David J. Olive

| Statistical
Theory and
Inference

2 Springer



Statistical Theory and Inference






David J. Olive

Statistical Theory
and Inference

@ Springer



David J. Olive

Department of Mathematics
Southern Illinois University
Carbondale, IL, USA

ISBN 978-3-319-04971-7 ISBN 978-3-319-04972-4 (eBook)
DOI 10.1007/978-3-319-04972-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014934894
Mathematics Subject Classification (2010): 62 01, 62B05, 62F03, 62F10, 62F12

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


www.springer.com

Preface

Many math and some statistics departments offer a one-semester graduate course in
statistical theory using texts such as Casella and Berger (2002), Bickel and Doksum
(2007) or Mukhopadhyay (2000, 2006). The course typically covers minimal and
complete sufficient statistics, maximum likelihood estimators (MLEs), method of
moments, bias and mean square error, uniform minimum variance unbiased esti-
mators (UMVUESs) and the Fréchet—Cramér—Rao lower bound (FCRLB), an intro-
duction to large sample theory, likelihood ratio tests, and uniformly most powerful
(UMP) tests and the Neyman—Pearson Lemma. A major goal of this text is to make
these topics much more accessible to students by using the theory of exponential
families.

One of the most important uses of exponential families is that the theory often
provides two methods for doing inference. For example, minimal sufficient statis-
tics can be found with either the Lehmann Scheffé theorem or by finding T from
the exponential family parameterization. Similarly, if Y7,...,Y), are iid from a one-
parameter regular exponential family with complete sufficient statistic 7(Y), then
one-sided UMP tests can be found by using the Neyman—Pearson lemma or by using
exponential family theory.

The prerequisite for this text is a calculus-based course in statistics at the level
of Hogg and Tanis (2005), Larsen and Marx (2011), Wackerly et al. (2008), or

Walpole et al. (2006). Also see Arnold (1990), Gathwaite et al. (2002), Spanos
(1999), Wasserman (2004), and Welsh (1996).

The following intermediate texts are especially recommended: DeGroot and
Schervish (2012), Hogg et al. (2012), Rice (2006), and Rohatgi (1984).

A less satisfactory alternative prerequisite is a calculus-based course in probabil-
ity at the level of Hoel et al. (1971), Parzen (1960), or Ross (2009).

A course in Real Analysis at the level of Bartle (1964), Gaughan (2009),
Rosenlicht (1985), Ross (1980), or Rudin (1964) would be useful for the large sam-
ple theory chapter.

The following texts are at a similar to higher level than this text: Azzalini (1996),
Bain and Engelhardt (1992), Berry and Lindgren (1995), Cox and Hinkley (1974),
Ferguson (1967), Knight (2000), Liero and Zwanzig (2012), Lindgren (1993),
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Lindsey (1996), Mood et al. (1974), Roussas (1997), and Silvey (1970). Also see
online lecture notes Marden (2012).

The texts Bickel and Doksum (2007), Lehmann and Casella (1998), and Rohatgi
and Ehsanes Saleh (2001) are at a higher level as are Poor (1994) and Zacks (1971).
The texts Bierens (2004), Cramér (1946), Keener (2010), Lehmann and Romano
(2005), Rao (1973), Schervish (1995), and Shao (2003) are at a much higher level.

Some other useful references include a good low-level probability text Ash
(1993) and a good introduction to probability and statistics Dekking et al. (2005).
Also see Ash (2011), Spiegel (1975), Romano and Siegel (1986), and online lecture
notes Ash (2013).

Many of the most important ideas in statistics are due to Fisher, Neyman, E.S.
Pearson and K. Pearson. For example, David (2006-7) says that the following terms
were due to Fisher: consistency, covariance, degrees of freedom, efficiency, infor-
mation, information matrix, level of significance, likelihood, location, maximum
likelihood, multinomial distribution, null hypothesis, pivotal quantity, probability
integral transformation, sampling distribution, scale, statistic, Student’s ¢, studenti-
zation, sufficiency, sufficient statistic, test of significance, uniformly most powerful
test and variance.

David (2006-7) says that terms due to Neyman and E.S. Pearson include alter-
native hypothesis, composite hypothesis, likelihood ratio, power, power function,
simple hypothesis, size of critical region, test criterion, test of hypotheses, and type
I and type II errors. Neyman also coined the term confidence interval.

David (2006-7)says that terms due to K. Pearson include binomial distribution,
bivariate normal, method of moments, moment, random sampling, skewness, and
standard deviation.

Also see, for example, David (1995), Fisher (1922), Savage (1976), and Stigler
(2007). The influence of Gosset (Student) on Fisher is described in Zabell (2008)
and Hanley et al. (2008). The influence of Karl Pearson on Fisher is described in
Stigler (2008).

This book covers some of these ideas and begins by reviewing probability, count-
ing, conditional probability, independence of events, the expected value, and the
variance. Chapter 1 also covers mixture distributions and shows how to use the
kernel method to find E(g(Y)). Chapter 2 reviews joint, marginal, and conditional
distributions; expectation; independence of random variables and covariance; condi-
tional expectation and variance; location—scale families; univariate and multivariate
transformations; sums of random variables; random vectors; the multinomial, mul-
tivariate normal, and elliptically contoured distributions. Chapter 3 introduces ex-
ponential families, while Chap. 4 covers sufficient statistics. Chapter 5 covers maxi-
mum likelihood estimators and method of moments estimators. Chapter 6 examines
the mean square error and bias as well as uniformly minimum variance unbiased es-
timators, Fisher information, and the Fréchet—Cramér—Rao lower bound. Chapter 7
covers uniformly most powerful and likelihood ratio tests. Chapter 8 gives an in-
troduction to large sample theory, while Chap. 9 covers confidence intervals. Chap-
ter 10 gives some of the properties of 54 univariate distributions, many of which
are exponential families. Chapter 10 also gives over 30 exponential family param-
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eterizations, over 28 MLE examples, and over 27 UMVUE examples. Chapter 11
gives a brief introduction to Bayesian methods, and Chap. 12 gives some hints for
the problems.

Some highlights of this text are as follows:

e Exponential families, indicator functions, and the support of the distribution are
used throughout the text to simplify the theory.

e Section 1.5 describes the kernel method, a useful technique for computing the
expected value of a function of a random variable, E[g(Y)].

e Theorem 2.2 shows the essential relationship between the independence of ran-
dom variables Y1, ...,Y, and the support in that the random variables are depen-
dent if the support is not a cross product. If the support is a cross product and if
the joint pdf or pmf factors on the support, then Y7,. .. Y, are independent.

e Theorems 2.17 and 2.18 give the distribution of }.Y; when Y7, ...,Y; are iid for a
wide variety of distributions.

e Chapter 3 presents exponential families. The theory of these distributions greatly
simplifies many of the most important results in mathematical statistics.

e Corollary 4.6 presents a simple method for finding sufficient, minimal sufficient
and complete statistics for k-parameter exponential families.

e Section 5.4.1 compares the “proofs” of the MLE invariance principle due to
Zehna (1966) and Berk (1967). Although Zehna (1966) is cited by most texts,
Berk (1967) gives a correct elementary proof.

e Theorem 6.5 compares the UMVUE and the estimator that minimizes the MSE
for a large class of one-parameter exponential families.

e Theorem 7.3 provides a simple method for finding uniformly most powerful tests
for a large class of one-parameter exponential families. Power is examined in
Example 7.12.

e Theorem 8.4 gives a simple proof of the asymptotic efficiency of the complete
sufficient statistic as an estimator of its expected value for one-parameter regular
exponential families.

e Theorem 8.21 provides a simple limit theorem for the complete sufficient statistic
of a k-parameter regular exponential family.

e Chapter 10 gives information for 54 “brand name” distributions.

e Chapter 11 shows how to use the shorth to estimate the highest posterior density
region.

In a semester, I cover Sects. 1.1-1.6,2.1-2.9,3.1,3.2,4.1,4.2,5.1,5.2,6.1,6.2,
7.1,7.2,7.3,8.1-8.4,and 9.1.

Much of the text material is on parametric frequentist methods, but the most
used methods in statistics tend to be semi-parametric. Many of the most used meth-
ods originally based on the univariate or multivariate normal distribution are also
semi-parametric methods. For example, the t-interval works for a large class of
distributions if ¢ is finite and n is large. Similarly, least squares regression is a
semi-parametric method. Multivariate analysis procedures originally based on the
multivariate normal distribution tend to also work well for a large class of ellipti-
cally contoured distributions.
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Warning: For parametric methods that are not based on the normal distribution,
often the methods work well if the parametric distribution is a good approximation
to the data, but perform very poorly otherwise.
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Chapter 1
Probability and Expectations

The first two chapters of this book review some of the tools from probability that
are useful for statistics. These two chapters are no substitute for the prerequisite of
a calculus-based course in probability and statistics at the level of Hogg and Tanis
(2005), Larsen and Marx (2011), Wackerly et al. (2008), Walpole et al. (2006),
DeGroot and Schervish (2012), Hogg et al. (2012), Rice (2006), or Rohatgi (1984).

Most of the material in Sects. 1.1-1.4 should be familiar to the reader and might
be reviewed in one 50-min lecture. Section 1.5 covers the kernel method, a useful
technique for computing the expectation of a function of a random variable, while
Sect. 1.6 introduces mixture distributions.

Definition 1.1. Statistics is the science of extracting useful information from
data.

1.1 Probability

The following terms from set theory should be familiar. A set consists of distinct
elements enclosed by braces, e.g., {1,5,7}. The universal set S is the set of all ele-
ments under consideration while the empty set @ is the set that contains no elements.
The set A is a subset of B, written A C B, if every element in A is in B. The union
AUB of A with B is the set of all elements in A or B or in both. The intersection
ANB of A with B is the set of all elements in A and B. The complement of A, written
A or A, is the set of all elements in S but not in A. The following theorem is used to
find complements of unions and intersections of two sets.

Theorem 1.1. DeMorgan’s Laws:

a) AUB=ANB.
b) ANB=AUB.
©) (Ui A4) = NiZ A7
d) (NZ1A4i) = UZ A7

D.J. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4 _1, 1
© Springer International Publishing Switzerland 2014



2 1 Probability and Expectations

Proof. The proofs of a) and b) are similar to those of ¢) and d), and “iff”” means
“if and only if.”

¢) (U, A;)¢ occurred iff U3 | A; did not occur, iff none of the A; occurred, iff all
of the Af occurred, iff M2 A¢ occurred.

d) (ﬁ‘l"’: lAi)” occurred iff not all of the A; occurred, iff at least one of the A{
occurred, iff U7 | A{ occurred. [J

IfS={1,2,3,4,5},A={1,2} and B={4,5},then AUB = {1,2,4,5}* = {3} =
{3,4,5}n{1,2,3} =ANB. Similarly, ANB=0° =S = {3,4,5}U{1,2,3} =AUB.

Sets are used in probability, but often different notation is used. For example, the
universal set is called the sample space S.

Definition 1.2. The sample space S is the set of all possible outcomes of an ex-
periment.

Definition 1.3. Let % be a special field of subsets of the sample space S forming
the class of events. Then A is an event if A € A.

In the definition of an event above, the special field of subsets % of the sample
space S forming the class of events will not be formally given. However, & contains
all “interesting” subsets of S and every subset that is easy to imagine. The point is
that not necessarily all subsets of S are events, but every event A is a subset of S.

Definition 1.4. If ANB = @, then A and B are mutually exclusive or disjoint
events. Events A1, A, ... are pairwise disjoint or mutually exclusive if A;NA; = @

fori # j.

If A; and A; are disjoint, then P(A;NA;) = P(@) = 0. A simple event is a set that
contains exactly one element s; of S, e.g., A = {s3}. A sample point s; is a possible
outcome. Simple events {s;} and {s;} are disjoint if 5; # s;.

Definition 1.5. A discrete sample space consists of a finite or countable number
of outcomes.

Notation. Generally we will assume that all events under consideration belong
to the same sample space S.

The relative frequency interpretation of probability says that the probability of
an event A is the proportion of times that event A would occur if the experiment was
repeated again and again infinitely often.

Definition 1.6: Kolmogorov’s Definition of a Probability Function. Let % be
the class of events of the sample space S. A probability function P : % — [0,1] is
a set function satisfying the following three properties:

P1) P(A) > O for all events A,
P2) P(S) =1, and
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P3) if Aj,A,,... are pairwise disjoint events, then P(U? |A;) = X2 | P(A)).

Example 1.1. Flip a coin and observe the outcome. Then the sample space S =
{H,T}. Note that {H} and {T} are disjoint simple events. Suppose the coin is
biased with P({H}) = 1/3. Then P({T}) = 2/3. Often the notation P(H) = 1/3
will be used.

Theorem 1.2. Let A and B be any two events of S. Then

H0<PA)<1.

i) P(@) = 0 where O is the empty set.

iii) Complement Rule: P(A) = 1 — P(A).

iv) General Addition Rule: P(AUB) = P(A)+ P(B) — P(ANB).

v) If A C B, then P(A) < P(B).

vi) Boole’s Inequality: P(U? ,A4;) < ¥ P(A;) for any events Aj,A,.... vi)
Bonferonni’s Inequality: P(N}_,A;) > ¥ P(A;) — (n — 1) for any events
AL As,. .. A,

Note that A and A are disjoint and AUA = S. Hence 1 = P(S) = P(AUA) =
P(A) + P(A), proving the complement rule. Note that S and @ are disjoint, so 1 =
P(S) = P(SUQ) = P(S) + P(®). Hence P(@) = 0.If A C B, let C = AN B. Then A
and C are disjoint with AUC = B. Hence P(A) + P(C) = P(B), and P(A) < P(B)
by i). The general addition rule for two events is very useful. Given three of the 4
probabilities in iv), the 4th can be found. P(A UB) can be found given P(A), P(B)
and that A and B are disjoint or independent. So if P(A) = 0.2, P(B) = 0.3, and
A and B are disjoint, then P(AU B) = 0.5. The addition rule can also be used to
determine whether A and B are independent (see Sect. 1.3) or disjoint.

Following Casella and Berger (2002, p. 13), P(U!_,A{) = P[(N_,A)‘] =1—
P(NL Aj) <YL PAS) =3 [1 — P(A;)] = n— X, P(A;), where the first equal-
ity follows from DeMorgan’s Laws, the second equality holds by the complement
rule, and the inequality holds by Boole’s inequality P(U?_|AY) < ¥ | P(A{). Hence
P(M_A;) > ¥ P(A;) — (n— 1), and Bonferonni’s inequality holds.

1.2 Counting

The sample point method for finding the probability for event A says that if § =
{s1,....5}, then 0 < P(s;) < 1, ¥ P(s;) = 1, and P(A) = ¥;;.c4 P(s;). That is,
P(A) is the sum of the probabilities of the sample points in A. If all of the outcomes
s; are equally likely, then P(s;) = 1/k and P(A) = (number of outcomes in A) /k if S
contains k outcomes.

Counting or combinatorics is useful for determining the number of elements in
S. The multiplication rule says that if there are n| ways to do a first task, n, ways to
do a 2nd task, ..., and n; ways to do a kth task, then the number of ways to perform
the total act of performing the 1st task, then the 2nd task, ..., then the kth task is

k
[IZni=ni-ny-n3---n.
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Techniques for the multiplication principle:

a) Use a slot for each task and write n; above the ith task. There will be & slots, one
for each task.
b) Use a tree diagram.

Definition 1.7. A permutation is an ordered arrangement using » of n distinct ob-
jects and the number of permutations = P}'. A special case of permutation formula is

Pl=nl=n-(n—1)-n-2)-n—3)---4-3-2-1=

n-n—=Nl=n-n=1)-n—=2)!=n-(n—1)-(n—2)- (n—3)!=---. Generally n
is a positive integer, but define 0! = 1. An application of the multiplication rule can
!
be used to show that P! =n-(n—1)-(n—2)---(n—r+1) = ( v
n

o

The quantity n! is read “n factorial.” Typical problems using n! include the num-
ber of ways to arrange n books, to arrange the letters in the word CLIPS (5!), etc.

Example 1.2. The formula for n! can be derived using n slots and the multipli-
cation rule. Suppose there are n distinct books to be arranged in order. The first slot
corresponds to the first book, which can be chosen in n ways. Hence an n goes in
the first slot. The second slot corresponds to the second book, which can be chosen
in n — 1 ways since there are n — 1 books remaining after the first book is selected.
Similarly, the ith slot is for the ith book after the first i — 1 books have been selected.
Since there are n — (i — 1) = n—i+ 1 books left, an n — i+ 1 goes in ith slot for
i=1,2,...,n. The formula for the number of permutations P can be derived in a
similar manner, with r slots. Hence if » people are chosen from n and made to stand
in a line, the ith slot corresponds to the ith person in line, i — 1 people have already
been chosen, so n —i+ 1 people remain for the ith slot fori=1,2,...,r.

A story problem is asking for the permutation formula if the story problem has r
slots and order is important. No object is allowed to be repeated in the arrangement.
Typical questions include how many ways are there to “to choose r people from n
and arrange in a line,” “to make r letter words with no letter repeated,” or “to make 7
digit phone numbers with no digit repeated.” Key words include order; no repeated
and different.

Notation. The symbol = below means the first three symbols are equivalent and
equal, but the fourth term is the formula used to compute the symbol. This notation
will often be used when there are several equivalent symbols that mean the same
thing. The notation will also be used for functions with subscripts if the subscript
is usually omitted, e.g., gx (x) = g(x). The symbol () is read “n choose r” and is
called a binomial coefficient.

Definition 1.8. A combination is an unordered selection using r of n distinct
objects. The number of combinations is
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Combinations are used in story problems where order is not important. Key
words include committees, selecting (e.g., four people from ten), choose, random
sample and unordered.

1.3 Conditional Probability and Independence

Definition 1.9. The conditional probability of A given B is

p(alg) = PA0B) (;‘(2)3)
it P(B) > 0.

It is often useful to think of this probability as an experiment with sample space
B instead of S.

Definition 1.10. Two events A and B are independent, written A Il B, if
P(ANB)=P(A)P(B).
If A and B are not independent, then A and B are dependent.

Definition 1.11. A collection of events Ay, ... ,A, are mutually independent if for

any subcollection A;,...,A;,,

k
P(ﬁljzlAij) e HP(A,’].).
=1

Otherwise the n events are dependent.

Theorem 1.3. Assume that P(A) > 0 and P(B) > 0. Then the two events A and
B are independent if any of the following three conditions hold:

i) P(ANB) = P(A)P(B),
ii) P(A|B) = P(A), or
iii) P(B|A) = P(B).

If any of these conditions fails to hold, then A and B are dependent.

The above theorem is useful because only one of the conditions needs to be
checked, and often one of the conditions is easier to verify than the other two condi-
tions. If P(A) = 0.5 and P(B) = 0.8, then A and B are independent iff P(ANB) =0.4.

Theorem 1.4. a) Multiplication rule: If Ay, ... Ay are events with
P(A;NAyN---NAg_1) >0, then

P(ﬂ{»{:lA,‘) = P(Al)P(A2|A1)P(A3 |A1 ﬂAz) .- -P(Ak|A1 NAyN---NAk_1).
In particular, P(ANB) = P(A)P(B|A) = P(B)P(A|B).
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b) Multiplication rule for independent events: If A1, A, ... Ay are independent, then
P(A1NAyN---NAg) = P(Ay)---P(Ax). If A and B are independent (k = 2), then
P(ANB)=P(A)P(B).

¢) Addition rule for disjoint events: If A and B are disjoint, then P(AUB) = P(A) +
P(B).IfAy,... A are pairwise disjoint, then P(UfleA,-) =P(A1UAU---UA,) =
P(A)) +---+ P(Ar) = 31 P(A)).

Example 1.3. The above rules can be used to find the probabilities of more com-
plicated events. The following probabilities are closely related to Binomial experi-
ments. Recall that for Bernoulli trials there are two outcomes called “success” and
“failure” where a “success” is the outcome that is counted. Suppose that there are
n independent identical trials, that ¥ counts the number of successes and that p =
probability of success for any given trial. Let D; denote a success in the ith trial.
Then

i) P(none of the n trials were successes) = (1 —p)"=P(Y =0) =
P(DiNDyN---NDy).
ii) P(at least one of the trials was a success) =1 — (1 —p)"=P(Y > 1) =
1—P(Y =0)=1—P(none) = P(D;NDyN---NDy).
iii) P(all n trials were successes) = p" = P(Y =n) = P(D;NDyN---NDy,).
iv) P(not all n trials were successes) =1 —p"=P(Y <n)=1-P(Y=n)=1—
P(all).
v) P(Y was at leastk ) = P(Y > k).
vi) P(Y was at most k) = P(Y < k).

If Ay, A, ... are pairwise disjoint and if U7 |A; = S, then the collection of sets
Ay,A,... 18 a partition of S. By taking A; = @ for j > k, the collection of pairwise
disjoint sets Aj,A»,...,Ag is a partition of S if Ui-‘zlAi =S.

Theorem 1.5: Law of Total Probability. If A|,A;,... A, form a partition of S
such that P(A;) > 0fori=1,...,k, then

P(B) = iP(BﬂAj) =
=1 =1

M=

P(B|A;)P(A;).

Theorem 1.6: Bayes’ Theorem. Let Aj,A,,...,A; be a partition of S such that
P(A;) >0fori=1,...,k, and let B be an event such that P(B) > 0. Then

P(B|A;)P(A;)
S5 P(BIAj)P(A))

P(Ai|B) =

Proof. Notice that P(A;|B) = P(A;NB)/P(B) and P(A; N B) = P(B|A;)P(A;).
Since B= (BNA;)U---U(BNAy) and the A; are disjoint, P(B) = 2.1;:1 P(BNAj)=
Y5 1 P(BIAj)P(4;). O

Example 1.4. There are many medical tests for rare diseases and a positive result
means that the test suggests (perhaps incorrectly) that the person has the disease.
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Suppose that a test for disease is such that if the person has the disease, then a
positive result occurs 99 % of the time. Suppose that a person without the disease
tests positive 2 % of the time. Also assume that 1 in 1,000 people screened have the
disease. If a randomly selected person tests positive, what is the probability that the
person has the disease?

Solution: Let A; denote the event that the randomly selected person has the dis-
ease and A, denote the event that the randomly selected person does not have the
disease. If B is the event that the test gives a positive result, then we want P(A;|B).
By Bayes’ theorem,

P(B|A,)P(A;) B 0.99(0.001)
(BJA1)P(A,) + P(B|A;)P(A7) ~ 0.99(0.001) +0.02(0.999)

P(A1|B) = 2

~ 0.047. Hence instead of telling the patient that she has the rare disease, the doctor
should inform the patient that she is in a high risk group and needs further testing.

Bayes’ theorem is very useful for including prior information into a statistical
method, resulting in Bayesian methods. See Chap. 11. Chapters 3—10 cover frequen-
tist methods which are based on the relative frequency interpretation of probability
discussed above Definition 1.6.

1.4 The Expected Value and Variance

Definition 1.12. A random variable Y is a real valued function with a sample space
as a domain: Y : S — R where the set of real numbers R = (—eo,00).

Definition 1.13. Let S be the sample space and let Y be a random variable. Then
the (induced) probability function for Y is Py (Y =y;) = P(Y =y;) =
Ps({s € S:Y(s) =y;}). The sample space of Y is
Sy = {yi € R : there exists an s € S with Y (s) = y;}.

Definition 1.14. The population is the entire group of objects from which we
want information. The sample is the part of the population actually examined.

Example 1.5. Suppose that 5-year survival rates of 100 lung cancer patients are
examined. Let a 1 denote the event that the ith patient died within 5 years of being
diagnosed with lung cancer, and a 0 if the patient lived. The outcomes in the sample
space S are 100-tuples (sequences of 100 digits) of the form s = 1010111---0111.
Let the random variable X (s) = the number of 1’s in the 100-tuple = the sum of
the 0’s and 1’s = the number of the 100 lung cancer patients who died within 5
years of being diagnosed with lung cancer. Then the sample space of X is Sy =
{0,1,...,100}. Notice that X (s) = 82 is easier to understand than a 100-tuple with
82 ones and 18 zeroes. Note that there are 2! outcomes in S and 101 outcomes
in Sx.
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For the following definition, F is a right continuous function if for every
real number x, limyF(y) = F(x). Also, F(e) = limy .. F(y) and F(—ec) =
limy_, o F(y).

Definition 1.15. The cumulative distribution function (cdf) of any random
variable Y is F(y) = P(Y <) for all y € R. If F(y) is a cumulative distribution
function, then F(—e0) =0, F(eo) = 1, F is a nondecreasing function and F is right
continuous.

Definition 1.16. A random variable is discrete if it can assume only a finite or
countable number of distinct values. The collection of these probabilities is the prob-
ability distribution of the discrete random variable. The probability mass func-
tion (pmf) of a discrete random variable Y is f(y) = P(Y =) for all y € R where

0< f(y) <land Zy:f(y)>0f(y) =1L

Remark 1.1. The cdf F of a discrete random variable is a step function with a
jump of height f(y) at values of y for which f(y) > 0.

Definition 1.17. A random variable Y is continuous if its distribution function
F(y) is absolutely continuous.

The notation Vy means “for all y.”

Definition 1.18. If Y is a continuous random variable, then a probability density
function (pdf) f(y) of Y is an integrable function such that

FO) = [ sy (L1)

for all y € R. If f(y) is a pdf, then f(y) is continuous except at most a countable
number of points, f(y) > 0Vy, and [*_ f(r)dr = 1.

Theorem 1.7. If Y has pdf f(y), then f(y) = din (y) = F'(y) wherever the
derivative exists (in this text the derivative will exist and be continuous except for at

most a finite number of points in any finite interval).

Theorem 1.8. i) P(a <Y <b) = F(b) — F(a).

i) If Y has pdf f(y),then Pla <Y <b)=Pla<Y <b)=Pla<Y <b)=
Pla<Y <b)= [ f(y)dy = F(b) — F(a).

iii) If ¥ has a probability mass function f(y), thenY is discrete and P(a <Y < b) =
F(b)—F(a),but P(a <Y <b) #F(b)—F(a) if f(a) > 0.

Definition 1.19. Let Y be a discrete random variable with probability mass func-
tion f(y). Then the mean or expected value of Y is

EY=E(Y)= Y »y/f0) (1.2)

y:f(y)>0
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if the sum exists when y is replaced by |y|. If g(¥) is a real valued function of Y,
then g(Y) is a random variable and

EgM)]= Y g0 f) (1.3)

y:f (v)>0

if the sum exists when g(y) is replaced by |g(y)|. If the sums are not absolutely
convergent, then E(Y) and E[g(Y)] do not exist.

Example 1.6. Common low level problem. The sample space of Y is Sy =
{y1,¥2,...,y} and a table of y; and f(y;) is given with one f(y;) omitted. Find the

omitted f(y;) by using the fact that S f(yi) = f(y1) +f(v2) + -+ f(ve) = 1.
Hence if Sy = {1,2,3} with f(1) =0.01 and f(2) = 0.1, then f(3) = 0.89. Thus
E(Y) = 0.01+2(0.1) + 3(0.89) = 2.88.

Definition 1.20. If Y has pdf f(y), then the mean or expected value of Y is

EY=E() = [ yfO)dy (14

and

E[g(Y)] = / g)f(y)dy (1.5)

—oo

provided the integrals exist when y and g(y) are replaced by |y| and |g(y)|. If the
modified integrals do not exist, then E(Y) and E[g(Y)] do not exist.

Definition 1.21. If E(Y?) exists, then the variance of a random variable Y is
VAR(Y) = Var(Y) =V Y =V(Y) = E[(Y — E(Y))?]

and the standard deviation of Y is SD(Y) = /V(Y). If E(Y?) does not exist, then
V(Y) does not exist.

The notation E(Y) = oo or V(Y) = « when the corresponding integral or sum
diverges to o can be useful. The following theorem is used over and over again,
especially to find E(Y?) = V(Y) + (E(Y))?. The theorem is valid for all random
variables that have a variance, including continuous and discrete random variables.
If Y is a Cauchy (i, o) random variable (see Chap. 10), then neither E(Y) nor V(Y)
exist.

Theorem 1.9: Short cut formula for variance.
V(Y)=E(Y?) —(E(Y)). (1.6)

If Y is a discrete random variable with sample space Sy = {y1,y2,..., v}, then

k
EY) =Y yifi) =yifOn1)+y2f (2) + -+ f (k)
-1
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k

and E[g(Y)] = Y gi)f(i) =g01)f(1) +&02)f(v2) +---+8i)f (). In
i=1

E(Y?)=y1 (1) +y2f(v2) + -+ i f ).

particular,

Also
k

V(Y) =Y 0i—EX)’fyi) =

=1
1 —E@))fO01) + 02— EX))f(2) + -+ Ok — E(Y))* £ (x)-

For a continuous random variable Y with pdf f(y), V(Y) = [~ (y — E[Y])2f(y)dy.
Often using V(Y) = E(Y?) — (E(Y))? is simpler.

Example 1.7: Common low level problem. i) Given a table of y and f(y),
find E[g(Y)] and the standard deviation ¢ = SD(Y). ii) Find f(y) from F(y). iii)
Find F(y) from f(y). iv) Given that f(y) = ¢ g(y), find ¢. v) Given the pdf f(y),
find P(a <Y < b), etc. vi) Given the pmf or pdf f(y) find E[Y], V(Y), SD(Y), and
E[g(Y)]. The functions g(y) =y, g(y) = ¥*, and g(y) = " are especially common.

Theorem 1.10. Let a and b be any constants and assume all relevant expectations
exist.

i) E(a) =

ii) E(aY—l—b)-aE( ) +b.

iii) E(aX +bY) = aE(X) +DE(Y).
iv) V(a¥Y +b) = a®V(Y).

Definition 1.22. The moment generating function (mgf) of a random variable
Yis

m(t) = E[e'Y] (1.7)

if the expectation exists for 7 in some neighborhood of 0. Otherwise, the mgf does

not exist. If ¥ is discrete, then m(t) = ¥, e” f(y), and if Y is continuous, then m(t) =

Jou eV (v)dy

Definition 1.23. The characteristic function of a random variable Y is c(r) =
E[e"], where the complex number i = /—1.

Moment generating functions do not necessarily exist in a neighborhood of zero,
but a characteristic function always exists. This text does not require much knowl-
edge of theory of complex variables, but know that i = —1, i* = —i and i* = 1.
Hence i* 3 =, i* 2= —1,* 1= —jand i* = 1 for k = 1,2,3,.... To compute
the characteristic function, the following result will be used.

Proposition 1.11. Suppose that Y is a random variable with an mgf m(t) that
exists for |¢| < b for some constant 5 > 0. Then the characteristic function of Y is

c(t) = m(it).
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Definition 1.24. Random variables X and Y are identically distributed, written
X ~YorY ~ Fy, if Fx(y) = Fy(y) for all real y.

Proposition 1.12. Let X and Y be random variables. Then X and Y are identically
distributed, X ~ Y, if any of the following conditions hold.

a) Fx(y) = Fy(y) forall y,

b) fx (y) = fr(y) forall y,
¢) cx(t) = cy(¢) forall ¢ or
d) mx () = my () for all ¢ in a neighborhood of zero.

Definition 1.25. For positive integers k, the kth moment of Y is E[Y*] while the
kth central moment is E[(Y — E[Y])].

Theorem 1.13. Suppose that the mgf m(r) exists for || < b for some constant
b > 0, and suppose that the kth derivative m(¥) () exists for |t| < b. Then E[Y*] =

m®)(0) for positive integers k. In particular, E[Y] = m'(0) and E[Y2] = m" (0).

Notation. The natural logarithm of y is log(y) = In(y). If another base is wanted,
it will be given, e.g., log;o(y).

Example 1.8. Common problem. Let i(y), g(y), n(y), and d(y) be functions.
Review how to find the derivative g’(y) of g(y) and how to find the kth derivative

k
®(y) = ;—ykg(y)

for integers k > 2. Recall that the product rule is

(h(y)g()) =H (y)g(y) +h(y)g'(y).

The quotient rule is

The chain rule is
[h(g))]" = [1' (g))]lg' )]-

Know the derivative of log(y) and ¢” and know the chain rule with these functions.
Know the derivative of y*.

Then given the mgf m(t), find E[Y] = m'(0), E[Y?] =m"(0) and V(Y) = E[Y?] —
(E[Y]))*.

Definition 1.26. Let f(y) = fy(v|@) be the pdf or pmf of a random variable Y.
Then the set %y = {y|fy(y|0) > 0} is called the sample space or support of Y. Let
the set © be the set of parameter values @ of interest. Then O is the parameter
space of Y. Use the notation %" = {y|f(y|@) > 0} if the support does not depend
on 6. So % is the support of Y if % =% V0 € O.
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Definition 1.27. The indicator function I4(x) = I(x € A) =1 if x € A and
Ia(x) = 0, otherwise. Sometimes an indicator function such as Iy .., (y) will be de-
noted by I(y > 0).

Example 1.9. Often equations for functions such as the pmf, pdf, or cdf are given
only on the support (or on the support plus points on the boundary of the support).
For example, suppose

70)=rr =) = ()p1- )t

fory=0,1,...,k where 0 < p < 1. Then the support of Y is % = {0, 1,...,k}, the
parameter space is @ = (0, 1) and f(y) = 0 for y not € %/. Similarly, if f(y) = 1 and
F(y) =y for 0 <y <1, then the support % = [0,1], f(y) =0fory<0andy > 1,
F(y)=0fory<Oand F(y)=1fory> 1.

Since the pmf and cdf are defined for all y € R = (—oo,0) and the pdf is defined
for all but countably many y, it may be better to use indicator functions when giving
the formula for f(y). For example,

f)=1u0<y<l)

is defined for all y € R.

1.5 The Kernel Method

Notation. Notation such as E(Y|0) = Eg(Y) or fy(y|0) is used to indicate that the
formula for the expected value or pdf are for a family of distributions indexed by
0 € O. A major goal of parametric inference is to collect data and estimate 6 from
the data.

Example 1.10. If Y ~ N(u,06?),
distributions with 6 = (u,0) €
E[Y|(t,0)] = p and V(Y (1.
bers.

The kernel method is a widely used technique for finding E[g(Y)].

then Y is a member of the normal family of
= {(u,c)| —oo < U < oo and o > 0}. Then
0)) = o2. This family has uncountably many mem-

Definition 1.28. Let fy(y) be the pdf or pmf of a random variable ¥ and suppose
that fy (y|@) = c(0)k(y|@). Then k(y|0) > 0 is the kernel of fy and ¢(8) > 0 is the
constant term that makes fy sum or integrate to one. Thus [*_k(y|0)dy = 1/c(0)

or S, K(y16) = 1/¢(0).

Often E[g(Y)] is found using “tricks” tailored for a specific distribution. The
word “kernel” means “essential part.” Notice that if fy(y) is a pdf, then E[g(Y)] =
I5.e()f(y0)dy = [ g(y)f(y]0)dy. Suppose that after algebra, it is found that

Elg(r)] =ac(8) [ _k(ir)dy
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for some constant a where T € © and O is the parameter space. Then the kernel
method says that

Elg(Y)] :ac(f))/i%k(yh)dy: ac(6) /:c(r)k(yh)dy: acc(-([0))'

Similarly, if fy(y) is a pmf, then
Eg¥)= 3 s0)f0l0)= 3 s0)f(o),

yif(y)>0 yew

where % = {y: fy (y) > 0} is the support of Y. Suppose that after algebra, it is found
that

E[g(Y)]=ac(0) Y, k(y[7)
yev

for some constant a, where T € ©. Then the kernel method says that

e c(r) :ac(0) o(z . :ac(0)
—_———

The kernel method is often useful for finding E[g(Y)], especially if g(y) =y,
g(y) =y? or g(y) = €. The kernel method is often easier than memorizing a trick
specific to a distribution because the kernel method uses the same trick for every
distribution: ¥ f(y) = 1 and [,y f(v)dy = 1. Of course sometimes tricks are
needed to get the kernel f(y|t) from g(y)f(y|@). For example, complete the square
for the normal (Gaussian) kernel.

Example 1.11. To use the kernel method to find the mgf of a gamma (v, A) dis-
tribution, refer to Chap. 10 and note that

oo —1,—y/A 1 oo 1
— 1Yy zyyv € — / v—1 _ —
m(t) =E(e'") /0 e T dy 2T Jo y' " exp [ y <)L t)] dy.

The integrand is the kernel of a gamma (v, 1) distribution with

1 1—At A

1
n A p) 1— At

Now

oo 1
v—1 7y/l = =AY
/0 yoe Y dy ) AT (v).
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Hence
m@*zf%ESA f”emkmmwyzd“A%OLw:
| ) n\v o\
m” rv)= (I) - <1—M>
fort <1/A.

Example 1.12. The zeta(v) distribution has probability mass function

f()’):P(Y:y):Wa

where v > 1 and y = 1,2,3,.... Here the zeta function

for v > 1. Hence

if v > 2. Similarly

ok L
P N B Ut ))
"tV LT T T
— ———

I=sum of zeta(v—k) pmf

ifv—k>1orv >k+1.Thusif v >3, then

ﬁV—%_[ﬁV—Ur
&(v) cv) |-

Example 1.13. The generalized gamma distribution has pdf

ov—1
10) = Foepry S0(*/2°).

V(¥) = E(r?) — [E(Y)] =
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where v, 4, ¢ and y are positive, and

AT (v +

<=
~—

E(Y" = if k>—¢v.

To prove this result using the kernel method, note that

(% dv+k—1
B0 = [ B enpl o 40y = [ B exp(y? /i)y

This integrand looks much like a generalized gamma pdf with parameters v, A, and
¢, where v, = v+ (k/¢) since

oo ¢y¢(v+k/¢)71

E(Y%) = AT exp(

—y?/2%)dy

Multiply the integrand by
AT (v +

AKC(v+%)

=
~—

1=

to get

A"F( ky Pyd(vHk/9)-1

k ¢ v/
E(r") = TRy 3 5) P AN

Then the result follows since the integral of a generalized gamma pdf with parame-
ters Vi, A, and ¢ over its support is 1. Notice that vy > 0 implies k > —¢V.

1.6 Mixture Distributions

Mixture distributions are often used as outlier models. The following two definitions
and proposition are useful for finding the mean and variance of a mixture distribu-
tion. Parts a) and b) of Proposition 1.14 below show that the definition of expectation
given in Definition 1.30 is the same as the usual definition for expectation if Y is a
discrete or continuous random variable.

Definition 1.29. The distribution of a random variable Y is a mixture distribution
if the cdf of Y has the form

k
Fy(y) = Y, aiFw,(y) (1.8)
i=1

where 0 < o; < 1, 25'{:1 o;=1,k>2,and Fy, (y) is the cdf of a continuous or discrete
random variable W;, i =1,... k.
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Definition 1.30. Let ¥ be a random variable with cdf F(y). Let & be a function
such that the expected value E[h(Y )] exists. Then

EnY)) = [ h)aF(). (19)

Proposition 1.14. Assume all expectations exist. a) If ¥ is a discrete random
variable that has a pmf f(y) with support %, then

EW) = [ hOWF) = 3, b)),

ye&

b) If Y is a continuous random variable that has a pdf f(y), then

EWW) = [ h0)aF) = [ ho)fe)dy

¢)If Y is a random variable that has a mixture distribution with cdf Fy(y) =
> | 0;F,(y), then

0o k
B = [ hO)dF ) = 3, ok (W)

where Ew,[h(W;)] = [ h(y)dFw,(y)-

Example 1.14. Proposition 1.14c implies that the pmf or pdf of W; is used to
compute Ew,[h(W;)]. As an example, suppose the cdf of Y is F(y) = (1 —€)®(y) +
eD(y/k), where 0 < € < 1 and ®(y) is the cdf of W; ~ N(0,1). Then ®(x/k) is the
cdf of Wy ~ N(0,k?). To find E[Y], use h(y) = y. Then

E[Y]=(1—¢e)EW|]+eE[W,]=(1—¢€)0+€0=0.
To find E[Y?], use h(y) = y*. Then
E[Y? = (1 —¢)E[W2|+€EW}] = (1—¢e)l+ek> =1—¢e+ ek’

Thus VAR(Y) = E[Y?] — (E[Y])? =1 —¢&+¢ek>.If ¢ =0.1 and k = 10, then EY =0,
and VAR(Y) = 10.9.

Remark 1.2. Warning: Mixture distributions and linear combinations of ran-
dom variables are very different quantities. As an example, let

W =(1—&)W, +eWs,

where €, Wi, and W, are as in the previous example and suppose that W; and W, are
independent. Then W, a linear combination of W| and W, has a normal distribution
with mean

E[W]=(1—¢)E[W)|+€E[W,] =0
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and variance
VAR(W) = (1 —£)’VAR(W,) + ?VAR(W>) = (1 — &)* + %> < VAR(Y)

where Y is given in the example above. Moreover, W has a unimodal normal dis-
tribution while ¥ does not follow a normal distribution. In fact, if W; ~ N(0, 1),
W, ~N(10,1), and W; and W; are independent, then (W, +W,)/2 ~ N(5,0.5); how-
ever, if Y has a mixture distribution with cdf

Fy(y) = 0.5Fw, (y) +0.5Fw,(y) = 0.5®(y) +0.5®(y — 10),

then the pdf of Y is bimodal. See Fig. 1.1.

Remark 1.3. a) If all of the W; are continuous random variables, then the pdf of
Y is fr(y) = 35, 0ufw. (), where fiy,(y) is the pdf corresponding to the random
variable W;.

This result can be proved by taking the derivative of both sides of Eq. (1.8).
b) If all of the W; are discrete random variables, then the pmf of ¥ is fy(y) =
>k 0ifw;(y), where fiy: (v) is the pmf corresponding to the random variable W;.

This result can be proved using Proposition 1.14c and the indicator function
hx)=I(y=x)=1if y=x and h(x) = I(y =x) = 0 if y # x. Then f(x) =
P(Y =x) =E[h(Y)] =3, oiEw. [n(W;)] = X, 0 fw (x). Replace the dummy vari-
able x by y to get the result.

a N(50.5)PDF b PDF of Mixture
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y
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< 01

Fig. 1.1 PDF f of (W, +W5)/2 and f = 0.5f1(y) +0.5£2(y)

Assume that all expectations exist. If each W; is continuous, then by Remark 1.3
a), E[h(Y)] = [T h() fy (0)dy = [T h(y) [SE 0ifw, (v)] dy =
SE ol [T hO) fw (v)dY] = XX, 0uEw [h(W;)]. If each W; is discrete, then by Re-
mark 1.3b), E[A(Y)] = 3, h(0)fr (v) = 2z & [£,h0) fn, ()] = iy 0w [A(W:)],
where the sum ¥, can be taken over all y such that at least one of fy;(y) > 0 for
i=1,... k.
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1.7 Summary

Referring to Chap. 10, memorize the pmf or pdf f, E(Y) and V(Y) for the fol-
lowing 10 random variables. You should recognize the mgf of the binomial, )5,%,
exponential, gamma, normal and Poisson distributions. You should recognize
the cdf of the exponential, normal and uniform distributions. The Gamma func-
tion I'(x) is defined in Definition 10.3.

1) beta(d,V)

_T6+v) 50, v
) T ) (1-y)
where 6 >0,v>0and0<y<I1.
é
Er) = o+v’
ov
VARY) = GG rvED);
2) Bernoulli(p) = binomial(k = 1,p) f(y) =p*(1—p)' = fory=0,1.

E(Y)=p.
VAR(Y) =p(1 —p).
m(t) =[(1-p)+pe].

3) binomial(k, p)
k\
fy) = (y) p’(1—p)

fory=0,1,....,kwhere 0 < p < 1.
E(Y)=kp.
VAR(Y) =kp(1—p).

4) Cauchy(u,o)

y—p\?
o [1 + (T) }
where y and u are real numbers and ¢ > 0.

E(Y) = o = VAR(Y).
5) chi-square(p) = gamma(v = p/2,A =2)

L1 Y
yz e 2

f) = 2T (D)

[SS}

where y > 0 and p is a positive integer.
E(Y)=p.
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VAR(Y) = 2p.
1 p/2
= = (1—=21)P/2
m(t) <1 _2t) (1—2¢)
forr < 1/2.
6) exponential(A)=gamma(v = 1,1)

)= e (-3) 1620)

where A > 0.
E(Y)=A,
VAR(Y) = A2,

forr <1/A.

7) gamma(v,A)

B yvflefy//l
where v, A, and y are positive.
E(Y)=VA.
VAR(Y) = vAZ.

1 \4
mit) = <1 —)Lt>
forr <1/A.
8) N(u,0%)

where 0 > 0 and u and y are real.
E(Y)=u.VAR(Y) = 2.

m(t) = exp(tu +1>0%/2).

F(y)=® <y_T“) .

e 90y

y!

9) Poisson(8)

fy) =

fory=20,1,..., where 8 > 0.
E(Y) =06 =VAR(Y).

m(t) = exp(0(e —1)).



20 1 Probability and Expectations

10) uniform(6y, 6,)

1
1(91 <y< 92)

fy) = 60, (O =y=

F(y)=(y—61)/(6:—6,) for 6; <y < 6,.
E(Y) = (61 + 62)/2.
VAR(Y) = (6, — 61)%/12.

From an introductory course in statistics, the terms sample space S, events, dis-
joint, partition, probability function, sampling with and without replacement, condi-
tional probability, Bayes’ theorem, mutually independent events, random variable,
cdf, continuous random variable, discrete random variable, identically distributed,
pmf, and pdf are important.

I) Be able to find E[g(Y)], especially E(Y) = m'(0), E(Y?) = m"(0), V(Y) =
E(Y?)—[E(Y)]? and the mgf m(t) = my(t) = E[¢'].

) Let fy(y|0) = c(0)k(y|0) where k(y|0) is the kernel of fy. Thus [*_k(y|6)dy
= 1/c(8@). The kernel method is useful for finding E[g(Y)] if E[g(Y)] =

o 1= ac(d)
k == —_— k =
ac(t) [ _kofepy =ac®) s [ crtmay =73
for some constant a. Replace the integral by a sum for a discrete distribution.
III) If the cdf of X is Fx(x) = (1 —&)Fz(x) + €Fy(x) where 0 < € < 1 and F7 and
Fyy are cdfs, then E[g(X)] = (1 —€)E[g(Z)] +€E[g(W)]. In particular, E (X?) =
(1 - e)E[Z])+eEW?] = (1 - £)[V(2) + (E[Z])’] +e[V(W) + (E[W])?].

1.8 Complements

Kolmogorov’s definition of a probability function makes a probability function a
normed measure. Hence many of the tools of measure theory can be used for proba-
bility theory. See, for example, Ash and Doleans-Dade (1999), Billingsley (1995),
Dudley (2002), Durrett (1995), Feller (1971), and Resnick (1999). Feller (1957) and
Tucker (1984) are good references for combinatorics.

1.9 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL. Refer to
Chap. 10 for the pdf or pmf of the distributions in the problems below.

1.1%. Consider the Binomial(k, p) distribution.

a) FindEY.
b) Find Var Y.
¢) Find the mgf m(t).
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1.2*. Consider the Poisson(0) distribution.

a) FindEY.
b) Find Var Y. (Hint: Use the kernel method to find EY (Y —1).)
¢) Find the mgf m(t).

1.3*. Consider the Gamma(v, A) distribution.

a) FindEY.
b) Find VarY.
¢) Find the mgf m(¢).
1.4*. Consider the Normal(u, 62) (or Gaussian) distribution.

a) Find the mgf m(¢). (Hint: complete the square to get a Gaussian kernel.)
b) Use the mgfto find EY.
c) Use the mgfto find Var Y.

1.5*. Consider the Uniform(6;, 6,) distribution.

a) FindEY.
b) Find Var Y.
¢) Find the mgf m(¢).

1.6*. Consider the Beta(6, v) distribution.

a) FindEY.
b) Find Var Y.

1.7*. See Mukhopadhyay (2000, p. 39). Recall integrals by u-substitution:
b . g(b) d
1= [ fletng = [ fwdu= [ pu)du—
Ja Jg(a) c

F(u)? = F(d) = F(c) = F(w)|50) = F(g(x)) |’ = F(g(b)) - F(3(a))

where F'(x) = f(x), u=g(x), du = g’ (x)dx, d = g(b), and c = g(a).

This problem uses the Gamma function and u-substitution to show that the nor-
mal density integrates to 1 (usually shown with polar coordinates). When you per-
form the u-substitution, make sure you say what u = g(x), du = g’ (x)dx, d = g(b),
and ¢ = g(a) are.

a) Let f(x) be the pdf of a N(u, ) random variable. Perform u-substitution on

I:/:Qf(x)dx

withu = (x—p)/o.
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b) Break the result into two parts,

1 0 2 1 o 2
I:—/ e*”/zdu—l-—/ e 2qdu.
V2T J—eo v2mJo

Then perform u-substitution on the first integral with v = —u.
¢) Since the two integrals are now equal,

251
V2 vy,

2 00
y— e
\/27‘[/() %

/24y —

2 00
I:—/e
V2r Jo

Perform u-substitution with w = 12 /2.
d) Using the Gamma function, show that I =T"(1/2)/v/7m = 1.

1.8. Let X be a N(0,1) (standard normal) random variable. Use integration by
parts to show that EX? = 1. Recall that integration by parts is used to evaluate
[ f(x)g'(x)dx = [udv = uv — [vdu where u = f(x), dv = g'(x)dx, du = f'(x)dx,
and v = g(x). When you do the integration, clearly state what these four terms are
(e.g., u =Xx).

1.9. Verify the formula for the cdf F for the following distributions. That is,
either show that F'(y) = f(y) or show that [”_ f(t)dt = F(y) ¥y € R.

a) Cauchy (u,0).

b) Double exponential (6,1).
¢) Exponential (1).

d) Logistic (u,0).

e) Pareto (0,1).

f) Power (1).

) Uniform (6, 6,).

h) Weibull W (¢, 1).

1.10. Verify the formula for the expected value E(Y) for the following
distributions.

a) Double exponential (6,1).

b) Exponential (1).

¢) Logistic (i, o). (Hint from and deCani and Stine (1986): Let Y = [u + cW] so
E(Y)=u+oE(W) where W ~ L(0,1). Hence

EWw)= ./Zyﬁdy'

Use substitution with .
e

u= 1+gy'

Then |
E(W*) = /O log(u) — log(1 — u)]*du.
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Also use the fact that
limvlog(v) =0
v—0

to show E(W) =
d) Lognormal (u,c
e) Pareto (0,1).
f) Weibull (¢, 1).

0.)
2).

1.11. Verify the formula for the variance VAR (Y ) for the following distributions.

a) Double exponential (6,1).

b) Exponential (1).

¢) Logistic (i,0). (Hint from deCani and Stine (1986): Let ¥ = [u + 0X] so
V(Y) = 62V(X) = 62E(X?) where X ~ L(0, 1). Hence

oo

E(X2)=./7wy2

e

———=dy.
e

Use substitution with y
e

14e

A V—

Then '
E(X?) = /0 [log(v) —log(1 —v)]*dv.

Let w = log(v) —log(1 —v) and du = [log(v) —log(1 —v)]dv. Then

1 1
E(X?) = / wdu = uwl} —/ udw.
0 0

Now
uwld = [vlog(v) + (1 —v)log(1 —v)] w|d =0
since
limvlog(v) = 0.
v—0
Now
1 1 1] 1—
- / udw = —/ log(v) ;,, / log(1=v) 1 _2n2/6 = w23
Jo o 1—v Jo v
using

/01 log(v) . _ /01 log(1—v) ;. —n/6.)

v
d) Lognormal (i, o).

e) Pareto (0,1).

f) Weibull (¢, 1).
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Problems from old quizzes and exams.

1.12. Suppose the random variable X has cdf Fy (x) = 0.9 @(x—10)+0.1 Fy (x),
where @(x — 10) is the cdf of a normal N(10,1) random variable with mean
10 and variance 1 and Fy (x) is the cdf of the random variable W that satisfies
P(W = 200) = 1.

a) Find EW.
b) Find E X.

1.13. Suppose the random variable X has cdf Fx(x) = 0.9 Fz(x) +0.1 Fy(x),
where Fz is the cdf of a gamma(a = 10,3 = 1) random variable with mean 10
and variance 10 and Fy(x) is the cdf of the random variable W that satisfies
P(W =400) = 1.

a) Find EW.
b) Find E X.

1.14. Suppose the cdf Fx(x) = (1 — €)Fz(x) + eFy(x), where 0 < & < 1, Fz is
the cdf of a random variable Z, and Fy is the cdf of a random variable W. Then
E g(X)=(1—¢)Ez g(Z)+€Ew g(W), where Ez g(Z) means that the expectation
should be computed using the pmf or pdf of Z. Suppose the random variable X has
cdf Fx(x) = 0.9 Fz(x) +0.1 Fy (x), where Fy is the cdf of a gamma(a =20, = 1)
random variable with mean 20 and variance 20 and Fy (x) is the cdf of the random
variable W that satisfies P(W = 400) = 1.

a) Find EW.
b) Find E X.

1.15.Let A and B be positive integers. A hypergeometric random variable
X =W +W,+---+W,, where the random variables W; are identically distributed
random variables with P(W; = 1) =A/(A+ B) and P(W; =0) = B/(A +B).

a) Find E(W)).
b) Find E(X).
1.16. Suppose P(X = x,) = 1 for some constant x,.

a) Find E g(X) in terms of x,.

b) Find the moment generating function m(t) of X.
n
¢) Find m" (1) = %m(z‘) (Hint: find m" (¢) for n = 1,2, and 3. Then the pattern
should be apparent.)

1.17. Suppose P(X = 1) = 0.5 and P(X = —1) = 0.5. Find the moment gener-
ating function of X.

1.18. Suppose that X is a discrete random variable with pmf f(x) = P(X = x)

n
forx=0,1,...,n so that the moment generating function of X is m(t) = Y ¢ f(x).
x=0
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a) Find —m(t) m(t).

b) Find m (0)

c) Find m"(¢) =

d) Find m"(0).

e) Find m® (1) = Wm(t) (Hint: you found m®) () for k = 1,2, and the pattern
should be apparent.)

d
Z2m)-

k

1.19. Suppose that the random variable W = X, where X ~ N(u,c?). Find
E(W") = E[(e*)"] by recognizing the relationship of E[(e*)"] with the moment gen-
erating function of a normal(u, 6%) random variable.

1.20. Let X ~ N(u,06?) so that EX = p and Var X = o2.

a) Find E(X?).
b) If k > 2 is an integer, then E(X*) = (k—1)02E(X*?) + uE(X*" ). Use this
recursion relationship to find E (X3).

1.21%. Let X ~ gamma(v A). Using the kernel method, find EX” where r > —v.

1.22. Flnd/ exp( ——y 2)dy.
(Hint: the integrand is a Gaussian kernel.)

1.23. Let X have a Pareto (0,4 = 1/6) pdf

0 0
@) = gy

where x > ¢, 6 > 0 and 6 > 0. Using the kernel method, find EX” where 6 > r.
1.24. Let Y ~ beta (8, V). Using the kernel method, find EY" where r > —0.
1.25. Use the kernel method to find the mgf of the logarithmic (6) distribution.
1.26. Suppose that X has pdf

forx € 2" and for —eo < 0 < oo where A(60) is some positive function of 6 and h(x)
is some nonnegative function of x. Find the moment generating function of X using
the kernel method. Your final answer should be written in terms of A, 0, and ¢.

1.27. Use the kernel method to find E(Y”) for the chi (p, o) distribution.

1.28. Suppose the cdf Fx(x) = (1 — €)Fz(x) + €Fy(x), where 0 < & < 1, Fz is
the cdf of a random variable Z, and Fy is the cdf of a random variable W. Then
E g(X)=(1—-¢)Ez g(Z)+ €Ew g(W), where Ez g(Z) means that the expectation
should be computed using the pmf or pdf of Z.
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Suppose the random variable X has cdf Fx(x) = 0.9 Fz(x) +0.1 Fy(x), where
Fy is the cdf of a gamma (v = 3,1 = 4) random variable and Fy (x) is the cdf of a
Poisson (10) random variable.

a) Find E X.
b) Find E X2.

1.29. If Y has an exponential distribution truncated at 1, Y ~ TEXP(6,1), then
the pdf of Y is

0 4
fy) = 1o 6¢ Y
for 0 <y < 1, where 6 > 0. Find the mgf of Y using the kernel method.
1.30. Following Morris (1982), let

cos(0)

2 cosh(my/2) exp(6y)

1)

where y is real and |6| < /2. Find the mgf of ¥ using the kernel method.

1.31. If Y has a log-gamma distribution, the pdf of ¥ is

fy) = ﬁexp <Vy+ <7) ey)

where y is real, v > 0, and A > 0. Find the mgf of ¥ using the kernel method.

1.32. If Y has an inverted gamma distribution, ¥ ~ INVG(v,A), then the pdf of
Yis
1 1 —-11
S — 0)— =
fo) VI (v>0)7 exp ( T y)

where A4, v, and y are all positive. Using the kernel method, show

o T(v—r)
EUO=7r)
forv >r.

1.33. If Y has a zero truncated Poisson distribution, ¥ ~ ZT P(6), then the pmf
of Y is

e %o
fy) = =)y

fory=1,2,3,..., where 6 > 0. Find the mgf of Y using the kernel method.

1.34. If Y has a Zipf distribution, Y ~ Zipf(v), then the pmf of Y is
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where y € {1,...,m} and m is known, v is real and
21
Z(V) = 2 T
y=1Y

Using the kernel method, show

for real r.

1.35. If Y has a Lindley distribution, then the pdf of Y is
2
T 1+6

fo) (1+y)e®

where y > 0 and 8 > 0. Using the kernel method, find the mgf of Y.

1.36. The Lindley distribution has cdf Fy(y) = (1 — €)Fz(y) + €Fw(y), where
e=0/(14+86), 6 >0, Fz is the cdf of a gamma (v = 2,4 = 1/6) random vari-
able Z, and Fyy is the cdf of an EXP(1/6) random variable W. Then E g(¥) =
(1 —€)Ez g(Z)+ eEw g(W), where Ez g(Z) means that the expectation should be
computed using the pmf or pdf of Z.

a) FindEY.
b) Find E Y2.

1.37. According to and Consonni and Veronese (1992), if Y is a random variable
with pdf
2

fy) = 26 exp(0y)

where —oo <y <ooand —1 < 0 < 1, then Y is a one-parameter regular exponential
family with an mgf that can be found using the kernel method.

a) Assuming f(y) is a pdf, find the mgf of ¥ using the kernel method.
b) Show that f(y) is not a pdf by showing [*_ f(y)dy # 1.
(Problem 1.30 may have the correct pdf.)



Chapter 2
Multivariate Distributions and Transformations

This chapter continues the review of some tools from probability that are useful for
statistics, and most of the material in Sects. 2.1-2.3, 2.5, and 2.6 should be familiar
to the reader. The material on elliptically contoured distributions in Sect.2.10 may
be omitted when first reading this chapter.

2.1 Joint, Marginal, and Conditional Distributions

Often there are n random variables Y7, ..., Y, that are of interest. For example, age,
blood pressure, weight, gender, and cholesterol level might be some of the random
variables of interest for patients suffering from heart disease.

Notation. Let R” be the n-dimensional Euclidean space. Then the vector y =
(¥1,--.,yn) € R"if y; is an arbitrary real number fori = 1,...,n.

Definition 2.1. If Y;,...,Y, are discrete random variables, then the joint pmf
(probability mass function) of Yy,...,Y, is

FO1-yn) =P =y1,.... Y = ya) 2.1

for any (y1,...,y,) € R". A joint pmf f satisfies f(y) = f(v1,...,9n) >0 Vy € R"
and

zz f(ylvvyﬂ)zl
y:f(y) >0

For any event A € R",

P[(11,....Ya) €Al = PIEEDY FO1, -, m)-
y:y€Aand f(y) >0

Definition 2.2. The joint cdf (cumulative distribution function) of Y1,...,Y, is

F(yi,yeoosym) =P <yi1,..., Yy < yp) forany (yq,...,y,) € R

DJ. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4_2, 29
© Springer International Publishing Switzerland 2014
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Definition 2.3. If Y}, ..., Y, are continuous random variables, then the joint pdf
(probability density function) of Yy,...,Y, is a function f(yi,...,y,) that satisfies
F(1y-oosyn) =2 - 2L f(t1,...,t,)d1y - - - dt,, where the y; are any real numbers.
A joint pdf f satisfies f(y) = f(y1,...,yn) >0 Vy € R" and
S [T f(tr,. .. ty)dty - - dt, = 1. For any event A € R”,

Pl(Y1,....Yn) €Al = [--- [ f(t1,...,tn)dt - - dty.
A

Definition 2.4. If Y1,....,Y, has a joint pdf or pmf f, then the sample space or
supportof Yy,..., Y, is

Y ={(1,-..,9m) ER": f(y1,...,yn) >0}
If Y comes from a family of distributions f(y|@) for 8 € O, then the support %y =
{y:f(y|0) >0} may depend on 6.

Theorem 2.1. Let Yj,...,Y, have joint cdf F(yi,...,y,) and joint pdf
fO1,.-.,yn). Then

an

S— T T
Sy ay,t O )

f(ylu"'7yn):

wherever the partial derivative exists.

Definition 2.5. The marginal pmf of any subset Y;;,...,Yj of the coordinates

(Y1,...,Y,) is found by summing the joint pmf over all possible values of the other
coordinates where the values y;i,...,y; are held fixed. For example,
le,...- )’17 'ayk 2 Zf Vi, - 'ay}’l
Yi+1 Yn
where yy, ...,y are held fixed. In particular, if ¥; and Y, are discrete random vari-
ables with joint pmf f(y;,y2), then the marginal pmf for ¥; is
ACOED WY (2.2)
2

where y; is held fixed. The marginal pmf for Y, is

T, (02) =Y f(1,y2) (23)

V1

where y; is held fixed.

Remark 2.1. For n = 2, double integrals are used to find marginal pdfs (defined
below) and to show that the joint pdf integrates to 1. If the region of integration
Q is bounded on top by the function y, = ¢r(y;), on the bottom by the func-
tion y, = ¢p(y1) and to the left and right by the lines y; = a and y, = b, then

[ o fOn,y2)dyidys = [ [o f(v1,y2)dy2dyr =
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b ror(y)
/ [/ f(Yhyz)dyz} dyy.
a |J/op(y1)

Within the inner integral, treat y, as the variable, anything else, including yi, is
treated as a constant.

If the region of integration €2 is bounded on the left by the function y; = yz.(y2),
on the right by the function y; = Wg(y2) and to the top and bottom by the lines

ya=candy, =d,then [ [, f(y1,y2)dyidy: = [ [q f(V1,y2)dy2dy, =

d Wr(y2)
/ [/ FO1,y2)dyr | dys.

vL(y2)

Within the inner integral, treat y; as the variable, anything else, including y;, is
treated as a constant. See Example 2.3.

Definition 2.6. The marginal pdf of any subset Y;;,...,Yy of the coordinates
(Y1,...,Y,) is found by integrating the joint pdf over all possible values of the other
coordinates where the values y;i, ..., y; are held fixed. For example, f(yi,...,vx) =
S [T f(y . ty)dty - - - dty, Where Yy, ...,y are held fixed. In particular, if
Y and ¥, are continuous random variables with joint pdf f(y;,y), then the marginal
pdf for Y is

oo or(y1)
fr (1) :/mf(mvm)dyz :/ fi,y2)dyz (2.4)

5(y1

where y; is held fixed (to get the region of integration, draw a line parallel to the
y2 axis, and use the functions y, = @¢p(y;) and y, = ¢r(y;) as the lower and upper
limits of integration). The marginal pdf for ¥> is

=3

Vr(y2)
f()’la)’Z)d)’l:/ . FO1y2)dn (2.5)

VL2

o (32) = /

—oo

where y, is held fixed (to get the region of integration, draw a line parallel to the
y1 axis, and use the functions y; = yi.(y2) and y; = wg(y2) as the lower and upper
limits of integration).

Definition 2.7. The conditional pmf of any subset Yjj, ..., Yy of the coordinates
(Y1,...,Y,) is found by dividing the joint pmf by the marginal pmf of the remaining
coordinates assuming that the values of the remaining coordinates are fixed and that
the denominator > 0. For example,

f(yla"'vyn)

f()’h---v)’kb’k Ly--yY ):
* " f(ykJrlu"'ayVl)

if f(Vks1,---,¥n) > 0. In particular, the conditional pmf of ¥; given ¥» = y; is a
function of y; and
Fi,y2)

_ === 2.6
le [Ya=y, (yl |y2) sz (yZ) ( )
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if fy,(y2) > 0, and the conditional pmf of ¥, given ¥ =y, is a function of y, and

fO1y2)

2.7
fri (1) @7

sz\YI:yl (y2|yl) =

if fy, (1) > 0.

Definition 2.8. The conditional pdf of any subset ¥j;,...,Y; of the coordinates
(Y1,...,Y,) is found by dividing the joint pdf by the marginal pdf of the remaining
coordinates assuming that the values of the remaining coordinates are fixed and that
the denominator > 0. For example,

f(yla"'vyn)

f()’h---v)’kb’k Ly--yY ):
* " f(ykJrlu"'ayVl)

if f(Vk+1,---,¥n) > 0. In particular, the conditional pdf of ¥; given ¥, =y, is a
function of y; and

Fi,y2)
_ == (2.8)
fY]\Yz yz(y1|y2) sz (yZ)
if fy,(y2) > 0, and the conditional pdf of ¥, given ¥; =y is a function of y, and
Fi,y2)
_ == (2.9)
sz\Yl yl(y2|yl) le ()’1)

if fy, (y1) > 0.

Example 2.1. Common Problem. If the joint pmf f(y;,y2) =
P(Y; =y1,Y2 = y;) is given by a table, then the function f(y;,y,) is a joint pmf if
fO1,y2) >0, Vy1,y; and if

Y fOy2) =1.

r152):f(1,52)>0

The marginal pmfs are found from the row sums and column sums using Def-
inition 2.5, and the conditional pmfs are found with the formulas given in
Definition 2.7. See Example 2.6b and 2.6f.

Example 2.2. Common Problem. Given the joint pdf f(y;,y2) = kg(y1,y2) on
its support, find k, find the marginal pdfs fy, (y1) and fy, (y2), and find the conditional
pdfs fy, [Ya=y, (v1]y2) and sz\Yl =y (v2[y1). Also,

P(a; <Y) <bj,ap <Y, <by) = fabf fabll f(1,y2)dy1dys.

Tips: Often using symmetry helps.

The support of the marginal pdf does not depend on the second variable.

The support of the conditional pdf can depend on the second variable. For
example, the support of fy,|y,—,, (v1[y2) could have the form 0 < y; <y».
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The support of continuous random variables ¥; and Y, is the region where
f(y1,y2) > 0. The support is generally given by one to three inequalities such as
0<y1<1,0<y, <1,and 0 <y; <y < 1. For each variable, set the inequali-
ties to equalities to get boundary lines. For example 0 < y; <y, <1 yields 5 lines:
y1 =0,y1 =1,y =0,y =1, and y, = y;. Generally y, is on the vertical axis and
y1 is on the horizontal axis for pdfs.

To determine the limits of integration, examine the dummy variable used in
the inner integral, say dy;. Then within the region of integration, draw a line par-
allel to the same (y;) axis as the dummy variable. The limits of integration will
be functions of the other variable (y,), never of the dummy variable (dy;). See the
following example.

Example 2.3. Suppose that the joint pdf of the random variables Y; and Y, is
given by

f(yl,yz) =2, if0<y <y<l1
and f(y1,y2) = 0, otherwise.

a) Show that f(y,y,) is a pdf.

b) Find the marginal pdf of Y;. Include the support.

c¢) Find the marginal pdf of ¥;. Include the support.

d) Find the conditional pdf fy,|y,—,, (v1|y2). Include the support.
e) Find the conditional pdf fy, |y, (v2|y1)- Include the support.

Solution. Refer to Remark 2.1. The support is the region of integration 2 which
is the triangle with vertices (0,0), (0,1), and (1,1). This triangle is bounded by the
lines y; = 0,y, = 1, and y, = y;. The latter line can also be written as y; = y».

a) Hence [*., [* f(y1,y2)dyidy> = 5 [[3> 2dyi]dyz = Jy 23115 Jdy2 = g 22y =
2y3/2|8 = 1. Here y(y2) = 0 and yg(y2) = y2. Alternatively,
Jou I f O, y2)dyndyr = [y 1y 2dyaldyr = [y [23a]}, Jdyr = fo 21 —y1)dy; =
2(y1 —¥1/2)|§ =2(1/2) = 1. Here ¢g(y1) = y1 and ¢7(y1) = 1.

b) Now fy, (y1) = [ f(v1,y2)dya = [y, 2dys = 2ya[}, = 2(1 = y1),0 <y1 < 1.

) Now fy,(v2) = [Z. f(y1,y2)dy1 = [§? 2dy1 = 2y1[3? = 2y2,0 <y> < 1.
d) By Definition 2.8,

fOry) 2 1
_ = ==, O < < .
Ty =y, 01132) ) 2 1<y

Note that for fixed y,, the variable y; can run from O to y;.
e) By Definition 2.8,

f(1,y2) 2 1
=y = = = s < <1.
sz‘Y} )1(y2|y1) le(yl) 2(1_)71) 1_y1 V1 2

Note that for fixed y, the variable y, can run from y; to 1.
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2.2 Expectation, Covariance, and Independence

For joint pmfs with n = 2 random variables ¥; and Y, the marginal pmfs and con-
ditional pmfs can provide important information about the data. For joint pdfs the
integrals are usually too difficult for the joint, conditional and marginal pdfs to be of
practical use unless the random variables are independent. (Exceptions are the multi-
variate normal distribution and the elliptically contoured distributions. See Sects. 2.9
and 2.10.)

For independent random variables, the joint cdf is the product of the marginal
cdfs, the joint pmf is the product of the marginal pmfs, and the joint pdf is the
product of the marginal pdfs. Recall that V is read “for all.”

Definition 2.9. i) The random variables Y;,Y>,...,Y, are independent if

F(ylayZa"'ayn) :Fyl(yl)FYz(yZ)"'FYn(yﬂ) vylayZa"'ayn-
ii) If the random variables have a joint pdf or pmf f, then the random vari-

ables Y1,Y>,...,Y, are independent if f(y1,y2,...,yn) = fr, 01)fr, 02) - - fr, (V)

vylayZa <oy Yn-
If the random variables are not independent, then they are dependent.

In particular random variables Y| and Y, are independent, written Y; 1L Y, if
either of the following conditions holds.

i) F(y1,y2) = Fr,(01)Fr, (y2) ¥y1,¥2.
it) f(v1,y2) = fr, 1) fr, (v2) Vy1,y2. Otherwise, Y| and Y» are dependent.

Definition 2.10. Recall that the support &% of (¥;,Y5,...,Y,) is
% ={y: f(y) > 0}. The support is a cross product or Cartesian product if

YW= xWhx - xUY={y:yie€% fori=1,...,n}

where %; is the support of ¥;. If f is a joint pdf then the support is rectangular if
%; is an interval for each i. If f is a joint pmf then the support is rectangular if the
points in % are equally spaced for each i.

Example 2.4. In applications the support is often rectangular. For n = 2 the sup-
port is a cross product if

Y =9 xP={(1,)):y €% and y; € %}

where % is the support of Y;. The support is rectangular if %] and %4 are intervals.
For example, if

W ={(y1,y2):a<y; <e and ¢ <y, <d},

then 21 = (a,) and % = [c,d]. For a joint pmf, the support is rectangular if the
grid of points where f(y;,y2) > 0 is rectangular.
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Cross Product of (1,2,3,4,9) with (1,3,4,5,9)

(o) o (o) (o) (o)
© -
©
[qY)
3 o o o o o
< 40 o o o o
o o o o) o
=
(o) o (o) (o) (o)
T T T T
2 4 6 8
Val

Fig. 2.1 Cross product for a joint PMF

Figure 2.1 shows the cross product of %] x % where %1 = {1,2,3,4,9} and
% ={1,3,4,5,9}. Each dot occurs where f(y;,y2) > 0. Notice that each point in
%, occurs with each point in %5. This support would not be a cross product if any
point was deleted, but would be a cross product if any row of dots or column of
dots was deleted. Note that the cross product support is not rectangular. The cross
product of %1 = {1,2,3,4} with % = {3,4,5} is rectangular.

Theorem 2.2a below is useful because it is often immediate from the formula
for the joint pdf or the table for the joint pmf that the support is not a cross product.
Hence Y] and Y, are dependent. For example, if the support of Y; and Y5 is a triangle,
as in Example 2.3, then Y} and Y, are dependent. A necessary condition for inde-
pendence is that the support is a cross product. Theorem 2.2b is useful because
factorizing the joint pdf on cross product support is easier than using integration
to find the marginal pdfs. Many texts give Theorem 2.2c, but 2.2b is easier to use.
Recall that [T, a; = ajaz---a,. For example, let n = 3 and a; = i for i = 1,2,3.
Then H?:l a; =ayjaasz = (1)(2)(3) =6.

Theorem 2.2. a) Random variables Yi,...,Y, with joint pdf or pmf f are de-
pendent if their support % is not a cross product. In particular, ¥; and Y, are
dependent if % does not have the form % = %] x %5.

b) If random variables Y1,...,Y, with joint pdf or pmf f have support % that is a
cross product, then Yy, .., Y, are independent iff f(y;,y2,...,yn) = b1 (y1)h2(y2)
«ohy(yn) forall y € %, where h; is a positive function of y; alone. In particular, if
Y = x %, then Y| 1LY, iff f(y1,y2) = hi1(y1)ha(y2) for all (y;,y2) € % where
hi(yi) >0fory; € % andi=1,2.

¢) Y1,...,Y, are independent iff f(yi,y2,...,yn) = &1 (y1)&2(y2) -+ gn(yn) for all y
where g; is a nonnegative function of y; alone.

d) If discrete Y; and Y, have cross product support given by a table, find the row and
column sums. If f(y1,y2) # fr, 1) fr, (v2) for some entry (y;,y,), then ¥; and
Y, are dependent. If f(y1,y2) = fr, 1) fr, (v2) for all table entries, then Y, and
Y, are independent.
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Proof. a) If the support is not a cross product, then there is a point y such that
f(y)=0but fy,(y;) >0fori=1,...,n. Hence f(y) # [T/ fr,(y:) at the point
yandY,...,Y, are dependent.

b) The proof for a joint pdf is given below. For a joint pmf, replace the integrals
by appropriate sums. If ¥;,...,Y, are independent, take A;(y;) = fy,(yi) > 0 for
yi€E%andi=1,....n.

I f(y)=hi(y1) - ha(ys) fory € % =% x - x ¥ then f(y) =0= fy, (y1)
-+ fy, (yn) if y is notin #. Hence we need to show that f(y) = fy, (1) - - fr, (Vn)
=h1(y1) - ha(yn) if y € & Since f is a joint pdf,

1:/---/ny(y) dy—f[l/%hi()’i) d}’i—il_illai

where a; = f{% hi(yi) dy; > 0. For y; € %;, the marginal pdfs fy, (y;) =

// / o [ () hi(yi) - h(y) dyr e dyicidyicr - dyn
% Y1 /Y 1

= hi(i) ﬁ ﬁhj()’j)d)’j:hi(yi) ﬁ ajzhi(yi%-

=LA =LA i

Thus a,-fyi (y,') = hi(yi) for yi € g, Since H?:l a =1,

- f[lhi ¥i) Hazfy Vi) = <Ha,> <f[1in(yi)> = ﬁfy,-(yi)

ifye?.
c) Take
gilvi) = { 0, otherwise.

Then the result follows from b).

d) Since f(y1,y2) = 0= fy, 1) fr, (2) if (¥1,y2) is not in the support of ¥} and ¥,
the result follows by the definition of independent random variables. []

The following theorem shows that finding the marginal and conditional pdfs or
pmfs is simple if Y7,...,Y, are independent. Also subsets of independent ran-
dom variables are independent: if Y, ... Y, are independent and if {iy,...,iy} C
{1,...,n} fork > 2, then¥; ,....Y; are 1ndependent

Theorem 2.3. Suppose that Yy,...,Y, are independent random variables with
joint pdf or pmf f(y1,...,yn). Then

a) the marginal pdf or pmf of any subset Y;, ..., Y, is f(yi,,...,¥;) = H'j‘-:l Ty, i))-
J
Hence Y;,...,Y;, are independent random varlables for k > 2.
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b) The conditional pdf or pmf of V;,,...,Y;, given any subset of the remaining ran-
dom variables Y;, =yj,,...,Y}, =j, is equal to the marginal: f(y;,...,yi |y},

o) = F O i) = e fr, O 6 £ Gy 0j) > 0.

Proof. The proof for a joint pdf is given below. For a joint pmf, replace the
integrals by appropriate sums. a) The marginal

Foiseemi) = [ [ [f[lfy,, (yg-)] Ay -y,
S| L

k n oo
- leYij ()’ij)] l 11 / inj vi;) dyij]
=1 -

Jj=k+177
k k
- [ HfY,J (yl])‘| (1)}17/( = nyl/ (yl!)
j=1 J=

b) follows from a) and the definition of a conditional pdf assuming that
FOjis-esYjn) > 0. O

Definition 2.11. Suppose that random variables Y = (¥1,...,Y,) have support
% and joint pdf or pmf f. Then the expected value of the real valued function
WY)=h(Yy,...,Y,)is

En(y)) = [

oo
—oo oo

/ h(y)f(y) dy:/---/@h(y)f(y) dy (2.10)

/:"/Jh(ﬁlf(y) dy

exists. Otherwise the expectation does not exist. The expected value is

En(Y)] =3 2hnfy)= Y, hnfy)= X h(»)f(y) (2.11)

b Yn YeR" yev

if f is a joint pdf and if

if f is a joint pmf and if ¥ ycpn [2(y)[f(y) exists. Otherwise the expectation does
not exist.

The notation E[h(Y )] = oo can be useful when the corresponding integral or sum
diverges to co. The following theorem is useful since multiple integrals with smaller
dimension are easier to compute than those with higher dimension.

Theorem 2.4. Suppose that Y1, ...,Y, are random variables with joint pdf or pmf
f,.oyn). Let{ir,....ix} € {1,...,n}, and let f(y;,,...,y;) be the marginal pdf
or pmf of ¥;, ..., ¥;, with support %, .y, . Assume that
E[h(Y;,,...,Y; )] exists. Then
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E[h(YllvaYlk)]:/i [ h(yllvaylk)f(yllavylk)dylldylk:

if f is a pdf, and

E[h(Yllalek)] :Z"'zh(yila"'vyik)f(yilv"'vyik)

Yip Vi
= 2 h(yi17"'7yik) f(yi17"'7yik)
3
if f is a pmf.
Proof. The proof for a joint pdf is given below. For a joint pmf, replace the

integrals by appropriate sums. Let g(Y1,...,Y,) = h(Y;,...,Y; ). Then E[g(Y)] =

[ ‘/7 h()’ila---7)’ik)f()’17---7)’n)dyl"'d)’n:

[ /7 h(Yiys-- Vi) [/ /7 SO 5n) @iy - dyiy | dyi -+~ dyi
= [ /7 h(yilv"'vyik)f(yil7"'=yik) dyil "'dyik
since the term in the brackets gives the marginal. [J

Example 2.5. Typically E (Y;),E(Y?) and E(Y;Y;) for i # j are of primary inter-
est. Suppose that (Y1,Y>) has joint pdf f(y;,y2). Then E[h(Y;,Y2)]

:[ [ h(yl,yz)f(yl,yz)dyzdy1=[ [ h(y1,y2)f(v1,y2)dy1dy>

where —eo to oo could be replaced by the limits of integration for dy;. In particular,

E(Yle):[ [ Y1)’2f(y17y2)d>’2dy1:[ [ yiy2f(y1,y2)dyidy;.

Since finding the marginal pdf is usually easier than doing the double inte-
gral, if h is a function of ¥; but not of Y;, find the marginal for ¥; : E[h(Y;)] =
S 2 h) f (s y2)dyz2dyr = JZL h(yn) fr (y1)dys. Similarly, E[h(Y2)] =
JZah(32) fro (v2)dy2.- ~ _

In particular, E(Y1) = [_yify,(y1)dy1, and E(Y2) = [*_ 2 fr,(y2)dy>. See
Example 2.8.

Suppose that (¥;,Y,) have a joint pmf f(y1,y»). Then the expectation
Eh(Y1,12)] =3, 3y, h(y1,y2) f(v1,32) = Xy, Xy, B(1,32) f(y1,y2). In particular,
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EMY] =3 yiyaf(yi,y2).

yr o2

Since finding the marginal pmf is usually easier than doing the double summa-
tion, if 4 is a function of ¥; but not of ¥;, find the marginal for pmf for ¥;: E[h(Y})] =

S 2 K1) f(1,2) = Xy, h(1) fry (v1). Similarly, E[h(Y2)] = X, h(y2) fr, (v2)-
In particular, E(Y1) =X, y1.fr, (1) and E(Y2) = X, y2fr, (y2). See Example 2.6.

For pdfs it is sometimes possible to find E[A(Y;)], but for k > 2 these expected
values tend to be very difficult to compute unless f(y1,...,yx) =c¢ y'i' -y for small
integers i; on rectangular or triangular support. Independence makes finding some
expected values simple.

Theorem 2.5. Let Y1, ... ,Y, be independent random variables. If A;(Y;) is a func-
tion of ¥; alone and if the relevant expected values exist, then

Ell(Y1)ha(Ya) - ha(Ya)] = E[h1 (Y1)] - E[ha(Y2)].
In particular, E[Y;Y;] = E[V,|E[Y;] for i # j.
Proof. The result will be shown for the case where Y = (Y1,...,Y,) has a joint
pdf f. For a joint pmf, replace the integrals by appropriate sums. By independence,

the support of Y is a cross product: % = & x --- x %,. Since f(y) = IT", fr, (i),
the expectation E[h; (Y1)hy(Y2) - hn(Yy)] =

/.../@hl()’l)hz()’z)-..hn(yn)f(yl,,,,7yn) dyy - dy,

i=1

= /@n . /@/1 [ﬁhi(yi)fn(y[)l dyi -+ dyn

n

= 111 [/J hi(yi) fri (vi) dyz} = i]iE[h,-(Y,-)]. O

Corollary 2.6. Let Y1,...,Y, be independent random variables. If /;(Y;;) is a
function of Y,-j alone and if the relevant expected values exist, then

Elm(Y)---h(Yy)] = E[h1(Yiy)] - E[hi (Y, )]

Proof. Method 1:  Take Xj =Y;, for j=1,...,k. Then Xj,..., X, are indepen-
dent and Theorem 2.5 applies.
Method 2:  Take h;(Y;;) =1 for j=k+1,...,n and apply Theorem 2.5. [J

Theorem 2.7. Let Yy,...,Y, be independent random variables. If 4;(Y;) is a
function of Y; alone and X; = h;(Y;), then the random variables Xi,...,X, are
independent.
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Definition 2.12. The covariance of Y; and Y, is
Cov(Y1,12) =E[(Y1 —E())(Y2 — E(}2))]
provided the expectation exists. Otherwise the covariance does not exist.

Theorem 2.8: Short cut formula. If Cov(Y;,Y>) exists then
COV(Yl s Yz) = E(Yle) — E(Yl)E(Yz).

Theorem 2.9. a) Let ¥} and Y> be independent random variables.
If Cov(Y),Y,) exists, then Cov(Y;,Y2) = 0.
b) The converse is false: Cov(Y;,Y,) = 0 does not imply Y; 1L Y,.

Example 2.6. When f(y;,y;) is given by a table, a common problem is to
determine whether Y; and Y, are independent or dependent, find the marginal
pmfs fy, (y1) and fy,(y2) and find the conditional pmfs fy,y,—, (v1|y2) and
Tra vy =y, (72[y1). Also find E(Y1),E(Y2),V(Y1),V(Y2),E(Y1Y2), and Cov (Y3, 12).

Suppose that the joint probability mass function of ¥; and ¥» is f(y1,y>) is tabled

Y2
SOy [0 1 2
as shown. 0[1/9 2/9 1/9
1 112/9 2/9 0/9
2[1/9 0/9 0/9

a) Are Y| and Y, independent? Explain.
b) Find the marginal pmfs.

¢) Find E(Y7).

d) Find E(Y»).

e) Find Cov(Y},Y2).

f) Find fy,|v,—y, 1 132)-

Solution: a) No, the support is not a cross product. Alternatively, f(2,2) =0 <
I (2)fy2(2).

b) Find fy, (y1) by finding the row sums. Find fy, (y>) by finding the column sums.
In both cases, fy;(0) = fy,(1) =4/9 and fy,(2) =1/9.

©) E(Y1) = Iyify,(y1) =05 + 15 +2§ = § ~ 0.6667.

d) E(Y2) =~ 0.6667 is found as in c¢) with y; replacing y;.

e) EMY2) = X3 yiy2f(v1,y2) =
04+0+0
+0+(1)(1)3+0
+0+0+0 = . Hence Cov(Y},Y2) = EV\Y2) —E(M)E(Y2) = 3 — ($)(§) =
—% ~ —0.2222.

f) Now fy,r,—y, 01y2) = f1,32)/fr,(02). If y2 = 2, then fy,),—o(012) =
£(0,2)/f,(2) = 1 for y; = 0. If y, = 1, then fy, 1y,—(v1|1) = f(y1,2)/fr, (1) =
1/2 for y; = 0,1. If y, = 0, then fy,y,—0(0|0) = 1/4, fy,|y,—0(1]0) = 1/2 and
Trin=0(2/0) =1/4.

Nello)



2.3 Conditional Expectation and Variance 41

Example 2.7. Given the joint pdf f(y1,y2) = kg(y1,y2) onits support, a common
problem is to find k, find the marginal pdfs fy, (y1) and fy,(y2) and find the con-
ditional pdfs fy,y,—y, (V1[y2) and fy,|y,—, (v2[y1). Also determine whether ¥} and
Y, are independent or dependent, and find E(Y}),E(Y2),V(Y1),V(Y»),E(Y;Y2), and
COV(Y 1, Yz).

Suppose that the joint pdf of the random variables ¥} and Y5 is given by

FO1,y2) = 10y1y3, if0<y; <y <1

and f(y1,y2) = 0, otherwise. a) Find the marginal pdf of ¥;. Include the support. b)
Is Y| 1Y,?

Solution: a) Notice that for a given value of y;, the joint pdf is positive for y; <
y2 < 1. Thus

1 3 10
fr (1) =/ 10y, y3dy; = 10y1y—2 1
Vi 3 ¥ 3

(1—y1)0<y1<1

b) No, the support is not a cross product.
Example 2.8. Suppose that the joint pdf of the random variables Y; and Y, is
given by
FOy2) =4y(1—y2), if0<y; <1,0<y, <1
and f(y1,y2) = 0, otherwise.

a) Find the marginal pdf of Y;. Include the support.
b) Find E(1).

¢) Find V(1}).

d) Are Y} and Y, independent? Explain.

72 1
Solution: a) i (1) = Jo 4v1(1 = y2)dv2 = 4 (32— % )| = 4n(1- 1) =
2y1,0<y1 < L.

X X 3
b) E(Y1) = [y yifr, 01)dyi = Jo yi2yidyr =2 [y yidyr = 2%

74 1
) E(Y2) = Jo v fr, (v1)dy1 = [, Y%z)’ldyl 2 o yidyr = )71’0 =1/2.50V(") =
E(Y})—[E())? =1-5 =% ~0.0556.
d) Yes, use Theorem 2.2b with f(yl,yz) = (4y1)(1 —y2) = hi(y1)ha(y2) on cross
product support.

1
=23

4
9
wit

2.3 Conditional Expectation and Variance

Notation. Y|X = x is a single conditional distribution while Y|X is a family of
distributions. For example, if Y|X = x ~ N(c +dx,6?), then Y|X ~ N(c +dX,c?)
is the family of normal distributions with variance 6> and mean Hy|x=x = ¢ +dx.
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Think of ¥ = weight and X = height. There is a distribution of weights for each
value x of height where X = x, and weights of people who are x = 60 in. tall will on
average be less than weights of people who are x = 70 in. tall. This notation will be
useful for defining E[Y|X] and VAR[Y |X] in Definition 2.15.

Definition 2.13. Suppose that f(y|x) is the conditional pmf or pdf of Y|X = x
and that i(Y) is a function of Y. Then the conditional expected value E[h(Y)|X = x]
of h(Y) given X = x is

ERh(Y)|X =x] = Zh flx) (2.12)

if f(y|x) is a pmf and if the sum exists when h(y) is replaced by |A(y)|. In particular,

E[Y|X =x] ny (]x). (2.13)

Similarly,
E[R(Y)|X = x] / h(y)f(y|x)dy (2.14)

if f(y|x) is a pdf and if the integral exists when A(y) is replaced by |i(y)|. In partic-
ular,

EWX =x = [ _sfGlody. 215

Definition 2.14. Suppose that f(y|x) is the conditional pmf or pdf of ¥ |X = x.
Then the conditional variance

VAR(Y|X =x) =E(Y?|X =x) — [E(Y|X =x)]?

whenever E (Y?|X = x) exists.

Recall that the pmf or pdf f(y|x) is a function of y with x fixed, but
E(Y|X = x) = m(x) is a function of x. In the definition below, both E(Y|X) and
VAR(Y |X) are random variables since m(X) and v(X) are random variables. Now
think of ¥ = weight and X = height. Young children 361in. tall have weights that
are less variable than the weights of adults who are 72 in. tall.

Definition 2.15. If E(Y|X = x) = m(x), then the random variable E(Y|X) =
m(X). Similarly if VAR(Y|X = x) = v(x), then the random variable VAR(Y |X) =
v(X) =E(Y?|X) - [E(Y|X)].

Example 2.9. Suppose that Y = weight and X = height of college students. Then
E(Y|X = x) is a function of x. For example, the weight of 5 ft tall students is less
than the weight of 6 ft tall students, on average.

Notation. When computing E(A(Y)), the marginal pdf or pmf f(y) is used.
When computing E[h(Y)|X = x|, the conditional pdf or pmf f(y|x) is used. In a
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formula such as E[E(Y|X)] the inner expectation uses f(y|x) but the outer expecta-
tion uses f(x) since E(Y|X) is a function of X. In the formula below, we could write
Ey(Y) = Ex[Ey|x (Y|X)], but such notation is usually omitted.

Theorem 2.10. Iterated Expectations. Assume the relevant expected values
exist. Then

E(Y) = E[E(Y|X)).

Proof: The result will be shown for the case where (Y, X) has a joint pmf f. For
a joint pdf, replace the sums by appropriate integrals. Now

E(Y)=YYyf(xy) = 2> vfrix(v]x) fx (x)
Xy Xy

X

= [nyyx (yIX)] fx(x) = Y E(Y|X =x)fx(x) = E[E(Y|X)]
X y

since the term in brackets is E(Y|X =x). O

Theorem 2.11: Steiner’s Formula or the Conditional Variance Identity.
Assume the relevant expectations exist. Then

VAR(Y) = E[VAR(Y|X)] + VAR[E(Y |X)).

Proof: Following Rice (1988, p. 132), since VAR(Y|X) = E(Y?|X) — [E(Y|X)]?
is a random variable,

E[VAR(Y[X)] = E[E(Y?|X)] - E([E(Y|X)]).

If W is a random variable, then E(W) = E[E(W|X)] by Theorem 2.10 and
VAR(W) = E(W?) — [E(W)]? by the shortcut formula. Letting W = E(Y|X) gives

VAR(E(Y|X)) = E([E(YX)]*) — (E[E(Y|X)])*.
Since E(Y?) = E[E(Y?|X)] and since E(Y) = E[E(Y|X)],
VAR(Y) = E(Y?) = [E(Y)]* = E[E(Y?|X)] - (E[E(Y|X)])*.
Adding 0 to VAR(Y) gives
VAR(Y) = E[E(Y*|X)] - E([E(Y|X)]*) + E([E(Y|X)]) — (E[E(Y|X)))?

= E[VAR(Y|X)] + VAR[E(Y|X)]. O

A hierarchical model models a complicated process by a sequence of models
placed in a hierarchy. Interest might be in the marginal expectation E(Y) and
marginal variance VAR(Y). One could find the joint pmf from f(x,y) = f(y|x)f(x),
then find the marginal distribution fy(y) and then find E(Y) and VAR(Y). Alterna-
tively, use Theorems 2.10 and 2.11. Hierarchical models are also used in Bayesian
applications. See Chap. 11.
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Example 2.10. Suppose Y|X ~ BIN(X,p) and X ~ Poisson (A). Then
E(Y|X) = Xp, VAR(Y|X) = Xp(1 — p), and E(X) = VAR(X) = A. Hence
E(Y) = E[E(Y|X)] = E(Xp) = pE(X) = pA and VAR(Y) = E[VAR(Y|X)] +
VAR[E(Y|X)] = E[Xp(1 —p)]+ VAR(Xp) = Ap(1 —p) + p*VAR(X) =
Ap(1=p)+p*L = Ap.

2.4 Location—Scale Families

Many univariate distributions are location, scale, or location—scale families. Assume
that the random variable Y has a pdf fy ().

Definition 2.16. Let fy(y) be the pdf of Y. Then the family of pdfs fiy(w) =
fy (w— ) indexed by the location parameter |1, —eo < L < oo, is the location family
for the random variable W = u + Y with standard pdf fy (y).

Definition 2.17. Let fy(y) be the pdf of Y. Then the family of pdfs fiy(w) =
(1/0)fr(w/0o) indexed by the scale parameter ¢ > 0 is the scale family for the
random variable W = oY with standard pdf fy (y).

Definition 2.18. Let fy(y) be the pdf of Y. Then the family of pdfs fi(w) =
(1/0)fr((w—p)/o) indexed by the location and scale parameters [, —eo < |1 < oo,
and o > 0 is the location—scale family for the random variable W = u + oY with
standard pdf fy (y).

The most important scale family is the exponential EXP(A) distribution. Other
scale families from Chap. 10 include the chi (p, o) distribution if p is known, the
Gamma G(v, 1) distribution if v is known, the lognormal (u,6?) distribution with
scale parameter T = e if o2 is known, the one-sided stable OSS(o) distribution, the
Pareto PAR(0, 1) distribution if A is known, and the Weibull W (¢, A) distribution
with scale parameter 6 = 4 179 if ¢ is known.

A location family can be obtained from a location—scale family by fixing the
scale parameter while a scale family can be obtained by fixing the location param-
eter. The most important location—scale families are the Cauchy C(u, o), double
exponential DE(8, 1), logistic L(u, &), normal N(u, 6%), and uniform U(8y, 6, ) dis-
tributions. Other location—scale families from Chap. 10 include the two-parameter
exponential EXP(0,4), half Cauchy HC(u, ), half logistic HL(i, c), half nor-
mal HN(u, o), largest extreme value LEV(8,0), Maxwell Boltzmann MB(u, o),
Rayleigh R(i, ), and smallest extreme value SEV(0, o) distributions.

2.5 Transformations

Transformations for univariate distributions are important because many ‘“brand
name” random variables are transformations of other brand name distributions.
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These transformations will also be useful for finding the distribution of the com-
plete sufficient statistic for a one-parameter exponential family. See Chap. 10.

Example 2.11: Common problem. Suppose that X is a discrete random variable
with pmf fx (x) given by a table. Let the transformation Y =¢(X) for some function
t and find the probability function fy ().

Solution: Step 1)  Find 7(x) for each value of x.
Step 2) Collect x : t(x) =y, and sum the corresponding probabilities:
fr()= D fx(x), and table the resulting pmf fy (v) of Y.
xit(x)=y
For example, if ¥ = X2 and fx(—1) = 1/3, fx(0) = 1/3, and fx (1) = 1/3, then
f7(0)=1/3and fy (1) = 2/3.

Definition 2.19. Let 4 : D — R be a real valued function with domain D. Then
h is increasing if h(y;) < h(y2), nondecreasing if h(y,) < h(y,), decreasing if
h(y1) > h(y2) and nonincreasing if h(y;) > h(y,) provided that y; and y, are any
two numbers in D with y; < y,. The function 4 is a monotone function if 4 is either
increasing or decreasing.

Increasing t(x) Decreasing t(x)

0 — 0 —

© — © —

>

< — > <

N — N —

o - o —
I I O TT T T 1T
00 15 30 00 15 3.0

X X

Fig. 2.2 Increasing and decreasing #(x). (a) Increasing #(x); (b) decreasing #(x)

Recall that if % is differentiable on an open interval D or continuous on a closed
interval D and differentiable on the interior of D, then & is increasing if #'(y) > 0
for all y in the interior of D and h is decreasing if #'(y) < 0 for all y in the interior
of D. Also if & is increasing then —# is decreasing. Similarly, if / is decreasing then
—h is increasing.
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Suppose that X is a continuous random variable with pdf fx(x) on support 2.
Let the transformation ¥ = 7(X) for some monotone function 7. Then there are two
ways to find the support & of Y = ¢(X) if the support 2" of X is an interval with
endpoints a < b where a = —eco and b = o are possible. Let #(a) = lim,|,7(y) and
let 7(b) = limyy,¢(y). A graph can help. If ¢ is an increasing function, then % is
an interval with endpoints #(a) < t(b). If ¢ is a decreasing function, then % is an
interval with endpoints #(b) < (a). The second method is to find x = ¢~!(y). Then
if 2° = [a,b], say, solve a <t~ !(y) < bin terms of y.

If 7(x) is increasing then P({Y < y}) = P({X < t~!(y)}) while if #(x) is
decreasing P({Y < y}) = P({X > t7'(y)}). To see this, look at Fig.2.2. Sup-
pose the support of Y is [0,9] and the support of X is [0,3]. Now the height of the
curve is y = #(x). Mentally draw a horizontal line from y to #(x) and then drop a ver-
tical line to the x-axis. The value on the x-axis is #~!(y) since #(t~!(y)) = y. Hence
in Fig.2.2a+7!'(4) = 2 and in Fig.2.2bt~1(8) = 1. If w < y then t 1 (w) < t~1(y)
if #(x) is increasing as in Fig.2.2a, but t~'(w) > ¢~!(y) if #(x) is decreasing as in
Fig.2.2b. Hence P(Y <y) =Pt~ ' (Y) >t71(y)) =P(X >t~ 1(y)).

Theorem 2.12: The CDF Method or Method of Distributions: Suppose that
the continuous cdf Fy(x) is known and that Y = 7(X). Let % be the support of Y.

i) If 7 is an increasing function, then Fy (y) = P(Y <y) =P(1(X) <y) =
P(X <171(y)) = B (1~ ().

ii) If ¢ is a decreasing function, then Fy (y) = P(Y <y)=P(t(X) <y) =
P(X >17'(y) =1 - PX <1 () = 1 - P(X <17'() = 1~ B (i~ (9)).
iii) The special case Y = X2 is important. If the support of X is positive, use i). If
the support of X is negative, use ii). If the support of X is (—a,a) (where a = e

is allowed), then Fy(y) = P(Y <y) =

PX?<y)=P(—\/J <X <y =
[ e = Ex(5) ~ Fx(—y5), 0 <y < .
-y

d
After finding the cdf Fy (y), the pdf of Y is fy (y) = d_yFY (y)forye #.

Example 2.12. Suppose X has a pdf with support on the real line and that the
pdf is symmetric about i so fx (1 —w) = fx(u + w) for all real w. It can be shown
that X has a symmetric distribution about it if Z=X — y and —Z = u — X have
the same distribution. Several named right skewed distributions with support y > u
are obtained by the transformation ¥ = u + |X — . Similarly, let U be a U(0,1)
random variable that is independent of Y, then a symmetric random variable X can
be obtained from Y by letting X =Y if U < 0.5 and X =2u —Y if U > 0.5. Pairs
of such distributions include the exponential and double exponential, normal and
half normal, Cauchy and half Cauchy, and logistic and half logistic distributions.
Figure 2.3 shows the N(0, 1) and HN(0, 1) pdfs.
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0.8
|

Fig. 2.3 Pdfs for N(0,1) and HN(O, 1) distributions

Notice that for y > u,
Fy(y)=P(Y <y) =P(u+[X—pu| <y) =P(X —u[<y—u)=

Pu—y<X—-u<y-—p)=P2u—-y<X<y)=Fx(y)— Fx(2u—y).

Taking derivatives and using the symmetry of fx gives fy(y) =
S+ fx@u—y) = fr(u+@—w)+fr(p =0 —-p)=2/xE+0-p)

=2fx(y) fory > u. Hence fy (v) = 2fx(y)I(y > ).
Then X has pdf

fi(x) = 3l + e )

for all real x, since this pdf is symmetric about it and fx (x) = 0.5y (x) if x > p.

Example 2.13. Often the rules of differentiation such as the multiplication, quo-
tient, and chain rules are needed. For example if the support of X is [—a,a] and if
Y = X2, then

1

fr(y)= 25

fx (V) + fx (=)
for0 <y < az.

Theorem 2.13: The Transformation Method. Assume that X has pdf fx (x) and
support 2. Let % be the support of ¥ = ¢(X). If #(x) is either increasing or decreas-
ing on 2" and if ~!(y) has a continuous derivative on %, then Y = ¢(X) has pdf

-1
dt—(y)’ (2.16)

fr)=fc ') dy

fory € . As always, fy(y) =0 for y notin %'.
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Proof: Examining Theorem 2.12, if # is increasing then Fy (y) = Fx(t~'(y)) and

ﬁ@Z%B@
-1
= ) = st o) 7 ) = e o | 2]

fory € % since the derivative of a differentiable increasing function is positive.
If 7 is a decreasing function, then from Theorem 2.12, Fy(y) = 1 — Fx(t~'(x)).
Hence

dr—(y)
dy

Fr() = diyu CRG() = —fx<f1<y>>diyf1<y> )

for y € & since the derivative of a differentiable decreasing function is negative. [J

Tips: To be useful, formula (2.16) should be simplified as much as possible.

(a) The pdf of Y will often be that of a gamma random variable. In particular, the
pdf of Y is often the pdf of an exponential(A) random variable.

(b) To find the inverse function x = ¢~!(y), solve the equation y = #(x) for x.

(c) The log transformation is often used. Know how to sketch log(x) and e* for
x > 0. Recall that in this text, log(x) is the natural logarithm of x.

(d) If 2 is an interval with endpoints a and b, find

¥ = (min{t(a),1(b)}, max{t(a),#(b)})
as described two paragraphs above Theorem 2.12.

Example 2.14. Let X be a random variable with pdf

! ) )
xX(X)= €X
fi) xV2mo? p< 20°
where x > 0,  is real and o > 0. Let ¥ = log(X) and find the distribution of Y.

Solution: X = e =¢~1(Y). So

dl‘il(y) _ |ey| —
dy

3

and
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R S —(—p)?
V2ro? 202
for y € (—oo,00) since x > 0 implies that y = log(x) € (—oo,0). Notice that X is
lognormal (i, 0?) and Y ~ N(u,c?).

Example 2.15. If Y has a Topp—Leone distribution, then pdf of Y is

fO)=v(2=2y)2y—y)""

for v >0 and 0 <y < 1. Notice that F(y) = (2y —y?)" for 0 <y < I since
F'(y) = f(v). Then the distribution of W = —log(2Y — ¥?) will be of interest for
later chapters.

Let X =Y — 1. Then the support of X is (—1,0) and Fx(x) =
PX<x)=PY—-1<x)=PY <x+1)=F((x+1)

=+ =@+ =(x+D2-x+ D)) =[x+ D1 —x)]" =1 -2

So Fx(x) = (1 —x?)" for —1 < x < 0. Now the support of W is w > 0 and Fy (w) =
P(W <w) =P(—log(2Y —Y?) <w) = P(log(2Y —Y?) > —w)
PR2Y-Y2>e™)=PQRY-Y>—1>e¢"—1)=P(—(Y —1)?
P(Y-1)2<1—e").SoFy(w)=PX?><1—e")=
P(—ya<X <./a)wherea=1—e" € (0,1). So Fy(w) =
Fx(va)—Fx(—va) =1—-Fx(—va) =1-Fx(—V1—e™)

=l-[l1-(—VI-e")'=1-[I-(1-e "] =1—¢"

for w > 0. Thus W = —log(2Y — Y?) ~ EXP(1/v).

Transformations for vectors are often less useful in applications because the
transformation formulas tend to be impractical to compute. For the theorem below,
typically n = 2. If ¥; = #;(X;,X>) is of interest, choose Y» = 1,(X;,Xz) such that
the determinant J is easy to compute. For example, ¥, = X, may work. Find-
ing the support % can be difficult, but if the joint pdf of X;,X; is g(xj,x2) =
h(x1,x2) I[(x1,x2) € Z7], then the joint pdf of ¥;,Y> is

FOny2) =h (9),5 () 1107 (9),1, ' (9) € 271 M,

and using I[(t;" (y),t, ' (¥)) € 27] can be useful for finding %. The fact that
H];:11Aj( y) =1 1 Aj( y) can also be useful. Also sketch 2~ with x; on the hori-
=

>eW—1)=

zontal axis and x; on the vertical axis, and sketch %" with y; on the horizontal axis
and y;, on the vertical axis. See the following two examples and Problem 2.67.

Theorem 2.14. The Multivariate Transformation Method. Let X;,...,X, be
random variables with joint pdf g(xi,...,x,) and support 2. Let ¥; = ;(X1,...,X,)
fori=1,...,n. Suppose that f(yi,...,y,) is the joint pdf of ¥;,...,Y, and that the
multivariate transformation is one to one. Hence the transformation is invertible and
can be solved for the equations x; = tfl (¥1,-.-,yn) for i = 1,...,n. Then the Jaco-
bian of this multivariate transformation is
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or! or!
dyr " I
J = det : :
ot ! ot !
dyr " dw

Let |J| denote the absolute value of the determinant J. Then the pdf of Y;,...,Y, is

O m) =8 ()t () M. (2.17)

Example 2.16. Let X; and X, have joint pdf
g(x1,x7) = 2~ 1+x2)

for 0 < x; <xp <eo.LetY; =X; and ¥, = X; + X,. An important step is finding the
support % of (¥;,Y,) from the support of (X;,X>)

=2 ={(x1,%)|0 < x] < x3 < }.

Now x; =y = tfl(yl,yg) and x; =y, —y; = t;l(yl,yg). Hence x; < x, implies
Y1 <y2—yior2y <y, and

Y ={(y1,2)|0 <2y; <y2}.

Now
ot ! !
1 _ 17 a 1 — 0,
Iy dy2
o, ! o' .
Iy T Iy ’
and the Jacobian
10
J= } 1 ‘ =1.

Hence |J| = 1. Using indicators,
gx, X, (x1,x2) = 28’()‘1“2)1(0 < xp < xp < o),
and
Frn(3132) = 8xx (1,32 =y = 2012010 < yy <3y —yi) 1 =

2e721(0 < 2y1 < y2).

Notice that ¥ and Y, are not independent since the support % is not a cross
product. The marginals
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Jrn) = / 20721(0 <291 <ya)dys = [ 27 2dys
- i

=—2¢ 2 =0— —2¢ V1 =2¢ M

y2=2y

for 0 < y; < oo, and

= ¥2/2
Sfr,(02) :/ 2e21(0 < 2y1 < y2)dy1 :/O 2 2dy,

y1=y/2

=2e 2y, =ye

y1=0
for 0 < yp < oo.

Example 2.17. Following Bickel and Doksum (2007, pp. 489—490) , let X; and
X, be independent gamma (v;, A ) random variables for i = 1, 2. Then X; and X, have

joint pdf g(x,x2) = g1 (x1)g2(x2) =

vi—1 7)61/7[, vy—1 7)62/7[,
X' e X e B 1 vi—1_vy—1 _ 2
AT ART(v) AT 2 SRR/

for 0 < x; and 0 < xp. LetY; = X; +X; and ¥, = X; /(X; + X3). An important step
is finding the support % of (Y;,Y>) from the support of (X1,X>)

=2 = {(xl,XQ)|0 <xpand 0 <X2}.

Now y2 = x1/y1, s0 x| = y1y2 = tfl(ylayZ) and x; = y; —x1 =y —y1y2 =
t{l(yl,yz). Notice that 0 < y; and 0 < x| < x| +x;. Thus 0 <y, < 1, and

% = {(yl,y2)|0 <y and 0 <»m< 1}.

Now
ot o
5 =)2, =1,
Iy dy>
ot ! ot !
8_y1 = 1=, 8_ ==Y
and the Jacobian
2 1
J= ' 1 iyz _yyl = —yiy2— (1 —y2) = -1,

and |J| = y;. So the joint pdf
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FOoy2) =gt (), 15 1)) V| = giy2.y1 —yy2)yi =

1 vi—1 vi—1_wv—1

—1
Avitv I (v (v )y1 vyt (1=y2)" exp[—(yiy2 +y1 = yiy2) /Ay =

1 vi+va—1_vi—1 =1 _—yi/A
1— 2 /A _
AT (v (v))” ! v (1=y2)% e
1 vitva—l yn T(vitva) v -1
) 1—y,)¥ L,
AN (v vy) ! ¢ v 22 1792

Thus f(y1,y2) = fi(y1)f2(y2) on ¥, and ¥} ~ gamma(Vv; + v», 1) 1LY, ~ beta(v, v»)
by Theorem 2.2b.

2.6 Sums of Random Variables

An important multivariate transformation of the random variables Y = (¥1,...,Y,)
isT(Y1,...,Y,) = 2", Yi. Some properties of sums are given below.
Theorem 2.15. Assume that all relevant expectations exist. Let a, ay,...,a, and

by,...,b, be constants. Let Yi,...,Y,, and X|,...,X,, be random variables. Let
g1,..-,8k be functions of Y7,...,Y,.

)E(a)=a
ii) E[aY] = aE[Y]
i) V(aY) = a®?V(Y).
iv) E[g1(Y1,....Ya) + -+ g(Y1,.. . Ya)] = S Egi(V1,... Y]
LetW, = r;_l a;Y; and W, = E,m:l b X;.
V) E(Wy) = Za E(Y,

n—1 n

vi) V(W;) = Cov(Wy, W) = Zan )+23 Y aa;Cov(¥,Y)).
i=1 j=i+1
n m !
vii) Cov(W;,W,) = z z aib;Cov(Y;,X;).
i=1j=1
n
viii) E(Z), i) = Y, E(;).
i=1
ix) If ¥y,...,Y, are independent, V ( 2 V(Y

LetYy,...,Y, be iid random variables with E ( Y;) = u and V(Y;) = 62, then the
- 1 &
sample meanY = — ) Y. Then
iz
x) E(Y) = u and

Y
xi) V(Y) = 62/n.
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Hence the expected value of the sum is the sum of the expected values, the
variance of the sum is the sum of the variances for independent random variables,
and the covariance of two sums is the double sum of the covariances. Note that ix)
follows from vi) with a; = 1, viii) follows from iv) with g;(Y) =¥; or from v) with
a; = 1, x) follows from v) with @; = 1/n, and xi) can be shown using iii) and ix)
using ¥ = 37 (¥;/n).

The assumption that the data are iid or a random sample is often used in a first
course in statistics. The assumption will also be often used in this text. The iid
assumption is useful for finding the joint pdf or pmf, and the exact or large sample
distribution of many important statistics.

Definition 2.20. Y}, ...,Y, are a random sample or iid if Y1, ...,Y, are indepen-
dent and identically distributed (all of the ¥; have the same distribution).

Example 2.18: Common problem. Let Y1,...,Y, be independent random vari-
ables with E(Y;) = p; and V(Y;) = 6. Let W = Y, ¥;. Then
a) E(W) =E(Xi,Y;) =X, E(Y) =X, W, and
VW) =V(ZL Y) =3, V(Y) =3, 07

A statistic is a function of the data (often a random sample) and known con-
stants. A statistic is a random variable and the sampling distribution of a statistic
is the distribution of the statistic. Important statistics are Y., ¥}, Y= ﬁz;?:l Y; and
>, aiYi, where ay,...,a, are constants. The following theorem shows how to find
the mgf and characteristic function of such statistics.

Theorem 2.16. a) The characteristic function uniquely determines the distribu-
tion.

b) If the moment generating function exists, then it uniquely determines the distri-
bution.

¢) Assume that Yy,...,Y, are independent with characteristic functions ¢y, (r). Then
the characteristic function of W =Y | Y; is

n
ow(r) =[Tor (). (2.18)
i=1
d) Assume that Y;,...,Y, are iid with characteristic functions ¢y (¢). Then the char-
acteristic functionof W = 3, ¥; is
ow (1) = [y (1)]". (2.19)

e) Assume that ¥;,...,Y, are independent with mgfs my,(¢). Then the mgf of W =
rYis

n
my (t) = Hl’l’lyi (l) (2.20)
i=1
f) Assume that Y;,...,Y, are iid with mgf my (r). Then the mgf of W =3 | ¥; is

mw (1) = my (1)]". 2.21)
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g) Assume that Y7, ..., Y, are independent with characteristic functions ¢y, (r). Then
the characteristic function of W = 37, (a; + b,Y;) is

n

ow () = exp <it Ya j> f[ ¢y, (bjt). (2.22)
=1

Jj=1

h) Assume that Y, ...,Y, are independent with mgfs my,(¢). Then the mgf of W =
Y (ai+biYy) is

i=1

my (l) = exp <l ia,) ﬁmyi (b,‘l‘). (2.23)
i=1

Proof of g): Recall that exp(w) = ¢" and exp(X]_, d;) =IT_, exp(d;). It can be
shown that for the purposes of this proof, that the complex constant i in the charac-
teristic function (cf) can be treated in the same way as if it were a real constant. Now

)

ow(t) =E(™)=E <exp lit i (aj+b;Y})
=1

j=

- (l-, ,_21 a ,~> E <exp L; ith ,-Y;D

= exp (it ila,) E <ﬁexp[itijj]>

i=1

n n
=exp (it D aj> [1Elexp(itb,;Y;)]

j=1 i=1
since by Theorem 2.5 the expected value of a product of independent random
variables is the product of the expected values of the independent random vari-
ables. Now in the definition of a cf, the ¢ is a dummy variable as long as ¢ is
real. Hence ¢y (r) = Elexp(itY)] and ¢y (s) = E[exp(isY)]. Taking s = tb; gives
Elexp(ith;Y;)] = ¢y, (tb;). Thus

n

Q)W(l‘) =exp <it 2 aj> ﬁQ)yj (tbj). O
i=1

j=1

The distribution of W = Y | Y; is known as the convolution of Y1, ...,¥,. Even
for n = 2, convolution formulas tend to be hard; however, the following two
theorems suggest that to find the distribution of W = Y | Y}, first find the mgf or
characteristic function of W using Theorem 2.16. If the mgf or cf is that of a brand
name distribution, then W has that distribution. For example, if the mgf of W is a
normal (V, 72) mgf, then W has a normal (v, 72) distribution, written W ~ N (v, ‘L’z).
This technique is useful for several brand name distributions. Chapter 10 will show
that many of these distributions are exponential families.
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Theorem 2.17. a) If ¥y,...,Y, are independent binomial BIN(k;, p) random vari-
ables, then

inwgm<§h$)
i=1 i=1

Thus if ¥y,...,¥, are iid BIN(k, p) random variables, then Y, ¥; ~ BIN(nk,p).
b) Denote a chi-square x,% random variable by y2(p). If Y1,...,Y, are independent
chi-square x,%i, then

>Yi~y? (ZP:’) -
i=1 i=1

Thus if ¥1,...,Y, are iid x3, then

n
2
. le‘Nx,,p.

14

¢) If Yi,...,Y, are iid exponential EXP(A), then

zn:Yi ~ G(n,A).

i=1

d) If Yy,...,Y, are independent Gamma G(v;, 1) then

n n
ZYI ~G ( V,',)L) .
i=1 i=1

Thus if ¥y,...,Y, are iid G(v,A), then
n
> Yi~G(nv,A).

i=1

e) If ¥y,...,Y, are independent normal N(u;, 67), then

M=

(ai +biY;) ~N (i(ﬂli + biti), i biz"z'2> :

i=1 i=1 i=1

Here a; and b; are fixed constants. Thus if Yi,...,Y, are iid N(u,c?), then ¥ ~
N(i,02/n).
f) If Y1,...,Y, are independent Poisson POIS(6;), then

i=1

inmmm<§&)
i=1
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Thus if ¥y,...,¥, are iid POIS(0), then

>.Y; ~ POIS(n0).
i=1

Theorem 2.18. a) If Y1, ...,Y, are independent Cauchy C(u;, o;), then

i(ai +bi¥;) ~C (i(di +bip), i |bi|"i> :

i=1 i=1 i=1

Thusif Yy,...,Y, areiid C(u,0), thenY ~ C(u, o).
b) If Yy,...,Y, are iid geometric geom(p), then

n
ZYi ~ NB(n, p).
i=1

¢) If Yy,...,Y, are iid inverse Gaussian IG(6, 1), then

N Vi~ 1G(n@,n%2).
i=1
Also
Y ~1G(8,n1).

d) If11,...,Y, are independent negative binomial NB(r;, p), then

n n
N Yi~NB| Y rip].
i=1 i=1

Thus if Y1,...,Y, are iid NB(r,p), then

Y Yi ~NB(nr,p).
i=1

Example 2.19: Common problem. Given that Yi,...,Y, are independent ran-
dom variables from one of the distributions in Theorem 2.17, find the distribution
of W=73",Y, or W=73", b, by finding the mgf or characteristic function of W
and recognizing that it comes from a brand name distribution.

Tips: a) in the product, anything that does not depend on the product index i is
treated as a constant.

b) exp(a) = ¢” and log(y) = In(y) = log,(y) is the natural logarithm.
C) n n n

Hg"ei = gZim1 00 — bEL, 0

i=1
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n n n
In particular, Hexp(b@i) =exp ( b@,-) =exp <b 6,-) .
i=1 i=1 i=1

Example 2.20. Suppose Yi,...,Y, are iid IG(0, 1) where the mgf

my,(1) = m(t) = exp l% <1 —\/1- %Ztﬂ

fort < 1/(26?). Then

n n 2
mz;lzll/i(t):il:_[lmlfi(t): [m(t)]”:exp [% <1_ 1_%>‘|

2) 2(n6)? ¢
ol )

which is the mgf of an /G(n6,n%A ) random variable. The last equality was obtained
by multiplying %+ by 1 = n/n and by multiplying %2’ by 1 = n?/n. Hence
S, Y ~1G(n6,n%R).

2.7 Random Vectors

Definition 2.21. Y = (Yi,...,Y,) isa 1 x p random vector if ¥; is a random variable
fori=1,...,p. Y is a discrete random vector if each Y; is discrete, and Y is a
continuous random vector if each Y; is continuous. A random variable Y; is the
special case of a random vector with p = 1.

In the previous sections each ¥ = (Y1,...,Y,) was a random vector. In this section
we will consider n random vectors Y 1,...,Y,. Often double subscripts will be used:
Y,‘ = (Yi-,17"'7Yl'7Pi) fori= 1,...,}1.

Notation. The notation for random vectors is rather awkward. In most of the
statistical inference literature, Y is a row vector, but in most of the multivariate
analysis literature Y is a column vector. In this text, if X and Y are both vectors,
a phrase with ¥ and X7 means that Y is a column vector and X7 is a row vector
where T stands for transpose. Hence in the definition below, first E(Y) is a p x 1
row vector, but in the definition of Cov(Y) below, E(Y) and Y —E(Y) are p x 1
column vectors and (¥ — E(Y))7 isa 1 x p row vector.

Definition 2.22. The population mean or expected value of a random 1 x p ran-
dom vector (Y1,...,Y,) is

E(Y)=(EMN),....E(Y)))
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provided that E(Y;) exists for i = 1,..., p. Otherwise the expected value does not
exist. Now let Y be a p x 1 column vector. The p x p population covariance matrix

Cov(Y) =E(Y —E(Y))(Y —E(Y))T = (0;)

where the ij entry of Cov(Y) is Cov(Y;,Y;) = o;; provided that each o; ; exists.
Otherwise Cov(Y) does not exist.

The covariance matrix is also called the variance—covariance matrix and variance
matrix. Sometimes the notation Var(Y) is used. Note that Cov(Y) is a symmetric
positive semi-definite matrix. If X and Y are p x 1 random vectors, a a conformable
constant vector and A and B are conformable constant matrices, then

E(a+X)=a+E(X) and E(X+Y)=E(X)+E(Y) (2.24)
and
E(AX)=AE(X) and E(AXB)= AE(X)B. (2.25)
Thus
Cov(a+AX) = Cov(AX) = ACov(X)A”. (2.26)

Definition 2.23. Let Y,...,Y, be random vectors with joint pdf or pmf
F(y1,---,¥a)- Let fy (y;) be the marginal pdf or pmf of ¥;. Then Yi,....Y,
are independent random vectors if

ﬂthW—ﬁﬁwmﬁNw—ﬂﬁﬂﬂ

The following theorem is a useful generalization of Theorem 2.7.

Theorem 2.19. Let Y,...,Y, be independent random vectors where Y; is a
1 x p; vector for i = 1,...,n. and let h; : R? — R”Ji be vector valued functions
and suppose that k;(y;) is a function of y; alone for i = 1,...,n. Then the random

vectors X; = h;(Y;) are independent. There are three important special cases.

i) If pj, = 1 so that each A; is a real valued function, then the random variables
X; = h;(Y;) are independent.
ii) If p; = pj, = 1 so that each ¥; and each X; = h(Y;) are random variables, then
Xi,...,X, are independent.
iii) Let Y = (¥y,...,Y,) and X = (Xy,..,X,,) and assume that Y 1L X. If h(Y) is a
vector valued function of ¥ alone and if g(X) is a vector valued function of X
alone, then h(Y) and g(X) are independent random vectors.

Definition 2.24. The characteristic function (cf) of a random vector Y is

oy (t) =E(TY)

Vt € R" where the complex number i = v/ —1.



2.7 Random Vectors 59
Definition 2.25. The moment generating function (mgf) of a random vector
Y is
t'Y
my (1) =E(e" 7)
provided that the expectation exists for all ¢# in some neighborhood of the origin 0.

Theorem 2.20. If Yy, ..., Y, have mgf m(¢), then moments of all orders exist and
for any nonnegative integers ki, ...,k;,

. ‘. kit tk;
E(Yill...yij/):ﬁm .
an' - at,.jf t=0
In particular,
am(t
B = 50
i lt=o
and
d*m(t)
ElY))=——=-=| .
liolj |g—g

Theorem 2.21. If Yy,..., Y, have a cf ¢y (¢) and mgf my (¢) then the marginal cf
and mgf for ¥;,...,Y; are found from the joint cf and mgf by replacing #;; by 0 for
j=k+1,...,n. Inparticular, if Y = (Y1,Y,) and ¢t = (¢1,¢,), then

(le(tl) = ¢Y(t1,0) and mYl(tl) :my(tl,()).
Proof. Use the definition of the cf and mgf. For example, if Y| = (¥;,...,Y;)
and s = ¢, then m(¢;,0) =
Elexp(ti Y1+ + 1Y+ 0¥, 1+ -+ 0Y,)]| = Elexp(t1 Y1 + - - - + 1. 13)] =
Elexp(s’Y})] = my (s), which is the mgf of Y. [

Theorem 2.22. Partition the 1 x n vectors Y and ¢ as ¥ = (Y,Y;) and ¢ =
(t1,t2). Then the random vectors Y| and Y, are independent iff their joint cf factors
into the product of their marginal cfs:

Py (t) = oy (t1)9y,(£2) Ve €R™.

If the joint mgf exists, then the random vectors Y| and Y, are independent iff their
joint mgf factors into the product of their marginal mgfs:

my(t) =my, (tl)mYZ (tz)

Vt in some neighborhood of 0.
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2.8 The Multinomial Distribution

Definition 2.26. Assume that there are m iid trials with n outcomes. Let Y; be the
number of the m trials that resulted in the ith outcome and let p; be the probability of
the ith outcome fori=1,...,n where 0 < p; < 1. Thus ¥ ¥;=mand 3! ,p; = 1.
Then Y = (Y1,...,Y,) has a multinomial distribution, written Y ~ M, (m,p1,...,pn),
if the joint pmf of Y is

FO1seom) =PY1 =y1,....Ya =yn)

m! , pl
=———p!'p? o =m! L (2.27)
ity Pl Py P ,Hlyz

The supportof Y is % ={y: ¥ ;yi=m and 0<y; <m for i=1,...,n}.
The multinomial theorem states that for real x; and positive integers m and n,

(14 )" = Y gz, (2.28)
yEgZ/yl yn

Taking x; = p; shows that (2.27) is a pmf.

Since Y, and p, are known if Y1,...,Y,_; and py,...,p,—1 are known, it is con-
venient to act as if n — 1 of the outcomes Yi,...,Y,—1 are important and the nth
outcome means that none of the n — 1 important outcomes occurred. With this rea-
soning, suppose that {i1,...,ix—1} C {1,...,n}. Let W; = ¥;;, and let W count the
number of times that none of Y;,,...,Y; | occurred. Then Wy = m — Zk lY,j and
P(Wy)=1-— Zk 1 Pi;- Here Wj represents the unimportant outcomes and the joint

distribution of Wy,..., Wi, W is multinomial My (m, p;,,...,pi, 1 2’; 1sz)

Notice that 2’;:1 Y;; counts the number of times that the outcome “one of the out-
comes iIy,...,Ii; occurred,” an outcome with probability 2’;:1 Pi;- Hence 2’;:1 Yi,- ~
BIN(m, 3% _, p;,).

Now consider conditional distributions. If it is known that Y,-j = Vi for
j=k-+1,... n, then there are m — 2;5:,{ +1Yi; outcomes left to distribute among
Y;,,...,Y;. The conditional probabilities of ¥; remains proportional to p;, but the
conditional probabilities must sum to one. Hence the conditional distribution is
again multinomial. These results prove the following theorem.

Theorem 2.23. Assume that (Yi,...,Y,) has an M,(m,py,...,p,) distribution
and that {iy,..., i} C {1, ...,n}withk<nand 1<ii<ihb<--<ig<n.

a) (Yiy,...,Y;_,,m—X521Y;,) has an My (m, piy ..., pi_,, 1 — X5_{ pi;) distribution.
b) 2]-:1 Yi,- ~ BIN(m, 2;:1 pi;)- In particular, ¥; ~ BIN(m, p;).
¢) Suppose that 0 <y;; <mfor j=k+1,...,nand that 0 < 27:k+1)’i,- < m.

Lett=m _27:k+1)’i,- and let T = pij/zljzlp,j for j =1,...,k. Then the condi-
tional distribution of ¥; ,....Y; [Y; ., = yi, ..., Yi, = ¥i, is the M(t,m;,,...,m,)
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distribution. The support of this conditional distribution is
{Gigs--vi) :2’;:1y1~j =1, and 0<y; <t for j= 1,...,k}.

Theorem 2.24. Assume that (Yi,...,Y,) has an M,(m,pi,...,p,) distribution.
Then the mgf is

m(t) = (pre" +---+ pue™)", (2.29)
E(Yl) = mp;, VAR(Y,) = mp,(l — pl) and COV(Y,',Y]') = —mp;p; for i # j

Proof. E(Y;) and V(Y;) follow from Theorem 2.23b, and m(t) =

m)
Elexp(tiY1 + -+ 1,Yn) Zexp tyr+-- —I—tnyn)ﬁpl P3P
v

_zy1 NP1 (e P = (pre't 4 -+ prem)™
4

by the multinomial theorem (2.28). By Theorem 2.20,

2
E(YY)) = 5—=—(p1e + -+ pae)"| =
7 dnor; t=0
J t tiym—1 5t
Smlpre 4 pu )" | =
Ij t=0
m(m—1)(p1e" + -+ pe")" 2 pictip;e' = mm=Dpip;:
=0

Hence Cov(Y;,Y;) = E(Y;Y;) — E(Y})E(Y;) = m(m — 1)pip; — mpimp;
=—mpip;. O

2.9 The Multivariate Normal Distribution

Definition 2.27 (Rao 1973, p. 437). A p x 1 random vector X has a p—dimensional
multivariate normal distribution N,(p, X ) iff ¢7 X has a univariate normal distribu-
tion for any p x 1 vector £.

If X is positive definite, then X has a joint pdf

1 T y—1
- -(1/2)z-n)" 27 (zZ—p)
flz)= e |1/2e (2.30)

where | ¥ |!/2 is the square root of the determinant of X . Note that if p = 1, then
the quadratic form in the exponentis (z— p)(06?)~!(z— 1) and X has the univariate
N(u,0?) pdf. If ¥ is positive semi-definite but not positive definite, then X has a
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degenerate distribution. For example, the univariate N(0,0?) distribution is degen-
erate (the point mass at 0).

Some important properties of MVN distributions are given in the following three
propositions. These propositions can be proved using results from Johnson and
Wichern (1988, pp. 127-132).

Proposition 2.25. a) If X ~ N,(pn, ), then E(X) = p and
Cov(X)=2X.

b) If X ~ N,(u,X), then any linear combination t7X = 1 X; + -+ + 1,X, ~
Ny (tTw,tT Xt). Conversely, if tT X ~ N1 (tTu,t” X't) for every p x 1 vector ¢,
then X ~ N,(p,2").

c) The joint distribution of independent normal random variables is MVN.
If Xi,...,X, are independent univariate normal N (ui,cl»z) random vec-
tors, then X = (Xi,...,X,)T is Ny(n,¥) where p = (uy,...,1p)" and
X = diag(clz,...,cg) (so the off diagonal entries o;; = 0 while the diago-
nal entries of X' are 0;; = 07.)

d) If X ~ N,(p, X) and if A is a ¢ x p matrix, then AX ~ N,(Ap,AX A").Ifa is
a p x 1 vector of constants, thena+ X ~ N,(a+p,X).

It will be useful to partition X, u,and X'. Let X| and | be g x 1 vectors, let X,
and py be (p—q) x 1 vectors, let X'; be a g X ¢ matrix, let X1, bea g x (p—q)
matrix, let X5 be a (p — g) X ¢ matrix, and let X5 be a (p — g) X (p — ¢) matrix.

Then
X, 78 DATED AT
X = = and ¥ = .
<X2>’IL (Mz)’ (2721 2722)
Proposition 2.26. a) All subsets of a MVN are MVN: (X ,... ,qu)T ~
Ny (&, X) where ji; = E(X;,) and X; = Cov(Xj;, Xy, ). In particular,
X1 ~Ny(p1,Z11) and Xo ~ Ny (g2, 222).
b) If X and X are independent, then Cov(X,X,) = Xp =
E[(X1—E(X1))(X2—E(X2))"] =0, aq x (p— q) matrix of zeroes.
o) If X ~ NP([L, %), then X and X are independent iff X', = 0.
) IfX; ~Ny(p1,211) and X ~ N,—4(p2, ) are independent, then

()~ () (3 2)

Proposition 2.27. The conditional distribution of a MVN is MVN. If
X ~ Np(;L,E ), then the conditional distribution of X, given that X, = x, is
multivariate normal with mean p; + X 122231(x2 — o) and covariance matrix
- 2122251221. That is,

Xi|Xo=x ~ Ny(p1+ Z12 X" (x2— p2), 11 — Z12 25" 2oy).
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Example 2.21. Let p = 2 and let (¥,X)? have a bivariate normal distribution.

(‘(>NN2<<ux>7<( O‘/(X,i) ((;, )>)'
X

Also recall that the population correlation between X and Y is given by

COV(X,Y) . Oxy
V/VAR(X)\/VAR(Y) OxOy

pX.Y)=

if ox > 0 and oy > 0. Then Y|X =x ~ N(E(Y|X = x),VAR(Y|X = x)) where the
conditional mean

1 o2
E(YX = x) =ty +Cov(Y,X) — (x— pix) =ty +p(X,¥)y | —5 (¥ — pix)
Ox X
and the conditional variance

VAR(Y|X = x) = 67 — Cov(X, V) COV(X Y)
X

o2
=07 —p(X,Y) 1/—2 (X,Y)\/ 021/ 0}
Ox

=0} — p*(X,Y)o} = op[1 — p*(X,Y)].

Also aX + bY is univariate normal with mean auy + buy and variance

a*03 +b*07 +2ab Cov(X,Y).

Remark 2.2. There are several common misconceptions. First, it is not true that
every linear combination ¢’ X of normal random variables is a normal ran-
dom variable, and it is not true that all uncorrelated normal random variables
are independent. The key condition in Proposition 2.25b and Proposition 2.26¢ is
that the joint distribution of X is MVN. It is possible that X;,X>,...,X,, each has a
marginal distribution that is univariate normal, but the joint distribution of X is not
MVN. Examine the following example from Rohatgi (1976, p. 229). Suppose that
the joint pdf of X and Y is a mixture of two bivariate normal distributions both with
EX =EY =0and VAR(X) = VAR(Y) = 1, but Cov(X,Y) = £p. Hence

flxy) = x* —2pxy +y2)> -

S R
2 2m\/1—p?2 P\21—p?)
1 1

b (.€
2 2m\/1—p2 P

-1 1 1
(2(1 —p?) (? +ZPXJ’+)’2)) =50 (x,y) + Efz(x,y)
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where x and y are real and 0 < p < 1. Since both marginal distributions of f;(x,y)
are N(0, 1) for i = 1 and 2 by Proposition 2.26a, the marginal distributions of X and
Y are N(0,1). Since [ [xyfi(x,y)dxdy = p fori=1and —p fori =2, X and Y are
uncorrelated, but X and Y are not independent since f(x,y) # fx (x)fr ().

Remark 2.3. In Proposition 2.27, suppose that X = (¥, Xa,...,X,)T. LetX; =Y
and X, = (XQ, ... ,XP)T. Then E[Y|X2] = ﬁl -i-ﬁzXz +--- 4 ﬁPXP and VAR[Y|X2]
is a constant that does not depend on X,. Hence Y |X, = B+ BoXo +--- + B, X, + e
follows the multiple linear regression model.

2.10 Elliptically Contoured Distributions

Definition 2.28 (Johnson 1987, pp. 107-108). A p x 1 random vector has an ellip-
tically contoured distribution, also called an elliptically symmetric distribution, if X
has joint pdf

F@) =k |7 2glz = )" 27 2~ ), 2.31)
and we say X has an elliptically contoured EC,(pt, X', g) distribution.

If X has an elliptically contoured (EC) distribution, then the characteristic func-
tion of X is

ox (1) = exp(it” p)y(t" X1) (2.32)

for some function y. If the second moments exist, then

EX)=n (2.33)
and
Cov(X)=cxX (2.34)
where
cx = =2y (0).
Definition 2.29. The population squared Mahalanobis distance
U=D"=D*(n.2)=(X—p)' 2 '(X—p) (2.35)
has pdf
h(u) = %kpupﬁlg(u). (2.36)

Forc >0, an EC,(p,cl,g) distribution is spherical about p where I is the p x p

identity matrix. The multivariate normal distribution N,(p, X ) has k, = (21) P/2,
v(u) = g(u) = exp(—u/2), and h(u) is the x; density.
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The following lemma is useful for proving properties of EC distributions without
using the characteristic function (2.32). See Eaton (1986) and Cook (1998, pp. 57,
130).

Lemma 2.28. Let X be a p x 1 random vector with 1st moments; i.e., E(X)
exists. Let B be any constant full rank p X r matrix where 1 < r < p. Then X is
elliptically contoured iff for all such conforming matrices B,

E(X|B" X)=p +MpB" (X —p)=ap+MpB'X (2.37)

where the p x 1 constant vector ag and the p X r constant matrix M p both depend
on B.
A useful fact is that ap and M g do not depend on g:

ap=pn—MpB ' =(1,—MsB")p,
and
Mz=XB(B"YB)".

Notice that in the formula for Mg, ¥ can be replaced by ¢X where ¢ > 0 is a
constant. In particular, if the EC distribution has second moments, Cov(X) can be
used instead of X'.

To use Lemma 2.28 to prove interesting properties, partition X, p, and X'. Let
X and g be g x 1 vectors, let X, and wp be (p—¢q) x 1 vectors. Let X1 beag X ¢
matrix, let X'j, be a g X (p — ¢) matrix, let X, be a (p — g) X g matrix, and let X,
be a (p—q) X (p — ¢) matrix. Then

X, 78 AT 4‘712)
X = , = ,and X = .
<X2> i (ﬂ2> (2721 X

Also assume that the (p+ 1) x 1 vector (Y,X")T is ECpy1(p, X ,g) where Y is a
random variable, X is a p x 1 vector, and use

Y Uy Zyy Zyx
= dXY = .
<X>’M (MX),an (EXYZXX>

Proposition 2.29. Let X ~ EC, (i, X ,¢) and assume that E(X) exists.

a) Any subset of X is EC, in particular X is EC.
b) (Cook 1998 p. 131, Kelker 1970). If Cov(X) is nonsingular,

Cov(X|BTX)=d,(B"X)[ X - XB(B"XB) 'B" %]
where the real valued function dg(B” X) is constant iff X is MVN.

Proof of a). Let A be an arbitrary full rank g x r matrix where 1 <r <gq. Let

- (2)
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Then B'X = AT X, and

E[X|B"X]|=E Kﬁ;) |ATX1} —

78 M T o7y (X111
+ A0
(Mz) <M23> ( ) (XZ_IQ)
by Lemma 2.28. Hence E[X{|AT X ] = w1 + M 3AT (X| — p1). Since A was arbi-
trary, X is EC by Lemma 2.28. Notice that Mz = ¥ B(B' X B) ' =

(a3 () [ (a3 ()]
- ().

Mip=XAAT 21 A)7!

Hence

and X is EC with location and dispersion parameters g and X';;. [

Proposition 2.30. Let (Y,X”)" be EC, (n,X,g) where Y is a random
variable.

a) Assume that E[(Y, XT)7] exists. Then E(Y|X) = o + BT X where
o=y — B pux and
B=2tZxy.

b) Even if the first moment does not exist, the conditional median
MED(Y |X) = o+ BT X

where o and § are given in a).

Proof. a) The trick is to choose B so that Lemma 2.28 applies. Let
T
B = <° ) |
I,
Zyx
2B = .
()

|Gy ][ () 1o ()]

_ T “1pr (Y — Wy
—w+XB(B"XB)'B (X—ILX>

Then BT ¥ B = Xxx and

Now
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by Lemma 2.28. The right-hand side of the last equation is equal to

2yx 1 . Ny—EYXZ)Z)(IILX-l-ZYXE)ZXIX
u+<EXX) Zyx (X —px) = X

and the result follows since
BT = Zyx Xy
b) See and Croux et al. (2001) for references.

Example 2.22. This example illustrates another application of Lemma 2.28.
Suppose that X comes from a mixture of two multivariate normals with the same
mean and proportional covariance matrices. That is, let

X~ (1=7)Np(p,Z)+YNp(p,cXZ)

where ¢ > 0 and 0 < y < 1. Since the multivariate normal distribution is elliptically
contoured (and see Proposition 1.14c¢),

E(X|B"X)=(1-7)[n+MB" (X —p)|+ylp+MB" (X —p)|

=+ [(1-y)M +yMa|B" (X —p)=p+MB" (X —p).

Since M p only depends on B and X', it follows that M| = M, = M = Mp. Hence
X has an elliptically contoured distribution by Lemma 2.28.

2.11 Summary

1. ¥y and Y, are dependent if the support & = {(y1,y2)|f(y1,y2) > 0} is not a
cross product.

2. If the support is a cross product, then ¥; and ¥, are independent iff f(y;,y,) =
hi(y1)ha(y2) for all (y1,y2) € % where h;(y;) is a positive function of y; alone.
If no such factorization exists, then ¥; and Y, are dependent.

3. If Yy,...,Y, are independent, then the functions h(Y;),...,h,(Y,) are indepen-
dent.

4. Given f(y1,y2), find E[A(Y;)] by finding the marginal pdf or pmf fy,(y;) and
using the marginal distribution in the expectation.

5. E[Y]|=E[E(Y|X)]andV(Y) =E[V(Y|X)]+ V[E(Y|X)].

6. Find the pmf of Y = ¢(X) and the (sample space =) support % given the pmf of
X by collecting terms x : y = #(x).

7. For increasing or decreasing #, the pdf of ¥ = #(X) is

dr'(y) }

fr) = fx(t' () o

fory € . Also be able to find the support ¥
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8.

10.

11.

12.

13.
14.

15.
16.
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Find the joint pdf of Y1 =1, (XI,XQ) andY, =1 (Xl,Xz)Z le Y ()’1,)’2)

= fx,.x% (t; ' (01,52),2; ' (v1,¥2))|/]. Finding the support % is crucial. Using in-

dicator functions can help. Know that HIJ‘.:l Iy, (¥) =1y A (y). The Jacobian
i=14]

of the bivariate transformation is

't ary
P

J = det ,
ot
E

and |J| is the absolute value of the determinant J. Recall that
ab
det [c d} =

To find tfl (y1,¥2), use y; = f;(x1,x2) and solve for x| and x, where i = 1,2.
IfYy,...,Y, are independent with mgfs my, (¢), then the mgf of W =3 | ¥; is

ab
cd

‘—ad—bc.

mw(t) = lilll’l’lyl(l)

If Yy,...,Y, are iid with mgf my (¢), then the mgf of W =X}, Y; is
my (t) = [my (t)]",

and the mgf of Y is

my(t) = [my (1/n)]".
Know that if Y7,...,Y, are iid with E(Y) = g and V(Y) = 62, then E(Y) = u
and V(Y) = o2 /n.
Suppose W =37 Y, or W = Y where Y, ...,Y, are independent. For several
distributions (especially ¥; iid gamma(v,A) and ¥; independent N(i;,67)), be
able to find the distribution of W, the mgf of W, E(W), Var(W), and E (Wz) =
V(W) + [E(W)]>.
If X ~Ny(p,X), thent’ X =1, X1 +... +1,X, ~NtTp,tT Xt).
If X ~Ny(p, X) and if A is a ¢ x p matrix, then AX ~ N,(Ap,AX A"). Ifa
is a p x 1 vector of constants, thena + X ~ Ny(a+pn,X).
Suppose X is g X 1 and

X, ~i DATIPAP)
X = , U= ,and ¥ = .
<X2> k (ltz 2o Xy
X1 ~Ny(p1, Z11)-
If X ~ N,(p,2), then the conditional distribution of X given that X, = x3 is

multivariate normal with mean g + X 122251 (x2 — p2) and covariance matrix
- 2122231221. That is,
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Xi|X2=x2 ~ Ny(p1 + Z12 X" (22— p2), 211 — 12 25" Zoy).
17.

0i,j
0ii0jj

p(Xi,X;) = = Cov(X;, X;)//V(X)V (X;).

18. Know that (X,Y) can have a joint distribution that is not multivariate normal,
yet the marginal distributions of X and Y are both univariate normal. Hence X
and Y can be normal, but aX + bY is not normal. (Need the joint distribution of
(X,Y) to be MVN for all linear combinations to be univariate normal.)

2.12 Complements

Panjer (1969) provides generalizations of Steiner’s formula.

Johnson and Wichern (1988), Mardia et al. (1979) and Press (2005) are good
references for multivariate statistical analysis based on the multivariate normal dis-
tribution. The elliptically contoured distributions generalize the multivariate normal
distribution and are discussed (in increasing order of difficulty) in Johnson (1987),

Fang et al. (1990), Fang and Anderson (1990), and Gupta and Varga (1993).
Fang et al. (1990) sketch the history of elliptically contoured distributions while
Gupta and Varga (1993) discuss matrix valued elliptically contoured distributions.
Cambanis et al. (1981), Chmielewski (1981) and Eaton (1986) are also important
references. Also see Muirhead (1982, pp. 30-42).

Broffitt (1986), Kowalski (1973), Melnick and Tenebien (1982) and Seber and
Lee (2003, p. 23) give examples of dependent marginally normal random vari-
ables that have 0 correlation. The example in Remark 2.1 appears in Rohatgi (1976,
p- 229) and Lancaster (1959).

See Abuhassan (2007) for more information about the distributions in Prob-
lems 2.52- 2.59.

2.13 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

Theorem 2.16 is useful for Problems 2.1*- 2.7*.

2.1*. Let Xj,...,X, be independent Poisson(4;). Let W = 3!, X;. Find the mgf
of W and find the distribution of W.

2.2%. LetXy,...,X, be iid Bernoulli(p). Let W = ¥, X;. Find the mgf of W and
find the distribution of W.
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2.3*. Let Xj,...,X, be iid exponential (1). Let W = X? | X;. Find the mgf of W
and find the distribution of W.

2.4*. Let Xy,...,X, be independent N (L, Giz). Let W = X7 | (ai + biX;) where
a; and b; are fixed constants. Find the mgf of W and find the distribution of W.

2.5 Let Xi,...,X, be iid negative binomial (1, p). Let W = ¥, X;. Find the
mgf of W and find the distribution of W.

2.6%. Let Xy,...,X, be independent gamma (v;,A). Let W = Y | X;. Find the
mgf of W and find the distribution of W.

2.7*. Let Xy, ..., X, be independent x,%i. LetW =3 | X;. Find the mgf of W and
find the distribution of W.

2.8. a) Let fy(y) be the pdf of Y. If W = p +Y where —eo < U < o, show that
the pdf of W is fiw (w) = fr(w—p) .

b) Let fy(y) be the pdf of Y. If W = oY where ¢ > 0, show that the pdf of W is
fw(w) = (1/0)fy(w/0).

c) Let fy(y) be the pdf of Y. If W = u + oY where —eo < 1 < o0 and ¢ > 0, show
that the pdf of W is fiy (w) = (1/o) fy(w—pn)/0o).

2.9. a) If Y is lognormal LN (u, 6%), show that W = log(Y) is a normal N (u, 6%)
random variable.

b) If Y is a normal N(u,0?) random variable, show that W = e is a lognormal
LN(u,0?) random variable.

2.10. a) If Y is uniform (0,1), Show that W = —log(Y') is exponential (1).
b) If Y is exponential (1), show that W = exp(—Y) is uniform (0,1).

211.If Y ~ N(u,c?), find the pdf of

2
W= (—Y H ) .
o
2.12. If Y has a half normal distribution, ¥ ~ HN(u, 62), show that
W= (Y —u)*>~G(1/2,2062).

2.13. a) Suppose that Y has a Weibull (¢, A) distribution with pdf

O 45 4
fy) = Iy¢ e~ 7
where A,y, and ¢ are all positive. Show that W = log(Y) has a smallest extreme
value SEV(8 = log(A!/?), 6 = 1/¢) distribution.
b) If ¥ has a SEV(6 = log(A'/?), 0 = 1/¢) distribution, show that W = ¢ has a
Weibull (¢, 4) distribution.
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2.14. a) Suppose that Y has a Pareto(o,A) distribution with pdf

L1/
_ 29
f) = yI+1/A

where y > 0, ¢ > 0, and A > 0. Show that W = log(Y) ~ EXP(0 =log(o),4).
b) If Y as an EXP(0 = log(o), A) distribution, show that W = ¢! has a Pareto(c, 1)
distribution.

2.15. a) If Y is chi yp, then the pdf of Y is

B yP=le™?/2
fy) = 2T G00)

where y > 0 and p is a positive integer. Show that the pdf of W = ¥ is the y,
pdf.

b) If Y is a chi-square xg random variable, show that W = /Y is a chi Xp random
variable.

2.16. a) If Y is power POW(A), then the pdf of Y is

where A > 0 and 0 < y < 1. Show that W = —log(Y) is an exponential (1)
random variable.

b) If Y is an exponential(A) random variable, show that W = e~
POW (1) random variable.

Y is a power

2.17. a) If Y is truncated extreme value TEV(A) then the pdf of Y is

1 Y —1
f) = 7 &XP (y—eT)

where y > 0, and A > 0. Show that W = ¢¥ — 1 is an exponential (1) random
variable.

b) If Y is an exponential(1) random variable, show that W = log(¥Y + 1) is a trun-
cated extreme value TEV(A) random variable.

¢) If Y has an inverse exponential distribution, Y ~ IEXP(6), show that W = 1/Y ~
EXP(1/6).

d) If Y has an inverse Weibull distribution, ¥ ~IW(¢,A), show that 1 /Y ~ W ($,1),
the Weibull distribution with parameters ¢ and A.

e) If Y has a log-gamma distribution, ¥ ~ LG(v, 1), show that W = &' ~
gamma (V,1).

f) If Y has a two-parameter power distribution, ¥ ~ power(7,A), show that W =
—log(Y) ~ EXP(—log(7),A).
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2.18. a) If Y is BurrXII(¢, A ), show that W = log(1 +¥?) is an exponential(1)
random variable.

b) If Y is an exponential(A) random variable, show that W = (¥ — 1)'/% is a
BurrXII(¢, A ) random variable.

2.19. a) If Y is Pareto PAR(0, 1), show that W = log(Y /&) is an exponential(A)
random variable.

b) If Y is an exponential(1) random variable, show that W = oe' is a Pareto
PAR(0,A) random variable.

2.20. a) If Y is Weibull W(¢,1), show that W = Y? is an exponential (1) ran-
dom variable.

b) If Y is an exponential(A) random variable, show that W = Y/ is a Weibull
W(¢,A) random variable.

2.21. If Y is double exponential (6,14 ), show that W = |Y — 6| ~ EXP(Q).

2.22.If Y has a generalized gamma distribution, ¥ ~ GG(v,A,¢), show that
W=Y%~G(v,A?).

2.23. If Y has an inverted gamma distribution, Y ~ INVG(v, 1), show that W =
1/Y ~ G(v,A).

2.24. a) If Y has a largest extreme value distribution Y ~ LEV(0, c), show that
W =exp(—(Y — 0)/0) ~EXP(1).
b) If Y ~ EXP(1), show that W = 0 — clog(Y) ~LEV(0,0).

2.25. a) If Y has a log—Cauchy distribution, ¥ ~ LC(u,0), show that W =
log(Y) has a Cauchy(u, o) distribution.
b) If Y ~ C(u, ) show that W = &' ~ LC(u, o).

2.26. a) If Y has a log-logistic distribution, ¥ ~ LL(¢, 7), show that W =log(Y)
has a logistic L(u = —log(¢),c = 1/7) distribution.
b) IfY ~ L(u = —log(¢),0 = 1/7), show that W = &' ~ LL(¢, 7).

2.27.1f Y has a Maxwell-Boltzmann distribution, ¥ ~ MB(u, o), show that
W= (Y —u)~G(3/2,202).

2.28. If Y has a one-sided stable distribution, ¥ ~ OSS(0o), show that W =1/Y ~
G(1/2,2/0).

2.29. a) If Y has a Rayleigh distribution, ¥ ~ R(u, 0), show that W =
(Y —u)? ~EXP(252).
b) If Y ~ EXP(26?), show that W = /Y 4+ u ~ R(u, o).

2.30. If Y has a smallest extreme value distribution, ¥ ~ SEV(0, ), show that
W = —Y has an LEV(—0, o) distribution.

2.31.Let Y ~ C(0,1). Show that the Cauchy distribution is a location—scale
family by showing that W = u + oY ~ C(u,c) where p is real and o > 0.
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2.32. Let Y have a chi distribution, ¥ ~ chi(p, 1) where p is known. Show that
the chi(p, o) distribution is a scale family for p known by showing that W = oY ~
chi(p,o) for o > 0.

2.33.Let Y ~ DE(0,1). Show that the double exponential distribution is a
location—scale family by showing that W = 0 + AY ~ DE(0,1) where 6 is real
and A > 0.

2.34. Let Y ~ EXP(1). Show that the exponential distribution is a scale family
by showing that W = AY ~ EXP(1) for 4 > 0.

2.35.Let Y ~ EXP(0,1). Show that the two-parameter exponential distribution
is a location—scale family by showing that W = 6 + 1Y ~ EXP(0,1) where 0 is
real and A > 0.

2.36. Let Y ~ LEV(0,1). Show that the largest extreme value distribution is a
location—scale family by showing that W = 6 + oY ~ LEV(0,0) where 6 is real
and o > 0.

2.37.Let Y ~ G(v,1) where v is known. Show that the gamma (v, A) distribu-
tion is a scale family for v known by showing that W = AY ~ G(v, 1) for 1 > 0.

2.38. Let Y ~ HC(0,1). Show that the half Cauchy distribution is a location—
scale family by showing that W = p + oY ~ HC(u, o) where y is real and ¢ > 0.

2.39. LetY ~HL(0, 1). Show that the half logistic distribution is a location—scale
family by showing that W = u + oY ~ HL(u, o) where y is real and ¢ > 0.

2.40. Let Y ~ HN(0,1). Show that the half normal distribution is a location—
scale family by showing that W = u + oY ~ HN(u, 62) where p is real and ¢ > 0.

2.41. LetY ~ L(0,1). Show that the logistic distribution is a location—scale fam-
ily by showing that W = u + oY ~ L(u,0) where u is real and ¢ > 0.

2.42.Let Y ~ MB(0,1). Show that the Maxwell-Boltzmann distribution is a
location—scale family by showing that W = u + oY ~ MB(u,c) where y is real
and o > 0.

243.Let Y ~ N(0,1). Show that the normal distribution is a location—scale
family by showing that W = u + oY ~ N(u,6?) where y is real and ¢ > 0.

2.44.Let Y ~ OSS(1). Show that the one-sided stable distribution is a scale
family by showing that W = oY ~ OSS(o) for 6 > 0.

2.45.Let Y ~ PAR(1,A) where A is known. Show that the Pareto (o,4) dis-
tribution is a scale family for A known by showing that W = oY ~ PAR(0,1)
for o > 0.

2.46.Let Y ~ R(0,1). Show that the Rayleigh distribution is a location—scale
family by showing that W = u 4+ 6Y ~ R(i, o) where y is real and 6 > 0.



74 2 Multivariate Distributions and Transformations

247.Let Y ~ U(0,1). Show that the uniform distribution is a location—scale
family by showing that W = u+ oY ~ U(6;,0,) where = 0, is real and o =
6, — 6, >0.

2.48. Examine the proof of Theorem 2.2b for a joint pdf and prove the result for
a joint pmf by replacing the integrals by appropriate sums.

2.49. Examine the proof of Theorem 2.3 for a joint pdf and prove the result for
a joint pmf by replacing the integrals by appropriate sums.

2.50. Examine the proof of Theorem 2.4 for a joint pdf and prove the result for
a joint pmf by replacing the integrals by appropriate sums.

2.51. Examine the proof of Theorem 2.5 for a joint pdf and prove the result for
a joint pmf by replacing the integrals by appropriate sums.

2.52.1f Y ~ hburr(¢,A), then the pdf of Y is

2 ! —[log(1+y)]
_)L\/E(Hycb)e"p( 202 )I(y>0)

where ¢ and A are positive.

1)

a) Show that W = log(1 +Y?) ~ HN(0,A), the half normal distribution with
parameters 0 and A.
b) If W ~ HN(0, 1), then show ¥ = [¢" —1]'/¢ ~ hburr(¢,1).

2.53.If Y ~ hlev(0,A), then the pdf of Y is

o1 e () H [p(#m

where y and 6 are real and A > 0.

a) Show that W = exp(—(Y — 0)/A) ~ HN(0, 1), the half normal distribution with
parameters O and 1.
b) If W ~ HN(0, 1), then show Y = —Alog(W)+ 6 ~ hlev(6,1).

2.54. If Y ~ hpar(6, 1), then the pdf of Y is

—(log(y) —log(6))*
202

21
AV2T Y
where 0 > 0and A > 0.

a) Show that W =log(Y) ~ HN(u =log(6),0 = A). (See the half normal distribu-
tion in Chap. 10.)
b) If W ~ HN(u, 0), then show ¥ = ¢V ~ hpar(0 = e# A = o).

fy) =

I[y > 6]exp
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2.55.If Y ~ hpow(A), then the pdf of Y is

fy) =

0.1(y) exp [—_ a;’i(zy))z}

s‘
Q
'\<I»—

7L

where 4 > 0.

a) Show that W = —log(Y) ~ HN(0,0 = 1), the half normal distribution with
parameters 0 and A.
b) If W ~ HN(0, ©), then show ¥ = ¢~" ~ hpow(1 = o).

2.56. If Y ~ hray(6,1), then the pdf of Y is

_ 4 —6-9)*
10) = 575=0r= 0)y > elexp |~
where A > 0 and 0 is real.

a) Show that W = (Y — 6)> ~ HN(0,0 = 1), the half normal distribution with pa-
rameters 0 and A.
b) If W ~ HN(0, o), then show ¥ = VW + 6 ~ hray(8,4 = o).

2.57.1f Y ~ hsev(60, 1), then the pdf of Y is

=g (5 (Fon (2]

where y and 6 are real and A > 0.

a) Show that W = exp[(y — 0)/A] ~ HN(0, 1).
b) If W ~ HN(0, 1), then show ¥ = A log(W) + 6 ~ hsev(6,1).

2.58. If Y ~ htev(A), then the pdf of Y is

0= gen(r-4) - ()

wherey > 0and A > 0.

a) Show that W = ¢! — 1 ~ HN(0, o = 1), the half normal distribution with param-
eters O and A.
b) If W ~ HN(0, 0), then show Y = log(W + 1) ~ htev(A = 0).

2.59. If Y ~ hweib(¢,A), then the pdf of Y is

_ 2 =1 1y>0 5
f(ﬂ—m‘l’y [y > ]GXP<2—A2)

where A and ¢ are positive.
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a) Show that W = Y? ~ HN(0, o = 1), the half normal distribution with parameters
Oand 7.
b) If W ~ HN(0, ), then show ¥ = W'/% ~ hweib(¢,A = o).

Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q since these problems take longer than quiz and exam problems.

2.60. If Y is a random variable with pdf
fO) =M oro<y<1
where A > 0, show that W = —log(Y') is an exponential(1 /1) random variable.

2.61. If Y is an exponential(1/A) random variable, show that W = e~ has pdf
fwlw) = Awr 1 for0<w< 1.

2.62. If Y ~ EXP(A), find the pdf of W = 2A7Y.

2.63*. (Mukhopadhyay 2000, p. 113): Suppose that X|Y ~ N(By + B1Y,Y?), and
that ¥ ~ N(3,10). That is, the conditional distribution of X given that ¥ =y is
normal with mean Sy + By and variance y* while the (marginal) distribution of ¥ is
normal with mean 3 and variance 10.

a) Find EX.
b) Find Var X.

2.64*. Suppose that

X 49 31 -10
| N 100 1 6 1 —1
X3 4 17 1’ -11 4 o0
Xy 7 0 -10 2

a) Find the distribution of X,.

b) Find the distribution of (X1,X3)7.

¢) Which pairs of random variables X; and X; are independent?
d) Find the correlation p (X;,X3).

2.65*. Recall that if X ~ N,(u, X'), then the conditional distribution of X given
that X, = x; is multivariate normal with mean
1+ 2122251 (x2 — p2) and covariance matrix X'} — 2122251221.

Let 612 = Cov(Y,X) and suppose Y and X follow a bivariate normal distribution

Y ~N 49 16 o112

X 2\ \100)" \o12 25 ) )
a) If oy, = 0, find Y |X. Explain your reasoning.
b) If 61, = 10 find E(Y|X).
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¢) If o1, = 10, find VaI(Y|X).

2.66. Let 012 = Cov(Y,X) and suppose Y and X follow a bivariate normal dis-

tribution
Y ~N 15 64 o112
X 2 20 )’ \ o2 81 ’

a) If o1, = 10 find E(Y[X).
b) If 61> = 10, find Var(¥ [X).
¢) If oy2 = 10, find p (Y, X), the correlation between ¥ and X.

2.67*. (Mukhopadhyay 2000, p. 197): Suppose that X and X, have a joint pdf
given by

f(X1,X2) = 3()61 —i—Xz)I(O <x < 1)1(0 <X < 1)1(0 <x1t+x < 1).

Consider the transformationY; = X; +X; and ¥, = X; — X».

a) Find the Jacobian J for the transformation.
b) Find the support % of ¥; and V5.
¢) Find the joint density fy, v, (y1,y2)-
d) Find the marginal pdf fy, (y1).
e) Find the marginal pdf fy, (y2).
Hint for d) and e): I4, (¥)Ia, (y)Ia, (¥) = 5 4.(¥) =1Iy(y) where % is a trian-

17

gle.

2.68*2. The number of defects per yard Y of a certain fabric is known to have a
Poisson distribution with parameter A. However, A is a random variable with pdf

fA)=e (A >0).

a) Find E(Y).
b) Find Var(Y).

2.69. Let A and B be positive integers. A hypergeometric random variable X =
W1+ W+ - - -+ W, where the random variables W; are identically distributed random
variables with P(W; = 1) = A/(A+ B) and P(W; = 0) = B/(A + B). You may use
the fact that E(W,) = A/(A+ B) and that E(X) = nA/(A+ B).

a) Find Var(W)).

—AB
b) If i # j, then Cov(W;, W;) =

(A+BR2(A+B—1)

. Find Var(X) using the formula

-1

Var <zn:W,> = iVaI(W,-)—I—Z”Z‘ 2": Cov(W;, W;).
i=1 i=1

i=1 j=it+1

(Hint: the sum Zl’-’;ll 3/i_iy1 has (n—1)n/2 terms.)
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2.70. Let X = W + W, + --- + W, where the joint distribution of the random
variables W; is an n-dimensional multivariate normal distribution with E(W;) = 1
and Var(W;) =100 fori =1,...,n.

a) Find E(X).
b) Suppose that if i # j, then Cov(W;, W;) = 10. Find Var(X) using the formula

n n n—=1 n
Var(ZW,) = Var((W;)+2Y > Cov(W,W;).
i=1 i=1 i=1 j=i+1

(Hint: the sum 2;’;11 27:1'“ has (n — 1)n/2 terms.)

2.71. Find the moment generating function for Y] if the joint probability mass
function f(y,y,) of ¥; and Y, is tabled as shown.

y2
SOy |0 1 2
0]0.38 0.14 0.24
Y1
110.17 0.02 0.05

2.72. Suppose that the joint pdf of X and Y is f(x,y) =

1

1 —1
- e
227m\/1—p2 P <2(1 -p?)

(x> —2pxy +y2))

1 1 —1 ) 2)
+= ex x 42 +
22m\/1—p? p<2(1—P2)( Py +Y)

where x and y are real and 0 < p < 1. It can be shown that the marginal pdfs are

for x real and
1 -1,

=——¢exp| —=
fY (y) \/E p < 2 y )
for y real. Are X and Y independent? Explain briefly.

2.73*. Suppose that the conditional distribution of Y|P = p is the binomial(k, p)
distribution and that the random variable P has a beta(§ = 4, v = 6) distribution.

a) Find E(Y).
b) Find Var(Y).

2.74*. Suppose that the joint probability mass function f(y;,y;) of ¥ and ¥, is
given in the following table.
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y2
SOy |0 1 2
0]0.38 0.14 0.24
Y1
110.17 0.02 0.05

a) Find the marginal probability function fy, (y») for Y».
b) Find the conditional probability function f(y|y,) of ¥ given ¥, = 2.

2.75*. Find the pmf of Y = X? + 4 where the pmf of X is given below.

X | -2 -1 0 1 2
Probability | 0.1 0.2 0.4 0.2 0.1

2.76. Suppose that X; and X, are independent with X; ~ N(0,1) and X, ~
N(0,4) so Var(X,) = 4. Consider the transformation ¥, = X; + X, and ¥» = X; — X.

a) Find the Jacobian J for the transformation.
b) Find the joint pdf f(y;,y2) of ¥; and Y,.
¢) Are Y; and Y, independent? Explain briefly. Hint: can you factor the joint pdf so

that f(y1,y2) = g(y1)h(y2) for every real y; and y,?

2.77. This problem follows Severini (2005, p. 236). Let W ~ N(uw, 6,) and let
X~ NP(”’? > )

a) Write down the moment generating function (mgf) my (z) of W.
b) Suppose W = t” X. Then W ~ N(uw, 6,). What are uy and ow?

¢) The mgf of X is my (t) = E(etTX) = E(e") = my/(1). Using a) and b), find
mx(t)

2.78. Consider k insect eggs. Eggs may not hatch. If the egg hatches into a ju-
venile, the juvenile may not survive long enough to turn into an adult. Let p be the
probability that the egg hatches into a juvenile that eventually turns into an adult.
Let X; be the number of eggs that turn into a juvenile, and let X, be the number
of juveniles that turn into adults = the number of eggs that turn into juveniles that
turn into adults. Assuming that such events are iid, then X, ~ binomial (k,p). Let
p1 be the probability that an egg hatches into a juvenile, and let p, be the proba-
bility that a juvenile turns into an adult. Then X,|X; ~ binomial(X;,p;) and X ~
binomial(k, p). Part a) below will show that p = p;p».

a) Find E(X,).
b) Find V(X;) using Steiner’s formula.



Chapter 3
Exponential Families

Suppose the data is a random sample from some parametric brand name distribution
with parameters 6. This brand name distribution comes from a family of distribu-
tions parameterized by @ € ©. Each different value of @ in the parameter space ©
gives a distribution that is a member of the family of distributions. Often the brand
name family of distributions is from an exponential family.

The theory of exponential families will be used in the following chapters to
study some of the most important topics in statistical inference such as mini-
mal and complete sufficient statistics, maximum likelihood estimators (MLEs),
uniform minimum variance estimators (UMVUEs), and the Fréchet—Cramér—Rao
lower bound (FCRLB), uniformly most powerful (UMP) tests and large sample
theory.

3.1 Regular Exponential Families

Often a “brand name distribution” such as the normal distribution will have three
useful parameterizations: the usual parameterization with parameter space Oy is
simply the formula for the probability distribution or mass function (pdf or pmf,
respectively) given when the distribution is first defined. The k-parameter exponen-
tial family parameterization with parameter space ©, given in Definition 3.1 below,
provides a simple way to determine if the distribution is an exponential family, while
the natural parameterization with parameter space €2, given in Definition 3.2 below,
is used for theory that requires a complete sufficient statistic. See Chaps. 4 and 6.

Definition 3.1. A family of joint pdfs or joint pmfs {f(y(0):0 = (61,...,0)) €
©} for a random vector Y is an exponential family if

k
f(y16) = h(y)c(8)exp [Zwl-(ﬂti(w] 3.1
i=1
DJ. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4_3, 81
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for all y where ¢(6) > 0 and h(y) > 0. The functions c, h,;, and w; are real valued
functions. The parameter # can be a scalar and y can be a scalar. It is crucial that
¢,wi,...,w; donotdependon y and that A, 1y, ..., do not depend on @ . The support
of the distribution is " and the parameter space is ©. The family is a k-parameter
exponential family if & is the smallest integer where (3.1) holds.

Notice that the distribution of ¥ is an exponential family if

F[6)= 0)exp lz wi(0)1;( ] 3.2)

and the distribution is a one-parameter exponential family if

f(16) = h(y)c(6) expw(0)i(y)]- 3.3)

The parameterization is not unique since, for example, w; could be multiplied by a
nonzero constant a if #; is divided by a. Many other parameterizations are possible.
If A(y) = g(y)Iz (), then usually ¢(6) and g(y) are positive, so another parameteri-
zation is

f(/0) =exp Eiwz i(y)+d(0)+S)| I () (3.4)

where S(y) = log(g(y)), d(0) =1log(c(8)), and ¢ does not depend on 6.

To demonstrate that {f(y|0) : 8 € O} is an exponential family, find k(y),c(0),
w;(0) and #;(y) such that (3.1), (3.2), (3.3) or (3.4) holds.

Theorem 3.1. Suppose that Y, ..., Y, are iid random vectors from an exponen-
tial family. Then the joint distribution of Y, ..., Y, follows an exponential family.

Proof. Suppose that fy (y;) has the form of (3.1). Then by independence,

fy17 .vyn HfY yl Hh(yt) eXp [ZW] t} y1‘|
i=1

n n k
- [_thuJ] e(6)" [Texp [2 ij)rj(yi)]

To see that this has the form (3.1), take 7*(y ..., y,) =TT\ A(y;), c*(0) =[c(8)]",
Wj(o) :Wj(o) andt;(yla-,,ayn) :2?:1”(.)’1')' O
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The parameterization that uses the natural parameter 5 is especially useful for
theory. See Definition 3.3 for the natural parameter space £2.

Definition 3.2. Let €2 be the natural parameter space for #. The natural param-
eterization for an exponential family is

k
f(y|n) =h(y)b(n)exp lZ nm(y)] (3.5)

i=1

where h(y) and t;(y) are the same as in Eq. (3.1) and 5 € Q. The natural parameter-
ization for a random variable Y is

k
F([n) = h(y)b(n)exp [Z nm(y)] (3.6)

i=1

where /i(y) and #;(y) are the same as in Eq. (3.2) and 5 € Q. Again, the parameteri-
zation is not unique. If a # 0, then an; and #;(y) /a would also work.

Notice that the natural parameterization (3.6) has the same form as (3.2) with
0 =n,c*(0*) =b(n) and w;(6*) = w;(n) = n;. In applications often » and £ are
of interest while b(n) is not computed.

The next important idea is that of a regular exponential family (and of a full expo-
nential family). Let d;(x) denote #;(y), w;(0) or n;. A linearity constraint is satisfied
by di(x),...,d(x) if XX_, a;d;(x) = ¢ for some constants a; and ¢ and for all x (or 1;)
in the sample or parameter space where not all of the a; = 0. If 2{;1 a;d;(x) = ¢ for
all x only if a; = --- = a; = 0, then the d;(x) do not satisfy a linearity constraint.
In linear algebra, we would say that the d;(x) are linearly independent if they do not
satisfy a linearity constraint.

For k = 2, a linearity constraint is satisfied if a plot of d; (x) versus d,(x) falls on
a line as x varies. If the parameter space for the 17; and 7, is a nonempty open set,
then the plot of 1 versus 1, is that nonempty open set, and the 1; cannot satisfy a
linearity constraint since the plot is not a line.

Let Q be the set where the integral of the kernel function is finite:

1 oo k
Q= {n—(m,..-,nk) : mzlwh(y)eXp [an(y)] dy<°°}- 3.7

i=1

Replace the integral by a sum for a pmf. An interesting fact is that Q is a convex
set. If the parameter space © of the exponential family is not a convex set, then the
exponential family cannot be regular. Example 3.2 shows that the x; distribution is
not regular since the set of positive integers is not convex.

Definition 3.3. Condition E1: the natural parameter space Q = Q.
Condition E2: assume that in the natural parameterization, neither the 7n; nor the ¢;
satisfy a linearity constraint.
Condition E3: € is a k-dimensional nonempty open set.
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If conditions E1), E2) and E3) hold then the exponential family is a k-parameter
regular exponential family (REF).

If conditions E1) and E2) hold then the exponential family is a k-parameter full
exponential family.

Notation. A kP-REF is a k-parameter regular exponential family. So a 1P-REF
is a one-parameter REF and a 2P-REF is a two-parameter REF.

Notice that every REF is full. Any k-dimensional nonempty open set will con-
tain a k-dimensional nonempty rectangle. A k-fold cross product of nonempty open
intervals is a k-dimensional nonempty open set. For a one-parameter exponential
family, a one-dimensional rectangle is just an interval, and the only type of function
of one variable that satisfies a linearity constraint is a constant function. In the defi-
nition of an exponential family and in the usual parameterization,  is a 1 X j vector.
Typically j = k if the family is a kP-REF. If j < k and k is as small as possible, the
family will usually not be regular. For example, a N(6, ?) family has # = 6 with
j=1<2=k, and is not regular. See Example 3.8 for more details.

Some care has to be taken with the definitions of ® and 2 since formulas (3.1)
and (3.6) need to hold for every # € © and for every n € Q. Let Oy be the usual
parameter space given for the distribution. For a continuous random variable or vec-
tor, the pdf needs to exist. Hence all degenerate distributions need to be deleted from
Oy to form O and (2. For continuous and discrete distributions, the natural param-
eter needs to exist (and often does not exist for discrete degenerate distributions).
As a rule of thumb, remove values from @y that cause the pmf to have the form 0°.
For example, for the binomial(k, p) distribution with k known, the natural parameter
n =1log(p/(1—p)). Hence instead of using Oy = [0, 1], use p € © = (0, 1), so that
N E Q= (—c0,00).

These conditions have some redundancy. If € contains a k-dimensional rect-
angle (e.g., if the family is a kP-REF, then 2 is a k-dimensional open set and
contains a k-dimensional open ball which contains a k-dimensional rectangle), no n;
is completely determined by the remaining n j’-s. In particular, the n; cannot satisfy a
linearity constraint. If the 7; do satisfy a linearity constraint, then the 7, lie on a hy-
perplane of dimension at most &, and such a surface cannot contain a k-dimensional
rectangle. For example, if kK = 2, a line cannot contain an open box. If k = 2 and
m= nlz, then the parameter space is not a two-dimensional open set and does not
contain a two-dimensional rectangle. Thus the family is not a 2P-REF although n;
and 1, do not satisfy a linearity constraint. Again, see Example 3.8.

The most important 1P-REFs are the binomial (k, p) distribution with k& known,
the exponential (A) distribution, and the Poisson (0) distribution.

Other 1P-REFs are discussed in Chap. 10, including the Burr type III (A, ¢) dis-
tribution with ¢ known, the Burr Type X (1) distribution, the Burr type XII (¢, 1)
distribution with ¢ known, the double exponential (6, 1) distribution with 6 known,
the two-parameter exponential (6,4) distribution with 6 known, the generalized
negative binomial (i, ) distribution if x is known, the geometric (p) distribution,
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the Gompertz (0, v) distribution with > 0 known, the half normal (i, ) distri-
bution with  known, the inverse exponential () distribution, the inverse Weibull
(¢, 1) distribution with ¢ known, the largest extreme value (6, 0) distribution if
o is known, the smallest extreme value (6,0) distribution if ¢ is known, the in-
verted gamma (v, A) distribution if v is known, the logarithmic (6) distribution, the
Maxwell-Boltzmann (u, o) distribution if y is known, the modified DeMoivre’s
law (0, ¢) distribution if 6 is known, the negative binomial (r,p) distribution if r
is known, the one-sided stable (o) distribution, the Pareto (o, A) distribution if o
is known, the power (1) distribution, the Rayleigh (i, o) distribution if u is known,
the Topp—Leone (V) distribution, the two-parameter power (7, A) distribution with T
known, the truncated extreme value (A1) distribution, the Weibull (¢, A) distribution
if ¢ is known, the zero truncated Poisson () distribution, the Zeta (v) distribution,
and the Zipf (v) distribution.

A one-parameter exponential family can often be obtained from a k-parameter
exponential family by holding k — 1 of the parameters fixed. Hence a normal (i, 6%)
distribution is a 1P-REF if ¢ is known. When data is modeled with an exponential
family, often the scale, location, and shape parameters are unknown. For example,
the mean and standard deviation are usually both unknown.

The most important 2P-REFs are the beta (8, v) distribution, the gamma (v, 1)
distribution and the normal ([.1,62) distribution. The chi (p, o) distribution, the
inverted gamma (v, A) distribution, the log-gamma (v, A) distribution, and the log-
normal (i, 62) distribution are also 2P-REFs. Example 3.9 will show that the inverse
Gaussian distribution is full but not regular. The two-parameter Cauchy distribution
is not an exponential family because its pdf cannot be put into the form of Eq. (3.1).

The natural parameterization can result in a family that is much larger than the
family defined by the usual parameterization. See the definition of £2 = (2 given by
Eq.(3.7). Casella and Berger (2002, p. 114) remarks that

(i =0wi(8),....w(6))0 €O} C 2, (3.3)
but often €2 is a strictly larger set.

Remark 3.1. For the families in Chap. 10 other than the y2 and inverse Gaussian
distributions, make the following assumptions if dim(@) = k = dim(£2). Assume
that 17; = w;(0). Assume that the usual parameter space Oy is as big as possible
(replace the integral by a sum for a pmf):

eu={0 eRk:/f(yI(’)dy:l},

and let
O={0cOy:w(h),...,w(0) are defined }.

Then assume that the natural parameter space satisfies condition E1) with
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Q={(m,....M) :Mi = wi(0) for § € O}.

In other words, simply define 1; = w;(#). For many common distributions, # is a
one-to-one function of #, and the above map is correct, especially if @y is an open
interval or cross product of open intervals.

Remark 3.2. Chapter 10 has many examples showing that a distribution is a
1P-REF or 2P-REF.

Example 3.1. Let f(x|u,o) be the N(u,c?) family of pdfs. Then § = (u, o)
where —co < I < o0 and ¢ > 0. Recall that u is the mean and ¢ is the standard
deviation (SD) of the distribution. The usual parameterization is

1 —(x—u)?
7000) = s exp (5 et

where R = (—o0,00) and the indicator I4(x) = 1 if x € A and I4(x) = 0 otherwise.
Notice that Ig(x) = 1 Vx. Since

1 —u? -1
f(x|l~17<7)=m6exp< K )exp — X —1—&2 x | Ir(x),

202 202~ 02 =~ ~——
SN S 00 | x>0
c(u,0)>0 wi(0) wa(0)
this family is a two-parameter exponential family. Hence 1y = —0.5/02 and 1, =

u/o? if 6 >0, and Q = (—o0,0) x (—oo,0). Plotting 7; on the horizontal axis
and 1, on the vertical axis yields the left half plane which certainly contains a two-
dimensional rectangle. Since #; and #, lie on a quadratic rather than a line, the family
is a 2P-REF. Notice that if Xi,...,X, are iid N(u,0?) random variables, then the
joint pdf f(x|8) = f(x1,...,.xa|1t,0) =

1 —‘LLZ n 1 & 5 u n
()| g 5|
vv vv h(x)>0
C(u,0)>0 wi(0) 7i(X) wa(0) Ty(X)

and is thus a 2P-REF.

Example 3.2. The )Cf, distribution is not a 1P-REF since the usual parameter
space Oy for the xg distribution is the set of positive integers, which is neither
an open set nor a convex set. Nevertheless, the natural parameterization is the
gamma(v,A = 2) family which is a 1P-REF. Note that this family has uncountably
many members while the X,% family does not.
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Example 3.3. The binomial(k, p) pmf is

rle) = (£)o =)ty 0

_(k Nk p
= <x>1{0,...,k}(x) (1—p)" exp |log <_1—p)‘ X
" ¢(p)>0 ——— (%)
h(x)>0 w(p)

where Oy = [0, 1]. Since the pmf and n = log(p /(1 — p)) are undefined for p =0
and p = 1, we have © = (0, 1). Notice that Q = (—oo, ).

Example 3.4. The uniform(0,0) family is not an exponential family since the
support % = (0, 0) depends on the unknown parameter 6.

Example 3.5. If Y has a half normal distribution, Y ~ HN(u, o), then the pdf of

Y is
2 —(y—p)?
0) = 2Mexp( = )

where 6 > 0 and y > u and u is real. Notice that

10)= etz wewp | 5oz ) 0=

- V2rno

is a 1P-REF if g is known. Hence © = (0,%), n = —1/(206?) and Q = (—o,0).
Notice that a different 1P-REF is obtained for each value of u when u is known
with support %}, = [1, o). If u is not known, then this family is not an exponential
family since the support depends on (.

The following two examples are important examples of REFs where
dim(@) > dim(Q2).

Example 3.6. If the #; or n; satisfy a linearity constraint, then the number of
terms in the exponent of Eq. (3.1) can be reduced. Suppose that Y, ..., Y, follow the
multinomial M,(m,p;,...,p,) distribution which has dim(®) = n if m is known.
Then Y, Yi=m, Y, p; = | and the joint pmf of Y is

n Pyl
fy)=m [T
=1 Yi:

The supportof Y is # = {y: ¥ ;yi=m and 0<y; <m for i=1,...,n}.
Since Y, and p, are knownif Yy,...,Y,_ and py,...,p,—1 are known, we can use
an equivalent joint pmf fgF in terms of Y7,...,Y,_1. Let
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m!
h(yla"' 7yn71) = [m] I[(ylu"'uynflayn) S g/]
(This is a function of yy,...,y,_1 since y, =m — 2;7;11 vi.) Then Y1,....,Y,_| have a

M, (m,p1,...,pn) distribution if the joint pmf of ¥;,... ¥, is

n—

i=

1 n—1
JeF(V15-+ - Yn-1) = exp [ yilog(pi) + <m— Z)’i) 10g(Pn)] h(y1,--Yn-1)
1 i=1

n

-1
yilog(pf/pn)] h(y1s-- s Yn—1)- (3.9)
i=1

=

= exp[mlog(pa)] exp l

Since p, =1— 27;% pj, this is an n — 1 dimensional REF with

Pi
ni =log(pi/pn) =log | ——=——
1-3""1p;

and Q =R" 1,

Example 3.7. Similarly, let x be a 1 x j row vector and let X be a j x j pos-
itive definite matrix. Then the usual parameterization of the multivariate normal
MVN;(p, ¥) distribution has dim(@) = j+ j* but is a j+ j(j + 1)/2 parame-
ter REF.

A curved exponential family is a k-parameter exponential family where the
elements of § = (0y,...,6;) are completely determined by d < k of the elements.
For example if = (6, 6?), then the elements of # are completely determined by
0; = 0. A curved exponential family is not regular since it places a restriction on

eta2
0
|

I I I I I
-4 -3 -2 -1 0

etal

Fig. 3.1 The parameter space is a quadratic, not a two-dimensional open set
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the parameter space €2 resulting in a new “natural parameter space” {2 where Q¢
does not contain a k-dimensional rectangle and is not a k-dimensional open set.

Example 3.8. The N(6,6?) distribution is a two-parameter exponential family
with n; = —1/(26%) and 17, = 1/8. To see this, note that

1 -y-6)*\ 1 -1 -
7016) = = exp (T80 ) = e | 20 - 204 0% -

1 -1 1
— —1/2 —y+—y|.
emeXp( / )eXP[zezy +9y}
Thus the “natural parameter space” is

Qc={(M,m)|M = —0.5n3,—c0 <1 <0, —c0 < M < 00,1 # 0}

To be a 2P-REF, the parameter space needs to be a two-dimensional open set.
A k-dimensional open set contains a k-dimensional open ball which contains a k-
dimensional open set. The graph of the “natural parameter space” is a quadratic and
cannot contain a two-dimensional rectangle. (Any rectangle will contain points that
are not on the quadratic, so ¢ is not a two-dimensional open set.) See Fig.3.1
where the small rectangle centered at (—2,2) contains points that are not in the
parameter space. Hence this two-parameter curved exponential family is not a
2P-REF.

3.2 Properties of (#1(Y), ..., (Y))

This section follows Lehmann (1983, pp. 29-35) closely, and several of the results
will be used in later chapters. Write the natural parameterization for the exponential
family as

k
F(yln) = h(y)b(n)exp [21 nm(y)]

k
= h(y)exp [Z niti(y) — a(n)] (3.10)
i=1

where a() = —log(b(n)). The kernel function of this pdf or pmf is

k
h(y)exp lz Th‘h‘()’)] :

i=1

Lemma 3.2. Suppose that Y comes from an exponential family (3.10) and that
g(y) is any function with Ey[|g(Y)|] < e=. Then for any 7 in the interior of Q, the
integral [ g(y)f(y|n)dy is continuous and has derivatives of all orders. These deriva-
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tives can be obtained by interchanging the derivative and integral operators. If f is
a pmf, replace the integral by a sum.

Proof. See Lehmann (1986, p. 59).

Hence
2 [s0)s0lmdy = [ 50) 2 sin)ay G
on; . sW)yvin)ay = an; fOln .
if f is a pdf and
o Zg fOln) =X g0) 8n, (vln) (3.12)
if f is a pmf.

Remark 3.3. If Y comes from an exponential family (3.1), then the derivative
and integral (or sum) operators can be interchanged. Hence

ae/ /g f(yl6)dy = / /g 6,/ (V10)dy

for any function g(y) with Eg|g(Y)| < .

The behavior of (¢#(Y),...,%(Y)) will be of considerable interest in later
chapters. The following result is in Lehmann (1983, pp. 29-30). Also see Johnson
et al. (1979).

Theorem 3.3. Suppose that ¥ comes from an exponential family (3.10). Then a)

P P
En(Y)) = a_n-“<’7) =0 log(b()) (3.13)
and b) - .
Cov(t:(Y),1;(Y)) = ma(n) =_ mlog(b(r;)). (3.14)

Notice that i = j gives the formula for VAR(#;(Y)).

Proof. The proof will be for pdfs. For pmfs replace the integrals by sums. Use
Lemma 3.2 with g(y) = 1 Vy. a) Since 1 = [ f(y|n)dy,

k
0= 8%1-1 = (%i/h(y) exp L;l Nntm(y) — a(ﬂ)} dy

k
—/h(y)aimeXp[;nmtm(y) - a(n)] dy
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b) Similarly,

2 k
0—/h(y)an?anj explz Nt (y)  — a(n)] dy.

From the proof of a),

k
Z/h(y)eXP[ZInmtm(y) - a(n)} (t,(y)—a—la(ﬂ))(/(y)—aima(n))dy
k 32
- [nexp l 3 nin() (n)] (Frgatn ) av
82
= Cov(:(Y),1;(Y)) anl_ama(n)

since ainja(r;) =E(tj(Y)) bya). O

Theorem 3.4. Suppose that Y comes from an exponential family (3.10), and let
T = (t;(Y),...,4(Y)). Then for any 5 in the interior of €2, the moment generating
function of T is

my (s) = expla(n +s) —a(n)| = expla(n + )]/ expla(n)]-

Proof. The proof will be for pdfs. For pmfs replace the integrals by sums. Since
1 is in the interior of Q there is a neighborhood of x such that if s is in that neigh-
borhood, then 5 + s € Q. (Hence there exists a 6 > 0 such that if ||s|| < &, then
n+s € .) For such s (see Definition 2.25),

k
mr (S) =F lexp (2{ S,‘l‘,‘(Y))

It is important to notice that we are finding the mgf of T, not the mgf of Y. Hence
we can use the kernel method of Sect. 1.5 to find E(g(Y)) = [g(y)f(y)dy without
finding the joint distribution of T'. So

=E(g(Y)).
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k k
mr(s) = [ex (;sm@)) () exp [zl M) — a<n>] dy

i=

. k
= [hG)exp [2 Misu(s) = aln+5) + al+5) - a(n)] dy
b i=1

k
Y (ni+s)t(y) — a(n+s)|dy

=expla(n+s) — a( /h y)exp
i=1

— expla(y +5) — a(i)] /f(yl[ﬂJrS])dy:exp[a(ﬂ+S) ~ a(n)]
since the pdf f(y|[n + s]) integrates to one. [

Theorem 3.5. Suppose that ¥ comes from an exponential family (3.10), and let
T =((Y),....,tx(Y)) = (T1,...,T;). Then the distribution of T is an exponential
family with

k
f(tln) =h*(¢)exp [Z niti — a(n)] :

i=1

Proof. See Lehmann (1986, p. 58).

The main point of this section is that T is well behaved even if Y is not. For
example, if Y follows a one-sided stable distribution, then Y is from an exponential
family, but E(Y) does not exist. However the mgf of T exists, so all moments of
T exist. If Yy,...,Y, are iid from a one-parameter exponential family, then 7 =
T, =X} t(Y;) is from a one-parameter exponential family. One way to find the
distribution function of T is to find the distribution of #(¥) using the transformation
method, then find the distribution of Y7, #(¥;) using moment generating functions
or Theorems 2.17 and 2.18. This techmque results in the following two theorems.
Notice that T often has a gamma distribution.

Theorem 3.6. Let Yi,...,Y, be iid from the given one-parameter exponential
family andlet T =T, = 31 t(Y)).

a) If ¥; is from a binomial (k,p) distribution with k known, then ¢(Y) =Y ~
BIN(k,p) and T, = 3", ¥; ~ BIN(nk, p).

b) If Y is from an exponential (1) distribution then, #(Y) = ¥ ~ EXP(A) and
T, =3" Y~ G(n,A).

¢) If Y is from a gamma (v, A) distribution with v known, then¢(Y) =Y ~ G(v, 1)
and T, =31 ,Y; ~ G(nv,A).

d)If Y is from a geometric (p) distribution, then ¢#(¥Y) = Y ~ geom(p) and
T, =Y ,Yi ~NB(n,p) where NB stands for negative binomial.

e) If Y is from a negative binomial (r, p) distribution with r known, then¢(Y) =Y ~
NB(r,p) and T, = Y| Y; ~ NB(nr,p).
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f) If Y is from a normal (u,c?) distribution with 6 known, then ¢(Y) =Y ~
N(u,0?) and T, = 3, Y; ~ N(nu,nc?).
g) If Y is from a normal (i, 6%) distribution with u known, then ¢(Y) = (¥ — u)? ~
G(1/2,206%) and T, = ¥, (Y; — pn)* ~ G(n/2,202).
h) If Y is from a Poisson (6) distribution, then ¢#(Y) =Y ~ POIS(0) and T, =
", Y; ~ POIS(n6).

Theorem 3.7. Let Y),...,Y, be iid from the given one-parameter exponential
family andlet T =T, = Y 1 (¥).

a) If ¥; is from a Burr type XII (¢,A) distribution with ¢ known, then #(Y) =
log(14Y?) ~EXP(A) and T, = Ylog(1+¥?) ~ G(n,1).
b) If Y is from a chi(p, o) distribution with p known, thent(Y) = Y2 ~ G(p/2,26?)
and T, = Y. Y? ~ G(np/2,20?).
¢) If Y is from a double exponential (6,1 ) distribution with 6 known, then 7(Y) =
|Y — 0| ~EXP(A) and T, =X} | |Yi— 0] ~ G(n,A).
d) If Y is from a two-parameter exponential (6, 4) distribution with 8 known, then
1(Y)=Y;— 0 ~EXP(A)and T, =X} | (Yi — 0) ~ G(n,A).
e) If Y is from a generalized negative binomial GNB(u, k) distribution with k
known, then T, = ¥ | ¥; ~ GNB(nu,nk)
f) If Y is from a half normal (u,c?) distribution with g known, then ¢(Y) =
(Y —p)?~G(1/2,26%) and T,, = 37, (Y; — u)? ~ G(n/2,262).
g) If Y is from an inverse Gaussian IG(0,A4) distribution with A known, then
T, =", Y; ~1G(n6,n’2).
h) If Y is from an inverted gamma (v,A) distribution with v known, then #(Y) =
1/Y ~G(v,A) and T, = ¥, 1/Y; ~ G(nv, 7).
i) If Y is from a lognormal (u,c?) distribution with u known, then #(Y) =
(log(Y) — u)? ~ G(1/2,262) and T, = 3/, (log(Y;) — 1)* ~ G(n/2,206?).
j)If Y is from a lognormal (u,c?) distribution with 6> known, then ¢(Y) =
log(Y) ~N(u,02) and T, = ¥, log(¥;) ~ N(nu,nc?).
k) If Y is from a Maxwell-Boltzmann (u, 6) distribution with u known, then#(Y) =
(Y —u)>~G(3/2,26%) and T, = 3/, (Yi — ) ~ G(3n/2,20?).
1) If Y is from a one-sided stable (o) distribution, then #(Y) = 1/Y ~ G(1/2,2/0)
and T, = ", 1/Y; ~ G(n/2,2/0).
m) If Y is from a Pareto (0, A) distribution with ¢ known, then ¢(Y) = log(Y /o) ~
EXP(A) and T, =X}, log(Y:/0) ~ G(n,A).
n) If Y is from a power (1) distribution, then #(Y) = —log(Y) ~ EXP(A) and T, =
" [~ log(¥)] ~ G(n, A).
0) If Y is from a Rayleigh (i, o) distribution with g known, then ¢(Y) = (Y — ) ~
EXP(2062) and T, = 3", (Y; — ) ~ G(n,202).
p) If Y is from a Topp—Leone (V) distribution, then #(Y) =
—log(2Y —Y?) ~EXP(1/v) and T, = 37, [— log(2Y; — Y?)] ~ G(n,1/V).
q) If Y is from a truncated extreme value (1) distribution, then ¢(Y) = e¥ — 1 ~
EXP(A) and T, = 37, (e¥i — 1) ~ G(n,A).
r) If Y is from a Weibull (¢,A) distribution with ¢ known, then ¢(Y) = Y9 ~
EXP(A) and T, = 3, ¥ ~ G(n,A).



94

3 Exponential Families

3.3 Summary

1.

Given the pmf or pdf of Y or that Y is a brand name distribution from Sect. 1.7,
know how to show whether Y belongs to an exponential family or not using

k
F(]6) = h(y)c(6)exp [21 Wi(o)ti(Y)]

f(318) = h(y)c(6) explw(6)(y)].

Tips: a) The F, Cauchy, logistic, t and uniform distributions cannot be put in form
1) and so are not exponential families.

b) If the support depends on an unknown parameter, then the family is not an
exponential family.

If Y belongs to an exponential family, set ; = w;(# ) and typically set the natural
parameter space €2 equal to the cross product of the ranges of 7);. For a kP-REEF,
€ is an open set that is typically a cross product of k open intervals. For a
1P-REE, € is an open interval.

If Y belongs to an exponential family, know how to show whether Y belongs to
a k-dimensional regular exponential family. Suppose © is found after deleting
values of @ from Oy such that the pdf or pmf is undefined and such that w;(8) is
undefined. Assume dim(©) = k = dim(£2). Typically we assume that condition
El) is true: that is, €2 is given by (3.7). Then typically €2 is the cross product
of the ranges of 17; = w;(0). If Q contains a k-dimensional rectangle, e.g., if Q
is a k-dimensional open set, then 71, ..., 1N do not satisfy a linearity constraint.
In particular, if p = 2 you should be able to show whether 1; and 1, satisfy a lin-
earity constraint and whether #; and #, satisfy a linearity constraint, to plot £2 and
to determine whether the natural parameter space €2 contains a two-dimensional
rectangle.

Tips: a) If dim(©) = k = dim(L2), then the usual parameterization has k param-
eters, and so does the kP-REF parameterization.
b) If one of the two parameters is known for the usual parameterization, then the
family will often be a 1P-REF with 1 = w(0) where 0 is the unknown parameter.
c) If the family is a two-dimensional exponential family with natural parameters
1 and 1, but the usual parameterization is determined by one-parameter 6, then
the family is probably not regular. The N(au,bu?) and N(ac,bc?) families are
typical examples. If dim(©) = j < k = dim(£2), the family is usually not regular.
If n; is a simple function of 1, then the “natural parameter space” is not a cross
product of the ranges of n;. For example, if n; = 7722, then the “natural parameter
space” is a parabola and is not a two-dimensional open set, and does not contain
a two-dimensional rectangle.
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3.4 Complements

Theorem 3.8. Suppose Y has a pdf that is a kP-REF, and that X = 7y(Y) where #,(y)
is a parameter free monotone differentiable transformation. Then X has a pdf that is
a kP-REF.

Proof. Let fy(y[n) = h(y)b(n)exp [T, nit:(y)] where the 1; and the #;(y) do
not satisfy a linearity constraint. Then

diy ' (x)
dx

Sfe(xlm) = htg ' (x)

k
b(n)exp [Z niti(tol(X))]

i=1

= h*(x)b(n)exp [T5_, mit; (x)] which is an exponential family. The family is a
kP-REF since the 1; and natural parameter space (2 are the same as for Y, and
neither the 1); nor the #(x) satisfy a linearity constraint. To see this, note that if the
t¥(x) satisfy a linearity constraint, then ¥¥_, a;t;(, ' (x)) = X, aiti(y) = ¢ where

not all @; = 0. But this contradicts the fact that the #;(y) do not satisfy a linearity
constraint. []

If Y is a k-parameter exponential family, then X = #(Y) is an exponential family
of dimension no larger than k since

iy )|

Fr(+18) = hity ' (1) | 2

0)exp [2 w;i(0)t; to )] .

Notice that for a one-parameter exponential family with 9 (y) =¢(y), the above result
implies that 7(Y) is a one-parameter exponential family. This result is a special case
of Theorem 3.5. The chi distribution and log gamma distribution are 2P-REFs since
they are transformations of the gamma distribution. The lognormal distribution is
a 2P-REF since it is a transformation of the normal distribution. The power and
truncated extreme value distributions are 1P-REFs since they are transformations of
the exponential distributions.

Example 3.9. Following Barndorff—Nielsen (1978, p. 117), if Y has an inverse
Gaussian distribution, ¥ ~ IG(60, 1), then the pdf of Y is

A exp{—x(y—eq

fy) = 2my? 202y

where y, 0,4 > 0.
Notice that

A Al
/ A/e / _
I(y >0) exp 62y Zy]

is a two-parameter exponential family.
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Another parameterization of the inverse Gaussian distribution takes 8 = /A /¥
so that

where A > 0 and y > 0. Here © = (0,) X [0, ) m=-vw/2, 11 =—-A/2and
Q = (—o0,0] X (—e0,0). Since Q is not an open set, this is a two-parameter full
exponential family that is not regular. If y is known then Y is a 1P-REF, but if 4
is known, then Y is a one-parameter full exponential family. When v =0, Y has a
one- sided stable distribution.

The following chapters show that exponential families can be used to simplify
the theory of sufficiency, MLEs, UMVUEs, UMP tests, and large sample theory.
Barndorff—Nielsen (1982) and Olive (2008) are useful introductions to exponential
families. Also see Biihler and Sehr (1987). Interesting subclasses of exponential
families are given by Rahman and Gupta (1993), and Sankaran and Gupta (2005).
Most statistical inference texts at the same level as this text also cover exponential
families. History and references for additional topics (such as finding conjugate
priors in Bayesian statistics) can be found in Lehmann (1983, p. 70), Brown (1986)
and Barndorff—Nielsen (1978, 1982).

Barndorff—Nielsen (1982), Brown (1986), and Johanson (1979) are post-PhD
treatments and hence very difficult. Mukhopadhyay (2000) and Brown (1986) place
restrictions on the exponential families that make their theory less useful. For ex-
ample, Brown (1986) covers linear exponential distributions. See Johnson and Kotz
(1972).

3.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

3.1%. Show that each of the following families is a 1P-REF by writing the pdf or
pmf as a one-parameter exponential family, finding 1 = w(6) and by showing that
the natural parameter space €2 is an open interval.

a) The binomial (k, p) distribution with k known and p € ©® = (0, 1).

b) The exponential (1) distribution with A € © = (0, c0).

¢) The Poisson () distribution with 8 € @ = (0, o).

d) The half normal (i, 6) distribution with g known and 62 € @ = (0, ).

3.2*. Show that each of the following families is a 2P-REF by writing the pdf or
pmf as a two-parameter exponential family, finding 1; = w;(0) for i = 1,2 and by
showing that the natural parameter space €2 is a cross product of two open intervals.
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a) The beta (8, V) distribution with © = (0,c0) x (0,°).
b) The chi (p, o) distribution with @ = (0,00) x (0,e0).
)

¢) The gamma (v, A) distribution with @ = (0, ) X (0,00).
d) The lognormal (/.L 0?) distribution with @ = (—oo,00) x (0, 0).
e) The normal (i, 6%) distribution with @ = (—eo,e0) x (0,0).

3.3. Show that each of the following families is a 1P-REF by writing the pdf or
pmf as a one-parameter exponential family, finding 7 = w(6) and by showing that
the natural parameter space €2 is an open interval.

a) The generalized negative binomial (i, k) distribution if x is known.
b) The geometric (p) distribution.

¢) The logarithmic () distribution.

d) The negative binomial (7, p) distribution if r is known.

e) The one-sided stable (o) distribution.

f) The power (A1) distribution.

g) The truncated extreme value (A) distribution.

h) The Zeta (v) distribution.

3.4*. Show that each of the following families is a 1P-REF by writing the pdf or
pmf as a one-parameter exponential family, finding 1 = w(6) and by showing that
the natural parameter space €2 is an open interval.

a) The N(u, 6?) family with ¢ > 0 known.

b) The N(u,c?) family with g known and ¢ > 0.
(See Problem 3.12 for a common error.)

¢) The gamma (v, A) family with v known.

d) The gamma (v, A) family with A known.

e) The beta (6, v) distribution with 6§ known.

) The beta (6, v) distribution with v known.

3.5. Show that each of the following families is a 1P-REF by writing the pdf or
pmf as a one-parameter exponential family, finding 1 = w(6) and by showing that
the natural parameter space €2 is an open interval.

a) The Burr Type XII (¢, A) distribution with ¢ known.

b) The double exponential (6, A4) distribution with 6 known.

¢) The two-parameter exponential (6, A) distribution with 6 known.
d) The largest extreme value (6, 0) distribution if ¢ is known.

e) The smallest extreme value (6, o) distribution if ¢ is known.

f) The inverted gamma (v, A) distribution if v is known.

g) The Maxwell-Boltzmann (i, ¢) distribution if u is known.

h) The Pareto (o, A4) distribution if ¢ is known.

i) The Rayleigh (u, o) distribution if u is known.

j) The Weibull (¢, A) distribution if ¢ is known.

3.6*. Determine whether the Pareto (0,A) distribution is an exponential family
or not.
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3.7. Following Kotz and van Dorp (2004, pp. 35-36), if Y has a Topp—Leone
distribution, ¥ ~ TL(V), then the cdf of ¥ is F(y) = (2y —y?)¥ for v >0 and 0 <
y < 1. The pdfof ¥ is

o) =v2-2y)2y )"
for 0 <y < 1. Determine whether this distribution is an exponential family or not.
3.8. In Spiegel (1975, p. 210), Y has pdf

2943/2
3;; y* exp(—7yy?)

fr(y)=

where Y > 0 and y is real. Is Y a 1P-REF?

3.9. Let Y be a (one-sided) truncated exponential TEXP(A,b) random variable.
Then the pdf of Y is
Lo—y/2
e
frOAb) = —A——
1 —exp(— I)

for 0 < y < b where A > 0. If b is known, is ¥ a 1P-REF? (Also see O’Reilly and
Rueda (2007).)

3.10. Suppose Y has a Birnbaum Saunders distribution. If ¢ (Y) = % + g —2, then
1Y)~ V2 7512- If 6 is known, is this distribution a regular exponential family?

3.11. If Y has a Burr Type X distribution, then the pdf of Y is
fO)=16>0)2Tye” (1—e ) =

I(y>0)2ye™ 7 expl(1-1)(~log(1 —e™))]

where 7 > 0 and —log(1 — e’Yz) ~ EXP(1/7). Is this distribution a regular expo-
nential family?

Problems from old quizzes and exams.

3.12*, Suppose that X has a N(u, %) distribution where ¢ > 0 and y is known.
Then

1 2 /(052 1 1
— —u/(20%) S
flx)= 27‘5(76 / exp { 752" + Gz,ux] .
Let n; = —1/(26?) and n; = 1/62. Why is this parameterization not the regular
exponential family parameterization? (Hint: show that 1; and 1, satisfy a linearity
constraint.)

3.13. Let X,..., X, be iid N(u,y>u?) random variables where > > 0 is known
and u > 0.
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a) Find the distribution of Y} | X;.
b) Find E[(3, X;)?].
c¢) The pdf of X is

o1 — (x—u)?
fX(x'“)_%ux/ﬁEXp{ 27212 ]

Show that the family { f(x|u) : u > 0} is a two-parameter exponential family.
d) Show that the “natural parameter space” is a parabola. You may assume that
N; = w;(W). Is this family a regular exponential family?

3.14. Let Xq,..., X, beiid N(ac,6?) random variables where o is a known real
number and o > 0.
a) Find E[3"_, X?].
b) Find E[(3, X)?].
¢) Show that the family {f(x|o) : © > 0} is a two-parameter exponential family.
d) Show that the “natural parameter space” is a parabola. You may assume that
N; = w;i(0). Is this family a regular exponential family?

3.15. If Y has a Lindley distribution, then the pdf of Y is
2

T 1+6

where y > 0and 6 > 0.Is Y a 1P-REF?

fo) (1+y)e®

3.16. Suppose the pdf of Y is

0

fy) = )0t
where y > 0and 6 > 0.Is Y a 1P-REF?

3.17. Suppose the pdf of Y is

0
)= Fppen

where —co <y < ooand 8 >0.1sY a 1P-REF?



Chapter 4
Sufficient Statistics

A statistic is a function of the data that does not depend on any unknown parameters,
and a statistic is a random variable that has a distribution called the sampling dis-
tribution. Suppose the data is a random sample from a distribution with unknown
parameters @ . Heuristically, a sufficient statistic for # contains all of the informa-
tion from the data about . Since the data contains all of the information from the
data, the data (Y1,...,Y,) is a sufficient statistic of dimension n. Heuristically, a
minimal sufficient statistic is a sufficient statistic with the smallest dimension k,
where 1 < k < n. If k is small and does not depend on 7, then there is considerable
dimension reduction.

The Factorization Theorem is used to find a sufficient statistic. The Lehmann—
Scheffé Theorem and a theorem for exponential families are useful for finding a
minimal sufficient statistic. Complete sufficient statistics are useful for UMVUE
theory in Chap. 6.

4.1 Statistics and Sampling Distributions

Suppose that the data Y7, ... Y, is drawn from some population. The observed data is
Y1 =y1,...,Y =y, where yq,....,y, are numbers. Let y = (y1,...,y,). Real valued
functions T (yy,...,y,) = T(y) are of interest as are vector valued functions T (y) =

(Ti(y),-..,Tx(y)). Sometimes the data Y}, ..., Y, are random vectors. Again interest
is in functions of the data. Typically the data has a joint pdf or pmf f(yy,...,y,|0)
where the vector of unknown parametersis # = (6y,...,6;). (In the joint pdf or pmf,
the y1,...,y, are dummy variables, not the observed data.)

Definition 4.1. A statistic is a function of the data that does not depend on any
unknown parameters. The probability distribution of the statistic is called the sam-
pling distribution of the statistic.

DJ. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4_4, 101
© Springer International Publishing Switzerland 2014
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Let the data Y = (Y1,...,Y,) where the ¥; are random variables. If T'(yy,...,y,)
is a real valued function whose domain includes the sample space % of Y, then
W =T(,...,Y,) is a statistic provided that T does not depend on any unknown
parameters. The data comes from some probability distribution and the statistic is a
random variable and hence also comes from some probability distribution. To avoid
confusing the distribution of the statistic with the distribution of the data, the dis-
tribution of the statistic is called the sampling distribution of the statistic. If the

observed data is Y = yy,...,Y, = yu, then the observed value of the statistic is
W =w=T(yi,...,yn). Similar remarks apply when the statistic T is vector valued
and when the data Y {,...,Y, are random vectors.

Often Yi,...,Y, will be iid and statistics of the form

zn: a;Y; and i t(Y;)
i=1 i=1

are especially important. Chapter 10 and Theorems 2.17,2.18, 3.6, and 3.7 are use-
ful for finding the sampling distributions of some of these statistics when the Y;
are iid from a given brand name distribution that is usually an exponential family.
The following example lists some important statistics.

Example 4.1. Let Y1, ..., Y, be the data.

a) The sample mean
XY

Y= 4.1)
b) The sample variance
n Y[_?Z n Y‘Z_ ?2
SP=52= Y ( ) _ =11 n(Y) . 4.2)
n—1 n—1
¢) The sample standard deviation S = S, = \/S2.
d) If the data Y1,...,Y;, is arranged in ascending order from smallest to largest and

written as Y(j) < --- < ¥,), then ¥;) is the ith order statistic and the ¥;)’s are
called the order statistics.
e) The sample median

MED(V!) = Y((n+l)/2) if nis odd, (43)
Yoo +Ym .
MED(n) = W if n is even.

f) The sample median absolute deviation is

MAD(n) = MED(|Y; — MED(n)|, i = 1,...,n). (4.4)
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g) The sample maximum
max(n) =Y, (4.5)
and the observed max y(, is the largest value of the observed data.
h) The sample minimum
min(n) = Y (4.6)

and the observed min y(y) is the smallest value of the observed data.

Example 4.2. Usually the term “observed” is dropped. Hence below “data” is
“observed data,” “observed order statistics” is “order statistics,” and “observed value
of MED(n)” is “MED(n).”

Let the data be 9,2,7,4,1,6,3,8,5 (so Y1 =y; =9,...,Y9 = y9g = 5). Then the
order statistics are 1,2,3,4,5,6,7,8,9. Then MED(n) = 5 and MAD(n) =2 =
MED{0,1,1,2,2,3,3,4,4}.

Example 4.3. Let Yy, ...,Y, be iid N(u,5?). Then

S (Y —u)?

n

T, =
is a statistic iff y is known.

The following theorem is extremely important and the proof follows Rice (1988,
pp. 171-173) closely.

Theorem 4.1. Let the Y;,...,Y, be iid N(u,c?).

a) The sample mean ¥ ~ N(u, 02 /n).

b) Y and S? are independent.

¢) (n—1)8?/0% ~ 2 . Hence 3, (Y;—=Y)* ~ 0%y2 ;.
val¥—p) _ (Y—p)

D=5 =g ~ -t
Proof. a) This result follows from Theorem 2.17e.

b) The moment generating function of (Y,Y; —Y,....Y, —Y) is

m(s,t1,...,tn) = E(exp[sY + (Y1 =Y) + -+ 1,(Y, = V)]).
By Theorem 2.22,Y and (Y; —Y,...,Y, —Y) are independent if
m(s,ty,....,tn) = my(s) m(ty,...,ty)
where my(s) is the mgf of Y and m(ty,...,1,) is the mgf of (Y; —Y,....Y, —Y).

Now
n n

n n
Y uY;=Y) =Y 6Y;—Yni = 1Y, — Y1V,
i=1 i=1

i=1 i=1
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and thus

S?-l-z”:li(Yi—?) = Z”: {E—I—(l‘,’—f)} Y, = Zn:a,'Y,'.
i i i=1

Hence

n
sY + Z (Y —7)
i=1

m(s,ty,...,t,) =E <exp

n
=My, ,...Y, (01,---761”) = Hmy,- (di)

since the Y; are independent. Now

n n 02 n 02 n
[Tmy,(ai) =]]exp <,uai + Ta%) =exp| Y ai+ > 2“12
i=1 i=1 i=1 i=1

2 n
G S (o2
okt Ll ]

= exp

2 2 n
=exp [IJS‘F %sz] exp l% Z{(z‘i -1 )21 .

Now the first factor is the mgf of ¥ and the second factor is m(ty,...,t;) =
m(0,t1,...,t,) since the mgf of the marginal is found from the mgf of the
joint distribution by setting all terms not in the marginal to O (i.e., set s =0
inm(s,1,...,t,) to find m(ty,...,t,)). Hence the mgf factors and

YL(Y,-Y,....Y,—Y).

Since §? is a function of (Y; —Y,...,Y, —Y), it is also true that ¥ 1L 5.
¢) (Yi—u)/o~N(0,1)so (Y;—pu)?/c? ~ x? and

1

5 2 (Y- 1)~ xe.

M=

i=1

Now

Yi—u)P?=3¥-Y+Y—p)= i(n—?)2+n(7—u)2.
i=1

M=

Il
-
I
—
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Hence

we 30w =L o (Th) cusv

Since U 1LV by b), my (t) = my (t) my(t). Since W ~ x2 and V ~ x2,

m _ —n/2

which is the mgf of a 1371 distribution.

d) _
Y —
N(0,1),
G/\/_
and
(n—1)8? 1
2,2 _ o2 2
§/o"= -1 a—1fl

Suppose Z ~ N(0,1), X ~ x> , and Z1LX. Then Z/+/X /(n—1) ~ t,,_;. Hence

V¥ —p) _ Y —p)/o
§ N

O
Theorem 4.2. Let Yy, ... ,Y, be iid with cdf Fy and pdf fy.
a) The pdf of T =¥, is
Sy @) = n[Fr (" fy (1)
b) The pdf of T' = ¥(y) is
gy @) =n[L=F @) fr (1).
¢) Let 2 <r <n. Then the joint pdf of ¥(1),¥(2),..., ¥, is

n! n—r 4
fY“),...,Y(r) (1, ty) = n=r)! [1—Fy(t)] il;[lfy(ti),

Proof of a) and b). a) The cdf of Y(,,) is

Fy, (t) = P(Y() <1) =P(V1 <t,...,Y, <1) = HP(Yi <t) = [Fy(0)]".
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Hence the pdf of ¥(,,) is

 Fyy () = SO = nlF 0] ).

dt
b) The cdf of ¥{y) is

Fy“)(t) =PY<t)=1-PYH>t)=1-P1 >t,....Y, >1)

Hence the pdf of ¥(,,) is

d d
—Fy, (t)=—(1—[1=F()]") =n[l KO " 'fr(). O
2w (0 = 2 (I=[1=F@)]") =n[l = KO fr (1)
To see that c) may be true, consider the following argument adapted from Mann
etal. (1974, p. 93). Let As; be a small positive number and notice that P(E) =

Pt < Y(1> <t +At,bH < Yoy <na+An,....t < Y(,) <t + A1)

tr+ALy 1 +AnH
= / / fy(l)’,,,7y(r) (wl,...,wr)dwl---dwr
Jty n

Since the event E denotes the occurrence of no observations before #;, exactly one
occurrence between #; and 7| + Afj, no observations between #; + Af; and #, and so
on, and finally the occurrence of n — r observations after ¢, 4+ Az,, using the multino-
mial pmf shows that

n! _
P(E) = ST o = r)!p?pzlpé’pi Py 1P

where
pai = P(t; <Y < t;+At) = f(1;) Aty
fori = 1,...,rand
pari1 = P(n—rY's>t,+At) ~ (1= F(1,))" .
Hence
n! 2 -
P(E) ~ oy (1= F () T ) [T A
(n — r)! i=1 i=1

and result ¢) seems reasonable.
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Example 4.4. Let Y1, ...,Y, be iid from the following distributions.

a) Bernoulli(p): Then Yy ~ Bernoulli(p").

b) Geometric(p): Then ¥}y ~ Geometric(1 — (1 —p)").

¢) Burr Type XII (¢,A): Then ¥{;) ~ Burr Type XII (¢, 4 /n).
d) EXP(A): Then ¥, ~ EXP(A/n).

¢) EXP(6,1): Then ¥;) ~ EXP(6, 4 /n).

f) Pareto PAR(0, 4 ): Then ¥{;) ~ PAR(c,A /n).

g) Gompertz Gomp(6, v): Then Y;) ~ Gomp(8,nv).

h) Rayleigh R(u,0): Then Y1) ~ R(u,0/+/n).

i) Truncated Extreme Value TEV(A) : Then Y(;) ~ TEV(A /n).
j) Weibull W(¢, 24 ) : Then Y{;) ~ W (9,1 /n).

Proof: a) ¥; € {0,1} so ;) € {0,1}. Hence Y{;) is Bernoulli, and P(Y{;) = 1) =
PYi=1,....,=1)=[P("1 =1)]"=p".

b) P(Y1) <y)=1-P(Yy)>y)=1-[1-F()]"=
L= [ (1= (1= ) = 1= [(1 ) = 1 —[1— (1= (1 = pyl+!
for y > 0 which is the cdf of a Geometric(1 — (1 — p)") random variable.
Parts c)-j) follow from Theorem 4.2b. For example, suppose Yi,...,Y, are
iid EXP(A) with cdf F(y) = 1—exp(—y/A) for y > 0. Then Fy, (1) =
1—[1—=(1—exp(—t/A))]" =1—[exp(—t/A)]" =1 —exp[—t/(A/n)] fort > 0.
Hence (1) ~ EXP(A/n).

4.2 Minimal Sufficient Statistics

For parametric inference, the pmf or pdf of a random variable Y is fy (y) where
0 < O is unknown. Hence Y comes from a family of distributions indexed by 6,
and quantities such as Eg(g(Y)) depend on 6. Since the parametric distribution
is completely specified by @, an important goal of parametric inference is finding
good estimators of 8. For example, if Yy, ..., Y, are iid N(u,02), then § = (u,0) is
fixed but unknown, 8 € © = (—eo,00) x (0,0) and Eg (Y) = E(, ¢)(Y) = p. Since
Vo(Y) = V(u.6)(Y) = 6%/n, Y is a good estimator for y if n is large. The notation
fo(y) = f(y|0) is also used.

The basic idea of a sufficient statistic T (Y) for @ is that all of the information
needed for inference from the data Yj,...,Y, about the parameter 6 is contained
in the statistic T(Y). For example, suppose that Y;,...,¥, are iid binomial(l,p)
random variables. Hence each observed Y; is a 0 or a 1 and the observed data
is an n-tuple of 0’s and I’s, e.g., 0,0,1,...,0,0,1. It will turn out that Y | Y;, the
number of 1’s in the n-tuple, is a sufficient statistic for p. From Theorem 2.17a,
3" ,Y; ~ BIN(n,p). The importance of a sufficient statistic is dimension reduc-
tion: the statistic Y/ | ¥; has all of the information from the data needed to perform
inference about p, and the statistic is one-dimensional and thus much easier to un-
derstand than the n dimensional n-tuple of 0’s and 1’s. Also notice that all n-tuples
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with the same number of 1’s have the same amount of information needed for infer-
ence about p: the n-tuples 1,1,1,0,0,0,0 and 0,1,0,0,1,0,1 both give 3 | ¥; = 3. The
ordering of the observed sequences of 0’s and 1’s does not contain any information
about the parameter p because the observations are iid.

Definition 4.2. Suppose that (Y,...,Y,) have a joint distribution that depends
on a vector of parameters @ for # € © where O is the parameter space. A statis-

tic T(Yy,...,Y,) is a sufficient statistic for # if the conditional distribution of
(Yy,...,Y,) given T = t does not depend on @ for any value of ¢ in the support of
T.

Example 4.5. Let the random vector Y denote the data.

a) Suppose T(y) =7 Vy. Then T is a constant and any constant is independent of
a random vector Y. Hence the conditional distribution fy (y|T) = fp () is not
independent of . Thus T is not a sufficient statistic.

b)Let T(Y) =Y, and let W have the same distribution as Y|Y = y. Since
P(Y = y|Y = y) = 1, the pmf fyy(w) of W is equal to 1 if w = y and is
equal to 0, otherwise. Hence the distribution of Y||¥ = y is independent of 6,
and the data Y is a sufficient statistic. Of course there is no dimension reduction
when the data is used as the sufficient statistic.

Often T and Y; are real valued. Then T(Y),...,Y,) is a sufficient statistic if
the conditional distribution of ¥ = (Yy,...,Y,) given T = ¢ does not depend on 6.
The following theorem provides such an effective method for showing that a statis-
tic is a sufficient statistic that the definition should rarely be used to prove that the
statistic is a sufficient statistic.

Regularity Condition F.1: If f(y|0) is a family of pmfs for § € ©, assume that
there exists a set { y;}3>, that does not depend on # € © such that Y2 | f(y;|0) =1
for all # € ©. (This condition is usually satisfied. For example, F.1 holds if the
support & is free of 6 or if y = (y1,...,y,) and y; takes on values on a lattice such
asy;€{l,...,0}for 6 € {1,2,3,...}.)

Theorem 4.3: Factorization Theorem. Let f(y|6) for # € © denote a family
of pdfs or pmfs for Y. For a family of pmfs, assume condition F.1 holds. A statistic
T(Y) is a sufficient statistic for @ iff for all sample points y and for all @ in the
parameter space O,

f(y|0)=g(T(y)|0) h(y)

where both g and 4 are nonnegative functions. The function / does not depend on 6
and the function g depends on y only through T'(y).

Proof for pmfs. If T(Y) is a sufficient statistic, then the conditional distribution
of Y given T(Y) = ¢ does not depend on @ for any ¢ in the support of T. Taking
t =T(y) gives

Pg(Y =y|T(Y)=T(y)) =P =y|[T(Y)=T(y))



4.2 Minimal Sufficient Statistics 109

for all 0 in the parameter space. Now

{(Y=y}cA{T(Y)=T(y)} (4.7)

and P(A) = P(ANB) if A C B. Hence
f(3|0)=Po(Y =y)=Pp(Y =y and T(Y) =T(y))

=Pp(T(Y)=T(y)P(Y =y|T(Y)=T(y)) =&(T(y)|0)h(y).
Now suppose

f(y10)=g(T(y)|0) h(y)
for all y and for all # € ©. Now

P(T(Y)=t)= >  f(yl6)=g(tl6) 3 hy).
{y:T (y)=t} {y:T(y)=t}

IfY=yandT(Y)=¢,thenT(y)=tand {Y =y} C{T(Y)=t¢}. Thus

Po(Y =y, T(Y)=t)  Py(Y =y)
Py(T(Y)=1t) Po(T(Y)=1t)
_ g(t]0) h(y) _ h(y)
8O X y.T(y)=ty1(Y)  Ziy1(p)=yh(¥)

which does not depend on 6 since the terms in the sum do not depend on 6 by
condition F.1. Hence T is a sufficient statistic. [J

Py(Y =y|T(Y)=t)=

Remark 4.1. If no such factorization exists for T, then T is not a sufficient statis-
tic. The “iff” in the Factorization Theorem is important.

Example 4.6. a) To use factorization to show that the data ¥ = (¥;,...,Y,) is a
sufficient statistic, take T(Y) =Y, g(T(y)|0) = f(y|0), and h(y) = 1V y.

b) For iid data with n > 1, the statistic Y] is not a sufficient statistic by the Fac-
torization Theorem since f(y[0) = f(y1]0)I1/_, f(yi|@) cannot be written as
f(y|0)=g(y1|0)h(y) where g depends on y only through y; and h(y) does not
depend on 6.

Example 4.7. Let X{,..., X, be iid N(u,5?). Then

1 _”2 n 1 & , M n
flxr,...x foz —[ 2nGeXp<TC2>} exp <2T._2i_zixi+g§ixz

= g(T(x)|0)h(x)

where 8 = (1,0) and h(x) = 1. Hence T(X) = (3%, X2, 3", X;) is a sufficient
statistic for (i, o) or equivalently for (i, 52) by the Factorization Theorem.
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Example 4.8. Let Y}, ...,Y, be iid binomial(k, p) with k known and pmf

0lp) = (’y‘) P (1= I ().

Then

fiylp) = ilif(yilp) 11| (4 0.0 - (%)2 |

i=1L\Vi
Hence by the Factorization Theorem, Y, ¥; is a sufficient statistic.

Example 4.9. Suppose Xi,...,X, are iid uniform observations on the interval
(6,0 +1), —eo < 6 < oo. Notice that

n n
HIA (x,') = I(all X; € A) and HIAn (x) = Imlrt:lAi (x)
i=1 i=1

where the latter holds since both terms are 1 if x is in all sets A; fori =1,...,n and
both terms are 0 otherwise. Hence f(x|0) =

ﬁf(xi|6) = ﬁl](xi >0)I(x; < 0+1) = 1U(min(x;) > 0)I(max(x;) <6 +1).
i-1 i=1

Then A(x) =1 and g(T (x)|0) = I(min(x;) > 6)I(max(x;) < 0+ 1),and T(X) =
(X(1> ,X(n)) is a sufficient statistic by the Factorization Theorem.

Remark 4.2. i) Suppose Yi,...,Y, are iid from a distribution with sup-
port % = #* and pdf or pmf f(y|0) = k(y|0)I(y € #*). Then f(y|0) =
IT k(i|0) T I(yi € #°*). Now the support of Y is the n-fold cross product
Y =H"x--x¥ andl(ye?)=II_1I(yie ¥*) =

I(ally; € ). Thus f(y|0) =TI k(yi|0)I( all y; € &'*).

ii) If #* does not depend on @, then I( all y; € %) is part of h(y). If '* does
depend on unknown @, then I( all y; € %*) could be placed in g(T'(y)|@). Typ-
ically #* is an interval with endpoints a and b, not necessarily finite. For pdfs,
M I(yi € [a,b]) =1(a < Y1) <Ym) < b)y=1I[a< y(l)]l[y(n> < b]. If both a and
b are unknown parameters, put the middle term in g(7(y)|6). If both @ and b
are known, put the middle term in /(). If a is an unknown parameter and b is
known, put I[a <y ()] in g(T(y)|@) and I[y(,) < b] in A(y).

iii) [Tiny 1(vi € (—o2,b)) =1(y(n) < D).

[T, I(yi € [a,0)) = I(a < y(1), et cetera.

iv) Another useful fact is that [Tj_, I(y € A;) = I(y € "E_|A;).

Example 4.10. Try to place any part of f(y|6) that depends on y but not on

0 into h(y). For example, if Y1, ...,Y, are iid U (6, 6,), then f(y|0) =

n n 1 1
10) = 10 <yi<0)=——1(6 < < 6)).
g.f(yl ) ]192_61 (61 <yi < 6) 6 =0, (01 <y(1) <V < 62)

i=
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Then h(y) = 1 and T(Y) = (Y(;),Y,)) is a sufficient statistic for (6, 6,) by factor-
1zation.

If 6; or 6, is known, then the above factorization works, but it is better to make
the dimension of the sufficient statistic as small as possible. If ; is known, then

1
f(y16) = ),,I(y(n) < 6:)I(61 <y1))

(62— 6
where the first two terms are g(7(y)|6,) and the third term is A(y). Hence
T(Y) =Y\, is a sufficient statistic for 6, by factorization. If 6, is known, then

1
f(yl0)= m“& <y () < 62)

where the first two terms are g(7(y)|6;) and the third term is k(y). Hence T(Y) =
Y1) is a sufficient statistic for 6, by factorization.

There are infinitely many sufficient statistics (see Theorem 4.8 below), but typi-
cally we want the dimension of the sufficient statistic to be as small as possible since
lower dimensional statistics are easier to understand and to use for inference than
higher dimensional statistics. Dimension reduction is extremely important and the
following definition is useful.

Definition 4.3. Suppose that Y1,...,Y, have a joint distribution that depends on
a vector of parameters @ for § € © where O is the parameter space. A sufficient
statistic T(Y') for 6 is a minimal sufficient statistic for 6 if 7(Y) is a function of
S(Y) for any other sufficient statistic S(Y') for 6.

Remark 4.3. A useful mnemonic is that S = Y is a sufficient statistic, and
T =T(Y) is a function of S.

A minimal sufficient statistic T'(Y) = gg(S(Y)) for some function g g where
S(Y) is a sufficient statistic. If S(Y') is not a minimal sufficient statistic, then S(Y)
is not a function of the minimal sufficient statistic T (Y ). To see this, note that there
exists a sufficient statistic W (Y') such that S(Y) is not a function of W (Y'). Suppose
S(Y) = h[T(Y)] for some function k. Then S(Y) = h[gw (W(Y))], a function of
W (Y ), which is a contradiction. If T| and T, are both minimal sufficient statistics,
then Ty = g(T,) and T, = h(T). Hence g(h(T)) =T and h(g(T,)) = T».
Hence h and g are inverse functions which are one to one and onto, and T'; and T,
are equivalent statistics. Following Lehmann (1983, p. 41), if the minimal sufficient
statistic T(Y) = g(S(Y)) where g is not one to one, then T(Y) provides greater
reduction of the data than the sufficient statistic S(Y). Hence minimal sufficient
statistics provide the greatest possible reduction of the data.

Complete sufficient statistics, defined below, are primarily used for the theory of
uniformly minimum variance estimators covered in Chap. 6.
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Definition 4.4. Suppose that a statistic T (Y ) has apmf or pdf f(¢]6 ). Then T (Y)
is a complete sufficient statistic for 0 if E¢[g(T(Y))] = 0 for all # implies that
Py[g(T(Y)) =0] =1 for all . The function g cannot depend on any unknown
parameters.

The statistic T(Y) has a sampling distribution that depends on n and on 6 € ©.
Hence the property of being a complete sufficient statistic depends on the family of
distributions with pdf or pmf f(#|6). Regular exponential families will have a com-
plete sufficient statistic T (Y). The criterion used to show that a statistic is complete
places a strong restriction on g, and the larger the family of distributions, the greater
is the restriction on g. Following Casella and Berger (2002, p. 285), suppose n = 1
and T(Y) =Y ~ N(6,1). The family of N(6,1) distributions for 6 € @ = (—eo, o)
is a 1P-REF, and it will turn out that Y is a complete sufficient statistic for this fam-
ily when n = 1. Suppose instead that the only member of the family of distributions
is the N(0,1) distribution. Then ® = {0}. Using g(Y) =Y gives Eyo(Y) = 0 but
Py(Y =0) =0, not 1. Hence Y is not complete when the family only contains the
N(O,1) distribution.

The following two theorems are useful for finding minimal sufficient statistics.

Theorem 4.4: Lehmann—Scheffé Theorem for Minimal Sufficient Statistics
(LSM). Let f(y|@) be the pmf or pdf of an iid sample Y. Let cx y be a constant.
Suppose there exists a function T'(y) such that for any two sample points x and y,
the ratio Ry y(0) = f(x]0)/f(y|0) = cx,y for all @ in © iff T(x) = T(y). Then
T(Y) is a minimal sufficient statistic for .

In the Lehmann—Scheffé Theorem, for R to be constant as a function of @, define
0/0 = cx,y. Alternatively, replace Rx y(0) = f(x|0)/f(y|0) =cx y by f(x|0) =
cx,yf(y]@) in the above definition.

Finding sufficient, minimal sufficient, and complete sufficient statistics is often
simple for a kP-REF (k-parameter regular exponential family). If the family given
by Eq. (4.8) is a kP-REF, then the conditions for Theorem 4.5a—d are satisfied
as are the conditions for e) if 5 is a one-to-one function of #. In a), k does not need
to be as small as possible. In Corollary 4.6 below, assume that Egs. (4.8) and (4.9)
hold.

Note that any one-to-one function is onto its range. Hence if y = (@) for any
n € Q where 7 is a one-to-one function, then 7 : @ — (2 is one to one and onto.
Thus there is a one-to-one (and onto) inverse function 7~! such that § = t~!(y) for
any 0 € 0.

Theorem 4.5: Sufficiency, Minimal Sufficiency, and Completeness of Expo-
nential Families. Suppose that Y1, . ..,Y), are iid from an exponential family

F10) =h(y)c(8)exp[wi(0)f(y) + - +wi(0)(y)] (4.8)

with the natural parameterization
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fOlm) =h(y)b(n)exp Mt (y) + - + Mt ()] (4.9)

so that the joint pdf or pmf is given by

SOt nln) = (Hh y,) |"exp lmztl (vj)+- +nk2tk yJ]

j=1 j=1
which is a k-parameter exponential family. Then

j=1 j=1

a) a sufficient statistic for # and for y,

b) a minimal sufficient statistic for 5 if 1y,...,1n; do not satisfy a linearity con-
straint,

¢) a minimal sufficient statistic for 8 if wi(8),...,w(8) do not satisfy a linearity
constraint,

d) a complete sufficient statistic for  if €2 contains a k-dimensional rectangle,
e) a complete sufficient statistic for @ if » is a one-to-one function of # and if Q
contains a k-dimensional rectangle.

Proof. a) Use the Factorization Theorem.

b) The proof expands on remarks given in Johanson (1979, p. 3) and Lehmann
(1983, p. 44). The ratio

}?7 h Xj k
o = ihEy; exp [2 ni(Tix) — n(y))]

i=1

is equal to a constant with respect to n iff

k
Z ni[Ti(x) — Ti(y)] = ;Thai =d

for all n; where d is some constant and where a; = T;(x) — T;(y) and T;(x) =
2;5:1 ti(x j). Since the 1n; do not satisfy a linearity constraint, 2;‘:1 nia; = d for all
n iff all of the a; = 0. Hence

T(Y)=(Ti(Y),....T(Y))

is a minimal sufficient statistic by the Lehmann—Scheffé LSM Theorem.

¢) Use almost the same proof as b) with w;(#) in the place of 1; and @ in the place
of . (In particular, the result holds if n; = w;(@) for i = 1,... k provided that
the n); do not satisfy a linearity constraint.)

d) See Lehmann (1986, p. 142).

e) If n = 7(#) then § = 7 !(n) and the parameters have just been renamed.
Hence Eg[g(T)] = 0 for all 8 implies that Ey[g(T)] = O for all 5, and thus
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Py[g(T(Y)) =0] =1 for all 5 since T is a complete sufficient statistic for » by
d). Thus Py[g(T(Y)) =0] =1 for all 8, and T is a complete sufficient statistic
for 6.

Corollary 4.6: Completeness of a kP-REF. Suppose that Yy,...,Y, are iid from
a kP-REF (k-parameter regular exponential family)

F(0) =h(y)c(8)exp[wi(0)t(y) + - +wi(0)(y)]

with @ € © and natural parameterization given by (4.9) with € 2. Then

_ <it1<yj>,...,izk<m>
j=1 Jj=1

a) a minimal sufficient statistic for # and for y,
b) a complete sufficient statistic for # and for y if 5 is a one-to-one function of .

Proof. The result follows by Theorem 4.5 since for a kP-REF, the w;(#) and n;
do not satisfy a linearity constraint and €2 contains a k-dimensional rectangle. [J

Theorem 4.7: Bahadur’s Theorem. A finite dimensional complete sufficient
statistic is also minimal sufficient.

Theorem 4.8. A one-to-one function of a sufficient, minimal sufficient, or com-
plete sufficient statistic is sufficient, minimal sufficient, or complete sufficient,
respectively.

If T\(Y) = g(T»(Y)) where g is a one-to-one function, then T,(Y) =
g (T (Y)) where g~! is the inverse function of g. Hence T| and T, provide
an equivalent amount reduction of the data. Also see the discussion below Re-
mark 4.3. Note that in a kP-REF, the statistic T is k-dimensional and thus T is
minimal sufficient by Theorem 4.7 if T is complete sufficient. Corollary 4.6 is
useful because often you know or can show that the given family is a REF. The
theorem gives a particularly simple way to find complete sufficient statistics for
one-parameter exponential families and for any family that is known to be a REF. If
it is known that the distribution is regular, find the exponential family parameteriza-
tion given by Eq. (4.8) or (4.9). These parameterizations give #1(y),...,#(y). Then

T(Y)= X0, X t(Y))).
Example 4.11. Let X1, ..., X, be iid N(u,6?). Then the N(u,c?) pdfis

1 W -1 2 s
flxlu,0) = exp< > exp | =— + = x| r(),
: V2no 202 20 2\/ o2 v ——
" 1(x) v 2) | hx)>0

¢(1,0)>0 wi(6) wy(0)

with n; = —0.5/62 and 1 = u/o0? if 6 > 0. As shown in Example 3.1, this is a
2P-REF. By Corollary 4.6, T = (3, X;, 37, X?) is a complete sufficient statistic
for (i, 02). The one-to-one functions
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T,=(X,$%) and T3 = (X,S)

of T are also complete sufficient where X is the sample mean and S is the sam-
ple standard deviation. T', T» and T'3 are minimal sufficient by Corollary 4.6 or by
Theorem 4.7 since the statistics are two dimensional.

Example 4.12. Let Y}, ..., Y, be iid binomial(k, p) with k known and pmf

f0lp) = (’;) P (1= ) I,y )

- P/~~~
c(p)=0 1))
h(y)>0 w(p)

= ()tio.00) (1= p ewp froe (125
A7

where © = (0,1) and £ = (—eo,0). Notice that ) = log(%) is an increasing and
hence one-to-one function of p. Since this family is a 1P-REF, T,, = X} ¢t(Y;) =
Y., Y is complete sufficient statistic for p.

Compare Examples 4.7 and 4.8 with Examples 4.11 and 4.12. The exponential
family theorem gives more powerful results than the Factorization Theorem, but of-
ten the Factorization Theorem is useful for suggesting a potential minimal sufficient
statistic.

Example 4.13. In testing theory, a single sample is often created by combin-
ing two independent samples of iid data. Let Xj,...,X, be iid exponential (6) and
Y1,...,Y, iid exponential (0 /2). If the two samples are independent, then the joint
pdf f(x,y|0) belongs to a regular one-parameter exponential family with complete
sufficient statistic T = Y} | X; +2Y7" | Yi. (Let W; = 2Y;. Then the W; and X; are iid
and Corollary 4.6 applies.)

Rule of thumb 4.1: A k-parameter minimal sufficient statistic for a d-dimensional
parameter where d < k will not be complete. In the following exampled =1 <2 =k.
(A rule of thumb is something that is frequently true but cannot be used to rigor-
ously prove something. Hence this rule of thumb cannot be used to prove that the
minimal sufficient statistic is not complete.)

Warning: Showing that a minimal sufficient statistic is not complete is a problem
that often appears in qualifying exams on statistical inference.

Example 4.14 ( Cox and Hinkley 1974, p. 31). Let X, ..., X, be iid N(u, 2 u?)
random variables where y2 > 0 is known and u > 0. Then this family has a one-
dimensional parameter u, but

1 ~1 -1 5, 1
o) = e P (52) 2 (572 + %)
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is a two-parameter exponential family with @ = (0,e) (which contains a one-
dimensional rectangle), and (2;’:1Xi72§’:1xi2) is a minimal sufficient statistic.
(Theorem 4.5 applies since the functions 1/ and 1/u? do not satisfy a linear-
ity constraint.) However, since E, (X?) = y2u? + u? and ¥ X; ~ N(nu,ny2u?)
implies that

2
<2Xz‘> = nu? +nu?,
i=1

we find that

2
o < n+v,
szz (zxf) = Do 2 (1 4 92) — (2 + ) =
i=1 0

+% S 1+

for all u so the minimal sufficient statistic is not complete. Notice that

Q={(n1,nz):m _17’2772}

and a plot of n; versus 1 is a quadratic function which cannot contain a two-
dimensional rectangle. Notice that (11,7),) is a one-to-one function of i, and thus
this example illustrates that the rectangle needs to be contained in €2 rather than ©.

Example 4.15. The theory does not say that any sufficient statistic from a REF
is complete. Let Y be a random variable from a normal N(0,5?) distribution with
02 > 0. This family is a REF with complete minimal sufficient statistic Y. The data
Y is also a sufficient statistic, but ¥ is not a function of Y2. Hence Y is not minimal
sufficient and (by Bahadur’s Theorem) not complete. Alternatively E > (Y) = 0 but
P»(Y =0)=0 <1, soY is not complete.

Theorem 4.9. Let Y1,...,Y, be iid.

a)If Y ~ U(61,62), then (Y(;),Y,)) is a complete sufficient statistic for (6, 6).
See David (1981, p. 123.)

b) IfY; ~ U(6;,6,) with 6; known, then Y(,,) is a complete sufficient statistic for 6,.

¢) IfY; ~U(6y,6,) with 6, known, then Y(1> is a complete sufficient statistic for 6;.

d) IfY; ~U(—6,0), then max(|Y;]) is a complete sufficient statistic for 6.

e) If ¥; ~ EXP(6,1), then (Y;),Y) is a complete sufficient statistic for (6,1). See
David (1981, pp. 153-154).

f) IfY; ~ EXP(0, 1) with A known, then ¥(;) is a complete sufficient statistic for 6.

g) If ¥; ~ Cauchy(u, o) with 6 known, then the order statistics are minimal suffi-
cient.

h) If ¥; ~ Double Exponential(0,A) with A known, then the order statistics
(Y(1),---,Y(n)) are minimal sufficient.

i) If Y; ~ logistic(u, o), then the order statistics are minimal sufficient.

) If Yi ~ Weibull(¢,2), then the order statistics (¥(y),...,Y(,)) are minimal
sufficient.
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A common midterm, final, and qual question takes X, ..., X, iid
U(hy(0),h,(0)) where h; and h,, are functions of 6 such that 4;(0) < h,(6). The
function h; and h, are chosen so that the min = X() and the max = X(,,) form the
two-dimensional minimal sufficient statistic by the LSM theorem. Since 6 is one
dimensional, the rule of thumb suggests that the minimal sufficient statistic is not
complete. State this fact, but if you have time find Eq[X(;)] and Eg[X(,,)]. Then show
that Eg[aX(1) + DX,y +c] = 0 so that T' = (X(;), X)) is not complete.

Example 4.16. The uniform distribution is tricky since usually
(X(1),X(n)) is minimal sufficient by the LSM theorem, since

1
x)=—-—1(0) <x(1) <x(p <6
f(x) CETG ( 1) < X(n) )
if n > 1. But occasionally 6; and 6, are functions of the one-dimensional param-
eter 6 such that the indicator can be written as 1(6 > T) or I(6 < T) where the
minimal sufficient statistic 7' is a one-dimensional function of (X(),X,)). If X ~

U(c1+d10,c2+dr0) where dy,da, ¢y, ¢y are known and d; < 0 and d, > 0, then

X —ct Xm—c2
T =
max ( i 4

is minimal sufficient.
LetX,...,X, beiid U(1 — 6,1+ 6) where 6 > 0 is unknown. Hence

1
fX(x):%I(l—9<x< 14 6)
and
flx) _1(1—9<X(1) <xm) < 1+0)
Fy) I(1-6<yq) <y <1+86)

This ratio may look to be constant for all 6 > 0 iff (x(1),x(,)) = (¥(1),Y(n)), but itis
not. To show that T'y = (X{;),X(,)) is not a minimal sufficient statistic, note that

1
fx(x) = %1(9 >1—x)I(0>x—1).
Hence

f(x) _ I(@ > max(l —X(1)sX(n) — 1))

f(y)  1(6 >max(1—yg),yu —1))
which is constant for all 8 > 0iff 75(x) = T»(y) where Tr(x) =
max(1 —x(j),x(,) — 1). Hence Tr = Tr(X) = max(1 — X{;),X(,) — 1) is minimal
sufficient by the LSM theorem. Thus T'; is not a minimal sufficient statistic (and so
not complete) since 7’1 is not a function of 75.
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To show that T'; is not complete using the definition of complete statistic, first

find E(T). Now
A | t+6-—1
)= [ —dx=—""~
x(0) /1,629 YT 20

for 1 — 6 <t < 1+ 0. Hence by Theorem 4.2a),

n (t+6—1\""
o= ("5

forl —0 <t <146 and

1+6 n x+06—1 n-l
EG(X(”)) = /fo(n) (x)dx: ‘/179 X% <T> dx.

Use u—substitution with u = (x+6 —1)/26 and x =260u+1—60.Hencex=1+06
implies u = 1, and x = 1 — 0 implies u = 0 and dx = 20du. Thus

120u+1-6

_ n—1 _
Eg(X(n) = n/o 0 u""'20du

1 1 1
:n/ [29u+1—9]u”71du:29n/ u”du—i—(n—n@)/ udu =
0 0 0

n+1 |1 unl
20n +n(l-0)—| =
n+1j, n o
1-6
P L Gl ) B SR SP VL
n+1 n n+1

Note that Eg(X(,)) ~ 1+ 6 as you should expect.

By Theorem 4.2b),
n (0—t+1\""
Fxn ()= 3 (T)

for1—6 <t < 14 6 and thus

40 n (O —x4+1\""
EQ(X(U)_./lfG Xﬁ <—29 ) dx.

Use u—substitution with u = (6 —x+1)/20 and x =0 + 1 —260u. Hencex =1+ 6
implies u =0, and x = 1 — 0 implies u = 1 and dx = —260du. Thus
n 1

0
Eg(X(l))Z/I 26(e+1—29u)u"*1(—2e)du=n/0 (041 —20u)u" 'du=

1 1
n(e+1)/ u"*du_zen/ Wdu=(8+1)n/n—26n/(n+1)=6+1-20—"
0 0 n+1
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To show that T'| is not complete try showing Ey (aX(l) +bX(n)+ ¢) = 0 for some
constants a,b, and c. Note that a = b = 1 and ¢ = —2 works. Hence Ey (X(l) +
X(n) —2) =0 for all 6 > 0 but Pa(g(T1) =0) = Po(X(1) +X(n) —2=0)=0<1
for all 6 > 0. Hence T'; is not complete. (To see that Py(g(T1) = 0) = 0, note that
if random variables Y1, ...,Y, have a joint pdf, then a nonzero linear combination
of the random variables is a random variable W with a pdf by Theorem 2.14. So
P(W = 0) = 0 since the probability that a random variable W is equal to a constant
is 0 if W has a pdf. The order statistics have a joint pdf by Theorem 4.2 c¢). Thus the
linear combination W = g(T';) has a pdf and P(W = 0) =0.)

Definition 4.5. Let Y1,...,Y, have pdf or pmf f(y|0). A statistic W(Y) whose
distribution does not depend on 8 is called an ancillary statistic.

Theorem 4.10, Basu’s Theorem. Let Yy, ..., Y, have pdf or pmf f(y|0). If T (Y)
is a k-dimensional complete sufficient statistic, then T(Y) is independent of every
ancillary statistic.

Remark 4.4. Basu’s Theorem says that if 7' is minimal sufficient and complete,
then T ILR if R is ancillary. Application: If 7' is minimal sufficient, R ancillary
and R is a function of T (so R = h(T) is not independent of T), then T is not
complete. Since 0 is a scalar, usually T (Y) is not complete unless k = 1: then write
the minimal sufficient statistic as T(Y).

Example 4.17. Suppose Xi,...,X, are iid uniform observations on the interval
(0,0 +1), —o0 < 0 < oo, Let X1y = min(X1,...,Xp), X(,) = max(Xy,...,X,) and
T (X)=(X(1),X(n)) be a minimal sufficient statistic. Then R = X,;) — X(1) is ancillary
since R = max(X; —0,...,X,—6)+60 —[min(X; —6,...,X,—0)+0] =U,) — Uy
where U; = X; — 0 ~ U(0, 1) has a distribution that does not depend on 6. R is not
independent of T', so T is not complete.

Example 4.18. Let Y;,...,Y, be iid from a location family with pdf fy (y|0) =
fx(y—0) where Y = X 4 0 and fx(y) is the standard pdf for the location family
(and thus the distribution of X does not depend on 0).

Claim: W = (Y; —Y,...,Y, —Y) is ancillary.

Proof: SinceY; =X;+ 0,
1 13 4 e
W= X1+6—;Z(XH—Q),...,X,H-G—ZZ(XH—G) =X -X,..., X, —X)
i=1 i=1
and the distribution of the final vector is free of 6. [

Application: Let Y7,...,Y, be iid N(u,c?). For any fixed ¢, this is a location
family with @ = u and complete sufficient statistic 7(Y) =Y. Thus Y 1L W by Basu’s
Theorem. Hence Y 1L S? for any known ¢ > 0 since

1

n—1

SZ _ i(YI_Y)Z
i=1

is a function of W. Thus Y 1LS? even if 62 > 0 is not known.
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4.3 Summary

1. A statistic is a function of the data that does not depend on any unknown
parameters.

2. For parametric inference, the data Yi,...,Y; comes from a family of para-
metric distributions f(y|@) for § € ©. Often the data are iid and f(y|0) =

" 1 f(i|@). The parametric distribution is completely specified by the un-
known parameters 6. The statistic is a random vector or random variable and
hence also comes from some probability distribution. The distribution of the
statistic is called the sampling distribution of the statistic.

3. Foriid N(u,0?) data, Y 1LS?, Y ~ N(u,0%/n) and 37 (Y; = Y)? ~ 02x2 .

4. For iid data with cdf Fy and pdf fy, fy(n)( ) = n[Fy ()" fy(¢) and fY<1)(t) =
n[l—Fy(0)]" fyr (¢).

5. A statistic T (Y1,...,Y,) is a sufficient statistic for 8 if the conditional distribu-
tion of (Y},...,Y,) given T does not depend on 6.

6. A sufficient statistic T (Y) is a minimal sufficient statistic if for any other suffi-
cient statistic S(Y), T(Y) is a function of S(Y).

7. Suppose that a statistic T (Y) has a pmf or pdf f(¢]0). Then T (Y) is a complete
statistic if Eg[g(T (Y))] =0 for all € © implies that
Pylg(T(Y))=0]=1forall§ € 0.

8. A one-to-one function of a sufficient, minimal sufficient, or complete sufficient
statistic is sufficient, minimal sufficient, or complete sufficient, respectively.

9. Factorization Theorem. Let f(y|0) denote the pdf or pmf of a sample Y.
A statistic T(Y) is a sufficient statistic for 8 iff for all sample points y and
for all @ in the parameter space O,

f(y|0)=g(T(y)|0) h(y)

where both g and & are nonnegative functions.

Tips: i) for iid data with marginal support % = #*, Iy (y) = I(all y; € #*). If
B = ( ) then Iay(y) = I(a <Y <Ymn < b) = I(a < y(1>)1(y(n) < b). Put
I(a < y(l)) in g(T(y)|@) if a is an unknown parameter but put I(a < y(;)) in
h(y) if a is known. If both a and b are unknown parameters, put I(a < y(;) <
V) <b)ing(T(y)|0).1f b= oo, then Iy (y) = I(a < y ))- If & = [a,b], then
Igz/(y) = I(Cl < Yy <Ym) < b) = I(a < Ya ))I( (n) < ) ii) Try to make the
dimension of T (y) as small as possible. Put anything that depends on y but not

6 into h(y).
10. Minimal and complete sufficient statistics for k-parameter exponential
families: Let Y,...,Y, be iid from an exponential family

F(0) =h(y)c(0) exp[zl 1w;(0)t;(y)] with the natural parameterization
FO1n) =h(s)b(n) explShy 158j()). Then T(¥) = (S 11 (1), Xy (1)
is

a) a minimal sufficient statistic for » if the 17; do not satisfy a linearity constraint
and for @ if the w;(#) do not satisfy a linearity constraint.
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b) a complete sufficient statistic for @ and for 7 if y is a one-to-one function of 0

11.

and if €2 contains a k-dimensional rectangle.
Completeness of REFs: Suppose that Y7,...,Y, are iid from a kP-REF

F10) = h(y)c(0)exp[wi(0)t1(y) + - +wi(0)tx(y)] (4.10)

with # € © and natural parameter € 2. Then

T(Y) = (f;rl(m,...étk(n)) is

a) a minimal sufficient statistic for » and for 6,

b) a complete sufficient statistic for @ and for y if y is a one-to-one function of

12.

13.

14.

and if €2 contains a k-dimensional rectangle.

For a two-parameter exponential family (k = 2), 171 and 1, satisfy a linearity
constraint if the plotted points fall on a line in a plot of 1y versus 1. If the
plotted points fall on a nonlinear curve, then 7' is minimal sufficient but £2 does
not contain a two-dimensional rectangle.

LSM Theorem: Let f(y[@) be the pmf or pdf of a sample Y. Let cx y be a
constant. Suppose there exists a function T (y) such that for any two sample
points x and y, the ratio Ry y(0) = f(x]0)/f(y|0) = cx,y for all § in O iff
T(x)=T(y). Then T(Y) is a minimal sufficient statistic for 8. (Define 0/0 =
Cx7y.)

Tips for finding sufficient, minimal sufficient and complete sufficient statistics.

a) Typically Y1,...,¥, are iid so the joint distribution f(y1,...,y,) =TT, f()
where f(y;) is the marginal distribution. Use the factorization theorem to
find the candidate sufficient statistic 7.

b) Use factorization to find candidates 7' that might be minimal sufficient statis-
tics. Try to find T with as small a dimension k as possible. If the support of
the random variable depends on 6, often ¥(y or ¥(,) will be a component
of the minimal sufficient statistic. To prove that T is minimal sufficient, use
the LSM theorem. Alternatively prove or recognize that Y comes from a
regular exponential family. 7 will be minimal sufficient for 6 if Y comes
from an exponential family as long as the w;(#) do not satisfy a linearity
constraint.

c) To prove that the statistic is complete, prove or recognize that Y
comes from a regular exponential family. Check whether dim(®) = k. If
dim(©) < k, then the family is usually not a kP-REF and Theorem 4.5 and
Corollary 4.6 do not apply. The uniform distribution where one endpoint is
known also has a complete sufficient statistic.

d) Let k be free of the sample size n. Then a k-dimensional complete sufficient
statistic is also a minimal sufficient statistic (Bahadur’s Theorem).
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e) To show that a statistic T is not a sufficient statistic, either show that
factorization fails or find a minimal sufficient statistic S and show that S
is not a function of 7'.

f) To show that T is not minimal sufficient, first try to show that T is not a
sufficient statistic. If T is sufficient, find a minimal sufficient statistic S and
show that T is not a function of S. (Of course S will be a function of T'.)
The Lehmann-Scheffé (LSM) theorem cannot be used to show that a
statistic is not minimal sufficient.

g) To show that a sufficient statistics T is not complete, find a function g(7')
such that Eg(g(T)) = 0 for all § but g(T) is not equal to the zero with
probability one. Finding such a g is often hard, unless there are clues. For
example, if T = (X,Y,....) and y; = o, try g(T) =X —Y. As a rule of
thumb, a k-dimensional minimal sufficient statistic will generally not be
complete if k > dim(©). In particular, if T is k-dimensional and 6 is j-
dimensional with j < k (especially j = 1 < 2 = k) then T will generally
not be complete. If you can show that a k-dimensional sufficient statistic T
is not minimal sufficient (often hard), then T is not complete by Bahadur’s
Theorem. Basu’s Theorem can sometimes be used to show that a minimal
sufficient statistic is not complete. See Remark 4.4 and Example 4.17.

15. A common question takes Y1,...,Y, iid U(h;(8),h,(6)) where the min = ¥,
and the max = ¥(,; form the two-dimensional minimal sufficient statistic. Since
0 is one dimensional, the minimal sufficient statistic is probably not complete.
Find Eg[Y(y)] and Eg[Y(,)]. Then show that Eg[aY ;) + bY(,) +c] = 0 so that
T = (Y(1),Y(y)) is not complete.

4.4 Complements

Some minimal sufficient statistics and complete sufficient statistics are given in
Theorem 4.9 for distributions that are not exponential families.

Stigler (1984) presents Kruskal’s proof that Y 1S when the data are iid N(u, 62),
but Zehna (1991) states that there is a flaw in the proof.

The Factorization Theorem was developed with increasing generality by Fisher,
Neyman, and Halmos and Savage (1949).

Bahadur’s Theorem is due to Bahadur (1958) and Lehmann and Scheffé (1950).

Basu’s Theorem is due to Basu (1959). Also see Koehn and Thomas (1975) and
Boos and Hughes-Oliver (1998). An interesting alternative method for proving in-
dependence between two statistics that works for some important examples is given
in Datta and Sarker (2008).

Some techniques for showing whether a statistic is minimal sufficient are illus-
trated in Sampson and Spencer (1976).
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4.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

4.1. LetX),...,X, be arandom sample froma N(u, 62) distribution, which is an
exponential family. Show that the sample space of (77, T») contains an open subset
of R%,if n > 2 butnotif n = 1.

Hint: Show that if n > 2, then T} = ¥, X; and T = 3| X?. Then T = aT? +
b(Xy,...,X,) for some constant a where b(X,...,X,) = Y, (Xi — X)? € (0,).
So range(Ty, ) = { (t1,t2)|t2 > at? }. Find a. If n = 1 then b(X;) = 0 and the curve
cannot contain an open two-dimensional rectangle.

4.2. LetXy,...,X, beiid exponential(4) random variables. Use the Factorization
Theorem to show that 7(X) = Y X; is a sufficient statistic for A.

4.3. Let X, ..., X, be iid from a regular exponential family with pdf

i=1

k
f(xln) = h(x)b(n)exp [Z niti(x)

Let T(X) = (Ti(X),..., Ti(X)) where T;(X) = Xj_ t:(X;).

a) Use the Factorization Theorem to show that T (X) is a k-dimensional sufficient
statistic for 7.

b) Use the Lehmann Scheffé LSM theorem to show that T (X) is a minimal suffi-
cient statistic for 2.
(Hint: in a regular exponential family, if Zf.‘: 1a;iN; = ¢ for all 5 in the natural pa-
rameter space for some fixed constants ay,...,a; and ¢, thena; =--- =a; =0.)

44.LetXy,...,X, be iid N(u,y2u?) random variables where 72 > 0 is known
and u > 0.

a) Find a sufficient statistic for u.

b) Show that (3, X;, >/~ , X?) is a minimal sufficient statistic.
¢) Find E,[3, X7

d) Find E,[(31, X;)?].

e) Find

+7 & A

n o 2 _

X; X;

Bl 2 2 <; )
(Hint: use ¢) and d).)

f) Is the minimal sufficient statistic given in b) complete? Explain.
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4.5.If Xj,...,X, are iid with f(x|0) = exp[—(x — 0)]for x > O, then the joint
pdf can be written as

f(x]8) =e"exp (- > xi) 1[0 < x(y)].

By the Factorization Theorem, T (X) = (XX;,X(1)) is a sufficient statistic. Show
that R(0) = f(x|60)/f(y|0) can be constant even though T (x) # T(y). Hence
the Lehmann—Scheffé Theorem does not imply that 7 (X) is a minimal sufficient
statistic.

4.6. Find a complete minimal sufficient statistic if Yy,...,Y, are iid from the
following 1P-REFs.

a) Y ~ binomial (k,p) with kK known.

b) Y ~ exponential (1).

¢) Y ~ gamma (v,A) with v known.

d) Y ~ geometric (p).

e) Y ~ negative binomial (r, p) with r known.
f) Y ~ normal (u,c?) with 62 known.

g) Y ~ normal (i, 6?) with y known.

h) Y ~ Poisson (0).

4.7. Find a complete minimal sufficient statistic if Yy,...,Y, are iid from the
following 1P-REFs.

a) Y ~ Burr Type XII (¢, 4) with ¢ known.
b) Y ~ chi(p, o) with p known
¢) Y ~ double exponential (6,4) with 6 known.
d) Y ~ two-parameter exponential (6, 1) with 6 known.
e) Y ~ generalized negative binomial (i, k) with K known.
f) Y ~ half normal (1,6?) with y known.
g) Y ~ inverse Gaussian (6,4 ) with A known.
h) Y ~ inverted gamma (v, A) with v known.
i) Y ~ lognormal (i, 6) with 4 known.
j) Y ~ lognormal (i, 62) with 62 known.
k) Y ~ Maxwell-Boltzmann (i, o) with g known.
1) Y ~ one-sided stable (o).
m) Y ~ Pareto (0, A) with o known.
n) Y ~ power ().
0) Y ~ Rayleigh (u, o) with u known.
p) Y ~ Topp-Leone (v).
q) Y ~ truncated extreme value (A).
r) Y ~ Weibull (¢, 1) with ¢ known.

4.8. Find a complete minimal sufficient statistic T if Yy,...,Y, are iid from the
following 2P-REFs.
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a) The beta (0, v) distribution.

b) The chi (p, o) distribution.

¢) The gamma (v, A) distribution.

d) The lognormal (i, 62) distribution.
e) The normal (i, 62) distribution.

4.9. i) Show that each of the following families is a 1P-REF. ii) Find a complete

minimal sufficient statistic if ¥7,...,Y, are iid from the 1P-REF.
a) Let
log(6)
= ey
) =3
where 0 <y <1and 6 > 1.
Comment:
6" —1
F =
W) =37

for 0 <y < 1, and the mgf

log () e(+102(9)) _ 1

() 0—1 1+1log(H)

b) Y has an inverse Weibull distribution.
¢) Y has a Zipf distribution.

4.10. Suppose Y has a log-gamma distribution, ¥ ~ LG(v,1).

i) Show the Y is a 2P-REF.
ii) IfYy,...,Y, are iid LG(v,A), find a complete minimal sufficient statistic.
iii) Show W = ¢! ~ gamma (v, 1).
Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q since these problems take longer than quiz and exam problems.

4.11. Suppose that Xi,...,X;;Y1,...,Y, are iid N(u, 1) random variables. Find
a minimal sufficient statistic for u.

4.12. Let Xi,...,X, be iid from a uniform U(6 — 1,0 + 2) distribution. Find a
sufficient statistic for 6.

4.13. Let Yy,...,Y, be iid with a distribution that has pmf Py(X = x) =
0(1—-0)*!, x=1,2,..., where 0 < 6 < 1. Find a minimal sufficient statistic for 6.

4.14. Let Yy,...,Y, be iid Poisson(A) random variables. Find a minimal suffi-
cient statistic for A using the fact that the Poisson distribution is a regular exponen-
tial family (REF).
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4.15. Suppose that Xi,...,X, are iid from a REF with pdf (with respect to the
natural parameterization)

4
f(x) = h(x)c"(n)exp [21 mti(X)] :

Assume dim(©) = 4. Find a complete minimal sufficient statistic 7 (X) in terms of
n,ty, t, t3, and t4.

4.16. Let X be a uniform U (—0, 6) random variable (sample size n = 1). a) Find
EgX.b)Is T(X) =X a complete sufficient statistic? c) Show that |X | = max(—X,X)
is a minimal sufficient statistic.

4.17. A fact from mathematics is that if the polynomial
P(w) = a,w" + Ay W+ amw? +ayw+ap = 0 for all w in a domain that
includes an open interval, then a, = --- = a; = ap = 0. Suppose that you are trying
to use the Lehmann Scheffé (LSM) theorem to show that (3 X;, ZXiz) is a minimal
sufficient statistic and that you have managed to show that

Sxlw) _
flylu)
iff
1 1
“ e > =i am Dxi—Yyi]=d “.11)

for all 1 > 0. Parts a) and b) give two different ways to proceed.

a) Let w = 1/ and assume that 7, is known. Identify a, a; and ao and show that
a; = 0 implies that (3, X;, ¥, X?) is a minimal sufficient statistic.

b) Let n; = 1/u? and m, = 1/u. Since (4.11) is a polynomial in 1/, can 1; and
1, satisfy a linearity constraint? If not, why is (¥.X;,Y, X?) a minimal sufficient
statistic?

4.18. Let X1,...,X, be iid Exponential(A1) random variables and Yi,...,Y,, iid
Exponential(A /2) random variables. Assume that the ¥;’s and X’s are independent.
Show that the statistic (¥}, X;,X/", ¥;) is not a complete sufficient statistic.

4.19. Let X1, ..., X, be iid gamma(v,A) random variables. Find a complete, min-
imal sufficient statistic (77 (X),T>(X)). (Hint: recall a theorem for exponential fam-
ilies. The gamma pdf is (for x > 0)

xV—lpg=x/2
flx)= W-)

4.20. Let X1,. .., X, be iid uniform(6 — 1,0 4 1) random variables. The follow-
ing expectations may be useful:



4.5 Problems 127

EX = 0, EgX(1)= 14020~ EgX(y=1-0+20—"—.

a) Find a minimal sufficient statistic for 6.
b) Show whether the minimal sufficient statistic is complete or not.

4.21. LetXj,...,X, beindependentidentically distributed random variables with

pdf
o o]
109 =g (- 3)

where x and o are both positive. Find a sufficient statistic 7 (X) for .

4.22. Suppose that Xi, ..., X, areiid beta(d, v) random variables. Find a minimal
sufficient statistic for (8, v). Hint: write as a two-parameter REF.

4.23. Let X1, ..., X, be iid from a distribution with pdf
f(x]0) =6x7%, 0< O <x< oo
Find a sufficient statistic for 6.
4.24. Let X1,...,X, be iid with a distribution that has pdf

—X

fx) = 52 &P <W)

for x > 0 and 6> > 0. Find a minimal sufficient statistic for 6> using the Lehmann—
Scheffé Theorem.

4.25. Let X1,...,X, be iid exponential (1) random variables. Find a minimal
sufficient statistic for A using the fact that the exponential distribution is a 1P-REF.

4.26. Suppose that X, ..., X, are iid N(u,c?). Find a complete sufficient statis-
tic for (u,o?).

4.279. Let X; and X, be iid Poisson (A ) random variables. Show that T = X; +
2X, is not a sufficient statistic for A. (Hint: the Factorization Theorem uses the word
iff- Alternatively, find a minimal sufficient statistic S and show that § is not a function
of T.)

4.289. Suppose that Xi,...,X, are iid N(o, ) where ¢ > 0.

a) Find a minimal sufficient statistic for o.
b) Show that (X,S?) is a sufficient statistic but is not a complete sufficient statistic
for o.

4.29. Let X,...,X, be iid binomial(k = 1, ) random variables and Y1, ..., Y, iid
binomial(k = 1, 0/2) random variables. Assume that the ¥;’s and X;’s are indepen-
dent. Show that the statistic (3}, X;, >/, ¥;) is not a complete sufficient statistic.
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4.30. Suppose that X1, ..., X, are iid Poisson(2) where A > 0. Show that (X,$?)
is not a complete sufficient statistic for A.
4.319. Let Xy,..., X, be iid beta(8,0). (Hence § = v = 0.)

a) Find a minimal sufficient statistic for 6.
b) Is the statistic found in a) complete? (prove or disprove)

4.329, Let Xi,...,X, be independent identically distributed random variables
with probability mass function

1
f) =PX =x) = =~
Ye(v)
where v > 1 and x = 1,2,3,.... Here the zeta function

(=3 5

forv > 1.

a) Find a minimal sufficient statistic for v.
b) Is the statistic found in a) complete? (prove or disprove)
c¢) Give an example of a sufficient statistic that is strictly not minimal.

4.33. Let Xj,...,X, be a random sample from a half normal distribution with
pdf
2 —(x—u)?
109 = ——exp (0]

where ¢ > 0 and x > u and u is real.
Find a sufficient statistic T = (T}, Tz, ..., T;) for (1,c) with dimension & < 3.

4.34. Let Xy = min;<;j<, X;. If Xj,...,X, are iid exponential(1) random vari-
ables, find E(X(y)).

4.35. Let X(,,) =maxi<i<p X;. If Xi,...,X, are iid uniform(0, 1) random variables,
find E(X(n))

4.362. Let Xy, ..., X, be iid uniform(8, 6 + 1) random variables where  is real.

a) Find a minimal sufficient statistic for 6.
b) Show whether the minimal sufficient statistic is complete or not.

4.37. Let Y, ...,Y, be iid from a distribution with pdf

f)=21ye” (1—e)™!

fory > 0 and f(y) = 0 for y < 0 where 7 > 0.

a) Find a minimal sufficient statistic for 7.
b) Is the statistic found in a) complete? Prove or disprove.



Chapter 5
Point Estimation I

A point estimator gives a single value as an estimate of a parameter. For example,
Y = 10.54 is a point estimate of the population mean . An interval estimator gives a
range (L,,U,) of reasonable values for the parameter. Confidence intervals, studied
in Chap.9, are interval estimators. The most widely used point estimators are the
maximum likelihood estimators, and method of moments estimators are also widely
used. These two methods should be familiar to the reader. Uniformly minimum
variance unbiased estimators are discussed in Chap. 6.

5.1 Maximum Likelihood Estimators

Definition 5.1. Let f(y|@) be the pmf or pdf of a sample Y with parameter space ©.
If Y =y is observed, then the likelihood function is L(0) = L(6|y) = f(y|8). For
each sample point y = (y1,...,yn), let é(y) € O be a parameter value at which
L(6) = L(0]y) attains its maximum as a function of # with y held fixed. Then a
maximum likelihood estimator (MLE) of the parameter 0 based on the sample Y
is@(Y).

The following remarks are important.

I) Itis crucial to observe that the likelihood function is a function of € (and that
Y1,---,Vn act as fixed constants). Note that the pdf or pmf f(y|@) is a function
of n variables while L(#) is a function of k variables if  is a 1 x k vector. Often
k=1 or k =2 while n could be in the hundreds or thousands.

) IfY),...,Y, is an independent sample from a population with pdf or pmf f(y|0),
then the likelihood function

n
L) = L(Oyr,....yn) = [T/ (vil6). 5.1)
i=1
DJJ. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4_5, 129
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L(6) —ﬁﬁmw)

if the ¥; are independent but have different pdfs or pmfs.

III) If the MLE [ exists, then 6 € ©. Hence if 6 is not in the parameter space O,
then @ is not the MLE of .

IV) If the MLE is unique, then the MLE is a function of the minimal sufficient
statistic. See Levy (1985) and Moore (1971). This fact is useful since exponen-
tial families tend to have a tractable log likelihood and an easily found minimal
sufficient statistic.

Theorem 5.1: Invariance Principle. If § is the MLE of 6, then /(8 is the MLE
of h(#) where h is a function with domain ©.

This theorem will be proved in Sect. 5.4. Really just need © € dom(h) so h() is
well defined: can’t have log(—7.89) or /—1.57.

There are four commonly used techniques for finding the MLE.

Potential candidates can be found by differentiating log L(8 ), the log likelihood.
Potential candidates can be found by differentiating the likelihood L(9).

The MLE can sometimes be found by direct maximization of the likelihood ().
Invariance Principle: If 6 is the MLE of @, then /() is the MLE of 4(9).

The one-parameter case can often be solved by hand with the following tech-
nique. To show that 6 is the MLE of 6 is equivalent to showing that 6 is the
global maximizer of logL(6) on © where © is an interval with endpoints ¢ and
b, not necessarily finite. Suppose that logL(0) is continuous on ©. Show that
logL(8) is differentiable on (a,b). Then show that  is the unique solution to the
equation % logL(0) = 0 and that the second derivative evaluated at 0 is negative:

2

d
707 logL(6)| <O0.See Remark 5.1V below.
6

Remark 5.1. From calculus, recall the following facts.

I) If the function # is continuous on an interval [a, b], then both the max and min
of h exist. Suppose that / is continuous on an interval [a,b] and differentiable
on (a,b). Solve #'(6) =0 and find the places where #'(6) does not exist.
These values are the critical points. Evaluate £ at a, b, and the critical points.
One of these values will be the min and one the max.

II) Assume # is continuous. Then % has a local max at the critical point 6, if &
is increasing for 6 < 6, in a neighborhood of 6, and if % is decreasing for
6 > 0, in a neighborhood of 6, (and 6, is a global max if you can remove the
phrase “in a neighborhood of 6,”). The first derivative test is often used: if &
is continuous at 6, and if there exists some & > 0 such that #’'(6) > 0 for all 6
in (6,—8,6,) and #'(6) < 0 for all 6 in (6,,0, + &), then & has a local max
at 0,.
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a b
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Fig. 5.1 The local max in (a) is a global max, but the local max at 8 = —1 in (b) is not the global
max

II) If A is strictly concave (dd—(jzh(e) < 0 for all 6 € O), then any local max of h

is a global max.
2

IV) Suppose ' (6,) = 0. The second derivative test states that if ddwh(e{,) <0,
then £ has a local max at 6,.

V) If h(6) is a continuous function on an interval with endpoints a < b (not
necessarily finite), differentiable on (a,b) and if the critical point is unique,
then the critical point is a global maximum if it is a local maximum. To
see this claim, note that if the critical point is not the global max, then there
would be a local minimum and the critical point would not be unique. Also
see Casella and Berger (2002, p. 317). Leta = —2 and b = 4. In Fig. 5.1a, the
critical point for g(6) = —62% +25 is at 8 = 0, is unique, and is both a local
and global maximum. In Fig. 5.1b, (6) = 03 —1.562— 66 + 11, the critical
point 8 = —1 is not unique and is a local max but not a global max.

VI) If A is strictly convex (%h( 0) > 0 for all 8 € O), then any local min of &
is a global min. If '(6,) = 0, then the second derivative test states that if
%h(@o) > 0, then 6, is a local min.

VID) If A(6) is a continuous function on an interval with endpoints a < b (not
necessarily finite), differentiable on (a,b) and if the critical point is unique,
then the critical point is a global minimum if it is a local minimum. To see
this claim, note that if the critical point is not the global min, then there would
be a local maximum and the critical point would not be unique.

Tips: a) exp(a) = ¢“ and log(y) = In(y) = log,(y) is the natural logarithm.
b) log(a®) = blog(a) and log(e”) = b.

¢) log(TT\_; ai) = X} log(ay).

d) log L(8) = log(ITL_, /(]0)) = X, log(f(11]6)).
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. . . . (9
e) If ¢ is a differentiable function and 7(6) # 0, then L log(|1(6)]) = £(6)
where ' (0) = %t(e). In particular, %log(e) =1/6.
f) Any additive term that does not depend on 0 is treated as a constant with
respect to 0 and hence has derivative 0 with respect to 6.

Showing that  is the global maximizer of log(L(#)) is much more difficult in
the multiparameter case. To show that there is a local max at 6 often involves using
a Hessian matrix of second derivatives. Calculations involving the Hessian matrix
are often very difficult. Often there is no closed form solution for the MLE and a
computer needs to be used. For hand calculations, Remark 5.2 and Theorem 5.2 can
often be used to avoid using the Hessian matrix.

Definition 5.2. Let the data be Y;,...,Y, and suppose that the parameter # has
components (61,...,0;). Then 6; will be called the MLE of ;. Without loss of
generality, assume that § = (0;,6,), that the MLE of @ is (él,éz) and that §,
is known. The profile likelihood function is Lp(61) = L(0,, 0>(y)) with domain
{60,:(01,0,) € O}.

Remark 5.2. Since L(6, 6,) is maximized over O by (6, 65), the maximizer of
the profile likelihood function and of the log profile likelihood function is 6. The
log profile likelihood function can often be maximized using calculus if 6, = 0; is
a scalar.

Theorem 5.2: Existence of the MLE for a REF (Barndorff-Nielsen 1982):
Assume that the natural parameterization of the kP-REF (k-parameter regular exp-
onential family) is used so that €2 is an open k-dimensional convex set (usually an
open interval or cross product of open intervals). Then the log likelihood function
log[L(n)] is a strictly concave function of . Hence if # is a critical point of
log[L(n)] and if 4 € Q, then # is the unique MLE of 5. Hence the Hessian ma-
trix of second derivatives does not need to be checked! Moreover, the critical point
) is the solution to the equations T;(y) = ¥, t; (Vm) Hyn E[tj(Yn)] =E[Tj(Y)]
forj=1,... k.

Proof Sketch. The proof needs several results from nonlinear programming,
which is also known as optimization theory. Suppose that 4(7) is a function with
continuous first and second derivatives on an open convex set €. Suppose the h(n)
has Hessian (or Jacobian) matrix H = H () with ij entry

(92
Hij(n) = mh(ﬂ)-

Let the critical point 4 be the solution to

J set
a—nih(ﬂ) =0
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fori=1,... k. If H(y) is positive definite on €, then 4 is strictly convex and 4 is a
global minimizer of 4. Hence —# is strictly concave and ij is a global maximizer of
h. See Peressini et al. (1988, pp. 10-13, 54).

Suppose Y comes from a k-parameter exponential family. Then the distribution
of (t1(Y),...,t(Y)) is a k-parameter exponential family by Theorem 3.5 that has
a covariance matrix X; by Theorem 3.4. An important fact is that X; is positive
definite.

LetYy,...,Y, be iid from a kP-REF with pdf or pmf

i=1

k
Flm) = h(y)b(n)exp [Z niti(y)] :

As stated above Definition 3.3, €2 is an open convex set. Now the likelihood function
L(n) =Ty S mln) =

n n n
[H h(ym)] [b(n)]" exp lm D )+ e Y tk(ym)] :
m=1 m=1 m=1
Hence the log likelihood function

k
log[L(n)] = d +nlog(b(n)) + Z n;T;
=1

where T; = T;(y) = X1 1j(Ym)-

Now
i10 [L(n)] *nilo b))+ T, =—nEt;(Y)|+T; =
ani g " anl g 7’ l 1 1
n n
— > E(Yn)]+ Y, tilym)
m=1 m=1
for i =1,...,k by Theorem 3.3a. Since the critical point # is the solution to the

k equations %bg[L(r;)] £ 0, the critical point 4 is also a solution to T;(y) =
set

m=11i(m) = 201 E[ti(Yn)] = E[T:(Y)] fori=1,... k.
Now
02 92
Wlog[L(”)] = "anianj log(b(n)) = —nCov(t;(Y),;(Y))

by Theorem 3.3b, and the covariance matrix X; with ij entry Cov(#;(Y),#;(Y)) is
positive definite. Thus A(n) = —log[L(n)] has a positive definite Hessian and is
strictly convex with global min # if § € £. So log[L(n)] is strictly concave with
global max ) if §j € Q.
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Remark 5.3. For k-parameter exponential families with £ > 1, it is usually easier
to verify that the family is regular than to calculate the Hessian matrix. For 1P-REFs,
check that the critical point is a global maximum using standard calculus tech-
niques such as calculating the second derivative of the log likelihood log Z(€). For
a 1P-REF (one-parameter regular exponential family), verifying that the family is
regular is often more difficult than using calculus. Also, often the MLE is desired
for a parameter space @y which is not an open set (e.g., for Oy = [0, 1] instead of
0 =(0,1)).

Remark 5.4. (Barndorff-Nielsen 1982). The MLE does not exist if # is not
in 2, an event that occurs with positive probability for discrete distributions. If T is
the complete sufficient statistic and C is the closed convex hull of the support of T,
then the MLE exists iff T € int C where int C is the interior of C.

Remark 5.5. Suppose L(0) = f(y|0) =g(y|0)I(y € %) =
8(y[0)I(0 cAy)=g(y|0)I(0 €Ay)+0I(0 € A}) where A is the complement of
Ay. Then log(L(8)) = log[g(y|0)]/(6 € Ay) + (—==)I(6 € A§,). Neither L(6) nor
log(L(0)) is maximized for § € Ag,, and for§ €Ay, th'e log likelihood log(L(8)) =
log[g(y[0)11(y € Zp) = log[g(y[6)]1(8 € Ay). Thus if L(8) = g(y|0)I(y € %),
do not do anything to the indicator when finding log(L(8)), but only consider
values of @ for which the indicator is equal to one when maximizing log(L(8)).

Remark 5.6. As illustrated in the following examples, the second derivative is
evaluated at A(y). The MLE is a statistic and 7, (y) = 6(y) is the observed value
of the MLE T,,(Y) = 6(Y). Often y and Y are suppressed. Hence in the following
example, 6= y is the observed value of the MLE, while 6 =Y is the MLE.

Example 5.1. Suppose that Y7,...,Y, are iid Poisson (6). This distribution is a
1P-REF with @ = (0, ). The likelihood

L(6) = c e " expllog(6) Y. yi]

where the constant ¢ does not depend on 6, and the log likelihood

log(L(0)) =d —n6+1og(6) Y yi

where d = log(c) does not depend on 6. Hence
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unless Y y; = 0. Hence for ¥ y; > 0 the log likelihood is strictly concave and Y is the
MLE of 8. The MLE does not exist if 3, ; ¥; = 0 since 0 is not in O.

Now suppose that ©@ = [0,). This family is not an exponential family since the
same formula for the pmf needs to hold for all values of 6 € © and 0° is not defined.

Notice that

f6) = 16 >0]+11[6 =0,y =0].

Now
15(0)15(6) = Ian5(6)
and I(0) = 0 for all 6. Hence the likelihood

L(0) = e " exp [log Zy,] i 16 >0]+11
l 1)

6= OZyl_O]

i=1

If Yy; # 0, then ¥ maximizes L(6) by the work above. If > y; = 0, then L(0) =
e 1(0 > 0)+1(6 =0) = ¢ "°1(6 > 0) which is maximized by 8 = 0 = ¥. Hence
Y is the MLE of 6 if © = [0, ).

By invariance, ¢(Y) is the MLE of #(0). Hence (Y)? is the MLE of 62. sin(Y) is
the MLE of sin(6), etc.

Example 5.2. Suppose that Y;,...,Y, are iid N(u,c?) where 6> > 0 and u €
R = (—o0,c0). Then

1 \" 1 -1
L(u,0%) = (E) WGXP [7‘2 ;(yi—li)z} ‘

d set
d—z 2 -2(y =0

Notice that

or Y, yi =ni or Il =73. Since [l is the unique solution and

d? Z >
S i P =200,
du* 5
fi =¥ is the minimizer of A() = ¥, (y; — 1). Hence ¥ is the maximizer of

S
aﬂzggm—mﬂ

regardless of the value of 6 > 0. Hence fl =Y is the MLE of u and the MLE of
02 can be found by maximizing the profile likelihood

LP(GZ)—L(ﬁ(y)vGZ)—<\/%> (02 l)n/z lzcﬂz ]
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Writing T = 62 often helps prevent calculus errors. Then

n

tog(Ly(1) =d  § 10g(®)+ 37 3 057

where the constant d does not depend on 7. Hence

or

or

d? _n Y(vi—7v)? _n nt 2
g7 oelr (D) = 5o — = | T3 T G
G

Hence 62 =% = 13" (¥, —Y)? is the MLE of 62 by Remark 5.1 V). Thus
(Y, 13n (¥;—Y)?) is the MLE of (i, 0?).

Example 5.3. Following Pewsey (2002), suppose that Yi,....Y, are iid
HN(u,6?) where u and 62 are both unknown. Let the ith order statistic Yiiy = Yin.
Then the likelihood

L(u,0%) = eIy > M]%exp [(%) 3 (3 —M)Z} .

For any fixed 6 > 0, this likelihood is maximized by making ¥ (y; — )? as small
as possible subject to the constraint yy., > u. Notice that for any u, < yi.,, the terms
(vi = ¥1:)* < (yi — Mo)?. Hence the MLE of y is
Il =Y
and the MLE of 67 is found by maximizing the log profile likelihood
log(Lp(07)) =log(L(y1:,0%)) = d — Elog 202 > vi—yia)?,

and

%log(L(yhm 62)) - 2(0?) + 2(02)2 Z(Yi —)’I:n)2 <.
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Or > (y; —yl:,,)2 =no?. So

62

1
Wn = n Z(yi _ylzn)z-

Since the solution &2 is unique and

mlog(L(ylsz )=
n _Z(Yi_li)z) _n n&®2  —n “0
2(0?)? (02)3 62—52 - 2(62)2 (62)3 2 262 ’
(ft,6%) = (Y1.,,W,) is MLE of (u,c?).
Example 5.4. Suppose that the random vectors X ,..., X, are iid from a multi-

variate normal N,(p, X') distribution where X' is a positive definite matrix. To find
the MLE of (u, X' ) we will use three results proved in Anderson (1984, p. 62).

i) ﬁ(xi )X xi—p)=tr( T A) (X —p) E N (xF-p)

where

ii) Let C and D be positive definite matrices. Then C = %D maximizes
h(C) = —nlog(|C|) —tr(C~' D)

with respect to positive definite matrices.
iii) Since X ~! is positive definite, (¥ — )7 X ~!(¥ — ) > 0 as a function of g with
equality iff u =x.

Since

exp {—l(x - —IL)] :

flx|p,X2)= >

1
(2m)r/2| E[1/2
the likelihood function

L. Z) =[] f(xin. E)
i=1

o 1 1 ' —_—
_Wexp[_ig(’“_“) T (xi—p)|,
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and the log likelihood log(L(p, X)) =

n

np n 1 _
— - log(2m) = Jlog(|Z]) = 5 X (xi—w)" T~ (xi— )
i=1

n n 1 _ n,__ 1
=~ log(2m) — Zlog(| X ) —51r(E ' A) = Z(F— ) T (F - p)

by i). Now the last term is maximized by p =X by iii) and the middle two terms are
maximized by %A by ii) since X' and A are both positive definite. Hence the MLE
of (u,X)is

(%)= (Yaéi(Xi—Y)(Xi—Y)T> -

i=1

Example 5.5. Let X1, ..., X, be independent identically distributed random vari-
ables from a lognormal (i, 62) distribution with pdf

—(log(x) — p)?
9= gmmen (<5

where 6 > 0 and x > 0 and U is real. Assume that ¢ is known.

a) Find the maximum likelihood estimator of L.
b) What is the maximum likelihood estimator of u>? Explain.

Solution: a)
> log(X;)
n

[:L:

To see this note that

B 1 — Y (log(x;) — p)?
Lp) = (Hm) exp ( 202 > '
So
oglx;) — 2
log(L(u)) =log(c) — W

and the derivative of the log likelihood wrt 1 is

>.2(log(xi) — u)
202 ’

Setting this quantity equal to O gives nt = X log(x;) and the solution {I is unique.
The second derivative is —1/62 < 0, so [l is indeed the global maximum.
b)

n

(zlog<xl~)>3

by invariance.
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Example 5.6. Suppose that the joint probability distribution function of
Xl, e ,Xk is

— (2 % n—K)x
f(xlaXZ,---vka)—(n_k)!ekexp< (Zizi )6+( k) k]>

where 0 < x; <xp <---<x;and 6 > 0.

a) Find the maximum likelihood estimator (MLE) for 6.
b) What is the MLE for 82?2 Explain briefly.

Solution: a) Let t = [(3X_,x;) 4+ (n — k)x]. L(0) = f(x]6) and log(L(8)) =
log(f(x[6)) =

d—klog(0) — é

Hence
d —k T set
—log(L =—+—==0.
Hence
kO =t
or
At
0—=-.
k
This is a unique solution and
d? k2t k  2kO k
—1 L(O)= = —— = = — = = — == 0.
402 Og( ( )) 02 93 0—b 02 03 02 <

Hence § = T /k is the MLE where T = [(3X_, X;) + (n — k) X;].
b) 62 by the invariance principle.

Example 5.7. Let X1, ..., X, be independent identically distributed random vari-
ables with pdf

where A >0and 0 < x < 1.

a) Find the maximum likelihood estimator of A.
b) What is the maximum likelihood estimator of A3? Explain.

Solution: a) For0 <x <1
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Hence the likelihood
1 1
L(A) = T &P [(I - 1) ZIOg(x,)} ,
and the log likelihood

log(L(A)) = —nlog(A) + <% - 1) Y log(x;).

Hence

d _—n log(n)
—log(L()) = = — =55,

or —Ylog(x;) =nA, or
i — Y log(x;)

n

Notice that A is the unique solution and that

d? n 2¥log(x)
—510g(L(A)) = -5+ ——5—
dr? A2 A3 Py

n o 2nAh  —n
=————=-—<0.
Az A3 A2
Hence A = — Y log(X;)/n is the MLE of A.
b) By invariance, A3 is the MLE of A.

L(theta) for U(2,4) data

0.0010
]

0.0006
]

2.0 2.5 3.0 3.5 4.0
theta

Fig. 5.2 Sample size n = 10
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Example 5.8. Suppose Y1,...,Y, areiid U(0 — 1,0 + 1). Then
n n 1 1
10) = {1700 = TT310 -1 <3< 041 = g6 -1 < ity <0+1)

1
T

Let 0 < ¢ < 1. Then any estimator of the form 6, = Yy = 1+ (1 =c)[Y) +1]
is an MLE of 0. Figure 5.2 shows L(0) for U(2,4) data with n = 10,y(,) = 2.0375
and y(,) = 3.7383. The height of the plotted line segment is 1/2'° ~ 0.00098.

Remark 5.7. Chapter 10 has many MLE examples.

1
10 —1 <y Sy S 0+1)= 50 —1<0 <y +1).

5.2 Method of Moments Estimators

The method of moments is another useful way for obtaining point estimators. Let
Yy,...,Y, be an iid sample and let

L1 j '
= 2/ and ;= ;(6) = Eg (¥/) 52)
1

n
=

for j =1,...,k. So fi; is the jth sample moment and u; is the jth population
moment. Fix k and assume that y; = u;(6y,...,6). Solve the system

set

= wi (61, ,6)

A~ set

e = .uk(ela"'uek)

for 4.

Definition 5.3. The solution 6 = (él,...,ék) is the method of moments est-
imator of #. If g is a continuous function of the first k moments and 7(60) =
g(ui(0),...,1(0)), then the method of moments estimator of 2(0) is

g(.ﬁlv"'u.ak)'

Definition 5.3 is similar to the invariance principle for the MLE, but note that
g needs to be a continuous function, and the definition only applies to a function
of (fl1,...,[) where k > 1. Hence Y is the method of moments estimator of the
population mean u, and g(Y) is the method of moments estimator of g(u) if g is a
continuous function. Sometimes the notation éMLE and éMM will be used to denote
the MLE and method of moments estimators of 6, respectively. As with maximum
likelihood estimators, not all method of moments estimators exist in closed form,
and then numerical techniques must be used.
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Example 5.9. Let 17,...,Y, be iid from a distribution with a given pdf or pmf
f(510).

a) If E(Y) = h(8), then Oy = A~ (V).
b) The method of moments estimator of E(Y) = y; is fi; =
¢) The method of moments estimator of VARg(Y) = i2(0) — [u1(0)]? is

(Yi—Y)* =83,

S| =
.M:

1 —

) N ~2 2 2

Omm = Ho —Hi = E,Yi -¥) =
i=1 1

14

Method of moments estimators need not be unique. For example both ¥ and S3,
are method of moment estimators of 0 for iid Poisson(8) data. Generally the method
of moments estimators that use small j for f1; are preferred, so use Y for Poisson
data.

Proposition 5.3. Let $3, = 1 37 | (¥; —Y)? and suppose that E(Y) = /;(6;,6>)
and V(Y) = hp(6;,6,). Then solving

set

YE h(6,6,)
Sz set (91,92)

for # is a method of moments estimator.

Proof. Notice that M = h1(61,92) = [.11(91,92) while My — [,Lll]z = h2(61,62).
Hence ty = hy(6,,6;) + [h1 (91 ,8))? = ,uz(Ol, 62) Hence the method of moments

estimator is a solution to Y 1,(6,,6,) and 1 Ly Y2= = hy(61,6,) + [11(61,6,)]%.

Equivalently, solve Y = h1 (61,6,) and
AN Y [V =53 Z ha(61,62). O

Example 5.10. Suppose that Y1, ..., Y, be iid gamma (v,A). Then fI; = = E(Y)=
vA and I, £ E(Y2) = VAR(Y) + [E(Y)]? = vA2 + v2A2 = vA2(1 + v). Substitute
v = [1;/A into the second equation to obtain

NPT f

=—A71+ Al
Ha 1 ( 2 ) -+ f

8 _m
f—-ai Sy
Alternatively, solve ¥ < vA and 52, £ vA? = (vA)A. Hence A = $2,/Y and

Thus

o ma_p2 2 N
l:u:STM and \7:&:
Hy Y A

Y
V=5 ="
A
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5.3 Summary

Let f(y|@) be the pmf or pdf of a sample Y. If ¥ = y is observed, then the likeli-
hood function L(0) = f(y|0). For each sample point y = (y1,...,y,), let 6 (y) be
a parameter value at which L(€|y) attains its maximum as a function of @ with y
held fixed. Then a maximum likelihood estimator (MLE) of the parameter 6 based
on the sample Y is 4 (Y).

Note: it is crucial to observe that the likelihood function is a function of @ (and
that y,...,y, act as fixed constants).

Note: If Y7,...,Y, is an independent sample from a population with pdf or pmf
f(v]@) then the likelihood function

n

L(6)=L(Oy1,....,yn) = [ f(i]0).
i=1

Note: If the MLE @ exists, then 6 co.

Potential candidates for the MLE can sometimes be found by differentiating
L(0), by direct maximization, or using the profile likelihood. Typically the log like-
lihood is used as in A) below.

A) LetYi,...,Y, be iid with pdf or pmf f(y|0). Then L(0) =TT, f(:|0). To find
the MLE,

i) find L(0) and then find the log likelihood logL(6).
ii) Find the derivative d% log L(0), set the derivative equal to zero and solve for 6.
The solution is a candidate for the MLE.
iii) Invariance Principle: If 6 is the MLE of 6, then () is the MLE of 7(6).
iv) Show that 6 is the MLE by showing that 0 is the global maximizer of log L(6).
Often this is done by noting that 0 is the unique solution to the equation
%logL(B) = 0 and that the second derivative evaluated at  is negative:
2
%logL(Qﬂé <0.
B) If logL(0) is strictly concave (%logL(G) < 0 for all 8 € ©), then any local
max of logL(6) is a global max.

C) Know how to find the MLE for the normal distribution (including when y or o2
is known). Memorize the MLEs

n

(=T, 2 3 (¥ —u)?
1 ni3

S| =
.M:

Y, S =

l

for the normal and for the uniform distribution. Also Y is the MLE for several
brand name distributions. Notice that S3, is the method of moments estimator
for V(Y) and is the MLE for V(Y if the data are iid N(u, 6?).

D) On qualifying exams, the N(u, i) and N(u, u?) distributions are common. See
Problems 5.4, 5.30, and 5.35.
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E) Indicators are useful. For example, [T, I4(y;) = I(all y; € A) and H’; 11, (v) =
4. (¥)-Hence I(0<y<0)=1(0<y)I(y<0),and [T 1(6; <y < '6) =

—14;
1(61 < y(1) <Yy < 62) =101 <y (y(n) < 62).

F) Suppose Xi,...,X, are iid with pdf or pmf f(x|1) and Y1, ...,¥, are iid with pdf
or pmf g(y|ut). Suppose that the X’s are independent of the ¥’s. Then

I
j

sup (Al ) < supLe(A)supLy (1)
(Au)eo u

where Lx (1) =TT, f(xi |?L) Hence if A is the marginal MLE of A and fl is the
marginal MLE of ,u, then (2, f1) is the MLE of (A, i) provided that (A, 1) is in
the parameter space ©.

G) Letfi; = %2?:1 Y/, let uj = E(Y/) and assume that yt; = p;(6,...,6). Solve
the system

Ji5} sélvl(91, - 6k)

= (61,60

for the method of moments estimator 6.
H) If g is a continuous function of the first k moments and /2(6) =
g(u1(0),...,1(0)), then the method of moments estimator of /() is

g, ).

5.4 Complements

Optimization theory is also known as nonlinear programming and shows how to
find the global max and min of a multivariate function. Peressini et al. (1988) is an
undergraduate text. Also see Sundaram (1996) and Bertsekas (1999).

Maximum likelihood estimation is widely used in statistical models. See
Pawitan (2001) and texts for Categorical Data Analysis, Econometrics, Multiple
Linear Regression Generalized Linear Models, Multivariate Analysis, and Survival
Analysis.

Suppose that Y = (W) and W = t~!(Y) where W has a pdf with parameters 6,
the transformation ¢ does not depend on any unknown parameters, and the pdf of

Yis
di~'(y)
dy |

)= fw@™ )

If Wi,...,W, are iid with pdf fi (w), assume that the MLE of @ is éw(w) where the
w; are the observed values of W; and w = (wy,...,wy). If ¥1,...,Y, are iid and the
y; are the observed values of Y;, then the likelihood is

Ly(0) = (H

i=1

dr'(y

)Hf ' (7:)0) —Cwa L3:)10).
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Hence the log likelihood is log(Ly (0)) =

n n

d+ Y loglfw (1™ (v)10)] = d+ Y log[fiw (wi|8)] = d +log[Lw (6)]
i=1 i=1

where w; = ¢t~ !(y;). Hence maximizing the log(Ly(#)) is equivalent to maximizing
log(Lw(0)) and

A A A

Oy (y) = 0w (w) = 0w (=" (y1),... .t~ (3))- (5.3)
Compare Meeker and Escobar (1998, p. 175).

Example 5.11. Suppose Yi,...,Y, are iid lognormal (u,c?). Then W; =
log(¥;) ~ N(i1,0%) and the MLE (f1,6%) = (W, L 37 (Wi — W)?).

One of the most useful properties of the maximum likelihood estimator is the
invariance property: if  is the MLE of 6, then 7(8) is the MLE of 7(6). Olive
(2004) is a good discussion of the MLE invariance principle. Also see Pal and Berry
(1992). Many texts either define the MLE of 7(6) to be 7(6), say that the property
is immediate from the definition of the MLE, or quote Zehna (1966). A little known
paper, Berk (1967), gives an elegant proof of the invariance property that can be
used in introductory statistical courses. The next subsection will show that Berk
(1967) answers some questions about the MLE which cannot be answered using
Zehna (1966).

5.4.1 Two “Proofs” of the Invariance Principle

“Proof” I) The following argument of Zehna (1966) also appears in Casella and
Berger (2002, p. 320). Let # € © and let & : @ — A be a function. Since the MLE

0co, hf)=21cA.
If 4 is not one to one, then many values of § may be mapped to A. Let
0, ={0:h(0)=A}

and define the induced likelihood function M () by

M(A) = sup L(6). (5.4)
96@)‘
Then for any A € A,
M(A)= sup L(6) < supL(0) =L(6) =M(R). (5.5)

0co, 0co
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Hence /() = A maximizes the induced likelihood M(A). Zehna (1966) says that

since (6) maximizes the induced likelihood, we should call 4(8) the MLE of 4(8),

but the definition of MLE says that we should be maximizing a genuine likelihood.
This argument raises two important questions.

e If we call A(f) the MLE of /() and / is not one to one, does 4(f ) maximize a
likelihood or should

e h(#) be called a maximum induced likelihood estimator?

e If h(@) is an MLE, what is the likelihood function K (h(8))?

Some examples might clarify these questions.

e If the population come from a N (i, 62) distribution, the invariance principle says
that the MLE of y /o is X /Sy where

(Xi—X)?

S| =

— 1&
X:—ZXI- and S%,,:
nis 1

l

are the MLEs of u and 2. Since the function h(x,y) = x/ /Y is not one to one
(e.g., h(x,y) = L if x = \/y), what is the likelihood K (h(it,0?)) = K(u/0) that
is being maximized?

e If X; comes from a Bernoulli(p) population, why is X,(1 —X,) the MLE of
p(1—p)?

Proof II) Examining the invariance principle for one-to-one functions # is also
useful. When / is one to one, let § = /(8 ). Then the inverse function 2~ exists and
6 =h~'(y). Hence

f(x18) = flx|n™" (m) (5.6)
is the joint pdf or pmf of x. So the likelihood function of 2(6) = 7 is
L*(n) =K(n) = L(h™'(n)). (5.7)
Also note that
supK (nlx) = sup L(h™" (n)|x) = L(f |x). (5.8)
n n
Thus
i =h(8) (5.9)

is the MLE of = 1(0) when A is one to one.

If h is not one to one, then the new parameters § = h(6) do not give enough
information to define f(x|5). Hence we cannot define the likelihood. That is, a
N(u,0?) density cannot be defined by the parameter 1 /o alone. Before concluding
that the MLE does not exist if % is not one to one, note that if X;,...,X, are iid
N(u,c?) then Xi,...,X, remain iid N(u,0?) even though the investigator did not
rename the parameters wisely or is interested in a function A(i,6) = /o that is
not one to one. Berk (1967) said that if /4 is not one to one, define

w(0) = (h(6),u(0)) = (n,y) =& (5.10)
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such that w(@) is one to one. Note that the choice

works. In other words, we can always take u to be the identity function.
The choice of w is not unique, but the inverse function

wl(g) =10
is unique. Hence the likelihood is well defined, and w(#) is the MLE of £. [J

Example 5.12. Following Lehmann (1999, p. 466), let

olo) = ———exp (3
V2n o P\ 202
where x is real and 6 > 0. Let N = 6% so 6 = '/ = h~1(n). Then

2

" 1 —X _
£ = e (5 ) = flalo =7 (),

Notice that calling 4(8) the MLE of h(6) is analogous to calling X,, the MLE
of u when the data are from a N(u, 6?) population. It is often possible to choose
the function u so that if @ is a p x 1 vector, then so is &. For the N(u,5?) example
with 2(u,062) = h(0) = u/c we can take u(0) = u or u(@) = . For the Ber(p)
example, w(p) = (p(1 —p),p) is a reasonable choice.

To summarize, Berk’s proof should be widely used to prove the invariance prin-
ciple, and

I) changing the names of the parameters does not change the distribution of the
sample, e.g., if X1,..., X, are iid N(u,5?), then Xy, ..., X, remain iid N(u, 62)
regardless of the function (u,5?) that is of interest to the investigator.

II) The invariance principle holds as long as h(é ) is a random variable or random
vector: i does not need to be a one-to-one function. If there is interest in § =
h(@) where h is not one to one, then additional parameters y = u(#) need
to be specified so that w(0) = & = (y,y) = (h(0),u(0)) has a well-defined
likelihood K (&) = L(w~'(£)). Then by Definition 5.2, the MLE is & = w(f) =
w(h(0),u()) and the MLE of n = h(0) is § = h(f).

II) Using the identity function y = u(#) = @ always works since & = w(8) =
(h(0),0) is a one-to-one function of #. However, using (@) such that & and 6
have the same dimension is often useful.
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5.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

5.1%. LetYy,...,¥, be iid binomial (k =1,p).

a) Assume that p € © = (0,1) and that 0 < X, y; < n. Show that the MLE of p
isp=Y.

b) Now assume that p € © = [0, 1]. Show that f(y|p) =
pP’(1—p)' 10 < p < 1)+1(p=0,y=0)+1I(p =1,y = 1). Then show that

Lip)=p=(1—p)" 210<p <1)+I(p=0,>y=0)+I(p=1,%y=n).

If >y =0show that p =0 =7y.1f 3y = n show that p = 1 = . Then explain why
p=Yife=10,1].

5.2. Let (X,Y) have the bivariate density

763) = g exp (Sl peost)? + - psind)?]).
2n 2

Suppose that there are n independent pairs of observations (X;,Y;) from the above

density and that p is known. Assume that 0 < 6 < 2x. Find a candidate for the max-

imum likelihood estimator @ by differentiating the log likelihood log(L(6)). (Do

not show that the candidate is the MLE, it is difficult to tell whether the candidate,

0 or 27 is the MLE without the actual data.)

5.3*. Suppose a single observation X = x is observed where X is a random vari-
able with pmf given by the table below. Assume 0 < 8 < 1, and find the MLE
OnMLE(x). (Hint: drawing L(0) = L(8]x) for each of the four values of x may help.)

x [1 2 3 4
f(0)[1/41/4 1% 50

5.4.Let Xi,...,X, be iid normal N(u,y?u?) random variables where 7> > 0 is
known and p > 0. Find the log likelihood log(L(|x1,. . .,x,)) and solve

%IOg@(mxh...,xm =0

for fi,, a potential candidate for the MLE of p.
5.5. Suppose that X1, ..., X, are iid uniform U (0, 6). Use the factorization theo-
rem to write f(x[6) = g(T (x)|6)I[x;) > 0] where T'(x) is a one-dimensional suf-

ficient statistic. Then plot the likelihood function L(0) = g(T(x)|0) and find the
MLE of 6.
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5.6. LetYy,...,Y, be iid Burr Type XII(A, ¢) with ¢ known. Find the MLE of A.
5.7.LetY),...,Y, beiid chi(p, o) with p known. Find the MLE of 62.

5.8. Let Yy,...,Y, iid double exponential DE(0,A) with 6 known. Find the
MLE of A.

5.9.LetYy,...,Y, be iid exponential EXP(A ). Find the MLE of A.
5.10.If Yy,...,Y, are iid gamma G(v,A) with v known, find the MLE of A.
5.11.1f Yy,...,Y, are iid geometric geom(p), find the MLE of p.

5.12.1f 11,...,Y, are iid inverse Gaussian IG(0,A) with A known, find the
MLE of 6.

513.1f 17,...,Y, are iid inverse Gaussian IG(0,A) with 6 known, find the
MLE of A.

5.14.1f 11,...,Y, are iid largest extreme value LEV(6,0) where ¢ is known,
find the MLE of 6.

5.15.1f Yy,...,Y, are iid negative binomial NB(r,p) with r known, find the
MLE of p.

5.16.If Yy,...,Y, are iid Rayleigh R(u, ) with u known, find the MLE of ¢2.
5.17.1fY1,...,Y, are iid Weibull W (¢,A) with ¢ known, find the MLE of A.
5.18.1f Yy,...,Y, are iid binomial BIN (k,p) with k known, find the MLE of p.

5.19. Suppose Y1, ..., Y, are iid two-parameter exponential EXP(0,1).

a) Show that for any fixed A > 0, the log likelihood is maximized by y(1)- Hence
the MLE 6§ = Y.

b) Find A by maximizing the profile likelihood.

5.20. Suppose Yi,...,Y, are iid truncated extreme value TEV(A). Find the
MLE of 1.

Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q since these problems take longer than quiz and exam problems.

Note: Problem  5.21 would be better if it replaced “A > 0” by “A > 0, and
assume ».x; > 0.” But problems like ~ 5.21 are extremely common on exams and
in texts.

5.21. Suppose that Xj, ..., X, are iid Poisson with pmf

e M Ax
x!

f(A) = P(X =xA) =

where x=10,1,...and A > 0.
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a) Find the MLE of A. (Make sure that you prove that your estimator maximizes
the likelihood.)
b) Find the MLE of (1 —A)2.

5.22. Suppose that X, ..., X, are iid U(0, 6). Make a plot of L(0|xy, ...,xp).

a) If the uniform density is f(x) = §1(0 < x < 0), find the MLE of 6 if it exists.
b) If the uniform density is f(x) = §1(0 <x < @), find the MLE of 6 if it exists.

5.23% Let X;,...,X, be a random sample from a normal distribution with
known mean y and unknown variance 7.

a) Find the maximum likelihood estimator of the variance 7.
b) Find the maximum likelihood estimator of the standard deviation /7. Explain
how the MLE was obtained.

5.24. Suppose a single observation X = x is observed where X is a random vari-
able with pmf given by the table below. Assume 0 < 6 < 1. and find the MLE
OmMLE(x). (Hint: drawing L(6) = L(0]x) for each of the values of x may help.)

X 0 1
f(x0)| 142 152

5.25. Suppose that X is a random variable with pdf f(x|0) = (x — 6)?/3 for
6 —1<x<2+6.Hence L(6) = (x—0)?/3 for x—2 < 6 < x+ 1. Suppose that
one observation X = 7 was observed. Find the MLE 6 for 6. (Hint: evaluate the
likelihood at the critical value and the two endpoints. One of these three values has
to be the MLE.)

5.26. Let X1, ..., X, be iid from a distribution with pdf
f(x]0) =6x72, 0< 6 <x< oo

a) Find a minimal sufficient statistic for 6.
b) Find the MLE for 6.

5.27. LetYy,...,Y, be iid from a distribution with probability mass function
f(y|0)=06(1—-0)", wherey=0,1,...and0< 0 < 1.

Assume 0 < Y y; < n.

a) Find the MLE of 6. (Show that it is the global maximizer.)
b) What is the MLE of 1/62? Explain.

5.289. Let Xi,...,X, be independent identically distributed random variables
from a half normal HN(u, 62) distribution with pdf

Flx) = \/%Gexp(_();;zu)z)
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where 6 > 0 and x > u and u is real. Assume that y is known.

a) Find the maximum likelihood estimator of o2.
b) What is the maximum likelihood estimator of ¢? Explain.

5.29. Let Xi,...,X, be independent identically distributed random variables
from a lognormal (1, 6%) distribution with pdf

~ e ()

where 6 > 0 and x > 0 and U is real. Assume that ¢ is known.

f()

a) Find the maximum likelihood estimator of .
b) What is the maximum likelihood estimator of u>? Explain.

5.309. Let X be a single observation from a normal distribution with mean 0
and with variance 62, where 6 > 0. Find the maximum likelihood estimator of 62.

5.31. LetXj,..., X, beindependentidentically distributed random variables with
probability density function

oL/

flx)= T exp {— (1 + %) log(x)} I[x > o]

where x > 0, 0 >0, and A > 0. The indicator function I[x > 6] =1 if x > ¢ and 0,
otherwise. Find the maximum likelihood estimator (MLE) (6,4 ) of (o, 4) with the
following steps.

a) Explain why 6 = X(;) = min(Xi, ..., X,) is the MLE of o regardless of the value
of A > 0. .
b) Find the MLE A of A if 0 = & (that is, act as if ¢ = & is known).

5.32. Let Xj,...,X, beindependent identically distributed random variables with

pdf
1 1
flx)= Iexp [— (1 + z) log(x)}
where A > 0and x> 1.

a) Find the maximum likelihood estimator of A.
b) What is the maximum likelihood estimator of A3? Explain.

5.33. LetXj,..., X, beindependent identically distributed random variables with
probability mass function

£ = expllog(26)],

forx=0,1,..., where 8 > 0. Assume that at least one X; > 0.
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a) Find the maximum likelihood estimator of 6.
b) What is the maximum likelihood estimator of (6)*? Explain.

5.34. Let Xy, ..., X, beiid with one of two probability density functions. If 8 =0,
then

1,0<x<1
f(x|0) = {O, otherwise.
If 6 =1, then
1
—,0<x<1
0) = 2/x0 ==
7(x18) {0, otherwise.

Find the maximum likelihood estimator of 6.
Warning: Variants of the following question often appear on qualifying exams.

5.35%. Let Yy,...,Y, denote a random sample from a N(a8, @) population.

a) Find the MLE of 6 whena = 1.
b) Find the MLE of 6 when a is known but arbitrary.

5.36. Suppose that Xj, ..., X, are iid random variable with pdf
f(x]6) = (x—6)/3

for0 —1<x<2+86.

a) Assume that n = 1 and that X = 7 was observed. Sketch the log likelihood func-
tion L(0) and find the maximum likelihood estimator (MLE) 6.
b) Again assume that n = 1 and that X = 7 was observed. Find the MLE of

h(0) =26 —exp(—6?).

5379, Let X;,...,X, be independent identically distributed (iid) random vari-
ables with probability density function

flx) = Ajﬁexexp (_(e;;zl)z)

where x > 0and A > 0.

a) Find the maximum likelihood estimator (MLE) A of A.
b) What is the MLE of A2? Explain.

5.389. Let Xi,...,X, be independent identically distributed random variables
from a distribution with pdf
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L exp [—(log(X))T

f(x) )L\/E 222

where A > 0 where and 0 <x < 1.

a) Find the maximum likelihood estimator (MLE) of A.
b) Find the MLE of A2.

5.39. Suppose that Xi,...,X, are iid U(6,0 + 1) so that
L(0) = 1"1[)6(1) > Q]I[X(n) <f+1]= I[X(n> —-1<6 SX(U]'

a) Sketch L(0).
b) An MLE of 8 is 6yg(x) = ¢ for some fixed ¢ € [c,d]. Find [c,d].

5.40. Let Y1, ...,Y, be independent identically distributed random variables with

pdf
2;/3/2

frv) = y* exp(—=7y?)

where y > 0 and y is real.

a) Find the maximum likelihood estimator of y. (Make sure that you prove that your
answer is the MLE.)
b) What is the maximum likelihood estimator of 1/y? Explain.

5.419. Suppose that X has probability density function

0
fX(X):W, XZI
where 6 > 0.

a) If U = X2, derive the probability density function fy (u) of U.
b) Find the method of moments estimator of 6.
¢) Find the method of moments estimator of 62.

5.429. Suppose that the joint probability distribution function of X, ..., X; is

" -k Xi n—kK)x
f(xl,xz,...,ka):(n_k')!ekexp< (S )6+( k) k])

where 0 <x; <xp <---<x;and 6 > 0.

a) Find the maximum likelihood estimator (MLE) for 6.
b) What is the MLE for 82? Explain briefly.

5.439. Let X|,...,X, be iid with pdf

cos(0)

Fl) = 2cosh(mx/2)

exp(6x)

where x is real and |0] < 7/2.
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a) Find the maximum likelihood estimator (MLE) for 6.
b) What is the MLE for tan(6)? Explain briefly.

5.449. Let X1,...,X, be a random sample from a population with pdf

0= Lo (- E52)

o

where —eo < Ul < oo, 0 > 0.

a) Find the maximum likelihood estimator of it and ©.
b) Evaluate 7(u,0) = Py ¢[X; > t] where t > u. Find the maximum likelihood
estimator of 7(l, ).

5452, Let Y, ,...,Y, be independent identically distributed (iid) random
variables from a distribution with probability density function (pdf)

ok (17 25) Lol 302

where y > 0,60 > 0 is known and v > 0.

a) Find the maximum likelihood estimator (MLE) of v.
b) Find the MLE of v2.

5.462. Let Yy,...,Y, be independent identically distributed (iid) random vari-
ables from a distribution with probability density function (pdf)
-1

1
_ -9
ey exp[ 7 log(1+y )]

fy)=¢y @+

where y > 0,¢ > 0 is known and A > 0.

a) Find the maximum likelihood estimator (MLE) of A.
b) Find the MLE of 2.

5479 Let Yy,...,Y, be independent identically distributed (iid) random vari-
ables from an inverse half normal distribution with probability density function (pdf)

2 1 -1
o) = 2 P (W)

o V21 y?

wherey >0 and o > 0.

a) Find the maximum likelihood estimator (MLE) of ¢2.
b) Find the MLE of ©.

5489, Let Y;,...,Y, be independent identically distributed (iid) random vari-
ables from a distribution with probability density function (pdf)



5.5 Problems 155

6 -0
=B (22)
() = 5
where y > 0 and 6 > 0.

a) Find the maximum likelihood estimator (MLE) of 6.
b) Find the MLE of 1/6.

5.499, Let Yy,...,Y, be independent identically distributed (iid) random vari-
ables from a Lindley distribution with probability density function (pdf)

2

_ 0 ~0y
ﬂw—1+em+we>

where y > 0 and 6 > 0.

a) Find the maximum likelihood estimator (MLE) of 0. You may assume that
d2

Wlog(L(G)) - <O0.

b) Find the MLE of 1/6.

5.50. Let Yy,...,Y, be iid random variables from a distribution with pdf

0
(1+y)o+!

where y > 0 and 6 > 0. Find the MLE of 6.

fy) =

5.51. Let Yy,...,Y, be iid random variables from a distribution with pdf

0
)= Frppen

where —co <y < co and 6 > 0. Find the MLE of 6.

5.52. LetYy,...,Y, be iid random variables from a distribution with pdf

f@%=g€%§T%;ew{iéW%U+wf

where y > 0 and o > 0. Find the MLE of ©.



Chapter 6
Point Estimation I1

Unbiased estimators and mean squared error should be familiar to the reader.
A UMVUE is an unbiased point estimator, and complete sufficient statistics are
crucial for UMVUE theory. Want point estimators to have small bias and small vari-
ance. An estimator with bias that goes to 0 and variance that goes to the FCRLB
as the sample size n goes to infinity will often outperform other estimators with
bias that goes to zero. Hence the FCRLB will be useful for large sample theory in
Chap. 8.

Warning: UMVUE theory is rarely used in practice unless the UMVUE U, of
0 satisfies U, = anéMLE where a, is a constant that could depend on the sample
size n. UMVUE theory tends to be useful if the data is iid from a 1P-REF if U, =

an Y t(Yh).

6.1 MSE and Bias

Definition 6.1. Let the sample Y = (Yy,...,Y,) where Y has a pdf or pmf f(y|8) for
6 € ©. Assume all relevant expectations exist. Let 7(@) be a real valued function
of #,andlet T =T(Y},...,Y,) be an estimator of (@ ). The bias of the estimator T
for 7(9) is

B(T) = By(9)(T) = Bias(T) = Bias(9)(T) = E¢(T) — 7(9). (6.1)
The mean squared error (MSE) of an estimator T for 7() is
MSE(T) = MSEg)(T) = Eg[(T — 7(8))’]
= Varg (T) + [Bias(g)(T)]*. (6.2)
T is an unbiased estimator of 1(0) if
Eg(T)=1(0) (6.3)
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forall @ € ©. Notice that Bias;(¢)(7) =0 forall § € © if T is an unbiased estimator
of 7(0).

Notice that the bias and MSE are functions of @ for 6§ € ©. If MSE(¢)(T1)
<MSE(4)(T2) for all § € O, then T} is “a better estimator” of 7(@) than 7. So est-
imators with small MSE are judged to be better than ones with large MSE. Often T;
has smaller MSE than 7, for some # but larger MSE for other values of .

Often 0 is real valued. A common problem considers a class of estimators 7;(Y)
of 7(0) where k € A. Find the MSE as a function of k and then find the value k, € A
that is the global minimizer of MSE(k) = MSE(T},). This type of problem is a lot
like the MLE problem except you need to find the global min rather than the global
max. This type of problem can often be done if 7; = kW (X ) + (1 —k)W>(X) where
both W; and W, are unbiased estimators of 7(6) and 0 <k < 1.

Example 6.1. If X;,... X, are iid N(u, 62), then k, = n+ 1 will minimize the
MSE for estimators of 62 of the form

where k > 0. See Problem 6.2.

Example 6.2. Find the bias and MSE (as a function of n and c¢) of an estimator
T =cY! Y or (T =bY) of u when Yy,...,Y, are iid with E(Y;) = 4 = 0 and
V(Y;) = o>
Solution: E(T) = ¢3E(Y;) = ncu, V(T) = 23¥,V(Y;) = nc®c?, B(T) =
E(T)— u and MSE(T) = V(T) + [B(T))?. (For T = bY, use ¢ = b/n.)

Example 6.3. Suppose that Y7, ...,Y, are independent binomial(m;, p) where the
m; > 1 are known constants. Let

ny: 13 Y
T = =171 and Tzz—z—l

o SEom; n 4= m;
be estimators of p.

a) Find MSE(Th).

b) Find MSE(T>).

¢) Which estimator is better?
Hint: by the arithmetic—geometric—harmonic mean inequality,

n
Zmiz%.

i=1 i=1m;

1
n
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Solution: a)

Si EY) XL mp
E T = = = s
() iim imi
so MSE(T}) = V(T}) =
%V(iK)Z%iV(K)Z%iWPU—P)
(2,':1’"1‘)2 i=1 (Zi:1mi)2 i=1 (Zizlml)z i=1
p(l—p)
X mi
b)
LIQEM) _1¢mp 13
E(TZ)_nZi m; _nz m; n;p_pv

—1 M oo N\ =iz =iz
n
_p(-p) Y 1
n2 “m
i=1
¢) The hint
1 i n
= yn 1
iz i=1 7,
implies that
n i=1 . i=1 .
- < " and - < 3 Ly
Zizlmi n Zizlmi n

Hence MSE(T}) < MSE(T3), and T is better.

6.2 Exponential Families, UMVUEs, and the FCRLB

In the class of unbiased estimators, the UMVUE is best since the UMVUE has
the smallest variance, hence the smallest MSE. Often the MLE and method of
moments estimator are biased but have a smaller MSE than the UMVUE. MLEs
and method of moments estimators are widely used because they often have good
statistical properties and are relatively easy to compute. Sometimes the UMVUE,
MLE, and method of moments estimators for 0 are the same for a 1P-REF when
6= Lsn #(¥;)and 6 = E(6) = E[t(Y)]. See Chap. 10 for examples.
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Definition 6.2. Let the sample Y = (Y7, ...,Y;) where Y has a pdf or pmf f(y|6)
for 6 € ©. Assume all relevant expectations exist. Let 7(6) be a real valued function
of 0, and let U = U(Y},...,Y,) be an estimator of 7(6). Then U is the uniformly
minimum variance unbiased estimator (UMVUE) of 7(0) if U is an unbiased est-
imator of 7(0) and if Varg(U) < Varg(W) for all 8 € © where W is any other
unbiased estimator of 7(0).

The following theorem is the most useful method for finding UMVUE:s since
if ¥1,...,Y, are iid from a 1P-REF f(y|0) = h(y)c(0) exp[w(0)t(y)] where n =
w(0) € 2 = (a,b) and a < b are not necessarily finite, then T(Y) = Y7, #(¥;) is a
complete sufficient statistic. It will turn out that E¢[W (Y)|T(Y)] = E[W(Y)|T(Y)]
does not depend on 6. Hence U = E[W (Y )|T(Y)] is a statistic.

Theorem 6.1, Lehmann—Scheffé UMVUE (LSU) Theorem: If 7(Y) is a com-
plete sufficient statistic for 6, then

U= g(1(¥)) 6.4)

is the UMVUE of its expectation Eg(U) = E¢[g(T(Y))]. In particular, if W(Y) is
any unbiased estimator of 7(6), then

U =g(T(Y)) = EW(¥)|T(¥)] (©.5)

is the UMVUE of 7(60). If Vo(U) < o= for all 6 € O, then U is the unique UMVUE
of 7(6) = Eg[¢(T(Y))].

The process (6.5) is called Rao-Blackwellization because of the following
theorem. The theorem is also called the Rao—Blackwell-Lehmann—Scheffé theorem.
Theorem 6.2 shows that if W is an unbiased estimator, then ¢(7) = E(W|T) is a
better unbiased estimator than W in that MSEg (¢ (7)) < MSEq (W) for all 6 € ©.

Theorem 6.2, Rao-Blackwell Theorem. Let W = W (Y ) be an unbiased estima-
tor of 7(0) and let T = T(Y) be a sufficient statistic for 6. Then ¢ (T) = E[W|T] is
an unbiased estimator of 7(6) and VAR [¢(T)] < VARg(W) forall 6 € ©.

Proof. Notice that ¢(7) does not depend on 6 by the definition of a sufficient
statistic, and that ¢(7') is an unbiased estimator for 7(6) since 7(0) = Eq(W) =
Eg(E(W|T)) = E¢(¢(T)) by iterated expectations (Theorem 2.10). By Steiner’s
formula (Theorem 2.11), VARy (W) =

Eg[VAR(W|T)] + VARG [E(W|T)] > VARG [E(W|T)] = VAR [¢(T)]. O

Tips for finding the UMVUE:

i) From the LSU Theorem, if 7(Y) is complete sufficient statistic and g(7(Y))
is a real valued function, then U = g(T(Y)) is the UMVUE of its expectation

Eo[g(T(Y))].
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ii) Given a complete sufficient statistic T(Y) (e.g., T(Y) = XF, #(Y;) if the data
are iid from a 1P-REF), the first method for finding the UMVUE of 7(6) is to guess
g and show that Eg[g(T(Y))] = ©(6) for all 6.

iii) If T(Y) is complete, the second method is to find any unbiased estimator
W(Y) of (). Then U(Y) = E[W(Y)|T(Y)] is the UMVUE of 7(8).

This problem is often very hard because guessing g or finding an unbiased est-
imator W and computing E[W (Y)|T (Y )] tend to be difficult. Write down the two
methods for finding the UMVUE and simplify E[W (Y)|T(Y)]. If you are asked to
find the UMVUE of 7(0), see if an unbiased estimator W (Y') is given in the problem.
Also check whether you are asked to compute E[W (Y )|T(Y) = t] anywhere. Note
that W(Y) = I[Y; = k] has E[W(Y)] = P(Y; = k), and the UMVUE of P(Y; = k)
is E(I(Y, = k)|T(Y)] = P[Y; = k|T(Y)] which needs to be simplified. The equality
holds since Z =1(Y; = k)|T(Y) is 1 with probability equal to P[Y; = k|T(Y)], and
Z = 0 with probability equal to 1 — P[Y; = k|T(Y)]. See a similar calculation in
Example 6.6 a).

iv) The following facts can be useful for computing the conditional expectation
via Rao—Blackwellization (see Problems 6.7, 6.10, and 6.12). Suppose Y1,...,Y,
are iid with finite expectation.

a) Then E[Y,|Y} Y, =x] =x/n.

b) If the ¥; are iid Poisson(0), then (Y;| X", Y; = x) ~ bin(x, 1/n).

¢) If the ¥; are iid Bernoulli Ber(p), then (Y;| X\, ¥; = x) ~ Ber(x/n).

d) If the Y; are iid N(u, 62), then (Y1 |3, Y; = x) ~ N[x/n,02(1 —1/n)].

Result a) follows since the Y;| Y/ ;Y; = x have the same distribution. Hence
ElY;|Y Yi=x]=cfori=1,...,n and some constant c. Then nc =
EX! Yi|Xr Y;=x]=x.Forb),letk e {0,1,...,x}. Let W =Y,| X!, ¥; =x. Then
PW=k)=PY)1 =k Yi=x)=

P(Yl :k72?:1Yi:-x) o P(Yl :quyzzY[:X—k)
P(XYi=1x) P(X, Y =x)

PY1=k)P} ,Yi=x—k)
P(XL Y =x)
by independence. Now ¥; ~ Poisson(0), ¥/, ¥; ~ Poisson (n—1)0) and ¥, ¥; ~
Poisson (n6). Algebra will then give result b). For part ¢), W = Y;|X} Y =x
is Bernoulli(r) since W =0 or W = 1. Hence ®# = E(W) = x/n by a). For
part d), normality follows by Proposition 2.27 and the mean is x/n by a).
In Proposition 2.27, Xj; = V(Y}) = 62, T = VL Y) = no? and X, =
Cov(Yy,2, Y;) = X1, Cov(Y,Yi) = Cov(Yy,Y)) = o2. Hence the variance
isequal to Xy — 122, 551 = 0% — 6%(no?) "o = 6%(1 — 1/n).

Example 6.4. Let X|, ..., X, be arandom sample from a Poisson (1) distribution.
Let X and S? denote the sample mean and the sample variance, respectively.
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a) Show that X is uniformly minimum variance unbiased (UMVU) estimator
of A.

b) Show that E(S%|X) = X.
c) Show that Var(§?) > Var(X).

d) Show that Var(5?) > Var(X).

1
Solution: a) Since f(x) = — exp[log(A)x]/(x € {0,1,...}) isa IP-REF, ¥ | X; s
x

a complete sufficient statistic and E(X) = A. Hence X = (3, X;)/n is the UMVUE
of A by the LSU theorem.

b) E(S?) = A is an unbiased estimator of A. Hence E(S?X) is the unique
UMVUE of A by the LSU theorem. Thus E(S?|X) = X by part a).

¢) Note that X is the UMVUE and S? is an unbiased estimator of A. Hence
V(X) < V(8?) by the definition of a UMVUE, and the inequality is strict for at
least one value of A since the UMVUE is unique.

d) By Steiner’s formula, V(S?) = V(E(S?|X)) + E(V(S*|X)) = V(X) +
E(V($?X)) > V(X).

Often students will be asked to compute a lower bound on the variance of unbi-
ased estimators of 1) = 7(0) when 6 is a scalar. Some preliminary results are needed
to define the lower bound, known as the FCRLB. The Fisher information, defined
below, is also useful for large sample theory in Chap. 8 since often the asymptotic
variance of a good estimator of 7(0) is 1/I,(7(0)). Good estimators tend to have a
variance > ¢/n, so the FCRLB should be ¢/n for some positive constant ¢ that may
depend on the parameters of the distribution. Often ¢ = [t/(0)]?/1;(8).

Definition 6.3. Let Y = (Y,...,Y,) have a pdf or pmf f(y|6). Then the infor-
mation number or Fisher Information is

a 2
Iy (0)=1,(6) = Eo ([a—elogume))} ) . 66
Let n = 7(0) where 7/(0) # 0. Then
_ 1,(0)
In(n) = In(T(e)) = [T’(@)]Z. (6.7)

Theorem 6.3. a) Equations (6.6) and (6.7) agree if 7'(0) is continuous, 7’'(0) #
0, and 7(0) is one to one and onto so that an inverse function exists such that 6 =
-1
T ().
b) If the Y} =7 is from a 1P-REF, then the Fisher information in a sample of size

one is
2

1(0) = ~Eo | 3 1os(/(Y10))]. 68)

c) Ifthe Yi,...,Y, are iid from a 1P-REEF, then

1,(6) = nly(6). (6.9)
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Hence if 7/(0) exists and is continuous and if 7'(0) # 0, then

nl;(0)
[7(0))*

Proof. a) See Lehmann (1999, pp. 467-468).

b) The proof will be for a pdf. For a pmf replace the integrals by sums.
By Remark 3.3, the integral and differentiation operators of all orders can be int-
erchanged. Note that

L,(t(0)) = (6.10)

0=E {aa—elog(f(ﬂe))} (6.11)

since

J . _ [ 75/010)
96 = ae/fy|9 = /ae y_/ Tole) S010M

or

0= 55 [ 10101y = [ | S5 10str010))] s610)0>

which is (6.11). Taking second derivatives of the above expression gives

= o [ roiesay= 2 [ [ 2vostsien] soiena =

5 ({;—elomyw»] f(y|6)> dy

[ |25 10stroton] soierar+ [ [ Ziostsivien] [ 55 vie)| 28y

— [ [ 2 watscion] soiorar+ [ [ Zrioatsion] soioras

or

(889 logf(Y|9))2 = [88922 log(f (Y|9))]

2 2
1,(6) = Eg [(;—elog (qﬂme))) = Eg [(;—9 glogof(nle))) ] =

Eg [(%ilog(f(m@))) <%§,110g(f(¥f|9))>] =

1,(0)=Eg

c¢) By independence,




» 6 Poin Esimaion T
(o))

Z&K toar419))) | +

3. St | (g5 toetr o)) (5510etr0/0)) .

i#J

Hence

1(0) =1(0)+ 3. o | (510670100 ) | 2o | (5510205100 )|

i #FJ

by independence. Hence

In(e):nll(e)-i—n(n—l){ <aae log(f (Y/'IG)))}2

since the ¥; are iid. Thus 1,(6) = nl;(0) by Eq. (6.11) which holds since the ¥; are
iid from a 1P-REF. [J

Definition 6.4. Let Y = (Yy,...,Y,) be the data, and consider 7(6) where
7'(0) # 0. The quantity

FCRLB, (1(6)) =

is called the Fréchet—-Cramér—Rao lower bound (FCRLB) for the variance of unb-
1
iased estimators of 7(0). In particular, if 7(6) = 6, then FCRLB,(0) = @) The
n
FCRLB is often called the Cramér Rao lower bound (CRLB).

Theorem 6.4, Fréchet—-Cramér-Rao Lower Bound or Information Inequal-
ity.LetYy,...,Y, beiid from a 1P-REF with pdf or pmf f(y|0). Let W (Y},...,Y,) =
W (Y) be any unbiased estimator of 7(0) = EqW(Y). Then

VAR (W (Y)) > FCRLB,(7(6)) = -

Proof. By Definition 6.4 and Theorem 6.3c,

_[Ter _[@epr 1
FCRLB,(1(0)) = L(0)  nl(0)  I(t(6)

Since the Y; are iid from a 1P-REF, by Remark 3.3 the derivative and integral
or sum operators can be interchanged when finding the derivative of Egh(Y) if
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Eg|h(Y)| < oo. The following argument will be for pdfs. For pmfs, replace the
integrals by appropriate sums. Following Casella and Berger (2002, pp. 335-8),
the Cauchy Schwarz Inequality is

[Cov(X, )] < V(X)V(Y), or V(X)> %
Hence
(Cove[W(Y), £ log(f(¥16))])?

Vo(W(Y . 6.12

oW 2 = 2 log(r(¥10)] ©12
Now

9
Eo | 55102/ (¥10))| = Eo —a;{ge'f)

since the derivative of log(h(r)) is #'(¢) /h(t). By the definition of expectation,

J
o [ s toe((Y10))] = [ - Zy%ﬂyl@)dy

— [ ] g5 rleny =2 [ [ ssloay = 10

Notice that f(y|6) > 0 on the support %/, that the f(y|0) cancelled in the second
term, that the derivative was moved outside of the integral by Remark 3.3, and that
the integral of f(y|6) on the support % is equal to 1.

This result implies that

Cova |W(Y). 35 10g(/(¥10))| = Eo [W(¥) 55 108(/(¥10)

w(y) (5/x1))
f(¥]6)

since the derivative of log(h(z)) is #'(t)/h(t). By the definition of expectation, the
right-hand side is equal to

W(y)75/(y]6) d
//] Wﬂyww:%/W/UJW(y)f(yI@)dy

= ;%EQW(Y) = 7/(8) = Covyg [W(Y), %log(f(ﬂ@))] . (6.13)

Since

Eo | 35108 1(Y10)] =
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) %) g
Vo 75 toe(7(¥16)| = o ([%mg(ﬂme))} ) —n0) 614
by Definition 6.3. Plugging (6.13) and (6.14) into (6.12) gives the result. [

Theorem 6.4 is not very useful in applications. If the data are iid from a 1P-REF,

then FCRLB,,(7(0)) = [t/(6)]?/[nI;(6)] by Theorem 6.4. Notice that W(Y) is an
unbiased estimator of 7(60) since EqW(Y) = 7(0). Hence if the data are iid from
a 1P-REF and if VARg(W(Y)) = FCRLB,(7(6)) for all 8 € O, then W(Y) is the
UMVUE of 7(6); however, this technique for finding a UMVUE rarely works since
typically equality holds only if
1) the data come from a 1P-REF with complete sufficient statistic 7', and
2) W = a+bT is a linear function of T'.
The FCRLB inequality will typically be strict for nonlinear functions of 7' if the
data is iid from a 1P-REF. If T is complete, g(T') is the UMVUE of its expectation,
and determining that 7 is the complete sufficient statistic from a 1P-REF is simpler
than computing VAR (W) and FCRLB,,(7(6)). If the family is not an exponential
family, the FCRLB may not be a lower bound on the variance of unbiased estima-
tors of 7(0).

Example 6.5. Let Yy, ...,Y, be iid random variables with pdf

_ 21 —(log(y))?
fy)= m;l[o,l]@) exp [T]

where 2 > 0. Then [log(Y;)]? ~ G(1/2,2A%) ~ A%x3.
a) Find the uniformly minimum variance estimator (UMVUE) of A2

b) Find the information number 7; ().

c¢) Find the Fréchet—-Cramér—Rao lower bound (FCRLB) for estimating
T(A) = A%,

Solution. a) This is a one-parameter exponential family with complete suf-
ficient statistic T, = Y, [log(¥;)]>. Now E(T,) = nE([log(¥;)]?) = nA%. Hence
E(T,/n) = A% and T;,/n is the UMVUE of A2 by the LSU Theorem.

b) Now

2
log(f(y|1)) = log(2/v27) —log(A) — log(y) — [lozgiyz)] '

Hence

1 log(y)2
Proa(r(yia)) = 5+ LEVE

and

2 2
O t0a(f(41A) = 5y — L
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Thus
MM—4{%—E%?Q_%;%§_%.
c)
FCRLB,(1(1)) = [’:;5’8];
Now 7(1) = A% and 7'(1) = 2A. So
FCRLB,(1(1)) = %;2 - 27“

Example 6.6. Suppose that Xi,...,X, are iid Bernoulli(p) where n > 2 and 0 <
p < 1 is the unknown parameter.

a) Derive the UMVUE of 7(p) = &(p(1 — p)).
b) Find the FCRLB for estimating 7(p) = ¢*(p(1 — p)).

Solution: a) Consider the statistic W = X; (1 — X;) which is an unbiased estimator
of y(p) = p(1 — p). The statistic T = Y, X; is both complete and sufficient. The
possible values of W are O or 1. Let U = ¢(T') where

o(t) = EXi(1 - X2)|T =1]
— 0P[X;(1 - X,) = O|T = 1] + 1P[X;(1 —X3) = 1|T =1]
=PXi(1-X2) = 1T =1]
. P[Xl =1,X, =0and 2?:1X,‘ Zt]

P Xi=1]
PXy = 1]P[Xy = 0]P[S X =1 — 1]
B PYL X =1] '

Now > 1 X;is Bin(n—2,p) and Y, X; is Bin(n, p). Thus

_ P =p)I()p A =p)

e P
0D (n—2)! =) (n—t)(n—t—1)! _ t(n—1)
(" =D n—2—141)! n(n—1)(n—2)! n(n—1)
sn—np) gn(l-2)  n _
T a1 n-1 _n—lx(l_x)'

Thus -2-X (1 —X) is the UMVUE of p(1 — p) and €*U = *-2-X (1 —X) is the
UMVUE of 7(p) = e*p(1 — p).
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Alternatively, X is a complete sufficient statistic, so try an estimator of the form
U =a(X)*+bX +c. Then U is the UMVUE if E,(U) = *p(1 — p) = €*(p — p?).
Now E(X)=E(X;)=pand V(X) =V (X;)/n= p(1—p)/nsince ¥ X; ~ Bin(n, p).
So E[(X)*] = V(X) + [E(X)]> = p(1 = p)/n+ p*. So E,(U) = alp(1 — p)/n] +
ap®>+bp+c

2
a a a a
= —p—L—I—apz—l—bp—Fc: (——I—b)p—l— (a——)pz—l—c.
n n n n
n-1 _ _ 2

Soc=0anda— % =a"— = —e” or

Hence & +b = e* or

So
o2 n oo
n—le( )+n—1e n—1

X (1-X).
b) The FCRLB for ©(p) is [¢(p)}*/nli(p). Now f(x) = p*(1 — p)! . so
log f(x) = xlog(p) + (1 —x)log(1 — p). Hence

dlogf x 1-x
dp p l—p

and
dlogf —x 1—x
o pr (-p)
So
d%log f -p  1—p 1
Il(p)__E< P )__<7_(1—p)2>_p(1—p)'
So

[e*(1=2p)? _ (1 -2p)’p(1—p)

FCRLB, =

p(1-p)

Example 6.7. Let Xi,...,X, be iid random variables with pdf

exp [— %log(l —i—xd’)}

1
ﬂ@:zmwg+w

where x, ¢, and A are all positive. If ¢ is known, find the uniformly minimum unbi-
ased estimator of A using the fact that log(1 +Xi¢) ~ Gamma (v =1,1).
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Solution: This is a regular one-parameter exponential family with complete
sufficient statistic T, = Y., log(1 +Xi¢) ~ G(n,A). Hence E(T,,) = nA and T,,/n
is the UMVUE of 1.

Example 6.8. If 3", Y; is a complete sufficient statistic for 8, then by the LSU
theorem, ¢'>=1" is the UMVUE of E[e'>="] = mgn y(t), the mgf of 3, Y;.
Refer to Theorems 2.17 and 2.18 for the following special cases.

a) If Yi,...,Y, are iid BIN(k,p) where k is known, then X ,¥; ~ BIN(nk,p),
and ¢'Zi=1¥i is the UMV UE of

[(1—p)+pe™.
b) If Yi,...,Y, are iid EXP(X), then Y, Y; ~ G(n,A), and ¢'Z=1% is the

UMVUE of
1 n
(1—)Lt)
fort <1/A.
¢) If v1,...,Y, are iid G(v,A) where v is known, then X} ,Y; ~ G(nv,A), and
¢'Xi=1Yi is the UMV UE of
1 nv
(1 —M)
forr <1/A.

d)If Yy,...,Y, are iid N(u,5?) where 62 is known, then i Y~ N(nu,nc?),
and ¢'Zi=1% is the UMVUE of

exp(tny +1°nc?/2).

e) IfY1,...,Y, are iid Poisson(0), then Y}, ¥; ~ Poisson(n0), and ¢ Zi=1Yi is the
UMVUE of

exp(nf(e —1)).

f)If Yy,...,Y, are iid NB(r,p) where r is known, then Y, Y; ~ NB(nr,p), and
¢'Xi=1Yi is the UMV UE of
p nr
[1 - (1= p)ef}

Example 6.9. Let X,...,X, be a random sample from a Poisson distribution
with mean 6.

a) For a > 0, find the uniformly minimum variance unbiased estimator (UMVUE)
of g(0) = .

b) Prove the identity:

forr < —log(l—p).

E[2X1|T}=<1+%>T.
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Solution: a) By Example 6.4, T = ! | X; ~ Poisson(n6) is a complete sufficient
statistic for 0. Hence the mgf of T is

E(eT) =my(t) = exp[nB(e —1)].

Thusn(e' — 1) =a,ore' =a/n+1,0re" = (a+n)/n, ort =log[(a+n)/n]. Thus

T = (T = (a:n) =exp [Tlog (a—f—n)]

is the UMVUE of ¢“% by the LSU theorem.
b) Let X = X, and note that 2X is an unbiased estimator of ¥ since

2X _ elog(Zx) _ e(Ing>X,

and E(2%) = myx (log2) = exp[0(e!°22 — 1)] = €°.
Thus E[2X|T] is the UMVUE of E(2¥) = ¢ by the LSU theorem. By part a) with

a=1,
T
ERY|T] = (l—i—n)
n

The following theorem compares the UMV UE with the estimator that minimizes
the MSE for one-parameter exponential families. Note that the constant ¢ cannot
depend on the unknown parameter 0 since ¢T(Y) needs to be a statistic. Often
0X ~ 06G(1,1) ~ G(1,0). Note cpr/cy — 1 as n — . Hence the UMVUE and the
estimator that minimizes the MSE behave similarly in terms of MSE for large n. See
Problem 6.35.

Theorem 6.5. Let Y1, ...,Y, be iid from a one-parameter exponential family with
pdf or pmf f(y|0) with complete sufficient statistic T(Y) =X, t(Y;) where t(Y;) ~
60X and X has a known distribution with known mean E(X) and known variance
V(X).Let W, = ¢ T(Y) be an estimator of 8 where c is a constant.

a) The value ¢ that minimizes the MSE is

_ E(X)
MV FREXP
b) The UMVUE of 0 is T(( )) which uses ¢y = nEl(X)
Proof. a)E(Wn) ¢ E(t(Y;)) =cnBE(X), and

V(W,) =23, V(t(Y;)) = c*>n6?V(X). Hence MSE(c) = MSE(W,) =
V(W,)+ [E(W) 0)? = ?n6°V(X) + (cnOE(X) — 0)%. Thus

d MSE(c)

p =2en0%V(X)+2(cn@E(X) — 0)nbE(X) <0,
c
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or

or

which is unique. Now

d*> MSE(c)

T = 2[n6°%V(X) +n*0*[E(X)]?] > 0.

So MSE(c) is convex and ¢ = ¢y is the minimizer.
b) E[cyT(Y)] = 0, hence cyT(Y) is the UMVUE of 0 by the LSU theorem. [J

Remark 6.1. Chapter 10 has several UMVUE examples.

6.3 Summary

1) The bias of the estimator T for 7(8) is
B(T) = By(g)(T) = Bias(9)(T) = E¢T — 7(0)
and the MSE is
MSE.(g)(T) = Eg[(T — 7(6))*] = Vg (T) + [Bias(g)(T)]*.

2) T is an unbiased estimator of ©(0) if Eg[T] = 1(8) forall 6 € O.

3)LetU =U(Yy,...,Y,) be an estimator of 7(6). Then U is the UMVUE of 7(6)
if U is an unbiased estimator of 7(6) and if VARy(U) < VARy(W) for all 6 € ©
where W is any other unbiased estimator of 7(0).

4 If Yy,...,Y, are iid from a 1P-REF f(y|60) = h(y)c(0)exp[w(0)z(y)] where
n=w(0) € Q= (a,b),andif T =T(Y) =Y} ,1(Y;), then by the LSU Theorem,
g(T) is the UMVUE of its expectation 7(0) = Eg(g(T)).

5) Given a complete sufficient statistic 7(Y) and any unbiased estimator W (Y)
of 7(0), then U(Y) = E[W(Y)|T(Y)] is the UMVUE of 7(6).

7) 1,(6) = Eq[($5 log £(Y6))?].

[Z(0)]”
5,(6) -
9 IfYy,...,Y, are iid from a 1P-REF f(y|0) = h(y)c(6)exp[w(0)t(y)], then a)

8) FCRLB,(7(6)) =

2
1(0) = ~Eo | 3 1os(/(Y10))]
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b)

c)

! 2
FCRLB,(7(6)) = [’:If?g]) .

d) Information inequality: Let Y;,...,¥, be iid from a 1P-REF and let W(Y) be
any unbiased estimator of 7(6) = Eg[W(Y)]. Then

VARg(W(Y)) > FCRLB,(1(0)) = [:,f?é];-

e) Rule of thumb for a IP-REF: Let T(Y) =Y ¢(Y;) and 7(0) = E¢(g(T(Y)).
Then g(T(Y)) is the UMVUE of 7(0) by LSU, but the information inequality is
strict for nonlinear functions g(7(Y)). Expect the equality

[7'(6))?
nl;(0)

VAR (g(T(Y)) =

only if g is a linear function, i.e., g(T) = a + bT for some fixed constants a and b.

10) If the family is not an exponential family, the FCRLB may not be a lower
bound on the variance of unbiased estimators of 7(0).

6.4 Complements

For a more precise statement of when the FCRLB is achieved and for some coun-
terexamples, see Wijsman (1973) and Joshi (1976). Although the FCRLB is not
very useful for finding UMV UEs, similar ideas are useful for finding the asymptotic
variances of UMV UEs and MLEs. See Chap. 8 and Portnoy (1977).

Karakostas (1985) has useful references for UMVUEs. Also see Guenther (1978)
and Hudson (1978).

6.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

6.1*. Let W be an estimator of 7(60). Show that

MSE; g)(W) = Varg (W) + [Bias(g)(W)]?.
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6.2¢. Let X1,...,X, be independent identically distributed random variable from
a N(u,o?) distribution. Hence E(X;) = u and VAR(X;) = ¢. Consider estimators
of 62 of the form

where k > 0 is a constant to be chosen. Determine the value of k which gives the
smallest mean square error. (Hint: Find the MSE as a function of k, then take deriva-
tives with respect to k. Also, use Theorem 4.1c and Remark 5.1 VIL.)

6.3.Let Xj,...,X, be iid N(u,1) random variables. Find t(u) such that
T(X,...,X,) = (X, X;)? is the UMVUE of 7(u).

6.4. Let X ~ N(u,0?) where 62 is known. Find the Fisher information /; (i1).

6.5. Let X ~ N(u,c?) where u is known. Find the Fisher information 1 (c?2).

6.6. Let X1,...,X, be iid N(u,0?) random variables where y is known and
0% >0. Then W = 3/, (X; — u)? is a complete sufficient statistic and W ~ o2y 2.
From Chap. 10,

k
EYE 2"I"(k+n/2)
r'(n/2)
if ¥ ~ x2. Hence
_ /2wt

is the UMVUE of 7;(6?) = o for k > 0. Note that 7;(8) = (6)* and 6 = o2.
a) Show that

Varg Ty (X1,...,X,) = 6™ F’?}E'Zi)/; )(I%IE:I’{ 5)2) —1| =c¢0*.

b) Let k = 2 and show that Varg[T2] — FCRLB(1,(6)) > 0 where FCRLB(1>(0))

is for estimating 7, (0?) = 6* and 6 = ¢2.

6.7¢. Let X1, ..., X, be independent, identically distributed N(u, 1) random vari-
ables where U is unknown and n > 2. Let ¢ be a fixed real number. Then the expec-
tation

Ey(I—(X))) = Pu(X) <1) = ®(1 — )

for all u where @(x) is the cumulative distribution function of a N(0,1) random
variable.

a) Show that the sample mean X is a sufficient statistic for 1.

b) Explain why (or show that) X is a complete sufficient statistic for (.
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c¢) Using the fact that the conditional distribution of X; given X = X is the
N(x,1—1/n) distribution where the second parameter 1 — 1/n is the variance of
conditional distribution, find

Ey(I(—o (X)X = %) = Ey[I—ccf(W)]

where W ~ N(X,1 — 1/n). (Hint: your answer should be ®@(g(x)) for some func-
tion g.)

d) What is the uniformly minimum variance unbiased estimator for
D(r—p)?

Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q.

6.8. Suppose that X is Poisson with pmf

e M Ax
x!

FO{A) = P(X =x|A) =

where x =0, 1,... and A > 0. Find the Fisher information 7; (1).

6.9. Let Xi,...,X, be iid Exponential() random variables and Yi,...,Y;, iid
Exponential(f3 /2) random variables. Assume that the ¥;’s and X’s are independent.

a) Find the joint pdf f(x,...,Xu,Y1,...,ym) and show that this pdf is a regular
exponential family with complete sufficient statistic 7 = Y | X; + 23" | V.

b) Find the function 7(f8) such that 7' is the UMVUE of 7(f3). (Hint: find Eg[T].
The theorems of this chapter apply since Xi,...,X,,2Y],...,2Y,, are iid.)

6.10. Let X1, ..., X, be independent, identically distributed N (L, 1) random vari-
ables where p is unknown.

a) Find E, [X7].

b) Using the fact that the conditional distribution of X; given X = X is the
N(x,1—1/n) distribution where the second parameter 1 — 1/n is the variance of
conditional distribution, find

Ey(X{[X =X).

[Hint: this expected value is equal to E(W?) where W ~ N(%,1 — 1/n).]

¢) What is the MLE for u? + 1? (Hint: you may use the fact that the MLE for u
isX.)

d) What is the uniformly minimum variance unbiased estimator for u? -+ 1?

Explain.

6.11. Let Xy, ..., X, be a random sample from a Poisson(A) population.

a) Find the Fréchet-Cramér—Rao lower bound FCRLB,,(A?) for the variance of
an unbiased estimator of T(1) = A2.
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b) The UMVUE for A% is T(Xy,...,X,) = (X)?> — X/n. Will Var,[T] =
FCRLB,(A?) or will Var,[T] > FCRLB,(1%)? Explain. (Hint: use the rule of
thumb 9e from Sect. 6.3.)

6.12. Let X1, ...,X, be independent, identically distributed Poisson(A) random
variables where A > 0 is unknown.

a) Find E; [X7].

b) Using the fact that the conditional distribution of X; given Y | X; =y is the
Binomial(y, 1/n) distribution, find

n
E; <X12|2Xi_y>.

i=1

¢) Find 7(A) such that E; (X?| £/, X;) is the uniformly minimum variance unbi-
ased estimator for 7(4).

6.13. Let X1, ..., X, be iid Bernoulli(p) random variables.

a) Find the Fisher information I; (p).

b) Find the Fréchet-Cramér—Rao lower bound for unbiased estimators of
t(p) =p-

¢) The MLE for p is X. Find Var(X).

d) Does the MLE achieve the FCRLB? Is this surprising? Explain.

6.14°. Let X1,...,X, be independent, identically distributed exponential(8) ran-
dom variables where 6 > 0 is unknown. Consider the class of estimators of 0

{Tn(c) _ciXi | c>0}.

Determine the value of ¢ that minimizes the mean square error MSE. Show work
and prove that your value of c is indeed the global minimizer.

6.15. Let X1, ..., X, beiid from a distribution with pdf

f(x|0) =6x"1(0<x< 1), 6>0.

a) Find the MLE of 6.
b) What is the MLE of 1/62? Explain.

¢) Find the Fisher information 7;(6). You may use the fact that —log(X) ~
exponential(1/0).

d) Find the Fréchet—-Cramér—Rao lower bound for unbiased estimators of
7(0)=1/62.
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6.16. Let X,...,X, be iid random variables with E(X) = p and Var(X) = 1.
Suppose that T = 3/, X; is a complete sufficient statistic. Find the UMVUE of p?.

6.17. Let X, ..., X, be iid exponential(1) random variables.
a) Find I, ().

b) Find the FCRLB for estimating 7(1) = A2.

¢)If T =3 | X;, it can be shown that the UMVUE of A? is

I'(n) 2

- 7
i I'(2+n)

Do you think that Var, (W) is equal to the FCRLB in part b)? Explain briefly.

6.18. Let X;,...,X, be iid N(u,o?) where u is known and n > 1. Suppose
interest is in estimating @ = ¢%. You should have memorized the fact that

(n—l)S
(7 Xn 1

a) Find the MSE of S? for estimating ¢~.

b) Find the MSE of T for estimating 6> where

6.199. Let X1,...,X, be independent identically distributed random variables
from a N(u,0?) distribution. Hence E(X;) = 1 and VAR(X;) = o. Suppose that
u is known and consider estimates of 62 of the form

)= 2w’

[ ™M=

where k is a constant to be chosen. Note: E(y2) = m and VAR(y2) = 2m. Determine
the value of k which gives the smallest mean square error. (Hint: Find the MSE as a
function of k, then take derivatives with respect to k.)

6.209. Let X 1,..-,Xn be independent identically distributed random variables
with pdf
2
Flxl0) = e/

0 , x>0

and f(x|0) =0 for x < 0.

a) Show that X 12 is an unbiased estimator of 6. (Hint: use the substitution W = X2
and find the pdf of W or use u-substitution with u = x?/0.)
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b) Find the Cramér—Rao lower bound for the variance of an unbiased estimator
of 0.

¢) Find the uniformly minimum variance unbiased estimator (UMVUE) of 6.

6.212. See Mukhopadhyay (2000, p. 377). Let Xi,. .., X, be iid N(6, 6%) normal
random variables with mean 6 and variance 62. Let

_ 1&
i=X=-)X
| n;
and let
n (X —X)?
Th=c,S=cy —2171( '1 )
n—

where the constant ¢, is such that Eg[c,S] = 6. You do not need to find the constant
¢y Consider estimators W (o) of 6 of the form.

W(a)=oTi+(1—a)l»
where 0 < o < 1.

a) Find the variance

Varg[W ()] = Varg(aT; + (1 — o) Th).

b) Find the mean square error of W (o) in terms of Varg (7} ), Varg(73) and o

¢) Assume that

62
Val'g(Tz) ~ %

Determine the value of « that gives the smallest mean square error. (Hint: Find the
MSE as a function of ¢, then take the derivative with respect to . Set the derivative
equal to zero and use the above approximation for Varg (75 ). Show that your value of
« is indeed the global minimizer.)

6.229. Suppose that X, ..., X, are iid normal distribution with mean 0 and vari-
ance 6. Consider the following estimators: 7} = %|X 1 —Xoland T = 4/ %2?:1)([2-
a) Is 77 unbiased for o? Evaluate the mean square error (MSE) of T7.

b) Is 7> unbiased for ¢? If not, find a suitable multiple of 7, which is unbiased
for o.
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6.23%. Let X1,...,X, be independent identically distributed random variables
with pdf (probability density function)

X

e

where x and A are both positive. Find the uniformly minimum variance unbiased
estimator (UMVUE) of A2.

6.24°. Let X1,...,X, be independent identically distributed random variables
with pdf (probability density function)

0= amen(-2)

o
where x and o are both positive. Then X; = W where W; ~ 7512- Find the uniformly
i

1
minimum variance unbiased estimator (UMVUE) of P

6.25%. Let X, ..., X, be a random sample from the distribution with density

2x
=, 0<x<0
— 92>
) { 0 elsewhere.
Let T = max(Xy,...,Xy). To estimate 0 consider estimators of the form CT. Deter-

mine the value of C which gives the smallest mean square error.

6.26%. Let X, ..., X, be a random sample from a distribution with pdf

2x
f(x)zﬁ, 0<x<6.

Let T = cX be an estimator of 8 where c is a constant.
a) Find the mean square error (MSE) of T as a function of ¢ (and of 6 and n).

b) Find the value ¢ that minimizes the MSE. Prove that your value is the mini-
mizer.

6.279. Suppose that X1,...,X, are iid Bernoulli(p) where n > 2 and 0 < p < 1
is the unknown parameter.

a) Derive the UMVUE of v(p), where v(p) = ¢*(p(1 — p)).
b) Find the Cramér-Rao lower bound for estimating v(p) = €*(p(1 — p)).

6.28. Let X,...,X, be independent identically distributed Poisson(A) random
variables. Find the UMVUE of

&H&.
n
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6.29. Let Yy,...,Y, be iid Poisson(0) random variables.

a) Find the UMVUE for 6.

b) Find the Fisher information 7, (0).

¢) Find the FCRLB for unbiased estimators of 7(6) = 6.

d) The MLE for 0 is Y. Find Var(Y).

e) Does the MLE achieve the FCRLB? Is this surprising? Explain.

6.302. Suppose that ¥y, ..., Y, are independent binomial(m;, p) where the m; > 1
are known constants. Let

Y 14 Y
T, = =i=1"t d7D == Zt
LS m e n,g{mi
be estimators of p.
a) Find MSE(T).
b) Find MSE(73).

¢) Which estimator is better?
Hint: by the arithmetic—geometric—harmonic mean inequality,

1 n
w22 ST
iz Yictm

6.31%. Let Y},...,Y, be iid gamma(c = 10, B) random variables. Let 7 = cY be
an estimator of 3 where ¢ is a constant.

a) Find the mean square error (MSE) of T as a function of ¢ (and of 8 and n).

b) Find the value ¢ that minimizes the MSE. Prove that your value is the
minimizer.

6.329. Let Y1,...,Y, be independent identically distributed random variables
with pdf (probability density function)

) =2 =2)lo1)(y) v exp[(1 - v)(—log(2y —y))]

where v > 0 and n > 1. The indicator /(g 1)(y) = 1 if 0 <y < 1 and /(g ;)(y) =0,
otherwise.

a) Find a complete sufficient statistic.

b) Find the Fisher information /;(v) if n = 1.

¢) Find the Cramér—Rao lower bound (CRLB) for estimating 1/v.

d) Find the uniformly minimum unbiased estimator (UMVUE) of v.

Hint: You may use the fact that 7, = — Y7, log(2Y; — Y?) ~ G(n,1/v), and

BUT) = 5 i

for r > —n. Also I'(1 +x) = xI"(x) for x > 0.
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6.33%. Let Y;,...,Y, be iid random variables from a distribution with pdf

0
f(Y)ZW

where 6 > 0 and y is real. Then W = log(1+ |Y|) has pdf f(w) = 8¢ " for w > 0.
a) Find a complete sufficient statistic.

b) Find the (Fisher) information number /; (6).

¢) Find the uniformly minimum variance unbiased estimator (UMVUE) for 6.

6.342. Suppose that X1, X5, ...,X, are independent identically distributed ran-
dom variables from normal distribution with unknown mean y and known vari-
ance 2. Consider the parametric function g(u) = e**.

a) Derive the uniformly minimum variance unbiased estimator (UMVUE) of
g(u).

b) Find the Cramér—Rao lower bound (CRLB) for the variance of an unbiased
estimator of g(ut).

c) Is the CRLB attained by the variance of the UMVUE of g(ut)?

6.35. Let Y1,...,Y, be iid from a one-parameter exponential family with pdf or
pmf f(y|0) with complete sufficient statistic 7(Y) = X7, #(Y;) where ¢(Y;) ~ 60X
and X has a known distribution with known mean E(X) and known variance V (X).
Let W, = cT (Y) be an estimator of 6 where c is a constant. For parts a)-x) complete
1)-1v).

i) Find the mean square error (MSE) of W, as a function of ¢ (and of n, E(X),
and V(X)).

ii) Find the value of ¢ that minimizes the MSE. Prove that your value is the
minimizer using the first and second derivative of MSE(c).

iii) Find the value of ¢ that minimizes the MSE using Theorem 6.5.

iv) Find the uniformly minimum variance unbiased estimator (UMVUE) of 6.

1
a)Yy,...,Y,areiid beta(6 = 1,v), t(Y) = —log(1 = Y) ~ ;EXP(I), 0=1/v.

b) Y1,...,Y, areiid beta(5,v =1),¢(Y) = —log(Y) ~ %EXP(I), 0=1/6.
¢) Y1,...,Y, are iid Burr type III (¢, A1) with ¢ known,
t(Y) =log(1+Y %)~ AEXP(1), 0 = 1.
d)Yy,...,Y, areiid Burr type X (1), #(Y) = —log(1 —e’yz) ~ %EXP(I), 0=1/t
e) Yi,...,Y, are iid Burr type XII (¢, A) with ¢ known,
t(Y) =log(1+Y?) ~ AEXP(1), 6 = A.
f) Y1,...,Y, are iid chi(p, o) with p known, t(Y) = Y2 ~ 62G(p/2,2), 6 = c°.
g)Y1,...,Y, are iid double exponential (i,A) with y known,
t(Y)=|Y —u| ~AEXP(1),0 = A.
h) Yi,...,Y, are iid EXP(A), (Y) = ¥ ~ AEXP(1), 0 = A.
i) Yi,...,Y, are iid two-parameter exponential (it,A) with u known, ¢(Y) =
Y;— i ~ AEXP(1), 6 = A.
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D 1,...,Y, areiid gamma (v,A) with v known, t(Y) =Y ~ AG(v,1), 6 = A.
1

K) Y1,...,Y, are iid Gomp(u,v) with u known, 1(Y) = e*¥ — 1 ~ ;EXP(/.L),
0=1/v.

) Yi,...,Y, are iid half normal (u,0?) with u known, #(Y) = (Y — u)?
02G(1/2,2), 6 = o>

m) ¥i,....Y, are iid IEXP(u), 1(Y) = 1/¥ ~ LEXP(1 ) =1/u.

n) Yy,...,Y, are iid IW(¢,A) with ¢ known, #(Y) = Y— ~ AEXP(1), 6 =

0)Yi,...,Y, areiid inverted gamma (v, A) with v known, 7(Y) = 1/Y ~ 71[
0=1/A.

p)Y1,....Y, areiid LG(v,A) with v known, 1(Y) = ¢’ ~ AG(v,1), 0 = A.

qQ) Y1,...,Y, are iid Maxwell-Boltzmann (u, o) with u known,
t(Y)=(Y —u)*~0%G(3/2,2), 6 = 2.

r) 11,...,Y, are iid MDL(u, ) with g known, #(Y) = log(u“TY) ~ %EXP(l),
0=1/¢.

s) Y1,....,Y, are iid N(u,c?) with u known, 1(Y) = (Y — u)? ~ 62G(1/2,2),
0 = o2

t)Y),...,Y, are iid one-sided stable (o), t(Y) =1/Y ~ éG(l/Z,Z),
0=1/c.

w) Yy,...,Y, are iid power (1) distribution, #(Y) = —log(Y) ~ AEXP(1), 6 = A.

V) Y1,...,Y, areiid Rayleigh (1, o) with 4 known, 1(Y) = (Y — u)? ~ 6°EXP(2),
0 = o2

w) Y,...,Y, are iid Topp-Leone (v), t(Y) = —log(2Y — ¥?) ~ %EXP(l),
0=1/v.

X)Y1,...,Y, areiid truncated extreme value (1), £(Y) =e' —1 ~ AEXP(1), 6 =A.

A.
(v, 1),

6.36%. Let Y1,...,Y, be iid from a one-parameter exponential family with pdf or
pmf f(y|0) with complete sufficient statistic T(Y) = X", #(Y;) where #(Y;) ~ 6X
and X has a known distribution with known mean E(X) and known variance V (X).
Let W, = ¢T(Y) be an estimator of 6 where c is a constant.

a) Find the mean square error (MSE) of W, as a function of ¢ (and of n, E(X),
and V(X)).

b) Find the value of ¢ that minimizes the MSE. Prove that your value is the
minimizer.

¢) Find the uniformly minimum variance unbiased estimator (UMVUE) of 0.

6.37%. Let X1,..., X, be a random sample from a Poisson (1) distribution. Let
X and S? denote the sample mean and the sample variance, respectively.

a) Show that X is uniformly minimum variance unbiased (UMVU) estimator of A

b) Show that E(S?[X) =X

¢) Show that Var(§?) > Var(X).

6.382. Let X;,...,X, be a random sample from a Poisson distribution with
mean 6.

a) For a > 0, find the uniformly minimum variance unbiased estimator (UMVUE)
of g(0) = .
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b) Prove the identity:

E[2X1|T}_<1+%>T.

6.39%. Let Xi,...,X, be independent identically distributed from a N(u,c?)
population, where ¢ is known. Let X be the sample mean.

a)Find E(X — u)>.

b) Using a), find the UMVUE of u?.

¢) Find E(X — u)*. [Hint: Show that if ¥ is a N(0,0?) random variable, then
E(Y3) =0].

d) Using c), find the UMVUE of u>.

6.40°. Let Y7,...,Y, be iid from a uniform U (0, 0) distribution where 6 > 0.
Then T = max(Yy,...,Y,) is a complete sufficient statistic.

a) Find E(T*) for k > 0.

b) Find the UMV UE of 6 for k > 0.

6.41. Let Yy,...,Y, be iid from a distribution with probability distribution func-

tion (pdf)
0

f(Y):(H_—y)gH

where y > 0 and 6 > 0.
a) Find a minimal sufficient statistic for 6.
b) Is the statistic found in a) complete? (prove or disprove)
¢) Find the Fisher information 7;(0) if n = 1.
d) Find the Cramér—Rao lower bound (CRLB) for estimating 7.



Chapter 7
Testing Statistical Hypotheses

A hypothesis is a statement about a population parameter , and in hypothesis
testing there are two competing hypotheses called the null hypothesis Ho = Hj and
the alternative hypothesis H; = Hy. Let O and Oy be disjoint sets with &; C ©
where O is the parameter space. Then Ho: 0 € @y and H, : § € O.

When a researcher wants strong evidence about a hypothesis, usually this hypoth-
esis is Hy. For example, if Ford claims that their latest car gets 30 mpg on average,
then Ho : 4 = 30 and H; : 4 > 30 are reasonable hypotheses where 6 = i is the
population mean mpg of the car.

The power of a test, 3(0) = Pg(Ho is rejected), equals the probability that the
test rejects Ho. For a level « test, the probability of rejecting Ho when 6 € Q) =
Py (type I error), and this probability is bounded above by «. Given the bound «
on the type I error, want the power to be high when # € ©;. UMP tests have good
power, and likelihood ratio tests often perform well when UMP tests do not exist.
The Neyman—Pearson lemma and a theorem for exponential families are useful for
finding UMP tests.

7.1 Hypothesis Tests and Power

Definition 7.1. Assume that the data ¥ = (Y},...,Y,) has pdf or pmf f(y|@) for
0 € ©. A hypothesis test is a rule for rejecting Ho.

Definition 7.2. A type I error is rejecting Ho when Ho is true. A type II error
is failing to reject Ho when Ho is false. Py(reject Ho) = Py (type I error) if € Oy
while Py (reject Ho) = 1 — Py (type Il error) if 0 € O;.

Definition 7.3. The power function of a hypothesis test is
B(0)=Py(Ho is rejected)

for 6 € O.

DJ. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4_7, 183
© Springer International Publishing Switzerland 2014
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Often there is a rejection region R and an acceptance region. Reject Ho if the
observed statistic 7'(y) € R, otherwise fail to reject Ho. Then
B(0)=Py(T(Y)€R)=Py(reject Ho).

Definition 7.4. For 0 < o < 1, a test with power function 3(8) is a size « test if

sup B(6) =
9690

and a level o test if
sup B(0) < a.
0690

Notice that for 6 € @y, 3(0) = Py(type I error) and for 8 € Oy, B(6) =1—
Py (type 1I error). We would like B(0) ~ 0 for 6 € Oy and 3(0) ~ 1 for 6 € O,
but this may not be possible even if the sample size » is large. The tradeoff is that
decreasing the probability of a type I error increases the probability of a type II error
while decreasing the probability of a type II error increases the probability of a type
I error. The size or level of the test gives an upper bound o on the probability of the
type I error. Typically the level is fixed, e.g., a = 0.05, and then we attempt to find
tests that have a small probability of type II error. The following example is a level
0.07 and size 0.0668 test.

Example 7.1. Suppose that Y ~ N(u,1/9) where u € {0,1}. Let Ho : u =0 and
Hy:u=1.LetT(Y)=Y and suppose that we reject Ho if ¥ > 0.5. Let Z ~ N(0, 1)
and o = 1/3. Then

B(0) = Py(Y >0.5) =Py (YlT_;) > %) = P(Z > 1.5) ~ 0.0668.

Y-1_05-1

B(1)=Pi (Y >05) =P <W 215

) =P(Z>—1.5)~0.9332.

Definition 7.5. Suppose the null hypothesis is Hy : § = 6, and suppose that a
test statistic 7,,(y) is observed. The p-value is the probability, assuming Hy is true,
of getting a test statistic T;,(Y) at least as extreme as the test statistic 7,,(y) actually
observed where “as extreme” depends on the alternative hypothesis. For an o level
test, reject Hy if p-value < o while if p-value > «, fail to reject Hp.

Suppose T,,(Y) ~ N(0,1) if Hy : t =0 is true. If H; : pt > 0, then this right tailed
test has p-value = Py, (T,,(Y) > T,,(y)) = P(Z > T,(y)). If Hy : 1 < 0, then this left
tailed test has p-value = Py, (T,(Y) < T,,(y)) = P(Z < T,(y)). If H; : . # 0, then
this two tailed test has p-value = Py, (T,,(Y) > |T,,(y)|) = Puy (T, (Y) < —Tu(y)) +
Puo(To(Y) = Ty(y)) = P(Z > | Ty(y)])-

Typically « is small, so Hy is rejected if the p-value is small. If the p-value = 0,
then it is impossible that the test statistic T;,(y) would have occurred if Hy was true.
If the p-value = 1, it is impossible that the test statistic T;,(y) would have occurred
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if Hy was true. If the p-value = §, then J is the smallest value of ¢ that would lead
to rejecting Hy when T,,(Y) = T,,(y).

If the distribution of 7;,(Y) is discrete, then the p-value may only take on a count-
able number of values in [0,1], so p-value = o is impossible for some values of .
For example, suppose the test is a left tailed test so Hy is rejected if 7,(y) < ¢ for
some constant c. If 7,(Y) ~ discrete uniform (1, ..., 100) when Hy is true, then
p-value = k/100 when T,,(y) = k € {1,...,100}. For a left tailed test, if oo = 0.05,
reject Hy when p-value < 0.05 or when 7,(y) < 5. If oo = 0.049, reject Hy when
p-value < 0.049 or when p-value < 0.04 or when 7, (y) < 4.

7.2 Exponential Families, the Neyman-Pearson Lemma,
and UMP Tests

Definition 7.6. Consider all level o tests of Ho : 0 € @y vs. H| : 6 € O;. A uni-
formly most powerful (UMP) level o test is a level o test with power function
Bump(0) such that Byyp(0) > B(0) for every 0 € O where f is the power func-
tion for any level o test of Ho vs. Hj.

The following three theorems can be used to find a UMP test that is both a level
a and a size o test.

Theorem 7.1, The Neyman-Pearson Lemma (NPL). Consider testing
Hy:0 =06 vs. H : 0 = 0, where the pdf or pmf corresponding to 6; is f(y|6;)
for i = 0, 1. Suppose the test rejects Ho if f(y]61) > kf(y|6), and rejects Hy with
probability yif f(y|6;) = kf(y|6y) for some k > 0. If

o = B(60) = P, [f(Y[61) > kf(Y[60)] + yPa,[f(Y[61) = kf(Y[60)],
then this test is a UMP level o test.

Proof. The proof is for pdfs. Replace the integrals by sums for pmfs. Following
Ferguson (1967, p. 202), a test can be written as a test function y(y) € [0, 1] where
y(y) is the probability that the test rejects Hy when ¥ = y. The Neyman—Pearson
(NP) test function is

1, f(y]61) > kf(y|60)
o(y) =147 f(y161) =kf(y|60)
0, f(y161) <kf(y[6o)

and o = Eg,[¢(Y)]. Consider any level o test y/(y). Since y/(y) is a level o test,

Eg,[w(Y)] < Eg[9(Y)] = o (7.1)
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Then the NP test is UMP if the power
By(61) = Eg, [w(Y)] < By(61) = Eg, [¢(Y)].

Let f;(y) = f(»]6;) fori =0,1. Notice that ¢ (y) = 1 > y(y) if i (¥) > kfo(y) and
o(y)=0<wy(y)if fi(y) <kfo(y). Hence

[16(0) = wO)AG) ~Koly)ldy >0 (12)
since the integrand is nonnegative. Hence the difference in powers is

Bo(61) — By(61) = Eg, [¢(Y)] — Eo, [w(Y)] > k(Eg,[¢(Y)] — Eq [w(Y)]) > 0

where the first inequality follows from (7.2) and the second inequality from
Eq.(7.1). O

Remark 7.1. A test of hypotheses of the form Hy : f(y) = fo(y) vs. Hy : f(Y) =
/f1(y) can be done using the Neyman—Pearson lemma since H; : 0 = 6; indicates that
f(y) = fo,(y) = f(y|6;) where 6; =i fori=0,1.

Theorem 7.2, One-Sided UMP Tests via the Neyman—Pearson Lemma. Sup-
pose that the hypotheses are of the form Hy: 0 < 6y vs. H; : 8 > 6y or Hy : 8 > 6,
vs. Hy : 6 < 6y, or that the inequality in Hy is replaced by equality. Also assume that

sup B(6) = B(6o)-

CISCH)

Pick 6; € ©; and use the Neyman—Pearson lemma to find the UMP test for Hj :
0 = 6y vs. H; : 6 = 6;. Then the UMP test rejects Hj if f(y|01) > kf(y|6o),
and rejects H; with probability y if f(y|61) = kf(y|6y) for some k > 0 where
o = 3(6p). This test is also the UMP level o test for Hy: 0 € O vs. H; : 0 € O
if k does not depend on the value of 6; € ©,. If R = f(Y|6,)/f(Y|6), then
o = Pg,(R > k) + YPg,(R = k).

Theorem 7.3, One-Sided UMP Tests for Exponential Families. Let Y},...,Y,
be a sample with a joint pdf or pmf from a one-parameter exponential family where
w(6) is increasing and T (y) is the complete sufficient statistic. Alternatively, let
Yi,...,Y, beiid with pdf or pmf

f(y10) = h(y)e(6)explw(6):(y)]

from a one-parameter exponential family where 0 is real and w(6) is increasing.
Here T(y) = X7, t(yi). I) Let 6; > 6. Consider the test that rejects H,, if T(y) > k
and rejects Hy with probability y if 7 (y) = k where

o =Py (T(Y) > k) +yPg,(T(Y) = k). This test is the UMP level o test for
a)H():@:Oovs.Hl : 6261,

b)Hy:0 =6y vs.H : 6> 6y, and

c)Hy:0<6yvs.H:0 > 0.
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) Let 6; < 6. Consider the test that rejects Hy if T(y) < k and rejects Hy with
probability yif 7'(y) = k where @ = Py, (T (Y) < k) + ¥Pg,(T(Y) = k). This test is
the UMP level « test for

d)HoIQZ@oVS.Hliezel

e)Hy:0=26yvs.H : 06 < 0y, and

f)Hy:0>6yvs.H : 6 < 6.

Proof. 1) Let 6; > 6. a) Then

f(x161) [6(91)}"6XP[W(91)2?1t(yi)]

f(y160)  Lc(60)] exp[w(60) Xy z(vi)]

>c

iff
n

[w(61) —w(60)] D 1(vi) >d

i=1

iff 3 #(yi) > k since w(0) is increasing. Hence the result holds by the NP lemma.
b) The test in a) did not depend on 8; > 6y, so the test is UMP by Theorem 7.2. ¢) In
a), B < 0) were arbitrary, so supy.g, B(8) = B(6) where Oy = {0 € ©|0 < 6o}
So the test is UMP by Theorem 7.2. The proof of II) is similar, but 6; < 6y so
[w(6)) —w(6y)] < 0, and there is a sign change. [

Remark 7.2. a) The UMP level « tests in Theorems 7.1-7.3 are also UMP size
o tests. b) As a mnemonic, note that the inequality used in the rejection region is
the same as the inequality in the alternative hypothesis. Usually y = 0 if f is a pdf.
Suppose that the parameterization is

f(y0) = h(y)e(6) exp[w(60)i(y)]

where w(6) is decreasing. Then set w(6) = —Ww(0) and #(y) = —#(y). In this text,
w(0) is an increasing function if w(6y) < w(6;) for 6y < 6; and nondecreasing
if w(6y) < w(6;). Some texts use “strictly increasing” for “increasing” and use
“increasing” for “nondecreasing.” ¢c) A simple hypothesis consists of exactly one
distribution for the sample. A composite hypothesis consists of more than one dis-
tribution for the sample.

If the data are iid from a one-parameter exponential family, then Theorem 7.3 is
simpler to use than the Neyman—Pearson lemma since the test statistic 7 will have a
distribution from an exponential family by Theorem 3.5. This result makes finding
the cutoff value k easier. To find a UMP test via the Neyman—Pearson lemma, you
need to check that the cutoff value k does not depend on 6; € ©; and usually need
to transform the NP test statistic to put the test in useful form. With exponential
families, the transformed test statistic is often 7'.

Example 7.2. Suppose that Xj,...,Xjo are iid Poisson with unknown mean A.
Derive the most powerful level e = 0.10 test for Hy : A = 0.30 versus H; : A = 0.40.
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Solution: Since

! e * expllog(A)x]

T x!

fx[A)

and log(A) is an increasing function of A, by Theorem 7.3 the UMP test rejects Ho
if X' x; > k and rejects Ho with probability y if Y, x; = k where
a=0.1= P)L:O.fi (th > k) + YP)L:OJ(ZXII = k) Notice that

_a-— PHU(ZX,' > k)
 Puo(EXi=k)

(7.3)

Alternatively use the Neyman—Pearson lemma. Let

e—n?Ll/’LlExi IIx:! _ nli-20) <ﬂ) i .

= 110413103 = i o

Since A; = 0.4 > 0.3 = Ag, r > c is equivalent to Y x; > k and the NP UMP test has
the same form as the UMP test found using the much simpler Theorem 7.3.

k 0 1 2 3 4 5
P(T =k)|0.0498 0.1494 0.2240 0.2240 0.1680 0.1008
F(k) ]0.0498 0.1992 0.4232 0.6472 0.8152 0.9160

If Ho is true, then T = /%, X; ~ Pois(3) since 3 = 1049 = 10(0.3). The above
table gives the probability that T = k and F (k) = P(T < k). First find the smallest
integer k such that Py_o30(XX; > k) = P(T > k) < oo =0.1. Since P(T > k) =
1 —F(k), find the smallest value of k such that F'(k) > 0.9. This happens with k = 5.
Next use (7.3) to find 7y.

~0.1—(1-0.9160) 0.1—0.084  0.016
B 0.1008 ~0.1008 ~ 0.1008

~0.1587.

Hence the o = 0.1 UMP test rejects Ho if T = Z}QIXI- > 5 and rejects Ho with
probability 0.1587 if ¥/°, X; = 5. Equivalently, the test function ¢(7T) gives the
probability of rejecting Ho for a given value of T where

1, T>5
o(T)=1< 0.1587, T =5
0, T <5.

Example 7.3. Let Xj,...,X, be independent identically distributed random vari-
ables from a distribution with pdf

__2 1 [—(log(x))?
f(X)_A,\/EXeXP{ 212 :|
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where A >0and 0 <x < 1.

a) What is the UMP (uniformly most powerful) level ¢ test for
Hy:A=1vs.H :A=2?

b) If possible, find the UMP level o test for Hy : A =1 vs. Hy : A > 1.

Solution. a) By the NP lemma reject Ho if

f(x]A =2)

Ly
fx[A=1)
The (left-hand side) LHS =

7 exp[g X[log(x;)]*]
exp[ 5+ X[log(xi)]?]

So reject Ho if
1 e
7 &XP {Z[log(xi)] (5 - gﬂ >k

or if Y [log(X;)]> > k where P, _;(X[log(X;)]*> > k) = a.
b) In the above argument, with any A; > 1, get

Shoetsl* (3~ 373

and

1 1
———>0
2 2&12

for any 112 > 1. Hence the UMP test is the same as in a).

Theorem 7.3 gives the same UMP test as a) for both a) and b) since the pdf is
a 1P-REF and w(A?) = —1/(2A?) is an increasing function of A2. Also, it can be
shown that ¥[log(X;)]* ~ A%y, s0 k=, _, where P(W > x| ) = atif W ~ x5

Example 7.4. Let Xj,..., X, be independent identically distributed (iid) random
variables with probability density function

flx) = Ajﬁexexp <_(ik_21)2)

where x > 0and A > 0.

a) What is the UMP (uniformly most powerful) level o test for
Hy:A=1vs.H : A =27
b) If possible, find the UMP level o test for Hy : A =1 vs. Hy : A > 1.
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a) By the NP lemma reject Ho if

The LHS =
s expl 5 (e~ 17
xpl5t 2(e = 1))

So reject Ho if

2—1”exp {Z(ex" —1)? <% — %)] >k

orif ¥(e% —1)? > k where Py (3,(eX —1)> > k) = a.
b) In the above argument, with any A; > 1, get

(i3

11
2 27

and

>0

for any A7 > 1. Hence the UMP test is the same as in a).

Alternatively, use the fact that this is an exponential family where w(A?) =
—1/(2A2) is an increasing function of A2 with T'(X;) = (¢Xi — 1)2. Hence the same
test in a) is UMP for both a) and b) by Theorem 7.3.

Example 7.5. Let X1, ..., X, be independent identically distributed random vari-
ables from a half normal HN(u, 62) distribution with pdf

flx)= 2 exp<_(;;2m2)

oV2n

where 6 > 0 and x > u and u is real. Assume that y is known.

a) What is the UMP (uniformly most powerful) level ¢ test for
Hy:0%>=1vs. H :0>=4?
b) If possible, find the UMP level « test for Hy : 6> = 1 vs. Hy : 62 > 1.

Solution: a) By the NP lemma reject Ho if

f(x]o®=4)
flxlo?=1)

>k,
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oo ()
exp K*Z(X{M)z )] ’

%exp [Z(x,» —u)? (%1 - %)} > K

orif ¥(x; — 1) > k where Py, (3(X; — u)? > k) =
Under Ho, 3(X; — 1)* ~ x2 so k = (1 — o) where P(x2 > x2(1 —a)) = ct.
b) In the above argument,

The LHS =

So reject Ho if

-1 —1
—4+05=—+4+05>0
2(4)—|— 3 + >

but

-1
—+05>0
20}

for any 612 > 1. Hence the UMP test is the same as in a).

Alternatively, use the fact that this is an exponential family where w(c?) =
—1/(20?) is an increasing function of 62 with T'(X;) = (X; — u)*. Hence the test in
a) is UMP for a) and b) by Theorem 7.3.

Example 7.6. Let Y1, ..., Y, be iid with pdf

a2
2\/2 0y2 \/y’ : y P [2_\/2
T Oy f

where v > 0, 6 is known and ¢(y) is a function such that #(Y) ~ v?x?.

a) Find the UMP level o test for Hy: v =1 versus H; : v = 1.19.

b) Suppose n =12 and oc = 0.05. Find the power 3(1.19) when v = 1.19.

Solution: a) This is an exponential family. Note that 2v? is increasing, so 1/(2v?)
is decreasing and w(A) = —1/(2v?) is increasing. Thus the UMP test rejects Hy if
S t(yi) >k where a = Py (3 t(Y;) > k).

b) Use « to find k£ and then find the power. If Hy is true so v = 1, then
S t(Y;) ~ xi. Thus k = Xu(o 95) =21.03 using a chi-square table. If v = 1.19,
then X}, #(¥;) ~ (1. 19) X5 S0 B(1.19) = Py 1o(X, 1(Y;) > 21.03) =

P(X > 21 03/(1.19)%) = P(X > 14.8506) = 0.25 usmg a chi-square table where

X~ 1.

£0) = 0]

Example 7.7. Let Y1,...,Y, be independent identically distributed random vari-
ables with pdf
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1.2
V2y*e20?”
- o3n

where y > 0 and ¢ > 0. You may use the fact that W =¢(Y) =Y

1)

Pty

a) What is the UMP (uniformly most powerful) level o test for
Hy:o=1versusH,:0 >1?

b) If n = 20 and o = 0.05, then find the power 3(1/1.8311) of the above UMP
testif 6 = /1.8311. Let P(x7 < x3 5) = 6. The tabled values below give 7 5.

d 13}

0.01 005 01 025 075 09 095 099
20| 8.260 10.851 12.443 15.452 23.828 28.412 31.410 37.566
40(22.164 26.509 29.051 33.660 45.616 51.805 55.758 63.691
60]37.485 43.188 46.459 52.294 66.981 74.397 79.082 88.379

Solution. a) This family is a regular one-parameter exponential family where
w(o) = —1/(206?) is increasing. Hence the level @ UMP test rejects Hy when
Sty >kwhere a =P (3, Y2 > k) =P(T(Y) > k).

TY
b) Since T(Y) ~ 62y3,, ((yz)

~ )(32n. Hence

a=0.05=P(T(Y)>k)= P(Xgo > XGZO,I—(X)’

and k = 75620’170{ =79.082. Hence the power

B(0) =Ps(T(Y)>79.082) = P (Tg) S 79(-282) _p (xéo - 79(.:)282>

79.082
=P <x§0 > W) = P(x3, > 43.188) = 1 —0.05 = 0.95.

7.3 Likelihood Ratio Tests

Definition 7.7. Let (Y1, ...,Y,) be the data with joint pdf or joint pmf f(y|0) where
0 is a vector of unknown parameters with parameter space ©. Let § be the MLE
of @ and let 6, be the MLE of @ if the parameter space is 6y (where Oy C O).
A likelihood ratio test (LRT) statistic for testing Hy : @ € ©p versus H : 6 € 6 is

~ L(foly)  supe,L(0]y)
M= 160y T S LOTy) (74)

The likelihood ratio test (LRT) has a rejection region of the form

R={ylA(y) <c}
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where 0 < ¢ < 1, and & = supgeg, Po(A(Y) < c). Suppose 6y € ©p and
supgeg, Po (A(Y) < c) =Py (A(Y) < c). Then a = Py (A(Y) < ).

Rule of Thumb 7.1: Asymptotic Distribution of the LRT. Let Y;,...,Y, be
iid. Then under strong regularity conditions, —2logA(Y) =~ X,Z for large n where
Jj =r—gq, ris the number of free parameters specified by # € ©, and g is the number
of free parameters specified by # € ©,. Hence the approximate LRT rejects Hy if
—2logA(y) > ¢ where P()CJZ >c¢)=o.Thusc= xili(x where P()(j2 > )(iFOC) =a.

Often 0 is called the unrestricted MLE of 8, and @ is called the restricted MLE
of §. Often § = 0 is a scalar parameter, Oy = (a, 6] and O; = Of = (6,b) or
@0 = [90,[)) and @1 = (a,eo).

Remark 7.3. Suppose the problem wants the rejection region in useful form.
Find the two MLEs and write L(8|y) in terms of a sufficient statistic. Then you
should either I) simplify the LRT test statistic A(y) and try to find an equivalent
test that uses test statistic 7(y) where the distribution of 7(Y) is known (i.e., put
the LRT in useful form). Often the LRT rejects Hy if T > k (or T < k). Getting the
test into useful form can be very difficult. Monotone transformations such as log or
power transformations can be useful. IT) If you cannot find a statistic 7 with a simple
distribution, state that the Rule of Thumb 7.1 suggests that the LRT test rejects H,, if
—2logA(y) > X},l—a where o = P(—2logA(Y) > )(]2‘170[). Using II) is dangerous
because for many data sets the asymptotic result will not be valid.

Example 7.8. Let Xj,...,X, be independent identically distributed random vari-
ables from a N(u,6?) distribution where the variance 6 is known. We want to test

Hy: 14 = Up against Hy : 4 # .
a) Derive the likelihood ratio test.
b) Let A be the likelihood ratio. Show that —21log A is a function of (X — ).
¢) Assuming that Hy is true, find P(—2logA > 3.84).
Solution: a) The likelihood function

L) = (2m0?) "Rexp | 1 3 - 0

and the MLE for p is fi =X. Thus the numerator of the likelihood ratio test statistic is
L(1p) and the denominator is L(X). So the test is reject Hy if A (x) = L(uo)/L(X) <¢
where o = Py, (A(X) < ¢).

b) As a statistic, logA = logL(y) — logL(X) =
— 353 [Z(Xi — o) = 2(Xi = X)?] = 55X — po]* since X(X; — po)* =
SXi—X+X— [J())Z =X —)_()2 +n(X — /.10)2. So —2logA = %[}_(— [,L()]z.

c¢) —2logA ~ x? and from a chi-square table, P(—2logA > 3.84) = 0.05.
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Example 7.9. Let Y},...,Y, be iid N(u,c?) random variables where u and o
are unknown. Set up the likelihood ratio test for Ho : u = g versus Hy : U # L.
Solution: Under Ho, i = U is known and the MLE

- 1y
(0, 6) = (uo,;_ (Yi—uo)2> :

Il
<

Recall that
_1& -
(.62 = Y, - Yt_Yz
(‘U,G ) < 7”;( )
Now
n 1
L 762 = i 2:|
.0 = [T 5= exp | 5 =)
Thus
1 1 n
Aly) = Ublo: 551y) g P g T 0o
Y)= 7 220y -
L(f1,62y) Wexp [rézzyﬂ()’i—i)z}

(62>”/2 exp(n/2) (62)"/2
63 exp(n/2) 6& ’
The LRT rejects Ho iff 2(y) < ¢ where supg2 Py 52(A(Y) <¢) =0

On an exam the above work may be sufficient, but to implement the LRT, more
work is needed. Notice that the LRT rejects Ho iff 6% /63 < ¢ iff 63 /62 > k. Using

1m—mﬁ=§@ﬁwﬂw@—mﬂ

M=

the LRT rejects Ho iff
n(3 — to)* } .,
4+ | >k
[ YL (i—y)?
iff
\/EIy—uolI/2 _ el
{ ?:1<Yi*y)2:| S
n—1

where s is the observed sample standard deviation. Hence the LRT is equivalent to
the usual ¢ test with test statistic
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that rejects Ho iff [To| > k withk =1,y 1_q/p Where P(T <t,_ | o) =1—0/2
whenT ~t, ;.

Example 7.10. Suppose that X, ..., X, are iid N(0, 62) where o > 0 is the un-
known parameter. With preassigned o € (0, 1), derive a level « likelihood ratio test
for the null hypothesis Hy : 6> = Gg against an alternative hypothesis Hy : 62> # Gg.

Solution: The likelihood function is given by

n
L(c%) = (2m6?) 2 exp —Lz A
20° 5

forall 62 > 0, and 62 (x) = ¥, x? /n is the MLE for 62. Under Ho, 63 = o2 since
o¢ is the only value in the parameter space @y = {07 }. Thus

2\ 2 1 n 2
L(83x) B sup@()L(oz|x) B (2mo3) 7 exp (_T%Z izlxi)

L&%x) ~ supeL(0®X)  (2767) 7 exp ()

AN 11/2 ) ) Ao\ 11/2
Alx)= <G—2> exp( nc; )e”/z_ [G—zexp <1—G—2)] .
lor 20y lor o

The LRT rejects Hy if A (x) < ¢ where ch(l(X) <c)=a.

The function g(u) = ue'~I(u > 0) monotonically increases for 0 < u < d, mono-
tonically decreases for d < u < oo, and attains its maximum at u = d, for some d > 0.
So A (x) will be small in the two tail areas.

Under Hy, T = Zileiz/Gg ~ x2. Hence the LR test will reject Ho if T < a or
T > b where 0 < a < b. The a and b correspond to horizontal line drawn on the
%2 pdf such that the tail area is or. Hence a and b need to be found numerically.
An approximation that should be good for large n rejects Ho if T < xi% orT >

Alx)=

So

Xoi_g Where P(1 < i) = e

Example 7.11. Consider independent random variables Xi,...,X,, where X; ~
N(6;,62), 1 <i<n,and 6? is known.
a) Find the most powerful test of

Hy: 6, =0,Vi, versus H| : 6; = 69, Vi,

where 0;9 are known. Derive (and simplify) the exact critical region for a level «
test.
b) Find the likelihood ratio test of

Hy : 6; =0,Vi, versus Hj : 6; # 0, for some i.
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Derive (and simplify) the exact critical region for a level o test.
¢) Find the power of the test in (a), when 6j = n~'/3,Vi. What happens to this
power expression as n — co?

Solution: a) In Neyman—Pearson’s lemma, let 8 = 0 if Hy is true and 6 = 1 if H;
is true. Then want to find f(x|0 =1)/f(x|60 =0) = fi(x)/ fo(x). Since

1 -1 &
1= e s 07

—1 n 0. n n
fi(x) _ eXP[EZ Zi—l()il 90)2] =exp (2__(712 [Z(Xi— 91'0)2_ ZX,ZD =

Jo(x) expl52s X1y 47 i=1 i=1
—1 < L 2 /

exp Py -2 2)6,‘9,’() + Z eiO >k
20 i=1 i=1

if =% [ 22;' lx, B0+, 03]) >k’ or if ¥ x;6; > k. Under Ho, 3/, X;6;0 ~
(O o2 ,62). Thus

11 X6
iz Xibo N(0,1).
o\ Tt 035
By Neyman-Pearson’s lemma, reject Ho if
11 X6
2,,1 iYi0 >

G\/Z?:I 91%)

where P(Z < zj_q) =1 —oa whenZ ~ N(0,1).
b) The MLE under Ho is 6; =0 for i = 1,...,n, while the unrestricted MLE is

éi =x; fori=1,...,n since X; = x; when the sample size is 1. Hence
Ay = H6=0) _ expl5cs Ty 7] _—Z
L6 =x)  explz T (x —x 200 5

1f2 Lyn a2 <¢” orif YU, x? > ¢. Under Ho, X; ~ N(0,02),X;/c ~ N(0,1), and
11 X?/0% ~ %z So the LRT is reject Ho if ¥/ X?/0* > x|, where
P(W >y o) =1—0if W~ xp.
c¢) Power = P(reject Ho) =

,1/3 X; 71/3 X;
—1 = —1 =
P( o 2/3 >Zla> P( Gnl/6 >Zla>
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—1/2§n : n
n Y. ¢
P (% > Zla> =P <ZX, >0 Zl-q n1/2>

i=1

n
where Y X; ~ N(n n '3 n6%) ~ N(n*3,nc?). So
i=1

noox._ p2/3 e
2,:1\/_:—6” ~N(0,1), and power —P(% >zla> =
n n

X _n23 n2/3 n2/3
pl&e=2t 7 g =17y — ——
( no > -« \/% c Zl-o \/ﬁ o

nl/6
1-@ Zlfoc_T —>1—(D(—°°):1

as n — oo,

Example 7.12. Let X1,...,X,, be iid from a distribution with pdf

f(-x) = ”xuilv
for 0 <x < 1 where u > 0. LetYy,...,Y, be iid from a distribution with pdf

g)=60y""1,

for 0 <y < 1 where 6 > 0. Let
m n
Ty = Y log(X;) and T» = ) log(¥).
i=1 j=1

Find the likelihood ratio test statistic for Hy : 4 = 0 versus H; : i # 6 in terms of
Ti, T>, and the MLEs. Simplify.

Solution: L(p) = u™exp[(u — 1) Xlog(x;)], and
log(L(t)) = mlog(4) + (1 — 1) S log(x;). Hence

dlog(L(u))

m set
= —+ > log(x;) = 0.
I " > log(x))

Or uY log(x;) = —mor i = —m/T;, unique. Now

d*log(L()) _ —m _
> <o0.

du? u
—n —n
———— = — . Under Hy combine
Yijlog(Y;) I

the two samples into one iid sample of size m + n with MLE

Hence [l is the MLE of p. Similarly 6 =
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. —(m+n)
Ho= ———F—-
h+T1;

Now the likelihood ratio statistic

4o L) Ag"expl(fo —1)(Slog(X:) + Xlog(¥:))]
L(.6)  am6mexp[(f—1)Slog(X;)+ (6 — 1) Slog(¥)]
fg " expl(lo - D)(Ti+T)] g exp[—(m+n)]exp[—(T1 + D))

amérexp((fi — )T+ (6 — 1)1 76" exp(—m)exp(—n)exp[—(T1 + 1)

m-+n
N m n m+n
T+1,

G

7.4 Summary

For hypothesis testing there is a null hypothesis Ho and an alternative hypothesis
Hj = Hy. A hypotbhesis test is a rule for rejecting Ho. Either reject Ho or fail to
reject Ho. A simple hypothesis consists of exactly one distribution for the sample.
A composite hypothesis consists of more than one distribution for the sample.

The power 3(0) = Py(reject Hp) is the probability of rejecting Hy when 6 is
the true value of the parameter. Often the power function cannot be calculated, but
you should be prepared to calculate the power for a sample of size one for a test
of the form Hy : f(y) = fo(y) versus H; : f(y) = f1(y) or if the test is of the form
Y1(Y;) > kor X¢(Y;) < k when X.¢(Y; ) has an easily handled distribution under Hj,
e.g., binomial, normal, Poisson, or xp. To compute the power, you need to find k
and v for the given value of c.

For a left tailed test, p-value = Py, (7,,(Y) < T,(y)). For a right tailed test, p-
value = Py, (T,,(Y) > T,(y)). If the test statistic 7,,(Y) has a sampling distribution
that is symmetric about 0, then for a two tailed test, p-value = Py, (T,,(Y) > |T,(¥)|)-
Reject Ho if p-value < ¢.

Consider all level « tests of Hy: 6 € ©y vs. H : 6 € ©;. A uniformly most
powerful (UMP) level « test is a level o test with power function Byyp(0) such
that Bymp(0) > B(0) for every 6 € ©; where f3 is the power function for any level
o test of Hy vs. H;.

One-Sided UMP Tests for Exponential Families. Let Y1, ...,Y, be iid with pdf

or pmf
f(516) = h(y)c(0) exp[w(6)1(y)]
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from a one-parameter exponential family where 0 is real and w(6) is increasing.
LetT(y) =" ,#(y;). Then the UMP test for Hy : 0 < 6y vs. Hs : 0 > 6y rejects Hy
if T(y) > k and rejects Hy with probability v if T'(y) = k where

o= Py, (T(Y)>k)+7yPg,(T(Y)=k). The UMP test for Hy: 0 > 6y vs. Hy : 6 < 6
rejects Hy if T(y) < k and rejects Hy with probability v if T(y) = k where

o= Po,(T(Y) <k)+yPy,(T(Y)=k).

Fact: if f is a pdf, then usually Y = 0. For a pmf and Hy : 6 > 6,

B o — Pg,[T(Y) >k
a PGO[T(Y) = k]

For a pmf and Hy : 6 < 6y,

00— Py [T(Y) <Kk]
Py [T(Y) =k]

As a mnemonic, note that the inequality used in the rejection region is the same
as the inequality in the alternative hypothesis. Suppose that the parameterization is

f(16) = h(y)c(0) exp[w(6)i(y)]
where w(0) is decreasing. Then set w(6) = —w(0) and 7(y) = —7(y).

Recall that w(0) is increasing on © if w'(8) > 0 for 6 € ©, and w(0) is decreas-
ingon @ if w'(6) < 0 for 6 € O. Also w(8) is nondecreasing on © if w'(6) > 0 for
0 € ©, and w(0) is nonincreasing on © if w'(0) <0 for 6 € O.

The Neyman-Pearson Lemma: Consider testing Hy: 6 = 6y vs. H; : 8 = 0,
where the pdf or pmf corresponding to 6; is f(y|6;) for i = 0,1. Suppose the test
rejects Hy if f(y|61) > kf(y|6o), and rejects Hy with probability y if f(y|6;) =
kf(y|6o) for some k > 0. If

o =P(60) = P, [f(Y|01) > kf(Y[60)] + VP, [f(Y|61) = kf(Y[60)],
then this test is a UMP level o test and a UMP size o test.

One-Sided UMP Tests via the Neyman—Pearson Lemma: Suppose that the
hypotheses are of the form Hy: 0 < 6y vs. H; : 0 > 68yor Hy: 0 > 6y vs. Hy : 6 < 6y,
or that the inequality in Hy is replaced by equality. Also assume that

sup B(6) = (o).

6cOy

Pick 6; € O; and use the Neyman—Pearson lemma to find the UMP test for Hj :
0 = 6y vs. H; : 6 = 6;. Then the UMP test rejects H; if f(y|61) > kf(y|6o),
and rejects Hyj with probability y if f(y]6)) = kf(y|6o) for some k > 0 where
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o = [(6p). This test is also the UMP level o test for Hy: 0 € O vs. H, : 0 € O
if k does not depend on the value of 6, € ©,. If R = f(Y|6,)/f(Y|6), then
o = Py (R > k) + yPg,(R=k).

Fact: if f is a pdf, then usually y =0 and oc = Py [f (Y |61) > kf(Y |6p)]. So yis
important when f is a pmf. For a pmf,
_ a—Py[f(Y]61) > kf(Y]60)]
Po, [f(Y]61) =kf(Y|60)]

Often it is too hard to give the UMP test in useful form. Then simply specify when
the test rejects Hy and specify o in terms of k (e.g., o = Pg, (T > k) + yPq, (T =k)).

The problem will be harder if you are asked to put the test in useful form. To find

f(y|61)
f(y16o)

certainly reject Hy if the ratio is large, but usually the distribution of the ratio is not
easy to use. Hence try to get an equivalent test by simplifying and transforming the
ratio. Ideally, the ratio can be transformed into a statistic 7 whose distribution is
tabled.

If the test rejects Hy if T > k (or if T > k and with probability y if T =k, or if
T < k,orif T < k and with probability y if T = k) the test is in useful form if for a
given ¢, you find k and 7. If you are asked to find the power (perhaps with a table),
put the test in useful form.

an UMP test with the NP lemma, often the ratio is computed. The test will

Let (¥1,...,Y,) be the data with joint pdf or pmf f(y|@) where 6 is a vector of
unknown parameters with parameter space ©. Let 6 be the MLE of @ and let 6,
be the MLE of 6 if the parameter space is Oy (where @y C ©). A LRT statistic for
testing Hy : 6 € O versus Hy : 0 € 6f is

The LRT has a rejection region of the form

R={y[A(y) <c}
where 0 < ¢ <1 and & = supg g, Po (A(Y) <c).
Fact: Often ©y = (a, 6y] and ©; = (6y,b) or Oy = [6y,b) and O = (a, 6p).

If you are not asked to find the power or to put the LRT into useful form, it
is often enough to find the two MLEs and write L(#|y) in terms of a sufficient
statistic. Simplify the statistic A (y) and state that the LRT test rejects H, if A(y) <c¢
where o = supgcg, P (A(Y) < c). If the sup is achieved at g € Oy, then o =
Py, (A(Y) < ¢).
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Put the LRT into useful form if asked to find the power. Try to simplify A or
transform A so that the test rejects Hy if some statistic T > k (or T < k). Getting
the test into useful form can be very difficult. Monotone transformations such as
log or power transformations can be useful. If you cannot find a statistic 7 with
a simple distribution, use the large sample approximation to the LRT that rejects
H, if —2logA(y) > sz‘lfa where P()(j2 > ?C,/Z‘lfa) = a. Here j = r — g where r
is the number of free parameters specified by 8 € O, and ¢ is the number of free
parameters specified by 8 € 6.

A common LRT problem s Xj, ..., X, are iid with pdf f(x|0) while ¥1,...,Y,, are
iid with pdf f(y|u). Hy: 4t =0 and H; : it # 6. Then under Hy, X1, ..., X, Y1,...,Yn
are an iid sample of size n -+ m with pdf f(y|0). Hence if f(y|0) is the N(u, 1) pdf,

1 Xi+ XY

then flo(= 6y) = , the sample mean of the combined sample.

m
Some distribution facts useful for testing.

Memorize Theorems 2.17 and 4.1.

Suppose Y1, ..., Y, are iid N(u,02). Then Z = “2E ~ N(0, 1).

zZ= ffj‘g ~N(0,1) while a+ c¥; ~ N(a+c,c262).

Suppose Z,Zi,...,Z, are iid N(0,1). Then Z? ~ x?.

Also a+ cZ; ~ N(a,c*) while 3, Z? ~ x2.

If X; are independent x,%i =y*(kj) fori=1,...,n,
then 37, X; ~ x* (X ki).

Let W ~ EXP(2) and let ¢ > 0. Then ¢W ~ EXP(cA).
Let W ~ gamma(v,A) and let ¢ > 0. Then ¢W ~ gamma(V,cA).

If W ~ EXP(A) ~ gamma(1,A), then
2W /A ~ EXP(2) ~ gamma(1,2) ~ x%(2).

Let k > 0.5 and let 2k be an integer. If W ~ gamma(k, A ), then
2W /A ~ gamma(k,2) ~ x%(2k).

Let Wy,...,W, be independent gamma(v;, A). Then
S Wi~ gamma(Y] | vi,A).

7.5 Complements

Example 7.13. As an application of this example, see Problem 7.25. Let
Y1,...,Y, be iid from a one-parameter exponential family with pdf f(y|6) and com-
plete sufficient statistic T(Y) = X}, #(¥;) where 6 > 0, ¢(Y;) ~ c6}(]2 and j is some
positive integer, often 1 or 2. Usually the constant ¢ = —1,—1/2,1/2 or 1. Suppose
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w(0) is increasing and let P(y3 < x3 ;) = 8. Let a be a positive integer and b > 0
some constant. Then ¢(Y) ~ G(5,b0) ~ bB%G(%, 1)~ Z—Z’BG(%,Z) ~ %’6){3. Hence
c=b/2and j=a. If —t(Y) ~ G(%,b0), then t(Y) ~ 5£60x2. Hence ¢ = —b/2

and j = a. Note that T(Y) ~ cexﬁj, so %p ~ x,%j. Consider the UMP test for

Hy: 6=6yversusHy: 6 =06;,orH;: 6 >6yorH;: 6 <6,.
i) Let ¢ > 0 and 6; > 6). Then the UMP test rejects Hy if 7(Y) > k where
o =Pe(T(Y)>k)=

P10 &

C 90 C@o

) =P(Xni > Xnid—a)s

and k = ceox,%j’lia. Hence the power 3(0) = Po(T(Y) > k) =

T(Y 6() 90
Py(T(Y) > cO0)ni1 o) =P< C(e) > g%ﬁj,la) =P (%31 > g%fma) :

ii) Let ¢ < 0 and 6; > 6y. Then the UMP test rejects Hy if T(Y) > k where
o="Py(T(Y)>k) =

T(Y) k _ 2 2
P( Ce() < %) —P(an <an,a)7

and k = cyy,;; .- Hence the power B(6) = Po(T(Y) > k) =

T(Y 6 6
P (1) > etz =P (15 < W) = PR < )

iii) Let ¢ > 0 and 6; < 6. Then the UMP test rejects Hy if T(Y) < k where
o= Pe(T(Y)<k)=

TY) k\_, > 2
P( C@o < %) _P(an <an7oc)7

and k = ceox,%jﬂ. Hence the power (0) = Po(T(Y) <k) =

T(Y) 0 e
Py(T(Y) < cOtja) = P (c(_e) < goxi,-,a> =P (xi,- < goxi,-,a> :

iv) Let ¢ < 0 and 6; < 6y. Then the UMP test rejects Hy if T(Y) < k where
o= Pe,(T(Y)<k)=

) KN\ o,
P( cBy ~ c@o) = POt > Xnji-a);

and k = c6ox,, | - Hence the power B(8) = Po(T(Y) < k) =
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T(Y 6() 90
Py(T(Y) < cOoxnji o) =P (% > g%ima) =P (Xr%j > g%;%ma) :

Definition 7.8. Let Y1, ...,Y, have pdf or pmf f(y|0) for 8 € ©. Let T(Y) be a
statistic. Then f(y|6) has a monotone likelihood ratio (MLR) in statistic T if for
any two values 6y, 0, € © with 6y < 6y, the ratio f(y|61)/f(»|60) depends on the
vector y only through 7 (y), and this ratio is an increasing function of 7'(y) over the
possible values of T'(y).

Remark 7.4. Theorem 7.3 is a corollary of the following theorem, because under
the conditions of Theorem 7.3, f(y|0) has MLR in T'(y) = X7, ().

Theorem 7.4, MLR UMP Tests. Let Y1,...,Y, be a sample with a joint pdf or
pmf f(y|0) that has MLR in statistic T'(y). I) The UMP test for Hy : 0 < 6 vs.
H, : 0 > 6 rejects Hy if T(y) > k and rejects Hy with probability y if T(y) =k
where a0 = Py (T (Y) > k) + yPg, (T (Y) = k). II) The UMP test for Hy : 6 > 6 vs.
H : 0 < 6 rejects Hy if T(y) < k and rejects Hy with probability y if T(y) =k
where ot = Pq, (T(Y) < k) + Py, (T(Y) = k).

Proof. I) Pick 6; > 6y and consider Hj : 8 = 6y versus H{ : 6 = 0;. Let h be the
increasing function such that

f(y161)
f(y60)

iff T(y) > k. So the NP UMP test is equivalent to the test that rejects Hi if 7 (y) > k
and rejects H; with probability y if T(y) = k where ot =

Po,(T(Y) > k) + yPg,(T(Y) = k). Since this test does not depend on 6; > 6, it
is also the UMP test for Hj : 0 = 6y versus H; : 8 > 6p by Theorem 7.2. Since
6o < 01 was arbitrary, supgcg, B(60) = B(60) if Og = {6 € ©|0 < 6}, and the result
follows. The proof of II) is similar, but 8; < 6y. Thus % is an increasing function
with respect to f(y|6y)/f(¥|61), but a decreasing function of T'(y) with respect to

f(¥|61)/f(y|6o). Thus

=h(T(y))>c

iff T(y) < k. O

Lehmann and Romano (2005) is an authoritative Ph.D. level text on testing statis-
tical hypotheses. Many of the most used statistical tests of hypotheses are likelihood
ratio tests, and several examples are given in DeGroot and Schervish (2012). Scott
(2007) discusses the asymptotic distribution of the LRT test.

Birkes (1990) and Solomen (1975) compare the LRT and UMP tests. Rohatgi
(1984, p. 725) claims that if the Neyman—Pearson and likelihood ratio tests exist for
a given size ¢, then the two tests are equivalent, but this claim seems to contradict
Solomen (1975). Exponential families have the MLR property, and Pfanzagl (1968)
gives a partial converse.
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7.6 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

7.0. LetXy,..., X, beiidN(u A 2), 0% > 0. Let Oy = {(uo,0?) : /,Loﬁxed o’ >
0} and let © = {(u,0?) : 1 ER, o? > 0}. Con51der testing Hy : 0 = (1,02) € 6y
vs. Hy: not Hy. The MLE 6 = (fi,62) = ()_( " (X; —X)?) while the restricted

. . [
MLE is GO:(IUOaG()):(:u(%ZZ(Xi_:uO) )-
i-1

a) Show that the likelihood ratio statistic

(% — 2 q-n/2
e e

b) Show that Hy is rejected iff |\/n(X — u,)/S| > k and find k if n = 11 and
o = 0.05. (Hint: show that Hy is rejected iff n(X — uo)?/ 3, (X; — X)? > c, then
multiply both sides by a constant such that the left-hand side has a (,,_1)? distribu-
tion. Use the fact that

~ 1
S,/\/— n—1
under Hy. Use a t-table to find k)

7.2. Let Xi,...,X, be a random sample from the distribution with pdf
xG*l —x
r(o)

For a) and b) do not put the rejection region into useful form.

f(x[6) =

,x>0,0>0.

a) Use the Neyman—Pearson lemma to find the UMP size ¢ test for testing H :
6 =1vs. H : 6 = 0; where 0, is a fixed number greater than 1.

b) Find the uniformly most powerful level o test of
Hy: 6 =1 versus H: 6 > 1.
Justify your steps. Hint: Use the statistic in part a).

7.3. Let Hy : Xy,...,X, are iid U(0,10) and H; : Xi,...,X, are iid U (4,7). Sup-
pose you had a sample of size n = 1000. How would you decide which hypothesis
is true?

Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q.
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7.4. Let X|,...,Xjo be iid Bernoulli(p). The most powerful level o = 0.0547
test of H, : p=1/2 vs. Hy : p = 1/4 rejects Hy if Zl-lglxi < 2. Hy is not rejected if
319, x; > 2. Find the power of this test if p = 1/4.

7.5. Let Xy,...,X, be iid exponential(). Hence the pdf is

1
f(xB) = Eexp(—X/ﬁ)

where 0 < xand 0 < 3.

a) Find the MLE of 3.

b) Find the level o likelihood ratio test for the hypotheses Hy : B = 3, vs. Hj :
B # Bo-

7.6%. Let X|,...,X, be independent, identically distributed random variables
from a distribution with a beta(6, 0) pdf

fx6) = == =ray

where 0 < x < 1and 6 > 0.

a) Find the UMP (uniformly most powerful) level o test for Hy: 6 =1 vs. H; :
6=2.

b) If possible, find the UMP level « test for Hy: 0 =1 vs. H; : 6 > 1.

7.7. Let Xi,...,X, be iidd N(u;, 1) random variables and let Y;,...,¥, be iid
N(up, 1) random variables that are independent of the X’s.

a) Find the o level likelihood ratio test for Hy : u; = p vs. Hy : 1 # Wy You may
assume that (X,Y) is the MLE of (u;, ) and that under the restriction (t; = tp = i,
say, then the restricted MLE

~ 2?:1Xi+2?:1Yi
u= o
n
b) If A is the LRT test statistic of the above test, use the approximation
—2logA ~ x5
for the appropriate degrees of freedom d to find the rejection region of the test in

useful form if oo = 0.05.

7.8. Let Xj,...,X, be independent identically distributed random variables from

a distribution with pdf
21 —[log(x)]?
) == 2Mexp< oel

where 0 > 0and x > 1.
If possible, find the UMP level o test for Hy: 6 =1vs. H : 6 > 1.
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7.9. Let Xi,...,X, be independent identically distributed random variables from

a distribution with pdf
2 —(x—u)?
e

where 6 > 0 and x > u and u is real. Assume that y is known.

a) What is the UMP (uniformly most powerful) level o test for
Hy:02=1vs. H :0>=4?

b) If possible, find the UMP level « test for Hy : 6> = 1 vs. Hy : 62 > 1.

7.109. Let X1, ..., X, be a random sample from the distribution with pdf
xQ*lefx
r(e)

Find the uniformly most powerful level ¢ test of

f(x,0)= ,x>0,0>0.

H: 6 =1 versusK: 6 > 1.

7.119. Let Xi,...,X, be independent identically distributed random variables
from a N(u,c?) distribution where the variance % is known. We want to test Hy :

U = Uo against Hy : i # Uo.
a) Derive the likelihood ratio test.
b) Let A be the likelihood ratio. Show that —21log A is a function of (X — ).
¢) Assuming that Hy is true, find P(—2logA > 3.84).

7.129. Let Xy, ..., X, be iid from a distribution with pdf

2x

£6) = - exp(—2/)

where A and x are both positive. Find the level oo UMP test for Hy: A = 1 vs.
H : A>1.

7.139. Let X1, ..., X, be iid from a distribution with pdf

(log6)6*

Fxle) = S22

where 0 < x < 1 and 6 > 1. Find the UMP (uniformly most powerful) level o test
of Hy: 0 =2vs. H : 0 =4.
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7.149. Let Xi,...,X, be independent identically distributed random variables
from a distribution with pdf

xZexp (%‘i)
10 =57 F§3/2)

where o > 0 and x > 0.

a) What is the UMP (uniformly most powerful) level « test for
Hy:0=1vs.Hi:0=2?

b) If possible, find the UMP level « test for Hy: 6 =1vs. H : 6 > 1.

7.159. Let Xi,...,X, be independent identically distributed random variables
from a distribution with pdf

flx) = 2 leXp(—UOg(x)]z)

oV2rm x 202

where 6 > 0 and x > 1.

a) What is the UMP (uniformly most powerful) level o test for
Hy:0=1vs.Hi:0=2?

b) If possible, find the UMP level o test for Hy: 0 =1vs. H : 6 > 1.

7.162. Suppose X is an observable random variable with its pdf given by f(x),
x € R. Consider two functions defined as follows:

3.2
_)gx 0<x<4
folx) = { 0 elsewhere

elsewhere.

A ={gVF st

Determine the most powerful level o test for Hy : f(x) = fo(x) versus Hy : f(x) =

fi(x) in the simplest implementable form. Also, find the power of the test when
a =0.01

7.172. Let X be one observation from the probability density function
fx)=6x"1 0<x<1, 6>0.

a) Find the most powerful level o test of Hy : 0 = 1 versus H; : 6 = 2.
b) For testing Hy : 0 < 1 versus H; : 6 > 1, find the size and the power function
of the test which rejects Hy if X > %
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c) Is there a UMP test of Hy : 0 < 1 versus Hy : 6 > 1? If so, find it. If not,
prove so.

7.18. Let X1,...,X, be iid N(u, 62) random variables where 6 > 0 is known.
a) Find the UMVUE of u?.
(Hint: try estimators of the form aT? + b where T is the complete sufficient statistic

for u.)
b) Suppose 62 = 1 and n = 4. Then the (uniformly) most powerful level o = 0.05
test for Hy : L =0 vs. Hy : u =2 rejects Hy if and only if

4
3 x> 3.29.
i=1

Find the power 3(2) of this test if u = 2.

7.199. Let Xi,...,X, be independent identically distributed random variables
from a half normal HN(u, 62) distribution with pdf

=5 e (5t)

where 6 > 0 and x > u and u is real. Assume that p is known.

a) What is the UMP (uniformly most powerful) level ¢ test for
Hy:0%>=1vs. Hy :02=4?
b) If possible, find the UMP level « test for Hy : 6> = 1 vs. Hy : 62 > 1.

7.20€. Suppose that the test statistic 7'(X) for testing Hy : A = 1 versus Hy : A >
1 has an exponential(1/A,) distribution if A = A;. The test rejects Hy if T(X) <
log(100/95).

a) Find the power of the test if ; = 1.

b) Find the power of the test if 1; = 50.

¢) Find the p-value of this test.

7.219. Let Xi,...,X, be independent identically distributed random variables
from a Burr type X distribution with pdf

fx)y=21x e (1— efxz)rfl

where T > 0 and x > 0.

a) What is the UMP (uniformly most powerful) level ¢ test for
Hy:t=2versus H : T=4?

b) If possible, find the UMP level a test for Hy : T =2 versus H; : T > 2.
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7.229. Let Xi,...,X, be independent identically distributed random variables
from an inverse exponential distribution with pdf

- on(2)

where 8 > 0 and x > 0.

a) What is the UMP (uniformly most powerful) level ¢ test for
Hy:0=1versusH; : 0 =27

b) If possible, find the UMP level o test for Hy : 8 = 1 versus H; : 6 > 1.

7.23%. Suppose that X is an observable random variable with its pdf given
by f(x). Consider the two functions defined as follows: fy(x) is the probability
density function of a Beta distribution with o = 1 and 8 =2 and and fj (x) is the
pdf of a Beta distribution with o =2 and § = 1.

a) Determine the UMP level o = 0.10 test for Hy : f(x) = fo(x) versus H; :
f(x) = fi(x). (Find the constant.)

b) Find the power of the test in a).

7.249. The pdf of a bivariate normal distribution is f(x,y) =

1 N —1 <x—u1>2
210105(1 — p2)1/2 P 2(1-p?) o

() () (52) )

where —1 < p <1, o1 >0, 0p > 0, while x, y, y;, and y, are all real. Let
(X1,11),...,(Xp,Y,) be a random sample from a bivariate normal distribution.
Let O(x, y) be the observed value of the MLE of 6, and let 6(X,Y) be the MLE as
a random variable. Let the (unrestricted) MLEs be [1;, fi5, 61, 62, and p. Then

n qo\ 2 A2 n a2\ 2 a2
Xi— noj Yi— M no,
=Y ("= =—5=n and ;=7 (= =—5=n,
' 0] 0;

i=1

ad B3 ()Ci_Ile) <yi—l~lz) —np.

i=1 61 62

Consider testing Hy : p =0 vs. Hy : p # 0. The (restricted) MLE:s for 1, 1, 01, and
0, do not change under Hy, and hence are still equal to fi, flp, 61, and 6.

a) Using the above information, find the likelihood ratio test for Hy : p = 0 vs.
Hy : p # 0. Denote the likelihood ratio test statistic by A (x,y).

b) Find the large sample (asymptotic) likelihood ratio test that uses test statistic

—2log(A(x,y)).
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7.25. Refer to Example 7.13. Let Y1,...,Y, be iid from a one-parameter expo-
nential family with pdf f(y|0) with complete sufficient statistic 7(Y) = X!, #(Y;)
where 6 > 0, #(Y;) ~c 6 sz and j is some positive integer, often 1 or 2. For the
following exponential families, assume w(0) is increasing, n = 20, a = 0.05, and
find i) the UMP level o test and ii) the power B(61). Let P(x; < x; 5) = 6. The

tabled values below give x7 5.

a)Yy,...,Y, are iid Burr type Il (¢ = 1, 1),
1Y) =log(1+Y ') ~ 4 x2 test Hy: A =2 versus H; : A = 3.8386.

b) Y1,...,Y, are iid Burr type XII (¢ = 1,1),
1(Y)=log(l1+Y) ~ ’zlxzz, test Hy : A =2 versus H; : L = 3.8386.

o) Yi,....Y, are iid BS(v,u = 1), 1(Y) ~ vy?, test Hy: v =1 versus Hy : v =
v/3.8027.

d)Y1,...,Y, areiid chi(p = 1, 6) with pknown, #(Y) =Y? ~ 6%y, test Hy: 6 = 1
versus H; : 0 = v/3.8027.

e) Y1,...,Y, are iid double exponential (u = 0,A4),
t(Y)=|Y|~ %xzz, test Hy : A =2 versus Hy : L = 3.8386.

f) Y1,....,Y, are iid EXP(A), t(Y) =Y ~ 43, test Hy: A = 2 versus H : A =
3.8386.

2) Yy,....Y, are iid gamma (v =1,1),t(Y) =Y ~ ’21)(22, test Hy : A = 2 versus
H, : A =3.8386.

h) Y1,...,Y, are iid half normal (4 = 0,62%),1(Y) =Y* ~ 0%y, test Hy: 6 = 1
versus H| : 0 = v/3.8027.

i) Y1,...,Y, are iid inverse Weibull IW(¢ = 1,4),¢t(Y)=1/Y ~ %xzz, test Hy :
A =2 versus H; : L = 3.8386.

PDYi,....Y, areiid inverted gamma (v =1,1),1(Y)=1/Y ~ %xzz, test Hy: A =2
versus H; : A = 3.8386.

K) Yi,...,Y, are iid LG(v = 1,A), t(Y) = ' ~ %7522, test Hy : A = 2 versus
H, : A =3.8386.

D) 11,...,Y, are iid Maxwell-Boltzmann (4 = 0, 0),
t(Y)=Y?~0%x3, testHy: 0 =1 versus H, : 0 = \/1.8311.

m) Y1,...,Y, are iid N(u = 0,02), 1(Y) = Y% ~ 0%y7, test Hy : 6 = 1 versus
H, :0=+/3.8027.

n) ¥y,...,Y, are iid Pareto (0 = 1,4), t(Y) = log(Y) ~ ’zlxzz, test Hy : A =2
versus H; : A = 3.8386.

0)Yi,...,Y, are iid power (1) distribution, 7(Y) = —log(Y) ~ %xzz, test Hy: A =
2 versus Hy : A = 3.8386.

p)Yi,...,Y, areiid Rayleigh (1 =0,0),1(Y) =Y* ~ 6% y3, test Hy : 0 = 1 versus
Hy:0=+19193.

Q) Y1,...,Y, are iid truncated extreme value (1), t(Y) =¥ —1 ~ %xzz, test Hy :
A =2 versus Hy : A = 3.8386.
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d 13}

0.01 005 01 025 075 09 095 099
20| 8.260 10.851 12.443 15.452 23.828 28.412 31.410 37.566
40(22.164 26.509 29.051 33.660 45.616 51.805 55.758 63.691
60]37.485 43.188 46.459 52.294 66.981 74.397 79.082 88.379

7.269. Let Y1,...,Y, be independent identically distributed random variables
with pdf
) =T 20) 7 exp| e 1)
- A A
where y > 0and A > 0.

A
a) Show that W = ¢' — 1 ~ Elzz-
b) What is the UMP (uniformly most powerful) level o test for
Hy: A =2versus H; : A >2?

¢) If n =20 and & = 0.05, then find the power 3(3.8386) of the above UMP test
if A = 3.8386. Let P(x2 < )(5‘5) = 6. The above tabled values give )55‘5.

7.272. Let Y,...,Y, be independent identically distributed N(u = 0, 6?) ran-
dom variables with pdf

where y is real and 62 > 0.

a) Show W =Y? ~ 6 x?.

b) What is the UMP (uniformly most powerful) level o test for
Hy:o0?=1versus H; : 6% > 1?

¢) If n =20 and & = 0.05, then find the power 3(3.8027) of the above UMP test
if 0% =3.8027. Let P(y; < x; 5) = 6. The tabled values below give x 5.

d 1)

0.01 005 01 025 075 09 095 099
20| 8.260 10.851 12.443 15.452 23.828 28.412 31.410 37.566
30{14.953 18.493 20.599 24.478 34.800 40.256 43.773 50.892
40(22.164 26.509 29.051 33.660 45.616 51.805 55.758 63.691

7.28%. Let Y1,...,Y, be independent identically distributed random variables
with pdf
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where o > 0, u is real, and y > 0.

a) Show W = Y? ~ 6% x3. Equivalently, show Y2 /62 ~ x3.

b) What is the UMP (uniformly most powerful) level o test for
Hy:oc=1versusH :0 > 1?

¢) If n =20 and o = 0.05, then find the power §(v/1.9193) of the above UMP
test if ¢ = v/1.9193. Let P(y; < x7 5) = 6. The above tabled values give x7 5.

7.299. Consider independent random variables X, . .., X,,, where X; ~ N(6;, 6%),
1 <i<n,and o2 is known.
a) Find the most powerful test of

Hy: 6, =0,Vi, versus H| : 6; = 69, Vi,

where 0;9 are known. Derive (and simplify) the exact critical region for a level «
test.
b) Find the likelihood ratio test of

Hy : 6, =0,Vi, versus H : 6; #~ 0, for some i.

Derive (and simplify) the exact critical region for a level o test.
¢) Find the power of the test in (a), when 6,0 = n~'/3,Vi. What happens to this
power expression as n — oo?

7.30. Consider a population with three kinds of individuals labeled 1, 2, and
3 occurring in the proportions p; = 6%, p = 20(1 —80), p3 = (1 — 6)?, where
0 < 6 < 1. For a sample Xi,...,X, from this population, let Nj,N,, and N3 denote
the number of X; equal to 1, 2, and 3, respectively. Consider testing Hy : 6 = 6
versus Hy : 0 = 0;, where 0 < 6y < 0; < 1. Let 6; € {6,0,} fork=1i, .
f(x16:)
f(x16))
creasing function of 2N} + N,. [Hint: N; = N;(X). Let n; = n;(x) be the observed
value of N;. Then f(x|6) = dx p'|' py>p3* where the constant dx does not depend on
0 and ny +ny +n3 = n. Write f(x|0) as a function of 0,dx,n,n,, and 2n; 4+ n, and
simplify. Then simplify the ratio.]

b) Suppose that ¢ > 0 and 0 < o < 1. Show that the test that rejects Hy if and
only if 2N; 4+ N, > c is a most powerful test.

a) Show that the ratio

used in the Neyman—Pearson Lemma is an in-

7.319. Let X, ..., X, be iid from a distribution with pdf

f(-x) = ”-xl'lilv
for 0 <x < 1 where u > 0. LetYi,...,Y, be iid from a distribution with pdf

gy =601,
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for 0 <y < 1 where 6 > 0. Let
m n
Ty = Y log(X;) and T, = ) log(¥;).
i=1 j=1

Find the likelihood ratio test statistic for Hy : t = 6 versus Hj : it # 0 in terms of
Ti, T>, and the MLEs. Simplify.



Chapter 8
Large Sample Theory

Large sample theory, also called asymptotic theory, is used to approximate the
distribution of an estimator when the sample size n is large. This theory is extremely
useful if the exact sampling distribution of the estimator is complicated or unknown.
To use this theory, one must determine what the estimator is estimating, the rate of
convergence, the asymptotic distribution, and how large n must be for the approx-
imation to be useful. Moreover, the (asymptotic) standard error (SE), an estimator
of the asymptotic standard deviation, must be computable if the estimator is to be
useful for inference.

This chapter discusses the central limit theorem, the delta method, asymptotically
efficient estimators, convergence in distribution, and convergence in probability.
Results on multivariate limit theorems in Sects. 8.6 and 8.7 may be omitted when
first reading this chapter. Chapter 9 uses large sample theory to create large sample
confidence intervals and large sample tests of hypotheses.

8.1 The CLT, Delta Method, and an Exponential Family
Limit Theorem

Theorem 8.1: The Central Limit Theorem (CLT). Let Y;,...,Y, be iid with
E(Y) = p and VAR(Y) = o2. Let the sample mean Y, = %2}’:1 Y;. Then
V(¥ — 1) 3 N(0,67).

Hence
Yo—p\ Y Yi—nu\ p
Jn (T) _ \/ﬁ<—n6 ) 2 N0, 1).

Note that the sample mean is estimating the population mean L with a \/n con-
vergence rate, the asymptotic distribution is normal, and the SE = §//n where §
is the sample standard deviation. For many distributions the central limit theorem

DJ. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4_8, 215
© Springer International Publishing Switzerland 2014
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provides a good approximation if the sample size n > 30. A special case of the CLT
is proven at the end of Sect. 8.4.

Notation. The notation X ~ ¥ and X 2 ¥ both mean that the random variables X
and Y have the same distribution. See Definition 1.24. The notation Y, 2> X means
that for large n we can approximate the cdf of ¥, by the cdf of X. The distribution
of X is the limiting distribution or asymptotic distribution of Y, and the limiting
distribution does not depend on n. For the CLT, notice that

Y,—u Y,—u
Z - =
! ﬁ< o > < G/\/ﬁ)
is the z-score of V. If Z, 2 N (0,1), then the notation Z, ~ N(0,1), also written

as Z, ~ AN(0,1), means approximate the cdf of Z, by the standard normal cdf.
Similarly, the notation

_Vl ;:.;N(‘u762/n)7

also written as Y, ~ AN(u,c?/n), means approximate the cdf of Y, as if ¥, ~
N(u,0?/n). Note that the approximate distribution, unlike the limiting distribution,
does depend on n. The standard error S//n approximates the asymptotic standard

deviation \/02/nof Y.

The two main applications of the CLT are to give the limiting distribution of
v/n(Y, — 1) and the limiting distribution of \/n(Y,/n — x) for a random variable
Y, such that ¥, = ¥/, X; where the X; are iid with E(X) = py and VAR(X) = o3.
Several of the random variables in Theorems 2.17 and 2.18 can be approximated
in this way. The CLT says that Y,, ~ AN(u, 6% /n). The delta method says that if
T, ~AN(0,62/n), and if g'(0) # 0, then g(T;,) ~ AN(g(8),0%[¢'(0)]?/n). Hence
a smooth function g(7,) of a well-behaved statistic 7, tends to be well behaved
(asymptotically normal with a \/n convergence rate).

Example 8.1. a) Let Y),...,Y, be iid Ber(p). Then E(Y) = p and VAR(Y) =
p(1—p). Hence

Va(¥,—p) B N(0,p(1-p))
by the CLT.

b) Now suppose that ¥;, ~ BIN(n, p). Then ¥, L > X; where X|,...,X, are iid
Ber(p). Hence

ﬁ(%—p) 2 N(0,p(1- p))
since

ﬁ(%—p) D /i@, —p) 2 N(O,p(1 - p))

by a).
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¢) Now suppose that ¥, ~ BIN(k,, p) where k, — oo as n — oo. Then

Vi (1 -p) =N0.p(1 - p)

or

Yn p(l_
n Tk

. ~N|p —p)> or Y, = N (knp,kap(1—p)).
n
Theorem 8.2: The Delta Method. If g does not depend on n, g'(6) # 0, and

V(T — 6) 2 N(0,6?),

then
Vi(g(T) —(6)) 3 N(0,62[g'(6)]).

Example 8.2. Let Y;,...,Y, be iid with E(Y) = u and VAR(Y) = o?. Then by
the CLT,

V(¥ —p) % N(0,0°).
Let g(u) = u?. Then g’ (1) = 2u # 0 for u # 0. Hence

V() = 1) B N(0,40° 1)
for it # 0 by the delta method.
Example 8.3. Let X ~ Binomial(n, p) where the positive integer n is large and
0 < p < 1. Find the limiting distribution of v/n lg (%() ’ — p? 1 .

Solution. Example 8.1b gives the limiting distribution of \/ﬁ(%( —p). Let
g(p) = p*. Then g'(p) = 2p and by the delta method,

B -] (o (2)-s0)

N(0,p(1=p)(g'(p))*) =N(0,p(1 — p)4p*) =N(0,4p*(1—p)).

Example 8.4. Let X,, ~ Poisson(nl) where the positive integer n is large and
0<A.

X,
a) Find the limiting distribution of \/n < =2 > .
n

Vn

b) Find the limiting distribution of v/n
n

ﬁ—ﬁ].
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Solution. a) X, L > | Y: where the ¥; are iid Poisson(1). Hence E(Y) = A =
Var(Y). Thus by the CLT,

N <)%—)L)2\/ﬁ (#—l)gmo,k).

b) Let g(A) = V/A. Then g'(1) = #Z and by the delta method,

(- ] o (2)-a0)

N0, (&' (A)*) =N (o,aﬁ) =N (o, %) .

Vvn

Example 8.5. Let Y1, ... Y, be independent and identically distributed (iid) from
a Gamma(c, f3) distribution.
a) Find the limiting distribution of \/n (Y — af8 ).

b) Find the limiting distribution of v/n ( (7)2 —c ) for appropriate constant c.

Solution: a) Since E(Y) = o8 and V(Y) = a3, by the CLT
Vi (Y= ap ) B N©0,aB?).

b) Let 4t — 1 and o2 — aB. Let g(u) = 2 so ¢'(1) = 2u and [¢/(w)]? =
44 = 402 B2 Then by the delta method, v ( (¥)>— ¢) 3 N(0,6%[¢'(n)]) =
N(0,40B*) where ¢ = u? = a2

Remark 8.1. Note that if \/n(7, — k) 2N (0,06?2), then evaluate the derivative at
k. Thus use g’ (k) where k = o8 in the above example. A common error occurs when
k is a simple function of 8, for example k = 0 /2 with g(u) = u?. Thus g'(u) = 2u
so g'(0/2) =26/2 = 0. Then the common delta method error is to plug in
g'(0) = 20 instead of g'(k) = 6. See Problems 8.3, 8.34, 8.36, 8.37,
and 8.38.

Barndorff—Nielsen (1982), Casella and Berger (2002, pp. 472, 515), Cox and
Hinkley (1974, p. 286), Lehmann and Casella (1998, Section 6.3), Schervish (1995,
p- 418), and many others suggest that under regularity conditions if Y1, ..., Y}, are iid
from a one-parameter regular exponential family, and if 6 is the MLE of @, then

[7'(6))?
1,(6)

where the Fréchet-Cramér-Rao lower bound for 7(6) is

Vn(1(0) —1(8)) 2>N(0, >—N[O,FCRLBl(T(9))] (8.1)

[7'(6)]?
1,(9)

FCRLB, (1(6)) =
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and the Fisher information based on a sample of size one is

2
1(0) = £ | 5o 1ox(/(x10))]

Hence 7(8) ~ AN[7(6),FCRLB,,(7(8))] where FCRLB,,(7(8)) =
FCRLB (7(6))/n. Notice that if

R » 1
n6—-0)=>N|0,—— |,
Vil ) < 1(6) )
then (8.1) follows by the delta method. Also recall that () is the MLE of 7(8) by
the invariance principle and that

if 7(6) # 0 by Definition 6.3.

For a 1P-REF, T, = %2?:1 t(Y;) is the UMVUE and generally the MLE of its
expectation t; = ur = E¢(T,) = Eg[t(Y)]. Let 67 = VARg[t(Y)]. These values can
be found by using the distribution of ¢#(¥) (see Theorems 3.6 and 3.7) or by the
following result.

Proposition 8.3. Suppose Y is a 1P-REF with pdf or pmf

f(0) = h(y)e(6)expw(6)t(y)]

and natural parameterization

FIn) = h(y)b(n)exp[nt(y)].

Then a)
b= Bl = 5t = 5o og(b(n), 52)
and b)
;‘92210 c(0)-w' (0w —92
02 = Vi) = O O P hogtoim. 53

Proof. The proof will be for pdfs. For pmfs replace the integrals by sums.
By Theorem 3.3, only the middle equalities need to be shown. By Remark 3.3
the derivative and integral operators can be interchanged for a 1P-REF. a) Since

1= [f(6)dy,

d

0= 251= 2 [ h)explw(0)1() + lo(e(0))]ay
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or

/ —c'(8)
EW O] =~
)
= o)

b) Similarly,

2
0= [ )2 expl(0)() + og(c(0))Jay:

From the proof of a) and since 89_9 log(c(6)) =c'(0)/c(0),

0= [ 10) 55 [expluO1() + togle(o))] (w/(0)0) + 35 1ogtc(o) )

0 2
= [ M) explu(O)) + togle(o))] (w/(O)0) + 3y 108lc(6)) ) ay

2
+ [ HO)explu(O1() + 10gle(O)] (W (0)(1) + 7 loe(e(0)) ) .

So

J ? 9?
E (w’(@)t(Y) + %bg(c(e))) =-E (w”(B)t(Y) + g3 log(c(e))) . (84
Using a) shows that the left-hand side of (8.4) equals

/ 2
E <w’(9) (t(Y) + %)) =W (9)]® VAR(1(Y))
while the right-hand side of (8.4) equals
82
- (W@ + s oste(o)))

and the result follows. [

The simplicity of the following result is rather surprising. When (as is usually the
case) 2 37 1(Y;) is the MLE of y,, i = g~ '( XL, #(¥;)) is the MLE of n by the
invariance principle.
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Theorem 8.4. LetYy,...,Y, be iid from a 1P-REF with pdf or pmf
F(518) = h(y)e(8) explw(8):(v)]
and natural parameterization

fOIn) = h(y)b(n)exp[nt(y)]-

Let

and VAR(¢(Y)) = o7

a) Then
Vi [;gnit(ﬁ)—m] L N (0,1 (n))
where
h(n)=o; =¢'(n) = %.

DN =g () =g (L%, 1(¥;), and g~ (1) # O exists, then

Vil 1] 3N(O,%>-

¢) Suppose the conditions in b) hold. If 6 = w=1(n), § = w1 (A), w™
and is continuous, and w1 (17) # 0, then

v :
exi1sts

ﬁ[é—@]%N(O,ﬁ).

d) If the conditions in ¢) hold, if 7’ is continuous and if 7/(8) # 0, then

/ 2
Jale(6) - 1(0)] 2 N <o, [111((6@))] > .

Proof. a) The result follows by the central limit theorem if V(¢(Y)) = 67 =
Ii(n) = g'(n). Since log(f(y[n)) =log(h(y)) +log(b(n)) + nt(),

%log(f(yln)) = %bg(b(n)) +t(y) = —p +1(y) = —g(n) +1(y)

by Proposition 8.3 a). Hence

9? 9? /
2 e(F0IM) = 5 log(b(n)) = —&'(n).
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and thus by Proposition 8.3 b)

2
I(n) = a—,‘;’zlogw(n)) — o7 =g(n).

b) By the delta method,

V(i —1) B N0,62 " (u)]?),

but
1 1

-1/ o o
)= Pl )~ g
Since 67 = I, (n) = g'(n), it follows that 6 = [¢'(n)]*/I1(n), and

ol Wl = o) T = R

So

Va(h—n) 3N<0, 11(1n)>
c¢) By the delta method,
W*l/ 2
ﬁ(e-e)%zv(o,—[ 11(57"))] )
but
R

nm)  L(6)
The last equality holds since by Theorem 6.3c, if
is continuous, and if g'(6) # 0, then I;(0) = I,(n)

0=g(n)=w'(n).
d) The result follows by the delta method. [J

0 = g( ), if g exists and
/I¢'(m)]*. Use n = w(6) so

Remark 8.2. Following DasGupta (2008, pp. 241-242),1et w(n) = —log(b(n)).
Then Ey[1(Y1)] =ty = ¥'(n) = g(n) by Proposition 8.3a, and the MLE 1) is the

solution of 1 37, #(y;) = = Ey(t(Y1)] =g(n) by Theorem 5.2, if the MLE exists. Now

g(n)=Eylt (Yl)] is an increasing function of 1 since ¢'(n) = y"(n) =V, (1(Y)) >0
(1P-REFs do not contain degenerate distributions). So for large n, with probability
tending to one, the MLE 7} exists and fj = g’l( Y, 1(Y;). Since g'(n) exists,
g(n) and g~'(n) are continuous and the delta method can be applied to 7] as in
Theorem 8.4b. By the proof of Theorem 8.4a), y”(n) = I;(n). Notice that if 7 is
the MLE of 1, then 1 52 1(Y;) is the MLE of y, = E[t(Y1)] by invariance. Hence
if n is large enough, Theorem 8.4a, b is for the MLE of E[¢(Y;)] and the MLE of 7.



8.2 Asymptotically Efficient Estimators 223

8.2 Asymptotically Efficient Estimators

Definition 8.1. Let Y;,...,Y, be iid random variables. Let T, = T,,(Y1,...,Y,) be an
estimator of a parameter U7 such that

Va(T, — ur) 3 N(0,03).

Then the asymptotic variance of \/n(T, — ur) is G/% and the asymptotic variance
(AV) of T, is o3 /n. If S5 is a consistent estimator of o7, then the (asymptotic)
standard error (SE) of T, is Sy //n. If Y1,..., Y, are iid with cdf F, then Gﬁ = Gj (F)
depends on F.

Remark 8.3. Consistent estimators are defined in the following section. The

parameter G/% is a function of both the estimator 7, and the underlying distribu-

tion F of ¥;. Frequently nVAR(7;) converges in distribution to Gﬁ, but not always.
See Staudte and Sheather (1990, p. 51) and Lehmann (1999, p. 232).

Example 8.6. If Y1, ...,Y, are iid from a distribution with mean u and variance
o2, then by the central limit theorem,

\/E(Yn - ”) 2} N(Ov 62)'

Recall that VAR(Y ,,) = 62 /n = AV (Y,) and that the standard error SE(Y,,) = S,,/\/n
where 52 is the sample variance. Note that 65 (F) = o2. If F is a N(u, 1) cdf, then
02(F) = 1;butif F is the G(v = 7,A = 1) cdf, then 63 (F) = 7.

Definition 8.2. Let T1 , and T3 ,, be two estimators of a parameter 6 such that
D
nd(Ty,,—0) = N(0,0%(F))
and
) D 2
n (Tz-,” - 6) — N(0762 (F))u
then the asymptotic relative efficiency of 71 , with respectto 75, is

o3 (F)

ARE(T\ », T2 ) = Glz(F)'

This definition brings up several issues. First, both estimators must have the same
convergence rate n%. Usually § = 0.5. If T; » has convergence rate nd% then estimator
T » is judged to be “better” than T ,, if §; > &,. Secondly, the two estimators need to
estimate the same parameter 6. This condition will often not hold unless the distri-
bution is symmetric about (. Then 6 = u is a natural choice. Thirdly, estimators are
often judged by their Gaussian efficiency with respect to the sample mean (thus F is
the normal distribution). Since the normal distribution is a location—scale family, it
is often enough to compute the ARE for the standard normal distribution. If the data
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come from a distribution F' and the ARE can be computed, then 7 , is judged to be
a “better” estimator (for the data distribution F') than T , if the ARE > 1. Similarly,
11, is judged to be a “worse” estimator than 73, if the ARE < 1. Notice that the
“better” estimator has the smaller asymptotic variance.

The population median is any value MED(Y) such that
P(Y <MED(Y)) > 0.5and P(Y > MED(Y)) > 0.5. 8.5)

In simulation studies, typically the underlying distribution F belongs to a
symmetric location—scale family. There are at least two reasons for using such
distributions. First, if the distribution is symmetric, then the population median
MED(Y) is the point of symmetry and the natural parameter to estimate. Under the
symmetry assumption, there are many estimators of MED(Y') that can be compared
via their ARE with respect to the sample mean or the maximum likelihood estima-
tor (MLE). Secondly, once the ARE is obtained for one member of the family, it
is typically obtained for all members of the location—scale family. That is, suppose
that Y1, ...,Y, are iid from a location—scale family with parameters u and o. Then
Y; = U+ 0Z; where the Z; are iid from the same family with 4 =0 and o = 1.
Typically

AV[Ti,n(Y)] = GZAV[T,"”(Z)],
SO
ARE[Tl,n(Y)u TZ,n(Y)] = ARE[Tl,n(Z)u TZ,n(Z)]'

Theorem 8.5. Let Yy, ...,Y, be iid with a pdf f that is positive at the population
median: f(MED(Y)) > 0. Then

V/n(MED(n) ~ MED(Y)) 5 N (0= m) '

Example 8.7. Let V1,...,Y, be iid N(u,0?), T, =Y and let T»,, = MED(n) be
the sample median. Let @ = u = E(Y) = MED(Y). Find ARE(T} ,,,T5.,).

Solution: By the CLT, 6} (F) = 6 when F is the N(u,6?) distribution. By The-
orem 8.5,

1 1 o
)= ST i R

Hence

ARE(Tl,naTZ,n) =05 = g ~ 1.571
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and the sample mean Y is a “better” estimator of u than the sample median MED(n)
for the family of normal distributions.

Recall from Definition 6.3 that 7, (0) is the information number for 6 based on a
sample of size 1. Also recall that I;(t(0)) = I;(08)/[7'(8)]> = 1/FCRLB[1(6)].
See Definition 6.4. The following definition says that if 7;, is an asymptotically
efficient estimator of 7(8), then
T, ~ AN[t(0),FCRLB,(7(6))].

Definition 8.3. Assume 7/(6) # 0. Then an estimator 7, of 7(0) is asymptoti-
cally efficient if

VT, —1(0)) B N (0, [1;1((%))]2) ~ N(0,FCRLB; [7(6))). (8.6)

In particular, the estimator 7;, of 6 is asymptotically efficient if

Va(T, - ) 3N(0,ﬁ) ~ N(0,FCRLB; [6]). (8.7)

Following Lehmann (1999, p. 486), if 1> , is an asymptotically efficient estimator
of 6,if 1;(0) and v(0) are continuous functions, and if 7} , is an estimator such that

V(T —8) 5 N(0,v(6)),
then under regularity conditions, v(6) > 1/1;(0) and

1
e _ 1
2(6) ~ Li(e)(e) =

ARE(T1,Tr ) =

Hence asymptotically efficient estimators are “better” than estimators of the
form T; ,. When T ,, is asymptotically efficient,

AE(T1 ) = ARE(Th 4, T» ) AONC)
is sometimes called the asymptotic efficiency of T .

Notice that for a 1P-REF, T, = % " t(Y;) is an asymptotically efficient estima-
tor of g(1) = E(¢(Y)) by Theorem 8.4. T,, is the UMVUE of E(¢(Y)) by the LSU
theorem.

The following rule of thumb suggests that MLEs and UMV UEs are often asymp-
totically efficient. The rule often holds for location families where the support does
not depend on 0. The rule does not hold for the uniform (0, 8) family.



226 8 Large Sample Theory

Rule of Thumb 8.1: A “Standard Limit Theorem”: Let 6, be the MLE or
UMVUE of 6. If 7/(0) # 0, then under strong regularity conditions,

! 2
Jalt(6,) — 7(0)] 2 N (o, [zl((%))] ) .

8.3 Modes of Convergence and Consistency

Definition 8.4. Let {Z,,n = 1,2,...} be a sequence of random variables with cdfs
F,, and let X be a random variable with cdf F. Then Z, converges in distribution
to X, written

D
Zy — X,
. . L .
or Z, converges in law to X, written Z, — X, if

r}grolan(t) =F(t)
at each continuity point ¢ of F. The distribution of X is called the limiting distribu-
tion or the asymptotic distribution of Z,.

An important fact is that the limiting distribution does not depend on the
sample size n. Notice that the CLT, delta method, and Theorem 8.4 give the
limiting distributions of Z, = /n(Y, — u), Z, = /n(g(T,) — g(0)), and Z, =
VALY 1(Y) — E(1(Y))], respectively.

Convergence in distribution is useful because if the distribution of X, is unknown
or complicated and the distribution of X is easy to use, then for large n we can
approximate the probability that X, is in an interval by the probability that X is

in the interval. To see this, notice that if X, = X, then Pla < X, <b)=F,(b)—
F,(a) — F(b)—F(a) = P(a < X <) if F is continuous at ¢ and b. Convergence in
distribution is useful for constructing large sample confidence intervals and tests of
hypotheses. See Chap. 9.

Warning: Convergence in distribution says that the cdf F, () of X, gets close to
the cdf of F(t) of X as n — oo provided that ¢ is a continuity point of F. Hence for
any € > 0 there exists N, such that if n > N,, then |F,(t) — F(r)| < €. Notice that
N; depends on the value of t. Convergence in distribution does not imply that the
random variables X,, = X,,(®) converge to the random variable X = X (o) for all ®.

Example 8.8. Suppose that X, ~ U(—1/n,1/n). Then the cdf F,(x) of X,, is

0, x<

1 1 1

Fn(x): %-FQ,TS ISZ
la ZZ
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Sketching F,(x) shows that it has a line segment rising from 0 at x = —1/nto 1 at
x = 1/n and that F,(0) = 0.5 for all n > 1. Examining the cases x < 0, x =0, and
x > 0 shows that as n — oo,

0, x<0

Fy(x) > ¢ 3 x=0

1,x>0.
Notice that if X is a random variable such that P(X = 0) = 1, then X has cdf

0, x<0
&03:{1x>0

Since x = 0 is the only discontinuity point of Fx(x) and since F,(x) — Fx(x) for all
continuity points of Fx (x) (i.e., for x # 0),

x, 2 x

Example 8.9. Suppose ¥, ~U(0,n). Then F,(t) =t /nfor0 <t <nand F,(t) =0
for r < 0. Hence limy,_o F, (1) =0 for7 <0.Ifz >0 and n > ¢, then F,(t) =t/n— 0
as n — oo, Thus lim,,_,e F,(¢) = 0 for all # and ¥,, does not converge in distribution
to any random variable Y since H(¢) = 0 is not a cdf.

Definition 8.5. A sequence of random variables X,, converges in distribution to a
constant T(0), written

X, 2 1(0), if X, B x

where P(X = 7(0)) = 1. The distribution of the random variable X is said to be
degenerate at (0) or to be a point mass at ©(0).

Definition 8.6. A sequence of random variables X, converges in probability to a
constant T(0), written

X, = 1(0),

if for every € > 0,

lim P(|X, — 1(0)| <€) =1 or,equivalently, 1211 P(|X,—1(6)] >¢€)=0.
Nn—yo0

n—yoo
The sequence X, converges in probability to X, written

x, 5 x,

ifX,— x5 0.
Notice that X, L X if for every € > 0,

lim P(|X, — X| < €) =1, or,equivalently, lim P(|X,—X|>¢)=0.
n—oo

n—oo
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Definition 8.7. A sequence of estimators T;, of 7(0) is consistent for 7(0) if

T, — 1(0)

for every 6 € O. If T, is consistent for 7(6), then 7, is a consistent estimator
of 7(0).

Consistency is a weak property that is usually satisfied by good estimators. 7, is
a consistent estimator for 7(0) if the probability that 7, falls in any neighborhood
of 7(6) goes to one, regardless of the value of & € ©. The probability P = Py is the
“true” probability distribution or underlying probability that depends on 6.

Definition 8.8. For a real number r > 0, ¥, converges in rth mean to a random
variable Y, written Y, I Y, if

E(|Yv,-Y|")—=0
as n — oo. In particular, if r = 2, ¥, converges in quadratic mean to Y, written
Y, 3Y or v, %,
if E[(Y, —Y)?] = 0asn— .

Lemma 8.6: Generalized Chebyshev’s Inequality. Let u : R — [0, ) be a non-
negative function. If E[u(Y)] exists then for any ¢ > 0,

Elu(r)]

Pu(Y)>c] < -

If u = E(Y) exists, then taking u(y) = [y — u|" and & = ¢" gives
Markov’s Inequality: for » > 0 and any ¢ > 0,

. _E[Y—pul
P(Y | = ] = P(ly — > ] < LA

If r = 2 and 62 = VAR(Y) exists, then we obtain
Chebyshev’s Inequality:

VAR(Y)

PY -2 d < -

Proof. The proofis given for pdfs. For pmfs, replace the integrals by sums. Now

E[u(Y) = /R u(y)f(y)dy=/ u(y) f(y)dy + | u(y)f(y)dy

{yu(y)>c} J{yu(y)<c}

> [ d
> /{ OGN
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since the integrand u(y) f(y) > 0. Hence

Bz e[ f0)dy=ePlu(r) = dl. O

{y:u(y)>c}

The following proposition gives sufficient conditions for 7, to be a consistent

estimator of 7(0). Notice that MSE(g)(7,,) — 0 for all 6 € O is equivalent to T, ELe
7(0) forall 6 € O©.

Proposition 8.7. a) If
lim MSE4(T,) =0

n—yoo
forall 8 € O, then T, is a consistent estimator of 7(0).
b) If
hm n VARg(7,) =0 and hm n Eg(T,) = 7(0)

for all @ € O, then T,, is a consistent estimator of 7(6).

Proof. a) Using Lemma 8.6 with Y = T;,, u(T,,) = (T, — 7(6))?, and ¢ = £ shows
that for any € > 0,

Po(lT, —(0)] > &) = Pol(T, — v(6)? > &2 < ZolT_TOV]
Hence

lim Eg[(T, — 7(0))*] = lim MSE(g)(T;) — 0

n—yo0 Nn—soo
is a sufficient condition for T;, to be a consistent estimator of 7(6).
b) Referring to Definition 6.1,
MSE_ () (T1) = VARg(T;,) + [Bias(g) (7))

where Bias;(g)(7,) = (T ) — 7(8). Since MSE(g)(T,) — 0 if both VARg(T;)
— 0 and Bias(g(T,) = E¢(T) — 7(0) — 0, the result follows from a). [

The following result shows estimators that converge at a /n rate are consistent.
Use this result and the delta method to show that g(7,,) is a consistent estimator of
2(0). Note that b) follows from a) with Xg ~ N(0,v(0)). The WLLN shows that ¥
is a consistent estimator of E(Y) = u if E(Y) exists.

Proposition 8.8. a) Let Xy be a random variable with a distribution depending
onf,and0< o6 <1.If

forall 6 € O, then T;, 5 7(6).
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b) If
VT, — 7(8)) 5 N(0,%(6))
for all @ € O, then T, is a consistent estimator of 7(6).

Proposition 8.9. A sequence of random variables X, converges almost every-
where (or almost surely, or with probability I) to X if

P(limX, =X)=1.

n—roo

This type of convergence will be denoted by
X, S X.

Notation such as “X,, converges to X ae” will also be used. Sometimes “ae” will be
replaced with “as” or “wpl.” We say that X,, converges almost everywhere to 1(0),
written

X, 5 1(6),
if P(lim, 0 X, = 7(0)) = 1.
Theorem 8.9. Let ¥, be a sequence of iid random variables with E (¥;) = pt. Then

a) Strong Law of Large Numbers (SLLN): Y,, 5 1, and
b) Weak Law of Large Numbers (WLLN): Y, A u.

Proof of WLLN when V (Y;) = 6: By Chebyshev’s inequality, for every &€ > 0,

asn —o. [

8.4 Slutsky’s Theorem and Related Results

Theorem 8.10: Slutsky’s Theorem. Suppose Y, 2Y and Wy % w for some con-
stant w. Then

Y, W, 2 Y 4w,

b) Y, W, 2 wY, and

) Yo /Wy B Y wifw0.

Theorem 8.11. a) If X, £> X then X, 2> X.
b) If X, %% X then X, 2> X and X, 2> X.
) If X, 5 X then X, > X and X,, 2 X.
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d) X, 5 7(0) iff X, 3 1(0).
e) If X, 5 0 and 7 is continuous at 0, then 7(X,,)
f) If X, 2 6 and 7 is continuous at 0, then 7(X,,)

(6)
(6)
Suppose that for all 6 € ©, T, 5 7(6), T, = () or T, %5 ©(0). Then T;, is a

consistent estimator of 7(6) by Theorem 8.11. We are assuming that the function 7
does not depend on n.

P
—7T
D

— T

Example 8.10. Let Y;,...,Y, be iid with mean E(Y¥;) = p and variance
V(Y;) = 6. Then the sample mean Y, is a consistent estimator of y since i)
the SLLN holds (use Theorem 8.9 and 8.11), ii) the WLLN holds, and iii) the CLT
holds (use Proposition 8.8). Since

. - . 9 ) —
r}ggVARu(Y,,) = ’}glolcc /n=0 and r}ggE,l(Y,,) =qu,
Y, is also a consistent estimator of i by Proposition 8.7b. By the delta method and
Proposition 8.8b, T, = g(Y,) is a consistent estimator of g(u) if g'(u) # 0 for all

[ € ©.By Theorem 8.11¢, g(Y ) is a consistent estimator of g(ut) if g is continuous
at u forall u € ©.

Theorem 8.12. Assume that the function g does not depend on n. a) Generalized
Continuous Mapping Theorem: If X, 2 X and the function g is such that P[X €
C(g)] = 1 where C(g) is the set of points where g is continuous, then g(X;,) 2 g(X).

b) Continuous Mapping Theorem: If X, 2 X and the function g is continuous,

D
then g(X,,) = g(X).

Remark 8.4. For Theorem 8.11, a) follows from Slutsky’s Theorem by taking
Y, =X =Y and W, = X, — X. Then ¥, 3 ¥ = X and W,, 5> 0. Hence X,, = ¥, + W, 2>
Y +0 = X. The convergence in distribution parts of b) and c) follow from a). Part f)
follows from d) and e). Part ) implies that if 7}, is a consistent estimator of 8 and T
is a continuous function, then 7(7;,) is a consistent estimator of 7(6). Theorem 8.12
says that convergence in distribution is preserved by continuous functions, and even
some discontinuities are allowed as long as the set of continuity points is assigned
probability 1 by the asymptotic distribution. Equivalently, the set of discontinuity
points is assigned probability O.

Example 8.11 (Ferguson 1996, p. 40). If X, 2 X then 1/X, 2 1/X if X is a
continuous random variable since P(X = 0) = 0 and x = 0 is the only discontinuity
point of g(x) = 1/x.

Example 8.12. Show that if ¥, ~ #,,, a ¢ distribution with n degrees of freedom,
then ¥, 2 Z where Z ~N(0,1).
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Solution: ¥, 2 Z/\/Va/n where Z LV, ~ x2. It W, = \/V,,/n KA 1, then the
result follows by Slutsky’s Theorem. But V;, 2 > X; where the iid X; ~ 7512. Hence
V,/n 5 1 by the WLLN and /V,,/n = 1 by Theorem 8.1 1e.

Theorem 8.13: Continuity Theorem. Let Y, be sequence of random variables
with characteristic functions ¢, (7). Let ¥ be a random variable with cf ¢ (7).

a)
Y, B Y iff 9,(t) = 0(r) Vi €R.
b) Also assume that ¥, has mgf m,, and Y has mgf m. Assume that all of the mgfs
my, and m are defined on [t| < d for some d > 0. Then if m, (1) — m(r) as n — o for
all |t] < ¢ where 0 < ¢ < d, then ¥, By,

Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, pp. 569-569), let Y1, ..., Y, be iid with mean u, variance 6 and mgf
t) for |t| < t,. Th
my (t) for |t| <1,. Then Yi—
o
has mean 0, variance 1, and mgf mz(r) = exp(—t/o)my(t/ o) for |t| < ot,. Want

to show that 7. —
W, = V/n <”T“> 2 N0, 1).

Zi—

Notice that W,, =
i - “12 5 _
a1 zn“zi :nfl/zi <Y,_u) _ i Yimnp _n 1/ Vu-p
i=1 =1 o o T S
Thus
! n
mw, (1) = E(™") =E eXP(tnfl/ZZZi) =E eXp(z 1Z;//n)
i=l -1

n

= IEIIE[etZi/\/ﬁ] = Hmz(t/\/ﬁ) = [mz(l‘/\/ﬁ)]”

i=1
Set y(x) = log(mz(x)). Then

toglm (1] = nloglmz(t/ )] = my(e/ i) = LUV,

n

Now y(0) =log[mz(0)] =log(1) = 0. Thus by L'Hdpital’s rule (where the deriva-
tive is with respect to n), lim,_,. log[mw, (¢)] =

o VOV L VOVREE] o)
n—yoo % n—yoo (%}) 2 n—seo \/Lﬁ ’
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Now

/! n 2[ 2 2
Liim (t/fl)[z"’/ I S lim /i) = Sv(0)
(2;13/2)
Now
s dm(t)  my(t)mg(t) — (my(r))?
Vi) = dt mz(t) [mz(1)]?
So

¥'(0) = mz(0) — [my(0)]* = E(Z}) — [E(Z)]* = 1.
Hence lim,, .. log[my, (t)] =t*/2 and

lim my, (1) = exp(t?/2)

n—yoo

which is the N(0,1) mgf. Thus by the continuity theorem,

o

W,,:\/Z<7”_u> 2 N0,1).

8.5 Order Relations and Convergence Rates

Definition 8.10 (Lehmann 1999, pp. 53-54). a) A sequence of random variables
W, is tight or bounded in probability, written W, = Op(1), if for every € > 0 there
exist positive constants De and Ng such that

P(|Wn|§Ds)21—8

for all n > Ng. Also W, = Op(X,) if |W,,/X,| = Op(1).
b) The sequence W, = op(n ) if n®W, = op(1) which means that
n‘SW,, £> 0.

c) W, has the same order as X, in probability, written W,, <p X,,, if for every
€ > 0 there exist positive constants Nz and 0 < dg < D, such that
n

P(ds < |S2| <Dy > 1—¢

n

forall n > Ng.
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d) Similar notation is used for a k x r matrix A, = [a; ;(n)] if each element a; ;(n)
has the desired property. For example, A, = Op(n~'/?) if each a; j(n) = Op(n~'/?).

Definition 8.11. Let §,, be an estimator of a p x 1 vector 8, and let W, = || 8, — ﬂ ||

a) If W, =<p n~% for some & > 0, then both W,, and Bn have (tightness) rate n®
b) If there exists a constant K such that

nd (W, —x) B x

for some nondegenerate random variable X, then both W), and B, have convergence

rate I’l8.

Proposition 8.14. Suppose there exists a constant x such that
n® (W, —x) 3 x.

a) Then W, = Op(n~9%).
b) If X is not degenerate, then W,, <p n9.

The above result implies that if W, has convergence rate n®, then W, has tightness
rate n%, and the term “tightness” will often be omitted. Part a) is proved, for example,
in Lehmann (1999, p. 67).

The following result shows that if W,, <p X,, then X,, <p Wy, W, = Op(X,,), and
X, = Op(W,). Notice that if W, = OP(n’é), then 1% is a lower bound on the rate of
W,.. As an example, if the CLT holds then Y,, = Op(n~'/3), but ¥,, <p n~'/2.

Proposition 8.15. a) If W, <p X,,, then X, <p W,,.
b) If W, <p X,,, then W, = Op(X,,).

) If W, <p X,,, then X,, = Op(W,)).

d) W, <p X, iff W, = Op(X,) and X,, = Op(W,,).

Proof. a) Since W,, <p X,,,

Wy 1
Plde <|—|<D¢| =P >1_¢
(8— nl £> (DE ‘Wn d)_
for all n > Ng. Hence X,, <p W,,.
b) Since W, <p X,,,

Wa

P(|Wn|§|XnDs|)ZP de < X_ <D.|>1-—¢
n

for all n > Ng. Hence W, = Op(X,).
c¢) Follows by a) and b).
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d) If W, <p X,,, then W,, = Op(X,,) and X,, = Op(W,) by b) and c). Now suppose
W, = Op(X,) and X, = Op(W,). Then

P(|Wn| < |Xn|De/2) > 1_8/2

forall n > N;, and
P(|Xn| < [Wa[l/depy) > 1—¢/2

for all n > N,. Hence

SDE/Z) 21—8/2

and

W,
= <|—
P(B)=P (dg n< ‘ X,

)21—6/2

for all n > N = max(Nj,N,). Since P(LANB) = P(A)+ P(B) —P(AUB) > P(A) +
P(B)—1,

W,
P(AQB)=P<CZ5/2§ ‘X—:’ SDS/Q) >1—¢g/2+1—¢g/2-1=1-¢

foralln > N. Hence W,, <p X,,. [

The following result is used to prove the following Theorem 8.17 which says
that if there are K estimators 7}, of a parameter B, such that || 7j,, — B|| = Op(n~%)
where 0 < § < 1, and if T* picks one of these estimators, then || T} — || = Op(n~?).

Proposition 8.16: Pratt (1959). Let X ,,...,Xk, each be Op(1) where K is
fixed. Suppose W, = X;, , for some i, € {1,...,K}. Then

W, =0p(1). (8.8)
Proof.

P(max{XL,,, oo 7XK,n} < x) = P(XL,, <x,... 7XK,n < x) <

FWn(x) < P(min{Xl’n,...,XK,,,} Sx) =1 —P(Xl’n >x,...,XK,,, >x).

Since K is finite, there exists B > 0 and N such that P(X;, < B) > 1 —¢&/2K and
P(X;, > —B) >1—¢/2K for all n > N and i = 1,...,K. Bonferroni’s inequality
states that P(NX_ A;) > YK |, P(A;) — (K—1). Thus

Fw,(B) 2 P(X1n <B,....Xkn <B) >

K(l1—¢/2K)—(K—1)=K—¢/2—K+1=1—¢/2
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and
—Fw,(—B) > —14+P(X;, > —B,...,Xgkn > —B) >

—1+K(1—¢/2K)— (K—1)=—14+K—¢g/2—K+1=—¢/2.

Hence
FW,,(B) —FW,,(_B) >1—¢ for n>N. O

Theorem 8.17. Suppose ||T;,— B|| = Op(n~?) for j=1,...,K where 0 < § < 1.
Let T} = T;, » for some i, € {1,...,K} where, for example, T;, , is the Tj, that
minimized some criterion function. Then

I, — B|| = Op(n~0). (8.9)

Proof. Let X;, = n%||T;,, — B||. Then X;, = Op(1) so by Proposition 8.16,
n®||T; — B|| = Op(1). Hence ||, — B|| = Op(n%). O

8.6 Multivariate Limit Theorems

Many of the univariate results of the previous five sections can be extended to ran-
dom vectors. As stated in Sect. 2.7, the notation for random vectors is rather awk-
ward. For the limit theorems, the vector X is typically a k x 1 column vector and

X" is arow vector. Let ||x|| = y/x? + -+ +x? be the Euclidean norm of x.

Definition 8.12. Let X, be a sequence of random vectors with joint cdfs F,(x)
and let X be a random vector with joint cdf F(x).

a) X, converges in distribution to X, written X, 2> X, if F, (x) = F(x) as
n — oo for all points x at which F(x) is continuous. The distribution of X is the
limiting distribution or asymptotic distribution of X .

b) X, converges in probability to X, written X, B x , if for every € > 0,
P(||X,—X|| >€) >0asn— co.

c¢) Let r > 0 be a real number. Then X,, converges in rth mean to X, written
X, 5 X,ifE(]| X, — X||") = 0asn — oo,

d) X, converges almost everywhere to X, written X, X , if
P(lim; . X, = X) = 1.

Theorems 8.18, 8.19, and 8.21 below are the multivariate extensions of the limit
theorems in Sect. 8.1. When the limiting distribution of Z, = \/n(g(T,) — g(0))
is multivariate normal N, (0, X'), approximate the joint cdf of Z, with the joint cdf
of the N (0, X') distribution. Thus to find probabilities, manipulate Z, as if Z, ~
N (0,%). To see that the CLT is a special case of the MCLT below, let k = 1,
EX)=pandV(X)=X = o?.
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Theorem 8.18: the Multivariate Central Limit Theorem (MCLT). If
Xi,...,X, are iid k x 1 random vectors with E(X) = u and Cov(X) = X, then

VX, — p) B N(0, )
where the sample mean

X, = X;.

S| =
.M:

1

14

The MCLT is proven after Theorem 8.25. To see that the delta method is a special
case of the multivariate delta method, note that if 7, and parameter 0 are real valued,
then Dg(o) = gl(e).

Theorem 8.19: The Multivariate Delta Method. If g does not depend on n and
V(T —0) 3 N0, X),

then
D
Vn(g(Ty) —g(8)) = Na(0,Dg(g) X Dg(g))

where the d x k Jacobian matrix of partial derivatives

F581(0) .. F521(0)
Dg9) = : :
J0,8a(8) .. 75:84(0)

Here the mapping g : R¥ — R? needs to be differentiable in a neighborhood of
6 € RX.

Example 8.13. If Y has a Weibull distribution, ¥ ~ W (¢, 1), then the pdf of Y is

0
fo)= %y‘i”leJT
where A,y, and ¢ are all positive. If t = 1'/¢ so u¢ = A, then the Weibull pdf
t(G) oG
== exp|— (= .
fo) u PI-\y
Let (f1,9) be the MLE of (u, ). According to Bain (1978, p. 215),
2
0 0 1.109% 0.257u
a((5)-()) 2 () (5o
o ¢ 0 02571 0.608¢2

=N>(0,1-'(0)) where 1(8) is given in Definition 8.13.
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Let column vectors @ = (u ¢)” and y = (A ¢)T. Then

o (3)-(5) - (38

So
d d d d _
Fr21(0) F5-21(6) Fak® FHue ou® ! u®log(n)
Dewy=1 | ; =, L, '
55,82(0) 5582(0) a?® 59 0 !

Thus by the multivariate delta method,

A((3)-(3)) e

where (see Definition 8.15 below)
T =I(n) ' =[I(g(0)] ' = Dg(o)I '(0)D} ) =
1.109A2(1 4 0.46351og(A) +0.5482(log(A))?) 0.257¢ A +0.6084 ¢ log(A)

0.257¢ A +0.608 ¢ log(2) 0.608¢>

Definition 8.13. Let X be a random variable with pdf or pmf f(x|@). Then the
information matrix

1(0)=1[1,]
where

d d
li;=E a—eilog(f(xlﬁ)a—ejlog(f(le’)) :

Definition 8.14. An estimator T, of 8 is asymptotically efficient if

V(T —8) 5 Ne(0,171(9)).

Following Lehmann (1999, p. 511), if T, is asymptotically efficient and if the
estimator W,, satisfies

VW, —8) 2 N(0,(8))

where J(0) and I~'(8) are continuous functions of @, then under regularity condi-
tions, J (@) — I () is a positive semi-definite matrix, and T, is “better” than W,,.
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Definition 8.15. Assume that » = g(6). Then
I(n)=1(g(0)) = [Dg(o)lfl(e)DZz(o)]fl-
Notice that this definition agrees with the multivariate delta method if
Vi(Ty—0) 5 Ni(0, %)
where X =1-1(0).

Now suppose that X1, ..., X, are iid random variables from a k-parameter REF
k
f(x0) =h(x)c(8)exp | Y, wi(8)i(x) (8.10)
i=1

with natural parameterization

k
f(xln) = h(x)b(n)exp [2 nm(x)] : (8.11)

i=1

Then the complete minimal sufficient statistic is

T
T _%<2t1(Xi),---,ztk(Xi)> :
i=1 i=1

Let ur = (E(t1(X),...,E(t(X)))T. From Theorem 3.3, for § € £,

—d

E@(X)= 50

log(b(n)),

and
2
Cov(ti(X),t;(X)) = 0; ) = 1 (;blog(b( ))-

Proposition 8.20. If the random variable X is a kP-REF with pmf or pdf (8.11),
then the information matrix
I(n)=[1;,]
where

2
11y = E | g loe X n) 5 08(F(X1) | =~ | 5.2 tos(rxIn)

Several authors, including Barndorff-Nielsen (1982), have noted that the mul-

tivariate CLT can be used to show that \/n(T, — wr) 2 Ni(0,%). The fact that
X = I(n) appears in Lehmann (1983, p. 127).
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Theorem 8.21. If Xj,...,X, are iid from a k-parameter regular exponential
family, then

V(T — pr) 2 N(0,1(n)).

Proof. By the multivariate central limit theorem,

V(T —pr) B3 N0, )

where X = [0; ;]. Hence the result follows if o; ; = I ;. Since

log(f(x|n)) = log(h(x)) +log(b(n)) + Z Mty (x

a%log(fmn)) - a%log(b(n)) Fix).

Hence

0?2 0?2
1= anon; = log(f(X|n))| = o anllog(b( n)=-0;;. O

To obtain standard results, use the multivariate delta method, assume that both 6
and 5 are k X 1 vectors, and assume that = g(#) is a one-to-one mapping so that
the inverse mapping is = g~ (y). If Dg g is nonsingular, then

D71

go)="D

g—l(,,) (812)

(see Searle 1982, p. 339), and

— -1 T -1 _ -1 T -1 _ pT
I(ﬂ)—[Dg(O)I (0)Dg(0)] —[Dg(o)] I(o)Dg(a)—Dgfl(")l(o)l)g(*é(;lyg)

Compare Lehmann (1999, p. 500) and Lehmann (1983, p. 127).
For example, suppose that 7 and n are k x 1 vectors, and

V(i —n) 3 N(0,17' ()

where jt7 = g() and = g ' (ur). Also assume that T,, = g (i) and i = g~ (T',,).
Then by the multivariate delta method and Theorem 8.21,

VAT, — wr) = V(g (i) — g() 2 N0.1(n)] = N[0, Dy I (1) D, -
Hence
I(n) = Dg(n)lfl(ﬂ)Dgr(ﬂ)-
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Similarly,

Vg (Ta) — g ' (rr)) = Va(i —n) B N[0,17" ()] =

Ni[0,D I(n)D? ].

8 '(wr) g '(nr)

Thus
—1 T -1 T T
I () =Dg-1(u) IMDg 1y = Pg-1upPgmy I (MDgyDg1(y,)

as expected by Eq. (8.13). Typically 6 is a function of the sufficient statistic T,
and is the unique MLE of #. Replacing 5 by @ in the above discussion shows that

Vn(—9) 2>N,((0,I’1(t9)) is equivalent to /n(T, — ) 2>N/<((),I(0)) provided
that D g g is nonsingular.

8.7 More Multivariate Results
Definition 8.16. If the estimator g(T',,) KA g(0) forall @ € ©, then g(T',,) is a con-
sistent estimator of g(6).

Proposition 8.22. If 0 < 6 < 1, X is a random vector, and

then g(T,) KA g(0).
Theorem 8.23. If X,..., X, are iid, E(|| X||) < ec and E(X) = pu, then

a) WLLN: X,
b) SLLN: X,

P
— p and
a
=

Theorem 8.24: Continuity Theorem. Let X, be a sequence of k£ x 1 random
vectors with characteristic function ¢,(¢) and let X be a k x 1 random vector with
cf ¢(¢). Then

X, B X iff ¢.(¢) = 0(2)
for all £ € RE.

Theorem 8.25: Cramér Wold Device. Let X, be a sequence of k x 1 random
vectors and let X be a k x 1 random vector. Then

X, 2 xiff 7x, B¢7x

for all ¢ € R*.
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Application: Proof of the MCLT Theorem 8.18. Note that for fixed ¢, the t7 X ;
are iid random variables with mean tT[L and variance ¢t7 X't. Hence by the CLT,

tT/n(X,—p) 2 N(0,¢7 Xt). The right-hand side has distribution ¢7 X where X ~
Ni(0, X). Hence by the Cramér Wold Device, /n(X, — ) 2 N(0,%). O

Theorem 8.26. a) If X, £> X, then X, 2> X.
b)
P . D
X, = g(0) iff X, = g(0).

Let g(n) > 1 be an increasing function of the sample size n: g(n) 1 o, e.g.,
g(n) = y/n. See White (1984, p. 15). If a k x 1 random vector T, — . converges
to a nondegenerate multivariate normal distribution with convergence rate /n, then
T, has (tightness) rate /n.

Definition 8.17. Let A, = [a; j(n)] be an r X ¢ random matrix.
a) A, = Op(X,) if a; j(n) = Op(X,) for 1 <i<rand1<j<c.
b) A, =o0,(X,)ifa;j(n) =0,(Xy) for 1 <i<rand1<j<ec.
c) A, =p (1/(g(n)) if a; j(n) <p (1/(g(n))for 1 <i<rand1<j<ec.
d)Let Ay, =T,—p and Ay, = C, —cX for some constant ¢ > 0. If Ay, <p
(1/(g(n)) and A, <p (1/(g(n)), then (T,,C,) has (tightness) rate g(n).

Remark 8.5. Following Severini (2005, p. 354), let W,, X,, ¥, and Z, be
sequences of random variables such that ¥, > 0 and Z, > 0. (Often ¥, and Z,
are deterministic, e.g., ¥, = n~1/2))

a) If W, = Op(1) and X,, = Op(1), then W,, + X,, = Op(1) and W, X, = Op(1),
thus Op(l) + OP(I) = Op(l) and OP(I)Op(l) = Op(l)

b) If W, = Op(1) and X,, = 0p(1), then W, + X,, = Op(1) and W,,X,, = op(1), thus
Op(l)-f—Op(l) Op(1) and OP( ) (1)—0})(1)

¢) If W, = Op(Y,) and X, = Op(Z,), then W, + X, = Op(max(¥,,Z,)) a
WoX, = Op(YuZy), thus Op(Y,) + Op(Z,) = Op(max(Yy,,Z,)) and Op(Y,)Op(Z,) =
Op(Y,Z,).

nd

Recall that the smallest integer function [x] rounds up, e.g., [7.7] = 8.

Definition 8.18. The sample p quantile é,, » = Y(up1)- The population quantile
& =0(p) =inf{y: F(y) > p}.

Theorem 8.27 (Serfling 1980, p. 80): Let 0 < p; < py < -+ < pr < 1. Sup-
pose that F has a density f that is positive and continuous in neighborhoods of

Eoiy-- - Ep,- Then

\/ﬁ[(émpl IR 7éﬂ,Pk)T - (épl IR épk)T] 2} Nk(ov E)
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where X' = (0;;) and
pi(1—pj)

Cij=—F ¢~z ~

f(8p)f(8p;)

fori < jand o;; = ogj; fori > j.

Theorem 8.28: Continuous Mapping Theorem. Let X, € R, If X, 2 x
and if the function g : R¥ — R/ is continuous and does not depend on n, then

D
g(Xy) = g(X).
The following theorem is taken from Severini (2005, pp. 345-349).

Theorem 8.29: Let X, = (X1,,,...,X;,)” be a sequence of k x 1 random vectors,
let Y, be a sequence of k x 1 random vectors and let X = (Xi,... ,Xk)T beakx1
random vector. Let W,, be a sequence of k x k nonsingular random matrices and let
C be a k x k constant nonsingular matrix.

) X, 5 X iff Xip 5 X fori=1,....k.

b) Slutsky’s Theorem: If X, 2> X,ifY, £> ¢ for some constant k x 1 vector c,
and if W, 2 C, theni) X, + Y, 2> X +c.

i) Y7x, 2 eTx.

iii) W, X, 2 cX, XITw, 2 x"c, w,;'X, 2 Cc'X and
X'w, ' B xTc !

8.8 Summary

1) CLT: Let Yy,...,Y, be iid with E(Y) = y and V(Y) = 6. Then
V¥, — ) % N(0,02).
2) Delta Method: If g’'(6) # 0 and \/n(T,, — 60) 2 N(0,02), then
D
Vn(g(Ty) — (6)) = N(0,6°[¢'(6)%).

3) 1P-REF Limit Theorem: Let Y,...,Y, be iid from a 1P-REF with
pdf or pmf f(y|0) = h(y)c(0)exp[w(0)t(y)] and natural parameterization
F6IM) = h&)b(M)explne(y)]- Let E(t(Y)) =t = g(n) and V(1(Y)) = 67. Then

n D
Vi Eiiy 1 (6) = ] = N(0,11(n)) where I (1) = of = ¢'(n).
4) Limit theorem for the Sample Median:
— D 1
Ji(MED(n) — MED(Y)) 2 N (0, - (Y))) .

5) If n®(Ty,, — 0) 2 N(0,6%(F)) and n®(Ty, — 6) > N(0,62(F)), then the
asymptotic relative efficiency of T , with respect to 75 , is

] S)
—

o5 (F)

ARE(T},, T>,) = :
n n IZ(F)

Q
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The “better” estimator has the smaller asymptotic variance or Giz (F).

6) An estimator 7, of 7(0) is asymptotically efficient if

D ['(6))*
T,—7t(0)) = N(0,——=—|.
Var, - <(0) % v (0. 510
7) For a 1P-REF, 1 ¥ #(Y;) is an asymptotically efficient estimator of g(n) =
E@(Y)). R R
8) Rule of thumb: If 6, is the MLE or UMVUE of 0, then T, = 7(6,) is an
asymptotically efficient estimator of 7(0). Hence if 7/(0) # 0, then

! 2
Jale(6,) — t(0)] B N (o, [zl((%))] ) .

9 x, 2 x if
lim F, () = F(t)

n—seo

at each continuity point ¢ of F.

10) X, 5 7(6) if for every £ > 0,

1211 P(|X, —1(0)| <€) =1 or,equivalently, 1211 P(|X,—1(6)] >¢)=0.
n—po0 n—yoo
11) T, is a consistent estimator of 7(0) if 7, KA 7(0) forevery 0 € O.

12) T,, is a consistent estimator of 7(0) if any of the following three conditions
holds:

i) lim, e VAR (T;,) =0 and lim,—,e Eg(T;,) = 7(0) forall 6 € O.
ii) MSE () (T,) — 0 for all 6 € ©.
iii) E[(T,, — ©(0))*] — O forall 8 € ©.
13) If
V(T = (6)) 2 N(0,v(6))

for all @ € O, then T, is a consistent estimator of 7(6).
14) WLLN: Let Yi,...,Y,,... be a sequence of iid random variables with
E(Y;) = u. Then ¥, & p1. Hence ¥, is a consistent estimator of 1.

15)i) If X, & X, then X,, 2 X.

i) 7, 5 7(0) iff T, 2 1(0).

iii) If 7, 5 0 and 7 is continuous at 6, then (T,) ER 7(6). Hence if 7, is a con-
sistent estimator of 6, then 7(7,,)is a consistent estimator of 7(60) if 7 is a continuous
function on ©.

16) Slutsky’s Theorem: If Y, 2> Y and W, £> w for some constant w, then
Y, W, Y wY,Y,+W, ey Y+wandY,/W, o Y /wforw#£0.
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8.9 Complements

Some authors state that if X, - X and g is continuous, then g(X,) KA g(X), but Sen
and Singer (1993, p. 59) says that g needs to be uniformly continuous.
The following extension of the delta method is sometimes useful.

Theorem 8.30. Suppose that g does not depend on n, g'(6) =0, g"(0) # 0 and
V(T — 0) 3 N(0,7(6)).
Then
p 1
ng(Tn) —g(0)] = 572(9)8"(9))(12-

Example 8.14. Let X,, ~ Binomial(n, p) where the positive integer n is large and
X,
0<p<1.Letg(8)=6°— 0. Find the limiting distribution of n [g (—") — c}
n
1
for appropriate constant ¢ when p = —.

V3

Solution: Since X, 2 >, Y; where ¥; ~ BIN(1, p),
X D
Vn (7”— p> = N(0,p(1-p))
by the CLT. Let 6 = p. Then g/(0) =362 — 1 and g”(6) = 66. Notice that

(1/V3) = (1/V3) = 1/V3 = (1/V3) @ _ 1> _ % e

Also g'(1/+/3) = 0and g"(1//3) = 6/+/3. Since 72(p) = p(1 — p),

(1/V3) = % <1—%) .

Hence

[o(3)- () () - ()

A nice review of large sample theory is Chernoff (1956), and there are sev-
eral Ph.D. level texts on large sample theory including, in roughly increas-
ing order of difficulty, Lehmann (1999), Ferguson (1996), Sen and Singer
(1993), and Serfling (1980). Cramér (1946) is also an important reference, and
White (1984) considers asymptotic theory for econometric applications. Lecture
notes are available from (www.stat.psu.edu/~dhunter/asymp/lectures/). Also see
DasGupta (2008), Davidson (1994), Jiang (2010), Polansky (2011), Sen et al.
(2010) van der Vaart (1998).
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In analysis, convergence in probability is a special case of convergence in
measure and convergence in distribution is a special case of weak convergence. See
Ash (1972, p. 322) and Sen and Singer (1993, p. 39). Almost sure convergence is

also known as strong convergence. See Sen and Singer (1993, p. 34). Since Y K u

iffy 2 u, the WLLN refers to weak convergence. Technically X, and X need to
share a common probability space for convergence in probability and almost sure
convergence.

Perlman (1972) and Wald (1949) give general results on the consistency of the
MLE while Berk (1972), Lehmann (1980), and Schervish (1995, p. 418) discuss the
asymptotic normality of the MLE in exponential families. Theorems 8.4 and 8.21
appear in Olive (2007). Also see Cox (1984) and McCulloch (1988). A similar result
to Theorem 8.21 for linear exponential families where #;(x ) = x;, is given by (Brown,
1986, p. 172). Portnoy (1977) gives large sample theory for unbiased estimators
in exponential families. Although 7', is the UMVUE of E(¢(Y)) = y,, asymptotic
efficiency of UMVUE:s is not simple in general. See Pfanzagl (1993).

Casella and Berger (2002, pp. 112, 133) give results similar to Proposition 8.3.
Some of the order relations of Sect. 8.5 are discussed in Mann and Wald (1943). The
multivariate delta method appears, for example, in Ferguson (1996, p. 45), Lehmann
(1999, p. 315), Mardia et al. (1979, p. 52), Sen and Singer (1993, p. 136) or Serfling
(1980, p. 122).

Suppose @ = g~ !(n). In analysis, the fact that

71 .
Dg —Dg—l(

9) )

is a corollary of the inverse mapping theorem (or of the inverse function theorem).
See Apostol (1957, p. 146), Bickel and Doksum (2007, p. 517), Marsden and Hoff-
man (1993, p. 393) and Wade (2000, p. 353).

According to Rohatgi (1984, p. 616), if Y1,..., Y, are iid with pdf f(y), if ¥;,,.x is
the r,th order statistic, r,/n — p, F(§p) = p and if f(&p) > 0, then

ViV — &) BN <°’ I[)]E(lé—;)’])z)> '

So there are many asymptotically equivalent ways of defining the sample p quantile.

8.10 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.
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8.1%. a) Enter the following R function that is used to illustrate the central limit
theorem when the data Y1, .. .,Y,, are iid from an exponential distribution. The func-
tion generates a data set of size n and computes Y| from the data set. This step is
repeated nruns = 100 times. The output is a vector (Y1,Y2,...,Y100). A histogram
of these means should resemble a symmetric normal density once # is large enough.

cltsim <- function(n=100, nruns=100)
ybar <- l:nruns
for (i in 1:nruns) {
ybar[i] <- mean (rexp(n)) }
list (ybar=ybar) }

b) The following commands will plot four histograms with n = 1,5,25, and 200.
Save the plot in Word.

zl <- cltsim(n=1)

z5 <- cltsim(n=5)

z25 <- cltsim(n=25)
z200 <- cltsim(n=200)
par (mfrow=c (2, 2))
hist (z1lSybar)

hist (z538ybar)

hist (z258ybar)

hist (z200Sybar)

V V.V V V V V V V

c¢) Explain how your plot illustrates the central limit theorem.

d) Repeat parts a)—c), but in part a), change rexp(n) to rnorm(n). Then Y1, ...,Y,
are iid N(0,1) and Y ~ N(0,1/n).

8.2%. Let X1,...,X, be iid from a normal distribution with unknown mean p and
known variance 62. Let

}—( _ 2?:1Xi
n

Find the limiting distribution of \/z((X)? — ¢) for an appropriate constant c.

8.3%. Let X1,..., X, be a random sample from a population with pdf

x971
f(x)_{639 0<x<3

0 elsewhere

X
The method of moments estimator for 0 is 7,, = iy

a) Find the limiting distribution of \/n(T,, — 0) as n — co.
b) Is 7, asymptotically efficient? Why?

¢) Find a consistent estimator for 6 and show that it is consistent.
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8.4¢. From Theorems 2.17 and 2.18, if ¥, = > X; where X; is iid from a nice
distribution, then ¥, also has a nice distribution. If E(X) = u and VAR(X) = 62,
then by the CLT

VX, — 1) 2 N0,6?).

Hence
Y,

N <;” —u) 2 N(0,0?).
Find u, 62 and the distribution of X; if
i) ¥, ~ BIN(n,p) where BIN stands for binomial.
i) Y, ~ x2.
iii) ¥, ~ G(nv,A) where G stands for gamma.
iv) Y, ~ NB(n, p) where NB stands for negative binomial.
v) Y, ~ POIS(n0) where POIS stands for Poisson.
vi) ¥, ~ N(nu,nc?).
8.5*. Suppose that X, ~ U(—1/n,1/n).
a) What is the cdf F,(x) of X,,?

b) What does F;,(x) converge to?
(Hint: consider x < 0,x =0 and x > 0.)

©) X, 2 X. What is X?
8.6. Continuity Theorem problem: Let X,, be sequence of random variables with

cdfs F,, and mgfs m,,. Let X be a random variable with cdf F and mgf m. Assume that
all of the mgfs m,, and m are defined if |¢| < d for some d > 0. Thus if m, (t) — m(t)

as n — oo for all |¢| < ¢ where 0 < ¢ < d, then X, 2x.
Let
1

1
[1=(A+3)]
fort < 1/(A 4+ 1/n). Then what is m(¢) and what is X?

my(t) =

8.7.LetYy,...,Y, beiid, T1 , = Y and let D, = MED(n) be the sample median.
Let6 =pu.

Then

D 1
MED(n) — MED(Y N(0,————
VAOMED() ~MED() 5 (0 ey

where the population median is MED(Y) (and MED(Y) = u = 6 for a) and
b) below).

a) Find ARE(T} ,,T»,) if F is the cdf of the normal N(u,6?) distribution.

b) Find ARE(T},,T»,) if F is the cdf of the double exponential DE(6,1)
distribution.
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8.8¢. Let Xi,...,X, be independent identically distributed random variables
with probability density function

fx)=6x""1 0<x<1, 6>0.

1
a) Find the MLE of rk Is it unbiased? Does it achieve the information inequality

lower bound?

1
b) Find the asymptotic distribution of the MLE of s

_ 0 _
¢) Show that X, is unbiased for 01 Does X, achieve the information inequal-

ity lower bound?

1 —
d) Find an estimator of 0 from part (c) above using X,, which is different from

the MLE in (a). Find the asymptotic distribution of your estimator using the delta
method.

e) Find the asymptotic relative efficiency of your estimator in (d) with respect to
the MLE in (b).

8.9. Many multiple linear regression estimators ﬁ satisfy

V(B —B) B N,(0,V(B.F) W) (8.14)
when
T
XnX Aw-1 (8.15)

and when the errors e; are iid with a cdf F and a unimodal pdf f that is symmetric
with a unique maximum at 0. When the variance V (e;) exists,

. 1
V(OLS,F) =V(e;) = 6> while V(L,F)= O
In the multiple linear regression model,
Y, =xi1Bi+xiaBr+ -+ xipBp+ei=x] B+e (8.16)
fori=1,...,n. In matrix notation, these n equations become
Y=XB+e, (8.17)

where Y is an n x 1 vector of dependent variables, X is an n X p matrix of predictors,
B is a p x 1 vector of unknown coefficients, and e is an n x 1 vector of unknown
errors.

a) What is the ijth element of the matrix
X'x
n

?
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b) Suppose x;; = 1 and that x; ; ~ X; are iid with E(X;) =0 and V(X;) = 1
fork=1,...,nand j =2,...,p. Assume that X; and X; are independent for i # j,
i>1and j> 1. (Often x; j ~ N(0,1) in simulations.) Then what is W~! for model
(8.16)?

¢) Suppose p =2 and ¥; = o + BX; + ¢;. Show

R ~3X;
nY(Xi—X)? ny(X;—X)?

(X7x) -
7ZX,’ n
nY(Xi—X)? n¥(X;i—X)2

d) Under the conditions of ¢), let 2 = ¥(X; — X)?/n. Show that

lyy2 +

xTx\ ! §2 )
n(XTX)lz( ) =

n X 1

Z ¢

e) I X; is iid with variance V' (X), then n(X7X)~' 5 W. What is W?
f) Now suppose that n is divisible by 5 and the n/5 of X; are at 0.1, n/5 at 0.3,
n/5at0.5,n/5at0.7 and n/5 at 0.9. (Hence if n = 100, 20 of the X; are at 0.1, 0.3,

0.5,0.7and 0.9.)
Find ZXiz /n, X, and S)zc. (Your answers should not depend on 7.)

A

) Under the conditions of f), estimate V(&) and V() if L, is used and if the ¢;
are iid N(0,0.01).
Hint: Estimate W with n(X” X)~! and V(8,F) = V(L{,F) = W. Hence

~ % Zth —X

o N ®\ 1 TS
~ N, R STFITV]

A ndlfO)2 |

B B S_gf &

You should get an answer like 0.0648 /n.
Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q.

8.10. Let X1, ..., X, be iid Bernoulli(p) random variables.

a) Find I;(p).

b) Find the FCRLB for estimating p.

¢) Find the limiting distribution of \/n( X, — p ).

d) Find the limiting distribution of \/z [ (X,,)* — ¢ ] for an appropriate constant c.
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8.11. Let X, ..., X, be iid exponential(§ ) random variables.

a) Find the FCRLB for estimating f3.

b) Find the limiting distribution of \/n( X, — 8 ).

¢) Find the limiting distribution of /7 [ (X,,)? — ¢ ] for an appropriate constant c.

8.12. Let Yy,...,Y, be iid Poisson (1) random variables.
a) Find the limiting distribution of \/n( Y, — 1 ).
b) Find the limiting distribution of v/z [ (Y,,)? — ¢ ] for an appropriate constant c.

8.13. Let Y, ~ x2.

Yo
a) Find the limiting distribution of \/n | — )
n

]

8.14. Let Xy, ..., X, be iid with cdf F(x) = P(X <x).LetY; =
I(X; < x) where the indicator equals 1 if X; < x and 0, otherwise.

a) Find E(Y;).

b) Find VAR(Y»)

7N

b) Find the limiting distribution of v/n l
)=

n
c) Let £,(x) = 21 (X; < x) for some fixed real number x. Find the limiting
- n! —

i

1
distribution of v/n (F,, (x) — cx ) for an appropriate constant c.

8.15. Suppose X, has cdf

Fa)=1— (1—%)"

for x > 0 and F,(x) = 0 for x < 0. Show that X, B x by finding the cdf of X.

8.16. Let X, be a sequence of random variables such that
P(X, = 1/n) = 1. Does X,, converge in distribution? If yes, prove it by finding X
and the cdf of X. If no, prove it.

8.17. Suppose that Y7,...,Y, are iid with E(Y) = (1 —p)/p and VAR(®Y) =
(1—p)/p>where0 <p < 1.

a) Find the limiting distribution of
— 1-—
G (7. 52

b) Find the limiting distribution of v/n [ g¢(Y,) — p| for appropriate function g.
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8.18. Let X,, ~ Binomial(n, p) where the positive integer  is large and 0 < p < 1.

X,
a) Find the limiting distribution of v/n < ~_»p ) .
n

2

(e) )

8.19. Let Yy,...,Y, be iid exponential (1) so that E(Y) = A and MED(Y) =
log(2)A.

a) Let 71 , = log(2)Y and find the limiting distribution of
\/E(Tl,n - 10g(2)l)

b) Let 75 , = MED(n) be the sample median and find the limiting distribution of
\/E(Tln —log(2)A).

¢) Find ARE(T} ., T,

b) Find the limiting distribution of v/n

8.20. Suppose that 1 = g(0), 8 = g~'(n) and g’(8) > 0 exists. If X has pdf or
pmf f(x|), then in terms of 1, the pdf or pmfis f*(x|n) = f(x[g~'(n)). Now

_d ool Flxle~! _ ! 9 x|g™! =
A= g Toel/ (W™ ()] = frmrmss 5ol ()

o] [;—ef (19) Q_M] 7o)

using the chain rule twice. Since 8 = g~ '(n),

o ot (0] [ 0]

Hence

A= Lotoutstls ) = [y otrtton] [ s ).

Now show that

8.21. LetYy,...,Y, be iid exponential (1) so that P(Y <y) =F(y) =1 —e 7 for
y>0.Let ¥,y = max(Yy,...,Y,).
a) Show that Fy, (1) = P(Y(,) <t) = [1—e']" fort > 0.

b) Show that P(Y(,) —log(n) < t) — exp(—e™") (for all # € (—oo,c0) since 7 +
log(n) > 0 implies r € R as n — o0).
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8.22. LetYy,...,Y, be iid uniform (0,20).

a)LetT), = Y and find the limiting distribution of \/n (Ti,n—0).

b) Let T , = MED(n) be the sample median and find the limiting distribution of
V(T — 0).

¢) Find ARE(TL,L, T» »). Which estimator is better, asymptotically?

8.23. Suppose that ¥y, ...,Y, are iid from a distribution with pdf f(y|0) and that
the integral and differentiation operators of all orders can be interchanged (e.g., the
data is from a one-parameter exponential family).

a) Show that 0 = E [%log( f(Y|e))} by showing that

2 1—0= 2 [ rvlevay— | { log(f y|e>>]f<y|e>dy. (*)

b) Take second derivatives of (*) to show that

(;—elogﬂﬂe))z

8.24. Suppose that X1 ..., X, are iid N(u,c?).

a) Find the limiting distribution of \/n (X, — 1 ).

b) Let g(8) = [log(1 + 6)]?. Find the limiting distribution of
Vn (8(Xn) — g(u) ) for u > 0.

c) Let g(6) = [log(1 + 0)]?. Find the limiting distribution of
n (g(X,)— g(u) ) for u = 0. Hint: Use Theorem 8.30.

1,(0)=Eg

Eo [ 25 tosr110)].

8.25. Let W,, = X,, — X and let r > 0. Notice that for any € > 0,
E\X,—X|" > E[|Xx, —X|"I(|X, —X| > €)] > €"P(|X, — X]| > €).

Show that W, 5 0/if E|X, — X|" — 0 as n — co.

8.26. Let X, ..., X, be iid with E(X) = p and V(X) = 2. What is the limiting
distribution of n[(X)? — u?] for the value or values of y where the delta method does
not apply? Hint: use Theorem 8.30.

8.27%. Let X ~ Binomial(n,p) where the positive integer n is large and
O0<p<l.

X
a) Find the limiting distribution of \/n ( ——7p ) .
n

)

b) Find the limiting distribution of v/n
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3
X X
¢) Show how to find the limiting distribution of l <—) - — ] when p =
n n

5=

(Actually want the limiting distribution of

()

8.282. Let Xi,...,X, be independent and identically distributed (iid) from a
Poisson(A) distribution.

a) Find the limiting distribution of /n (X — 4 ).
b) Find the limiting distribution of \/n [ (X)* — (1)?].

where g(6) =6 —0.)

8.299. Let Xi,...,X, be iid from a normal distribution with unknown mean
and known variance 62, Let X = @ and §? = L3 | (X, —X)2.

a) Show that X and S? are independent.

b) Find the limiting distribution of \/n((X)? — ¢) for an appropriate constant c.

8.30. Suppose that Y1, ...,Y, are iid logistic(0, 1) with pdf

exp(=(y—6))

IO = e o 0P

where and y and 0 are real.
a) I1(0) = 1/3 and the family is regular so the “standard limit theorem” for the
MLE 6, holds. Using this standard theorem, what is the limiting distribution of

Vn(0,—6)?

b) Find the limiting distribution of \/n(Y, — 6).

¢) Find the limiting distribution of /n(MED(n) — ).

d) Consider the estimators én, Y, and MED(n). Which is the best estimator and
which is the worst?

8.31. Let ¥, ~ binomial(n,p). Find the limiting distribution of
. Y, .
vn | arcsin | /= | —arcsin(,/p) | .
n

1
V1—x2

(Hint:

)

%arcsin (x) =
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8.32. Suppose ¥, ~ uniform(—n,n). Let F;,(y) be the cdf of ¥,,.
a) Find F (y) such that F,(y) — F(y) for all y as n — eo.

b) Does Y, Lyo Explain briefly.

8.33. Suppose ¥, ~ uniform(0,n). Let F,,(y) be the cdf of V.
a) Find F (y) such that F,(y) — F(y) forall y as n — co.

b) Does Y, Lyo Explain briefly.

8.34%. Let V1,...,Y, be independent and identically distributed (iid) from a dis-
tribution with probability mass function f(y) = p(1 —p)* for y =0,1,2,... and
0<p<1.ThenE(Y)=(1-p)/pand VARY) = (1 —p)/p>.

— 11—

a) Find the limiting distribution of \/n ( Y — Tp ) .

b) Show how to find the limiting distribution of g(¥) = H;Y Deduce it com-
pletely. (This bad notation means find the limiting distribution of 1/n(g(Y) — ¢) for
some constant c.)

¢) Find the method of moments estimator of p.

d) Find the limiting distribution of \/n ( (14+Y)— d )
for appropriate constant d.

e) Note that 1 + E(Y) = 1/p. Find the method of moments estimator of 1/p.

8.35%. Let X1,...,X, be independent identically distributed random variables

from a normal distribution with mean p and variance ¢2.

a) Find the approximate distribution of 1/X. Is this valid for all values of p?
b) Show that 1/X is asymptotically efficient for 1/u, provided pt # u*. Iden-

tify p*.

8.36%. Let Y),...,Y, be independent and identically distributed (iid) from a dis-
tribution with probability density function

for0 <y < 6 and f(y) = 0, otherwise.
a) Find the limiting distribution of \/n ( Y-—c ) for appropriate constant c.
b) Find the limiting distribution of \/n (log(Y ) — d ) for

appropriate constant d.
¢) Find the method of moments estimator of 6.

8.37%. LetYy,...,Y, be independent identically distributed discrete random vari-
ables with probability mass function

) =Py =y) = (”ﬁ‘ l)p’a oy
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fory=0,1,... where positive integer r is known and 0 < p < 1. Then
E(Y) =r(1—p)/p,and V(¥) = r(1 - p)/p*.
_ 1—
a) Find the limiting distribution of \/n ( Y — % ) .

b) Let g(Y) = % Find the limiting distribution of v/n ( g(Y)— ¢ ) for ap-
r
propriate constant c.

¢) Find the method of moments estimator of p.

8.382. Let X1,..., X, be independent identically distributed uniform (0, 8) ran-
dom variables where 6 > 0.

a) Find the limiting distribution of \/n(X — cg) for an appropriate constant cg
that may depend on 6.

b) Find the limiting distribution of \/n[(X)? — k] for an appropriate constant kg
that may depend on 6.



Chapter 9
Confidence Intervals

Point estimators give a single reasonable (value) estimate of 8 and were covered
in Chaps. 5 and 6. Interval estimators, such as confidence intervals, give an interval
of “reasonable” estimated values of the parameter. Large sample confidence inter-
vals and tests are also discussed in this chapter. Section 9.3 suggests that bootstrap
and randomization confidence intervals and tests should use m = max (B, [nlog(n)])
samples instead of a fixed number of samples such as B = 1,000.

9.1 Introduction

Definition 9.1. Let the data Y, ..., Y, have joint pdf or pmf f(y|6) with parameter
space O and support %. Let L, (Y) and U, (Y') be statistics such that L,(y) < U,(y),
Vy € & . Then (L,(y),U,(y)) is a 100 (1 — o) % confidence interval (CI) for 0 if

Po(Ly(Y) <0 <Uy(Y)) =1—a

for all @ € ©. The interval (L,(y),U,(y)) is a large sample 100 (1 — o) % CI for
0 if

Po(La(Y) <0 <Uy(Y)) = 1—a
forall 0 € © asn — oo.

Definition 9.2. Let the data Yy,...,Y, have joint pdf or pmf f(y|6#) with param-
eter space © and support . The random variable R(Y|0) is a pivot or pivotal
quantity if the distribution of R(Y|@) is independent #. The quantity R(Y,0) is
an asymptotic pivot or asymptotic pivotal quantity if the limiting distribution of
R(Y,0) is independent of 6.

The first CI in Definition 9.1 is sometimes called an exact CI. The words “exact”
and “large sample” are often omitted. In the following definition, the scaled asymp-
totic length is closely related to asymptotic relative efficiency of an estimator and
high power of a test of hypotheses.

DJ. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4_09, 257
© Springer International Publishing Switzerland 2014
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Definition 9.3. Let (L,,,U,) be a 100 (1 — o) % CI or large sample CI for 6. If
n® (U, — L) 5 Aq,

then Ay, is the scaled asymptotic length of the CIL. Typically § = 0.5 but supereffi-
cient CIs have 6 = 1. For fixed 0 and fixed coverage 1 — a, a CI with smaller A, is
“better” than a CI with larger Aqy. If A| o and A3 4 are for two competing CIs with
the same &, then (4; o /Alya)l/ % is a measure of “asymptotic relative efficiency.”

Definition 9.4. Suppose a nominal 100(1 — &) % CI for 6 has actual coverage
1—8,sothat Pg(L,(Y) <0 <U,(Y))=1—0forall 0 € ©.1f 1 -6 > 1 — t, then
the CI is conservative. If 1 — 6 < 1 — ., then the Cl is liberal. Conservative Cls are
generally considered better than liberal CIs. Suppose a nominal 100(1 — o) % large
sample CI for 0 has actual coverage 1 — §, where §, — 0 as n — o for all 6 € O.
If 1 — 6 > 1 — o, then the Cl is asymptotically conservative. If 1 —§ < 1 — ¢, then
the CI is asymptotically liberal. Tt is possible that d = §(6) depends on 6, and that
the CI is (asymptotically) conservative or liberal for different values of 0, in that
the (asymptotic) coverage is higher or lower than the nominal coverage, depending
on 6.

Example 9.1. a) Let Y;,...,Y, be iid N(u, 6%) where 6 > 0. Then

(Y|Ii o ) S/\/— ~In—1

is a pivot or pivotal quantity.

To use this pivot to find a CI for u, let 7, o be the ¢ percentile of the ¢, distribu-
tion. Hence P(T <t ) = aif T ~1,. Using t, o = —1, 1o for 0 < or < 0.5, note
that

llll—OC:P< [P 11— a/Z_S/\/__ n— 11a/2>
P(—ty11-ap S/IVN<Y —u<t, 11 qpn S/Vn)
P(=Y =ty 11 ap S/Vn< - <Y+t 11 qpn S/Vn)
= P(Y bt i—ap S/VA<U <Y 41, 1 1_qpn S/Vn).
Thus
Y£t, 11 an S/Vn
isa 100(1 — o¢)% CI for p.
b) If Yi,...,Y, are iid with E(Y) = u and VAR(Y) = 62 > 0, then, by the CLT
and Slutsky’s Theorem,
Y—u Y—u
S/vn o/vn

is an asymptotic pivot or asymptotic pivotal quantity.

2 N0, 1)

o
R(Y|IJ=C72) E
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To use this asymptotic pivot to find a large sample CI for u, let z, be the o
percentile of the N(0,1) distribution. Hence P(Z < z4) = o if Z ~ N(0,1). Using
2o = —Z1—¢ for 0 < a < 0.5, note that for large n,

l—o~P(-— cYow
~ Ag-a/2 > S/ﬁ S 2-a/2
(=z1—qp2 S/VN<Y = <zi_gp S/Vn)
(=Y —21_qppS/Vn < —u < =Y+21_gp S/V/n)
(Y —21_gp2 S/Vn<u<Y+2zi_g S/Vn).
Thus _
Y+zi_qp S/Vn

is a large sample 100(1 — )% CI for u.
Since t, 1,1 a2 >21-apbutt, 11 g/ —21-gpasn— oo,

Yt 1102 S/Vn

is also a large sample 100(1 — o¢)% CI for w. This ¢ interval is the same as that in
a) and is the most widely used confidence interval in statistics. Replacing z; 4/, by
tn—1,1—a,2 makes the CI longer and hence less likely to be liberal.

Large sample theory can be used to find a CI from the asymptotic pivot. Suppose
that Y = (Yy,...,Y,) and that W, = W,,(Y) is an estimator of some parameter Ly
such that

V(W — pw) 2 N0, 0%)

where szv /n is the asymptotic variance of the estimator W,. The above notation
means that if n is large, then for probability calculations

W, — ttw ~ N(0, 0 /n).

Suppose that S%, is a consistent estimator of 633, so that the (asymptotic) standard
error of W, is SE(W,,)) = Sy /+/n. As in Example 9.1, let
P(Z < z4)=aif Z~ N(0,1). Then for large n

Wn — Uw
l—-a~P|— <—<
o ( -2 S SE(Wn) > ZlOC/Z) )
and an approximate or large sample 100(1 — )% CI for uy is given by
(Wn—ZI,a/ZSE(Wn),Wn +Z17(X/28E(Wn)). (91)

Since

Ip1-a/2
P, (X/ -1

l—a/2
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if p = py — o0 as n — oo, another large sample 100(1 — ot)% CI for yy is
(Wo— 11— /sSE(Wp), Wy 41,1 g 2SE(W)). (9.2)

The CI (9.2) often performs better than the CI (9.1) in small samples. The quantity

Ip1-a)2 /21—q/2 can be regarded as a small sample correction factor. The CI (9.2) is

longer than the CI (9.1). Hence the CI (9.2) is more conservative than the CI (9.1).
Suppose that there are two independent samples Yi,...,Y, and Xj,...,X, and

that
Va(Wa(Y) —pw(Y)) \ b 0\ (ow(¥) 0
(x/ﬁ(Wm(X)—MW(X))> e < <0>’ ( "0 szv(X)> >
Then
(Wa(Y) —uw(Y)) '\ 0\ (ow(¥)/n 0
((Wm(X)—uw(X))) = ( (0>’ ( "o cfw(X)/m) )
and
W) = W, () — g (1) — g (00)) (0, B S0,
Hence SE(W, - =
| S5 (Y) 52 \/
SE(W,,(Y))]? + [SE(Wn(X))]?,
and the large sample 100(1 — a)% CI for uy (Y) — uw(X) is given by
(Wa(Y) — Win(X)) izl*(x/ZSE(Wn(Y) = Wn(X)). 9.3)

If p, is the degrees of freedom used for a single sample procedure when the
sample size is n, let p = min(py,, p;). Then another large sample 100(1 — o¢)% CI

for pw (Y) — uw (X) is given by
(Wn(Y) - Wm(X)) + tp,lfa/ZSE(Wn(Y) - Wm(X)) 9.4)
These Cls are known as Welch intervals. See Welch (1937) and Yuen (1974).

Example 9.2. Consider the single sample procedures where W, = Y,,. Then
pw =E(Y), 63 = VAR(Y), Sw = S,,, and p = n— 1. Let #, denote a random vari-
able with a ¢ distribution with p degrees of freedom and let the o percentile #, o
satisfy P(t, <1, ) = 0. Then the classical r-interval for y = E(Y) is

_ S
Yn:ttnfl,lfaﬂj’%
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and the t-test statistic for Ho : L = U, is

_ 7_ ,u()
S/
The right tailed p-value is given by P(f,—1 > 1,).

Now suppose that there are two samples where W,(Y) =Y, and W,,(X) =
Xm. Then uw (Y) = E(Y) = uy, uw(X) = E(X) = ux, o4 (Y) = VAR(Y) = o7,
0%(X) = VAR(X) = 0%, and p, =n— 1. Let p = min(n — 1,m — 1). Since

SE(W, (1) — Wy (X)) = |/ 50D, SalX)

the two sample t-interval for Ly — Uy

to

- S2(Y) S2(X
(Yn_Xm):ttp,lfa/Z ( ) ( )

and two sample t-test statistic

Y, —Xnm
s2Y) |, sa(X)
NEO O]

The right tailed p-value is given by P(f, > t,). For sample means, values of the
degrees of freedom that are more accurate than p = min(n — 1,m — 1) can be com-
puted. See Moore (2007, p. 474).

The remainder of this section follows Olive (2008b, Section 2.4) closely. Let | x|
denote the “greatest integer function” (so |7.7] = 7). Let [x] denote the smallest
integer greater than or equal to x (so [7.7] = 8).

Example 9.3: Inference with the sample median. Let U, = n — L, where L, =
|n/2] —[1/n/4] and use

SE(MED(n)) = 0.5(Y(y,) = Y(1,,+1))-

Let p = U, — L, — 1. Then a large sample 100(1 — ¢¢)% confidence interval for the
population median MED(Y) is

MED(n) %1, ¢/>SE(MED(n)). 9.5)

Example 9.4: Inference with the trimmed mean. The symmetrically trimmed
mean or the & trimmed mean

Un

T=TllnUn) = — 3 HY(,-) (9.6)
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where L, = |nd| and U, = n— L,. If § = 0.25, say, then the 6 trimmed mean is
called the 25 % trimmed mean.

The trimmed mean is estimating a truncated mean t7. Assume that Y has a prob-
ability density function fy (y) that is continuous and positive on its support. Let ys
be the number satisfying P(Y < ys) = 6. Then

S L AN 9.7
‘UT_EA,S yfr (y)dy. 9.7
Notice that the 25 % trimmed mean is estimating

Y0.75
U7 = / 2yfy (v)dy.

Y0.25
To perform inference, find dy, . ..,d, where
Y(Ln+1)= i< L,
di = Y([), L,+1<i<U,

Y(U,,)a i>U,+1.

Then the Winsorized variance is the sample variance Sﬁ(dl, cooydy) of dy,....dy,
and the scaled Winsorized variance
_ SXdy,....dy)

VSW(LmUn) = W 9.8)

The standard error of 7, is SE(T;,) = \/Vsw(Ln, Uy,) /n.
A large sample 100 (1 — ot)% confidence interval (CI) for ur is

T+, gSE(T,) 9.9)

where P(f, < t,,"lf%) =1—o0/2if 1, is from a r distribution with p = U, — L, — 1
degrees of freedom. This interval is the classical #-interval when 6 = 0, but 6 = 0.25
gives a robust CL.

Example 9.5. Suppose the data below is from a symmetric distribution with
mean U. Find a 95% CI for u.

6,9,9,7,8,9,9,7

Solution. When computing small examples by hand, the steps are to sort the
data from smallest to largest value, find n, Ly, Uy, Y1), Yu,)> P> MED(n) and
SE(MED(n)). After finding 7, 1 /2, plug the relevant quantities into the formula
for the CI. The sorted data are 6,7,7,8,9,9,9,9. Thus MED(n) = (8 +9)/2=8.5.
Since n =28, L, = |4 —[V2]| =4—[1414|=4—-2=2and U, =n—L, =
8 —2 = 6. Hence SE(MED(n)) = 0.5(Ys) — ¥(3)) = 0.5% (9 —7) = 1. The degrees
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of freedom p = U, — L, —1 = 6 —2 — 1 = 3. The cutoff #3 9 975 = 3.182. Thus the
95 % CI for MED(Y) is

MED(n) £13 0.975SE(MED(n))

= 8.5+3.182(1) = (5.318,11.682). The classical t-interval uses ¥ = (6 + 7 +
T4+84+9+9+9+9)/8 and S2 = (1/7)[(Zr,Y?) — 8(8%)] = (1/7)[(522 —
8(64)] = 10/7 ~ 1.4286, and t70975 ~ 2.365. Hence the 95% CI for u is
8 +2.365(1/1.4286/8) = (7.001,8.999). Notice that the r-cutoff = 2.365 for
the classical interval is less than the ¢#-cutoff = 3.182 for the median interval and that
SE(Y) < SE(MED(n)).

Example 9.6. In the last example, what happens if the 6 becomes 66 and a 9
becomes 99?7

Solution. Then the ordered data are 7, 7, 8, 9, 9, 9, 66, 99. Hence MED(n) = 9.
Since L, and U,, only depend on the sample size, they take the same values as in the
previous example and SE(MED(n)) = 0.5(¥(s) — ¥(3)) = 0.5 % (9 —8) = 0.5. Hence
the 95% CI for MED(Y) is MED(n) £ 3 9.97sSE(MED(n)) = 9 £3.182(0.5) =
(7.409,10.591). Notice that with discrete data, it is possible to drive SE(MED(n)) to
0 with a few outliers if # is small. The classical confidence interval Y & 1709755/ N
blows up and is equal to (—2.955,56.455).

Example 9.7. The Buxton (1920) data contains 87 heights of men, but five of the
men were recorded to be about 0.75in. tall! The mean height is ¥ = 1598.862 and
the classical 95 % CI is (1514.206, 1683.518). MED(n) = 1693.0 and the resistant
95 % CI based on the median is (1678.517, 1707.483). The 25 % trimmed mean
T, = 1689.689 with 95 % CI (1672.096, 1707.282).

The heights for the five men were recorded under their head lengths, so the out-
liers can be corrected. Then Y = 1692.356 and the classical 95 % CI is (1678.595,
1706.118). Now MED(n) = 1694.0 and the 95% CI based on the median is
(1678.403, 1709.597). The 25% trimmed mean 7, = 1693.200 with 95% CI
(1676.259, 1710.141). Notice that when the outliers are corrected, the three inter-
vals are very similar although the classical interval length is slightly shorter. Also
notice that the outliers roughly shifted the median confidence interval by about 1
mm while the outliers greatly increased the length of the classical ¢-interval.

9.2 Some Examples

Example 9.8. Suppose that Y1, ...,Y, are iid from a one-parameter exponential fam-
ily with parameter 7. Assume that 7, = X} | #(¥;) is a complete sufficient statistic.
Then from Theorems 3.6 and 3.7, often T, ~ G(na,2b 7) where a and b are known
positive constants. Then
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is the UMVUE and often the MLE of 7. Since 7.,/ (b T) ~ G(na,2), a
100(1 — o) % confidence interval for 7 is

Tn/b Tn/b N Tn/b Tn/b
<G(”a72= 1—o/2) G(na,Z,a/Z)) - <X§(1 —05/2)’)(3(05/2)> (9.10)

where d = |2na], | x] is the greatest integer function (e.g., |7.7] = |7] =7), P[G <
G(v,A,0)] = a if G~ G(v, 1), and P[X < x3(0)] = a if X has a chi-square 3
distribution with d degrees of freedom.

This confidence interval can be inverted to perform two tail tests of hypotheses.
By Theorem 7.3, if w(0) is increasing, then the uniformly most powerful (UMP) test
of H, : T < 1, versus Hy : T > 1, rejects H, if and only if T;, > k where P[G > k| = «
when G ~ G(na,2b 1,). Hence

k=G(na,2b 1,1 — ). 9.11)
A good approximation to this test rejects H, if and only if
T,>b 1,031 —a)

where d = |2na|.
Example 9.9. If Y is half normal HN(u, 0), then the pdf of Y is

_ 2 —(y—u)?
fly) = MGGXP( 752 )

where ¢ > 0 and y > u and u is real. Since

10)= ety > sle | (555 ) 0= w7

Y is a IP-REF if u is known.
Since T, = 3,(Y; — u)* ~ G(n/2,26?), in Example 9.8 take a = 1 /2, b= 1,d =n
and 7 = 6. Then a 100(1 — &)% confidence interval for 6 is

T, T, )
, . 9.12)
(x,%(l —a/2) xi(a/2)
The UMP test of H, : 6> < 67 versus Hy : 6> > 07 rejects H, if and only if
T./oy > xa(1—a).

Now consider inference when both (i and ¢ are unknown. Then the family is no
longer an exponential family since the support depends on u. Let

(Y — Y1.0)* (9.13)

M=

D, =
i=1
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Pewsey (2002) showed that ({1, 62) = (Y1.4, 2 D,) is the MLE of (i, 6?), and that

Y. —
— B D Exp(1).
Gq)*l(j'i‘ﬂ)

Since (1/7/2)/n is an approximation to @' (1 + ) based on a first order Taylor
series expansion such that
(3 +3)

i

(Yl n Ii)
N

Using this fact, it can be shown that a large sample 100(1 — /)% CI for u is

it follows that
2 EXP(1). (9.14)

1 1
(ﬁ+6log(a) o! (2+2 ) (1413/n?), ) (9.15)
where the term (1+ 13/n?) is a small sample correction factor. See Abuhassan and
Olive (2008).
Note that ) .,
Dy, = Z(Y Yl”) ZZ(Yi_IJ'i‘IJ—Yl:n)Z:
i=1 i=1
1l n
D= )+ n(u— Y1) +2(u — Y1) 2
i=1 i=1
Hence . s2 (3 )
Dy =T+~ [n(1n - w)? = 2[n(Yy., — “)]MTML’
or
D T 11 2o [0 — )] T (% — )
2= g2 gz — )l 2[ 5 — (9.16)

Consider the three terms on the right-hand side of (9.16). The middle term
converges to O in distribution while the third term converges in distribution to a
—2EXP(1) or —y3 distribution since ¥ ,(Y; — u)/(on) is the sample mean of
HN(0,1) random variables and E(X) = \/2/m when X ~ HN(0,1).

LetT,—p, =3[ (Y;— )% Then

n
Dy=T p+ Y HG—-p?’-V, 9.17)
i=n—p+1

where
Yo B .2
o2 2
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Hence
Dy,

T,

2

and D, /c? is asymptotically equivalent to a 137 » random variable where p is an
arbitrary nonnegative integer. Pewsey (2002) used p = 1.
Thus when both y and 62 are unknown, a large sample 100(1 — )% confidence

interval for 62 is
D, D,
, . (9.18)
<x31(1 a7 x,%1<a/2>>

It can be shown that /n CI length converges in probability to ¢> \/E(zl,a 12—
Zq, /2) for CIs (9.12) and (9.18) while n length CI (9.15) converges in probability to
—olog(a)\/m/2.

When u and 02 are unknown, an approximate ¢ level test of H,, : o< GOZ versus
H, : 6% > o7 that rejects H, if and only if

D,/c2> x* (1—0) (9.19)
has nearly as much power as the o level UMP test when p is known if n is large.

Example 9.10. Following Mann et al. (1974, p. 176), let Wy,...,W, be iid
EXP(0,1) random variables. Let

Wl:n = min(Wl,...,Wn).

Then the MLE
A A 1 7 _
(0,4) = | Wi, ~ 2 (Wi = Win) | = (Wion, W = Wi).
i=1
Let D, = nA. Forn > 1,2 100(1 — )% confidence interval (CI) for 6 is
(Wi — A[() =D — 1), W) (9.20)

while a 100(1 — a)% CI for A is

2D, 2D,
< . = ) 9.21)
Xa(n-1)1-a/2 X2(n—1),0/2

Let T, =" ,(W; — 0) = n(W — 0). If 0 is known, then

ie _ zi:I(VVi_e) -W_o0

n
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is the UMVUE and MLE of A, and a 100(1 — a)% CI for 4 is

< 22T” , 22T" ) (9.22)
Xon-af2 Xona/2

Using 7 o/\/n ~ V22 + y/n, it can be shown that \/n CI length converges to
Azi_o /2= 2q,2) for Cls (9.21) and (9.22) (in probability). It can be shown that n
length CI (9.20) converges to —A log(at).

When a random variable is a simple transformation of a distribution that has an
easily computed CI, the transformed random variable will often have an easily com-
puted CI. Similarly the MLEs of the two distributions are often closely related. See
the discussion above Example 5.11. The first three of the following four examples
are from Abuhassan and Olive (2008).

Example 9.11. If Y has a Pareto distribution, ¥ ~ PAR(0, 1), then W =log(Y) ~
EXP(6 = log(c),4). If 6 = log(c) so o = €Y, then a 100 (1 — a)% CI for 6 is
(9.20). A 100 (1 — @)% CI for o is obtained by exponentiating the endpoints of
(9.20),and a 100 (1 — )% CI for A is (9.21). The fact that the Pareto distribution is
a log-location-scale family (W = log(Y) is from a location—scale family) and hence
has simple inference does not seem to be well known.

Example 9.12. If Y has a power distribution, ¥ ~ POW(A), then W = —log(Y)
is EXP(0,4). A 100 (1 — o)% CI for A is (9.22).
If Y has a two-parameter power distribution, ¥ ~ power(t, 1), then

- (2)"

for 0 <y < 7. The pdf

1

== (L) H0<y<a)

Then W = —log(Y) ~ EXP(—1log(7),A). Thus (9.21) is an exact

100(1 — )% CI for A, and (9.20) = (L,,U,) is an exact 100(1 — o)% CI for
—log(t). Hence (e, eU) is a 100(1 — a)% CI for 1/7, and (e UYr e 1) is a
100(1 — ot)% CI for 7.

Example 9.13. If Y has a truncated extreme value distribution, ¥ ~ TEV(1),
then W = ¢! — 1is EXP(0,A). A 100 (1 — )% CI for A is (9.22).

Example 9.14. If Y has a lognormal distribution, ¥ ~ LN(u,c?), then W; =
log(Y;) ~ N(u,0?). Thus a (1 — ) 100% CI for u when o is unknown is

= Sw Sw
-
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where

Sw=—""t6= |3 w-W)
YTaTT T n—145 ! ’

and P(r < tnfl,lfg) =1—o/2whent~t,_j.

Example 9.15. Let X, ..., X, be iid Poisson(8) random variables. The classical
large sample 100 (1 — )% CI for 0 is

)_(:I:zl,a/zy/)_(/n

where P(Z <z_gpp) =1 —a/2if Z~ N(0,1).

Following Byrne and Kabaila (2005), a modified large sample 100 (1 — ;)% CI
for 0 is (L,,U,) where

1 n n
L,= <2 Xi—0.5+0.52] 40— zla/z\/ Xi—05+0252_,, )
i=1

n\i=1

and

n\i=1

1 n n
Uy =— <2X,~ +0.5 +O.51%a/2+zla/2\/2Xi+O.5 +0.2523 ) ) :
i i=1

Following Grosh (1989, pp. 59, 197-200), let W = Y, X; and suppose that W =
w is observed. Let P(T < y3(o)) = aif T ~ x3. Then an “exact” 100 (1 — )% CI

for O is
16u(5) Bua(1-9)

on 2n

for w # 0 and
2
X (1—a)

(0’ 2n

forw =0.

The “exact” CI is conservative: the actual coverage (1 — §,) > 1 — o = the nom-
inal coverage. This interval performs well if 8 is very close to 0. See Problem 9.3.

Example 9.16. Let Y;,....Y, be iid bin(1,p). Let p = Y, ¥;/n =
number of “successes”/n. The classical large sample 100 (1 — a)% CI for p is

p(1—-p)

p t2-ap
n

where P(Z <z_qpp) =1 —a/2if Z~ N(0,1).
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The Agresti Coull CI takes 7i = n+ zi )2 and

_ np+05z3
p=—"T7"—"""-
N+ g
(The method ““adds” 0.51%706/2 “0’s” and 0.51%706/2 “1’s” to the sample, so the “sam-
ple size” increases by zi o /2.) Then the large sample 100 (1 — ot)% Agresti Coull

Clfor p is
~ [p(1—p
pizlia/z ¥

Now let Y1, ..., Y, be independent bin(m;, p) random variables, let W =3 | ¥; ~
bin(Yj_; m;,p) and let n,, = Y., m;. Often m; = 1 and then n,, = n. Let P(Fy, 4, <
Fy, a,(ct)) = o where Fy, 4, has an F distribution with d; and d, degrees of freedom.
Assume W = w is observed. Then the Clopper Pearson “exact” 100 (1 — ot)% CI for

pis

1
0,——— ) for w=0,
( 1+ ny FZnW,z(a)>

( M 1) f
, or w = ny,
ny + F272nw(1_a) "

and (pr,py) for 0 <w < n,, with

w
pL=
w+ (I’lw —w+ 1)F2(nw7w+1)72w(1 - 06/2)
and
w+1
pu

W +1+4+ (ny— w)Fz(anw),z(wH)(O‘/Z) .

The “exact” Cl is conservative: the actual coverage (1 — ,) > 1 — o = the nom-
inal coverage. This interval performs well if p is very close to 0 or 1. The clas-
sical interval should only be used if it agrees with the Agresti Coull interval. See
Problem 9.2.

Example 9.17. Let p = number of “successes”/n. Consider taking a simple ran-
dom sample of size n from a finite population of known size N. Then the classical
finite population large sample 100 (1 — ;)% CI for p is

. 6(1—p) (N—n . .
p izla/Z\/% <T) =P +z1_0/2SE(P) (9.23)

where P(Z <z_qpp) =1 —a/2if Z~ N(0,1).
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Following DasGupta (2008, p. 121), suppose the number of successes ¥ has a
hypergeometric (C,N —C,n) where p =C/N.If n/N ~ A € (0,1) where n and N

are both large, then
R p(l—p)(1—2)
n
Hence CI (9.23) should be good if the above normal approximation is good.
Letii=n +Z%7a/2 and

_ np+0.5z
p=—y 2
N2 g
(Heuristically, the method adds 0.5z7 1 “0’s” and 0.5z, 1 “1's” to the sample,

so the “sample size” increases by zi o /2.) Then a large sample 100 (1 — o) % Agresti
Coull type (ACT) 