimates the parameter that appears in the
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hypotheses. Usually this is the same estimate we would use in a confidence interval
for the parameter. When H0 is true, we expect the estimate to take a value near the
parameter value specified by H0. We call this specified value the hypothesized
value.

• Values of the estimate far from the hypothesized value give evidence against H0.
The alternative hypothesis determines which directions count against H0.

• To assess how far the estimate is from the hypothesized value, standardize the
estimate. In many common situations the test statistic has the form

z=estimate−hypothesized valuestandard deviation of the estimate

A test statistic measures compatibility between the null hypothesis and the
data. We use it for the probability calculation that we need for our test of
significance. It is a random variable with a distribution that we know.

test statistic

Let’s return to our comparison of credit card balances among freshmen and
seniors and specify the hypotheses as well as calculate the test statistic.

Example

6.10 Average credit card balances of freshmen and seniors: the hypotheses
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In Example 6.8, the hypotheses are stated in terms of the difference in average
outstanding credit card balance between freshmen and seniors:

H0:there is no difference in the population means

Ha:there is a difference in the population means

Because Ha is two-sided, large values of both positive and negative differences
count as evidence against the null hypothesis.

We can also state the null hypothesis as H0: the true mean difference is 0. This
statement makes it more clear that hypothesized value for this comparison of credit
card balances is 0.

Example

6.11 Average credit card balances of freshmen and seniors: the test
statistic

In Example 6.8, the estimate of the difference is $126. Using methods that we
will discuss in detail later, we can determine that the standard deviation of the
estimate is $95. For this problem the test statistic is

z=126−095=1.33
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For our data,

z=126−095=1.33

We have observed a sample estimate that is about one and one-third standard
deviations away from the hypothesized value of the parameter.

Because the sample sizes are sufficiently large for us to conclude that the
distribution of the sample estimate is approximately Normal, the standardized test
statistic z will have approximately the N(0,1) distribution. We will use facts about
the Normal distribution in what follows.

Normal distribution, p. 58

P-values

If all test statistics were Normal, we could base our conclusions on the value of the
z test statistic. In fact, the Supreme Court of the United States has said that “two or
three standard deviations” (z=2 or 3) is its criterion for rejecting H0 (see Exercise
6.44 on page 381), and this is the criterion used in most applications involving the
law. But because not all test statistics are Normal, we use the language of
probability to express the meaning of a test statistic.

A test of significance finds the probability of getting an outcome as extreme or
more extreme than the actually observed outcome. “Extreme” means “far from
what we would expect if H0 were true.” The direction or directions that count as
“far from what we would expect” are determined by Ha and H0.

P-VALUE

The probability, assuming H0 is true, that the test statistic would take a value
as extreme or more extreme than that actually observed is called the P-value
of the test. The smaller the P-value, the stronger the evidence against H0
provided by the data.

The key to calculating the P-value is the sampling distribution of the test
statistic. For the problems we consider in this chapter, we need only the standard
Normal distribution for the test statistic z.

In Example 6.8 we want to know if the average outstanding credit card balance
for freshmen differs from the average balance for seniors. The difference we
calculated based on our sample is $126, which corresponds to 1.33 standard
deviations away from zero—that is, z=1.33. Because we are using a two-sided
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alternative for this problem, the evidence against H0 is measured by the probability
that we observe a value of Z as extreme or more extreme than 1.33 in either
direction.

Example

6.12 Average credit card balances of freshmen and seniors: the P-value

In Example 6.11 we found that the test statistic for testing

H0:the true mean difference is 0

versus

Ha:there is a difference in the population means

is

z=estimate−hypothesized valuestandard deviation of the estimate

If H0 is true, then z is a single observation from the standard Normal, N(0,1)
distribution. Figure 6.9 illustrates this calculation. The P-value is the
probability of observing a value of Z at least as extreme as the one that we
observed, z=1.33. From Table A, our table of standard Normal probabilities,
we find

P(Z≥1.33)=1−0.9082=0.0918
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Figure 6.9
The P-value for Example 6.12. The P-value is the probability (when H0is true) that x¯
takes a value as extreme or more extreme than the actual observed value, z = 1.33. Because
the alternative hypothesis is two-sided, we use both tails of the distribution.

The probability for being extreme in the negative direction is the same:

P(Z≤1.33)=0.0918

So the P-value is

P=2P(Z≥1.33)=2(0.0918)=0.1836

This is the value that we reported on page 372. There is an 18% chance of
observing a difference as extreme as the $126 in our sample if the true
population difference is zero. This P-value tells us that our outcome is not
particularly extreme. In other words, the data do not provide substantial
evidence for us to doubt the validity of the null hypothesis.

USE YOUR KNOWLEDGE

6.40 Normal curve and the P-value

A test statistic for a two-sided significance test for a population mean is
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z=2.31. Sketch a standard Normal curve and mark this value of z on it.
Find the P-value and shade the appropriate areas under the curve to
illustrate your calculations.

6.41 More on the Normal curve and the P-value

A test statistic for a two-sided significance test for a population mean is
z=−1.81. Sketch a standard Normal curve and mark this value of z on it.
Find the P-value and shade the appropriate areas under the curve to
illustrate your calculations.

Statistical significance

We started our discussion of the reasoning of significance tests with the statement
of null and alternative hypotheses. We then learned that a test statistic is the tool
used to examine the compatibility of the observed data with the null hypothesis.
Finally, we translated the test statistic into a P-value to quantify the evidence
against H0. One important final step is needed: to state our conclusion.

We can compare the P-value we calculated with a fixed value that we regard as
decisive. This amounts to announcing in advance how much evidence against H0
we will require to reject H0. The decisive value is called the significance level. It is
commonly denoted by α (the Greek letter alpha). If we choose α=0.05, we are
requiring that the data give evidence against H0 so strong that it would happen no
more than 5% of the time (1 time in 20) when H0 is true. If we choose α=0.01, we
are insisting on stronger evidence against H0, evidence so strong that it would
appear only 1% of the time (1 time in 100) if H0 is in fact true.

significance level

STATISTICAL SIGNIFICANCE

If the P-value is as small or smaller than α we say that the data are statistically
significant at level α.

“Significant” in the statistical sense does not mean “important.” The original
meaning of the word is “signifying something.” In statistics the term is used to
indicate only that the evidence against the null hypothesis has reached the standard
set by α. For example, significance at level 0.01 is often expressed by the statement
“The results were significant (P<0.01).” Here P stands for the P-value. The P-
value is more informative than a statement of significance because we can then
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assess significance at any level we choose. For example, a result with P=0.03 is
significant at the α=0.05 level but is not significant at the α=0.01 level. We discuss
this in more detail at the end of this section.

Example

6.13 Average outstanding credit card balances of freshmen and seniors:
the conclusion

In Example 6.12 we found that the P-value is

P=2P(Z≥1.33)=2(0.0918)=0.1836

There is an 18% chance of observing a difference as extreme as the $126 in
our sample if the true population difference is zero. Because this P-value is
larger than the α=0.05 significance level, we conclude that our test result is not
significant. We could report the result as “the data fail to provide evidence that
would cause us to conclude that there is a difference in average outstanding
balances between freshmen and seniors (z=1.33, P=0.18).”

This statement does not mean that we conclude that the null hypothesis is true,
only that the level of evidence we require to reject the null hypothesis is not met.
Our criminal court system follows a similar procedure in which a defendant is
presumed innocent (H0) until proven guilty. If the level of evidence presented is
not strong enough for the jury to find the defendant guilty beyond a reasonable
doubt, the defendant is acquitted. Acquittal does not imply innocence, only that the
degree of evidence was not strong enough to prove guilt.

If the P-value is small, we reject the null hypothesis. Here is the conclusion for
our second example.

Example
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6.14 Credit card debt by U.S. region: the conclusion

In Example 6.9 we found that the difference in debt between undergraduates in
the South and in the Midwest was $293. Since the cost of living is higher in
the South than in the Midwest,15 we had a prior expectation that the
outstanding balance would be higher for undergraduates in the South. It is
appropriate to use a one-sided alternative in this situation. So, our hypotheses
are

H0:the true mean difference is 0

versus

Ha:the difference between the average outstanding balance of undergraduates
in the South and the Midwest is positive

The standard deviation is $82.5 (again, we defer details regarding this
calculation), and the test statistic is

z=293−082.5

z=estimate−hypothesized valuestandard deviation of the estimate

=3.55

Because only positive differences in credit card debt count against the null
hypothesis, the one-sided alternative leads to the calculation of the P-value
using the upper tail of the Normal distribution. The P-value is

P=P(Z≥3.55)

=0.0002

The calculation is illustrated in Figure 6.10. There is about a 2-in-10,000
chance of observing a difference as large or larger than the $293 in our sample
if the true population difference is zero. This P-value tells us that our outcome
is extremely rare. We conclude that the null hypothesis must be false. Since
the observed difference is positive, here is one way to report the result: “The
data clearly show that the mean credit card debt for undergraduates in the
South is larger than the mean credit card debt for undergraduates in the
Midwest (z=3.55, P<0.001).”
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Figure 6.10
The P-value for Example 6.14. The P-value is the probability (when H0is true) that x¯ takes a
value as extreme or more extreme than the actual observed value, z = 3.55. We look at only the
right trail because we are considering the one-sided (>) alternative.

Note that the calculated P-value for this example is 0.0002 but we reported the
result as P<0.001 The value 0.001, 1 in 1000, is sufficiently small to force a clear
rejection of H0. Standard practice is to report very small P-values as simply less
than 0.001.

USE YOUR KNOWLEDGE

6.42 Finding significant z-scores

Consider a two-sided significance test for a population mean.

(a) Sketch a Normal curve similar to that shown in Figure 6.9 (page
378), but find the value z such that P=0.05.

(b) Based on your curve from part (a), what values of the z statistic are
statistically significant at the α=0.05 level?
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6.43 More on finding significant z-scores

Consider a one-sided significance test for a population mean, where the
alternative is “greater than.”

(a) Sketch a Normal curve similar to that shown in Figure 6.10 but find
the value z such that P=0.05.

(b) Based on your curve from part (a), what values of the z statistic are
statistically significant at the α=0.05 level?

6.44 The Supreme Court speaks

The Supreme Court has said that z-scores beyond 2 or 3 are generally
convincing statistical evidence. For a two-sided test, what significance
level corresponds to z=2? To z=3?

A test of significance is a process for assessing the significance of the evidence
provided by data against a null hypothesis. The four steps common to all tests of
significance are as follows:

1. State the null hypothesis H0 and the alternative hypothesis Ha. The test is
designed to assess the strength of the evidence against H0; Ha is the statement
that we will accept if the evidence enables us to reject H0.

2. Calculate the value of the test statistic on which the test will be based. This
statistic usually measures how far the data are from H0.

3. Find the P-value for the observed data. This is the probability, calculated
assuming that H0 is true, that the test statistic will weigh against H0 at least as
strongly as it does for these data.

4. State a conclusion. One way to do this is to choose a significance level α, how
much evidence against H0 you regard as decisive. If the P-value is less than or
equal to α, you conclude that the alternative hypothesis is true; if it is greater
than α, you conclude that the data do not provide sufficient evidence to reject
the null hypothesis. Your conclusion is a sentence or two that summarizes what
you have found by using a test of significance.

We will learn the details of many tests of significance in the following chapters.
The proper test statistic is determined by the hypotheses and the data collection
design. We use computer software or a calculator to find its numerical value and
the P-value. The computer will not formulate your hypotheses for you, however.
Nor will it decide if significance testing is appropriate or help you to interpret the
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P-value that it presents to you. These steps require judgment based on a sound
understanding of this type of inference.

Tests for a population mean

Our discussion has focused on the reasoning of statistical tests, and we have
outlined the key ideas for one type of procedure. Our examples focused on the
comparison of two population means. Here is a summary for a test about one
population mean.

We want to test the hypothesis that a parameter has a specified value. This is the
null hypothesis. For a test of a population mean μ, the null hypothesis is

H0:the true population mean is equal toμ0

which often is expressed as

H0:μ=μ0

where μ0 is the hypothesized value of μ that we would like to examine.
The test is based on data summarized as an estimate of the parameter. For a

population mean this is the sample mean x¯. Our test statistic measures the
difference between the sample estimate and the hypothesized parameter in terms of
standard deviations of the test statistic:

z=x¯−μ0σ/n

Recall from Chapter 5 that the standard deviation of x¯ is σ/n. Therefore, the
test statistic is

z=x¯−μ0σ/n

distribution of sample mean, p. 307

Again recall from Chapter 5 that, if the population is Normal, then x¯ will be
Normal and z will have the standard Normal distribution when H0 is true. By the
central limit theorem, both distributions will be approximately Normal when the
sample size is large even if the population is not Normal. We’ll assume that we’re
in one of these two settings for now.

central limit theorem, p. 307

Suppose that we have calculated a test statistic z=1.7. If the alternative is one-
sided on the high side, then the P-value is the probability that a standard Normal
random variable Z takes a value as large or larger than the observed 1.7. That is,

P=P(Z≥1.7)
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=1−P(Z<1.7)

=1−0.9554

=0.0446

Similar reasoning applies when the alternative hypothesis states that the true μ
lies below the hypothesized μ0 (one-sided). When Ha states that μ is simply
unequal to μ0 (two-sided), values of z away from zero in either direction count
against the null hypothesis. The P-value is the probability that a standard Normal Z
is at least as far from zero as the observed z. Again, if the test statistic is z=1.7 the
two-sided P-value is the probability that Z≤−1.7 or Z≥1.7. Because the standard
Normal distribution is symmetric, we calculate this probability by finding P(Z≥1.7)
and doubling it:

P(Z≤−1.7 or Z≥1.7)=2P(Z≥1.7)

=2(1−0.9554)=0.0892

We would make exactly the same calculation if we observed z=−1.7. It is the
absolute value |z| that matters, not whether z is positive or negative. Here is a
statement of the test in general terms.

z TEST FOR A POPULATION MEAN

To test the hypothesis H0:μ=μ0 based on an SRS of size n from a population
with unknown mean μ and known standard deviation σ, compute the test
statistic

z=x¯−μ0σ/n=262−286155/100

In terms of a standard Normal random variable Z, the P-value for a test of H0
against

Ha:μ>μ0   is   P(Z≥z)    

Ha:μ<μ0   is   P(Z≤z)    

Ha:μ≠μ0   is   2P(Z≥|z|)    

These P-values are exact if the population distribution is Normal and are
approximately correct for large n in other cases.
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Example

6.15 Energy intake from sugar-sweetened beverages
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Consumption of sugar-sweetened beverages (SSBs) has been positively
associated with weight gain and obesity and negatively associated with the
intake of important micronutrients. One study used data from the National
Health and Nutrition Examination Survey (NHANES) to estimate SSB
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consumption among adolescents (aged 12 to 19 years). More than 7500
individuals provided data for this study.16 The mean consumption was 286
calories per day.

You survey 100 students at your large university and find the average
consumption of SSBs per day to be 262 calories. Is there evidence that the
average calories per day from SSBs at your university differs from this large
U.S. survey average?

The null hypothesis is “no difference” from the published mean μ0=286.
The alternative is two-sided because you did not have a particular direction in
mind before examining the data. So the hypotheses about the unknown mean μ
of the students at your university are

H0:μ=286

Ha:μ≠286

As usual in this chapter, we make the unrealistic assumption that the
population standard deviation is known. In this case we’ll assume that σ=155
calories. The z test requires that the 100 students in the sample are an SRS
from the population of students at your university. We will assume that the
students in the sample were selected in a proper random manner. We’ll also
assume that n = 100 is sufficiently large that we can rely on the central limit
theorem to assure us that the P-value based on the Normal distribution will be
a good approximation.

We compute the test statistic:

z=x¯−μ0σ/n=485−475100/500

=−1.55

Figure 6.11 illustrates the P-value, which is the probability that a standard
Normal variable Z takes a value at least 1.55 away from zero. From Table A
we find that this probability is

P=2P(Z≥1.55)=2(1−0.9394)=0.1212

That is, more than 12% of the time an SRS of size 100 from the students at
your university would have a mean consumption from SSBs at least as far
from 286 as that of this sample if the population mean were 286. The observed
x¯=262 is therefore not strong evidence that the student population mean at
your university differs from that of the large population of adolescents.
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Figure 6.11
Sketch of the P-value calculation for the two-sided test in Example 6.15. The test statistic is z=
−1.55.

The data in Example 6.15 do not establish that the mean consumption μ for the
students at your university is 286 calories. We sought evidence that μ differed from
286 and failed to find convincing evidence. That is all we can say. No doubt the
mean amount at your university is not exactly equal to 286 calories. A large
enough sample would give evidence of the difference, even if it is very small.

Tests of significance assess the evidence against H0. If the evidence is strong,
we can confidently reject H0 in favor of the alternative. Failing to find evidence
against H0 means only that the data are consistent with H0, not that we have clear
evidence that H0 is true.

Example

6.16 Significance test of the mean SATM score

In a discussion of SAT Mathematics (SATM) scores, someone comments:
“Because only a select minority of California high school students take the
test, the scores overestimate the ability of typical high school seniors. I think
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that if all seniors took the test, the mean score would be no more than 475.”
You do not agree with this claim and decide to use the SRS of 500 seniors
from Example 6.3 (page 354) to assess the degree of evidence against it. Those
500 seniors had a mean SATM score of x¯=485 Is this strong enough evidence
to conclude that this person’s claim is wrong?

Because the claim states that the mean is “no more than 475,” the
alternative hypothesis is one-sided. The hypotheses are

H0:μ=475

Ha:μ>475

As we did in the discussion following Example 6.3, we assume that σ=100.
The z statistic is

x¯=6.79+6.13+7.173=6.70

=2.24

Because Ha is one-sided on the high side, large values of z count against H0.
From Table A, we find that the P-value is

P=P(Z≥2.24)=1−0.9875=0.0125

Figure 6.12 illustrates this P-value. A mean score as large as that observed
would occur roughly 12 times in 1000 samples if the population mean were
475. This is convincing evidence that the mean SATM score for all California
high school seniors is higher than 475. You can confidently tell this person
that his or her claim is incorrect.
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Figure 6.12
Sketch of the P-value calculation for the one-sided test in Example 6.16. The test statistic is z =
2.24.

USE YOUR KNOWLEDGE

6.45 Computing the test statistic and P-value

You will perform a significance test of H0:μ=25 based on an SRS of
n=36. Assume that σ=8.

(a) If x¯=27.5 what is the test statistic z?

(b) What is the P-value if Ha:μ>25?

(c) What is the P-value if Ha:μ≠25?

6.46 Testing a random number generator

Statistical software often has a “random number generator” that is
supposed to produce numbers uniformly distributed between 0 and 1. If
this is true, the numbers generated come from a population with μ=0.5.
A command to generate 100 random numbers gives outcomes with
mean x¯=0.478 and s=0.296. Because the sample is reasonably large,
take the population standard deviation also to be σ=0.296. Do we have
evidence that the mean of all numbers produced by this software is not
0.5?

Two-sided significance tests and confidence intervals

Recall the basic idea of a confidence interval, discussed in Section 6.1. We
constructed an interval that would include the true value of μ with a specified
probability C. Suppose that we use a 95% confidence interval (C=0.95). Then the
values of μ0 that are not in our interval would seem to be incompatible with the
data. This sounds like a significance test with α=0.05 (or 5%) as our standard for
drawing a conclusion. The following examples demonstrate that this is correct.
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Example

6.17 Water quality testing
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PBTEST

The Deely Laboratory is a drinking-water testing and analysis service. One of
the common contaminants it tests for is lead. Lead enters drinking water
through corrosion of plumbing materials, such as lead pipes, fixtures, and
solder. The service knows that their analysis procedure is unbiased but not
perfectly precise, so the laboratory analyzes each water sample three times and
reports the mean result. The repeated measurements follow a Normal
distribution quite closely. The standard deviation of this distribution is a
property of the analytic procedure and is known to be σ=0.25 parts per billion
(ppb).

The Deely Laboratory has been asked by the university to evaluate a claim
that the drinking water in the Student Union has a lead concentration of 6 ppb,
well below the Environmental Protection Agency’s action level of 15 ppb.
Since the true concentration of the sample is the mean μ of the population of
repeated analyses, the hypotheses are

H0:μ=6

H0:μ=6

The lab chooses the 1% level of significance, α=0.01.
Three analyses of one specimen give concentrations

6.79   6.13   7.17

The sample mean of these readings is

z=x¯−μ0σ/n=6.70−6.000.25/3=4.83

The test statistic is

x¯±z*σn=6.70±2.576(0.25/3)

Because the alternative is two-sided, the P-value is

P=2P(Z≥4.83)

We cannot find this probability in Table A. The largest value of z in that table
is 3.49. All that we can say from Table A is that P is less than
2P(Z≥3.49)=2(1−0.9998)=0.0004. If we use the bottom row of Table D, we
find that the largest value of z* is 3.291, corresponding to a P-value of
1−0.999=0.001. Software or a calculator could be used to give an accurate
value of the P-value. However, because the P-value is clearly less than the
lab’s standard of 1%, we reject H0. Because x¯ is larger than 6.00, we can
conclude that the true concentration of lead is higher than the university’s
claim.
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We can compute a 99% confidence interval for the same data to get a likely
range for the actual mean concentration μ.

Example

6.18 99% confidence interval for the mean concentration

The 99% confidence interval for μ in Example 6.17 is

z=x¯−μ0σ/n

=6.70±0.37

=(6.33,7.07)

The hypothesized value μ0=6.00 in Example 6.17 falls outside the confidence
interval we computed in Example 6.18. In other words, it is in the region we are
99% confident that μ is not in. Thus, we can reject

H0:μ=6.0

at the 1% significance level. On the other hand, we cannot reject

H0:μ=7.0

at the 1% level in favor of the two-sided alternative Ha:μ≠7.0, because 7.0 lies
inside the 99% confidence interval for μ. Figure 6.13 illustrates both cases.

The calculation in Example 6.17 for a 1% significance test is very similar to the
calculation for a 99% confidence interval. In fact, a two-sided test at significance
level α can be carried out directly from a confidence interval with confidence level
C=1−α.

TWO-SIDED SIGNIFICANCE TESTS AND CONFIDENCE
INTERVALS

A level α two-sided significance test rejects a hypothesis H0:μ=μ0 exactly
when the value μ0 falls outside a level 1−α confidence interval for μ.
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Figure 6.13
The link between two-sided significance tests and confidence intervals. For the study described
in Example 6.17 and 6.18, values of μ falling outside a 99% confidence interval can be rejected
at the 1% significance level; values falling inside the interval cannot be rejected.

USE YOUR KNOWLEDGE

6.47 Two-sided significance tests and confidence intervals

The P-value for a two-sided test of the null hypothesis H0:μ=30 is
0.041.

(a) Does the 95% confidence interval include the value 30? Explain.

(b) Does the 99% confidence interval include the value 30? Explain.

6.48 More on two-sided tests and confidence intervals

A 95% confidence interval for a population mean is (23,48).

(a) Can you reject the null hypothesis that μ=50 against the two-sided alternative at the 5%
significance level? Explain.
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(b) Can you reject the null hypothesis that μ=45 against the two-sided alternative at the 5%
significance level? Explain.

The P-value versus a statement of significance

The observed result in Example 6.17 was z=4.83. The conclusion that this result is
significant at the 1% level does not tell the whole story. The observed z is far
beyond the z corresponding to 1%, and the evidence against H0 is far stronger than
1% significance suggests. The actual P-value

2P(Z≥4.83)=0.0000014

gives a better sense of how strong the evidence is. The P-value is the smallest level
α at which the data are significant. Knowing the P-value allows us to assess
significance at any level.

Example

6.19 Test of the mean SATM score: significance

In Example 6.16, we tested the hypotheses

H0:μ=475

Ha:μ>475

concerning the mean SAT Mathematics score μ of California high school
seniors. The test had the P-value P=0.0125. This result is significant at the
α=0.05 level because 0.0125≤0.05. It is not significant at the σ=0.01 level,
because the P-value is larger than 0.01. See Figure 6.14.

Figure 6.14
Link between the P-value and the significance level α. An outcome with P-value P is significant
at all levels α at or above P and is not significant at smaller levels α.

A P-value is more informative than a reject-or-not finding at a fixed
significance level. But assessing significance at a fixed level α is easier, because no
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probability calculation is required. You need only look up a number in a table. A
value z* with a specified area to its right under the standard Normal curve is called
a critical value of the standard Normal distribution. Because the practice of
statistics almost always employs computer software or a calculator that calculates
P-values automatically, the use of tables of critical values is becoming outdated.
We include the usual tables of critical values (such as Table D) at the end of the
book for learning purposes and to rescue students without good computing
facilities. The tables can be used directly to carry out fixed α tests. They also allow
us to approximate P-values quickly without a probability calculation. The
following example illustrates the use of Table D to find an approximate P-value.

critical value

Example

6.20 Debt levels of freshmen and seniors: assessing significance

In Example 6.11 (page 376) we found the test statistic z=1.33 for testing the
null hypothesis that there was no difference in the mean outstanding credit
card balance between freshmen and seniors. The alternative was two-sided.
Under the null hypothesis, z has a standard Normal distribution, and from the
last row in Table D we can see that there is a 95% chance that z is between
±1.96. Therefore, we reject H0 in favor of Ha whenever z is outside this range.
Since our calculated value is 1.33, we are within the range and we do not reject
the null hypothesis at the 5% level of significance.

USE YOUR KNOWLEDGE

6.49 P-value and significance level

The P-value for a significance test is 0.021.

(a) Do you reject the null hypothesis at level α=0.05?

(b) Do you reject the null hypothesis at level α=0.01?

(c) Explain how you determined your answers to parts (a) and (b).
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6.50 More on P-value and significance level

The P-value for a significance test is 0.072.

(a) Do you reject the null hypothesis at level α=0.05?

(b) Do you reject the null hypothesis at level α=0.01?

(c) Explain how you determined your answers to parts (a) and (b).

6.51 One-sided and two-sided P-values

The P-value for a two-sided significance test is 0.062.

(a) State the P-values for the two one-sided tests.

(b) What additional information do you need to properly assign these P-values to the > and <
(one-sided) alternatives?

Section 6.2 Summary

A test of significance is intended to assess the evidence provided by data against a
null hypothesis H0 in favor of an alternative hypothesis Ha.

The hypotheses are stated in terms of population parameters. Usually H0 is a
statement that no effect or no difference is present, and Ha says that there is an
effect or difference, in a specific direction (one-sided alternative) or in either
direction (two-sided alternative).

The test is based on a test statistic. The P-value is the probability, computed
assuming that H0 is true, that the test statistic will take a value at least as extreme
as that actually observed. Small P-values indicate strong evidence against H0.
Calculating P-values requires knowledge of the sampling distribution of the test
statistic when H0 is true.

If the P-value is as small or smaller than a specified value α the data are
statistically significant at significance level α.

Significance tests for the hypothesis H0:μ=μ0 concerning the unknown mean μ
of a population are based on the z statistic:

z=x¯−μ0σ/n=x¯−02/25≥1.645

The z test assumes an SRS of size n, known population standard deviation σ,
and either a Normal population or a large sample. P-values are computed from the
Normal distribution (Table A). Fixed α tests use the table of standard Normal
critical values (Table D).

SECTION 6.2 Exercises

For Exercises 6.38 and 6.39, see pages 375; for Exercises 6.40 and 6.41, see pages
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378; for Exercises 6.42 to 6.44, see pages 381; for Exercises 6.45 and 6.46, see
page 385–386; for Exercise 6.47 and 6.48, see page 388; and for Exercise 6.49 to
6.51, see page 389–390.

6.52 What’s wrong?

Here are several situations where there is an incorrect application of the ideas presented in this section.
Write a short paragraph explaining what is wrong in each situation and why it is wrong.

(a) A researcher tests the following null hypothesis: H0:x¯=23.

(b) A random sample of size 30 is taken from a population that is assumed to have a standard deviation of
5. The standard deviation of the sample mean is 5/30.

(c) A study with x¯=45 reports statistical significance for Ha:μ>50.

(d) A researcher tests the hypothesis H0:μ=350 and concludes that the population mean is equal to 350.

6.53 What’s wrong?

Here are several situations where there is an incorrect application of the ideas presented in this section.
Write a short paragraph explaining what is wrong in each situation and why it is wrong.

(a) A significance test rejected the null hypothesis that the sample mean is equal to 500.

(b) A test preparation company wants to test that the average score of their students on the ACT is better
than the national average score of 21.2. They state their null hypothesis to be H0:μ>21.2.

(c) A study summary says that the results are statistically significant and the P-value is 0.98.

(d) The z test statistic is equal to 0.018. Because this is less than α=0.05, the null hypothesis was rejected.

6.54 Determining hypotheses.

State the appropriate null hypothesis H0 and alternative hypothesis Ha in each of the following cases.

(a) A 2010 study reported that 88% of students owned a cell phone. You plan to take an SRS of students to
see if the percent has increased.

(b) The examinations in a large freshman chemistry class are scaled after grading so that the mean score is
75. The professor thinks that students who attend early-morning recitation sections will have a higher mean
score than the class as a whole. Her students in these sections this semester can be considered a sample
from the population of all students who might attend an early-morning section, so she compares their mean
score with 75.

(c) The student newspaper at your college recently changed the format of its opinion page. You want to test
whether students find the change an improvement. You take a random sample of students and select those
who regularly read the newspaper. They are asked to indicate their opinions on the changes using a five-
point scale: −2 if the new format is much worse than the old, −1 if the new format is somewhat worse than
the old, 0 if the new format is the same as the old, +1 if the new format is somewhat better than the old,
and +2 if the new format is much better than the old.

6.55 More on determining hypotheses.
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State the null hypothesis H0 and the alternative hypothesis Ha in each case. Be sure to identify the
parameters that you use to state the hypotheses.

(a) A university gives credit in first-year calculus to students who pass a placement test. The mathematics
department wants to know if students who get credit in this way differ in their success with second-year
calculus. Scores in second-year calculus are scaled so the average each year is equivalent to a 77. This year
21 students who took second-year calculus passed the placement test.

(b) Experiments on learning in animals sometimes measure how long it takes a mouse to find its way
through a maze. The mean time is 20 seconds for one particular maze. A researcher thinks that playing rap
music will cause the mice to complete the maze more slowly. She measures how long each of 12 mice
takes with the rap music as a stimulus.

(c) The average square footage of one-bedroom apartments in a new student-housing development is
advertised to be 880 square feet. A student group thinks that the apartments are smaller than advertised.
They hire an engineer to measure a sample of apartments to test their suspicion.

6.56 Even more on determining hypotheses.

In each of the following situations, state an appropriate null hypothesis H0 and alternative hypothesis Ha.
Be sure to identify the parameters that you use to state the hypotheses. (We have not yet learned how to
test these hypotheses.)

(a) A sociologist asks a large sample of high school students which television channel they like best. She
suspects that a higher percent of males than of females will name MTV as their favorite channel.

(b) An education researcher randomly divides sixth-grade students into two groups for physical education
class. He teaches both groups basketball skills, using the same methods of instruction in both classes. He
encourages Group A with compliments and other positive behavior but acts cool and neutral toward Group
B. He hopes to show that positive teacher attitudes result in a higher mean score on a test of basketball
skills than do neutral attitudes.

(c) An education researcher believes that among college students there is a negative correlation between
time spent at social network sites and self-esteem, measured on a 0 to 100 scale. To test this, she gathers
social-networking information and self-esteem data from a sample of students at your college.

6.57 Translating research questions into hypotheses.

Translate each of the following research questions into appropriate H0 and Ha.

(a) U.S. Census Bureau data show that the mean household income in the area served by a shopping mall is
$42,800 per year. A market research firm questions shoppers at the mall to find out whether the mean
household income of mall shoppers is higher than that of the general population.

(b) Last year, your online registration technicians took an average of 0.4 hours to respond to trouble calls
from students trying to register. Do this year’s data show a different average response time?

6.58 Computing the P-value.

A test of the null hypothesis H0:μ=μ0 gives test statistic z=1.77.

(a) What is the P-value if the alternative is Ha:μ>μ0?

(b) What is the P-value if the alternative is Ha:μ<μ0?
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(c) What is the P-value if the alternative is Ha:μ≠μ0?

6.59 More on computing the P-value.

A test of the null hypothesis H0:μ=μ0 gives test statistic z=−1.69.

(a) What is the P-value if the alternative is Ha:μ>μ0?

(b) What is the P-value if the alternative is Ha:μ<μ0?

(c) What is the P-value if the alternative is Ha:μ≠μ0?

6.60 Timing of food intake and weight loss.

A study found that a large group of late lunch eaters lost less weight over a 20-week observation period
than a large group of early lunch eaters (P=0.002).17 Explain what this P=0.002 means in a way that could
be understood by someone who has not studied statistics.

6.61 Peer pressure and choice of major.

A study followed a cohort of students entering a business/economics program.18 All students followed a
common track during the first three semesters and then chose to specialize in either business or economics.
Through a series of surveys, the researchers were able to classify roughly 50% of the students as either
peer driven (ignored abilities and chose major to follow peers) or ability driven (ignored peers and chose
major based on ability). When looking at entry wages after graduation, the researchers conclude that a
peer-driven student can expect an average wage that is 13% less than that of an ability-driven student. The
report states that the significance level is P=0.09. Can you be confident of the researchers’ conclusion
regarding the wage decrease? Explain your answer.

6.62 Symbol of wealth in ancient China?

Every society has its own symbols of wealth and prestige. In ancient China, it appears that owning pigs
was such a symbol. Evidence comes from examining burial sites. If the skulls of sacrificed pigs tend to
appear along with expensive ornaments, that suggests that the pigs, like the ornaments, signal the wealth
and prestige of the person buried. A study of burials from around 3500 B.C. concluded that “there are
striking differences in grave goods between burials with pig skulls and burials without them... . A test
indicates that the two samples of total artifacts are significantly different at the 0.01 level.”19 Explain
clearly why “significantly different at the 0.01 level” gives good reason to think that there really is a
systematic difference between burials that contain pig skulls and those that lack them.

6.63 Alcohol awareness among college students.

A study of alcohol awareness among college students reported a higher awareness for students enrolled in a
health and safety class than for those enrolled in a statistics class.20 The difference is described as being
statistically significant. Explain what this means in simple terms and offer an explanation for why the
health and safety students had a higher mean score.

6.64 Change in eighth-grade average mathematics score.
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A report based on the 2011 National Assessment of Educational Progress (NAEP)21 states that the average
score on their mathematics test for eighth-grade students attending public schools is significantly higher
than in 2009. The report also states that the average score for eighth-grade students attending private
schools is not significantly different from the average score in 2009. A footnote states that comparisons are
determined by two-sided statistical tests with 0.05 as the level of significance. Explain what this footnote
means in language understandable to someone who knows no statistics. Do not use the word “significance”
in your answer.

6.65 More on change in eighth-grade average mathematics score.

Refer to the previous exercise. On the basis of the NAEP study, a friend who works for the school
newspaper wants to report that between 2009 and 2011 the average mathematics score improved for
students attending public schools but stayed the same for students attending private schools. Do you agree
with this statement? Explain your answer.

6.66 Background television in homes of U.S. children.

In one study, U.S. parents were surveyed to determine the amount of background television their children
were exposed to. A total of n=1454 families with one child between the ages of 8 months and 8 years
participated.22 For those families in which the caregiver had a high school degree or less, the child was
exposed to an average of 313.0 minutes of background television per day. For those families in which the
caregiver had some college or a college degree, the child was exposed to an average of 218.8 minutes per
day. These average times were reported to be significantly different, with P<0.05. The actual P-value is
0.003. Explain why the actual P-value is more informative than the statement of significance at the 0.05
level.

6.67 Sleep quality and elevated blood pressure.

A study looked at n=238 adolescents, all free of severe illness.23 Subjects wore a wrist actigraph, which
allowed the researchers to estimate sleep patterns. Those subjects classified as having low sleep efficiency
had an average systolic blood pressure that was 5.8 millimeters of mercury (mm Hg) higher than that of
other adolescents. The standard deviation of this difference is 1.4 mm Hg. Based on these results, test
whether this difference is significant at the 0.01 level.

 6.68 Are the pine trees randomly distributed from north to south?

In Example 6.1 (page 352) we looked at the distribution of longleaf pine trees in the Wade Tract. One way
to formulate hypotheses about whether or not the trees are randomly distributed in the tract is to examine
the average location in the north–south direction. The values range from 0 to 200, so if the trees are
uniformly distributed in this direction, any difference from the middle value (100) should be due to chance
variation. The sample mean for the 584 trees in the tract is 99.74. A theoretical calculation based on the
assumption that the trees are uniformly distributed gives a standard deviation of 58. Carefully state the null
and alternative hypotheses in terms of this variable. Note that this requires that you translate the research
question about the random distribution of the trees into specific statements about the mean of a probability
distribution. Test your hypotheses, report your results, and write a short summary of what you have found.

 6.69 Are the pine trees randomly distributed from east to west?

Answer the questions in the previous exercise for the east–west direction, for which the sample mean is
113.8.
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6.70 Who is the author?

Statistics can help decide the authorship of literary works. Sonnets by a certain Elizabethan poet are known
to contain an average of μ=8.9 new words (words not used in the poet’s other works). The standard
deviation of the number of new words is σ=2.5. Now a manuscript with six new sonnets has come to light,
and scholars are debating whether it is the poet’s work. The new sonnets contain an average of x¯=10.2
words not used in the poet’s known works. We expect poems by another author to contain more new
words, so to see if we have evidence that the new sonnets are not by our poet we test

H0:μ=8.9

Ha:μ>8.9
Give the z test statistic and its P-value. What do you conclude about the authorship of the new poems?

6.71 Attitudes toward school.

The Survey of Study Habits and Attitudes (SSHA) is a psychological test that measures the motivation,
attitude toward school, and study habits of students. Scores range from 0 to 200. The mean score for U.S.
college students is about 115, and the standard deviation is about 30. A teacher who suspects that older
students have better attitudes toward school gives the SSHA to 25 students who are at least 30 years of age.
Their mean score is x¯=127.8.

(a) Assuming that σ=30 for the population of older students, carry out a test of

H0:μ=115

Ha:μ>115

Report the P-value of your test, and state your conclusion clearly.

(b) Your test in part (a) required two important assumptions in addition to the assumption that the value of
σ is known. What are they? Which of these assumptions is most important to the validity of your
conclusion in part (a)?

6.72 Nutritional intake among Canadian high-performance athletes.

Since previous studies have reported that elite athletes are often deficient in their nutritional intake (for
example, total calories, carbohydrates, protein), a group of researchers decided to evaluate Canadian high-
performance athletes.24 A total of n=324 athletes from eight Canadian sports centers participated in the
study. One reported finding was that the average caloric intake among the n=201 women was 2403.7
kilocalories per day (kcal/d). The recommended amount is 2811.5 kcal/d. Is there evidence that female
Canadian athletes are deficient in caloric intake?

(a) State the appropriate H0 and Ha to test this.

(b) Assuming a standard deviation of 880 kcal/d, carry out the test. Give the P-value, and then interpret the
result in plain language.

6.73 Are the measurements similar?

Refer to Exercise 6.30 (page 371). In addition to the computer’s calculations of miles per gallon, the driver
also recorded the miles per gallon by dividing the miles driven by the number of gallons at each fill-up.
The following data are the differences between the computer’s and the driver’s calculations for that
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random sample of 20 records. The driver wants to determine if these calculations are different. Assume that

the standard deviation of a difference is σ=30.  MPGDIFF

5.0 6.5 −0.6 1.7 3.7 4.5 8.0 2.2 4.9 3.0
4.4 0.1 3.0 1.1 1.1 5.0 2.1 3.7 −0.6 −4.2

(a) State the appropriate H0 and Ha to test this suspicion.

(b) Carry out the test. Give the P-value, and then interpret the result in plain language.

6.74 Adjusting for the cost of living.

In Example 6.9 (page 373), we compared the average credit card balance between undergraduates in the
Midwest and the South. In testing the difference, we considered a one-sided test because the cost of living
is higher in the South (Example 6.14). Assuming that $1 in the Midwest is worth about $1.09 in the South,
test whether there is a difference between the average balances in the two regions using South dollars. For
simplicity, assume that the standard deviation is unchanged.

6.75 Nicotine content in cigarettes.

According to data from the Tobacco Institute Testing Laboratory, Camel Lights king size cigarettes contain
an average of 0.61 milligrams of nicotine. An advocacy group commissions an independent test to see if
the mean nicotine content is higher than the industry laboratory claims.

(a) What are H0 and Ha?

(b) Suppose that the test statistic is z=1.72. Is this result significant at the 5% level?

(c) Is the result significant at the 1% level?

 6.76 Impact of x¯ on significance.

The Statistical Significance applet illustrates statistical tests with a fixed level of significance for Normally
distributed data with known standard deviation. Open the applet and keep the default settings for the null
(μ=0) and the alternative (μ>0) hypotheses, the sample size (n=10), the standard deviation (σ=1), and the
significance level (α=0.05). In the “I have data, and the observed x¯ is x¯ =” box enter the value 1. Is the
difference between x¯ and μ0 significant at the 5% level? Repeat for x¯ equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9. Make a table giving x¯ and the results of the significance tests. What do you conclude?

 6.77 Effect of changing a on significance.

Repeat the previous exercise with significance level α = 0.01. How does the choice of α affect which
values of x¯ are far enough away from μ0 to be statistically significant?

 6.78 Changing to a two-sided alternative.

Repeat the previous exercise but with the two-sided alternative hypothesis. How does this change affect
which values of x¯ are far enough away from μ0 to be statistically significant at the 0.01 level?
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 6.79 Changing the sample size.

Refer to Exercise 6.76. Suppose that you increase the sample size n from 10 to 40. Again make a table
giving x¯ and the results of the significance tests at the 0.05 significance level. What do you conclude?

 6.80 Impact of x¯ on the P-value.

We can also study the P-value using the Statistical Significance applet. Reset the applet to the default
settings for the null (μ=0) and the alternative (μ>0) hypotheses, the sample size (n = 10), the standard
deviation (σ=1), and the significance level (α=0.05). In the “I have data, and the observed x¯ is x¯ =” box
enter the value 1. What is the P-value? It is shown at the top of the blue vertical line. Repeat for x¯ equal to
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Make a table giving x¯ and P-values. How does the P-value change
as x¯ moves farther away from μ0?

 6.81 Changing to a two-sided alternative, continued.

Repeat the previous exercise but with the two-sided alternative hypothesis. How does this change affect the
P-values associated with each x¯? Explain why the P-values change in this way.

 6.82 Other changes and the P-value.

Refer to the previous exercise.

(a) What happens to the P-values when you change the significance level α to 0.01? Explain the result.

(b) What happens to the P-values when you change the sample size n from 10 to 40? Explain the result.

6.83 Understanding levels of significance.

Explain in plain language why a significance test that is significant at the 1% level must always be
significant at the 5% level.

6.84 More on understanding levels of significance.

You are told that a significance test is significant at the 5% level. From this information can you determine
whether or not it is significant at the 1% level? Explain your answer.

6.85 Test statistic and levels of significance.

Consider a significance test for a null hypothesis versus a two-sided alternative. Give a value of z that will
give a result significant at the 1% level but not at the 0.5% level.

6.86 Using Table D to find a P-value.

You have performed a two-sided test of significance and obtained a value of z=2.31. Use Table D to find
the approximate P-value for this test.
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6.87 More on using Table D to find a P-value.

You have performed a one-sided test of significance and obtained a value of z=0.54. Use Table D to find
the approximate P-value for this test when the alternative is greater than.

6.88 Using Table A and Table D to find a P-value.

Consider a significance test for a null hypothesis versus a two-sided alternative. Between what values from
Table D does the P-value for an outcome z=1.88 lie? Calculate the P-value using Table A, and verify that
it lies between the values you found from Table D.

6.89 More on using Table A and Table D to find a P-value.

Refer to the previous exercise. Find the P-value for z=−1.88.
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6.3 Use and Abuse of Tests

When you complete this section, you will be able to

• Explain why it is important to report the P-value and not just report
whether the result is statistically significant or not.

• Discriminate between practical (or scientific) significance and statistical
significance.

• Identify poorly designed studies where formal statistical inference is
suspect.

• Understand the problems with searching solely for statistical significance,
whether through the investigation of multiple tests or by identifying and
testing using the same data set.

Carrying out a test of significance is often quite simple, especially if the P-value
is given effortlessly by a computer. Using tests wisely is not so simple. Each test is
valid only in certain circumstances, with properly produced data being particularly
important.

The z test, for example, should bear the same warning label that was attached in
Section 6.1 to the corresponding confidence interval (page 365). Similar warnings
accompany the other tests that we will learn. There are additional caveats that
concern tests more than confidence intervals, enough to warrant this separate
section. Some hesitation about the unthinking use of significance tests is a sign of
statistical maturity.

The reasoning of significance tests has appealed to researchers in many fields,
so that tests are widely used to report research results. In this setting Ha is a
“research hypothesis” asserting that some effect or difference is present. The null
hypothesis H0 says that there is no effect or no difference. A low P-value
represents good evidence that the research hypothesis is true. Here are some
comments on the use of significance tests, with emphasis on their use in reporting
scientific research.

Choosing a level of significance

The spirit of a test of significance is to give a clear statement of the degree of
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evidence provided by the sample against the null hypothesis. The P-value does
this. It is common practice to report P-values and to describe results as statistically
significant whenever P≤0.05. However, there is no sharp border between
“significant” and “not significant,” only increasingly strong evidence as the P-
value decreases. Having both the P-value and the statement that we reject or fail to
reject H0 allows us to draw better conclusions from our data.

Example

6.21 Information provided by the P-value

Suppose that the test statistic for a two-sided significance test for a population
mean is z=1.95. From Table A we can calculate the P-value. It is

P=2[1−P(Z≤1.95)]=2(1−0.9744)=0.0512

We have failed to meet the standard of evidence for α=0.05. However, with the
information provided by the P-value, we can see that the result just barely
missed the standard. If the effect in question is interesting and potentially
important, we might want to design another study with a larger sample to
investigate it further.

Here is another example where the P-value provides useful information beyond
that provided by the statement that we reject or fail to reject the null hypothesis.

Example

6.22 More on information provided by the P-value

We have a test statistic of z=−4.66 for a two-sided significance test on a
population mean. Software tells us that the P-value is 0.000003. This means
that there are 3 chances in 1, 000,000 of observing a sample mean this far or
farther away from the null hypothesized value of μ. This kind of event is
virtually impossible if the null hypothesis is true. There is no ambiguity in the
result; we can clearly reject the null hypothesis.
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We frequently report small P-values such as that in the previous example as
P<0.001. This corresponds to a chance of 1 in 1000 and is sufficiently small to lead
us to a clear rejection of the null hypothesis.

One reason for the common use of α=0.05 is the great influence of Sir R. A.
Fisher, the inventor of formal statistical methods for analyzing experimental data.
Here is his opinion on choosing a level of significance: “A scientific fact should be
regarded as experimentally established only if a properly designed experiment
rarely fails to give this level of significance.”25

What statistical significance does not mean

When a null hypothesis (“no effect” or “no difference”) can be rejected at the usual
level α=0.05 there is good evidence that an effect is present. That effect, however,
can be extremely small. When large samples are available, even tiny deviations
from the null hypothesis will be significant.

Example

6.23 It’s significant but is it important?

Suppose that we are testing the hypothesis of no correlation between two
variables. With 400 observations, an observed correlation of only r=0.1 is
significant evidence at the α=0.05 level that the correlation in the population is
not zero. Figure 6.15 is an example of 400 (x,y) pairs that have an observed
correlation of 0.10. The low significance level does not mean that there is a
strong association, only that there is strong evidence of some association. The
proportion of the variability in one of the variables explained by the other is
r2=0.01 or 1%.
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Figure 6.15
Scatterplot of n = 400 observations with an observed correlation of 0.10. There is not a strong
association between the two variables even though there is significant evidence (P < 0.05) that
the population correlation is not zero.

For practical purposes, we might well decide to ignore this association.
Statistical significance is not the same as practical significance. Statistical
significance rarely tells us about the importance of the experimental results. This
depends on the context of the experiment.

The remedy for attaching too much importance to statistical significance is to
pay attention to the actual experimental results as well as to the P-value. Plot your
data and examine them carefully. Beware of outliers. The foolish user of statistics
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who feeds the data to a computer without exploratory analysis will often be
embarrassed. It is usually wise to give a confidence interval for the parameter in
which you are interested. Confidence intervals are not used as often as they should
be, while tests of significance are overused.

USE YOUR KNOWLEDGE

6.90 Is it significant?

More than 200,000 people worldwide take the GMAT examination each
year when they apply for MBA programs. Their scores vary Normally
with mean about μ=525 and standard deviation about σ=100 One
hundred students go through a rigorous training program designed to
raise their GMAT scores. Test the following hypotheses about the
training program

H0:μ=525

Ha:μ>525

in each of the following situations.

(a) The students’ average score is x¯=541.4. Is this result significant at the 5% level?

(b) Now suppose that the average score is x¯=541.5. Is this result significant at the 5% level?

(c) Explain how you would reconcile this difference in significance, especially if any increase
greater than 15 points is considered a success.

Don’t ignore lack of significance

There is a tendency to conclude that there is no effect whenever a P-value fails to
attain the usual 5% standard. A provocative editorial in the British Medical Journal
entitled “Absence of Evidence Is Not Evidence of Absence” deals with this issue.26

Here is one of the examples they cite.

Example
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6.24 Interventions to reduce HIV-1 transmission

A randomized trial of interventions for reducing transmission of HIV-1
reported an incident rate ratio of 1.00, meaning that the intervention group and
the control group both had the same rate of HIV-1 infection. The 95%
confidence interval was reported as 0.63 to 1.58.27 The editorial notes that a
summary of these results that says the intervention has no effect on HIV-1
infection is misleading. The confidence interval indicates that the intervention
may be capable of achieving a 37% decrease in infection; it might also be
harmful and produce a 58% increase in infection. Clearly, more data are
needed to distinguish between these possibilities.

The situation can be worse. Research in some fields has rarely been published
unless significance at the 0.05 level is attained.

Example

6.25 Journal survey of reported significance results

A survey of four journals published by the American Psychological
Association showed that of 294 articles using statistical tests, only 8 reported
results that did not attain the 5% significance level.28 It is very unlikely that
these were the only 8 studies of scientific merit that did not attain significance
at the 0.05 level. Manuscripts describing other studies were likely rejected
because of a lack of statistical significance or never submitted in the first place
due to the expectation of rejection.

In some areas of research, small effects that are detectable only with large
sample sizes can be of great practical significance. Data accumulated from a large
number of patients taking a new drug may be needed before we can conclude that
there are life-threatening consequences for a small number of people.

On the other hand, sometimes a meaningful result is not found significant.

Example

720



6.26 A meaningful but statistically insignificant result

A sample of size 10 gave a correlation of r=0.5 between two variables. The P-
value is 0.102 for a two-sided significance test. In many situations, a
correlation this large would be interesting and worthy of additional study.
When it takes a lot of effort (say, in terms of time or money) to obtain
samples, researchers often use small studies like these as pilot projects to gain
interest from various funding sources. With financial support, a larger, more
powerful study can then be run.

Another important aspect of planning a study is to verify that the test you plan
to use does have high probability of detecting an effect of the size you hope to find.
This probability is the power of the test. Power calculations are discussed in
Section 6.4.

Statistical inference is not valid for all sets of data

design of experiments, p. 175

In Chapter 3, we learned that badly designed surveys or experiments often produce
invalid results. Formal statistical inference cannot correct basic flaws in the
design.

Example

6.27 English vocabulary and studying a foreign language

There is no doubt that there is a significant difference in English vocabulary
scores between high school seniors who have studied a foreign language and
those who have not. But because the effect of actually studying a language is
confounded with the differences between students who choose language study
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and those who do not, this statistical significance is hard to interpret. The most
plausible explanation is that students who were already good at English chose
to study another language. A randomized comparative experiment would
isolate the actual effect of language study and so make significance
meaningful. However, such an experiment probably could not be done.

Tests of significance and confidence intervals are based on the laws of
probability. Randomization in sampling or experimentation ensures that these laws
apply. But we must often analyze data that do not arise from randomized samples
or experiments. To apply statistical inference to such data, we must have
confidence in a probability model for the data. The diameters of successive holes
bored in auto engine blocks, for example, may behave like independent
observations from a Normal distribution. We can check this probability model by
examining the data. If the Normal distribution model appears correct, we can apply
the methods of this chapter to do inference about the process mean diameter μ.

USE YOUR KNOWLEDGE

6.91 Home security systems

A recent TV advertisement for home security systems said that homes
without an alarm system are three times more likely to be broken into.
Suppose that this conclusion was obtained by examining an SRS of
police records of break-ins and determining whether the percent of
homes with alarm systems was significantly smaller than 50%. Explain
why the significance of this study is suspect and propose an alternative
study that would help clarify the importance of an alarm system.

Beware of searching for significance

Statistical significance is an outcome much desired by researchers. It means (or
ought to mean) that you have found an effect that you were looking for. The
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reasoning behind statistical significance works well if you decide what effect you
are seeking, design an experiment or sample to search for it, and use a test of
significance to weigh the evidence you get. But because a successful search for a
new scientific phenomenon often ends with statistical significance, it is all too
tempting to make significance itself the object of the search. There are several
ways to do this, none of them acceptable in polite scientific society.

Example

6.28 Genomics studies

In genomics experiments, it is common to assess the differences in expression
for tens of thousands of genes. If each of these genes was examined separately
and statistical significance declared for all that had P-values that pass the 0.05
standard, we would have quite a mess. In the absence of any real biological
effects, we would expect that, by chance alone, approximately 5% of these
tests will show statistical significance. Much research in genomics is directed
toward appropriate ways to deal with this situation.29

We do not mean that searching data for suggestive patterns is not proper
scientific work. It certainly is. Many important discoveries have been made by
accident rather than by design. Exploratory analysis of data is an essential part of
statistics. We do mean that the usual reasoning of statistical inference does not
apply when the search for a pattern is successful. You cannot legitimately test a
hypothesis on the same data that first suggested that hypothesis. The remedy is
clear. Once you have a hypothesis, design a study to search specifically for the
effect you now think is there. If the result of this study is statistically significant,
you have real evidence.

Section 6.3 Summary

P-values are more informative than the reject-or-not result of a level μ test. Beware
of placing too much weight on traditional values of μ, such as α=0.05.

Very small effects can be highly significant (small P), especially when a test is
based on a large sample. A statistically significant effect need not be practically
important. Plot the data to display the effect you are seeking, and use confidence
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intervals to estimate the actual values of parameters.
On the other hand, lack of significance does not imply that H0 is true, especially

when the test has a low probability of detecting an effect.
Significance tests are not always valid. Faulty data collection, outliers in the

data, and testing a hypothesis on the same data that suggested the hypothesis can
invalidate a test. Many tests run at once will probably produce some significant
results by chance alone, even if all the null hypotheses are true.

SECTION 6.3 Exercises

For Exercise 6.90, see page 397; and for Exercise 6.91, see page 399.

6.92 A role as a statistical consultant.

You are the statistical expert for a graduate student planning her PhD research. After you carefully present
the mechanics of significance testing, she suggests using α=0.20 for the study because she would be more
likely to obtain statistically significant results and she really needs significant results to graduate. Explain
in simple terms why this would not be a good use of statistical methods.

6.93 What do you know?

A research report described two results that both achieved statistical significance at the 5% level. The P-
value for the first is 0.048; for the second it is 0.0002. Do the P-values add any useful information beyond
that conveyed by the statement that both results are statistically significant? Write a short paragraph
explaining your views on this question.

6.94 Selective publication based on results.

In addition to statistical significance, selective publication can also be due to the observed outcome. A
recent review of 74 studies of antidepressant agents found 38 studies with positive results and 36 studies
with negative or questionable results. All but 1 of the 38 positive studies were published. Of the remaining
36, 22 were not published, and 11 were published in such a way as to convey a positive outcome.30
Describe how this selective reporting can have adverse consequences on health care.

6.95 What a test of significance can answer.

Explain whether a test of significance can answer each of the following questions.

(a) Is the sample or experiment properly designed?

(b) Is the observed effect compatible with the null hypothesis?

(c) Is the observed effect important?

6.96 Vitamin C and colds.

In a study to investigate whether vitamin C will prevent colds, 400 subjects are assigned at random to one
of two groups. The experimental group takes a vitamin C tablet daily, while the control group takes a
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placebo. At the end of the experiment, the researchers calculate the difference between the percents of
subjects in the two groups who were free of colds. This difference is statistically significant (P=0.03) in
favor of the vitamin C group. Can we conclude that vitamin C has a strong effect in preventing colds?
Explain your answer.

6.97 How far do rich parents take us?

How much education children get is strongly associated with the wealth and social status of their parents,
termed “socioeconomic status,” or SES. The SES of parents, however, has little influence on whether
children who have graduated from college continue their education. One study looked at whether college
graduates took the graduate admissions tests for business, law, and other graduate programs. The effects of
the parents’ SES on taking the LSAT test for law school were “both statistically insignificant and small.”

(a) What does “statistically insignificant” mean?

(b) Why is it important that the effects were small in size as well as statistically insignificant?

6.98 Do you agree?

State whether or not you agree with each of the following statements and provide a short summary of the
reasons for your answers.

(a) If the P-value is larger than 0.05, the null hypothesis is true.

(b) Practical significance is not the same as statistical significance.

(c) We can perform a statistical analysis using any set of data.

(d) If you find an interesting pattern in a set of data, it is appropriate to then use a significance test to
determine its significance.

(e) It’s always better to use a significance level of α=0.05 than to use α=0.01 because it is easier to find
statistical significance.

6.99 Practical significance and sample size.

Every user of statistics should understand the distinction between statistical significance and practical
importance. A sufficiently large sample will declare very small effects statistically significant. Consider the
study of elite female Canadian athletes in Exercise 6.72 (page 393). Female athletes were consuming an
average of 2403.7 kcal/d with a standard deviation of 880 kcal/d. Suppose that a nutritionist is brought in
to implement a new health program for these athletes. This program should increase mean caloric intake
but not change the standard deviation. Given the standard deviation and how calorie deficient these athletes
are, a change in the mean of 50 kcal/d to 2453.7 is of little importance. However, with a large enough
sample, this change can be significant. To see this, calculate the P-value for the test of

H0:μ=2403.7

Ha:μ>2403.7
in each of the following situations:

(a) A sample of 100 athletes; their average caloric intake is x¯=2453.7.

(b) A sample of 500 athletes; their average caloric intake is x¯=2453.7.

(c) A sample of 2500 athletes; their average caloric intake is x¯=2453.7.
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6.100 Statistical versus practical significance.

A study with 7500 subjects reported a result that was statistically significant at the 5% level. Explain why
this result might not be particularly important.

6.101 More on statistical versus practical significance.

A study with 14 subjects reported a result that failed to achieve statistical significance at the 5% level. The
P-value was 0.051. Write a short summary of how you would interpret these findings.

 6.102 Find journal articles.

Find two journal articles that report results with statistical analyses. For each article, summarize how the
results are reported and write a critique of the presentation. Be sure to include details regarding use of
significance testing at a particular level of significance, P-values, and confidence intervals.

6.103 Create an example of your own.

For each of the following cases, provide an example and an explanation as to why it is appropriate.

(a) A set of data or an experiment for which statistical inference is not valid.

(b) A set of data or an experiment for which statistical inference is valid.

 6.104 Predicting success of trainees.

What distinguishes managerial trainees who eventually become executives from those who, after expensive
training, don’t succeed and leave the company? We have abundant data on past trainees—data on their
personalities and goals, their college preparation and performance, even their family backgrounds and their
hobbies. Statistical software makes it easy to perform dozens of significance tests on these dozens of
variables to see which ones best predict later success. We find that future executives are significantly more
likely than washouts to have an urban or suburban upbringing and an undergraduate degree in a technical
field.

Explain clearly why using these “significant” variables to select future trainees is not wise. Then suggest
a follow-up study using this year’s trainees as subjects that should clarify the importance of the variables
identified by the first study.

6.105 Searching for significance.

Give an example of a situation where searching for significance would lead to misleading conclusions.

6.106 More on searching for significance.

You perform 1000 significance tests using α=0.05. Assuming that all null hypotheses are true, about how
many of the test results would you expect to be statistically significant? Explain how you obtained your
answer.

6.107 Interpreting a very small P-value.
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Assume that you are performing a large number of significance tests. Let n be the number of these tests.
How large would n need to be for you to expect about one P-value to be 0.00001 or smaller? Use this
information to write an explanation of how to interpret a result that has P=0.00001 in this setting.

 6.108 An adjustment for multiple tests.

One way to deal with the problem of misleading P-values when performing more than one significance test
is to adjust the criterion you use for statistical significance. The Bonferroni procedure does this in a
simple way. If you perform two tests and want to use the α=5% significance level, you would require a P-
value of 0.05/2=0.025 to declare either one of the tests significant. In general, if you perform k tests and
want protection at level μ, use α/k as your cutoff for statistical significance. You perform six tests and
obtain individual P-values of 0.083, 0.032, 0.246, 0.003, 0.010, and <0.001. Which of these are statistically
significant using the Bonferroni procedure with α=0.05?

 6.109 Significance using the Bonferroni procedure.

Refer to the previous exercise. A researcher has performed 12 tests of significance and wants to apply the
Bonferroni procedure with α=0.05. The calculated P-values are 0.041, 0.569, 0.050, 0.416, 0.002, 0.006,
0.286, 0.021, 0.888, 0.010, <0.002, and 0.533. Which of these tests reject their null hypotheses with this
procedure?
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6.4 Power and Inference as a Decision

When you complete this section, you will be able to

• Define what is meant by the power of a test.

• Determine the power of a test to detect an alternative for a given sample
size n.

• Describe the two types of possible errors when performing a test that
focuses on deciding between two hypotheses.

• Relate the two errors to the significance level and power of the test.

Although we prefer to use P-values rather than the reject-or-not view of the
level μ significance test, the latter view is very important for planning studies and
for understanding statistical decision theory. We will discuss these two topics in
this section.

Power

Level μ significance tests are closely related to confidence intervals—in fact, we
saw that a two-sided test can be carried out directly from a confidence interval. The
significance level, like the confidence level, says how reliable the method is in
repeated use. If we use 5% significance tests repeatedly when H0 is in fact true, we
will be wrong (the test will reject H0) 5% of the time and right (the test will fail to
reject H0) 95% of the time.

The ability of a test to detect that H0 is false is measured by the probability that
the test will reject H0 when an alternative is true. The higher this probability is, the
more sensitive the test is.

POWER

The probability that a level μ significance test will reject H0 when a particular
alternative value of the parameter is true is called the power of the test to
detect that alternative.
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Example

6.29 The power of the TBBMC significance test

Can a six-month exercise program increase the total body bone mineral
content (TBBMC) of young women? A team of researchers is planning a study
to examine this question. Based on the results of a previous study, they are
willing to assume that σ=2 for the percent change in TBBMC over the six-
month period. They also believe that a change in TBBMC of 1% is important,
so they would like to have a reasonable chance of detecting a change this large
or larger. Is 25 subjects a large enough sample for this project?

We will answer this question by calculating the power of the significance test
that will be used to evaluate the data to be collected. The calculation consists of
three steps:

1. State H0, Ha (the particular alternative we want to detect), and the significance
level μ.

2. Find the values of x¯ that will lead us to reject H0.

3. Calculate the probability of observing these values of x¯ when the alternative is
true.

Step 1. The null hypothesis is that the exercise program has no effect on TBBMC.
In other words, the mean percent change is zero. The alternative is that exercise
is beneficial; that is, the mean change is positive. Formally, we have

H0:μ=0

Ha:μ>0

The alternative of interest is μ=1% increase in TBBMC. A 5% test of
significance will be used.

Step 2. The z test rejects H0 at the α=0.05 level whenever

x¯≥1.645225

Be sure you understand why we use 1.645. Rewrite this in terms of x¯:

P(x¯≥0.658 when μ=1)=P(x¯−μσ/n≥0.658−12/25)

x¯≥0.658

Because the significance level is α=0.05 this event has probability 0.05 of
occurring when the population mean μ is 0.

Step 3. The power to detect the alternative μ=1% is the probability that H0 will be
rejected when in fact μ=1%. We calculate this probability by standardizing x¯,
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using the value μ=1, the population standard deviation σ=2, and the sample size
n=25. The power is

z=x¯−6.00.25/3

=P(Z≥−0.855)=0.80
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Figure 6.16
The sampling distributions of x¯ when μ = 0 and when μ = 1. The power is the probability that
the test rejects H0when the alternative is true.

Figure 6.16 illustrates the power with the sampling distribution of x¯ when μ=1.
This significance test rejects the null hypothesis that exercise has no effect on
TBBMC 80% of the time if the true effect of exercise is a 1% increase in TBBMC.
If the true effect of exercise is a greater percent increase, the test will have greater
power; it will reject with a higher probability.

Here is another example of a power calculation, this time for a two-sided z test.

Example
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6.30 Power of the lead concentration test

Example 6.17 (page 386) presented a test of

H0:μ=6.0

Ha:μ≠6.0

at the 1% level of significance. What is the power of this test against the
specific alternative μ=6.5?

The test rejects H0 when |z|≥2.576 The test statistic is

P(x¯≥6.37)=P(x¯−μσ/n≥6.37−6.500.25/3)

Some arithmetic shows that the test rejects when either of the following is true:

z≥2.576       (in other words,x¯≥6.37)

z≤−2.576     (in other words,x¯≤5.63)

These are disjoint events, so the power is the sum of their probabilities,
computed assuming that the alternative μ=6.5 6.5 is true. We find that

P(x¯≥5.63)=P(x¯−μσ/n≥5.63−6.500.25/3)

=P(Z≥−0.90)=0.8159

z=x¯−220.01/5

=P(Z≤−6.03) 0

Figure 6.17 illustrates this calculation. Because the power is about 0.82, we are
quite confident that the test will reject H0 when this alternative is true.
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Figure 6.17
The power for Example 6.30. Unlike Figure 6.16, only the sampling distribution under the
alternative is shown.

High power is desirable. Along with 95% confidence intervals and 5%
significance tests, 80% power is becoming a standard. Many U.S. government
agencies that provide research funds require that the sample size for the funded
studies be sufficient to detect important results 80% of the time using a 5% test of
significance.

Increasing the power

Suppose that you have performed a power calculation and found that the power is
too small. What can you do to increase it? Here are four ways:

• Increase α A 5% test of significance will have a greater chance of rejecting the
alternative than a 1% test because the strength of evidence required for rejection is
less.

• Consider a particular alternative that is farther away from μ0. Values of μ that are
in Ha but lie close to the hypothesized value μ0 are harder to detect (lower power)
than values of μ that are far from μ0.

• Increase the sample size. More data will provide more information about x¯ so
we have a better chance of distinguishing values of μ.

• Decrease σ. This has the same effect as increasing the sample size: more
information about μ. Improving the measurement process and restricting attention
to a subpopulation are possible ways to decrease σ.

Power calculations are important in planning studies. Using a significance test
with low power makes it unlikely that you will find a significant effect even if the
truth is far from the null hypothesis. A null hypothesis that is, in fact, false can
become widely believed if repeated attempts to find evidence against it fail because
of low power. The following example illustrates this point.

Example

6.31 Are stock markets efficient?

The “efficient market hypothesis” for the time series of stock prices says that
future stock prices (when adjusted for inflation) show only random variation.
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No information available now will help us predict stock prices in the future,
because the efficient working of the market has already incorporated all
available information in the present price. Many studies have tested the claim
that one or another kind of information is helpful. In these studies, the efficient
market hypothesis is H0, and the claim that prediction is possible is Ha.
Almost all the studies have failed to find good evidence against H0. As a
result, the efficient market hypothesis is quite popular. But an examination of
the significance tests employed finds that the power is generally low. Failure
to reject H0 when using tests of low power is not evidence that H0 is true. As
one expert says, “The widespread impression that there is strong evidence for
market efficiency may be due just to a lack of appreciation of the low power of
many statistical tests.”31

Inference as decision

We have presented tests of significance as methods for assessing the strength of
evidence against the null hypothesis. This assessment is made by the P-value,
which is a probability computed under the assumption that H0 is true. The
alternative hypothesis (the statement we seek evidence for) enters the test only to
help us see what outcomes count against the null hypothesis.

There is another way to think about these issues. Sometimes we are really
concerned about making a decision or choosing an action based on our evaluation
of the data. Acceptance sampling is one such circumstance. A producer of
bearings and a skateboard manufacturer agree that each carload lot of bearings
shall meet certain quality standards. When a carload arrives, the manufacturer
chooses a sample of bearings to be inspected. On the basis of the sample outcome,
the manufacturer will either accept or reject the carload. Let’s examine how the
idea of inference as a decision changes the reasoning used in tests of significance.

acceptance sampling

Two types of error

Tests of significance concentrate on H0, the null hypothesis. If a decision is called
for, however, there is no reason to single out H0. There are simply two hypotheses,
and we must accept one and reject the other. It is convenient to call the two
hypotheses H0 and Ha, but H0 no longer has the special status (the statement we try
to find evidence against) that it had in tests of significance. In the acceptance
sampling problem, we must decide between

H0:the lot of bearings meets standards

Ha:the lot does not meet standards
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on the basis of a sample of bearings.
We hope that our decision will be correct, but sometimes it will be wrong.

There are two types of incorrect decisions. We can accept a bad lot of bearings, or
we can reject a good lot. Accepting a bad lot injures the consumer, while rejecting
a good lot hurts the producer. To help distinguish these two types of error, we give
them specific names.

TYPE I AND TYPE II ERRORS

If we reject H0 (accept Ha) when in fact H0 is true, this is a Type I error. If
we accept H0 (reject Ha) when in fact Ha is true, this is a Type II error.

Figure 6.18
The two types of error in testing hypotheses.

The possibilities are summed up in Figure 6.18. If H0 is true, our decision either
is correct (if we accept H0) or is a Type I error. If Ha is true, our decision either is
correct or is a Type II error. Only one error is possible at one time. Figure 6.19
applies these ideas to the acceptance sampling example.
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Figure 6.19
The two types of error in the acceptance sampling setting.

Error probabilities

Any rule for making decisions is assessed in terms of the probabilities of the two
types of error. This is in keeping with the idea that statistical inference is based on
probability. We cannot (short of inspecting the whole lot) guarantee that good lots
of bearings will never be rejected and bad lots never be accepted. But by random
sampling and the laws of probability, we can say what the probabilities of both
kinds of error are.

Significance tests with fixed level α give a rule for making decisions because
the test either rejects H0 or fails to reject it. If we adopt the decision-making way of
thought, failing to reject H0 means deciding that H0 is true. We can then describe
the performance of a test by the probabilities of Type I and Type II errors.

Example

6.32 Outer diameter of a skateboard bearing
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The mean outer diameter of a skateboard bearing is supposed to be 22.000
millimeters (mm). The outer diameters vary Normally with standard deviation
σ=0.010 mm. When a lot of the bearings arrives, the skateboard manufacturer
takes an SRS of 5 bearings from the lot and measures their outer diameters.
The manufacturer rejects the bearings if the sample mean diameter is
significantly different from 22 mm at the 5% significance level.

This is a test of the hypotheses

H0:μ=22

Ha:μ≠22

To carry out the test, the manufacturer computes the z statistic:

z=x¯−475100/500

and rejects H0 if

z<−1.96   or   z>1.96

A Type I error is to reject H0 when in fact μ=22.
What about Type II errors? Because there are many values of μ in Ha, we

will concentrate on one value. The producer and the manufacturer agree that a
lot of bearings with mean 0.015 mm away from the desired mean 22.000
should be rejected. So a particular Type II error is to accept H0 when in fact
μ=22.015.

Figure 6.20 shows how the two probabilities of error are obtained from the
two sampling distributions of x¯ for μ=22 and for μ=22.015 When μ=22, H0 is
true and to reject H0 is a Type I error. When μ=22.015, accepting H0 is a Type
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II error. We will now calculate these error probabilities.

Figure 6.20
The two error probabilities for Example 6.32. The probability of a Type I error (yellow area) is
the probability of rejecting H0: μ = 22 when in fact μ = 22. The probability of a Type II error
(blue area) is the probability of accepting H0 when in fact μ = 22.015.

The probability of a Type I error is the probability of rejecting H0 when it is
really true. In Example 6.32, this is the probability that |z|≥1.96 when μ=22. But
this is exactly the significance level of the test. The critical value 1.96 was chosen
to make this probability 0.05, so we do not have to compute it again. The definition
of “significant at level 0.05” is that sample outcomes this extreme will occur with
probability 0.05 when H0 is true.

SIGNIFICANCE AND TYPE I ERROR

The significance level α of any fixed level test is the probability of a Type I
error. That is, α is the probability that the test will reject the null hypothesis H0
when Ha is in fact true.

The probability of a Type II error for the particular alternative μ=22.015 in
Example 6.32 is the probability that the test will fail to reject H0 when μ has this
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alternative value. The power of the test to detect the alternative μ=22.015 is just the
probability that the test does reject H0 By following the method of Example 6.30,
we can calculate that the power is about 0.92. The probability of a Type II error is
therefore 1−0.92 or 0.08.

POWER AND TYPE II ERROR

The power of a fixed level test to detect a particular alternative is 1 minus the
probability of a Type II error for that alternative.

The two types of error and their probabilities give another interpretation of the
significance level and power of a test. The distinction between tests of significance
and tests as rules for deciding between two hypotheses does not lie in the
calculations but in the reasoning that motivates the calculations. In a test of
significance we focus on a single hypothesis (H0) and a single probability (the P-
value). The goal is to measure the strength of the sample evidence against H0.
Calculations of power are done to check the sensitivity of the test. If we cannot
reject H0, we conclude only that there is not sufficient evidence against H0, not that
H0 is actually true. If the same inference problem is thought of as a decision
problem, we focus on two hypotheses and give a rule for deciding between them
based on the sample evidence. We therefore must focus equally on two
probabilities, the probabilities of the two types of error. We must choose one
hypothesis and cannot abstain on grounds of insufficient evidence.

The common practice of testing hypotheses

Such a clear distinction between the two ways of thinking is helpful for
understanding. In practice, the two approaches often merge. We continued to call
one of the hypotheses in a decision problem H0. The common practice of testing
hypotheses mixes the reasoning of significance tests and decision rules as follows:

1. State H0 and Ha just as in a test of significance.

2. Think of the problem as a decision problem, so that the probabilities of Type I
and Type II errors are relevant.

3. Because of Step 1, Type I errors are more serious. So choose an α (significance
level) and consider only tests with probability of a Type I error no greater than
α.

4. Among these tests, select one that makes the probability of a Type II error as
small as possible (that is, power as large as possible). If this probability is too
large, you will have to take a larger sample to reduce the chance of an error.
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Testing hypotheses may seem to be a hybrid approach. It was, historically, the
effective beginning of decision-oriented ideas in statistics. An impressive
mathematical theory of hypothesis testing was developed between 1928 and 1938
by Jerzy Neyman and Egon Pearson. The decision-making approach came later
(1940s). Because decision theory in its pure form leaves you with two error
probabilities and no simple rule on how to balance them, it has been used less often
than either tests of significance or tests of hypotheses. Decision ideas have been
applied in testing problems mainly by way of the Neyman-Pearson hypothesis-
testing theory. That theory asks you first to choose α, and the influence of Fisher
has often led users of hypothesis testing comfortably back to α=0.05 or α=0.01.
Fisher, who was exceedingly argumentative, violently attacked the Neyman-
Pearson decision-oriented ideas, and the argument still continues.

Section 6.4 Summary

The power of a significance test measures its ability to detect an alternative
hypothesis. The power to detect a specific alternative is calculated as the
probability that the test will reject H0 when that alternative is true. This calculation
requires knowledge of the sampling distribution of the test statistic under the
alternative hypothesis. Increasing the size of the sample increases the power when
the significance level remains fixed.

An alternative to significance testing regards H0 and Ha as two statements of
equal status that we must decide between. This decision theory point of view
regards statistical inference in general as giving rules for making decisions in the
presence of uncertainty.

In the case of testing H0 versus Ha, decision analysis chooses a decision rule on
the basis of the probabilities of two types of error. A Type I error occurs if H0 is
rejected when it is in fact true. A Type II error occurs if H0 is accepted when in
fact Ha is true.

In a fixed level α significance test, the significance level α is the probability of a
Type I error, and the power to detect a specific alternative is 1 minus the
probability of a Type II error for that alternative.

SECTION 6.4 Exercises

6.110 Make a recommendation.

Your manager has asked you to review a research proposal that includes a section on sample size
justification. A careful reading of this section indicates that the power is 28% for detecting an effect that
would be considered important. Write a short report for your manager explaining what this means and
make a recommendation on whether or not this study should be run.

6.111 Explain power and sample size.
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Two studies are identical in all respects except for the sample sizes. Consider the power versus a particular
sample size. Will the study with the larger sample size have more power or less power than the one with
the smaller sample size? Explain your answer in terms that could be understood by someone with very
little knowledge of statistics.

6.112 Power for a different alternative.

The power for a two-sided test of the null hypothesis μ=0 versus the alternative μ=4 is 0.83. What is the
power versus the alternative μ=−4? Explain your answer.

6.113 More on the power for a different alternative.

A one-sided test of the null hypothesis μ=20 versus the alternative μ=30 has power equal to 0.6. Will the
power for the alternative μ=40 be higher or lower than 0.6? Draw a picture and use this to explain your
answer.

 6.114 Effect of changing the alternative μ on power.

The Statistical Power applet illustrates a power calculation similar to that in Figure 6.16 (page 404). Open
the applet and keep the default settings for the null (μ=0) and the alternative (μ>0) hypotheses, the sample
size (n=10), the standard deviation (σ=1), and the significance level (α=0.05). In the “alt μ =” box enter the
value 1. What is the power? Repeat for alternative μ equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Make
a table giving μ and the power. What do you conclude?

 6.115 Other changes and the effect on power.

Refer to the previous exercise. For each of the following changes, explain what happens to the power for
each alternative μ in the table.

(a) Change to the two-sided alternative.

(b) Increase σ to 2.

(c) Increase n from 10 to 20.

 6.116 Power of the random north–south distribution of trees test.

In Exercise 6.68 (page 392) you performed a two-sided significance test of the null hypothesis that the
average north–south location of the longleaf pine trees sampled in the Wade Tract was μ = 100. There were
584 trees in the sample and the standard deviation was assumed to be 58. The sample mean in that analysis
was x¯=99.74. Use the Statistical Power applet to compute the power for the alternative μ=99 using a two-
sided test at the 5% level of significance.

 6.117 Power of the random east–west distribution of trees test.

Refer to the previous exercise. Note that in the east–west direction, the average location was 113.8. Use the
Statistical Power applet to find the power for the alternative μ = 110.

 6.118 Planning another test to compare consumption.
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Example 6.15 (page 383) gives a test of a hypothesis about the mean consumption of sugar- sweetened
beverages at your university based on a sample of size n=100. The hypotheses are

H0:μ=286

Ha:μ≠286
While the result was not statistically significant, it did provide some evidence that the mean was smaller
than 286. Thus, you plan to recruit another sample of students from your university but this time use a one-
sided alternative. You were thinking of surveying n=100 students but now wonder if this sample size gives
adequate power to detect a decrease of 15 calories per day to μ=271.

(a) Given α=0.05, for what values of z will you reject the null hypothesis?

(b) Using σ=155 and μ=286 for what values of x¯ will you reject H0?

(c) Using σ=155 and μ=271, what is the probability that x¯ will fall in the region defined in part (b)?

(d) Will a sample size of n=100 give you adequate power? Or do you need to find ways to increase the
power? Explain your answer.

(e) Use the Statistical Power applet to determine the sample size n that gives you power near 0.80.

6.119 Power of the mean SATM score test.

Example 6.16 (page 384) gives a test of a hypothesis about the SATM scores of California high school
students based on an SRS of 500 students. The hypotheses are

H0:μ=475

Ha:μ>475
Assume that the population standard deviation is σ=100. The test rejects H0 at the 1% level of significance
when z≥2.326 where

Is this test sufficiently sensitive to usually detect an increase of 10 points in the population mean SATM
score? Answer this question by calculating the power of the test to detect the alternative μ=485.

 6.120 Choose the appropriate distribution.

You must decide which of two discrete distributions a random variable X has. We will call the distributions
p0 and p1 Here are the probabilities they assign to the values x of X:

x 0 1 2 3 4 5 6
p0 0.1 0.1 0.2 0.1 0.1 0.1 0.3
p1 0.2 0.2 0.2 0.1 0.1 0.1 0.1

You have a single observation on X and wish to test

H0:p0 is correct

Ha:p1 is correct
One possible decision procedure is to reject H0 only if X≤2.

(a) Find the probability of a Type I error, that is, the probability that you reject H0 when p0 is the correct
distribution.
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(b) Find the probability of a Type II error.

6.121 Computer-assisted career guidance systems.

A wide variety of computer-assisted career guidance systems have been developed over the last decade.
These programs use factors such as student interests, aptitude, skills, personality, and family history to
recommend a career path. For simplicity, suppose that a program recommends a high school graduate
either to go to college or to join the workforce.

(a) What are the two hypotheses and the two types of error that the program can make?

(b) The program can be adjusted to decrease one error probability at the cost of an increase in the other
error probability. Which error probability would you choose to make smaller, and why? (This is a matter of
judgment. There is no single correct answer.)
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CHAPTER 6 Exercises

6.122 Telemarketing wages.

An advertisement in the student newspaper asks you to consider working for a telemarketing
company. The ad states, “Earn between $500 and $1000 per week.” Do you think that the ad is
describing a confidence interval? Explain your answer.

6.123 Exercise and statistics exams.

A study examined whether light exercise performed an hour before the final exam in statistics affects
how students perform on the exam. The P-value was given as 0.27.

(a) State null and alternative hypotheses that could be used for this study. (Note: There is more than
one correct answer.)

(b) Do you reject the null hypothesis? State your conclusion in plain language.

(c) What other facts about the study would you like to know for a proper interpretation of the
results?

 6.124 Stress by occupation.

As part of a study on the impact of job stress on smoking, researchers used data from the Health and
Retirement Study (HRS) to collect information on 3825 ever-smoker individuals who were 50 to 64
years of age.32 An ever-smoker is someone who was a smoker at some time in his or her life. The
HRS is a biennial survey, thus providing the researchers with 17,043 person-year observations. One
of the questions on the survey asked a participant how much he or she agrees or disagrees with the
statement “My job involves a lot of stress.” The answers were coded as a 1 if a participant “strongly
agreed” and 0 otherwise. The following table summarizes these responses by occupation.

Occupation p^ n
Professional 0.23 2447
Managerial 0.22 2552
Administrative 0.17 2309
Sales 0.15 1811
Mechanical 0.12 1979
Service 0.13 2592
Operator 0.12 2782
Farm 0.08 571

(a) Because these responses are binary, use the formula for the standard deviation of a sample
proportion (page 330) and construct 95% confidence intervals for each occupation.

(b) Summarize the results. Do there appear to be certain groups of occupations with similar stress
levels?
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(c) A friend questions the use of the standard deviation formula in part (a). Refer back to the
binomial setting (page 322). What might your friend be concerned with?

6.125 Food selection by children in school cafeterias.

A group of researchers examined whether children’s food selection in a school cafeteria met the
standards set by the School Meals Initiative. They measured food selection and food intake of 2049
fourth- through sixth-grade students in 33 schools over a 3-day period using digital photography.
The following table summarizes some of the food intake measurements.33

Food intake

Boys Girls
n = 852 n = 1197

Mean St. Dev. Mean St. Dev.
Energy (kilojoules) 2448 717 2170 693
Protein (g) 24.5 7.5 22.1 7.7
Calcium (mg) 324.1 130.6 265.0 128.9

Given the large sample sizes, we can assume that the sample standard deviations are the population
standard deviations.

(a) Compute 95% confidence intervals for all three intake measures for the boys.

(b) Compute 95% confidence intervals for all three intake measures for the girls.

(c) In the next chapter, we will describe the confidence interval for the difference between two
means. For now, let’s compare the boy and girl confidence intervals for each food intake measure.
Do you think these pairs of intervals provide strong evidence against the null hypothesis that the
boys and girls consume, on average, the same amount? Explain your answer.

6.126 Coverage percent of 95% confidence interval.

For this exercise you will use the Confidence Interval applet. Set the confidence level at 95% and
click the “Sample” button 10 times to simulate 10 confidence intervals. Record the percent hit.
Simulate another 10 intervals by clicking another 10 times (do not click the “Reset” button). Record
the percent hit for your 20 intervals. Repeat the process of simulating 10 additional intervals and
recording the results until you have a total of 200 intervals. Plot your results and write a summary of
what you have found.

  6.127 Coverage percent of 90% confidence interval.

Refer to the previous exercise. Do the simulations and report the results for 90% confidence.

  6.128 Effect of sample size on significance.

You are testing the null hypothesis that μ=0 versus the alternative μ>0 using α=0.05 Assume that
σ=14. Suppose that x¯=4 and n=10 Calculate the test statistic and its P-value. Repeat, assuming the
same value of x¯ but with n=20. Do the same for sample sizes of 30, 40, and 50. Plot the values of
the test statistic versus the sample size. Do the same for the P-values. Summarize what this
demonstration shows about the effect of the sample size on significance testing.

745



 6.129 Blood phosphorus level in dialysis patients.

Patients with chronic kidney failure may be treated by dialysis, in which a machine removes toxic
wastes from the blood, a function normally performed by the kidneys. Kidney failure and dialysis
can cause other changes, such as retention of phosphorus, that must be corrected by changes in diet.
A study of the nutrition of dialysis patients measured the level of phosphorus in the blood of several
patients on six occasions. Here are the data for one patient (in milligrams of phosphorus per deciliter
of blood):34

5.4   5.2   4.5   4.9   5.7   6.3
The measurements are separated in time and can be considered an SRS of the patient’s blood

phosphorus level. Assume that this level varies Normally with σ=0.9 mg/dl.  PMGDL

(a) Give a 95% confidence interval for the mean blood phosphorus level.

(b) The normal range of phosphorus in the blood is considered to be 2.6 to 4.8 mg/dl. Is there strong
evidence that this patient has a mean phosphorus level that exceeds 4.8?

6.130 Cellulose content in alfalfa hay.

An agronomist examines the cellulose content of a variety of alfalfa hay. Suppose that the cellulose
content in the population has standard deviation σ=8 milligrams per gram (mg/g). A sample of 15
cuttings has mean cellulose content x¯=145 mg/g.

(a) Give a 90% confidence interval for the mean cellulose content in the population.

(b) A previous study claimed that the mean cellulose content was μ=140 mg/g, but the agronomist
believes that the mean is higher than that figure. State H0 and Ha and carry out a significance test to
see if the new data support this belief.

(c) The statistical procedures used in parts (a) and (b) are valid when several assumptions are met.
What are these assumptions?

6.131 Odor threshold of future wine experts.

Many food products contain small quantities of substances that would give an undesirable taste or
smell if they are present in large amounts. An example is the “off-odors” caused by sulfur
compounds in wine. Oenologists (wine experts) have determined the odor threshold, the lowest
concentration of a compound that the human nose can detect. For example, the odor threshold for
dimethyl sulfide (DMS) is given in the oenology literature as 25 micrograms per liter of wine (μg/l).
Untrained noses may be less sensitive, however. Here are the DMS odor thresholds for 10 beginning
students of oenology:

31   31   43   36   23   34   32   30   20   24
Assume (this is not realistic) that the standard deviation of the odor threshold for untrained noses is

known to be σ=7 μg/l.  ODOR

(a) Make a stemplot to verify that the distribution is roughly symmetric with no outliers. (A Normal
quantile plot confirms that there are no systematic departures from Normality.)

(b) Give a 95% confidence interval for the mean DMS odor threshold among all beginning oenology
students.
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(c) Are you convinced that the mean odor threshold for beginning students is higher than the
published threshold, 25 μg/l? Carry out a significance test to justify your answer.

 6.132 Where do you buy?

Consumers can purchase nonprescription medications at food stores, mass merchandise stores such
as Target and Wal-Mart, or pharmacies. About 45% of consumers make such purchases at
pharmacies. What accounts for the popularity of pharmacies, which often charge higher prices?

A study examined consumers’ perceptions of overall performance of the three types of stores,
using a long questionnaire that asked about such things as “neat and attractive store,”
“knowledgeable staff,” and “assistance in choosing among various types of nonprescription
medication.” A performance score was based on 27 such questions. The subjects were 201 people
chosen at random from the Indianapolis telephone directory. Here are the means and standard
deviations of the performance scores for the sample:35

Store type x¯ s
Food stores 18.67 24.95
Mass merchandisers 32.38 33.37
Pharmacies 48.60 35.62

We do not know the population standard deviations, but a sample standard deviation s from so large
a sample is usually close to σ. Use s in place of the unknown σ in this exercise.

(a) What population do you think the authors of the study want to draw conclusions about? What
population are you certain they can draw conclusions about?

(b) Give 95% confidence intervals for the mean performance for each type of store.

(c) Based on these confidence intervals, are you convinced that consumers think that pharmacies
offer higher performance than the other types of stores? (In Chapter 12, we will study a statistical
method for comparing the means of several groups.)

6.133 CEO pay.

A study of the pay of corporate chief executive officers (CEOs) examined the increase in cash
compensation of the CEOs of 104 companies, adjusted for inflation, in a recent year. The mean
increase in real compensation was x¯=6.9%, and the standard deviation of the increases was s=55%.
Is this good evidence that the mean real compensation μ of all CEOs increased that year? The
hypotheses are

H0:μ=0 (no increase)

Ha:μ>0 (an increase)
Because the sample size is large, the sample s is close to the population σ, so take σ=55%.

(a) Sketch the Normal curve for the sampling distribution of x¯ when H0 is true. Shade the area that
represents the P-value for the observed outcome x¯=6.9%.

(b) Calculate the P-value.

(c) Is the result significant at the α=0.05 level? Do you think the study gives strong evidence that the
mean compensation of all CEOs went up?
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6.134 Meaning of “statistically significant.”

When asked to explain the meaning of “statistically significant at the α=0.01 level,” a student says,
“This means there is only probability 0.01 that the null hypothesis is true.” Is this an essentially
correct explanation of statistical significance? Explain your answer.

6.135 More on the meaning of “statistically significant.”

Another student, when asked why statistical significance appears so often in research reports, says,
“Because saying that results are significant tells us that they cannot easily be explained by chance
variation alone.” Do you think that this statement is essentially correct? Explain your answer.

6.136 Roulette.

A roulette wheel has 18 red slots among its 38 slots. You observe many spins and record the number
of times that red occurs. Now you want to use these data to test whether the probability of a red has
the value that is correct for a fair roulette wheel. State the hypotheses H0 and Ha that you will test.

 6.137 Simulation study of the confidence interval.

Use a computer to generate n=12 observations from a Normal distribution with mean 25 and
standard deviation 4: N(25,4) Find the 95% confidence interval for μ. Repeat this process 100 times
and then count the number of times that the confidence interval includes the value μ=25. Explain
your results.

 6.138 Simulation study of a test of significance.

Use a computer to generate n = 12 observations from a Normal distribution with mean 25 and
standard deviation 4: N(25,4). Test the null hypothesis that μ = 25 using a two-sided significance
test. Repeat this process 100 times and then count the number of times that you reject H0. Explain
your results.

 6.139 Another simulation study of a test of significance.

Use the same procedure for generating data as in the previous exercise. Now test the null hypothesis
that μ = 23. Explain your results.

 6.140 The handshake during employment interviews.

Nonverbal cues, such as eye contact and smiling, have been shown to positively influence the
assessment of an interview. Because a firm handshake is often viewed as a sign of confidence and
strength, it is thought that it may also influence the assessment. To investigate this, some researchers
recruited 98 undergraduate students enrolled in an elective, one-credit career preparation course and
had them participate in a mock interview.36 The following table of means, broken down by gender,
summarizes the interviewer’s impression of a series of characteristics associated with the interview.
These impressions were all rated on a 1-to-5 scale with 1 representing “weak” and 5 representing
“strong.” There were 50 females and 48 males in the study.
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Characteristic Men Women
Conscientiousness 3.80 3.88
Extraversion 3.88 3.79
Agreeableness 3.72 3.94
Emotional stability 3.58 3.43
Openness to experience 3.50 3.45
Overall handshake 3.70 3.47
Handshake strength 3.64 3.11
Handshake vigor 3.42 3.25
Handshake grip 3.89 3.51
Handshake duration 3.65 3.50
Eye contact 3.90 3.96
Professional dress 4.33 4.53
Interviewer assessment 3.72 3.83

For each characteristic, compute the z statistic and the associated P-value for the comparison
between the two groups. For all characteristics but the overall interviewer assessment, assume that
the standard deviation of the difference is 0.10, so z is simply the difference in the means divided by
0.10. For interviewer assessment, assume that the standard deviation of the difference is 0.19. Note
that you are performing 13 significance tests in this exercise. Keep this in mind when you interpret
your results. Write a report summarizing your work.

 6.141 Find published studies with confidence intervals.

Search the Internet or some journals that report research in your field and find two reports that
provide an estimate with a margin of error or a confidence interval. For each report,

(a) describe the method used to collect the data.

(b) describe the variable being studied.

(c) give the estimate and the confidence interval.

(d) describe any practical difficulties that may have led to errors in addition to the sampling errors
quantified by the margin of error.
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CHAPTER7 Inference for Distributions
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7.1

7.2

7.3

Inference for the Mean of a Population

Comparing Two Means

Other Topics in Comparing Distributions
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Introduction

We began our study of data analysis in Chapter 1 by learning graphical and
numerical tools for describing the distribution of a single variable and for
comparing several distributions. Our study of the practice of statistical inference
begins in the same way, with inference about a single distribution and comparison
of two distributions. Comparing more than two distributions requires more
elaborate methods, which are presented in Chapters 12 and 13.

Two important aspects of any distribution are its center and spread. If the
distribution is Normal, we describe its center by the mean μ and its spread by the
standard deviation σ In this chapter, we will meet confidence intervals and
significance tests for inference about a population mean μ and the difference
between two population means μ1 − μ2. The previous chapter emphasized the
reasoning of significance tests and confidence intervals. Now we emphasize
statistical practice, so we no longer assume that population standard deviations are
known. This means that we move away from the standard Normal sampling
distribution to a new family of sampling distributions. The t procedures for
inference about means are among the most commonly used statistical methods.

752



7.1 Inference for the Mean of a Population

When you complete this section, you will be able to

• Distinguish the standard deviation of the sample mean from the standard
error of the sample mean.

• Describe a level C confidence interval for the population mean in terms of
an estimate and its margin of error.

• Construct a level C confidence interval for μ from an SRS of size n from a
large population.

• Perform a one-sample t significance test and summarize the results.

• Identify when the matched pairs t procedures should be used instead of
two-sample t procedures.

• Explain when t procedures can be useful for non-Normal data.

Both confidence intervals and tests of significance for the mean μ of a Normal
population are based on the sample mean x¯, which estimates the unknown μ The
sampling distribution of x¯ depends on σ This fact causes no difficulty when σ is
known. When σ is unknown, however, we must estimate σ even though we are
primarily interested in μ. The sample standard deviation s is used to estimate the
population standard deviation σ.

sampling distribution of x¯, p. 307

The t distributions

Suppose that we have a simple random sample (SRS) of size n from a Normally
distributed population with mean μ and standard deviation σ The sample mean x¯
is then Normally distributed with mean μ and standard deviation σ/n When σ is not
known, we estimate it with the sample standard deviation s and then we estimate
the standard deviation of x¯ by s/n. This quantity is called the standard error of the
sample mean x¯ and we denote it by SEx¯

STANDARD ERROR
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When the standard deviation of a statistic is estimated from the data, the result
is called the standard error of the statistic. The standard error of the sample
mean is

SEx¯=sn

The term “standard error” is sometimes used for the actual standard deviation of
a statistic. The estimated value is then called the “estimated standard error.” In this
book we will use the term “standard error” only when the standard deviation of a
statistic is estimated from the data. The term has this meaning in the output of
many statistical computer packages and in research reports that apply statistical
methods.

The standardized sample mean, or one-sample z statistic,

z=x¯−μσ/n

is the basis of the z procedures for inference about μ when σ is known. This
statistic has the standard Normal distribution N(0, 1). When we substitute the
standard error s/n for the standard deviation σ/n of x the statistic does not have a
Normal distribution. It has a distribution that is new to us, called a t distribution.

THE t DISTRIBUTIONS

Suppose that an SRS of size n is drawn from an N(μ, σ) population. Then the
one-sample t statistic

t=x¯−μs/n

has the t distribution with n − 1 degrees of freedom.

degrees of freedom, p. 44

A particular t distribution is specified by giving the degrees of freedom. We use
t(k) to stand for the t distribution with k degrees of freedom. The degrees of
freedom for this t statistic come from the sample standard deviation s in the
denominator of t. We showed earlier that s has n− 1 degrees of freedom. Thus,
there is a different t distribution for each sample size. There are also other t
statistics with different degrees of freedom, some of which we will meet later in
this chapter.
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FIGURE 7.1
Density curves for the standard Normal, t(10), and t(5) distributions. All are symmetric with
center 0. The t distributions have more probability in the tails than the standard Normal
distribution.

The density curves of the t(k) distributions are similar in shape to the standard
Normal curve. That is, they are symmetric about 0 and are bell-shaped. Figure 7.1
compares the density curves of the standard Normal distribution and the t
distributions with 5 and 10 degrees of freedom. The similarity in shape is apparent,
as is the fact that the t distributions have more probability in the tails and less in the
center.

In reference to the standardized sample mean, this greater spread is due to the
extra variability caused by substituting the random variable s for the fixed
parameter σ Figure 7.1 also shows that as the degrees of freedom k increase, the
t(k) density curve gets closer to the N(0, 1) curve. This reflects the fact that s will
be closer to σ as the sample size increases.

The t distributions were discovered in 1908 by William S. Gosset. Gosset was a
statistician employed by the Guinness brewing company, which prohibited its
employees from publishing their discoveries that were brewing related. In this
case, the company let him publish under the pen name “Student” using an example
that did not involve brewing. The t distribution is often called “Student’s t “ in his
honor.

Table D in the back of the book gives critical values t* for the t distributions.

755



For convenience, we have labeled the table entries both by the value of p needed
for significance tests and by the confidence level C (in percent) required for
confidence intervals. The standard Normal critical values are in the bottom row of
entries and labeled z* As in the case of the Normal table (Table A), computer
software often makes Table D unnecessary.

USE YOUR KNOWLEDGE

7.1 Apartment rates

You randomly choose 16 unfurnished one-bedroom apartments from a
large number of advertisements in your local newspaper. You calculate
that their mean monthly rent is $600 and their standard deviation is $55.

(a) What is the standard error of the mean?

(b) What are the degrees of freedom for a one-sample t statistic?

7.2 90% versus 95% confidence interval?

Refer to the previous exercise. You plan to construct a confidence
interval for the average monthly rent of unfurnished one-bedroom
apartments in your area. If you were to use 90% confidence, rather than
95% confidence, would the margin of error be larger or smaller? Does
your answer depend on sample size? Explain your answer.

The one-sample t confidence interval

confidence interval, p. 356

With the t distributions to help us, we can now analyze a sample from a Normal
population with unknown σ or a large sample from a non-Normal population with
unknown σ The one-sample t confidence interval is similar in both reasoning and
computational detail to the z confidence interval of Chapter 6. There, the margin of
error for the population mean was z*σ/n Here, we replace σ by its estimate s and z*
by t* This means that the margin of error for the population mean when we use the
data to estimate σ is t*s/n
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THE ONE-SAMPLE t CONFIDENCE INTERVAL

Suppose that an SRS of size n is drawn from a population having unknown
mean μ A level C confidence interval for μ is

x¯±t*sn

where t* is the value for the t(n − 1) density curve with area C between −t*
and t* The quantity

t*sn

is the margin of error. The confidence level is exactly C when the population
distribution is Normal and is approximately correct for large n in other cases.

Example

7.1 Watching videos on a cell phone

The Nielsen Company is a global information and media company and one of
the leading suppliers of media information. In their state-of-the-media report,
they announced that U.S. cell phone subscribers average 5.4 hours per month
watching videos on their phones.1 We decide to construct a 95% confidence
interval for the average time (hours per month) spent watching videos on cell
phones among U.S. college students. We draw the following SRS of size 8
from this population:

11.9 2.8 3.0 6.2 4.7 9.8 11.1 7.8

The sample mean is

x=11.9+2.8+...+7.88=7.16

and the standard deviation is

s=(11.9−7.16)2+(2.8−7.16)2+...+(7.8−7.16)28−1=3.56

with degrees of freedom n− 1 = 7. The standard error is

SEx¯=s/n=3.56/8=1.26

From Table D we find t* = 2.365. The 95% confidence interval is

x¯±t*sn=7.16±2.3653.568
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=7.16 ± (2.365)(1.26)

=7.16 ± 2.98

=(4.2, 10.1)

We are 95% confident that among U.S. college students the average time spent
watching videos on a cell phone is between 4.2 and 10.1 hours per month.

In this example we have given the actual interval (4.2, 10.1) hours per month as
our answer. Sometimes we prefer to report the mean and margin of error: the mean
time is 7.2 hours per month with a margin of error of 3.0 hours per month.

Valid interpretation of the t confidence interval in Example 7.1 rests on
assumptions that appear reasonable here. First, we assume that our random sample
is an SRS from the U.S. population of college student cell phone users. Second, we
assume that the distribution of watching times is Normal. Figure 7.2 shows the
Normal quantile plot. With only 8 observations, this assumption cannot be
effectively checked. In fact, because a watching time cannot be negative, we might
expect this distribution to be skewed to the right. With these data, however, there
are no extreme outliers to suggest a severe departure from Normality.
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FIGURE 7.2
Normal quantile plot of data in Example 7.1.

USE YOUR KNOWLEDGE

7.3 More on apartment rents

Refer to Exercise 7.1 (page 420). Construct a 95% confidence interval
for the mean monthly rent of all advertised one-bedroom apartments.

7.4 Finding critical t*-values
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What critical value t* from Table D should be used to construct

(a) a 95% confidence interval when n = 12?

(b) a 99% confidence interval when n = 38?

(c) a 90% confidence interval when n = 81?

The one-sample t test

significance test, p. 372

Significance tests using the standard error are also very similar to the z test that we
studied in the last chapter.

THE ONE-SAMPLE t TEST

Suppose that an SRS of size n is drawn from a population having unknown
mean μ To test the hypothesis H0 = μ = μ0 based on an SRS of size n, compute
the one-sample t statistic

t=x¯−μ0s/n

In terms of a random variable T having the t(n − 1) distribution, the 
p-value for a test of H0 against

Ha: μ > μ0 is P(T ≥ t)

Ha: μ < μ0 is P(T ≦ t) 
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Ha: μ ≠ μ0 is 2P(T ≥ |t|)

These P-values are exact if the population distribution is Normal and are
approximately correct for large N in other cases.

Example

7.2 Significance test for watching videos on a cell phone

We want to test whether the average time that U.S. college students spend
watching videos on their phones differs from the reported overall U.S. average
at the 0.05 significance level. Specifically, we want to test

H0:μ = 5.4

Ha:μ≠5.4

Recall that n = 8, x¯ = 7.16 and s = 3.56 The t test statistic is

t=x¯−μ0s/n=7.16−5.43.56/8

=1.40

This means that the sample mean x¯ = 7.16 is slightly less than 1.5 standard
deviations away from the null hypothesized value μ = 5.4. Because the degrees
of freedom are n − 1 = 7, this t statistic has the t(7) distribution. Figure 7.3
shows that the P-value is 2P(T ≥ 1.40) where T has the t(7) distribution. From
Table D we see that P(T ≥ 1.119) = 0.15 and P(T ≥ 1.415) = 0.10.

Therefore, we conclude that the P-value is between 2 × 0.10 = 0.20 and 2 ×
0.15 = 0.30. Software gives the exact value as P = 0.2042. These data are
compatible with a mean of 5.4 hours per month. Under H0 a difference this
large or larger would occur about one time in five simply due to chance. There
is not enough evidence to reject the null hypothesis at the 0.05 level.
df = 7
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p 0.15 0.10
t* 1.119 1.415

FIGURE 7.3
Sketch of the P-value calculation for Example 7.2.

In this example we tested the null hypothesis μ = 5.4 hours per month against
the two-sided alternative μ ≠ 5.4 hours per month because we had no prior
suspicion that the average among college students would be larger or smaller. If we
had suspected that the average would be larger, we would have used a one-sided
test.

Example

7.3 One-sided test for watching videos on a cell phone

For the problem described in the previous example, we want to test whether
the U.S. college student average is larger than the overall U.S. population
average. Here we test
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H0:μ = 5.4

versus

Ha:μ > 5.4

The t test statistic does not change: t = 1.40. As Figure 7.4 illustrates, however,
the P-value is now P(T ≥ 1.40), half of the value in the previous example.
From Table D we can determine that 0.10 < P < 0.15; software gives the exact
value as P = 0.1021. Again, there is not enough evidence to reject the null
hypothesis in favor of the alternative at the 0.05 significance level.

For the watching-videos problem, our conclusion did not depend on the choice
between a one-sided and a two-sided test. Sometimes, however, this choice will
affect the conclusion, and so this choice needs to be made prior to analysis. If in
doubt, always use a two-sided test. It is wrong to examine the data first and then
decide to do a one-sided test in the direction indicated by the data. Often a
significant result for a two-sided test can be used to justify a one-sided test for
another sample from the same population.

FIGURE 7.4
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TABLE 7.1  Monthly Rates of Return on a Portfolio (%)

Sketch of the P-value calculation for Example 7.3.

For small data sets, such as the one in Example 7.1, it is easy to perform the
computations for confidence intervals and significance tests with an ordinary
calculator. For larger data sets, however, we prefer to use software or a statistical
calculator.

Example

7.4 Stock portfolio diversification?

An investor with a stock portfolio worth several hundred thousand dollars sued
his broker and brokerage firm because lack of diversification in his portfolio
led to poor performance. Table 7.1 gives the rates of return for the 39 months
that the account was managed by the broker.2

Figure 7.5 gives a histogram for these data and Figure 7.6 gives the Normal
quantile plot. There are no outliers and the distribution shows no strong
skewness. We are reasonably confident that the distribution of x¯ is
approximately Normal, and we proceed with our inference based on Normal
theory.

−8.36 1.63 −2.27 −2.93 −2.70 −2.93 −9.14 −2.64
6.82 −2.35 −3.58 6.13 7.00 −15.25 −8.66 −1.03
−9.16 −1.25 −1.22 −10.27 −5.11 −0.80 −1.44 1.28
−0.65 4.34 12.22 −7.21 −0.09 7.34 5.04 −7.24
−2.14 −1.01 −1.41 12.03 −2.56 4.33 2.35

The arbitration panel compared these returns with the average of the
Standard and Poor’s 500 stock index for the same period. Consider the 39
monthly returns as a random sample from the population of monthly returns
the brokerage firm would generate if it managed the account forever.
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FIGURE 7.5
Histogram of monthly rates of return for a stock portfolio, for Example 7.4.

765



FIGURE 7.6
Normal quantile plot for Example 7.4.

Are these returns compatible with a population mean of μ = 0.95%, the S&P
500 average? Our hypotheses are

H0:μ = 0.95

Ha:μ ≠ 0.95

Minitab and SPSS outputs appear in Figure 7.7. Output from other software
will be similar.

Here is one way to report the conclusion: the mean monthly return on
investment for this client’s account was x¯ = −1.1%. This is significantly
worse than the performance of the S&P 500 stock index for the same period (t
= −2.14, df = 38, P = 0.039).

FIGURE 7.7
Minitab and SPSS outputs for Example 7.4.

The hypothesis test in Example 7.4 leads us to conclude that the mean return on
the client’s account differs from that of the S&P 500 stock index. Now let’s assess
the return on the client’s account with a confidence interval.
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Example

7.5 Estimating the mean monthly return

The mean monthly return on the client’s portfolio was x¯ = −1.1% and the
standard deviation was s = 5.99%. Figure 7.8 gives the Minitab, SPSS, and
Excel outputs for a 95% confidence interval for the population mean μ. Note
that Excel gives the margin of error next to the label “Confidence
Level(95.0%)” rather than the actual confidence interval. We see that the 95%
confidence interval is (−3.04, 0.84) or (from Excel), −1.0997 ± 1.9420.

Because the S&P 500 return, 0.95%, falls outside this interval, we know
that μ differs significantly from 0.95% at the α = 0.05 level. Example 7.4 gave
the actual P-value as P = 0.039
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FIGURE 7.8
Minitab, SPSS, and Excel outputs for Example 7.5.

The confidence interval suggests that the broker’s management of this account
had a long-term mean somewhere between a loss of 3.04% and a gain of 0.84% per
month. We are interested, not in the actual mean, but in the difference between the
performance of the client’s portfolio and that of the diversified S&P 500 stock
index.

Example

7.6 Estimating the difference from a standard

Following the analysis accepted by the arbitration panel, we are considering
the S&P 500 monthly average return as a constant standard. (It is easy to
envision scenarios where we would want to treat this type of quantity as
random.) The difference between the mean of the investor’s account and the
S&P 500 is x¯ − μ = −1.10 − 0.95 = −2.05%. In Example 7.5 we found that the
95% confidence interval for the investor’s account was (−3.04, 0.84).

To obtain the corresponding interval for the difference, subtract 0.95 from
each of the endpoints. The resulting interval is (−3.04 − 0.95, 0.84 − 0.95) or
(−3.99, −0.11). We conclude with 95% confidence that the underperformance
was between −3.99% and −0.11%. This interval is presented in the SPSS
output of Figure 7.7. This estimate helps to set the compensation owed the
investor.

The assumption that these 39 monthly returns represent an SRS from the
population of monthly returns is certainly questionable. If the monthly S&P 500
returns were available, an alternative analysis would be to compare the average
difference between each monthly return for this account and for the S&P 500. This
method of analysis is discussed next.

USE YOUR KNOWLEDGE

7.5 Significance test using the t distribution
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A test of a null hypothesis versus a two-sided alternative gives t = 2.22.

(a) The sample size is 18. Is the test result significant at the 5% level? Explain how you
obtained your answer.

(b) The sample size is 9. Is the test result significant at the 5% level? Explain how you
obtained your answer.

(c) Sketch the two t distributions to illustrate your answers.

7.6 Significance test for apartment rents

Refer to Exercise 7.1 (page 420). Does this SRS give good reason to
believe that the mean rent of all advertised one-bedroom apartments is
greater than $550? State the hypotheses, find the t statistic and its P-
value, and state your conclusion.

7.7 Using software

In Example 7.1 (page 421) we calculated the 95% confidence interval
for the U.S. college student average of hours per month spent watching
videos on a cell phone. Use software to compute this interval and verify
that you obtain the same interval.

Matched pairs t procedures

confounding, p. 173

The watching-videos problem of Example 7.1 concerns only a single population.
We know that comparative studies are usually preferred to single-sample
investigations because of the protection they offer against confounding. For that
reason, inference about a parameter of a single distribution is less common than
comparative inference.

matched pairs design, p. 186

One common comparative design, however, makes use of single-sample
procedures. In a matched pairs study, subjects are matched in pairs, and their
outcomes are compared within each matched pair. For example, an experiment to
compare two cell phone packages might use pairs of subjects that are the same age,
sex, and income level. The experimenter could toss a coin to assign the two
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packages to the two subjects in each pair. The idea is that matched subjects are
more similar than unmatched subjects, so comparing outcomes within each pair is
more efficient (smaller σ). Matched pairs are also common when randomization is
not possible. One situation calling for matched pairs is when observations are taken
on the same subjects under two different conditions or before and after some
intervention. Here is an example.

Example

7.7 Does a full moon affect behavior?

Many people believe that the moon influences the actions of some individuals.
A study of dementia patients in nursing homes recorded various types of
disruptive behaviors every day for 12 weeks. Days were classified as moon
days if they were in a three-day period centered at the day of the full moon.
For each patient the average number of disruptive behaviors was computed for
moon days and for all other days. The data for the 15 subjects whose behaviors
were classified as aggressive are presented in Table 7.2.3 The patients in this
study are not a random sample of dementia patients. However, we examine
their data in the hope that what we find is not unique to this particular group of
individuals and applies to other patients who have similar characteristics.
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TABLE 7.2  Aggressive Behaviors of Dementia Patients

MOON

Patient Moon days Other days Difference Patient Moon days Other days Difference
1 3.33 0.27 3.06 9 6.00 1.59 4.41
2 3.67 0.59 3.08 10 4.33 0.60 3.73
3 2.67 0.32 2.35 11 3.33 0.65 2.68
4 3.33 0.19 3.14 12 0.67 0.69 −0.02
5 3.33 1.26 2.07 13 1.33 1.26 0.07
6 3.67 0.11 3.56 14 0.33 0.23 0.10
7 4.67 0.30 4.37 15 2.00 0.38 1.62
8 2.67 0.40 2.27

To analyze these paired data, we first subtract the disruptive behaviors for
other days from the disruptive behaviors for moon days. These 15 differences
form a single sample. They appear in the “Difference” columns in Table 7.2.
The first patient, for example, averaged 3.33 aggressive behaviors on moon
days but only 0.27 aggressive behaviors on other days. The difference 3.33 −
0.27 = 3.06 is what we will use in our analysis.
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FIGURE 7.9
Stemplot of differences in aggressive behaviors, for Examples 7.7 and 7.8.

Next, we examine the distribution of these differences. Figure 7.9 gives a
stemplot of the differences. This plot indicates that there are three patients with
very small differences, but there are no indications of extreme outliers or
strong skewness. We will proceed with our analysis using the Normality-based
methods of this section.

To assess whether there is a difference in aggressive behaviors on moon
days versus other days, we test

H0:μ = 0

Ha:μ ≠ 0

Here μ is the mean difference in aggressive behaviors, moon versus other
days, for patients of this type. The null hypothesis says that aggressive
behaviors occur at the same frequency for both types of days, and Ha says that
the frequency of aggressive behaviors on moon days is not the same as on
other days.

The 15 differences have

x¯ = 2.433 and s = 1.460

The one-sample t statistic is therefore

t=x¯−0s/n=2.4331.460/15

=6.45

The P-value is found from the t(14) distribution (remember that the degrees of
freedom are 1 less than the sample size).
df = 14
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p 0.001 0.0005
t* 3.787 4.140

Table D shows that 6.45 lies beyond the upper 0.0005 critical value of the
t(14) distribution. Since we are using a two-sided alternative, we know that the
P-value is less than two times this value, or 0.0010. Software gives a value that
is much smaller, P = 0.000015. In practice, there is little difference between
these two P-values; the data provide clear evidence in favor of the alternative
hypothesis. A mean difference this large is very unlikely to occur by chance if
there is, in fact, no effect of the moon on aggressive behaviors. The positive
mean difference indicates that more aggressive behaviors occur on moon days.
In scholarly publications, the details of routine statistical procedures are
omitted, and our test would be reported in the following form: “There were
more aggressive behaviors on moon days than on other days (t = 6.45, df = 14,
P < 0.001).”

Note that we could have justified a one-sided alternative in this example. Based
on previous research, we expect more aggressive behaviors on moon days, and the
alternative Ha:μ > 0 is reasonable in this setting. The choice of the alternative here,
however, has no effect on the conclusion: from Table D we determine that P is less
than 0.0005 for the one-sided alternative; from software it is 0.000008. These are
very small values and we would still report P < 0.001. In most circumstances we
cannot be absolutely certain about the direction of the difference, and the safest
strategy is to use the two-sided alternative.

The results of the significance test allow us to conclude that dementia patients
exhibit more aggressive behaviors in the days around a full moon. What are the
implications of the study for the administrators who run the facilities where these
patients live? For example, should they increase staff on these days? To make these
kinds of decisions, an estimate of the magnitude of the problem, with a margin of
error, would be helpful.

Example

7.8 A 95% confidence interval for the full-moon study

A 95% confidence interval for the mean difference in aggressive behaviors per
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day requires the critical value t* = 2.145 from Table D. The margin of error is

t*sn=2.1451.46015

=0.81

and the confidence interval is

x¯±t*sn=2.43±0.81

= (1.62, 3.24)

The estimated average difference is 2.43 aggressive behaviors per day, with
margin of error 0.81 for 95% confidence. The increase needs to be interpreted in
terms of the baseline values. The average number of aggressive behaviors per day
on other days for our 15 patients is 0.59; on moon days it is 3.02. This is
approximately a 400% increase. If aggressive behaviors require a substantial
amount of attention by staff, then administrators should be aware of the increased
level of these activities during the full-moon period. Additional staff may be
needed.

The following are key points to remember concerning matched pairs:

1. A matched pairs analysis is called for when subjects are matched in pairs or
there are two measurements or observations on each individual and we want to
examine the difference.

2. For each pair or individual, use the difference between the two measurements as
the data for your analysis.

3. Use the one-sample confidence interval and significance-testing procedures that
we learned in this section.

Use of the t procedures in Examples 7.7 and 7.8 faces several issues. First, no
randomization is possible in a study like this. Our inference procedures assume that
there is a process that generates these aggressive behaviors and that the process
produces them at possibly different rates during the days near the full moon.
Second, many of the patients in these nursing homes did not exhibit any disruptive
behaviors. These were not included in our analysis, so our inference is restricted to
patients who do exhibit disruptive behaviors.

A final difficulty is that the data show departures from Normality. In a matched
pairs analysis, the t procedures are applied to the differences, so we are assuming
that the differences are Normally distributed. Figure 7.9 gives a stemplot of the
differences. There are 3 patients with very small differences in aggressive
behaviors while the other 12 have a large increase. We have a dilemma here
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similar to that in Example 7.1. The data may not be Normal, and our sample size is
very small. We can try an alternative procedure that does not require the Normality
assumption—but there is a price to pay. The alternative procedures have less
power to detect differences. Despite these caveats, for Example 7.7 the P-value is
so small that we are very confident that we have found an effect of the moon phase
on behavior.

USE YOUR KNOWLEDGE

7.8 Comparison of two energy drinks

Consider the following study to compare two popular energy drinks. For
each subject, a coin was flipped to determine which drink to rate first.
Each drink was rated on a 0 to 100 scale, with 100 being the highest
rating.

Subject
Drink 1 2 3 4 5

A 48 90 83 96 93
B 49 78 66 88 71

Is there a difference in preference? State appropriate hypotheses and
carry out a matched pairs t test for these data.

7.9 A 95% confidence interval for the difference in preference

Refer to the previous exercise. For the company producing Drink A, the
real question is how much difference there is between the two
preferences. Use the data in Exercise 7.8 to give a 95% confidence
interval for the difference in preference between Drink A and Drink B.

Robustness of the t procedures

The results of one-sample t procedures are exactly correct only when the
population is Normal. Real populations are never exactly Normal. The usefulness
of the t procedures in practice therefore depends on how strongly they are affected
by non-Normality. Procedures that are not strongly affected are called robust.
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ROBUST PROCEDURES

A statistical inference procedure is called robust if the required probability
calculations are insensitive to violations of the assumptions made.

resistant measure, p. 32

The assumption that the population is Normal rules out outliers, so 
the presence of outliers shows that this assumption is not valid. The t 
procedures are not robust against outliers, because x¯ and s are not resistant to
outliers.

In Example 7.7, there are three patients with fairly low values of the difference.
Whether or not these are outliers is a matter of judgment. If we rerun the analysis
without these three patients, the t statistic would increase to 11.89 and the P-value
would be much lower. Careful inspection of the records may reveal some
characteristic of these patients which distinguishes them from the others in the
study. Without such information, it is difficult to justify excluding them from the
analysis. In general, we should be very cautious about discarding suspected
outliers, particularly when they make up a substantial proportion of the data, as
they do in this example.

Fortunately, the t procedures are quite robust against non-Normality of the
population except in the case of outliers or strong skewness. Larger samples
improve the accuracy of P-values and critical values from the t distributions when
the population is not Normal. This is true for two reasons:

1. The sampling distribution of the sample mean x¯ from a large sample is close to
Normal (that’s the central limit theorem). Normality of the individual
observations is of little concern when the sample is large.

central limit theorem, p. 307

2. As the sample size n grows, the sample standard deviation s will be an accurate
estimate of σ whether or not the population has a Normal distribution. This fact
is closely related to the law of large numbers.
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law of large numbers, p. 268

Constructing a Normal quantile plot, stemplot, or boxplot to check for skewness
and outliers is an important preliminary to the use of t procedures for small
samples. For most purposes, the one-sample t procedures can be safely used when
n ≥ 15 unless an outlier or clearly marked skewness is present. Except in the case
of small samples, the assumption that the data are an SRS from the population of
interest is more crucial than the assumption that the population distribution is
Normal. Here are practical guidelines for inference on a single mean:4

Sample size less than 15: Use t procedures if the data are close to Normal. If the
data are clearly non-Normal or if outliers are present, do not use t.
Sample size at least 15 and less than 40: The t procedures can be used except in
the presence of outliers or strong skewness.
Large samples: The t procedures can be used even for clearly skewed
distributions when the sample is large, roughly n ≥ 40.

Consider, for example, some of the data we studied in Chapter 1. The service
center call lengths in Table 1.2 (page 19) are strongly skewed to the right. Since
there are 80 observations, we could use the t procedures here. On the other hand,
many would prefer to use a transformation to make these data more nearly Normal.
(See the material on inference for non-Normal populations on page 436 and in
Chapter 16.) The time to start a business data in Exercise 1.47 (page 32) contain
one outlier in a sample of size 25, which makes the use of t procedures more risky.
Figure 1.29 (page 70) gives the Normal quantile plot for 60 IQ scores. These data
appear to be Normal and we would apply the t procedures in this case.

USE YOUR KNOWLEDGE

7.10 t procedures for time to start a business?

Consider the data from Exercise 1.47 (page 32) but with Suriname
removed. Would you be comfortable applying the t procedures in this
case? Explain your answer.
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7.11 t procedures for ticket prices?

Consider the data on StubHub! ticket prices presented in Figure 1.31
(page 71). Would you be comfortable applying the t procedures in this
case? In explaining your answer, recall that these t procedures focus on
the mean μ.

The power of the t test

The power of a statistical test measures its ability to detect deviations from the null
hypothesis. In practice, we carry out the test in the hope of showing that the null
hypothesis is false, so high power is important. The power of the one-sample t test
for a specific alternative value of the population mean μ is the probability that the
test will reject the null hypothesis when the alternative value of the mean is true.
To calculate the power, we assume a fixed level of significance, often α = 0.05.

Calculation of the exact power of the t test takes into account the estimation of
σ by s and is a bit complex. But an approximate calculation that acts as if σ were
known is almost always adequate for planning a study. This calculation is very
much like that for the z test:

1. Decide on a standard deviation, a significance level, whether the test is one-
sided or two-sided, and an alternative value of μ to detect.

2. Write the event that the test rejects H0 in terms of x¯
3. Find the probability of this event when the population mean has this alternative

value.

Consider Example 7.7 (page 429), where we examined the effect of the moon
on the aggressive behavior of dementia patients in nursing homes. Suppose that we
wanted to perform a similar study in a different setting. How many patients should
we include in our new study? To answer this question, we do a power calculation.

In Example 7.7, we found x¯ = 2.433 and s = 1.460. Let’s use s = 1.5 for our
calculations. It is always better to use a value of the standard deviation that is a
little larger than what we expect than to use one that is smaller. This may give a
sample size that is a little larger than we need. But we want to avoid a situation
where we fail to find the effect that we are looking for because we did not have
enough data.

Let’s use μ = 1.0 as the alternative value to detect. We are very confident that
the effect was larger than this in our previous study, and this amount of an increase
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in aggressive behavior would still be important to those who work in these
facilities. Finally, based on the previous study, we can justify using a one-sided
alternative; we expect the moon days to be associated with an increase in
aggressive behavior.

Now that we’ve decided on the necessary information for Step 1, we can
proceed through the calculations of Steps 2 and 3.

Example

7.9 Computing the power of a t test

Based on our previous decisions, we’ll compute the power of the t test for

H0:μ = 0

Ha:μ > 0

when the alternative μ = 1.0. We will use a 5% level of significance and s =
1.5 for these calculations. The t test with n observations rejects H0 at the 5%
significance level if the t statistic

t=x¯−0s/n

exceeds the upper 5% point of t(n − 1). Since this is a new study in a 
different setting, we’ll assume that we’ll recruit n = 20 patients. The upper 5%

point of t(19) is 1.729. The event that the test rejects H0 is therefore

t=x¯1.5/20≥1.729

x¯≥1.7291.520

x¯≥0.580

The power is the probability that x¯ ≥ 0.580 when μ = 1.0. Taking σ = 1.5, this
probability is found by standardizing x¯:

P(x¯≥0.580 when μ=1.0)=P(x¯−1.01.5/20≥0.580−1.01.5/20)

= P(Z ≥ −1.25)

= 1 − 0.1056 = 0.89

The power is 89% that we will detect an increase of 1.0 aggressive behavior per
day during moon days. This is sufficient power for most situations. For many
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studies, 80% is considered the standard value for desirable power. We could repeat
the calculations for some smaller values of n to determine the smallest value that
would meet the 80% criterion.

Power calculations are used in planning studies to ensure that we have a
reasonable chance of detecting effects of interest. They give us some guidance in
selecting a sample size. In making these calculations, we need assumptions about
the standard deviation and the alternative of interest. In our example we assumed
that the standard deviation would be 1.5, but in practice we are hoping that the
value will be somewhere around this value. Similarly, we have used a somewhat
arbitrary alternative of 1.0. This is a guess based on the results of the previous
study. Beware of putting too much trust in fine details of the results of these
calculations. They serve as a guide, not a mandate.

USE YOUR KNOWLEDGE

7.12 Power and the alternative mean μ

If you were to repeat the power calculation in Example 7.9 for a value of
μ that is greater than 1, would you expect the power to be higher or
lower than 89%? Why?

7.13 More on power and the alternative mean μ

Verify your answer to the previous question by doing the calculation for
the alternative μ

7.14 Power and sample size n

If you were to repeat the power calculation in Example 7.9 using n = 25
instead of n = 20, would you expect the power to be higher or lower than
89%? Why?

7.15 More on power and sample size n

Verify your answer to the previous question by doing the calculation for
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the alternative μ = 1 and n = 25.

Inference for non-Normal populations

We have not discussed how to do inference about the mean of a clearly non-
Normal distribution based on a small sample. If you face this problem, you should
consult an expert. Three general strategies are available:

1. In some cases a distribution other than a Normal distribution will describe the
data well. There are many non-Normal models for data, and inference
procedures for these models are available.

2. Because skewness is the chief barrier to the use of t procedures on data without
outliers, you can attempt to transform skewed data so that the distribution is
symmetric and as close to Normal as possible. Confidence levels and P-values
from the t procedures applied to the transformed data will be quite accurate for
even moderate sample sizes.

3. Use a distribution-free inference procedure. Such procedures do not assume
that the population distribution has any specific form, such as Normal.
Distribution-free procedures are often called nonparametric 
procedures. Chapter 15 discusses several of these procedures.

distribution-free procedures

nonparametric procedures

Each of these strategies can be effective, but each quickly carries us beyond the
basic practice of statistics. We emphasize procedures based on Normal
distributions because they are the most common in practice, because their
robustness makes them widely useful, and (most important) because we are first of
all concerned with understanding the principles of inference. We will therefore not
discuss procedures for non-Normal continuous distributions. We will be content
with illustrating by example the use of a transformation and of a simple
distribution-free procedure.

Transforming data

When the distribution of a variable is skewed, it often happens that a simple
transformation results in a variable whose distribution is symmetric and even close
to Normal. The most common transformation is the logarithm, or log. The
logarithm tends to pull in the right tail of a distribution. For example, the data 2, 3,
4, 20 show an outlier in the right tail. Their common logarithms 0.30, 0.48, 0.60,
1.30 are much less skewed. Taking logarithms is a possible remedy for right-
skewness. Instead of analyzing values of the original variable X, we compute their
logarithms and analyze the values of X. Here is an example of this approach.
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TABLE 7.3  Length (in Seconds) of Audio Files Sampled from an iPod
240 316 259 46 871 411 1366
233 520 239 259 535 213 492
315 696 181 357 130 373 245
305 188 398 140 252 331 47
309 245 69 293 160 245 184
326 612 474 171 498 484 271
207 169 171 180 269 297 266
1847

Example

7.10 Length of audio files on an iPod

Table 7.3 presents data on the length (in seconds) of audio files found on an
iPod. There was a total of 10,003 audio files, and 50 files were randomly
selected using the “shuffle songs” command.5 We would like to give a
confidence interval for the average audio file length μ for this iPod.
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SONGS

A Normal quantile plot of the audio data from Table 7.3 (Figure 7.10)
shows that the distribution is skewed to the right. Because there are no extreme
outliers, the sample mean of the 50 observations will nonetheless have an
approximately Normal sampling distribution. The t procedures could be used
for approximate inference. For more exact inference, we will transform the
data so that the distribution is more nearly Normal. Figure 7.11 is a Normal
quantile plot of the natural logarithms of the time measurements. The
transformed data are very close to Normal, so t procedures will give quite
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exact results.

FIGURE 7.10
Normal quantile plot of audio file lengths, for Example 7.10. This sort of pattern occurs when a
distribution is skewed to the right.
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FIGURE 7.11
Normal quantile plot of the logarithms of the audio file lengths, for Example 7.10. This
distribution appears approximately Normal.

The application of the t procedures to the transformed data is straight-forward. Call
the original length values from Table 7.3 the variable X. The transformed data are
values of Xnew = log X. In most software packages, it is an easy task to transform
data in this way and then analyze the new variable.

Example

7.11 Software output of audio length data
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Analysis of the natural log of the length values in Minitab produces the
following output:

N Mean StDev SE Mean 95.0% C.I.
50 5.6315 0.6840 0.0967 (5.4371, 5.8259)

For comparison, the 95% t confidence interval for the original mean μ is found
from the original data as follows:

N Mean StDev SE Mean 95.0% C.I.
50 354.1 307.9 43.6 (266.6, 441.6)

The advantage of analyzing transformed data is that use of procedures based on
the Normal distributions is better justified and the results are more exact. The
disadvantage is that a confidence interval for the mean μ in the original scale (in
our example, seconds) cannot be easily recovered from the confidence interval for
the mean of the logs. One approach based on the log Normal distribution6 results in
an interval of (285.5, 435.5), which is narrower and slightly asymmetric compared
with the t interval.
The sign test

Perhaps the most straightforward way to cope with non-Normal data is to use a
distribution-free, or nonparametric, procedure. As the name indicates, these
procedures do not require the population distribution to have any specific form,
such as Normal. Distribution-free significance tests are quite simple and are
available in most statistical software packages. Distribution-free tests have two
drawbacks. First, they are generally less powerful than tests designed for use with a
specific distribution, such as the t test. Second, we must often modify the statement
of the hypotheses in order to use a distribution-free test. A distribution-free test
concerning the center of a distribution, for example, is usually stated in terms of
the median rather than the mean. This is sensible when the distribution may be
skewed. But the distribution-free test does not ask the same question (Has the mean
changed?) that the t test does. The simplest distribution-free test, and one of the
most useful, is the sign test.

sign test

Let’s examine again the aggressive-behavior data of Example 7.7 (page 429). In
that example we concluded that there was more aggressive behavior on moon days
than on other days. The stemplot given in Figure 7.9 was not very reassuring
concerning the assumption that the data are Normal. There were 3 patients with
low values that seemed to be somewhat different from the observations on the
other 12 patients. How does the sign test deal with these data?
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Example

7.12 Sign test for the full-moon effect

The sign test is based on the following simple observation: of the 15 patients
in our sample, 14 had more aggressive behaviors on moon days than on other
days. This sounds like convincing evidence in favor of a moon effect on
behavior, but we need to do some calculations to confirm this.

MOON

Let P be the probability that a randomly chosen dementia patient will have
more aggressive behaviors on moon days than on other days. The null
hypothesis of “no moon effect” says that the moon days are no different from
other days, so a patient is equally likely to have more aggressive behaviors on
moon days as on other days. We therefore want to test

H0:p = 1/2

Ha:p > 1/2

There are 15 patients in the study, so the number who have more aggressive
behaviors on moon days has the binomial distribution B(15, 1/2) if H0 is true.
The P-value for the observed count 14 is therefore P(X ≥ 14), where X has the
B(15, 1/2) distribution. You can compute this probability with software or
from the binomial probability formula:

P(X ≥ 14) = P(X = 14) + P(X = 15)

=(1514)(12)14(12)1+(1515)(12)15(12)0

=(15)(12)15+(12)15

= 0.000488

Using Table C we would approximate this value as 0.0005. As in Example 7.7,
there is very strong evidence in favor of an increase in aggressive behavior on
moon days.

There are several varieties of sign test, all based on counts and the binomial
distribution. The sign test for matched pairs (Example 7.12) is the most useful. The
null hypothesis of “no effect” is then always H0:p = 1/2. The alternative can be
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one-sided in either direction or two-sided, depending on the type of change we are
looking for. The test gets its name from the fact that we look only at the signs of
the differences, not their actual values.

THE SIGN TEST FOR MATCHED PAIRS

Ignore pairs with difference 0; the number of trials n is the count of the
remaining pairs. The test statistic is the count X of pairs with a positive
difference. P-values for X are based on the binomial B(n, 1/2) distribution.

The matched pairs t test in Example 7.7 tested the hypothesis that the mean of
the distribution of differences (moon days minus other days) is 0. The sign test in
Example 7.12 is in fact testing the hypothesis that the median of the differences is
0. If P is the probability that a difference is positive, then p = 1/2 when the median
is 0. This is true because the median of the distribution is the point with probability
1/2 lying to its right. As Figure 7.12 illustrates, p > 1/2 when the median is greater
than 0, again because the probability to the right of the median is always 1/2. The
sign test of H0:p 1/2 against Ha:p 1/2 is a test of

FIGURE 7.12
Why the sign test tests the median difference: when the median is greater than 0, the probability
p of a positive difference is greater than 1/2, and vice versa.

H0: population median = 0

Ha: population median > 0

The sign test in Example 7.12 makes no use of the actual differences—it just
counts how many patients had more aggressive behaviors on moon days than on
other days. Because the sign test uses so little of the available information, it is
much less powerful than the t test when the population is close to Normal. It is
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better to use a test that is powerful when we believe our assumptions are
approximately satisfied than a less powerful test with fewer assumptions. There are
other distribution-free tests that are more powerful than the sign test.7

USE YOUR KNOWLEDGE

7.16 Sign test for energy drink comparison

Exercise 7.8 (page 432) gives data on the appeal of two popular energy
drinks. Is there evidence that the medians are different? State the
hypotheses, carry out the sign test, and report your conclusion.

Section 7.1 Summary

Significance tests and confidence intervals for the mean μ of a Normal population
are based on the sample mean x¯ of an SRS. Because of the central limit theorem,
the resulting procedures are approximately correct for other population
distributions when the sample is large.

The standardized sample mean, or one-sample z statistic,

z=x¯−μσ/n

has the N(0,1) distribution. If the standard deviation σ/n of x¯ is replaced by the
standard error s/n the one-sample t statistic

t=x¯−μs/n

has the tdistribution with n − 1 degrees of freedom.
There is a t distribution for every positive degrees of freedom k All are

symmetric distributions similar in shape to Normal distributions. The t(k)
distribution approaches the N(0, 1) distribution as k increases.

A level C confidence interval for the mean μ of a Normal population is

x¯±t*sn

where t* is the value for the t(n − 1) density curve with area C between−t* and t*
The quantity

t*sn

is the margin of error.
Significance tests for H0:μ = μ0 are based on the t statistic. P-values or fixed

significance levels are computed from the t(n − 1) distribution.
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These one-sample procedures are used to analyze matched pairs data by first
taking the differences within the matched pairs to produce a single sample.

The t procedures are relatively robust against non-Normal populations. The t
procedures are useful for non-Normal data when 15 ≤ n < 40 unless the data show
outliers or strong skewness. When n ≥ 40, the t procedures can be used even for
clearly skewed distributions.

The power of the t test is calculated like that of the t test, using an approximate
value for both σ and s.

Small samples from skewed populations can sometimes be analyzed by first
applying a transformation (such as the logarithm) to obtain an approximately
Normally distributed variable. The t procedures then apply to the transformed data.

The sign test is a distribution-free test because it uses probability calculations
that are correct for a wide range of population distributions.

The sign test for “no treatment effect” in matched pairs counts the number of
positive differences. The P-value is computed from the B(n, 1/2) distribution,
where n is the number of nonzero differences. The sign test is less powerful than
the t test in cases where use of the t test is justified.

SECTION 7.1 Exercises
For Exercises 7.1 and 7.2, see page 420; for Exercises 7.3 and 7.4, see page 422; for Exercises 7.5 to 7.7,
see page 427; for Exercises 7.8 and 7.9, see page 432; for Exercises 7.10 and 7.11, see page 434; for
Exercises 7.12 to 7.15, see page 436; and for Exercise 7.16, see page 440.

7.17 Finding the critical value t*

What critical value t* from Table D should be used to calculate the margin of error for a confidence
interval for the mean of the population in each of the following situations?

(a) A 95% confidence interval based on n = 12 observations.

(b) A 95% confidence interval from an SRS of 21 observations.

(c) A 90% confidence interval from a sample of size 21.

(d) These cases illustrate how the size of the margin of error depends upon the confidence level and the
sample size. Summarize these relationships.

7.18 Distribution of the t statistic

Assume a sample size of n = 16. Draw a picture of the distribution of the t statistic under the null
hypothesis. Use Table D and your picture to illustrate the values of the test statistic that would lead to
rejection of the null hypothesis at the 5% level for a two-sided alternative.

7.19 More on the distribution of the t statistic

Repeat the previous execise for the two situations where the alternative is one-sided.
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7.20 One-sided versus two-sided P-values

Computer software reports x¯ = 11.2 and P = 0.068 for a t test of H0:μ = 0 versus Ha:μ ≠ 0. Based on prior
knowledge, you justified testing the alternative Ha:μ > 0 What is the P-value for your significance test?

7.21 More on one-sided versus two-sided P-values

Suppose that computer software reports x¯ = −11.2 and P = 0.068 for a t test ofH0:μ = 0 versus Ha:μ ≠ 0.
Would this change your P-value for the alternative hypothesis in the previous execise? Use a sketch of the
distribution of the test statistic under the null hypothesis to illustrate and explain your answer.

7.22 A one-sample t test

The one-sample t statistic for testing

H0:μ = 8

Ha:> = 8

from a sample of n = 16 observations has the value t = 2.15

(a) What are the degrees of freedom for this statistic?

(b) Give the two critical values t* from Table D that bracket t.

(c) Between what two values does the P-value of the test fall?

(d) Is the value t = 2.15 significant at the 5% level? Is it significant at the 1% level?

(e) If you have software available, find the exact P-value.

7.23 Another one-sample t test

The one-sample t statistic for testing

H0:μ = 40

Ha:μ ≠ 40

from a sample of n = 27 observations has the value t = 2.01

(a) What are the degrees of freedom for t?

(b) Locate the two critical values t* from Table D that bracket t.

(c) Between what two values does the P-value of the test fall?

(d) Is the value t = 2.01 statistically significant at the 5% level? At the 1% level?

(e) If you have software available, find the exact P-value.

7.24 A final one-sample t test
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The one-sample t statistic for testing

H0:μ = 20

Ha:< = 20

based on n = 11 observations has the value t = −1.85.

(a) What are the degrees of freedom for this statistic?

(b) Between what two values does the P-value of the test fall?

(c) If you have software available, find the exact P-value.

7.25 Two-sided to one-sided P-value

Most software gives P-values for two-sided alternatives. Explain why you cannot always divide these P-
values by 2 to obtain P-values for one-sided alternatives.

7.26 Number of friends on Facebook

Facebook recently examined all active Facebook users (more than 10% of the global population) and
determined that the average user has 190 friends. This distribution takes only integer values, so it is
certainly not Normal. It is also highly skewed to the right, with a median of 100 friends.8 Consider the
following SRS of n = 30 Facebook users from your large university.

594 60 417 120 132 176 516 319 734 8
31 325 52 63 537 27 368 11 12 190
85 165 288 65 57 81 257 24 297 148

(a) Are these data also heavily skewed? Use graphical methods to examine the distribution. Write a short
summary of your findings.

(b) Do you think it is appropriate to use the t methods of this section to compute a 95% confidence interval
for the mean number of friends that Facebook users at your large university have? Explain why or why not.

(c) Compute the sample mean and standard deviation, the standard error of the mean, and the margin of
error for 95% confidence.

(d) Report the 95% confidence interval for μ, the average number of friends for Facebook users at your
large university.

7.27 Alcohol content in beer

In February 2013, two California residents filed a class-action lawsuit against Anheuser-Busch, alleging
the company was watering down beers to boost profits.9 They argued that because water was being added,
the true alcohol content of the beer by volume is less than the advertised amount. For example, they alleged
that Budweiser beer has an alcohol content by volume of 4.7% instead of the stated 5%. Several media
outlets picked up on this suit and hired independent labs to test samples of Budweiser beer and find the

alcohol content. Below is a summary of these tests, each done on a single can.  BUD

4.94   5.00   4.99
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(a) Even though we have a very small sample, test the null hypothesis that the alcohol content is 4.7% by
volume. Do the data provide evidence against the claim of the two residents?

(b) Construct a 95% confidence interval for the true alcohol content in Budweiser.

(c) U.S. government standards require that the true alcohol content in all cans and bottles be within ± 0.3%
of the advertised level. Do these tests provide strong evidence that this is the case for Budweiser beer?
Explain your answer.

7.28 Using the Internet on a computer

The Nielsen Company reported that U.S. residents aged 18 to 24 years spend an average of 35.5 hours per
month using the Internet on a computer.10 You think this is quite low compared with the amount of time
that students at your university spend using the Internet on a computer, and you decide to do a survey to
verify this. You collect an SRS of n = 50 students and obtain x¯ = 40.1 hours with s = 28.4 hours.

(a) Report the 95% confidence interval for μ the average number of hours per month that students at your
university use the Internet on a computer.

(b) Use this interval to test whether the average time for students at your university is different from the
average reported by Nielsen. Use the 5% significance level. Summarize your results.

7.29 Rudeness and its effect on onlookers

Many believe that an uncivil environment has a negative effect on people. A pair of researchers performed
a series of experiments to test whether witnessing rudeness and disrespect affects task performance.11 In
one study, 34 participants met in small groups and witnessed the group organizer being rude to a
“participant” who showed up late for the group meeting. After the exchange, each participant performed an
individual brainstorming task in which he or she was asked to produce as many uses for a brick as possible
in 5 minutes. The mean number of uses was 7.88 with a standard deviation of 2.35.

(a) Suppose that prior research has shown that the average number of uses a person can produce in 5
minutes under normal conditions is 10. Given that the researchers hypothesize that witnessing this rudeness
will decrease performance, state the appropriate null and alternative hypotheses.

(b) Carry out the significance test using a significance level of 0.05. Give the P-value and state your
conclusion.

7.30 Fuel efficiency t test

Computers in some vehicles calculate various quantities related to performance. One of these is the fuel
efficiency, or gas mileage, usually expressed as miles per gallon (mpg). For one vehicle equipped in this
way, the miles per gallon were recorded each time the gas tank was filled, and the computer was then

reset.12 Here are the mpg values for a random sample of 20 of these records:  MPG

41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2
43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3

(a) Describe the distribution using graphical methods. Is it appropriate to analyze these data using methods
based on Normal distributions? Explain why or why not.

(b) Find the mean, standard deviation, standard error, and margin of error for 95% confidence.

(c) Report the 95% confidence interval for μ, the mean miles per gallon for this vehicle based on these
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data.

7.31 Tree diameter confidence interval

A study of 584 longleaf pine trees in the Wade Tract in Thomas County, Georgia, is described in Example
6.1 (page 352). For each tree in the tract, the researchers measured the diameter at breast height (DBH).
This is the diameter of the tree at a height of 4.5 feet, and the units are centimeters (cm). Only trees with
DBH greater than 1.5 cm were sampled. Here are the diameters of a random sample of 40 of these trees: 

 PINES

10.5 13.3 26.0 18.3 52.2 9.2 26.1 17.6 40.5 31.8
47.2 11.4 2.7 69.3 44.4 16.9 35.7 5.4 44.2 2.2

4.3 7.8 38.1 2.2 11.4 51.5 4.9 39.7 32.6 51.8
43.6 2.3 44.6 31.5 40.3 22.3 43.3 37.5 29.1 27.9

(a) Use a histogram or stemplot and a boxplot to examine the distribution of DBHs. Include a Normal
quantile plot if you have the necessary software. Write a careful description of the distribution.

(b) Is it appropriate to use the methods of this section to find a 95% confidence interval for the mean DBH
of all trees in the Wade Tract? Explain why or why not.

(c) Report the mean with the margin of error and the confidence interval. Write a short summary describing
the meaning of the confidence interval.

(d) Do you think these results would apply to other similar trees in the same area? Give reasons for your
answer.

7.32 Nutritional intake among Canadian high-performance male athletes

Recall Exercise 6.72 (page 393). For one part of the study, n = 114 male athletes from eight Canadian
sports centers were surveyed. Their average caloric intake was 3077.0 kilocalories per day (kcal/d) with a
standard deviation of 987.0. The recommended amount is 3421.7. Is there evidence that Canadian high-
performance male athletes are deficient in their caloric intake?

(a) State the appropriate H0 and Ha to test this.

(b) Carry out the test, give the P-value, and state your conclusion.

(c) Construct a 95% confidence interval for the average deficiency in caloric intake.

7.33 The return-trip effect

We often feel that the return trip from a destination takes less time than the trip to the destination even
though the distance traveled is usually identical. To better understand this effect, a group of researchers ran
a series of experiments.13 In one experiment, they surveyed 69 participants who had just returned from a
day trip by bus. Each was asked to rate how long the return trip had taken, compared with the initial trip,
on an 11-point scale from −5 = a lot shorter to 5 = a lot longer. The sample mean was −0.55 and the sample
standard deviation was 2.16.

(a) These data are integer values. Do you think we can still use the t-based methods of this section? Explain
your answer.

(b) Is there evidence that the mean rating is different from zero? Carry out the significance test using α =
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0.05 and summarize the results.

7.34 Stress levels in parents of children with ADHD

In a study of parents who have children with attention-deficit/hyperactivity disorder (ADHD), parents were
asked to rate their overall stress level using the Parental Stress Scale (PSS).14 This scale has 18 items that
contain statements regarding both positive and negative aspects of parenthood. Respondents are asked to
rate their agreement with each statement using a 5-point scale (1 = strongly disagree to 5 = strongly agree).
The scores are summed such that a higher score indicates greater stress. The mean rating for the 50 parents
in the study was reported as 52.98 with a standard deviation of 10.34.

(a) Do you think that these data are approximately Normally distributed? Explain why or why not.

(b) Is it appropriate to use the methods of this section to compute a 90% confidence interval? Explain why
or why not.

(c) Find the 90% margin of error and the corresponding confidence interval. Write a sentence explaining
the interval and the meaning of the 90% confidence level.

(d) To recruit parents for the study, the researchers visited a psychiatric outpatient service in Rohtak, India,
and selected 50 consecutive families who met the inclusion and exclusion criteria. To what extent do you
think the results can be generalized to all parents with children who have ADHD in India or in other
locations around the world?

7.35 Are the parents feeling extreme stress?

Refer to the previous execise. The researchers considered a score greater than 45 to represent extreme
stress. Is there evidence that the average stress level for the parents in this study is above this level?
Perform a test of significance using α = 0.10 and summarize your results.

7.36 Food intake and weight gain

If we increase our food intake, we generally gain weight. Nutrition scientists can calculate the amount of
weight gain that would be associated with a given increase in calories. In one study, 16 nonobese adults,
aged 25 to 36 years, were fed 1000 calories per day in excess of the calories needed to maintain a stable
body weight. The subjects maintained this diet for 8 weeks, so they consumed a total of 56,000 extra
calories.15 According to theory, 3500 extra calories will translate into a weight gain of 1 pound. Therefore,
we expect each of these subjects to gain 56,000/3500 = 16 pounds (lb). Here are the weights before and

after the 8-week period, expressed in kilograms (kg):  WTGAIN

Subject 1 2 3 4 5 6 7 8
Weight before 55.7 54.9 59.6 62.3 74.2 75.6 70.7 53.3
Weight after 61.7 58.8 66.0 66.2 79.0 82.3 74.3 59.3
Subject 9 10 11 12 13 14 15 16
Weight before 73.3 63.4 68.1 73.7 91.7 55.9 61.7 57.8
Weight after 79.1 66.0 73.4 76.9 93.1 63.0 68.2 60.3

(a) For each subject, subtract the weight before from the weight after to determine the weight change.

(b) Find the mean and the standard deviation for the weight change.

(c) Calculate the standard error and the margin of error for 95% confidence. Report the 95% confidence
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interval for weight change in a sentence that explains the meaning of the 95%.

(d) Convert the mean weight gain in kilograms to mean weight gain in pounds. Because there are 2.2 kg
per pound, multiply the value in kilograms by 2.2 to obtain pounds. Do the same for the standard deviation
and the confidence interval.

(e) Test the null hypothesis that the mean weight gain is 16 lb. Be sure to specify the null and alternative
hypotheses, the test statistic with degrees of freedom, and the P-value. What do you conclude?

(f) Write a short paragraph explaining your results.

7.37 Food intake and NEAT

Nonexecise activity thermogenesis (NEAT) provides a partial explanation for the results you found in the
previous analysis. NEAT is energy burned by fidgeting, maintenance of posture, spontaneous muscle
contraction, and other activities of daily living. In the study of the previous execise, the 16 subjects
increased their NEAT by 328 calories per day, on average, in response to the additional food intake. The
standard deviation was 256.

(a) Test the null hypothesis that there was no change in NEAT versus the two-sided alternative. Summarize
the results of the test and give your conclusion.

(b) Find a 95% confidence interval for the change in NEAT. Discuss the additional information provided
by the confidence interval that is not evident from the results of the significance test.

7.38 Potential insurance fraud?

Insurance adjusters are concerned about the high estimates they are receiving from Jocko’s Garage. To see
if the estimates are unreasonably high, each of 10 damaged cars was taken to Jocko’s and to another garage

and the estimates (in dollars) were recorded. Here are the results:  JOCKO

Car 1 2 3 4 5
Jocko’s1410 1550 1250 1300 900
Other 1250 1300 1250 1200 950
Car 6 7 8 9 10
Jocko’s1520 1750 3600 2250 2840
Other 1575 1600 3380 2125 2600

(a) For each car, subtract the estimate of the other garage from Jocko’s estimate. Find the mean and the
standard deviation for this difference.

(b) Test the null hypothesis that there is no difference between the estimates of the two garages. Be sure to
specify the null and alternative hypotheses, the test statistic with degrees of freedom, and the P-value.
What do you conclude using the 0.05 significance level?

(c) Construct a 95% confidence interval for the difference in estimates.

(d) The insurance company is considering seeking repayment from 1000 claims filed with Jocko’s last
year. Using your answer to part (c), what repayment would you recommend the insurance company seek?
Explain your answer.

7.39 Fuel efficiency comparison t test
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Refer to Exercise 7.30. In addition to the computer calculating miles per gallon, the driver also recorded
the miles per gallon by dividing the miles driven by the number of gallons at fill-up. The driver wants to

determine if these calculations are different.  MPGDIFF

Fill-up 1 2 3 4 5 6 7 8 9 10
Computer41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2
Driver 36.5 44.2 37.2 35.6 30.5 40.5 40.0 41.0 42.8 39.2
Fill-up 11 12 13 14 15 16 17 18 19 20
Computer43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3
Driver 38.8 44.5 45.4 45.3 45.7 34.2 35.2 39.8 44.9 47.5

(a) State the appropriate H0 and Ha

(b) Carry out the test using a significance level of 0.05. Give the P-value, and then interpret the result.

7.40 Counts of picks in a one-pound bag

A guitar supply company must maintain strict oversight on the number of picks they package for sale to
customers. Their current advertisement specifies between 900 and 1000 picks in every bag. An SRS of 36
one-pound bags of picks was collected as part of a quality improvement effort within the company. The

number of picks in each bag is shown in the following table.  PICKS

924925967909959937970936952
919965921913886956962916945
957912961950923935969916952
917977940924957920986895923

(a) Create (i) a histogram or a stemplot, (ii) a boxplot, and (iii) a Normal quantile plot of these counts.
Write a careful description of the distribution. Make sure to note any outliers, and comment on the
skewness and Normality of the data.

(b) Based on your observations in part (a), is it appropriate to analyze these data using the t procedures?
Briefly explain your response.

(c) Find the mean, the standard deviation, and the standard error of the mean for this sample.

(d) Calculate the 90% confidence interval for the mean number of picks in a one-pound bag.

7.41 Significance test for the average number of picks

Refer to the previous execise.

(a) Do these data provide evidence that the average number of picks in a one-pound bag is greater than
925? Using a significance level of 5%, state your hypotheses, the P-value, and your conclusions.

(b) Do these data provide evidence that the average number of picks in a one-pound bag is greater than
935? Using a significance level of 5%, state your hypotheses, the P-value, and your conclusion.

(c) Explain the relationship between your conclusions in parts (a) and (b) and the 90% confidence interval
calculated in the previous problem.

7.42 A customer satisfaction survey
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Many organizations are doing surveys to determine the satisfaction of their customers. Attitudes toward
various aspects of campus life were the subject of one such study conducted at Purdue University. Each
item was rated on a 1 to 5 scale, with 5 being the highest rating. The average response of 2368 first-year
students to “Feeling welcomed at Purdue” was 3.92 with a standard deviation of 1.02. Assuming that the
respondents are an SRS, give a 90% confidence interval for the mean of all first-year students.

7.43 Comparing operators of a DXA machine

Dual-energy X-ray absorptiometry (DXA) is a technique for measuring bone health. One of the most
common measures is total body bone mineral content (TBBMC). A highly skilled operator is required to
take the measurements. Recently, a new DXA machine was purchased by a research lab, and two operators
were trained to take the measurements. TBBMC for eight subjects was measured by both operators.16 The
units are grams (g). A comparison of the means for the two operators provides a check on the training they
received and allows us to determine if one of the operators is producing measurements that are consistently

higher than the other. Here are the data:  TBBMC

Subject
Operator 1 2 3 4 5 6 7 8

1 1.328 1.342 1.075 1.228 0.939 1.004 1.178 1.286
2 1.323 1.322 1.073 1.233 0.934 1.019 1.184 1.304

(a) Take the difference between the TBBMC recorded for Operator 1 and the TBBMC for Operator 2.
Describe the distribution of these differences. Is it appropriate to analyze these data using the t methods?
Explain why or why not.

(b) Use a significance test to examine the null hypothesis that the two operators have the same mean. Be
sure to give the test statistic with its degrees of freedom, the P-value, and your conclusion.

(c) The sample here is rather small, so we may not have much power to detect differences of interest. Use a
95% confidence interval to provide a range of differences that are compatible with these data.

(d) The eight subjects used for this comparison were not a random sample. In fact, they were friends of the
researchers whose ages and weights were similar to these of the types of people who would be measured
with this DXA machine. Comment on the appropriateness of this procedure for selecting a sample, and
discuss any consequences regarding the interpretation of the significance-testing and confidence interval
results.

7.44 Another comparison of DXA machine operators

Refer to the previous execise. TBBMC measures the total amount of mineral in the bones. Another
important variable is total body bone mineral density (TBBMD). This variable is calculated by dividing
TBBMC by the area corresponding to bone in the DXA scan. The units are grams per squared centimeter

(g/cm2). Here are the TBBMD values for the same subjects:  TBBMD

Subject
Operator 1 2 3 4 5 6 7 8

1 4042 3703 2626 2673 1724 2136 2808 3322
2 4041 3697 2613 2628 1755 2140 2836 3287

Analyze these data using the questions in the previous execise as a guide.
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7.45 Assessment of a foreign-language institute

The National Endowment for the Humanities sponsors summer institutes to improve the skills of high
school teachers of foreign languages. One such institute hosted 20 French teachers for 4 weeks. At the
beginning of the period, the teachers were given the Modern Language Association’s listening test of
understanding of spoken French. After 4 weeks of immersion in French in and out of class, the listening
test was given again. (The actual French spoken in the two tests was different, so that simply taking the
first test should not improve the score on the second test.) The maximum possible score on the test is 36.17

Here are the data:  SUMLANG

Teacher Pretest Posttest Gain Teacher Pretest Posttest Gain
1 32 34 2 11 30 36 6
2 31 31 0 12 20 26 6
3 29 35 6 13 24 27 3
4 10 16 6 14 24 24 0
5 30 33 3 15 31 32 1
6 33 36 3 16 30 31 1
7 22 24 2 17 15 15 0
8 25 28 3 18 32 34 2
9 32 26 −6 19 23 26 3
10 20 26 6 20 23 26 3

To analyze these data, we first subtract the pretest score from the posttest score to obtain the improvement
for each teacher. These 20 differences form a single sample. They appear in the “Gain” columns. The first
teacher, for example, improved from 32 to 34, so the gain is 34 − 32 = 2

(a) State appropriate null and alternative hypotheses for examining the question of whether or not the
course improves French spoken-language skills.

(b) Describe the gain data. Use numerical and graphical summaries.

(c) Perform the significance test. Give the test statistic, the degrees of freedom, and the P-value.
Summarize your conclusion.

(d) Give a 95% confidence interval for the mean improvement.

7.46 Length of calls to a customer service center

Refer to the lengths of calls to a customer service center in Table 1.2 (page 19). Give graphical and
numerical summaries for these data. Compute a 95% confidence interval for the mean call length.

Comment on the validity of your interval.  CALLS80

7.47 Sign test for potential insurance fraud

The differences in the repair estimates in Exercise 7.38 can also be analyzed using a sign test. Set up the
appropriate null and alternative hypotheses, carry out the test, and summarize the results. How do these

results compare with those that you obtained in Exercise 7.38?  JOCKO

7.48 Sign test for the comparison of operators
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The differences in the TBBMC measures in Exercise 7.43 can also be analyzed using a sign test. Set up the
appropriate null and alternative hypotheses, carry out the test, and summarize the results. How do these

results compare with those that you obtained in Exercise 7.43?  TBBMC

7.49 Another sign test for the comparison of operators

TBBMD values for the same subjects that you studied in the previous execise are given in Exercise 7.44.

Answer the questions given in the previous execise for TBBMD.  TBBMD

7.50 Sign test for assessment of a foreign-language institute

Use the sign test to assess whether the summer institute of Exercise 7.45 improves French listening skills.

State the hypotheses, give the P-value using the binomial table (Table C), and report your conclusion. 
SUMLANG

7.51 Sign test for fuel efficiency comparison

Use the sign test to assess whether the computer calculates a higher mpg than the driver in Exercise 7.39.

State the hypotheses, give the P-value using the binomial table (Table C), and report your conclusion. 
MPGDIFF

7.52 Insulation study

A manufacturer of electric motors tests insulation at a high temperature 250°C) and records the number of
hours until the insulation fails.18 The data for 5 specimens are

446   326   372   377   310

The small sample size makes judgment from the data difficult, but engineering experience suggests that the
logarithm of the failure time will have a Normal distribution. Take the logarithms of the 5 observations,
and use t procedures to give a 90% confidence interval for the mean of the log failure time for insulation of

this type.  INSULAT

7.53 Power of the comparison of DXA machine operators

Suppose that the bone researchers in Exercise 7.43 wanted to be able to detect an alternative mean
difference of 0.002. Find the power for this alternative for a sample size of 15. Use the standard deviation
that you found in Exercise 7.43 for these calculations.

7.54 Sample size calculations

You are designing a study to test the null hypothesis that μ = 0 versus the alternative that μ is positive.
Assume that σ is 15. Suppose that it would be important to be able to detect the alternative μ = 2 Perform
power calculations for a variety of sample sizes and determine how large a sample you would need to
detect this alternative with power of at least 0.80.
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7.55 Determining the sample size

Consider Example 7.9 (page 435). What is the minimum sample size needed for the power to be greater
than 80% when μ = 0.75?
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7.2 Comparing Two Means

When you complete this section, you will be able to

• Describe a level C confidence interval for the difference between two
population means in terms of an estimate and its margin of error.

• Construct a level C confidence interval for the difference between two
population means μ1 − μ2 from two SRSs of size n1 and n2, respectively.

• Perform a two-sample t significance test and summarize the results.

• Explain when the t procedures can be useful for non-Normal data.

A psychologist wants to compare male and female college students’
impressions of personality based on selected Facebook pages. A nutritionist is
interested in the effect of increased calcium on blood pressure. A bank wants to
know which of two incentive plans will most increase the use of its debit cards.
Two-sample problems such as these are among the most common situations
encountered in statistical practice.

TWO-SAMPLE PROBLEMS

The goal of inference is to compare the means of the response variable in
two groups.
Each group is considered to be a sample from a distinct population.
The responses in each group are independent of those in the other group.

randomized comparative experiment, p. 180

A two-sample problem can arise from a randomized comparative experiment
that randomly divides the subjects into two groups and exposes each group to a
different treatment. A two-sample problem can also arise when comparing random
samples separately selected from two populations. Unlike the matched pairs
designs studied earlier, there is no matching of the units in the two samples, and
the two samples may be of different sizes. As a result, inference procedures for
two-sample data differ from those for matched pairs.

We can present two-sample data graphically by a back-to-back stemplot (for
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small samples) or by side-by-side boxplots (for larger samples). Now we will apply
the ideas of formal inference in this setting. When both population distributions are
symmetric, and especially when they are at least approximately Normal, a
comparison of the mean responses in the two populations is most often the goal of
inference.

We have two independent samples, from two distinct populations (such as
subjects given a treatment and those given a placebo). The same response variable
is measured for both samples. We will call the variable x1 in the first population
and x2 in the second because the variable may have different distributions in the
two populations. Here is the notation that we will use to describe the two
populations:

Population Variable Mean Standard deviation

1 x1 μ1 σ1
2 x2 μ2 σ2

We want to compare the two population means, either by giving a confidence
interval for μ1 − μ2 or by testing the hypothesis of no difference, H0:μ1 = μ2

Inference is based on two independent SRSs, one from each population. Here is
the notation that describes the samples:

Population Sample size Sample mean Sample standard deviation

1 n1 x¯1 s1
2 n2 x¯2 s2

Throughout this section, the subscripts 1 and 2 show the population to which a
parameter or a sample statistic refers.

The two-sample z statistic

The natural estimator of the difference μ1 − μ2 is the difference between the sample
means, x¯1−x¯2. If we are to base inference on this statistic, we must know its
sampling distribution. First, the mean of the difference x¯1−x¯2 is the difference
between the means μ1 − μ2 This follows from the addition rule for means and the
fact that the mean of any x¯ is the mean of the population. Second, to compute its
variance, we use the addition rule for variances. Because the samples are
independent, their sample means x¯1 and x¯2 are independent random variables.
Thus, the variance of the difference x¯1−x¯2 is the sum of their variances, which is

rules for means, p. 272
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rules for variances, p. 275

σ12n1+σ22n2

We now know the mean and variance of the distribution of x¯1−x¯2 in terms of
the parameters of the two populations. If the two population distributions are both
Normal, then the distribution of x¯1−x¯2 is also Normal. This is true because each
sample mean alone is Normally distributed and because a difference between
independent Normal random variables is also Normal.

Example

7.13 Heights of 10-year-old girls and boys

A fourth-grade class has 12 girls and 8 boys. The children’s heights are
recorded on their 10th birthdays. What is the chance that the girls are taller
than the boys? Of course, it is very unlikely that all the girls are taller than all
the boys. We translate the question into the following: what is the probability
that the mean height of the girls is greater than the mean height of the boys?
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Based on information from the National Health and Nutrition Examination
Survey, we assume that the heights (in inches) of 10-year-old girls are N(56.4,
2.7) and the heights of 10-year-old boys are N(55.7, 3.8)19 The heights of the
students in our class are assumed to be random samples from these
populations. The two distributions are shown in Figure 7.13(a).
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FIGURE 7.13
Distributions for Example 7.13. (a) Distributions of heights of 10-year-old boys and girls.
(b) Distribution of the difference between the mean heights of 12 girls and 8 boys.

The difference x¯1−x¯2 between the female and male mean heights varies
in different random samples. The sampling distribution has mean

μ1 − μ2 = 56.4 − 55.7 = 0.7inch

and variance

σ12n1+σ22n2=2.7212+3.828

=2.41

The standard deviation of the difference in sample means is therefore
2.14=1.55

If the heights vary Normally, the difference in sample means is also
Normally distributed. The distribution of the difference in heights is shown in
Figure 7.13(b). We standardize x¯1−x¯2 by subtracting its mean (0.7) and
dividing by its standard deviation (1.55). Therefore, the probability that the
girls, on average, are taller than the boys is

P(x¯1−x¯2>0)=P((x¯1−x¯2)−0.71.55>0−0.71.55)

= P(Z > −0.45) = 0.6736

Even though the population mean height of 10-year-old girls is greater than the
population mean height of 10-year-old boys, the probability that the sample mean
of the girls is greater than the sample mean of the boys in our class is only 67%.
Large samples are needed to see the effects of small differences.

As Example 7.13 reminds us, any Normal random variable has the N(0, 1)
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distribution when standardized. We have arrived at a new z statistic.

TWO-SAMPLE z STATISTIC

Suppose that x¯1 is the mean of an SRS of size n1 drawn from an N(μ1, σ1)
population and that x¯2 is the mean of an independent SRS of size n2 drawn
from an N(μ2, σ2) population. Then the two-sample z statistic

z=(x¯1−x¯2)−(μ1−μ2)σ12n1+σ22n2

has the standard Normal N(0, 1) sampling distribution.

In the unlikely event that both population standard deviations are known, the
two-sample z statistic is the basis for inference about μ1 − μ2 Exact z procedures
are seldom used, however, because σ1 and σ2 are rarely known. In Chapter 6, we
discussed the one-sample z procedures in order to introduce the ideas of inference.
Here we move directly to the more useful t procedures.

The two-sample t procedures

Suppose now that the population standard deviations σ1 and σ2 are not known. We
estimate them by the sample standard deviations s1 and s2 from our two samples.
Following the pattern of the one-sample case, we substitute the standard errors for
the standard deviations used in the two-sample z statistic. The result is the two-
sample t statistic:

t=(x¯1−x¯2)−(μ1−μ2)s12n1+s22n2

Unfortunately, this statistic does not have a t distribution. A t distribution replaces
the N(0, 1) distribution only when a single standard deviation (σ) in a z statistic is
replaced by its sample standard deviation (s). In this case, we replace two standard
deviations σ1 and σ2) by their estimates (s1 and s2), which does not produce a
statistic having a t distribution.

Nonetheless, we can approximate the distribution of the two-sample t statistic
by using the t(k) distribution with an approximation for the degrees of freedom
k. We use these approximations to find approximate values of t* for confidence
intervals and to find approximate P-values for significance tests. Here are two
approximations:

approximations for the degrees of freedom

1. Use a value of k that is calculated from the data. In general, it will not be a
whole number.
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2. Use k equal to the smaller of n1 − 1 and n2 − 1

In practice, the choice of approximation rarely makes a difference in our
conclusion. Most statistical software uses the first option to approximate the t(k)
distribution for two-sample problems unless the user requests another method. Use
of this approximation without software is a bit complicated; we will give the
details later in this section (see page 460).

If you are not using software, the second approximation is preferred. This
approximation is appealing because it is conservative.20 Margins of error for the
level C confidence intervals are a bit larger than they need to be, so the true
confidence level is larger than C. For significance testing, the true P-values are a
bit smaller than those we obtain from this approximation; thus, for tests at a fixed
significance level, we are a little less likely to reject H0 when it is true.

The two-sample t confidence interval

THE TWO-SAMPLE t CONFIDENCE INTERVAL

Suppose that an SRS of size n1 is drawn from a Normal population with
unknown mean μ and that an independent SRS of size n2 is drawn from
another Normal population with unknown mean μ2 The confidence interval
for μ1 − μ2 given by

(x¯1−x¯2)±t*s12n1+s22n2

has confidence level at least C no matter what the population standard
deviations may be. Here, t* is the value for the t(k) density curve with area C
between −t* and t* The value of the degrees of freedom k is approximated by
software or we use the smaller of n1 − 1 and n2 − 1. Similarly, we can use
either software or the conservative approach with Table D to approximate the
value of t*

EXAMPLE

7.14 Directed reading activities assessment

An educator believes that new directed reading activities in the classroom will
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help elementary school pupils improve some aspects of their reading ability.
She arranges for a third-grade class of 21 students to take part in these
activities for an eight-week period. A control classroom of 23 third-graders
follows the same curriculum without the activities. At the end of the eight
weeks, all students are given a Degree of Reading Power (DRP) test, which
measures the aspects of reading ability that the treatment is designed to
improve. The data appear in Table 7.4.21
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First examine the data:
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TABLE 7.4  DRP Scores for Third-Graders

The back-to-back stemplot suggests that there is a mild outlier in the control
group but no deviation from Normality serious enough to forbid use of t
procedures. Separate Normal quantile plots for both groups (Figure 7.14)
confirm that both distributions are approximately Normal. The scores of the
treatment group appear to be somewhat higher than those of the control group.
The summary statistics are

Group n x¯ s
Treatment 21 51.48 11.01
Control 23 41.52 17.15

Treatment group Control group
24 61 59 46 42 33 46 37
43 44 52 43 43 41 10 42
58 67 62 57 55 19 17 55
71 49 54 26 54 60 28
43 53 57 62 20 53 48
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49 56 33 37 85 42

FIGURE 7.14
Normal quantile plots of the DRP scores in Table 7.4.

To describe the size of the treatment effect, let’s construct a confidence
interval for the difference between the treatment group and the control group
means. The interval is

(x¯1−x¯2)±t*s12n1+s22n2=(51.48−41.52)±t*11.01221+17.15223
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= 9.96 ± 4.31t*

Using software, the degrees of freedom are 37.9 and t* = 2.025. This
approximation gives

9.96 ± (4.31 × 2.025) = 9.96 ± 8.72 = (1.2, 18.7)

The conservative approach uses the t(20) distribution. Table D gives t* =
2.086. With this approximation we have

9.96 ± (4.31 × 2.086) = 9.96 ± 8.99 = (1.0, 18.9)

We see that the conservative approach does, in fact, give a wider interval than
the more accurate approximation used by software. However, the difference is
pretty small.

We estimate the mean improvement to be about 10 points, but with a
margin of error of almost 9 points with either method. Unfortunately, the data
do not allow a very precise estimate of the size of the average improvement.

USE YOUR KNOWLEDGE

7.56 Two-sample t confidence interval

Assume that x¯1=110, x¯2=120, s1 = 8, s2 = 12, n1 = 50, and n2 = 50.
Find a 95% confidence interval for the difference in the corresponding
values of μ using the second approximation for degrees of freedom.
Does this interval include more or fewer values than a 99% confidence
interval would? Explain your answer.

7.57 Another two-sample t confidence interval

Assume that x¯1=110, x¯2=120, s1 = 8, s2 = 12, n1 = 10, and n2 = 10.
Find a 95% confidence interval for the difference in the corresponding
values of μ using the second approximation for degrees of freedom.
Would you reject the null hypothesis that the population means are
equal in favor of the two-sided alternative at significance level 0.05?
Explain.

The two-sample t significance test

The same ideas that we used for the two-sample t confidence interval also apply to
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two-sample t significance tests. We can use either software or the conservative
approach with Table D to approximate the P-value.

THE TWO-SAMPLE t SIGNIFICANCE TEST

Suppose that an SRS of size n1 is drawn from a Normal population with
unknown mean μ1 and that an independent SRS of size n2 is drawn from
another Normal population with unknown mean μ2. To test the hypothesis H0:
μ1 = μ2 compute the two-sample t statistic

t=x¯1−x¯2s12n1+s22n2

and use P-values or critical values for the t(k) distribution, where the degrees
of freedom k either are approximated by software or are the smaller of n1 − 1
and n2 − 1.

Example

7.15 Is there an improvement?

For the DRP study described in Example 7.14, we hope to show that the
treatment (Group 1) performs better than the control (Group 2). For a formal
significance test the hypotheses are

H0: μ1 = μ2

Ha: μ1 > μ2

The two-sample t test statistic is

t=x¯1−x¯2s12n1+s22n2

=51.48−41.5211.01221+17.15223

= 2.31

The P-value for the one-sided test is P(T ≥ 2.31). Software gives the
approximate P-value as 0.0132 and uses 37.9 as the degrees of freedom. For
the second approximation, the degrees of freedom k are equal to the smaller of
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n1 − 1 = 21 − 1 = 20 and n2 − 1 = 23 − 1 = 22

Comparing 2.31 with the entries in Table D for 20 degrees of freedom, we see
that P lies between 0.01 and 0.02. The data strongly suggest that directed
reading activity improves the DRP score (t = 2.31, df = 20, 0.01 < P < 0.02).

If your software gives P-values for only the two-sided alternative, 2P(T ≥ |t|),
you need to divide the reported value by 2 after checking that the means differ in
the direction specified by the alternative hypothesis.

The design of the study in Example 7.14 is not ideal. Random assignment of
students was not possible in a school environment, so existing third-grade classes
were used. The effect of the reading programs is therefore confounded with any
other differences between the two classes. The classes were chosen to be as similar
as possible—for example, in terms of the social and economic status of the
students. Extensive pretesting showed that the two classes were, on the average,
quite similar in reading ability at the beginning of the experiment. To avoid the
effect of two different teachers, the researcher herself taught reading in both classes
during the eight-week period of the experiment. We can therefore be somewhat
confident that the two-sample test is detecting the effect of the treatment and not
some other difference between the classes. This example is typical of many
situations in which an experiment is carried out but randomization is not possible.

USE YOUR KNOWLEDGE

7.58 Comparison of two web page designs

You want to compare the daily number of hits for two different
MySpace page designs that advertise your indie rock band. You assign
the next 30 days to either Design A or Design B, 15 days to each.

(a) Would you use a one-sided or a two-sided significance test for this problem? Explain your
choice.

(b) If you use Table D to find the critical value, what are the degrees of freedom using the
second approximation?

(c) If you perform the significance test using α = 0.05, how large (positive or negative) must
the t statistic be to reject the null hypothesis that the two designs result in the same average
number of hits?

7.59 More on the comparison of two web page designs

Refer to the previous exercise. If the t statistic for comparing the mean
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hits was 2.18, what P-value would you report? What would you
conclude using α = 0.05?

Robustness of the two-sample procedures

The two-sample t procedures are more robust than the one-sample t methods.
When the sizes of the two samples are equal and the distributions of the two
populations being compared have similar shapes, probability values from the t
table are quite accurate for a broad range of distributions when the sample sizes are
as small as n1 = n2 = 5.22 When the two population distributions have different
shapes, larger samples are needed.

The guidelines for the use of one-sample t procedures can be adapted to two-
sample procedures by replacing “sample size” with the “sum of the sample sizes”
n1 + n2. Specifically,

If n1 + n2 is less than 15: Use t procedures if the data are close to Normal. If the
data in either sample are clearly non-Normal or if outliers are present, do not use
t.
If n1 + n2 is at least 15 and less than 40: The t procedures can be used except in
the presence of outliers or strong skewness.
Large samples: The t procedures can be used even for clearly skewed
distributions when the sample is large, roughly n1 + n2 ≥ 40.

These guidelines are rather conservative, especially when the two samples are of
equal size. In planning a two-sample study, choose equal sample sizes if you can.
The two-sample t procedures are most robust against non-Normality in this case,
and the conservative probability values are most accurate.

Here is an example with large sample sizes that are almost equal. Even if the
distributions are not Normal, we are confident that the sample means will be
approximately Normal. The two-sample t test is very robust in this case.

Example

7.16 Timing of food intake and weight loss

816



There is emerging evidence of a relationship between timing of feeding and
weight regulation. In one study, researchers followed 402 obese or overweight
individuals through a 20-week weight-loss treatment.23 To investigate the
timing of food intake, participants were grouped into early eaters and late
eaters, based on the timing of their main meal. Here are the summary statistics
of their weight loss over the 20 weeks, in kilograms (kg):
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Group n x¯ s
Early eater 202 9.9 5.8
Late eater 200 7.7 6.1

The early eaters lost more weight on average. Can we conclude that these two
groups are not the same? Or is this observed difference merely what we could
expect to see given the variation among participants?

While other evidence suggests that early eaters should lose more weight,
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the researchers did not specify a direction for the difference. Thus, the
hypotheses are

H0: μ1 = μ2

Ha: μ1 ≠ μ2

Because the samples are large, we can confidently use the t procedures even
though we lack the detailed data and so cannot verify the Normality condition.
The two-sample t statistic is

t=x¯1−x¯2s12n1+s22n2

=9.9−7.75.82202+6.12200

= 3.71

The conservative approach finds the P-value by comparing 3.71 to critical
values for the t(199) distribution because the smaller sample has 200
observations. Because Table D does not contain a row for 199 degrees of
freedom, we will be even more conservative and use the first row in the table
with degrees of freedom less than 199. This means we’ll use the t(100)
distribution to compute the P-value.

Our calculated value of t is larger than the p = 0.0005 entry in the table. We
must double the table tail area p because the alternative is two-sided, so we
conclude that the P-value is less than 0.001. The data give conclusive evidence
that early eaters lost more weight, on average, than late eaters (t = 3.71, df =
100, P < 0.001).

In this example the exact P-value is very small because t = 3.71 says that the
observed difference in means is over 3.5 standard errors above the hypothesized
difference of zero (μ1 = σ2). In this study, the researchers also compared energy
intake and energy expenditure between late and early eaters. Despite the observed
weight loss difference of 2.2 kg, no significant differences in these variables were
found.

In this and other examples, we can choose which population to label 1 and
which to label 2. After inspecting the data, we chose early eaters as Population 1
because this choice makes the t statistic a positive number. This avoids any
possible confusion from reporting a negative value for t. Choosing the population
labels is not the same as choosing a one-sided alternative after looking at the data.
Choosing hypotheses after seeing a result in the data is a violation of sound
statistical practice.
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Inference for small samples

Small samples require special care. We do not have enough observations to
examine the distribution shapes, and only extreme outliers stand out. The power of
significance tests tends to be low, and the margins of error of confidence intervals
tend to be large. Despite these difficulties, we can often draw important
conclusions from studies with small sample sizes. If the size of an effect is very
large, it should still be evident even if the n’s are small.

Example

7.17 Timing of food intake

In the setting of Example 7.16, let’s consider a much smaller study that
collects weight loss data from only 5 participants in each eating group. Also,
given the results of this past example, we choose the one-sided alternative. The
data are

Group Weight loss (kg)
Early eater 6.3 15.1 9.4 16.8 10.2
Late eater 7.8 0.2 1.5 11.5 4.6

First, examine the distributions with a back-to-back stemplot (the data are
rounded to the nearest integer).

While there is variation among weight losses within each group, there is also a
noticeable separation. The early-eaters group contains 4 of the 5 greatest
losses, and the late-eaters group contains 4 of the 5 lowest losses. A
significance test can confirm whether this pattern can arise just by chance or if
the early-eaters group has a higher mean. We test

H0:μ1 = μ2
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Ha:μ1 > μ2

The average weight loss is higher in the early-eater group (t = 2.28, df = 7.96,
P = 0.0262). The difference in sample means is 6.44 kg.
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FIGURE 7.15
SAS, Excel, JMP, and SPSS output for Example 7.17.

Figure 7.15 gives outputs for this analysis from several software packages.
Although the formats differ, the basic information is the same. All report the
sample sizes, the sample means and standard deviations (or variances), the t
statistic, and its P-value. All agree that the P-value is small, though some give
more detail than others. Software often labels the groups in alphabetical order.
Always check the means first and report the statistic (you may need to change the
sign) in an appropriate way. We do not need to do that here. Be sure to also
mention the size of the effect you observed, such as “The mean weight loss for the
early eaters was 6.44 kg higher than for the late eaters.”

There are two other things to notice in the outputs. First, SAS and SPSS only
give results for the two-sided alternative. To get the P-value for the one-sided
alternative, we must first check the mean difference to make sure it is in the proper
direction. If it is, we divide the given P-value by 2. Also, SAS and SPSS report the
results of two t procedures: a special procedure that assumes that the two
population variances are equal and the general two-sample procedure that we have
just studied. We don’t recommend the “equal-variances” procedures, but we
describe them later, in the section on pooled two-sample t procedures.

Software approximation for the degrees of freedom
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We noted earlier that the two-sample t statistic does not have a t distribution.
Moreover, the distribution changes as the unknown population standard deviations
σ1 and σ2 change. However, the distribution can be approximated by a t
distribution with degrees of freedom given by

df=(s12n1+s22n2)21n1−1(s12n1)2+1n2−1(s22n2)2

This is the approximation used by most statistical software. It is quite accurate
when both sample sizes n1 and n2 are 5 or larger.

Example

7.18 Degrees of freedom for directed reading assessment

For the DRP study of Example 7.14, the following table summarizes the data:

Group n x¯ s
1 21 51.48 11.01
2 23 41.52 17.15

For greatest accuracy, we will use critical points from the t distribution with
degrees of freedom given by the equation above:

df=(11.01221+17.15223)2120(11.01221)2+122(17.15223)2

=344.4869.099=37.86

This is the value that we reported in Examples 7.14 and 7.15, where we gave
the results produced by software.

The number df given by the preceding approximation is always at least as large
as the smaller of n1 − 1 and n2 − 1. On the other hand, the number df is never larger
than the sum n1 + n2 − 2 of the two individual degrees of freedom. The number df
is generally not a whole number. There is a t distribution with any positive degrees
of freedom, even though Table D contains entries only for whole-number degrees
of freedom. When the number df is small and is not a whole number, interpolation
between entries in Table D may be needed to obtain an accurate critical value or P-
value. Because of this and the need to calculate df, we do not recommend regular
use of this approximation if a computer is not doing the arithmetic. With a
computer, however, the more accurate procedures are painless.
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USE YOUR KNOWLEDGE

7.60 Calculating the degrees of freedom

Assume that s1 = 13, s2 = 8, n1 = 28, and n2 = 24. Find the approximate
degrees of freedom.

The pooled two-sample t procedures

There is one situation in which a t statistic for comparing two means has exactly a t
distribution. This is when the two Normal population distributions have the same
standard deviation. As we’ve done with other t statistics, we will first develop the z
statistic and then, from it, the t statistic. In this case, notice that we need to
substitute only a single standard error when we go from the z to the t statistic. This
is why the resulting t statistic has a t distribution.

Call the common—and still unknown—standard deviation of both populations
σ Both sample variances s12 and s22 estimate σ2 The best way to combine these
two estimates is to average them with weights equal to their degrees of freedom.
This gives more weight to the sample variance from the larger sample, which is
reasonable. The resulting estimator of σ2 is

sp2=(n1−1)s12+(n2−1)s22n1+n2−2

This is called the pooled estimator of σ2 because it combines the information in
both samples.

pooled estimator of σ2

When both populations have variance σ2 the addition rule for variances says
that x¯1−x¯2 has variance equal to the sum of the individual variances, which is

σ2n1+σ2n2=σ2(1n1+1n2)

The standardized difference between means in this equal-variance case is therefore

z=(x¯1−x¯2)−(μ1−μ2)σ1n1+1n2

This is a special two-sample z statistic for the case in which the populations have
the same σ. Replacing the unknown σ by the estimate sp gives a t statistic. The
degrees of freedom are n1 + n2 − 2, the sum of the degrees of freedom of the two
sample variances. This t statistic is the basis of the pooled two-sample t inference
procedures.
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THE POOLED TWO-SAMPLE t PROCEDURES

Suppose that an SRS of size n1 is drawn from a Normal population with
unknown mean μ1 and that an independent SRS of size n2 is drawn from
another Normal population with unknown mean μ2. Suppose also that the two
populations have the same standard deviation. A level C confidence interval
for μ1 − μ2 is

(x¯1−x¯2)±t*sp1n1+1n2

Here t* is the value for the t(n1 + n2 − 2) density curve with area C between
−t* and t*.

To test the hypothesis H0:μ1 = μ2, compute the pooled two-sample t
statistic

t=x¯1−x¯2sp1n1+1n2

In terms of a random variable t having the t(n1 + n2 − 2) distribution, the P-
value for a test of H0 against

Ha:μ1 > μ2 is P(T ≥ t)

Ha:μ1 < μ2 is P(T ≦ t)

Ha:μ1 ≠ μ2 is 2P(T ≥ |t|)

EXAMPLE

7.19 Calcium and blood pressure

Does increasing the amount of calcium in our diet reduce blood pressure?
Examination of a large sample of people revealed a relationship between
calcium intake and blood pressure, but such observational studies do not
establish causation. Animal experiments, however, showed that calcium
supplements do reduce blood pressure in rats, justifying an experiment with
human subjects. A randomized comparative experiment gave one group of 10
black men a calcium supplement for 12 weeks. The control group of 11 black
men received a placebo that appeared identical. (In fact, a block design with
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TABLE 7.5  Seated Systolic Blood Pressure (mm Hg)

black and white men as the blocks was used. We will look only at the results
for blacks, because the earlier survey suggested that calcium is more effective
for blacks.) The experiment was double-blind. Table 7.5 gives the seated
systolic (heart contracted) blood pressure for all subjects at the beginning and
end of the 12-week period, in millimeters of mercury (mm Hg). Because the
researchers were interested in decreasing blood pressure, Table 7.5 also shows
the decrease for each subject. An increase appears as a negative entry.24

BP_CA

Calcium Group Placebo Group
Begin End Decrease Begin End Decrease
107 100 7 123 124 −1
110 114 −4 109 97 12
123 105 18 112 113 −1
129 112 17 102 105 −3
112 115 −3 98 95 3
111 116 −5 114 119 −5
107 106 1 119 114 5
112 102 10 114 112 2
136 125 11 110 121 −11
102 104 −2 117 118 −1

130 133 −3
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FIGURE 7.16
Side-by-side boxplots of the decrease in blood pressure from Table 7.5.

As usual, we first examine the data. To compare the effects of the two
treatments, take the response variable to be the amount of the decrease in blood
pressure. Inspection of the data reveals that there are no outliers. Side-by-side
boxplots and Normal quantile plots (Figures 7.16 and 7.17) give a more detailed
picture. The calcium group has a somewhat short left tail, but there are no severe
departures from Normality that will prevent use of t procedures. To examine the
question of the researchers who collected these data, we perform a significance
test.

829



FIGURE 7.17
Normal quantile plots of the change in blood pressure from Table 7.5.

EXAMPLE

7.20 Does increased calcium reduce blood pressure?

Take Group 1 to be the calcium group and Group 2 to be the placebo group.
The evidence that calcium lowers blood pressure more than a placebo is
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assessed by testing

H0:μ1 = μ2

Ha > μ2

Here are the summary statistics for the decrease in blood pressure:

Group Treatment n x¯ s
1 Calcium 10 5.000 8.743
2 Placebo 11 −0.273 5.901

The calcium group shows a drop in blood pressure, and the placebo group has
a small increase. The sample standard deviations do not rule out equal
population standard deviations. A difference this large will often arise by
chance in samples this small. We are willing to assume equal population
standard deviations. The pooled sample variance is

sp2=(n−1)s12+(n2−1)s22n1+n2−2

=(10−1)8.7432+(11−1)5.901210+11−2=54.536

so that

sp=54.536=7.385

The pooled two-sample t statistic is

t=x¯1−x¯2sp1n1+1n2

=5.000−(−0.273)7.385110+111

=5.2733.227=1.634

The P-value is P(T ≥ 1.634) where t has the t(19) distribution.
df = 19

p 0.10 0.05
t* 1.328 1.729

From Table D we can see that P falls between the α = 0.10 and α = 0.05
levels. Statistical software gives the exact value P = 0.059. The experiment
found evidence that calcium reduces blood pressure, but the evidence falls a
bit short of the traditional 5% and 1% levels.

Sample size strongly influences the P-value of a test. An effect that fails to be
significant at a specified level α in a small sample can be significant in a larger
sample. In the light of the rather small samples in Example 7.20, the evidence for
some effect of calcium on blood pressure is rather good. The published account of
the study combined these results for blacks with the results for whites and adjusted
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for pretest differences among the subjects. Using this more detailed analysis, the
researchers were able to report a P-value of 0.008.

Of course, a P-value is almost never the last part of a statistical analysis. To
make a judgment regarding the size of the effect of calcium on blood pressure, we
need a confidence interval.

EXAMPLE

7.21 How different are the calcium and placebo groups?

We estimate that the effect of calcium supplementation is the difference
between the sample means of the calcium and the placebo groups,
x¯1−x¯2=5.273 mm Hg. A 90% confidence interval for μ1 − μ2 uses the
critical value t* = 1.729 from the t(19) distribution. The interval is

(x¯1−x¯2)±t*sp1n1+1n2=[5.000−(−0.273)]±(1.729)(7.385)110+111

=5.273 ± 5.579

We are 90% confident that the difference in means is in the interval (−0.306,
10.852). The calcium treatment reduced blood pressure by about 5.3 mm Hg
more than a placebo on the average, but the margin of error for this estimate is
5.6 mm Hg.

The pooled two-sample t procedures are anchored in statistical theory and so
have long been the standard version of the two-sample t in textbooks. But they
require the assumption that the two unknown population standard deviations are
equal. As we shall see in Section 7.3, this assumption is hard to verify. The pooled
t procedures are therefore a bit risky. They are reasonably robust against both non-
Normality and unequal standard deviations when the sample sizes are nearly the
same. When the samples are quite different in size, the pooled t procedures become
sensitive to unequal standard deviations and should be used with caution unless the
samples are large. Unequal standard deviations are quite common. In particular, it
is not unusual for the spread of data to increase when its center gets larger.
Statistical software often calculates both the pooled and the unpooled t statistics, as
in Figure 7.15.
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USE YOUR KNOWLEDGE

7.61 Timing of food intake revisited

Figure 7.15 (pages 458–460) gives the outputs from four software
packages for comparing the weight loss of two groups with different
eating schedules. Some of the software reports both pooled and
unpooled analyses. Which outputs give the pooled results? What are the
pooled t and its P-value?

7.62 Equal sample sizes

The software outputs in Figure 7.15 give the same value for the pooled
and unpooled t statistics. Do some simple algebra to show that this is
always true when the two sample sizes n1 and n2 are the same. In other
cases, the two t statistics usually differ.

SECTION 7.2 Summary

Significance tests and confidence intervals for the difference between the means μ1
and μ2 of two Normal populations are based on the difference x¯1−x¯2 between
the sample means from two independent SRSs. Because of the central limit
theorem, the resulting procedures are approximately correct for other population
distributions when the sample sizes are large.

When independent SRSs of sizes n1 and n2 are drawn from two Normal
populations with parameters μ1, σ1 and μ2, σ2 the two-sample z statistic

z=(x¯1−x¯2)−(μ1−μ2)σ12n1+σ22n2

has the N(0, 1) distribution.
The two-sample t statistic

z=(x¯1−x¯2)−(μ1−μ2)s12n1+s22n2

does not have a t distribution. However, good approximations are available.
Conservative inference procedures for comparing μ1 and μ2 are obtained

from the two-sample t statistic by using the t(k) distribution with degrees of
freedom k equal to the smaller of n1 − 1 and n2 − 1.

More accurate probability values can be obtained by estimating the degrees
of freedom from the data. This is the usual procedure for statistical software.

An approximate level C confidence interval for μ1 − μ2 is given by
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(x¯1+x¯2)±t*s12n1+s22n2

Here, t* is the value for the t(k) density curve with area C between −t* and t*
where k is computed from the data by software or is the smaller of n1 − 1 and n2 −
1. The quantity

t*s12n1+s22n2

is the margin of error.
Significance tests for H0:μ1 = μ2 use the two-sample t statistic

t=x¯1−x¯2s12n1+s22n2

The P-value is approximated using the t(k) distribution where k is estimated
from the data using software or is the smaller of n1 − 1 and n2 − 1.

The guidelines for practical use of two-sample t procedures are similar to those
for one-sample t procedures. Equal sample sizes are recommended.

If we can assume that the two populations have equal variances, pooled two-
sample t procedures can be used. These are based on the pooled estimator

sp2=(n1−1)s12+(n2−1)s22n1+n2−2

of the unknown common variance and the t(n1 + n2 − 2) distribution. We do not
recommend this procedure for regular use.

SECTION 7.2 Exercises

For Exercises 7.56 and 7.57, see pages 453–454; for Exercises 7.58 and 7.59, see page 455; for
Exercise 7.60, see page 461; and for Exercises 7.61 and 7.62, see page 466.
In exercises that call for two-sample t procedures, you may use either of the two approximations for
the degrees of freedom that we have discussed: the value given by your software or the smaller of n1
− 1 and n2 − 1. Be sure to state clearly which approximation you have used.

7.63 What is wrong?

In each of the following situations explain what is wrong and why.

(a) A researcher wants to test H0:x¯1=x¯2 versus the two-sided alternative Ha:x¯1≠x¯2

(b) A study recorded the IQ scores of 100 college freshmen. The scores of the 56 males in the study
were compared with the scores of all 100 freshmen using the two-sample methods of this section.

(c) A two-sample t statistic gave a P-value of 0.94. From this we can reject the null hypothesis with
90% confidence.

(d) A researcher is interested in testing the one-sided alternative Ha:μ < μ2. The significance test
gave t = 2.15. Since the P-value for the two-sided alternative is 0.036, he concluded that his P-value
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was 0.018.

7.64 Basic concepts

For each of the following, answer the question and give a short explanation of your reasoning.

(a) A 95% confidence interval for the difference between two means is reported as (0.8, 2.3). What
can you conclude about the results of a significance test of the null hypothesis that the population
means are equal versus the two-sided alternative?

(b) Will larger samples generally give a larger or smaller margin of error for the difference between
two sample means?

7.65 More basic concepts

For each of the following, answer the question and give a short explanation of your reasoning.

(a) A significance test for comparing two means gave t = −1.97 with 10 degrees of freedom. Can you
reject the null hypothesis that the μ’s are equal versus the two-sided alternative at the 5%
significance level?

(b) Answer part (a) for the one-sided alternative that the difference between means is negative.

7.66 Effect of the confidence level

Assume that x¯1=100, x¯2=115, s1 = 19, s2 = 16, n1 = 50, and n2 = 40. Find a 95% confidence
interval for the difference between the corresponding values of μ. Does this interval include more or
fewer values than a 99% confidence interval would? Explain your answer.

7.67 Trustworthiness and eye color

Why do we naturally tend to trust some strangers more than others? One group of researchers
decided to study the relationship between eye color and trustworthiness.25 In their experiment the
researchers took photographs of 80 students (20 males with brown eyes, 20 males with blue eyes, 20
females with brown eyes, and 20 females with blue eyes), each seated in front of a white background
looking directly at the camera with a neutral expression. These photos were cropped so the eyes
were horizontal and at the same height in the photo and so the neckline was visible. They then
recruited 105 participants to judge the trustworthiness of each student photo. This was done using a
10-point scale, where 1 meant very untrustworthy and 10 very trustworthy. The 80 scores from each
participant were then converted to z-scores, and the average z-score of each photo (across all 105
participants) was used for the analysis. Here is a summary of the results:

Eye color n x¯ s
Brown 40 0.55 1.68
Blue 40 −0.38 1.53

Can we conclude from these data that brown-eyed students appear more trustworthy compared to
their blue-eyed counterparts? Test the hypothesis that the average scores for the two groups are the
same.

7.68 Facebook use in college
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Because of Facebook’s rapid rise in popularity among college students, there is a great deal of
interest in the relationship between Facebook use and academic performance. One study collected
information on n = 1839 undergraduate students to look at the relationships among frequency of
Facebook use, participation in Facebook activities, time spent preparing for class, and overall
GPA.26

Students reported preparing for class an average of 706 minutes per week with a standard
deviation of 526 minutes. Students also reported spending an average of 106 minutes per day on
Facebook with a standard deviation of 93 minutes; 8% of the students reported spending no time on
Facebook.

(a) Construct a 95% confidence interval for the average number of minutes per week a student
prepares for class.

(b) Construct a 95% confidence interval for the average number of minutes per week a student
spends on Facebook. (Hint: Be sure to convert from minutes per day to minutes per week.)

(c) Explain why you might expect the population distributions of these two variables to be highly
skewed to the right. Do you think this fact makes your confidence intervals invalid? Explain your
answer.

7.69 Possible biases?

Refer to the previous exercise. The authors state:

All students surveyed were U.S. residents admitted through the regular
admissions process at a 4-year, public, primarily residential institution in the
northeastern United States (N = 3866). Students were sent a link to a survey
hosted on SurveyMonkey.com, a survey-hosting website, through their
university-sponsored email accounts. For the students who did not participate
immediately, two additional reminders were sent, 1 week apart. Participants
were offered a chance to enter a drawing to win one of 90 $10 Amazon.com
gift cards as incentive. A total of 1839 surveys were completed for an overall
response rate of 48%.

Discuss how these factors influence your interpretation of the results of this survey.

7.70 Comparing means

Refer to Exercise 7.68. Suppose that you wanted to compare the average minutes per week spent on
Facebook with the average minutes per week spent preparing for class.

(a) Provide an estimate of this difference.

(b) Explain why it is incorrect to use the two-sample t test to see if the means differ.

7.71 Sadness and spending

The “misery is not miserly” phenomenon refers to a person’s spending judgment going haywire
when the person is sad. In a study, 31 young adults were given $10 and randomly assigned to either
a sad or a neutral group. The participants in the sad group watched a video about the death of a boy’s
mentor (from The Champ), and those in the neutral group watched a video on the Great Barrier Reef.
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After the video, each participant was offered the chance to trade $0.50 increments of the $10 for an

insulated water bottle.27 Here are the data:  SADNESS

Group Purchase price ($)
Neutral 0.00 2.00 0.00 1.00 0.50 0.00 0.50

2.00 1.00 0.00 0.00 0.00 0.00 1.00
Sad 3.00 4.00 0.50 1.00 2.50 2.00 1.50 0.00 1.00

1.50 1.50 2.50 4.00 3.00 3.50 1.00 3.50

(a) Examine each group’s prices graphically. Is use of the t procedures appropriate for these data?
Carefully explain your answer.

(b) Make a table with the sample size, mean, and standard deviation for each of the two groups.

(c) State appropriate null and alternative hypotheses for comparing these two groups.

(d) Perform the significance test at the α = 0.05 level, making sure to report the test statistic, degrees
of freedom, and P-value. What is your conclusion?

(e) Construct a 95% confidence interval for the mean difference in purchase price between the two
groups.

7.72 Wine labels with animals?

Traditional brand research argues that successful logos are ones that are highly relevant to the
product they represent. However, a market research firm recently reported that nearly 20% of all
table wine brands introduced in the last three years feature an animal on the label. Since animals
have little to do with the product, why are marketers using this tactic?

Some researchers have proposed that consumers who are “primed” (in other words, they’ve
thought about the image earlier in an unrelated context) process visual information more easily.28
To demonstrate this, the researchers randomly assigned participants to either a primed or a
nonprimed group. Each participant was asked to indicate his or her attitude toward a product on a
seven-point scale (from 1 = dislike very much to 7 = like very much). A bottle of MagicCoat pet
shampoo, with a picture of a collie on the label, was the product. Prior to giving this score, however,
participants were asked to do a word find where four of the words were common to both groups (pet,
grooming, bottle, label) and four were either related to the product image (dog, collie, puppy, woof)
or conflicted with the image (cat, feline, kitten, meow). The following table contains the responses

listed from smallest to largest.  BPREF

Group Brand attitude
Primed 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
Nonprimed 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5

(a) Examine the scores of each group graphically. Is it appropriate to use the two-sample t
procedures? Explain your answer.

(b) Test whether these two groups show the same preference for this product. Use a two-sided
alternative hypothesis and a significance level of 5%.

(c) Construct a 95% confidence interval for the difference in average preference.

(d) Write a short summary of your conclusions.

7.73 Drive-thru customer service
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QSRMagazine.com assessed 2053 drive-thru visits at quick-service restaurants.29 One benchmark
assessed was customer service. Responses ranged from “Rude (1)” to “Very Friendly (5).” The

following table breaks down the responses according to two of the chains studied.  DRVTHRU

Rating
Chain 1 2 3 4 5
Taco Bell 5 3 54 109 136
McDonald’s 2 22 73 165 100

(a) Comment on the appropriateness of t procedures for these data.

(b) Report the means and standard deviations of the ratings for each chain separately.

(c) Test whether the two chains, on average, have the same customer satisfaction. Use a two-sided
alternative hypothesis and a significance level of 5%.

(d) Construct a 95% confidence interval for the difference in average satisfaction.

7.74 Diet and mood

Researchers were interested in comparing the long-term psychological effects of being on a high-
carbohydrate, low-fat (LF) diet versus a high-fat, low-carbohydrate (LC) diet.30 A total of 106
overweight and obese participants were randomly assigned to one of these two energy-restricted
diets. At 52 weeks, 32 LC dieters and 33 LF dieters remained. Mood was assessed using a total
mood disturbance score (TMDS), where a lower score is associated with a less negative mood. A
summary of these results follows:

Group n x¯ s
LC 32 47.3 28.3
LF 33 19.3 25.8

(a) Is there a difference in the TMDS at Week 52? Test the null hypothesis that the dieters’ average
mood in the two groups is the same. Use a significance level of 0.05.

(b) Critics of this study focus on the specific LC diet (that is, the science) and the dropout rate.
Explain why the dropout rate is important to consider when drawing conclusions from this study.

7.75 Comparison of dietary composition

Refer to Example 7.16 (page 456). That study also broke down the dietary composition of the main
meal. The following table summarizes the total fats, protein, and carbohydrates in the main meal (g)
for the two groups:

Early eaters (n = 202) Late eaters (n = 200)
x¯ s x¯ s

Fats 23.1 12.5 21.4 8.2
Protein 27.6 8.6 25.7 6.8
Carbohydrates 64.1 21.0 63.5 20.8

(a) Is it appropriate to use the two-sample t procedures that we studied in this section to analyze
these data for group differences? Give reasons for your answer.
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(b) Describe appropriate null and alternative hypotheses for comparing the two groups in terms of
fats consumed.

(c) Carry out the significance test using α = 0.05. Report the test statistic with the degrees of freedom
and the P-value. Write a short summary of your conclusion.

(d) Find a 95% confidence interval for the difference between the two means. Compare the
information given by the interval with the information given by the significance test.

7.76 More on dietary composition

Refer to the previous exercise. Repeat parts (b) through (d) for protein and carbohydrates. Write a
short summary of your findings.

7.77 Dust exposure at work

Exposure to dust at work can lead to lung disease later in life. One study measured the workplace
exposure of tunnel construction workers.31 Part of the study compared 115 drill and blast workers
with 220 outdoor concrete workers. Total dust exposure was measured in milligram years per cubic
meter (mg · y/m3). The mean exposure for the drill and blast workers was 18.0 mg · y/m3 with a
standard deviation of 7.8 mg · y/m3. For the outdoor concrete workers, the corresponding values
were 6.5 mg · y/m3 and 3.4 mg · y/m3.

(a) The sample included all workers for a tunnel construction company who received medical
examinations as part of routine health checkups. Discuss the extent to which you think these results
apply to other similar types of workers.

(b) Use a 95% confidence interval to describe the difference in the exposures. Write a sentence that
gives the interval and provides the meaning of 95% confidence.

(c) Test the null hypothesis that the exposures for these two types of workers are the same. Justify
your choice of a one-sided or two-sided alternative. Report the test statistic, the degrees of freedom,
and the P-value. Give a short summary of your conclusion.

(d) The authors of the article describing these results note that the distributions are somewhat
skewed. Do you think that this fact makes your analysis invalid? Give reasons for your answer.

7.78 Not all dust is the same

Not all dust particles that are in the air around us cause problems for our lungs. Some particles are
too large and stick to other areas of our body before they can get to our lungs. Others are so small
that we can breathe them in and out and they will not deposit in our lungs. The researchers in the
study described in the previous exercise also measured respirable dust. This is dust that deposits in
our lungs when we breathe it. For the drill and blast workers, the mean exposure to respirable dust
was 6.3 mg · y/m3 with a standard deviation of 2.8 mg · y/m3. The corresponding values for the
outdoor concrete workers were 1.4 mg · y/m3 and 0.7 mg · y/m3. Analyze these data using the
questions in the previous exercise as a guide.

7.79 Change in portion size

A study of food portion sizes reported that over a 17-year period, the average size of a soft drink
consumed by Americans aged 2 years and older increased from 13.1 ounces (oz) to 19.9 oz. The
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authors state that the difference is statistically significant with P < 0.01.32 Explain what additional
information you would need to compute a confidence interval for the increase, and outline the
procedure that you would use for the computations. Do you think that a confidence interval would
provide useful additional information? Explain why or why not.

7.80 Beverage consumption

The results in the previous exercise were based on two national surveys with a very large number of
individuals. Here is a study that also looked at beverage consumption, but the sample sizes were
much smaller. One part of this study compared 20 children who were 7 to 10 years old with 5
children who were 11 to 13.33 The younger children consumed an average of 8.2 oz of sweetened
drinks per day while the older ones averaged 14.5 oz. The standard deviations were 10.7 oz and 8.2
oz, respectively.

(a) Do you think that it is reasonable to assume that these data are Normally distributed? Explain
why or why not. (Hint: Think about the 68–95–99.7 rule.)

(b) Using the methods in this section, test the null hypothesis that the two groups of children
consume equal amounts of sweetened drinks versus the two-sided alternative. Report all details of
the significance-testing procedure with your conclusion.

(c) Give a 95% confidence interval for the difference in means.

(d) Do you think that the analyses performed in parts (b) and (c) are appropriate for these data?
Explain why or why not.

(e) The children in this study were all participants in an intervention study at the Cornell Summer
Day Camp at Cornell University. To what extent do you think that these results apply to other
groups of children?

7.81 Study design is important!

Recall Exercise 7.58 (page 455). You are concerned that day of the week may affect the number of
hits. So to compare the two MySpace page designs, you choose two successive weeks in the middle
of a month. You flip a coin to assign one Monday to the first design and the other Monday to the
second. You repeat this for each of the seven days of the week. You now have 7 hit amounts for
each design. It is incorrect to use the two-sample t test to see if the mean hits differ for the two
designs. Carefully explain why.

7.82 New computer monitors?

The purchasing department has suggested that all new computer monitors for your company should
be flat screens. You want data to assure you that employees will like the new screens. The next 20
employees needing a new computer are the subjects for an experiment.

(a) Label the employees 01 to 20. Randomly choose 10 to receive flat screens. The remaining 10 get
standard monitors.

(b) After a month of use, employees express their satisfaction with their new monitors by responding
to the statement “I like my new monitor” on a scale from 1 to 5, where 1 represents “strongly
disagree,” 2 is “disagree,” 3 is “neutral,” 4 is “agree,” and 5 stands for “strongly agree.” The
employees with the flat screens have average satisfaction 4.8 with standard deviation 0.7. The
employees with the standard monitors have average 3.0 with standard deviation 1.5. Give a 95%
confidence interval for the difference in the mean satisfaction scores for all employees.
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(c) Would you reject the null hypothesis that the mean satisfaction for the two types of monitors is
the same versus the two-sided alternative at significance level 0.05? Use your confidence interval to
answer this question. Explain why you do not need to calculate the test statistic.

7.83 Why randomize?

Refer to the previous exercise. A coworker suggested that you give the flat screens to the next 10
employees who need new screens and the standard monitor to the following 10. Explain why your
randomized design is better.

7.84 Does ad placement matter?

Corporate advertising tries to enhance the image of the corporation. A study compared two ads from
two sources, the Wall Street Journal and the National Enquirer. Subjects were asked to pretend that
their company was considering a major investment in Performax, the fictitious sportswear firm in the
ads. Each subject was asked to respond to the question “How trustworthy was the source in the
sportswear company ad for Performax?” on a 7-point scale. Higher values indicated more
trustworthiness.34 Here is a summary of the results:

Ad source n x¯ s
Wall Street Journal 66 4.77 1.50
National Enquirer 61 2.43 1.64

(a) Compare the two sources of ads using a t test. Be sure to state your null and alternative
hypotheses, the test statistic with degrees of freedom, the P-value, and your conclusion.
(b) Give a 95% confidence interval for the difference.
(c) Write a short paragraph summarizing the results of your analyses.

 7.85 Size of trees in the northern and southern halves

The study of 584 longleaf pine trees in the Wade Tract in Thomas County, Georgia, had several
purposes. Are trees in one part of the tract more or less like trees in any other part of the tract or are
there differences? In Example 6.1 (page 352) we examined how the trees were distributed in the tract
and found that the pattern was not random. In this exercise we will examine the sizes of the trees. In
Exercise 7.31 (page 443) we analyzed the sizes, measured as diameter at breast height (DBH), for a
random sample of 40 trees. Here we divide the tract into northern and southern halves and take
random samples of 30 trees from each half. Here are the diameters in centimeters (cm) of the
sampled trees:

27.8 14.5 39.1 3.2 58.8 55.5 25.0 5.4 19.0 30.6
North 15.1 3.6 28.4 15.0 2.2 14.2 44.2 25.7 11.2 46.8

36.9 54.1 10.2 2.5 13.8 43.5 13.8 39.7 6.4 4.8
44.4 26.1 50.4 23.3 39.5 51.0 48.1 47.2 40.3 37.4

South 36.8 21.7 35.7 32.0 40.4 12.8 5.6 44.3 52.9 38.0
2.6 44.6 45.5 29.1 18.7 7.0 43.8 28.3 36.9 51.6

(a) Use a back-to-back stemplot and side-by-side boxplots to examine the data graphically. Describe
the patterns in the data.

(b) Is it appropriate to use the methods of this section to compare the mean DBH of the trees in the
north half of the tract with the mean DBH of the trees in the south half? Give reasons for your
answer.
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(c) What are appropriate null and alternative hypotheses for comparing the two samples of tree
DBHs? Give reasons for your choices.

(d) Perform the significance test. Report the test statistic, the degrees of freedom, and the P-value.
Summarize your conclusion.

(e) Find a 95% confidence interval for the difference in mean DBHs. Explain how this interval
provides additional information about this problem.

7.86 Size of trees in the eastern and western halves

Refer to the previous exercise. The Wade Tract can also be divided into eastern and western halves.

Here are the DBHs of 30 randomly selected longleaf pine trees from each half:  EWPINES

23.5 43.5 6.6 11.5 17.2 38.7 2.3 31.5 10.5 23.7
East 13.8 5.2 31.5 22.1 6.7 2.6 6.3 51.1 5.4 9.0

43.0 8.7 22.8 2.9 22.3 43.8 48.1 46.5 39.8 10.9
17.2 44.6 44.1 35.5 51.0 21.6 44.1 11.2 36.0 42.1

West 3.2 25.5 36.5 39.0 25.9 20.8 3.2 57.7 43.3 58.0
21.7 35.6 30.9 40.6 30.7 35.6 18.2 2.9 20.4 11.4

Using the questions in the previous exercise, analyze these data.

7.87 Sales of a small appliance across months

A market research firm supplies manufacturers with estimates of the retail sales of their products
from samples of retail stores. Marketing managers are prone to look at the estimate and ignore
sampling error. Suppose that an SRS of 70 stores this month shows mean sales of 53 units of a small
appliance, with standard deviation 12 units. During the same month last year, an SRS of 55 stores
gave mean sales of 50 units, with standard deviation 10 units. An increase from 50 to 53 is a rise of
6%. The marketing manager is happy because sales are up 6%.

(a) Use the two-sample t procedure to give a 95% confidence interval for the difference in mean
number of units sold at all retail stores.

(b) Explain in language that the manager can understand why he cannot be certain that sales rose by
6%, and that in fact sales may even have dropped.

7.88 An improper significance test

A friend has performed a significance test of the null hypothesis that two means are equal. His report
states that the null hypothesis is rejected in favor of the alternative that the first mean is larger than
the second. In a presentation on his work, he notes that the first sample mean was larger than the
second mean and this is why he chose this particular one-sided alternative.

(a) Explain what is wrong with your friend’s procedure and why.

(b) Suppose that he reported t = 1.70 with a P-value of 0.06. What is the correct P-value that he
should report?

7.89 Breast-feeding versus baby formula
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A study of iron deficiency among infants compared samples of infants following different feeding
regimens. One group contained breast-fed infants, while the infants in another group were fed a
standard baby formula without any iron supplements. Here are summary results on blood
hemoglobin levels at 12 months of age:35

Group n x¯ s
Breast-fed 23 13.3 1.7
Formula 19 12.4 1.8

(a) Is there significant evidence that the mean hemoglobin level is higher among breast-fed babies?
State H0 and Ha and carry out a t test. Give the P-value. What is your conclusion?

(b) Give a 95% confidence interval for the mean difference in hemoglobin level between the two
populations of infants.

(c) State the assumptions that your procedures in parts (a) and (b) require in order to be valid.

7.90 Revisiting the sadness and spending study

In Exercise 7.71 (page 468), the purchase price of a water bottle was analyzed using the two-sample
t procedures that do not assume equal standard deviations. Compare the means using a significance
test and find the 95% confidence interval for the difference using the pooled methods. How do the

results compare with those you obtained in Exercise 7.71?  BPREF

7.91 Revisiting wine labels with animals

In Exercise 7.72 (page 469), attitudes toward a product were compared using the two-sample t
procedures that do not assume equal standard deviations. Compare the means using a significance
test and find the 95% confidence interval for the difference using the pooled methods. How do the
results compare with those you obtained in Exercise 7.72?

7.92 Revisiting dietary composition

In Exercise 7.75 (page 469), the total amount of fats was analyzed using the two-sample t procedures
that do not assume equal standard deviations. Examine the standard deviations for the two groups
and verify that it is appropriate to use the pooled procedures for these data. Compare the means
using a significance test and find the 95% confidence interval for the difference using the pooled
methods. How do the results compare with those you obtained in Exercise 7.75?

7.93 Revisiting the size of trees

Refer to the Wade Tract DBH data in Exercise 7.85 (page 471), where we compared a sample of
trees from the northern half of the tract with a sample from the southern half. Because the standard
deviations for the two samples are quite close, it is reasonable to analyze these data using the pooled
procedures. Perform the significance test and find the 95% confidence interval for the difference in
means using these methods. Summarize your results and compare them with what you found in

Exercise 7.85.  NSPINES

7.94 Revisiting the food-timing study
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Example 7.16 (page 456) gives summary statistics for weight loss in early eaters and late eaters. The
two sample standard deviations are quite similar, so we may be willing to assume equal population
standard deviations. Calculate the pooled t test statistic and its degrees of freedom from the summary
statistics. Use Table D to assess significance. How do your results compare with the unpooled
analysis in the example?

7.95 Computing the degrees of freedom

Use the Wade Tract data in Exercise 7.85 to calculate the software approximation to the degrees of
freedom using the formula on page 460. Verify your calculation with software.

7.96 Again computing the degrees of freedom

Use the Wade Tract data in Exercise 7.86 to calculate the software approximation to the degrees of
freedom using the formula on page 460. Verify your calculation with software.

7.97 Revisiting the dust exposure study

The data on occupational exposure to dust that we analyzed in Exercise 7.77 (page 470) come from
two groups of workers that are quite different in size. This complicates the issue regarding pooling
because the sample that is larger will dominate the calculations.

(a) Calculate the software approximation to the degrees of freedom using the formula on page 460.
Then verify your calculations with software.

(b) Find the pooled estimate of the standard deviation. Write a short summary comparing it with the
estimates of the standard deviations that come from each group.

(c) Find the standard error of the difference in sample means that you would use for the method that
does not assume equal variances. Do the same for the pooled approach. Compare these two estimates
with each other.

(d) Perform the significance test and find the 95% confidence interval using the pooled methods.
How do these results compare with those you found in Exercise 7.77?

(e) Exercise 7.78 has data for the same workers but for respirable dust. Here the standard deviations
differ more than those in Exercise 7.77 do. Answer parts (a) through (d) for these data. Write a
summary of what you have found in this exercise.

7.98 Revisiting the small-sample example

Refer to Example 7.17 (page 457). This is a case where the sample sizes are quite small. With only 5
observations per group, we have very little information to make a judgment about whether the
population standard deviations are equal. The potential gain from pooling is large when the sample

sizes are small. Assume that we will perform a two-sided test using the 5% significance level. 
EATER

(a) Find the critical value for the unpooled t test statistic that does not assume equal variances. Use
the minimum of n1 − 1 and n2 − 1 for the degrees of freedom.

(b) Find the critical value for the pooled t test statistic.

(c) How does comparing these critical values show an advantage of the pooled test?
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7.3 Other Topics in Comparing Distributions

When you complete this section, you will be able to

• Perform an F test for the equality of two variances.

• Argue why this F test is of very little value in practice. In other words,
identify when this test can be used and, more importantly, when it cannot.

• Determine the sample size necessary to have adequate power to detect a
scaled difference in means of size ί.

In this section we discuss three topics that are related to the material that we
have already covered in this chapter. If we can do inference for means, it is natural
to ask if we can do something similar for spread. The answer is Yes, but there are
many cautions. We also discuss robustness and show how to find the power for the
two-sample t test. If you plan to design studies, you should become familiar with
this last topic.

Inference for population spread

The two most basic descriptive features of a distribution are its center and spread.
In a Normal population, these aspects are measured by the mean and the standard
deviation. We have described procedures for inference about population means for
Normal populations and found that these procedures are often useful for non-
Normal populations as well. It is natural to turn next to inference about the
standard deviations of Normal populations. Our recommendation here is short and
clear: don’t do it without expert advice.

We will describe the F test for comparing the spread of two Normal
populations. Unlike the t procedures for means, the F test and other procedures for
standard deviations are extremely sensitive to non-Normal distributions. This lack
of robustness does not improve in large samples. It is difficult in practice to tell
whether a significant P-value is evidence of unequal population spreads or simply
evidence that the populations are not Normal. Consequently, we do not recommend
use of inference about population standard deviations in basic statistical practice.36

It was once common to test equality of standard deviations as a preliminary to
performing the pooled two-sample t test for equality of two population means. It is
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better practice to check the distributions graphically, with special attention to
skewness and outliers, and to use the software-based two-sample t that does not
require equal standard deviations. In the words of one distinguished statistician,
“To make a preliminary test on variances is rather like putting to sea in a rowing
boat to find out whether conditions are sufficiently calm for an ocean liner to leave
port!”37

The F test for equality of spread

Because of the limited usefulness of procedures for inference about the standard
deviations of Normal distributions, we will present only one such procedure.
Suppose that we have independent SRSs from two Normal populations, a sample
of size n1 from N(μ1, σ1) and a sample of size n2 from N(μ2, σ2). The population
means and standard deviations are all unknown. The hypothesis of equal spread

H0:σ1 = σ2

is tested against

Ha σ1 ≠ σ2

by a simple statistic, the ratio of the sample variances.

The F Statistic and F Distributions

When s12 and s22 are sample variances from independent SRSs of sizes n1
and n2 drawn from Normal populations, the F statistic

F=s12s22

has the F distribution with n1 − 1 and n2 − 1 degrees of freedom when H0:σ1
= σ2 is true.
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FIGURE 7.18
The density curve for the F(9, 10) distribution. The F distributions are skewed to the right.

The F distributions are a family of distributions with two parameters: the
degrees of freedom of the sample variances in the numerator and denominator of
the F statistic. The F distributions are another of R. A. Fisher’s contributions to
statistics and are called F in his honor. Fisher introduced F statistics for comparing
several means. We will meet these useful statistics in later chapters.

F distributions

Our brief notation will be F(j, k) for the F distribution with F degrees of
freedom in the numerator and k degrees of freedom in the denominator. The
numerator degrees of freedom are always mentioned first. Interchanging the
degrees of freedom changes the distribution, so the order is important. The F
distributions are not symmetric but are right-skewed. The density curve in Figure
7.18 illustrates the shape. Because sample variances cannot be negative, the F
statistic takes only positive values and the F distribution has no probability below
0. The peak of the F density curve is near 1; values far from 1 in either direction
provide evidence against the hypothesis of equal standard deviations.

Tables of F critical values are awkward because a separate table is needed for
every pair of degrees of freedom j and k Table E in the back of the book gives
upper P critical values of the F distributions for P = 0.10, 0.05, 0.025, 0.01, and
0.001. For example, these critical values for the F(9, 10) distribution shown in
Figure 7.18 are

p 0.10 0.05 0.025 0.01 0.001
F* 2.35 3.02 3.78 4.94 8.96
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The skewness of F distributions causes additional complications. In the
symmetric Normal and t distributions, the point with probability 0.05 below it is
just the negative of the point with probability 0.05 above it. This is not true for F
distributions. We therefore require either tables of both the upper and lower tails or
a way to eliminate the need for lower-tail critical values. Statistical software that
eliminates the need for tables is plainly very convenient. If you do not use
statistical software, arrange the F test as follows:

1. Take the test statistic to be

F=larger s2smaller s2

This amounts to naming the populations so that s12 is the larger of the
observed sample variances. The resulting F is always 1 or greater.

2. Compare the value of F with the critical values from Table E. Then double
the probabilities obtained from the table to get the P-value for the two-sided
F test.

The idea is that we calculate the probability in the upper tail and double to
obtain the probability of all ratios on either side of 1 that are at least as improbable
as that observed. Remember that the order of the degrees of freedom is important
in using Table E.

Example

7.22 Comparing calcium and placebo groups

Example 7.19 (page 462) recounts a medical experiment comparing the effects
of calcium and a placebo on the blood pressure of black men. The analysis
(Example 7.20) employed the pooled two-sample t procedures. Because these
procedures require equal population standard deviations, it is tempting to first
test

H0:σ1 = σ2

Ha:σ1 ≠ σ2

The larger of the two sample standard deviations is s = 8.743 from 10
observations. The other is s = 5.901 from 11 observations. The two-sided test
statistic is therefore
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F=larger s2smaller s2=8.74325.9012=2.20

We compare the calculated value F = 2.20 with critical points for the F(9, 10)
distribution. Table E shows that 2.20 is less than the 0.10 critical value of the
F(9, 10) distribution, which is F* = 2.35. Doubling 0.10, we know that the
observed F falls short of the 0.20 significance level. The results are not
significant at the 20% level (or any lower level). Statistical software shows
that the exact upper-tail probability is 0.118, and hence P = 0.236. If the
populations were Normal, the observed standard deviations would give little
reason to suspect unequal population standard deviations. Because one of the
populations shows some non-Normality, however, we cannot be fully
confident of this conclusion.

USE YOUR KNOWLEDGE

7.99 The F statistic

The F statistic F=s12/s22 is calculated from samples of size n1 = 13 and
n2 = 22.

(a) What is the upper critical value for this F when using the 0.05 significance level?

(b) In a test of equality of standard deviations against the two-sided alternative, this statistic
has the value F = 2.45. Is this value significant at the 5% level? Is it significant at the 10%
level?

Robustness of Normal inference procedures

We have claimed that

• The t procedures for inference about means are quite robust against non-Normal population distributions.
These procedures are particularly robust when the population distributions are symmetric and (for the two-
sample case) when the two sample sizes are equal.

• The F test and other procedures for inference about variances are so lacking in robustness as to be of little
use in practice.

Simulations with a large variety of non-Normal distributions support these
claims. One set of simulations was carried out with samples of size 25 and used
significance tests with fixed level α = 0.05. The three types of tests studied were
the one-sample and pooled two-sample t tests and the F test for comparing two
variances.

The robustness of the one-sample and two-sample t procedures is remarkable.
The true significance level remains between about 4% and 6% for a large range of
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populations. The t test and the corresponding confidence intervals are among the
most reliable tools that statisticians use. Remember, however, that outliers can
greatly disturb the t procedures. Also, two-sample procedures are less robust when
the sample sizes are not similar.

The lack of robustness of the tests for variances is equally remarkable. The true
significance levels depart rapidly from the target 5% as the population distribution
departs from Normality. The two-sided F test carried out with 5% critical values
can have a true level of less than 1% or greater than 11% even in symmetric
populations with no outliers. Results such as these are the basis for our
recommendation that these procedures not be used.

The power of the two-sample t test

The two-sample t test is one of the most used statistical procedures. Unfortunately,
because of inadequate planning, users frequently fail to find evidence for the
effects that they believe to be true. Power calculations should be part of the
planning of any statistical study. Information from a pilot study or previous
research is needed.

In Section 7.1, we learned how to find an approximation for the power of the
one-sample t test. The basic concepts (three steps) for the two-sample case are the
same. Here, we give the exact method, which involves a new distribution, the
noncentral t distribution. To perform the calculations, we simply need software
to calculate probabilities for this distribution.

noncentral t distribution

We first present the method for the pooled two-sample t test, where the
parameters are μ1 − μ2, and the common standard deviation is σ. We then describe
modifications to get approximate results when we do not pool.

To find the power for the pooled two-sample t test, use the following steps. We
consider only the case where the null hypothesis is μ1 − μ2 = 0.

1. Specify

(a) an alternative value for μ1 − μ2 that you consider important to detect;

(b) the sample sizes, n1 and n2;

(c) a fixed significance level, α;
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(d) a guess at the standard deviation, σ;

2. Find the degrees of freedom df = n1 + n2 − 2 and the value of t* that will lead to
rejection of H0.

3. (a) Calculate the noncentrality parameter

Δ=|μ1−μ2|σ1n1+1n2

(b) Find the power as the probability that a noncentral t random variable with
degrees of freedom df and noncentrality parameter δ will be greater than t*. In
SAS the command is 1-PROBT(tstar,df,delta). In R the command is 1-
pt(tstar,df,delta). If you do not have software that can perform this calculation,
you can approximate the power as the probability that a standard Normal
random variable is greater than t* − δ, that is, P(z > t* − δ) and use Table A.

Note that the denominator in the noncentrality parameter,

σ1n1+1n2

is our guess at the standard deviation for the difference between the sample means.
Therefore, if we wanted to assess a possible study in terms of the margin of error
for the estimated difference, we would examine t* times this quantity.

If we do not assume that the standard deviations are equal, we need to guess
both standard deviations and then combine these for our guess at the standard
deviation:

σ12n1+σ22n2

This guess is then used in the denominator of the noncentrality parameter. For the
degrees of freedom, the conservative approximation is appropriate.

Example

7.23 Planning a new study of calcium versus placebo groups

In Example 7.20 (page 464) we examined the effect of calcium on blood
pressure by comparing the means of a treatment group and a placebo group
using a pooled two-sample t test. The P-value was 0.059, failing to achieve the
usual standard of 0.05 for statistical significance. Suppose that we wanted to
plan a new study that would provide convincing evidence—say, at the 0.01
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level—with high probability. Let’s examine a study design with 45 subjects in
each group (n1 = n2 45) to see if this meets our goals.

Step 1. Based on our previous results, we choose μ1 − μ2 = 5 as an alternative
that we would like to be able to detect with α = 0.01. For σ we use 7.4, our
pooled estimate from Example 7.20.

Step 2. The degrees of freedom are n1 + n2 = 88 which leads to t* = 2.37 for
the significance test.

Step 3. The noncentrality parameter is

Δ=57.4145+145=51.56=3.21

Software gives the power as 0.7965, or 80%. The Normal approximation gives
0.7983, a very accurate result.

With this choice of sample sizes, we are just barely below 80% power. If
we judge this to be enough power, we can proceed to the recruitment of our
samples. With n1 = n2 =45, we would expect the margin of error for a 95%
confidence interval (t* = 1.99) for the difference in means to be

t*×7.4145+145=1.99×1.56=3.1

With software it is very easy to examine the effects of variations in a study
design. In the preceding example, we might want to examine the power for α =
0.05 and for smaller sample sizes.

USE YOUR KNOWLEDGE

7.100 Power and μ1 − μ2

If you repeat the calculation in Example 7.23 for other values of μ1 − μ2
that are larger than 5, would you expect the power to be higher or lower
than 0.7965? Why?

7.101 Power and the standard deviation

If the true population standard deviation were 7.1 instead of the 7.4
hypothesized in Example 7.23, would the power for this new experiment
be greater or smaller than 0.7965? Explain.

Section 7.3 Summary
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Inference procedures for comparing the standard deviations of two Normal
populations are based on the F statistic, which is the ratio of sample variances:

F=s12s22

If an SRS of size n1 is drawn from the x1 population and an independent SRS of
size n2 is drawn from the x2 population, the F statistic has the F distribution F(n1
− 1, n2 − 1) if the two population standard deviations σ1 and σ2 are in fact equal.

The F test for equality of standard deviations tests H0:σ1 = σ2 versus Haσ1 ≠
σ2 using the statistic

F=larger s2smaller s2

and doubles the upper-tail probability to obtain the P-value.
The t procedures are quite robust when the distributions are not Normal. The F

tests and other procedures for inference about the spread of one or more Normal
distributions are so strongly affected by non-Normality that we do not recommend
them for regular use.

The power of the pooled two-sample t test is found by first computing the
critical value for the significance test, the degrees of freedom, and the
noncentrality parameter for the alternative of interest. These are used to find the
power from the noncentral t distribution. A Normal approximation works quite
well. Calculating margins of error for various study designs and assumptions is an
alternative procedure for evaluating designs.

SECTION 7.3 Exercises
For Exercise 7.99, see page 476; and for Exercises 7.100 and 7.101, see page 479.

In all exercises calling for use of the F test, assume that both population distributions are very close to
Normal. The actual data are not always sufficiently Normal to justify use of the F test.

7.102 Comparison of standard deviations

Here are some summary statistics from two independent samples from Normal distributions:

Sample n s2

1 11 3.5
2 16 9.1

You want to test the null hypothesis that the two population standard deviations are equal versus the two-
sided alternative at the 5% significance level.

(a) Calculate the test statistic.

(b) Find the appropriate value from Table E that you need to perform the significance test.

(c) What do you conclude?
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7.103 Revisiting the eating-group comparison

Compare the standard deviations of weight loss in Example 7.16 (page 456). Give the test statistic, the
degrees of freedom, and the P-value. Write a short summary of your analysis, including comments on the
assumptions for the test.

7.104 A fat intake comparison

Compare the standard deviations of fat intake in Exercise 7.75 (page 469).

(a) Give the test statistic, the degrees of freedom, and the P-value. Write a short summary of your analysis,
including comments on the assumptions for the test.

(b) Assume that the sample standard deviation for the late-eaters group is the value 8.2 given in Exercise
7.75. How large would the standard deviation in the early-eaters group need to be to reject the null
hypothesis of equal standard deviations at the 5% level?

7.105 Revisiting the dust exposure study

The two-sample problem in Exercise 7.77 (page 470) compares drill and blast workers with outdoor
concrete workers with respect to the total dust that they are exposed to in the workplace. Here it may be
useful to know whether or not the standard deviations differ in the two groups. Perform the F test and
summarize the results. Are you concerned about the assumptions here? Explain why or why not.

7.106 More on the dust exposure study

Exercise 7.78 (page 470) is similar to Exercise 7.77, but the response variable here is exposure to dust
particles that can enter and stay in the lungs. Compare the standard deviations with a significance test and
summarize the results. Be sure to comment on the assumptions.

7.107 Revisiting the size of trees in the north and south

The diameters of trees in the Wade Tract for random samples selected from the north and south halves of
the tract are compared in Exercise 7.85 (page 471). Is there a statistically significant difference between the
standard deviations for these two parts of the tract? Perform the significance test and summarize the

results. Does the Normal assumption appear reasonable for these data?  NSPINES

7.108 Revisiting the size of trees in the east and west

Tree diameters for the east and west halves of the Wade Tract are compared in Exercise 7.86 (page 472).

Using the questions in the previous exercise as a guide, analyze these data.  EWPINES

7.109 Revisiting the small-sample example

In Example 7.17 (page 457), we addressed a study with only 5 observations per group.  EATER

(a) Is there a statistically significant difference between the standard deviations of these two groups?
Perform the test using a significance level of 0.05 and state your conclusion.
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(b) Using Table E, state the value that the ratio of variances would need to exceed for us to reject the null
hypothesis (at the 5% level) that the standard deviations are equal. Also, report this value for sample sizes
of n = 4, 3, and 2. What does this suggest about the power of this test when sample sizes are small?

7.110 Planning a study to compare tree size

In Exercise 7.85 (page 471) DBH data for longleaf pine trees in two parts of the Wade Tract are compared.
Suppose that you are planning a similar study in which you will measure the diameters of longleaf pine
trees. Based on Exercise 7.85, you are willing to assume that the standard deviation for both halves is 20
cm. Suppose that a difference in mean DBH of 10 cm or more would be important to detect. You will use a
t statistic and a two-sided alternative for the comparison.

(a) Find the power if you randomly sample 20 trees from each area to be compared.

(b) Repeat the calculations for 60 trees in each sample.

(c) If you had to choose between the 20 and 60 trees per sample, which would you choose? Give reasons
for your answer.

7.111 More on planning a study to compare tree size

Refer to the previous exercise. Find the two standard deviations from Exercise 7.85. Do the same for the
data in Exercise 7.86, which is a similar setting. These are somewhat smaller than the assumed value that
you used in the previous exercise. Explain why it is generally a better idea to assume a standard deviation
that is larger than you expect than one that is smaller. Repeat the power calculations for some other
reasonable values of σ and comment on the impact of the size of σ for planning the new study.

7.112 Planning a study to compare ad placement

Refer to Exercise 7.84 (page 471), where we compared trustworthiness ratings for ads from two different
publications. Suppose that you are planning a similar study using two different publications that are not
expected to show the differences seen when comparing the Wall Street Journal with the National Enquirer.
You would like to detect a difference of 1.5 points using a two-sided significance test with a 5% level of
significance. Based on Exercise 7.84, it is reasonable to use 1.6 as the value of the common standard
deviation for planning purposes.

(a) What is the power if you use sample sizes similar to those used in the previous study—for example, 65
for each publication?

(b) Repeat the calculations for 100 in each group.

(c) What sample size would you recommend for the new study?
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CHAPTER 7 Exercises

7.113 LSAT scores

The scores of four senior roommates on the Law School Admission Test (LSAT) are

156   133   147   122
Find the mean, the standard deviation, and the standard error of the mean. Is it appropriate to

calculate a confidence interval based on these data? Explain why or why not.  LSAT

7.114 Converting a two-sided P-value

You use statistical software to perform a significance test of the null hypothesis that two means are
equal. The software reports a P-value for the two-sided alternative. Your alternative is that the first
mean is greater than the second mean.

(a) The software reports t = 2.08 with a P-value of 0.068. Would you reject H0 at α Explain your
answer.

(b) The software reports t = −2.08 with a P-value of 0.068. Would you reject H0 at α = 0.05?
Explain your answer.

7.115 Degrees of freedom and confidence interval width

As the degrees of freedom increase, the t distributions get closer and closer to the z (N(0, 1))
distribution. One way to see this is to look at how the value of t* for a 95% confidence interval
changes with the degrees of freedom. Make a plot with degrees of freedom from 2 to 100 on the x
axis and t* on the y axis. Draw a horizontal line on the plot corresponding to the value of z* = 1.96.
Summarize the main features of the plot.

7.116 Degrees of freedom and t*

Refer to the previous exercise. Make a similar plot for a 90% confidence interval. How do the main
features of this plot compare with those of the plot in the previous exercise?

7.117 Sample size and margin of error

The margin of error for a confidence interval depends on the confidence level, the standard
deviation, and the sample size. Fix the confidence level at 95% and the standard deviation at 1 to
examine the effect of the sample size. Find the margin of error for sample sizes of 5 to 100 by 5s—
that is, let n = 5, 10, 15, ..., 100. Plot the margins of error versus the sample size and summarize the
relationship.
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7.118 More on sample size and margin of error

Refer to the previous exercise. Make a similar plot and summarize its features for a 99% confidence
interval.

7.119 Which design?

The following situations all require inference about a mean or means. Identify each as (1) a single
sample, (2) matched pairs, or (3) two independent samples. Explain your answers.

(a) Your customers are college students. You are interested in comparing the interest in a new
product that you are developing between those students who live in the dorms and those who live
elsewhere.

(b) Your customers are college students. You are interested in finding out which of two new product
labels is more appealing.

(c) Your customers are college students. You are interested in assessing their interest in a new
product.

7.120 Which design?

The following situations all require inference about a mean or means. Identify each as (1) a single
sample, (2) matched pairs, or (3) two independent samples. Explain your answers.

(a) You want to estimate the average age of your store’s customers.

(b) You do an SRS survey of your customers every year. One of the questions on the survey asks
about customer satisfaction on a seven-point scale with the response 1 indicating “very dissatisfied”
and 7 indicating “very satisfied.” You want to see if the mean customer satisfaction has improved
from last year.

(c) You ask an SRS of customers their opinions on each of two new floor plans for your store.

7.121 Number of critical food violations

The results of a major city’s restaurant inspections are available through its online newspaper.38
Critical food violations are those that put patrons at risk of getting sick and must immediately be
corrected by the restaurant. An SRS of n = 200 inspections from the more than 16,000 inspections
since January 2009 were collected, resulting in x¯ = 0.83 violations and s = 0.95 violations.

(a) Test the hypothesis that the average number of critical violations is less than 1.5 using a
significance level of 0.05. State the two hypotheses, the test statistic, and P-value.

(b) Construct a 95% confidence interval for the average number of critical violations and summarize
your result.

(c) Which of the two summaries (significance test versus confidence interval) do you find more
helpful in this case? Explain your answer.

(d) These data are integers ranging from 0 to 9. The data are also skewed to the right, with 70% of
the values either a 0 or a 1. Given this information, do you think use of the t procedures is
appropriate? Explain your answer.
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7.122 Two-sample t test versus matched pairs t test

Consider the following data set. The data were actually collected in pairs, and each row represents a

pair.  PAIRED

Group 1 Group 2
48.86 48.88
50.60 52.63
51.02 52.55
47.99 50.94
54.20 53.02
50.66 50.66
45.91 47.78
48.79 48.44
47.76 48.92
51.13 51.63

(a) Suppose that we ignore the fact that the data were collected in pairs and mistakenly treat this as a
two-sample problem. Compute the sample mean and variance for each group. Then compute the
two-sample t statistic, degrees of freedom, and P-value for the two-sided alternative.

(b) Now analyze the data in the proper way. Compute the sample mean and variance of the
differences. Then compute the t statistic, degrees of freedom, and P-value.

(c) Describe the differences in the two test results.

7.123 Two-sample t test versus matched pairs t test, continued

Refer to the previous exercise. Perhaps an easier way to see the major difference in the two analysis
approaches for these data is by computing 95% confidence intervals for the mean difference.

(a) Compute the 95% confidence interval using the two-sample t confidence interval.

(b) Compute the 95% confidence interval using the matched pairs t confidence interval.

(c) Compare the estimates (that is, the centers of the intervals) and margins of error. What is the
major difference between the two approaches for these data?

7.124 Average service time

Recall the drive-thru study in Exercise 7.73 (page 469). Another benchmark that was measured was
the service time. A summary of the results (in seconds) for two of the chains is shown below.

Chain n x¯ s
Taco Bell 307 149.69 35.7
McDonald’s 362 188.83 42.8

(a) Is there a difference in the average service time between these two chains? Test the null
hypothesis that the chains’ average service time is the same. Use a significance level of 0.05.

(b) Construct a 95% confidence interval for the difference in average service time.
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(c) Lex plans to go to Taco Bell and Sam to McDonald’s. Does the interval in part (b) contain the
difference in their service times that they’re likely to encounter? Explain your answer.

7.125 Interracial friendships in college

A study utilized the random roommate assignment process of a small college to investigate the
interracial mix of friends among students in college.39 As part of this study, the researchers looked
at 238 white students who were randomly assigned a roommate in their first year and recorded the
proportion of their friends (not including the first-year roommate) who were black. The following
table summarizes the results, broken down by roommate race, for the middle of the first and third
years of college.

Middle of First Year
Randomly assigned n x¯ s
Black roommate 41 0.085 0.134
White roommate 197 0.063 0.112

Middle of Third Year
Randomly assigned n x¯ s
Black roommate 41 0.146 0.243
White roommate 197 0.062 0.154

(a) Proportions are not Normally distributed. Explain why it may still be appropriate to use the t
procedures for these data.

(b) For each year, state the null and alternative hypotheses for comparing these two groups.

(c) For each year, perform the significance test at the α = 0.05 level, making sure to report the test
statistic, degrees of freedom, and P-value.

(d) Write a one-paragraph summary of your conclusions from these two tests.

7.126 Interracial friendships in college, continued

Refer to the previous exercise. For each year, construct a 95% confidence interval for the difference
in means μ1 − μ2 and describe how these intervals can be used to test the null hypotheses in part (b)
of the previous exercise.

7.127 Alcohol consumption and body composition

Individuals who consume large amounts of alcohol do not use the calories from this source as
efficiently as calories from other sources. One study examined the effects of moderate alcohol
consumption on body composition and the intake of other foods. Fourteen subjects participated in a
crossover design where they either drank wine for the first 6 weeks and then abstained for the next 6
weeks or vice versa.40 During the period when they drank wine, the subjects, on average, lost 0.4
kilograms (kg) of body weight; when they did not drink wine, they lost an average of 1.1 kg. The
standard deviation of the difference between the weight lost under these two conditions is 8.6 kg.
During the wine period, they consumed an average of 2589 calories; with no wine, the mean
consumption was 2575. The standard deviation of the difference was 210.

(a) Compute the differences in means and the standard errors for comparing body weight and caloric
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intake under the two experimental conditions.

(b) A report of the study indicated that there were no significant differences in these two outcome
measures. Verify this result for each measure, giving the test statistic, degrees of freedom, and the P-
value.

(c) One concern with studies such as this, with a small number of subjects, is that there may not be
sufficient power to detect differences that are potentially important. Address this question by
computing 95% confidence intervals for the two measures and discuss the information provided by
the intervals.

(d) Here are some other characteristics of the study. The study periods lasted for 6 weeks. All
subjects were males between the ages of 21 and 50 years who weighed between 68 and 91 kg. They
were all from the same city. During the wine period, subjects were told to consume two 135-
milliliter (ml) servings of red wine per day and no other alcohol. The entire 6-week supply was
given to each subject at the beginning of the period. During the other period, subjects were
instructed to refrain from any use of alcohol. All subjects reported that they complied with these
instructions except for three subjects, who said that they drank no more than three to four 12-ounce
bottles of beer during the no-alcohol period. Discuss how these factors could influence the
interpretation of the results.

7.128 Brain training

The assessment of computerized brain-training programs is a rapidly growing area of research.
Researchers are now focusing on who this training benefits most, what brain functions can be best
improved, and which products are most effective. One study looked at 487 community-dwelling
adults aged 65 and older, each randomly assigned to one of two training groups. In one group, the
participants used a computerized program for 1 hour per day. In the other, DVD-based educational
programs were shown with quizzes following each video. The training period lasted 8 weeks. The
response was the improvement in a composite score obtained from an auditory memory/attention
survey given before and after the 8 weeks.41 The results are summarized in the following table.

Group n x¯ s
Computer program 242 3.9 8.28
DVD program 245 1.8 8.33

(a) Given that there are other studies showing a benefit of computerized brain training, state the null
and alternative hypotheses.

(b) Report the test statistic, its degrees of freedom, and the P-value. What is your conclusion using
significance level α = 0.05?

(c) Can you conclude that this computerized brain training always improves a person’s auditory
memory better than the DVD program? If not, explain why.

7.129 Can mockingbirds learn to identify specific humans?

A central question in urban ecology is why some animals adapt well to the presence of humans and
others do not. The following results summarize part of a study of the northern mockingbird (Mimus
polyglottos) that took place on a campus of a large university.42 For 4 consecutive days, the same
human approached a nest and stood 1 meter away for 30 seconds, placing his or her hand on the rim
of the nest. On the 5th day, a new person did the same thing. Each day, the distance of the human
from the nest when the bird flushed was recorded. This was repeated for 24 nests. The human
intruder varied his or her appearance (that is, wore different clothes) over the 4 days. We report
results for only Days 1, 4, and 5 here. The response variable is flush distance measured in meters.
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Day Mean s
1 6.1 4.9
4 15.1 7.3
5 4.9 5.3

(a) Explain why this should be treated as a matched design.

(b) Unfortunately, the research article does not provide the standard error of the difference, only the
standard error of the mean flush distance for each day. However, we can use the general addition
rule for variances (page 275) to approximate it. If we assume that the correlation between the flush
distance at Day 1 and Day 4 for each nest is ρ = 0.40, what is the standard deviation for the
difference in distance?

(c) Using your result in part (b), test the hypothesis that there is no difference in the flush distance
across these two days. Use a significance level of 0.05.

(d) Repeat parts (b) and (c) but now compare Day 1 and Day 5, assuming a correlation between flush
distances for each nest of ρ = 0.30.

(e) Write a brief summary of your conclusions.

7.130 The wine makes the meal?

In one study, 39 diners were given a free glass of cabernet sauvignon wine to accompany a French
meal.43 Although the wine was identical, half the bottle labels claimed the wine was from California
and the other half claimed it was from North Dakota. The following table summarizes the grams of
entrée and wine consumed during the meal.

Wine label n Mean St. dev.
Entrée California 24 499.8 87.2

North Dakota 15 439.0 89.2
Wine California 24 100.8 23.3

North Dakota 15 110.4 9.0

Did the patrons who thought that the wine was from California consume more? Analyze the data and
write a report summarizing your work. Be sure to include details regarding the statistical methods
you used, your assumptions, and your conclusions.

7.131 Study design information

In the previous study, diners were seated alone or in groups of two, three, four, and, in one case, nine
(for a total of n =16 tables). Also, each table, not each patron, was randomly assigned a particular
wine label. Does this information alter how you might do the analysis in the previous problem?
Explain your answer.

7.132 Analysis of tree size using the complete data set

The data used in Exercises 7.31 (page 443), 7.85, and 7.86 (pages 471 and 472) were obtained by
taking simple random samples from the 584 longleaf pine trees that were measured in the Wade
Tract. The entire data set is given in the WADE data set. Find the 95% confidence interval for the
mean DBH using the entire data set, and compare this interval with the one that you calculated in
Exercise 7.31. Write a report about these data. Include comments on the effect of the sample size on
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the margin of error, the distribution of the data, the appropriateness of the Normality-based methods
for this problem, and the generalizability of the results to other similar stands of longleaf pine or

other kinds of trees in this area of the United States and other areas.  WADE

7.133 More on conditions for inference

Suppose that your state contains 85 school corporations and each corporation reports its expenditures
per pupil. Is it proper to apply the one-sample t method to these data to give a 95% confidence
interval for the average expenditure per pupil? Explain your answer.

7.134 A comparison of female high school students

A study was performed to determine the prevalence of the female athlete triad (low energy
availability, menstrual dysfunction, and low bone mineral density) in high school students.44 A total
of 80 high school athletes and 80 sedentary students were assessed. The following table summarizes
several measured characteristics:

Athletes Sedentary
Characteristic x¯ s x¯ s
Body fat (%) 25.61 5.54 32.51 8.05
Body mass index 21.60 2.46 26.41 2.73
Calcium deficit (mg) 297.13 516.63 580.54 372.77
Glasses of milk/day 2.21 1.46 1.82 1.24

(a) For each of the characteristics, test the hypothesis that the means are the same in the two groups.
Use a significance level of 0.05 for each test.

(b) Write a short report summarizing your results.

7.135 Competitive prices?

A retailer entered into an exclusive agreement with a supplier who guaranteed to provide all
products at competitive prices. The retailer eventually began to purchase supplies from other
vendors who offered better prices. The original supplier filed a legal action claiming violation of the
agreement. In defense, the retailer had an audit performed on a random sample of invoices. For each
audited invoice, all purchases made from other suppliers were examined and the prices were
compared with those offered by the original supplier. For each invoice, the percent of purchases for
which the alternate supplier offered a lower price than the original supplier was recorded.45 Here are
the data:

0 1000 10033 34 10048 78 10077 10038
681007910010010010010010089 100100

Report the average of the percents with a 95% margin of error. Do the sample invoices suggest that

the original supplier’s prices are not competitive on the average?  COMPETE

7.136 Weight-loss programs

In a study of the effectiveness of weight-loss programs, 47 subjects who were at least 20%
overweight took part in a group support program for 10 weeks. Private weighings determined each
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subject’s weight at the beginning of the program and 6 months after the program’s end. The matched
pairs t test was used to assess the significance of the average weight loss. The paper reporting the
study said, “The subjects lost a significant amount of weight over time, t(46) = 4.68, p > 0.01.” It is
common to report the results of statistical tests in this abbreviated style.46

(a) Why was the matched pairs statistic appropriate?

(b) Explain to someone who knows no statistics but is interested in weight-loss programs what the
practical conclusion is.

(c) The paper follows the tradition of reporting significance only at fixed levels such as α = 0.01. In
fact, the results are more significant than “p > 0.01” suggests. What can you say about the P-value of
the t test?

7.137 Do women perform better in school?

Some research suggests that women perform better than men in school, but men score higher on
standardized tests. Table 1.3 (page 29) presents data on a measure of school performance, grade
point average (GPA), and a standardized test, IQ, for 78 seventh-grade students. Do these data lend
further support to the previously found gender differences? Give graphical displays of the data and
describe the distributions. Use significance tests and confidence intervals to examine this question,

and prepare a short report summarizing your findings.  GRADES

7.138 Self-concept and school performance

Refer to the previous exercise. Although self-concept in this study was measured on a scale with
values in the data set ranging from 20 to 80, many prefer to think of this kind of variable as having
only two possible values: low self-concept or high self-concept. Find the median of the self-concept
scores in Table 1.3, and define those students with scores at or below the median to be low-self-
concept students and those with scores above the median to be high-self-concept students. Do high-
self-concept students have GPAs that differ from those of low-self-concept students? What about
IQ? Prepare a report addressing these questions. Be sure to include graphical and numerical

summaries and confidence intervals, and state clearly the details of significance tests.  GRADES

7.139 Behavior of pet owners

On the morning of March 5, 1996, a train with 14 tankers of propane derailed near the center of the
small Wisconsin town of Weyauwega. Six of the tankers were ruptured and burning when the 1700
residents were ordered to evacuate the town. Researchers study disasters like this so that effective
relief efforts can be designed for future disasters. About half the households with pets did not
evacuate all their pets. A study conducted after the derailment focused on problems associated with
retrieval of the pets after the evacuation and characteristics of the pet owners. One of the scales
measured “commitment to adult animals,” and the people who evacuated all or some of their pets
were compared with those who did not evacuate any of their pets. Higher scores indicate that the pet
owner is more likely to take actions that benefit the pet.47 Here are the data summaries:

Group n x¯ s
Evacuated all or some pets 116 7.95 3.62
Did not evacuate any pets 125 6.26 3.56

Analyze the data and prepare a short report describing the results.
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7.140 Occupation and diet

Do various occupational groups differ in their diets? A British study of this question compared 98
drivers and 83 conductors of London double-decker buses.48 The conductors’ jobs require more
physical activity. The article reporting the study gives the data as “Mean daily consumption (±se).”
Here are some of the study results:

Drivers Conductors
Total calories 2821 ± 44 2844 ± 48
Alcohol (grams) 0.24 ± 0.06 0.39 ± 0.11

(a) What does “se” stand for? Give x¯ and s for each of the four sets of measurements.

(b) Is there significant evidence at the 5% level that conductors consume more calories per day than
do drivers? Use the two-sample t method to give a P-value, and then assess significance.

(c) How significant is the observed difference in mean alcohol consumption? Use two-sample t
methods to obtain the P-value.

(d) Give a 95% confidence interval for the mean daily alcohol consumption of London double-
decker bus conductors.

(e) Give a 99% confidence interval for the difference in mean daily alcohol consumption between
drivers and conductors.

7.141 Occupation and diet, continued

Use of the pooled two-sample t test is justified in part (b) of the previous exercise. Explain why.
Find the P-value for the pooled t statistic, and compare it with your result in the previous exercise.

7.142 Conditions for inference

The report cited in Exercise 7.140 says that the distributions of alcohol consumption among the
individuals studied are “grossly skew.”

(a) Do you think that this skewness prevents the use of the two-sample t test for equality of means?
Explain your answer.

(b) Do you think that the skewness of the distributions prevents the use of the F test for equality of
standard deviations? Explain your answer.

7.143 Different methods of teaching reading

In the READ data set, the response variable Post3 is to be compared for three methods of teaching
reading. The Basal method is the standard, or control, method, and the two new methods are DRTA
and Strat. We can use the methods of this chapter to compare Basal with DRTA and Basal with
Strat. Note that to make comparisons among three treatments it is more appropriate to use the

procedures that we will learn in Chapter 12.  READ

(a) Is the mean reading score with the DRTA method higher than that for the Basal method? Perform
an analysis to answer this question, and summarize your results.

(b) Answer part (a) for the Strat method in place of DRTA.
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7.144 Sample size calculation

Example 7.13 (page 449) tells us that the mean height of 10-year-old girls is N(56.4, 2.7) and for
boys it is N(55.7, 3.8). The null hypothesis that the mean heights of 10-year-old boys and girls are
equal is clearly false. The difference in mean heights is 56.4 − 55.7 = 0.7 inch. Small differences
such as this can require large sample sizes to detect. To simplify our calculations, let’s assume that
the standard deviations are the same, say σ = 3.2, and that we will measure the heights of an equal
number of girls and boys. How many would we need to measure to have a 90% chance of detecting
the (true) alternative hypothesis?
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CHAPTER8 Inference for Proportions

866



8.1

8.2

Inference for a Single Proportion

Comparing Two Proportions

867



Introduction

We frequently collect data on categorical variables, such as whether or not a
person is employed, the brand name of a cell phone, or the country where a college
student studies abroad. When we record categorical variables, our data consist of
counts or of percents obtained from counts.

In these settings, our goal is to say something about the corresponding
population proportions. Just as in the case of inference about population means, we
may be concerned with a single population or with comparing two populations.
Inference about one or two proportions is very similar to inference about means,
which we discussed in Chapter 7. In particular, inference for both means and
proportions is based on sampling distributions that are approximately Normal.

We begin in Section 8.1 with inference about a single population proportion.
Section 8.2 concerns methods for comparing two proportions.
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8.1 Inference for a Single Proportion

When you complete this section, you will be able to

• Identify the sample proportion, the sample size, and the count for a single
proportion. Use this information to estimate the population proportion.

• Describe the relationship between the population proportion and the
sample proportion.

• Identify the standard error for a sample proportion and the margin of
error for confidence level C.

• Apply the guidelines for when to use the large-sample confidence interval
for a population proportion.

• Find and interpret the large-sample confidence interval for a single
proportion.

• Apply the guidelines for when to use the large-sample significance test for
a population proportion.

• Use the large-sample significance test to test a null hypothesis about a
population proportion.

• Find the sample size needed for a desired margin of error.

We want to estimate the proportion p of some characteristic in a large
population. For example, we may want to know the proportion of likely voters who
approve of the president’s conduct in office. We select a simple random sample
(SRS) of size n from the population and record the count X of “successes” (such as
“Yes” answers to a question about the president). We will use “success” to
represent the characteristic of interest. The sample proportion of successes p^=X/n
estimates the unknown population proportion p. If the population is much larger
than the sample (say, at least 20 times as large), the count X has approximately the
binomial distribution B(n,p).1 In statistical terms, we are concerned with inference
about the probability p of a success in the binomial setting.

sample proportion, p. 321
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Example

8.1 Take a break from Facebook

BREAK

A Pew Internet survey reported that 61% of Facebook users have taken a
voluntary break from Facebook of several weeks or more at one time or
another. The survey contacted 1006 adults living in the United States by
landline and cell phone. The 525 people who reported that they were Facebook
users were asked, “Have you ever voluntarily taken a break from Facebook for
a period of several weeks or more?” A total of 320 responded, “Yes, I have
done this.”2 Here, p is the proportion of adults in the population of Facebook
users who have taken a break of several weeks or more, and the sample
proportion p^ is

p^=Xn=320525=0.6095

Pew uses the sample proportion p^ to estimate the population proportion p.
Pew estimates that 61% of all adult Facebook users in the United States have
taken a break from using Facebook for several weeks or more.

USE YOUR KNOWLEDGE

8.1 Smartphones and purchases

A Google research study asked 5013 smartphone users about how they
used their phones. In response to a question about purchases, 2657
reported that they purchased an item after using their smartphone to
search for information about the item.3

(a) What is the sample size n for this survey?

(b) In this setting, describe the population proportion p in a short sentence.

(c) What is the count X? Describe the count in a short sentence.

(d) Find the sample proportion p^.
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8.2 Past usage of Facebook

Refer to the Pew Internet survey described in Example 8.1. There were
334 Internet users who don’t use Facebook. Of these, 67 reported that
they have used Facebook in the past.

(a) What is the sample size n for the population of Internet users who don’t use Facebook?

(b) In this setting, describe the population proportion p in a short sentence.

(c) What is the count X of Internet users who don’t use Facebook but have used Facebook in
the past?

(d) Find the sample proportion p^.

If the sample size n is very small, we must base tests and confidence intervals
for p on the binomial distributions. These are awkward to work with because of the
discreteness of the binomial distributions.4 But we know that when the sample is
large, both the count X and the sample proportion p^ are approximately Normal.
We will consider only inference procedures based on the Normal approximation.
These procedures are similar to those for inference about the mean of a Normal
distribution.

Large-sample confidence interval for a single proportion

The unknown population proportion p is estimated by the sample proportion
p^=X/n. If the sample size n is sufficiently large, p^ has approximately the Normal
distribution, with mean μp^=p and standard deviation σp^=p(1−p)/n. This means
that approximately 95% of the time p^ will be within 2p(1−p)/n of the unknown
population proportion p.

Normal approximation for proportions, p. 332

Note that the standard deviation σp^ depends upon the unknown parameter p To
estimate this standard deviation using the data, we replace p in the formula by the
sample proportion p^. As we did in Chapter 7, we use the term standard error for
the standard deviation of a statistic that is estimated from data. Here is a summary
of the procedure.

standard error, p. 418

LARGE-SAMPLE CONFIDENCE INTERVAL FOR A
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POPULATION PROPORTION

Choose an SRS of size n from a large population with an unknown proportion
p of successes. The sample proportion is

p^=Xn

where X is the number of successes. The standard error of p^ is

SEp^=p^(1−p^)n

and the margin of error for confidence level C is

m=z*SEp^

where the critical value z* is the value for the standard Normal density curve
with area C between −z* and z*.
An approximate level C confidence interval for p is

p^±m

Use this interval for 90%, 95%, or 99% confidence when the number of
successes and the number of failures are both at least 10.

Table D includes a line at the bottom with values of z* for selected values of C.
Use Table A for other values of C.

Example

8.2 Inference for Facebook breaks

The sample survey in Example 8.1 found that 320 of a sample of 525
Facebook users took a break from Facebook for several weeks or more. In that
example we calculated p^=0.6095. The standard error is

SEp^=p^(1−p^)n=0.6095(1−0.6095)525=0.02129

The z* critical value for 95% confidence is z*=1.96, so the margin of error is

m=1.96SEp^=(1.96)(0.02129)=0.04173

The confidence interval is

p^±m=0.61±0.04

We are 95% confident that between 57% and 65% of Facebook users took a
voluntary break of several weeks or more.
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In performing these calculations, we have kept a large number of digits for our
intermediate calculations. However, when reporting the results, we prefer to use
rounded values: for example, 61% with a margin of error of 4%. In this way we
focus attention on our major findings. There is no important information to be
gained by reporting 0.6095 with a margin of error of 0.04173.

Remember that the margin of error in any confidence interval includes only
random sampling error. If people do not respond honestly to the questions asked,
for example, your estimate is likely to miss by more than the margin of error.

Although the calculations for statistical inference for a single proportion are
relatively straightforward and can be done with a calculator or in a spreadsheet, we
prefer to use software.

Figure 8.1
The Facebook break data in an Excel spreadsheet for the confidence interval in Example 8.3.
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Example

8.3 Facebook break confidence interval using software

Figure 8.1 shows a spreadsheet that could be used as input for statistical
software that calculates a confidence interval for a proportion for our
Facebook break example. Note that 525 is the number of cases for this
example. The sheet specifies a value for each of these cases: there are 320
cases with the value “Yes” and 205 cases with the value “No.” An alternative
sheet would list all 525 cases with the values for each case.

Figure 8.2 gives output from JMP, Minitab, and SAS for these data. Each is
a little different but it is easy to find what we need. For JMP, the confidence
interval is on the line with “Level” equal to “Yes” under the headings “Lower
CL” and “Upper CL.” Minitab gives the output in the form of an interval under
the heading “95% CI.” SAS reports the interval calculated in two different
ways and uses the labels “95% Lower Conf Limit” and “95% Upper Conf
Limit.”
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Figure 8.2
(a) JMP, (b) Minitab, and (c) SAS output for the Facebook break confidence interval in
Example 8.3.

As usual, the output reports more digits than are useful. When you use software,
be sure to think about how many digits are meaningful for your purposes. Do not
clutter your report with information that is not meaningful.
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We recommend the large-sample confidence interval for 90%, 95%, and 99%
confidence whenever the number of successes and the number of failures are both
at least 10. For smaller sample sizes, we recommend exact methods that use the
binomial distribution. These are available as the default or as options in many
statistical software packages and we do not cover them here. There is also an
intermediate case between large samples and very small samples where a slight
modification of the large-sample approach works quite well.5 This method is called
the “plus four” procedure and is described next.

USE YOUR KNOWLEDGE

8.3 Smartphones and purchases

Refer to Exercise 8.1 (page 489).

(a) Find SEp^, the standard error of p^.

(b) Give the 95% confidence interval for p in the form of estimate plus or minus the margin
of error.

(c) Give the confidence interval as an interval of percents.

8.4 Past usage of Facebook

Refer to Exercise 8.2 (page 489).

(a) Find SEp^, the standard error of p^.

(b) Give the 95% confidence interval for p in the form of estimate plus or minus the margin
of error.

(c) Give the confidence interval as an interval of percents.

BEYOND THE BASICS

The plus four confidence interval for a single proportion
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Computer studies reveal that confidence intervals based on the large-sample
approach can be quite inaccurate when the number of successes and the
number of failures are not at least 10. When this occurs, a simple adjustment to
the confidence interval works very well in practice. The adjustment is based on
assuming that the sample contains 4 additional observations, 2 of which are
successes and 2 of which are failures. The estimator of the population
proportion based on this plus four rule is

p˜=X+2n+4

This estimate was first suggested by Edwin Bidwell Wilson in 1927, and we
call it the plus four estimate. The confidence interval is based on the z statistic
obtained by standardizing the plus four estimate p˜. Because p˜ is the sample
proportion for our modified sample of size n+4, it isn’t surprising that the
distribution of p˜ is close to the Normal distribution with mean p and standard
deviation p(1−p)/(n+4). To get a confidence interval, we estimate p by p˜ in
this standard deviation to get the standard error of p˜. Here is an example.

plus four estimate

Example

8.4 Percent of equol producers
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Research has shown that there are many health benefits associated with a diet
that contains soy foods. Substances in soy called isoflavones are known to be
responsible for these benefits. When soy foods are consumed, some subjects
produce a chemical called equol, and it is thought that production of equol is a
key factor in the health benefits of a soy diet. Unfortunately, not all people are
equol producers; there appear to be two distinct subpopulations: equol
producers and equol nonproducers.

A nutrition researcher planning some bone health experiments would like
to include some equol producers and some nonproducers among her subjects.
A preliminary sample of 12 female subjects were measured, and 4 were found
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to be equol producers. We would like to estimate the proportion of equol
producers in the population from which this researcher will draw her subjects.

The plus four estimate of the proportion of equol producers is

p˜=4+212+4=616=0.375

For a 95% confidence interval, we use Table D to find z*=1.96. We first
compute the standard error

SEp^=p˜(1−p˜)n+4

=(0.375)(1−0.375)16

=0.12103

and then the margin of error

m=z*SEp^

=(1.96)(0.12103)

=0.237

So the confidence interval is

p˜±m=0.375±0.237

=(0.138,0.612)

We estimate with 95% confidence that between 14% and 61% of women from
this population are equol producers. Note that the interval is very wide because
the sample size is very small.

If the true proportion of equol users is near 14%, the lower limit of this
interval, there may not be a sufficient number of equol producers in the study
if subjects are tested only after they are enrolled in the experiment. It may be
necessary to determine whether or not a potential subject is an equol producer.
The study could then be designed to have the same number of equol producers
and nonproducers.

Significance test for a single proportion

Recall that the sample proportion p^=X/n is approximately Normal, with mean
μp^=p and standard deviation σp^=p(1−p)/n. For confidence intervals, we
substitute p^ for p in the last expression to obtain the standard error. When
performing a significance test, however, the null hypothesis specifies a value for p,
and we assume that this is the true value when calculating the P-value. Therefore,
when we test H0:p=p0, we substitute p0 into the expression for σp^ and then
standardize p^. Here are the details.

Normal approximation for proportions, p. 332
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LARGE-SAMPLE SIGNIFICANCE TEST FOR A
POPULATION PROPORTION

Draw an SRS of size n from a large population with an unknown proportion p
of successes. To test the hypothesis H0:p=p0, compute the z statistic

z=p^−p0p0(1−p0)n

In terms of a standard Normal random variable Z, the approximate P-value for
a test of H0 against

Ha:p>p0 is P(Z≥z) 

Ha:p<p0 is P(Z≤z) 

Ha:p≠p0 is P(Z≥|z|) 

We recommend the large-sample z significance test as long as the expected
number of successes, np0, and the expected number of failures, n(1−p0), are
both greater than 10.

If the expected numbers of successes and failures are not both greater than 10,
or if the population is less than 20 times as large as the sample, other procedures
should be used. One such approach is to use the binomial distribution as we did
with the sign test. Here is a large-sample example.
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sign test for matched pairs, p. 429

Example

8.5 Comparing two sunblock lotions

SUNBLOCK

Your company produces a sunblock lotion designed to protect the skin from
both UVA and UVB exposure to the sun. You hire a company to compare your
product with the product sold by your major competitor. The testing company
exposes skin on the backs of a sample of 20 people to UVA and UVB rays and
measures the protection provided by each product. For 13 of the subjects, your
product provided better protection, while for the other 7 subjects, your
competitor’s product provided better protection.
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Do you have evidence to support a commercial claiming that your product
provides superior UVA and UVB protection? For the data we have n=20
subjects and X=13 successes. The parameter p is the proportion of people who
would receive superior UVA and UVB protection from your product. To
answer the claim question, we test
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H0:p=0.5

Ha:p≠0.5

The expected numbers of successes (your product provides better protection)
and failures (your competitor’s product provides better protection) are
20×0.5=10 and 20×0.5=10. Both are at least 10, so we can use the z test. The
sample proportion is

p^=Xn=1320=0.65

The test statistic is

z=p^−p0p0(1−p0)n=0.65−0.5(0.5)(0.5)20=1.34

From Table A we find P(Z<1.34)=0.9099, so the probability in the upper tail is
1−0.9099=0.0901. The P-value is the area in both tails, P=2×0.0901=0.1802.

We conclude that the sunblock testing data are compatible with the
hypothesis of no difference between your product and your competitor’s
product (p^=0.65, z=1.34, P=0.18). The data do not support your proposed
advertising claim.

Note that we have used the two-sided alternative for this example. In settings
like this, we must start with the view that either product could be better if we want
to prove a claim of superiority. Thinking or hoping that your product is superior
cannot be used to justify a one-sided test.

Although these calculations are not particularly difficult to do using a
calculator, we prefer to use software. Here are some details.

Example

8.6 Sunblock significance tests using software

SUNBLOCK

JMP, Minitab, and SAS outputs for the analysis in Example 8.5 appear in
Figure 8.3. JMP uses a slightly different way of reporting the results. Two
ways of performing the significance test are labeled in the column “Test.” The
one that corresponds to the procedure that we have used is on the second line,
labeled “Pearson.” The P-value under the heading “Prob > Chisq” is 0.1797,
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which is very close to the 0.1802 that we calculated using Table A.
Minitab reports the value of the test statistic z and the P-value is rounded to

0.180. SAS reports the P-value on the last line as 0.1797, the same as the value
given in the JMP output.
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Figure 8.3
(a) JMP, (b) Minitab, and (c) SAS output for the comparison of sunblock lotions in Example
8.5.

USE YOUR KNOWLEDGE

8.5 Draw a picture

Draw a picture of a standard Normal curve and shade the tail areas to
illustrate the calculation of the P-value for Example 8.5.

8.6 What does the confidence interval tell us?

Inspect the outputs in Figure 8.3. Report the confidence interval for the
percent of people who would get better sun protection from your product
than from your competitor’s. Be sure to convert from proportions to
percents and to round appropriately. Interpret the confidence interval
and compare this way of analyzing data with the significance test.

8.7 The effect of X

In Example 8.5, suppose that your product provided better UVA and
UVB protection for 15 of the 20 subjects. Perform the significance test
and summarize the results.

8.8 The effect of n

In Example 8.5, consider what would have happened if you had paid for
twice as many subjects to be tested. Assume that the results would be
similar to those in Example 8.5: that is, 65% of the subjects had better
UVA and UVB protection with your product. Perform the significance
test and summarize the results.

In Example 8.5, we treated an outcome as a success whenever your product
provided better sun protection. Would we get the same results if we defined
success as an outcome where your competitor’s product was superior? In this
setting the null hypothesis is still H0:p=0.5. You will find that the z test statistic is
unchanged except for its sign and that the P-value remains the same.
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USE YOUR KNOWLEDGE

8.9 Redefining success

In Example 8.5 we performed a significance test to compare your
product with your competitor’s. Success was defined as the outcome
where your product provided better protection. Now, take the viewpoint
of your competitor where success is defined to be the outcome where
your competitor’s product provides better protection. In other words, n
remains the same (20) but X is now 7.

(a) Perform the two-sided significance test and report the results. How do these compare with
what we found in Example 8.5?

(b) Find the 95% confidence interval for this setting, and compare it with the interval
calculated when success is defined as the outcome where your product provides better
protection.

We do not often use significance tests for a single proportion, because it is
uncommon to have a situation where there is a precise p0 that we want to test. For
physical experiments such as coin tossing or drawing cards from a well-shuffled
deck, probability arguments lead to an ideal p0. Even here, however, it can be
argued, for example, that no real coin has a probability of heads exactly equal to
0.5. Data from past large samples can sometimes provide a p0 for the null
hypothesis of a significance test. In some types of epidemiology research, for
example, “historical controls” from past studies serve as the benchmark for
evaluating new treatments. Medical researchers argue about the validity of these
approaches, because the past never quite resembles the present. In general, we
prefer comparative studies whenever possible.

Choosing a sample size

In Chapter 6, we showed how to choose the sample size n to obtain a confidence
interval with specified margin of error m for a Normal mean. Because we are using
a Normal approximation for inference about a population proportion, sample size
selection proceeds in much the same way.

choosing sample size, p. 364
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Recall that the margin of error for the large-sample confidence interval for a
population proportion is

m=z*SEp^=z*p^(1−p^)n

Choosing a confidence level C fixes the critical value z*. The margin of error
also depends on the value of p^ and the sample size n. Because we don’t know the
value of p^ until we gather the data, we must guess a value to use in the
calculations. We will call the guessed value p* There are two common ways to get
p*:

1. Use the sample estimate from a pilot study or from similar studies done earlier.

2. Use p*=0.5. Because the margin of error is largest when p^=0.5, this choice
gives a sample size that is somewhat larger than we really need for the
confidence level we choose. It is a safe choice no matter what the data later
show.

Once we have chosen p* and the margin of error m that we want, we can find the n
we need to achieve this margin of error. Here is the result.

SAMPLE SIZE FOR DESIRED MARGIN OF ERROR

The level C confidence interval for a proportion p will have a margin of error
approximately equal to a specified value m when the sample size satisfies

n=(z*m)2p*(1−p*)

Here z* is the critical value for confidence level C, and p* is a guessed value
for the proportion of successes in the future sample.
The margin of error will be less than or equal to m if p* is chosen to be 0.5.
Substituting p*=0.5 into the formula above gives

n=14(z*m)2

The value of n obtained by this method is not particularly sensitive to the choice
of p* when p* is fairly close to 0.5. However, if the value of p is likely to be
smaller than about 0.3 or larger than about 0.7, use of p*=0.5 may result in a
sample size that is much larger than needed.

Example
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8.7 Planning a survey of students

A large university is interested in assessing student satisfaction with the
overall campus environment. The plan is to distribute a questionnaire to an
SRS of students, but before proceeding, the university wants to determine how
many students to sample. The questionnaire asks about a student’s degree of
satisfaction with various student services, each measured on a five-point scale.
The university is interested in the proportion p of students who are satisfied
(that is, who choose either “satisfied” or “very satisfied,” the two highest
levels on the five-point scale).

The university wants to estimate p with 95% confidence and a margin of
error less than or equal to 3%, or 0.03. For planning purposes, it is willing to
use p*=0.5. To find the sample size required,

n=14(z*m)2=14(1.960.03)2=1067.1

Round up to get n=1068. (Always round up. Rounding down would give a
margin of error slightly greater than 0.03.)

Similarly, for a 2.5% margin of error, we have (after rounding up)

n=14(1.960.025)2=1537

and for a 2% margin of error,

n=14(1.960.02)2=2401

News reports frequently describe the results of surveys with sample sizes
between 1000 and 1500 and a margin of error of about 3%. These surveys
generally use sampling procedures more complicated than simple random
sampling, so the calculation of confidence intervals is more involved than what we
have studied in this section. The calculations in Example 8.7 show in principle how
such surveys are planned.

In practice, many factors influence the choice of a sample size. The following
example illustrates one set of factors.

Example

8.8 Assessing interest in Pilates classes
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The Division of Recreational Sports (Rec Sports) at a major university is
responsible for offering comprehensive recreational programs, services, and
facilities to the students. Rec Sports is continually examining its programs to
determine how well it is meeting the needs of the students. Rec Sports is
considering adding some new programs and would like to know how much
interest there is in a new exercise program based on the Pilates method.6 They
will take a survey of undergraduate students. In the past, they emailed short
surveys to all undergraduate students. The response rate obtained in this way
was about 5%. This time they will send emails to a simple random sample of
the students and will follow up with additional emails and eventually a phone
call to get a higher response rate. Because of limited staff and the work
involved with the follow-up, they would like to use a sample size of about 200
responses. They assume that the new procedures will improve the response
rate to 90%, so they will contact 225 students in the hope that these will
provide at least 200 valid responses. One of the questions they will ask is
“Have you ever heard about the Pilates method of exercise?”

The primary purpose of the survey is to estimate various sample proportions for
undergraduate students. Will the proposed sample size of n=200 be adequate to
provide Rec Sports with the needed information? To address this question, we
calculate the margins of error of 95% confidence intervals for various values of p^.
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Example

8.9 Margins of error

In the Rec Sports survey, the margin of error of a 95% confidence interval for
any value of p^ and n=200 is

m=z*SEp^

=1.96p^(1−p^)200

=0.139p^(1−p^)

The results for various values of p^ are

p^ m
0.05 0.030
0.10 0.042
0.20 0.056
0.30 0.064
0.40 0.068
0.50 0.070
0.60 0.068
0.70 0.064
0.80 0.056
0.90 0.042
0.95 0.030

Rec Sports judged these margins of error to be acceptable, and they used a
sample size of 200 in their survey.

The table in Example 8.9 illustrates two points. First, the margins of error for
p^=0.05 and p^=0.95 are the same. The margins of error will always be the same
for p^ and 1−p^. This is a direct consequence of the form of the confidence
interval. Second, the margin of error varies between only 0.064 and 0.070 as p^
varies from 0.3 to 0.7, and the margin of error is greatest when p^=0.5, as we
claimed earlier (page 500). It is true in general that the margin of error will vary
relatively little for values of p^ between 0.3 and 0.7. Therefore, when planning a
study, it is not necessary to have a very precise guess for p. If p^=0.5 is used and
the observed p^ is between 0.3 and 0.7, the actual interval will be a little shorter
than needed, but the difference will be small.
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Again it is important to emphasize that these calculations consider only the
effects of sampling variability that are quantified in the margin of error. Other
sources of error, such as nonresponse and possible misinterpretation of questions,
are not included in the table of margins of error for Example 8.9. Rec Sports is
trying to minimize these kinds of errors. They did a pilot study using a small group
of current users of their facilities to check the wording of the questions, and for the
final survey they devised a careful plan to follow up with the students who did not
respond to the initial email.

USE YOUR KNOWLEDGE

8.10 Confidence level and sample size

Refer to Example 8.7 (page 501). Suppose that the university was
interested in a 90% confidence interval with margin of error 0.03.
Would the required sample size be smaller or larger than 1068 students?
Verify this by performing the calculation.

8.11 Make a plot

Use the values for p^ and m given in Example 8.9 to draw a plot of the
sample proportion versus the margin of error. Summarize the major
features of your plot.

SECTION 8.1 Summary

Inference about a population proportion p from an SRS of size n is based on the
sample proportion p^=X/n. When n is large, p^ has approximately the Normal
distribution with mean p and standard deviation p(1−p)/n.

For large samples, the margin of error for confidence level C is

m=z*SEp^

where the critical value z* is the value for the standard Normal density curve with
area C between −z* and z*, and the standard error of p^ is

SEp^=p^(1−p^)n

The level C large-sample confidence interval is

p^±m

We recommend using this interval for 90%, 95%, and 99% confidence whenever
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the number of successes and the number of failures are both at least 10. When
sample sizes are smaller, alternative procedures such as the plus four estimate of
the population proportion are recommended.

The sample size required to obtain a confidence interval of approximate margin
of error m for a proportion is found from

n=(z*m)2p*(1−p*)

where p* is a guessed value for the proportion, and z* is the standard Normal
critical value for the desired level of confidence. To ensure that the margin of error
of the interval is less than or equal to m no matter what p^ may be, use

n=14(z*m)2

Tests of H0:p=p0 are based on the z statistic

z=p^−p0p0(1−p0)n

with P-values calculated from the N(0,1) distribution. Use this procedure when the
expected number of successes, np0, and the expected number of failures, n(1−p0),
are both greater than 10.

SECTION 8.1 Exercises

For Exercises 8.1 and 8.2, see page 489; for Exercises 8.3 and 8.4, see page 493;
for Exercises 8.5 to 8.8, see page 499; for Exercises 8.9, see page 499; and for
Exercises 8.10 and 8.11, see page 503.

8.12 How did you use your cell phone?

A Pew Internet poll asked cell phone owners about how they used their cell phones. One question asked
whether or not during the past 30 days they had used their phone while in a store to call a friend or family
member for advice about a purchase they were considering. The poll surveyed 1003 adults living in the
United States by telephone. Of these, 462 responded that they had used their cell phone while in a store
within the last 30 days to call a friend or family member for advice about a purchase they were
considering.7

(a) Identify the sample size and the count.

(b) Calculate the sample proportion.

(c) Explain the relationship between the population proportion and the sample proportion.

8.13 Do you eat breakfast?

A random sample of 200 students from your college are asked if they regularly eat breakfast. Eighty-four
students responded that they did eat breakfast regularly.

(a) Identify the sample size and the count.

(b) Calculate the sample proportion.
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(c) Explain the relationship between the population proportion and the sample proportion.

8.14 Would you recommend the service to a friend?

An automobile dealership asks all its customers who used their service department in a given two-week
period if they would recommend the service to a friend. A total of 230 customers used the service during
the two-week period, and 180 said that they would recommend the service to a friend.

(a) Identify the sample size and the count.

(b) Calculate the sample proportion.

(c) Explain the relationship between the population proportion and the sample proportion.

8.15 How did you use your cell phone?

Refer to Exercise 8.12.

(a) Report the sample proportion, the standard error of the sample proportion, and the margin of error for
95% confidence.

(b) Are the guidelines for when to use the large-sample confidence interval for a population proportion
satisfied in this setting? Explain your answer.

(c) Find the 95% large-sample confidence interval for the population proportion.

(d) Write a short statement explaining the meaning of your confidence interval.

8.16 Do you eat breakfast?

Refer to Exercise 8.13.

(a) Report the sample proportion, the standard error of the sample proportion, and the margin of error for
95% confidence.

(b) Are the guidelines for when to use the large-sample confidence interval for a population proportion
satisfied in this setting? Explain your answer.

(c) Find the 95% large-sample confidence interval for the population proportion.

(d) Write a short statement explaining the meaning of your confidence interval.

8.17 Would you recommend the service to a friend?

Refer to Exercise 8.14.

(a) Report the sample proportion, the standard error of the sample proportion, and the margin of error for
95% confidence.

(b) Are the guidelines for when to use the large-sample confidence interval for a population proportion
satisfied in this setting? Explain your answer.

(c) Find the 95% large-sample confidence interval for the population proportion.

(d) Write a short statement explaining the meaning of your confidence interval.
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8.18 Whole grain versus regular grain?

A study of young children was designed to increase their intake of whole-grain, rather than regular-grain,
snacks. At the end of the study the 76 children who participated in the study were presented with a choice
between a regular-grain snack and a whole-grain alternative. The whole-grain alternative was chosen by 52
children. You want to examine the possibility that the children are equally likely to choose each type of
snack.

(a) Formulate the null and alternative hypotheses for this setting.

(b) Are the guidelines for using the large-sample significance test satisfied for testing this null hypothesis?
Explain your answer.

(c) Perform the significance test and summarize your results in a short paragraph.

8.19 Find the sample size.

You are planning a survey similar to the one about cell phone use described in Exercise 8.12. You will
report your results with a large-sample confidence interval. How large a sample do you need to be sure that
the margin of error will not be greater than 0.04? Show your work.

8.20 What’s wrong?

Explain what is wrong with each of the following:

(a) An approximate 90% confidence interval for an unknown proportion p is p^ plus or minus its standard
error.

(b) You can use a significance test to evaluate the hypothesis H0:p^=0.3 versus the one-sided alternative.

(c) The large-sample significance test for a population proportion is based on a t statistic.

8.21 What’s wrong?

Explain what is wrong with each of the following:

(a) A student project used a confidence interval to describe the results in a final report. The confidence
level was 115%.

(b) The margin of error for a confidence interval used for an opinion poll takes into account the fact that
people who did not answer the poll questions may have had different responses from those who did answer
the questions.

(c) If the P-value for a significance test is 0.50, we can conclude that the null hypothesis has a 50% chance
of being true.

8.22 Draw some pictures.

Consider the binomial setting with n=100 and p=0.4.

(a) The sample proportion p^ will have a distribution that is approximately Normal. Give the mean and the
standard deviation of this Normal distribution.
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(b) Draw a sketch of this Normal distribution. Mark the location of the mean.

(c) Find a value of x for which the probability is 95% that p^ is within x of 0.4. Mark the corresponding
interval on your plot.

8.23 Country food and Inuits.

Country food includes seals, caribou, whales, ducks, fish, and berries and is an important part of the diet of
the aboriginal people called Inuits who inhabit Inuit Nunangat, the northern region of what is now called
Canada. A survey of Inuits in Inuit Nunangat reported that 3274 out of 5000 respondents said that at least
half of the meat and fish that they eat is country food.8 Find the sample proportion and a 95% confidence
interval for the population proportion of Inuits whose meat and fish consumption consists of at least half
country food.

8.24 Soft drink consumption in New Zealand.

A survey commissioned by the Southern Cross Healthcare Group reported that 16% of New Zealanders
consume five or more servings of soft drinks per week. The data were obtained by an online survey of
2006 randomly selected New Zealanders over 15 years of age.9

(a) What number of survey respondents reported that they consume five or more servings of soft drinks per
week? You will need to round your answer. Why?

(b) Find a 95% confidence interval for the proportion of New Zealanders who report that they consume
five or more servings of soft drinks per week.

(c) Convert the estimate and your confidence interval to percents.

(d) Discuss reasons why the estimate might be biased.

8.25 Violent video games.

A 2013 survey of 1050 parents who have a child under the age of 18 living at home asked about their
opinions regarding violent video games. A report describing the results of the survey stated that 89% of
parents say that violence in today’s video games is a problem.10

(a) What number of survey respondents reported that they thought that violence in today’s video games is a
problem? You will need to round your answer. Why?

(b) Find a 95% confidence interval for the proportion of parents who think that violence in today’s video
games is a problem.

(c) Convert the estimate and your confidence interval to percents.

(d) Discuss reasons why the estimate might be biased.

8.26 Bullying.

Refer to the previous exercise. The survey also reported that 93% of the parents surveyed said that bullying
contributes to violence in the United States. Answer the questions in the previous exercise for this item on
the survey.
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8.27 p^ and the Normal distribution.

Consider the binomial setting with n=50. You are testing the null hypothesis that p=0.3 versus the two-
sided alternative with a 5% chance of rejecting the null hypothesis when it is true.

(a) Find the values of the sample proportion p^ that will lead to rejection of the null hypothesis.

(b) Repeat part (a) assuming a sample size of n=100.

(c) Make a sketch illustrating what you have found in parts (a) and (b). What does your sketch show about
the effect of the sample size in this setting?

8.28 Students doing community service.

In a sample of 159, 949 first-year college students, the National Survey of Student Engagement reported
that 39% participated in community service or volunteer work.11

(a) Find the margin of error for 99% confidence.

(b) Here are some facts from the report that summarizes the survey. The students were from 617 four-year
colleges and universities. The response rate was 36%. Institutions paid a participation fee of between
$1800 and $7800 based on the size of their undergraduate enrollment. Discuss these facts as possible
sources of error in this study. How do you think these errors would compare with the margin of error that
you calculated in part (a)?

8.29 Plans to study abroad.

The survey described in the previous exercise also asked about items related to academics. In response to
one of these questions, 42% of first-year students reported that they plan to study abroad.

(a) Based on the information available, how many students plan to study abroad?

(b) Give a 99% confidence interval for the population proportion of first-year college students who plan to
study abroad.

8.30 Student credit cards.

In a survey of 1430 undergraduate students, 1087 reported that they had one or more credit cards.12 Give a
95% confidence interval for the proportion of all college students who have at least one credit card.

8.31 How many credit cards?

The summary of the survey described in the previous exercise reported that 43% of undergraduates had
four or more credit cards. Give a 95% confidence interval for the proportion of all college students who
have four or more credit cards.

8.32 How would the confidence interval change?

Refer to Exercise 8.31.

(a) Would a 99% confidence interval be wider or narrower than the one that you found in Exercise 8.31?
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Verify your results by computing the interval.

(b) Would a 90% confidence interval be wider or narrower than the one that you found in that exercise?
Verify your results by computing the interval.

8.33 Do students report Internet sources?

The National Survey of Student Engagement found that 87% of students report that their peers at least
“sometimes” copy information from the Internet in their papers without reporting the source.13 Assume
that the sample size is 430,000.

(a) Find the margin of error for 99% confidence.

(b) Here are some items from the report that summarizes the survey. More than 430,000 students from 730
four-year colleges and universities participated. The average response rate was 43% and ranged from 15%
to 89%. Institutions pay a participation fee of between $3000 and $7500 based on the size of their
undergraduate enrollment. Discuss these facts as possible sources of error in this study. How do you think
these errors would compare with the error that you calculated in part (a)?

8.34 Can we use the z test?

In each of the following cases state whether or not the Normal approximation to the binomial should be
used for a significance test on the population proportion p. Explain your answers.
(a) n=40 and H0:p=0.2.
(b) n=30 and H0:p=0.4.
(c) n=100 and H0:p=0.15.
(d) n=200 and H0:p=0.04.

 8.35 Long sermons

The National Congregations Study collected data in a one-hour interview with a key informant—that is, a
minister, priest, rabbi, or other staff person or leader.14 One question concerned the length of the typical
sermon. For this question 390 out of 1191 congregations reported that the typical sermon lasted more than
30 minutes.

(a) Use the large-sample inference procedures to estimate the true proportion for this question with a 95%
confidence interval.

(b) The respondents to this question were not asked to use a stopwatch to record the lengths of a random
sample of sermons at their congregations. They responded based on their impressions of the sermons. Do
you think that ministers, priests, rabbis, or other staff persons or leaders might perceive sermon lengths
differently from the people listening to the sermons? Discuss how your ideas would influence your
interpretation of the results of this study.

8.36 Confidence level and interval width.

Refer to the previous exercise. Would a 99% confidence interval be wider or narrower than the one that
you found in that exercise? Verify your results by computing the interval.

8.37 Instant versus fresh-brewed coffee.
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A matched pairs experiment compares the taste of instant and fresh-brewed coffee. Each subject tastes two
unmarked cups of coffee, one of each type, in random order and states which he or she prefers. Of the 50
subjects who participate in the study, 15 prefer the instant coffee. Let p be the probability that a randomly
chosen subject prefers fresh-brewed coffee to instant coffee. (In practical terms, p is the proportion of the
population who prefer fresh-brewed coffee.)

(a) Test the claim that a majority of people prefer the taste of fresh-brewed coffee. Report the large-sample
z statistic and its P-value.

(b) Draw a sketch of a standard Normal curve and mark the location of your z statistic. Shade the
appropriate area that corresponds to the P-value.

(c) Is your result significant at the 5% level? What is your practical conclusion?

8.38 Annual income of older adults.

In a study of older adults, 1444 subjects out of a total of 2733 reported that their annual income was
$30,000 or more.

(a) Give a 95% confidence interval for the true proportion of subjects in this population with incomes of at
least $30,000.

(b) Do you think that some respondents might not give truthful answers to a question about their income?
Discuss the possible effects on your estimate and confidence interval.

8.39 Tossing a coin 10,000 times!

The South African mathematician John Kerrich, while a prisoner of war during World War II, tossed a coin
10,000 times and obtained 5067 heads.

(a) Is this significant evidence at the 5% level that the probability that Kerrich’s coin comes up heads is not
0.5? Use a sketch of the standard Normal distribution to illustrate the P-value.

(b) Use a 95% confidence interval to find the range of probabilities of heads that would not be rejected at
the 5% level.

8.40 Is there interest in a new product?

One of your employees has suggested that your company develop a new product. You decide to take a
random sample of your customers and ask whether or not there is interest in the new product. The response
is on a 1 to 5 scale with 1 indicating “definitely would not purchase”; 2, “probably would not purchase”; 3,
“not sure”; 4, “probably would purchase”; and 5, “definitely would purchase.” For an initial analysis, you
will record the responses 1, 2, and 3 as “No” and 4 and 5 as “Yes.” What sample size would you use if you
wanted the 95% margin of error to be 0.2 or less?

8.41 More information is needed.

Refer to the previous exercise. Suppose that after reviewing the results of the previous survey, you
proceeded with preliminary development of the product. Now you are at the stage where you need to
decide whether or not to make a major investment to produce and market it. You will use another random
sample of your customers, but now you want the margin of error to be smaller. What sample size would
you use if you wanted the 95% margin of error to be 0.01 or less?
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8.42 Sample size needed for an evaluation.

You are planning an evaluation of a semester-long alcohol awareness campaign at your college. Previous
evaluations indicate that about 20% of the students surveyed will respond “Yes” to the question “Did the
campaign alter your behavior toward alcohol consumption?” How large a sample of students should you
take if you want the margin of error for 95% confidence to be about 0.08?

 8.43 Sample size needed for an evaluation, continued

The evaluation in the previous exercise will also have questions that have not been asked before, so you do
not have previous information about the possible value of p. Repeat the preceding calculation for the
following values of p*: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Summarize the results in a table and
graphically. What sample size will you use?

8.44 Are the customers dissatisfied?

An automobile manufacturer would like to know what proportion of its customers are dissatisfied with the
service received from their local dealer. The customer relations department will survey a random sample of
customers and compute a 95% confidence interval for the proportion who are dissatisfied. From past
studies, they believe that this proportion will be about 0.2. Find the sample size needed if the margin of
error of the confidence interval is to be no more than 0.02.
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8.2 Comparing Two Proportions

When you complete this section, you will be able to

• Identify the counts and sample sizes for a comparison between two
proportions; compute the proportions and find their difference.

• Apply the guidelines for when to use the large-sample confidence interval
for a difference between two proportions.

• Apply the large-sample method to find the confidence interval for a
difference between two proportions and interpret the confidence interval.

• Apply the guidelines for when to use the large-sample significance test for
a difference between two proportions.

• Apply the large-sample method to perform a significance test for
comparing two proportions and interpret the results of the significance
test.

• Calculate and interpret the relative risk.

Because comparative studies are so common, we often want to compare the
proportions of two groups (such as men and women) that have some characteristic.
In the previous section we learned how to estimate a single proportion. Our
problem now concerns the comparison of two proportions.

We call the two groups being compared Population 1 and Population 2, and the
two population proportions of “successes” p1 and p2. The data consist of two
independent SRSs, of size n1 from Population 1 and size n2 from Population 2. The
proportion of successes in each sample estimates the corresponding population
proportion. Here is the notation we will use in this section:

Population Population proportion Sample size Count of successes Sample proportion

1 p1 n1 X1 p^1 = X1/n1
2 p2 n2 X2 p^2 = X2/n2

To compare the two populations, we use the difference between the two sample
proportions:

D=p^1−p^2

When both sample sizes are sufficiently large, the sampling distribution of the
difference D is approximately Normal.

Inference procedures for comparing proportions are z procedures based on the
Normal approximation and on standardizing the difference D. The first step is to
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obtain the mean and standard deviation of D. By the addition rule for means, the
mean of D is the difference of the means:

μD=μp^1−μp^2=p1−p2

addition rule for means, p. 272

That is, the difference D=p^1−p^2 between the sample proportions is an unbiased
estimator of the population difference p1−p2. Similarly, the addition rule for
variances tells us that the variance of D is the sum of the variances:

σD2=σp^12+σp^22

=p1(1−p1)n1+p2(1−p2)n2

addition rule for variances, p. 275

Therefore, when n1 and n2 are large, D is approximately Normal with mean
μD=p1−p2 and standard deviation

σD=p1(1−p1)n1+p2(1−p2)n2

USE YOUR KNOWLEDGE

8.45 Rules for means and variances

Suppose that p1=0.3, n1=20, p2=0.6, n2=30. Find the mean and the
standard deviation of the sampling distribution of p1−p2.

8.46 Effect of the sample sizes

Suppose that p1=0.3, n1=80, p2=0.6, n2=120.

(a) Find the mean and the standard deviation of the sampling distribution of p1−p2.

(b) The sample sizes here are four times as large as those in the previous exercise while the
population proportions are the same. Compare the results for this exercise with those that you
found in the previous exercise. What is the effect of multiplying the sample sizes by 4?

8.47 Rules for means and variances

It is quite easy to verify the formulas for the mean and standard
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deviation of the difference D.

(a) What are the means and standard deviations of the two sample proportions p^1 and p^2?

(b) Use the addition rule for means of random variables: what is the mean of D=p^1−p^2?

(c) The two samples are independent. Use the addition rule for variances of random
variables: what is the variance of D?

Large-sample confidence interval for a difference in proportions

To obtain a confidence interval for p1−p2, we once again replace the unknown
parameters in the standard deviation by estimates to obtain an estimated standard
deviation, or standard error. Here is the confidence interval we want.

LARGE-SAMPLE CONFIDENCE INTERVAL FOR
COMPARING TWO PROPORTIONS

Choose an SRS of size n1 from a large population having proportion p1 of
successes and an independent SRS of size n2 from another population having
proportion p2 of successes. The estimate of the difference in the population
proportions is

D=p^1−p^2

The standard error of D is

SED=p^1(1−p^1)n1+p^2(1−p^2)n2

and the margin of error for confidence level C is

m=z*SED

where the critical value z* is the value for the standard Normal density curve
with area C between −z* and z*. An approximate level C confidence
interval for p1−p2 is

D±m

Use this method for 90%, 95%, or 99% confidence when the number of
successes and the number of failures in each sample are both at least 10.

Example
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8.10 Are you spending more time on Facebook?

FACEBOOK

A Pew Internet survey asked 525 Facebook users about changes in the amount
of time spent using Facebook over the past year. Here are the data for the
response variable, Increase, with values “Yes” and “No,” classified by the
explanatory variable, Gender, with values “Men” and “Women.” The cases are
the 525 Facebook users who participated in the survey.15 Here are the data:

Population n X p^=X/n
1 (women) 292 47 0.1610
2 (men) 233 21 0.0901
Total 525 68 0.1295

In this table the p^ column gives the sample proportions of Facebook users
who increased their use of Facebook over the past year.

Let’s find a 95% confidence interval for the difference between the
proportions of women and of men who increased their time spent on Facebook
over the past year. Figure 8.4 shows a spreadsheet that can be used as input to
software that can compute the confidence interval. Output from JMP, Minitab,
and SAS is given in Figure 8.5. To perform the computations using our
formulas, we first find the difference in the proportions:

D=p^1−p^2

=0.1610−0.0901

=0.0709
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Figure 8.4
Spreadsheet that can be used as input to software that computes the confidence interval for
the Facebook data in Example 8.10.
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Figure 8.5
(a) JMP, (b) Minitab, and (c) SAS output for the Facebook time confidence interval in
Example 8.10.

Then we calculate the standard error of D:

SED=p^1(1−p^1)n1+p^2(1−p^2)n2

=(0.1610)(0.8390)292+(0.0901)(0.9099)233

=0.0285

For 95% confidence, we have z*=1.96, so the margin of error is

m=z*SED

=(1.96)(0.0285)

=0.0559
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The 95% confidence interval is

D±m=0.0709±0.0559

=(0.0150,0.1268)

With 95% confidence we can say that the difference in the proportions is
between 0.0150 and 0.1268. Alternatively, we can report that the difference
between the percent of women who increased their time spent on Facebook
over the past year and the percent of men who did so is 7.1%, with a 95%
margin of error of 5.6%.

In this example men and women were not sampled separately. The sample sizes
are, in fact, random and reflect the gender distributions of the subjects who
responded to the survey. Two-sample significance tests and confidence intervals
are still approximately correct in this situation.

In the example above we chose women to be the first population. Had we
chosen men to be the first population, the estimate of the difference would be
negative (−0.0709). Because it is easier to discuss positive numbers, we generally
choose the first population to be the one with the higher proportion.

USE YOUR KNOWLEDGE

8.48 Gender and commercial preference

A study was designed to compare two energy drink commercials. Each
participant was shown the commercials in random order and asked to
select the better one. Commercial A was selected by 44 out of 100
women and 79 out of 140 men. Give an estimate of the difference in
gender proportions that favored Commercial A. Also construct a large-
sample 95% confidence interval for this difference.

8.49 Gender and commercial preference, revisited

Refer to Exercise 8.48. Construct a 95% confidence interval for the
difference in proportions that favor Commercial B. Explain how you
could have obtained these results from the calculations you did in
Exercise 8.48.
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BEYOND THE BASICS

The plus four confidence interval for a difference in proportions
Just as in the case of estimating a single proportion, a small modification of

the sample proportions can greatly improve the accuracy of confidence
intervals.16 As before, we add 2 successes and 2 failures to the actual data, but
now we divide them equally between the two samples. That is, we add 1
success and 1 failure to each sample. We will again call the estimates
produced by adding hypothetical observations plus four estimates. The plus
four estimates of the two population proportions are

p˜1=X1+1n1+2 and p˜2=X2+1n2+2

The estimated difference between the populations is

D˜=p˜1−p˜2

and the standard deviation of D˜ is approximately

σD˜=p1(1−p1)n1+2+p2(1−p2)n2+2

This is similar to the formula for σD, adjusted for the sizes of the modified
samples.

To obtain a confidence interval for p1−p2, we once again replace the
unknown parameters in the standard deviation by estimates to obtain an
estimated standard deviation, or standard error. Here is the confidence interval
we want.

PLUS FOUR CONFIDENCE INTERVAL FOR COMPARING
TWO PROPORTIONS

Choose an SRS of size n1 from a large population having proportion p1 of
successes and an independent SRS of size n2 from another population having
proportion p2 of successes. The plus four estimate of the difference in
proportions is

D˜=p˜1−p˜2

where

p˜1=X1+1n1+2 p˜2=X2+1n2+2

The standard error of D˜ is

SED˜=p˜1(1−p˜1)n1+2+p˜2(1−p˜2)n2+2
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and the margin of error for confidence level C is

m=z*SED˜

where z* is the value for the standard Normal density curve with area C
between −z* and z*. An approximate level C confidence interval for p1−p2
is

D˜±m

Use this method for 90%, 95%, or 99% confidence when both sample sizes are
at least 5.

Example

8.11 Gender and sexual maturity

In studies that look for a difference between genders, a major concern is
whether or not apparent differences are due to other variables that are
associated with gender. Because boys mature more slowly than girls, a study
of adolescents that compares boys and girls of the same age may confuse a
gender effect with an effect of sexual maturity. The “Tanner score” is a
commonly used measure of sexual maturity.17 Subjects are asked to determine
their score by placing a mark next to a rough drawing of an individual at their
level of sexual maturity. There are five different drawings, so the score is an
integer between 1 and 5.

A pilot study included 12 girls and 12 boys from a population that will be
used for a large experiment. Four of the boys and three of the girls had Tanner
scores of 4 or 5, a high level of sexual maturity. Let’s find a 95% confidence
interval for the difference between the proportions of boys and girls who have
high (4 or 5) Tanner scores in this population. The numbers of successes and
failures in both groups are not all at least 10, so the large-sample approach is
not recommended. On the other hand, the sample sizes are both at least 5, so
the plus four method is appropriate.

The plus four estimate of the population proportion for boys is

p˜1=X1+1n1+2=4+112+2=0.3571

For girls, the estimate is

p˜2=X2+1n2+2=3+112+2=0.2857

Therefore, the estimate of the difference is
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D˜=p˜1−p˜2=0.3571−0.2857=0.071

The standard error of D˜ is

SED˜=p˜1(1−p˜1)n1+2+p˜2(1−p˜2)n2+2

=(0.3571)(1−0.3571)12+2+(0.2857)(1−0.2857)12+2

=0.1760

For 95% confidence, z*=1.96 and the margin of error is

m=z*SED˜=(1.96)(0.1760)=0.345

The confidence interval is

D˜±m=0.071±0.345

=(−0.274,0.416)

With 95% confidence we can say that the difference in the proportions is
between −0.274 and 0.416. Alternatively, we can report that the difference in
the proportions of boys and girls with high Tanner scores in this population is
7.1% with a 95% margin of error of 34.5%.

The very large margin of error in this example indicates that either boys or girls
could be more sexually mature in this population and that the difference could be
quite large. Although the interval includes the possibility that there is no difference,
corresponding to p1=p2 or p1−p2=0, we should not conclude that there is no
difference in the proportions. With small sample sizes such as these, the data do
not provide us with a lot of information for our inference. This fact is expressed
quantitatively through the very large margin of error.

Significance test for a difference in proportions

Although we prefer to compare two proportions by giving a confidence interval for
the difference between the two population proportions, it is sometimes useful to
test the null hypothesis that the two population proportions are the same.

We standardize D=p^1−p^2 by subtracting its mean p1−p2 and then dividing by
its standard deviation

σD=p1(1−p1)n1+p2*(1−p2)n2

If n1 and n2 are large, the standardized difference is approximately N(0,1). For
the large-sample confidence interval we used sample estimates in place of the
unknown population values in the expression for σD. Although this approach
would lead to a valid significance test, we instead adopt the more common practice

912



of replacing the unknown σD with an estimate that takes into account our null
hypothesis H0:p1=p2 If these two proportions are equal, then we can view all the
data as coming from a single population. Let p denote the common value of p1 and
p2; then the standard deviation of D=p^1−p^2 is

σD=p(1−p)n1+p(1−p)n2

=p(1−p)(1n1+1n2)

We estimate the common value of p by the overall proportion of successes in
the two samples:

p^=number of successes in both samplesnumber of observations in both
samples=X1+X2n1+n2

This estimate of p is called the pooled estimate because it combines, or pools,
the information from both samples.

pooled estimate of p

To estimate σD under the null hypothesis, we substitute p^ for p in the
expression for σD. The result is a standard error for D that assumes H0:p1=p2:

SEDp=p^(1−p^)(1n1+1n2)

The subscript on SEDp reminds us that we pooled data from the two samples to
construct the estimate.

SIGNIFICANCE TEST FOR COMPARING TWO
PROPORTIONS

To test the hypothesis

H0:p1=p2

compute the z statistic

z=p^1−p^2SEDp

where the pooled standard error is

SEDp=p^(1−p^)(1n1+1n2)

and where the pooled estimate of the common value of p1 and p2 is

p^=X1+X2n1+n2

In terms of a standard Normal random variable Z, the approximate P-value for
a test of H0 against

913



Ha:p1>p2 is P(Z≥z) 

Ha:p1<p2 is P(Z≤z) 

Ha:p1≠p2 is 2P(Z≥|z|) 

This z test is based on the Normal approximation to the binomial distribution.
As a general rule, we will use it when the number of successes and the number
of failures in each of the samples are at least 5.

Example

8.12 Gender and Facebook time: the z test

FACEBOOK TIME

Are men and women equally likely to say that they increased the amount of
time that they spend on Facebook over the past year? We examine the data in
Example 8.10 (page 510) to answer this question. Here is the data summary:

Population n X p^=X/n
1 (women) 292 47 0.1610
2 (men) 233 21 0.0901
Total 525 68 0.1295

The sample proportions are certainly quite different, but we will perform a
significance test to see if the difference is large enough to lead us to believe
that the population proportions are not equal. Formally, we test the hypotheses

H0:p1=p2

Ha:p1≠p2
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The pooled estimate of the common value of p is

p^=47+21292+233=68525=0.1295

Note that this is the estimate on the bottom line of the preceding data
summary.

The test statistic is calculated as follows:

SEDp=(0.1295)(0.8705)(1292+1233)=0.02949

z=p^1−p^2SEDp=0.1610−0.09010.02949

=2.40

The P-value is 2P(Z≥2.40). We can conclude that P<2(1−0.9918)=0.0164.
Output from JMP, Minitab, and SAS is given in Figure 8.6. JMP reports the P-
value as 0.0154, Minitab reports 0.016, and SAS reports 0.0163. Here is our
summary: among the Facebook users in the study, 16.1% of the women and
9.0% of the men said that they increased the time they spent on Facebook last
year; the difference is statistically significant (z=2.40, P<0.02).

Do you think that we could have argued that the proportion would be higher for
women than for men before looking at the data in this example? This would allow
us to use the one-sided alternative Ha:p1>p2. The P-value would be half of the
value obtained for the two-sided test. Do you think that this approach is justified?
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Figure 8.6
(a) JMP, (b) Minitab, and (c) SAS output for the Facebook time significance test in Example
8.10.

USE YOUR KNOWLEDGE

8.50 Gender and commercial preference: the z test

Refer to Exercise 8.48 (page 513). Test whether the proportions of
women and men who liked Commercial A are the same versus the two-
sided alternative at the 5% level.

8.51 Changing the alternative hypothesis

Refer to the previous exercise. Does your conclusion change if you test
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whether the proportion of men who favor Commercial A is larger than
the proportion of females? Explain.

BEYOND THE BASICS

Relative risk
We summarized the comparison of the increased Facebook time during the past
year for women and men by reporting the difference in the proportions with a
confidence interval. Another way to compare two proportions is to take the
ratio. This approach can be used in any setting and it is particularly common in
medical settings.

We think of each proportion as a risk that something (usually bad) will
happen. We then compare these two risks with the ratio of the two proportions,
which is called the relative risk (RR). Note that a relative risk of 1 means that
the two proportions, p^1 and p^2, are equal. The procedure for calculating
confidence intervals for relative risk is based on the same kind of principles
that we have studied, but the details are somewhat more complicated.
Fortunately, we can leave the details to software and concentrate on
interpretation and communication of the results.

risk

relative risk

Example

8.13 Aspirin and blood clots: relative risk

A study of patients who had blood clots (venous thromboembolism) and had
completed the standard treatment were randomly assigned to receive a low-
dose aspirin or a placebo treatment. The 822 patients in the study were
randomized to the treatments, 411 to each. Patients were monitored for several
years for the occurrence of several related medical conditions. Counts of
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patients who experienced one or more of these conditions were reported for
each year after the study began.18 The following table gives the data for a
composite of events, termed “major vascular events.” Here, X is the number of
patients who had a major event.

Population n X p^=X/n
1 (aspirin) 411 45 0.1095
2 (placebo) 411 73 0.1776
Total 822 118 0.1436

The relative risk is

RR=p^1p^2=0.10950.1776=0.6164

Software gives the 95% confidence interval as 0.4364 to 0.8707. Taking
aspirin has reduced the occurrence of major events to 62% of what it is for
patients taking the placebo. The 95% confidence interval is 44% to 87%.

Note that the confidence interval is not symmetric about the estimate. Relative
risk is one of many situations where this occurs.

SECTION 8.2 Summary

The large-sample estimate of the difference in two population proportions is

D=p^1−p^2

where p^1 and p^2 are the sample proportions:

p^1=X1n1 and p^2=X2n2

The standard error of the difference D is

SED=p^1(1−p^1)n1+p^2(1−p^2)n2

The margin of error for confidence level C is

m=z*SED

where z* is the value for the standard Normal density curve with area C between
−z* and z*. The large-sample level C confidence interval is

D±m

We recommend using this interval for 90%, 95%, or 99% confidence when the
number of successes and the number of failures in both samples are all at least 10.
When sample sizes are smaller, alternative procedures such as the plus four
estimate of the difference in two population proportions are recommended.

Significance tests of H0:p1=p2 use the z statistic

z=p^1−p^2SEDp

with P-values from the N(0,1) distribution. In this statistic,
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SEDp=p^(1−p^)(1n1+1n2)

and p^ is the pooled estimate of the common value of p1 and p2:

p^=X1+X2n1+n2

Use this test when the number of successes and the number of failures in each of
the samples are at least 5.

Relative risk is the ratio of two sample proportions:

RR=p^1p^2

Confidence intervals for relative risk are often used to summarize the comparison
of two proportions.

SECTION 8.2 Exercises

For Exercise 8.45 to 8.47, see page 509; for Exercise 8.48 and 8.49, see page 513;
and for Exercise 8.50 and 8.51, see page 520.

8.52 Identify the key elements.

For each of the following scenarios, identify the populations, the counts, and the sample sizes; compute the
two proportions and find their difference.

(a) Two website designs are being compared. Fifty students have agreed to be subjects for the study, and
they are randomly assigned to visit one or the other of the websites for as long as they like. For each
student the study directors record whether or not the visit lasts for more than a minute. For the first design,
12 students visited for more than a minute; for the second, 5 visited for more than a minute.

(b) Samples of first-year students and fourth-year students were asked if they were in favor of a new
proposed core curriculum. Among the first-year students, 85 said “Yes” and 276 said “No.” For the fourth-
year students, 117 said “Yes” and 104 said “No.”

8.53 Apply the confidence interval guidelines.

Refer to the previous exercise. For each of the scenarios, determine whether or not the guidelines for using
the large-sample method for a 95% confidence interval are satisfied. Explain your answers.

8.54 Find the 95% confidence interval.

Refer to Exercise 8.52. For each scenario, find the large-sample 95% confidence interval for the difference
in proportions, and use the scenario to explain the meaning of the confidence interval.

8.55 Apply the significance test guidelines.

Refer to Exercise 8.52. For each of the scenarios, determine whether or not the guidelines for using the
large-sample significance test are satisfied. Explain your answers.

8.56 Perform the significance test.
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Refer to Exercise 8.52. For each scenario, perform the large-sample significance test, and use the scenario
to explain the meaning of the significance test.

8.57 Find the relative risk.

Refer to Exercise 8.52. For each scenario, find the relative risk. Be sure to give a justification for your
choice of proportions to use in the numerator and the denominator of the ratio. Use the scenarios to explain
the meaning of the relative risk.

8.58 Teeth and military service.

In 1898 the United States and Spain fought a war over the U.S. intervention in the Cuban War of
Independence. At that time the U.S. military was concerned about the nutrition of its recruits. Many did not
have a sufficient number of teeth to chew the food provided to soldiers. As a result, it was likely that they
would be undernourished and unable to fulfill their duties as soldiers. The requirements at that time
specified that a recruit must have “at least four sound double teeth, one above and one below on each side
of the mouth, and so opposed” so that they could chew food. Of the 58,952 recruits who were under the
age of 20,68 were rejected for this reason. For the 43,786 recruits who were 40 or over, 3801 were
rejected.19

(a) Find the proportion of rejects for each age group.

(b) Find a 99% confidence interval for the difference in the proportions.

(c) Use a significance test to compare the proportions. Write a short paragraph describing your results and
conclusions.

(d) Are the guidelines for the use of the large-sample approach satisfied for your work in parts (b) and (c)?
Explain your answers.

8.59 Physical education requirements.

In the 1920s, about 97% of U.S. colleges and universities required a physical education course for
graduation. Today, about 40% require such a course. A recent study of physical education requirements
included 354 institutions: 225 private and 129 public. Among the private institutions, 60 required a
physical education course, while among the public institutions, 101 required a course.20

(a) What are the explanatory and response variables for this exercise? Justify your answers.

(b) What are the populations?

(c) What are the statistics?

(d) Use a 95% confidence interval to compare the private and the public institutions with regard to the
physical education requirement.

(e) Use a significance test to compare the private and the public institutions with regard to the physical
education requirement.

(f) For parts (d) and (e), verify that the guidelines for using the large-sample methods are satisfied.

(g) Summarize your analysis of these data in a short paragraph.

8.60 Exergaming in Canada.
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Exergames are active video games such as rhythmic dancing games, virtual bicycles, balance board
simulators, and virtual sports simulators that require a screen and a console. A study of exergaming
practiced by students from grades 10 and 11 in Montreal, Canada, examined many factors related to
participation in exergaming.21 Of the 358 students who reported that they stressed about their health,
29.9% said that they were exergamers. Of the 851 students who reported that they did not stress about their
health, 20.8% said that they were exergamers.

(a) Define the two populations to be compared for this exercise.

(b) What are the counts, the sample sizes, and the proportions?

(c) Are the guidelines for the use of the large-sample confidence interval satisfied?

(d) Are the guidelines for the use of the large-sample significance test satisfied?

8.61 Confidence interval for exergaming in Canada.

Refer to the previous exercise. Find the 95% confidence interval for the difference in proportions. Write a
short statement interpreting this result.

8.62 Significance test for exergaming in Canada.

Refer to Exercise 8.60. Use a significance test to compare the proportions. Write a short statement
interpreting this result.

8.63 Adult gamers versus teen gamers.

A Pew Internet Project Data Memo presented data comparing adult gamers with teen gamers with respect
to the devices on which they play. The data are from two surveys. The adult survey had 1063 gamers while
the teen survey had 1064 gamers. The memo reports that 54% of adult gamers played on game consoles
(Xbox, PlayStation, Wii, etc.) while 89% of teen gamers played on game consoles.22

(a) Refer to the table that appears on page 508. Fill in the numerical values of all quantities that are known.

(b) Find the estimate of the difference between the proportion of teen gamers who played on game
consoles and the proportion of adults who played on these devices.

(c) Is the large-sample confidence interval for the difference between two proportions appropriate to use in
this setting? Explain your answer.

(d) Find the 95% confidence interval for the difference.

(e) Convert your estimated difference and confidence interval to percents.

(f) The adult survey was conducted between October and December 2008, whereas the teen survey was
conducted between November 2007 and February 2008. Do you think that this difference should have any
effect on the interpretation of the results? Be sure to explain your answer.

8.64 Significance test for gaming on consoles.

Refer to the previous exercise. Test the null hypothesis that the two proportions are equal. Report the test
statistic with the P-value and summarize your conclusion.
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8.65 Gamers on computers.

The report described in Exercise 8.63 also presented data from the same surveys for gaming on computers
(desktops or laptops). These devices were used by 73% of adult gamers and by 76% of teen gamers.
Answer the questions given in Exercise 8.63 for gaming on computers.

8.66 Significance test for gaming on computers.

Refer to the previous exercise. Test the null hypothesis that the two proportions are equal. Report the test
statistic with the P-value and summarize your conclusion.

8.67 Can we compare gaming on consoles with gaming on computers?

Refer to the previous four exercises. Do you think that you can use the large-sample confidence intervals
for a difference in proportions to compare teens’ use of computers with teens’ use of consoles? Write a
short paragraph giving the reason for your answer. (Hint: Look carefully in the box giving the assumptions
needed for this procedure.)

8.68 Draw a picture.

Suppose that there are two binomial populations. For the first, the true proportion of successes is 0.3; for
the second, it is 0.5. Consider taking independent samples from these populations, 40 from the first and 60
from the second.

(a) Find the mean and the standard deviation of the distribution of p^1−p^2.

(b) This distribution is approximately Normal. Sketch this Normal distribution and mark the location of the
mean.

(c) Find a value d for which the probability is 0.95 that the difference in sample proportions is within ±d.
Mark these values on your sketch.

8.69 What’s wrong?

For each of the following, explain what is wrong and why.

(a) A z statistic is used to test the null hypothesis that p^1=p^2.

(b) If two sample proportions are equal, then the sample counts are equal.

(c) A 95% confidence interval for the difference in two proportions includes errors due to nonresponse.

 8.70 p^1−p^2 and the Normal distribution

Refer to Exercise 8.68. Assume that all the conditions for that exercise remain the same, with the exception
that n2=1200

(a) Find the mean and the standard deviation of the distribution of p^1−p^2.

(b) Find the mean and the standard deviation of the distribution of p^1−0.5.

(c) Because n2 is very large, we expect p^2 to be very close to 0.5. How close?
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(d) Summarize what you have found in parts (a), (b), and (c) of this exercise. Interpret your results in terms
of inference for comparing two proportions when the sample size of one of the samples is much larger than
the sample size of the other.

8.71 Gender bias in textbooks.

To what extent do syntax textbooks, which analyze the structure of sentences, illustrate gender bias? A
study of this question sampled sentences from 10 texts.23 One part of the study examined the use of the
words “girl,” “boy,” “man,” and “woman.” We will call the first two words juvenile and the last two adult.
Is the proportion of female references that are juvenile (girl) equal to the proportion of male references that
are juvenile (boy)? Here are data from one of the texts:

Gender n X (juvenile)
Female 60 48
Male 132 52

(a) Find the proportion of juvenile references for females and its standard error. Do the same for the males.

(b) Give a 90% confidence interval for the difference and briefly summarize what the data show.

(c) Use a test of significance to examine whether the two proportions are equal.
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CHAPTER 8 Exercises

8.72 The future of gamification.

Gamification is an interactive design that includes rewards such as points, payments, and gifts. A
Pew survey of 1021 technology stakeholders and critics was conducted to predict the future of
gamification. A report on the survey said that 42% of those surveyed thought that there would be no
major increases in gamification by 2020. On the other hand, 53% said that they believed that there
would be significant advances in the adoption and use of gamification by 2020.24 Analyze these
data using the methods that you learned in this chapter and write a short report summarizing your
work.

8.73 Where do you get your news?

A report produced by the Pew Research Center’s Project for Excellence in Journalism summarized
the results of a survey on how people get their news. Of the 2342 people in the survey who own a
desktop or laptop, 1639 reported that they get their news from the desktop or laptop.25

(a) Identify the sample size and the count.

(b) Find the sample proportion and its standard error.

(c) Find and interpret the 95% confidence interval for the population proportion.

(d) Are the guidelines for use of the large-sample confidence interval satisfied? Explain your answer.

8.74 Is the calcium intake adequate?

Young children need calcium in their diet to support the growth of their bones. The Institute of
Medicine provides guidelines for how much calcium should be consumed by people of different
ages.26 One study examined whether or not a sample of children consumed an adequate amount of
calcium based on these guidelines. Since there are different guidelines for children aged 5 to 10
years and those aged 11 to 13 years, the children were classified into these two age groups. Each
student’s calcium intake was classified as meeting or not meeting the guideline. There were 2029
children in the study. Here are the data:27

Met requirement
Age (years)

5 to 10 11 to 13
No 194 557
Yes 861 417

Identify the populations, the counts, and the sample sizes for comparing the extent to which the two
age groups of children met the calcium intake requirement.

8.75 Use a confidence interval for the comparison.

925



Refer to the previous exercise. Use a 95% confidence interval for the comparison and explain what
the confidence interval tells us. Be sure to include a justification for the use of the large-sample
procedure for this comparison.

8.76 Use a significance test for the comparison.

Refer to Exercise 8.74. Use a significance test to make the comparison. Interpret the result of your
test. Be sure to include a justification for the use of the large-sample procedure for this comparison.

8.77 Confidence interval or significance test?

Refer to Exercise 8.74 to 8.76. Do you prefer to use the confidence interval or the significance test
for this comparison? Give reasons for your answer.

8.78 Punxsutawney Phil.

There is a gathering every year on February 2 at Gobbler’s Knob in Punxsutawney, Pennsylvania. A
groundhog, always named Phil, is the center of attraction. If Phil sees his shadow when he emerges
from his burrow, tradition says that there will be six more weeks of winter. If he does not see his
shadow, spring has arrived. How well has Phil predicted the arrival of spring for the past several
years? The National Oceanic and Atmospheric Administration has collected data for the 25 years
from 1988 to 2012. For each year, whether or not Phil saw his shadow is recorded. This is compared
with the February temperature for that year, classified as above or below normal. For 18 of the 25
years, Phil saw his shadow, and for 6 of these years, the temperature was below normal. For the
years when Phil did not see his shadow, 2 of these years had temperatures below normal.28 Analyze
the data and write a report on how well Phil predicts whether or not winter is over.

8.79 Facebook users.

A Pew survey of 1802 Internet users found that 67% use Facebook.29

(a) How many of those surveyed used Facebook?

(b) Give a 95% confidence interval for the proportion of Internet users who use Facebook.

(c) Convert the confidence interval that you found in part (b) to a confidence interval for the percent
of Internet users who use Facebook.

8.80 Twitter users.

Refer to the previous exercise. The same survey reported that 16% of Internet users use Twitter.
Answer the questions in the previous exercise for Twitter use.

8.81 Facebook versus Twitter.

Refer to Exercise 8.79 and 8.80. Can you use the data provided in these two exercises to compare the
proportion of Facebook users with the proportion of Twitter users? If your answer is yes, do the
comparison. If your answer is no, explain why you cannot make the comparison.
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8.82 Video game genres.

U.S. computer and video game software sales were $13.26 billion in 2012.30 A survey of 1102 teens
collected data about video game use by teens. According to the survey, the following are the most
popular game genres.31

Genre Examples Percent who play
Racing NASCAR, Mario Kart, Burnout 74
Puzzle Bejeweled, Tetris, Solitaire 72
Sports Madden, FIFA, Tony Hawk 68
Action Grand Theft Auto, Devil May Cry, Ratchet and Clank 67
Adventure Legend of Zelda, Tomb Raider 66
Rhythm Guitar Hero, Dance Dance Revolution, Lumines 61

Give a 95% confidence interval for the proportion who play games in each of these six genres.

8.83 Too many errors.

Refer to the previous exercise. The chance that each of the six intervals that you calculated includes
the true proportion for that genre is approximately 95%. In other words, the chance that your interval
misses the true value is approximately 5%.

(a) Explain why the chance that at least one of your intervals does not contain the true value of the
parameter is greater than 5%.

(b) One way to deal with this problem is to adjust the confidence level for each interval so that the
overall probability of at least one miss is 5%. One simple way to do this is to use a Bonferroni
procedure. Here is the basic idea: You have an error budget of 5% and you choose to spend it
equally on six intervals. Each interval has a budget of 0.05/6=0.008. So, each confidence interval
should have a 0.8% chance of missing the true value. In other words, the confidence level for each
interval should be 1−0.008=0.992. Use Table A to find the value of z* for a large-sample confidence
interval for a single proportion corresponding to 99.2% confidence.

(c) Calculate the six confidence intervals using the Bonferroni procedure.

8.84 Changes in credit card usage by undergraduates.

In Exercise 8.31 (page 506) we looked at data from a survey of 1430 undergraduate students and
their credit card use. In the sample, 43% said that they had four or more credit cards. A similar study
performed four years earlier by the same organization reported that 32% of the sample said that they
had four or more credit cards.32 Assume that the sample sizes for the two studies are the same. Find
a 95% confidence interval for the change in the percent of undergraduates who report having four or
more credit cards.

8.85 Do the significance test for the change.

Refer to the previous exercise. Perform the significance test for comparing the two proportions.
Report your test statistic, the P-value, and summarize your conclusion.

8.86 We did not know the sample size.
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Refer to the previous two exercises. We did not report the sample size for the earlier study, but it is
reasonable to assume that it is close to the sample size for the later study.

(a) Suppose that the sample size for the earlier study was only 800. Redo the confidence interval and
significance test calculations for this scenario.

(b) Suppose that the sample size for the earlier study was 2500. Redo the confidence interval and
significance test calculations for this scenario.

(c) Compare your results for parts (a) and (b) of this exercise with the results that you found in the
previous two exercises. Write a short paragraph about the effects of assuming a value for the sample
size on your conclusions.

8.87 Student employment during the school year.

A study of 1530 undergraduate students reported that 1006 work 10 or more hours a week during the
school year. Give a 95% confidence interval for the proportion of all undergraduate students who
work 10 or more hours a week during the school year.

8.88 Examine the effect of the sample size.

Refer to the previous exercise. Assume a variety of different scenarios where the sample size
changes, but the proportion in the sample who work 10 or more hours a week during the school year
remains the same. Write a short report summarizing your results and conclusions. Be sure to include
numerical and graphical summaries of what you have found.

8.89 Gender and soft drink consumption.

Refer to Exercise 8.24 (page 505). This survey found that 16% of the 2006 New Zealanders
surveyed reported that they consumed five or more servings of soft drinks per week. The
corresponding percents for men and women were 17% and 15%, respectively. Assuming that the
numbers of men and women in the survey are approximately equal, do the data suggest that the
proportions vary by gender? Explain your methods, assumptions, results, and conclusions.

8.90 Examine the effect of the sample size.

Refer to the previous exercise. Assume the following values for the total sample size: 1000, 4000,
10,000. Also assume that the sample proportions do not change. For each of these scenarios, redo the
calculations that you performed in the previous exercise. Write a short paragraph summarizing the
effect of the sample size on the results.

8.91 Gallup Poll study.

Go to the Gallup Poll website gallup.com and find a poll that has several questions of interest to
you. Summarize the results of the poll giving margins of error and comparisons of interest. (For this
exercise, you may assume that the data come from an SRS.)

 8.92 More on gender bias in textbooks

Refer to the study of gender bias and stereotyping described in Exercise 8.71 (page 524). Here are
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the counts of “girl,” “woman,” “boy,” and “man” for all the syntax texts studied. The one we

analyzed in Exercise 8.71 was number 6.  GENDERS

Text Number
 1 2 3 4 5 6 7 8 9 10
Girl 2 5 25 11 2 48 38 5 48 13
Woman 3 2 31 65 1 12 2 13 24 5
Boy 7 18 14 19 12 52 70 6 128 32
Man 27 45 51 138 31 80 2 27 48 95

For each text perform the significance test to compare the proportions of juvenile references for
females and males. Summarize the results of the significance tests for the 10 texts studied. The
researchers who conducted the study note that the authors of the last 3 texts are women, while the
other 7 texts were written by men. Do you see any pattern that suggests that the gender of the author
is associated with the results?

 8.93 Even more on gender bias in textbooks

Refer to the previous exercise. Let us now combine the categories “girl” with “woman” and “boy”
with “man.” For each text calculate the proportion of male references and test the hypothesis that
male and female references are equally likely (that is, the proportion of male references is equal to
0.5). Summarize the results of your 10 tests. Is there a pattern that suggests a relation with the gender
of the author?

 8.94 Changing majors during college

In a random sample of 975 students from a large public university, it was found that 463 of the
students changed majors during their college years.

(a) Give a 95% confidence interval for the proportion of students at this university who change
majors.

(b) Express your results from (a) in terms of the percent of students who change majors.

(c) University officials concerned with counseling students are interested in the number of students
who change majors rather than the proportion. The university has 37,500 undergraduate students.
Convert the confidence interval you found in (a) to a confidence interval for the number of students
who change majors during their college years.

 8.95 Sample size and the P-value

In this exercise we examine the effect of the sample size on the significance test for comparing two
proportions. In each case suppose that p^1=0.55 and p^2=0.45, and take n to be the common value
of n1 and n2. Use the z statistic to test H0:p1=p2 versus the alternative Ha:p1≠p2. Compute the
statistic and the associated P-value for the following values of n: 60, 70, 80, 100, 400, 500, and
1000. Summarize the results in a table. Explain what you observe about the effect of the sample size
on statistical significance when the sample proportions p^1 and p^2 are unchanged.

 8.96 Sample size and the margin of error

In Section 8.1, we studied the effect of the sample size on the margin of error of the confidence
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interval for a single proportion. In this exercise we perform some calculations to observe this effect
for the two-sample problem. Suppose that p^1=0.8 and p^2=0.6 and n represents the common value
of n1 and n2. Compute the 95% margins of error for the difference between the two proportions for
n = 60, 70, 80, 100, 400, 500, and 1000. Present the results in a table and with a graph. Write a short
summary of your findings.

 8.97 Calculating sample sizes for the two-sample problem

For a single proportion, the margin of error of a confidence interval is largest for any given sample
size n and confidence level C when p^=0.5. This led us to use p*=0.5 for planning purposes. The
same kind of result is true for the two-sample problem. The margin of error of the confidence
interval for the difference between two proportions is largest when p^1=p^2=0.5. You are planning a
survey and will calculate a 95% confidence interval for the difference between two proportions
when the data are collected. You would like the margin of error of the interval to be less than or
equal to 0.06. You will use the same sample size n for both populations.

(a) How large a value of n is needed?

(b) Give a general formula for n in terms of the desired margin of error m and the critical value z*.

8.98 A corporate liability trial.

A major court case on the health effects of drinking contaminated water took place in the town of
Woburn, Massachusetts. A town well in Woburn was contaminated by industrial chemicals. During
the period that residents drank water from this well, there were 16 birth defects among 414 births. In
years when the contaminated well was shut off and water was supplied from other wells, there were
3 birth defects among 228 births. The plaintiffs suing the firm responsible for the contamination
claimed that these data show that the rate of birth defects was higher when the contaminated well
was in use.33 How statistically significant is the evidence? What assumptions does your analysis
require? Do these assumptions seem reasonable in this case?

 8.99 Statistics and the law

Castaneda v. Partida is an important court case in which statistical methods were used as part of a
legal argument.34 When reviewing this case, the Supreme Court used the phrase “two or three
standard deviations” as a criterion for statistical significance. This Supreme Court review has served
as the basis for many subsequent applications of statistical methods in legal settings. (The two or
three standard deviations referred to by the Court are values of the z statistic and correspond to P-
values of approximately 0.05 and 0.0026.) In Castaneda the plaintiffs alleged that the method for
selecting juries in a county in Texas was biased against Mexican Americans. For the period of time
at issue, there were 181,535 persons eligible for jury duty, of whom 143,611 were Mexican
Americans. Of the 870 people selected for jury duty, 339 were Mexican Americans.

(a) What proportion of eligible jurors were Mexican Americans? Let this value be p0.

(b) Let p be the probability that a randomly selected juror is a Mexican American. The null
hypothesis to be tested is H0:p=p0. Find the value of p^ for this problem, compute the z statistic, and
find the P-value. What do you conclude? (A finding of statistical significance in this circumstance
does not constitute proof of discrimination. It can be used, however, to establish a prima facie case.
The burden of proof then shifts to the defense.)

(c) We can reformulate this exercise as a two-sample problem. Here we wish to compare the
proportion of Mexican Americans among those selected as jurors with the proportion of Mexican
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Americans among those not selected as jurors. Let p1 be the probability that a randomly selected
juror is a Mexican American, and let p2 be the probability that a randomly selected nonjuror is a
Mexican American. Find the z statistic and its P-value. How do your answers compare with your
results in part (b)?

 8.100 Home court advantage

In many sports there is a home field or home court advantage. This means that the home team is
more likely to win when playing at home than when playing at an opponent’s field or court, all other
things being equal. Go to the website of your favorite sports team and find the proportion of wins for
home games and the proportion of wins for away games. Now consider these games to be a random
sample of the process that generates wins and losses. A complete analysis of data like these requires
methods that are beyond what we have studied, but the methods discussed in this chapter will give
us a reasonable approximation. Examine the home court advantage for your team and write a
summary of your results. Be sure to comment on the effect of the sample size.

 8.101 Attitudes toward student loan debt

The National Student Loan Survey asked the student loan borrowers in their sample about attitudes
toward debt.35 Below are some of the questions they asked, with the percent who responded in a
particular way. Assume that the sample size is 1280 for all these questions. Compute a 95%
confidence interval for each of the questions, and write a short report about what student loan
borrowers think about their debt.

(a) “Do you feel burdened by your student loan payments?” 55.5% said they felt burdened.

(b) “If you could begin again, taking into account your current experience, what would you
borrow?” 54.4% said they would borrow less.

(c) “Since leaving school, my education loans have not caused me more financial hardship than I had
anticipated at the time I took out the loans.” 34.3% disagreed.

(d) “Making loan payments is unpleasant, but I know that the benefits of education loans are worth
it.” 58.9% agreed.

(e) “I am satisfied that the education I invested in with my student loan(s) was worth the investment
for career opportunities.” 58.9% agreed.

(f) “I am satisfied that the education I invested in with my student loan(s) was worth the investment
for personal growth.” 71.5% agreed.
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Introduction

We continue our study of methods for analyzing categorical data in this chapter.
Inference about proportions in one-sample and two-sample settings was the focus
of Chapter 8. We now study how to compare two or more populations when the
response variable has two or more categories and how to test whether two
categorical variables are independent. A single statistical test handles both of these
cases.

The first section of this chapter gives the basics of statistical inference that are
appropriate in this setting. A goodness-of-fit test is presented in the second section.
The methods in this chapter answer questions such as

• Are men and women equally likely to suffer lingering fear symptoms after
watching scary movies like Jaws and Poltergeist at a young age?

• Is there an association between texting while driving and automobile accidents?

• Does political preference predict whether a person makes contributions online?
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9.1 Inference for Two-Way Tables

When you complete this section, you will be able to

• Translate a problem from a comparison of two proportions to an analysis
of a 2 × 2 table.

• Find the joint distribution, the marginal distributions, and the
conditional distributions for a two-way table of counts.

• Identify the joint distribution, the marginal distributions, and the
conditional distributions for a two-way table from software output.

• Distinguish between settings where the goal is to describe a relationship
between an explanatory variable and a response variable or to just explain
the relationship between two categorical variables. If there are explanatory
and response variables, identify them.

• Choose appropriate conditional distributions to describe relationships in
a two-way table.

• Compute expected counts from the counts in a two-way table.

• Compute the chi-square statistic and the P-value from the expected
counts in a two-way table. Use the P-value to draw your conclusion.

• For a 2 × 2 table, explain the relationship between the chi-square test and
the z test for comparing two proportions.

• Distinguish between two models for two-way tables.

When we studied inference for two proportions in Chapter 8, we started
summarizing the raw data by giving the number of observations in each population
(n) and how many of these were classified as “successes” (X).

Example

9.1 Are you spending more time on Facebook?
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FACE

In Example 8.10 (page 510), we compared the proportions of women and men
who said that they increased the amount of time that they spent on Facebook
during the past year. The following table summarizes the data used in this
comparison:

Population n X p̂ = X/n
1 (women) 292 47 0.1610
2 (men) 233 21 0.0901
Total 525 68 0.1295

These data suggest that the percent of women who increased the amount of
time spent on Facebook is 7.1% larger than the percent of men, with a 95%
margin of error of 5.6%.

In this chapter we consider a different summary of the data. Rather than
recording just the count of those who spent more time on Facebook during the past
year, we record counts of all the outcomes in a two-way table.

two-way table, p. 139
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Example

9.2 Two-way table for time spent on Facebook.

FACE

Here is the two-way table classifying Facebook users by gender and whether
or not they increased the amount of time that they spent on Facebook during
the past year:

Two-way table for time spent on Facebook
Gender

Increased Women Men Total
Yes 47 21 68
No 245 212 457
Total 292 233 525

We use the term r × c table to describe a two-way table of counts with r rows
and c columns. The two categorical variables in the 2 × 2 table of Example 9.2 are
“Increased” and “Gender.” “Increased” is the row variable, with values “Yes” and
“No,” and “Gender” is the column variable, with values “Men” and “Women.”
Since the objective in this example is to compare the genders, we view “Gender”
as an explanatory variable, and therefore, we make it the column variable. The next
example presents another two-way table.

r × c table

Example

9.3 Lingering symptoms from frightening movies.

FRIGHT
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There is a growing body of literature demonstrating that early exposure to
frightening movies is associated with lingering fright symptoms. As part of a
class on media effects, college students were asked to write narrative accounts
of their exposure to frightening movies before the age of 13. More than one-
fourth of the respondents said that some of the fright symptoms were still
present in waking life.1 The following table breaks down these results by
gender:

Observed numbers of students
Gender

Ongoing fright symptoms Female Male Total
No 50 31 81
Yes 29 7 36
Total 79 38 117

The two categorical variables in Example 9.3 are “Ongoing fright symptoms,”
with values “Yes” and “No,” and “Gender,” with values “Female” and “Male.”
Again we view “Gender” as an explanatory variable and “Ongoing fright
symptoms” as a categorical response variable.

In Chapter 2 we discussed two-way tables and the basics about joint, marginal,
and conditional distributions. We now view those sample distributions as estimates
of the corresponding population distributions. Let’s look at some software output
that gives these distributions.

Example

9.4 Software output for ongoing fright symptoms.

FRIGHT

Figure 9.1 shows the output from JMP, Minitab, and SPSS for the fright
symptoms data of Example 9.3. For now, we will just concentrate on the
different distributions. Later, we will explore other parts of the output.
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FIGURE 9.1
Computer output for Examples 9.3 and 9.4.

The three packages use similar displays for the distributions. In the cells of
the 2 × 2 table we find the counts, the conditional distributions of the column
variable for each value of the row variable, the conditional distributions of the
row variable for each value of the column variable, and the joint distribution.
All of these are expressed as percents rather than proportions.

Let’s look at the entries in the upper-left cell of the JMP output. We see
that there are 50 females whose response is “No” to the fright symptoms
question. These 50 represent 42.74% of the study participants. They represent
63.29% of the females in the study. And they represent 61.73% of the people
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who responded “No” to the fright symptoms question. The marginal
distributions are in the rightmost column and the bottom row. Minitab and
SPSS give the same information but not necessarily in the same order.

In Chapter 2, we learned that the key to examining the relationship between two
categorical variables is to look at conditional distributions. Let’s do that for the
fright symptoms data.

conditional distributions, p. 144

Example

9.5 Two-way table of ongoing fright symptoms and gender.

FRIGHT

To compare the frequency of lingering fright symptoms across genders, we
examine column percents. Here they are, rounded from the output in Figure
9.1 for clarity:

Column percents for gender
Gender

Ongoing fright symptoms Male Female
Yes 18% 37%
No 82% 63%
Total 100% 100%

The “Total” row reminds us that 100% of the male and female students have
been classified as having ongoing fright symptoms or not. (The sums
sometimes differ slightly from 100% because of roundoff error.) The bar graph
in Figure 9.2 compares the percents. The data reveal a clear relationship: 37%
of the women have ongoing fright symptoms, as opposed to only 18% of the
men.
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FIGURE 9.2
Bar graph of the percents of male and female students with ongoing fright symptoms.

The difference between the percents of students with lingering fears is
reasonably large. A statistical test will tell us whether or not this difference can be
plausibly attributed to chance. Specifically, if there is no association between
gender and having ongoing fright symptoms, how likely is it that a sample would
show a difference as large or larger than that displayed in Figure 9.2? In the
remainder of this section we discuss the significance test to examine this question.

USE YOUR KNOWLEDGE

9.1 Find two conditional distributions.

FACE

Use the output in Figure 9.3 (page 536) to answer the following
questions.

(a) Find the conditional distribution of increased Facebook time for females.

(b) Do the same for males.

(c) Graphically display the two conditional distributions.
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(d) Write a short summary interpreting the two conditional distributions.

9.2 Condition on Facebook time.

FACE

Refer to Exercise 9.1 (page 530). Use the output in Figure 9.3 (page
536) to answer the following questions.

(a) Find the conditional distribution of gender for those who have increased their Facebook
time in the past year.

(b) Do the same for those who did not increase their Facebook time.

(c) Graphically display the two conditional distributions.

(d) Write a short summary interpreting the two conditional distributions.

9.3 Which conditional distributions should you use?

Refer to your answers to the two previous exercises. Which of these distributions do you
prefer for interpreting these data? Give reasons for your answer.
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FIGURE 9.3
Computer output for Exercises 9.1 to 9.3.

The hypothesis: no association

The null hypothesis H0 of interest in a two-way table is “There is no association
between the row variable and the column variable.” In Example 9.3, this null
hypothesis says that gender and having ongoing fright symptoms are not related.
The alternative hypothesis Ha is that there is an association between these two
variables. The alternative Ha does not specify any particular direction for the
association. For two-way tables in general, the alternative includes many different
possibilities. Because it includes all sorts of possible associations, we cannot
describe Ha as either one-sided or two-sided.

In our example, the hypothesis H0 that there is no association between gender
and having ongoing fright symptoms is equivalent to the statement that the
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variables “ongoing fright symptoms” and “gender” are independent. For other two-
way tables, where the columns correspond to independent samples from c distinct
populations, there are c distributions for the row variable, one for each population.
The null hypothesis then says that the c distributions of the row variable are
identical. The alternative hypothesis is that the distributions are not all the same.

Expected cell counts

To test the null hypothesis in r × c tables, we compare the observed cell counts
with expected cell counts calculated under the assumption that the null hypothesis
is true. A numerical summary of the comparison will be our test statistic.

expected cell counts

Example

9.6 Expected counts from software.

The observed and expected counts for the ongoing fright symptoms example
appear in the Minitab and SPSS computer outputs shown in Figure 9.1 (pages
532–534). The expected counts are given as the last entry in each cell for
Minitab and as the second entry in each cell for SPSS. For example, in the cell
for males with fright symptoms, the observed count is 7 and the expected
count is 11.69 (Minitab) or 11.7 (SPSS).

How is this expected count obtained? Look at the percents in the right
margin of the tables in Figure 9.1. We see that 30.77% of all students had
ongoing fright symptoms. If the null hypothesis of no relation between gender
and ongoing fright is true, we expect this overall percent to apply to both men
and women. In particular, we expect 30.77% of the men to have lingering
fright symptoms. Since there are 38 men, the expected count is 30.77% of 38,
or 11.69. The other expected counts are calculated in the same way.

The reasoning of Example 9.6 leads to a simple formula for calculating
expected cell counts. To compute the expected count of men with ongoing fright
symptoms, we multiplied the proportion of students with fright symptoms (36/117)
by the number of men (38). From Figure 9.1 we see that the numbers 36 and 38 are
the row and column totals for the cell of interest and that 117 is n the total number
of observations for the table. The expected cell count is therefore the product of the
row and column totals divided by the table total.
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EXPECTED CELL COUNTS

expected count=row total×column totaln

The chi-square test

To test the H0 that there is no association between the row and column
classifications, we use a statistic that compares the entire set of observed counts
with the set of expected counts. To compute this statistic,

• First, take the difference between each observed count and its corresponding
expected count, and square these values so that they are all 0 or positive.

• Since a large difference means less if it comes from a cell that is expected to have
a large count, divide each squared difference by the expected count. This is a type
of standardization.

• Finally, sum over all cells.

The result is called the chi-square statistic X2. The chi-square statistic was
proposed by the English statistician Karl Pearson (1857–1936) in 1900. It is the
oldest inference procedure still used in its original form.

CHI-SQUARE STATISTIC

The chi-square statistic is a measure of how much the observed cell counts in
a two-way table diverge from the expected cell counts. The formula for the
statistic is

X2=Σ(observed count−expected count)2expected count

where “observed” represents an observed cell count, “expected” represents the expected count for the
same cell, and the sum is over all r × c cells in the table.

If the expected counts and the observed counts are very different, a large value
of X2 will result. Large values of X2 provide evidence against the null hypothesis.
To obtain a P-value for the test, we need the sampling distribution of X2 under the
assumption that H0 (no association between the row and column variables) is true.
The distribution is called the chi-square distribution, which we denote by χ2 (χ is
the lowercase Greek letter chi).

chi-square distribution χ2
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Like the t distributions, the χ2 distributions form a family described by a single
parameter, the degrees of freedom. We use χ2(df) to indicate a particular member
of this family. Figure 9.4 displays the density curves of the χ2(2) and χ2(4)
distributions. As you can see in the figure, χ2 distributions take only positive values
and are skewed to the right. Table F in the back of the book gives upper critical
values for the χ2 distributions.

 

FIGURE 9.4
(a) The χ 2(2) density curve. (b) The χ 2(4) density curve.

CHI-SQUARE TEST FOR TWO-WAY TABLES

The null hypothesis H0 is that there is no association between the row and
column variables in a two-way table. The alternative hypothesis is that these
variables are related.

If H0 is true, the chi-square statistic X2 has approximately a χ2 distribution with (r − 1)(c − 1)
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degrees of freedom.

The P-value for the chi-square test is

where χ2 is a random variable having the distribution with

For tables larger than 2 × 2, we will use this approximation whenever the average of the expected
counts is 5 or more and the smallest expected count is 1 or more. For 2 × 2 tables, we require all four
expected cell counts to be 5 or more.2

The chi-square test always uses the upper tail of the χ2 distribution, because any
deviation from the null hypothesis makes the statistic larger. The approximation of
the distribution of X2 by χ2 becomes more accurate as the cell counts increase.
Moreover, it is more accurate for tables larger than 2 × 2 tables.

Example

9.7 Chi-square significance test from software.

FRIGHT

The results of the chi-square significance test for the ongoing fright symptoms
example appear in the computer outputs in Figures 9.1 (pages 532–534),
labeled Pearson or Pearson Chi-Square. Because all the expected cell counts
are moderately large (5 or more), the χ2 distribution provides an accurate P-
value. We see that X2 = 4.03, df = 1, and P = 0.045. As a check we verify that
the degrees of freedom are correct for a 2 × 2 table:

df=(r−1)(c−1)=(2−1)(2−1)=1

The chi-square test confirms that the data provide evidence against the null
hypothesis that there is no relationship between gender and ongoing fright
symptoms. Under H0, the chance of obtaining a value of X2 greater than or
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equal to the calculated value of 4.03 is small, 0.045—fewer than 5 times in
100.

The test does not provide insight into the nature of the relationship between the
variables. It is up to us to see that the data show that women are more likely to
have lingering fright symptoms. You should always accompany a chi-square test
by percents such as those in Example 9.5 and Figure 9.2 and by a description of the
nature of the relationship.

The observational study of Example 9.3 cannot tell us whether gender is a
cause of lingering fright symptoms. The association may be explained by
confounding with other variables. For example, other research has shown that there
are gender differences in the social desirability of admitting fear.3 Our data don’t
allow us to investigate possible confounding variables. Often a randomized
comparative experiment can settle the issue of causation, but we cannot randomly
assign gender to each student. The researcher who published the data of our
example states merely that women are more likely to report lingering fright
symptoms and that this conclusion is consistent with other studies.

confounding, p. 173

Computations

The calculations required to analyze a two-way table are straightforward but
tedious. In practice, we recommend using software, but it is possible to do the
work with a calculator, and some insight can be gained by examining the details.
Here is an outline of the steps required.

COMPUTATIONS FOR TWO-WAY TABLES

1. Calculate descriptive statistics that convey the important information in the
table. Usually these will be column or row percents.

2. Find the expected counts and use these to compute the X2 statistic.

3. Use chi-square critical values from Table F to find the approximate P-value.

4. Draw a conclusion about the association between the row and column
variables.
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The following examples illustrate these steps.

Example

9.8 Health habits of college students.

Physical activity generally declines when students leave high school and enroll
in college. This suggests that college is an ideal setting to promote physical
activity. One study examined the level of physical activity and other health-
related behaviors in a sample of 1184 college students.4 Let’s look at the data
for physical activity and consumption of fruits. We categorize physical activity
as low, moderate, or vigorous and fruit consumption as low, medium, or high.
Here is the two-way table that summarizes the data:

Fruit consumption
Physical activity Total

Low Moderate Vigorous
Low 69 206 294 569
Medium 25 126 170 321
High 14 111 169 294
Total 108 443 633 1184

The table in Example 9.8 is a 3 × 3 table, to which we have added the marginal
totals obtained by summing across rows and columns. For example, the first-row
total is 69 + 206 + 294 = 569. The grand total, the number of students in the study,
can be computed by summing the row totals (569 + 321 + 294 = 1184) or the
column totals (108 + 443 + 633 = 1184). It is easy to make an error in these
calculations, so it is a good idea to do both as a check on your arithmetic.

Computing conditional distributions

First, we summarize the observed relation between physical activity and fruit
consumption. We expect a positive association, but there is no clear distinction
between an explanatory variable and a response variable in this setting. If we have
such a distinction, then the clearest way to describe the relationship is to compare

950



the conditional distributions of the response variable for each value of the
explanatory variable. Otherwise, we can compute the conditional distribution each
way and then decide which gives a better description of the data.

Example

9.9 Health habits of college students: conditional distributions.

HEALTH

Let’s look at the data in the first column of the table in Example 9.8. There
were 108 students with low physical activity. Of these, there were 69 with low
fruit consumption. Therefore, the column proportion for this cell is

69108=0.639

That is, 63.9% of the low physical activity students had low fruit consumption.
Similarly, 25 of the low physical activity students has moderate fruit
consumption. This percent is 23.1%.

25108=0.231

In all, we calculate nine percents. Here are the results:

Column percents for fruit consumption and physical activity

Fruit consumption
Physical activity

TotalLow Moderate Vigorous
Low 63.9 46.5 46.4 48.1
Medium 23.1 28.4 26.9 27.1
High 13.0 25.1 26.7 24.8
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Total 100.0 100.0 100.0 100.0

In addition to the conditional distributions of fruit consumption for each level
of physical activity, the table also gives the marginal distribution of fruit
consumption. These percents appear in the rightmost column, labeled “Total.”

FIGURE 9.5
Comparison of the distribution of fruit consumption for different levels of physical activity, for
Example 9.9.

The sum of the percents in each column should be 100, except for possible
small roundoff errors. It is good practice to calculate each percent separately and
then sum each column as a check. In this way we can find arithmetic errors that
would not be uncovered if, for example, we calculated the column percent for the
“High” row by subtracting the sum of the percents for “Low” and “Medium” from
100.

Figure 9.5 compares the distributions of fruit consumption for each of the three
physical activity levels. For each activity level, the highest percent is for students
who consume low amounts of fruit. For low physical activity, there is a clear
decrease in the percent when moving from low to medium to high fruit
consumption. The patterns for moderate physical activity and vigorous physical
activity are similar. Low fruit consumption is still dominant, but the percents for
medium and high fruit consumption are about the same for the moderate and
vigorous activity levels. The percent of low fruit consumption is highest for the
low physical activity students compared with those who have moderate or vigorous

952



physical activity. These plots suggest that there is an association between these two
variables.

USE YOUR KNOWLEDGE

9.4 Examine the row percents.

HEALTH

Refer to the health habits data that we examined in Example 9.8 (page
540). For the row percents, make a table similar to the one in Example
9.9 (page 541).

9.5 Make some plots.

HEALTH

Refer to the previous exercise. Make plots of the row percents similar to
those in Figure 9.5.

9.6 Compare the conditional distributions.

HEALTH

Compare the plots you made in the previous exercise with those given in
Figure 9.5. Which set of plots do you think gives a better graphical
summary of the relationship between these two categorical variables?
Give reasons for your answer. Note that there is not a clear right or
wrong answer for this exercise. You need to make a choice and to
explain your reasons for making it.

953



We observe a clear relationship between physical activity and fruit consumption
in this study. The chi-square test assesses whether this observed association is
statistically significant, that is, too strong to occur often just by chance. The test
confirms only that there is some relationship. The percents we have compared
describe the nature of the relationship.

The chi-square test does not in itself tell us what population our conclusion
describes. The subjects in this study were college students from four midwestern
universities. The researchers could argue that these findings apply to college
students in general. This type of inference is important, but it is based on expert
judgment and is beyond the scope of the statistical inference that we have been
studying.

Example

9.10 The chi-square significance test for health habits of college students.

HEALTH

The first step in performing the significance test is to calculate the expected
cell counts. Let’s start with the cell for students with low fruit consumption
and low physical activity. Using the formula on page 537, we need three
quantities: (1) the corresponding row total, 569, the number of students who
have low fruit consumption, (2) the column total, 108, the number of students
who have low physical activity, and (3) the total number of students, 1184.
The expected cell count is therefore

(108)(569)1184=51.90

Note that although any observed count of the number of students must be a
whole number, an expected count need not be.

Calculations for the other eight cells in the 3 × 3 table are performed in the
same way. With these nine expected counts we are now ready to use the
formula for the X2 statistic on page 538. The first term in the sum comes from
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the cell for students with low fruit consumption and low physical activity. The
observed count is 69 and the expected count is 51.90. Therefore, the
contribution to the X2 statistic for this cell is

(69−51.90)251.90=5.63

When we add the terms for each of the nine cells, the result is

X2=14.15

Because there are r = 3 levels of fruit consumption and c = 3 levels of physical
activity, the degrees of freedom for this statistic are

df=(r−1)(c−1)=(3−1)(3−1)=4

Under the null hypothesis that fruit consumption and physical activity are
independent, the test statistic X2 has a χ2(4) distribution. To obtain the P-value,
look at the df = 4 row in Table F. The calculated value X2 = 14.15 lies between
the critical points for probabilities 0.01 and 0.005. The P-value is therefore
between 0.01 and 0.005. (Software gives the value as 0.0068.) There is strong
evidence (X2 = 14.15, df = 4, P < 0.01) that there is a relationship between
fruit consumption and physical activity.

df = 4

p 0.01 0.005

χ2 13.28 14.86

We can check our work by adding the expected counts to obtain the row and
column totals, as in the table. These are the same as those in the table of observed
counts except for small roundoff errors.

USE YOUR KNOWLEDGE

9.7 Find the expected counts.

HEALTH

Refer to Example 9.10. Compute the expected counts and display them
in a 3 × 3 table. Check your work by adding the expected counts to
obtain row and column totals. These should be the same as those in the
table of observed counts except for small roundoff errors.
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9.8 Find the X2 statistic.

HEALTH

Refer to the previous exercise. Use the formula on page 538 to compute
the contributions to the chi-square statistic for each cell in the table.
Verify that their sum is 14.15.

9.9 Find the P-value.

HEALTH

For each of the following give the degrees of freedom and an
appropriate bound on the P-value for the X2 statistic.

(a) X2 = 19.00 for a 5 × 4 table

(b) X2 = 19.00 for a 4 × 5 table

(c) X2 = 7.50 for a 2 × 2 table

(d) X2 = 1.60 for a 2 × 2 table

9.10 Time spent on Facebook: the chi-square test.

FACE

Refer to Example 9.2 (page 531). Use the chi-square test to assess the
relationship between gender and increased amount of time spent on
Facebook in the last year. State your conclusion.

The chi-square test and the z test

A comparison of the proportions of “successes” in two populations leads to a 2 × 2
table. We can compare two population proportions either by the chi-square test or
by the two-sample z test from Section 8.2. In fact, these tests always give exactly
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the same result, because the X2 statistic is equal to the square of the z statistic, and
z critical values are equal to the squares of the corresponding χ2(1) critical values.
The advantage of the z test is that we can test either one-sided or two-sided
alternatives. The chi-square test always tests the two-sided alternative. Of course,
the chi-square test can compare more than two populations, whereas the z test
compares only two.

USE YOUR KNOWLEDGE

9.11 Comparison of conditional distributions.

COMP

Consider the following 2 × 2 table.

Observed counts

Response variable
Explanatory variable

Total1 2
Yes 75 95 170
No 135 115 250
Total 210 210 420

(a) Compute the conditional distribution of the response variable for each of the two
explanatory-variable categories.

(b) Display the distributions graphically.

(c) Write a short paragraph describing the two distributions and how they differ.

9.12 Expected cell counts and the chi-square test.

COMP

Refer to Exercise 9.11. You decide to use the chi-square test to compare
these two conditional distributions.

(a) What is the expected count for the first cell (observed count is 75)?
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(b) Computer software gives you X2 = 3.95. What are the degrees of freedom for this
statistic?

(c) Using Table F, give an appropriate bound on the P-value.

9.13 Compare the chi-square test with the z test.

COMP

Refer to the previous two exercises and the significance test for
comparing two proportions (page 517).

(a) Set up the problem as a comparison between two proportions. Describe the population
proportions, state the null and alternative hypotheses, and give the sample proportions.

(b) Carry out the significance test to compare the two proportions. Report the z statistic, the
P-value, and your conclusion.

(c) Compare the P-value for this significance test with the one that you reported in the
previous exercise.

(d) Verify that the square of the z statistic is the X2 statistic given in the previous exercise.

Models for two-way tables

The chi-square test for the presence of a relationship between the two variables in a
two-way table is valid for data produced from several different study designs. The
precise statement of the null hypothesis of “no relationship” in terms of population
parameters is different for different designs. We now describe two of these settings
in detail. An essential requirement is that each experimental unit or subject is
counted only once in the data table.

Comparing several populations: the first model

Let’s think about the setting of Example 9.8 from a slightly different perspective.
Suppose that we are interested in the relationship between physical activity and
year of study in college. We will assume that the design called for independent
SRSs of students from each of the four years. Here we have an example of
separate and independent random samples from each of c populations. The c
columns of the two-way table represent the populations. There is a single
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categorical response variable, physical activity. The r rows of the table correspond
to the values of the response variable, physical activity.

We know that the z test for comparing the two proportions of successes and the
chi-square test for the 2 × 2 table are equivalent. The r × c table allows us to
compare more than two populations or more than two categories of response, or
both. In this setting, the null hypothesis “no relationship between column variable
and row variable” becomes

H0:The distribution of the response variable is the same in all c populations.

Because the response variable is categorical, its distribution just consists of the
probabilities of its r possible values. The null hypothesis says that these
probabilities (or population proportions) are the same in all c populations.

Example

9.11 Physical activity: comparing subpopulations based on year of study.

In our scenario based on Example 9.8, we compare four populations:

Population 1: first-year students

Population 2: second-year students

Population 3: third-year students

Population 4: fourth-year students

The null hypothesis for the chi-square test is

H0:The distribution of physical activity is the same in all four populations.

The alternative hypothesis for the chi-square test is

Ha:The distribution of physical activity is not the same in all four populations.

The parameters of the model are the proportions of low, moderate, and
vigorous physical activity in each of the four years of study.

More generally, if we take an independent SRS from each of c populations and
classify each outcome into one of r categories, we have an r × c table of population
proportions. There are c different sets of proportions to be compared. There are c
groups of subjects, and a single categorical variable with r possible values is
measured for each individual.
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MODEL FOR COMPARING SEVERAL POPULATIONS
USING TWO-WAY TABLES

Select independent SRSs from each of c populations, of sizes n1, n2, …,nc.
Classify each individual in a sample according to a categorical response
variable with r possible values. There are c different probability distributions,
one for each population.

The null hypothesis is that the distributions of the response variable are the same in all c populations.
The alternative hypothesis says that these c distributions are not all the same.

Testing independence: the second model

A second model for which our analysis of r × c tables is valid is illustrated by the
ongoing fright symptoms study, Example 9.3. There, a single sample from a single
population was classified according to two categorical variables.

Example

9.12 Ongoing fright symptoms and gender: testing independence.

The single population studied is college students. Each college student was
classified according to the following categorical variables: “Ongoing fright
symptoms,” with possible responses “Yes” and “No,” and “Gender,” with
possible responses “Men” and “Women.” The null hypothesis for the chi-
square test is

H0 : “Ongoing fright symptoms” and “Gender” are independent.

The parameters of the model are the probabilities for each of the four possible
combinations of values of the row and column variables. If the null hypothesis
is true, the multiplication rule for independent events says that these can be
found as the products of outcome probabilities for each variable alone.

multiplication rule, p. 283

More generally, take an SRS from a single population and record the values of
two categorical variables, one with r possible values and the other with c possible
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values. The data are summarized by recording the number of individuals for each
possible combination of outcomes for the two random variables. This gives r × c
an table of counts. Each of these r × c possible outcomes has its own probability.
The probabilities give the joint distribution of the two categorical variables.

joint distribution, p. 141

marginal distributions, p. 142

Each of the two categorical random variables has a distribution. These are the
marginal distributions because they are the sums of the population proportions in
the rows and columns.

The null hypothesis “no relationship” now states that the row and column
variables are independent. The multiplication rule for independent events tells us
that the joint probabilities are the products of the marginal probabilities.

Example

9.13 The joint distribution and the two marginal distributions.

The joint probability distribution gives a probability for each of the four cells
in our 2 × 2 table of “Ongoing fright symptoms” and “Gender.” The marginal
distribution for “Ongoing fright symptoms” gives probabilities for each of the
two possible categories; the marginal distribution for “Gender” gives
probabilities for each of the two possible gender categories.

Independence between “Ongoing fright symptoms” and “Gender” implies
that the joint distribution can be obtained by multiplying the appropriate terms
from the two marginal distributions. For example, the probability that a
randomly chosen college student has ongoing fright symptoms and is male is
equal to the probability that the student has ongoing symptoms times the
probability that the student is male. The hypothesis that “Ongoing fright
symptoms” and “Gender” are independent says that the multiplication rule
applies to all outcomes.

MODEL FOR EXAMINING INDEPENDENCE IN TWO-WAY
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TABLES

Select an SRS of size n from a population. Measure two categorical variables
for each individual.

The null hypothesis is that the row and column variables are independent. The alternative hypothesis
is that the row and column variables are dependent.

You can distinguish between the two models by examining the design of the
study. In the independence model, there is a single sample. The column totals and
row totals are random variables. The total sample size n is set by the researcher; the
column and row sums are known only after the data are collected.

For the comparison-of-populations model, on the other hand, there is a sample
from each of two or more populations. The column sums are the sample sizes
selected at the design phase of the research.

The null hypothesis in both models says that there is no relationship between
the column variable and the row variable. The precise statement of the hypothesis
differs, depending on the sampling design. Fortunately, the test of the hypothesis of
“no relationship” is the same for both models; it is the chi-square test. There are
yet other statistical models for two-way tables that justify the chi-square test of the
null hypothesis “no relation,” made precise in ways suitable for these models.

Statistical methods related to the chi-square test also allow the analysis of three-
way and higher-way tables of count data. You can find a discussion of these topics
in advanced texts on categorical data.5

meta-analysis

BEYOND THE BASICS

Meta-analysis
Policymakers wanting to make decisions based on research are sometimes
faced with the problem of summarizing the results of many studies. These
studies may show effects of different magnitudes, some highly significant and
some not significant. What overall conclusion can we draw?
Meta-analysis is a collection of statistical techniques designed to combine
information from different but similar studies. Each individual study must be
examined with care to ensure that its design and data quality are adequate. The
basic idea is to compute a measure of the effect of interest for each study.
These are then combined, usually by taking some sort of weighted average, to
produce a summary measure for all of the studies. Of course, a confidence
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interval for the summary is included in the results. Here is an example.

Example

9.14 Do we eat too much salt?

relative risk, p. 520

Evidence from a variety of sources suggests that diets high in salt are
associated with risks to human health. To investigate the relationship between
salt intake and stroke, information from 14 studies was combined in a meta-
analysis.6 Subjects were classified based on the amount of salt in their normal
diet. They were followed for several years and then classified according to
whether or not they had developed cardiovascular disease (CVD). A total of
104, 933 subjects were studied, and 5161 of them developed CVD. Here are
the data from one of the studies:7

 Low salt High salt
CVD 88 112
No CVD 1081 1134
Total 1169 1246
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Let’s look at the relative risk for this study. We first find the proportion of
subjects who developed CVD in each group. For the subjects with a low salt
intake the proportion who developed CVD is

881169=0.0753

or 75 per thousand; for the high-salt group, the proportion is

1121246=0.0899

or 90 per thousand. We can now compute the relative risk as the ratio of these
two proportions. We choose to put the high-salt group in the numerator. The
relative risk is

0.08990.0753=1.19

Relative risk greater than 1 means that the high-salt group developed more
CVD than the low-salt group.

When the data from all 14 studies were combined, the relative risk was
reported as 1.17 with a 95% confidence interval of (1.02, 1.32). Since this
interval does not include the value 1, corresponding to equal proportions in the
two groups, we conclude that the higher CVD rates are not the same for the
two diets (P < 0.05). The high-salt diet is associated with a 17% higher rate of
CVD than the low-salt diet.

USE YOUR KNOWLEDGE

9.14 A different view of the relative risk.

In the previous example, we computed the relative risk for the high-salt
group relative to the low-salt group. Now, compute the relative risk for
the low-salt group relative to the high-salt group by inverting the relative
risk reported for the meta analysis in Example 9.14, that is, compute
1/1.17. Then restate the last paragraph of the exercise with this change.
(Hint: For the lower confidence limit, use 1 divided by the upper limit
for the original ratio and do a similar calculation for the upper limit.)

Section 9.1 Summary

The null hypothesis for r × c tables of count data is that there is no relationship
between the row variable and the column variable.

Expected cell counts under the null hypothesis are computed using the formula

expected count=row total×column totaln
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The null hypothesis is tested by the chi-square statistic, which compares the
observed counts with the expected counts:

X2=Σ(observed−expected)2expected

Under the null hypothesis, X2 has approximately the χ2 distribution with (r − 1)(c −
1) degrees of freedom. The P-value for the test is

P(χ2≥X2)

where χ2 is a random variable having the χ2(df) distribution with df = (r − 1)(c −
1).

The chi-square approximation is adequate for practical use when the average
expected cell count is 5 or greater and all individual expected counts are 1 or
greater, except in the case of 2 × 2 tables. All four expected counts in a 2 × 2 table
should be 5 or greater.

For two-way tables we first compute percents or proportions that describe the
relationship of interest. Then, we compute expected counts, the χ2 statistic, and the
P-value.

Two different models for generating r × c tables lead to the chi-square test. In
the first model, independent SRSs are drawn from each of c populations, and each
observation is classified according to a categorical variable with r possible values.
The null hypothesis is that the distributions of the row categorical variable are the
same for all c populations. In the second model, a single SRS is drawn from a
population, and observations are classified according to two categorical variables
having r and c possible values. In this model, H0 states that the row and column
variables are independent.
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9.2 Goodness of Fit

When you complete this section, you will be able to

• Compute expected counts given a sample size and the probabilities
specified by a null hypothesis for a chi-square goodness-of-fit test.

• Find the chi-square test statistic and its P-value.

• Interpret the results of a chi-square goodness-of-fit significance test.

In the last section, we discussed the use of the chi-square test to compare
categorical-variable distributions of c populations. We now consider a slight
variation on this scenario where we compare a sample from one population with a
hypothesized distribution. Here is an example that illustrates the basic ideas.

Example

9.15 Sampling in the Adequate Calcium Today (ACT) study.

The ACT study was designed to examine relationships among bone growth
patterns, bone development, and calcium intake. Participants were over 14,000
adolescents from six states: Arizona (AZ), California (CA), Hawaii (HI),
Indiana (IN), Nevada (NV), and Ohio (OH). After the major goals of the study
were completed, the investigators decided to do an additional analysis of the
written comments made by the participants during the study. Because the
number of participants was so large, a sampling plan was devised to select
sheets containing the written comments of approximately 10% of the
participants. A systematic sample (see page 204) of every tenth comment sheet
was retrieved from each storage container for analysis.8 Here are the counts for
each of the six states:

Number of study participants in the sample
AZ CA HI IN NV OH Total
167 257 257 297 107 482 1567

There were 1567 study participants in the sample. We will use the proportions
of students from each of the states in the original sample of over 15,000
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participants as the population values.9 Here are the proportions:

Population proportions
AZ CA HI IN NV OH Total

0.105 0.172 0.164 0.188 0.070 0.301 100.000

Let’s see how well our sample reflects the state population proportions. We
start by computing expected counts. Since 10.5% of the population is from
Arizona, we expect the sample to have about 10.5% from Arizona. Therefore,
since the sample has 1567 subjects, our expected count for Arizona is

expected count for Arizona=0.105(1567)=164.535

Here are the expected counts for all six states:

Expected counts
AZ CA HI IN NV OH Total

164.54 269.52 256.99 294.60 109.69 471.67 1567.01

USE YOUR KNOWLEDGE

9.15 Why is the sum 1567.01?

ACT

Refer to the table of expected counts in Example 9.15. Explain why the
sum of the expected counts is 1567.01 and not 1567.

9.16 Calculate the expected counts.

ACT

Refer to Example 9.15. Find the expected counts for the other five
states. Report your results with three places after the decimal as we did
for Arizona.
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As we saw with the expected counts in the analysis of two-way tables in
Section 9.1, we do not really expect the observed counts to be exactly equal to the
expected counts. Different samples under the same conditions would give different
counts. We expect the average of these counts to be equal to the expected counts
when the null hypothesis is true. How close do we think the counts and the
expected counts should be?

We can think of our table of observed counts in Example 9.15 as a one-way
table with six cells, each with a count of the number of subjects sampled from a
particular state. Our question of interest is translated into a null hypothesis that
says that the observed proportions of students in the six states can be viewed as
random samples from the subjects in the ACT study. The alternative hypothesis is
that the process generating the observed counts, a form of systematic sampling in
this case, does not provide samples that are compatible with this hypothesis. In
other words, the alternative hypothesis says that there is some bias in the way that
we selected the subjects whose comments we will examine.

Our analysis of these data is very similar to the analyses of two-way tables that
we studied in Section 9.1. We have already computed the expected counts. We
now construct a chi-square statistic that measures how far the observed counts are
from the expected counts. Here is a summary of the procedure:

THE CHI-SQUARE GOODNESS-OF-FIT TEST

Data for n observations of a categorical variable with k possible outcomes are
summarized as observed counts, n1, n2, …, nk, in k cells. The null hypothesis
specifies probabilities p1, p2, …, pk for the possible outcomes. The alternative
hypothesis says that the true probabilities of the possible outcomes are not the
probabilities specified in the null hypothesis.

For each cell, multiply the total number of observations n by the specified probability to determine
the expected counts:

expected counts=npi

The chi-square statistic measures how much the observed cell counts differ from the expected cell
counts. The formula for the statistic is

X2=Σ(observed count−expected count)2expected count

The degrees of freedom are k − 1 and P-values are computed from the chi-square distribution.

Use this procedure when the expected counts are all 5 or more.
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Example

9.16 The goodness-of-fit test for the ACT study.

For Arizona, the observed count is 167. In Example 9.15, we calculated the
expected count, 164.535. The contribution to the chi-square statistic for
Arizona is

(observed count−expected count)2expected count=
(167−164.535)2164.535=0.0369

We use the same approach to find the contributions to the chi-square statistic
for the other five states. The expected counts are all at least 5, so we can
proceed with the significance test.

The sum of these six values is the chi-square statistic,

X2=0.93

The degrees of freedom are the number of cells minus 1: df = 6 − 1 = 5. We
calculate the P-value using Table F or software. From Table F, we can
determine P >0.25. We conclude that the observed counts are compatible with
the hypothesized proportions. The data do not provide any evidence that our
systematic sample was biased with respect to selection of subjects from
different states.

USE YOUR KNOWLEDGE

9.17 Compute the chi-square statistic.

ACT

For each of the other five states, compute the contribution to the chi-
square statistic using the method illustrated for Arizona in Example
9.16. Use the expected counts that you calculated in Exercise 9.16 for
these calculations. Show that the sum of these values is the chi-square
statistic.
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Example

9.17 The goodness-of-fit test from software.

ACT

Software output from Minitab and SPSS for this problem is given in Figure
9.6. Both report the P-value as 0.968. Note that the SPSS output includes a
column titled “Residual.” For tables of counts, a residual for a cell is defined
as

residual=observed count−expected countexpected count

Note that the chi-square statistic is the sum of the squares of these residuals.
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FIGURE 9.6
(a) Minitab and (b) SPSS output for Example 9.17.

Some software packages do not provide routines for computing the chi-square
goodness-of-fit test. However, there is a very simple trick that can be used to
produce the results from software that can analyze two-way tables. Make a two-
way table in which the first column contains k cells with the observed counts. Add
a second column with counts that correspond exactly to the probabilities specified
by the null hypothesis, with a very large number of observations. Then perform the
chi-square significance test for two-way tables.
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USE YOUR KNOWLEDGE

9.18 Distribution of M&M colors.

MM

M&M Mars Company has varied the mix of colors for M&M’S Plain
Chocolate Candies over the years. These changes in color blends are the
result of consumer preference tests. Most recently, the color distribution
is reported to be 13% brown, 14% yellow, 13% red, 20% orange, 24%
blue, and 16% green.10 You open up a 14-ounce bag of M&M’S and
find 61 brown, 59 yellow, 49 red, 77 orange, 141 blue, and 88 green.
Use a goodness-of-fit test to examine how well this bag fits the percents
stated by the M&M Mars Company.

Example

9.18 The sign test as a goodness-of-fit test.

In Example 7.12 (page 439) we used a sign test to examine the effect of the
full moon on aggressive behaviors of dementia patients. The study included 15
patients, 14 of whom exhibited a greater number of aggressive behaviors on
moon days than on other days. The sign test tests the null hypothesis that
patients are equally likely to exhibit more aggressive behaviors on moon days
than on other days. Since n = 15, the sample proportion is p^=14/15 and the
null hypothesis is H0:p = 0.5.

To look at these data from the viewpoint of goodness of fit, we think of the
data as two counts: patients who had a greater number of aggressive behaviors
on moon days and patients who had a greater number of aggressive behaviors
on other days.

Counts
Moon Other Total

14 1 15

If the two outcomes are equally likely, the expected counts are both 7.5 (15 ×
0.5). The expected counts are both greater than 5, so we can proceed with the
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significance test.
The test statistic is

X2=(14−7.5)27.5+(1−7.5)27.5

=5.633+5.633

=11.27

We have k = 2, so the degrees of freedom are 1. From Table F we conclude
that P < 0.001.

In Example 7.12, we tested the null hypothesis versus the one-sided alternative
that there was a “moon effect.” Within the framework of the goodness-of-fit test,
we test only the general alternative hypothesis that the distribution of the counts
does not follow the specified probabilities. Note that the P-value in Example 7.12
was calculated using the binomial distribution. The value was 0.000488,
approximately one-half of the value that we reported from Table F in Example
9.18.

USE YOUR KNOWLEDGE

9.19 Is the coin fair?

In Example 4.3 (page 234) we learned that the South African statistician
John Kerrich tossed a coin 10, 000 times while imprisoned by the
Germans during World War II. The coin came up heads 5067 times.

(a) Formulate the question about whether or not the coin was fair as a goodness-of-fit
hypothesis.

(b) Perform the chi-square significance test and write a short summary of the results.

Section 9.2 Summary

The chi-square goodness-of-fit test is used to compare the sample distribution of
a categorical variable from a population with a hypothesized distribution. The data
for n observations with k possible outcomes are summarized as observed counts,
n1, n2, …, nk, in k cells. The null hypothesis specifies probabilities for the possible
outcomes.

The analysis of these data is similar to the analyses of two-way tables discussed
in Section 9.1. For each cell, the expected count is determined by multiplying the
total number of observations n by the specified probability pi. The null hypothesis
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is tested by the usual chi-square statistic, which compares the observed counts, ni,
with the expected counts. Under the null hypothesis, X2 has approximately the χ2

distribution with df = k − 1.
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CHAPTER 9 Exercises
For Exercise 9.1 to 9.3, see page 535–536; for Exercise 9.4 to 9.6, see page 542–543; for Exercise
9.7 to 9.10, see page 544; for Exercise 9.11 to 9.13, see page 545; for Exercise 9.14, see page 550;
for Exercise 9.15 and 9.16, see page 552; for Exercise 9.17, see page 553; for Exercise 9.18, see
page 555; and for Exercise 9.19, see page 556.

9.20 Translate each problem into a 2 × 2 table

In each of the following scenarios, translate the problem into one that can be analyzed using a 2 × 2
table.

(a) Two website designs are being compared. Fifty students have agreed to be subjects for the study,
and they are randomly assigned to watch one of the designs for as long as they like. For each student
the study directors record whether or not the website is watched for more than a minute. For the first
design, 12 students watched for more than a minute; for the second, 5 watched for more than a
minute.

(b) Samples of first-year students and fourth-year students were asked if they were in favor of a new
proposed core curriculum. Among the first-year students, 85 said “Yes” and 276 said “No.” For the
fourth-year students, 117 said “Yes” and 104 said “No.”

9.21 Find the joint distribution, the marginal distributions, and the
conditional distributions

Refer to the previous exercise. For each scenario, identify the joint distribution, the marginal
distributions, and the conditional distributions.

9.22 Read the output

Exercise 8.58 (page 523) gives data on individuals rejected for military service in the Cuban War of
Independence in 1898 because they did not have enough teeth. In that exercise you compared the
rejection rate for those under the age of 20 with the rejection rate for those over 40. Figure 9.7 gives
software output for the table that classifies the recruits into six age categories. Use the output to find

the joint distribution, the marginal distributions, and the conditional distributions for these data. 
TEETH
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FIGURE 9.7
Computer output for Exercise 9.22.

9.23 Relationship or explanatory and response variables?

In each of the following scenarios, determine whether the goal is to describe the relationship
between an explanatory variable and a response variable or to simply describe the relationship
between two categorical variables. There may not always be a clear correct answer, but you need to
give reasons for the answer you choose. If there are explanatory and response variables, identify
them.

(a) A large sample of undergraduates is classified by major and year of study.

(b) Equal-sized samples of first-year, second-year, third-year, and fourth-year undergraduates are
selected. Each student is asked “Do you eat five or more servings of fruits or vegetables per day?”

(c) Television programs are classified as low, medium, or high for violence content and by morning,
afternoon, prime time, or late night for the time of day that they are broadcast.
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(d) The setting of Exercise 9.22, which examines age and rejection rate for military recruits.

9.24 Choose the appropriate conditional distributions

Refer to the previous exercise. For each scenario, choose which conditional distribution you would
use to describe the data. Give reasons for your answers.

9.25 Sexual harassment in middle and high schools

A nationally representative survey of students in grades 7 to 12 asked about the experience of these
students with respect to sexual harassment.11 One question asked how many times the student had

witnessed sexual harassment in school. Here are the data categorized by gender:  HARAS1

Times witnessed
Gender Never Once More than once
Girls 140 192 671
Boys 106 125 732

Find the expected counts for this 2 × 3 table.

9.26 Do the significance test

Refer to the previous exercise. Compute the chi-square statistic and the P-value. Write a short

summary of your conclusions from the analysis of these data.  HARAS1

9.27 Sexual harassment online or in person

In the study described in Exercise 9.25, the students were also asked whether or not they were

harassed in person and whether or not they were harassed online. Here are the data for the girls: 
HARASG

Harassed online
Harassed in person Yes No
Yes 321 200
No 40 441

(a) Analyze these data using the method presented in Chapter 8 for comparing two proportions (page
508).

(b) Analyze these data using the method presented in this chapter for examining a relationship
between two categorical variables in a 2 × 2 table.

(c) Use this example to explain the relationship between the chi-square test and the z test for
comparing two proportions.

(d) The number of girls reported in this exercise is not the same as the number reported for Exercise
9.25. Suggest a possible reason for this difference.
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9.28 Data for the boys

Refer to the previous exercise. Here are the corresponding data for boys:  HARASB

Harassed online
Harassed in person Yes No
Yes 183 154
No 48 578

Using these data, repeat the analyses that you performed for the girls in Exercise 9.27. How do the
results for the boys differ from those that you found for girls?

9.29 Repeat your analysis

In part (a) of Exercise 9.27, you had to decide which variable was explanatory and which variable
was response when you computed the proportions to be compared.

(a) Did you use harassed online or harassed in person as the explanatory variable? Explain the
reasons for your choice.

(b) Repeat the analysis that you performed in Exercise 9.27 with the other choice for the explanatory
variable.

(c) Summarize what you have learned from comparing the results of using the different choices for
analyzing these data.

9.30 Which model?

Refer to the four scenarios in Exercise 9.23. For each, determine whether the model corresponds to
the comparison of several populations or to the test of independence. Give reasons for your answers.

9.31 Is the die fair?

You suspect that a die has been altered so that the outcomes of a roll, the numbers 1 to 6, are not

equally likely. You toss the die 600 times and obtain the following results:  DIE

Outcome 1 2 3 4 5 6
Count 89 82 123 115 100 91

Compute the expected counts that you would need to use in a goodness-of-fit test for these data.

9.32 Perform the significance test

Refer to the previous exercise. Find the chi-square test statistic and its P-value and write a short
summary of your conclusions.

9.33 The value of online courses

A Pew Internet survey asked college presidents whether or not they believed that online courses

978



offer an equal educational value when compared with courses taken in the classroom. The presidents

were classified by the type of educational institution. Here are the data:12  ONLINE

Institution type
Response 4-year private 4-year public 2-year private For profit
Yes 36 50 66 54
No 62 48 34 45

(a) Discuss different ways to plot the data. Choose one way to make a plot and give reasons for your
choice.

(b) Make the plot and describe what it shows.

9.34 Do the answers depend upon institution type?

Refer to the previous exercise. You want to examine whether or not the data provide evidence that
the belief that online and classroom courses offer equal educational value varies with the type of

institution of the president.  ONLINE

(a) Formulate this question in terms of appropriate null and alternative hypotheses.

(b) Perform the significance test. Report the test statistic, the degrees of freedom, and the P-value.

(c) Write a short summary explaining the results.

9.35 Compare the college presidents with the general public

Refer to Exercise 9.33. Another Pew Internet survey asked the general public about their opinions on
the value of online courses. Of the 2142 people who participated in the survey, 621 responded “Yes”
to the question “Do you believe that online courses offer an equal educational value when compared

with courses taken in the classroom?”  ONLINE

(a) Use the data given in Exercise 9.33 to find the number of college presidents who responded
“Yes” to the question.

(b) Construct a two-way table that you can use to compare the responses of the general public with
the responses of the college presidents.

(c) Is it meaningful to interpret the marginal totals or percents for this table? Explain your answer.

(d) Analyze the data in your two-way table and summarize the results.

9.36 Remote deposit capture

The Federal Reserve has called remote deposit capture (RDC) “the most important development the
[U.S.] banking industry has seen in years.” This service allows users to scan checks and to transmit
the scanned images to a bank for posting.13 In its annual survey of community banks, the American
Bankers Association asked banks whether or not they offered this service.14 Here are the results

classified by the asset size (in millions of dollars) of the bank:  RDCA

Offer RDC
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Asset size Yes No
Under $100 63 309
$101-$200 59 132
$201 or more 112 85

(a) Summarize the results of this survey question numerically and graphically.

(b) Test the null hypothesis that there is no association between the size of a bank, measured by
assets, and whether or not they offer RDC. Report the test statistic, the P-value, and your conclusion.

9.37 Health care fraud

Most errors in billing insurance providers for health care services involve honest mistakes by
patients, physicians, or others involved in the health care system. However, fraud is a serious
problem. The National Health Care Anti-fraud Association estimates that approximately $68 billion
is lost to health care fraud each year.15 When fraud is suspected, an audit of randomly selected
billings is often conducted. The selected claims are then reviewed by experts, and each claim is
classified as allowed or not allowed. The distributions of the amounts of claims are frequently highly
skewed, with a large number of small claims and a small number of large claims. Since simple
random sampling would likely be overwhelmed by small claims and would tend to miss the large
claims, stratification is often used. See the section on stratified sampling in Chapter 3 (page 196).
Here are data from an audit that used three strata based on the sizes of the claims (small, medium,

and large):16  BILLER

Stratum Sampled claims Number not allowed
Small 57 6
Medium 17 5
Large 5 1

(a) Construct the 3 × 2 table of counts for these data that includes the marginal totals.

(b) Find the percent of claims that were not allowed in each of the three strata.

(c) To perform a significance test, combine the medium and large strata. Explain why we do this.

(d) State an appropriate null hypothesis to be tested for these data.

(e) Perform the significance test and report your test statistic with degrees of freedom and the P-
value. State your conclusion.

 9.38 Population estimates

Refer to the previous exercise. One reason to do an audit such as this is to
estimate the number of claims that would not be allowed if all claims in a
population were examined by experts. We have an estimate of the proportion
of unallowed claims from each stratum based on our sample. We know the
corresponding population proportion for each stratum. Therefore, if we take
the sample proportions of unallowed claims and multiply by the population
sizes, we would have the estimates that we need. Here are the population sizes
for the three strata:
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Stratum Claims in strata

Small 3342
Medium 246
Large 58

(a) For each stratum, estimate the total number of claims that would not be allowed if all claims in
the strata had been audited.

(b) Give margins of error for your estimates. (Hint: You first need to find standard errors for your
sample estimates using material presented in Chapter 8 (page 490). Then you need to use the rules
for variances from Chapter 4 (page 275) to find the standard errors for the population estimates.
Finally, you need to multiply by z* to determine the margins of error.)

9.39 DFW rates

One measure of student success for colleges and universities is the percent of admitted students who
graduate. Studies indicate that a key issue in retaining students is their performance in so-called
gateway courses. These are courses that serve as prerequisites for other key courses that are essential
for student success. One measure of student performance in these courses is the DFW rate, the
percent of students who receive grades of D, F, or W (withdraw). A major project was undertaken to
improve the DFW rate in a gateway course at a large midwestern university. The course curriculum
was revised to make it more relevant to the majors of the students taking the course, a small group of
excellent teachers taught the course, technology (including clickers and online homework) was
introduced, and student support outside the classroom was increased. The following table gives data
on the DFW rates for the course over three years.17 In Year 1, the traditional course was given; in
Year 2, a few changes were introduced; and in Year 3, the course was substantially revised.

Year DFW rate Number of students taking course
Year 1 42.3% 2408
Year 2 24.9% 2325
Year 3 19.9% 2126

Do you think that the changes in this gateway course had an impact on the DFW rate? Write a report

giving your answer to this question. Support your answer by an analysis of the data.  LIE

9.40 Lying to a teacher

One of the questions in a survey of high school students asked about lying to teachers.18 The
following table gives the numbers of students who said that they lied to a teacher at least once during
the past year, classified by gender.

Gender
Lied at least once Male Female
Yes 3,228 10,295
No 9,659 4,620

(a) Add the marginal totals to the table.

(b) Calculate appropriate percents to describe the results of this question.

(c) Summarize your findings in a short paragraph.
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(d) Test the null hypothesis that there is no association between gender and lying to teachers. Give
the test statistic and the P-value (with a sketch similar to the one on page 539) and summarize your
conclusion. Be sure to include numerical and graphical summaries.

9.41 When do Canadian students enter private career colleges?

A survey of 13, 364 Canadian students who enrolled in private career colleges was conducted to
understand student participation in the private postsecondary educational system.19 In one part of
the survey, students were asked about their field of study and about when they entered college. Here

are the results:  CANF

Field of study Number of students
Time of Entry

Right after high school Later
Trades 942 34% 66%
Design 584 47% 53%
Health 5085 40% 60%
Media/IT 3148 31% 69%
Service 1350 36% 64%
Other 2255 52% 48%

In this table, the second column gives the number of students in each field of study. The next two
columns give the marginal distribution of time of entry for each field of study.

(a) Use the data provided to make the 6 × 2 table of counts for this problem.

(b) Analyze the data.

(c) Write a summary of your conclusions. Be sure to include the results of your significance testing
as well as a graphical summary.

9.42 Government loans for Canadian students in private career colleges

Refer to the previous exercise. The survey also asked about how these college students paid for their
education. A major source of funding was government loans. Here are the survey percents of
Canadian private students who use government loans to finance their education by field of study: 

 CANGOV

Field of study Number of students Percent using government loans
Trades 942 45%
Design 599 53%
Health 5234 55%
Media/IT 3238 55%
Service 1378 60%
Other 2300 47%

(a) Construct the 6 × 2 table of counts for this exercise.

(b) Test the null hypothesis that the percent of students using government loans to finance their
education does not vary with field of study. Be sure to provide all the details of your significance
test.
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(c) Summarize your analysis and conclusions. Be sure to include a graphical summary.

(d) The number of students reported in this exercise is not the same as the number reported in
Exercise 9.41. Suggest a possible reason for this difference.

9.43 Other funding for Canadian students in private career colleges

Refer to the previous exercise. Another major source of funding was parents, family, or spouse. The
following table gives the survey percents of Canadian private students who rely on these sources to

finance their education by field of study.  CANOTH

Field of study Number of students Percent using parents/family/spouse
Trades 942 20%
Design 599 37%
Health 5234 26%
Media/IT 3238 16%
Service 1378 18%
Other 2300 41%

Answer the questions in the previous exercise for these data.

9.44 Why not use a chi-square test?

As part of the study on ongoing fright symptoms due to exposure to horror movies at a young age,
the following table was created based on the written responses from 119 students. Explain why a
chi-square test is not appropriate for this table.

Percent of students who reported each problem
Type of Problem

Bedtime Waking
Movie or video Short term Enduring Short term Enduring
Poltergeist (n 29) 68 7 64 32
Jaws (n 23) 39 4 83 43
Nightmare on Elm Street (n 16) 69 13 37 31
Thriller (music video) (n 16) 40 0 27 7
It (n 24) 64 0 64 50
The Wizard of Oz (n 12) 75 17 50 8
E.T. (n 11) 55 0 64 27

9.45 Waking versus bedtime symptoms

As part of the study on ongoing fright symptoms due to exposure to horror movies at a young age,
the following table was presented to describe the lasting impact these movies have had during

bedtime and waking life:  FRITIM

Waking symptoms
Bedtime symptoms Yes No
Yes 36 33
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No 33 17

(a) What percent of the students have lasting waking-life symptoms?

(b) What percent of the students have both waking-life and bedtime symptoms?

(c) Test whether there is an association between waking-life and bedtime symptoms. State the null
and alternative hypotheses, the X2 statistic, and the P-value.

9.46 Construct a table with no association

Construct a 3 × 3 table of counts where there is no apparent association between the row and column
variables.

9.47 Can you construct the joint distribution from the marginal
distributions?

Here are the row and column totals for a two-way table with two rows and two columns:

a b 150
c d 150

100 200 300

Find two different sets of counts a, b, c, and d for the body of the table. This demonstrates that the
relationship between two variables cannot be obtained solely from the two marginal distributions of
the variables.

9.48 Which model?

Refer to Exercises 9.37, 9.39, 9.40, 9.42, and 9.45. For each, state whether you are comparing two or
more populations (the first model for two-way tables) or testing independence between two
categorical variables (the second model).

9.49 Are Mexican Americans less likely to be selected as jurors?

Refer to Exercise 8.99 (page 528) concerning Castaneda v. Partida, the case where the Supreme
Court review used the phrase “two or three standard deviations” as a criterion for statistical
significance. Recall that there were 181, 535 persons eligible for jury duty, of whom 143, 611 were
Mexican Americans. Of the 870 people selected for jury duty, 339 were Mexican Americans. We are
interested in finding out if there is an association between being a Mexican American and being
selected as a juror. Formulate this problem using a two-way table of counts. Construct the 2 × 2 table
using the variables Mexican American or not and juror or not. Find the X2 statistic and its P-value.
Square the z statistic that you obtained in Exercise 8.99 and verify that the result is equal to the X2
statistic.

9.50 Goodness of fit to a standard Normal distribution

Computer software generated 500 random numbers that should look as if they are from the standard
Normal distribution. They are categorized into five groups: (1) less than or equal to −0.6; (2) greater
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than −0.6 and less than or equal to −0.1; (3) greater than −0.1 and less than or equal to 0.1; (4)
greater than 0.1 and less than or equal to 0.6; and (5) greater than 0.6. The counts in the five groups
are 139, 102, 41, 78, and 140, respectively. Find the probabilities for these five intervals using Table
A. Then compute the expected number for each interval for a sample of 500. Finally, perform the
goodness-of-fit test and summarize your results.

9.51 More on the goodness of fit to a standard Normal distribution

Refer to the previous exercise. Use software to generate your own sample of 500 standard Normal
random variables, and perform the goodness-of-fit test. Choose a different set of intervals than the
ones used in the previous exercise.

9.52 Goodness of fit to the uniform distribution

Computer software generated 500 random numbers that should look as if they are from the uniform
distribution on the interval 0 to 1 (see page 74). They are categorized into five groups: (1) less than
or equal to 0.2; (2) greater than 0.2 and less than or equal to 0.4; (3) greater than 0.4 and less than or
equal to 0.6; (4) greater than 0.6 and less than or equal to 0.8; and (5) greater than 0.8. The counts in
the five groups are 114, 92, 108, 101, and 85, respectively. The probabilities for these five intervals
are all the same. What is this probability? Compute the expected number for each interval for a
sample of 500. Finally, perform the goodness-of-fit test and summarize your results.

9.53 More on goodness of fit to the uniform distribution

Refer to the previous exercise. Use software to generate your own sample of 800 uniform random
variables on the interval from 0 to 1, and perform the goodness-of-fit test. Choose a different set of
intervals than the ones used in the previous exercise.

 9.54 Suspicious results?

An instructor who assigned an exercise similar to the one described in the previous exercise received
homework from a student who reported a P-value of 0.999. The instructor suspected that the student
did not use the computer for the assignment but just made up some numbers for the homework. Why
was the instructor suspicious? How would this scenario change if there were 2000 students in the
class?

9.55 Is there a random distribution of trees?

In Example 6.1 (page 352) we examined data concerning the longleaf pine trees in the Wade Tract
and concluded that the distribution of trees in the tract was not random. Here is another way to
examine the same question. First, we divide the tract into four equal parts, or quadrants, in the east–
west direction. Call the four parts Q1 to Q4 Then we take a random sample of 100 trees and count

the number of trees in each quadrant. Here are the data:  TREEQ

Quadrant Q1 Q2 Q3 Q4
Count 18 22 39 21

(a) If the trees are randomly distributed, we expect to find 25 trees in each quadrant. Why? Explain
your answer.
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(b) We do not really expect to get exactly 25 trees in each quadrant. Why? Explain your answer.

(c) Perform the goodness-of-fit test for these data to determine if these trees are randomly scattered.
Write a short report giving the details of your analysis and your conclusion.
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Introduction

In this chapter we continue our study of relationships between variables and
describe methods for inference when there is a single quantitative response
variable and a single quantitative explanatory variable. The descriptive tools we
learned in Chapter 2—scatterplots, least-squares regression, and correlation—are
essential preliminaries to inference and also provide a foundation for confidence
intervals and significance tests.

We first met the sample mean x¯ in Chapter 1 as a measure of the center of a
collection of observations. Later we learned that when the data are a random
sample from a population, the sample mean is an estimate of the population mean
μ. In Chapters 6 and 7, we used x¯ as the basis for confidence intervals and
significance tests for inference about μ

Now we will follow the same approach for the problem of fitting straight lines
to data. In Chapter 2 we met the least-squares regression line ŷ = b0 + b1x as a
description of a straight-line relationship between a response variable y and an
explanatory variable x At that point we did not distinguish between sample and
population. Now we will think of the least-squares line computed from a sample as
an estimate of a true regression line for the population.

Following the common practice of using Greek letters for population
parameters, we will write the population line as β0 + β1x. This notation reminds us
that the intercept of the fitted line b0 estimates the intercept of the population line
β0, and the fitted slope b1 estimates the slope of the population line β1.

The methods detailed in this chapter will help us answer questions such as

• Is the trend in the annual number of tornadoes reported in the United States
approximately linear? If so, what is the average yearly increase in the number of
tornadoes? How many are predicted for next year?

• What is the relationship between a female college student’s body mass index and
physical activity level measured by a pedometer?

• Among North American universities, is there a strong negative correlation
between the binge-drinking rate and the average price for a bottle of beer at
establishments within a two-mile radius of campus?
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10.1 Simple Linear Regression

When you complete this section, you will be able to

• Describe the simple linear regression model in terms of a population
regression line and the deviations of the response variable y from this line.

• Interpret linear regression output from statistical software to obtain the
least-squares regression line and model standard deviation.

• Distinguish the model deviations εi from the residuals ei that are obtained
from a least-squares fit to a data set.

• Use diagnostic plots to check the assumptions of the simple linear
regression model.

• Construct and interpret a level C confidence interval for the population
intercept and for the population slope.

• Perform a level α significance test for the population intercept and for the
population slope.

• Construct and interpret a level C confidence interval for a mean response
and a level C prediction interval for a future observation when x = x*.

Statistical model for linear regression

Simple linear regression studies the relationship between a response variable y and
a single explanatory variable x. We expect that different values of x will produce
different mean responses for y. We encountered a similar but simpler situation in
Chapter 7 when we discussed methods for comparing two population means.
Figure 10.1 illustrates the statistical model for a comparison of blood pressure
change in two groups of experimental subjects, one group taking a calcium
supplement and the other a placebo. We can think of the treatment (placebo or
calcium) as the explanatory variable in this example. This model has two important
parts:

• The mean change in blood pressure may be different in the two populations.
These means are labeled μ1 and μ2 in Figure 10.1.

• Individual changes vary within each population according to a Normal
distribution. The two Normal curves in Figure 10.1 describe these responses. These
Normal distributions have the same spread, indicating that the population standard
deviations are assumed to be equal.
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FIGURE 10.1
The statistical model for comparing responses to two treatments; the mean response varies with
the treatment.

In linear regression the explanatory variable x is quantitative and can have many
different values. Imagine, for example, giving different amounts of calcium x to
different groups of subjects. We can think of the values of x as defining different
subpopulations, one for each possible value of x. Each subpopulation consists of
all individuals in the population having the same value of x. If we conducted an
experiment with five different amounts of calcium, we could view these values as
defining five different subpopulations.

subpopulations

The statistical model for simple linear regression also assumes that for each value
of x, the observed values of the response variable y are Normally distributed with a
mean that depends on x. We use μy to represent these means. In general, the means
μy can change as x changes according to any sort of pattern. In simple linear
regression we assume that the means all lie on a line when plotted against x To
summarize, this model also has two important parts:

simple linear regression

• The mean of the response variable y changes as x changes. The means all lie on a
straight line. That is, μy = β0 + β1x.

• Individual responses y with the same x vary according to a Normal distribution.
This variation, measured by the standard deviation σ is the same for all values of x.

This statistical model is pictured in Figure 10.2. The line describes how the mean
response μy changes with x. This is the population regression line. The three
Normal curves show how the response y will vary for three different values of the
explanatory variable x.
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population regression line

FIGURE 10.2
The statistical model for linear regression; the mean response is a straight-line function of the
explanatory variable.

Data for simple linear regression

The data for a linear regression are observed values of y and x. The model takes
each x to be a known quantity. In practice, x may not be exactly known. If the error
in measuring x is large, more advanced inference methods are needed. The
response y for a given x is a random variable. The linear regression model
describes the mean and standard deviation of this random variable y. These
unknown parameters must be estimated from the data.
We will use the following example to explain the fundamentals of simple linear
regression. Because regression calculations in practice are always done by
statistical software, we will rely on computer output for the arithmetic. In Section
10.2, we give an example that illustrates how to do the work with a calculator if
software is unavailable.

Example

10.1 Relationship between BMI and physical activity.
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PABMI

Decrease in physical activity is considered to be a major contributor to the
increase in prevalence of overweight and obesity in the general adult
population. Because the prevalence of physical inactivity among college
students is similar to that of the adult population, many researchers feel that a
clearer understanding of college students’ physical activity behaviors is needed
to develop early interventions. As part of one study, researchers looked at the
relationship between physical activity (PA) measured with a pedometer and
body mass index (BMI).1 Each participant wore a pedometer for a week, and
the average number of steps taken per day (in thousands) was recorded.
Various body composition variables, including BMI (in kilograms per square
meter, kg/m2), were also measured. We will consider a sample of 100 female
undergraduates.

Before starting our analysis, it is appropriate to consider the extent to which the
results can reasonably be generalized. In the original study, undergraduate
volunteers were obtained at a large southeastern public university through
classroom announcements and campus flyers.
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The potential for bias should always be considered when obtaining volunteers.
In this case, the participants were screened, and those with severe health issues, as
well as varsity athletes, were excluded. As a result, the researchers considered
these volunteers as an SRS from the population of undergraduates at this
university. However, they acknowledged the limitations of their study, stating that
similar investigations at universities of different sizes and in other climates of the
United States are needed.
In the statistical model for predicting BMI from physical activity, subpopulations
are defined by the explanatory variable, physical activity. We could think about
sampling women from this university, each averaging the same number of steps
per day—say, 9000. Variation in genetic makeup, lifestyle, and diet would be
sources of variation that would result in different values of BMI for this
subpopulation.

Example

10.2 Graphical display of BMI and physical activity.

scatterplot, p. 88

We start our analysis with a scatterplot of the data. Figure 10.3 is a plot of
BMI versus physical activity for our sample of 100 participants. We use the
variable names BMI and PA. The least-squares regression line is also shown in
the plot. There is a negative association between BMI and PA that appears
approximately linear. There is also a considerable amount of scatter about this
least-squares regression line.
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FIGURE 10.3
Scatterplot of BMI versus physical activity (PA) with the least-squares line, for Example 10.2.

Always start with a graphical display of the data. There is no point in fitting a
linear model if the relationship does not, at least approximately, appear linear. Now
that we have confirmed an approximate linear relationship, we return to predicting
BMI for different subpopulations, defined by the explanatory variable physical
activity.

Our statistical model assumes that the BMI values are Normally distributed
with a mean μy that depends upon x in a linear way. Specifically,

μy = β0 + β1x

This population regression line gives the average BMI for all values of x. We
cannot observe this line because the observed responses y vary about their means.

The statistical model for linear regression consists of the population regression
line and a description of the variation of y about the line. This was displayed in
Figure 10.2 with the line and the three Normal curves. The following equation
expresses this idea:

DATA = FIT + RESIDUAL

The FIT part of the model consists of the subpopulation means, given by the
expression β0 + β1x. The RESIDUAL part represents deviations of the data from
the line of population means. We assume that these deviations are Normally
distributed with standard deviation σ.

We use ε (the lowercase Greek letter epsilon) to stand for the RESIDUAL part
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of the statistical model. A response y is the sum of its mean and a chance deviation
ε from the mean. These model deviations ε represent “noise,” that is, variation in y
due to other causes that prevent the observed (x, y)-values from forming a perfectly
straight line on the scatterplot.

SIMPLE LINEAR REGRESSION MODEL

Given n observations of the explanatory variable x and the response variable y,

(x1, y1), (x2, y2), ..., (xn, yn)

the statistical model for simple linear regression states that the observed response yi when the
explanatory variable takes the value xi is

yi = β0 + β1xi + εi

Here β0 + β1xi is the mean response when x = xi. The deviations εi are assumed to be independent
and Normally distributed with mean 0 and standard deviation σ.

The parameters of the model are β0, β1 and σ.

Because the means μy lie on the line μy = β0 + β1x, they are all determined by β0
and β1. Thus, once we have estimates of β0 and β1 the linear relationship
determines the estimates of μy for all values of x. Linear regression allows us to do
inference not only for subpopulations for which we have data but also for those
corresponding to x’s not present in the data. These x-values can be both within and
outside the range of observed x’s. However, extreme caution must be taken when
performing inference for an x-value outside the range of the observed x’s because
there is no assurance that the same linear relationship between μy and x holds.

Given the simple linear regression model, we will now learn how to do
inference about

• the slope β1 and the intercept β0 of the population regression line,

• the mean response μy for a given value of x and

• an individual future response y for a given value of x.

Estimating the regression parameters
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least-squares regression, p. 113

The method of least squares presented in Chapter 2 fits a line to summarize a
relationship between the observed values of an explanatory variable and a response
variable. Now we want to use the least-squares line as a basis for inference about a
population from which our observations are a sample. We can do this only when
the statistical model just presented holds. In that setting, the slope b1 and intercept
b0 of the least-squares line

ŷ = b0 + b1x

estimate the slope β1 and the intercept β0 of the population regression line.
Using the formulas from Chapter 2 (page 115), the slope of the least-squares

line is

b1=rsysx

and the intercept is

b0=y¯−b1x¯

Here, r is the correlation between y and x, sy is the standard deviation of y, and sx is
the standard deviation of x. Notice that if the slope is 0, so is the correlation, and
vice versa. We will discuss this relationship more later in the chapter.

correlation, p. 103

The predicted value of y for a given value x* of x is the point on the least-
squares line ŷ = b0 + b1x*. This is an unbiased estimator of the mean response μy
when x = x*. The residual is

residual

ei = observed response − predicted response

= yi − ŷi

= yi − b0 − b1xi

The residuals ei correspond to the model deviations εi. The ei sum to 0, and the εi
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come from a population with mean 0. Because we do not observe the εi, we use the
residuals to check the model assumptions of the εi.

The remaining parameter to be estimated is σ, which measures the variation of y
about the population regression line. Because this parameter is the standard
deviation of the model deviations, it should come as no surprise that we use the
residuals to estimate it. As usual, we work first with the variance and take the
square root to obtain the standard deviation.

For simple linear regression, the estimate of σ2 is the average squared residual

s2=∑ei2n−2

=∑(yi−y^i)2n−2

sample variance, p. 42

We average by dividing the sum by n − 2 in order to make s2 an unbiased estimate
of σ2. The sample variance of n observations uses the divisor n − 1 for this same
reason. The quantity n − 2 is called the degrees of freedom for s2 The estimate of
the model standard deviation σ is given by

model standard deviation σ

s=s2

We will use statistical software to calculate the regression for predicting BMI
from physical activity for Example 10.1. In entering the data, we chose the names
PA for the explanatory variable and BMI for the response. It is good practice to
use names, rather than just x and y, to remind yourself which variables the output
describes.

Example

10.3 Statistical software output for BMI and physical activity.

Figure 10.4 gives the outputs from three commonly used statistical software
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packages and Excel. Other software will give similar information. The SPSS
output reports estimates of our three parameters as b0 = 29.578, b1 = −0.655,
and s = 3.6549. Be sure that you can find these entries in this output and the
corresponding values in the other outputs.

The least-squares regression line is the straight line that is plotted in Figure
10.3. We would report it as

BMI = 29.578 − 0.655PA
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FIGURE 10.4
Regression output from SPSS, Minitab, Excel, and SAS for the physical activity example.
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with a model standard deviation of s = 3.655. Note that the number of digits
provided varies with the software used and we have rounded the values to three
decimal places. It is important to avoid cluttering up your report of the results of a
statistical analysis with many digits that are not relevant. Software often reports
many more digits than are meaningful or useful.

The outputs contain other information that we will ignore for now. Computer
outputs often give more information than we want or need. This is done to reduce
user frustration when a software package does not print out the particular statistics
wanted for an analysis. The experienced user of statistical software learns to
ignore the parts of the output that are not needed for the current problem.

Example

10.4 Predicted values and residuals for BMI.

We can now use the least-squares regression equation to find the predicted
BMI corresponding to any value of PA. Suppose that a female college student
averages 8000 steps per day. We predict that this person will have a BMI of

29.578 − 0.655(8) = 24.338

If her actual BMI is 25.655, then the residual would be

y − ŷ = 25.655 − 24.338 = 1.317

Now that we have fitted a line, we should check the conditions that the simple
linear regression model imposes on this fit. There is no point in trying to do
statistical inference if the data do not, at least approximately, meet the conditions
that are the foundation for the inference.

This check is done through a visual examination of the residuals for Normality,
constant variance, and any remaining patterns in the data. We usually plot the
residuals both against the case number (especially if this reflects the order in which
the observations were collected) and against the explanatory variable. For this
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example, we will just look at the residuals against the explanatory variable.

scatterplot smoothers, p. 96

Figure 10.5 gives a plot of the residuals versus physical activity with a smooth-
function fit. The smooth function suggests that the residuals increase slightly at
both low and high physical activity levels. This could mean that a curved
relationship between BMI and physical activity would better fit the data. It also
could just be chance variation.

FIGURE 10.5
Plot of residuals versus physical activity (PA) with a smooth function, for the physical activity
example.

Notice that there is a large positive residual near each end of the physical
activity range. Since the effect does not appear to be particularly large, we will
ignore this for the present analysis and investigate this further in Exercise 11.21
(page 636).

In Figure 10.5 the spread of the residuals is roughly uniform across the range of
PA, suggesting that the assumption of a common standard deviation is reasonable.
There also do not appear to be any outliers or influential observations. Finally,
Figure 10.6 is a Normal quantile plot of the residuals. Because the plot looks fairly
straight, we are confident that we do not have a serious violation of our assumption
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that the residuals are Normally distributed.

FIGURE 10.6
Normal quantile plot of the residuals for the physical activity example.

USE YOUR KNOWLEDGE

10.1 Understanding a linear regression model.

Consider a linear regression model with μy = 51.6 + 3.1x and standard
deviation σ = 5.2.

(a) What is the slope of the population regression line?

(b) Explain clearly what this slope says about the change in the mean of y for a change in x.

(c) What is the subpopulation mean when x = 10?

(d) Using the 68–95–99.7 rule, between what two values would approximately 95% of the
observed responses, y fall when x = 10? (Hint: Refer to the two important parts of a linear
regression on page 565)

10.2 More on BMI and physical activity.
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Refer to Examples 10.3 (page 569) and 10.4 (page 572).

(a) What is the predicted BMI for a woman who averages 9400 steps per day?

(b) If an observed BMI at x = 9.4 were 24.3, what would be the residual?

(c) Suppose that you wanted to use the estimated population regression line to examine the
predicted BMI for a woman who averages 4000, 10,000, or 16,000 steps per day. Discuss the
appropriateness of using the equation to predict BMI for each of these activity levels.

Confidence intervals and significance tests

Chapter 7 presented confidence intervals and significance tests for means and
differences in means. In each case, inference rested on the standard errors of
estimates and on t distributions. Inference in simple linear regression is similar in
principle. For example, the confidence intervals have the form

estimate ± t*SEestimate

where t* is a critical point of a t distribution. The formulas for the estimate and
standard error, however, are more complicated.

central limit theorem, p. 307

As a consequence of the model assumptions about the deviations ε the sampling
distributions of b0 and b1 are Normally distributed with means β0 and β1 and
standard deviations that are multiples of σ, the model parameter that describes the
variability about the true regression line. In fact, even if the εi are not Normally
distributed, a general form of the central limit theorem tells us that the distributions
of b0 and b1 will be approximately Normal.

Because we do not know σ we estimate it by s the variability of the data about
the least-squares line. When we do this, we move from the Normal distribution to t
distributions with degrees of freedom n − 2, the degrees of freedom of s. We give
formulas for the standard errors SEb1 and SEb0 in Section 10.2. For now, we will
concentrate on the basic ideas and let the computer do the computations.

CONFIDENCE INTERVAL AND SIGNIFICANCE TEST FOR
THE REGRESSION SLOPE

A level C confidence interval for the slope β1 is

b1 ± t* SEb1
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In this expression t* is the value for the t(n − 2) density curve with area C between −t* and t*.

To test the hypothesis H0: β1 = 0 compute the test statistic

t=b1SEb1

The degrees of freedom are n − 2. In terms of a random variable T having the t(n − 2) distribution,
the P-value for a test of H0 against

Ha: β1 > 0 is P(T ≥ t) 

Ha: β1 < 0 is P(T ≤ t) 

Ha: β1 ≠ 0 is 2P(T ≥ |t|) 

Formulas for confidence intervals and significance tests for the intercept β0 are
exactly the same, replacing b1 and SEb1 by b0 and its standard error SEb0. Although
computer outputs often include a test of H0: β0 = 0 this information usually has
little practical value. From the equation for the population regression line, μy = β0 +
β1x, we see that β0 is the mean response corresponding to x = 0. In many practical
situations, this subpopulation does not exist or is not interesting.

On the other hand, the test of H0: β1 = 0 is quite useful. When we substitute β1
= 0 in the model, the x term drops out and we are left with

μy = β0

This model says that the mean of y does not vary with x. In other words, all the y’s
come from a single population with mean β0 which we would estimate by ȳ. The
hypothesis H0: β1 = 0 therefore says that there is no straight-line relationship
between y and x and that linear regression of y on x is of no value for predicting y.

Example

1005



10.5 Statistical software output, continued.

The computer outputs in Figure 10.4 (pages 570 and 571) for the BMI problem
contain the information needed for inference about the regression slope and
intercept. Let’s look at the SPSS output. The column labeled Std. Error gives
the standard errors of the estimates. The value of SEb1 appears on the line
labeled with the variable name for the explanatory variable, PA. It is given as
0.158. In a summary we would report that the regression coefficient for the
average number of steps per day is −0.655 with a standard error of 0.158.

The t statistic and P-value for the test of H0: β1 = 0 against the two-sided
alternative Ha: β1 ≠ 0 appear in the columns labeled t and Sig. We can verify
the t calculation from the formula for the standardized estimate:

t=b1SEb1=−0.6550.158=−4.14

The P-value is given as 0.000. This is a rounded number, and from that
information we can conclude that P < 0.0005. The other outputs in Figure 10.4
also indicate that the P-value is very small. We will report the result as P <
0.001 because 1 chance in 1000 is sufficiently small for us to decisively reject
the null hypothesis.

We have found a statistically significant linear relationship between physical
activity and BMI. The estimated slope is more than 4 standard deviations away
from zero. Because this is highly unlikely to happen if the true slope is zero, we
have strong evidence for our claim.

Note, however, that this is not the same as concluding that we have found a
strong linear relationship between the response and explanatory variables in this
example. We saw in Figure 10.3 that there was a lot of scatter about the regression
line. A very small P-value for the significance test for a zero slope does not
necessarily imply that we have found a strong relationship.

A confidence interval will provide additional information about the
relationship.

Example
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10.6 Confidence interval for the slope.

A confidence interval for β1 requires a critical value t* from the t(n − 2) = t(98)
distribution. In Table D there are entries for 80 and 100 degrees of freedom.
The values for these rows are very similar. To be conservative, we will use the
larger critical value, for 80 degrees of freedom. Find the confidence level
values at the bottom of the table. In the 95% confidence column, the entry for
80 degrees of freedom is t* = 1.990.

To compute the 95% confidence interval for β1 we combine the estimate of
the slope with the margin of error:

b1 ± t*SEb1 = −0.655 ± (1.990) (0.158)
= −0.655 ± 0.314

The interval is (−0.969 ± −0.341). This agrees with the intervals given by the
software outputs that provide this information in Figure 10.4. We estimate that
an increase of 1000 steps per day is associated with a decrease in BMI of
between 0.341 and 0.969 kg/m2.

Note that the intercept in this example is not of practical interest. It estimates
average BMI when the activity level is 0, a value that isn’t realistic. For this
reason, we do not compute a confidence interval for β0 or discuss the significance
test available in the software.

USE YOUR KNOWLEDGE

10.3 Significance test for the slope.

Test the null hypothesis that the slope is zero versus the two-sided
alternative in each of the following settings using the α = 0.05
significance level:

(a) n = 25, ŷ = 30.5 + 1.8x, and SEb1 = 0.95

(b) n = 25, ŷ = 32.8 + 2.0x, and SEb1 = 0.95

(c) n = 100, ŷ = 28.3 + 1.7x, and SEb1 = 0.55

10.4 95% confidence interval for the slope.
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For each of the settings in the previous exercise, find the 95%
confidence interval for the slope.

Confidence intervals for mean response

Besides performing inference about the slope (and sometimes the intercept) in a
linear regression, we may want to use the estimated regression line to make
predictions about the response y at certain values of x. We may be interested in the
mean response for different subpopulations or in the response of future
observations at different values of x. In either case, we would want an estimate and
associated margin of error.

For any specific value of x, say x*, the mean of the response y in this
subpopulation is given by

μy = β0 + β1x*

To estimate this mean from the sample, we substitute the estimates b0 and b1 for β0
and β1:

μ^y=b0+b1x*

A confidence interval for μy adds to this estimate a margin of error based on the
standard error SEμ^. (The formula for the standard error is given in Section 10.2.)

CONFIDENCE INTERVAL FOR A MEAN RESPONSE

A level C confidence interval for the mean response μy when x takes the
value x* is

μ^y±t*SEμ^

where t* is the value for the t(n − 2) density curve with area C between −t* and t*

Many computer programs calculate confidence intervals for the mean response
corresponding to each of the x-values in the data. Some can calculate an interval
for any value x* of the explanatory variable. We will use a plot to illustrate these
intervals.
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10.7 Confidence intervals for the mean response.

Figure 10.7 shows the upper and lower confidence limits on a graph with the
data and the least-squares line. The 95% confidence limits appear as dashed
curves. For any x* the confidence interval for the mean response extends from
the lower dashed curve to the upper dashed curve. The intervals are narrowest
for values of x* near the mean of the observed x’s and widen as x* moves away
from x¯.

FIGURE 10.7
The 95% confidence limits (dashed curves) for the mean response for the physical activity
example.

Some software will do these calculations directly if you input a value for the
explanatory variable. Other software will calculate the intervals for each value of x
in the data set. Creating a new data set with an additional observation with x equal
to the value of interest and y missing will often work.
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10.8 Confidence interval for an average of 9000 steps per day.

Let’s find the confidence interval for the average BMI at x = 9.0. Our
predicted BMI is

BMI^=29.578−0.655PA

= 29.578 − 0.655(9.0)

= 23.7

Software tells us that the 95% confidence interval for the mean response is
23.0 to 24.4 kg/m2.

If we sampled many women who averaged 9000 steps per day, we would expect
their average BMI to be between 23.0 and 24.4 kg/m2. Note that many of the
observations in Figure 10.7 lie outside the confidence bands. These confidence
intervals do not tell us what BMI to expect for a single observation at a particular
average steps per day. We need a different kind of interval, a prediction interval,
for this purpose.

Prediction intervals

In the last example, we predicted the average BMI for an average of 9000 steps per
day. Suppose that we now want to predict an observation of BMI for a woman
averaging 9000 steps per day. Our best guess for the BMI is what we obtained
using the regression equation, that is, 23.7 kg/m2. The margin of error, on the other
hand, is larger because it is harder to predict an individual value than to predict the
mean.

The predicted response y for an individual case with a specific value x* of the
explanatory variable x is

ŷ = b0 + b1x*

This is the same as the expression for μ^y. That is, the fitted line is used both to
estimate the mean response when x = x* and to predict a single future response. We
use the two notations μ^y and ŷ to remind ourselves of these two distinct uses.

A useful prediction should include a margin of error to indicate its accuracy.
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The interval used to predict a future observation is called a prediction interval.
Although the response y that is being predicted is a random variable, the
interpretation of a prediction interval is similar to that for a confidence interval.

prediction interval

Consider doing the following many times:

• Draw a sample of n observations (xi, yi) and then one additional observation (x*,
y).

• Calculate the 95% prediction interval for y when x = x* using the sample of size
n.

Then 95% of the prediction intervals will contain the value of y for the additional
observation. In other words, the probability that this method produces an interval
that contains the value of a future observation is 0.95.

The form of the prediction interval is very similar to that of the confidence
interval for the mean response. The difference is that the standard error SEŷ used in
the prediction interval includes both the variability due to the fact that the least-
squares line is not exactly equal to the true regression line and the variability of the
future response variable y around the subpopulation mean. (The formula for SEŷ
appears in Section 10.2.)

PREDICTION INTERVAL FOR A FUTURE OBSERVATION

A level C prediction interval for a future observation on the response
variable y from the subpopulation corresponding to x* is

ŷ ± t*SEŷ

where t* is the value for the t(n − 2) density curve with area C between −t* and t*.

Again, we use a graph to illustrate the results.

Example

10.9 Prediction intervals for BMI.
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Figure 10.8 shows the upper and lower prediction limits, along with the data
and the least-squares line. The 95% prediction limits are indicated by the
dashed curves. Compare this figure with Figure 10.7, which shows the 95%
confidence limits drawn to the same scale. The upper and lower limits of the
prediction intervals are farther from the least-squares line than are the
confidence limits. This results in most, but not all, of the observations in
Figure 10.8 lying within the prediction bands.

FIGURE 10.8
The 95% prediction limits (dashed curves) for individual responses for the physical activity
example. Compare with Figure 10.7. The limits are wider because the margins of error
incorporate the variability about the subpopulation means.

The comparison of Figures 10.7 and 10.8 reminds us that the interval for a
single future observation must be larger than an interval for the mean of its
subpopulation.

Example

10.10 Prediction interval for an average of 9000 steps per day.
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Let’s find the prediction interval for a future observation of BMI for a college-
aged woman who averages 9000 steps per day. The predicted value is the same
as the estimate of the average BMI that we calculated in Example 10.8, that is,
23.7 kg/m2. Software tells us that the 95% prediction interval is 16.4 to 31.0
kg/m2. This interval is extremely wide, covering BMI values that are classified
as underweight and obese. Because of the large amount of scatter about the
regression line, prediction intervals here are relatively useless.

Although a larger sample would better estimate the population regression line,
it would not reduce the degree of scatter about the line. This means that prediction
intervals for BMI, given activity level, will always be wide. This example clearly
demonstrates that a very small P-value for the significance test for a zero slope
does not necessarily imply that we have found a strong predictive relationship.

USE YOUR KNOWLEDGE

10.5 Margin of error for the predicted mean.

Refer to Example 10.8 (page 578). What is the 95% margin of error of
μ^y when x = 9.0? Would you expect the margin of error to be larger,
smaller, or the same for x = 5.0? Explain your answer.

10.6 Margin of error for the predicted response.

Refer to Example 10.10. What is the 95% margin of error of ŷ when x =
9.0? If you increased the sample size from n = 100 to n = 400, would
you expect the 95% margin of error to be roughly twice a large, half as
small, or the same for x = 9.0? Explain your answer.

Transforming variables
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We started our analysis of Example 10.1 with a scatterplot to check whether the
relationship between BMI and physical activity could be summarized with a
straight line. We followed that with a residual plot (Figure 10.5) and a Normal
quantile plot (Figure 10.6) to check Normality and any remaining patterns in the
data. A check of model assumptions should always be done prior to inference.

When there is a violation, it is best to consult an expert, as a more sophisticated
regression model is likely needed. However, when the relationship between y and x
is not linear, sometimes we can make it linear by a transformation of one or both of
the variables. Here is an example.

Example

10.11 Relationship between speed driven and fuel efficiency.

MPHMPG

Computers in some vehicles calculate various quantities related to the
vehicle’s performance. One of these is the fuel efficiency, or gas mileage,
expressed as miles per gallon (mpg). Another is the average speed in miles per
hour (mph). For one vehicle equipped in this way, mpg and mph were
recorded each time the gas tank was filled, and the computer was then reset.2
How does the speed at which the vehicle is driven affect the fuel efficiency?
We will work with a simple random sample of 60 observations.

Our statistical modeling for this data set concerns the process by which speed
affects the fuel efficiency. Except possibly for the owner, no one cares about the
particular vehicle. The results are interesting only if they can be applied to other,
similar vehicles that are driven under similar conditions. Although we would not
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expect the parameters that describe the relationship between speed and fuel
efficiency to be exactly the same for similar vehicles, we would expect to find
qualitatively similar results.

Example

10.12 Graphical display of the fuel efficiency and speed relationship.

Figure 10.9 is a plot of fuel efficiency versus speed for our sample of 60
observations. We use the variable names MPG and MPH. The least-squares
regression line and a smooth function are also shown in the plot. Although
there is a positive association between MPG and MPH, the fit is not linear.
The smooth function shows us that the relationship levels off somewhat with
increasing speed.

FIGURE 10.9
Scatterplot of MPG versus MPH with a smooth function and the least-squares line, for Example
10.12. The relationship between MPG and MPH does not appear to be linear.

Given this nonlinearity, we need to make a choice about how to proceed. One
approach would be to confine our interest to speeds that are 30 mph or less, a
region where it appears that a line would be a good fit to the data. Another
possibility is to consider a transformation that will make the relationship
approximately linear for the entire set of data.
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FIGURE 10.10
Scatterplot of MPG versus the logarithm of MPH with a smooth function and the least-squares
line, for Example 10.13. Here, the line and smooth function are very close.

Example

10.13 Is this relationship linear?

One type of function that looks similar to the smooth-function fit in Figure
10.9 is a logarithm. Therefore, we will examine the effect of transforming
speed by taking the natural logarithm. The result is shown in Figure 10.10. In
this plot the smooth function and the line are quite close. We are satisfied that
the relationship between the log of speed and fuel efficiency is approximately
linear for this set of data. We also see that there is only a small amount of
scatter about the regression line, suggesting a strong predictive relationship.

log transformation, p. 93

Although this transformation has resulted in an approximately linear
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relationship, there are still other assumptions of the simple linear model that must
be met. For this example, one can show that these assumptions are also satisfied, so
statistical inference can be performed. In other cases, transforming a variable may
help linearity but harm the Normality and constant-variance assumptions. In those
cases a more sophisticated model is needed.

BEYOND THE BASICS

Nonlinear regression
When the relationship is not linear, we often use models that allow for various
types of curved relationships. These models are called nonlinear models.

nonlinear models

The technical details are much more complicated for nonlinear models. In
general, we cannot write down simple formulas for the parameter estimates; we
use a computer to solve systems of equations to find the estimates. However,
the basic principles are those that we have already learned. For example,

DATA = FIT + RESIDUAL

still applies. The FIT is a nonlinear (curved) function, and the residuals are
assumed to be an SRS from the N(0, σ) distribution. The nonlinear function
contains parameters that must be estimated from the data. Approximate
standard errors for these estimates are part of the standard output provided by
software. Here is an example.

Example

10.14 Investing in one’s bone health.
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As we age, our bones become weaker and are more likely to break.
Osteoporosis (or weak bones) is the major cause of bone fractures in older
women. Various researchers have studied this problem by looking at how and
when bone mass is accumulated by young women. They’ve determined that up
to 90% of a person’s peak bone mass is acquired by age 18 in girls.3 This
makes youth the best time to invest in stronger bones.

Figure 10.11 displays data for a measure of bone strength, called “total
body bone mineral density” (TBBMD), and age for a sample of 256 young
women.4 TBBMD is measured in grams per square centimeter (g/cm2, and age
is recorded in years. The solid curve is the nonlinear fit, and the dashed curves
are 95% prediction limits. Similar to our example of BMI and activity level,
there is a large amount of scatter about the fitted curve. Although prediction
intervals may be useless in this case, the researchers can draw some
conclusions regarding the relationship.

The fitted nonlinear equation is

y^=1.162e−1.162+0.28x1+e−1.162+0.28x

In this equation, ŷ is the predicted value of TBBMD, the response variable;
and x is age, the explanatory variable. A straight line would not do a very good
job of summarizing the relationship between TBBMD and age. At first,
TBBMD increases with age, but then it levels off as age increases. The value
of the function where it is level is called “peak bone mass”; it is a parameter in
the nonlinear model. The estimate is 1.162 and the standard error is 0.008.
Software gives the 95% confidence interval as (1.146, 1.178). Other
calculations could be done to determine the age by which up to 90% of this
peak bone mass is acquired.

1018



FIGURE 10.11
Plot of total body bone mineral density versus age.

The long-range goals of the researchers who conducted this study include
developing intervention programs (exercise and increasing calcium intake have
been shown to be effective) for young women that will increase their TBBMD.

SECTION 10.1 Summary

The statistical model for simple linear regression assumes that the means of the
response variable y fall on a line when plotted against x with the observed y’s
varying Normally about these means. For n observations, this model can be written

yi = β0 + β1xi + εi

where i = 1,2,...,n, and the εi are assumed to be independent and Normally
distributed with mean 0 and standard deviation σ. Here β0 + β1xi is the mean
response when x = xi. The parameters of the model are β0, β1 and σ.

The population regression line intercept and slope, β0 and β1 are estimated by
the intercept and slope of the least-squares regression line, b0 and b1. The
parameter σ is estimated by

s=∑ei2n−2

where the ei are the residuals

ei = yi − ŷi

Prior to inference, always examine the residuals for Normality, constant variance,
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and any other remaining patterns in the data. Plots of the residuals both against
the case number and against the explanatory variable are usually done as part of
this examination.

A level C confidence interval for β1 is

b1 ± t*SEb1

where t* is the value for the t(n − 2) density curve with area C between −t* and t*
The test of the hypothesis H0: β1 = 0 is based on the t statistic

t=b1SEb1

and the t(n − 2) distribution. This tests whether there is a straight-line relationship
between y and x. There are similar formulas for confidence intervals and tests for
β0 but these are meaningful only in special cases.

The estimated mean response for the subpopulation corresponding to the
value x* of the explanatory variable is

μ^y=b0+b1x*

A level C confidence interval for the mean response is

μ^y±t*SEμ^

where t* is the value for the t(n − 2) density curve with area C between −t* and t*
The estimated value of the response variable y for a future observation from

the subpopulation corresponding to the value x* of the explanatory variable is

y^=b0+b1x*

A level C prediction interval for the estimated response is

y^±t*SEy^

where t* is the value for the t(n − 2) density curve with area C between −t* and t*.
The standard error for the prediction interval is larger than that for the confidence
interval because it also includes the variability of the future observation around its
subpopulation mean.

Sometimes a transformation of one or both of the variables can make their
relationship linear. However, these transformations can harm the assumptions of
Normality and constant variance, so it is important to examine the residuals.
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10.2 More Detail about Simple Linear Regression

When you complete this section, you will be able to

• Construct a linear regression ANOVA table.

• Use an ANOVA table to perform the ANOVA F test and draw
appropriate conclusions regarding H0: β1 = 0.

• Use an ANOVA table to compute the square of the sample correlation
and provide an interpretation of it in terms of explained variation.

• Perform, using a calculator, inference in simple linear regression when a
computer is not available.

• Differentiate the formulas for the standard error that we use for a
confidence interval for the mean response and the standard error that we
use for a prediction interval when x = x*.

• Test the hypothesis that there is no linear association in the population
and summarize the results.

• Explain the close connection between the tests H0: β1 = 0 and H0: ρ = 0.

In this section we study three topics. The first is analysis of variance for regression.
If you plan to read Chapter 11 on multiple regression, you should study this
material. The second topic concerns computations for regression inference. The
section we just completed assumes that you have access to software or a statistical
calculator. Here we present and illustrate the use of formulas for the inference
procedures. Finally, we discuss inference for correlation.

Analysis of variance for regression

The usual computer output for regression includes additional calculations called
analysis of variance. Analysis of variance, often abbreviated ANOVA, is essential
for multiple regression (Chapter 11) and for comparing several means (Chapters 12
and 13). Analysis of variance summarizes information about the sources of
variation in the data. It is based on the

analysis of variance

DATA = FIT + RESIDUAL

framework.

1021



The total variation in the response y is expressed by the deviations yi − ȳ. If
these deviations were all 0, all observations would be equal and there would be no
variation in the response. There are two reasons why the individual observations yi
are not all equal to their mean ȳ.

1. The responses yi correspond to different values of the explanatory variable x and
will differ because of that. The fitted value ŷi estimates the mean response for xi.
The differences ŷi − ȳ reflect the variation in mean response due to differences in
the xi This variation is accounted for by the regression line because the ŷ’s lie
exactly on the line.

2. Individual observations will vary about their mean because of variation within
the subpopulation of responses for a fixed xi. This variation is represented by the
residuals yi − ŷi that record the scatter of the actual observations about the fitted
line.

The overall deviation of any y observation from the mean of the y’s is the sum of
these two deviations:

(yi − ȳ) = (ŷi − ȳ) + (yi − ŷi)

In terms of deviations, this equation expresses the idea that DATA = FIT +
RESIDUAL.

Several times we have measured variation by an average of squared deviations.
If we square each of the preceding three deviations and then sum over all n
observations, it can be shown that the sums of squares add:

Σ(yi − ȳ)2 = Σ(ŷi − ȳ)2 + Σ(yi − ŷi)2

We rewrite this equation as

SST = SSM + SSE

where

SST = Σ(yi − ȳ)2

SSM = Σ(ŷi − ȳ)2

SSE = Σ(yi − ŷi)2

The SS in each abbreviation stands for sum of squares, and the T, M, and E stand
for total, model, and error, respectively. (“Error” here stands for deviations from
the line, which might better be called “residual” or “unexplained variation.”) The
total variation, as expressed by SST, is the sum of the variation due to the straight-
line model (SSM) and the variation due to deviations from this model (SSE). This
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partition of the variation in the data between two sources is the heart of analysis of
variance.

sum of squares

If H0: β1 = 0 were true, there would be no subpopulations and all of the y’s
should be viewed as coming from a single population with mean μy. The variation
of the y’s would then be described by the sample variance

sy2=∑(yi−y¯)2n−1

degrees of freedom, p. 44

The numerator in this expression is SST. The denominator is the total degrees of
freedom, or simply DFT.

Just as the total sum of squares SST is the sum of SSM and SSE, the total
degrees of freedom DFT is the sum of DFM and DFE, the degrees of freedom for
the model and for the error:

DFT = DFM + DFE

The model has one explanatory variable x, so the degrees of freedom for this
source are DFM = 1. Because DFE = n − 1, this leaves DFT = n − 2 as the degrees
of freedom for error.

For each source, the ratio of the sum of squares to the degrees of freedom is
called the mean square, or simply MS. The general formula for a mean square is

mean square

MS=sum of squaresdegrees of freedom

Each mean square is an average squared deviation. MST is just sy2, the sample
variance that we would calculate if all of the data came from a single population.
MSE is also familiar to us:

MSE=s2=∑(yi−y^i)2n−2

It is our estimate of σ2, the variance about the population regression line.

SUMS OF SQUARES, DEGREES OF FREEDOM, AND MEAN
SQUARES

Sums of squares represent variation present in the responses. They are
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calculated by summing squared deviations. Analysis of variance partitions the
total variation between two sources.

The sums of squares are related by the formula

SST = SSM + SSE

That is, the total variation is partitioned into two parts, one due to the model and one due to
deviations from the model.

Degrees of freedom are associated with each sum of squares. They are related in the same way:

DFT = DFM + DFE

To calculate mean squares, use the formula

MS=sum of squaresdegrees of freedom

In Section 2.4 (page 120) we noted that r2 is the fraction of variation in the
values of y that is explained by the least-squares regression of y on x. The sums of
squares make this interpretation precise. Recall that SST = SSM + SSE. It is an
algebraic fact that

interpretation of r2

r2=SSMSST=∑(y^i−y¯)2∑(yi−y¯)2

Because SST is the total variation in y and SSM is the variation due to the
regression of y on x, this equation is the precise statement of the fact that r2 is the
fraction of variation in y explained by x in the linear regression.

The ANOVA F test

The null hypothesis H0: β1 that y is not linearly related to x can be tested by
comparing MSM with MSE. The ANOVA test statistic is an F statistic,

F statistic

F=MSMMSE

When H0 is true, this statistic has an F distribution with 1 degree of freedom in the
numerator and n − 2 degrees of freedom in the denominator. These degrees of
freedom are those of MSM and MSE. Just as there are many t statistics, there are
many F statistics. The ANOVA F statistic is not the same as the F statistic of
equality of spread.
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F distribution, p. 474

When β1 ≠ 0, MSM tends to be large relative to MSE. So large values of F are
evidence against H0 in favor of the two-sided alternative.

ANALYSIS OF VARIANCE F TEST

In the simple linear regression model, the hypotheses

H0 β1 = 0

Ha β1 ≠ 0

are tested by the F statistic

F=MSMMSE 

The P-value is the probability that a random variable having the F(1, n − 2) distribution is greater
than or equal to the calculated value of the F statistic.

The F statistic tests the same null hypothesis as one of the t statistics that we
encountered earlier in this chapter, so it is not surprising that the two are related. It
is an algebraic fact that t2 = F in this case. For linear regression with one
explanatory variable, we prefer the t form of the test because it more easily allows
us to test one-sided alternatives and is closely related to the confidence interval for
β1.

The ANOVA calculations are displayed in an analysis of variance table, often
abbreviated ANOVA table. Here is the format of the table for simple linear
regression:

ANOVA table

Degrees Source of freedom Sum of squares Mean square F

Model 1 Σ(ŷi − ȳ)2 SSM/DFM MSM/MSE

Error n − 2 Σ(yi − ŷi)2 SSE/DFE

Total n − 1 Σ(yi − ȳ)2 SST/DFT
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10.15 Interpreting SPSS output for BMI and physical activity.

The entire output generated by SPSS for the physical activity study in
Example 10.3 is given in Figure 10.12. Note that SPSS uses the labels
Regression, Residual, and Total for the three sources of variation. We have
called these Model, Error, and Total. Other statistical software packages may
use slightly different labels. We round the calculated value of the F statistic to
17.10; the P-value is given as 0.000. This is a rounded value and we can
conclude that P < 0.0005.

FIGURE 10.12
Regression output with ANOVA table for Example 10.15.
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There is strong evidence against the null hypothesis that there is no
relationship between BMI and average number of steps per day (PA). Now
look at the output for the regression coefficients. The t statistic for PA is given
as −4.135. If we square this number, we obtain the F statistic (accurate up to
roundoff error). The value of r2 is also given in the output. Average number of
steps per day explains only 14.9% of the variability in BMI. Strong evidence
against the null hypothesis that there is no relationship does not imply that a
large percentage of the total variability is explained by the model.

Calculations for regression inference

We recommend using statistical software for regression calculations. With time
and care, however, the work is feasible with a calculator. We will use the following
example to illustrate how to perform inference for regression analysis using a
calculator.

Example

10.16 Protein requirements via nitrogen balance.

Nitrogen balance studies are used to determine protein requirements for
people. Each subject is fed three different controlled diets during three
separate experimental periods. The three diets are similar with regard to all
nutrients except protein.

Nitrogen balance is the difference between the amount of nitrogen
consumed and the amount lost in feces and urine and by other means. Since
virtually all the nitrogen in a diet comes from protein, nitrogen balance is an
indicator of the amount of protein retained by the body. The protein
requirement for an individual is the protein intake corresponding to a nitrogen
balance of zero.

Linear regression is used to model the relationship between nitrogen
balance, measured in milligrams of nitrogen per kilogram of body weight per
day (mg/kg/d), and protein intake, measured in grams of protein per kilogram
of body weight per day (g/kg/d). Here are the data for one subject:5
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Protein intake (x) 0.543 0.797 1.030

Nitrogen balance (y) −23.4 17.8 67.3

The data and the least-squares line are plotted in Figure 10.13. The strong
straight-line pattern suggests that we can use linear regression to model the
relationship between nitrogen balance and protein intake.

We begin our regression calculations by fitting the least-squares line. Fitting the
line gives estimates b1 and b0 of the model parameters β1 and β0. Next we examine
the residuals from the fitted line and obtain an estimate s of the remaining
parameter σ. These calculations are preliminary to inference. Finally, we use s to
obtain the standard errors needed for the various interval estimates and significance
tests. Roundoff errors that accumulate during these calculations can ruin the final
results. Be sure to carry many significant digits and check your work carefully.

FIGURE 10.13
Scatterplot and regression line for Example 10.16.

Preliminary calculations

After examining the scatterplot (Figure 10.13) to verify that the data show a
straight-line pattern, we begin our calculations.
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10.17 Summary statistics for nitrogen balance study.

We start by making a table with the mean and standard deviation for each of
the variables, the correlation, and the sample size. These calculations should
be familiar from Chapters 1 and 2. Here is the summary:

Variable Mean Standard deviation Correlation Sample size

Intake x¯=0.79000 sx = 0.24357545 r = 0.99698478 n = 3
N balance ȳ = 20.56667 sy = 45.4132506

These quantities are the building blocks for our calculations.

We will need one additional quantity for the calculations to follow. It is the
expression ∑(xi−x¯)2. We obtain this quantity as an intermediate step when we
calculate sx You could also find it using the fact that ∑(xi−x¯)2=(n−1)sx2. You
should verify that the value for our example is

∑(xi−x¯)2=0.118658

Our first task is to find the least-squares line. This is easy with the building
blocks that we have assembled.

Example

10.18 Computing the least-squares regression line.

The slope of the least-squares line is

b1=rsysx

=0.9969847845.41325060.24357545

= 185.882

The intercept is

b0=y¯=b1x¯

= 20.56667 − (185.882) (0.79000)
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= −126.280

The equation of the least-squares regression line is therefore

ŷ = −126.280 + 185.882x

This is the line shown in Figure 10.13.

We now have estimates of the first two parameters, β0 and β1, of our linear
regression model. Next, we find the estimate of the third parameter, σ: the standard
deviation s about the fitted line. To do this we need to find the predicted values and
then the residuals.

Example

10.19 Computing the predicted values and residuals.

The first observation is an intake of x = 0.543. The corresponding predicted
value of nitrogen balance is

ŷ1 = b0 + b1x1

= −126.280 + (185.882) (0.543)

= −25.346

and the residual is

e1 = y1 − ŷ1

= −23.4 − (−25.346)

= 1.946

The residuals for the other intakes are calculated in the same way. You should
verify that they are −4.068 and 2.122.

Notice that the sum of these three residuals is zero. When doing these
calculations by hand, it is always helpful to check that the sum of the residuals is
zero.
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Example

10.20 Computingy s2.

The estimate of σ2 is s2, the sum of the squares of the residuals divided by n −
2. The estimated standard deviation about the line is the square root of this
quantity.

s2=σei2n−2

=(1.946)2+(−4.068)2+(2.122)21

= 24.838

So the estimate of the standard deviation about the line is

s=24.838=4.984

Now that we have estimates of the three parameters of our model, we can
proceed to the more detailed calculations needed for regression inference.

Inference for slope and intercept

Confidence intervals and significance tests for the slope β1 and intercept β0 of the
population regression line make use of the estimates b1 and β0 and their standard
errors.
Some algebra and the rules for variances establishes that the standard deviation of
b1 is

rules for variances, p. 275

σb1=σσ(xi−x¯)2

Similarly, the standard deviation of b0 is

σb0=σ1n+x¯2∑(xi−x¯)2

To estimate these standard deviations, we need only replace σ by its estimate s.

STANDARD ERRORS FOR ESTIMATED REGRESSION
COEFFICIENTS
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The standard error of the slope b1 of the least-squares regression line is

SEb1=s∑(xi−x¯)2

The standard error of the intercept b0 is

SEb0=s1n+x¯2∑(xi−x¯)2

The plot of the regression line with the data in Figure 10.13 shows a very strong
relationship, but our sample size is very small. We assess the situation with a
significance test for the slope.

Example

10.21 Testing the slope. First we need the standard error of the estimated
slope:

SEb1=s∑(xi−x¯)2

=4.9840.118658

= 14.469

To test

H0: β1 = 0

Ha: β1 ≠ 0

calculate the t statistic:

t=b1SEb1

=185.88214.469=12.847

Using Table D with n − 2 = 1 degree of freedom, we conclude that P < 0.05.
(The exact value obtained from software is 0.0494.) The data provide evidence
in favor of a relationship between nitrogen balance and protein intake (t =
12.85, df = 1, P < 0.05).

Three things are important to note about this example. First, the sample size is
very small. Even though the estimated slope is more than 12 standard deviations
away from zero, we have only barely attained the 0.05 standard for statistical

1032



significance. It is important to remember that we need to have a very large effect if
we expect to detect it with a small sample size. Second, we would, of course, prefer
to have more than three observations for this analysis. However, for each protein
intake, data are collected for about a month in order to calculate the nitrogen
balance. Because of this expense of time and money, researchers typically use only
three levels of intake. Third, because we expect balance to increase with increasing
intake, a one-sided significance test is justified in this setting.

The significance test tells us that the data provide sufficient information to
conclude that intake and balance are related. We use the estimate b1 and its
confidence interval to further describe the relationship.

Example

10.22 Computing a 95% confidence interval for the slope.

For the protein requirement problem, let’s find a 95% confidence interval for
the slope β1 The degrees of freedom are n − 2 = 1, so t* from Table D is
12.706. We compute

b1 ± t*SEb1 = 185.882 ± (12.706) (14.469)

= 185.882 ± 183.843

The interval is (2, 370).

Note the effect of the small sample size on the critical value t* With one
additional observation, it would decrease to 4.303.

In this example, the intercept β0 does not have a meaningful interpretation. A
protein intake of zero is theoretically possible, but we would not expect our linear
model to be reasonable when extended to such an extreme value. For problems
where inference for β0 is appropriate, the calculations are performed in the same
way as those for β1. Note that there is a different formula for the standard error,
however.

Confidence intervals for the mean response and prediction intervals for a future observation
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When we substitute a particular value x* of the explanatory variable into the
regression equation and obtain a value of ŷ, we can view the result in two ways:

1. We have estimated the mean response μy.

2. We have predicted a future value of the response y.

The margins of error for these two uses are often quite different. Prediction
intervals for an individual response are wider than confidence intervals for
estimating a mean response. We now proceed with the details of these calculations.
Once again, standard errors are the essential quantities. And once again, these
standard errors are multiples of s our basic measure of the variability of the
responses about the fitted line.

STANDARD ERRORS FOR μ^ AND ŷ

The standard error of μ^ is

SEμ^=s 1n+(x*−x¯)2∑(xi−x¯)2

The standard error for predicting an individual response ŷ is

SEy^=s 1+1n+(x*−x¯)2∑(xi−x¯)2

Note that the only difference between the formulas for these two standard errors
is the extra 1 under the square root sign in the standard error for prediction. This
standard error is larger due to the additional variation of individual responses about
the mean response. This additional variation remains regardless of the sample size
n and is the reason that prediction intervals are wider than the confidence intervals
for the mean response.

For the nitrogen balance example, we can think about the mean balance that
would result if a particular protein intake was consumed many times. The
confidence interval for the mean response would provide an interval estimate of
this population value. On the other hand, we might want to predict a future
observation under conditions similar to those used in the study, that is, for a one-
month period, at a particular intake level. A prediction interval attempts to capture
this future observation.

Example
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10.23 Computing a confidence interval for μ^.

Let’s find a 95% confidence interval for the mean balance corresponding to an
intake of 0.7 g/kg/d. The estimated mean balance is

μ^=b0+b1x1

= −126.280 + (185.882) (0.7)

= 3.837

The standard error is

SEμ^=s1n+(x*−x¯)2∑(xi−x¯)2

=4.98413+(0.70−0.79)20.118658

To find the 95% confidence interval we compute

μ^±t*SEμ^=3.837±(12.706)(3.158)

= 3.837 ± 40.126

= 4 ± 40

The interval is −36 to 44 mg/kg/d of nitrogen.

Calculations for the prediction intervals are similar. The only difference is the
use of the formula for SEŷ in place of SEμ^ This results in a much wider interval.

Since the confidence interval for mean response includes the value 0, the
corresponding intake 0.7 g/kg/d should be considered as a possible value for the
intake requirement for this individual. Other intakes would also produce
confidence intervals that include the value of 0 for mean balance. Here is one
method that is commonly used to determine a single value of the requirement for
an individual.

Example

10.24 Estimating the protein requirement.

We define the estimated requirement for an individual to be the intake
corresponding to zero balance using the fitted regression equation. To do this,
we set the equation
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μ^=b0+b1x

equal to 0 and solve for the intake x. So,

x = −b0/b1

= −(−126.280)/185.882

= 0.68

The estimated protein requirement for this individual is 0.68 g/kg/d.

If we repeat these calculations using data collected on a large number of
individuals, we can estimate the requirement distribution for a population. There
are many interesting statistical issues related to this problem, including estimating
non-Normal population distributions.6

Inference for correlation

The correlation coefficient is a measure of the strength and direction of the linear
association between two variables. Correlation does not require an explanatory-
response relationship between the variables. We can consider the sample
correlation r as an estimate of the correlation in the population and base inference
about the population correlation on r.

correlation, p. 103

The correlation between the variables x and y when they are measured for every
member of a population is the population correlation. As usual, we use Greek
letters to represent population parameters. In this case ρ (the Greek letter rho) is the
population correlation.

population correlation

When ρ = 0, there is no linear association in the population. In the important
case where the two variables x and y are both Normally distributed, the condition ρ
= 0 is equivalent to the statement that x and y are independent. That is, there is no
association of any kind between x and y. (Technically, the condition required is
that x and y be jointly Normal. This means that the distribution of x is Normal and
also that the conditional distribution of y, given any fixed value of x is Normal.)
We therefore may wish to test the null hypothesis that a population correlation is 0.

jointly Normal variables
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TEST FOR A ZERO POPULATION CORRELATION

To test the hypothesis H0: ρ= 0 compute the t statistic

t=rn−21−r2

where n is the sample size and r is the sample correlation.

In terms of a random variable T having the t(n − 2) distribution, the P-value for a test of H1 against

Ha: ρ > 0 is P(T ≥ t) 

Ha: ρ < 0 is P(T ≤ t) 

Ha: ρ ≠ 0 is 2P(T ≥ |t |) 

Most computer packages have routines for calculating correlations, and some
will provide the significance test for the null hypothesis that ρ is zero.
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FIGURE 10.14
Correlation output for Example 10.25.

Example

10.25 Correlation in the physical activity study.

The SPSS output for the physical activity example appears in Figure 10.14.
The sample correlation between BMI and the average number of steps per day
(PA) is r = −0.385. SPSS calls this a Pearson correlation to distinguish it from
other kinds of correlations that it can calculate. The P-value for a two-sided
test of H0: ρ = 0 is given as 0.000. This means that the actual P-value is less
than 0.0005. We conclude that there is a nonzero correlation between BMI and
PA.
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If we wanted to test the one-sided alternative that the population correlation is
negative, we divide the P-value in the output by 2, after checking that the sample
coefficient is in fact negative.

If your software does not give the significance test, you can do the
computations easily with a calculator.

Example

10.26 Correlation test using a calculator.

The correlation between BMI and PA is r = −0.385. Recall that n = 100. The t
statistic for testing the null hypothesis that the population correlation is zero is

t=rn−21−r2

=−0.385100−21−(−0.385)2

The degrees of freedom are n − 2 = 98. From Table D we conclude that P <
0.0001. This agrees with the SPSS output in Figure 10.14, where the P-value is
given as 0.000. The data provide clear evidence that BMI and PA are related.

There is a close connection between the significance test for a correlation and
the test for the slope in a linear regression. Recall that

b1=rSySx

From this fact we see that if the slope is 0, so is the correlation, and vice versa. It
should come as no surprise to learn that the procedures for testing H0: β1 = 0 and
H0: ρ = 0 are also closely related. In fact, the t statistics for testing these hypotheses
are numerically equal. That is,

b1Sb1=rn−21−r2

Check that this holds in both of our examples.
In our examples, the conclusion that there is a statistically significant

correlation between the two variables would not come as a surprise to anyone
familiar with the meaning of these variables. The significance test simply tells us
whether or not there is evidence in the data to conclude that the population
correlation is different from 0. The actual size of the correlation is of considerably
more interest. We would therefore like to give a confidence interval for the
population correlation. Unfortunately, most software packages do not perform this
calculation. Because hand calculation of the confidence interval is very tedious, we
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do not give the method here.7

USE YOUR KNOWLEDGE

10.7 Research and development spending.

NSF

The National Science Foundation collects data on the research and
development spending by universities and colleges in the United States.8
Here are the data for the years 2003, 2006, and 2009:

Year 2003 2006 2009
Spending (billions of dollars) 40.1 47.8 54.9

Do the following by hand or with a calculator and verify your results
with a software package.

(a) Make a scatterplot that shows the increase in research and development spending over
time. Does the pattern suggest that the spending is increasing linearly over time?

(b) Find the equation of the least-squares regression line for predicting spending from year.
Add this line to your scatterplot.

(c) For each of the three years, find the residual. Use these residuals to calculate the standard
error s.

(d) Write the regression model for this setting. What are your estimates of the unknown
parameters in this model?

(e) Compute a 95% confidence interval for the slope and summarize what this interval tells
you about the increase in spending over time.

SECTION 10.2 Summary

The ANOVA table for a linear regression gives the degrees of freedom, sum of
squares, and mean squares for the model, error, and total sources of variation. The
ANOVA F statistic is the ratio MSM/MSE. Under H0: β1 = 0, this statistic has an
F(1, n − 2) distribution and is used to test H0 versus the two-sided alternative.

The square of the sample correlation can be expressed as

r2=SSMSST
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and is interpreted as the proportion of the variability in the response variable y that
is explained by the explanatory variable x in the linear regression.

The standard errors for b0 and b1 are

SEb0=s1n+x¯2∑(xi−x¯)2

SEb1=s∑(xi−x¯)2

The standard error that we use for a confidence interval for the estimated
mean response for the subpopulation corresponding to the value x* of the
explanatory variable is

SEμ^=s1n+(x*− x¯)2∑(xi−x¯)2

The standard error that we use for a prediction interval for a future
observation from the subpopulation corresponding to the value x*of the
explanatory variable is

SEy^=s1+1n+(x*− x¯)2∑(xi−x¯)2

When the variables y and x are jointly Normal, the sample correlation is an
estimate of the population correlation ρ. The test of H0: ρ = 0 is based on the t
statistic

t=rn−21−r2

which has a t(n − 2) distribution under H0. This test statistic is numerically
identical to the t statistic used to test H0: β1 = 0.
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CHAPTER 10 Exercises
For Exercises 10.1 and 10.2, see page 573; for Exercises 10.3 and 10.4, see page 576; for Exercises
10.5 and 10.6, see page 580; and for Exercise 10.7, see page 599.

10.8 What’s wrong?

For each of the following, explain what is wrong and why.

(a) The slope describes the change in x for a change in y.

(b) The population regression line is y = b0 + b1x.

(c) A 95% confidence interval for the mean response is the same width regardless of x

10.9 What’s wrong?

For each of the following, explain what is wrong and why.

(a) The parameters of the simple linear regression model are b0 b1 and s

(b) To test H0: b1 = use a t test.

(c) For a particular value of the explanatory variable x, the confidence interval for the mean response
will be wider than the prediction interval for a future observation.

10.10 College debt versus the percent of students who borrow.

Kiplinger’s “Best Values in Public Colleges” provides a ranking of U.S. public colleges based on a
combination of various measures of academics and affordability.9 We’ll consider a random
collection of 40 colleges from Kiplinger’s 2011–2012 report and focus on the average debt in dollars

at graduation (AvgDebt) and the percent of students who borrow (PercBorrow).  BESTVAL

(a) A scatterplot of these two variables is shown in Figure 10.15. Describe the relationship. Are there
any possible outliers or unusual values? Does a linear relationship between PercBorrow and
AvgDebt seem reasonable?

(b) Based on the scatterplot, approximately how much does the average debt change for a college
with 10% more students who borrow?

(c) The State University of New York–Fredonia is a school where 86% of the students borrow.
Discuss the appropriateness of using this data set to predict the average debt for this school.

10.11 Can we consider this an SRS?

Refer to the previous exercise. The report states that Kiplinger’s rankings focus on traditional four-
year public colleges with broad-based curricula. Each year, they start with more than 500 schools
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and then narrow the list down to roughly 120 based on academic quality before ranking them. The
data set in the previous exercise is an SRS from their published list of 100 schools. As far as
investigating the relationship between average debt and the percent of students who borrow, is it
reasonable to consider this to be an SRS from the population of interest? Write a short paragraph

explaining your answer.  BESTVAL

FIGURE 10.15
Scatterplot of average debt (in dollars) at graduation (AvgDebt) versus the percent of
students who borrow (PercBorrow), for Exercise 10.10.

10.12 Predicting college debt.

Refer to Exercise 10.10. Figure 10.16 contains partial SAS output for the simple linear regression of

AvgDebt on PercBorrow.  BESTVAL

(a) State the least-squares regression line.

(b) Construct a 95% confidence interval for the slope. What does this interval tell you about the
change in average debt for a change in the percent who borrow?

(c) At Miami University, 51% of the students borrow, and the average debt is $27,315. What is the
residual?
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FIGURE 10.16
SAS output for Exercise 10.12.

10.13 More on predicting college debt.

Refer to the previous exercise. The University of Michigan–Ann Arbor is a school where 46% of the
students borrow, and the average debt is $27,828. The University of Wisconsin–La Crosse is a

school where 69% of the students borrow, and the average debt is $21,420.  BESTVAL

(a) Using your answer to part (a) of the previous exercise, what is the predicted average debt for a
student at the University of Michigan–Ann Arbor?

(b) What is the predicted average debt for the University of Wisconsin–La Crosse?

(c) Without doing any calculations, would the standard error for the estimated average debt be larger
for the University of Michigan–Ann Arbor or the University of Wisconsin–La Crosse? Explain your
answer.

10.14 Predicting college debt: other measures.

Refer to Exercise 10.10. Let’s now look at AvgDebt and its relationship with all seven measures
available in the data set. In addition to the percent of students who borrow (PercBorrow), we have
the admittance rate (Admit), the four-year graduation rate (Yr4Grad), in-state tuition after aid
(InAfterAid), out-of-state tuition after aid (OutAfterAid), average aid per student (AvgAid), and the

number of students per faculty member (StudPerFac).  BESTVAL

(a) Generate scatterplots of each explanatory variable and AvgDebt. Do all these relationships look
linear? Describe what you see.

(b) Fit each of the predictors separately and create a table that lists the explanatory variable, model
standard deviation s, and the P-value for the test of a linear association.
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TABLE 10.1  In-State Tuition and Fees (in dollars) for 33 Public Universities

(c) Which variable appears to be the best single predictor of average debt? Explain your answer.

 10.15 Importance of Normal model deviations?

A general form of the central limit theorem tells us that the sampling distributions of b0 and b1 will
be approximately Normal even if the model deviations are not Normally distributed. Using this fact,
explain why the Normal distribution assumption is much more important for a prediction interval
than for the confidence interval of the mean response at x= x*.

10.16 Public university tuition: 2008 versus 2011.

Table 10.1 shows the in-state undergraduate tuition and required fees for 33 public universities in

2008 and 2011.10  TUITION

(a) Plot the data with the 2008 in-state tuition (IN08) on the x axis and the 2011 tuition (IN11) on the
y axis. Describe the relationship. Are there any outliers or unusual values? Does a linear relationship
between the in-state tuition in 2008 and in 2011 seem reasonable?

(b) Run the simple linear regression and state the least-squares regression line.

(c) Obtain the residuals and plot them versus the 2008 in-state tuition amounts. Describe anything
unusual in the plot.

(d) Do the residuals appear to be approximately Normal with constant variance? Explain your
answer.

(e) The 5 California schools appear to follow the same linear trend as the other schools but have
higher-than-predicted in-state tuition in 2011. Assume that this jump is particular to this state
(financial troubles?), and remove these 5 observations and refit the model. How do the model
parameters change?

(f) If you were to move forward with inference, which of these two model fits would you use? Write
a short paragraph explaining your answer.

10.17 More on public university tuition.

Refer to the previous exercise. We’ll now move forward with inference using the model fit you

chose in part (f) of the previous exercise.  TUITION

School 2008 2011 School 2008 2011 School 2008 2011
Penn

State 13,706 15,984 Pittsburgh 13,642 16,132 Michigan 11,738 12,634

Rutgers 11,540 12,754
Michigan

State 10,214 12,202 Maryland 8,005 8,655
Illinois 12,106 13,838 Minnesota 10,756 13,022 Missouri 8,467 8,989
Buffalo 6,285 7,482 Indiana 8,231 9,524 Ohio State 8,679 9,735

Virginia 9,300 11,786 Cal–Davis 8,635 13,860
Cal–

Berkeley 7,656 12,834
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Cal–
Irvine 8,046 13,122 Purdue 7,750 9,478

Cal–San
Diego 8,062 13,200

Oregon 6,435 8,789 Wisconsin 7,564 9,665 Washington 6,802 10,574
UCLA 7,551 12,686 Texas 8,532 9,794 Nebraska 6,584 7,563
Iowa 6,544 7,765 Colorado 7,278 9,152 Iowa State 6,360 7,486
North

Carolina 5,397 7,009 Kansas 7,042 9,222 Arizona 5,542 9,286

Florida 3,778 5,657
Georgia

Tech 6,040 9,652
Texas

A&M 7,844 8,421

(a) Give the null and alternative hypotheses for examining the linear relationship between 2008 and
2011 in-state tuition amounts.

(b) Write down the test statistic and P-value for the hypotheses stated in part (a). State your
conclusions.

(c) Construct a 95% confidence interval for the slope. What does this interval tell you about the
annual percent increase in tuition between 2008 and 2011?

(d) What percent of the variability in 2011 tuition is explained by a linear regression model using the
2008 tuition?

(e) Explain why inference on β0 is not of interest for this problem.

10.18 Even more on public university tuition.

Refer to the previous two exercises.  TUITION

(a) The in-state tuition at State U was $5100 in 2008. What is the predicted in-state tuition in 2011?

(b) The in-state tuition at Moneypit U was $15,700 in 2008. What is its predicted in-state tuition in
2011?

(c) Discuss the appropriateness of using the fitted equation to predict tuition for each of these
universities.

10.19 Out-of-state tuition.

Refer to Exercise 10.16. In addition to in-state tuition, out-of-state tuition for 2008 (OUT08) and
2011 (OUT11) was also obtained. Repeat parts (a) through (d) of Exercise 10.16 using these tuition
rates. Does it appear we can use all the schools for this analysis or are there some unusual

observations? Explain your answer.  TUITION

10.20 More on out-of-state tuition.

Refer to the previous exercise.  TUITION

(a) Construct a 95% confidence interval for the slope. What does this interval tell you about the
annual percent increase in out-of-state tuition between 2008 and 2011?

(b) In Exercise 10.17(c) you constructed a similar 95% confidence interval for the annual percent
increase in in-state tuition. Suppose that you want to test whether the increase is the same for both
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tuition types. Given the two slope estimates b1 and standard errors, could we just do a variation of
the two-sample t test from Chapter 7? Explain why or why not.

10.21 In-state versus out-of-state tuition.

Refer to the previous five exercises. We can also investigate whether there is a linear association
between the in-state and out-of-state tuition. Perform a linear regression analysis using the 2011
data, complete with scatterplots and residual checks, and write a paragraph summarizing your

findings.  TUITION

10.22 U.S. versus overseas stock returns.

Returns on common stocks in the United States and overseas appear to be growing more closely
correlated as economies become more interdependent. Suppose that the following population
regression line connects the total annual returns (in percent) on two indexes of stock prices:

MEAN OVERSEAS RETURN = −0.2 + 0.32 × U.S. RETURN

(a) What is β0 in this line? What does this number say about overseas returns when the U.S. market
is flat (0% return)?

(b) What is β1 in this line? What does this number say about the relationship between U.S. and
overseas returns?

(c) We know that overseas returns will vary in years when U.S. returns do not vary. Write the
regression model based on the population regression line given above. What part of this model
allows overseas returns to vary when U.S. returns remain the same?

10.23 Beer and blood alcohol.

How well does the number of beers a student drinks predict his or her blood alcohol content (BAC)?
Sixteen student volunteers at Ohio State University drank a randomly assigned number of 12-ounce
cans of beer. Thirty minutes later, a police officer measured their BAC. Here are the data:11

Student 1 2 3 4 5 6 7 8
Beers 5 2 9 8 3 7 3 5
BAC 0.10 0.03 0.19 0.12 0.04 0.095 0.07 0.06

Student 9 10 11 12 13 14 15 16
Beers 3 5 4 6 5 7 1 4
BAC 0.02 0.05 0.07 0.10 0.085 0.09 0.01 0.05

The students were equally divided between men and women and differed in weight and usual
drinking habits. Because of this variation, many students don’t believe that number of drinks

predicts BAC well.  BAC

(a) Make a scatterplot of the data. Find the equation of the least-squares regression line for
predicting BAC from number of beers and add this line to your plot. What is r2 for these data?
Briefly summarize what your data analysis shows.
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(b) Is there significant evidence that drinking more beers increases BAC on the average in the
population of all students? State hypotheses, give a test statistic and P-value, and state your
conclusion.

(c) Steve thinks he can drive legally 30 minutes after he drinks 5 beers. The legal limit is BAC =
0.08. Give a 90% prediction interval for Steve’s BAC. Can he be confident he won’t be arrested if he
drives and is stopped?

10.24 School budget and number of students.

Suppose that there is a linear relationship between the number of students x in a school system and
the annual budget y. Write a population regression model to describe this relationship.

(a) Which parameter in your model is the fixed cost in the budget (for example, the salary of the
principals and some administrative costs) that does not change as x increases?

(b) Which parameter in your model shows how total cost changes when there are more students in
the system? Do you expect this number to be greater than 0 or less than 0?

(c) Actual data from various school systems will not fit a straight line exactly. What term in your
model allows variation among schools of the same size x?

10.25 Performance bonuses.

In the National Football League (NFL), performance bonuses now account for roughly 25% of
player compensation.12 Does tying a player’s salary into performance bonuses result in better
individual or team success on the field? Focusing on linebackers, let’s look at the relationship
between a player’s end-of-year production rating and the percent of his salary devoted to incentive

payments in that same year.  PERFPAY

(a) Use numerical and graphical methods to describe the two variables and summarize your results.

(b) Both variable distributions are non-Normal. Does this necessarily pose a problem for performing
linear regression? Explain.

(c) Construct a scatterplot of the data and describe the relationship. Are there any outliers or unusual
values? Does a linear relationship between the percent of salary and the player rating seem
reasonable? Is it a very strong relationship? Explain.

(d) Run the simple linear regression and state the least-squares regression line.

(e) Obtain the residuals and assess whether the assumptions for the linear regression analysis are
reasonable. Include all plots and numerical summaries used in doing this assessment.

 10.26 Performance bonuses, continued.

Refer to the previous exercise.  PERFPAY

(a) Now run the simple linear regression for the variables sqrt(rating) and percent of salary devoted
to incentive payments.

(b) Obtain the residuals and assess whether the assumptions for the linear regression analysis are
reasonable. Include all plots and numerical summaries used in doing this assessment.

1048



TABLE 10.2  Sales Price and Assessed Value (in $ thousands) of 30 Homes in a
Midwestern City

(c) Construct a 95% confidence interval for the square root increase in rating given a 1% increase in
the percent of salary devoted to incentive payments.

(d) Consider the values 0%, 20%, 40%, 60%, and 80% salary devoted to incentives. Compute the
predicted rating for this model and for the one in the previous exercise. For the model in this
problem, you will need to square the predicted value to get back to the original units.

(e) Plot the predicted values versus the percent and connect those values from the same model. For
which regions of percent do the predicted values from the two models differ the most?

(f) Based on the comparison of regression models (both predicted values and residuals), which
model do you prefer? Explain.

10.27 Sales price versus assessed value.

Real estate is typically reassessed annually for property tax purposes. This assessed value, however,
is not necessarily the same as the fair market value of the property. Table 10.2 summarizes an SRS
of 30 homes recently sold in a midwestern city.13 Both variables are measured in thousands of

dollars.  SALES

Property
Sales
price

Assessed
value Property

Sales
price

Assessed
value Property

Sales
price

Assessed
value

1 179.9 188.7 2 240.0 220.4 3 113.5 118.1
4 281.5 232.4 5 186.0 188.1 6 275.0 240.1
7 281.5 232.4 8 210.0 211.8 9 210.0 168.0
10 184.0 180.3 11 186.5 294.7 12 239.0 209.2
13 185.0 162.3 14 251.0 236.8 15 180.0 123.7
16 160.0 191.7 17 255.0 245.6 18 220.0 19.3
19 160.0 181.6 20 200.0 177.4 21 265.0 307.2
22 190.0 229.7 23 150.5 168.9 24 189.0 194.4
25 157.0 143.9 26 171.5 201.4 27 157.0 143.9
28 175.0 181.0 29 159.0 125.1 30 229.0 195.3

(a) Inspect the data. How many homes have a sales price greater than the assessed value? Do you
think this trend would be true for the larger population of all homes recently sold? Explain your
answer.

(b) Make a scatterplot with assessed value on the horizontal axis. Briefly describe the relationship
between assessed value and sales price.

(c) Report the least-squares regression line for predicting sales price from assessed value.

(d) Obtain the residuals and plot them versus assessed value. Property 11 was sold at a price
substantially lower than the assessed value. Does this observation appear to be unusual in the
residual plot? Approximately how many standard deviations is it away from its predicted value?

(e) Remove this observation and redo the least-squares fit. How have the least-squares regression
line and model standard deviation changed?
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TABLE 10.3  Annual Number of Tornadoes in the United States Between 1953 and
2012

(f) Check the residuals for this new fit. Do the assumptions for the linear regression analysis appear
reasonable here? Explain your answer.

10.28 Sales price versus assessed value, continued.

Refer to the previous exercise. Let’s consider the model fit with Property 11 excluded.  SALES

(a) Calculate the predicted sales prices for homes currently assessed at $155,000, $220,000, and
$285,000.

(b) Construct a 95% confidence interval for the slope and explain what this model tells you in terms
of the relationship between assessed value and sales price.

(c) Explain why inference on the intercept is not of interest.

(d) Using the result from part (b), compare the estimated regression line with y = x, which says that,
on average, the sales price is equal to the assessed value. Is there evidence that this model is not
reasonable? In other words, is the sales price typically larger or smaller than the assessed value?
Explain your answer.

10.29 Is the number of tornadoes increasing?

The Storm Prediction Center of the National Oceanic and Atmospheric Administration maintains a
database of tornadoes, floods, and other weather phenomena. Table 10.3 summarizes the annual

number of tornadoes in the United States between 1953 and 2012.14  TWISTER

(a) Make a plot of the total number of tornadoes by year. Does a linear trend over years appear
reasonable? Are there any outliers or unusual patterns? Explain your answer.

(b) Run the simple linear regression and summarize the results, making sure to construct a 95%
confidence interval for the average annual increase in the number of tornadoes.

(c) Obtain the residuals and plot them versus year. Is there anything unusual in the plot?

(d) Are the residuals Normal? Justify your answer.

(e) The number of tornadoes in 2004 is much larger than expected under this linear model. Also, the
number of tornadoes in 2012 is much smaller than predicted. Remove these observations and rerun
the simple linear regression. Compare these results with the results in part (b). Do you think these
two observations should be considered outliers and removed? Explain your answer.

10.30 Are the two fuel efficiency measurements similar?

Year
Number of
tornadoes Year

Number of
tornadoes Year

Number of
tornadoes Year

Number
of

tornadoes
1953 421 1968 660 1983 931 1998 1449
1954 550 1969 608 1984 907 1999 1340
1955 593 1970 653 1985 684 2000 1075
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1956 504 1971 888 1986 764 2001 1215
1957 856 1972 741 1987 656 2002 934

1958 564 1973 1102 1988 702 2003 1374
1959 604 1974 947 1989 856 2004 1817
1960 616 1975 920 1990 1133 2005 1265
1961 697 1976 835 1991 1132 2006 1103
1962 657 1977 852 1992 1298 2007 1096
1963 464 1978 788 1993 1176 2008 1692
1964 704 1979 852 1994 1082 2009 1156
1965 906 1980 866 1995 1235 2010 1282
1966 585 1981 783 1996 1173 2011 1692
1967 926 1982 1046 1997 1148 2012 939

Refer to Exercise 7.30 (page 443). In addition to the computer calculating miles per gallon (mpg),
the driver also recorded this measure by dividing the miles driven by the number of gallons at fill-

up. The driver wants to determine if these calculations are different.  MPGDIFF

Fill-up 1 2 3 4 5 6 7 8 9 10
Computer 41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2
Driver 36.5 44.2 37.2 35.6 30.5 40.5 40.0 41.0 42.8 39.2
Fill-up 11 12 13 14 15 16 17 18 19 20
Computer 43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3
Driver 38.8 44.5 45.4 45.3 45.7 34.2 35.2 39.8 44.9 47.5

(a) Consider the driver’s mpg calculations as the explanatory variable. Plot the data and describe the
relationship. Are there any outliers or unusual values? Does a linear relationship seem reasonable?

(b) Run the simple linear regression and state the least-squares regression line.

(c) Summarize the results. Does it appear that the computer and driver calculations are the same?
Explain.

10.31 Gambling and alcohol use by first-year college students.

Gambling and alcohol use are problematic behaviors for many college students. One study looked at
908 first-year students from a large northeastern university.15 Each participant was asked to fill out
the 10-item Alcohol Use Disorders Identification Test (AUDIT) and a 7-item inventory used in prior
gambling research among college students. AUDIT assesses alcohol consumption and other alcohol-
related risks and problems (a higher score means more risks). A correlation of 0.29 was reported
between the frequency of gambling and the AUDIT score.

(a) What percent of the variability in AUDIT score is explained by frequency of gambling?

(b) Test the null hypothesis that the correlation between the gambling frequency and the AUDIT
score is zero.

(c) The sample in this study represents 45% of the students contacted for the online study. To what
extent do you think these results apply to all first-year students at this university? To what extent do
you think these results apply to all first-year students? Give reasons for your answers.
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TABLE 10.4  Watershed Area (km2), Percent Forest, and Index of Biotic Integrity

 10.32 Predicting water quality.

The index of biotic integrity (IBI) is a measure of the water quality in streams. IBI and land use
measures for a collection of streams in the Ozark Highland ecoregion of Arkansas were collected as
part of a study.16 Table 10.4 gives the data for IBI, the percent of the watershed that was forest, and
the area of the watershed in square kilometers for streams in the original sample with watershed area

less than or equal to 70 km2  IBI

(a) Use numerical and graphical methods to describe the variable IBI. Do the same for area.
Summarize your results.

(b) Plot the data and describe the relationship between IBI and area. Are there any outliers or
unusual patterns?

(c) Give the statistical model for simple linear regression for this problem.

(d) State the null and alternative hypotheses for examining the relationship between IBI and area.

(e) Run the simple linear regression and summarize the results.

(f) Obtain the residuals and plot them versus area. Is there anything unusual in the plot?

(g) Do the residuals appear to be approximately Normal? Give reasons for your answer.

(h) Do the assumptions for the analysis of these data using the model you gave in part (c) appear to
be reasonable? Explain your answer.

 10.33 More on predicting water quality.

The researchers who conducted the study described in the previous exercise also recorded the
percent of the watershed area that was forest for each of the streams.

Area Forest IBI Area Forest IBI Area Forest IBI Area Forest IBI Area Forest
21 0 47 29 0 61 31 0 39 32 0 59 34
34 0 76 49 3 85 52 3 89 2 7 74 70
6 9 33 28 10 46 21 10 32 59 11 80 69
47 17 78 8 17 53 8 18 43 58 21 88 54
10 25 62 57 31 55 18 32 29 19 33 29 39
49 33 78 9 39 71 5 41 55 14 43 58 9
23 47 33 31 49 59 18 49 81 16 52 71 21
32 59 64 10 63 41 26 68 82 9 75 60 54
12 79 83 21 80 82 27 86 82 23 89 86 26
16 95 67 26 95 56 26 100 85 28 100 91

These data are also given in Table 10.4. Analyze these data using the questions in the previous

exercise as a guide.  IBI

10.34 Comparing the analyses.
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In Exercises 10.32 and 10.33, you used two different explanatory variables to predict IBI.
Summarize the two analyses and compare the results. If you had to choose between the two
explanatory variables for predicting IBI, which one would you prefer? Give reasons for your answer.

 IBI

10.35 How an outlier can affect statistical significance.

Consider the data in Table 10.4 and the relationship between IBI and the percent of watershed area
that was forest. The relationship between these two variables is almost significant at the 0.05 level.
In this exercise you will demonstrate the potential effect of an outlier on statistical significance.
Investigate what happens when you decrease the IBI to 0.0 for (1) an observation with 0% forest and
(2) an observation with 100% forest. Write a short summary of what you learn from this exercise.

 IBI

10.36 Predicting water quality for an area of 40 km2.

Refer to Exercise 10.32.  IBI

(a) Find a 95% confidence interval for the mean response corresponding to an area of 40 km2.

(b) Find a 95% prediction interval for a future response corresponding to an area of 40 km2.

(c) Write a short paragraph interpreting the meaning of the intervals in terms of Ozark Highland
streams.

(d) Do you think that these results can be applied to other streams in Arkansas or in other states?
Explain why or why not.

10.37 Compare the predictions.

Consider Case 37 in Table 10.4 (8th row, 2nd column). For this case the area is 10 km2 and the
percent forest is 63%. A predicted index of biotic integrity based on area was computed in Exercise
10.32, while one based on percent forest was computed in Exercise 10.33. Compare these two
estimates and explain why they differ. Use the idea of a prediction interval to interpret these results. 

 IBI

10.38 Reading test scores and IQ.

In Exercise 2.33 (page 100) you examined the relationship between reading test scores and IQ scores

for a sample of 60 fifth-grade children.  READIQ

(a) Run the regression and summarize the results of the significance tests.

(b) Rerun the analysis with the four possible outliers removed. Summarize your findings, paying
particular attention to the effects of removing the outliers.

10.39 Leaning Tower of Pisa.
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The Leaning Tower of Pisa is an architectural wonder. Engineers concerned about the tower’s
stability have done extensive studies of its increasing tilt. Measurements of the lean of the tower
over time provide much useful information. The following table gives measurements for the years
1975 to 1987. The variable “lean” represents the difference between where a point on the tower
would be if the tower were straight and where it actually is. The data are coded as tenths of a
millimeter in excess of 2.9 meters, so that the 1975 lean, which was 2.9642 meters, appears in the

table as 642. Only the last two digits of the year were entered into the computer.17  PISA

Year 75 76 77 78 79 80 81 82 83 84 85 86 87
Lean 642 644 656 667 673 688 696 698 713 717 725 742 757

(a) Plot the data. Does the trend in lean over time appear to be linear?

(b) What is the equation of the least-squares line? What percent of the variation in lean is explained
by this line?

(c) Give a 99% confidence interval for the average rate of change (tenths of a millimeter per year) of
the lean.

10.40 More on the Leaning Tower of Pisa.

Refer to the previous exercise.  PISA

(a) In 1918 the lean was 2.9071 meters. (The coded value is 71.) Using the least-squares equation for
the years 1975 to 1987, calculate a predicted value for the lean in 1918. (Note that you must use the
coded value 18 for year.)

(b) Although the least-squares line gives an excellent fit to the data for 1975 to 1987, this pattern did
not extend back to 1918. Write a short statement explaining why this conclusion follows from the
information available. Use numerical and graphical summaries to support your explanation.

10.41 Predicting the lean in 2013.

Refer to the previous two exercises.  PISA

(a) How would you code the explanatory variable for the year 2013?

(b) The engineers working on the Leaning Tower of Pisa were most interested in how much the
tower would lean if no corrective action was taken. Use the least-squares equation to predict the
tower’s lean in the year 2013. (Note: The tower was renovated in 2001 to make sure it does not fall
down.)

(c) To give a margin of error for the lean in 2013, would you use a confidence interval for a mean
response or a prediction interval? Explain your choice.

10.42 Correlation between binge drinking and the average price of beer.

A recent study looked at 118 colleges to investigate the association between the binge-drinking rate
and the average price for a bottle of beer at establishments within a two-mile radius of campus.18 A
correlation of −0.36 was found. Explain this correlation.

10.43 Is this relationship significant?
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Refer to the previous exercise. Test the null hypothesis that the correlation between the binge-
drinking rate and the average price for a bottle of beer within a two-mile radius of campus is zero.

10.44 Does a math pretest predict success?

Can a pretest on mathematics skills predict success in a statistics course? The 62 students in an
introductory statistics class took a pretest at the beginning of the semester. The least-squares
regression line for predicting the score y on the final exam from the pretest score x was ŷ = 13.8 +
0.81x. The standard error of b1 was 0.43.

(a) Test the null hypothesis that there is no linear relationship between the pretest score and the score
on the final exam against the two-sided alternative.

(b) Would you reject this null hypothesis versus the one-sided alternative that the slope is positive?
Explain your answer.

10.45 Completing an ANOVA table.

How are returns on common stocks in overseas markets related to returns in U.S. markets? Consider
measuring U.S. returns by the annual rate of return on the Standard & Poor’s 500 stock index and
overseas returns by the annual rate of return on the Morgan Stanley Europe, Australasia, Far East
(EAFE) index.19 Both are recorded in percents. We will regress the EAFE returns on the S&P 500
returns for the years 1993 to 2012. Here is part of the Minitab output for this regression:

Using the ANOVA table format on page 589 as a guide, complete the analysis of variance table.

10.46 Interpreting statistical software output.

Refer to the previous exercise. What are the values of the regression standard error s and the squared
correlation r2?

10.47 Standard error and confidence interval for the slope.

Refer to the previous two exercises. The standard deviation of the S&P 500 returns for these years is
19.09%. From this and your work in the previous exercise, find the standard error for the least-
squares slope b1. Give a 95% confidence interval for the slope β1 of the population regression line.

10.48 Grade inflation.
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The average undergraduate GPA for American colleges and universities was estimated based on a
sample of institutions that published this information.20 Here are the data for public schools in that
report:

Year 1992 1996 2002 2007
GPA 2.85 2.90 2.97 3.01

Do the following by hand or with a calculator and verify your results with a software package. 
GRADEUP

(a) Make a scatterplot that shows the increase in GPA over time. Does a linear increase appear
reasonable?

(b) Find the equation of the least-squares regression line for predicting GPA from year. Add this line
to your scatterplot.

(c) Compute a 95% confidence interval for the slope and summarize what this interval tells you
about the increase in GPA over time.

10.49 Significance test of the correlation.

A study reported a correlation r = 0.5 based on a sample size of n = 15; another reported the same
correlation based on a sample size of n = 25. For each, perform the test of the null hypothesis that ρ
= 0. Describe the results and explain why the conclusions are different.

10.50 State and college binge drinking.

Excessive consumption of alcohol is associated with numerous adverse consequences. In one study,
researchers analyzed binge-drinking rates from two national surveys, the Harvard School of Public
Health College Alcohol Study (CAS) and the Centers for Disease Control and Prevention’s
Behavioral Risk Factor Surveillance System (BRFSS).21 The CAS survey was used to provide an
estimate of the college binge-drinking rate in each state, and the BRFSS was used to determine the
adult binge-drinking rate in each state. A correlation of 0.43 was reported between these two rates
for their sample of n = 40 states. The college binge-drinking rate had a mean of 46.5% and standard
deviation 13.5%. The adult binge-drinking rate had a mean of 14.88% and standard deviation 3.8%.

(a) Find the equation of the least-squares line for predicting the college binge-drinking rate from the
adult binge-drinking rate.

(b) Give the results of the significance test for the null hypothesis that the slope is 0. (Hint: What is
the relation between this test and the test for a zero correlation?)

10.51 SAT versus ACT.

The SAT and the ACT are the two major standardized tests that colleges use to evaluate candidates.
Most students take just one of these tests. However, some students take both. Consider the scores of

60 students who did this. How can we relate the two tests?  SATACT

(a) Plot the data with SAT on the x axis and ACT on the y axis. Describe the overall pattern and any
unusual observations.

(b) Find the least-squares regression line and draw it on your plot. Give the results of the
significance test for the slope.
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(c) What is the correlation between the two tests?

 10.52 SAT versus ACT, continued.

Refer to the previous exercise. Find the predicted value of ACT for each observation in the data set. 

 SATACT

(a) What is the mean of these predicted values? Compare it with the mean of the ACT scores.

(b) Compare the standard deviation of the predicted values with the standard deviation of the actual
ACT scores. If least-squares regression is used to predict ACT scores for a large number of students
such as these, the average predicted value will be accurate but the variability of the predicted scores
will be too small.

(c) Find the SAT score for a student who is one standard deviation above the mean (z=(x−x¯)/s=1).
Find the predicted ACT score and standardize this score. (Use the means and standard deviations
from this set of data for these calculations.)

(d) Repeat part (c) for a student whose SAT score is one standard deviation below the mean (Z =
−1).

(e) What do you conclude from parts (c) and (d)? Perform additional calculations for different z’s if
needed.

 10.53 Matching standardized scores.

Refer to the previous two exercises. An alternative to the least-squares method is based on matching
standardized scores. Specifically, we set

(y−y¯)sy=(x−x¯)sx
and solve for y. Let’s use the notation y = a0 + a1x for this line. The slope is a1 = sy/sx and the
intercept is a0=y¯−a1x¯. Compare these expressions with the formulas for the least-squares slope

and intercept (page 592).  SATACT

(a) Using the data in the previous exercise, find the values of a0 and a1.

(b) Plot the data with the least-squares line and the new prediction line.

(c) Use the new line to find predicted ACT scores. Find the mean and the standard deviation of these
scores. How do they compare with the mean and standard deviation of the ACT scores?

10.54 Weight, length, and width of perch.

Here are data for 12 perch caught in a lake in Finland:22  PERCH

Weight
(grams)

   Length
(cm)

   Width
(cm)

   Weight
(grams)

   Length
(cm)

   Width
(cm)

    5.9   8.8  1.4 300.0 28.7 5.1
100.0 19.2 3.3 300.0 30.1 4.6
110.0 22.5 3.6 685.0 39.0 6.9
120.0 23.5 3.5 650.0 41.4 6.0

1057



150.0 24.0 3.6 820.0 42.5 6.6
145.0 25.5 3.8 1000.0 46.6 7.6

In this exercise we will examine different models for predicting weight.

(a) Plot weight versus length and weight versus width. Do these relationships appear to be linear?
Explain your answer.

(b) Run the regression using length to predict weight. Do the same using width as the explanatory
variable. Summarize the results. Be sure to include the value of r2.

 10.55 Transforming the perch data.

Refer to the previous exercise.  PERCH

(a) Try to find a better model using a transformation of length. One possibility is to use the square.
Make a plot and perform the regression analysis. Summarize the results.

(b) Do the same for width.

 10.56 Creating a new explanatory variable.

Refer to the previous two exercises.  PERCH

(a) Create a new variable that is the product of length and width. Make a plot and run the regression
using this new variable. Summarize the results.

(b) Write a short report summarizing and comparing the different regression analyses that you
performed in this exercise and the previous two exercises.

 10.57 Index of biotic integrity.

Refer to the data on the index of biotic integrity and area in Exercise 10.32 (page 606) and the
additional data on percent watershed area that was forest in Exercise 10.33. Find the correlations
among these three variables, perform the test of statistical significance, and summarize the results.
Which of these test results could have been obtained from the analyses that you performed in

Exercises 10.32 and 10.33?  IBI

10.58 Food neophobia.

Food neophobia is a personality trait associated with avoiding unfamiliar foods. In one study of 564
children who were 2 to 6 years of age, food neophobia and the frequency of consumption of
different types of food were measured.23 Here is a summary of the correlations:

Type of food    Correlation
Vegetables −0.27
Fruit −0.16
Meat −0.15
Eggs −0.08
Sweet/fatty snacks   0.04
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Starchy staples −0.02

Perform the significance test for each correlation and write a summary about food neophobia and the
consumption of different types of food.

10.59 A mechanistic explanation of popularity.

Previous experimental work has suggested that the serotonin system plays an important and causal
role in social status. In other words, genes may predispose individuals to be popular/likable. As part
of a recent study on adolescents, an experimenter looked at the relationship between the expression
of a particular serotonin receptor gene, a person’s “popularity,” and the person’s rule-breaking (RB)
behaviors.24 RB was measured by both a questionnaire and video observation. The composite score
is an equal combination of these two assessments. Here is a table of the correlations:

Rule-breaking measure Popularity Gene expression
Sample 1 (n = 123)
   RB.composite 0.28 0.26
   RB.questionnaire 0.22 0.23
   RB.video 0.24 0.20
Sample 1 Caucasians only (n = 96)
   RB.composite 0.22 0.23
   RB.questionnaire 0.16 0.24
   RB.video 0.19 0.16

For each correlation, test the null hypothesis that the corresponding true correlation is zero.
Reproduce the table and mark the correlations that have P < 0.001 with ***, those that have P < 0.01
with **, and those that have P < 0.05 with *. Write a summary of the results of your significance
tests.

10.60 Resting metabolic rate and exercise.

Metabolic rate, the rate at which the body consumes energy, is important in studies of weight gain,
dieting, and exercise. The following table gives data on the lean body mass and resting metabolic
rate for 12 women and 7 men who are subjects in a study of dieting. Lean body mass, given in
kilograms, is a person’s weight leaving out all fat. Metabolic rate is measured in calories burned per
24 hours, the same calories used to describe the energy content of foods. The researchers believe that

lean body mass is an important influence on metabolic rate.  METRATE

Subject   Sex   Mass   Rate   Subject   Sex   Mass   Rate
1 M 62.0 1792 11 F 40.3 1189
2 M 62.9 1666 12 F 33.1 913
3 F 36.1 995 13 M 51.9 1460
4 F 54.6 1425 14 F 42.4 1124
5 F 48.5 1396 15 F 34.5 1052
6 F 42.0 1418 16 F 51.1 1347
7 M 47.4 1362 17 F 41.2 1204
8 F 50.6 1502 18 M 51.9 1867
9 F 42.0 1256 19 M 46.9 1439
10 M 48.7 1614
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(a) Make a scatterplot of the data, using different symbols or colors for men and women. Summarize
what you see in the plot.

(b) Run the regression to predict metabolic rate from lean body mass for the women in the sample
and summarize the results. Do the same for the men.

 10.61 Resting metabolic rate and exercise, continued.

Refer to the previous exercise. It is tempting to conclude that there is a strong linear relationship for

the women but no relationship for the men. Let’s look at this issue a little more carefully. 
METRATE

(a) Find the confidence interval for the slope in the regression equation that you ran for the females.
Do the same for the males. What do these suggest about the possibility that these two slopes are the
same? (The formal method for making this comparison is a bit complicated and is beyond the scope
of this chapter.)

(b) Examine the formula for the standard error of the regression slope given on page 593. The term
in the denominator is ∑(xi−x¯)2. Find this quantity for the females; do the same for the males. How
do these calculations help to explain the results of the significance tests?

(c) Suppose that you were able to collect additional data for males. How would you use lean body
mass in deciding which subjects to choose?

 10.62 Inference over different ranges of X.

Think about what would happen if you analyzed a subset of a set of data by analyzing only data for a
restricted range of values of the explanatory variable. What results would you expect to change?
Examine your ideas by analyzing the fuel efficiency data described in Example 10.11 (page 581).
First, run a regression of MPG versus MPH using all cases. This least-squares regression line is
shown in Figure 10.9. Next run a regression of MPG versus MPH for only those cases with speed
less than or equal to 30 mph. Note that this corresponds to 3.4 in the log scale. Finally, do the same
analysis with a restriction on the response variable. Run the analysis with only those cases with fuel
efficiency less than or equal to 20 mpg. Write a summary comparing the effects of these two

restrictions with each other and with the complete data set results.  MPHMPG
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Introduction

In Chapter 10 we presented methods for inference in the setting of a linear
relationship between a response variable y and a single explanatory variable x. In
this chapter, we use more than one explanatory variable to explain or predict a
single response variable.

Many of the ideas that we encountered in our study of simple linear regression
carry over to the multiple linear regression setting. For example, the descriptive
tools we learned in Chapter 2—scatterplots, least-squares regression, and
correlation—are still essential preliminaries to inference and also provide a
foundation for confidence intervals and significance tests.

The introduction of several explanatory variables leads to many additional
considerations. In this short chapter we cannot explore all these issues. Rather, we
will outline some basic facts about inference in the multiple regression setting and
then illustrate the analysis with a case study whose purpose was to predict success
in college based on several high school achievement scores.
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11.1 Inference for Multiple Regression

When you complete this section, you will be able to

• Describe the multiple linear regression model in terms of a population
regression line and the deviations of the response variable y from this line.

• Interpret regression output from statistical software to obtain the least-
squares regression equation and model standard deviation, multiple
correlation coefficient, ANOVA F test, and individual regression
coefficient t tests.

• Explain the difference between the ANOVA F test and the t tests for
individual coefficients.

• Interpret a level C confidence interval or significance test for a regression
coefficient.

• Use diagnostic plots to check the assumptions of the multiple linear
regression model.

Population multiple regression equation

The simple linear regression model assumes that the mean of the response variable
y depends on the explanatory variable x according to a linear equation

μy = β0 + β1x

For any fixed value of x the response y varies Normally around this mean and has a
standard deviation σ that is the same for all values of x.

In the multiple regression setting, the response variable y depends on p
explanatory variables, which we will denote by x1, x2,..., xp. The mean response
depends on these explanatory variables according to a linear function

μy = β0 + β1x1 + β2x2 +...+ βpxp

Similar to simple linear regression, this expression is the population regression
equation, and the observed values y vary about their means given by this equation.

population regression equation

Just as we did in simple linear regression, we can also think of this model in
terms of subpopulations of responses. Here, each subpopulation corresponds to a
particular set of values for all the explanatory variables x1, x2,..., xp. In each
subpopulation, y varies Normally with a mean given by the population regression
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equation. The regression model assumes that the standard deviation σ of the
responses is the same in all subpopulations.

EXAMPLE

11.1 Predicting early success in college.

Our case study is based on data collected on science majors at a large
university.1 The purpose of the study was to attempt to predict success in the
early university years. One measure of success was the cumulative grade point
average (GPA) after three semesters. Among the explanatory variables
recorded at the time the students enrolled in the university were average high
school grades in mathematics (HSM), science (HSS), and English (HSE).

We will use high school grades to predict the response variable GPA. There
are p = 3 explanatory variables: x1 = HSM, x2 = HSS, and x3 = HSE. The high
school grades are coded on a scale from 1 to 10, with 10 corresponding to A, 9
to A−, 8 to B+, and so on. These grades define the subpopulations. For
example, the straight-C students are the subpopulation defined by HSM = 4,
HSS = 4, and HSE = 4.

One possible multiple regression model for the subpopulation mean GPAs
is

μGPA = β0 + β1HSM + β2HSS + β3HSE

For the straight-C subpopulation of students, the model gives the
subpopulation mean as

μGPA = β0 + β14 + β24 + β34

Data for multiple regression

The data for a simple linear regression problem consist of observations (xi, yi) of
the two variables. Because there are several explanatory variables in multiple
regression, the notation needed to describe the data is more elaborate. Each
observation or case consists of a value for the response variable and for each of the
explanatory variables. Call xij the value of the jth explanatory variable for the ith
case. The data are then

Case 1: (x11, x12,..., x1p, y1)
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Case 2: (x21, x22,..., x2p, y2)

⋮

Case n: (xn1, xn2,..., xnp, yn)

Here, n is the number of cases and p is the number of explanatory variables. Data
are often entered into computer regression programs in this format. Each row is a
case and each column corresponds to a different variable.

The data for Example 11.1, with several additional explanatory variables,
appear in this format in the GPA data file. Figure 11.1 shows the first 5 rows
entered into an Excel spreadsheet. Grade point average (GPA) is the response
variable, followed by p = 7 explanatory variables. There are a total of n = 150
students in this data set.

FIGURE 11.1
Format of data set for Example 11.1 in an Excel spreadsheet.

USE YOUR KNOWLEDGE

11.1 Describing a multiple regression.

Traditionally, demographic and high school academic variables have
been used to predict college academic success. One study investigated
the influence of emotional health on GPA.2 Data from 242 students who
had completed their first two semesters of college were obtained. The
researchers were interested in describing how students’ second-semester
grade point averages are explained by gender, a standardized test score,
perfectionism, self-esteem, fatigue, optimism, and depressive
symptomatology.
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(a) What is the response variable?

(b) What is n the number of cases?

(c) What is p the number of explanatory variables?

(d) What are the explanatory variables?

Multiple linear regression model

We combine the population regression equation and assumptions about variation to
construct the multiple linear regression model. The subpopulation means describe
the FIT part of our statistical model. The RESIDUAL part represents the variation
of observations about the means.

DATA = FIT + RESIDUAL, p. 567

We will use the same notation for the residual that we used in the simple linear
regression model. The symbol ε represents the deviation of an individual
observation from its subpopulation mean.

We assume that these deviations are Normally distributed with mean 0 and an
unknown model standard deviation σ that does not depend on the values of the x
variables. These are assumptions that we can check by examining the residuals in
the same way that we did for simple linear regression.

MULTIPLE LINEAR REGRESSION MODEL

The statistical model for multiple linear regression is

yi = β0 + β1xi1 + β2xi2 + ... + βpxip + εi

for i = 1, 2, ..., n.
The mean response μy is a linear function of the explanatory variables:

μy = β0 + β1x1 + β2x2 + ... + βpxp

The deviations εi are assumed to be independent and Normally distributed
with mean 0 and standard deviation σ In other words, they are an SRS from the
N(0, σ) distribution.
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The parameters of the model are β0, β1, β2,..., βp, and σ

The assumption that the subpopulation means are related to the regression
coefficients β by the equation

μy = β0 + β1x1 + β2x2 + ...+ βpxp

implies that we can estimate all subpopulation means from estimates of the β’s. To
the extent that this equation is accurate, we have a useful tool for describing how
the mean of y varies with the collection of x’s.

We do, however, need to be cautious when interpreting each of the regression
coefficients in a multiple regression. First, the β0 coefficient represents the mean of
y when all the x variables equal zero. Even more so than in simple linear
regression, this subpopulation is rarely of interest. Second, the description provided
by the regression coefficient of each x variable is similar to that provided by the
slope in simple linear regression but only in a specific situation, namely, when all
other x variables are held constant. We need this extra condition because with
multiple x variables, it is quite possible that a unit change in one x variable may be
associated with changes in other x variables. If that occurs, then the change in the
mean of y is not described by just a single regression coefficient.

USE YOUR KNOWLEDGE

11.2 Understanding the fitted regression line.

The fitted regression equation for a multiple regression is

ŷ = − 1.8 + 6.1x1 − 1.1x2

(a) If x1 = 3 and x2 = 1 what is the predicted value of y?

(b) For the answer to part (a) to be valid, is it necessary that the values x1 = 3 and x2 = 1
correspond to a case in the data set? Explain why or why not.

(c) If you hold x2 at a fixed value, what is the effect of an increase of two units in x1 on the
predicted value of y?

Estimation of the multiple regression parameters

least squares, p. 113
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Similar to simple linear regression, we use the method of least squares to obtain
estimators of the regression coefficients β. The details, however, are more
complicated. Let

b0, b1, b2, ..., bp

denote the estimators of the parameters

β0, β1, β2, ..., βp

For the ith observation, the predicted response is

ŷi = b0 + b1xi1 + b2xi2 +...+ bpxip

residual, p. 569

The ith residual, the difference between the observed and the predicted response, is
therefore

ei = observed response − predicted response

= yi − ŷi

= yi − b0 − b1xi1 − b2xi2 − ... − bpxip

The method of least squares chooses the values of the b’s that make the sum of
the squared residuals as small as possible. In other words, the parameter estimates
b0, b1, b2, ... , bp minimize the quantity

Σ(yi − b0 − b1xi1 − b2xi2 − ... − bpxip)2

The formula for the least-squares estimates is complicated. We will be content to
understand the principle on which it is based and to let software do the
computations.

The parameter σ2 measures the variability of the responses about the population
regression equation. As in the case of simple linear regression, we estimate σ2 by
an average of the squared residuals. The estimator is

s2=Σei2n−p−1

=Σ(yi−y^i)2n−p−1
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degrees of freedom, p. 44

The quantity n − p − 1 is the degrees of freedom associated with s2. The degrees of
freedom equal the sample size, n minus p + 1, the number of β’s we must estimate
to fit the model. In the simple linear regression case there is just one explanatory
variable, so p = 1 and the degrees of freedom are n − 2. To the model standard
deviation σ we use

s=s2

Confidence intervals and significance tests for regression coefficients

We can obtain confidence intervals and perform significance tests for each of the
regression coefficients βj as we did in simple linear regression. The standard errors
of the b’s have more complicated formulas, but all are multiples of s. We again
rely on statistical software to do the calculations.

CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS
FOR βJ

A level C confidence interval for βj is

bj ± t*SEbj

where SEbj is the standard error of bj and t* is the value for the t(n − p − 1)
density curve with area C between −t* and t*.
To test the hypothesis H0: βj = 0, compute the t statistic

t=bjSEbj

In terms of a random variable T having the t(n − p − 1) distribution, the P-
value for a test of H0 against

Ha: βj > 0 is P(T ≥ t)

Ha: βj < 0 is P(T ≤ t)
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Ha: βj ≠ 0 is 2P(T ≥ |t|)

confidence intervals for mean response, p. 577

prediction intervals, p. 579

Because regression is often used for prediction, we may wish to use multiple
regression models to construct confidence intervals for a mean response and
prediction intervals for a future observation. The basic ideas are the same as in the
simple linear regression case.

In most software systems, the same commands that give confidence and
prediction intervals for simple linear regression work for multiple regression. The
only difference is that we specify a list of explanatory variables rather than a single
variable. Modern software allows us to perform these rather complex calculations
without an intimate knowledge of all the computational details. This frees us to
concentrate on the meaning and appropriate use of the results.

ANOVA table for multiple regression

In simple linear regression the F test from the ANOVA table is equivalent to the
two-sided t test of the hypothesis that the slope of the regression line is 0. For
multiple regression there is a corresponding ANOVA F test, but it tests the
hypothesis that all the regression coefficients (with the exception of the intercept)
are 0. Here is the general form of the ANOVA table for multiple regression:

ANOVA F test, p. 588

Source Degrees of freedom Sum of squares Mean square F
Model p Σ(y^i−y¯)2 SSM/DFM MSM/MSE

Error n − p − 1 Σ(yi − ŷi)2 SSE/DFE  
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Total n − 1 Σ(yi−y¯)2 SST/DFT  

The ANOVA table is similar to that for simple linear regression. The degrees of
freedom for the model increase from 1 to p to reflect the fact that we now have p
explanatory variables rather than just one. As a consequence, the degrees of
freedom for error decrease by the same amount. It is always a good idea to
calculate the degrees of freedom by hand and then check that your software agrees
with your calculations. In this way you can verify that your software is using the
number of cases and number of explanatory variables that you intended.

The sums of squares represent sources of variation. Once again, both the sums
of squares and their degrees of freedom add:

SST = SSM + SSE

DFT = DFM + DFE

The estimate of the variance σ2 for our model is again given by the MSE in the
ANOVA table. That is, s2 = MSE.

F statistic, p. 588

The ratio MSM/MSE is an F statistic for testing the null hypothesis

H0: β1 = β2 = ... = βp = 0

against the alternative hypothesis

Ha: at least one of the βj is not 0

The null hypothesis says that none of the explanatory variables are predictors of
the response variable when used in the form expressed by the multiple regression
equation. The alternative states that at least one of them is a predictor of the
response variable.
As in simple linear regression, large values of F give evidence against H0. When
H0 is true, F has the F(p, n − p − 1) distribution. The degrees of freedom for the F
distribution are those associated with the model and error in the ANOVA table.
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A common error in the use of multiple regression is to assume that all the
regression coefficients are statistically different from zero whenever the F statistic
has a small P-value. Be sure that you understand the difference between the F test
and the t tests for individual coefficients.

ANALYSIS OF VARIANCE F Test

In the multiple regression model, the hypothesis

H0: β1 = β2 = ... = βp = 0

is tested against the alternative hypothesis

Ha: at least one of the βj is not 0

by the analysis of variance F statistic

F=MSMMSE

The P-value is the probability that a random variable having the F(p, n − p −
1) distribution is greater than or equal to the calculated value of the F statistic.

Squared multiple correlation R2

For simple linear regression we noted that the square of the sample correlation
could be written as the ratio of SSM to SST and could be interpreted as the
proportion of variation in y explained by x. A similar statistic is routinely
calculated for multiple regression.

THE SQUARED MULTIPLE CORRELATION

The statistic

R2=SSMSST=Σ(y^i−y¯)2Σ(yi−y¯)2

is the proportion of the variation of the response variable y that is explained by
the explanatory variables x1, x2, . . . , xp in a multiple linear regression.

Often, R2 is multiplied by 100 and expressed as a percent. The square root of R2

called the multiple correlation coefficient, is the correlation between the
observations yi and the predicted values ŷi.
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multiple correlation coefficient

USE YOUR KNOWLEDGE

11.3 Significance tests for regression coefficients.

As part of a study on undergraduate success among actuarial students a
multiple regression was run using 82 students.3 The following table
contains the estimated coefficients and standard errors:

Variable Estimate SE
Intercept −0.764 0.651
SAT Math 0.00156 0.00074
SAT Verbal 0.00164 0.00076
High school rank 1.470 0.430
College placement exam 0.889 0.402

(a) All the estimated coefficients for the explanatory variables are
positive. Is this what you would expect? Explain.
(b) What are the degrees of freedom for the model and error?
(c) Test the significance of each coefficient and state your conclusions.

11.4 ANOVA table for multiple regression.

Use the following information and the general form of the ANOVA
table for multiple regression on page 617 to perform the ANOVA F test
and compute R2.

Source Degrees of freedom Sum of squares
Model  75
Error 53  
Total 57 594
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11.2 A Case Study

Preliminary analysis

In this section we illustrate multiple regression by analyzing the data from the
study described in Example 11.1. The response variable is the cumulative GPA, on
a 4-point scale, after three semesters. The explanatory variables previously
mentioned are average high school grades, represented by HSM, HSS, and HSE.
We also examine the SAT Mathematics (SATM), SAT Critical Reading (SATCR),
and SAT Writing (SATW) scores as explanatory variables. We have data for n =
150 students in the study. We use SAS, Excel, and Minitab to illustrate the outputs
that are given by most software.

The first step in the analysis is to carefully examine each of the variables.
Means, standard deviations, and minimum and maximum values appear in Figure
11.2. The minimum value for high school mathematics (HSM) appears to be rather
extreme; it is (8.59 − 2.00)/1.46 = 4.51 standard deviations below the mean.
Similarly, the minimum value for GPA is 3.43 standard deviations below the mean.
We do not discard either of these cases at this time but will take care in our
subsequent analyses to see if they have an excessive influence on our results.

FIGURE 11.2
Descriptive statistics for the College of Science student case study.

The mean for the SATM score is higher than the means for the Critical Reading
(SATCR) and Writing (SATW) scores, as we might expect for a group of science
majors. The three SAT standard deviations are all about the same.

1074



Although mathematics scores were higher on the SAT, the means and standard
deviations of the three high school grade variables are very similar. Since the level
and difficulty of high school courses vary within and across schools, this may not
be that surprising. The mean GPA is 2.842 on a 4-point scale, with standard
deviation 0.818.

Because the variables GPA, SATM, SATCR, and SATW have many possible
values, we could use stemplots or histograms to examine the shapes of their
distributions. Normal quantile plots indicate whether or not the distributions look
Normal. It is important to note that the multiple regression model does not require
any of these distributions to be Normal. Only the deviations of the responses y
from their means are assumed to be Normal.

The purpose of examining these plots is to understand something about each
variable alone before attempting to use it in a complicated model. Extreme values
of any variable should be noted and checked for accuracy. If found to be correct,
the cases with these values should be carefully examined to see if they are truly
exceptional and perhaps do not belong in the same analysis with the other cases.
When our data on science majors are examined in this way, no obvious problems
are evident.

The high school grade variables HSM, HSS, and HSE have relatively few values
and are best summarized by giving the relative frequencies for each possible value.
The output in Figure 11.3 provides these summaries. The distributions are all
skewed, with a large proportion of high grades (10 = A and 9 = A−.) Again we
emphasize that these distributions need not be Normal.
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FIGURE 11.3
The distributions of the high school grade variables.

Relationships between pairs of variables

correlation, p. 103

The second step in our analysis is to examine the relationships between all pairs of
variables. Scatterplots and correlations are our tools for studying two-variable
relationships. The correlations appear in Figure 11.4. The output includes the P-
value for the test of the null hypothesis that the population correlation is 0 versus
the two-sided alternative for each pair. Thus, we see that the correlation between
GPA and HSM is 0.42, with a P-value of 0.000 (that is, P < 0.0005), whereas the
correlation between GPA and SATW is 0.22, with a P-value of 0.006. Because of
the large sample size, even somewhat weak associations are found to be
statistically significant.
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FIGURE 11.4
Correlations among the case study variables.

As we might expect, math and science grades have the highest correlation with
GPA (r = 0.42 and r = 0.44), followed by English grades (0.36) and then SAT
Mathematics (0.33). SAT Critical Reading (SATCR) and SAT Writing (SATW)
have comparable, somewhat weak, correlations with GPA. On the other hand,
SATCR and SATW have a high correlation with each other (0.73). The high
school grades also correlate well with each other (0.49 to 0.70). SATM correlates
well with the other SAT scores (0.58 and 0.55), somewhat with HSM (0.32), less
with HSS (0.22), and poorly with HSE (0.13). SATCR and SATW do not correlate
well with any of the high school grades (0.07 to 0.26).

It is important to keep in mind that by examining pairs of variables we are
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seeking a better understanding of the data. The fact that the correlation of a
particular explanatory variable with the response variable does not achieve
statistical significance does not necessarily imply that it will not be a useful (and
statistically significant) predictor in a multiple regression.

Numerical summaries such as correlations are useful, but plots are generally
more informative when seeking to understand data. Plots tell us whether the
numerical summary gives a fair representation of the data.

For a multiple regression, each pair of variables should be plotted. For the seven
variables in our case study, this means that we should examine 21 plots. In general,
there are p + 1 variables in a multiple regression analysis with p explanatory
variables, so that p(p + 1)/2 plots are required. Multiple regression is a complicated
procedure. If we do not do the necessary preliminary work, we are in serious
danger of producing useless or misleading results. We leave the task of making
these plots as an exercise.

USE YOUR KNOWLEDGE

11.5 Pairwise relationships among variables in the GPA data set.

GPA

Using a statistical package, generate the pairwise correlations and
scatterplots discussed previously. Comment on any unusual patterns or
observations.

Regression on high school grades

To explore the relationship between the explanatory variables and our response
variable GPA, we run several multiple regressions. The explanatory variables fall
into two classes. High school grades are represented by HSM, HSS, and HSE, and
standardized tests are represented by the three SAT scores. We begin our analysis
by using the high school grades to predict GPA. Figure 11.5 gives the multiple
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regression output.
The output contains an ANOVA table, some additional descriptive statistics,

and information about the parameter estimates. When examining any ANOVA
table, it is a good idea to first verify the degrees of freedom. This ensures that we
have not made some serious error in specifying the model for the software or in
entering the data. Because there are n = 150 cases, we have DFT = n − 1 = 149.
The three explanatory variables give DFM = p = 3 and DFE = n − p − 1 = 150 − 3
− 1 = 146.

The ANOVA F statistic is 14.35, with a P-value of < 0.0001. Under the null
hypothesis

H0: β1 = β2 = β3 = 0

the F statistic has an F(3, 146) distribution. According to this distribution, the
chance of obtaining an F statistic of 14.35 or larger is less than 0.0001. We
therefore conclude that at least one of the three regression coefficients for the high
school grades is different from 0 in the population regression equation.

In the descriptive statistics that follow the ANOVA table we find that Root
MSE is 0.726. This value is the square root of the MSE given in the ANOVA table
and is s, the estimate of the parameter σ of our model. The value of R2 is 0.23. That
is, 23% of the observed variation in the GPA scores is explained by linear
regression on high school grades.

Although the P-value of the F test is very small, the model does not explain
very much of the variation in GPA. Remember, a small P-value does not
necessarily tell us that we have a strong predictive relationship, particularly when
the sample size is large.

From the Parameter Estimates section of the computer output we obtain the
fitted regression equation

GPA^=0.069+0.123HSM+0.136HSS+0.058HSE

Let’s find the predicted GPA for a student with an A− average in HSM, B+ in
HSS, and B in HSE. The explanatory variables are HSM = 9, HSS = 8, and HSE =
7. The predicted GPA is

GPA^=0.069+0.123(9)+0.136(8)+0.058(7)

= 2.67

1080



FIGURE 11.5
Multiple regression output for regression using high school grades to predict GPA.

Recall that the t statistics for testing the regression coefficients are obtained by
dividing the estimates by their standard errors. Thus, for the coefficient of HSM we
obtain the t-value given in the output by calculating

t=bSEb=0.123250.05485=2.25

The P-values appear in the last column. Note that these P-values are for the two-
sided alternatives. HSM has a P-value of 0.0262, and we conclude that the
regression coefficient for this explanatory variable is significantly different from 0.
The P-values for the other explanatory variables (0.0536 for HSS and 0.3728 for
HSE) do not achieve statistical significance.

Interpretation of results

The significance tests for the individual regression coefficients seem to contradict
the impression obtained by examining the correlations in Figure 11.4. In that
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display we see that the correlation between GPA and HSS is 0.44 and the
correlation between GPA and HSE is 0.36. The P-values for both of these
correlations are < 0.0005. In other words, if we used HSS alone in a regression to
predict GPA, or if we used HSE alone, we would obtain statistically significant
regression coefficients.

This phenomenon is not unusual in multiple regression analysis. Part of the
explanation lies in the correlations between HSM and the other two explanatory
variables. These are rather high (at least compared with most other correlations in
Figure 11.4). The correlation between HSM and HSS is 0.67, and that between
HSM and HSE is 0.49. Thus, when we have a regression model that contains all
three high school grades as explanatory variables, there is considerable overlap of
the predictive information contained in these variables.

The significance tests for individual regression coefficients assess the
significance of each predictor variable assuming that all other predictors are
included in the regression equation. Given that we use a model with HSM and
HSS as predictors, the coefficient of HSE is not statistically significant. Similarly,
given that we have HSM and HSE in the model, HSS does not have a significant
regression coefficient. HSM, however, adds significantly to our ability to predict
GPA even after HSS and HSE are already in the model.

Unfortunately, we cannot conclude from this analysis that the pair of
explanatory variables HSS and HSE contribute nothing significant to our model for
predicting GPA once HSM is in the model. Questions like these require fitting
additional models.

The impact of relations among the several explanatory variables on fitting
models for the response is the most important new phenomenon encountered in
moving from simple linear regression to multiple regression. In this chapter, we
can only illustrate some of the many complicated problems that can arise.

Residuals

As in simple linear regression, we should always examine the residuals as an aid to
determining whether the multiple regression model is appropriate for the data.
Because there are several explanatory variables, we must examine several residual
plots. It is usual to plot the residuals versus the predicted values ŷ and also versus
each of the explanatory variables. Look for outliers, influential observations,
evidence of a curved (rather than linear) relation, and anything else unusual. Again,
we leave the task of making these plots as an exercise. The plots all appear to show
more or less random noise above and below the center value of 0.

If the deviations ε in the model are Normally distributed, the residuals should be
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Normally distributed. Figure 11.6 presents a Normal quantile plot and histogram of
the residuals. Both suggest some skewness (shorter right tail) in the distribution.
However, given our large sample size, we do not think this skewness is strong
enough to invalidate this analysis.

USE YOUR KNOWLEDGE

11.6 Residual plots for the GPA analysis.

GPA

Using a statistical package, fit the linear model with HSM and HSE as
predictors and obtain the residuals and predicted values. Plot the
residuals versus the predicted values, HSM, and HSE. Are the residuals
more or less randomly dispersed around zero? Comment on any unusual
patterns.

Refining the model

Because the variable HSE has the largest P-value of the three explanatory variables
(see Figure 11.5) and therefore appears to contribute the least to our explanation of
GPA, we rerun the regression using only HSM and HSS as explanatory variables.
The SAS output appears in Figure 11.7. The F statistic indicates that we can reject
the null hypothesis that the regression coefficients for the two explanatory
variables are both 0. The P-value is still <0.0001. The value of R2 has dropped very
slightly compared with our previous run, from 0.2277 to 0.2235. Thus, dropping
HSE from the model resulted in the loss of very little explanatory power.
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FIGURE 11.6
(a) Normal quantile plot and (b) histogram of the residuals from the high school grades model.
There are no important deviations from Normality.

The measure s of variation about the fitted equation (Root MSE in the printout)
is nearly identical for the two regressions, another indication that we lose very little
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when we drop HSE. The t statistics for the individual regression coefficients
indicate that HSM is still significant (P = 0.0240), while the statistic for HSS is
larger than before (2.99 versus 1.95) and is now statistically significant (P =
0.0032).

Comparison of the fitted equations for the two multiple regression analyses tells
us something more about the intricacies of this procedure. For the first run we have

GPA^= 0.069+ 0.123HSM+ 0.136HSS+0.058HSE

whereas the second gives us

GPA^=0.257+0.125HSM+0.172HSS

Eliminating HSE from the model changes the regression coefficients for all the
remaining variables and the intercept. This phenomenon occurs quite generally in
multiple regression. Individual regression coefficients, their standard errors, and
significance tests are meaningful only when interpreted in the context of the other
explanatory variables in the model.
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FIGURE 11.7
Multiple regression output for regression using HSM and HSS to predict GPA.

Regression on SAT scores

We now turn to the problem of predicting GPA using the three SAT scores. Figure
11.8 gives the output. The fitted model is

GPA^=0.45797+0.00301SATM+0.00080SATCR+0.00008SATW

The degrees of freedom are as expected: 3, 146, and 149. The F statistic is 6.28,
with a P-value of 0.0005. We conclude that the regression coefficients for SATM,
SATCR, and SATW are not all 0. Recall that we obtained the P-value < 0.0001
when we used high school grades to predict GPA. Both multiple regression
equations are highly significant, but this obscures the fact that the two models have
quite different explanatory power. For the SAT regression, R2 = 0.1143, whereas
for the high school grades model even with only HSM and HSS (Figure 11.7), we
have R2 = 0.2235, a value almost twice as large. Stating that we have a statistically
significant result is quite different from saying that an effect is large or important.

Further examination of the output in Figure 11.8 reveals that the coefficient of
SATM is significant (t = 2.81, P = 0.0056), and that SATCR (t = 0.71, P = 0.4767)
and SATW (t = 0.07, P = 0.9479) are not. For a complete analysis we should
carefully examine the residuals. Also, we might want to run the analysis without
SATW and the analysis with SATM as the only explanatory variable.
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FIGURE 11.8
Multiple regression output for regression using SAT scores to predict GPA.

Regression using all variables

We have seen that fitting a model using either the high school grades or the SAT
scores results in a highly significant regression equation. The mathematics
component of each of these groups of explanatory variables appears to be a key
predictor. Comparing the values of R2 for the two models indicates that high school
grades are better predictors than SAT scores. Can we get a better prediction
equation using all the explanatory variables together in one multiple regression?

To address this question we run the regression with all six explanatory
variables. The output from SAS, Minitab, and Excel appears in Figure 11.9.
Although the format and organization of outputs differ among software packages,
the basic results that we need are easy to find.

The degrees of freedom are as expected: 6, 143, and 149. The F statistic is 8.95,
with a P-value < 0.0001, so at least one of our explanatory variables has a nonzero
regression coefficient. This result is not surprising, given that we have already seen
that HSM and SATM are strong predictors of GPA. The value of R2 is 0.2730,
which is about 0.05 higher than the value of 0.2235 that we found for the high
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school grades regression.
Examination of the t statistics and the associated P-values for the individual

regression coefficients reveals a surprising result. None of the variables are
significant! At first, this result may appear to contradict the ANOVA results. How
can the model explain over 27% of the variation and have t tests that suggest none
of the variables make a significant contribution?

Once again it is important to understand that these t tests assess the contribution
of each variable when it is added to a model that already has the other five
explanatory variables. This result does not necessarily mean that the regression
coefficients for the six explanatory variables are all 0. It simply means that the
contribution of each variable overlaps considerably with the contribution of the
other five variables already in the model.
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FIGURE 11.9
Multiple regression output for regression using all variables to predict GPA.

When a model has a large number of insignificant variables, it is common to
refine the model. We prefer smaller models to larger models because they are
easier to work with and understand. However, given the many complications that
can arise in multiple regression, there is no universal “best” approach to refine a
model. There is also no guarantee that there is just one acceptable refined model.

Many statistical software packages now provide the capability of summarizing
all possible models from a set of P variables. We suggest using this capability to
reduce the number of candidate models (for example, there are a total of 63 models
when p = 6) and then carefully studying the remaining models before making a
decision as to a best model or set of best models. If in doubt, consult an expert.
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Test for a collection of regression coefficients

Many statistical software packages also provide the capability for testing
whether a collection of regression coefficients in a multiple regression model are
all 0. We use this approach to address two interesting questions about our data set.
We did not discuss such tests in the outline that opened this section, but the basic
idea is quite simple and discussed in Exercise 11.26 (page 637).

In the context of the multiple regression model with all six predictors, we ask
first whether or not the coefficients for the three SAT scores are all 0. In other
words, do the SAT scores add any significant predictive information to that already
contained in the high school grades? To be fair, we also ask the complementary
question: Do the high school grades add any significant predictive information to
that already contained in the SAT scores?

The answers are given in the last two parts of the SAS output in Figure 11.9.
For the first test we see that F = 2.97. Under the null hypothesis that the three SAT
coefficients are 0, this statistic has an F(3, 143) distribution and the P-value is
0.0341. We conclude that the SAT scores (as a group) are significant predictors of
GPA in a regression that already contains the high school scores as predictor
variables. This means that we cannot just focus on refined models that involve the
high school grades. Both high school grades and SAT scores appear to contribute
to our explanation of GPA.

The test statistic for the three high school grade variables is F = 10.41. Under
the null hypothesis that these three regression coefficients are 0, the statistic has an
F(3, 143) distribution and the P-value is < 0.0001. Again this means that high
school grades contain useful information for predicting GPA that is not contained
in the SAT scores.

BEYOND THE BASICS

Multiple logistic regression
Many studies have yes/no or success/failure response variables. A surgery
patient lives or dies; a consumer does or does not purchase a product after
viewing an advertisement. Because the response variable in a multiple
regression is assumed to have a Normal distribution, this methodology is not
suitable for predicting such responses. However, there are models that apply
the ideas of regression to response variables with only two possible outcomes.

One type of model that can be used is called logistic regression. We think
in terms of a binomial model for the two possible values of the response
variable and use one or more explanatory variables to explain the probability of
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success. Details are more complicated than those for multiple regression and
are given in Chapter 14. However, the fundamental ideas are very much the
same. Here is an example.

logistic regression

EXAMPLE

11.2 Tipping behavior in Canada.

The Consumer Report on Eating Share Trends (CREST) contains data
spanning all provinces of Canada and details away-from-home food purchases
by roughly 4000 households per quarter. Some researchers accessed these data
but restricted their attention to restaurants at which tips would normally be
given.4 From a total of 73,822 observations, “high” and “low” tipping
variables were created based on whether the observed tip rate was above 20%
or below 10%, respectively. They then used logistic regression to identify
explanatory variables associated with either “high” or “low” tips.

The model consisted of over 25 explanatory variables, grouped as “control”
variables and “stereotype-related” variables. The stereotype-related
explanatory variables were x1, a variable having the value 1 if the age of the
diner was greater than 65 years, and 0 otherwise; x2, coded as 1 if the meal
was on Sunday, and 0 otherwise; x3, coded as 1 to indicate English was a
second language; x4, a variable coded 1 if the diner was a French-speaking
Canadian; x5, a variable coded 1 if alcoholic drinks were served with the meal;
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and x6, a variable coded 1 if the meal involved a lone male.

chi-square distribution, p. 538

Similar to the F test in multiple regression, there is a chi-square test for
multiple logistic regression that tests the null hypothesis that all coefficients of
the explanatory variables are zero. These results were not presented in the
article because the focus was more on comparing the high- and low-tip
models. In place of the t tests for individual coefficients in multiple regression,
chi-square tests, each with 1 degree of freedom, are used to test whether
individual coefficients are zero. The article does report these tests. A majority
of the variables considered in the models have P-values less than 0.01.

Interpretation of the coefficients is a little more difficult in multiple logistic
regression because of the form of the model. For example, the high-tip model
(using only the stereotype-related variables) is

log(p1−p)=β0+β1x1+β2x2+...+β6x6

The expression p/(1 − p) is the odds that the tip was above 20%. Logistic
regression models the “log odds” as a linear combination of the explanatory
variables. Positive coefficients are associated with a higher probability that the
tip is high. These coefficients are often transformed back (eβj) to the odds
scale, giving us an odds ratio. An odds ratio greater than 1 is associated with a
higher probability that the tip is high. Here is the table of odds ratios reported
in the article for the high-tip model:

odds

odds ratio

Explanatory variable Odds ratio
Senior adult 0.7420*
Sunday 0.9970*
English as second language 0.7360*
French-speaking Canadian 0.7840*
Alcoholic drinks 1.1250*
Lone male   1.0220

The starred values were significant at the 0.01 level. We see that the
probability of a high tip is reduced (odds ratio less than 1) when the diner is
over 65 years old, speaks English as a second language, and is a French-
speaking Canadian. The probability of a high tip is increased (odds ratio
greater than 1) if alcohol is served with the meal.
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CHAPTER 11 Summary

Data for multiple linear regression consist of the values of a response variable y
and P explanatory variables x1, x2, ... , xp, for n cases. We write the data and enter
them into software in the form

Individual

Variables
x1 x2 ... xp y

1 x11 x12 ... x1p y1
1 x21 x22 ... x2p y2
⋮      
n xn1 xn2 ... xnp yn

The statistical model for multiple linear regression with response variable y and P
explanatory variables x1, x2, ... , xp is

yi = β0 + β1xi1 + β2xi2 + ... + βpxip + εi

where i = 1, 2, .... , n. The εi are assumed to be independent and Normally
distributed with mean 0 and standard deviation σ The parameters of the model are
β0, β1, β2, ... , βp, and σ.

The multiple regression equation predicts the response variable by a linear
relationship with all the explanatory variables:

ŷ = b0 + b1x1 + b2x2 + ... + bpxp

The β’s are estimated by b0, b1, b2, ... , bp, which are obtained by the method of
least squares. The parameter σ is estimated by

s=MSE=Σei2n−p−1

where the ei are the residuals,

ei = yi − ŷi

Always examine the distribution of the residuals and plot them against the
explanatory variables prior to inference.

A level C confidence interval for βj is

bj ± t*SEbj

where t* is the value for the t(n − p − 1) density curve with area C between −t* and
t*.

The test of the hypothesis H0: βj =0 is based on the t statistic

t=bjSEbj
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and the t(n − p −1) distribution.
The estimate bj of βj and the test and confidence interval for βj are all based on a

specific multiple linear regression model. The results of all these procedures
change if other explanatory variables are added to or deleted from the model.

The ANOVA table for a multiple linear regression gives the degrees of
freedom, sum of squares, and mean squares for the model, error, and total sources
of variation. The ANOVA F statistic is the ratio MSM/MSE and is used to test the
null hypothesis

H0: β1 = β2 = ... = βp = 0

If H0 is true, this statistic has an F(p, n − p − 1) distribution.
The squared multiple correlation is given by the expression

R2=SSMSST

and is interpreted as the proportion of the variability in the response variable y that
is explained by the explanatory variables x1, x2, ... , xp in the multiple linear
regression.
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CHAPTER 11 Exercises
For Exercise 11.1, see page 614; for Exercise 11.2, see page 615; for Exercises 11.3 and 11.4, see
page 619; for Exercise 11.5, see page 623; and for Exercise 11.6, see page 625.

11.7 95% confidence intervals for regression coefficients.

In each of the following settings, give a 95% confidence interval for the coefficient of x1.

(a) n = 26, ŷ = 1.6 + 6.4x1 + 5.7x2, SEb1 = 3.1

(b) n = 53, ŷ = 1.6 + 6.4x1 + 5.7x2, SEb1 = 2.9

(c) n = 26, ŷ = 1.6 + 4.8x1 + 3.2x2, + 5.2x3 SEb1 = 2.2

(d) n = 124, ŷ = 1.6 + 4.8x1 + 3.2x2, + 5.2x3 SEb1 = 2.1

11.8 Significance tests for regression coefficients.

For each of the settings in the previous exercise, test the null hypothesis that the coefficient of x1 is
zero versus the two-sided alternative.

11.9 What’s wrong?

In each of the following situations, explain what is wrong and why.

(a) In a multiple regression with a sample size of 39 and 3 explanatory variables, the test statistic for
the null hypothesis H0: b2 = 0 is a t statistic that follows the t(35) distribution when the null
hypothesis is true.

(b) The multiple correlation coefficient gives the proportion of the variation in the response variable
that is explained by the explanatory variables.

(c) A small P-value for the ANOVA F test implies that all explanatory variables are significantly
different from zero.

11.10 What’s wrong?

In each of the following situations, explain what is wrong and why.

(a) One of the assumptions for multiple regression is that the distribution of each explanatory
variable is Normal.

(b) The smaller the P-value for the ANOVA F test, the greater the explanatory power of the model.

(c) All explanatory variables that are significantly correlated with the response variable will have a
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statistically significant regression coefficient in the multiple regression model.

(d) The multiple correlation coefficient gives the average correlation between the response variable
and each explanatory variable in the model.

11.11 Constructing the ANOVA table.

Seven explanatory variables are used to predict a response variable using a multiple regression.
There are 142 observations.

(a) Write the statistical model that is the foundation for this analysis. Also include a description of
all assumptions.

(b) Outline the analysis of variance table giving the sources of variation and numerical values for the
degrees of freedom.

11.12 More on constructing the ANOVA table.

A multiple regression analysis of 78 cases was performed with 5 explanatory variables. Suppose that
SSM = 16.5 and SSE = 100.8.

(a) Find the value of the F statistic for testing the null hypothesis that the coefficients of all the
explanatory variables are zero.

(b) What are the degrees of freedom for this statistic?

(c) Find bounds on the P-value using Table E. Show your work.

(d) What proportion of the variation in the response variable is explained by the explanatory
variables?

11.13 Refining the GPA model using all variables.

Figure 11.9 (page 629) summarizes the regression model using all variables. Let’s now compare
several reduced models. For each of the following models, report the fitted model, MSE, percent
explained variation, and the P-values for each of the individual coefficients. Based on these results,

which model do you think is “best”? Explain your answer.  GPA

(a) SATM and HSS

(b) SATM, HSM, and HSS

(c) SATM, HSM, HSS, and HSE

(d) HSM and HSS

11.14 Predicting college debt: combining measures.

Refer to Exercises 10.10 (page 601) and 10.14 (page 602) for a description of the problem. Let’s

now consider fitting a model using all the explanatory variables.  BESTVALUE

(a) Write out the statistical model for this analysis, making sure to specify all assumptions.

(b) Run the multiple regression model and specify the fitted regression equation.
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(c) Obtain the residuals from part (b) and check assumptions. Comment on any unusual residuals or
patterns in the residuals.

(d) What percent of the variability in average debt is explained by this model?

11.15 Predicting college debt: a simpler model.

Refer to the previous exercise. In the multiple regression analysis using all seven variables, only one
variable, StudPerFac, is significant at the 0.05 level. Remove the variable with the highest P-value
one at a time until you end up with a multiple regression model that has only significant predictors.

Summarize your final model in a short paragraph.  BESTVALUE

11.16 Comparison of prediction intervals.

Refer to the previous two exercises. The Ohio State University has Admit = 68, Yr4Grad = 49,
StudPerFac = 19, InAfterAid = 12,680, OutAfterAid = 27,575, AvgAid = 7789, and PercBorrow =
52. Use your software to construct

(a) a 95% prediction interval based on the model with all the predictors.

(b) a 95% prediction interval based on the model using your simpler model.

(c) Compare the two intervals. Do the models give similar predictions and intervals?

11.17 Predicting energy-drink consumption.

Energy-drink advertising consistently emphasizes a physically active lifestyle and often features
extreme sports and risk taking. Are these typical characteristics of an energy-drink consumer? A
researcher decided to examine the links between energy-drink consumption, sport-related (jock)
identity, and risk taking.5 She invited over 1500 undergraduate students enrolled in large
introductory-level courses at a public university to participate. Each participant had to complete a
45-minute anonymous questionnaire. From this questionnaire jock identity and risk-taking scores
were obtained, where the higher the score, the stronger the trait. She ended up with 795 respondents.
The following table summarizes the results of a multiple regression analysis using the frequency of
energy-drink consumption in the past 30 days as the response variable:

Explanatory variable b
Age −0.02

Sex (1 = female, 0 = male)     −0.11**

Race (1 = nonwhite, 0 = white) −0.02

Ethnicity (1 = Hispanic, 0 = non-Hispanic)      0.10**

Parental education   0.02
College GPA −0.01
Jock identity    0.05

Risk taking         0.19***

A superscript of ** means that the individual coefficient t test had a P-value less than 0.01, and a
superscript of *** means that the test had a P-value less than 0.001. All other P-values were greater
than 0.05.
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(a) The overall F statistic is reported to be 8.11. What are the degrees of freedom associated with
this statistic?

(b) R is reported to be 0.28. What percent of the variation in energy-drink consumption is explained
by the model? Is this a highly predictive model? Explain.

(c) Interpret each of the regression coefficients that are significant.

(d) The researcher states, “Controlling for gender, age, race, ethnicity, parental educational
achievement, and college GPA, each of the predictors (risk taking and jock identity) was positively
associated with energy-drink consumption frequency.” Explain what is meant by “controlling for”
these variables and how this helps strengthen her assertion that jock identity and risk taking are
positively associated with energy-drink consumption.

11.18 Consider the gender of the students.

Refer to Exercise 11.13. The seventh predictor variable provided in the GPA data set is a gender
indicator variable. This variable (SEX) takes the value 1 for males and 2 for females (see Figure
11.1). If we include it in our model, it allows the intercept to differ for the two genders. If we plug in
the indicator values, we see that the estimated male intercept is b0 + b7(1) and the estimated female
intercept is b0 + b7(2) The estimate b0 + b7 represents the fitted coefficient for the SEX indicator
variable. Also notice that if we take the difference between these two estimates, b0 + b7(2) − (b0 +

b7(1)) = b7, this coefficient is also an estimate of the difference in intercepts.  GPA

(a) Add the variable SEX to each of the models in Exercise 11.13 and repeat the exercise.

(b) Does this indicator variable appear to contribute to our explanation of GPA? If it does, do males
or females have higher GPA scores? Explain your answer.

(c) Given your results in Exercise 11.13 and the ones here, which model do you think is the best?
Explain your answer.

11.19 A mechanistic explanation of popularity.

In Exercise 10.59 (page 609) correlations between an adolescent’s “popularity,” expression of a
serotonin receptor gene, and rule-breaking behaviors were assessed. An additional portion of the
analysis looked at the relationship between the gene expression level and popularity, after adjusting
for rule-breaking (RB) behaviors. This adjustment was necessary because RB is positively
associated both with this gene expression and with popularity in adolescents. The following
summarizes these regression analyses using the composite (questionnaire and video) RB score. A
total of 202 individuals were included in this analysis.

 Estimate Standard error
Model 1   
   Gene expression 0.204 0.066
Model 2   
   Gene expression 0.161 0.066

RB.composite 0.100 0.030

For all analysis use the 0.05 significance level.

(a) What are the error degrees of freedom for Model 1 and Model 2?

(b) Test the null hypothesis that the serotonin gene receptor coefficient is equal to 0 in Model 1.
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State the test statistic and P-value.

(c) Perform both individual-variable t tests for Model 2. Again state the test statistics and P-values.

(d) Is there still a positive relationship between the serotonin gene receptor expression level and
popularity after adjusting for RB? If yes, compare the increase in popularity for a unit increase in
gene expression (while RB remains unchanged) in the two models.
Results such as these suggest not only that adolescents with high serotonin receptor gene expression
are predisposed to increased RB behaviors, but also that such behaviors are socially advantageous.

11.20 Is the number of tornadoes increasing?

In Exercise 10.29, data on the number of tornadoes in the United States between 1953 and 2012
were analyzed to see if there was a linear trend over time. Many argue that the probability of
sighting a tornado has increased over time because there are more people living in the United States.

Let’s investigate this by including the U.S. census count as an additional explanatory variable. 
TWISTER

(a) Using numerical and graphical summaries, describe the relationship between each pair of
variables.

(b) Perform a multiple regression using both year and population count as explanatory variables.
Write down the fitted model.

(c) Obtain the residuals from part (b). Plot them versus the two explanatory variables and generate a
Normal quantile plot. What do you conclude?

(d) Test the hypothesis that there is a linear increase over time. State the null and alternative
hypotheses, test statistic, and P-value. What is your conclusion?

 11.21 Checking for a polynomial relationship.

When looking at the residuals from the simple linear model of BMI versus physical activity (PA),
Figure 10.5 (page 572) suggested a possible curvilinear relationship. Let’s investigate this further.
Multiple regression can be used to fit the polynomial curve of degree q, y = β0 + β1x + β2x2 + ... +

βqxq, through the creation of additional explanatory variables x2, x3, etc. Let’s investigate a

quadratic fit (q = 2) for the physical activity problem.  PABMI

(a) It is often best to subtract the sample mean x¯ before creating the necessary explanatory
variables. In this case, the average number of steps per day is 8.614. Create new explanatory
variables x1 = (PA − 8.614) and x2 = (PA − 8.614)2 and run a multiple regression for BMI using the
explanatory variables x1 and x2. Write down the fitted regression line.

(b) The regression model that included only PA had R2 = 14.9. What is R2 with the inclusion of this
quadratic term?

(c) Obtain the residuals from part (a) and check the multiple regression assumptions. Are there any
remaining patterns in the data? Are the residuals approximately Normal? Explain.

(d) Test the hypothesis that the coefficient of the variable (PA − 8.614)2 is equal to 0. Report the t
statistic, degrees of freedom, and P-value. Does the quadratic term contribute significantly to the fit?
Explain your answer.
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11.22 Architectural firm billings.

A summary of firms engaged in commercial architecture in the Indianapolis, Indiana, area provides
firm characteristics such as total annual billing in billions of dollars and the number of architects,

engineers, and staff employed by the firm.6 Consider developing a model to predict total billing. 
BILLING

(a) Using numerical and graphical summaries, describe the distributions of total billing and the
number of architects, engineers, and staff.

(b) For each of the 6 pairs of variables, use graphical and numerical summaries to describe the
relationship.

(c) Carry out a multiple regression. Report the fitted regression equation and the value of the
regression standard error s.

(d) Analyze the residuals from the multiple regression. Are there any concerns?

(e) The firm HCO did not report its total billing but employs 3 architects, 1 engineer, and 17 staff
members. What is the predicted total billing for this firm?

The following six exercises use the MOVIES data file. This data set contains an SRS of 35 movies
released in the same year. This sample was collected from the Internet Movie Database (IMDb) to
see if information available soon after a movie’s theatrical release can successfully predict total

revenue.7 All dollar amounts are measured in millions of U.S. dollars.  MOVIES

11.23 Predicting movie revenue—preliminary analysis.

The response variable is a movie’s total U.S. revenue (USRevenue). Let’s consider as explanatory
variables the movie’s budget (Budget); opening-weekend revenue (Opening); the number of theaters
(Theaters) the movie was in for the opening weekend; and the movie’s IMDb rating (Opinion),
which is on a 1 to 10 scale (10 being best). While this rating is updated continuously, we’ll assume
that the current rating is the rating at the end of the first week.

(a) Using numerical and graphical summaries, describe the distribution of each explanatory variable.
Are there any unusual observations that should be monitored?

(b) Using numerical and graphical summaries, describe the relationship between each pair of
explanatory variables.

11.24 Predicting movie revenue—simple linear regressions.

Now let’s look at the response variable and its relationship with each explanatory variable.

(a) Using numerical and graphical summaries, describe the distribution of the response variable,
USRevenue.

(b) This variable is not Normally distributed. Does this violate one of the key model assumptions?
Explain.

(c) Generate scatterplots of each explanatory variable and USRevenue. Do all these relationships
look linear? Explain what you see.

11.25 Predicting movie revenue—multiple linear regression.
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Now consider fitting a model using all the explanatory variables.

(a) Write out the statistical model for this analysis, making sure to specify all assumptions.

(b) Run the multiple regression model and specify the fitted regression equation.

(c) Obtain the residuals from part (b) and check assumptions. Comment on any unusual residuals or
patterns in the residuals.

(d) What percent of the variability in USRevenue is explained by this model?

 11.26 A simpler model.

In the multiple regression analysis using all four explanatory variables, Theaters and Budget appear
to be the least helpful (given that the other two explanatory variables are in the model).

(a) Perform a new analysis using only the movie’s openingweekend revenue and IMDb rating. Give
the estimated regression equation for this analysis.

(b) What percent of the variability in USRevenue is explained by this model?

(c) In this chapter we discussed the F test for a collection of regression coefficients. In most cases,
this capability is provided by the software. When it is not, the test can be performed using the R2-
values from the full and reduced models. The test statistic is

F=(n−p−1q)(R12−R221−R12)

with q and n − p − 1 degrees of freedom. R12 is the value for the full model and R22 is the value for
the reduced model. Here n = 35 movies, p = 4 variables in the full model, and q = 2 variables were
removed to form the reduced model. Plug in the values of R2 from part (b) of this exercise and part
(d) of the previous exercise, and compute the test statistic and P-value. Do Theaters and Budget
combined add any significant predictive information beyond what is already contained in Opening
and Opinion?

11.27 Predicting U.S. movie revenue.

Refer to the previous two exercises. Get Smart was released in the same year, had a budget of $80.0
million dollars, was shown in 3911 theaters during the first weekend, grossing $38.7 million dollars,
and had an IMDb rating of 6.8. Use your software to construct

(a) a 95% prediction interval based on the model with all four predictors.

(b) a 95% prediction interval based on the model using only opening-weekend revenue and IMDb
rating.

(c) Compare the two intervals. Do the models give similar predictions?

11.28 Effect of potential outliers.

Consider the simpler model of Exercise 11.26 for this analysis.

(a) Two movies have much larger U.S. revenues than predicted. Which are they and how much more
revenue did they earn than predicted?

(b) Remove these two movies and redo the multiple regression. Make a table giving the regression
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coefficients and their standard errors, t statistics, and P-values.

(c) Compare these results with those from Exercise 11.26. How does the removal of these outlying
movies impact the estimated model?

(d) Obtain the residuals from this reduced data set and graphically examine their distribution. Do the
residuals appear approximately Normal? Explain your answer.

The following three exercises use the RANKINGS data file. Since 2004, The Times Higher Education
Supplement has provided an annual ranking of the world universities. A total score for each
university is calculated based on the scores for the following explanatory variables: Peer Review
(40%); Faculty-to-Student Ratio (20%); Citations-to-Faculty Ratio (20%); Recruiter Review (10%);
Percent International Faculty (5%); and Percent International Students (5%). The percents
represent the contributions of each score to the total. For our purposes, we will assume that these
weights are unknown and will focus on the development of a model for the total score based on the
first three explanatory variables. The report includes a table for the top 200 universities.8 The
RANKINGS data file contains a random sample of 75 of these universities. This is not a random

sample of all universities but for our purposes here we will consider it to be.  RANKINGS

11.29 Annual ranking of world universities.

Let’s consider developing a model to predict total score based on the peer review score (PEER),
faculty-to-student ratio (FtoS), and citations-to-faculty ratio (CtoF).

(a) Using numerical and graphical summaries, describe the distribution of each explanatory variable.

(b) Using numerical and graphical summaries, describe the relationship between each pair of
explanatory variables.

11.30 Looking at the simple linear regressions.

Now let’s look at the relationship between each explanatory variable and the total score.

(a) Generate scatterplots for each explanatory variable and the total score. Do these relationships all
look linear?

(b) Compute the correlation between each explanatory variable and the total score. Are certain
explanatory variables more strongly associated with the total score?

11.31 Multiple linear regression model.

Now consider a regression model using all three explanatory variables.

(a) Write out the statistical model for this analysis, making sure to specify all assumptions.

(b) Run the multiple regression model and specify the fitted regression equation.

(c) Generate a 95% confidence interval for each coefficient. Should any of these intervals contain 0?
Explain.

(d) What percent of the variation in total score is explained by this model? What is the estimate for
σ?

11.32 Predicting GPA of seventh-graders.
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Refer to the educational data for 78 seventh-grade students given in Table 1.3 (page 29). We view

GPA as the response variable. IQ, gender, and self-concept are the explanatory variables. 
SEVENGR

(a) Find the correlation between GPA and each of the explanatory variables. What percent of the
total variation in student GPAs can be explained by the straight-line relationship with each of the
explanatory variables?

(b) The importance of IQ in explaining GPA is not surprising. The purpose of the study is to assess
the influence of self-concept on GPA. So we will include IQ in the regression model and ask, “How
much does self-concept contribute to explaining GPA after the effect of IQ on GPA is taken into
account?” Give a model that can be used to answer this question.

(c) Run the model and report the fitted regression equation. What percent of the variation in GPA is
explained by the explanatory variables in your model?

(d) Translate the question of interest into appropriate null and alternative hypotheses about the
model parameters. Give the value of the test statistic and its P-value. Write a short summary of your
analysis with an emphasis on your conclusion.

The following three exercises use the HAPPY data file. The World Database of Happiness is an
online registry of scientific research on the subjective appreciation of life. It is available at
worlddatabaseofhappiness.eur.nl, and the project is directed by Dr. Ruut Veenhoven, Erasmus
University, Rotterdam. One inventory presents the “average happiness” score for various nations.
This average is based on individual responses from numerous general population surveys to a
general life satisfaction (well-being) question. Scores range from 0 (dissatisfied) to 10 (satisfied).
The NationMaster website, www.nationmaster.com, contains a collection of statistics associated
with various nations. For our analysis, we will consider the GINI index, which measures the degree
of inequality in the distribution of income (higher score = greater inequality); the degree of
corruption in government (higher score = less corruption); average life expectancy; and the degree

of democracy (higher score = more civil and political liberties).  HAPPY

11.33 Predicting a nation’s “average happiness” score.

Consider the five statistics for each nation: LSI, the average life-satisfaction score; GINI, the GINI
index; CORRUPT, the degree of government corruption; LIFE, the average life expectancy; and
DEMOCRACY, a measure of civil and political liberties.

(a) Using numerical and graphical summaries, describe the distribution of each variable.

(b) Using numerical and graphical summaries, describe the relationship between each pair of
variables.

11.34 Building a multiple linear regression model.

Let’s now build a model to predict the life-satisfaction score, LSI.

(a) Consider a simple linear regression using GINI as the explanatory variable. Run the regression
and summarize the results. Be sure to check assumptions.

(b) Now consider a model using GINI and LIFE. Run the multiple regression and summarize the
results. Again be sure to check assumptions.

(c) Now consider a model using GINI, LIFE, and DEMOCRACY. Run the multiple regression and
summarize the results. Again be sure to check assumptions.
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(d) Now consider a model using all four explanatory variables. Again summarize the results and
check assumptions.

11.35 Selecting from among several models.

Refer to the results from the previous exercise.

(a) Make a table giving the estimated regression coefficients, standard errors, t statistics, and P-
values.

(b) Describe how the coefficients and P-values change for the four models.

(c) Based on the table of coefficients, suggest another model. Run that model, summarize the results,
and compare it with the other ones. Which model would you choose to explain LSI? Explain.

The following six exercises use the BIOMARK data file. Healthy bones are continually being
renewed by two processes. Through bone formation, new bone is built; through bone resorption, old
bone is removed. If one or both of these processes are disturbed, by disease, aging, or space travel,
for example, bone loss can be the result. The variables VO+ and VO− measure bone formation and
bone resorption, respectively. Osteocalcin (OC) is a biochemical marker for bone formation: higher
levels of bone formation are associated with higher levels of OC. A blood sample is used to measure
OC, and it is much less expensive to obtain than direct measures of bone formation. The units are
milligrams of OC per milliliter of blood (mg/ml). Similarly, tartrate-resistant acid phosphatase
(TRAP) is a biochemical marker for bone resorption that is also measured in blood. It is measured
in units per liter (U/l). These variables were measured in a study of 31 healthy women aged 11 to 32

years.9 Variables with the first letter “L” are the logarithms of the measured variables.
BIOMARK

11.36 Bone formation and resorption.

Consider the following four variables: VO+, a measure of bone formation; VO−, a measure of bone
resorption; OC, a biomarker of bone formation; and TRAP, a biomarker of bone resorption.

(a) Using numerical and graphical summaries, describe the distribution of each of these variables.

(b) Using numerical and graphical summaries, describe the relationship between each pair of
variables.

11.37 Predicting bone formation.

Let’s use regression methods to predict VO+, the measure of bone formation.

(a) Since OC is a biomarker of bone formation, we start with a simple linear regression using OC as
the explanatory variable. Run the regression and summarize the results. Be sure to include an
analysis of the residuals.

(b) Because the processes of bone formation and bone resorption are highly related, it is possible that
there is some information in the bone resorption variables that can tell us something about bone
formation. Use a model with both OC and TRAP, the biomarker of bone resorption, to predict VO+.
Summarize the results. In the context of this model, it appears that TRAP is a better predictor of
bone formation, VO+, than the biomarker of bone formation, OC. Is this view consistent with the
pattern of relationships that you described in the previous exercise? One possible explanation is that,
although all these variables are highly related, TRAP is measured with more precision than OC.
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11.38 More on predicting bone formation.

Now consider a regression model for predicting VO+ using OC, TRAP, and VO−.

(a) Write out the statistical model for this analysis including all assumptions.

(b) Run the multiple regression to predict VO+ using OC, TRAP, and VO−. Summarize the results.

(c) Make a table giving the estimated regression coefficients, standard errors, and t statistics with P-
values for this analysis and for the two that you ran in the previous exercise. Describe how the
coefficients and the P-values differ for the three analyses.

(d) Give the percent of variation in VO+ explained by each of the three models and the estimate of σ.
Give a short summary.

(e) The results you found in part (b) suggest another model. Run that model, summarize the results,
and compare them with the results in part (b).

 11.39 Predicting bone formation using transformed variables.

Because the distributions of VO+, VO−, OC, and TRAP tend to be skewed, it is common to work
with logarithms rather than the measured values. Using the questions in the previous three exercises
as a guide, analyze the log data.

 11.40 Predicting bone resorption.

Refer to Exercises 11.36 to 11.38. Answer these questions with the roles of VO+ and VO− reversed;
that is, run models to predict VO−, with VO+ as an explanatory variable.

 11.41 Predicting bone resorption using transformed variables.

Refer to the previous exercise. Rerun using logs.

The following 11 exercises use the PCB data file. Polychlorinated biphenyls (PCBs) are a collection
of synthetic compounds, called congeners, that are particularly toxic to fetuses and young children.
Although PCBs are no longer produced in the United States, they are still found in the environment.
Since human exposure to these PCBs is primarily through the consumption of fish, the
Environmental Protection Agency (EPA) monitors the PCB levels in fish. Unfortunately, there are
209 different congeners, and measuring all of them in a fish specimen is an expensive and time-
consuming process. You’ve been asked to see if the total amount of PCBs in a specimen can be
estimated with only a few, easily quantifiable congeners.10 If this can be done, costs can be greatly

reduced.  PCB

11.42 Relationships among PCB congeners.

Consider the following variables: PCB (the total amount of PCB) and four congeners: PCB52,
PCB118, PCB138, and PCB180.

(a) Using numerical and graphical summaries, describe the distribution of each of these variables.

(b) Using numerical and graphical summaries, describe the relationship between each pair of
variables.
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11.43 Predicting the total amount of PCB.

Use the four congeners PCB52, PCB118, PCB138, and PCB180 in a multiple regression to predict
PCB.

(a) Write the statistical model for this analysis. Include all assumptions.

(b) Run the regression and summarize the results.

(c) Examine the residuals. Do they appear to be approximately Normal? When you plot them versus
each of the explanatory variables, are any patterns evident?

11.44 Adjusting the analysis for potential outliers.

The examination of the residuals in part (c) of the previous exercise suggests that there may be two
outliers, one with a high residual and one with a low residual.

(a) Because of safety issues, we are more concerned about underestimating PCB in a specimen than
about overestimating. Give the specimen number for each of the two suspected outliers. Which one
corresponds to an overestimate of PCB?

(b) Rerun the analysis with the two suspected outliers deleted, summarize these results, and compare
them with those you obtained in the previous exercise.

11.45 More on predicting the total amount of PCB.

Run a regression to predict PCB using the variables PCB52, PCB118, and PCB138. Note that this is
similar to the analysis that you did in Exercise 11.43, with the change that PCB180 is not included as
an explanatory variable.

(a) Summarize the results.

(b) In this analysis, the regression coefficient for PCB118 is not statistically significant. Give the
estimate of the coefficient and the associated P-value.

(c) Find the estimate of the coefficient for PCB118 and the associated P-value for the model
analyzed in Exercise 11.43.

(d) Using the results in parts (b) and (c), write a short paragraph explaining how the inclusion of
other variables in a multiple regression can have an effect on the estimate of a particular coefficient
and the results of the associated significance test.

11.46 Multiple regression model for total TEQ.

Dioxins and furans are other classes of chemicals that can cause undesirable health effects similar to
those caused by PCB. The three types of chemicals are combined using toxic equivalent scores
(TEQs), which attempt to measure the health effects on a common scale. The PCB data file contains
TEQs for PCB, dioxins, and furans. The variables are called TEQPCB, TEQDIOXIN, and
TEQFURAN. The data file also includes the total TEQ, defined to be the sum of these three
variables.

(a) Consider using a multiple regression to predict TEQ using the three components TEQPCB,
TEQDIOXIN, and TEQFURAN as explanatory variables. Write the multiple regression model in the
form
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TEQ = β0 + β1TEQPCB + β2TEQDIOXIN + β3TEQFURAN + ε

Give numerical values for the parameters β0, β1, β2, and β3.

(b) The multiple regression model assumes that the ε’s are Normal with mean zero and standard
deviation σ What is the numerical value of σ?

(c) Use software to run this regression and summarize the results.

 11.47 Multiple regression model for total TEQ, continued.

The information summarized in TEQ is used to assess and manage risks from these chemicals. For
example, the World Health Organization (WHO) has established the tolerable daily intake (TDI) as 1
to 4 TEQs per kilogram of body weight per day. Therefore, it would be very useful to have a
procedure for estimating TEQ using just a few variables that can be measured cheaply. Use the four
PCB congeners PCB52, PCB118, PCB138, and PCB180 in a multiple regression to predict TEQ.
Give a description of the model and assumptions, summarize the results, examine the residuals, and
write a summary of what you have found.

 11.48 Predicting total amount of PCB using transformed variables.

Because distributions of variables such as PCB, the PCB congeners, and TEQ tend to be skewed,
researchers frequently analyze the logarithms of the measured variables. Create a data set that has
the logs of each of the variables in the PCB data file. Note that zero is a possible value for PCB126;
most software packages will eliminate these cases when you request a log transformation.

(a) If you do not do anything about the 16 zero values of PCB126, what does your software do with
these cases? Is there an error message of some kind?

(b) If you attempt to run a regression to predict the log of PCB using the log of PCB126 and the log
of PCB52, are the cases with the zero values of PCB126 eliminated? Do you think that this is a good
way to handle this situation?

(c) The smallest nonzero value of PCB126 is 0.0052. One common practice when taking logarithms
of measured values is to replace the zeros by one-half of the smallest observed value. Create a
logarithm data set using this procedure; that is, replace the 16 zero values of PCB126 by 0.0026
before taking logarithms. Use numerical and graphical summaries to describe the distributions of the
log variables.

 11.49 Predicting total amount of PCB using transformed variables,
continued.

Refer to the previous exercise.

(a) Use numerical and graphical summaries to describe the relationships between each pair of log
variables.

(b) Compare these summaries with the summaries that you produced in Exercise 11.42 for the
measured variables.

 11.50 Even more on predicting total amount of PCB using
transformed variables.
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Use the log data set that you created in Exercise 11.48 to find a good multiple regression model for
predicting the log of PCB. Use only log PCB variables for this analysis. Write a report summarizing
your results.

 11.51 Predicting total TEQ using transformed variables.

Use the log data set that you created in Exercise 11.48 to find a good multiple regression model for
predicting the log of TEQ. Use only log PCB variables for this analysis. Write a report summarizing
your results and comparing them with the results that you obtained in the previous exercise.

11.52 Interpretation of coefficients in log PCB regressions.

Use the results of your analysis of the log PCB data in Exercise 11.50 to write an explanation of how
regression coefficients, standard errors of regression coefficients, and tests of significance for
explanatory variables can change depending on what other explanatory variables are included in the
multiple regression analysis.

The following nine exercises use the CHEESE data file. As cheddar cheese matures, a variety of
chemical processes take place. The taste of matured cheese is related to the concentration of several
chemicals in the final product. In a study of cheddar cheese from the LaTrobe Valley of Victoria,
Australia, samples of cheese were analyzed for their chemical composition and were subjected to
taste tests. The variable “Case” is used to number the observations from 1 to 30. “Taste” is the
response variable of interest. The taste scores were obtained by combining the scores from several
tasters. Three of the chemicals whose concentrations were measured were acetic acid, hydrogen
sulfide, and lactic acid. For acetic acid and hydrogen sulfide (natural) log transformations were
taken. Thus, the explanatory variables are the transformed concentrations of acetic acid (“Acetic”)

and hydrogen sulfide (“H2S”) and the untransformed concentration of lactic acid (“Lactic”).11
CHEESE

11.53 Describing the explanatory variables.

For each of the four variables in the CHEESE data file, find the mean, median, standard deviation,
and interquartile range. Display each distribution by means of a stemplot and use a Normal quantile
plot to assess Normality of the data. Summarize your findings. Note that when doing regressions
with these data, we do not assume that these distributions are Normal. Only the residuals from our
model need to be (approximately) Normal. The careful study of each variable to be analyzed is
nonetheless an important first step in any statistical analysis.

11.54 Pairwise scatterplots of the explanatory variables.

Make a scatterplot for each pair of variables in the CHEESE data file (you will have six plots).
Describe the relationships. Calculate the correlation for each pair of variables and report the P-value
for the test of zero population correlation in each case.

11.55 Simple linear regression model of Taste.

Perform a simple linear regression analysis using Taste as the response variable and Acetic as the
explanatory variable. Be sure to examine the residuals carefully. Summarize your results. Include a
plot of the data with the least-squares regression line. Plot the residuals versus each of the other two
chemicals. Are any patterns evident? (The concentrations of the other chemicals are lurking
variables for the simple linear regression.)
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11.56 Another simple linear regression model of Taste.

Repeat the analysis of Exercise 11.55 using Taste as the response variable and H2S as the
explanatory variable.

11.57 The final simple linear regression model of Taste.

Repeat the analysis of Exercise 11.55 using Taste as the response variable and Lactic as the
explanatory variable.

11.58 Comparing the simple linear regression models.

Compare the results of the regressions performed in the three previous exercises. Construct a table
with values of the F statistic, its P-value, R2 and the estimate s of the standard deviation for each
model. Report the three regression equations. Why are the intercepts in these three equations
different?

11.59 Multiple regression model of Taste.

Carry out a multiple regression using Acetic and H2S to predict Taste. Summarize the results of your
analysis. Compare the statistical significance of Acetic in this model with its significance in the
model with Acetic alone as a predictor (Exercise 11.55). Which model do you prefer? Give a simple
explanation for the fact that Acetic alone appears to be a good predictor of Taste, but with H2S in
the model, it is not.

11.60 Another multiple regression model of Taste.

Carry out a multiple regression using H2S and Lactic to predict Taste. When we compare the results
of this analysis with the simple linear regressions using each of these explanatory variables alone, it
is evident that a better result is obtained by using both predictors in a model. Support this statement
with explicit information obtained from your analysis.

11.61 The final multiple regression model of Taste.

Use the three explanatory variables Acetic, H2S, and Lactic in a multiple regression to predict Taste.
Write a short summary of your results, including an examination of the residuals. Based on all the
regression analyses you have carried out on these data, which model do you prefer and why?

11.62 Finding a multiple regression model on the Internet.

Search the Internet to find an example of the use of multiple regression. Give the setting of the
example, describe the data, give the model, and summarize the results. Explain why the use of
multiple regression in this setting was appropriate or inappropriate.
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Introduction

Many of the most effective statistical studies are comparative. For example, we
may wish to compare customer satisfaction of men and women who use an online
fantasy football site or compare the responses to various treatments in a clinical
trial. With a quantitative response, we display these comparisons with back-to-back
stemplots or side-by-side boxplots, and we measure them with five-number
summaries or with means and standard deviations.

When only two groups are compared, Chapter 7 provides the tools we need to
answer the question “Is the difference between groups statistically significant?”
Two-sample t procedures compare the means of two Normal populations, and we
saw that these procedures, unlike comparisons of spread, are sufficiently robust to
be widely useful.

In this chapter, we will compare any number of means by techniques that
generalize the two-sample t test and share its robustness and usefulness. These
methods will allow us to address comparisons such as

• How does a user’s number of Facebook friends affect his or her social
attractiveness?

• On average, which of 5 brands of automobile tires wears longest?

• Among three therapies for lung cancer, is there a difference in average
progression-free survival?
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12.1 Inference for One-Way Analysis of Variance

When you complete this section, you will be able to

• Describe the one-way ANOVA model and when it is used for inference.

• Provide a description of the underlying idea of the ANOVA F test in
terms of the variation between population means and the variation within
populations.

• Summarize what the ANOVA F test can tell you about the population
means and what it cannot.

• Construct an ANOVA table in terms of sources of variation and degrees
of freedom. Compute mean squares and the F statistic when provided
various sums of squares.

• Interpret statistical software ANOVA output to obtain the ANOVA F test
results and the coefficient of determination.

• Use diagnostic plots and population sample statistics to check the
assumptions of the one-way ANOVA model.

When comparing different populations or treatments, the data are subject to
sampling variability. For example, we would not expect to observe exactly the
same sales data if we mailed an advertising offer to different random samples of
households. We also wouldn’t expect a new group of cancer patients to provide the
same set of progression-free survival times. We therefore pose the question for
inference in terms of the mean response.

comparing two means, p. 447

In Chapter 7 we met procedures for comparing the means of two populations.
We now extend those methods to problems involving more than two populations.
The statistical methodology for comparing several means is called analysis of
variance, or simply ANOVA. In this and the following section, we will examine
the basic ideas and assumptions that are needed for ANOVA. Although the details
differ, many of the concepts are similar to those discussed in the two-sample case.

ANOVA

We will consider two ANOVA techniques. When there is only one way to
classify the populations of interest, we use one-way ANOVA to analyze the data.
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We call this categorical explanatory variable a factor. For example, to compare the
average tread lifetimes of 5 specific brands of tires we use one-way ANOVA with
tire brand as our factor. This chapter presents the details for one-way ANOVA.

one-way ANOVA

factor

In many other comparative studies, there is more than one way to classify the
populations. For the tire study, the researcher may also want to consider
temperature. Are there brands that do relatively better in the heat? Analyzing the
effect of two factors, brand and temperature, requires two-way ANOVA. This
technique will be discussed in Chapter 13.

two-way ANOVA

Data for one-way ANOVA

One-way analysis of variance is a statistical method for comparing several
population means. We draw a simple random sample (SRS) from each population
and use the data to test the null hypothesis that the population means are all equal.
Consider the following two examples.

EXAMPLE

12.1 Does haptic feedback improve performance?
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A group of technology students is interested in whether haptic feedback
(forces and vibrations applied through a joystick) is helpful in navigating a
simulated game environment they created. To investigate this, they randomly
assign each of 60 students to one of three joystick controller types and record
the time it takes to complete a navigation mission. The joystick types are (1) a
standard video game joystick, (2) a game joystick with force feedback, and (3)
a game joystick with vibration feedback.

EXAMPLE

12.2 Average age of coffeehouse customers.

How do five coffeehouses around campus differ in the demographics of their
customers? Are certain coffeehouses more popular among graduate students?
Do professors tend to favor one coffeehouse? A market researcher asks 50
customers of each coffeehouse to respond to a questionnaire. One variable of
interest is the customer’s age.

These two examples are similar in that

• There is a single quantitative response variable measured on many units; the
units are students in the first example and customers in the second.
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• The goal is to compare several populations: students using different joystick
types in the first example and customers of five coffeehouses in the second.

observation versus experiment, p. 172

There is, however, an important difference. Example 12.1 describes an
experiment in which each student is randomly assigned to a joystick type.
Example 12.2 is an observational study in which customers are selected during
a particular time period and not all agree to provide data. These samples of
customers are not random samples, but we will treat them as such because we
believe that the selective sampling and nonresponse are ignorable sources of
bias. This will not always be the case. Always consider the various sources of
bias in an observational study.

In both examples, we will use ANOVA to compare the mean responses.
The same ANOVA methods apply to data from random samples and to data
from randomized experiments. It is important to keep the data-production
method in mind when interpreting the results. A strong case for causation is
best made by a randomized experiment.

Comparing means

The question we ask in ANOVA is “Do all groups have the same population
mean?” We will often use the term “groups” for the populations to be compared in
a one-way ANOVA. To answer this question we compare the sample means.
Figure 12.1 displays the sample means for Example 12.1. It appears that a joystick
with force feedback has the shortest average completion time. But is the observed
difference in sample means just the result of chance variation? We should not
expect sample means to be equal even if the population means are all identical.
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FIGURE 12.1
Average completion time for three different joystick types.

standard deviation of x¯, p. 306

The purpose of ANOVA is to assess whether the observed differences among
sample means are statistically significant. Could a variation among the three
sample means this large be plausibly due to chance, or is it good evidence for a
difference among the population means? This question can’t be answered from the
sample means alone. Because the standard deviation of a sample mean x¯ is the
population standard deviation σ divided by n, the answer also depends upon both
the variation within the groups of observations and the sizes of the samples.

Side-by-side boxplots help us see the within-group variation. Compare Figures
12.2(a) and 12.2(b). The sample medians are the same in both figures, but the large
variation within the groups in Figure 12.2(a) suggests that the differences among
the sample medians could be due simply to chance variation. The data in Figure
12.2(b) are much more convincing evidence that the populations differ.

Even the boxplots omit essential information, however. To assess the observed
differences, we must also know how large the samples are. Nonetheless, boxplots
are a good preliminary display of the data.

1118



FIGURE 12.2 (a) Side-by-side boxplots for three groups with large
within-group variation. The differences among centers may be just
chance variation. (b) Side-by-side boxplots for three groups with the
same centers as in panel (a) but with small within-group variation.
The differences among centers are more likely to be significant.

Although ANOVA compares means and boxplots display medians, these two
measures of center will be close together for distributions that are nearly
symmetric. If the distributions are not symmetric, we may consider a
transformation prior to displaying the data.

transforming data, p. 436

The two-sample t statistic

Two-sample t statistics compare the means of two populations. If the two
populations are assumed to have equal but unknown standard deviations and the
sample sizes are both equal to n, the t statistic is

pooled two-sample t statistic, p. 461

t=x¯1−x¯2sp1n+1n=n2(x¯1−x¯2)sp

The square of this t statistic is

t2=n2(x¯1−x¯2)2sp2

If we use ANOVA to compare two populations, the ANOVA F statistic is exactly
equal to this t2. We can therefore learn something about how ANOVA works by
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looking carefully at the statistic in this form.
The numerator in the t2 statistic measures the variation between (or among) the

groups in terms of the difference between their sample means x¯1 and x¯2 and the
common sample size n. The numerator can be large because of a large difference
between the sample means or because the common sample size is large.

between group variation

The denominator measures the variation within groups by sp2, the pooled
estimator of the common variance. If the within-group variation is small, the same
variation between the groups produces a larger statistic and thus a more significant
result.

within group variation

Although the general form of the F statistic is more complicated, the idea is the
same. To assess whether several populations all have the same mean, we compare
the variation among the means of several groups with the variation within groups.
Because we are comparing variation, the method is called analysis of variance.

An overview of ANOVA

ANOVA tests the null hypothesis that the population means are all equal. The
alternative is that they are not all equal. This alternative could be true because all
the means are different or simply because one of them differs from the rest. This is
a more complex situation than comparing just two populations. If we reject the null
hypothesis, we need to perform some further analysis to draw conclusions about
which population means differ from which others and by how much.

The computations needed for an ANOVA are more lengthy than those for the t
test. For this reason we generally use computer programs to perform the
calculations. Automating the calculations frees us from the burden of arithmetic
and allows us to concentrate on interpretation.

Complicated computations do not guarantee a valid statistical analysis. We
should always start our ANOVA with a careful examination of the data using
graphical and numerical summaries. Just as in linear regression, outliers and
extreme deviations from Normality can invalidate the computed results.
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EXAMPLE

12.3 Number of Facebook friends.

A feature of each Facebook user’s profile is the number of Facebook “friends,”
an indicator of the user’s social network connectedness. Among college
students on Facebook, the average number of Facebook friends has been
estimated to be around 281.1
Offline, having more friends is associated with higher ratings of positive
attributes such as likability and trustworthiness. Is this also the case with
Facebook friends?

FRIENDS

An experiment was run to examine the relationship between the number of
Facebook friends and the user’s perceived social attractiveness.2 A total of 134
undergraduate participants were randomly assigned to observe one of five
Facebook profiles. Everything about the profile was the same except the
number of friends, which appeared on the profile as 102, 302, 502, 702, or
902.

After viewing the profile, each participant was asked to fill out a
questionnaire on the physical and social attractiveness of the profile user. Each
attractiveness score is an average of several seven-point questionnaire items,
ranging from 1 (strongly disagree) to 7 (strongly agree). Here is a summary of
the data for the social attractiveness score:

Number of friends n x¯ s
102 24 3.82 1.00
302 33 4.88 0.85
502 26 4.56 1.07
702 30 4.41 1.43
902 21 3.99 1.02

Histograms for the five groups are given in Figure 12.3. Note that the
heights of the bars in the histograms are percents rather than counts. This is
commonly done when the group sample sizes vary. Figure 12.4 gives side-by-
side boxplots for these data. We see that the scores covered the entire range of
possible values, from 1.0 to 7.0. We also see a lot of overlap in scores across
groups. The histograms are relatively symmetric, and with the group sample
sizes all more than 15, we can feel confident that the sample means are
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approximately Normal.

guidelines for two-sample t procedures, p. 456

The five sample means are plotted in Figure 12.5 (page 650). They rise and
then fall as the number of friends increases. This suggests that having too
many Facebook friends can harm a user’s social attractiveness. However,
given the variability in the data, this pattern could also just be the result of
chance variation. We will use ANOVA to make this determination.

FIGURE 12.3
Histograms for the Facebook friends example.
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FIGURE 12.4
Side-by-side boxplots for the Facebook friends example.

FIGURE 12.5
Social attractiveness means for the Facebook friends example.

In this setting, we have an experiment in which undergraduate Facebook
users were randomly assigned to view one of five Facebook profiles. Each of
these profile populations has a mean, and our inference asks questions about
these means. The undergraduates in this study were all from the same
university. They also volunteered in exchange for course credit.
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Formulating a clear definition of the populations being compared with
ANOVA can be difficult. Often some expert judgment is required, and different
consumers of the results may have differing opinions. Whether one can
consider the samples in this study as SRSs from the population of
undergraduates at the university or from the population of all undergraduates is
open for debate. Regardless, we are more confident in generalizing our
conclusions to similar populations when the results are clearly significant than
when the level of significance just barely passes the standard of P = 0.05.

We first ask whether or not there is sufficient evidence in the data to
conclude that the corresponding population means are not all equal. Our null
hypothesis here states that the population mean score is the same for all five
Facebook profiles. The alternative is that they are not all the same.

Our inspection of the data for our example suggests that the means may
follow a curvilinear relationship. Rejecting the null hypothesis that the means
are all the same using ANOVA is not the same as concluding that all the
means are different from one another. The ANOVA null hypothesis can be
false in many different ways. Additional analysis is required to distinguish
among these possibilities.

When there are particular versions of the alternative hypothesis that are of
interest, we use contrasts to examine them. In our example, we might want to
test whether there is a curvilinear relationship between the number of friends
and attractiveness score. Note that, to use contrasts, it is necessary that the
questions of interest be formulated before examining the data. It is cheating to
make up these questions after analyzing the data.

contrasts

If we have no specific relations among the means in mind before looking at
the data, we instead use a multiple-comparisons procedure to determine
which pairs of population means differ significantly. In the next section we
will explore both contrasts and multiple comparisons in detail.
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multiple comparisons

USE YOUR KNOWLEDGE

12.1 What’s wrong?

For each of the following, explain what is wrong and why.

(a) ANOVA tests the null hypothesis that the sample means are all equal.

(b) A strong case for causation is best made in an observational study.

(c) You use ANOVA to compare the variances of the populations.

(d) A multiple-comparisons procedure is used to compare a relation among means that was
specified prior to looking at the data.

12.2 What’s wrong?

For each of the following, explain what is wrong and why.

(a) In rejecting the null hypothesis, one can conclude that all the means are different from one
another.

(b) A one-way ANOVA can be used only when there are two means to be compared.

(c) The ANOVA F statistic will be large when the within-group variation is much larger than
the between-group variation.

The ANOVA model

When analyzing data, the following equation reminds us that we look for an overall
pattern and deviations from it:

DATA = FIT + RESIDUAL

DATA = FIT + RESIDUAL, p. 567

In the regression model of Chapter 10, the FIT was the population regression line,
and the RESIDUAL represented the deviations of the data from this line. We now
apply this framework to describe the statistical models used in ANOVA. These
models provide a convenient way to summarize the assumptions that are the
foundation for our analysis. They also give us the necessary notation to describe
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the calculations needed.

Normal distributions, p. 58

First, recall the statistical model for a random sample of observations from a
single Normal population with mean μ and standard deviation σ. If the observations
are

x1, x2, . . . , xn

we can describe this model by saying that the xj are an SRS from the N(μ, σ)
distribution. Another way to describe the same model is to think of the x’s varying
about their population mean. To do this, write each observation xj as

xj = μ + εj

The εj are then an SRS from the N(0, σ) distribution. Because μ is unknown, the ε’s
cannot actually be observed. This form more closely corresponds to our

DATA = FIT + RESIDUAL

way of thinking. The FIT part of the model is represented by μ. It is the systematic
part of the model, like the line in a regression. The RESIDUAL part is represented
by εj. It represents the deviations of the data from the fit and is due to random, or
chance, variation.

There are two unknown parameters in this statistical model: μ and σ. We
estimate μ by x¯, the sample mean, and σ by s, the sample standard deviation. The
differences ej=xj−x¯ are the residuals and correspond to the εj in the statistical
model.

The model for one-way ANOVA is very similar. We take random samples from
each of I different populations. The sample size is ni for the ith population. Let xij
represent the jth observation from the ith population. The I population means are
the FIT part of the model and are represented by μi. The random variation, or
RESIDUAL, part of the model is represented by the deviations εij of the
observations from the means.

THE ONE-WAY ANOVA MODEL

The one-way ANOVA model is

xij = μi + εij
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for i = 1, ... , I and j = 1, ... , ni. The εij are assumed to be from an N(0, σ)
distribution. The parameters of the model are the population means μ1, μ2, ...
, μI and the common standard deviation σ.

Note that the sample sizes ni may differ, but the standard deviation σ is assumed
to be the same in all the populations. Figure 12.6 pictures this model for I = 3. The
three population means μi are different, but the shapes of the three Normal
distributions are the same, reflecting the assumption that all three populations have
the same standard deviation.

FIGURE 12.6
Model for one-way ANOVA with three groups. The three populations have Normal
distributions with the same standard deviation.

EXAMPLE

12.4 ANOVA model for the Facebook friends study.

In the Facebook friends example, there are five profiles that we want to
compare, so I = 5. The population means μ1, μ2, . . . , μ5 are the mean social
attractiveness scores for the profiles with 102, 302, 502, 702, and 902 friends,
respectively. The sample sizes ni are 24, 33, 26, 30, and 21. It is common to
use numerical subscripts to distinguish the different means, and some software
requires that levels of factors in ANOVA be specified as numerical values. In
this situation, it is very important to keep track of what each numerical value
represents when drawing conclusions. In our example, we could use numerical
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values to suggest the actual groups by replacing μ1 with μ102, μ2 with μ302, and
so on.

The observation x1,1 is the social attractiveness score for the first
participant who observed the profile with 102 friends. The data for the other
participants assigned to this profile are denoted by x1,2, x1,3, ... , x1,24.
Similarly, the data for the other four groups have a first subscript indicating
the profile and a second subscript indicating the participants assigned to that
profile.

According to our model, the score for the first participant is x1,1 = μ1 + ε1,1,
where μ1 is the average score for all undergraduates after viewing Profile 1
and ε1,1 is the chance variation due to this particular participant. Similarly, the
score for the last participant who observed the profile with 902 friends is x5,21
= μ5 + ε5,21, where μ5 is the average score for all undergraduates after viewing
Profile 5, and ε5,21 is the chance variation due to this participant.

central limit theorem, p. 307

The ANOVA model assumes that these chance variations εij are
independent and Normally distributed with mean 0 and standard deviation σ.
For our example, we have clear evidence that the data are non-Normal. The
observed scores are numbers ranging from 1.0 to 7.0 by increments of 0.2.
However, because our inference is based on the sample means, which will be
approximately Normally distributed, we are not overly concerned about this
violation of model assumptions.

Estimates of population parameters

The unknown parameters in the statistical model for ANOVA are the I population
means μi and the common population standard deviation σ. To estimate μi we use
the sample mean for the ith group:

x¯i=1niΣj=1nixij

The residuals eij=xij−x¯i reflect the variation about the sample means that we see
in the data and are used in the calculations of the sample standard deviations

si=Σj=1ni(xij−xi¯)2ni−1

The ANOVA model assumes that the population standard deviations are all
equal. Before estimating σ, it is important to check this equality assumption using
the sample standard deviations. Unfortunately, formal tests for the equality of
standard deviations in several groups share the lack of robustness against non-
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Normality that we noted in Chapter 7 for the case of two groups.

F test for equality of spread, p. 474

ANOVA procedures, however, are not extremely sensitive to unequal standard
deviations provided the group sample sizes are the same or similar. Thus, we do
not recommend a formal test of equality of standard deviations as a preliminary to
the ANOVA. Instead, we will use the following rule as a guideline.

RULE FOR EXAMINING STANDARD DEVIATIONS IN
ANOVA

If the largest standard deviation is less than twice the smallest standard
deviation, we can use methods based on the assumption of equal standard
deviations, and our results will still be approximately correct.3

When we assume that the population standard deviations are equal, each sample
standard deviation is an estimate of σ. To combine these into a single estimate, we
use a generalization of the pooling method introduced in Chapter 7 (page 461).

POOLED ESTIMATOR OF σ

Suppose that we have sample variances s12,s22,. ..,sI2 from I
independent SRSs of sizes n1, n2, ... , nI from populations with common
variance σ2. The pooled sample variance

sp2=(n1−1)s12+(n2−1)s22+ ...+ (nI−1)sI2(n1−1)+(n2−1) + ...+  
(nI−1)

is an unbiased estimator of σ2. The pooled standard deviation

sp=sp2

is the estimate of σ.

Pooling gives more weight to groups with larger sample sizes. If the sample
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sizes are equal, sp2 is just the average of the I sample variances. Note that sp is not
the average of the I sample standard deviations.

If it appears that we have unequal standard deviations, we generally try to
transform the data so that they are approximately equal. We might, for example,
work with xij or log xij. Fortunately, we can often find a transformation that both
makes the group standard deviations more nearly equal and also makes the
distributions of observations in each group more nearly Normal. If the standard
deviations are markedly different and cannot be made similar by a transformation,
inference requires different methods such as the bootstrap described in Chapter 16.

EXAMPLE

12.5 Population estimates for the Facebook friends study.

In the Facebook friends study there are I = 5 groups and the sample sizes are
n1 = 24, n2 = 33, n3 = 26, n4 = 30, and n5 = 21. The sample standard deviations
are s1 = 1.00, s2 = 0.85, s3 = 1.07, s4 = 1.43 and s5 = 1.02.

Because the largest standard deviation (1.43) is less than twice the smallest
(2 × 0.85 = 1.70), our rule indicates that we can use the assumption of equal
population standard deviations.

The pooled variance estimate is

sp2=(n1−1)s12+(n2−1)s22+(n3−1)s32+(n4−1)s42+(n5−1)s52+(n1−1)+
(n2−1)+(n3−1)+(n4−1)+(n5−1)

=(23)(1.00)2+(32)(0.85)2+(25)(1.07)2+(29)(1.43)2+(20)
(1.02)223+32+25+29+20

=154.85129=1.20

The pooled standard deviation is

sp=1.20=1.10

This is our estimate of the common standard deviation σ of the social
attractiveness scores for the five profiles.

USE YOUR KNOWLEDGE
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12.3 Computing the pooled standard deviation.

An experiment was run to compare three timed-release fertilizers in
terms of plant growth. The sample sizes were 23, 21, and 27 plants, and
the corresponding estimated standard deviations were 4, 5, and 7
centimeters.

(a) Is it reasonable to use the assumption of equal standard deviations when we analyze these
data? Give a reason for your answer.

(b) Give the values of the variances for the three groups.

(c) Find the pooled variance.

(d) What is the value of the pooled standard deviation?

12.4 Visualizing the ANOVA model.

For each of the following situations, draw a picture of the ANOVA
model similar to Figure 12.6 (page 652). Use the numerical values for
the μi. To sketch the Normal curves, you may want to review the 68–95–
99.7 rule on page 59.

(a) μ1 = 18, μ2 = 13, μ3 = 14, and σ = 5.

(b) μ1 = 18, μ2 = 14, μ3 = 16, μ4 = 24, and σ = 7.

(c) μ1 = 18, μ2 = 13, μ3 = 14, and σ = 2.

Testing hypotheses in one-way ANOVA

Comparison of several means is accomplished by using an F statistic to compare
the variation among groups with the variation within groups. We now show how
the F statistic expresses this comparison. Calculations are organized in an ANOVA
table, which contains numerical measures of the variation among groups and
within groups.

ANOVA table, p. 589

First, we must specify our hypotheses for one-way ANOVA. As before, I
represents the number of populations to be compared.

HYPOTHESES FOR ONE-WAY ANOVA
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The null and alternative hypotheses for one-way ANOVA are

H0: μ1 = μ2 = ... = μI

Ha: not all of the μi are equal

We will now use the Facebook friends example to illustrate how to do a one-
way ANOVA. Because the calculations are generally performed using statistical
software, we focus on interpretation of the output.

EXAMPLE

12.6 Reading software output.

Figure 12.7 gives descriptive statistics generated by SPSS for the ANOVA of
the Facebook friends example. Summaries for each profile are given on the
first five lines. In addition to the sample size, the mean, and the standard
deviation, this output also gives the minimum and maximum observed value,
standard error of the mean, and the 95% confidence interval for the mean of
each profile. The five sample means xi given in the output are estimates of the
five unknown population means μi.

FIGURE 12.7
SPSS output with descriptive statistics for the Facebook friends example.

The output gives the estimates of the standard deviations, si, for each group
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but does not provide sp, the pooled estimate of the model standard deviation, σ.
We could perform the calculation using a calculator, as we did in Example
12.5. We will see an easier way to obtain this quantity from the ANOVA table
in Figure 12.8.

Some software packages report sp as part of the standard ANOVA output.
Sometimes you are not sure whether or not a quantity given by software is
what you think it is. A good way to resolve this dilemma is to do a sample
calculation with a simple example to check the numerical results.

Note that sp is not the standard deviation given in the “Total” row of
Figure 12.7. This quantity is the standard deviation that we would obtain if we
viewed the data as a single sample of 134 participants and ignored the
possibility that the profile means could be different. As we have mentioned
many times before, it is important to use care when reading and interpreting
software output.

EXAMPLE

12.7 Reading software output, continued.

Additional output generated by SPSS for the ANOVA of the Facebook friends
example is given in Figure 12.8. We will discuss the construction of this
output next. For now, we observe that the results of our significance test are
given in the last two columns of the output. The null hypothesis that the five
population means are the same is tested by the statistic F = 4.142, and the
associated P-value is reported as P = 0.003. The data provide clear evidence to
support the claim that there are some differences among the five profile
population means.
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FIGURE 12.8
SPSS output giving the ANOVA table for the Facebook friends example.

The ANOVA table

The information in an analysis of variance is organized in an ANOVA table. To
understand the table, it is helpful to think in terms of our

DATA = FIT + RESIDUAL

view of statistical models. For one-way ANOVA, this corresponds to

xij = μi + εij

We can think of these three terms as sources of variation. The ANOVA table
separates the variation in the data into two parts: the part due to the fit and the
remainder, which we call residual.

EXAMPLE

12.8 ANOVA table for the Facebook friends study.

The SPSS output in Figure 12.8 gives the sources of variation in the first
column. Here, FIT is called Between Groups, RESIDUAL is called Within
Groups, and DATA is the last entry, Total. Different software packages use
different terms for these sources of variation but the basic concept is common
to all. In place of FIT, some software packages use Between Groups, Model,
or the name of the factor. Similarly, terms like Within Groups or Error are

1134



frequently used in place of RESIDUAL.

The Between Groups row in the table gives information related to the
variation among group means. In writing ANOVA tables, for this row we will
use the generic label “groups” or some other term that describes the factor
being studied.

variation among groups

The Within Groups row in the table gives information related to the
variation within groups. We noted that the term “error” is frequently used for
this source of variation, particularly for more general statistical models. This
label is most appropriate for experiments in the physical sciences where the
observations within a group differ because of measurement error. In business
and the biological and social sciences, on the other hand, the within-group
variation is often due to the fact that not all firms or plants or people are the
same. This sort of variation is not due to errors and is better described as
“residual” or “within-group” variation. Nevertheless, we will use the generic
label “error” for this source of variation in writing ANOVA tables.

variation within groups

Finally, the Total row in the ANOVA table corresponds to the DATA term
in our DATA = FIT + RESIDUAL framework. So, for analysis of variance,

DATA = FIT + RESIDUAL

translates into

Total = Between Groups + Within Groups

sum of squares, p. 587

The second column in the software output given in Figure 12.8 is labeled
Sum of Squares. As you might expect, each sum of squares is a sum of squared
deviations. We use SSG, SSE, and SST for the entries in this column,
corresponding to groups, error, and total. Each sum of squares measures a
different type of variation. SST measures variation of the data around the
overall mean, xij−x¯. Variation of the group means around the overall mean,
x¯i−x¯ is measured by SSG. Finally, SSE measures variation of each
observation around its group mean, xij−x¯i.
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EXAMPLE

12.9 ANOVA table for the Facebook friends study, continued.

The Sum of Squares column in Figure 12.8 gives the values for the three sums
of squares. They are

SST = 174.757

SSG = 19.890

SSE = 154.867

Verify that SST = SSG + SSE for this example.

This fact is true in general. The total variation is always equal to the
among-group variation plus the within-group variation. Note that software
output frequently gives many more digits than we need, as in this case.

In this example it appears that most of the variation is coming from within
groups. However, to assess whether the observed differences in sample means
are statistically significant, some additional calculations are needed.

degrees of freedom, p. 44

Associated with each sum of squares is a quantity called the degrees of
freedom. Because SST measures the variation of all N observations around the
overall mean, its degrees of freedom are DFT = N − 1. This is the same as the
degrees of freedom for the ordinary sample variance with sample size N.
Similarly, because SSG measures the variation of the I sample means around
the overall mean, its degrees of freedom are DFG = I − 1. Finally, SSE is the
sum of squares of the deviations xij−x¯i. Here we have N observations being
compared with I sample means, and DFE = N − I.

EXAMPLE

12.10 Degrees of freedom for the Facebook friends study.

In the Facebook friends example, we have I = 5 and N = 134. Therefore,

1136



DFT = N − 1 = 134 − 1 = 133

DFG = I − 1 = 5 − 1 = 4

DFE = N − I = 134 − 5 = 129

These are the entries in the df column of Figure 12.8.

Note that the degrees of freedom add in the same way that the sums of
squares add. That is, DFT = DFG + DFE.

mean square, p. 587

For each source of variation, the mean square is the sum of squares divided
by the degrees of freedom. You can verify this by doing the divisions for the
values given on the output in Figure 12.8. We compare these mean squares to
test whether the population means are all the same.

SUMS OF SQUARES, DEGREES OF FREEDOM, AND
MEAN SQUARES

Sums of squares represent variation present in the data. They are
calculated by summing squared deviations. In one-way ANOVA there are
three sources of variation: groups, error, and total. The sums of squares
are related by the formula

SST = SSG + SSE

Thus, the total variation is composed of two parts, one due to groups and
one due to error.
Degrees of freedom are related to the deviations that are used in the sums
of squares. The degrees of freedom are related in the same way as the
sums of squares are:

DFT = DFG + DFE

To calculate each mean square, divide the corresponding sum of squares
by its degrees of freedom.

We can use the mean square for error to find sp, the pooled estimate of the
parameter σ of our model. It is true in general that

sp2=MSE=SSEDFE

In other words, the mean square for error is an estimate of the within-group

1137



variance, σ2. The estimate of σ is therefore the square root of this quantity. So,

sp=MSE

EXAMPLE

12.11 MSE for the Facebook friends study.

From the SPSS output in Figure 12.8 we see that the MSE is reported as 1.201.
The pooled estimate of σ is therefore

sp=MSE

=1.201=1.10

This estimate is equal to our calculations of sp in Example 12.5.

The F test

If H0 is true, there are no differences among the group means. The ratio MSG/MSE
is a statistic that is approximately 1 if H0 is true and tends to be larger if Ha is true.
This is the ANOVA F statistic. In our example, MSG = 4.973 and MSE = 1.201, so
the ANOVA F statistic is

F=MSGMSE=4.9731.201=4.142

When H0 is true, the F statistic has an F distribution that depends upon two
numbers: the degrees of freedom for the numerator and the degrees of freedom for
the denominator. These degrees of freedom are those associated with the mean
squares in the numerator and denominator of the F statistic. For one-way ANOVA,
the degrees of freedom for the numerator are DFG = I − 1, and the degrees of
freedom for the denominator are DFE = N − I. We use the notation F(I − 1, N − I)
for this distribution.

The One-Way ANOVA applet is an excellent way to see how the value of the F
statistic and the P-value depend upon the variability of the data within the groups,
the sample sizes, and the differences between the means. See Exercises 12.28 to
12.30 (page 682) for use of this applet.
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THE ANOVA F TEST

To test the null hypothesis in a one-way ANOVA, calculate the F statistic

F=MSGMSE

When H0 is true, the F statistic has the F(I − 1, N − I) distribution. When Ha is
true, the F statistic tends to be large. We reject H0 in favor of Ha if the F
statistic is sufficiently large.
The P-value of the F test is the probability that a random variable having the
F(I − 1, N − I) distribution is greater than or equal to the calculated value of
the F statistic.

Tables of F critical values are available for use when software does not give the
P-value. Table E in the back of the book contains the F critical values for
probabilities p = 0.100, 0.050, 0.025, 0.010, and 0.001. For one-way ANOVA we
use critical values from the table corresponding to I − 1 degrees of freedom in the
numerator and N − I degrees of freedom in the denominator. When determining the
P-value, remember that the F test is always one-sided because any differences
among the group means tend to make F large.

EXAMPLE

12.12 The ANOVA F test for the Facebook friends study.

In the Facebook friends study, we found F = 4.14. (Note that it is standard
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practice to round F statistics to two places after the decimal point.) There were
five populations, so the degrees of freedom in the numerator are DFG = I − 1 =
4. For this example the degrees of freedom in the denominator are DFE = N −
I = 134 − 5 = 129. Software provided a P-value of 0.003, so at the 0.05
significance level, we reject H0 and conclude that the population means are not
all the same.

Suppose that P = 0.003 was not provided. We’ll now run through the
process of using the table of F critical values to approximate the P-value.
Although you will rarely need to do this in practice, the process will help you
to understand the P-value calculation.

In Table E we first find the column corresponding to 4 degrees of freedom
in the numerator. For the degrees of freedom in the denominator, we see that
there are entries for 100 and 200. The values for these entries are very close.
To be conservative we use critical values corresponding to 100 degrees of
freedom in the denominator since these are slightly larger.

p Critical value
0.100 2.00
0.050 2.46
0.025 2.92
0.010 3.51
0.001 5.02

We have F = 4.14. This is in between the critical value for P = 0.010 and P =
0.001. Using the table, we can conclude only that 0.001 < P < 0.010.

The following display shows the general form of a one-way ANOVA table
with the F statistic. The formulas in the sum of squares column can be used for
calculations in small problems. There are other formulas that are more
efficient for hand or calculator use, but ANOVA calculations are usually done
by computer software.

Source Degrees of freedom Sum of squares Mean square F
Groups I − 1 Σgroups ni(xi¯−x¯)2 SSG/DFG MSG/MSE
Error N − I Σgroups (ni−1)si2 SSE/DFE
Total N − 1 Σobs(xij−x¯)2

One other item given by some software for ANOVA is worth noting. For
an analysis of variance, we define the coefficient of determination as

coefficient of determination

R2=SSGSST
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multiple correlation coefficient, p. 618

The coefficient of determination plays the same role as the squared
multiple correlation R2 in a multiple regression. We can easily calculate the
value from the ANOVA table entries.

EXAMPLE

12.13 Coefficient of determination for the Facebook friends study.

The software-generated ANOVA table for the Facebook friends study is given
in Figure 12.8. From that display, we see that SSG = 19.890 and SST =
174.757. The coefficient of determination is

R2=SSGSST=19.890174.757=0.11

About 11% of the variation in social attractiveness scores is explained by
the different profiles. The other 89% of the variation is due to participant-to-
participant variation within each of the profile groups. We can see this in the
histograms of Figure 12.3. Each of the groups has a large amount of variation,
and there is a substantial amount of overlap in the distributions. The fact that
we have strong evidence (P < 0.003) against the null hypothesis that the five
population means are all the same does not tell us that the distributions of
values are far apart.

USE YOUR KNOWLEDGE

12.5 What’s wrong?

For each of the following, explain what is wrong and why.

(a) Within-group variation is the variation in the data due to the differences in the sample
means.
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(b) The mean squares in an ANOVA table will add, that is, MST = MSG + MSE.

(c) The pooled estimate sp is a parameter of the ANOVA model.

(d) A very small P-value implies that the group distributions of responses are far apart.

12.6 Determining the critical value of F.

For each of the following situations, state how large the F statistic needs
to be for rejection of the null hypothesis at the 0.05 level.

(a) Compare 4 groups with 4 observations per group.

(b) Compare 5 groups with 4 observations per group.

(c) Compare 5 groups with 5 observations per group.

(d) Summarize what you have learned about F distributions from this exercise.
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12.2 Comparing the Means

When you complete this section, you will be able to

• Distinguish between the use of contrasts to examine particular versions of
the alternative hypothesis and the use of a multiple-comparisons method to
compare pairs of means.

• Construct a level C confidence interval for a comparison of means
expressed as a contrast.

• Perform a t significance test for a contrast and summarize the results.

• Summarize the trade-off of a multiple-comparisons method in terms of
controlling false rejections and not detecting true differences in means.

• Describe what is done when one uses the Bonferroni method to control
the probability of a false rejection.

• Interpret statistical software ANOVA output and draw conclusions
regarding differences in population means.

Contrasts

The ANOVA F test gives a general answer to a general question: are the
differences among observed group means statistically significant? Unfortunately, a
small P-value simply tells us that the group means are not all the same. It does not
tell us specifically which means differ from each other. Plotting and inspecting the
means give us some indication of where the differences lie, but we would like to
supplement inspection with formal inference.

In the ideal situation, specific questions regarding comparisons among the
means are posed before the data are collected. We can answer specific questions of
this kind and attach a level of confidence to the answers we give. We now explore
these ideas through the Facebook friends example.

EXAMPLE

12.14 Reporting the results.
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In the Facebook friends study we compared the social attractiveness scores for
five profiles, which varied only in the number of friends. Let’s use
x¯102,x¯302,x¯502,x¯702, and  x¯902 to represent the five sample means
and a similar notation for the population means. From Figure 12.7 we see that
the five sample means are

x¯102=3.82, x¯302=4.88, x¯502= 4.56,x¯702=4.41, and  x¯902=3.99

The null hypothesis we tested was

H0: μ102 = μ302 = μ502 = μ702 = μ902

versus the alternative that the five population means are not all the same. We
would report these results as F(4, 129) = 4.14 with P = 0.003. Note that we
have given the degrees of freedom for the F statistic in parentheses. Because
the P-value is very small, we conclude that the data provide clear evidence that
the five population means are not all the same.

However, having evidence that the five population means are not the same does
not tell us all we’d like to know. We would really like our analysis to provide us
with more specific information. For example, the alternative hypothesis is true if

μ102 < μ302 = μ502 = μ702 = μ902

or if

μ102 = μ302 = μ502 > μ702 = μ902

or if

μ102 ≠ μ302 ≠ μ502 ≠ μ702 ≠ μ902

When you reject the ANOVA null hypothesis, additional analyses are required to
clarify the nature of the differences between the means.

In terms of offline social networks, previous research has shown that the bigger
one’s social network, the higher one’s social attractiveness. In fact, the relationship
between the number of friends and social attractiveness appears linear. Therefore, a
reasonable question to ask is whether or not this same sort of pattern exists within
an online social network. We can take this question and translate it into a testable
hypothesis.
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EXAMPLE

12.15 An additional comparison of interest.

The researchers hypothesize that, unlike an offline social network, the positive
association between the number of friends and social attractiveness weakens as
the number of friends increases. Specifically, the average increase in social
attractiveness for an increase of 400 friends is different if starting at 102
friends versus starting at 502 friends. This results in the following null
hypothesis:

H01: μ502 − μ102 = μ902 − μ502

We could use the two-sided alternative

Ha1: μ502 − μ102 ≠ μ902 − μ502

but we could also argue that the one-sided alternative

Ha1: μ502 − μ102 > μ902 − μ502

is appropriate for this problem because we expect there to be a leveling off.

In the example above we used H01 and Ha1 to designate the null and alternative
hypotheses. The reason for this is that there is an additional set of hypotheses to
assess if there is a general linear trend. We use H02 and Ha2 for this set.

EXAMPLE

12.16 Another comparison of interest.

This comparison tests if there is a general linear trend across the factor levels.
Here are the null and alternative hypotheses:

H02: − 2μ102 − μ302 + μ702 + 2μ902 = 0

Ha2: − 2μ102 − μ302 + μ702 + 2μ902 ≠ 0

Each of H01 and H02 says that a combination of population means is 0. These
combinations of means are called contrasts because the coefficients sum to zero.
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We use ψ, the Greek letter psi, for contrasts among population means. For our first
comparison, we have

ψ1 = −μ102 + 2μ502 + μ902

= (−1)μ102 + (2)μ502 + (−1)μ902

and for the second comparison

ψ2 = (−2)μ102 + (−1)μ302 + (1)μ702 + (2)μ902

In each case, the value of the contrast is 0 when H0 is true. Note that we have
chosen to define the contrasts so that they will be positive when the alternative of
interest (what we expect) is true. Whenever possible, this is a good idea because it
makes some computations easier.

A contrast expresses an effect in the population as a combination of population
means. To estimate the contrast, form the corresponding sample contrast by using
sample means in place of population means. Under the ANOVA assumptions, a
sample contrast is a linear combination of independent Normal variables and
therefore has a Normal distribution. We can obtain the standard error of a contrast
by using the rules for variances. Inference is based on t statistics. Here are the
details.

sample contrast

rules for variances, p. 275

CONTRASTS

A contrast is a combination of population means of the form

ψ = Σaiμi

where the coefficients ai sum to 0. The corresponding sample contrast is

c=Σaix¯i

The standard error of c is

SEc=spΣai2ni
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To test the null hypothesis

H0: ψ = 0

use the t statistic

t=cSEc

with degrees of freedom DFE that are associated with sp. The alternative
hypothesis can be one-sided or two-sided.
A level C confidence interval for ψ is

c ± t*SEc

where t* is the value for the t(DFE) density curve with area C between −t* and
t*.

rules for means, p. 272

Because each x¯i estimates the corresponding μi, the addition rule for means
tells us that the mean μc of the sample contrast c is ψ. In other words, c is an
unbiased estimator of ψ. Testing the hypothesis that a contrast is 0 assesses the
significance of the effect measured by the contrast. It is often more informative to
estimate the size of the effect using a confidence interval for the population
contrast.

EXAMPLE

12.17 The contrast coefficients.

In our example the coefficients in the contrasts are

a1 = −1, a2 = 0, a3 = 2, a4 = 0, a5 = −1 for ψ1

and

a1 = −2, a2 = −1, a3 = 0, a4 = 1, a5 = 2 for ψ2

where the subscripts 1, 2, 3, 4, and 5 correspond to the profiles with 102, 302,
502, 702, and 902 friends, respectively. In each case the sum of the ai is 0. We

1147



look at inference for each of these contrasts in turn.

EXAMPLE

12.18 Testing the first contrast of interest.

The sample contrast that estimates ψ1 is

c1=(−1)x¯102+(2)x¯502+(−1)x¯902

= −3.82 + (2)4.56 − 3.99 = 1.31

with standard error

SEc1=1.10(−1)224+(2)226+(−1)221

= 0.54

The t statistic for testing H01: ψ1 = 0 versus Ha1: ψ1 > 0 is

t=c1SEc1

=1.310.54=2.43

Because sp has 129 degrees of freedom, software using the t(129) distribution
gives the one-sided P-value as P = 0.008. If we used Table D, we would
conclude that 0.005 < P < 0.01. The P-value is small, so there is strong
evidence against H01.

We have evidence to conclude that the rate of change in the attractiveness score
at the lower levels (estimated to be 4.56 − 3.82 = 0.74) is larger than the rate of
increase at the upper levels (estimated to be 3.99 − 4.56 = −0.57). This suggests
either a leveling off or a decrease in the attractiveness score as the number of
friends increases. The size of the difference can be described with a confidence
interval.

EXAMPLE
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12.19 Confidence interval for the first contrast.

To find the 95% confidence interval for ψ1, we combine the estimate with its
margin of error:

c1 ± t*SEc1 = 1.31 ± (1.984)(0.54)

= 1.31 ± 1.07

The 1.984 is a conservative estimate of t* using 100 degrees of freedom. The
interval is (0.24, 2.38). We are 95% confident that the difference is between
0.24 and 2.38 points.

We use the same method for the second contrast.

EXAMPLE

12.20 Testing the second contrast of interest.

The sample contrast that estimates ψ2 is

c2=(−2)x¯102+(−1)x¯302+(1)x¯702+(2)x¯902

= (−2)3.82 + (−1)4.88 + (1)4.41 + (2)3.99

= −7.64 − 4.88 + 4.41 + 7.98

= −0.13

with standard error

SEc2=1.10(−2)224+(−1)233+(1)230+(2)221

The t statistic for assessing the significance of this contrast is

t=−0.130.71=−0.18

The P-value for the two-sided alternative is 0.861. The data do not provide
much evidence in favor of a linear trend.

This second contrast can be combined with others to assess the various
polynomial contributions (for example, linear, quadratic, cubic) to the relationship
between attractiveness score and the number of friends. As we saw in Figure 12.5,
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a quadratic trend appears most prominent. Further discussion of this contrast can
be found in Exercise 12.50 (page 687).

SPSS output for the contrasts is given in Figure 12.9. The results agree with the
calculations that we performed in Examples 12.18 and 12.20 except for minor
differences due to roundoff error in our calculations. Note that the output does not
give the confidence interval that we calculated in Example 12.19. This is easily
computed, however, from the contrast estimate and standard error provided in the
output.

Some statistical software packages report the test statistics associated with
contrasts as F statistics rather than t statistics. These F statistics are the squares of
the t statistics described previously. As with much statistical software output, P-
values for significance tests are reported for the two-sided alternative.

FIGURE 12.9
SPSS output giving the contrast analysis for the Facebook friends example.

If the software you are using gives P-values for the two-sided alternative, and
you are using the appropriate one-sided alternative, divide the reported P-value by
2. In our example, we argued that a one-sided alternative was appropriate for the
first contrast. The software reported the P-value as 0.016, so we can conclude P =
0.008. Dividing this value by 2 has no effect on the conclusion.

Questions about population means are expressed as hypotheses about contrasts.
A contrast should express a specific question that we have in mind when designing
the study. Because the F test answers a very general question, it is less powerful
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than tests for contrasts designed to answer specific questions.

When contrasts are formulated before seeing the data, inference about
contrasts is valid whether or not the ANOVA H0 of equality of means is rejected.
Specifying the important questions before the analysis is undertaken enables us to
use this powerful statistical technique.

Multiple comparisons

In many studies, specific questions cannot be formulated in advance of the
analysis. If H0 is not rejected, we conclude that the population means are
indistinguishable on the basis of the data given. On the other hand, if H0 is
rejected, we would like to know which pairs of means differ. Multiple-
comparisons methods address this issue. It is important to keep in mind that
multiple-comparisons methods are used only after rejecting the ANOVA H0.

multiple-comparisons methods

EXAMPLE

12.21 Comparing each pair of groups.

Return once more to the Facebook friends data with five groups. We can make
10 comparisons between pairs of means. We can write a t statistic for each of
these pairs. For example, the statistic

t12=x¯1−x¯2sp1n1+1n2

=38.2−4.881.10124+133

= −3.59

compares profiles with 102 and 302 friends. The subscripts on t specify which
groups are compared.

The t statistics for two other pairs are

t23=x¯2−x¯3sp1n2+1n3
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=4.88−4.561.10133+126

= 1.11

and

t25=x¯2−x¯5sp1n2+1n5

=4.88−3.991.10133+121

= 2.90

two-sample t procedures, p. 462

These t statistics are very similar to the pooled two-sample t statistic for
comparing two population means. The difference is that we now have more than
two populations, so each statistic uses the pooled estimator sp from all groups
rather than the pooled estimator from just the two groups being compared. This
additional information about the common σ increases the power of the tests. The
degrees of freedom for all these statistics are DFE = 129, those associated with sp.

Because we do not have any specific ordering of the means in mind as an
alternative to equality, we must use a two-sided approach to the problem of
deciding which pairs of means are significantly different.

MULTIPLE COMPARISONS

To perform a multiple-comparisons procedure, compute t statistics for all
pairs of means using the formula

tij=x¯i−x¯jsp1ni+1nj

If

|tij| ≥ t**

we declare that the population means μi and μj are different. Otherwise, we
conclude that the data do not distinguish between them. The value of t**

depends upon which multiple-comparisons procedure we choose.

One obvious choice for t** is the upper α/2 critical value for the t(DFE)
distribution. This choice simply carries out as many separate significance tests of
fixed level α as there are pairs of means to be compared. The procedure based on
this choice is called the least-significant differences method, or simply LSD.
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LSD method

LSD has some undesirable properties, particularly if the number of means
being compared is large. Suppose, for example, that there are I = 20 groups and we
use LSD with α = 0.05. There are 190 different pairs of means. If we perform 190 t
tests, each with an error rate of 5%, our overall error rate will be unacceptably
large. We expect about 5% of the 190 to be significant even if the corresponding
population means are the same. Since 5% of 190 is 9.5, we expect 9 or 10 false
rejections.

The LSD procedure fixes the probability of a false rejection for each single pair
of means being compared. It does not control the overall probability of some false
rejection among all pairs. Other choices of t** control possible errors in other
ways. The choice of t** is therefore a complex problem, and a detailed discussion
of it is beyond the scope of this text. Many choices for t** are used in practice. One
major statistical package allows selection from a list of over a dozen choices.

We will discuss only one of these, called the Bonferroni method. Use of this
procedure with α = 0.05, for example, guarantees that the probability of any false
rejection among all comparisons made is no greater than 0.05. This is much
stronger protection than controlling the probability of a false rejection at 0.05 for
each separate comparison.

Bonferroni method

EXAMPLE

12.22 Applying the Bonferroni method.

We apply the Bonferroni multiple-comparisons procedure with α = 0.05 to the
data from the Facebook friends study. The value of t** for this procedure uses
α = 0.05/10 = 0.005 for each test. From Table D, this value is 2.63. Of the
statistics t12 = −3.59, t23 = 1.11, and t25 = 2.90 calculated in Example 12.21,
only t12 and t25 are significant. These two statistics compare the profile of 302
friends with the two extreme levels.

Of course, we prefer to use software for the calculations.
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EXAMPLE

12.23 Interpreting software output.

The output generated by SPSS for Bonferroni comparisons appears in Figure
12.10. The software uses an asterisk to indicate that the difference in a pair of
means is statistically significant. Here, all 10 comparisons are reported. These
results agree with the calculations that we performed in Examples 12.21 and
12.22. There are no significant differences except those already mentioned.
Note that each comparison is given twice in the output.

FIGURE 12.10
SPSS output giving the multiple-comparisons analysis for the Facebook friends example.

The data in the Facebook friends study provide a clear result: the social
attractiveness score increases as the number of friends increases to a point and then
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decreases. Unfortunately with these data, we cannot accurately describe this
relationship in more detail. This lack of clarity is not unusual when performing a
multiple-comparisons analysis.

Here, the mean associated with 302 friends is significantly different from the
means for the 102- and 902-friend profiles, but it is not found significantly
different from the means for the profiles with 502 and 702 friends. To complicate
things, the means for profiles with 502 and 702 friends were not found
significantly different from the means for the 102- and 902-friend profiles.

This kind of apparent contradiction points out dramatically the nature of the
conclusions of statistical tests of significance. The conclusion appears to be
illogical. If μ1 is the same as μ3 and if μ3 is the same as μ2, doesn’t it follow that μ1
is the same as μ2? Logically, the answer must be Yes.

Some of the difficulty can be resolved by noting the choice of words used. In
describing the inferences, we talk about failing to detect a difference or concluding
that two groups are different. In making logical statements, we say things such as
“is the same as.” There is a big difference between the two modes of thought.
Statistical tests ask, “Do we have adequate evidence to distinguish two means?” It
is not illogical to conclude that we have sufficient evidence to distinguish μ1 from
μ2, but not μ1 from μ3 or μ2 from μ3.

One way to deal with these difficulties of interpretation is to give confidence
intervals for the differences. The intervals remind us that the differences are not
known exactly. We want to give simultaneous confidence intervals, that is,
intervals for all differences among the population means at once. Again, we must
face the problem that there are many competing procedures—in this case, many
methods of obtaining simultaneous intervals.

SIMULTANEOUS CONFIDENCE INTERVALS FOR
DIFFERENCES BETWEEN MEANS

Simultaneous confidence intervals for all differences μi − μj between
population means have the form

(x¯i−x¯j)±t**sp1ni+1nj

The critical values t** are the same as those used for the multiple-comparisons
procedure chosen.
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The confidence intervals generated by a particular choice of t** are closely
related to the multiple-comparisons results for that same method. If one of the
confidence intervals includes the value 0, then that pair of means will not be
declared significantly different, and vice versa.

EXAMPLE

12.24 Interpreting software output, continued.

The SPSS output for the Bonferroni multiple-comparisons procedure given in
Figure 12.10 includes the simultaneous 95% confidence intervals. We can see,
for example, that the interval for μ1 − μ3 is −1.63 to 0.14. The fact that the
interval includes 0 is consistent with the fact that we failed to detect a
difference between these two means using this procedure. Note that the
interval for μ3 − μ1 is also provided. This is not really a new piece of
information, because it can be obtained from the other interval by reversing the
signs and reversing the order, that is, −0.14 to 1.63. So, in fact, we really have
only 10 intervals. Use of the Bonferroni procedure provides us with 95%
confidence that all 10 intervals simultaneously contain the true values of the
population mean differences.

Software

We have used SPSS to illustrate the analysis of the Facebook friends data. Other
statistical software gives similar output, and you should be able to read it without
any difficulty. Here’s an example with output from three software packages.

EXAMPLE

12.25 Do eyes affect ad response?

Research from a variety of fields has found significant effects of eye gaze and
eye color on emotions and perceptions such as arousal, attractiveness, and
honesty. These findings suggest that a model’s eyes may play a role in a
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viewer’s response to an ad.

EYES

In one study, students in marketing and management classes of a southern,
predominantly Hispanic, university were each presented with one of four
portfolios.4 Each portfolio contained a target ad for a fictional product, Sparkle
Toothpaste. Students were asked to view the ad and then respond to questions
concerning their attitudes and emotions about the ad and product. All
questions were from advertising-effects questionnaires previously used in the
literature. Each response was on a seven-point scale.

Although the researchers investigated nine attitudes and emotions, we will
focus on the viewer’s “attitudes toward the brand.” This response was obtained
by averaging 10 survey questions.

The target ads were created using two digital photographs of a model. In
one picture the model is looking directly at the camera so the eyes can be seen.
This picture was used in three target ads. The only difference was the model’s
eyes, which were made to be either brown, blue, or green. In the second
picture, the model is in virtually the same pose but looking downward so the
eyes are not visible. A total of 222 surveys were used for analysis. The
following table summarizes the responses for the four portfolios. Outputs from
Excel, SAS, and Minitab are given in Figure 12.11.

Group n Mean Std. dev.
Blue 67 3.19 1.75
Brown 37 3.72 1.72
Down 41 3.11 1.53
Green 77 3.86 1.67

There is evidence at the 5% significance level to reject the null hypothesis
that the four groups have equal means (P = 0.036). In Exercises 12.41 and
12.42 (page 685), you are asked to perform further inference using contrasts.
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FIGURE 12.11
Excel, SAS, and Minitab output for the advertising study in Example 12.25.

USE YOUR KNOWLEDGE

12.7 Why no multiple comparisons?

Any pooled two-sample t problem can be run as a one-way ANOVA
with I = 2. Explain why it is inappropriate to analyze the data using
contrasts or multiple-comparisons procedures in this setting.

12.8 Growth of Douglas fir seedlings.

An experiment was conducted to compare the growth of Douglas fir
seedlings under three different levels of vegetation control (0%, 50%,
and 100%). Twenty seedlings were randomized to each level of control.
The resulting sample means for stem volume were 53, 76, and 110 cubic
centimeters (cm3), respectively, with sp = 28 cm3. The researcher
hypothesized that the average growth at 50% control would be less than
the average of the 0% and 100% levels.

(a) What are the coefficients for testing this contrast?

(b) Perform the test and report the test statistic, degrees of freedom, and P-value. Do the data
provide evidence to support this hypothesis?
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Power

Recall that the power of a test is the probability of rejecting H0 when Ha is in fact
true. Power measures how likely a test is to detect a specific alternative. When
planning a study in which ANOVA will be used for the analysis, it is important to
perform power calculations to check that the sample sizes are adequate to detect
differences among means that are judged to be important.

Power calculations also help evaluate and interpret the results of studies in
which H0 was not rejected. We sometimes find that the power of the test was so
low against reasonable alternatives that there was little chance of obtaining a
significant F.

power, p. 477

In Chapter 7 we found the power for the two-sample t test. One-way ANOVA is
a generalization of the two-sample t test, so it is not surprising that the procedure
for calculating power is quite similar. Here are the steps that are needed:

1. Specify

(a) an alternative (Ha) that you consider important; that is, values for the true
population means μ1, μ2, ... , μI;

(b) sample sizes n1, n2, ... , nI; usually these will all be equal to the common
value n;

(c) a level of significance α, usually equal to 0.05; and

(d) a guess at the standard deviation σ.

2. Use the degrees of freedom DFG = I − 1 and DFE = N − I to find the critical
value that will lead to the rejection of H0. This value, which we denote by F*, is
the upper α critical value for the F(DFG, DFE) distribution.

3. Calculate the noncentrality parameter5

noncentrality parameter

λ=Σni(μi−μ¯)2σ2

where μ¯ is a weighted average of the group means

μ¯=ΣniNμi

4. Find the power, which is the probability of rejecting H0 when the alternative
hypothesis is true, that is, the probability that the observed F is greater than F*.
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Under Ha, the F statistic has a distribution known as the noncentral F
distribution. SAS, for example, has a function for this distribution. Using this
function, the power is

noncentral F distribution

Power = 1 − PROBF(F*, DFG, DFE, λ)

Note that, if the ni are all equal to the common value n, then μ¯ is the ordinary
average of the μi and

λ=nΣ(μi−μ¯)2σ2

If the means are all equal (the ANOVA H0), then λ = 0. The noncentrality
parameter measures how unequal the given set of means is. Large λ points to an
alternative far from H0, and we expect the ANOVA F test to have high power.
Software makes calculation of the power quite easy, but tables and charts are also
available.

EXAMPLE

12.26 Power of a reading comprehension study.

Suppose that a study on reading comprehension for three different teaching
methods has 10 students in each group. How likely is this study to detect
differences in the mean responses that would be viewed as important? A
previous study performed in a different setting found sample means of 41, 47,
and 44, and the pooled standard deviation was 7. Based on these results, we
will use μ1 = 41, μ2 = 47, μ3 = 44, and σ = 7 in a calculation of power. The ni
are equal, so μ¯ is simply the average of the μi:

μ¯=41+47+443=44

The noncentrality parameter is therefore

λ=nΣ(μi−μ¯)2σ2

=(10)[(41−44)2+(47−44)2+(44−44)2]49

=(10)(18)49=3.67

Because there are three groups with 10 observations per group, DFG = 2 and
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DFE = 27. The critical value for α = 0.05 is F* = 3.35. The power is therefore

1 − PROBF(3.35, 2, 27, 3.67) = 0.3486

The chance that we reject the ANOVA H0 at the 5% significance level is only
about 35%.

If the assumed values of the μi in this example describe differences among the
groups that the experimenter wants to detect, then we would want to use more than
10 subjects per group.

EXAMPLE

12.27 Changing the sample size.

To decide on an appropriate sample size for the experiment described in the
previous example, we repeat the power calculation for different values of n,
the number of subjects in each group. Here are the results:

n DFG DFE F* λ Power
20 2 57 3.16 7.35 0.65
30 2 87 3.10 11.02 0.84
40 2 117 3.07 14.69 0.93
50 2 147 3.06 18.37 0.97

100 2 297 3.03 36.73 ≈1

With n = 30, the experimenters have an 84% chance of rejecting H0 with α =
0.05 and thereby demonstrating that the groups have different means. That is, in
the long run, 84 out of every 100 such experiments would reject H0 at the α = 0.05
level of significance. Power of at least 80% is often considered adequate.

Using 50 subjects per group increases the chance of finding significance to
97%. With 100 subjects per group, the experimenters are virtually certain to reject
H0. The exact power for n = 100 is 0.99989. In most real-life situations the
additional cost of increasing the sample size from 50 to 100 subjects per group
would not be justified by the relatively small increase in the chance of obtaining
statistically significant results.

CHAPTER 12 Summary

One-way analysis of variance (ANOVA) is used to compare several population
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means based on independent SRSs from each population. The populations are
assumed to be Normal with possibly different means and the same standard
deviation.

To do an analysis of variance, first compute sample means and standard
deviations for all groups. Side-by-side boxplots give an overview of the data.
Examine Normal quantile plots (either for each group separately or for the
residuals) to detect outliers or extreme deviations from Normality. Compute the
ratio of the largest to the smallest sample standard deviation. If this ratio is less
than 2 and the Normal quantile plots are satisfactory, ANOVA can be performed.

The null hypothesis is that the population means are all equal. The alternative
hypothesis is true if there are any differences among the population means.

ANOVA is based on separating the total variation observed in the data into two
parts: variation among group means and variation within groups. If the variation
among groups is large relative to the variation within groups, we have evidence
against the null hypothesis.

An analysis of variance table organizes the ANOVA calculations. Degrees of
freedom, sums of squares, and mean squares appear in the table. The F statistic
and its P-value are used to test the null hypothesis.

The ANOVA F test shares the robustness of the two-sample t test. It is
relatively insensitive to moderate non-Normality and unequal variances, especially
when the sample sizes are similar.

Specific questions formulated before examination of the data can be expressed
as contrasts. Tests and confidence intervals for contrasts provide answers to these
questions.

If no specific questions are formulated before examination of the data and the
null hypothesis of equality of population means is rejected, multiple-comparisons
methods are used to assess the statistical significance of the differences between
pairs of means.

The power of the F test depends upon the sample sizes, the variation among
population means, and the within-group standard deviation.
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CHAPTER 12 Exercises
For Exercises 12.1 and 12.2, see page 651; for Exercises 12.3 and 12.4, see page 655; for Exercises
12.5 and 12.6, see page 662; and for Exercises 12.7 and 12.8, see page 675.

12.9 A one-way ANOVA example.

A study compared 4 groups with 6 observations per group. An F statistic of 3.18 was reported.

(a) Give the degrees of freedom for this statistic and the entries from Table E that correspond to this
distribution.

(b) Sketch a picture of this F distribution with the information from the table included.

(c) Based on the table information, how would you report the P-value?

(d) Can you conclude that all pairs of means are different? Explain your answer.

12.10 Calculating the ANOVA F test P-value.

For each of the following situations, find the degrees of freedom for the F statistic and then use
Table E to approximate the P-value.

(a) Seven groups are being compared with 6 observations per group. The value of the F statistic is
2.05.

(b) Five groups are being compared with 11 observations per group. The value of the F statistic is
2.85.

(c) Six groups are being compared using 31 total observations. The value of the F statistic is 4.02.

12.11 Calculating the ANOVA F test P-value, continued.

For each of the following situations, find the F statistic and the degrees of freedom. Then draw a
sketch of the distribution under the null hypothesis and shade in the portion corresponding to the P-
value. State how you would report the P-value.

(a) Compare 4 groups with 16 observations per group, MSE = 50, and MSG = 127.

(b) Compare 3 groups with 9 observations per group, SSG = 58, and SSE = 172.

12.12 Calculating the pooled standard deviation.

An experiment was run to compare three groups. The sample sizes were 27, 31, and 122, and the
corresponding estimated standard deviations were 37, 28, and 46.

(a) Is it reasonable to use the assumption of equal standard deviations when we analyze these data?
Give a reason for your answer.
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(b) Give the values of the variances for the three groups.

(c) Find the pooled variance.

(d) What is the value of the pooled standard deviation?

(e) Explain why your answer in part (d) is much closer to the standard deviation for the third group
than to either of the other two standard deviations.

12.13 Describing the ANOVA model.

For each of the following situations, identify the response variable and the populations to be
compared, and give I, the ni, and N.

(a) A poultry farmer is interested in reducing the cholesterol level in his marketable eggs. He wants
to compare two different cholesterol-lowering drugs added to the hens’ standard diet as well as an
all-vegetarian diet. He assigns 25 of his hens to each of the three treatments.

(b) A researcher is interested in students’ opinions regarding an additional annual fee to support non-
income-producing varsity sports. Students were asked to rate their acceptance of this fee on a seven-
point scale. She received 94 responses, of which 31 were from students who attend varsity football
or basketball games only, 18 were from students who also attend other varsity competitions, and 45
were from students who did not attend any varsity games.

(c) A professor wants to evaluate the effectiveness of his teaching assistants. In one class period, the
42 students were randomly divided into three equal-sized groups, and each group was taught power
calculations from one of the assistants. At the beginning of the next class, each student took a quiz
on power calculations, and these scores were compared.

12.14 Describing the ANOVA model, continued.

For each of the following situations, identify the response variable and the populations to be
compared, and give I, the ni, and N.

(a) A developer of a virtual-reality (VR) teaching tool for the deaf wants to compare the
effectiveness of different navigation methods. A total of 40 children were available for the
experiment, of which equal numbers were randomly assigned to use a joystick, wand, dancemat, or
gesture-based pinch gloves. The time (in seconds) to complete a designed VR path is recorded for
each child.

(b) To study the effects of pesticides on birds, an experimenter randomly (and equally) allocated 65
chicks to five diets (a control and four with a different pesticide included). After a month, the
calcium content (milligrams) in a 1-centimeter length of bone from each chick was measured.

(c) A university sandwich shop wants to compare the effects of providing free food with a sandwich
order on sales. The experiment will be conducted from 11:00 A.M. to 2:00 P.M. for the next 20
weekdays. On each day, customers will be offered one of the following: a free drink, free chips, a
free cookie, or nothing. Each option will be offered five times.

12.15 Determining the degrees of freedom.

Refer to Exercise 12.13. For each situation, give the following:

(a) Degrees of freedom for group, for error, and for the total

1165



(b) Null and alternative hypotheses

(c) Numerator and denominator degrees of freedom for the F statistic

12.16 Determining the degrees of freedom, continued.

Refer to Exercise 12.14. For each situation, give the following:

(a) Degrees of freedom for group, for error, and for the total

(b) Null and alternative hypotheses

(c) Numerator and denominator degrees of freedom for the F statistic

12.17 Data collection and the interpretation of results.

Refer to Exercise 12.13. For each situation, discuss the method of obtaining the data and how this
will affect the extent to which the results can be generalized.

12.18 Data collection, continued.

Refer to Exercise 12.14. For each situation, discuss the method of obtaining the data and how this
will affect the extent to which the results can be generalized.

12.19 Pain tolerance among sports teams.

Many have argued that sports such as football require the ability to withstand pain from injury for
extended periods of time. To see if there is greater pain tolerance among certain sports teams, a
group of researchers assessed 183 male Division II athletes from 5 sports.6 Each athlete was asked
to put his dominant hand and forearm in a 3°C water bath and keep it in there until the pain became
intolerable. The total amount of time (in seconds) that each athlete maintained his hand and forearm
in the bath was recorded. Following this procedure, each athlete completed a series of surveys on
aggression and competitiveness. In their report, the researchers state:

A univariate between subjects (sports team) ANOVA was performed on the total amount of time
athletes were able to keep their hand and forearm in the water bath, and found it to be statistically
significant, F(4, 146) = 4.96, p < .001. The lacrosse and soccer players tolerated the pain for a
longer period of time than athletes from the other teams. Swimmers tolerated the pain for a
significantly shorter period of time than the other teams.

(a) Based on the description of the experiment, what should the degrees of freedom be for this
analysis?

(b) Assuming that the degrees of freedom reported are correct, data from how many athletes were
used in this analysis?

(c) The researchers do not comment on the missing data in their report. List two reasons why these
data may not have been used, and for each, explain how the omission could impact or bias the
results.

12.20 Multitasking with technology in the classroom.
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Laptops and other digital technologies with wireless access to the Internet are becoming more and
more common in the classroom. While numerous studies have shown that these technologies can be
used effectively as part of teaching, there is concern that these technologies can also distract learners
if used for off-task behaviors.

In one study that looked at the effects of off-task multitasking with digital technologies in the
classroom, a total of 145 undergraduates were randomly assigned to one of seven conditions.7 Each
condition involved a task that was conducted simultaneously with a class lecture. The study
consisted of three 20-minute lectures, each followed by a 15-item quiz. The following table
summarizes the conditions and quiz results.

Condition n Lecture 1 Lecture 2 Lecture 3
Texting 21 0.57 0.75 0.56
Email 20 0.52 0.69 0.50
Facebook 20 0.50 0.68 0.43
MSN Messaging 21 0.48 0.71 0.42
Natural use control 21 0.50 0.78 0.58
Word-processing control 21 0.55 0.75 0.57
Paper-and-pencil control 21 0.60 0.74 0.53

(a) For this analysis, let’s consider the average of the three quizzes as the response. Compute this
mean for each condition.

(b) The analysis of these average scores results in SSG = 0.22178 and SSE = 2.00238. Test the null
hypothesis that the mean scores across all conditions are equal.

(c) Using the marginal means from part (a) and the Bonferroni multiple-comparisons method,
determine which pairs of means differ significantly at the 0.05 significance level. (Hint: There are 21
pairwise comparisons, so the critical t-value is 3.095.)

(d) Summarize your results from parts (b) and (c) in a short report.

12.21 Contrasts for multitasking.

Refer to the previous exercise. Let μ1, μ2, ... , μ7 represent the mean scores for the 7 conditions. The
first 4 conditions refer to off-task behaviors, while the last 3 conditions represent different sorts of
controls.

(a) The researchers hypothesized that the average score for the off-task behaviors would be lower
than that for the paper-and-pencil control condition. Write a contrast that expresses this comparison.

(b) For this contrast, give H0 and an appropriate Ha.

(c) Calculate the test statistic and approximate P-value for the significance test. What do you
conclude?

12.22 Residual analysis.

In this chapter, we considered comparing sample standard deviations to assess the model assumption
of constant variance and examining histograms of the group responses to assess the assumption of
Normality. As we did in both simple linear regression (Chapter 10) and multiple linear regression
(Chapter 11), we can also assess these assumptions by examining the residuals. Let’s do that here for

the Facebook friends study.  FRIENDS
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(a) Fit the model and obtain the residuals. Generate a scatterplot of the residuals versus the group
variable. Does it appear that the residuals are symmetrically scattered above and below 0? Are there
any outliers?

(b) Is the spread of the residuals in each group relatively equal? This is a visual way to assess
constant variance.

(c) Generate a histogram or Normal quantile plot of the residuals. Does it appear that these residuals
are reasonably Normal?

12.23 Organic foods and morals?

Organic foods are often marketed using moral terms such as “honesty” and “purity.” Is this just a
marketing strategy or is there a conceptual link between organic food and morality? In one
experiment, 62 undergraduates were randomly assigned to one of three food conditions (organic,
comfort, and control).8 First, each participant was given a packet of four food types from the
assigned condition and told to rate the desirability of each food on a 7-point scale. Then, each was
presented with a list of six moral transgressions and asked to rate each on a 7-point scale ranging
from 1 = not at all morally wrong to 7 = very morally wrong. The average of these six scores was

used as the response.  ORGANIC

(a) Make a table giving the sample size, mean, and standard deviation for each group. Is it
reasonable to pool the variances?

(b) Generate a histogram for each of the groups. Can we feel confident that the sample means are
approximately Normal? Explain your answer.

12.24 Organic foods and morals, continued.

Refer to the previous exercise.  ORGANIC

(a) Analyze the scores using analysis of variance. Report the test statistic, degrees of freedom, and
P-value.

(b) Assess the assumptions necessary for inference by examining the residuals. Summarize your
findings.

(c) Compare the groups using the least-significant differences method.

(d) A higher score is associated with a harsher moral judgment. Using the results from parts (a) and
(b), write a short summary of your conclusions.

12.25 Organic foods and friendly behavior?

Refer to Exercise 12.23 for the design of the experiment. After rating the moral transgressions, the
participants were told “that another professor from another department is also conducting research
and really needs volunteers.” They were told that they would not receive compensation or course
credit for their help and then were asked to write down the number of minutes (out of 30) that they
would be willing to volunteer. This sort of question is often used to measure a person’s prosocial
behavior.

(a) Figure 12.12 contains the Minitab output for the analysis of this response variable. Write a one-
paragraph summary of your conclusions.
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(b) Figure 12.13 contains a residual plot and a Normal quantile plot of the residuals. Are there any
concerns regarding the assumptions necessary for inference? Explain your answer.

FIGURE 12.12
Minitab output for Exercise 12.25.
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FIGURE 12.13
Residual plot and Normal quantile plot for Exercise 12.25.

12.26 Massage therapy for osteoarthritis of the knee.

Various studies have shown the benefits of massage to manage pain. In one study, 125 adults
suffering from osteoarthritis of the knees were randomly assigned to one of five 8-week regimens.9
The primary outcome was the change in the Western Ontario and McMaster Universities Arthritis
Index (WOMAC-Global). This index is used extensively to assess pain and functioning in those
suffering from arthritis. Negative values indicate improvement. The following table summarizes the
results of those completing the study.

Regimen n x¯ s
30 min massage 1 × /wk 22 −17.4 17.9
30 min massage 2 × /wk 24 −18.4 20.7
60 min massage 1 × /wk 24 −24.0 18.4
60 min massage 2 × /wk 25 −24.0 19.8
Usual care, no massage 24   −6.3 14.6

(a) What proportion of adults dropped out of the study before completion?

(b) Is it reasonable to use the assumption of equal standard deviations when we analyze these data?
Give a reason for your answer.

(c) Find the pooled standard deviation.

(d) The SS(Regimen) = 5060.346. Test the null hypothesis that the mean change in WOMAC-Global
score is the same for all regimens.

(e) There are 10 pairs of means to compare. For the Bonferroni multiple-comparisons method, the
critical t-value is 2.863. Which pairs of means are found to be significantly different? Write a short
summary of your analysis.

12.27 Shopping and bargaining in Mexico.

1170



Price haggling and other bargaining behaviors among consumers have been observed for a long
time. However, research addressing these behaviors, especially in a real-life setting, remains
relatively sparse. A group of researchers performed a small study to determine whether gender or
nationality of the bargainer has an effect in the final price obtained.10 The study took place in
Mexico because of the prevalence of price haggling in informal markets. Salespersons working at
various informal shops were approached by one of three bargainers looking for a specific product.
After an initial price was stated by the vendor, bargaining took place. The response was the
difference between the initial and the final price of the product. The bargainers were a Spanish-
speaking Hispanic male, a Spanish-speaking Hispanic female, and an Anglo non-Spanish-speaking
male. The following table summarizes the results:

Bargainer n Average reduction
Hispanic male 40 1.055
Anglo male 40 1.050
Hispanic female 40 2.310

(a) To compare the mean reductions in price, what are the degrees of freedom for the ANOVA F
statistic?

(b) The reported test statistic is F = 8.708. Give an approximate (from a table) or exact (from
software) P-value. What do you conclude?

(c) To what extent do you think the results of this study can be generalized? Give reasons for your
answer.

12.28 The effect of increased variation within groups.

The One-Way ANOVA applet lets you see how the F statistic and the P-value depend on the
variability of the data within groups, the sample size, and the differences among the means.

(a) The black dots are at the means of the three groups. Move these up and down until you get a
configuration that gives a P-value of about 0.01. What is the value of the F statistic?

(b) Now increase the variation within the groups by sliding the standard deviation bar to the right.
Describe what happens to the F statistic and the P-value.

(c) Using between- and within-group variation, explain why the F statistic and P-value change in
this way.

12.29 The effect of increased variation between groups.

Set the pooled standard error for the One-Way ANOVA applet at a middle value. Drag the black dots
so that they are approximately equal.

(a) What is the F statistic? Give its P-value.

(b) Drag the mean of the second group up and the mean of the third group down. Describe the effect
on the F statistic and its P-value. Explain why they change in this way.

12.30 The effect of increased sample size.
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Set the pooled standard error for the One-Way ANOVA applet at a middle value and drag the black
dots so that the means are roughly 5.00, 4.50, and 5.25, respectively.

(a) What are the F statistic, its degrees of freedom, and the P-value?

(b) Slide the sample size bar to the right so n = 80. Also drag the black dots back to the values of
5.00, 4.50, and 5.25, respectively. What are the F statistic, its degrees of freedom, and the P-value?

(c) Explain why the F statistic and P-value change in this way as n increases.

12.31 Financial incentives for weight loss.

The use of financial incentives has shown promise in promoting weight loss and healthy behaviors.
In one study, 104 employees of the Children’s Hospital of Philadelphia, with BMIs of 30 to 40
kilograms per square meter (kg/m2), were each randomly assigned to one of three weight-loss
programs.11 Participants in the control program were provided a link to weight-control information.
Participants in the individual-incentive program received this link but were also told that $100 would
be given to them each time they met or exceeded their target monthly weight loss. Finally,
participants in the group-incentive program received similar information and financial incentives as
the individual-incentive program but were also told that they were placed in secret groups of 5 and at
the end of each 4-week period, those in their group who met their goals throughout the period would
equally split an additional $500. The study ran for 24 weeks and the total change in weight (in

pounds) was recorded.  LOSS

(a) Make a table giving the sample size, mean, and standard deviation for each group.

(b) Is it reasonable to pool the variances? Explain your answer.

(c) Generate a histogram for each of the programs. Can we feel confident that the sample means are
approximately Normal? Defend your answer.

12.32 Financial incentives for weight loss, continued.

Refer to the previous exercise.  LOSS

(a) Analyze the change in weight using analysis of variance. Report the test statistic, degrees of
freedom, P-value, and your conclusions.

(b) Even though you assessed the model assumptions in the previous exercise, let’s check the
assumptions again by examining the residuals. Summarize your findings.

(c) Compare the groups using the least-significant differences method.

(d) Using the results from parts (a), (b), and (c), write a short summary of your conclusions.

12.33 Changing the response variable.

Refer to the previous two exercises, where we compared three weight-loss programs using change in
weight measured in pounds. Suppose that you decide to instead make the comparison using change

in weight measured in kilograms.  LOSS

(a) Convert the weight loss from pounds to kilograms by dividing each response by 2.2.
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(b) Analyze these new weight changes using analysis of variance. Compare the test statistic, degrees
of freedom, and P-value you obtain here with those reported in part (a) of the previous exercise.
Summarize what you find.

12.34 Do labels matter?

A study was performed to examine the self-identification of college students of Asian descent with
various identity categories and assess whether there are attitudinal differences across these
categories. Undergraduates at a large midwestern university who had identified themselves as being
of Asian descent on their admission application were asked to participate in the study.12 A total of
620 undergraduates filled out the survey. One question classified the participants into groups by
asking them to indicate the option with which they primarily identify: (a) Asian American, (b)
specific ethnicity (for example, Chinese), (c) ethnicity American (for example, Chinese American),
and (d) other. The responses to the remaining survey items were then compared across these four
groups. One item was “The campus is supportive of Asian American students.” Responses were on a
four-point scale (1 = strongly disagree, 4 = strongly agree). A summary of the results follows:

Label n x¯
Asian American 130 2.93
Specific ethnicity 248 3.00
Ethnicity American 174 3.01
Other 68 3.39

(a) What are the numerator and denominator degrees of freedom for the F test?

(b) Using the formula on page 661 and the preceding results, calculate SSG.

(c) Given SSE = 797.25, use your result from part (b) to compute the F statistic.

(d) Compute the P-value and state your conclusions.

(e) Without doing any additional analysis, describe the pattern in the means that is likely responsible
for your conclusions in part (d).

12.35 The multiple-play strategy.

Multiple play is a bundling strategy through which multiple services are provided over a single
network. A common triple-play service these days is Internet, television, and telephone. The market
for this service has become a key battleground among telecommunication, cable, and broadband
service providers. A study compared the pricing (average monthly cost in U.S. dollars) among triple-
play providers using DSL, cable, or fiber platforms.13 The following table summarizes the results
for 47 providers.

Group n x¯ s
DSL 19 104.49 26.09
Cable 20 119.98 40.39
Fiber   8   83.87 31.78

(a) Plot the means versus the platform type. Does there appear to be a difference in pricing?

(b) Is it reasonable to assume that the variances are equal? Explain.

(c) The F statistic is 3.39. Give the degrees of freedom and either an approximate (from a table) or
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an exact (from software) P-value. What do you conclude?

12.36 The two-sample t test and one-way ANOVA.

Refer to the diet and mood data in Exercise 7.74 (page 469). Find the two-sample pooled t statistic
for comparing the two energy-restricted diets. Then formulate the problem as an ANOVA and report
the results of this analysis. Verify that F = t2.

12.37 Do we experience emotions differently?

Do people from different cultures experience emotions differently? One study designed to examine
this question collected data from 410 college students from five different cultures.14 The
participants were asked to record, on a 1 (never) to 7 (always) scale, how much of the time they
typically felt eight specific emotions. These were averaged to produce the global emotion score for
each participant. Here is a summary of this measure:

Culture n Mean (s)
European American 46 4.39 (1.03)
Asian American 33 4.35 (1.18)
Japanese 91 4.72 (1.13)
Indian 160 4.34 (1.26)
Hispanic American 80 5.04 (1.16)

Note that the convention of giving the standard deviations in parentheses after the means saves a
great deal of space in a table such as this.

(a) From the information given, do you think that we need to be concerned that a possible lack of
Normality in the data will invalidate the conclusions that we might draw using ANOVA to analyze
the data? Give reasons for your answer.

(b) Is it reasonable to use a pooled standard deviation for these data? Why or why not?

(c) The ANOVA F statistic was reported as 5.69. Give the degrees of freedom and either an
approximate (from a table) or an exact (from software) P-value. Sketch a picture of the F
distribution that illustrates the P-value. What do you conclude?

(d) Without doing any additional formal analysis, describe the pattern in the means that appears to be
responsible for your conclusion in part (c). Are there pairs of means that are quite similar?

12.38 The emotions study, continued.

Refer to the previous exercise. The experimenters also measured emotions in some different ways.
For a period of a week, each participant carried a device that sounded an alarm at random times
during a 3-hour interval 5 times a day. When the alarm sounded, participants recorded several mood
ratings indicating their emotions for the time immediately preceding the alarm. These responses
were combined to form two variables: frequency, the number of emotions recorded, expressed as a
percent; and intensity, an average of the intensity scores measured on a scale of 0 to 6. At the end of
the 1-week experimental period, the subjects were asked to recall the percent of time that they
experienced different emotions. This variable was called “recall.” Here is a summary of the results:

Culture n Frequency mean (s) Intensity mean (s) Recall mean (s)
European American 46 82.87 (18.26) 2.79 (0.72) 49.12 (22.33)
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Asian American 33 72.68 (25.15) 2.37 (0.60) 39.77 (23.24)
Japanese 91 73.36 (22.78) 2.53 (0.64) 43.98 (22.02)
Indian 160 82.71 (17.97) 2.87 (0.74) 49.86 (21.60)
Hispanic American 80 92.25 (8.85) 3.21 (0.64) 59.99 (24.64)
F statistic 11.89 13.10 7.06

(a) For each response variable state whether or not it is reasonable to use a pooled standard deviation
to analyze these data. Give reasons for your answer.

(b) Give the degrees of freedom for the F statistics and find the associated P-values. Summarize
what you can conclude from these ANOVA analyses.

(c) Summarize the means, paying particular attention to similarities and differences across cultures
and across variables. Include the means from the previous exercise in your summary.

(d) The European American and Asian American subjects were from the University of Illinois, the
Japanese subjects were from two universities in Tokyo, the Indian subjects were from eight
universities in or near Kolkata, and the Hispanic American subjects were from California State
University at Fresno. Participants were paid $25 or an equivalent monetary incentive for the
Japanese and Indians. Ads were posted on or near the campuses to recruit volunteers for the study.
Discuss how these facts influence your conclusions and the extent to which you would generalize the
results.

(e) The percents of female students in the samples were as follows: European American, 83%; Asian
American, 67%; Japanese, 63%; Indian, 64%; and Hispanic American, 79%. Use a chi-square test to
compare these proportions (see Section 9.2, page 551) and discuss how this information influences
your interpretation of the results that you have found in this exercise.

12.39 The effects of two stimulant drugs.

An experimenter was interested in investigating the effects of two stimulant drugs (labeled A and B).
She divided 25 rats equally into 5 groups (placebo, Drug A low, Drug A high, Drug B low, and Drug
B high) and, 20 minutes after injection of the drug, recorded each rat’s activity level (higher score is
more active). The following table summarizes the results:

Treatment x¯ s2

Placebo 11.80 17.20
Low A 15.25 13.10
High A 18.55 10.25
Low B 16.15 7.75
High B 17.10 12.50

(a) Plot the means versus the type of treatment. Does there appear to be a difference in the activity
level? Explain.

(b) Is it reasonable to assume that the variances are equal? Explain your answer, and if reasonable,
compute sp.

(c) Give the degrees of freedom for the F statistic.

(d) The F statistic is 2.64. Find the associated P-value and state your conclusions.

12.40 Restaurant ambiance and consumer behavior.
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There have been numerous studies investigating the effects of restaurant ambiance on consumer
behavior. One study investigated the effects of musical genre on consumer spending.15 At a single
high-end restaurant in England over a 3-week period, there were a total of 141 participants; 49 of
them were subjected to background pop music (for example, Britney Spears, Culture Club, and
Ricky Martin) while dining, 44 to background classical music (for example, Vivaldi, Handel, and
Strauss), and 48 to no background music. For each participant, the total food bill, adjusted for time
spent dining, was recorded. The following table summarizes the means and standard deviations (in
British pounds):

Background music Mean bill n s
Classical 24.130 44 2.243
Pop 21.912 49 2.627
None 21.697 48 3.332
Total 22.531 141 2.969

(a) Plot the means versus the type of background music. Does there appear to be a difference in
spending?

(b) Is it reasonable to assume that the variances are equal? Explain.

(c) The F statistic is 10.62. Give the degrees of freedom and either an approximate (from a table) or
an exact (from software) P-value. What do you conclude?

(d) Refer back to part (a). Without doing any formal analysis, describe the pattern in the means that
is likely responsible for your conclusion in part (c).

(e) To what extent do you think the results of this study can be generalized to other settings? Give
reasons for your answer.

12.41 Writing contrasts.

Return to the eye study described in Example 12.25 (page 673). Let μ1, μ2, μ3, and μ4 represent the
mean scores for blue, brown, gaze down, and green eyes.

(a) Because a majority of the population in this study are Hispanic (eye color predominantly brown),
we want to compare the average score of the brown eyes with the average of the other two eye
colors. Write a contrast that expresses this comparison.

(b) Write a contrast to compare the average score when the model is looking at you versus the score
when looking down.

12.42 Analyzing contrasts.

Answer the following questions for the two contrasts that you defined in Exercise 12.41.  EYES

(a) For each contrast give H0 and an appropriate Ha. In choosing the alternatives you should use
information given in the description of the problem, but you may not consider any impressions
obtained by inspection of the sample means.

(b) Find the values of the corresponding sample contrasts c1 and c2.

(c) Calculate the standard errors SEc1 and SEc2.

(d) Give the test statistics and approximate P-values for the two significance tests. What do you
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conclude?

(e) Compute 95% confidence intervals for the two contrasts.

12.43 College dining facilities.

University and college food service operations have been trying to keep up with the growing
expectations of consumers in regard to the overall campus dining experience. Since customer
satisfaction has been shown to be associated with repeat patronage and new customers through
word-of-mouth, a public university in the Midwest took a sample of patrons from their eating
establishments and asked them about their overall dining satisfaction.16 The following table
summarizes the results for three groups of patrons:

Category x¯ n s
Student—meal plan 3.44 489 0.804
Faculty—meal plan 4.04 69 0.824
Student—no meal plan 3.47 212 0.657

(a) Is it reasonable to use a pooled standard deviation for these data? Why or why not? If yes,
compute it.

(b) The ANOVA F statistic was reported as 17.66. Give the degrees of freedom and either an
approximate (from a table) or an exact (from software) P-value. Sketch a picture of the F
distribution that illustrates the P-value. What do you conclude?

(c) Prior to performing this survey, food service operations thought that satisfaction among faculty
would be higher than satisfaction among students. Use the results in the table to test this contrast.
Make sure to specify the null and alternative hypotheses, test statistic, and P-value.

12.44 Animals on product labels?

Recall Exercise 7.72 (page 469). This experiment actually involved comparing product preference
for a group of consumers who were “primed” and two groups of consumers who served as controls.
A bottle of MagicCoat pet shampoo was the product, and participants indicated their attitude toward
this product on a seven-point scale (from 1 = dislike very much to 7 = like very much). The bottle of
shampoo had either a picture of a collie on the label or just the wording. Also, prior to giving this
score, participants were asked to do a word find where four of the words were shown to all groups
(pet, grooming, bottle, label) and four were either related to the image (dog, collie, puppy, woof) or

image conflicting (cat, feline, kitten, meow). A summary of the groups follows:  BPREF1

Group Label with dog Image words n
1 Y Y 22
2 Y N 20
3 N Y 10

(a) Use graphical and numerical methods to describe the data.

(b) Run the ANOVA and report the results.

(c) Examine the assumptions necessary for inference using your results in part (a) and an
examination of the residuals. Summarize your findings.

(d) Use a multiple-comparisons method to compare the three groups. State your conclusions.
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TABLE 12.1  Age at Death for North American Women Writers

12.45 Do isoflavones increase bone mineral density?

Kudzu is a plant that was imported to the United States from Japan and now covers over seven
million acres in the South. The plant contains chemicals called isoflavones that have been shown to
have beneficial effects on bones. One study used three groups of rats to compare a control group
with rats that were fed either a low dose or a high dose of isoflavones from kudzu.17 One of the
outcomes examined was the bone mineral density in the femur (in grams per square centimeter).

Here are the data:  BMD

Treatment Bone mineral density (g/cm2)
Control 0.228 0.207 0.234 0.220 0.217 0.228 0.209 0.221

0.204 0.220 0.203 0.219 0.218 0.245 0.210
Low dose 0.211 0.220 0.211 0.233 0.219 0.233 0.226 0.228

0.216 0.225 0.200 0.208 0.198 0.208 0.203
High dose 0.250 0.237 0.217 0.206 0.247 0.228 0.245 0.232

0.267 0.261 0.221 0.219 0.232 0.209 0.255

(a) Use graphical and numerical methods to describe the data.

(b) Examine the assumptions necessary for ANOVA. Summarize your findings.

(c) Run the ANOVA and report the results.

(d) Use a multiple-comparisons method to compare the three groups.

(e) Write a short report explaining the effect of kudzu isoflavones on the femur of the rat.

12.46 Do poets die young?

According to William Butler Yeats, “She is the Gaelic muse, for she gives inspiration to those she
persecutes. The Gaelic poets die young, for she is restless, and will not let them remain long on
earth.” One study designed to investigate this issue examined the age at death for writers from
different cultures and genders.18 Three categories of writers examined were novelists, poets, and
nonfiction writers. The ages at death for female writers in these categories from North America are
given in Table 12.1. Most of the writers are from the United States, but Canadian and Mexican

writers are also included.  POETS

Type Age at death (years)
Novels (n = 67) 57 90 67 56 90 72 56 90 80 74 73 86 53 72 86

82 74 60 79 80 79 77 64 72 88 75 79 74 85 71
78 57 54 50 59 72 60 77 50 49 73 39 73 61 90
77 57 72 82 54 62 74 65 83 86 73 79 63 72 85
91 77 66 75 90 35 86

Poems (n = 32) 88 69 78 68 72 60 50 47 74 36 87 55 68 75 78
85 69 38 58 51 72 58 84 30 79 90 66 45 70 48
31 43
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Nonfiction (n = 24) 74 86 87 68 76 73 63 78 83 86 40 75 90 47 91
94 61 83 75 89 77 86 66 97

(a) Use graphical and numerical methods to describe the data.

(b) Examine the assumptions necessary for ANOVA. Summarize your findings.

(c) Run the ANOVA and report the results.

(d) Use a contrast to compare the poets with the two other types of writers. Do you think that the
quotation from Yeats justifies the use of a one-sided alternative for examining this contrast? Explain
your answer.

(e) Use another contrast to compare the novelists with the nonfiction writers. Explain your choice for
an alternative hypothesis for this contrast.

(f) Use a multiple-comparisons procedure to compare the three means. How do the conclusions from
this approach compare with those using the contrasts?

12.47 Exercise and healthy bones.

Many studies have suggested that there is a link between exercise and healthy bones. Exercise
stresses the bones and this causes them to get stronger. One study examined the effect of jumping on
the bone density of growing rats.19 There were three treatments: a control with no jumping, a low-
jump condition (the jump height was 30 centimeters), and a high-jump condition (60 centimeters).
After 8 weeks of 10 jumps per day, 5 days per week, the bone density of the rats (expressed in

milligrams per cubic centimeter) was measured. Here are the data:  JUMP

Group Bone density (mg/cm3)
Control 611 621 614 593 593 653 600 554 603 569
Low jump 635 605 638 594 599 632 631 588 607 596
High jump 650 622 626 626 631 622 643 674 643 650

(a) Make a table giving the sample size, mean, and standard deviation for each group of rats. Is it
reasonable to pool the variances?

(b) Run the analysis of variance. Report the F statistic with its degrees of freedom and P-value.
What do you conclude?

12.48 Exercise and healthy bones, continued.

Refer to the previous exercise.  JUMP

(a) Examine the residuals. Is the Normality assumption reasonable for these data?

(b) Use the Bonferroni or another multiple-comparisons procedure to determine which pairs of
means differ significantly. Summarize your results in a short report. Be sure to include a graph.

12.49 Two contrasts of interest for the stimulant study.

Refer to Exercise 12.39 (page 684). There are two comparisons of interest to the experimenter. They
are (1) placebo versus the average of the two low-dose treatments; and (2) the difference between
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High A and Low A versus the difference between High B and Low B.

(a) Express each contrast in terms of the means (μ’s) of the treatments.

(b) Give estimates with standard errors for each of the contrasts.

(c) Perform the significance tests for the contrasts. Summarize the results of your tests and your
conclusions.

12.50 Orthogonal polynomial contrasts.

Recall the Facebook friends study. In Example 12.16 (page 664) we used a contrast to assess the
linear trend between the social attractiveness score and number of Facebook friends. With
orthogonal polynomial contrasts, we can assess the contributions of different polynomial trends to
the overall pattern. Given the 5 equally spaced levels of the factor in this problem, we can
investigate up to a quartic (x4) trend. The derivation of the coefficients is beyond the scope of this
book, so we will just investigate the trends here. The coefficients for the linear, quadratic, and cubic

trends follow:  FRIENDS

Trend a1 a2 a3 a4 a5
Linear −2 −1 0 1 2
Quadratic 2 −1 −2 −1 2
Cubic −1 2 0 −2 1

(a) Plot the ai versus i for the linear trend. Describe the pattern. Suppose that all the μi were
constant. What would the value of ψ equal?

(b) Plot the ai versus i for the quadratic trend. Describe the pattern. Suppose that all the μi were
constant. What would the value of ψ equal? Suppose that μi = 5i (that is, a linear trend). What would
the value of ψ equal?

(c) Construct the sample contrasts for the quadratic and cubic trends using the Facebook data.

(d) Test the hypotheses that there is a quadratic trend and that there is a cubic trend. Combine these
results with the earlier linear trend results. What do you conclude?

12.51 A comparison of different types of scaffold material.

One way to repair serious wounds is to insert some material as a scaffold for the body’s repair cells
to use as a template for new tissue. Scaffolds made from extracellular material (ECM) are
particularly promising for this purpose. Because they are made from biological material, they serve
as an effective scaffold and are then resorbed. Unlike biological material that includes cells,
however, they do not trigger tissue rejection reactions in the body. One study compared six types of
scaffold material.20 Three of these were ECMs and the other three were made of inert materials
(MAT). There were three mice used per scaffold type. The response measure was the percent of
glucose phosphated isomerase (Gpi) cells in the region of the wound. A large value is good,

indicating that there are many bone marrow cells sent by the body to repair the tissue.  ECM

Material Gpi (%)
ECM1 55 70 70
ECM2 60 65 65
ECM3 75 70 75
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MAT1 20 25 25
MAT2   5 10   5
MAT3 10 15 10

(a) Make a table giving the sample size, mean, and standard deviation for each of the six types of
material. Is it reasonable to pool the variances? Note that the sample sizes are small and the data are
rounded.

(b) Run the analysis of variance. Report the F statistic with its degrees of freedom and P-value.
What do you conclude?

12.52 A comparison of different types of scaffold material, continued.

Refer to the previous exercise.  ECM

(a) Examine the residuals. Is the Normality assumption reasonable for these data?

(b) Use the Bonferroni or another multiple-comparisons procedure to determine which pairs of
means differ significantly. Summarize your results in a short report. Be sure to include a graph.

(c) Use a contrast to compare the three ECM materials with the three other materials. Summarize
your conclusions. How do these results compare with those that you obtained from the multiple-
comparisons procedure in part (b)?

12.53 Contrasts for the massage study.

Refer to Exercise 12.26 (page 681). There are several comparisons of interest in this study. They are
(1) usual care versus the average of the massage groups; (2) the average of the two 30-minute
massage groups versus the average of the two 60-minute massage groups; and (3) the difference
between a 30-minute massage once a week and twice a week versus the difference between a 60-
minute massage once a week and twice a week.

(a) Express each contrast in terms of the means (μ’s) of the treatments.

(b) Give estimates with standard errors for each of the contrasts.

(c) Perform the significance tests for the contrasts. Summarize the results of your tests and your
conclusions.

12.54 A dandruff study.

Analysis of variance methods are often used in clinical trials where the goal is to assess the
effectiveness of one or more treatments for a particular medical condition. One such study compared
three treatments for dandruff and a placebo. The treatments were 1% pyrithione zinc shampoo
(PyrI), the same shampoo but with instructions to shampoo two times (PyrII), 2% ketoconazole
shampoo (Keto), and a placebo shampoo (Placebo). After six weeks of treatment, eight sections of
the scalp were examined and given a score that measured the amount of scalp flaking on a 0 to 10
scale. The response variable was the sum of these eight scores. An analysis of the baseline flaking
measure indicated that randomization of patients to treatments was successful in that no differences
were found between the groups. At baseline there were 112 subjects in each of the three treatment
groups and 28 subjects in the Placebo group. During the clinical trial, 3 dropped out from the PyrII

group and 6 from the Keto group. No patients dropped out of the other two groups. 
DANDRUFF
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(a) Find the mean, standard deviation, and standard error for the subjects in each group. Summarize
these, along with the sample sizes, in a table and make a graph of the means.

(b) Run the analysis of variance on these data. Write a short summary of the results and your
conclusion. Be sure to include the hypotheses tested, the test statistic with degrees of freedom, and
the P-value.

12.55 The dandruff study, continued.

Refer to the previous exercise.  DANDRUFF

(a) Plot the residuals versus case number (the first variable in the data set). Describe the plot. Is there
any pattern that would cause you to question the assumption that the data are independent?

(b) Examine the standard deviations for the four treatment groups. Is there a problem with the
assumption of equal standard deviations for ANOVA in this data set? Explain your answer.

(c) Create Normal quantile plots for each treatment group. What do you conclude from these plots?

(d) Obtain the residuals from the analysis of variance and create a Normal quantile plot of these.
What do you conclude?

12.56 Comparing each pair of dandruff treatments.

Refer to Exercise 12.54. Use the Bonferroni or another multiple-comparisons procedure that your
software provides to compare the individual group means in the dandruff study. Write a short

summary of your conclusions.  DANDRUFF

12.57 Testing several contrasts from the dandruff study.

Refer to Exercise 12.54. There are several natural contrasts in this experiment that describe
comparisons of interest to the experimenters. They are (1) Placebo versus the average of the other
three treatments; (2) Keto versus the average of the two Pyr treatments; and (3) PyrI versus PyrII. 

 DANDRUFF

(a) Express each of these three contrasts in terms of the means (μ’s) of the treatments.

(b) Give estimates with standard errors for each of the contrasts.

(c) Perform the significance tests for the contrasts. Summarize the results of your tests and your
conclusions.

12.58 Changing the response variable.

Refer to Exercise 12.51 (page 687), where we compared six types of scaffold material to repair

wounds. The data are given as percents ranging from 5 to 75.  ECM

(a) Convert these percents into their decimal form by dividing by 100. Calculate the transformed
means, standard deviations, and standard errors and summarize them, along with the sample sizes, in
a table.

(b) Explain how you could have calculated the table entries directly from the table you gave in part
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(a) of Exercise 12.51.

(c) Analyze the decimal forms of the percents using analysis of variance. Compare the test statistic,
degrees of freedom, P-value, and conclusion you obtain here with the corresponding values that you
found in Exercise 12.51.

12.59 More on changing the response variable.

Refer to the previous exercise and Exercise 12.51 (page 687). A calibration error was found with the
device that measured Gpi, which resulted in a shifted response. Add 5% to each response and redo
the calculations. Summarize the effects of transforming the data by adding a constant to all

responses.  ECM

12.60 Linear transformation of the response variable.

Refer to the previous two exercises. Can you suggest a general conclusion regarding what happens
to the test statistic, degrees of freedom, P-value, and conclusion when you perform analysis of
variance on data that have been transformed by multiplying the raw data by a constant and then
adding another constant? (That is, if y is the original data, we analyze y*, where y* = a + by and a
and b ≠ 0 are constants.)

12.61 Comparing three levels of reading comprehension instruction.

A study of reading comprehension in children compared three methods of instruction.21 The three
methods of instruction are called Basal, DRTA, and Strategies. As is common in such studies,
several pretest variables were measured before any instruction was given. One purpose of the pretest
was to see if the three groups of children were similar in their comprehension skills. The READING
data file gives two pretest measures that were used in this study. Use one-way ANOVA to analyze

these data and write a summary of your results.  READING

12.62 More on the reading comprehension study.

In the study described in the previous exercise, Basal is the traditional method of teaching, while
DRTA and Strategies are two innovative methods based on similar theoretical considerations. The
READING data file includes three response variables that the new methods were designed to
improve. Analyze these variables using ANOVA methods. Be sure to include multiple comparisons

or contrasts as needed. Write a report summarizing your findings.  READING

12.63 More on the Facebook friends study.

Refer to the Facebook friends study that we began to examine in Example 12.3 (page 648). The
explanatory variable in this study is the number of Facebook friends, with possible values of 102,
302, 502, 702, and 902. When using analysis of variance we treat the explanatory variable as
categorical. An alternative analysis is to use simple linear regression. Perform this analysis and
summarize the results. Plot the residuals from the regression model versus the number of Facebook

friends. What do you conclude?  FRIENDS

12.64 Overall standard deviation versus the pooled standard deviation.
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The last line of an ANOVA table usually reports the total degrees of freedom and the total sums of
squares. The ratio of these two (SS/df) provides an estimate of the variance when you combine all
the data into one population. Explain why you would expect this variance to be larger than the
pooled variance (MSE) of an ANOVA table.

12.65 Search the Internet.

Search the Internet or your library to find a study that is interesting to you and that used one-way
ANOVA to analyze the data. First describe the question or questions of interest and then give the
details of how ANOVA was used to provide answers. Be sure to include how the study authors
examined the assumptions for the analysis. Evaluate how well the authors used ANOVA in this
study. If your evaluation finds the analysis deficient, make suggestions for how it could be
improved.

12.66 A power calculation exercise.

In Example 12.26 (page 676) the power calculation indicated that there was a fairly small chance of
detecting the alternative given. Redo the calculations for the alternative μ1 = 39, μ2 = 47, and μ3 =
42. Do you think that the choice of 10 students per treatment is adequate for this alternative?

12.67 Planning another emotions study.

Scores on an emotional scale were compared for five different cultures in Exercise 12.37 (page 684).
Suppose that you are planning a new study using the same outcome variable. Your study will use
European American, Asian American, and Hispanic American students from a large university.

(a) Explain how you would select the students to participate in your study.

(b) Use the data from Exercise 12.37 to perform power calculations to determine sample sizes for
your study.

(c) Write a report that could be understood by someone with limited background in statistics and that
describes your proposed study and why you think it is likely that you will obtain interesting results.

12.68 Planning another isoflavone study.

Exercise 12.45 (page 686) gave data for a bone health study that examined the effect of isoflavones
on rat bone mineral density. In this study there were three groups. Controls received a placebo, and
the other two groups received either a low or a high dose of isoflavones from kudzu. You are
planning a similar study of a new kind of isoflavone. Use the results of the study described in
Exercise 12.45 to plan your study. Write a proposal explaining why your study should be funded.

12.69 Planning another restaurant ambiance study.

Exercise 12.40 (page 685) gave data for a study that examined the effect of background music on
total food spending at a high-end restaurant. You are planning a similar study but intend to look at
total food spending at a more casual restaurant. Use the results of the study described in Exercise
12.40 to plan your study.
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Introduction

In this chapter, we move from one-way ANOVA, which compares the means of
several populations, to two-way ANOVA. Two-way ANOVA compares the means
of populations that can be classified in two ways or the mean responses in two-
factor experiments.

Many of the key concepts are similar to those of one-way ANOVA, but the
presence of more than one classification factor also introduces some new ideas. We
once more assume that the data are approximately Normal and that although
groups may have different means, they have the same standard deviation; we again
pool to estimate the variance; and we again use F statistics for significance tests.

The major difference between one-way and two-way ANOVA is in the FIT part
of the model. We will carefully study this term, and we will find much that is both
new and useful. This will allow us to address comparisons such as the following:

• Can zinc supplementation reduce the occurrence and severity of malaria in both
nutrient-sufficient and nutrient-deficient African children?

• What effects do the shapes of the flowers of male and female jack-in-the-pulpit
plants have on the degree to which insects eat them?

• Do calcium supplements prevent bone loss in elderly people? Does this depend
on whether the person is receiving adequate vitamin D?
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13.1 The Two-Way ANOVA Model

When you complete this section, you will be able to

• Discuss the advantages of a two-way ANOVA design.

• Describe the two-way ANOVA model and when it is used for inference.

• Interpret the relationship between two factors in terms of main effects
and interaction.

• Construct an interaction plot and determine whether it shows that there
is interaction among the factors.

We begin with a discussion of the advantages of the two-way ANOVA design
and illustrate these with some examples. Then we discuss the model and the
assumptions.

Advantages of two-way ANOVA

In one-way ANOVA, we classify populations according to one categorical
variable, or factor. In the two-way ANOVA model, there are two factors, each with
its own number of levels. When we are interested in the effects of two factors, a
two-way design offers great advantages over several single-factor studies. Several
examples will illustrate these advantages.

Example

13.1 Design 1: Does haptic feedback improve performance?

In Example 12.1 (page 645), a group of technology students wanted to see if
haptic feedback (forces and vibrations applied through a joystick) is helpful in
navigating a simulated game environment. To do this, they plan to randomly
assign each of 60 students to one of the three joystick types and record the
time it takes to complete a navigation mission.

It turns out that their simulated game has several different difficulty levels.
Suppose that a second experiment is planned to compare these levels. A
similar experimental design will be used, with the four difficulty levels
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randomly assigned to 60 students. All students will use the standard joystick.

Here is a picture of the design of the first experiment with the sample sizes:

Joystick n
1 20
2 20
3 20

Total 60

And this represents the second experiment:

Difficulty n
1 15
2 15
3 15
4 15

Total 60

In the first experiment 20 students were assigned to each level of the factor for a
total of 60 students. In the second experiment 15 students were assigned to each
level of the factor for a total of 60 students. If each experiment takes one week, the
total amount of time for the two experiments is two weeks.

Each experiment will be analyzed using one-way ANOVA. The factor in the
first experiment is joystick type with three levels, and the factor in the second
experiment is game difficulty level with four levels. Let’s now consider combining
the two experiments into one.

Example

13.2 Design 2: Does haptic feedback improve performance regardless of
difficulty level?

Suppose that we use a two-way approach for the simulated game problem.
There are two factors, joystick type and difficulty level. Since joystick type
has three levels and difficulty level has four levels, this is a 3 × 4 design. This
gives a total of 12 possible combinations of type and difficulty level. With a
total of 60 students, we could assign each combination of type and difficulty
level to 5 students. The time it takes to complete a navigation mission is the
outcome variable.
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Here is a picture of the two-way design with the sample sizes:

Difficulty
Joystick 1 2 3 4 Total

1 5 5 5 5 20
2 5 5 5 5 20
3 5 5 5 5 20

Total 15 15 15 15 60

Each combination of the factors in a two-way design corresponds to a cell. The
3 × 4 ANOVA for the haptic feedback experiment has 12 cells, each corresponding
to a particular combination of joystick type and difficulty level.

cell

With the two-way design, notice that we have 20 students assigned to each
joystick type, the same as we had for the one-way experiment for type alone.
Similarly, there are 15 students assigned to each level of difficulty. Thus, the two-
way design gives us the same amount of information for estimating the completion
time for each level of each factor as we had with the two one-way designs. The
difference is that we can collect all the information in only one experiment (in one
week instead of two). By combining the two factors into one experiment, we have
increased our efficiency by reducing the amount of data to be collected by half.

Example

13.3 Can dietary supplementation with zinc prevent malaria?

Malaria is a serious health problem causing an estimated one million deaths
per year, mostly among African children.1 Several studies, run in Asia, Latin
America, and developed countries, have shown zinc supplementation to be an
effective control of common infections in children. Can this supplementation
program also be effective in Africa, where the primary threat to a child’s
health is malaria? A group of researchers have set out to answer this question.2

To design a study to answer this question the researchers first need to determine
an appropriate target group. Since malaria is a serious problem for young children,
they will concentrate on children who are 6 months to 5 years of age. A
supplement will be prepared that contains either no zinc or 10 milligrams (mg) of
zinc. Because the response to zinc may be different in children who lack other
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important nutrients, they decide to also take this factor into account. Specifically,
their supplement will contain daily doses of essential vitamins and minerals or it
will not.

Example

13.4 Implementing the two-way ANOVA.

The factors for the two-way ANOVA are zinc supplementation with two levels
and vitamin supplementation with two levels. There are 2 × 2 = 4 cells in their
study. They plan to enroll 600 children and randomly assign 150 to each of the
cells. One outcome variable will be a measure of the child’s T cell immune
response.

Here is a table that summarizes the design:

Vitamins
Zinc No Yes Total
No 150 150 300
Yes 150 150 300
Total 300 300 600

This example illustrates another advantage of two-way designs. Although the
researchers are primarily interested in the possible benefit of zinc supplementation,
they also included vitamin supplementation in the design because they suspected
that the zinc effect might be different in children who are nutritionally deficient.

Consider an alternative one-way design where we assign 300 children to the
two levels of zinc and ignore nutritional status. With this design we will have the
same number of children at each of the zinc levels, so in this way it is similar to
our two-way design.

However, suppose that there are, in fact, differences due to nutritional status. In
this case, the one-way ANOVA would assign this variation to the RESIDUAL
(within groups) part of the model. In the two-way ANOVA, vitamin
supplementation is included as a factor, and therefore this variation is included in
the FIT part of the model. Whenever we can move variation from RESIDUAL to
FIT, we reduce the σ of our model and increase the power of our tests.
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Example

13.5 Vitamin D and osteoporosis.

Osteoporosis is a disease primarily of the elderly. People with osteoporosis
have low bone mass and an increased risk of bone fractures. Over 10 million
people in the United States, 1.4 million Canadians, and many millions
throughout the world have this disease. Adequate calcium in the diet is
necessary for strong bones, but vitamin D is also needed for the body to
efficiently use calcium. High doses of calcium in the diet will not prevent
osteoporosis unless there is adequate vitamin D. Exposure of the skin to the
ultraviolet rays in sunlight enables our bodies to make vitamin D. However,
elderly people often don’t go outside as much as younger people do, and in
northern areas such as Canada, there is not sufficient ultraviolet light for the
body to make vitamin D, particularly in the winter months.

Suppose that we wanted to see if calcium supplements will increase bone mass
(or prevent a decrease in bone mass) in an elderly Canadian population. Because of
the vitamin D complication, we will make this a factor in our design.

Example

13.6 Designing the osteoporosis study.

We will use a 2 × 2 design for our osteoporosis study. The two factors are
calcium and vitamin D. The levels of each factor will be zero (placebo) and an
amount that is expected to be adequate, 800 milligrams per day (mg/d) for
calcium and 300 international units per day (IU/d) for vitamin D. Women
between the ages of 70 and 80 will be recruited as subjects. Bone mineral
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density (BMD) will be measured at the beginning of the study, and
supplements will be taken for one year. The change in BMD over the one-year
period is the outcome variable. We expect a dropout rate of 20% and we would
like to have about 20 subjects providing data in each group at the end of the
study. We will therefore recruit 100 subjects and randomly assign 25 to each
treatment combination.

Here is a table that summarizes the design with the sample sizes at the start of
the study:

Vitamin D
Calcium Placebo 300 IU/d Total
Placebo 25 25 50
800 mg/d 25 25 50
Total 50 50 100

This example illustrates a third reason for using two-way designs. The
effectiveness of the calcium supplement on BMD depends on having adequate
vitamin D. We call this an interaction. In contrast, the average values for the
calcium effect and the vitamin D effect are represented as main effects. The two-
way model represents FIT as the sum of a main effect for each of the two factors
and an interaction. One-way designs that vary a single factor and hold other factors
fixed cannot discover interactions. We will discuss interactions more fully later.

interaction

main effects

These examples illustrate several reasons why two-way designs are preferable
to one-way designs.

ADVANTAGES OF TWO-WAY ANOVA

1. It is more efficient to study two factors simultaneously rather than
separately.

2. We can reduce the residual variation in a model by including a second
factor thought to influence the response.

3. We can investigate interactions between factors.

These considerations also apply to study designs with more than two factors.
We will be content to explore only the two-way case. The choice of sampling or
experimental design is fundamental to any statistical study. Factors and levels must
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be carefully selected by an individual or team who understands both the statistical
models and the issues that the study will address.

The two-way ANOVA model

When discussing two-way models in general, we will use the labels A and B for
the two factors. For particular examples and when using statistical software, it is
better to use meaningful names for these categorical variables. Thus, in Example
13.2 we would say that the factors are joystick type and difficulty level and in
Example 13.4 we would say that the factors are the zinc and vitamin
supplementation.

The numbers of levels of the factors are often used to describe the model. Again
using our earlier examples, we would say that Example 13.2 represents a 3 × 4
ANOVA and Example 13.4 illustrates a 2 × 2 ANOVA. In general, Factor A will
have I levels and Factor B will have J levels. Therefore, we call the general two-
way problem an I × J ANOVA.

In a two-way design every level of A appears in combination with every level
of B, so that I × J groups are compared. The sample size for level i of Factor A and
level j of Factor B is nij. In our examples so far, the nij have been equal but this is
not required.3 The total number of observations is

N=Σnij

ASSUMPTIONS FOR TWO-WAY ANOVA

We have independent SRSs of size nij from each of I × J Normal populations.
The population means σij may differ, but all populations have the same
standard deviation σ The σij and σ are unknown parameters.

Let xijk represent the kth observation from the population having Factor A at level i and Factor B at
level j. The statistical model is

xijk = σij + ϵijk

for i = 1,…,I and j = 1,…,J and k = 1,…,nij, where the deviations ϵijk are from
an N(0, σ) distribution.

Similar to the one-way model, the FIT part is the group means μij and the
RESIDUAL part is the deviations ϵijk of the individual observations from their
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group means. To estimate a group mean μij we use the sample mean of the
observations in the samples from this group:

x¯ij=1nijΣkxijk

The k below the Σ means that we sum the nij observations that belong to the (i,j)th
sample.

The RESIDUAL part of the model contains the unknown σ. We calculate the
sample variances for each SRS and pool these to estimate σ2:

sp2=Σ(nij−1)sij2Σ(nij−1)

Just as in one-way ANOVA, the numerator in this fraction is SSE and the
denominator is DFE. Also, DFE is the total number of observations minus the
number of groups. That is, DFE = N – IJ. The estimator of σ is sp.

one-way model, p. 652

Main effects and interactions

In this section we will further explore the FIT part of the two-way ANOVA, which
is represented in the model by the population means μij. The two-way design gives
some structure to the set of means μij.

So far, because we have independent samples from each of I × J groups, we
have presented the problem as a one-way ANOVA with IJ groups. Each population
mean μij is estimated by the corresponding sample mean x¯ij, and we can calculate
sums of squares and degrees of freedom as in one-way ANOVA. In accordance
with the conventions used by many computer software packages, we use the term
model when discussing the sums of squares and degrees of freedom calculated as
in one-way ANOVA with IJ groups. Thus, SSM is a model sum of squares
constructed from deviations of the form x¯ij−x¯ where x¯ is the average of all the
observations and x¯ij is the mean of the (i,j)th group. Similarly, DFM is simply IJ
– 1.

In two-way ANOVA, the terms SSM and DFM can be further broken down into
terms corresponding to a main effect for A, a main effect for B, and an AB
interaction. Each of SSM and DFM is then a sum of terms:

SSM = SSA + SSB + SSAB

and

DFM = DFA + DFB + DFAB

The term SSA represents variation among the means for the different levels of
Factor A. Because there are I such means, DFA = I – 1 degrees of freedom.
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Similarly, SSB represents variation among the means for the different levels of
Factor B, with DFB = J – 1.

Interactions are a bit more involved. We can see that SSAB, which is SSM –
SSA – SSB, represents the variation in the model that is not accounted for by the
main effects. By subtraction we see that its degrees of freedom are

DFAB = (IJ – 1) – (I – 1) – (J – 1) = (I – 1) (J – 1)

There are many kinds of interactions. The easiest way to study them is through
examples.

Example

13.7 Investigating differences in sugar-sweetened beverage consumption.

Consumption of sugar-sweetened beverages (SSBs) has been linked to Type 2
diabetes and obesity. One study used data from the National Health and
Nutrition Examination Survey (NHANES) to estimate SSB consumption
among adults. More than 20,000 individuals provided data for this study.
Individuals were divided into 3 age categories: adolescents (12 to 19 years
old), young adults (20 to 34 years old), and adults (≥35 years old).4 Here are
the means for the number of calories in SSBs consumed per day during 2003
to 2004 and 2007 to 2008:

Year
Group 2004 2008 Mean
Adolescents 336 286 311
Young adults 391 338 365
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Adults 236 236 236
Mean 321 287 304

The table in Example 13.7 includes averages of the means in the rows and
columns. For example, in 2004 the mean of calories in SSBs consumed per day is

336+391+2363=321

Similarly, the corresponding value for 2008 is

286+338+2363=286.7

which is rounded to 287 in the table. These averages are called marginal means
(because of their location at the margins of such tabulations). The grand mean (304
in this case) can be obtained by averaging either set of marginal means.

marginal means

Figure 13.1 is a plot of the group means. From the plot we see that the calories
in SSBs consumed by each group in 2008 are less than or equal to those consumed
in 2004. In statistical language, there is a main effect for year. We also see that the
means are different across age categories. This means that there is a main effect for
age. These main effects can be described by differences between the marginal
means. For example, the mean for 2004 is 321 calories and then decreases 34
calories to 287 calories in 2008. Similarly, the mean for adolescents is 311, it
increases 54 calories to 365 for young adults, and then drops 129 calories to 236
for adults.

To examine two-way ANOVA data for a possible interaction, always construct a
plot similar to Figure 13.1. In this case, it is debatable whether the two profiles
(the collections of marginal means for a given year) should be considered parallel.
Profiles that are roughly parallel imply that there is no clear interaction between
the two factors. When no interaction is present, the marginal means provide a
reasonable description of the two-way table of means.
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FIGURE 13.1
Plot of the mean calories in sugar-sweetened beverages consumed per day in 2003 to 2004 and
2007 to 2008 for different age groups, for Example 13.7.

When there is an interaction, the marginal means do not tell the whole story.
For example, with these data, the marginal mean difference between years is 34
calories. This is smaller than the difference in calories for the adolescent and young
adult age classes and larger than the zero change in the adult age class. If
differences of 20 to 30 calories per day are scientifically meaningful, then we
would say that there is evidence for an interaction.

Interactions come in many shapes and forms. When we find an interaction, a
careful examination of the means is needed to properly interpret the data. Simply
stating that interactions are significant tells us very little. Plots of the group means,
called interaction plots, are essential. Here is another example.

Example
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13.8 Eating in groups.

Some research has shown that people eat more when they eat in groups. One
possible mechanism for this phenomenon is that they may spend more time
eating when in a larger group. A study designed to examine this idea measured
the length of time spent (in minutes) eating lunch in different settings.5 Here
are some data from this study:

Number of People Eating
Lunch setting 1 2 3 4 5 or more Mean
Workplace 12.6 23.0 33.0 41.1 44.0 30.7
Fast-food restaurant 10.7 18.2 18.4 19.7 21.9 17.8
Mean 11.6 20.6 25.7 30.4 32.9 24.2

Figure 13.2 gives the plot of the means for this example. The patterns are not
parallel, so it appears that we have an interaction. Meals take longer when there are
more people present, but this phenomenon is much greater for the meals consumed
at work. For fast-food eating, the meal durations are fairly similar when there is
more than one person present.
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FIGURE 13.2
Plot of mean meal duration versus lunch setting and group size, for Example 13.8.

A different kind of interaction is present in the next example. Here, we must be
very cautious in our interpretation of the main effects since either one of them
leads to a distorted conclusion.

Example

13.9 We got the beat?

When we hear music that is familiar to us, we can quickly pick up the beat and
our mind synchronizes with the music. However, if the music is unfamiliar, it
takes us longer to synchronize. In a study that investigated the theoretical
framework for this phenomenon, French and Tunisian nationals listened to
French and Tunisian music.6 Each subject was asked to tap in time with the
music being played. A synchronization score, recorded in milliseconds,
measured how well the subjects synchronized with the music. A higher score
indicates better synchronization. Six songs of each music type were used. Here
are the means:

Music
Nationality French Tunisian Mean
French 950 750 850
Tunisian 760 1090 925
Mean 855 920 887

The means are plotted in Figure 13.3. In the study the researchers were not
interested in main effects. Their theory predicted the interaction that we see in
the figure. Subjects synchronize better with music from their own culture. The
main effects, on the other hand, suggest that Tunisians synchronize better than
the French (regardless of music type) and that it is easier to synchronize to
Tunisian music (regardless of nationality).
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FIGURE 13.3
Plot of mean synchronization score versus type of music for French and Tunisian nationals, for
Example 13.9.

The interaction in Figure 13.3 is very different from those that we saw in
Figures 13.1 and 13.2. These examples illustrate the point that it is necessary to
plot the means and carefully describe the patterns when interpreting an interaction.

The design of the study in Example 13.9 allows us to examine two main effects
and an interaction. However, this setting does not meet all the assumptions needed
for statistical inference using the two-way ANOVA framework of this chapter. As
with one-way ANOVA, we require that observations be independent.

In this study, we have a design that has each subject contributing data for two
types of music, so these two scores will be dependent. The framework is similar to
the matched pairs setting. The design is called a repeated-measures design. More
advanced texts on statistical methods cover this important design.

repeated-measures design

matched pairs t test, p. 429

USE YOUR KNOWLEDGE
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13.1 What’s wrong?

For each of the following, explain what is wrong and why.

(a) A two-way ANOVA is used when the outcome variable can take only two possible
values.

(b) In a 2 × 3 ANOVA each level of Factor A appears with two levels of Factor B.

(c) The FIT part of the model in a two-way ANOVA represents the variation that is
sometimes called error or residual.

(d) In an I × J ANOVA, DFAB = IJ – 1.

13.2 What’s wrong?

For each of the following, explain what is wrong and why.

(a) Parallel profiles of cell means imply that a strong interaction is present.

(b) You can perform a two-way ANOVA only when the sample sizes are the same in all
cells.

(c) The estimate sp2 is obtained by pooling the marginal sample variances.

(d) When interaction is present, the marginal means are always uninformative.
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13.2 Inference for Two-Way ANOVA

When you complete this section, you will be able to

• Construct the two-way ANOVA table in terms of sources and degrees of
freedom. Summarize what the F tests can tell you about main effects and
interactions and what they cannot without further analysis.

• Interpret statistical software ANOVA output for a two-way ANOVA.

• Use diagnostic plots and sample statistics to check the assumptions of the
two-way ANOVA model.

Inference for two-way ANOVA involves F statistics for each of the two main
effects and an additional F statistic for the interaction. As with one-way ANOVA,
the calculations are organized in an ANOVA table.

The ANOVA table for two-way ANOVA

Two-way ANOVA is the statistical analysis for a two-way design with a
quantitative response variable. The results of a two-way ANOVA are summarized
in an ANOVA table based on splitting the total variation SST and the total degrees
of freedom DFT among the two main effects and the interaction. Both the sums of
squares (which measure variation) and the degrees of freedom add:

SST = SSA + SSB + SSAB + SSE

DFT = DFA + DFB + DFAB + DFE

The sums of squares are always calculated in practice by statistical software. When
the nij are not all equal, some methods of analysis can give sums of squares that do
not add.

From each sum of squares and its degrees of freedom we find the mean square
in the usual way:

mean square = sum of squaresdegrees of freedom

The significance of each of the main effects and the interaction is assessed by
an F statistic that compares the variation due to the effect of interest with the
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within-group variation. Each F statistic is the mean square for the source of interest
divided by MSE. Here is the general form of the two-way ANOVA table:

Source Degrees of freedom Sum of squares Mean square F
A I – 1 SSA SSA/DFA MSA/MSE
B J – 1 SSB SSB/DFB MSB/MSE
AB (I – 1) (J – 1) SSAB SSAB/DFAB MSAB/MSE
Error N – IJ SSE SSE/DFE
Total N – 1 SST

There are three null hypotheses in two-way ANOVA, with an F test for each.
We can test for significance of the main effect of A, the main effect of B, and the
AB interaction. It is generally good practice to examine the test for interaction
first, since the presence of a strong interaction may influence the interpretation of
the main effects. Be sure to plot the means as an aid to interpreting the results of
the significance tests.

SIGNIFICANCE TESTS IN TWO-WAY ANOVA

To test the main effect of A, use the F statistic

FA=MSAMSE

To test the main effect of B, use the F statistic

FB=MSBMSE

To test the interaction of A and B, use the F statistic

FAB=MSABMSE

The P-value is the probability that a random variable having an F distribution
with numerator degrees of freedom corresponding to the effect and
denominator degrees of freedom equal to DFE is greater than or equal to the
calculated F statistic.

The following example illustrates how to do a two-way ANOVA. As with the
one-way ANOVA, we focus our attention on interpretation of the computer output.
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Example

13.10 A study of cardiovascular risk factors.

A study of cardiovascular risk factors compared runners who averaged at least
15 miles per week with a control group described as “generally sedentary.”
Both men and women were included in the study.7 The design is a 2 × 2
ANOVA with the factors group and gender. There were 200 subjects in each
of the four combinations. One of the variables measured was the heart rate
after 6 minutes of exercise on a treadmill. SAS computer analysis produced the
outputs in Figure 13.4 and Figure 13.5.

HRTRATE
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FIGURE 13.4
Summary statistics for heart rates in the four groups of a 2 × 2 ANOVA, for Example 13.10.
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FIGURE 13.5
Two-way ANOVA output for heart rates, for Example 13.10.

We begin with the usual preliminary examination. From Figure 13.4 we see that
the ratio of the largest to the smallest standard deviation is less than 2. Therefore,
we are not concerned about violating the assumption of equal population standard
deviations. Normal quantile plots (not shown) do not reveal any outliers, and the
data appear to be reasonably Normal.

The ANOVA table at the top of the output in Figure 13.5 is in effect a one-way
ANOVA with four groups: female control, female runner, male control, and male
runner. In this analysis Model has 3 degrees of freedom, and Error has 796 degrees
of freedom. Since we will be relying on software to do all these calculations, it is
always a good idea to do some quick arithmetic checks like degrees of freedom to
make sure things make sense. The F test and its associated P-value for this analysis
refer to the hypothesis that all four groups have the same population mean. We are
interested in the main effects and interaction, so we ignore this test.

The sums of squares for the group and gender main effects and the group-by-
gender interaction appear at the bottom of Figure 13.5 under the heading “Type I
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SS.” These sum to the sum of squares for Model. Similarly, the degrees of freedom
for these sums of squares sum to the degrees of freedom for Model. Two-way
ANOVA splits the variation among the means (expressed by the Model sum of
squares) into three parts that reflect the two-way layout.

Because the degrees of freedom are all 1 for the main effects and the
interaction, the mean squares are the same as the sums of squares. The F statistics
for the three effects appear in the column labeled “F Value,” and the P-values are
under the heading “Pr > F.” For the group main effect, we verify the calculation of
F as follows:

F=MSGMSE=168,432242.12=695.65

All three effects are statistically significant. The group effect has the largest F,
followed by the gender effect and then the group-by-gender interaction. To
interpret these results, we examine the plot of means, with bars indicating one
standard error, in Figure 13.6. Note that the standard errors are quite small due to
the large sample sizes. The significance of the main effect for group is due to the
fact that the controls have higher average heart rates than the runners for both
genders. This is the largest effect evident in the plot.

The significance of the main effect for gender is due to the fact that the females
have higher heart rates than the men in both groups. The differences are not as
large as those for the group effect, and this is reflected in the smaller value of the F
statistic.

The analysis indicates that a complete description of the average heart rates
requires consideration of the interaction in addition to the main effects. The two
lines in the plot are not parallel. This interaction can be described in two ways. The
female-male difference in average heart rates is greater for the controls than for the
runners. Alternatively, the difference in average heart rates between controls and
runners is greater for women than for men. As the plot suggests, the interaction is
not large. It is statistically significant because there were 800 subjects in the study.

Two-way ANOVA output for other software is similar to that given by SAS.
Figure 13.7 gives the analysis of the heart rate data using Excel and Minitab.
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FIGURE 13.6
Plot of the group means, with standard errors indicated, for heart rates in the 2 × 2 ANOVA, for
Example 13.10.
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FIGURE 13.7
Excel and Minitab two-way ANOVA output for the heart rate study, for Example 13.10.
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CHAPTER 13 Summary

Two-way analysis of variance (ANOVA) is used to compare population
means when populations are classified according to two factors.

We assume that independent SRSs are drawn from each population and
that the responses from each population are Normal with possibly different
means but the same standard deviation.

As with one-way ANOVA, these assumptions should be assessed.
Preliminary analysis includes examination of means, standard deviations, and
Normal quantile plots.

Marginal means are calculated by taking averages of the cell means,
either across rows or down columns. These means can be used in an
interaction plot to aid in the interpretation of results.

Similar to one-way ANOVA, the total variation is separated into parts for
the model and error. Pooling is also used to estimate the error, or within-
group variance. However, given that there are now two factors, the model
variation is separated into parts for each of the main effects and the
interaction.

The calculations are organized into an ANOVA table. F statistics and P-
values are used to test hypotheses about the main effects and the interaction.

Careful inspection of the means is necessary to interpret significant main
effects and interactions. Plots are a useful aid.
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CHAPTER 13 Exercises
For Exercises 13.1 and 13.2, see page 702.

13.3 What’s wrong?

For each of the following, explain what is wrong and why.

(a) You should reject the null hypothesis that there is no interaction in a two-way ANOVA when the
AB F statistic is small.

(b) Sums of squares are equal to mean squares divided by degrees of freedom.

(c) The test statistics for the main effects in a two-way ANOVA have a chi-square distribution when
the null hypothesis is true.

(d) The sums of squares always add in two-way ANOVA.

13.4 Is there an interaction?

Each of the following tables gives means for a two-way ANOVA. Make a plot of the means with the
levels of Factor A on the x axis. State whether or not there is an interaction, and if there is, describe
it.

(a)

Factor A
Factor B 1 2 3

1 11 18 21
2 6 13 16

(b)

Factor A
Factor B 1 2 3

1 10 25 15
2 20 35 25

(c)

Factor A
Factor B 1 2 3

1 10 15 20
2 15 25 35

(d)
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Factor A
Factor B 1 2 3

1 10 15 12
2 50 52 55

13.5 Describing a two-way ANOVA model.

A 3 × 2 ANOVA was run with 6 observations per cell.

(a) Give the degrees of freedom for the F statistic that is used to test for interaction in this analysis
and the entries from Table E that correspond to this distribution.

(b) Sketch a picture of this distribution with the information from the table included.

(c) The calculated value of this F statistic is 2.23. Report the P-value and state your conclusion.

(d) Based on your answer to part (c), would you expect an interaction plot to have mean profiles that
look parallel? Explain your answer.

13.6 Determining the critical value of F.

For each of the following situations, state how large the F statistic needs to be for rejection of the
null hypothesis at the 5% level. Sketch each distribution and indicate the region where you would
reject.

(a) The main effect for the first factor in a 3 × 4 ANOVA with 3 observations per cell

(b) The interaction in a 3 × 4 ANOVA with 6 observations per cell

(c) The interaction in a 2 × 2 ANOVA with 26 observations per cell

13.7 Identifying the factors of a two-way ANOVA model.

For each of the following situations, identify both factors and the response variable. Also, state the
number of levels for each factor (I and J) and the total number of observations (N).

(a) A child psychologist is interested in studying how a child’s percent of pretend play differs with
gender and age (4, 8, and 12 months). There are 11 infants assigned to each cell of the experiment.

(b) Brewers malt is produced from germinating barley. A homebrewer wants to determine the best
conditions for germinating barley. Thirty lots of barley seed were equally and randomly assigned to
10 germination conditions. The conditions are combinations of the week after harvest (1, 3, 6, 9, or
12 weeks) and the amount of water used in the process (4 or 8 milliliters). The percent of seeds
germinating is the outcome variable.

(c) The strength of concrete depends upon the formula used to prepare it. An experiment compares
six different mixtures. Nine specimens of concrete are poured from each mixture. Three of these
specimens are subjected to 0 cycles of freezing and thawing, three are subjected to 100 cycles, and
three are subjected to 500 cycles. The strength of each specimen is then measured.

(d) A company wants to compare four different training programs for its new employees. Each of
these programs takes 6 hours to complete. The training can be given for 6 hours on one day or for 3
hours on two consecutive days. The next 80 employees hired by the company will be the subjects for
this study.
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13.8 Determining the degrees of freedom.

For each part in Exercise 13.7, outline the ANOVA table, giving the sources of variation and the
degrees of freedom.

13.9 Writing about testing worries and exam performance.

For many students, self-induced worries and pressure to perform well on exams cause them to
perform below their ability. This is because these worries compete with the working memory
available for performance. Expressive writing has been shown to be an effective technique to
overcome traumatic or emotional experiences. Thus, a group of researchers decided to investigate
whether expressive writing prior to test-taking may help performance.8

The small study involved 20 subjects. Half the subjects were assigned to the expressive-writing
group and the others to a control group. Each subject took two short mathematics exams. Prior to the
first exam, students were told just to perform their best. Prior to the second exam, students were told
that they each had been paired with another student and if the members of a pair both performed
well on the exam, the pair would receive a monetary reward. Each student was then told privately
that his or her partner had already scored well. This was done to create a high-stakes testing
environment for the second exam. Those in the control group sat quietly for 10 minutes prior to
taking the second exam. Those in the expressive-writing group had 10 minutes to write about their
thoughts and feelings regarding the exam. The following table summarizes the test results (%
correct).

First Exam Second Exam
Group x¯ s x¯ s
Control 83.4 11.5 70.1 14.3
Expressive-writing 86.2 6.3 90.1 5.8

(a) Explain why this is a repeated-measures design and not a standard two-way ANOVA design.

(b) Generate a plot to look at changes in score across time and across group. Describe what you see
in terms of the main effects and interaction.

(c) Because exam scores can run only between 0% and 100%, variances for populations with means
near 0% or 100% may be smaller and the distribution of scores may be skewed. Does it appear
reasonable here to pool variances? Explain your answer.

13.10 Influence of age and gender on motor performance.

The slowing of motor performance as humans age is well established. Differences in gender,
however, are less so. A recent study assessed the motor performance of 246 healthy adults.9 One
task was to tap the thumb and forefinger of the right hand together 20 times as quickly as possible.
The following table summarizes the results (in seconds) for 7 age classes and 2 genders.

Males Females
Age class (years) n x¯ s n x¯ s
41–50 19 4.72 1.31 19 5.88 0.82
41–50 19 4.72 1.31 19 5.88 0.82
51–55 12 4.10 1.62 12 5.93 1.13
56–60 12 4.80 1.04 12 5.85 0.87
61–65 24 5.08 0.98 24 5.81 0.94
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66–70 17 5.47 0.85 17 6.50 1.23
71–75 23 5.84 1.44 23 6.12 1.04

>75 16 5.86 1.00 16 6.19 0.91

Generate a plot to look at changes in the time across age class and across gender. Describe what you
see in terms of the main effects for age and gender as well as their interaction.

13.11 Influence of age and gender on motor performance, continued.

Refer to the previous exercise.

(a) In their article, the researchers state that each of their response variables was assessed for
Normality prior to performing a two-way ANOVA. Is it necessary for the 246 time measurements to
be Normally distributed? Explain your answer.

(b) Is it reasonable to pool the variances?

(c) Suppose for these data that SS(gender) = 44.66, SS(age) = 31.97, SS(interaction) = 13.22, and
SSE = 280.95. Construct an ANOVA table and state your conclusions.

13.12 Fuzzy fish?

Drugs used to treat anxiety persist in wastewater effluent, resulting in relatively high concentrations
of these drugs in our rivers and streams. To better understand the effects of these drugs on fish,
researchers commonly expose fish to various levels of an anxiety drug in a laboratory setting and
observe their behavior. In one study, researchers considered the effects of three doses of oxazepam
on the behavior of the European perch.10 Twenty-five perch were each assigned to doses of 0, 1.8,
or 910 micrograms per liter of water (μg/l). Each fish was first observed prior to treatment and then
observed 7 days after treatment. The following table summarizes the results for activity (number of
swimming bouts greater than 0.25 cm during 10 minutes).

Number of Movements
Pretreatment Posttreatment

Dose (μg/l) x¯ s x¯ s
0 3.92 2.38 3.68 1.80
1.8 3.76 1.94 6.32 2.01
910 4.08 1.58 8.68 3.05

(a) The response is the number of movements in 10 minutes, so this variable takes only integer
values. Should we be concerned about violating the assumption of Normality? Explain your answer.

(b) Often with this type of count, one considers taking the square root of the count and performing
ANOVA on the transformed response. Explain why a transformation might be used here.

(c) Construct an interaction plot and comment on the main effects of dose and time and their
interaction.

13.13 The influences of transaction history and a thank-you statement.

A service failure is defined as any service-related problem (real or perceived) that transpires during a
customer’s experience with a firm. In the hotel industry, there is a high human component, so these
sorts of failures commonly occur regardless of extensive training and established policies. As a
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result, hotel firms must learn to effectively react to these failures. A recent study investigated the
relationship between a consumer’s transaction history (levels: long and short) and an employee
thank-you statement (levels: yes and no) on a consumer’s repurchase intent.11 Each subject was
randomly assigned to one of the four treatment groups and asked to read some service
failure/resolution scenarios and respond accordingly. Repurchase intent was measured using a 9-
point scale. Here is a summary of the means:

Thank-you
History No Yes
Short 5.69 6.80
Long 7.53 7.37

(a) Plot the means. Do you think there is an interaction? If yes, describe the interaction in terms of
the two factors.

(b) Find the marginal means. Are they useful for understanding the results of this study? Explain
your answer.

13.14 Transaction history and a thank-you statement, continued.

Refer to the previous exercise. The numbers of subjects in the cells were not equal so the researchers
used linear regression to analyze the data. This was done by creating an indicator variable for each
factor and the interaction. Below is a partial ANOVA table. Complete it and state your conclusions
regarding the main effects and interaction described in the previous exercise.

Source DF SS MS F P-value
Transaction history 61.445
Thank-you statement 21.810
Interaction 15.404
Error 160 759.904

13.15 The effects of proximity and visibility on food intake.

A study investigated the influence that proximity and visibility of food have on food intake.12 A
total of 40 secretaries from the University of Illinois participated in the study. A candy dish full of
individually wrapped chocolates was placed either at the desk of the participant or at a location 2
meters from the participant. The candy dish was either a clear (candy visible) or opaque (candy not
visible) covered bowl. After a week, the researchers noted not only the number of candies consumed
per day but also the self-reported number of candies consumed by each participant. The following
table summarizes the mean difference between these two values (reported minus actual).

Visibility
Proximity Clear Opaque
Proximate –1.2 –0.8
Less proximate 0.5 0.4

(a) Make a plot of the means and describe the patterns that you see. Does the plot suggest an
interaction between visibility and proximity?

(b) This study actually took four weeks, with each participant being observed at each treatment
combination in a random order. Explain why a repeated-measures design like this may be beneficial.
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13.16 Bilingualism.

Not only does speaking two languages have many practical benefits in this globalized world, but
there is also growing evidence that it appears to help with brain functioning as we age. In one study,
80 participants were divided equally among 4 groups: younger adult bilinguals, older adult
bilinguals, younger adult monolinguals, and older adult monolinguals.13 Each participant was asked
to complete a series of color-shape task-switching tests. For our analysis, we’ll focus on the total

reaction time (in microseconds) for these experiments. The shorter the reaction time, the better. 
BILING

(a) Make a table giving the sample size, mean, and standard deviation for each group. Is it
reasonable to pool the variances?

(b) Generate a histogram for each of the groups. Can we feel confident that the sample means are
approximately Normal? Explain your answer.

13.17 Bilingualism, continued.

Refer to the previous exercise.  BILING

(a) If bilingualism helps with brain functioning as we age, explain why we’d expect to find an
interaction between age and lingualism. Also, create an interaction plot of what sort of pattern we’d
expect.

(b) Analyze the reaction times using analysis of variance. Report the test statistics, degrees of
freedom, and P-values.

(c) Based on part (b), write a short paragraph summarizing your findings.

13.18 Hypotension and endurance exercise.

In sedentary individuals, low blood pressure (hypotension) often occurs after a single bout of aerobic
exercise and lasts nearly two hours. This can cause dizziness, light-headedness, and possibly fainting
upon standing. It is thought that endurance exercise training can reduce the degree of postexercise
hypotension. To test this, researchers studied 16 endurance-trained and 16 sedentary men and
women.14 The following table summarizes the postexercise systolic arterial pressure (mm Hg) after
60 minutes of upright cycling.

Group n x¯ SE
Women, sedentary 8 100.7 3.4
Women, endurance 8 105.3 3.6
Men, sedentary 8 114.2 3.8
Men, endurance 8 110.2 2.3

(a) Make a plot similar to Figure 13.3 (page 701) with the systolic blood pressure on the y axis and
training level on the x axis. Describe the pattern you see.

(b) From the table, one can show that SSA = 677.12, SSB = 0.72, SSAB = 147.92, and SSE = 2478
where A is the gender effect and B is the training level. Construct the ANOVA table with F statistics
and degrees of freedom, and state your conclusions regarding main effects and interaction.

(c) The researchers also measured the before-exercise systolic blood pressure of the participants and
looked at a model that incorporated both the pre- and postexercise values. Explain why it is likely to
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be beneficial to incorporate both measurements in the study.

13.19 The effect of humor.

In advertising, humor is often used to overcome sales resistance and stimulate customer purchase
behavior. One experiment looked at the use of humor to offset the negative feelings often associated
with website encounters.15 The setting of the experiment was an online travel agency, and the
researchers used a three-factor design, each factor with two levels. The factors were humor (used,
not used), process (favorable, unfavorable), and outcome (favorable, unfavorable). For the humor
condition, cartoons and jokes of the day about skiing were presented on the site. For the no humor
condition, standard pictures of ski sites were used. Two hundred and forty-one business students
from a large Dutch university participated in the experiment. Each was randomly assigned to one of
the eight treatment conditions. The students were asked to book a skiing holiday and then rate their
perceived enjoyment and satisfaction with the process. All responses were measured on a 7-point
Likert scale. A summary of the results for satisfaction follows.

Treatment n x¯ s
No humor—favorable process—unfavorable outcome 27 3.04 0.79
No humor—favorable process—favorable outcome 29 5.36 0.47
No humor—unfavorable process—unfavorable outcome 26 2.84 0.59
No humor—unfavorable process—favorable outcome 31 3.08 0.59
Humor—favorable process—unfavorable outcome 32 5.06 0.59
Humor—favorable process—favorable outcome 30 5.55 0.65
Humor—unfavorable process—unfavorable outcome 36 1.95 0.52
Humor—unfavorable process—favorable outcome 30 3.27 0.71

(a) Plot the means of the four treatments without humor. Do you think there is an interaction? If yes,
describe the interaction in terms of the process and outcome factors.

(b) Plot the means of the four treatments that used humor. Do you think there is an interaction? If
yes, describe the interaction in terms of the process and outcome factors.

(c) The three-factor interaction can be assessed by looking at the two interaction plots created in
parts (a) and (b). If the relationship between process and outcome is different across the two humor
conditions, there is evidence of an interaction among all three factors. Do you think there is a three-
factor interaction? Explain your answer.

13.20 Pooling the standard deviations.

Refer to the previous exercise. Find the pooled estimate of the standard deviation for these data.
What are its degrees of freedom? Using the rule from Chapter 12 (page 654), is it reasonable to use a
pooled standard deviation for the analysis? Explain your answer.

13.21 Describing the effects.

Refer to Exercise 13.19. The P-values for all main effects and two-factor interactions are significant
at the 0.05 level. Using the table, find the marginal means (that is, the mean for the no humor
treatment, the mean for the no humor and unfavorable process treatment combination, etc.) and use
them to describe these effects.

13.22 Acceptance of functional foods.
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Functional foods are foods that are fortified with health-promoting supplements, like calcium-
enriched orange juice or vitamin-enriched cereal. Although the number of functional foods is
growing in the marketplace, very little is known about how the next generation of consumers views
these foods. Because of this, a questionnaire was given to college students from the United States,
Canada, and France.16 This questionnaire measured the students’ attitudes and beliefs about general
food and functional food. One of the response variables collected concerned cooking enjoyment.
This variable was the average of numerous items, each measured on a 10-point scale, where 1 =
most negative value and 10 = most positive value. Here are the means:

Culture
Gender Canada United States France
Female 7.70 7.36 6.38
Male 6.39 6.43 5.69

(a) Make a plot of the means and describe the patterns that you see.

(b) Does the plot suggest that there is an interaction between culture and gender? If your answer is
Yes, describe the interaction.

13.23 Estimating the within-group variance.

Refer to the previous exercise. Here are the cell standard deviations and sample sizes for cooking
enjoyment:

Culture
Canada United States France

Gender s n s n s n
Female 1.668 238 1.736 178 2.024 82
Male 1.909 125 1.601 101 1.875 87

Find the pooled estimate of the standard deviation for these data. Use the rule for examining
standard deviations in ANOVA from Chapter 12 (page 654) to determine if it is reasonable to use a
pooled standard deviation for the analysis of these data.

 13.24 Comparing the groups.

Refer to Exercises 13.22 and 13.23. The researchers presented a table of means with different
superscripts indicating pairs of means that differed at the 0.05 significance level, using the
Bonferroni method.

(a) What denominator degrees of freedom would be used here?

(b) How many pairwise comparisons are there for this problem?

(c) Perform these comparisons using t** = 2.94 and summarize your results.

13.25 More on acceptance of functional foods.

Refer to Exercise 13.22. The means for four of the response variables associated with functional
foods are as follows.

General Attitude Product Benefits
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Culture Culture

Gender Canada United States France Canada United States France
Female 4.93 4.69 4.10 4.59 4.37 3.91
Male 4.50 4.43 4.02 4.20 4.09 3.87

Credibility of Information Purchase Intention
Culture Culture

Gender Canada United States France Canada United States France
Female 4.54 4.50 3.76 4.29 4.39 3.30
Male 4.23 3.99 3.83 4.11 3.86 3.41

For each of the four response variables, give a graphical summary of the means. Use this summary
to discuss any interactions that are evident. Write a short report summarizing any differences in
culture and gender with respect to the response variables measured.

13.26 Interpreting the results.

The goal of the study in the previous exercise was to understand cultural and gender differences in
functional food attitudes and behaviors among young adults, the next generation of food consumers.
The researchers used a sample of undergraduate students and had each participant fill out the survey
during class time. How reasonable is it to generalize these results to the young adult population in
these countries? Explain your answer.

13.27 Evaluation of an intervention program.

The National Crime Victimization Survey estimates that there were over 400,000 violent crimes
committed against women by their intimate partner that resulted in physical injury. An intervention
study designed to increase safety behaviors of abused women compared the effectiveness of six
telephone intervention sessions with a control group of abused women who received standard care.
Fifteen different safety behaviors were examined.17 One of the variables analyzed was the total
number of behaviors (out of 15) that each woman performed. Here is a summary of the means of this
variable at baseline (just before the first telephone call) and at follow-up three and six months later:

Time
Group Baseline 3 months 6 months
Intervention 10.4 12.5 11.9
Control 9.6 9.9 10.4

(a) Find the marginal means. Are they useful for understanding the results of this study?

(b) Plot the means. Do you think there is an interaction? Describe the meaning of an interaction for
this study.
(Note: This exercise is from a repeated-measures design, and the data are not particularly Normal
because they are counts with values from 1 to 15. Although we cannot use the methods in this
chapter for statistical inference in this setting, the example does illustrate ideas about interactions.)

 13.28 More on the evaluation of an intervention program.

Refer to the previous exercise. Table 13.1 gives the percents of women who responded that they
performed each of the 15 safety behaviors studied.
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TABLE 13.1  Safety Behaviors of Abused Women
Intervention Group (%) Control Group (%)

Behavior Baseline
3

months
6

months Baseline
3

months
6

months
Hide money 68.0 60.0 62.7 60.0 37.8 35.1
Hide extra keys 52.7 76.0 68.9 53.3 33.8 39.2
Abuse code to alert

family 30.7 74.7 60.0 22.7 27.0 43.2
Hide extra clothing 37.3 73.6 52.7 42.7 32.9 27.0
Ask neighbors to call

police 49.3 73.0 66.2 32.0 45.9 40.5
Know Social Security

number 93.2 93.2 100.0 89.3 93.2 98.6
Keep rent, utility

receipts 75.3 95.5 89.4 70.3 84.7 80.9
Keep birth certificates 84.0 90.7 93.3 77.3 90.4 93.2
Keep driver’s license 93.3 93.3 97.3 94.7 95.9 98.6
Keep telephone

numbers 96.0 98.7 100.0 90.7 97.3 100.0
Remove weapons 50.0 70.6 38.5 40.7 23.8 5.9
Keep bank account

numbers 81.0 94.3 96.2 76.2 85.5 94.4
Keep insurance policy

number 70.9 90.4 89.7 68.3 84.2 94.8
Keep marriage license 71.1 92.3 84.6 63.3 73.2 80.0
Hide valuable jewelry 78.7 84.5 83.9 74.0 75.0 80.3

(a) Summarize these data graphically. Do you think that your graphical display is more effective
than Table 13.1 for describing the results of this study? Explain why or why not.

(b) Note any particular patterns in the data that would be important to someone who wants to use
these results to design future intervention programs for abused women.

(c) The study was conducted “at a family violence unit of a large urban District Attorney’s Office
that serves an ethnically diverse population of three million citizens.” To what extent do you think
that this fact limits the conclusions that can be drawn?

13.29 What can you conclude?

Analysis of data for a 3 × 2 ANOVA with 6 observations per cell gave the F statistics in the
following table.

Effect F
A 3.45
B 2.49
AB 1.14

What can you conclude from the information given?

13.30 What can you conclude?
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A study reported the following results for data analyzed using the methods that we studied in this
chapter.

Effect F P-value
A 0.50 0.609
B 10.06 0.001
AB 4.48 0.003

(a) What can you conclude from the information given?

(b) What additional information would you need to write a summary of the results for this study?

13.31 Conspicuous consumption and men’s testosterone levels.

It is argued that conspicuous consumption is a means by which men communicate their social status
to prospective mates. One study looked at changes in a male’s testosterone level in response to
fluctuations in his status created by the consumption of a product.18 The products considered were a
new and luxurious sports car and an old family sedan. Participants were asked to drive on either an
isolated highway or a busy city street. A table of cell means and standard deviations for the change
(post – pre) in testosterone level follows.

Location
Highway City

Car x¯ s x¯ s
Old sedan 0.03 0.12 –0.03 0.12
New sports car 0.15 0.14 0.13 0.13

(a) Make a plot of the means and describe the patterns that you see. Does the plot suggest an
interaction between location and type of car?

(b) Compute the pooled standard error sp, assuming equal sample sizes.

(c) The researchers wanted to test the following hypotheses:

(1) Testosterone levels will increase more in men who drive the new car.

(2) For men driving the new car, testosterone levels will increase more in men who drive in the
city.

(3) For men driving the old car, testosterone levels will decrease less in men who drive the old car
on the highway.

Write out the contrasts for each of these hypotheses.

(d) This study actually involved each male participating in all four combinations. Half of them drove
the sedan first and the other half drove the sports car first. Explain why a repeated-measures design
like this may be beneficial.

 13.32 The effects of peer pressure on mathematics achievement.

Researchers were interested in comparing the relationship between high achievement in mathematics
and peer pressure across several countries.19 They hypothesized that in countries where high
achievement is not valued highly, considerable peer pressure may exist. A questionnaire was
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distributed to 14-year-olds from three countries (Germany, Canada, and Israel). One of the questions
asked students to rate how often they fear being called a nerd or teacher’s pet on a 4-point scale (1 =
never, 4 = frequently). The following table summarizes the response.

Country Gender n x¯
Germany Female 336 1.62
Germany Male 305 1.39
Israel Female 205 1.87
Israel Male 214 1.63
Canada Female 301 1.91
Canada Male 304 1.88

(a) The P-values for the interaction and the main effects for country and for gender are 0.016, 0.068,
and 0.108, respectively. Using the table and P-values, summarize the results both graphically and
numerically.

(b) The researchers contend that Germany does not value achievement as highly as Canada and
Israel. Do the results from part (a) allow you to address their primary hypothesis? Explain.

(c) The students were also asked to indicate their current grade in mathematics on a 6-point scale (1
= excellent, 6 = insufficient). How might both responses be used to address the researchers’ primary
hypothesis?

13.33 The effect of chromium on insulin metabolism.

The amount of chromium in the diet has an effect on the way the body processes insulin. In an
experiment designed to study this phenomenon, four diets were fed to male rats. There were two
factors. Chromium had two levels: low (L) and normal (N). The rats were allowed to eat as much as
they wanted (M), or the total amount that they could eat was restricted (R). We call the second factor
Eat. One of the variables measured was the amount of an enzyme called GITH.20 The means for this
response variable appear in the following table.

Eat
Chromium M R

L 4.545 5.175
N 4.425 5.317

(a) Make a plot of the mean GITH for these diets, with the factor Chromium on the x axis and GITH
on the y axis. For each Eat group, connect the points for the two Chromium means.

(b) Describe the patterns you see. Does the amount of chromium in the diet appear to affect the
GITH mean? Does restricting the diet rather than letting the rats eat as much as they want appear to
have an effect? Is there an interaction?

(c) Compute the marginal means. Compute the differences between the M and R diets for each level
of Chromium. Use this information to summarize numerically the patterns in the plot.

13.34 Use of animated agents in a multimedia environment.

Multimedia learning environments are designed to enhance learning by providing a more hands-on
and exploratory investigation of a topic. Often animated agents (human-like characters) are used
with the hope of enhancing social interaction with the software and thus improving learning. One
group of researchers decided to investigate whether the presence of an agent and the type of verbal
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feedback provided were actually helpful.21 To do this, they recruited 135 college students and
randomly divided them between 4 groups: agent/simple feedback, agent/elaborate feedback, no
agent/simple feedback, and no agent/elaborate feedback. The topic of the software was
thermodynamics. The change in score on a 20-question test taken before and after using the software

was the response.  AGENT

(a) Make a table giving the sample size, mean, and standard deviation for each group.

(b) Use these means to construct an interaction plot. Describe the main effects for agent presence
and for feedback type as well as their interaction.

(c) Analyze the change in score using analysis of variance. Report the test statistics, degrees of
freedom, and P-values.

(d) Use the residuals to check model assumptions. Are there any concerns? Explain your answer.

(e) Based on parts (b) and (c), write a short paragraph summarizing your findings.

13.35 Trust of individuals and groups.

Trust is an essential element in any exchange of goods or services. The following trust game is often
used to study trust experimentally:

A sender starts with $X and can transfer any amount x ≤ X to a
responder. The responder then gets $3x and can transfer any amount y ≤
3x back to the sender. The game ends with final amounts X – x + y and
3x – y for the sender and responder, respectively.

The value x is taken as a measure of the sender’s trust, and the value y/3x indicates the responder’s
trustworthiness. A recent study used this game to study the dynamics between individuals and
groups of three.22 The following table summarizes the average amount x sent by senders starting
with $100.

Sender Responder n x¯ s
Individual Individual 32 65.5 36.4
Individual Group 25 76.3 31.2
Group Individual 25 54.0 41.6
Group Group 27 43.7 42.4

(a) Find the pooled estimate of the standard deviation for this study and its degrees of freedom.

(b) Is it reasonable to use a pooled standard deviation for the analysis? Explain your answer.

(c) Compute the marginal means.

(d) Plot the means. Do you think there is an interaction? If yes, describe it.

(e) The F statistics for sender, responder, and interaction are 9.05, 0.001, and 2.08, respectively.
Compute the P-values and state your conclusions.

 13.36 Does the type of cooking pot affect iron content?

Iron-deficiency anemia is the most common form of malnutrition in developing countries, affecting
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TABLE 13.2  Iron Content (mg/100 g) of Food Cooked in Different Pots

about 50% of children and women and 25% of men. Iron pots for cooking foods had traditionally
been used in many of these countries, but they have been largely replaced by aluminum pots, which
are cheaper and lighter. Some research has suggested that food cooked in iron pots will contain more
iron than food cooked in other types of pots. One study designed to investigate this issue compared
the iron content of some Ethiopian foods cooked in aluminum, clay, and iron pots.23 Foods
considered were yesiga wet’, beef cut into small pieces and prepared with several Ethiopian spices;
shiro wet’, a legume-based mixture of chickpea flour and Ethiopian spiced pepper; and ye-atkilt
allych’a, a lightly spiced vegetable casserole. Four samples of each food were cooked in each type
of pot. The iron in the food is measured in milligrams of iron per 100 grams of cooked food. The

data are shown in Table 13.2.  COOK

Type of
pot Meat Legumes Vegetables

Aluminum 1.77 2.36 1.96 2.14 2.40 2.17 2.41 2.34 1.03 1.53 1.07 1.30
Clay 2.27 1.28 2.48 2.68 2.41 2.43 2.57 2.48 1.55 0.79 1.68 1.82
Iron 5.27 5.17 4.06 4.22 3.69 3.43 3.84 3.72 2.45 2.99 2.80 2.92

(a) Make a table giving the sample size, mean, and standard deviation for each type of pot. Is it
reasonable to pool the variances? Although the standard deviations vary more than we would like,
this is partially due to the small sample sizes, and we will proceed with the analysis of variance.

(b) Plot the means. Give a short summary of how the iron content of foods depends upon the
cooking pot.

(c) Run the analysis of variance. Give the ANOVA table, the F statistics with degrees of freedom
and P-values, and your conclusions regarding the hypotheses about main effects and interactions.

13.37 Interpreting the results.

Refer to the previous exercise. Although there is a statistically significant interaction, do you think
that these data support the conclusion that foods cooked in iron pots contain more iron than foods
cooked in aluminum or clay pots? Discuss.

13.38 Analysis using a one-way ANOVA.

Refer to Exercise 13.36. Rerun the analysis as a one-way ANOVA with 9 groups and 4 observations
per group. Report the results of the F test. Examine differences in means using a multiple-
comparisons procedure. Summarize your results and compare them with those you obtained in
Exercise 13.36.

13.39 Examination of a drilling process.

One step in the manufacture of large engines requires that holes of very precise dimensions be
drilled. The tools that do the drilling are regularly examined and are adjusted to ensure that the holes
meet the required specifications. Part of the examination involves measurement of the diameter of
the drilling tool. A team studying the variation in the sizes of the drilled holes selected this
measurement procedure as a possible cause of variation in the drilled holes. They decided to use a
designed experiment as one part of this examination. Some of the data are given in Table 13.3. The
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TABLE 13.3  Tool Diameter Data

diameters in millimeters (mm) of five tools were measured by the same operator at three times (8:00
A.M., 11:00 A.M., and 3:00 P.M.). Three measurements were taken on each tool at each time. The
person taking the measurements could not tell which tool was being measured, and the

measurements were taken in random order.24  DRILL

(a) Make a table of means and standard deviations for each of the 5 × 3 combinations of the two
factors.

(b) Plot the means and describe how the means vary with tool and time. Note that we expect the
tools to have slightly different diameters. These will be adjusted as needed. It is the process of
measuring the diameters that is important.

(c) Use a two-way ANOVA to analyze these data. Report the test statistics, degrees of freedom, and
P-values for the significance tests.

(d) Write a short report summarizing your results.

Tool Time Diameter (mm)
1 1 25.030 25.030 25.032
1 2 25.028 25.028 25.028
1 3 25.026 25.026 25.026
2 1 25.016 25.018 25.016
2 2 25.022 25.020 25.018
2 3 25.016 25.016 25.016
3 1 25.005 25.008 25.006
3 2 25.012 25.012 25.014
3 3 25.010 25.010 25.008
4 1 25.012 25.012 25.012
4 2 25.018 25.020 25.020
4 3 25.010 25.014 25.018
5 1 24.996 24.998 24.998
5 2 25.006 25.006 25.006
5 3 25.000 25.002 24.999

13.40 Examination of a drilling process, continued.

Refer to the previous exercise. Multiply each measurement by 0.04 to convert from millimeters to
inches. Redo the plots and rerun the ANOVA using the transformed measurements. Summarize what

parts of the analysis have changed and what parts have remained the same.  DRILL

13.41 Do left-handed people live shorter lives than right-handed people?

A study of this question examined a sample of 949 death records and contacted next of kin to
determine handedness.25 Note that there are many possible definitions of “left-handed.” The
researchers examined the effects of different definitions on the results of their analysis and found
that their conclusions were not sensitive to the exact definition used. For the results presented here,
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people were defined to be right-handed if they wrote, drew, and threw a ball with the right hand. All
others were defined to be left-handed. People were classified by gender (female or male) and
handedness (left or right), and a 2 × 2 ANOVA was run with the age at death as the response
variable. The F statistics were 22.36 (handedness), 37.44 (gender), and 2.10 (interaction). The
following marginal mean ages at death (in years) were reported: 77.39 (females), 71.32 (males),
75.00 (right-handed), and 66.03 (left-handed).

(a) For each of the F statistics given, find the degrees of freedom and an approximate P-value.
Summarize the results of these tests.

(b) Using the information given, write a short summary of the results of the study.

13.42 A radon exposure study.

Scientists believe that exposure to the radioactive gas radon is associated with some types of cancers
in the respiratory system. Radon from natural sources is present in many homes in the United States.
A group of researchers decided to study the problem in dogs because dogs get similar types of
cancers and are exposed to environments similar to those of their owners. Radon detectors are
available for home monitoring, but the researchers wanted to obtain actual measures of the exposure
of a sample of dogs. To do this, they placed the detectors in holders and attached them to the collars
of the dogs. One problem was that the holders might in some way affect the radon readings. The
researchers therefore devised a laboratory experiment to study the effects of the holders. Detectors
from four series of production were available, so they used a two-way ANOVA design (series with 4
levels and holder with 2, representing the presence or absence of a holder). All detectors were
exposed to the same radon source and the radon measure in picocuries per liter was recorded.26 The
F statistic for the effect of series is 7.02, for holder it is 1.96, for the interaction it is 1.24, and N =
69.

(a) Using Table E or statistical software, find approximate P-values for the three test statistics.
Summarize the results of these three significance tests.

(b) The mean radon readings for the four series were 330, 303, 302, and 295. The results of the
significance test for series were of great concern to the researchers. Explain why.

13.43 A comparison of plant species under low water conditions.

The PLANTS1 data file gives the percent of nitrogen in four different species of plants grown in a
laboratory. The species are Leucaena leucocephala, Acacia saligna, Prosopis juliflora, and
Eucalyptus citriodora. The researchers who collected these data were interested in commercially
growing these plants in parts of the country of Jordan where there is very little rainfall. To examine
the effect of water, they varied the amount per day from 50 millimeters (mm) to 650 mm in 100 mm
increments. There were 9 plants per species-by-water combination. Because the plants are to be used
primarily for animal food, with some parts that can be consumed by people, a high nitrogen content

is very desirable.  PLANTS1

(a) Find the means for each species-by-water combination. Plot these means versus water for the
four species, connecting the means for each species by lines. Describe the overall pattern.

(b) Find the standard deviations for each species-by-water combination. Is it reasonable to pool the
standard deviations for this problem? Note that with sample sizes of size 9, we expect these standard
deviations to be quite variable.

(c) Run the two-way analysis of variance. Give the results of the hypothesis tests for the main effects
and the interaction.
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13.44 Examination of the residuals.

Refer to the previous exercise. Examine the residuals. Are there any unusual patterns or outliers? If
you think that there are one or more points that are somewhat extreme, rerun the two-way analysis

without these observations. Does this change the results in any substantial way?  PLANTS1

13.45 Analysis using multiple one-way ANOVAs.

Refer to Exercise 13.43. Run a separate one-way analysis of variance for each water level. If there is
evidence that the species are not all the same, use a multiple-comparisons procedure to determine
which pairs of species are significantly different. In what way, if any, do the differences appear to

vary by water level? Write a short summary of your conclusions.  PLANTS1

13.46 More on the analysis using multiple one-way ANOVAs.

Refer to Exercise 13.43. Run a separate oneway analysis of variance for each species and summarize
the results. Since the amount of water is a quantitative factor, we can also analyze these data using
regression. Run simple linear regressions separately for each species to predict nitrogen percent from
water. Use plots to determine whether or not a line is a good way to approximate this relationship.

Summarize the regression results and compare them with the one-way ANOVA results. 
PLANTS1

13.47 Another comparison of plant species under low water conditions.

Refer to Exercise 13.43. Additional data collected by the same researchers according to a similar
design are given in the PLANTS2 data file. Here, there are two response variables. They are fresh
biomass and dry biomass. High values for both of these variables are desirable. The same four
species and seven levels of water are used for this experiment. Here, however, there are four plants
per species-by-water combination. Analyze each of the response variables in the PLANTS2 data file

using the outline from Exercise 13.43.  PLANTS2

13.48 Examination of the residuals.

Perform the tasks described in Exercise 13.44 for the two response variables in the PLANTS2 data

file.  PLANTS2

13.49 Analysis using multiple one-way ANOVAs.

Perform the tasks described in Exercise 13.45 for the two response variables in the PLANTS2 data

file.  PLANTS2

13.50 More on the analysis using multiple one-way ANOVAs.

Perform the tasks described in Exercise 13.46 for the two response variables in the PLANTS2 data

file.  PLANTS2
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13.51 Are insects more attracted to male plants?

Some scientists wanted to determine if there are gender-related differences in the level of herbivory
for the jack-in-the-pulpit, a spring-blooming perennial plant common in deciduous forests. A study
was conducted in southern Maryland in forests associated with the Smithsonian Environmental
Research Center (SERC).27 To determine the effects of flowering and floral characteristics on
herbivory, the researchers altered the floral morphology of male and female plants. The three levels
of floral characteristics were (1) the spathes were completely removed; (2) in females, a gap was
created in the base of the spathe, and in males, the gap was closed; (3) plants were not altered
(control). The percent of leaf area damaged by thrips (an order of insects) between early May and
mid-June was recorded for each of 30 plants per combination of sex and floral characteristic. Here is
the table of means and standard deviations (in parentheses):

Floral Characteristic Level
Gender 1 2 3
Males 0.11 (0.081) 1.28 (0.088) 1.63 (0.382)
Females 0.02 (0.002) 0.58 (0.321) 0.20 (0.035)

(a) Give the degrees of freedom for the F statistics that are used to test for gender, floral
characteristic, and the interaction.

(b) Describe the main effects and interaction using appropriate graphs.

(c) The researchers used the natural logarithm of percent area as the response in their analysis. Using
the relationship between the means and standard deviations, explain why this was done.

13.52 Change-of-majors study: HSS.

Refer to the data given for the change-of-majors study in the data file MAJORS. Consider gender
and whether students changed majors as the two factors. Analyze the data for HSS, the high school
science grades. Your analysis should include a table of sample sizes, means, and standard deviations;
Normal quantile plots; a plot of the means; and a two-way ANOVA using sex and major as the

factors. Write a short summary of your conclusions.  MAJORS

13.53 Change-of-majors study: HSE.

Refer to the previous exercise. Analyze the data for HSE, the high school English grades. Your
analysis should include a table of sample sizes, means, and standard deviations; Normal quantile
plots; a plot of the means; and a two-way ANOVA using sex and major as the factors. Write a short

summary of your conclusions.  MAJORS

13.54 Change-of-majors study: GPA.

Refer to Exercise 13.52. Analyze the data for GPA, the college grade point average. Your analysis
should include a table of sample sizes, means, and standard deviations; Normal quantile plots; a plot
of the means; and a two-way ANOVA using sex and major as the factors. Write a short summary of

your conclusions.  MAJORS

13.55 Change-of-majors study: SATV.
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Refer to Exercise 13.52. Analyze the data for SATV, the SAT Verbal score. Your analysis should
include a table of sample sizes, means, and standard deviations; Normal quantile plots; a plot of the
means; and a two-way ANOVA using sex and major as the factors. Write a short summary of your

conclusions.  MAJORS

13.56 Search the Internet.

Search the Internet or your library to find a study that is interesting to you and uses a two-way
ANOVA to analyze the data. First describe the question or questions of interest and then give the
details of how ANOVA was used to provide answers. Be sure to include how the study authors
examined the assumptions for the analysis. Evaluate how well the authors used ANOVA in this
study. If your evaluation finds the analysis deficient, make suggestions for how it could be
improved.
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Introduction

The simple and multiple linear regression methods we studied in Chapters 10 and
11 are used to model the relationship between a quantitative response variable and
one or more explanatory variables. In this chapter we describe similar methods that
are used when the response variable is a categorical variable with two possible
values, such as a student applicant receives or does not receive financial aid, a
patient lives or dies during emergency surgery, or your cell phone coverage is
acceptable or not.

binomial setting, p. 322

In general, we call the two outcomes of the response variable “success” and
“failure” and represent them by 1 (for a success) and 0 (for a failure). The mean is
then the proportion of 1s, p = P(success). If our data are n independent
observations, we have the binomial setting. What is new in this chapter is that the
data now include at least one explanatory variable x and the probability p depends
on the value of x. For example, suppose that we are studying whether a student
applicant receives (y = 1) or is denied (y = 0) financial aid. Here, p is the
probability that an applicant receives aid, and possible explanatory variables
include (a) the financial support of the parents, (b) the income and savings of the
applicant, and (c) whether the applicant has received financial aid before. Just as in
multiple linear regression, the explanatory variables can be either categorical or
quantitative. Logistic regression is a statistical method for describing these kinds of
relationships.1
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14.1 The Logistic Regression Model

When you complete this section, you will be able to

• Find the odds from a single probability.

• Describe the statistical model for logistic regression with a single
explanatory variable.

• Find the odds ratio for comparing two proportions.

Binomial distributions and odds

In Chapter 5 we studied binomial distributions and in Chapter 8 we learned how to
do statistical inference for the proportion p of successes in the binomial setting. We
start with a brief review of some of these ideas that we will need in this chapter.

Example

14.1 A break from Facebook.

Example 8.1 (page 488) describes a Pew Internet survey of 1006 adults living
in the United States. The 525 people who reported that they were Facebook
users were asked, “Have you ever voluntarily taken a break from Facebook for
a period of several weeks or more?” A total of 320 responded, “Yes, I have
done this.”

In the notation of Chapter 5, p is the proportion of U.S. adult Facebook
users who took a break from Facebook. The number of adults who took a
break in an SRS of size n has the binomial distribution with parameters n and
p. The sample size of Facebook users is n = 525 and the number who took a
break is the count X = 320 The sample proportion is

p^=320525=0.6095

odds, p. 632

Logistic regressions work with odds rather than proportions. The odds are
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simply the ratio of the proportions for the two possible outcomes. If p^ is the
proportion for one outcome, then 1−p^ is the proportion for the second outcome:

odds=p^1−p^

A similar formula for the population odds is obtained by substituting p for p^ in
this expression.

Example

14.2 Odds of taking a break.

For the Facebook data, the proportion of adults who took a break in the sample
of Facebook users is p^=0.6095, so the proportion of adults who did not take a
break is

1−p^=1−0.6095=0.3905

Therefore, the odds of taking a break are

odds=p^1−p^

=0.60950.3905

= 1.561

When people speak about odds, they often round to integers or fractions. If we
round 1.561 to 1.5 = 3/2, we would say that the odds are approximately 3 to 2 that
a Facebook user took a break. In a similar way, we could describe the odds that a
Facebook user did nottake a break as 2 to 3.

USE YOUR KNOWLEDGE

14.1 Odds of drawing an ace.

If you deal one card from a standard deck, the probability that the card is
an ace is 4/52 = 1/13. Find the odds of drawing an ace.

1234



14.2 Given the odds, find the probability.

If you know the odds, you can find the probability by solving the odds
equation for the probability. So, p^=odds/(odds+1) If the odds of an
outcome are 4 (or 4 to 1), what is the probability of the outcome?

Odds for two groups

The Facebook users sample of 525 adults contained 292 women and 233 men, with
47 women and 21 men who responded that they increased their use of Facebook
over the past year. Using the methods of Chapter 8, we can compare the
proportions of male and female Facebook users who increased their use using a
confidence interval (page 490) or significance test (page 495).

Example

14.3 Comparing the proportions of male and female Facebook users who
increased their use.

FACETIM

Figure 14.1 contains output for this comparison. The sample proportion for
women is 0.160959 (16%), and the sample proportion for men is 0.090129
(9%). The difference is 0.07083, and the 95% confidence interval is (0.015,
0.127). We can summarize this result by saying, “In this sample of Facebook
users, the percent who increased their use is 7% higher among women than
among men. This difference is statistically significant (z = 2.40, P = 0.016).”
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FIGURE 14.1
Minitab output for the comparison of two proportions (female versus male Facebook users who
took a break), for Example 14.3.

Another way to analyze these data is to use logistic regression. The explanatory
variable is gender, a categorical variable. To use this in a regression (logistic or
otherwise), we need to use a numeric code. The usual way to do this is with an
indicator variable. For our problem we will use an indicator of whether or not the
adult is a woman:

indicator variable

x={1ifthe adult is a woman0if the adult is  a  man

The response variable is the proportion of Facebook users who took a break.
For use in a logistic regression, we perform two transformations on this variable.
First, we convert to odds. For women,

odds=p^1−p^

=0.1609591−0.160959

= 0.19184

Similarly, for men we have

odds=p^1−p^

=0.0901291−0.090129

= 0.099057
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USE YOUR KNOWLEDGE

14.3 Energy drink commercials.

A study was designed to compare two energy drink commercials. Each
participant was shown the commercials, A and B, in random order and
asked to select the better one. There were 140 women and 130 men who
participated in the study. Commercial A was selected by 65 women and
by 67 men. Find the odds of selecting Commercial A for the men. Do
the same for the women.

14.4 Find the odds.

Refer to the previous exercise. Find the odds of selecting Commercial B
for the men. Do the same for the women.

Model for logistic regression

In simple linear regression we modeled the mean μy of the response variable y as a
linear function of the explanatory variable: μy = β0 + β1x. When y is just 1 or 0
(success or failure), the mean is the probability p of a success. Logistic regression
models the mean p in terms of an explanatory variable x. We might try to relate p
and x as in simple linear regression: p = β0 + β1x. Unfortunately, this is not a good
model. Whenever β1 ≠ 0, extreme values of x will give values of β0 + β1x that fall
outside the range of possible values of p, 0 ≤ p ≤ 1.

The logistic regression solution to this difficulty is to transform the odds (p/(1 −
p)) using the natural logarithm. We use the term log odds or logit for this
transformation. As we did with linear regression, we use y for the response
variable. So for women,

log odds

logit

y = log(odds) = log(0.19184) = −1.6511

and for men,

y = log(odds) = log(0.099057) = −2.3121

In these expressions for the log odds we use y as the observed value of the
response variable, the log odds of having increased Facebook use. We are now
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ready to build the logistic regression model.
We model the log odds as a linear function of the explanatory variable:

log(p1−p)=β0+β1x

Figure 14.2 graphs the relationship between p and x for some different values of β0
and β1. For logistic regression we use natural logarithms. There are tables of
natural logarithms, and many calculators have a built-in function for this
transformation.

FIGURE 14.2
Plot of p versus x for different logistic regression models.

USE YOUR KNOWLEDGE

14.5 Find the odds.

Refer to Exercise 14.3. Find the log odds for the men and the log odds
for the women.

14.6 Find the odds.

Refer to Exercise 14.4. Find the log odds for the men and the log odds
for the women.
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LOGISTIC REGRESSION MODEL

The statistical model for logistic regression is

log(p1−p)=β0+β1x

where p is a binomial proportion and x is the explanatory variable. The parameters of the logistic
regression model are β0 and β1.

Example

14.4 Model for increased use of Facebook.

For our Facebook use example, there are n = 525 Facebook users in the
sample. The explanatory variable is gender, which we have coded using an
indicator variable with values x = 1 for women and x = 0 for men. The
response variable is also an indicator variable. Thus, the Facebook user either
increased his or her use of Facebook or did not increase his or her use. Think
of the process of randomly selecting a Facebook user and recording the value
ofy, and whether or not the Facebook user increased his or her use. The model
says that the probability (p) that this user increased his or her use can depend
upon the user’s gender (x = 1 or x = 0). So there are two possible values forp,
say pwomen and pmen.

Logistic regression with an indicator explanatory variable is a very special case.
It is important because many multiple logistic regression analyses focus on one or
more such variables as the primary explanatory variables of interest. For now, we
use this special case to understand a little more about the model.

The logistic regression model specifies the relationship between p and x. Since
there are only two values for x, we write both equations. For women,

log(pwomen1−pwomen)=β0+β1

and for men,

log(pmen1−pmen)=β0

Note that there is a β1 term in the equation for women because x = 1, but it is
missing in the equation for men because x = 0.
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Fitting and interpreting the logistic regression model

In general, the calculations needed to find estimates b0and b1 for the parameters β0
and β1 are complex and require the use of software. When the explanatory variable
has only two possible values, however, we can easily find the estimates. This
simple framework also provides a setting where we can learn what the logistic
regression parameters mean.

Example

14.5 Log odds for increasing Facebook use.

In the Facebook example, we found the log odds for women,

y=log(p^women1−p^women)=−1.6511

and for men,

y=log(p^men1−p^men)=−2.3121

The logistic regression model for women is

log(pwomen1−pwomen)=β0+β1

and for men it is

log(pmen1−pmen)=β0

To find the estimates b0 and b1, we match the female and male model
equations with the corresponding data equations. Thus, we see that the
estimate of the intercept b0 is simply the log odds for the men:

b0 = −2.1321

and the estimate of the slope is the difference between the log odds for the
women and the log odds for the men:

b1 = −1.6511 − (−2.3121) = 0.6610

The fitted logistic regression model is

log (odds) = −1.6511 + 0.6610x

The slope in this logistic regression model is the difference between the log
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odds for men and the log odds for women. Most people are not comfortable
thinking in the log odds scale, so interpretation of the results in terms of the
regression slope is difficult. Usually, we apply a transformation to help us. With a
little algebra, it can be shown that

oddswomenoddsmen=e0.6610=1.94

The transformation e0.6610 undoes the logarithm and transforms the logistic
regression slope into an odds ratio, in this case the ratio of the odds that a woman
increases her use of Facebook to the odds that a man increases his use of Facebook.
In other words, we can multiply the odds for men by the odds ratio to obtain the
odds for women:

odds ratio

oddswomen = 1.94 × oddsmen

In this case, we would say that the odds for women are about twice the odds for
men.

Notice that we have chosen the coding for the indicator variable so that the
regression slope is positive. This will give an odds ratio that is greater than 1. Had
we coded men as 1 and women as 0, the sign of the slope would be reversed, the
fitted equation would be log (odds) = −1.6511 − 0.6610x, and the odds ratio would
be e−0.6610 = 0.5163. The odds for women are about half of the odds for men.

Logistic regression with an explanatory variable having two values is a very
important special case. Here is an example where the explanatory variable is
quantitative.

Example

14.6 Is a movie going to be profitable?

MOVIES

The MOVIES data file (described on page 637) includes both the movie’s
budget and the total U.S. revenue. For this example, we will classify each
movie as “profitable” (y = 1) if U.S. revenue is larger than the budget and
nonprofitable (y = 0) otherwise. This is our response variable. The data file
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contains several explanatory variables, but we will focus here on the natural
logarithm of the opening-weekend revenue. Figure 14.3 is a scatterplot of the
data with a scatterplot smoother (page 96). The probability that a movie is
profitable increases with the log opening-weekend revenue. Because the curve
suggested by the smoother is reasonably close to an S-shaped curve like those
in Figure 14.2, we fit the logistic regression model

log(p1−p)=β0+β1x

where p is the probability that the movie is profitable and x is the log opening-
weekend revenue. The model for estimated log odds fitted by software is

log (odds) = b0 + b1x = −3.1658 + 1.3083x

The odds ratio is eb1 = 3.700. This means that if log opening-weekend revenue
x increases by one unit (roughly $2.71 million), the odds that the movie will be
profitable increase by 3.7 times.

FIGURE 14.3
Scatterplot of profit (Yes = 1, No = 0) versus the log opening-weekend revenue (LOpening)
with a smooth function, for Example 14.6.
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USE YOUR KNOWLEDGE

14.7 Find the logistic regression equation and the odds ratio.

Refer to Exercises 14.3 and 14.5. Find the logistic regression equation
and the odds ratio.

14.8 Find the logistic regression equation and the odds ratio.

Refer to Exercises 14.4 and 14.6. Find the logistic regression equation
and the odds ratio.
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14.2 Inference for Logistic Regression

When you complete this section, you will be able to

• For a logistic regression with a single explanatory variable, use software
output to identify the estimates of the regression parameters and write the
equation for the fitted model.

• For a logistic regression with a single explanatory variable, use software
output to identify the 95% confidence interval for the regression slope and
the significance test results for the null hypothesis that the slope is zero.

• For a logistic regression with a single explanatory variable, use software
output to identify the odds ratio and the 95% confidence interval for the
odds ratio. Interpret the odds ratio.

• For a logistic regression with several explanatory variables, use software
output to identify the estimates of the regression parameters and write the
equation for the fitted model.

• For a logistic regression with several explanatory variables, use software
output to identify the significance test results for the null hypothesis that
all regression slopes are zero.

• For a logistic regression with several explanatory variables, use software
output to identify the 95% confidence intervals for the regression
coefficients and the significance test results for the null hypothesis that
each of the regression coefficients is zero.

• For a logistic regression with several explanatory variables, use software
output to identify the odds ratio and the 95% confidence interval for the
odds ratio for each explanatory variable. Interpret the odds ratios.

Statistical inference for logistic regression is very similar to statistical inference
for simple linear regression. We calculate estimates of the model parameters and
standard errors for these estimates. Confidence intervals are formed in the usual
way, but we use standard Normalz*-values rather than critical values from the t
distributions. The ratio of the estimate of the slope to the standard error is the basis
for hypothesis tests. Often the test statistics are given as the squares of these ratios,
and in this case the P-values are obtained from the chi-square distribution with 1
degree of freedom.

Confidence Intervals and Significance Tests
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CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS
FOR LOGISTIC REGRESSION PARAMETERS

A level C confidence interval for the slope β1 is

b1 ± z*SEb1

The ratio of the odds for a value of the explanatory variable equal to x + 1 to the odds for a value of
the explanatory variable equal to x is the odds ratio.

A level C confidence interval for the odds ratio eβ1 is obtained by transforming the confidence
interval for the slope:

(eb1 − z*SEb1, eb1 + z*SEb1)

In these expressions z* is the value for the standard Normal density curve with area C between −z*

and z*.

To test the hypothesis H0: β1 = 0, compute the test statistic

z=b1SEb1

The P-value for the significance test of H0 against Ha: β1 ≠ 0 is computed using the fact that, when
the null hypothesis is true, z has approximately a standard Normal distribution.

The statistic z is sometimes called a Wald statistic. Output from some
statistical software reports the significance test result in terms of the square of the z
statistic.

Wald statistic

X2 = z2

chi-square statistic, p. 538

This statistic is called a chi-square statistic. When the null hypothesis is true, it has
a distribution that is approximately a χ2 distribution with 1 degree of freedom, and
the P-value is calculated as P(χ2 ≥ X2). Because the square of a standard Normal
random variable has a χ2 distribution with 1 degree of freedom, thez statistic and
the chi-square statistic give the same results for statistical inference.

We have expressed the hypothesis-testing framework in terms of the slope β1
because this form closely resembles what we studied in simple linear regression. In
many applications, however, the results are expressed in terms of the odds ratio. A
slope of 0 is the same as an odds ratio of 1, so we often express the null hypothesis
of interest as “the odds ratio is 1.” This means that the two odds are equal and the
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explanatory variable is not useful for predicting the odds.

Example

14.7 Software output.

TIM

Figure 14.4 gives the output from Minitab for the Facebook increased use
example described in Example 14.5. The parameter estimates are given as b0 =
−2.31206 and b1 = 0.660953. The standard errors are 0.228771 and 0.278737,
respectively.
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FIGURE 14.4
Logistic regression output from Minitab for the Facebook increased use data, for Example
14.7.

The 95% confidence interval for the slope is

b1 ± z*SEb1 = 0.660953 ± (1.96) (0.278737)

= 0.660953 ± 0.546325

We are 95% confident that the slope is between 0.1146 and 1.2073.
The output also provides the odds ratio 1.94 and a 95% confidence interval,

1.12 to 3.34. For this problem we would report, “Female Facebook users are
more likely to increase their use of Facebook than male Facebook users (odds
ratio = 1.94, 95% CI = 1.12 to 3.34).”

USE YOUR KNOWLEDGE

14.9 Verify the calculation of the odds ratio.

FACETIM

Refer to Example 14.7. Verify that the odds ratio, 1.94, is eb1.

14.10 Verify the calculation of the confidence interval.

FACETIM

Refer to Example 14.7. Verify that the 95% confidence interval for the
odds ratio, 1.12 to 3.34, is

(eb1 − z*SEb1, eb1 + z*SEb1)

where z* Explain why we use this value of z* in the calculation.
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In applications such as these, it is standard to use 95% for the confidence
coefficient. With this convention, the confidence interval gives us the result of
testing the null hypothesis that the odds ratio is 1 for a significance level of 0.05. If
the confidence interval does not include 1, we reject H0 and conclude that the odds
for the two groups are different; if the interval does include 1, the data do not
provide enough evidence to distinguish the groups in this way.

The following example is typical of many applications of logistic regression.
Here there is a designed experiment with five different values for the explanatory
variable.

Example

14.8 An insecticide for aphids.

INSECTS

An experiment was designed to examine how well the insecticide rotenone
kills an aphid, called Macrosiphoniella sanborni, that feeds on the
chrysanthemum plant.2 The explanatory variable is the concentration (in log of
milligrams per liter) of the insecticide. At each concentration, approximately
50 insects were exposed. Each insect was either killed or not killed. We
summarize the data using the number killed. The response variable for logistic
regression is the log odds of the proportion killed. Here are the data:
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Concentration (log) Number of insects Number killed
0.96 50 6
1.33 48 16
1.63 46 24
2.04 49 42
2.32 50 44

If we transform the response variable (by taking log odds) and use least squares,
we get the fit illustrated in Figure 14.5. The logistic regression fit is given in Figure
14.6. It is a transformed version of Figure 14.5 with the fit calculated using the
logistic model.

FIGURE 14.5
Plot of log odds of percent killed versus log concentration for the insecticide data, for Example
14.8.
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FIGURE 14.6
Plot of the percent killed versus log concentration with the logistic fit for the insecticide data, for
Example 14.8.

One of the major themes of this text is that we should present the results of a
statistical analysis with a graph. For the insecticide example we have done this
with Figure 14.6, and the results appear to be convincing. But suppose that
rotenone has no ability to kill Macrosiphoniella sanborni. What is the chance that
we would observe experimental results at least as convincing as what we observed
if this supposition were true? The answer is the P-value for the test of the null
hypothesis that the logistic regression slope is zero. If this P-value is not small, our
graph may be misleading. Statistical inference provides what we need.

Example

14.9 Software output.

Figure 14.7 gives the output from Minitab, SPSS, and JMP for the logistic
regression analysis of the insecticide data. The model is
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log(p1−p)=β0+β1x

where the values of the explanatory variable x are 0.96, 1.33, 1.63, 2.04, and
2.32. From the output in Minitab and SPSS, we see that the fitted model is

log (odds) = b0 + b1x = −4.89 + 3.11x

This is the fit that we plotted in Figure 14.6. The null hypothesis that β1 = 0 is
clearly rejected (z =8.01 in Minitab, Wald X2 = 64.233 in SPSS, and X2 =
64.23 in JMP; P < 0.001 for all). We calculate a 95% confidence interval for
β1 using the estimate b1 = 3.1088 and its standard error SEb1 = 0.3879 given in
the output:

b1 ± z*SEb1 = 3.1088 ± (1.96) (0.3879)

= 3.1088 ± 0.7603

We are 95% confident that the true value of the slope is between 2.35 and
3.87.
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FIGURE 14.7
Logistic regression output from (a) Minitab, (b) SPSS, and (c) JMP for the insecticide data,
for Example 14.9.

The odds ratio is given on the Minitab output as 22.39. An increase of one
unit in the log concentration of insecticide (x) is associated with a 22-fold
increase in the odds that an insect will be killed. Minitab gives the 95%
confidence interval for the odds ratio, 10.47 to 47.90. We could calculate this
from the confidence interval for the slope:

(eb1−z*SEb1, eb1+z*SEb1 = (e2.3485, e3.8691)

= (10.47, 47.90)

Note again that the test of the null hypothesis that the slope is 0 is the same
as the test of the null hypothesis that the odds are 1. If we were reporting the
results in terms of the odds, we could say, “The odds of killing an insect
increase by a factor of 22.4 for each unit increase in the log concentration of
insecticide (X2 = 64.23, P < 0.001; 95% CI = 10.5 to 47.9).”
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Note that JMP gives the fitted model as

log (odds) = 4.89 − 3.11x

We see that the regression coefficients b0 and b1 are −1 times the coefficients given
by Minitab and SPSS. The reason for this is that JMP models the log odds that an
insect is not killed rather than the log odds that an insect is killed, as shown in the
other two outputs. Always examine software output carefully to be sure that the
results you are getting correspond exactly to the analysis that you are trying to
perform. For this analysis, we know from our graph in Figure 14.6 that the slope
should be positive.
In Example 14.6 we studied the problem of predicting whether or not a movie was
going to make a profit using the log opening weekend revenue as the explanatory
variable. We now revisit this example and show how statistical inference is an
important part of the conclusion.

Example

14.10 Software output.

MOVIES

Figure 14.8 gives the output from Minitab for a logistic regression analysis
using log opening-weekend revenue as the explanatory variable. From the
Minitab output, we see that the fitted model is

log (odds) = b0 + b1x = −3.166 + 1.3083x

From the output, we see that because P = 0.007, we can reject the null
hypothesis that β1 = 0. The value of the test statistic is X2 = 7.26 with 1 degree
of freedom. We use the estimate b1 = 1.3083 and its standard error SEb1 =
0.4855 to compute the 95% confidence interval for β1:
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b1 ± z*SEb1 = 1.3083 ± (1.96) (0.4855)

= 1.3083 ± 0.9516

Our estimate of the slope is 1.3083, and we are 95% confident that the true
value is between 0.3567 and 2.2599. For the odds ratio, the estimate on the
output is 3.70. The 95% confidence interval is

(eb1−z*SEb1, eb1+z*SEb1 = (e0.3567, e2.2599)

= (1.43, 9.58)

FIGURE 14.8
Logistic regression output from Minitab for the movie profitability data with log opening-
weekend revenue as the explanatory variable, for Example 14.10.

We estimate that an opening-weekend revenue that is one unit larger (roughly
$2.71 million) will increase the odds that a movie is profitable by about 4 times.
The data, however, do not give us a very accurate estimate. The odds ratio could be
as small as 1.43 or as large as 9.58 with 95% confidence. We have evidence to
conclude that movies with higher opening-weekend revenues are more likely to be
profitable, but establishing the relationship accurately would require more data.
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Note that the SAS output (not shown), like JMP, gives the same estimates of the
regression coefficients but with opposite signs. By default, this software models
the odds that the movie is not profitable.

Multiple logistic regression

The movie example that we just considered naturally leads us to the next topic. The
MOVIES data file includes additional explanatory variables. Do these other
explanatory variables contain additional information that will give us a better
prediction of profitability? We use multiple logistic regression to answer this
question. Generating the computer output is easy, just as it was when we
generalized simple linear regression with one explanatory variable to multiple
linear regression with more than one explanatory variable in Chapter 11. The
statistical concepts are similar, although the computations are more complex. Here
is the example.

multiple logistic regression

Example

14.11 Software output.

MOVIES

As in Example 14.10, we predict the odds that a movie is profitable. The
explanatory variables are log opening-weekend revenue (LOpening), number
of theaters (Theaters), and the movie’s IMDb rating at the end of the first week
(Opinion), which is on a 1 to 10 scale (10 being best). Figure 14.9 gives the
outputs from SAS, Minitab, and SPSS. The fitted model is
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log (odds) = b0 + b1 LOpening + b2 Theaters + b3 Opinion

= −2.013 + 2.147 LOpening − 0.001 Theaters − 0.109 Opinion

Note that the coefficients given by SAS have the signs reversed because SAS
models the odds that the move will not be profitable.

When analyzing data using multiple linear regression, we first examine the
hypothesis that all the regression coefficients for the explanatory variables are
zero. We do the same for multiple logistic regression. The hypothesis

H0: β1 = β2 = β3 = 0
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FIGURE 14.9
Logistic regression output from (a) SAS, (b) Minitab, and (c) SPSS for the movie
profitability data with log opening-weekend revenue, number of theaters, and the movie’s
IMDb rating as the explanatory variables, for Example 14.11.

is tested by a chi-square statistic with 3 degrees of freedom. (The degrees of
freedom are 3 because there are 3 coefficients that are set to zero in the null
hypothesis.) For Minitab, this is given in the last line of the output, and the
statistic is called “G.” The value is G = 12.716 and the P-value is 0.005. We
reject H0 and conclude that one or more of the explanatory variables can be
used to predict the odds that a movie is profitable.

We now examine the coefficients for each variable and the tests that each
of these is zero in a model that contains the other two. The P-values are 0.028,
0.275, and 0.808. The null hypotheses H0: β2 = 0 and H0: β3 = 0 cannot be
rejected. That is, log opening-weekend revenue is the only predictor that adds
significant predictive ability once the other two are already in the model.

Our initial multiple logistic regression analysis told us that the explanatory
variables contain information that is useful for predicting whether or not the movie
is profitable. Because the explanatory variables are correlated, however, we cannot
clearly distinguish which variables or combinations of variables are important.
Further analysis of these data using subsets of the three explanatory variables is
needed to clarify the situation. We leave this work for the exercises.

CHAPTER 14 Summary

If p^ is the sample proportion, then the odds are p^/(1−p^), the ratio of the
proportion of times the event happens to the proportion of times the event does not
happen.

The logistic regression model relates the log of the odds to the explanatory
variable:

log(pi1−pi)=β0+β1xi

where the response variables for i = 1, 2,..., n are independent binomial random
variables with parameters 1 and pi; that is, they are independent with distributions
B(1, pi). The explanatory variable is x.

The parameters of the logistic model are β0 and β0.
The odds ratio is eβ1 where β1 is the slope in the logistic regression model.

A level C confidence interval for the intercept β0 is

b0 ± z*SEb0

A level C confidence interval for the slope β1 is
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b1 ± z*SEb1

A level C confidence interval for the odds ratio eβ1 is obtained by
transforming the confidence interval for the slope:

(eb1−z*SEb1, eb1+z*SEb1

In these expressions z* is the value for the standard Normal density curve with
area C between −z* and z*.

To test the hypothesis H0: β1 = 0, compute the test statistic

z=b1SEb1

and use the fact that z has a distribution that is approximately the standard Normal
distribution when the null hypothesis is true. This statistic is sometimes called the
Wald statistic. An alternative equivalent procedure is to report the square of z,

X2 = z2

This statistic has a distribution that is approximately a χ2 distribution with 1
degree of freedom, and the P-value is calculated as P(χ2 ≥ X2). This is the same as
testing the null hypothesis that the odds ratio is 1.

In multiple logistic regression the response variable has two possible values,
as in logistic regression, but there can be several explanatory variables.
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CHAPTER 14 Exercises
For Exercises 14.1 and 14.2, see page 14-3; for Exercises 14.3 and 14.4, see page 14-4; for
Exercises 14.5 and 14.6, see page 14-6; for Exercises 14.7 and 14.8, see page 14-9; and for
Exercises 14.9 and 14.10, see page 14-11.

14.11 How did you use your cell phone?

A Pew Internet Poll asked cell phone owners about how they used their cell phones. One question
asked whether or not during the past 30 days they had used their phone while in a store to call a
friend or family member for advice about a purchase they were considering. The poll surveyed 1003
adults living in the United States by telephone. Of these, 462 responded that they had used their cell
phone while in a store within the last 30 days to call a friend or family member for advice about a
purchase they were considering.3

(a) What proportion of those surveyed reported that they used their cell phone while in a store within
the last 30 days to call a friend or family member for advice about a purchase they were
considering?

(b) Find the odds for the probability that you found in (a).

14.12 Find some odds.

For each of the following probabilities, find the odds: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Make a
plot of the odds versus the probabilities and describe the relationship.

14.13 A logistic model for cell phones.

Refer to Exercise 14.11. Suppose that you want to investigate differences in cell phone use among
customers of different ages. You create an indicator explanatory variable x that has the value 1 if the
customer is 25 years of age or less and is 0 if the customer is over 25 years of age.

(a) Describe the statistical model for logistic regression in this setting.

(b) Explain the relationship between the regression coefficients and the odds ratios for the two
groups of customers defined by x.

14.14 Another logistic model for cell phones and age.

Refer to the previous exercise. Suppose that you use the actual value of age in years as the
explanatory variable in a logistic regression model.

(a) Describe the statistical model for logistic regression in this setting.

(b) Interpret the regression slope in terms of an effect based on a difference in age of one year.

(c) This model requires an assumption that is not needed in the model that you described in the

1261



previous exercise. Explain the assumption and describe a method for examining whether or not it is a
reasonable assumption to make for these data. (Hint: Refer to Example 14.8 and Figure 14.5, page
14-12.)

14.15 A logistic regression for teeth and military service.

Exercise 8.58 (page 523) describes data on the numbers of U.S. recruits who were rejected for
service in a war against Spain because they did not have enough teeth. The exercise compared the
rejection rate for recruits who were under the age of 20 with the rate for those who were 40 or over.
To run a logistic regression for this setting we define an indicator explanatory variable x with values
of 0 for age under 20 and 1 for age 40 or over. Figure 14.10 gives output from Minitab for this

analysis.  TEETH1

(a) How many recruits were examined? How many were rejected and how many were not rejected?

(b) Write the fitted logistic regression model.

FIGURE 14.10
Logistic regression output from Minitab for predicting recruit rejection using age in two
categories, for Exercises 14.15 to 14.17.

14.16 Inference for teeth and military service.

Refer to the previous exercise.  TEETH1

(a) Using the information provided in the output in Figure 14.10, calculate and interpret the 95%
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confidence interval for the regression slope.

(b) Describe and interpret the results of the significance test for the regression slope. Be sure to give
the null and alternative hypotheses, the test statistic, and the P-value with your conclusion.

14.17 Odds ratio for teeth and military service.

Refer to the two previous exercises.  TEETH1

(a) Give the odds ratio for this analysis.

(b) Give the 95% confidence interval for the odds ratio.

(c) Give a brief description of the meaning of the odds ratio in this analysis.

14.18 Teeth and military service with six age categories.

In Exercises 14.15 to 14.17 we used logistic regression to study the relationship between being
rejected for military service because a recruit did not have enough teeth and age categorized into two
groups, under 20 and 40 or over. Data are available for all recruits categorized into six age groups.
Let’s look at a logistic regression that uses all the data to predict rejection for military service based
on teeth. There are six age groups: under 20, 20–25, 25–30, 30–35, 35–40, and 40 or over. We
define indicator explanatory variables for the last five groups. This is similar to defining a single

indicator explanatory variable for an analysis of two groups.  TEETH2

Figure 14.11 gives the Minitab output for the logistic regression to predict rejection using the five
age indicator explanatory variables.

(a) Use the output to find the fitted model.

(b) Is there a pattern in the values of the regression slopes? If yes, describe it.

14.19 Inference for the multiple logistic regression model.

Refer to the previous exercise.  TEETH2

(a) Describe and interpret the significance test that tests the null hypothesis that all regression
coefficients are zero.

(b) Using the information provided in the output in Figure 14.11, calculate and interpret the 95%
confidence interval for each of the regression slopes.

(c) Describe and interpret the results of the significance test for each regression slope. Be sure to
give the null and alternative hypotheses, the test statistic, and the P-value with your conclusion.
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FIGURE 14.11
Logistic regression output from Minitab for predicting recruit rejection using age in six
categories, for Exercises 14.18 to 14.21.

14.20 Odds ratios for the multiple logistic regression model.

Refer to the two previous exercises.  TEETH2

(a) Give the odds ratio for each explanatory variable.

(b) Give the 95% confidence interval for each odds ratio.

(c) Give a brief description of the meaning of each odds ratio in this analysis.

14.21 Compare the multiple logistic regression analysis with the two-way
table.

The data analyzed in Figure 14.11 were analyzed in Exercise 9.22 and Figure 9.7 (page 557) using a
2 × 6 table of counts. Compare these two approaches to the analysis of these data. Describe some
strengths and weaknesses of each approach. Which do you prefer? Give reasons for your answer.
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14.22 Exergaming in Canada.

Exergames are active video games such as rhythmic dancing games, virtual bicycles, balance board
simulators, and virtual sports simulators that require a screen and a console. A study of exergaming
by students in grades 10 and 11 in Montreal, Canada, examined many factors related to participation
in exergaming.4 Of the 358 students who reported that they stressed about their health, 29.9% said
that they were exergamers. Of the 851 students who reported that they did not stress about their
health, 20.8% said that they were exergamers. Analyze these data using logistic regression and write
a summary of your analytical approach, your results, and your conclusions.

14.23 More exergaming in Canada.

Refer to the previous exercise. Another explanatory variable reported in this study was the amount
of television watched per day. Of the 54 students who reported that they watched no TV, 11.1%
were exergamers; for the 776 students who watched some TV but less than two hours, 20.6% were
exergamers; and for the 370 students who watched two or more hours, 31.1% were exergamers. Use
logistic regression to examine the relationship between TV watching and exergaming. Write a
summary of your analytical approach, your results, and your conclusions.

14.24 What’s wrong?

For each of the following, explain what is wrong and why.

(a) If b1 = 5 in a logistic regression analysis with one explanatory variable, we estimate that the
probability of an event is multiplied by 5 when the value of the explanatory variable increases by 1
unit.

(b) The intercept β0 is equal to the odds of an event when x = 0.

(c) The odds of an event are 1 minus the probability of the event.

14.25 What’s wrong?

For each of the following, explain what is wrong and why.

(a) For a multiple logistic regression with 4 explanatory variables, the null hypothesis that the
regression coefficients of all the explanatory variables are zero is tested with an F test.

(b) For a logistic regression we assume that the model has a Normally distributed error term.

(c) In logistic regression with one explanatory variable we can use a chi-square statistic to test the
null hypothesis H0: b1 = 0 versus a one-sided alternative.

(d) In multiple logistic regression we do not need to worry about correlation among explanatory
variables when interpreting model coefficient estimates.

 14.26 Interpret the fitted model.

If we apply the exponential function to the fitted model in Example 14.6 (page 14-8), we get

odds = e−11.0391 + 3.1709x = e−11.0391 × e3.1709x
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Show that for any value of the quantitative explanatory variable x, the odds ratio for increasing x
by 1,

oddsx+1oddsx

is e3.1709 = 23.83. This justifies the interpretation given at the end of Example 14.6.

14.27 Will a movie be profitable?

In Example 14.6 (page 14-8), we developed a model to predict whether a movie is profitable based
on log opening-weekend revenue. What are the predicted odds of a movie being profitable if the
opening-weekend revenue is

(a) $25 million dollars (LOpening = 3.219)?

(b) $45 million dollars (LOpening = 3.807)?

(c) $65 million dollars (LOpening = 4.174)?

14.28 Converting odds to probability.

Refer to the previous exercise. For each opening-weekend revenue, compute the estimated
probability that the movie is profitable.

14.29 Salt intake and cardiovascular disease.

In Example 9.14 (page 549), the relative risk of developing cardiovascular disease (CVD) for people
with low- and high-salt diets was estimated. Let’s reanalyze these data using the methods in this
chapter. Here are the data:

Developed CVD
Salt in Diet

   Total   Low    High
Yes 88 112 200
No 1081 1134 2215
Total 1169 1246 2415

(a) For each salt level find the probability of developing CVD.

(b) Convert each of the probabilities that you found in part (a) to odds.

(c) Find the log of each of the odds that you found in part (b).

14.30 Salt in the diet and CVD.

Refer to the previous exercise. Use x = 1 for the high-salt diet and x = 0 for the low-salt diet.

(a) Find the estimates b0 and b1.

(b) Give the fitted logistic regression model.

(c) What is the odds ratio for high-salt versus low-salt diet?
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(d) When the probability of an event is very small, the odds ratio and relative risk are similar.
Compare this odds ratio with the relative risk estimate in Example 9.14. Are they close? Explain
your answer.

14.31 Give a 99% confidence interval for β1.

Refer to Example 14.9 (page 14-14). Suppose that you wanted to report a 99% confidence interval
for β1. Show how you would use the information provided in the outputs shown in Figure 14.7 to

compute this interval.  INSECTS

14.32 Give a 95% confidence interval for the odds ratio.

Refer to Example 14.9 and the outputs in Figure 14.7 (page 14-14). Using the estimate b1 and its
standard error, find the 95% confidence interval for the odds ratio and verify that this agrees with the

interval given by the software.  INSECTS

 14.33 z and the X2 statistic.

The Minitab output in Figure 14.7 (page 14-14) does not give the value of X2. The column labeled

“Z” provides similar information.  INSECTS

(a) Find the value under the heading “Z” for the predictor Lconc. Verify that Z is simply the
estimated coefficient divided by its standard error. This is a z statistic that has approximately the
standard Normal distribution if the null hypothesis (slope 0) is true.

(b) Show that the square of z is close to X2 (with no roundoff error, these two quantities will be
equal). The two-sided P-value for z is the same as P for X2.

(c) Draw sketches of the standard Normal distribution and the chi-square distribution with 1 degree
of freedom. (Hint: You can use the information in Table F to sketch the chi-square distribution.)
Indicate the value of the z and the X2 statistics on these sketches and use shading to illustrate the P-
value.

14.34 Finding the best model?

In Example 14.11 (page 14-17), we looked at a multiple logistic regression for movie profitability
based on three explanatory variables. Complete the analysis by looking at the 3 models that include
two explanatory variables and the 3 models that include only one variable. Create a table that
includes the parameter estimates and their P-values as well as the overall X2 statistic and degrees of

freedom. Based on the results, which model do you feel is the best? Explain your answer.
MOVIES

14.35 Tipping behavior in Canada.

The Consumer Report on Eating Share Trends (CREST) contains data from all provinces of Canada
detailing away-from-home food purchases by roughly 4000 households per quarter. Researchers
recently restricted their attention to restaurants at which tips would normally be given.5 From a total
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of 73,822 observations, “high” and “low” tipping variables were created based on whether the
observed tip rate was above 20% or below 10%, respectively. They then used logistic regression to
identify explanatory variables associated with either “high” or “low” tips. The following table
summarizes what they termed the stereotype-related variables for the low-tip analysis.

Explanatory variable Odds ratio
Senior adult 1.099
Sunday 1.098
English as second language 1.142
French-speaking Canadian 1.163
Alcoholic drinks 0.713
Lone male 0.858

All coefficients were significant at the 0.01 level. Write a short summary explaining these results in
terms of the odds of leaving a low tip.

14.36 What purchases will be made?

A poll of 1000 adults aged 18 or older asked about purchases they intended to make for the
upcoming holiday season.6 A total of 463 adults listed gift card as a planned purchase.

(a) What proportion of adults plan to purchase a gift card as a present?

(b) What are the odds that an adult will purchase a gift card as a present?

(c) What proportion of adults do not plan to purchase a gift card as a present?

(d) What are the odds that an adult will not buy a gift card as a present?

(e) How are your answers to parts (b) and (d) related?

14.37 High blood pressure and cardiovascular disease.

There is much evidence that high blood pressure is associated with increased risk of death from
cardiovascular disease. A major study of this association examined 3338 men with high blood
pressure and 2676 men with low blood pressure. During the period of the study, 21 men in the low-
blood-pressure group and 55 in the high-blood-pressure group died from cardiovascular disease.

(a) Find the proportion of men who died from cardiovascular disease in the high-blood-pressure
group. Then calculate the odds.

(b) Do the same for the low-blood-pressure group.

(c) Now calculate the odds ratio with the odds for the high-blood-pressure group in the numerator.
Describe the result in words.

14.38 High blood pressure and cardiovascular disease.

Refer to the study of cardiovascular disease and blood pressure in Exercise 14.37. Computer output
for a logistic regression analysis of these data gives the estimated slope b1 = 0.7505 with standard
error SEb1 = 0.2578.

(a) Give a 95% confidence interval for the slope.
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(b) Calculate the X2 statistic for testing the null hypothesis that the slope is zero and use Table F to
find an approximate P-value.

(c) Write a short summary of your results and conclusions.

14.39 High blood pressure and cardiovascular disease.

The results describing the relationship between blood pressure and cardiovascular disease are given
in terms of the change in log odds in Exercise 14.38.

(a) Transform the slope to the odds ratio and the 95% confidence interval for the slope to a 95%
confidence interval for the odds ratio.

(b) Write a conclusion using the odds to describe the results.

 14.40 An example of Simpson’s paradox.

Here is an example of Simpson’s paradox, the reversal of the direction of a comparison or an
association when data from several groups are combined to form a single group. The data concern
two hospitals, A and B, and whether or not patients undergoing surgery died or survived. Here are
the data for all patients:

Hospital A Hospital B
Died 63 16
Survived 2037 784
Total 2100 800

And here are the more detailed data where the patients are categorized as being in good condition or
poor condition:

Good condition
Hospital A Hospital B

Died 6 8
Survived 594 592
Total 600 600

Poor condition
Hospital A Hospital B

Died 57 8
Survived 1443 192
Total 1500 200

(a) Use a logistic regression to model the odds of death with hospital as the explanatory variable.
Summarize the results of your analysis and give a 95% confidence interval for the odds ratio of
Hospital A relative to Hospital B.

(b) Rerun your analysis in part (a) using hospital and the condition of the patient as explanatory
variables. Summarize the results of your analysis and give a 95% confidence interval for the odds
ratio of Hospital A relative to Hospital B.

(c) Explain Simpson’s paradox in terms of your results in parts (a) and (b).
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14.41 Reducing the number of workers.

To be competitive in global markets, many corporations are undertaking major reorganizations.
Often these involve “downsizing” or a “reduction in force” (RIF), where substantial numbers of
employees are terminated. Federal and various state laws require that employees be treated equally
regardless of their age. In particular, employees over the age of 40 years are in a “protected” class,
and many allegations of discrimination focus on comparing employees over 40 with their younger
coworkers. Here are the data for a recent RIF:

Over 40
Terminated No Yes
Yes 7 41
No 504 765

(a) Write the logistic regression model for this problem using the log odds of a RIF as the response
variable and an indicator for over and under 40 years of age as the explanatory variable.

(b) Explain the assumption concerning binomial distributions in terms of the variables in this
exercise. To what extent do you think that these assumptions are reasonable?

(c) Software gives the estimated slope b1 = 1.3504 and its standard error SEb1 = 0.4130. Transform
the results to the odds scale. Summarize the results and write a short conclusion.

(d) If additional explanatory variables were available, for example, a performance evaluation, how
would you use this information to study the RIF?

14.42 Internet use in Canada.

A recent study used data from the Canadian Internet Use Survey (CIUS) to explore the relationship
between certain demographic variables and Internet use by individuals in Canada.7 The response
variable refers to the use of the Internet from any location within the last 12 months. Explanatory
variables included age (years), income (thousands of dollars), location (1 = urban, 0 = other), sex (1
= male, 0 = female), education (1 = at least some postsecondary education, 0 = other), language (1 =
English, 0 = French), and children (1 = at least one child in household, 0 = no children). The
following table summarizes the results.

Explanatory variable b
Age −0.063
Income 0.013
Location 0.367
Sex −0.222
Education 1.080
Language 0.285
Children 0.049
Intercept 2.010

All but Children were significant at the 0.05 level.

(a) Interpret the sign of each of the coefficients (except the intercept) in terms of the probability that
the individual uses the Internet.

(b) Compute the odds ratio for each of the variables in the table.
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(c) What are the odds that a French-speaking, 23-year-old male, living alone in Montreal, and
making $50,000 a year his second year after college is using the Internet?

(d) Convert the odds in part (c) to a probability.

14.43 Predicting physical activity.

Participation in physical activities typically declines between high school and young adulthood. This
suggests that postsecondary institutions may be an ideal setting to address physical activity. A study
looked at the association between physical activity and several behavioral and perceptual
characteristics among midwestern college students.8 Of 663 students who met the vigorous activity
guidelines for the previous week, 169 reported eating fruit two or more times per day. Of the 471
that did not meet the vigorous activity guidelines in the previous week, 68 reported eating fruit two
or more times per day. Model the log odds of vigorous activity using an indicator variable for eating
fruit two or more times per day as the explanatory variable. Summarize your findings.

14.44 Online consumer spending.

The Consumer Behavior Report is designed to provide insight into online shopping trends.9 A recent
report asked the question “In the past three months, how has the current state of the economy
impacted your money spending on online purchasing?” Here are the results from 3156 online
consumers:

Reduced Spending
Gender No Yes
Female 586 708
Male 1074 788

(a) What proportion of individuals reduced their spending in each gender?

(b) What is the odds ratio for comparing female individuals to male individuals?

(c) Write the logistic regression model for this problem using the log odds of reducing spending as
the response variable and an indicator of gender as the explanatory variable.

(d) Software gives the estimated slope b1 = 0.4988 and its standard error SEb1 = 0.0729. Transform
this result to the odds scale and compare it with your answer in part (b).

(e) Construct a 95% confidence interval for the odds ratio and write a short conclusion.

14.45 Proximity of fast-food restaurants to schools and adolescent
overweight.

A California study looked at the relationship between fast-food restaurants near schools (within a
0.5-mile radius) and overweight among middle and high school students.10 Overweight was
determined based on each student’s responses to the California Healthy Kids Survey (CHKS). A
database of latitude-longitude coordinates for schools and restaurants was used to determine
proximity. Here are the data:

Fast-food nearby n X(overweight)
No 238,215 65,080
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Yes 291,152 83,143

Use logistic regression to study the question of whether or not overweight is related to the proximity
of fast-food restaurants to schools. Write a short paragraph summarizing your conclusions.

14.46 Overweight and fast-food restaurants, continued.

Refer to the previous exercise. In the article, the researchers state (1) “CIs were adjusted for
clustering at the school level,” and (2) “All models also included controls for the following student
characteristics: a female indicator, grade indicator, age indicator, race/ethnicity indicators, and
physical exercise indicators. All models also included indicator variables for school location type,
including large urban, midsize urban, small urban, large suburban, midsize suburban, small
suburban, town, and rural.”

(a) What violation of the distribution of the response variable is Statement 1 addressing? Explain
your answer.

(b) Explain why the researchers controlled for the variables described in Statement 2 when looking
at the relationship between overweight and proximity.
The following four exercises use the GPAHI data file. We examine models for relating success as
measured by the GPA to several explanatory variables. In Chapter 11 we used multiple regression
methods for our analysis. Here, we define an indicator variable, HIGPA, to be 1 if the GPA is 3.0 or

better and 0 otherwise.  GPAHI

 14.47 Use high school grades to predict high grade point averages.

Use a logistic regression to predict HIGPA using the three high school grade summaries as

explanatory variables.  GPAHI

(a) Summarize the results of the hypothesis test that the coefficients for all three explanatory
variables are zero.

(b) Give the coefficient for high school math grades with a 95% confidence interval. Do the same for
the two other predictors in this model.

(c) Summarize your conclusions based on parts (a) and (b).

 14.48 Use SAT scores to predict high grade point averages.

Use a logistic regression to predict HIGPA using the SATM and SATCR scores as explanatory
variables.

(a) Summarize the results of the hypothesis test that the coefficients for both explanatory variables
are zero.

(b) Give the coefficient for the SATM score with a 95% confidence interval. Do the same for the
SATCR score.

(c) Summarize your conclusions based on parts (a) and (b).

14.49 Use high school grades and SAT scores to predict high grade point
averages.
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Run a logistic regression to predict HIGPA using the three high school grade summaries and the two
SAT scores as explanatory variables. We want to produce an analysis that is similar to that done for

the case study in Chapter 11.  GPAHI

(a) Test the null hypothesis that the coefficients of the three high school grade summaries are zero;
that is, test H0 : βHSM = βHSS βHSE = 0.

(b) Test the null hypothesis that the coefficients of the two SAT scores are zero; that is, test H0 :
βSATM = βSATCR = 0.

(c) What do you conclude from the tests in (a) and (b)?

 14.50 Is there an effect of gender?

In this exercise we investigate the effect of gender on the odds of getting a high GPA.  GPAHI

(a) Use gender to predict HIGPA using a logistic regression. Summarize the results.

(b) Perform a logistic regression using gender and the two SAT scores to predict HIGPA.
Summarize the results.

(c) Compare the results of parts (a) and (b) with respect to how gender relates to HIGPA. Summarize
your conclusions.
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CHAPTER 14 Notes and Data Sources
1. Logistic regression models for the general case where there are more than two possible values for
the response variable have been developed. These are considerably more complicated and are
beyond the scope of our present study. For more information on logistic regression, see A. Agresti,
An Introduction to Categorical Data Analysis, 2nd ed., Wiley, 2007; and D. W. Hosmer and S.
Lemeshow, Applied Logistic Regression, 2nd ed., Wiley, 2000.
2. This example is taken from a classic text written by a contemporary of R. A. Fisher, the person
who developed many of the fundamental ideas of statistical inference that we use today. The
reference is D. J. Finney, Probit Analysis, Cambridge University Press, 1947. Although not included
in the analysis, it is important to note that the experiment included a control group that received no
insecticide. No aphids died in this group. We have chosen to call the response “dead.” In Finney’s
book the category is described as “apparently dead, moribund, or so badly affected as to be unable to
walk more than a few steps.” This is an early example of the need to make careful judgments when
defining variables to be used in a statistical analysis. An insect that is “unable to walk more than a
few steps” is unlikely to eat very much of a chrysanthemum plant!
3. See pewinternet.org/Reports/2013/in-store-mobile-commerce.aspx.
4. Erin K. O’Loughlin et al., “Prevalence and correlates of exergaming in youth,” Pediatrics, 130
(2012), pp. 806–814.
5. Based on Leigh J. Maynard and Malvern Mupandawana, “Tipping behavior in Canadian
restaurants,” International Journal of Hospitality Management,28 (2009), pp. 597–603.
6. These results are from the Consumer Reports National Research Center, which conducted a
telephone survey of a nationally representative probability sample of households with telephones.
One thousand interviews were completed among adults aged at least 18 years. Interviewing took
place on October 15–18, 2009.
7. Anthony A. Noce and Larry McKeown, “A new benchmark for Internet use: A logistic modeling
of factors influencing Internet use in Canada, 2005,” Government Information Quarterly, 25 (2008),
pp. 462–476.
8. Dong-Chul Seo et al., “Relations between physical activity and behavioral and perceptual
correlates among midwestern college students,” Journal of American College Health, 56 (2007), pp.
187–197.
9. These economic trend reports can be found at mr.pricegrabber.com. These results are based on the
June 2009 report.
10. Brennan Davis and Christopher Carpenter, “Proximity of fast-food restaurants to schools and
adolescent obesity,” American Journal of Public Health, 99 (2009), pp. 505–510.
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Introduction

The most commonly used methods for inference about the means of quantitative
response variables assume that the variables in question have Normal distributions
in the population or populations from which we draw our data. In practice, of
course, no distribution is exactly Normal. Fortunately, our usual methods for
inference about population means (the one-sample and two-sample t procedures
and analysis of variance) are quite robust. That is, the results of inference are not
very sensitive to moderate lack of Normality, especially when the samples are
reasonably large. Some practical guidelines for taking advantage of the robustness
of these methods appear in Chapter 7.

robustness

What can we do if plots suggest that the population distribution is clearly not
Normal, especially when we have only a few observations? This is not a simple
question. Here are the basic options:

1. If lack of Normality is due to outliers, it may be legitimate to remove the
outliers. An outlier is an observation that may not come from the same
population as the other observations. Equipment failure that produced a bad
measurement, for example, entitles you to remove the outlier and analyze the
remaining data. If the outlier appears to be “real data,” you can base inference on
statistics that are more resistant than x¯ and s. Options 4 and 5 allow this.

outlier

2. Sometimes we can transform our data so that their distribution is more nearly
Normal. Transformations such as the logarithm that pull in the long tail of right-
skewed distributions are particularly helpful. Example 7.10 (page 436) illustrates
use of the logarithm.

transformations, p. 93

3. In some settings, other standard distributions replace the Normal distributions
as models for the overall pattern in the population. We mentioned in Chapter 5
(page 315) that the Weibull distributions are common models for the lifetimes in
service of equipment in statistical studies of reliability. Also, we studied the
exponential distributions (page 309) and the Poisson distributions (page 339) in
Chapter 5. There are inference procedures for the parameters of these
distributions that replace the t procedures when we use specific non-Normal
models.
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other standard distributions

4. Modern bootstrap methods and permutation tests do not require Normality or
any other specific form of sampling distribution. Moreover, you can base
inference on resistant statistics such as the trimmed mean. We recommend these
methods unless the sample is so small that it may not represent the population
well. Chapter 16 gives a full discussion.

bootstrap methods

permutation tests

5. Finally, there are other nonparametric methods that do not require any specific
form for the distribution of the population. Unlike bootstrap and permutation
methods, common nonparametric methods do not make use of the actual values
of the observations. The sign test (page 438) works with counts of observations.
This chapter presents rank tests based on the rank (place in order) of each
observation in the set of all the data.

nonparametric methods

rank tests

This chapter concerns rank tests that are designed to replace the t tests and one-
way analysis of variance when the Normality conditions for those tests are not met.
Figure 15.1 presents an outline of the standard tests (based on Normal
distributions) and the rank tests that compete with them.

The rank tests we will study concern the center of a population or populations.
When a population has at least roughly a Normal distribution, we describe its
center by the mean. The “Normal tests” in Figure 15.1 test hypotheses about
population means. When distributions are strongly skewed, we often prefer the
median to the mean as a measure of center. In simplest form, the hypotheses for
rank tests just replace mean by median.

FIGURE 15.1
Comparison of tests based on Normal distributions with nonparametric tests for similar settings.

Setting Normal test Rank test

One sample One-sample t test Section 7.1
Wilcoxon signed rank test
Section 15.2

Matched pairs Apply one-sample test to differences within pairs
Two independent
samples Two-sample t test Section 7.2

Wilcoxon rank sum test Section
15.1

Several independent
samples

One-way ANOVA F test
Chapter 12 Kruskal-Wallis test Section 15.3
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We devote a section of this chapter to each of the rank procedures. Section 15.1,
which discusses the most common of these tests, also contains general information
about rank tests. The kind of assumptions required, the nature of the hypotheses
tested, the big idea of using ranks, and the contrast between exact distributions for
use with small samples and approximations for use with larger samples are
common to all rank tests. Sections 15.2 and 15.3 more briefly describe other rank
tests.
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15.1 The Wilcoxon Rank Sum Test

When you complete this section, you will be able to

• Find the rank transformation for a set of data.

• Compute the Wilcoxon rank sum statistic for the comparison of two
populations.

• State the null and alternative hypotheses that are used for the analysis of
data using the Wilcoxon rank sum test.

• Use the two sample sizes to find the mean and the standard deviation of
the sampling distribution of the Wilcoxon rank sum statistic under the null
hypothesis.

• Find the P-value for the Wilcoxon rank sum significance test using the
Normal approximation with the continuity correction.

• For the Wilcoxon rank sum test, use computer output to determine the
results of the significance test.

Two-sample problems (see Section 7.2) are among the most common in
statistics. The most useful nonparametric significance test compares two
distributions. Here is an example of this setting.

two sample, p. 447

Example

15.1 Does the American League get more hits?

In 1973, the American League adopted the designated-hitter rule, which allows
a substitute player to take the place of the pitcher when it is the pitcher’s turn
to bat. Since pitchers typically do not hit as well as other players, it was
expected that the rule would produce more hits and therefore more excitement
for the fans. The National League has not adopted this rule. Let’s look at some
data to see if we can detect a difference in hits between the American League
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and the National League. Here are the number of hits for eight games played
on the same spring day, four from each league.

HITS

League Hits
American 21 18 24 20
National 19 7 11 13

The samples are too small to assess Normality adequately or to rely on the
robustness of the t test. We prefer to use a test that does not require Normality.

The rank transformation

We first rank all eight observations together. To do this, arrange them in order
from smallest to largest:

7   11   13   18   19   20   21   24

The boldface entries in the list are the hits for the American League. The idea of
rank tests is to look just at position in this ordered list. To do this, replace each
observation by its order, from 1 (smallest) to 8 (largest). These numbers are the
ranks:

Runs 7 11 13 18 19 20 21 24
Rank 1 2 3 4 5 6 7 8

It would not be surprising if we had sampled a day where more than one game had
the same number of hits. We will discuss how to handle ties later in this section.

RANKS

To rank observations, first arrange them in order from smallest to largest. The
rank of each observation is its position in this ordered list, starting with rank 1
for the smallest observation.

Moving from the original observations to their ranks is a transformation of the
data, like moving from the observations to their logarithms. The rank
transformation retains only the ordering of the observations and makes no other use
of their numerical values. Working with ranks allows us to dispense with specific
assumptions about the shape of the distribution, such as Normality.
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USE YOUR KNOWLEDGE

15.1 Numbers of rooms in top spas.

A report of a readers’ poll in Condé Nast Traveler magazine ranked 100
top resort spas.1 Let Group A be the 25 top-ranked spas, and let Group B
be the spas ranked 26 to 50. A simple random sample of size 5 was
taken from each group, and the number of rooms in each selected spa
was recorded. Here are the data:

Group A 106 145 312 60 49
Group B 190 500 1293 161 225

Rank all the observations together and make a list of the ranks for Group
A and Group B.

SPAS

15.2 The effect of Animal Kingdom on the result.

Refer to the previous exercise. Disney’s Animal Kingdom in Lake
Buena Vista, Florida, with 1293 rooms, was the third spa selected in
Group B. Suppose, instead, a different spa, with 540 rooms, had been
selected. Replace the observation 1293 in Group B by 540. Use the
modified data to make a list of the ranks for Groups A and B combined.
What changes?
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SPAS2

The Wilcoxon rank sum test

If the American League games tend to have more hits than the National League,
we expect the ranks of the American League games to be higher than those for the
National League games. Let’s compare the sums of the ranks from the two
treatments:

League Sum of ranks
American 25
National 11

These sums compare the hits of the American League with those of the National
League. In fact, the sum of the ranks from 1 to 8 is always equal to 36, so it is
enough to report the sum for one of the two groups.

If the sum of the ranks for the American League is 25, then the ranks for the
National League must be 11 because 25 + 11 = 36. If there was no difference
between the leagues, we would expect the sum of the ranks for each league to be
18 (half of 36). Here are the facts we need in a more general form that takes
account of the fact that our two samples need not be the same size.

THE WILCOXON RANK SUM TEST

Draw an SRS of size n1 from one population and draw an independent SRS of
size n2 from a second population. There are N observations in all, where N =
n1 + n2. Rank all N observations. The sum W of the ranks for the first sample
is the Wilcoxon rank sum statistic. If the two populations have the same
continuous distribution, then W has mean

μW=n1(N+1)2

and standard deviation

σW=n1n2(N+1)12

The Wilcoxon rank sum test rejects the hypothesis that the two populations
have identical distributions when the rank sum W is far from its mean.* This
test is also called the Mann-Whitney test.

__________
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* This test was invented by Frank Wilcoxon (1892–1965) in 1945. Wilcoxon was a chemist who
encountered statistical problems in his work at the research laboratories of American Cyanamid
Company.

For the baseball question of Example 15.1, we want to test

H0: no difference in number of hits

against the one-sided alternative

Ha: more hits are made in American League games than in National League games

Our test statistic is the rank sum W = 25 for the American League games.

USE YOUR KNOWLEDGE

15.3 Hypotheses and test statistic for top spas.

Refer to Exercise 15.1. State appropriate null and alternative hypotheses
for this setting and calculate the value of W, the test statistic.

SPAS

15.4 Effect of Animal Kingdom on the test statistic.

Refer to Exercise 15.2. Using the altered data, state appropriate null and
alternative hypotheses and calculate the value of W, the test statistic.

SPAS2

Example
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15.2 Perform the significance test.

In Example 15.1, n1 = 4, n2 = 4, and there are N = 8 observations in all. The
sum of ranks for the American League games has mean

μW=n1(N+1)2

=(4)(9)2=18

and standard deviation

σW=n1n2(N+1)12

=(4)(4)(9)12=12=3.464

The observed sum of the ranks, W = 25, is higher than the mean, about 2
standard deviations higher ([25 – 18]/3.464). It appears that the data support
our idea that American League games have more hits than National League
games. The P-value for our one-sided alternative is P(W ≥ 25), the probability
that W is at least as large as the value for our data when H0 is true.

To calculate the P-value P(W ≥ 25), we need to know the sampling distribution
of the rank sum W when the null hypothesis is true. This distribution depends on
the two sample sizes n1 and n2. Tables are therefore a bit unwieldy, though you can
find them in handbooks of statistical tables. Most statistical software will give you
P-values, as well as carry out the ranking and calculate W. However, some
software gives only approximate P-values. You must learn what your software
offers.

Example

15.3 Software output.

Figure 15.2 shows the output from software that calculates the exact sampling
distribution of W. We see that the sum of the ranks (called scores in the output)
for the American League is W = 25, with P-value P = 0.0286 against the one-
sided alternative that American League games have more hits than the
National League games.
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FIGURE 15.2
Output from SAS for the baseball hit data, for Example 15.3.

It is worth noting that the two-sample t test for the one-sided alternative gives
essentially the same result as the Wilcoxon test in Example 15.3 (t = 2.95, P =
0.016).
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two-sample t test, p. 454

The Normal approximation

The rank sum statistic W becomes approximately Normal as the two sample sizes
increase. We can then form yet another z statistic by standardizing W:

z=W−μWσW

=W−n1(N+1)/2n1n2(N+1)/12

Use standard Normal probability calculations to find P-values for this statistic.
Because W takes only whole-number values, the continuity correction improves the
accuracy of the approximation.

continuity correction, p. 335

Example

15.4 The continuity correction.

The standardized rank sum statistic W in our baseball example is

z=W−μWσW=25−183.464=2.02

We expect W to be larger when the alternative hypothesis is true, so the
approximate P-value is

P(Z ≥ 2.02) = 0.0217

The continuity correction acts as if the whole number 25 occupies the entire
interval from 24.5 to 25.5. We calculate the P-value P(W ≥ 25) as P(W ≥ 24.5)
because the value 25 is included in the range whose probability we want. Here
is the calculation:

P(W≥24.5)=P(W−μWσW≥24.5−183.464)

=P(Z≥1.876)

=0.303
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The continuity correction gives a result closer to the exact value P = 0.0286
(see Figure 15.2 ).

USE YOUR KNOWLEDGE

15.5 The P-value for top spas.

Refer to Exercises 15.1 and 15.3 (pages 15-4 and 15-6). Find μW, σW,
and the standardized rank sum statistic. Then give an approximate P-
value using the Normal approximation. What do you conclude?

SPAS

15.6 The effect of Animal Kingdom on the P-value.

Refer to Exercises 15.2 and 15.4 (pages 15-4 and 15-6). Repeat the
analysis in Exercise 15.5 using the altered data.

SPAS2

We recommend always using either the exact distribution (from software or
tables) or the continuity correction for the rank sum statistic W. The exact
distribution is safer for small samples. As Example 15.4 illustrates, however, the
Normal approximation with the continuity correction is often adequate.

Example

15.5 Software output.
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Figure 15.3 shows the output for our data from two additional statistical
programs. Minitab gives the Normal approximation, and it refers to the Mann-
Whitney test. This is an alternative form of the Wilcoxon rank sum test. SPSS
uses the exact calculation for the P-value here but tests the null hypothesis
only against the two-sided alternative.

Mann-Whitney test
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FIGURE 15.3
Output from the Minitab and SPSS statistical software for the data in Example 15.1. (a) Minitab
uses the Normal approximation for the distribution of W. (b) SPSS gives the exact value for the
two-sided alternative.

What hypotheses does Wilcoxon test?

Our null hypothesis is that the distribution of hits is the same in the two leagues.
Our alternative hypothesis is that there are more hits in the American League than
in the National League. If we are willing to assume that hits are Normally
distributed, or if we have reasonably large samples, we use the two-sample t test
for means. Our hypotheses then become

H0: μ1 = μ2

Ha: μ1 > μ2

When the distributions may not be Normal, we might restate the hypotheses in
terms of population medians rather than means:

H0: median1 = median2

Ha: median1 > median2

The Wilcoxon rank sum test does test hypotheses about population medians, but
only if an additional assumption is met: both populations must have distributions
of the same shape. That is, the density curve for hits in the American League must
look exactly like that for the National League except that it may be shifted to the
left or to the right. The Minitab output in Figure 15.3(a) states the hypotheses in
terms of population medians (which it calls “ETA”) and also gives a confidence
interval for the difference between the two population medians.

The same-shape assumption is too strict to be reasonable in practice. Recall that
our preferred version of the two-sample t test does not require that the two
populations have the same standard deviation—that is, it does not make a same-
shape assumption. Fortunately, the Wilcoxon test also applies in a much more
general and more useful setting. It tests hypotheses that we can state in words as

H0: The two distributions are the same.

Ha: One distribution has values that are systematically larger.

Here is a more exact statement of the systematically larger alternative
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hypothesis. Take X1 to be hits in the American League and X2 to be hits in the
National League. These hits are random variables. That is, for each game in the
American League, the number of hits is a value of the variable X1. The probability
that the number of hits is more than 15 is P(X1 > 15). Similarly, P(X2 > 15) is the
corresponding probability for the National League. If the number of American
League hits is “systematically larger” than the number of National League hits,
getting more hits than 15 should be more likely in the American League. That is,
we should have

systematically larger

P(X1 > 15) > P(X2 > 15)

The alternative hypothesis says that this inequality holds not just for 15 hits but for
any number of hits.2

This exact statement of the hypotheses we are testing is a bit awkward. The
hypotheses really are “nonparametric” because they do not involve any specific
parameter such as the mean or median. If the two distributions do have the same
shape, the general hypotheses reduce to comparing medians. Many texts and
computer outputs state the hypotheses in terms of medians, sometimes ignoring the
same-shape requirement. We recommend that you express the hypotheses in words
rather than symbols. “The number of American League hits is systematically
higher than the number of National League hits” is easy to understand and is a
good statement of the effect that the Wilcoxon test looks for.

Ties

The exact distribution for the Wilcoxon rank sum is obtained assuming that all
observations in both samples take different values. This allows us to rank them all.
In practice, however, we often find observations tied at the same value. What shall
we do? The usual practice is to assign all tied values the average of the ranks they
occupy. Here is an example with six observations:

average ranks

Observation 153 155 158 158 161 164
Rank 1 2 3.5 3.5 5 6

The tied observations occupy the third and fourth places in the ordered list, so they
share rank 3.5.

The exact distribution for the Wilcoxon rank sum W changes if the data contain
ties. Moreover, the standard deviation σW must be adjusted if ties are present. The
Normal approximation can be used after the standard deviation is adjusted.
Statistical software will detect ties, make the necessary adjustment, and switch to
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the Normal approximation. In practice, software is required if you want to use rank
tests when the data contain tied values.

It is sometimes useful to use rank tests on data that have very many ties because
the scale of measurement has only a few values. Here is an example.

Example

15.6 Exergaming in Canada.

Exergames are active video games such as rhythmic dancing games, virtual
bicycles, balance board simulators, and virtual sports simulators that require a
screen and a console. A study of exergaming in students from grades 10 and
11 in Montreal, Canada, examined many factors related to participation in
exergaming.3 In Exercise 14.23 (page 14-22) we used logistic regression to
examine the relationship between exergaming and time spent viewing
television. Here are the data displayed in a two-way table of counts:

TV time (hours per day)
Exergamer None Some but less than 2 hours 2 hours or more
Yes 6 160 115
No 48 616 255
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EXERG

USE YOUR KNOWLEDGE

15.7 Analyze as a two-way table.

Analyze the exergaming data in Example 15.6 as a two-way table.

EXERG

(a) Compute the percents in the three categories of TV watching for the exergamers. Do the
same for those who are not exergamers. Display the percents graphically and summarize the
differences in the two distributions.

chi-square test, p. 539

(b) Perform the chi-square test for the counts in the two-way table. Report the test statistic,
the degrees of freedom, and the P-value. Give a brief summary of what you can conclude
from this significance test.

How do we approach the analysis of these data using the Wilcoxon test? We
start with the hypotheses. We have two distributions of TV viewing, one for the
exergamers and one for those who are not exergamers. The null hypothesis states
that these two distributions are the same. The alternative hypothesis uses the fact
that the responses are ordered from no TV to 2 hours or more per day. It states that
one of the exerciser groups watches more TV than the other.

H0: The amount of time spent viewing TV is the same for students who are
exergamers and students who are not.

Ha: One of the two groups views more TV than the other.

The alternative hypothesis is two-sided. Because the responses can take only three
values, there are very many ties. All 54 students who watch no TV are tied.
Similarly, all students in each of the other two columns of the table are tied. The
graphical display that you prepared in Exercise 15.7 suggests that the exergamers
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watch more TV than those who are not exergamers. Is this difference statistically
significant?

Example

15.7 Software output.

Look at Figure 15.4, which gives SAS output for the Wilcoxon test. The rank
sum for the exergamers (using average ranks for ties) is W = 187, 747.5. The
expected rank sum under the null hypothesis is 168,740.5, so the exergamers
have a higher rank sum than we would expect. The Normal approximation test
statistic is z = 4.47 and the two-sided P-value is reported as P < 0.0001. There
is very strong evidence of a difference. Exergamers watch more TV than the
students who are not exergamers.

EXERG

We can use our framework of “systematically larger” (page 15-10) to
summarize these data. For the exergamers, 98% watch some TV and 41%
watch two or more hours per day. The corresponding percents for the students
who are not exergamers are 95% and 28%.

In our discussion of TV viewing and exergaming, we have expressed results in
terms of the amount of TV watched. In fact, we do not have the actual hours of TV
watched by each student in the study. Only data with the hours classified into three
groups are available. Many government surveys summarize quantitative data
categorized into ranges of values. When summarizing the analysis of data, it is very
important to explain clearly how the data are recorded. In this setting, we have
chosen to use phrases such as “watch more TV” because they express the findings
based on the data available.

Note that the two-sample t test would not be appropriate in this setting. If we
coded the TV-watching categories as 1, 2, and 3, the average of these coded values
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would not be meaningful.
On the other hand, we frequently encounter variables measured in scales such

as “strongly agree,” “agree,” “neither agree nor disagree,” “disagree,” and
“strongly disagree.” In these circumstances, many would code the responses with
the integers 1 to 5 and then use standard methods such as a t test or ANOVA.
Whether to do this or not is a matter of judgment. Rank tests avoid the dilemma
because they use only the order of the responses, not their actual values. Some
statisticians use t procedures when there is not a fully meaningful scale of
measurement, but others avoid them.
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FIGURE 15.4
Output from SAS for the exergaming data, for Example 15.7.
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Rank, t, and permutation tests

The two-sample t procedures are the most common method for comparing the
centers of two populations based on random samples from each. The Wilcoxon
rank sum test is a competing procedure that does not start from the condition that
the populations have Normal distributions. Permutation tests (Chapter 16) also
avoid the need for Normality. Tests based on Normality, rank tests, and
permutation tests apply in many other settings as well. How do these three
approaches compare in general?

First, let’s consider rank tests versus traditional tests based on Normal
distributions. Both are available in almost all statistical software.

• Moving from the actual data values to their ranks allows us to find an exact
sampling distribution for rank statistics such as the Wilcoxon rank sum W when the
null hypothesis is true. (Most software will do this only if there are no ties and if
the samples are quite small.) When our samples are small, are truly random
samples from the populations, and show non-Normal distributions of the same
shape, the Wilcoxon test is more reliable than the two-sample t test. In practice, the
robustness of t procedures implies that we rarely encounter data that require
nonparametric procedures to obtain reasonably accurate P-values. The t and W
tests gave very similar results for the baseball hit data in Example 15.1, but we
would not use a t procedure for the exergame data in Example 15.6.

• Normal tests compare means and are accompanied by simple confidence intervals
for means or differences between means. When we use rank tests to compare
medians, we can also give confidence intervals for medians. However, the
usefulness of rank tests is clearest in settings when they do not simply compare
medians—see the discussion “What Hypotheses Does Wilcoxon Test?” (page 15-
9). Rank methods focus on significance tests, not confidence intervals.

• Inference based on ranks is largely restricted to simple settings. Normal inference
extends to methods for use with complex experimental designs and multiple
regression, but nonparametric tests do not. We stress Normal inference in part
because it leads to more advanced statistics.

If you read Chapter 16 and use software that makes permutation tests available
to you, you will also want to compare rank tests with resampling methods.

• Both rank and permutation tests are nonparametric. That is, they require no
assumptions about the shape of the population distribution. A two-sample
permutation test has the same null hypothesis as the Wilcoxon rank sum test: that
the two population distributions are identical. Calculation of the sampling
distribution under the null hypothesis is similar for both tests but is simpler for
rank tests because it depends only on the sizes of the samples. As a result, software
often gives exact P-values for rank tests but not for permutation tests.

• Permutation tests have the advantage of flexibility. They allow wide choice of the
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statistic used to compare two samples, an advantage over both the t and Wilcoxon
tests. In fact, we could apply the permutation test method to sample means
(imitating t) or to rank sums (imitating Wilcoxon), as well as to other statistics
such as the trimmed mean that we used in Exercise 1.99. Permutation tests are not
available in some settings, such as testing hypotheses about a single population,
though bootstrap confidence intervals do allow resampling tests in these settings.
Permutation tests are available for multiple regression and some other quite
elaborate settings.

trimmed mean, p. 53

• An important advantage of resampling methods over both Normal and rank
procedures is that we can get bootstrap confidence intervals for the parameter
corresponding to whatever statistic we choose for the permutation test. If the
samples are very small, however, bootstrap confidence intervals may be unreliable
because the samples don’t represent the population well enough to provide a good
basis for bootstrapping.

In general, both Normal distribution methods and resampling methods are more
useful than rank tests. If you are familiar with resampling, we recommend rank
tests only for very small samples, and even then only if your software gives exact
P-values for rank tests but not for permutation tests.

SECTION 15.1 Summary

Nonparametric tests do not require any specific form for the distribution of the
population from which our samples come.

Rank tests are nonparametric tests based on the ranks of observations, their
positions in the list ordered from smallest (rank 1) to largest. Tied observations
receive the average of their ranks.

The Wilcoxon rank sum test compares two distributions to assess whether one
has systematically larger values than the other. The Wilcoxon test is based on the
Wilcoxon rank sum statistic W, which is the sum of the ranks of one of the
samples. The Wilcoxon test can replace the two-sample t test.

P-values for the Wilcoxon test are based on the sampling distribution of the
rank sum statistic W when the null hypothesis (no difference in distributions) is
true. You can find P-values from special tables, software, or a Normal
approximation (with continuity correction).

SECTION 15.1 Exercises
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For Exercises 15.1 and 15.2, see page 15-4; for Exercises 15.3 and 15.4, see page 15-6; for Exercises 15.5
and 15.6, see page 15-8; and for Exercise 15.7, see page 15-11.

15.8 Time spent studying.

Students in a large first-year college class were asked how much time they spent studying on a typical

weeknight. Here are the responses, in minutes, for five female students in the class:  STUDYT

120   360   115   60   170

Find the ranks for these data.

15.9 Find the rank sum statistic.

Refer to the previous exercise. Here are the data for six men in the class:  STUDYT

0   300   75   90   30   130
Compute the value of the Wilcoxon statistic. Take the first sample to be the women.

15.10 State the hypotheses.

Refer to the previous exercise. State appropriate null and alternative hypotheses for this setting. 
STUDYT

15.11 Find the mean and standard deviation of the distribution of the statistic.

The statistic W that you calculated in Exercise 15.9 is a random variable with a sampling distribution. What

are the mean and the standard deviation of this sampling distribution under the null hypothesis? 
STUDYT

15.12 Find the P-value.

Refer to Exercises 15.8 to 15.11. Find the P-value using the Normal approximation with the continuity

correction and interpret the result of the significance test.  STUDYT

15.13 Is civic engagement related to education?

A Pew Internet Poll of adults aged 18 and older examined factors related to civic engagement. Participants
were asked whether or not they had participated in a civic group or activity in the preceding 12 months.

One analysis looked at the relationship between this variable and education. Here are the data:4 
CIVIC

Education
Civic participation No high school High school Some college College
Civic 76 294 295 428
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No civic 155 424 273 298

FIGURE 15.5
Output from SAS for the civic participation data, for Exercise 15.13.

Figure 15.5 gives the SAS output for analyzing these data using the Wilcoxon rank sum procedure.

(a) Describe the relevant parts of the output and write a short summary of the results.
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(b) Apply the “systematically larger” framework that we used in Example 15.7 (page 15-12) to these data.
Is this a useful way to describe the results of this analysis? Give reasons for your answer.

15.14 Do women talk more?

Conventional wisdom suggests that women are more talkative than men. One study designed to examine
this stereotype collected data on the speech of 10 men and 10 women in the United States.5 The variable

recorded is the number of words per day. Here are the data:  TALK10

Men Women
23,871 5,180 9,951 12,460 10,592 24,608 13,739 22,376
17,155 10,344 9,811 12,387 9,351 7,694 16,812 21,066
29,920 21,791 32,291 12,320

(a) Summarize the data for the two groups using w numerical and graphical methods. Describe the two
distributions.

(b) Compare the words per day spoken by the men with the words per day spoken by the women using the
Wilcoxon rank sum test. Summarize your results and conclusion in a short paragraph.

15.15 More data for women and men talking.

The data in the previous exercise were a sample of the data collected in a larger study of 42 men and 37
women. Use the larger data set to answer the questions in the previous exercise. Discuss the advisability of

using the Wilcoxon test versus the t test for this exercise and for the previous one.  TALK

15.16 Learning math through subliminal messages.

A “subliminal” message is below our threshold of awareness but may nonetheless influence us. Can
subliminal messages help students learn math? A group of students who had failed the mathematics part of
the City University of New York Skills Assessment Test agreed to participate in a study to find out. All
received a daily subliminal message, flashed on a screen too rapidly to be consciously read. The treatment
group of 10 students was exposed to “Each day I am getting better in math.” The control group of 8
students was exposed to a neutral message, “People are walking on the street.” All students participated in
a summer program designed to raise their math skills, and all took the assessment test again at the end of

the program. Here are data on the subjects’ scores before and after the program:6  SUBLIM

Treatment Group Treatment Group
Pretest Posttest Pretest Posttest

18 24 18 29
18 25 24 29
21 33 20 24
18 29 18 26
18 33 24 38
20 36 22 27
23 34 15 22
23 36 19 31
21 34
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17 27

(a) The study design was a randomized comparative experiment. Outline this design.

(b) Compare the gain in scores in the two groups, using a graph and numerical descriptions. Does it appear
that the treatment group’s scores rose more than the scores for the control group?

(c) Apply the Wilcoxon rank sum test to the posttest versus pretest differences. Note that there are some
ties. What do you conclude?

15.17 Storytelling and the use of language.

A study of early childhood education asked kindergarten students to retell two fairy tales that had been
read to them earlier in the week. The 10 children in the study included 5 high-progress readers and 5 low-
progress readers. Each child told two stories. Story 1 had been read to them; Story 2 had been read and also
illustrated with pictures. An expert listened to a recording of each child and assigned a score for certain

uses of language. Here are the data:7  STORY

Child Progress Story 1 score Story 2 score Child Progress Story 1 score Story 2 score
1 high 0.55 0.80 6 low 0.40 0.77
2 high 0.57 0.82 7 low 0.72 0.49
3 high 0.72 0.54 8 low 0.00 0.66
4 high 0.70 0.79 9 low 0.36 0.28
5 high 0.84 0.89 10 low 0.55 0.38

Is there evidence that the scores of high-progress readers are higher than those of low-progress readers
when they retell a story they have heard without pictures (Story 1)?

(a) Make Normal quantile plots for the 5 responses in each group. Are any major deviations from
Normality apparent?

(b) Carry out a two-sample t test. State hypotheses and give the two sample means, the t statistic and its P-
value, and your conclusion.

(c) Carry out the Wilcoxon rank sum test. State hypotheses and give the rank sum W for high-progress
readers, its P-value, and your conclusion. Do the t and Wilcoxon tests lead you to different conclusions?

15.18 Repeat the analysis for Story 2.

Repeat the analysis of Exercise 15.17 for the scores when children retell a story they have heard and seen

illustrated with pictures (Story 2).  STORY

15.19 Do the calculations by hand.

Use the data in Exercise 15.17 for children telling Story 2 to carry out by hand the steps in the Wilcoxon

rank sum test.  STORY

(a) Arrange the 10 observations in order and assign ranks. There are no ties.

(b) Find the rank sum W for the 5 high-progress readers. What are the mean and standard deviation of W
under the null hypothesis that low-progress and high-progress readers do not differ?
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(c) Standardize W to obtain a z statistic. Do a Normal probability calculation with the continuity correction
to obtain a one-sided P-value.

(d) The data for Story 1 contain tied observations. What ranks would you assign to the 10 scores for Story
1?
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15.2 The Wilcoxon Signed Rank Test

When you complete this section, you will be able to

• For a set of paired sample data, take the differences between the pairs,
take the absolute values of the differences, put the absolute values of the
differences in order, from smallest to largest with an indication of which
absolute differences were from positive differences.

• Compute the Wilcoxon signed rank statistic W+ from an ordered list of
differences with an indication of which absolute differences were from
positive differences.

• State the null and alternative hypotheses that are used for the analysis of
data using the Wilcoxon signed rank test.

• Using the sample size (that is, the number of pairs), find the mean and the
standard deviation of the sampling distribution of the Wilcoxon signed
rank statistic under the null hypothesis.

• Find the P-value for the Wilcoxon signed rank significance test using the
Normal approximation with the continuity correction.

• For the Wilcoxon signed rank test, use computer output to determine the
results of the significance test.

• Test a hypothesis about the median of a distribution using the Wilcoxon
signed rank test.

We use the one-sample t procedures for inference about the mean of one
population or for inference about the mean difference in a matched pairs setting.
The matched pairs setting is more important because good studies are generally
comparative. We will now meet a rank test for this setting.

Example

15.8 Storytelling and reading.

A study of early childhood education asked kindergarten students to retell two
fairy tales that had been read to them earlier in the week. The first (Story 1)
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had been read to them, and the second (Story 2) had been read but also
illustrated with pictures. An expert listened to recordings of the children
retelling each story and assigned a score for certain uses of language. Here are
the data for five “low-progress” readers in a pilot study:8 Higher scores are
better.

Child 1 2 3 4 5
Story 2 0.77 0.49 0.66 0.28 0.38
Story 1 0.40 0.72 0.00 0.36 0.55
Difference 0.37 –0.23 0.66 –0.08 –0.17

We wonder if illustrations improve how the children retell a story. We would
like to test the hypotheses

STORY

H0: Scores have the same distribution for both stories.

Ha: Scores are systematically higher for Story 2.

Because this is a matched pairs design, we base our inference on the
differences. The matched pairs t test gives t = 0.635 with one-sided P-value P
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= 0.280. Displays of the data (Figure 15.6) suggest some lack of Normality.
We would therefore like to use a rank test.

FIGURE 15.6
Normal quantile plot and histogram for the five differences in story scores, for Example 15.8.

Positive differences in Example 15.8 indicate that the child performed better
telling Story 2. If scores are generally higher with illustrations, the positive
differences should be farther from zero in the positive direction than the negative
differences are in the negative direction. We therefore compare the absolute values
of the differences, that is, their magnitudes without a sign. Here they are, with
boldface indicating the positive values:

absolute value

0.37   0.23   0.66   0.08   0.17

Arrange these in increasing order and assign ranks, keeping track of which values
were originally positive. Tied values receive the average of their ranks. If there are
cases with zero differences, discard them before ranking.

Absolute value 0.08 0.17 0.23 0.37 0.66
Rank 1 2 3 4 5

The test statistic is the sum of the ranks of the positive differences. (We could
equally well use the sum of the ranks of the negative differences.) This is the
Wilcoxon signed rank statistic. Its value here is W+ = 9.

THE WILCOXON SIGNED RANK TEST FOR MATCHED
PAIRS

Draw an SRS of size n from a population for a matched pairs study and take
the differences in responses within pairs. Rank the absolute values of these
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differences. The sum W+ of the ranks for the positive differences is the
Wilcoxon signed rank statistic. If the distribution of the responses is not
affected by the different treatments within pairs, then W+ has mean

μW+=n(n+1)4

and standard deviation

σW+=n(n+1)(2n+1)24

The Wilcoxon signed rank test rejects the hypothesis that there are no
systematic differences within pairs when the rank sum W+ is far from its mean.

USE YOUR KNOWLEDGE

15.20 Service and food provided by top 25 spas.

SPAS3

The readers’ poll in Condé Nast Traveler magazine that ranked 100 top
resort spas and that was described in Exercise 15.1 also reported scores
on service and on food. Here are the scores for a random sample of 7
spas that ranked in the top 25:

Spa 1 2 3 4 5 6 7
Service 89.6 89.8 87.3 94.2 95.8 87.9 91.0
Food 83.1 88.1 85.8 92.9 95.7 80.7 83.6

Is service more important than food for a top ranking? Formulate this
question in terms of null and alternative hypotheses. Then compute the
differences and find the value of the Wilcoxon signed rank statistic, W+.

15.21 Scores for the next 25 spas.

SPAS4
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Refer to the previous exercise. Here are the scores for a random sample
of 7 spas that ranked between 26 and 50:

Spa 1 2 3 4 5 6 7
Service 90.6 87.2 95.0 88.4 91.5 88.2 91.2
Food 86.6 74.4 89.1 81.0 85.7 83.2 93.1

Answer the questions from the previous exercise for this setting.

Example

15.9 Software output.

STORY

In the storytelling study of Example 15.8, n = 5. If the null hypothesis (no
systematic effect of illustrations) is true, the mean of the signed rank statistic is

μW+=n(n+1)4=(5)(6)4=7.5

Our observed value W+ = 9 is only slightly larger than this mean. The one-
sided P-value is P(W+ ≥ 9).
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FIGURE 15.7
Output from (a) Minitab, (b) SPSS, and (c) SAS for the storytelling data, for Example 15.9.

Most statistical software uses the differences between the two variables,
with the signs, as input. Alternatively, the differences can sometimes be
calculated within the software. Figure 15.7 displays the output from three
statistical programs. Each does things a little differently. The Minitab output in
Figure 15.7(a) gives P = 0.394 for the one-sided Wilcoxon signed rank test
with n = 5 observations and W+ = 9 In Figure 15.7(b), the SPSS output gives P
= 0.686 for testing the two-sided alternative. The results from SAS in Figure
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15.7(c) are part of the usual output for the analysis of a single variable. The
two-sided alternative is used. The test statistic for the signed rank test is given
as S = 1.5. This quantity is W+ minus its expected value μW+ = 7.5, S = W+ –
μW+. The P-value is given as P = 0.8125.

Results reported in the three outputs lead us to the same qualitative
conclusion: the data do not provide evidence to support the idea that the Story
2 scores are higher than (or not equal to) the Story 1 scores. Different methods
and approximations are used to compute the P-values. With larger sample
sizes, we would not expect so much variation in the P-values. Note that the t
test results reported in SAS also give the same conclusion, P = 0.5599.

When the sampling distribution of a test statistic is symmetric, we can use
output that gives a P-value for a two-sided alternative to compute a P-value for a
one-sided alternative. Check that the effect is in the direction specified by the one-
sided alternative and then divide the P-value by 2.

The Normal approximation

The distribution of the signed rank statistic when the null hypothesis (no
difference) is true becomes approximately Normal as the sample size becomes
large. We can then use Normal probability calculations (with the continuity
correction) to obtain approximate P-values for W+. Let’s see how this works in the
storytelling example, even though n = 5 is certainly not a large sample.

Example

15.10 The Normal approximation.

For n = 5 observations, we saw in Example 15.9 that μW+ = 7.5. The standard
deviation of W+ under the null hypothesis is

σW+=n(n+1)(2n+1)24

=(5)(6)(11)24

=13.75=3.708

The continuity correction calculates the P-value P(W+ ≥ 9) as P(W+ ≥ 8.5),
treating the value W+ = 9 as occupying the interval from 8.5 to 9.5. We find
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the Normal approximation for the P-value by standardizing and using the
standard Normal table:

P(W+≥8.5)=P(W+−7.53.708≥8.5−7.53.708)

=P(Z≥0.27)

=0.394

Despite the small sample size, the Normal approximation gives a result quite
close to the exact value P = 0.4062. Figure 15.7(b) shows that the
approximation is much less accurate without the continuity correction. This
output reminds us not to trust software unless we know exactly what it does.

USE YOUR KNOWLEDGE

15.22 Significance test for top-ranked spas.

Refer to Exercise 15.20 (page 15-20). Find μW+, σW+ and the Normal
approximation for the P-value for the Wilcoxon signed rank test.

SPAS3

15.23 Significance test for lower-ranked spas.

Refer to Exercise 15.21 (page 15-20). Find μW+, σW+, and the Normal
approximation for the P-value for the Wilcoxon signed rank test.

SPAS4

Ties
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Ties among the absolute differences are handled by assigning average ranks. A tie
within a pair creates a difference of zero. Because these are neither positive nor
negative, the usual procedure simply drops such pairs from the sample. This
amounts to dropping observations that favor the null hypothesis (no difference). If
there are many ties, the test may be biased in favor of the alternative hypothesis.
As in the case of the Wilcoxon rank sum, ties complicate finding a P-value. Most
software no longer provides an exact distribution for the signed rank statistic W+,
and the standard deviation σW+ must be adjusted for the ties before we can use the
Normal approximation. Software will do this. Here is an example.

Example

15.11 Golf scores of a women’s golf team.

Here are the golf scores of 12 members of a college women’s golf team in two
rounds of tournament play. (A golf score is the number of strokes required to
complete the course, so that low scores are better.)

Player 1 2 3 4 5 6 7 8 9 10 11 12
Round 2 94 85 89 89 81 76 107 89 87 91 88 80
Round 1 89 90 87 95 86 81 102 105 83 88 91 79
Difference 5 –5 2 –6 –5 –5 5 –16 4 3 –3 1

Negative differences indicate better (lower) scores on the second round. We
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see that 6 of the 12 golfers improved their scores. We would like to test the
hypotheses that in a large population of collegiate women golfers

H0: Scores have the same distribution in Rounds 1 and 2.

Ha: Scores are systematically lower or higher in Round 2.

A Normal quantile plot of the differences (Figure 15.8) shows some
irregularity and a low outlier. We will use the Wilcoxon signed rank test.

FIGURE 15.8
Normal quantile plot of the difference in scores for two rounds of a golf tournament, for
Example 15.11.

The absolute values of the differences, with boldface indicating those that are
negative, are

5   5   2   6   5   5   5   16   4   3   3   1

Arrange these in increasing order and assign ranks, keeping track of which values
were originally negative. Tied values receive the average of their ranks.

Absolute value 1 2 3 3 4 5 5 5 5 5 6 16
Rank 1 2 3.5 3.5 5 8 8 8 8 8 11 12

The Wilcoxon signed rank statistic is the sum of the ranks of the negative
differences. (We could equally well use the sum of the ranks of the positive
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differences.) Its value is W+ = 50.5.

Example

15.12 Software output.

Here are the two-sided P-values for the Wilcoxon signed rank test for the golf
score data from three statistical programs:

Program P-value
Minitab P = 0.388
SAS P = 0.388
SPSS P = 0.363

All lead to the same practical conclusion: these data give no evidence for a
systematic change in scores between rounds. However, the P-value reported
by SPSS differs a bit from the other two. The reason for the variation is that
the programs use slightly different versions of the approximate calculations
needed when ties are present. The exact result depends on which version the
software programmer chose to use.

For the golf data, the matched pairs t test gives t = 0.9314 with P = 0.3716.
Once again, t and W+ lead to the same conclusion.

Testing a hypothesis about the median of a distribution

Let’s take another look at how the Wilcoxon signed rank test works. We have data
for a pair of variables measured on the same individuals. The analysis starts with
the differences between the two variables. These differences are what we input to
statistical software.

At this stage we can think of our data as consisting of a single variable. The
Wilcoxon signed rank test tests the null hypothesis that the population median of
the differences is zero. The alternative is that the median is not zero.

Think about starting the analysis at the stage where we have a single variable
and we are interested in testing a hypothesis about the median. The null hypothesis
does not necessarily need to be zero. If it is some other value, we simply subtract
that value from each observation before we start the analysis. Exercise 15.35 (page
15-27) leads you through the steps needed for this analysis.
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SECTION 15.2 Summary

The Wilcoxon signed rank test applies to matched pairs studies. It tests the null
hypothesis that there is no systematic difference within pairs against alternatives
that assert a systematic difference (either one-sided or two-sided).

The test is based on the Wilcoxon signed rank statistic W+, which is the sum
of the ranks of the positive (or negative) differences when we rank the absolute
values of the differences. The matched pairs t test and the sign test are alternative
tests in this setting.

P-values for the signed rank test are based on the sampling distribution of W+

when the null hypothesis is true. You can find P-values from special tables,
software, or a Normal approximation (with continuity correction).

SECTION 15.2 Exercises
For Exercises 15.20 and 15.21, see page 15-20; and for Exercises 15.22 and 15.23, see page 15-23.

15.24 Fuel efficiency.

Computers in some vehicles calculate various quantities related to performance. One of these is the fuel
efficiency, or gas mileage, usually expressed as miles per gallon (mpg). For one vehicle equipped in this
way, the mpg were recorded each time the gas tank was filled, and the computer was then reset. In addition
to the computer calculating mpg, the driver also recorded the mpg by dividing the miles driven by the
number of gallons at fill-up.9

The driver wants to determine if these calculations are different.  MPG8

Fill-up 1 2 3 4 5 6 7 8
Computer 41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2
Driver 36.5 44.2 37.2 35.6 30.5 40.5 40.0 41.0

(a) For each of the eight fill-ups find the difference between the computer mpg and the driver mpg.

(b) Find the absolute values of the differences you found in part (a).

(c) Order the absolute values of the differences that you found in part (b) from smallest to largest, and
underline those absolute differences that came from positive differences in part (a).

15.25 Find the Wilcoxon signed rank statistic.

Using the work that you performed in the previous exercise, find the value of the Wilcoxon signed rank
statistic W+

15.26 State the hypotheses.

Refer to Exercise 15.24. State the null hypothesis and the alternative hypothesis for this setting.

15.27 Find the mean and the standard deviation.
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Refer to Exercise 15.24. Use the sample size to find the mean and the standard deviation of the sampling
distribution of the Wilcoxon signed rank statistic W+ under the null hypothesis.

15.28 Find the P-value.

Refer to Exercises 15.24 to 15.27. Find the P-value for the Wilcoxon signed rank statistic using the Normal
approximation with the continuity correction.

15.29 Read the output.

The data in Exercise 15.24 are a subset of a larger set of data. Figure 15.9 gives Minitab output for the

analysis of this larger set of data.  MPGCOMP

(a) How many pairs of observations are in the larger data set?

(b) What is the value of the Wilcoxon signed rank statistic W+?

(c) Report the P-value for the significance test and give a brief statement of your conclusion.

FIGURE 15.9
Minitab output for the fuel efficiency data, for Exercise 15.29.

(d) The output reports an estimated median. Explain how this statistic is calculated from the data.

15.30 Number of friends on Facebook.

Facebook recently examined all active Facebook users (more than 10% of the global population) and
determined that the average user has 190 friends. This distribution takes only integer values, so it is
certainly not Normal. It is also highly skewed to the right, with a median of 100 friends.10 Consider the

following SRS of n = 30 Facebook users from your large university.  FACEFR

594 60 417 120 132 176 516 319 734 8
31 325 52 63 537 27 368 11 12 190
85 165 288 65 57 81 257 24 297 148
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(a) Use the Wilcoxon signed rank procedure to test the null hypothesis that the median number of
Facebook friends for Facebook users at your university is 190. Describe the steps in the procedure and
summarize the results.

(b) Exercise 7.26 (page 442) asked you to analyze these data using the t procedure. Perform this analysis
and compare the results with those that you found in part (a).

15.31 The full moon and behavior.

Can the full moon influence behavior? A study observed 15 nursing-home patients with dementia. The
number of incidents of aggressive behavior was recorded each day for 12 weeks. Call a day a “moon day”
if it is the day of a full moon or the day before or after a full moon. Here are the average numbers of

aggressive incidents for moon days and other days for each subject:11  MOON

Patient Moon days Other days
1 3.33 0.27
2 3.67 0.59
3 2.67 0.32
4 3.33 0.19
5 3.33 1.26
6 3.67 0.11
7 4.67 0.30
8 2.67 0.40
9 6.00 1.59

10 4.33 0.60
11 3.33 0.65
12 0.67 0.69
13 1.33 1.26
14 0.33 0.23
15 2.00 0.38

The matched pairs t test (Example 7.7, page 429) gives P < 0.000015, and a permutation test (Example
16.14, page 16-50) gives P = 0.0001. Does the Wilcoxon signed rank test, based on ranks rather than
means, agree that there is strong evidence that there are more aggressive incidents on moon days?

15.32 Comparison of two energy drinks.

Consider the following study to compare two popular energy drinks. For each subject, a coin was flipped to
determine which drink to rate first. Each drink was rated on a 0 to 100 scale, with 100 being the highest

rating.  ENERDR6

Subject
Drink 1 2 3 4 5 6
A 43 83 66 87 78 67
B 45 78 64 79 71 62

(a) Inspect the data. Is there a tendency for these subjects to prefer one of the two energy drinks?

(b) Use the matched pairs t test of Chapter 7 (page 429) to compare the two drinks.
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(c) Use the Wilcoxon signed rank test to compare the two drinks.

(d) Write a summary of your results and explain why the two tests give different conclusions.

15.33 Comparison of two energy drinks with an additional subject.

Refer to the previous exercise. Let’s suppose that there is an additional subject who expresses a strong

preference for energy drink “A.” Here is the new data set:  ENERDR7

Subject
Drink 1 2 3 4 5 6 7
A 43 83 66 87 78 67 90
B 45 78 64 79 71 62 60

Answer the questions given in the previous exercise. Write a summary comparing this exercise with the
previous one. Include a discussion of what you have learned regarding the choice of the t test versus the
Wilcoxon signed rank test for different sets of data.

15.34 A summer language institute for teachers.

A matched pairs study of the effect of a summer language institute on the ability of teachers to comprehend

spoken French had these improvements in scores between the pretest and the posttest for 20 teachers: 
SUMLANG

2 0 6 6 3 3 2 3 –6 6
6 6 3 0 1 1 0 2 3 3

(Exercise 7.45, page 446, applies the t test to these data; Exercise 16.59, page 16-49, applies a permutation
test based on the means.) Show the assignment of ranks and the calculation of the signed rank statistic W+
for these data. Remember that zeros are dropped from the data before ranking, so that n is the number of
nonzero differences within pairs.

15.35 Radon detectors.

How accurate are radon detectors of a type sold to homeowners? To answer this question, university
researchers placed 12 detectors in a chamber that exposed them to 105 picocuries per liter (pCi/l) of

radon.12 The detector readings are as follows:  RADON

91.9 97.8 111.4 122.3 105.4 95.0
103.8 99.6 96.6 119.3 104.8 101.7

We wonder if the median reading differs significantly from the true value 105.

(a) Graph the data, and comment on skewness and outliers. A rank test is appropriate.

(b) We would like to test hypotheses about the median reading from home radon detectors:

H0: median = 105

Ha: median ≠ 105

1317



To do this, apply the Wilcoxon signed rank statistic to the differences between the observations and 105.
(This is the one-sample version of the test.) What do you conclude?

15.36 Vitamin C in wheat-soy blend.

The U.S. Agency for International Development provides large quantities of wheat-soy blend (WSB) for
development programs and emergency relief in countries throughout the world. One study collected data
on the vitamin C content of 5 bags of WSB at the factory and five months later in Haiti.13 Here are the

data:  WSBVITC

Sample 1 2 3 4 5
Before 73 79 86 88 78
After 20 27 29 36 17

We want to know if vitamin C has been lost during transportation and storage. Describe what the data
show about this question. Then use a rank test to see whether there has been a significant loss.
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15.3 The Kruskal-Wallis Test*

When you complete this section, you will be able to

• Describe the setting where the Kruskal-Wallis test can be used.

• Specify the null and alternative hypotheses for the Kruskal-Wallis test.

• For the Kruskal-Wallace test, use computer output to determine the
results of the significance test.

__________
* Because this test is an alternative to the one-way analysis of variance F test, you should first read
Chapter 12.

We have now considered alternatives to the matched pairs and two-sample t
tests for comparing the magnitude of responses to two treatments. To compare
more than two treatments, we use one-way analysis of variance (ANOVA) if the
distributions of the responses to each treatment are at least roughly Normal and
have similar spreads. What can we do when these distribution requirements are
violated?

Example

15.13 Weeds and corn yield.

Lamb’s-quarter is a common weed that interferes with the growth of corn. A
researcher planted corn at the same rate in 16 small plots of ground and then
randomly assigned the plots to four groups. He weeded the plots by hand to
allow a fixed number of lamb’s-quarter plants to grow in each meter of corn
row. These numbers were 0, 1, 3, and 9 in the four groups of plots. No other
weeds were allowed to grow, and all plots received identical treatment except
for the weeds. Here are the yields of corn (bushels per acre) in each of the
plots:14
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WEEDS

Weeds per
meter

Corn
yield

Weeds per
meter

Corn
yield

Weeds per
meter

Corn
yield

Weeds per
meter

Corn
yield

0 166.7 1 166.2 3 158.6 9 162.8
0 172.2 1 157.3 3 176.4 9 142.4
0 165.0 1 166.7 3 153.1 9 162.7
0 176.9 1 161.1 3 156.0 9 162.4

The summary statistics are

Weeds n Mean Std. dev.
0 4 170.200 5.422
1 4 162.825 4.469
3 4 161.025 10.493
9 4 157.575 10.118

The sample standard deviations do not satisfy our rule of thumb that for
safe use of ANOVA the largest should not exceed twice the smallest. A careful
look at the data suggests that there may be some outliers in the 3 and 9 weeds
per meter groups. These are the correct yields for their plots, so we have no
justification for removing them. Let’s use a rank test that is not sensitive to
outliers.

Hypotheses and assumptions

The ANOVA F test concerns the means of the several populations represented by
our samples. For Example 15.13, the ANOVA hypotheses are

H0: μ0 = μ1 = μ3 = μ9

Ha: not all four means are equal

Here, μ0 is the mean yield in the population of all corn planted under the conditions
of the experiment with no weeds present. The data should consist of four
independent random samples from the four populations, all Normally distributed
with the same standard deviation.

The Kruskal-Wallis test is a rank test that can replace the ANOVA F test. The
assumption about data production (independent random samples from each
population) remains important, but we can relax the Normality assumption. We
assume only that the response has a continuous distribution in each population. The
hypotheses tested in our example are

H0: Yields have the same distribution in all groups.

Ha: Yields are systematically higher in some groups than in others.
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If all the population distributions have the same shape (Normal or not), these
hypotheses take a simpler form. The null hypothesis is that all four populations
have the same median yield. The alternative hypothesis is that not all four median
yields are equal.

The Kruskal-Wallis test

Recall the analysis of variance idea: we write the total observed variation in the
responses as the sum of two parts, one measuring variation among the groups (sum
of squares for groups, SSG) and one measuring variation among individual
observations within the same group (sum of squares for error, SSE). The ANOVA
F test rejects the null hypothesis that the mean responses are equal in all groups if
SSG is large relative to SSE.

The idea of the Kruskal-Wallis rank test is to rank all the responses from all
groups together and then apply one-way ANOVA to the ranks rather than to the
original observations. If there are N observations in all, the ranks are always the
whole numbers from 1 to N. The total sum of squares for the ranks is therefore a
fixed number no matter what the data are. So we do not need to look at both SSG
and SSE. Although it isn’t obvious without some unpleasant algebra, the Kruskal-
Wallis test statistic is essentially just SSG for the ranks. We give the formula, but
you should rely on software to do the arithmetic. When SSG is large, that is
evidence that the groups differ.

THE KRUSKAL-WALLIS TEST

Draw independent SRSs of sizes n1, n2, . . . , nI from I populations. There are
N observations in all. Rank all N observations and let Ri be the sum of the
ranks for the ith sample. The Kruskal-Wallis statistic is

H=12N(N+1)ΣRi2ni−3(N+1)

When the sample sizes ni are large and all I populations have the same
continuous distribution, H has approximately the chi-square distribution with I
– 1 degrees of freedom.

The Kruskal-Wallis test rejects the null hypothesis that all populations have the same distribution
when H is large.

We now see that, like the Wilcoxon rank sum statistic, the Kruskal-Wallis
statistic is based on the sums of the ranks for the groups we are comparing. The
more different these sums are, the stronger is the evidence that responses are
systematically larger in some groups than in others.

The exact distribution of the Kruskal-Wallis statistic H under the null
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hypothesis depends on all the sample sizes n1 to nI, so tables are awkward. The
calculation of the exact distribution is so time-consuming for all but the smallest
problems that even most statistical software uses the chi-square approximation to
obtain P-values. As usual, there is no usable exact distribution when there are ties
among the responses. We again assign average ranks to tied observations.

Example

15.14 Perform the significance test.

WEEDS

In Example 15.13, there are I = 4 populations and N = 16 observations. The
sample sizes are equal, ni = 4. The 16 observations arranged in increasing
order, with their ranks, are

Yield 142.4 153.1 156.0 157.3 158.6 161.1 162.4 162.7
Rank 1 2 3 4 5 6 7 8
Yield 162.8 165.0 166.2 166.7 166.7 172.2 176.4 176.9
Rank 9 10 11 12.5 12.5 14 15 16

There is one pair of tied observations. The ranks for each of the four
treatments are

Weeds Ranks Rank sums
0 10 12.5 14 16 52.5
1 4 6 11 12.5 33.5
3 2 3 5 15 25.0
9 1 7 8 9 25.0

The Kruskal-Wallis statistic is therefore

H=12N(N+1)ΣRi2ni−3(N+1)

=12(16)(17)(52.524+33.524+2524+2524)−(3)(17)

=12272(1282.125)−51

=5.56
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Referring to the table of chi-square critical points (Table F) with df = 3, we
find that the P-value lies in the interval 0.10 < P < 0.15. This small experiment
suggests that more weeds decrease yield but does not provide convincing
evidence that weeds have an effect.

Figure 15.10 displays the output from Minitab, SPSS, and SAS for the analysis
of the data in Example 15.14. Minitab gives the H statistic adjusted for ties as H =
5.57 with 3 degrees of freedom and P = 0.134. SPSS reports the same P-value.
SAS reports a chi-square statistic with 3 degrees of freedom and P = 0.1344. All
agree that there is not sufficient evidence in the data to reject the null hypothesis
that the number of weeds per meter has no effect on the yield.
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FIGURE 15.10
Output from (a) Minitab, (b) SPSS, and (c) SAS for the Kruskal-Wallis test applied to the weed
data, for Example 15.14.

SECTION 15.3 Summary

The Kruskal-Wallis test compares several populations on the basis of independent
random samples from each population. This is the one-way analysis of variance
setting.

The null hypothesis for the Kruskal-Wallis test is that the distribution of the
response variable is the same in all the populations. The alternative hypothesis is
that responses are systematically larger in some populations than in others.

The Kruskal-Wallis statistic H can be viewed in two ways. It is essentially the
result of applying one-way ANOVA to the ranks of the observations. It is also a
comparison of the sums of the ranks for the several samples.
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When the sample sizes are not too small and the null hypothesis is true, H for
comparing I populations has approximately the chi-square distribution with I – 1
degrees of freedom. We use this approximate distribution to obtain P-values.

SECTION 15.3 Exercises

15.37 Number of Facebook friends.

An experiment was run to examine the relationship between the number of Facebook friends and the user’s
perceived social attractiveness.15 A total of 134 undergraduate participants were randomly assigned to
observe one of five Facebook profiles. Everything about the profile was the same except the number of
friends, which appeared on the profile as 102, 302, 502, 702, or 902. After viewing the profile, each
participant was asked to fill out a questionnaire on the physical and social attractiveness of the profile user.
Each attractiveness score is an average of several seven-point questionnaire items, ranging from 1 (strongly
disagree) to 7 (strongly agree). In Example 12.3 (page 648), we analyzed these data using a one-way
ANOVA. Explain the setting for this problem. Include the number of groups to be compared, assumptions

about independence, and the distribution of the distributions.  FRIENDS

15.38 What are the hypotheses?

Refer to the previous exercise. What are the null hypothesis and the alternative hypothesis? Explain why a
nonparametric procedure is appropriate in this setting.

15.39 Read the output.

Figure 15.11 gives the Minitab output for the analysis of the data described in Exercise 15.37. Describe the
results given in the output and write a short summary of your conclusions from the analysis.
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FIGURE 15.11
Output from Minitab for the Kruskal-Wallis test applied to the Facebook data, for Exercise
15.39.

15.40 Do we experience emotions differently?

In Exercise 12.37 (page 684) you analyzed data related to the way people from different cultures
experience emotions. The study subjects were 410 college students from five different cultures. They were
asked to record, on a 1 (never) to 7 (always) scale, how much of the time they typically felt eight specific
emotions. These were averaged to produce the global emotion score for each participant. Analyze the data
using the Kruskal-Wallis test and write a summary of your analysis and conclusions. Be sure to include

your assumptions, hypotheses, and the results of the significance test.  EMOTION

15.41 Do isoflavones increase bone mineral density?

In Exercise 12.45 (page 686) you investigated the effects of isoflavones from kudzu on bone mineral
density (BMD). The experiment randomized rats to three diets: control, low isoflavones, and high

isoflavones. Here are the data:  KUDZU

Treatment BMD (g/cm2)
Control 0.228 0.207 0.234 0.220 0.217 0.228 0.209 0.221

0.204 0.220 0.203 0.219 0.218 0.245 0.210
Low dose 0.211 0.220 0.211 0.233 0.219 0.233 0.226 0.228

1327



0.216 0.225 0.200 0.208 0.198 0.208 0.203

High dose 0.250 0.237 0.217 0.206 0.247 0.228 0.245 0.232
0.267 0.261 0.221 0.219 0.232 0.209 0.255

(a) Use the Kruskal-Wallace test to compare the three diets.

(b) How do these results compare with what you find using the ANOVA F statistic?

15.42 Vitamins in bread.

Does bread lose its vitamins when stored? Here are data on the vitamin C content (milligrams per 100
grams of flour) in bread baked from the same recipe and stored for 1, 3, 5, or 7 days.16 The 10

observations are from 10 different loaves of bread.  BREAD

Condition Vitamin C (mg/100 g)
Immediately after baking 47.62 49.79
One day after baking 40.45 43.46
Three days after baking 21.25 22.34
Five days after baking 13.18 11.65
Seven days after baking 8.51 8.13

The loss of vitamin C over time is clear, but with only 2 loaves of bread for each storage time we wonder if
the differences among the groups are significant.

(a) Use the Kruskal-Wallis test to assess significance and then write a brief summary of what the data
show.

(b) Because there are only 2 observations per group, we suspect that the common chi-square approximation
to the distribution of the Kruskal-Wallis statistic may not be accurate. The exact P-value (from SAS
software) is P = 0.0011. Compare this with your P-value from part (a). Is the difference large enough to
affect your conclusion?

15.43 Jumping and strong bones.

In Exercise 12.47 (page 687) you studied the effects of jumping on the bones of rats. Ten rats were
assigned to each of three treatments: a 60-centimeter “high jump,” a 30-centimeter “low jump,” and a
control group with no jumping.17 Here are the bone densities (in milligrams per cubic centimeter) after

eight weeks of 10 jumps per day:  JUMP

Group Bone density (mg/cm3)
Control 611 621 614 593 593

653 600 554 603 569
Low jump 635 605 638 594 599

632 631 588 607 596
High jump 650 622 626 626 631

622 643 674 643 650

(a) The study was a randomized comparative experiment. Outline the design of this experiment.
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(b) Make side-by-side stemplots for the three groups, with the stems lined up for easy comparison. The
distributions are a bit irregular but not strongly non-Normal. We would usually use analysis of variance to
assess the significance of the difference in group means.

(c) Do the Kruskal-Wallis test. Explain the distinction between the hypotheses tested by Kruskal-Wallis
and ANOVA.

(d) Write a brief statement of your findings. Include a numerical comparison of the groups as well as your
test result.

15.44 Do poets die young?

In Exercise 12.46 (page 686) you analyzed the age at death for female writers. They were classified as

novelists, poets, and nonfiction writers. The data are given in Table 12.1 (page 686).  POETS

(a) Use the Kruskal-Wallace test to compare the three groups of female writers.

(b) Compare these results with what you find using the ANOVA F statistic.
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CHAPTER 15 Exercises

 15.45 Plants and hummingbirds.

Different varieties of the tropical flower Heliconia are fertilized by different species of
hummingbirds. Over time, the lengths of the flowers and the forms of the hummingbirds’ beaks have
evolved to match each other. Here are data on the lengths in millimeters of three varieties of these

flowers on the island of Dominica:18  HBIRDS

H. bihai
47.12 46.75 46.81 47.12 46.67 47.43
46.44 46.64 48.07 48.34 48.15 50.26
50.12 46.34 46.94 48.36

H. caribaea red
41.90 42.01 41.93 43.09 41.47 41.69
39.78 40.57 39.63 42.18 40.66 37.87
39.16 37.40 38.20 38.07 38.10 37.97
38.79 38.23 38.87 37.78 38.01

H. caribaea yellow
36.78 37.02 36.52 36.11 36.03 35.45
38.13 37.10 35.17 36.82 36.66 35.68
36.03 34.57 34.63

Do a complete analysis that includes description of the data and a rank test for the significance of the
differences in lengths among the three species.

15.46 Time spent studying.

In Exercise 1.173 (page 50) you compared the time spent studying by men and women. The students
in a large first-year college class were asked how many minutes they studied on a typical weeknight.

Here are the responses of random samples of 30 women and 30 men from the class:  STIME

Women Men
170 120 180 360 240 80 120 30 90 200
120 180 120 240 170 90 45 30 120 75
150 120 180 180 150 150 120 60 240 300
200 150 180 150 180 240 60 120 60 30
120 60 120 180 180 30 230 120 95 150

90 240 180 115 120 0 200 120 120 180

(a) Summarize the data numerically and graphically.

(b) Use the Wilcoxon rank sum test to compare the men and women. Write a short summary of your
results.
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(c) Use a two-sample t test to compare the men and women. Write a short summary of your results.

(d) Which procedure is more appropriate for these data? Give reasons for your answer.

15.47 Response times for telephone repair calls.

A study examined the time required for the telephone company Verizon to respond to repair calls
from its own customers and from customers of a CLEC, another phone company that pays Verizon

to use its local lines. Here are the data, which are rounded to the nearest hour:  TREPAIR

Verizon
1 1 1 1 2 2 1 1 1 1 2 2
1 1 1 1 2 2 1 1 1 1 2 3
1 1 1 1 2 3 1 1 1 1 2 3
1 1 1 1 2 3 1 1 1 1 2 3
1 1 1 1 2 3 1 1 1 1 2 4
1 1 1 1 2 5 1 1 1 1 2 5
1 1 1 1 2 6 1 1 1 1 2 8
1 1 1 1 2 15 1 1 1 2 2

CLEC
1 1 5 5 5 1 5 5 5 5

(a) Does Verizon appear to give CLEC customers the same level of service as its own customers?
Compare the data using graphs and descriptive measures and express your opinion.

(b) We would like to see if times are significantly longer for CLEC customers than for Verizon
customers. Why would you hesitate to use a t test for this purpose? Carry out a rank test. What can
you conclude?

(c) Explain why a nonparametric procedure is appropriate in this setting.

Iron-deficiency anemia is the most common form of malnutrition in developing countries. Does the
type of cooking pot affect the iron content of food? We have data from a study in Ethiopia that
measured the iron content (milligrams per 100 grams of food) for three types of food cooked in each

of three types of pots:19  COOK

Type of Pot Iron Content
Meat

Aluminum 1.77 2.36 1.96 2.14
Clay 2.27 1.28 2.48 2.68
Iron 5.27 5.17 4.06 4.22

Legumes
Aluminum 2.40 2.17 2.41 2.34
Clay 2.41 2.43 2.57 2.48
Iron 3.69 3.43 3.84 3.72

Vegetables
Aluminum 1.03 1.53 1.07 1.30
Clay 1.55 0.79 1.68 1.82
Iron 2.45 2.99 2.80 2.92
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Exercises 15.48 to 15.50 use these data.

15.48 Cooking vegetables in different pots.

Does the vegetable dish vary in iron content when cooked in aluminum, clay, and iron pots? 
COOK

(a) What do the data appear to show? Check the conditions for one-way ANOVA. Which
requirements are a bit dubious in this setting?

(b) Instead of ANOVA, do a rank test. Summarize your conclusions about the effect of pot material
on the iron content of the vegetable dish.

15.49 Cooking meat and legumes in aluminum and clay pots.

There appears to be little difference between the iron content of food cooked in aluminum pots and
food cooked in clay pots. Is there a significant difference between the iron content of meat cooked in
aluminum and clay? Is the difference between aluminum and clay significant for legumes? Use rank

tests.  COOK

15.50 Iron in food cooked in iron pots.

The data show that food cooked in iron pots has the highest iron content. They also suggest that the
three types of food differ in iron content. Is there significant evidence that the three types of food

differ in iron content when all are cooked in iron pots?  COOK

 15.51 Multiple comparisons for plants and hummingbirds.

As in ANOVA, we often want to carry out a multiple-comparisons procedure following a Kruskal-
Wallis test to tell us which groups differ significantly.20 The Bonferroni method (page 670) is a
simple method: If we carry out k tests at fixed significance level 0.05/k, the probability of any false
rejection among the k tests is always no greater than 0.05. That is, to get overall significance level
0.05 for all of k comparisons, do each individual comparison at the 0.05/k level. In Exercise 15.45
you found a significant difference among the lengths of three varieties of the flower Heliconia. Now

we will explore multiple comparisons.  HBIRDS

(a) Write down all the pairwise comparisons we can make, for example, bihai versus caribaea red.
There are three possible pairwise comparisons.

(b) Carry out three Wilcoxon rank sum tests, one for each of the three pairs of flower varieties. What
are the three two-sided P-values?

(c) For purposes of multiple comparisons, any of these three tests is significant if its P-value is no
greater than 0.05/3 = 0.0167. Which pairs differ significantly at the overall 0.05 level?

 15.52 Multiple comparisons for cooking pots.

The previous exercise outlines how to use the Wilcoxon rank sum test several times for multiple
comparisons with overall significance level 0.05 for all comparisons together. Apply this procedure
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to the data used in each of Exercises 15.48 to 15.50.  COOK
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International Development. The report was used by the Committee on International Nutrition of the
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19. Based on A. A. Adish et al., “Effect of consumption of food cooked in iron pots on iron status
and growth of young children: A randomised trial,” The Lancet, 353 (1999), pp. 712–716.
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Introduction

The continuing revolution in computing is having a dramatic influence on
statistics. The exploratory analysis of data is becoming easier as more graphs and
calculations are automated. The statistical study of very large and very complex
data sets is now feasible. Another impact of this fast and inexpensive computing is
less obvious: new methods apply previously unthinkable amounts of computation
to produce confidence intervals and tests of significance in settings that don’t meet
the conditions for safe application of the usual methods of inference.

Consider the commonly used t procedures for inference about means (Chapter
7) and for relationships between quantitative variables (Chapter 10). All these
methods rest on the use of Normal distributions for data. While no data are exactly
Normal, the t procedures are useful in practice because they are robust.
Nonetheless, we cannot use t confidence intervals and tests if the data are strongly
skewed, unless our samples are quite large.

robust, p. 432

Other procedures cannot be used on non-Normal data even when the samples
are large. Inference about spread based on Normal distributions is not robust and
therefore of little use in practice.

F test for equality of spread, p. 474

Finally, what should we do if we are interested in, say, a ratio of means, such as
the ratio of average men’s salary to average women’s salary? There is no simple
traditional inference method for this setting.

The methods of this chapter—bootstrap confidence intervals and permutation
tests—apply the power of the computer to relax some of the conditions needed for
traditional inference and to do inference in new settings. The big ideas of statistical
inference remain the same. The fundamental reasoning is still based on asking,
“What would happen if we applied this method many times?” Answers to this
question are still given by confidence levels and P-values based on the sampling
distributions of statistics.

The most important requirement for trustworthy conclusions about a population
is still that our data can be regarded as random samples from the population—not
even the computer can rescue voluntary response samples or confounded
experiments. But the new methods set us free from the need for Normal data or
large samples. They work the same way for many different statistics in many
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different settings. They can, with sufficient computing power, give results that are
more accurate than those from traditional methods.

Bootstrap intervals and permutation tests are conceptually simple because they
appeal directly to the basis of all inference: the sampling distribution that shows
what would happen if we took very many samples under the same conditions. The
new methods do have limitations, some of which we will illustrate. But their
effectiveness and range of use are so great that they are now widely used in a
variety of settings.

Software

Bootstrapping and permutation tests are feasible in practice only with software that
automates the heavy computation that these methods require. If you are sufficiently
expert, you can program at least the basic methods yourself. It is easier to use
software that offers bootstrap intervals and permutation tests preprogrammed, just
as most software offers the various t intervals and tests. You can expect the new
methods to become more common in standard statistical software.

This chapter primarily uses R, the software choice of many statisticians doing
research on resampling methods.1 There are several packages of functions for
resampling in R. We will focus on the boot package, which offers the most
capabilities. Unlike software such as Minitab and SPSS, R is not menu driven and
requires command line requests to load data and access various functions. All
commands used in this chapter are available on the text website.

SPSS and SAS also offer preprogrammed bootstrap and permutation methods.
SPSS has an auxiliary bootstrap module that contains most of the methods
described in this chapter. In SAS, the SURVEYSELECT procedure can be used to
do the necessary resampling. The bootstrap macro contains most of the confidence
interval methods offered by R. You can find links for downloading these modules
or macros on the text website.
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16.1 The Bootstrap Idea

When you complete this section, you will be able to

• Randomly select bootstrap resamples from a small sample using software
and a table of random numbers.

• Find the bootstrap standard error from a collection of resamples.

• Use computer output to describe the results of a bootstrap analysis of the
mean.

Here is the example we will use to introduce these methods.

EXAMPLE

16.1 Time to start a business.

TIME50

The World Bank collects information about starting businesses throughout the
world. They have determined the time, in days, to complete all the procedures
required to start a business. For this example, we use the times to start a
business for a random sample of 50 countries included in the World Bank
survey.

Figure 16.1(a) gives a histogram and Figure 16.1(b) gives the Normal
quantile plot. The data are strongly skewed to the right. The median is 12 days
and the mean is almost twice as large, 23.26 days. We have some concerns
about using the t procedures for these data.
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FIGURE 16.1
(a) The distribution of 50 times to start a business. (b) Normal quantile plot of the times to start
a business, for Example 16.1. The distribution is strongly right-skewed.

The big idea: resampling and the bootstrap distribution

Statistical inference is based on the sampling distributions of sample statistics. A
sampling distribution is based on many random samples from the population. The
bootstrap is a way of finding the sampling distribution, at least approximately,
from just one sample. Here is the procedure:

sampling distribution, p. 302

Step 1: Resampling. In Example 16.1, we have just one random sample. In
place of many samples from the population, create many resamples by repeatedly
sampling with replacement from this one random sample. Each resample is the
same size as the original random sample.

resamples
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Sampling with replacement means that after we randomly draw an
observation from the original sample, we put it back before drawing the next
observation. Think of drawing a number from a hat and then putting it back before
drawing again. As a result, any number can be drawn more than once. If we
sampled without replacement, we’d get the same set of numbers we started with,
though in a different order. Figure 16.2 illustrates three resamples from a sample of
five observations. In practice, we draw hundreds or thousands of resamples, not
just three.

sampling with replacement

FIGURE 16.2
The resampling idea. The top box is a sample of size n = 5 from the time to start a business data.
The three lower boxes are three resamples from this original sample. Some values from the
original sample are repeated in the resamples because each resample is formed by sampling with
replacement. We calculate the statistic of interest, the sample mean in this example, for the
original sample and each resample.

Step 2: Bootstrap distribution. The sampling distribution of a statistic collects
the values of the statistic from the many samples of the population. The bootstrap
distribution of a statistic collects its values from the many resamples. The
bootstrap distribution gives information about the sampling distribution.

bootstrap distribution

THE BOOTSTRAP IDEA

The original sample is representative of the population from which it was
drawn. Thus, resamples from this original sample represent what we would get
if we took many samples from the population. The bootstrap distribution of
a statistic, based on the resamples, represents the sampling distribution of the
statistic.
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EXAMPLE

16.2 Bootstrap distribution of mean time to start a business.

TIME50

In Example 16.1, we want to estimate the population mean time to start a
business, μ, so the statistic is the sample mean x¯. For our one random sample
of 50 times, x¯=23.26 days. When we resample, we get different values of x¯,
just as we would if we took new samples from the population of all times to
start a business.

We randomly generated 3000 resamples for these data. The mean for the
resamples is 23.30 days and the standard deviation is 3.85. Figure 16.3(a)
gives a histogram of the bootstrap distribution of the means of 3000 resamples
from the time to start a business data. The Normal density curve with the mean
23.30 and standard deviation 3.85 is superimposed on the histogram. A
Normal quantile plot is given in Figure 16.3(b). The distribution of the
resample means is approximately Normal, although a small amount of
skewness is still evident.
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FIGURE 16.3
(a) The bootstrap distribution of 3000 resample means from the sample of times to start a
business. The smooth curve is the Normal density function for the distribution that matches the
mean and standard deviation of the distribution of the resample means. (b) The Normal quantile
plot confirms that the bootstrap distribution is somewhat skewed to the right but fits the Normal
distribution quite well.

According to the bootstrap idea, the bootstrap distribution represents the
sampling distribution. Let’s compare the bootstrap distribution with what we know
about the sampling distribution.

central limit theorem, p. 307

Shape: We see that the bootstrap distribution is nearly Normal. The central
limit theorem says that the sampling distribution of the sample mean x¯ is
approximately Normal if n is large. So the bootstrap distribution shape is close to
the shape we expect the sampling distribution to have.

mean and standard deviation of x¯, p. 306
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Center: The bootstrap distribution is centered close to the mean of the original
sample, 23.30 days versus 23.26 days for the original sample. Therefore, the mean
of the bootstrap distribution has little bias as an estimator of the mean of the
original sample. We know that the sampling distribution of x¯ is centered at the
population mean μ, that is, that x¯ is an unbiased estimate of μ. So the resampling
distribution behaves (starting from the original sample) as we expect the sampling
distribution to behave (starting from the population).

Spread: The histogram and density curve in Figure 16.3(a) picture the variation
among the resample means. We can get a numerical measure by calculating their
standard deviation. Because this is the standard deviation of the 3000 values of x¯
that make up the bootstrap distribution, we call it the bootstrap standard error of
x¯. The numerical value is 3.85. In fact, we know that the standard deviation of x¯
is σ/n, where σ is the standard deviation of individual observations in the
population. Our usual estimate of this quantity is the standard error of x¯,s/n,
where s is the standard deviation of our one random sample. For these data, s =
28.20 and

bootstrap standard error

sn=28.2050=3.99

The bootstrap standard error 3.85 is relatively close to the theory-based estimate
3.99.

In discussing Example 16.2, we took advantage of the fact that statistical theory
tells us a great deal about the sampling distribution of the sample mean x¯ We
found that the bootstrap distribution created by resampling matches the properties
of this sampling distribution. The heavy computation needed to produce the
bootstrap distribution replaces the heavy theory (central limit theorem, mean, and
standard deviation of x¯) that tells us about the sampling distribution.

The great advantage of the resampling idea is that it often works even when
theory fails. Of course, theory also has its advantages: we know exactly when it
works. We don’t know exactly when resampling works, so that “When can I safely
bootstrap?” is a somewhat subtle issue.

Figure 16.4 illustrates the bootstrap idea by comparing three distributions.
Figure 16.4(a) shows the idea of the sampling distribution of the sample mean x¯:
take many random samples from the population, calculate the mean x¯ for each
sample, and collect these x¯-values into a distribution.

Figure 16.4(b) shows how traditional inference works: statistical theory tells us
that if the population has a Normal distribution, then the sampling distribution of
x¯ is also Normal. If the population is not Normal but our sample is large, we can
use the central limit theorem. If μ and σ are the mean and standard deviation of the
population, the sampling distribution of x¯ has mean μ and standard deviation σ/n.
When it is available, theory is wonderful: we know the sampling distribution
without the impractical task of actually taking many samples from the population.
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central limit theorem, p. 307

Figure 16.4(c) shows the bootstrap idea: we avoid the task of taking many
samples from the population by instead taking many resamples from a single
sample. The values of x¯ from these resamples form the bootstrap distribution. We
use the bootstrap distribution rather than theory to learn about the sampling
distribution.

1348



FIGURE 16.4
(a) The idea of the sampling distribution of the sample mean x¯: take very many samples,
collect the x¯-values from each, and look at the distribution of these values. (b) The theory
shortcut: if we know that the population values follow a Normal distribution, theory tells us that
the sampling distribution of x¯ is also Normal. (c) The bootstrap idea: when theory fails and we
can afford only one sample, that sample stands in for the population, and the distribution of x¯
in many resamples stands in for the sampling distribution.

USE YOUR KNOWLEDGE

16.1 A small bootstrap example.

To illustrate the bootstrap procedure, let’s bootstrap a small random
subset of the time to start a business data:

8 3 10 47 7 32

(a) Sample with replacement from this initial SRS by rolling a die. Rolling a 1 means select
the first member of the SRS, a 2 means select the second member, and so on. (You can also
use Table B of random digits, responding only to digits 1 to 6.) Create 20 resamples of size n
= 6.

(b) Calculate the sample mean for each of the resamples.

(c) Make a stemplot of the means of the 20 resamples. This is the bootstrap distribution.

(d) Calculate the bootstrap standard error.

16.2 Standard deviation versus standard error.

Explain the difference between the standard deviation of a sample and
the standard error of a statistic such as the sample mean.

Thinking about the bootstrap idea
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It might appear that resampling creates new data out of nothing. This seems
suspicious. Even the name “bootstrap” comes from the impossible image of
“pulling yourself up by your own bootstraps.”2 But the resampled observations are
not used as if they were new data. The bootstrap distribution of the re-sample
means is used only to estimate how the sample mean of one actual sample of size
50 would vary because of random sampling.

Using the same data for two purposes—to estimate a parameter and also to
estimate the variability of the estimate—is perfectly legitimate. We do exactly this
when we calculate x¯ to estimate μ and then calculate s/n from the same data to
estimate the variability of x¯.

What is new? First of all, we don’t rely on the formula s/n to estimate the
standard deviation of x¯. Instead, we use the ordinary standard deviation of the
many x¯-values from our many resamples.3 Suppose that we take B resamples and
call the means of these resamples x¯* to distinguish them from the mean x¯ of the
original sample. We would then find the mean and standard deviation of the x¯*’s
in the usual way.

To make clear that these are the mean and standard deviation of the means of
the B resamples rather than the mean x¯ and standard deviation s of the original
sample, we use a distinct notation:

describing distributions with numbers, p. 30

meanboot=1BΣx¯*

SEboot=1B−1Σ(x¯*−meanboot)2

These formulas go all the way back to Chapter 1. Once we have the values x¯*, we
can just ask our software for their mean and standard deviation.

Because we will often apply the bootstrap to statistics other than the sample
mean, here is the general definition for the bootstrap standard error.

BOOTSTRAP STANDARD ERROR

The bootstrap standard error SEboot of a statistic is the standard deviation of
the bootstrap distribution of that statistic.

Another thing that is new is that we don’t appeal to the central limit theorem or
other theory to tell us that a sampling distribution is roughly Normal. We look at
the bootstrap distribution to see if it is roughly Normal (or not). In most cases, the
bootstrap distribution has approximately the same shape and spread as the
sampling distribution, but it is centered at the original sample statistic value rather
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than the parameter value.
In summary, the bootstrap allows us to calculate standard errors for statistics for

which we don’t have formulas and to check Normality for statistics that theory
doesn’t easily handle. To apply the bootstrap idea, we must start with a statistic
that estimates the parameter we are interested in. We come up with a suitable
statistic by appealing to another principle that we have often applied without
thinking about it.

THE PLUG-IN PRINCIPLE

To estimate a parameter, a quantity that describes the population, use the
statistic that is the corresponding quantity for the sample.

The plug-in principle tells us to estimate a population mean μ by the sample
mean x¯ and a population standard deviation σ by the sample standard deviation s.
Estimate a population median by the sample median and a population regression
line by the least-squares line calculated from a sample. The bootstrap idea itself is
a form of the plug-in principle: substitute the data for the population and then draw
samples (resamples) to mimic the process of building a sampling distribution.

Using software

Software is essential for bootstrapping in practice. Here is an outline of the
program you would write if your software can choose random samples from a set
of data but does not have bootstrap functions:

EXAMPLE
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16.3 Using software.

TIME50

R has packages that contain various bootstrap functions so we do not have to
write them ourselves. If the 50 times to start a business times are saved as a
variable, we can use functions to resample from the data, calculate the means
of the resamples, and request both graphs and printed output. We can also ask
that the bootstrap results be saved for later access.

The function plot.boot will generate graphs similar to those in Figure 16.3
so you can assess Normality. Figure 16.5 contains the default output from a
call of the function boot. The variable Time contains the 50 starting times, the
function theta is specified to be the mean, and we request 3000 resamples. The
original entry gives the mean x¯=23.26 of the original sample. Bias is the
difference between the mean of the resample means and the original mean. If
we add the entries for bias and original we get the mean of the resample
means, meanboot:

23.26 + 0.04 = 23.30

The bootstrap standard error is displayed under std.error. All these values
except original will differ a bit if you take another 3000 resamples, because
resamples are drawn at random.

FIGURE 16.5
R output for the time to start a business bootstrap, for Example 16.3.

SECTION 16.1 Summary
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To bootstrap a statistic such as the sample mean, draw hundreds of resamples with
replacement from a single original sample, calculate the statistic for each resample,
and inspect the bootstrap distribution of the resample statistics.

A bootstrap distribution approximates the sampling distribution of the statistic.
This is an example of the plug-in principle: use a quantity based on the sample to
approximate a similar quantity from the population.

A bootstrap distribution usually has approximately the same shape and spread
as the sampling distribution. It is centered at the statistic (from the original sample)
when the sampling distribution is centered at the parameter (of the population).

Use graphs and numerical summaries to determine whether the bootstrap
distribution is approximately Normal and centered at the original statistic, and to
get an idea of its spread. The bootstrap standard error is the standard deviation
of the bootstrap distribution.

The bootstrap does not replace or add to the original data. We use the bootstrap
distribution as a way to estimate the variation in a statistic based on the original
data.

SECTION 16.1 Exercises
For Exercises 16.1 and 16.2, see page 16-8.

16.3 Gosset’s data on double stout sales.

William Sealy Gosset worked at the Guinness Brewery in Dublin and made substantial contributions to the
practice of statistics. In Exercise 1.61 (page 48), we examined Gosset’s data on the change in the double
stout market before and after World War I (1914–1918). For various regions in England and Scotland, he
calculated the ratio of sales in 1925, after the war, as a percent of sales in 1913, before the war. Here are

the data for a sample of six of the regions in the original data:  STOUT6

Bristol 94 Glasgow 66
English P 46 Liverpool 140
English Agents 78 Scottish 24

(a) Do you think that these data appear to be from a Normal distribution? Give reasons for your answer.

(b) Select five resamples from this set of data.

(c) Compute the mean for each resample.

16.4 Find the bootstrap standard error.

Refer to your work in the previous exercise.  STOUT6

(a) Would you expect the bootstrap standard error to be larger, smaller, or approximately equal to the
standard deviation of the original sample of six regions? Explain your answer.

(b) Find the bootstrap standard error.
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16.5 Read the output.

Figure 16.6 gives a histogram and a Normal quantile plot for 3000 resample means from R. Interpret these
plots.

FIGURE 16.6
R output for the change in double stout sales bootstrap, for Exercise 16.5.
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FIGURE 16.7
R output for the change in double stout sales bootstrap, for Exercise 16.6.

16.6 Read the output.

Figure 16.7 gives output from R for the sample of regions in Exercise 16.3. Summarize the results of the
analysis using this output.

16.7 What’s wrong?

Explain what is wrong with each of the following statements.

(a) The standard deviation of the bootstrap distribution will be approximately the same as the standard
deviation of the original sample.

(b) The bootstrap distribution is created by resampling without replacement from the original sample.

(c) When generating the resamples, it is best to use a sample size smaller than the size of the original
sample.

(d) The bootstrap distribution is created by resampling with replacement from the population.

Inspecting the bootstrap distribution of a statistic helps us judge whether the sampling distribution of the
statistic is close to Normal. Bootstrap the sample mean x¯ for each of the data sets in Exercises 16.8 to
16.12 using 2000 resamples. Construct a histogram and a Normal quantile plot to assess Normality of the
bootstrap distribution. On the basis of your work, do you expect the sampling distribution of x¯ to be close
to Normal? Save your bootstrap results for later analysis.

16.8 Bootstrap distribution of average IQ score.

The distribution of the 60 IQ test scores in Table 1.1 (page 16) is roughly Normal (see Figure 1.9) and the

sample size is large enough that we expect a Normal sampling distribution.  IQ
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16.9 Bootstrap distribution of StubHub! prices.

We examined the distribution of the 186 tickets for the National Collegiate Athletic Association (NCAA)
Women’s Final Four Basketball Championship in New Orleans posted for sale on StubHub! on January 2,
2013, in Example 1.48 (page 71). The distribution is clearly not Normal; it has three peaks possibly
corresponding to three types of seats. We view these data as coming from a process that gives seat prices

for an event such as this.  STUBHUB

16.10 Bootstrap distribution of time spent watching videos on a cell phone.

The hours per month spent watching videos on cell phones in a random sample of eight cell phone
subscribers (Example 7.1, page 421) are

11.9 2.8 3.0 6.2 4.7 9.8 11.1 7.8

The distribution has no outliers, but we cannot assess Normality from such a small sample.  VIDEO

16.11 Bootstrap distribution of Titanic passenger ages.

In Example 1.36 (page 54) we examined the distribution of the ages of the passengers on the Titanic. There
is a single mode around 25, a short left tail, and a long right tail. We view these data as coming from a

process that would generate similar data.  TITANIC

16.12 Bootstrap distribution of average audio file length.

The lengths (in seconds) of audio files found on an iPod (Table 7.3, page 437) are skewed. We previously

transformed the data prior to using t procedures.  SONGS

16.13 Standard error versus the bootstrap standard error.

We have two ways to estimate the standard deviation of a sample mean x¯: use the formula s/n for the
standard error, or use the bootstrap standard error.

(a) Find the sample standard deviation s for the 60 IQ test scores in Exercise 16.8 and use it to find the
standard error s/n of the sample mean. How closely does your result agree with the bootstrap standard error
from your resampling in Exercise 16.8?

(b) Find the sample standard deviation s for the StubHub! ticket price data in Exercise 16.9 and use it to
find the standard error s/n of the sample mean. How closely does your result agree with the bootstrap
standard error from your resampling in Exercise 16.9?

(c) Find the sample standard deviation s for the eight video-watching times in Exercise 16.10 and use it to
find the standard error s/n of the sample mean. How closely does your result agree with the bootstrap
standard error from your resampling in Exercise 16.10?

16.14 Service center call lengths.

Table 1.2 (page 19) gives the service center call lengths for a sample of 80 calls. See Example 1.15 (page
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18) for more details about these data.  CALLS80

(a) Make a histogram of the call lengths. The distribution is strongly skewed.

(b) The central limit theorem says that the sampling distribution of the sample mean x¯ becomes Normal as
the sample size increases. Is the sampling distribution roughly Normal for n = 80? To find out, bootstrap
these data using 1000 resamples and inspect the bootstrap distribution of the mean. The central part of the
distribution is close to Normal. In what way do the tails depart from Normality?

16.15 More on service center call lengths.

Here is an SRS of 10 of the service center call lengths from Exercise 16.14:  CALLS10

104 102 35 211 56 325 67 9 179 59

We expect the sampling distribution of x¯ to be less close to Normal for samples of size 10 than for
samples of size 80 from a skewed distribution.

(a) Create and inspect the bootstrap distribution of the sample mean for these data using 1000 resamples.
Compared with your distribution from the previous exercise, is this distribution closer to or farther away
from Normal?

(b) Compare the bootstrap standard errors for your two sets of resamples. Why is the standard error larger
for the smaller SRS?
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16.2 First Steps in Using the Bootstrap

When you complete this section, you will be able to

• Determine when it is appropriate to use the bootstrap standard error and
the t distribution to find a confidence interval.

• Use the bootstrap standard error and the t distribution to find a
confidence interval.

To introduce the key ideas of resampling and bootstrap distributions, we studied
an example in which we knew quite a bit about the actual sampling distribution.
We saw that the bootstrap distribution agrees with the sampling distribution in
shape and spread.

The center of the bootstrap distribution is not the same as the center of the
sampling distribution. The sampling distribution of a statistic used to estimate a
parameter is centered at the actual value of the parameter in the population, plus
any bias. The bootstrap distribution is centered at the value of the statistic for the
original sample, plus any bias. The key fact is that the two biases are similar even
though the two centers may not be.

bias, p. 179

The bootstrap method is most useful in settings where we don’t know the
sampling distribution of the statistic. The principles are

• Shape: Because the shape of the bootstrap distribution approximates the shape of
the sampling distribution, we can use the bootstrap distribution to check Normality
of the sampling distribution.

• Center: A statistic is biased as an estimate of the parameter if its sampling
distribution is not centered at the true value of the parameter. We can check bias by
seeing whether the bootstrap distribution of the statistic is centered at the value of
the statistic for the original sample.

More precisely, the bias of a statistic is the difference between the mean of its
sampling distribution and the true value of the parameter. The bootstrap estimate
of bias is the difference between the mean of the bootstrap distribution and the
value of the statistic in the original sample.

bootstrap estimate of bias
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• Spread: The bootstrap standard error of a statistic is the standard deviation of its
bootstrap distribution. The bootstrap standard error estimates the standard
deviation of the sampling distribution of the statistic.

Bootstrap t confidence intervals

If the bootstrap distribution of a statistic shows a Normal shape and small bias, we
can get a confidence interval for the parameter by using the bootstrap standard
error and the familiar t distribution. An example will show how this works.

EXAMPLE

16.4 Grade point averages.

GPA

A study of college students at a large university looked at grade point average
(GPA) after three semesters of college as a measure of success. In Example
11.1 (page 612) we examined predictors of GPA. Let’s take a look at the
distribution of the GPA for the 150 students in this study.

A histogram is given in Figure 16.8(a). The Normal quantile plot is given
in Figure 16.8(b). The distribution is strongly skewed to the left. The Normal
quantile plot suggests that there are several students with perfect (4.0) GPAs
and one at the lower end of the distribution (0.0). These data are not Normally
distributed.
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FIGURE 16.8
Histogram and Normal quantile plot for 150 grade point averages, for Example 16.4. The
distribution is strongly skewed.

trimmed mean, p. 53

The first step is to abandon the mean as a measure of center in favor of a
statistic that focuses on the central part of the distribution. We might choose the
median, but in this case we will use the 25% trimmed mean, the mean of the
middle 50% of the observations. The median is the middle observation or the mean
of the two middle observations. The trimmed mean often does a better job of
representing the average of typical observations than does the median.

Our parameter is the 25% trimmed mean of the population of college student
GPAs after three semesters at this large university. By the plug-in principle, the
statistic that estimates this parameter is the 25% trimmed mean of the sample of
150 students. Because 25% of 150 is 37.5, we drop the 37 lowest and 37 highest
GPAs and find the mean of the remaining 76 GPAs. The statistic is

x¯25%=2.950

Given the relatively large sample size from this strongly skewed distribution,
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we can use the central limit theorem to argue that the sampling distribution would
be approximately Normal with mean near 2.950. Estimating its standard deviation,
however, is a more difficult task. We can’t simply use the standard error of the
sample mean based on the remaining 76 observations, as that will underestimate
the true variability.

Fortunately, we don’t need any distribution facts to use the bootstrap. We
bootstrap the 25% trimmed mean just as we bootstrapped the sample mean: draw
3000 resamples of size 150 from the 150 GPAs, calculate the 25% trimmed mean
for each resample, and form the bootstrap distribution from these 3000 values.

Figure 16.9 shows the bootstrap distribution of the 25% trimmed mean. Here is
the summary output from R:
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FIGURE 16.9
The bootstrap distribution of the 25% trimmed means for 3000 resamples from the GPA data in
Example 16.4. The bootstrap distribution is approximately Normal.

What do we see?
Shape: The bootstrap distribution is close to Normal. This suggests that the

sampling distribution of the trimmed mean is also close to Normal.
Center: The bootstrap estimate of bias is -0.003, which is small relative to the

value 2.950 of the statistic. So the statistic (the trimmed mean of the sample) has
small bias as an estimate of the parameter (the trimmed mean of the population).

Spread: The bootstrap standard error of the statistic is

SEboot = 0.078

This is an estimate of the standard deviation of the sampling distribution of the
trimmed mean.

Recall the familiar one-sample t confidence interval (page 421) for the mean of
a Normal population:

x¯±t*SE=x¯±t*sn

This interval is based on the Normal sampling distribution of the sample mean x¯
and the formula SE=s/n for the standard error of x¯. When a bootstrap distribution
is approximately Normal and has small bias, we can essentially use the same idea
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with the bootstrap standard error to get a confidence interval for any parameter.

BOOTSTRAP t CONFIDENCE INTERVAL

Suppose that the bootstrap distribution of a statistic from an SRS of size n is
approximately Normal and that the bootstrap estimate of bias is small. An
approximate level C confidence interval for the parameter that corresponds to
this statistic by the plug-in principle is

statistic ± t*SEboot

where SEboot is the bootstrap standard error for this statistic and t* is the
critical value of the t(n − 1) distribution with area C between −t* and t*.

EXAMPLE

16.5 Bootstrap distribution of the trimmed mean.

GPA

We want to estimate the 25% trimmed mean of the population of all college
student GPAs after three semesters at this large university. We have an SRS of
size n = 150. The software output above shows that the trimmed mean of this
sample is x¯25%=2.950 and that the bootstrap standard error of this statistic is
SEboot = 0.078. A 95% confidence interval for the population trimmed mean is
therefore

x¯25%±t*SEboot=2.950±(2.000)(0.078)

= 2.950 ± 0.156

= (2.794, 3.106)

Because Table D does not have entries for [n − 2(37)] − 1 = 75 degrees of
freedom, we used t* = 2.000, the entry for 60 degrees of freedom.

We are 95% confident that the 25% trimmed mean (the mean of the middle
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50%) for the population of college student GPAs after three semesters at this
large university is between 2.794 and 3.106.

USE YOUR KNOWLEDGE

16.16 Bootstrap t confidence interval.

Recall Example 16.2 (page 16-4). Suppose that a bootstrap distribution
was created using 3000 resamples and that the mean and standard
deviation of the resample means were 23.29 and 3.90, respectively.

(a) What is the bootstrap estimate of the bias?

(b) What is the bootstrap standard error of x¯?

(c) Assume that the bootstrap distribution is reasonably Normal. Since the bias is small
relative to the observed x¯, the bootstrap t confidence interval for the population mean μ is
justified. Give the 95% bootstrap t confidence interval for μ.

16.17 Bootstrap t confidence interval for average audio file length.

SONGS

Return to or create the bootstrap distribution resamples on the sample
mean for audio file length in Exercise 16.12 (page 16-12). In Example
7.10 (page 437), the t confidence interval was applied to the logarithm
of the time measurements.

(a) Inspect the bootstrap distribution. Is a bootstrap t confidence interval appropriate? Explain
why or why not.

(b) Construct the 95% bootstrap t confidence interval.

(c) Compare the bootstrap results with the t confidence interval reported in Example 7.11
(page 438).

Bootstrapping to compare two groups

two-sample t significance test, p. 454
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Two-sample problems are among the most common statistical settings. In a two-
sample problem, we wish to compare two populations, such as male and female
college students, based on separate samples from each population. When both
populations are roughly Normal, the two-sample t procedures compare the two
population means. The bootstrap can also compare two populations, without the
Normality condition and without the restriction to comparison of means. The most
important new idea is that bootstrap resampling must mimic the “separate samples”
design that produced the original data.

BOOTSTRAP FOR COMPARING TWO POPULATIONS

Given independent SRSs of sizes n and m from two populations:

1. Draw a resample of size n with replacement from the first sample and a
separate resample of size m from the second sample. Compute a statistic
that compares the two groups, such as the difference between the two
sample means.

2. Repeat this resampling process thousands of times.

3. Construct the bootstrap distribution of the statistic. Inspect its shape, bias,
and bootstrap standard error in the usual way.

EXAMPLE

16.6 Bootstrap comparison of GPAs.

In Example 16.4 we looked at grade point average (GPA) after three semesters
of college as a measure of success. How do GPAs compare between men and
women? Figure 16.10 shows density curves and Normal quantile plots for the
GPAs of 91 males and 59 females. The distributions are both far from Normal.
Here are some summary statistics:

Gender n x¯ s
Male 91 2.784 0.859
Female 59 2.933 0.748
Difference −0.149  

The data suggest that GPAs tend to be slightly higher for females. The mean
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GPA for females is roughly 0.15 higher than the mean for males.
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FIGURE 16.10
Density curves and Normal quantile plots of the distributions of GPA for males and females, for
Example 16.6.

In the setting of Example 16.6 we want to estimate the difference between
population means, μ1 − μ2. We might be somewhat reluctant to use the two-sample
t confidence interval because both samples are very skewed. To compute the
bootstrap standard error for the difference in sample means x¯1−x¯2, resample
separately from the two samples. Each of our 3000 resamples consists of two group
resamples, one of size 91 drawn with replacement from the male data and one of
size 59 drawn with replacement from the female data.

For each combined resample, compute the statistic x¯1−x¯2. The 3000
differences form the bootstrap distribution. The bootstrap standard error is the
standard deviation of the bootstrap distribution.

The boot function in R automates this bootstrap procedure. Here is the R
output:
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Figure 16.11 shows that the bootstrap distribution is close to Normal. We can
trust the bootstrap t confidence interval for these data. A 95% confidence interval
for the difference in mean GPAs (males versus females) is therefore

x¯25%±t*SEboot=−0.149±(2.009)(0.133)

= −0.149 ± 0.267

= (−0.416, 0.118)

Because Table D does not have entries for (n1 − 1, n2 − 1) = 58 degrees of
freedom, we used t* = 2.009, the entry for 50 degrees of freedom.
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FIGURE 16.11
The bootstrap distribution and Normal quantile plot for the differences in means for the GPA
data.

We are 95% confident that the difference in the mean GPAs of males and
females at this large university after three semesters is between −0.416 and 0.118.
Because 0 is in this interval, we cannot conclude that the two population means are
different. We will discuss hypothesis testing in Section 16.5.

In this example, the bootstrap distribution of the difference is close to Normal.
When the bootstrap distribution is non-Normal, we can’t trust the bootstrap t
confidence interval. Fortunately, there are more general ways of using the
bootstrap to get confidence intervals that can be safely applied when the bootstrap
distribution is not Normal. These methods, which we discuss in Section 16.4, are
the next step in practical use of the bootstrap.
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USE YOUR KNOWLEDGE

16.18 Bootstrap comparison of average reading abilities.

DRP

Table 7.4 (page 452) gives the scores on a test of reading ability for two
groups of third-grade students. The treatment group used “directed
reading activities” and the control group followed the same curriculum
without the activities.

(a) Bootstrap the difference in means x¯1−x¯2 and report the bootstrap standard error.

(b) Inspect the bootstrap distribution. Is a bootstrap t confidence interval appropriate? If so,
give a 95% confidence interval.

(c) Compare the bootstrap results with the two-sample t confidence interval reported in
Example 7.14 on page 453.

16.19 Formula-based versus bootstrap standard error.

GPA

We have a formula (page 451) for the standard error of x¯1−x¯2. This
formula does not depend on Normality. How does this formula-based
standard error for the data of Example 16.6 compare with the bootstrap
standard error?

BEYOND THE BASICS

The Bootstrap for a Scatterplot Smoother
The bootstrap idea can be applied to quite complicated statistical methods,
such as the scatterplot smoother illustrated in Chapter 2 (page 96).
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EXAMPLE

16.7 Do all daily numbers have an equal payoff?

The New Jersey Pick-It Lottery is a daily numbers game run by the state of
New Jersey. We’ll analyze the first 254 drawings after the lottery was started
in 1975.4 Buying a ticket entitles a player to pick a number between 000 and
999. Half the money bet each day goes into the prize pool. (The state takes the
other half.) The state picks a winning number at random, and the prize pool is
shared equally among all winning tickets.

Although all numbers are equally likely to win, numbers chosen by fewer
people have bigger payoffs if they win because the prize is shared among
fewer tickets. Figure 16.12 is a scatterplot of the first 254 winning numbers
and their payoffs. What patterns can we see?

FIGURE 16.12
The first 254 winning numbers in the New Jersey Pick-It Lottery and the payoffs for each, for
Example 16.7. To see patterns we use least-squares regression (dashed line) and a scatterplot
smoother (curve).

The straight line in Figure 16.12 is the least-squares regression line. The line
shows a general trend of higher payoffs for larger winning numbers. The curve in
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the figure was fitted to the plot by a scatterplot smoother that follows local patterns
in the data rather than being constrained to a straight line. The curve suggests that
there were larger payoffs for numbers in the intervals 000 to 100, 400 to 500, 600
to 700, and 800 to 999.

FIGURE 16.13
The curves produced by the scatterplot smoother for 20 resamples from the data displayed in
Figure 16.12. The curve for the original sample is the heavy line.

Are the patterns displayed by the scatterplot smoother just chance? We can use
the bootstrap distribution of the smoother’s curve to get an idea of how much
random variability there is in the curve. Each resample “statistic” is now a curve
rather than a single number. Figure 16.13 shows the curves that result from
applying the smoother to 20 resamples from the 254 data points in Figure 16.12.
The original curve is the thick line. The spread of the resample curves about the
original curve shows the sampling variability of the output of the scatterplot
smoother.

Nearly all the bootstrap curves mimic the general pattern of the original
smoother curve, showing, for example, the same low average payoffs for numbers
in the 200s and 300s. This suggests that these patterns are real, not just chance. In
fact, when people pick “random” numbers, they tend to choose numbers starting
with 2, 3, 5, or 7, so these numbers have lower payoffs. This pattern disappeared
after 1976; it appears that players noticed the pattern and changed their number
choices.
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SECTION 16.2 Summary

Bootstrap distributions mimic the shape, spread, and bias of sampling distributions.
The bootstrap standard error SEboot of a statistic is the standard deviation of

its bootstrap distribution. It measures how much the statistic varies under random
sampling.

The bootstrap estimate of the bias of a statistic is the mean of the bootstrap
distribution minus the statistic for the original data. Small bias means that the
bootstrap distribution is centered at the statistic of the original sample and suggests
that the sampling distribution of the statistic is centered at the population
parameter.

The bootstrap can estimate the sampling distribution, bias, and standard error of
a wide variety of statistics, such as the trimmed mean, whether or not statistical
theory tells us about their sampling distributions.

If the bootstrap distribution is approximately Normal and the bias is small, we
can give a bootstrap t confidence interval, statistic ± t*SEboot, for the parameter.
Do not use this t interval if the bootstrap distribution is not Normal or shows
substantial bias.

To use the bootstrap to compare two populations, draw separate resamples
from each sample and compute a statistic that compares the two groups. Repeat
many times and use the bootstrap distribution for inference.

SECTION 16.2 Exercises
For Exercises 16.16 and 16.17, see page 16-17; and for Exercises 16.18 and 16.19, see page 16-20.

16.20 Should you use the bootstrap standard error and the t distribution for
the confidence interval?

For each of the following situations, explain whether or not you would use the bootstrap standard error and
the t distribution for the confidence interval. Give reasons for your answers.

(a) The bootstrap distribution of the mean is approximately Normal, and the difference between the mean
of the data and the mean of the bootstrap distribution is large relative to the mean of the data.

(b) The bootstrap distribution of the mean is approximately Normal, and the difference between the mean
of the data and the mean of the bootstrap distribution is small relative to the mean of the data.

(c) The bootstrap distribution of the mean is clearly skewed, and the difference between the mean of the
data and the mean of the bootstrap distribution is large relative to the mean of the data.

(d) The bootstrap distribution of the mean is clearly skewed, and the difference between the mean of the
data and the mean of the bootstrap distribution is small relative to the mean of the data.

16.21 Use the bootstrap standard error and the t distribution for the
confidence interval.

The observed mean is 112.3, the mean of the bootstrap distribution is 109.8, the standard error is 9.4, and n
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= 51. Use the t distribution to find the 95% confidence interval.

16.22 Bootstrap t confidence interval for the StubHub! prices.

In Exercise 16.9 (page 16-12) we examined the bootstrap for the prices of tickets to the NCAA Women’s

Final Four Basketball Championship in New Orleans.  STUBHUB

(a) Find the bootstrap t 95% confidence interval for these data.

(b) Compare the interval you found in part (a) with the usual t interval.

(c) Which interval do you prefer? Give reasons for your answer.

16.23 Bootstrap t confidence interval for the ages of the Titanic passengers.

In Exercise 16.11 (page 16-12) we examined the bootstrap for the ages of the Titanic passengers. 
TITANIC

(a) Find the bootstrap t 95% confidence interval for these data.

(b) Compare the interval you found in part (a) with the usual t interval.

(c) Which interval do you prefer? Give reasons for your answer.

16.24 Bootstrap t confidence interval for time spent watching videos on a cell
phone.

Return to or re-create the bootstrap distribution of the sample mean for the eight times spent watching
videos in Exercise 16.10 (page 16-12).

(a) Although the sample is small, verify using graphs and numerical summaries of the bootstrap
distribution that the distribution is reasonably Normal and that the bias is small relative to the observed x¯. 

 VIDEO

(b) The bootstrap t confidence interval for the population mean μ is therefore justified. Give the 95%
bootstrap t confidence interval for μ.

(c) Give the usual t 95% interval and compare it with your interval from part (b).

16.25 Bootstrap t confidence interval for service center call lengths.

Return to or re-create the bootstrap distribution of the sample mean for the 80 service center call lengths in

Exercise 16.14 (page 16-12).  CALLS80

(a) What is the bootstrap estimate of the bias? Verify from the graphs of the bootstrap distribution that the
distribution is reasonably Normal (some right-skew remains) and that the bias is small relative to the
observed x¯. The bootstrap t confidence interval for the population mean μ is therefore justified.

(b) Give the 95% bootstrap t confidence interval for μ.

(c) The only difference between the bootstrap t and usual one-sample t confidence intervals is that the
bootstrap interval uses SEboot in place of the formula-based standard error s/n. What are the values of the
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two standard errors? Give the usual t 95% interval and compare it with your interval from part (b).

16.26 Another bootstrap distribution of the trimmed mean.

Bootstrap distributions and quantities based on them differ randomly when we repeat the resampling
process. A key fact is that they do not differ very much if we use a large number of resamples. Figure 16.9
(page 16-15) shows one bootstrap distribution of the trimmed mean of the GPA data. Repeat the

resampling of these data to get another bootstrap distribution of the trimmed mean.  GPA

(a) Plot the bootstrap distribution and compare it with Figure 16.9. Are the two bootstrap distributions
similar?

(b) What are the values of the bias and bootstrap standard error for your new bootstrap distribution? How
do they compare with the previous values given on page 16-15?

(c) Find the 95% bootstrap t confidence interval based on your bootstrap distribution. Compare it with the
previous result in Example 16.5 (page 16-16).

16.27 Bootstrap distribution of the standard deviation s.

For Example 16.5 (page 16-16) we bootstrapped the 25% trimmed mean of 150 GPAs. Another statistic
whose sampling distribution is unfamiliar to us is the standard deviation s. Bootstrap s for these data.
Discuss the shape and bias of the bootstrap distribution. Is the bootstrap t confidence interval for the

population standard deviation σ justified? If it is, give a 95% confidence interval.  GPA

16.28 Bootstrap comparison of tree diameters.

In Exercise 7.85 (page 471) you were asked to compare the mean diameter at breast height (DBH) for trees
from the northern and southern halves of a land tract using a random sample of 30 trees from each region. 

 NSPINES

(a) Use a back-to-back stemplot or side-by-side boxplots to examine the data graphically. Does it appear
reasonable to use standard t procedures?

(b) Bootstrap the difference in means x¯North−x¯South and look at the bootstrap distribution. Does it meet
the conditions for a bootstrap t confidence interval?

(c) Report the bootstrap standard error and the 95% bootstrap t confidence interval.

(d) Compare the bootstrap results with the usual two-sample t confidence interval.

16.29 Bootstrapping a Normal data set.

The following data are “really Normal.” They are an SRS from the standard Normal distribution N(0, 1),

produced by a software Normal random number generator.  NORMALD

0.01 −0.04 −1.02 −0.13 −0.36 −0.03 −1.88 0.34 −0.00 1.21
−0.02 −1.01 0.58 0.92 −1.38 −0.47 −0.80 0.90 −1.16 0.11

0.23 2.40 0.08 −0.03 0.75 2.29 −1.11 −2.23 1.23 1.56
−0.52 0.42 −0.31 0.56 2.69 1.09 0.10 −0.92 −0.07 −1.76

0.30 −0.53 1.47 0.45 0.41 0.54 0.08 0.32 −1.35 −2.42
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0.34 0.51 2.47 2.99 −1.56 1.27 1.55 0.80 −0.59 0.89

−2.36 1.27 −1.11 0.56 −1.12 0.25 0.29 0.99 0.10 0.30
0.05 1.44 −2.46 0.91 0.51 0.48 0.02 −0.54

(a) Make a histogram and Normal quantile plot. Do the data appear to be “really Normal”? From the
histogram, does the N(0, 1) distribution appear to describe the data well? Why?

(b) Bootstrap the mean. Why do your bootstrap results suggest that t confidence intervals are appropriate?

(c) Give both the bootstrap and the formula-based standard errors for x¯. Give both the bootstrap and usual
t 95% confidence intervals for the population mean μ.

16.30 Bootstrap distribution of the median.

We will see in Section 16.3 that bootstrap methods often work poorly for the median. To illustrate this,
bootstrap the sample median of the 50 times to start a business that we studied in Example 16.1 (page 16-

3). Why is the bootstrap t confidence interval not justified?  TIME50

16.31 Bootstrap distribution of the mpg standard deviation.

Computers in some vehicles calculate various quantities related to performance. One of these is the fuel
efficiency, or gas mileage, usually expressed as miles per gallon (mpg). For one vehicle equipped in this
way, the mpg were recorded each time the gas tank was filled, and the computer was then reset. We studied
these data in Exercise 7.30 (page 443) using methods based on Normal distributions.5 Here are the mpg

values for a random sample of 20 of these records:  MPG20

41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2
43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3

In addition to the average mpg, the driver is also interested in how much variability there is in the mpg.

(a) Calculate the sample standard deviation s for these mpg values.

(b) We have no formula for the standard error of s. Find the bootstrap standard error for s.

(c) What does the standard error indicate about how accurate the sample standard deviation is as an
estimate of the population standard deviation?

(d) Would it be appropriate to give a bootstrap t interval for the population standard deviation? Why or
why not?
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16.3 How Accurate Is a Bootstrap Distribution?

When you complete this section, you will be able to

• Describe the effect of the size of the original sample on the variation in
bootstrap distributions.

• Describe the effect of the number of resamples on the variation in
bootstrap distributions.

We said earlier that “When can I safely bootstrap?” is a somewhat subtle issue.
Now we will give some insight into this issue.

We understand that a statistic will vary from sample to sample and that
inference about the population must take this random variation into account. The
sampling distribution of a statistic displays the variation in the statistic due to
selecting samples at random from the population. For example, the margin of error
in a confidence interval expresses the uncertainty due to sampling variation. In this
chapter we have used the bootstrap distribution as a substitute for the sampling
distribution. This introduces a second source of random variation: choosing
resamples at random from the original sample.

SOURCES OF VARIATION IN A BOOTSTRAP
DISTRIBUTION

Bootstrap distributions and conclusions based on them include two sources of
random variation:

1. Choosing an original sample at random from the population.

2. Choosing bootstrap resamples at random from the original sample.

A statistic in a given setting has only one sampling distribution. It has many
bootstrap distributions, formed by the two-step process just described. Bootstrap
inference generates one bootstrap distribution and uses it to tell us about the
sampling distribution. Can we trust such inference?

Figure 16.14 displays an example of the entire process. The population
distribution (top left) has two peaks and is far from Normal. The histograms in the
left column of the figure show five random samples from this population, each of
size 50. The line in each histogram marks the mean x¯ of that sample. These vary
from sample to sample. The distribution of the x¯-values from all possible samples
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is the sampling distribution. This sampling distribution appears to the right of the
population distribution. It is close to Normal, as we expect because of the central
limit theorem.

The middle column in Figure 16.14 displays the bootstrap distribution of x¯ for
each of the five samples. Each distribution was created by drawing 1000 resamples
from the original sample, calculating x¯ for each resample, and presenting the 1000
x¯’s in a histogram. The right column shows the bootstrap distribution of the first
sample, repeating the resampling five more times.

Compare the five bootstrap distributions in the middle column to see the effect
of the random choice of the original sample. Compare the six bootstrap
distributions drawn from the first sample to see the effect of the random
resampling. Here’s what we see:

• Each bootstrap distribution is centered close to the value of x¯ for its original
sample. That is, the bootstrap estimate of bias is small in all five cases. Of course,
the five x¯-values vary, and not all are close to the population mean μ.
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FIGURE 16.14
Five random samples of n = 50 from the same population, with a bootstrap distribution of the
sample mean formed by resampling from each of the five samples. At the right are five more
bootstrap distributions from the first sample.

• The shape and spread of the bootstrap distributions in the middle column vary a
bit, but all five resemble the sampling distribution in shape and spread. That is, the
shape and spread of a bootstrap distribution depend on the original sample, but the
variation from sample to sample is not great.

• The six bootstrap distributions from the same sample are very similar in shape,
center, and spread. That is, random resampling adds very little variation to the
variation due to the random choice of the original sample from the population.

Figure 16.14 reinforces facts that we have already relied on. If a bootstrap
distribution is based on a moderately large sample from the population, its shape
and spread don’t depend heavily on the original sample and do mimic the shape
and spread of the sampling distribution. Bootstrap distributions do not have the
same center as the sampling distribution; they mimic bias, not the actual center.

The figure also illustrates a fact that is important for practical use of the
bootstrap: the bootstrap resampling process (using 1000 or more resamples)
introduces very little additional variation. We can rely on a bootstrap distribution
to inform us about the shape, bias, and spread of the sampling distribution.

Bootstrapping small samples

We now know that almost all the variation in bootstrap distributions for a
statistic such as the mean comes from the random selection of the original sample
from the population. We also know that in general statisticians prefer large samples
because small samples give more variable results. This general fact is also true for
bootstrap procedures.

Figure 16.15 repeats Figure 16.14, with two important differences. The five
original samples are only of size n = 9, rather than the n = 50 of Figure 16.14. Also,
the population distribution (top left) is Normal, so that the sampling distribution of
x¯ is Normal despite the small sample size.

Even with a Normal population distribution, the bootstrap distributions in the
middle column show much more variation in shape and spread than those for larger
samples in Figure 16.14. Notice, for example, how the skewness of the fourth
sample produces a skewed bootstrap distribution. The bootstrap distributions are
no longer all similar to the sampling distribution at the top of the column.
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We can’t trust a bootstrap distribution from a very small sample to closely
mimic the shape and spread of the sampling distribution. Bootstrap confidence
intervals will sometimes be too long or too short, or too long in one direction and
too short in the other. The six bootstrap distributions based on the first sample are
again very similar. Because we used 1000 resamples, resampling adds very little
variation. There are subtle effects that can’t be seen from a few pictures, but the
main conclusions are clear.
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FIGURE 16.15
Five random samples of n = 9 from the same population, with a bootstrap distribution of the
sample mean formed by resampling from each of the five samples. At the right are five more
bootstrap distributions from the first sample.

VARIATION IN BOOTSTRAP DISTRIBUTIONS

For most statistics, almost all the variation in bootstrap distributions comes
from the selection of the original sample from the population. You can reduce
this variation by using a larger original sample.

Bootstrapping does not overcome the weakness of small samples as a basis for inference. We will
describe some bootstrap procedures that are usually more accurate than standard methods, but even
they may not be accurate for very small samples. Use caution in any inference—including bootstrap
inference—from a small sample.

The bootstrap resampling process using 1000 or more resamples introduces very little additional
variation.

Bootstrapping a sample median

In dealing with the grade point averages in Example 16.5, we chose to bootstrap
the 25% trimmed mean rather than the median. We did this in part because the
usual bootstrapping procedure doesn’t work well for the median unless the original
sample is quite large. Now we will bootstrap the median in order to understand the
difficulties.

Figure 16.16 follows the format of Figures 16.14 and 16.15. The population
distribution appears at top left, with the population median M marked. Below in the
left column are five samples of size n = 15 from this population, with their sample
medians m marked. Bootstrap distributions of the median based on resampling
from each of the five samples appear in the middle column. The right column again
displays five more bootstrap distributions from re-sampling the first sample. The
six bootstrap distributions from the same sample are once again very similar to
each other—resampling adds little variation—so we concentrate on the middle
column in the figure.

Bootstrap distributions from the five samples differ markedly from each other
and from the sampling distribution at the top of the column. Here’s why. The
median of a resample of size 15 is the eighth-largest observation in the resample.
This is always one of the 15 observations in the original sample and is usually one
of the middle observations. Each bootstrap distribution repeats the same few
values, and these values depend on the original sample. The sampling distribution,
on the other hand, contains the medians of all possible samples and is not confined
to a few values.

The difficulty is somewhat less when n is even, because the median is then the
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average of two observations. It is much less for moderately large samples, say n =
100 or more. Bootstrap standard errors and confidence intervals from such samples
are reasonably accurate, though the shapes of the bootstrap distributions may still
appear odd. You can see that the same difficulty will occur for small samples with
other statistics, such as the quartiles, that are calculated from just one or two
observations from a sample.

There are more advanced variations of the bootstrap idea that improve
performance for small samples and for statistics such as the median and quartiles.
Unless you have expert advice or undertake further study, avoid bootstrapping the
median and quartiles unless your sample is rather large.
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FIGURE 16.16
Five random samples of n = 15 from the same population, with a bootstrap distribution of the
sample median formed by resampling from each of the five samples. At the right are five more
bootstrap distributions from the first sample.

SECTION 16.3 Summary

Almost all the variation in a bootstrap distribution for a statistic is due to the
selection of the original random sample from the population. Resampling
introduces little additional variation.

Bootstrap distributions based on small samples can be quite variable. Their
shape and spread reflect the characteristics of the sample and may not accurately
estimate the shape and spread of the sampling distribution. Bootstrap inference
from a small sample may therefore be unreliable.

Bootstrap inference based on samples of moderate size is unreliable for
statistics like the median and quartiles that are calculated from just a few of the
sample observations.

SECTION 16.3 Exercises

16.32 Variation in the bootstrap distributions.

Consider the variation in the bootstrap for each of the following situations with two scenarios, S1 and S2.
In comparing the variation, do you expect, in general, that S1 will have less variation than S2, that S2 will
have less variation than S1, or that the variation for S1 and S2 will be approximately the same? Give
reasons for your answers. Here, we use n for the size of the original sample and B for the number of
resamples.

(a) S1: n = 50, B = 2000; S2: n = 50, B = 4000.

(b) S1: n = 10, B = 2000; S2: n = 50, B = 2000.

(c) S1: n = 50, B = 200; S2: n = 50, B = 2000.

(d) S1: n = 10, B = 2000; S2: n = 50, B = 4000.

16.33 Bootstrap versus sampling distribution.

Most statistical software includes a function to generate samples from Normal distributions. Set the mean
to 26 and the standard deviation to 27. You can think of all the numbers that would be produced by this
function if it ran forever as a population that has the N(26, 27) distribution. Samples produced by the
function are samples from this population.

(a) What is the exact sampling distribution of the sample mean x¯ for a sample of size n from this
population?

(b) Draw an SRS of size n = 10 from this population. Bootstrap the sample mean x¯ using 2000 resamples
from your sample. Give a histogram of the bootstrap distribution and the bootstrap standard error.

(c) Repeat the same process for samples of sizes n = 40 and n = 160.
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(d) Write a careful description comparing the three bootstrap distributions and also comparing them with
the exact sampling distribution. What are the effects of increasing the sample size?

16.34 The effect of increasing the sample size.

The data for Example 16.1 (page 16-3) are the times to start a business for a random sample of 50
countries. The entire survey included 185 countries. The distribution of times is very non-Normal. A
histogram with a smooth density curve is given in Figure 1.19(a) (page 54). However, for this histogram
we excluded one country, Suriname, where it takes 694 days to start a business. Exclude Suriname from

the data set and use the remaining data for the remaining 184 countries.  TIME184

(a) Let’s think of the 184 countries as the population for this exercise. Find the mean μ and the standard
deviation σ for this population.

(b) Although we don’t know the shape of the sampling distribution of the sample mean x¯ for a sample of
size n from this population, we do know the mean and standard deviation of this distribution. What are
they?

(c) Draw an SRS of size n = 10 from this population. Bootstrap the sample mean x¯ using 2000 resamples
from your sample. Give a histogram of the bootstrap distribution and the bootstrap standard error.

(d) Repeat the same process for samples of sizes n = 40 and n = 160.

(e) Write a careful description comparing the three bootstrap distributions. What are the effects of
increasing the sample size?

16.35 The effect of non-Normality.

The populations in the two previous exercises have the same mean and standard deviation, but one is
Normal and the other is strongly non-Normal. Based on your work in these exercises, how does non-
Normality of the population affect the bootstrap distribution of x¯? How does it affect the bootstrap
standard error? Do either of these effects diminish when we start with a larger sample? Explain what you
have observed based on what you know about the sampling distribution of x¯ and the way in which
bootstrap distributions mimic the sampling distribution.
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16.4 Bootstrap Confidence Intervals

When you complete this section, you will be able to

• Use the bootstrap distribution to find a bootstrap percentile confidence
interval.

• Read software output to find the BCa confidence interval.

Until now, we have met just one type of inference procedure based on
resampling, the bootstrap t confidence intervals. We can calculate a bootstrap t
confidence interval for any parameter by bootstrapping the corresponding statistic.
We don’t need conditions on the population or special knowledge about the
sampling distribution of the statistic.

The flexible and almost automatic nature of bootstrap t intervals is appealing—
but there is a catch. These intervals work well only when the bootstrap distribution
tells us that the sampling distribution is approximately Normal and has small bias.
How well must these conditions be met? What can we do if we don’t trust the
bootstrap t interval? In this section we will see how to quickly check t confidence
intervals for accuracy, and we will learn alternative bootstrap confidence intervals
that can be used more generally than the bootstrap t.

Bootstrap percentile confidence intervals

Confidence intervals are based on the sampling distribution of a statistic. If a
statistic has no bias as an estimator of a parameter, its sampling distribution is
centered at the true value of the parameter. We can then get a 95% confidence
interval by marking off the central 95% of the sampling distribution. The t critical
values in a t confidence interval are a shortcut to marking off the central 95%.

This shortcut doesn’t work under all conditions—it depends both on lack of
bias and on Normality. One way to check whether t intervals (using either
bootstrap or formula-based standard errors) are reasonable is to compare them with
the central 95% of the bootstrap distribution. The 2.5 and 97.5 percentiles mark off
the central 95%. The interval between the 2.5 and 97.5 percentiles of the bootstrap
distribution is often used as a confidence interval in its own right. It is known as a
bootstrap percentile confidence interval.

BOOTSTRAP PERCENTILE CONFIDENCE INTERVALS

The interval between the 2.5 and 97.5 percentiles of the bootstrap distribution
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of a statistic is a 95% bootstrap percentile confidence interval for the
corresponding parameter. Use this method when the bootstrap estimate of bias
is small.

The conditions for safe use of bootstrap t and bootstrap percentile intervals are a
bit vague. We recommend that you check whether these intervals are reasonable by
comparing them with each other. If the bias of the bootstrap distribution is small
and the distribution is close to Normal, the bootstrap t and percentile confidence
intervals will agree closely.

Percentile intervals, unlike t intervals, do not ignore skewness. Percentile
intervals are therefore usually more accurate, as long as the bias is small. Because
we will soon meet a much more accurate bootstrap interval, our recommendation is
that when bootstrap and bootstrap percentile intervals do not agree closely, neither
type of interval should be used.

EXAMPLE

16.8 Bootstrap percentile confidence interval for the trimmed mean.

In Example 16.5 (page 16-16) we found that a 95% bootstrap t confidence
interval for the 25% trimmed mean of GPA for the population of college
students after three semesters at this large university is between 2.794 and
3.106. The bootstrap distribution in Figure 16.9 shows a small bias and,
though closely Normal, is a bit skewed. Is the bootstrap t confidence interval
accurate for these data?

We can use the quantile function in R to compute the needed percentiles of
our 3000 resamples. For this bootstrap distribution, the 2.5 and 97.5
percentiles are 2.793 and 3.095, respectively. These are the endpoints of the
95% bootstrap percentile confidence interval. This interval is quite close to the
bootstrap t interval. We conclude that both intervals are reasonably accurate.

The bootstrap t interval for the trimmed mean of GPA in Example 16.8 is

x¯25%±t*SEboot=2.950±0.156
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We can learn something by also writing the percentile interval starting at the
statistic x¯25%=2.950. In this form, it is

2.950 − 0.157, 2.950 + 0.145

Unlike the t interval, the percentile interval is not symmetric—its endpoints are
different distances from the statistic. The slightly greater distance to the 2.5
percentile reflects the slight left-skewness of the bootstrap distribution.

USE YOUR KNOWLEDGE

16.36 Determining the percentile endpoints.

What percentiles of the bootstrap distribution are the endpoints of a 99%
bootstrap percentile confidence interval? How do they change for a 90%
bootstrap percentile confidence interval?

16.37 Bootstrap percentile confidence interval for time to start a
business.

Consider the random subset of the time to start a business data in
Exercise 16.1 (page 16-3). Bootstrap the sample mean using 2000
resamples.

(a) Make a histogram and a Normal quantile plot. Does the bootstrap distribution appear
close to Normal? Is the bias small relative to the observed sample mean?

(b) Find the 95% bootstrap t confidence interval.

(c) Give the 95% confidence percentile interval and compare it with the interval in part (b).

A more accurate bootstrap confidence interval: BCa

Any method for obtaining confidence intervals requires some conditions in order to
produce exactly the intended confidence level. These conditions (for example,
Normality) are never exactly met in practice. So a 95% confidence interval in
practice will not capture the true parameter value exactly 95% of the time.

In addition to “hitting” the parameter 95% of the time, a good confidence
interval should divide its 5% of “misses” equally between high misses and low
misses. We will say that a method for obtaining 95% confidence intervals is
accurate in a particular setting if 95% of the time it produces intervals that capture
the parameter and if the 5% of misses are equally shared between high and low
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misses. Perfect accuracy isn’t available in practice, but some methods are more
accurate than others.

accurate

One advantage of the bootstrap is that we can to some extent check the accuracy
of the bootstrap t and percentile confidence intervals by examining the bootstrap
distribution for bias and skewness and by comparing the two intervals with each
other. The interval in Example 16.8 reveals a slight left-skewness, but not enough
to invalidate inference.

In general, the t and percentile intervals may not be sufficiently accurate when

• the statistic is strongly biased, as indicated by the bootstrap estimate of bias.

• the sampling distribution of the statistic is clearly skewed, as indicated by the
bootstrap distribution and by comparing the t and percentile intervals.

Most confidence interval procedures are more accurate for larger sample sizes.
The t and percentile procedures improve only slowly: they require 100 times more
data to improve accuracy by a factor of 10. (Recall the n in the formula for the
usual one-sample t interval.) These intervals may not be very accurate except for
quite large sample sizes. There are more elaborate bootstrap procedures that
improve faster, requiring only 10 times more data to improve accuracy by a factor
of 10. These procedures are quite accurate unless the sample size is very small.

BCa CONFIDENCE INTERVALS

The bootstrap bias-corrected accelerated (BCa) interval is a modification
of the percentile method that adjusts the percentiles to correct for bias and
skewness.

This method is accurate in a wide variety of settings, has reasonable
computation requirements (by modern standards), and does not produce
excessively wide intervals. The BCa intervals are among the most widely used
intervals. Since this interval is related to the percentile method, it is still based on
the key ideas of resampling and the bootstrap distribution.

Now that you understand these concepts, you should always use this more
accurate method (or an alternative like tilting intervals) if your software offers it.
The details of producing confidence intervals are quite technical.6 The BCa method
requires more than 1000 resamples for high accuracy. We recommend that you use
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5000 or more resamples. Don’t forget that even BCa confidence intervals should
be used cautiously when sample sizes are small, because there are not enough data
to accurately determine the necessary corrections for bias and skewness.

EXAMPLE

16.9 The BCa confidence interval for the ratio of variances.

GPA

In Example 16.6 (page 16-18), we compared the GPA means of men and
women using a 95% bootstrap t confidence interval. Because 0 was contained
in the interval, we concluded that there was not enough evidence to state that
the two means were different. Suppose we also want to compare the variances.
Figure 16.10 (page 16-18) suggests that the spread among the male GPAs is
larger than that of the females. The ratio of the male sample variance to the
female sample variance is 1.321. Can we conclude there is a difference?

In Section 7.3, we discussed an F test for the equality of spread but also
warned that this approach was very sensitive to non-Normal data. Because our
GPA data are heavily skewed, we cannot trust this test and instead will use the
bootstrap. Specifically, we’ll form a 95% confidence interval for σ12/σ22.

Figure 16.17 shows the bootstrap distribution of the ratio of sample
variances s12/s22. We see strong skewness in the bootstrap distribution and
therefore in the sampling distribution. This is not unexpected. Recall that if the
data are Normal and the variances are equal, we’d expect this ratio to follow
an F distribution.

The bootstrap t and percentile intervals aren’t reliable when the sampling
distribution of the statistic is skewed. Figure 16.18 shows software output that
includes the percentile and BCa intervals. The bootstrap t interval is closely
related to the Normal interval that is also supplied. The basic confidence
interval is another method based on the percentiles of the bootstrap distribution
that we will not discuss here.

The BCa interval is
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(1.321 − 0.456, 1.321 + 0.914) = (0.865, 2.235)

and the percentile interval is

(1.321 − 0.468, 1.321 + 0.880) = (0.853, 2.201)

In this case the percentile and BCa intervals are similar, but the BCa is shifted
slightly, as it has adjusted for the bias, which was estimated at 0.054. Both
intervals are strongly asymmetrical: the upper endpoint is about twice as far
from the sample ratio as the lower endpoint. This reflects the strong right-
skewness of the bootstrap distribution.

FIGURE 16.17
The bootstrap distribution of the ratio of sample variances of 5000 resamples from the data in
Example 16.6.

1394



FIGURE 16.18
R output for bootstrapping the ratio of variances for the GPA data.

The output in Figure 16.18 also shows that both endpoints of the less-accurate
intervals (bootstrap t via the Normal interval and the percentile interval) are too
low. These intervals miss the population ratio on the low side too often (more than
2.5% of the time) and miss on the high side too seldom. They give a biased picture
of where the true ratio is likely to be.

Confidence intervals for the correlation

The bootstrap allows us to find confidence intervals for a wide variety of statistics.
So far, we have looked at the sample mean, trimmed mean, the difference between
two means, and the ratio of sample variances using a variety of different bootstrap
confidence intervals. The choice of interval depended on the shape of the bootstrap
distribution and the desired accuracy.

Now we will bootstrap the correlation coefficient. This is our first use of the
bootstrap for a statistic that depends on two related variables. As with the
difference between two means, we must pay attention to how we should resample.

EXAMPLE

16.10 Correlation between price and rating.
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LAUNDRY

Consumers Union provides ratings on a large variety of consumer products.
They use sophisticated testing methods as well as surveys of their members to
create these ratings. The ratings are published in their magazine, Consumer
Reports.

An article in Consumer Reports rated laundry detergents on a scale from 1
to 100. Here are the ratings along with the price per load, in cents, for 24
laundry detergents:

Rating Price(cents) Rating Price(cents) Rating Price(cents) Rating Price(cents)
61 17 59 22 56 22 55 16
55 30 52 23 51 11 50 15
50   9 48 16 48 15 48 18
46 13 46 13 45 17 36   8
35   8 34 12 33   7 32   6
32   5 29 14 26 11 26 13

In Example 2.8 (page 87) we examined the relationship between rating and
price per load for these laundry detergents. We expect that the higher-priced
detergents will tend to have higher ratings. The scatterplot in Figure 16.19
shows that the higher-priced products do tend to have better ratings, but the
relationship is not particularly strong. The correlation is 0.671. Let’s use the
bootstrap to find a 95% confidence interval for the population correlation.

Our confidence interval will also provide a test of the null hypothesis that the
population correlation is zero. If the 95% confidence interval does not include zero,
we can reject the null hypothesis in favor of the two-sided alternative. Although we
would expect the correlation to be positive, we could be surprised and find that it is
negative. It is important to keep in mind that we cannot use what we learned by
looking at the scatterplot to formulate our alternative hypothesis.
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FIGURE 16.19
Scatterplot of price per load (in cents) versus rating for 24 laundry detergents, for Example
16.10.

How shall we resample from the laundry detergent data? Because each
observation consists of the price and the rating for one product, we resample
products. Resampling prices and ratings separately would lose the connection
between a product’s price and its rating. Software such as R automates proper
resampling. Once we have produced a bootstrap distribution by resampling, we can
examine the distribution and construct a confidence interval in the usual way. We
need no special formulas or procedures to handle the correlation.

Figure 16.20 shows the bootstrap distribution and Normal quantile plot for the
sample correlation for 5000 resamples from the 24 laundry detergents in our
sample. The bootstrap distribution is skewed to the left with relatively small bias.
We’ll need to check whether a 95% bootstrap t confidence interval is reasonable
here.
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FIGURE 16.20
The bootstrap distribution and Normal quantile plot for the correlation r for 5000 resamples
from the laundry detergent data set.

The bootstrap standard error is SEboot = 0.086. The t interval using the bootstrap
standard error is

r ± t*SEboot = 0.671 ± (2.074)(0.086)

= 0.671 ± 0.178

= (0.493, 0.849)

The 95% bootstrap percentile interval is

(2.5 percentile, 97.5 percentile) = (0.485, 0.827)

= (0.671 − 0.186, 0.671 + 0.156)

The two confidence intervals are not too different. If you feel this discrepancy is
acceptable, you might want to use the percentile interval to account for the
skewness in the bootstrap distribution.

While the confidence intervals give a wide range for the population correlation,
both of them include only positive values. Thus, these data provide significant
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evidence that there is a positive relationship between a laundry detergent’s rating
and its price per load.

SECTION 16.4 Summary

Both bootstrap t and (when they exist) traditional z and t confidence intervals
require statistics with small bias and sampling distributions close to Normal. We
can check these conditions by examining the bootstrap distribution for bias and
lack of Normality.

The bootstrap percentile confidence interval for 95% confidence is the
interval from the 2.5 percentile to the 97.5 percentile of the bootstrap distribution.
Agreement between the bootstrap t and percentile intervals is an added check on
the conditions needed by the t interval. Do not use t or percentile intervals if these
conditions are not met.

When bias or skewness is present in the bootstrap distribution, use a BCa
interval. The t and percentile intervals are inaccurate under these circumstances
unless the sample sizes are very large. The BCa confidence intervals adjust for bias
and skewness and are generally accurate except for small samples.

SECTION 16.4 Exercises
For Exercises 16.36 and 16.37, see page 16-33.

16.38 Find the 95% bootstrap percentile confidence interval.

The mean of a sample is x¯=218.3 and the standard deviation is s = 55.2. The mean of the bootstrap
distribution is x¯=220.2 and the standard deviation is s = 11.3. A bootstrap distribution has the following
percentiles:

Percentile
0.01 0.025 0.05 0.10 0.50 0.90 0.95 0.975 0.99
193 198 202 206 220 234 238 242 246

Find the 95% bootstrap percentile confidence interval.

16.39 Summarize the output.

Figures 16.21 and 16.22 show software output from R with information about a bootstrap analysis.
Summarize the information in the output. Be sure to include the BCa confidence interval.

16.40 Confidence interval for the average IQ score.

The distribution of the 60 IQ test scores in Table 1.1 (page 16) is roughly Normal, and the sample size is
large enough that we expect a Normal sampling distribution. We will compare confidence intervals for the

population mean IQ μ based on this sample.  IQ

(a) Use the formula s/n to find the standard error of the mean. Give the 95% t confidence interval based on
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this standard error.

FIGURE 16.21
R graphical output for Exercise 16.39.
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FIGURE 16.22
Output from R with bootstrap confidence intervals, for Exercise 16.39.

(b) Bootstrap the mean of the IQ scores. Make a histogram and a Normal quantile plot of the bootstrap
distribution. Does the bootstrap distribution appear Normal? What is the bootstrap standard error? Give the
95% bootstrap t confidence interval.

(c) Give the 95% confidence percentile and BCa intervals. Make a graphical comparison by drawing a
vertical line at the original sample mean x¯ and displaying the three intervals vertically, one above the
other. How well do your four confidence intervals agree? Was bootstrapping needed to find a reasonable
confidence interval, or was the formula-based confidence interval good enough?

16.41 Confidence interval for a Normal data set.

In Exercise 16.29 (page 16-24) you bootstrapped the mean of a simulated SRS from the standard Normal

distribution N(0, 1) and found the 95% standard t and bootstrap t confidence intervals for the mean. 
NORMALD

(a) Find the 95% bootstrap percentile confidence interval. Does this interval confirm that the t intervals are
acceptable?

(b) We know that the population mean is 0. Do the confidence intervals capture this mean?
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16.42 Using bootstrapping to check traditional methods.

Bootstrapping is a good way to check if traditional inference methods are accurate for a given sample.

Consider the following data:  DATA30

98 107 113 104 94 100 107 98 112 97
99 95 97 90 109 102 89 101 93 95
95 87 91 101 119 116 91 95 95 104

(a) Examine the data graphically. Do they appear to violate any of the conditions needed to use the one-
sample t confidence interval for the population mean?

(b) Calculate the 95% one-sample t confidence interval for this sample.

(c) Bootstrap the data, and inspect the bootstrap distribution of the mean. Does it suggest that a t interval
should be reasonably accurate? Calculate the bootstrap t 95% interval.

(d) Find the 95% bootstrap percentile interval. Does it agree with the two t intervals? What do you
conclude about the accuracy of the one-sample t interval here?

16.43 Comparing bootstrap confidence intervals.

The graphs in Figure 16.9 (page 16-15) do not appear to show any important skewness in the bootstrap
distribution of the trimmed mean for Example 16.4. Compare the bootstrap percentile and bootstrap t
intervals for the trimmed mean, given in the discussion of Example 16.4 (page 16-14). Does the

comparison suggest any skewness?  GPA

16.44 More on using bootstrapping to check traditional methods.

Continue to work with the data given in Exercise 16.42.  DATA30

(a) Find the 95% BCa confidence interval.

(b) Does your opinion of the robustness of the one-sample t confidence interval change when comparing it
with the BCa interval?

(c) To check the accuracy of the one-sample t confidence interval, would you generally use the bootstrap
percentile or the BCa interval? Explain.

16.45 BCa interval for the correlation coefficient.

Find the 95% BCa confidence interval for the correlation between price and rating, from the data in
Example 16.10 (page 16-36). Is this more accurate interval in general agreement with the 95% bootstrap t
and percentile intervals? Do you still agree with the judgment in the discussion of Example 16.10 that the

simpler intervals are adequate?  LAUNDRY

16.46 Bootstrap confidence intervals for the average audio file length.

In Exercise 16.17 (page 16-17), you found a bootstrap t confidence interval for the population mean μ.
Careful examination of the bootstrap distribution reveals a slight skewness in the right tail. Is this
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something to be concerned about? Bootstrap the mean and give all three 95% bootstrap confidence
intervals: t, percentile, and BCa. Make a graphical comparison by displaying the three intervals vertically,

one above the other. Discuss what you see.  SONGS

16.47 Bootstrap confidence intervals for service center call lengths.

The distribution of the call center lengths that you used in Exercise 16.25 (page 16-23) is strongly skewed.
In that exercise you found a bootstrap t confidence interval for the population mean μ, even though some
skewness remains in the bootstrap distribution. Bootstrap the mean length and give all three bootstrap 95%
confidence intervals: t, percentile, and BCa. Make a graphical comparison by drawing a vertical line at the
original sample mean x¯ and displaying the three intervals horizontally, one above the other. Discuss what
you see: Do bootstrap t and percentile agree? Does the more accurate interval agree with the two simpler

methods?  CALLS80

16.48 Bootstrap confidence intervals for the standard deviation.

We would like a 95% confidence interval for the standard deviation σ of 150 GPAs. In Exercise 16.27
(page 16-23) we considered the bootstrap t interval. Now we have a more accurate method. Bootstrap s and
report all three 95% bootstrap confidence intervals: t, percentile, and BCa. Make a graphical comparison
by drawing a vertical line at the original s and displaying the three intervals vertically, one above the other.
Discuss what you see: Do bootstrap t and percentile agree? Does the more accurate interval agree with the

two simpler methods? What interval would you use in a report on GPAs at this college?  GPA

16.49 The effect of decreasing the sample size.

Exercise 16.15 (page 16-13) gives an SRS of 10 of the service center call lengths from Table 1.2. Describe
the bootstrap distribution of x¯ from this sample. Give a 95% confidence interval for the population mean
μ based on these data and a method of your choice. Describe carefully how your result differs from the

intervals in Exercise 16.47, which use the larger sample of 80 call lengths.  CALLS10

16.50 Bootstrap confidence interval for the GPA data.

The GPA data for females from Example 16.6 (page 16-18) are strongly skewed to the left and have a

cluster of observations at 4.  GPA

(a) Bootstrap the mean of the data. Based on the bootstrap distribution, which bootstrap confidence
intervals would you consider for use? Explain your answer.

(b) Find all three bootstrap confidence intervals. How do the intervals compare? Briefly explain the reasons
for any differences. In particular, what kind of errors would you make in estimating the mean GPA by
using a t interval or a percentile interval instead of a BCa interval?

16.51 Bootstrap confidence intervals for the difference in GPAs.

Example 16.6 (page 16-18) considers the difference in mean GPAs of men and women. The bootstrap
distribution appeared reasonably Normal. Give the 95% BCa confidence interval for the difference in mean

GPAs. Is this interval comparable to the bootstrap t interval calculated in the example?  GPA
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16.52 The correlation between GPA and high school math grades.

The study described in Example 16.4 (page 16-14) used high school grades to predict GPA. For this

exercise, we will look at the correlation between GPA and high school math grades.  GPA

(a) Describe the distribution of GPAs. Do the same for high school math grades.

(b) Describe the relationship between GPA and high school math grades.

(c) Generate 2000 resamples and use these to obtain the bootstrap distribution for the correlation.

(d) Describe the shape and bias of the bootstrap distribution. Does use of the simpler bootstrap confidence
intervals (t and percentile) appear to be justified?

(e) Find all three 95% bootstrap confidence intervals: t, percentile, and BCa. Make a graphical comparison
by drawing a vertical line at the original correlation r and displaying the three intervals vertically, one
above the other. Discuss what you see. Does it still appear that the simpler intervals are justified? What
confidence interval would you include in a report describing the relationship between GPA and high school
math grades?

16.53 The correlation between debts.

Figure 2.4 (page 92) shows a strong positive relationship between debt in 2010 and debt in 2009 for 33

countries. Use the bootstrap to perform statistical inference for these data.  DEBT

(a) Describe the shape and bias of the bootstrap distribution. Do you think that a simple bootstrap inference
(t and percentile confidence intervals) is justified? Explain your answer.

(b) Give the 95% BCa and bootstrap percentile confidence intervals for the population correlation. Do they
(as expected) agree closely? Do these intervals provide significant evidence at the 5% level that the
population correlation is not 0?

16.54 Bootstrap distribution for the slope β1.

Describe carefully how to resample from data on an explanatory variable x and a response variable y to
create a bootstrap distribution for the slope b1 of the least-squares regression line.

16.55 Predicting ratings of laundry detergents.

Refer to Example 16.10 (page 16-36).  LAUNDRY

(a) Find the least-squares regression line for predicting rating from price.

(b) Bootstrap the regression line and give a 95% confidence interval for the slope of the population
regression line.

(c) Compare the bootstrap results with the usual method for finding a confidence interval for a regression
slope.

16.56 Predicting GPA.
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Continue your study of GPA and high school math grades, begun in Exercise 16.52, by performing a

regression to predict GPA using high school math grades as the explanatory variable.  GPA

(a) Plot the residuals against the math grades and make a Normal quantile plot of the residuals. Do these
plots suggest that inference based on the usual simple linear regression model may be inaccurate? Give
reasons for your answer.

(b) Examine the bootstrap distribution of the slope b1 of the least-squares regression line. Based on what
you see, what do you recommend regarding the use of bootstrap t or bootstrap percentile intervals? Give
reasons for your recommendation.

(c) Give the 95% BCa confidence interval for the slope β1 of the population regression line. Compare this
with the standard 95% confidence interval based on Normality, the bootstrap t interval, and the bootstrap
percentile interval. Using the BCa interval as a standard, which of the other intervals are adequately
accurate for practical use?

16.57 Predicting debt in 2010 from debt in 2009.

Continue your study of the relationship between debt in 2009 and debt in 2010 for 33 countries, begun in
Exercise 16.53. Run the regression to predict debt in 2010 using debt in 2009 as the explanatory variable. 

 DEBT

(a) Plot the residuals against the explanatory variable and make a Normal quantile plot of the residuals. Do
the residuals appear to be Normal? Explain your answer.

(b) Examine the shape and bias of the bootstrap distribution of the slope b1 of the least-squares line. Does
this distribution suggest that even the bootstrap t interval will be accurate? Give a reason for your answer.

(c) Find the standard 95% t confidence interval for β1 and also the BCa, bootstrap t, and bootstrap
percentile confidence intervals. What do you conclude about the accuracy of the two t intervals?

16.58 The effect of outliers.

We know that outliers can strongly influence statistics such as the mean and the least-squares line.
Example 7.7 (page 429) describes a matched pairs study of disruptive behavior by dementia patients. The

differences in Table 7.2 show several low values that may be considered outliers.  MOON

(a) Bootstrap the mean of the differences with and without the three low values. How do these values
influence the shape and bias of the bootstrap distribution?

(b) Give the BCa confidence interval from both bootstrap distributions. Discuss the differences.

1406



16.5 Significance Testing Using Permutation Tests

When you complete this section, you will be able to

• Outline the steps needed for a permutation test for comparing two means.

• Outline the steps needed for a permutation test for a matched pairs
study.

• Outline the steps needed for a permutation test for the relationship
between two quantitative variables.

tests of significance, p. 372

Significance tests tell us whether an observed effect, such as a difference
between two means or a correlation between two variables, could reasonably occur
“just by chance” in selecting a random sample. If not, we have evidence that the
effect observed in the sample reflects an effect that is present in the population.
The reasoning of tests goes like this:

1. Choose a statistic that measures the effect you are looking for.

2. Construct the sampling distribution that this statistic would have if the effect
were not present in the population.

3. Locate the observed statistic on this distribution. A value in the main body of the
distribution could easily occur just by chance. A value in the tail would rarely
occur by chance and so is evidence that something other than chance is
operating.

null hypothesis, p. 374

The statement that the effect we seek is not present in the population is the null
hypothesis, H0. Assuming the null hypothesis is true, the probability that we would
observe a statistic value as extreme or more extreme than the one we did observe is
the P-value. Figure 16.23 illustrates the idea of a P-value. Small P-values are
evidence against the null hypothesis and in favor of a real effect in the population.
The reasoning of statistical tests is indirect and a bit subtle but is by now familiar.
Tests based on resampling don’t change this reasoning. They find P-values by
resampling calculations rather than from formulas and so can be used in settings
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where traditional tests don’t apply.

FIGURE 16.23
The P-value of a statistical test is found from the sampling distribution the statistic would have
if the null hypothesis were true. It is the probability of a result at least as extreme as the value
we actually observed.

P-value, p. 377

Because P-values are calculated acting as if the null hypothesis were true, we
cannot resample from the observed sample as we did earlier. In the absence of bias,
resampling from the original sample creates a bootstrap distribution centered at the
observed value of the statistic. If the null hypothesis is in fact not true, this value
may be far from the parameter value stated by the null hypothesis. We must
estimate what the sampling distribution of the statistic would be if the null
hypothesis were true. That is, we must obey this rule:

RESAMPLING FOR SIGNIFICANCE TESTS

To estimate the P-value for a test of significance, estimate the sampling
distribution of the test statistic when the null hypothesis is true by resampling
in a manner that is consistent with the null hypothesis.
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TABLE 16.1  Degree of Reading Power Scores for Third-Graders

EXAMPLE

16.11 “Directed reading activities.”

DRP

Do new “directed reading activities” improve the reading ability of elementary
school students, as measured by their Degree of Reading Power (DRP) scores?
A study assigns students at random to either the new method (treatment group,
21 students) or traditional teaching methods (control group, 23 students). The
DRP scores at the end of the study appear in Table 16.1.7 In Example 7.15
(page 454) we applied the two-sample t test to these data.

To apply resampling, we will start with the difference between the sample
means as a measure of the effect of the new activities:

statistic=x¯treatment−x¯control

The null hypothesis H0 for the resampling test is that the teaching method has
no effect on the distribution of DRP scores. If H0 is true, the DRP scores in
Table 16.1 do not depend on the teaching method. Each student has a DRP
score that describes that child and is the same no matter which group the child
is assigned to. The observed difference in group means just reflects the
accident of random assignment to the two groups.

Now we can see how to resample in a way that is consistent with the null
hypothesis: imitate many repetitions of the random assignment of students to
treatment and control groups, with each student always keeping his or her DRP
score unchanged. Because resampling in this way scrambles the assignment of
students to groups, tests based on resampling are called permutation tests,
from the mathematical name for scrambling a collection of things.

permutation test

Treatment group Control group
24 61 59 46 42 33 46 37
43 44 52 43 43 41 10 42
58 67 62 57 55 19 17 55
71 49 54 26 54 60 28
43 53 57 62 20 53 48
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49 56 33 37 85 42

Here is an outline of the permutation test procedure for comparing the mean
DRP scores in Example 16.11:

• Choose 21 of the 44 students at random to be the treatment group; the other 23
are the control group. This is an ordinary SRS, chosen without replacement. It is
called a permutation resample.

permutation resample

• Calculate the mean DRP score in each group, using the students’ DRP scores in
Table 16.1. The difference between these means is our statistic.

• Repeat this resampling and calculation of the statistic hundreds of times. The
distribution of the statistic from these resamples estimates the sampling distribution
under the condition that H0 is true. It is called a permutation distribution.

permutation distribution

• Consider the value of the statistic actually observed in the study,

x¯treatment−x¯control=51.476−41.522=9.954

Locate this value on the permutation distribution to get the P-value.
Figure 16.24 illustrates permutation resampling on a small scale. The top box

shows the results of a study with four subjects in the treatment group and two
subjects in the control group. A permutation resample chooses an SRS of four of
the six subjects to form the treatment group. The remaining two are the control
group. The results of three permutation resamples appear below the original
results, along with the statistic (difference in group means) for each.

FIGURE 16.24
The idea of permutation resampling. The top box shows the outcome of a study with four
subjects in one group and two in the other. The boxes below show three permutation resamples.
The values of the statistic for many such resamples form the permutation distribution.
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EXAMPLE

16.12 Permutation test for the DRP study.

DRP

Figure 16.25 shows the permutation distribution of the difference in means
based on 1000 permutation resamples from the DRP data in Table 16.1. This is
a resampling estimate of the sampling distribution of the statistic when the null
hypothesis H0 is true. As H0 suggests, the distribution is centered at 0 (no
effect). The solid vertical line in the figure marks the location of the statistic
for the original sample, 9.954. Use the permutation distribution exactly as if it
were the sampling distribution: the P-value is the probability that the statistic
takes a value at least as extreme as 9.954 in the direction given by the
alternative hypothesis.

FIGURE 16.25
The permutation distribution of the difference between the treatment mean and the control
mean based on the DRP scores of 44 students, for Example 16.12. The dashed line marks
the mean of the permutation distribution: it is very close to zero, the value specified by the
null hypothesis. The solid vertical line marks the observed difference in means, 9.954. Its
location in the right tail shows that a value this large is unlikely to occur when the null
hypothesis is true.
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We seek evidence that the treatment increases DRP scores, so the
alternative hypothesis is that the distribution of the statistic x¯treatment
−x¯control is centered not at 0 but at some positive value. Large values of the
statistic are evidence against the null hypothesis in favor of this one-sided
alternative. The permutation test P-value is the proportion of the 1000
resamples that give a result at least as great as 9.954. A look at the resampling
results finds that 14 of the 1000 resamples gave a value of 9.954 or larger, so
the estimated P-value is 14/1000, or 0.014.

Figure 16.25 shows that the permutation distribution has a roughly Normal
shape. Because the permutation distribution approximates the sampling
distribution, we now know that the sampling distribution is close to Normal. When
the sampling distribution is close to Normal, we can safely apply the usual two-
sample t test. The t test in Example 7.15 gives P = 0.013, very close to the P-value
from the permutation test.

Using software

In principle, you can program almost any statistical software to do a permutation
test. It is more convenient to use software that automates the process of
resampling, calculating the statistic, forming the permutation distribution, and
finding the P-value. The package perm in R contains functions that allow you to
request permutation tests. The permutation distribution in Figure 16.25 is one
output. Another is this summary of the test results:

By giving “greater” as the alternative hypothesis, the output makes it clear that
0.015 is the one-sided P-value. This estimate of the P-value is more precise than
the 0.014 estimate because it is based on 5000 rather than 1000 resamples.

Permutation tests in practice
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two-sample t test, page 454

Permutation tests versus t tests. We have analyzed the data in Table 16.1 both by
the two-sample t test (in Chapter 7) and by a permutation test. Comparing the two
approaches brings out some general points about permutation tests versus
traditional formula-based tests.

• The hypotheses for the t test are stated in terms of the two population means,

H0: μtreatment − μcontrol = 0

Ha: μtreatment − μcontrol > 0

The permutation test hypotheses are more general. The null hypothesis is “same
distribution of scores in both groups,” and the one-sided alternative is “scores in
the treatment group are systematically higher.” These more general hypotheses
imply the t hypotheses if we are interested in mean scores and the two distributions
have the same shape.

• The plug-in principle says that the difference in sample means estimates the
difference in population means. The t statistic starts with this difference. We used
the same statistic in the permutation test, but that was a choice: we could use the
difference in 25% trimmed means or any other statistic that measures the effect of
treatment versus control.

• The t test statistic is based on standardizing the difference in means in a clever
way to get a statistic that has a t distribution when H0 is true. The permutation test
works directly with the difference in means (or some other statistic) and estimates
the sampling distribution by resampling. No formulas are needed.

• The t test gives accurate P-values if the sampling distribution of the difference in
means is at least roughly Normal. The permutation test gives accurate P-values
even when the sampling distribution is not close to Normal.

The permutation test is useful even if we plan to use the two-sample t test.
Rather than relying on Normal quantile plots of the two samples and the central
limit theorem, we can directly check the Normality of the sampling distribution by
looking at the permutation distribution. Permutation tests provide a “gold standard”
for assessing two-sample t tests. If the two P-values differ considerably, it usually
indicates that the conditions for the two-sample t don’t hold for these data. Because
permutation tests give accurate P-values even when the sampling distribution is
skewed, they are often used when accuracy is very important. Here is an example.
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EXAMPLE

16.13 Permutation test for GPAs.

GPA

In Example 16.6 (page 16-18), we looked at the difference in mean GPAs of
male and female students. Figure 16.10 (page 16-18) shows both distributions.
Because the distributions are skewed and the sample sizes are somewhat
different, a two-sample t test might be inaccurate.

Based on the summary statistics,

Gender n x¯ s
Male 91 2.784 0.859
Female 59 2.933 0.748
Difference −0.149  

the t statistic is −1.12 with either 58 or 135.73 degrees of freedom. The P-
value is roughly 0.26 in either case.

We perform permutation tests with 5000 resamples using R. We use the
difference in means, x¯1−x¯2, as our test statistic. This is done by randomly
regrouping the total set of GPAs into two groups that are the same sizes as the
two original samples. This is consistent with the null hypothesis that gender
has no effect on GPA. Each GPA appears once in the data of each resample,
but some GPAs move from the male to the female group, and vice versa. We
calculate the test statistic for each resample and create its permutation
distribution. The P-value is the proportion of the resamples with statistics that
exceed the observed statistic.

A 99% confidence interval for the P-value based on the 5000 resamples is
(0.256, 0.309). This interval contains the P-value for the t test. The skewness and
differing sample sizes do not have an impact here primarily because the sample
sizes are relatively large.

If you read Chapter 15 on nonparametric tests, you will find there more
comparison of permutation tests with rank tests as well as tests based on Normal
distributions.

Data from an entire population.

A subtle difference between confidence intervals and significance tests is that
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confidence intervals require the distinction between sample and population, but
tests do not. If we have data on an entire population—say, all employees of a large
corporation—we don’t need a confidence interval to estimate the difference
between the mean salaries of male and female employees. We can calculate the
means for all men and for all women and get an exact answer. But it still makes
sense to ask, “Is the difference in means so large that it would rarely occur just by
chance?” A test and its P-value answer that question.

Permutation tests are a convenient way to answer such questions. In carrying
out the test we pay no attention to whether the data are a sample or an entire
population. The resampling assigns the full set of observed salaries at random to
men and women and builds a permutation distribution from repeated random
assignments. We can then see if the observed difference in mean salaries is so large
that it would rarely occur if gender did not matter.

When are permutation tests valid?

The two-sample t test starts from the condition that the sampling distribution of
x¯1−x¯2 is Normal. This is the case if both populations have Normal distributions,
and it is approximately true for large samples from non-Normal populations
because of the central limit theorem. The central limit theorem helps explain the
robustness of the two-sample t test. The test works well when both populations are
symmetric, especially when the two sample sizes are similar.

two-sample t test, page 454

Robustness of two-sample procedures, p. 455

The permutation test completely removes the Normality condition. However,
resampling in a way that moves observations between the two groups requires that
the two populations are identical when the null hypothesis is true—that not only
their means are the same but also their spreads and shapes. Our preferred version
of the two-sample t allows different standard deviations in the two groups, so the
shapes are both Normal but need not have the same spread.

In Example 16.13, the distributions are skewed but we do not rule out the t test
because of the central limit theorem. The permutation test is valid if the GPA
distributions for males and females have the same shape, so that they are identical
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under the null hypothesis that the centers (the means) are the same. Based on
Figure 16.10 (page 16-18), it appears that the distribution for the males has a little
more spread than the distribution for the females. Fortunately, the permutation test
is robust. That is, it gives accurate P-values when the two population distributions
have somewhat different shapes, such as when they have slightly different standard
deviations.

Sources of variation.

Just as in the case of bootstrap confidence intervals, permutation tests are subject to
two sources of random variability: the original sample is chosen at random from
the population, and the resamples are chosen at random from the sample. Again as
in the case of the bootstrap, the added variation due to resampling is usually small
and can be made as small as we like by increasing the number of resamples.

The number of resamples on which a permutation test is based determines the
number of decimal places and precision in the resulting P-value. Tests based on
1000 resamples give P-values to three places (multiples of 0.001), with a margin of
error of 2P(1−P)/1000 equal to 0.014 when the true one-sided P-value is 0.05. If
higher precision is needed or your computer is sufficiently fast, you may choose to
use 10,000 or more resamples.

USE YOUR KNOWLEDGE

16.59 Is a permutation test valid?

Suppose a professor wants to compare the effectiveness of two different
instruction methods. By design, one method is more team oriented, so he
expects the variability in individual tests scores for this method to be
smaller. Is it valid to use a permutation test to compare the mean scores
of the two methods? Explain.

16.60 Declaring significance.

Suppose that a one-sided permutation test based on 250 permutation
resamples resulted in a P-value of 0.04. What is the approximate
standard deviation of the distribution? Would you feel comfortable
declaring the results significant at the 5% level? Explain.
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Permutation tests in other settings

The bootstrap procedure can replace many different formula-based confidence
intervals, provided that we resample in a way that matches the setting. Permutation
testing is also a general method that we can adapt to various settings.

GENERAL PROCEDURE FOR PERMUTATION TESTS

To carry out a permutation test based on a statistic that measures the size of an
effect of interest:

1. Compute the statistic for the original data.

2. Choose permutation resamples from the data without replacement in a way
that is consistent with the null hypothesis of the test and with the study
design. Construct the permutation distribution of the statistic from its values
in a large number of resamples.

3. Find the P-value by locating the original statistic on the permutation
distribution.

Permutation test for matched pairs.

The key step in the general procedure for permutation tests is to form permutation
resamples in a way that is consistent with the study design and with the null
hypothesis. Our examples to this point have concerned two-sample settings. How
must we modify our procedure for a matched pairs design?

EXAMPLE

16.14 Permutation test for full-moon study.
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TABLE 16.2  Aggressive Behaviors of Dementia Patients

MOON

Can the full moon influence behavior? A study observed 15 nursing-home
patients with dementia. The number of incidents of aggressive behavior was
recorded each day for 12 weeks. Call a day a “moon day” if it is the day of a
full moon or the day before or after a full moon. Table 16.2 gives the average
number of aggressive incidents for moon days and other days for each
subject.8 These are matched pairs data. In Example 7.7 (page 429), the
matched pairs t test found evidence that the mean number of aggressive
incidents is higher on moon days (t = 6.45, df = 14, P < 0.001). The data show
some signs of non-Normality. We want to apply a permutation test.

The null hypothesis says that the full moon has no effect on behavior. If
this is true, the two entries for each patient in Table 16.2 are two
measurements of aggressive behavior made under the same conditions. There
is no distinction between “moon days” and “other days.” Resampling in a way
consistent with this null hypothesis randomly assigns one of each patient’s two
scores to “moon” and the other to “other.” We don’t mix results for different
subjects, because the original data are paired.

The permutation test (like the matched pairs t test) uses the difference in
means x¯moon−x¯other. Figure 16.26 shows the permutation distribution of
this statistic from 10,000 resamples. None of these resamples produces a
difference as large as the observed difference, x¯moon−x¯other=2.433. The
estimated one-sided P-value is less than 1 in a thousand. We report this result
as P < 0.0001. There is strong evidence that aggressive behavior is more
common on moon days.

Patient Moon days Other days Patient Moon days Other days
1 3.33 0.27 9 6.00 1.59
2 3.67 0.59 10  4.33 0.60
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3 2.67 0.32 11  3.33 0.65
4 3.33 0.19 12  0.67 0.69
5 3.33 1.26 13  1.33 1.26
6 3.67 0.11 14  0.33 0.23
7 4.67 0.30 15  2.00 0.38
8 2.67 0.40

FIGURE 16.26
The permutation distribution for the mean difference (moon days minus other days) from 10,000
paired resamples from the data in Table 16.2, for Example 16.14.

The permutation distribution in Figure 16.26 is close to Normal, as a Normal
quantile plot confirms. The matched pairs t test is therefore reliable and agrees with
the permutation test that the P-value is very small.

Permutation test for the significance of a relationship.

Permutation testing can be used to test the significance of a relationship between
two variables. For example, in Example 16.10 we looked at the relationship
between price and rating of laundry detergents.

The null hypothesis is that there is no relationship. In that case, prices are
assigned to detergents for reasons that have nothing to do with rating. We can
resample in a way consistent with the null hypothesis by permuting the observed
ratings among` the detergents at random.

Take the correlation as the test statistic. For every resample, calculate the
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correlation between the prices (in their original order) and ratings (in the reshuffled
order). The P-value is the proportion of the resamples with correlation larger than
the original correlation.

When can we use permutation tests?

We can use a permutation test only when we can see how to resample in a way that
is consistent with the study design and with the null hypothesis. We now know
how to do this for the following types of problems:

• Two-sample problems when the null hypothesis says that the two populations
are identical. We may wish to compare population means, proportions, standard
deviations, or other statistics. You may recall from Section 7.3 that traditional tests
for comparing population standard deviations work very poorly. Permutation tests
are a much better choice.

• Matched pairs designs when the null hypothesis says that there are only random
differences within pairs. A variety of comparisons is again possible.

• Relationships between two quantitative variables when the null hypothesis
says that the variables are not related. The correlation is the most common measure
of association, but not the only one.

These settings share the characteristic that the null hypothesis specifies a simple
situation such as two identical populations or two unrelated variables. We can see
how to resample in a way that matches these situations. Permutation tests can’t be
used for testing hypotheses about a single population, comparing populations that
differ even under the null hypothesis, or testing general relationships. In these
settings, we don’t know how to resample in a way that matches the null hypothesis.
Researchers are developing resampling methods for these and other settings, so
stay tuned.

When we can’t do a permutation test, we can often calculate a bootstrap
confidence interval instead. If the confidence interval fails to include the null
hypothesis value, then we reject H0 at the corresponding significance level. This is
not as accurate as doing a permutation test, but a confidence interval estimates the
size of an effect as well as giving some information about its statistical
significance. Even when a test is possible, it is often helpful to report a confidence
interval along with the test result. Confidence intervals don’t assume that a null
hypothesis is true, so we use bootstrap resampling with replacement rather than
permutation resampling without replacement.
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SECTION 16.5 Summary

Permutation tests are significance tests based on permutation resamples drawn
at random from the original data. Permutation resamples are drawn without
replacement, in contrast to bootstrap samples, which are drawn with replacement.

Permutation resamples must be drawn in a way that is consistent with the null
hypothesis and with the study design. In a two-sample design, the null hypothesis
says that the two populations are identical. Resampling randomly reassigns
observations to the two groups. In a matched pairs design, randomly permute the
two observations within each pair separately. To test the hypothesis of no
relationship between two variables, randomly reassign values of one of the two
variables.

The permutation distribution of a suitable statistic is formed by the values of
the statistic in a large number of resamples. Find the P-value of the test by locating
the original value of the statistic on the permutation distribution.

When they can be used, permutation tests have great advantages. They do not
require specific population shapes such as Normality. They apply to a variety of
statistics, not just to statistics that have a simple distribution under the null
hypothesis. They can give very accurate P-values, regardless of the shape and size
of the population (if enough permutations are used).

It is often useful to give a confidence interval along with a test. To create a
confidence interval, we no longer assume that the null hypothesis is true, so we use
bootstrap resampling rather than permutation resampling.

SECTION 16.5 Exercises
For Exercises 16.59 and 16.60, see page 16-49.

16.61 Marketing cell phones.

You have two prototypes of a new cell phone and designed an experiment to help you decide which one to
market. Forty students were randomly assigned to use one of the two phones for two weeks. Their overall
satisfaction with the phone is recorded on a subjective scale with a range of 1 to 100. Outline the steps
needed to compare the means for the two phones using a permutation test.

16.62 Marketing cell phones.

Refer to the previous exercise. Suppose that you had each of the 40 students use both phones. Outline the
steps needed to compare the means for the two phones using a permutation test.

16.63 Characteristics of cell phones.

Refer to Ex-ercise 16.61. Before asking the students to provide an overall satisfaction rating, they were
asked to provide ratings for several characteristics of the cell phone. Two of these were satisfaction with
the screen and satisfaction with the keyboard. Outline the steps needed to evaluate the relationship between
these two variables for the first phone using a permutation test.
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16.64 Compare the correlations.

Refer to the previous exercise. Suppose that you calculate the correlation between satisfaction with the
screen and satisfaction with the keyboard for each phone. Outline the steps needed to compare these two
correlations using a permutation test.

16.65 A small-sample permutation test.

To illustrate the process, let’s perform a permutation test by hand for a small random subset of the DRP
data (Example 16.11, page 16-43). Here are the data:

Treatment group 57 53
Control group 19 37 41 42

(a) Calculate the difference in means x¯treatment−x¯control between the two groups. This is the observed
value of the statistic.

(b) Resample: Start with the 6 scores and choose an SRS of 2 scores to form the treatment group for the
first resample. You can do this by labeling the scores from 1 to 6 and using consecutive random digits from
Table B or by rolling a die. Using either method, be sure to skip repeated digits. A resample is an ordinary
SRS, without replacement. The remaining 4 scores are the control group. What is the difference in group
means for this resample?

(c) Repeat Step (b) 20 times to get 20 resamples and 20 values of the statistic. Make a histogram of the
distribution of these 20 values. This is the permutation distribution for your resamples.

(d) What proportion of the 20 statistic values were equal to or greater than the original value in part (a)?
You have just estimated the one-sided P-value for the original 6 observations.

(e) For this small data set, there are only 15 possible permutations of the data. As a result, we can calculate
the exact P-value by counting the number of permutations with a statistic value greater than or equal to the
original value and then dividing by 15. What is the exact P-value here? How close was your estimate?

16.66 Product labels with animals?

Participants in a study were asked to indicate their attitude toward a product on a seven-point scale (from 1
= dislike very much to 7 = like very much). A bottle of MagicCoat pet shampoo, with a picture of a collie
on the label, was the product. Prior to indicating this preference, subjects were randomly assigned to two
groups and were asked to do a word find. Four of the words were common to both groups and four were
either related to the product image or conflicted with the image. The group with words related to the
product image were considered primed. In Exercise 7.72 (page 469) the mean scores were compared using

the two-sample t procedures. Let’s use a permutation test for the comparison. Here are the data: 
BRANDPR

Group Brand Attitude
Primed 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5
Nonprimed 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5

(a) Examine the scores of each group graphically. Is it appropriate to use the two-sample t procedures?
Explain your answer.

(b) Perform the two-sample t test to compare the group means. Use a two-sided alternative hypothesis and
a significance level of 5%.
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(c) Perform a permutation test to compare the group means. Summarize your results and conclusions.

(d) Write a short summary comparing your results in parts (b) and (c). Which method do you recommend
for these data? Give reasons for your answer.

16.67 Timing of food intake.

Examples 7.16 and 7.17 (pages 456 and 457) examine data on an experiment to compare weight loss in
subjects who were classified as early eaters or late eaters, based on the timing of their main meal. In

Example 7.17, the following data were analyzed:  FOOD10

Group Weight loss (kg)
Early eater 6.3 15.1 9.4 16.8 10.2
Late eater 7.8   0.2 1.5 11.5   4.6

(a) State appropriate null and alternative hypotheses for these data.

(b) Report the result of the pooled two-sample t test.

(c) Perform a permutation test to compare the two means and report the results. Compare the P-value for
this test with the P-value for the t test in part (b).

(d) Find a BCa confidence interval for the difference in means. How is this interval related to your results
in part (c)?

16.68 Standard deviation of the estimated P-value.

The estimated P-value for the DRP study (Example 16.12, page 16-45) based on 1000 resamples is P =
0.015. Suppose that we obtained the same P-value based on 4000 resamples. What is the approximate
standard deviation of each of these P-values?

16.69 When is a permutation test valid?

You want to test the equality of the means of two populations. Sketch density curves for two populations
for which

(a) a permutation test is valid but a t test is not.

(b) both permutation and t tests are valid.

(c) a t test is valid but a permutation test is not.

16.70 Testing the correlation between debts.

In Exercise 16.53 (page 16-41), we assessed the significance of the correlation between debt in 2009 and
debt in 2010 for 33 countries by creating bootstrap confidence intervals. If a 95% confidence interval does
not cover 0, the observed correlation is significantly different from 0 at the α level. Let’s do a test that
provides a P-value. Carry out a permutation test and give the P-value. What do you conclude? Is your

conclusion consistent with your work in Exercise 16.53 (page 16-41)?  DEBT

16.71 Assessing a summer language institute.
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Exercise 7.45 (page 446) gives data on a study of the effect of a summer language institute on the ability of
high school language teachers to understand spoken French. This is a matched pairs study, with scores for
20 teachers at the beginning (pretest) and end (posttest) of the institute. We conjecture that the posttest

scores are higher on the average.  FRENCH

(a) Carry out the matched pairs t test. That is, state hypotheses, calculate the test statistic, and give its P-
value.

(b) Make a Normal quantile plot of the gains: posttest score—pretest score. The data have a number of ties
and a low outlier. A permutation test can help check the t test result.

(c) Carry out the permutation test for the difference in means in a matched pairs setting, using 9999
resamples. The Normal quantile plot shows that the permutation distribution is reasonably Normal. What is
the P-value for the permutation test? Do your tests in parts (a) and (c) lead to the same practical
conclusion?

16.72 Compare the medians.

Refer to the previous exercise. Use a permutation test to compare the medians. Write a short summary of
your results and conclusions. Include a comparison of what you found here with what you found in the

previous exercise.  FRENCH

16.73 Testing the correlation between price and rating.

Example 16.10 (page 16-36) uses the bootstrap to find a confidence interval for the correlation between

price and rating for 24 laundry detergents. Let’s use a permutation test to examine this correlation. 
LAUNDRY

(a) State the null and alternative hypotheses.

(b) Perform a permutation test based on the sample correlation. Report the P-value and draw a conclusion.

16.74 Comparing mpg calculations.

Exercise 7.39 (page 445) gives data on a comparison of driver and computer mpg
calculations. This is a matched pairs study, with mpg values for 20 fill-ups. 
MPG20

(a) Carry out the matched pairs t test. That is, state hypotheses, calculate the test statistic, and give its P-
value.

(b) A permutation test can help check the t test result. Carry out the permutation test for the difference in
means in a matched pairs setting, using 10,000 resamples. What is the P-value for the permutation test?
Does this test and the test in part (a) lead to the same practical conclusion?

16.75 Comparing the average northern and southern tree diameter.

In Exercise 7.107 (page 480), the standard deviations of tree diameters for the northern and southern
regions of the tract were compared. This test is unreliable because it is sensitive to non-Normality of the
data. Perform a permutation test using the F statistic (ratio of sample variances) as your statistic. What do

you conclude? Are the two tests comparable?  NSPINES
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TABLE 16.3  Serum Retinol Levels (μmol/l) in Two Groups of Children

16.76 Comparing serum retinol levels.

The formal medical term for vitamin A in the blood is serum retinol. Serum retinol has various beneficial
effects, such as protecting against fractures. Medical researchers working with children in Papua New
Guinea asked whether recent infections reduce the level of serum retinol. They classified children as
recently infected or not on the basis of other blood tests and then measured serum retinol. Of the 90
children in the sample, 55 had been recently infected. Table 16.3 gives the serum retinol levels for both

groups, in micromoles per liter.9  RETINOL

(a) The researchers are interested in the proportional reduction in serum retinol. Verify that the mean for
infected children is 0.620 and that the mean for uninfected children is 0.778.

Not infected Infected
0.59 1.08 0.88 0.62 0.46 0.39 0.68 0.56 1.19 0.41 0.84 0.37
1.44 1.04 0.67 0.86 0.90 0.70 0.38 0.34 0.97 1.20 0.35 0.87
0.35 0.99 1.22 1.15 1.13 0.67 0.30 1.15 0.38 0.34 0.33 0.26
0.99 0.35 0.94 1.00 1.02 1.11 0.82 0.81 0.56 1.13 1.90 0.42
0.83 0.35 0.67 0.31 0.58 1.36 0.78 0.68 0.69 1.09 1.06 1.23
1.17 0.35 0.23 0.34 0.49 0.69 0.57 0.82 0.59 0.24 0.41

0.36 0.36 0.39 0.97 0.40 0.40
0.24 0.67 0.40 0.55 0.67 0.52
0.23 0.33 0.38 0.33 0.31 0.35
0.82

(b) There is no standard test for the null hypothesis that the ratio of the population means is 1. We can do a
permutation test on the ratio of sample means. Carry out a one-sided test and report the P-value. Briefly
describe the center and shape of the permutation distribution. Why do you expect the center to be close to
1?

16.77 Methods of resampling.

In Exercise 16.76, we did a permutation test for the hypothesis “no difference
between infected and uninfected children” using the ratio of mean serum retinol
levels to measure “difference.” We might also want a bootstrap confidence interval
for the ratio of population means for infected and uninfected children. Describe
carefully how resampling is done for the permutation test and for the bootstrap,
paying attention to the difference between the two resampling methods. 
RETINOL

16.78 Podcast downloads.

A 2006 Pew survey of Internet users asked whether or not they had downloaded a podcast at least once.
The survey was repeated with different users in 2008. For the 2006 survey, 198 of the 2822 Internet users
reported that they had downloaded at least one podcast. In the 2008 survey, the results were 295 of 1553
users. We want to use these sample data to test equality of the population proportions of successes. Carry
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out a permutation test. Describe the permutation distribution. Give the P-value and report your conclusion.

16.79 Gender and GPA.

In Exercise 16.51 (page 16-41) we used the bootstrap to compare the mean GPA scores for men and

women.  GPA

(a) Use permutation methods to compare the means for men and women.

(b) Use permutation methods to compare the standard deviations for men and women.

(c) Write a short paragraph summarizing your results and conclusions.

16.80 Sadness and spending.

A study of sadness and spending randomized subjects to watch videos designed to produce sad or neutral
moods. Each subject was given $10, and after watching the video, he or she was asked to trade $0.50

increments of their $10 for an insulated bottle of water. Here are the data:  SADNESS

Group Purchase price ($)
Neutral 0.00 2.00 0.00 1.00 0.50 0.00 0.50

2.00 1.00 0.00 0.00 0.00 0.00 1.00
Sad 3.00 4.00 0.50 1.00 2.50 2.00 1.50 0.00 1.00

1.50 1.50 2.50 4.00 3.00 3.50 1.00 3.50

(a) Use the two-sample t significance test (page 454) to compare the means of the two groups. Summarize
your results.

(b) Use the pooled two-sample t significance test (page 462) to compare the means of the two groups.
Summarize your results.

(c) Use a permutation test to compare the two groups. Summarize your results.

(d) Discuss the differences among the results you found for parts (a), (b), and (c). Which method do you
prefer? Give reasons for your answer.

16.81 Comparing the variances for sadness and spending.

Refer to the previous example. Some treatments in randomized experiments such as this can cause

variances to be different. Are the variances of the neutral and sad subjects equal?  SADNESS

(a) Use the F test for equality of variances (page 474) to answer this question. Summarize your results.

(b) Compare the variances using a permutation test. Summarize your results.

(c) Write a short paragraph comparing the F test with the permutation test for these data.

16.82 Comparing two operators.

Exercise 7.43 (page 445) gives these data on a delicate measurement of total body bone mineral content

made by two operators on the same eight subjects:10  OPERAT
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Subject
Operator 1 2 3 4 5 6 7 8

1 1.328 1.342 1.075 1.228 0.939 1.004 1.178 1.286
2 1.323 1.322 1.073 1.233 0.934 1.019 1.184 1.304

Do permutation tests give good evidence that measurements made by the two operators differ
systematically? If so, in what way do they differ? Do two tests, one that compares centers and one that
compares spreads.
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CHAPTER 16 Exercises

16.83 Gender and GPA.

In Example 16.5 (page 16-16) you used the bootstrap to find a 95% confidence interval for the 25%
trimmed mean of GPA. Let’s change the statistic of interest to the 5% trimmed mean. Using
Example 16.5 as a guide, find the corresponding 95% confidence interval. Compare this interval

with the one in Example 16.5.  GPA

16.84 Change the trim.

Refer to the previous exercise. Change the statistic of interest to the 10% trimmed mean. Answer the
questions in the previous exercise and also compare your new interval with the one you found there. 

 GPA

16.85 Compare the correlations.

In Exercise 16.51 (page 16-41) we compared the mean GPA for men and women using the
bootstrap. In Exercise 16.52 we used the bootstrap to examine the correlation between GPA and high
school math grades. Let’s find the correlations for men and women separately and ask whether there

is evidence that they differ.  GPA

(a) Find the correlation between GPA and high school math grades for the men. Use the bootstrap to
find a 95% confidence interval for the population correlation.

(b) Repeat part (a) for the women.

(c) Use the bootstrap to test the null hypothesis that the population correlations for men and women
are the same, ρMen = ρWomen.

(d) Summarize your findings.

16.86 Use the regression slope.

Refer to the previous exercise, where we used correlations to address the question of whether or not
the relationship between GPA and high school math grades is the same for men and women. In
Exercise 16.56 (page 16-42) we used the bootstrap to examine the slope of the least-squares
regression line for predicting GPA using high school math grades. Let’s compute the slope
separately for men and women and ask whether or not they differ. This is another way to ask the
question about whether or not the relationship between GPA and high school math grades is the
same for men and women. Answer the questions from the previous exercise using the slope.

Compare the results that you find here with those you found in the previous exercise.  GPA

16.87 Bootstrap confidence interval for the difference in proportions.
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Refer to Exercise 16.78 (page 16-55). We want a 95% confidence interval for the change from 2006
to 2008 in the proportions of Internet users who report that they have downloaded a podcast at least
once. Bootstrap the sample data. Give all three bootstrap confidence intervals (t, percentile, and
BCa). Compare the three intervals and summarize the results. Which intervals would you
recommend? Give reasons for your answer.

16.88 Bootstrap confidence interval for the ratio.

Here is one conclusion from the data in Table 16.3, described in Exercise 16.76: “The mean serum
retinol level in uninfected children was 1.255 times the mean level in the infected children. A 95%
confidence interval for the ratio of means in the population of all children in Papua New Guinea is . .

. .”  RETINOL

(a) Bootstrap the data and use the BCa method to complete this conclusion.

(b) Briefly describe the shape and bias of the bootstrap distribution. Does the bootstrap percentile
interval agree closely with the BCa interval for these data?

16.89 Poetry: an occupational hazard.

According to William Butler Yeats, “She is the Gaelic muse, for she gives inspiration to those she
persecutes. The Gaelić poets die young, for she is restless, and will not let them remain long on
earth.” One study designed to investigate this issue examined the age at death for writers from
different cultures and genders.11

In Example 1.32 (page 41) we examined the distributions of the age at death for female novelists,
poets, and nonfiction writers. Figure 1.17 shows modified side-by-side boxplots for the three
categories of writers. The poets do appear to die young! Note that there is an outlier among the
nonfiction writers. This writer died at the age of 40, young for a nonfiction writer, but not for a
novelist or a poet! Let’s use the methods of this chapter to compare the ages at death for poets and

nonfiction writers.  POETS

(a) Use numerical and graphical summaries to describe the distribution of age at death for the poets.
Do the same for the nonfiction writers.

(b) Use the methods of Chapter 7 (page 454) to compare the means of the two distributions.
Summarize your findings.

(c) Use the bootstrap methods of this chapter to compare the means of the two distributions.
Summarize your findings.

16.90 Medians for the poets.

Refer to the previous exercise. Use the bootstrap methods of this chapter to compare the medians of
the two distributions. Summarize your findings and compare them with what you found in part (c) of

the previous exercise.  POETS

16.91 Permutation test for the poets.

Refer to Exercise 16.89. Answer part (c) of that exercise using the permutation test. Summarize your

findings and compare them with what you found in Exercise 16.89.  POETS
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16.92 Variance for poets.

Refer to Exercises 16.89 and 16.91.

(a) Instead of comparing means, compare variances. Summarize your findings.

(b) Explain how questions about the equality of standard deviations are related to questions about the
equality of variances.

(c) Use the results of this exercise and the previous three exercises to address the question of

whether or not the distributions of the poets and nonfiction writers are the same.  POETS

16.93 Bootstrap confidence interval for the median.

Your software can generate random numbers that have the uniform distribution on 0 to 1. Figure 4.9
(page 258) shows the density curve. Generate a sample of 50 observations from this distribution.

(a) What is the population median? Bootstrap the sample median and describe the bootstrap
distribution.

(b) What is the bootstrap standard error? Compute a 95% bootstrap t confidence interval.

(c) Find the 95% BCa confidence interval. Compare with the interval in (b). Is the bootstrap t
interval reliable here?

16.94 Are female personal trainers, on average, younger?

A fitness center employs 20 personal trainers. Here are the ages in years of the female and male

personal trainers working at this center:  TRAIN

Male 25 26 23 32 35 29 30 28 31 32 29
Female 21 23 22 23 20 29 24 19 22

(a) Make a back-to-back stemplot. Do you think the difference in mean ages will be significant?

(b) A two-sample t test gives P < 0.001 for the null hypothesis that the mean age of female personal
trainers is equal to the mean age of male personal trainers. Do a two-sided permutation test to check
the answer.

(c) What do you conclude about using the t test? What do you conclude about the mean ages of the
trainers?

16.95 Adult gamers versus teen gamers.

A Pew survey compared adult and teen gamers on where they played games. For the adults, 54% of
1063 survey participants played on game consoles such as Xbox, PlayStation, and Wii. For teens,
89% of 1064 survey participants played on game consoles. Use the bootstrap to find a 95%
confidence interval for the difference between the teen proportion who play on consoles and the
adult proportion.

16.96 Use a ratio for adult gamers versus teen gamers.
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Refer to the previous exercise. In many settings, researchers prefer to communicate the comparison
of two proportions with a ratio. For gamers who play on consoles, they would report that teens are
1.65 (89/54) times more likely to play on consoles. Use the bootstrap to give a 95% confidence
interval for this ratio.

16.97 Another way to communicate the result.

Refer to the previous two exercises. Here is another way to communicate the result: teen gamers are
65% more likely to play on consoles than adult gamers.

(a) Explain how the 65% is computed.

(b) Use the bootstrap to give a 95% confidence interval for this estimate.

(c) Based on this exercise and the previous two, which of the three ways is most effective for
communicating the results? Give reasons for your answer.

16.98 Insurance fraud?

Jocko’s Garage has been accused of insurance fraud. Data on estimates (in dollars) made by Jocko
and another garage were obtained for 10 damaged vehicles. Here is what the investigators found: 

 GARAGE

Car 1 2 3 4 5
Jocko’s 1375 1550 1250 1300 900
Other 1250 1300 1250 1200 950
Car 6 7 8 9 10
Jocko’s 1500 1750 3600 2250 2800
Other 1575 1600 3300 2125 2600

(a) Compute the mean estimate for Jocko and the mean estimate for the other garage. Report the
difference in the means and the 95% standard t confidence interval. Be sure to choose the
appropriate t procedure for your analysis and explain why you made this choice.

(b) Use the bootstrap to find the confidence interval. Be sure to give details about how you used the
bootstrap, which options you chose, and why.

(c) Compare the t interval with the bootstrap interval.

16.99 Other ways to look at Jocko’s estimates.

Refer to the previous exercise. Let’s consider some other ways to analyze these data.  GARAGE

(a) For each damaged vehicle, divide Jocko’s estimate by the estimate from the other garage.
Perform your analysis on these data. Write a short report that includes numerical and graphical
summaries, your estimate, the 95% t confidence interval, the 95% bootstrap confidence interval, and
an explanation for all choices (such as whether you chose to examine the mean or the median,
bootstrap options, etc.).

(b) Compute the mean of Jocko’s estimates and the mean of the estimates made by the other garage.
Divide Jocko’s mean by the mean for the other garage. Report this ratio and find a 95% confidence
interval for this quantity. Be sure to justify choices that you made for the bootstrap.
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(c) Using what you have learned in this exercise and the previous one, how would you summarize
the comparison of Jocko’s estimates with those made by the other garage? Assume that your
audience knows very little about statistics but a lot about insurance.

1432



CHAPTER 16 Notes and Data Sources
1. Information about this free software is available at r-project.org.
2. The origin of this quaint phrase is Rudolph Raspe, The Singular Adventures of Baron
Munchausen, 1786. Here is the passage, from the edition by John Carswell, Heritage Press, 1952: “I
was still a couple of miles above the clouds when it broke, and with such violence I fell to the
ground that I found myself stunned, and in a hole nine fathoms under the grass, when I recovered,
hardly knowing how to get out again. Looking down, I observed that I had on a pair of boots with
exceptionally sturdy straps. Grasping them firmly, I pulled with all my might. Soon I had hoist
myself to the top and stepped out on terra firma without further ado.”
3. In fact, the bootstrap standard error underestimates the true standard error. Bootstrap standard
errors are generally too small by a factor of roughly 1−1/n. This factor is about 0.95 for n = 10 and
0.98 for n = 25, so we ignore it in this elementary exposition.
4. The 254 winning numbers and their payoffs are republished here by permission of the New Jersey
State Lottery Commission.
5. The vehicle is a 2002 Toyota Prius owned by the third author.
6. The standard advanced introduction to bootstrap methods is B. Efron and R. Tibshirani, An
Introduction to the Bootstrap, Chapman and Hall, 1993. For tilting intervals, see B. Efron,
“Nonparametric standard errors and confidence intervals” (with discussion), Canadian Journal of
Statistics, 36 (1981), pp. 369–401; and T. J. DiCiccio and J. P. Romano, “Nonparametric confidence
limits by resampling methods and least favourable families,” International Statistical Review, 58
(1990), pp. 59–76.
7. This example is adapted from Maribeth C. Schmitt, “The effects of an elaborated directed reading
activity on the metacomprehension skills of third graders,” PhD dissertation, Purdue University,
1987.
8. These data were collected as part of a larger study of dementia patients conducted by Nancy
Edwards, School of Nursing, and Alan Beck, School of Veterinary Medicine, Purdue University.
9. Data provided by Francisco Rosales of the Department of Nutritional Sciences, Pennsylvania
State University. See Francisco Rosales et al., “Relation of serum retinol to acute phase proteins and
malarial morbidity in Papua New Guinea children,” American Journal of Clinical Nutrition, 71
(2000), pp. 1580–1588.
10. These data were collected in connection with a bone health study at Purdue University and were
provided by Linda McCabe.
11. The data were provided by James Kaufman. The study is described in James C. Kaufman, “The
cost of the muse: poets die young,” Death Studies, 27 (2003), pp. 813–821. The quote from Yeats
appears in this article.
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Introduction

Quality is a broad concept. Often it refers to a degree or grade of excellence. For
example, you may feel that a restaurant serving filet mignon is a higher-quality
establishment than a fast-food outlet that primarily serves hamburgers. You may
also consider a name-brand sweater of higher quality than one sold at a discount
store.

In this chapter, we consider a narrower concept of quality: consistently meeting
standards appropriate for a specific product or service. The fast-food outlet, for
example, may serve high-quality hamburgers. The hamburgers are freshly grilled
and served promptly at the right temperature every time you visit. Similarly, the
discount store sweaters may be high quality because they are consistently free of
defects and the tight knit helps them keep their shape wash after wash.

Statistically minded management can assess this concept of quality through
sampling. For example, the fast-food outlet could sample hamburgers and measure
the time from order to being served as well as the temperature and tenderness of
the burgers. This chapter discusses the methods used to monitor the quality of a
product or service and effectively detect changes in the process that may affect its
quality.

Use of data to assess quality

Organizations are (or ought to be) concerned about the quality of the products and
services they offer. What they don’t know about quality can hurt them: rather than
make complaints that an alert organization could use as warnings, customers often
simply leave when they feel they are receiving poor quality. A key to maintaining
and improving quality is systematic use of data in place of intuition or anecdotes.
Here are two examples.

EXAMPLE

17.1 Membership renewal process.

Sometimes data that are routinely produced make a quality problem obvious.
The internal financial statements of a professional society showed that hiring
temporary employees to enter membership data was causing expenditures
above budgeted levels each year during the several months when memberships
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were renewed. Investigation led to two actions. Membership renewal dates
were staggered across the year to spread the workload more evenly. More
important, outdated and inflexible data entry software was replaced by a
modern system that was much easier to use. Result: permanent employees
could now process renewals quickly, eliminating the need for temps and also
reducing member complaints.

EXAMPLE

17.2 Response time process.

Systematic collection of data helps an organization to move beyond dealing
with obvious problems. Motorola measures the performance of its services and
manufactured products. They track, for example, the average time from a
customer’s call until the problem is fixed, month by month. The trend should
be steadily downward as ways are found to speed response.

time plot, p. 23

regression line, p. 110

comparative experiments, p. 178

Because using data is a key to improving quality, statistical methods have much
to contribute. Simple tools are often the most effective. Motorola’s service centers
calculate mean response times each month and make a time plot. A scatterplot and
perhaps a regression line can show how the time to answer telephone calls to a
corporate call center influences the percent of callers who hang up before their
calls are answered. The design of a new product such as a smartphone may involve
interviewing samples of consumers to learn what features they want included and
using randomized comparative experiments to determine the best interface.
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sampling distributions, p. 208

This chapter focuses on just one aspect of statistics for improving quality:
statistical process control. The techniques are simple and are based on sampling
distributions, but the underlying ideas are important and a bit subtle.
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17.1 Processes and Statistical Process Control

When you complete this section, you will be able to

• Describe a process using a flowchart and a cause-and-effect diagram.

• Explain what is meant by a process being in control by distinguishing
common and special cause variation.

• Compute the center line and control limits for an x¯ chart and utilize the
chart for process monitoring.

• Compute the center line and control limits for an s chart and utilize the
chart for process monitoring.

• Contrast the x¯ and s charts in terms of what they monitor and which
should be interpreted first.

In thinking about statistical inference, we distinguish between the sample data
we have in hand and the wider population that the data represent. We hope to use
the sample to draw conclusions about the population. In thinking about quality
improvement, it is often more natural to speak of processes rather than populations.
This is because work is organized in processes. Here are some examples:

• Processing an application for admission to a university and deciding whether or
not to admit the student.

• Reviewing an employee’s expense report for a business trip and issuing a
reimbursement check.

• Hot forging to shape a billet of titanium into a blank that, after machining, will
become part of a medical implant for hip, knee, or shoulder replacement.

Each of these processes is made up of several successive operations that
eventually produce the output—an admission decision, a reimbursement check, or
a metal component.

PROCESS

A process is a chain of activities that turns inputs into outputs.

We can accommodate processes in our sample-versus-population framework:
think of the population as containing all the outputs that would be produced by the
process if it ran forever in its present state. The outputs produced today or this
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week are a sample from this population. Because the population doesn’t actually
exist now, it is simpler to speak of a process and of recent output as a sample from
the process in its present state.

Describing processes

The first step in improving a process is to understand it. If the process is at all
complex, even the people involved with it may not have a full picture of how the
activities interact in ways that influence quality. A brainstorming session is in
order: bring people together to gain an understanding of the process.

This understanding is often presented graphically using two simple tools:
flowcharts and cause-and-effect diagrams. A flowchart is a picture of the stages of
a process. Many organizations have formal standards for making flowcharts.
Because flowcharts are not statistical graphics, we will informally illustrate their
use in an example and not insist on a specific format. A cause-and-effect diagram
organizes the logical relationships between the inputs and stages of a process and
an output. Sometimes the output is successful completion of the process task;
sometimes it is a quality problem that we hope to solve. A good starting outline for
a cause-and-effect diagram appears in Figure 17.1. The main branches organize the
causes and serve as a skeleton for detailed entries. You can see why these are
sometimes called “fishbone diagrams.” Once again we will illustrate the diagram
by example rather than insist on a specific format.1

flowchart

cause-and-effect diagram

FIGURE 17.1
An outline for a cause-and-effect diagram. Group causes under these main headings in the form
of branches.
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EXAMPLE

17.3 Flowchart and cause-and-effect diagram of a hot-forging process.

Hot forging involves heating metal to a plastic state and then shaping it by
applying thousands of pounds of pressure to force the metal into a die (a kind
of mold). Figure 17.2 is a flowchart of a typical hot-forging process.2

A process improvement team, after making and discussing this flowchart,
came to several conclusions:

• Inspecting the billets of metal received from the supplier adds no value. Insist
that the supplier be responsible for the quality of the material. This then
eliminates the inspection step.

• If possible, buy the metal billets already cut to rough length and deburred by
the supplier. This would eliminate the cost of preparing the raw material.

• Heating the metal billet and forging (pressing the hot metal into the die) are
the heart of the process. The company should concentrate attention here.

The team then prepared a cause-and-effect diagram (Figure 17.3) for the
heating and forging part of the process. The team members shared their
specialist knowledge of the causes in their area, resulting in a more complete
picture than any one person could produce. Figure 17.3 is a simplified version
of the actual diagram. We have given some added detail for the “hammer
stroke” branch under “equipment” to illustrate the next level of branches. Even
this requires some knowledge of hot forging to understand. Based on detailed
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discussion of the diagram, the team decided what variables to measure and at
what stages of the process to measure them. Producing well-chosen data is the
key to improving the process.

1441



1442



FIGURE 17.2
Flowchart of the hot-forging process in Example 17.3. Use this as a model for flowcharts:
decision points appear as diamonds, and other steps in the process appear as rectangles. Arrows
represent flow from step to step.

We will apply statistical methods to a series of measurements made on a
process. Deciding what specific variables to measure is an important step in quality
improvement. Often we use a “performance measure” that describes an output of a
process. A company’s financial office might record the percent of errors that
outside auditors find in expense account reports or the number of data entry errors
per week. The personnel department may measure the time to process employee
insurance claims or the percent of job offers that are accepted. In the case of
complex processes, it is wise to measure key steps within the process rather than
just final outputs. The process team in Example 17.3 might recommend that the
temperature of the die and of the billet be measured just before forging.

FIGURE 17.3
Simplified cause-and-effect diagram of the hot-forging process in Example 17.3. Good cause-
and-effect diagram require detailed knowledge of the specific process.

USE YOUR KNOWLEDGE

17.1 Describing your process.
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Choose a process that you know well, preferably from a job you have
held. If you lack experience with actual business processes, choose a
personal process such as making macaroni and cheese or brushing your
teeth. Make a flowchart of the process. Make a cause-and-effect diagram
that presents the factors that lead to successful completion of the
process.

17.2 What variables to measure?

Based on your description of the process in Exercise 17.1, suggest
specific variables that you might measure in order to

(a) assess the overall quality of the process.

(b) gather information on a key step within the process.

Statistical process control

The goal of statistical process control is to make a process stable over time and
then keep it stable unless planned changes are made. You might want, for example,
to keep your weight constant over time. A manufacturer of machine parts wants the
critical dimensions to be the same for all parts. “Constant over time” and “the same
for all” are not realistic requirements. They ignore the fact that all processes have
variation. Your weight fluctuates from day to day; the critical dimension of a
machined part varies a bit from item to item; the time to process a college
admission application is not the same for all applications. Variation occurs in even
the most precisely made product due to small changes in the raw material, the
behavior of the machine or operator, and even the temperature in the plant.

Because variation is always present, we can’t expect to hold a variable exactly
constant over time. The statistical description of stability over time requires that
the pattern of variation remain stable, not that there be no variation in the variable
measured.

In the language of statistical quality control, a process that is in control has only
common cause variation. Common cause variation is the inherent variability of the
process, due to many small causes that are always present. When the normal
functioning of the process is disturbed by some unpredictable event, special cause
variation is added to the common cause variation. We hope to be able to discover
what lies behind special cause variation and eliminate that cause to restore the
stable functioning of the process.

common cause

special cause
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EXAMPLE

17.4 Common and special cause variation.

Imagine yourself doing the same task repeatedly, say folding a circular,
stuffing it into a stamped envelope, and sealing the envelope. The time to
complete this task will vary a bit, and it is hard to point to any one reason for
the variation. Your completion time shows only common cause variation.

Now the telephone rings. You answer, and though you continue folding and
stuffing while talking, your completion time rises beyond the level expected
from common causes alone. Answering the telephone adds special cause
variation to the common cause variation that is always present. The process
has been disturbed and is no longer in its normal and stable state.

Control charts work by distinguishing the always-present common cause
variation in a process from the additional variation that suggests that the process
has been disturbed by a special cause. A control chart sounds an alarm when it sees
too much variation. This is accomplished through a combination of graphical and
numerical descriptions of data with use of sampling distributions.

sampling distributions, p. 302

Control charts were invented in the 1920s by Walter Shewhart at the Bell
Telephone Laboratories.3 The most common application of control charts is to
monitor the performance of industrial and business processes. The same methods,
however, can be used to check the stability of quantities as varied as the ratings of
a television show, the level of ozone in the atmosphere, and the gas mileage of
your car.

STATISTICAL CONTROL

A variable that continues to be described by the same distribution when
observed over time is said to be in statistical control, or simply in control.

Control charts are statistical tools that monitor a process and alert us when
the process has been disturbed so that it is now out of control. This is a signal
to find and correct the cause of the disturbance.

1445



USE YOUR KNOWLEDGE

17.3 Considering common and special cause variation.

In Exercise 17.1 (page 17-6), you described a process that you know
well. What are some sources of common cause variation in this process?
What are some special causes that might, at times, drive the process out
of control?

17.4 Examples of special cause variation in arrival times.

Lex takes a 7:45 A.M. shuttle to campus each morning. Her apartment
complex is near a major road and is two miles from campus. Her arrival
time to campus varies a bit from day to day but is generally stable. Give
several examples of special causes that might raise Lex’s arrival time on
a particular day.

x¯ charts for process monitoring

When you first apply control charts to a process, the process may not be in control.
Even if it is in control, you don’t yet understand its behavior. You will have to
collect data from the process, establish control by uncovering and removing special
causes, and then set up control charts to maintain control. We call this the chart
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setup stage.

chart setup

Later, when the process has been operating in control for some time, you
understand its usual behavior and have a long run of data from the process. You
keep control charts to monitor the process because a special cause could erupt at
any time. We will call this process monitoring.4

process monitoring

Although in practice chart setup precedes process monitoring, the big ideas of
control charts are more easily understood in the process-monitoring setting. We
will start there and then discuss the more complex process improvement setting.

Consider a quantitative variable x that is an important measure of quality. The
variable might be the diameter of a part, the number of envelopes stuffed in an
hour, or the time to respond to a customer call. If this process is in control, the
variable x is described by the same distribution over time. For now, we’ll assume
this distribution is Normal.

PROCESS-MONITORING CONDITIONS

The measured quantitative variable x has a Normal distribution. The process
has been operating in control for a long period, so that we know the process
mean μ and the process standard deviation σ that describe the distribution of
x as long as the process remains in control.

In practice, we must estimate the process mean and standard deviation from
past data on the process. Under the process-monitoring conditions, we have
numerous observations and the process has remained in control. The law of large
numbers tells us that estimates from past data will be very close to the truth about
the process. That is, at the process-monitoring stage we can act as if we know the
true values of μ and σ.

law of large numbers, p. 268

Note carefully that μ and σ describe the center and spread of our variable x only
as long as the process remains in control. A special cause may at any time disturb
the process and change the mean, the standard deviation, or both.

To make control charts, begin by taking small samples from the process at
regular intervals. For example, we might measure 4 or 5 consecutive parts or the
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response times to 4 or 5 consecutive customer calls. There is an important idea
here: the observations in a sample are so close together in time that we can assume
that the process is stable during this short period. Variation within a single sample
gives us a benchmark for the common cause variation in the process.

The process standard deviation σ refers to the standard deviation within the
time period spanned by one sample. If the process remains in control, the same σ
describes the standard deviation of observations across any time period. Control
charts help us decide whether this is the case.

We start with the x¯ chart, which is based on plotting the means of the
successive samples. Here is the outline:

x¯ chart

1. Take samples of size n from the process at regular intervals. Plot the means x¯
of these samples against the order in which the samples were taken.

sampling distribution of x¯, p. 307.

2. We know that the sampling distribution of x¯ under the process-monitoring
conditions is Normal with mean μ and standard deviation σ/n. Draw a solid
center line on the chart at height μ.

center line

68–95–99.7 rule, p. 59

3. The 99.7 part of the 68–95–99.7 rule for Normal distributions says that, as long
as the process remains in control, 99.7% of the values of x¯ will fall between μ
−3σ/n and μ+3σ/n. Draw dashed control limits on the chart at these heights. The
control limits mark off the range of variation in sample means that we expect to
see when the process remains in control.

control limits

If the process remains in control and the process mean and standard deviation
do not change, we will rarely observe an x¯ outside the control limits. Such an x¯
would be a signal that the process has been disturbed.
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EXAMPLE

17.5 Monitoring the water resistance of fabric.
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H2ORES

A manufacturer of outdoor sportswear must control the water resistance and
breathability of their jackets. Water resistance is measured by the amount of
water (depth in millimeters) that can be suspended above the fabric before
water seeps through. For their jackets, this test is done along the seams and
zipper, where the resistance is likely the weakest. For one particular style of
jacket, the manufacturing process has been stable with mean resistance μ =
2750 mm and process standard deviation σ = 430 mm.

Each four-hour shift, an operator measures the resistance on a sample of 4
jackets. Table 17.1 gives the last 20 samples. The table also gives the mean x¯
and the standard deviation s for each sample. The operator did not have to
calculate these—modern measuring equipment often comes equipped with
software that automatically records x¯ and s and even produces control charts.

Figure 17.4 is an x¯ control chart for the 20 water resistance samples in Table
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TABLE 17.1  Twenty Control Chart Samples of Water Resistance (depth in mm)

17.1. We have plotted each sample mean from the table against its sample number.
For example, the mean of the first sample is 2534 mm, and this is the value plotted
for Sample 1. The center line is at μ = 2750 mm. The upper and lower control
limits are

Sample Depth measurements Sample mean Standard deviation
1 2345 2723 2345 2723 2534 218
2 3111 3058 2385 2862 2854 330
3 2471 2053 2526 3161 2553 457
4 2154 2968 2742 2568 2608 344
5 3279 2472 2833 2326 2728 425
6 3043 2363 2018 2385 2452 428
7 2689 2762 2756 2402 2652 170
8 2821 2477 2598 2728 2656 150
9 2608 2599 2479 3453 2785 449

10  3293 2318 3072 2734 2854 425
11  2664 2497 2315 2652 2532 163
12  1688 3309 3336 3183 2879 797
13  3499 3342 2923 3015 3195 271
14  2352 2831 2459 2631 2568 210
15  2573 2184 2962 2752 2618 330
16  2351 2527 3006 2976 2715 327
17  2863 2938 2362 2753 2729 256
18  3281 2726 3297 2601 2976 365
19  3164 2874 3730 2860 3157 407
20  2968 3505 2806 2598 2969 388
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FIGURE 17.4
The x¯ chart for the water resistance data of Table 17.1. No points lie outside the control limits.

μ+3σn=2750+34304=2750+645=3395mm(UCL)

μ−3σn=2750−34304=2750−645=2105mm(LCL)

As is common, we have labeled the control limits UCL for upper control limit and
LCL for lower control limit.

EXAMPLE

17.6 Reading an x¯ control chart.

Figure 17.4 is a typical x¯ chart for a process in control. The means of the 20
samples do vary, but all lie within the range of variation marked out by the
control limits. We are seeing the common cause variation of a stable process.
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Figures 17.5 and 17.6 illustrate two ways in which the process can go out
of control. In Figure 17.5, the process was disturbed by a special cause
sometime between Sample 12 and Sample 13. As a result, the mean resistance
for Sample 13 falls above the upper control limit. It is common practice to
mark all out-of-control points with an “x” to call attention to them. A search
for the cause begins as soon as we see a point out of control. Investigation
finds that the seam sealer device has slipped, resulting in more sealer being
applied. This is good for water resistance but harms the jacket’s breathability.
When the problem is corrected, Samples 14 to 20 are again in control.

Figure 17.6 shows the effect of a steady upward drift in the process center,
starting at Sample 11. You see that some time elapses before x¯ is out of
control (Sample 18). The one-point-out rule works better for detecting sudden
large disturbances than for detecting slow drifts in a process.
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FIGURE 17.5
The x¯ chart is identical to that in Figure 17.4 except that a special cause has driven x¯ for
Sample 13 above the upper control limit. The out-of-control point is marked with an x.

1454



FIGURE 17.6
The first 10 points on this x¯ chart are as in Figure 17.4. The process mean drifts upward after
Sample 10, and the sample means x¯ reflect this drift. The points for Samples 18, 19, and 20 are
out of control.

USE YOUR KNOWLEDGE

17.5 An x¯ control chart for sandwich orders.
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A sandwich shop owner takes a daily sample of five consecutive
sandwich orders at a random time during the lunch rush and records the
time it takes to complete each order. Past experience indicates that the
process mean should be μ = 90 seconds and the process standard
deviation should be σ = 24 seconds. Calculate the center line and control
limits for an x¯ control chart.

17.6 Changing the sample size n or the unit of measure.

Refer to Exercise 17.5. What happens to the center line and control
limits if

(a) the owner samples four consecutive sandwich orders?

(b) the owner samples six consecutive sandwich orders?

(c) the owner uses minutes rather than seconds as the units?

s charts for process monitoring

The x¯ charts in Figures 17.4, 17.5, and 17.6 were easy to interpret because the
process standard deviation remained fixed at 430 mm. The effects of moving the
process mean away from its in-control value (2750 mm) are then clear to see. We
know that even the simplest description of a distribution should give both a
measure of center and a measure of spread. So it is with control charts. We must
monitor both the process center, using an x¯ chart, and the process spread, using a
control chart for the sample standard deviation s.
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The standard deviation s does not have a Normal distribution, even
approximately. Under the process-monitoring conditions, the sampling distribution
of s is skewed to the right. Nonetheless, control charts for any statistic are based on
the “plus or minus three standard deviations” idea motivated by the 68–95–99.7
rule for Normal distributions.

Control charts are intended to be practical tools that are easy to use. Standard
practice in process control therefore ignores such details as the effect of non-
Normal sampling distributions. Here is the general control chart setup for a sample
statistic Q (short for “quality characteristic”).

THREE-SIGMA CONTROL CHARTS

To make a three-sigma (3σ) control chart for any statistic Q:

1. Take samples from the process at regular intervals and plot the values of the
statistic Q against the order in which the samples were taken.

2. Draw a center line on the chart at height μQ, the mean of the statistic when
the process is in control.

3. Draw upper and lower control limits on the chart three standard deviations
of Q above and below the mean. That is,
UCL = μQ + 3σQ
LCL = μQ − 3σQ
Here σQ is the standard deviation of the sampling distribution of the statistic
Q when the process is in control.

4. The chart produces an out-of-control signal when a plotted point lies
outside the control limits.

We have applied this general idea to x¯ charts. If μ and σ are the process mean
and standard deviation, the statistic x¯ has mean μx¯=μ and standard deviation
σx¯=σ/n. The center line and control limits for x¯ charts follow from these facts.

What are the corresponding facts for the sample standard deviation s? Study of
the sampling distribution of s for samples from a Normally distributed process
characteristic gives these facts:

1. The mean of s is a constant times the process standard deviation σ, that is, μs =
c4σ.

2. The standard deviation of s is also a constant times the process standard
deviation, σs = c5σ.
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The constants are called c4 and c5 for historical reasons. Their values depend on
the size of the samples. For large samples, c4 is close to 1. That is, the sample
standard deviation s has little bias as an estimator of the process standard deviation
σ. Because statistical process control often uses small samples, we pay attention to
the value of c4. Following the general pattern for three-sigma control charts,

1. The center line of an s chart is at c4σ.

2. The control limits for an s chart are at

UCL = μs + 3σs = c4σ + 3c5σ = (c4 + 3c5)σ = B6σ

LCL = μs − 3σs = c4σ − 3c5σ = (c4 − 3c5)σ = B5σ

That is, the control limits UCL and LCL are also constants times the process
standard deviation. These constants are called (again for historical reasons) B6 and
B5. We don’t need to remember that B6 = c4 + 3c5 and B5 = c4 − 3c5, because
tables give us the numerical values of B6 and B5.

x¯ AND s CONTROL CHARTS FOR PROCESS
MONITORING5

Take regular samples of size n from a process that has been in control with
process mean μ and process standard deviation σ. The center line and control
limits for an x¯ chart are

UCL=μ+3σn

CL = μ

LCL=μ−3σn

The center line and control limits for an s chart are

UCL = B6σ

CL = c4σ

LCL = B5σ

The control chart constants c4, B5, and B6 depend on the sample size n.

Table 17.2 gives the values of the control chart constants c4, c5, B5, and B6 for
samples of sizes 2 to 10. This table makes it easy to draw s charts. The table has no
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TABLE 17.2  Control Chart Constants

B5 entries for samples smaller than n = 6. The lower control limit for an s chart is
zero for samples of sizes 2 to 5. This is a consequence of the fact that s has a right-
skewed distribution and takes only values greater than zero. The point three
standard deviations above the mean (UCL) lies on the long right side of the
distribution. The point three standard deviations below the mean (LCL) on the
short left side is below zero, so we say that LCL = 0.

Sample size n c4 c5 B5 B6
2 0.7979 0.6028 2.606
3 0.8862 0.4633 2.276
4 0.9213 0.3889 2.088
5 0.9400 0.3412 1.964
6 0.9515 0.3076 0.029 1.874
7 0.9594 0.2820 0.113 1.806
8 0.9650 0.2622 0.179 1.751
9 0.9693 0.2459 0.232 1.707

10  0.9727 0.2321 0.276 1.669

EXAMPLE

17.7 Interpreting an s chart for the waterproofing process.

H2ORES

Figure 17.7 is the s chart for the water resistance data in Table 17.1. The
samples are of size n = 4 and the process standard deviation in control is σ =
430 mm. The center line is therefore

CL = c4σ = (0.9213)(430) = 396 mm

The control limits are

UCL = B6σ = (2.088)(430) = 898

LCL = B5σ = (0)(430) = 0
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Figures 17.4 and 17.7 go together: they are the x¯ and s charts for monitoring
the waterproofing process. Both charts are in control, showing only common
cause variation within the bounds set by the control limits.
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FIGURE 17.7
The s chart for the water resistance data of Table 17.1. Both the s chart and the x¯ chart
(Figure 17.4) are in control.

Figures 17.8 and 17.9 are x¯ and s charts for the water resistance process
when a new and poorly trained operator takes over the seam application
between Samples 10 and 11. The new operator introduces added variation into
the process, increasing the process standard deviation from its in-control value
of 430 mm to 600 mm. The x¯ chart in Figure 17.8 shows one point out of
control. Only on closer inspection do we see that the spread of the x¯’s
increases after Sample 10. In fact, the process mean has remained unchanged
at 2750 mm. The apparent lack of control in the x¯ chart is entirely due to the
larger process variation. There is a lesson here: it is difficult to interpret an x¯
chart unless s is in control. When you look at x¯ and s charts, always start
with the s chart.

The s chart in Figure 17.9 shows lack of control starting at Sample 11. As
usual, we mark the out-of-control points by an “x.” The points for Samples 13
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and 15 also lie above the UCL, and the overall spread of the sample points is
much greater than for the first 10 samples. In practice, the s chart would call
for action after Sample 11. We would ignore the x¯ chart until the special
cause (the new operator) for the lack of control in the s chart has been found
and removed by training the operator.
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FIGURE 17.8
The x¯ chart for water resistance when the process variability increases after Sample 10. The x¯
chart does show the increased variability, but the s chart is clearer and should be read first.
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FIGURE 17.9
The s chart for water resistance when the process variability increases after Sample 10.
Increased within-sample variability is clearly visible. Find and remove the s-type special cause
before reading the x¯ chart.

Example 17.7 suggests a strategy for using x¯ and s charts in practice. First
examine the s chart. Lack of control on an s chart is due to special causes that
affect the observations within a sample differently. New and nonuniform raw
material, a new and poorly trained operator, and mixing results from several
machines or several operators are typical “s-type” special causes.

Once the s chart is in control, the stable value of the process standard deviation
σ means that the variation within samples serves as a benchmark for detecting
variation in the level of the process over the longer time periods between samples.
The x¯ chart, with control limits that depend on σ, does this. The x¯ chart, as we
saw in Example 17.7, responds to s-type causes as well as to longer-range changes
in the process, so it is important to eliminate s-type special causes first. Then the
x¯ chart will alert us to, for example, a change in process level caused by new raw
material that differs from that used in the past or a gradual drift in the process level
caused by wear in a cutting tool.
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EXAMPLE

17.8 Special causes and their effect on control charts.

A large health maintenance organization (HMO) uses control charts to monitor
the process of directing patient calls to the proper department or doctor’s
receptionist. Each day at a random time, 5 consecutive calls are recorded
electronically. The first call today is handled quickly by an experienced
operator, but the next goes to a newly hired operator who must ask a
supervisor for help. The sample has a large s, and lack of control signals the
need to train new hires more thoroughly.

The same HMO monitors the time required to receive orders from its main
supplier of pharmaceutical products. After a long period in control, the x¯
chart shows a systematic shift downward in the mean time because the
supplier has changed to a more efficient delivery service. This is a desirable
special cause, but it is nonetheless a systematic change in the process. The
HMO will have to establish new control limits that describe the new state of
the process, with smaller process mean μ.

The second setting in Example 17.8 reminds us that a major change in the
process returns us to the chart setup stage. In the absence of deliberate changes in
the process, process monitoring uses the same values of μ and σ for long periods of
time. One exception is common: careful monitoring and removal of special causes
as they occur can permanently reduce the process σ. If the points on the σ chart
remain near the center line for a long period, it is wise to update the value of σ to
the new, smaller value.

SECTION 17.1 Summary

Work is organized in processes, chains of activities that lead to some result. We
use flowcharts and cause-and-effect diagrams to describe processes.

All processes have variation. If the pattern of variation is stable over time, the
process is in statistical control. Control charts are statistical plots intended to
warn when a process is out of control.

Standard 3σ control charts plot the values of some statistic Q for regular
samples from the process against the time order of the samples. The center line is
at the mean of Q. The control limits lie three standard deviations of Q above and
below the center line. A point outside the control limits is an out-of-control signal.
For process monitoring of a process that has been in control, the mean and
standard deviation are based on past data from the process and are updated
regularly.

When we measure some quantitative characteristic of the process, we use x¯
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and s charts for process control. The s chart monitors variation within individual
samples. If the s chart is in control, the x¯ chart monitors variation from sample to
sample. To interpret the charts, always look first at the s chart.

SECTION 17.1 Exercises
For Exercises 17.1 and 17.2, see page 17-6; for Exercises 17.3 and 17.4, see page 17-8; and for Exercises
17.5 and 17.6, see page 17-12.

17.7 Constructing a flowchart.

Consider the process of calling in a sandwich order for delivery to your apartment. Make a flowchart of
this process, making sure to include steps that involve Yes/No decisions.

17.8 Determining sources of common and special cause variation.

Refer to the previous exercise. The time it takes from deciding to order a sandwich to receiving the
sandwich will vary. List several common causes of variation in this time. Then list several special causes
that might result in unusual variation.

17.9 Constructing a Pareto chart.

Comparisons are easier if you order the bars in a bar graph by height. A bar graph ordered from tallest to
shortest bar is sometimes called a Pareto chart, after the Italian economist who recommended this
procedure. Pareto charts are often used in quality studies to isolate the “vital few” categories on which we
should focus our attention. Here is an example. Painting new auto bodies is a multistep process. There is an
“electrocoat” that resists corrosion, a primer, a color coat, and a gloss coat. A quality study for one paint
shop produced this breakdown of the primary problem type for those autos whose paint did not meet the
manufacturer’s standards:

Problem Percent
Electrocoat uneven—redone 4
Poor adherence of color to primer 5
Lack of clarity in color 2
“Orange peel” texture in color 32  
“Orange peel” texture in gloss 1
Ripples in color coat 28  
Ripples in gloss coat 4
Uneven color thickness 19  
Uneven gloss thickness 5
Total 100    

Make a Pareto chart. Which stage of the painting process should we look at first?

17.10 Constructing another Pareto chart.

A large hospital finds that it is losing money on surgery due to inadequate reimbursement by insurance
companies and government programs. An initial study looks at losses broken down by diagnosis.
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Government standards place cases into Diagnostic Related Groups (DRGs). For example, major joint
replacements are DRG 209. Here is what the hospital finds:

DRG Percent of losses
104 5.2
107 10.1  
109 7.7
116 13.7  
148 6.8
209 15.2  
403 5.6
430 6.8
462 9.4

What percent of total losses do these 9 DRGs account for? Make a Pareto chart of losses by DRG. Which
DRGs should the hospital study first when attempting to reduce its losses?

17.11 Making a Pareto chart.

Continue the study of the process of calling in a sandwich order (Exercise 17.7). If you kept good records,
you could make a Pareto chart of the reasons (special causes) for unusually long order times. Make a
Pareto chart of these reasons. That is, list the reasons based on your experience and chart your estimates of
the percent each reason explains.

17.12 Control limits for label placement.

A rum producer monitors the position of its label on the bottle by sampling 4 bottles from each batch. One
quantity measured is the distance from the bottom of the bottle neck to the top of the label. The process
mean should be μ = 2 inches. Past experience indicates that the distance varies with σ = 0.1 inches.

(a) The mean distance x¯ for each batch sample is plotted on an x¯ control chart. Calculate the center line
and control limits for this chart.

(b) The sample standard deviation s for each batch’s sample is plotted on an s control chart. What are the
center line and control limits for this chart?

17.13 More on control limits for label placement.

Refer to the previous exercise. What happens to the center line and control limits for the x¯ and s control
charts if

(a) the distributor samples 10 bottles from each batch?

(b) the distributor samples 2 bottles from each batch?

(c) the distributor uses centimeters rather than inches as the units?

17.14 Control limits for air conditioner thermostats.

A maker of auto air conditioners checks a sample of 6 thermostatic controls from each hour’s production.
The thermostats are set at 72°F and then placed in a chamber where the temperature is raised gradually.
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TABLE 17.3  Twenty Samples of Size 3, with x¯ and s

The temperature at which the thermostat turns on the air conditioner is recorded. The process mean should
be μ = 72°F. Past experience indicates that the response temperature of properly adjusted thermostats
varies with σ = 0.6°F.

(a) The mean response temperature x¯ for each hour’s sample is plotted on an x¯ control chart. Calculate
the center line and control limits for this chart.

(b) The sample standard deviation s for each hour’s sample is plotted on an s control chart. What are the
center line and control limits for this chart?

17.15 Control limits for a meat-packaging process.

A meat-packaging company produces 1-pound packages of ground beef by having a machine slice a long
circular cylinder of ground beef as it passes through the machine. The timing between consecutive cuts will
alter the weight of each section. Table 17.3 gives the weight of three consecutive sections of ground beef
taken each hour over two 10-hour days. Past experience indicates that the process mean is 1.014 lb and the

weight varies with σ = 0.019 lb.  MEATWGT

(a) Calculate the center line and control limits for an x¯ chart.

(b) What are the center line and control limits for an s chart for this process?

(c) Create the x¯ and s charts for these 20 consecutive samples.

(d) Does the process appear to be in control? Explain.

17.16 Causes of variation in the time to respond to an application.

The personnel department of a large company records a number of performance measures. Among them is
the time required to respond to an application for employment, measured from the time the application
arrives. Suggest some plausible examples of each of the following.

(a) Reasons for common cause variation in response time.

(b) s-type special causes.

(c) x¯-type special causes.

Sample Weight (pounds) x¯ s
1 0.999 1.071 1.019 1.030 0.0373
2 1.030 1.057 1.040 1.043 0.0137
3 1.024 1.020 1.041 1.028 0.0108
4 1.005 1.026 1.039 1.023 0.0172
5 1.031 0.995 1.005 1.010 0.0185
6 1.020 1.009 1.059 1.029 0.0263
7 1.019 1.048 1.050 1.039 0.0176
8 1.005 1.003 1.047 1.018 0.0247
9 1.019 1.034 1.051 1.035 0.0159

10  1.045 1.060 1.041 1.049 0.0098
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TABLE 17.4  Three Sets of x¯’s from 20 Samples of Size 4

11  1.007 1.046 1.014 1.022 0.0207
12  1.058 1.038 1.057 1.051 0.0112

13  1.006 1.056 1.056 1.039 0.0289
14  1.036 1.026 1.028 1.030 0.0056
15  1.044 0.986 1.058 1.029 0.0382
16  1.019 1.003 1.057 1.026 0.0279
17  1.023 0.998 1.054 1.025 0.0281
18  0.992 1.000 1.067 1.020 0.0414
19  1.029 1.064 0.995 1.029 0.0344
20  1.008 1.040 1.021 1.023 0.0159

17.17 Control charts for a tablet compression process.

A pharmaceutical manufacturer forms tablets by compressing a granular material that contains the active
ingredient and various fillers. The hardness of a sample from each lot of tablets is measured in order to
control the compression process. The process has been operating in control with mean at the target value μ
= 11.5 kiloponds (kp) and estimated standard deviation σ = 0.2 kp. Table 17.4 gives three sets of data, each
representing x¯ for 20 successive samples of n = 4 tablets. One set of data remains in control at the target
value. In a second set, the process mean μ shifts suddenly to a new value. In a third, the process mean drifts

gradually.  PILL

Sample Data set A Data set B Data set C
1 11.602 11.627 11.495
2 11.547 11.613 11.475
3 11.312 11.493 11.465
4 11.449 11.602 11.497
5 11.401 11.360 11.573
6 11.608 11.374 11.563
7 11.471 11.592 11.321
8 11.453 11.458 11.533
9 11.446 11.552 11.486

10  11.522 11.463 11.502
11  11.664 11.383 11.534
12  11.823 11.715 11.624
13  11.629 11.485 11.629
14  11.602 11.509 11.575
15  11.756 11.429 11.730
16  11.707 11.477 11.680
17  11.612 11.570 11.729
18  11.628 11.623 11.704
19  11.603 11.472 12.052
20  11.816 11.531 11.905

(a) What are the center line and control limits for an x¯ chart for this process?
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TABLE 17.5  Twenty Samples of Size 4, with x¯ and s

(b) Draw a separate x¯ chart for each of the three data sets. Mark any points that are beyond the control
limits.

(c) Based on your work in part (b) and the appearance of the control charts, which set of data comes from a
process that is in control? In which case does the process mean shift suddenly, and at about which sample
do you think that the mean changed? Finally, in which case does the mean drift gradually?

17.18 More on the tablet compression process.

Exercise 17.17 concerns process control data on the hardness of tablets for a pharmaceutical product. Table
17.5 gives data for 20 new samples of size 4, with the x¯ and s for each sample. The process has been in

control with mean at the target value μ = 11.5 kp and standard deviation σ = 0.2 kp.  PILL1

(a) Make both x¯ and s charts for these data based on the information given about the process.

(b) At some point, the within-sample process variation increased from σ = 0.2 to σ = 0.4. About where in
the 20 samples did this happen? What is the effect on the s chart? On the x¯ chart?

(c) At that same point, the process mean changed from μ = 11.5 to μ = 11.7. What is the effect of this
change on the s chart? On the x¯ chart?

17.19 Control limits for a milling process.

The width of a slot cut by a milling machine is important to the proper functioning of a hydraulic system
for large tractors. The manufacturer checks the control of the milling process by measuring a sample of six
consecutive items during each hour’s production. The target width for the slot is μ = 0.850 inch. The
process has been operating in control with center close to the target and σ = 0.002 inch. What center line
and control limits should be drawn on the s chart? On the x¯ chart?

Sample Hardness (kp) x¯ s
1 11.193 11.915 11.391 11.500 11.500 0.3047
2 11.772 11.604 11.442 11.403 11.555 0.1688
3 11.606 11.253 11.458 11.594 11.478 0.1642
4 11.509 11.151 11.249 11.398 11.326 0.1585
5 11.289 11.789 11.385 11.677 11.535 0.2362
6 11.703 11.251 11.231 11.669 11.463 0.2573
7 11.085 12.530 11.482 11.699 11.699 0.6094
8 12.244 11.908 11.584 11.505 11.810 0.3376
9 11.912 11.206 11.615 11.887 11.655 0.3284

10  11.717 11.001 11.197 11.496 11.353 0.3170
11  11.279 12.278 11.471 12.055 11.771 0.4725
12  12.106 11.203 11.162 12.037 11.627 0.5145
13  11.490 11.783 12.125 12.010 11.852 0.2801
14  12.299 11.924 11.235 12.014 11.868 0.4513
15  11.380 12.253 11.861 12.242 11.934 0.4118
16  11.220 12.226 12.216 11.824 11.872 0.4726
17  11.611 11.658 11.977 10.813 11.515 0.4952
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18  12.251 11.481 11.156 12.243 11.783 0.5522
19  11.559 11.065 12.186 10.933 11.435 0.5681
20  11.106 12.444 11.682 12.378 11.902 0.6331

17.20 Control limits for a dyeing process.

The unique colors of the cashmere sweaters your firm makes result from heating undyed yarn in a kettle
with a dye liquor. The pH (acidity) of the liquor is critical for regulating dye uptake and hence the final
color. There are five kettles, all of which receive dye liquor from a common source. Twice each day, the
pH of the liquor in each kettle is measured, giving a sample of size 5. The process has been operating in
control with μ = 4.24 and σ = 0.137.

(a) Give the center line and control limits for the s chart.

(b) Give the center line and control limits for the x¯ chart.

17.21 Control charts for a mounting-hole process.

Figure 17.10 reproduces a data sheet from a factory that makes electrical meters.6 The sheet shows
measurements of the distance between two mounting holes for 18 samples of size 5. The heading informs
us that the measurements are in multiples of 0.0001 inch above 0.6000 inch. That is, the first measurement,
44, stands for 0.6044 inch. All the measurements end in 4. Although we don’t know why this is true, it is
clear that in effect the measurements were made to the nearest 0.001 inch, not to the nearest 0.0001 inch.
Based on long experience with this process, you are keeping control charts based on μ = 43 and σ = 12.74.

Make s and x¯ charts for the data in Figure 17.10 and describe the state of the process.  MOUNT

17.22 Identifying special causes on control charts.

The process described in Exercise 17.20 goes out of control. Investigation finds that a new type of yarn
was recently introduced. The pH in the kettles is influenced by both the dye liquor and the yarn. Moreover,
on a few occasions a faulty valve on one of the kettles had allowed water to enter that kettle; as a result, the
yarn in that kettle had to be discarded. Which of these special causes appears on the s chart and which on
the x¯ chart? Explain your answer.

17.23 Determining the probability of detection.

An x¯ chart plots the means of samples of size 4 against center line CL = 715 and control limits LCL = 680
and UCL = 750. The process has been in control.

(a) What are the process mean and standard deviation?

(b) The process is disrupted in a way that changes the mean to μ = 700. What is the probability that the first
sample after the disruption gives a point beyond the control limits of the x¯ chart?
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FIGURE 17.10
A process control record sheet kept by operators, for Exercise 17.21. This is typical of records
kept by hand when measurements are not automated. We will see in the next section why such
records mention x¯ and R control charts rather than x¯ and s charts.

(c) The process is disrupted in a way that changes the mean to μ = 700 and the standard deviation to σ = 10.
What is the probability that the first sample after the disruption gives a point beyond the control limits of
the x¯ chart?

17.24 Alternative control limits.

American and Japanese practice uses 3σ control charts. That is, the control limits are three standard
deviations on either side of the mean. When the statistic being plotted has a Normal distribution, the
probability of a point outside the limits is about 0.003 (or about 0.0015 in each direction) by the 68–95–
99.7 rule (page 59). European practice uses control limits placed so that the probability of a point outside
the limits when in control is 0.001 in each direction. For a Normally distributed statistic, how many
standard deviations on either side of the mean do these alternative control limits lie?

17.25 2σ control charts.

Some special situations call for 2σ control charts. That is, the control limits for a statistic Q will be μQ ±
2σQ. Suppose that you know the process mean μ and standard deviation σ and will plot x¯ and s from
samples of size n.

(a) What are the 2σ control limits for an x¯ chart?

(b) Find expressions for the upper and lower 2σ control limits for an s chart in terms of the control chart
constants c4 and c5 introduced on page 17-13.
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17.2 Using Control Charts

When you complete this section, you will be able to

• Implement various out-of-control rules when interpreting control charts.

• Set up a control chart (that is, tentative control limits and center line)
based on past data.

• Identify rational subgroups when deciding how to choose samples.

• Distinguish between the natural tolerances for a product and the control
limits for a process, as well as between capability and control.

We are now familiar with the ideas behind all control charts as well as the
details of making x¯ and s charts. This section discusses a variety of topics related
to using control charts in practice.

x¯ and R charts

We have seen that it is essential to monitor both the center and the spread of a
process. Control charts were originally intended to be used by factory workers with
limited knowledge of statistics in the era before even calculators, let alone
software, were common. In that environment, the standard deviation is too difficult
to calculate. The x¯ chart for center was therefore used with a control chart for
spread based on the sample range rather than the sample standard deviation.

sample range

The range R of a sample is just the difference between the largest and smallest
observations. It is easy to find R without a calculator. Using R rather than s to
measure the spread of samples replaces the s chart with an R chart. It also changes
the x¯ chart because the control limits for x¯ use the estimated process spread.

R chart

Because the range R uses only the largest and smallest observations in a sample,
it is less informative than the standard deviation s calculated from all the
observations. For this reason, x¯ and s charts are now preferred to x¯ and R charts.
R charts, however, remain common because it is easier for workers to understand R
than s.

In this short introduction, we concentrate on the principles of control charts, so
we won’t give the details of constructing x¯ and R charts. These details appear in
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any text on quality control.7 If you meet a set of x¯ and R charts, remember that the
interpretation of these charts is just like the interpretation of x¯ and s charts.

EXAMPLE

17.9 Example of a typical process control technology.

FIGURE 17.11
Output for operators, from the Laser Manager software by System Dynamics, Inc. The
software prepares control charts directly from measurements made by a laser micrometer.
Compare the hand record sheet in Figure 17.10. (Image provided by Gordon A. Feingold,
System Dynamics, Inc. Used by permission.)

Figure 17.11 is a display produced by custom process control software
attached to a laser micrometer. In this demonstration prepared by the software
maker, the micrometer is measuring the diameter in millimeters of samples of
pens shipped by an office supply company. The software controls the laser,
records measurements, makes the control charts, and sounds an alarm when a
point is out of control. This is typical of process control technology in modern
manufacturing settings.
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The software presents x¯ and R charts rather than x¯ and s charts. The R
chart monitors within-sample variation (just like an s chart), so we look at it
first. We see that the process spread is stable and well within the control limits.
Just as in the case of s, the LCL for R is 0 for the samples of size n = 5 used
here. The x¯ chart is also in control, so process monitoring will continue. The
software will sound an alarm if either chart goes out of control.

USE YOUR KNOWLEDGE

17.26 What’s wrong?

For each of the following, explain what is wrong and why.

(a) The R chart monitors the center of the process.

(b) The R chart is commonly used because the range R is more informative than the standard
deviation s.

(c) Use of the range R to monitor process spread does not alter the construction of the control
limits for the x¯ chart.

Additional out-of-control rules

So far, we have used only the basic “one point beyond the control limits” criterion
to signal that a process may have gone out of control. We would like a quick signal
when the process moves out of control, but we also want to avoid “false alarms,”
signals that occur just by chance when the process is really in control.

The standard 3σ control limits are chosen to prevent too many false alarms,
because an out-of-control signal calls for an effort to find and remove a special
cause. As a result, x¯ charts are often slow to respond to a gradual drift in the
process center.

We can speed the response of a control chart to lack of control—at the cost of
also enduring more false alarms—by adding patterns other than “one-point-out” as
rules. The most common step in this direction is to add a runs rule to the x¯ chart.

OUT-OF-CONTROL SIGNALS

x¯ and s or x¯ and R control charts produce an out-of-control signal if

(a) One-point-out: A single point lies outside the 3σ control limits of either chart.
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(b) Run: The x¯ chart shows 9 consecutive points above the center line or 9 consecutive points
below the center line. The signal occurs when we see the 9th point of the run.

EXAMPLE

17.10 Effectiveness of the runs rule.

Figure 17.12 reproduces the x¯ chart from Figure 17.6. The process center
began a gradual upward drift at Sample 11. The chart shows the effect of the
drift—the sample means plotted on the chart move gradually upward, with
some random variation. The one-point-out rule does not call for action until
Sample 18 finally produces an x¯ above the UCL. The runs rule reacts slightly
more quickly: Sample 17 is the 9th consecutive point above the center line.
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FIGURE 17.12
The x¯ chart for water resistance data when the process center drifts upward, for Example
17.10. The “run of 9” signal gives an out-of-control warning at Sample 17.

It is a mathematical fact that the runs rule responds to a gradual drift more
quickly (on the average) than the one-point-out rule does. The motivation for a
runs rule is that when a process is in control, half the points on an x¯ chart
should lie above the center line and half below. That’s true on the average in
the long term. In the short term, we will see runs of points above or below, just
as we see runs of heads or tails in tossing a coin.

To determine how long a run must be to suggest that the process center has
moved, we once again concern ourselves with the cost of false alarms. The
99.7 part of the 68–95–99.7 rule says that we will get a point outside the 3σ
control limits about 3 times for every 1000 points plotted when the process is
in control. The chance of 9 straight points above the center line when the
process is in control is (1/2)9 = 1/512, or about 2 per 1000. The chance for a
run of 9 below the center line is the same. Combined, that’s about 4 false
alarms per 1000 plotted points overall when the process is in control. This is
very close to the false-alarm rate for one-point-out.

There are many other patterns that can be added to the rules for responding
to x¯ and s or x¯ and R charts. In our enthusiasm to detect various special
kinds of loss of control, it is easy to forget that adding rules always increases
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the frequency of false alarms. Frequent false alarms are so annoying that the
people responsible for responding soon begin to ignore out-of-control signals.
It is better to use only a few out-of-control rules and to reserve rules other
than one-point-out and runs for processes that are known to be prone to
specific special causes for which there are tailor-made detection rules.8

USE YOUR KNOWLEDGE

17.27 What’s wrong?

For each of the following, explain what is wrong and why.

(a) For the one-point-out rule, you could reduce the frequency of false alarms by using 2σ
control limits.

(b) In speeding up the response of a control chart to lack of control, we decrease the
frequency of false alarms.

(c) The runs rule is designed to quickly detect a large and sudden shift in the process.

17.28 The effect of special cause variation.

Is each of the following examples of a special cause most likely to first
result in (i) one-point-out on the s or R chart, (ii) one-point-out on the x¯
chart, or (iii) a run on the x¯ chart? In each case, briefly explain your
reasoning.

(a) An etching solution deteriorates as more items are etched.

(b) Buildup of dirt reduces the precision with which parts are placed for machining.

(c) A new customer service representative for a Spanish-language help line is not a native
speaker and has difficulty understanding customers.

(d) A data entry employee grows less attentive as his shift continues.

Setting up control charts

When you first encounter a process that has not been carefully studied, it is quite
likely that the process is not in control. Your first goal is to discover and remove
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TABLE 17.6  x¯ and s for 24 Samples of Elastomer Viscosity (in Mooneys)

special causes and so bring the process into control. Control charts are an important
tool. Control charts for process monitoring follow the process forward in time to
keep it in control. Control charts at the chart setup stage, on the other hand, look
back in an attempt to discover the present state of the process. An example will
illustrate the method.

EXAMPLE

17.11 Monitoring the viscosity of a material.

VISC

The viscosity of a material is its resistance to flow when under stress.
Viscosity is a critical characteristic of rubber and rubber-like compounds
called elastomers, which have many uses in consumer products. Viscosity is
measured by placing specimens of the material above and below a slowly
rotating roller, squeezing the assembly, and recording the drag on the roller.
Measurements are in “Mooney units,” named after the inventor of the
instrument.

Sample x¯ s Sample x¯ s
1 49.750 2.684 13 47.875 1.118
2 49.375 0.895 14 48.250 0.895
3 50.250 0.895 15 47.625 0.671
4 49.875 1.118 16 47.375 0.671
5 47.250 0.671 17 50.250 1.566
6 45.000 2.684 18 47.000 0.895
7 48.375 0.671 19 47.000 0.447
8 48.500 0.447 20 49.625 1.118
9 48.500 0.447 21 49.875 0.447

10  46.250 1.566 22 47.625 1.118
11  49.000 0.895 23 49.750 0.671
12  48.125 0.671 24 48.625 0.895

A specialty chemical company is beginning production of an elastomer that
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is supposed to have viscosity 45 ± 5 Mooneys. Each lot of the elastomer is
produced by “cooking” raw material with catalysts in a reactor vessel. Table
17.6 records x¯ and s from samples of size n = 4 lots from the first 24 shifts as
production begins.9 An s chart therefore monitors variation among lots
produced during the same shift. If the s chart is in control, an x¯ chart looks
for shift-to-shift variation.

Estimating μ

We do not know the process mean μ and standard deviation σ. What shall we do?
Sometimes we can easily adjust the center of a process by setting some control,
such as the depth of a cutting tool in a machining operation or the temperature of a
reactor vessel in a pharmaceutical plant. In such cases it is common to simply take
the process mean μ to be the target value, the depth or temperature that the design
of the process specifies as correct. The x¯ chart then helps us keep the process
mean at this target value.

There is less likely to be a “correct value” for the process mean μ if we are
monitoring response times to customer calls or data entry errors. In Example 17.11,
we have the target value 45 Mooneys, but there is no simple way to set viscosity at
the desired level. In such cases, we want the μ we use in our x¯ chart to describe
the center of the process as it has actually been operating. To do this, take the mean
of all the individual measurements in the past samples. Because the samples are all
the same size, this is just the mean of the sample x¯’s. The overall “mean of the
sample means” is therefore usually called x¯¯. For the 24 samples in Table 17.6,

x¯¯=124(49.750+49.375+...+48.625)

=1161.12524=48.380

Estimating σ

It is almost never safe to use a “target value” for the process standard deviation σ
because it is almost never possible to directly adjust process variation. We must
estimate σ from past data. We want to combine the sample standard deviations s
from past samples rather than use the standard deviation of all the individual
observations in those samples. That is, in Example 17.11, we want to combine the
24 sample standard deviations in Table 17.6 rather than calculate the standard
deviation of the 96 observations in these samples. The reason is that it is the
within-sample variation that is the benchmark against which we compare the
longer-term process variation. Even if the process has been in control, we want
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only the variation over the short time period of a single sample to influence our
value for σ.

There are several ways to estimate σ from the sample standard deviations.
Software may use a somewhat sophisticated method and then calculate the control
limits for you. Here, we use a simple method that is traditional in quality control
because it goes back to the era before software. If we are basing chart setup on k
past samples, we have k sample standard deviations s1, s2, . . . , sk. Just average
these to get

s¯=1k(s1+s2+...+sk)

For the viscosity example, we average the s-values for the 24 samples in Table
17.6,

s¯=124(2.684+0.895+...+0.895)

=24.15624=1.0065

Combining the sample s-values to estimate σ introduces a complication: the
samples used in process control are often small (size n = 4 in the viscosity
example), so s has some bias as an estimator of σ. The estimator s¯ inherits this
bias. A proper estimate of σ corrects this bias. Thus, our estimator is

mean of s, p. 17-13

σ^=s¯c4

We get control limits from past data by using the estimates x¯¯ and σ^ in place of
the μ and σ used in charts at the process-monitoring stage. Here are the results.10

x¯ AND s CONTROL CHARTS USING PAST DATA

Take regular samples of size n from a process. Estimate the process mean μ
and the process standard deviation σ from past samples by

μ^=x¯¯(or  use  at  target  value)

σ^=s¯c4

The center line and control limits for an x¯ chart are

UCL=μ^+3σ^n

CL=μ^
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LCL=μ^−3σ^n

The center line and control limits for an s chart are

UCL=B6σ^

CL=c4σ^=s¯

LCL=B5σ^

If the process was not in control when the samples were taken, these should be
regarded as trial control limits.

Chart setup

We are now ready to outline the chart setup procedure for the elastomer viscosity.
Step 1. As usual, we look first at an s chart. For chart setup, control limits are

based on the same past data that we will plot on the chart. Based on Table 17.6,

s¯=1.0065

σ^=s¯c4=1.00650.9213=1.0925

So the center line and control limits for the s chart are

UCL=B6σ^=(2.088)(1.0925)=2.281

CL=s¯=1.0065

LCL=B5σ^=(0)(1.0925)=0

Figure 17.13 is the s chart. The points for Shifts 1 and 6 lie above the UCL.
Both are near the beginning of production. Investigation finds that the reactor
operator made an error on one lot in each of these samples. The error changed the
viscosity of those two lots and increased s for each of the samples. The error will
not be repeated now that the operators have gained experience. That is, this special
cause has already been removed.
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FIGURE 17.13
The s chart based on past data for the viscosity data of Table 17.6. The control limits are based
on the same s-values that are plotted on the chart. Points 1 and 6 are out of control.

Step 2. Remove the two values of s that were out of control. This is proper
because the special cause responsible for these readings is no longer present. From
the remaining 22 shifts

s¯=0.854  and  σ^=0.8540.9213=0.927

The new s chart center line and control limits are

UCL=B6σ^=(2.088)(0.927)=1.936

CL=s¯=0.854

LCL=B5σ^=(0)(0.927)=0

We don’t show this chart, but you can see from Table 17.6 and Figure 17.13 that
none of the remaining s-values lies above the new, lower UCL; the largest
remaining s is 1.566. If additional points were out of control, we would repeat the
process of finding and eliminating s-type causes until the s chart for the remaining
shifts is in control. In practice, this is often a challenging task.
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Step 3. Once s-type causes have been eliminated, make an x¯ chart using only
the samples that remain after dropping those that had out-of-control s-values. For
the 22 remaining samples, we calculate x¯¯=48.4716 and we know that σ^=0.927.
The center line and control limits for the x¯ chart are

UCL=x¯¯+3σ^n=48.4716+30.9274=49.862

CL=x¯¯=48.4716

LCL=x¯¯−3σ^n=48.4716−30.9274=47.081
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FIGURE 17.14
The x¯ chart based on past data for the viscosity data of Table 17.6. The samples for Shifts 1
and 6 have been removed because s-type special causes active in those samples are no longer
active. The x¯ chart shows poor control.

Figure 17.14 is the x¯ chart. Shifts 1 and 6 were already dropped. Seven of the
remaining 22 points are beyond the 3σ limits, four high and three low. Although
within-shift variation is now stable, there is excessive variation from shift to shift.
To find the cause, we must understand the details of the process, but knowing that
the special cause or causes operate between shifts is a big help. If the reactor is set
up anew at the beginning of each shift, that’s one place to look more closely.

Step 4. Once the x¯ and s charts are both in control (looking backward), use the
estimates μ^ and σ^ from the points in control to set tentative control limits to
monitor the process going forward. If it remains in control, we can update the
charts and move to the process-monitoring stage.

USE YOUR KNOWLEDGE
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17.29 Updating control chart limits.

MEATWGT

Suppose that when the process improvement project of Example 17.11
(page 17-26) is complete, the points remaining after removing special
causes have x¯¯=47.2 and s¯=1.03. What are the center line and control
limits for the x¯ and s charts you would use to monitor the process going
forward?

17.30 More on updating control chart limits.

In Exercise 17.15, control limits for the weight of ground beef were
obtained using historical results. Using Table 17.3 (page 17-19),
estimate the process μ and process σ. Do either of these values suggest a
change in the process center and spread?

Comments on statistical control

Having seen how x¯ and s (or x¯ and R) charts work, we can turn to some
important comments and cautions about statistical control in practice.

Focus on the process rather than on the product

This is perhaps the fundamental idea in statistical process control. We might
attempt to attain high quality by careful inspection of the finished product and
reviewing every outgoing invoice and expense account payment. Inspection of
finished products can ensure good quality, but it is expensive.

Perhaps more important, final inspection often comes too late: when something
goes wrong early in a process, much bad product may be produced before final
inspection discovers the problem. This adds to the expense, because the bad
product must then be scrapped or reworked.

The small samples that are the basis of control charts are intended to monitor
the process at key points, not to ensure the quality of the particular items in the
samples. If the process is kept in control, we know what to expect in the finished
product. We want to do it right the first time, not inspect and fix finished product.

Choosing the “key points” at which we will measure and monitor the process is
important. The choice requires that you understand the process well enough to
know where problems are likely to arise. Flowcharts and cause-and-effect diagrams
can help. It should be clear that control charts that monitor only the final output are
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often not the best choice.

Rational subgroups

The interpretation of control charts depends on the distinction between x¯-type
special causes and s-type special causes. This distinction in turn depends on how
we choose the samples from which we calculate s (or R). We want the variation
within a sample to reflect only the item-to-item chance variation that (when in
control) results from many small common causes. Walter Shewhart, the founder of
statistical process control, used the term rational subgroup to emphasize that we
should think about the process when deciding how to choose samples.

rational subgroup

EXAMPLE

17.12 Selecting the sample.

A pharmaceutical manufacturer forms tablets by compressing a granular
material that contains the active ingredient and various fillers. To monitor the
compression process, we will measure the hardness of a sample from each 10
minutes’ production of tablets. Should we choose a random sample of tablets
from the several thousand produced in a 10-minute period?

A random sample would contain tablets spread across the entire 10
minutes. It fairly represents the 10-minute period, but that isn’t what we want
for process control. If the setting of the press drifts or a new lot of filler arrives
during the 10 minutes, the spread of the sample will be increased. That is, a
random sample contains both the short-term variation among tablets produced
in quick succession and the longer-term variation among tablets produced
minutes apart. We prefer to measure a rational subgroup of 5 consecutive
tablets every 10 minutes. We expect the process to be stable during this very
short time period, so that variation within the subgroups is a benchmark
against which we can see special cause variation.

Samples of consecutive items are rational subgroups when we are monitoring
the output of a single activity that does the same thing over and over again. Several
consecutive items is the most common type of sample for process control.

When the stream of product contains output from several machines or several
people, however, the choice of samples is more complicated. Do you want to
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include variation due to different machines or different people within your
samples? If you decide that this variation is common cause variation, be sure that
the sample items are spread across machines or people. If all the items in each
sample have a common origin, s¯ will be small and the control limits for the x¯
chart will be narrow. Points on the x¯ chart from samples representing different
machines or different people will often be out of control, some high and some low.

There is no formula for deciding how to form rational subgroups. You must
think about causes of variation in your process and decide which you are willing to
think of as common causes that you will not try to eliminate. Rational subgroups
are samples chosen to express variation due to these causes and no others. Because
the choice requires detailed process knowledge, we will usually accept samples of
consecutive items as being rational subgroups. Just remember that real processes
are messier than textbooks suggest.

Why statistical control is desirable

To repeat, if the process is kept in control, we know what to expect in the finished
product. The process mean μ and standard deviation σ remain stable over time, so
(assuming Normal variation) the 99.7 part of the 68–95–99.7 rule tells us that
almost all measurements on individual products will lie in the range μ ± 3σ. These
are sometimes called the natural tolerances for the product. Be careful to
distinguish μ ± 3σ, the range we expect for individual measurements, from the x¯
chart control limits μ±3σ/n which mark off the expected range of sample means.

natural tolerances

EXAMPLE

17.13 Estimating the tolerances for the water resistance study.

The process of waterproofing the jackets has been operating in control. The x¯
and s charts were based on μ = 2750 mm and σ = 430 mm. The s chart in
Figure 17.7 and a calculation (see Exercise 17.35, page 17-37) suggest that the
process σ is now less than 430 mm. We may prefer to calculate the natural
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tolerances from the recent data on 20 samples (80 jackets) in Table 17.1. The
estimate of the mean is x¯¯=2750.7, very close to the target value.

Now a subtle point arises. The estimate σ^=s¯/c4 used for past-data control
charts is based entirely on variation within the samples. That’s what we want
for control charts, because within-sample variation is likely to be “pure
common cause” variation.

Even when the process is in control, there is some additional variation from
sample to sample, just by chance. So the variation in the process output will be
greater than the variation within samples. To estimate the natural tolerances,
we should estimate σ from all 80 individual jackets rather than by averaging
the 20 within-sample standard deviations. The standard deviation for all 80
jackets is

s = 383.8

For a sample of size 80, c4 is very close to 1, so we can ignore it. We are
therefore confident that almost all individual jackets will have a water
resistance reading between

x¯¯±3s=2750.7±(3)(383.8)≐2750.7±1151.4

We expect water resistance measurements to vary between 1599 and 3902
mm. You see that the spread of individual measurements is wider than the
spread of sample means used for the control limits of the x¯ chart.

The natural tolerances in Example 17.13 depend on the fact that the water
resistance of individual jackets follows a Normal distribution. We know that the
process was in control when the 80 measurements in Table 17.1 were made, so we
can use them to assess Normality. Figure 17.15 is a Normal quantile plot of these
measurements. There are no strong deviations from Normality. All 80
observations, including the one point that may appear suspiciously low in Figure
17.15, lie within the natural tolerances. Examining the data strengthens our
confidence in the natural tolerances.

Because we can predict the performance of the waterproofing process, we can
tell the buyers of our jackets what to expect. What is more, if a process is in
control, we can see the effect of any changes we make. A process operating out of
control is erratic. We can’t do reliable statistical studies on such a process, and if
we make a change in the process, we can’t clearly see the results of the change—
they are hidden by erratic special cause variation. If we want to improve a process,
we must first bring it into control so that we have a stable starting point from which
to improve.
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FIGURE 17.15
Normal quantile plot for the 80 water resistance measurements of Table 17.1. Calculations about
individual measurements, such as natural tolerances, depend on approximate Normality.

Don’t confuse control with capability!

A process in control is stable over time and we know how much variation the
finished product will show. Control charts are, so to speak, the voice of the process
telling us what state it is in. There is no guarantee that a process in control
produces products of satisfactory quality. “Satisfactory quality” is measured by
comparing the product to some standard outside the process, set by technical
specifications, customer expectations, or the goals of the organization. These
external standards are unrelated to the internal state of the process, which is all that
statistical control pays attention to.

CAPABILITY
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Capability refers to the ability of a process to meet or exceed the requirements
placed on it.

Capability has nothing to do with control—except for the very important point
that if a process is not in control, it is hard to tell if it is capable or not.

EXAMPLE

17.14 Assessing the capability of the waterproofing process.

An outfitting company is a large buyer of this jacket. They informed us that
they need water resistance levels between 1000 and 4000 mm. Although the
waterproofing process is in control, we know (Example 17.13) that almost all
jackets will have water resistance levels between 1599 and 3902 mm. The
process is capable of meeting the customer’s requirement.

Figure 17.16 compares the distribution of water resistance levels for
individual jackets with the customer specifications. The distribution of water
resistance is approximately Normal, and we estimate its mean to be very close
to 2750 mm and the standard deviation to be about 384 mm. The distribution
is safely within the specifications.
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FIGURE 17.16
Comparison of the distribution of water resistance (Normal curve) with original and
tightened specifications, for Example 17.14. The process in its current state is not capable
of meeting the new specifications.

Times change, however. The outfitting company demands more similarity
in jackets and decides to require that the water resistance level lie between
1500 and 3500 mm. These new specification limits also appear in Figure
17.16. The process is not capable of meeting the new requirements. The
process remains in control. The change in its capability is entirely due to a
change in external requirements.

Because the waterproofing process is in control, we know that it is not capable
of meeting the new specifications. That’s an advantage of control, but the fact
remains that control does not guarantee capability. We will discuss numerical
measures of capability in Section 17.3.

Managers must understand, that if a process that is in control does not have
adequate capability, fundamental changes in the process are needed. The process
is doing as well as it can and displays only the chance variation that is natural to its
present state. Slogans to encourage the workers or disciplining the workers for
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poor performance will not change the state of the process. Better training for
workers is a change in the process that may improve capability. New equipment or
more uniform material may also help, depending on the findings of a careful
investigation.

SECTION 17.2 Summary

An R chart based on the range of observations in a sample is often used in place
of an s chart. Interpret x¯ and R charts exactly as you would interpret x¯ and s
charts.

It is common to use out-of-control rules in addition to “one point outside the
control limits.” In particular, a runs rule for the x¯ chart allows the chart to
respond more quickly to a gradual drift in the process center.

Control charts based on past data are used at the chart setup stage for a
process that may not be in control. Start with control limits calculated from the
same past data that you are plotting. Beginning with the s chart, narrow the limits
as you find special causes, and remove the points influenced by these causes.
When the remaining points are in control, use the resulting limits to monitor the
process.

Statistical process control maintains quality more economically than inspecting
the final output of a process. Samples that are rational subgroups are important to
effective control charts. A process in control is stable, so that we can predict its
behavior. If individual measurements have a Normal distribution, we can give the
natural tolerances.

A process is capable if it can meet the requirements placed on it. Control
(stability over time) does not in itself imply capability. Remember that control
describes the internal state of the process, whereas capability relates the state of the
process to external specifications.

SECTION 17.2 Exercises
For Exercise 17.26, see page 17-24; for Exercises 17.27 and 17.28, see page 17-26; and for Exercises
17.29 and 17.30, see page 17-31.

17.31 Setting up a control chart.

In Exercise 17.12 (page 17-18) the x¯ and s control charts for the placement of the rum label were based on
historical results. Suppose that a new labeling machine has been purchased and new control limits need to
be determined. Table 17.7 contains the means and standard deviations of the first 24 batch samples. We

will use these to determine tentative control limits.  LABEL

(a) Estimate the center line and control limits for the s chart using all 24 samples.

(b) Does the variation within samples appear to be in control? If not, remove any out-of-control samples
and recalculate the limits. We’ll assume that any out-of-control samples are due to the operators adjusting
to the new machine.
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TABLE 17.7  x¯ and s for 24 Samples of Label Placement (in inches)

TABLE 17.8  x¯ and s for 24 Samples of Label Placement (in inches)

(c) Using the remaining samples, estimate the center line and control limits for the x¯ chart. Again remove
any out-of-control samples and recalculate.

(d) How do these control limits compare with the ones obtained in Exercise 17.12?

17.32 Setting up another control chart.

Refer to the previous exercise. Table 17.8 contains another set of 24 samples. Repeat parts (a) to (c) using

this data set.  LABEL1

Sample x¯ s Sample x¯ s
1 1.9824 0.0472 13 1.9949 0.0964
2 2.0721 0.0479 14 2.0287 0.0607
3 2.0031 0.0628 15 1.9391 0.0481
4 2.0088 0.1460 16 1.9801 0.1133
5 2.0445 0.0850 17 1.9991 0.0482
6 2.0322 0.0676 18 1.9834 0.0572
7 2.0209 0.0651 19 2.0348 0.0734
8 1.9927 0.1291 20 1.9935 0.0584
9 2.0164 0.0889 21 1.9866 0.0628

10  2.0462 0.0662 22 1.9599 0.0829
11  2.0438 0.0554 23 2.0018 0.0541
12  2.0269 0.0493 24 1.9954 0.0566

Sample x¯ s Sample x¯ s
1 2.0309 0.1661 13 1.9907 0.0620
2 2.0066 0.1366 14 1.9612 0.0748
3 2.0163 0.0369 15 2.0312 0.0421
4 2.0970 0.1088 16 2.0293 0.0932
5 1.9499 0.0905 17 1.9758 0.0252
6 1.9859 0.1683 18 2.0255 0.0728
7 1.9456 0.0920 19 1.9574 0.0186
8 2.0213 0.0478 20 2.0320 0.0151
9 1.9621 0.0489 21 1.9775 0.0294

10  1.9529 0.0456 22 1.9612 0.0911
11  1.9995 0.0519 23 2.0042 0.0365
12  1.9927 0.0762 24 1.9933 0.0293

17.33 Control chart for an unusual sampling situation.

Invoices are processed and paid by two clerks, one very experienced and the other newly hired. The
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experienced clerk processes invoices quickly. The new hire often refers to the procedures handbook and is
much slower. Both are quite consistent, so that their times vary little from invoice to invoice. Suppose that
each daily sample of four invoice-processing times comes from only one of the clerks. Thus, some samples
are from one and some from the other clerk. Sketch the x¯ chart pattern that will result.

17.34 Altering the sampling plan.

Refer to Exercise 17.33. Suppose instead that each sample contains an equal number of invoices from each
clerk.

(a) Sketch the x¯ and s chart patterns that will result.

(b) The process in this case will appear in control. When might this be an acceptable conclusion?

17.35 Reevaluating the process parameters.

The x¯ and s control charts for the waterproofing example were based on μ = 2750 mm and σ = 430 mm.

Table 17.1 (page 17-10) gives the 20 most recent samples from this process.  H2ORES

(a) Estimate the process μ and σ based on these 20 samples.

(b) Your calculations suggest that the process σ may now be less than 430 mm. Explain why the s chart in
Figure 17.7 (page 17-15) suggests the same conclusion. (If this pattern continues, we would eventually
update the value of σ used for control limits.)

17.36 Estimating the control chart limits from past data.

Table 17.9 gives data on the losses (in dollars) incurred by a hospital in treating DRG 209 (major joint
replacement) patients.11 The hospital has taken from its records a random sample of 8 such patients each

month for 15 months.  DRG

(a) Make an s control chart using center lines and limits calculated from these past data. There are no
points out of control.

(b) Because the s chart is in control, base the x¯ chart on all 15 samples. Make this chart. Is it also in
control?

17.37 Efficient process control.

A company that makes cellular phones requires that their microchip supplier practice statistical process
control and submit control charts for verification. This allows the company to eliminate inspection of the
microchips as they arrive, a considerable cost savings. Explain carefully why incoming inspection can
safely be eliminated.

17.38 Determining the tolerances for losses from DRG 209 patients.

Table 17.9 gives data on hospital losses for samples of DRG 209 patients. The distribution of losses has
been stable over time. What are the natural tolerances within which you expect losses on nearly all such

patients to fall?  DRG
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TABLE 17.9  Hospital Losses for 15 Samples of DRG 209 Patients

17.39 Checking the Normality of losses.

Do the losses on the 120 individual patients in Table 17.9 appear to come from a single Normal
distribution? Make a Normal quantile plot and discuss what it shows. Are the natural tolerances you found

in the previous exercise trustworthy? Explain your answer.  DRG

17.40 The percent of products that meet specifications.

If the water resistance readings of individual jackets follow a Normal distribution, we can describe
capability by giving the percent of jackets that meet specifications. The old specifications for water
resistance are 1000 to 4000 mm. The new specifications are 1500 to 3500 mm. Because the process is in
control, we can estimate (Example 17.13) that water resistance has mean 2750 mm and standard deviation

384 mm.  H2ORES

Sample Loss (dollars)
Sample
mean

Standard
deviation

1 6835 5843 6019 6731 6362 5696 7193 6206 6360.6 521.7
2 6452 6764 7083 7352 5239 6911 7479 5549 6603.6 817.1
3 7205 6374 6198 6170 6482 4763 7125 6241 6319.8 749.1
4 6021 6347 7210 6384 6807 5711 7952 6023 6556.9 736.5
5 7000 6495 6893 6127 7417 7044 6159 6091 6653.2 503.7
6 7783 6224 5051 7288 6584 7521 6146 5129 6465.8 1034.3
7 8794 6279 6877 5807 6076 6392 7429 5220 6609.2 1104.0
8 4727 8117 6586 6225 6150 7386 5674 6740 6450.6 1033.0
9 5408 7452 6686 6428 6425 7380 5789 6264 6479.0 704.7

10  5598 7489 6186 5837 6769 5471 5658 6393 6175.1 690.5
11  6559 5855 4928 5897 7532 5663 4746 7879 6132.4 1128.6
12  6824 7320 5331 6204 6027 5987 6033 6177 6237.9 596.6
13  6503 8213 5417 6360 6711 6907 6625 7888 6828.0 879.8
14  5622 6321 6325 6634 5075 6209 4832 6386 5925.5 667.8
15  6269 6756 7653 6065 5835 7337 6615 8181 6838.9 819.5

(a) What percent of jackets meet the old specifications?

(b) What percent meet the new specifications?

17.41 Improving the capability of the process.

Refer to the previous exercise. The center of the specifications for waterproofing is 2500 mm, but the
center of our process is 2750 mm. We can improve capability by adjusting the process to have center 2500
mm. This is an easy adjustment that does not change the process variation. What percent of jackets now
meet the new specifications?

17.42 Monitoring the calibration of a densitometer.
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TABLE 17.10  Daily Calibration Samples for a Lunar Bone Densitometer

Loss of bone density is a serious health problem for many people, especially older women. Conventional
X-rays often fail to detect loss of bone density until the loss reaches 25% or more. New equipment such as
the Lunar bone densitometer is much more sensitive. A health clinic installs one of these machines. The
manufacturer supplies a “phantom,” an aluminum piece of known density that can be used to keep the
machine calibrated. Each morning, the clinic makes two measurements on the phantom before measuring
the first patient. Control charts based on these measurements alert the operators if the machine has lost
calibration. Table 17.10 contains data for the first 30 days of operation.12 The units are grams per square

centimeter (for technical reasons, area rather than volume is measured).  DENSITY

(a) Calculate x¯ and s for the first 2 days to verify the table entries for those quantities.

(b) What kind of variation does the s chart monitor in this setting? Make an s chart and comment on
control. If any points are out of control, remove them and recompute the chart limits until all remaining
points are in control. (That is, assume that special causes are found and removed.)

(c) Make an x¯ chart using the samples that remain after you have completed part (b). What kind of
variation will be visible on this chart? Comment on the stability of the machine over these 30 days based
on both charts.

17.43 Determining the natural tolerances for the distance between holes.

Figure 17.10 (page 17-22) displays a record sheet for 18 samples of distances between mounting holes in
an electrical meter. In Exercise 17.21 (page 17-21), you found that Sample 5 was out of control on the
process-monitoring s chart. The special cause responsible was found and removed. Based on the 17

samples that were in control, what are the natural tolerances for the distance between the holes? 
MOUNT

17.44 Determining the natural tolerances for the densitometer.

Remove any samples in Table 17.10 that your work in Exercise 17.42 showed to be out of control on either
chart. Estimate the mean and standard deviation of individual measurements on the phantom. What are the

natural tolerances for these measurements?  DENSITY

17.45 Determining the percent of meters that meet specifications.

The record sheet in Figure 17.10 gives the specifications as 0.6054 ± 0.0010 inch. That’s 54 ± 10 as the
data are coded on the record. Assuming that the distance varies Normally from meter to meter, about what

percent of meters meet the specifications?  DENSITY

Day Measurements (g/cm2) x¯ s
1 1.261 1.260 1.2605 0.000707
2 1.261 1.268 1.2645 0.004950
3 1.258 1.261 1.2595 0.002121
4 1.261 1.262 1.2615 0.000707
5 1.259 1.262 1.2605 0.002121
6 1.269 1.260 1.2645 0.006364
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7 1.262 1.263 1.2625 0.000707
8 1.264 1.268 1.2660 0.002828
9 1.258 1.260 1.2590 0.001414

10  1.264 1.265 1.2645 0.000707
11  1.264 1.259 1.2615 0.003536
12  1.260 1.266 1.2630 0.004243
13  1.267 1.266 1.2665 0.000707
14  1.264 1.260 1.2620 0.002828
15  1.266 1.259 1.2625 0.004950
16  1.257 1.266 1.2615 0.006364
17  1.257 1.266 1.2615 0.006364
18  1.260 1.265 1.2625 0.003536
19  1.262 1.266 1.2640 0.002828
20  1.265 1.266 1.2655 0.000707
21  1.264 1.257 1.2605 0.004950
22  1.260 1.257 1.2585 0.002121
23  1.255 1.260 1.2575 0.003536
24  1.257 1.259 1.2580 0.001414
25  1.265 1.260 1.2625 0.003536
26  1.261 1.264 1.2625 0.002121
27  1.261 1.264 1.2625 0.002121
28  1.260 1.262 1.2610 0.001414
29  1.260 1.256 1.2580 0.002828
30  1.260 1.262 1.2610 0.001414

17.46 Assessing the Normality of the densitometer measurements.

Are the 60 individual measurements in Table 17.10 at least approximately Normal, so that the natural
tolerances you calculated in Exercise 17.44 can be trusted? Make a Normal quantile plot (or another graph

if your software is limited) and discuss what you see.  DENSITY

17.47 Assessing the Normality of the distance between holes.

Make a Normal quantile plot of the 85 distances in the data file MOUNT that remain after removing
Sample 5. How does the plot reflect the limited precision of the measurements (all of which end in 4)? Is
there any departure from Normality that would lead you to discard your conclusion from Exercise 17.43?

(If your software will not make Normal quantile plots, use a histogram to assess Normality.)  MOUNT

17.48 Determining the natural tolerances for the weight of ground beef.

Table 17.3 (page 17-19) gives data on the weight of ground beef sections. Since the distribution of weights
has been stable, use the data in Table 17.3 to construct the natural tolerances within which you expect

almost all the weights to fall.  MEATWGT

17.49 Assessing the Normality of the weight measurements.
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Refer to the previous exercise. Do the weights of the 60 individual sections in Table 17.3 appear to come
from a single Normal distribution? Make a Normal quantile plot and discuss whether the natural tolerances

you found in the previous exercise are trustworthy.  MEATWGT

17.50 Control charts for the bore diameter of a bearing.

A sample of 5 skateboard bearings is taken near the end of each hour of production. Table 17.11 gives x¯
and s for the first 21 samples, coded in units of 0.001 mm from the target value. The specifications allow a

range of ±0.004 mm about the target (a range of −4 to +4 as coded).  BEARINGS

(a) Make an s chart based on past data and comment on control of short-term process variation.

(b) Because the data are coded about the target, the process mean for the data provided is μ = 0. Make an
x¯ chart and comment on control of long-term process variation. What special x¯-type cause probably
explains the lack of control of x¯?

17.51 Detecting special cause variation.

Is each of the following examples of a special cause most likely to first result in (i) a sudden change in
level on the s or R chart, (ii) a sudden change in level on the x¯ chart, or (iii) a gradual drift up or down on
the x¯ chart? In each case, briefly explain your reasoning.

(a) An airline pilots’ union puts pressure on management during labor negotiations by asking its members
to “work to rule” in doing the detailed checks required before a plane can leave the gate.

(b) Measurements of part dimensions that were formerly made by hand are now made by a very accurate
laser system. (The process producing the parts does not change—measurement methods can also affect
control charts.)

(c) Inadequate air conditioning on a hot day allows the temperature to rise during the afternoon in an office
that prepares a company’s invoices.

17.52 Deming speaks.

The following comments were made by the quality guru W. Edwards Deming (1900–1993).13 Choose one
of these sayings. Explain carefully what facts about improving quality the saying attempts to summarize.

(a) “People work in the system. Management creates the system.”

(b) “Putting out fires is not improvement. Finding a point out of control, finding the special cause and
removing it, is only putting the process back to where it was in the first place. It is not improvement of the
process.”

(c) “Eliminate slogans, exhortations and targets for the workforce asking for zero defects and new levels of
productivity.”

17.53 Monitoring the winning times of the Boston Marathon.

The Boston Marathon has been run each year since 1897. Winning times were highly variable in the early
years, but control improved as the best runners became more professional. A clear downward trend
continued until the 1980s. Sam plans to make a control chart for the winning times from 1980 to the
present. Calculation from the winning times from 1980 to 2013 gives
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TABLE 17.11  x¯ and s for Samples of Bore Diameter

x¯=129.52minutes  and s = 2.19 minutes

Sam draws a center line at x¯ and control limits at x¯±3s for a plot of individual winning times. Explain
carefully why these control limits are too wide to effectively signal unusually fast or slow times.

Sample x¯ s Sample x¯ s
1 0.0 1.225 12 0.8 3.899
2 0.4 1.517 13 2.0 1.581
3 0.6 2.191 14 0.2 2.049
4 1.0 3.162 15 0.6 2.302
5 −0.8  2.280 16 1.2 2.588
6 −1.0  2.345 17 2.8 1.924
7 1.6 1.517 18 2.6 3.130
8 1.0 1.414 19 1.8 2.387
9 0.4 2.608 20 0.2 2.775

10  1.4 2.608 21 1.6 1.949
11  0.8 1.924

17.54 Monitoring weight.

Joe has recorded his weight, measured at the gym after a workout, for several years. The mean is 181
pounds and the standard deviation is 1.7 pounds, with no signs of lack of control. An injury keeps Joe
away from the gym for several months. The data below give his weight, measured once each week for the
first 16 weeks after he returns from the injury:

Week 1 2 3 4 5 6 7 8
Weight 185.2 185.5 186.3 184.3 183.1 180.8 183.8 182.1

Week 9 10 11 12 13 14 15 16
Weight 181.1 180.1 178.7 181.2 183.1 180.2 180.8 182.2

Joe wants to plot these individual measurements on a control chart. When each “sample” is just one
measurement, short-term variation is estimated by advanced techniques.14 The short-term variation in
Joe’s weight is estimated to be about σ = 1.6 pounds. Joe has a target of μ = 181 pounds for his weight.
Make a control chart for his measurements, using control limits μ ± 2σ. It is common to use these narrower
limits on an “individuals chart.” Comment on individual points out of control and on runs. Is Joe’s weight

stable or does it change systematically over this period?  JOEWGT
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17.3 Process Capability Indexes

When you complete this section, you will be able to

• Estimate the percent of product that meets specifications using the
Normal distribution.

• Explain why the percent of product meeting specifications is not a good
measure of capability.

• Compute and interpret the Cp and Cpk capability indexes.

• Identify issues that affect the interpretation of capability indexes.

Capability describes the quality of the output of a process relative to the needs
or requirements of the users of that output. To be more precise, capability relates
the actual performance of a process in control, after special causes have been
removed, to the desired performance.

Suppose, to take a simple but common setting, that there are specifications set
for some characteristic of the process output. The viscosity of the elastomer in
Example 17.11 (page 17-26) is supposed to be 45 ± 5 Mooneys. The speed with
which calls are answered at a corporate customer service call center is supposed to
be no more than 30 seconds.

In this setting, we might measure capability by the percent of output that meets
the specifications. When the variable we measure has a Normal distribution, we
can estimate this percent using the mean and standard deviation estimated from
past control chart samples. When the variable is not Normal, we can use the actual
percent of the measurements in the samples that meet the specifications.

EXAMPLE

17.15 What is the probability of meeting specifications?

(a) Before concluding the process improvement study begun in Example
17.11, we found and fixed special causes and eliminated from our data the
samples on which those causes operated. The remaining viscosity
measurements have x¯¯=48.7 and s = 0.85. Note once again that to draw
conclusions about viscosity for individual lots we estimate the standard
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deviation σ from all individual lots, not from the average s¯ of sample standard
deviations.

The specifications call for the viscosity of the elastomer to lie in the range
45 ± 5. A Normal quantile plot shows the viscosities to be quite Normal.
Figure 17.17(a) shows the Normal distribution of lot viscosities with the
specification limits 45 ± 5 . These are marked LSL for lower specification
limit and USL for upper specification limit. The percent of lots that meet the
specifications is about

LSL

USL

P(40≤viscosity≤50)=P(40−48.70.85≤Z≤50−48.70.85)

=P(−10.2≤Z≤1.53)=0.937

Roughly 94% of the lots meet the specifications. If we can adjust the process
center to the center of the specifications, μ = 45, it is clear from Figure
17.17(a) that essentially 100% of lots will meet the specifications.

(b) Times to answer calls to a corporate customer service center are usually
right-skewed. Figure 17.17(b) is a histogram of the times for 300 calls to the
call center of a large bank.15 The specification limit of 30 seconds is marked
USL. The median is 20 seconds, but the mean is 32 seconds. Of the 300 calls,
203 were answered in no more than 30 seconds. That is, 203/300 = 68% of the
times meet the specifications.
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FIGURE 17.17
Comparing distributions of individual measurements with specifications for, Example 17.15. (a)
Viscosity has a Normal distribution. The capability is poor but will be good if we can properly
center the process. (b) Response times to customer calls have a right-skewed distribution and
only an upper specification limit. Capability is again poor.
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FIGURE 17.18
Two distributions for part diameters. All the parts from Process A meet the specifications, but a
higher proportion of parts from Process B have diameters close to the target.

Turns out, however, that the percent meeting specifications is a poor measure
of capability. Figure 17.18 shows why. This figure compares the distributions of
the diameter of the same part manufactured by two processes. The target diameter
and the specification limits are marked. All the parts produced by Process A meet
the specifications, but about 1.5% of those from Process B fail to do so.

Nonetheless, Process B appears superior to Process A because it is less variable:
much more of Process B’s output is close to the target. Process A produces many
parts close to LSL and USL. These parts meet the specifications, but they will
likely fit and perform more poorly than parts with diameters close to the center of
the specifications. A distribution like that for Process A might result from
inspecting all the parts and discarding those whose diameters fall outside the
specifications. That’s not an efficient way to achieve quality.

We need a way to measure process capability that pays attention to the
variability of the process (smaller is better). The standard deviation does that, but it
doesn’t measure capability because it takes no account of the specifications that the
output must meet.
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Capability indexes start with the idea of comparing process variation with the
specifications. Process B will beat Process A by such a measure. Capability
indexes also allow us to measure process improvement—we can continue to drive
down variation, and so improve the process, long after 100% of the output meets
specifications. Continual improvement of processes is our goal, not just reaching
“satisfactory” performance. The real importance of capability indexes is that they
give us numerical measures to describe ever-better process quality.

The capability indexes Cp and Cpk

Capability indexes are numerical measures of process capability that, unlike
percent meeting specifications, have no upper limit such as 100%. We can use
capability indexes to measure continuing improvement of a process. Of course,
reporting just one number has limitations. What is more, the usual indexes are
based on thinking about Normal distributions. They are not meaningful for
distinctly non-Normal output distributions like the call center response times in
Figure 17.17(b).

CAPABILITY INDEXES

Consider a process with specification limits LSL and USL for some measured
characteristic of its output. The process mean for this characteristic is μ and the
standard deviation is σ. The capability index Cp is

Cp=USL−LSL6σ

The capability index Cpk is

Cpk=⌈μ−nearer  spec  limit⌉3σ

Set Cpk = 0 if the process mean μ lies outside the specification limits. Large
values of Cp or Cpk indicate more capable processes.

Capability indexes start from the fact that Normal distributions are in practice
about 6 standard deviations wide. That’s the 99.7 part of the 68–95–99.7 rule.
Conceptually, Cp is the specification width as a multiple of the process width 6σ.
When Cp = 1, the process output will just fit within the specifications if the center
is midway between LSL and USL.

Larger values of Cp are better—the process output can fit within the specs with
room to spare. But a process with high Cp can produce poor-quality product if it is
not correctly centered.

Cpk remedies this deficiency by considering both the center μ and the variability

1505



σ of the measurements. The denominator 3σ in Cpk is half the process width. It is
the space needed on either side of the mean if essentially all the output is to lie
between LSL and USL. When Cpk = 1, the process has just this much space
between the mean and the nearer of LSL and USL. Again, higher values are better.
Cpk is the most common capability index, but starting with Cp helps us see how the
indexes work.

EXAMPLE

17.16 A comparison of the Cp and Cpk indexes.

Consider the series of pictures in Figure 17.19. We might think of a process
that machines a metal part. Measure a dimension of the part that has LSL and
USL as its specification limits. As usual, there is variation from part to part.
The dimensions vary Normally with mean μ and standard deviation σ.

Figure 17.19(a) shows process width equal to the specification width. That
is, Cp = 1. Almost all the parts will meet specifications if, as in this figure, the
process mean μ is at the center of the specs. Because the mean is centered, it is
3σ from both LSL and USL, so Cpk = 1 also. In Figure 17.19(b), the mean has
moved down to LSL. Only half the parts will meet the specifications. Cp is
unchanged because the process width has not changed. But Cpk sees that the
center μ is right on the edge of the specifications, Cpk = 0. The value remains 0
if μ moves outside the specifications.

In Figures 17.19(c) and (d), the process σ has been reduced to half the value
it had in (a) and (b). The process width 6σ is now half the specification width,
so Cp = 2. In Figure 17.19(c) the center is just 3 of the new σ’s above LSL, so
that Cpk = 1. Figure 17.19(d) shows the same smaller σ accompanied by mean
μ correctly centered between LSL and USL. Cpk rewards the process for
moving the center from 3σ to 6σ away from the nearer limit by increasing from
1 to 2. You see that Cp and Cpk are equal if the process is properly centered. If
not, Cpk is smaller than Cp.
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FIGURE 17.19
How capability indexes work. (a) Process centered, process width equal to specification width.
(b) Process off-center, process width equal to specification width. (c) Process off-center, process
width equal to half the specification width. (d) Process centered, process width equal to half the
specification width.

EXAMPLE

17.17 Computing Cp and Cpk for the viscosity process.

Figure 17.17(a) compares the distribution of the viscosities of lots of
elastomers with the specifications LSL = 40 and USL = 50. The distribution
here, as is always true in practice, is estimated from past observations on the
process. The estimates are

μ^=x¯¯=48.7

σ^=s=0.85

Because capability describes the distribution of individual measurements, we
once more estimate σ from individual measurements rather than using the
estimate s¯/c4 that we employ for control charts.

These estimates may be quite accurate if we have data on many past lots.
Estimates based on only a few observations may, however, be inaccurate
because statistics from small samples can have large sampling variability. This
important point is often not appreciated when capability indexes are used in
practice. To emphasize that we can only estimate the indexes, we write C^p
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and C^pk for values calculated from sample data. They are

C^p=USL−LSL6σ^

=50−10(6)(0.85)=105.1=1.96

C^pk=|μ^−nearer   limit|3σ^

=50−48.7(3)(0.85)=1.32.55=0.51

C^p=1.96 is quite satisfactory because it indicates that the process width is
only about half the specification width. The small value of C^pk reflects the
fact that the process center is not close to the center of the specs. If we can
move the center μ to 45, then C^pk will also be 1.96.

USE YOUR KNOWLEDGE

17.55 Specification limits versus control limits.

The manager you report to is confused by LSL and USL versus LCL and
UCL. The notations look similar. Carefully explain the conceptual
difference between specification limits for individual measurements and
control limits for x¯.

17.56 Interpreting the capability indexes.

Sketch Normal curves that represent measurements on products from a
process with

(a) Cp = 1.0 and Cpk = 0.5.

(b) Cp = 1.0 and Cpk = 1.0.

(c) Cp = 2.0 and Cpk = 1.0.

Cautions about capability indexes

Capability indexes are widely used, especially in manufacturing. Some large
manufacturers even set standards, such as Cpk ≥ 1.33, that their suppliers must
meet. That is, suppliers must show that their processes are in control (through
control charts) and also that they are capable of high quality (as measured by Cpk).
There are good reasons for requiring Cpk: it is a better description of process
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quality than “100% of output meets specs,” and it can document continual
improvement. Nonetheless, it is easy to trust Cpk too much. We will point to three
possible pitfalls.

How to cheat on Cpk

Estimating Cpk requires estimates of the process mean μ and standard deviation σ.
The estimates are usually based on samples measured in order to keep control
charts. There is only one reasonable estimate of μ. This is the mean x¯ of all
measurements in recent samples, which is the same as the mean x¯¯ of the sample
means.

There are two different ways of estimating σ, however. The standard deviation s
of all measurements in recent samples will usually be larger than the control chart
estimate s¯/c4 based on averaging the sample standard deviations. For Cpk, the
proper estimate is s because we want to describe all the variation in the process
output. Larger Cpk’s are better, and a supplier wanting to satisfy a customer can
make Cpk a bit larger simply by using the smaller estimate s¯/c4 for σ. That’s
cheating.

Non-Normal distributions

Many business processes, and some manufacturing processes as well, give
measurements that are clearly right-skewed rather than approximately Normal.
Measuring the times required to deal with customer calls or prepare invoices
typically gives a right-skewed distribution—there are many routine cases and a few
unusual or difficult situations that take much more time. Other processes have
“heavy tails,” with more measurements far from the mean than in a Normal
distribution.

Process capability concerns the behavior of individual outputs, so the central
limit theorem effect that improves the Normality of x¯ does not help us. Capability
indexes are therefore more strongly affected by non-Normality than are control
charts. It is hard to interpret Cpk when the measurements are strongly non-Normal.
Until you gain experience, it is best to apply capability indexes only when Normal
quantile plots show that the distribution is at least roughly Normal.

Sampling variation
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We know that all statistics are subject to sampling variation. If we draw another
sample from the same process at the same time, we get slightly different x¯ and s
due to the luck of the draw in choosing samples. In process control language, the
samples differ due to the common cause variation that is always present.

Cp and Cpk are in practice calculated from process data because we don’t know
the true process mean and standard deviation. That is, these capability indexes are
statistics subject to sampling variation. A supplier under pressure from a large
customer to measure Cpk often may base calculations on small samples from the
process. The resulting estimate C^pk can differ from the true process Cpk in either
direction.

EXAMPLE

17.18 Can we adequately measure Cpk?

Suppose that the process of waterproofing is in control at its original level.
Water resistance measurements are Normally distributed with mean μ = 2750
mm and standard deviation σ = 430 mm. The tightened specification limits are
LSL = 1500 and USL = 3500, so the true capability is

Cpk=3500−2750(3)(430)=0.58

Suppose also that the manufacturer measures 4 jackets each four-hour shift and
then calculates C^pk at the end of 8 shifts. That is, C^pk uses measurements
from 32 jackets.

Figure 17.20 is a histogram of 24 computer-simulated C^pk’s from this
setting. They vary from 0.44 to 0.84, almost a two-to-one spread. It is clear
that 32 measurements are not enough to reliably estimate Cpk.

As a very rough rule of thumb, don’t trust C^pk unless it is based on at least
100 measurements.
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FIGURE 17.20
Capability indexes estimated from sample will vary from sample to sample The histogram
shows the variation in C^pk in 24 samples, each of size 32, for Example 17.18. The process
capability is in fact Cpk = 0.58.

SECTION 17.3 Summary

Capability indexes measure process variability (Cp) or process center and
variability (Cpk) against the standard provided by external specifications for the
output of the process. Larger values indicate higher capability.

Interpretation of Cp and Cpk requires that measurements on the process output
have a roughly Normal distribution. These indexes are not meaningful unless the
process is in control so that its center and variability are stable.

Estimates of Cp and Cpk can be quite inaccurate when based on small numbers
of observations, due to sampling variability. You should mistrust estimates not
based on at least 100 measurements.

SECTION 17.3 Exercises
For Exercises 17.55 and 17.56, see page 17-46.
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17.57 Capability indexes for the waterproofing process.

Table 17.1 (page 17-10) gives 20 process control samples of the water resistance of a particular outdoor
jacket. In Example 17.13, we estimated from these samples that μ^=x¯¯=2750.7 mm and σ^=s=383.8 mm.

(a) The original specifications for water resistance were LSL = 1000 mm and USL = 4000 mm. Estimate
Cp and Cpk for this process.

(b) A major customer tightened the specifications to LSL = 1500 mm and USL = 3500 mm. Now what are
C^p and C^pk?

17.58 Capability indexes for the waterproofing process, continued.

We could improve the performance of the waterproofing process discussed in the previous exercise by
making an adjustment that moves the center of the process to μ = 2500 mm, the center of the specifications.
We should do this even if the original specifications remain in force, because this will require less sealer
and therefore cost less. Suppose that we succeed in moving μ to 2500 with no change in the process
variability σ, estimated by s = 383.8.

(a) What are C^p and C^pk with the original specifications? Compare the values with those from part (a) of
the previous exercise.

(b) What are C^p and C^pk with the tightened specifications? Again compare with the previous results.

17.59 Capability indexes for the meat-packaging process.

Table 17.3 (page 17-19) gives 20 process control samples of the weight of ground beef sections. The lower

and upper specifications for the 1-pound sections are 0.96 and 1.10.  MEATWGT

(a) Using these data, estimate Cp and Cpk for this process.

(b) What may be a reason for the specifications being centered at a weight that is slightly greater than the
desired 1 pound?

17.60 Can we improve the capability of the meat-packaging process?

Refer to Exercise 17.59. The average weight of each section can be increased (or decreased) by increasing
(or decreasing) the time between slices of the machine. Based on the results of the previous exercise,
would a change in the slicing-time interval improve capability? If so, what value of the average weight
should the company seek to attain, and what are C^p and C^pk with this new process mean?

17.61 Capability of a characteristic with a uniform distribution.

Suppose that a quality characteristic has the uniform distribution on 0 to 1. Figure 17.21 shows the density
curve. You can see that the process mean (the balance point of the density curve) is μ = 1/2. The standard
deviation turns out to be σ = 0.289. Suppose also that LSL = 1/4 and USL = 3/4.

(a) Mark LSL and USL on a sketch of the density curve. What is Cpk? What percent of the output meets
the specifications?

(b) For comparison, consider a process with Normally distributed output having mean μ = 1/2 and standard
deviation σ = 0.289. This process has the same Cpk that you found in part (a). What percent of its output
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meets the specifications?

(c) What general fact do your calculations illustrate?

FIGURE 17.21
Density curve for the uniform distribution on 0 to 1, for Exercise 17.61.

17.62 An alternative estimate for Cpk of the waterproofing process.

In Exercise 17.58(b) you found C^pk for specifications LSL = 1500 and USL = 3500 using the standard
deviation s = 383.8 for all 80 individual jackets in Table 17.1. Repeat the calculation using the control
chart estimate σ^=s¯/c4. You should find this C^pk to be slightly larger.

17.63 Estimating capability indexes for the distance between holes.

Figure 17.10 (page 17-22) displays a record sheet on which operators have recorded 18 samples of
measurements on the distance between two mounting holes on an electrical meter. Sample 5 was out of
control on an s chart. We remove it from the data after the special cause has been fixed. In Exercise 17.47

(page 17-39), you saw that the measurements are reasonably Normal.  MOUNT

(a) Based on the remaining 17 samples, estimate the mean and standard deviation of the distance between
holes for the population of all meters produced by this process. Make a sketch comparing the Normal
distribution with this mean and standard deviation with the specification limits 54 ± 10.

(b) What are C^p and C^pk based on the data? How would you characterize the capability of the process?
(Mention both center and variability.)

17.64 Calculating capability indexes for the DRG 209 hospital losses.

Table 17.9 (page 17-38) gives data on a hospital’s losses for 120 DRG 209 patients, collected as 15
monthly samples of 8 patients each. The process has been in control and losses have a roughly Normal
distribution. The hospital decides that suitable specification limits for its loss in treating one such patient

are LSL = $4500 and USL = $7500.  DRG
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(a) Estimate the percent of losses that meet the specifications.

(b) Estimate Cp.

(c) Estimate Cpk.

17.65 Assessing the capability of the skateboard bearings process.

Recall the skateboard bearings process described in Exercise 17.50 (page 17-40). The bore diameter has
specifications (7.9920, 8.000) mm. The process is monitored by x¯ and s charts based on samples of 5
consecutive bearings each hour. Control has recently been excellent. The 200 individual measurements
from the past week’s 40 samples have

x¯=7.996  mm    s=0.0023  mm

A Normal quantile plot shows no important deviations from Normality.

(a) What percent of bearings will meet specifications if the process remains in its current state?

(b) Estimate the capability index Cpk.

17.66 Will these actions help the capability?

Based on the results of the previous exercise, you conclude that the capability of the bearing-making
process is inadequate. Here are some suggestions for improving the capability of this process. Comment on
the usefulness of each action suggested.

(a) Narrowing the control limits so that the process is adjusted more often.

(b) Additional training of operators to ensure correct operating procedures.

(c) A capital investment program to install new fabricating machinery.

(d) An award program for operators who produce the fewest nonconforming bearings.

(e) Purchasing more uniform (and more expensive) metal stock from which to form the bearings.

17.67 Cpk and “six-sigma.”

A process with Cp ≥ 2 is sometimes said to have “six-sigma quality.” Sketch the specification limits and a
Normal distribution of individual measurements for such a process when it is properly centered. Explain
from your sketch why this is called six-sigma quality.

17.68 More on “six-sigma quality.”

The originators of the “six-sigma quality” idea reasoned as follows. Short-term process variation is
described by σ. In the long term, the process mean μ will also vary. Studies show that in most
manufacturing processes, ±1.5σ is adequate to allow for changes in μ. The six-sigma standard is intended
to allow the mean μ to be as much as 1.5σ away from the center of the specifications and still meet high
standards for percent of output lying outside the specifications.

(a) Sketch the specification limits and a Normal distribution for process output when Cp = 2 and the mean
is 1.5σ away from the center of the specifications.
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TABLE 17.12  Fifty Control Chart Samples of Call Center Response Times

(b What is Cpk in this case? Is six-sigma quality as strong a requirement as Cpk ≥ 2?

(c) Because most people don’t understand standard deviations, six-sigma quality is usually described as
guaranteeing a certain level of parts per million of output that fails to meet specifications. Based on your
sketch in part (a), what is the probability of an outcome outside the specification limits when the mean is
1.5σ away from the center? How many parts per million is this? (You will need software or a calculator for
Normal probability calculations, because the value you want is beyond the limits of the standard Normal
table.)

Table 17.12 gives the process control samples that lie behind the histogram of call center response times in
Figure 17.17(b) on page 17-42. A sample of 6 calls is recorded each shift for quality improvement
purposes. The time from the first ring until a representative answers the call is recorded. Table 17.12 gives
data for 50 shifts, 300 calls total. Exercises 17.69 to 17.71 make use of this setting.

17.69 Choosing the sample.

The 6 calls each shift are chosen at random from all calls received during the shift. Discuss the reasons
behind this choice and those behind a choice to time 6 consecutive calls.

17.70 Constructing and interpreting the s chart.

Table 17.12 also gives x¯ and s for each of the 50 samples.

(a) Make an s chart and check for points out of control.

(b) If the s-type cause responsible is found and removed, what would be the new control limits for the s
chart? Verify that no points s are now out of control.

(c) Use the remaining 46 samples to find the center line and control limits for an x¯ chart. Comment on the
control (or lack of control) of x¯. (Because the distribution of response times is strongly skewed, s¯ is large
and the control limits for x¯ are wide. Control charts based on Normal distributions often work poorly
when measurements are strongly skewed.)

17.71 More on interpreting the s chart.

Each of the 4 out-of-control values of s in part (a) of the previous exercise is explained by a single outlier,
a very long response time to one call in the sample. You can see these outliers in Figure 17.17(b). What are
the values of these outliers, and what are the s-values for the 4 samples when the outliers are omitted? (The
interpretation of the data is, unfortunately, now clear. Few customers will wait 5 minutes for a call to be
answered, as the customer whose call took 333 seconds to answer did. We suspect that other customers
hung up before their calls were answered. If so, response time data for the calls that were answered don’t
adequately picture the quality of service. We should now look at data on calls lost before being answered
to see a fuller picture.)

Sample Time (seconds) Sample mean Standard deviation
1 59 13   2 24 11 18 21.2 19.93
2 38 12 46 17 77 12 33.7 25.56
3 46 44   4 74 41 22 38.5 23.73
4 25   7 10 46 78 14 30.0 27.46
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5   6   9 122   8 16 15 29.3 45.57
6 17 17   9 15 24 70 25.3 22.40

7   9   9 10 32   9 68 22.8 23.93
8   8 10 41 13 17 50 23.2 17.79
9 12 82 97 33 76 56 59.3 32.11
10 42 19 14 21 12 44 25.3 14.08
11 63   5 21 11 47   8 25.8 23.77
12 12   4 111 37 12 24 33.3 39.76
13 43 37 27 65 32   3 34.5 20.32
14 9 26   5 10 30 27 17.8 10.98
15 21 14 19 44 49 10 26.2 16.29
16 24 11 10 22 43 70 30.0 22.93
17 27 10 32 96 11 29 34.2 31.71
18   7 28 22 17   9 24 17.8 8.42
19 15 14 34   5 38 29 22.5 13.03
20 16 65   6   5 58 17 27.8 26.63
21   7 44 14 16   4 46 21.8 18.49
22 32 52 75 11 11 17 33.0 25.88
23 31   8 36 25 14 85 33.2 27.45
24   4 46 23 58   5 54 31.7 24.29
25 28 6 46   4 28 11 20.5 16.34
26 111   6   3 83 27 6 39.3 46.34
27 83 27   2 56 26 21 35.8 28.88
28 276 14 30   8   7 12 57.8 107.20
29   4 29 21 23   4 14 15.8 10.34
30 23 22 19 66 51 60 40.2 21.22
31 14 111 20   7   7 87 41.0 45.82
32 22 11 53 20 14 41 26.8 16.56
33 30   7 10 11   9   9 12.7 8.59
34 101 55 18 20 77 14 47.5 36.16
35 13 11 22 15   2 14 12.8 6.49
36 20 83 25 10 34 23 32.5 25.93
37 21   5 14 22 10 68 23.3 22.82
38   8 70 56   8 26   7 29.2 27.51
39 15   7   9 144 11 109 49.2 60.97
40 20   4 16 20 124 16 33.3 44.80
41 16 47 97 27 61 35 47.2 28.99
42 18 22 244 19 10   6 53.2 93.68
43 43 20 77 22   7 33 33.7 24.49
44 67 20 4 28   5   7 21.8 24.09
45 118 18   1 35 78 35 47.5 43.00
46 71 85 24 333 50 11 95.7 119.53
47 12 11 13 19 16 91 27.0 31.49
48   4 63 14 22 43 25 28.5 21.29
49 18 55 13 11   6 13 19.3 17.90
50   4   3 17 11   6 17 9.7 6.31
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17.4 Control Charts for Sample Proportions

When you complete this section, you will be able to

• Know when to use a p chart rather than an x¯ chart.

• Compute the center line and control limits for a p chart and utilize the
chart for process monitoring.

We have considered control charts for just one kind of data: measurements of a
quantitative variable in some meaningful scale of units. We describe the
distribution of measurements by its center and spread and use x¯ and s or x¯ and R
charts for process control. There are control charts for other statistics that are
appropriate for other kinds of data. The most common of these is the p chart for
use when the data are proportions.

p CHART

A p chart is a control chart based on plotting sample proportions p^ from
regular samples from a process against the order in which the samples were
taken.

EXAMPLE

17.19 Examples of the p chart.

Here are two examples of the usefulness of p charts:
Manufacturing. Measure two dimensions of a part and also grade its

surface finish by eye. The part conforms if both dimensions lie within their
specifications and the finish is judged acceptable. Otherwise, it is
nonconforming. Plot the proportion of nonconforming parts in samples of
parts from each shift.

School absenteeism. An urban school system records the percent of its
eighth-grade students who are absent three or more days each month. Because
students with high absenteeism in eighth grade often fail to complete high
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school, the school system has launched programs to reduce absenteeism. These
programs include calls to parents of absent students, public-service messages
to change community expectations, and measures to ensure that the schools are
safe and attractive. A p chart will show if the programs are having an effect.

The manufacturing example illustrates an advantage of p charts: they can
combine several specifications in a single chart. Nonetheless, p charts have been
rendered outdated in many manufacturing applications by improvements in typical
levels of quality. When the proportion of nonconforming parts is very small, even
large samples of parts will rarely contain any bad parts. The sample proportions
will almost all be 0, so that plotting them is uninformative.

It is better to choose important measured characteristics—voltage at a critical
circuit point, for example—and keep x¯ and s charts. Even if the voltage is
satisfactory, quality can be improved by moving it yet closer to the exact voltage
specified in the design of the part.

The school absenteeism example is a management application of p charts. More
than 19% of all American eighth-graders miss three or more days of school per
month, and this proportion is higher in large cities and for certain ethnic groups.16

A p chart will be useful. Proportions of “things going wrong” are often higher in
business processes than in manufacturing, so that p charts are an important tool in
business.

Control limits for p charts

We studied the sampling distribution of a sample proportion p^ in Chapter 5. The
center line and control limits for a 3σ control chart follow directly from the facts
stated there, in the box on page 330. We ought to call such charts “p^ charts”
because they plot sample proportions. Unfortunately, they have always been called
p charts in quality control circles. We will keep the traditional name but also keep
our usual notation: p is a process proportion and p^ is a sample proportion.

p CHART USING PAST DATA

Take regular samples from a process that has been in control. The samples
need not all have the same size. Estimate the process proportion p of
“successes” by

p¯=total    number   of  successes   in    past    samplestotal    
number   of  opportunities   in   these    samples  
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The center line and control limits for a p chart for future samples of size n are

UCL=p¯+3p¯(1−p¯)n

CL=p¯

LCL=p¯−3p¯(1−p¯)n

Common out-of-control signals are one sample proportion p^ outside the
control limits or a run of 9 sample proportions on the same side of the center
line.

If we have k past samples of the same size n, then p¯ is just the average of the k
sample proportions. In some settings, you may meet samples of unequal size—
differing numbers of students enrolled in a month or differing numbers of parts
inspected in a shift. The average p¯ estimates the process proportion p even when
the sample sizes vary. Note that the control limits use the actual size n of a sample.

EXAMPLE

17.20 Monitoring employees’ absences.

Unscheduled absences by clerical and production workers are an important
cost in many companies. Reducing the rate of absenteeism is therefore an
important goal for a company’s human relations department. A rate of
absenteeism above 5% is a serious concern. Many companies set 3% absent as
a desirable target. You have been asked to improve absenteeism in a
production facility where 12% of the workers are now absent on a typical day.

You first do some background study—in greater depth than this very brief
summary. Companies try to avoid hiring workers who are likely to miss work
often, such as substance abusers. They may have policies that reward good
attendance or penalize frequent absences by individual workers. Changing
those policies in this facility will have to wait until the union contract is
renegotiated. What might you do with the current workers under current
policies?

Studies of absenteeism by clerical and production workers who do
repetitive, routine work under close supervision point to unpleasant work
environment and harsh or unfair treatment by supervisors as factors that
increase absenteeism. It’s now up to you to apply this general knowledge to
your specific problem.
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First, collect data. Daily absenteeism data are already available. You carry out a
sample survey that asks workers about their absences and the reasons for them
(responses are anonymous, of course). Workers who are more often absent
complain about their supervisors and about the lighting at their workstations.
Female workers complain that the rest rooms are dirty and unpleasant. You do
more data analysis:

FIGURE 17.22
Pareto chart of the average absenteeism rate for workers reporting to each of 12 supervisors.

• A Pareto chart of average absenteeism rate for the past month broken down by
supervisor (Figure 17.22) shows important differences among supervisors. Only
supervisors B, E, and H meet the level of 5% or less absenteeism. Workers
supervised by I and D have particularly high rates.

• Another Pareto chart (not shown) by type of workstation shows that a few types
of workstation have high absenteeism rates.

Now you take action. You retrain all the supervisors in human relations skills,
using B, E, and H as discussion leaders. In addition, a trainer works individually
with supervisors I and D. You ask supervisors to talk with any absent worker when
he or she returns to work. Working with the engineering department, you study the
workstations with high absenteeism rates and make changes such as better lighting.
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You refurbish the rest rooms (for both genders even though only women
complained) and schedule more frequent cleaning.

EXAMPLE

17.21 Are your actions effective?

You hope to see a reduction in absenteeism. To view progress (or lack of
progress), you will keep a p chart of the proportion of absentees. The plant has
987 production workers. For simplicity, you just record the number who are
absent from work each day. Only unscheduled absences count, not planned
time off such as vacations. Each day you will plot

p^=number     of  workers  absent987

You first look back at data for the past three months. There were 64 workdays
in these months. The total workdays available for the workers was

(64)(987) = 63, 168 person-days

Absences among all workers totaled 7580 person-days. The average daily
proportion absent was therefore

p¯=total  days absenttotal days available for work

=758063,168=0.120

The daily rate has been in control at this level.
These past data allow you to set up a p chart to monitor future proportions

absent:

UCL=p¯+3p¯(1−p¯)n=0.120+3(0.120)(0.880)987

= 0.120 + 0.031 = 0.151

CL=p¯=0.120

LCL=p¯−3p¯(1−p¯)n=0.120−3(0.120)(0.880)987

= 0.120 − 0.031 = 0.089

Table 17.13 gives the data for the next four weeks. Figure 17.23 is the p chart.
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TABLE 17.13  Proportions of Workers Absent During Four Weeks
Day M T W Th F M T W Th F

Workers absent 129 121 117 109 122 119 103 103 89 105
Proportion p^ 0.131 0.123 0.119 0.110 0.124 0.121 0.104 0.104 0.090 0.106

Day M T W Th F M T W Th F
Workers absent 99 92 83 92 92 115 101 106 83 98
Proportion p^ 0.100 0.093 0.084 0.093 0.093 0.117 0.102 0.107 0.084 0.099
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FIGURE 17.23
The p chart for daily proportion of workers absent over a four-week period, for Example 17.21.
The lack of control shows an improvement (decrease) in absenteeism. Update the chart to
continue monitoring the process.

Figure 17.23 shows a clear downward trend in the daily proportion of workers
who are absent. Days 13 and 19 lie below LCL, and a run of 9 days below the
center line is achieved at Day 15 and continues. The points marked “x” are
therefore all out of control. It appears that a special cause (the various actions you
took) has reduced the absenteeism rate from around 12% to around 10%. The last
two weeks’ data suggest that the rate has stabilized at this level. You will update
the chart based on the new data. If the rate does not decline further (or even rises
again as the effect of your actions wears off), you will consider further changes.

Example 17.21 is a bit oversimplified. The number of workers available did not
remain fixed at 987 each day. Hirings, resignations, and planned vacations change
the number a bit from day to day. The control limits for a day’s p^ depend on n, the
number of workers that day. If n varies, the control limits will move in and out
from day to day. Software will do the extra arithmetic needed for a different n each
day, but as long as the count of workers remains close to 987, the greater detail will
not change your conclusion.

A single p chart for all workers is not the only, or even the best, choice in this
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setting. Because of the important role of supervisors in absenteeism, it would be
wise to also keep separate p charts for the workers under each supervisor. These
charts may show that you must reassign some supervisors.

SECTION 17.4 Summary

There are control charts for several different types of process measurements. One
important type is the p chart for sample proportions p^.

The interpretation of p charts is very similar to that of x¯ charts. The out-of-
control rules used are also the same.

SECTION 17.4 Exercises

17.72 Constructing a p chart for absenteeism.

After inspecting Figure 17.23, you decide to monitor the next four weeks’ absenteeism rates using a center
line and control limits calculated from the second two weeks’ data recorded in Table 17.13. Find p¯ for
these 10 days and give the new values of CL, LCL, and UCL. (Until you have more data, these are trial
control limits. As long as you are taking steps to improve absenteeism, you have not reached the process-
monitoring stage.)

17.73 Constructing a p chart for unpaid invoices.

The controller’s office of a corporation is concerned that invoices that remain unpaid after 30 days are
damaging relations with vendors. To assess the magnitude of the problem, a manager searches payment
records for invoices that arrived in the past 10 months. The average number of invoices is 2635 per month,
with relatively little month-to-month variation. Of all these invoices, 957 remained unpaid after 30 days.

(a) What is the total number of opportunities for unpaid invoices? What is p¯

(b) Give the center line and control limits for a p chart on which to plot the future monthly proportions of
unpaid invoices.

17.74 Constructing a p chart for mishandled baggage.

The Department of Transportation reports that 3.09 of every 1000 passengers on domestic flights of the 10
largest U.S. airlines file a report of mishandled baggage.17 Starting with this information, you plan to
sample records for 2500 passengers per day at a large airport to monitor the effects of efforts to reduce
mishandled baggage. What are the initial center line and control limits for a chart of the daily proportion of
mishandled baggage reports? (You will find that LCL < 0. Because proportions p^ are always 0 or positive,
take LCL = 0.)

17.75 Constructing a p chart for damaged eggs.

An egg farm wants to monitor the effects of some new handling procedures on the percent of eggs arriving
at the packaging center with cracked or broken shells. In the past, 2.31% of the eggs were damaged. A
machine will allow the farm to inspect 500 eggs per hour. What are the initial center line and control limits
for a chart of the hourly percent of damaged eggs?
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17.76 More on constructing a p chart for damaged eggs.

Refer to Exercise 17.75. Suppose that there are two machine operators, each working four-hour shifts. The
first operator is very skilled and can inspect 500 eggs per hour. The second operator is less experienced and
can inspect only 400 eggs per hour. Construct a p chart for an eight-hour day showing the appropriate
center line and control limits.

17.77 Constructing a p chart for missing or deformed rivets.

After completion of an aircraft wing assembly, inspectors count the number of missing or deformed rivets.
There are hundreds of rivets in each wing, but the total number varies depending on the aircraft type.
Recent data for wings with a total of 38,370 rivets show 194 missing or deformed. The next wing contains
1520 rivets. What are the appropriate center line and control limits for plotting the p^ from this wing on a p
chart?

17.78 Constructing the p chart limits for incorrect or illegible prescriptions.

A regional chain of retail pharmacies finds that about 1% of prescriptions it receives from doctors are
incorrect or illegible. The chain puts in place a secure online system that doctors’ offices can use to enter
prescriptions directly. It hopes that fewer prescriptions entered online will be incorrect or illegible. A p
chart will monitor progress. Use information about past prescriptions to set initial center line and control
limits for the proportion of incorrect or illegible prescriptions on a day when the chain fills 90,000 online
prescriptions. What are the center line and control limits for a day when only 45,000 online prescriptions
are filled?

17.79 Calculating the p chart limits for school absenteeism.

Here are data from an urban school district on the number of eighth-grade students with three or more
unexcused absences from school during each month of a school year. Because the total number of eighth-
graders changes a bit from month to month, these totals are also given for each month.

Month Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June
Students 911 947 939 942 918 920 931 925 902 883
Absent 291 349 364 335 301 322 344 324 303 344

(a) Find p¯. Because the number of students varies from month to month, also find n¯, the average per
month.

(b) Make a p chart using control limits based on n¯ students each month. Comment on control.

(c) The exact control limits are different each month because the number of students n is different each
month. This situation is common in using p charts. What are the exact limits for October and June, the
months with the largest and smallest n? Add these limits to your p chart, using short lines spanning a single
month. Do exact limits affect your conclusions?

17.80 p chart for a high-quality process.

A manufacturer of consumer electronic equipment makes full use not only of statistical process control but
also of automated testing equipment that efficiently tests all completed products. Data from the testing
equipment show that finished products have only 2.9 defects per million opportunities.

(a) What is p¯ for the manufacturing process? If the process turns out 5000 pieces per day, how many
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defects do you expect to see per day? In a typical month of 24 working days, how many defects do you
expect to see?

(b) What are the center line and control limits for a p chart for plotting daily defect proportions?

(c) Explain why a p chart is of no use at such high levels of quality.

17.81 More on monitoring a high-quality process.

Because the manufacturing quality in the previous exercise is so high, the process of writing up orders is
the major source of quality problems: the defect rate there is 8000 per million opportunities. The
manufacturer processes about 500 orders per month.

(a) What is p¯ for the order-writing process? How many defective orders do you expect to see in a month?

(b) What are the center line and control limits for a p chart for plotting monthly proportions of defective
orders? What is the smallest number of bad orders in a month that will result in a point above the upper
control limit?

1527



CHAPTER 17 Exercises

17.82 Describing a process that is in control.

A manager who knows no statistics asks you, “What does it mean to say that a process is in control?
Is being in control a guarantee that the quality of the product is good?” Answer these questions in
plain language that the manager can understand.

17.83 Constructing a Pareto chart.

You manage the customer service operation for a maker of electronic equipment sold to business
customers. Traditionally, the most common complaint is that equipment does not operate properly
when installed, but attention to manufacturing and installation quality will reduce these complaints.
You hire an outside firm to conduct a sample survey of your customers. Here are the percents of
customers with each of several kinds of complaints:

Category Percent
Accuracy of invoices 25
Clarity of operating manual   8
Complete invoice 24
Complete shipment 16
Correct equipment shipped 15
Ease of obtaining invoice adjustments/credits 33
Equipment operates when installed   6
Meeting promised delivery date 11
Sales rep returns calls   4
Technical competence of sales rep 12

(a) Why do the percents not add to 100%?

(b) Make a Pareto chart. What area would you choose as a target for improvement?

17.84 Choice of control chart.

What type of control chart or charts would you use as part of efforts to assess quality? Explain your
choices.

(a) Time to get security clearance

(b) Percent of job offers accepted

(c) Thickness of steel washers

(d) Number of dropped calls per day
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17.85 Interpreting signals.

Explain the difference in the interpretation of a point falling beyond the upper control limit of the x¯
chart versus a point falling beyond the upper control limit of an s chart.

17.86 Selecting the appropriate control chart and limits.

At the present time, about 5 out of every 1000 lots of material arriving at a plant site from outside
vendors are rejected because they do not meet specifications. The plant receives about 350 lots per
week. As part of an effort to reduce errors in the system of placing and filling orders, you will
monitor the proportion of rejected lots each week. What type of control chart will you use? What are
the initial center line and control limits?

You have just installed a new system that uses an interferometer to measure the thickness of
polystyrene film. To control the thickness, you plan to measure 3 film specimens every 10 minutes
and keep x¯ and s charts. To establish control, you measure 22 samples of 3 films each at 10-minute
intervals. Table 17.14 gives x¯ and s for these samples. The units are millimeters × 10−4. Exercises
17.87 to 17.91 are based on this process improvement setting.

17.87 Constructing the s chart.

Calculate control limits for s, make an s chart, and comment on control of short-term process

variation.  THICK

17.88 Recalculating the x¯ and s charts.

Interviews with the operators reveal that in Samples 1 and 10 mistakes in operating the
interferometer resulted in one high-outlier thickness reading that was clearly incorrect. Recalculate
x¯ and s after removing Samples 1 and 10. Recalculate UCL for the s chart and add the new UCL to
your s chart from the previous exercise. Control for the remaining samples is excellent. Now find the
appropriate center line and control limits for an x¯ chart, make the x¯ chart, and comment on

control.  THICK

17.89 Capability of the film thickness process.

The specifications call for film thickness 830 ± 25 mm × 10−4.

(a) What is the estimate σ^ of the process standard deviation based on the sample standard
deviations (after removing Samples 1 and 10)? Estimate the capability ratio Cp and comment on
what it says about this process.

(b) Because the process mean can easily be adjusted, Cp is more informative than Cpk. Explain why
this is true.

(c) The estimate of Cp from part (a) is probably too optimistic as a description of the film produced.
Explain why.

17.90 Calculating the percent that meet specifications.
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TABLE 17.14  x¯ and s for Samples of Film Thickness (mm × 10−4)

Examination of individual measurements shows that they are close to Normal. If the process mean is

set to the target value, about what percent of films will meet the specifications?  THICK

17.91 More on the film thickness process.

Previously, control of the process was based on categorizing the thickness of each film inspected as
satisfactory or not. Steady improvement in process quality has occurred, so that just 15 of the last

5000 films inspected were unsatisfactory.  THICK

(a) What type of control chart would be used in this setting, and what would be the control limits for
a sample of 100 films?

(b) The chart in part (a) is of little practical value at current quality levels. Explain why.

17.92 Probability of an out-of-control signal.

There are other out-of-control rules that are sometimes used with x¯ charts. One is “15 points in a
row within the 1σ level.” That is, 15 consecutive points fall between μ−σ/n and μ+σ/n. This signal
suggests either that the value of σ used for the chart is too large or that careless measurement is
producing results that are suspiciously close to the target. Find the probability that the next 15 points
will give this signal when the process remains in control with the given μ and σ.

17.93 Probability of another out-of-control signal.

Another out-of-control signal is when four out of five successive points are on the same side of the
center line and farther than σ/n from it. Find the probability of this event when the process is in
control.

Sample x¯ s Sample x¯ s
1 848 20.1 12 823 12.6
2 832   1.1 13 835   4.4
3 826 11.0 14 843   3.6
4 833   7.5 15 841   5.9
5 837 12.5 16 840   3.6
6 834   1.8 17 833   4.9
7 834   1.3 18 840   8.0
8 838   7.4 19 826   6.1
9 835   2.1 20 839 10.2

10  852 18.9 21 836 14.8
11  836   3.8 22 829   6.7
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CHAPTER 17 Notes and Data Sources
1. Texts on quality management give more detail about these and other simple graphical methods for
quality problems. The classic reference is Kaoru Ishikawa, Guide to Quality Control, Asian
Productivity Organization, 1986.
2. The flowchart and a more elaborate version of the cause-and-effect diagram for Example 17.3
were prepared by S. K. Bhat of the General Motors Technical Center as part of a course assignment
at Purdue University.
3. Walter Shewhart’s classic book, Economic Control of Quality of Manufactured Product (Van
Nostrand, 1931), organized the application of statistics to improving quality.
4. We have adopted the terms “chart setup” and “process monitoring” from Andrew C. Palm’s
discussion of William H. Woodall, “Controversies and contradictions in statistical process control,”
Journal of Quality Technology, 32 (2000), pp. 341–350. Palm’s discussion appears in the same
issue, pp. 356–360. We have combined Palm’s stages B (“process improvement”) and C (“process
monitoring”) in writing for beginners because the distinction between them is one of degree.
5. It is common to call these “standards given” x¯ and s charts. We avoid this term because it easily
leads to the common and serious error of confusing control limits (based on the process itself) with
standards or specifications imposed from outside.
6. Data provided by Charles Hicks, Purdue University.
7. See, for example, Chapter 3 of Stephen B. Vardeman and J. Marcus Jobe, Statistical Quality
Assurance Methods for Engineers, Wiley, 1999.
8. The classic discussion of out-of-control signals and the types of special causes that may lie behind
special control chart patterns is the AT&T Statistical Quality Control Handbook, Western Electric,
1956.
9. The data in Table 17.6 are adapted from data on viscosity of rubber samples appearing in Table
P3.3 of Irving W. Burr, Statistical Quality Control Methods, Marcel Dekker, 1976.
10. The control limits for the s chart based on past data are commonly given as B4s¯ and B3s¯. That
is, B4 = B6/c4 and B3 = B5/c4. This is convenient for users, but we choose to minimize the number
of control chart constants students must keep straight and to emphasize that process-monitoring and
past-data charts are exactly the same except for the source of μ and σ.
11. Simulated data based on information appearing in Arvind Salvekar, “Application of six sigma to
DRG 209,” found at the Smarter Solutions website, www.smartersolutions.com.
12. Data provided by Linda McCabe, Purdue University.
13. The first two Deming quotations are from Public Sector Quality Report, December 1993, p. 5.
They were found online at deming.eng.clemson.edu/pub/den/files/demqtes.txt. The third quotation
is part of the 10th of Deming’s “14 points of quality management,” from his book Out of the Crisis,
MIT Press, 1986.
14. Control charts for individual measurements cannot use within-sample standard deviations to
estimate short-term process variability. The spread between successive observations is the next best
thing. Texts such as that cited in Note 7 give the details.
15. The data in Figure 17.17(b) are simulated from a probability model for call pickup times. That
pickup times for large financial institutions have median 20 seconds and mean 32 seconds is
reported by Jon Anton, “A case study in benchmarking call centers,” Purdue University Center for
Customer-Driven Quality, no date.
16. These 2011 statistics can be found at nces.ed.gov/programs/digest/d12/tables/dt12_187.asp.
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17. Data obtained from “Air travel consumer report,” Office of Aviation Enforcement and
Proceedings, March 2013.
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TABLE A  Standard Normal probabilities

Table entry for z is the area under the standard Normal curve to the left of z.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
−3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
−3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
−3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
−3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
−3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
−2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
−2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
−1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
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−0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
−0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
−0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
−0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
−0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
−0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
−0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
−0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
−0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
−0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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TABLE B  Random digits
Line
101 19223 95034 05756 28713 96409 12531 42544 82853
102 73676 47150 99400 01927 27754 42648 82425 36290
103 45467 71709 77558 00095 32863 29485 82226 90056
104 52711 38889 93074 60227 40011 85848 48767 52573
105 95592 94007 69971 91481 60779 53791 17297 59335
106 68417 35013 15529 72765 85089 57067 50211 47487
107 82739 57890 20807 47511 81676 55300 94383 14893
108 60940 72024 17868 24943 61790 90656 87964 18883
109 36009 19365 15412 39638 85453 46816 83485 41979
110 38448 48789 18338 24697 39364 42006 76688 08708
111 81486 69487 60513 09297 00412 71238 27649 39950
112 59636 88804 04634 71197 19352 73089 84898 45785
113 62568 70206 40325 03699 71080 22553 11486 11776
114 45149 32992 75730 66280 03819 56202 02938 70915
115 61041 77684 94322 24709 73698 14526 31893 32592
116 14459 26056 31424 80371 65103 62253 50490 61181
117 38167 98532 62183 70632 23417 26185 41448 75532
118 73190 32533 04470 29669 84407 90785 65956 86382
119 95857 07118 87664 92099 58806 66979 98624 84826
120 35476 55972 39421 65850 04266 35435 43742 11937
121 71487 09984 29077 14863 61683 47052 62224 51025
122 13873 81598 95052 90908 73592 75186 87136 95761
123 54580 81507 27102 56027 55892 33063 41842 81868
124 71035 09001 43367 49497 72719 96758 27611 91596
125 96746 12149 37823 71868 18442 35119 62103 39244
126 96927 19931 36089 74192 77567 88741 48409 41903
127 43909 99477 25330 64359 40085 16925 85117 36071
128 15689 14227 06565 14374 13352 49367 81982 87209
129 36759 58984 68288 22913 18638 54303 00795 08727
130 69051 64817 87174 09517 84534 06489 87201 97245
131 05007 16632 81194 14873 04197 85576 45195 96565
132 68732 55259 84292 08796 43165 93739 31685 97150
133 45740 41807 65561 33302 07051 93623 18132 09547
134 27816 78416 18329 21337 35213 37741 04312 68508
135 66925 55658 39100 78458 11206 19876 87151 31260
136 08421 44753 77377 28744 75592 08563 79140 92454
137 53645 66812 61421 47836 12609 15373 98481 14592
138 66831 68908 40772 21558 47781 33586 79177 06928
139 55588 99404 70708 41098 43563 56934 48394 51719
140 12975 13258 13048 45144 72321 81940 00360 02428
141 96767 35964 23822 96012 94591 65194 50842 53372
142 72829 50232 97892 63408 77919 44575 24870 04178
143 88565 42628 17797 49376 61762 16953 88604 12724
144 62964 88145 83083 69453 46109 59505 69680 00900
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145 19687 12633 57857 95806 09931 02150 43163 58636
146 37609 59057 66967 83401 60705 02384 90597 93600
147 54973 86278 88737 74351 47500 84552 19909 67181
148 00694 05977 19664 65441 20903 62371 22725 53340
149 71546 05233 53946 68743 72460 27601 45403 88692
150 07511 88915 41267 16853 84569 79367 32337 03316
151 03802 29341 29264 80198 12371 13121 54969 43912
152 77320 35030 77519 41109 98296 18984 60869 12349
153 07886 56866 39648 69290 03600 05376 58958 22720
154 87065 74133 21117 70595 22791 67306 28420 52067
155 42090 09628 54035 93879 98441 04606 27381 82637
156 55494 67690 88131 81800 11188 28552 25752 21953
157 16698 30406 96587 65985 07165 50148 16201 86792
158 16297 07626 68683 45335 34377 72941 41764 77038
159 22897 17467 17638 70043 36243 13008 83993 22869
160 98163 45944 34210 64158 76971 27689 82926 75957
161 43400 25831 06283 22138 16043 15706 73345 26238
162 97341 46254 88153 62336 21112 35574 99271 45297
163 64578 67197 28310 90341 37531 63890 52630 76315
164 11022 79124 49525 63078 17229 32165 01343 21394
165 81232 43939 23840 05995 84589 06788 76358 26622
166 36843 84798 51167 44728 20554 55538 27647 32708
167 84329 80081 69516 78934 14293 92478 16479 26974
168 27788 85789 41592 74472 96773 27090 24954 41474
169 99224 00850 43737 75202 44753 63236 14260 73686
170 38075 73239 52555 46342 13365 02182 30443 53229
171 87368 49451 55771 48343 51236 18522 73670 23212
172 40512 00681 44282 47178 08139 78693 34715 75606
173 81636 57578 54286 27216 58758 80358 84115 84568
174 26411 94292 06340 97762 37033 85968 94165 46514
175 80011 09937 57195 33906 94831 10056 42211 65491
176 92813 87503 63494 71379 76550 45984 05481 50830
177 70348 72871 63419 57363 29685 43090 18763 31714
178 24005 52114 26224 39078 80798 15220 43186 00976
179 85063 55810 10470 08029 30025 29734 61181 72090
180 11532 73186 92541 06915 72954 10167 12142 26492
181 59618 03914 05208 84088 20426 39004 84582 87317
182 92965 50837 39921 84661 82514 81899 24565 60874
183 85116 27684 14597 85747 01596 25889 41998 15635
184 15106 10411 90221 49377 44369 28185 80959 76355
185 03638 31589 07871 25792 85823 55400 56026 12193
186 97971 48932 45792 63993 95635 28753 46069 84635
187 49345 18305 76213 82390 77412 97401 50650 71755
188 87370 88099 89695 87633 76987 85503 26257 51736
189 88296 95670 74932 65317 93848 43988 47597 83044
190 79485 92200 99401 54473 34336 82786 05457 60343
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TABLE C  Binomial probabilities

191 40830 24979 23333 37619 56227 95941 59494 86539
192 32006 76302 81221 00693 95197 75044 46596 11628
193 37569 85187 44692 50706 53161 69027 88389 60313
194 56680 79003 23361 67094 15019 63261 24543 52884
195 05172 08100 22316 54495 60005 29532 18433 18057
196 74782 27005 03894 98038 20627 40307 47317 92759
197 85288 93264 61409 03404 09649 55937 60843 66167
198 68309 12060 14762 58002 03716 81968 57934 32624
199 26461 88346 52430 60906 74216 96263 69296 90107
200 42672 67680 42376 95023 82744 03971 96560 55148

 Entry is P(X=k)=(nk)pk(1−p)n−k
p

n k .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .15 .20
2 0 .9801 .9604 .9409 .9216 .9025 .8836 .8649 .8464 .8281 .8100 .7225 .6400

1 .0198 .0392 .0582 .0768 .0950 .1128 .1302 .1472 .1638 .1800 .2550 .3200
2 .0001 .0004 .0009 .0016 .0025 .0036 .0049 .0064 .0081 .0100 .0225 .0400

3 0 .9703 .9412 .9127 .8847 .8574 .8306 .8044 .7787 .7536 .7290 .6141 .5120
1 .0294 .0576 .0847 .1106 .1354 .1590 .1816 .2031 .2236 .2430 .3251 .3840
2 .0003 .0012 .0026 .0046 .0071 .0102 .0137 .0177 .0221 .0270 .0574 .0960
3 .0001 .0001 .0002 .0003 .0005 .0007 .0010 .0034 .0080

4 0 .9606 .9224 .8853 .8493 .8145 .7807 .7481 .7164 .6857 .6561 .5220 .4096
1 .0388 .0753 .1095 .1416 .1715 .1993 .2252 .2492 .2713 .2916 .3685 .4096
2 .0006 .0023 .0051 .0088 .0135 .0191 .0254 .0325 .0402 .0486 .0975 .1536
3 .0001 .0002 .0005 .0008 .0013 .0019 .0027 .0036 .0115 .0256
4 .0001 .0001 .0005 .0016

5 0 .9510 .9039 .8587 .8154 .7738 .7339 .6957 .6591 .6240 .5905 .4437 .3277
1 .0480 .0922 .1328 .1699 .2036 .2342 .2618 .2866 .3086 .3280 .3915 .4096
2 .0010 .0038 .0082 .0142 .0214 .0299 .0394 .0498 .0610 .0729 .1382 .2048
3 .0001 .0003 .0006 .0011 .0019 .0030 .0043 .0060 .0081 .0244 .0512
4 .0001 .0001 .0002 .0003 .0004 .0022 .0064
5 .0001 .0003

6 0 .9415 .8858 .8330 .7828 .7351 .6899 .6470 .6064 .5679 .5314 .3771 .2621
1 .0571 .1085 .1546 .1957 .2321 .2642 .2922 .3164 .3370 .3543 .3993 .3932
2 .0014 .0055 .0120 .0204 .0305 .0422 .0550 .0688 .0833 .0984 .1762 .2458
3 .0002 .0005 .0011 .0021 .0036 .0055 .0080 .0110 .0146 .0415 .0819
4 .0001 .0002 .0003 .0005 .0008 .0012 .0055 .0154
5 .0001 .0004 .0015
6 .0001

7 0 .9321 .8681 .8080 .7514 .6983 .6485 .6017 .5578 .5168 .4783 .3206 .2097
1 .0659 .1240 .1749 .2192 .2573 .2897 .3170 .3396 .3578 .3720 .3960 .3670
2 .0020 .0076 .0162 .0274 .0406 .0555 .0716 .0886 .1061 .1240 .2097 .2753
3 .0003 .0008 .0019 .0036 .0059 .0090 .0128 .0175 .0230 .0617 .1147
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4 .0001 .0002 .0004 .0007 .0011 .0017 .0026 .0109 .0287
5 .0001 .0001 .0002 .0012 .0043
6 .0001 .0004
7

8 0 .9227 .8508 .7837 .7214 .6634 .6096 .5596 .5132 .4703 .4305 .2725 .1678
1 .0746 .1389 .1939 .2405 .2793 .3113 .3370 .3570 .3721 .3826 .3847 .3355
2 .0026 .0099 .0210 .0351 .0515 .0695 .0888 .1087 .1288 .1488 .2376 .2936
3 .0001 .0004 .0013 .0029 .0054 .0089 .0134 .0189 .0255 .0331 .0839 .1468
4 .0001 .0002 .0004 .0007 .0013 .0021 .0031 .0046 .0185 .0459
5 .0001 .0001 .0002 .0004 .0026 .0092
6 .0002 .0011
7 .0001
8

9 0 .9135 .8337 .7602 .6925 .6302 .5730 .5204 .4722 .4279 .3874 .2316 .1342
1 .0830 .1531 .2116 .2597 .2985 .3292 .3525 .3695 .3809 .3874 .3679 .3020
2 .0034 .0125 .0262 .0433 .0629 .0840 .1061 .1285 .1507 .1722 .2597 .3020
3 .0001 .0006 .0019 .0042 .0077 .0125 .0186 .0261 .0348 .0446 .1069 .1762
4 .0001 .0003 .0006 .0012 .0021 .0034 .0052 .0074 .0283 .0661
5 .0001 .0002 .0003 .0005 .0008 .0050 .0165
6 .0001 .0006 .0028
7 .0003
8
9

10 0 .9044 .8171 .7374 .6648 .5987 .5386 .4840 .4344 .3894 .3487 .1969 .1074
1 .0914 .1667 .2281 .2770 .3151 .3438 .3643 .3777 .3851 .3874 .3474 .2684
2 .0042 .0153 .0317 .0519 .0746 .0988 .1234 .1478 .1714 .1937 .2759 .3020
3 .0001 .0008 .0026 .0058 .0105 .0168 .0248 .0343 .0452 .0574 .1298 .2013
4 .0001 .0004 .0010 .0019 .0033 .0052 .0078 .0112 .0401 .0881
5 .0001 .0001 .0003 .0005 .0009 .0015 .0085 .0264
6 .0001 .0001 .0012 .0055
7 .0001 .0008
8 .0001
9

10
12 0 .8864 .7847 .6938 .6127 .5404 .4759 .4186 .3677 .3225 .2824 .1422 .0687

1 .1074 .1922 .2575 .3064 .3413 .3645 .3781 .3837 .3827 .3766 .3012 .2062
2 .0060 .0216 .0438 .0702 .0988 .1280 .1565 .1835 .2082 .2301 .2924 .2835
3 .0002 .0015 .0045 .0098 .0173 .0272 .0393 .0532 .0686 .0852 .1720 .2362
4 .0001 .0003 .0009 .0021 .0039 .0067 .0104 .0153 .0213 .0683 .1329
5 .0001 .0002 .0004 .0008 .0014 .0024 .0038 .0193 .0532
6 .0001 .0001 .0003 .0005 .0040 .0155
7 .0006 .0033
8 .0001 .0005
9 .0001

10
11
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12
15 0 .8601 .7386 .6333 .5421 .4633 .3953 .3367 .2863 .2430 .2059 .0874 .0352

1 .1303 .2261 .2938 .3388 .3658 .3785 .3801 .3734 .3605 .3432 .2312 .1319
2 .0092 .0323 .0636 .0988 .1348 .1691 .2003 .2273 .2496 .2669 .2856 .2309
3 .0004 .0029 .0085 .0178 .0307 .0468 .0653 .0857 .1070 .1285 .2184 .2501
4 .0002 .0008 .0022 .0049 .0090 .0148 .0223 .0317 .0428 .1156 .1876
5 .0001 .0002 .0006 .0013 .0024 .0043 .0069 .0105 .0449 .1032
6 .0001 .0003 .0006 .0011 .0019 .0132 .0430
7 .0001 .0001 .0003 .0030 .0138
8 .0005 .0035
9 .0001 .0007

10 .0001
11
12
13
14
15

20 0 .8179 .6676 .5438 .4420 .3585 .2901 .2342 .1887 .1516 .1216 .0388 .0115
1 .1652 .2725 .3364 .3683 .3774 .3703 .3526 .3282 .3000 .2702 .1368 .0576
2 .0159 .0528 .0988 .1458 .1887 .2246 .2521 .2711 .2818 .2852 .2293 .1369
3 .0010 .0065 .0183 .0364 .0596 .0860 .1139 .1414 .1672 .1901 .2428 .2054
4 .0006 .0024 .0065 .0133 .0233 .0364 .0523 .0703 .0898 .1821 .2182
5 .0002 .0009 .0022 .0048 .0088 .0145 .0222 .0319 .1028 .1746
6 .0001 .0003 .0008 .0017 .0032 .0055 .0089 .0454 .1091
7 .0001 .0002 .0005 .0011 .0020 .0160 .0545
8 .0001 .0002 .0004 .0046 .0222
9 .0001 .0011 .0074

10 .0002 .0020
11 .0005
12 .0001
13
14
15
16
17
18
19
20
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TABLE D  t distribution critical values

Table entry for p and C is the critical value t* with probability p lying to its right and probability
C lying between −t* and t*.

Upper-tail probability p
df .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001 .0005
1 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
2 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60
3 0.765 0.978 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12.92
4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768
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24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659
30 0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
40 0.681 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551
50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416

100 0.677 0.845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3.390
1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300

z* 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291
50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

Confidence level C

Table entry for p is the critical value F* with probability p lying to its right.
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TABLE E  F critical values

Table entry for p is the critical value F* with probability p lying to its right.

Degrees of freedom in the numerator
p 1 2 3 4 5 6 7 8 9 10

1

.100 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19

.050 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88

.025 647.79 799.50 864.16 899.58 921.85 937.11 948.22 956.66 963.28 968.63

.010 4052.2 4999.5 5403.4 5624.6 5763.6 5859.0 5928.4 5981.1 6022.5 6055.8

.001 405284 500000 540379 562500 576405 585937 592873 598144 602284 605621

2

.100 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39

.050 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40

.025 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40

.010 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40

.001 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39 999.40

3

.100 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23

.050 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

.025 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42

.010 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23

.001 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86 129.25

4

.100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92

.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96

.025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84

.010 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55

.001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47 48.05

.100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30

.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

.025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62

.010 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05
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5 .001 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24 26.92

6

.100 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94

.050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

.025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46

.010 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87

.001 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69 18.41

7

.100 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70

.050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76

.010 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62

.001 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33 14.08

8

.100 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54

.050 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35

.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30

.010 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81

.001 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77 11.54

9

.100 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42

.050 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

.025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96

.010 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26

.001 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11 9.89

10

.100 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32

.050 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72

.010 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85

.001 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96 8.75

11

.100 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25

.050 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85

.025 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53

.010 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54

.001 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12 7.92

12

.100 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19

.050 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75

.025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37

.010 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30

.001 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48 7.29

13

.100 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14

.050 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

.025 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25

.010 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10

.001 17.82 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98 6.80

14

.100 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10

.050 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

.025 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15

.010 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94

.001 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.80 6.58 6.40
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15

.100 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06

.050 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

.025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06

.010 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80

.001 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08

16

.100 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03

.050 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

.025 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99

.010 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69

.001 16.12 10.97 9.01 7.94 7.27 6.80 6.46 6.19 5.98 5.81

17

.100 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00

.050 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45

.025 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92

.010 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59

.001 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75 5.58

18

.100 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98

.050 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

.025 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87

.010 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51

.001 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56 5.39

19

.100 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96

.050 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

.025 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82

.010 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43

.001 15.08 10.16 8.28 7.27 6.62 6.18 5.85 5.59 5.39 5.22

20

.100 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94

.050 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

.025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77

.010 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37

.001 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08

21

.100 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92

.050 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32

.025 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73

.010 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31

.001 14.59 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11 4.95

22

.100 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90

.050 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30

.025 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70

.010 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26

.001 14.38 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99 4.83

23

.100 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89

.050 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27

.025 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67

.010 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21

.001 14.20 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89 4.73

.100 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88
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24

.050 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

.025 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64

.010 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17

.001 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80 4.64

25

.100 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87

.050 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24

.025 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61

.010 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13

.001 13.88 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71 4.56

26

.100 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86

.050 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

.025 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59

.010 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09

.001 13.74 9.12 7.36 6.41 5.80 5.38 5.07 4.83 4.64 4.48

27

.100 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85

.050 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20

.025 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57

.010 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06

.001 13.61 9.02 7.27 6.33 5.73 5.31 5.00 4.76 4.57 4.41

28

.100 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84

.050 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

.025 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55

.010 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03

.001 13.50 8.93 7.19 6.25 5.66 5.24 4.93 4.69 4.50 4.35

29

.100 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83

.050 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18

.025 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53

.010 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00

.001 13.39 8.85 7.12 6.19 5.59 5.18 4.87 4.64 4.45 4.29

30

.100 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82

.050 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16

.025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51

.010 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98

.001 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24

40

.100 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76

.050 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

.025 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39

.010 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80

.001 12.61 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02 3.87

50

.100 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76 1.73

.050 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03

.025 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32

.010 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70

.001 12.22 7.96 6.34 5.46 4.90 4.51 4.22 4.00 3.82 3.67

.100 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71

.050 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99
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TABLE F  σ2 distribution critical values

Degrees of
freedom in
the
denominator

60

.025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27

.010 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63

.001 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69 3.54

100

.100 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69 1.66

.050 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93

.025 5.18 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.24 2.18

.010 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50

.001 11.50 7.41 5.86 5.02 4.48 4.11 3.83 3.61 3.44 3.30

200

.100 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66 1.63

.050 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88

.025 5.10 3.76 3.18 2.85 2.63 2.47 2.35 2.26 2.18 2.11

.010 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41

.001 11.15 7.15 5.63 4.81 4.29 3.92 3.65 3.43 3.26 3.12

1000

.100 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64 1.61

.050 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84

.025 5.04 3.70 3.13 2.80 2.58 2.42 2.30 2.20 2.13 2.06

.010 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34

.001 10.89 6.96 5.46 4.65 4.14 3.78 3.51 3.30 3.13 2.99

Table entry for p is the critical value (χ2)* with probability p lying to its right.

Tail probability p
df .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001 .0005

1 1.32 1.64 2.07 2.71 3.84 5.02 5.41 6.63 7.88 9.14 10.83 12.12
2 2.77 3.22 3.79 4.61 5.99 7.38 7.82 9.21 10.60 11.98 13.82 15.20
3 4.11 4.64 5.32 6.25 7.81 9.35 9.84 11.34 12.84 14.32 16.27 17.73
4 5.39 5.99 6.74 7.78 9.49 11.14 11.67 13.28 14.86 16.42 18.47 20.00
5 6.63 7.29 8.12 9.24 11.07 12.83 13.39 15.09 16.75 18.39 20.51 22.11
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6 7.84 8.56 9.45 10.64 12.59 14.45 15.03 16.81 18.55 20.25 22.46 24.10
7 9.04 9.80 10.75 12.02 14.07 16.01 16.62 18.48 20.28 22.04 24.32 26.02
8 10.22 11.03 12.03 13.36 15.51 17.53 18.17 20.09 21.95 23.77 26.12 27.87
9 11.39 12.24 13.29 14.68 16.92 19.02 19.68 21.67 23.59 25.46 27.88 29.67

10 12.55 13.44 14.53 15.99 18.31 20.48 21.16 23.21 25.19 27.11 29.59 31.42
11 13.70 14.63 15.77 17.28 19.68 21.92 22.62 24.72 26.76 28.73 31.26 33.14
12 14.85 15.81 16.99 18.55 21.03 23.34 24.05 26.22 28.30 30.32 32.91 34.82
13 15.98 16.98 18.20 19.81 22.36 24.74 25.47 27.69 29.82 31.88 34.53 36.48
14 17.12 18.15 19.41 21.06 23.68 26.12 26.87 29.14 31.32 33.43 36.12 38.11
15 18.25 19.31 20.60 22.31 25.00 27.49 28.26 30.58 32.80 34.95 37.70 39.72
16 19.37 20.47 21.79 23.54 26.30 28.85 29.63 32.00 34.27 36.46 39.25 41.31
17 20.49 21.61 22.98 24.77 27.59 30.19 31.00 33.41 35.72 37.95 40.79 42.88
18 21.60 22.76 24.16 25.99 28.87 31.53 32.35 34.81 37.16 39.42 42.31 44.43
19 22.72 23.90 25.33 27.20 30.14 32.85 33.69 36.19 38.58 40.88 43.82 45.97
20 23.83 25.04 26.50 28.41 31.41 34.17 35.02 37.57 40.00 42.34 45.31 47.50
21 24.93 26.17 27.66 29.62 32.67 35.48 36.34 38.93 41.40 43.78 46.80 49.01
22 26.04 27.30 28.82 30.81 33.92 36.78 37.66 40.29 42.80 45.20 48.27 50.51
23 27.14 28.43 29.98 32.01 35.17 38.08 38.97 41.64 44.18 46.62 49.73 52.00
24 28.24 29.55 31.13 33.20 36.42 39.36 40.27 42.98 45.56 48.03 51.18 53.48
25 29.34 30.68 32.28 34.38 37.65 40.65 41.57 44.31 46.93 49.44 52.62 54.95
26 30.43 31.79 33.43 35.56 38.89 41.92 42.86 45.64 48.29 50.83 54.05 56.41
27 31.53 32.91 34.57 36.74 40.11 43.19 44.14 46.96 49.64 52.22 55.48 57.86
28 32.62 34.03 35.71 37.92 41.34 44.46 45.42 48.28 50.99 53.59 56.89 59.30
29 33.71 35.14 36.85 39.09 42.56 45.72 46.69 49.59 52.34 54.97 58.30 60.73
30 34.80 36.25 37.99 40.26 43.77 46.98 47.96 50.89 53.67 56.33 59.70 62.16
40 45.62 47.27 49.24 51.81 55.76 59.34 60.44 63.69 66.77 69.70 73.40 76.09
50 56.33 58.16 60.35 63.17 67.50 71.42 72.61 76.15 79.49 82.66 86.66 89.56
60 66.98 68.97 71.34 74.40 79.08 83.30 84.58 88.38 91.95 95.34 99.61 102.7
80 88.13 90.41 93.11 96.58 101.9 106.6 108.1 112.3 116.3 120.1 124.8 128.3

100 109.1 111.7 114.7 118.5 124.3 129.6 131.1 135.8 140.2 144.3 149.4 153.2
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ANSWERS TO ODD-NUMBERED
EXERCISES

CHAPTER 1
1.1  Working in seconds means avoiding decimals and fractions.

1.3  Exam1 = 95, Exam2 = 98, Final = 96.

1.5  Cases: apartments. Five variables: rent (quantitative), cable (categorical), pets (categorical), bedrooms
(quantitative), distance to campus (quantitative).

1.7  Answers will vary. (a) For example, number of graduates could be used for similar-sized colleges. (b)
One possibility might be to compare graduation rates between private and public colleges.

1.9  (a) Individual employees. (b) Employee ID number, last name, first name, and middle initial are
labels. Department and Education level are categorical variables. Years with the company, Salary, and Age
are quantitative.

1.11  Age: quantitative, possible values 16 to ? (what would the oldest student’s age be?). Sing:
categorical, yes/no. Play: categorical, no, a little, pretty well. Food: quantitative, possible values $0 to ?
(what would be the most a person might spend in a week?). Height: quantitative, possible values 2 to 9 feet
(check the Guinness World Records).

1.13  Answers will vary. A few possibilities are graduation rate, student/professor ratio, and job placement
rate.

1.15  Answers will vary. One possibility is alcohol-impaired fatalities per 100,000 residents. This allows
comparing states with different populations; however, states with large seasonal populations (like Florida)
might be overstated.

1.17  Scores range from 55 to 98. The center is about 80. Very few students scored less than 70.

1.19  (a) The first line for the 3 (30) stem is now blank. (b) Use two stems, even though one is blank.
Seeing the gap is useful.

1.21  The larger classes hide a lot of detail; there are now only three bars in the histogram.

1.23  A stemplot or histogram can be used; the distribution is unimodal and left-skewed, centered near 80,
and range from 55 to 98. There are no apparent outliers.

1.25 (b) Second class had the fewest passengers. Third class had the most; over twice as many as first
class.

(c) A bar graph of relative frequency would have the same features.

1.27  A bar graph would be appropriate because each class is now a “whole” of interest.

1.29 (b) The overall pattern is unimodal (one major peak). The shape is roughly symmetric with center
about 26 and spread from 19 to 33. There appears to be one possible low outlier.

1.31 (a) 2010 still has the highest usage in December and January. (b) The patterns are very similar, but
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we don’t see the increase between February and March that occurred in 2011; consumption in May was
slightly higher in 2010. These differences are most likely due to weather.

1.33  For example, opinions about least-favorite color are somewhat more varied than for favorite color.
Interestingly, purple is liked and disliked by about the same percentage of people.

1.35  (c) Preferences will vary, but the ordered bars make it easier to pick out similar categories. The most
frequently recycled types (Paper and Trimmings) stand out in both graphs. (d) We cannot make a pie chart
because each garbage type is a “whole.”

1.37  Mobile browsers are dominated by Safari (on iPads and iPhones). Android has about one-fourth of
the market. All others are minor players.

1.39  (a and b) Black is clearly more popular in Europe than in North America. The most popular four
colors account for at least 70% of cars in both regions. (c) One possibility is to cluster the bars for the two
regions together by color.

1.41 (a)

Region % FB users Region % FB users
Africa 3.9 Middle East 9.4
Asia 5.0 North America 49.9
Caribbean 15.4 Oceania/Australia 38.9
Central America 26.5 South America 28.1
Europe 28.5   

(b) For example, when looking only at the absolute number of Facebook users, Europe is the leading
region; however, when expressed as a percent of the population, North America has the most Facebook
users. (d) The shape of the distribution might be right-skewed (there are numerical gaps between 28 and 38
and between 38 and 49). The center of the distribution is about 26% (Central America). This stemplot does
not really indicate any major outliers. (e) Answers will vary, but one possibility is that the scaling in the
stemplot actually hides the gaps in the distribution. (f) One possibility is that both the population and
number of Facebook users are rounded.

1.43 (a) Four variables: GPA, IQ, and self-concept are quantitative; gender is categorical. (c) Unimodal
and skewed to the left, centered near 7.8, spread from 0.5 to 10.8. (d) There is more variability among the
boys; in fact, there seem to be two groups of boys: those with GPAs below 5 and those with GPAs above 5.

1.45  Unimodal and skewed to the left, centered near 59.5; most scores are between 35 and 73, with a few
below that and one high score of 80 (probably not quite an outlier).

1.47  The new mean is 50.44 days.

1.49  The sorted data are

5 5 5 5 6 7  
7 7 8 12 12 13  

13 15 18 18 27 28  
36 48 52 60 66 94 694

Adding the outlier adds another observation but does not change the median at all.

1.51  M = 83.

1.53  x¯=196.575 minutes (the value 197 in the text was rounded). The quartiles and median are in
positions 20.5, 40.5, and 60.5. Q1 = 54.5, M = 103.5, Q3 = 200.
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1.55  Use the five-number summary from Exercise 1.54 (55, 75, 83, 93, 98). Be sure to give the plot a
consistent, number-line axis.

1.57  s2 = 159.34 and s = 12.62.

1.59  Without Suriname, IQR = 25; with Suriname, IQR = 35. The IQR increases because there is one
additional large observation, but it does not increase as much as the sample mean does.

1.61 (a) x¯=122.92. (b) M = 102.5. (c) The data set is right-skewed with an outlier (London), so the
median is a better measure of center.

1.63 (a) IQR = 62. (b) Outliers are below −26 or above 222. London is an outlier. (c) The first three
quarters are about equal in length; the last (upper quarter) is extremely long. (d) The main part of the
distribution is relatively symmetric; there is one extreme high outlier. (f) For example, the stemplot and the
boxplot both indicate the same shape: relatively symmetric with an extremely high outlier.

1.65 (a) s = 8.80. (b) Q1 = 43.8 and Q3 = 57.0. (c) For example, if you think that the median is the better
center in Exercise 1.64, that statistic should be paired with the quartiles and not with the standard
deviation.

1.67 (a) A histogram of the data shows a strong right-skew. Half the companies have values less than $7.5
million. (b) Using software, we find the numerical summaries shown below.

Mean StDev Min Q1 Med Q3 Max
13,830 16,050 3731 4775 7516 15,537 77,839

(c) Answers will vary, but due to the severe right-skew, this distribution is best described by the five-
number summary.

1.69 (a) With all the data, x¯=5.23 and M = 4.9. Removing the outliers, we have x¯=4.93 and M = 4.8. (b)
With all the data, s = 1.429; Q1 = 4.4, Q3 = 5.6. Removing the outliers, we have s = 0.818, Q1 = 4.4, and
Q3 = 5.5.

1.71 (a) With a small data set, a stemplot is reasonable. There are clearly two clumps of data. Summary
statistics are shown below.

Mean StDev Min Q1 Med Q3 Max
6.424 1.400 3.7 4.95 6.7 7.85 8

(b) Because of the clusters of data, one set of numerical summaries will not be adequate. (c) After
separating the data, we have for the smaller weights:

Mean StDev Min Q1 Med Q3 Max
4.662 0.501 3.7 4.4 4.7 5.075 5.3

And for the larger weights:

Mean StDev Min Q1 Med Q3 Max
7.253 0.740 6 6.5 7.6 7.9 8

1.73  (a) 0, 0, 5.09, 9.47, 73.2. (d) Answers will vary. The distribution is unimodal and strongly skewed to
the right with five high outliers.

1.75  This distribution is unimodal and right-skewed and has no outliers. The five-number summary is
0.24, 0.355, 0.75, 1.03, 1.9.

1.77  Some people, such as celebrities and business executives, make a very large amount of money and
have very large assets (think Bill Gates of Microsoft, Warren Buffett, Oprah, etc.).
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1.79  The mean is $92,222.22. Eight of the employees make less than this. M = $45,000.

1.81  The median doesn’t change, but the mean increases to $101, 111.11.

1.83  The average would be 2.5 or less (an earthquake that usually isn’t felt). These do little or no damage.

1.85  For n = 2 the median is also the average of the two values.

1.87 (a) Place the new point at the current median.

1.89  (a) Bihai: x¯=47.5975, s = 1.2129. Red: x¯=39.7113, s = 1.7988. Yellow: x¯=36.1800, s = 0.9753
(all in mm). (b) Bihai and red appear to be right-skewed (although it is difficult to tell with such small
samples). Skewness would make these distributions unsuitable for x¯ and s.

1.91  Take six or more numbers, with the smallest number much smaller than Q1.

1.93  (a) Any set of four identical numbers works. (b) 0, 0, 20, 20 is the only possible answer.

1.95  Answers will vary with the technology. With newer technology, it is very hard to make this fail, until
you reach the limits of the length of the number of digits allowed.

1.97  x¯=5.104 pounds and s = 2.662 pounds.

1.99  Full data set: x¯=196.575 and M = 103.5 minutes. The 10% and 20% trimmed means are
x¯=127.734 and x¯=111.917 minutes, respectively.

1.101  212 to 364.

1.103  z = 2.03.

1.105  z = 1.37. Using Table A, the proportion below 340 is 0.9147, and the proportion at or above is
0.0853. Using technology, the proportion below 340 is 0.9144.

1.107  x = μ + zσ From Table A, we find the area to the left of z = 0.67 is 0.7486 and the area to the left of
z = 0.68 is 0.7517. (Technology gives z = 0.6745.) If we approximate as z = 0.675, we have x = 313.65, or
about 314.

1.109  (a) In symmetric distributions, the mean and median are equal to each other. Examples are an
equilateral triangle and a rectangle. (b) In left-skewed distributions, the mean is less than the median.

1.111  (c) The distributions look the same, only shifted.

1.113 (c) The table below indicates the desired ranges.

 Low High
68% 256 320
95% 224 352
99.7% 192 384

1.115

Value Percentile (Table A) Percentile (Software)
150 50 50
140 38.6 38.8
100 7.6 7.7
180 80.5 80.4
230 98.9 98.9
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1.117  Using the N(153, 34) distribution, we find the values corresponding to the given percentiles as
given below (using Table A). The actual scores are very close to the percentiles of the Normal distribution.

Percentile Score Score with N(153, 34)
10% 110 109
25% 130 130
50% 154 153
75% 177 176
90% 197 197

1.119  (a) Ranges are given in the table.

 Women Men
68% 8489 to 20, 919 7158 to 22, 886
95% 2274 to 27, 134 −706 to 30, 750
99.7% −3941 to 33, 349 −8570 to 38, 614

In both cases, some of the lower limits are negative, which does not make sense; this happens because the
women’s distribution is skewed, and the men’s distribution has an outlier. Contrary to the conventional
wisdom, the men’s mean is slightly higher, although the outlier is at least partly responsible for that. (b)
The means suggest that Mexican men and women tend to speak more than people of the same gender from
the United States.

1.121 (a) F: −1.645. D: −1.04. C: 0.13. B: 1.04. (b) F: below 55.55. D: between 55.55 and 61.6. C:
between 61.6 and 73.3. B: between 73.3 and 82.4. A: above 82.4. (c) Opinions will vary.

1.123 (a) 1/5 = 0.2. (b) 1/5 = 0.2. (c) 2/5 = 0.4.

1.125  (a) Mean is C, median is B (the right-skew pulls the mean to the right). (b) Mean A, median A. (c)
Mean A, median B (the left-skew pulls the mean to the left).

1.127 (a) The applet shows an area of 0.6826 between −1.000 and 1.000, while the 68–95–99.7 rule
rounds this to 0.68. (b) Between −2.000 and 2.000, the applet reports 0.9544 (rather than the rounded 0.95
from the 68–95–99.7 rule). Between −3.000 and 3.000, the applet reports 0.9974 (rather than the rounded
0.997).

1.129 (a) 0.0446. (b) 0.9554. (c) 0.0287. (d) 0.9267.

1.131  (a) 0.77. (b) 0.77.

1.133  2.28%, or 0.0228.

1.135  Anthony has a z-score of −1.48. Joshua’s z-score is −0.83. Joshua’s score is higher.

1.137  About 2111.

1.139  20th percentile.

1.141  About 1094 and lower.

1.143  1285, 1498, and 1711 (rounded to the nearest integer).

1.145 (a) From Table A, 33% of men have low values of HDL. (Software gives 32.95%.)(b) From Table
A, 15.15% of men have protective levels of HDL. (Software gives 15.16%.) (c) 51.85% of men are in the
intermediate range for HDL. (Software gives 51.88%.)

1.147 (a) ±1.2816. (b) 8.93 and 9.31 ounces.
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1.149 (a) 1.3490. (b) c = 1.3490.

1.151

Percentile 10% 20% 30% 40% 50%
HDL level 35.2 42.0 46.9 51.1 55
Percentile 60% 70% 80% 90%  
HDL level 58.9 63.1 68.0 74.8  

1.153 (a) The yellow variety is the nearest to a straight line. (b) The other two distributions are both
slightly right-skewed, and the bihai variety appears to have a couple of high outliers. (c) The deviations do
not appear to be Normal. They seem to be right-skewed.

1.155  Histograms will suggest (but not exactly match) Figure 1.32. The uniform distribution does not
extend as low or as high as a Normal distribution.

1.157 (a) The distribution appears to be roughly Normal, apart from two possible low and two possible
high outliers. (b) The outliers on either end would inflate the standard deviation. The five-number
summary is 8.5, 13.15, 15.4, 17.8, 23.8. (c) For example, smoking rates are typically 12% to 20%. Which
states are high, and which are low?

1.159  For example, white is least popular in China, and silver is less common in Europe. Silver, white,
gray, and black dominate the market worldwide.

1.163  (a) The distribution of 2010 Internet users is right-skewed. The five-number summary is 0.21,
10.31, 31.40, 55.65, 95.63. (b) The distribution of the change in users is right-skewed. The five-number
summary is −1.285, 0.996, 2.570, 4.811, 22.000. (c) The percent change is also right-skewed. Two
countries effectively tripled their Internet penetration (but it’s still minuscule). The five-number summary
is −12.50, 5.58, 10.75, 20.70, 327.32.

1.165  A bar graph is appropriate (there are other providers besides the 10 largest; we don’t know who
they are). There are two major providers and several smaller ones.

1.167  (a) For car makes (a categorical variable), use either a bar graph or a pie chart. For car age (a
quantitative variable), use a histogram, stemplot, or boxplot. (b) Study time is quantitative, so use a
histogram, stemplot, or boxplot. To show change over time, use a time plot (average hours studied against
time). (c) Use a bar graph or pie chart to show radio station preferences. (d) Use a Normal quantile plot to
see whether the measurements follow a Normal distribution.

1.169  σ = 7.50.

1.171 (a) One option is to say μ = 81.55 (the average of the given 50th percentile and mean). The 5th
percentile is 42 = 81.55 − 1.645σ. The 95th percentile is 142 = 81.55 + 1.645σ. If we average the two
estimates, we would have σ = 30.4. (c) From the two distributions, over half of women consume more
vitamin C than they need, but some consume far less.

1.173  (a) Not only are most responses multiples of 10; many are multiples of 30 and 60. The students
who claimed 360 minutes (6 hours) and 300 minutes (5 hours) may have been exaggerating. (b) Women
seem to generally study more (or claim to), as there are none that claim less than 60 minutes per night. The
center (median) for women is 170; for men the median is 120 minutes. (c) Opinions will vary.

1.175  No to both questions; no summary can exactly describe a distribution that can include any number
of values.

1.177  Simulation results will vary.

CHAPTER 2
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2.1 (a) The 30 students. (b) Attendance and score on the final exam. (c) Score on the final is quantitative.
Attendance is most likely quantitative: number of classes attended (or missed).

2.3  Cases: cups of Mocha Frappuccino. Variables: size and price (both quantitative).

2.5 (a) Tweets. (b) Click count and length of tweet are quantitative. Day of week and gender are
categorical. Time of day could be quantitative (as hr:min) or categorical (if morning, afternoon, etc.). (c)
Click count is the response. The others could all be potentially explanatory.

2.7  Answers will vary. Some possible variables are condition, number of pages, and binding type
(hardback or paperback), in addition to purchase price and buyback price. Cases are the individual
textbooks; one might be interested in predicting buyback price based on other variables.

2.9  (a) Temperatures are usually similar from one day to the next (recording temperatures at noon each
day, for example). One variable that would help is whether a front (cold or warm) came through. (b) No
relationship. These are different individuals. (c) Answers will vary. It’s possible that quality and price are
related but not certain.

2.11  Price per load looks right-skewed. Quality rating has two different clusters of values.

Variable Mean StDev Min Q1 Med Q3 Max
Rating 43.88 10.77 26 33.5 47 51.5 61
PricePerLoad 14.21 5.99 5 10 13.5 17 30

2.13 (a) Divide each price by 100 to convert to dollars. (c) The only difference is the scaling of the x axis.

2.15  For example, a new variable might be the ratio of the 2010 and 2009 debts.

2.17 (a) All the liquid detergents are at the upper right, and the powder detergents are at the lower left. (b)
Answers will vary.

2.19  (b) The overall pattern is linear and increasing. There is one possible outlier at the upper right, far
from the other points. (c) The relationship is roughly linear, increasing, and moderately strong.(d) The
baseball player represented by the point at the far right is not as strong in his dominant arm as other
players. (e) Other than the one outlier, the relationship is approximately linear.

2.21 (a) Population should be the explanatory variable and college students the response. (b) The graph
shows a strong, linear, increasing relationship with one high outlier in both undergraduates and population
(California).

2.23 (b and c) The relationship is very strong, linear, and decreasing. (d) There do not appear to be any
outliers. (e) The relationship is linear.

2.25  (a) The description is for variables that are positively related. (b) The response variable is plotted on
the y axis, and the explanatory on the x axis. (c) A histogram shows the distribution of a single variable, not
the relationship between two variables.

2.27 (b) The relationship is linear, increasing, and much stronger than the relationship between
carbohydrates and percent alcohol.

2.29 (b) The plot is much more linear.

2.31 (a) Examine for a relationship. (b) Use high school GPA as explanatory and college GPA as
response. (c) Use square feet as explanatory and rental price as response. (d) Use amount of sugar as
explanatory and sweetness as response. (e) Use temperature yesterday at noon as explanatory and
temperature today at noon as response.

2.33 (a) In general, we expect more intelligent children to be better readers, and less intelligent children to
be weaker readers. The plot does show this positive association. (b) These four have moderate IQs but poor
reading scores. (c) Roughly linear but weak (much scatter).
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2.35  (b) The association is positive and linear. Overall, the relationship is strong, but it is stronger for
women than for men. Male subjects generally have both greater lean body mass and higher metabolic rates
than women.

2.37 (a) Both show fairly steady improvement. Women have made more rapid progress but have not
improved since 1993, while men’s records may be dropping more rapidly in recent years. (b) The data
support the first claim but do not seem to support the second.

2.39  (a) This is a linear transformation. Dollars = 0 + 0.01 × cents. (b) r = 0.671. (c) They are the same.
(d) Changing units does not change r.

2.41 (a) No linear relationship. (There could be a nonlinear relationship, though.) (b) Strongly linear and
negative. (c) Weakly linear and positive. (d) Strongly linear and positive.

2.43 (a) r = 0.905. (b) Correlation is a good summary for these data. The pattern is linear and appears to
be strong. There is, however, one outlier at the upper right.

2.45 (a) r = 0.984. (b) The correlation may be a good summary for these data because the scatterplot is
strongly linear. California, however, is an outlier that strengthens the relationship (makes r closer to 1). (c)
Eliminate California, Texas, Florida, and New York. r = 0.971. Expanding the range of values can
strengthen a relationship (if the new points follow the rest of the data).

2.47 (a) r = −0.999. (b) Correlation is a good numerical summary here because the scatterplot is very
strongly linear. (c) You must be careful; there can be a strong correlation between two variables even when
the relationship is curved.

2.49  The correlation would be 1 in both cases. These are purely linear relationships.

2.51  r = 0.521.

2.53 (a) r = −0.730. (b) The relationship is curved; birthrate declines with increasing Internet use until
about 40 Internet users per 100 people. After that, there is a steady overall birthrate. Correlation is not a
good numerical summary for this relationship.

2.55 (a) r = ±1 for a line. (c) Leave some space above your vertical stack. (d) The curve must be higher at
the right than at the left.

2.57  The correlation is r = 0.481. The correlation is greatly lowered by the one outlier. Outliers tend to
have fairly strong effects on correlation; it is even stronger here because there are so few observations.

2.59  There is little linear association between research and teaching—for example, knowing a professor is
a good researcher gives little information about whether she is a good or a bad teacher.

2.61  Both relationships are somewhat linear; GPA/IQ (r = 0.634) is stronger than GPA/self-concept (r =
0.542). The two students with the lowest GPAs stand out in both plots; a few others stand out in at least
one plot. Generally speaking, removing these points raises r, except for the lower-left point in the self-
concept plot.

2.63  1.785 kilograms.

2.65  Expressed as percents, these fractions are 64%, 16%, 4%, 0%, 9%, 25%, and 81%.

2.67  The relationship is roughly linear. Bone strength in the dominant arm increases about 1.373 units for
every unit increase in strength in the nondominant arm.

2.69  22.854 cm4/1000.

2.71 (a–c)

  Count = 602.8 − (74.7 × time)
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Time Count Predicted Difference Squared difference
1 578 528.1 49.9 2490.01
3 317 378.7 −61.7 3806.89
5 203 229.3 −26.3 691.69
7 118 79.9 38.1 1451.61

(d)

  Count = 500 − (100 × time)
Time Count Predicted Difference Squared difference

1 578 400 178 31,684
3 317 200 117 13,689
5 203 0 203 41,209
7 118 −200 318 101,124

2.73  ŷ=−15,294.868+0.0533x, or, in context,

Studentŝ=−15,294.868+0.0533Population

2.75 (a) 304, 505.13 students. (b) 299, 247.47 students. (c) Including the states with the largest
populations (and largest numbers of undergraduates) increases the estimate by about 5000 students.

2.77 (a)

Studentŝ=8491.907+0.048Population. (b) r2 = 0.942. (c) About 94.2% of the variability in number of
undergraduates is explained by the regression on population. (d) The numerical output does not tell us
whether the relation is linear.

2.79 (a)

Carbŝ=2.606+1.789PercentAlcohol. (b) r2 = 0.271.

2.81 (a) All correlations are approximately 0.816 or 0.817, and the regression lines are ŷ=3.000+0.500x.
We predict ŷ=8 when x = 10. (c) This regression formula is only appropriate for Set A.

2.83 (a) The added point is an outlier that does not follow the pattern of the rest of the data. It is an outlier
in the x direction but not in y. (b) The new regression equation is ŷ=27.56+0.1031x. (c) r2 = 0.052. This
added point is influential both to the regression equation (both the intercept and slope changed
substantially from ŷ=17.38+0.6233x) and the correlation.

2.85 (a) 36. (b) When x increases one unit,y increases by 8 (the value of the slope). (c) The intercept is 12.

2.87  IQ and GPA: r1 = 0.634. Self-concept and GPA: r2 = 0.542. IQ does a slightly better job.

2.89  Whenx=x¯,ŷ=a+bx¯=(y¯−bx¯)+bx¯=y¯.

2.91  Scatterplots and correlations were found in Exercise 2.36 and 2.54. The regression equations are
Valuê=1073.87+(1.74×Debt), with r2 = 0.5%; Valuê=−262.4+(4.966+Revenue), with r2 = 92.7%; and
Valuê=−872.6+(5.695+Income), with r2 = 79.4%.

2.93  The residuals sum to 0.01.

2.95  The residuals are −4.93, −5.09, 0.01, and 7.71.

2.97 (a–b)
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Time LogCount Predicted Residual
1 6.35957 6.332444 0.027126
3 5.75890 5.811208 −0.05231
5 5.31321 5.289972 0.023238
7 4.77068 4.768736 0.001944

2.99  (f) In the log scale, California is no longer an outlier anywhere, nor is it influential.

2.101 (c) One data point stands out in both graphs; it is West Virginia, with the largest positive residual.
The next-largest positive residual belongs to Iowa. These do not seem to be influential. (d and e) Using the
log data removes California as a potentially influential outlier. The data are more equally spread across the
range. One possible disadvantage of using the log data is that explaining this to people could be difficult.

2.103 (a) If the line is pulled toward the influential point, the observation will not necessarily have a large
residual. (b) High correlation is always present if there is causation. (c) Extrapolation is using a regression
to make predictions for x-values outside the range of the data (here, using 20, for example).

2.105  Internet use does not cause people to have fewer babies. Possible lurking variables are economic
status of the country, education levels, etc.

2.107  For example, a reasonable explanation is that the cause-and-effect relationship goes in the other
direction: doing well makes students or workers feel good about themselves rather than vice versa.

2.109  The explanatory and response variables were “consumption of herbal tea” and
“cheerfulness/health.” The most important lurking variable is social interaction; many of the nursing-home
residents may have been lonely before the students started visiting.

2.111 (a) Drawing the “best line” by eye is a very inaccurate process. But with practice, you can get better.

2.113  The plot should show a positive association when either group of points is viewed separately and
should show a large number of bachelor’s degree economists in business and graduate degree economists
in academia.

2.115  1278 met the requirements; 751 did not meet requirements.

2.117  Divide the cell count by the total for the table.

2.119  417/974 = 0.4281 (which rounds to 43%).

2.121 (a) Drivers education course (yes/no) is the explanatory variable. The number of accidents is the
response. (b) Drivers ed would be the column (x) variable, and number of accidents would be the row (y)
variable. (c) There are 6 cells. For example, the first row, first column entry could be the number who took
drivers ed and had 0 accidents.

2.123 (a) Age is the explanatory variable. “Rejected” is the response. With the dentistry available at that
time, it’s reasonable to think that as a person got older, he would have lost more teeth. (b)

 <20 20–25 25–30 30–35 35–40 >40
Yes 0.0002 0.0019 0.0033 0.0053 0.0086 0.0114
No 0.1761 0.2333 0.1663 0.1316 0.1423 0.1196

(c)

Marginal distribution of “Rejected”
Yes No

0.03081 0.96919
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Marginal distribution of age
<20 20–25 25–30 30–35 35–40 >40

0.1763 0.2352 0.1696 0.1369 0.1509 0.1310

(d) The conditional distribution of Rejected given Age, because we have said Age is the explanatory
variable. (e) In the table, note that all columns sum to 1.

 <20 20–25 25–30 30–35 35–40 >40
Yes 0.0012 0.0082 0.0196 0.0389 0.0572 0.0868
No 0.9988 0.9918 0.9804 0.9611 0.9428 0.9132

2.125  Students with GPAs less than 2.0 are much more likely to enroll for 11 or fewer credits (68.5%).
Students with GPAs above 3.0 are most likely to enroll for 15 or more credits (66.6%).

2.127  (a) 50.5% get enough sleep; 49.5% do not. (b) 32.2% get enough sleep; 67.8% do not. (c) Those
who exercise more than the median are more likely to get enough sleep.

2.129  3.0% of Hospital A’s patients died, compared with 2.0% at Hospital B.

2.131  In general, choose a to be any number from 0 to 200, and then all the other entries can be
determined.

2.133  For example, causation might be a negative association between the temperature setting on a stove
and the time required to boil a pot of water (higher setting, less time). Common response might be a
positive association between SAT scores and grade point average. Both of these will respond positively to
a person’s IQ. An example of confounding might be a negative association between hours of TV watching
and grade point average. Once again, people who are naturally smart could finish required work faster and
have more time for TV; those who aren’t as smart could become frustrated and watch TV instead of doing
homework.

2.135  This is a case of confounding: the association between dietary iron and anemia is difficult to detect
because malaria and helminths also affect iron levels in the body.

2.137  For example, students who choose the online course might have more self-motivation or better
computer skills.

2.139  No; self-confidence and improving fitness could be a common response to some other personality
trait, or high self-confidence could make a person more likely to join the exercise program.

2.141  Patients suffering from more serious illnesses are more likely to go to larger hospitals and may
require more time to recuperate afterward.

2.143  People who are overweight are more likely to be on diets and so choose artificial sweeteners.

2.145  This is an observational study—students choose their “treatment” (to take or not take the refresher
sessions).

2.147 (a) The tables are shown below.

Female Titanic passengers
 Class  

 1 2 3 Total
Survived 139 94 106 339
Died 5 12 110 127
Total 144 106 216 466

Male Titanic passengers
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 Class  
 1 2 3 Total

Survived 61 25 75 161
Died 118 146 418 682
Total 179 171 493 843

(b) 96.53% of first-class females survived, 88.68% of second-class females survived, and 49.07% of third-
class females survived. Survival depended on class. (c) 34.08% survival among first class, 14.62% survival
among second class, and 15.21% survival among third class. Once again, survival depended on class. (d)
Females overall had much higher survival rates than males.

2.149 (a) This is a negative relationship, mostly due to two outliers. (b) r = −0.839. This would not be a
good numerical summary for this relationship.

2.151 (b) In Figure 2.33, we can see that the three territories have smaller proportions of their populations
over 65 than the provinces. The two areas with the largest percents of the population under 15 are Nunavut
and Northwest Territories.

2.153 (a) The relationship is weakly increasing and linear. We almost seem to have two sets of data: five
countries with high production and the rest. One country with Dwelling Permit Index approximately 225
(Canada) might be influential. (b) The equation is Production̂=110.96+0.0732 DwellPermit. (c) 122.672.
(d) e = −13.672. (e) r2 = 2.0%. Both indicate very weak relationships, but this is weaker.

2.155  A stacked bar graph clearly shows that offering the RDC service depends on size of the bank.
Larger banks are much more likely to offer the service than smaller ones.

2.157  (a) The marginal totals are SsBL: 1688; SME: 911; AH: 801; Ed: 319; and Other: 857. By country,
the marginal totals are Canada: 176; France: 672; Germany: 218; Italy: 321; Japan: 645; U.K.: 475; U.S.:
2069. (b) Canada: 0.0385; France: 0.1469; Germany: 0.0476; Italy: 0.0701; Japan: 0.1410; U.K.: 0.1038;
U.S.: 0.4521. (c) SsBL: 0.3689; SME: 0.1991; AH: 0.1750; Ed: 0.0697; Other: 0.1873.

2.159  A school that accepts weaker students but graduates a higher-than-expected number of them would
have a positive residual, while a school with a stronger incoming class but a lower-than-expected
graduation rate would have a negative residual. It seems reasonable to measure school quality by how
much benefit students receive from attending the school.

2.163  (a) The residuals are positive at the beginning and end, and negative in the middle. (b) The
behavior of the residuals agrees with the curved relationship seen in Figure 2.34.

2.165  (a) The regression equation for predicting salary

from year is Salarŷ=41.253+3.9331 Year; for Year 25, the predicted salary is 139.58 thousand dollars, or
about $139, 600. (b) The log salary regression equation is lnSalarŷ=3.8675+0.04832 Year. At Year 25 the
predicted salary is e5.0755 = 160.052, or about $160, 050. (c) Although both predictions involve
extrapolation, the second is more reliable because it is based on a linear fit to a linear relationship. (d)
Interpreting relationships without a plot is risky.

2.167 (a) The regression equation is 2013Salarŷ=6523+0.97291×(2012Salary). (b) The residuals appear
rather random, but we note that the largest positive residuals are on either end of the scatterplot. The largest
negative residual is for the next-to-highest 2012–2013 salaried person.

2.169  Number of firefighters and amount of damage are common responses to the seriousness of the fire.

2.171  (b) The regression linePctCollEd̂=4.033+0.906FruitVeg5 generally describes the relationship.
There is one outlier at the upper right of the scatterplot (Washington, DC). (d) While the scatterplot and
regression support a positive association between college degrees and eating fruits and vegetables,
association is not causation.
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2.173  The scatterplot of MOR against MOE shows a moderate positive linear association. The regression
equation is MOR̂=2653+0.004742MOE; this regression explains r2 = 0.6217, or about 62% of the
variation in MOR. So we can use MOE to get fairly good (though not perfect) predictions of MOR.

2.175 (a)

 Admit Deny
Male 490 310
Female 400 300

(b) Males: 61.25% admitted. Females: 57.14% admitted. (c) Business school: 66.67% of males, 66.67% of
females. Law school: 45% of males, 50% of females. (d) Most male applicants apply to the business
school, where admission is easier. More women apply to the law school, which is more selective.

2.177  If we ignore “year,” Department A teaches 61.5% small classes while Department B teaches 39.6%
small classes. However, in upper-level classes, 77.5% of A’s classes are small and 83.3% of B’s classes are
small. Department A has 77.8% of its classes as upper-level, while only 33.96% of B’s classes are upper
level.

CHAPTER 3
3.1  Answers will vary. One possibility is that the friend has a weak immune system.

3.3  Answers will vary, but the individual’s denial is clearly insufficient evidence to conclude that he did
not use performance enhancing drugs.

3.5  For example, who owns the web site? Do they have data to back up this statement, and if so, what was
the source of those data?

3.7  Available data are from prior studies. They might be from either observational studies or experiments.

3.9  This is not an experiment (running them until the batteries die is not assigning treatments) or a sample
survey.

3.11  This is an experiment. Explanatory variable: apple form (juice or whole fruit); response variable:
how full the subject felt.

3.13  The data were likely from random samples of cans of tuna.

3.15 (a) Anecdotal data. (b) This is a sample survey but likely biased. (c) Still a survey but random. (d)
Answers will vary.

3.17  In Exercise 3.14: extra milk and no extra milk. In Exercise 3.16: no pills, pills without echinacea,
pills with echinacea but subjects weren’t told, and pills with echinacea that were labeled as containing
echinacea.

3.19  Treatments are the four coaching types that were actively assigned to the experimental units
(subjects), who were 204 people. Factor is type of coaching, with four levels: increase fruit and vegetable
intake and physical activity, decrease fat and sedentary leisure, decrease fat and increase physical activity,
and increase fruit and vegetable intake and decrease sedentary leisure. Response is the measure of diet and
exercise improvement after three weeks. This experiment had a very high completion rate.

3.21  With 719 subjects, randomly assign 180 to each of the first three treatments and 179 to the last
(echinacea with the labeled bottle). Afterward, compare diet and exercise improvement.

3.23  Answers will vary due to software.
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3.25 (a) Experimental units were the 30 students. They are human, so we can use “subjects.” (b) Only one
“treatment,” so not comparative. One possibility is to randomly assign half to the online homework system
and half to “standard” homework. (c) One possibility is grade on an exam over the material from that
month.

3.27 (a) Experimental units (subjects): people who go to the web site. Treatments: description of comfort
or showing discounted price. Response variable: shoe sales. (b) Comparative, because of two treatments.
(c) One option to improve: randomly assign morning and afternoon treatments. (d) Placebo (no special
description or price) could give a “baseline” sales figure.

3.29  Starting on line 101, using 1 to 5 as morning and 6 to 0 as afternoon for comfort description, we have
19223 95034: comfort description is displayed in the afternoon on Days 2, 6, and 8 and in the morning on
the other days.

3.31  Yes; each customer (who returns) will get both treatments.

3.33 (a) Shopping patterns may differ on Friday and Saturday. (b) Responses may vary in different states.
(c) A control is needed for comparison.

3.35  For example, new employees should be randomly assigned to either the current program or the new
one.

3.37  (a) Factors: calcium dose and vitamin D dose. There are nine treatments (each calcium/vitamin D
combination). (b) Assign 20 students to each group, with 10 of each gender. (d) Placebo is the 0 mg
calcium, 0 mg vitamin D treatment.

3.39  There are nine treatments. Choose the number of letters in each group, and send them out at random
times over several weeks.

3.41  (a) Population = 1 to 150, sample size = 25, then click “Reset” and “Sample.” (b) Without resetting,
click “Sample” again. (c) Continue to “Sample” from those remaining.

3.43  Design (a) is an experiment, while (b) is an observational study; with the first, any difference in
colon health between the two groups could be attributed to the treatment (bee pollen or not).

3.45 (a) Randomly assign half the girls to get highcalcium punch; the other half will get low-calcium
punch. Observe how each group processes the calcium. (b) Half receive high-calcium punch first; the rest
get low-calcium punch first. For each subject, compute the difference in the response variable for each
level. Matched pairs designs give more precise results. (c) The first five subjects are 35, 39, 16, 04, and 26.

3.47  Answers will vary. For example, the trainees and experienced professionals could evaluate the same
water samples.

3.49  Population: forest owners from this region. Sample: the 348 returned questionnaires. Response rate:
348/772 = 45%. Additionally, we would like to know the sample design (among other things).

3.51  Answers will vary depending on use of software or starting point in Table B.

3.53 (a) Season ticket holders. (b) 98 responses received. (c) 98/150 = 65.3%. (d) 34.7%. (e) One
possibility is to offer incentives (free hotdog?).

3.55  (a) Answers will vary depending on use of software. (b) Software is usually more efficient than
Table B.

3.57 (a) The population is all items/individuals of potential interest. (b) Many people probably will not
realize that dihydrogen monoxide is water. (c) In a public setting, few people will admit to cheating.

3.59  Population: all local businesses. Sample: the 72 returned questionnaires. Nonresponse rate: 55%.

3.61  Note that the numbers add to 100% down the columns; that is, 39% is the percent of Fox viewers
who are Republicans, not the percent of Republicans who watch Fox.
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3.63  Labeled in alphabetical order, using line 126: 31 (Village Manor), 08 (Burberry), 19 (Franklin Park),
03 (Beau Jardin), and 25 (Pemberley Courts).

3.65  Population = 1 to 200, sample size = 20, then click “Reset” and “Sample.” Selections will vary.

3.67  Labeling the tracts in numerical order from 01 (block 1000) to 44 (block 3025), the selected random
digits are labeled 21 (block 3002), 37 (block 3018), 18 (block 2011), 44, 23, 19, 10, 33, and 31.

3.69  Answers will vary. Beginning on line 110, from Group 1 (labeled 1 through 6), select 3 and 4.
Continuing from there, from Group 2 (labeled 01 through 12), select 08 and 05. Continuing from there,
from Group 3 (labeled 01 through 26), select 13, 09, and 04.

3.71  Each student has chance 1/40 of being selected, but the sample is not an SRS, because the only
possible samples have exactly one name from the first 40, one name from the second 40, and so on.

3.73  Number the parcels 01 through n for each forest type. Using Table B, select Climax 1: 05, 16, 17, 40,
and 20; Climax 2: 19, 45, 05, 32, 19, and 41; Climax 3: 04, 19, and 25; Secondary: 29, 20, 43, and 16.

3.75  Each individual has a 1-in-8 chance of being selected.

3.77 (a) Households without telephones or with unlisted numbers. Such households would likely be made
up of poor individuals, those who choose not to have phones, and those who do not wish to have their
phone number published. Households with only cell phones are also not included. (b) Those with unlisted
numbers. Or only cell phones.

3.79  The female and male students who responded are the samples. The populations are all college
undergraduates (males and females) who could be judged to be similar to the respondents. This report is
incomplete; a better one would give numbers about who responded, as well as the actual response rate.

3.81  The larger sample would have less sampling variability.

3.83  Answers will vary due to computer simulation. You should have a mean close to 0.5 and a standard
deviation close to 0.204.

3.85  Answers will vary due to computer simulation. You should have a mean close to 0.5 and a standard
deviation close to 0.08.

3.87  Answers will vary due to computer simulation. You should have a mean close to 0 and a standard
deviation close to 1.

3.89  (a) The larger sample size should have a smaller standard deviation (less variability).

3.91 (a) Population: Students at four-year colleges in the U.S. Sample: 17,096 students. (b) Population:
restaurant workers. Sample: 100 workers. (c) Population: 584 longleaf pine trees. Sample: 40 trees.

3.93  The histograms should be centered at about 0.6 with standard deviation about 0.1.

3.95  Answers will vary due to computer simulation.

3.97  (a) Nonscientists might have different viewpoints and raise different concerns from those considered
by scientists.

3.99  Answers will vary. This question calls for a reasoned opinion.

3.101  Answers will vary. This question calls for a reasoned opinion.

3.103  No. Informed consent needs clear information on what will be done.

3.105  Answers will vary. This question calls for a reasoned opinion.
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3.107  Answers will vary. This question calls for a reasoned opinion.

3.109  The samples should be randomly ordered for analysis.

3.111  Interviews conducted in person cannot be anonymous.

3.113  Answers will vary. This question calls for a reasoned opinion.

3.115 (a) Informed consent requires informing respondents about how the data will be used, how long the
survey will take, etc.

3.117  Answers will vary. This question calls for a reasoned opinion.

3.119  Answers will vary. This question calls for a reasoned opinion.

3.121  (a) You need information about a random selection of his games, not just the ones he chooses to
talk about. (b) These students may have chosen to sit in the front; all students should be assigned to their
seats.

3.123  This is an experiment because treatments are assigned. Explanatory variable: price history (steady
or fluctuating). Response variable: price the subject expects to pay.

3.127  Randomly choose the order in which the treatments (gear and steepness combination) are tried.

3.129 (a) One possibility: full-time undergraduate students in the fall term on a list provided by the
registrar. (b) One possibility: a stratified sample with 125 students from each class rank. (c) Nonresponse
might be higher with mailed (or emailed) questionnaires; telephone interviews exclude some students and
may require repeated calling for those who do not answer; face-to-face interviews might be too costly. The
topic might also be subject to response bias.

3.131  Use a block design: separate men and women, and randomly allocate each gender among the six
treatments.

3.133  CASI will typically produce more honest responses to embarrassing questions.

3.135  Answers will vary. This question calls for a reasoned opinion.

3.137  Answers will vary. This question calls for a reasoned opinion.

CHAPTER 4
4.1  The proportion of heads is 0.5. In this case, we did get exactly 10 heads (this will NOT happen every
time).

4.3 (a) This is random. We can discuss the probability (chance) that the temperature would be between 30
and 35 degrees, for example. (b) Depending on your school, this is not random. At my university, all
student IDs begin with 900. (c) This is random. The probability of an ace in a single draw is 4/52 if the
deck is well shuffled.

4.5  Answers will vary depending on your set of 25 rolls.

4.7  If you hear music (or talking) one time, you will almost certainly hear the same thing for several more
checks after that.

4.9  The theoretical probability is 0.5177. What were the results of your “rolls”?

4.11  One possibility: from 0 to ____ hours (the largest number should be big enough to include all
possible responses).
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4.13  0.80 (add the probabilities of the other four colors and subtract from 1).

4.15  0.681.

4.17  1/4, or 0.25.

4.19 (a) S = {Yes, No}. (b) S = {0, 1, 2, ... , n} where n is large enough to include a really busy tweeter.
(c) S = [18, 75] is one possibility. This is given as an interval because age is a continuous variable. (d) S =
{Accounting, Archeology, ... }. This list could be very long.

4.21  (a) Not equally likely (check the web). (b) Equally likely. (c) This could depend on the intersection;
is the turn onto a one-way street? (d) Not equally likely.

4.23 (a) The probability that both of two disjoint events occur is 0. (b) Probabilities must be no more than
1. (c) P(Ac) = 0.65.

4.25  There are 6 possible outcomes: S = {link 1, link 2, link 3, link 4, link 5, leave}.

4.27 (a) 0.172. (b) 0.828.

4.29 (a) 0.03, so the sum equals 1. (b) 0.55.

4.31  (a) The probabilities sum to 2. (b) Legitimate (for a nonstandard deck). (c) Legitimate (for a
nonstandard die).

4.33 (a) 0.28. (b) 0.88.

4.35  Take each blood type probability and multiply by 0.84 and by 0.16. For example, the probability for
A-positive blood is (0.42)(0.84) = 0.3528.

4.37  (a) 0.006. (b) 0.001.

4.39  0.5160.

4.41  Observe that P(A and Bc) = P(A) − P(A and B) = P(A) − P(A)P(B).

4.43  (a) Either B or O. (b) P(B) = 0.75, and P(O) = 0.25.

4.45  (a) 0.25. (b) 0.015625; 0.140625.

4.47  Possible values: 0, 1, 2. Probabilities: 1/4, 1/2, 1/4.

4.49

x 1 2 3 4 5 6
P(X = x) 0.05 0.05 0.13 0.26 0.36 0.15

4.51 (a) 0.23. (b) 0.62. (c) 0.

4.53 (a) Discrete random variables. (b) Continuous random variables can take values from any interval.
(c) Normal random variables are continuous.

4.55  (a) P(T) = 0.19. (b) P(TTT) = 0.0069, P(TTTc) = P(TTcT) = P(TcTT) = 0.0292, P(TTcTc) =
P(TcTTc) = P(TcTcT) = 0.1247, and P(TcTcTc) = 0.5314. (c) P(X = 3) = 0.0069, P(X = 2) = 0.0876, P(X =
1) = 0.3741, and P(X = 0) = 0.5314.

4.57  (a) Continuous. (b) Discrete. (c) Discrete.

4.59  (a) Note that, for example, “(1, 2)” and “(2, 1)” are distinct outcomes. (b) 1/36. (c) For example, four
pairs add to 5, so P (X = 5) = 4/36 = 1/9. (d) 2/9. (e) 5/6.
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4.61 (b) P(X ≥ 1) = 0.9. (c) “No more than two nonword errors.” P(X ≤ 2) = 0.7; P(X < 2) = 0.4.

4.63 (a) The height should be 1/2. (b) 0.8. (c) 0.6. (d) 0.525.

4.65  Very close to 1.

4.67  Possible values: $0 and $5. Probabilities: 0.5 and 0.5. Mean: $2.50.

4.69  μY = 68.

4.71  σX2=2.16 and σX = 1.47.

4.73  As the sample size gets larger, the standard deviation decreases. The mean for 1000 will be much
closer to μ than the mean for 2 (or 100) observations.

4.75  σX2=1.45 and σX = 1.204.

4.77  (a) 202. (b) 198. (c) 60. (d) −20. (e) −140.

4.79  Mean = 2.2 servings.

4.81  0.373 aces.

4.83  (a) $85.48. (b) This is larger; the negative correlation decreased the variance.

4.85  The exercise describes a positive correlation between calcium intake and compliance. Because of
this, the variance of total calcium intake is greater than the variance we would see if there were no
correlation.

4.87  (a) μ = σ = 0.5. (b) μ4 = 2 and σ4 = 1.

4.89  (a) Not independent. (b) Independent.

4.91  If 1 of the 10 homes were lost, it would cost more than the collected premiums. For many policies,
the average claim should be close to $300.

4.93 (a) 0.99749. (b) $623.22.

4.95  1/2 = 0.5.

4.97  2/48 = 1/24.

4.99  The addition rule for disjoint events.

4.101  With 23 cards seen, there are 29 left to draw from. The four probabilities are 45/406, 95/406,
95/406, and 171/406.

4.103 (a) 0.8. (b) 0.2.

4.105  (a) 5/6 = 0.833.

4.107  (a) A = 5 to 10 years old, B = 11 to 13 years old, C = adequate calcium intake, I = inadequate
calcium intake. (b) P(A) = 0.52, P(B) = 0.48, P(I|A) = 0.18, P(I|B) = 0.57. (c) P(I) = 0.3672.

4.109  Not independent. P(I|A) = 0.18, P(I|B) = 0.57. These are different.

4.111  (a) 0.16. (b) 0.22. (c) 0.38. (d) For (a) and (b), use the addition rule for disjoint events; for (c), use
the addition rule, and note that Sc and Ec =(S or E)c.

4.113  0.73; use the addition rule.
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4.115  (a) The four entries are 0.2684, 0.3416, 0.1599, 0.2301. (b) 0.5975.

4.117  For example, the probability of selecting a female student is 0.5717; the probability that she comes
from a 4-year institution is 0.5975.

4.119  P(A|B) = 0.3142. If A and B were independent, then P(A|B) would equal P(A).

4.121  (a) P(Ac) = 0.69. (b) P(A and B) = 0.08.

4.123  1.

4.125 (a) P(B|C) = 1/3. P(C|B) = 0.2.

4.127  (a) P(M) = 0.3959. (b) P(B|M) = 0.6671. (c) P(M) P(B) = 0.2521, so these are not independent.

4.129  (a) Her brother has allele type aa, and he got one allele from each parent. (b) P(aa) = 0.25, P(Aa) =
0.5, P(AA) = 0.25. (c) P(AA|not aa) = 1/3, P(Aa|not aa) = 2/3.

4.131  0.9333.

4.133  Close to μX = 1.4.

4.135  (a) Possible values 2 and 14, with probabilities 0.4 and 0.6, respectively. (b) μY = 9.2 and σY =
5.8788. (c) There are no rules for a quadratic function of a random variable; we must use definitions.

4.137 (a) P(A) = 1/36 and P(B) = 15/36. (b) P(A) = 1/36 and P(B) = 15/36. (c) P(A) = 10/36 and P(B) =
6/36. (d) P(A) = 10/36 and P(B) = 6/36.

4.139  For example, if the point is 4 or 10, the expected gain is (1/3)(+20) + (2/3)(−10) = 0.

4.141 (a) All probabilities are greater than or equal to 0, and their sum is 1. (b) 0.61. (c) Both probabilities
are 0.39.

4.143  0.005352.

4.145  0.6817.

4.147  P(no point) = 1/3. The probability of winning (losing) an odds bet is 1/36 (1/18) on 4 or 10, 2/45
(1/15) on 5 or 9, 25/396 (5/66) on 6 or 8.

4.149  0.1622.

4.151  P(Y < 1/3|Y > X) = 1/9.

CHAPTER 5
5.1  Population: iPhone users. Statistic: a median of 108 apps per device. Likely values will vary.

5.3  μx¯=420,σx¯=1.

5.5  About 95% of the time, x¯ is between 181 and 189.

5.7 (a) Each sample size has μx¯=1. For n = 2, σx¯=0.707. For n = 10, σx¯=0.316. For n = 25, σx¯=0.2.

5.9 (a) The standard deviation for n = 10 will be σx¯=20/10. (b) Standard deviation decreases with
increasing sample size. (c) μx¯ always equals μ.

5.11 (a) μ = 125.5. (b) Answers will vary. (c) Answers will vary. (d) The center of the histogram
represents an average of averages.
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5.13 (a) Both populations are smartphone users. They likely are comparable. (b) Excluding those with no
apps will increase the median because you are eliminating individuals.

5.15 (a) Larger. (b) We need σx¯≤0.085. (c) The smallest sample size that will fit this criterion is n = 213.

5.17  μx¯=250. σx¯=0.25.

5.19 (b) To be more than 1 ml away from the target value means the volume is less than 249 or more than
251. Using symmetry, P = 2P(X < 249) = 2P(z < −2) = 2(0.0228) = 0.0456. (c) P = 2P(X < 249) = 2P(z <
−4) ≈ 0. (Software gives 0.00006.)

5.21 (a) x¯ is not systematically higher than or lower than μ. (b) With large samples, x¯ is more likely to
be close to μ.

5.23 (a) μx¯=0.3. σx¯=0.08. (b) 0.0062. (c) n = 100 is a large enough sample to be able to use the central
limit theorem.

5.25  (a) 0.0668. (b) 0.0047.

5.27  134.5 mg/dl.

5.29  0.0051.

5.31  (a) N(0.5, 0.332). (b) 0.0655. Software gives a probability of 0.0661.

5.33  (a) y¯ has a N(μY,σY/m)distribution, and x¯ has a N(μX,σX/n) distribution. (b) y¯−x¯ has a Normal
distribution with mean μY − μX and standard deviation σy¯2+σx¯2.

5.35  n = 1965. X = 0.48 × 1965 = 943. p̂=0.48.

5.37  (a) n = 1500. (b) Answers and reasons will vary. (c) If the choice is “Yes,” X = 1025. (d) For “Yes,”
p̂=1025/1500=0.683.

5.39  B(10, 0.5).

5.41  (a) P(X = 0) = 0.0467 and P(X ≥ 4) = 0.1792. (b) P(X = 6) = 0.0467 and P(X ≤ 2) = 0.1792. (c) The
number of “failures” in the B(6, 0.4) distribution has the B(6, 0.6) distribution. With 6 trials, 0 successes is
equivalent to 6 failures, and 4 or more successes is equivalent to 2 or fewer failures.

5.43  (a) 0.9953. (b) 0.8415. Using software gives 0.8422.

5.45 (a) 0.1563. (b) 0.7851.

5.47  (a and b) The coin is fair. The probabilities are still P(H) = P(T) = 0.5. Separate flips are independent
(coins have no “memory”), so regardless of the results of the first four tosses, the fifth is equally likely to
be a head or a tail. (c) The parameters for a binomial distribution are n and p. (d) This is best modeled with
a Poisson distribution.

5.49  (a) A B(200, p) distribution seems reasonable for this setting (even though we do not know what p
is). (b) This setting is not binomial; there is no fixed value of n. (c) A B(500, 1/12) distribution seems
appropriate for this setting. (d) This is not binomial because separate cards are not independent.

5.51 (a) The distribution of those who say they have stolen something is B(10, 0.2). The distribution of
those who do not say they have stolen something is B(10, 0.8). (b) X is the number who say they have
stolen something. P(X ≥ 4) = 1 − P(X ≤ 3) = 0.1209.

5.53 (a) Stole: μ = 2; did not steal: μ = 8. (b) σ = 1.265. (c) If p = 0.1, σ = 0.949. If p = 0.01, σ = 0.315. As
p gets smaller, the standard deviation becomes smaller.

5.55 (a) P(X ≤ 7) = 0.0172 and P(X ≤ 8) = 0.0566, so 7 is the largest value of m. (b) P(X ≤ 5) = 0.0338 and
P(X ≤ 6) = 0.0950, so 5 is the largest value of m. (c) The probability will decrease.
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5.57  The count of 5s among n random digits has a binomial distribution with p = 0.1. (a) 0.4686. (b) μ =
4.

5.59 (a) n = 4, p = 0.7. (b)

x 0 1 2 3 4
P(X = x) 0.0081 0.0756 0.2646 0.4116 0.2401

(c) μ = 4(0.7) = 2.8, and σ=4(0.7)(1−0.7)=0.9165.

5.61  (a) Because (0.7)(300) = 210 and (0.3)(300) = 90, the approximate distribution is p̂∼N(0.7,(0.7)
(0.3)300=0.0265). P(0.67<p̂<0.73)=0.7416 (Software gives 0.7424). (b) If p = 0.9, the distribution of p̂ is
approximately N(0.9, 0.0173). P(0.87<p̂<0.93)=0.9164 (Software gives 0.9171). (c) As p gets closer to 1,
the probability of being within ±0.03 of p increases.

5.63  (a) The mean is μ = p = 0.69, and the standard deviation is σ=p(1−p)/n=0.0008444. (b) μ ± 2σ gives
the range 68.83% to 69.17%. (c) This range is considerably narrower than the historical range. In fact, 67%
and 70% correspond to z = −23.7 and z = 11.8.

5.65 (a) p̂=0.28. (b) 0.0934 using Table A. Software gives 0.0927 without rounding intermediate values.
(c) Answers will vary.

5.67 (a) p = 1/4 = 0.25. (b) P(X ≥ 10) = 0.0139. (c) μ = np = 5 and σ=3.75=1.9365 successes. (d) No. The
trials would not be independent.

5.69  (a) X, the count of successes, has the B(900, 1/5) distribution, with mean μ = 180 and σ = 12
successes. (b) For p̂, the mean is μp̂=p=0.2 and σp̂=0.01333. (c) P(p̂>0.24)=0.0013. (d) 208 or more
successes.

5.71 (a) 0.1788. (b) 0.0594. (c) 400. (d) Yes.

5.73  Y has possible values 1, 2, 3, ... P(first ⊡ appears on toss k) = (5/6)k−1(1/6).

5.75 (a) μ = 50. (b) The standard deviation is σ=50=7.071. P(X > 60) = 0.0793. Software gives 0.0786.

5.77  (a) x¯ has (approximately) an N(123 mg, 0.04619 mg) distribution. (b) P(x¯≥124) is essentially 0.

5.79 (a) Approximately Normal with mean μx¯=2.13 and standard deviation σx¯=0.159. (b)
P(x¯<2)=0.2061. Software gives 0.2068. (c) Yes, because n = 140 is large.

5.81  0.0034.

5.83  If the carton weighs between 755 and 830 g, then the average weight of the 12 eggs must be between
755/12 = 62.92 and 830/12 = 69.17 g. The distribution of the mean weight is N(66,6/12=1.732).
P(62.92<x¯<69.17)=0.9288.

5.85 (a) He needs 14.857 (really 15) wins. (b) μ = 13.52 and σ = 3.629. (c) Without the continuity
correction, P(X ≥ 15) = 0.3409. With the continuity correction, we have P(X ≥ 14.5) = 0.3936. The
continuity correction is much closer.

5.87  (a) p^F is approximately N(0.82, 0.01921), and p^M is approximately N(0.88, 0.01625). (b) When
we subtract two independent Normal random variables, the difference is Normal. The new mean is the
difference between the two means (0.88 − 0.82 = 0.06), and the new variance is the sum of the variances
(0.000369 + 0.000264 = 0.000633), so p̂M−p̂F is approximately N(0.06, 0.02516). (c) 0.0087 (software:
0.0085).

5.89  P(Y ≥ 200) = P(Y/500 ≥ 0.4) = P(Z ≥ 4.56) = 0.
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CHAPTER 6
6.1  σx¯=$0.40.

6.3  $0.80.

6.7  The margin of error will be halved.

6.9  n = 285.

6.11  The students who did not respond are (obviously) not represented in the results. They may be more
(or less) likely to use credit cards.

6.13  Margins of error: 17.355, 12.272, 8.677, and 6.136; interval width decreases with increasing sample
size.

6.15  (a) She did not divide the standard deviation by 500=22.361. (b) Confidence intervals concern the
population mean. (c) 0.95 is a confidence level, not a probability. (d) The large sample size affects the
distribution of the sample mean (by the central limit theorem), not the individual ratings.

6.17 (a) The margin of error is 0.244; the interval is 5.156 to 5.644. (b) The margin of error is 0.321; the
interval is 5.079 to 5.721.

6.19  Margin of error, 2.29 U/l. Interval, 10.91 to 15.49 U/l.

6.21  Scenario A has a smaller margin of error; less variability in a single class rank.

6.23 (a) ±18.98. (b) ±18.98.

6.25  No; this is a range of values for the mean rent, not for individual rents.

6.27 (a) 11.03 to 11.97 hours. (b) No; this is a range of values for the mean time spent, not for individual
times. (c) The sample size is large (n = 1200 students surveyed).

6.29 (a) Not certain (only 95% confident). (b) We obtained the interval 86.5% to 88.5% by a method that
gives a correct result 95% of the time. (c) About 0.51%. (d) No (only random sampling error).

6.31  x¯=18.3515 kpl; the margin of error is 0.6521 kpl.

6.33  n = 73.

6.35  No; confidence interval methods can be applied only to an SRS.

6.37 (a) 0.7738. (b) 0.9774.

6.39  H0: μ = 1.4 g/cm2; Ha: μ ≠ 1.4 g/cm2.

6.41  P = 0.0702 (Software gives 0.0703).

6.43 (a) 1.645. (b) z > 1.645.

6.45 (a) z = 1.875. (b) P = 0.0301 (Software gives 0.0304). (c) P = 0.0602 (Software gives 0.0608).

6.47 (a) No. (b) Yes.

6.49 (a) Yes. (b) No. (c) To reject, we need P < α.

6.51 (a) P = 0.031 and P = 0.969. (b) We need to know whether the observed data (for example, x¯) are
consistent with Ha. (If so, use the smaller P-value.)
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6.53 (a) Population mean, not sample mean. (b) H0 should be that there is no change. (c) A small P-value
is needed for significance. (d) Compare P, not z, with α.

6.55 (a) H0: μ = 77; Ha: μ ≠ 77. (b) H0: μ = 20 seconds; Ha: μ > 20 seconds. (c) H0: μ = 880 ft2; Ha: μ <

880 ft2.

6.57 (a) H0: μ = $42, 800; Ha: μ > $42,800. (b) H0: μ = 0.4 hr; Ha: μ ≠ 0.4 hr.

6.59 (a) P = 0.9545. (b) P = 0.0455. (c) P = 0.0910.

6.61  P = 0.09 means there is some evidence for the wage decrease, but it is not significant at the α = 0.05
level.

6.63  The difference was large enough that it would rarely arise by chance. Health issues related to alcohol
use are probably discussed in the health and safety class.

6.65  The report can be made for public school students but not for private school students. Not finding a
significant increase is not the same as finding no difference.

6.67  z = 4.14, so P = 0.00003 (for a two-sided alternative).

6.69  H0: μ = 100; Ha: μ ≠ 100; z = 5.75; significant (P < 0.0001).

6.71 (a) z = 2.13, P = 0.0166. (b) The important assumption is that this is an SRS. We also assume a
Normal distribution, but this is not crucial provided there are no outliers and little skewness.

6.73 (a) H0: μ = 0 mpg; Ha: μ ≠ 0 mpg, where μ is the mean difference. (b) z = 4.07, which gives a very
small P-value.

6.75 (a) H0: μ = 0.61 mg; Ha: μ > 0.61 mg. (b) Yes. (c) No.

6.77  x¯=0.8 is significant, but 0.7 is not. Smaller α means that x¯ must be farther away.

6.79  $$math$$ will be statistically significant. With a larger sample size, x¯ close to μ0 will be
significant.

6.81  Changing to the two-sided alternative multiplies each P-value by 2.

x¯ P x¯ P
0.1 0.7518 0.6 0.0578
0.2 0.5271 0.7 0.0269
0.3 0.3428 0.8 0.0114
0.4 0.2059 0.9 0.0044
0.5 0.1139 1 0.0016

6.83  Something that occurs “fewer than 1 time in 100 repetitions” must also occur “fewer than 5 times in
100 repetitions.”

6.85  Any z with 2.576 < |z| < 2.807.

6.87  P > 0.25.

6.89  0.05 < P < 0.10; P = 0.0602.

6.91  To determine the effectiveness of alarm systems, we need to know the percent of all homes with
alarm systems and the percent of burglarized homes with alarm systems.
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6.93  The first test was barely significant at α = 0.05, while the second was significant at any reasonable α.

6.95  A significance test answers only question (b).

6.97 (a) The differences observed might occur by chance even if SES had no effect. (b) This tells us that
the statistically insignificant test result did not occur merely because of a small sample size.

6.99 (a) P = 0.2843. (b) P = 0.1020. (c) P = 0.0023.

6.101  With a larger sample, we might have significant results.

6.107  n should be about 100, 000.

6.109  Reject the fifth (P = 0.002) and eleventh (P < 0.002), because the P-values are both less than
0.05/12 = 0.0042.

6.111  Larger samples give more power.

6.113  Higher; larger differences are easier to detect.

6.115 (a) Power decreases. (b) Power decreases. (c) Power increases.

6.117  Power: about 0.99.

6.119  Power: 0.4641.

6.121 (a) Hypotheses: “subject should go to college” and “subject should join workforce.” Errors:
recommending college for someone who is better suited for the workforce, and recommending work for
someone who should go to college.

6.123 (a) For example, if μ is the mean difference in scores, H0: μ = 0; Ha: μ ≠ 0. (b) No. (c) For example:
Was this an experiment? What was the design? How big were the samples?

6.125 (a) For boys:

Energy (kJ) 2399.9 to 2496.1
Protein (g) 24.00 to 25.00
Calcium (mg) 315.33 to 332.87

(b) For girls:

Energy (kJ) 2130.7 to 2209.3
Protein (g) 21.66 to 22.54
Calcium (mg) 257.70 to 272.30

(c) The confidence interval for boys is entirely above the confidence interval for girls for each food intake.

6.129 (a) 4.61 to 6.05 mg/dl. (b) z = 1.45, P = 0.0735; not significant.

6.131 (b) 26.06 to 34.74 μg/l. (c) z = 2.44, P = 0.0073.

6.133 (a) Under H0, x¯ has an N(0%, 5.3932%) distribution. (b) z = 1.28, P = 0.1003. (c) Not significant.

6.135  It is essentially correct.

6.137  Find x¯, then take x¯±1.96(4/12)=x¯±2.2632.

6.139  Find x¯, then compute z=(x¯−23)/(4/12). Reject H0 based on your chosen significance level.
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CHAPTER 7
7.1 (a) $13.75. (b) 15.

7.3  $570.70 to $629.30.

7.5 (a) Yes. (b) No.

7.7  4.19 to 10.14 hours per month.

7.9  Using t* = 2.776 from Table D: 0.685 to 22.515. Software gives 0.683 to 22.517.

7.11  The sample size should be sufficient to overcome any non-Normality, but the mean μ might not be a
useful summary of a bimodal distribution.

7.13  The power is about 0.9192.

7.15  The power is about 0.9452.

7.17 (a) t* = 2.201. (b) t* = 2.086. (c) t* = 1.725. (d) t* decreases with increasing sample size and
increases with increasing confidence.

7.19  t* = 1.753 (or −1.753).

7.21  For the alternative μ < 0, the answer would be the same (P = 0.034). For the alternative μ > 0, the
answer would be P = 0.966.

7.23 (a) df = 26. (b) 1.706 < t < 2.056. (c) 0.05 < P < 0.10. (d) t = 2.01 is not significant at either level. (e)
From software, P = 0.0549.

7.25  It depends on whether x¯ is on the appropriate side of μ0.

7.27 (a) H0: μ = 4.7; Ha: μ ≠ 4.7. t = 14.907 with 0.002 < P < 0.005 (software gives P = 0.0045). (b)
4.8968% to 5.0566%. (c) Because our confidence interval is entirely within the range of 4.7% to 5.3%, it
appears that Budweiser is meeting the required standards.

7.29 (a) H0: μ = 10; Ha: μ < 10. (b) t = −5.26, df = 33, P < 0.0001.

7.31 (a) Distribution is not Normal; it has two peaks and one large value. (b) Maybe; we have a large
sample but a small population. (c) 27.29 ± 5.717, or 21.57 to 33.01 cm. (d) One could argue for either
answer.

7.33 (a) Yes; the sample size is large. (b) t = −2.115. Using Table D, we have 0.02 < P < 0.04, while
software gives P = 0.0381.

7.35  H0: μ = 45 versus Ha: μ > 45. t = 5.457. Using df = 49, P ≈ 0; with df = 40, P < 0.0005.

7.37 (a) t = 5.13, df = 15, P < 0.001. (b) With 95% confidence, the mean NEAT increase is between 191.6
and 464.4 calories.

7.39 (a) H0: μc = μd; Ha: μc ≠ μd. (b) t = 4.358, P = 0.0003; we reject H0.

7.41 (a) H0: μ = 925; Ha: μ > 925. t = 3.27 (df = 35), P = 0.0012. (b) H0: μ = 935; Ha: μ > 935. t = 0.80, P
= 0.2146. (c) The confidence interval includes 935 but not 925.

7.43 (a) The differences are spread from −0.018 to 0.020 g. (b) t = −0.347, df = 7, P = 0.7388. (c) −0.0117
to 0.0087 g. (d) They may be representative of future subjects, but the results are suspect because this is
not a random sample.
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7.45 (a) H0: μ = 0; Ha: μ > 0. (b) Slightly left-skewed; x¯=2.5 and s = 2.893. (c) t = 3.865, df = 19, P =
0.00052. (d) 1.15 to 3.85.

7.47  For the sign test, P = 0.0898; not quite significant, unlike Exercise 7.38.

7.49  H0: median = 0; Ha: median ≠ 0; P = 0.7266. This is similar to the t test P-value.

7.51  H0: median = 0; Ha: median > 0; P = 0.0013.

7.53  Reject H0 if |x¯|≥0.00677. The power is about 7%.

7.55  n > 26. (The power is about 0.7999 when n = 26.)

7.57  −20.3163 to 0.3163; do not reject H0.

7.59  Using df = 14, Table D gives 0.04 < P < 0.05.

7.61  SAS and SPSS give t = 2.279, P = 0.052.

7.63 (a) Hypotheses should involve μ1 and μ2. (b) The samples are not independent. (c) We need P to be
small (for example, less than 0.10) to reject H0. (d) t should be negative to reject H0 with this alternative.

7.65 (a) No (in fact, P = 0.0771). (b)Yes (P = 0.0385).

7.67  H0: μBrown = μBlue and Ha: μBrown > μBlue. t = 2.59. Software gives P = 0.0058. Table D gives
0.005 < P < 0.01.

7.69  The nonresponse is (3866 − 1839)/3866 = 0.5243, or about 52.4%. What can we say about those who
do (or do not) respond despite the efforts of the researchers?

7.71 (a) While the distributions do not look particularly Normal, they have no extreme outliers or
skewness. (b) x¯N=0.5714, SN = 0.7300, nN = 14; x¯S=2.1176, SS = 1.2441, nS = 17. (c) H0: μN = μS;
Ha: μN < μS. (d) t = −4.303, so P = 0.0001 (df = 26.5) or P < 0.0005 (df = 13). (e) −2.2842 to −0.8082 (df
= 26.5) or −2.3225 to −0.7699 (df = 13).

7.73 (a) Although the data are integers, the sample sizes are large. (b) Taco Bell: x¯=4.1987, s = 0.8761, n
= 307. McDonald’s: x¯=3.9365, s = 0.8768, n = 362. (c) t = 3.85, P = 0.0001 (df = 649.4) or P < 0.005 (df
= 100). (d) 0.129 to 0.396 (df = 649.4) or 0.128 to 0.391 (df = 306) or 0.127 to 0.397 (df = 100).

7.75 (a) Assuming we have SRSs from each population, this seems reasonable. (b) H0: μEarly = μLate
and Ha: μEarly ≠ μLate. (c) SED = 1.0534, t = 1.614, P = 0.1075 (df = 347.4) or P = 0.1081 (df = 199). (d)
−0.372 to 3.772 (df = 347.7) or −0.377 to 3.777 (df = 199) or −0.390 to 3.790 (df = 100).

7.77 (a) This may be near enough to an SRS if this company’s working conditions were similar to those of
other workers. (b) 9.99 to 13.01 mg.y/m3. (c) t = 15.08, P < 0.0001 with either df = 137 or 114. (d) The
sample sizes are large enough that skewness should not matter.

7.79  You need either sample sizes and standard deviations or degrees of freedom and a more accurate
value for the P-value. The confidence interval will give us useful information about the magnitude of the
difference.

7.81  This is a matched pairs design.

7.83  The next 10 employees who need screens might not be an independent group—perhaps they all
come from the same department, for example.

7.85 (a) The north distribution (five-number summary 2.2, 10.2, 17.05, 39.1, 58.8 cm) is right-skewed,
while the south distribution (2.6, 26.1, 37.70, 44.6, 52.9) is left-skewed. (b) The methods of this section
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seem to be appropriate. (c) H0: μN = μS; Ha: μN ≠ μS. (d) t = −2.63 with df = 55.7 (P = 0.011) or df = 29
(P = 0.014). (e) Either −19.09 to −2.57 or −19.26 to −2.40 cm.

7.87 (a) Either −0.90 to 6.90 units (df = 122.5) or −0.95 to 6.95 units (df = 54). (b) Random fluctuation
may account for the difference in the two averages.

7.89 (a) H0: μB = μF; Ha: μB > μF; t = 1.654, P = 0.053 (df = 37.6) or P = 0.058 (df = 18). (b) −0.2 to 2.0.
(c) We need two independent SRSs from Normal populations.

7.91  sp = 0.9347; t = −3.636, df = 40, P = 0.0008; −1.6337 to −0.4663. Both results are similar to those
for Exercise 7.72.

7.93  sp = 15.96; t = −2.629, df = 58, P = 0.0110; − 19.08 to −2.58 cm. All results are nearly the same as
in Exercise 7.85.

7.95  df = 55.725.

7.97 (a) df = 137.066. (b) sp = 5.332 (slightly closer to s2, from the larger sample). (c) With no
assumption, SE1 = 0.7626; with the pooled method, SE2 = 0.6136. (d) t = 18.74, df = 333, P < 0.0001. t
and df are larger, so the evidence is stronger (although it was quite strong before). (e) df = 121.503; sp =
1.734; SE1 = 0.2653 and SE2 = 0.1995. t = 24.56, df = 333, P < 0.0001.

7.99 (a) F* = 2.25. (b) Significant at the 10% level but not at the 5% level.

7.101  A smaller σ would yield more power.

7.103  F = 1.106, df = 199 and 201. Using Table D (df = 120 and 200), P > 0.200. (Software gives P =
0.4762.)

7.105  F = 5.263 with df = 114 and 219; P < 0.0001. The authors described the distributions as somewhat
skewed, so the Normality assumption may be violated.

7.107  F = 1.506 with df = 29 and 29; P = 0.2757. The stemplots in Exercise 7.85 did not appear to be
Normal.

7.109 (a) F = 1.12; do not reject H0. (b) The critical values are 9.60, 15.44, 39.00, and 647.79. With small
samples, these are low-power tests.

7.111  Using a larger σ for planning the study is advisable because it provides a conservative (safe)
estimate of the power.

7.113  x¯=139.5, s = 15.0222, Sx¯=7.5111. We cannot consider these four scores to be an SRS.

7.115  As df increases, t* approaches 1.96.

7.117  Margins of error decrease with increasing sample size.

7.119 (a) Two independent samples. (b) Matched pairs. (c) Single sample.

7.121 (a) H0: μ = 1.5; Ha: μ < 1.5. t = −9.974, P ≈ 0. (b) 0.697 to 0.962 violations. (d) The sample size
should be large enough to make t procedures safe.

7.123 (a) −3.008 to 1.302 (Software gives −2.859 to 1.153). (b) −1.761 to 0.055.

7.125 (a) We are looking at the average proportion for samples of n = 41 and 197. (b) H0: μB = μW and
Ha: μB ≠ μW. (c) For First Year: t = 0.982. With df = 52.3, P = 0.3305. For Third Year: t = 2.126, df =
46.9, P = 0.0388.
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7.127 (a) Body weight: mean −0.7 kg, SE 2.298 kg. Caloric intake: mean = 14 cal, SE = 56.125 cal. (b) t1
= −0.305 (body weight) and t2 = 0.249 (caloric intake), both df = 13, both P-values are about 0.8. (c) −5.66
to 4.26 kg and −107.23 to 135.23 cal.

7.129 (a) At each nest, the same mockingbird responded on each day. (b) 6.9774 m. (c) t = 6.32, P <
0.0001. (d) 5.5968 m. (e) t = −0.973, P = 0.3407.

7.131  How much a person eats may depend on how many people he or she is sitting with.

7.133  No; what we have is nothing like an SRS.

7.135  77.76% ± 13.49%, or 64.29% to 91.25%.

7.137  GPA: t = −0.91, df = 74.9 (P = 0.1839) or 30 (0.15 < P < 0.20). Confidence interval: −1.33 to 0.5.
IQ: t = 1.64, df = 56.9 (P = 0.0530) or 30 (0.05 < P < 0.10). Confidence interval: −1.12 to 11.36.

7.139  t = 3.65, df = 237.0 or 115, P < 0.0005. 95% confidence interval for the difference: 0.78 to 2.60.

7.141  t = −0.3533, df = 179, P = 0.3621.

7.143  Basal: x¯=41.0455, s = 5.6356. DRTA: x¯=46.7273, s = 7.3884. Strat: x¯=44.2727, s = 5.7668. (a)
t = 2.87, P < 0.005. Confidence interval for difference: 1.7 to 9.7 points. (b) t = 1.88, P < 0.05. Confidence
interval for difference: −0.24 to 6.7 points.

CHAPTER 8
8.1 (a) n = 5013 smartphone users. (b) p is the proportion of smartphone users who have used the phone to
search for information about a product that they purchased. (c) X = 2657. (d) p̂=0.530.

8.3 (a) 0.0070. (b) 0.530 ± 0.014. (c) 51.6% to 54.4%.

8.5  Shade above 1.34 and below −1.34.

8.7  p̂=0.75, z = 2.24, P = 0.0250.

8.9 (a) z = −1.34, P = 0.1802 (Software gives P = 0.1797). (b) 0.1410 to 0.5590—the complement of the
interval shown in Figure 8.3.

8.11  The plot is symmetric about 0.5, where it has its maximum.

8.13 (a) p is the proportion of students at your college who regularly eat breakfast. n = 200, X = 84. (b)
p^=0.42. (c) We estimate that the proportion of all students at the university who eat breakfast is about
0.42 (42%).

8.15 (a) p̂=0.461, SEp̂=0.0157, m = 0.0308. (b) Yes. (c) 0.4302 to 0.4918. (d) We are 95% confident that
between 43% and 49.2% of cell phone owners used their cell phone while in a store to call a friend or
family member for advice about a purchase.

8.17 (a) p̂=0.7826, SEp^=0.0272, m = 0.0533. (b) This was not an SRS; they asked all customers in the
two-week period. (c) 0.7293 to 0.8359.

8.19  n at least 597.

8.21 (a) The confidence level cannot exceed 100%. (In practical terms, the confidence level must be less
than 100%.) (b) The margin of error only accounts for random sampling error. (c) P-values measure the
strength of the evidence against H0, not the probability of it being true.

8.23  p̂=0.6548; 0.6416 to 0.6680.
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8.25 (a) X = 934.5, which rounds to 935. We cannot have fractions of respondents. (b) Using 89%, 0.8711
to 0.9089. (c) 87.1% to 90.9%.

8.27 (a) Values of p̂ outside the interval 0.1730 to 0.4720. (b) Values outside the interval 0.210 to 0.390.

8.29 (a) About 67,179 students. (b) 0.4168 to 0.4232.

8.31  0.4043 to 0.4557.

8.33 (a) ±0.001321. (b) Other sources of error are much more significant than sampling error.

8.35 (a) p̂=0.3275; 0.3008 to 0.3541. (b) Speakers and listeners probably perceive sermon length
differently.

8.37 (a) H0: p = 0.5 versus Ha: p > 0.5; p̂=0.7. z = 2.83, P = 0.0023. (c) The test is significant at the 5%
level (and the 1% level as well).

8.39 (a) z = 1.34, P = 0.1802. (b) 0.4969 to 0.5165.

8.41  n = 9604.

8.43  The sample sizes are 55, 97, 127, 145, 151, 145, 127, 97, and 55; take n = 151.

8.45  Mean = −0.3, standard deviation = 0.1360.

8.47 (a) Means p1 and p2, standard deviations p1(1−p1)/n1 and p2(1−p2)/n2. (b) p1 − p2. (c) p1(1 −
p1)/n1 + p2(1 − p2)/n2.

8.49  The interval for qW − qM is −0.0030 to 0.2516.

8.51  The sample proportions support the alternative hypothesis pm > pw; P = 0.0287.

8.53 (a) Only 5 of 25 watched the second design for more than a minute; this does not fit the guidelines.
(b) It is reasonable to assume that the sampled students were chosen randomly. No information was given
about the size of the institution; are there more than 20(361) = 7220 first-year students and more than
20(221) = 4420 fourth-year students? There were more than 15 each “Yes” and “No” answers in each
group.

8.55 (a) Yes. (b) Yes.

8.57 (a) RR (watch more than one minute) = 2.4. (b) RR (“Yes” answer) = 2.248.

8.59 (a) Type of college is explanatory; response is requiring physical education. (b) The populations are
private and public colleges and universities. (c) X1 = 101, n1 = 129, p̂1=0.7829, X2 = 60, n2 = 225,
p^2=0.2667. (d) 0.4245 to 0.6079. (e) H0: p1 = p2 and Ha: p1 ≠ p2. We have p̂=60+101225+129=0.4548.
z = 9.39, P ≈ 0. (f) All counts are greater than 15. Were these random samples?

8.61  0.0363 to 0.1457.

8.63 (a) n1 = 1063, p̂1=0.54, n2 = 1064, p̂2=0.89. (We can estimate X1 = 574 and X2 = 947.) (b) 0.35. (c)
Yes; large, independent samples from two populations. (d) 0.3146 to 0.3854. (e) 35%; 31.5% to 38.5%. (f)
A possible concern: adults were surveyed before Christmas.

8.65 (a) n1 = 1063, p̂1=0.73, n2 = 1064, p̂2=0.76. (We can estimate X1 = 776 and X2 = 809.) (b) 0.03. (c)
Yes; large, independent samples from two populations. (d) −0.0070 to 0.0670. (e) 3%; −0.7% to 6.7%. (f)
A possible concern: adults were surveyed before Christmas.

8.67  No; we need independent samples from different populations.
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8.69 (a) H0 should refer to p1 and p2. (b) Only if n1 = n2. (c) Confidence intervals account for only
sampling error.

8.71 (a) p̂F=0.8, SE = 0.05164; p̂M=0.3939, SE = 0.04253. (b) 0.2960 to 0.5161. (c) z = 5.22, P ≈ 0.

8.73 (a) n = 2342, x = 1639. (b) p̂=0.6998. SE = 0.0095. (c) 0.6812 to 0.7184. (d) Yes.

8.75  We have large samples from two independent populations (different age groups). p̂1=0.8161,
p̂2=0.4281. SED = 0.0198. The 95% confidence interval is 0.3492 to 0.4268.

8.79 (a) 1207. (b) 0.6483 to 0.6917. (c) About 64.8% to 69.2%.

8.81  There was only one sample, not two independent samples. Many people use both.

8.83 (a) We have six chances to make an error. (b) Use z* = 2.65 (software: 2.6383). (c) 0.705 to 0.775,
0.684 to 0.756, 0.643 to 0.717, 0.632 to 0.708, 0.622 to 0.698, and 0.571 to 0.649.

8.85  p̂=0.375, SED = 0.01811, z = 6.08, P < 0.0001.

8.87  0.6337 to 0.6813.

8.89  H0: pF = pM and Ha: pF ≠ pM. XM = 171 and XF = 150. p^=0.1600, SEDp = 0.0164. z = 1.28, P =
0.2009.

8.93  All p̂-values are greater than 0.5. Texts 3, 7, and 8 have (respectively) z = 0.82, P = 0.4122; z = 3.02,
P = 0.0025; and z = 2.10, P = 0.0357. For the other texts, z ≥ 4.64 and P < 0.00005.

8.95  The difference becomes more significant as sample size increases. With n = 60, P = 0.2713; with n =
500, P = 0.0016, for example.

8.97 (a) n = 534. (b) n =(z*/m)2/2.

8.99 (a) p0 = 0.7911. (b) p̂=0.3897, z = −29.1; P is tiny. (c) p̂1=0.3897, p̂2=0.7930, z = −29.2; P is tiny.

8.101 (a) 0.5278 to 0.5822. (b) 0.5167 to 0.5713. (c) 0.3170 to 0.3690. (d) 0.5620 to 0.6160. (e) 0.5620 to
0.6160. (f) 0.6903 to 0.7397.

CHAPTER 9
9.1 (a) Yes: 47/292 = 0.161, No: 245/292 = 0.839. (b) Yes: 21/233 = 0.090, No: 212/233 = 0.910. (d)
Females are somewhat more likely than males to have increased the time they spend on Facebook.

9.5  Among all three fruit consumption groups, vigorous exercise is most likely. Incidence of low exercise
decreases with increasing fruit consumption.

9.7

Physical Activity
Fruit Low Medium Vigorous Total
Low 51.9 212.9 304.2 569
Medium 29.3 120.1 171.6 321
High 26.8 110.0 157.2 294
Total 108    443  633  1184  

9.9 (a) df = 12, 0.05 < P < 0.10. (b) df = 12, 0.05 < P < 0.10. (c) df = 1, 0.005 < P < 0.01. (d) df = 1, 0.20
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< P < 0.25.

9.11 (a)

Explanatory variable
Response 1 2
Yes 0.357 0.452
No 0.643 0.548
Total 1.000 1.000

(c) Explanatory variable value 1 had proportionately fewer “yes” responses.

9.13 (a) pi = proportion of “Yes” responses in group i. H0: p1 = p2, Ha: p1 ≠ p2. p̂=

(75+95)/(210+210)=0.4048. z = −1.9882, P = 0.0468. We fail to reject H0. (c) The P-values agree. (d) z2 =

(−1.9882)2 = 3.9529.

9.15  Roundoff error.

9.17  The contributions for the other five states are

CA HI IN NV OH
0.5820 0.0000 0.0196 0.0660 0.2264

X2 = 0.9309.

9.19 (a) H0: P(head) = P(tail) = 0.5 versus Ha: H0 is incorrect (the probabilities are not 0.5).

(b) X2 = 1.7956, df = 1, P = 0.1802.

9.21  (a) Joint Distribution:

Site 1 Site 2 Total
More than 1 min 0.24 0.10 0.34
Less than 1 min 0.26 0.40 0.66
Total 0.50 0.50 1.00

The conditional distributions are

Site 1 Site 2 Total
More than 1 min 0.7059 0.2941 1.0000
Less than 1 min 0.3939 0.6061 1.0000

and

Site 1 Site 2
More than 1 min 0.48 0.20
Less than 1 min 0.52 0.80
Total 1.00 1.00

(b) Joint Distribution

1st year 4th year Total
Yes 0.1460 0.2010 0.3471
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No 0.4742 0.1787 0.6529
Total 0.6203 0.3797 1.0000

The conditional distributions are

1st year 4th year Total
Yes 0.4208 0.5792 1.0000
No 0.7263 0.2737 1.0000

and

1st year 4th year
Yes 0.2355 0.5294
No 0.7645 0.4706
Total 1.0000 1.0000

9.23  (a) Describe a relationship. (b) Describe a relationship. (c) Time of day might explain the violence
content of TV programs. (d) Age would explain bad teeth.

9.25

Times Witnessed
Gender   Never   Once   More than once  Total   
Girls 125.503 161.725 715.773 1003
Boys 120.497 155.275 687.227 963
Total 246     317     1403    1966

9.27  (a) H0: p1 = p2 versus Ha: p1 ≠ p2, where the proportions of interest are those for persons harassed
in person. p̂1=3231/361=0.8892, p̂2=22/641=0.3120, p̂=521\1002=0.5200. z = 17.556, P ≈ 0. (b) H0: there
is no association between being harassed online and in person versus Ha: There is a relationship. X2 =

308.23, df = 1, P ≈ 0. (c) 17.5562 = 308.21, which agrees with X2 to within roundoff error. (d) One
possibility is eliminating girls who said they have not been harassed.

9.29  (a) The solution to Exercise 9.27 used “harassed online” as the explanatory variable. (b) Changing to
use “harassed in person” for the two-proportions z test gives p̂1=0.6161, p̂2=0.0832, p̂=0.3603. We again
compute z = 17.556, P ≈ 0. No changes will occur in the chi-square test. (c) If two variables are related, the
test statistic will be the same regardless of which is viewed as explanatory.

9.31  Ei = 100 for each face of the die.

9.33  (a) One might believe that opinion depended on the type of institution. (b) Presidents at 4-year
public institutions are roughly equally divided about online courses, with presidents at 2-year public
institutions slightly in favor. 4-year private school presidents are definitely not in agreement, while those at
private 2-year schools seem to think online courses are equivalent to face-to-face courses.

9.35  (a) 206. (b) We have separate samples, so the two-way table is

Presidents Public
Yes 206 621
No 189 1521

(c) The column totals for this table are the two sample sizes. The row totals might be seen as giving an
overall opinion on the value of online courses. (d) H0: The opinions on the value of online courses are the
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same for college presidents and the general public versus Ha: The opinions are different. X2 = 81.41, df =
1, P ≈ 0.

9.37  (a) For example, in the “small” stratum, 51 claims were allowed, 6 were not allowed, and the total
number of claims was 57. Altogether, there were 79 claims; 67 were allowed and 12 were not. (b) 10.5%
(small claims), 29.4% (medium), and 20.0% (large) were not allowed. (c) In the 3 × 2 table, the expected
count for large/not allowed is too small. (d) There is no relationship between claim size and whether a
claim is allowed. (e) X2 = 3.456, df = 1, P = 0.063.

9.39  There is strong evidence of a change (X2 = 308.3, df = 2, P < 0.0001).

9.41  (a) For example, among those students in trades, 320 enrolled right after high school, and 622 later.
(b) In addition to the given percents, 39.4% of these students enrolled right after high school. (c) X2 =
276.1, df = 5, P < 0.0001.

9.43  (a) For example, among those students in trades, 188 relied on parents, family, or spouse, and 754
did not. (b) X2 = 544.8, df = 5, P < 0.0001. (c) In addition to the given percents, 25.4% of all students
relied on family support.

9.45  (a) 57.98%. (b) 30.25%. (c) To test “There is no relationship between waking and bedtime
symptoms” versus “There is a relationship,” we find X2 = 2.275, df = 1,P = 0.132.

9.47  Start by setting a equal to any number from 0 to 100.

9.49  X2 = 852.433, df = 1, P < 0.0005.

9.55  (a) We expect each quadrant to contain one-fourth of the 100 trees. (b) Some random variation
would not surprise us. (c) X2 = 10.8, df = 3, P = 0.0129.

CHAPTER 10
10.1  (a) 3.1. (b) The slope of 3.1 means the average value of y increases by 3.1 units for each unit
increase in x. (c) 82.6. (d) 72.2 to 93.0.

10.3  (a) t = 1.895, df = 25 − 2 = 23. From Table D, we have 0.05 < P < 0.10 (software gives 0.0707). (b) t
= 2.105, df = 25 − 2 = 23. From Table D, 0.04 < P < 0.05 (0.0464 from software). (c) t = 3.091, df = 98.
Using df = 80 in Table D, 0.002 < P < 0.005 (0.0026 from software).

10.5  m = 0.7 kg/m2. At x = 5.0, the margin of error will be larger.

10.7  (b) The fitted line is Spendinĝ=−4900.5333+2.4667. (Note: Rounding on this exercise can make a
big difference in results.) (c) The residuals are (with enough decimal places in slope and intercept) −0.1,
0.2, −0.1. s = 0.2449. (d) The model is y = β0 + β1x + . We have estimates β̂0=−4900.5333 and β̂1=2.4677

and σ̂(εi)=0.2449 (e) s(b1) = 0.0577. df = 1, so t* = 12.71. The 95% CI is 1.733 to 3.200.

10.9  (a) β0, β1, and σ are the parameters. (b) H0 should refer to β1. (c) The confidence interval will be
narrower than the prediction interval.

10.11  Kiplinger narrows down the number of colleges; these are an SRS from that list, not from the
original 500 four-year public colleges.

10.13  (a) $19,591.29. (b) $23,477.93. (c) La Crosse is farther from the center of the x distribution.

10.15  Prediction intervals concern individuals instead of means. Departures from the Normal distribution
assumption would be more severe here (in terms of how the individuals vary around the regression line).
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10.17  (a) H0: β1 = 0 and Ha: β1 > 0. It does not seem reasonable to believe that tuition will decrease. (b)
From software, t = 13.94, P < 0.0005 (df = 26). (c) Using df = 26 from Table D, 0.9675 ± 2.056 (0.06939)
= 0.825 to 1.110. (d) r2 = 88.2%. (e) Inference on β0 would be extrapolation; there were no colleges close
to $0 tuition in 2008.

10.19  (a) The relationship is strong (little scatter), increasing, and fairly linear; however, there may be a
bit of curve at each end. (b) OUT11̂=1075+1.15   OUT08 (or ŷ=1075+1.15x. (d) No overt problems are
noted, even though the Normal plot wiggles around the line.

10.21  The scatterplot shows a weak, increasing relationship between in-state and out-of-state tuition rates
for 2011. Minnesota appears to be an outlier, with an in-state tuition of $13,022 and an out-of-state tuition
of $18,022. The regression equation is OUT11̂=17,160+1.017  IN11 (or ŷ=17,160+1.017x). The scatterplot
of residuals against x shows no overt problems (except the low outlier for Minnesota); the Normal quantile
plot also shows no problems, although we note that several schools seem to have similar residuals (slightly
more than $5000).

10.23  (a) ŷ=−0.0127+0.0180x, r2 = 80.0%. (b) H0: β1 = 0; Ha: β1 > 0; t = 7.48, P < 0.0001. (c) The
predicted mean is 0.07712; the interval is 0.040 to 0.114.

10.25  (a) Both distributions are sharply right-skewed; the five-number summaries are 0%, 0.31%, 1.43%,
17.65%, 85.01% and 0, 2.25, 6.31, 12.69, 27.88. (b) No; x and y do not need to be Normal. (c) There is a
weak positive linear relationship. (d) ŷ=6.247+0.1063x. (e) The residuals are right-skewed.

10.27  (a) 17 of these 30 homes sold for more than their assessed values. (b) A moderately strong,
increasing linear relationship. (c) ŷ=66.95+0.6819x. (d) The outlier point is still an outlier in this plot; it is
almost three standard deviations below its predicted value. (e) The new equation is ŷ=37.41+0.8489x. s =
31.41 decreased to s = 26.80. (f) There are no clear violations of the assumptions.

10.29  (a) The plot could be described as increasing and roughly linear, or possibly curved; it almost looks
as if there are two lines; one for years before 1980 and one after that. 2012 had an unusually low number of
tornadoes, while 2004 had an unusually high number. (b) Tornadoeŝ=−27,432+14.312 Year (or ŷ=
−27,432+14.312x). The 95% confidence interval is 14.312 ± 2.009(1.391) using df = 50. (c) We see what
seems to be an increasing amount of scatter in later years. (d) Based on the Normal quantile plot, we can
assume that the residuals are Normally distributed. (e) After eliminating 2004 and 2012 from the data set,
the new equation is Tornadoeŝ=−27,458+14.324 Year. These years are not very influential to the regression
(the slope and intercept changed very little).

10.31  (a) 8.41%. (b) t = 9.12, P < 0.0001. (c) The students who did not answer might have different
characteristics.

10.33  (a) x (percent forested) is right-skewed; x¯=39.3878%, sx = 32.2043%. y (IBI) is left-skewed;
y¯=65.9388, sy = 18.2796. (b) A weak positive association, with more scatter in y for small x. (c) yi = β0 +
β1 xi + εi, i = 1, 2,... , 49; εi are independent N(0,σ) variables. (d) H0: β1 = 0; H0: β1 ≠ 0; (e)
IBÎ=59.9+0.153 Area; s = 17.79. For testing the hypotheses in (d), t = 1.92 and P = 0.061. (f) Residual plot
shows a slight curve. (g) Residuals are left-skewed.

10.35  The first change decreases P (that is, the relationship is more significant) because it accentuates the
positive association. The second change weakens the association, so P increases (the relationship is less
significant).

10.37  Area = 10, ŷ=57.52; using forest = 63, ŷ=69.55. Both predictions have a lot of uncertainty (the
prediction intervals are about 70 units wide).

10.39  (a) It appears to be quite linear. (b) Lean̂=−61.12+9.3187 Year; r2 = 98.8%. (c) 8.36 to 10.28 tenths
of a millimeter/year.

10.41  (a) 113. (b) The prediction is 991.89 mm beyond 2.9 m, or about 3.892 m. (c) Prediction interval.
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10.43  t = −4.16, df = 116, P < 0.0001.

10.45  DFM = 1, DFE = 18, SSE = 3304.3. MSM = 4947.2, MSE = 183.572, F = 26.95.

10.47  The standard error is 0.1628; the confidence interval is 0.503 to 1.187.

10.49  For n = 15, t = 2.08 and P = 0.0579. For n = 25, t = 2.77 and P = 0.0109. Finding the same
correlation with more data points is stronger evidence that the observed correlation is not just due to
chance.

10.51  (a) Strong positive linear association with one outlier (SAT 420, ACT 21). (b)
ACT̂=1.63+0.0214SAT, t = 10.78, P < 0.0005. (c) r = 0.8167.

10.53  (a) a1 = 0.02617, a0 = − 2.7522. (c) Mean = 21.1333 and standard deviation = 4.7137—the same as
for the ACT scores.

10.55  (a) For squared length: Weight̂=−117.99+0.4970SqLen, s = 52.76, r2 = 0.977.(b) For squared
width: Weight̂=−98.99+18.732SqWid, s = 65.24, r2 = 0.965. Both scatterplots look more linear.

10.57  IBI and area: r = 0.4459, t = 3.42, P = 0.001 (from Exercise 10.32). IBI and percent forested: r =
0.2698, t = 1.92, P = 0.061 (Exercise 10.33). Area and percent forested: r = − 0.2571, t = − 1.82, P =
0.075.

10.59  The three smallest correlations (0.16 and 0.19) are the only ones that are not significant (P = 0.1193
and 0.0632). The first correlation (0.28) has the smallest P-value (0.0009). The next four, and the largest
correlation in the Caucasian group, have P < 0.001. The remainder have P < 0.01.

10.61  (a) 95% confidence interval for women: 14.73 to 33.33. For men: −9.47 to 42.97. These intervals
overlap quite a bit. (b) For women: 22.78. For men: 16.38. The women’s slope standard error is smaller in
part because it is divided by a large number. (c) Choose men with a wider variety of lean body masses.

CHAPTER 11
11.1  (a) Second semester GPA. (b) n = 242. (c) p = 7. (d) Gender, standardized test score, perfectionism,
self-esteem, fatigue, optimism, and depressive symptomatology.

11.3  (a) Math GPA should increase when any explanatory variable increases. (b) DFM = 4, DFE = 77. (c)
All four coefficients are significantly different from 0 (although the intercept is not).

11.5  The correlations are found in Figure 11.4. The scatterplots for the pairs with the largest correlations
are easy to pick out. The whole-number scale for high school grades causes point clusters in those
scatterplots.

11.7  Using Table D:(a) −0.0139 to 12.8139. (b) 0.5739 to 12.2261.

(c) 0.2372 to 9.3628. (d) 0.6336 to 8.9664. Software gives 0.6422 to 8.9578.

11.9  (a) H0 should refer to β2. (b) Squared multiple correlation. (c) Small P implies that at least one
coefficient is different from 0.

11.11  (a) yi = β0 + β1xi1 + β2xi2 + . . . + β7xi7 + εi, where i = 1, 2, ... , 142, and i are independent N(0, σ)
random variables. (b) The sources of variation are model (DFM = p = 7), error (DFE = n − p − 1 = 134),
and total (DFT = n − 1 = 141).

11.13  (a) The fitted model is GPÂ=−0.847+0.00269SATM+0.229HSS. (b) GPÂ=
−0.887+0.00237SATM+0.0850HSM+0.173HSS. (c) GPA^=
−1.11+0.00240SATM+0.0827HSM+0.133HSS+0.0644HSE. (d) GPÂ=0.257+0.125HSM+0.172HSS.
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MSE R2 P(x1) P(x2) P(x3) P(x4)
(a) 0.506 25.4% 0.001 0.000
(b) 0.501 26.6% 0.004 0.126 0.002
(c) 0.501 27.1% 0.004 0.137 0.053 0.315
(d) 0.527 22.4% 0.024 0.003

The “best” model is the model with SATM and HSS.

11.15  The first variable to leave is InAfterAid (P-value = 0.465). Fitting the new model gives
OutAfterAid (P-value = 0.182) as the next to leave. AvgAid (P-value = 0.184) leaves next. At that point,
all variables are significant predictors. The model is AvgDebt̂=
−9521+118Admit+102Yr4Grad+661StudPerFac+130PercBorrow.

11.17  (a) 8 and 786. (b) 7.84%; this model is not very predictive. (c) Males and Hispanics consume
energy drinks more frequently. Consumption increases with risk-taking scores. (d) Within a group of
students with identical (or similar) values of those other variables, energy-drink consumption increases
with increasing jock identity and increasing risk taking.

11.19  (a) Model 1: DFE = 200. Model 2: DFE = 199. (b) t = 3.09, P = 0.0023. (c) For gene expression: t
= 2.44, P = 0.0153. For RB: t = 3.33, P = 0.0010. (d) The relationship is still positive. When gene
expression increases by 1, popularity increases by 0.204 in Model 1 and by 0.161 in Model 2 (with RB
fixed).

11.21  (a) BMÎ=23.4−0.682(PA−8.614)+0.102(PA−8.614)2, (b) R2 = 17.7%. (c) The residuals look
roughly Normal and show no obvious remaining patterns. (d) t = 1.83, df = 97, P = 0.070.

11.23  (a) Budget and Opening are right-skewed; Theaters and Opinion are roughly symmetric (slightly
left-skewed). Five-number summaries for Budget and Opening are appropriate; mean and standard
deviation could be used for the other two variables. (b) All relationships are positive. The Budget/Theaters
and Opening/Theaters relationships appear to be curved; the others are reasonably linear. The correlations
between Budget, Opening, and Theaters are all greater than 0.7. Opinion is less correlated with the other
three variables—about 0.4 with Budget and Opening and only 0.156 with Theaters.

11.25  (a) USRevenue i = β0 + β1Budget i + β2Opening i + β3Theaters i + β4Opinion i + εi, where i = 1,
2, ... , 35 ; εi are independent N(0, σ) random variables. (b) USRevenuê=
−67.72+0.1351 Budget+3.0165Opening−0.00223Theaters+10.262Opinion Theaters + 10.262Opinion. (c)
The Dark Knight may be influential. The spread of the residuals appears to increase with Theaters. (d)
98.1%.

11.27  (a) $86.87 to $154.91 million. (b) $89.94 to $154.99 million. (c) The intervals are very similar.

11.29  (a) PEER is left-skewed; the other two variables are irregular. (b) PEER and FtoS are negatively
correlated (r = − 0.114); FtoS and CtoF are positively correlated (r = 0.580); the other correlation is very
small.

11.31  (a) OVERALLi = β0 + β1 PEERi + β2 FtoSi + β3 CtoFi + εi, where εi are independent N(0, σ)
random variables. (b) OVERALL̂=18.85+0.5746 PEER+0.0013 FtoS+0.1369 CtoF. (c) PEER: 0.4848 to
0.6644. FtoS: −0.0704 to 0.0730. CtoF: 0.0572 to 0.2166. The FtoS coefficient is not significantly different
from 0. (d) R2 = 72.2%, s = 7.043.

11.33  (a) For example: All distributions are skewed to varying degrees—GINI and CORRUPT to the
right, the other three to the left. CORRUPT and DEMOCRACY have the most skewness. (b) GINI is
negatively correlated to the other four variables (ranging from −0.396 to −0.050), while all other
correlations are positive and more substantial (0.525 or more).

11.35  (a) Refer to your regression output. (b) For example, the t statistic for the GINI coefficient grows
from t = −0.42 (P = 0.675) to t = 4.25 (P < 0.0005). The DEMOCRACY t is 3.53 in the third model (P <
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0.0005) but drops to 0.71 (P = 0.479) in the fourth model. (c) A good choice is to use GINI, LIFE, and
CORRUPT: all three coefficients are significant, and R2 =77.0% is nearly the same as for the fourth model
from Exercise 11.34.

11.37  (a) Plot suggests greater variation in VO+ for large OC. VO+̂=334+19.5OC, t = 4.73, P < 0.0005.
Plot of residuals against OC is slightly curved. (b) VO+^=58+6.41OC+53.9TRAP. Coefficient of OC is
not significantly different from 0 (t = 1.25, P = 0.221), but coefficient of TRAP is significantly different
from 0 (t = 3.50, P = 0.002). This is consistent with the correlations found in Exercise 11.36.

11.39  The correlations are 0.840 (LVO+ and LVO−), 0.774 (LVO+ and LOC), and 0.755 (LVO+ and
LTRAP). Regression equations, t statistics, R2, and s for each model: LVO+̂=4.38+0.706LOC; t = 6.58, P
< 0.0005; R2 = 0.599, s = 0.3580. LVO+̂=4.26+0.430LOC+0.424LTRAP; t = 2.56 , P = 0.016; t = 2.06, P
= 0.048; R2 = 0.652, s = 0.3394. LVO+̂=0.872+0.392LOC+0.028LTRAP+0.672LVO−; t = 3.40, P = 0.002;
t = 0.18, P = 0.862; t = 5.71, P < 0.0005; R2 = 0.842, s = 0.2326. As before, this suggests a model without
LTRAP: LVO+̂=0.832+0.406LOC+0.682LVO−; t = 4.93, P < 0.0005; t = 6.57, P < 0.0005; R2 = 0.842, s =
0.2286.

11.41  Regression equations, t statistics, R2, and s for each model: LVO−̂=5.21+0.441LOC; t = 3.59, P =
0.001; R2 = 0.308, s = 0.4089. LVO−̂=5.04+0.057LOC+0.590 LTRAP; t = 0.31, P = 0.761; t = 2.61, P =
0.014; R2 = 0.443, s = 0.3732. LVO+̂=1.57−0.293LOC+0.245LTRAP+0.813LVO+; t = − 2.08, P = 0.047; t
= 1.47, P = 0.152; t = 5.71, P < 0.0005; R2 = 0.748, s = 0.2558. LVO−^=1.31−0.188LOC+0.890LVO+; t =
− 1.52, P = 0.140; t = 6.57, P < 0.0005; R2 = 0.728, s = 0.2611.

11.43  (a) yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi, where i = 1, 2, .. ., 69; εi are independent N (0, σ)
random variables. (b) PCB̂=0.94+11.87x1+3.76x2+3.88x3+4.18x4. All coefficients are significantly
different from 0, although the constant 0.937 is not (t = 0.76, P = 0.449). R2 = 0.989, s = 6.382. (c) The
residuals appear to be roughly Normal, but with two outliers. There are no clear patterns when plotted
against the explanatory variables.

11.45  (a) PCB̂=−1.02+12.64 PCB52+0.31 PCB118+8.25 PCB138, R2 = 0.973, s = 9.945. (b) b2 = 0.313,
P = 0.708. (c) In Exercise 11.43, b2 = 3.76, P < 0.0005.

11.47  The model is yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi, where i = 1, 2, ... , 69; εi are independent
N (0, σ) random variables. Regression gives
TEQ̂=1.06−0.097 PCB52+0.306 PCB118+0.106 PCB138−0.004 PCB180 with R2 = 0.677. Only the
constant (1.06) and the PCB118 coefficient (0.306) are significantly different from 0. Residuals are slightly
right-skewed and show no clear patterns when plotted with the explanatory variables.

11.49  (a) The correlations are all positive, ranging from 0.227 (LPCB28 and LPCB180) to 0.956 (LPCB
and LPCB138). LPCB28 has one outlier (Specimen 39) when plotted with the other variables; except for
that point, all scatterplots appear fairly linear. (b) All correlations are higher with the transformed data.

11.51  It appears that a good model is LPCB126 and LPCB28 (R2 = 0.768). Adding more variables does
not appreciably increase R2 or decrease s.

11.53  x¯, M, s, and IQR for each variable: Taste: 24.53, 20.95, 16.26, 23.9. Acetic: 5.498, 5.425, 0.571,
0.656. H2S: 5.942, 5.329, 2.127, 3.689. Lactic: 1.442, 1.450, 0.3035, 0.430. None of the variables show
striking deviations from Normality. Taste and H2S are slightly right-skewed, and Acetic has two peaks.
There are no outliers.

11.55  Tastê=−61.6+15.6Acetic; t = 3.48, P = 0.002. The residuals seem to have a Normal distribution but
are positively associated with both H2S and Lactic.

11.57  Tastê=−29.9+37.7Lactic; t = 5.25 , P < 0.0005. The residuals seem to have a Normal distribution;
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there are no striking patterns for residuals against the other variables.

11.59  Tastê=−26.9+3.80Acetic+5.15H2S. For the coefficient of Acetic, t = 0.84 and P = 0.406. This
model is not much better than the model with H2S alone; Acetic and H2S are correlated (r = 0.618), so
Acetic does not add significant information if H2S is included.

11.61  Tastê=−28.9+0.33Acetic+3.91H2S+19.7Lactic. The coefficient of Acetic is not significantly
different from 0 (P = 0.942). Residuals of this regression appear to be Normally distributed and show no
patterns in scatterplots with the explanatory variables. It appears that the H2S/Lactic model is best.

CHAPTER 12
12.1  (a) H0 says the population means are all equal. (b) Experiments are best for establishing causation.
(c) ANOVA is used to compare means. ANOVA assumes all variances are equal. (d) Multiple-
comparisons procedures are used when we wish to determine which means are significantly different but
have no specific relations in mind before looking at the data.

12.3  (a) Yes: 7/4 = 1.75 < 2. (b) 16, 25, and 49. (c) 31.2647. (d) 5.5915.

12.5  (a) This is the description of between-group variation. (b) The sums of squares will add. (c) σ is a
parameter. (d) A small P means the means are not all the same, but the distributions may still overlap.

12.7  Assuming the t (ANOVA) test establishes that the means are different, contrasts and multiple
comparisons provide no further useful information.

12.9  (a) df = 3 and 20. In Table E, 3.10 < 3.18 < 3.86. (c) 0.025 < P < 0.05. (d) We can conclude only
that at least one mean is different from the others.

12.11  (a) df are 3 and 60. F = 2.54. 2.18 < F < 2.76, so 0.050 < P < 0.100. (Software gives P = 0.0649.)
(b) df are 2 and 24. F = 4.047. 3.40 < F < 4.32, so 0.025 < P < 0.050. (Software gives P = 0.0306.)

12.13  (a) Response: egg cholesterol level. Populations: chickens with different diets or drugs. I = 3, n1 =
n2 = n3 = 25, N = 75. (b) Response: rating on five-point scale. Populations: the three groups of students. I
= 3, n1 = 31, n2 = 18, n3 = 45, N = 94. (c) Response: quiz score. Populations: students in each TA group. I
= 3, n1 = n2 = n3 = 14, N = 42.

12.15  For all three situations, we test H0: μ1 = μ2 = μ3; Ha: at least one mean is different. (a) DFM 2,
DFE 72, DFT 74. F (2, 72). (b) DFM 2, DFE 91, DFT 93. F (2, 91). (c) DFM 2, DFE 39, DFT 41. F (2,
39).

12.17  (a) This sounds like a fairly well-designed experiment, so the results should at least apply to this
farmer’s breed of chicken. (b) It would be good to know what proportion of the total student body falls in
each of these groups—that is, is anyone overrepresented in this sample? (c) Effectiveness teaching one
topic (power calculations) might not reflect overall effectiveness.

12.19  (a) df = 4 and 178. (b) 5 + 146 = 151 athletes were used. (c) For example, the individuals could
have been outliers in terms of their ability to withstand the water bath pain. In the case of either low or high
outliers, their removal would lessen the standard deviation for their sport and move that sports mean
(removing a high outlier would lower the mean and removing a low outlier would raise the mean).

12.21  (a) ψ = μPandP − 1/ 4(μText + μEmail + μFB + μMSN ).(b) H0 : ψ = 0 versus Ha: ψ > 0. (c) t =
1.894 with df = 138. P = 0.0302.

12.23  (a) The table below gives the sample sizes, means, and standard deviations.

Food n x¯ s
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Comfort 22 4.887 0.573
Organic 20 5.584 0.594
Control 20 5.082 0.622

(b) Comfort food is relatively symmetric. Organic food has its most prevalent
values at the extremes. Control could be called left-skewed (it does not look very
symmetric).

12.25  (a) The means are not all equal for the three groups. Organic appears to differ from both Comfort
and Control; Comfort and Control are not significantly different from each other. (b) The decrease in
variability for the three groups and the curve in the Normal quantile plot might make us question
Normality.

12.27  (a) I = 3, N = 120, so df = 2 and 117. (b) From Table E, P < 0.001. Using software, P = 0.0003. (c)
We really shouldn’t generalize these results beyond what might occur in similar shops in Mexico.

12.29  (a) F can be made very small (close to 0), and P close to 1. (b) F increases, and P decreases.

12.31  (a)

Group n x¯ s
Control 35 −1.01 11.50
Group 34 −10.79  11.14
Individual 35 −3.71  9.08

(b) Yes; 2(9.08) = 18.16 > 11.50. (c) Control is closest to a symmetric
distribution; Individual seems left-skewed. However, with sample sizes at least 34
in each group, moderate departures from Normality are not a problem.

12.33  (a) The new group means and standard deviations will be the old means and standard deviations
divided by 2.2. (b) Dividing by a constant will not change the Normality of the data. The test statistic is F
= 7.77 with P-value 0.001. These are exactly the same values obtained in Exercise 12.32.

12.35  (a) Based on the sample means, fiber is cheapest and cable is most expensive. (b) Yes; the ratio is
1.55. (c) df = 2 and 44; 0.025 < P < 0.050, or P = 0.0427.

12.37  (a) The variation in sample size is some cause for concern, but there can be no extreme outliers in a
1-to-7 scale, so ANOVA is probably reliable. (b) Yes: 1.26/1.03 = 1.22 < 2. (c) F(4, 405), P = 0.0002. (d)
Hispanic Americans are highest, Japanese are in the middle, the other three are lowest.

12.39  (a) Activity seems to increase with both drugs, and Drug B appears to have a greater effect. (b)
Yes; the standard deviation ratio is 1.49. sp = 3.487. (c) df = 4 and 20. (d) 0.05 < P < 0.10; software gives
P = 0.0642.

12.41  (a) ψ1 = μ2 − (μ1 + μ4 )/2. (b) ψ2 = (μ1 + μ2 + μ4 )/ 3 − μ3.

12.43  (a) Yes; the ratio is 1.25. sp = 0.7683. (b) df = 2 and 767; P < 0.001. (c) Compare faculty to the
student average: ψ = μ2 − (μ1 + μ3 )/2. We test H0: ψ = 0; Ha: ψ > 0. We find c = 0.585, t = 5.99, and P <
0.0001.

12.45  (a) All three distributions show no particular skewness. Control: n = 15, x¯=0.21887, s = 0.01159
g/cm2. Low dose: n = 15, x¯=0.21593, s = 0.01151 g/cm2. High dose: n = 15, x¯=0.23507, s = 0.01877
g/cm2. (b) All three distributions appear to be nearly Normal. (c) F = 7.72, df = 2 and 42, P = 0.001. (d)
For Bonferroni, t** = 2.49 and MSD = 0.0131. The high-dose mean is significantly different from the
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other two. (e) High doses increase bone mineral density.

12.47  (a) Control: n = 10 , x¯=601.10, s = 27.36 mg/cm3. Low jump: n = 10 , x¯=612.50, s = 19.33
mg/cm3. High jump: n = 10, x¯=638.70, s = 16.59 mg/cm3. Pooling is reasonable. (b) F = 7.98, df = 2 and
27, P = 0.002. We conclude that not all means are equal.

12.49  (a) ψ1 = μ1 − (μ2 + μ4 )/2 and ψ2 = (μ3 − μ2) − (μ5 − μ4 ). (b) c1 = − 3.9, SEc1 = 2.1353, c2 =
2.35, and SEc2 = 3.487, (c) The first contrast is significant (t = −1.826), but the second is not (t = −0.674).

12.51  (a) ECM1: n = 3 , x¯=65.0%, s = 8.66%. ECM2: n = 3, x¯=63.33%, s = 2.89%. ECM3: n = 3,
x¯=73.33%, s = 2.89%. MAT1: n = 3, x¯=23.33%, s = 2.89%. MAT2: n = 3, x¯=6.67%, s = 2.89%.
MAT3: n = 3, x¯=11.67%, s = 2.89%. Pooling is risky because 8.66/2.89 > 2. (b) F = 137.94, df = 5 and
12, P < 0.0005. We conclude that the means are not the same.

12.53  (a) ψ1 = μ5 − 0.25(μ1 + μ2 + μ3 + μ4 ). ψ2 = 0.5(μ1 + μ2) − 0.5(μ3 + μ4 ). ψ3 = (μ1 − μ2) − (μ3 −
μ4 ). (b) From Exercise 12.26, we have sp = 18.421. c1 = 14.65, c2 = 6.1, and c3 = −0.5. sc1 = 4.209, sc2 =
3.874, and sc3 = 3.784. (c) t1 = 3.48. t2 = 1.612. t3 = −0.132.. t114, 0.975 = 1.980. Two-tailed P-values are
0.0007, 0.1097, and 0.8952. The first two contrasts are significant and the third is not.

12.55  (a) The plot shows granularity (which varies between groups), but that should not make us question
independence; it is due to the fact that the scores are all integers. (b) The ratio of the largest to the smallest
standard deviations is less than 2. (c) Apart from the granularity, the quantile plots are reasonably straight.
(d) Again, apart from the granularity, the quantile plots look pretty good.

12.57  (a) ψ1 = (μ1 + μ2 + μ3 )/3 − μ4, ψ2 = (μ1 + μ2 )/2 − μ3, ψ3 = μ1 − μ2. (b) The pooled standard
deviation is sp = 1.1958. SEc1 = 0.2355, SEc2 = 0.1413, SEc3 = 0.1609. (c) Testing H0: ψi = 0; Ha: ψi ≠ 0;
for each contrast, we find c1 = − 12.51, t1 = − 53.17, P1 < 0.0005; c2 = 1.269, t2 = 8.98, P2 < 0.0005; c3 =
0.191, t3 = 1.19, P3 = 0.2359. The Placebo mean is significantly higher than the average of the other three,
while the Keto mean is significantly lower than the average of the two Pyr means. The difference between
the Pyr means is not significant (meaning the second application of the shampoo is of little benefit).

12.59  The means all increase by 5%, but everything else (standard deviations, standard errors, and the
ANOVA table) is unchanged.

12.61  All distributions are reasonably Normal, and standard deviations are close enough to justify
pooling. For PRE1, F = 1.13, df = 2 and 63, P = 0.329. For PRE2, F = 0.11, df = 2 and 63, P = 0.895.
Neither set of pretest scores suggests a difference in means.

12.63  Scorê=4.432−0.000102 Friends. The slope is not significantly different from 0 (t = − 0.28, P =
0.782), and the regression explains only 0.1% of the variation in score. Residuals suggest a possible curved
relationship.

12.67  (b) Answers will vary with choice of Ha and desired power. For example, with μ1 = μ2 = 4.4, μ3 =
5, σ = 1.2, three samples of size 75 will produce power 0.78.

12.69  The design can be similar, although the types of music might be different. Bear in mind that
spending at a casual restaurant will likely be less than at the restaurants examined in Exercise 12.40; this
might also mean that the standard deviations could be smaller. Decide how big a difference in mean
spending you want to detect, then do some power computations.

CHAPTER 13
13.1  (a) Two-way ANOVA is used when there are two factors. (b) Each level of A should occur with all
three levels of B. (c) The RESIDUAL part of the model represents the error. (d) DFAB = (I − 1)(J − 1).
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13.3  (a) Reject H0 when F is large. (b) Mean squares equal the sum of squares divided by degrees of
freedom. (c) The test statistics have an F distribution. (d) If the sample sizes are not the same, the sums of
squares may not add.

13.5  (a) N = 36. DFA = 2, DFB = 1, DFAB = 2, DFE = 30, so F has 2 and 30 degrees of freedom. (c) P >
0.10. (d) Interaction is not significant; the interaction plot should have roughly parallel lines.

13.7  (a) The factors are gender (I = 2) and age (J = 3). The response variable is the percent of pretend
play. N = (2)(3)(11) = 66. (b) The factors are time after harvest (I = 5) and amount of water (J = 2). The
response variable is the percent of seeds germinating. N = 30. (c) The factors are mixture (I = 6) and
freezing/thawing cycles (J = 3). The response variable is the strength of the specimen. N = 54. (d) The
factors are training programs (I = 4) and the number of days to give the training (J = 2). The response
variable is not specified but presumably is some measure of the training’s effectiveness. N = 80.

13.9  (a) The same students were tested twice. (b) The interactions plot shows a definite interaction; the
control group’s mean score decreased, while the expressive- writing group’s mean increased. (c) No. 2(5.8)
= 11.6 < 14.3.

13.11  (a) Recall from Chapter 12 that ANOVA is robust against reasonable departures from Normality,
especially when sample sizes are similar (and as large as these). (b) Yes. 1.62/0.82 = 1.98 < 2. The
ANOVA table is below.

Source DF SS MS F P
Age 6 31.97 5.328 4.400 0.0003
Gender 1 44.66 44.66 36.879  0.0000
Age × Gender 6 13.22 2.203 1.819 0.0962
Error 232    280.95  1.211
Total 245    370.80  

13.13  (a) There appears to be an interaction; a thank-you increases repurchase intent for those with short
history and decreases it for customers with long history. (b) The marginal means for history (6.245 and
7.45) convey the fact that repurchase intent is higher for customers with long history. The thank-you
marginal means (6.61 and 7.085) are less useful because of the interaction.

13.15  (a) The plot suggests a possible interaction. (b) By subjecting the same individual to all four
treatments, rather than four individuals to one treatment each, we reduce the within-groups variability.

13.17  (a) We’d expect reaction times to slow with older individuals. If bilingualism helps brain
functioning, we would not expect that group to slow as much as the monolingual group. The expected
interaction is seen in the plot; mean total reaction time for the older bilingual group is much less than for
the older monolingual group; the lines are not parallel. (b) The interaction is just barely not significant (F =
3.67, P = 0.059). Both main effects are significant (P = 0.000).

13.19  (a) There may be an interaction; for a favorable process, a favorable outcome increases satisfaction
quite a bit more than for an unfavorable process (+2.32 versus +0.24). (b) This time, the increase in
satisfaction from a favorable outcome is less for a favorable process (+0.49 versus +1.32). (c) There seems
to be a three-factor interaction, because the interactions in parts (a) and (b) are different.

13.21  Humor slightly increases satisfaction (3.58 with no humor, 3.96 with humor). The process and
outcome effects are greater: favorable process, 4.75; unfavorable process, 2.79; favorable outcome, 4.32;
unfavorable outcome, 3.22.

13.23  The largest-to-smallest ratio is 1.26, and the pooled standard deviation is 1.7746.

13.25  Except for female responses to purchase intention, means decreased from Canada to the United
States to France. Females had higher means than men in almost every case, except for French responses to
credibility and purchase intention (a modest interaction).
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13.27  (a) Intervention, 11.6; control, 9.967; baseline, 10.0; 3 months, 11.2; 6 months, 11.15. Overall,
10.783. The row means suggest that the intervention group showed more improvement than the control
group. (b) Interaction means that the mean number of actions changes differently over time for the two
groups.

13.29  With I = 3, J = 2, and 6 observations per cell, we have DFA = 2, DFB = 1, DFAB = 2, and DFE =
30. 3.32 < 3.45 < 4.18, so 0.025 < PA < 0.05 (software gives 0.0448). 2.49 < 2.88, so PB > 0.10 (software
gives 0.1250). 1.14 < 2.49, so PAB > 0.10 (software gives 0.3333). The only significant effect is the main
effect for factor A.

13.31  (a) There is little evidence of an interaction. (b) sp = 0.1278. (c) ψ1 = (μnew, city + μnew, hw )/2 −
(μold, city + μold, hw)/2. ψ2 = μnew, city − μnew, hw. ψ3 = μold, hw − μold, city. (d) By subjecting the
same individual to all four treatments, rather than four individuals to one treatment each, we reduce the
within-groups variability.

13.33  (b) There seems to be a fairly large difference between the means based on how much the rats were
allowed to eat but not very much difference based on the chromium level. There may be an interaction: the
NM mean is lower than the LM mean, while the NR mean is higher than the LR mean. (c) L mean: 4.86. N
mean: 4.871. M mean: 4.485. R mean: 5.246. LR minus LM: 0.63. NR minus NM: 0.892. Mean GITH
levels are lower for M than for R; there is not much difference between L and N. The difference between
M and R is greater among rats who had normal chromium levels in their diets (N).

13.35  (a) sp = $38.14, df = 105. (b) Yes; the largest-to-smallest ratio is 1.36. (c) Individual sender,
$70.90; group sender, $48.85; individual responder, $59.75; group responder, $60.00. (d) There appears to
be an interaction; individuals send more money to groups, while groups send more money to individuals.
(e) P = 0.0033, P = 0.9748, and P = 0.1522. Only the main effect of sender is significant.

13.37  Yes; the iron-pot means are the highest, and F for testing the effect of the pot type is very large.

13.39  (a) In the order listed in the table: x¯11=25.0307, s11 = 0.0011541; x¯12=25.0280, s12 = 0;
x¯13=25.0260, s13 = 0; x¯21=25.0167, s21 = 0.0011541; x¯22=25.0200, s22 = 0.002000; x¯23=25.0160,
s23 = 0; x¯31=25.0063, s31 = 0.001528; x¯32=25.0127, s32 = 0.0011552; x¯33=25.0093, s33 =
0.0011552; x¯41=25.0120, s41 = 0; x¯42=25.0193, s42 = 0.0011552; x¯43=25.0140, s43 = 0.004000;
x¯51=24.9973, s51 = 0.001155; x¯52=25.0060, s52 = 0; x¯53=25.0003, s53 = 0.001528. (b) Except for
Tool 1, mean diameter is highest at Time 2. Tool 1 had the highest mean diameters, followed by Tool 2,
Tool 4, Tool 3, and Tool 5. (c) FA = 412.94, df = 4 and 30, P < 0.0005. FB = 43.60, df = 2 and 30, P <
0.0005. FAB = 7.65, df = 8 and 30, P < 0.0005. (d) There is strong evidence of a difference in mean
diameter among the tools (A) and among the times (B). There is also an interaction (specifically, Tool 1’s
mean diameters changed differently over time compared with the other tools).

13.41  (a) All three F-values have df = 1 and 945; the P-values are < 0.001, < 0.001, and 0.1477. Gender
and handedness both have significant effects on mean lifetime, but there is no interaction. (b) Women live
about 6 years longer than men (on the average), while right-handed people average 9 more years of life
than left-handed people. Handedness affects both genders in the same way, and vice versa.

13.43  (a) and (b) The first three means and standard deviations are x¯1,1=3.2543, s1, 1 = 0.2287;
x¯1,2=2.7636, s1, 2 = 0.0666; x¯1,3=2.8429, s1, 3 = 0.2333. The standard deviations range from 0.0666 to
0.3437, for a ratio of 5.16—larger than we like. (c) For Plant, F = 1301.32, df = 3 and 224, P < 0.0005. For
Water, F = 9.76, df = 6 and 224, P < 0.0005. For interaction, F = 5.97, df = 18 and 224, P < 0.0005.

13.45  The seven F statistics are 184.05, 115.93, 208.87, 218.37, 220.01, 174.14, and 230.17, all with df =
3 and 32 and P < 0.0005.

13.47  Fresh: Plant, F = 81.45, df = 3 and 84, P < 0.0005; Water, F = 43.71, df = 6 and 84, P < 0.0005;
interaction, F = 1.79, df = 18 and 84, P = 0.040. Dry: Plant, F = 79.93, df = 3 and 84, P < 0.0005; Water, F
= 44.79, df = 6 and 84, P < 0.0005; interaction, F = 2.22, df = 18 and 84, P = 0.008.
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13.49  The twelve F statistics are fresh biomass: 15.88, 11.81, 62.08, 10.83, 22.62, 8.20, and 10.81; dry
biomass: 8.14, 26.26, 22.58, 11.86, 21.38, 14.77, and 8.66, all with df = 3 and 15 and P < 0.003.

13.51  (a) Gender: df = 1 and 174. Floral characteristic: df = 2 and 174. Interaction: df = 2 and 174. (b)
Damage to males was higher for all characteristics. For males, damage was higher under characteristic
level 3, while for females, the highest damage occurred at level 2. (c) Three of the standard deviations are
at least half as large as the means. Because the response variable (leaf damage) had to be nonnegative, this
suggests that these distributions are right-skewed.

13.53  Men in CS: n = 39, x¯=7.79487, s = 1.50752. Men in EOS: n = 39, x¯=7.48718, s = 2.15054. Men
in Other: n = 39, x¯=7.41026, s = 1.56807. Women in CS: n = 39, x¯=8.84615, s = 1.13644. Women in
EOS: n = 39, x¯=9.25641, s = 0.75107. Women in Other: n = 39, x¯=8.61539, s = 1.16111. The means
suggest that females have higher HSE grades than males. For a given gender, there is not too much
difference among majors. Normal quantile plots show no great deviations from Normality, apart from the
granularity of the grades (most evident among women in EO). In the ANOVA, only the effect of gender is
significant (F = 50.32, df = 1 and 228, P < 0.0005).

13.55  Men in CS: n = 39, x¯=526.949, s = 100.937. Men in EOS: n = 39, x¯=507.846, s = 57.213. Men in
Other: n = 39, x¯=487.564, s = 108.779. Women in CS: n = 39, x¯=543.385, s = 77.654. Women in EOS:
n = 39, x¯=538.205, s = 102.209. Women in Other: n = 39, x¯=465.026, s = 82.184. The means suggest
that students who stay in the sciences have higher mean SATV scores than those who end up in the Other
group. Female CS and EO students have higher scores than males in those majors, but males have the
higher mean in the Other group. Normal quantile plots suggests some right-skewness in the “Women in
CS” group and also some non-Normality in the tails of the “Women in EO” group. Other groups look
reasonably Normal. In the ANOVA, only the effect of major is significant (F = 9.32, df = 2 and 228, P <
0.0005).
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FORMULAS AND KEY IDEAS CARD

CHAPTER 1

The mean x¯. If the n observations are x1, x2, … , xn, their mean is

x¯=x1+x2+...+xnn

The median M. Arrange all observations in order of size, from smallest to
largest. If the number of observations n is odd, the median M is the center
observation in the ordered list. Find the location of the median by counting (n
+ 1)/2 observations up from the bottom of the list. If the number of
observations n is even, the median M is the mean of the two center
observations in the ordered list. The location of the median is again (n + 1)/2
from the bottom of the list.

The quartiles Q1 and Q3. Arrange the observations in increasing order and
locate the median M in the ordered list of observations. Q1 is the median of
the observations whose position in the ordered list is to the left of the location
of the overall median. Q3 is the median of the observations whose position in
the ordered list is to the right of the location of the overall median.

The five-number summary. The smallest observation, the first quartile, the
median, the third quartile, and the largest observation, written in order from
smallest to largest. In symbols, the five-number summary is

Minimum Q1 M Q3 Maximum

A boxplot. A graph of the five-number summary. A central box spans the
quartiles Q1 and Q3. A line in the box marks the median M. Lines extend
from the box out to the smallest and largest observations.

The interquartile range (IQR). The distance between the first and third
quartiles,

IQR = Q3 – Q1

The 1.5 × IQR rule for outliers. Call an observation a suspected outlier if it
falls more than 1.5 × IQR above the third quartile or below the first quartile.
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The variance s2. For n observations x1, x2, … , xn,

s2=(x1−x¯)2+(x2−x¯)2+...+(xn−x¯)2n−1

The standard deviation s. Is the square root of the variance s2.

Effect of a linear transformation. Multiplying each observation by a
positive number b multiplies both measures of center (mean and median) and
measures of spread (interquartile range and standard deviation) by b. Adding
the same number a (either positive or negative) to each observation adds a to
measures of center and to quartiles and other percentiles but does not change
measures of spread.

Density curve. Is always on or above the horizontal axis and has area exactly
1 underneath it.

The median of a density curve. The equal-areas point, the point that divides
the area under the curve in half.

The mean of a density curve. The balance point at which the curve would
balance if made of solid material.

The 68–95–99.7 rule. In the Normal distribution with mean μ and standard
deviation σ, approximately 68% of the observations fall within σ of the mean
μ, approximately 95% of the observations fall within σ of μ, and
approximately 99.7% of the observations fall within 3σ of μ.

Standardizing and z-scores. If x is an observation from a distribution that
has mean μ and standard deviation σ,

z=x−μσ

The standard Normal distribution. The Normal distribution N(0, 1) with
mean 0 and standard deviation 1. If a variable X has any Normal distribution
N(μ, σ) with mean μ and standard deviation σ, then the standardized variable

Z=X−μσ

has the standard Normal distribution.

Use of Normal quantile plots. If the points on a Normal quantile plot lie
close to a straight line, the plot indicates that the data are Normal. Systematic
deviations from a straight line indicate a non-Normal distribution. Outliers
appear as points that are far away from the overall pattern of the plot.
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CHAPTER 2

Response variable, explanatory variable. A response variable measures an
outcome of a study. An explanatory variable explains or causes changes in
the response variables.

Scatterplot. A scatterplot shows the relationship between two quantitative
variables measured on the same individuals. The values of one variable
appear on the horizontal axis, and the values of the other variable appear on
the vertical axis. Each individual in the data appears as the point in the plot
fixed by the values of both variables for that individual.

Positive association, negative association. Two variables are positively
associated when above-average values of one tend to accompany above-
average values of the other and below-average values also tend to occur
together. Two variables are negatively associated when above-average values
of one tend to accompany below-average values of the other, and vice versa.

Correlation. The correlation measures the direction and strength of the linear
relationship between two quantitative variables. Correlation is usually written
as r. Suppose that we have data on variables x and y for n individuals. The
means and standard deviations of the two variables are x¯ and sx for the x-
values, and y¯ and sy for the y-values. The correlation r between x and y is

r=1n−1Σ(xi−x¯sx)(yi−y¯sy)

Straight lines. Suppose that y is a response variable (plotted on the vertical
axis) and x is an explanatory variable (plotted on the horizontal axis). A
straight line relating y to x has an equation of the form

y = b0 + b1x

In this equation, b1 is the slope, the amount by which y changes when x
increases by one unit. The number b0 is the intercept, the value of y when x =
0.

Equation of the least-squares regression line. We have data on an
explanatory variable x and a response variable y for n individuals. The means
and standard deviations of the sample data are x¯ and sx for x and y¯ and sy
for y, and the correlation between x and y is r. The equation of the least-
squares regression line of y on x is

ŷ=b0+b1x

with slope b1 = rsy/sx and intercept b0=y¯−b1x¯.
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r2 in regression. The square of the correlation, r2, is the fraction of the
variation in the values of y that is explained by the least-squares regression of
y on x.

Residuals. A residual is the difference between an observed value of the
response variable and the value predicted by the regression line. That is, =y
−ŷ.

Outliers and influential observations in regression. An outlier is an
observation that lies outside the overall pattern of the other observations.
Points that are outliers in the y direction of a scatterplot have large regression
residuals, but other outliers need not have large residuals. An observation is
influential for a statistical calculation if removing it would markedly change
the result of the calculation. Points that are outliers in the x direction of a
scatterplot are often influential for the least-squares regression line.

Simpson’s paradox. An association or comparison that holds for all of
several groups can reverse direction when the data are combined to form a
single group. This reversal is called Simpson’s paradox.

Confounding. Two variables are confounded when their effects on a
response variable cannot be distinguished from each other. The confounded
variables may be either explanatory variables or lurking variables.

CHAPTER 3

Anecdotal evidence. Anecdotal evidence is based on haphazardly selected
individual cases, which often come to our attention because they are striking
in some way. These cases need not be representative of any larger group of
cases.

Available data. Available data are data that were produced in the past for
some other purpose but that may help answer a present question.

Observation versus experiment. In an observational study we observe
individuals and measure variables of interest but do not attempt to influence
the responses. In an experiment we deliberately impose some treatment on
individuals and we observe their responses.

Experimental units, subjects, treatment. The individuals on which the
experiment is done are the experimental units. When the units are human
beings, they are called subjects. A specific experimental condition applied to
the units is called a treatment.
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Bias. The design of a study is biased if it systematically favors certain
outcomes.

Principles of experimental design. 1. Compare two or more treatments. 2.
Randomize—use impersonal chance to assign experimental units to
treatments. 3. Repeat each treatment on many units to reduce chance
variation in the results.

Statistical significance. An observed effect so large that it would rarely
occur by chance is called statistically significant.

Random digits. A table of random digits is a list of the digits 0, 1, 2, 3, 4, 5,
6, 7, 8, 9 that has the following properties: The digit in any position in the list
has the same chance of being any one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The digits
in different positions are independent in the sense that the value of one has no
influence on the value of any other.

Block design. A block is a group of experimental units or subjects that are
known before the experiment to be similar in some way that is expected to
affect the response to the treatments. In a block design, the random
assignment of units to treatments is carried out separately within each block.

Population and sample. The entire group of individuals that we want
information about is called the population. A sample is a part of the
population that we actually examine in order to gather information.

Voluntary response sample. A voluntary response sample consists of people
who choose themselves by responding to a general appeal. Voluntary
response samples are biased because people with strong opinions, especially
negative opinions, are most likely to respond.

Simple random sample. A simple random sample (SRS) of size n consists of
n individuals from the population chosen in such a way that every set of n
individuals has an equal chance to be the sample actually selected.

Probability sample. A probability sample is a sample chosen by chance. We
must know what samples are possible and what chance, or probability, each
possible sample has.

Stratified random sample. To select a stratified random sample, first divide
the population into groups of similar individuals, called strata. Then choose a
separate SRS in each stratum and combine these SRSs to form the full
sample.

Undercoverage and nonresponse. Undercoverage occurs when some groups
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in the population are left out of the process of choosing the sample.
Nonresponse occurs when an individual chosen for the sample can’t be
contacted or does not cooperate.

Parameters and statistics. A parameter is a number that describes the
population. A parameter is a fixed number, but in practice we do not know its
value. A statistic is a number that describes a sample. The value of a statistic
is known when we have taken a sample, but it can change from sample to
sample. We often use a statistic to estimate an unknown parameter.

Sampling distribution. The sampling distribution of a statistic is the
distribution of values taken by the statistic in all possible samples of the same
size from the same population.

Bias and variability. Bias concerns the center of the sampling distribution. A
statistic used to estimate a parameter is unbiased if the mean of its sampling
distribution is equal to the true value of the parameter being estimated. The
variability of a statistic is described by the spread of its sampling distribution.
This spread is determined by the sampling design and the sample size n.
Statistics from larger probability samples have smaller spreads.

Managing bias and variability. To reduce bias, use random sampling. When
we start with a list of the entire population, simple random sampling produces
unbiased estimates—the values of a statistic computed from an SRS neither
consistently overestimate nor consistently underestimate the value of the
population parameter. To reduce the variability of a statistic from an SRS, use
a larger sample. You can make the variability as small as you want by taking
a large enough sample.

Population size doesn’t matter. The variability of a statistic from a random
sample does not depend on the size of the population, as long as the
population is at least 100 times larger than the sample.

Basic data ethics. The organization that carries out the study must have an
institutional review board that reviews all planned studies in advance in order
to protect the subjects from possible harm. All individuals who are subjects in
a study must give their informed consent before data are collected. All
individual data must be kept confidential. Only statistical summaries for
groups of subjects may be made public.

CHAPTER 4

Randomness and probability. We call a phenomenon random if individual
outcomes are uncertain but there is nonetheless a regular distribution of
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outcomes in a large number of repetitions. The probability of any outcome of
a random phenomenon is the proportion of times the outcome would occur in
a very long series of repetitions.

Sample space. The sample space S of a random phenomenon is the set of all
possible outcomes.

Event. An event is an outcome or a set of outcomes of a random
phenomenon. That is, an event is a subset of the sample space.

Probability rules. Rule 1. The probability P(A) of any event A satisfies 0 ≤
P(A) ≤ 1. Rule 2. If S is the sample space in a probability model, then P(S) =
1. Rule 3. Two events A and B are disjoint if they have no outcomes in
common and so can never occur together. If A and B are disjoint, P(A or B) =
P(A) + P(B). This is the addition rule for disjoint events. Rule 4. The
complement of any event A is the event that A does not occur, written as Aʿ.
The complement rule states that P(Aʿ) = 1 – P(A).

Probabilities in a finite sample space. Assign a probability to each
individual outcome. These probabilities must be numbers between 0 and 1
and must have sum 1. The probability of any event is the sum of the
probabilities of the outcomes making up the event.

Equally likely outcomes. If a random phenomenon has k possible outcomes,
all equally likely, then each individual outcome has probability 1/k. The
probability of any event A is P(A) = (count of outcomes in A)/k.

The multiplication rule for independent events. Rule 5. Two events A and
B are independent if knowing that one occurs does not change the probability
that the other occurs. If A and B are independent, P(A and B) = P(A)P(B).
This is the multiplication rule for independent events.

Random variable. A random variable is a variable whose value is a
numerical outcome of a random phenomenon.

Discrete random variable. A discrete random variable X has a finite number
of possible values. The probability distribution of X lists the values and their
probabilities:

Value of X x1 x2 x3 ⋯ xk

Probability p1 p2 p3 ⋯ pk

The probabilities pi must satisfy two requirements: 1. Every probability pi is a
number between 0 and 1. 2. pi + pi + ⋯ + pk = 1. Find the probability of any
event by adding the probabilities pi of the particular values xi that make up
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the event.

Continuous random variable. A continuous random variable X takes all
values in an interval of numbers. The probability distribution of X is
described by a density curve. The probability of any event is the area under
the density curve and above the values of X that make up the event.

Mean of a discrete random variable. Suppose that X is a discrete random
variable whose distribution is

Value of X x1 x2 x3 ⋯ xk

Probability p1 p2 p3 ⋯ pk

To find the mean of X, multiply each possible value by its probability, then
add all the products:

μX = x1p1 + x2p2 + ⋯ + xkpk

Law of large numbers. Draw independent observations at random from any
population with finite mean μ. Decide how accurately you would like to
estimate μ. As the number of observations drawn increases, the mean x¯ of
the observed values eventually approaches the mean μ of the population as
closely as you specified and then stays that close.

Rules for means. Rule 1. If X is a random variable and a and b are fixed
numbers, then μa+bX = a + bμX. Rule 2. If X and Y are random variables, then
μX+Y = μX + μY.

Variance of a discrete random variable. Suppose that X is a discrete
random variable whose distribution is

Value of X x1 x2 x3 ⋯ xk

Probability p1 p2 p3 ⋯ pk

and that μX is the mean of X. The variance of X is

σX2=(x1−μX)2p1+(x2−μX)2p2+…+(xk−μX)2pk

Rules for variances and standard deviations. Rule 1. If X is a random
variable and a and b are fixed numbers, then σa+bX2=b2σX2. Rule 2. If X
and Y are independent random variables, then σX+Y2=σX2+σY2 and σX
−Y2=σX2+σY2. This is the addition rule for variances of independent
random variables. Rule 3. If X and Y have correlation ρ, then
σX+Y2=σX2+σY2+2ρσXσY and σX−Y2=σX2+σY2−2ρσXσY. This is the
general addition rule for variances of random variables. To find the standard
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deviation, take the square root of the variance.

Rules of probability. Rule 1. 0 ≤ P(A) ≤ 1 for any event A. Rule 2. P(S) = 1.
Rule 3. Addition rule: If A and B are disjoint events, then P(A or B) = P(A) +
P(B). Rule 4. Complement rule: For any event A, P(Aʿ) = 1 – P(A). Rule 5.
Multiplication rule: If A and B are independent events, then P(A and B) =
P(A)P(B).

Union. The union of any collection of events is the event that at least one of
the collection occurs.

Addition rule for disjoint events. If events A, B, and C are disjoint in the
sense that no two have any outcomes in common, then P(one or more of A, B,
C) = P(A) + P(B) + P(C). This rule extends to any number of disjoint events.

General addition rule for unions of two events. For any two events A and
B, P(A or B) = P(A) + P(B) – P(A and B).

Multiplication rule. The probability that both of two events A and B happen
together can be found by P(A and B) = P(A)P(B | A). Here P(B | A) is the
conditional probability that B occurs, given the information that A occurs.

Definition of conditional probability. When P(A) > 0, the conditional
probability of B given A is P(B | A)=P(A and B)P(A).

Intersection. The intersection of any collection of events is the event that all
of the events occur.

Bayes’s rule. Suppose that A1, A2, …, Ak are disjoint events whose
probabilities are not 0 and add to exactly 1. That is, any outcome is in exactly
one of these events. Then if C is any other event whose probability is not 0 or
1,

P(Ai | C)=P(C | Ai)P(Ai)P(C | A1)P(A1)+…+P(Ak)P(C | Ak)

Independent events. Two events A and B that both have positive probability
are independent if P(B | A) = P(B).

CHAPTER 5

The sample mean x¯ of an SRS of size n drawn from a large population with
mean μ and standard deviation σ has a sampling distribution with mean
μx¯=μ and standard deviation σx¯=σ/n.
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Linear combinations of independent Normal random variables have
Normal distributions. In particular, if the population has a Normal
distribution, so does x¯.

The central limit theorem states that for large n the sampling distribution of
x¯ is approximately N(μ,σ/n) for any population with mean μ and finite
standard deviation σ. This includes populations of both continuous and
discrete random variables.

The binomial distribution. A count X of successes has the binomial
distribution B(n, p) when there are n trials, all independent, each resulting in a
success or a failure, and each having the same probability p of a success. The
mean of X is μX = np and the standard deviation is σX=np(1−p).

The sample proportion of success p̂=X/n has mean μp̂=p and standard
deviation σp̂=p(1−p)/n. It is an unbiased estimator of the population
proportion p.

The sampling distribution of the count of successes. The B(n, p)
distribution is a good approximation to the sampling distribution of the count
of successes in an SRS of size n from a large population containing
proportion p of successes. We will use this approximation when the
population is at least 20 times larger than the sample.

The sampling distribution of the sample proportion. The sampling
distribution of p̂ is not binomial but the B(n, p) distribution can be used to do
probability calculations about p̂ by restating them in terms of the count X. We
will use the B(n, p) distribution when the population is at least 20 times larger
than the sample.

The Normal approximation to the binomial distribution says that if X is a
count having the B(n, p) distribution, then when n is large, X is approximately
N(np,np(1−p)). In addition, the sample proportion p̂=X/n is N(p,p(1−p)/n).
We will use these approximations when np ≥ 10 and n(1 – p) ≥ 10. The
continuity correction improves the accuracy of the Normal approximations.

CHAPTER 6

Confidence interval. The purpose of a confidence interval is to estimate an
unknown parameter with an indication of how accurate the estimate is and of
how confident we are that the result is correct. Any confidence interval has
two parts: an interval computed from the data and a confidence level. The
interval often has the form estimate ± margin of error.
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Confidence level. The confidence level states the probability that the method
will give a correct answer. That is, if you use 95% confidence intervals, in the
long run 95% of your intervals will contain the true parameter value. When
you apply the method once, you do not know if your interval gave a correct
value (this happens 95% of the time) or not (this happens 5% of the time).

Confidence interval for the mean μ. For a Normal population with known
standard deviation σ, a level C confidence interval for the mean μ is given by
x¯±m, where the margin of error m=z*σn. Here z* is obtained from the
standard Normal distribution such that the probability is C that a standard
Normal random variable takes a value between –z* and z*.

Margin of error. Other things being equal, the margin of error of a
confidence interval decreases as the confidence level C decreases, the sample
size n increases, and the population standard deviation σ decreases. The
sample size n required to obtain a confidence interval of specified margin of
error m for a Normal mean is n = (z*σ/m)2, where z* is the critical point for
the desired level of confidence.

A test of significance is intended to assess the evidence provided by data
against a null hypothesis H0 in favor of an alternative hypothesis Ha. The
hypotheses are stated in terms of population parameters. Usually H0 is a
statement that no effect or no difference is present, and Ha says that there is
an effect or difference. The difference can be in a specific direction (one-
sided alternative) or in either direction (two-sided alternative).

The test statistic and P-value. The test of significance is based on a test
statistic. The P-value is the probability, computed assuming that H0 is true,
that the test statistic will take a value at least as extreme as that actually
observed. Small P-values indicate strong evidence against H0. Calculating P-
values requires knowledge of the sampling distribution of the test statistic
when H0 is true. If the P-value is as small or smaller than a specified value α,
the data are statistically significant at significance level α.

Significance test concerning an unknown mean μ. Significance tests for
the hypothesis H0: μ = μ0 are based on the z statistic, z=(x¯−μ0)/(σ/n). This z
test assumes an SRS of size n, known population standard deviation σ, and
either a Normal population or a large sample.

CHAPTER 7

Standard error. When the standard deviation of a statistic is estimated from
the data, the result is called the standard error of the statistic. The standard
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error of the sample mean x̄ is SEx¯=sn.

The t distributions. Suppose that an SRS of size n is drawn from an N(μ, σ)
population. The one-sample t statistic t=(x¯−μ)/(s/n) has the t distribution
with n – 1 degrees of freedom.

The one-sample t confidence interval. Consider an SRS of size n drawn
from a population having unknown mean μ. A level C confidence interval for
μ is x¯±t*s/n, where t* is the value for the t(n – 1) density curve with area C
between –t* and t*. The quantity t*s/n is the margin of error. This interval is
exact when the population distribution is Normal and is approximately
correct for large n in other cases.

The one-sample t test. Suppose that an SRS of size n is drawn from a
population having unknown mean μ. To test the hypothesis H0:μ = μ0,
compute the one-sample t statistic t=(x¯−μ0)/(s/n). P-values or fixed
significance levels are computed from the t(n – 1) distribution.

Matched pairs t procedures. These one-sample procedures are used to
analyze matched pairs data by first taking the differences within each
matched pair to produce a single sample.

Robustness of t procedures. The t procedures are relatively robust against
non-Normal populations. The t procedures are useful for non-Normal data
when 15 ≤ n < 40 unless the data show outliers or strong skewness. When n ≥
40, the t procedures can be used even for clearly skewed distributions.

Power of a t test. The power of the t test is calculated like that of the z test,
using an approximate value for both σ and s.

Sign test. The sign test is a distribution-free test because it uses probability
calculations that are correct for a wide range of population distributions. The
sign test for “no treatment effect” in matched pairs counts the number of
positive differences. The P-value is computed from the B(n, 1/2) distribution,
where n is the number of non-0 differences. The sign test is less powerful
than the t test in cases where use of the t test is justified.

The two-sample t test. Suppose that an SRS of size n1 is drawn from a
Normal population with unknown mean μ1 and that an independent SRS of
size n2 is drawn from another Normal population with unknown mean μ2. To
test the hypothesis H0:μ1 = μ2, compute the two-sample t statistic t=
(x¯1−x¯2)/(s12/n1+s22/n2) and use P-values or critical values for the t(k)
distribution, where the degrees of freedom k either are approximated by
software or are the smaller of n1 – 1 and n2 – 1.
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The two-sample t test. Suppose that an SRS of size n1 is drawn from a
Normal population with unknown mean μ1 and that an independent SRS of
size n2 is drawn from another Normal population with unknown mean μ2.
The confidence interval for μ1 – μ2 is given by (x¯1−x¯2)±t*s12/n1+s22/n2.
This interval has confidence level at least C no matter what the population
standard deviations may be. Here, t* is the value for the t(k) density curve
with area C between –t* and t*, where the degrees of freedom k either are
approximated by software or are the smaller of n1 – 1 and n2 – 1.

Pooled two-sample t procedures. If we can assume that the two populations
have equal variances, pooled two-sample t procedures can be used. These are
based on the pooled estimator sp2=((n1−1)s12+(n2−1)s22)/(n1+n2−2) of the
unknown common variance and the t(n1 + n2 – 2) distribution.

CHAPTER 8

Large-sample confidence interval for a population proportion. Choose an
SRS of size n from a large population with an unknown proportion p of
successes. The sample proportion is p̂=X/n, where X is the number of
successes. The standard error of p̂ is SEp̂=p̂(1−p̂)/n and the margin of error
for confidence level C is m=z*SEp̂, where the critical value z* is the value for
the standard Normal density curve with area C between −z* and z*. An
approximate level C confidence interval for p is p̂±m. Use this interval for
90%, 95%, or 99% confidence when the number of successes and the number
of failures are both at least 10.

Large-sample significance test for a population proportion. Draw an SRS
of size n from a large population with an unknown proportion p of successes.
To test the hypothesis H0: p = p0, compute the z statistic, z=(p̂
−p0)/p0(1−p0)/n. In terms of a standard Normal random variable Z, the
approximate P-value for a test of H0 against Ha: p > p0 is P(Z ≥ z), Ha: p < p0
is P(Z ≤ z), and Ha: p ≠ p0 is 2P(Z ≥ |z|).

Sample size for desired margin of error. The level C con-fidence interval
for a proportion p will have a margin of error approximately equal to a
specified value m when the sample size satisfies n = (z*/m)2p*(1-p*). Here z*

is the crit-ical value for confidence C, and p* is a guessed value for the
proportion of successes in the future sample. The margin of error will be less
than or equal to m if p* is chosen to be 0.5. The sample size required when p*

= 0.5 is n = (1/4)(Z*/m)2.
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Large-sample confidence interval for comparing two proportions.
Choose an SRS of size n1 from a large population having proportion p1 of
successes and an independent SRS of size n2 from another population having
proportion p2 of successes. The estimate of the difference in the population
proportions is D=p̂1−p̂2. The standard error of D is SED=(p̂1(1−p̂1)/n1)+
(p̂2(1−p̂2)/n2) and the margin of error for confidence level C is m = z*SED,
where the critical value z* is the value for the standard Normal density curve
with area C between −z* and z*. An approximate level C confidence interval
for p1 − p2 is D ± m. Use this method for 90%, 95%, or 99% confidence when
the number of successes and the number of failures in each sample are both at
least 10.

Significance test for comparing two proportions. To test the hypothesis
H0: p1 = p2 compute the z statistic z = (p̂1−p̂2)/SEDp where the pooled
standard error is SEDp=p̂(1−p̂)(1/n1+1/n2) and where p̂=(X1+X2)/(n1+n2).
In terms of a standard Normal random variable Z, the P- value for a test of H0
against Ha: p1 > p2 is P(Z ≥ z), Ha: p1 < p2 is P(Z ≤ z), and Ha: p1 ≠ p2 is
2P(Z ≥ |z|).

CHAPTER 9

Chi-square statistic. The chi-square statistic is a measure of how much the
observed cell counts in a two-way table diverge from the expected cell
counts. The formula for the statistic is

X2=Σ(observed count−expected count)2expected count

where “observed” represents an observed cell count, “expected” represents
the expected count for the same cell, and the sum is over all r × c cells in the
table.

Chi-square test for two-way tables. The null hypothesis H0 is that there is
no association between the row and column variables in a two-way table. The
alternative is that these variables are related. If H0 is true, the chi-square
statistic X2 has approximately a χ2 distribution with (r − 1)(c − 1) degrees of
freedom. The P-value for the chi-square test is P(χ2 ≥ X2), where χ2 is a
random variable having the χ2(df) distribution with df = (r − 1)(c − 1).

Expected cell counts. Expected count = (row total × column total)/n.

The chi-square goodness of fit test. Data for n observations of a categorical
variable with n possible outcomes are summarized as observed counts, n1, n2,
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... , nk, in k cells. A null hypothesis specifies probabilities p1, p2, ... , pk for the
possible outcomes. For each cell, multiply the total number of observations n
by the specified probability to determine the expected counts: expected count
= npi. The chi- square statistic measures how much the observed cell counts
differ from the expected cell counts. The formula for the statistic is

X2=Σ(observed count−expected count)2expected count

The degrees of freedom are k − 1, and P-values are computed from the chi-
square distribution.

CHAPTER 10

Simple linear regression. The statistical model for simple linear regression
assumes the means of the response variable y fall on a line when plotted
against x, with the observed y’s varying Normally about these means. For n
observations, this model can be written yi = β0 + β1xi + εi, where i = 1, 2, ... ,
n, and the εi are assumed to be independent and Normally distributed with
mean 0 and standard deviation σ. Here β0 + β1xi is the mean response when x
= xi. The parameters of the model are β0, β1, and σ.

Estimation of model parameters. The population regression line intercept
and slope, β0 and β1, are estimated by the intercept and slope of the least-
squares regression line, b0 and b1. The parameter σ is estimated by s=Σei2/(n
−2), where the ei are the residuals ei=yi−ŷi.

Confidence interval and significance test for β1. A level C confidence
interval for population slope β1 is b1±t*SEb1 where t* is the value for the t(n
− 2) density curve with area C between −t* and t*. The test of the hypothesis
H0: β1 = 0 is based on the t statistic t=b1/SEb1 and the t(n - 2) distribution.
This tests whether there is a straight-line relationship between y and x. There
are similar formulas for confidence intervals and tests for β0, but these are
meaningful only in special cases.

Confidence interval for the mean response. The estimated mean response
for the subpopulation corresponding to the value x* of the explanatory
variable is μ̂y=b0+b1x*. A level C confidence interval for the mean response
is μ̂y±t*SEμ̂ where t* is the value for the t(n − 2) density curve with area C
between −t* and t*.

Prediction interval for the estimated response. The estimated value of the
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response variable y for a future observation from the subpopulation
corresponding to the value x* of the explanatory variable is ŷ=b0+b1x*. A
level C prediction interval for the estimated response is ŷ±t*SEŷ where t* is
the value for the t(n − 2) density curve with area C between −t* and t*. The
standard error for the prediction interval is larger than that for the confidence
interval because it also includes the variability of the future observation
around its subpopulation mean.

CHAPTER 11

Multiple linear regression. The statistical model for multiple linear
regression with response variable y and p explanatory variables x1, x2, ... , xp
is yi = β0 + β1xi1 + β1xi2 + ... + βpxip + εi where i = 1, 2, ... , n. The εi are
assumed to be independent and Normally distributed with mean 0 and
standard deviation σ. The parameters of the model are β0, β1, β2, ... , βp, and σ

Estimation of model parameters. The multiple regression equation predicts
the response variable by a linear relationship with all the explanatory
variables: ŷ=b0+b1x1+b2x2+...+bpxp. The β’s are estimated by b0, b1, b2, ... ,
bp, which are obtained by the method of least squares. The parameter σ is
estimated by s=MSE=Σei2/(n−p−1) where the ei are the residuals, ei=yi−ŷi.

Confidence interval for βj. A level C confidence interval for βj is bj±t*SEbj
where t* is the value for the t(n − p − 1) density curve with area C between
−t* and t*. The test of the hypothesis H0: βj = 0 is based on the t statistic
t=bj/SEbj and the t(n − p − 1) distribution. The estimate bj of βj and the test
and confidence interval for βj are all based on a specific multiple linear
regression model. The results of all of these procedures change if other
explanatory variables are added to or deleted from the model.

The ANOVA F test. The ANOVA table for a multiple linear regression
gives the degrees of freedom, sum of squares, and mean squares for the
model, error, and total sources of variation. The ANOVA F statistic is the
ratio MSM/MSE and is used to test the null hypothesis H0: β1 = β2 = ... = βp =
0. If H0 is true, this statistic has an F(p, n − p − 1) distribution.

Squared multiple correlation. The squared multiple corre-lation is given by
the expression R2 = SSM/SST and is interpreted as the proportion of the
variability in the response variable y that is explained by the explanatory
variables x1, x2, ... , xp in the multiple linear regression.
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CHAPTER 12

One-way analysis of variance (ANOVA) is used to compare several
population means based on independent SRSs from each population. The
populations are assumed to be Normal with possibly different means and the
same standard deviation. To do an analysis of variance, first compute sample
means and standard deviations for all groups. Side-by-side boxplots give an
overview of the data. Examine Normal quantile plots (either for each group
separately or for the residuals) to detect outliers or extreme deviations from
Normality. Compute the ratio of the largest to the smallest sample standard
deviation. If this ratio is less than 2 and the Normal quantile plots are
satisfactory, ANOVA can be performed.

ANOVA F test. An analysis of variance table organizes the ANOVA
calculations. Degrees of freedom, sums of squares, and mean squares appear
in the table. The F statistic is the ratio MSG/MSE and is used to test the null
hypothesis that the population means are all equal. The alternative hypothe-
sis is true if there are any differences among the population means. The F(I −,
N − I) distribution is used to compute the P-value.

Contrasts. Specific questions formulated before examination of the data can
be expressed as contrasts. A contrast is a combination of population means of
the form ψ = Σaiμi where the coefficients ai sum to 0. The corresponding
sample contrast is c=Σaix¯i. The standard error of c is SEc=spΣai2/ni. Tests
and confidence intervals for contrasts provide answers to these specific
questions.

Multiple comparisons. To perform a multiple-comparisons procedure,
compute t statistics for all pairs of means using the formula tij=(x¯i
−x¯j)/(sp1/ni+1+/nj). If |tij| ≥ t** we declare that the population means μi and
μj are different. Otherwise, we conclude that the data do not distinguish
between them. The value of t** depends upon which multiple-comparisons
procedure we choose.

CHAPTER 13

Two-way analysis of variance is used to compare population means when
populations are classified according to two factors. ANOVA assumes that the
populations are Normal with possibly different means and the same standard
devi-ation and that independent SRSs are drawn from each pop- ulation. As
with one-way ANOVA, preliminary analysis includes examination of means,
standard deviations, and Normal quantile plots.
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ANOVA table and F tests. ANOVA separates the total variation into parts
for the model and error. The model variation is separated into parts for each
of the main effects and the interaction. These calculations are organized into
an ANOVA table. Pooling is used to estimate the within-group variance. F
statistics and P-values are used to test hypotheses about the main effects and
the interaction.

Marginal means are calculated by taking averages of the cell means across
rows and columns. Careful inspection of the cell means is necessary to
interpret statistically significant main effects and interactions. Plots are a
useful aid.
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NOTES AND DATA SOURCES

CHAPTER 1

1. See census.gov.

2. From State of Drunk Driving Fatalities in America 2010, available at
centurycouncil.org.

3. James P. Purdy, “Why first-year college students select online research
sources as their favorite,” First Monday, 17, No. 9 (September 3, 2012). See
firstmonday.org.

4. Data collected in the lab of Connie Weaver, Department of Foods and
Nutrition, Purdue University, and provided by Linda McCabe.

5. Haipeng Shen, “Nonparametric regression for problems involving lognormal
distributions,” PhD dissertation, University of Pennsylvania, 2003. Thanks to
Haipeng Shen and Larry Brown for sharing the data.

6. From the Digest of Education Statistics at the website of the National Center
for Education Statistics, nces.ed.gov/programs/digest.

7. See Note 4.

8. Based on Barbara Ernst et al., “Seasonal variation in the deficiency of 25–
hydroxyvitamin D3in mildly to extremely obese subjects,” Obesity Surgery, 19
(2009), pp. 180–183.

9. More information about the Titaniccan be found at the website for the
Titanic Project in Belfast, Ireland, at titanicbelfast.com/Home.aspx.

10. Data describing the passengers on the Titaniccan be found at
lib.stat.cmu.edu/S/Harrell/data/descriptions/titanic.html.

11. See
semiocast.com/publications/2012_01_31_Brazil_becomes_2nd_country_on_Twitter_superseds_Japan

12. Data for 2011 from Table 1.1 in the U.S. Energy Information
Administration’s December 2012 Monthly Energy Review,available at
eia.gov/totalenergy/data/monthly/pdf/mer.pdf.

13. From the Color Assignment website of Joe Hallock,
joehallock.com/edu/COM498/index.html.

14. U.S. Environmental Protection Agency, Municipal Solid Waste Generation,
Recycling, and Disposal in the United States: Tables and Figures for 2010.
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15. November 2012 report from marketshare.hitslink.com.

16. Color popularity for 2011 from the Dupont Automotive Color report; see
dupont.com/Media_center/en_US/color_popularity.

17. Data for November 2012, from internetworldstats.com/facebook.htm.

18. See previous note.

19. Data provided by Darlene Gordon, Purdue University.

20. Data for 1980 to 2012 are available from the World Bank at
data.worldbank.org/indicator/IC.REG.DURS. Data for 2012 were used for
this example.

21. See, for example, http://www.nacubo.org/Research.

22. The data were provided by James Kaufman. The study is described in
James C. Kaufman, “The cost of the muse: Poets die young,” Death Studies,27
(2003), pp. 813–821. The quote from Yeats appears in this article.

23. See, for example, the bibliographic entry for Gosset in the School of
Mathematics and Statistics of the University of St. Andrews, Scotland,
MacTutor History of Mathematics archive at www.history.mcs.st-
andrews.ac.uk/Biographies/Gosset.html.

24. These and other data that were collected and used by Gosset can be found
in the Guinness Archives in Dublin. See guinness-
storehouse.com/en/Archive.aspx.

25. These data were provided by Krista Nichols, Department of Biological
Sciences, Purdue University.

26. From the Interbrand website; see interbrand.com/en/best-global-brands.

27. From beer100.com/beercalories.htmon January 4, 2013.

28. See Noel Cressie, Statistics for Spatial Data,Wiley, 1993.

29. Data provided by Francisco Rosales of the Department of Nutritional
Sciences, Pennsylvania State University.

30. Data provided by Betsy Hoza, Department of Psychological Sciences,
University of Vermont.

31. Net worth for 2010 from the Federal Reserve Bulletin,98, No. 2 (2012), p.
17.

32. For more information about earthquakes, see the U.S. Geological Service
website at usgs.gov.

33. We thank Ethan J. Temeles of Amherst College for providing the data. His
work is described in Ethan J. Temeles and W. John Kress, “Adaptation in a
plant-hummingbird association,” Science,300 (2003), pp. 630–633.
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34. The National Assessment of Educational Progress (NAEP) is conducted by
the National Center for Education Statistics (NCES). The NAEP is a large
assessment of student knowledge in a variety of subjects. See
nces.ed.gov/nationsreportcard/naepdata.

35. See the NCAA Eligibility Center Quick Reference Sheet, available at
fs.ncaa.org/Docs/eligibility_center/Quick_Reference_Sheet.pdf.

36. Distributions for SAT scores can be found at the College Board website,
research.collegeboard.org/content/sat-data-tables.

37. See previous note.

38. See stubhub.com.

39. From Matthias R. Mehl et al., “Are women really more talkative than
men?,” Science,317, No. 5834 (2007), p. 82. The raw data were provided by
Matthias Mehl.

40. From the American Heart Association website, americanheart.org.

41. From fueleconomy.gov.

42. From cdc.gov/brfss. The data were collected in 2011, with the exception of
the fruits and vegetables variable, which is from 2009, the most recent year
when this variable was included in the survey.

43. See Note 16.

44. See worldbank.org.These data are among the files available under
“Data,”“Indicators.”

45. Data for 2013 were downloaded from isp-review. toptenreviews.com.

46. See previous note.

47. The Institute of Medicine website, www.iom.edu, provides links to reports
related to dietary reference intakes as well as other health and nutrition topics.

48. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and
Carotenoids,National Academy of Sciences, 2000.

49. See previous note.

Chapter 2

1. Hannah G. Lund et al., “Sleep patterns and predictors of disturbed sleep in a
large population of college students,” Adolescent Health,46, No. 2 (2010), pp.
97–99.

2. See previous note.

3. See cfs.purdue.edu/FN/campcalcium/public.htmfor information about the
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2010 camp.

4. See consumersunion.org/about.

5. “Best laundry detergents,” Consumer Reports,November 2011, pp. 8–9.

6. OECD StatExtracts, Organisation for Economic Co-operation and
Development, downloaded on January 8, 2013, from stats.oecd.org/wbos.

7. These studies were conducted by Connie Weaver, Department of Nutrition
Science, Purdue University, over the past 20 years. The data for this example
were provided by Linda McCabe. More details concerning this particular study
and references to other related studies are given in Lu Wu, “Calcium
requirements and metabolism in Chinese-American boys and girls,” Journal of
Bone Mineral Research,25,No. 8 (2010), pp. 1842–1849.

8. A sophisticated treatment of improvements and additions to scatterplots is
W. S. Cleveland and R. McGill, “The many faces of a scatterplot,” Journal of
the American Statistical Association,79 (1984), pp. 807–822.

9. Stewart Warden et al., “Throwing induces substantial torsional adaption
within the midshaft humerus of male baseball players,” Bone,45 (2009), pp.
931–941. The data were provided by Stewart Warden, Department of Physical
Therapy, School of Health and Rehabilitation Sciences, Indiana University.

10. See spectrumtechniques.com/isotope_generator.htm.

11. These data were collected under the supervision of Zach Grigsby, Science
Express Coordinator, College of Science, Purdue University.

12. See beer100.com/beercalories.htm.

13. See worldbank.org.

14. James T. Fleming, “The measurement of children’s perception of difficulty
in reading materials,” Research in the Teaching of English,1 (1967), pp.
136–156.

15. Data for 2012 from forbes.com/nfl-valuations/.

16. From en.wikipedia.org/wiki/10000_metres.

17. A careful study of this phenomenon is W. S. Cleveland, P. Diaconis, and R.
McGill, “Variables on scatterplots look more highly correlated when the scales
are increased,” Science,216 (1982), pp. 1138–1141.

18. Data from a plot in James A. Levine, Norman L. Eberhardt, and Michael D.
Jensen, “Role of nonexercise activity thermogenesis in resistance to fat gain in
humans,” Science,283 (1999), pp. 212–214.

19. Frank J. Anscombe, “Graphs in statistical analysis,” American Statistician,
27 (1973), pp. 17–21.

20. From the website of the National Center for Education Statistics,
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nces.ed.gov.

21. Debora L. Arsenau, “Comparison of diet management instruction for
patients with non-insulin dependent diabetes mellitus: Learning activity
package vs. group instruction,” master’s thesis, Purdue University, 1993.

22. The facts in Exercise 2.100 come from Nancy W. Burton and Leonard
Ramist, Predicting Success in College: Classes Graduating since
1980,Research Report No. 2001-2, The College Board, 2001.

23. See Note 19.

24. See iom.edu.

25. Based on a study described in Corby C. Martin et al., “Children in school
cafeterias select foods containing more saturated fat and energy than the
Institute of Medicine recommendations,” Journal of Nutrition,140 (2010), pp.
1653–1660.

26. You can find a clear and comprehensive discussion of numerical measures
of association for categorical data in Chapter 2 of Alan Agresti, Categorical
Data Analysis,2nd ed., Wiley, 2002.

27. Edward Bumgardner, “Loss of teeth as a disqualification for military
service,” Transactions of the Kansas Academy of Science,18 (1903), pp.
217–219.

28. Based on reports prepared by Andy Zehner, vice president for Student
Affairs, Purdue University.

29. Data are from the NOAA Satellite and Information Service at
ncdc.noaa.gov/special-reports/groundhog-day.php.

30. From M.-Y. Chen et al., “Adequate sleep among adolescents is positively
associated with health status and health-related behaviors,” BMC Public
Health,6, No. 59 (2006); available from biomedicalcentral.com/1471-
2458/6/59.

31. M. S. Linet et al., “Residential exposure to magnetic fields and acute
lymphoblastic leukemia in children,” New England Journal of Medicine,337
(1997), pp. 1–7.

32. The Health Consequences of Smoking: 1983,U.S. Public Health Service,
1983.

33. Dennis Bristow et al., “Thirty games out and sold out for months! An
empirical examination of fan loyalty to two Major League Baseball teams,”
Journal of Management Research,2, No. 1 (2010), E2; available at
macrothink.org/jmr.

34. See www12.statcan.ca/english/census06/analysis/agesex/ProvTerr1.cfm.
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Symmetic distribution. See Distribution, symmetric

t distribution. See Distribution, t
t inference procedures

for contrasts, 665
for correlation, 597
for matched pairs, 429–431
for multiple comparisons, 670
for one mean, 421, 423
for two means, 450–454
for two means, pooled, 461–462
for regression coefficients, 574, 616
for regression mean response, 577
for regression prediction, 579
robustness of, 432–433, 455–456

Tails of a distribution. See Distribution, tails
Test of significance. See Significance test
Test statistic, 375–376
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Testing hypotheses. See Significance test
The Times Higher Education Supplement, 638
Three-way table, 148
Ties, 15-10–15-11
Time plot, 23–24, 25
Titanic, 25, 54, 149, 157, 16-12, 16-23
Transformation, 93

linear, 45–47, 48
logarithm, 93, 436, 582
rank, 15-4

Treatment, experimental, 172, 174, 175, 178, 188
Tree diagram, 290–291, 294
Tuskegee study, 222–223
Twitter, 25–26, 261, 525
Two-sample problems, 448
Two-way table, 139–140, 148, 530

data analysis for, 139–148
inference for, 530–550
models for, 545–548, 550
relationships in 143–144

Type I and II errors, 407–408

Unbiased estimator, 210–211, 215
Undercoverage, 198, 201
Unimodal distribution. See Distribution, unimodal
Union of events, 283, 294
Unit of measurement, 3, 45
Unit, experimental, 175
U.S. Agency for International Development, 15-27
U.S. Department of Education, 346

Value of a variable, 2, 8
Variability, 47, 211
Variable, 2, 8

categorical, 3, 8, 97, 487
dependent, 86
explanatory, 84, 86, 97
independent, 86
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lurking, 133, 136, 176
quantitative, 3, 8
response, 84, 86
row and column, 140, 148

Variance, 42, 48
of a difference between two sample means, 449
of a difference between two sample proportions, 509
of a random variable, 273–274, 279
a pooled estimator, 462, 467
rules for, 275–276, 279
of a sample mean, 306

Variation
among groups, 658, 678
between groups, 647, 678
common cause, 17-7
special cause, 17-7
within group, 647, 658, 678,

Venn diagram, 240
Voluntary response, 194

Wald statistic, 14-10, 14-20
Whiskers, 38
Wilcoxon rank sum test, 15-3–15-15
Wilcoxon signed rank test, 15-18–15-25
Wording questions, 200, 201
World Bank, 31, 78, 100, 16-3
World Database of Happiness, 638

z -score, 61, 72
z statistic

for one proportion, 495
for two proportions, 517
one-sample for mean, 419, 440, 440
two-sample for means, 448–450
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