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For Whom Is This Book Written?

Crow’s Law: Do not think what you want to think until you know what you
ought to know.1

Linear algebra is a living, active branch of mathematical research which is central
to almost all other areas of mathematics and which has important applications in all
branches of the physical and social sciences and in engineering. However, in recent
years the content of linear algebra courses required to complete an undergraduate
degree in mathematics—and even more so in other areas—at all but the most ded-
icated universities, has been depleted to the extent that it falls far short of what is
in fact needed for graduate study and research or for real-world application. This
is true not only in the areas of theoretical work but also in the areas of computa-
tional matrix theory, which are becoming more and more important to the working
researcher as personal computers become a common and powerful tool. Students
are not only less able to formulate or even follow mathematical proofs, they are also
less able to understand the underlying mathematics of the numerical algorithms they
must use. The resulting knowledge gap has led to frustration and recrimination on
the part of both students and faculty alike, with each silently—and sometimes not
so silently—blaming the other for the resulting state of affairs. This book is written
with the intention of bridging that gap. It was designed be used in one or more of
several possible ways:
(1) As a self-study guide;
(2) As a textbook for a course in advanced linear algebra, either at the upper-class

undergraduate level or at the first-year graduate level; or
(3) As a reference book.
It is also designed to be used to prepare for the linear algebra portion of prelim
exams or Ph.D. qualifying exams.

This volume is self-contained to the extent that it does not assume any previ-
ous knowledge of formal linear algebra, though the reader is assumed to have been
exposed, at least informally, to some basic ideas or techniques, such as matrix ma-
nipulation and the solution of a small system of linear equations. It does, however,

1This law, attributed to John Crow of King’s College, London, is quoted by R.V. Jones in his book
Most Secret War, Wordsworth, 1998 (ISBN 978-1853266997).
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viii For Whom Is This Book Written?

assume a seriousness of purpose, considerable motivation, and modicum of mathe-
matical sophistication on the part of the reader.

The theoretical constructions presented here are illustrated with a large number of
examples taken from various areas of pure and applied mathematics. As in any area
of mathematics, theory and concrete examples must go hand in hand and need to be
studied together. As the German philosopher Immanuel Kant famously remarked,
concepts without precepts are empty, whereas precepts without concepts are blind.

The book also contains a large number of exercises, many of which are quite
challenging, which I have come across or thought up in over thirty years of teaching.
Many of these exercises have appeared in print before, in such journals as Ameri-
can Mathematical Monthly, College Mathematics Journal, Mathematical Gazette,
or Mathematics Magazine, in various mathematics competitions or circulated prob-
lem collections, or even on the internet. Some were donated to me by colleagues
and even students, and some originated in files of old exams at various universities
which I have visited in the course of my career. Since, over the years, I did not keep
track of their sources, all I can do is offer a collective acknowledgement to all those
to whom it is due. Good problem formulators, like the God of the abbot of Citeaux,
know their own. Deliberately, difficult exercises are not marked with an asterisk or
other symbol. Solving exercises is an integral part of learning mathematics and the
reader is definitely expected to do so, especially when the book is used for self-
study. Try them all and remember the “grook” penned by the Danish genius Piet
Hein: Problems worthy of attack / Prove their worth by hitting back.

Solving a problem using theoretical mathematics is often very different from
solving it computationally, and so strong emphasis is placed on the interplay of the-
oretical and computational results. Real-life implementation of theoretical results
is perpetually plagued by errors: errors in modeling, errors in data acquisition and
recording, and errors in the computational process itself due to roundoff and trun-
cation. There are further constraints imposed by limitations in time and memory
available for computation. Thus the most elegant theoretical solution to a problem
may not lead to the most efficient or useful method of solution in practice. While no
reference is made to particular computer software, the concurrent use of a personal
computer equipped symbolic-manipulation software such as MAPLE, MATHEMAT-
ICA, MATLAB, or MUPAD is definitely advised.

In order to show the “human face” of mathematics, the book also includes a
large number of thumbnail photographs of researchers who have contributed to the
development of the material presented in this volume.

Acknowledgements Most of the first edition this book was written while I was
a visitor at the University of Iowa in Iowa City and at the University of California
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1Notation and Terminology

Sets will be denoted by braces, { }, between which we will either list the elements
of the set or give a rule for determining whether something is an element of the set
or not,1 as in {x | p(x)}, which is read “the set of all x such that p(x)”. If a is an el-
ement of a set A, we write a ∈ A; if it is not an element of A, we write a /∈ A. When
one enumerates the elements of a set, the order is not important. Thus {1,2,3,4}
and {4,1,3,2} both denote the same set. However, we often do wish to impose an
order on sets the elements of which we enumerate. Rather than introduce new and
cumbersome notation to handle this, we will make the convention that when we enu-
merate the elements of a finite or countably-infinite set, we will assume an implied
order, reading from left to right. Thus, the implied order on the set {1,2,3, . . .} is in-
deed the usual one, whereas {4,1,3,2} gives the first four positive integers, ordered
alphabetically. The empty set, namely the set having no elements, is denoted by ∅.
Sometimes we will use the word “collection” as a synonym for “set”, generally to
avoid talking about “sets of sets”.

A finite or countably-infinite selection of elements of a set A is a list. Members
of a list are assumed to be in a definite order, given by their indices or by the im-
plied order of reading from left to right. Lists are usually written without brackets:
a1, . . . , an, though, in certain contexts, it will be more convenient to write them as
ordered n-tuples (a1, . . . , an). Note that the elements of a list need not be distinct:
3, 1, 4, 1, 5, 9 is a list of six positive integers, the second and fourth elements of
which are equal to 1. A countably-infinite list of elements of a set A is also often
called a sequence of elements of A. The set of all distinct members of a list is called
the underlying subset of the list.

If A and B are sets, then their union A∪B is the set of all elements that belong to
either A or B , and their intersection A ∩ B is the set of all elements belonging both
to A and to B . More generally, if {Ai | i ∈ Ω} is a (possibly-infinite) collection of

1Mathematically, these two ways of defining a set are equivalent, but philosophically and func-
tionally they are not. Listing the elements of a set involves denotation whereas giving a rule for
determining set membership involves connotation. This distinction becomes important when we
attempt to use computers to manipulate sets.

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_1, © Springer Science+Business Media B.V. 2012
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2 1 Notation and Terminology

sets, then
⋃

i∈Ω Ai is the set of all elements that belong to at least one of the Ai and⋂
i∈Ω Ai is the set of all elements that belong to all of the Ai . If A and B are sets,

then the difference set A � B is the set of all elements of A which do not belong
to B .

A function f from a nonempty set A to a nonempty set B is a rule which assigns
to each element a of A a unique element f (a) of B . The set A is called the domain
of the function and the set B is called the range of the function. To denote that f is
a function from A to B , we write f : A → B . To denote that an element b of B is
assigned to an element a of A by f , we write f : a �→ b. (Note the different form
of the arrow!) This notation is particularly helpful in the case that the function f is
defined by a formula. Thus, for example, if f is a function from the set of integers
to the set of integers defined by f : a �→ a3, then we know that f assigns to each
integer its cube. The set of all functions from a nonempty set A to a nonempty set
B is denoted by BA. If f ∈ BA and if A′ is a nonempty subset of A, then a function
f ′ ∈ BA′

is the restriction of f to A′, and f is the extension of f ′ to A, if and only
if f ′ : a′ �→ f (a′) for all a′ ∈ A′.

Functions f and g in BA are equal if and only if f (a) = g(a) for all a ∈ A.
In this case, we write f = g. A function f ∈ BA is monic if and only if it assigns
different elements of B to different elements of A, i.e., if and only if f (a1) �= f (a2)

whenever a1 �= a2 in A. A function f ∈ BA is epic if and only if every element
of B is assigned by f to some element of A. A function which is both monic and
epic is bijective. A bijective function from a set A to a set B determines a bijective
correspondence between the elements of A and the elements of B . If f : A → B is a
bijective function, then we can define the inverse function f −1 : B → A defined by
the condition that f −1(b) = a if and only if f (a) = b. This inverse function is also
bijective. A bijective function from a set A to itself is a permutation of A. Note that
there is always at least one permutation of any nonempty set A, namely the identity
function a �→ a.

The Cartesian product A1 × A2 of nonempty sets A1 and A2 is the set of all
ordered pairs (a1, a2), where a1 ∈ A1 and a2 ∈ A2. More generally, if A1, . . . ,An

is a list of nonempty sets, then A1 × · · · × An is the set of all ordered n-tuples
(a1, . . . , an) satisfying the condition that ai ∈ Ai for each 1 ≤ i ≤ n. Note that each
ordered n-tuple (a1, . . . , an) uniquely defines a function f : {1, . . . , n} → ⋃n

i=1 Ai

given by f : i �→ ai for each 1 ≤ i ≤ n. Conversely, each function f : {1, . . . , n} →⋃n
i=1 Ai satisfying the condition that f (i) ∈ Ai for 1 ≤ i ≤ n defines such an or-

dered n-tuple, namely (f (1), . . . , f (n)). This suggests a method for defining the
Cartesian product of an arbitrary collection of nonempty sets. If {Ai | i ∈ Ω} is an
arbitrary collection of nonempty sets, then the set

∏
i∈Ω Ai is defined to be the set

of all those functions f from Ω to
⋃

i∈Ω Ai satisfying the condition that f (i) ∈ Ai

for each i ∈ Ω . The existence of such functions is guaranteed by a fundamental
axiom of set theory, known as the Axiom of Choice. A certain amount of contro-
versy surrounds this axiom, since it leads to some very counter-intuitive results.
Thus, for example, in 1924 Polish mathematicians Stefan Banach and Alfred Tarski
showed that if the Axiom of Choice is assumed then any solid sphere can be split
into finitely-many pieces which can be reassembled to form two solid spheres of the
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same size as the original sphere. Therefore, there are mathematicians who prefer to
make as little use of the Axiom of Choice as possible. In 1963, American mathe-
matician P. J. Cohen showed that the Axiom of Choice is independent of the other
axioms of Zermelo–Fraenkel set theory, and so one is—in principle—free to either
assume it or its negation. Since we will need this axiom constantly throughout this
book, we will always assume that it holds.

In the foregoing construction, we did not assume that the sets Ai were necessarily
distinct. Indeed, it may very well happen that there exists a set A such that Ai = A

for all i ∈ Ω . In that case, we see that
∏

i∈Ω Ai is just AΩ . If the set Ω is finite,
say Ω = {1, . . . , n}, then we write An instead of AΩ . Thus, An is just the set of all
ordered n-tuples (a1, . . . , an) of elements of A.

Example The function f2 :N2 → N given by

f2 : (i, j) �→ 1

2

(
i2 + j2 + i + 2ij + 3j

)

is bijective. For k > 2 we can define a bijective function fk : Nk → N inductively
by

fk : (i1, . . . , ik) �→ f2
(
i1, fk−1(i2, . . . , ik)

)
.

We use the following standard notation for some common sets of numbers:

N the set of all nonnegative integers,
Z the set of all integers,
Q the set of all rational numbers,
R the set of all real numbers,
C the set of all complex numbers.

Other notion is introduced throughout the text, as is appropriate. See the Summary
of Notation in Appendix A of the book.



 
     



2Fields

The way of mathematical thought is twofold: the mathematician first proceeds in-
ductively from the particular to the general and then deductively from the general
to the particular. Moreover, throughout its development, mathematics has shown
two aspects—the conceptual and the computational—the symphonic interleaving of
which forms one of the major aspects of the subject’s aesthetic.

Let us therefore begin with the first mathematical structure—numbers. By the
Hellenistic times, mathematicians distinguished between two types of numbers: the
rational numbers, namely those which could be written in the form m

n
for some in-

teger m and some positive integer n, and those numbers representing the geometric
magnitude of segments of the line, which today we call real numbers and which, in
decimal notation, are written in the form m.k1k2k3 . . . where m is an integer and the
ki are digits. The fact that the set Q of rational numbers is not equal to the set R of
real numbers was already noticed by the followers of the early Greek mathemati-
cian/mystic Pythagoras. On both sets of numbers we define operations of addition
and multiplication which satisfy certain rules of manipulation. Isolating these rules
as part of a formal system was a task first taken on in earnest by nineteenth-century
British and German mathematicians. From their studies evolved the notion of a field,
which will be basic to our considerations. However, since fields are not our primary
object of study, we will delve only minimally into this fascinating notion. A seri-
ous consideration of field theory must be deferred to an advanced course in abstract
algebra.

A nonempty set F together with two functions F × F → F , respectively called
addition (as usual, denoted by +) and multiplication (as usual, denoted by · or by
concatenation), is a field if the following conditions are satisfied:
(1) (associativity of addition and multiplication): a + (b + c) = (a + b) + c and

a(bc) = (ab)c for all a, b, c ∈ F .
(2) (commutativity of addition and multiplication): a + b = b + a and ab = ba for

all a, b ∈ F .
(3) (distributivity of multiplication over addition): a(b + c) = ab + ac for all

a, b, c ∈ F .

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_2, © Springer Science+Business Media B.V. 2012
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6 2 Fields

(4) (existence of identity elements for addition and multiplication): There exist dis-
tinct elements of F , which we will denote by 0 and 1 respectively, satisfying
a + 0 = a and a1 = a for all a ∈ F .

(5) (existence of additive inverses): For each a ∈ F there exists an element of F ,
which we will denote by −a, satisfying a + (−a) = 0.

(6) (existence of multiplicative inverses): For each 0 �= a ∈ F there exists an ele-
ment of F , which we will denote by a−1, satisfying a−1a = 1.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Weber,
Dedekind, Kronecker and Steinitz).

The development of the abstract theory of fields is generally credited to the nineteenth-
century German mathematician Heinrich Weber, based on earlier work by the German
mathematicians Richard Dedekind and Leopold Kronecker. Another nineteenth-century
mathematician, the British Augustus De Morgan, was among the first—along with French
mathematician François Joseph Servois—to isolate the importance of such properties as
associativity, distributivity, and so forth. The final axioms of a field are due to the twentieth-
century German mathematician Ernst Steinitz.

Note that we did not assume that the elements −a and a−1 are unique, though
we will soon prove that in fact they are. If a and b are elements of a field F , we will
follow the usual conventions by writing a − b instead of a + (−b) and a

b
instead

of ab−1. Moreover, if 0 �= a ∈ F and if n is a positive integer, then na denotes the
sum a + · · · + a (n summands) and an denotes the product a · · ·a (n factors). If n

is a negative integer, then na denotes (−n)(−a) and an denotes (a−1)−n. Finally,
if n = 0 then na denotes the field element 0 and an denotes the field element 1. For
0 = a ∈ F , we define na = 0 for all integers n and an = 0 for all positive integers n.
The symbol 0k is not defined for k ≤ 0.

As an immediate consequence of the associativity and commutativity of addition,
we see that the sum of any list a1, . . . , an of elements of a field F is the same, no mat-
ter in which order we add them. We can therefore unambiguously write a1 +· · ·+an.
This sum is also often denoted by

∑n
i=1 ai . Similarly, the product of these elements

is the same, no matter in which order we multiply them. We can therefore unam-
biguously write a1 · · ·an. This product is also often denoted by

∏n
i=1 ai . Also, a

simple inductive argument shows that multiplication distributes over arbitrary sums:
if a ∈ F and b1, . . . , bn is a list of elements of F then a(

∑n
i=1 bi) = ∑n

i=1 abi .
We easily see that Q and R, with the usual addition and multiplication, are fields.
A subset G of a field F is a subfield if and only if it contains 0 and 1, is closed

under addition and multiplication, and contains the additive and multiplicative in-
verses of all of its nonzero elements. Thus, for example, Q is a subfield of R. It is
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easy to verify1 that the intersection of a collection of subfields of a field F is again
a subfield of F .

We now want to look at several additional important examples of fields.

Example Let C = R2 and define operations of addition and multiplication on C by
setting (a, b) + (c, d) = (a + c, b + d) and (a, b) · (c, d) = (ac − bd, ad + bc).
These operations define the structure of a field on C, in which the identity element
for addition is (0,0), the identity element for multiplication is (1,0), the additive
inverse of (a, b) is (−a,−b), and

(a, b)−1 =
(

a

a2 + b2
,

−b

a2 + b2

)

for all (0,0) �= (a, b). This field is called the field of complex numbers. The set
of all elements of C of the form (a,0) forms a subfield of C, which we normally
identify with R and therefore it is standard to consider R as a subfield of C. In
particular, we write a instead of (a,0) for any real number a. The element (0,1) of
C is denoted by i. This element satisfies the condition that i2 = (−1,0) and so it is
often written as

√−1. We also note that any element (a, b) of C can be written as
(a,0) + b(0,1) = a + bi, and, indeed, that is the way complex numbers are usually
written and how we will denote them from now on. If z = a + bi, then a is the real
part of z, which is often denoted by Re(z), while bi is the imaginary part of z, which
is often denoted by Im(z). The field of complex numbers is extremely important in
mathematics. From a geometric point of view, if we identify R with the set of points
on the Euclidean line, as one does in analytic geometry, then it is natural to identify
C with the set of points in the Euclidean plane.

With kind permission of the Harvard Arts Museum (Descartes); With kind permission of ETH-Bibliothek
Zurich, Image Archive (Euler); With kind permission of Bibliothèque nationale de France (Argand).

The term “imaginary” was coined by the seventeenth-century French philosopher and math-
ematician René Descartes. The use of i to denote

√−1 was introduced by the eighteenth-
century Swiss mathematician Leonhard Euler. The geometric representation of the com-
plex numbers was first proposed at the end of the eighteenth century by the Norwegian
surveyor Caspar Wessel, and later by the French accountant Jean-Robert Argand. It was
studied in detail by the nineteenth-century Italian mathematician Giusto Bellavitis.

1When a mathematician says that something is “easy to see” or “trivial”, it means that you are
expected to take out a pencil and paper and spend some time—often considerable—checking it out
by yourself.
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If z = a + bi ∈ C then we denote the complex number a − bi, called the complex
conjugate of z, by z. It is easy to see that for all z, z′ ∈ C we have z + z′ = z + z′e,
−z = −z, zz′ = z · z′, z−1 = (z)−1, and z = z. The number zz equals a2 +b2, which
is a nonnegative real number and so has a square root in R, which we will denote
by |z|. Note that |z| is nonzero whenever z �= 0. From a geometric point of view,
this number is just the distance from the number z, considered as a point in the
Euclidean plane, to the origin, just as the usual absolute value |a| of a real number
a is the distance between a and 0 on the real line. It is easy to see that if y and z are
complex numbers then |yz| = |y| · |z| and |y +z| ≤ |y|+|z|. Moreover, if z = a +bi

then

z + z = 2a ≤ 2|a| = 2
√

a2 ≤ 2
√

a2 + b2 = 2|z|.
We also note, as a direct consequence of the definition, that |z| = |z| for every com-
plex number z and so z−1 = |z|−2z for all 0 �= z ∈ C. In particular, if |z| = 1 then
z−1 = z.

Example The set Q2 is a subfield of the field C defined above. However, it is also
possible to define field structures on Q2 in other ways. Indeed, let F = Q2 and
let p be a fixed prime integer. Define addition and multiplication on F by setting
(a, b) + (c, d) = (a + c, b + d) and (a, b) · (c, d) = (ac + bdp,ad + bc).

Again, one can check that F is indeed a field and that, again, the set of all ele-
ments of F of the form (a,0) is a subfield, which we will identify with Q. More-
over, the additive inverse of (a, b) ∈ F is (−a,−b) and the multiplicative inverse of
(0,0) �= (a, b) ∈ F is

(
a

a2 − pb2
,

−b

a2 − pb2

)

.

(We note that a2 −pb2 is the product of the nonzero real numbers a +b
√

p and a −
b
√

p and so is nonzero.) The element (0,1) of F satisfies (0,1)2 = (p,0) and so one
usually denotes it by

√
p and, as before, any element of F can be written in the form

a +b
√

p, where a, b ∈ Q. The field F is usually denoted by Q(
√

p). Since there are
infinitely-many distinct prime integers, we see that there are infinitely-many ways
of defining different field structures on Q×Q, all having the same addition.

Example Fields do not have to be infinite. Let p be a positive integer and let
Z/(p) = {0,1, . . . , p − 1}. For each nonnegative integer n, let us, for the pur-
poses of this example, denote the remainder after dividing n by p as [n]p . Thus
we note that [n]p ∈ Z/(p) for each nonnegative integer n and that [i]p = i for all
i ∈ Z/(p). We now define operations on Z/(p) by setting [n]p + [k]p = [n + k]p
and [n]p · [k]p = [nk]p . It is easy to check that if the integer p is prime then Z/(p),
together with these two operations, is again a field, known as the Galois field of
order p. This field is usually denoted by GF(p). While Galois fields were first con-
sidered mathematical curiosities, they have since found important applications in
coding theory, cryptography, and modeling of computer processes.



2 Fields 9

These are not the only possible finite fields. Indeed, it is possible to show that for
each prime integer p and each positive integer n there exists an (essentially unique)
field with pn elements, usually denoted by GF(pn).

With kind permission of Bibliothèque nationale de France
(Galois); With kind permission of the American Mathemat-
ical Society (Moore).

The nineteenth-century French mathematical ge-
nius Evariste Galois, who died at the age of 21,
was the first to consider such structures. The study
of finite and infinite fields was unified in the 1890s
by Eliakim Hastings Moore, the first American-
born mathematician to achieve an international
reputation.

Example Some important structures are “very nearly” fields. For example, let
R∞ = R∪ {∞}, and define operations � and � on R∞ by setting

a � b =
⎧
⎨

⎩

min{a, b} if a, b ∈ R,

b if a = ∞,

a if b = ∞,

and

a � b =
{

a + b if a, b ∈ R,

∞ otherwise.

This structure, called the optimization algebra, satisfies all of the conditions of a
field except for the existence of additive inverses (such structures are known as semi-
fields). As the name suggests, it has important applications in optimization theory
and the analysis of discrete-event dynamical systems. There are several other semi-
fields which have significant applications and which have been extensively studied.

Another possibility of generalizing the notion of a field is to consider an algebraic
structure which satisfies all of the conditions of a field except for the existence of
multiplicative inverses, and to replace that condition by the condition that if a, b �= 0
then ab �= 0. Such structures are known as integral domains. The set Z of all integers
is the simplest example of an integral domain which is not a field. Algebras of
polynomials over a field, which we will consider later, are also integral domains. In
a course in abstract algebra, one proves that any integral domain can be embedded
in a field.

In the field GF(p) which we defined above, one can easily see that the sum
1 + · · · + 1 (p summands) equals 0. On the other hand, in the field Q, the sum of
any number of copies of 1 is always nonzero. This is an important distinction which
we will need to take into account in dealing with structures over fields. We therefore
define the characteristic of a field F to be equal to the smallest positive integer p

such that 1+· · ·+1 (p summands) equals 0—if such an integer p exists—and to be
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equal to 0 otherwise. We will not delve deeply into this concept, which is dealt with
in courses on field theory, except to note that the characteristic of a field, if nonzero,
always turns out to be a prime number, as we shall prove below.

In the definition of a field, we posited the existence of distinct identity elements
for addition and multiplication, but did not claim that these elements were unique.
It is, however, very easy to prove that fact.

Proposition 2.1 Let F be a field.
(1) If e is an element of F satisfying e + a = a for all a ∈ F then e = 0;
(2) If u is an element of F satisfying ua = a for all a ∈ F then u = 1.

Proof By definition, e = e + 0 = 0 and u = u1 = 1. �

Similarly, we prove that additive and multiplicative inverses, when they exist, are
unique. Indeed, we can prove a stronger result.

Proposition 2.2 If a and b are elements of a field F then:
(1) There exists a unique element c of F satisfying a + c = b.
(2) If a �= 0 then there exists a unique element d of F satisfying ad = b.

Proof (1) Choose c = b − a. Then

a + c = a + (b − a) = a + [b + (−a)]
= a + [(−a) + b] = [a + (−a)] + b = 0 + b = b.

Moreover, if a + x = b then

x = 0 + x = [(−a) + a] + x

= (−a) + (a + x) = (−a) + b = b − a,

proving uniqueness.
(2) Choose d = a−1b. Then ad = a(a−1b) = (aa−1)b = 1b = b. Moreover, if

ay = b then y = 1y = (a−1a)y = a−1(ay) = a−1b, proving uniqueness. �

We now summarize some of the elementary properties of fields, which are all we
will need for our discussion.
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Proposition 2.3 If a, b, and c are elements of a field F then:
(1) 0a = 0;
(2) (−1)a = −a;
(3) a(−b) = −(ab) = (−a)b;
(4) −(−a) = a;
(5) (−a)(−b) = ab;
(6) −(a + b) = (−a) + (−b);
(7) a(b − c) = ab − ac;
(8) If a �= 0 then (a−1)−1 = a;
(9) If a, b �= 0 then (ab)−1 = b−1a−1;

(10) If a + c = b + c then a = b;
(11) If c �= 0 and ac = bc then a = b;
(12) If ab = 0 then a = b or b = 0.

Proof (1) Since 0a + 0a = (0 + 0)a = 0a, we can add −(0a) to both sides of the
equation to obtain 0a = 0.

(2) Since (−1)a + a = (−1)a + 1a = [(−1) + 1]a = 0a = 0 and also (−a) +
a = 0, we see from Proposition 2.2 that (−1)a = −a.

(3) By (2) we have a(−b) = a[(−1)b] = (−1)ab = −(ab) and similarly
(−a)b = −(ab).

(4) Since a + (−a) = 0 = −(−a) + (−a), this follows from Proposition 2.2.
(5) From (3) and (4) it follows that (−a)(−b) = a[−(−b)] = ab.
(6) Since (a + b) + [(−a) + (−b)] = a + b + (−a) + (−b) = 0 and (a + b) +

[−(a + b)] = 0, the result follows from Proposition 2.2.
(7) By (3) we have a(b − c) = ab + a(−c) = ab + [−(ac)] = ab − ac.
(8) Since (a−1)−1a−1 = 1 = aa−1, this follows from Proposition 2.2.
(9) Since (a−1b−1)(ba) = a−1ab−1b = 1 = (ab)−1(ba), the result follows from

Proposition 2.2.
(10) This is an immediate consequence of adding −c to both sides of the equa-

tion.
(11) This is an immediate consequence of multiplying both sides of the equation

by c−1.
(12) If b = 0 we are done. If b �= 0 then by (1) it follows that multiplying both

sides of the equation by b−1 will yield a = 0. �

The following two propositions are immediate consequences of Proposition 2.3.

Proposition 2.4 Let a be a nonzero element of a finite field F having q ele-
ments. Then a−1 = aq−2.

Proof If q = 2 then F = GF(2) and a = 1, so the result is immediate. Hence we
can assume q > 2. Let B = {a1, . . . , aq−1} be the nonzero elements of F , writ-
ten in some arbitrary order. Then aai �= aah for i �= h since, were they equal,
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we would have ai = a−1(aai) = a−1(aah) = ah. Therefore B = {aa1, . . . , aaq−1}
and so

∏q−1
i=1 ai = ∏q−1

i=1 (aai) = aq−1
[∏q−1

i=1 ai

]
. Moreover, this is a product of

nonzero elements of F and so, by Proposition 2.3(12), is also nonzero. Therefore,
by Proposition 2.3(11), 1 = aq−1, and so aa−1 = 1 = aq−1 = a(aq−2), implying
that a−1 = aq−2. �

Proposition 2.5 If F is a field having characteristic p > 0, then p is prime.

Proof Assume that p is not prime. Then p = hk, where 0 < h,k < p. Therefore,
a = h1F and b = k1F are nonzero elements of F . But ab = (hk)1F = p1F = 0,
contradicting Proposition 2.3(12). �

Of course, one can use Proposition 2.3 to prove many other identities among
elements of a field. A typical example is the following

Proposition 2.6 (Hua’s identity) If a and b are nonzero elements of a field
F satisfying a �= b−1 then

a − aba = (
a−1 + [

b−1 − a
]−1)−1

.

Proof We note that

a−1 + (
b−1 − a

)−1 = a−1[(b−1 − a
) + a

](
b−1 − a

)−1

= a−1b−1(b−1 − a
)−1

,

so (a−1 + [b−1 − a]−1)−1 = (b−1 − a)ba = a − aba. �

Loo-Keng Hua was a major twentieth-century Chinese mathemati-
cian.
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Exercises

Exercise 1
Let F be a field and let G = F ×F . Define operations of addition and multiplica-
tion on G by setting (a, b)+ (c, d) = (a + c, b+d) and (a, b) · (c, d) = (ac, bd).
Do these operations define the structure of a field on G?

Exercise 2
Let K be the set of the following four-tuples of elements of GF(3):

(0,0,0,0), (1,2,1,1), (2,1,2,2), (1,0,0,1), (2,2,1,2),

(2,0,0,2), (0,1,2,0), (0,2,1,0), (1,1,2,1).

Define operations of addition and multiplication on K so that it becomes a field.

Exercise 3
Let r ∈ R and let 0 �= s ∈ R. Define operations � and � on R × R by (a, b) �
(c, d) = (a + c, b+d) and (a, b)� (c, d) = (ac−bd(r2 + s2), ad +bc+2rbd).
Do these operations, considered as addition and multiplication, respectively, de-
fine the structure of a field on R×R?

Exercise 4
Define a new operation † on R by setting a † b = a3b. Show that R, on which
we have the usual addition and this new operation as multiplication, satisfies all
of the axioms of a field with the exception of one.

Exercise 5
Let 1 < t ∈ R and let F = {a ∈ R | a < 1}. Define operations ⊕ and � on F as
follows:
(1) a ⊕ b = a + b − ab for all a, b ∈ F ;
(2) a � b = 1 − t logt (1−a) logt (1−b) for all a, b ∈ F .
For which values of t does F , together with these operations, form a field?

Exercise 6
Show that the set of all real numbers of the form a + b

√
2 + c

√
3 + d

√
6, where

a, b, c, d ∈Q, forms a subfield of R.

Exercise 7
Is {a + b

√
15 | a, b ∈ Q} a subfield of R?

Exercise 8
Show that the field R has infinitely-many distinct subfields.

Exercise 9
Let F be a field and define a new operation ∗ on F by setting a ∗ b = a + b + ab.
When is (F,+,∗) a field?
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Exercise 10
Let F be a field and let Gn be the subset of F consisting of all elements which
can be written as a sum of n squares of elements of F .
(1) Is the product of two elements of G2 again an element of G2?
(2) Is the product of two elements of G4 again an element of G4?

Exercise 11
Let t = 3

√
2 ∈ R and let S be the set of all real numbers of the form a + bt + ct2,

where a, b, c ∈Q. Is S a subfield of R?

Exercise 12
Let F be a field. Show that the function a 
→ a−1 is a permutation of F � {0F }.

Exercise 13
Show that every z ∈ C satisfies

z4 + 4 = (z − 1 − i)(z − i + i)(z + 1 + i)(z + 1 − i).

Exercise 14
In each of the following, find the set of all complex numbers z = a+bi satisfying
the given relation. Note that this set may be empty or may be all of C. Justify your
result in each case.
(a) z2 = 1

2 (1 + i
√

3);
(b) (

√
2)|z| ≥ |a| + |b|;

(c) |z| + z = 2 + i;
(d) z4 = 2 − (

√
12)i;

(e) z4 = −4.

Exercise 15
Let y be a complex number satisfying |y| < 1. Find the set of all complex num-
bers z satisfying |z − y| ≤ |1 − yz|.

Exercise 16
Let z1, z2, and z3 be complex numbers satisfying the condition that |zi | = 1 for
i = 1,2,3. Show that |z1z2 + z1z3 + z2z3| = |z1 + z2 + z3|.
Exercise 17
For any z1, z2 ∈C, show that |z1|2 + |z2|2 − z1z2 − z1z2 = |z1 − z2|2.

Exercise 18
Show that |z + 1| ≤ |z + 1|2 + |z| for all z ∈ C.

Exercise 19
If z ∈C, find w ∈C satisfying w2 = z.
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Exercise 20
Define new operations ◦ and � on C by setting y ◦ z = |y|z and

y � z =
{

0 if y = 0,
1
|y|yz otherwise

for all y, z ∈ C. Is it true that w � (y ◦ z) = (w � y) ◦ (w � z) and w ◦ (y � z) =
(w ◦ y) � (w ◦ z) for all w,y, z ∈C?

Exercise 21
Let 0 �= z ∈C. Show that there are infinitely-many complex numbers y satisfying
the condition yy = zz.

Exercise 22
(Abel’s inequality) Let z1, . . . , zn be a list of complex numbers and, for each
1 ≤ k ≤ n, let sk = ∑k

i=1 zi . For real numbers a1, . . . , an satisfying a1 ≥ a2 ≥
· · · ≥ an ≥ 0, show that |∑n

i=1 aizi | ≤ a1(max1≤k≤n |sk|).

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

The nineteenth-century Norwegian mathematical genius Niels Henrik
Abel died tragically at the age of 26.

Exercise 23
Let 0 �= z0 ∈ C satisfy the condition |z0| < 2. Show that there are precisely two
complex numbers, z1 and z2, satisfying |z1| + |z2| = 1 and z1 + z2 = z0.

Exercise 24
If p is a prime positive integer, find all subfields of GF(p).

Exercise 25
Find 10−1 in GF(33).

Exercise 26
Find elements c, d �= ±1 in the field Q(

√
5) satisfying cd = 19.
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Exercise 27
Let F be the set of all real numbers of the form

a + b
( 3
√

5
) + c

( 3
√

5
)2

,

where a, b, c ∈Q. Is F a subfield of R?

Exercise 28
Let p be a prime positive integer and let a ∈ GF(p). Does there necessarily exist
an element b of GF(p) satisfying b2 = a?

Exercise 29
Let F = GF(11) and let G = F × F . Define operations of addition and multi-
plication on G by setting (a, b) + (c, d) = (a + c, b + d) and (a, b) · (c, d) =
(ac + 7bd, ad + bc). Do these operations define the structure of a field on G?

Exercise 30
Let F be a field and let G be a finite subset of F � {0} containing 1 and satisfying
the condition that if a, b ∈ F then ab−1 ∈ G. Show that there exists an element
c ∈ G such that G = {ci | i ≥ 0}.
Exercise 31
Let F be a field satisfying the condition that the function a 
→ a2 is a permutation
of F . What is the characteristic of F ?

Exercise 32
Is Z/(6) an integral domain?

Exercise 33
Let F = {a + b

√
5 ∈Q(

√
5) | a, b ∈ Z}. Is F an integral domain?

Exercise 34
Let F be an integral domain and let a ∈ F satisfy a2 = a. Show that a = 0 or
a = 1.

Exercise 35
Let a be a nonzero element in an integral domain F . If b �= c are distinct elements
of F , show that ab �= ac.

Exercise 36
Let F be an integral domain and let G be a nonempty subset of F containing 0
and 1 and closed under the operations of addition and multiplication in F . Is G

necessarily an integral domain?

Exercise 37
Let U be the set of all positive integers and let F be the set of all functions
from U to C. Define operations of addition and multiplication on F by setting
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f + g : k 
→ f (k) + g(k) and fg : k 
→ ∑
ij=k f (i)g(j) for all k ∈ U . Is F , to-

gether with these operations, an integral domain? Is it a field?

Exercise 38
Let F be the set of all functions f from R to itself of the form f : t 
→∑n

k=1[ak cos(kt) + bk sin(kt)], where the ak and bk are real numbers and n

is some positive integer. Define addition and multiplication on F by setting
f + g : t 
→ f (t) + g(t) and fg : t 
→ f (t)g(t) for all t ∈ R. Is F , together
with these operations, an integral domain? Is it a field?

Exercise 39
Show that every integral domain having only finitely-many elements is a field.

Exercise 40
Let F be a field of characteristic other than 2 in which there exist elements
a1, . . . , an satisfying

∑n
i=1 a2

i = −1. (This happens, for example, in the case
F = C.) Show that for any c ∈ F there exist elements b1, . . . , bk of F satisfying
c = ∑k

i=1 b2
i .

Exercise 41
Let p be a prime integer. Show that for each a ∈ GF(p) there exist elements b

and c of GF(p), not necessarily distinct, satisfying a = b2 + c2.

Exercise 42
Let F be a field in which we have elements a, b, and c (not necessarily distinct)
satisfying a2 + b2 + c2 = −1. Show that there exist (not necessarily distinct)
elements d and e of F , satisfying d2 + e2 = −1.

Exercise 43
Is every nonzero element of the field GF(5) in the form 2i for some positive
integer i? What happens in the case of the field GF(7)?

Exercise 44
Find the set of all fields F in which there exists an element a satisfying the
condition that a + b = a for all b ∈ F � {a}.

Exercise 45
(Binomial formula) If a and b are elements of a field F , and if n is a positive
integer, show that (a + b)n = ∑n

k=0

(
n
k

)
akbn−k .

Exercise 46
Let F be a field of characteristic p > 0. Show that the function γ : F → F

defined by γ : a 
→ ap is monic.
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Exercise 47
Let a and b be nonzero elements of a finite field F , and let m and n be positive
integers satisfying am = bn = 1. Show that there exists a nonzero element c of F

satisfying ck = 1, where k is the least common multiple of m and n.

Exercise 48
If a is a nonzero element of a field F , show that (−a)−1 = −(a−1).

Exercise 49
Let F = GF(7) and let K = F × F . Define addition and multiplication on K by
setting (a, b) + (c, d) = (a + b, c + d) and (a, b) · (c, d) = (ac − bd, ad + bc).
Do these operations turn K into a field? What happens if F = GF(5)?

Exercise 50
A field F is orderable if and only if there exists a subset P closed under addition
and multiplication such that for each a ∈ F precisely one of the following condi-
tions holds: (i) a = 0; (ii) a ∈ P ; (iii) −a ∈ P . Show that GF(5) is not orderable.

Exercise 51
Let F be a field and let K be the set of all functions f ∈ FZ satisfying the
condition that there exists an integer (perhaps negative) nf such that f (i) = 0
for all i < nf . Define operations of addition and multiplication on K by setting
f + g : i 
→ f (i)+ g(i) and fg : i 
→ ∑

j+h=i f (j)g(h). Show that K is a field,

called the field of formal Laurent series over F .2

Exercise 52
Let F be a field. Find A = {(x, y) ∈ F 2 | x2 + y2 = 1}.
Exercise 53
Let F be a field having characteristic p > 0 and let c ∈ F . Show that there is at
most one element b of F satisfying bp = c.

Exercise 54
A ternary ring is a set R containing distinguished elements 0 and 1, together
with a function θ : R3 → R satisfying the following conditions:
(1) θ(1, a,0) = θ(a,1,0) = a for all a ∈ R;
(2) θ(a,0, c) = θ(0, a, c) = c for all c ∈ R;
(3) If a, b, c ∈ R then there is a unique element y of R satisfying θ(a, b, y) = c;
(4) If a, a′, b, b′ ∈ R with a �= a′ then there is a unique element x of R satisfying

θ(x, a, b) = θ(x, a′, b′);
(5) If a, a′, b, b′ ∈ R with a �= a′ then there are unique elements x and y of R

satisfying θ(a, x, y) = b and θ(a′, x, y) = b′.

2These series were first studied by the nineteenth-century French engineer and mathematician,
Pierre Alphonse Laurent.
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Such structures have applications in projective geometry. If F is a field, show that
we can define a function θ : F 3 → F in such a way that F becomes a tertiary ring
(with 0 and 1 being the neutral elements of the field).

Exercise 55
For h = 1,2,3, let zh = ah + bhi be a complex number satisfying |zh| = 1. As-
sume, moreover, that

∑3
i=1 zi = 0. Show that the points (ah, bh) are the vertices

of an equilateral triangle in the Euclidean plane.
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If n > 1 is an integer and if F is a field, it is natural to define addition on the set Fn

componentwise:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn).

More generally, if Ω is any nonempty set and if FΩ is the set of all functions from
Ω to the field F , we can define addition on FΩ by setting f + g : i �→ f (i) + g(i)

for each i ∈ Ω . Given these definitions, is it possible to define multiplication in such
a manner that Fn or FΩ will become a field naturally containing F as a subfield?
We have seen that if n = 2 and if F = R or F = Q, this is possible—and, indeed, in
the latter case there are several different methods of doing it. If F = GF(p) then it
is possible to define such a field structure on Fn for every integer n > 1. However,
in general the answer is negative—as we will show in a later chapter for the specific
case of Rk , where k > 2 is an odd integer. Nonetheless, it is possible to construct
another important and useful structure on these sets, and this structure will be the fo-
cus of our attention for the rest of this book. We will first give the formal definition,
and then look at a large number of examples.

Let F be a field. A nonempty set V , together with a function V × V → V called
vector addition (denoted, as usual, by +) and a function F × V → V called scalar
multiplication (denoted, as a rule, by concatenation) is a vector space over F if the
following conditions are satisfied:
(1) (associativity of vector addition): v+ (w+y) = (v+w)+y for all v,w,y ∈ V .
(2) (commutativity of vector addition): v + w = w + v for all v,w ∈ V .
(3) (existence of a identity element for vector addition): There exists an element 0V

of V satisfying the condition that v + 0V = v for all v ∈ V .
(4) (existence of additive inverses): For each v ∈ V there exists an element of V ,

which we will denote by −v, which satisfies v + (−v) = 0V .
(5) (distributivity of scalar multiplication over vector addition and of scalar multi-

plication over field addition): a(v + w) = av + aw and (a + b)v = av + bv for
all a, b ∈ F and v,w ∈ V .

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_3, © Springer Science+Business Media B.V. 2012

21

http://dx.doi.org/10.1007/978-94-007-2636-9_3


22 3 Vector Spaces Over a Field

(6) (associativity of scalar multiplication): (ab)v = a(bv) for all a, b ∈ F and
v ∈ V .

(7) (existence of identity element for scalar multiplication): 1v = v for all v ∈ V .
The elements of V are called vectors and the elements of F are called scalars.

With kind permission of the Manuscripts & Archives, Yale University (Gibbs); © the estate of Oliver Heaviside.
Reproduced with kind permission of Alan Heather (Heaviside); With kind permission of Special collections,
Fine Arts Library, Harvard University (Maxwell).

The theory of vector spaces was developed in the 1880s by the American engineer and
physicist, Josiah Willard Gibbs and the British engineer Oliver Heaviside, based on the
work of the Scottish physicist James Clerk Maxwell, the German high-school teacher
Herman Grassmann, and the French engineer Jean Claude Saint-Venant.

Example Note that condition (7), apparently trivial, does not follow from the other
conditions. Indeed, if we take V = F but define scalar multiplication by av = 0V

for all a ∈ F and v ∈ V , we would get a structure which satisfies conditions (1)–(6)
but not condition (7).

If v,w ∈ V we again write v − w instead of v + (−w). As we noted when we
talked about fields, if v1, . . . , vn is a list of vectors in a vector space V over a field F ,
the associativity of vector addition allows us to unambiguously write v1 + · · · + vn,
and this sum is often denoted by

∑n
i=1 vi . Moreover, if a ∈ F is a scalar then we

surely have a(
∑n

i=1 vi) = (
∑n

i=1 avi). Similarly, if a1, . . . , an is a list of scalars and
if v ∈ V , then we have (

∑n
i=1 ai)v = ∑n

i=1 aiv. We will also adopt the convention
that the sum of an empty set of vectors is equal to 0V .

Clearly, any field F is a vector space over itself, where we take the vector addition
to be the addition in F and scalar multiplication to be the multiplication in F .

We also note an extremely important construction. Let F be a field and let Ω be
a nonempty set. Assume that, for each i ∈ Ω , we are given a vector space Vi over F ,
the addition in which we will denote by +i (the vector spaces Vi need not, however,
be distinct from one another). Recall that

∏
i∈Ω Vi is the set of all those functions f

from Ω to
⋃

i∈Ω Vi which satisfy the condition that f (i) ∈ Vi for each i ∈ Ω . We
now define the structure of a vector space on

∏
i∈Ω Vi as follows: if f,g ∈ ∏

i∈Ω Vi

then f + g is the function in
∏

i∈Ω Vi given by f + g : i �→ f (i) +i g(i) for each
i ∈ Ω . Moreover, if a ∈ F and f ∈ ∏

i∈Ω Vi , then af is the function in
∏

i∈Ω Vi

given by af : i �→ a[f (i)] for each i ∈ Ω . It is routine to verify that all of the
axioms of a vector space are satisfied in this case. For example, the identity element
for vector addition is just the function in

∏
i∈Ω Vi given by i �→ 0Vi

for each i ∈ Ω .
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This vector space is called the direct product of the vector spaces Vi over F . If
the set Ω is finite, say Ω = {1, . . . , n}, then we often write V1 × · · · × Vn instead
of

∏
i∈Ω Vi . If all of the vector spaces Vi are equal to the same vector space V ,

then we write V Ω instead of
∏

i∈Ω Vi and if Ω = {1, . . . , n} we write V n instead
of V Ω . Note that a function f from a finite set Ω = {1, . . . , n} to a vector space V

is totally defined by the list f (1), f (2), . . . , f (n) of its values. Conversely, any list
v1, . . . , vn of elements of V uniquely defines such a function f given by f : i �→ vi .
Therefore, this notation agrees with our previous use of the symbol V n to denote
sets of n-tuples of elements of V . However, to emphasize the vector space structure

here, we will write the elements of V n as columns of the form

⎡

⎢
⎣

v1
...

vn

⎤

⎥
⎦, where the

vi are (not necessarily distinct) elements of V . Usually, we will consider the case
V = F . Vector addition and scalar multiplication in V n are then defined by the rules⎡

⎢
⎣

v1
...

vn

⎤

⎥
⎦ +

⎡

⎢
⎣

w1
...

wn

⎤

⎥
⎦ =

⎡

⎢
⎣

v1 + w1
...

vn + wn

⎤

⎥
⎦ and c

⎡

⎢
⎣

v1
...

vn

⎤

⎥
⎦ =

⎡

⎢
⎣

cv1
...

cvn

⎤

⎥
⎦.

The “classical” study of vector spaces centers around the spaces Rn, the vectors
in which are identified with the points in n-dimensional Euclidean space. However,
other vector spaces also have important applications. Vector spaces of the form C

n

are needed for the study of functions of several complex variables. In algebraic
coding theory, one is interested in spaces of the form Fn, where F is a finite field.
The vectors in this space are words of length n and the field F is the alphabet in
which these words are written. Thus, one choice for F is the Galois field GF(28),
the 256 elements of which are identified with the 256 ASCII symbols.

© National Maritime Museum, Greenwich, London (Gali-
lei); With kind permission of Frommann–Holzboog Publish-
ers (Bolzano).

The first explicit statement of the geometric “par-
allelogram law” for adding geometric vectors
was given by the sixteenth-century Pisan scien-
tist Galileo Galilei. This idea was extended at the
beginning of the nineteenth century by Bohemian
priest Bernard Bolzano.

Let V be a vector space, let k and n be positive integers, and let Ω = {(i, j) | 1 ≤
i ≤ k, 1 ≤ j ≤ n}. There exists a bijective correspondence between V Ω and the set

of all rectangular arrays of the form

⎡

⎢
⎣

v11 . . . v1n

...
. . .

...

vk1 . . . vkn

⎤

⎥
⎦ in which the entries vij are

elements of V . Such an array is called a k ×n matrix over V . We will denote the set
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of all such matrices by Mk×n(V ). Addition in Mk×n(V ) is given by
⎡

⎢
⎣

v11 . . . v1n

...
. . .

...

vk1 . . . vkn

⎤

⎥
⎦ +

⎡

⎢
⎣

w11 . . . w1n

...
. . .

...

wk1 . . . wkn

⎤

⎥
⎦ =

⎡

⎢
⎣

v11 + w11 . . . v1n + w1n

...
. . .

...

vk1 + wk1 . . . vkn + wkn

⎤

⎥
⎦

and scalar multiplication in Mk×n(V ) is given by

c

⎡

⎢
⎣

v11 . . . v1n

...
. . .

...

vk1 . . . vkn

⎤

⎥
⎦ =

⎡

⎢
⎣

cv11 . . . cv1n

...
. . .

...

cvk1 . . . cvkn

⎤

⎥
⎦ .

The identity element for vector addition in Mk×n(V ) is the 0-matrix O , all entries
of which are equal to 0V . Note that V n = Mn×1(V ).

The term “matrix” was first coined by the nineteenth-century British
mathematician James Joseph Sylvester, one of the major researchers
in the theory of matrices and determinants.

If V is a vector space and if Ω = N, then the elements of V Ω are infinite se-
quences [v0, v1, . . .] of elements of V . We will denote this vector space, which we
will need later, by V ∞. Again, the space of particular interest will be F∞.

Example If F is a subfield of a field K , then K is a vector space over F , with
addition and scalar multiplication just being the corresponding operations in K .
Thus, in particular, we can think of C as a vector space over R and of R as a vector
space over Q.

Example Let A be a nonempty set and let V be the collection of all subsets of A.
Let us define addition of elements of V as follows: if B and C are elements of V

then B + C = (B ∪ C) � (B ∩ C). This operation is usually called the symmetric
difference of B and C. This definition turns V into a vector space over GF(2), where
scalar multiplication is defined by 0B = ∅ and 1B = B for all B ∈ V . This is ac-
tually just a special case of what we have seen before. Indeed, we note that there
is a bijective function from V to GF(2)A which assigns to each subset B of A its
characteristic function, namely the function χB defined by

χB : a �→
{

1 if a ∈ B,

0 otherwise,

and it is easy to see that χA + χB = χA+B , while χAχB = χA∩B .
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Proposition 3.1 Let V be a vector space over a field F .
(1) If z ∈ V satisfies z + v = v for all v ∈ V then z = 0V .
(2) If v,w ∈ V then there exists a unique element y ∈ V satisfying v+y = w.

Proof The proof is similar to the proofs of Proposition 2.1(1) and Proposi-
tion 2.2(1). �

Proposition 3.2 Let V be a vector space over a field F . If v,w ∈ V and if
a ∈ F , then:
(1) a0V = 0V ;
(2) 0v = 0V ;
(3) (−1)v = −v;
(4) (−a)v = −(av) = a(−v);
(5) −(−v) = v;
(6) av = (−a)(−v);
(7) −(v + w) = −v − w;
(8) a(v − w) = av − aw;
(9) If av = 0V then either v = 0V or a = 0.

Proof The proof is similar to the proof of Proposition 2.3. �

Let V be a vector space over a field F . A nonempty subset W of V is a subspace
of V if and only if it is a vector space in its own right with respect to the addition and
scalar multiplication defined on V . Thus, any vector space V is a subspace of itself,
called the improper subspace; any other subspace is proper. Also, {0V } is surely a
subspace of V , called the trivial subspace; any other subspace is nontrivial.

Note that the two conditions for a nonempty subset of a vector space to be a
subspace are independent: the set of all vectors in R

3 all entries of which are integers
is closed under vector addition but not under scalar multiplication; the set of all

vectors

⎡

⎣
a

b

c

⎤

⎦ ∈ R
3 satisfying abc = 0 is closed under scalar multiplication but not

under vector addition.

Example Let V be a vector space over a field F and let Ω be a nonempty set. We
have already seen that the set V Ω of all functions from Ω to V is a vector space
over F . If Λ is a subset of Ω then the set {f ∈ V Ω | f (i) = 0V for all i ∈ Λ} is a
subspace of V Ω . In particular, if k < n are positive integers, then we can think of
V k as being a subspace of V n, by identifying it with
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⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

v1
...

vn

⎤

⎥
⎦ ∈ V n

∣
∣
∣
∣
∣
∣
∣

vk+1 = · · · = vn = 0V

⎫
⎪⎬

⎪⎭
. Note that if y ∈ V , then {f ∈ V Ω |

f (i) = y for all i ∈ Λ} is not a subspace of V Ω unless y = 0V .

Example Let {Vi | i ∈ Ω} be a collection of vector spaces over a field F . The set
of all functions f ∈ ∏

i∈Ω Vi satisfying the condition that f (i) 	= 0Vi
for at most

finitely-many elements i of Ω is a subspace of
∏

i∈Ω Vi , called the direct coproduct
of the spaces Vi and denoted by

∐
i∈Ω Vi . The direct coproduct is a proper subset of∏

i∈Ω Vi when and only when the set Ω is infinite. If each of the spaces Vi is equal
to a given vector space V , we write V (Ω) instead of

∐
i∈Ω Vi .

Example If V is a vector space over a field F and if v ∈ V , then the set Fv = {av |
a ∈ F } is a subspace of V which is contained in any subspace of V containing v.

Example Let R be the field of real numbers and let Ω be either equal to R, to some
closed interval [a, b] on the real line, or to a ray [a,∞) on the real line. We have
already seen that the set RΩ of all functions from Ω to R is a vector space over R.
The set of all continuous functions from Ω to R is a subspace of this vector space,
as are the set of all differentiable functions from Ω to R, the set of all infinitely-
differentiable functions from Ω to R, and the set of all analytic functions from Ω

to R. If a < b are real numbers, we will denote the space of all continuous functions
from the closed interval [a, b] to R by C(a, b). If a ∈ R we will denote the space of
all continuous functions from [a,∞) to R by C(a,∞). These spaces will be very
important to us later.

Proposition 3.3 If V is a vector space over a field F , then a nonempty subset
W of V is a subspace of V if and only if it is closed under addition and scalar
multiplication.

Proof If W is a subspace of V then it is surely closed under addition and scalar
multiplication. Conversely, suppose that it is so closed. Then for any w ∈ W we
have 0V = 0w ∈ W and −w = (−1)w ∈ W . The other conditions are satisfied in W

since they are satisfied in V . �

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

The first fundamental research in spaces of functions was done by the
German mathematician Erhard Schmidt, a student of David Hilbert,
whose work forms one of the bases of functional analysis.
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Proposition 3.4 If V is a vector space over a field F , and if {Wi | i ∈ Ω} is a
collection of subspaces of V , then

⋂
i∈Ω Wi is a subspace of V .

Proof Set W = ⋂
i∈Ω Wi . If w,y ∈ W then, for each i ∈ Ω , we have w,y ∈ Wi and

so w + y ∈ Wi . Thus w + y ∈ W . Similarly, if a ∈ F and w ∈ W then aw ∈ Wi for
each i ∈ Ω , and so aw ∈ W . �

We will also set the convention that the intersection of an empty collection
of subspaces of V is V itself. Subspaces W and W ′ are disjoint if and only if
W ∩ W ′ = {0V }. More generally, a collection {Wi | i ∈ Ω} of subspaces of V is
pairwise disjoint if and only if Wi ∩ Wj = {0V } for i 	= j in Ω . (Note that disjoint-
ness of subspaces of a given space is not the same as disjointness of subsets!)

Now let us look at a very important method of constructing subspaces of vector
spaces. Let D be a nonempty set of elements of a vector space V over a field F .
A vector v ∈ V is a linear combination of elements of D over F if and only if there
exist elements v1, . . . , vn of D and scalars a1, . . . , an in F such that v = ∑n

i=1 aivi .
We will denote the set of all linear combinations of elements of D over F by FD.
Note that if v ∈ V then F {v} is the set Fv which we defined earlier.

It is clear that if D is a nonempty set of elements of a vector space V over a
field F then D ⊆ FD. Also, 0V ∈ FD for any nonempty subset D of V , and it
is the only vector belonging to each of the sets FD. To simplify notation, we will
therefore define F∅ to be {0V }. If D′ ⊆ D then surely FD′ ⊆ FD. We also note
that FD = F(D ∪ {0V }) for any subset D of V .

Example If D =
⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
0
1
0

⎤

⎦

⎫
⎬

⎭
and D′ =

⎧
⎨

⎩

⎡

⎣
0
2
0

⎤

⎦ ,

⎡

⎣
3
3
0

⎤

⎦

⎫
⎬

⎭
are subsets of R3, then

FD = FD′ =
⎧
⎨

⎩

⎡

⎣
a

b

0

⎤

⎦

∣
∣
∣
∣
∣
∣
a, b ∈R

⎫
⎬

⎭
. Indeed,

⎡

⎣
a

b

0

⎤

⎦ = a

⎡

⎣
1
0
0

⎤

⎦ + b

⎡

⎣
0
1
0

⎤

⎦ =
(

b − a

2

)
⎡

⎣
0
2
0

⎤

⎦ + a

3

⎡

⎣
3
3
0

⎤

⎦ for all a, b ∈ R.

Example If D =
⎧
⎨

⎩

⎡

⎣
0
0
4

⎤

⎦ ,

⎡

⎣
2
2
0

⎤

⎦ ,

⎡

⎣
2
0
0

⎤

⎦ ,

⎡

⎣
1
1
1

⎤

⎦

⎫
⎬

⎭
⊆ R

3 then
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⎡

⎣
4
2
4

⎤

⎦ = 1

⎡

⎣
0
0
4

⎤

⎦ + 1

⎡

⎣
2
2
0

⎤

⎦ + 1

⎡

⎣
2
0
0

⎤

⎦

= 1

⎡

⎣
2
0
0

⎤

⎦ + (−1)

⎡

⎣
2
2
0

⎤

⎦ + 4

⎡

⎣
1
1
1

⎤

⎦ .

Thus we see that there may be several ways of representing a vector as a linear
combination of elements of a given subset of a vector space.

Proposition 3.5 Let D be a subset of a vector space V over a field F . Then:
(1) FD is a subspace of V ;
(2) Every subspace of V containing D also contains FD;
(3) FD is the intersection of all subspaces of V containing D.

Proof If D = ∅ then FD = {0V } and we are done. Thus we can assume that D is
nonempty. It is an immediate consequence of the definitions that the sum of two lin-
ear combinations of elements of D over F is again a linear combination of elements
of D over F , and that the product of a scalar and a linear combination of elements
of D over F is again a linear combination of elements of D over F . This proves (1).
Moreover, (2) is an immediate consequence of (1) and Proposition 3.3, while (3)
follows directly from (2). �

If D is a subset of a vector space V over a field F then the subspace FD of V is
called the subspace generated or spanned by D, and the set D is called a generating
set or spanning set for this subspace. In particular, we note that ∅ is a generating
set for {0V }.

Example Let F be a field. Then A =
⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
0
1
0

⎤

⎦ ,

⎡

⎣
0
0
1

⎤

⎦

⎫
⎬

⎭
is a generating set for

F 3 over F . The set B =
⎧
⎨

⎩

⎡

⎣
1
1
0

⎤

⎦ ,

⎡

⎣
1
0
1

⎤

⎦ ,

⎡

⎣
0
1
1

⎤

⎦

⎫
⎬

⎭
is also a generating set for F 3 if the

characteristic of F is other than 2, but not for F = GF(2), since

⎡

⎣
1
0
0

⎤

⎦ /∈ GF(2)B .

The set D =
⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
0
1
0

⎤

⎦ ,

⎡

⎣
1
1
0

⎤

⎦

⎫
⎬

⎭
is not a generating set for F 3 for any field F

since

⎡

⎣
0
0
1

⎤

⎦ /∈ FD.
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Often, in applications, we need to restrict ourselves to linear combinations of
special type. For example, let V be a vector space over a field F and let D be a
nonempty subset of V . An affine combination of elements of D is an element of
V of the form

∑n
i=1 aivi, where the vi are elements of D and the ai are scalars

satisfying
∑n

i=1 ai = 1. This is usually interpreted as a weighted average of the
vectors vi . The set of all affine combinations of elements of D is called the affine
hull of D and is denoted by affh(D). In general, this is not a subspace of V . One
can, however, easily verify that affh(affh(D)) = affh(D) for any set D.

Proposition 3.6 Let V be a vector space over a field F and let D1 and D2
be subsets of V satisfying D1 ⊆ D2 ⊆ FD1. Then FD1 = FD2.

Proof Since FD1 is a subspace of V containing D2, we know by Proposition 3.5
that FD2 ⊆ FD1. Conversely, any linear combination of elements of D1 over F

is also a linear combination of elements of D2 over F and so FD1 ⊆ FD2, thus
establishing equality. �

In particular, we note that FD = F(FD) for any subset D of V .

Proposition 3.7 (Exchange Property) Let V be a vector space over a field
F and let v,w ∈ V . Let D be a subset of V satisfying v ∈ F(D ∪ {w})�FD.
Then w ∈ F(D ∪ {v}).

Proof Since v ∈ F(D ∪ {w}) we know that there exist elements v1, . . . , vn of D

and scalars a1, . . . , an, b in F satisfying the condition that v = ∑n
i=1 aivi + bw.

Moreover, since v /∈ FD, we know that b 	= 0 and so w = b−1v − ∑n
i=1 b−1aivi ∈

F(D ∪ {v}). �

A vector space V over a field F is finitely generated over F if it has a finite
generating set. Finitely-generated vector spaces are often much easier to deal with
by purely algebraic methods and therefore, in several situations, we will have to
restrict our discussion to these spaces.

Example If F is a field and n is a positive integer, then one sees that⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, . . . ,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

is a finite generating set for Fn over F , and so Fn

is finitely generated over F . More generally, if V is a vector space finitely generated
over a field F , say V = F {v1, . . . , vk}, and if n is a positive integer, then
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

v1
0
...

0

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

v2
0
...

0

⎤

⎥
⎥
⎥
⎦

, . . . ,

⎡

⎢
⎢
⎢
⎣

vk

0
...

0

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

0
v1
...

0

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

0
v2
...

0

⎤

⎥
⎥
⎥
⎦

, . . . ,

⎡

⎢
⎢
⎢
⎣

0
vk

...

0

⎤

⎥
⎥
⎥
⎦

, . . . ,

⎡

⎢
⎢
⎢
⎣

0
0
...

v1

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

0
0
...

v2

⎤

⎥
⎥
⎥
⎦

, . . . ,

⎡

⎢
⎢
⎢
⎣

0
0
...

vk

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

is a generating set for V n over F having kn elements.

Example If F is a field and if k and n are positive integers, then the vector space
Mk×n(F ) of all k × n matrices over F is finitely generated over F . Similarly, if V

is a finitely-generated vector space over F , then the vector space Mk×n(V ) is also
finitely generated over F .

Example For any field F , the vector space F∞ is not finitely generated over F .

Example The field R is finitely generated as a vector space over itself, but is not
finitely generated as a vector space over Q.

Let V be a vector space over a field F . In Proposition 3.4, we saw that if
{Wi | i ∈ Ω} is a collection of subspaces of V then

⋂
i∈Ω Wi is a subspace of V .

In the same way, we can define the subspace
∑

i∈Ω Wi of V to be the set of all
vectors in V of the form

∑
j∈Λ wj , where Λ is a finite nonempty subset of Ω and

wj ∈ Wj for each j ∈ Λ. In other words,
∑

i∈Ω Wi = F(
⋃

i∈Ω Wi). Indeed, from
the definition of this sum, we see something stronger: if Di is a generating set for
Wi for each i ∈ Ω then

∑
i∈Ω Wi = F(

⋃
i∈Ω Di).

As a special case of the above, we see that if W1 and W2 are subspaces of V ,
then W1 + W2 equals the set of all vectors of the form w1 + w2, where w1 ∈ W1
and w2 ∈ W2. If both W1 and W2 are finitely generated then W1 +W2 is also finitely
generated. By induction, we can then show that if W1, . . . ,Wn are finitely-generated
subspaces of V , then

∑n
i=1 Wi is also finitely generated.

Proposition 3.8 If V is a vector space over a field F and if {Wi | i ∈ Ω} is a
collection of subspaces of V , then:
(1) Wh is a subspace of

∑
i∈Ω Wi for all h ∈ Ω ;

(2) If Y is a subspace of V satisfying the condition that Wh is a subspace of
Y for all h ∈ Ω , then

∑
i∈Ω Wi is a subspace of Y .

Proof (1) is clear from the definition. As for (2), if we have a subspace Y satisfying
the given condition, if Λ is a finite subset of Ω , and if wj ∈ Wj for each j ∈ Λ, then
wj ∈ Y for each j and so

∑
j∈Λ wj ∈ Y . Thus

∑
i∈Ω Wi ⊆ Y . �
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Proposition 3.9 If V is a vector space over a field F and if W1, W2, and W3
are subspaces of V , then:
(1) (W1 + W2) + W3 = W1 + (W2 + W3);
(2) W1 + W2 = W2 + W1;
(3) W3 ∩ [W2 + (W1 ∩ W3)] = (W1 ∩ W3) + (W2 ∩ W3);
(4) (Modular law for subspaces): If W1 ⊆ W3 then

W3 ∩ (W2 + W1) = W1 + (W2 ∩ W3).

Proof Parts (1) and (2) follow immediately from the definition, while part (4) is
a special case of (3). We are therefore left to prove (3). Indeed, if v belongs
to W3 ∩ [W2 + (W1 ∩ W3)], then we can write v = w2 + y, where w2 ∈ W2 and
y ∈ W1 ∩ W3. Since v, y ∈ W3, it follows that w2 = v − y ∈ W3, and so v =
y + w2 ∈ (W1 ∩ W3) + (W2 ∩ W3). Thus we see that W3 ∩ [W2 + (W1 ∩ W3)] ⊆
(W1 ∩W3)+(W2 ∩W3). Conversely, assume that v ∈ (W1 ∩W3)+(W2 ∩W3). Then,
in particular, v ∈ W3 and we can write v = w1 +w2, where w1 ∈ W1 ∩W3 and w2 ∈
W2 ∩W3. Thus v = w1 +w2 ∈ W3 ∩W2 + (W1 ∩W3). This shows that (W1 ∩W3)+
(W2 ∩ W3) ⊆ W3 ∩ [W2 + (W1 ∩ W3)], and so we have the desired equality. �

Exercises

Exercise 56
Is it possible to define on V = Z/(4) the structure of a vector space over GF(2)

in such a way that the vector addition is the usual addition in Z/(4)?

Exercise 57
Consider the set Z of integers, together with the usual addition. If a ∈ Q and
k ∈ Z, define a · k to be �a
k, where �a
 denotes the largest integer less than or
equal to a. Using this as our definition of “scalar multiplication”, have we turned
Z into a vector space over Q?

Exercise 58
Let V = {0,1} and let F = GF(2). Define vector addition and scalar multiplica-
tion by setting v + v′ = max{v, v′}, 0v = 0, and 1v = v for all v, v′ ∈ V . Does
this define on V the structure of a vector space over F ?

Exercise 59
Let p > 2 and let V be a vector space over GF(p). Show that v 	= −v for all
0V 	= v ∈ V .

Exercise 60
Let V = C(0,1). Define an operation � on V by setting f � g : x �→
max{f (x), g(x)}. Does this operation of vector addition, together with the usual
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operation of scalar multiplication, define on V the structure of a vector space
over R?

Exercise 61
Let V be a nontrivial vector space over R. For each v ∈ V and each complex
number a + bi, let us define (a + bi)v = av. Does V , together with this new
scalar multiplication, form a vector space over C?

Exercise 62
Let I be the unit interval [0,1] on the real line and let V = R×I . Define op-
erations of addition and scalar multiplication on V as follows: (a, s) + (b, t) =
(a + b,min{s, t}) and c · (a, s) = (ca, s). Is V a vector space over R?

Exercise 63
Let V = {i ∈ Z | 0 ≤ i < 2n} for some given positive integer n. Define operations
of vector addition and scalar multiplication on V in such a way as to turn it into
a vector space over the field GF(2).

Exercise 64
Let V be a vector space over a field F . Define a function from GF(3) × V to
V by setting (0, v) �→ 0V , (1, v) �→ v, and (2, v) �→ −v for all v ∈ V . Does this
function, together with the vector addition in V , define on V the structure of a
vector space over GF(3)?

Exercise 65
Give an example of a vector space having exactly 125 elements.

Exercise 66
Let V = Q

2, with the usual vector addition. If a + b
√

2 ∈ Q(
√

2) and if[
c

d

]

∈ Q
2, set

(
a + b

√
2
)
[

c

d

]

=
[
ac + 2bd

bc + ad

]

. Do these operations turn Q
2 into

a vector space over Q(
√

2)?

Exercise 67
Let V = R∪ {∞} and extend the usual addition of real numbers by defining
v + ∞ = ∞ + v = ∞ for all v ∈ V . Is it possible to define an operation of scalar
multiplication on V in such a manner as to turn it into a vector space over R?

Exercise 68

Let V = R
2. If

[
a

b

]

,

[
a′
b′

]

∈ V and r ∈ R, set

[
a

b

]

+
[
a′
b′

]

=
[
a + a′ + 1

b + b′
]

and

r

[
a

b

]

=
[
ra + r − 1

rb

]

. Do these operations define on V the structure of a vector

space over R? If so, what is the identity element for vector addition in this space?
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Exercise 69
Let V = R and let ◦ be an operation on R defined by a ◦ b = a3b. Is V , together
with the usual addition and “scalar multiplication” given by ◦, a vector space
over R?

Exercise 70
Show that Z is not a vector space over any field.

Exercise 71
Let V be a vector space over the field GF(2). Show that v = −v for all v ∈ V .

Exercise 72
In the definition of a vector space, show that the commutativity of vector addition
is a consequence of the other conditions.

Exercise 73
Let W be the subset of R5 consisting of all vectors an odd number of the entries
in which are equal to 0. Is W a subspace of R5?

Exercise 74
Let F be a field and fix 0 < k ∈ Z. Let W be the subset of FZ consisting of all
those functions f satisfying

f (i + k) =
k−1∑

j=0

f (i + j)

for each i ∈ Z. Is W a subspace of FZ?

Exercise 75

Let W be the subset of R3 consisting of all vectors

⎡

⎣
a

b

c

⎤

⎦ satisfying |a|+|b| = |c|.

Is W a subspace of R3?

Exercise 76
Let V = R

R and let W be the subset of V containing the constant function x �→ 0
and all of those functions f ∈ V satisfying the condition that f (a) = 0 for at most
finitely-many real numbers a. Is W a subspace of V ?

Exercise 77

Let V =

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

a1
...

a5

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

0 < ai ∈R

⎫
⎪⎬

⎪⎭
. If v =

⎡

⎢
⎣

a1
...

a5

⎤

⎥
⎦ and w =

⎡

⎢
⎣

b1
...

b5

⎤

⎥
⎦ belong to V , and
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if c ∈R, set v + w =
⎡

⎢
⎣

a1b1
...

a5b5

⎤

⎥
⎦ and cv =

⎡

⎢
⎣

ac
1
...

ac
5

⎤

⎥
⎦. Do these operations turn V into

a vector space over R?

Exercise 78
How many elements are there in the subspace of GF(3)3 generated by
⎧
⎨

⎩

⎡

⎣
1
2
1

⎤

⎦ ,

⎡

⎣
2
2
1

⎤

⎦

⎫
⎬

⎭
?

Exercise 79
A function f ∈ R

R is piecewise constant if and only if it is a constant function
x �→ c or there exist a1 < a2 < · · · < an and c0, . . . , cn in R such that

f : x �→
⎧
⎨

⎩

c0 if x < a1,

ci if ai ≤ x < ai+1 for 1 ≤ i < n,

cn if an ≤ x.

Does the set of all piecewise constant functions form a subspace of the vector
space R

R over R?

Exercise 80
Let V be the vector space of all continuous functions from R to itself and let W

be the subset of all those functions f ∈ V satisfying the condition that |f (x)| ≤ 1
for all −1 ≤ x ≤ 1. Is W a subspace of V ?

Exercise 81

Let W be the subspace of V = GF(2)5 consisting of all vectors

⎡

⎢
⎣

a1
...

a5

⎤

⎥
⎦ satisfying

∑5
i=1 ai = 0. Is W a subspace of V ?

Exercise 82
Let V = R

R and let W be the subset of V consisting of all monotonically-
increasing or monotonically-decreasing functions. Is W a subspace of V ?

Exercise 83
Let V = R

R and let W be the subset of V consisting of the constant function
a �→ 0, and all epic functions. Is W a subspace of V ?

Exercise 84
Let V = R

R and let W be the subset of V containing the constant function a �→ 0
and all of those functions f ∈ V satisfying the condition that f (π) > f (−π). Is
W a subspace of V ?
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Exercise 85
Let V = R

R and let W be the subset of V consisting of all functions f satisfying
the condition that there exists a real number c (which depends on f ) such that
|f (a)| ≤ c|a| for all a ∈R. Is W a subspace of V ?

Exercise 86
Let V = R

R and let W be the subset of V consisting of all functions f satisfying
the condition that there exist real numbers a and b such that |f (x)| ≤ a| sin(x)|+
b| cos(x)| for all x ≥ 0. Is W a subspace of V ?

Exercise 87
Let F be a field and let V = FF , which is a vector space over F . Let W be the
set of all functions f ∈ V satisfying f (1) = f (−1). Is W a subspace of V ?

Exercise 88
For any real number 0 < t ≤ 1, let Vt be the set of all functions f ∈R

R satisfying
the condition that if a < b in R then there exists a real number u(a, b) satisfying
|f (x) − f (y)| ≤ u(a, b)|x − y|t for all a ≤ x, y ≤ b. For which values of t is Vt

a subspace of RR?

Exercise 89
Let U be a nonempty subset of a vector space V . Show that U is a subspace of
V if and only if au + u′ ∈ U for all u,u′ ∈ U and a ∈ F .

Exercise 90
Let V be a vector space over a field F and let v and w be distinct vectors in V .
Set U = {(1 − t)v + tw | t ∈ F }. Show that there exists a vector y ∈ V such that
{u + y | u ∈ U} is a subspace of V .

Exercise 91
Let V be a vector space over a field F and let W and Y be subspaces of V 2. Let

U be the set of all vectors

[
v

v′
]

∈ V 2 satisfying the condition that there exists a

vector v′′ ∈ V such that

[
v

v′′
]

∈ W and

[
v′′
v′

]

∈ Y . Is U a subspace of V 2?

Exercise 92
Consider R as a vector space over Q. Given a nonempty subset W of R, let
W be the set of all real numbers b for which there exists a sequence a1, a2, . . .

of elements of W satisfying limi→∞ ai = b. Show that W is a subspace of R

whenever W is.

Exercise 93
Let V be a vector space over a field F and let P be the collection of all sub-
sets of V , which we know is a vector space over GF(2). Is the collection of all
subspaces of V a subspace of P ?
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Exercise 94

Let W be the set of all functions f ∈R
N satisfying the condition that if f (i) 	= 0

then f (ji) 	= 0 for all positive integers j . Is W a subspace of RN?

Exercise 95

Let W be the set of all functions f ∈R
N satisfying the condition that if f (i) = 0

then f (ji) = 0 for all positive integers j . Is W a subspace of RN?

Exercise 96

Let V be a vector space over a field F and let Y be the set of all matrices of the

form

⎡

⎣
v1 v2 0V

0V v1 + v2 0V

0V v1 v2

⎤

⎦ in M3×3(V ). Is Y a subspace of M3×3(V )?

Exercise 97

Let W be the set of all functions f ∈ R
R satisfying the following conditions:

there exist positive real numbers a and b such that for all x ∈R satisfying |x| ≥ a

we have |f (x)| ≤ b|x|. Show that W is a subspace of RR.

Exercise 98

Let W be a subspace of a vector space V over a field F . Is the set (V �W)∪{0V }
necessarily a subspace of V ?

Exercise 99

Let V be a vector space over a field F and let f be a function from V to the

unit interval [0,1] on the real line satisfying the condition that f (au + bv) ≥
min{f (u), f (v)} for all a, b ∈ F and all u,v ∈ V . Show that f (0V ) ≥ f (v) for

all v ∈ V and that if 0 ≤ h ≤ f (0V ) then Vh = {v ∈ V | f (v) ≥ h} is a subspace

of V .

Exercise 100

Consider the elements f,g,h of QQ defined by f : t �→ t − 1, g : t �→ t + 1, and

h : t �→ t2 + 1. Does the function t �→ t2 belong to Q{f,g,h}?

Exercise 101

Let F = GF(3) and let D =
⎧
⎨

⎩

⎡

⎣
1
1
0

⎤

⎦ ,

⎡

⎣
1
0
2

⎤

⎦

⎫
⎬

⎭
. For which scalars c is

⎡

⎣
0
1
c

⎤

⎦ a

linear combination of elements of D?
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Exercise 102

Find a real number c such that

⎡

⎣
4
3
1

⎤

⎦ ∈ R
3 is a linear combination of

⎧
⎨

⎩

⎡

⎣
3
1
c

⎤

⎦ ,

⎡

⎣
−1

2
1

⎤

⎦

⎫
⎬

⎭
.

Exercise 103
Find subsets D and D′ of R3 such that R(D ∩ D′) 	= RD ∩RD′.

Exercise 104
Find subspaces W and Y of R3 having the property that W ∪ Y is not a subspace
of R3.

Exercise 105
Let V be a vector space over a field F and let 0V 	= w ∈ V . Given a vector
v ∈ V � Fw, find the set G of all scalars a ∈ F satisfying F {v,w} = F {v, aw}.

Exercise 106
Let p be a prime integer and let V be a vector space over F = GF(p). Show that
V is not the union of k subspaces, for any k ≤ p.

Exercise 107
Let V be a vector space over a field F and let c and d be fixed elements of F .
Define a new operation � on V by setting v � v′ = cv + dv′. Is V , with this new
vector addition and the old scalar multiplication, still a vector space over F ?

Exercise 108
Let I be the closed unit interval [0,1] on the real line. A function (a, b) �→ a ◦ b

from I × I to I is a triangular norm1 if and only if the following conditions hold
for all a, b, c ∈ I :
(1) a ◦ 1 = a;
(2) a ≤ c implies that a ◦ b ≤ c ◦ b;
(3) a ◦ b = b ◦ a;
(4) a ◦ (b ◦ c) = (a ◦ b) ◦ c.
Given a vector space V over a field F , and given a triangular norm ◦ on I ,
a function f : V → I is a ◦-fuzzy subspace of V if and only if, for each v,w ∈ V

and each d ∈ F , we have f (v + w) ≥ f (v) ◦ f (w) and f (dv) ≥ f (v). Find
a condition that a ◦-fuzzy subspace f of V must satisfy for the set {v ∈ V |
f (v) ≥ a} to be a subspace of V for any a ∈ I .

1Triangular norms play a very important part in the theory of probabilistic metric spaces and have
important applications in statistics and in mathematical economics, as well as such areas as pattern
recognition and capacity theory.
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Exercise 109
Let V be a vector space over a field F and let D be a nonempty subset of V .
A zero-sum combination of elements of D is an element of the form

∑n
i=1 aivi,

where the vi are elements of D and the ai are scalars satisfying
∑n

i=1 ai = 0. The
set z(D) of all zero-sum combinations of elements of D is called the zero-sum
hull of D. Is it true that z(z(D)) = z(D)? Is z(D) necessarily a subspace of V ?

Exercise 110
Let V be a vector space over a field F and let D be a nonempty subset of V .
A uniform combination of elements of D is an element of the form

∑n
i=1 aivi,

where the vi are elements of D and a1 = · · · = an. The set u(D) of all uniform
combinations of elements of D is called the uniform hull of D. Is it true that
u(u(D)) = u(D)? Is u(D) necessarily a subspace of V ?

Exercise 111
If we identify R

2 with the Euclidean plane in the usual way, and if v 	= w are two
vectors in R

2, show that affh({v,w}) is the line passing through these two points.

Exercise 112
If we identify R

3 with the three-dimensional Euclidean space in the usual way
and if v,w,y are distinct vectors in R

3 which are not collinear, show that
affh({v,w,y}) is the plane determined by the three points.

Exercise 113
Let V be a vector space over a field F and let D be a subset of V containing 0V .
Show that affh(D) is a subspace of V .
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In general, a vector space does not carry with it the notion of multiplying two vectors
in the space to produce a third vector. However, sometimes such multiplication may
be possible. A vector space K over a field F is an F -algebra if and only if there
exists a function (v,w) �→ v • w from K × K to K such that
(1) u • (v + w) = u • v + u • w;
(2) (u + v) • w = u • w + v • w;
(3) a(v • w) = (av) • w = v • (aw)

for all u,v,w ∈ K and a ∈ F . As in the proof of Proposition 2.3(1), these conditions
suffice to show that 0K • v = v • 0K = 0K for all v ∈ K .

Note that the operation • need not be associative, nor need there exist an identity
element for this operation. When the operation is associative, i.e. when it satisfies
(4) v • (w • y) = (v • w) • y

for all v,w,y ∈ K , then the algebra is called an associative F -algebra. If an iden-
tity element for • exists, that is to say, if there exists an element 0K �= e ∈ K satis-
fying v • e = v = e • v for all v ∈ K , we say the F -algebra K is unital. In a unital
F -algebra, as with the case of fields, the identity element must be unique. In this
case, we can then identify F with the subset {ae | a ∈ F } of K and we note that
a • v = v • a for all v ∈ K and a ∈ F .

If v is an element of an associative F -algebra (K,•) and if n is a positive in-
teger, we write vn instead of v • · · · • v (n factors). If K is also unital and has a
multiplicative identity e, we set v0 = e for all 0K �= v ∈ K . The element (0K)0 is
not defined.

If v • w = w • v for all v and w in some F -algebra K , then the algebra is com-
mutative. An F -algebra (K,•) satisfying the condition that v • w = −w • v for all
v,w ∈ K is anticommutative. If the characteristic of F is other than 2, it is easy to
see that this condition is equivalent to the condition that v • v = 0K for all v ∈ K .
Of course, in that case K cannot possibly be unital.

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_4, © Springer Science+Business Media B.V. 2012
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With kind permission of the Harvard University Archives, HUP (B. Peirce and C.S. Peirce); With kind per-
mission of the American Mathematical Society (Dickson); With kind permission of the Bryn Mawr College
Library, Special Collections (Noether).

The first systematic study of associative algebras was initiated by the nineteenth-century
American mathematician Benjamin Peirce and continued by his son, the mathematician
and logician Charles Sanders Peirce. Other major contributors at the beginning of the
twentieth century were the American mathematician Leonard Dickson, the Scottish math-
ematician Joseph Henry Wedderburn, and the German mathematician Emmy Noether,
generally known as “the mother of modern algebra”.

If (K,•) is an associative unital F -algebra having a multiplicative identity e,
and if v ∈ K satisfies the condition that there exists an element w ∈ K such that
v • w = w • v = e, then we say that v is a unit of K . As with the case of fields, such
an element w, if it exists, is unique and is usually denoted by v−1. If v is a unit, then
so is −v, for one immediately notes that (−v)−1 = −(v−1). Also, it is easy to see
that if v and w are units of K , then so is v • w. Indeed,

(v • w) • (
w−1 • v−1) = (

v • (
w • w−1)) • v−1

= (v • e) • v−1 = v • v−1 = e

and similarly (w−1 • v−1) • (v • w) = e, so (v • w)−1 = w−1 • v−1. If v ∈ K is a
unit and if n > 1 is an integer, we write v−n instead of (v−1)n. Note that the Hua’s
identity (Proposition 2.6) in fact holds in any associative unital F -algebra in which
the needed inverses exist, since the proof relies only on associativity of addition and
multiplication and distributivity of multiplication over addition.

If (K,•) is an F -algebra, and v,w ∈ K , then (v,w) forms a commuting pair
if and only if v • w = w • v. Of course, if the algebra K is commutative, all pairs
of elements commute, but in general that will not be the case. Note that if (v,w)

is a commuting pair in a unital associative F -algebra (K,•) and v−1 exists, then
(v−1,w) is also a commuting pair. Indeed, (v−1 • w) • v = v−1 • (w • v) = v−1 •
(v • w) = w so w • v−1 = [(v−1 • w) • v] • v−1 = v−1 • w.

Example Any vector space V over a field F can be turned into an associative and
commutative F -algebra which is not unital by setting v • w = 0V for all v,w ∈ V .

Example If F is a subfield of a field K , then K has the structure of an associa-
tive F -algebra, with multiplication being the multiplication in K . Thus, C is an
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R-algebra and Q(
√

p) is a Q-algebra for every prime integer p. These algebras are,
of course, unital.

Example Let F be a field, let (K,•) be an F -algebra, and let Ω be a nonempty
set. Then the vector space KΩ of all functions from Ω to K has the structure of
an F -algebra with respect to the operation • defined by f • g : i �→ f (i) • g(i)for
all i ∈ Ω . This F -algebra is associative if K is. If K is unital with multiplicative
identity element e, then KΩ is also unital, with identity element given by the con-
stant function i �→ e. In particular, if F is a field and if Ω is a nonempty set then
FΩ is an associative unital F -algebra with respect to the operation • defined by
f • g : i �→ f (i)g(i)for all i ∈ Ω .

Example We have seen that the collection of all subsets of a given nonempty set
A is a vector space over GF(2). It is in fact an associative and commutative unital
GF(2)-algebra with respect to the operation ∩. The identity element with respect to
this operation is A itself.

Example Define an operation ∗ on C(0,∞) by setting

f ∗ g : t �→
∫ t

0
f (t − u)g(u)du.

This turns C(0,∞) into an associative and commutative R-algebra, known as the
convolution algebra on R.

Example Let K be the vector space over R consisting of all functions in R
R which

are infinitely differentiable, and define an operation • on K by setting f •g = (fg)′
(where ′ denotes differentiation). Then (K,•) is an algebra which is commutative
but not associative.

The collection of all operations • on a vector space V over a field F which turn
V into an F -algebra will be studied in more detail in Chap. 20.

Let F be a field. If (K,•) is an F -algebra, then a subspace L of K satisfying
the condition that w • w′ ∈ L for all w,w′ ∈ L is an F -subalgebra of K . If (K,•)

is a unital F -algebra, then L is a unital subalgebra if it contains the multiplicative
identity element of K .

Let F be a field. An anticommutative F -algebra (K,•) is a Lie algebra over F

if and only if it satisfies the additional condition

(Jacobi identity) u • (v • w) + v • (w • u) + w • (u • v) = 0K ;

for all u,v,w ∈ K . This algebra is not associative unless u•v = 0K for all u,v ∈ K .
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Wilhelm Karl Joseph Killing Dudley Littlewood

With kind permission of the Archives of the Mathematisches
Forschungsinstitut Oberwolfach.

Sophus Lie was a nineteenth-century Norwe-
gian mathematician who developed mathematical
concepts that provide the basic model for quan-
tum theory and an important tool in differential
geometry. They were independently defined by
the nineteenth-century German teacher Wilhelm
Karl Joseph Killing, in connection with his work

on non-Euclidean geometry. Another pioneer in the study of noncommutative algebras be-
cause of their importance in physics was the twentieth-century British mathematician Dud-
ley Littlewood.

Example Let F be a field and let (K,∗) be an associative F -algebra. Define a new
operation • on K by setting v • w = v ∗ w − w ∗ v. Then (K,•) is a Lie algebra
over F , which is usually denoted by K−. The operation in K− is known as the Lie
product defined on the given F -algebra K . This example is very important because
one can show that any Lie algebra over a field F can be considered as a subalgebra
of a Lie algebra of the form K− for some associative F -algebra K . (A proof of this
result, known as the Poincaré–Birkhoff–Witt Theorem, is far beyond the scope of
this book.) If v,w ∈ K , then v • w = 0K precisely when v ∗ w = w ∗ v, in other
words, precisely when (v,w) forms a commuting pair in (K,∗).

Lie algebras are of fundamental importance in the modeling problems in physics,
and have many other applications; they are in the forefront of current mathematical
research. One particular Lie algebra defined on R

3 goes back to the work of Grass-
mann. Define the structure of an R-algebra on R3 with multiplication × given by

⎡

⎣
a1
a2
a3

⎤

⎦ ×
⎡

⎣
b1
b2
b3

⎤

⎦ =
⎡

⎣
a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎤

⎦ .

This operation, called the cross product, has very important applications in physics
and engineering. It is easy to check that the algebra (R3,×) is a Lie algebra over R.

Note that if v1 =
⎡

⎣
1
0
0

⎤

⎦, v2 =
⎡

⎣
0
1
0

⎤

⎦, and v3 =
⎡

⎣
0
0
1

⎤

⎦, then, surely, v1 × v2 =

v3, v1 × v2 = v3, and v3 × v1 = v2. Moreover, the cross product is the only possi-
ble anticommutative product which can be defined on R

3 and which satisfies this
condition. Indeed, if • is any such product defined on R

3 then
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⎡

⎣
a1
a2
a3

⎤

⎦ •
⎡

⎣
b1
b2
b3

⎤

⎦ =
(

3∑

i=1

aivi

)

•
(

3∑

j=1

bjvj

)

=
3∑

i=1

3∑

j=1

aibj (vi • vj )

=
⎡

⎣
a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎤

⎦ =
⎡

⎣
a1
a2
a3

⎤

⎦ ×
⎡

⎣
b1
b2
b3

⎤

⎦ .

Proposition 4.1 If v and w are nonzero elements of R3, then v × w =
⎡

⎣
0
0
0

⎤

⎦

if and only if Rv = Rw.

Proof Suppose v =
⎡

⎣
a1
a2
a3

⎤

⎦ and w =
⎡

⎣
b1
b2
b3

⎤

⎦. These vectors are nonzero and so one

of the entries in w is nonzero; without loss of generality, we can assume that b1 �= 0.
Then a2b3 −a3b2 = a3b1 −a1b3 = a1b2 −a2b1 = 0 and so, if we define c = a1b

−1
1 ,

we have v = cw. Hence v ∈ Rw. Moreover, c �= 0 so w = c−1v ∈ Rv, proving the
desired equality. Conversely, if Rv = Rw then there exists an 0 �= d ∈ R such that

w = dv. Then v × w = d(v × v) =
⎡

⎣
0
0
0

⎤

⎦. �

The cross product is very particular to the vector space R
3, and does not gener-

alize easily to spaces of the form R
n for n > 3, with the exception of n = 7, which

we will see in a later chapter.

An important non-associative algebra is the following: let F be a field of charac-
teristic other than 2, and let (K,∗) be an associative algebra. We can define a new
operation • on K , called the Jordan product, by setting v • w = 1

2 (v ∗ w + w ∗ v).
Then (K,•) is a commutative F -algebra, usually denoted by K+, called the Jordan
algebra defined by K . It is not associative in general, but does satisfy

(Jordan identity) (v • w) • (v • v) = v • (
w • (v • v)

)

for all v,w ∈ K . Jordan algebras have important applications in physics. Note that if
v∗w = w∗v, then v•w = v∗w. This observation will have important consequences
later. In particular, if (K,∗) is unital with multiplicative identity e, then e • v =
v • e = v for all v ∈ K , so K+ is also unital.
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© the estate of Friedrich Hund. Repro-
duced with kind permission of Gerhard
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Jordan algebras were developed
by the twentieth-century German

physicist Pascual Jordan, one of the fathers of quantum mechanics and quantum electrody-
namics. The algebraic structure of Lie algebras and Jordan algebras was studied in detail by
the twentieth-century American mathematicians Nathan Jacobson and A. Adrian Albert.

We now come to an extremely important algebra. Let F be a field and let X

be an element not in F , which we will call an indeterminate. A polynomial in X

with coefficients in F is a formal sum f (X) = ∑∞
i=0 aiX

i , in which the elements ai

belong to F , and no more than a finite number of these elements differ from 0. The
elements ai are called the coefficients of the polynomial. If all of the ai equal 0, then
the polynomial is called the 0-polynomial. Otherwise, there exists a nonnegative
integer n satisfying the condition that an �= 0 and ai = 0 for all i > n. The coefficient
an is called the leading coefficient of the polynomial; the integer n is called the
degree of the polynomial, and is denoted by deg(f ). If the leading coefficient of a
polynomial is 1, the polynomial is monic. The degree of the 0-polynomial is defined
to be −∞, where we assume that −∞ < i for each integer i and (−∞) + i = −∞
for all integers i. If f (X) is a polynomial of degree n �= −∞, we often write it
as

∑n
i=0 aiX

i . The set of all polynomials in X with coefficients in F is denoted
by F [X]. We identify the elements of F with the polynomials of degree at most 0,
and so can consider F as a subdomain of F [X]. We can associate the 0-polynomial
with the identity element 0 of F for addition and the polynomials of degree 0 with
the nonzero elements of F and so, without any problems, consider F as a subset
of F [X].

Example The polynomials 5X3 +2X2 +1 and 5X3 −X2 +X+4 in Q[X] both have
degree 3 and leading coefficient 5. Therefore, they are not monic. The polynomials
X3 + 2X2 + 1 and X3 − X2 + X + 4 in Q[X] are both monic and have the same
degree 3.

We define addition and multiplication of polynomials over a field as follows:
if f (X) = ∑∞

i=0 aiX
i and g(X) = ∑∞

i=0 biX
i are polynomials in F [X], then

f (X) + g(X) is the polynomial
∑∞

i=0 ciX
i , where ci = ai + bi for all i ≥ 0 and

f (X)g(X) is the polynomial
∑∞

i=0 diX
i , where di = ∑i

j=0 ajbi−j for all i ≥ 0. It
is easy to verify that these definitions turn F [X] into an associative and commutative
unital F -algebra with the 0-polynomial acting as the identity element for addition
and the degree-0 polynomial 1 acting as the identity element for multiplication. This
algebra is an integral domain, that is, the product of two nonzero elements of F [X]
is again nonzero. In general, an algebra having this property is said to be entire.
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Thus, commutative, associative, entire, unital F -algebras are integral domains. The
converse of this is not true: Z is an integral domain which is not an F -algebra for
any field F . Not every commutative and associative unital R-algebra is entire. In-
deed, the functions f : a �→ max{a,0} and g : a �→ max{−a,0} are both nonzero
elements of the R-algebra R

[−1,1], but their product is the 0-function.
If f (X) = ∑∞

i=0 aiX
i and g(X) = ∑∞

i=0 biX
i are polynomials in F [X] then we

define the polynomial f (g(X)) to be
∑∞

i=0 aig(X)i . Then, for any fixed g(X), the
set F [g(X)] = {f (g(X)) | f (X) ∈ F [X]} is a unital subalgebra of F [X].

Note that every polynomial in F [X] is a linear combination of elements of the
set B = {1,X,X2, . . .} over F , so B is a set of generators of F [X] over F . On the
other hand, it is clear that no finite set of polynomials can be a generating set for
F [X] over F , and so F [X] is not finitely generated as a vector space over F .

We should remark that the formal definition of multiplication of polynomials
does not translate into the fastest method of carrying out such multiplication in prac-
tice on a computer, especially for polynomials of large degree. The problem of fast
polynomial multiplication has been the subject of extensive research over the years,
and many interesting algorithms to perform such multiplication have been devised.
A typical such algorithm is Karatsuba’s algorithm, which is easy to implement on
a computer: let f (X) and g(X) be polynomials in F [X], where F is a field. We can
write these polynomials as f (X) = ∑n

i=0 aiX
i and g(X) = ∑n

i=0 biX
i , where n is

a nonnegative power of 2 satisfying n ≥ max{deg(f ),deg(g)}. (Of course, in this
case an and bn may equal 0.) We now calculate f (X)g(X) as follows:

(1) If n = 1 then f (X)g(X) = a1b1X
2 + (a0b1 + a1b0)X + a0b0.

(2) Otherwise, write f (X) = f1(X)Xn/2 + f0(X) and

g(X) = g1(X)Xn/2 + g0(X),

where the polynomials f0(X), f1(X), g0(X), and g1(X) are all of degree at
most n/2.

(3) Recursively, calculate f0(X)g0(X), f1(X)g1(X), and

(f0 + f1)(X)(g0 + g1)(X).

(4) Then

f (X)g(X) = Xn(f1g1)(X) + Xn/2[(f0 + f1)(g0 + g1) − f0g0 − f1g1
]
(X)

+ (f0g0)(X).

Indeed, if the multiplication of two polynomials of degree at most n using the defi-
nition of polynomial multiplication takes an order of 2n2 arithmetic operations (i.e.,
additions and multiplications), it is possible to prove that there exists a fixed positive
integer c such that the multiplication of two polynomials of degree at most n using
Karatsuba’s algorithm takes at most cn1.59 arithmetic operations. If n is sufficiently
large, the difference between these two bounds can be significant.
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The main idea of Karatsuba’s algorithm lies in the recursive reduction of the de-
grees of the polynomials involved. The method of recursive reduction has since been
extended to fast algorithms in many other areas of mathematics. We will encounter
it again when we consider the Strassen–Winograd algorithms for matrix multiplica-
tion.

With kind permission of Ekatherina Karatsuba.

Anatoli Alexeevich Karatsuba is a contemporary Russian mathe-
matician whose research is primarily in number theory.

There are other highly-sophisticated algorithms for multiplying two polynomials
of degree at most n in an order of n log(n) arithmetic operations.

Proposition 4.2 (Division Algorithm) If F is a field and if f (X) and g(X) �=
0 are elements of F [X], then there exist unique polynomials u(X) and v(X)

in F [X] satisfying f (X) = g(X)u(X) + v(X) and deg(v) < deg(g).

Proof Assume that f (X) = ∑∞
i=0 aiX

i and g(X) = ∑∞
i=0 biX

i are the given poly-
nomials. If f (X) = 0 or if deg(f ) < deg(g), choose u(X) = 0 and v(X) = f (X),
and we are done. Thus we can assume that n = deg(f ) ≥ deg(g) = k, and will
prove our result by induction on n. If n = 0 then k = 0, and therefore we can
choose u(X) to be a0b

−1
0 , which is a polynomial of degree 0, and choose v(X)

to be the 0-polynomial. Now assume, inductively, that n > 0 and that the proposi-
tion has been established for all functions f (X) of degree less than n. Set h(X) =
f (X) − anb

−1
k Xn−kg(X). If this is the 0-polynomial, choose u(X) = anb

−1
k Xn−k

and let v(X) be the 0-polynomial. Otherwise, since deg(f ) > deg(h), we see by the
induction hypothesis that there exist polynomials v(X) and w(X) in F [X] satisfying
h(X) = g(X)w(X) + v(X), where deg(g) > deg(v). Thus f (X) = [anb

−1
k Xn−k +

w(X)]g(X) + v(X), as required.
We are left to show uniqueness. Indeed, assume that f (X) equals g(X)u1(X) +

v1(X) and g(X)u2(X) + v2(X), where deg(v1) < deg(g) and deg(v2) < deg(g).
Then g(X)[u1(X) − u2(X)] + [v1(X) − v2(X)]g(X)[u1(X) − u2(X)] + [v1(X) −
v2(X)] equals the 0-polynomial. If we have u1(X) = u2(X) then v1(X) = v2(X),
and we are done. Therefore, assume that u1(X) �= u2(X). But then, since deg(g[u1 −
u1]) > deg(v1 − v2) and since F [X] is entire, this is a contradiction. Thus we have
established uniqueness. �

Let us emphasize that the set F [X] is composed of formal expressions and not
functions. Every polynomial f (X) = ∑∞

i=0 aiX
i ∈ F [X] defines a corresponding
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polynomial function in FF given by c �→ f (c) = ∑∞
i=0 aic

i , but the correspondence
between polynomials and polynomial functions is not bijective. Indeed, it is possi-
ble for two distinct polynomials to define the same polynomial function. Thus, for
example, if F = GF(2) then the distinct polynomials X,X2,X3, . . . all define the
same function from F to itself, namely the function given by 0 �→ 0 and 1 �→ 1. The
degree of a polynomial function is the least of the degrees of the (perhaps many)
polynomials which define that function.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

The first person to systematically consider the best methods of calcu-
lating f (c) for a polynomial f (X) ∈ F [X] and for c ∈ F , was the
twentieth-century Russian mathematician Alexander Markovich Os-
trowski.

Let p1(X) and p2(X) be polynomials in F [X] and let c ∈ F . If we set f (X) =
p1(X) + p2(X) and g(X) = p1(X)p2(X) then it is clear that f (c) = p1(c) + p2(c)

and g(c) = p1(c)p2(c).

Proposition 4.3 Let F be a field and let p(X) be a polynomial in F [X].
Then an element c of F satisfies the condition that p(c) = 0 if and only if
there exists a polynomial u(X) ∈ F [X] satisfying p(X) = (X − c)u(X).

Proof By Proposition 4.2, we know that there exist polynomials u(X) and v(X) in
F [X] satisfying p(X) = (X − c)u(X) + v(X), where deg(v) < deg(X − c) = 1.
Therefore, v(X) = b for some b ∈ F . If b = 0 then p(c) = (c − c)u(c) = 0.
Conversely, if p(c) = 0 then 0 = p(c) = (c − c)u(c) + b = b and so p(X) =
(x − c)u(X). �

As an immediate consequence of this result, we see that if F is a field and if
p(X) ∈ F [X], then the set of all elements c of F satisfying p(c) = 0 is finite and,
indeed, cannot exceed the degree of p(X).

Let F be a field. A polynomial p(X) ∈ F [X] is reducible if and only if there
exist polynomials u(X) and v(X) in F [X], each of degree at least 1, satisfying
p(X) = u(X)v(X). Otherwise, the polynomial is irreducible. Many tests for the
irreducibility of polynomials in Q[X] have been devised. One of the earliest and
well-known is Eisenstein’s criterion: if p(X) = ∑n

i=0 aiX
i ∈ Q[X], where each ai

is an integer, and if there exists a prime integer q such that q does not divide an,
q divides ai for all 0 ≤ i ≤ n − 1, and q2 does not divide a0, then p(X) is irre-
ducible. (A proof of this can be found in books on abstract algebra.) Thus, using this
criterion, we see that 3X3 + 7X2 + 49X − 7 is an irreducible polynomial in Q[X].
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Gauss’ brilliant student, Ferdinand Eisenstein, died of tuberculosis
at the age of 29.

Example If F = GF(5) then the polynomial X3 +X+1 ∈ F [X] is irreducible, a fact
which can be established, if necessary, by testing all possibilities. However, when
F = GF(3) it is easy to verify the factorization X3 +X +1 = (X +2)(X2 +X +2),
and thus see that the polynomial is reducible.

Example If p(X) = u(X)v(X) in F [X], then surely p(X + c) = u(X + c)v(X + c)

for any c ∈ F , and so to prove that a polynomial p(X) is irreducible it suffices to
prove that p(X + c) is irreducible for some c ∈ F . For example, let q be a prime in-
teger. The qth cyclotomic polynomial in Q[X] is defined to be Φq(X) = ∑q−1

i=0 Xi .
We claim that this polynomial is irreducible. To see that this is so, we observe that
Φq(X + 1) = Xq−1 + ∑q−2

i=0

(
q

q−1−i

)
Xi , which is irreducible by Eisenstein’s crite-

rion.

It is known that the number of monic irreducible polynomials of positive degree
m in GF(p) equals N(p) = 1

m

∑
μ(d)pm/d , where the sum ranges over all integers

d which divide m and the Möbius function μ(d) is defined by

μ(d) =
⎧
⎨

⎩

1 if d = 1,

(−1)k if d is the product of k distinct primes,
0 otherwise.

This means that the probability of a randomly-selected monic polynomial of degree
m in GF(p)[X] being irreducible is N(p)/pm, which is roughly 1

m
. In particular,

we note that for every positive integer m there exists at least one monic irreducible
polynomial of degree m in GF(p).

Any polynomial in F [X] can be written as a product of irreducible poly-
nomials. How to find such a decomposition, especially in the case of poly-
nomials over a finite field or over Q, is a very difficult and important prob-
lem, which attracted such great mathematicians as Newton and which contin-
ues to attract many important mathematicians until this day. Indeed, the prob-
lem of factoring polynomials over finite fields into irreducible components has
become even more important, since it is the basis for many current crypto-
graphic schemes. There are algorithms, such as Berlekamp’s algorithm, which
factor a polynomial f (X) ∈ F [X], where F = GF(pn), in a time polynomial
in p, n, and deg(f ). Moreover, under various assumptions, such as the General-
ized Riemann Hypothesis, polynomials of special forms can be factored much more
rapidly.
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A polynomial p(X) ∈ F [X] of positive degree is completely reducible if and
only if it can be written as a product of polynomials in F [X] of degree 1. Not every
polynomial over every field is completely reducible. For example, the polynomial
X2 + 1 ∈ Q[X] is not completely reducible. The field F is algebraically closed if
every polynomial of positive degree in F [X] is completely reducible. The fields Q
and R are not algebraically closed. The field C is algebraically closed, by a theorem
known as the Fundamental Theorem of Algebra. This theorem is in fact analytic and
not algebraic, and relies on various analytic properties of functions of a complex
variable. Most of the great mathematicians of the eighteenth century—d’Alembert,
Euler, Laplace, Lagrange, Argand, Cauchy, and others—tried in vain to prove this
theorem. The first proof was given by Gauss in his doctoral thesis in 1799. His proof
was basically topological and relied on the work of Euler. During his lifetime, Gauss
published several proofs of this theorem.

With kind permission of the Archives of the Mathematisches
Forschungsinstitut Oberwolfach.

A “nearly algebraic” proof was given by Ger-
man/American mathematician Hans Zassenhaus
in 1969. Most proofs of the Fundamental Theorem
of Algebra are existence proofs and do not give a
constructive method of finding the degree-one fac-
tors of a polynomial over an algebraically-closed

field. The first constructive proof was given by the German mathematician Helmut Kneser
in 1940.

Example The field F = GF(2) is not algebraically closed since the polynomial
X2 + X + 1 ∈ F [X] is not completely reducible.

Note that if a field F is algebraically closed then every polynomial function
F → F defined by a polynomial of positive degree is epic. Indeed, let p(X) ∈ F [X]
be a polynomial of positive degree and let d ∈ F . Then q(X) = p(X) − d is a poly-
nomial of positive degree in F [X] and so there exists an element c of F such that
q(c) = 0. In other words, p(c) = d .

It is easy to see that a polynomial p(X) ∈ R[X] of degree 1 is irreducible. If
p(X) = aX2 + bX + c is of degree 2 then, considering it as an element of C[X], we
have

p(X) = a

(
X + b

2a
+ 1

2a

√
b2 − 4ac

)(
X − b

2a
+ 1

2a

√
b2 − 4ac

)
.

Then this factorization holds in R[X] as well if and only if b2 − 4ac ≥ 0, and so
p(X) is irreducible if and only if b2 −4ac < 0. From the following result we deduce
immediately that there are no irreducible polynomials in R[X] of degree greater
than 2.
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Proposition 4.4 A monic polynomial p(X) ∈ R[X] is irreducible if and only
if it is of the form X − a or (X − a)2 + b2, where a ∈R and 0 �= b ∈R.

Proof Clearly, every polynomial of the form X − a is irreducible. Now assume that
f (X) = (X − a)2 + b2 = X2 − 2aX + a2 + b2. Were this polynomial reducible, we
could find real numbers c and d satisfying

f (X) = (X − c)(X − d) = X2 − (c + d)X + cd

and so c + d = 2a and cd = a2 + b2. This implies that c2 − 2ac + a2 + b2 = 0 and
hence c = 1

2 [2a ±√
4a2 − 4(a2 + b2)] = a ±√−b2, which contradicts the assump-

tion that c ∈ R since b is assumed to be nonzero. Thus polynomials of both of the
given forms are indeed irreducible.

Conversely, let p(X) = ∑n
i=0 ciX

i be a monic irreducible polynomial in R[X]
that is not of the form X − a. By the Fundamental Theorem of Algebra, we know
that there exists a complex number z = a + bi satisfying p(z) = 0. Since the
coefficients of p(X) are real, this means that p(z) = 0 as well, since 0 = 0 =
p(z) = ∑n

i=0 ciz
i = p(z). Thus there exists a polynomial u(X) ∈ R[X] satisfying

p(X) = (X − z)(X − z)u(X), where (X − z)(X − z) = X2 − (z + z)X + zz =
X2 − 2aX + a2 + b2. Since p(X) was assumed irreducible, we conclude that z /∈R

(i.e., b �= 0) and that p(X) equals X2 − 2aX + a2 + b2, as desired. �

An obvious generalization of the above construction is the following: Let F be a
field and let (K,•) be an associative and commutative unital F -algebra. If X is an
element not in K , we can define a polynomial with coefficients in K as a formal sum
f (X) = ∑∞

i=0 aiX
i , in which the elements ai belong to K and no more than a finite

number of them differ from 0K . The set of all such polynomials will be denoted
by K[X]. As above, we define addition and multiplication in K[X] as follows: if
f (X) = ∑∞

i=0 aiX
i and g(X) = ∑∞

i=0 biX
i belong to K[X], then f (X) + g(X)

is the polynomial
∑∞

i=0 ciX
i , in which ci = ai + bi for each 0 ≤ i ≤ ∞, and

f (X)g(X) is the polynomial
∑∞

i=0 diX
i , in which di = ∑i

j=0 aj • bi−j for each
0 ≤ i ≤ ∞. Again, it is easy to check that K[X] is an F -algebra. Moreover, as a
direct consequence of the definition of multiplication, we see that if K is entire then
so is K[X]. This generalization allows us to consider algebras of polynomials in sev-
eral commuting indeterminates with coefficients in K defined inductively by setting
K[X1, . . . ,Xn] = K[X1, . . . ,Xn−1][Xn] for each n > 1. Elements of this algebra
are of the form

f (X1, . . . ,Xn) =
∑

ai1,...,inX
i1
1 · · ·Xin

n ,

where the sum ranges over all n-tuples (i1, . . . , in) of nonnegative integers and
at most finitely-many of the coefficients ai1,...,in ∈ K are nonzero. The degree of
f (X1, . . . ,Xn) is the maximal value of

{i1 + · · · + in | ai1,...,in �= 0}.
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A polynomial
∑

ai1,...,inX
i1
1 · · ·Xin

n in K[X1, . . . ,Xn] is flat if and only if
ai1,...,in �= 0 only when each ij is either 0 or 1.

Proposition 4.5 Let F be a field of characteristic other than 2 and let K be an
associative and commutative unital entire F -algebra. Let f (X1, . . . ,Xn) =∑

ai1,...,inX
i1
1 · · ·Xin

n ∈ K[X1, . . . ,Xn] be a flat polynomial of degree n. Then
for each n-tuple (c1, . . . cn) of nonzero elements of K there exist e1, . . . , en in
K , each equal to 1K or −1K , such that f (e1c1, . . . , encn) �= 0.

Proof We will prove this result by induction on n. If n = 1, then f (X1) = a1X1 +
a0, where a1 �= 0. If 0K �= c ∈ K then either a0 + a1c or a0 − a1c is nonzero, for
otherwise we would have 2a1c = 0K , which is impossible since K is entire and
the characteristic of F is not 2. Hence the case n = 1 has been established. Now
assume that n > 1 and that the proposition has been established for flat polynomi-
als in F [X1, . . . ,Xn−1]. We can write the polynomial f (X1, . . . ,Xn) in the form
g(X1, . . . ,Xn−1) + h(X1, . . . ,Xn−1)Xn, where h(X1, . . . ,Xn−1) is a flat polyno-
mial in K[X1, . . . ,Xn−1] of degree n − 1. If (c1, . . . , cn) is an n-tuple of nonzero
elements of K then, by the induction hypothesis, we can find e1, . . . , en−1 in K ,
each equal to 1K or −1K , such that h(e1c1, . . . , en−1cn−1) �= 0. But then we have
g(e1c1, . . . , en−1cn−1) + h(e1c1, . . . , en−1cn−1)Xn ∈ K[Xn] and so, by the case
n = 1, we can find en equal to 1K or −1K such that f (e1c1, . . . , encn) �= 0. �

Exercises

Exercise 114
Let F be a field and let (K,•) and (L,∗) be F -algebras. Define an operation 

on K × L by

[
a

b

]



[
a′
b′

]
=

[
a • a′
b ∗ b′

]
. Is (K × L,
) an F -algebra?

Exercise 115
Let F be a field and let (K,•) be a unitary, associative, commutative, and entire
F -algebra which, as a vector space, is finitely generated over F . Is K necessarily
a field?

Exercise 116
Let F be a field and let (K,•) be an associative F -algebra which, as a vector
space, is finitely generated over F . Given an element a ∈ K , do there necessarily
exist elements a1, a2 ∈ K satisfying a1 • a2 = a?

Exercise 117

Define an operation • on R2 by setting

[
a

b

]
•

[
c

d

]
=

[
2ac − bd

ad + bc

]
. Show that

this operation turns R2 into an R-algebra. Is this algebra associative?
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Exercise 118
Let F be a field and let (K,•) be a unital F -algebra. Define an operation 
 on

the vector space L = K × F by setting

[
v

a

]



[
w

b

]
=

[
v • w + bv + aw

ab

]
for

all v,w ∈ K and a, b ∈ F . Is L an F -algebra? Is it unital?

Exercise 119
Let F be a field. An F -algebra (K,•) is a division algebra if and only if for
every v ∈ K and for every 0K �= w ∈ K there exist unique vectors x, y ∈ K , not
necessarily equal, satisfying w • x = v and y • w = v. Is the algebra defined in
the previous exercise a division algebra?

Exercise 120
Let K be the subset of M4×4(R) consisting of all matrices of the form⎡

⎢⎢
⎣

a −b −c −d

b a −d c

c d a −b

d −c b a

⎤

⎥⎥
⎦ for a, b, c, d ∈ R and let L be the subset of M4×4(R)

consisting of all matrices of the form

⎡

⎢
⎢
⎣

a −b −c −d

b a d −c

c −d a b

d c −b a

⎤

⎥
⎥
⎦. Are K and L uni-

tal subalgebras of M4×4(R)? Are they division algebras?

Exercise 121
Let F be a field and let (K,•) be an associative unital F -algebra with multiplica-
tive identity e. For units v,w ∈ K , show that:
(1) v • (v−1 + w−1) = (v + w) • w−1;
(2) (v + w)−1 • w = v−1 • (v−1 + w−1)−1 whenever v + w and v−1 + w−1 are

also a units;
(3) v • w−1 + e = v • (v−1 + w−1).

Exercise 122
Let F be a field and let (K,•) be an associative F -algebra which, as a vector
space, is finitely generated over F . Suppose that there exists an element y ∈ K

satisfying the condition that for each v ∈ K there exists an element v′ ∈ K satis-
fying v′ • y = v. Show that each such element v′ must be unique.

Exercise 123
Let F be an infinite field and let (K,∗) be an associative unital F -algebra.
If v,w ∈ K , show that there are infinitely-many elements w′ of K satisfying
v • w = v • w′ in K .

Exercise 124
Let F be a field and let (K,•) be an associative unital F -algebra. If A and B are
subsets of K , we let A • B be the set of all elements of K of the form a • b, with
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a ∈ A and b ∈ B (in particular, ∅ • B = A •∅ = ∅). We know that the set V of
all subsets of K is a vector space over GF(2). Is (V ,•) a GF(2)-algebra? If so, is
it associative? Is it unital?

Exercise 125
Let F be a field and let (K,•) be an associative F -algebra. If V and W are sub-
spaces of K , we let V • W be the set of all finite sums of the form

∑n
i=1 vi • wi ,

with vi ∈ V and wi ∈ W . Is V • W necessarily a subspace of K?

Exercise 126
Let (K,•) be an associative F -algebra and let v ∈ K . If there exists an element
y of K satisfying v • y • v = v, show that there also exists an element w of K

satisfying v • w • v = v and w • v • w = w.

Exercise 127
For v,w ∈R

3, simplify the expression (v + w) × (v − w).

Exercise 128
For u,v,w ∈R

3, simplify the expression (u + v + w) × (v + w).

Exercise 129
Let F be a field and let (K,•) be an F -algebra satisfying the Jacobi identity.
Show that K is a Lie algebra if and only if v • v = 0K for all v ∈ K .

Exercise 130
Let F be a field and let (K,∗) be an associative F -algebra. For each 0F �= c ∈ F

and define an operation •c on K by setting v •c w = c(v ∗w + w ∗ v). For which
values of c is (K , •) a Jordan algebra over F ?

Exercise 131
Let F be a field and let (K,•) be a unitary F -algebra. For each v ∈ K , let S(v)

be the set of all a ∈ F satisfying the condition that v − a1K does not have an
inverse with respect to the operation •. If v ∈ K has a multiplicative inverse v−1

with respect to this operation, show that either S(v) = ∅ = S(v−1) or S(v) �= ∅

and S(v−1) = {a−1 | a ∈ S(v)}.

Exercise 132
Let F be a field and let L be the set of all polynomials f (X) ∈ F [X] satisfying
the condition that f (−a) = −f (a) for all a ∈ F . Is L a subspace of F [X]?

Exercise 133
Let F be a field and let L be the set of all polynomials f (X) ∈ F [X] satisfying
the condition that deg(f ) is even. Is L a subspace of F [X]?
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Exercise 134
Let F be a field and let f (X),g(X) ∈ F [X]. Show that deg(fg) =
deg(f ) + deg(g).

Exercise 135
Let F be a field and let f (X),g(X) ∈ F [X]. Show that deg(f + g) ≤
max{deg(f ),deg(g)}, and give an example in which we do not have equality.

Exercise 136
Find polynomials u(X), v(X) ∈Q[X] satisfying

X4 + 3X3 = (
X2 + X + 1

)
u(X) + v(X).

Exercise 137
Let F = GF(2). Find polynomials u(X), v(X) ∈ F [X] satisfying

X5 + X2 = (
X3 + X + 1

)
u(X) + v(X).

Exercise 138
Let F = GF(7). Find a nonzero polynomial p(X) ∈ F [X] such that the polyno-
mial function defined by p is the 0-function.

Exercise 139
Is the polynomial 6X4 + 3X3 + 6X2 + 2X + 5 ∈ GF(7)[X] irreducible?

Exercise 140
Is the polynomial X7 + X4 + 1 ∈Q[X] irreducible?

Exercise 141
Find t ∈ R such that there exist a, b ∈ R satisfying a + b = 1 and 2a3 − a2 −
7a + t = 0 = 2b3 − b2 − 7b + t .

Exercise 142
For a field F , compare the subsets F [X2] and F [X2 + 1] of F [X].

Exercise 143
Let F = GF(p), where p is a prime integer, and let g be an arbitrary function
from F to itself. Show that there exists a polynomial p(X) ∈ F [X] of degree less
than p satisfying the condition that g(c) = p(c) for all c ∈ F .

Exercise 144
Let c be a nonzero element of a field F and let n > 1 be an integer. Show that
there exists a polynomial p(X) ∈ F [X] satisfying cn + c−n = p(c + c−1).
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Exercise 145
Let F be a field. Find the set of all polynomials 0 �= p(X) ∈ F [X] satisfying
p(X2) = p(X)2.

Exercise 146
Let pk(X) = 1

k!X(X − 1) · · · (X − k + 1) ∈ Q[X] for some positive integer k.
Show that pk(n) ∈ Z for every nonnegative integer n.

Exercise 147
Let pn(X) = nXn+1 − (n + 1)Xn + 1 ∈ Q[X] for any positive integer n. Show
that there exists a polynomial qn(X) ∈Q[X] satisfying pn(X) = (X −1)2qn(X).

Exercise 148
Let F be a field and let W be a nontrivial subspace of the vector space F [X]
over F . Let p(X) ∈ F [X] be a given monic polynomial and let p(X)W =
{p(X)f (X) | f (X) ∈ W }. Show that p(X)W is a subspace of F [X] and find
a necessary and sufficient condition for it to equal W .

Exercise 149
Let p be a prime integer and let n be a positive integer. Does there necessarily
exist an irreducible monic polynomial in GF(p)[X] of degree n?

Exercise 150
Let p be a prime integer and let n be a positive integer. Show that the product of
all irreducible monic polynomials in GF(p)[X] of degree dividing n is equal to
Xpn − X.

Exercise 151
Let n > 1 be an integer. Is the polynomial p(X) = 1 + ∑n

h=1
1
h!X

h ∈ Q[X] nec-
essarily irreducible?

Exercise 152
Show that the polynomial X4 + 1 is irreducible in Q[X] but reducible in
GF(p)[X] for every prime p.

Exercise 153
Show that X4 + 2(1 − c)X2 + (1 + c)2 ∈ Q[X] is irreducible for every c ∈ Q

satisfying
√

c /∈Q.

Exercise 154
Let F be a field and let K = FN. Define operations + and • on K by setting
f + g : i �→ f (i) + g(i) and f • g : i �→ ∑

j+k=i f (j)g(k). Show that K is an
associative and commutative unital F -algebra. Is it entire?
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Exercise 155
Let k be a positive integer and let a < b be real numbers. A function f ∈R

[a,b] is
a spline function of degree k if and only if there exist real numbers a = a0 < · · · <
an = b and polynomials p0(X), . . . ,pn−1(X) of degree k in R[X] satisfying
the condition that f : x �→ pi(x) for all ai ≤ x ≤ a i+1 and all 0 ≤ i ≤ n − 1.
Spline functions play an important part in interpolation theory and in numerical
procedures for solving differential equations. Is the set of all spline functions of
fixed degree k a subspace of the vector space R

[a,b]?

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

Spline functions were first defined and studied by the twentieth-
century Romanian/American mathematician Isaac Jacob Schoen-
berg.

Exercise 156
Let F be a finite field, let k > 1 be an integer, and let V be the vector space over
F consisting of all polynomials in F [X] having degree less than k. Let a1, . . . , an

be distinct elements of F and let W be the subset of Fn consisting of all vectors

of the form

⎡

⎢
⎣

p(a1)
...

p(an)

⎤

⎥
⎦ for some p ∈ V . Is W a subspace of Fn?

Exercise 157
A trigonometric polynomial in R

R is a function of the form t �→ a0 +∑k
h=1[ah cos(ht) + bh sin(ht)], where a0, . . . , ak, b1, . . . , bk ∈ R. Show that the

subset of RR consisting of all trigonometric polynomials is an entire R-algebra.
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In this chapter, we will see how a restricted collection of vectors in a vector space
over a field can dictate the structure of the entire space, and we will deduce far-
ranging conclusions from this. Let V be a vector space over a field F . A nonempty
subset D of V is linearly dependent if and only if there exist distinct vectors
v1, . . . , vn in D and scalars a1, . . . , an in F , not all of which are equal to 0, sat-
isfying

∑n
i=1 aivi = 0V . A list of elements of V is linearly dependent if it has two

equal members or if its underlying subset is linearly dependent. Clearly, any set of
vectors containing 0V is linearly dependent. A nonempty set of vectors which is not
linearly dependent is linearly independent. That is to say, D is linearly independent
if and only if D = ∅ or D �= ∅ and we have

∑n
i=1 aivi = 0V with the ai in F and

the vi in V , when and only when ai = 0 for all 1 ≤ i ≤ n. As a consequence of this
definition, we see that an infinite set of vectors is linearly dependent if and only if it
has a finite linearly-dependent subset, and an infinite set of vectors is linearly inde-
pendent if and only if each of its finite subsets is linearly independent. It is also clear
that any set of vectors containing a linearly-dependent subset is linearly dependent
and that any subset of a linearly-independent set of vectors is linearly independent.

With kind permission of The Shelby White and Leon Levy Archives Center, USA.

The notion of linear independence of vectors was introduced by Grass-
mann; it was extensively generalized to other mathematical contexts
the by the twentieth-century American mathematician Hassler Whit-
ney.

Example The subset

⎧
⎨

⎩

⎡

⎣
1
2
1

⎤

⎦ ,

⎡

⎣
−1

3
4

⎤

⎦ ,

⎡

⎣
−4

7
11

⎤

⎦

⎫
⎬

⎭
of Q

3 is linearly dependent

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_5, © Springer Science+Business Media B.V. 2012
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since

⎡

⎣
0
0
0

⎤

⎦ = (−1)

⎡

⎣
1
2
1

⎤

⎦ + 3

⎡

⎣
−1

3
4

⎤

⎦ + (−1)

⎡

⎣
−4

7
11

⎤

⎦. Similarly, the subset

⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
1
1
0

⎤

⎦ ,

⎡

⎣
1
1
1

⎤

⎦

⎫
⎬

⎭
of Q3 is linearly independent, since if

⎡

⎣
0
0
0

⎤

⎦= a

⎡

⎣
1
0
0

⎤

⎦+ b

⎡

⎣
1
1
0

⎤

⎦+ c

⎡

⎣
1
1
1

⎤

⎦ ,

then

⎡

⎣
0
0
0

⎤

⎦=
⎡

⎣
a + b + c

b + c

c

⎤

⎦ and this implies that a = b = c = 0.

Example The subset

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
0
1
1
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
1
1
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1
1
0
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

of GF(2)7 is linearly independent and

generates a subspace of V composed of eight vectors:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
0
1
1
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
1
1
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1
1
0
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
0
0
0
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
1
0
1
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1
0
1
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that in every element of V other than its identity element for addition, a ma-
jority of the entries are nonzero. This property makes this subspace of V important
in algebraic coding theory.

Example Let b > 1 be a real number, let {p1,p2, . . .} be the set of prime integers
and, for each i, let ui = logb(pi). We claim that D = {u1, u2, . . .} is a linearly-
independent subset of R when it is considered as a vector space over Q. Indeed,
assume that this is not the case. Then there are a positive integer n and rational
numbers a1, . . . , an, not all equal to 0, satisfying

∑n
i=1 aiui = 0. If we multiply

both sides by the product of the denominators of the ai , we can assume that the ai
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are integers. Then

1 = b0 = b
∑

aiui =
n∏

i=1

baiui =
n∏

i=1

(
bui
)ai =

n∏

i=1

p
ai

i ,

and this is a contradiction. Therefore, D must be linearly independent.

Example Let F be a field and let Ω be a nonempty set. Let Vi be a vector space
over F for each i ∈ Ω , and set V =∏

i∈Ω Vi . We have already seen that the iden-
tity for addition in this vector space is the function g0 : Ω → ⋃

i∈Ω Vi given by
g0 : i �→ 0Vi

. For each i ∈ Ω , let fi : Ω →⋃
i∈Ω Vi be a function satisfying the con-

dition that fi(i) �= g0(i) but fi(h) = g0(h) for all h ∈ Ω�{i}. We claim that the sub-
set {fi | i ∈ Ω} of V is linearly independent. To see this, assume that there exists a
finite subset Λ of Ω and a family of scalars {ch | h ∈ Λ} such that

∑
h∈Λ chfh = g0.

Then for each k ∈ Λ we have g0(k) = (
∑

h∈Λ chfh)(k) =∑
h∈Λ chfh(k) = ckfk(k)

and since, by definition, fk(k) �= g0(k), we must have ck = 0.

Example If F is a field, the subset {1,X,X2, . . .} of F [X] is surely linearly inde-
pendent, since

∑n
i=0 aiX

i = 0 if and only if each of the coefficients ai equals 0.

Example Let V = R
R be the vector space, over R, of all functions from R to itself.

Let D be the set of all functions of the form x �→ eax for some real number a. We
claim that D is linearly independent. Indeed, assume that there are distinct real num-
bers a1, . . . , an and real numbers c1, . . . , cn such that the function x �→∑n

i=1 cie
aix

equals the 0-function f0 : x �→ 0, which is the identity element of V for addition.
We need to show that each of the ci equals 0, and this we will do by induction on n.

If n = 1 then we must have c1 = 0 since the function x �→ eax is different from
f0 for each a ∈ R. Assume therefore that n > 1 and that every subset of D having
no more than n − 1 elements is linearly independent. For each 1 ≤ i ≤ n, set bi =
ai − an. Then

f0 = e−anx

n∑

i=1

cie
aix =

[
n−1∑

i=1

cie
bix

]

+ cn

and if we differentiate both sides of the equation, we see that f0 =∑n−1
i=1 bicie

bix .
By the induction hypothesis and the choice of the scalars ai as being distinct, it
follows that bici = 0 �= bi for each 1 ≤ i ≤ n− 1 and so ci = 0 for all 1 ≤ i ≤ n− 1.
This in turn implies that cn = 0 as well.

Similarly, let G be the subset of V consisting of all of the functions of the form
gi : x �→ xi−12x−1. We claim that this set too is linearly independent. Indeed, as-
sume otherwise. Then there exists a positive integer n and there exist real numbers
c1, . . . , cn, such that

∑n
i=1 cigi = f0. But this implies that 2x−1(

∑n
i=1 cix

i−1) = 0
for each real number x. Since 2x−1 �= 0 for each x ∈ R, we conclude that∑n

i=1 cix
i−1 = 0 for all x. But the polynomial function x �→ ∑n

i=1 cix
i−1 from

R to itself has infinitely-many roots if and only ci = 0 for all i, proving linear inde-
pendence.
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Note that if {v,w} is a linearly-dependent set of vectors in an anticommutative
algebra (K,•) over a field of characteristic other than 2, then there exist scalars a

and b, not both equal to 0, such that av + bw = 0K . Relabeling if necessary, we can
assume that b �= 0. Then 0K = a(v • v) + b(v • w) = b(v • w) and so v • w = 0K .
A simple induction argument shows that if D is a linearly-dependent subset of K

then v1 • · · · • vk = 0K for any finite subset {v1, . . . , vk} of D.
Note too that Proposition 3.7 can be easily iterated to get the more general result

that if D is a nonempty subset of a vector space V over a field F and if B is a finite
linearly-independent subset of FD having k elements, then there exists a subset D′
of D also having k elements satisfying the condition that F((D �D′) ∪ B) = FD.
Moreover, if D is linearly independent, so is (D�D′)∪B . This result is sometimes
known as the Steinitz Replacement Property.

Proposition 5.1 Let V be a vector space over a field F . A nonempty subset
D of V is linearly dependent if and only if some element of D is a linear
combination of the others over F .

Proof Assume D is linearly dependent. Then there exists a finite subset {v1, . . . , vn}
of D and scalars a1, . . . , an, not all of which equal 0, satisfying

∑n
i=1 aivi = 0V .

Say ah �= 0. Then vh = −a−1
h

∑
i �=h aivi and so we see that vh is a linear combi-

nation of the other elements of D over F . Conversely, assume that there is some
element of D is a linear combination of the others over F . That is to say, there is
an element v1 of D, elements v2, . . . , vn of D � {v1} and scalars a2, . . . , an in F

satisfying v1 =∑n
i=2 aivi . If we set a1 = −1, we see that

∑n
i=1 aivi = 0V and so

D is linearly dependent. �

Example For every real number a, let fa be the function in R
R defined by fa : x �→

|x − a|. We claim that the subset D = {fa | a ∈ R} of RR is linearly independent.
Indeed, assume that this is not the case. Then there exists a real number b such that
fb is a linear combination of other members of D. In other words, there exist a
finite subset E of R \ {b} and scalars ca for each a ∈ E such that fb =∑

a∈E cafa .
But the function on the right-hand side of this equation is differentiable at b, while
the function on the left-hand side is not. From this contradiction, we see that D is
linearly independent.

If A is a nonempty set, then a relation � between elements of A is called a partial
order relation if and only if the following conditions are satisfied:
(1) a � a for all a ∈ A;
(2) If a � b and b � a then a = b;
(3) If a � b and b � c then a � c.
The term “partial” comes from the fact that, given elements a and b of A, it may
happen that neither a � b nor b � a. A set on which a partial order has been defined
is a partially-ordered set. A partially-ordered set A satisfying the condition that for
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all a, b ∈ A we have either a � b or b � a is called a chain. A nonempty subset
B of a partially-ordered set A is itself partially-ordered relative to the partial order
relation defined on A; it is a chain subset if it is a chain relative to the partial order
defined on A.

If A is a nonempty set on which we have a partial order relation � defined, then
an element a0 of A is maximal in A if and only if a0 � a when and only when
a = a0. An element a1 is minimal if and only if a � a1 when and only when a = a1.
Maximal and minimal elements need not exist or, if they exist, need not be unique.
The Well Ordering Principle, one of the fundamental axioms of number theory, says
that any nonempty subset of N, ordered with the usual partial order, has a minimal
element. This principle is equivalent to the principle of mathematical induction.

Partial order relations are ubiquitous in mathematics, and often play a very impor-
tant, though not usually highlighted, part in the analysis of mathematical structures.

Example Let A be a nonempty set and let P be the collection of all subsets of A.
Define a relation � between elements of P by setting B � B ′ if and only if B ⊆ B ′.
It is easy to verify that this is indeed a partial order relation. Moreover, P has a
unique maximal element, namely A, and a unique minimal element, namely ∅. The
set P is not a chain whenever A has more than one element since, if a and b are
distinct elements of A, then {a}� {b} and {b}� {a}.

Example Let A = {1,2,3} and let P be the collection of all subsets of A having one
or two elements. Thus P has six elements: {1}, {2}, {3}, {1,2}, {1,3}, and {2,3}.
Again, the relation � between elements of P defined by setting B � B ′ if and only
if B ⊆ B ′ is a partial order relation. Moreover, P has three minimal elements: {1},
{2}, and {3}; it also has three maximal elements: {1,2}, {1,3}, and {2,3}.

In general, if we have a collection of subsets of a given set, the collection is
partially-ordered by setting B � B ′ if and only if B ⊆ B ′. Therefore, it makes sense
for us to talk about “a minimal generating set” of a vector space V —namely a
minimal element in the partially-ordered collection of all generating sets of V —
and about “a maximal linearly-independent subset” of a vector space V —namely
a maximal element of the partially-ordered collection of all linearly-independent
subsets of V . However, we have no a priori guarantee that such minimal or maximal
elements in fact exist.

Example Consider the set A of all integers greater than 1, and define a relation �
on A by setting k � n if and only if there is a positive integer t satisfying n = tk.
This is a partial order relation on A. Moreover, A has infinitely-many minimal ele-
ments, since each prime integer is a minimal element of A, while it has no maximal
elements, since n � 2n for each n ∈ A.
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Proposition 5.2 Let V be a vector space over a field F . Then the following
conditions on a subset D of V are equivalent:
(1) D is a minimal set of generators of V ;
(2) D is a maximal linearly-independent subset of V ;
(3) D is a linearly-independent set of generators of V .

Proof (1) ⇒ (2): Let D be a minimal set of generators of V , and assume that D is
linearly dependent. By Proposition 5.1, there exists an element v0 ∈ D which is a
linear combination of elements of the set E = D�{v0} over F . Say v0 =∑n

i=1 aiui ,
where the ui belong to E and the ai are scalars in F . If v is arbitrary element of
V then, since D is a set of generators of V , there exists elements v1, . . . , vn of
E and scalars b0, b1, . . . , bn such that v = ∑n

j=0 bjvj . But this then implies that
v = b0v0 +∑n

j=1 bjvj =∑n
i=1 b0aiui +∑n

j=1 bjvj and so E is also a set of gen-
erators of V , contradicting the minimality of D. This establishes the claim that D is
linearly independent. If v ∈ V �D, the set D ∪ {v} is linearly dependent since v is
a linear combination of elements of D. Thus D is a maximal linearly-independent
set.

(2) ⇒ (3): Assume that D is a maximal linearly-independent subset of V .
Consider a vector v0 in V � D. By (2), we know that the set D ∪ {v0} is lin-

early dependent, and so 0V ∈ F(D ∪ {v0}) � FD by Proposition 3.7, this implies
v0 ∈ F(D ∪ {0V }) = FD, which proves that D is a set of generators of V .

(3) ⇒ (1): Assume that D is a linearly-independent set of generators of V

and that E is a proper subset of D which is also a set of generators for V . Let
v0 ∈ D �E. Then there exist elements v1, . . . , vn of E and scalars a1, . . . , an such
that v0 =∑n

i=1 aivi . But, by Proposition 5.1, this implies that the set D is linearly
dependent, contradicting (3). Therefore, no such E exists and so D is a minimal set
of generators of V . �

Proposition 5.3 Let V be a vector space over a field F and let D be a
linearly-independent subset of V . If v0 ∈ V � FD then the set D ∪ {v0} is
linearly independent.

Proof Assume that this set is linearly dependent. Then there exist elements
v1, . . . , vn of D and scalars a0, a1, . . . , an, not all equal to 0, such that

∑n
i=0 aivi

= 0V . The scalar a0 must be different from 0, for otherwise D would be linearly
dependent, which is a contradiction. Therefore, v0 =∑n

i=1 −a−1
0 aivi ∈ FD, which

contradicts the choice of v0. Thus D ∪ {v0} must be linearly independent. �

Proposition 5.3 has important implications. For example, let V be a vector space
over a field F which is not finitely generated and let D = {v1, . . . , vn} be a linearly-
independent subset of V . Then FD �= V , since V is not finitely generated, and so
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there exists a vector vn+1 ∈ V � FD such that {v1, . . . , vn+1} is linearly indepen-
dent. Thus we see that a vector space which is not finitely generated has linearly-
independent finite subsets of arbitrarily-large size.

A generating set for a vector space V over a field F which is also linearly inde-
pendent, is called a basis of V over F . In Proposition 5.2, we gave some equivalent
conditions for determining of a subset of a vector space is a basis. However, we have
not yet proven that every (or, indeed, any) vector space must have a basis.

Example Clearly,
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Example Let F be a field and let both k and n be positive integers. For each
1 ≤ s ≤ k and each 1 ≤ t ≤ n, let Hst be the matrix [aij ] in Mk×n(F ) defined by

aij =
{

1 if (i, j) = (s, t),

0 otherwise.

Then {Hst | 1 ≤ s ≤ k and 1 ≤ t ≤ n} is a basis of Mk×n(F ).

Example If F is a field, then we have already seen that the subset {1,X,X2, . . .} of
F [X] is a linearly-independent generating set for F [X] as a vector space over F , and
so is a basis of this space. The same is true for the subset {1,X +1,X2 +X +1, . . .}
of F [X]. More generally, if {p0(X),p1(X), . . .} is a subset of F [X] satisfying the
condition that deg(pi(X)) = i for all i ≥ 0, then it is a basis of F [X] as a vector
space over F .

Since every element of a vector space V over a field F has a unique representa-
tion as a linear combination of elements of a basis, if one wants to define a structure
of an F -algebra on V it suffices to define the product of any pair of basis elements,
and then extend the definition by distributivity and associativity. This is illustrated
by the following example, and we will come back to it again in Proposition 5.5.

Example We have already noted that if F is a field then F [X] is an associa-
tive F -algebra. Let us generalize this construction. Let H be a nonempty set on
which we have defined an associative operation ∗. Thus, for example, H could
be the set of nonnegative integers with the operation of addition or multiplica-
tion. Let V be the vector space over F with basis {vh | h ∈ H } and define an op-
eration • on V as follows: if v = ∑

g∈H agvg and w = ∑
h∈H bhvh are elements
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of V (where at most finitely-many of the ag and the bh are nonzero), then set
v • w =∑

g∈H

∑
h∈H agbhvg∗h. This turns V into an associative F -algebra. In the

case H = {Xi | i ≥ 0}, we get F [X]. Such constructions are very important in ad-
vanced applications of linear algebra.

Note that a vector space may have (and usually does have) many bases
and so the problem arises as to whether there is a preferred basis among all of
these. For vector spaces of the form Fn, there are reasons to prefer the basis⎧
⎪⎪⎪⎪⎪⎨
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; for vector spaces of the form Mk×n(F ) there are rea-

sons to prefer the basis {Hst | 1 ≤ s ≤ k and 1 ≤ t ≤ n} defined above; and for vector
spaces of the form F [X] there are reasons to prefer the basis {1,X,X2, . . .}. These
bases are called the canonical bases of their respective spaces. However, in various
applications—especially those involving large calculations—it is often convenient
and sometimes extremely important to pick other bases which fit the problem un-
der consideration. Indeed, in applications many considerations arise in choosing a
basis D for a given vector space V . For example, we would like representation of
elements of V as linear combinations of elements of the basis to be stable under
perturbations of the coefficients. That is to say, if v =∑n

i=1 aivi , where the vi are
elements of D, and if a′

i is a scalar near ai for each 1 ≤ i ≤ n, then we would
like

∑n
i=1 a′

ivi to be, in some sense, near v. (What “near” means here depends on
notions of distance arising from the particular situation under consideration.) This
is especially important if our data is based on observation or measurement which
is not assumed to be entirely accurate. For instance, we might want to choose the
basis taking into account the fact that the coefficient of vh is much more dubious
than the coefficients of the other basis elements, or choose it so that all of the co-
efficients ai be of the same numerical order of magnitude for those vectors v in
which we are really interested and for which we will have to do extensive calcula-
tion.

It is also important to emphasize another point. When we defined the notation
for this book, we stressed that when a set is defined by listing its elements, the set
comes with an implicit order defined by that listing. When we deal with bases, and
especially finite bases, the order in which the elements of the basis are written often
plays a critical role, and one should never lose track of this.

Proposition 5.4 Let V be a vector space over a field F and let D be a
nonempty subset of V . Then D is a basis of V if and only if every vector in V

can be written as a linear combination of elements of D over F in precisely
one way.
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Proof First, let us assume that D is a basis of V and that there exists an el-
ement v of V which can be written as a linear combination of elements of D

over F in two different ways. That is to say, that there exists a finite subset
{v1, . . . , vn} of D and there exist scalars a1, . . . , an, b1, . . . , bn in F such that
v = ∑n

i=1 aivi = ∑n
i=1 bivi , where ah �= bh for at least one index h. Then 0V =

v − v = (
∑n

i=1 aivi) − (
∑n

i=1 bivi) =∑n
i=1[ai − bi]vi , where at least one of the

scalars ai − bi is nonzero. This contradicts the assumption that D is a basis and
hence linearly independent. Therefore, every vector in V can be written as a linear
combination of elements of D over F in precisely one way.

Conversely, assume that every vector in V can be written as a linear combination
of elements of D over F in precisely one way. That certainly implies that D is a
generating set for V over F . If {v1, . . . , vn} is a subset of D and if a1, . . . , an are
scalars satisfying

∑n
i=1 aivi = 0V , then we have

∑n
i=1 aivi =∑n

i=1 0vi and so, by
uniqueness of representation, we have ai = 0 for each 1 ≤ i ≤ n. This shows that D

is linearly independent and so a basis. �

We can look at Proposition 5.4 from another point of view. Let D be a nonempty
subset of a vector space V over a field F , and define a function θ : F (D) → V by
setting θ : f �→∑

u∈D f (u)u. (This sum is well-defined since only finitely-many of
the summands are nonzero.) Then:
(1) The function θ is monic if and only if D is linearly independent;
(2) The function θ is epic if and only if D is a generating set;
(3) The function θ is bijective if and only if D is a basis.

Proposition 5.5 Let D be a basis for a vector space V over a field F . Then
any function f : D × D → V can be extended in a unique manner to a func-
tion V ×V → V which defines on V the structure of an F -algebra. Moreover,
all F -algebra structures on V arise in this manner.

Proof Let D = {yi | i ∈ Ω}. Suppose that we are given a function f : D × D → V .
We define an operation • on V as follows: if v,w ∈ V , then, by Proposition 5.4, we
know that we can write v =∑

i∈Ω aiyi and w =∑
j∈Ω bjyj in a unique manner,

where the ai and bj are scalars, only a finite number of which are nonzero; then set
v • w =∑

i∈Ω

∑
j∈Ω aibjf (yi, yj ). It is straightforward to show that this defines

the structure of an F -algebra on V . Conversely, if (V ,•) is an F -algebra, define the
function f : D × D → V by f : (yi, yj ) �→ yi • yj . �

The function f in Proposition 5.5 is the multiplication table of the vector multi-
plication operation • with respect to the basis D.

Example Let F be a field and let a, b ∈ F . Let B = {v1, v2, v3, v4} be the canonical
basis for F 4 over F . Define an operation • on B according to the multiplication
table:
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• v1 v2 v3 v4

v1 v1 v1 v3 v4

v2 v2 av1 v4 av3

v3 v3 −v4 bv1 −bv2

v4 v4 −av3 bv2 −abv1

and extend this operation to F 4 by setting

(
4∑

i=1

aivi

)

•
(

4∑

j=1

bjvj

)

=
4∑

i=1

4∑

j=1

aibj (vi • vj ).

Then F 4, together with this operation, is a unital associative algebra known as a
quaternion algebra over F , in which v1 is the identity element of for multiplication.
In the special case of F = R and a = b = −1, we get the algebra of real quaternions,
which is denoted by H. The algebra of real quaternions was first defined by Hamil-
ton in 1844 as a generalization of the field of complex numbers (and earlier studied
by Gauss, who did not publish his results). It is a division algebra over R since every
nonzero quaternion is a unit of H. These were subsequently generalized by Clifford
and used in his study of non-Euclidean spaces. Lately, they have also been used in
computer graphics and in signal analysis. If F is a field having characteristic p > 0,
quaternion algebras over F are not even entire. However, they arise naturally in the
theory of elliptic curves, and so are of great importance in cryptography. If p > 2,
then no quaternion algebras over F are commutative.

With kind permission of the Spe-
cial collections, Fine Arts Library,
Harvard University (Tait); With
kind permission of the London
Mathematical Society (Clifford).

Sir William Rowan Hamil-
ton, a nineteenth-century
Irish mathematician and
physicist, helped create ma-

trix theory in its modern formulation, together with Cayley and Sylvester. Hamilton was
the first to use the terms “vector” and “scalar” in an algebraic context. His championship of
quaternions as an alternative to vectors in physics was later taken up by Scottish mathemati-
cian Peter Guthrie Tait. The nineteenth-century British mathematician William Kingdon
Clifford was one of the first to argue that energy and matter were just different types of
curvature of space.

We now show that any vector space over a field F has a basis. Indeed, the fol-
lowing two propositions show somewhat stronger than that.
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Proposition 5.6 If V is a vector space finitely generated over a field F then
every finite generating set of V over F contains a basis of V .

Proof Let V be a vector space finitely generated over a field F and let D be a finite
generating set for V over F . If D is minimal among all generating sets for V , then
we know by Proposition 5.2 that it is a basis of V . If not, it properly contains other
generating sets for V over F , one of which, say E, has the fewest elements. Then
E cannot properly contain any other generating set for V over F , and so it must be
a basis of V . �

Proposition 5.7 If V is a vector space finitely generated over a field F then
every linearly-independent subset B of V is contained in a basis of V over F .

Proof By assumption, there exists a finite generating set {v1, . . . , vn} for V over F .
Let B be a linearly-independent subset of V . If vi ∈ FB for each 1 ≤ i ≤ n, then
FB = V , and B is itself a basis of V . Otherwise, let h = min{i | vi /∈ FB}. By
Proposition 5.3, the set D = B ∪{vh} is linearly independent. If it is a generating set
for V , then it is a basis and we are done. If not, let k = min{i | vi /∈ FD}, and replace
D by B ∪ {vh, vk}. Continuing in this manner, we see that after finitely-many steps
we obtain a basis of V . �

With kind permission of the Department of Mathematics, University of Torino, Italy.

The Italian mathematician Giuseppe Peano, best known for his ax-
iomatization of the natural numbers, was the first to prove that every
finitely-generated vector space has a basis at the end of the nineteenth
century. He also gave the final form for the definition of a vector space,
which we used above.

We now want to extend this result to vector spaces which are not finitely gener-
ated, and to do so we have to make use of an axiom of set theory known variously
as the Hausdorff Maximum Principle or Zorn’s Lemma. To state this principle, we
need another concept about partially-ordered sets. Let A be a set on which we have
defined a partial order �. A subset B of A is bounded if and only if there exists an
element a0 ∈ A satisfying b � a0 for all b ∈ B . Note that we do not require that a0
belong to B . The Hausdorff maximum principle then says that if A is a partially-
ordered set in which every chain subset is bounded, then A has a maximal element.
Again, this is not really a “principle” or a “lemma”; it is an axiom of set theory which
has been shown to be independent of the other (Zermelo–Fraenkel) axioms one usu-
ally assumes. Indeed, it is logically equivalent to the Axiom of Choice, which we
mentioned in Chap. 1 as being somewhat controversial among those mathematicians



68 5 Linear Independence and Dimension

dealing with the foundations of mathematics. However, in this book, we will assume
that it holds. Given that assumption, we can now extend Proposition 5.7.

With kind permission of the Hausdorff Research Institute for
Mathematics (Hausdorff); © Jens Zorn (Zorn).

Felix Hausdorff, one of the leading mathemati-
cians of the early twentieth century and one of the
founders of topology, died in a German concen-
tration camp in 1942. Max Zorn, a German math-
ematician who emigrated to the United States,
made skillful use of the Hausdorff Maximum
Principle in his research, turning it into an impor-
tant mathematical tool.

Proposition 5.8 If V is a vector space over a field F then every linearly-
independent subset B of V is contained in a basis of V .

Proof Let B be a linearly-independent subset of V and let P be the collection of
all linearly-independent subsets of V which contain B , which is partially-ordered
by inclusion, as usual. Then P is nonempty since B ∈ P . Let Q be a chain subset
of P . We want to prove that Q is bounded in P . That is to say, we want to find a
linearly independent subset E of V which contains every element of Q. Indeed, let
us take E to be the union of all of the elements of Q. To show that E is linearly
independent, it suffices to show that every finite subset of E is linearly independent.
Indeed, let {v1, . . . , vn} be a finite subset of E. Then for each 1 ≤ i ≤ n, there exists
an element Di of Q containing vi . Since Q is a chain, there exists an index h such
that Di ⊆ Dh for all 1 ≤ i ≤ n and so vi ∈ Dh for all 1 ≤ i ≤ n. Therefore, this set is
a subset of a linearly-independent set and so is linearly independent. Thus we have
shown that every chain subset of P is bounded and so, by the Hausdorff maximum
principle, the set P has a maximal element. In other words, there exists a maximal
linearly-independent subset of V containing B , and this, as we know, is a basis of
V over F . �

Taking the special case of B = ∅ in Proposition 5.8, we see that every vector
space has a basis. In the above proof we used the Axiom of Choice to prove this
statement. In fact, one can show something considerably stronger: in the presence
of the other generally-accepted axioms of set theory, the Axiom of Choice is equiv-
alent, in the sense of formal logic, to the statement that every vector space over any
field has a basis.
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© A. Blass.

The above result is due to the contemporary American mathematician,
Andreas Blass.

Example Consider the field R as a vector space over its subfield Q. A basis for
this space is known as a Hamel basis. By Proposition 5.8, we know that Hamel
bases exist, but nobody has been able to come up with a method of specifically
constructing one. The subset C of R consisting of all real numbers which can be
represented in the form

∑
i>0 ui3−i , where each ui is either 0 or 2, is called the

Cantor set, and it can be shown to be “sparse” (in a technical sense of the word we
won’t go into here) in the unit interval [0,1] in R. It is possible to show that there is
a Hamel basis of R contained in C.

The existence of Hamel bases leads to some very interesting results, as the fol-
lowing shows. Indeed, let H be a Hamel basis of R. If r ∈ R then we can write
r = ∑

a∈H qa(r)a, where qa(r) ∈ Q and there are only finitely-many elements
a ∈ H for which qa(r) �= 0. Since such a representation is unique, we see that

qa(b) =
{

1 if a = b,

0 otherwise

for a, b ∈ H . Moreover, if r, s ∈ R and a ∈ H then qa(r + s) = qa(r) + qa(s) so, if
a �= b are elements of H then for any r ∈ R we have qa(r + b) = qa(r) + qa(b) =
qa(r). Thus we see that the function qa ∈ R

R is periodic, with period b for any
b ∈ H � {a}, and its image is contained in Q. Moreover, if we pick two distinct
elements c and d of H , we see that for each r ∈ R, we have r = f (r) + g(r), where
f,g ∈ R

R are defined by f : r �→ qc(r)c and g : r �→ ∑
a∈H�{c} qa(r)a. By our

previous comments, f is periodic with period d and g is periodic with period c.
We conclude that the identity function in R

R is the sum of two periodic functions.
A somewhat more sophisticated argument along the same lines shows that any poly-
nomial function in R

R of degree n is the sum of n+1 periodic functions. Of course,
since we cannot specify H , there is no way of finding these periodic functions ex-
plicitly.

© Professor Richard von Mises.

The twentieth-century German mathematician Georg Hamel was a
student of Hilbert who worked primarily in function theory. In his later
years, he became notorious for his pro-Nazi views and activities.
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We have seen that a vector space over a field can have many bases. We want
to show next that if the vector space is finitely generated, then all of these bases
are finite and have the same number of elements. First, however, we must prove a
preliminary result.

Proposition 5.9 Let V be a vector space over a field F which is generated by
a finite set B = {v1, . . . , vn} and let D be a linearly independent set of vectors
in V . Then the number of elements in D is at most n.

Proof Suppose that D has a subset E = {w1, . . . ,wn+1} having more than n ele-
ments. Since this set must also be linearly independent, we know that none of the
wi equals 0V . For each 1 ≤ k ≤ n, set Dk = {w1, . . . ,wk, vk+1, . . . , vn}.

Since B is a generating set for V , we can find scalars a1, . . . , an, not all equal to 0,
such that w1 =∑n

i=1 aivi . In order to simplify our notation, we will renumber the
elements of B if necessary so that a1 �= 0. Then v1 = a−1

1 w1 −∑n
i=2 a−1

1 aivi and so
D ⊆ FD1. But D1 ⊆ V = FD and so V = FD1, by Proposition 3.6. Now assume
that 1 ≤ k < n and that we have already shown that V = FDk . Then there exist
scalars b1, . . . , bn, not all equal to 0, such that wk+1 =∑k

i=1 biwi +∑n
i=k+1 bivi .

If the scalars bk+1, . . . bn are all equal to 0, then we have shown that D is linearly
dependent, which is not the case. Therefore, at least one of them is nonzero and, by
renumbering if necessary, we can assume that bk+1 �= 0. Thus vk+1 = b−1

k+1wk+1 −
∑k

i=1 b−1
k+1biwi −∑n

i=k+2 b−1
k+1bivi and so, using the above reasoning, we get V =

FDk+1. Continuing in this manner, we see that after n steps we obtain V = FDn =
F {w1, . . . ,wn}. But then wn+1 ∈ F {w1, . . . ,wn} and so E is linearly dependent,
contrary to our assumption. This proves that D can have at most n elements. �

Proposition 5.10 Let V be a vector space finitely generated over a field F .
Then any two bases of V have the same number of elements.

Proof By hypothesis, there exists a finite generating set for V over F having, say,
n elements. If B is a basis of V then, by Proposition 5.9, we know that B has at
most n elements and so, in particular, is finite. Suppose B and B ′ are two bases
for V having h and k elements, respectively. Since B is linearly independent and
B ′ is a generating set, we know that h ≤ k. But, on the other hand, B ′ is linearly
independent and B is a generating set, so k ≤ h. Thus h = k. �

We should remark at this point that the assertion for linearly-dependent sets cor-
responding to Proposition 5.10 is not true. That is to say, a finite linearly-dependent
set of vectors may have two minimal linearly-dependent subsets with different num-
bers of elements. Indeed, there is no efficient algorithm to find such subsets of a
given linearly-dependent set. Minimal linearly-dependent sets of vectors are often
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called circuits because of applications to graph theory. We should also note that
Proposition 5.9 is a special case of a more general theorem: If V is a vector space
(not necessarily finitely generated) over a field F then there exists a bijective func-
tion between any two bases of V . The proof of this result makes use of techniques
from advanced set theory, such as transfinite induction.

If V is a vector space finitely generated over a field F then V is finite dimen-
sional and the number of elements in a basis of V is called the dimension of V

over F . If V is not finite dimensional, it is infinite dimensional. (In choosing this
latter terminology, we are deliberately skipping over the subject of various transfi-
nite dimensions, since the reader is not assumed to be familiar with the arithmetic
of transfinite cardinals. In certain mathematical contexts, distinction between infi-
nite dimensions—for example the distinction between spaces of countably-infinite
and uncountably-infinite dimension—can be very significant. We will not, however,
need it in this book.) We denote the dimension of V over F by dim(V ), or by
dimF (V ) when it is important to emphasize the field of scalars.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

The notion of dimension was implicit in the work of Peano, but was
redefined and studied in a comprehensive manner by the twentieth-
century German mathematician Hermann Weyl.

Notice that the proof of Proposition 5.9, which is in turn critical in proving Propo-
sition 5.10, uses the fact that every nonzero element of F has a multiplicative in-
verse, and this cannot be avoided. If we try to weaken the notion of a vector space
by allowing scalars to be, say, only integers, it may happen that such a space would
have two bases of different sizes and so we could no longer define the notion of
dimension in an obvious manner. We did not use, in an unavoidable manner, the
commutativity of scalar multiplication and so we could weaken our notion of a vec-
tor space to allow scalars which do not commute among themselves, such as scalars
coming from H. However, the generality thus gained does not seem to outweigh the
bother it causes, and so we will refrain from doing so. Thus, for us, the fact that
scalars always come from a field is critical in the development of our theory.

Example If F is a field then dim(F n) = n for every positive integer n, since the
canonical basis of Fn has n elements. Similarly, if k and n are positive integers then
dimF (Mk×n(F )) = kn, since the canonical basis of Mk×n(F ) has kn elements.
The dimension of the space F [X] is infinite since the canonical basis of F [X] has
infinitely-many elements.

Example If F is a field and n is a positive integer, then the set W of all polynomials
in F [X] having degree at most n is a subspace of F [X] having dimension n + 1,
since {1,X, . . . ,Xn} is a basis of W having n + 1 elements.
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Example Let V be a vector space over R, Then Y = V 2 is a vector space over R,
but it also has the structure of a vector space over C with the same addition and

with scalar multiplication given by (a + bi)

[
v1
v2

]

=
[
av1 − bv2
bv1 + av2

]

. This space is

called the complexification of V . If B is a basis for V over R then it is easy to check

that

{[
v

0V

] ∣
∣
∣
∣ v ∈ B

}

is a basis for Y over C. Thus, in particular, if V is finitely

generated over R then Y is finitely generated over C and dimR(V ) = dimC(Y ).

With kind permission of UC Berkeley.

Complexification of real vector spaces was first used extensively by
the twentieth-century American mathematician Angus Taylor.

Example The dimension of R over itself is 1. Since {1, i} is a basis of C as a vector
space over R, we see that dimR(C) = 2 and so there cannot be a proper subfield F

of C properly containing R. Indeed, if there were such a field, its dimension over R
would have to be greater than 1 and less than 2 (else it would be equal to C), which
is impossible. Clearly, dimR(H) = 4. It turns out that the only possible dimensions
of division R-algebras are 1, 2, 4, and 8. The dimension 8 case is realized by a (non-
associative) Cayley algebra over R, as defined in Chap. 15. There are no associative
division algebras of dimension 8 over R.

With kind permission of the
Archives of the Mathematisches
Forschungsinstitut Oberwolfach.

The twentieth-century Ger-
man mathematician Heinz
Hopf used algebraic topology
to prove that the only pos-
sible dimensions of division

R-algebras were powers of 2, and the final result was obtained by the twentieth-century
American mathematician Raoul Bott and contemporary American mathematician John
Milnor, again using non-algebraic tools.

Example Let F be a field, let (K,•) be an associative unital F -algebra, and let
v ∈ K . If p(X) =∑∞

i=0 aiX
i ∈ F [X], then p(v) =∑∞

i=0 aiv
i is an element of K

and the set of all elements of K of this form is an F -subalgebra of K , which is in fact
commutative, even though K itself may not be. We will denote this algebra by F [v].
If the dimension of F [v], considered as a vector space over F , is finite, we know that
there must exist a polynomial p(X) ∈ F [X] of positive degree satisfying p(v) = 0K .
In that case, we say that v is algebraic over F . Otherwise, if the dimension of F [v]
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is infinite, we say v is transcendental over F . Thus, for example, the real numbers
π and e (the base of the natural logarithms) are transcendental over Q. If F is a
subfield of a field K then the set L of all elements of K which are algebraic over F

is a subfield of K . Moreover, if K is algebraically closed, so is L, and in fact L is
the smallest algebraically-closed subfield of K containing F . In particular, we can
consider the field of all complex numbers algebraic over Q. This is a proper subfield
of C, known as the field of algebraic numbers.

With kind permission of the Archives of the Mathematis-
ches Forschungsinstitut Oberwolfach.

The transcendence of π was proven by German
mathematician Ferdinand von Lindemann in
1882. The transcendence of e was proven by
French mathematician Charles Hermite in 1873.
As we shall see later, Hermite made many impor-
tant contributions to linear algebra.

From the definition of dimension we see that if V is a vector space of finite
dimension n over a field F then:
(1) Every subset of V having more than n elements must be linearly dependent;
(2) There exists a linearly-independent subset B of V having precisely n elements;
(3) If B is as in (2) then B is also a generating set of V over F .

Proposition 5.11 Let V be a vector space finitely generated over a field F

and let W be a subspace of V . Then:
(1) W is finitely generated over F ;
(2) Every basis of W can be extended to a basis of V ;
(3) dim(W) ≤ dim(V ), with equality when and only when W = V .

Proof Let n = dim(V ).
(1) If W is not finitely generated, then, as we remarked after Proposition 5.3,

W has a linearly-independent subset B having n + 1 elements. But B is also a
subset of V , contradicting the assumption that dim(V ) = n.

(2) Let B be a basis of W . Then B is as linearly-independent set of elements of
V and so, by Proposition 5.7, can be extended to a basis of V .

(3) By (2), we see that the number of elements of a basis of W can be no greater
than the number of elements of a basis of V , and so dim(W) ≤ dim(V ). Moreover, if
we have equality then any basis B of W is also a basis of V , and so W = FB = V . �

We now want to extend the notion of linear independence. Let U and W be sub-
spaces of a vector space V over a field F . Any vector v ∈ U + W can be written in
the form u + w, where u ∈ U and w ∈ W , but there is no reason for this represen-
tation to be unique. It will be unique, however, if U and W are disjoint. Indeed, if
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this condition holds and if u,u′ ∈ U and w,w′ ∈ W satisfy u + w = u′ + w′, then
u − u′ = w′ − w ∈ U ∩ W and so u − u′ = 0V = w − w′, which in turn implies that
u = u′ and w = w′. To emphasize the importance of this situation, we will introduce
new notation: if U and W are disjoint subspaces of a vector space V over a field F ,
we will write U ⊕ W instead of U + W . The subspace U ⊕ W is called the direct
sum of U and W . We note that, by this definition, U ⊕{0V } = U for every subspace
U of V .

Example It is easy to see that R2 = R

[
1
0

]

⊕R

[
0
1

]

.

Of course, we would like to extend the notion of direct sum to cover more than
two subspaces. In general, if V is a vector space over a field F , then a collection
{Wh | h ∈ Ω} of subspaces of V is independent if and only if it satisfies the following
condition: If Λ is a finite subset of Ω and if we choose elements wh ∈ Wh for all
h ∈ Λ, then

∑
h∈Λ wh = 0V when and only when wh = 0V for each h ∈ Λ. Thus

we see that an infinite collection of subspaces is independent if and only if every
finite nonempty subcollection is independent. Clearly, a subset D of a vector space
V over a field F is linearly independent if and only if the collection of subspaces
{Fv | v ∈ D} is independent.

Proposition 5.12 Let V be a vector space over a field F and let W1, . . . ,Wn

be distinct subspaces of V . Then the following conditions are equivalent:
(1) {W1, . . . ,Wn} is independent;
(2) Every vector w ∈∑n

i=1 Wi can be written as w1 +· · ·+wn, with wi ∈ Wi

for each 1 ≤ i ≤ n, in exactly one way;
(3) Wh and

∑
i �=h Wi are disjoint, for each 1 ≤ h ≤ n.

Proof (1) ⇒ (2): Let w ∈∑n
i=1 Wi and assume that we can write w = w1 + · · · +

wn = y1 +· · ·+yn, where wi, yi ∈ Wi for each 1 ≤ i ≤ n. Then
∑n

i=1(wi − yi) = 0V

and so, by (i), it follows that wi − yi = 0V for each 1 ≤ i ≤ n, proving (2).
(2) ⇒ (3): Assume that 0V �= wh ∈ Wh ∩∑i �=h Wi . Then for each i �= h there

exists an element wi ∈ Wi satisfying wh =∑
i �=h wi , contradicting (2).

(3) ⇒ (1): Suppose we can write w1 + · · · + wn = 0V , where wi ∈ Wi for each
1 ≤ i ≤ n, and where wh �= 0V for some h. Then wh = −∑i �=h wi ∈ Wh∩∑i �=h Wi ,
and this contradicts (3). Thus (1) must hold. �

If V is a vector space over a field F and if {Wi | i ∈ Ω} is an independent collec-
tion of subspaces of V , we write

⊕
i∈Ω Wi instead of

∑
i∈Ω Wi . If Ω = {1, . . . , n},

we will also write this sum as W1 ⊕ · · · ⊕ Wn. If V =⊕
i∈Ω Wi , then we say that V

has a direct-sum decomposition relative to the subspaces Wi .

Example If B is a basis of a vector space V over a field F then V =⊕
v∈B Fv.
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The importance of direct-sum decompositions is illustrated by the following re-
sult.

Proposition 5.13 Let V be a vector space over a field F , let {Wi | i ∈ Ω} be
a pairwise disjoint collection of subspaces of V and, for each i ∈ Ω , let Bi be
a basis of Wi . Then V =⊕

i∈ΩWi
if and only if B =⋃

i∈Ω Bi is a basis of V .

Proof Assume V = ⊕
i∈Ω Wi and let v ∈ V . Then there exists a finite subset Λ

of Ω such that v ∈⊕i∈Λ Wi , and so for each i ∈ Λ there is an element wi ∈ Wi

satisfying v = ∑
i∈Λ wi . Moreover, each wi is a linear combination of elements

of Bi . Thus v is a linear combination of elements of B , and so B is a generating
set for V . We are left to show that B is linearly independent. If this is not the case,
then there exist an element h of Ω , vectors y1, . . . , yt in Bh, and scalars a1, . . . , at

in F , not all of which equal to 0, such that
∑t

j=1 ajvj + u = 0V , where u is a

linear combination of elements of
⋃

i �=h Bi . But then
∑t

j=1 ajvj ∈ Wh ∩∑i �=h Wi ,
contradicting our initial assumption. Thus B =⋃

i∈Ω Bi .
Conversely, if B = ⋃

i∈Ω Bi , it then follows that every element of V can be
written in a unique way as

∑
i∈Λ wi , where Λ is some finite subset of Ω , which

suffices to prove that V =⊕
i∈Ω Wi . �

Let W be a subspace of a vector space V over a field F . A subspace Y of V is a
complement of W in V if and only if V = W ⊕ Y . We immediately note that if Y is
a complement of W in V then W is a complement of Y in V . In general, a subspace
of a vector space can have many complements.

Example Each of the following subspaces of R
2 is a complement of each of the

others in R
2:

W1 =
{[

a

0

] ∣
∣
∣
∣ a ∈ R

}

; W2 =
{[

0
b

] ∣
∣
∣
∣ b ∈R

}

;

W3 =
{[

c

c

] ∣
∣
∣
∣ c ∈R

}

; and W4 =
{[

d

2d

] ∣
∣
∣
∣ d ∈R

}

.

Proposition 5.14 Every subspace W of a vector space V over a field F has
at least one complement in V .

Proof If W is improper, then {0V } is a complement of W in V . Similarly, V is a
complement of {0V } in V . Otherwise, let B be a basis of W . By Proposition 5.8, we
know that there exists a linearly-independent subset D of V such that B ∪ D is a
basis of V . Then FD is a complement of W in V . �
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Example Let F be a field of characteristic other than 2, let n be a positive integer,
and let V be a vector space over F . Let W = Mn×n(V ), which is also a vector
space over F . Let W1 be the set of all those matrices A = [vij ] in W satisfying
vij = vji for all 1 ≤ i, j ≤ n, and let W2 be the set of all those matrices A = [vij ]
in W satisfying vij = −vji for all 1 ≤ i, j ≤ n. These two subspaces are disjoint. If
A = [vij ] is an arbitrary matrix in W , then we can write A = B +C, where B = [yij ]
is the matrix defined by yij = 1

2 (vij + vji) for all 1 ≤ i, j ≤ n, and C = [zij ] is the
matrix defined by zij = 1

2 (vij − vji) for all 1 ≤ i, j ≤ n. Note that A ∈ W1 and
B ∈ W2. Thus V = W1 ⊕ W2.

Example A function f ∈ R
R is even if and only if f (a) = f (−a) for all a ∈ R; it

is odd if and only if f (a) = −f (−a) for all a ∈ R. The set W of all even functions
is clearly a subspace of R

R, as is the set Y of all odd functions, and these two
subspaces are disjoint. Moreover, if f ∈ R

R then f = f1 + f2, where the function
f1 : x �→ 1

2 [f (x) + f (−x)] is in W and the function f2 : x �→ 1
2 [f (x) − f (−x)] is

in Y . Thus Y is a complement of W in R
R.

Proposition 5.15 Let F be a field which is not finite and let V be a vector
space over F having dimension at least 2. Then every proper nontrivial sub-
space W of V has infinitely-many complements in V .

Proof By Proposition 5.14, we know that W has at least one complement U in V .
Choose a basis B for U . If 0V �= w ∈ W , then by Proposition 3.2(9) and the fact
that F is infinite, we know that Fw is an infinite subset of W . Thus we know that
the set W is infinite. For each w ∈ W , let Yw = F {u + w | u ∈ B}. We claim that
each of these spaces is a complement of W in V . Indeed, assume that v ∈ W ∩ Yw .
Then there exist elements u1, . . . , un of B and scalars c1, . . . , cn in F satisfying
v = ∑n

i=1 ci(ui + w). But then
∑n

i=1 ciui = v − (
∑n

i=1 ci)w ∈ W ∩ U = {0V }
and since the set {u1, . . . , un} is linearly independent, we see that ci = 0 for all i.
This shows that v = 0V , and we have thus shown that W and Yw are disjoint. If
v is an arbitrary element of V , let us write v = x + (

∑n
i=1 ciui), where x ∈ W ,

the vectors u1, . . . , un belong to B , and the scalars c1, . . . , cn belong to F . Then
v = [x − (

∑n
i=1 ci)w] +∑n

i=1 ci(ui + w) ∈ W + Yw and thus we have shown that
V = W + Yw and so Yw is a complement of W in V .

We are left to show that all of these complements are indeed different from each
other. Indeed, assume that w �= x are elements of W satisfying Yw = Yx . If u ∈ B

then there exist elements u1, . . . , un of B and scalars c1, . . . , cn such that u + w =
∑n

i=1 ci(ui + x). From this it follows that u −∑n
i=1 ciui = (

∑n
i=1 ci)x − w and

this belongs to W ∩ Yw = {0V }. But B is a linearly-independent set and so u has to
equal to one of the uh for some 1 ≤ h ≤ n, and we must have ci = 0 for i �= h and
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ch = 1. Hence x − w = 0V , namely x = w. This is a contradiction, and so the Yw

must all be distinct. �

Proposition 5.16 (Grassmann’s Theorem) Let V be a vector space over a
field F and let W and Y be subspaces of V satisfying the condition that W +Y

has finite dimension. Then dim(W + Y) = dim(W) + dim(Y ) − dim(W ∩ Y).

Proof Let U0 = W ∩ Y , which is a subspace both of W and of Y . In particular, U0

has a complement U1 in W and a complement U2 in Y . Then W + Y = U0 + U1 +
U2. We claim that in fact W + Y = U0 ⊕ U1 ⊕ U2. Indeed, assume that u0 + u1 +
u2 = 0V , where uj ∈ Uj for j = 0,1,2. Then u1 = −u2 − u0 ∈ W ∩ Y = U0. But
U0 and U1 are disjoint and so u1 = 0V . Therefore, u0 = −u2 ∈ U0 ∩ U2 = {0V }.
Therefore, u0 = 0V and u2 = 0V as well. Thus we see that the set {U0,U1,U2} is
independent. Therefore, from the definition of the complement, we have

dim(W + Y) = dim(U0) + dim(U1) + dim(U2) = dim(W) + dim(U2)

and this equals dim(W) + dim(Y ) − dim(W ∩ Y) since Y = U2 ⊕ (W ∩ Y). �

Example Consider the subspaces

W1 = R

⎧
⎨

⎩

⎡

⎣
1
0
2

⎤

⎦ ,

⎡

⎣
1
2
2

⎤

⎦

⎫
⎬

⎭
and W2 = R

⎧
⎨

⎩

⎡

⎣
1
1
0

⎤

⎦ ,

⎡

⎣
0
1
1

⎤

⎦

⎫
⎬

⎭

of R
3. Each one of these subspaces has dimension 2, and so we see that 2 ≤

dim(W1 + W2) ≤ 3. By Proposition 5.16, we see that, as a result of this, we have
1 ≤ dim(W1 ∩ W2) ≤ 2. In order to ascertain the exact dimension of W1 ∩ W2,
we must find a basis for it. If v ∈ W1 ∩ W2 then there exist scalars a, b, c, d sat-

isfying a

⎡

⎣
1
0
2

⎤

⎦ + b

⎡

⎣
1
2
2

⎤

⎦ = c

⎡

⎣
1
1
0

⎤

⎦ + d

⎡

⎣
0
1
1

⎤

⎦, and so a + b = c, 2b = c + d , and

2a + 2b = d , from which we conclude that b = −3a, c = −2a, and d = −4a. Thus

v has to be of the form (−2a)

⎡

⎣
1
1
0

⎤

⎦+ (−4a)

⎡

⎣
0
1
1

⎤

⎦ = a

⎡

⎣
−2
−6
−4

⎤

⎦, which shows that

W1 ∩ W2 = R

⎡

⎣
−2
−6
−4

⎤

⎦, and so it has dimension 1.

Very often, we can reduce our computations by passing to complements. A good
example of this is given by the following proposition.
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Proposition 5.17 Let V be a vector space over a field F and let W be a
subspace of V having a complement Y in V . Let {v1, . . . , vn} be a subset
of V and, for each 1 ≤ i ≤ n, let vi = wi + yi , where wi ∈ W and yi ∈ Y .
If the vectors w1, . . . ,wn are distinct and the set {w1, . . . ,wn} is linearly
independent, then so is the set {v1, . . . , vn}.

Proof Assume that there exist scalars a1, . . . , an satisfying
∑n

i=1 aivi = 0V . Then∑n
i=1 aiwi +∑n

i=1 aiyi = 0V , and so
∑n

i=1 aiwi =∑n
i=1 aiyi = 0V . Since the vec-

tors w1, . . . ,wn are distinct and {w1, . . . ,wn} is linearly independent, we must have
a1 = · · · = an = 0, and so {v1, . . . , vn} is linearly independent as well. �

Exercises

Exercise 158
Let v1, v2, and v3 be distinct elements of a vector space V over a field
F and let c1, c2, c3 ∈ F . Under what conditions is the subset {c2v3 − c3v2,

c1v2 − c2v1, c3v1 − c1v3} of V linearly dependent?

Exercise 159
For which values of the real number t is the subset

{[
cos(t) + i sin(t)

1

]

,

[
1

cos(t) − i sin(t)

]}

of C2 linearly dependent?

Exercise 160
Let F be a field and let V be the subspace of F [X] consisting of all those
polynomials of degree at most 4. Let p1(X), . . . ,p5(X) be distinct polynomi-
als in V satisfying the condition that pi(0) = 1 for each 1 ≤ i ≤ 5. Is the set
{p1(X), . . . ,p5(X)} necessarily linearly dependent?

Exercise 161
Consider the functions f : x �→ 5x and g : x �→ 52x . Is {f,g} a linearly-
dependent subset of RR?

Exercise 162

Find a, b ∈ Q such that the subset

⎧
⎨

⎩

⎡

⎣
2

a − b

1

⎤

⎦ ,

⎡

⎣
a

b

3

⎤

⎦

⎫
⎬

⎭
of Q3 is linearly depen-

dent.
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Exercise 163

Let F = Q. Is the subset

⎧
⎨

⎩

⎡

⎣
4
2
1

⎤

⎦ ,

⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
1
3
4

⎤

⎦

⎫
⎬

⎭
of F 3 linearly independent?

What happens if F = GF(5)?

Exercise 164
Let V be a vector space over a field F and let n > 1 be an integer. Let Y be the

set of all vectors

⎡

⎢
⎣

v1
...

vn

⎤

⎥
⎦ ∈ V n satisfying the condition that the set {v1, . . . , vn} is

linearly dependent. Is Y necessarily a subspace of V n?

Exercise 165

Is the subset

⎧
⎨

⎩

⎡

⎣
1 + i

3 + 8i

5 + 7i

⎤

⎦ ,

⎡

⎣
1 − i

5
2 + i

⎤

⎦ ,

⎡

⎣
1 + i

3 + 2i

4 − i

⎤

⎦

⎫
⎬

⎭
of C

3 linearly independent

when we consider C3 as a vector space over C? Is it linearly independent when
we consider C3 as a vector space over R?

Exercise 166
For each nonnegative integer n, let fn ∈ R

R be the function defined by fn : x �→
sinn(x). Is the subset {fn | n ≥ 0} of RR linearly independent?

Exercise 167
Let V = C(−1,1), which is a vector space over R. Let f,g ∈ V be the functions
defined by f : x �→ x2 and g : x �→ |x|x. Is {f,g} linearly independent?

Exercise 168
Let V be a vector space over GF(5) and let v1, v2, v3 ∈ V . Is the subset
{v1 + v2, v1 − v2 + v3,2v2 + v3, v2 + v3} of V linearly independent?

Exercise 169
Let F be a field of characteristic different from 2 and let V be a vector space
over F containing a linearly-independent subset {v1, v2, v3}. Show that the set
{v1 + v2, v2 + v3, v1 + v3} is also linearly independent.

Exercise 170

Is the subset

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

1
1
2
2

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1
2
1
2

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1
1
1
2

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

0
2
2
0

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

of GF(3)4 linearly independent?



80 5 Linear Independence and Dimension

Exercise 171

Let t ≤ n be positive integers and, for all 1 ≤ i ≤ t , let vi =
⎡

⎢
⎣

ai1
...

ain

⎤

⎥
⎦ be a vector in

R
n chosen so that 2|ajj | >

∑t
i=1 |aij | for all 1 ≤ j ≤ n. Show that {v1, . . . , vt }

is linearly independent.

Exercise 172
If {v1, v2, v3, v4} is a linearly-independent subset of a vector space V over the
field Q, is the set

{3v1 + 2v2 + v3 + v4,2v1 + 5v2,3v3 + 2v4,3v1 + 4v2 + 2v3 + 3v4}

linearly independent as well?

Exercise 173
Let A be a subset of R having at least three elements and let f1, f2, f3 ∈ R

A

be the functions defined by fi : x �→ xi−12x−1. Is the set {f1, f2, f3} linearly
independent?

Exercise 174
Let F = GF(5) and let V = FF , which is a vector space over F . Let f : x �→ x2

and g : x �→ x3 be elements of V . Find an element h of V such that {f,g,h} is
linearly independent.

Exercise 175
Consider R as a vector space over Q. Is the subset {(a − π)−1 | a ∈ Q} of this
space linearly independent?

Exercise 176
In the vector space V = R

R over R, consider the functions f1 : x �→ ln((x2 +
1)3(x4 + 7)−1), f2 : x �→ ln(

√
x2 + 1), and f3 : x �→ ln(x4 + 7). Is the subset

{f1, f2, f3} of V linearly independent?

Exercise 177

Show that the subset

⎧
⎨

⎩

⎡

⎣
1
2
0

⎤

⎦ ,

⎡

⎣
0
1
2

⎤

⎦ ,

⎡

⎣
2
0
1

⎤

⎦

⎫
⎬

⎭
of GF(p)3 is linearly independent

if and only if p �= 3.

Exercise 178
Let F be a subfield of a field K and let n be a positive integer. Show that a
nonempty linearly-independent subset D of Fn remains linearly independent
when considered as a subset of Kn.
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Exercise 179
Let F = GF(5) and let V = FF . For 4 ≤ k ≤ 7, let fk ∈ V be defined by fk :
a �→ ak . Is the subset {fk | 4 ≤ k ≤ 7} of V linearly independent?

Exercise 180
Let V be a vector space over R. For vectors v �= w in V , let K(v,w) be the
set of all vectors in V of the form (1 − a)v + aw, where 0 ≤ a ≤ 1. Given
vectors v,w,y ∈ V satisfying the condition that the set {w − v, y − v} is linearly
independent (and so, in particular, its elements are distinct), show that the set

K

(

v,
1

2
(w + y)

)

∩ K

(

w,
1

2
(v + y)

)

∩ K

(

y,
1

2
(v + w)

)

is nonempty, and determine how many elements it can have.

Exercise 181
Let V be a vector space finitely generated over a field F and let B = {v1, . . . , vn}
be a basis for V . Let y ∈ V � B . Show that the set {v1, . . . , vn, y} has a unique
minimal linearly-dependent subset.

Exercise 182
Find all of the minimal linearly-dependent subsets of the subset

{[
1
0

]

,

[
0
4

]

,

[
0
0

]

,

[
2
0

]

,

[
2
2

]}

of Q2.

Exercise 183
Let V be a vector space over a field F and let D and D′ be distinct finite minimal
linearly-dependent subsets of V which are not disjoint. If v ∈ D ∩ D′, show that
(D ∪ D′)� {v} is linearly dependent.

Exercise 184
Let F be a field of characteristic other than 2. Let V be the subspace of F [X]
consisting of all polynomials of degree at most 3. Is {X + 2,X2 + 1,X3 + X2,

X3 − X2} a basis of V ?

Exercise 185
Let {v1, . . . , vn} be a basis for a vector space V over a field F . Is the set
{v1 + v2, v2 + v3, . . . , vn−1 + vn, vn + v1} necessarily also a basis for V over F ?

Exercise 186
Is {1 + 2

√
5, − 3 + √

5} a basis for Q(
√

5) as a vector space over Q?
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Exercise 187
For which values of a ∈ R is the set

{[
a 2a

2 3a

]

,

[
1 2

2a 3

]

,

[
1 2a

a + 1 a + 2

]

,

[
1 a + 1
2 2a + 1

]}

a basis for M2×2(R) as a vector space over R?

Exercise 188
Let F be an algebraically-closed field and let (K,•) be an associative F -algebra
having a basis {v1, v2} as a vector space over F . Show that v2

2 = v2 or v2
2 = 0K .

Exercise 189
Let V be a vector space over a field F . A nonempty subset U of V is nearly
linearly independent if and only if U is linearly dependent but U � {u} is lin-
early independent for every u ∈ U . Find an example of a set of three vectors
in R

3 which is nearly linearly independent. Does there exist a nearly linearly
independent subset of R3 having four elements?

Exercise 190
Find a basis for the subspace W of R4 generated by

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

4
2
6

−2

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1
−1

3
−1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1
2
0
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1
5

−3
1

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

.

Exercise 191
For each real number a, let fa ∈ R

R be defined by

fa : r �→
{

1 if r = a,

0 otherwise.

Is {fa | a ∈R} a basis for RR over R?

Exercise 192
Let A be a nonempty finite set and let V be the collection of all subsets of A,
which is a vector space over GF(2). For each a ∈ A, let va = {a}. Is {va | a ∈ A}
a basis for V ?

Exercise 193

Show that

{[
1 0
0 1

]

,

[
0 1
1 0

]

,

[
0 −i

i 0

]

,

[
1 0
0 −1

]}

is a basis for the vector

space M2×2(C) over C. (The last three of these matrices are known as the Pauli
matrices and play a very important part in the formulation of quantum physics.
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Exercise 194
Let F be a field and let a, b, c ∈ F . Determine whether

⎧
⎨

⎩

⎡

⎣
1
a

b

⎤

⎦ ,

⎡

⎣
0
1
c

⎤

⎦ ,

⎡

⎣
0
0

a + b + c

⎤

⎦

⎫
⎬

⎭

is a basis for F 3.

Exercise 195
Let V be a vector space finitely generated over a field F having a basis
{v1, . . . , vn}. Is {v1,

∑2
i=1 vi, . . . ,

∑n
i=1 vi} necessarily a basis for V ?

Exercise 196
Let F = GF(p) for some prime integer p, let n be a positive integer, and let V be
a vector space of dimension n over F . In how many ways can we choose a basis
for V ?

Exercise 197
Let V be a three-dimensional vector space over a field F , with basis {v1, v2, v3}.
Is {v1 + v2, v2 + v3, v1 − v3} a basis for V ?

Exercise 198
Let V be a vector space of finite dimension n over C having basis {v1, . . . , vn}.
Show that {v1, . . . , vn, iv1, . . . , ivn} is a basis for V , considered as a vector space
over R.

Exercise 199
Let V be a vector space of finite dimension n > 0 over R and, for each positive
integer i, let Ui be a proper subspace of V . Show that V �=⋃∞

i=1 Ui .

Exercise 200
Let V be a vector space over a field F which is not finite dimensional, and
let W be a proper subspace of V . Show that there exists an infinite collection
{Y1, Y2, . . .} of subspaces of V satisfying

⋂∞
i=1 Yi ⊆ W but

⋂n
i=1 Yi � W for all

n ≥ 1.

Exercise 201
Let V be the subspace of R[X] consisting of all polynomials of degree at most 5,
and let A = {X5 + X4,X5 − 7X3,X5 − 1,X5 + 3X}. Show that this subset of V

is linearly independent and extend it to a basis of V .

Exercise 202
Let V be a vector space of finite dimension n over a field F , and let W be a
subspace of V of dimension n − 1. If U is a subspace of V not contained in W ,
show that dim(W ∩ U) = dim(U) − 1.
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Exercise 203
Let a, b, c, d be rational numbers such that {a + c

√
3, b + d

√
3} is a basis for

Q(
√

3) as a vector space over Q. Is {c + a
√

3, d + b
√

3} a basis for Q(
√

3) as a
vector space over Q? Is {a + c

√
5, b + d

√
5} a basis for Q(

√
5) as a vector space

over Q?

Exercise 204
Find a real number a such that

dim

⎛

⎜
⎜
⎜
⎜
⎝
R

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎣

−9
a

−1
−5

−14

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎣

2
−5

3
0
2

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎣

1
4

−1
1
2

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎣

3
−1

2
1
4

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎣

−1
9

−4
1
0

⎤

⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎞

⎟
⎟
⎟
⎟
⎠

= 2.

Exercise 205

Let W = R

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

2
1
3
1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1
2
0
1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

−1
1

−3
0

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

⊆ R
4. Determine the dimension of W and

find a basis for it.

Exercise 206
Consider the vectors

v1 =

⎡

⎢
⎢
⎢
⎢
⎣

0
1
0
1
0

⎤

⎥
⎥
⎥
⎥
⎦

, v2 =

⎡

⎢
⎢
⎢
⎢
⎣

7
4
1
8
3

⎤

⎥
⎥
⎥
⎥
⎦

, v3 =

⎡

⎢
⎢
⎢
⎢
⎣

0
3
0
4
0

⎤

⎥
⎥
⎥
⎥
⎦

, v4 =

⎡

⎢
⎢
⎢
⎢
⎣

1
9
5
7
1

⎤

⎥
⎥
⎥
⎥
⎦

, and v5 =

⎡

⎢
⎢
⎢
⎢
⎣

0
1
0
5
0

⎤

⎥
⎥
⎥
⎥
⎦

in the vector space Q5. Do there exist rational numbers aij , for 1 ≤ i, j ≤ 5, such
that the subset {∑5

j=1 aij vj | 1 ≤ i ≤ 5} of Q5 is linearly independent?

Exercise 207
Let F be a subfield of a field K satisfying the condition that K is finitely gener-
ated as a vector space over F . For each c ∈ K , show that there exists a nonzero
polynomial p(X) ∈ F [X] satisfying p(c) = 0.

Exercise 208

Let W = R

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

1
2
1
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

−1
1
1
1

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

⊆ R
4 and let V = R

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

2
−1

0
1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

−5
6
3
0

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

. Com-

pute dim(W + V ) and dim(W ∩ V ).
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Exercise 209
Let F be a subfield of a field K satisfying the condition that the dimension of K

as a vector space over F is finite and equal to r . Let V be a vector space of finite
dimension n > 0 over K . Find the dimension of V as a vector space over F .

Exercise 210
Let V be a vector space over a field F having infinite dimension over F . Show
that there exists an infinite sequence W1,W2, . . . of proper subspaces of V , satis-
fying

⋃∞
i=1 Wi = V .

Exercise 211
Let F = GF(p), where p is a prime integer, and let V be a vector space over F

having finite dimension n. How many subspaces of dimension 1 does V have?

Exercise 212
Let W be the subset of R

R consisting of all functions of the form x �→
a · cos(x − b), for real numbers a and b. Show that W is a subspace of RR and
find its dimension.

Exercise 213

Let W = R

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

4
3
2
1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

6
2
2
2

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1
1
1
2

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

⊆ R
4 and let Y = R

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

4
−2

0
−2

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1
0
3
2

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

⊆ R
4.

Find dim(W + Y) and dim(W ∩ Y).

Exercise 214
Let V be a vector space of finite dimension n over a field F and let W and Y be
distinct subspaces of V , each of dimension n − 1. What is dim(W ∩ Y)?

Exercise 215
Let V be a finite-dimensional vector space over a field F and let B be a basis of

V such that

{[
w

w

] ∣
∣
∣
∣ w ∈ B

}

is a basis for V 2. What is the dimension of V ?

Exercise 216
Let F be a field and let V be the subspace of F [X] consisting of all polynomials
of degree at most 4. Find a complement for V in F [X].

Exercise 217
Let F be a field and let V be the subspace of F [X] consisting of all polynomials
of the form (X3 + X + 1)p(X) for some p(X) ∈ F [X]. Find a complement for
V in F [X].
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Exercise 218
Let B be a nonempty proper subset of a set A. Let F be a field and let V = FA.
Let W be the subspace of V consisting of all those functions f ∈ V satisfying
f (b) = 0 for all b ∈ B . Find a complement of W in V .

Exercise 219
Let F be a field of characteristic other than 2, let V be a vector space over F , and

let U =
⎧
⎨

⎩

⎡

⎣
v

v′
v + v′

⎤

⎦

∣
∣
∣
∣
∣
∣
v, v′ ∈ V

⎫
⎬

⎭
⊆ V 3. Is Y =

⎧
⎨

⎩

⎡

⎣
v

v

v

⎤

⎦

∣
∣
∣
∣
∣
∣
v ∈ V

⎫
⎬

⎭
a complement

of U in V ?

Exercise 220
Let F be a field and let p(X) ∈ F [X] have positive degree k. Let W be the
subspace of F [X] composed of all polynomials of the form p(X)g(X) for some
g(X) ∈ F [X]. Show that W has a complement in F [X] of dimension k.

Exercise 221
Let V be a vector space over a field F which is not finite dimensional, and let
V ⊃ W1 ⊃ W2 ⊃ · · · be a chain of subspaces of V , each properly contained in
the one before it. Is the subspace

⋂∞
i=1 Wi of V necessarily finite-dimensional?

Exercise 222
Let V be a vector space finitely generated over a field F . Let W and Y be
subspaces of V and assume that there is a function f ∈ FV satisfying the
condition that f (w) < f (y) for all 0V �= w ∈ W and 0V �= y ∈ Y . Show that
dim(W) + dim(Y ) ≤ dim(V ).

Exercise 223
Let (K,•) be a division algebra of dimension 2 over R containing an element
v1 which satisfies the condition that v1 • v = v = v • v1 for all v ∈ V . Show that
(K,+,•) is a field.

Exercise 224
For each a ∈ R, the set Q[a] = {p(a) | p(X) ∈ Q[X]} is a subspace of R, con-
sidered as a vector space over Q. Find all pairs (a, b) of real numbers a �= b

satisfying the condition that the set {Q[a],Q[b]} is independent over Q.

Exercise 225
Let V be a vector space over a field F . Find a necessary and sufficient condition
for there to exist subspaces W and W ′ of V such that {{0V },W,W ′} is indepen-
dent.

Exercise 226
Let (K,•) be a unital R-algebra (not necessarily associative) with multiplicative
identity e, and let {vi | i ∈ Ω} be a basis for K over R containing e (which is
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equal to vt for some t ∈ Ω). If v =∑
i∈Ω civi ∈ K , set v = ctvt −∑

i �=t civi .

If v ∈ K , is it true that v • v = v • v and v = v? (Note that this construction
generalizes the notion of the conjugate of a complex number.)

Exercise 227
For each nonnegative integer n, define the subsets Pn, An, and Fn of R as fol-
lows:
(1) P0 = ∅, A0 = {1}, and F0 = Q;
(2) If n > 0, then Pn is the set of the first n prime integers, An consists of 1 and

the set of square roots of products of distinct elements of Pn, and Fn = QAn.
Show that each An is a linearly-independent subset of R, considered as a vector
space over Q, and that Fn is a subfield of R, having the property that every
element of Fn the square of which belongs to Q must belong to Qa, for some
a ∈ An.

Exercise 228
Find all a ∈ R (if any exist) satisfying the condition that the dimension of

R

⎧
⎨

⎩

⎡

⎣
−1
2a

−2

⎤

⎦ ,

⎡

⎣
2
2

−1

⎤

⎦ ,

⎡

⎣
1
1
0

⎤

⎦

⎫
⎬

⎭
is at most 2.

Exercise 229
Give an example of a vector space V finitely generated over a field F , together
with nonempty subsets B1, B2, and B3 of V satisfying the following conditions:
(1) Each Bi is linearly independent;
(2) For each 1 ≤ i �= j ≤ 3 there exists a basis of V containing Bi ∪ Bj ;
(3) There is no basis of V containing B1 ∪ B2 ∪ B3.

Exercise 230
Let V be a vector space over R. A fuzzification of V is a function μ from V to
the unit interval I of real numbers, satisfying the condition that μ(av + bw) ≥
min{μ(v),μ(w)} for all a, b ∈ R and all v,w ∈ V . A finite nonempty linearly-
independent subset {v1, . . . , vn} of V is μ-linearly independent if and only if it
satisfies the additional condition that μ(

∑n
i=1 aivi) = min{a1v1, . . . , anvn}.

(1) Show that the function μ : R2 → I defined by

μ :
[
a

b

]

�→

⎧
⎪⎨

⎪⎩

1 if a = b = 0,

1
2 if a = 0 and b �= 0,

1
4 otherwise

is a fuzzification on V .

(2) Is the linearly-independent subset

{[
1
0

]

,

[−1
1

]}

of R also μ-linearly inde-

pendent?
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Exercise 231
Let V be a vector space over a field F and let B be a fixed basis of V . We then
know that each element v ∈ V can be written in a unique way as v =∑

w∈B cww,
where the cw are scalars, only finitely-many of which are nonzero. Let n(v) be
the number of nonzero scalars cw in this representation. (Note that n(v) = 0 if
and only if v = 0V .) Define a relation � on V by setting v1 � v2 if and only if
n(v1) ≤ n(v2). Is this a partial order relation on V ?

Exercise 232
Let V be a vector space over a field F and let D be a finite minimal linearly-
dependent subset of V . Find dim(FD).
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Let V and W be vector spaces over a field F . A function α : V → W is a linear
transformation or homomorphism if and only if for all v1, v2 ∈ V and a ∈ F we
have α(v1 + v2) = α(v1) + α(v2) and α(av1) = aα(v1). We note that, as a con-
sequence of the second condition, we have α(0V ) = α(00V ) = 0α(0V ) = 0W . If
(K,•) and (L,∗) are F -algebras, then a linear transformation α : K → L is a ho-
momorphism of F -algebras if it is a linear transformation and, in addition, satisfies
α(v1 • v2) = α(v1) ∗ α(v2) for all v1, v2 ∈ K . If both K and L are unital, then it is a
homomorphism of unital F -algebras if it also sends the identity element of K for •
to the identity element of L for ∗.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

Linear transformations between finite-dimensional vector spaces were
studied by Peano. Linear transformations between infinite-dimensional
spaces were first considered in the late nineteenth century by Italian
mathematician Salvadore Pincherle.

Example Let V be a vector space over a field F . Every scalar c ∈ F defines a linear
transformation σc : V → V given by σc : v �→ cv. In particular, σ1 is the identity
function v �→ v and σ0 is the 0-function v �→ 0V .

Example Let F be a field and let a1, . . . , a6 be scalars in F . The function

α : F 2 → F 3 defined by α :
[
c1
c2

]
�→
⎡
⎣a1c1 + a2c2

a3c1 + a4c2
a5c1 + a6c2

⎤
⎦ is a linear transformation.

The previous example can be generalized in an extremely significant manner. Let
k and n be positive integers and let F be a field. Every matrix A = [aij ] ∈Mk×n(F )

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_6, © Springer Science+Business Media B.V. 2012
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defines a linear transformation from Fn to Fk given by
⎡
⎢⎢⎢⎣

c1
c2
...

cn

⎤
⎥⎥⎥⎦ �→

⎡
⎢⎢⎢⎣

a11c1 + · · · + a1ncn

a21c1 + · · · + a2ncn

...

ak1c1 + · · · + akncn

⎤
⎥⎥⎥⎦ .

In what follows, we will show that every linear transformation from Fn to Fk can
be defined in this manner.

Example Let F be a field of characteristic 0. Then there are linear transformations
α and β from F [X] to itself defined by

α :
∞∑
i=0

aiX
i �→

∞∑
i=0

iaiX
i and β :

∞∑
i=0

aiX
i �→

∞∑
i=0

(1 + i)−1aiX
i+1.

(By 1+ i, we mean the sum of 1+ i copies of the identity element for multiplication
of F ; since the characteristic of F is 0, we know that this element is nonzero, and
so is a unit in F .)

Example Let V and W be vector spaces over a field F and let k and n be positive
integers. For all 1 ≤ i ≤ k and 1 ≤ j ≤ n, let αij : V → W be a linear transformation.
Then there is a linear transformation from Mk×n(V ) to Mk×n(W) defined by

⎡
⎢⎣

v11 . . . v1n

...
. . .

...

vk1 . . . vkn

⎤
⎥⎦ �→

⎡
⎢⎣

α11(v11) . . . α1n(v1n)
...

. . .
...

αk1(vk1) . . . αkn(vkn)

⎤
⎥⎦ .

Example Let V be the subspace over RR consisting of all differentiable functions.
For each f ∈ V , we define a function Df :R×R → R, called the differential of f ,
by setting Df : (a, b) �→ f ′(a)b, where f ′ is the derivative of f . Then the function
D : V → R

R×R given by f �→ Df is a linear transformation. Such linear transfor-
mations play an important part in differential geometry.

Example Sometimes linear transformations between F -algebras which are not ho-
momorphisms of F -algebras play an important role. Let (K,•) be an associative
algebra over a field F and let c ∈ F . Then K is a Baxter algebra over F of weight
c if and only if there exists a linear transformation α : K → K satisfying the con-
dition that α(x) • α(y) = α(α(x) • y) + α(x • α(y)) + cα(x • y) for all x, y ∈ K .
Thus, for example, if K is the R-algebra of all continuous functions from R to itself,
the linear transformation α : K → K given by α(f ) : t �→ ∫ t

0 f (s) ds defines on K

the structure of a Baxter algebra of weight 0. If F is any field and if K = FP with
componentwise addition and multiplication, then the function α : K → K given by
α : [a1, a2, . . .] �→ [a1, a1 + a2, a1 + a2 + a3, . . .] defines on K the structure of a
Baxter algebra of weight 1.
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Example Linear transformations are considered nice from an algebraic point of
view, but may be less so from an analytic point of view. Let B be a Hamel ba-
sis of R over Q. Then for each real number r there exists a unique finite sub-
set {u1(r), . . . , un(r)(r)} of B and scalars a1(r), . . . , an(r)(r) in Q satisfying r =∑n(r)

j=1 aj (r)uj (r). The function from R to R defined by r �→∑n(r)
j=1 aj (r) is a linear

transformation, but is not continuous at any r ∈R.

Let V and W be vector spaces over a field F . To any function f : V → W we

can associate the subset gr(f ) =
{[

v

f (v)

] ∣∣∣∣ v ∈ V

}
of V × W , called the graph

of f . We can use the notion of graph to characterize linear transformations in terms
of subspaces.

Proposition 6.1 Let V and W be vector spaces over a field F and let
α : V → W be a function. Then α is a linear transformation if and only if
gr(α) is a subspace of V × W .

Proof Assume that α is a linear transformation. If v, v′ ∈ V and c ∈ F then in

V × W we have

[
v

α(v)

]
+
[

v′
α(v′)

]
=
[

v + v′
α(v) + α(v′)

]
=
[

v + v′
α(v + v′)

]
∈ gr(α)

and c

[
v

α(v)

]
=
[

cv

cα(v)

]
=
[

cv

α(cv)

]
∈ gr(α), showing that gr(α) is closed

under taking sums and scalar multiples, and so is a subspace of V × W .
Conversely, if it is such a subspace then for v, v′ ∈ V and c ∈ F we note that[

v

α(v)

]
+
[

v′
α(v′)

]
=
[

v + v′
α(v) + α(v′)

]
∈ gr(α), and so we must have

α(v) + α(v′) = α(v + v′). Similarly, c

[
v

α(v)

]
=
[

cv

cα(v)

]
∈ gr(α), and so we must

have cα(v) = α(cv). Thus α is a linear transformation. �

Let V and W be vector spaces over a field F . If α and β are linear transformations
from V to W , they are, in particular, functions in WV , and so the function α + β :
V → W is defined by α + β : v �→ α(v) + β(v) for all v ∈ V . For all v, v′ ∈ V and
all c ∈ F , we have

(α + β)(v + v′) = α(v + v′) + β(v + v′)

= α(v) + α(v′) + β(v) + β(v′)

= (α + β)(v) + (α + β)(v′)

and (α+β)(cv) = α(cv)+β(cv) = cα(v)+cβ(v) = c[α(v)+β(v)] = c(α+β)(v).
Thus we see that α + β is a linear transformation from V to W . If c ∈ F is a

scalar then the function cα from V to W is defined by cα : v �→ cα(v) and this,
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again, is a linear transformation from V to W . It is easy to check that the set of all
linear transformations from V to W is a subspace of WV , which we will denote by
Hom(V ,W), or HomF (V,W) in case the field needs to be emphasized.

Example Let V and W be vector spaces over R and let having complexifications

U and Y , respectively. If α ∈ HomR(V ,W) then the function

[
v1
v2

]
�→
[
α(v1)

α(v2)

]

belongs to HomC(U,Y ).

Since Hom(V ,W) is a vector space, we can apply concepts we have already
considered for vectors to linear transformations. For example, we can talk about
a linearly-dependent or linearly-independent set of linear transformations from a
vector space V over a field F to a vector space W over F . However, we must be
very careful to remember that when we are doing so, we are working in the space
Hom(V ,W), and not in either V or W . The following example illustrates the pitfalls
one can encounter.

Example Let V and W be vector spaces over the same field F . A nonempty sub-
set D = {α1, . . . , αn} of Hom(V ,W) is locally linearly dependent if and only if
the subset {α1(v), . . . , αn(v)} of W is linearly dependent for every v ∈ V . If D is
a linearly-dependent subset of Hom(V ,W), then there exist scalars c1, . . . , cn, not
all of which are equal to 0, such that

∑n
i=1 ciαi is the 0-function. In particular,

for each v ∈ V we see that
∑n

i=1 ciαi(v) = 0W and so D is locally linearly de-
pendent. The converse, however, is false. It may be possible for D to be linearly
independent and still locally linearly dependent. To see this, take V = W = F 2

and let D = {α1, α2} ⊆ Hom(F 2,F 2), where we define α1 :
[
a

b

]
�→
[
a

0

]
and

α2 :
[
a

b

]
�→
[
b

0

]
. If v ∈ F 2, then {α1(v),α2(v)} is a subset of the one-dimensional

subspace F

[
1
0

]
of F 2 and so cannot be linearly independent. On the other hand, D

is linearly independent since if there exist scalars c and d satisfying the condition
that cα1 + dα2 is the 0-function, then[

0
0

]
= cα1

([
1
0

])
+ dα2

([
1
0

])
=
[

c

0

]
+
[

0
0

]
=
[

c

0

]
,

which implies that c = 0. Similarly,
[

0
0

]
= cα1

([
0
1

])
+ dα2

([
0
1

])
=
[

0
0

]
+
[

d

0

]
=
[
d

0

]
,

which implies that d = 0 as well.

The following proposition shows that the operation of a linear transformation is
entirely determined by its action on elements of a basis. This result is extremely
important, especially if the vector spaces involved are finitely generated.
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Proposition 6.2 Let V and W be vector spaces over a field F , and let B

be a basis of V . If f ∈ WB then there is a unique linear transformation
α ∈ Hom(V ,W) satisfying the condition that α(u) = f (u) for all u ∈ B .

Proof Since B is a basis of V , we know that each vector v ∈ V can be written as a
linear combination v =∑n

i=1 aiui of elements of B in a unique way. We now define
the function α : V → W by α : v �→∑n

i=1 aif (ui). This function is well defined as
a result of the uniqueness of representation of v, as was shown in Proposition 5.4.
Moreover, it is clear that α is a linear transformation. If β : V → W is a linear
transformation satisfying the condition that β(u) = f (u) for all u ∈ B then β(v) =
β(
∑n

i=1 aiui) =∑n
i=1 aiβ(ui) =∑n

i=1 aif (ui) = α(v), and so β = α. Thus α is
unique. �

Example Let F be a field and let c0, c1, . . . be a sequence of elements of F . Then we
have a linear transformation α : F [X] → F defined by α :∑n

i=0 aiX
i �→∑n

i=0 aici .

Example We can use Proposition 6.2 to show how uncommon linear transforma-
tions really are. Let F = GF(3) and let V = F 4. Then V has 34 = 81 elements and
so the number of functions from V to itself is 8181. On the other hand, a basis B

for V over F has 4 elements and so, since every linear transformation from V to
itself is totally determined by its action on B and that any function from B to V de-
fines such a linear transformation, we see that the number of linear transformations
from V to itself is 814. Therefore, the probability that a randomly-selected function
from V to itself be a linear transformation is 814/8181 = 81−77, which is roughly
0.11134 × 10−146.

Proposition 6.3 Let V , W , and Y be vector spaces over a field F and let
α : V → W and β : W → Y be linear transformations. Then βα : V → Y is
a linear transformation.

Proof If v1, v2 ∈ V and if a ∈ F then

(βα)(v1 + v2) = β
(
α(v1 + v2)

)= β
(
α(v1) + α(v2)

)
= β

(
α(v1)

)+ β
(
α(v2)

)= (βα)(v1) + (βα)(v2)

and (βα)(cv1) = β(α(cv1)) = β(cα(v1)) = cβ(α(v1)) = c(βα)(v1), which proves
the proposition. �

Example It is often important and insightful to write a linear transformation as a
composite of linear transformations of predetermined types. Consider the following
situation: Let a < b be real numbers and let V be the vector space over R consisting
of all functions from the closed interval [a, b] to R. Let W be the subspace of V
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consisting of all differentiable functions, and let δ : W → V be the function which
assigns to each function f ∈ W its derivative. For each real number a < c < b, let
εc : V →R be the linear transformation defined by εc : g �→ g(c). Then the Interme-
diate Value Theorem from calculus says that the linear transformation β : W → R

defined by β : f �→ [f (b) − f (a)](b − a)−1 is of the form εcδ for some c.

Let V and W be vector spaces over a field F and let α : V → W be a linear
transformation. For w ∈ W , we denote {v ∈ V | α(v) = w} by α−1(w). Note that
this set may be empty. In particular, we will be interested in α−1(0W) = {v ∈ V |
α(v) = 0W }. This set is called the kernel of α and is denoted by ker(α). Then ker(α)

is never empty, since it always contains 0V . If U is a nonempty subset of W , set
α−1(U) = {α−1(u) | u ∈ U}. It is easy to verify that α−1(U) is a subspace of V

whenever U is a subspace of W .

Example Let F be a field and let α ∈ Hom(F 3,F 4) be the linear transformation

defined by α :
⎡
⎣a

b

c

⎤
⎦ �→

⎡
⎢⎢⎣

a − b

0
c

c

⎤
⎥⎥⎦. Then ker(α) =

⎧⎨
⎩
⎡
⎣a

a

0

⎤
⎦
∣∣∣∣∣∣ a ∈ F

⎫⎬
⎭.

Proposition 6.4 Let V and W be vector spaces over a field F and let
α ∈ Hom(V ,W). Then ker(α) is a subspace of V , which is trivial if and only
if α is monic.

Proof Let v1, v2 ∈ ker(α) and let a ∈ F . Then α(v1 + v2) = α(v1) + α(v2) = 0W +
0W = 0W , and so v1 + v2 ∈ ker(α). Similarly, α(av1) = aα(v1) = a0W = 0W and
so av1 ∈ ker(α). This proves that ker(α) is a subspace of V .

If α is monic then α−1(w) can have at most one element for each w ∈ W , and
so, in particular, ker(α) = {0V }. Conversely, suppose that ker(α) is trivial and that
there exist elements v1 
= v2 of V satisfying α(v1) = α(v2). Then α(v1 − v2) =
α(v1) − α(v2) = 0W and so v1 − v2 ∈ ker(α). Thus v1 − v2 = 0V and so v1 = v2,
which is a contradiction. Hence α must be monic. �

Let V and W be vector spaces over a field and let α : V → W be a linear
transformation. The image of α is the subset im(α) = {α(v) | v ∈ V } of W . This
set is nonempty since 0W = α(0V ) ∈ im(α). Note that w ∈ im(α) if and only if
α−1(w) 
= ∅. If U is a nonempty subset of V , we denote the subset {α(u) | u ∈ U}
of W by α(U). Thus α(V ) = im(α).

Proposition 6.5 Let V and W be vector spaces over a field F and let
α ∈ Hom(V ,W). Then im(α) is a subspace of W , which is improper if and
only if α is epic.
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Proof If α(v1) and α(v2) are in im(α) and if a ∈ F , then α(v1) + α(v2) =
α(v1 + v2) ∈ im(α) and similarly aα(v1) = α(av1) ∈ im(α), proving that im(α) is a
subspace of W . The second part follows immediately from the definition of an epic
function. �

A monic linear transformation between vector spaces over a field F is called a
monomorphism; an epic linear transformation between vector spaces is called an
epimorphism. A bijective linear transformation between vector spaces is called an
isomorphism. If both spaces are also F -algebras, then a bijective homomorphism
of F -algebras is called an isomorphism of F -algebras. Similarly, a bijective homo-
morphism of unital F -algebras is an isomorphism of unital F -algebras.

Example Let F be a field and let k and n be positive integers. For each ma-
trix A = [aij ] ∈ Mk×n(F ), we can define the transpose of A to be the matrix
AT ∈ Mn×k(F ) obtained from A by interchanging its rows and columns. In other

words, AT =
⎡
⎢⎣

a11 . . . ak1
...

. . .
...

a1n . . . akn

⎤
⎥⎦. It is easy to check that the function A �→ AT is an

isomorphism from Mk×n(F ) to Mn×k(F ).

Example Let K and L be F -algebras. It is possible for a linear transformation
α : K → L to be an isomorphism of vector spaces without being an isomor-
phism of F -algebras. This is the case, for example, with the linear transformation
α : Q(

√
2) → Q(

√
5) given by α : a + b

√
2 �→ a + b

√
5.

Example Let V be a vector space over a field F . Any linear transformation
α : V → F other than the 0-function is an epimorphism. Indeed, if α is a nonzero
linear transformation and if v0 ∈ V satisfies the condition that α(v0) = c 
= 0, then
for any a ∈ F we have a = (ac−1)c = (ac−1)α(v0) = α((ac−1)v0) ∈ im(α).

Example Let F be a field and let α : F (∞) → F [X] be the function defined by
α : f �→∑∞

i=0 f (i)Xi , which is well-defined since only finitely-many of the f (i)

are nonzero. This is easily checked to be an isomorphism of vector spaces.

We have already seen that if D is a basis of a vector space V over a field F then
there exists a bijective function θ : F (D) → V , and it is easy to verify that this is in
fact an isomorphism of vector spaces. This leads us to the very important observa-
tion that for any nontrivial vector space V over a field F there exists a nonempty set
Ω and an isomorphism F (Ω) → V .

Let V and W be vector spaces over a field F and let B be a basis of V . Then we
can define a function ϕ : Hom(V ,W) → WB by restriction: ϕ(α) : u �→ α(u) for all
u ∈ B . It is straightforward to check that ϕ is a linear transformation of vector spaces
over F . Moreover, by Proposition 6.2, we see that any function f ∈ WB is of the
form ϕ(α) for a unique element α of Hom(V ,W). Therefore, ϕ is an isomorphism.
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Let V and W be vector spaces over a field F . If α : V → W is a linear transfor-
mation and 0W 
= w ∈ W then α−1(w) is not a subspace of V . However, the next
result shows that, if it is nonempty, it is close to being a subspace.

Proposition 6.6 Let α : V → W be a linear transformation of vector spaces
over a field F and let w ∈ im(α). For any v0 ∈ α−1(w) we have α−1(w) =
{v + v0 | v ∈ ker(α)}.

Proof If v ∈ ker(α) then α(v + v0) = α(v) + α(v0) = 0W + w = w and so v + v0 ∈
α−1(w). Conversely, if v1 ∈ α−1(w) then v1 = (v1 − v0) + v0, where v1 − v0 ∈
ker(α) since α(v1 − v0) = α(v1) − α(v0) = w − w = 0W . �

Note that if w 
= 0W then α−1(w) is not a subspace of V but rather the result
of “shifting” a subspace by adding a fixed nonzero vector to each of its elements.
Such a subset of a vector space is called an affine subset, or linear variety of a
vector space. Let V and W be vector spaces over a field F . An affine transformation
ζ : V → W is a function of the form v �→ α(v)+ y, for some fixed α ∈ Hom(V ,W)

and y ∈ W . It is clear that the sum of two affine transformations is again an affine
transformation, as is the product of an affine transformation by a scalar, so that
the set Aff(V ,W) of all affine transformations from V to W is also a subspace
of WV which in turn contains Hom(V ,W) as a subspace. Indeed, Aff(V ,W) =
F(Hom(V ,W) ∪ K), where K is the set of all constant functions from V to W .

Moreover, if ζ : V → W is the affine transformation defined by v �→ α(v) + y

and if w ∈ W , then ζ−1(w) = α−1(w − y) and so is an affine subset of V .
Analysis of computational procedures in linear algebra often hinges on the

fact that when we think we are computing the effect of some linear transforma-
tion α ∈ Hom(V ,W), we are in fact computing that of an affine transformation
v �→ α(v) + y where y is a vector arising from computational or random errors
which, hopefully, is “very small” (in some sense) relative to α(v). Similarly, in lin-
ear models in statistics one must allow for such an affine transformation, where y is
a random error vector, assumed to have expectation 0.

Example Let V = C(0,1) and let W be the subspace of V composed of all dif-
ferentiable functions having a continuous derivative. Let δ : W → V be the linear
transformation which assigns to each function f ∈ W its derivative. Then ker(δ)
consists of all constant functions. If g ∈ im(δ) then g = δ(f ), where f is the
function f : x �→ ∫ x

0 g(t) dt . Thus δ−1(g) consists of all functions of the form
f : x �→ ∫ x

0 g(t) dt + c, where c ∈R.

Proposition 6.7 If α : V → W is an isomorphism of vector spaces over a
field F then there exists an isomorphism β : W → V satisfying βα(v) = v

and αβ(w) = w for all v ∈ V and all w ∈ W .
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Proof Define the function β by β(w) = v if and only if w = α(v). This function is
well-defined since every element w is of the form α(v) for a unique element v ∈ V .
It is easy to check that the function β is an isomorphism which satisfies the stated
conditions. �

The function β defined in Proposition 6.7 is denoted by α−1.
Let V and W be vector spaces over a field F . If there exists an isomorphism from

V to W , we say that V and W are isomorphic and write V ∼= W . It is easy to see
that if V , W , and Y are vector spaces over F then:
(1) V ∼= V ;
(2) If V ∼= W then W ∼= V ;
(3) If V ∼= W and W ∼= Y then V ∼= Y .
It is also clear that if α : V → W is an isomorphism between vector spaces over
F and if B is a basis of V then {α(u) | u ∈ B} is a basis of W . As an immediate
consequence of this, we see that if V ∼= W then the dimensions of V and W are the
same. The converse is true if V and W are finitely generated, as we shall now see.

Proposition 6.8 Let V and W be vector spaces over a field F having bases
B and D, respectively, and assume that there exists a bijective function
f : B → D. Then V ∼= W .

Proof By Proposition 6.2, we know that there exists a linear transformation
α ∈ Hom(V ,W) satisfying the condition α(v) = f (v) for all v ∈ B . This lin-
ear transformation is epic since im(α) contains a basis of W . If v′ =∑v∈B avv

(where only finitely-many of the coefficients av are nonzero) belongs to ker(α) then
0W = α(v′) = α(

∑
v∈B avv) =∑v∈B avα(v) =∑v∈B avf (v) and so av = 0 for all

v ∈ B , since D is linearly independent. Therefore, ker(α) is trivial, and this shows
that α is monic and hence an isomorphism. �

In particular, if V and W are vector spaces of the same finite dimension n over a
field F , then V ∼= W .

Proposition 6.9 If V and W are vector spaces finitely generated over a field
F , then
(1) There exists a monomorphism from V to W if and only if dim(V ) ≤

dim(W);
(2) There exists an epimorphism from V to W if and only if dim(V ) ≥

dim(W).

Proof (1) If there exists a monomorphism α from V to W then V ∼= im(α) and
so dim(W) ≥ dim(im(α)) = dim(V ). Conversely, assume that dim(V ) ≤ dim(W).
Then there exists a basis B = {v1, . . . , vn} of V and there exists a basis D =
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{w1, . . . ,wt } of W , where n ≤ t . The function from B to W given by vi �→ wi

for all 1 ≤ i ≤ n can be extended to a linear transformation α : V → W , which is
monic and so is a monomorphism.

(2) If there exists an epimorphism α from V to W and if {v1, . . . , vn} is a basis
of V , then {α(vi) | 1 ≤ i ≤ n} is a generating set of W and so the dimension of
W is at most n = dim(V ). Conversely, if n = dim(V ) ≥ dim(W) = t , pick a basis
{w1, . . . ,wt } of W and a basis B = {v1, . . . , vn} of V . Define a function f : B → W

by

f : vi �→
{

wi for 1 ≤ i ≤ t,

wt for t ≤ i ≤ n.

From Proposition 6.2, it follows that there exists a linear transformation α : V → W

satisfying α(vi) = f (vi) for all 1 ≤ i ≤ n, and this is the desired epimorphism. �

Proposition 6.10 Let V and W be vector spaces over a field F , where V is
finitely generated. Then dim(V ) = dim(im(α)) + dim(ker(α)) for any linear
transformation α ∈ Hom(V ,W).

Proof Let α ∈ Hom(V ,W). Set V1 = ker(α) and let V2 be a complement of V1

in V . By Proposition 5.16, we see that dim(V ) = dim(V1) + dim(V2) and so it
suffices for us to show that V2 ∼= im(α). Let α2 be the restriction of α to V2.
Then α2 ∈ Hom(V2, im(α)). If v2 ∈ ker(α2) then v2 ∈ V2 ∩ V1 = {0V }. Thus α2

is a monomorphism. If w ∈ im(α) then there exists an element v of V satisfying
α(v) = w. Moreover, v = v1 + v2 for some v1 ∈ V1 and v2 ∈ V2 so w = α(v) =
α(v1) + α(v2) = 0W + α(v2) = α(v2) = α2(v2). Therefore, im(α2) = im(α), show-
ing that α2 is also an epimorphism and hence the desired isomorphism. �

Let V and W be vector spaces over a field F . If α ∈ Hom(V ,W) then we define
the rank rk(α) of α to be dim(im(α)) and define is the nullity null(α) of α to be
dim(ker(α)). Thus, Proposition 6.10 says that V has finite dimension n then both
the rank and nullity of α are finite and their sum is n. The converse is also clearly
true: if the rank and nullity of α are both finite, then the dimension of V is finite. Let
us give bounds on the rank and nullity of compositions of linear transformations.

Proposition 6.11 (Sylvester’s Theorem) Let V , W , and Y be vector spaces
finitely-generated over a field F and let α : V → W and β : W → Y be linear
transformations. Then
(1) null(βα) ≤ null(α) + null(β);
(2) rk(α) + rk(β) − dim(W) ≤ rk(βα) ≤ min{rk(α), rk(β)}.
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Proof (1) Let β1 be the restriction of β to im(α). Then ker(β1) is a subspace of
ker(β). By Proposition 6.10, we have

null(βα) = dim(V ) − rk(βα) = [dim(V ) − rk(α)
]+ [rk(α) − rk(βα)

]
= null(α) + null(β1) ≤ null(α) + null(β).

(2) Clearly, im(βα) is a subspace of im(β) and so its dimension is no greater than
that of im(β). Moreover, im(βα) = im(β1) and so rk(βα) ≤ rk(α). Thus rk(βα) ≤
min{rk(α), rk(β)}. Moreover, from (1) we see that

dim(V ) − null(βα) ≥ dim(V ) − null(α) + dim(W) − null(β) − dim(W)

= rk(α) + rk(β) − dim(W),

and this proves that rk(α) + rk(β) − dim(W) ≤ rk(βα). �

Exercises

Exercise 233
Which of the following statements are true for all vector spaces V and W over a
field F and all α ∈ Hom(V ,W)?
(1) α(A ∪ B) = α(A) ∪ α(B) for all nonempty subsets A and B of V ;
(2) α(A ∩ B) = α(A) ∩ α(B) for all nonempty subsets A and B of V ;
(3) α−1(C ∪ D) = α−1(C) ∪ α−1(D) for all nonempty subsets C and D of W ;
(4) α−1(C ∩ D) = α−1(C) ∩ α−1(D) for all nonempty subsets C and D of W .

Exercise 234

Let α : R3 → R
3 be a linear transformation satisfying α

⎛
⎝
⎡
⎣1

0
1

⎤
⎦
⎞
⎠ =

⎡
⎣−1

3
4

⎤
⎦,

α

⎛
⎝
⎡
⎣ 1

−1
1

⎤
⎦
⎞
⎠=

⎡
⎣0

1
0

⎤
⎦, and α

⎛
⎝
⎡
⎣ 1

2
−1

⎤
⎦
⎞
⎠=

⎡
⎣3

1
4

⎤
⎦. What is α

⎛
⎝
⎡
⎣1

0
0

⎤
⎦
⎞
⎠?

Exercise 235

Let α : R3 → R
3 be a linear transformation satisfying α

⎛
⎝
⎡
⎣1

1
0

⎤
⎦
⎞
⎠ =

⎡
⎣ 1

2
−1

⎤
⎦,

α

⎛
⎝
⎡
⎣ 1

0
−1

⎤
⎦
⎞
⎠=

⎡
⎣0

1
1

⎤
⎦, and α

⎛
⎝
⎡
⎣ 0

−1
1

⎤
⎦
⎞
⎠=

⎡
⎣3

3
3

⎤
⎦. Find a vector v ∈R

3 for which

α(v) =
⎡
⎣1

0
0

⎤
⎦.
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Exercise 236
Let F be a field and let V be the subspace of F [X] consisting of all polynomials
of degree at most 2. Let α : V → F [X] be a linear transformation satisfying
α(1) = X, α(X + 1) = X5 + X3, and α(X2 + X + 1) = X4 − X2 + 1. What is
α(X2 − X)?

Exercise 237
For each d ∈ R, let αd :R2 →R

2 be the function defined by

αd :
[
a

b

]
�→
[
a + b + d2 + 1

a

]
.

Is there a number d having the property that αd is a linear transformation? What
if we consider αd as a function from GF(5)2 to itself?

Exercise 238
For each d ∈ R, let αd :R2 →R

2 be the function defined by

αd :
[
a

b

]
�→
[

5da − db

8d2 − 8d − 6

]
.

Is there a number d having the property that αd is a linear transformation?

Exercise 239
Let V and W be vector spaces over Q and let α : V → W be a function satisfying
α(v + v′) = α(v) + α(v′) for all v, v′ ∈ V . Is α necessarily a linear transforma-
tion?

Exercise 240
Let α :R → R be a continuous function which satisfies α(a + b) = α(a) + α(b)

for all a, b ∈R. Show that α is a linear transformation.

Exercise 241
Let W and W ′ be subspaces of a vector space V over a field F and assume
that we have linear transformations α : W → V and β : W ′ → V satisfying the
condition that α(v) = β(v) for all v ∈ W ∩ W ′. Find a linear transformation
θ : W + W ′ → V , the restriction of which to W equals α and the restriction of
which to W ′ equals β , or show why no such linear transformation exists.

Exercise 242
Let F = GF(3) and let θ ∈ FF be the function defined by θ(0) = 0, θ(1) = 2,
and θ(2) = 1. Let n be a positive integer and let α : Fn → Fn be the function

defined by α :
⎡
⎢⎣

a1
...

an

⎤
⎥⎦ �→

⎡
⎢⎣

θ(a1)
...

θ(an)

⎤
⎥⎦. Is α a linear transformation?
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Exercise 243
Does there exist a linear transformation α : Q4 → Q[X] satisfying

α

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1
2
0

−1

⎤
⎥⎥⎦

⎞
⎟⎟⎠= 2, α

⎛
⎜⎜⎝

⎡
⎢⎢⎣

−1
1
1
1

⎤
⎥⎥⎦

⎞
⎟⎟⎠= X, and α

⎛
⎜⎜⎝

⎡
⎢⎢⎣

−1
4
2
1

⎤
⎥⎥⎦

⎞
⎟⎟⎠= X + 1?

Exercise 244
Let B be a Hamel basis for R as a vector space over Q and let 1 
= a ∈ R. Show
that there exists an element y ∈ B satisfying ay /∈ B .

Exercise 245
For which nonnegative integers h is the function α from GF(3)3 to itself defined

by α :
⎡
⎣a

b

c

⎤
⎦ �→

⎡
⎣ah

b

ch

⎤
⎦ a linear transformation?

Exercise 246
For any field F , let θ : F → F be the function defined by

θ : a �→
{

0 if a = 0,

a−1 otherwise.

This is clearly a linear transformation when F = GF(2). Does there exist a field
other than GF(2) for which θ is a linear transformation?

Exercise 247
Let V = F∞ and let α : V → V be the function that assigns to each se-
quence [a1, a2, . . .] ∈ V its sequence of partial sums, namely [a1, a2, . . .] �→
[a1,

∑2
i=1 ai,

∑3
i=1 ai, . . .]. Is α a linear transformation?

Exercise 248
Let Y = R

R ×R. Is the function α : Y →R defined by α : (f, a) �→ f (a) a linear
transformation?

Exercise 249
Let F be a field and let b and c be nonzero elements of F . Let α : F∞ → F∞ be
the linear transformation defined by

α : [a1, a2, . . .] �→ [a3 + ba2 + ca1, a4 + ba3 + ca2, . . .].

Let y ∈ ker(α) be a vector satisfying the condition that two successive entries in
y equal 0. Show that y = [0,0, . . .].
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Exercise 250

Consider the field F = Q(
√

2) as a Q-algebra. Show that the only homomor-

phisms of Q-algebras from F to itself are the identity function and the function

a + b
√

2 �→ a − b
√

2.

Exercise 251

Let V , W , and Y be vector spaces finitely-generated over a field F and let

α : V → W be a linear transformation. Show that the set of all linear transfor-

mations β : W → Y satisfying the condition that βα is the 0-transformation is a

subspace of Hom(W,Y ), and calculate its dimension.

Exercise 252

Let V and W be vector spaces over a field F and let V ′ be a proper subspace

of V . Are {α ∈ Hom(V ,W) | ker(α) ⊆ V ′} and {α ∈ Hom(V ,W) | ker(α) ⊇ V ′}
subspaces of Hom(V ,W)?

Exercise 253

Let V and W be vector spaces over a field F and assume that there are sub-

spaces V1 and V2 of V , both of positive dimension, satisfying V = V1 ⊕ V2. For

i = 1,2, let Ui = {α ∈ Hom(V ,W) | ker(α) ⊇ Vi}. Show that {U1,U2} is an inde-

pendent set of subspaces of Hom(V ,W). Is it necessarily true that Hom(V ,W) =
U1 ⊕ U2?

Exercise 254

Let F be a field, and let α : M2×2(F ) → Mn×n(F ) be a homomorphism of

F -algebras for some n > 1. Show that α

([
0 0
1 0

])

= I .

Exercise 255

Let V and W be vector spaces over a field F and let α,β : V → W be linear

transformations satisfying the condition that for each v ∈ V there exists a scalar

cv ∈ F (depending on v) satisfying β(v) = cvα(v). Show that there exists a scalar

c satisfying β = cα.

Exercise 256

Let V and W be vector spaces over a field F . Define a function ϕ : Hom(V ,W) →
Hom(V × W,V × W) by setting ϕ(α) :

[
v

w

]
�→
[

0V

α(v)

]
. Is ϕ a linear transfor-

mation of vector spaces over F ? Is it a monomorphism?
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Exercise 257
Find the kernel of the linear transformation α : R5 →R

3 defined by

α :

⎡
⎢⎢⎢⎢⎣

a

b

c

d

e

⎤
⎥⎥⎥⎥⎦ �→

⎡
⎣ b + c − 2d + e

a + 2b + 3c − 4d

2a + 2c − 2e

⎤
⎦ .

Exercise 258
Let α : R3 →R

3 be the linear transformation defined by

α :
⎡
⎣a

b

c

⎤
⎦ �→

⎡
⎣2a + 4b − c

0
3c + 2b − a

⎤
⎦ .

Are im(α) and ker(α) disjoint?

Exercise 259

Let W be the subspace Q

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

2
−1

0
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

of Q4 and let α : W → Q
2 be

the linear transformation defined by setting α :

⎡
⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎦ �→

[
a + 2b + c

−a − 2b − c

]
. Find a

basis for ker(α).

Exercise 260
Let F = GF(3) and let α : F 3 → F 3 be the linear transformation defined by

α :
⎡
⎣a

b

c

⎤
⎦ �→

⎡
⎣ a + b

2b + c

0

⎤
⎦. Find the kernel of α.

Exercise 261
Let α : R4 →R

3 be the linear transformation defined by

α :

⎡
⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎦ �→

⎡
⎣2a + 4b + c − d

3a + b − 2c

a + 5c + 4d

⎤
⎦ .

Do there exist a, b, d ∈ Z such that

⎡
⎢⎢⎣

a

b

7
d

⎤
⎥⎥⎦ ∈ ker(α)?
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Exercise 262

Let V and W be vector spaces over a field F . Let α ∈ Hom(V ,W) and

β ∈ Hom(W,V ) satisfy the condition that αβα = α. If w ∈ im(α), show that

α−1(w) = {β(w) + v − βα(v) | v ∈ V }.

Exercise 263

Let V , W , and Y be vector spaces over a field F and let α ∈ Hom(V ,W) and

β ∈ Hom(W,Y ) satisfy the condition that im(α) has a finitely-generated comple-

ment in W and im(β) has a finitely-generated complement in Y . Does im(βα)

necessarily have a finitely-generated complement in Y ?

Exercise 264

Let α : M3×3(R) → R be defined by α : [aij ] �→∑3
i=1
∑3

j=1 aij . Show that α

is a linear transformation and find a basis for ker(α).

Exercise 265

Let F = GF(2) and let n > 2 be an integer. Let W be the set of all vectors

⎡
⎢⎣

a1
...

an

⎤
⎥⎦

in Fn having an even number of nonzero entries. Show that W is a subspace of

Fn by showing that it is the kernel of some linear transformation.

Exercise 266

Let A and B be nonempty sets. Let V be the collection of all subsets of A and

let W be the collection of all subsets of B , both of which are vector spaces

over GF(2). Any function f : A → B defines a function αf : W → V by set-

ting αf : D �→ {a ∈ A | f (a) ∈ D}. Show that each such function αf is a linear

transformation, and find its kernel.

Exercise 267

Let V be a vector space over a field F and let α : V 3 → V be the function defined

by α :
⎡
⎣v1

v2
v3

⎤
⎦ �→ v1 + v2 + v3. Show that α is a linear transformation and find its

kernel.

Exercise 268

Let n be a positive integer and let V be the subspace of R[X] composed of all

polynomials of degree at most n. Let α : V → V be the linear transformation

given by α : p(X) �→ p(X + 1) − p(X). Find ker(α) and im(α).
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Exercise 269
Let α : R3 →R

3 be the linear transformation given by

α :
⎡
⎣a

b

c

⎤
⎦ �→

⎡
⎣a + b + c

−a − c

b

⎤
⎦ .

Find ker(α) and im(α).

Exercise 270
Find the kernel of the linear transformation α : Q[X] → R defined by α :
p(X) �→ p(

√
3).

Exercise 271
Let V = C(0,1). For each positive integer n, we define the nth Bernstein function
βn : V �→ R[X] by

βn : f �→
n∑

k=0

n!
k!(n − k)!f

(
k

n

)
Xk(1 − X)n−k.

Show that each βn is a linear transformation and find
⋂∞

n=1 ker(βn). (Note: the
Bernstein functions are used in building polynomial approximations to continu-
ous functions.)

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

Sergei Natanovich Bernstein was a twentieth-century Russian math-
ematician who worked mostly in probability theory.

Exercise 272
Let V and W be nontrivial vector spaces over a field F . Show that W =∑{im(α) | α ∈ Hom(V ,W)}.

Exercise 273
Let W be the subspace of RR consisting of all twice-differentiable functions and
let α : W → R

R be the linear transformation α : f �→ f ′′. Find α−1(f0), where
f0 ∈R

R is defined by f0 : x �→ x + 1.

Exercise 274
Let W be the subspace of RR consisting of all differentiable functions and let
α : W → R

R be the function defined by α(f ) : x �→ f ′(x) + cos(x)f (x). Show
that α is a linear transformation and find its kernel.
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Exercise 275
Let n be a positive integer and let V be a vector space over C. Does there ex-
ist a linear transformation α : V → C

n other than the 0-function satisfying the
condition that im(α) ⊆ R

n?

Exercise 276
Let V and W be vector spaces over a field F and let α : V → W be a linear
transformation other than the 0-function. Find a linear transformation β : V → W

satisfying im(α) = im(β) 
= im(α + β).

Exercise 277
Let V be a finite-dimensional vector space over a field F and let α,β ∈
Hom(V ,V ) be linear transformations satisfying im(α) + im(β) = V = ker(α) +
ker(β). Show that im(α) ∩ im(β) = {0V } = ker(α) ∩ ker(β).

Exercise 278
Let V , W , and Y be vector spaces over a field F and let α ∈ Hom(V ,W) and
β ∈ Hom(W,Y ) satisfy the condition that ker(α) and ker(β) are both finitely
generated. Is ker(βα) necessarily finitely generated?

Exercise 279
Find a linear transformation α : Q3 →Q

4 satisfying

im(α) = Q

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0.5
−1

3
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
1
1

−4

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

.

Exercise 280
Let F = GF(2) and let α ∈ Hom(F 7,F 3) be given by

⎡
⎢⎣

a1
...

a7

⎤
⎥⎦ �→

⎡
⎣a4 + a5 + a6 + a7

a2 + a3 + a6 + a7
a1 + a3 + a5 + a7

⎤
⎦ .

If v is a nonzero element of ker(α), show that at least three entries in v are equal
to 1.

Exercise 281
Let V and W be vector spaces finitely-generated over a field F and let
α ∈ Hom(V ,W). If Y is a subspace of W , is it true that dim(α−1(Y )) ≥
dim(V ) − dim(W) + dim(Y )?

Exercise 282
Let V be a vector space over a field F and let Y = V ∞. Let W be the subspace
of Y consisting of all those sequences [v1, v2, . . .] in which vi = 0 for all odd i
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and let W ′ be the subspace of Y consisting of all those sequences in which vi = 0
for all even i. Find a linear transformation from Y to itself, the kernel of which
equals W and the image of which equals W ′.

Exercise 283

Let W be the subspace of R
6 composed of all vectors

⎡
⎢⎣

a1
...

a6

⎤
⎥⎦ satisfying

∑6
i=1 ai = 0. Does there exist a monomorphism from W to R

4?

Exercise 284
Let n be a positive integer and let α : Qn →Q

n be a linear transformation which
is not a monomorphism. Does there necessarily exist a nonzero element of ker(α)

all the entries of which are integers?

Exercise 285
Let n be a positive integer and let W be the subspace of C[X] consisting of all
polynomials of degree less than n. Let a1, . . . , an be distinct complex numbers

and let α : W → C
n be the function defined by α : p(X) �→

⎡
⎢⎣

p(a1)
...

p(an)

⎤
⎥⎦. Is α a

monomorphism? Is it an isomorphism?

Exercise 286
Let V be a vector space over a field F and let α : V → V be a linear transfor-
mation satisfying the condition that α2 = aα + bσ1, where a and b are nonzero
scalars. Show that α is a monomorphism.

Exercise 287
Let p be a prime integer and let F be a field of characteristic p. Let (K,•) be an
associative and commutative unital F -algebra and let α : K → K be the function
defined by α : v �→ vp . Show that α is an isomorphism of unital F -algebras.

Exercise 288
Let F be a field and let K and K ′ be fields containing F . Show that every homo-
morphism of F -algebras K → K ′ is a homomorphism of unital F -algebras.

Exercise 289
Let F = GF(7). How many distinct monomorphisms can one define from F 2

to F 4?

Exercise 290
Let V and W be vector spaces over a field F and let α,β ∈ Hom(V ,W) be
monomorphisms. Is α + β necessarily a monomorphism?



108 6 Linear Transformations

Exercise 291
Let F be a field and let F ′ be a field containing F . Let (K,•) be an F -algebra
and let α : F ′ → K be a nontrivial homomorphism of F -algebras. Show that α

is monic.

Exercise 292
Let V and W be vector spaces over a field F and let α ∈ Hom(V ,W) be an
epimorphism. Show that there exists a linear transformation β ∈ Hom(W,V )

satisfying the condition that αβ is the identity function on W .

Exercise 293
Let V , W , and Y be vector spaces over a field F and let α ∈ Hom(V ,W) be
an epimorphism. Show that for each linear transformation β ∈ Hom(Y,W) there
exists a linear transformation θ ∈ Hom(Y,V ) such that β = αθ .

Exercise 294
Let V , W , and Y be vector spaces over a field F and let α ∈ Hom(V ,W) be a
monomorphism. Show that for each linear transformation β ∈ Hom(V ,Y ) there
exists a linear transformation θ ∈ Hom(W,Y ) such that β = θα.

Exercise 295
Let V be a vector space finitely-generated over a field F , the dimension of which
is even. Show that there exists an isomorphism α : V → V satisfying the condi-
tion that α2(v) = −v for all v ∈ V .

Exercise 296
Let α : V → W be a linear transformation between vector spaces over a field F

and let D be a nonempty linearly-independent subset of im(α). Show that there
exists a basis B of V satisfying the condition that {α(v) | v ∈ B} = D.

Exercise 297
Let V and W be vector spaces over a field F and let α ∈ Hom(V ,W) satisfy the
condition that αβα is not the 0-function for any linear transformation β : W → V

which is not the 0-function. Show that α is an isomorphism.

Exercise 298
Let F be a field and let α : F 3 → F [X] be the linear transformation defined by⎡
⎣a

b

c

⎤
⎦ �→ (a + b)X + (a + c)X5. Find the nullity and rank of α.

Exercise 299
Let F be a field and let p(X) = X2 +bX+c ∈ F [X] be a polynomial having dis-
tinct nonzero roots d1 and d2 in F . Let α : F 3 → F be the linear transformation
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defined by α :
⎡
⎣a1

a2
a3

⎤
⎦ �→ a3 +ba2 +ca1 and let β : F∞ → F∞ be the linear trans-

formation defined by β : [a1, a2, a3, . . .] �→
⎡
⎣α

⎛
⎝
⎡
⎣a1

a2
a3

⎤
⎦
⎞
⎠ , α

⎛
⎝
⎡
⎣a2

a3
a4

⎤
⎦
⎞
⎠ , . . .

⎤
⎦.

Show that the nullity of β is at least 2.

Exercise 300
Let Ω be a nonempty set and let V be the collection of all subsets of Ω , con-
sidered as a vector space over GF(2). Show that this vector space is isomorphic
to GF(2)Ω .

Exercise 301
Let F be a field and let V be the subspace of F∞ consisting of all sequences
[a1, a2, a3, . . .] in which ai = 0 for all even i. Let W be the subspace of F∞
consisting of all sequences [a1, a2, a3, . . .] in which ai = 0 for all odd i. Show
that V ∼= F∞ ∼= W .

Exercise 302
Let V be a vector space over a field F having subspaces W and W ′. Let

Y =
{[

w

w′
] ∣∣∣∣ w ∈ W and w′ ∈ W ′

}
, which is a subspace of V 2. Let α : Y → V

be the linear transformation defined by α :
[

w

w′
]

�→ w+w′. Find the kernel of α,

and show that it is isomorphic to W ∩ W ′.

Exercise 303
Let V be a vector space over a field F . Let W be a subspace of V and let W ′ be
a complement of W in V . Let α : W → W ′ be a linear transformation. Show that
W isomorphic to the subspace Y = {w + α(w) | w ∈ W } of V .

Exercise 304
Show that there is no vector space over any field F having precisely 15 elements.

Exercise 305
Let F be a field and let V = F [X]. Show that V ∼= V 2.

Exercise 306
Let V , W , and Y be vector spaces over a field F . Let {α1, . . . , αn} be a finite sub-
set of Hom(V ,W) and let β ∈ Hom(V ,Y ) be a linear transformation satisfying⋂n

i=1 ker(αi) ⊆ ker(β). Show that there exist linear transformations γ1, . . . , γn

in Hom(W,Y ) satisfying β =∑n
i=1 γiαi .
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Exercise 307
Let V be a vector space over a field F and let W be a subspace of V . For each
v ∈ V , let v + W = {v + w | w ∈ W }. Let V/W be the collection of all the
sets of the form v + W for v ∈ V and define operations of addition and scalar
multiplication on V/W by setting (v + W) + (v′ + W) = (v + v′) + W and
c(v + W) = (cv) + W for all v, v′ ∈ V and c ∈ F . Show that:
(1) v + W = v′ + W if and only if v − v′ ∈ W ;
(2) V/W , with the given operations, is a vector space over F ;
(3) The function v �→ v + W is an epimorphism from V to W , the kernel of

which equals W ;
(4) Every complement of W in V is isomorphic to V/W ;
(5) If [v + W ] ∩ [v′ + W ] 
= ∅ then v + W = v′ + W .
The space V/W is called the factor space of V by W .

Exercise 308
Let F be a field and let m > n be positive integers. Let A and B be fixed matrices
in Mn×m(F) and let θ : Mm×n(F ) → Mn×m(F) be the linear transformation
defined by θ : C �→ ACB. Show that θ is not an isomorphism.

Exercise 309
Let F be a field and let K and L be fields containing F as a subfield. Show
that the set of homomorphisms of unital F -algebras from L to K is a linearly-
independent subset of the vector space KL over K .

Exercise 310
Let V and W be vector spaces over a field F , with V finitely generated, and let
Y be a proper subspace of V . Let α ∈ Hom(V ,W) and let β be the restriction of
α to Y . Show that either ker(β) ⊂ ker(α) or im(β) ⊂ im(α).

Exercise 311
Let V be a vector space over a field F , and let U ⊆ W be subspaces of V . Assume
that there exist x, y ∈ V satisfying the condition that the affine sets x + U =
{x + u | u ∈ U} and y + W = {y + w | w ∈ W } have a vector in common. Show
that x + U ⊆ y + W .

Exercise 312
Let V and W be vector spaces over a field F . A function f : V → W is linearly
independent if and only if gr(f ) is a linearly-independent subset of V × W .
(1) Show that if f : V → W is linearly independent and if α ∈ Hom(V ,W) then

f + α is linearly independent.
(2) Show that no linear transformation is linearly independent.

Exercise 313
Let V and W be a vector spaces over a field F . A linear transformation α : V →
W is said to have algebraic degree n if and only if the set {v,α(v), . . . , αn(v)}
is linearly dependent for any v ∈ V , but there exists an element v0 of V such
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that the set {v0, α(v0), . . . , α
n−1(v0)} is linearly independent. Find the algebraic

degree of α ∈ Hom(R5,R5) defined by α :

⎡
⎢⎢⎢⎢⎣

a

b

c

d

e

⎤
⎥⎥⎥⎥⎦ �→

⎡
⎢⎢⎢⎢⎣

a + 2b

b − c

a

c − a

c

⎤
⎥⎥⎥⎥⎦.

Exercise 314
Let n be a positive integer and let F be a field the characteristic of which does not
divide n. Let W be the subspace of Mn×n(F ) generated by {AB − BA | A,B ∈
Mn×n(F )}. Show that dim(W) = n2 − 1.

Exercise 315
Let V be a vector space finitely generated over a field F and let α ∈ Hom(V ,V ).
Show that there exists a positive integer t satisfying V = im(αt ) ⊕ ker(αt ).



 
     



7The Endomorphism Algebra of a Vector Space

Let V be a vector space over a field F . A linear transformation α from V to itself
is called an endomorphism of V . We will denote the set of all endomorphisms of
V by End(V ). This set is nonempty, since it includes the functions of the form
σc : v �→ cv for c ∈ F . In particular, it includes the 0-endomorphism σ0 : v �→ 0V

and the identity endomorphism σ1 : v �→ v. If V is nontrivial, these functions are
not the same. We see that we have two operations defined on End(V ): addition
and multiplication (given by composition). Indeed, as a direct consequence of the
definitions we conclude the following:

Proposition 7.1 If V is a nontrivial vector space over a field F , then End(V )

is an associative unital F -algebra with σ0 being the identity element for ad-
dition and σ1 being the identity element for multiplication.

If V is a nontrivial vector space over a field F then there exists a function
σ : F → End(V ) defined by σ : c �→ σc for all c ∈ F . This function is monic, for
if σc = σd then for any 0V �= v ∈ V we have cv = σc(v) = σd(v) = dv and hence
(c − d)v = 0V . Since 0V �= v, this implies that c − d = 0 and so c = d . Moreover,
if c, d ∈ F then σc + σd = σc+d and σcσd = σcd so σ is a monic homomorphism
of unital F -algebras. We can use this function to identify F with its image under σ

and consider it a subalgebra of the F -algebra End(V ).
If α,β ∈ End(V ) and if c ∈ F , then we have already seen that the functions α+β ,

αβ , and cα all belong to End(V ). Therefore, we see that if p(X) = ∑n
i=0 aiX

i ∈
F [X] then p(α) = ∑n

i=0 aiα
i is an endomorphism of V , and, indeed, the set F [α]

of all endomorphisms of V of this form is an F -subalgebra of End(V ). The func-
tion from F [X] to F [α] given by p(X) �→ p(α) is immediately seen to be an epic
homomorphism of unital F -algebras for any α ∈ End(V ).

Example Let F = GF(2) and let p(X) = X2 + X ∈ F [X]. Then p(a) = 0 for every

a ∈ F . However, p(α) �= σ0, where α ∈ End(F 2) is defined by α :
[
a

b

]

�→
[

b

a

]

.
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Example Structures of the form F [α] are important in many areas of mathematics.
For example, let V be the collection of all infinitely-differentiable functions from R

to R and let δ be the differentiation endomorphism on V . If p(X) = ∑n
i=0 aiX

i ∈
R[X], then we have p(δ) : f �→ a0f + ∑n

i=1 aif
[i], where f [i] denotes the ith

derivative of f . Such an endomorphism is called a differential operator with con-
stant coefficients on V . If c ∈ R and if fc ∈ V is the function given by fc : x �→ ecx ,
then δ(fc) = cfc and so p(δ) : fc �→ ∑n

i=0 aic
iecx = (

∑n
i=0 aic

i)fc = p(c)fc .
Thus, p(δ) is the 0-function whenever c is as root of p(X). Hence fc ∈ ker(p(δ))

for each root c of p(X).

Example Let V be the convolution algebra on R and let h ∈ V be the constant
function t �→ 1. Then h defines an endomorphism of V given by f �→ h ∗ f , called
the integration endomorphism since h ∗ f : t �→ ∫ t

0 f (u)du.

Example Let F be a field and let (K,•) be a nonassociative F -algebra. An en-
domorphism δ ∈ End(K) is a derivation if and only if δ(v • w) = [δ(v)] • w + v •
[δ(w)]. Thus, for example, if K is a Lie algebra then, as a consequence of the Jacobi
identity, we see that every y ∈ K defines a derivation δy of K given by δy : v �→ y•v.
Also, if K is the R-algebra consisting of all infinitely-differentiable functions in R

R,
then the endomorphism of K which assigns to each function in K its derivative is
a derivation. The set of all derivations defined on K is a subspace of End(K). If δ

and δ′ are derivations on K , then δδ′ is not, in general, a derivation on K , but the
Lie product δδ′ − δ′δ is always a derivation on K , and so the set of all derivations
on K is a Lie algebra over F .

Given a nontrivial vector space V over a field F , we note that the F -algebra
End(V ) is neither necessarily commutative nor necessarily entire, as the following
examples show:

Example Let F be a field and let V = F 3. Let α,β ∈ End(V ) be the endomorphisms

defined by α :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
b

a

c

⎤

⎦ and β :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
a

0
0

⎤

⎦. Then βα :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
b

0
0

⎤

⎦ and

αβ :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
0
a

0

⎤

⎦, so βα �= αβ .

Example Let F be a field and let V = F 3. Let α,β ∈ End(V ) be the endomorphisms

defined by α :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
0
0
c

⎤

⎦ and β :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
a

0
0

⎤

⎦. Then βα = σ0 = αβ .

We do, however, have the following:
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Proposition 7.2 Let V be a vector space over a field F . Then for all
α ∈ End(V ) and all c ∈ F we have ασc = σcα.

Proof If v ∈ V then ασc(v) = α(cv) = cα(v) = σcα(v). �

An endomorphism of a vector space V over a field F which is also an isomor-
phism (i.e., which is both monic and epic) is called an automorphism of V . Since
α(0V ) = 0V for any endomorphism α of V , we see that any automorphism of V in-
duces a permutation of V � {0V }. Similarly, a homomorphism of F -algebras which
is also an isomorphism is an automorphism of F -algebras.

By what we have already seen, we know that α ∈ End(V ) is an automorphism
if and only if there exists an endomorphism α−1 ∈ End(V ) satisfying αα−1 =
σ1 = α−1α. We will denote the set of all automorphisms of V by Aut(V ). This set
is nonempty, since σ1 ∈ Aut(V ), where σ−1

1 = σ1. Moreover, if α,β ∈ Aut(V ) then
(αβ)(β−1α−1) = α(ββ−1)α−1 = αα−1 = σ1 and similarly (β−1α−1)(αβ) = σ1.
Thus αβ ∈ Aut(V ), with (αβ)−1 = β−1α−1. It is also clear that if α ∈ Aut(V )

then α−1 ∈ Aut(V ). If α ∈ Aut(V ) and 0 �= c ∈ F , then cα ∈ Aut(V ) and
(cα)−1 = c−1α−1.

Example Let V be a vector space over a field F and let n > 1 be an integer. Any
permutation π of the set {1, . . . , n} defines an automorphism απ of V n given by

απ :

⎡

⎢
⎢
⎢
⎣

v1
v2
...

vn

⎤

⎥
⎥
⎥
⎦

�→

⎡

⎢
⎢
⎢
⎣

vπ(1)

vπ(2)

...

vπ(n)

⎤

⎥
⎥
⎥
⎦

which rearranges the entries of each vector according to

the permutation π . More generally, if V is a vector space over a field F having a
basis B = {vi | i ∈ Ω} and if π is a permutation of Ω , then there is an automorphism
of V defined by

∑
i∈Λ aivi �→ ∑

i∈Λ aπ(i)vπ(i) for each finite subset Λ of Ω .

Example Let F be a field and let n be a positive integer. We have already seen
that the function A �→ AT is an automorphism of Mn×n(F ), considered as a vector
space over F .

Example Let V be a vector space having finite dimension n over a field F and
let v and y be nonzero elements of V . Then there exist bases {v1, . . . , vn} and
{y1, . . . , yn} of V satisfying v1 = v and y1 = y. The function α : V → V defined
by α : ∑n

i=1 aivi �→ ∑n
i=1 aiyi is thus an automorphism of V satisfying α(v) = y.

Let V be a vector space over a field F and let n be a positive integer. We will list
several types automorphisms, called elementary automorphisms, of a vector space
of the form V n. These automorphisms will play an important part in our ensuing
discussion.
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(1) If 1 ≤ h �= k ≤ n, we define εhk ∈ Aut(V n) by
⎡

⎢
⎣

v1
...

vn

⎤

⎥
⎦ �→

⎡

⎢
⎣

w1
...

wn

⎤

⎥
⎦ , where wi =

⎧
⎨

⎩

vk if i = h

vh if i = k,

vi otherwise.

This automorphism satisfies ε−1
hk = εhk .

(2) If 1 ≤ h ≤ n, and if 0 �= c ∈ F , we define εh;c ∈ Aut(V n) by
⎡

⎢
⎣

v1
...

vn

⎤

⎥
⎦ �→

⎡

⎢
⎣

w1
...

wn

⎤

⎥
⎦ , where wi =

{
cvi if i = h,

vi otherwise.

This automorphism satisfies ε−1
h;c = εh,c−1 .

(3) If 1 ≤ h �= k ≤ n and if c ∈ F , we define εhk;c ∈ Aut(V n) by
⎡

⎢
⎣

v1
...

vn

⎤

⎥
⎦ �→

⎡

⎢
⎣

w1
...

wn

⎤

⎥
⎦ , where wi =

{
vi + cvk if i = h,

vi otherwise.

This automorphism satisfies ε−1
hk;c = εhk;−c .

Identifying the automorphisms of a finite-dimensional vector space V over a field
F is a problem which will be of major importance to us later, and so it is important
to characterize these functions.

Proposition 7.3 Let V be a vector space of finite dimension n over a field F .
Then the following conditions on an endomorphism α of V are equivalent:
(1) α is an automorphism of V ;
(2) α is monic;
(3) α is epic.

Proof By definition, (1) implies (2). Now assume (2). By Proposition 6.10, we see
that the rank of α equals n and so im(α) = V by Proposition 5.11, proving (3).
Now assume (3). By Proposition 6.10, we see that the nullity of α equals n − n = 0
and so ker(α) = {0V }, proving that α is monic as well, and so is bijective. This
proves (1). �

Proposition 7.4 Let V be a finite-dimensional vector space over a field F and
let α ∈ End(V ). If there exists a β ∈ End(V ) satisfying αβ = σ1 or βα = σ1,
then α ∈ Aut(V ) and β = α−1.
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Proof If βα = σ1 then ker(α) ⊆ ker(σ1) = {0V } and so, by Proposition 7.3,
α ∈ Aut(V ). Similarly, if αβ = σ1 then im(α) ⊇ im(σ1) = V and so, by Proposi-
tion 7.3, α ∈ Aut(V ). Moreover, if αβ = σ1 we see that α−1 = α−1σ1 = α−1(αβ) =
β and similarly α−1 = β when βα = σ1. �

Example Proposition 7.3 and Proposition 7.4 are no longer true if we remove the
condition of finite dimensionality. For example, let F be a field and let V = F [X].
Define the endomorphisms α and β of V by setting α : ∑n

i=0 aiX
i �→ ∑n

i=0 aiX
i+1

and β : ∑n
i=0 aiX

i �→ ∑n
i=1 aiX

i−1. Then α,β /∈ Aut(V ), despite the fact that α is
monic and β is epic. Moreover, βα = σ1 but αβ �= σ1.

Let V be a vector space over a field F and let α ∈ End(V ). A subspace W of V

is invariant under α if and only if α(w) ∈ W for all w ∈ W or, in other words, if and
only if α(W) ⊆ W . Thus, W is invariant under α if and only if the restriction of α

to W is an endomorphism of W . It is clear that V and {0V } are both invariant under
every endomorphism of V . If α ∈ End(V ) then im(α) and ker(α) are both invariant
under α.

Example Let F be a field and, for each positive integer k, let Wk be the sub-
space of F [X] composed of all polynomials of degree at most k. Let δ be the for-
mal differentiation endomorphism of F [X], namely the endomorphism defined by
δ : ∑n

i=0 aiX
i �→ ∑n

i=0 iaiX
i−1. Then each of the subspaces Wk is invariant un-

der δ. Now assume that F is of characteristic 0. If p(X) = ∑n
i=0 aiX

i ∈ Wk and if
a ∈ F then it is easy to check that p(X) = p(a)+∑n

h=1
1
h! [δh(p)(a)](X −a)h. The

coefficients 1
h! [δh(p)(a)] are known as the Taylor coefficients of p(X) around a.

Example Let V = R
2 and let α be the automorphism of V defined by

α :
[

a

b

]

�→
[

b

−a

]

. Let W be a proper subspace of V which is invariant under α.

Then dim(W) ≤ 1 and so there exists a vector w =
[

c

d

]

satisfying W = Rw. Since

α(w) =
[

d

−c

]

, it follows that there exists a real number e such that α(w) = ew.

That is to say, ec = d and ed = −c. From this we learn that ce2 = −c, and so

c = d = 0. This proves that W =
{[

0
0

]}

, and so we see that V has no proper

nontrivial subspaces invariant under α.

Example Let F be a field and let n be a positive integer. Let α be the automorphism

of Fn defined by α :

⎡

⎢
⎢
⎢
⎣

a1
a2
...

an

⎤

⎥
⎥
⎥
⎦

�→

⎡

⎢
⎢
⎢
⎣

an

a1
...

an−1

⎤

⎥
⎥
⎥
⎦

. A subspace W invariant under α is cyclic.
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Cyclic subspaces of Fn, where F is a finite field, are important in defining certain
families of error-correcting codes.

Let F be a field. An element a of an F -algebra (K,•) is idempotent if and only
if a2 = a. If V is a vector space over F , then an idempotent element of End(V ) is
called a projection. Note that if α ∈ End(V ) is a projection and if w = α(v) ∈ im(α)

then α(w) = α2(v) = α(v) = w, so that the restriction of α to its image is just σ1.
The converse is also true. If α ∈ End(V ) satisfies the condition that the restriction of
α to its image is just σ1, then for each v ∈ V we have α2(v) = α(α(v)) = σ1(α(v)) =
α(v) and so α is a projection.

Example If F is a field then the endomorphism of F 3 defined by
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
3a − 2c

−a + b + c

3a − 2c

⎤

⎦

is a projection.

Example The sum of two projections need not be a projection. For example, if
V = R

3 then the endomorphisms α and β of V defined by

α :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
a

b

0

⎤

⎦ and β :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
0
b

c

⎤

⎦

are projections, but α + β is not a projection.

Example If W is a subspace of a vector space V over a field F having a complement
Y in V , we know that every element v ∈ V can be written in a unique way in the form
w + y, where w ∈ W and y ∈ Y . The endomorphism of V defined by v �→ w is a
projection the image of which is W . Statisticians often consider data in V = R

n and
use a projection in End(V ) to project it onto a subspace W of V that best preserves
the variance in the data. This standard method in data analysis is called principle
component analysis and there exist several efficient algorithms for performing it.

In fact, all projections of a vector space are of the form in the previous example,
as the following example shows.

Proposition 7.5 Let V be a vector space over a field F and let α ∈ End(V )

be a projection. Then V = im(α) ⊕ ker(α).

Proof If v ∈ im(α)∩ker(α) then there exists an element y of V satisfying v = α(y)

and so v = α(v) = 0V . Thus im(α) and ker(α) are disjoint. If v is an arbitrary
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vector in V then v = [v − α(v)] + α(v) ∈ ker(α) + im(α). Therefore, V = im(α) ⊕
ker(α). �

Proposition 7.6 Let V be a vector space over a field F and let α ∈ End(V ).
A subspace W of V is invariant under α if and only if βαβ = αβ for each
projection β of V the image of which is W .

Proof Assume that W is invariant under α and let β be a projection of V the im-
age of which is W . By Proposition 7.5, we have V = W ⊕ ker(β). If v ∈ V , we
can therefore write v = w + y, where w ∈ W and y ∈ ker(β). Hence αβ(v) =
αβ(w)+αβ(y) = α(w)+0V = α(w) = βα(w) = βαβ(v), showing that βαβ = αβ .
Conversely, if βαβ = αβ for each projection β of V the image of which is W

then, for each such β , we have w = β(w) for all w ∈ W and so α(w) = αβ(w) =
βαβ(w) ∈ W , showing that W is invariant under α. �

Proposition 7.7 Let V be a vector space over a field F and let {W1, . . . ,Wn}
be a set of subspaces of V . Then the following conditions are equivalent:
(1) V = W1 ⊕ · · · ⊕ Wn;
(2) There exist projections α1, . . . , αn in End(V ) with Wi = im(αi) for

all 1 ≤ i ≤ n, which satisfy the conditions αiαj = σ0 for i �= j and
α1 + · · · + αn = σ1.

Proof (1) ⇒ (2): From (1) it follows that every v ∈ V can be written in a unique
manner as

∑n
i=1 wi , where wi ∈ Wi for all 1 ≤ i ≤ n. Define αi to be the projection

v �→ wi for each i. It is easy to verify that these linear transformations do indeed
satisfy the required conditions.

(2) ⇒ (1): Since α1 + · · · + αn = σ1, we surely have V = ∑n
i=1 im(αi) =∑n

i=1 Wi . If 0V �= v ∈ Wh ∩ ∑
j �=h Wj then there exists an i �= h such that αi(v) �=

0V . But αh(v) = v so αiαh �= σ0, a contradiction. Therefore, Wh ∩∑
j �=h Wj = {0V }

for each 1 ≤ h ≤ n, proving (1). �

Proposition 7.8 Any two complements of a subspace W of a vector space V

over a field F are isomorphic.

Proof Let U and Y be complements of W in V . By Proposition 7.7, we know that
there exists a projection β ∈ End(V ) the image of which is U and the kernel of
which is W . Let α be the restriction of β to Y . The linear transformation α is a
monomorphism since ker(α) ⊆ ker(β) ∩ Y = W ∩ Y = {0V }. Any vector u ∈ U

can be written as w + y, where w ∈ W and y ∈ Y , and we have α(y) = β(y) =
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β(w) + β(y) = β(w + y) = β(u) = u. Thus we see that α is also epic and hence is
the desired isomorphism. �

We now introduce a notion which is basic in all branches of mathematics. A re-
lation ≡ defined on a given nonempty set U is called an equivalence relation if and
only if the following conditions are satisfied:
(1) u ≡ u for all u ∈ U ;
(2) u ≡ u′ if and only if u′ ≡ u;
(3) If u ≡ u′ and u′ ≡ u′′ then u ≡ u′′.

Example Let B be a nonempty subset of a set A and define a relation ≡B on A by
setting a ≡B a′ if and only if a = a′ or both a and a′ belong to B . Then ≡B is an
equivalence relation on A. In particular, if W is a subspace of a vector space V then
the relation ≡W defined on V by setting v ≡W v′ if and only if v − v′ ∈ W is an
equivalence relation on V .

Example Let V and W be a vector spaces over a field F and let α ∈ HomF (V,W).
Define a relation ≡ on V by setting v ≡ v′ if and only if α(v) = α(v′). This is easily
seen to be an equivalence relation.

Let V be a vector space over a field F . A subset G of Aut(V ) is a group of
automorphisms if it is closed under taking products, contains σ1, and satisfies the
condition that α−1 ∈ G whenever α ∈ G. Clearly, Aut(V ) itself is such a group.
The notion of a group of automorphisms is very important in linear algebra and its
applications, but here we will only touch on it.

Example Let V be a vector space over a field F and let α ∈ Aut(V ). Then
{αi | i ∈ Z} is surely a group of automorphisms.

Example Let V be a vector space over a field F and let Ω be a nonempty set. Every
permutation π of Ω defines an automorphism απ of the vector space V Ω over F

defined by απ(f ) : i �→ f (π(i)) for all i ∈ Ω and all f ∈ V Ω . The collection G of
all such automorphisms is a group of automorphisms in Aut(V Ω).

Proposition 7.9 If V is a vector space over a field F and if G is a group of
automorphisms of V then G defines an equivalence relation ∼G on V by set-
ting v ∼G v′ if and only if there exists an element α of G satisfying α(v) = v′.

Proof If v ∈ V then σ1(v) = v, and so v ∼G v. If v, v′ ∈ V satisfy v ∼G v′ then
there exists an element α of G satisfying α(v) = v′, and so v′ = α−1(v). Thus
v′ ∼G v. Finally, if v, v′, v′′ ∈ V satisfy v ∼G v′ and v′ ∼G v′′ then there exist
elements α and β of G satisfying α(v) = v′ and β(v′) = v′′, and so βα(v) = v′′.
Thus v ∼G v′′. �
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Proposition 7.10 If V is a vector space over a field F and if G is a group of
automorphisms of V then all elements of G have the same rank.

Proof If α ∈ G then, by Proposition 6.11, rk(σ1) = rk(αα−1) ≤ rk(α) = rk(ασ1)

≤ rk(σ1) and so rk(α) = rk(σ1). �

Exercises

Exercise 316
Let V be a vector space over GF(3). Find an endomorphism α of V satisfying
α(v) + α(v) = v for all v ∈ V .

Exercise 317
Let V be a vector space finitely generated over a field F and let α,β, γ ∈ End(V ).
Find necessary and sufficient conditions for there to exist an endomorphism θ of
V satisfying αγβ = βθα.

Exercise 318
Let F = GF(2) and let n be a positive integer. Let α : Fn → Fn be the function

defined by α :
⎡

⎢
⎣

a1
...

an

⎤

⎥
⎦ �→

⎡

⎢
⎣

a′
1
...

a′
n

⎤

⎥
⎦, where 0′ = 1 and 1′ = 0. Is α an endomorphism

of Fn?

Exercise 319
Let α,β : Q[X] → Q[X] be defined by α : p(X) �→ Xp(X) and β : p(X) �→
X2p(X). Show that α, β , and α − β are all monic endomorphisms of Q[X].

Exercise 320
Let V be a finitely-generated vector space over a field F and let α ∈ End(V ).
Show that α is not monic if and only if there exists an endomorphism β �= σ0 of
V satisfying αβ = σ0.

Exercise 321
Let V be a vector space over a field F and let α ∈ End(V ). Show that ker(α) =
ker(α2) if and only if ker(α) and im(α) are disjoint.

Exercise 322
Let V be a vector space over a field F and let α ∈ End(V ). Show that im(α) =
im(α2) if and only if V = ker(α) + im(α).



122 7 The Endomorphism Algebra of a Vector Space

Exercise 323
Let V be a vector space over a field F and let K = F × V × End(V ), which is
again a vector space over F . Define an operation � on K by setting (a, v,α) �
(b,w,β) = (ab, aw + β(v),βα). Is (K,�) an F -algebra? Is it associative? Is it
unital?

Exercise 324
Let V be a vector space over a field F , and let Aff(V ,V ) be the set of all
affine transformations from V to itself. Is Aff(V ,V ), on which we have defined
the operations of addition and composition of functions, an associative unital
F -algebra?

Exercise 325

Let α ∈ Aut(R2) be defined by α :
[
a

b

]

�→
[−b

a

]

. Show that R{α,σ1} is a uni-

tal subalgebra of End(R2). Show that it is proper by giving an example of an
endomorphism of R2 not in this subalgebra.

Exercise 326
Let V be the space of all real-valued functions on the interval [−1,1] which are
infinitely differentiable, and let δ be the endomorphism of V which assigns to
each function f its derivative. Find the kernel and image of δ.

Exercise 327
Let α : C → C be the function defined by α : a + bi �→ −b + ai. Is α an endo-
morphism of C considered as a vector space over R? Is it an endomorphism of
C considered as a vector space over itself?

Exercise 328
Let V be a vector space of finite dimension n over a field F and let α ∈ End(V ).
Show that there exists an automorphism β of V satisfying αβα = α.

Exercise 329
Let V = M2×2(R), which is a vector space over R. Let α ∈ V V be defined by

α :
[
a11 a12
a21 a22

]

�→
[ |a11| |a12|
|a21| |a22|

]

. Is α an endomorphism of V ?

Exercise 330
Consider R as a vector space over Q and let α be an endomorphism of this space
satisfying the condition that there exists an a0 ∈R such that α is continuous at a0.
Show that α is continuous at every a ∈R.

Exercise 331
Let A be a nonempty set and let V be the collection of all subsets of A, con-
sidered as a vector space over GF(2). For which subsets C of A is the function
B �→ B ∪ C an endomorphism of V ?
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Exercise 332
Let V be a vector space of finite dimension n over a field F and let {αij |
1 ≤ i, j ≤ n} be a collection of endomorphisms of V , not all of which are equal
to σ0, satisfying the condition that

αijαkh =
{

αih if j = k,

σ0 otherwise.

Show that there exists a basis {v1, . . . , vn} of V such that

αjk(vi) =
{

vj if i = k,

0V otherwise.

Exercise 333
Let V be a vector space of finite dimension n over a field F and choose an
element α ∈ End(V ). Let ϕ : End(V ) → End(V ) be the function defined by
β �→ βα. This is an endomorphism of End(V ), considered as a vector space
over F . Show that a positive integer n satisfies αn = σ0 if and only if ϕn is
the 0-function.

Exercise 334
Let α be an endomorphism of R3 satisfying the condition that α2 = σ0. Show
that there exists a linear transformation β : R3 →R and that there exists a vector
y ∈ R

3 satisfying α(v) = β(v)y for all v ∈ R
3.

Exercise 335
For each 0 �= a ∈ R, let βa : C → C be the function defined by βa : z �→ z + az.
Show that βa is an endomorphism of C considered as a vector space over R, and
describe its image and kernel.

Exercise 336
Let V be a vector space finitely generated over Q and let α,β ∈ End(V ) satisfy
3α3 + 7α2 − 2αβ + 4α − σ1 = σ0. Show that αβ = βα.

Exercise 337
Let F be a field of characteristic other than 2 and let V be a vector space of finite
dimension n over F . Let α be an endomorphism of V satisfying the condition
that α2 = σ1. Show that rk(σ1 − α) + rk(σ1 + α) = n.

Exercise 338
Let V be a vector space over a field F which is not finitely generated, and let
σ0 �= α ∈ End(V ). Set A = {β ∈ End(V ) | αβ = σ1}. Show that if A has more
than one element then it is infinite.

Exercise 339
Let V be a vector space over a field F having dimension greater than 1. Show
that there exists a function α ∈ V V which is not an endomorphism of V but
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which nonetheless satisfies the condition that α(av) = aα(v) for all a ∈ F and
all v ∈ V .

Exercise 340
Let V be a vector space over a field F satisfying the condition that αβ = βα for
all α,β ∈ End(V ). Show that dim(V ) = 1.

Exercise 341
Let V = M2×2(R), considered as a vector space over R. Let α : V → V be the

function defined by α :
[
a b

c d

]

�→
[

a + 2b + c + 2d 2a + 4b + 3c + 5d

3a + 6b + 2c + 5d a + 2b + c + 2d

]

.

Is α an endomorphism of V ? Is it an automorphism of V ?

Exercise 342
Let V be the vector space of all continuous functions from R to itself and let
α : V → V be the function defined by α : f (x) �→ [x2 + sin(x) + 2]f (x). Show
that α is an automorphism of V .

Exercise 343
Let F be a field and let α : F [X] → F [X] be the function defined by α : p(X) �→
p(X + 1). Is α an endomorphism of F [X]? Is it an automorphism?

Exercise 344
Let F be a field and, for each a ∈ F , let θa be the endomorphism of F [X] defined
by θa : p(X) �→ p(X + a). Let α ∈ End(F [X]) satisfy α(X) ∈ F and αθa = θaα

for all a ∈ F . Can α be a monomorphism?

Exercise 345

Let α ∈ End(R3) be given by α :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
a − 2b

c

a − b

⎤

⎦. Is α an automorphism

of R3?

Exercise 346
Let α be the endomorphism of R(∞) defined by

α : [a1, a2, a3, . . .] �→ [b1, b2, b3, . . .],

where bh = ∑
j≤h(−1)j−1

(
h−1
j−1

)
aj for each h ≥ 1. Show that α is an automor-

phism satisfying α = α−1.

Exercise 347
Let V be a vector space finitely generated over R and let α be an endomorphism
of V satisfying α3 + 4α2 + 2α + σ1 = σ0. Show that α ∈ Aut(V ).
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Exercise 348
Let V be a vector space over a field F and let α,β ∈ End(V ) satisfy αβ = σ1. Set
ϕ = σ1 − βα. Show that for every integer n ≥ 1 we have σ1 = ∑n−1

k=0 βkϕαk +
βnαn.

Exercise 349
Let V be the space of all polynomial functions from the interval [0,1] on the
real line to R. Let α and β be the endomorphisms of V defined by α(f ) : x �→
∫ x

0 f (t) dt and β(f ) : x �→ ∫ 1
x

f (t) dt . Find im(α + β). Is it true that αβ = βα?

Exercise 350
Let F be a field and let V = F∞. Let n > 1 be an integer. Each vector

y =
⎡

⎢
⎣

d1
...

dn

⎤

⎥
⎦ ∈ Fn defines an endomorphism θy of V by θy : [a1, a2, . . .] �→

[b1, b2, . . .], where bh = ∑n
i=1 ah−1+idi , for h = 1,2, . . . . Show that if θy is a

monomorphism then the polynomial p(X) = ∑n
i=1 diX

i−1 ∈ F [X] has no roots
in F .

Exercise 351
Let F = GF(5) and let V = F 3. How many endomorphisms α of V satisfy the

conditions α

⎛

⎝

⎡

⎣
1
0
0

⎤

⎦

⎞

⎠ =
⎡

⎣
2
1
0

⎤

⎦ and α

⎛

⎝

⎡

⎣
0
3
0

⎤

⎦

⎞

⎠ =
⎡

⎣
1
1
1

⎤

⎦?

Exercise 352
Let V be the set of all continuous functions from R to itself, which is a vector
space over R. Let α : V → V be the function defined by α(f ) : x �→ f (x

2 ) for all
x ∈ R and all f ∈ V . Is α an automorphism of V ?

Exercise 353
Let V = R

∞ and let W be the subspace of V consisting of all convergent se-
quences. Let α ∈ End(V ) be defined by α : [a1, a2, . . .] �→ [b1, b2, . . .], where
bh = 1

h
(
∑h

i=1 ai) for all h ≥ 1. If v ∈ V satisfies α(v) ∈ W , is v itself necessarily
in W ?

Exercise 354
Let V be a vector space over a field F and let α ∈ Aut(V ). Let W1, . . . ,Wk be
subspaces of V satisfying V = ⊕k

i=1 Wi . For each 1 ≤ i ≤ k, let Yi = {α(w) |
w ∈ Wi}. Is V = ⊕k

i=1 Yi?

Exercise 355
Consider R as a vector space over Q. An endomorphism α of this space is
bounded if and only if there exists a nonnegative real number m(α) satisfying
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the condition that |α(x)| ≤ m(α)|x| for all x ∈ R. Does the set of all bounded
endomorphisms of R form an R-subalgebra of End(R)?

Exercise 356
Let F be a field, let n be a positive integer, and let V = Mn×n(F ). Given a
matrix B ∈ V , is the function αB : V → V defined by αB : A �→ AB + BA an
endomorphism of V ?

Exercise 357
Let F be a field and let V = F [X]. Let δ ∈ End(V ) be the formal differentiation
function and let α ∈ End(V ) be defined by α : p(X) �→ Xp(X). Show that αδ −
δα = σ1.

Exercise 358
Let V be a nontrivial vector space over a field F . Is the set of all automorphisms
of V a subspace of the vector space End(V ) over F ?

Exercise 359
Consider GF(3) as a vector space over itself. Does there exist an automorphism
of this space other than σ1?

Exercise 360
Let V = F∞ for some field F . Each w = [c1, c2, . . .] ∈ V defines a function βw :
V → V by βw : [a1, a2, . . .] �→ [

a1, a1c1 + a2, (a1c1 + a2)c2 + a3, . . .
]
. Show

that βw is an automorphism of V .

Exercise 361
Let V be a vector space over a field F ; let α ∈ End(V ) and let β ∈ Aut(V ). Define

the function θ : V 2 → V 2 by setting θ :
[

v

v′
]

�→
[

β(v)

α(v) + v′
]

. Is θ necessarily

an automorphism of V 2?

Exercise 362

Let F = GF(5) and let α ∈ Aut(F 2) be defined by α :
[
a

b

]

�→
[

2b

a + 2b

]

. Show

that there exists a positive integer h satisfying αh+1 = α and find the smallest
such integer h.

Exercise 363
Let F be a field of characteristic other than 2. Let V be a vector space over F

and let α,β, γ, δ be endomorphisms of V satisfying the condition that α −β and
α + β are automorphisms of V . Show that there exist endomorphisms ϕ and ψ

of V satisfying ϕα + ψβ = γ and ψα + ϕβ = δ.
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Exercise 364
Let V be a vector space of finite dimension n over a field F . Let α ∈ End(V )

and assume that there exists a vector in y ∈ V satisfying the condition that D =
{α(y),α2(y), . . . , αn(y)} is a basis for V . Show that D′ = {y,α(y), . . . , αn−1(y)}
is also a basis for V and that α ∈ Aut(V ).

Exercise 365
Let F be a field and let V = F (Z). Let α be the endomorphism of V defined by
α(f ) : i �→ f (i +1) for all f ∈ V . Show that α−cσ1 /∈ Aut(V ) for all 0 �= c ∈ F .

Exercise 366
Let V be a vector space of finite dimension n over a field F , and let 0 < k ≤ n

be a positive integer. Let Ak be the set of all subspaces of V having dimension k.
Let α ∈ Aut(V ) and, for each W ∈ Ak , let θα(W) = {α(w) | w ∈ W }. Show that
the function θα is a permutation of Ak .

Exercise 367
Let r , s, and t be distinct real numbers and let α be the endomorphism of R3

defined by α :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
a + br + cr2

a + bs + cs2

a + bt + ct2

⎤

⎦. Is α an automorphism of R3?

Exercise 368
Let V be a vector space over a field F and let α ∈ End(V ). Show that W =⋃∞

i=1 ker(αi) is a subspace of V which is invariant under α.

Exercise 369
Let α and β be the endomorphisms of Q4 defined by

α :

⎡

⎢
⎢
⎣

a

b

c

d

⎤

⎥
⎥
⎦ �→

⎡

⎢
⎢
⎣

2a − 2b − 2c − 2d

5b − c − d

−b + 5c − d

−b − c + 5d

⎤

⎥
⎥
⎦ and β :

⎡

⎢
⎢
⎣

a

b

c

d

⎤

⎥
⎥
⎦ �→

⎡

⎢
⎢
⎣

0
−b + 2c + 3d

2b − 3c + 6d

3b + 6c + 2d

⎤

⎥
⎥
⎦ .

Find two nontrivial proper subspaces of Q4 which are invariant both under α and
under β .

Exercise 370
Let F be a field and let V = F 4. Let α be the endomorphism of V defined by

α :

⎡

⎢
⎢
⎣

a

b

c

d

⎤

⎥
⎥
⎦ �→

⎡

⎢
⎢
⎣

a − b

a − b

a − b

c − b − d

⎤

⎥
⎥
⎦. Does there exist a two-dimensional subspace of V

invariant under α?
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Exercise 371
Let V be a vector space over a field F and let α ∈ End(V ). If W and Y are
subspaces of V which are invariant under α, show that both W + Y and W ∩ Y

are invariant under α.

Exercise 372
Let W be a subspace of a vector space V over a field F and let S be the set of all
α ∈ End(V ) such that W is invariant under α. Is S necessarily an F -subalgebra
of End(V )?

Exercise 373
Let V be a vector space over a field F and let α ∈ End(V ). If W is a subspace of
V , show that the set of all subspaces of W which are invariant under α, partially
ordered by inclusion, has a maximal element.

Exercise 374
Let V = R

∞ and let W be the subspace of V consisting of all sequences
[a1, a2, . . .] for which the series

∑∞
i=1 ai converges. Let σ be a permutation of the

set of all positive integers and let α ∈ End(V ) be defined by α : [a1, a2, . . .] →
[aσ(1), aσ(2), . . .]. Is W invariant under α?

Exercise 375
Let V be a vector space over a field F . Let 0 �= c ∈ F and let α ∈ End(V ). Let
{x0, x1, . . . , xn} be a set of vectors in V satisfying α(x0) = cx0 and α(xi)−cxi =
xi−1 for all 1 ≤ i ≤ n. Show that F {x0, x1, . . . , xn} is a subspace of V which is
invariant under α.

Exercise 376
Let F be a field which is not finite and let V be a vector space over F having
dimension greater than 1. For each 0 �= c ∈ F , show that there exist infinitely-
many distinct subspaces of V which are invariant under the endomorphism σc

of V .

Exercise 377
Let V be a vector space of finite dimension n over a field F . Let α ∈ End(V )

and let β ∈ End(V ) satisfy β2 = α. Find a positive integer k such that rk(β) ≤
1
k
[rk(α) + n].

Exercise 378
Let α and β be endomorphisms of a vector space V over a field F and let
θ ∈ Aut(V ) satisfy θα = βθ . Show that a subspace W of V is invariant under
α if and only if W ′ = {θ(w) | w ∈ W } is invariant under β .

Exercise 379
Let α and β be endomorphisms of a vector space V over a field F satisfying
αβ = βα. Is ker(α) invariant under β?
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Exercise 380
Let V be a vector space over a field F and let α ∈ End(V ) be a projection. Show
that σ1 − α is also a projection.

Exercise 381
Let V be a vector space finitely generated over a field F and let α ∈ End(V )

satisfy the condition α2(σ1 − α) = σ0. Is α necessarily a projection?

Exercise 382
Let V be the space of all continuous functions from R to itself and let W =
R{sin(x), cos(x)} ⊆ V . Let δ be the endomorphism of W which assigns to each
function its derivative. Find a polynomial p(X) ∈ R[X] of degree 2 satisfying
p(δ) = σ0.

Exercise 383
Let V be a vector space finitely generated over Q and assume that there exists an
α ∈ Aut(V ) satisfying α−1 = α2 + α. Show that dim(V ) is divisible by 3.

Exercise 384

Let n be a positive integer and let G =

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

a1
...

an

⎤

⎥
⎦ ∈ R

n

∣
∣
∣
∣
∣
∣
∣

ai ≥ 0 for all 1 ≤ i ≤ n

⎫
⎪⎬

⎪⎭
.

Let α be an endomorphism of Rn satisfying the condition that α(v) ∈ G implies
that v ∈ G. Show that α ∈ Aut(Rn).

Exercise 385
Let V be a vector space over a field F and let W and Y be subspaces of V

satisfying W + Y = V . Let Y ′ be a complement of Y in V and let Y ′′ be a
complement of W ∩ Y in W . Show that Y ′ ∼= Y ′′.

Exercise 386
Let F be a field of characteristic other than 2 and let V be a vector space over F .
Let α,β ∈ End(V ) be projections satisfying the condition that α + β is also a
projection. Show that αβ = βα = σ0.

Exercise 387
Let V be a vector space over F and let α,β ∈ End(V ). Show that α and β are
projections satisfying ker(α) = ker(β) if and only if αβ = α and βα = β .

Exercise 388
Let V be a vector space finitely generated over a field F and let α �= σ1 be an
endomorphism of V which is a product of projections. Show that α /∈ Aut(V ).

Exercise 389
Let V be a vector space over Q and let α ∈ End(V ). Show that α is a projection
if and only if (2α − σ1)

2 = σ1.
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Exercise 390
Let α and β be endomorphisms of a vector space V over a field F and let
f (X) ∈ F [X] satisfy f (αβ) = σ0. Set g(X) = Xf (X). Show that g(βα) = σ0.

Exercise 391
Let V = R

R and let g ∈ V . Find necessary and sufficient conditions on g for the
endomorphism f �→ gf of V to be a projection.

Exercise 392
Let W be a subspace of a vector space V over a field F which is invariant un-
der an endomorphism α of V . Let β ∈ End(V ) be a projection satisfying the
condition that im(β) = W . Show that βαβ = αβ .

Exercise 393
Let V be a vector space of finite dimension n over a field F and let α ∈ End(V ).
Show that there exists an automorphism β of V and a projection θ of V satisfying
α = βθ .

Exercise 394
Let F be a field of characteristic other than 2 and let V be a vector space over F .
Let α ∈ End(V ) be a projection satisfying the condition that α −β is a projection
for all β ∈ End(V ). Show that α = σ1.

Exercise 395
Let V be a vector space over F and let α,β ∈ End(V ) be projections satisfying
the condition that im(α) and im(β) are disjoint. Is it necessarily true that αβ =
βα?

Exercise 396
Let V be a vector space of finite dimension n over a field F and let S = End(V )�

Aut(V ). For α,β ∈ S, show that im(α) = im(β) if and only if {aθ | θ ∈ S} =
{βϕ | ϕ ∈ S}.

Exercise 397
Let F be a field. Does there exist an endomorphism α of F 3 which is not a
projection satisfying the condition that α2 is a projection equal neither to σ0 nor
to σ1.

Exercise 398
Let V be a vector space finite dimensional over a field F and let α be an endo-
morphism of V . Show that there exist a positive integer k such that im(αk) and
ker(αk) are disjoint.
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Exercise 399
Let F be a field of characteristic other than 2, and let V be a vector space over F .
Let α ∈ End(V ) satisfy α3 = α. Show that V = W1 ⊕ W2 ⊕ W3, where W1 =
{v ∈ V | α(v) = v}, W2 = {v ∈ V | α(v) = −v}, and W3 = ker(α).

Exercise 400
Let F be a field of characteristic other than 2 and let V be a finitely-generated
vector space over F . Show that every endomorphism of V is the sum of two
automorphisms of V .

Exercise 401
Let n > 1 be an integer and let θ : Rn → R be the function defined by

θ :
⎡

⎢
⎣

a1
...

an

⎤

⎥
⎦ �→ ∑n

i=1 a2
i . Assume that we can define an operation • on R

n sat-

isfying the condition that (Rn,•) is an associative unital R-algebra with multi-
plicative identity e, and also satisfying the condition that θ(v • w) = θ(v)θ(w)

for all v,w ∈R
n. Show that (Rn,+,•) is a division algebra over R.

Exercise 402
Any sequence v = [a1, a2, . . .] ∈ R

∞ defines an endomorphism αv of R[X]
which acts on elements of the canonical basis of R[X] according to the rule
αv : Xn �→ ∑n

k=0

(
n
k

)
(k!)ak+1X

n−k for each nonnegative integer n. Given a ∈R,
find v,w ∈ R

∞ such that αv : p(X) �→ p(X + a) and αw : p(X) �→ p(X + a) −
p(a).

Exercise 403
Let V be a vector space over a field F and let G be a group of automorphisms
of V . For v ∈ V , define the stabilizer of v in G to be Gv = {α ∈ G | α(v) = v}.
Is this necessarily a group of automorphisms of V ?



 
     



8Representation of Linear Transformations
by Matrices

In this chapter, we show how we can study linear transformations between finitely-
generated vector spaces by studying matrices. Let V and W be finitely-generated
vector spaces over a field F , where dim(V ) = n and dim(W) = k. Fix bases
B = {v1, . . . , vn} of V and D = {w1, . . . ,wk} of W . From Proposition 5.4, we know
that if we are given a linear transformation α ∈ Hom(V ,W) then for each 1 ≤ j ≤ n

there exist scalars a1j , . . . , akj satisfying the condition α(vj ) = ∑k
i=1 aijwi , and

that these scalars are in fact uniquely determined by α. Thus α defines a matrix
[aij ] ∈ Mk×n(F ). Conversely, assume we have a matrix A = [aij ] ∈ Mk×n(F ).
Then we know that every vector v in V can be written in a unique way in the form∑n

j=1 bjvj , and so A defines a linear transformation α ∈ Hom(V ,W) by setting

α : v �→ ∑k
i=1(

∑n
j=1 aij bj )wi . Moreover, it is clear that different linear transforma-

tions in Hom(V ,W) define different matrices in Mk×n(F ) and different matrices
in Mk×n(F ) define different linear transformations in Hom(V ,W). We summarize
the above remarks in the following proposition.

With kind permission of the Special collections, Fine Arts Library, Harvard Univer-
sity.

The theory of matrices and their relation to linear transformations was
developed in detail by the nineteenth-century British mathematician
Sir Arthur Cayley, one of the most prolific researchers in history.

Proposition 8.1 Let V be a vector space of finite dimension n over a field
F and let W be a vector space of finite dimension k over F . For every
basis B of V and every basis D of W there exists a bijective function
ΦBD : Hom(V ,W) → Mk×n(F ), which is an isomorphism of vector spaces
over F .
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Proof We have already seen that if B = {v1, . . . , vn} and D = {w1, . . . ,wk}, then
the function ΦBD is defined by ΦBD(α) = [aij ], where α(vj ) = ∑k

i=1 aijwi for all
1 ≤ j ≤ n, and that this function is bijective. We are therefore left to show that this
is a linear transformation. Indeed, if ΦBD(α) = [aij ] and ΦBD(β) = [bij ] then

(α + β)(vj ) =
k∑

i=1

(aij + bij )wi =
k∑

i=1

aijwi +
k∑

i=1

bijwi = α(vj ) + β(vj )

for all 1 ≤ j ≤ n, and so ΦBD(α + β) = ΦBD(α) + ΦBD(β). Similarly, if c ∈ F

then (cα)(vj ) = ∑k
i=1 caijwi = c(

∑k
i=1 aijwi) = c(α(vj )) for all 1 ≤ j ≤ n, and

so ΦBD(cα) = cΦBD(α). Thus we see that ΦBD is indeed a linear transformation
and thus also an isomorphism. �

We have already seen that, in the above situation, dim(Mk×n(F )) = kn and so,
by Proposition 6.9, we also see that dim(Hom(V ,W)) = kn.

Example Let V = R
3 and let B be the canonical basis on V . Each vector

v =
⎡

⎣
a1
a2
a3

⎤

⎦ ∈ V defines a linear transformation αv : V → V given by αv : w �→

v × w. Then ΦBB(αv) =
⎡

⎣
0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤

⎦.

Example Let V =R
3 and W =R

2. Choose bases

B =
⎧
⎨

⎩

⎡

⎣
0.5

−0.5
0

⎤

⎦ ,

⎡

⎣
0.5
0

−0.5

⎤

⎦ ,

⎡

⎣
0

0.5
0.5

⎤

⎦

⎫
⎬

⎭

of V and of D =
{[

1
1

]

,

[
1
0

]}

of W . If

⎡

⎣
r

s

t

⎤

⎦ ∈ R
3 then there exist b1, b2, b3 ∈ R

satisfying

⎡

⎣
r

s

t

⎤

⎦ = b1

⎡

⎣
0.5

−0.5
0

⎤

⎦ + b2

⎡

⎣
0.5
0

−0.5

⎤

⎦ + b3

⎡

⎣
0

0.5
0.5

⎤

⎦ = 1
2

⎡

⎣
b1 + b2

−b1 + b3
−b2 + b3

⎤

⎦, and

so we have 2r = b1 + b2, 2s = −b1 + b3, and 2t = −b2 + b3. From this we get
b1 = r − s + t , b2 = r + s − t , and b3 = r + s + t .

The matrix A =
[

3 5 7
4 8 2

]

defines a linear transformation α ∈ Hom(V ,W)

given by
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α : b1

⎡

⎣
0.5

−0.5
0

⎤

⎦ + b2

⎡

⎣
0.5
0

−0.5

⎤

⎦ + b3

⎡

⎣
0

0.5
0.5

⎤

⎦

�→ (3b1 + 5b2 + 7b3)

[
1
1

]

+ (4b1 + 8b2 + 2b3)

[
1
0

]

,

so

α

⎛

⎝

⎡

⎣
r

s

t

⎤

⎦

⎞

⎠ = (15r + 9s + 5t)

[
1
1

]

+ (14r + 6s − 2t)

[
1
0

]

=
[

29r + 15s + 3t

15r + 9s + 5t

]

.

It is very important to emphasize that the matrix representation of a linear trans-
formation depends on the bases which we fixed at the beginning, and on the order
in which the elements of the bases are written! If we choose different bases or write
the elements of a chosen basis in a different order, we will get a different matrix.
Shortly, we will consider the relation between the matrices which represent a given
linear transformation with respect to different bases.

Let V be a vector space finitely generated over a field F , let α be an endo-
morphism of V , and let W be a subspace of V which is invariant under α. As we
have already seen, the restriction β of α to W is an endomorphism of W . Now, let
B = {v1, . . . , vk} be a basis for W , which we can expand to a basis D = {v1, . . . , vn}
for all of V . If ΦDD(α) = [aij ] then for all 1 ≤ j ≤ k we have α(vj ) = ∑k

i=1 aij vi ,
and so aij = 0 whenever 1 ≤ j ≤ k and k < i ≤ n. Thus we see that the ma-

trix ΦDD(α) is of the form

[
A11 A21
O A22

]

, where A11 = ΦBB(β). The subspace

Y = F {vk+1, . . . , vn} of V is a complement of W in V . If it too is invariant under α

then we would also have A21 = O , and so α is represented by a matrix composed
of two square matrices “strung out” along the diagonal. From a computational point
of view, such a representation has distinct advantages.

Beside addition and scalar multiplication of matrices, we can also define the
product of two matrices, provided that these matrices are of suitable sizes. Let (K,•)

be an associative unital algebra over a field F . If A = [vij ] ∈ Mk×n(K) and B =
[wjh] ∈Mn×t (K) for some positive integers k, n, and t , we define the matrix AB to
be the matrix [yih] ∈ Mk×t (K) where, for each 1 ≤ i ≤ k and all 1 ≤ h ≤ t , we set
yih = ∑n

j=1 vij •wjh. For the most part, we will be interested in this construction for
the case K = F , but sometimes we will have need of the more general construction.
Note that a necessary condition for the product of two matrices to be defined is that
the number of columns in the first matrix be equal to the number of rows in the
second matrix.
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Example If A =
[

2 3 2
−1 2 1

]

∈ M2×3(Q) and B =
⎡

⎣
−1 0 2 −1

1 0 1 −2
2 1 0 −3

⎤

⎦ ∈

M3×4(Q) then AB =
[

5 2 7 −14
5 1 0 −6

]

∈M2×4(Q) but BA is not defined.

Example If we consider the matrices

A =
[

2 3 2
−1 2 1

]

∈ M2×3(Q) and B =
⎡

⎣
−1 0

1 0
2 1

⎤

⎦ ∈ M3×2(Q)

then AB =
[

5 2
5 1

]

∈M2×2(Q) and BA =
⎡

⎣
−2 −3 −2

2 3 2
3 8 5

⎤

⎦ ∈ M3×3(Q).

Suppose that A = [aij ] ∈ Mk×n(F ) and v =
⎡

⎢
⎣

b1
...

bn

⎤

⎥
⎦ ∈ Fn. Then Av =

⎡

⎢
⎣

c1
...

ck

⎤

⎥
⎦ ∈ Fk

where, for each 1 ≤ i ≤ k, we have ci = ∑n
j=1 aij bj . Denoting the columns of A

by u1, . . . , un, we see that Av = ∑n
j=1 bjuj . So we conclude that if there exists

a nonzero vector v such that Av =
⎡

⎢
⎣

0
...

0

⎤

⎥
⎦, then the columns of A must be linearly

dependent. If every element of Fk is of the form Av for some v ∈ Fn, then the
columns of A must form a generating set for Fk .

Let (K,•) be an associative unital algebra over a field F and let n be a pos-

itive integer. If v =
⎡

⎢
⎣

v1
...

vn

⎤

⎥
⎦ and w =

⎡

⎢
⎣

w1
...

wn

⎤

⎥
⎦ are elements of Kn then vT w =

[∑n
i=1 vi • wi] ∈ M1×1(K). This is called the interior product of v and w. This

1 × 1 matrix is usually identified with the scalar
∑n

i=1 vi • wi ∈ K , which we will
denote by v � w, in a departure from usual notation.1

Dually, the exterior product of v and w is defined to be the matrix vwT = [yij ] ∈
Mn×n(K), where yij = vi • wj . We will denote the exterior product of v and w

by v ∧ w. Notice that the exterior product is not commutative, but rather v ∧ w =
(w ∧ v)T . Exterior products of vectors are encountered far less often than interior
products, but have important applications in many areas, among them physics (in
the Dirac model of quantum physics, interior products are called bra-ket products,
whereas exterior products are called ket-bra products).

1The usual notation is v ·w, but that can cause confusion with the dot product, which we will study
later, in the case that F = C. For that reason, also, we use the term “interior product” rather than
the often-seen “inner product”.
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In particular, we note the following: let K be an algebra over a field F , let
A ∈ Mk×n(K), and let B ∈ Mn×t (K). Let vT

1 , . . . , vT
k be the rows of A and let

w1, . . . ,wt be the columns of B . Then AB = [cij ], where cij = vi � wj for all
1 ≤ i ≤ k and all 1 ≤ j ≤ t .

Let F be a field, let n be a positive integer, let v =
⎡

⎢
⎣

a1
...

an

⎤

⎥
⎦ and w =

⎡

⎢
⎣

ba1
...

bn

⎤

⎥
⎦

belong to Fn, and let C = [cij ] ∈ Mn×x(F ). Then the computation of
v � Cw = ∑n

i=1 ai(
∑n

j=1 cij bj ) requires n2 + n multiplications and n2 − 1 ad-

ditions. However, if we can find vectors u =
⎡

⎢
⎣

u1
...

un

⎤

⎥
⎦ and y =

⎡

⎢
⎣

y1
...

nn

⎤

⎥
⎦ in Fn such

that C = u ∧ y, then, by the distributive law, v � Cw = ∑n
i=1 ai(

∑n
j=1 uiyjbj ) =

(
∑n

i=1 aiui)(
∑n

j=1 yjbj ) and this requires only 2n + 1 multiplications and 2n − 2
additions. Similarly, if we can find vectors u,u′, y, y′ ∈ Fn such that C = u ∧ y +
u′ ∧ y′, then the computation of v � Cw requires 4n + 2 multiplications and 4n − 4
additions. For large values of n, this can result in considerable saving, especially if
the computation is to be repeated frequently.

Example Combinatorial optimization is the area of mathematics dealing with the
computational issues arising from finding optimal solutions to such problems as the
traveling salesman problem, testing Hamiltonian graphs, sphere packing, etc. The
general form of combinatorial optimization problems is the following: Let F be a
subfield of R and let n be a positive integer. Assume that we have a nonempty finite
(and in general very large) subset S of Nn ⊆ Fn. Usually, the set S arises from the
characteristic functions of certain subsets of {1, . . . , n} of interest in the problem.

Then, given a vector v =
⎡

⎢
⎣

a1
...

an

⎤

⎥
⎦ ∈ Fn, we want to find min{s � v | s ∈ S}. Note that

if we consider F not as a subset of R but as a subset of the optimization algebra
R∞, then the problem becomes one of computing p(a1, . . . , an), where

p(X1, . . . ,Xn) =
∑

⎧
⎪⎨

⎪⎩
X

i1
1 · · ·Xin

n

∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎣

i1
...

in

⎤

⎥
⎦ ∈ S

⎫
⎪⎬

⎪⎭

is a polynomial in several indeterminates over R∞ (polynomials with coefficients in
a semifield are defined in the same way as polynomials with coefficients in a field).

Observe that multiplying a k × n matrix by an n × t matrix requires kt (n − 1)

arithmetic operations. If these numbers are all very large, as is often the case in
real-life applications of matrix theory, the computational overhead—and risk of ac-
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cumulated errors due to rounding and truncation—is substantial.2 We will keep this
in mind throughout our discussion, and try to consider strategies of minimizing this
risk. In this connection, we should note that the product of two matrices has an im-
portant property: let (K,•) be an associative unital algebra over a field F assume
that A = [vij ] ∈ Mk×n(K) and B = [wij ] ∈ Mn×t (K), where k, n, and t are posi-
tive integers. Furthermore, let us pick positive integers

1 = k(1) < k(2) < · · · < k(p + 1) = k,

1 = n(1) < n(2) < · · · < n(q + 1) = n,

1 = t (1) < t(2) < · · · < t(r + 1) = t.

For all 1 ≤ i ≤ p and all 1 ≤ j ≤ q , let Aij =
⎡

⎢
⎣

vk(i),n(j) . . . vk(i),n(j+1)

...
. . .

...

vk(i+1),n(j) . . . vk(i+1),n(j+1)

⎤

⎥
⎦.

This allows us to write A in block form

⎡

⎢
⎣

A11 . . . A1q

...
. . .

...

Ap1 . . . Apq

⎤

⎥
⎦. Note that these blocks

are not necessarily square matrices. In the same way, we can write B as a matrix⎡

⎢
⎣

B11 . . . B1t

...
. . .

...

Bq1 . . . Bqt

⎤

⎥
⎦. Then AB =

⎡

⎢
⎣

C11 . . . C1t

...
. . .

...

Cp1 . . . Cpt

⎤

⎥
⎦ where, for each 1 ≤ i ≤ p and

each 1 ≤ h ≤ t , we have Cih = ∑q

j=1 AijBjh. A sophisticated use of this method
can substantially decrease the number of operations needed to multiply two matri-
ces, as we shall see. Moreover, skilled partitioning of matrices can allow us to make
use efficiently the aspects of modern computer architecture such as cache memories
to further increase the speed of computation.

Needless to say, this seemingly odd definition of the product of two matrices
was not chosen at random. Indeed, it satisfies certain important properties. Thus,
if (K,•) is an associative unital algebra over a field F , if k, n, t , and p are posi-
tive integers, and if we have matrices A ∈ Mk×n(K), B,B1,B2 ∈ Mn×t (K), and
C ∈Mt×p(K), then
(1) A(BC) = (AB)C;
(2) A(B1 + B2) = AB1 + AB2;
(3) (B1 + B2)C = B1C + B2C.
As a consequence, we see that if B ∈ Mn×t (K) is given, then the function from
Mk×n(K) to Mk×t (K) defined by A �→ AB is a linear transformation of vector
spaces.

2We will often mention large matrices, without being too specific as to what that means. As a rule
of thumb, a matrix is “large”, and calls for special treatment as such, when it cannot be stored in
the RAM memory of whatever computer we are using for our computations. Such matrices occur
in sufficiently-many applications that considerable research is devoted to dealing with them.
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We also note that if A = [vij ] ∈ Mk×n(K) and B = [wjh] ∈ Mn×t (K), then
AT ∈ Mn×k(K) and BT ∈ Mt×n(K) so BT AT ∈ Mt×k(K). Indeed, BT AT =
[yhi], where yhi = ∑n

j=1 wjh • vij . Hence, if K is also commutative (and in partic-

ular if K = F ), we have BT AT = (AB)T .

Matrix multiplication was first defined by
the nineteenth-century French mathematician
Jacques Philippe Binet. It took some getting
used to; many decades later, the father of as-
trophysics, Sir Arthur Eddington, still wrote
“I cannot believe that anything so ugly as mul-
tiplication of matrices is an essential part of the
scheme of nature”.

The definition of matrix multiplication is in fact a direct consequence of the rela-
tion between matrices and linear transformations, which we have already observed.
This is best seen in the following result.

Proposition 8.2 Let V be a vector space of finite dimension n over a field
F for which we have chosen a basis B = {v1, . . . , vn}, let W be a vec-
tor space of finite dimension k over F for which we have chosen a basis
D = {w1, . . . ,wk}, and let Y be a vector space of finite dimension t over F ,
for which we have chosen a basis E = {y1, . . . , yt }. If α ∈ Hom(V ,W) and
β ∈ Hom(W,Y ) then ΦBE(βα) = ΦDE(β)ΦBD(α).

Proof Assume that ΦBD(α) = [aij ] and ΦDE(β) = [bhi]. Then

α : v �→
k∑

i=1

n∑

j=1

cjaijwi and βα : v �→
t∑

h=1

k∑

i=1

n∑

j=1

cjbhiaij yh,

showing the desired equality. �

We can extend the definition of matrix multiplication as follows: let h, k, and
n be positive integers, and let V be a vector space over a field F . If A = [aij ] ∈
Mh×k(F ) and if M = [vjt ] ∈ Mk×n(V ), we can define AM ∈ Mh×n(V ) to be the
matrix [uit ], where uit = ∑k

j=1 aij vjt for all 1 ≤ i ≤ h and 1 ≤ t ≤ n. Notice that
if A,B ∈ Mk×k(F ) and if M,N ∈Mk×n(V ) then
(1) A(BM) = (AB)M ;
(2) A(M + N) = AM + AN ;
(3) (A + B)M = AM + BM .

In general, and especially when we are talking of actual computations, it is easier
to work with matrices than with linear transformations, and indeed most of the mod-
ern computer software and hardware are designed to facilitate easy and speedy ma-
trix computation. Therefore, given finitely-generated vector spaces V and W over a
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field F , it is usual to fix bases for them and then identify Hom(V ,W) with the space
of all matrices over F of the appropriate size. The choice of the correct bases then
becomes critical, and we will focus on that throughout the following discussions.
Such a choice usually depends on the problem at hand. In particular, the automatic
choice of canonical bases, when they exist, may not be the best for a given prob-
lem, and can entail a considerable cost both in computational time and numerical
accuracy.

Exercises

Exercise 404
Let V be the vector space over R composed of all polynomials in R[X] hav-
ing degree less than 3 and let W be the vector space over R composed of all
polynomials in R[X] having degree less than 4. Let α : V → W be the linear
transformation defined by

α : a + bX + cX2 �→ (a + b) + (b + c)X + (a + c)X2 + (a + b + c)X3.

Select bases B = {1,X + 1,X2 + X + 1} for V and

D = {
X3 − X2,X2 − X,X − 1,1

}

for W . Find the matrix ΦBD(α).

Exercise 405

Let K = M2×2(R) and let A =
[
a b

c d

]

∈ K . Let D be the canonical basis of K .

If α,β ∈ End(K) are defined by α : X �→ XA and β : X �→ AX, find ΦDD(α)

and ΦDD(β).

Exercise 406

Given the matrix A =
⎡

⎣
0 1 2 3
1 3 4 0
3 2 0 1

⎤

⎦ ∈ M3×4(R), find the set of all matrices

B ∈M4×3(R) satisfying AB =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦.

Exercise 407

Given the matrix A =
⎡

⎣
1 8
3 5
2 2

⎤

⎦ ∈ M3×2(Q), find the set of all matrices

B ∈M2×3(Q) satisfying AB =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ and find the set of all matrices
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C ∈M2×3(Q) satisfying CA =
[

1 0
0 1

]

.

Exercise 408

Given the matrix A =

⎡

⎢
⎢
⎣

1 −1 2
0 1 2

−1 3 1
2 1 −1

⎤

⎥
⎥
⎦ ∈M4×3(R), find the set of all matrices

B ∈ M3×4(R) satisfying BA =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦.

Exercise 409

Find the matrix representing the linear transformation α :
⎡

⎣
a

b

c

⎤

⎦ �→
[
a + b + c

b + c

]

from R
3 to R

2 with respect to the bases

⎧
⎨

⎩

⎡

⎣
−1

0
2

⎤

⎦ ,

⎡

⎣
0
1
1

⎤

⎦ ,

⎡

⎣
3

−1
0

⎤

⎦

⎫
⎬

⎭
of R3 and

{[−1
1

]

,

[
1
0

]}

of R2.

Exercise 410
Find the set of all matrices A ∈M4×3(R) satisfying the condition

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦A = A

⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦ .

Exercise 411
Let α be an endomorphism of R3 represented with respect to some basis by the

matrix

⎡

⎣
0 2 −1

−2 5 −2
−4 8 −3

⎤

⎦. Is α a projection?

Exercise 412
Find the real numbers missing from the following equation:

⎡

⎢
⎢
⎣

1 −3
1 ∗
1 ∗
∗ 1

⎤

⎥
⎥
⎦

[−1 ∗ 7 ∗
∗ 1 ∗ 0

]

=

⎡

⎢
⎢
⎣

−25 −1 1 3
−1 ∗ ∗ ∗
∗ ∗ 5 ∗
∗ ∗ ∗ 0

⎤

⎥
⎥
⎦ .
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Exercise 413

Let α :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
3a + 2b

−a − c

a + 3b

⎤

⎦ be an endomorphism of R3. Find the matrix repre-

senting α with respect to the basis B =
⎧
⎨

⎩

⎡

⎣
1

−1
0

⎤

⎦ ,

⎡

⎣
1
0

−1

⎤

⎦ ,

⎡

⎣
0
1
0

⎤

⎦

⎫
⎬

⎭
of R3.

Exercise 414
Let D = {v1, v2, v3} be a basis for R

3 and let α be the endomorphism of R
3

satisfying ΦDD(α) =
⎡

⎣
−1 −1 −3
−5 −2 −6

2 1 3

⎤

⎦. Find ker(α).

Exercise 415
Let V be the subspace of R[X] consisting of all polynomials of degree less
than 3 and choose the basis B = {1,X,X2} for V . Let α ∈ End(V ) satisfy

ΦBB(α) =
⎡

⎣
1 1 1
0 2 2
0 0 3

⎤

⎦. Let D be the basis {1,X + 1,2X2 + 4X + 3} for V .

What is ΦDD(α)?

Exercise 416
Let α ∈ End(R3) be represented with respect to the canonical basis by the matrix⎡

⎣
2 2 0
1 1 2
1 1 2

⎤

⎦. Find a real number a such that α is represented with respect to the

basis

⎧
⎨

⎩

⎡

⎣
a

−1
0

⎤

⎦ ,

⎡

⎣
−2
a

1

⎤

⎦ ,

⎡

⎣
1
1
a

⎤

⎦

⎫
⎬

⎭
by the matrix

⎡

⎣
0 0 0
0 1 0
0 0 4

⎤

⎦.

Exercise 417
Let V be the subspace of R[X] consisting of all polynomials of degree less than 3
and let α ∈ End(V ) be defined by

α : aX2 + bX + c �→ (a + 2b + c)X2 + (3a − b)X + (b + 2c).

Find ΦDD(α), where D = {X2 + X + 1,X2 + X,X2}.
Exercise 418
Find all rational numbers a for which there exists a nonzero matrix B ∈

M4×3(Q) satisfying B

⎡

⎣
a 1 1
1 1 a

1 a 1

⎤

⎦ =

⎡

⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0

⎤

⎥
⎥
⎦.
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Exercise 419
For which real numbers a does there exist a real number b (depending on a)

satisfying

[
a 1 1
1 1 a

]
⎡

⎣
b −1
1 −1
1 b

⎤

⎦ =
[

1 0
0 1

]

?

Exercise 420
Let V = R

R and let W be the subspace of V generated by the linearly-
independent set B = {1, x, ex, xex}. Let δ be the endomorphism of W which
assigns to each function its derivative. Find ΦBB(δ).

Exercise 421
Let B = {1 + i,2 + i}, which is a basis for C as a vector space over R. Let α be
the endomorphism of this space defined by α : z �→ z. Find ΦBB(α).

Exercise 422
Let F = GF(3) and let α : F 3 → F 2 be the linear transformation defined by

α :
⎡

⎣
a

b

c

⎤

⎦ �→
[

a − b

2a − c

]

. Let β : F 2 → F 4 be the linear transformation defined by

β :
[
a

b

]

�→

⎡

⎢
⎢
⎣

b

a

2b

2a

⎤

⎥
⎥
⎦. Find the matrix representing βα with respect to the canonical

bases.

Exercise 423
Let α ∈ End(R4) be represented with respect to the canonical basis by the matrix⎡

⎢
⎢
⎣

3 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

⎤

⎥
⎥
⎦. Given a vector v ∈ R

4 satisfying the condition that all

entries of α(v) are nonnegative, show that all entries of v are nonnegative.

Exercise 424
Let V and W be vector spaces over a field F and choose bases {vi | i ∈ Ω}
and {wj | j ∈ Λ} for V and W , respectively. Let p : Ω × Λ → F be a func-
tion satisfying the condition that the set {j ∈ Λ | p(i, j) �= 0} is finite for each
i ∈ Ω . Let αp : V → W be the function defined as follows: if v = ∑

i∈Γ aivi ,
where Γ is a finite subset of Ω and where the ai are scalars in F , then
αp(v) = ∑

i∈Γ

∑
j∈Λ aip(i, j)wj . Show that αp is a linear transformation and

that every linear transformation from V to W is of this form.

Exercise 425
Let k and n be positive integers, let v ∈ R

n, and let A ∈ Mk×n(R). Show that
Av = O if and only if AT Av = O .
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Exercise 426
Let A ∈M3×2(R) and B ∈ M2×3(R) be matrices satisfying

AB =
⎡

⎣
8 2 −2
2 5 4

−2 4 5

⎤

⎦ .

Calculate BA.

Exercise 427
Find matrices A ∈M3×2(R) and B ∈ M2×3(R) satisfying

AB =
⎡

⎣
1 1 1

−2 0 −6
0 1 −2

⎤

⎦ .

Exercise 428
Let F be a field and let k �= n be positive integers. Let A,B ∈ Mk×n(F )

and let α : Mn×k(F ) → Mk×n(F ) be the linear transformation defined by
α : C �→ ACB . Under which conditions is α an isomorphism?

Exercise 429
Let F be a field and let n be a positive integer. Let W be a nontrivial subspace
of the vector space V = Mn×n(F ) satisfying the condition that if A ∈ W and
B ∈ V then AB and BA both belong to W . Show that W = V .

Exercise 430
Let a, b, c, a′, b′, c′ ∈ C satisfy the condition that aa′ + bb′ + cc′ = 2, and let

A = I −
⎡

⎣
a

b

c

⎤

⎦
[
a′ b′ c′ ]. Calculate A2.

Exercise 431
Find a nonzero matrix A in M2×2(R) satisfying v � Av = 0 for all v ∈ R

2.

Exercise 432
Let α be the endomorphism of Q4 represented with respect to the canonical basis

by the matrix

⎡

⎢
⎢
⎣

1 0 1 −1
2 1 2 1
0 1 6 1
3 1 3 4

⎤

⎥
⎥
⎦. Find a two-dimensional subspace of Q

4 which

is invariant under α.
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Exercise 433
Let n be a positive integer and let F be a field. For each v,w ∈ Fn, consider
the function τv,w : Fn → Fv defined by τv,w : y �→ (w � y)v (this function is
called the dyadic product function). Show that τv,w a linear transformation. Is
the function Fn → Hom(F n,Fv) defined w �→ τv,w a linear transformation?

Exercise 434
Let k < n be positive integers and let F be a field. Given a matrix A ∈ Mk×n(F ),
do there necessarily exist matrices B,C ∈Mn×k(F ) satisfying the condition that
AB = O ∈Mk×k(F ) and CA = O ∈Mn×n(F )?

Exercise 435
Let A ∈ Mn×n(Q) be a matrix satisfying the condition that if v ∈ Q

n is a vector
all of the components of which are nonnegative, then all of the components of
Av are nonnegative. Are all of the entries in A necessarily nonnegative?

Exercise 436

Find the set of all matrices A in M3×3(R) satisfying A2 =
⎡

⎣
0 1 0
0 0 0
0 0 0

⎤

⎦.

Exercise 437
Find the set of all real numbers a such that the endomorphism of R3 represented

by the matrix

⎡

⎣
1 a a

2 2a 4
3 a 6

⎤

⎦ with respect to the canonical basis is an automor-

phism.

Exercise 438
Find the set of all real numbers a and b such that the endomorphism of R3 rep-

resented by the matrix

⎡

⎣
1 a b

0 a 1
0 a 1

⎤

⎦ with respect to the canonical basis is a pro-

jection.

Exercise 439
Let A = [aij ] ∈ Mn×n(R) satisfy the condition that for each v ∈ R

n there exists
a vector y ∈R

n all entries in which are nonnegative satisfying Av = v +y. Show
that A = I .

Exercise 440
Let F = GF(2) and let K be the subset of M3×3(F ) consisting of O , I , and the
following matrices:
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⎡

⎣
0 0 1
1 0 0
0 1 1

⎤

⎦ ,

⎡

⎣
1 0 1
1 1 0
0 1 0

⎤

⎦ ,

⎡

⎣
0 1 1
0 0 1
1 1 1

⎤

⎦ ,

⎡

⎣
1 1 1
0 1 1
1 1 0

⎤

⎦ ,

⎡

⎣
0 1 0
1 0 1
1 0 0

⎤

⎦ , and

⎡

⎣
1 1 0
1 1 1
1 0 1

⎤

⎦ .

Show that K , together with matrix addition and multiplication, is a field. What
is its characteristic? Does there exist an element A of K such that every nonzero
element of K is a power of A?
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We are now going to concentrate on the algebraic structure of sets of the form
Mn×n(K), where n is a positive integer and (K,•) is an associative unital alge-
bra over a field F . From what we have already seen, this is again an associative
unital F -algebra, which will not be commutative if n > 1. The additive identity of
this algebra is the matrix all of the entries of which equal 0K . The additive inverse
of a matrix A = [dij ] ∈ Mn×n(K) is the matrix [−aij ]. The multiplicative identity
of Mn×n(K) is the matrix E = [dij ] given by

dij =
{

e if i = j,

0 otherwise,

where e is the multiplicative identity of (K,•).
The most important case is, of course, that of K = F . In this case, the additive

identity is O and the multiplicative identity is the matrix I = [aij ] defined by

aij =
{

1 if i = j,

0 otherwise.

If K is a vector space of dimension n over F and if B is a basis of K , then it is
straightforward to verify that the function ΦBB : End(K) → Mn×n(F ) is an iso-
morphism of unital F -algebras.

If F is a field and if n is a positive integer then, corresponding to the associa-
tive F -algebra Mn×n(F ), we have the Lie algebra Mn×n(F )−. This Lie algebra is
called the general Lie algebra defined by Fn.

Example Let F be a field and let A = [aij ] ∈ M4×4(F ). Then A can also

be written in block form as

⎡
⎢⎢⎢⎣

[
a11 a12
a21 a22

] [
a13 a14
a23 a24

]
[
a31 a32
a41 a42

] [
a33 a34
a43 a44

]
⎤
⎥⎥⎥⎦ ∈ M2×2(K), where

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_9, © Springer Science+Business Media B.V. 2012
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K = M2×2(F ). Addition and multiplication of matrices are so defined (and not
accidentally!) that they give the same results whether performed in M4×4(F ) or in
M2×2(K).

Example The set K of all analytic functions from C to itself is clearly an alge-
bra over C. At the beginning of the twentieth century, G. D. Birkhoff made use of
matrices in Mn×n(K) to study the properties of analytic functions.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

George D. Birkhoff was one of the leading American mathematicians
at the beginning of the twentieth century, who worked in many areas
of analysis.

We begin by identifying some particularly-important square matrices over a
unital associative F -algebra K , and with them some significant subalgebras of
Mn×n(K).

Let (K,•) is an associative unital F -algebra and let n be a positive integer. A ma-
trix A = [dij ] ∈ Mn×n(K) is a diagonal matrix if and only if there exist elements
c1, . . . , cn of K such that

dij =
{

ci if i = j,

0K otherwise.

The matrices O and E are diagonal. Moreover, the sum and product of diago-
nal matrices are diagonal matrices, and so the set of all diagonal matrices is an
F -subalgebra of Mn×n(K). If K is commutative (and, in particular, if K = F )
then this algebra is also commutative. The units of the subalgebra are all diago-
nal matrices in which each ci is a unit of K (and hence surely nonzero). In this
case,

⎡
⎢⎣

c1 . . . 0K

...
. . .

...

0K . . . cn

⎤
⎥⎦

−1

=
⎡
⎢⎣

c−1
1 . . . 0K

...
. . .

...

0K . . . c−1
n

⎤
⎥⎦ .

Example Let F be a field, let (K,•) is an associative unital F -algebra, and let n be
a positive integer. A matrix A = [aij ] ∈ Mn×n(K) is a scalar matrix if and only if
there exists a scalar c ∈ K such that aij = c when i = j and aij = 0K otherwise. We
denote this matrix by cE (and, in particular, cI when K = F). Scalar matrices are
surely diagonal matrices, and both O and E are scalar matrices. Moreover, the sum
and product of scalar matrices are scalar matrices. If c, d ∈ K then (cE)(dE) =
(dE)(cE) and if 0K �= c ∈ K is a unit, then (cE)(c−1E) = E. Hence the set of
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all scalar matrices over F forms an F -subalgebra of Mn×n(F ), which is in fact a
field. The function F → Mn×n(F ) defined by c �→ cI is a monic homomorphism
of F -algebras, and so we can identify F with the subfield of all scalar matrices
of Mn×n(F ). Moreover, it is also easy to see that (cI )A = A(cI) = cA for any
A ∈ Mn×n(F ).

Let (K,•) is an associative unital F -algebra, let n be a positive integer, and let d

be a positive integer less than n. A matrix A = [vij ] ∈ Mn×n(K) is a band matrix
of width 2d − 1 if and only if vij = 0K whenever |i − j | > d − 1. Thus, the band
matrices of width 1 are the diagonal matrices. The matrix

⎡
⎢⎢⎢⎢⎣

1 2 0 0 0
2 3 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 4 4

⎤
⎥⎥⎥⎥⎦ ∈ M5×5(R)

is an example of a band matrix of width 3. The set of band matrices of fixed width
is closed under addition and contains O and I , but is not necessarily closed under
multiplication, and so is not a subalgebra of Mn×n(K). However, it is closed under
scalar multiplication and so is a subspace of the vector space Mn×n(K) over F .

Band matrices over a field are very important for numerical computations, espe-
cially when d is small relative to n. Of particular importance are band matrices of
width 3, which are also known as tridiagonal matrices, and have important use in
the computation of quadratic splines and in the computation of extremal eigenval-
ues of matrices; they also appear very often in methods of solution of differential
equations. Tridiagonal matrices have the added advantage of being easily stored in
a computer, since all we need to do is keep the three diagonals in which nonzero en-
tries can occur. For example, a tridiagonal matrix in M1000×1000(R) has 1,000,000
entries, of which at most 2998 are nonzero.

A special type of tridiagonal matrix in M2n×2n(F ), which we will see again later,

is one of the form

⎡
⎢⎢⎢⎣

A11 O . . . O

O A22 . . . O
...

...
. . .

...

O O . . . Ann

⎤
⎥⎥⎥⎦, where the Aii are 2 × 2 blocks. Note

that this matrix can also be thought of as a diagonal matrix in Mn×n(K), where
K = M2×2(F ). More generally, if d and n are positive integers, then any diagonal
matrix in Mn×n(L), where L = Md×d(K), is a band matrix of width 2d − 1 in
Mdn×dn(K).

Let (K,•) is an associative unital F -algebra and let n be a positive integer. A ma-
trix A = [cij ] ∈ Mn×n(K) is an upper-triangular matrix if and only if cij = 0K



150 9 The Algebra of Square Matrices

whenever i > j . Thus, the matrix

⎡
⎢⎢⎢⎢⎣

1 2 6 3 7
0 3 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 4

⎤
⎥⎥⎥⎥⎦ ∈ M5×5(R) is upper trian-

gular. The set of all upper-triangular matrices includes the set of diagonal matrices,
is closed under addition, and contains O and E. Moreover, it is closed under mul-
tiplication, and so is an F -subalgebra of Mn×n(K). In the case that K = F , we
see that the dimension of Mn×n(F ) as a vector space over F equals n

2 (n + 1).
Upper-triangular matrices arise naturally in many applications, as we will see be-
low. In a similar manner, we say that a matrix A = [cij ] ∈ Mn×n(K) is a lower-
triangular matrix if and only if cij = 0K whenever i < j . Again, the set of all
lower-triangular matrices is a subspace of the vector space Mn×n(K) over F and,
indeed, an F -subalgebra. Note that a matrix A is upper triangular if and only if AT

is lower triangular.
A matrix A = [cij ] ∈ Mn×n(K) is symmetric if and only if A = AT . That is,

A is symmetric if and only if cij = cji for all 1 ≤ i, j ≤ n. If B is any matrix in
Mn×n(K) then B + BT is symmetric. If K is commutative and if C ∈ Mk×n(K)

for any positive integers k and n, then CCT ∈ Mk×k(K) and CT C ∈ Mn×n(K)

are symmetric. If n is a positive integer and F is a field, then v ∧ v is a symmetric
matrix in Mn×n(F ) for all v ∈ Fn. Diagonal matrices are clearly symmetric and
the set of symmetric matrices in Mn×n(K) is closed under taking sums and scalar
multiples, and so it is a subspace of the vector space Mn×n(K) over F . In the case
K = F , the dimension of Mn×n(F ) equals n

2 (n+1). However, the set of symmetric

matrices is not closed under products. For example, the matrices A =
⎡
⎣2 5 1

5 2 0
1 0 1

⎤
⎦

and B =
⎡
⎣1 2 1

2 0 0
1 0 3

⎤
⎦ in M3×3(R) are symmetric, but AB =

⎡
⎣13 4 5

9 10 5
2 2 4

⎤
⎦ is

not. In fact, in Chap. 13 we will show that if n > 1 then every matrix in Mn×n(C)

is a product of two symmetric matrices.
We note, however, that if A and B are a commuting pair of symmetric matrices

then (AB)T = (BA)T = AT BT = AB , so AB is again symmetric.
A matrix A = [cij ] ∈ Mn×n(K) is skew symmetric if and only if A = −AT .

The set of all skew-symmetric matrices in Mn×n(K) is again a subspace of
Mn×n(K). Note that if F is a field having characteristic other than 2, then any
matrix A ∈Mn×n(K) can be written as the sum of a symmetric matrix and a skew-
symmetric matrix, since A = 1

2 (A+AT )+ 1
2 (A−AT ). In one of the examples after

Proposition 5.14, we saw that this representation is in fact unique. The Lie product
of two skew-symmetric matrices is again skew-symmetric.

Example Let n be a positive integer. A matrix A = [aij ] ∈ Mn×n(R) is a Markov
matrix if and only if aij ≥ 0 for all 1 ≤ i, j ≤ n and

∑n
j=1 ahj = 1 for each 1 ≤

h ≤ n; it is a stochastic matrix if and only if both A and AT are Markov matrices. It
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is easy to show that the product of two Markov matrices is again a Markov matrix
and the product of two stochastic matrices in Mn×n(R) is again a stochastic matrix.

Markov matrices arise naturally in probability theory. In particular, if we have
a system which, at each tick of a (discrete) clock, is in one of the distinct states
s1, . . . , sn and if, for each 1 ≤ i, j ≤ n, we denote by pij the probability that if the
situation is in state i at a given time t then it will be in state j at time t + 1, the
matrix [pij ] is a Markov matrix.

Russian mathematician Andrei Andreyevich Markov made major
contributions to probability theory at the beginning of the twentieth
century.

As we have already pointed out, a matrix O �= A ∈ Mn×n(K) is not necessarily a
unit. The units of Mn×n(K) are known as nonsingular matrices; the other matrices
are singular matrices. By what we have already noted, the product of nonsingular
matrices is again nonsingular and if A is nonsingular then surely so is A−1. A matrix
A satisfying A2 = I is certainly nonsingular. Such matrices are called involutory
matrices.

With kind permission of the Harvard University Archives, HUP.

These terms were first used by American mathematician Maxime
Bôcher in 1907. He was also the first to popularize the terms “linearly
dependent” and “linearly independent”.

Example If a, b ∈ R with b �= 0 then

[
a b

b−1(1 − a) −a

]
is involutory.

Example We have already noted that if n is a positive integer then a diagonal
matrix in A = [aij ] ∈ Mn×n(C) is nonsingular when all of the diagonal entries
aii are nonzero. It therefore seems reasonable to conjecture that a matrix will
be nonsingular if the diagonal entries are all “much greater” than the other en-
tries. Indeed, this is true in the following sense: A sufficient condition for a ma-
trix A = [aij ] ∈ Mn×n(C) to be nonsingular is that for each 1 ≤ i ≤ n we have
|aii | >

∑
j �=i |aij |. This result is known as the Diagonal Dominance Theorem.

A proof of this theorem will be given in Chap. 15.
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Let V be a vector space over F of dimension n and let B be a basis of V . Then
there exists an endomorphism α of V such that A = ΦBB(α). If A is nonsingular
then there also exists an endomorphism β of V satisfying A−1 = ΦBB(β). This
means that I = AA−1 = ΦBB(α)ΦBB(β) = ΦBB(αβ) and so αβ = σ1, and simi-
larly βα = σ1. Therefore, α ∈ Aut(V ) and β = α−1.

Example Let F be a field and let n be a positive integer. If c ∈ F and v,w ∈ Fn,
then the matrix A = I + c(v ∧ w) is nonsingular if and only if the scalar 1 + c(v 	
w) is nonzero. Indeed, direct computation shows that if 1 + c(v 	 w) �= 0, then
A−1 = I + d(v ∧ w), where d = −c[1 + c(v 	 w)]−1 and if 1 + c(v 	 w) = 0 then
Av = v + c(v 	 w)v is the 0-vector, and so A must be singular.

Example The multiplicative inverse of a “nice” nonsingular matrix may not be
“nice”. Thus, if A ∈ Mn×n(R) is a nonsingular matrix all of the entries of which
are nonnegative, it does not follow that all of the entries of A−1 are nonnegative.

For example, if we choose A =
⎡
⎣1 1 1

1 2 1
1 1 2

⎤
⎦ then direct computation shows us that

A−1 =
⎡
⎣ 3 −1 −1

−1 1 0
−1 0 1

⎤
⎦. If A = [aij ] is the n × n tridiagonal matrix with aii = 2

for all 1 ≤ i ≤ n and aij = −1 whenever |i − j | = 1, then not only is A−1 not
tridiagonal, but in fact no entries in A−1 equal 0, for any n > 1.

Example If a matrix A ∈ Mn×n(F ) can be written in block form [Aij ], where Aii

is a nonsingular square matrix and Aij = O for i �= j , then A is nonsingular, and
A−1 = [Bij ], where Bii = A−1

ii for each i and Bij = O for each i �= j . In particular,
if each Aii is involutory, then so is A.

Example Let n be a prime positive integer. The complex number cn = cos( 2π
n

) +
i sin( 2π

n
) is called a primitive root of unity of degree n, since it easy to check that

cn
n = 1 but ch

n �= 1 for all 0 < h < n. Therefore, c−1
n = cn−1

n for all n. For each
z ∈ C, let F(z) ∈ Mn×n(C) be the matrix [aij ] defined by aij = z(i−1)(j−1) for all
1 ≤ i, j ≤ n. It is straightforward to show that the matrix F(cn) is nonsingular and,
indeed, F(cn)

−1 = 1
n
F (c−1

n ). The endomorphism ϕn of C
n which is represented

with respect to the canonical basis by the matrix F(cn) is called the discrete Fourier
transform of Cn. This endomorphism is of great importance in applied mathematics.
An algorithm, known as the fast Fourier transform (FFT), introduced by J.W. Coo-
ley and John Tukey in 1965, allows one to calculate ϕn(v) in an order of n log(n)

arithmetic operations, rather than n2, as one would anticipate. This facilitates the
use of Fourier transforms in applications. A similar construction is also possible
over finite fields, and especially over fields of the form GF(p). We will look at this
example again in Chap. 15.

A closely-related endomorphism, the discrete cosine transform, is used in defin-
ing the JPEG algorithm for image compression.
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With kind permission of the Smithsonian Institution.

Joseph Fourier was a close friend of Napoleon and served for many
years as permanent secretary of the Parisian Academy of Sciences. He
worked primarily in applied mathematics, and developed many im-
portant tools in this area. John Tukey was a twentieth-century Amer-
ican statistician who developed many advanced mathematical tools in
statistics.

Let (K,•) be an algebra over a field F . A matrix representation of K by matrices
over F is a homomorphism of F -algebras from K to Mn×x(F ) for some positive
integer n. Matrix representations are a very important tool in studying the structure
of algebras over fields. More generally, a representation of K over F is a homomor-
phism of F -algebras from K to End(V ) for some vector space V , not necessarily
finitely generated, over F .

Example Recall that C is an algebra of dimension 2 over R. The function γ : C →
M2×2(R) defined by γ : a + bi �→

[
a b

−b a

]
is a matrix representation of C by

matrices over R. In fact, this representation is clearly monic and its image is the

subalgebra T of M2×2(R) consisting of all matrices of the form

[
a b

−b a

]
, so γ is

an R-algebra isomorphism from C to T .

Let (K,•) be an associative unital algebra over a field F having multiplicative
identity e, and let n be a positive integer. Let E be the multiplicative identity of
Mn×n(K) A matrix A = [cij ] ∈ Mn×n(K) is an elementary matrix if and only if it
is of one of the following forms:
(1) Ehk , the matrix formed from E by interchanging the hth and kth columns,

where h �= k;
(2) Eh;c , the matrix formed from E by multiplying the hth column by 0K �= c ∈ K ;
(3) Ehk;c , the matrix formed from E by adding c times the kth column to the hth

column, where h �= k, where c ∈ K .
It is easy to verify that matrices of the form Ehk and Ehk;c are always non-

singular, with E−1
hk = Ehk and E−1

kh;c = Ehk;−c . If c is a unit in K , then matrices

of the form Eh;c are nonsingular, with E−1
h;c = Eh,c−1 . Thus, if K is a field (and

in particular, if K = F), every elementary matrix of the form Eh;c is nonsingular.
We note that the transpose of an elementary matrix is again an elementary matrix.
Indeed, ET

hk = Ehk and ET
h;c = Eh;c for all 1 ≤ h, k ≤ n and 0K �= c ∈ K , while

ET
hk;c = Ekh;c for all 1 ≤ h �= k ≤ n and all c ∈ K .
As the name clearly implies, there is a connection between the elementary au-

tomorphisms which we defined previously and the elementary matrices. Indeed, if
K = F and if B is the canonical basis of Fn, then Ehk = Φ(εhk), Eh;c = Φ(εh;c),
and Ehk;c = Φ(εhk;c).
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Let us see what happens when one multiplies an arbitrary matrix in Mn×n(K)

on the left by an elementary matrix:
(1) If B ∈ Mn×n(K) then EhkB is the matrix obtained from B by interchanging

the hth and kth rows of B . Thus, for example, in M4×4(Q) we look at the effect

of E24:

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5 6 4 1
3 2 2 2
0 4 2 7
3 3 2 2

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

5 6 4 1
3 3 2 2
0 4 2 7
3 2 2 2

⎤
⎥⎥⎦.

(2) If B ∈ Mn×n(K) then Eh;cB is the matrix obtained from B by multiplying
the hth row of B by c. Thus, for example, in M4×4(Q) we look at the effect

of E2;5:

⎡
⎢⎢⎣

1 0 0 0
0 5 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5 6 4 1
3 2 2 2
0 4 2 7
3 3 2 2

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

5 6 4 1
15 10 10 10
0 4 2 7
3 3 2 2

⎤
⎥⎥⎦.

(3) If B ∈Mn×n(K) then Ehk;cB is the matrix obtained from B by adding c times
the hth row to the kth row. Thus, for example, in M4×4(Q) we look at the effect

of E13;2:

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
2 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5 6 4 1
3 2 2 2
0 4 2 7
3 3 2 2

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

5 6 4 1
3 2 2 2

10 16 10 9
3 3 2 2

⎤
⎥⎥⎦.

Proposition 9.1 If F is a field, if n is a positive integer, and if A,B,C,D ∈
Mn×n(F ) then:
(1) When A and B are nonsingular, so is AB , with (AB)−1 = B−1A−1;
(2) When AB is nonsingular, both A and B are nonsingular;
(3) When A and B are nonsingular, A−1 + B−1 = A−1(B + A)B−1;
(4) When I + AB is nonsingular, so is I + BA, and (I + BA)−1 = I −

B(I + AB)−1A;
(5) (Guttman’s Theorem) If A is nonsingular and if v,w ∈ Fn satisfy

the condition that 1 + w 	 A−1v �= 0, then the matrix A + v ∧ w ∈
Mn×n(F ) is nonsingular and satisfies (A + v ∧ w)−1 = A−1 − (1 + w 	
A−1v)−1(A−1[v ∧ w]A−1).

(6) (Sherman–Morrison–Woodbury Theorem) When the matrices C, D,
D−1 + AC−1B , and C + BDA are nonsingular, then (C + BDA)−1 =
C−1 − C−1B(D−1 + AC−1B)−1AC−1.

Proof (1) This is a special case of a general remark about units in associative
F -algebras, which we have already noted.

(2) Let V a vector space of dimension n over F , and let D be a basis of V . Then
there exist endomorphisms α and β of V satisfying A = ΦDD(α) and B = ΦDD(β),
and so AB = ΦDD(αβ). Since AB is nonsingular, we know that αβ ∈ Aut(V ).
Then there exists an automorphism γ of V satisfying γ (αβ) = σ1 = (αβ)γ . Then
(γ α)β = σ1 = α(βγ ) and so, by Proposition 7.4, we know that both α and β are
automorphisms of V , and hence both A and B are nonsingular.
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(3) This is an immediate consequence of the fact that A(A−1 +B−1)B = B +A.
(4) We note that

(I + BA)
[
I − B(I + AB)−1A

] = I + BA − (B + BAB)(I + AB)−1A

= I + BA − B(I + AB)(I + AB)−1A

= I + BA − BA = I.

(5) A simple calculation shows us that if x, y ∈ Fn satisfy the condition that
c = 1 + y 	 x is nonzero, then

(
I − c−1[x ∧ y])(I + [x ∧ y]) = I + x ∧ y − c−1[x ∧ y] − c−1[x ∧ y]2

= I + x ∧ y − c−1c[x ∧ y] = I,

and so (I + [x ∧ y])−1 = I − c−1[x ∧ y]. Therefore, if we set d = 1 + w 	 A−1v,
then

(A + v ∧ w)−1 = [
A
(
I + A−1[v ∧ w])]−1 = (

I + A−1[v ∧ w])−1
A−1

= [
I − d−1(A−1[v ∧ w])]A−1

= A−1 − d−1(A−1[v ∧ w]A−1),
as required.

(6) First, note that I +C−1BDA = C−1(C +BDA) and so, by (1), this matrix is
nonsingular as well. By (4), (I + C−1BDA)−1 = I − C−1B(I + (DAC−1B)DA,
and so

(C + BDA)−1 = [
C
(
I + C−1BDA

)]−1

= [
I − C−1B

(
I + DAC−1B

)−1
DA

]
C−1

= C−1 − C−1B
[
D−1(I + DAC−1B

)]−1
AC−1

= C−1 − C−1B
(
D−1 + AC−1B

)−1
AC−1,

as required. �

With kind permission of Nurit Guttman.

Louis Guttman was a twentieth-century American/Israeli statistician
and sociologist who developed many advanced mathematical tools for
use in statistics. The Sherman–Morrison–Woodbury Theorem was in
fact first published by British aeronautics professor W.J. Duncan, but
is named after the twentieth-century American statisticians Jack Sher-
man, Winifred J. Morrison, and Max Woodbury who used it exten-
sively.
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Guttman’s Theorem is important in the following context: assume we have cal-
culated A−1 for some square matrix A and now we have to calculate B−1, where
B differs from A in only one entry. With the help of this result, we can make use of
our knowledge of A−1 to calculate B−1 with relative ease and speed. The Sherman–
Morrison–Woodbury Theorem has similar uses.

In particular, we note from Proposition 9.1 that if A,B ∈ Mn×n(F ) then AB is
nonsingular if and only if BA is nonsingular. We should also note that if A,B ∈
Mn×n(F ) then BT AT = (AB)T , and so if A is a nonsingular matrix and B = A−1

then AB = I , and so BT AT = IT = I . Thus AT is also nonsingular. Moreover, this
also shows that (AT )−1 = (A−1)T for every nonsingular matrix A ∈ Mn×n(F ).

Proposition 9.2 Let F be a field, let n be a positive integer, and let A,B ∈
Mn×n(F ), where A is nonsingular. Then there exist unique matrices C and D

in Mn×n(F ) satisfying CA = B = AD.

Proof Define C = BA−1 and D = A−1B . Then surely CA = B = AD. If C′ and
D′ are matrices satisfying C′A = B = AD′ then C′ = (C′A)A−1 = BA−1 = C and
D′ = A−1(AD′) = A−1B = D, and so we have uniqueness. �

Example The matrices C and D in Proposition 9.2 need not be the same. For ex-

ample, if A,B ∈ M2×2(R) are defined by A =
[

1 3
0 1

]
and B =

[
1 0
3 1

]
then

A−1 =
[

1 −3
0 1

]
, C =

[
1 −3
3 −8

]
, and D =

[−8 −3
3 1

]
.

Proposition 9.3 Let F be a field, let n be a positive integer, and let
A = [aij ] ∈ Mn×n(F ). Then the following conditions are equivalent:
(1) A is nonsingular;
(2) The columns of A are distinct and the set of these columns is a linearly-

independent subset of Fn;
(3) The rows of A are distinct and the set of these rows is a linearly-

independent subset of M1×n(F ).

Proof (1) ⇔ (2): Denote the columns of A by y1, . . . , yn. Let V = Fn and let
B = {v1, . . . , vn} be the canonical basis of V . If two columns of A are equal
or if the set of columns is linearly dependent, there exist scalars c1, . . . , cn, not

all equal to 0, such that A

⎡
⎢⎣

c1
...

cn

⎤
⎥⎦ = ∑n

i=1 ciyi =
⎡
⎢⎣

0
...

0

⎤
⎥⎦. But if (1) holds, then
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⎡
⎢⎣

c1
...

cn

⎤
⎥⎦ = A−1

⎡
⎢⎣

0
...

0

⎤
⎥⎦ =

⎡
⎢⎣

0
...

0

⎤
⎥⎦, which is a contradiction. Therefore, (2) holds. Con-

versely, assume (2) holds. Then the endomorphism α of V given by v �→ Av is a
monic and so an automorphism of V . But A = ΦBB(α), and so, as we have seen, A

is nonsingular.
(1) ⇔ (3): This follows directly from the equivalence of (1) and (2), given the

fact that a matrix A is nonsingular if and only if AT is nonsingular. �

Example Let F be a field and let n > 1 be an integer. If v,w ∈ Fn, then the columns
of v ∧ w ∈Mn×n(F ) are linearly dependent and so v ∧ w is always singular.

Example If F is a field and if U = [uij ] ∈ Mn×n(F ) is an upper-triangular ma-
trix satisfying the condition that uii �= 0 for all 1 ≤ i ≤ n then, by Proposition 9.3,
it is clear that U is nonsingular. We claim that, moreover, U−1 is again upper
triangular. Let us prove this contention by induction on n. It is clearly true for
n = 1. Assume therefore that n > 1 and that we have already shown that the in-
verse of any upper-triangular matrix in M(n−1)×(n−1)(F ) is upper-triangular. Write

U =
[
A y

z unn

]
, where A ∈ M(n−1)×(n−1)(F ), y ∈ Fn−1, and z =

⎡
⎢⎣

0
...

0

⎤
⎥⎦

T

. As-

sume that U−1 =
[

B x

wT b

]
, where B ∈ M(n−1)×(n−1)(F ) and w,x ∈ Fn−1. Then

AB + y ∧ w = I , Ax + by = zT , unnw
T = z, and unnb = 1, so we must have

b = u−1
nn �= 0 and wT = z. Therefore, y ∧w = O and so B = A−1. By hypothesis, B

is upper triangular and so U−1 is again upper triangular. A similar argument holds
for lower-triangular matrices.

Proposition 9.4 Let F be a field and let n be a positive integer. A matrix in
Mn×n(F ) is nonsingular if and only if it is a product of elementary matrices.

Proof Since each of the elementary matrices is nonsingular, we know that any prod-
uct of elementary matrices is also nonsingular. Conversely, let A = [aij ] be a non-
singular matrix in Mn×n(F ) and let B = [bij ] be A−1. Then B is also nonsingular
and so, by Proposition 9.3, the columns of B are distinct and the set of columns is
linearly independent in Fn. In particular, there exists a nonzero entry bh1 in the first
column of B . Multiply B on the left by Eh1 to get a new matrix in which the (1,1)-
entry nonzero. Now multiply it on the left by E1;c, where c = b−1

h1 , in order to get

a matrix of the form

⎡
⎢⎢⎢⎣

1 * . . . *
* * . . . *
...

...
. . .

...

* * . . . *

⎤
⎥⎥⎥⎦. Now let 1 < t ≤ n, and let d(t) be the ad-
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ditive inverse of the (t,1)-entry of the matrix. Multiplying the matrix on the left by
Et1;d(t), we will get a matrix with 0 in the (t,1)-entry and so, after this for each such
t , we see that a matrix B ′ = C1B , where C1 is a product of elementary matrices, and

which is of the form

⎡
⎢⎢⎢⎣

1 * . . . *
0 * . . . *
...

...
. . .

...

0 * . . . *

⎤
⎥⎥⎥⎦. This matrix is still nonsingular, since it is

a product of two nonsingular matrices, and so its columns are distinct and form a
linearly-independent subset of Fn. Therefore, there exists a nonzero entry b′

h2 in the
second column, with h > 1. Repeating the above procedure, we can find a matrix
C2 which is a product of elementary matrices and such that C2C1B is of the form⎡
⎢⎢⎢⎢⎢⎣

1 0 * . . . *
0 1 * . . . *
0 0 * . . . *
...

...
...

. . .
...

0 0 * . . . *

⎤
⎥⎥⎥⎥⎥⎦

. Continuing in this manner, we obtain matrices C1, . . . ,Cn,

each of them a product of elementary matrices, such that Cn · · ·C1B = I . Therefore,
Cn · · ·C1 = B−1 = A, as we wanted to show. �

Example Let F be a field and let n be a positive integer. Every permutation π of the
set {1, . . . , n} defines a matrix Aπ = [aij ] ∈Mn×n(F ) by setting aij = 1 if j = π(i)

and aij = 0 otherwise, called the permutation matrix defined by π . This matrix is
clearly a result of multiplying I by a number of elementary matrices of the form
Ehk , and so is nonsingular.

The order of multiplication given in Proposition 9.4 is not unique. Indeed, we
claim that it is possible to write any nonsingular matrix A ∈ Mn×n(F ) in the form
PC, where P is a permutation matrix and C is a product of elementary matrices of
the form Ei;c and Eij ;c. To see how this is done, we note that if 1 ≤ i, h, k ≤ m and
if c ∈ F then Ei;cEhk = EhkEi;c if i /∈ {h, k} and Eh;cEhk = EhkEk;c and a similar
result holds for elementary matrices of the form Eij ;c and Ehk . Thus, one by one,
the elementary matrices the form Ehk can be “moved to the left” until we obtain the
desired decomposition.

Proposition 9.4 allows us to construct an algorithm for computing A−1 when
A is a nonsingular matrix in Mn×n(F ). First of all, we construct the matrix
[I A] ∈ Mn×2n(F ) and on this matrix we perform a series of elementary opera-
tions, namely operations which are the result of multiplying it on the left by elemen-
tary matrices, which bring the right-hand block into the form I . Then the left-hand
block is A−1. To calculate A−1 by this method, we use n3 − 2n2 + n additions and
n3 multiplications.
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Example Consider the matrix A =
⎡
⎣1 2 3

2 3 0
0 1 2

⎤
⎦ ∈ M3×3(Q). Therefore, we begin

with the matrix

⎡
⎣1 0 0 1 2 3

0 1 0 2 3 0
0 0 1 0 1 2

⎤
⎦ ∈M3×6(Q). Then we

(1) Get

⎡
⎣ 1 0 0 1 2 3

−2 1 0 0 −1 −6
0 0 1 0 1 2

⎤
⎦ after multiplying the first row by −2 and

adding it to the second row;

(2) Get

⎡
⎣ 1 0 0 1 2 3

−2 1 0 0 −1 −6
−2 1 1 0 0 −4

⎤
⎦ after adding the second row to the third row;

(3) Get

⎡
⎣ 1 0 0 1 2 3

2 −1 0 0 1 6
0.5 −0.25 −0.25 0 0 1

⎤
⎦ after multiplying the second row by

−1 and then multiplying the third row by −0.25;

(4) Get

⎡
⎣ 1 0 0 1 2 3

−1 0.5 1.5 0 1 0
0.5 −0.25 −0.25 0 0 1

⎤
⎦ after multiply the third row by −6 and

adding it to the second row;

(5) Get

⎡
⎣−0.5 0.75 0.75 1 2 0

−1 0.5 1.5 0 1 0
0.5 −0.25 −0.25 0 0 1

⎤
⎦ after multiplying the third row by

−3 and adding it to the first row;

(6) Finally, get

⎡
⎣1.5 −0.25 −2.25 1 0 0

−1 0.5 1.5 0 1 0
0.5 −0.25 −0.25 0 0 1

⎤
⎦ after multiplying the second

row by −2 and adding it to the first row.

Therefore, we see that A−1 = 1
4

⎡
⎣ 6 −1 −9

−4 2 6
2 −1 −1

⎤
⎦.

Example When one uses computer to compute matrix inverses, one must always
be aware of hardware limitations. For example, one can show that Nievergelt’s

matrix A =
[

888445 887112
887112 885871

]
∈ M2×2(Q) is nonsingular, while the matrix

B = A −
[
c c

c c

]
, where c = 1

3548450 (which is approximately 2.818 × 10−7) is

not. Nonetheless, a computer or calculator capable of only 12-digit accuracy cannot
differentiate between the two.

Example For each positive integer n, let Hn ∈ Mn×n(Q) be the matrix [aij ] in
which aij = 1

i+j−1 . This matrix is called the n × n Hilbert matrix. Hilbert matrices
are all nonsingular but, while their entries all lie between 0 and 1, the entries in their
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inverses are very large. For example, H−1
6 equals

⎡
⎢⎢⎢⎢⎢⎢⎣

36 −630 3360 −7560 7560 −2772
−630 14700 −88200 211680 −220500 83160
3360 −88200 564480 −1411200 1512000 −582120

−7560 211680 −1411200 3628800 −3969000 1552320
7560 −220500 1512000 −3969000 4410000 −1746360

−2772 83160 −582120 1552320 −1746360 698544

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Therefore, these matrices are often used as benchmarks to judge the efficiency and
accuracy of computer programs to calculate matrix inverses. In particular if the com-
puter we are using has only 7-digit accuracy, it is reasonable to assume that we will
have a 100% error in computing H−1

6 .

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

German David Hilbert was one of the foremost mathematicians in the
world at the beginning of the twentieth century. He and his students
were among the first to study infinite-dimensional vector spaces.

It is sometimes possible to use a representation of a nonsingular matrix A in block
form in order to calculate A−1. Indeed, suppose that A ∈ Mn×n(F ) is a matrix

which can be written in block form

[
A11 A12
A21 A22

]
, where A11 ∈ Mk×k(F ). If A11

and C = A22 − A21A
−1
11 A12 are both nonsingular, then A is also nonsingular, with

A−1 =
[

I −A−1
11 A12

O I

][
A−1

11 O

O C−1

][
I O

−A21A
−1
11 O

]
.

Similarly, if A22 and D = A11 − A12A
−1
22 A21 are both nonsingular, then A is also

nonsingular, with

A−1 =
[

I O

−A−1
22 A21 O

][
D−1 O

O A−1
22

][
I A12A

−1
22

O I

]
.

The matrices C and D are, respectively, the Schur complements of A11 and A22

in A. These conditions, however, are sufficient but not necessary for A to be non-
singular, as the following example shows.



9 The Algebra of Square Matrices 161

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

Issai Schur was a twentieth-century German mathematician who is
known primarily for his work in group theory.

Example The matrix A =

⎡
⎢⎢⎢⎣

[
1 0
0 0

] [
0 0
1 0

]
[

0 1
0 0

] [
0 0
0 1

]
⎤
⎥⎥⎥⎦ ∈ M4×4(Q) is nonsingular, de-

spite the fact that all of the given 2 × 2 blocks are singular.

It is important to make clear, however, that it is hardly ever necessary, in appli-
cations, to actually compute the inverse of a nonsingular matrix. One is more likely
to have to compute a product of the form A−1B , which can usually be done without
explicitly computing A−1 first.

Let F be a field and let k and n be positive integers. Two matrices
B,C ∈ Mk×n(F ) are equivalent if and only if there exist nonsingular matrices
P ∈ Mk×k(F ) and Q ∈ Mn×n(F ) such that PBQ = C. This is, indeed, an equiv-
alence relation on Mk×n(F ) since:
(1) IBI = B for each such matrix B , showing that B is equivalent to itself;
(2) If PBQ = C then P −1CQ−1 = B;
(3) If PBQ = C and P ′CQ′ = D′ then (P ′P)B(QQ′) = D, where we note that

both P ′P and QQ′ are again nonsingular.
Similarly, we say that B and C are row equivalent if and only if there exists a non-

singular matrix P ∈ Mk×k(F ) satisfying PB = C, and we say that B and C are col-
umn equivalent if and only if there exists a nonsingular matrix Q ∈ Mn×n(F ) satis-
fying BQ = C. Both of these relations are also equivalence relations on Mk×n(F ),
and it is clear that if B and C are row equivalent then they are equivalent (take
Q = I ) and if they are column equivalent then they are equivalent (take P = I ).

Equivalence of matrices is a very strong concept. Indeed, it is easy to show that

any matrix B ∈ Mk×n(F ) is equivalent to one which is in block form

[
I O

O O

]
.

Therefore, it is more useful to consider row equivalence of matrices as our basic
tool.

Now let V be a vector space of dimension n over a field F and choose bases B =
{v1, . . . , vn} and D = {w1, . . . ,wn} of V . For each 1 ≤ j ≤ n there exist elements
q1j , . . . , qnj of F satisfying wj =∑n

i=1 qij vi . By Proposition 9.3, we know that the
matrix Q = [qij ] is nonsingular. If v =∑n

i=1 aivi =∑n
j=1 bjwj is an element of V ,

then we see that v =∑n
j=1 bjwj =∑n

j=1 bj (
∑n

i=1 qij vi) =∑n
i=1(

∑n
j=1 qij bj )vi
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and so we must have ai =∑n
j=1 qij bj for all 1 ≤ i ≤ n. Thus we see that

⎡
⎢⎣

a1
...

an

⎤
⎥⎦= Q

⎡
⎢⎣

b1
...

bn

⎤
⎥⎦ .

The matrix Q is called the change-of-basis matrix from D to B .

Example Let F be a field, let n be a positive integer, and let V be the subspace of
the vector space F [X] made up of all polynomials of degree at most n − 1. Then
dim(V ) = n, and it has a canonical basis B = {1,X, . . . ,Xn−1}. Let c1, . . . , cn be
distinct scalars, and for each 1 ≤ i ≤ n, consider the polynomial

pi(X) =
∏
j �=i

1

ci − cj

(X − cj ) ∈ V.

This polynomial is called the ith Lagrange interpolation polynomial, and we will
return to these polynomials below in another context. It is clear that

pi(cj ) =
{

1 if i = j,

0 otherwise.

Thus, for example, if n = 4 and if we choose c1 = 1, c2 = 3, c3 = 5, and c4 = 7, we
obtain

p1(X) = − 1

48
X3 + 5

16
X2 − 71

48
X + 35

16
,

p2(X) = 1

16
X3 − 13

16
X2 + 47

16
X − 35

16
,

p3(X) = − 1

16
X3 + 11

16
X2 − 31

16
X + 21

16
,

p4(X) = 1

48
X3 − 3

16
X2 + 23

48
X − 5

16
.

Returning to the general case, we see that the set D = {p1(X), . . . ,pn(X)} of
Lagrange interpolation polynomials is linearly independent since, if we have∑n

i=1 aipi(X) = 0, then for each 1 ≤ h ≤ n we have ah = ∑n
i=1 aipi(ch) = 0.

Therefore, D is also a basis of V . If q(X) is an arbitrary polynomial in V then
there exist scalars a1, . . . , an satisfying q(X) =∑n

i=1 aipi(X). Again, this implies
that ai = q(ci) for all i. In particular, if q(X) = Xk we see that Xk =∑n

i=1 ck
i pi(X).

Therefore, the change of basis matrix from D to B is

⎡
⎢⎢⎢⎣

1 c1 . . . cn
1

1 c2 . . . cn
2

...
...

. . .
...

1 cn . . . cn
n

⎤
⎥⎥⎥⎦. A matrix
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of this form is called a Vandermonde matrix, and such matrices are always nonsin-
gular.

With kind permission of ETH-Bibliothek Zurich, Image
Archive (Lagrange).

Joseph-Louis Lagrange was one of the applied
mathematicians who surrounded Napoleon, and
his book on analytical mechanics is considered
a mathematical classic. Alexandre-Théophile
Vandermonde was an eighteenth century French
chemist and mathematician who studied determi-

nants of matrices. Vandermonde matrices do not appear in his work, and it is not clear why
they are named after him.

Lagrange interpolation allows us to represent a polynomial p(X) of degree less
than n in a computer not by its list of coefficients but rather by a list of its values
p(a1), . . . , p(an) at n preselected elements of F . Such representations can be used
to obtain algorithms for rapid multiplication of polynomials, especially in the case
the field F is finite (having n elements, of course). Indeed, if p(X) and q(X) are
polynomials in F [X] of positive degree satisfying deg(p) + deg(q) = h < n, then
p(X)q(X) is the unique polynomial t (X) of degree h satisfying t (ai) = p(ai)q(ai)

for all 1 ≤ i ≤ h + 1.

Let us now return to the matter of change of basis, and now let us as-
sume that we have a linear transformation α : V → Y , where V is a vec-
tor space of dimension n over a field F and Y is a vector space of dimen-
sion k over F . We have bases B = {v1, . . . , vn} and D = {w1, . . . ,wn} of V .
Choose a basis E = {y1, . . . , yk} of Y . Then ΦBE(α) is a matrix C = [cij ]. If
Q = [qij ] is the change of basis matrix from D to B then for each 1 ≤ j ≤ n

we have α(wj ) = α(
∑n

h=1 qhj vh) = ∑n
h=1 qhjα(vh) = ∑n

h=1 qhj (
∑k

i=1 cihyi) =∑k
i=1(

∑n
h=1 cihqhj )yi , and so ΦDE(α) = CQ, showing that ΦDE(α) and C are

column equivalent. In the same manner, if we have another basis G = {z1, . . . , zk} of
Y and if P = [pij ] is the change of basis matrix from E to G, then zj =∑k

i=1 pij yi

for all 1 ≤ j ≤ k. If ΦBG(α) is the matrix C′ = [c′
ij ], then for all 1 ≤ j ≤ n we

have α(vj ) =∑k
h=1 ehj zh =∑k

h=1 ehj (
∑k

i=1 pihyi) =∑k
i=1(

∑k
h=1 pihehj )yi and

this equals
∑k

i=1 cij yi , implying C = PC′, and so C′ = P −1C. Thus ΦBG(α)

and C are row equivalent. If we put both of these results together, we see that
ΦDG(α) = P −1ΦBE(α)Q, and so ΦDG(α) and ΦBE(α) are equivalent.

Example Let α : R3 →R
2 be the linear transformation given by

α :
⎡
⎣a

b

c

⎤
⎦ �→

[
a + b

b + c

]
.
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Choose bases B =
⎧⎨
⎩
⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣0

1
1

⎤
⎦ ,

⎡
⎣ 0

−1
0

⎤
⎦
⎫⎬
⎭ and D =

⎧⎨
⎩
⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣1

0
1

⎤
⎦ ,

⎡
⎣ 0

1
−1

⎤
⎦
⎫⎬
⎭ of

R
3 and bases E =

{[
1
0

]
,

[
0

−1

]}
and G =

{[
1
1

]
,

[
1

−1

]}
of R2. Then ΦBE(α) =[

1 1 −1
0 −2 1

]
since

α

⎛
⎝
⎡
⎣1

0
0

⎤
⎦
⎞
⎠ =

[
1
0

]
= 1

[
1
0

]
+ 0

[
0

−1

]
,

α

⎛
⎝
⎡
⎣0

1
1

⎤
⎦
⎞
⎠ =

[
1
2

]
= 1

[
1
0

]
− 2

[
0

−1

]
,

α

⎛
⎝
⎡
⎣ 0

−1
0

⎤
⎦
⎞
⎠ =

[−1
−1

]
= (−1)

[
1
0

]
+ 1

[
0

−1

]
,

and similarly, ΦDG(α) = 1
2

[
1 2 1
1 0 1

]
since

α

⎛
⎝
⎡
⎣1

0
0

⎤
⎦
⎞
⎠ =

[
1
0

]
= 1

2

[
1
1

]
+ 1

2

[
1

−1

]
,

α

⎛
⎝
⎡
⎣1

0
1

⎤
⎦
⎞
⎠ =

[
1
1

]
= 1

[
1
1

]
+ 0

[
1

−1

]
,

α

⎛
⎝
⎡
⎣ 0

1
−1

⎤
⎦
⎞
⎠ =

[
1
0

]
= 1

2

[
1
1

]
+ 1

2

[
1

−1

]
.

Further, we also see that
⎡
⎣1

0
0

⎤
⎦ = 1

⎡
⎣1

0
0

⎤
⎦+ 0

⎡
⎣0

1
1

⎤
⎦+ 0

⎡
⎣ 0

−1
0

⎤
⎦ ,

⎡
⎣1

0
1

⎤
⎦ = 1

⎡
⎣1

0
0

⎤
⎦+ 1

⎡
⎣0

1
1

⎤
⎦+ 1

⎡
⎣ 0

−1
0

⎤
⎦ ,

and

⎡
⎣ 0

1
−1

⎤
⎦= 0

⎡
⎣1

0
0

⎤
⎦− 1

⎡
⎣0

1
1

⎤
⎦− 2

⎡
⎣ 0

−1
0

⎤
⎦, so Q =

⎡
⎣1 1 0

0 1 −1
0 1 −2

⎤
⎦.
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Moreover,

[
1
1

]
= 1

[
1
0

]
− 1

[
0

−1

]
and

[
1

−1

]
= 1

[
1
0

]
+ 1

[
0

−1

]
so P =[

1 1
−1 1

]
and P −1 = 1

2

[
1 −1
1 1

]
. Note that P −1ΦBE(α)Q = ΦDG(α).

Example We will now see an application of linear algebra to calculus. Let V be the
vector space over R consisting of all infinitely-differentiable functions f ∈RR, and
let δ ∈ End(V ) be the differentiation endomorphism.
(1) If a and b are given real numbers, not both equal to 0, then the functions

f0 : x �→ eax sin(bx) and f1 : x �→ eax cos(bx) belong to V and the subspace
W = R{f0, f1} of V is invariant under δ. The restriction of δ to W can be
represented with respect to the basis {f0, f1} of W by the nonsingular matrix

A =
[
a −b

b a

]
. It is easy to check that A−1 = (

a2 + b2
)−1

[
a b

−b a

]
. There-

fore,

∫
f0(t) dt = δ−1(f0) =

(
1

a2 + b2

)
[af0 − bf1] and

∫
f1(t) dt = δ−1(f1) =

(
1

a2 + b2

)
[bf0 + af1].

(2) The functions g0 : x �→ x2ex , g1 : x �→ xex , and g2 : x �→ ex all belong to V

and the subspace Y = R{g0, g1, g2} of V is invariant under δ. The restriction
of δ to Y can be represented with respect to the basis {g0, g1, g2} of Y by the

nonsingular matrix B =
⎡
⎣1 0 0

2 1 0
0 1 1

⎤
⎦. Since B−1 =

⎡
⎣ 1 0 0

−2 1 0
2 −1 1

⎤
⎦, we see

that
∫

g0(t) dt = δ−1(g0) = g0 − 2g1 + 2g2,

∫
g1(t) dt = δ−1(g1) = g1 − g2, and

∫
g2(t) dt = δ−1(g2) = g2.

Let us turn to problems connected with the implementation of this theory. Let
F be a field and let n be a positive integer. Let A = [aij ] and B = [bij ] be-
long to Mn×n(F ) and let C = AB . In order to calculate each one of the n2 en-
tries in C, we need n multiplications and n − 1 additions/subtractions, and so to
calculate C we need n3 multiplications and n3 − 2n2 + n additions/subtractions.
Putting this in another way, the total number of operations needed to calculate
AB from the definition is on the order of nc, where c = 3. If n is very large,
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this can entail considerable computational overhead and leaves room for the in-
troduction of significant error due to roundoff and truncation in the course of the
calculation. It is therefore very important to find a more sophisticated method of
matrix multiplication, if possible. One such method is the Strassen–Winograd algo-
rithm.

With kind permission of Volker Strassen (Strassen); With
kind permission of the Department of Computer Science,
City University of Hong Kong (Winograd).

Variants of this algorithm were discovered by
the contemporary German mathematician Volker
Strassen and the contemporary Israeli mathe-
matician Shmuel Winograd who later served as
director of mathematical research at IBM.

To illustrate the Strassen–Winograd algorithm, let us first begin with the special
case n = 2. First, calculate

p0 = (a11 + a12)(b11 + b12), p1 = (a11 + a22)b11, p2 = a11(b12 − b22),

p3 = (a21 − a11)(b11 + b12), p4 = (a11 + a12)b22, p5 = a22(b21 − b11),

p6 = (a12 − a22)(b21 + b22),

and then note that C =
[
p0 + p5 − p4 + p6 p2 + p4

p1 + p5 p0 − p1 + p2 + p3

]
. In this calcu-

lation, we used 7 multiplications and 18 additions/subtractions (Winograd’s variant
of this algorithm uses only 15 additions/subtractions, but these are more interdepen-
dent, and so the algorithm is less amenable to implementation on parallel comput-
ers) instead of 8 multiplications and 4 additions/subtractions. In the early days of
computers, when multiplication was several orders of magnitude slower than addi-
tion, this in itself was a great accomplishment. If n = 4, we write our matrices in

block form: A =
[

A11 A12
A21 A22

]
and B =

[
B11 B12
B21 B22

]
, where each block is a 2 × 2

matrix. We now calculate 2 × 2 matrices P0, . . . ,P6 and then construct C = AB

as above. To do this, we need 49 multiplications and 198 additions/subtractions, as
opposed to 64 multiplications and 46 additions/subtractions if one goes according
to the definition. We continue recursively. If n = 2h, then the number of multipli-
cations needed is M(h) = 7h and the number of additions/subtractions needed is
A(h) = 6(7h − 4h) and so M(h) + A(h) < 7h+1. (If n is not a power of 2, we can
add rows and columns of 0’s in order to enlarge it to the desired size.) Thus, we see
that the number of arithmetic operations needed to calculate AB is on the order of
nc, where c ≤ log2 7 = 2.807 . . . and so, for large n, we have a definite advantage
over multiplication following from the definition. Using even more sophisticated
techniques, it is possible to reduce the number of arithmetic operations to the order
of nc, where c ≤ 2.376 . . . , as was done by Winograd and Coppersmith in 1986.
Recent results by American mathematicians Chris Ulmas and Henry Cohn, using
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sophisticated group-theoretic techniques, suggest that c can be reduced still further,
but their methods are not, as yet, practical for all but matrices of immense size.

For sparse matrices—namely matrices in which a very large majority of the en-
tries are 0—these algorithms can be combined with other sophisticated techniques
to produce even faster multiplication. If the matrices are in Mn×n(F ) but have no
more than n nonzero entries, then one can multiply them in an order of n2+k(n)

operations, where k(n) → 0 as n → ∞.
The size of matrices for which the Strassen–Winograd algorithm is significantly

faster than the regular method depends, of course, on the particular hardware on
which it is being used. The Strassen–Winograd algorithm can also be modified to
multiplication of matrices which are not necessarily square.

Unfortunately, the Strassen–Winograd algorithm is no less susceptible to round-
off and truncation errors than the regular algorithm. On a computer with seven-digit
accuracy, the product

⎡
⎢⎢⎣

211 2 3 4
1 2 3 4

0.001 0.032 0.043 0.044
311 0.0032 1233 0.0324

⎤
⎥⎥⎦
⎡
⎢⎢⎣

50 0.32 0.0023 421
60 0.023 0.033 982
23 0.032 0.03 623
33 0.043 0.022 44

⎤
⎥⎥⎦

equals

⎡
⎢⎢⎣

10871 67.834 0.7293 92840
371 0.634 0.2463 4430

4.411 0.0043 0.0033 60.57
43910.3 138.977 37.7061 899094.0

⎤
⎥⎥⎦ using the ordinary method of

matrix multiplication, whereas, using the Strassen–Winograd algorithm, we ob-

tain

⎡
⎢⎢⎢⎣

10871 68.54 0.6294 92840

370.9 1.0 0.2463 4430.18

4.411 0.0043 0 62.0

43910.3 139.047 37.7 899095.0

⎤
⎥⎥⎥⎦. This problem can be overcome to

some extent by stopping the recursion in the Strassen–Winograd algorithm early,
and doing the bottom-level matrix multiplication using the ordinary method. An-
other disadvantage of this algorithm is that it requires a much larger amount of
scratch memory space to perform its calculations.

There are other tricks that can be used to reduce the computations necessarily
in matrix multiplication. For example, if n is a positive integer and if A,B,C,D ∈
Mn×n(R), then the matrix product (A + iB)(C + iD) in Mn×n(C) can be calcu-
lated using only three matrix multiplications in Mn×n(R), rather than the expected
four, by noting that

(A + iB)(C + iD) = AC − BD + i
[
(A + B)(C + D) − AC − BD

]
.

If we have a parallel-processing computational system at our disposal, ma-
trix multiplication can be done much more rapidly. There exist parallel algo-
rithms to multiply two n × n matrices in an order of log(n) time, on the con-
dition that we have n3 processors working in parallel. Given the availability of
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such parallel computational power, one can also invert a nonsingular n × n ma-
trix in an order of log2(n) time. The first such algorithm was developed by Las-
zlo Csanky in 1977, though this algorithm has the disadvantage of being wildly
unstable.

Again, we keep in mind that real and complex numbers are represented in a
computer by approximations having a limited degree of accuracy. The longer cal-
culations become, the error due to roundoff and truncation increases and limits the
correctness of the calculations. It is possible to reduce the effect of roundoff and
truncation errors as much as possible. Let us recall how our algorithm for inverting
a matrix A worked:
(1) We formed the matrix [I A] = [bij ];
(2) We interchanged the first row which one of the rows below it, if necessary, such

that b1,n+1 �= 0; we then multiplied this row by b−1
1,n+1 so that this element is

now equal to 1, and we subtracted multiples of this row from the rows below it,
in order to make bi,n+1 equal to 0 for all 1 < i ≤ n.

(3) We now go iterate this process for the elements bh,n+h, where h = 2,3, . . . and
so forth. If we cannot do it, i.e., if there exists an h such that bi,n+h for all
h ≤ i ≤ n, the matrix A is nonsingular. Otherwise, at the end of the process, we
have brought the matrix to the form [A−1 I ].

The elements bh,n+h are called pivots of the algorithm. If we are working over
R or C, we can minimize roundoff and truncation errors, to some extent, by mak-
ing sure that each time we interchange rows we choose to bring into the pivot po-
sition a nonzero number having maximal absolute value. This strategy is known
as partial pivoting. We could do better by also interchanging columns in order to
bring into the pivot position bh,n+h the element bij (h ≤ i, j ≤ n) having maxi-
mal absolute value. This strategy is known as full pivoting; it requires a certain
amount of computational overhead on the side so that the columns can be returned
to their proper positions at the end of the algorithm. Although there are matrices
so pathological that full pivoting rather than partial pivoting is needed in order to
invert them, most experts believe that it is not worth the effort and the computational
overhead and that for such matrices one should use other methods altogether. Par-
tial pivoting also does not work well on parallel or systolic-array computers, since
it requires many nonlocal data movements. Several variants of pivoting strategies
for matrices having specific structures have, however, been developed and are in
wide use.

Indeed, let us now consider another method. It is clearly easier to invert a nonsin-
gular upper-triangular or lower-triangular matrix—namely a matrix in one of these
forms all of the diagonal elements of which are nonzero. Therefore, our job would
be much easier if we could write A in the form LU , where L is lower triangular
nonsingular and U is upper triangular nonsingular, for then A−1 = U−1L−1. This
is not always possible. For example, one can see that there is no way of writing the

matrix

[
0 1
1 0

]
∈ M2×2(R) in this form. However, it is always possible to write A

in the form LU when A equals a product of elementary matrices of the form Ei;c
and Eij ;c only.
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How can this be done? Assume that A = [aij ], U = [uij ], and L = [vij ] and
that A = LU , where U is upper-triangular nonsingular and L is lower-triangular
nonsingular. Then for each 1 ≤ i, j ≤ n we have aij =∑n

h=1 vihuhj . In each of L

and U there are only 1
2 (n2 + n) entries which can be nonzero and so our problem

is one of solving n2 nonlinear equations in n2 + n unknowns. This means that we
can allow ourself to choose the value of n of these variables arbitrarily, and we will
do so by insisting that vii = 1 for all 1 ≤ i ≤ n. Now we have a system of n2 + n

nonlinear equations in n2 + n unknowns, which can be solved by a method known
as Crout’s algorithm:
(1) First set vii = 1 for all 1 ≤ i ≤ n;
(2) For all 2 ≤ j ≤ n and all 1 ≤ i ≤ j , first calculate uij = aij −∑i−1

h=1 vihuhj and
then vij = 1

ujj

(
aij −∑j−1

h=1 vihuhj

)
for all j < i ≤ n.

With kind permission of the National Portrait Gallery (Tur-
ing); With kind permission of Sir Peter Swinnerton-Dyer
(Swinnerton-Dyer).

The LU method was devised by the British mathe-
matician Alan Turing who is better known as the
founder of automata theory and one of the fathers
of the electronic computer. It appears implicitly
in the work of Jacobi on bilinear forms. The first

computer algorithm to compute LU factorizations using partial pivoting was described by
the contemporary British mathematicians D.W. Barron and Sir Peter Swinnerton-Dyer.
Prescott Crout was a twentieth-century American mathematician.

We note that if A is a nonsingular matrix which can be written in the form LU ,
where L = [vij ] is a lower-triangular nonsingular matrix satisfying vii = 1 for all
1 ≤ i ≤ n and U = [uij ] is upper-triangular and nonsingular, then this factorization
must be unique. Indeed, assume that L1U1 = L2U2 where the Lh are lower triangu-
lar matrices with 1’s on the diagonal, and the Uh are nonsingular upper-triangular
matrices. Then L−1

2 L1 = U2U
−1
1 . Since the product of lower-triangular matrices is

lower triangular and the product of upper-triangular matrices is upper triangular,
this matrix must be a diagonal matrix. But then L−1

2 L1 = I and so L1 = L2 and that
implies that U1 = U2, proving uniqueness.

Example Some singular matrices may also be written in the form LU , but for them
the above uniqueness result is no longer necessarily true. For example,

⎡
⎣ 1 −1 2

−1 1 −1
2 −2 4

⎤
⎦=

⎡
⎣ 1 0 0

−1 1 0
2 b 1

⎤
⎦
⎡
⎣1 −1 2

0 0 1
0 0 −b

⎤
⎦

for any scalar b ∈R.

As was previously remarked, not all nonsingular matrices can be written in the
form LU . However, we have already noted that any nonsingular matrix A can be
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written in the form PC, where P is a permutation matrix and C is a product of
elementary matrices of the form Ei;c and Eij ;c and C can be written in the desired
LU form.

Example It is easy to verify that

⎡
⎢⎢⎣

0 1 1 −3
−2 4 1 4

0 0 0 1
3 1 1 0

⎤
⎥⎥⎦ = PLU , where P =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ is a permutation matrix, L =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

− 3
2 7 1 0
0 0 0 1

⎤
⎥⎥⎦ is lower trian-

gular, and U =

⎡
⎢⎢⎣

−2 4 1 4
0 1 1 −3
0 0 − 9

2 27
0 0 0 1

⎤
⎥⎥⎦ is upper triangular.

In general, the problem of factorization of a square matrix into a product of ma-
trices of a more desirable form is one which arises often in computational matrix
theory, and many techniques have been developed to facilitate such computations.
One method, for example, is to associate with any matrix A = [aij ] ∈ Mn×n(F ) an
undirected graph ΓA the vertices of which are {1, . . . , n} and in which there exists
an edge connecting i and j if and only if aij �= 0 or aji �= 0. If this graph has nice
structure—if it is a tree, for example—then this structure can be exploited to pro-
duce efficient factorization algorithms for A, as has recently been shown by Israeli
computer scientist Sivan Toledo.

Exercises

Exercise 441

Let F = GF(5). Calculate

⎡
⎣1 3 1

2 1 1
1 2 3

⎤
⎦
⎡
⎣1 2 2

4 3 2
1 4 2

⎤
⎦ in M3×3(F ).

Exercise 442
Does there exist a real number b such that the matrices

A =

⎡
⎢⎢⎣

1 0 −1 0
0 1 0 −1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣

b −1 −1 0
−1 b 0 −1

1 0 b
2 −1

0 1 −1 b
2

⎤
⎥⎥⎦

are a commuting pair in M4×4(R)?
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Exercise 443
Let F = GF(7) and let K be the subalgebra of M2×2(F ) consisting of all ma-

trices of the form

[
a b

−b a

]
, for a, b ∈ F . Show that K is a field. Is it a field if

F = GF(5)?

Exercise 444

Let A =
[

1 1
0 1

]
∈ M2×2(R). Find the set of all matrices B ∈ Mn×n(R) satis-

fying BA = AB .

Exercise 445

Let A =
[

1 i

−i 1

]
∈ M2×2(C). Find a complex number c satisfying (cA)2 = A.

Exercise 446

Let A =
⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ ∈ M3×3(R). Find a positive integer k satisfying Ak = A−1.

Exercise 447

Let F be a field. Find all matrices A ∈ M3×3(F ) satisfying A2 =
⎡
⎣0 0 1

0 0 0
0 0 0

⎤
⎦.

Exercise 448
Let n be a positive integer and let F be a field of characteristic 0. Show that
AB −BA �= I for all A,B ∈Mn×n(F ) (in other words, that I is not the product
of any two elements of the Lie algebra Mn×n(F )−).

Exercise 449
Show that there are infinitely-many pairs (a, b) of real numbers satisfying the

condition

⎡
⎣a 0 0

0 1 0
0 0 b

⎤
⎦
⎡
⎣1 0 1

0 1 0
1 0 1

⎤
⎦=

⎡
⎣1 0 1

0 1 0
1 0 1

⎤
⎦
⎡
⎣a 0 0

0 1 0
0 0 b

⎤
⎦.

Exercise 450
Does there exist a positive integer k satisfying

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦
⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦

k

=
⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦?
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Exercise 451

Let F = GF(3). Show that there exist at least 27 distinct matrices A in M3×3(F )

satisfying A3 = I .

Exercise 452

If F = GF(2), find the set of all pairs (A,B) of matrices in M2×2(F ) satisfying

AB − BA = I .

Exercise 453

For a field F , find {A ∈M2×2(F ) | A2 = O}.

Exercise 454

Find a matrix A ∈M3×3(R) satisfying A

⎡
⎣1 1 −1

2 1 0
1 −1 1

⎤
⎦=

⎡
⎣1 −1 3

4 3 2
1 −2 5

⎤
⎦.

Exercise 455

Show that if A =
⎡
⎣a 1 0

0 a 1
0 0 a

⎤
⎦ ∈ M3×3(R) then for each n > 1 we have An =

⎡
⎣an nan−1 n(n−1)

2 an−2

0 an nan−1

0 0 an

⎤
⎦.

Exercise 456

Let (K,•) be an associative unital algebra over a field F and let S be the subset

of M3×3(K) consisting of all matrices of the form

⎡
⎣v11 0K v13

0K v22 0K

v31 0K v33

⎤
⎦. Is S an

F -subalgebra of M3×3(K)?

Exercise 457

Let n be a positive integer and let F be a field. A matrix in Mn×n(F ) of the form⎡
⎢⎢⎢⎣

a1 a2 . . . an

an a1 . . . an−1
...

...
. . .

...

a2 a3 . . . a1

⎤
⎥⎥⎥⎦ is called a circulant matrix. Determine if the set of all

circulant matrices in Mn×n(F ) is an F -subalgebra of Mn×n(F ).
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Circulant matrices, which have many important applications, were
first studied by the nineteenth-century French mathematician Eugène
Catalan.

Exercise 458
Let n be a positive integer and let F be a field. If A ∈Mn×n(F ) is a nonsingular
circulant matrix, is A−1 necessarily a circulant matrix?

Exercise 459

Let K be the subset of M2×2(Q) consisting of all matrices of the form

[
a b

2b a

]
,

where a, b ∈Q. Show that K is a Q-subalgebra of M2×2(Q) which is, in fact, a
field.

Exercise 460

Find a matrix A ∈M2×2(R) satisfying A2 =
[

1 3
0 1

]
.

Exercise 461

Find all matrices A ∈M3×3(R) satisfying A

⎡
⎣1 1 1

2 2 2
0 1 1

⎤
⎦= O .

Exercise 462

Let A =
[

a b

c d

]
∈ M2×2(R) be an idempotent matrix. Show that a + d ∈

{0,1,2}.

Exercise 463

Show that

[
1 1
1 1

]n

=
[

2n−1 2n−1

2n−1 2n−1

]
for all n ≥ 1.

Exercise 464

Let F be a field and let A =
[

0 b

c 0

]
∈M2×2(F ). Find An for all n ≥ 1.

Exercise 465
Find matrices A,B ∈M2×2(Q) for which

(A − B)(A + B) �= A2 − B2.
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Exercise 466

Let F be a field and let A =
⎡
⎣1 0 0

1 0 1
0 1 0

⎤
⎦ ∈ M3×3(F ). Show that Ak+2 = Ak +

A2 − I for all positive integers k.

Exercise 467
Let n be a positive integer and let F be a field. Let A,B ∈ Mn×n(F ) satisfy
A + B = I . Show that AB = O if and only if A and B are idempotent.

Exercise 468
Let n be a positive integer and let (K,•) be an associative unital algebra over a
field F . Define a new operation � on Mn×n(K), called the Schur product (some-
times also called the Hadamard product, especially in the context of statistics),
by setting [vij ] � [wij ] = [vij • wij ], for all 1 ≤ i, j ≤ n. Is (Mn×n(K),+,�)

an F -algebra? Is it associative? Is it unital? When is it commutative?

Exercise 469
Let n be a positive integer and for each A = [aij ] ∈ Mn×n(R), let μ(A) =
max1≤i,j≤n |aij |. Show that μ(A2) ≤ nμ(A)2 for all A ∈ Mn×n(R).

Exercise 470

Let F be a field. Find a matrix A ∈ M3×3(F ) satisfying A2 =
⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦ or

show that no such matrix exists.

Exercise 471

Find a matrix A ∈ M2×2(Q) satisfying A

[
0 c

c 0

]
AT =

[
2c 0
0 − c

2

]
for all

c ∈ Q.

Exercise 472
Let F be a field and let n be a positive integer. Show that H11AH11BH11 =
H11BH11AH11 for all A,B ∈Mn×n(F ).

Exercise 473
Let F be a field and let n be a positive integer. Show that (

∑n
i=1

∑n
j=1 HijAHji)B

= B(
∑n

i=1
∑n

j=1 HijAHji) for all A,B ∈Mn×n(F ).

Exercise 474

Is the set

⎧⎨
⎩
⎡
⎣1 1 0

0 0 0
0 0 0

⎤
⎦ ,

⎡
⎣1 1 1

0 0 0
0 0 0

⎤
⎦ ,

⎡
⎣0 0 0

1 1 0
0 0 0

⎤
⎦ ,

⎡
⎣0 0 0

1 1 1
0 0 0

⎤
⎦
⎫⎬
⎭ of matri-

ces in M3×3(Q) closed under taking products?
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Exercise 475
Find infinitely-many triples (A,B,C) of nonzero matrices in M3×3(Q), the en-
tries of which are nonnegative integers, satisfying the condition A3 + B3 = C3.

Exercise 476
Let F be a field. Find a matrix A ∈M4×4(F ) satisfying A4 = I �= A3.

Exercise 477
Let n be a positive integer and let F = GF(p) for some prime integer p.
Show that for any A ∈ Mn×n(F ) there exist positive integers k > h satisfying
Ak = Ah. Would this also be true if we chose F = Q?

Exercise 478
Let A = [aij ] ∈ M2×2(C) be a matrix satisfying the condition that 1

2 [a11 +
a22] �= √

a11a22 − a12a21. Show that there exist four distinct matrices B ∈
M2×2(C) satisfying B2 = A.

Exercise 479
Let c be a given complex number. Find the set of all matrices A ∈ M2×2(C)

satisfying (A − cI)2 = O .

Exercise 480

Show that

⎡
⎣ 3 − 4c 2 − 4c 2 − 4c

−1 + 2c 2c −1 + 2c

−3 + 2c −3 + 2c −2 + 2c

⎤
⎦ is involutory for all complex num-

bers c.

Exercise 481
Let n be a positive integer and let F be a field. How many matrices A = [aij ] ∈
Mn×n(F ) having entries in {0,1} satisfy the condition that each row and each
column contain exactly one 1.

Exercise 482
Show that for an integer n ≥ 4 and for a field F there exist matrices A and B in
Mn×n(F ) satisfying A2 = B2 = O but AB = BA �= O .

Exercise 483
Let F = GF(2) and let F ′ be a field of characteristic other than 2. Define a
function ϕ : M2×2(F

′) → M2×2(F ) as follows: If A = [aij ] ∈ M2×2(F
′) then

set ϕ(A) = [bij ], where

bij =
{

1 if aij �= 0,

0 otherwise.

Is ϕ(A + A′) = ϕ(A) + ϕ(A′) for all A,A′ ∈ M2×2(F
′)? Is ϕ(AA′) =

ϕ(A)ϕ(A′) for all A,A′ ∈ M2×2(F
′)?
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Exercise 484
Find a matrix I �= A ∈ M3×3(Q) satisfying

A

⎡
⎣1 0 0

1 1 0
0 0 1

⎤
⎦=

⎡
⎣1 0 0

1 1 0
0 0 1

⎤
⎦A and A

⎡
⎣1 0 0

0 1 0
0 1 1

⎤
⎦=

⎡
⎣1 0 0

0 1 0
0 1 1

⎤
⎦A.

Exercise 485
For each real number a, find a matrix B(a) ∈M2×2(R) satisfying

[
cos(a) − sin(a)

sin(a) cos(a)

]
= B(a)

[
1 0

sin(a) 1

]

or show that such matrices need not exist.

Exercise 486

Let A =
[

5 7
−3 −4

]
∈M2×2(R). What is A1024?

Exercise 487

Find all pairs (a, b) of rational numbers such that the matrix A =
[

2a −a

2b −b

]
∈

M2×2(Q) is idempotent.

Exercise 488
Let F be a field and let n be a positive integer. Show that there do not
exist nonsingular matrices P,Q ∈ Mn×n(F ) satisfying PAQ = AT for all
A ∈ Mn×n(F ).

Exercise 489
Let F be a field and let A,B ∈ Mn×n(F ) be a commuting pair of matrices,
where B is nonsingular. Is (A,B−1) necessarily a commuting pair?

Exercise 490

Let F be a field. Is S =
{[

a b

c d

] ∣∣∣∣ a + c = b + d

}
an F -subalgebra of

M2×2(F )?

Exercise 491
Let F be a field of characteristic other than 2, let n be a positive integer, and let
A ∈ Mn×n(F ) be an involutory matrix. For each c ∈ F , let Bc = c(A + I ). For
which values of c do we have B2

c = Bc?

Exercise 492

Find all rational numbers a, b, and d satisfying the condition that

[
a b

1 d

]
∈

M2×2(Q) is involutory.
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Exercise 493

Let F = GF(3) and let A =
[

0 2
1 0

]
∈ M3×3(F ). Show that the subset

{O,I,2I,A, I + A,2I + A,2A,I + 2A,2I + 2A} of M3×3(F ) is a field under
addition and multiplication of matrices.

Exercise 494
Let F = GF(p), where p is a prime integer, and let K be the subset of M2×2(F )

consisting of all matrices of the form

[
a b

−b a

]
, where a, b ∈ F . Show that K ,

together with the operations of matrix addition and multiplication, is a field when
p = 3 and is not a field when p = 5. What happens when p = 7?

Exercise 495
Let n be a positive integer, let F be a field, and let O �= A,B ∈ Mn×n(F ). Show
that there exists a matrix C ∈Mn×n(F ) satisfying ACB �= O .

Exercise 496
Find all matrices A,B ∈ M2×2(R), the entries of which are nonnegative inte-

gers, which satisfy AB =
[

1 1
0 1

]
.

Exercise 497
Let V = M3×3(Q). For each rational number t , let αt : V → V be the linear

transformation A �→ A

⎡
⎣0 1 3

t 0 0
0 −1 4

⎤
⎦. Is the function t �→ αt a linear transfor-

mation from Q to End(V ), both considered as vector spaces over Q?

Exercise 498
Let n be a positive integer, let F be a field, and for some fixed c ∈ F , let A = [aij ]
be the matrix in Mn×n(F ) defined by

aij =
{

c when i + j is even,

0 otherwise.

Show that the subset {A,A2,A3} of Mn×n(F ) is linearly dependent.

Exercise 499

Let F = GF(2) and let A =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ∈ M4×4(F ). Let L = {O} ∪

{Ai | i ≥ 0} ⊆ M4×4(F ). Show that L is closed under addition. Is L, under the
usual definitions of addition and multiplication of matrices, a field?
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Exercise 500

Let K be the set of all matrices in M2×2(Q) of the form

[
a −3b

b a

]
. Show that

K is a subalgebra of M2×2(Q) which is in fact a field.

Exercise 501

Find the set of all matrices A ∈M2×2(Q) which satisfy A2 + A =
[

1 1
1 1

]
.

Exercise 502

Let A =
[

0 1
−1 0

]
∈M2×2(Q) and let B and C be matrices in M2×2(Q) satis-

fying AB = BA and AC = CA. Show that BC = CB .

Exercise 503
Find infinitely-many matrices A ∈ M3×3(Q) satisfying

A

⎡
⎣1 −1 2

2 0 1
3 −1 3

⎤
⎦= 1

2

⎡
⎣2 0 1

0 2 −3
0 0 0

⎤
⎦ .

Exercise 504

Let A =
⎡
⎣ 1 −1 −1

−1 1 −1
−1 −1 1

⎤
⎦ ∈M3×3(Q). Find functions f and g from the set of

all positive integers to Q satisfying the condition that An =
⎡
⎣f (n) g(n) g(n)

g(n) f (n) g(n)

g(n) g(n) f (n)

⎤
⎦

for all n ≥ 1.

Exercise 505
Let F = GF(2). Do there exist matrices A = [aij ] and B = [bij ] in M2×2(F )

satisfying a11 + a22 = 1, b11 + b22 = 0, and AB = I?

Exercise 506
Let F be a field and let G be the set of all matrices in M3×3(F ) of the form⎡
⎣1 0 0

a 0 0
0 0 b

⎤
⎦, where a, b ∈ F . Is G closed under matrix multiplication? Does

there exist a matrix J in G satisfying the condition that AJ = A for all A ∈ G?
If such a matrix J exists, is it necessarily true that JA = A for all A ∈ G?

Exercise 507
Let n be a positive integer and let F be a field. Let A and B be matrices in

Mn×n(F ) of the form

[
I A′
O I

]
and

[
I B ′
O I

]
, respectively, where A′ and B ′
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are (not-necessarily square) matrices of the same size. Find necessary conditions
for A and B to satisfy AB = BA.

Exercise 508
Let F be a field and let A,B ∈ M2×2(F ). Show that (AB − BA)2 is a diagonal
matrix.

Exercise 509
Let n be a positive integer and let F be a field. Let A ∈ Mn×n(F ) be a diagonal
matrix having distinct entries on the diagonal. Let B ∈ Mn×n(F ) be a matrix
satisfying AB = BA. Show that B is also a diagonal matrix.

Exercise 510
Let n be a positive integer and let F be a field. For each integer −n < t < n, let
Dt(F ) be the set of all matrices A = [aij ] ∈ Mn×n(F ) satisfying the condition
that aij = 0 when j �= i + t . Thus, for example, D0(F ) is the set of all diagonal
matrices in Mn×n(F ). If A ∈ Dt(F ) and B ∈ Ds(F ), does there necessarily exist
an integer −n < u < t such that AB ∈ Du(F)?

Exercise 511

Let A =
⎡
⎣ 1 2 3

−1 −2 −3
2 4 6

⎤
⎦ and B =

⎡
⎣1 2 3

0 0 0
0 0 0

⎤
⎦ be matrices in M3×3(R).

Find infinitely-many lower-triangular matrices C satisfying A = CB .

Exercise 512
Let n be a positive integer and let F be a field. Let A1, . . . ,An be upper-triangular
matrices in Mn×n(F ) satisfying the condition that the (i, i)-entry in Ai is equal
to 0 for 1 ≤ i ≤ n. Show that A1 · · ·An = O .

Exercise 513
Let F be a field in which we have elements a �= 0 and b. Show that there exists

an upper-triangular matrix C ∈M2×2(F ) satisfying

[
0 a

0 0

]
C =

[
0 b

0 0

]
. Is C

necessarily unique?

Exercise 514
Let F be a field. Find an element A of M2×2(F ) satisfying AAT �= AT A.

Exercise 515
Let F be a field and let n > 1. If a matrix A ∈ Mn×n(F ) satisfies AAT = O ,
does it necessarily follow that AT A = O?

Exercise 516
Let n be a positive integer, let F be a field, and let A ∈ Mn×n(F ) satisfy the
condition A = AAT . Show that A2 = A.
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Exercise 517
Let n be a positive integer, let F be a field, and let A,B ∈Mn×n(F ) be symmet-
ric matrices. Is ABA necessarily symmetric?

Exercise 518
Let n be a positive integer and let F be a field. If A ∈ Mn×n(F ) is symmetric, is
Ah symmetric for all h > 1?

Exercise 519

Show that

{[
1 −2

−2 1

]
,

[
1 3
3 6

]
,

[−1 1
1 −3

]}
forms a basis for the subspace

of M2×2(Q) consisting of all symmetric matrices.

Exercise 520

Does there exist a matrix A ∈M2×2(R) satisfying AAT =
[

1 9
9 1

]
?

Exercise 521
Given real numbers a, b, and c, find all real numbers d such that

⎡
⎢⎢⎣

0 0 0 −1
0 0 −1 a

0 −1 a b

−1 a b c

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a b c 1
1 0 0 0
0 d 0 0
0 0 1 0

⎤
⎥⎥⎦

is symmetric.

Exercise 522
Find a matrix B ∈M2×2(Q) such that the Nievergelt’s matrix equals BT B .

Exercise 523

Calculate

⎡
⎣1 2 −3

0 1 2
0 0 1

⎤
⎦

−1

in M3×3(R).

Exercise 524

Let a ∈R� {1,−2}. Calculate

⎡
⎣a 1 1

1 a 1
1 1 a

⎤
⎦

−1

∈ M3×3(R).

Exercise 525

Does there exist an a ∈ R such that

⎡
⎣−3 4 0

8 5 −2
a −7 6

⎤
⎦ ∈M3×3(R) is singular?
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Exercise 526

Let n be a positive integer. Each complex number c defines a matrix A(c) =
[aij ] ∈ Mn×n(C) given by aij = c(i−1)(j−1) for all 1 ≤ i, j ≤ n. If w = e2πi/n ∈
C, show that A(w) is nonsingular and satisfies A(w)−1 = 1

n
A(w−1).

Exercise 527

Let n be a positive integer and let F be a field. Given a matrix B ∈ Mn×n(F ),

do there exist vectors u,v ∈ Fn such that the matrix

[
B −Bv

−uT B uT Bv

]
is non-

singular?

Exercise 528

Is the matrix

[
1 + X −X

X 1 − X

]
∈ M2×2(Q[X]) nonsingular?

Exercise 529

Is the matrix

⎡
⎣1 − a2 1 − a 0

0 1 − a2 1 − a

1 − a 0 1 − a2

⎤
⎦ ∈ M3×3(C) nonsingular, where a =

− 1
2 + 1

2

√−3 ∈C.

Exercise 530

Let n be a positive integer and let F be a field. If A ∈ Mn×n(F ) nonsingular, is
the same necessarily true for A + AT ?

Exercise 531

Let n be a positive integer and let F be a field. Let A = [aij ] ∈ Mn×n(F ) satisfy
the condition that

∑n
i=1 aij = 1 for all 1 ≤ j ≤ n. Show that the matrix I − A is

singular.

Exercise 532

Let n be a positive integer and let F be a field. If A ∈ Mn×n(F ) is a Markov
matrix, is A−1 necessarily a Markov matrix?

Exercise 533

Let n be a positive integer and let F be a field. For A ∈ Mn×n(F ), show that A2

is nonsingular if and only if A3 is nonsingular.

Exercise 534

Let F = GF(p), where p is a prime integer, and let n be a positive integer. What
is the probability that a matrix in Mn×n(F ), chosen at random, is nonsingular?



182 9 The Algebra of Square Matrices

Exercise 535

Let P =
[

0 −1
1 −1

]
∈ M2×2(R) and let A and Q be nonsingular matrices in

M2×2(R). Set B = AQ−1PQ. Show that B is nonsingular and A−1 + B−1 =
(A + B)−1.

Exercise 536
Show that there are infinitely-many involutory matrices in M2×2(Q).

Exercise 537
Let F = GF(2). Is the sum of all nonsingular matrices in M2×2(F ) nonsingular?

Exercise 538
Let F be a field and let U be the set of all nonsingular matrices in M2×2(F ). Is
the function θ : U → U defined by θ : A �→ A2 a permutation of U?

Exercise 539
Let n be a positive integer, let F be a field, and let A ∈ M2n×2n(F ) be a matrix

which can be written in the form

[
A11 A12
A21 A22

]
, where each Aij ∈ Mn×n(F ) is

nonsingular. Is A necessarily nonsingular?

Exercise 540
Let n be a positive integer and let F be a field. Do there exist matrices A,B ∈
Mn×n(F ) such that the matrix

[
A2 AB

BA B2

]
∈ M2n×2n(F ) is nonsingular?

Exercise 541
Let n be a positive integer and let F be a field. For A,B ∈ Mn×n(F ) with A

nonsingular, show that (A + B)A−1(A − B) = (A − B)A−1(A + B).

Exercise 542
Let n and p be positive integers and let F be a field. Let A ∈ Mn×n(F ) and let
B,C ∈ Mn×p(F ) be matrices satisfying the condition that A and (I +CT A−1B)

are nonsingular. Show that A + BCT is nonsingular, and that

(
A + BCT

)−1 = A−1 − A−1B
(
I + CT A−1B

)−1
CT A−1.

Exercise 543

Let n be a positive integer and let F be a field. If

⎡
⎢⎣

0
...

0

⎤
⎥⎦ �= v ∈ Fn, show that there

exists a nonsingular matrix in Mn×n(F ) the rightmost column of which is v.
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Exercise 544
Let F be a field. Show that every nonsingular matrix in M2×2(F ) can be written

as a product of matrices of the form

[
0 1
1 0

]
,

[
1 1
0 1

]
, or

[
a 0
0 1

]
for a ∈ F .

Exercise 545

For each real number t , let A(t) =
⎡
⎣ 1 0 t

−t 1 − 1
2 t2

0 0 1

⎤
⎦ ∈ M3×3(R). Show that

each such matrix is nonsingular and that the set of all such matrices is closed
under taking products.

Exercise 546
Let n be a positive integer and let F be a field. Let A ∈Mn×n(F ) be a matrix for
which there exists a positive integer k satisfying Ak = O . Show that the matrix
I − A is nonsingular and find (I − A)−1.

Exercise 547
Let n be a positive integer and let F be a field. Let A ∈Mn×n(F ) be a matrix for
which there exists a matrix B ∈ Mn×n(F ) satisfying I + A + AB = O . Show
that A is nonsingular.

Exercise 548
Let n be a positive integer and let F be a field. Let A,B ∈ Mn×n(F ) satisfy the
condition that A and A+B are nonsingular. Show that I +A−1B is nonsingular
and that (I + A−1B)−1 = (A + B)−1A.

Exercise 549
Find matrices A and B in M2×2(R) satisfying A2 = B2 = O such that A + iB

is a nonsingular matrix in M2×2(C).

Exercise 550

Let F be a field and let A =
⎡
⎣1 0 b

0 1 0
a 0 1

⎤
⎦ ∈M3×3(F ), where ab �= 1. Show that

A is nonsingular and calculate A−1.

Exercise 551

Let c �= 0 be an element of a field F and let A =

⎡
⎢⎢⎣

c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c

⎤
⎥⎥⎦ ∈ M4×4(F ).

Is A is nonsingular? If so, find A−1.
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Exercise 552
Let n > 1 and let B ∈ Mn×n(Q) be the matrix all of the entries of which are equal
to 1. Show that there exists a matrix A ∈ Mn×n(Q) satisfying the condition that
A + cB is nonsingular for all rational numbers c.

Exercise 553
Let n > 1 and let B ∈ Mn×n(Q) be the matrix all of the entries of which are
equal to 1. Find a rational number t such that (I − B)−1 = I − tB .

Exercise 554
Let n be a positive integer and let A = [aij ] ∈ Mn×n(R) be the matrix defined
by aij = min{i, j} for all 1 ≤ i, j ≤ n. Show that A is nonsingular.

Exercise 555
Let A = [aij ] ∈ M4×4(R) be the matrix defined by

aij =
{

2 if i = j − 1,

1 otherwise.

Show that A is nonsingular and calculate A−1.

Exercise 556

For each real number a, let G(a) =
[

cos(a) sin(a)

− sin(a) cos(a)

]
∈ M2×2(R). Given

real numbers a, b, and c, show that G(a,b, c) =
[
G(a) G(b)

O G(c)

]
∈M4×4(R) is

nonsingular, and find G(a,b, c)−1.

Exercise 557
Find a singular matrix in M3×3(Q) the entries of which (in some order) are the
integers 1,2, . . . ,9.

Exercise 558
Let n be a positive integer and let F be a field. Given elements b, c ∈ F , let
A = [aij ] ∈Mn×n(F ) be the matrix defined by

aij =
{

b if i = j,

c otherwise.

Find necessary and sufficient conditions for A to be nonsingular.

Exercise 559
Give an example of a singular matrix in M3×3(Q) the entries of which are dis-
tinct prime positive integers, or show that no such matrix can exist.
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Exercise 560

Let F be a field and let D =
[

0 1
−1 0

]
∈ M2×2(F ). Let A ∈ M2×2(F ) satisfy

the condition that AT DA = D. Show that A is nonsingular.

Exercise 561

Let n be a positive integer and let F be a field. Is the set of all singular matrices

in Mn×n(F ) closed under taking products?

Exercise 562

Let n be a positive integer, let F be a field, and let A,B ∈ Mn×n(F ). Show that

A and B are both nonsingular if and only if the matrix

[
A O

O B

]
∈ M2n×2n(F )

is nonsingular.

Exercise 563

Write the matrix

[
1 −2
2 2

]
∈ M2×2(R) as a product of elementary matrices.

Exercise 564

Find the change of basis matrix from the canonical basis B of R3 to the basis

D =
⎧⎨
⎩
⎡
⎣1

1
1

⎤
⎦ ,

⎡
⎣1

1
0

⎤
⎦ ,

⎡
⎣1

0
0

⎤
⎦
⎫⎬
⎭ and the change of basis matrix from D to B .

Exercise 565

Let G =
{[

a a

a a

] ∣∣∣∣ 0 �= a ∈ R

}
. Show that there exists a matrix E ∈ G satisfy-

ing the condition that EA = A = AE for all A ∈ G. For each A ∈ G, show that

there exists a matrix A‡ ∈ G satisfying AA‡ = E = A‡A.

Exercise 566

Let F be a field. Given matrices A,B ∈ M2×2(F ), find the set of all matrices

C ∈ M2×2(F ) satisfying (AB − BA)C = C(AB − BA).
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Exercise 567
Let F be a field and let G be the set of all automorphisms of F 2 which are rep-

resented with respect to the canonical basis by a matrix of the form

[
a b

0 a−1

]
.

Is G a group of automorphisms of F 2?

Exercise 568
Let G be the set of all automorphisms of Q2 which are represented with respect

to the canonical basis by a matrix of the form

[
a b

0 d

]
, where a, d > 0. Is G a

group of automorphisms of Q2?

Exercise 569
Let W1 ⊆ W2 ⊆ · · · ⊆ Wn be a fixed sequence of subspaces of a vector space V

finitely generated over a field F . If α ∈ Aut(V ), we say that given sequence
is an α-fan if and only if each of the Wi is invariant under α. Show that
G = {α ∈ Aut(V ) | the given sequence is an α-fan} is a group of automorphisms
of V .

Exercise 570
For any real number t and any positive integer n, we can define the matrix
P(n, t) ∈ Mn×n(R) to equal the identity matrix I in the case t = 0 and oth-
erwise to equal the matrix [pij ] defined by

pij =
{

0 if i < j,(
i−1
j−1

)
t i−j otherwise.

Show that P(n, s)P (n, t) = P(n, s + t) for all s, t ∈ R. In particular, show that
each matrix P(n, t) is nonsingular.

Exercise 571
Let F be a field and let X be an indeterminate over F . Find matrices P and Q in

M2×2(F [X]) such that the matrix P

[
1 + X2 X

X 1 + X

]
Q is a diagonal matrix.

Exercise 572
Let n be a positive integer and let α : M2×2(C) → M4×4(R) be the function

defined byα :
[

a + bi c + di

e + f i g + hi

]
�→

⎡
⎢⎢⎣

a b c d

−b a −d c

e f g h

−f e −h g

⎤
⎥⎥⎦. Show that α is a lin-

ear transformation of vector spaces over R. Is it a homomorphism of unital R-
algebras?
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Exercise 573
Let F be a field and let A ∈ M2×2(F ). Explicitly find a nonsingular matrix
P ∈M2×2(F ) satisfying PAP −1 = AT .

Exercise 574
Let Y be the subspace of M3×3(R) consisting of all skew-symmetric matrices.
Show that Y is isomorphic to R

3 and find an isomorphism α :R3 → Y satisfying
the condition that α(v)w = v × w for all v,w ∈ R

3.

Exercise 575

Let A =
[

0 1
0 0

]
∈ M2×2(R). Does there exist a matrix B ∈ M2×2(R) sat-

isfying B2 = A? Does there exist a matrix C ∈ M4×4(R) satisfying C2 =[
A O

O A

]
?

Exercise 576

Let A =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ ∈ M4×4(Q). Find the set of all monic polynomials

p(X) ∈Q[X] of degree 2 satisfying the condition that p(A)2 = A. (Caution: this
set may be empty.)

Exercise 577
(Simpson’s rule) Let a < b be real numbers and let c = 1

2 (a + b) be the midpoint
of the interval [a, b]. Given a continuous function f ∈R

[a,b], use Lagrange inter-
polation to show that

∫ b

a
f (t) dt is approximately equal to b−a

6 [f (a) + 4f (c) +
f (b)].

The eighteenth-century British mathematician Thomas Simpson was
noted for his work on numerical approximations in calculus.

Exercise 578
Let F be a field and let k < n be positive integers. Let A ∈ Mn×n(F ) be writ-

ten in block form as

[
A11 A12
A21 A22

]
, where A11 is nonsingular. Let v,w ∈ Fk
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and v′,w′ ∈ Fn−k and let B =
[

A−1
11 −A−1

11 A12

A21A
−1
11 A22 − A21A

−1
11 A12

]
. Show that

A

[
v

v′
]

=
[

w

w′
]

if and only if B

[
w

v′
]

=
[

v

w′
]

.
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Let k and n be positive integers. The classical problem of linear algebra is to find all
solutions (if any exist) to a system of k linear equations in n unknowns of the form

a11X1 + · · · + a1nXn = b1,

a21X1 + · · · + a2nXn = b2,
...

ak1X1 + · · · + aknXn = bk,

where the aij and the bi are scalars belonging to some field F and the Xj are
variables which take values in the field.

What about infinite systems of equations? The study of infinite systems of linear
equations over R was indeed initiated by Hill and formalized by Poincaré but has
since been subsumed into functional analysis and will not be considered here. It is
known that every finite subsystem of an infinite system of linear equations over an
arbitrary field F has a solution over F if and only if the infinite system has a solution
over F .

With kind permission of the American Mathematical Soci-
ety (Hill); With kind permission of the AIP Emilio Segre Vi-
sual Archives, Physics Today Collection and Tenn Collection
(Poincaré).

George William Hill was a nineteenth-century
American mathematical astronomer. French
mathematician Jules Henri Poincaré was one of
the foremost mathematical geniuses of the late
nineteenth century.

Example Let a < b be real numbers and let V = C(a, b). If W is a subspace of
V of dimension n then the interpolation problem of V is the following: given a
function f ∈ V and given real numbers a ≤ t1 < · · · < tn ≤ b, find a function g ∈ W

satisfying f (tj ) = g(tj ) for 1 ≤ j ≤ n. If we are given a basis {g1, . . . , gn} of W

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_10, © Springer Science+Business Media B.V. 2012
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then we want to find real numbers c1, . . . , cn satisfying
∑n

i=1 cigi(tj ) = f (tj ) for
all 1 ≤ j ≤ n. In other words, we want to solve a system of linear equations of the
above form, where k = n, aij = gj (ti) and bi = f (ti) for all 1 ≤ i, j ≤ n.

Example In Proposition 4.2, we noted that if F is a field and if f (X) and g(X) �= 0
are elements of F [X], then there exist unique polynomials u(X) and v(X) in F [X]
satisfying f (X) = g(X)u(X) + v(X) and deg(v) < deg(g). If we set

g(X) =
k∑

i=0

aiX
i and f (x) =

n∑

i=1

biX
i,

then the coefficients of u(X) = ∑n−k
i=0 ciX

i are found by solving the system of linear
equations

akY0 + ak−1Y1 + · · · + a0Yk = bk,

akY1 + ak−1Y2 + · · · + a0Yk+1 = bk−1,
...

akYn−k−1 + ak−1Yn−k = bn−1,

akYn−k = bn

by any of the methods we will discuss.

Example Sometimes we can transform systems of nonlinear equations into systems
of linear equations. For example, suppose that we want to find positive real numbers
r1, r2, and r3 satisfying the following nonlinear system of equations:

r1r2r3 = 1,

r3
1 r2

2 r2
3 = 27,

r3/r1r2 = 81.

Since each of the integers on the right is a power of 3, we can take the logarithm to
the base 3 of both sides of each equation. Setting Xi = log3(ri) for 1 ≤ i ≤ 3, the
system now becomes linear

X1 + X2 + X3 = 0,

3X1 + 2X2 + 2X3 = 3,

−X1 − X2 + X3 = 4,

and this has a unique solution (which we can find by methods to be discussed in
this chapter) X1 = 3, X2 = −5, and X3 = 2, showing that the original system has a
solution r1 = 27, r2 = 1/243, and r3 = 9.

A system of linear equations of the above form is homogeneous if and only if
bi = 0 for all 1 ≤ i ≤ k; otherwise it is nonhomogeneous. At this stage, we do not
yet know answers to the following questions:
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(1) Does a given system of linear equations have a solution?
(2) If it has a solution, is that solution unique?
(3) If the solution is not unique, can we characterize the set of all solutions?
(4) If there are solutions, how do we compute them efficiently?
In order to answer these questions, we have to move to the language of matrices. The
use of matrices for this purpose was developed in Europe in the nineteenth century
by Cayley, Sylvester, and Laguerre. However, the real pioneers were the Chinese
and Japanese mathematicians. During the time of the Han dynasty in China, around
2000 years ago, the Nine Chapters on the Mathematical Art (Jiuzhang Suanshu)
presented a method for solving systems of linear equations using matrices. A major
commentary on this was subsequently written by Liu Hui. This, in turn, formed the
basis for the later work of Seki.

Edmond Laguerre, a nine-
teenth-century French math-
ematician, wrote an impor-
tant book on systems of lin-
ear equations in 1867. Liu
Hui lived in the third cen-
tury in the Kingdom of Wei
in north-central China. He

added proofs and computational algorithms using counting rods. Takakazu Seki Kowa
was a seventeenth-century Japanese mathematician, the son of a samurai warrior family,
who developed matrix-based methods based on Chinese texts.

To see how this is done, let us write the above system in the form

⎡

⎢
⎣

a11 . . . a1n

...
. . .

...

ak1 . . . akn

⎤

⎥
⎦

⎡

⎢
⎣

X1
...

Xn

⎤

⎥
⎦ =

⎡

⎢
⎣

b1
...

bk

⎤

⎥
⎦ .

The matrix A = [aij ] ∈ Mk×n(F ) is the coefficient matrix of the system. If we set

w =
⎡

⎢
⎣

b1
...

bk

⎤

⎥
⎦ ∈ Fk , then the matrix [A w] ∈ Mk×(n+1)(F ) is called the extended

coefficient matrix of the system. The set of all vectors v =
⎡

⎢
⎣

d1
...

dn

⎤

⎥
⎦ ∈ Fn satisfying

Av = w is the solution set of the system. This is clearly equal to α−1(w), where
α : Fn → Fk is the linear transformation satisfying �BD(α) = A, where B and D

are the canonical bases of Fn and Fk , respectively. In particular, if the system is
homogeneous then its solution set is just the kernel of α, and is called the solution
space of the system.
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We note the following simple but important point: if F is a subfield of a field K

and if k and n are positive integers, then any matrix A in Mk×n(F ) also belongs
to Mk×n(K) and any vector v ∈ Fn also belongs to Kn. Therefore, if w ∈ Fk , any
element of the solution set of Av = w, considered as a system of linear equations
over F , remains a solution when we consider this as a system of linear equations
over K .

Proposition 10.1 The solution set of a homogeneous system of linear equa-
tions in n unknowns is a subspace of Fn.

Proof This is a direct consequence of Proposition 6.4. �

For nonhomogeneous systems, the situation is a bit more complicated.

Proposition 10.2 Let AX = w be a nonhomogeneous system of linear equa-
tions in n unknowns over a field F and let v0 ∈ Fn be a solution to this sys-
tems. Then the solution set of the system is the set of all vectors in Fn of the

form v0 + v, where v is a solution to the homogeneous system AX =
⎡

⎢
⎣

0
...

0

⎤

⎥
⎦.

Proof This is an immediate consequence of Proposition 6.6. �

We should emphasize that the solution set of a nonhomogeneous system of linear
equations is not a subspace of Fn but rather an affine subset of that space.

Example If we identify R
2 with the Euclidean plane by associating each vector

[
a

b

]

with the point with coordinates (a, b), then we see its subspaces of dimension 1 are
precisely the straight lines going through the origin. The solutions of linear equa-
tions of the form a1X1 + a2X2 = b, where b �= 0, and at least one of the ai is also
nonzero, are the straight lines in the plane which do not go through the origin.

We are still left with the question of how to actually find a solution to a system
of linear equations. Here we can distinguish between two approaches:
Direct Methods These methods involve the manipulation of the matrix A, either

replacing it with another matrix which is easier to work with or factoring it into a
product of matrices which are easier to work with, and thus reducing the difficulty
of the problem.

Iterative Methods These methods involve selecting a likely solution for the system
and then repeatedly modifying it to obtain a sequence of vectors which (hopefully)
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will converge to an actual solution to the system. Such methods work, of course,
only if our vector space is one in which the notion of convergence is meaningfully
defined. As we shall see, this is possible when the field of scalars is R or C.

We begin by looking at direct methods. Let P be a nonsingular matrix in
Mk×k(F ). A vector v ∈ Fn is a solution to the system AX = w over F if and
only if it is a solution to the system (PA)X = Pw. In particular, this is true for
elementary matrices. Thus, given a system of linear equations, we can change the
order of the equations, multiply one of the equations by a nonzero scalar, or add a
scalar multiple of one equation to another, without changing the solution set of the
system, so long as we do the same thing on both sides of the equal sign. In order to
do this efficiently, it is best to work with the extended coefficient matrix [A w] and
perform elementary operations on it to reduce it to a convenient form.

Let F be a field, let k and n be positive integers, and let B = [bij ] ∈ Mk×n(F ).
The matrix B is in row echelon form if and only if for each 1 ≤ i ≤ k there exists an
integer 1 ≤ s(i) ≤ n + 1 such that
(1) bij = 0 for all 1 ≤ j < s(i) but bi,s(i) �= 0 if s(i) ≤ n; and
(2) s(1) < s(2) < · · · < s(k).

Example The matrices

⎡

⎢
⎢
⎣

1 6 7 7 1
0 9 2 1 1
0 0 0 2 2
0 0 0 0 1

⎤

⎥
⎥
⎦ and

⎡

⎢
⎢
⎣

8 0 0 0 0
0 0 0 2 6
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎦ are in row

echelon form. The matrix

⎡

⎢
⎢
⎣

1 5 2 9 0
0 0 1 5 4
0 0 1 0 1
0 0 0 0 7

⎤

⎥
⎥
⎦ is not in row echelon form.

Example If n is a positive integer and if B ∈ Mn×n(F ) is in row echelon form,

then B is surely upper triangular. However,

⎡

⎢
⎢
⎣

1 0 2 7
0 0 3 8
0 0 9 0
0 0 0 5

⎤

⎥
⎥
⎦ is an upper-triangular

matrix which is not in row echelon form.

We claim that for any matrix A = [aij ] ∈ Mk×n(F ) is row equivalent to a matrix
in row echelon form. By Proposition 9.4, this is equivalent to saying that A can be
transformed into a matrix in row echelon form by a series of elementary operations,
as follows:
(1) Find the leftmost column of A which has a nonzero entry and interchange rows

if necessary, so that this entry is in the first row. Thus we now have a matrix A

in which a1h �= 0 and aij = 0 for all 1 ≤ i ≤ k and all 1 ≤ j < h.
(2) For each 1 < i ≤ k, if aih �= 0 then we multiply the first row by −aij a

−1
1h and

add it to the ith row, which creates a new row in which the (i, h)-entry is equal
to 0. Thus, we now have a matrix in which aih = 0 for all 1 < i ≤ k.
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(3) Now consider the submatrix of A from which we deleted the first row and the
first h columns, and repeat the above procedure.

Example Let us begin with the matrix A =
⎡

⎣
1 2 3 1
2 1 4 2
1 −1 1 1

⎤

⎦ ∈ M3×4(R). We al-

ready have a11 �= 0. Multiplying the first row by −2 and adding it to the second

row, we obtain

⎡

⎣
1 2 3 1
0 −3 −2 0
1 −1 1 1

⎤

⎦ and then multiplying the first row by −1 and

adding it to the third row, we obtain

⎡

⎣
1 2 3 1
0 −3 −2 0
0 −3 −2 0

⎤

⎦. We also already have

a22 �= 0. Multiplying the second row by −1 and adding it to the third row, we obtain⎡

⎣
1 2 3 1
0 −3 −2 0
0 0 0 0

⎤

⎦, and this is in row echelon form.

If A = [aij ] ∈ Mk×n(F ) is a matrix in row echelon form, and if the hth row of A

contains nonzero entries, then the leftmost nonzero entry of the row is the leading
entry. The matrix A is in reduced row echelon form if it is in row echelon form and,
in addition, satisfies the following additional conditions:
(1) The leading entry in each nonzero row is equal to 1;
(2) If ahj is a leading entry, then aij = 0 for all i �= h.
Any matrix in row echelon is row-equivalent to one in reduced row echelon form;
that is to say, such a matrix can be converted to one in reduced row echelon form by
performing additional elementary operations: first, we multiply each nonzero row
by the multiplicative inverse of its leading entry, to obtain a matrix in which the
leading entry of each nonzero row equals 1. Then, if ahj is a leading entry and if
i < h, we multiply the hth row by −aij and add it to the ith row, which will give
us a matrix with the (i, j)-entry equal to 0. The reduced row echelon form of any
given matrix is clearly unique.

Example Let us go back and look at the matrix

⎡

⎣
1 2 3 1
0 −3 −2 0
0 0 0 0

⎤

⎦ in row echelon

form. The leading entry of the first row is already equal to 1. Multiplying the second

row by − 1
3 to obtain,

⎡

⎣
1 2 3 1
0 1 2

3 0

0 0 0 0

⎤

⎦, a matrix in which the leading entry of the

second row is equal to 1 as well. Now multiply the second row by −2 and add it to

the first row, to obtain

⎡

⎢
⎣

1 0 8
3 1

0 1 2
3 0

0 0 0 0

⎤

⎥
⎦, which is in reduced row echelon form.
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Example Even this very simple algorithm can lead to computational problems. Let
n be a positive integer and let A = [aij ] ∈ Mn×n(R) be the matrix defined as fol-
lows:

aij =
⎧
⎨

⎩

1 if i = j or j = n,

−1 if i > j,

0 otherwise.

If we use the above method to reduce A to reduced row echelon form we obtain a
matrix B = [bij ] where

bij =

⎧
⎪⎨

⎪⎩

1 if i = j < n,

2i−1 for j = n,

0 otherwise.

If n is sufficiently large, the element bnn may be considerably corrupted due to
roundoff and truncation error.

Reduction of a matrix in Mk×n(F ) to reduced row-echelon form depends
strongly on the fact that every nonzero element in a field has a multiplicative in-
verse. If we are considering matrices in Mk×n(K), where K is the unital commuta-
tive associative algebra of polynomials in one or several variables over F , this now
longer holds. In such situations, however, it is possible to reduce a matrix to a form
known as Howell Canonical Form, which is equivalent to row-echelon form with
leading entries equal to 1 in the case we are working over a field. This is important
for computations since, as we will see, algebras of the form Mk×n(F [X]) have an
important part to play in the theory we are developing.

Now let us return to the system of linear equations AX = w in n unknowns
and consider methods of solution. The most well-known is Gaussian elimination or
the Gauss–Jordan method. In this method, we first perform elementary operations
on the extended coefficient matrix [A w] to bring it to reduced row echelon form.
Having done this, we now have a new system of linear equations A′X = w′, the
solution set of which is the same as that of the original system. Let t be the greatest
integer i such that the ith row has nonzero entries. There are several possibilities:
(1) bt �= 0 but a′

tj = 0 for all 1 ≤ j ≤ n. Then the system has no solutions, and we
are done.

(2) There is precisely one index j such that a′
tj �= 0. Then this must in fact be the

leading entry of the t th row and so a′
tj = 1. This means that in any element of

the solution set of the system we must have the j th entry equal to bj . We can
therefore substitute bj for Xj in each of the other equations, and reduce the
system to one of equations of n − 1 unknowns.

(3) There are several indices j such that a′
tj �= 0, say those in columns h1 < h2 <

· · · < hm. Then a′
th1

is the leading entry of the t th row and so equals 1. More-
over, for any values z1, . . . , zm we substitute for Xh2, . . . ,Xhm , we will get
a solution to the system with these values and with bt − ∑m

s=2 zs substituted
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for Xh1 . Thus we can consider the zi as parameters of a general solution and
again reduce the system to one in a smaller number of unknowns.

(4) Having reduced the system, we now recursively apply the previous steps until
the system is solved.

With kind permission of the Archives of the Mathematis-
ches Forschungsinstitut Oberwolfach © Universität Göttin-
gen, Sammlung Sternwarte

Carl Friedrich Gauss, who lived in Germany at
the beginning of the nineteenth century, is con-
sidered to be the leading mathematician of all
times, as well as a physicist and astronomer of the
first rank. He developed this method in connec-

tion with his work in astronomy in 1809. Gaussian elimination first appeared in print in
a handbook by German geodesist Wilhelm Jordan, who applied the method to problems
in surveying. The first computer program to solve a system of linear equations by Gaus-
sian elimination was written by Lady Augusta Ada Lovelace, a student of De Morgan and
daughter of the poet Lord Byron, who developed software for Charles Babbage’s (never
completed) mechanical computer in the nineteenth century. Her program was capable of
solving systems of 10 linear equations in 10 unknowns.

Strassen’s insight that Gaussian elimination may not be the optimal method of
solving systems of linear equations, as had been previously thought, led to the de-
velopment of his method of matrix multiplication.

Example Let us consider the system of linear equations

3X1 + 2X2 + X3 = 0,

−2X1 + X2 − X3 = 2,

2X1 − X2 + 2X3 = −1

over the field R. The extended coefficient matrix of this system is
⎡

⎣
3 2 1 0

−2 1 −1 2
2 −1 2 −1

⎤

⎦

and this is row equivalent to the matrix

⎡

⎣
1 2

3
1
3 0

0 7 −1 6
0 0 1 1

⎤

⎦ in row echelon form,

which is in turn row equivalent to the matrix

⎡

⎣
1 0 0 −1
0 1 0 1
0 0 1 1

⎤

⎦ in reduced row

echelon form. Thus we see that the solution set of the system is

⎧
⎨

⎩

⎡

⎣
−1

1
1

⎤

⎦

⎫
⎬

⎭
.
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Example Let us consider the system of linear equations

X1 + X2 = 1,

X1 − X2 = 3,

−X1 + 2X2 = −2

over the field R. The extended coefficient matrix of this system equals

⎡

⎣
1 1 1
1 −1 3

−1 2 −2

⎤

⎦ ,

and this is row equivalent to the matrix

⎡

⎣
1 1 1
0 −2 2
0 0 2

⎤

⎦ in row echelon form, which is

row equivalent to the matrix

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ in reduced row echelon form. Therefore,

this system has no solutions at all.

Example Let us consider the system of linear equations

X1 + 2X2 + X3 = −1,

2X1 + 4X2 + 3X3 = 3,

3X1 + 6X2 + 4X3 = 2

over R. The extended coefficient matrix of this system is

⎡

⎣
1 2 1 −1
2 4 3 3
3 6 4 2

⎤

⎦ and

this is row equivalent to

⎡

⎣
1 2 1 −1
0 0 1 5
0 0 0 0

⎤

⎦ in row echelon form, which is in turn

row equivalent to

⎡

⎣
1 2 0 −6
0 0 1 5
0 0 0 0

⎤

⎦ in reduced row echelon form. From the second

row, we see that we must have X3 = 5. From the first row, we have X1 + 2X2 = −6
and so, for each value X2 = z, we have a solution with X1 = −6 − 2z. Therefore,

the solution set to our system is

⎧
⎨

⎩

⎡

⎣
−6 − 2z

z

5

⎤

⎦

∣
∣
∣
∣
∣
∣
z ∈R

⎫
⎬

⎭
.
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Gaussian elimination can also be used to check if a set of vectors in Fk is linearly

independent. Let {v1, . . . , vn} be a set of vectors in Fk , where vj =
⎡

⎢
⎣

a1j

...

akj

⎤

⎥
⎦ for all j .

We want to know if there are scalars b1, . . . , bn in F , not all equal to 0, satisfying

∑n
j=1 bjvj =

⎡

⎢
⎣

0
...

0

⎤

⎥
⎦. That is, we want to know if the homogeneous systems of linear

equations AX =
⎡

⎢
⎣

0
...

0

⎤

⎥
⎦ has a nonzero solution, where A = [aij ] ∈Mk×n(F ).

Example Let us check if the subset

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

1
−1

3
4

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

3
−3

6
4

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

−1
1
0
4

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

of Q4 is linearly

dependent, and to do so we need to consider the matrix A =

⎡

⎢
⎢
⎣

1 3 −1 0
−1 −3 1 0

3 6 0 0
4 4 4 0

⎤

⎥
⎥
⎦.

This matrix is row equivalent to the matrix

⎡

⎢
⎢
⎣

1 0 2 0
0 1 −1 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ in reduced row ech-

elon form. Therefore, the set of solutions to the homogeneous system AX =
⎡

⎢
⎣

0
...

0

⎤

⎥
⎦

is

⎧
⎨

⎩

⎡

⎣
−2z

z

z

⎤

⎦

∣
∣
∣
∣
∣
∣
z ∈ Q

⎫
⎬

⎭
so that if we pick one such nonzero element, say

⎡

⎣
−2

1
1

⎤

⎦, we

see that (−2)

⎡

⎢
⎢
⎣

1
−1

3
4

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

3
−3

6
4

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

−1
1
0
4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦, showing that the set is indeed

linearly dependent.

We note that if A ∈ Mk×n(F ) then the number of arithmetic operations needed
so solve a system of linear equations of the form AX = w using Gaussian elim-
ination, is no more than 1

6k(k − 1)(3n − k − 2) if k < n and no more than
1
6n[3kn + 3(k − n) − n2 − 2] otherwise. Of course, if the matrix A is of a spe-
cial form, this procedure can be much faster. For example, if A ∈ Mn×n(F ) is a
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tridiagonal matrix, then a system of equations of the form AX = w can be solved
using 3n additions/subtractions and 5n multiplications.

If A ∈ Mk×n(F ) is a nonsingular matrix which can be written in the form LU ,
where L is lower triangular and U is upper triangular, then a system of linear equa-
tions of the form UX = w is easy to solve using Gaussian elimination, since U

is already in row-echelon form. Moreover, since U must also be nonsingular, this
system has a unique solution y = U−1w. Then the system AX = w has a unique so-
lution, which is also the solution to the system LX = y and that system too is easy
to solve. We therefore see the importance of the LU -decomposition of matrices,
assuming that one exists.

Given a matrix A ∈ Mk×n(F ), we define the column space of A to be the sub-
space of Fk generated by the set of all columns of A. The dimension of the column
space of A is called the rank of A. Moreover, there exists a linear transformation
α : Fn → Fk satisfying the condition that �BD(α) = A, where B and D be the
canonical bases of Fn and Fk , respectively, and it is clear that the column space
of A is just im(α). Similarly, we define the row space of A to be the subspace of
M1×n(F ) generated by the rows of A. We will show that the dimension of this
space is also equal to the rank of A.

Proposition 10.3 Let F be a field, let k and n be positive integers, and let

A ∈ Mk×n(F ) and let w =
⎡

⎢
⎣

b1
...

bk

⎤

⎥
⎦ ∈ Fk . Then the system of linear equations

AX = w has a solution if and only if w belongs to the column space of A.

Proof If v =
⎡

⎢
⎣

d1
...

dn

⎤

⎥
⎦ is a solution of the system AX = w then

w =
⎡

⎢
⎣

∑n
j=1 a1j dj

...∑n
j=1 akj dj

⎤

⎥
⎦ =

n∑

j=1

dj

⎡

⎢
⎣

a1j

...

akj

⎤

⎥
⎦

and so w is a linear combination of the columns of A. Conversely, if we assume that

there exist scalars d1, . . . , dn in F such that w = ∑n
j=1 dj

⎡

⎢
⎣

a1j

...

akj

⎤

⎥
⎦, then v =

⎡

⎢
⎣

d1
...

dn

⎤

⎥
⎦

is a solution of the given system. �

In particular, we get the following consequence of this result.
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Proposition 10.4 Let F be a field, let k and n be positive integers, and let

A ∈ Mk×n(F ) and let w =
⎡

⎣
b1
...

bk

⎤

⎦ ∈ Fk . Then the system of linear equations

AX = w has a solution if and only if the rank of the coefficient matrix A is
equal to the rank of the extended coefficient matrix.

Now let us return to the problem of identifying the solution sets of homogeneous
systems of linear equations.

Proposition 10.5 Let F be a field, let k and n be positive integers, and let
A ∈ Mk×n(F ) be a matrix the columns of which are vectors y1, . . . , yn in Fk .
Assume these columns are arranged such that {y1, . . . , yr} is a basis for the
column space of A, for some r ≤ n. Moreover, for all r < h ≤ n, let us select
scalars bh1, . . . , bhn such that:
(1) yh = bh1y1 + · · · + bhryr ;
(2) bhh = −1;
(3) bhj = 0 otherwise.

For each r < h ≤ n, let vh =
⎡

⎢
⎣

bh1
...

bhn

⎤

⎥
⎦ ∈ Fn. Then {vr+1, . . . , vn} is a ba-

sis for the solution space of the homogeneous system of linear equations

AX =
⎡

⎣
0
...

0

⎤

⎦.

(Comment before the proof : Since {y1, . . . , yn} is a set of generators for the col-
umn space of A, it contains a subset that is a basis. The assumption that this is
{y1, . . . , yr} is for notational convenience only.)

Proof If r = n then the solution space of the system of linear equations is

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

0
...

0

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
,

and so the result is immediate. Hence let us assume that r < n. If r < h ≤ n, then

Avh = ∑r
j=1 bhjyj − yh =

⎡

⎢
⎣

0
...

0

⎤

⎥
⎦, and so each vh belongs to the solution space

of AX =
⎡

⎢
⎣

0
...

0

⎤

⎥
⎦. Moreover, the set {vr+1, . . . , vn} is linearly independent, since if
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∑n
j=r+1 cj vj =

⎡

⎢
⎣

0
...

0

⎤

⎥
⎦ then for each r < h ≤ n we note that the hth entry on the

left-hand side is −ch whereas the corresponding entry on the right-hand side is 0,
proving that ch = 0 for all r < h ≤ n.

We are therefore left to show that {vr+1, . . . , vn} is a generating set for the so-

lution space of the given homogeneous system. And, indeed, let w =
⎡

⎢
⎣

d1
...

dn

⎤

⎥
⎦ be

a vector in this solution space. Then w + ∑n
h=r+1 dhvh =

⎡

⎢
⎣

e1
...

en

⎤

⎥
⎦, where er+1 =

· · · = en = 0. Therefore, this vector belongs to solution space of the system, and

so
∑r

h=q ehyh =
⎡

⎢
⎣

0
...

0

⎤

⎥
⎦. However, since the set {y1, . . . , yr} is linearly independent,

this implies that e1 = · · · = er = 0 as well. Therefore, w = −∑n
h=r+1 dhvh, show-

ing that {vr+1, . . . , vn} is a generating set for the solution space, as required. �

As an immediate consequence of Proposition 10.5, we obtain the following re-
sult.

Proposition 10.6 Let F be a field, let k and n be positive integers, and let
A ∈ Mk×n(F ). Then the dimension of the solution space of the homogeneous

system of linear equations AX =
⎡

⎢
⎣

0
...

0

⎤

⎥
⎦ is n − r , where r is the rank of the

coefficient matrix A.

We are now ready to prove the characterization of rank which we mentioned
before.

Proposition 10.7 Let F be a field, let k and n be positive integers, and let
A ∈ Mk×n(F ). Then the rank of A equals the dimension of the row space
of A.

Proof Let v1, . . . , vk be the rows of A, which generate a subspace of M1×n(F ).
We can reorder these rows in such a way that {v1, . . . , vt } is a basis for the row
space, for some 1 ≤ t ≤ k. This, as we know, does not change the solution space
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of the homogeneous system of linear equations AX =
⎡

⎢
⎣

0
...

0

⎤

⎥
⎦ and hence does not

change the rank rA of A. Let B ∈ Mt×n(F ) be the matrix obtained from A by
deleting rows t + 1, . . . , k. The columns of B belong to F t and so the rank rB of B

satisfies rB ≤ t , which implies that n − t ≤ n − rB . But we have already seen that

the homogeneous systems of linear equations AX =
⎡

⎢
⎣

0
...

0

⎤

⎥
⎦ and BX =

⎡

⎢
⎣

0
...

0

⎤

⎥
⎦ have

the same solution space and so, by Proposition 10.6, n − t ≤ n − rA. From this we
conclude that rA ≤ t . We have thus shown that the rank of any matrix is less than
or equal to the dimension of its row space. In particular, this is also true for AT .
But the rank of AT is t , while the dimension of its row space is rA, and so we have
t ≤ rA as well, proving equality. �

Example Let us find a basis for the solution space of the system of linear equations

[
1 2 −3 1
1 1 1 1

]
⎡

⎢
⎢
⎣

X1
X2
X3
X4

⎤

⎥
⎥
⎦ =

[
0
0

]

over R. We know that the coefficient matrix is

row-equivalent to the matrix

[
1 0 5 1
0 1 −4 0

]

in reduced row echelon form, and

this matrix has rank 2. Therefore, the solution space of the system has dimension

4 − 2 = 2. Indeed, it is easy to check that

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

−5
4
1
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

−1
0
0
1

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
is a basis for this

solution space.

Gaussian elimination requires an order of magnitude of n3 arithmetic operations
to solve a system of n linear equations in n unknowns. This computational overhead
is quite significant if n is large (say, over 10,000), even with the use of supercomput-
ers. As a result, there is considerable continuing research into finding faster methods
of computation, especially in those cases in which we have additional information
on the structure of the matrix of coefficients, originating in knowledge of the par-
ticular problem from which the system arose. Often this structural information is
immediately noticeable, but sometimes it appears only after a sophisticated consid-
eration of the problem.

Example It is often possible to show that the matrix we are interested in, while not
itself having a special structure, is equal to the product of two matrices having a spe-
cial structure, a situation which arises in many mathematical models. Let us consider
one such case. An n×n symmetric Toeplitz matrix is a matrix B = [bij ] ∈ Mn×n(R)

satisfying the condition that there exist real numbers c0, . . . , cn−1 such that bij = ch
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whenever |i−j | = h. Thus, for example, the matrix

⎡

⎢
⎢
⎣

1 2 0 7
2 1 2 0
0 2 1 2
7 0 2 1

⎤

⎥
⎥
⎦ is a symmetric

Toeplitz matrix. Clearly, the set of all symmetric Toeplitz matrices is a subspace of
Mn×n(R). However, it is not a subalgebra, since the product of two such matrices
need not be a symmetric Toeplitz matrix. They are also convenient to store in a com-
puter, since we need to keep in memory only the n scalars c0, . . . , cn−1. Note that
symmetric Toeplitz matrices are symmetric with respect to both main diagonals.

Many mathematical models in economics are built around solving systems of lin-
ear equations of the form AX = w, where A is a product of two symmetric Toeplitz
matrices—a fact which emerges from a knowledge of economic theory.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

Otto Toeplitz was a twentieth-century German mathematician who
studied endomorphisms of infinite-dimensional vector spaces.

The proper use of mathematical techniques, and especially computational tech-
niques, also depends very much on a deep understanding of the particular problem
one is dealing with. Also, it is crucial to emphasize once again that any method
we use to solve a system of linear equations on a computer will induce errors as a
result of roundoff and truncation in our computations. With some methods—such
as Gaussian elimination—these errors tend to accumulate, whereas with others they
often cancel each other out, within certain limits. It is therefore necessary, espe-
cially when we are dealing with large matrices, to have on hand several methods
of handling such systems of equations and to be able to keep track of the way in
which errors can propagate in each of the different methods at one’s disposal. The
matter of the numerical stability of solutions to such systems was investigated by
Wilkinson, among many others.

© Sergei Vostok (Faddeev); © Dr. Vera Simonova (Fad-
deeva).

The problem computing solutions of systems of
linear equations was the subject of considerable
research in the early days of computers. Among
the contributors were the Russian husband-and-
wife team of Dimitri Konstantinovich Faddeev
and Vera Nikolaevna Faddeeva.

The following is a useful trick which we will need later.
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Proposition 10.8 Let F be a subfield of a field K . Let k and n be positive
integers and let A ∈ Mk×n(F ). Suppose that there exists a nonzero vector

x =
⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦ ∈ Kn satisfying Ax =

⎡

⎢
⎣

0
...

0

⎤

⎥
⎦. Then there exists a nonzero vector

y ∈ Fn satisfying Ay =
⎡

⎢
⎣

0
...

0

⎤

⎥
⎦.

Proof Let V = F {x1, . . . , xn}, which is a subspace of K , considered as
a vector space over F . Let E = {v1, . . . , vp} be a basis for V over F and set

v =
⎡

⎢
⎣

v1
...

vp

⎤

⎥
⎦ ∈ Kp . Then there exists a nonzero matrix B ∈ Mn×p(F ) satisfying

Bv = x and so ABv = Ax =
⎡

⎢
⎣

0
...

0

⎤

⎥
⎦. But E is linearly independent and so we must

have AB = O . Now take y to be any nonzero column of B . �

We now turn to iterative methods of solution of systems of linear equations. For
simplicity, we will assume that our field of scalars is always R. The basic idea is,
as we have already noted, to guess a possible solution and then use this initial guess
to compute a sequence of further approximations to the solution which, hopefully,
will converge (in some topology) with relative rapidity. Usually, the initial guess
is based on knowledge of the real-life problem which gave rise to the system of
equations, something that can often be done with good accuracy. In very large and
computationally-difficult situations (for example, weather prediction, chip design,
large-scale economic models, computational acoustics, or the modeling the chem-
istry of polymer chains), one can even use Monte Carlo methods, based on statistical
sampling and estimation techniques, to come up with an initial guess or even an ap-
proximate solution.

To illustrate this approach, let us consider the problem of solving a system of
linear equations of the form AX = w, where A = [aij ] ∈ Mn×n(R) is a nonsin-

gular matrix and w =
⎡

⎢
⎣

b1
...

bn

⎤

⎥
⎦ ∈ R

n. We know that this system has a unique so-

lution, namely A−1w, but inverting the matrix A may be computationally time-
consuming and prone to error, so we are looking for another method. Suppose that
we can write A = E − D, where E is some matrix which is easy to invert. Then if
v ∈ R

n satisfies Av = w, we know that Ev = Dv + w and so v = E−1(Dv + w).
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We now guess a value for v, call it v(0). Then, using this formula, we can define
new vectors v(1), v(2), . . . iteratively by setting v(h) = E−1(Dv(h−1) + w) for each
h > 0. This can be done relatively quickly since, by assumption, E−1 was relatively
easy to compute and, having computed it once for the first step of the iteration,
we don’t need to recompute it for subsequent steps. Our hope is that the sequence
v(0), v(1), v(2), . . . will in fact converge. Indeed, if this sequence does converge to
some vector v then it is easy to verify that v must be the unique solution of AX = w.

For example, let us assume that the diagonal entries aii of A are all nonzero,
and let us choose E to be the diagonal matrix having these entries on the diag-
onal. Then E−1 is also a diagonal matrix having the entries a−1

ii on the diago-

nal. If our initial guess is v(0) =
⎡

⎢
⎣

c
(0)
1
...

c
(0)
n

⎤

⎥
⎦, then it is easy to see that for h > 0 we

have v(h) =
⎡

⎢
⎣

c
(h)
1
...

c
(h)
n

⎤

⎥
⎦, where c

(h+1)
i = a−1

ii

[
bi − ∑

j �=i aij c
(h)
j

]
for all 1 ≤ i ≤ n.

This method is known as the Jacobi iteration method. Another possibility, again
under the assumption that the diagonal entries aii of A are all nonzero, is to choose
E to be the upper-triangular matrix [eij ] defined by setting eij = aij if i ≤ j .

Given an initial guess v(0) =
⎡

⎢
⎣

c
(0)
1
...

c
(0)
n

⎤

⎥
⎦, we see that v(h) =

⎡

⎢
⎣

c
(h)
1
...

c
(h)
n

⎤

⎥
⎦ for h > 0, where

c
(h+1)
i = a−1

ii

[
bi −∑i−1

j=1 aij c
(h+1)
j −∑n

j=i+1 aij c
(h)
j

]
for all 1 ≤ i ≤ n. This method

is known as the Gauss–Seidel iteration method, since it was discovered indepen-
dently by Gauss and by Jacobi’s student Philipp Ludwig von Seidel.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

Carl Gustav Jacob Jacobi was a nineteenth-century German math-
ematician, who worked mostly in analysis and applied mathematics.
His work in astronomy led him to solve large systems of linear equa-
tions, and his papers on determinants helped make them well-known.

In both of the above methods, and in other iteration methods (and there are many
of these), there is no guarantee that the sequence of approximations will always
converge or that, even if it does converge, it will do so rapidly. Understanding the
conditions for convergence and analyzing the speed of convergence requires so-
phisticated techniques in numerical analysis, and indeed there are many examples
of matrices for which one iteration scheme converges whereas another doesn’t, as
well as various necessary and sufficient conditions for a given iteration method to
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converge. For example, a sufficient condition for the Jacobi iteration method to con-
verge for a matrix A = [aij ] is that,

∑
j �=i |aij | < |aii | for all 1 ≤ i ≤ n. It is also

known that if the matrix A is tridiagonal, then the Jacobi method converges if and
only if the Gauss–Seidel method converges, but the latter always converges faster.

The convergence and accuracy of the Gauss–Seidel iteration method
was studied in detail by the Russian mathematician and engineer
Alexander Ivanovich Nekrasov at the beginning of the twentieth cen-
tury, long before the use of electronic computers.

Example Let A =
⎡

⎣
4 2 1

−1 1 2
0 1 3

⎤

⎦ ∈ M3×3(R) and let w =
⎡

⎣
7
2
4

⎤

⎦. The system of

linear equations Ax = w has a unique solution

⎡

⎣
1
1
1

⎤

⎦. If we use the Jacobi iteration

method beginning with the initial guess v(0) =
⎡

⎣
0
0
0

⎤

⎦, we get the sequence of vectors

(written to six-digit accuracy):
⎡

⎣
0
0
0

⎤

⎦ ,

⎡

⎣
1.75000
2.00000
1.33333

⎤

⎦ ,

⎡

⎣
0.41667
1.08333
0.66667

⎤

⎦ ,

⎡

⎣
1.04167
1.08333
0.97222

⎤

⎦ ,

⎡

⎣
0.96528
1.09722
0.97222

⎤

⎦ ,

⎡

⎣
0.95833
1.02083
0.96759

⎤

⎦ ,

⎡

⎣
0.99768
1.02314
1.01157

⎤

⎦ ,

⎡

⎣
0.99016
1.01157
0.99228

⎤

⎦ ,

⎡

⎣
0.99614
1.00559
0.99614

⎤

⎦ ,

⎡

⎣
0.99816
1.00386
0.99814

⎤

⎦ ,

⎡

⎣
0.99853
1.00190
0.99871

⎤

⎦ , . . .

and if we use the Gauss–Seidel iteration method with the same initial guess, we get
the sequence of vectors (written to six-digit accuracy):

⎡

⎣
0
0
0

⎤

⎦ ,

⎡

⎣
1.75000

−0.66667
1.33333

⎤

⎦ ,

⎡

⎣
1.04167
0.63889
1.55556

⎤

⎦ ,

⎡

⎣
1.06944
0.80093
1.12037

⎤

⎦ ,

⎡

⎣
1.01504
0.93672
1.06636

⎤

⎦ ,

⎡

⎣
1.00829
0.97287
1.02109

⎤

⎦ ,

⎡

⎣
1.00264
0.99020
1.00904

⎤

⎦ ,

⎡

⎣
1.00113
0.99611
1.00326

⎤

⎦ ,

⎡

⎣
1.00040
0.99853
1.00129

⎤

⎦ ,
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⎡

⎣
1.00016
0.99943
1.00049

⎤

⎦ ,

⎡

⎣
1.00006
0.99978
1.00019

⎤

⎦ , . . .

so we see that both methods converge, albeit quite differently.

Example Let A =
⎡

⎣
1 2 0
2 1 2
0 2 1

⎤

⎦ ∈ M3×3(R) and let w =
⎡

⎣
0

−1
3

⎤

⎦. The system of

linear equations Ax = w has a unique solution

⎡

⎣
−2

1
1

⎤

⎦. If we try to solve this system

using the Gauss–Seidel method with the initial guess

⎡

⎣
0
0
0

⎤

⎦, we get the sequence of

vectors

⎡

⎣
0

−1
5

⎤

⎦,

⎡

⎣
2

−15
33

⎤

⎦,

⎡

⎣
30

−127
257

⎤

⎦,

⎡

⎣
254

−1023
2049

⎤

⎦, . . . which clearly diverges.

A more sophisticated iteration technique is, at each stage, not to replace v(i)

by the computed v(i+1) but rather by a linear combination of the form rv(i+1) +
(1 − r)v(i), where r ∈ R is a relaxation parameter. Doing this with Jacobi iteration
gives us the Jacobi overrelaxation (JOR) method, and doing it with the Gauss–
Seidel method gives us the successive overrelaxation (SOR) method. The relaxation
parameter r is chosen on the basis of certain properties of the matrix A. By choos-
ing this parameter wisely, one can often achieve a considerable improvement in
convergence. For the JOR method, one normally chooses 0 < r < 1. In 1958, Ka-
han showed that the SOR method does not converge for r outside the open interval
(0,2).

© Neville Miles, Imperial College
London (Southwell); With kind
permission of the Archives of the
Mathematisches Forschungsinsti-
tut Oberwolfach (Kahan, Young).

Relaxation methods were
first developed by the
twentieth-century British
mathematician Richard V.

Southwell. Contemporary Canadian mathematician William Kahan has made major con-
tributions to numerical analysis and matrix computation. The optimal relaxation parameters
for the SOR method were calculated by the twentieth-century American mathematician
David M. Young, Jr.

As a rule of thumb, iteration methods work best for large sparse matrices, such
as those arising from the solution of systems of partial differential equations. As



208 10 Systems of Linear Equations

previously remarked, in iteration methods truncation and roundoff errors tend to
cancel each other out, rather than accumulate. While sparse matrices arise in many
applications—as circuit simulation, analyses of chemical processes, and magnetic-
field computation—there are also important situations, such as the matrices arising
in radial-basis function interpolation, a technique of great important in computer
graphics, which lead to very large matrices almost all entries of which are nonzero.

The Jacobi, Gauss–Seidel, JOR, and SOR methods are examples of iteration
methods of the form v(h+1) = α(v(h)), where α is an affine transformation of Rn

that does not depend on h. Such methods are known as stationary iteration meth-
ods. In a later chapter, we shall also mention some iteration methods which are not
stationary.

Example In the beginning of this chapter, we saw an example of how a nonlinear
system of equations can be turned into a linear system. This can often be done
in more general cases, producing large systems of linear equations of the form
AX = w, where the matrix A is usually sparse and for which iteration methods are
therefore appropriate. Consider, for example, the problem of finding real numbers
a, b, and c such that the following conditions hold:

a2 − b2 + c2 = 6,

ab + ac + 4bc = 29,

a2 + 2ab − 2bc = −7,

2a2 − 3ab + c2 = 5,

b2 − c2 + 5ab = 5,

2ac − 3b2 = −6.

To linearize this, we begin by assigning variables to all of the terms appearing in the
equations: X1 = a2, X2 = b2, X3 = c2, X4 = ab, X5 = ac, and X6 = bc. This then
yields the system of linear equations

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 1 0 0 0
0 0 0 1 1 4
1 0 0 2 0 −2
2 0 1 −3 0 0
0 1 −1 5 0 0
0 −3 0 0 2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

6
29
−7

5
5

−6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

which has a unique solution X1 = 1, X2 = 4, X3 = 9, X4 = 2, X5 = 3, and X6 = 6,
from which we deduce that a = 1, b = 2, and c = 3.

The iterative methods we have discussed so far are all linear, in the sense that
they involve only methods of linear algebra. There are, however, also families of
nonlinear iterative methods, involving the calculus of functions of several variables,
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of which one should be aware. These include gradient (steepest-descent) methods
and conjugate-direction methods. A discussion of these methods is beyond the scope
of this book.

Finally, another important warning. When we attempt to solve systems of linear
equations on a computer, it is important to remember that the system may be very
sensitive, and small changes in the entries of the coefficient matrix may lead to
large changes in the solution. Such systems are said to be ill-conditioned. Applied
mathematicians and others who design mathematical models often take considerable
pains to avoid creating ill-conditioned systems.

Example Let A =

⎡

⎢
⎢
⎣

7 7 8 10
5 5 6 7
6 9 10 8
5 10 9 7

⎤

⎥
⎥
⎦ ∈ M4×4(R). This matrix is nonsingular,

with inverse equal to

⎡

⎢
⎢
⎣

41 68 −17 10
−6 10 −3 2
10 −17 5 −3
25 −41 10 −6

⎤

⎥
⎥
⎦. Let w =

⎡

⎢
⎢
⎣

32
23
33
31

⎤

⎥
⎥
⎦. Then the sys-

tem of equations AX = w has a unique solution

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦. However, we also note that

A

⎡

⎢
⎢
⎣

−7.2
−0.1

2.9
6.0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

32.10
22.90
32.90
31.10

⎤

⎥
⎥
⎦.

Example Consider the system of linear equations

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −10 0 0 0 0
0 1 −10 0 0 0
0 0 1 −10 0 0
0 0 0 1 −10 0
0 0 0 0 1 −10
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−9
−9
−9
−9
−9

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

over R. This system has a unique solution, namely

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. However, if we alter the
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coefficient matrix by changing the (6,6)-entry to 1
1.001 (which is roughly equal to

0.9990009), we will obtain a completely different solution, namely

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

101
11
2

1.1
1.01
1.001

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since real-life computations are based, as a rule, on numbers gathered through
some sort of a measurement process, which is, as a matter of fact, not completely
accurate and certainly beyond our control, it is extremely important to know how
sensitive the system is to possible small variations in the values of the entries. The
numerical analysis of matrices deals extensively with this issue, and here we can
only present a simplistic measure of this sensitivity for nonsingular square matrices
over R. To any matrix A = [aij ] ∈ Mn×n(R), we will assign the number θ(A) de-
fined by θ(A) = max1≤j≤n{∑n

i=1 |aij |}. The number θ(A)θ(A−1) is the condition
number of the matrix A. Note that A has the same condition number as A−1 and as
cA, for any 0 �= c ∈R.

With kind permission of the American Mathematical Society.

Condition numbers were introduced by John von Neumann, one of
the great mathematical geniuses of the twentieth century, who con-
tributed to practically all branches of mathematics—pure and applied.
Von Neumann was a major force in the introduction of digital comput-
ers after World War II and the development of numerical methods for
them.

The condition number can be written in the form g × 10t . where 0.1 ≤ g < 1. If
t > 0 then, as a rule of thumb, one can expect that the solution of a system of linear
equations AX = w will have t significant digits fewer than that of the entries of A.
Thus, if A is the matrix in the previous example, then θ(A) = 11. Moreover,

A−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 10 100 1000 10000 100000
0 1 10 100 1000 10000
0 0 1 10 100 1000
0 0 0 1 10 100
0 0 0 0 1 10
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and so θ(A−1) = 111,111. Therefore θ(A)θ(A−1) is roughly 12 × 107, and so we
cannot, as we have seen, expect any accuracy in our solution, if we assume our data
is only good to 6-digit accuracy.

Similarly, Nievergelt’s matrix

[
888445 887112
887112 885871

]

, which we have already en-

countered, has condition number roughly equal to 0.39 × 105.
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Of course, computing the condition number of a given matrix may also be a prob-
lem, since it involves calculating A−1. Fortunately, there are many fairly-efficient
condition number estimators, algorithms that give a good estimate of the condition
number of a matrix with relatively low computational overhead.

Various techniques, going under the collective name of preconditioning tech-
niques, are also often used to increase the speed of convergence and accuracy of
various iterative methods. A discussion of these can be found in any advanced book
on numerical matrix computation.

Exercises

Exercise 579

Are the matrices

⎡

⎣
−3 4 1
−2 −4 −6

5 2 7

⎤

⎦ and

⎡

⎣
1 0 1
0 1 1
0 0 0

⎤

⎦ in M3×3(R) row equiva-

lent?

Exercise 580

Bring the matrix

⎡

⎣
1 2 3 4
1 2 4 3
2 3 1 4

⎤

⎦ ∈ M3×4(R) to reduced row echelon form.

Exercise 581

Let F = GF(5). Bring the matrix

⎡

⎣
1 2 1 0
2 3 1 1
1 2 4 0

⎤

⎦ ∈ M3×4(F ) to reduced row

echelon form.

Exercise 582
Solve the system of linear equations

(3 − i)X1 + (2 − i)X2 + (4 + 2i)X3 = 2 + 6i,

(4 + 3i)X1 − (5 + i)X2 + (1 + i)X3 = 2 + 2i,

(2 − 3i)X1 + (1 − i)X2 + (2 + 4i)X3 = 5i

over C.

Exercise 583
Solve the system of linear equations

X1 + 2X2 + 4X3 = 31,

5X1 + X2 + 2X3 = 29,

3X1 − X2 + X3 = 10

over R.
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Exercise 584
Solve the system of linear equations

3X1 + 4X2 + 10X3 = 1,

2X1 + 2X2 + 2X3 = 0,

X1 + X2 + 5X3 = 1

over GF(11).

Exercise 585
Find all solutions to the system

⎡

⎢
⎢
⎣

1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

X1
X2
X3
X4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

5
1
1

−5

⎤

⎥
⎥
⎦

over R.

Exercise 586
Find all solutions to the system

⎡

⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
2 1 2 3 4
2 2 1 2 3
2 2 2 1 2
2 2 2 2 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

X1
X2
X3
X4
X5

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

13
10
11

6
3

⎤

⎥
⎥
⎥
⎥
⎦

over R.

Exercise 587
Find all solutions to the system

⎡

⎣
1 1 1 1
1 1 1 0
0 0 1 1

⎤

⎦

⎡

⎢
⎢
⎣

X1
X2
X3
X4

⎤

⎥
⎥
⎦ =

⎡

⎣
1
0
1

⎤

⎦

over GF(2).

Exercise 588
Find all solutions to the system

⎡

⎢
⎢
⎣

1 3 2
2 −1 3
3 −5 4
1 17 4

⎤

⎥
⎥
⎦

⎡

⎣
X1
X2
X3

⎤

⎦ =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦

over R.



Exercises 213

Exercise 589
Find a real number a so that the system of linear equations

2X1 − X2 + X3 + X4 = 1,

X1 + 2X2 − X3 + 4X4 = 2,

X1 + 7X2 − 4X3 + 11X4 = a

has a solution over R.

Exercise 590
Find all real numbers c such that the system of equations

X1 + X2 − X3 = 1,

X1 + cX2 + 3X3 = 2,

2X1 + 3X2 + cX3 = 3

has a unique solution over R; find those real numbers c for which it has infinitely-
many solutions over R; find those real numbers c for which it has no solution
over R.

Exercise 591
Solve the system of linear equations

X1 + 2X2 + X3 = 1,

X1 + X2 + X3 = 0

over GF(3).

Exercise 592
Solve the system of linear equations

X1 + (√
2
)
X2 + (√

2
)
X3 = 3,

X1 + (
1 + √

2
)
X2 + X3 = 3 + √

2,

X1 + X2 − (√
2
)
X3 = 4 + √

2

over Q(
√

2).

Exercise 593
Solve the system of linear equations

4X1 − 3X2 = 3,

2X1 − X2 + 2X3 = 1,
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3X1 + 2X3 = 4

over GF(5).

Exercise 594
Solve the system of linear equations

4X1 + 6X2 + 2X3 = 8,

X1 − aX2 − 2X3 = −5,

7X1 + 3X2 + (a − 5)X3 = 7

over R, for various values of the real number a.

Exercise 595
For a given real number a, solve the system

aX1 + X2 + X3 = 1,

X1 + aX2 + X3 = 1,

X1 + X2 + aX3 = 1

over R.

Exercise 596
For a given a ∈ R, does the system of linear equations

aX1 + X2 + 2X3 = 0,

X1 − X2 + aX3 = 1,

X1 + X2 + X3 = 1

have a unique solution in R?

Exercise 597
Let a be an element of a field F . Find the set of all solutions to the system of
linear equations

X1 + X2 + aX3 = a,

X1 + aX2 − X3 = 1,

X1 + X2 − X3 = 1

over F .
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Exercise 598
For which a ∈ Q does the system of linear equations

X1 + 3X2 − 2X3 = 2,

3X1 + 9X2 − 2X3 = 2,

2X1 + 6X2 + X3 = a

have a unique solution in Q?

Exercise 599
Find real numbers a, b, c, and d such that the points (1,2), (−1,6), (−2,38),
and (2,6) all lie on the curve y = ax4 + bx3 + cx2 + d in the Euclidean plane.

Exercise 600
Find a polynomial p(X) = a2X

2 + a1X + a0 ∈ R[X] satisfying p(1) = −1,
p(−1) = 9, and p(2) = −3.

Exercise 601
Find a polynomial p(X) = a3X

3 +a2X
2 +a1X+a0 ∈R[X] satisfying p(0) = 2,

p(2) = 6, p(4) = 3, and p(6) = −5.

Exercise 602
Let F = GF(13). Find a homogeneous system of linear equations over F satis-
fying the condition that its solution space equals

F

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎣

2
1
9
7
4

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎣

8
3

10
5

12

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎣

7
6
2

11
7

⎤

⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Exercise 603

Let F be a field. Let b ∈ F and let A =
[

a11 a12 a13
a21 a22 a23

]

∈ M2×3(F ) be a

matrix satisfying the condition that the sum of the entries in each row and each
column of A equals b. Show that b = 0.

Exercise 604
Let p(X) = X5 − 7X3 + 12 ∈ Q[X]. Find a polynomial q(X) ∈ Q[X] of degree
at most 3 satisfying p(a) = q(a) for all a ∈ {0,1,2,3}.



216 10 Systems of Linear Equations

Exercise 605
Find the rank of the matrix

⎡

⎢
⎢
⎢
⎢
⎣

1 −1 2 3 4
2 1 −1 2 0

−1 2 1 1 3
1 5 −8 −5 −12
3 −7 8 9 13

⎤

⎥
⎥
⎥
⎥
⎦

∈M5×5(R).

Exercise 606
Find the rank of the matrix

⎡

⎢
⎢
⎢
⎢
⎣

1 0 1 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 −1 0
0 1 0 1 1

⎤

⎥
⎥
⎥
⎥
⎦

∈ M5×5(R).

Exercise 607

Let F = GF(2). Find the rank of the matrix

⎡

⎣
1 1 0
0 1 1
1 0 1

⎤

⎦ ∈M3×3(F ).

Exercise 608
Let F = GF(5). Find the rank of the matrix

⎡

⎢
⎢
⎣

1 2 3 4 a

4 3 a 1 2
a 1 2 3 4
2 3a 2 4a 1

⎤

⎥
⎥
⎦ ∈M4×5(F )

for various values of a ∈ F .

Exercise 609
Do there exist a lower-triangular matrix L and an upper-triangular matrix U in

M3×3(Q) satisfying the condition LU =
⎡

⎣
1 −1 2
2 −1 3
0 1 8

⎤

⎦?

Exercise 610
Let F = GF(5). For which values of a ∈ F do there exist a lower-triangular
matrix L and an upper-triangular matrix U in M3×3(F ) satisfying the condition

that LU =
⎡

⎣
1 1 a

4 1 0
a 1 4

⎤

⎦?
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Exercise 611

Find the LU-decomposition of

⎡

⎢
⎢
⎣

4 2 3 4
2 0 2 2
3 4 −4 5

−1 0 2 3

⎤

⎥
⎥
⎦ ∈M4×4(R).

Exercise 612
Let A ∈ Mn×n(R) be a tridiagonal matrix all diagonal entries of which are
nonzero. Can we write A = LU , where L is a lower-triangular matrix and U

is an upper-triangular matrix, both of which are also tridiagonal?

Exercise 613
Let F be a field and let a, b, c ∈ F . Find the rank of the matrix

⎡

⎣
1 1 1

b + c c + a a + b

bc ca ab

⎤

⎦ ∈M3×3(F ).

Exercise 614
Let F be a field and let a, b, c, d ∈ F . Find the rank of the matrix

⎡

⎣
a c c

d a + b c

d d b

⎤

⎦ ∈ M3×3(F ).

Exercise 615

Find the rank of the matrix

⎡

⎢
⎢
⎣

3 1 1 4
a 4 10 1
1 7 17 3
2 2 4 3

⎤

⎥
⎥
⎦ ∈ M4×4(R) for various values of

the real number a.

Exercise 616

Find the rank of

⎡

⎣
a −1 2 1

−1 a 5 2
10 −6 1 1

⎤

⎦ ∈ M3×4(Q) for various values of the ra-

tional number a.

Exercise 617
Find the set of all real numbers a such that the rank of the matrix

⎡

⎣
a 1 1

−1 −1 −1
1 1 a

⎤

⎦ ∈M3×3(R)

equals 2.
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Exercise 618
Let n be a positive integer and, for each A ∈ Mn×n(R), let r(A) be the rank of A.
Define a relation � on Mn×n(R) by setting B � A if and only if r(A − B) =
r(A) − r(B). Is this a partial order relation?

Exercise 619
Let F be a subfield of a field K . Let k and n be positive integers and let
A ∈ Mk×n(F ) be a matrix having rank r . If we now think of A as an element of
Mk×n(K), is its rank necessarily still equal to r?

Exercise 620

Find k ∈ Z such that the rank of

⎡

⎢
⎢
⎣

1 7 17 3
4 4 8 6
3 1 1 4

2k 8 20 2

⎤

⎥
⎥
⎦ ∈M4×4(Q) is minimal.

Exercise 621
Let F be a field and let k and n be positive integers. For a matrix A ∈Mk×n(F )

having rank h, show that there exist matrices B ∈ Mk×h(F ) and C ∈Mh×n(F )

such that A = BC.

Exercise 622
Let k and n be positive integers and let F be a field. For matrices A,B ∈
Mk×n(F ), show that the rank of A + B is no more than the sum of the ranks
of A and of B .

Exercise 623
Let k and n be positive integers and let F be a field. Let A,B ∈ Mk×n(F ) be
matrices satisfying the condition that he row space of A and the row space of B

are disjoint. Does it follow from this that the rank of A+B equals the sum of the
rank of A and the rank of B?

Exercise 624
Find bases for the row space and column space of the matrix

⎡

⎣
1 2 −3 −7 −2

−1 −2 1 1 0
1 2 0 2 1

⎤

⎦ ∈M3×5(R).

Exercise 625
Find matrices P,Q ∈M3×3(R) satisfying

P

⎡

⎣
1 2 3
2 −2 1
3 0 4

⎤

⎦Q =
⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ .
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Exercise 626

Write the rows of the matrix A =
⎡

⎣
1 2 0

i − 1 2 i

0 2 −i

⎤

⎦ ∈ M3×3(C) as linear com-

binations of the rows of AT .

Exercise 627

Calculate

⎡

⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
0 1 2 3 4
0 0 1 2 3
0 0 0 1 2
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

−1

∈ M5×5(R).

Exercise 628
Let k and n be positive integers and let F be a field. Let A = [

B C
D E

]
be a matrix

in Mk×n(F ), where B is a nonsingular matrix in Mr×r (F ) for some 1 ≤ r <

min{k,n}. Show that the rank of A equals r if and only of DB−1C = E.

Exercise 629
Let F be a field and let a, b, c be distinct elements of F . Furthermore, let d, e, f

be distinct elements of F . What is the rank of the matrix

⎡

⎣
1 a d ad

1 b e be

1 c f cf

⎤

⎦ ∈M3×4(F )?

Exercise 630
Let k and n be positive integers and let F be a field. Let A ∈ Mk×n(F ) and let
w ∈ Fk be such that the system of linear equations AX = w has a nonempty set
of solutions and that all of these solutions satisfy the condition that the hth entry
in them is some fixed scalar c. What can we deduce about the columns of the
matrix A?

Exercise 631
Let n be a positive integer and let F be a field. Let O �= A ∈ Mn×n(F ). Show
that there exists a nonnegative integer k such that the rank of Ah equals the rank
of Ak for all h > k.

Exercise 632

Let A =
⎡

⎣
1 −1 1

−1 −1 1
1 1 1

⎤

⎦ ∈M3×3(R). Find the condition number of A.
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Exercise 633
Let a be a positive real number. It is necessarily true that the condition number

of A =
⎡

⎣
a 1 a

0 0 −1
a −1 a

⎤

⎦ ∈M3×3(R) is greater than 2a + 1?

Exercise 634
Find a positive real number a for which the condition number of

A =
⎡

⎣
1 1 0
0 a a

1 1 1

⎤

⎦ ∈ M3×3(R)

is maximal.

Exercise 635
Does there exist a system AX = w of linear equations in n unknowns (for some
positive integer n) over R having precisely 35 distinct solutions?

Exercise 636
Can one find an integer h such that the condition number of the matrix

⎡

⎣
1 −1000 1
1 −100 0
1 h 1

⎤

⎦

is greater than 106?
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Let F be a field and let n be a positive integer. We would like to find a function
from Mn×n(F ) to F which will serve as an oracle of singularity, namely a function
that will assign a value of 0 to singular matrices and a value other than 0 to nonsin-
gular matrices. Indeed, let F be a field and let n be a positive integer. A function
δn : Mn×n(F ) → F is a determinant function if and only if it satisfies the following
conditions:
(1) δn(I ) = 1;
(2) δn(A) = 0 if A is a matrix having a row all of the entries of which are 0;
(3) δn(EijA) = −δn(A) for all 1 ≤ i �= j ≤ n;
(4) δn(Eij ;cA) = δn(A) for all 1 ≤ i �= j ≤ n and all c ∈ F ;
(5) δn(Ei;cA) = cδn(A) for all 1 ≤ i ≤ n and all 0 �= c ∈ F .

In particular, we note that for each 1 ≤ i �= j ≤ n and all c ∈ F we have δn(Eij ) =
−1 = δn(E

T
ij ), δn(Eij ;c) = 1 = δn(E

T
ij ;c), and δn(Ei;c) = c = δn(E

T
i;c).

We have yet to show that such functions exist for all values of n, but certainly
they exist for a few small ones.

Example For n = 1, the function δ1 : [a] �→ a is a determinant function. For n = 2,

the function δ2 :
[
a11 a12
a21 a22

]
�→ a11a22 − a12a21 is a determinant function.

As an immediate consequence of parts (1) and (5) of the definition, we see that
if A = [aij ] ∈ Mn×n(F ) is a diagonal matrix and if δn : Mn×n(F ) → F is a deter-
minant function, then δn(A) = ∏n

i=1 aiiδn(I ) = ∏n
i=1 aii .

We now want to show that for each positive integer n there exists a determi-
nant function δn : Mn×n(F ) → F , and indeed that this function is unique. We will
first establish the uniqueness of these functions and check some of their properties,
holding off on existence until later in this chapter.

Proposition 11.1 Let F be a field. For each positive integer n there exists at
most one determinant function δn : Mn×n(F ) → F .

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_11, © Springer Science+Business Media B.V. 2012
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Proof Let us assume that δn : Mn×n(F ) → F and ηn : Mn×n(F ) → F are deter-
minant functions and let β = ηn − δn. Then the function β satisfies the following
conditions:
(1) β(I) = 0;
(2) β(A) = 0 if A is a matrix having a row all of the entries of which are 0;
(3) β(EijA) = −β(A) for all 1 ≤ i �= j ≤ n;
(4) β(Eij ;cA) = β(A) for all 1 ≤ i �= j ≤ n and all c ∈ F ;
(5) β(Ei;cA) = cβ(A) for all 1 ≤ i ≤ n and all 0 �= c ∈ F .
In particular, if A ∈Mn×n(F ) and E is an elementary matrix, then β(A) and β(EA)

are either both equal to 0 or both of them are different from 0. But for any matrix
A we know that there exist elementary matrices E1, . . . ,Et in Mn×n(F ) such that
either E1 · · ·EtA = I or E1 · · ·EtA is a matrix having at least one row all of the
entries of which equal 0. Therefore, β(A) = 0 for every A ∈ Mn×n(F ). Thus β is
the zero-function, and so δn = ηn. �

Proposition 11.2 Let F be a field and let δn : Mn×n(F ) → F be a determi-
nant function. Then δn(A) �= 0 if and only if A is nonsingular.

Proof If A is nonsingular, there exist elementary matrices E1, . . . ,Et in Mn×n(F )

such that E1 · · ·EtA = I , and so, by the definition of the determinant function,
δn(A) = cδn(I ) = c, where 0 �= c ∈ F , and so δn(A) �= 0. Now assume that
δn(A) �= 0 and that A is singular. Then there exist elementary matrices E1, . . . ,Et

in Mn×n(F ) such that E1 · · ·EtA is a matrix having at least one row all of the
entries of which equal 0. But then, for some 0 �= c ∈ F , we have 0 �= δn(A) =
cδn(E1 · · ·EtA) = c0 = 0, which is a contradiction, proving that A must be nonsin-
gular. �

Thus we see that the determinant function, to the extent it exists, is the oracle we
are seeking.

Example The subset

{[
a + bi

c + di

]
,

[−c + di

a − bi

]}
of C2 is linearly dependent if and

only if A =
[
a + bi −c + di

c + di a − bi

]
∈ M2×2(C) is singular. We have already noted

that δ2 :
[
a11 a12
a21 a22

]
�→ a11a22 − a12a21 is a determinant function, and so this hap-

pens if and only if δ2(A) = a2 + b2 + c2 + d2 = 0, i.e., if and only if a = b = c =
d = 0.

Proposition 11.3 Let F be a field and let δn : Mn×n(F ) → F be a determi-
nant function. If A is a matrix in Mn×n(F ) having two identical rows then
δn(A) = 0.
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Proof Suppose that rows h and k of A are identical. First, assume that the character-
istic of F is other than 2. Then A = Ehk(A) and so δn(A) = δn(EhkA) = −δn(A),
which implies that δn(A) = 0. If the characteristic of F equals 2 then δn(A) =
δn(Ehk;1A), and Ehk;1A is a matrix having a row in which the entries of one row
are all 0. Therefore, by Proposition 11.2, δn(A) = 0. �

Proposition 11.4 Let F be a field and let δn : Mn×n(F ) → F be a determi-
nant function. If A,B ∈ Mn×n(F ) then
(1) δn(AB) = δn(A)δn(B);
(2) δn(AB) = δn(BA).

Proof (1) By Proposition 9.1, we know that AB is nonsingular if and only
if both A and B are nonsingular. Therefore, δn(A) = 0 or δn(B) = 0 if and
only if δn(AB) = 0. If δn(A) �= 0 �= δn(B) then there exist elementary matrices
E1, . . . ,Et ,G1, . . . ,Gs in Mn×n(F ) such that B = E1 · · ·EtI and A = G1 · · ·GsI

and so AB = G1 · · ·GsE1 · · ·EtI , which implies that δn(AB) = δn(A)δn(B) from
the definition of a determinant function.

(2) This is an immediate consequence of (1), since δn(A)δn(B) = δn(B)δn(A)

in F . �

Proposition 11.5 Let F be a field and let δn : Mn×n(F ) → F be a determi-
nant function. If A ∈ Mn×n(F ) is nonsingular then δn(A

−1) = δn(A)−1.

Proof By Proposition 11.4, we see that δn(A
−1)δn(A) = δn(A

−1A) = δn(I ) = 1
and from this the result follows immediately. �

Proposition 11.6 Let F be a field and let δn : Mn×n(F ) → F be a determi-
nant function. If A ∈ Mn×n(F ) then:
(1) δn(AEij ) = −δn(A) for all 1 ≤ i �= j ≤ n;
(2) δn(AEij ;c) = δn(A) for all 1 ≤ i �= j ≤ n and all c ∈ F ;
(3) δn(AEi;c) = cδn(A) for all 1 ≤ i ≤ n and all 0 �= c ∈ F .

Proof This is a direct consequence of the definition of the determinant function and
Proposition 11.4(2). �

Proposition 11.7 Let F be a field and let δn : Mn×n(F ) → F be a determi-
nant function. If A ∈ Mn×n(F ) then δn(A) = δn(A

T ).
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Proof If A is singular then so is AT , and so δn(A) = 0 = δn(A
T ). If A is non-

singular then there exist elementary matrices E1, . . . ,Et in Mn×n(F ) such that
E1 · · ·EtA = I = IT = AT ET

t · · ·ET
1 . By our remarks in Chap. 9 concerning the

transposes of elementary matrices, and by the remarks at the beginning of this
chapter, we see that δn(A) = δn(E1 · · ·EtA) = δn(A

T ET
t · · ·ET

1 ) = δn(A
T ) and so

δn(A) = δn(A
T ). �

Of course, at this stage we do not know that determinant functions δn :
Mn×n(F ) → F even exist for the case n > 2 and so we now have to construct
them. Let us denote the set of all permutations of the set {1, . . . , n} by Sn. We note
that any π ∈ Sn is a bijective function from {1, . . . , n} to itself and so there exists
a function π−1 ∈ Sn satisfying the condition that ππ−1 and π−1π are equal to the
identity function i �→ i. We also note that if π,π ′ ∈ Sn then ππ ′ ∈ Sn.

Proposition 11.8 If n is a positive integer then the number of elements of Sn

equals n!.

Proof Suppose we wanted to construct an arbitrary element π of Sn. There are n

possibilities for selecting π(1). Once we have done that, there are n − 1 ways of
selecting π(2), then n − 2 ways of selecting π(3), etc. Thus, the total number of
ways in which we can define π is n(n − 1) · · ·1 = n!. �

Now let π ∈ Sn and let 1 ≤ i < j ≤ n. The pair (i, j) is called an inversion with
respect to π if and only if π(i) > π(j). That is to say, (i, j) is an inversion with
respect to π if and only if

i − j

π(i) − π(j)
< 0.

We will denote the number of distinct inversions with respect to π by h(π), and
define the signum of π to be sgn(π) = (−1)h(π). Thus

sgn(π) =
{

1 if there are an even number of inversions with respect to π,

−1 if there are an odd number of inversions with respect to π.

It is easy to check that sgn(π) = sgn(π−1) for all π ∈ Sn. If sgn(π) = 1, the permu-
tation π is even; if sgn(π) = −1, the permutation π is odd.

Example Let π ∈ S4 be defined by 1 �→ 3, 2 �→ 4, 3 �→ 2, and 4 �→ 1. Then if we
consider all possible pairs (i, j) with 1 ≤ i < j ≤ 4 we get
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(i, j) (π(i),π(j)) inversion?

(1,2) (3,4) no

(1,3) (3,2) yes

(1,4) (3,1) yes

(2,3) (4,2) yes

(2,4) (4,1) yes

(3,4) (2,1) yes

and so we see that sgn(π) = −1.

Now let n be a positive integer and let (K,•) be an associative and commutative
unital F -algebra. Let A = [aij ] ∈ Mn×n(K). We then define the function A �→ |A|
from Mn×n(K) to K by setting

|A| =
∑
π∈Sn

sgn(π)aπ(1),1 • aπ(2),2 • · · · • aπ(n),n.

Note that, by the commutativity of K , if τ = π−1 then

aπ(1),1 • aπ(2),2 • · · · • aπ(n),n = a1,τ (1) • a2,τ (2) • · · · • an,τ(n)

and so |A| = ∑
τ∈Sn

sgn(τ )a1,τ (1) • a2,τ (2) • · · · • an,τ(n). Thus we see immediately

that |A| = |AT | for every A ∈ Mn×n(K). If K = C then, since c + d = c + d and
cd = cd , we also see that for A = [aij ] we have |A| = |A|. Defining this function
for an arbitrary commutative and associative unital F -algebra is important for us, as
we will need it in the case that K = F [X], where F is a field.

Example If A = [aij ] ∈ M3×3(K), for an associative and commutative unital
F -algebra (K,•), then

|A| = a11 • a22 • a33 + a12 • a23 • a31 + a13 • a21 • a32

− a11 • a23 • a32 − a13 • a22 • a31 − a12 • a21 • a33.

Proposition 11.9 Let F be a field, let (K,•) be an associative and commu-
tative unital F -algebra, and let A = [aij ] ∈ Mn×n(K). Pick 1 ≤ h ≤ n and
write ahj = bhj + chj in K for all 1 ≤ j ≤ n. For all 1 ≤ i ≤ n satisfying
i �= h, set bij = cij = aij . Set B = [bij ] and C = [cij ], matrices in Mn×n(K).
Then |A| = |B| + |C|.
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Proof From the definition of |A|, we have

|A| =
∑
π∈Sn

sgn(π)a1,π(1) • · · · • ah,π(h) • · · · • an,π(n)

=
∑
π∈Sn

sgn(π)a1,π(1) • · · · • [bh,π(h) + ch,π(m)] • · · · • an,π(n)

=
∑
π∈Sn

sgn(π)a1,π(1) • · · · • bh,π(h) • · · · • an,π(n)

+
∑
π∈Sn

sgn(π)a1,π(1) • · · · • ch,π(h) • · · · • an,π(n)

= |B| + |C|,
as required. �

We are now ready to prove that determinant functions, in fact, always exist.

Proposition 11.10 For an integer n > 1 and a field F , the function
Mn×n(F ) → F defined by A �→ |A| is a determinant function.

Proof In order to simplify our notation, we will make the following temporary
convention: if π ∈ Sn and if A = [aij ] ∈ Mn×n(F ), we will write u(π,A) =
sgn(π)a1,π(1) · · ·an,π(n). Now let us check the five conditions of a determinant func-
tion.

(1) Clearly, u(π, I ) equals 1 if π is the identity permutation and 0 otherwise, and
so |I | = 1.

(2) Let A be a matrix one of the rows of which has all of its entries equal to 0.
Since a factor from each row appears in every term u(π,A), we conclude that all of
these are equal to 0 and hence |A| = 0.

(3) Let A be a matrix and let B = EijA. Let ρ ∈ Sn be the permutation which
interchanges i and j and leaves all of the other numbers between 1 and n fixed.
Then sgn(πρ) �= sgn(π) for all π ∈ Sn and so for each π ∈ Sn we have −u(π,A) =
u(πρ,A) = u(π,B). This implies that |B| = −|A|.

(4) Let A be a matrix and let B = Eij ;cA. Then B = [bht ], where bht = aht when
h �= j and 1 ≤ t ≤ n, and where bjt = ajt + cait for all 1 ≤ t ≤ n. By Proposi-
tion 11.9, we have |B| = |A| + |C|, where C is the matrix all of the rows of which
except the j th are identical with those of A, and where in the j th row we have
cjt = cait for all 1 ≤ t ≤ n. Then |C| = c|D| where D is a matrix in which two
rows, the ith and the j th, are equal. If the characteristic of F is other than 2, then
D = EijD and so, by (3), we get |D| = −|D|, and so we get |C| = c|D| = 0 and
we have |A| = |B|, which is what we want. Therefore, let us assume that the char-
acteristic of F equals 2. Let ρ ∈ Sn be the permutation which interchanges i and
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j and leaves all other numbers between 1 and n fixed. Let H be the set of all
even permutations in Sn and let K be the set of all odd permutations. The func-
tion from H to K defined by π �→ ρπ is bijective since ρπ1 = ρπ2 implies that
π1 = ρ−1ρπ1 = ρ−1ρπ2 = π2. Moreover, since the characteristic of F is 2 and
since u(π,D) = u(ρπ,D) for all π ∈ H , we see that u(π,D) + u(ρπ,D) = 0 for
all π ∈ H . Therefore, |D| = ∑

π∈H [u(π,D) + u(ρπ,D)] = 0 and this implies,
again, that |C| = 0 and so |A| = |B|.

(5) It is clear from the definition of |A| and if B = Ei;cA then |B| = c|A|. �

Thus, in summary, we see that if F is a field and if n is a positive integer, then
there exists a unique determinant function Mn×n(F ) → F , namely A �→ |A|. We
call the scalar |A| the determinant of the matrix A.

With kind permission of the Archives of the Mathematisches
Forschungsinstitut Oberwolfach (Scherk).

Determinants were first used in the work of
the seventeenth-century German mathematician,
philosopher, and diplomat Gottfried von Leibnitz,
who developed calculus along with Sir Isaac New-
ton. The common properties of determinants were
first studied by the nineteenth-century German

mathematician Heinrich Scherk, and the first systematic analysis of the theory of determi-
nants was done by the nineteenth-century French mathematician Augustin-Louis Cauchy,
relying on the work of many mathematicians who preceded him. His work was continued
by Cayley and Sylvester. The term “determinant” was first used by Gauss in 1801, and was
popularized by Jacobi.

Example Let n > 1 be an integer. If c1, . . . , cn are distinct elements of a field F

and if A = [aij ] ∈ Mn×n(F ) is the Vandermonde matrix defined by aij = c
j−1
i for

all 1 ≤ i, j ≤ n, then it is easy to verify that |A| = ∏
i<j (cj − ci) �= 0. This result

can, in fact, be generalized. Suppose that, for 1 ≤ h ≤ n, we have a polynomial
ph(X) = ∑h

i=0 bhiX
i ∈ F [X] with bhh �= 0. Let c1, . . . , cn be distinct elements of a

field F and let A = [aij ] ∈Mn×n(F ) be defined by aij = pj (ci) for all 1 ≤ i, j ≤ n.
Then |A| = b11 · · ·bnn

∏
i<j (cj − ci) �= 0.

Example As a consequence of Proposition 11.7, we note that if n > 0 is odd and if
A ∈ Mn×n(F ) is a skew-symmetric matrix then |A| = |AT | = |−A| = −|A| and so
|A| = 0. Therefore, by Proposition 11.2, A is singular. If n is even, then one can use
the definition of |A| to show that |A| = b2 for some b which is a sum of products of
the aij . Thus, for example,

∣∣∣∣∣∣∣∣

0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

∣∣∣∣∣∣∣∣
= [a12a34 − a13a24 + a14a23]2 .
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This number b is called the Pfaffian of the matrix A. Pfaffians arise naturally in
combinatorics, differential geometry, and other areas of mathematics.

Pfaffians were first defined by Cayley, and named in honor of Johann
Pfaff, an eighteenth-century German mathematician whose most fa-
mous doctoral student was Gauss.

We now give two examples of why it was worthwhile to define |A| for matrices
A with entries in an associative and commutative unital F -algebra, and not just a
field.

Example Let V be a vector space of finite dimension n over a field F and let
B = {v1, . . . , vk} be a linearly-independent subset of V . Let y1, . . . , yk be a list
of vectors in V . We claim that there are at most finitely-many elements a of F sat-
isfying the condition that the list v1 + ay1, . . . , vk + ayk is linearly dependent. To
establish this claim, we will consider determinants of matrices over F [X]. Indeed,
extend B to a basis D = {v1, . . . , vn} of V . Then, for each 1 ≤ i ≤ k, we can write
yi = ∑n

j=1 cijwj . For each 1 ≤ i, j ≤ k, define the polynomial pij (X) ∈ F [X] by
setting

pij (X) =
{

ciiX + 1 if i = j,

cijX otherwise,

and consider the matrix B = [pij (X)] ∈ Mk×k(F [X]). Then |B| is a polynomial
q(X) in F [X], which is not the 0-polynomial since q(0) = 1. Moreover, for any
a ∈ F , we see that q(a) = 0 whenever the list v1 + ay1, . . . , vk + ayk is linearly
dependent. Since a polynomial can have only finitely-many distinct roots, this can
happen only for finitely-many values of a.

Example Let n > 1 be an integer and let U be an open interval of real numbers. Let
K be the set of all functions in R

U which are differentiable at least n − 1 times.
Then K is an associative and commutative unital R-algebra which is not entire, let
alone a field. We will denote the derivative of a function f ∈ K by Df and, if h > 1,
we will denote the hth derivative of f by Dhf . Given f1, . . . , fn ∈ K , the function

W(f1, . . . , fn) : t �→

∣∣∣∣∣∣∣∣∣

f1(t) f2(t) . . . fn(t)

(Df1)(t) (Df2)(t) . . . (Dfn)(t)
...

...
. . .

...

(Dn−1f1)(t) (Dn−1f2)(t) . . . (Dn−1fn)(t)

∣∣∣∣∣∣∣∣∣
is called the Wronskian of f1, . . . , fn. One can show that if we have W(f1, . . . ,

fn)(t) �= 0 for some t ∈ U then the subset {f1, . . . , fn} of K is linearly independent
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over R. The converse is false. To see this, let U be an open interval containing the
origin, let f1 : t �→ t3, and let f2 : t �→ |t3|. Then {f1, f2} is linearly independent
over R, but W(f1, f2)(t) = 0 for any t ∈ U .

The insight of Josef Wronski, a nineteenth-century Polish mathemati-
cian living in France, was obscured by his decidedly eccentric philo-
sophical ideas and style of writing, and was recognized only after his
death. The notion of a determinant of functions was first used by Ja-
cobi.

Example Let n be a positive integer equal to 2 or divisible by 4. A matrix
A = [aij ] ∈ Mn×n(C) with |aij | ≤ 1 for all 1 ≤ i, j ≤ n having maximal possi-
ble determinant (in absolute value) is known as an Hadamard matrix (though, in
fact, such matrices were studied by Sylvester, a generation before Hadamard con-
sidered them). For such a matrix, we have |A| = nn/2, and the entries of A are all
±1. Indeed, a matrix A is an Hadamard matrix precisely when all of its entries

are ±1 and AAT = nI . Thus,

⎡
⎢⎢⎣

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦

are Hadamard matrices. Moreover, for each t ≥ 1, there exists an Hadamard ma-

trix Ht of size 2t × 2t , defined recursively by setting H1 =
[

1 1
1 −1

]
and Ht =[

Ht−1 Ht−1
Ht−1 −Ht−1

]
for each t > 1.

We also note immediately that if A is an Hadamard matrix so are AT and −A.
Hadamard matrices have important applications in algebraic coding theory, espe-
cially in defining the error-correcting Reed–Muller codes. Needless to say, the deter-
minants of Hadamard matrices get very big very quickly. If A is a 16×16 Hadamard
matrix, then |A| = 4,294,967,296 and If B is a 32 × 32 Hadamard matrix, then
|B| = 1,208,925,819,614,629,174,706,176.

We still are faced with the problem of actually computing the determinant of an
n × n matrix A, especially when n is large. If we work using the definition, we
see that we must add n! summands, each of which requires n − 1 multiplications.
The total number of arithmetic operations need is therefore (n − 1)n! + (n! − 1) =
n(n!) − 1, which is a huge number even if n is relatively small. For example, if
we are using a computer capable of performing a billion arithmetic operations per
second, it would take us 12,200,000,000 years of nonstop computation to compute
the determinant of a 25 × 25 matrix, based on the definition. Thus we must find
better methods of computing determinants, a task which became a high priority for
many nineteenth-century mathematicians.
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Example Let A = [aij ] ∈ Mn×n(F ) be a matrix in which a11 �= 0. Then Chiò,
Dodgson, and others showed that |A| = a2−n

11 |B|, where B ∈ M(n−1)×(n−1)(F ) is
the matrix obtained from A by erasing the first row and first column and replacing

each other aij by

∣∣∣∣a11 a1j

ai1 aij

∣∣∣∣. Thus, for example,

∣∣∣∣∣∣∣∣

1 2 3 4
8 7 6 5
1 8 2 7
3 6 4 5

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣1 2
8 7

∣∣∣∣
∣∣∣∣1 3
8 6

∣∣∣∣
∣∣∣∣1 4
8 5

∣∣∣∣∣∣∣∣1 2
1 8

∣∣∣∣
∣∣∣∣1 3
1 2

∣∣∣∣
∣∣∣∣1 4
1 7

∣∣∣∣∣∣∣∣1 2
3 6

∣∣∣∣
∣∣∣∣1 3
3 4

∣∣∣∣
∣∣∣∣1 4
3 5

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∣∣∣∣∣∣
−9 −18 −27

6 −1 3
0 −5 −7

∣∣∣∣∣∣
= −144.

This method can, of course, be iterated. The method of evaluating determinants in
this way is known as the method of condensation.

© George E. Andrews (Andrews).

During the nineteenth century, matrix theory
and the theory of determinants attracted many
gifted mathematicians and mathematical ama-
teurs. Felice Chiò was a nineteenth-century Ital-
ian mathematician and physicist. On the other
hand, Rev. Charles Lutwidge Dodgson was an
amateur who is better known by his pen name

Lewis Carroll, the author of Alice in Wonderland. Dodgson published several works on
mathematics and mathematical logic. In the twentieth century, ingenious ways for com-
puting determinants of matrices arising from various combinatorial problems have been
devised by American mathematician George Andrews.

Let A = [aij ] ∈ Mn×n(K), where K is an associative and commutative unital
F -algebra. For each 1 ≤ i, j ≤ n, we define the minor of the entry aij of A to be
|Aij |, where Aij ∈ M(n−1)×(n−1)(K) is the matrix obtained from A by erasing the
ith row and the j th column.

Example If A =
⎡
⎣4 3 1

2 8 9
7 3 4

⎤
⎦, then A13 =

[
2 8
7 3

]
and A22 =

[
4 1
7 4

]
.



11 Determinants 231

Proposition 11.11 Let F be a field, let (K,•) be an associative and commu-
tative unital F -algebra. If n is a positive integer, and A = [aij ] ∈ Mn×n(K),
then |A| = ∑n

j=1(−1)t+j atj • |Atj | for each 1 ≤ t ≤ n.

Proof In order to simplify our notation, let det(y1, . . . , yn) denote the determinant
of the matrix the rows of which are y1, . . . , yn. We will first prove the theorem for the
case t = 1. That is to say, we must show that |A| equals

∑n
j=1(−1)1+j a1j • |A1j |.

For each 1 ≤ h ≤ n, let vh ∈M1×n(K) be the matrix [d1 . . . dn] defined by

di =
{

1 if i = h,

0 otherwise.

Then the ith row of A can be written as wi = ∑n
j=1 aij vj and so

|A| = det(w1, . . . ,wn) = det

(
n∑

j=1

a1j vj ,w2, . . . ,wn

)

=
n∑

j=1

a1j • det(vj ,w2, . . . ,wn).

Thus we will prove the desired result if we can show that

det(vj ,w2, . . . ,wn) = (−1)1+j |A1j |
for each 1 ≤ j ≤ n. Denote the matrix the rows of which are vj ,w2, . . . ,wn by
B = [bih], where

bih =
⎧⎨
⎩

1 if i = 1 and h = j,

0 if i = 1 and h �= j,

aih if i > 1.

For 1 ≤ j ≤ n, set G1j = {π ∈ Sn | π(1) = j}.
Suppose that j = 1. Then, in particular, there is a bijective correspondence be-

tween G11 and the set of all permutations of {2, . . . , n} which does not affect the
signum of the permutation since if π ∈ G11 then 1 does not appear in any inversion
of π . Since b11 = 1 and b1h = 0 if h > 1, we thus have

|B| =
∑
π∈Sn

sgn(π)b1,π(1) • · · · • bn,π(n)

=
∑

π∈G11

sgn(π)b1,π(1) • · · · • bn,π(n)

=
∑

π∈G11

sgn(π)b2,π(2) • · · · • bn,π(n) = |A11|,
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and so we have shown, as desired, that |B| = (−1)1+1|A11|. If j > 1 put column j

of B in the position of the first column and shift columns 1 to j − 1 of B to the right
by one column position. This involves j − 1 column interchanges, and we have

det(vj ,w2, . . . ,wn) = (−1)j−1

∣∣∣∣∣∣∣∣∣

1 0 . . . 0
a2j a21 . . . a2n

...
...

. . .
...

anj an1 . . . ann

∣∣∣∣∣∣∣∣∣
= (−1)j+1|A1j |.

Now assume that t > 1. Again, we can interchange the t th row with the first row
by t − 1 exchanges with the row above, and we get |A| = (−1)t−1|C|, where C is a
matrix satisfying |C1j | = |Atj | for each 1 ≤ j ≤ n. Therefore,

|A| = (−1)t−1|C| = (−1)t−1
n∑

j=1

(−1)j+1c1j • |C1j | =
n∑

j=1

(−1)j+t atj • |Atj |

as desired. �

Example For A =

⎡
⎢⎢⎣

1 7 3 0
4 0 1 3
0 2 4 0
3 1 5 1

⎤
⎥⎥⎦ we see that

|A| = 1

∣∣∣∣∣∣
0 1 3
2 4 0
1 5 1

∣∣∣∣∣∣ − 7

∣∣∣∣∣∣
4 1 3
0 4 0
3 5 1

∣∣∣∣∣∣ + 3

∣∣∣∣∣∣
4 0 3
0 2 0
3 1 1

∣∣∣∣∣∣ − 0

∣∣∣∣∣∣
4 0 1
0 2 4
3 1 5

∣∣∣∣∣∣
= 16 + 140 − 30 + 0 = 126

and

|A| = 0

∣∣∣∣∣∣
7 3 0
0 1 3
1 5 1

∣∣∣∣∣∣ − 2

∣∣∣∣∣∣
1 3 0
4 1 3
3 5 1

∣∣∣∣∣∣ + 4

∣∣∣∣∣∣
1 7 0
4 0 3
3 1 1

∣∣∣∣∣∣ − 0

∣∣∣∣∣∣
1 7 3
4 0 1
3 1 5

∣∣∣∣∣∣
= 0 − 2 + 128 − 0 = 126.

Even this method of computing determinants is not easy, however, unless there is
a row (or column) of the matrix a significant number of the entries in which are equal
to 0. To see the computational overhead of computing the determinant of a general
n×n matrix using minors, let us denote the number of arithmetic operations needed
to do so by pn. Clearly p1 = 1 and p2 = 3. Suppose that we have already found
pn−1. Then, by Proposition 11.11, we see that in order to compute the determinant of
an n×n matrix we have to compute the determinants of n matrices of size (n−1)×
(n− 1) and then perform n multiplications and n− 1 additions/subtractions. That is
to say, we obtain the recursive formula

pn = npn−1 + n + (n − 1) = npn−1 + 2n − 1,
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when n > 2. Setting tn = 1
n!pn, we see that

tn − tn−1 = 2

(n − 1)! − 1

n!
and so

tn = [tn − tn−1] + [tn−1 − tn−2] + · · · + [t3 − t2] + t2

=
[

2

(n − 1)! − 1

n!
]

+ · · · +
[

2

2! − 1

3!
]

+ 1

= 2

[
1

(n − 1)! + · · · + 1

1!
]

−
[

1

n! + · · · + 1

1!
]

+ 1

= 1

(n − 1)! + · · · + 1

1! + 1 − 1

n!

=
[

1

n! + 1

(n − 1)! + · · · + 1

1! + 1

]
− 2

n!
and thus we see that pn = n![ 1

n! + 1
(n−1)! + · · · + 1

1! + 1] − 2. But from calculus we
know that e, the base of the natural logarithms, has an expansion of the form

e = 1 + 1

1! + · · · + 1

n! + ec

(n + 1)! ,

where 0 < c < 1, and so pn = n![e − ec

(n+1)! ] − 2. If n > 2, we see that

0 <
ec

n + 1
<

e

n + 1
≤ e

3
< 1

and so we conclude that en! − 3 < pn < en! − 2. Since pn is a positive integer, we
see that pn = 	en!
 − 2, where 	r
 denotes the largest whole number less than or
equal to r , for any real number r . In particular, we see that pn grows even faster than
exponentially, as a function of n, which is very rapid growth indeed. For example,
p10 = 9,864,094 and p15 = 3,554,625,081,047.

Recently, sophisticated numerical techniques have been developed to compute
the determinants of matrices with entries from a finite field.

In special cases, it is also possible to find bounds on the value of the determinant
of a matrix, without actually computing it. For example, we will see below that if
A ∈ Mn×n(R) and if g is a positive real number greater than or equal to the absolute
value of each of the entries of A, then the absolute value of |A| is at most gn

√
nn. In

1980, American mathematicians Charles R. Johnson and Morris Newman proved a
surprising bound. Let A = [aij ] ∈ Mn×n(R). For each 1 ≤ i ≤ n, let bi be the sum
of all positive entries in the ith row of A and let ci be the sum of all negative entries
in the ith row of A (the sum of an empty list is taken to be 0). The absolute value of
|A| is then at most

∏n
i=1 max{bi,−ci} − ∏n

i=1 min{bi,−ci}.
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Proposition 11.12 Let n be a positive integer, let F be a field, and let
(K,•) be an associative and commutative unital F -algebra. Let A = [aij ] ∈
Mn×n(K) be a matrix which can be represented in block form as

⎡
⎢⎢⎢⎣

B11 O . . . O

B21 B22 . . . O
...

...
. . .

...

Bm1 Bm2 . . . Bmm

⎤
⎥⎥⎥⎦ ,

where m > 1 and each of the Bhh is square. Then |A| = ∏m
h=1 |Bhh|.

Proof Let us first consider the case m = 2, and assume that B11 ∈ Mt×t (K) for
some t < n. We will proceed by induction on t . If t = 1, then, by Proposition 11.11,
|A| = a11|B22| = |B11| • |B22|, and we are done. Now assume that t > 1 and that

the result has been established for all matrices of the form

[
B11 O

B21 B22

]
, where

B11 ∈ M(t−1)×(t−1)(K). Let Cj be the matrix obtained from B12 by deleting the
j th column. Then, by Proposition 11.11 and the induction hypothesis,

|A| =
t∑

j=1

(−1)j+1a1j •
∣∣∣∣ (B11)1j O

Cj B22

∣∣∣∣

=
t∑

j=1

(−1)j+1a1j • (∣∣(B11)1j

∣∣ • |B22|
)

=
(

t∑
j=1

(−1)j+1a1j • ∣∣(B11)1j

∣∣
)

• |B22| = |B11| • |B22|,

which establishes this case.
Now assume, inductively, that the result has been established for m and consider

a matrix A ∈ Mn×n(K) which can be written in block form as
⎡
⎢⎢⎢⎣

B11 O . . . O

B21 B22 . . . O
...

...
. . .

...

Bm+1,1 Bm+1,2 . . . Bm+1,m+1

⎤
⎥⎥⎥⎦ .

If we set C =

⎡
⎢⎢⎢⎣

B11 O . . . O

B21 B22 . . . O
...

...
. . .

...

Bm1 Bm2 . . . Bmm

⎤
⎥⎥⎥⎦ then, by the case m = 2 and the induction

hypothesis, |A| = |C| • |Bm+1,m+1| = ∏m+1
h=1 |Bhh|. �
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Note that, as an immediate consequence of Proposition 11.4, we see that if all of
the matrices Bhh are of the same size, then |A| = |B11 · · ·Bmm|.

Let A = [aij ] ∈ Mn×n(K) for some associative and commutative unital F -
algebra (K,•). We define the adjoint of A to be the matrix adj(A) = [bij ] ∈
Mn×n(K), where bij = (−1)i+j |Aji | for all 1 ≤ i, j ≤ n.

Example If A =

⎡
⎢⎢⎣

1 0 3 5
−3 1 3 1

4 2 1 2
1 1 2 5

⎤
⎥⎥⎦ ∈ M4×4(R) then

adj(A) =

⎡
⎢⎢⎣

−20 9 −17 25
50 −18 −16 −40

−40 −18 −16 50
10 9 13 −35

⎤
⎥⎥⎦ .

Proposition 11.13 Let F be a field and let n be a positive integer. If
A = [aij ] ∈ Mn×n(F ) then A[adj(A)] = |A|I . In particular, if the matrix A is
nonsingular then A−1 = |A|−1 adj(A).

Proof Suppose that adj(A) = [bij ]. Then A[adj(A)] = [cij ], where cij =∑n
k=1 aikbkj = ∑n

k=1(−1)j+kaik|Ajk|. If i = j , then, by Proposition 11.11, this
is just |A|. If i �= j , this is just |A′|, where A′ is a matrix identical to A in all of
its rows except the ith row, and that is equal to the j th row of A. Thus the matrix
A′ has two identical rows, and so by Proposition 11.3, |A′| is equal to 0. Hence
A[adj(A)] = |A|I , from which we also immediately deduce the second statement
since if A is nonsingular then |A| �= 0. �

In particular, we note that if A is nonsingular then so is adj(A).

Proposition 11.14 Let F be a field, let (K,•) be an associative and com-
mutative unital F -algebra, and let n be a positive integer. If A = [aij ] ∈
Mn×n(K) is an upper-triangular matrix then |A| = ∏n

i=1 aii .

Proof We can prove this by induction on n. For the case n = 1, it is immediate.
Assume therefore that we have already established it for all matrices in Mn×n(K).
Then, by Proposition 11.11, |A| = |AT | = ∑n

j=1(−1)1+j aj1 • |Aj1| = a11 • |A11|.
But, by the induction hypothesis, |A11| = ∏n

i=2 aii , and we are done. �



236 11 Determinants

By Proposition 11.14, we see that in general, from a computational point of view,
it is much faster to first perform elementary operations on a matrix to reduce it
to upper-triangular form, and then calculate the determinant (making use of the
fact that, from the definition of a determinant function and from Proposition 11.4,
we easily know the determinants of the elementary matrices), than to calculate the
determinant directly. When working in associative and commutative unital algebras
over a field, or when working with matrices of integers, this presents somewhat
of a problem since it is not always possible to divide by nonzero scalars in such
contexts. However, various variants on Gaussian elimination which do not involve
division have been developed to overcome this.

© The Daily Northwestern.

One of the major researchers instrumental in the development of such
methods was the twentieth-century Swiss/American computer scien-
tist Erwin Bareiss.

Combining Propositions 11.4 and 11.14, we see that if A ∈ Mn×n(F ) can be
written in the form LU , where L is a lower-triangular matrix and U is an upper-
triangular matrix, then |A| is the product of the diagonal elements of L and the
diagonal elements of U .

Proposition 11.15 (Cramer’s Theorem) Let F be a field and let n be a
positive integer. If A = [aij ] ∈ Mn×n(F ) is a nonsingular matrix and if w =⎡
⎢⎣

b1
...

bn

⎤
⎥⎦ ∈ Fn, then the system of linear equations AX = w has the unique

solution v =
⎡
⎢⎣

d1
...

dn

⎤
⎥⎦ in which, for each 1 ≤ i ≤ n, we have di = |A|−1|A(i)|,

where A(i) is the matrix formed from A by replacing the ith column of A by w.

Proof If Av = w then |A|v = (|A|A−1)Av = adj(A)Av = adj(A)w and so for each
1 ≤ i ≤ n, we have |A|di = ∑n

j=1(−1)i+j bj |Aji |. But the expression on the right-
hand side of this equation is just, by Proposition 11.11, |A(i)|, developed by minors
on the ith column. �
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Gabriel Cramer was an eighteenth-century
Swiss mathematician and friend of Johann
Bernoulli (one of the formulators of calculus) who
was among the first to study determinants and
their use in solving systems of linear equations.
Cramer’s rule was also described independently
by the eighteenth-century Scottish mathematician
Colin Maclaurin.

Cramer’s theorem, published in 1750, was the first systematic method for solving
a system of linear equations, though special cases of it were known to Leibnitz
75 years earlier. While it is elegant mathematically, it is clearly not computationally
feasible, even when n is only moderately large, as was immediately realized by
mathematicians of the time. Indeed, solving a system of linear equations AX = w

by Cramer’s method, where A is a nonsingular n × n matrix over a field F , requires
1
3n4 − 1

6n3 − 1
3n2 + 1

6n additions and 1
3n4 + 1

3n3 + 2
3n2 + 2

3n − 1 multiplications,
which is considerably worse than the methods we have previously studied, for which
the number of arithmetic operations necessary grows as n3, rather than as n4.

Example Consider the system of linear equations AX =
⎡
⎣2

1
4

⎤
⎦, where A =

⎡
⎣1 −1 1

1 2 0
1 0 −1

⎤
⎦. Then |A| = −5 and

|A(1)| =
∣∣∣∣∣∣
2 −1 1
1 2 0
4 0 −1

∣∣∣∣∣∣ = −13, |A(2)| =
∣∣∣∣∣∣
1 2 1
1 1 0
1 4 −1

∣∣∣∣∣∣ = 4, and

|A(3)| =
∣∣∣∣∣∣
1 −1 2
1 2 1
1 0 4

∣∣∣∣∣∣ = 7.

As a consequence, we see that the unique solution to the equation is 1
5

⎡
⎣ 13

−4
−7

⎤
⎦.

We note that if A = [aij ] ∈Mn×n(F ) then the polynomial

∑
π∈Sn

sgn(π)Xπ(1)Xπ(2) · · ·Xπ(n) ∈ F [X1, . . . ,Xn]

is flat and of degree n. This allows us to make an interesting use of Proposition 4.5.
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Proposition 11.16 Let F be a field of characteristic other than 2, let A =
[aij ] ∈ Mn×n(F ) be an arbitrary matrix, and let C = [cij ] ∈ Mn×n(F ) be
a diagonal matrix with nonzero entries on the diagonal. Then there exists a
diagonal matrix E = [eij ] ∈ Mn×n(F ) with diagonal entries ±1 such that
EC + A is nonsingular.

Proof Let X1, . . . ,Xn be indeterminates over F and let D = [dij ] ∈ Mn×n(F [X1,

. . . ,Xn]) be the diagonal matrix with dii = Xi for 1 ≤ i ≤ n. Then |DC + A| is a
flat polynomial in F [X1, . . . ,Xn] of degree n, and so the result follows immediately
from Proposition 4.5. �

Example If A = [aij ] ∈ Mn×n(R) and if e > 0 then, by Proposition 11.16, it is
possible to “tweak” the diagonal of A to obtain a nonsingular matrix [a′

ij ], where

a′
ij =

{
aij ± e if i = j,

aij otherwise.

The sum which appears in the definition of the determinant shows up in other
contexts related to matrix algebras. An associative algebra (K,•) over a field F sat-
isfies the standard identity of degree n if and only if

∑
π∈Sn

sgn(π)aπ(1) • aπ(2) •
· · · • aπ(n) = 0 for any list a1, . . . , an of elements of K . Thus, for example, the
standard identity of degree 2 is a1 • a2 − a2 • a1 = 0. The algebra K satisfies this
identity precisely when it is commutative. The Amitsur–Levitzki Theorem states that
for any field F and any positive integer n, the F -algebra Mn×n(F ) satisfies the
standard identity of degree k for each k ≥ 2n. There are several proofs of this
result, all beyond the scope of this book. Some of these are based on a gener-
alization of the Cayley–Hamilton Theorem, which we shall see in the following
chapter.

© Alexander Levitzki (Levitzki).

Yaakov Levitzki and his student Shimshon
Amitsur were twentieth-century Israeli alge-
braists.

We end this chapter by showing how an important construction in analysis
can be considered in terms of determinants of matrices over the R-algebra R[X].
Let c0, c1, . . . be real numbers and let us consider the analytic function f : x �→∑∞

i=0 cix
i , which converges for all x in some subset U of R. We know that U �= ∅

since surely 0 ∈ U . Given positive integers k and n, we want to find polynomials
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p(X), q(X) ∈ R[X] of degrees at most k and n, respectively, such that the function
x �→ p(x)q(x)−1 − f (x) also converges for all x ∈ U and is representable there by
a power series of the form x �→ ∑∞

i=1 dix
k+n+i . If we find such p and q , then the

function x �→ p(x)q(x)−1 is called the Padé approximant to f of type k/n. Padé
approximants are very important tools in differential equations and in approximation
theory. Hermite made use of Padé approximants in his proof of the transcendence
of e.

Henri Padé was a nineteenth-century French en-
gineer who developed these approximants in the
course of his work. Interest in them intensified
in the early twentieth century when the French
mathematician Émile Borel made extensive use
of them in his work on analysis.

Example If f : x �→ ex = ∑∞
i=0

1
i!x

i then the function g1 : x �→ x2+4x+6
6−2x

is a Padé

approximant to f of type 2/1 and the function g2 : x �→ x2+6x+12
x2−6x+12

is a Padé approx-
imant to f of type 2/2.

If we are given an analytic f as above, how do we calculate Padé approxi-
mants to it? One way is by using determinants. First of all, define c−i = 0 for
all positive integers i. Then, given positive integers k and n, define the matrices
Pk/n(X),Qk/n(X) ∈M(n+1)×(n+1)(R[X]) by setting:

Pk/n(X) =

⎡
⎢⎢⎢⎢⎢⎣

ck−n+1 ck−n+2 . . . ck+1
ck−n+2 ck−n+3 . . . ck+2

...
...

. . .
...

ck ck+1 . . . ck+n∑k−n
i=0 ciX

n+i
∑k−n+1

i=0 ciX
n+i−1 . . .

∑k
i=0 ciX

i

⎤
⎥⎥⎥⎥⎥⎦

and

Qk/n(X) =

⎡
⎢⎢⎢⎢⎢⎣

ck−n+1 ck−n+2 . . . ck+1
ck−n+2 ck−n+3 . . . ck+2

...
...

. . .
...

ck ck+1 . . . ck+n

Xn Xn−1 . . . 1

⎤
⎥⎥⎥⎥⎥⎦

.

Then the polynomials p(X) = |Pk/n(X)| and q(X) = |Qk/n(X)| are of the de-
sired size, and our approximant is given by x �→ p(x)q(x)−1.
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Exercises

Exercise 637

Calculate

∣∣∣∣ sin(a) cos(a)

sin(b) cos(b)

∣∣∣∣ and

∣∣∣∣cos(a) sin(a)

sin(b) cos(b)

∣∣∣∣ for real numbers a and b.

Exercise 638

Calculate

∣∣∣∣∣∣
1 i 1 + i

−i 1 0
1 − i 0 1

∣∣∣∣∣∣ ∈C.

Exercise 639

Calculate

∣∣∣∣∣∣∣∣

a − 6 0 0 −8
5 a − 4 0 12

−1 3 a − 2 −6
0 − 1

2 1 1

∣∣∣∣∣∣∣∣
for any a ∈ R.

Exercise 640
Find the image of the function f from R to itself defined by

f : t �→
∣∣∣∣∣∣
1 0 −t

1 1 −1
t 0 −1

∣∣∣∣∣∣ .

Exercise 641
For real numbers a, b, c, and d , show that

∣∣∣∣∣∣∣∣

a2 (a + 1)2 (a + 2)2 (a + 3)2

b2 (b + 1)2 (b + 2)2 (b + 3)2

c2 (c + 1)2 (c + 2)2 (c + 3)2

d2 (d + 1)2 (d + 2)2 (d + 3)2

∣∣∣∣∣∣∣∣
= 0.

Exercise 642
Let n be a positive integer and let c be a fixed real number. Calculate the deter-
minant of the matrix A = [aij ] ∈Mn×n(R) defined by

aij =
⎧⎨
⎩

c if i < j,

i if i = j,

0 if i > j.

Exercise 643

For a, b ∈ R, calculate

∣∣∣∣∣∣
a b a + b

b a + b a

a + b a b

∣∣∣∣∣∣.
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Exercise 644
Let F = GF(2). Does there exist a matrix A ∈ M2×2(F ) other than I satisfying
the condition that |A| = |AT A| = 1?

Exercise 645
If n is a positive integer, we define the nth Hankel matrix Hn ∈ Mn×n(R) to be
the matrix [aij ] satisfying

aij =
{

0 if i + j − 1 > n,

i + j − 1 otherwise.

Calculate |Hn|.

The nineteenth-century German mathematician Hermann Hankel
was among the first to recognize and popularize the work of Grass-
mann.

Exercise 646
Let p(X) = a0 + a1X + a2X

2 and q(X) = b0 + b1X + b2X
2 be polynomials in

C[X]. Show that there exists a complex number c satisfying p(c) = q(c) = 0 if

and only if

∣∣∣∣∣∣∣∣

a0 a1 a2 0
0 a0 a1 a2
b0 b1 b2 0
0 b0 b1 b2

∣∣∣∣∣∣∣∣
= 0.

Exercise 647
Find the set of all pairs (a, b) of real numbers such that

∣∣∣∣∣∣∣∣

a + 1 3a b + 3a b + 1
2b b + 1 2 − b 1

a + 2 0 1 a + 3
b − 1 1 a + 2 a + b

∣∣∣∣∣∣∣∣
= 0.

Exercise 648

For a, b, c ∈ R, show that

∣∣∣∣∣∣
0 (a − b)2 (a − c)2

(b − a)2 0 (b − c)2

(c − a)2 (c − b)2 0

∣∣∣∣∣∣ ≥ 0.
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Exercise 649
Let n be a positive even integer and let c, d ∈ Q. Let A = [aij ] ∈ Mn×n(Q) be
the matrix defined by

aij =
⎧⎨
⎩

c if i = j,

d if i + j = n + 1,

0 otherwise.

Calculate |A|.

Exercise 650
Let n be a positive integer and let A = [aij ] ∈ Mn×n(Q) be the tridiagonal matrix
defined by

aij =
{

1 if |i − j | ≤ 1,

0 otherwise.

Show that

|A| =
⎧⎨
⎩

−1 if n = 3k,

1 if n = 3k + 1,

0 if n = 3k + 2

for some nonnegative integer k.

Exercise 651

Find a, b, c ∈ Z for which

∣∣∣∣∣∣
a + b c c

a b + c a

b b a + c

∣∣∣∣∣∣ is divisible by 8.

Exercise 652
Let n be a positive integer and let A ∈ Mn×n(Q) be a nonsingular matrix satis-
fying the condition that all of the entries of A and of A−1 are integers. Show that
|A| = ±1.

Exercise 653

For elements a, b, and c of a field F , calculate

∣∣∣∣∣∣
−2a a + b a + c

a + b −2b b + c

a + c b + c −2c

∣∣∣∣∣∣.

Exercise 654
We know that the integers 23028, 31882, 86469, 6327, and 61902 are all divisible

by 19. Show that

∣∣∣∣∣∣∣∣∣∣

2 3 0 2 8
3 1 8 8 2
8 6 4 6 9
0 6 3 2 7
6 1 9 0 2

∣∣∣∣∣∣∣∣∣∣
is also divisible by 19.
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Exercise 655
Let q ∈ Q. Show that there are infinitely-many matrices in M3×3(Q) of the

form

⎡
⎣ 2 2 3

3q + 2 4q + 2 5q + 3
a b c

⎤
⎦, where a < b < c, the determinant of which

equals q .

Exercise 656
Let n be a positive integer and let F be a field. Let A ∈ Mn×n(F ) be a non-

singular matrix which can be written in block form A =
[
A11 A12
A21 A22

]
, where

A11 ∈ Mk×k(F ) for some integer k < n. Write A−1 as

[
B11 B12
B21 B22

]
, where

B11 ∈Mk×k(F ). Show that |A11| = |A| · |B22|.

Exercise 657

Find all real numbers a for which

∣∣∣∣∣∣∣∣

a 1 1 1
1 a 2 3
0 −1 0 1

−1 1 1 2

∣∣∣∣∣∣∣∣
= 0.

Exercise 658
Let a1, a2, . . . be a sequence of real numbers. For each positive integer n, define
the nth continuant cn of the sequence to be the determinant of the tridiagonal
matrix An = [aij ] ∈ Mn×x(R) given by

aij =

⎧⎪⎪⎨
⎪⎪⎩

ai if i = j,

−1 if i = j − 1,

1 if i = j + 1,

0 otherwise.

Show that cn = ancn−1 + cn−2 for all n > 2.

Exercise 659
Let n > 1 be an integer, let d be a real number, and let A = [aij ] ∈ Mn×n(R) be
the matrix defined as follows:

aij =
⎧⎨
⎩

0 if i = j,

1 if i > 1 and j = 1 or i = 1 and j > 1,

d otherwise.

Show that |A| = (−1)n−1(n − 1)dn−2.
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Exercise 660
Let b1, . . . , bn be nonzero real numbers and let A = [aij ] ∈ Mn×n(R) be the
matrix defined as follows:

aij =
{

1 + bj if i = j,

1 otherwise.

Calculate |A|.

Exercise 661
Let A = [aij ] ∈ M4×4(Q) be a matrix each entry of which is either −2 or 3.
Show that |A| is an integer multiple of 125.

Exercise 662
Let a, b, c, and d be real numbers not all of which are equal to 0. Show that the

matrix

⎡
⎢⎢⎣

a b c d

b −a d −c

c −d −a b

d c −b −a

⎤
⎥⎥⎦ ∈ M4×4(R) is nonsingular.

Exercise 663
Does there exist a rational number a satisfying the condition that the matrix⎡
⎣ 1 a 0

a 1 1
−1 a −1

⎤
⎦ ∈M3×3(Q) is nonsingular?

Exercise 664
Find all matrices I �= A ∈ M2×2(R) satisfying A3 = I .

Exercise 665
Find all triples (a, b, c) of real numbers satisfying the condition

∣∣∣∣∣∣
1 a a3

1 b b3

1 c c3

∣∣∣∣∣∣ = (b − c)(c − a)(a − b)(a + b + c).

Exercise 666
Let n be a positive integer, let A = [aij ] ∈ Mn×n(C) and let B = [bij ] ∈
Mn×n(C) be defined by bij = aji for each 1 ≤ i, j ≤ n. Show that |AB| is a
nonnegative real number.

Exercise 667

Calculate

∣∣∣∣ 1 logb a

loga b 1

∣∣∣∣ for given positive real numbers a and b.



Exercises 245

Exercise 668

Let F be a field. Calculate

∣∣∣∣∣∣∣∣

1 a a2 a3

a3 a2 a 1
1 2a 3a2 4a3

4a3 3a2 2a 1

∣∣∣∣∣∣∣∣
for any a ∈ F .

Exercise 669

Calculate

∣∣∣∣∣∣∣∣

cos(a) sin(a) cos(a) sin(a)

cos(2a) sin(2a) 2 cos(2a) 2 sin(2a)

cos(3a) sin(3a) 3 cos(3a) 3 sin(3a)

cos(4a) sin(4a) 4 cos(4a) 4 sin(4a)

∣∣∣∣∣∣∣∣
for a ∈ R.

Exercise 670
Let n be a positive integer and let A = [aij ] ∈ Mn×n(R) be the matrix defined
by

aij =
{

0 if i = j,

1 otherwise.

Calculate |A|.
Exercise 671

Let A =
⎡
⎣3 −1 1

0 2 4
1 −1 1

⎤
⎦ ∈M3×3(R). Calculate adj(A).

Exercise 672

Let F = GF(2) and let A =
⎡
⎣1 1 0

0 1 1
1 1 1

⎤
⎦ ∈M3×3(F ). Calculate adj(A).

Exercise 673
Let F be a field, let n be a positive integer, and let A,B ∈ Mn×n(F ). Is it nec-
essarily true that adj(AB) = adj(A) adj(B)?

Exercise 674
Let F be a field, let n be a positive integer, and let A ∈ Mn×n(F ). Is it necessarily
true that adj(AT ) = adj(A)T ?

Exercise 675
Let F be a field, let n be a positive integer, and let the matrices A,B ∈Mn×n(F )

be nonsingular. Show that adj(B−1AB) = B−1 adj(A)B .

Exercise 676
Let F be a field, let n be a positive integer, and let A,B ∈ Mn×n(F ) be matrices
satisfying B �= O and AB = O . Show that |A| = 0.
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Exercise 677

Let A =
⎡
⎣1 2 3

1 3 4
1 4 3

⎤
⎦ ∈ M3×3(R). Use the adjoint of A to calculate A−1.

Exercise 678
Let F be a field, let n be a positive integer, and let A = [aij ] ∈ Mn×n(F ). Let
B = [bij ] ∈ Mn×n(F ) defined by bij = (−1)i+j aij for all 1 ≤ i, j ≤ n. Show
that |A| = |B|.
Exercise 679
Let F be a field, let n be a positive integer, and let A = [aij ] ∈ Mn×n(F ). Let
B = [bij ] ∈ Mn×n(F ) defined by bij = (−1)i+j+1aij for all 1 ≤ i, j ≤ n. Show
that (−1)n|A| = |B|.
Exercise 680
Let n be a positive integer and let π ∈ Sn. Let A ∈Mn×n(Q) be the permutation
matrix defined by π . Calculate |A|.

Exercise 681
Is the set of all permutation matrices in Mn×n(Q) closed under multiplication?
Is the inverse of a permutation matrix a permutation matrix?

Exercise 682
Let A = [aij ] ∈M3×3(R) be a matrix in which ai2 �= 0 for all 1 ≤ i ≤ 3. Denote
the minor of aij for all 1 ≤ i, j ≤ n by Aij . Show that

|A| = 1

a12

∣∣∣∣A21 A23
A31 A32

∣∣∣∣ + 1

a22

∣∣∣∣A11 A13
A31 A33

∣∣∣∣ + 1

a32

∣∣∣∣A11 A13
A21 A22

∣∣∣∣ .

Exercise 683
Let F be a field, let n be a positive integer, and let A = [aij ] ∈ Mn×n(F ) be
nonsingular. Show that adj(adj(A)) = |A|n−2A.

Exercise 684
Let a and b be real numbers and let n be an integer greater than 2. Let D = [dij ] ∈
Mn×n(R) be the matrix defined by dij = sin(ia + jb) for all 1 ≤ i, j ≤ n. Show
that |D| = 0.

Exercise 685
Let F be a field and let a, b, c, d, e, f, g ∈ F . Show that

∣∣∣∣∣∣
a b b

c d e

f g g

∣∣∣∣∣∣ +
∣∣∣∣∣∣
a b b

e c d

f g g

∣∣∣∣∣∣ +
∣∣∣∣∣∣
a b b

d e c

f g g

∣∣∣∣∣∣ = 0.
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Exercise 686
Let F be a field, let n be a positive integer, and let A = [aij ] ∈ Mn×n(F ). Let
B = [bij ] ∈Mn×n(F ) be the matrix defined by

bij =
{

aij + ai,j+1 if j < n,

ain otherwise.

Show that |B| = |A|.

Exercise 687
Let k and n be integers greater than 1. Let F be a field and let A = [aij ] be a
matrix in Mk×n(F ), the upper row of which contains at least one nonzero entry.

For each 2 ≤ i ≤ k and each 2 ≤ j ≤ n, let dij =
∣∣∣∣a11 a1j

ai1 aij

∣∣∣∣. Show that the rank

of the matrix D =
⎡
⎢⎣

d22 . . . d2n

...
. . .

...

dk2 . . . dkn

⎤
⎥⎦ ∈ M(k−1)×(n−1)(F ) is r − 1, where r is

the rank of A.

Exercise 688
Let F be a field, let a �= b be elements of F , and let A,B ∈M2×2(F ) be matrices
satisfying the condition that |A + hB| ∈ {a, b} for h = 1,2,3,4,5. Show that
|A + 9B| ∈ {a, b}.

Exercise 689

Let F be a field and let a, b, c ∈ F . Make use of the matrix

⎡
⎣b c 0

a 0 c

0 a b

⎤
⎦ in order

to calculate the determinant of the matrix

⎡
⎣b2 + c2 ab ac

ab a2 + c2 bc

ac bc a2 + b2

⎤
⎦.

Exercise 690
Let A ∈ Mn×n(C) be a nonsingular matrix, which we will write in the form
B + iC, where B,C ∈ Mn×n(R). Show that there is a real number d such that
the matrix B + dC ∈ Mn×n(R) is nonsingular.

Exercise 691
Let F be a field and let n be a positive integer. Let A ∈ Mn×n(F ) be a matrix
having the property that the sum of all even-numbered columns (considered as
vectors in Fn) of A equals the sum of all odd-numbered columns of A. What
is |A|?
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Exercise 692
Let V = R

2 and let f : V 3 → R be the function defined as follows: if vi =[
ai

bi

]
for i = 1,2,3, then f :

⎡
⎣v1

v2
v3

⎤
⎦ �→

∣∣∣∣∣∣
a1 b1 1
a2 b2 1
a3 b3 1

∣∣∣∣∣∣. Show that f (v1, v2, v3) =

f (v4, v2, v3) + f (v1, v4, v3) + f (v1, v2, v4) for all v1, v2, v3, v4 ∈ V .

Exercise 693
Let F be a field and let n be a positive integer. Let D = [dij ] ∈ Mn×n(F ) be
the matrix defined by dij = 1 for all 1 ≤ i, j ≤ n. Show that for any matrix
A ∈ Mn×n(F ) precisely one of the following conditions holds: (1) There is a
unique scalar a ∈ F such that A + aD is singular; (2) A + aD is singular for all
scalars a ∈ F ; (3) A + aD is nonsingular for all scalars a ∈ F .

Exercise 694

Let A,B,C,D ∈ M2×2(R) and let M be the matrix

[
A B

C D

]
∈ M4×4(R). If

all of the “formal determinants” AD−BC, AD−CB , DA−BC, and DA−CB

are nonsingular, is M necessarily nonsingular?

Exercise 695

Let A,B,C,D ∈ M2×2(R) and let M be the matrix

[
A B

C D

]
∈ M4×4(R). If

M is a nonsingular matrix, is at least one of the “formal determinants” AD−BC,
AD − CB , DA − BC, and DA − CB also nonsingular?

Exercise 696
Let n > 1 be an integer and let A = [aij ] ∈ Mn×n(Q) be a matrix satisfying the
condition that each aij is either equal to 1 or to −1. Show that |A| is an integer
multiple of 2n−1.

Exercise 697
If a, b, c, d, e, f are nonzero elements of a field F , show that

∣∣∣∣∣∣∣∣

0 a2 b2 c2

a2 0 f 2 e2

b2 f 2 0 d2

c2 e2 d2 0

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

0 ad be cf

ad 0 cf be

be cf 0 ad

cf be ad 0

∣∣∣∣∣∣∣∣
.

Exercise 698
Let n be a positive integer and let c1, . . . , cn be distinct real numbers tran-
scendental over Q. For 1 ≤ h ≤ n, let ph(X) = ∑h−1

i=0 aiX
i ∈ Q[X] be a

polynomial of degree h − 1. Let A = [pi(cj )] ∈ Mn×n(R). Show that |A| =
(a0 · · ·an−1)

∏
i<j (cj − ci).
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Exercise 699
Let n be a positive integer and let c1, . . . , cn be distinct real numbers tran-
scendental over Q. For each 1 ≤ i, j ≤ n, set dij = c

j
i − c

−j
i and let A =

[dij ] ∈ Mn×n(R). Show that |A| equals (c1 · · · cn)
−n

∏
i<j [(ci − cj )(1 −

cicj )]∏n
i=1(c

2
i − 1).

Exercise 700
Let a, b, c, d be elements of a field F . Solve the equation

∣∣∣∣∣∣∣∣

a b c d

b c d a

c d a b

d a b c

∣∣∣∣∣∣∣∣
= X

∣∣∣∣∣∣∣∣

0 1 −1 1
1 c d a

1 d a b

1 a b c

∣∣∣∣∣∣∣∣
.

Exercise 701
Let F be a field. Does there exist a matrix A in M3×3(F ) satisfying the condition
that the rank of adj(A) equals 2?

Exercise 702
Let a, b, and c be nonzero real numbers. Under which conditions does the equa-

tion

∣∣∣∣∣∣
0 a − X b − X

−a − X 0 c − X

−b − X −c − X 0

∣∣∣∣∣∣ = 0 have more than one solution?

Exercise 703
Use determinants to show that there is no matrix A ∈ M4×4(Q) satisfying the

condition that A4 =

⎡
⎢⎢⎣

1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦.

Exercise 704
Let A = [aij ] ∈Mn×n(R) be a matrix satisfying the condition |aii | > ∑

j �=i |aij |
for all 1 ≤ i ≤ n. Such matrices are called strictly diagonally dominant. Show
that |A| �= 0.

Exercise 705
Let F be a field and let a, b, c ∈ F . Is it true that

∣∣∣∣∣∣∣∣

a b c 0
b a 0 c

c 0 a b

0 c b a

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

−a b c 0
b −a 0 c

c 0 −a b

0 c b −a

∣∣∣∣∣∣∣∣
?
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Exercise 706
Let F be a field and let n > 2 be an integer. Give an example of a matrix
A ∈ Mn×n(F ) all of the entries in which are nonzero, satisfying adj(A) = O .

Exercise 707
Let F be a field and let n > 2 be an integer. Show that | adj(A)| = |A|n−1 for all
A ∈ Mn×n(F ).

Exercise 708
Is the function adj :M2×2(R) → M2×2(R) epic?

Exercise 709

For real numbers s and t , let A(s, t) =
⎡
⎣ s 0 t

1 1 1
t 0 1

⎤
⎦ and let B(s, t) = adj(A(s, t)).

Find the set of all real numbers s satisfying the condition that |A(s, t)| �= |B(s, t)|
for all t ∈R.

Exercise 710
Let n be a positive integer and for all 1 ≤ j ≤ n, let mj be a positive inte-

ger. Define the matrix A = [aij ] ∈ Mn×n(Q) by setting aij = (mj +i−1
j−1

)
for all

1 ≤ i, j ≤ n. Calculate |A|.

Exercise 711
Let a and b be distinct elements of a field F and let n be a positive integer. Let
A(n) = [aij ] ∈ Mn×n(F ) be the matrix defined by

aij =
{

a if i = j,

b otherwise.

Use induction on n to prove that |A(n)| = [a + (n − 1)b](a − b)n−1.

Exercise 712
Let n be a positive integer and pick integers 1 ≤ h, k ≤ n. Let f,g ∈ R

R be the
functions defined by

f : c �→
{ |Eh,c| if c �= 0,

0 if c = 0

and g : c �→ |Ehk;c|. Are these functions continuous?

Exercise 713
Let n be a positive integer and let A ∈ Mn×n(Q) be a nonsingular matrix the
entries of which are integers and the determinant of which is ±1. Show that all
of the entries of A−1 are integers.
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Exercise 714
Let F be a field and let A ∈ M2×2(F ). Show that the matrix A2 + |A|I belongs
to the subspace of M2×2(F ) generated by {A}.

Exercise 715
Let A = [aij ] ∈ M3×3(Q) be a matrix all of the entries of which are nonnegative
one-digit integers. Let d be a positive integer dividing the three-digit integers
a11a12a13, a21a22a23, and a31a32a33. Show that d divides |A|.
Exercise 716
Let n be a positive integer and let F be a field. Let A ∈ Mn×n(F ) be a matrix
satisfying the condition that |A + B| = |A| for all B ∈ Mn×n(F ). Show that
A = O .

Exercise 717
Let n be an odd positive integer let A ∈ Mn×n(R). Show that there exists a
diagonal matrix B the diagonal entries of which are ±1 such that A + B is non-
singular.

Exercise 718
Let n > 1 be an integer and let F be a field. Show that there exist subspaces W

and Y of Mn×n(F ) satisfying Mn×n(F ) = W ⊕ Y such that the restrictions of
the determinant function δn to W and to Y are linear transformations.

Exercise 719
Let n > 1 be an integer and let B be the set of all of the nonsingular matrices in
Mn×n(R) all of the entries of which are either 1 or 0. Show that in every matrix
in B there are at least n − 1 entries which are equal to 0 and that there exists a
matrix in B in which there are precisely n − 1 entries equal to 0.

Exercise 720
Let A be a matrix formed by permuting the rows or columns of an Hadamard
matrix. Is A necessarily an Hadamard matrix?

Exercise 721
Let V be a vector space of finite dimension n over a field F and let {v1, . . . , vn}
be a given basis for V . Let U be the subset of V consisting of all vectors of
the form ya = ∑n

i=1 ai−1vi , for 0 �= a ∈ F . Show that any subset of U having n

elements is a basis for V .

Exercise 722
Let F be a field and let n be an even positive integer. Let A ∈ Mn×n(F ) be a

matrix which can be written in block form as [Aij ], where Aij =
[

0 ci

−ci 0

]
if

i = j , and Aij =
[

0 0
0 0

]
otherwise. Calculate the Pfaffian of A.
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Exercise 723
Let F be a field and let n be an even positive integer. Let c ∈ F and let
A ∈ M2×n(F ) be a skew-symmetric matrix having Pfaffian d . What is the Pfaf-
fian of cA?

Exercise 724
Let c = 1

2 (1 + i
√

3). Find the set of all real numbers a such that

∣∣∣∣∣∣
a 1 1
1 c c2

1 c2 c

∣∣∣∣∣∣ ∈R.

Exercise 725

For elements a, b, c, d of a field F , calculate the value of

∣∣∣∣∣∣∣∣

a b c d

b a d c

c d a b

d c b a

∣∣∣∣∣∣∣∣
.

Exercise 726
Let F be a field and let n be a positive integer. Set V = Mn×n(F ) and let
A,B ∈ V satisfy the condition that |AB| = 1. Then the function α : C �→ ACB

is an endomorphism of V satisfying |C| = |α(C)| for all C ∈ V . Find an endo-
morphism of V satisfying the same condition, which is not of this form.

Exercise 727
Let F be a field and let n be a positive integer. For A,B,C,D ∈ Mn×n(F ), show

that

∣∣∣∣A B

C D

∣∣∣∣ =
∣∣∣∣−C −D

A B

∣∣∣∣.

Exercise 728
Let F be a field and let A,B,C,D ∈ Mn×n(F ) for some positive integer n. If

CD = DC and |D| �= 0, show that

∣∣∣∣A B

C D

∣∣∣∣ = |AD − BC|.

Exercise 729
If F is a field and A = [aij ] ∈ Mn×n(F ) for some positive integer n, then we
define the permanent of A to be

∑
π∈Sn

aπ(1),1 • aπ(2),2 • · · · • aπ(n),n.

(i) Show that the permanent of A is the coefficient of X1 · · ·Xn in the polyno-
mial

∏n
i=1(ai1X1 + · · · + ainXn) ∈ F [X1, . . . ,Xn].

(ii) If A is a permutation matrix, what is its permanent?
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Exercise 730
Does there exist a matrix A ∈M5×5(Q) the permanent of which equals 120?

Exercise 731
Let F be a field. For any matrix A = [aij ] ∈ M2×2(F ), let U(A) be the set of all
matrices B ∈ M2×2(F ) satisfying |A + B| = |A| + |B|. Is U(A) a subspace of
M2×2(F )?

Exercise 732
Let F be a field and let A ∈M2×2(F ). Find a necessary and sufficient condition
for |I + A| = 1 + |A| to hold.

Exercise 733
Let F be a field and let n be a positive integer. If A,B,C,D ∈ Mn×n(F ) with

D nonsingular, show that

∣∣∣∣
[

A B

C D

]∣∣∣∣ = |AD − BD−1CD|.

Exercise 734
Let a, b, c ∈ Z. Find a positive integer n such that

∣∣∣∣∣∣
⎡
⎣ 2c a + b + c a + b + c

a + b + c na a + b + c

a + b + c a + b + c 2b

⎤
⎦

∣∣∣∣∣∣
is divisible by abc.

Exercise 735
Let n be a positive integer and let A ∈Mn×n(Q) be a matrix all entries of which
are integers and satisfying |A| = ±1. Show that all entries of A−1 are integers.

Exercise 736
Find the Padé approximant to x �→ ex of type 2/4.

Exercise 737
Let a, b, and c be elements of a field F . Find an element x of F such that

∣∣∣∣∣∣
1 a a2

1 x b2

1 c c2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 −b − c bc

1 −c − a ca

1 −a − b ab

∣∣∣∣∣∣ .



 
     



12Eigenvalues and Eigenvectors

One of the central problems in linear algebra is this: given a vector space V finitely
generated over a field F , and given an endomorphism α of V , is there a way to
select a basis B of V so that the matrix ΦBB(α) is as nice as possible? In this
chapter, we will begin by defining some basic notions which will help us address
this problem.

Let V be a vector space over a field F and let α ∈ End(V ). A scalar c ∈ F is
an eigenvalue of α if and only if there exists a vector v �= 0V satisfying α(v) = cv.
Such a vector is called an eigenvector1 of α associated with the eigenvalue c. Thus
we see that a nonzero vector v ∈ V is an eigenvector of α if and only if the subspace
Fv of V is invariant under α. Every eigenvector of α is associated with a unique
eigenvalue of α but any eigenvalue has, as a rule, many eigenvectors associated
with it. The set of all eigenvalues of α is called the spectrum of α and is denoted
by spec(α). Thus, c ∈ spec(α) if and only if the endomorphism cσ1 − α of V is not
monic.

Example If V is a vector space over R and if α ∈ End(V ) satisfies α2 = −σ1, then
spec(α) = ∅. To see this, note that if v is an eigenvector corresponding to an eigen-
value c then −v = α2(v) = c2v and so (c2 + 1)v = 0V , implying that c2 = −1,
which is impossible for a real number c. In particular, if α ∈ End(R2) is defined by

α :
[
a

b

]
�→

[−b

a

]
then spec(α) = ∅.

1The terms “eigenvalue” and “eigenvector” are due to Hilbert. Eigenvalues and eigenvectors are
sometimes called characteristic values and characteristic vectors, respectively, based on termi-
nology used by Cauchy. Sylvester coined the term “latent values” since, as he put it, such scalars
are “latent in a somewhat similar sense as vapor may be said to be latent in water or smoke in a
tobacco-leaf”.
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Example Let α ∈ End(R2) be defined by α :
[
a

b

]
�→

[
b

a

]
. Then c ∈ spec(α) if and

only if there exists a vector

[
a

b

]
satisfying

[
b

a

]
=

[
ca

cb

]
. Therefore, we see that

spec(α) = {−1,1}, where

[
a

−a

]
is an eigenvector of α associated with −1 and[

a

a

]
is an eigenvector of α associated with 1, for any 0 �= a ∈ R.

Example Let V be the vector space of all infinitely-differentiable functions from R

to itself and let δ be the endomorphism of V which assigns to each such func-
tion its derivative. Then a function f , which is not the 0-function, is an eigen-
vector of δ if and only if there exists a scalar c ∈ R such that δ(f ) = cf . For
any real number c, there is indeed such a function in V , namely the function
x �→ ecx . Thus spec(δ) = R. The set of all eigenvectors of δ associated with c is
{aecx | a �= 0}. This fact has important applications in the theory of differential
equations.

The first use of eigenvalues to
study differential equations is
due to the French mathemati-
cian Jean d’Alembert, one
of the foremost researchers
of the eighteenth century. Im-
portant solutions of eigen-
value problems for second-

order differential equations were obtained in the nineteenth century by Swiss mathematician
Charles-François Sturm and French mathematician Joseph Liouville.

Let α be an endomorphism of a vector space V of a field F having an eigen-
value c. If β ∈ Aut(V ) then c is also an eigenvalue of βαβ−1. Indeed, if v is an
eigenvector of α associated with c then βαβ−1(β(v)) = βα(v) = β(cv) = cβ(v)

and β(v) �= 0V since β is an automorphism. Therefore, β(v) is an eigenvector of
βαβ−1 associated with c.

Similarly, let p(X) = ∑n
i=0 biX

i ∈ F [X]. If v ∈ V is an eigenvector of α associ-
ated with an eigenvalue c, then v is also an eigenvector of p(α) ∈ End(V ) associated
with the eigenvalue p(c), since p(α)v = ∑n

i=0 biα
i(v) = ∑n

i=0 bic
iv = p(c)v. In

particular, we see that, for any positive integer n, the vector v is an eigenvector of
αn associated with the eigenvalue cn.

Let V be a vector space over a field F and let α be an endomorphism of V .
A vector v ∈ V is a fixed point of α if and only if α(v) = v. It is clear that 0V is a
fixed point of every endomorphism of V and a nonzero vector v is a fixed point of
α if and only if 1 ∈ spec(α) and v is an eigenvalue of α associated with 1.
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Proposition 12.1 Let V be a vector space over a field F and let α be an
endomorphism of V having an eigenvalue c. The subset W composed of 0V

and all eigenvectors of α associated to c is a subspace of V .

Proof If w,w′ ∈ W and a ∈ F then α(w + w′) = α(w) + α(w′) = cw + cw′ =
c(w +w′) and α(aw) = aα(w) = a(cw) = c(aw) and so w +w′, aw ∈ W , proving
that W is a subspace of V . �

Let V be a vector space over a field F and let α be an endomorphism of V

having an eigenvalue c. The subset W composed of 0V and all eigenvectors of α

associated with c, which we know by Proposition 12.1 is a subspace of V , is called
the eigenspace of α associated with c. In particular, if 1 is an eigenvalue of α then
the fixed space of α is the eigenspace associated with 1. If 1 /∈ spec(α) then the fixed
space of α is taken to be {0V }.

Example Define α ∈ End(R3) by α :
⎡
⎣a

b

c

⎤
⎦ �→

⎡
⎣a

0
c

⎤
⎦. Then 1 ∈ spec(α) and the

eigenspace of α associated with 1 (namely the fixed space of α) is R

⎧⎨
⎩
⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣0

0
1

⎤
⎦
⎫⎬
⎭.

Example Small errors in recording data may lead to considerable errors in the calcu-
lation of eigenspaces, even if the eigenvalues are calculated correctly. For example,
let a, b, c, e ∈ R and let α and β be the endomorphisms of R

3 represented with

respect to some fixed basis by the matrices

⎡
⎣a 0 0

0 b 0
0 0 c

⎤
⎦ and

⎡
⎣a e e

0 b e

0 0 c

⎤
⎦, respec-

tively. Then spec(α) = spec(β) = {a, b, c}. The eigenspaces of α associated with a,

b, c are R

⎡
⎣1

0
0

⎤
⎦, R

⎡
⎣0

1
0

⎤
⎦, and R

⎡
⎣0

0
1

⎤
⎦. The eigenspaces of β associated with a, b,

c are R

⎡
⎣1

0
0

⎤
⎦, R

⎡
⎣ e

b − a

0

⎤
⎦, and R

⎡
⎣ e(e + c − b)

e(c − a)

(c − a)(c − b)

⎤
⎦.

Example Let V = C(0,1) and let α be the endomorphism of V defined by
α(f ) : x �→ ∫ 1

0 cos(π[x − t])f (t) dt for all f ∈ V . To find the eigenvalues of α,
recall the trigonometric identity

cos(π[x − t]) = cos(πx) cos(πt) + sin(πx) sin(πt).
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Using this identity, we see that if f ∈ V then

α(f ) : x �→
[∫ 1

0
cos(πt)f (t) dt

]
cos(πx) +

[∫ 1

0
sin(πt)f (t) dt

]
sin(πx)

and so the image of α is contained in the subspace W = R{g1, g2} of V , where
g1 : x �→ cos(πx) and g2 : x �→ sin(πx). It is easy to see that α(g1) = 1

2g1 and
α(g2) = 1

2g2, so both of these functions are eigenvectors of α associated with
the eigenvalue 1

2 . Moreover, {g1, g2} is linearly independent. Thus we see that
spec(α) = { 1

2 } and the eigenspace associated with this sole eigenvalue is W .

Proposition 12.2 Let V be a vector space finitely generated over a field F

and let αbe an endomorphism of V . Then the following conditions on a scalar
c are equivalent:
(1) c is an eigenvalue of α;
(2) cσ1 − α /∈ Aut(V );
(3) If A = ΦBB(α) for some basis B of V , then |cI − A| = 0.

Proof (1) ⇔ (2): Condition (1) is satisfied if and only if there exists a nonzero vector
v ∈ V satisfying α(v) = cv, i.e., if and only if (cσ1 −α)(v) = 0V . This is true if and
only if ker(cσ1 − α) �= {0V }. Since V is finitely generated, by Proposition 7.3, we
know that this is true if and only if condition (2) holds.

(2) ⇔ (3): This is a direct consequence of the fact that a matrix is nonsingular if
and only if its determinant is nonzero. �

From Proposition 12.2, we see how to define eigenvalues of square matrices over
a field: if F is a field and n is a positive integer, then c ∈ F is an eigenvalue of a
matrix A ∈ Mn×n(F ) if and only if |cI − A| = 0, namely if and only if the matrix
cI − A is singular. The set of all eigenvalues of A will be denoted by spec(A). In
particular, we observe that a matrix A is nonsingular if and only if 0 /∈ spec(A).

A vector

⎡
⎢⎣

0
...

0

⎤
⎥⎦ �= v ∈ Fn is an eigenvector of A associated with the eigenvalue c if

and only if Av = cv. The subset of Fn consisting of

⎡
⎢⎣

0
...

0

⎤
⎥⎦ and all eigenvectors of

A associated with c is a subspace of Fn called the eigenspace associated with c. In
the case that F equals R or C, the number ρ(A) = max{|c| | c ∈ spec(A)} is called
the spectral radius of the matrix A, and plays a very important part in the numerical
analysis of matrices. Note that if F =C, then ρ(A) is just the radius of the smallest
circle in the complex plane, centered at the origin, containing spec(A). Moreover,
since spec(A) consists precisely of the poles of the function z �→ |zI − A|−1, this
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observation allows the use of powerful techniques of complex analysis in the study
of the spectra of complex matrices.

Calculating the spectra of matrices is a critical tool in many applications of math-
ematics. Thus, for example, in statistics one learns that finding the spectrum of co-
variance matrices is an integral part of several data analysis techniques.

Example It is not necessarily true that ρ(AB) = ρ(A)ρ(B) for square matrices A

and B . For example, if A =
[

0 2
0 0

]
and B =

[
0 0
2 0

]
in M2×2(R), then ρ(A) =

0 = ρ(B), whereas ρ(AB) = 4.

Given a matrix A ∈Mn×n(F ), we note that |cI − A| = |(cI − A)T | = |cI − AT |
and so spec(A) = spec(AT ). However, for each such common eigenvalue, the asso-
ciated eigenvectors may be different.

Example Let A =
⎡
⎣ 1 1 −2

−1 2 1
0 1 −1

⎤
⎦ ∈ M3×3(R). Then spec(A) = {−1,1,2} and so

this is also spec(AT ).

(1) The eigenspace of A associated with −1 is R

⎡
⎣1

0
1

⎤
⎦ and the eigenspace of AT

associated with −1 is R

⎡
⎣ 1

2
−7

⎤
⎦;

(2) The eigenspace of A associated with 1 is R

⎡
⎣3

2
1

⎤
⎦ and the eigenspace of AT

associated with 1 is R

⎡
⎣−1

0
1

⎤
⎦;

(3) The eigenspace of A associated with 2 is R

⎡
⎣1

3
1

⎤
⎦ and the eigenspace of AT

associated with 2 is R

⎡
⎣−1

1
1

⎤
⎦.

It is interesting to note the following. Let F be a field and let n be a positive
integer. If v,w ∈ Fn, then v ∧w = vwT ∈Mn×n(F ) and v 	w = vT w ∈ F . Direct
calculation then yields (v ∧ w)v = (v 	 w)v, showing that v is an eigenvector of
v ∧ w associated with the eigenvalue v 	 w.

Example Let n be a positive integer and let A = [auj ] be an n × n Markov matrix,
which we will consider as an element of Mn×n(C). We claim that ρ(A) ≤ 1. Indeed,
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let c ∈ spec(A) and let v =
⎡
⎢⎣

b1
...

bn

⎤
⎥⎦ ∈ C

n be an eigenvector associated with c. Let

1 ≤ h ≤ n satisfy the condition that |bi | ≤ |bh| for all 1 ≤ i ≤ n. Then Av = cv

implies, in particular, that
∑n

j=1 ahjbj = cbh and so

|c| · |bh| = |cbh| =
∣∣∣∣∣

n∑
j=1

ahjbj

∣∣∣∣∣ ≤
n∑

j=1

ahj |bj | ≤
(

n∑
j=1

ahj

)
|bh| = |bh|.

Hence |c| ≤ 1, as claimed.

Example Let n be a positive integer and let A ∈ Mn×n(R) be a skew-symmetric
matrix. We claim that spec(A) ⊆ {0}, with equality when n is odd. Indeed, let
c ∈ spec(A) and let v ∈ R

n be an eigenvector of A associated with c. Then
−AT v = Av = cv and so −AT (Av) = −AT (cv) = c(−AT v) = c2v. Therefore,

−(Av 	 Av) = −vT AT Av = c2vT v = c2(v 	 v). But if y =
⎡
⎢⎣

b1
...

bn

⎤
⎥⎦ is any vector

in R
n, then y 	 y = ∑n

i=1 b2
i ≥ 0, with equality if and only if y =

⎡
⎢⎣

0
...

0

⎤
⎥⎦. Since

v is nonzero, we conclude that we must have c2 = 0 and so c = 0. Therefore,
spec(A) ⊆ {0}. If n is odd then, by the remark after Proposition 11.7, we know
that A is singular and so 0 ∈ spec(A), establishing equality.

Example Let n be a positive integer and let A ∈ Mn×n(C). If c is a nonzero eigen-
value of A and if v ∈ C

n is an eigenvector associated with c then, by Propo-
sition 11.13, we know that |A|v = adj(A)Av = c[adj(A)]v and so [adj(A)]v =
c−1|A|v. Thus v is also an eigenvector of adj(A) associated with the eigenvalue
c−1|A|.

If F is a field, if n is a positive integer, and if A ∈ Mn×n(F ) is a matrix
having eigenvalue c, then |cI − A| = 0 and so, by Proposition 11.13, we have
(cI − A) adj(cI − A) = O , whence A[adj(cI − A)] = c[adj(cI − A)]. From this
we conclude that each of the columns of adj(cI −A) must belong to the eigenspace
of A associated with c.

Example Let A =
⎡
⎣0 1 0

0 0 1
4 −17 8

⎤
⎦ ∈ M3×3(R). Then one can calculate that

spec(A) = {2 − √
3,2 + √

3,4}. Moreover, adj(4I − A) =
⎡
⎣ 1 −4 1

4 −16 4
16 −64 16

⎤
⎦ and
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it is easy to check that the columns of this matrix are indeed eigenvectors of A

associated with 4.

Proposition 12.3 If V is a vector space finitely generated over a field F and
if α,β ∈ End(V ) then spec(αβ) = spec(βα).

Proof Let c ∈ spec(αβ). If c = 0, this means that αβ /∈ Aut(V ). Therefore, either α

or β is not an automorphism of V , and so βα /∈ Aut(V ) as well. Therefore, we can
assume c �= 0. Let v be an eigenvector of αβ associated with c and let w = β(v).
Then α(w) = αβ(v) = cv �= 0V and so w �= 0V . Moreover, βα(w) = βαβ(v) =
β(cv) = cβ(v) = cw and so w is an eigenvector of βα associated with c. Thus
spec(αβ) ⊆ spec(βα). A similar argument shows the reverse inclusion, and so we
have equality. �

In particular, as a consequence of Proposition 12.3, we see that if F is a field, if
n is a positive integer, and if A,B ∈Mn×n(F ) then spec(AB) = spec(BA).

As we noted at the beginning of the chapter, if we are given a vector space V

finitely generated over a field F and an endomorphism α of V , we would like to
find, to the extent possible, a basis B of V such that the matrix ΦBB(α) is nice, in
the sense that it is amenable to quick and accurate calculations. Let V be a vector
space over a field F (not necessarily finitely generated) and let α ∈ End(V ). Then α

is diagonalizable if and only if there exists a basis B of V composed of eigenvectors
of α.

Example We have already seen that the set B of all functions in R
R of the form

x �→ eax , for some a ∈ R, is linearly independent. Therefore, W = RB is a sub-
space of RR which is not finitely generated, and B is a basis for W . Let α be the
endomorphism of W which assigns to each f ∈ W its derivative. Since each element
of B is an eigenvector of α, we see that α is diagonalizable.

The following result characterizes the diagonalizable endomorphisms of finitely-
generated vector spaces.

Proposition 12.4 Let V be a vector space finitely generated over a field
F and let α ∈ End(V ). Then the following conditions on a basis B =
{v1, . . . , vn} are equivalent:
(1) vi is an eigenvector of α for each 1 ≤ i ≤ n;
(2) ΦBB(α) is a diagonal matrix.

Proof (1) ⇒ (2): By (1), we know that for each 1 ≤ i ≤ n there exists a scalar ci

satisfying α(vi) = civi and so, by definition, ΦBB(α) is the diagonal matrix [aij ]
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given by

aij =
{

ci if i = j,

0 otherwise.

(2) ⇒ (1): If ΦBB(α) = [aij ] is a diagonal matrix then for each 1 ≤ i ≤ n we
have α(vi) = aiivi and so vi is an eigenvector of α for each 1 ≤ i ≤ n. �

Let V be a vector space over a field F and let α ∈ End(V ). If B is a basis of
V made up of eigenvectors of α then, as we have seen above, the elements of B

are also eigenvectors of p(α) for any polynomial p(X) ∈ F [X]. We need not stick
to polynomials: suppose that each v ∈ B is an eigenvector of α associated with an
eigenvalue cv of α. Given any function whatsoever f : spec(α) → F , we can de-
fine the endomorphism f (α) of V by setting f (α) : ∑v∈B avv �→ ∑

v∈B avf (cv)v

and the elements of B are also eigenvectors of f (α). We note that if f and g are
functions from spec(α) to F then f (α)g(α) = g(α)f (α).

Now assume that V is finitely generated over F and that B = {v1, . . . , vn} is a
basis of V made up of eigenvectors of α ∈ End(V ). For each 1 ≤ i ≤ n, let ci be
the eigenvalue of α associated with vi . We have already seen that for each such
i there exists a polynomial pi(X), namely the Lagrange interpolation polynomial,
satisfying the condition that

pi(cj ) =
{

1 if i = j,

0 otherwise.

Thus, given a function f : spec(α) → F , the polynomial p(X) = ∑n
i=1 f (ci)pi(X)

satisfies p(ci) = f (ci) for all 1 ≤ i ≤ n, and so p(α) = f (α). Thus, for finitely-
generated vector spaces, the above generalization does not in fact contribute any-
thing new; it is important, however, in the case of vector spaces which are not finitely
generated.

We now show that the size of the spectrum of an endomorphism of a finitely-
generated vector space is limited.

Proposition 12.5 Let V be a vector space over a field F and let α ∈ End(V ).
If c1, . . . , ck are distinct eigenvalues of α and if vi is an eigenvector of α

associated with ci for each 1 ≤ i ≤ k, then the set {v1, . . . , vk} is linearly
independent.

Proof Assume that the set {v1, . . . , vk} is linearly dependent. Since v1 �= 0V , we
know that the set {v1} is linearly independent. Thus there exists an integer 1 ≤ t < k

such that the set {v1, . . . , vt } is linearly independent but {v1, . . . , vt+1} is linearly de-
pendent. In other words, there exist scalars a1, . . . , at+1, not all of which are equal
to 0, such that

∑t+1
i=1 aivi = 0V and so 0V = ct+1(

∑t+1
i=1 aivi) = ∑t+1

i=1 aict+1vi .
On the other hand, 0V = α(

∑t+1
i=1 aivi) = ∑t+1

i=1 aiα(vi) = ∑t+1
i=1 aicivi . Therefore,

0V = ∑t+1
i=1 aicivi −∑t+1

i=1 aict+1vi = ∑t
i=1 ai(ci −ct+1)vi . But the set {v1, . . . , vt }
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is linearly independent and so ai(ci − ct+1) = 0 for all 1 ≤ i ≤ t . Since, by assump-
tion, ci �= ct+1 for all 1 ≤ i ≤ t , we have ai = 0 for all 1 ≤ i ≤ t and hence at+1 = 0
as well, which is a contradiction. Thus {v1, . . . , vk} must be linearly independent. �

Thus we see that if F is a field and if A ∈ Mn×n(F ), then spec(A) can have at
most n elements. In particular, if F has more than n elements, then there exists an

element c ∈ F � spec(A), and so (cI − A)v �=
⎡
⎢⎣

0
...

0

⎤
⎥⎦ for all v �=

⎡
⎢⎣

0
...

0

⎤
⎥⎦. This implies

that cI − A is nonsingular.
From Proposition 12.5, we see that if α is a an endomorphism of a vector space

V over a field F having distinct eigenvalues c1, . . . , ck , and if Wi is the eigenspace
associated with ci for all 1 ≤ i ≤ t , then the collection {W1, . . . ,Wk} of subspaces
of V is independent. Moreover, if V is finitely generated over F then the number of
elements in spec(α) is no greater than dim(V ).

Proposition 12.6 Let V be a vector space of finite dimension n over a field F .
Then any endomorphism α of V having n distinct eigenvalues is diagonaliz-
able.

Proof This is a direct consequence of Proposition 12.4 and Proposition 12.5. �

Example Let α ∈ End(R2) be defined by α :
[
a

b

]
�→

[
3a − b

3b − a

]
. Then α

([
1
1

])
=[

2
2

]
and so

[
1
1

]
is an eigenvector of α associated with the eigenvalue 2. Also,

α

([
1

−1

])
=

[
4

−4

]
and so

[
1

−1

]
is an eigenvector of α associated with the eigen-

value 4. Thus B =
{[

1
1

]
,

[
1

−1

]}
is a basis for R2 and ΦBB(α) =

[
2 0
0 4

]
.

Example Let α ∈ End(R2) be defined by α :
[
a

b

]
�→

[
a + b

b

]
. If

[
a

b

]
�=

[
0
0

]
and

α

([
a

b

])
= c

[
a

b

]
then cb = b and a + b = ca, and this can happen only when

b = 0 and c = 1. Thus spec(α) = {1} and the eigenspace associated with this sole

eigenvalue is R

[
0
1

]
. Since this is not all of R2, we know that there is no basis of

R
2 made up of eigenvectors of α, and hence α is not diagonalizable.

Note that the converse of Proposition 12.6 is false, as we easily see by taking
α = σ1.
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From the above, we know that if A ∈ Mn×n(R) then the matrix has at most n

distinct eigenvalues. However, it may have many fewer than that. If we assume that
the entries of this matrix were chosen independently and randomly from a standard
normal distribution, how many distinct eigenvalues should we expect? American
mathematicians Alan Edelman, Eric Kostlan, and Michael Shub have shown that if
εn denotes the mathematical expectancy for the number of eigenvalues of such a

matrix in R, then limn→∞ 1√
n
εn =

√
2
π

. The situation over the complex numbers

is quite different. Given a matrix A ∈ Mn×n(C) one can, with probability 1, pick
a matrix B ∈ Mn×n(C) as near to A as we wish, which has n distinct eigenvalues
in C.

If F is a field, if n is a positive integer, and if A ∈ Mn×n(F ), then we can
consider the matrix of polynomials XI − A ∈ Mn×n(F [X]). The determinant of
this matrix, |XI − A|, is a polynomial in F [X] called the characteristic polynomial
of A. Note that this polynomial is always monic and of degree n.

Example The characteristic polynomial of

⎡
⎣1 −1 0

2 1 5
4 2 1

⎤
⎦ ∈ M3×3(R) is X3 −

3X2 − 5X + 27.

Example The characteristic polynomial of A =

⎡
⎢⎢⎣

1 2 1 2
0 1 2 3
3 2 1 1
1 1 2 0

⎤
⎥⎥⎦ ∈ M4×4(R) is

X4 − 3X3 − 11X2 − 25X − 15. If we sketch the graph of the polynomial function
t �→ t4 − 3t3 − 11t2 − 25t − 15, we see that it has real roots in the neighborhoods
of −0.8 and 5.8. (More precisely, they are approximately equal to −0.8062070604
and 5.7448832706.) These are the only real eigenvalues of the matrix A.

Example Let F = GF(3). The characteristic polynomial of A =

⎡
⎢⎢⎣

1 1 1 1
2 0 1 0
0 1 1 0
1 1 1 0

⎤
⎥⎥⎦ ∈

M4×4(F ) equals X4 + X3 + 1 = (X + 2)(X3 + 2X2 + 2X + 2) and so A has only
one eigenvalue, namely 1.

Example The characteristic polynomial of A =
⎡
⎣5 4 2

4 5 2
2 2 2

⎤
⎦ in M3×3(Q) is

(X−10)(X−1)2 and so spec(A) = {1,10}. The eigenspace of A associated with 10

is Q

⎡
⎣2

2
1

⎤
⎦, while the eigenspace of A associated with 1 is Q

⎧⎨
⎩
⎡
⎣−1

1
0

⎤
⎦ ,

⎡
⎣−1

0
2

⎤
⎦
⎫⎬
⎭.
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Example Let F = GF(2) and let A =
[

0 1
1 1

]
∈ M2×2(F ). The characteristic

polynomial of A is p(X) = X2 + X + 1 and, since p(0) = p(1) = 1 we see that
spec(A) = ∅. In fact, it is possible to show that for every prime integer p there is a
symmetric 2 × 2 matrix A over GF(p) satisfying spec(A) = ∅. Later, we will show
that any symmetric matrix over R must have an eigenvalue.

Example Let α be the endomorphism of C2 represented with respect to the canon-

ical basis by the matrix A =
[

1 + i 1
1 1 − i

]
∈ M2×x(C). The characteristic poly-

nomial of A is (X − 1)2 and so spec(A) = 1 The eigenspace associated with it is

C

[
i

1

]
, which has dimension 1. Therefore, α is not diagonalizable.

Proposition 12.7 Let F be a field and let n be a positive integer. If
A ∈ Mn×n(F ) has characteristic polynomial p(X) = ∑n

i=0 aiX
i , then

|A| = (−1)na0.

Proof We note that a0 = p(0) = |0I − A| = | − A| = (−1)n|A| and so |A| =
(−1)na0. �

The speed with which we can compute the characteristic polynomial of a ma-
trix depends on the speed with which we can multiply two matrices. In 1985, Swiss
computer scientist Walter Keller-Gehrig showed that if we can multiply two n × n

matrices over a field F in an order of nc operations, then we can calculate the char-
acteristic polynomial of an n × n matrix over F in an order of nc log(n) operations.
In 2007, French mathematician Clément Pernet and German/Canadian computer
scientist Arne Storjohann constructed a new algorithm with an expected cost on the
order of nc, provided that the field F has at least 2n2 elements. If one has the use of
a computer with n3 parallel processors, then much faster computation times can be
obtained.

Any monic polynomial in F [X] of positive degree is the characteristic polyno-
mial of some square matrix over F . To see this, consider a polynomial p(X) =∑n

i=0 aiX
i , for n > 0. If p(X) is monic, define the companion matrix of p(X),

denoted by comp(p) ∈ Mn×n(F ), to be the matrix [aij ] given by

aij =
⎧⎨
⎩

1 if i = j + 1 and j < n,

−ai−1 if j = n,

0 otherwise.

Otherwise, define comp(p) to be comp(a−1
n p).
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© Mathematical Association of America 2011. All rights re-
served (Macduffee).

Companion matrices were first studied at the
beginning of the twentieth century by German
mathematician Alfred Loewy. The term was first
introduced by the twentieth-century American
mathematician Cyrus Macduffee.

Proposition 12.8 Let F be a field and let n be a positive integer. If p(X) =∑n
i=0 aiX

i ∈ F [X] is monic, then p(X) is the characteristic polynomial of
comp(p) ∈ Mn×n(F ).

Proof We will proceed by induction on n. For n = 1, the result is immediate. If

n = 2 and if p(X) = X2 +a1X+a0, then comp(p) =
[

0 −a0
1 −a1

]
and so the charac-

teristic polynomial of comp(p) is

∣∣∣∣ X a0
−1 X + a1

∣∣∣∣ = p(X) and we are done. Assume

now that n > 2 and the result has been established for n − 1. Then the characteris-

tic polynomial of comp(p) is

∣∣∣∣∣∣∣∣∣

X 0 . . . a0
−1 X . . . a1

. . .
. . .

...

0 . . . −1 X + an−1

∣∣∣∣∣∣∣∣∣
. By Proposition 11.11,

this equals X|comp(q)| + a0(−1)n−1|B|, where q(X) = ∑n−1
i=0 ai+1X

i and where
B ∈ M(n−1)×(n−1)(F ) is an upper-triangular matrix with diagonal entries all equal
to −1. Thus |B| = (−1)n−1 and, by the induction hypothesis, |comp(q)| = q(X).
Thus the characteristic polynomial of comp(p) is Xq(X) + a0 = p(X), as de-
sired. �

Let F be a field and let n be a positive integer. Every nonsingular matrix
P ∈ Mn×n(F ) defines a function ωP from Mn×n(F ) to itself given by ωP : A �→
P −1AP . In fact, ωP ∈ Aut(Mn×n(F )), where ω−1

P = ωP−1 . This is an automor-
phism of F -algebras and, indeed, it can be shown that every automorphism of unital
F -algebras in Aut(Mn×n(F )) is of this form. Therefore, the set of all automor-
phisms of the form ωP is a group of automorphisms of Mn×n(F ) and so defines an
equivalence relation ∼ by setting A ∼ B if and only if B = P −1AP . In this case,
we say that the matrices A and B are similar. From what we have already seen, two
matrices in Mn×n(F ) are similar if and only if they represent the same endomor-
phism of an n-dimensional vector space over F with respect to different bases. One
of the problems before us is to decide, given two square matrices of the same size,
if they are similar or not.

Note that if a matrix A ∈ Mn×n(F ) is similar to O , then it must equal O . Indeed,
if P −1AP = O then A = (PP −1)A(PP −1) = P(P −1AP)P −1 = POP −1 = O .
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Example In M3×3(Q), the matrices

A =
⎡
⎣20 10 10

10 0 10
10 10 10

⎤
⎦ and B =

⎡
⎣ 80 130 100

10 10 10
−50 −80 −60

⎤
⎦

are similar, since B = P −1AP , where P =
⎡
⎣1 2 1

1 0 1
2 3 3

⎤
⎦. Thus we note that a sym-

metric matrix may be similar to a matrix which is not symmetric.

Example The matricesA =
⎡
⎣ 1 0 0

−1 1 1
−1 0 2

⎤
⎦ and B =

⎡
⎣1 1 0

0 1 0
0 0 2

⎤
⎦ in M3×3(Q) are

not similar since, were they similar, the matrices A − I and B − I would also be
similar, and thus have the same rank. But it is easy to see that the rank of A − I

equals 1, while the rank of B − I equals 2.

Example If matrices A,B ∈ Mn×n(F ) are similar, it does not follow that they com-

mute. For example, let A =
⎡
⎣ 1 0 −1

2 3 0
−1 0 −2

⎤
⎦ ∈ M3×3(R). Then P =

⎡
⎣1 0 0

0 1 0
0 1 1

⎤
⎦

is nonsingular and so B = PAP −1 =
⎡
⎣1 1 −1

2 3 0
1 5 −2

⎤
⎦ is similar to A. However,

AB �= BA.

Example Let F be a field and, for each 1 ≤ h ≤ t , let Ah be a square matrix over F ,
which is similar to a square matrix Bh over F . That is to say, there exists a nonsin-
gular square matrix Ph such that Bh = PhAhP

−1
h . Let A be the matrix in block form⎡

⎢⎢⎢⎣
A1 O . . . O

O A2 . . . O
...

...
. . .

...

O O . . . At

⎤
⎥⎥⎥⎦ in which all blocks not on the diagonal are equal to O , and

let B =

⎡
⎢⎢⎢⎣

B1 O . . . O

O B2 . . . O
...

...
. . .

...

O O . . . Bt

⎤
⎥⎥⎥⎦. Then A is similar to B , since B = PAP −1, where

P =

⎡
⎢⎢⎢⎣

P1 O . . . O

O P2 . . . O
...

...
. . .

...

O O . . . Pt

⎤
⎥⎥⎥⎦. We will make us of this fact in the next chapter.
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Proposition 12.9 Let F be a field and let k < n be positive integers.
Let A ∈ Mn×n(F ) be a matrix which can be written in block form as

A =
[

A11 A12
O A22

]
, where A11 ∈ Mk×k(F ) and A22 ∈ M(n−k)×(n−k)(F ). Then

spec(A) = spec(A11) ∪ spec(A22).

Proof Let c ∈ spec(A) and let v ∈ Fn be an eigenvector associated with c. Write

v =
[
v1
v2

]
, where v1 ∈ Fk and v2 ∈ Fn−k . Then

[
A11v1 + A12v2

A22v2

]
=

[
A11 A12
O A22

][
v1
v2

]
= Av = cv =

[
cv1
cv2

]
.

From this we see immediately that if v2 �=
⎡
⎢⎣

0
...

0

⎤
⎥⎦ then c ∈ spec(A22), while if

v2 =
⎡
⎢⎣

0
...

0

⎤
⎥⎦ then c ∈ spec(A11). Therefore, spec(A) is contained in spec(A11) ∪

spec(A22).
Conversely, let c ∈ spec(A11) and let v1 ∈ Fk be an eigenvector associated

with c. Then A

[
v1
O

]
=

[
A11v1

O

]
= c

[
v1
O

]
, proving that c ∈ spec(A). Now assume

that d ∈ spec(A22) � spec(A11) and let v2 ∈ Fn−k be an eigenvector associated
with d . Since d /∈ spec(A11), we know that the matrix B = A11 − dI ∈Mk×k(F ) is

nonsingular. Set v1 = B−1A12(−v2). Then (A − dI)

[
v1
v2

]
=

[
Bv1 + A12v2
(A22 − dI)v2

]
=⎡

⎢⎣
0
...

0

⎤
⎥⎦, showing that d ∈ spec(A). Therefore, spec(A11) ∪ spec(A22) ⊆ spec(A),

proving equality. �

Example Let A =

⎡
⎢⎢⎣

1 1 5 6
−1 1 7 3

0 0 2 1
0 0 −4 3

⎤
⎥⎥⎦ ∈ M4×4(C). Then

spec(A) = spec

([
1 1

−1 1

])
∪ spec

([
2 1

−4 3

])

= {1 ± i} ∪
{

1

2

[
5 ± i

√
15

]}
.
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Proposition 12.10 Similar matrices in Mn×n(F ), where F is a field and
where n is a positive integer, have identical characteristic polynomials.

Proof If A,B ∈ Mn×n(F ) satisfy B = P −1AP then

|XI − B| = ∣∣XI − P −1AP
∣∣ = ∣∣P −1(XI − A)P

∣∣
= |P |−1|XI − A||P | = |XI − A|,

as required. �

Example The converse of Proposition 12.10 is false. Indeed, the matrices

[
1 1
0 1

]

and

[
1 0
0 1

]
are not similar, despite the fact that both of them have the same char-

acteristic polynomial, (X − 1)2.

A generalization of Proposition 12.10 tells us that if P,Q ∈ Mn×n(F ) are non-
singular matrices satisfying |PQ| = 1, then the endomorphism α of Mn×n(F )

given by αPQ : A �→ PAQ satisfies the condition that A and α(A) always have
identical characteristic polynomials. The same goes for the linear transformation
βPQ : A �→ PAT Q. Frobenius proved that any endomorphism of Mn×n(C) which
preserves characteristic polynomials must be of one of these two forms. Note that
endomorphisms of the form αPQ or βPQ are in fact automorphisms of Mn×n(F ).
They also satisfy the property that αPQ(A) is singular if and only if A is singular,
and similarly βPQ(A) is singular if and only if A is singular. Indeed, Dieudonné has
shown that, for any field F , an endomorphism of Mn×n(F ) satisfying this condition
must be of one of these two forms.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

The twentieth-century French mathematician Jean Dieudonné was
one of the founders of the influential group who wrote under the col-
lective name of Nicholas Bourbaki.

Example If A and B are square matrices over a field F , then we know that the
matrices AB and BA are not necessarily equal. They are also not necessarily similar.

For example, if A =
[

1 0
1 0

]
and B =

[
0 0
1 1

]
then AB = O �= BA, and so AB

and BA are not similar. Nonetheless, by Proposition 12.3, we see that spec(AB) =
spec(BA).
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Proposition 12.10 can be used to facilitate computation, as the following example
shows.

Example Let n be a positive integer, let F be a field, and let A = [aij ] ∈Mn×n(F )

be a symmetric tridiagonal matrix. That is to say, the entries of A satisfy the condi-
tion that aij = aji when |i−j | = 1 and aij = 0 when |i−j | > 1. Set p0(X) = 0 and,
for each 1 ≤ k ≤ n, let pk(X) be the characteristic polynomial of the k×k submatrix
of A consisting of the first k rows and first k columns of the matrix XI −A ∈ F [X].
Then pn(X) is the characteristic polynomial of A and we have p1(X) = X − a11

and pk(X) = (X − akk)pk−1(X) − a2
ijpk−2(X) for each 2 ≤ k ≤ n. This recursion

relation allows us to compute the characteristic polynomial of A quickly. There-
fore, if A is any symmetric matrix, a good strategy is to try and find a symmetric
tridiagonal matrix similar to it and then compute its characteristic polynomial.

Let α be an endomorphism of a vector space V finitely generated over a field F

and let c ∈ spec(α). The algebraic multiplicity of c is the largest integer k such that
(X − c)k divides the characteristic polynomial of α. The geometric multiplicity of c

is the dimension of the eigenspace of α associated with c. The geometric multiplicity
of c is not greater than its algebraic multiplicity, but these two numbers need not be
equal, as the following examples show. If these two multiplicities are equal, we say
that c is a semisimple eigenvalue of α; an eigenvalue which is not semisimple is
defective. In particular, if the algebraic multiplicity of c is 1 then the same must be
true for its geometric multiplicity. In that case, we say that c is a simple eigenvalue
of α. If at least one eigenvalue of α has geometric multiplicity greater than 1, then
α is derogatory; otherwise, it is nonderogatory.

Example If α ∈ End(R2) is defined by α :
[
a

b

]
�→

[
a + b

b

]
then c = 1 is an eigen-

value of α with associated eigenspace R

[
0
1

]
and so the geometric multiplicity of

c is 1. On the other hand, α is represented with respect to the canonical basis by

the matrix

[
1 1
0 1

]
, so its characteristic polynomial is (X − 1)2, implying that the

algebraic multiplicity of c is 2.

Example Let α ∈ End(R3) be the endomorphism represented with respect to the

canonical basis by the matrix

⎡
⎣2 3 1

3 2 4
0 0 −1

⎤
⎦. The characteristic polynomial of α

is (X − 5)(X + 1)2 and so spec(α) = {−1,5}, where the algebraic multiplicity of
−1 equals 2 and the algebraic multiplicity of 5 equals 1. The eigenspace associated

with −1 is R

⎡
⎣−1

1
0

⎤
⎦ and the eigenspace associated with 5 is R

⎡
⎣1

1
0

⎤
⎦. Thus both
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eigenvalues have geometric multiplicity 1. Hence, 5 is a simple eigenvalue of α

whereas −1 is defective.

Let n be a positive integer. If α ∈ End(Rn) is represented with respect to a given
basis of R

n by a matrix all entries in which are positive, then Perron, using ana-
lytic methods, showed that the eigenvalue of largest absolute value of α is simple
and positive, and has an associated eigenvector all entries of which are positive.
This result has many important applications in statistics and economics, especially
in input–output analysis. It was also used by Thurston in his classification of sur-
face diffeomorphisms in topology. Perron’s results were later extended by Frobe-
nius to certain matrices all entries in which are nonnegative, and later by Karlin to
certain endomorphisms of spaces which are not finite-dimensional. In 1948, Philip
Stein and R.L. Rosenberg used Frobenius’ extension of Perron’s results to com-
pare the convergence rates of the Jacobi and Gauss–Seidel iteration methods for
solution of systems of linear equations. Their results have since been considerably
extended.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Perron, Frobe-
nius, Thurston).

The twentieth-century German mathematician Oskar Perron worked in many areas of al-
gebra and geometry. Fellow German mathematician Georg Frobenius is known for his
important work in group theory and his work on bilinear forms. He was also the first to
consider the rank of a matrix. William Thurston is a contemporary American geometer;
the twentieth-century American applied mathematician Samuel Karlin published exten-
sively in probability and statistics, as well as mathematical biology.

Proposition 12.11 Let V be a vector space finitely generated over a field F

and let αbe an endomorphism of V satisfying the condition that the charac-
teristic polynomial of α is completely reducible. Then α is diagonalizable if
and only if every eigenvalue of α is semisimple.

Proof Let spec(α) = {c1, . . . , ck}. First of all, we will assume that there exists a
basis D of V such that ΦDD(α) is a diagonal matrix. For each 1 ≤ j ≤ k, denote
by m(j) the number of times that cj appears on the diagonal of ΦDD(α). Then∑k

j=1 m(j) = n and, by Proposition 12.4, we know that for each 1 ≤ j ≤ k there ex-
ists a subset of D, having m(j) elements, which is a basis for the eigenspace of α as-
sociated with cj . Moreover, the characteristic polynomial of α is

∏k
j=1(X − cj )

m(j)
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and so m(j) equals both the algebraic multiplicity and the geometric multiplicity of
cj for each 1 ≤ j ≤ k, proving that each such cj is semisimple. Conversely, as-
sume that each cj is semisimple, and for each 1 ≤ j ≤ k let m(j) be the algebraic
(and geometric) multiplicity of cj . Let Dj be a basis for the eigenspace of α asso-
ciated with cj , and let D = ⋃k

j=1 Dj . Then D is a linearly-independent subset of
V having n elements, and so is a basis of V over F . The result then follows from
Proposition 7.5. �

Example The condition in Proposition 12.11 that the characteristic polynomial of α

be completely reducible is essential. To see this, consider the endomorphism α of R3

represented with respect to the canonical basis by the matrix A =
⎡
⎣ 0 1 0

−1 0 0
0 0 1

⎤
⎦.

The characteristic polynomial of α is (X−1)(X2 +1) ∈ R[X] and so spec(α) = {1},
where 1 is a simple eigenvalue of α and so it is surely semisimple. The eigenspace

of α associated with this eigenvalue is R

⎡
⎣1

0
0

⎤
⎦ and so its dimension is 1. Hence α is

not diagonalizable.

Example Consider the endomorphism α of R
3 represented with respect to the

canonical basis by the matrix

⎡
⎣ −1 −1 −2

8 −11 −8
−10 11 7

⎤
⎦ and let β be the endomor-

phism of R
3 represented with respect to the canonical basis by the matrix⎡

⎣ 1 −4 −4
8 −11 −8

−8 8 5

⎤
⎦. These two endomorphisms have the same characteristic poly-

nomial X3 + 5X2 + 3X − 9 = (X − 1)(X + 3)2. Thus the algebraic multiplicity
of the eigenvalue 1 equals 1 and the algebraic multiplicity of the eigenvalue −3
equals 2. But for α, the geometric multiplicity of −2 equals 1, so α is not diagonal-
izable. On the other hand, for β the geometric multiplicity of −2 equals 2, and so β

is diagonalizable.

Let F be a field and let (K,•) be an associative unital F -algebra. If v ∈ K

and if p(X) = ∑k
i=0 ciX

i ∈ F [X], then p(v) = ∑k
i=0 civ

i ∈ K . For any polyno-
mial q(X) ∈ F [X] we have p(v) • q(v) = q(v) • p(v). In particular, v • p(v) =
p(v) • v. It is clear that Ann(v) = {p(X) ∈ F [X] | p(v) = 0K} is a subspace
of F [X]. If p(v) = 0K , we say that v annihilates the polynomial p(X).

In particular, we note that all of the above is true for the associative uni-
tal F -algebra Mn×n(F ), where n is a positive integer. We note that if A ∼ B

in Mn×n(F ) then there is a nonsingular matrix P such that B = P −1AP and
so p(B) = P −1p(A)P so that if p(A) = O then p(B) = O . Thus we see that
Ann(A) = Ann(B) whenever the matrices A and B are similar.
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Example Let A =
[

2 1
1 0

]
∈ M2×2(R) and let p(X) = X2 − X + 2 ∈ R[X]. Then

p(A) = A2 −A+2I =
[

5 1
1 3

]
. If q(X) = X2 −2X −1 then q(A) = O so q(X) ∈

Ann(A).

Proposition 12.12 Let F be a field and let (K,•) be an associative uni-
tal F -algebra finitely generated over F . Then Ann(v) is nontrivial for each
v ∈ K .

Proof Let dim(V ) = n. If v ∈ K then {v0, v1, . . . , vn} cannot be a linearly in-
dependent set and so there exist scalars a0, . . . , an, not all equal to 0, such that∑n

i=0 aiv
i = 0K . In other words, there exists a nonzero polynomial p(X) =∑n

i=0 aiX
i in Ann(v). �

We now show why one cannot define “three-dimensional complex numbers”.

Proposition 12.13 If n is an odd integer greater than 1 then there is no way
of defining on R

n the structure of an R-algebra which is also a field.

Proof Assume that we can define an operation on R
n (which we will denote by

concatenation) which turns it into an R-algebra which is also a field, and let v1 be
the identity element for this operation. Then V �= Rv1 since dim(V ) > 1. Pick an
element y ∈ V �Rv1 and let α ∈ End(V ) be given by α : v �→ yv, which is repre-
sented with respect to the canonical basis of Rn by a matrix A. The characteristic
polynomial p(X) of A belongs to R[X] and has odd degree; therefore, it has a root
c in R. Thus p(X) = (X − c)kq(X) for some k ≥ 1 and some q(X) ∈R[X] satisfy-
ing q(c) �= 0. Let β ∈ End(V ) be given by β : v �→ (y − cv1)

kv. Then β �= σ0 since
y /∈ Rv1 and 0V �= q(c) = q(cv1). But then (y − cv1)

kq(cv1) = 0V , contradicting
Proposition 2.3(12). �

Let F be a field and let (K,•) be an associative unital F -algebra. If v ∈ K sat-
isfies the condition that Ann(v) is nontrivial then Ann(v) must contain a polyno-
mial p(X) = ∑n

i=0 aiX
i of minimal degree. This means, in particular, that an �= 0

and so the monic polynomial a−1
n p(X) also belongs to Ann(v). We claim that it

is the unique monic polynomial of minimal degree in Ann(v). Indeed, if q(X) is
a monic polynomial of degree n belonging to Ann(v) not equal to a−1

n p(X), then
r(X) = q(X) − a−1

n p(X) ∈ Ann(v). But deg(r) < n, contradicting the minimality
of the degree n of p(X). Thus we see that Ann(v), if nonempty, contains a unique
monic polynomial of minimal positive degree, which we call the minimal polyno-
mial of v over F and denote by mv(X).
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Example We know that C is an associative unital R-algebra. If c = a + bi ∈ C�R,
then its minimal polynomial over R is (X − c)(X − c) = X2 − 2aX + (a2 + b2).

In particular, if F is a field and if n is a positive integer, then any matrix
A ∈ Mn×n(F ) has a minimal polynomial, which we denote by mA(X). If A and
B are similar matrices, then mA(X) = mB(X). Similarly, if V is a vector space
finitely generated over a field F , and if α ∈ End(V ) then α has a minimal polyno-
mial mα(X), and this equals the minimal polynomial of ΦDD(α) for any basis D

of V . If f (X) ∈ F [X] then it is easy to see that f (X) = mcomp(f )(X) and so every
polynomial is the minimal polynomial of some matrix.

Example Let (K,•) be an associative unital entire R-algebra. Assume that v ∈ K

has a minimal polynomial mv(X) ∈ R[X]. By Proposition 4.4, we know that
mv(X) = ∏t

i=1 pi(X), where the pi(X) are irreducible polynomials of degree at
most 2. But then

∏t
i=1 pi(v) = 0K and, since K is entire, there is some index h

such that ph(v) = 0K . By minimality, this means that mv(X) = ph(X). We thus
conclude that any element of v having a minimal polynomial has one of degree at
most 2.

Proposition 12.14 Let F be a field and let (K,•) be an associative
F -algebra finitely generated over F . If v ∈ K satisfies the condition that
Ann(v) is nontrivial and if p(X) ∈ Ann(v), then there is a polynomial
q(X) ∈ F [X] satisfying p(X) = mv(X)q(X).

Proof If p(X) is the 0-polynomial, pick u(X) to be the 0-polynomial, and we are
done. Therefore, assume that deg(p) ≥ 0. From Proposition 4.2, we know that we
can write p(X) = mv(X)q(X) + r(X), where q(X), r(X) ∈ F [X], with deg(r) <

deg(mv). Since p(v) = 0K , we see that 0K = mv(v) • q(v) + r(v) = r(v). Since
deg(v) < deg(mA), we must have deg(v) = −∞, and so p(X) = mv(X)q(X). �

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

This fundamental result was first established at the beginning of the
twentieth century by the German mathematician Kurt Hensel.
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Proposition 12.15 Let F be a field and let (K,•) be an associative unital
F -algebra with multiplicative identity e. If v ∈ K has a minimal polynomial
mv(X) = ∑n

i=0 aiX
i then:

(1) v is a unit of K if and only if a0 �= 0; and
(2) If v is a unit of K then v−1 = g(v), where g(X) = ∑n

i=1(−a−1
0 ai)X

i−1 ∈
F [X].

Proof If a0 �= 0 then mv(v) = 0K implies that e = a−1
0 [−∑n

i=1 aiv
i] =

a−1
0 [−∑n

i=1 aiv
i−1] • v = g(v) • v = v • g(v) and so v is a unit and v−1 =

g(v). Conversely, assume that v is a unit. Had we a0 = 0, we would have
0V = mv(v) = v • [∑n

i=1 aiv
i−1] and so 0K = v−1mv(v) = ∑n

i=1 aiv
i−1. Thus∑n

i=1 aiX
i−1 ∈ Ann(v), contradicting the minimality of the degree mv(X). Hence

a0 �= 0. �

It is important to note that the minimal polynomial of a matrix over a field need
not equal its characteristic polynomial. For example, if we consider I ∈ Mn×n(F )

for any field F and any integer n > 1, then the characteristic polynomial of I is
(X − 1)n whereas its minimal polynomial is X − 1.

Example Let F be a field. The matrix A =
[

1 0
0 0

]
∈ M2×2(F ) annihilates the

polynomial X(X − 1), and this is in fact its minimal polynomial. It is also the char-
acteristic polynomial of A. Thus we see that the minimal polynomial of a matrix
does not have to be irreducible. Notice too that the rank of A equals 1, but the de-
gree of its minimal polynomial is 2. Thus the degree of the minimal polynomial of
a matrix may be larger than its rank.

Example Let F be a field. The matrix A =
⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦ ∈M3×3(F ) annihilates the

polynomial X(X − 1), and this is in fact its minimal polynomial. The characteristic
polynomial of A is X2(X − 1).

Example One can check that

⎡
⎣1 0 0

0 3 0
0 0 3

⎤
⎦,

⎡
⎣1 0 0

0 1 0
0 0 3

⎤
⎦ ∈ M3×3(Q) are not

similar, but they both have the same minimal polynomial, namely (X − 1) ·
(X − 3).

Example Proposition 12.15 can be used to calculate the inverse of a nonsingular
matrix, though it is rarely the most efficient method of doing so. For example, the

matrix A =
⎡
⎣ 2 −2 4

2 3 2
−1 1 −1

⎤
⎦ has minimal polynomial X3 − 4X2 + 7X − 10 = 0
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so

A−1 = 1

10

(
A2 − 4A + 7I

) = 1

10

⎡
⎣−5 2 −16

0 2 4
5 0 10

⎤
⎦ .

Proposition 12.16 (Cayley–Hamilton Theorem) Let F be a field and let n

be a positive integer. Then every matrix in Mn×n(F ) annihilates its charac-
teristic polynomial.

Proof Let A be a matrix in Mn×n(F ) having minimal polynomial p(X) = Xn +∑n−1
i=0 aiX

i . Let us look at the matrix [gij (X)] = adj(XI − A) ∈ Mn×n(F [X]),
where each gij (X) is a polynomial of degree at most n − 1. Then we can write this
matrix in the form

∑n
i=1 BiX

n−i , where the Bi are matrices in Mn×n(F ). More-
over, we know that

p(X)I = |XI − A|I = (XI − A) adj(XI − A) = (XI − A)

(
n∑

i=1

BiX
n−i

)
.

Equating coefficients of the various powers of X, we thus see

B1 = I,

B2 − AB1 = an−1I,

B3 − AB2 = an−2I,

...

Bn − ABn−1 = a1I,

−ABn = a0I.

For 1 ≤ h ≤ n, multiply both sides of the hth equation above on the left by An+1−h

and then sum both sides, to obtain O = p(A). �

We see from Proposition 12.14 and Proposition 12.16 that the minimal polyno-
mial of any n×n matrix over a field divides its characteristic polynomial and so the
degree of the minimal polynomial is at most n.

Let V be a vector space finitely generated over a field F and let σ0 �= α ∈ End(V ).
In Proposition 12.4, we saw that α is diagonalizable if and only if there is a basis
that is composed of eigenvectors of V . Moreover, if spec(α) = {c1, . . . , ck} and
if, for each 1 ≤ i ≤ k, we denote the eigenspace of α associated with ci by Wi ,
then for each 1 ≤ i ≤ k we have a projection πi ∈ End(V ) satisfying the following
conditions:
(1) im(πi) = Wi ;
(2) π1 + · · · + πn = σ1;



12 Eigenvalues and Eigenvectors 277

(3) πiπj = σ0 whenever i �= j ;
(4) α = c1π1 + · · · + ckπk .
For each 1 ≤ h ≤ k, let ph(X) be the hth Lagrange interpolation polynomial de-
termined by c1, . . . , ck . Then we can check that πh = ph(α) for each h, since
ph(X)(X − ch) is just a scalar multiple of the minimal polynomial of α.

Is it possible to simultaneously diagonalize two distinct endomorphisms of V ?
Indeed, let V be a vector space finitely generated over a field F and let α and
β be distinct elements of End(V ) � {σ0}. There exists a basis D of V such that
both ΦDD(α) and ΦDD(β) are diagonal matrices if and only if the elements of D

are eigenvectors of α as well as of β . Suppose that we have in hand such a basis
D = {u1, . . . , uk}. Since diagonal matrices commute with each other, we see that
ΦDD(αβ) = ΦDD(α)ΦDD(β) = ΦDD(β)ΦDD(α) = ΦDD(βα) and so αβ = βα.
Therefore, a necessary condition for both endomorphisms of V to be represented by
diagonal matrices with respect to the same basis is that they form a commuting pair.

We also note that if D is a basis for a vector space V over a field F then the set
of all endomorphisms α of V satisfying the condition that ΦDD(α) is a diagonal
matrix is a subspace of End(V ). Indeed, this is an immediate consequence of the
fact that the set of all diagonal n × n matrices is a subspace of Mn×n(F ).

Proposition 12.17 Let V be a vector space over a field F and let α, β be a
commuting pair of endomorphisms of V . Then p(α)q(β) = q(β)p(α) for any
p(X), q(X) ∈ F [X].

Proof Initially, we will consider the special case of q(X) = X. If p(X) =∑n
i=0 aiX

i then βα2 = (βα)α = (αβ)α = α(βα) = α(αβ) = α2β , and, by induc-
tion, we similarly have βαk = αkβ for every positive integer k. Therefore

βp(α) = β

(
n∑

i=0

aiα
i

)
=

n∑
i=0

aiβαi =
n∑

i=0

aiα
iβ =

(
n∑

i=0

aiα
i

)
β = p(α)β.

Now a proof similar to the first part shows that p(α)βk = βkp(α) for every positive
integer k and hence, by a proof similar to the second part, we get p(α)q(β) =
q(β)p(α) for any p(X), q(X) ∈ F [X]. �

As a consequence of this we note that if α,β ∈ End(V ) are commuting projec-
tions then (αβ)2 = (αβ)(αβ) = α(βα)β = α(αβ)β = α2β2 = αβ and so αβ is a
projection as well.

Proposition 12.18 Let V be a vector space finitely generated over a field F

and let α,β ∈ End(V ) be diagonalizable endomorphisms of V . Then there
exists a basis of V relative to which both α and β can be represented by
diagonal matrices if and only if αβ = βα.
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Proof We have already noted that if α and β can both be represented by diagonal
matrices with respect to a given basis of V then we must have αβ = βα. Con-
versely, assume that α and β are diagonalizable endomorphisms of V satisfying
αβ = βα. Then, as we have already seen, there exist distinct scalars c1, . . . , ck

and projections π1, . . . , πk ∈ End(V ) such that π1 + · · · + πk = σ1, πiπj = σ0

for i �= j , and c1π1 + · · · + ckπk = α. Similarly, there exist scalars d1, . . . , dt

and projections η1, . . . , ηk ∈ End(V ) such that η1 + · · · + ηk = σ1, ηiηj = σ0 for
i �= j , and d1η1 + · · · + dkηk = β . Therefore, α = ασ1 = (

∑k
i=1 ciπi)(

∑t
j=1 ηj ) =∑k

i=1
∑t

j=1 ciπiηj and β = βσ1 = (
∑t

j=1 djηj )(
∑k

i=1 πi) = ∑t
j=1

∑k
i=1 djηjπi .

Since we saw that for each 1 ≤ i ≤ k we have πi = pi(α) for some pi(X) ∈ F [X]
and similarly for each 1 ≤ j ≤ t we have ηj = qj (β) for some qj (X) ∈ F [X], we
conclude that πiηj = ηjπi for each such i and j . Call this common value θij . By
the comments after Proposition 12.17, we see that θij is also a projection in End(V ).

We note that θij θhm = πiηjπhηm = πiπhηjηm and this equals σ0 when i �= j or
h �= m. Thus

∑k
i=1

∑t
j=1 θij = (

∑k
i=1 πi)(

∑t
j=1 ηj ) = σ1. Hence we have shown

that α and β are simultaneously diagonalizable, using those projections θij which
are nonzero (as some of them may be zero). �

We now turn to another classical result.

Proposition 12.19 Let V be a vector space over a field F and let K be a
subalgebra of End(V ) such that there is no nontrivial proper subspace of
V which is invariant under every α ∈ K . Suppose that β ∈ End(V ) has a
nonempty spectrum and commutes with every element of K . Then β = σc for
some c ∈ F .

Proof Pick c ∈ spec(β) and let W be the eigenspace of β associated with c. This is
a nontrivial subspace of V . If α ∈ K and w ∈ W then βα(w) = αβ(w) = α(cw) =
cα(w) and so α(w) ∈ W . Thus W is a nontrivial subspace of W invariant under
every α ∈ K and so, by assumption, it cannot be proper. Therefore, W = V and so
β = σc. �

Recall that if the field F is algebraically closed then any element of End(V ) other
than σ0 has a nonempty spectrum.

Proposition 12.20 Let V be a vector space over an algebraically-closed field
F and let K be a unital subalgebra of End(V ) such that there is no nontrivial
proper subspace of V which is invariant under every α ∈ K . Let v ∈ V and let
W be a finitely-generated subspace of V satisfying the condition that if α ∈ K

and W ⊆ ker(α) then v ∈ ker(α). Then v ∈ W .
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Proof We will prove the result by induction on n = dim(W). If n = 0 then W

is trivial. Since K is unital, σ1 ∈ K and W ⊆ ker(σ1). Therefore, by hypothesis,
v ∈ ker(σ1) and so v = 0V ∈ W .

Now assume, inductively, that n > 1 and that the result has been established for
all subspaces of V of dimension less than n. Pick 0V �= w0 ∈ W and let W1 be a
complement of Fw0 in W . Set L = {α ∈ K | W1 ⊆ ker(α)}. This set is nonempty
since σ0 ∈ L. Moreover, it is in fact a subspace of L as a vector space over F .
Moreover, if α ∈ L and β ∈ K then βα ∈ L, so in particular L is a subalgebra of K .
Moreover, Y = {α(w0) | α ∈ L} is a subspace of V .

Since w0 /∈ W1, we know that there exists an element α0 of L satisfying
w0 /∈ ker(α0) and so Y is nontrivial. However, β(y) ∈ Y for each y ∈ Y and β ∈ K .
Thus Y is invariant under every element of K and so, by hypothesis, Y = V . Define
the function θ : V → V by θ : α(w0) �→ α(v). This function is well-defined for if
α1(w0) = α2(w0) then w0 ∈ ker(α1 − α2) and so W ⊆ ker(α1 − α2). Hence, by as-
sumption, v ∈ ker(α1 − α2), i.e., α1(v) = α2(v). It is straightforward to check that
in fact θ ∈ End(V ).

If β ∈ K then (θβ)(α(w0)) = θ(βα(w0)) = βα(v) = β(θα(w0)) = (βθ)(α(w0))

and so θ commutes with every element of K . By Proposition 12.19, this implies that
θ = σc for some c ∈ C. Thus, for any α ∈ K we have α(v) = θα(w0) = cα(w0) =
α(cw0) and so α(v − cw0) = 0V . By the induction hypothesis, this implies that
v − cw0 ∈ W0 and so v ∈ W , as desired. �

Proposition 12.21 (Burnside’s Theorem) Let V be a vector space finitely
generated over an algebraically-closed field F and let K be a unital subal-
gebra of End(V ) the elements of which commute with all endomorphisms of
the form σc for c ∈ F . Assume furthermore that there is no nontrivial proper
subspace of V which is invariant under every α ∈ K . Then K = End(V ).

Proof Pick a basis {v1, . . . , vn} for V over F and, for all 1 ≤ i, j ≤ n, let θij be the
endomorphism of V defined by the condition that

θij : vk �→
{

vj if k = i,

0V otherwise.

This is a basis for End(V ) and so it suffices to show that θij ∈ K for all 1 ≤ i, j ≤ n.
Fix i ∈ {1, . . . , n} and let

Li = {
α ∈ K | α(vh) = 0V for all h �= i

}
.

By Proposition 12.20, there is an element α0 of Li satisfying α0(vi) �= 0V and so, as
in the proof of that proposition, we see that {α(vh) | α ∈ Li} equals V . In particular,
if 1 ≤ j ≤ n there exists an element βj of Li satisfying βj (vi) = vj . Thus θij =
βj ∈ K . �
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With kind permission of the Archives of the Mathematisches
Forschungsinstitut Oberwolfach (Tate).

The British mathematician William Burnside pub-
lished important works on group theory at the end
of the nineteenth century. Burnside’s original result
has been extensively generalized. The above proof
is based on the proof of one such generalization,
by the twentieth-century American mathematician
John Tate.

Proposition 12.21 holds for the case of F = C. If the field F is not algebraically
closed, this theorem may not hold.

Example Let F = R and let α be the endomorphism of R2 defined by α :
[
a

b

]
�→[−b

a

]
. Then α2 = −σ1 and so K = {cα + cσ1 | c ∈ R} is a proper subalgebra of

End(R2) for which there are no nontrivial proper subspaces of R2 invariant under
every element of K .

Algorithms for the computation of the eigenvalues and eigenvectors of a given
matrix are usually very complicated, especially if speed of computation is a major
consideration. Therefore, we shall not go into the description of such algorithms
in detail. As a rule of thumb, it is best to try to compute eigenvectors directly, and
not through finding roots of the characteristic polynomial, since small errors in the
computation of eigenvalues may often lead to large errors in the computation of the
corresponding eigenvectors. For matrices over R, there are often reasonably effi-
cient iterative methods to find at least some of the eigenvectors. We will bring here
one example to find an eigenvector associated with the real eigenvalue of a ma-
trix over R having greatest absolute value (often called the dominant eigenvalue),
under assumption that such an eigenvalue indeed exists. The algorithm is based
on the observation that if c is an eigenvalue of a matrix A ∈ Mn×n(R) then ck

is an eigenvalue of Ak . Hence, if k is sufficiently large, the matrix A(Ak) is ap-
proximately equal to cAk . Therefore, if we select an arbitrary vector v(0) ∈ R

n and
successively define vectors v(1), v(2), . . . by setting v(i+1) = Av(i) for each i ≥ 0,
then Av(k) = Ak+1v(0) and this is roughly equal to cv(k). So, if the circumstances
are amenable (and we will not go into the precise conditions necessary for this to
happen), the vector v(k) is a reasonable approximation to an eigenvector of A as-
sociated with c. Of course, we must always remember that repeated computations
lead to accumulating roundoff and truncation errors; one way of combating these is
to divide each entry in v(i) by the absolute value of the largest entry, and use this
“normalized” vector in the next iteration.
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With kind permission of NPL (Wilkinson); with kind permis-
sion of the Archives of the Mathematisches Forschungsinstitut
Oberwolfach (von Mises).

Of the many numerical analysts who studied com-
putational methods for finding eigenvalues, one of
the most important is the British mathematician
James H. Wilkinson, a former assistant of Alan
Turing and one of the major early innovators in nu-

merical linear algebra. The iteration algorithm given here was first studied in the 1920s by
the Austrian applied mathematician Richard von Mises, who later emigrated to the United
States.

After one calculates the dominant eigenvalue of a matrix in Mn×n(R), there
are various techniques, known as deflation techniques, for creating a new matrix in
M(n−1)×(n−1)(R) the eigenvalues of which are the same as all of the eigenvalues of
the original matrix, except for the dominant eigenvalue.

Example Consider A =
[

5 1
−3 1

]
∈ M2×2(R) and let us pick v(0) =

[
1
1

]
, then

Av(0) =
[

6
−2

]
, and so we will take v(1) =

[
1

− 1
3

]
;

Av(1) = 1

3

[
14

−10

]
, and so we will take v(2) =

[
1

− 5
7

]
;

Av(2) = 1

7

[
30

−26

]
, and so we will take v(3) =

[
1

− 15
13

]
;

Av(3) = 1

13

[
62

−58

]
, and so we will take v(4) =

[
1

− 29
31

]
;

Av(4) = 1

31

[
126

−122

]
, and so we will take v(5) =

[
1

− 61
63

]
.

It seems that this sequence of vectors is converging to

[
1

−1

]
and, indeed, one

can check that this is an eigenvector of A associated with the eigenvalue 4.
Again, preconditioning can be used to make iterative methods for finding eigen-

values converge more rapidly.

Example Let n be a positive integer and let A ∈ Mn×n(R) be a matrix of the form
[cB + (1−c)D]T , where B ∈Mn×n(R) is a Markov matrix, c ∈R satisfies 0 ≤ c ≤

1, and D =
⎡
⎢⎣

1
...

1

⎤
⎥⎦∧

⎡
⎢⎣

d1
...

dn

⎤
⎥⎦ for nonnegative real numbers di satisfying

∑n
i=1 di = 1.
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Such matrices have been called Google matrices since they are needed for the Page-
Rank algorithm used by the internet search engine Google™ to compute an estimate
of webpage importance for ranking search results (for these purposes, a typical value

for c is 0.85). The value of n can be very large, often far larger than 109.

One can show that the eigenvalues e1, . . . , en of such a matrix satisfy 1 = |e1| ≥
|e2| ≥ · · · ≥ |en| ≥ 0, and so the power method mentioned above can be (and is) used
by Google to rapidly compute an eigenvector associated to e1. Stanford University
researchers Taher Haveliwala and Sepandar Kamvar have shown that for any Google
matrix, |e2| ≤ c, with equality happening under conditions that hold in the case of
those matrices arising in this particular application. Eigenvectors corresponding to
this second eigenvalue can be used to detect and combat link spamming on the
internet.

One can also consider various generalizations of the eigenvalue problem. Thus,
for example, given endomorphisms α and β of a vector space V , one can seek to find
all scalars c such that cβ − α is not monic. Problems of this sort arise naturally, for
example, in plasma physics and in the design of control systems. Very often, such
problems can be formulated as a matter of minimizing the largest generalized eigen-
value of a pair of symmetric matrices. When β is an automorphism, as is usually the
case, such generalized eigenvalue problems can be reduced to the usual eigenvalue
problem for the endomorphism β−1α, but there are often reasons for not wanting
to do so. For example, even if both α and β are represented with respect to a given
basis by symmetric matrices, the matrix representing β−1α may not be symmetric.
Therefore, some specialized algorithms have been developed to find solutions of the
generalized eigenvalue problem directly.

If V has finite dimension n and the endomorphisms α and β are represented
with respect to some basis by matrices A and B , respectively, one can look at the
generalized characteristic polynomial |XB −A|. Problems arise, however, since the
degree of this polynomial may be less than n, if the matrix B is singular. In fact, this
polynomial may even be the 0-polynomial.

A further generalization of the eigenvalue problem is the following: Given en-
domorphisms α0, . . . , αn of V , find all scalars c such that the endomorphism∑n

i=0 ciαi is not monic. Various techniques have been developed to handle this
problem directly in special cases. Also, it can sometimes be reduced to the case of
n = 1. For example, finding a vector 0V �= v ∈ V in the kernel of c2α2 + cα1 +α0 is

equivalent to finding a nonzero element of the form

[
cv

v

]
in the kernel of cβ1 − β0,

where the βi are the endomorphisms of V 2 defined by

β0 :
[
x

y

]
�→

[
α1(x) + α0(y)

α0(y)

]
and β1 :

[
x

y

]
�→

[−α2(x)

α0(y)

]
.
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Exercises

Exercise 738
Let n be a positive integer and let A ∈ Mn×n(Q). Let c1, . . . , cn be the list of
(not necessarily distinct) eigenvalues of A, considered as a matrix in Mn×n(C).
Show that

∑n
i=1 ci and

∏n
i=1 ci are rational numbers.

Exercise 739
Let F be a field, let n be a positive integer, and let A,B ∈ Mn×n(F ). Assume
that A and B have the same characteristic polynomial p(X) ∈ F [X]. Is it neces-
sarily true that p(X) is the characteristic polynomial of AB?

Exercise 740
Find infinitely-many matrices in M3×3(R), all of which have characteristic poly-
nomial X(X − 1)(X − 2).

Exercise 741

Find the characteristic polynomial of

⎡
⎣3 2 2

1 4 1
2 −4 −1

⎤
⎦ ∈M3×3(R).

Exercise 742
Let a, b, c ∈ R. Find the characteristic polynomial of the matrix

⎡
⎢⎢⎣

0 0 0 a

a 0 0 b

0 b 0 c

0 0 c 0

⎤
⎥⎥⎦ ∈M4×4(R).

Exercise 743
Let n be a positive integer. Show that every matrix A ∈Mn×n(R) can be written
as the sum of two nonsingular matrices.

Exercise 744
Let F = GF(3) and let n be a positive integer. Let D = [dij ] ∈ Mn×n(F ) be a
nonsingular diagonal matrix and let A ∈ Mn×n(F ). Show that 1 /∈ spec(DA) if
and only if D − A is nonsingular.

Exercise 745
Let F be a field of characteristic other than 2. For each positive integer n, let
Tn be the set of all diagonal matrices in Mn×n(R) the diagonal entries of which
belong to {−1,1}. For any A ∈ Mn×n(R), show that there exists a matrix D ∈ Tn

satisfying 1 /∈ spec(DA).
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Exercise 746
Let n be a positive integer and let α : Mn×n(C) → C

n be the function defined

by α : A �→
⎡
⎢⎣

a0
...

an−1

⎤
⎥⎦, where Xn + ∑n−1

i=0 aiX
i is the characteristic polynomial

of A. Is α a linear transformation?

Exercise 747

Define α ∈ End(R3) by α :
⎡
⎣a

b

c

⎤
⎦ �→

⎡
⎣ a − b

a + 2b + c

−2a + b − c

⎤
⎦. Find the eigenvalues of α

and, for each eigenvalue, find the associated eigenspace.

Exercise 748
Let A is a nonempty set and let V be the collection of all subsets of A, which is
a vector space over GF(2). Let B be a fixed subset of A and let α : V → V be
the endomorphism defined by α : Y �→ Y ∩ B . Find the eigenvalues of α and, for
each eigenvalue, find the associated eigenspace.

Exercise 749
Let V be a vector space over a field F and let α be an endomorphism of F . Show
that the one-dimensional subspaces of V invariant under α are precisely those of
the form Rv, where v is an eigenvector of α.

Exercise 750

Define α ∈ End(R4) by α :

⎡
⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎦ �→

⎡
⎢⎢⎣

b + c

c

0
0

⎤
⎥⎥⎦. Find the eigenvalues of α. Do

there exist two-dimensional subspaces W and Y of R4, both invariant under α,
such that R4 = W ⊕ Y ?

Exercise 751
Let V be a vector space finitely generated over a field F and let α be an endo-
morphism of V having an eigenvalue c. For any p(X) ∈ F [X], show that p(c) is
an eigenvalue of p(α).

Exercise 752
Let V be the vector space of all functions in R

R which are infinitely differentiable
and let α : V → V be the endomorphism of V defined by α : f �→ f ′′. If n > 0
is an integer, show that the function f : x �→ sin(nx) is an eigenvector of α2 and
find the associated eigenvalue.
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Exercise 753
Let F be a field and let V = F (Z). Let α be the endomorphism of V defined by
α(f ) : i �→ f (i + 1) for all i ∈ Z. Determine whether spec(α) is nonempty or
not.

Exercise 754
Let V be the vector space composed of all polynomial functions from R to itself,
let a ∈ R, and let α be the endomorphism of V defined by α(p) : x �→ (x −
a)[p′(x) + p′(a)] − 2[p(x) − p(a)], where p′ denotes the derivative of p. Find
the eigenvalues of α and for each such eigenvalue, find the associated eigenspace.

Exercise 755
Let α be the endomorphism of M2×2(R) defined by

α :
[
a b

c d

]
�→

[
d −b

−c a

]
.

Find the eigenvalues of α and for each such eigenvalue, find the associated
eigenspace.

Exercise 756
Let V be a vector space over Q and let α ∈ End(V ) be a projection. Show that
spec(α) ⊆ {0,1}. Is the converse true?

Exercise 757
Let V be a vector space of dimension n > 0 over a field F . Let α be an endomor-
phism of V for which there exists a set A of n+1 distinct eigenvectors satisfying
the condition that every subset of A of size n is a basis for V . Show that all of
the eigenvectors in V are associated with the same eigenvalue c of α and that
α = cσ1.

Exercise 758

For a, b ∈ R, let A =
⎡
⎣a b 0

b a b

0 b a

⎤
⎦ ∈ M3×3(R). Find the eigenvalues of A.

Exercise 759

Let A ∈ M2×2(R) be a matrix of the form

[
a b

c a

]
, where a > 0 and bc > 0.

Show that A has two distinct eigenvalues in R.

Exercise 760

Find the eigenvalues of the matrix

⎡
⎣ 5 6 −3

−1 0 1
2 2 −1

⎤
⎦ ∈ M3×3(R) and, for each

such eigenvalue, find the associated eigenspace.
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Exercise 761

Find the eigenvalues of the matrix

⎡
⎣ 0 2 1

−2 0 3
−1 −3 0

⎤
⎦ ∈ M3×3(C) and, for each

such eigenvalue, find the associated eigenspace.

Exercise 762
Let W be the subspace of R∞ consisting of all convergent sequences and let α

be the endomorphism of W defined by

α : [a1, a2, . . .] �→
[(

lim
i→∞ai

)
− a1,

(
lim

i→∞ai

)
− a2, . . .

]
.

Find all eigenvalues of α and, for each eigenvalue, find the corresponding
eigenspace.

Exercise 763

Find the eigenvalues of the matrix

⎡
⎣1 −1 1

1 0 0
0 1 0

⎤
⎦ in M3×3(C) and, for each

such eigenvalue, find the associated eigenspace.

Exercise 764
Does there exist a real number a such that

spec

⎛
⎝
⎡
⎣ 1 −1 0

0 a −1
−6 11 −5

⎤
⎦
⎞
⎠ = {−2,−1,0}?

Exercise 765
Let α be an endomorphism of a vector space V over a field F and let v and w be
eigenvectors of α. If v + w �= 0V , show that v + w is an eigenvector of α if and
only if both v and w correspond to the same eigenvalue.

Exercise 766

Show that the matrix A =
⎡
⎣1 0 a

a a a

a 0 −1

⎤
⎦ has three distinct eigenvalues for any

real number a.

Exercise 767
Let n be a positive integer and let t be a nonzero real number. Let A ∈ Mn×n(R)

be the matrix all of the entries of which equal t . Find the eigenvalues of A and,
for each such eigenvalue, find the associated eigenspace.

Exercise 768
Let n be a positive integer and let F be a field. Let A be a nonsingular matrix in
Mn×n(F ). Given the eigenvalues of A, find the eigenvalues of A−1.
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Exercise 769
Let n be a positive integer and let F be a field. Let A = [aij ] ∈ Mn×n(F ), and
let c ∈ spec(A). If b, d ∈ F , show that bc + d ∈ spec(bA + dI).

Exercise 770

Let A =
[
a b

c d

]
∈ M2×2(R). If t ∈ R is a root of the polynomial bX2 +

(a − d)X − c ∈ R[X], show that

[
1
t

]
is an eigenvector of A associated with

the eigenvalue a + bt .

Exercise 771
Let A ∈ M2×2(C) be a matrix having two distinct eigenvalues. Show that there
are precisely four distinct matrices B ∈M2×2(C) satisfying B2 = A.

Exercise 772

Find all a ∈R such that

⎡
⎣ a 0 0

2a 2a 2a

0 0 a

⎤
⎦ has a unique eigenvalue.

Exercise 773
Find a real number a such that the only eigenvalue of the matrix

⎡
⎣ a 1 0

−1 0 −1
0 1 −a

⎤
⎦ ∈ M3×3(R)

is 0.

Exercise 774

For each 1 ≤ i ≤ 3 and 2 ≤ j ≤ 3, find a real number aij such that

⎡
⎣ 1

−1
0

⎤
⎦,

⎡
⎣ 1

0
−1

⎤
⎦, and

⎡
⎣1

1
1

⎤
⎦ are all eigenvectors of the matrix

⎡
⎣1 a12 a13

1 a22 a23
1 a32 a33

⎤
⎦ ∈

M3×3(R).

Exercise 775
Let 0 �= r ∈ C and let n and m be positive integers. Let A = [aij ] ∈ Mn×n(C)

be given and let B = [bij ] ∈Mn×n(C) be the matrix defined by bij = rm+i−j aij

for all 1 ≤ i, j ≤ n. Show that if d ∈ C is an eigenvalue of A then rmd is an
eigenvalue of B .

Exercise 776
Let n be a positive integer and let F be a field. A matrix A ∈ Mn×n(F ) is a
magic matrix if and only if there exists a scalar c ∈ F such that the sum of the
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entries in each row and each column is c. Characterize magic matrices in terms
of their eigenvalues.

Exercise 777
Let A ∈ M2×2(C) be a matrix having distinct eigenvalues a �= b. Show that, for
all n > 0,

An = an

a − b
(A − bI) + bn

b − a
(A − aI).

Exercise 778
Let A ∈ M2×2(C) be a matrix having a unique eigenvalue c. Show that
An = cn−1[nA − (n − 1)cI ] for all n > 0.

Exercise 779
Let n be a positive integer and let A ∈ Mn×n(C). Show that every eigenvector
of A is also an eigenvector of adj(A).

Exercise 780
Let n be a positive integer. Let G be the set of all matrices A ∈ Mn×n(C) sat-
isfying the condition that Cn has a basis composed of eigenvectors of A. Is G

closed under taking sums? Is it closed under taking products?

Exercise 781
Let p(X) ∈ C[X] and let A ∈ Mn×n(C) for some positive integer n. Calculate
the determinant of the matrix p(A) using the eigenvalues of A.

Exercise 782

Let −1 �= a ∈ R and let A =
[

1 − a + a2 1 − a

a − a2 a

]
∈ M2×2(R). Calculate An

for all n ≥ 1.

Exercise 783
Let n be a positive integer. Given a matrix A ∈ Mn×n(Q), find infinitely-many
distinct matrices having the same eigenvalues as A.

Exercise 784

Let c ∈R. Find the spectral radius ofA =

⎡
⎢⎢⎣

1 0 0 0
0 0 c 0
0 −c 0 0
0 0 0 0

⎤
⎥⎥⎦ ∈ M4×4(C).

Exercise 785
Let A ∈ Mn×n(R) be a matrix all entries in which are positive and let c be a
positive real number greater than the spectral radius of A. Show that |cI −A| > 0.
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Exercise 786
Let n be a positive integer. Show that 1 is an eigenvalue of any Markov matrix in
Mn×n(R).

Exercise 787
Let n be a positive integer. Let A = [aij ] ∈ Mn×n(R) satisfy the condition that∑n

j=1 |aij | ≤ 1 for all 1 ≤ j ≤ n. Show that |c| ≤ 1 for all c ∈ spec(A).

Exercise 788
Let n be a positive integer and let F be a field. Let A = [aij ] ∈ Mn×n(F ) be a
matrix satisfying the condition that the sum of the entries in each row equals 1.

Let 1F �= c ∈ spec(A) and let

⎡
⎢⎣

b1
...

bn

⎤
⎥⎦ be an eigenvector of A associated with c.

Show that
∑n

j=1 bj = 0.

Exercise 789
Give an example of a matrix A ∈ M2×2(R) satisfying the condition that
spec(A) = ∅ but spec(A4) �= ∅.

Exercise 790
Find an example of matrices A,B ∈ M2×2(R) satisfying the condition that ev-
ery element of spec(A) ∪ spec(B) is positive but every element of spec(AB) is
negative.

Exercise 791
Find a polynomial p(X) ∈ C[X] of degree 2 satisfying the condition that all

matrices in M2×2(C) of the form

[
1 − a 1
p(a) a

]
, for a ∈ C, have the same char-

acteristic polynomial.

Exercise 792
Let F be a field and let n be an even positive integer. Let A,B ∈ Mn×n(F ) be
matrices satisfying A = B2. Let p(X) be the characteristic polynomial of A and
let q(X) be the characteristic polynomial of B . Show that p(X2) = q(X)q(−X).

Exercise 793
Let F be a field. Characterize the matrices in M2×2(F ) having the property that
their characteristic polynomial is not equal to their minimal polynomial.

Exercise 794
Let (K,•) be an associative unital F -algebra, let v ∈ K , and let α : K → K be a
homomorphism of F -algebras. Show that Ann(v) ⊆ Ann(α(v)).
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Exercise 795

Are the matrices

[
1 2
3 4

]
and

[
4 2
3 1

]
in M2×2(R) similar?

Exercise 796

Are the matrices

⎡
⎣1 i 0

i 2 −1
0 i 1

⎤
⎦ and

⎡
⎣1 + i 7 2

0 1 9
0 0 2 − i

⎤
⎦ in M3×3(C) similar?

Exercise 797
Let n be a positive integer and let A,B ∈ Mn×n(R). Show that if A and B

are similar when considered as elements of Mn×n(C), they are also similar in
Mn×n(R).

Exercise 798

Find a diagonal matrix in M3×3(R) similar to the matrix

⎡
⎣1 0 1

0 1 0
1 0 1

⎤
⎦.

Exercise 799

Find a diagonal matrix in M3×3(R) similar to the matrix

⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦.

Exercise 800
Is there a diagonal matrix in M3×3(R) similar to the matrix

⎡
⎣ 8 3 −3

−6 −1 3
12 6 −4

⎤
⎦?

Exercise 801
Show that every matrix in the subspace of M2×2(R) generated by

{[
0 1
1 0

]
,

[
1 0
0 −1

]}

is similar to a diagonal matrix.

Exercise 802

Determine if the matrices

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ and

⎡
⎣0 0 0

1 0 0
0 1 0

⎤
⎦ in M3×3(GF(5)) are

similar.
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Exercise 803
Is there a diagonal matrix in M3×3(R) similar to the matrix

⎡
⎣ 1 −1 1

−2 1 2
−2 −1 4

⎤
⎦?

Exercise 804

Let A =
⎡
⎣1 0 0

0 1 1
0 1 1

⎤
⎦ ∈ M3×3(R). Find a nonsingular matrix P ∈ M3×3(R)

such that P −1AP is a diagonal matrix.

Exercise 805

Show that the matrix A =
[

1 i

i −1

]
∈ M2×2(C) is not similar to a diagonal

matrix.

Exercise 806

Are the matrices

⎡
⎣1 −1 0

0 2 5
0 0 3

⎤
⎦ and

⎡
⎣ 2 0 0

−1 4 0
0 3 7

⎤
⎦ in M3×3(Q) similar?

Exercise 807
Let k and n be positive integers and let F be a field. Let A ∈ Mk×n(F ) and

B ∈ Mn×k(F ). Is the matrix

[
AB O

B O

]
similar to the matrix

[
O O

B BA

]
?

Exercise 808

Let F be a field and let A =
⎡
⎣a 1 0

0 a 1
0 0 a

⎤
⎦ ∈ M3×3(F ). For any p(X) ∈ F [X],

show that p(A) =
⎡
⎣p(a) p′(a) 1

2p′′(a)

0 p(a) p′(a)

0 0 p(a)

⎤
⎦, where p′(X) denotes the formal

derivative of the polynomial p(X) and p′′(X) is the formal derivative of p′(X).

Exercise 809
Find the characteristic and minimal polynomials of the matrix

⎡
⎣ 7 4 −4

4 −8 −1
−4 −1 −8

⎤
⎦ ∈M3×3(R).
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Exercise 810

Let n be a positive integer. Let V be the vector space over R consisting of all

polynomial functions from R to itself having degree at most n. Let α be the en-

domorphism of V which assigns to each f ∈ V its derivative, and let A be a

matrix representing α with respect to some basis of V . Find the minimal polyno-

mial of A.

Exercise 811

Find six distinct matrices in M2×2(R) which annihilate the polynomial X2 − 1.

Exercise 812

Let n be a positive integer and let c be an element of a field F . Find a matrix

A ∈ Mn×n(F ) having minimal polynomial (X − c)n.

Exercise 813

Use the Cayley–Hamilton Theorem to find the inverse of

⎡
⎣ 5 1 −1

−6 0 2
0 0 2

⎤
⎦ ∈M3×3(R).

Exercise 814

Let n be a positive integer and let A ∈ Mn×n(F ) be a matrix of rank h. Show

that the degree of the minimal polynomial of A is at most h + 1.

Exercise 815

Let n be a positive integer and let F be a field. Show that a matrix A ∈Mn×n(F )

is nonsingular if and only if mA(0) �= 0.

Exercise 816

Find the eigenvalues of the matrix

⎡
⎢⎢⎣

0 0 1 1
0 0 1 0
0 1 0 0
1 1 0 0

⎤
⎥⎥⎦ ∈ M4×4(Q) and determine

the algebraic multiplicity of each.

Exercise 817

Find the minimal polynomial of the matrix

⎡
⎣0 1 0

0 0 1
1 3 −3

⎤
⎦ in M3×3(R).
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Exercise 818
Let α and β be the endomorphisms of Q4 represented with respect to the canon-

ical basis by the matrices

⎡
⎢⎢⎣

1 0 −1 0
0 1 0 −1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

4 −1 −1 0
−1 4 0 −1

1 0 2 −1
0 1 −1 2

⎤
⎥⎥⎦, re-

spectively. Does there exist a basis of Q4 with respect to which both of them can
be represented by diagonal matrices?

Exercise 819
Let α be the endomorphisms of R

3 represented with respect to the canonical

basis by the matrix

⎡
⎣−6 2 −5

4 4 −2
10 −3 8

⎤
⎦. Calculate the algebraic and geometric

multiplicities of each of the eigenvalues of α.

Exercise 820
Let A = [aij ] ∈ Mn×n(C) be a symmetric tridiagonal matrix having an eigen-
value c with algebraic multiplicity k. Show that ai−1,i = 0 for at least k − 1
values of i.

Exercise 821
Let α be the endomorphisms of R

3 represented with respect to the canonical

basis by the matrix

⎡
⎣−8 −13 −14

−6 −5 −8
14 17 21

⎤
⎦. Does there exist a basis of R

3 with

respect to which α can be represented by a diagonal matrix?

Exercise 822

Let A =

⎡
⎢⎢⎣

17 −8 −12 14
46 −22 −35 41
−2 1 4 −4

4 −2 −2 3

⎤
⎥⎥⎦ ∈ M4×4(Q). Find the minimal polyno-

mial A.

Exercise 823

For each t ∈ R, set A(t) =
[

cos2(t) cos(t) sin(t)

cos(t) sin(t) sin2(t)

]
∈ M2×2(R). Show

that all of these matrices have the same characteristic and minimal polynomials.

Exercise 824
Let a, b, c ∈ C. Find a necessary and sufficient condition for the minimal poly-

nomial of

⎡
⎣2 0 0

a 2 0
b c 1

⎤
⎦ ∈M3×3(C) to be equal to (X − 1)(X − 2).
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Exercise 825

Let A =
⎡
⎣1 a 0

a a 1
a a −1

⎤
⎦ ∈M3×3(R). Find the set of all real numbers a for which

the minimal and characteristic polynomials of A are equal.

Exercise 826
Let F = GF(5). For which values of a, b ∈ F are the characteristic polynomial

and minimal polynomial of the 5×5 matrix

⎡
⎢⎢⎢⎢⎣

a b 4 2 0
b b b 3 3
3 4 2b 1 3
0 0 0 0 1
0 0 0 3b 0

⎤
⎥⎥⎥⎥⎦ equal? What

if F = GF(7)?

Exercise 827
Let F be a field and let O �= A ∈ M3×3(F ) be a matrix satisfying Ak = O for
some positive integer k. Show that A3 = O .

Exercise 828
Let F be a field and let A ∈ M3×3(F ) be a matrix which can be written in the
form BC, where B and C are involutory matrices in M3×3(F ). Show that A is
nonsingular and similar to A−1.

Exercise 829
Let A ∈ Mn×n(F ) be written in the form A = PB , where P,B ∈ Mn×n(F ) and
P is nonsingular. Show that A is similar to BP .

Exercise 830
Let A ∈ M3×3(Q) be a matrix satisfying the condition that A5 = I . Show that
A = I .

Exercise 831
Let n be a positive integer and let α be an endomorphism of Mn×n(C), consid-
ered as a vector space over C, which satisfies the condition that α(A) is nonsin-
gular if and only if A is nonsingular. Show that α is an automorphism.

Exercise 832
Let F be a field and let n be a positive integer. Let A ∈ Mn×n(F ) be a matrix
having characteristic polynomial p(X) = Xn + ∑n−1

i=0 ciX
i . Show that, for each

k ≥ n, we have Ak = ∑n−1
j=0 bj (k)Aj , where

(1) bj (n) = −cj for all 0 ≤ j ≤ n − 1;
(2) b−1(k) = 0 for all k ≥ n;
(3) bj (k + 1) = bj−1(k) − ajbn−1(k) for all k ≥ n and all 0 ≤ j ≤ n − 1.
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Exercise 833
Show that there is no matrix A ∈ M2×2(R) satisfying the condition that

A2 =
[−1 0

0 −c

]
, where c �= 1.

Exercise 834
Let V be a vector space finitely generated over C and let α ∈ End(V ) be diago-
nalizable. If W is a nontrivial subspace of V invariant under α, is the restriction
of α to W necessarily diagonalizable?

Exercise 835
Let V be a vector space finitely generated over a field F and let α ∈ End(V ).
Show that α is diagonalizable if and only if the sum of all of its eigenspaces
equals V .

Exercise 836
Find all rational numbers a satisfying the condition the endomorphism of Q

3

represented with respect to some basis by the matrix

⎡
⎣1 0 0

1 a 0
0 0 1

⎤
⎦ is diagonaliz-

able.

Exercise 837
Give an example of an endomorphism α of R

3 having nullity 2 which is not
diagonalizable.

Exercise 838
Let n be a positive integer and let B ∈Mn×n(R) be a matrix all entries of which
are positive. Let r > ρ(B). Show that
(1) The matrix A = rI − B is nonsingular;
(2) All nondiagonal entries of A are nonpositive;
(3) All entries of A−1 are nonnegative; and
(4) If a + bi ∈C is an eigenvalue of A, then a > 0.

Exercise 839
Let V be a vector space of finite odd dimension over R and let α1, . . . , αk be
distinct mutually-commuting endomorphisms of V , for some k > 1. Show that
these endomorphisms have a common eigenvector.

Exercise 840
Let A ∈ M3×3(Q) have characteristic polynomial X3 − bX2 + cX − d . For all
n ≥ 3, show that

An = tn−1A + tn−2 adj(A) + (tn − btn−1)I,

where tn = ∑
2i+3j≤n(−1)i

(
i+j
j

)
.
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Exercise 841

Show that the endomorphisms α :

⎡
⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎦ �→

⎡
⎢⎢⎣

2b

2a

2d

2c

⎤
⎥⎥⎦ and β :

⎡
⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎦ �→

⎡
⎢⎢⎣

c

d

a

b

⎤
⎥⎥⎦ of Q4

are diagonalizable and commute. Find a basis of Q4 relative to which both α and
β are represented by diagonal matrices.

Exercise 842
Let A = [aij ] ∈ Mn×n(R) be a Markov matrix all entries of which are positive.
If c ∈C is an eigenvalue of A satisfying |c| = 1, show that c = 1.

Exercise 843
Let F be a finite field. Show that there exists a symmetric matrix in M2×2(F )

having no eigenvalues.

Exercise 844
Does there exist a square matrix A over R which is not idempotent but satisfies
the condition that spec(A) = {1}?

Exercise 845
Let n be a positive integer and let A ∈Mn×n(Q) be a matrix all entries of which
are integers. Let k be an integer which is an eigenvalue of A. Show |A| is and
integer and that k divides |A|.

Exercise 846
Let V be a vector space of dimension 3 over a field F and let α ∈ End(V ) have
nullity 2. Show that the characteristic polynomial of α is of the form X2(X − c)

for some c ∈ F .
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Let V be a vector space over a field F and let α ∈ End(V ). If 0V �= v0 ∈ V then the
subspace F {v0, α(v0), α

2(v0), . . .} of V is called the Krylov subspace of V defined
by α and v0. The elements of this subspace are precisely those vectors in V of the
form p(α)(v0), where p(X) ∈ F [X], and so it is natural to denote it by F [α]v0. It is
clear that F [α]v0 is invariant under α.

Alexei Nikolaevich Krylov was a Russian applied mathematician who
at the end of the nineteenth century developed many of the methods
mentioned here in connection with the solution of differential equa-
tions.

Proposition 13.1 Let V be a vector space over a field F , let α ∈ End(V ),
and let 0V �= v0 ∈ V .
(1) F [α]v0 is the intersection of all subspaces of V containing v0 and invari-

ant under α;
(2) v0 is an eigenvector of α if and only if dim(F [α]v0) = 1.

Proof (1) Since F [α]v0 contains v0 and invariant under α, it certainly contains the
intersection of all such subspaces of V . Conversely, if W is a subspace of V which
contains v0 and invariant under α, then p(α)(v0) ∈ W for all p(X) ∈ F [X] and so
F [α]v0 ⊆ W . Thus we have the desired equality.

(2) If v0 is an eigenvector of α associated with an eigenvalue c then for each
p(X) = ∑k

j=0 ajX
j ∈ F [X] we have p(α)(v0) = ∑k

j=0 ajα
j (v0) = ∑k

j=0 aj c
j v0

∈ Fv0, proving that F [α]v0 = Fv0 and so dim(F [α]v0) = 1. Conversely, assume
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that dim(F [α]v0) = 1. Then F [α]v0 = Fv0 since Fv0 is a one-dimensional sub-
space of F [α]v0. In particular, α(v0) ∈ Fv0 and so there exists a scalar c such that
α(v0) = cv0, which proves that v0 is an eigenvector of α. �

Since the set {v0, α(v0), α
2(v0), . . .} is a generating set for F [α]v0 over F ,

Proposition 13.1(2) suggests that dim(F [α]v0) can be used to measure how far v0

is from being an eigenvector of α.
As a first example of the use to which we can put Krylov subspaces, we

will see how to use the minimal polynomial to solve systems of linear equa-
tions. Let V be a vector space over a field F and let V ∞ be the space of
all infinite sequences of elements of V . Every polynomial p(X) = ∑k

j=0 ajX
j

∈ F [X] defines an endomorphism θp of V ∞ by θp : [v0, v1, . . .] �→ [∑k
j=0 ajvj ,

∑k
j=0 ajvj+1,

∑k
j=0 ajvj+2, . . .]. Note that if p(X) = c is a polynomial of degree

no greater than 0, then θp = σc. It is also easy to verify that θpq = θpθq = θqθp for
all p(X), q(X) ∈ F [X].

A sequence y ∈ V ∞ is linearly recurrent if and only if there exists a polynomial
p(X) ∈ F [X] with y ∈ ker(θp). In this case, we say that p(X) is a characteristic
polynomial of y. If p(X) ∈ F [X] is a characteristic polynomial of y ∈ V ∞ and if
q(X) ∈ F [X] is a characteristic polynomial of z ∈ V ∞ then θpq(y +z) = θqθp(y)+
θpθq(z) = [0,0, . . .] and so p(X)q(X) is a characteristic polynomial of y + z. It is
also clear that p(X) is a characteristic polynomial of cy for all c ∈ F . Thus we
see that the set of all linearly recurrent sequences in V ∞ is a subspace of V ∞,
which we will denote by LR(V ). If y ∈ LR(V ), there is precisely one characteristic
polynomial which is monic and of minimal degree. This polynomial will be called
the minimal polynomial of y. The degree of the minimal polynomial of y is the
order of recurrence of y.

Linearly recurrent sequences in R
∞ were considered by the

seventeenth-century French-born mathematician Abraham de
Moivre, who spent most of his life in exile in England and was one of
the fathers of the theory of probability.

Example Let F be a field and let n be a positive integer. If A ∈ Mn×n(F ), a poly-
nomial p(X) ∈ F [X] is a characteristic (resp., minimal) polynomial of the sequence
[I,A,A2, . . .] if and only if it is the characteristic (resp., minimal) polynomial of the
matrix A.

Example Let V = F = Q and let y = [a0, a1, . . .] ∈ V ∞ be the sequence defined
by a0 = 0, a1 = 1, and ai+2 = ai+1 + ai for all i ≥ 0. This sequence is called
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the Fibonacci sequence. Its minimal polynomial is X2 − X − 1. The roots of this
polynomial are 1

2 (1 ± √
5). The number 1

2 (1 + √
5) is called the golden ratio and

artists consider rectangles the sides of which are related by the golden ratio to be of
high aesthetic value. This ratio—which appears in ancient Egyptian and Babylonian
texts—appears in nature and is basic in the analysis of certain patterns of growth in
nature (such as the spirals of a snail shell or a sunflower), of Greek architecture, of
Renaissance painting, and even such modern designs as the ratio of the dimensions
of a credit card or of A4 paper. Notice that X2 − X − 1 is also the characteristic

polynomial of the matrix

[
1 1
1 0

]

∈ M2×2(R), and so the eigenvalues of this ma-

trix are also precisely 1
2 (1 ± √

5). The eigenspace associated with 1
2 (1 + √

5) is

R

[
1
2 (1 + √

5)

1

]

and the eigenspace associated with 1
2 (1 − √

5) is R

[
1
2 (1 − √

5)

1

]

.

Leonardo Fibonacci was born in Italy in the
twelfth century and educated in Tunis, bringing
back the fruits of Arab mathematics to Europe.
His book Liber Abaci, written in 1202, contained
the first new mathematical research in Christian
Europe in over 1000 years. In 1509, Fra Luca
Pacioli, one of the most important Renaissance
mathematicians, wrote a book, The Divine Pro-
portion, illustrated by his friend Leonardo da
Vinci, about the golden ratio.

We note that if V = F and if y ∈ LR(F ) is a sequence having order of recur-
rence at most n, then there exist algorithms, which are essentially extensions of the
Euclidean algorithm, to calculate the coefficients of the minimal polynomial of y in
an order of n2 arithmetic operations in F .

Now let V be a vector space of finite dimension n over a field F and let α

be an automorphism of V having minimal polynomial p(X) ∈ F [X]. If w ∈ V

then the sequence y = [w,α(w),α2(w), . . .] belongs to ker(θp) and hence to
LR(V ). Therefore, this sequence has a minimal polynomial q(X) = ∑d

j=0 cjX
j ,

which divides the polynomial p(X) in F [X]. Since α is an automorphism, we
can assume that c0 �= 0 and so we see that if u = −c−1

0

∑d
j=1 cjα

j−1(w) then

α(u) = w and so u = α−1(w). In particular, if V = Fn for some positive integer
n and if α is represented by a matrix A with respect to the canonical basis, then
u = −c−1

0

∑d
j=1 cjA

j−1w is the unique solution of the system of linear equations

AX = w. If we set q∗(X) = −c−1
0

∑d
j=1 cjX

j−1 then u = q∗(A)w, and this could
be computed quickly were we to already know q(X).

How does one calculate q∗(X) in practice? One method used is basically proba-
bilistic: we randomly choose a vector u ∈ Fn and compute the minimal polynomial
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qu(X) of yu = [u � w,u � (Aw),u � A2w), . . .] ∈ F∞, something which can be
done, as we have already observed, in an order of n2 arithmetic operations in F .
After that, we check whether the minimal polynomial of yu is also the minimal
polynomial of y. In general, it will not be so, but it will divide the minimal polyno-
mial of y and so after a reasonable number of such attempts we will, usually, have
enough information on hand to reconstruct the minimal polynomial of y.

Example Let F = GF(5), let A =
⎡

⎣
1 4 4
4 0 3
1 2 4

⎤

⎦ ∈ M3×3(F ), and let w =
⎡

⎣
3
1
2

⎤

⎦ ∈

F 3. The sequence w,Aw,A2w, . . . looks like

⎡

⎣
3
1
2

⎤

⎦ ,

⎡

⎣
0
3
3

⎤

⎦ ,

⎡

⎣
4
4
3

⎤

⎦ ,

⎡

⎣
2
0
4

⎤

⎦ ,

⎡

⎣
3
0
3

⎤

⎦ ,

⎡

⎣
0
1
0

⎤

⎦ , . . . .

If we choose u =
⎡

⎣
1
0
0

⎤

⎦ we obtain the sequence yu = [3,0,4,2,3,0, . . .] in F∞

and the minimal polynomial qu(X) of this sequence equals X2 + 2X + 2. Since

qu(A)w =
⎡

⎣
0
2
3

⎤

⎦, we see that this polynomial is not the minimal polynomial of y.

We will try again with u =
⎡

⎣
1
2
0

⎤

⎦. For this choice, we get yu = [0,1,2,2,3,2, . . .]

and this has minimal polynomial X3 + 3X + 1. Since the minimal polynomial of y

has to be a multiple of this polynomial, and has to be of degree 3, it must equal X3 +

3X + 1 and, indeed, qu(A)w =
⎡

⎣
0
0
0

⎤

⎦. Therefore, q∗(X) = X2 + 3 and q∗(A)w =

qu(A)w =
⎡

⎣
2
3
1

⎤

⎦.

Now let us return to an important problem which was considered in the previous
chapter. Let V be a vector space finitely generated over a field F . Given an endomor-
phism α ∈ End(V ), how can we find a basis of V relative to which α is represented
by a matrix which is as nice as possible? We have already found out when α is
diagonalizable. But what if α is not diagonalizable? Given a vector 0V �= w ∈ V ,
there exists a positive integer k such that the set {w,α(w), . . . , αk−1(w)} is lin-
early independent but the set {w,α(w), . . . , αk(w)} is linearly dependent. Then
{w,α(w), . . . , αk−1(w)} is a basis for the Krylov subspace F [α]w of V , which
is called the canonical basis of this subspace. The restriction of α to F [α]w is
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represented by a matrix of the form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 0 c1
1 0 . . . 0 0 c2
0 1 . . . 0 0 c3
...

...
. . .

...
...

...

0 0 . . . 1 0 ck−1
0 0 . . . 0 1 ck

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with respect to

the canonical basis, where the scalars c1, . . . , ck satisfy αk(w) = ∑k
i=1 ciα

i−1(w).
This, of course, is just the companion matrix of the polynomial Xk − ∑k

i=1 ciX
i−1.

Krylov subspaces are also the basis for a family of non-stationary iterative algo-
rithms, known as Krylov algorithms, used for approximating solutions to systems of
equations of the form AX = w, where A ∈ Mn×n(R) or A ∈ Mn×n(C). Similarly,
Krylov subspaces are a basis for a family of non-stationary iterative algorithms,
known as Lanczos algorithms, used for approximating eigenvalues of sufficiently-
nice (e.g., symmetric) matrices. Such algorithms work even under the assumption
that we don’t even have direct access to the entries of A but do have a “black box”
ability to compute Av or AT v for any given vector v ∈ R

n. Of course, they do
not work for all matrices, but when they work they tend to be fairly efficient and
rapid, and are especially good for large sparse matrices. Moreover, they are also
amenable to implementation on parallel computers. Parallel Lanczos algorithms
have also been developed for solving generalized eigenvalue problems, if the matri-
ces involved are symmetric, Lanczos algorithms can be adapted to work for matrices
over finite fields. However, in this case there are also other algorithms available. In
particular, one should mention the Wiedemann algorithm to solve systems of linear
equations of the form AX = w, where A is a large nonsingular matrix over a finite
field. Such problems arise in the computation of discrete logarithms and in other
modes of attack on various encryption methods for transmission of data over the in-
ternet. They have also been used to factor large integers. The Wiedemann algorithm,

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Hestenes,
Stiefel); With kind permission of Andrew Odlyzko (Odlyzko).

Hungarian-born applied mathematician Cornelius Lanczos developed many important nu-
merical methods for computers in the period after World War II, while working at the US
National Bureau of Standards and, later, at the University of Dublin in Ireland. Other major
researchers of Krylov algorithms were the American numerical analyst Magnus Hestenes
and the Swiss numerical analyst Eduard Stiefel. A major innovator in the use of Wiede-
mann and similar algorithms over finite fields has been the contemporary American math-
ematician Andrew Odlyzko.
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which is based on computing the minimal polynomial of a certain linearly-recurrent
sequence, works especially well for sparse matrices, and is amenable to parallel
computation.

A nonzero element a of an associative algebra (K,•) is nilpotent if and only if
there exists a positive integer k satisfying ak = 0K . The smallest such integer k, if
one exists, is called the index of nilpotence of a. In particular, if V is a vector space
over a field F , then α ∈ End(V ) is nilpotent if and only if there exists a positive
integer k satisfying αk = σ0.

Example Let F be a field and let α be the endomorphism of F 3 defined by

α :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
0
a

b

⎤

⎦. Then α is a nilpotent endomorphism, having index of nilpo-

tence 3. The endomorphism β of F 3 defined by β :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
−a + 2b + c

0
−a + 2b + c

⎤

⎦ is a

nilpotent endomorphism, having index of nilpotence 2.

Example Let F be a field and let α and β be the endomorphisms of F 2 defined

by α :
[

a

b

]

�→
[
b

0

]

and β :
[
a

b

]

�→
[

0
a

]

. Both endomorphisms are nilpotent, but

α + β is clearly not nilpotent.

If α is a nilpotent endomorphism of a vector space V and w ∈ V � ker(α) then
the restriction of α to F [α]w is represented with respect to the canonical basis of
F [α]w by a matrix of the form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0
0 0 0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Proposition 13.2 Let V be a vector space over a field F and let α be a
nilpotent endomorphism of V having index of nilpotence k. Then there exists
a vector w ∈ V satisfying the condition that dim(F [α]w) = k.

Proof We know that αk = σ0 but not that there exists a vector 0V �= w ∈ V such
that αk−1(w) �= 0V . We will have proven the theorem should we are able to show
that the set {w,α(w), . . . , αk−1(w)} is linearly independent. And, indeed, assume
that we have scalars a0, . . . , ak−1 ∈ F satisfying

∑k−1
i=0 aiα

i(w) = 0V . Let t be the
smallest index such that at �= 0. Then if we apply the endomorphism αk−t−1 to
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∑k−1
i=0 aiα

i(w) we get 0V = atα
k−1(w) + at+1α

k(w) + · · · + ak−2α
2k−t−2(w) and

so at = 0, which is a contradiction. Therefore, we conclude that ai = 0 for all i, and
so the set is linearly independent, as required. �

In particular, we see that if V is a vector space of finite dimension over a field F

and if α is a nilpotent endomorphism of V , then the index of nilpotence of α is no
greater than dim(V ).

Proposition 13.3 Let V be a vector space finitely generated over a field F

and let α be a nilpotent endomorphism of V having index of nilpotence k. If
w ∈ V satisfies the condition that dim(F [α]w) = k then the subspace F [α]w
of V has a complement in V which is invariant under α.

Proof We will proceed by induction on k. If k = 1 then α = σ0 and so F [α]w =
Fw. Then there is a subset B of V � {Fw} such that B ∪{w} is a basis for V , and B

is a basis for a complement of Fw in V . Assume that k > 1 and that the result has
been established for any vector space finitely generated over F and any nilpotent
endomorphism of that space having index of nilpotence less than k.

We know that im(α) is invariant under α and that the restriction of α to
im(α) is nilpotent, having index of nilpotence k − 1. We know that the set
{w,α(w), . . . , αk−1(w)} forms a basis for F [α]w and so the set {α(w), . . . ,

αk−1(w)} forms a basis for the image U of F [α]w under α. Therefore, U =
F [α]α(w) is a subspace of im(α) and, by the induction hypothesis, it has a comple-
ment W2 in im(α) invariant under α.

Let W0 = {v ∈ V | α(v) ∈ W2}. This is a subspace of V containing W2, since W2
is invariant under α. But α(v) ∈ W2 ⊆ W0 for all v ∈ W0 and so W0 is also invariant
under α. Our first assertion is that V = F [α]w + W0. And, indeed, if x ∈ V then
α(x) ∈ im(α) = U ⊕ W2 and so α(x) = u + w2, where u ∈ U and w2 ∈ W2. But
u = α(y) for some y ∈ F [α]w and x = y + (x − y). The first summand belongs to
F [α]w, whereas, as to the second, we have α(x − y) = α(x) − α(y) = α(x) − u =
w2 ∈ W2 and so x − y ∈ W0, proving the assertion.

Our second assertion is that F [α]w ∩ W0 ⊆ U . Indeed, if x ∈ F [α]w ∩ W0
then α(x) ∈ U ∩ W2 = {0V } and so x ∈ ker(α). Since x ∈ F [α]w, we know that
there exist scalars a0, . . . , ak−1 such that x = ∑k−1

i=0 aiα
i(w) and hence 0V =

α(x) = ∑k−2
i=0 aiα

i+1(w), which implies that a0 = · · · = ak−2 = 0. Therefore, x =
ak−1α

k−1(w) ∈ U , proving the second assertion.
In particular, from what we have seen. we deduce that the subspaces W2 and

F [α]w ∩ W0 are disjoint. Therefore, W2 ⊕ (F [α]w ∩ W0) is a subspace of W0.
This subspace has a complement W1 in W0. Thus we have W0 = W1 ⊕ W2 ⊕
(F [α]w ∩ W0).

Our third assertion is that W = W1 ⊕ W2 is a complement of F [α]w in V which
is invariant under α, and should we prove this, we will have proven the proposition.
Indeed, we immediately note that α(W) ⊆ α(W0) ⊆ W2 ⊆ W and so W is surely
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invariant under α. Moreover, F [α]w ∩ W = {0V } since this subspace is contained
in the intersection of W and F [α]w ∩ W0, which, by the choice of W , equals {0V }.
Finally,

V = F [α]w + W0 = F [α]w + [
W1 + W2 + (

F [α]w ∩ W0
)]

= F [α]w + W1 + W2 = F [α]w + W,

and so V = F [α]w ⊕ W . �

Proposition 13.4 (Rational Decomposition Theorem) Let V be a vector
space of finite dimension n over a field F let α be a nilpotent endomorphism
of V having index of nilpotence k. Then there exist natural numbers k = k1 ≥
· · · ≥ kt satisfying k1 + · · · + kt = n, and there exist vectors v1, . . . , vt in V

such that {v1, α(v1), . . . , α
k1−1(v1), v2, α(v2), . . . , α

k2−1(v2), . . . , vt , α(vt ),

. . . , αkt−1(vt )} forms a basis for V . The matrix which represents α with re-

spect to this basis is of the form

⎡

⎢
⎢
⎢
⎣

A1 O . . . O

O A2 . . . O
...

...
. . .

...

O O . . . At

⎤

⎥
⎥
⎥
⎦

, where each Ai is of

the form

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

in Mki×ki
(F ).

Proof Choose k1 = k and choose v1 /∈ ker(αk1−1). Then U1 = F [α]v1 has a basis
{v1, α(v1), . . . , α

k1−1(v1)}. It is invariant under α and of dimension k1. By Propo-
sition 13.3, V = U1 ⊕ W1, where W1 is a subspace of V invariant under α. The
restriction of α to W1 is a nilpotent endomorphism of W1 with index of nilpotence
k2 ≤ k1. We now repeat the above procedure for W1. Pick v2 ∈ W1 � ker(αk2−1).
Then U2 = F [α]v2 of W1 has a basis {v2, α(v2), . . . , α

k2−1(v2)}. It is invariant un-
der α and of dimension k2. Moreover, we can write W1 = U2 ⊕ W2, where W2
is invariant under α. Continuing in this manner, we end up with a decomposition
V = U1 ⊕ · · · ⊕ Ut , where each Ui is a subspace of V invariant under α having a
basis of the form {vi, α(vi), . . . , α

ki−1(vi)} as above. This proves the first contention
of the proposition. The second one follows since Ui = F [α]vi for all i, which leads
to a matrix of the desired form. �

A matrix of the form given in Proposition 13.4 is called a representation of the
nilpotent endomorphism α in Jordan canonical form. Let V be a vector space over
a field F and let α be an endomorphism of V having an eigenvalue c. A vector
0V �= v ∈ V is a generalized eigenvector of α associated with c of degree k > 0
if and only if v is in ker((α − cσ1)

k) � ker((α − cσ1)
k−1). Thus, in particular, the
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eigenvectors of α associated with c, in the previous sense, are just the generalized
eigenvectors of α of degree 1 associated with c.

The nineteenth-century French mathematician Camille Jordan made
major contributions to linear algebra, group theory, the theory of finite
fields, and the beginnings of topology.

Example Let α be the endomorphism of R4 represented with respect to the canon-

ical basis by the matrix

⎡

⎢
⎢
⎣

2 −2 1 1
0 1 1 1
0 0 2 1
0 0 0 2

⎤

⎥
⎥
⎦. This endomorphism has an eigenvector

⎡

⎢
⎢
⎣

2
1
0
0

⎤

⎥
⎥
⎦ associated with the eigenvalue 1 and an eigenvector

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ associated with the

eigenvalue 2. It also has a generalized eigenvector

⎡

⎢
⎢
⎣

0
−1
−1

0

⎤

⎥
⎥
⎦ of degree 2 associated

with the eigenvalue 2 and a generalized eigenvector

⎡

⎢
⎢
⎣

0
−1
−1
−1

⎤

⎥
⎥
⎦ of degree 3 associated

with the eigenvalue 2.

We now prove a generalization of Proposition 12.1.

Proposition 13.5 Let V be a vector space over a field F and let α ∈ End(V )

have an eigenvalue c. Then the set of all generalized eigenvectors of α (of all
degrees) associated with c, together with 0V , forms a subspace of V which is
invariant under any endomorphism of V which commutes with α.

Proof Let a ∈ F and let v,w ∈ V be generalized eigenvectors of α associated
with c, of degrees k and h, respectively. Then both v and w belong to ker(α −
cσ1)

h+k and hence the same is true for v + w and av. This means that there exist
positive integers s, t ≤ h+ k such that v +w ∈ ker((α − cσ1)

s)�ker((α − cσ1)
s−1)

and av ∈ ker((α − cσ1)
t ) � ker((α − cσ1)

t−1), proving that we have a subspace.
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If β is an endomorphism of V which commutes with α and if v is a gener-
alized eigenvector of α associated with c such that v ∈ ker((α − cσ1)

k), then
(α − cσ1)

kβ(v) = β(α − cσ1)
k(v) = 0V so β(v) is also a generalized eigenvector

of α associated with c, proving invariance. �

Let V be a vector space over a field F and let α ∈ End(V ) have an eigenvalue c.
The subspace of V defined in Proposition 13.5 is called the generalized eigenspace
of α associated with c.

Proposition 13.6 Let V be a vector space over a field F and let α ∈ End(V )

have an eigenvalue c. Let v be a generalized eigenvector of degree k associ-
ated with c. Then the set of vectors {v, (α − cσ1)(v), . . . , (α − cσ1)

k−1(v)} is
linearly independent.

Proof Set β = α − cσ1 and, for each 1 ≤ j ≤ k, let vj = βk−j (v). Assume
that there exist scalars c1, . . . , ck ∈ F satisfying

∑k
j=1 cj vj = 0V . Then 0V =

βk−1(
∑k

j=1 cj vj ) = βk−1(ckvk) = ckβ
k−1(vk) and so, since βk−1(vk) �= 0V , we

conclude that ck = 0. We work backwards in this manner to see that cj = 0 for all
1 ≤ j ≤ k, and so the given set is linearly independent. �

In particular, let V be a vector space of finite dimension n over a field F and
let α ∈ End(V ). If v is a generalized eigenvector of α of degree k associated to an
eigenvalue c of α, then we must have k ≤ n. Thus we see that dim(V ) is an upper
bound to the degree of generalized eigenvalue of α and we see that the generalized
eigenspace of α associated to an eigenvalue c is just ker((α − cσ1)

n).

Proposition 13.7 Let V be a vector space of finite dimensionn over a field
F and let α ∈ End(V ) satisfy the condition that the characteristic polyno-
mial p(X) of α is completely reducible, say p(X) = ∏m

j=1(X − cj )
nj , where

spec(α) = {c1, . . . , cm}. Then there exist subspaces U1, . . . ,Um of V , each of
which invariant under α, such that:
(1) V = U1 ⊕ · · · ⊕ Um;
(2) dim(Uh) = nh for each 1 ≤ h ≤ m;
(3) For each 1 ≤ h ≤ m, the restriction of α to Uh is of the form chτh + βh,

where βh ∈ End(Uh) is nilpotent and τh is the restriction of σ1 to Uh.

Proof For each 1 ≤ h ≤ m, consider the endomorphism βh = α − chσ1 of V , and
let Uh be the generalized eigenspace of α associated with ch. Then Uh is a subspace
of V invariant under βh and also invariant under α since for all v ∈ Uh we have
βn

hα(v) = αβn
h(v) = α(0V ) = 0V . We claim that there exists a positive integer k,

independent of h, such that all elements of Uh are generalized eigenvectors of α of



13 Krylov Subspaces 307

degree at most k. Indeed, we see that ker(βh) ⊆ ker(β2
h) ⊆ ker(β3

h) ⊆ · · · and since
V is finitely-generated, there are at most a finite number of proper containments.
Thus there exists a k such that ker(βk

h) = ker(βk+1
h ) = · · · . From here it is clear that

ker(βk
h) = Uh, proving the claim.

In particular, this claim shows that the restriction of βh to Uh is a nilpotent endo-
morphism having index of nilpotence k. More than that, the restriction of α to Uh

equals chτh +βh, proving (3). We now notice that if t �= h then Ut is invariant under
βh. We claim that the restriction of βh to Ut is an automorphism. Since Ut is finite-
dimensional, it is sufficient to prove that it is a monomorphism. Indeed, suppose that
v ∈ Ut ∩ ker(βh). Then there exists a positive integer k such that βk

t (v) = 0V and so
0V = βk

t (v) = [βh + (ch − ct )]k(v) = (ch − ct )
k(v) and, since ch − ct �= 0, we must

have v = 0V , proving the claim.
The next step is to show that the collection {U1, . . . ,Um} of subspaces of V is

independent. Indeed, let 1 ≤ h ≤ m and let Y = Uh ∩ ∑
j �=h Uj . Then Y is a sub-

space of V invariant under βh on which βh is monic (since Y ⊆ ∑
j �=h Uj ) and

nilpotent (since Y ⊆ Uh), which is possible only if Y = {0V }. This proves inde-
pendence, and we will set U = U1 ⊕ · · · ⊕ Um. We want to show that U = V .
Let v ∈ U . By the Cayley–Hamilton Theorem (Proposition 12.16), we see that
α annihilates its characteristic polynomial p(X) and so [∏m

i=1 β
ni

i ](v) = 0V ∈ U .
Suppose that β

n1
t (v) ∈ U , say that it is equal to

∑m
i=1 ui , where uh ∈ Uh for all

1 ≤ h ≤ m. Since β
n1
t is epic when restricted to Uh, for each h �= 1, we can

find an elements wh of Uh for each 1 < h ≤ m, such that uh = β
n1
t (wh) for all

such h. Therefore, β
n1
t (u − ∑m

h=2 wh) = u1 ∈ U1. By definition of U1, it follows
that w1 = u − ∑m

h=2 wh ∈ U1. Therefore, v = ∑m
h=1 wh ∈ U . If, on the other hand,

β
n1
t (v) /∈ U , then let t be the smallest element of {2, . . . ,m} satisfying the condition

that [∏t
i=1 β

ni

i ](v) ∈ U and [∏t−1
i=1 β

ni

i ](v) /∈ U . A similar argument to the preced-
ing then shows that we must have v ∈ U .

We are left to show that dim(Uh) = nh for all 1 ≤ h ≤ m. Pick a basis for V

which is a union of bases of the Uh. With respect to this basis, the endomorphism

α is represented by a matrix of the form

⎡

⎢
⎢
⎢
⎣

A1 O . . . O

O A2 . . . O
...

...
. . .

...

O O . . . Am

⎤

⎥
⎥
⎥
⎦

, where each Ah

is a matrix representing the restriction of α to Uh. By Proposition 11.12, the char-
acteristic polynomial of α is therefore of the form |XI − A| = ∏m

h=1 |XI − Ah|.
From this decomposition and from the fact that each βh restricts to an automor-
phism of Ut for all t �= h, it follows that the only eigenvalue of the restriction of
α to Uh is ch, and the algebraic multiplicity of this eigenvalue is at most nh. Since∑m

h=1 dim(Uh) = ∑m
h=1 nh, it then follows that dim(Uh) = nh for each h. �

Proposition 13.7 shows that when conditions are right—for example, when the
field F is algebraically closed—and when we are given an endomorphism α of a
finite-dimensional vector space V , it is possible to choose a basis for V relative to
which α is represented in a particularly simple form. We do this in two steps.
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(I) Write V as a direct sum U1 ⊕ · · · ⊕ Um as above. By choosing a basis for V

which is a union of bases of the Uh, we get a matrix representing α composed

of blocks strung out along the main diagonal, each representing the restriction

of α to one of the subspaces Uh.

(II) For each h, we have α = chτh + βh, where βh is a nilpotent endomorphism

of Uh. We now choose a basis of Uh relative to which βh is represented in

Jordan canonical form.

Thus, in the end, we have a representation of α by a matrix of the form⎡

⎢
⎢
⎢
⎣

A1 O . . . O

O A2 . . . O
...

...
. . .

...

O O . . . Am

⎤

⎥
⎥
⎥
⎦

, where each block Ah is a matrix with blocks of the form

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ch 0 0 . . . 0
1 ch 0 . . . 0
0 1 ch . . . 0

. . .
. . .

0 0 . . . 1 ch

⎤

⎥
⎥
⎥
⎥
⎥
⎦

on its diagonal (these may be 1 × 1!) and all other en-

tries equal to 0. A matrix of this form is called the Jordan canonical form of α. By

Proposition 13.7, we see that if V is a vector space finitely generated over a field

F and if α is an endomorphism of V having a completely reducible characteristic

polynomial in F [X], then there is a basis of V relative to which α can be represented

by a matrix in Jordan canonical form. Thus, this can always be done if the field F

is algebraically closed. If F is not algebraically closed then it is always possible to

extend the field F to a larger field K such that the characteristic polynomial of α is

completely reducible in K[X].

Example Consider α ∈ End(R4) represented with respect to the canonical basis

by A =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−1 4 −6 4

⎤

⎥
⎥
⎦. The characteristic polynomial of A is X4 − 4X3 +

6X2 − 4X + 1 = (X − 1)4 and so its only eigenvalue is 1. Then A is similar

to B =

⎡

⎢
⎢
⎣

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

⎤

⎥
⎥
⎦ in Jordan canonical form. Indeed, B = PAP −1, where

P =

⎡

⎢
⎢
⎣

−1 3 −3 1
1 −2 1 0

−1 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦.
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Example Consider α ∈ End(R5) represented with respect to the canonical basis

by A =

⎡

⎢
⎢
⎢
⎢
⎣

3 0 0 0 0
0 4 2 −1 4
0 0 2 0 0
0 1 3 2 1
0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎦

. The characteristic polynomial of A is (X − 3)3 ·

(X − 2)2 and A is similar to B =

⎡

⎢
⎢
⎢
⎢
⎣

2 0 0 0 0
0 3 0 0 0
0 1 3 0 0
0 0 0 2 0
0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎦

in Jordan canonical form. In-

deed,

B = PAP −1, where P =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 −3 0 −4
0 1 −1 −1 3
2 1 3 0 1
0 0 0 0 −1

−1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

Example Consider α ∈ End(C4) which is represented with respect to the canon-

ical basis by A =

⎡

⎢
⎢
⎣

0 0 2i 0
1 0 0 2i

−2i 0 0 0
0 −2i 1 0

⎤

⎥
⎥
⎦. The characteristic polynomial of A

is (X − 2)2(X + 2)2 and A is similar to B =

⎡

⎢
⎢
⎣

−2 0 0 0
1 −2 0 0
0 0 2 0
0 0 1 2

⎤

⎥
⎥
⎦. Indeed,

B = PAP −1, where P = 1

2

⎡

⎢
⎢
⎣

1 0 −i 0
0 1 0 −i

1 0 i 0
0 1 0 i

⎤

⎥
⎥
⎦ .

We now use Jordan canonical forms to prove a result interesting in its own right.

Proposition 13.8 Let n be a positive integer and let A ∈ Mn×n(F ), where F

is an algebraically-closed field. Then A can be written as a product of two
symmetric matrices.

Proof By Proposition 13.7, we know that A is similar to a matrix B in Jordan
canonical form. In other words, there exists a nonsingular matrix Q ∈ Mn×n(F )

satisfying A = QBQ−1. If we can write B = CD, where both C and D are symmet-
ric, then A = QBDQ−1 = (QCQT )((QT )−1DQ−1) = (QCQT )((Q−1)T DQ−1),
where both QCQT and (Q−1)T DQ−1 are symmetric. Therefore, without loss of
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generality, we can assume that A is in Jordan canonical form, say

A =

⎡

⎢
⎢
⎢
⎣

A1 O . . . O

O A2 . . . O
...

...
. . .

...

O O . . . Am

⎤

⎥
⎥
⎥
⎦

,

where each block Ah is of the form
⎡

⎢
⎢
⎢
⎢
⎢
⎣

ah 0 0 . . . 0
1 ah 0 . . . 0
0 1 ah . . . 0

. . .
. . .

0 0 . . . 1 ah

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ Mnh×nh
(F ).

Define the matrix Dh ∈Mnh×nh
(F ) to be [dij ], where

dij =
{

1 if i + j = nh + 1,

0 otherwise.

Then Dh is a symmetric matrix satisfying D−1
h = Dh. Moreover, the matrix

D =

⎡

⎢
⎢
⎢
⎣

D1 O . . . O

O D2 . . . O
...

...
. . .

...

O O . . . Dm

⎤

⎥
⎥
⎥
⎦

∈ Mn×n(F )

is also symmetric and satisfies D−1 = D. Furthermore, the matrix

C =

⎡

⎢
⎢
⎢
⎣

A1D1 O . . . O

O A2D2 . . . O
...

...
. . .

...

O O . . . AmDm

⎤

⎥
⎥
⎥
⎦

∈Mn×n(F )

is also symmetric and A = CD, as required. �

Another interesting result is the following.

Proposition 13.9 If A ∈ Mn×n(F ), where F is an algebraically-closed field,
then A is similar to its transpose.

Proof Since F is algebraically closed, we know that A is similar to a matrix B in
Jordan canonical form, and to show that B is similar to its transpose it suffices to
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show that each Jordan block is similar to its transpose. This is surely true of blocks

of size 1 × 1. If C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c 0 0 . . . 0
1 c 0 . . . 0
0 1 c . . . 0

. . .
. . .

0 0 . . . 1 c

⎤

⎥
⎥
⎥
⎥
⎥
⎦

is a Jordan block of size h × h for

h > 1, then we note that PCP = CT , where P = [pij ] is the involutory matrix
defined by the condition that

pij =
{

1 if i + j = n + 1,

0 otherwise

thus proving the result. �

Contemporary American mathematician Richard Brualdi and Chinese mathe-
maticians Pei Pei and Xingzhi Zhan have shown that the Jordan canonical form
of a matrix in Mn×n(C) is the best one can get in terms of sparseness, namely they
proved that among all the matrices that are similar to a given matrix in Mn×n(C),
the Jordan canonical form has the greatest number of off-diagonal zero entries.

Exercises

Exercise 847
Find endomorphisms α and β of R3 satisfying the condition that αβ is not nilpo-
tent but cα + dβ is nilpotent for all c, d ∈R.

Exercise 848
Let V be a vector space over a field F and let α ∈ End(V ) be nilpotent, having
index of nilpotence k > 0. Show that σ1 + α ∈ Aut(V ).

Exercise 849
Let V be a vector space finitely-generated over C. Do there exist endomorphisms
α and β of V satisfying the condition that σ1 + αβ − βα is nilpotent?

Exercise 850
Let F a field and let B be a given basis of F 3. Let a ∈ F and let α be the

endomorphism of F 3 satisfying ΦBB(α) =
⎡

⎣
−a a a

0 0 0
−a a a

⎤

⎦. For which values of

a is this endomorphism nilpotent?

Exercise 851
Let F be a field. Give an example of a nilpotent endomorphism of F 5 having
index of nilpotence 3.
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Exercise 852
Let α be the endomorphism of V = R

4 represented with respect to a basis B of

V by the matrix

⎡

⎢
⎢
⎣

2 −8 12 −60
2 −5 9 −48
6 −17 29 −152
1 −3 5 −26

⎤

⎥
⎥
⎦. Show that α is nilpotent and find its

index of nilpotence.

Exercise 853
Let V be a vector space over a field F and let α ∈ End(V ) be nilpotent. Does βα

have to be nilpotent for all β ∈ End(V )?

Exercise 854
Let V be a vector space over a field F and let α ∈ End(V ) be nilpotent. Find
spec(α).

Exercise 855
Let V be a vector space finitely generated over C and let α ∈ End(V ) satisfy
spec(α) = {0}. Show that α is nilpotent.

Exercise 856
Let V be a vector space over a field F and let α ∈ End(V ) be nilpotent, having
index of nilpotence k. Find the minimal polynomial of α.

Exercise 857
Let V be a vector space finitely generated over a field F and let α ∈ End(V )

satisfy the condition that for each v ∈ V there exists a positive integer n(v) sat-
isfying αn(v)(v) = 0V . Show that α is nilpotent. Does the same result hold if V

is not assumed to be finitely generated over F ?

Exercise 858
Let F be a field and let α be an endomorphism of F 3 represented with respect to

a basis B of F 3 by the matrix

⎡

⎣
0 a 0
0 0 b

0 0 0

⎤

⎦, where a and b are nonzero scalars.

Does there exist a endomorphism β of F 3 satisfying β2 = α?

Exercise 859
Let α be a nilpotent endomorphism of a vector space V over a field F having
characteristic 0. Show that there exists an endomorphism β of V belonging to
F [α] and satisfying β2 = σ1 + α.
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Exercise 860

Let α ∈ End(R3) be represented with respect to the canonical basis by the matrix⎡

⎣
1 2 −2
3 0 3
1 1 −2

⎤

⎦. Calculate R[α]
⎡

⎣
1
0
0

⎤

⎦.

Exercise 861

Let V be the space of all infinitely-differentiable functions from R to itself. Let

δ be the endomorphism of V which assigns to each function its derivative. What

is R[δ] sin(x)?

Exercise 862

Define α ∈ End(R3) by α :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
a + c

b − a

b

⎤

⎦. Find R[α]
⎡

⎣
1
1
1

⎤

⎦.

Exercise 863

Let V be a vector space over a field F and let α ∈ End(V ). Let v ∈ V be a vector

satisfying F [α2]v = V . Show that F [α]v = V .

Exercise 864

Given a ∈R, let αa ∈ End(R4) be represented with respect to the canonical basis

by the matrix

⎡

⎢
⎢
⎣

0 a 1 0
1 −2 1 1
0 0 1 0
0 1 0 −2

⎤

⎥
⎥
⎦. For which values of a is the dimension of

R[αa]

⎡

⎢
⎢
⎣

0
0
0

−1

⎤

⎥
⎥
⎦ equal to 3?

Exercise 865

Let α ∈ End(R3) be represented with respect to the canonical basis by the matrix⎡

⎣
1 1 1
0 1 0
0 0 2

⎤

⎦. Find the eigenvalues of α and the generalized eigenspace associ-

ated with each.
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Exercise 866
Let V be a vector space finitely generated over C and let α ∈ End(V ). Show
that α is diagonalizable if and only if every generalized eigenvector of α is an
eigenvector of α.

Exercise 867
Let B = {v1, v2, v3} be the canonical basis of R

3 and let α be the endomor-

phism of R3 satisfying ΦBB(α) =
⎡

⎣
1 0 2
0 1 0
0 0 1

⎤

⎦. Show that W = R{v1, v3} and

Y = Rv2 are complements of each other in R
3 and that each of these spaces is

invariant under α.

Exercise 868

Let A =
⎡

⎣
1 2 0
0 2 0
2 −2 −1

⎤

⎦ ∈M3×3(R). Find the Jordan canonical form of A.

Exercise 869

Let A =
⎡

⎣
−2 8 6
−4 10 6

4 −8 −4

⎤

⎦ ∈ M3×3(R). Find the Jordan canonical form of A.

Exercise 870

Let O �= A ∈ M3×3(C) be of the form

⎡

⎣
0 a −b

−a 0 c

b −c 0

⎤

⎦, where a, b, and c are

real numbers. What is the Jordan canonical form of A?

Exercise 871
Let A ∈ M5×5(Q) be a matrix in Jordan canonical form having minimal poly-
nomial (X − 3)2. What does A look like?

Exercise 872
Give an example of a matrix in M4×4(R) which is not similar to a matrix in
Jordan canonical form.

Exercise 873
Let V be a vector space finitely generated over a field F and let α and β be
nilpotent endomorphisms of V represented with respect to some given basis by
matrices A and B , respectively. If the matrices A and B are similar, does the
index of nilpotence of α have to equal that of β?
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Exercise 874

Let F be a field and let A =
⎡

⎣
a 0 0
1 a 0
0 1 a

⎤

⎦ ∈ M3×3(F ). Show that

Ak =
⎡

⎣
ak 0 0

kak−1 ak 0
1
2k(k − 1)ak−2 kak−1 ak

⎤

⎦ for all k > 0.

Exercise 875
Let n be a positive integer and, for all 1 ≤ i, j ≤ n, let pij (X) ∈ C[X]. Let
ϕ :C →Mn×n(C) be the function defined by ϕ : z �→ [pij (z)]. Furthermore,
let us assume that ϕ(z) is nonsingular for each z ∈ C. Show that there exists
a nonzero complex number d such that |ϕ(z)| = d for all z ∈ C.

Exercise 876
For each t ∈ C, let αt be the endomorphism of C3 represented with respect to the

canonical basis by the matrix

⎡

⎣
0 1 0
0 0 0
t 0 0

⎤

⎦. Is the representation of αt in Jordan

canonical form dependent on t?

Exercise 877

Let A =
⎡

⎣
0 0 4
0 0 0
0 0 0

⎤

⎦ ∈M3×3(C). Find the set of all c ∈C satisfying the condi-

tion that cA is similar to A.

Exercise 878

Find the Jordan canonical form of A = 1

2

⎡

⎣
−1 1 0

1 −1 0
0 0 0

⎤

⎦ ∈ M3×3(R).

Exercise 879
Let a ∈R be positive. Find the Jordan canonical form of

⎡

⎢
⎢
⎣

a 0 0 1
0 1 1 0
0 1 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ∈M4×4(R).

Exercise 880
Let A ∈ Mn×n(R) differ from I and O . If A is idempotent, show that its Jordan
canonical form is a diagonal matrix.
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Exercise 881
Let I �= A ∈ Mn×n(R) be an involutory matrix. Show that the Jordan canonical
form of A is a diagonal matrix.
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Let V be a vector space over a field F . A linear transformation from V to F (consid-
ered as a vector space over itself) is a linear functional on V . The space Hom(V ,F )

of all such linear functionals is called the dual space of V and will be denoted by
D(V ). Note that D(V ) is a vector space over F , the identity element of which for
addition is the 0-functional, v �→ 0. Since dim(F ) = 1, we immediately see that
every linear functional other than the 0-functional must be an epimorphism.

With kind permission of the Archives of the Mathematisches
Forschungsinstitut Oberwolfach.

Linear functionals were first studied systematically
by the French mathematician Jacques Hadamard,
whose long life ranged from the mid nineteenth
century to the mid twentieth century, and by his
student Maurice Fréchet. Their work on function-
als turned them into a major tool in analysis.

Example Let F be a field and let n be a positive integer. Any v ∈ Fn defines a linear
functional in D(Fn) by w �→ v � w.

Example Let V be a vector space over a field F and let B be a basis for V . Each
u ∈ B defines a function fu ∈ FB defined by

fu : u′ �→
{

1 if u′ = u,

0 otherwise,

and by Proposition 6.2 we know that this function in turn defines a linear functional
δu ∈ D(V ). In particular, if V = Fn and if B = {u1, . . . , un} is the canonical basis

for V , then δuh
:
⎡
⎢⎣

a1
...

an

⎤
⎥⎦ �→ ah for each 1 ≤ h ≤ n.

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_14, © Springer Science+Business Media B.V. 2012
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Example Suppose that V = C(a, b) and that g0 ∈ V . Then the function η : V → R

defined by η : f �→ ∫ b

a
f (x)g0(x) dx belongs to D(V ). Hadamard’s initial work on

linear functionals concerned those of the form f �→ limn→∞
∫ b

a
f (x)gn(x) dx for

suitable sequences g1, g2, . . . in V .

Example Let V be the subspace of R
R consisting of all infinitely-differentiable

functions f satisfying the condition that there exist real numbers a ≤ b such that
f (x) = 0 if x /∈ [a, b]. Then the function f �→ ∫ ∞

−∞ f (x)dx belongs to D(V ). El-
ements of D(V ) are known as distributions and play an important role in analysis
and theoretical physics.

Note that the linear functional tr : Mn×n(F ) → F is not a homomorphism of
F -algebras whenever n > 1. If (K,•) is an algebra over a field F then a nonzero
linear functional δ ∈ D(K) which is also a homomorphism of F -algebras is called
a weight function on K and an algebra having a weight function is called a baric
algebra.1 Nonassociative baric algebras are an important context for mathematical
models in genetics.

Let F be a field and let n be a positive integer. Then there exists a linear
functional tr : Mn×n(F ) → F which assigns to each matrix the sum of the ele-
ments of its diagonal, i.e., tr : [aij ] �→ ∑n

i=1 aii . This linear functional is called the
trace. This functional will play an important part in our later discussion. Note that
v � w = tr(v ∧ w) for all v,w ∈ Fn.

If A = [aij ] and B = [bij ] are matrices in Mn×n(F ), then it is easy to see that
tr(AB) = ∑n

i=1
∑n

h=1 aihbhi = tr(BA). We also notice that tr(I ) = n, where I is
the identity matrix of Mn×n(F ). If the characteristic of the field F does not divide n,
we claim that these conditions uniquely characterize the trace.

With kind permission of the Clarke University Archives.

The trace of a matrix was first defined by the nineteenth-century
American mathematician Henry Taber.

Proposition 14.1 Let n be a positive integer and let F be a field the charac-
teristic of which does not divide n. Let δ be a linear functional on Mn×n(F )

satisfying the conditions that δ(AB) = δ(BA) for all A,B ∈ Mn×n(F ) and
that δ(I ) = n. Then δ = tr.

1Such structures were first studied by the twentieth-century Scottish mathematician I.M.H. Ether-
ington, who formulated the Mendelian laws algebraically.
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Proof If {Hij | 1 ≤ i, j ≤ n} is the canonical basis of Mn×n(F ), then it suffices to
show that δ(Hij ) = tr(Hij ) for all 1 ≤ i, j ≤ n. In particular, if 1 ≤ i, j ≤ n then
δ(Hii) = δ(HijHji) = δ(HjiHij ) = δ(Hjj ). Since I = ∑n

i=1 Hii , this implies that
n = δ(I ) = ∑n

i=1 δ(Hii) and so δ(Hii) = 1 = tr(Hii) for all 1 ≤ i ≤ n. If i 
= j then
H1jHi1 = O and so δ(Hij ) = δ(Hi1H1j ) = δ(H1jHi1) = δ(O) = 0 = tr(Hij ), and
we are done. �

By the above, we see that if F is a field, if n is a positive integer, and if A,B ∈
Mn×n(F ), then tr(A •B) = tr(AB)− tr(BA) = 0, where • denotes the Lie product
on Mn×n(F ). In fact, over fields of characteristic 0 the converse is also true. In
order to establish this fact, we first need a technical result.

Proposition 14.2 Let F be a field of characteristic 0 and let n be a positive
integer. Let A ∈ Mn×n(F ) have the property that it is similar to no matrix in
Mn×n(F ) having a 0 for its (1,1)-entry. Then A is a scalar matrix.

Proof Clearly, A is not O and so there exists a vector w ∈ Fn satisfying

AT w 
=
⎡
⎢⎣

0
...

0

⎤
⎥⎦. Assume that there exists a vector v ∈ Fn satisfying the condition

that w � v = 1 and (AT w) � v = 0. Let δ ∈ D(Fn) be given by δ : y �→ w � y.
Then the nullity of δ is n − 1 and we can pick a basis {y2, . . . , yn} for ker(δ). Since
v /∈ ker(δ), we see that the set {v, y2, . . . , yn} is linearly independent. Therefore, the
matrix P the columns of which are v, y2, . . . , yn is nonsingular, and wT is the first
row of P −1. Moreover, the (1,1)-entry of the matrix P −1AP is (AT w) � v = 0,
contradicting the assumption on A. This means that there is no vector v satisfying
the given conditions and so AT w = cww for some scalar cw ∈ F . Thus we conclude
that if w is any vector in Fn then AT w is either the 0-vector or a scalar multiple of
w and so, for any nonsingular matrix Q ∈ Mn×n(F ) we see that Q−1AQ = [bij ]
is a diagonal matrix. If bhh 
= bkk and if y is the difference between the hth and kth
rows of Q−1, then AT y cannot be of the form cyy, which is again a contradiction.
Thus A must in fact be a scalar matrix. �

Proposition 14.3 Let F be a field of characteristic 0, let n be a positive inte-
ger, and let C ∈Mn×n(F ). Then tr(C) = 0 if and only if C is the Lie product
of matrices A,B ∈Mn×n(F ).

Proof We have already seen that if C is the Lie product of two matrices in
Mn×n(F ) then tr(C) = 0. We will prove the converse by induction on n. The re-
sult is clearly true if n = 1 so we can assume, inductively, that n > 1 and that the
result has been established for matrices in Mk×k(F ) for any k < n. Moreover, if
C = O , take A = B = O and we are done. Hence we can assume that C 
= O .
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Since F has characteristic 0 and tr(C) = 0, we know that C is not a scalar ma-
trix. By Proposition 14.2, this means that there is a nonsingular matrix P such
that P −1CP has a 0 for its (1,1)-entry. That is to say, we can write P −1CP in

block form as

[
0 xT

z C′
]

, where x, z ∈ Fn−1 and C′ ∈ M(n−1)×(n−1)(F ). More-

over, tr(D) = tr(P −1CP) = tr(C) = 0 and so, by the induction hypothesis, there
exist matrices A′,B ′ ∈ M(n−1)×(n−1)(F ) satisfying C′ = A′B ′ − B ′A′. If A′ is
singular, then we can replace A′ by A′ − c′I for any scalar c′ /∈ spec(A′) (and
such an element c′ exists since F has characteristic 0 and hence is infinite).
Therefore, without loss of generality, we can assume that A′ is nonsingular. Then

P −1CP = A′′B ′′ −B ′′A′′, where A′′ =
[

0 O

O A′
]

and B ′′ =
[

0 −xT A′−1

A′−1z B ′
]

.

Thus C = (PA′′P −1)(PB ′′P −1) − (PB ′′P −1)(PA′′P −1). �

The first of many proofs of this result was given by Kenjiro Shoda,
one of the major figures in the twentieth-century Japanese algebra.
The proof given here is due to Kahan.

Example Note that this result may be false if the field F has positive characteristic.

For example, if F = GF(2) then tr

([
1 0
0 1

])
= 0 but there are no matrices A and

B in M2×2(F ) satisfying AB − BA =
[

1 0
0 1

]
.

Thus, if F has characteristic 0 then the set of all matrices C ∈Mn×n(F ) satisfy-
ing tr(C) = 0 forms a subalgebra of the general Lie algebra Mn×n(F )−, called the
special Lie algebra defined by Fn.

If n is a positive integer, F is a field, and P is a nonsingular matrix in Mn×n(F ),
then tr(PAP −1) = tr(PP −1A) = tr(A) and so similar matrices have identical
traces. In general, if B and C are fixed matrices in Mn×n(F ) then the functions
A �→ tr(BA) and A �→ tr(AC) belong to D(Mn×n(F )).

The following result shows that traces essentially define all linear functionals on
spaces of square matrices.

Proposition 14.4 Let F be a field, let n be a positive integer, and let
δ ∈ D(Mn×n(F )). Then there exists a matrix C ∈ Mn×n(F ) satisfying
δ : A �→ tr(AC) for all A ∈ Mn×n(F ).
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Proof For each 1 ≤ i, j ≤ n, let Hij be the matrix having (i, j)-entry equal to 1 and
all of the other entries equal to 0. Then we know that the set of all such matrices
is a basis for Mn×n(F ). Let C = [cij ] ∈ Mn×n(F ) be the matrix defined by cij =
δ(Hji) for all 1 ≤ i, j ≤ n. Then for each matrix A = [aij ] ∈ Mn×n(F ) we have
δ(A) = δ(

∑n
i=1

∑n
j=1 aijHij ) = ∑n

i=1
∑n

j=1 aij δ(Hij ) = ∑n
i=1

∑n
j=1 aij cji =

tr(AC). �

Proposition 14.5 Let F be a field, let n be a positive integer, and let
δ ∈ D(Mn×n(F )) be a linear functional satisfying δ(AB) = δ(BA) for all
A,B ∈Mn×n(F ). Then there exists a scalar c ∈ F such that δ(A) = c · tr(A)

for all A ∈ Mn×n(F ).

Proof Again, for each 1 ≤ i, j ≤ n, let Hij be the matrix having (i, j)-entry equal
to 1 and all of the other entries equal to 0. If 1 ≤ i 
= j ≤ n then δ(Hij ) =
δ(HiiHij ) = δ(HijHii) = δ(O) = 0. Moreover, for all 1 ≤ j, k ≤ n we have
δ(Hjj ) = δ(HjkHkj ) = δ(HkjHjk) = δ(Hkk). Thus we see that there exists a c ∈ F

such that δ(Hjj ) = c for all 1 ≤ j ≤ n and from Proposition 14.4 we conclude that
δ(A) = tr(A · cI) = c · tr(A) for all A ∈Mn×n(F ). �

Proposition 14.6 (Taber’s Theorem) Let F be a field, let n be a positive
integer, and let A ∈ Mn×n(F ) be a matrix the characteristic polynomial of
which is completely reducible. Then tr(A) is the sum of the eigenvalues of A

(with the appropriate multiplicities).

Proof Let p(X) = ∑n
i=0 ciX

i be the characteristic polynomial of A. We know that
this polynomial is completely reducible, say p(X) = ∏n

i=1(X − bi), and after mul-
tiplying this out, we see that cn−1 = −∑n

i=1 bi . But from the definition of the char-
acteristic polynomial, we also see that cn−1 = −tr(A). Thus we see that, for any
such matrix, tr(A) is the sum of the eigenvalues of A (with the appropriate multi-
plicities). �

Example Let F be a field, let � be a nonempty set, and let V = F�. For each a ∈ �

there exists a linear functional δa ∈ D(V ) defined by evaluation: δa : f �→ f (a). In
the case that F is R and � is the unit interval of the real line, this functional is
known to physicists as the Dirac functional. In analysis, evaluation functionals are
often used to establish boundary conditions on classes of functions being studied.
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Paul Dirac, the Nobel-prize-winning twentieth-century British physi-
cist, built the first accepted model of quantum mechanics, in which lin-
ear functionals played a fundamental part.

Example Let n be a positive integer and let c and d be complex numbers. Can we
find all matrices A ∈ Mn×n(C) having the property that c is an eigenvalue of A

having geometric multiplicity n − 1 and d is an eigenvalue of A having geometric
multiplicity 1? (Certainly one such matrix always exists, namely a diagonal matrix
with c appearing n − 1 times on the diagonal and d once.) In general, in order for c

to be an eigenvalue of A of geometric multiplicity n − 1, the eigenspace associated
with it has to be of dimension n − 1. In other words, the nullity of the matrix A− cI

must equal n−1. From this we see that the dimension of the column space of A−cI

must equal 1, and so there must exist nonzero vectors u =
⎡
⎢⎣

b1
...

bn

⎤
⎥⎦ and v =

⎡
⎢⎣

e1
...

en

⎤
⎥⎦ in

C
n such that A−cI = u∧v, whence A = u∧v +cI . Conversely, if A is a matrix of

the form u ∧ v + cI , then c is an eigenvalue of A having multiplicity at least n − 1.
Note that tr(A) = ∑n

i=1 biei +nc. But, as we just noted, tr(A) is also the sum of the
eigenvalues of A, counted by multiplicity, and so we want it to equal d + (n − 1)c.
Thus we are reduced to finding vectors u and v as above satisfying the condition
that

∑n
i=1 biei = d − c. This is easy to do in concrete cases.

The following proposition shows that there always enough linear functionals to
enable us to distinguish between vectors.

Proposition 14.7 Let V be a vector space of a field F . If v 
= w are elements
of V then there exists a linear functional δ ∈ D(V ) satisfying δ(v) 
= δ(w).

Proof Since the set {v − w} is linearly independent, it can be completed to a basis
B of V . By Proposition 6.2, there exists a linear functional δ ∈ D(V ) satisfying
δ(v − w) = 1 and δ(u) = 0 for all u ∈ B � {v − w}. This is the linear functional we
want. �

In particular, if 0V 
= v ∈ V then there is a linear functional δ ∈ D(V ) satisfying
δ(v) 
= 0.
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Proposition 14.8 Let V be a vector space of a field F . Then D(V ) ∼= FB . In
particular, if V is finitely generated over F then D(V ) ∼= V .

Proof We have a function α : D(V ) → FB given by restriction, and it is straight-
forward to check that this function is an R-homomorphism. Since every element
of D(V ) is totally defined by its action on a basis, this function is monic and,
by Proposition 6.2, it is epic. Therefore, it is an isomorphism. If B is finite, then
V ∼= F (B) = FB . �

In particular, we see the important relationship between F (�) and F� for any
nonempty set �, namely that F� is isomorphic to the dual space of F (�). Note too
that D(V ) � V whenever the vector space V is not finitely generated over F since
it can be shown, using the arithmetic of transfinite cardinals, that F (�) and F� are
never isomorphic when � is infinite.

Let us consider the idea inherent in Proposition 14.8. Let V be a vector space
over a field F and let B be a given basis for V . For each v ∈ B , let δv ∈ D(V )

satisfy δv(v) = 1 and δv(u) = 0 for all v 
= u ∈ B . We claim that E = {δv |
v ∈ B} is a linearly-independent subset of D(V ). Indeed, if c1, . . . , cn are scalars
in F and u1, . . . , un are elements of B satisfying the condition that

∑n
i=1 ciδui

is the 0-functional. Then for all 1 ≤ h ≤ n we have 0 = (
∑n

i=1 ciδui
)(uh) =∑n

i=1 ciδui
(uh) = ch. This establishes the claim. If V is finitely-generated then B is

finite and so E is a basis for D(V ), since it is easy to check that δ = ∑
u∈B δ(u)δu

for all δ ∈ D(V ). Such a basis E for D(V ) is called the dual basis of the basis B

for V . If V is not finitely generated, then FE is a subspace of D(V ) composed of
all those linear functionals δ ∈ D(V ) satisfying the condition that δ(u) 
= 0 for at
most finitely-many elements u of B . This subspace is called the weak dual space
of V .

Example Let V be the vector space of all polynomial functions in R
R having de-

gree at most 4. Suppose that B = {a1, . . . , a5} is a set of distinct positive real num-
bers and, for each 1 ≤ i ≤ 5, let δi ∈ D(V ) be the linear transformation defined
by δi : p(t) �−→ ∫ ai

0 p(t) dt . We claim that B = {δ1, . . . , δ5} is a basis for D(V ).
Indeed, since we know by Proposition 14.8 that dim(D(V )) = 5, all we have to
show is that the set B is linearly independent. That is to say, we must show that if
there exist real numbers b1, . . . , b5 satisfying the condition that

∑5
i=1 biδi is the 0-

functional, then bi = 0 for all 1 ≤ i ≤ 5. Since
∑5

i=1 biδi(t
h) = ∑5

i=1[ 1
h+1ah+1

i ]bi

for all 0 ≤ h ≤ 4, we must show that

⎡
⎢⎢⎢⎢⎢⎢⎣

a1
1
2a2

1
1
3a3

1
1
4a4

1
1
5a5

1

a2
1
2a2

2
1
3a3

2
1
4a4

2
1
5a5

2

...
...

...
...

...

a5
1
2a2

5
1
3a3

5
1
4a4

5
1
5a5

5

⎤
⎥⎥⎥⎥⎥⎥⎦

is nonsingu-

lar, which is the case since this is just a nonzero scalar multiple of a Vandermonde
matrix.
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Example Let a < b be real numbers and let t1, . . . , tn be distinct real numbers in
the closed interval [a, b] of the real line and let W be the subspace of R

R con-
sisting of all polynomial functions of degree less than n. Then dim(W) = n. For
each 1 ≤ i ≤ n, let δi ∈ D(W) be the linear functional defined by δi : p �→ p(ti).
We claim that the subset B = {δ1, . . . δn} of D(W) is linearly independent. Indeed,
if

∑n
i=1 ciδi is the 0-functional and if 1 ≤ h ≤ n, then 0 = (

∑n
i=1 ciδi)

∏
j 
=h(X −

tj ) = ch

∏
j 
=h(th − tj ), which implies that ch = 0 since the ti are distinct. Therefore,

by Proposition 14.8, B is a basis for D(W). Since the function p �→ ∫ b

a
p(x) dx also

belongs to D(W), we conclude that there exist real numbers c1, . . . , cn satisfying∫ b

a
p(x) dx = ∑n

i=1 cip(ti) for any p ∈ W .

Let V and W be vector spaces over a field F and let α ∈ Hom(V ,W). If
δ ∈ D(W) then δα ∈ D(V ). Moreover, if δ1, δ2 ∈ D(W) and if v ∈ V then
[(δ1 + δ2)α](v) = (δ1 + δ2)α(v) = δ1α(v) + δ2α(v) = [δ1α + δ2α](v) and so (δ1 +
δ2)α = δ1α + δ2α. Similarly, if c ∈ F and if δ ∈ D(W) then c(δα) = (cδ)α. There-
fore, we see that α defines a linear transformation D(α) ∈ Hom(D(W),D(V ))

by setting D(α) : δ �→ δα. If V , W , and Y are vector spaces over F and if
α ∈ Hom(V ,W) and β ∈ Hom(W,Y ) then it is straightforward to show that
D(βα) = D(α)D(β). If α is an isomorphism, then D(α) is also an isomorphism,
where D(α)−1 = D(α−1).

Proposition 14.9 Let F be a field and let V and W be vector spaces finitely
generated over F . Let B = {v1, . . . , vk} be a basis for V , the dual basis of
which is C = {δ1, . . . , δk}, and let D = {w1, . . . ,wn} be a basis for W , the
dual basis of which is E = {η1, . . . , ηn}. If α : V → W is a linear transforma-
tion then ΦEC(D(α)) = ΦBD(α).

Proof Let ΦBD(α) = [aij ]. For each 1 ≤ i ≤ k we have α(vi) = ∑n
h=1 ahiwh

and so for all 1 ≤ i ≤ k and all 1 ≤ j ≤ n we have [D(α)(ηj )](vi) = ηjα(vi) =∑n
h=1 ahiηj (wh) = aji . But each δ ∈ D(V ) satisfies δ = ∑k

i=1 δ(vi)δi and so, in
particular, D(α)(ηj ) = ∑k

i=1[D(α)(ηj )](vi)δi = ∑k
i=1 ajiδi , which gives the de-

sired result. �

We have already seen that, given a vector space V over a field F , we can build
the dual space D(V ). Since this too is a vector space over F , we can go on to
built its dual space, D2(V ) = D(D(V )). What do some elements of this space look
like? Each v ∈ V defines a function θv : D(V ) → F by setting θv : δ �→ δ(v). This
is indeed a linear functional and so is an element of D2(V ), which we call the
evaluation functional at v.
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Proposition 14.10 Let V be a vector space over a field F . The function
v �→ θv is a monomorphism from V to D2(V ), which is an isomorphism in
the case V is finitely generated.

Proof We first have to show that this function is a linear transformation. And, in-
deed, if v,w ∈ V , if a ∈ F , and if δ ∈ D(V ), then as a direct consequence of
the definitions we obtain θv+w(δ) = δ(v + w) = δ(v) + δ(w) = θv(δ) + θw(δ) =
[θv + θw](δ) and so θv+w = θv + θw . Similarly, θav(δ) = δ(av) = aδ(v) = aθv(δ)

and so θav = aθv . Thus we have shown that we do indeed have a homomorphism.
If v belongs to the kernel of this function then θv(δ) = δ(v) for all δ ∈ D(V ) and
so, by Proposition 14.5, we know that v = 0V . Thus it is a monomorphism. Finally,
if V is finitely generated then, by Proposition 14.6, we see that dim(D2(V )) =
dim(D(V )) = dim(V ) and so any monomorphism from V to D2(V ) has to be an
isomorphism. �

We should note that the importance of Proposition 14.10 lies not in the existence
of an isomorphism between V and D2(V ), which could be inferred from dimension
arguments alone, but in finding a specific, natural, such isomorphism.

A proper subspace W of a vector space V over a field F is a maximal subspace if
and only if there is no subspace of V properly contained in V and properly contain-
ing W . By the Hausdorff Maximum Principle, we know that any nontrivial vector
space contains a maximal subspace. The maximal subspaces of finitely-generated
vector spaces are usually called hyperplanes of the space. We will now use linear
functionals in order to characterize these subspaces of V .

Proposition 14.11 A subspace W of a vector space V over a field F is max-
imal if and only if there exists a linear functional δ ∈ D(V ) which is not the
0-functional, with kernel W .

Proof Let us assume that W = ker(δ), where δ is a linear functional which is not the
0-functional, and assume that there exists a proper subspace Y of V which properly
contains W . Pick y ∈ Y �W and x ∈ V � Y . These two vectors have to be nonzero
and the set {x, y} is linearly independent by Proposition 5.3, since Fy ⊆ Y and
x /∈ Y . Set U = F {x, y}. Then ker(δ) and U are disjoint, so the restriction of δ to
U is a monomorphism, which is impossible since dim(U) = 2 and dim(F ) = 1.
Therefore, W must be a maximal subspace of V . Conversely, let W be a maximal
subspace of V and let y ∈ V �W . Then Fy ∩ W = {0V } and Fy + W = V by the
maximality of W . Therefore, V = Fy ⊕ W and so every vector in V can be written
in the form ay + w, where a ∈ F and w ∈ W . The function δ : ay + w �→ a is a
linear functional in D(V ) the kernel of which equals W . �
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Proposition 14.12 Let V be a vector space over a field F and let δ, δ1, . . . , δn

be elements of D(V ). Then δ ∈ F {δ1, . . . , δn} if and only if
⋂n

i=1 ker(δi) ⊆
ker(δ).

Proof Assume that δ ∈ F {δ1, . . . , δn}. Then there exist scalars a1, . . . , an such that
δ = ∑n

i=1 aiδi . If v ∈ ⋂n
i=1 ker(δi) then δi(v) = 0 for all 1 ≤ i ≤ n and so δ(v) =∑n

i=1 aiδi(v) = 0. Thus v ∈ ker(δ). Conversely, suppose that
⋂n

i=1 ker(δi) ⊆ ker(δ).
We will proceed by induction on n. First, assume that n = 1. If δ is the 0-functional,
then surely we are done. Thus let us assume that this is not the case and let v ∈
V � ker(δ). Since ker(δ1) ⊆ ker(δ), this means that δ1(v) 
= 0. Set a = δ1(v)−1δ(v).
Then δ(v) = aδ1(v) = (aδ1)(v) and so v ∈ ker(δ−aδ1). But ker(δ1) ⊆ ker(δ−aδ1),
and so this containment is again proper. By Proposition 14.11, ker(δ1) is a maximal
subspace of V and so ker(δ − aδ1) = V , which shows that δ = aδ1.

Now let us assume that we have prove the result for a given n and assume we
have linear functionals δ, δ1, . . . , δn+1 in D(V ) satisfying

⋂n+1
i=1 ker(δi) ⊆ ker(δ).

Set W = ker(δn+1) and for each 1 ≤ i ≤ n let βi be the restriction of δi to W .
Also, let β be the restriction of δ to W . Then

⋂n
i=1 ker(βi) ⊆ ker(β) and so, by

the induction hypothesis, we know that there exist scalars a1, . . . , an such that β =∑n
i=1 aiβi . Therefore, ker(δn+1) ⊆ ker(δ − ∑n

i=1 aiδi) and, as in the case n = 1, it
follows that there exists a scalar an+1 such that δ − ∑n

i=1 aiδi = an+1δn+1, proving
that δ = ∑n+1

i=1 aiδi . �

In the context of functional analysis, the following consequence of Propo-
sition 14.11, taken together with the Riesz Representation Theorem (Proposi-
tion 16.14), is known as the Fredholm alternative, and has many important applica-
tions.

The Swedish mathematician Ivar Fredholm was active in the late
nineteenth century and studied the solvability of integral equations.

Proposition 14.13 Let V and W be vector spaces over a field F , let
α ∈ Hom(V ,W), and let w ∈ W . Then w ∈ im(α) if and only if w ∈ ker(δ)
for any δ ∈ D(W) satisfying im(α) ⊆ ker(δ).

Proof If w ∈ im(α) then the given condition clearly holds. Conversely, assume that
w /∈ im(α) and let B be a basis for im(α). By Proposition 5.3, the set {w} ∪ B
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is linearly independent, and so there exists a subset B ′ of W containing B such
that {w} ∪ B ′ is a basis for W . Then FB ′ is a maximal subspace of W and so, by
Proposition 14.11, there exists a δ ∈ D(W) satisfying δ(w) 
= 0 and im(α) ⊆ FB ′ =
ker(δ). �

Exercises

Exercise 882
Let V = C(0,1). From calculus we know that for each f ∈ V there exists a max-
imal element af of {f (t) | 0 ≤ t ≤ 1}. Is the function f �→ af a linear functional
on V ?

Exercise 883
Let W be a subspace of Q[X] generated by a countably-infinite linearly-
independent set {p1(X),p2(X), . . .} of polynomials. Let δ : W →Q be the func-
tion defined by δ : ∑∞

i=1 aipi(X) �→ ∑∞
i=1 ai deg(pi) (where only finitely-many

of the ai are nonzero). Does δ belong to D(W)?

Exercise 884
Let F = GF(2) and let δ : F 3 → F be the function which assigns to each vector

v =
⎡
⎣a

b

c

⎤
⎦ the value (0 or 1) appearing in the majority of entries of v. Is δ a linear

functional?

Exercise 885
Find a linear functional δ ∈ D(R3) which is not the 0-functional but which satis-

fies δ

⎛
⎝

⎡
⎣ 3

2
−1

⎤
⎦

⎞
⎠ = δ

⎛
⎝

⎡
⎣3

2
1

⎤
⎦

⎞
⎠ = 0.

Exercise 886
Let V = Q[X] and to each vector v = [b1, b2, . . .] ∈ Q

∞ assign a linear func-
tional δv ∈ D(V ) defined by δv : ∑∞

n=0 anX
n �→ ∑∞

n=0 n!anbn+1. Is the function
α : Q∞ → D(V ) defined by v �→ δv an isomorphism?

Exercise 887
Let V be a vector space over a field F and let α,β ∈ D(V ) satisfy the condition
that ker(β) ⊆ ker(α). Show that α ∈ Fβ .

Exercise 888
Let F be a field and let 0 
= a ∈ F . Let α : F [X] → F be the function defined by
α : p(X) �→ p(a) − p(0). Is α a linear functional?
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Exercise 889
Let F be a field of characteristic 0 and let n be a positive integer. Show that
any matrix A ∈ Mn×n(F ) is similar to a matrix all diagonal entries of which are
equal to 0.

Exercise 890
Let V = R

3 and consider the linear functionals

δ1 :
⎡
⎣a

b

c

⎤
⎦ �→ 2a − b + 3c, δ2 :

⎡
⎣a

b

c

⎤
⎦ �→ 3a − 5b + c, and

δ3 :
⎡
⎣a

b

c

⎤
⎦ �→ 4a − 7b + c

on V . Is {δ1, δ2, δ3} a basis for D(V )?

Exercise 891
Let V be a vector space finitely generated over a field F and let W be a subspace
of V having a complement Y in V . Show that D(V ) = W ′ ⊕ Y ′, where W ′ is a
subspace of D(V ) isomorphic to W and Y ′ is a subspace of D(V ) isomorphic
to Y .

Exercise 892
Let n be a positive integer and let V be the vector space of all polynomial func-
tions from R to itself of degree no more than n. For all 0 ≤ k ≤ n, let δn : V →R

be the function defined by δk : p �→ ∫ 1
−1 tkp(t) dt . Show that {δ1, . . . , δn} is a

basis of D(V ).

Exercise 893

Let B =
⎧⎨
⎩

⎡
⎣ 0

3
−2

⎤
⎦ ,

⎡
⎣ 0

1
−1

⎤
⎦ ,

⎡
⎣ 1

−1
3

⎤
⎦

⎫⎬
⎭ ⊆ R

3. Find the dual basis of B .

Exercise 894
Let n be a positive integer and let V be a vector space of dimension n over a
field F . Let B = {δ1, . . . , δn} be a subset of D(V ) and assume that there exists a
vector 0V 
= v ∈ V satisfying δi(v) = 0 for all 0 ≤ i ≤ n. Show that B is linearly
dependent.

Exercise 895
Let V be a vector space over a field F . For every subspace W of V , let E(W) =
{δ ∈ D(V ) | ker(δ) ⊇ W }. Show that E(W) is a subspace of D(V ). More-
over, if {Wi | i ∈ �} is a family of subspaces of V , show that E(

∑
i∈� Wi) =⋂

i∈� E(Wi).
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Exercise 896
Let V be a vector space finitely generated over a field F and let W be a subspace
of V . For E(W) = {δ ∈ D(V ) | ker(δ) ⊇ W }, show that dim(W)+dim(E(W)) =
dim(V ).

Exercise 897
Let V be a vector space finitely generated over a field F , let W be a subspace
of V , and let Y be a subspace of D(V ). Are the following conditions equivalent:
(1) Y = {δ ∈ D(V ) | ker(δ) ⊇ W };
(2) W = ⋂

δ∈Y ker(δ)?

Exercise 898
Let A,B ∈M2×2(R). Show that tr(AB) = tr(A) · tr(B) if and only if |A + B| =
|A| + |B|.
Exercise 899
Let n be a positive integer and let U be a finite subset of Mn×n(C) which is
closed under multiplication of matrices. Show that there exists a matrix A in U

satisfying tr(A) ∈ {1, . . . , n}.

Exercise 900
Let n be a positive integer and let F be a field. For any matrix A = [aij ] ∈
Mn×n(F ), define the antitrace of A to be antitr(A) = ∑n

i=1 ai,n+1−i . Is the func-
tion A �→ antitr(A) a linear functional on Mn×n(F )?

Exercise 901
Let F be a field and let A ∈ M2×2(F ) be a matrix satisfying tr(A) = tr(A2) = 0.
Is it necessarily true that A = O?

Exercise 902
Let k and n be positive integers. If O 
= A ∈ Mk×n(R), does there necessarily
exist a matrix B ∈ Mn×k(R) satisfying tr(AB) 
= 0?

Exercise 903
Let F be a field and let k 
= n be positive integers. Let A ∈ Mk×n(F ) and
B ∈Mn×k(F ). Are tr(AB) and tr(BA) necessarily equal?

Exercise 904

Show that the matrices

⎡
⎣ 1 2 − i 1 + i

4 + i 1 + i 0
1 + i 1 1

⎤
⎦ and

⎡
⎣ 1 1 + i 2 − i

3 − i 1 + i 0
1 27 1 − i

⎤
⎦ in

M3×3(C) are not similar.

Exercise 905
Let n be a positive integer and let V be the subspace of R[X] composed of all
polynomials of degree at most n. What is the dual basis of {1,X, . . . ,Xn}?
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Exercise 906
Let n be a positive integer. If B and C are elements of Mn×n(R) satisfying
tr(B) ≤ tr(C), and if A ∈ Mn×n(R), is it necessarily true that tr(AB) ≤ tr(AC)?

Exercise 907
For a matrix A ∈ M3×3(R), find a positive integer c satisfying

|A| = 1

c

∣∣∣∣∣∣
tr(A) 1 0
tr(A2) tr(A) 2
tr(A3) tr(A2) tr(A)

∣∣∣∣∣∣ .

Exercise 908
Let k and n be positive integers and let F be a field. Define a function
α :Mkn×kn(F ) →Mn×n(F ) as follows: if A ∈ Mkn×kn(F ), write A = [Aij ],
where each Aij is a (k × k)-block. Then set α(A) = [bij ] ∈ Mn×n(F ), where
bij = tr(Aij ) for each 1 ≤ i, j ≤ n. Is α a linear transformation? Is it a homomor-
phism of unital F -algebras?

Exercise 909
Let A be a nonempty set and let V be the collection of all subsets of A, which is
a vector space over GF(2). Is the characteristic function of ∅ 
= D ⊆ A a linear
functional on V ?

Exercise 910
For each integer n > 1, find a nonsingular matrix A ∈ Mn×n(Q) satisfying
tr(A) = 0.

Exercise 911
Let n > 1 be an integer and let A ∈ Mn×n(R). Does there necessarily exist a
symmetric matrix B ∈Mn×n(R) satisfying tr(A) = tr(B)?

Exercise 912
Let V be a vector space finitely generated over Q and let α ∈ End(V ) be a pro-
jection. Show that there is a basis D of V satisfying the condition that the rank
of α equals tr(ΦDD(α)).

Exercise 913
Let W be a proper subspace of a vector space V over a field F and let v ∈ V �W .
Show that there is a linear functional δ ∈ D(V ) satisfying δ(v) 
= 0 but δ(w) = 0
for all w ∈ W .

Exercise 914
Let V be a vector space finitely generated over a field F and let W1 and W2 be
proper subspaces of V satisfying V = W1 ⊕ W2. Show that D(V ) = E1 ⊕ E2,
where Ej = {δ ∈ D(V ) | Wj ⊆ ker(δ)} for j = 1,2.
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Exercise 915
Let F be a field and let A ∈ M2×2(F ). Show that we always have A2 − tr(A)A+
|A|I = O .

Exercise 916
Let V be the subspace of R

∞ consisting of all sequences [a1, a2, . . .] ∈ R
∞

satisfying the condition that limi→∞ ai exists in R. Define linear functionals
δ1, δ2, . . . , δ∞ ∈ D(V ) by setting δh : [a1, a2, . . .] �→ ah for each h = 1,2, . . .

and δ∞ : [a1, a2, . . .] �→ limi→∞ ai . Is the subset {δ1, δ2, . . . , δ∞} of D(V ) nec-
essarily linearly independent?

Exercise 917
Let F be a field and, for each a ∈ F , let εa : F [X] → F be the linear functional
defined by εa : p(X) �→ p(a). Show that the subset {εa | a ∈ F } of D(F [X]) is
linearly independent.

Exercise 918
Let V be a vector space over a field F and let δ1, δ2 ∈ D(V ) be linear functionals
satisfying the condition that δ1(v)δ2(v) = 0 for all v ∈ V . Show that one of the
δi must be the 0-functional.

Exercise 919
Let n > 1 be an integer and let f : Rn →R be a continuous function which maps
the 0-vector to 0 and which satisfies the condition that f (v + w) + f (v − w) =
2f (v) for all v,w ∈R

n. Show that f ∈ D(Rn).

Exercise 920
Let a ∈ R, let n be a positive integer, and let A,B ∈ Mn×n(R). Does there nec-
essarily exist a matrix C ∈ Mn×n(R) satisfying AC + tr(C)A = B?

Exercise 921
Let F be a field and let n be a positive integer. Let δ : Mn×n(F ) → F be
the linear functional given by δ : [aij ] �→ ∑n

i=1
∑n

j=1 aij . Find an endomor-
phism α of Mn×n(F ) satisfying the condition that δ(A) = a · tr(α(A)) for all
A ∈ Mn×n(F ).

Exercise 922
Let F be a field and let n be a positive integer. Let A,B ∈ Mn×n(F ) be matrices
satisfying A2 + B2 = I and AB + BA = O . Show that tr(A) = tr(B) = 0.

Exercise 923
Let F be a field and let n be a positive integer. Given a positive integer k, is it
necessarily true that tr((AB)k) = tr(Ak)tr(Bk) for all A,B ∈Mn×n(F )?
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Exercise 924
Let V be a vector space finitely generated over a field F and let α ∈ End(V ).
Show that α and D(α) have identical minimal polynomials.

Exercise 925
Let V be a vector space over a field F and let n be a positive integer. Let
v1, . . . , vn be distinct vectors in V and assume that there exist α ∈ End(V ) and
δ ∈ D(V ) such that the matrix [δαi−1(vj )] ∈ Mn×n(F ) is nonsingular. Show
that the set {v1, . . . , vn} is linearly independent.

Exercise 926
Let W be a subspace of a vector space V over a field F . Show that W is a maxi-
mal subspace of V if and only if every complement of W in V has dimension 1.

Exercise 927
Let F be a field and let n be a positive integer. For matrices A,B ∈ Mn×n(F ),
calculate tr([AB − BA][AB + BA]).
Exercise 928
Let n be a positive integer. Can we find matrices A,B ∈Mn×n(C) satisfying the
condition that all eigenvalues of A and of B are positive real numbers, but not all
eigenvalues of A + B are positive real numbers?

Exercise 929
Let k and n be positive integers, let F be a field, and let O 
= A ∈ Mk×n(F ).
Does there necessarily exist a matrix B ∈Mn×k(F ) satisfying tr(AB) 
= 0.

Exercise 930
Let V be a vector space of finite dimension n over a field F . A nonempty finite
collection {W1, . . . ,Wk} of hyperplanes of V is co-independent if and only if
dim(

⋂k
i=1 Wi) = n − k. Is a nonempty subcollection of a co-independent collec-

tion of hyperplanes necessarily co-independent?

Exercise 931
If V is a vector space over R then the complexification of D(V ) is isomorphic to
HomR(V ,C) as vector spaces over C.

Exercise 932
Let F be a field and let k and n be positive integers. If A ∈ Mk×n(F ), are
tr(AAT ) and tr(AT A) necessarily equal?

Exercise 933
Let F be a field of characteristic other than 2. Show that any matrix A ∈ M2×2(F )

can be written in the form cI + B , where c ∈ F and tr(B) = 0.
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In this chapter, we will have to restrict the set of fields over which we work. A sub-
field F of R is real Euclidean if and only if for each 0 ≤ c ∈ F there exists an
element d ∈ F satisfying d2 = c and a subfield K of C is Euclidean if and only if
there exists a real Euclidean field F such that K = {a + bi | a, b ∈ F }. It is immedi-
ately clear that if K is a Euclidean field and c ∈ K , then c ∈ K . Being a Euclidean
field is intimately tied in with the constructibility of elements of the complex plane
by straightedge and compass constructions, and in fact every real Euclidean field
must contain all those real numbers which are then lengths of line segments obtain-
able from the unit line segment by straightedge and compass construction methods.
Clearly, R itself is real Euclidean, while Q, as we have already noted, is not; the set
real numbers algebraic over Q is real Euclidean and properly contained in R. The
field C is Euclidean, and the set of all algebraic numbers is Euclidean and properly
contained in C.

Let V be a vector space over a Euclidean field F . A function μ from V × V to
F is an inner product on V if and only if:
(1) For each w ∈ V , the function v �→ μ(v,w) from V to F is a linear functional;
(2) If v,w ∈ V then μ(v,w) = μ(w,v);
(3) If v ∈ V then μ(v, v) is a nonnegative real number, which equals 0 if and only

if v = 0V .
Note that, in the above situation, if v,w ∈ V then, as a consequence of (2),

μ(v,w) + μ(w,v) = 2 Re(μ(v,w)) is also always a real number, though it may,
of course, be negative.

In general, once we have fixed an inner product on a space, we will write 〈v,w〉
instead of μ(v,w). A vector space over a Euclidean subfield F of C on which
we have an inner product defined is called an inner product space. Another term for
such a space, coming from functional analysis, is a pre-Hilbert space. Abstract inner
product spaces were first studied in an axiomatic manner by von Neumann. While
inner product spaces over general Euclidean fields may prove to be interesting in
the future, at the moment the study of such spaces is almost universally restricted
to spaces over R or C, and so from now on we will do the same and consider
only these as possible fields of scalars. When we talk about an inner product space

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_15, © Springer Science+Business Media B.V. 2012

333

http://dx.doi.org/10.1007/978-94-007-2636-9_15


334 15 Inner Product Spaces

without specifying the field of scalars, we will always assume that it is one of these
two fields.

Example Let n be a positive integer and let F be either R or C. We define an inner

product on Fn, called the dot product, as follows: if v =
⎡
⎢⎣

a1
...

an

⎤
⎥⎦ and w =

⎡
⎢⎣

b1
...

bn

⎤
⎥⎦,

then we set v · w =∑n
i=1 aibi . Note that if F = R, then this product just coincides

with the interior product v � w which defined earlier. However, that is not true
for the case F = C, so we must be very careful to distinguish between the two
products. This modification of the definition is necessary since, over C, we have[

1
i

]
�
[

1
i

]
= 0, even though

[
1
i

]
	=
[

0
0

]
. Hence the interior product � is not an

inner product as we have defined it in this chapter.

With kind permission of the Archives of the Mathematisches
Forschungsinstitut Oberwolfach (Artin).

The problem arises because, in C, 0 can be writ-
ten as the sum of squares of nonzero elements.
A field F in which 0 cannot be the sum of squares
of nonzero elements of F is formally real; so R

is formally real while C is not. The theory of
formally real fields was developed in the 1920s
by the Austrian mathematicians Emil Artin and
Otto Schreier.

We can generalize the previous example. If F is either R or C, and if D = [dij ]
is a nonsingular matrix in Mn×n(F ), we can define an inner product on Fn by set-

ting

〈⎡
⎢⎣

a1
...

an

⎤
⎥⎦ ,

⎡
⎢⎣

b1
...

bn

⎤
⎥⎦

〉
= [

a1 . . . an

]
DDH

⎡
⎢⎣

b1
...

bn

⎤
⎥⎦, where DH = [dij ]T . The

matrix DH is called theconjugate transpose or Hermitian transpose of D, and it
again belongs to Mn×n(F ). Conjugate transposes of matrices over C will play an
important part in the following discussion; of course, DH = DT for any matrix
D ∈Mn×n(R).

The properties of the conjugate transpose are very much like those of the trans-
pose. Indeed, we note that if A,B ∈ Mn×n(C) and c ∈C, then (A + B)H = AH +
BH , (cA)H = cAH , AHH = A, and (AB)H = BH AH . In particular, if A is nonsin-
gular then I = IH = (AA−1)H = (A−1)H AH , proving that (A−1)H = (AH )−1.

Example If we are given positive real numbers c1, . . . , cn and consider the diag-
onal matrix D = [dij ] ∈ Mn×n(R) the diagonal entries of which are given by
dii = √

ci for 1 ≤ i ≤ n, then, by the above, we have an inner product on C
n given by
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〈⎡
⎢⎣

a1
...

an

⎤
⎥⎦ ,

⎡
⎢⎣

b1
...

bn

⎤
⎥⎦

〉
=∑n

i=1 ciaibi . Such a product is called a weighted dot product.

Weighted dot products are extremely important in statistics and data analysis, where
we often want to emphasize the values of certain parameters and de-emphasize oth-
ers.

Example Let a < b be real numbers and let V = C(a, b). This is, as we have
seen, a vector space over R, on which we can define an inner product 〈f,g〉 =∫ b

a
f (x)g(x) dx. Continuity is important here. The set Y of all functions from [a, b]

to R which are continuous at all but finitely-many points is a subspace of R
[a,b]

properly containing C(a, b) but 〈f,g〉 = ∫ b

a
f (x)g(x) dx is not an inner product

on Y . Indeed, if we select a real number c satisfying a < c < b and define the func-
tion f ∈ Y by

f : x �→
{

1 if x = c,

0 otherwise

then f is a nonzero element of Y but 〈f,f 〉 = 0.
Similarly, if V be the set of all continuous complex-valued functions defined on

the closed interval [a, b] in R, then V is a vector space over C, on which we can
define an inner product 〈f,g〉 = ∫ b

a
f (x)g(x) dx.

Example Let F be R or C, and let V = Mn×n(F ), which is a vector space
over F . Define an inner product on V by setting 〈A,B〉 = tr(ABH ) = tr(BH A). If
A = [aij ] and B = [bij ], then 〈A,B〉 =∑n

i=1
∑n

j=1 aij bij . In particular, 〈A,A〉 =∑n
i=1
∑n

j=1 |aij |2.

Example Let V be the subspace of C∞ composed of all those sequences [c0, c1, . . .]
of complex numbers satisfying

∑∞
i=0 |ci |2 < ∞. This vector space is very impor-

tant in analysis, and we can define an inner product on it by setting 〈[c0, c1, . . .],
[d0, d1, . . .]〉 =∑∞

i=0 cidi .

Let F be R or C, and let W be a subspace of an inner product space V over F .
The restriction of this inner product to a function from W × W to F is an inner
product on W . Thus we can always assume that any subspace of an inner product
space V inherits the inner-product-space structure of V .

Example Let V be an inner product space over R and let K be the set of all matrices

of the form

[
a v

w b

]
, where a, b ∈ R and v,w ∈ V . Then K is a vector space over

R, where addition and scalar multiplication are defined by
[

a v

w b

]
+
[

a′ v′
w′ b′

]
=
[

a + a′ v + v′
w + w′ b + b′

]
and c

[
a v

w b

]
=
[

ca cv

cw cb

]
.
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We create the structure of an R-algebra on K by defining an operation • as follows:
[

a v

w b

]
•
[

a′ v′
w′ b′

]
=
[
aa′ + 〈v,w′〉 av′ + b′v
a′w + bw′ bb′ + 〈w,v′〉

]
.

This algebra is a division algebra, called the Cayley algebra, and it is not associative.

We now look at some properties of general inner product spaces.

Proposition 15.1 Let V be an inner product space. For v,w1,w2 ∈ V and
for a scalar a, we have:
(1) 〈v,w1 + w2〉 = 〈v,w1〉 + 〈v,w2〉;
(2) 〈v, aw1〉 = a〈v,w1〉;
(3) 〈0V ,w1〉 = 〈v,0V 〉 = 0.

Proof From the definition of the inner product, we have 〈v,w1 + w2〉 =
〈w1 + w2, v〉 = 〈w1, v〉 + 〈w2, v〉 = 〈v,w1〉 + 〈v,w2〉 = 〈v,w1〉 + 〈v,w2〉, which
proves (1). We also have 〈v, aw1〉 = 〈aw1, v〉 = a〈w1, v〉 = a〈w1, v〉 = a〈v,w1〉,
which proves (2). Finally, 〈0V ,w1〉 = 〈00V ,w1〉 = 0, and similarly 〈v,0V 〉 = 0,
proving (3). �

By Proposition 15.1 we see that if V is an inner product space over R then for
each v ∈ V the function w �→ 〈v,w〉 from V to F is a linear transformation, but that
is not the case for inner product spaces over C.

Let V be a finitely-generated inner product space and let v1, . . . , vk be a list of
vectors in V . The Gram matrix of this list is the k × k matrix G = [gij ] defined
by gij = 〈vi, vj 〉 for all 1 ≤ i, j ≤ k. Let B = {v1, . . . , vn} be a basis for V . Given
vectors v =∑n

i=1 aivi and w =∑n
j=1 bjvj in V , we note that

〈v,w〉 =
n∑

i=1

n∑
j=1

aibj 〈vi, vj 〉 = [a1 . . . an

]
G

⎡
⎢⎣

b1
...

bn

⎤
⎥⎦ ,

where G is the Gram matrix of B .

Jorgen Gram was a Danish mathematician who at the end of the nine-
teenth century developed computational techniques for inner product
spaces in connection with his work for insurance companies.
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Example Let V be the subspace of C[X] consisting of all polynomials of degree
at most 5, and let B be the canonical basis for V . Define an inner product on V

by setting 〈f,g〉 = ∫ 1
0 f (x)g(x) dx. (Note that we are using the same notation for

a polynomial and its corresponding polynomial function in C
R.) Then the Gram

matrix defined by B is precisely the Hilbert matrix H6, which we have seen ear-
lier.

Proposition 15.2 (Cauchy–Schwarz–Bunyakovsky Theorem) Let V be an
inner product space. If v,w ∈ V , then |〈v,w〉|2 ≤ 〈v, v〉〈w,w〉.

Proof If v = 0V or w = 0V then the result is immediate, and so we can assume that
both vectors differ from 0V . Let a = −〈w,v〉 and b = 〈v, v〉. Then a = −〈v,w〉 and
b = b so

0 ≤ 〈av + bw,av + bw〉 = aa〈v, v〉 + ab〈v,w〉 + ba〈w,v〉 + b2〈w,w〉
= aab − aba − aba + b2〈w,w〉 = b

[−aa + b〈w,w〉].

Since v 	= 0V , it follows that b is a positive real number and so aa ≤ b〈w,w〉, which
is what we want. �

With kind permission of ETH-Bibliothek Zurich, Image
Archive (Schwarz).

Herman Schwarz was a German mathematician
who in the late nineteenth century studied spaces
of functions and their structure as inner product
spaces. Viktor Yakovlevich Bunyakovsky was a
Russian student of Cauchy who proved this the-
orem a generation before Schwarz, but since his

work was published in an obscure journal, it was not widely recognized until the twentieth
century.

Example If a1, . . . , an, b1, . . . , bn, c1, . . . , cn are real numbers, with ci > 0 for all
1 ≤ i ≤ n, then

∣∣∣∣∣
n∑

i=1

ciaibi

∣∣∣∣∣≤
(√√√√

n∑
i=1

cia
2
i

)(√√√√
n∑

i=1

cib
2
i

)
.

Indeed, this is a consequence of the Cauchy–Schwarz–Bunyakovsky Theorem, us-

ing the weighted dot product

〈⎡
⎢⎣

a1
...

an

⎤
⎥⎦ ,

⎡
⎢⎣

b1
...

bn

⎤
⎥⎦

〉
=∑n

i=1 ciaibi defined on R
n.
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In general, the Cauchy–Schwarz–Bunyakovsky Theorem is an extremely rich
source of inequalities between real-valued functions of several real variables. For

example, consider the vectors v = 1√
a+b+c

⎡
⎣

√
a + b√
a + c√
b + c

⎤
⎦ and w =

⎡
⎣

1
1
1

⎤
⎦ in R

3, where

a, b, and c are positive. Then, by the Cauchy–Schwarz–Bunyakovsky Theorem, we
see that

√
a + b

a + b + c
+
√

a + c

a + b + c
+
√

b + c

a + b + c
= v · w ≤√〈v, v〉 〈w,w〉 = √

6.

Similarly, we note that the matrix D =
[√

3 0
1

√
2

]
∈M2×2(R) is nonsingular and

so, by a previous example, we have an inner product μ on R
2 defined by

μ

([
a

b

]
,

[
c

d

])
=
[
a

b

]T

DDT

[
c

d

]
= 3(ac + bd) + (√3

)
(ad + bc).

Applying the Cauchy–Schwarz–Bunyakovsky Theorem, we see that for all real
numbers a, b, c, and d we have

[
3(ac + bd) + (√3

)
(ad + bc)

]2

≤ [3(a2 + b2)+ (2√
3
)
ab
][

3
(
c2 + d2)+ (2√

3
)
cd
]
.

In particular, if we take b = d = √
3, we see that (ac + a + c + 3)2 ≤ (a2 + 2a +

3)(c2 + 2c + 3) for all real numbers a and c.
Let V be an inner product space. The norm of a vector v ∈ V is defined to be the

scalar ‖v‖ = √〈v, v〉. A vector v satisfying ‖v‖ = 1 is normal.

Example Let V = R
n, and endow V with the dot product. Then

∥∥∥∥∥∥∥

⎡
⎢⎣

a1
...

an

⎤
⎥⎦

∥∥∥∥∥∥∥
=
√√√√

n∑
i=1

a2
i .

This norm is known as the Euclidean norm on V .

Example Let V = C(−π,π), on which we have defined the inner product
〈f,g〉 = ∫ π

−π
f (x)g(x) dx. For each positive integer k, consider the function

fk : x �→ sin(kx). Then ‖fk‖ = √〈fk, fk〉 =
√∫ π

−π
sin2(kx) dx = √

π and so

gk = 1√
π
fk is a normal vector in this space.

We have seen how the vector space R
3, endowed with the cross product ×, is a

Lie algebra. It is easy to check that the cross product is related to the dot product on
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R
3 by the relations

u × (v × w) = (u · w)v − (u · v)w and

(u × v) × w = (u · w)v − (v · w)u

for all u,v,w ∈R
3. Moreover, we have the following identities:

(1) v · (v × w) = 0 for all v,w ∈R
3;

(2) (Lagrange identity) ‖v × w‖2 = ‖v‖2‖w‖2 − (v · w)2.
There are only two possible anticommutative operations on R

3 which turn it into
an R-algebra satisfying these two identities, namely × and the operation ×′ given
by v ×′ w = −(v × w). Furthermore, if n > 3 no such operation can be defined
on R

n, except for the case of n = 7. In that case, we can define an operation × as

follows: write elements of R7 in the form

⎡
⎣

v

a

v′

⎤
⎦, where v, v′ ∈ R

3 and a ∈ R and

then set
⎡
⎣

v

a

v′

⎤
⎦×

⎡
⎣

w

b

w′

⎤
⎦=

⎡
⎣

aw′ − bv′ + (v × w) − (v′ × w′)
−v · w + v′ · w

bv − aw + (v × w′) − (v′ × w)

⎤
⎦ .

We also note that if u =
⎡
⎣

a1
a2
a3

⎤
⎦, v =

⎡
⎣

b1
b2
b3

⎤
⎦, and w =

⎡
⎣

c1
c2
c3

⎤
⎦ in R

3 then

u · (v × w) =
∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
. As an immediate consequence, we observe that if

u,v,w ∈ R
3 then:

(1) u · (v × w) = v · (w × u) = w · (u × v);
(2) u · (v × w) = 0 if and only if two of these vectors are equal or the set {u,v,w}

is linearly dependent.
The scalar value u · (v × w) is often called the scalar triple product of the vectors
u,v,w, to distinguish it from the vector triple product u × (v × w).

Proposition 15.3 Let V be an inner product space. If v,w ∈ V and if a is a
scalar, then:
(1) ‖av‖ = |a| · ‖v‖;
(2) ‖v‖ ≥ 0, with equality if and only if v = 0V ;
(3) (Minkowski’s inequality): ‖v + w‖ ≤ ‖v‖ + ‖w‖;
(4) (Parallelogram law): ‖v + w‖2 + ‖v − w‖2 = 2(‖v‖2 + ‖w‖2);
(5) (Triangle difference inequality): ‖v − w‖ ≥ |‖v‖ − ‖w‖|.
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With kind permission of ETH-Bibliothek Zurich, Image Archive.

Hermann Minkowski, a German mathematician at the end of the nine-
teenth century, built an elegant mathematical framework for the theory
of relativity, using four-dimensional non-Euclidean geometry.

Proof We see that ‖av‖ = √〈av, av〉 = √
aa〈v, v〉 = |a| ·‖v‖, proving (1). Inequal-

ity (2) follows immediately from the definition. As for (3), note that if z = a + bi

then z + z = 2a ≤ 2|a| = 2
√

a2 ≤ 2
√

a2 + b2 = 2|z|. As a consequence of the
Cauchy–Schwarz–Bunyakovsky Theorem, we see that |〈v,w〉| = |〈w,v〉| ≤ ‖v‖ ·
‖w‖, and so

‖v + w‖2 = 〈v + w,v + w〉 = 〈v, v〉 + 〈v,w〉 + 〈w,v〉 + 〈w,w〉
≤ ‖v‖2 + 2‖v‖ · ‖w‖ + ‖w‖2 = (‖v‖ + ‖w‖)2,

and that proves (3). Moreover, we know that

‖v + w‖2 = 〈v + w,v + w〉 = 〈v, v〉 + 〈v,w〉 + 〈w,v〉 + 〈w,w〉
and ‖v − w‖2 = 〈v − w,v − w〉 = 〈v, v〉 − 〈v,w〉 − 〈w,v〉 + 〈w,w〉. Adding these
two gives us (4).

Finally, by (3), we have ‖w‖ = ‖w + (v − w)‖ ≤ ‖w‖ + ‖v − w‖, and so
‖v − w‖ ≥ ‖v‖ − ‖w‖. Interchanging the roles of v and w and using (1), gives
us ‖v − w‖ = ‖w − v‖ ≥ ‖w‖ − ‖v‖, and so we have (5). �

Note that by Proposition 15.3 we see that if 0V 	= v ∈ V then 1
‖v‖v is a normal

vector. Moreover, if v is normal and c is a scalar satisfying |c| = 1, then cv is again
normal.

Example Let V be an inner product space, and let Ω be a nonempty set. A function
f ∈ V Ω is bounded if and only if there exists a real number bf satisfying ‖f (i)‖ ≤
bf for all i ∈ Ω . If f,g ∈ V Ω are bounded functions then, from Minkowski’s in-
equality, we conclude that ‖(f +g)(i)‖ ≤ ‖f (i)‖+‖g(i)‖ ≤ bf +bg for all i ∈ Ω .
If c is a scalar then ‖(cf )(i)‖ = |c| · ‖f (i)‖ ≤ |c|bf for all i ∈ Ω . Thus both f + g

and cf are both bounded, and we see that the set of all bounded elements of V Ω is
a subspace of V Ω .

Example We now return to a previous example. Let p be an integer greater
than 1, not necessarily prime, and let G = Z/(p), on which we have an oper-
ation of addition as defined in Chap. 2. Let V = C

G, which is a vector space
of dimension p over C. On this space, we can define an inner product by set-
ting 〈f,g〉 =∑

n∈G f (n)g(n). Every element n ∈ G defines a function hn : k �→
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cos( 2πnk
p

)+ i sin( 2πnk
p

) which belongs to V . Given a function f ∈ V , define a func-

tion f̂ ∈ V as f̂ : n �→ 〈f,hn〉 = ∑
k∈G f (k)hn(−k). This function is called the

discrete Fourier transform of f of order p. One can show that the function f �→ f̂

is in fact an automorphism of V . Moreover, f (n) = 1
p
̂̂f (−n) and ‖f ‖ = 1√

p
‖f̂ ‖

for all f ∈ V and all n ∈ G.

Example There are various generalizations of Theorem 15.2 which, as a rule, re-
quire more sophisticated methods of complex analysis to prove. For example, the
contemporary Greek mathematicians Manolis Magiropoulos and Dimitri Karayan-
nakis have shown that if V is an inner product space and if u, v, and w are distinct
elements of V , then

2
∣∣〈u,v〉∣∣ · ∣∣〈u,w〉∣∣≤ 〈u,u〉[‖v‖ · ‖w‖ + ∣∣〈v,w〉∣∣].

In case the set {v,w} is linearly dependent, it is clear that this reduces to the inequal-
ity in Proposition 15.2. Inequalities such as these allow us to get better bounds on
inner products. For example, let 0 < a < b be real numbers and let V = C(a, b), on
which we have the inner product 〈f,g〉 = ∫ b

a
f (x)g(x) dx. If u,v,w ∈ V are given

by u : x �→ 1/x, v : x �→ sin(x), and w : x �→ cos(x) then Proposition 15.2 gives us
the bound

∣∣〈u,v〉∣∣ · ∣∣〈u,w〉∣∣≤
(∫ b

a

dx

x2

)√∫ b

a

sin2(x) dx

√∫ b

a

cos2(x) dx

whereas this result gives us the better upper bound

1

2

(∫ b

a

dx

x2

)[√∫ b

a

sin2(x) dx

√∫ b

a

cos2(x) dx +
∣∣∣∣
∫ b

a

sin(x) cos(x) dx

∣∣∣∣
]
.

Proposition 15.4 Let V be an inner product space and let α ∈ End(V ) satisfy
the condition that there exists a real number 0 < c < 1 such that ‖α(v)‖ ≤
c‖v‖ for all v ∈ V . Then σ1 + α is monic.

Proof If 0V 	= v ∈ V then, by Proposition 15.3,

‖v‖ = ∥∥v + α(v) − α(v)
∥∥≤ ∥∥v + α(v)

∥∥+ ∥∥α(v)
∥∥

= ∥∥(σ1 + α)(v)
∥∥+ ∥∥α(v)

∥∥,
and so ‖(σ1 + α)(v)‖ ≥ ‖v‖ − ‖α(v)‖ ≥ (1 − c)‖v‖ > 0, which shows that
v /∈ ker(σ1 + α). Thus σ1 + α is monic. �

In particular, if V is a finitely-generated inner product space and if α ∈ End(V )

satisfies the condition that there exists a real number 0 < c < 1 such that ‖α(v)‖ ≤
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c‖v‖ for all v ∈ V , then σ1 + α ∈ Aut(V ). Let β = (σ1 + α)−1. If 0V 	= v ∈ V then

‖v‖ = ∥∥(σ1 + α)β(v)
∥∥= ∥∥β(v) + αβ(v)

∥∥≥ ∥∥β(v)
∥∥− ∥∥αβ(v)

∥∥
≥ ∥∥β(v)

∥∥− c
∥∥β(v)

∥∥= (1 − c)
∥∥β(v)

∥∥.
Similarly, ‖v‖ ≤ ‖β(v)‖ + ‖αβ(v)‖ ≤ ‖β(v)‖ + c‖β(v)‖ = (1 + c)‖β(v)‖ and so

1
1+c

‖v‖ ≤ ‖β(v)‖ ≤ 1
1−c

‖v‖ for all v ∈ V .
Sometimes, however, we need a bit more generality. If V is a vector space over

R or C then, in general, a function v �→ ‖v‖ satisfying conditions (1)–(3) of Propo-
sition 15.3 is called a norm and a vector space on which a fixed norm is defined is
called a normed space or, in a functional-analysis context, a pre-Banach space. An
immediate question is whether every norm defined on a vector space comes from an
inner product. The answer is negative: if, for example, we define the norm ‖ · ‖1 on

C
n by setting

∥∥∥∥∥∥∥

⎡
⎢⎣

a1
...

an

⎤
⎥⎦

∥∥∥∥∥∥∥
1

=∑n
i=1 |ai |, then this cannot come from an inner product

since the parallelogram law is not satisfied by this norm. In fact, satisfying the paral-
lelogram law is necessary for a norm to come from an inner product in the following
sense: let V be a vector space over R or C on which we have a norm ψ : V → R

satisfying ψ(v +w)2 +ψ(v − w)2 = 2[ψ(v)2 + ψ(w)2] for all v,w ∈ V , and write
λ(v,w) = 1

4 [ψ(v + w)2 − ψ(v − w)2]. Then it is possible to define an inner prod-
uct on V relative to which the norm of a vector v is precisely ψ(v). In the case
the field of scalars is R, then this inner product is defined by 〈v,w〉 = λ(v,w) and
otherwise this inner product is defined by 〈v,w〉 = λ(v,w) + iλ(v, iw).

With kind permission of the Archives
of the Mathematisches Forschungsin-
stitut Oberwolfach (Wiener); © Ste-
fan Banach (Banach).

Normed spaces were first
studied at the beginning of
the twentieth century by the
Austrian mathematician Hans
Hahn, and then by the Ameri-

can mathematician Norbert Wiener and the Polish mathematician Stefan Banach.

Example Every vector space over R can be turned into a normed space in at least
one way. Indeed, let V be a vector space over R for which we fix a basis {vi | i ∈ 	}.
Then the function ψ : V → R defined by ψ :∑i∈	 aivi �→∑

i∈	 |ai | can easily be
seen to be a norm on V .

Example Let V = C(0,1), which is a vector space over R, and for each positive
integer n, let fn ∈ V be the function defined by

fn : x �→
{

1 − nx if 0 ≤ x ≤ 1
n
,

0 otherwise.
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Let ‖ · ‖ be the norm defined on V by the inner product 〈f,g〉 = ∫ 1
0 f (x)g(x) dx

and let ‖ · ‖∞ be the norm on V defined by ‖f ‖∞ = sup{|f (x)| | 0 ≤ x ≤ 1}. Then
‖fn‖ = 1√

3n
for all positive integers n, whereas ‖fn‖∞ = 1 for all positive inte-

gers n. Thus there can be no real number c satisfying ‖f ‖∞ ≤ c‖f ‖ for all f ∈ V .

Example Let V and W be normed spaces over the same field of scalars F (which is
either R or C). If α ∈ Hom(V ,W), set

‖α‖ = sup

{‖α(v)‖
‖v‖

∣∣∣∣ 0V 	= v ∈ V

}

where the norm in the numerator is the one defined on W and the norm in the denom-
inator is the one defined on V . (If V is trivial then the only such α is the 0-function,
the norm of which we set equal to 0.) Note that the fraction ‖α(v)‖/‖v‖ is just
‖α(v′)‖, where v′ is the normal vector 1

‖v‖v, so we see that ‖α‖ is just sup{‖α(v′)‖},
where the supremum runs over all normal vectors v′ in V . In particular, if δ ∈ D(V )

then we define the norm of δ to be

‖δ‖ = sup

{ |δ(v)|
‖v‖

∣∣∣∣ 0V 	= v ∈ V

}
.

Note that ‖α‖ may not be finite, though it surely will be if α is bounded. For
example, let V be the space of all polynomial functions in R

R on which we define
the norm ‖f ‖ = max{f (t) | 0 ≤ t ≤ 1}. Let α be the differentiation endomorphism
of V and, for each h ≥ 1, let fh ∈ V be given by fh : x �→ xh. Then

‖α(fh)‖
‖fh‖ = h

for each h ≥ 1, showing that ‖α‖ is infinite. If V is finitely generated, then we assert
that ‖α‖ is finite for all α ∈ Hom(V ,W), a claim which we will justify in the next
chapter.

We claim that, if ‖α‖ is finite for all α, then this is a norm defined on Hom(V ,W),
called norm induced by the respective norms on V and W . Indeed, as an immediate
consequence of the definition we see that ‖α‖ ≥ 0 for all α ∈ Hom(V ,W), with
equality happening only when α is the 0-function. We also see that if α is not the
0-function then ‖α‖ is the smallest positive real number c such that ‖α(v)‖ ≤ c‖v‖
for all v ∈ V . (We note a subtle point here: the norms on V and W are, of course,
different. Therefore, in the case V = W , and if we have two different norms defined
on V , we may use one in the numerator and another in the denominator, though
usually one uses the same norm in both instances.)
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Now let α ∈ Hom(V ,W) and a ∈ F . Then

‖aα‖ = sup

{‖aα(v)‖
‖v‖

∣∣∣∣ 0V 	= v ∈ V

}

= sup

{ |a| · |‖α(v)‖
‖v‖

∣∣∣∣ 0V 	= v ∈ V

}
= |a| · ‖α‖.

Finally, if α,β ∈ Hom(V ,W) then

‖α + β‖ = sup

{‖(α + β)(v)‖
‖v‖

∣∣∣∣ 0V 	= v ∈ V

}

= sup

{‖α(v) + β(v)‖
‖v‖

∣∣∣∣ 0V 	= v ∈ V

}

≤ sup

{‖α(v)‖ + ‖β(v)‖
‖v‖

∣∣∣∣ 0V 	= v ∈ V

}
≤ ‖α‖ + ‖β‖.

If V = Fn and W = Fk , endowed with respective dot products and the norms de-
fined by them, then the induced norm on Hom(V ,W) does, in fact, always exist and
is called the spectral norm. If A ∈ Mk×n(F ), then the spectral norm of A is defined
to be the spectral norm of the homomorphism from Fn to Fk given by v �→ Av.

In 1941, Gelfand showed that if n is a positive integer and A ∈ Mn×n(C), then
the spectral radius of A satisfies ρ(A) = limk→∞ k

√‖Ak‖, where ‖ · ‖ is any norm
defined on Mn×n(C). In other words, we see that, given A ∈Mn×n(C), there exists
a sufficiently large k such that ‖Ak‖ is approximately equal to ρ(A)k .

Example If p is any positive integer, we can define the Hölder norm ‖ · ‖p on C
n by

setting

∥∥∥∥∥∥∥

⎡
⎢⎣

a1
...

an

⎤
⎥⎦

∥∥∥∥∥∥∥
p

= [∑n
i=1 |ai |p

]1/p . For the case p = 2, this, of course, reduces to

the norm coming from the dot product. The proof that this is a norm in the general
case relies on a generalization of Minkowski’s inequality: ‖v+w‖p ≤ ‖v‖p +‖w‖p

for all v,w ∈C
n and any positive integer p. This norm can be used to define a norm

on Hom(Cn,Ck) for positive integers k and n, by setting

‖α‖p = sup

{‖α(v)‖p

‖v‖p

∣∣∣∣ 0V 	= v ∈ V

}

for any α ∈ Hom(Cn,Ck).
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With kind permission of The City University of New
York (Bowker); With kind permission of UAL, FS N 191
(Hölder).

General matrix norms were first discussed by the
twentieth-century American mathematician Al-
bert H. Bowker. The nineteenth-century German
algebraist Otto Hölder was strongly influenced
by the work of Kronecker.

Example Let n be a positive integer. If A = [aij ] ∈ Mn×n(R), set ‖A‖C =
max{|∑n

i=1
∑n

j=1 aij cic
′
j | | ci, c

′
j ∈ {0,1}}. This defines a norm on Mn×n(R),

known as the cut norm. This norm has important applications in graph theory
and combinatorics, but is hard to calculate. However, efficient methods of ap-
proximating the cut norm of a matrix exist, making use of the following re-
markable result, known as Grothendieck’s inequality: there exists a universal con-
stant kG (not dependent of n) satisfying the condition that any normal vectors
v1, . . . , vn,w1, . . . ,wn in R

n and any scalars e1, . . . , en, e
′
1, . . . , e

′
n ∈ {−1,1} satisfy∑n

i=1
∑n

j=1 aij vi · wj ≤ kG

∑n
i=1
∑n

j=1 aij eie
′
j . The precise value of the constant

kG, known as Grothendieck’s constant, has not been determined, but the French
mathematician Jean-Louis Krivine has shown that 1.677 . . . ≤ kG ≤ 1.782 . . . .

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

The French algebraic geometer Alexandre Grothendieck is consid-
ered one of the most influential of contemporary mathematicians.

Example For positive integers k and n, we define the Frobenius norm or Hilbert–
Schmidt norm of A = [aij ] ∈ Mk×n(C) by

‖A‖F =
√

tr
(
AAH

)=

√√√√√
k∑

i=1

n∑
j=1

|aij |2.

This is precisely the norm coming from the inner product on Mk×n(C) given by
〈A,B〉 = tr(ABH ). If A ∈ Mk×n(C) has spectral norm ‖A‖ and Frobenius norm
‖A‖F, then it is straightforward to show that ‖A‖ ≤ ‖A‖F ≤ (

√
n)‖A‖.

For vector spaces V finitely generated over R or C, it does not matter which
norm once chooses. To see this, we need the following preliminary result.
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Proposition 15.5 Let {v1, . . . , vn} be a finite linearly-independent subset of
a normed space V . Then there exists a positive real number c such that
‖∑n

i=1 aivi‖ ≥ c(
∑n

i=1 |ai |) for all scalars a1, . . . , an.

Proof Let W be the subspace of V generated by {v1, . . . , vn} and let Y be the subset
of W consisting of all linear combinations

∑n
i=1 aivi for which

∑n
i=1 |ai | = 1. Pick

w =∑n
i=1 aivi ∈ W . If w = 0V , then ai = 0 for each i and so

∑n
i=1 |ai | = 0. There-

fore, any positive real number c will do. Hence we can assume that w 	= 0V and so
d =∑n

i=1 |ai | > 0. Moreover, y =∑n
i=1(aid

−1)vi ∈ Y and ‖w‖ ≥ c(
∑n

i=1 |ai |) if
and only if ‖y‖ ≥ c. Therefore, to prove the proposition it suffices to show that there
exists a positive real number c satisfying the condition that ‖y‖ ≥ c for all y ∈ Y .

Suppose that this is not the case. Then we can find a sequence y1, y2, . . . of vec-
tors in Y such that yh =∑n

i=1 bihvi with
∑n

i=1 |bih| = 1 and limh→∞ ‖yh‖ = 0. In
particular, we note that |bih| ≤ 1 for each 1 ≤ i ≤ n and each h ≥ 1. Thus, in par-
ticular, the sequence b11, b12, . . . of scalars is bounded. By the Bolzano–Weierstrass
Theorem (which holds for both real and complex numbers), this sequence must
therefore have a convergent subsequence. Throwing away all of yh for which b1h is
not in that subsequence, we can assume without loss of generality that the sequence
b11, b12, . . . converges to some scalar b1. Similarly, the sequence b21, b22, . . . has a
convergent subsequence and, throwing away all of the yh for which b2h is not in that
sequence, we can assume that the sequence b21, b22, . . . converges to some scalar b2
as well. Continuing in this manner, we finally obtain an infinite sequence y1, y2, . . .

of vectors in Y such that, for each 1 ≤ i ≤ n, the sequence of scalars bi1, bi2, . . .

converges to some scalar bi .
Set y = ∑n

i=1 bivi . Clearly, y ∈ W and so not all of the bi are equal to 0. In
particular, y 	= 0V and so ‖y‖ = r > 0. On the other hand, for each h ≥ 1 we have
‖y‖ ≤ ‖y − yh‖+‖yh‖ = ‖∑n

i=1(bi − bih)vi‖+‖yh‖ ≤ (
∑n

i=1 |bi − bih| · ‖vi‖)+
‖yh‖. But limh→∞ ‖yh‖ = 0 and limh→0 |bi − bih| = 0 for each 1 ≤ i ≤ n, and so
there exists an integer h so large that ‖y‖ < r . This is a contradiction, from which
the result follows. �

Norms ‖ · ‖a and ‖ · ‖b are defined on the same vector space V are equivalent
if and only if there exist positive real numbers c and d such that c‖v‖a ≤ ‖v‖b ≤
d‖v‖a for all v ∈ V .

Proposition 15.6 Any two norms defined on a finitely-generated vector space
V over R or C are equivalent.

Proof Let {v1, . . . , vn} be a basis for a vector space V over R or C on which we
have norms ‖ · ‖a and ‖ · ‖b defined. By Proposition 15.5, there exists a scalar c such
that ‖∑n

i=1 aivi‖b ≥ c(
∑n

i=1 |ai |) for any vector v =∑n
i=1 aivi in V . On the other
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hand, from the triangle inequality, we have ‖v‖a ≤∑n
i=1 |ai | · ‖vi‖a ≤ r

∑n
i=1 |ai |,

where r = max{‖v1‖a, . . . ,‖vn‖a} > 0 and so (cr−1)‖v‖a ≤ ‖v‖b for each v ∈ V .
Interchanging the roles of ‖ · ‖a and ‖ · ‖b , we repeat this proof to obtain a positive
real number d such that ‖v‖b ≤ d‖v‖a for each v ∈ V . �

Proposition 15.7 (Hahn–Banach Theorem) Let V be a vector space over a
field F which is either R or C and let v �→ ‖v‖ be a norm defined on V . More-
over, let W be a subspace of V and let δ ∈ D(W) satisfy the condition that
|δ(w)| ≤ ‖w‖ for all w ∈ W . Then there exists a linear functional θ ∈ D(V )

which is an extension of δ satisfying |θ(v)| ≤ ‖v‖ for all v ∈ V .

Proof (1) We first consider the case F = R. Let C be the set of all pairs (Y,ψ),
where Y is a subspace of V containing W and ψ ∈ D(Y) satisfies the conditions
that ψ(y) ≤ ‖y‖ for all y ∈ Y and ψ is an extension of δ. This set is nonempty since
|δ(w)| ≤ ‖w‖ surely implies that δ(w) ≤ ‖w‖ and so (W, δ) ∈ C. Moreover, we can
define a partial order on C by setting (Y,ψ) � (Y ′,ψ ′) if and only if Y ⊆ Y ′ and
ψ ′(y) = ψ(y) for all y ∈ Y . If ((Yh,ψh) | h ∈ 	) is a chain in C, set Y =⋃h∈	 Yh

and define ψ ∈ D(Y) by setting ψ(y) = ψh(y) when y ∈ Yh. This function is well-
defined since C is a chain, and it surely belongs to C. Moreover, it is clear that
(Yh,ψh) � (Y,ψ) for each h ∈ 	. Therefore, by the Hausdorff Maximum Principle,
C has a maximal element, which we will denote by (Y0, θ).

We want to show that Y0 = V . Indeed, assume that this is not the case and let
z ∈ V � Y0. Then Y1 = Y0 + Rz properly contains Y0 and, for any c0 ∈ R we can
define the linear functional θ1 ∈ D(Y1) defined by θ1 : y0 +az �→ θ(y0)+ac0 which
surely is an extension of θ . We will be done if we can pick c0 in such a manner
that θ1(y1) ≤ ‖y1‖ for each y1 ∈ Y1, for if we can do that, then we would have
(Y1, θ) ∈ C, contradicting the maximality of Y0. If y1, y2 ∈ Y1 then

θ(y1) − θ(y2) = θ(y1 − y2) ≤ ‖y1 − y2‖
= ‖y1 + z − z − y2‖ ≤ ‖y1 + z‖ + ‖−z − y2‖.

This implies that −‖−z−y2‖−θ(y2) ≤ ‖y1 +z‖−θ(y1). Since y2 does not appear
on the right side of this equality nor does y1 appear on the left side, we see that the
real numbers

d1 = inf
{‖y1 + z‖ − θ(y1) | y1 ∈ Y1

}

and

d2 = sup
{−‖−z − y2‖ − θ(y2) | y2 ∈ Y1

}

satisfy d2 ≤ d1. Now choose c0 to be any real number satisfying d2 ≤ c0 ≤ d1.
We claim that θ(y0)+ac0 ≤ ‖y0 +az‖ for all real numbers a. If a = 0, we know

it is true by the choice of θ . If a > 0 we have c0 ≤ d1 ≤ ‖a−1y0 + z‖ − θ(a−1y0)
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and so ac0 ≤ a‖a−1y0 + z‖ − θ(y0) = ‖y0 + az‖ − θ(y0), whence θ(y0) + ac0

≤ ‖y0 + az‖. If a < 0 we have c0 ≥ d2 ≥ −‖−z − a−1y0‖ and so −ac0 ≥
−a‖−z − a−1y0‖ + θ(y0) = −‖az + y0‖ + θ(y0) and so −θ(y0) − ac0 ≥
−‖az + y0‖, whence θ(y0) + ac0 ≤ ‖y0 + az‖.

Thus we see that θ ∈ D(V ) satisfies θ(v) ≤ ‖v‖ for all v ∈ V . If v ∈ V . then
−θ(v) = θ(−v) ≤ ‖−v‖ = |(−1)| · ‖v‖ = ‖v‖ as well as so |θ(v)| ≤ ‖v‖ for all
v ∈ V , proving our result in the case the field of scalars is R.

(2) Now assume that F = C. Since W and V are vector spaces over C, they are
also vector spaces over R. Write δ as δ : w �→ δ1(w)+iδ2(w), where δ1, δ2 ∈ D(W),
considering W as a vector space over R. Moreover, δ1(w) ≤ |δ(w)| for all w ∈ W ,
since Re(z) ≤ |z| for any z ∈ C. Therefore, δ1(w) ≤ ‖w‖ for all w ∈ W and, as in
the last part of the proof of part (1), we actually have |δ1(w)| ≤ ‖w‖ for all w ∈ W .
By part (1), we then know that there exists a linear functional θ1 ∈ D(V ) satisfying
θ1(v) ≤ ‖v‖ for all v ∈ V .

But i[δ1(w)+iδ2(w)] = iδ(w) = δ(iw) = δ1(iw)+iδ2(iw) for all w ∈ W . Since
the real parts of both sides must be equal, we see that δ2(w) = −δ1(iw). Now define
the function θ : V →C by setting θ : v �→ θ1(v)− iθ1(iv). This is a linear functional
on V , considered as a vector space over C, since clearly θ(v + v′) = θ(v) + θ(v′)
for all v, v′ ∈ V and for each a + bi ∈C and v ∈ V we have

θ
(
(a + bi)v

) = θ1(av + ibv) − iθ1(iav − bv)

= aθ1(v) + bθ1(iv) − i
[
aθ1(iv) − bθ1(v)

]

= (a + bi)
[
θ1(v) − iθ1(iv)

]= (a + ib)θ(v).

Furthermore, θ is an extension of δ.
We claim that |θ(v)| ≤ ‖v‖ for all v ∈ V . To begin with, we note that if θ(v) = 0

this holds, since ‖v‖ ≥ 0 for all v ∈ V . Now assume that ‖v‖ > 0. Then there ex-
ists a real number r such that θ(v) = |θ(v)|eir and so |θ(v)| = θ(v)e−ir . Since
|θ(v)| is real, this means that θ(v)e−ir ∈R and so |θ(v)| = θ(v)e−ir = θ1(e

−irv) ≤
‖e−irv‖ = |e−ir | · ‖v‖ = ‖v‖. Thus the proposition is proven. �

Proposition 15.8 Let V be a normed space and let W be nontrivial subspace
of V on which we are given a linear functional δ, for which ‖δ‖ is finite. Then
there exists a linear functional θ ∈ D(V ) which is an extension of δ satisfying
‖θ‖ = ‖δ‖.

Proof For each w ∈ W we have |δ(w)| ≤ ‖δ‖ · ‖w‖. Moreover, we have a norm
v �→ ‖v‖∗ on V by setting ‖v‖∗ = ‖δ‖ · ‖v‖ for all v ∈ V . Therefore, by Proposi-
tion 15.7, we know that there exists a linear functional θ ∈ D(V ) extending δ and
satisfying |θ(v)| ≤ ‖v‖∗ = ‖δ‖ · ‖v‖, and so |θ(v)|

‖v‖ ≤ ‖δ‖ for all 0V 	= v ∈ V . Thus
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‖θ‖ ≤ ‖δ‖. On the other hand,

‖δ‖ = sup

{ |δ(w)|
‖w‖

∣∣∣∣ 0W 	= w ∈ W

}
≤ sup

{ |θ(v)|
‖v‖

∣∣∣∣ 0V 	= v ∈ V

}
= ‖θ‖,

and so we have the desired equality. �

The norm ‖ · ‖1 defined on C
n is important in various contexts. Let n be a pos-

itive integer and let θ be the function from Mn×n(C) to R defined by θ : [aij ] �→
max{∑n

i=1 |aij | | 1 ≤ j ≤ n}, which we have already seen when we defined condi-
tion numbers. Numerical algorithms that compute the eigenvalues of a matrix, as
a rule, make roundoff errors on the order of cθ(A), where c is a constant deter-
mined by the precision of the computer on which the algorithm is running. Since
the eigenvalues of similar matrices are identical, it is usually useful, given a square
matrix A, to find a matrix B similar to A with θ(B) small. This can often be
done by choosing B of the form PAP −1, where P is a nonsingular diagonal ma-
trix.

Example If A =
⎡
⎣

1 0 10−4

1 1 10−2

104 102 1

⎤
⎦, then θ(A) = 1002. However, if we choose

P =
⎡
⎣

102 0 0
0 1 0
0 0 10−2

⎤
⎦, then θ(PAP −1) = 3.

Let α be the endomorphism of Cn represented with respect to the canonical basis
by a matrix A ∈ Mn×n(C). Then for each v ∈ C

n we have θ(A)‖v‖1 ≥ ‖α(v)‖1.
In particular, if c is an eigenvalue of α associated with an eigenvector v then
θ(A)‖v‖1 ≥ ‖α(v)‖1 = |c| · ‖v‖1 and so θ(A) ≥ |c|. Thus we see that θ(A) ≥ ρ(A),
where ρ(A) is the spectral radius of A. This bound is called the Gershgorin bound.
In fact, we can sharpen this result.

With kind permission of the Archives of the Mathematisches
Forschungsinstitut Oberwolfach (Taussky-Todd).

Semyon Aranovich Gershgorin was a twentieth
century Russian mathematician. Gershgorin’s the-
orem was published in a Russian journal in 1931
and was generally ignored, until it was noticed and
publicized by the Austrian-born American mathe-
matician Olga Taussky-Todd, one of the most im-

portant researchers in matrix theory, who worked on the development of numerical linear
algebra methods for computers after World War II.
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Proposition 15.9 (Gershgorin’s Theorem) Let α be the endomorphism of
C

n represented with respect to the canonical basis by the matrix A = [aij ] ∈
Mn×n(C) and, for each 1 ≤ i ≤ n, let ri = ∑

j 	=i |aij |. Let Ki be the cir-
cle in the complex plane with radius ri and center aii . Then spec(α) ⊆ K =⋃

i 	=j Ki .

Proof Let c be an eigenvalue of α and let v =
⎡
⎢⎣

b1
...

bn

⎤
⎥⎦ be an eigenvector of α as-

sociated with c. Let h be an index satisfying |bh| ≥ |bi | for all 1 ≤ i ≤ n. Then
bh 	= 0 and Av = cv so (c − ahh)bh = ∑

j 	=h ahj bj and hence |c − ahh||bh| ≤∑
j 	=i |ahjbj | ≤ |bh|rh. Thus |c − ahh| ≤ rh and so c ∈ Kh ⊆ K , as desired. �

Proposition 15.10 (Diagonal Dominance Theorem1) Let n be a positive
integer and let A = [aij ] ∈ Mn×n(C) satisfy the condition that |aii | >∑

j 	=i |aij | for all 1 ≤ i ≤ n. Then A is nonsingular.

Proof The stated condition says that 0 does not belong to any of the circles Ki

defined in Gershgorin’s Theorem and so it cannot be an eigenvalue of A. Hence A

is nonsingular. �

Example Let α be the endomorphism of C
4 represented with respect to the

canonical basis by the matrix A =

⎡
⎢⎢⎣

3 1 2 0
4 15 0 −2

−3 0 0 −1
0 0 3 5

⎤
⎥⎥⎦. Then spec(A) =

{15.32,4.49,1.59 ± 2.35i}. These numbers are found in the union K of the fol-
lowing circles in the complex plane: the circle of radius 3 around the point (3,0);
the circle of radius 6 around the point (15,0), the circle of radius 4 around the point
(0,0), and the circle of radius 3 around the point (5,0). We furthermore note that
spec(A) = spec(AT ) and so, by the same argument, we see that the eigenvalues of α

lie in the union K ′ of the following circles in the complex plane: the circle of radius
7 around the point (3,0), the circle of radius 1 around the point (15,0), the circle
of radius 5 around the point (0,0), and the circle of radius 3 around the point (5,0).

1This theorem was proven by the French mathematicians L. Lévy and J. Desplanques at the end
of the nineteenth century. It was independently rediscovered by several other algebraists, including
Hadamard, Minkowski, and Nekrasov.
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These circles and the location of the eigenvalues can be seen in the figure above.
Thus, the eigenvalues of α lie in K ∩ K ′.

Since any polynomial in C[X] is the characteristic polynomial of a matrix, we
can use Gershgorin’s Theorem to get a bound on the location of the zeros of any
polynomial. However, there are more sophisticated methods available to get much
better bounds.

We will not go into the many results explicating Gershgorin’s Theorem. One of
these, for example, states that if the union of s of the disks in the complex plane
defined by Gershgorin circles forms a connected domain which is isolated from the
disks defined by the remaining circles, then this domain contains precisely s of the
eigenvalues of the given matrix. There are also many generalizations of Gershgorin’s
Theorem, the best-known of which is the following.

Proposition 15.11 (Brauer’s Theorem) Let α be the endomorphism of Cn

represented with respect to the canonical basis by the matrix A = [aij ] ∈
Mn×n(C) and, for each 1 ≤ i ≤ n, let ri = ∑

j 	=i |aij |. For each 1 ≤ i 	=
j ≤ n, let Kij be the Cassini oval {z ∈ C | |z − aii ||z − ajj | ≤ rirj } in the
complex plane. Then spec(α) ⊆ K =⋃i 	=j Kij .

Proof Let c be an eigenvalue of α and let v =
⎡
⎢⎣

b1
...

bn

⎤
⎥⎦ be an eigenvector of α asso-

ciated with c. Let h and k be indices such that |bh| ≥ |bk| ≥ |bi | for all i 	= h, k.
We know that bh 	= 0, and we can assume, as well, that bk 	= 0 for otherwise
we would have ahh = c, in which case surely c ∈ K . Since Av = cv, we have
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(c − ahh)bh =∑j 	=h ahj bj so

|c − ahh||bh| =
∣∣∣∣
∑
j 	=h

ahjbj

∣∣∣∣≤
∑
j 	=h

|ahj ||bj | ≤
∑
j 	=h

|ahj ||bk| = rh|bk|.

In other words, |c − ahh| ≤ rh|bk||bh|−1. In the same manner, we obtain |c − akk| ≤
rk|bh||bk|−1 and so, multiplying these two results together, we see that |c−ahh||c−
akk| ≤ rhrk , so c ∈ Khk ⊆ K , as desired. �

Note that Gershgorin’s Theorem involves n circles, whereas Brauer’s Theorem
involves

(
n
2

)= 1
2n(n − 1) ovals.

With kind permission of the Archives of the Mathematisches
Forschungsinstitut Oberwolfach (Brauer).

The twentieth-century German mathematician Al-
fred Brauer emigrated to the United States in
1939; his research was primarily in matrix theory.
Giovanni Domenico Cassini was a seventeenth-
century Italian mathematician and astronomer.

Example It is sometimes useful to consider norms on vector spaces V not over
subfields of C, namely functions v �→ ‖v‖ from V to R satisfying conditions (1)–(3)
of Proposition 15.3. For example, let F be a finite field and let V = Fn for some
positive integer n. Define ‖v‖ to be the number of nonzero entries in v, for each
v ∈ V . This function is called the Hamming norm and is of extreme importance in
algebraic coding theory, where one is interested in vector spaces over F in which
every nonzero vector has a large Hamming norm. In an example at the beginning
of Chap. 5, we showed a vector space of dimension 3 over GF(2), every nonzero
element of which has Hamming norm equal to 4.

With kind permission of the Special Collections & Archives, Dudley Knox Library,
Naval Postgraduate School.

Richard Hamming, a twentieth-century American mathematician
and computer scientist, is best known for his development of the the-
ory of error-detecting and error-correcting codes.

If v and w are vectors in space V over which we have a norm defined, then
the distance between v and w is defined as d(v,w) = ‖v − w‖. If v ∈ V and ∅ 	=
U ⊆ V , we define the distance of v from U by d(v,U) = inf{d(v,u) | u ∈ U}.
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When V = R
n on which we have the dot product, this just gives us the ordinary

notion of Euclidean distance. The ability to define the notion of distance in such
spaces is important, since it allows us to measure the degree of error in algorithmic
computations by measuring the distance between a computed value and the value
predicted by theory. It also allows us to define the notion of convergence.

The following proposition shows that this abstract notion of distance indeed has
the geometric properties that one would expect from a notion of distance.

Proposition 15.12 Let V be a normed space and let v,w,y ∈ V . Then:
(1) d(v,w) = d(w,v);
(2) d(v,w) ≥ 0, where equality exists if and only if v = w;
(3) (Triangle inequality) d(v,w) ≤ d(v, y) + d(y,w).

Proof This is an immediate consequence of Proposition 15.3. �

Example Let A be a finite set, and let V be the collection of all subsets of A, which
is a vector space over F = GF(2). We have a norm defined on V by letting ‖B‖ be
the number of elements in B . Then the distance between subsets B and C of A is
‖B + C‖, namely the number of elements in their symmetric difference.

If A and B are nonempty subsets of a space V over which we have a norm
defined, then we set d(A,B) = inf{d(v,w) | v ∈ A and w ∈ B}. In particular, if
v ∈ V and B is a nonempty subset of V , we set d(v,B) = d({v},B).

Let n be a positive integer. If A = [aij ] ∈ Mn×n(C), and if k > 0 is an in-

teger, let us define the matrix P(k) = [p(k)
ij ] to be I + ∑k

h=1
1
h!A

h. We claim

that, for each fixed 1 ≤ i, j ≤ n, the limit limh→∞ p
(h)
ij exists in C. Indeed, if

B = [bij ] ∈ Mn×n(F ), set m(B) = max1≤i,j≤n |bij |. Then every entry in the ma-
trix A2 equals the sum of n products of pairs of entries of A and so, in absolute
value, is equal to at most m(A)2n. Thus we see that m(A2) ≤ m(A)2n. Similarly,
m(A3) ≤ m(A2)m(A)n ≤ m(A)3n2 and so forth. Thus, in general,

m

(
1

k!A
k

)
≤ nk−1

k! m(A)k ≤ 1

k!
[
m(A)n

]k

and so, in particular, m(P (k)) ≤∑k
k=0

1
k!m(A)k for all k ≥ 1. But from calculus we

know that the series
∑∞

h=0
1
h! r

h converges absolutely to er for each real number r .
Therefore, the limit we seek exists, and, at least by analogy, we are justified in
denoting the matrix [limh→∞ p

(h)
ij ] by eA.
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Matrix exponentials were explicitly studied by the American mathemati-
cian William Henry Metzler at the end of the nineteenth century. They
appear earlier in the work of Laguerre and Peano.

Proposition 15.13 If n is a positive integer A = [aij ] ∈ Mn×n(F ) is a diag-
onal matrix, where F is R or C, then eA = [bij ] is a diagonal matrix with
bii = eaii for all 1 ≤ i ≤ n.

Proof This is an immediate consequence of the definition. �

In particular, eO = I . Moreover, this implies that if B ∈ Mn×n(F ) is similar to
a diagonal matrix then B and eB have the same eigenvectors, while the eigenvalues
of eB are the exponentials of the eigenvalues of B .

Actually, we can do a bit better: if A =

⎡
⎢⎢⎢⎣

A1 O . . . O

O A2 . . . O
...

...
. . .

...

O O . . . Am

⎤
⎥⎥⎥⎦, where each Ah

is a square matrix, then eA =

⎡
⎢⎢⎢⎣

eA1 O . . . O

O eA2 . . . O
...

...
. . .

...

O O . . . eAm

⎤
⎥⎥⎥⎦.

Example If O 	= A ∈ Mn×n(F ), where F is either R or C, is a nilpotent ma-
trix with index of nilpotence k, then eA = I +∑k

h=1
1
h!A

h. Thus, for example, if

A =
⎡
⎣

0 1 2
0 0 −1
0 0 0

⎤
⎦, we have eA = I + A + 1

2A2 =
⎡
⎣

1 1 3
2

0 1 −1
0 0 1

⎤
⎦.

Example If A =
[

0 k

0 0

]
∈ M2×2(R), then eA =

[
1 k

0 1

]
; if B =

[
0 r

−r 0

]
then

eB =
[

cos(r) sin(r)

− sin(r) cos(r)

]
.
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Example If A =
⎡
⎣

1 1 1
1 1 1
1 1 1

⎤
⎦ ∈ M3×3(R), then

eA =

⎡
⎢⎢⎢⎣

2
3 + 1

3e3 1
3e3 − 1

3
1
3e3 − 1

3

1
3e3 − 1

3
2
3 + 1

3e3 1
3e3 − 1

3

1
3e3 − 1

3
1
3e3 − 1

3
2
3 + 1

3e3

⎤
⎥⎥⎥⎦ .

If P ∈ Mn×n(F ) is nonsingular, where F is R or C, then

P −1

[
I +

k∑
h=1

1

h!A
h

]
P = I +

k∑
h=1

1

h!
(
P −1AP

)h

for each k and so P −1eAP = eP−1AP . Thus we see that the exponentials of similar
matrices are themselves similar. This is very important in calculations. In particular,
if A is diagonalizable there exists a nonsingular matrix P such that P −1AP is a
diagonal matrix D = [dij ] and so P −1eAP = eD is also a diagonal matrix. Thus eA

is diagonalizable whenever A is.
If A,B is a commuting pair of matrices in Mn×n(F ), then as a direct conse-

quence of the definition we see that eAeB = eA+B = eBeA. But this is not true in
general, as the following example shows.

Example If A =
[

0 1
0 0

]
and B =

[−1 0
0 0

]
, then

eAeB =
[

1 1
0 1

][
e−1 0
0 1

]
=
[
e−1 1
0 1

]
	=
[

e−1 1 − e−1

0 1

]
= eA+B.

Example The condition that A,B be a commuting pair is sufficient for eAeB =
eA+B to hold, but is not necessary. Thus, for example, if A =

[
0 π

−π 0

]
and

B =
[

0 (7 + 4
√

3)π

(−7 + 4
√

3)π 0

]
, then AB 	= BA, but eA = eB = −I so

eAeB = I = eA+B .

This fact is significant when it comes to calculating eA in many cases. For ex-
ample, suppose that A is an n × n matrix having a single eigenvalue c of mul-
tiplicity n. Then for each scalar t , the matrices ctI and t (A − cI) commute and

so etA = etcI et (A−cI) = (etcI )
∑∞

k=0
tk

k! (A − cI)k and, from the Cayley–Hamilton
Theorem, we know that (A − cI)k = O for all k ≥ n. Thus we see that etA =
(etcI )

∑n−1
k=0

tk

k! (A − cI)k and so there exists a polynomial p(X) ∈ F [X] satisfy-
ing etA = p(A).
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Thus we can put much of what we said together. Given a matrix A ∈ Mn×n(C),
we know by Proposition 13.7 that it is similar to a matrix in Jordan canonical form.
That is to say, there exists a nonsingular matrix P such that P −1AP is of the form⎡
⎢⎢⎢⎣

A1 O . . . O

O A2 . . . O
...

...
. . .

...

O O . . . Am

⎤
⎥⎥⎥⎦, where each Ai is a square matrix of the form ciI + Ni , for

Ni a nilpotent matrix of a particularly simple form. Thus, for each i, we have eAi =

eci eNi and so eA = P

⎡
⎢⎢⎢⎣

ec1eN1 O . . . O

O ec2eN2 . . . O
...

...
. . .

...

O O . . . ecmeNm

⎤
⎥⎥⎥⎦P −1. Moreover, each eNi

is just pi(Ni) for some polynomial pi(X) ∈ C[X].
We also note that any matrix A commutes with −A, so eAe−A = eA−A =

eO = I , proving that eA is nonsingular and e−A = (eA)−1. Therefore, we have a
function A �→ eA from Mn×n(F ) (where F is either R or C) to the set of all non-
singular matrices in Mn×n(F ), which is not monic. In the case F =C, this function
is in fact epic. If A ∈ Mn×n(F ) then a matrix B ∈ Mn×n(F ) is a matrix logarithm
of A if and only if A = eB . From the previous discussion, we see that only non-
singular matrices have logarithms. If F = C, then every nonsingular matrix has a
logarithm, but not necessarily a unique one.

Example If A =
[

0 0
0 0

]
and B =

[
0 2π

−2π 0

]
then eA = eB = I . Therefore, both

A and B are logarithms of I , which are not even similar.

A similar proof can be used to show that if A has distinct eigenvalues {c1, . . . , cn}
and if pk(X) =∏j 	=k(ck − cj )

−1(X − cj I ) for all 1 ≤ k ≤ n then for any scalar t

we have etA =∑n
k=1 etckpk(A).

What about, say, cos(A) and sin(A)? We know that the cosine function has a
Maclaurin representation

cos(x) =
∞∑
i=0

(−1)i

(2i)! x2i .

For each natural number n, let us consider the polynomial

pn(X) =
n∑

i=0

(−1)i

(2i)! X2i .

Then we can surely calculate pn(A) for each n and see whether the sequence of
such matrices converges in some sense. However, there is another possibility. We
know that for any real or complex number z we have cos(z) = 1

2 [eiz + e−iz] and so



Exercises 357

we can just define cos(A) to be the matrix 1
2 [eiA + e−iA], which we know always

exists.

Example We see that cos(I ) =
⎡
⎣

cos(1) 0 0
0 cos(1) 0
0 0 cos(1)

⎤
⎦ and

cos

⎛
⎝
⎡
⎣

1 1 1
1 1 1
1 1 1

⎤
⎦
⎞
⎠=

⎡
⎢⎢⎣

2
3 + 1

3 cos(3) 1
3 cos(3) − 1

3
1
3 cos(3) − 1

3

1
3 cos(3) − 1

3
2
3 + 1

3 cos(3) 1
3 cos(3) − 1

3

1
3 cos(3) − 1

3
1
3 cos(3) − 1

3
2
3 + 1

3 cos(3)

⎤
⎥⎥⎦ .

Similarly, we know that sin(z) = −i
2 [eiz − e−iz] and so we can define sin(A) to

be −i
2 [eiA − e−iA].

Exercises

Exercise 934
Let V = C(−1,1) and let a > − 1

2 be a real number. Is the function μ :
V × V → R defined by 〈f,g〉 = ∫ 1

−1[1 − t2]a−1/2f (t)g(t) dt an inner product
on V ?

Exercise 935
Is the function μ : R2 ×R

2 →R defined by

μ :
([

a1
a2

]
,

[
b1
b2

])
�→ a1(b1 + b2) + a2(b1 + 2b2)

an inner product on R
2?

Exercise 936
Is the function μ : R2 ×R

2 →R defined by

μ :
([

a1
a2

]
,

[
b1
b2

])
�→ a1b1 − a1b2 − a2b1 + 4a2b2

an inner product on R
2?
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Exercise 937
Is the function μ : R3 ×R

3 →R defined by

μ :
⎛
⎝
⎡
⎣

a1
a2
a3

⎤
⎦ ,

⎡
⎣

b1
b2
b3

⎤
⎦
⎞
⎠ �→ a1b1 + 2a2b2 + 3a3b3 + a1b2 + a2b1

an inner product on R
3?

Exercise 938
Verify whether the function μ : R[X] ×R[X] → R defined by μ : (f, g) �→
deg(fg) is an inner product on R[X].

Exercise 939
Give an example of a function μ : R2 × R

2 → R which satisfies the first two
conditions of an inner product, which does not satisfy the third, but does satisfy

μ

([
1
0

]
,

[
1
0

])
= 1.

Exercise 940
Is the function μ : R[X] ×R[X] → R defined by

μ :
( ∞∑

i=0

aiX
i,

∞∑
j=0

bjX
j

)
�→

∞∑
i=0

∞∑
j=0

1

i + j + 1
aibj

an inner product on R[X]?

Exercise 941
Let V be the vector space of all continuous functions from R to itself. Let
μ : V × V → R be the function given by μ : (f, g) �→ limt→∞ 1

t

∫ t

−t
f (s)g(s) ds.

Is μ an inner product?

Exercise 942
Let V be a vector space over C and let μ : V × V → C be a function satisfying
the following conditions:
(1) For each w ∈ V , the function v �→ μ(v,w) from V to C is a linear functional;
(2) If v,w ∈ V then μ(v,w) = μ(w,v);
(3) If v ∈ V satisfies μ(v,w) = 0 for all w ∈ V , then v = 0V .
Is μ an inner product on V ?



Exercises 359

Exercise 943
Let V be the vector space of all continuously differentiable functions from the
interval [a, b] in R to R. If f,g ∈ V , define the Sobolev inner product

〈f,g〉 =
∫ b

a

f (t)g(t) dt +
∫ b

a

f ′(t)g′(t) dt,

where f ′ and g′ are the derivatives of f and g, respectively. Verify that this is
indeed an inner product on V .

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

Sergei Lvovich Sobolev was a twentieth-century Russian mathematician
who worked primarily in functional analysis.

Exercise 944
Let {u,v} be a linearly-dependent subset of an inner product space V . Show that
‖u‖2v = 〈v,u〉u.

Exercise 945

Let n be a positive integer and let v =
⎡
⎢⎣

c1
...

cn

⎤
⎥⎦ ∈ R

n. Is the function μv :

R[X1, . . . ,Xn] ×R[X1, . . . ,Xn] → R defined by

μv : (p, q) �→ p(c1, . . . , cn)q(c1, . . . , cn)

an inner product on R[X1, . . . ,Xn]?

Exercise 946
Let a < b be real numbers and let V = C(a, b). Let h0 ∈ V be a function sat-
isfying the condition that h0(t) > 0 for all a < t < b. Show that the function
μ : V × V → R defined by μ : (f, g) �→ ∫ b

a
f (x)g(x)h0(x) dx is an inner prod-

uct on V .

Exercise 947
Let c and d be given real numbers. Find a necessary and sufficient condition that

the function μ :
([

a1
a2

]
,

[
b1
b2

])
�→ ca1b1 + da2b2 be an inner product on R

2.
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Exercise 948
Is the function μ : R3 ×R

3 →R defined by

μ :
⎛
⎝
⎡
⎣

a1
a2
a3

⎤
⎦ ,

⎡
⎣

b1
b2
b3

⎤
⎦
⎞
⎠ �→ a2

1b2 + b2
1a2 + (a3b3)

2

an inner product on R
3?

Exercise 949
Let V be an inner product space over R and let n > 1 be an integer. For positive
real numbers a1, . . . , an, define the function μ : V n × V n → R by

μ :
⎛
⎜⎝

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦ ,

⎡
⎢⎣

w1
...

wn

⎤
⎥⎦

⎞
⎟⎠ �→

n∑
i=1

ai〈vi,wi〉.

Is μ an inner product on V n?

Exercise 950
Let n be a positive integer and let V be the subspace of R[X] consisting of all
polynomials of degree at most n. Is the function μ : V × V → R defined by
μ : (p, q) �→∑n

i=0 p( i
n
)q( i

n
) an inner product on V ?

Exercise 951
Let 0 < n ∈ Z. Is the function μ :Cn ×C

n → C defined by

μ :
⎛
⎜⎝

⎡
⎢⎣

a1
...

an

⎤
⎥⎦ ,

⎡
⎢⎣

b1
...

bn

⎤
⎥⎦

⎞
⎟⎠ �→

n∑
i=1

aibn−i+1

an inner product?

Exercise 952
Let V = C

2 on which we have defined the dot product, and let D = {v ∈ V |
‖v‖ = 1}. Find {〈Av,v〉 | v ∈ D}, where A =

[
1 0
0 0

]
∈M2×2(C).

Exercise 953
Let n be a positive integer and let {v1, . . . , vk} be a set of vectors in R

n satisfying
vi · vj ≤ 0 for all 1 ≤ i < j ≤ k. Show that k ≤ 2n and give an example in which
equality holds.

Exercise 954
Let n be a positive integer and let A ∈Mn×n(C) be idempotent. Is AH necessarily
idempotent?
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Exercise 955
Let V be an inner product space and let v 	= v′ be vectors in V . Show that there
exists a vector w ∈ V satisfying 〈v,w〉 	= 〈v′,w〉.

Exercise 956
Let V be an inner product space finitely generated over its field of scalars, and
let B = {v1, . . . , vn} be a basis of V . Show that there exists a basis {w1, . . . ,wn}
of V satisfying the condition that

〈vi,wj 〉 =
{

1 if i = j,

0 otherwise.

Exercise 957
Let W be a subspace of a vector space V over R and let Y be a complement of
W in V . Define an inner product μ on W and an inner product ν on Y . Is the
function from V × V → R defined by (w + y,w′ + y′) �→ μ(w,w′) + ν(y, y′)
an inner product on V ?

Exercise 958
Let V = C(0,1). Let A = {f1, . . . , fn} be a linearly-independent subset of V and
define a function u : R×R →R by u : (a, b) �→∑n

j=1 fj (a) cosj (b). Show that

if h ∈ V and if there exists a function g ∈ V such that h(x) = ∫ 1
0 u(x, y)g(y) dy

for all x ∈ R, then h ∈ RA.

Exercise 959
Let V be an inner product space over R. For each real number a, set
U(a) = {v ∈ V | 〈v, v〉 ≤ a}. Given a real number a, find a real number b such
that 〈v + w,v + w〉 ∈ U(b) for all v,w ∈ U(a).

Exercise 960
Let V be an inner product space and let α ∈ End(V ). Show that 〈α(v), v〉〈v,α(v)〉
≤ ‖α(v)‖2 for every normal vector v ∈ V .

Exercise 961
For real numbers a1, . . . , an, show that

n∑
i=1

ai ≤
(√√√√

n∑
i=1

|ai |2/3

)(√√√√
n∑

i=1

|ai |4/3

)
.

Exercise 962
(Binet–Cauchy identity) For u,v,w,y ∈ R

3, show that (v × w)(y × u) =
(v · y)(w · u) − (v · u)(y · w).
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Exercise 963

Let v be a normal vector in R
3. Show that the function αv :R3 →R

3 defined by

αv : w �→ v × (v × w) + w is a projection in End(R3).

Exercise 964

Let V be an inner product space and let α ∈ End(V ) be a projection. Does it

necessarily follow that ‖α(v)‖ ≤ ‖v‖ for all v ∈ V ?

Exercise 965

For u,v,w,y ∈R
3, show that (u × v) · (w × y) =

∣∣∣∣
u · w u · y
v · w v · y

∣∣∣∣.

Exercise 966

For nonnegative real numbers a, b, and c, show that

(a + b + c)
√

2 ≤
√

a2 + b2 +
√

b2 + c2 +
√

a2 + c2.

Exercise 967

For real numbers 0 < a ≤ b ≤ c, show that

√
b2 + c2 ≤ (√2

)
a ≤

√
(b − a)2 + (c − a)2.

Exercise 968

Let n be a positive integer and let A ∈ Mn×n(R) be a matrix the n Gershgorin

circles of which are mutually disjoint. Prove that all of the eigenvalues of A are

real.

Exercise 969

Show that
[∫ 1

0 f (x)dx
]2 ≤ ∫ 1

0 f (x)2 dx for any f ∈ C(0,1).

Exercise 970

Let f : R →R be the constant function x �→ 1. Calculate ‖f ‖ when f is consid-

ered as an element of C(0, π
2 ) and compare it to ‖f ‖, when f is considered as

an element of C(0,π).

Exercise 971

Let V be an inner product space over R and let v,w ∈ V satisfy ‖v + w‖ =
‖v‖ + ‖w‖. Show that ‖av + bw‖ = a‖v‖ + b‖w‖ for all 0 ≤ a, b ∈R.
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Exercise 972
(Real polarization identity) Let V be an inner product space over R. Show that
〈u,v〉 = 1

4 (‖u + v‖2 − ‖u − v‖2) for all u,v ∈ V .

Exercise 973
(Complex polarization identity) Let V be an inner product space over C. Show
that 〈u,v〉 = 1

4 (‖u+ v‖2 −‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2) for all u,v ∈ V .

Exercise 974
Let V = C(0,1) on which we have defined the inner product 〈f,g〉 =∫ 1

0 f (t)g(t) dt . Let W be the subspace of V generated by the function x �→ x2.
Find all elements of W normal with respect to this inner product.

Exercise 975
Let V be an inner product space over R and assume that v,w ∈ V are nonzero
vectors satisfying the condition 〈v,w〉 = ‖v‖ · ‖w‖. Show that Rv = Rw.

Exercise 976
Let V be a vector space over R on which we have two inner products, μ and μ′
defined, which in turn define distance functions d and d ′ respectively. If d = d ′,
does it necessarily follow that μ = μ′?

Exercise 977
(Apollonius’ identity) Let V be an inner product space. Show that

‖u − w‖2 + ‖v − w‖2 = 1

2
‖u − v‖2 + 2

∥∥∥∥
1

2
(u + v) − w

∥∥∥∥
2

for all u,v,w ∈ V .

The Greek geometer Apollonius of Perga, who worked in Alexandria
in the third century BC, in his famous book Conics, was the first to
introduce the terms “hyperbola”, “parabola”, and “ellipse”.

Exercise 978
Let n be a positive integer and let ‖ · ‖ be a norm defined on C

n. For each
A ∈Mn×n(C), let ‖A‖ be the spectral norm of A. If A ∈ Mn×n(C) is non-
singular, show that every singular matrix B ∈ Mn×n(C) satisfies ‖A − B‖ ≥
‖A−1‖−1. Does there necessarily exist a singular matrix B for which equality
holds?
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Exercise 979
Let V be an inner product space over R and consider the function θ : V × V ×
V → R defined by

θ(v,w,y) = ‖v + w + y‖2 + ‖v + w + y‖2 − ‖v − w − y‖2 − ‖v − w + y‖2.

Show that, for any v,w,y ∈ V , the value of θ(v,w,y) does not depend on y.

Exercise 980
Let V be an inner product space over R and let n > 2. Let θ : V n → V be the

function defined by θ :
⎡
⎢⎣

v1
...

vn

⎤
⎥⎦ �→ 1

n

∑n
i=1 vi . Show that

n∑
i=1

∥∥∥∥∥∥∥
vi − θ

⎛
⎜⎝

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦

⎞
⎟⎠

∥∥∥∥∥∥∥

2

=
n∑

i=1

‖vi‖2 − n

∥∥∥∥∥∥∥

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦

∥∥∥∥∥∥∥

2

.

Exercise 981
Let V be an inner product space over R and let v and w be nonzero vectors
in V . Show that |〈v,w〉|2 = 〈v, v〉〈w,w〉 if and only if the set {v,w} is linearly
dependent.

Exercise 982
Let V be a finitely-generated inner product space and let B = {v1, . . . , vn} be a
set of vectors in V . Show that B is linearly dependent if and only if its Gram
matrix is singular.

Exercise 983
Let V be a vector space over R and let ‖ · ‖ be a norm defined on V . Show that
|‖v‖ − ‖w‖| ≤ ‖v − w‖ for all v,w ∈ V .

Exercise 984
Let V be an inner product space finitely generated over R and let δ ∈ D(V ). Pick
v0 ∈ V . Show that for each real number e > 0 there exists a real number d > 0
such that |δ(v) − δ(v0)| < e whenever ‖v − v0‖ < d .

Exercise 985
Let V be an inner product space. For any u,v,w ∈ V , show that

∣∣∣∣∣∣∣∣

0 1 1 1
1 0 d(u, v)2 d(u,w)2

1 d(u, v)2 0 d(v,w)2

1 d(u,w)2 d(v,w)2 0

∣∣∣∣∣∣∣∣
≤ 0.
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Exercise 986
Let n > 1. Show that there is no norm v �→ ‖v‖ defined on C

n satisfying
‖A‖F = sup{ ‖Av‖

‖v‖ | 0V 	= v ∈C
n} for all A ∈ Mn×n(C).

Exercise 987
Let n > 1 be an integer. For each A ∈ Mn×n(C), let ‖A‖ = ρ(A), the spectral
radius of A. Does this turn Mn×n(C) into a normed space?

Exercise 988
Let V be the vector space of all continuous functions from the unit interval [0,1]
on the real line to R and for each f ∈ V , set ‖f ‖ = ∫ 1

0 |f (t)|dt . Is ‖ · ‖ a norm
on V ?

Exercise 989
Let p > 2 be prime and let n be a positive integer. For each 1 ≤ i ≤ n,
define w(i) = min{i − 1,p − i + 1}. Does the function GF(p)n → R defined

by

⎡
⎢⎣

a1
...

an

⎤
⎥⎦ �→∑n

i=1 w(i)ai turn GF(p)n into a normed space?

Exercise 990
Let 0 < p < 1 and let f : Rn →R be the function defined by

f :
⎡
⎢⎣

a1
...

an

⎤
⎥⎦→

(
n∑

i=1

|ai |p
)1/p

.

Show that this is not a norm but does satisfy the inequality f (v + w) ≤
2(1−p)/p[f (v) + f (w)] for all v,w ∈ R

n.

Exercise 991
Let V1, . . . , Vn be normed spaces over the same field and let V =∏n

i=1 Vi . For
each 1 ≤ i ≤ n, denote the norm defined on Vi by ‖ · ‖i and define a function

v �→ ‖v‖ from V to R by setting

∥∥∥∥∥∥∥

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦

∥∥∥∥∥∥∥
=∑n

i=1 ‖vi‖i . Is this a norm on V ?

Exercise 992
Let V be a normed space and let 0V 	= v0 ∈ V . Show that there exists a linear
functional θ ∈ D(V ) satisfying ‖θ‖ = 1 and θ(v0) = ‖v0‖.

Exercise 993
Let n > 1 and let A ∈ Mn×n(C). Show that there are infinitely-many other ma-
trices in Mn×n(C) having the same Gershgorin circles as A.
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Exercise 994
Let A = [aij ] ∈ M2×2(C) and let K be the Cassini oval defined by A. Show that
every point on the boundary of K is an eigenvalue of a matrix B ∈ M2×2(C)

defining the same Cassini oval.

Exercise 995
Let n > 1 be an integer and let A = [aij ] ∈ Mn×n(R). For any e > 0, show that
there exists a nonsingular matrix B ∈Mn×n(R) satisfying ‖A − B‖F < e.

Exercise 996
Let n be a positive integer and let A = [aij ] ∈Mn×n(C). Let f : R →Mn×n(C)

be defined by f : t �→ etA. Show that the derivative of f is given by f ′ : t �→ AetA.

Exercise 997
Let F be a field and let n be a positive integer. Let α ∈ End(F n) and let V be a
subspace of F disjoint from ker(α). If ‖ · ‖ denotes the Hamming norm on Fn,
is it necessarily true that ‖v‖ = ‖α(v)‖ for all v ∈ V ?

Exercise 998
Let n be a positive integer and let α be an endomorphism of C

n represented
with respect to the canonical basis by a matrix A ∈ Mn×n(C). Then the canon-
ical inner product on C

n defines norms on C
n and on End(Cn). Show that

ρ(A) ≤ ‖αk‖1/k for any integer k > 0.

Exercise 999
Let V and W be normed spaces over R or C and let α : V → W be a linear
transformation for which ‖α‖ exists. Show that D(α) satisfies ‖D(α)‖ = ‖α‖.

Exercise 1000
Let V be a vector space finitely-generated over a field F and let L be the set of
all subspaces of V . For W,Y ∈ L, define d(W,Y ) = dim(W +Y)−dim(W ∩Y).
Does this function satisfy the conditions of Proposition 15.12?

Exercise 1001

For each real number t , set A(t) =
⎡
⎣

t 1 1
1 0 1
1 1 t

⎤
⎦ ∈ M3×3(R). Does there exist a

value of t for which ‖A(t)‖F = ‖A(t)‖2?

Exercise 1002

For each t > 0, let f (t) =

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

t 1 0 0
1 t 0 0
0 0 1 t

0 0 t 1

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
F

. Calculate limt→∞ 1
t
f (t).
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Exercise 1003
Let V be a vector space over R and let Y be its complexification. Define a func-
tion μ : Y × Y →C by

μ :
([

v1
v2

]
,

[
w1
w2

])
�→ 〈v1,w1〉 + 〈v2,w2〉 + i

[〈vw,w1〉 − 〈v1,w2〉
]
.

Show that μ is an inner product on Y and calculate

∥∥∥∥
[
v1
v2

]∥∥∥∥ for each

[
v1
v2

]
∈ Y .

Exercise 1004
Let V be a normed space and let α ∈ End(V ) have an induced norm satisfying
‖α‖ < 1. Show that σ1 − α ∈ Aut(V ).

Exercise 1005
Let V be the set of all “infinite matrices” A = [aij ], where aij ∈ R for all i, j ≥ 0,
which is a vector space over R with addition and scalar multiplication defined
elementwise. Let p > 1 be a real number and let q be a real number satisfying
1
p

+ 1
q

= 1. Let W be the subset of V consisting of all those matrices A satisfying

the condition that
∑∞

i=1[
∑∞

j=1 |aij |q ]p/q is finite. Show that W is a subspace of

V and that the function A �→ (
∑∞

i=1[
∑∞

j=1 |aij |q ]p/q)1/p is a norm on W .
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Let V be an inner product space and let 0V �= v,w ∈ V . From Proposition 15.2 we
see that

−1 ≤ 〈v,w〉 + 〈w,v〉
2‖v‖ · ‖w‖ ≤ 1,

and so there exists a real number 0 ≤ t ≤ π satisfying

cos(t) = 〈v,w〉 + 〈w,v〉
2‖v‖ · ‖w‖ .

This number t is the angle between v and w. Note that if we are working over R,
then

cos(t) = 〈v,w〉
‖v‖ · ‖w‖ .

Example If V = R
n is endowed with the dot product, and if 0V �= v,w ∈ V then,

using analytic geometry, it is easy to show that the angle as defined here is indeed
the angle between the straight line determined by v and the origin, and the straight
line determined by w and the origin. If we define different inner products on V , we
build in this manner various non-Euclidean geometries in n-space.

Example Let V = C(0,1), on which we have defined the inner product 〈f,g〉 =∫ 1
0 f (x)g(x) dx. In particular, consider the functions f : x �→ 5x2 and g : x �→ 3x.

Then ‖f ‖ = √
5 and ‖g‖ = √

3, and the angle t between f and g satisfies cos(t) =√
1
15

∫ 1
0 (5x2)(3x)dx = 1

4

√
15.

Vectors v and w in an inner product space V are orthogonal if and only if
〈v,w〉 = 0. In this case, we write v ⊥ w. We note that if v ⊥ w then ‖v + w‖2 =
‖v‖2 +〈v,w〉+〈w,v〉+‖w‖2 = ‖v‖2 +‖w‖2. A nonempty subset D of V is a set of
mutually orthogonal vectors if v ⊥ w whenever v �= w in D. If {v1, . . . , vn} is a mu-

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_16, © Springer Science+Business Media B.V. 2012
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tually orthogonal set of vectors in V then one shows, similarly, that ‖∑n
i=1 vi‖2 =∑n

i=1 ‖vi‖2.

Example We have already seen that if v,w ∈ R
3, then v · (v × w) = 0. This says

that a vector v is orthogonal to v × w, for any vector w. The same is also true for w

and v × w and so we see that if {v,w} is a linearly-independent subset of R3 then
the set {v,w,v × w} is linearly independent and so is a basis of R3.

Moreover, as an immediate consequence of the Lagrange identity on R
3, we see

that if v ×w =
⎡

⎣
0
0
0

⎤

⎦ and v ·w = 0 then either v =
⎡

⎣
0
0
0

⎤

⎦ or w =
⎡

⎣
0
0
0

⎤

⎦. If v,w ∈R
3,

then the angle t between them satisfies the condition that v ·w = (‖v‖ · ‖w‖) cos(t).
Using the Lagrange identity, we see that

‖v × w‖2 = ‖v‖2‖w‖2 − (v · w)2 = ‖v‖2‖w‖2[1 − cos2(t)
]

= ‖v‖2‖w‖2 sin2(t),

and so ‖v × w‖ = (‖v‖ · ‖w‖)| sin(t)|. Thus | cos(t)| = ‖v×w‖
‖v‖·‖w‖ .

Example If V = C
2 on which we have the dot product, then it is easy to see that[

2 + 3i

−1 + 5i

]

⊥
[

1 + i

−i

]

.

Example Let V = C(−1,1), on which we have defined the inner product 〈f,g〉 =∫ 1
−1 f (x)g(x) dx. For all i ≥ 0, define the functions pi ∈ V as follows: p0 : x �→ 1;

p1 : x �→ x; and

ph+1 : x �→
(

2h + 1

h + 1

)

xph(x) −
(

h

h + 1

)

ph−1(x) whenever h > 1.

These polynomial functions are known as Legendre polynomials. It is easy to verify
that pi ⊥ ph whenever i �= h.

On the same space, we can define another inner product, namely

〈f,g〉 =
∫ 1

−1

f (x)g(x)√
1 − x2

dx.

For each i ≥ 0, define the function qi ∈ V by setting q0 : x �→ 1; q1 : x �→ x; and
qh+1 : x �→ 2xqh(x) − qh−1(x) whenever h > 1. These polynomial functions are
known as Chebyshev polynomials. It is again easy to verify that qi ⊥ qh whenever
i �= h.

Both of the these products are special instances of a more general construction.
For any −1 < r, s ∈ R, it is possible to define an inner product on C(−1,1) by
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setting 〈f,g〉 = ∫ 1
−1 f (x)g(x)(1 − x)r (1 + x)s dx. The set of polynomial functions

which are mutually orthogonal with respect to this inner product is called the set of
Jacobi polynomials of type (r, s). Such polynomials are important in many areas of
numerical analysis, and in particular in numerical integration.

With kind permission of the Bibliothèque de l’Institut de
France (Legendre).

Adrien-Marie Legendre was one of the first-rate
mathematicians who worked in France during the
time of the revolution and the generation after it.
Among other things, he served on the committee
that defined the metric system. Pafnuty Lvovich
Chebyshev, a nineteenth-century Russian math-
ematician, made important contributions to both
pure and applied mathematics.

Proposition 16.1 Let V be an inner product space over a field of scalars F .
(1) If v ∈ V satisfies v ⊥ w for all w ∈ V , then v = 0V .
(2) If ∅ �= A ⊆ V and if v ∈ V satisfies the condition that v ⊥ w for all

w ∈ A, then v ⊥ w for w ∈ FA.

Proof (1) is an immediate consequence of the fact that if v �= 0V then 〈v, v〉 �= 0.
Now assume that ∅ �= A ⊆ V and that v ⊥ w for all w ∈ A. If y ∈ FA then there
exist elements w1, . . . ,wn ∈ A and scalars a1, . . . , an such that y = ∑n

i=1 aiwi and
so 〈v, y〉 = ∑n

i=1 ai〈v,wi〉 = 0, whence v ⊥ y. �

Proposition 16.2 Let V be an inner product space and let A be a nonempty
set of nonzero mutually-orthogonal vectors in V . Then A is linearly indepen-
dent.

Proof Let {v1, . . . , vn} be a finite subset of A and assume that there exist scalars
c1, . . . , cn such that

∑n
i=1 civi = 0V . Then, for 1 ≤ h ≤ n, we have ch〈vh, vh〉 =∑n

i=1 ci〈vi, vh〉 = 〈∑n
i=1 civi, vh〉 = 〈0V , vh〉 = 0 and hence ch = 0. Thus any finite

subset of A is linearly independent, and therefore A is linearly independent. �

If V is an inner product space then any vector 0V �= w ∈ V defines a function

πw : v �→ 〈v,w〉
〈w,w〉w

from V to itself, which is in fact a projection the image of which is the subspace
of V generated by {w}. This easily-checked remark is the basis for the following
theorem.
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Proposition 16.3 (Gram–Schmidt Theorem) Any finitely-generated inner
product space V has a basis composed of mutually-orthogonal vectors.

Proof We will proceed by induction on dim(V ). If dim(V ) = 1 the result is imme-
diate. Therefore, we can assume that the proposition is true for any inner prod-
uct space of dimension k, and assume that dim(V ) = k + 1. Let W be a sub-
space of V of dimension k. By the induction hypothesis, there exists a basis
{v1, . . . , vk} of W composed of mutually-orthogonal vectors. Let v ∈ V � W and
set vk+1 = v −∑k

i=1 πvi
(v). This vector does not belong to W since v /∈ W . There-

fore, {v1, . . . , vk+1} is a generating set for V . Moreover, for 1 ≤ j ≤ k, we have

〈vk+1, vj 〉 = 〈v, vj 〉 −
k∑

i=1

〈v, vi〉
〈vi, vi〉 〈vi, vj 〉 = 〈v, vj 〉 − 〈v, vj 〉

〈vj , vj 〉 〈vj , vj 〉 = 0

and so vk+1 ⊥ vj for all 1 ≤ j ≤ k. By Proposition 5.3, it follows that the set
{v1, . . . , vk+1} is linearly independent and so is a basis for V . �

We should note that the proof of Proposition 16.3 is an algorithm, called the
Gram–Schmidt process, which is easy to implement by a computer program to create
a basis composed of mutually-orthogonal vectors of V , when we are given a basis
of any sort for the space.

Example Let v1 =

⎡

⎢
⎢
⎣

3
0
0
0

⎤

⎥
⎥
⎦ , v2 =

⎡

⎢
⎢
⎣

0
1
2
1

⎤

⎥
⎥
⎦, and v3 =

⎡

⎢
⎢
⎣

3
−1

3
2

⎤

⎥
⎥
⎦ be vectors in R

4, on

which we have defined the dot product. The set {v1, v2, v3} is linearly independent
and so generates a three-dimensional subspace W of R

4. Let us use the Gram–
Schmidt process to build a basis for W composed of mutually-orthogonal vectors.

Indeed, we define u1 = v1, u2 = v2 − πu1(v2) =

⎡

⎢
⎢
⎣

0
1
2
1

⎤

⎥
⎥
⎦, and u3 = v3 − πu1(v3) −

πu2(v3) = 1
6

⎡

⎢
⎢
⎣

0
−13

4
5

⎤

⎥
⎥
⎦ then {u1, u2, u3} is a basis for W , the vectors of which are

mutually orthogonal.

Example Let V = C(−1,1), on which we have defined the inner product 〈f,g〉 =∫ 1
−1 f (x)g(x) dx. For all i ≥ 0, let fi be the polynomial function fi : x �→ xi . Then

for each n > 0, the set {f0, . . . , fn} is linearly independent and so forms a basis for a
subspace W of V . We now apply the Gram–Schmidt process to this basis, to obtain
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a basis {p0, . . . , pn} of vectors in V which are mutually orthogonal, where the pj

are precisely the Legendre polynomials we introduced earlier.

Example If α is a diagonalizable endomorphism of a finitely-generated inner prod-
uct space V then there exists a basis B composed of eigenvectors of α. Applying
the Gram–Schmidt process to B will yield a basis of V composed of mutually-
orthogonal vectors, but they may no longer be eigenvectors of α. Thus, for exam-

ple, if V = R
2, if α :

[
a

b

]

�→
[
a + b

2b

]

, and if B =
{[

1
0

]

,

[
1
1

]}

, then the Gram–

Schmidt process yields

{[
1
0

]

,

[
0
1

]}

, where

[
0
1

]

is not an eigenvector of α.

Actually, the assumption that we have a basis in hand when initiating the Gram–
Schmidt process is one of convenience rather than necessity. We could begin with
an arbitrary generating set {v1, . . . , vn} for the given space. In that case, at the hth
stage of the process we would begin by checking whether vh is a linear combination
of the set of mutually-orthogonal vectors {u1, . . . , uh−1} we have already created. If
it is, we just discard it and go on to vh+1.

We should point out that the Gram–Schmidt process is not considered computa-
tionally stable—small errors and roundoffs in the computational process accumulate
rapidly and can lead at the end to a significant difference between the true solution
and the computed solution. There are, fortunately, other more sophisticated meth-
ods of constructing a basis composed of mutually-orthogonal vectors from a given
basis.

Proposition 16.4 (Hadamard inequality) Let n be a positive integer, let A =
[aij ] ∈ Mn×n(R) be a nonsingular matrix, and let e = |A|. Then |e| ≤ gn

√
nn,

where g = max{|aij | | 1 ≤ i, j ≤ n}.

Proof Denote the rows of A by v1, . . . , vn. Then {v1, . . . , vn} is a basis for V = R
n

and so, using the Gram–Schmidt method, we can find a new basis {u1, . . . , un}
for V , on which we consider the dot product, composed of mutually-orthogonal
vectors, and defined by setting u1 = v1 and uh = vh − ∑h−1

j=1 chjuj , where chj =
(vh ·uj )(uj ·uj )

−1. If B ∈ Mn×n(R) is the matrix the rows of which are u1, . . . , un,

then A = CB , where C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 . . . 0
c21 1 0 . . . 0
c31 c32 1 . . . 0
...

...
. . .

. . .
...

cn1 cn2 . . . cn,n−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. Since C is a lower-

triangular matrix, its determinant is the product of the entries on its diagonal,
namely 1. Therefore e = |B|.
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By looking at the Gram–Schmidt method, we see that ‖ui‖ ≤ ‖vi‖ for all
1 ≤ i ≤ n. Moreover, since the ui are mutually orthogonal, we see that BBT = D,
where D = [dij ] is the diagonal matrix defined by dii = ‖ui‖2 for all 1 ≤ i ≤ n.
Therefore, e2 = |BBT | = |D| = ∏n

i=1 ‖ui‖2. Now let g = max{|aij | | 1 ≤ i, j ≤
n}. Then ‖ui‖ ≤ ‖vi‖ ≤ g

√
n for all 1 ≤ i ≤ n and so |e| ≤ gn

√
nn, as de-

sired. �

Let V be an inner product space having a subspace W . Let W⊥ = {v ∈ V |
〈v,w〉 = 0 for all w ∈ W }. By Proposition 16.1, we know that W⊥ is a subspace
of V . Since 〈v, v〉 �= 0 for all 0V �= v ∈ V , it is clear that W and W⊥ are disjoint.
Also, again by Proposition 16.1, we see that V ⊥ = {0V } and {0V }⊥ = V . The space
W⊥ is called the orthogonal complement of W in V , and this name is justified by
the following result:

Proposition 16.5 Let W be a subspace of a finitely-generated inner product
space V . Then V = W ⊕ W⊥ and W = (W⊥)⊥. Moreover, if Y is another
subspace of V then W⊥ ∩ Y⊥ = (W + Y)⊥.

Proof By Proposition 16.3, we know that it is possible to find a basis {v1, . . . , vk}
of W which is composed of mutually-orthogonal vectors, and by the construction
method used in the proof of this proposition, we see that this can be extended to a
basis {v1, . . . , vn} of V , the elements of which are still mutually orthogonal. Thus
vi ∈ W⊥ for all k < i ≤ n, proving that V = W +W⊥. But we already know that W

and W⊥ are disjoint and so we have W ⊕ W⊥. Moreover, {vk+1, . . . , vn} is a basis
for W⊥ and so W = (W⊥)⊥.

Now let Y be another subspace of V . If v ∈ W⊥ ∩ Y⊥ then, for each w ∈ Y

and y ∈ Y we have 〈v,w + y〉 = 〈v,w〉 + 〈v, y〉 = 0 and so v ∈ (W + Y)⊥.
Conversely, if v ∈ (W + Y)⊥ then 〈v,w〉 = 〈v, y〉 = 0 for all w ∈ W and y ∈ Y ,
so v ∈ W⊥ ∩ Y⊥. �

In particular, if V is an inner product space having a subspace W then we have a
natural projection of W ⊕W⊥ onto W , called the orthogonal projection. The image
of a vector v ∈ W ⊕ W⊥ under this projection is the unique element of W closest to
v, according to the distance function defined by the inner product on V , in the sense
of the following theorem.

Proposition 16.6 Let W be a subspace of an inner product space V and let
v = w + y, where w ∈ W and y ∈ W⊥. Then ‖v − w′‖ ≥ ‖v − w‖ for all
w′ ∈ W , with equality holding if and only if w′ = w.
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Proof If w′ ∈ W then

‖v − w′‖2 = ‖w − w′ + y‖2 = 〈w − w′ + y,w − w′ + y〉
= 〈w − w′,w − w′〉 + 〈y,w − w′〉 + 〈w − w′, y〉 + 〈y, y〉
= 〈w − w′,w − w′〉 + 〈y, y〉
= ‖w − w′‖2 + ‖y‖2 = ‖w − w′‖2 + ‖v − w‖2,

and from here the result follows immediately. �

One of the important problems in computational algebra is the following: Given
an endomorphism α of a finitely-generated inner product space and a vector 0V �=
v0 ∈ V , find an efficient procedure to define an orthogonal projection onto the
Krylov subspace F [α]v0. One of the first of these is the Arnoldi process, a mod-
ification of the Gram–Schmidt process. Several variants of this procedure have been
devised, depending on special properties of α. This process is not considered as
computationally efficient as the Lanczos algorithm mentioned earlier. Arnoldi’s pro-
cess is also the basis for the GMRES algorithm (GMRES = generalized minimal
residual) for solution of systems of linear equations, devised by Yousef Saad and
Martin Schultz in 1986.

© Y. Saad (Saad); © Martin Schultz (Schultz).

Algerian/American Yousef Saad and American
Martin H. Schultz are contemporary computer
scientists. Walter Edward Arnoldi was a twenti-
eth century American engineer whose career was
mostly spent with United Aircraft Corporation.

Note that Proposition 16.5 is not necessarily true if the space V is not finitely
generated, as the following example shows.

Example Let V = R
(∞). For each h ≥ 0, let vh be the sequence in which the hth

entry equals 1 and all other entries equal 0. Then B = {vh | h ≥ 0} is a basis for V

composed of mutually-orthogonal vectors. Let W = R{v0 − v1, v1 − v2, . . .}. This
subspace of V is proper since v0 ∈ V � W . If 0V �= y ∈ W⊥ then there exists a
nonnegative integer n such that y = ∑n

i=0 aivi , where the ai are real numbers and
an �= 0. But then an = 〈y, vn − vn+1〉 = 0, and that is a contradiction. Therefore, we
have shown that W⊥ = {0V }, despite the fact that W �= V . Moreover, in this case
V �= W ⊕ W⊥ and (W⊥)⊥ = V �= W .

Let V be an inner product space. A nonempty subset A of V is orthonormal if
and only if the elements of A are mutually orthogonal, and each of them is normal.
Thus, for example, the canonical basis of R

n, equipped with the dot product, is
orthonormal.
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Example Let V = C(−π,π), on which we have an inner product defined by
〈f,g〉 = 1

π

∫ π

−π
f (x)g(x) dx. Then we have an orthonormal subset { 1√

2
}∪{sin(nx) |

n ≥ 1} ∪ {cos(nx) | n ≥ 1} of V .

Example Let V be the subspace of R
R consisting of all functions f for which∫ ∞

−∞ |f (x)|2 dx is finite, where the norm is taken with respect to the inner prod-
uct 〈f,g〉 = ∫ ∞

−∞ f (x)g(x) dx defined on V . Let h ∈ V be the function defined by

h : x �→
⎧
⎨

⎩

1 for 0 < x ≤ 1
2 ,

−1 for 1
2 < x ≤ 1,

0 otherwise.

This function is known as the Haar wavelet. For each j, k ∈ N define the function
h

j
k ∈ V by setting h

j
k : x �→ 2j/2h(2j x − k). Then the subset {hj

k | j, k ∈ N} of V is
orthonormal. Haar wavelets have important applications in image compression.

The twentieth-century Hungarian mathematician Alfréd Haar worked
primarily in analysis.

Proposition 16.7 Every finitely-generated inner product space V has an or-
thonormal basis.

Proof By Proposition 16.3, we know that V has a basis {v1, . . . , vn} the elements
of which are mutually orthogonal. For each 1 ≤ i ≤ n, let wi = ‖vi‖−1vi . Then
each wi is normal and {w1, . . . ,wn} is a basis for V , the elements of which remain
mutually orthogonal. �

We can modify the Gram–Schmidt method to provide an algorithm for construct-
ing an orthonormal basis from any given basis of a finitely-generated inner product
space V , by normalizing each basis element as it is created. This has the added
advantage of tending to reduce accumulated roundoff and truncation errors. The ex-
amples after Proposition 16.3 and Proposition 16.6 show that inner product spaces
which are not finitely generated may have orthonormal bases as well, but this is
not always true. Making use of the Hausdorff Maximum Principle, it is possible to
show that every inner product space V has a maximal orthonormal set, which must
be linearly independent by Proposition 16.2. Such a subset is called a Hilbert subset
of V . Clearly, a subset A of V is a Hilbert subset if and only if for every 0V �= y ∈ V
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there exists a v ∈ A satisfying 〈v, y〉 �= 0. If V is finitely generated then any Hilbert
subset of V is a basis for V , but this is not necessarily true for inner product spaces
which are not finitely generated.

Example Let V be the set of all infinite sequences c0, c1, . . . of complex numbers
satisfying the condition that

∑∞
i=0 |ci | < ∞. We have already seen that this is an

inner product space. For each k ≥ 0, let vk be the sequence c0, c1, . . . in which

ci =
{

1 if i = k,

0 otherwise.

Then {vk | k ≥ 0} is a Hilbert subset of V which is not a basis for V .

Example It is, of course, possible that a finitely-generated inner product space may
have many different orthonormal bases. For example, the canonical basis of R4 is
orthonormal, as is the basis

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎢
⎣

0
1√
2

1√
2

0

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

0
−1√

2
1√
2

0

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

We can use Proposition 16.7 to verify the assertion made in the previous chapter.

Proposition 16.8 If V and W are inner product spaces over the same field
F , and if V is finitely generated, then ‖α‖ is finite for all α ∈ Hom(V ,W).

Proof Pick an orthonormal basis {v1, . . . , vn} for V and let α ∈ Hom(V ,W). If
v ∈ ∑n

i=1 aivi is normal, then 1 = ‖v‖2 = 〈v, v〉 = ∑n
i=1

∑n
j=1 aiaj 〈vi, vj 〉 =

∑n
i=1 |ai |2 and so |ai | ≤ 1 for each 1 ≤ i ≤ n. Therefore, ‖α(v)‖ ≤ ∑n

i=1 |ai | ·
‖α(vi)‖ ≤ ∑n

i=1 ‖α(vi)‖. Thus ‖α‖ is finite and less than c = ∑n
i=1 ‖α(vi)‖. �

Example Of course, ‖α‖ may be finite even when V is not finitely generated. For
example, let V = C(0,1) and define a norm on V by setting ‖f ‖ = max{|f (t)| |
0 ≤ t ≤ 1}. Let g : [0,1] × [0,1] → R be a continuous function. Let α be the en-
domorphism of V defined by α(f ) : t �→ ∫ 1

0 g(t, s)f (s) ds. Since g is continuous
on a closed subset of R2, we note that it is bounded there, say |g(t, s)| ≤ c for all
0 ≤ t, s ≤ 1. Moreover, |f (s)| ≤ max{|f (t)| | 0 ≤ t ≤ 1} = ‖f ‖ for all 0 ≤ s ≤ 1,
and so

∥
∥α(f )

∥
∥ = max

{∣
∣
∣
∣

∫ 1

0
g(t, s)f (s) ds

∣
∣
∣
∣

∣
∣
∣
∣ 0 ≤ t ≤ 1

}

≤ max

{∫ 1

0

∣
∣g(t, s)

∣
∣ · ∣∣f (s)

∣
∣ds

∣
∣
∣
∣ 0 ≤ t ≤ 1

}

≤ c‖f ‖

for all f ∈ V .
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Proposition 16.9 Let V be an inner product space having an orthonormal
basis B . If v = ∑

y∈B ayy and w = ∑
y∈B byy are vectors in V (where only

finitely-many of the ay and by are nonzero), then 〈v,w〉 = ∑
y∈B ayby .

Proof By the properties of the inner product, we have

〈v,w〉 =
〈∑

y∈B

ayy,
∑

x∈B

bxx

〉

=
∑

y∈B

∑

x∈B

aybx〈y, x〉 =
∑

y∈B

ayby.
�

Proposition 16.10 Let V be an inner product space having an orthonormal
basis B . Then each v ∈ V satisfies v = ∑

x∈B〈v, x〉x.

Proof We know that there exist scalars {ax | x ∈ B}, only finitely-many of which
are nonzero, such that v = ∑

x∈B axx. Then for each x ∈ B we have 〈v, x〉 =
〈∑y∈B ayy, x〉 = ∑

y∈B ay〈y, x〉 = ax〈x, x〉 = ax , which yields the desired result.
�

The coefficients 〈v, vi〉 encountered in Proposition 16.10 are called the Fourier
coefficients of the vector v with respect to the given orthonormal basis.

Example Consider the vector space C(−1,1) over R, on which we have the inner
product 〈f,g〉 = ∫ 1

−1 f (x)g(x) dx. We want to find a polynomial function of de-
gree at most 3 which most closely approximates the function f : x �→ sin(x) on the
interval [−1,1]. To do so, consider the subspace V of C(−1,1) generated by the
functions pi : x �→ xi for 0 ≤ i ≤ 3 and f . Apply the Gram–Schmidt process to
the basis {p0, . . . , p3, f } of V to get an orthonormal basis {q0, . . . , q3, g}, where

q0 : x �→ 1
2 ; q1 : x �→

√
3
2x; q2 : x �→

√
5
2 ( 3

2x2 − 1
2 ); and q3 : x �→

√
7
2 ( 5

2x3 − 9
6x).

By Proposition 16.6 and Proposition 16.10, we know that the polynomial function of
degree at most 3 which most closely approximates the function f is

∑3
i=0〈f,qi〉qi ,

where the Fourier coefficients 〈f,qi〉 are given by

〈f,q0〉 =
∫ 1

−1

1

2
sin(x) dx = 0;

〈f,q1〉 =
∫ 1

−1

√
3

2
sin(x)x dx = √

6
(
sin(1) − cos(1)

) = 0.738;

〈f,q2〉 =
∫ 1

−1

√
5

2

(
3

2
x2 − 1

2

)

sin(x) dx = 0;

〈f,q3〉 =
∫ 1

−1

√
7

2

(
5

2
x3 − 9

6
x

)

sin(x) dx

= 14
√

14 cos(1) − 9
√

14 sin(1) = −0.034.
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Thus the polynomial function we seek is given by u : x �→ −0.315x3 + 0.998x.

Proposition 16.11 Let F be R or C and let k and n be positive integers.
Let A ∈ Mk×n(F ) be a matrix the columns of which are linearly independent
in Fk . Then there exist matrices Q ∈ Mk×n(F ) and R ∈ Mn×n(F ) such that
(1) A = QR;
(2) The columns of Q are orthonormal with respect to the dot product on Fk ;
(3) R is nonsingular and upper-triangular.

Proof Let u1, . . . , un be the columns of A. Apply the Gram–Schmidt process to
the set {u1, . . . , un} and then normalize each of the resulting vectors to obtain
an orthonormal set {v1, . . . , vn} of vectors in Fk . Let Q ∈ Mk×n(F ) be the ma-
trix having columns v1, . . . , vn. Then, by Proposition 16.10, we see that ui =∑n

j=1(ui · vj )vj for all 1 ≤ i ≤ n, and so A = QR, where R = [rij ] ∈ Mn×n(F )

is given by rij = uj · vi for all 1 ≤ i, j ≤ n. This matrix is clearly nonsingular.
Moreover, we note that the Gram–Schmidt process is such that vj is orthogonal
to u1, . . . , uj−1 for all 2 ≤ j ≤ n and so rij = 0 when i > j . Therefore, R is also
upper-triangular. �

A factorization of a matrix in the form given by Proposition 16.11 is called a
QR-decomposition. Such decompositions form a basis of many important numerical
algorithms, and are widely used, for example, in computing eigenvalues of large
matrices. The use is primarily iterative. If A is an n × n matrix over R or C the
eigenvalues of which have distinct absolute values and if we can indefinitely perform
the iteration
(1) A1 = A;
(2) If Ai has a QR-decomposition Ai = QiRi then set Ai+1 = RiQi ; then, under

rather mild conditions on A, the sequence A1,A2, . . . of matrices tends to an
upper triangular matrix in which the eigenvalues of A appear in decreasing order
of absolute value along the diagonal.

© Walter Gander (Rutishauser); ©
Vera Kublanovskaya (Kublanovskaya);
© Frank Uhlig (Francis).

QR-decompositions were de-
veloped independently by the
Swiss computer scientist Heinz
Rutishauser, one of the fa-
thers of ALGOL, by the Rus-
sian computer scientist Vera

Kublanovskaya, and by John G.F. Francis of the British computer manufacturer Fer-
ranti Ltd.

One of the major advantages of QR-decompositions is that they are easy to up-
date. If we are given a decomposition A = QR, and then the matrix A is altered
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slightly to obtain a matrix A′ by changing a few of its entries, it is relatively easy
to alter Q and R to get a QR-decomposition for A′. This is important since many
applications of linear algebra involve solving successive systems of linear equations
of the form A(i)X = w(i), where A(i+1) and w(i+1) are obtained from A(i) and w(i)

by relatively minor modifications, based on data from some external source which
is periodically updated.

The following QR-algorithm is used to compute a QR-decomposition of a matrix
A ∈ Mk×n(F ) with columns u1, . . . , un:

For i = 1 to n do steps (1)–(3):
(1) vi = ui ;
(2) For j = 1 to i − 1 set rji = ui · vj and vi = vi − rjivj ;
(3) Set rii = ‖vi‖ and vi = r−1

ii vi .

Then Q is the matrix with columns v1, . . . , vn and R = [rij ]. Note that step
(3) presupposes that we have already checked that the set of columns of A is lin-
early independent. If not, then we have to add an initial check to insure that rii
is nonzero, before we attempt to invert it. As already noted, the Gram–Schmidt
method is not numerically stable and hence neither is this algorithm for finding a
QR-decomposition. It can be modified to produce a somewhat more stable algo-
rithm by replacing the definition of rji in step (2) by rji = vi · vj .

A variant on this algorithm, called the QZ algorithm, has been devised by Moler
and Stewart to find solutions for generalized eigenvalue problems.

With kind permission of The MathWorks, Inc. (Moler);
© Eric de Sturler (Stewart).

The contemporary American computer scientist
Cleve Moler, after a distinguished academic ca-
reer, became chairman and chief scientist of
MathWorks, the company that developed MAT-
LAB. G.W. Stewart is a contemporary American
computer scientist.

Proposition 16.12 Let V be an inner product space having an orthonormal
basis B . Then for all v,w ∈ V :
(1) (Parseval’s identity) 〈v,w〉 = ∑

y∈B 〈y, v〉〈y,w〉;
(2) (Bessel’s identity) ‖v‖2 = ∑

y∈B |〈y, v〉|2.

Proof Parseval’s identity follows from the calculation

〈v,w〉 =
〈∑

y∈B

〈v, y〉y,w

〉

=
∑

y∈B

〈v, y〉〈y,w〉 =
∑

y∈B

〈y, v〉〈y,w〉;

Bessel’s identity derives from this in the special case v = w. �
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With kind permission of the Leibniz-Institut für Astrophysik Potsdam.

Wilhelm Bessel was a nineteenth century astronomer and a friend of
Gauss; his mathematical work came as a result of his research on plan-
etary orbits. The French mathematician Marc-Antoine Parseval pub-
lished only five short papers at the end of the eighteenth century.

The following results shows that orthogonality can be used to determine the re-
lation between two different inner products defined on a vector space over R.

Proposition 16.13 Let V be a vector space over R on which we have de-
fined two inner products, μ1 and μ2. For i = 1,2, let Yi = {(v,w) ∈ V × V |
μi(v,w) = 0}. Then the following conditions are equivalent:
(1) There exists a positive real number c such that μ2 = c2μ1;
(2) Y1 = Y2;
(3) Y1 ⊆ Y2.

Proof Since it is clear that (1) implies (2), and (2) implies (3), all we have to
prove is that (3) implies (1). Therefore, assume (3). First, let us consider the
case dim(V ) = 1, i.e., the case in which V = R. Then, for i = 1,2, the scalar
bi = μi(1,1) is nonzero. Set d = μ2(1,1)/μ1(1,1). If a, b ∈ R, then μ2(a, b) =
abμ2(1,1) = abdμ1(1,1) = dμ1(a, b) and so, taking c = √

d , we have estab-
lished (1). Thus we can assume that dim(V ) ≥ 2. For each i = 1,2, and each v ∈ V ,
let ‖v‖i = √

μi(v, v) > 0. Without loss of generality, we can assume that there ex-
ist elements v,w ∈ V and positive real numbers a < b such that ‖v‖2 = a‖v‖1
and ‖w‖2 = b‖w‖1, since otherwise we would immediately have (1). Suppose that
w = dv for some 0 �= d ∈ R. Then ‖w‖2 = |d| · ‖v‖2 = |d|a · ‖v‖1a‖w‖1 and so
a = b, which is contrary to our assumption that a < b. Therefore, we conclude that
the set {v,w} is linearly independent. Normalizing v and w with respect to μ1 if
necessary, we can furthermore assume that ‖v‖1 = 1 = ‖w‖1.

We claim that (v,w) /∈ Y1. Indeed, assume otherwise. Then we have
μ1(v + w,v − w) = μ1(v, v) − μ1(w,w) = ‖v‖2

1 − ‖w‖2
1 = 0, which implies

(v + w,v − w) ∈ Y1. Therefore, by (3), (v + w,v − w) ∈ Y2. But then we have
μ2(v + w,v − w) = ‖v‖2

2 − ‖w‖2
2 = a2 − b2 ∈ R� {0}, yielding a contradic-

tion and establishing the claim. Set y = v − ‖v‖2
1μ1(v,w)−1w. Then μ1(y, v) =

‖v‖2
1 − rμ1(v,w) = 0, where r = ‖v‖2

1μ1(v,w)−1, and so (y, v) ∈ Y1 ⊆ Y2.
Since the set {v,w} is linearly independent, we know that y �= 0V . If we set
y′ = ‖y‖−1

1 y, then (y′, v) ∈ Y1 ⊆ Y2 and so, as before, μ1(y
′ + v, y′ − v) =

‖y′‖2
1 − ‖v‖2

1 = 0. Hence (y′ + v, y′ − v) ∈ Y1. Thus ‖y‖2
1 + ‖v‖2

1 = ‖ − y +
v‖2

1 = ‖rw‖2
1 = ‖v‖4

1|μ1(v,w)|−2‖w‖2
1 and so ‖y‖2

1 = ‖v‖4
1|μ1(v,w)|−2‖w‖2

1 −
‖v‖2

1. Since μ2(y, v) = 0, we see that ‖y‖2
2 + ‖v‖2

2 = ‖ − y + v‖2
2 = ‖rw‖2

2 =
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‖v‖4
1|μ1(v,w)|−2‖w‖2

2, Thus

‖y‖2
2 = ‖v‖4

1

∣
∣μ1(v,w)

∣
∣−2‖w‖2

2 − ‖v‖2
2

= ‖v‖4
1

∣
∣μ1(v,w)

∣
∣−2

b2‖w‖2
1 − a2‖v‖2

1

> a2(‖v‖4
1

∣
∣μ1(v,w)

∣
∣−2‖w‖2

1 − ‖v‖2
1

) = a2‖y‖2
1.

Since μ2(y
′, v) = 0, this implies that μ2(y

′ + v, y′ − v) = ‖y′‖2
2 − ‖v‖2

2 > a2 −
a2 = 0, contradicting (3) and the fact that μ1(y

′ + v, y′ − v) = 0. From this con-
tradiction, we conclude that there can be no elements a and b as above, so there
must exist a positive real number c such that ‖v‖2

2 = c‖v‖2
1 for each nonzero vector

v ∈ V . Then for each v,w ∈ V we have

μ2(v,w) = 1

4

[‖v + w‖2 − ‖v − w‖2
]

= c2

4

[‖v + w‖1 − ‖v − w‖1
] = c2μ1(v,w),

which proves (1). �

Let V be an inner product space. We have already seen that, for each w ∈ V ,
the function from V to the field of scalars given by v �→ 〈v,w〉 belongs to D(V ). If
V is finitely generated, we claim that every element of D(V ) is of this form. The
following result is actually a special case of a much wider, and more complicated,
theorem.

Proposition 16.14 (Riesz Representation Theorem) Let V be a finitely-
generated inner product space. If δ ∈ D(V ) then there exists a unique vector
y ∈ V satisfying δ(v) = 〈v, y〉 for all v ∈ V .

Proof Let {v1, . . . , vn} be an orthonormal basis for V and let y = ∑n
i=1 δ(vi)vi .

Then for all 1 ≤ h ≤ n we have

〈vh, y〉 =
〈

vh,

n∑

i=1

δ(vi)vi

〉

=
n∑

i=1

δ(vi)〈vh, vi〉 = δ(vh),

and so 〈v, y〉 = δ(v) for all v ∈ V . The vector y is unique since if 〈v, x〉 = 〈v, y〉 for
all v ∈ V then x = ∑n

i=1〈x, vi〉vi = ∑n
i=1 δ(vi)vi = y, as desired. �
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The twentieth century Hungarian mathematician Frigyes Riesz was
one of the founders of functional analysis.

Example Let n > 1 be an integer and let V be the subspace of R
R consisting of

all polynomial functions of degree at most n, on which we have an inner product
defined by 〈f,g〉 = ∫ 1

−1 f (t)g(t) dt . Let δ ∈ D(V ) be the linear functional defined
by δ : f �→ f (0). By Proposition 16.14, there exists a polynomial function p ∈ V

satisfying the condition f (0) = ∫ 1
−1 f (t)p(t) dt for all f ∈ V . The function p is

defined to be
∑n

i=0 pi(0)pi , where pi is the ith Legendre polynomial.

Proposition 16.15 Let V and W be finitely-generated inner product spaces,
and let α : V → W be a linear transformation. Then there exists a unique
linear transformation α∗ : W → V satisfying the condition 〈α(v),w〉 =
〈v,α∗(w)〉 for all v ∈ V and all w ∈ W .

Proof Let w be a given vector in W . It is easy to check that the function δ from
V to F defined by δ : v �→ 〈α(v),w〉 is a linear functional. By Proposition 16.14,
we know that there exists a unique vector yw ∈ V satisfying δ(v) = 〈v, yw〉 for all
v ∈ V . Define the function α∗ : W → V by α∗ : w �→ yw . We have to prove that this
function is indeed a linear transformation. Indeed, if w1,w2 ∈ W then

〈
v,α∗(w1 + w2)

〉 = 〈
α(v),w1 + w2

〉 = 〈
α(v),w1

〉 + 〈
α(v),w2

〉

= 〈
v,α∗(w1)

〉 + 〈
v,α∗(w2)

〉 = 〈
v,α∗(w1) + α∗(w2)

〉
,

and this is true for all v ∈ V , so we have α∗(w1 + w2) = α∗(w1) + α∗(w2) for all
w1,w2 ∈ W . If c is a scalar and if w ∈ W then

〈
v,α∗(cw)

〉 = 〈
α(v), cw

〉 = c
〈
α(v),w

〉 = c
〈
v,α∗(w)

〉 = 〈
v, cα∗(w)

〉

for all v ∈ V , and hence α∗(cw) = cα∗(w). Thus α∗ is a linear transformation and,
since yw is uniquely defined, it is also unique. �

Let V and W be inner product spaces and let α : V → W be a linear transfor-
mation. A linear transformation α∗ : W → V satisfying the condition 〈α(v),w〉 =
〈v,α∗(w)〉 for all v ∈ V and w ∈ W is called an adjoint transformation of α. If such
an adjoint exists, it must be unique. Indeed, assume that α : V → W has adjoints α∗
and α× and that there exists an element w′ ∈ W satisfying α∗(w′) �= α×(w′). Set
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v′ = α∗(w′) − α×(w′). Then 〈v′, v′〉 = 〈v′, α∗(w′)〉 − 〈v′, α×(w′)〉 = 〈α(v′),w′〉 −
〈α(v′),w′〉 = 0 and so v′ = 0V , which is a contradiction.

By Proposition 16.15, we know that if V and W are finitely generated then every
α ∈ Hom(V ,W) has an adjoint.

Proposition 16.16 Let V and W be finitely-generated inner product spaces,
having orthonormal bases B = {v1, . . . , vn} and D = {w1, . . . ,wk}, respec-
tively. Let α : V → W be a linear transformation. Then �BD(α) is the matrix
A = [aij ], where aji = 〈α(vi),wj 〉 and �DB(α∗) = AH .

Proof For all 1 ≤ i ≤ n, let α(vi) = ∑k
h=1 ahjwh. Then for all 1 ≤ j ≤ k we have

〈α(vi),wj 〉 = 〈∑k
h=1 ahjwh,wj 〉 = aji and also 〈α∗(wj ), vi〉 = 〈vi, α∗(wj )〉 =

〈α(vi),wj 〉 = aji , as needed. �

Example It is, of course, possible that a linear transformation between inner product
spaces can have an adjoint even if the spaces are not finitely generated. For exam-
ple, let [a, b] be a closed interval on the real line and let V be the vector space of all
differentiable functions from [a, b] to R. Define an inner product on V by setting
〈f,g〉 = ∫ b

a
f (x)g(x) dx. This is an inner product space which is not finitely gener-

ated over R. Let α be the endomorphism of V satisfying α(f ) : x �→ ∫ b

a
e−txf (t) dt .

Then 〈α(f ), g〉 = 〈f,α(g)〉 for all f,g ∈ V , and so α∗ exists, and equals α.

Proposition 16.17 Let V , W , and Y be inner product spaces. Let α and β

be linear transformations from V to W having adjoints, let ζ be a linear
transformation from W to Y having an adjoint, and let c be a scalar. Then:
(1) (α + β)∗ = α∗ + β∗;
(2) (cα)∗ = cα∗;
(3) (ζα)∗ = α∗ζ ∗;
(4) α∗∗ = α.

Proof (1) For all v ∈ V and all w ∈ W , we have

〈
v, (α + β)∗(w)

〉 = 〈
(α + β)(v),w

〉 = 〈
α(v) + β(v),w

〉

= 〈
α(v),w

〉 + 〈
β(v),w

〉 = 〈
v,α∗(w)

〉 + 〈
v,β∗(w)

〉

= 〈
v,

(
α∗ + β∗)(w)

〉
,

and so by the uniqueness of the adjoint we get (α + β)∗ = α∗ + β∗.
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(2) For all v ∈ V and all w ∈ W , we have
〈
v, (cα)∗(w)

〉 = 〈
(cα)(v),w

〉 = 〈
c
(
α(v)

)
,w

〉 = c
〈
α(v),w

〉

= c
〈
v,α∗(w)

〉 = 〈
v, cα∗(w)

〉 = 〈
v,

(
cα∗)(w)

〉
,

and so (cα)∗ = cα∗.
(3) For all v ∈ V and all y ∈ Y , we have 〈v, (ζα)∗(y)〉 = 〈(ζα)(v), y〉 =

〈α(v), ζ ∗(y)〉 = 〈v,α∗ζ ∗(y)〉, and so (ζα)∗ = α∗ζ ∗.
(4) For all v ∈ V and all w ∈ W , we have 〈w,α∗∗(v)〉 = 〈α∗(w), v〉 =

〈v,α∗(w)〉 = 〈α(v),w〉 = 〈w,α(v)〉, and so α∗∗ = α. �

If (K,•) is an algebra over a field F , then a function a �→ a∗ from K to itself is
an involution of K if and only if the following additional conditions are satisfied:
(1) (a + b)∗ = a∗ + b∗and (a • b)∗ = b∗ • a∗ for all a, b ∈ K ;
(2) a∗∗ = a for all a ∈ K .
Note that 0∗ = (0 + 0)∗ = 0∗ + 0∗ and so 0∗ = 0. This means that if 0 �= a ∈ K then
0 �= a∗, by (2). If K is unital, then 1 = 1∗∗ = (1 • 1∗)∗ = 1∗∗ • 1∗ = 1 • 1∗ = 1∗.
If this case, if a is a unit of K then (a−1)∗a∗ = (aa−1)∗ = 1∗ = 1 and similarly
a∗(a−1)∗ = 1, so (a−1)∗ = (a∗)−1.

An element a of K is symmetric with respect to ∗ if and only if a∗ = a. If b ∈ K

is a unit symmetric with respect to ∗ then it is straightforward to verify that the
function a �→ b−1a∗b is also an involution of K .

Example If V is a finitely-generated inner product space, then we see that the func-
tion α �→ α∗ is an involution of the F -algebra End(V ). Another involution we have
already seen is the function A �→ AT of the F -algebra Mn×n(F ), for any field F .
Of course, in the case F = R, the relation between these two involutions can be seen
from Proposition 16.16. We have also seen that the function A �→ AH is an involu-
tion on Mn×n(C), and its relation to the involution α �→ α∗ is also immediate from
Proposition 16.15.

Example Let F be a field and let (K,•) be an F -algebra. Define an operation �
on K2 by setting

[
a

b

]

�
[

c

d

]

=
[

a • c

d • b

]

. Then (K2,�) is an F -algebra and the

function

[
a

b

]

�→
[

b

a

]

is an involution of this algebra.

Proposition 16.18 Let α : V → W be a linear transformation between
finitely-generated inner product spaces. Then:
(1) ker(α∗) = im(α)⊥;
(2) ker(α) = im(α∗)⊥;
(3) im(α) = ker(α∗)⊥;
(4) im(α∗) = ker(α)⊥.
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Proof (1) We note that

ker
(
α∗) = {

w ∈ W | α∗(w) = 0V

}

= {
w ∈ W | 〈v,α∗(w)

〉 = 0 for all v ∈ V
}

= {
w ∈ W | 〈α(v),w

〉 = 0 for all v ∈ V
} = im(α)⊥.

(2) This follows from the same argument as (1), replacing α by α∗.
(3) By (1) and Proposition 16.6, we have im(α) = (im(α)⊥)⊥ = ker(α∗)⊥.
(4) This follows from (2) in the way (3) follows from (1). �

Proposition 16.19 If α is an endomorphism of a finitely-generated inner
product space V then null(α) = null(α∗).

Proof By Proposition 6.10 and Proposition 16.18, we see that null(α) =
dim(im(α∗)⊥) = dim(V ) − dim(im(α∗)) = null(α∗). �

Example Proposition 16.19 is not necessarily true for inner product spaces which
are not finitely generated. For example, let V = R

(∞) with the inner prod-
uct 〈[a0, a1, . . .], [b0, b1, . . .]〉 = ∑∞

i=0 aibi . Let α ∈ End(V ) be given by α :
[a0, a1, . . .] �→ [0, a0, a1, . . .]. Then α∗ exists and is given by α∗ : [a0, a1, . . .] �→
[a1, a2, . . .]. Clearly, ker(α) is trivial but ker(α∗) is not.

Proposition 16.20 Let α : V → W be a linear transformation between
finitely-generated inner product spaces. Then
(1) If α is a monomorphism then α∗α is an automorphism of V ;
(2) If α is an epimorphism then αα∗ is an automorphism of W .

Proof (1) It suffices to prove that the linear transformation α∗α is monic. And,
indeed, if v ∈ V satisfies α∗α(v) = 0V then 〈α(v),α(v)〉 = 〈α∗α(v), v〉 = 〈0V , v〉 =
0 and so α(v) = 0W . Since α is a monomorphism, v = 0V and so we have shown
that α∗α is monic, as we needed.

(2) First of all, we will show that α∗ is a monomorphism. Indeed, if w1,w2 ∈
W are vectors satisfying α∗(w1) = α∗(w2) then for all v ∈ V we have 〈α(v),

w1 − w2〉 = 〈v,α∗(w1) − α∗(w2)〉 = 0 and since α is an epimorphism, we con-
clude that 〈w,w1 − w2〉 = 0 for all w ∈ W . This implies that w1 − w2 = 0V

and so w1 = w2, showing that α∗ is indeed monic. Now we will show that αα∗
is also monic, which will suffice to prove (2). Indeed, if αα∗(w) = 0W then
〈α∗(w),α∗(w)〉 = 〈αα∗(w),w〉 = 0 and so α∗(w) = 0V , proving that w = 0W . �
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Proposition 16.21 Let α : V → W be an isomorphism between finitely-
generated inner produce spaces. Then (α∗)−1 = (α−1)∗.

Proof Let β = (α−1)∗. Then for all v1, v2 ∈ V we have 〈v1, v2〉 = 〈α−1α(v1), v2〉 =
〈α(v1), β(v2)〉 = 〈v1, α

∗β(v2)〉 and so α∗β(v2) = v2 for all v2 ∈ V , which means
that α∗β is the identity map on V . Thus β = (α∗)−1. �

Finally, we mention a few consequences of some of the above results with which
we will not deal at length, but have extensive and interesting discussions in the
mathematical literature.
(1) In an inner product space over R, we can also project onto affine subsets and

not just onto subspaces. Indeed, if V is an inner product space over R then any
element v of V defines a linear functional δv ∈ D(V ) given by δv : w �→ 〈w,v〉.
If 0 �= c ∈R, then δ−1

c (c) is an affine subset of V . Define a function θv : V → V

by setting

θv : y �→ y +
[
c − δv(y)

‖v‖2

]

v.

Then for all y ∈ V we have δvθv(y) = c and so we see that θv(y) ∈ δ−1
c (c), so

that im(θv) ⊆ δ−1
c (c). Moreover, θ2

v = θv . We call the function θv the projection
on the affine set δ−1

c (c). Such projections have many applications, such as the
algebraic reconstruction technique (ART), which is very important in comput-
erized imaging.

(2) From Proposition 16.5, we see that the rule which assigns to each subspace W of
a finitely-generated inner product space V the orthogonal projection of V onto
W is an embedding of the set of all subspaces of V into the algebra End(V ).
This observation has many ramifications, of which we mention but one. Let
V be a finitely-generated inner product space. For subspaces W and Y of V ,
we can define the gap between W and Y to be g(W,Y ) = ‖πW − πY ‖, where
πW and πY are the orthogonal projections of V onto W and Y , respectively.
This allows us to measure the distance between subspaces of V in a natural
way. One immediately sees that g(W,Y ) = g(W⊥, Y⊥) and that g(W,Y ) ≤ 1
for all such W and Y . Since the gap is a distance function—in the sense of
Proposition 15.12—it turns the set of all subspaces of V into a metric space,
the topological properties of which can be studied. For example, one can show
that this space is compact and, as a result, also complete, meaning that every
sequence W1,W2, . . . of subspaces of V satisfying limi,j→∞ g(Wi,Wj ) = 0 is
convergent. It also makes sense to talk about continuous families of subspaces of
V . The analysis of the topological space of all subspaces of a finite-dimensional
inner product space has proven to be an extremely important tool.
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Exercises

Exercise 1006

Let A =
[

2 1
1 2

]

∈ M2×2(R). Does there exist a matrix B ∈ M2×2(R) of the

form

[
cos(t) − sin(t)

sin(t) cos(t)

]

such that the columns of A + B are orthogonal, when

considered as elements of the space R
2, endowed with the dot product?

Exercise 1007

Calculate the angle between the vectors

⎡

⎣
2
1
1

⎤

⎦ and

⎡

⎣
3
1

−2

⎤

⎦ in the space R
3, en-

dowed with the dot product.

Exercise 1008

Calculate the angle between the vectors

⎡

⎢
⎢
⎢
⎢
⎣

1
1
1
2
1

⎤

⎥
⎥
⎥
⎥
⎦

and

⎡

⎢
⎢
⎢
⎢
⎣

1
−1

1
−1

1

⎤

⎥
⎥
⎥
⎥
⎦

in the space R
5, en-

dowed with the dot product.

Exercise 1009
Let n be a positive integer. A matrix A = [aij ] ∈ Mn×n(C) is a complex
Hadamard matrix if and only if |ahj | = 1 for all 1 ≤ h, j ≤ n and any pair of
distinct rows of A, considered as vectors in C

n, is orthogonal. For each n, find
a complex number d such that A = [dhj ] is a complex Hadamard matrix. For
n = 6, find a complex Hadamard matrix which is not of this form.

Exercise 1010
Let A and B be nonempty subsets of R3 which satisfy the condition that u × v ∈
B whenever u ∈ A and v ∈ B . Is it true that u × w ∈ B⊥ whenever u ∈ A and
w ∈ B⊥.

Exercise 1011
Let V = C(0,1) on which we have defined the inner product 〈f,g〉 =∫ 1

0 f (x)g(x) dx. Calculate ‖ cos(t)‖.

Exercise 1012
Let V = M2×2(R) and define an inner product on V by setting

〈[
a11 a12
a21 a22

]

,

[
b11 b12
b21 b22

]〉

=
2∑

i=1

2∑

j=1

aij bij .
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Find the angle between the matrices

[
1 1
1 1

]

and

[
1 1

−1 1

]

.

Exercise 1013
Let V be the space R

4, together with the dot product. Find a normal vector in V

which is orthogonal to each of the vectors

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦,

⎡

⎢
⎢
⎣

1
−1
−1

1

⎤

⎥
⎥
⎦, and

⎡

⎢
⎢
⎣

2
1
1
3

⎤

⎥
⎥
⎦.

Exercise 1014
Let V = R

3 on which some inner product is defined. Does there exist a vector

0V �= v ∈ V which is orthogonal to each of the vectors

⎡

⎣
2
1
3

⎤

⎦,

⎡

⎣
1

−1
1

⎤

⎦, and

⎡

⎣
2
0
4

⎤

⎦?

Exercise 1015
Let f,g ∈R

R be defined by f : x �→ x and g : x �→ x2 − 1
2 . Are f and g orthog-

onal as elements of C(0,1)? Are they orthogonal as elements of C(0,2)?

Exercise 1016
Find a real number c such that ‖v − w‖ = c for every orthonormal pair {v,w} of
vectors in R

n, on which the dot product is defined.

Exercise 1017
Let n be a positive integer and let c1, . . . , cn is a list of real numbers. Let
{v1, . . . , vn} be an orthonormal basis for Rn, let d = min{c1, . . . , cn}. For each
1 ≤ i ≤ n, set di = √

ci − d and let wi = dvi . Let B ∈ Mn×n(R) be the matrix
the columns of which are d1, . . . , dn and let A = BBT +dI . For 1 ≤ i ≤ n, show
that vi is an eigenvector of A associated with the eigenvalue ci .

Exercise 1018
Let V = C(0,1) on which we have defined the inner product 〈f,g〉 =∫ 1

0 f (x)g(x) dx, and let W = R{ex} ⊆ V . Find an infinite set of elements of W⊥.

Exercise 1019
Let V = R

4 on which some inner product is defined. Find distinct vectors
v,w,y ∈ V such that v ⊥ w and w ⊥ y, but not v ⊥ y.

Exercise 1020
Let V be an inner product space over R and let v and w be vectors in V . Show
that ‖v‖ = ‖w‖ if and only if (v + w) ⊥ (v − w).
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Exercise 1021
Let V = C(−1,1) and define an inner product on V by setting 〈f,g〉 =∫ 1
−1 f (x)g(x) dx. Let W be the subspace of V composed of all even functions.

Find W⊥.

Exercise 1022
Let n be a positive integer and let V = Mn×n(C), on which we have an inner
product defined by 〈A,B〉 = tr(AT B). Let W be the subspace of V consisting of
all those matrices A ∈ V satisfying tr(A) = 0. Find W⊥.

Exercise 1023

Define an inner product on R
2 with respect to which the vectors

[−1
2

]

and

[
2
4

]

are orthogonal.

Exercise 1024
Make use of the Gram–Schmidt process to find an orthonormal basis for the
space R

3 together with the dot product, beginning with the initial basis

⎧
⎨

⎩

⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
1

−2
1

⎤

⎦ ,

⎡

⎣
1
2
3

⎤

⎦

⎫
⎬

⎭
.

Exercise 1025
Let V be an inner product space and let A be an orthonormal subset of V . Show
that A is a maximal orthonormal subset if and only if for every 0V �= y ∈ V there
exists a v ∈ A satisfying 〈v, y〉 �= 0.

Exercise 1026
Let V be an inner product space of finite dimension n over its field of scalars.
Show that there exists a subset {v1, . . . , v2n} of V satisfying the conditions that
〈vi, vj 〉 ≤ 0 for all 1 ≤ i �= j ≤ 2n.

Exercise 1027
Let V be the space of all polynomial functions in R

R of degree less than 3, with
inner product 〈p,q〉 = 1

2

∫ 1
−1 p(t)q(t) dt . Find an orthonormal basis {p0,p1,p2}

of V satisfying deg(ph) = h for h = 0,1,2.

Exercise 1028
Consider the function μ : R3 ×R

3 →R given by

μ :
⎛

⎝

⎡

⎣
a

b

c

⎤

⎦ ,

⎡

⎣
a′
b′
c′

⎤

⎦

⎞

⎠ �→ 2aa′ + ac′ + ca′ + bb′ + cc′.
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Show that μ is an inner product and find a basis of R3 orthonormal with respect
to μ.

Exercise 1029
Let V be an inner product space over R and let W be a finitely-generated sub-
space of V with orthonormal basis {w1, . . . ,wn}. Let α ∈ Hom(V ,W) be defined
by α : v �→ ∑n

i=1〈v,wi〉wi . Show that α(v) − v ∈ W⊥ for all v ∈ V and that
‖α(v) − v‖ < ‖w − v‖ for all α(v) �= w ∈ W .

Exercise 1030
Let W be the subspace of R4 spanned by linearly-independent subset

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

1
2
0
3

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

4
0
5
8

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

8
1
5
6

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
,

which is an inner product space with respect to the dot product. Make use of the
Gram–Schmidt process to find an orthonormal basis for W .

Exercise 1031
Let n be a positive integer and let A ∈ Mn×n(R). If the set of rows of A is or-
thonormal with respect to the dot product, is the same true for the set of columns
of A?

Exercise 1032
Let n > k be positive integers and let A ∈ Mk×n(R) satisfy the condition
that its set of rows is orthonormal with respect to the dot product. Show that
(AT A)2 = AT A.

Exercise 1033
Let n be a positive integer and let A ∈ Mn×n(R). Show that A is symmetric if
and only if for some k < n there exists a matrix B ∈Mn×k(R) and a real number
r such that A = BBT + rI and the columns of B are mutually orthogonal.

Exercise 1034
Let W be the subspace of R4, which is an inner product space with respect to the

dot product, generated by

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

2
1
0
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

0
0
1
2

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

4
2
2
4

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
. Find an orthonormal

basis for W and an orthonormal basis for W⊥.
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Exercise 1035
Consider R4 as an inner product space with respect to the dot product. Add two

vectors to the set

⎧
⎪⎪⎨

⎪⎪⎩

1
6

⎡

⎢
⎢
⎣

1
1
3

−5

⎤

⎥
⎥
⎦ , 1

2

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
in order to get an orthonormal basis for

this space.

Exercise 1036
Let n be a positive integer and let V = R

n, which is an inner product space with
respect to the dot product. Let {v1, . . . , vn} be an orthonormal basis for V , let
a ∈R, and let 1 ≤ h �= k ≤ n. Define vectors w1, . . . ,wn in V by setting

wi =
⎧
⎨

⎩

cos(a)vh − sin(a)vk if i = h,

sin(a)vh − cos(a)vk if i = k,

vi otherwise.

Is {w1, . . . ,wn} an orthonormal basis for V ?

Exercise 1037
Consider R3 as an inner product space with respect to the dot product. Is there

a k ∈ Z such that

⎧
⎨

⎩

⎡

⎣
4k

4
−k

⎤

⎦ ,

⎡

⎣
0
k

4

⎤

⎦ ,

⎡

⎣
−25
16k

−12k

⎤

⎦

⎫
⎬

⎭
is an orthonormal basis for this

space?

Exercise 1038
Consider R4 as an inner product space with respect to the dot product. Find an

orthonormal basis for R

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

1
0
1
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1
1
2
1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

0
1
1
2

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
.

Exercise 1039
Define an inner product on R

2 by setting

〈[
a

b

]

,

[
c

d

]〉

= ac + 1

2
(ad + bc) + bd.

Find an orthonormal basis for this space.

Exercise 1040
Consider R

3 as an inner product space with respect to the dot product. Let
a, b, c, d be nonzero real numbers satisfying the conditions that a2 +b2 +c2 = d2
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and ab + ac = bc. Show that the subset

⎧
⎨

⎩
1
d

⎡

⎣
a

b

c

⎤

⎦ , 1
d

⎡

⎣
b

−c

a

⎤

⎦ , 1
d

⎡

⎣
c

a

−b

⎤

⎦

⎫
⎬

⎭
of R3

is orthonormal.

Exercise 1041
Define an inner product on R

3 by setting

〈⎡

⎣
a1
a2
a3

⎤

⎦ ,

⎡

⎣
b1
b2
b3

⎤

⎦

〉

= a1b1 + 2(a2b2 + a3b3) − (a1b2 + a2b1) − (a2b3 + a3b2).

Find an orthonormal basis for this space.

Exercise 1042
Let m be a positive integer and let

W = {
f ∈ C

Z
∣
∣ f (i + m) = f (i) for all i ∈ Z

}
,

which is a subspace of the vector space C
Z over C. Define a function μ :

W × W → C by setting μ : (f, g) �→ ∑m−1
h=0 f (h)g(h). For each 0 ≤ j < m,

let fj ∈ W be the function defined by

fj (h) =
{

1 if h is of the form j + mi, for i ∈ Z,

0 otherwise.

Show that μ is an inner product on W and that, with respect to that product,
{f0, . . . , fm−1} is an orthonormal basis for W .

Exercise 1043
A function f ∈ R

R has bounded support if and only if there exist real numbers
a ≤ b such that f (x) = 0 for all x not in the interval [a, b] on the real line. Let V

be the set of all such functions and define a function μ : V × V → R by setting
μ(f,g) = ∫ ∞

−∞ f (x)g(x) dx. For each k ∈ Z, let fk ∈ V be the function defined
by

fk : x �→
{

1 if k ≤ x ≤ k + 1,

0 otherwise.

Show that μ is an inner product on V and that the subset {fk | k ∈ Z of V is
orthonormal with respect to this inner product.

Exercise 1044
Let V be the subspace of RR consisting of all infinitely-differentiable functions
f which are periodic of period h > 0. (In other words, f (x + h) = f (x) for all
x ∈ R.) Define an inner product on V by setting 〈f,g〉 = ∫ h

−h
f (x)g(x) dx. Let

α be the endomorphism of V which assigns to every element of V its derivative.
Find α∗.
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Exercise 1045
Let V be an inner product space over R and let {v1, . . . vn} be a set of mutually-
orthogonal nonzero vectors in V . Let a1, . . . , an be positive real numbers sat-
isfying

∑n
i=1 ai = 1, and let w = ∑n

i=1 aivi . Suppose that w ⊥ vi − vj for all
1 ≤ i �= j ≤ n. Then show that ‖w‖−2 = ∑n

i=1 ‖vi‖−2.

Exercise 1046
Let V be a finitely-generated inner product space and let α,β1, β2 ∈ End(V )

satisfy α∗αβ1 = α∗αβ2. Show that αβ1 = αβ2.

Exercise 1047
If W and Y are subspaces of a finitely-generated inner product space V , show
that g(W,Y ) is the maximum of

sup
{
d(w,Y ) | w ∈ W and ‖w‖ = 1

}
and sup

{
d(y,W) | y ∈ Y and ‖y‖ = 1

}
.

Exercise 1048
Let W and Y be subspaces of a finite-dimensional inner product space V satisfy-
ing g(W,Y ) < 1. Show that dim(W) = dim(Y ).

Exercise 1049
Let K be an algebra over a field F on which we have an involution a �→ a∗
defined. Let c be an element of K satisfying the conditions that c = c2 and that
c + c∗ − 1 is a unit of K . Show that there exists an element d ∈ K satisfying
d2 = d = d∗, dc = c, and cd = d . Is d necessarily unique?

Exercise 1050
Let V be an inner product space over C and let α be an endomorphism of V

satisfying α∗ = −α. Show that every eigenvalue of α is purely imaginary.
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Let V be an inner product space. An endomorphism α of V is selfadjoint if and
only if 〈α(v),w〉 = 〈v,α(w)〉 for all v,w ∈ V . Such endomorphisms always exist
since σc is selfadjoint for any c ∈ R. Selfadjoint endomorphisms have important ap-
plications in mathematical models in physics. For example, in mathematical models
of quantum theory, selfadjoint operators on the state space of a system represent
measurements which can be performed on the system. Note that if α ∈ End(V )

is selfadjoint, then 〈α(v), v〉 = 〈v,α(v)〉 = 〈α(v), v〉 and so 〈α(v), v〉 ∈ R for all
v ∈ V .

Example Let V = C(0,1), which is an inner product space over R in which
〈f,g〉 = ∫ 1

0 f (x)g(x) dx. Then the endomorphism α of V defined by α(f ) : x �→
∫ 1

0 cos(x − y)f (y) dy for all f ∈ V is selfadjoint.

Proposition 17.1 Let V be an inner product space. Then:
(1) If α ∈ End(V ) has an adjoint α∗, then α + α∗ is selfadjoint;
(2) If α ∈ End(V ) is selfadjoint, so is cα for each c ∈R;
(3) If α ∈ End(V ) is selfadjoint, so is αn for each positive integer n;
(4) If α,β ∈ End(V ) are selfadjoint so are α + β and α • β , where • is the

Jordan product in End(V );
(5) If α ∈ End(V ) is selfadjoint and β ∈ End(V ) has an adjoint, then βαβ∗

is selfadjoint.

Proof (1) If v,w ∈ V then

〈
(α + α∗)(v),w

〉 = 〈
α(v),w

〉+ 〈
α∗(v),w

〉

= 〈
v,α∗(w)

〉+ 〈
v,α(w)

〉= 〈
v, (α + α∗)(w)

〉
.

(2) If v,w ∈ V then 〈(cα)(v),w〉 = c〈α(v),w〉 = c〈v,α(w)〉 = 〈v, (cα)(w)〉.
J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_17, © Springer Science+Business Media B.V. 2012
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(3) This follows by an easy induction argument, using Proposition 16.17(3).
(4) The selfadjointness of α + β is an immediate consequence of Proposi-

tion 16.17(1). Also, recall that α • β = 1
2 (αβ + βα) and so, if v,w ∈ V then

〈
(α • β)(v),w

〉 = 1

2

〈
αβ(v),w

〉+ 1

2

〈
βα(v),w

〉

= 1

2

〈
v,βα(w)

〉+ 1

2

〈
v,αβ(w)

〉= 〈
v, (α • β)(w)

〉
.

(5) By Proposition 16.17, we have (βαβ∗)∗ = β∗∗αβ∗ = βαβ∗. �

In particular, if α is a selfadjoint endomorphism of an inner product space V , and
if p(X) ∈R[X], then p(α) is selfadjoint. The product of selfadjoint endomorphisms
of V need not be selfadjoint, as we will see in the example after Proposition 17.4.
Thus we see that the set of all selfadjoint endomorphisms of V is a subspace, though
not necessarily a subalgebra, of End(V ).

Example Let V be an inner product space over R and let α ∈ End(V ) be selfadjoint.
Let a, b ∈ R satisfy the condition that a2 < 4b. Then, by the previous remark, we
know that β = α2 + aα + bσ1 is again a selfadjoint endomorphism of V . Moreover,
if 0V �= v ∈ V then

〈
β(v), v

〉 = 〈
α2(v), v

〉+ a
〈
α(v), v

〉+ b〈v, v〉
= 〈

α(v),α(v)
〉+ a

〈
α(v), v

〉+ b〈v, v〉
= ∥
∥α(v)

∥
∥2 + a

〈
α(v), v

〉+ b‖v‖2.

By Proposition 15.2, we know that |〈α(v), v〉| ≤ ‖α(v)‖ · ‖v‖ and so

〈
β(v), v

〉 ≥ ∥
∥α(v)

∥
∥2 − |a| · ∥∥α(v)

∥
∥ · ‖v‖ + b‖v‖2

=
(∥
∥α(v)

∥
∥− 1

2
|a| · ‖v‖

)2

+
(

b − 1

4
a2
)

‖v‖2 > 0.

Thus β(v) �= 0V for each 0V �= v ∈ V , showing that β is monic. In particular, if V

is finitely generated, this in fact shows that β is an automorphism of V .

Let V be a finitely-generated inner product space having an orthonormal basis D.
If α ∈ End(V ) and if ΦDD(α) = [aij ], then we know from Proposition 16.16 that
ΦDD(α∗) = ΦDD(α)H = [aij ]T . Therefore, if α is selfadjoint we have aij = aji

for all 1 ≤ i, j ≤ n. In particular, aii = aii for all 1 ≤ i ≤ n and so the diagonal
entries in ΦDD(α) belong to R. Matrices A over C satisfying the condition that
A = AH are known as Hermitian matrices. When we are working over R, these are,
of course, just the symmetric matrices. It is clear that the sum of Hermitian matrices
is again a Hermitian matrix, but the product of Hermitian matrices is not necessarily
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Hermitian, just as we have seen that the product of symmetric matrices is not neces-
sarily symmetric. We do note, however, that if a matrix A ∈Mn×n(C) is Hermitian
then so is A2. Indeed, if A and B are Hermitian matrices in Mn×n(C), then their
Jordan product 1

2 (AB + BA) is a Hermitian matrix and so, in particular, the prod-
uct of a commuting pair of Hermitian matrices is again Hermitian. Moreover, any
matrix D ∈ Mn×n(C) can be written in the form A + iB , where A = 1

2 (D + DH )

and B = − 1
2 (D −DH ) are both Hermitian matrices. If A ∈Mn×n(C) is Hermitian,

then so is cA for any c ∈ R, and so the set of all Hermitian matrices in Mn×n(C)

is a subspace of Mn×n(C), considered as a vector space over R; indeed, it is a
subalgebra of the commutative Jordan R-algebra Mn×n(C)+. However, this set is
not closed under multiplication by complex scalars, and so it is not a vector space
over C.

We have already seen that if V is an inner product space and if α ∈ End(V ) is
selfadjoint, then 〈α(v), v〉 ∈R for all v ∈ V . If V is finitely generated, the reverse is
also true, as follows immediately from the following result.

Proposition 17.2 Let V be an inner product space over C and let α ∈ End(V )

have an adjoint. If 〈α(v), v〉 ∈ R for all v ∈ V , then α is selfadjoint.

Proof For vectors v,w ∈ V , we have

〈
α(v + w),v + w)

〉= 〈
α(v), v

〉+ 〈
α(v),w

〉+ 〈
α(w), v

〉+ 〈
α(w),w

〉

and since, by assumption, we know that the scalars 〈α(v + w),v + w)〉, 〈α(v), v〉,
and 〈α(w),w〉 are all real, we see that 〈α(v),w〉 + 〈α(w), v〉 ∈ R as well. This
implies that 〈α(v),w〉 + 〈α(w), v〉 = 〈w,α(v)〉 + 〈v,α(w)〉 and so i〈α(v),w〉 +
i〈α(w), v〉 = i〈w,α(v)〉 + i〈v,α(w)〉. Similarly,

〈
α(v + iw), v + iw)

〉= 〈
α(v), v

〉− i
〈
α(v),w

〉+ i
〈
α(w), v

〉+ 〈
α(w),w

〉

and so −i〈α(v),w〉 + i〈α(w), v〉 ∈R. This implies that

−i
〈
α(v),w

〉+ i
〈
α(w), v

〉= i
〈
w,α(v)

〉− i
〈
v,α(w)

〉

and so, multiplying by i and adding it to the previous result, we get 2〈α(v),w〉 =
2〈w,α(v)〉, whence 〈α(v),w〉 = 〈w,α(v)〉. Therefore, α = α∗. �

Proposition 17.3 Let V be an inner product space and let σ0 �= α ∈ End(V )

be selfadjoint. Then there exists a vector v ∈ V satisfying 〈α(v), v〉 �= 0.

Proof First, assume that the field of scalars is C. Then it is easy to check that if
v,w ∈ V then
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〈
α(v),w

〉 = 1

4

[〈
α(v + w),v + w

〉− 〈
α(v − w),v − w

〉]

+ i

4

[〈
α(v + iw), v + iw

〉− 〈
α(v − iw), v − iw

〉]
.

Moreover, each term on the right-hand side of this equality is of the form 〈α(y), y〉
for some y ∈ V , so if all of these were equal to 0 we would see that α(v) ⊥ w for all
v,w ∈ V , which means that α(v) = 0V for all v ∈ V , contradicting the hypothesis
that σ0 �= α. Thus the desired result must hold.

Now assume that the field of scalars is R. Then for all v,w ∈ V we have
〈α(w), v〉 = 〈w,α(v)〉 = 〈α(v),w〉 and so

〈
α(v),w

〉= 1

4

[〈
α(v + w),v + w

〉− 〈
α(v − w),v − w

〉]
.

Again, each term on the right-hand side of this equality is of the form 〈α(y), y〉 for
some y ∈ V so if all of these were all equal to 0 we would have α(v) ⊥ w for all
v,w ∈ V which, as we have seen in the previous case, leads to a contradiction. �

We now return to a new variant of a question we have already posed: If α is an
endomorphism of an inner product space V , when does there exist an orthonormal
basis of V composed of eigenvectors of α? If such a basis exists, we say that α is
orthogonally diagonalizable.

Example Let V = R
3 with the dot product, and let α ∈ End(V ) be given by

α :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
b

a

c

⎤

⎦. Then

⎧
⎨

⎩
1√
2

⎡

⎣
1
1
0

⎤

⎦ , 1√
2

⎡

⎣
1

−1
0

⎤

⎦ ,

⎡

⎣
0
0
1

⎤

⎦

⎫
⎬

⎭
is an orthogonal basis of

V composed of eigenvectors of α, so α is orthogonally diagonalizable.

Proposition 17.4 Let V be an inner product space and let α ∈ End(V ) be
selfadjoint. Then spec(α) ⊆ R and eigenvectors of α associated with distinct
eigenvalues are orthogonal.

Proof Let c be an eigenvalue of α and let v be an eigenvector of α associated
with c. Then c〈v, v〉 = 〈cv, v〉 = 〈α(v), v〉 = 〈v,α(v)〉 = 〈v, cv〉 = c〈v, v〉 and so,
since v �= 0V , we see that c = c, proving that c ∈ R. Thus we have shown the first
assertion.

If c and d are distinct eigenvalues of α associated with eigenvectors v and w,
respectively, then c〈v,w〉 = 〈cv,w〉 = 〈α(v),w〉 = 〈v,α(w)〉 = 〈v, dw〉 = d〈v,w〉.
Since c �= d , this implies that 〈v,w〉 = 0. �
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Example The endomorphisms α and β of C2 which are given by α :
[
a

b

]

�→
[

b

a

]

and β :
[
a

b

]

�→
[

a

−b

]

can easily be seen to be selfadjoint. However, spec(βα) =
{i,−i} and so, by Proposition 17.4, βα is not selfadjoint.

We note the following consequence of Proposition 17.4: If the matrix
A ∈ Mn×n(R) is symmetric, then all eigenvalues of A are real, and so the char-
acteristic polynomial of A is completely reducible in R[X].

By Proposition 17.4, we see that if V is an inner-product space of finite dimen-
sion n over C and if α ∈ End(V ) is selfadjoint, then the eigenvalues of α can be
written uniquely as an n-tuple (c1(α), . . . , cn(α)) of real numbers, the entries of
which form a nonincreasing sequence. If α,β ∈ End(V ) are selfadjoint, the prob-
lem of describing the possible sets of eigenvalues of α+β in terms of those of α and
β is extremely important in particle physics, and is known as Weyl’s Problem. Weyl
himself showed that if α,β ∈ End(V ), if 1 ≤ k ≤ i ≤ n, and 1 ≤ j ≤ n − i + 1, then
ci+j−1(α) + cn−j+1(β) ≤ ci(α + β) ≤ ci−k+1(α) + ck(β) and so, if j = k = 1, we
have ci(α) + cn(β) ≤ ci(α + β) ≤ ci(α) + c1(β) for each 1 ≤ i ≤ n. In particular,
c1(α +β) ≤ c1(α)+c1(β) and cn(α)+cn(β) ≤ cn(α +β). Since then, this problem
has been extensively studied. A solution in terms of probability measures was given
by the Australian mathematicians Anthony H. Dooley and Norman J. Wildberger,
together with the Canadian mathematician Joe Repka, in 1993.

Weyl’s result has many interesting consequences. We note that if V is an inner
product space and if α ∈ End(V ) is selfadjoint and represented with respect to a
given basis by some matrix A ∈ Mn×n(C) then the diagonal elements of A must
also be real. Schur proved that if A is a matrix representing such an endomorphism
α having eigenvalues c1(α) ≥ · · · ≥ cn(α) and diagonal entries p1 ≥ · · · ≥ pn then∑k

j=1 pj ≤ ∑k
j=1 cj (α) for all 1 ≤ k ≤ n − 1 and

∑n
j=1 pj = ∑n

j=1 cj (α). The
converse was proven by the American mathematician Alfred Horn: if c1 ≥ · · · ≥ cn

and p1 ≥ · · · ≥ pn are sequences of real numbers satisfying
∑k

j=1 pj ≤ ∑k
j=1 cj

for all 1 ≤ k ≤ n − 1 and
∑n

j=1 pj = ∑n
j=1 cj then there exists a selfadjoint

endomorphism α of C
n with eigenvalues c1, . . . , cn and having an orthonormal

basis relative to which α is represented by a matrix having diagonal entries
p1, . . . , pn.

We now turn to the problem of finding the eigenvalues of a selfadjoint endo-
morphism of a finitely-generated inner product space. This problem arises in many
important applications. For example, let Γ be a (nondirected) graph with vertex
set {1, . . . , n}. We associate to this graph a symmetric matrix, called the adjacency
matrix [aij ], the entries of which are nonnegative integers, by setting aij to be the
number of edges in Γ connecting vertex i to vertex j . The matrix represents a self-
adjoint endomorphism of R

n with respect to some basis and its spectrum can be
used to derive important information about Γ . This technique has important ap-
plications in the analysis of computer networks, in the design of error-correcting
codes, and in such areas as chemistry, where it is used to make rough estimates of
the electron density distribution of molecules. Another example is the following: If
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B = {v1, . . . , vn} is a set of distinct vectors in R
n, and if ‖ · ‖ is a norm on R

n, then
the distance matrix defined by B is the matrix [‖vi − vj‖]. This matrix is symmet-
ric and so defines a selfadjoint endomorphism of Rn. Computing the eigenvalues
of such matrices has important applications in many areas, including bioinformatics
and X-ray crystallography.

Proposition 17.5 If V is a nontrivial finitely-generated inner product space,
then spec(α) �= ∅ for any selfadjoint endomorphism α of V .

Proof Let α be a selfadjoint endomorphism of V . Choose an orthonormal basis
B = {v1, . . . , vn} for V and let A = ΦBB(α). Since α is selfadjoint, we know that
A = AH . Let W = C

n on which we have defined the dot product. Then the endo-
morphism β of W defined by β : w �→ Aw is selfadjoint. The degree of the charac-
teristic polynomial |XI − A| of β is n > 0 and so, by the Fundamental Theorem of
Algebra, it has a root c ∈ C. Thus the matrix cI − A is singular and so there exists a
nonzero vector w ∈ W satisfying Aw = cw. In other words, c ∈ spec(β). By Propo-
sition 17.4, this implies that c ∈R and so c ∈ spec(α), even if V is an inner product
space over R. �

In particular, we learn from Proposition 17.5 that every symmetric matrix over
R has an eigenvalue in R. Compare this to the example we have already seen of a
symmetric matrix in M2×2(GF(2)) having no eigenvalues. Similarly, the symmetric

matrix

[
1 2
2 3

]

∈ M2×2(Q) has no eigenvalues in Q.

Let V be an inner product space finitely generated over C and let α be a self-
adjoint endomorphism of V . We know, by Proposition 17.4, that the eigenvalues of
α are all real and that eigenvectors of α associated with distinct eigenvalues are or-
thogonal. Let us denote the eigenvalues of α by c1, . . . , cn where the indices are so
chosen that c1 ≥ · · · ≥ cn. An important result known as the Courant–Fischer Min-
imax Theorem states that, for each 1 ≤ k ≤ n, we have ck = sup{inf{〈α(w),w〉 |
w ∈ W and ‖w‖ = 1}}, where the supremum runs over all subspaces W of V hav-
ing dimension k.

Let us look at this from a different perspective. The function which assigns to
each 0V �= v ∈ V the scalar Rα(v) = 〈v,α(v)〉‖v‖−2 is called the Rayleigh quotient
function. Note that the projection πv defined in connection with the Gram–Schmidt
theorem satisfies the condition that πv : α(v) �→ Rα(v)v. By what we have already
seen, the image D of this function is contained in R. Moreover, if v is an eigenvector
of α with associated eigenvalue c, then Rα(v) = c, and so ∅ �= spec(α) ⊆ D. On
the other hand, it is possible to show—though we will not do it here—that D is
contained in the closed interval [cn, c1] bounded by the largest and the smallest
eigenvalues of α, both endpoints of which in fact belong to D. This observation
can be used to define the Rayleigh quotient iterative scheme to find eigenvalues of a
selfadoint endomorphism α:
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As an initial guess, choose a normal vector v0 and let d0 = Rα(v0).
For k = 0,1,2, . . . repeat the following steps:

(1) If α − dkσ1 /∈ Aut(V ), then dk is an eigenvalue of α, and we are done;
(2) Otherwise, α − dkσ1 ∈ Aut(V ). Set y = (α − dkσ1)

−1(vk) and then compute
vk+1 = ‖y‖−2y and dk+1 = Rα(vk+1).

This scheme will indeed produce an eigenvalue of α for all guesses of v0 except
those in a set of measure 0, and when it converges, the convergence is very rapid. Its
main disadvantage is the time and effort needed in step (1) of the iteration to decide
if α − dkσ1 is an automorphism of V or not (usually, if the matrix representing this
endomorphism is nonsingular or not) and, if it is, to compute its inverse; the algo-
rithm is therefore worthwhile only if this can be done without major computational
effort.

With kind permission of the
Archives of the Mathematisches
Forschungsinstitut Oberwolfach
(Fischer, Courant); With kind per-
mission of the Science Photo Li-
brary (Strutt).

The twentieth-century
German mathematicians
Ernst Fischer and Richard

Courant studied spaces of functions. Courant, who headed the Mathematics Institute at the
University of Göttingen, fled Germany in 1933 and founded a similar institute in New York
City, which now bears his name. John William Strutt, Lord Rayleigh, was a nineteenth-
century British physicist and applied mathematician, who made important contributions to
mathematical physics and who won the Nobel prize in 1904 for his discovery of the inert
gas argon.

Example Let α be the endomorphism of R3 represented with respect to the canoni-

cal basis by the symmetric matrix A =
⎡

⎣
2 1 1
1 3 1
1 1 4

⎤

⎦. Then α is selfadjoint. Choose

v0 = 1√
3

⎡

⎣
1
1
1

⎤

⎦. Using the above algorithm, we see that d0 = Rα(v0) = 5, which is

not an eigenvalue of α. Moreover,

v1 =
⎡

⎣
0.3841106399 . . .

0.5121475201 . . .

0.7682212801 . . .

⎤

⎦ and d1 = 5.213114754 . . . ,

v2 =
⎡

⎣
0.3971170680 . . .

0.5206615990 . . .

0.7557840528 . . .

⎤

⎦ and d2 = 5.214319743 . . . .
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The actual value of an eigenvalue of α is 5.214319744 . . . , so we see that conver-
gence was very rapid indeed.

Proposition 17.6 Let V be a finitely-generated inner product space and let
α ∈ End(V ). If W is a subspace of V invariant under α, then W⊥ is invariant
under α∗.

Proof If w ∈ W and y ∈ W⊥. Then α(w) ∈ W and so 〈w,α∗(y)〉 = 〈α(w), y〉 = 0,
whence α∗(y) ∈ W⊥. �

If V is a nontrivial inner product space finitely generated over R and assume that
α ∈ End(V ) is orthogonally diagonalizable. Then there exists an orthonormal basis
B = {v1, . . . , vn} composed of eigenvectors of α. Thus ΦBB(α) is a diagonal matrix
and so symmetric. In particular, ΦBB(α∗) = ΦBB(α)T = ΦBB(α), which proves
that α = α∗ and so α is selfadjoint. The converse of this result follows from the
following proposition.

Proposition 17.7 Let V be a nontrivial finitely-generated inner product
space and let α ∈ End(V ) be selfadjoint. Then α is orthogonally diagonal-
izable. The converse holds if the field of scalars is R.

Proof We will prove the result by induction on n = dim(V ). For n = 1, we know
by Proposition 17.5 that α has an eigenvector v ∈ V , and so {v1} is the desired
basis, where v1 = ‖v‖−1v. Now assume that n > 1 and that the proposition has been
established for all spaces of dimension less than n. Pick v1 as before and let W be
the subspace of V generated by {v1}. Then V = W ⊕ W⊥ and, by Proposition 17.6,
we know that W⊥ is invariant under α∗ = α. Moreover, W⊥ is an inner product
space of dimension n − 1 and the restriction of α to W⊥ is selfadjoint. Therefore,
by the induction hypothesis, there exists an orthonormal basis {v2, . . . , vn} of W⊥
composed of eigenvectors of α. Since v1 is orthogonal to each of the vectors in this
basis, we see that {v1, . . . , vn} is an orthonormal basis of V .

Now assume that the field of scalars is R and that α ∈ End(V ) is orthogonally di-
agonalizable. Then there exists an orthonormal basis D of V composed of eigenvec-
tors of α. This means that ΦDD(α) is a diagonal matrix, which is surely symmetric,
and so by Proposition 16.16 we see that α is selfadjoint. �

Example The converse part of Proposition 17.7 is not true if the field of scalars
is C. Indeed, consider the endomorphism α of C2 represented with respect to the

canonical basis by the matrix

[
1 i

i −1

]

. The characteristic polynomial of α is X2,

so were it diagonalizable, it would have to be equal to σ0.
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Let V be an inner product space. An endomorphism α ∈ End(V ) is positive defi-
nite (resp., positive semidefinite) if and only if it is selfadjoint and satisfies the condi-
tion that 〈α(v), v〉 is a positive (resp., nonnegative) real number for all 0V �= v ∈ V .
If there exist 0V �= v,w ∈ V satisfying 〈α(v), v〉 > 0 > 〈α(w),w〉, then α is indefi-
nite.

We see that σc is positive definite for any positive real number c. We also note
that a positive-definite endomorphism must be monic since if α(v) = 0V implies that
〈α(v), v〉 = 0 and so v = 0V . Therefore, every positive-definite endomorphism of a
finitely-generated inner product space is in fact an automorphism. Positive definite
endomorphisms have important applications in optimization and linear program-
ming.1

Example Let D = {z ∈C ||z| < 1}. If z1, . . . , zn are distinct complex numbers in D,
and if we are given complex numbers w1, . . . ,wn in D, one can ask if there ex-
ists an analytic function f : D → D satisfying f (zi) = wi for all 1 ≤ i ≤ n. The
Nevanlinna–Pick Interpolation Theorem states that such a function exists if and only
if the matrix [aij ] in which aij = (1 − wiwj )(1 − zizj )

−1 for all 1 ≤ i, j ≤ n, rep-
resents a positive-definite endomorphism of Cn. This theorem has been generalized
considerably in many directions.

Rolf Nevanlinna was a twentieth-century Finnish
mathematician who worked mostly in analysis.
Georg Pick was a twentieth-century Austrian earth
geometer, who was a good friend of Einstein.

Note that if α is positive definite and if 0V �= v ∈ V then 0 < 〈α(v), v〉 = ‖α(v)‖ ·
‖v‖ cos(t), where t is the angle between α(v) and v, showing that 0 ≤ t < π

2 .

Example Let V = R
n on which we have the dot product defined, and let B be

the canonical basis. An endomorphism α of V is positive definite if and only if
A = ΦBB(α) is a symmetric matrix satisfying the condition that vT Av > 0 for all
nonzero vectors v ∈ V . Such matrices have nice properties. For example, it can be
shown that if A is of this form then the Gauss–Seidel method applied to an equation
AX = w will converge to the unique solution v, for any initial guess v0 chosen. If
α is positive definite, then the norm on V defined by ‖v‖A = √

vT Av is called an
elliptic norm. Any norm on V can be reasonably approximated by an elliptic norm,
a fact of importance in numerical analysis.

1Systems of linear equations defined by positive-definite endomorphisms of R
n first appear in

Gauss’ work on least-squares approximation, which we will consider in a later chapter.
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Example As an immediate consequence of the observation in the previous example,

we see that the endomorphism α of R2 defined by α :
[
a

b

]

�→
[
a + b

b

]

satisfies the

condition that 〈α(v), v〉 ≥ 0 for all 0V �= v ∈ V , but is not selfadjoint and so is not

positive definite since ΦBB(α) =
[

1 1
0 1

]

is not symmetric.

Example Even if σ0 �= α ∈ End(V ) is selfadjoint, it may be the case that neither α

nor −α is positive definite. For example, if α ∈ End(R2) is defined by α :
[
a

b

]

�→
[−a

b

]

, then α

([
1
0

])

·
[

1
0

]

= −1 = (−α)

([
0
1

])

·
[

0
1

]

.

Example The endomorphism α :
[
a

b

]

�→
[
a + b

a + b

]

of R2 is selfadjoint and, for any

v =
[
a

b

]

, we check that 〈α(v), v〉 = (a + b)2 ≥ 0, so α is positive semidefinite. On

the other and, if v =
[

1
−1

]

, then 〈α(v), v〉 = 0, so α is not positive definite. Since

α is represented with respect to the canonical basis by the matrix

[
1 1
1 1

]

, this also

shows that in order for an endomorphism to be positive definite, it is not sufficient
that it be represented by a matrix all of the entries of which are positive.

Let V an inner product space. If α,β ∈ End(V ) are selfadjoint, then α −β is also
selfadjoint. We write α > β whenever α − β is positive definite. Thus, α is positive
definite if and only if α > σ0. We write α ≥ β if and only if α > β or α = β . We
claim this is a partial-order relation on the set of all selfadjoint endomorphisms of V .
Indeed, it is sure that α ≥ α for all such endomorphisms α. Suppose that α1, α2, and
α3 are selfadjoint endomorphisms of V satisfying α1 ≥ α2 ≥ α3. If α1 = α2 or α2 =
α3 then it is clear that α1 ≥ α3. Let us therefore assume that α1 > α2 > α3. Then
for all v ∈ V we see that 〈(α1 − α3)(v), v〉 = 〈α1(v) − α2(v) + α2(v) − α3(v), v〉 =
〈α1(v) − α2(v), v〉 + 〈α2(v) − α3(v), v〉 > 0 and so α1 > α3. Finally, assume that
α1 ≥ α2 and α2 ≥ α1 but α1 �= α2. Then α1 > α2 > α1 and so, as we have seen,
α1 > α1, which is a contradiction. Thus we have a partial order on the set of all
selfadjoint endomorphisms of V , called the Loewner partial order.

The Czech mathematician Karl Loewner emigrated to the United
States in 1933. His research concentrated in complex function theory
and spaces of functions.



17 Selfadjoint Endomorphisms 405

Example Let V be a finite-dimensional inner product space. Inequalities of the form∑n
i=1 aiαi > σ0, where the αi are in End(V ) and the ai are scalars, play an impor-

tant part in control theory, and have been studied extensively.

Proposition 17.8 Let V be an inner product space and let α ∈ End(V ) be an
endomorphism for which α∗ exists. Then α is positive definite if and only if
the function μ : (v,w) �→ 〈α(v),w〉 from V × V to the field of scalars is also
an inner product.

Proof First, let us assume that α is a positive-definite endomorphism of V . If
v1, v2,w ∈ V then μ(v1 + v2,w) = 〈α(v1 + v2),w〉 = 〈α(v1),w〉 + 〈α(v2),w〉 =
μ(v1,w) + μ(v2,w) and, similarly, we show that μ(cv,w) = cμ(v,w) for all
scalars c. We also see that μ(v,w) = 〈α(v),w〉 = 〈v,α∗(w)〉 = 〈v,α(w)〉 =
〈α(w), v〉 = μ(w,v). If 0V �= v ∈ V then, by the assumption of positive definite-
ness, we see that μ(v, v) = 〈α(v), v〉 is a positive real number, and it is clear that
μ(0V ,0V ) = 0. Thus μ is an inner product on V .

Conversely, assume that μ is an inner product on V . Then for all v,w ∈ V we
have 〈v,α∗(w)〉 = 〈α(v),w〉 = μ(v,w) = μ(w,v) = 〈α(w), v〉 = 〈v,α(w)〉 and so
α(w) = α∗(w) for all w ∈ V , proving that α is selfadjoint. Moreover, for all v ∈ V

we have 〈α(v), v〉 = μ(v, v) for all 0V �= v ∈ V and so α is positive definite. �

Proposition 17.9 Let V be an inner product space, with a given inner product
(v,w) �→ 〈v,w〉, and let μ be another inner product defined on V . Then there
exists a unique positive-definite endomorphism α of V satisfying the condition
that μ(v,w) = 〈α(v),w〉 for all v,w ∈ V .

Proof Fix a vector w ∈ V . The function v �→ μ(v,w) belongs to D(V ) and so there
exists a unique vector yw ∈ V satisfying μ(v,w) = 〈v, yw〉 for all v ∈ V . Define
a function α : V → V by α : w �→ yw . Then 〈α(v),w〉 = 〈w,α(v)〉 = μ(w,v) =
μ(v,w) for all v,w ∈ V . We claim that α ∈ End(V ). Indeed, if w1,w2 ∈ V then for
all y ∈ V we have

〈
α(w1 + w2), y

〉 = μ(w1 + w2, y) = μ(w1, y) + μ(w2, y)

= 〈
α(w1), y

〉+ 〈
α(w2), y

〉= 〈
α(w1) + α(w2), y

〉

and so α(w1 + w2) = α(w1) + α(w2). Similarly, we can show that α(cw) = cα(w)

for all w ∈ V and all scalars c. Thus we see that α is indeed an endomorphism of V

satisfying the condition μ(v,w) = 〈α(v),w〉 for all v,w ∈ V , and so it is positive
definite.

Finally, α has to be unique since if μ(v,w) = 〈β(v),w〉 for all v,w ∈ V , then
〈(α − β)(v),w〉 = 〈α(v) − β(v),w〉 = 〈α(v),w〉 − 〈β(v),w〉 = 0 for all v,w ∈ V ,
which implies that (α − β)(v) = 0V for all v ∈ V , showing that α = β . �
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Proposition 17.10 Let V be a finitely-generated inner product space and let
α ∈ End(V ). Then α is positive definite if and only if there exists an automor-
phism β of V satisfying α = β∗β .

Proof Assume that there exists an automorphism β of V satisfying α = β∗β .
Then, as previously noted, α is selfadjoint. Moreover, for all 0V �= v ∈ V we have
〈α(v), v〉 = 〈β∗β(v), v〉 = 〈β(v),β∗∗(v)〉 = 〈β(v),β(v)〉 > 0 since β is an auto-
morphism and hence β(v) �= 0V . Therefore, α is positive definite.

Conversely, assume that α is a positive-definite endomorphism of V . Then the
function μ : (v,w) �→ 〈α(v),w〉 is an inner product on V . Let {v1, . . . , vn} be a
basis for V which is orthonormal with respect to the original inner product on V

and let {w1, . . . ,wn} be a basis for V which is orthonormal with respect to μ.
By Proposition 6.2, we know that there exists a unique endomorphism β of V

satisfying β(wi) = vi for all 1 ≤ i ≤ n. Then β is an epimorphism since its im-
age contains a basis for V and so, since V is finitely-generated, it is an automor-
phism of V . Therefore, if v =∑n

i=1 aiwi and w =∑n
j=1 bjwj are vectors in V we

see that

〈
α(v),w

〉 = μ(v,w) = μ

(
n∑

i=1

aiwi,

n∑

j=1

bjwj

)

=
n∑

i=1

n∑

j=1

aibjμ(wi,wj ) =
n∑

i=1

aibi

and similarly

〈
β∗β(v),w

〉 = 〈
β(v),β(w)

〉=
〈

β

(
n∑

i=1

aiwi

)

, β

(
n∑

j=1

bjwj

)〉

=
n∑

i=1

n∑

j=1

aibj 〈wi,wj 〉 =
n∑

i=1

aibi,

and so we see that 〈β∗β(v),w〉 = 〈α(v),w〉 for all v,w ∈ V , which shows that
α = β∗β . �

From Proposition 17.10 we know that if A = [aij ] ∈Mn×n(C) is a matrix repre-
senting a positive-definite endomorphism of Cn, namely if it is a Hermitian matrix
satisfying the condition that v · Av > 0 for all nonzero vectors v ∈ C

n, then there
exists a nonsingular matrix B such that A = BH B . Indeed, we can choose B to
be upper triangular, so that it is a form of LU-decomposition, though it takes only
half as many arithmetic operations to perform. This decomposition is known as a
Cholesky decomposition of A. This decomposition need not be unique. Cholesky
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decompositions are widely used in building economic and financial models. Be-
cause of this wide usage, there are many algorithms available to efficiently calculate
Cholesky decompositions of general matrices or of matrices in special forms. In-
deed, one of the computational advantages of the Cholesky decomposition is that it
is numerically stable, even with no pivoting. On the other hand, if you change even
one element of A you have to recompute the Cholesky decomposition of the new
matrix from scratch.

With kind permission of the Collections École polytechnique (SABIX).

Major André-Louis Cholesky was a cartographer in the French army,
who used this method in connection with the mapping of the island of
Crete before World War I. It had previously been used by other cartog-
raphers, including Myrick H. Doolittle, of the computing division of
the US Coast and Geodetic Survey, in 1878. A mathematical formula-
tion had been given earlier by Toeplitz.

The following algorithm calculates a Cholesky decomposition for real symmetric
matrices.

For k = 1, . . . , n perform the following steps:
(1) For each 1 ≤ i < k define bik = b−1

ii [aik −∑i−1
j=1 bjibjk];

(2) Set bkk =
√

akk −∑k−1
j=1 b2

jk ;

(3) For each k < i ≤ n set bik = 0.

Note that if the matrix A did not satisfy v · Av > 0 for all nonzero vectors v, the
algorithm would hang up at some stage, trying to take the square root of a negative
number. Indeed, attempting a Cholesky decomposition is often used as a test to see
whether a given matrix represents a positive-definite endomorphism or not.

Example Let A =
⎡

⎣
5 2 3
2 1 1
3 1 4

⎤

⎦ ∈ M3×3(R). This is a symmetric matrix satisfying

the condition that v · Av > 0 for all nonzero vectors v ∈ R
3 and having a Cholesky

decomposition BT B , where B = 1
5

⎡

⎢
⎣

5
√

5 2
√

5 3
√

5

0
√

5 −√
5

0 0 5
√

2

⎤

⎥
⎦.

Notice that the Proposition 17.10 extends our ongoing analogy between the op-
eration ∗ and the conjugate operation on C, just as the notion of “positive definite”
is the analog of positivity of complex numbers: a complex number z is (real and)
positive if and only if there exists a complex number y such that z = yy.

Cholesky decompositions do not work for Hermitian matrices representing indef-
inite endomorphisms of Cn. In such cases, one has to make use of other methods,
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such as the Bunch–Kaufman algorithm, which is quite effective for sparse matri-
ces.

Proposition 17.11 Let V be an inner product space. If α ∈ End(V ) is positive
definite, then every eigenvalue of α is a positive real number. The converse
holds if α is orthogonally diagonalizable.

Proof Assume that α is positive define. By Proposition 17.4, the eigenvalues of α

are real numbers. If c ∈ spec(α) is an eigenvalue of α associated with an eigen-
vector v, then 0 < 〈α(v), v〉 = 〈cv, v〉 = c〈v, v〉 and so c > 0, since we know
that 〈v, v〉 > 0. Conversely, assume that every eigenvalue of α is positive and that
there exists an orthonormal basis B of V composed of eigenvectors of α. Let
v = ∑n

i=1 aivi , where {v1, . . . , vn} ⊆ B . For each 1 ≤ i ≤ n, let ci be an eigen-
value of α associated with vi . We can assume that the vi are arranged in such a
manner that 0 < c1 ≤ c2 ≤ · · · ≤ cn. Then

〈
α(v), v

〉 =
〈

n∑

i=1

α(aivi),

n∑

j=1

ajvj

〉

=
n∑

i=1

n∑

j=1

aiaj 〈civi, vj 〉

=
n∑

i=1

n∑

j=1

ciaiaj 〈vi, vj 〉 =
n∑

i=1

ci |ai |2 ≥ c1

n∑

i=1

|ai |2 > 0,

and so α is positive definite. �

From Propositions 17.11 and 17.7, we see that if V is an finitely-generated in-
ner product space over R or C and if α ∈ End(V ) is positive definite, then there
exists a basis of V relative to which α is represented by a diagonal matrix in which
the entries of the diagonal are positive real numbers. Such a matrix is, of course,
nonsingular.

Proposition 17.12 Let V and W be inner-product spaces finitely-generated
over R and let α ∈ Hom(V ,W). Then ‖α‖ = √

c, where c is the largest eigen-
value of α∗α ∈ End(V ), and where ‖α‖ is the norm induced by the respective
inner products on V and W .

Proof If c is an eigenvalue of β = α∗α then there exists a nonzero vector v such that
β(v) = cv and so c‖v‖2 = 〈v, cv〉 = 〈v,α∗α(v)〉 = 〈α(v),α(v)〉 ≥ 0, and so c ≥ 0.
By Proposition 17.7, we know that there exists a basis {v1, . . . , vn} of V composed
of orthonormal eigenvectors of β . For each 1 ≤ i ≤ n, let ci be an eigenvalue of
β associated with vi . After renumbering, we can assume that 0 ≤ c1 ≤ · · · ≤ cn. If
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v =∑n
i=1 aivi ∈ V , then

∥
∥α(v)

∥
∥2 = 〈

v,β(v)
〉= 〈

v,α∗α(v)
〉=

n∑

j=1

n∑

i=1

aj ciai〈vj , vi〉

=
n∑

i=1

cia
2
i ≤ cn

(
n∑

i=1

a2
i

)

= cn‖v‖2

and so ‖α(v)‖2/‖v‖2 ≤ cn. Therefore, by definition of the induced norm, ‖α‖ ≤√
cn. But one easily sees that ‖α(vn)‖2/‖vn‖2 = cn and so

√
cn ≤ ‖α‖, proving

equality. �

Example Let α : R3 → R
2 be the linear transformation defined by α : v �→ Av,

where A =
[

1 −2 1
3 0 −1

]

. Then α∗α is the endomorphism of R3 given by v �→
⎡

⎣
10 −2 −2
−2 4 −2
−2 −2 2

⎤

⎦v. The eigenvalues of this endomorphism are 0 ≤ 8 − 2
√

2 ≤

8 + 2
√

2 and so ‖α‖ =
√

8 + 2
√

2, which is approximately equal to 3.291.

Let V and W be inner product spaces. A linear transformation α : V → W pre-
serves inner products if and only if 〈v1, v2〉 = 〈α(v1), α(v2)〉 for all v1, v2 ∈ V .
Notice that any linear transformation which preserves inner products also pre-
serves distances: ‖v1 − v2‖ = ‖α(v1 − v2)‖ = ‖α(v1) − α(v2)‖ for all v1, v2 ∈ V .
Also, as a direct consequence of the definition, such a linear transformation pre-
serves the angles between vectors. Conversely, we have already noted that from the
norm defined by an inner product we can recover the inner product itself, so that
any linear transformation α : V → W satisfying ‖v1 − v2‖ = ‖α(v1) − α(v2)‖ for
all v1, v2 also preserves inner products. Such a linear transformation is called an
isometry.

Proposition 17.13 Let V be an inner product space over C and let α ∈
End(V ) be an isometry. Then the eigenvalues of α lie on the unit circle
{z ∈C | |z| = 1}.

Proof If c is an eigenvalue of α with associated eigenvector v, then ‖v‖2 = ‖cv‖2 =
|c|2‖v‖2 and so |c| = 1. �

Example Let V be an inner product space over R and let 0V �= y ∈ V . This vector
y defines an endomorphism αy of V by setting

αy : v �→ −v + 2
〈v, y〉
〈y, y〉y.
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This endomorphism is an isometry which satisfies α2
y = σ1, and y is a fixed point

of αy .

Proposition 17.14 Let V and W be finitely-generated inner product spaces
and having equal dimensions. Then the following conditions on a linear trans-
formation α : V → W are equivalent:
(1) α is an isometry;
(2) α is an isomorphism which is an isometry;
(3) If {v1, . . . , vn} is an orthonormal basis of V then the set {α(v1), . . . , α(vn)}

is an orthonormal basis of W .

Proof (1) ⇒ (2): If 0V �= v ∈ V then 〈v, v〉 = 〈α(v),α(v)〉, and so α(v) �= 0W .
Thus we see that ker(α) = {0V } and so α is an isomorphism, since V and W have
the same finite dimension.

(2) ⇒ (3): If {v1, . . . , vn} is an orthonormal basis of V then, since α is an isomor-
phism, we see that {α(v1), . . . , α(vn)} is a basis for W . Moreover, for all 1 ≤ i, j ≤ n

we know that
〈
α(vi), α(vj )

〉= 〈vi, vj 〉 =
{

1 when i = j,

0 otherwise,

and so this basis is orthonormal.
(3) ⇒ (1): Let {v1, . . . , vn} be an orthonormal basis of V . If v =∑n

i=1 aivi and
y =∑n

j=1 bjvj , then 〈v, y〉 =∑n
i=1 aibi . Moreover,

〈
α(v),α(y)

〉 =
〈

α

(
n∑

i=1

aivi

)

, α

(
n∑

j=1

bjvj

)〉

=
n∑

i=1

n∑

j=1

aibj

〈
α(vi), α(vj )

〉=
n∑

i=1

aibi = 〈v, y〉,

and this proves (1). �

In particular, if V and W are finitely-generated inner product spaces having equal
dimensions, then every isometry α : V → W is an isomorphism. If w1,w2 ∈ W ,
then 〈w1,w2〉 = 〈αα−1(w1), αα−1(w2)〉 = 〈α−1(w1), α

−1(w2)〉 and so we see that
α−1 is also an isometry. Moreover, there is always at least one isometry α from V

to W . Just pick orthonormal bases {v1, . . . , vn} for V and {w1, . . . ,wn} for W and
define α by α :∑n

i=1 aivi �→∑n
i=1 aiwi .

Example The endomorphism of R3 represented with respect to the canonical basis

by 1√
6

⎡

⎣

√
3

√
2 −1√

3 −√
2 1

0
√

2 2

⎤

⎦ is an isometry.
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Example Let W be the set of all matrices A ∈ M3×3(R) satisfying AT = −A,
which is a subspace of M3×3(R) of dimension 3. Define an inner product on W

as follows: if A,B ∈ W then 〈A,B〉 = 1
2 tr(ABT ). Let V = R

3, which is an in-
ner product space with respect to the dot product. Define a linear transformation

α : V → W by setting α :
⎡

⎣
a

b

c

⎤

⎦ �→
⎡

⎣
0 −c b

c 0 −a

−b a 0

⎤

⎦. If A =
⎡

⎣
0 −c b

c 0 −a

−b a 0

⎤

⎦

and B =
⎡

⎣
0 −f e

f 0 −d

−e d 0

⎤

⎦ then ABT =
⎡

⎣
cf + be −bd −dc

ea cf + ad ec

−af f b be + ad

⎤

⎦ and so

we can check that 〈A,B〉 =
⎡

⎣
a

b

c

⎤

⎦ ·
⎡

⎣
d

e

f

⎤

⎦ and thus α is an isometry, and hence is an

isomorphism.

Example Proposition 17.14 is no longer true if we remove the condition that the
spaces are finitely generated. Indeed, let V = C(0,1), on which we have the inner
product μ(f,g) = ∫ 1

0 f (x)g(x)x2 dx, and let W be the same space on which we

have the inner product 〈f,g〉 = ∫ 1
0 f (x)g(x) dx. Let α : V → W be the linear trans-

formation defined by α : f (x) �→ xf (x). Then μ(f,g) = 〈α(f ),α(g)〉 and so α is
an isometry. But α is not an isomorphism since the function x �→ x2 + 1 does not
belong to the image of α.

Let us now return to the case of inner product spaces the dimensions of which
are not necessarily equal.

Proposition 17.15 Let V and W be inner product spaces finitely-generated
over R and let α ∈ Hom(V ,W). Then α is an isometry if and only if α∗α =
σ1 ∈ End(V ).

Proof By Proposition 16.15, α∗ exists. If α∗α = σ1 ∈ End(V ), and if v1, v2 ∈ V

then

‖v1 − v2‖2 = 〈v1 − v2, v1 − v2〉 = 〈
v1 − v2, α

∗α(v1 − v2)
〉

= 〈
α(v1 − v2), α(v1 − v2)

〉= ∥
∥α(v1) − α(v2)

∥
∥2

,

and so ‖v1 − v2‖ = ‖α(v1) − α(v2)‖, proving that α is an isometry. Conversely, if
α is an isometry and if v1, v2 ∈ V then 〈α∗α(v1), v2〉 = 〈α(v1), α(v2)〉 = 〈v1, v2〉.
Therefore, by Proposition 16.14, we see that α∗α(v1) = v1 for all v1 ∈ V , so α∗α =
σ1 ∈ End(V ). �
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Exercises

Exercise 1051
Let V = C[X] and define an inner product on V by setting

〈 ∞∑

i=0

aiX
i,

∞∑

i=0

biX
i

〉

=
∞∑

i=0

aibi .

Let α be the endomorphism of V defined by α : p(X) �→ (X+1)p(X). Calculate
α∗, or show that it does not exist.

Exercise 1052
Let V = C[X] and define an inner product on V by setting

〈 ∞∑

i=0

aiX
i,

∞∑

i=0

biX
i

〉

=
∞∑

i=0

aibi .

Let β be the endomorphism of V defined by β : p(X) �→ p(X + 1). Calculate
β∗, or show that it does not exist.

Exercise 1053
Let p > 1 be an integer, let G = Z/(p), and let V = C

G, which is an inner
product space over C with inner product defined by 〈f,g〉 = ∑

n∈G f (n)g(n).
Let α be the endomorphism of V defined by α(f ) : n �→ f (n + 1) + f (n − 1).
Is α selfadjoint?

Exercise 1054
Let V be a vector space over R. A nonempty subset K of V is convex if and
only if cv + (1 − c)w ∈ K whenever v,w ∈ K and 0 ≤ c ≤ 1. Is the set of all
selfadjoint endomorphisms of an inner product space Y over R necessarily a
convex subset of the vector space End(Y )?

Exercise 1055
Let V be an inner product space and let α be an endomorphism of V . Is the
endomorphism α∗α − σ1 of V selfadjoint?

Exercise 1056
Let n be a positive integer and let V be the space of all polynomial functions
in R

R of degree at most n. Define an inner product on V by setting 〈f,g〉 =∫ 1
−1 f (t)g(t) dt . Let α ∈ End(V ) be defined by α(f ) : x �→ (1 − x2)f ′′(x) −

2xf ′(x). Show that α is selfadjoint.

Exercise 1057
Let V be an inner product space finitely generated over C and let α be an endo-
morphism of V satisfying αα∗ = α2. Show that α is selfadjoint.
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Exercise 1058

Let V be an inner product space finitely generated over C and let α and β be

selfadjoint endomorphisms of V satisfying the condition that αβ is a projection.

Is βα necessarily also a projection?

Exercise 1059

Give an example of nonzero Hermitian matrices A and B satisfying AB = O =
BA, or show that no such matrices exist.

Exercise 1060

Let A ∈ M2×2(C) be Hermitian. Find real numbers w, x, y, and z satisfying

|A| = w2 − x2 − y2 − z2.

Exercise 1061

Let O �= A ∈M3×3(C) be a Hermitian matrix. Show that Ak �= O for all positive

integers k.

Exercise 1062

Find complex numbers a and b such that

⎡

⎣
a 0 b

0 2a a

i 1 a

⎤

⎦ ∈M3×3(C) is a Hermi-

tian matrix.

Exercise 1063

Determine all Hermitian matrices A ∈ M5×5(C) satisfying A5 +2A3 +3A = 6I .

Exercise 1064

A matrix A ∈Mn×n(C) is anti-Hermitian if and only if AH = −A. Show that A

is anti-Hermitian if and only if iA is Hermitian.

Exercise 1065

If matrices A,B ∈Mn×n(C) are anti-Hermitian, show that the Lie product of A

and B is also anti-Hermitian.

Exercise 1066

Let n be a positive integer and let A ∈Mn×n(C). Show that every eigenvalue of

AH A is a positive real number.

Exercise 1067

Let V be an inner product space and let α ∈ End(V ) be selfadjoint. Show that

ker(α) = ker(αh) for all h ≥ 1.
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Exercise 1068
Let V be a nontrivial finitely-generated inner product space and let α ∈ End(V )

be orthogonally diagonalizable and satisfy the condition that each of its eigen-
values is real. Is α necessarily selfadjoint?

Exercise 1069
Let α ∈ End(R3) be represented with respect to the canonical basis by the matrix⎡

⎣
1 2 3
2 a 4
3 4 5

⎤

⎦. For which values of a is α positive definite?

Exercise 1070
For each complex number z, let αz be the endomorphism of C3 represented with

respect to the canonical basis by

⎡

⎣
1 1 −1
1 1 z

−1 z 1

⎤

⎦. Does there exist a z for which

this endomorphism is positive definite?

Exercise 1071
Let V be an inner product space and let α ∈ End(V ) be positive definite. Is α2

necessarily positive definite?

Exercise 1072
Let α be a positive definite automorphism of an inner product space V . Is α−1

necessarily positive definite?

Exercise 1073
Do there exist a, b, c, d ∈R such that the endomorphism of R4 represented with

respect to some basis by the matrix

⎡

⎢
⎢
⎣

1 1 a 0
1 1 1 b

c 1 1 1
0 d 1 1

⎤

⎥
⎥
⎦ is positive definite?

Exercise 1074
Let V be an inner product space finitely generated over R and let α ∈ End(V ).
Let D be a fixed basis for V and let A = ΦDD(α). Recall that we can write
A = B + C, where B = 1

2 (A + AT ) is symmetric and C = 1
2 (A − AT ) is skew

symmetric. Let β,γ ∈ End(V ) satisfy B = ΦDD(β) and C = ΦDD(γ ). Show
that α is positive definite if and only if γ is positive definite.

Exercise 1075
Let α be a positive semidefinite endomorphism of Rn, represented with respect
to the canonical basis {v1, . . . , vn} by a symmetric matrix A = [aij ] ∈ Mn×n(R).
Show that |aij | ≤ 1

2 (aii + ajj ) for all 1 ≤ i, j ≤ n.



Exercises 415

Exercise 1076

Let U be the set of all vectors

⎡

⎢
⎣

a1
...

a6

⎤

⎥
⎦ ∈ R

6 satisfying the condition that

⎡

⎣
a1 a2 a2
a2 a4 a5
a3 a5 a6

⎤

⎦ is positive semidefinite. Is U a convex subset of R6?

Exercise 1077

Do there exist real numbers a, b, c, d such that the matrix

⎡

⎢
⎢
⎣

1 1 a 0
1 1 1 b

c 1 1 1
0 d 1 1

⎤

⎥
⎥
⎦ is

positive semidefinite?

Exercise 1078
A selfadjoint endomorphism α of Rn is almost positive semidefinite if and only

if α(v) · v ≥ 0 for all nonzero vectors v =
⎡

⎢
⎣

a1
...

an

⎤

⎥
⎦ satisfying

∑n
i=1 ai = 0. Give

an example of an endomorphism of R3 which is almost positive semidefinite but
not positive semidefinite.

Exercise 1079
Let k and n be positive integers. A symmetric matrix in Mk+n,k+n(R) is

quasidefinite when it is of the form

[−B AT

A C

]

where B is a matrix represent-

ing a positive-definite endomorphism of Rk with respect to the canonical basis,
and C is a matrix representing a positive-definite endomorphism of Rn with re-
spect to the canonical basis. Show that a quasidefinite matrix is nonsingular, and
that its inverse is again quasidefinite.

Exercise 1080
Let V = R

2 together with the dot product. Find positive-definite endomorphisms
α and β of V satisfying the condition that their Jordan product is not positive
definite.

Exercise 1081
Let V be an inner product space over R and let α ∈ End(V ). Show that α is
positive definite if and only if α + α∗ is positive definite.

Exercise 1082
Let V be an inner product space finitely generated over C and let α and β be
positive-definite endomorphisms of V satisfying αβ = σ0. Is it necessarily true
that α = σ0 or β = σ0?
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Exercise 1083

Let V =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

a

b

b

c

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

a, b, c ∈R

⎫
⎪⎪⎬

⎪⎪⎭
and let W = R

3, both of which together with the

dot product, are inner product spaces of dimension 3 over R. Find an isomor-
phism α : V → W which is also an isometry.

Exercise 1084
Let V be an inner product space and let α be an endomorphism of V which is an
isometry. Does α also preserve angles between vectors?

Exercise 1085
Let α be a positive-definite endomorphism of a finite-dimensional inner prod-
uct space V represented with respect to some fixed basis by an n × n matrix
A = [aij ]. Show that |A| ≤∏n

i=1 aii .

Exercise 1086
Let n be a positive integer and let α be a positive-definite endomorphism of
C

n represented with respect to the canonical basis by the matrix A = [aij ] ∈
Mn×n(C). Show that aii is a positive real number for all 1 ≤ i ≤ n.

Exercise 1087

Let α : R3 → R
2 be the linear transformation defined by α :

⎡

⎣
a

b

c

⎤

⎦ �→
[
b − 2c

a + c

]

.

Calculate spec(αα∗) and spec(α∗α).

Exercise 1088
Let n be a positive integer and let V = R

n, on which we have defined the dot
product. Let α be a positive-definite endomorphism of V represented with respect
to the canonical basis by the matrix A = [aij ] ∈ Mn×n(R). Show that |A| > 0.
Is it necessarily true that tr(A) > 0?

Exercise 1089
Find endomorphisms α,β ∈ End(C2) satisfying α > β (in the sense of Loewner)
but not α2 > β2.

Exercise 1090
Let V be an inner product space and let α,β ∈ End(V ) be positive definite. Is it
necessarily true that α + β > β?

Exercise 1091
Let V and W be inner product spaces finitely generated over C. Let
α ∈ Hom(V ,W), θ ∈ Aut(V ), and ϕ ∈ Aut(W), where the automorphisms θ and
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ϕ are positive definite. Show that the automorphism θ − α∗ϕα of V is positive
definite if and only if the automorphism ϕ − αθα∗ of W is positive definite.

Exercise 1092
Let α ∈ End(Rn) be represented with respect to the canonical basis by a symmet-
ric matrix A. Show that 〈α(v), v〉 ≥ 0 for all nonzero vectors v ∈ R

n if and only
if α + cσ1 is positive definite for every positive real number c.

Exercise 1093
Let V be the vector space of all infinitely-differential functions in R

R, on which
we define the inner product 〈f,g〉 = ∫ π

0 f (x)g(x) dx. Let W be the subspace of
all functions f ∈ V satisfying f (0) = f (π) = 0. Show that the endomorphism
of W defined by f �→ f ′′ is selfadjoint.

Exercise 1094
Let V be a finitely-generated inner product space and let α ∈ End(V ) be selfad-
joint. Show that ‖α(v)‖ ≤ ‖v‖ for all v ∈ V .

Exercise 1095
Let V be an inner product space finitely generated over R of dimension greater
than 1, and let α be a selfadjoint endomorphism of V . Show that there are eigen-
values c < d of α satisfying c‖v‖2 ≤ 〈α(v), v〉 ≤ d‖v‖2 for all v ∈ V .

Exercise 1096
Let V be an inner product space finitely generated over R and let α,β ∈ End(V )

be selfadjoint. Assume that the eigenvalues of α all lie in the interval [a, b] on
the real line and that the eigenvalues of β all lie in the interval [c, d] on the real
line. Show that the eigenvalues of α + β all lie in the interval [a + c, b + d] on
the real line.

Exercise 1097
Let V be an inner product space finitely generated over C and let α be a positive-
definite selfadjoint automorphism of V . Show that 〈(α + α−1)(v), v〉 ≥ 2〈v, v〉
for all v ∈ V .

Exercise 1098
Let V be an inner product space finitely generated over R and let α be a positive-
definite selfadjoint automorphism of V . Show that 〈α−1(v), v〉 = max{2〈v,w〉−
〈α(w),w〉 | w ∈ W } for all v ∈ V .

Exercise 1099
Let V be a finite-dimensional inner product space over C and let α �= σ1 positive-
definite endomorphism of V . Show that there exists no positive integer p satis-
fying αp = σ1.
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Exercise 1100
Let V be a vector space finitely-generated over R and let α ∈ End(V ) be selfad-
joint. Show that at least one of the values ±‖α‖ is an eigenvalue of α and any
eigenvalue c of α satisfies −‖α‖ ≤ c ≤ ‖α‖.

Exercise 1101

Let A =
[
a b

b c

]

∈ M2×2(C) be Hermitian and let r ≥ s be the (necessarily

real) eigenvalues of A. Show that |b| ≤ 1
2 (r − s).

Exercise 1102
Let V be a nontrivial finitely-generated inner product space and let α and β be
selfadjoint endomorphisms of V satisfying αβ = βα. Show that α and β have a
common eigenvector.

Exercise 1103
Let n be a positive integer. An endomorphism α of Rn is copositive if and only if
it is selfadjoint and satisfies the condition that α(v) · v is a positive real number
whenever v is a nonzero vector all components of which are nonnegative. Clearly,
positive-definite endomorphisms are copositive. Give an example of a copositive
endomorphism which is not positive definite.

Exercise 1104
Is the endomorphism of C3 represented with respect to the canonical basis by the

matrix

⎡

⎣
4 2 − i 1 + i

2 + i 3 0
1 − i 0 2

⎤

⎦ ∈ M3×3(C) positive definite?

Exercise 1105

Let α be the endomorphism of R
2 defined by setting α :

[
a

b

]

�→
[

2a − b

2b − a

]

.

Show that α is positive definite by constructing an endomorphism β of R2 satis-
fying α = β∗β .

Exercise 1106
Find selfadjoint automorphisms α and β of R

2 satisfying the condition that
α ≥ β ≥ −α but α �

√
β∗β .

Exercise 1107
Let α ∈ End(Rn) be represented with respect to the canonical basis by a symmet-
ric matrix A = [aij ]. Let β ∈ End(Rn) be represented by the matrix B = [eaij ]. If
α is positive semidefinite, is β necessarily positive semidefinite? Is β necessarily
positive definite?
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Let V be an inner product space. An automorphism of V which is an isometry is
called a unitary automorphism. It is easy to see that if α and β are unitary automor-
phisms of V then αβ and α−1 are also unitary automorphisms of V . It is also clear
that σ1 is unitary. Therefore, the set of all unitary automorphisms of V is a group of
automorphisms.

Proposition 18.1 Let V be an inner product space and let α ∈ Aut(V ) have
an adjoint. Then α is unitary if and only if α∗ = α−1.

Proof If α is unitary then 〈α(v),w〉 = 〈α(v),αα−1(w)〉 = 〈v,α−1(w)〉 for all
v,w ∈ V and so α∗ = α−1. Conversely, if α∗ = α−1 then 〈α(v),α(w)〉 =
〈v,α∗α(w)〉 = 〈v,w〉 for all v,w ∈ V and so α is unitary. �

As a direct consequence of Proposition 17.14, we see that if V is an inner product
space finitely generated over its field of scalars then for α ∈ End(V ) the following
conditions are equivalent:
(1) α is an isometry;
(2) α is unitary;
(3) α maps an orthonormal basis of V to an orthonormal basis of V .

If V is an inner product space finitely generated over its field of scalars F , and
if α is a unitary automorphism of V represented by a matrix A = [aij ] ∈ Mn×n(F )

with respect to a given orthonormal basis, then we see that A−1 = AH ∈Mn×n(F ).
A matrix of this form over F is called a unitary matrix. If A is a unitary matrix
then so is A−1 since (A−1)H = (AH )−1. Also, if A and B are unitary matrices
then (AB)−1 = B−1A−1 = BH AH = (AB)H so AB is also unitary. The converse

is false. For example, the matrix A =
[−1 1

0 1

]
∈ M2×2(R) is not unitary, but

A2 = I is.
Thus we see that the set of unitary matrices in Mn×n(F ) define a group of au-

tomorphisms of Fn and so an equivalence relation ∼ defined by the condition that

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_18, © Springer Science+Business Media B.V. 2012
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A ∼ B if and only if there exists a unitary matrix P such that A = P −1BP . Matrices
equivalent in this sense are unitarily similar. As an immediate consequence of the
definition, we see that A is unitary if and only if the set of columns (resp., rows) of
A is an orthonormal basis of Fn (resp., M1×n(F )) endowed with the dot product.

Proposition 18.2 Let n be a positive integer and let A = [aij ] and B = [bij ]
be unitarily-similar matrices in Mn×n(C). Then

n∑
i=1

n∑
j=1

|aij |2 =
n∑

i=1

n∑
j=1

|bij |2.

Proof We note that
∑n

i=1
∑n

j=1 |aij |2 = tr(AH A). If P is a unitary matrix sat-

isfying B = P −1AP then tr(BH B) = tr(P −1AH PP −1AP) = tr(P −1AH AP) =
tr(AH AP −1P) = tr(AH A), and we are done. �

Example If c, d ∈ C satisfy the condition that |c|2 + |d|2 = 1, then the matrix[
c d

−d c

]
∈ M2×2(C) is unitary. A matrix of this form is known as a Givens ro-

tation matrix. More generally, if n > 3 then a matrix A = [aij ] ∈ Mn×n(C) is a
Givens rotation matrix if and only if there exist integers 1 ≤ h < k ≤ n and nonzero
complex numbers c and d satisfying |c|2 + |d|2 = 1 such that

aij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c if i = j ∈ {h, k},
1 if i = j /∈ {h, k},
d if i = h and j = k,

−d if i = k and j = h,

0 otherwise.

These matrices play important roles in numerical algorithms.

© Walter Gander.

James Wallace Givens, a former assistant to von Neumann and con-
sidered one of the fathers of the twentieth-century American numerical
analysis, made major contributions to numerical matrix computation.

Example The matrix A = 1
2

[
1 − i 1 + i

1 + i 1 − i

]
∈M2×2(C) is unitary. This matrix has

important applications in the modeling of quantum computing, where it is often
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denoted by
√

NOT , since A2 =
[

0 1
1 0

]
represents the negation operator in this

context.

Example It is easy to show that Ab =
[√

1 + b2 bi

−bi
√

1 + b2

]
∈ M2×2(C) satisfies

AbA
T
b = I for any real number b, but, except for the case of b = 0, it is not unitary.

Unitarily-similar matrices are surely similar, but the converse is not true.

Example The matrices

[
3 1

−2 0

]
and

[
1 1
0 2

]
in M2×2(R) are similar but not uni-

tarily similar, as we can see from Proposition 18.2.

Proposition 18.3 (Schur’s Theorem) If n is a positive integer, then every
matrix in Mn×n(C) is unitarily similar to an upper-triangular matrix.

Proof We will proceed by induction on n. For n = 1, the result is trivial since every
1 × 1 matrix is upper triangular. Assume now that n > 1 and that the result has
been established for M(n−1)×(n−1)(C). Let A = [aij ] ∈ Mn×n(C). Since we are
working over C, we know that the characteristic polynomial of A is completely
reducible, and so A has an eigenvalue, call it c1. Corresponding to that eigenvalue,

we have a normal eigenvector v1 =
⎡
⎢⎣

d1
...

dn

⎤
⎥⎦ in which we can assume that d1 ∈ R.

We now are able to construct a basis {v1, . . . , vn} for Cn to which we can apply the
Gram–Schmidt procedure, and thus assume that it is in fact an orthonormal basis
(the vector v1 does not change, since it was assumed to be normal to begin with).
The matrix P1, the columns of which are these vectors, is therefore unitary. Now

set A1 = P −1
1 AP1. It is easy to see that the first column of A1 is of the form

⎡
⎢⎢⎢⎣

c1
0
...

0

⎤
⎥⎥⎥⎦

so we can write A1 in block form as

[
c1 x

O A2

]
, where A2 ∈ M(n−1)×(n−1)(C).

By the induction hypothesis, there is a unitary matrix Q ∈ M(n−1)×(n−1)(C) such

that Q−1A2Q is an upper-triangular matrix. Now set P2 =
[

1 O

O Q

]
. Then P2 is

a unitary matrix in Mn×n(C) and P −1
2 P −1

1 AP1P2 =
[
c1 y

O Q−1A2Q

]
is an upper

triangular matrix in Mn×n(C). Since P1P2 is again unitary, we are done. �
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If we are working over R, then a matrix A representing a unitary automorphism
of Rn satisfies A−1 = AT . Such a matrix is called an orthogonal matrix. It is clear
that the matrix I is orthogonal and that A−1 is orthogonal whenever A is orthogonal.
If A and B are orthogonal matrices then (AB)−1 = B−1A−1 = BT AT = (AB)T

and so AB is also orthogonal. As an immediate consequence of the definition, we
see that A is orthogonal if and only if the set of columns (resp., rows) of A is an
orthonormal basis of Rn (resp., M1×n(R)) endowed with the dot product. It is also
clear that A is orthogonal if and only if AT is orthogonal.

Example Permutation matrices, which we considered earlier, are clearly orthogonal.

Example The matrices

[
cos(t) sin(t)

− sin(t) cos(t)

]
and

[
cos(t) sin(t)

sin(t) − cos(t)

]
are orthogonal

for every t ∈ R, and one can show that these are the only orthogonal matrices in

M2×2(R). Indeed, suppose that the matrix

[
a11 a12
a21 a22

]
∈ M2×2(R) is orthogonal.

Then a2
11 + a2

12 = 1 = a2
21 + a2

22 so −1 ≤ a11 ≤ 1. Hence there exists a real number
t such that a11 = cos(t). Then a2

12 = 1 − a2
11 = 1 − cos2(t) = sin2(t) and so a12 =

± sin(t). Also, a11 = cos(−t) and sin(−t) = − sin(t). Thus, replacing t by −t if
necessary we can assume that a11 = cos(t) and a12 = sin(t). Similarly, there exists
an angle s such that a22 = cos(s) and a21 = sin(s). Matrices of the first type are just
Givens rotation matrices; matrices of the second type are known as Jacobi reflection
matrices.

Since 0 = a11a21 + a12a22 = cos(t) sin(s) + sin(t) cos(s) = sin(t + s), we see

that t + s = 0 or t + s = π . If t + s = 0, we obtain A =
[

cos(t) sin(t)

− sin(t) cos(t)

]
. If

t + s = π , then s = π − t and so A =
[

cos(t) sin(t)

sin(t) − cos(t)

]
since sin(t) = sin(π − t)

and − cos(t) = cos(π − t).
One can also show that every orthogonal matrix in M3×3(R) is similar to a

matrix of the form

⎡
⎣ cos(t) sin(t) 0

− sin(t) cos(t) 0
0 0 ±1

⎤
⎦ for some t ∈ R. More generally, if

n > 2 then every orthogonal matrix in Mn×n(R) is similar to a matrix in block
form [Dij ], where Dij = O if i 	= j and Dii is either 1, −1, or a 2 × 2 matrix of the

form

[
cos(t) sin(t)

− sin(t) cos(t)

]
.

Example Let n be a positive integer. If 0 ≤ c ≤ 1 is a real number, the matrix[
(
√

c)I (−√
1 − c)I

(
√

1 − c)I (
√

c)I

]
∈ M2n×2n(R) is orthogonal, where I denotes the

identity matrix in Mn×n(R).

Example Let n be a positive integer and let V = R
n, on which we have defined

the dot product. If v ∈ V is a normal vector, then the matrix A = I − 2(v ∧ v) is a
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Householder matrix. These matrices are clearly symmetric. Moreover, if A = I −
2(v∧v) then AT A = A2 = (I −2[v∧v])2 = I −4v(vT v)vT +4v(vT v)vT = I and
so A is orthogonal. Householder matrices have important uses in numerical analysis.
We should also mention that if u 	= v are vectors in V satisfying ‖u‖ = ‖v‖, then
the vector w = ‖v − u‖−1(v − u) defines a Householder matrix A = I − 2(w ∧ w)

satisfying Au = Av. Since a Householder matrix is totally determined by one vector,
it is easy to store in a computer. One of the important uses of Householder matrices is
to compute QR-decompositions of matrices in a manner far more stable numerically
than via the use of the Gram–Schmidt method.

Alston Householder, a twentieth-century American mathematician,
was among the pioneer researchers of the numerical analysis of ma-
trices using computers, who developed many of the basic algorithms
used in this field.

The complex analog of Householder matrices are matrices of the form I − 2wwH ,
where w ∈ C

n. Such matrices are Hermitian and unitary and, too, have an important
role in numerical computation.

Example A general method for the construction of orthogonal matrices, due to the
contemporary American mathematician George W. Soules, is given as follows: Let
n > 1 be an integer and let w1 ∈R

n be a normal vector all of the entries of which are

all positive. Let 1 ≤ k < n and write w1 =
[
u

v

]
, where u ∈ R

k and v ∈ R
n−k . Set

a = ‖v‖
‖u‖ and w2 =

[
au

−a−1v

]
. Then it is easy to see that w2 is normal and orthogonal

to w1. Moreover, by further partitioning the vectors au and −a−1v, we can even-
tually construct a mutually-orthogonal normal vectors w1,w2, . . . ,wn. The matrix
with these vectors as columns is then orthogonal.

Notice that if F is either R or C, and if A ∈ Mn×n(F ) is a unitary ma-
trix the columns of which are v1, . . . , vn, then the identity AAH = I implies that
{v1, . . . , vn} is an orthonormal set of vectors in Fn, on which we have the dot prod-
uct, and hence it is a basis for this space. Conversely, if {v1, . . . , vn} is an orthonor-
mal basis of Fn then the matrix the columns of which are these vectors is unitary.
Similarly, a matrix in Mn×n(R) is orthogonal if and only if the set of its columns
forms an orthonormal basis for Rn with the dot product. Another way of putting this
is that a matrix in Mn×n(R) the columns of which are v1, . . . , vn is orthogonal if
and only if

∑n
i=1 vi ∧ vi = I .
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Proposition 18.4 Let V be an inner product space of finite dimension n

over R. Let α be a unitary automorphism of V , which is represented by a
matrix A ∈ Mn×n(R) with respect to a given orthonormal basis of V . Then
|A| = ±1.

Proof We know that if α is represented by A = [aij ] with respect to the given basis,
then α∗ is represented by AT . From Proposition 18.1, we deduce that AAT = I and
so |A|2 = |A| · |AT | = |I | = 1, which in turn implies that |A| = ±1. �

Example The converse of Proposition 18.4 is false, even for matrices the columns

of which are orthogonal. Thus, the matrix

[
0.25 0

0 4

]
has determinant 1, but does

not represent a unitary automorphism of R2.

The orthogonal matrices in Mn×n(R) having determinant equal to 1 are known
as the special orthogonal matrices, and the set of all such matrices is denoted by
SO(n). This subset of Mn×n(R) is clearly closed under taking products as well as
taking inverses, since if A ∈ SO(n) then |A−1| = |AT | = |A| = 1. If A ∈ Mn×n(R)

is a special orthogonal matrix, where n is an odd integer, then 1 ∈ spec(A). To see
this, we note that |A − 1I | = |A − I | = |A − AAT | = |A| · |I − AT | = |I − AT | =
|I −A| and, since n is odd, |I −A| = (−1)n|A−I |. Thus we must have |A−I | = 0,
and so 1 ∈ spec(A).

Example We have already noted that the only orthogonal matrices in M2×2(R) are

of the form

[
cos(t) sin(t)

− sin(t) cos(t)

]
or

[
cos(t) sin(t)

sin(t) − cos(t)

]
for some t ∈ R. Matrices

of the first type are special, whereas matrices of the second type are not.

Example The matrix

⎡
⎢⎢⎢⎢⎣

0 −1 0 0 0
1 0 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1

⎤
⎥⎥⎥⎥⎦ ∈ M5×5(R) is special orthogonal.

Let V be an inner product space. An endomorphism α ∈ End(V ) is normal if
and only if α∗ exists and satisfies α∗α = αα∗. From this definition, it is clear that α

is normal if and only if α∗ is normal. Clearly, selfadjoint endomorphisms of V are
normal, as are unitary automorphisms.

Example If a, b ∈R satisfy b 	= 0 and a2 + b2 	= 1, then the automorphism α of R2

defined by

[
c

d

]
�→
[
ac + bd

ad − bc

]
is normal but neither unitary nor selfadjoint.
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Example If 0 	= a, b ∈R then the automorphism α of C2 defined by
[

c

d

]
�→
[
c + id

c − id

]

is normal but neither unitary and nor selfadjoint.

Proposition 18.5 Let V be an inner product space. An endomorphism
α ∈ End(V ) for which α∗ exists is normal if and only if ‖α(v)‖ = ‖α∗(v)‖
for all v ∈ V .

Proof If α is normal and v ∈ V , then ‖α(v)‖2 = 〈α(v),α(v)〉 = 〈v,α∗α(v)〉 =
〈v,αα∗(v)〉 = 〈v,α∗∗α∗(v)〉 = 〈α∗(v),α∗(v)〉 = ‖α∗(v)‖2 and so ‖α(v)‖ =
‖α∗(v)‖. Conversely, assume that this condition holds. Then for each v ∈ V we have

〈
(αα∗ − α∗α)(v), v

〉 = 〈αα∗(v), v
〉− 〈α∗α(v), v

〉
= 〈α∗(v),α∗(v)

〉− 〈α(v),α(v)
〉= 0.

But αα∗ − α∗α is selfadjoint and so, by Proposition 17.3, we see that
αα∗ − α∗α = σ0, and so αα∗ = α∗α. �

As a consequence of Proposition 18.5 we see that if α is a normal endomor-
phism of an inner product space V and if v ∈ V then v ∈ ker(α) ⇔ ‖α(v)‖ = 0 ⇔
‖α∗(v)‖ = 0 ⇔ v ∈ ker(α∗) and so ker(α) = ker(α∗).

We now take a short look at the extensive theory of eigenvalues of normal
endomorphisms of inner product spaces. We will restrict our attention to finite-
dimensional spaces, since the theory for infinite-dimensional spaces requires ad-
ditional topological assumptions.

With kind permission of the American Mathematical Society.

The study of eigenvalues of normal and selfadjoint endomorphisms of
inner product spaces was developed simultaneously by the American
mathematician Marshall Stone and by John von Neumann, inspired
by problems in quantum theory.

Proposition 18.6 Let V be an inner product space and let α ∈ End(V ) be
normal. Then every eigenvector of α is also an eigenvector of α∗ and if c is
an eigenvalue of α then c is an eigenvalue of α∗.
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Proof If v ∈ V then, as we have noted, ‖α(v)‖ = ‖α∗(v)‖. For a scalar c, we see
that

(α − cσ1)
∗(α − cσ1) = (α∗ − cσ1)(α − cσ1) = (α − cσ1)(α

∗ − cσ1)

= (α − cσ1)(α − cσ1)
∗,

and so α − cσ1 is also normal. Thus, ‖(α − cσ1)(v)‖ = ‖(α∗ − cσ1)(v)‖ for v ∈ V

and so, in particular, we see that v ∈ ker(α − cσ1) if and only if v ∈ ker(α∗ − cσ1).
In other words, v is an eigenvector of α associated with the eigenvalue c if and only
if it is an eigenvector of α∗ associated with the eigenvalue c. �

Since α∗∗ = α for any endomorphism α of V , we see from Proposition 18.6 that
if α is normal then a scalar c is an eigenvalue of α if and only if c is an eigenvalue
of α∗.

Another interesting consequence of Proposition 18.6 is the following: Let V

be a finitely-generated inner product space and let α ∈ Aut(V ) be unitary. Then
α is surely normal. If c ∈ spec(α) then c 	= 0 since α is an automorphism. If v

is an eigenvector associated with c then v = (α∗α)(v) = α∗(cv) = cα∗(v) and so
α∗(v) = c−1v. This shows that c−1 is an eigenvalue of α∗ and hence, by Proposi-
tion 18.6, c−1 ∈ spec(α).

Example In Proposition 17.5, we saw that if α is a selfadjoint endomorphism of an
inner product space V finitely generated over R, then spec(α) 	=∅. This is not nec-
essarily true for normal endomorphisms of inner product spaces which are not self-
adjoint. For example, let V = R

2 together with the dot product, and if α ∈ End(V )

is defined by α :
[
a

b

]
�→
[−b

a

]
, then we have already seen that spec(α) = ∅. One

can easily check that α is normal but not selfadjoint.

Proposition 18.7 Let V be an inner product space finitely generated over C
and let α ∈ End(V ). Then α is normal if and only if it is orthogonally diago-
nalizable.

Proof Assume that α is normal. We will proceed by induction on n = dim(V ).
First, assume that n = 1. Since we are working over C, we know that spec(α) 	=
∅ and so there exists a normal eigenvector v1 of α. Then V = Cv1 and we are
done. Now assume that n > 1 and that the result has been proven for subspaces of
dimension n − 1. Again, there exists a normal eigenvector v1 of α. Set W = Cv1.
The subspace W of V is invariant under α, and so, by Proposition 18.6, it is also
invariant under α∗. Therefore, W⊥ is invariant under α∗∗ = α. The restriction of
α to W⊥ is a normal endomorphism, the adjoint of which is the restriction of α∗
to W⊥. By induction, we know that there exists an orthonormal basis {v2, . . . , vn}
composed of eigenvectors of α, and so {v1, . . . , vn} is the basis of V we are seeking.
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Conversely, assume that there exists an orthonormal basis of B = {v1, . . . , vn}
composed of eigenvectors of α. Then ΦBB(α) = [aij ] is a diagonal matrix satisfying
the condition that each aii is an eigenvalue of α. Moreover, ΦBB(α∗) = ΦBB(α)H

and this too is a diagonal matrix. Since diagonal matrices commute, we see that
αα∗ = α∗α, and so α is normal. �

Note that Proposition 18.7 does not imply that if V is an inner product space
finitely generated over C and if α ∈ End(V ) is normal, then every basis B of V

composed of eigenvectors of α is necessarily orthonormal or that its elements are
even necessarily mutually orthogonal, merely that one such basis exists.

Example Let α be the endomorphism of C4 represented with respect to the canon-

ical basis by the matrix A =

⎡
⎢⎢⎣

1 2 0 0
−2 1 0 0

0 0 3 −1
0 0 1 3

⎤
⎥⎥⎦. One easily checks that AAH =

AH A, and so α is a normal automorphism of C4. The characteristic polynomial of
A is

X4 − 8X3 + 27X3 − 50X + 50 = (X2 − 6X + 10
)(

X2 − 2X + 5
)
,

and so spec(α) = {3 ± i,1 ± 2i}. The set
⎧⎪⎪⎨
⎪⎪⎩

1√
2

⎡
⎢⎢⎣

−i

1
0
0

⎤
⎥⎥⎦ ,

1√
2

⎡
⎢⎢⎣

i

1
0
0

⎤
⎥⎥⎦ ,

1√
2

⎡
⎢⎢⎣

0
0
1
−i

⎤
⎥⎥⎦ ,

1√
2

⎡
⎢⎢⎣

0
0
1
i

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

is an orthonormal basis for C4 composed of eigenvectors of α.

Proposition 18.8 Let V be a finitely-generated inner product space. Then the
following conditions on a projection α ∈ End(V ) are equivalent:
(1) α is normal;
(2) α is selfadjoint;
(3) ker(α) = im(α)⊥.

Proof (1) ⇒ (2): From (1) we know that ‖α(v)‖ = ‖α∗(v)‖ for all v ∈ V . In par-
ticular, α(v) = 0V if and only if α∗(v) = 0V so that ker(α) = ker(α∗). If v ∈ V and
w = v − α(v) then α(w) = α(v) − α2(v) = α(v) − α(v) = 0V and so α∗(w) = 0V .
Therefore, α∗(v) = α∗α(v) for all v ∈ V , whence α∗ = α∗α. This implies that
α = α∗∗ = (α∗α)∗ = α∗α∗∗ = α∗α = α∗, which proves (2).

(2) ⇒ (3): If v,w ∈ V then, from (2), we see that 〈α(v),w〉 = 〈v,α(w)〉. In
particular, if v ∈ ker(α) then 〈v,α(w)〉 = 0 for all w ∈ V , which is to say that
v ∈ im(α)⊥. Conversely, if v ∈ im(α)⊥ then 〈v,α(w)〉 = 0 for all w ∈ V , which
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implies that α(v) is orthogonal to every element of V . Therefore, α(v) = 0V and so
v ∈ ker(α). This proves (3).

(3) ⇒ (1): Let v,w ∈ V . Since α is a projection, we have v − α(v) ∈ ker(α). It
is also clear that α(w) ∈ im(α). Therefore,

0 = 〈v − α(v),α(w)
〉= 〈v,α(w)

〉− 〈α(v),α(w)
〉= 〈v,α(w)

〉− 〈v,α∗α(w)
〉
,

and since this is true for all v,w ∈ V , we have α = α∗α. This implies that α = α∗ is
selfadjoint and therefore surely normal, proving (1). �

We note that if V is a finitely-generated inner product space and if α ∈ End(V )

is normal, then, by Propositions 16.5, 16.7 and 18.5, we have V = ker(α) ⊕ im(α),
and, in particular, {im(α), ker(α)} is an independent set of subspaces of V . More-
over, v ⊥ v′ for all v ∈ ker(α) and v′ ∈ im(α). While the direct-sum decomposition
is valid for any projection, it is the normality which ensures the orthogonality.

Proposition 18.9 Let V be a finitely-generated inner product space. Let
W1, . . . ,Wn be subspaces of V and, for each 1 ≤ i ≤ n, let αi be the projec-
tion of V onto the subspace Wi coming from the decomposition V = Wi ⊕W⊥

i .
Then the following conditions are equivalent:
(1) V =⊕n

i=1 Wi and W⊥
h =⊕j 	=h Wj for all 1 ≤ h ≤ n;

(2) α1 + · · · + αn = σ1 and αiαj = σ0 for all i 	= j ;
(3) If Bi is an orthonormal basis of Wi for each i, then B =⋃n

i=1 Bi is an
orthonormal basis of V .

Proof This has essentially already been established when we talked about the de-
composition of a vector space into a direct sum of subspaces. �

Proposition 18.10 Let F be either R or C and let V be a finitely-generated
inner product space over F . If p(X) ∈ F [X] and if α is a normal endomor-
phism of V , then p(α) is a normal endomorphism of V .

Proof If p(X) =∑n
i=0 aiX

i . Then p(α) =∑n
i=0 aiα

i and p(α)∗ =∑n
i=0 ai(α

∗)i .
Since αα∗ = α∗α, it follows from the definition of the product that p(α)p(α)∗ =
p(α)∗p(α). Therefore, p(α) is a normal endomorphism of V . �

Proposition 18.11 Let V be a finitely-generated inner product space and let
α be a normal endomorphism of V . If the minimal polynomial of α is com-
pletely reducible, then it does not have multiple roots.
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Proof Let p(X) be the minimal polynomial of α, which we assume is completely
reducible. Assume that there exists a scalar c and a polynomial q(X) such that
p(X) = (X − c)2q(X). Since p(α) = σ0, we have (α − cσ1)

2q(α) = σ0 and so
ker((α − cσ1)

2q(α)) = V . By Proposition 18.10, we know that β = α − cσ1 is a
normal endomorphism of V . Let v ∈ V and let w = q(α)(v). Then β2(w) = 0V and
so β(w) ∈ im(β) ∩ ker(β) = {0V }. Thus we see that βq(α)(v) = 0V for all v ∈ V

and hence α annihilates the polynomial (X − c)q(X), contradicting the minimality
of p(X). �

Proposition 18.12 (Spectral Decomposition Theorem) Let V be an inner
product space finitely generated over C and let α be a normal endomorphism
of V . Then there exist scalars c1, . . . , cn and projections α1, . . . , αn of V sat-
isfying:
(1) α = c1α1 + · · · + cnαn;
(2) σ1 = α1 + · · · + αn;
(3) αhαj = σ0 for all h 	= j .
Moreover, these cj and αj are unique. The cj are precisely the distinct eigen-
values of α and each αj is the projection of V onto the eigenspace Wj associ-
ated with cj coming from the decomposition V = Wj ⊕ W⊥

j .

Proof Let p(X) be the minimal polynomial of α, which we will write in the form
p(X) = ∏n

i=1(X − ci), where the ci are complex numbers which, by Proposi-
tion 18.11, are distinct. For each 1 ≤ j ≤ n, let pj (X) be the j th Lagrange in-
terpolation polynomial determined by the ci .

Let f (X) be a polynomial of degree at most n− 1. Then the polynomial f (X)−∑n
i=1 f (ci)pi(X) is of degree at most n−1 and has n distinct roots c1, . . . , cn. Thus

it must be the 0-polynomial and so f (X) =∑n
i=1 f (ci)pi(X). In particular, we see

that 1 =∑n
i=1 pi(X) and X =∑n

i=1 cipi(X). Set αj = pj (α). Then σ1 =∑n
i=1 αi

and α =∑n
i=1 ciαi . Note that αj 	= σ0 since αj = pj (α) and the degree of pj (X)

is less than the degree of the minimal polynomial of α. Moreover, if h 	= j then
there exists a polynomial u(X) ∈ C[X] satisfying αhαj = u(α)p(α) = u(α)σ0 =
σ0. Thus we see that for all 1 ≤ j ≤ n we have αj = αjσ1 =∑n

i=1 αjαi = α2
j and

so each αj is a projection. Thus we see that {im(αj ) | 1 ≤ j ≤ n} is an independent
set of subspaces of V .

Since the minimal polynomial and the characteristic polynomial of α have the
same roots, we know that spec(α) = {c1, . . . , cn}. To show that Wh = im(αh), we
have to prove that a vector v belongs to im(αh) if and only if α(v) = chv. In-
deed, if α(v) = chv then ch[∑n

j=1 αj (v)] = chv = α(v) = ∑n
j=1(cjαj )(v) and

so
∑n

j=1[(ch − cj )αj ](v) = 0V . Thus, for all j 	= h, we have αj (v) = 0V and so
v = αh(v) ∈ im(αh).

Finally, we note that αh is the projection coming from the decomposition
V = Wj ⊕ W⊥

j since αh is a polynomial in α and hence normal and so the result
follows from the remark after Proposition 18.8. �
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Note that we could have deduced Proposition 18.12 directly from Proposi-
tion 18.7. What is important in the above proof is the explicit construction of the
projection maps as polynomials in α.

If α = ∑n
i=1 ciαi is as in Proposition 18.12, then αk = (

∑n
i=1 ciαi)

k =∑n
i=1 ck

i αi for any positive integer k, and from this we see that if p(X) ∈ C[X]
then p(α) =∑n

i=1 p(ci)αi .

Proposition 18.13 Let V be an inner product space finitely generated over C.
A normal endomorphism α of V is positive definite if and only if each of its
eigenvalues is positive.

Proof If α is positive definite then, by Proposition 17.11, each of its eigenvalues
is positive. Conversely, assume each of the eigenvalues of α is positive. By Propo-
sition 18.12, we write α =∑n

i=1 ciαi , where the ci are the eigenvalues of α and
the αi are projections in End(V ) satisfying αiαj = σ0 for i 	= j . If 0V 	= v ∈ V

then 〈α(v), v〉 =∑n
i=1
∑n

j=1 ci〈αi(v),αj (v)〉 =∑n
i=1 ci‖αi(v)‖2 > 0 and so α is

positive definite. �

Example Let V = R
3. For each a ∈ R, let αa ∈ End(V ) be the normal endo-

morphism of V represented with respect to the canonical basis by the matrix⎡
⎣1 a a

a 1 a

a a 1

⎤
⎦. Then spec(α) = {2a + 1,1 − a} and so, by Proposition 18.13, α is

positive definite precisely when −1 < 2a < 2.

As a consequence of Proposition 18.13 and the comments before it, we see that
if α is a positive-definite endomorphism of a finitely-generated inner product space
V over C then there exists an endomorphism

√
α of V satisfying (

√
α)2 = α. This

endomorphism is defined by
√

α =∑n
i=1(

√
ci)αi , where the ci are the eigenvalues

of α, and where the αi are defined as in Proposition 18.12. In particular, if β is an
automorphism of V then, by Proposition 17.10, we can talk about

√
β∗β , which is

also positive definite by Proposition 18.13.

Proposition 18.14 Let V be an inner product space finitely generated over C
and let α ∈ Aut(V ). Then there exists a unique positive-definite automorphism
θ of V and a unique unitary automorphism ψ of V satisfying α = ψθ .

Proof By Proposition 17.10, we know that the automorphism α∗α of V is posi-
tive definite and so we can set θ = √

α∗α. Let ϕ = θα−1. Then ϕ∗ = (α−1)∗θ∗ =
(α∗)−1θ so ϕ∗ϕ = (α∗)−1θθα−1 = (α∗)−1α∗αα−1 = σ1, proving that ϕ is unitary
by Proposition 18.1, and hence belongs to Aut(V ). If we now define ψ = ϕ−1, we
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see that α = ψθ . Moreover, we note that θ ∈ Aut(V ) since θ = ϕα. To prove unique-
ness, assume that ψθ = ψ ′θ ′, where ψ and ψ ′ are unitary automorphisms of V and
where θ and θ ′ are positive-definite automorphisms of V . Then ψ2 = ψθ∗θψ =
ψ ′(θ ′)∗θ ′ψ ′ = (ψ ′)2. Since ψ is positive definite, this implies that ψ = ψ ′ and so,
since ψ is an automorphism, we have θ = ψ−1ψθ = ψ−1ψθ ′ = θ ′. �

The representation of an automorphism α of an inner product space finitely gen-
erated over C in the form given in Proposition 18.14 is sometimes called the polar
decomposition of α.1 If we move over to matrices, we see that the polar decom-
position of a nonsingular matrix A ∈ Mn×n(C) is of the form A = UM , where U

is a unitary matrix and M is a positive-definite Hermitian matrix. Similarly, there
exists a unitary matrix U ′ and a Hermitian matrix M ′ satisfying AH = U ′M ′ and
so A = M ′(U ′)H , where (U ′)H is again unitary. In the case we are working over R,
the matrix U is orthogonal, and M is symmetric and positive definite. Because po-
lar decompositions are important in applications, several iterative algorithms exist
to compute them.

Example If a and b are nonzero real numbers, then the polar decomposition of the

matrix

[
a −b

b a

]
is

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
r 0
0 r

]
, where θ = arctan( b

a
) and r =

√
a2 + b2.

Proposition 18.15 (Singular Value Decomposition Theorem) Let V and
W be inner product spaces of finite dimensions k and n, respectively, and
let α ∈ Hom(V ,W). Then there exists an integer t ≤ min{k,n}, together
with positive real numbers c1 ≥ c2 ≥ · · · ≥ ct and with orthonormal bases
{v1, . . . , vk} of V and {w1, . . .wn} of W satisfying

α(vi) =
{

ciwi if 1 ≤ i ≤ t,

0W otherwise

and

α∗(wi) =
{

civi if 1 ≤ i ≤ t,

0V otherwise.

Proof If α is the 0-map, then the result is immediate, so assume that is not
the case. We note that β = α∗α is a selfadjoint endomorphism of V and so,
by Proposition 17.7, it is orthogonally diagonalizable. Hence V has an orthonor-
mal basis {v1, . . . , vk} composed of eigenvectors of β , where each vi is associ-
ated with an eigenvalue bi . By Proposition 17.10, we know that each bi belongs

1Polar decompositions were first studied by the French engineer Léon Autonne at the beginning
of the twentieth century.
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to R. Moreover, for each i we note that bi = bi〈vi, vi〉 = 〈bivi, vi〉 = 〈β(vi), vi〉 =
〈α(vi), α(vi)〉 ≥ 0. Indeed, renumbering if necessary, we can assume that there ex-
ists an integer t ≤ k such that b1 ≥ b2 ≥ · · · ≥ bt > 0 while bt+1 = · · · = bk = 0.
For each 1 ≤ i ≤ t , set ci = √

bi and let wi = c−1
i α(vi) ∈ W . If i 	= j then

〈wi,wj 〉 = (cicj )
−1〈α(vi), α(vj )〉 = (cicj )

−1〈β(vi), vj 〉 = (cicj )
−1bi〈vi, vj 〉 = 0

while, for each 1 ≤ i ≤ t , we have 〈wi,wi〉 = c−2
i 〈α(vi), α(vi)〉 = c−2

i 〈β(vi), vi〉 =
c−2
i 〈bivi, vi〉 = 〈vi, vi〉 = 1. Thus we see that the set {w1, . . . ,wt } is orthonormal.

Moreover, for each 1 ≤ i ≤ t we have ‖α(vi)‖2 = bi so ‖α(vi)‖ = ci and α∗(wi) =
α∗(c−1

i α(vi)) = c−1
i α∗α(vi) = c−1

i β(vi) = c−1
i bivi = civi . For t + 1 ≤ i ≤ k we

have α∗α(vi) = β(vi) = 0V and so 0 = 〈β(vi), vi〉 = 〈α(vi), α(vi)〉, which implies
that α(vi) = 0W . Thus vi ∈ ker(α) for each t + 1 ≤ i ≤ k.

We are therefore left with the matter of defining wt+1, . . . ,wn in the case t < n.
By Proposition 16.18, we know that ker(α∗) = im(α)⊥ and so, if we pick an or-
thonormal basis {wi+1, . . . ,wn} for ker(α∗) we see that {w1, . . . ,wn} is an orthonor-
mal basis for W having the desired properties. �

The first version of the Singular Value Decom-
position Theorem was proven by the nineteenth-
century Italian mathematician Eugenio Beltrami;
it was subsequently extended by many others, in-
cluding Camille Jordan and Sylvester. Schmidt
extended this theorem to infinite-dimensional
spaces. Effective algorithms for computation of
singular value decompositions were developed by

the twentieth-century American computer scientist Gene H. Golub, along with William
Kahan.

The scalars c1 ≥ c2 ≥ · · · ≥ ct given in the Proposition 18.15 are called the sin-
gular values of the linear transformation α. The number c1/ct , called the spectral
condition number, is used as a measure of the numerical instability of the matrix
representing α∗α ∈ End(V ) with respect to the given basis.

If we consider the special case of a linear transformation α : Ck → C
n repre-

sented with respect to the canonical bases by a matrix A ∈ Mn×k(C), the Singular
Value Decomposition Theorem says that there exist unitary matrices P ∈ Mn×n(C)

and Q ∈ Mk×k(C) such that A can be written as P

[
D O

O O

]
QH , where D ∈

Mt×t (R) is a diagonal matrix having the singular values of α on the diagonal.
These singular values are precisely the square roots of the eigenvalues of AH A. The
columns of Q form an orthonormal basis for Ck consisting of eigenvectors of AH A,
and the columns of P form an orthonormal basis for Cn.

If α : Rk → R
n then, of course, the matrices P and Q are orthogonal and

A = P

[
D O

O O

]
QT .
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Example The matrix A = 1
10

⎡
⎣20 20 −20 20

1 17 1 −17
18 6 18 −6

⎤
⎦ can be written as a product

P

⎡
⎣4 0 0 0

0 3 0 0
0 0 2 0

⎤
⎦Q, where

P = 1

5

⎡
⎣5 0 0

0 3 −4
0 4 3

⎤
⎦ and Q = 1

2

⎡
⎢⎢⎣

1 1 −1 1
1 1 1 −1
1 −1 1 1
1 −1 −1 −1

⎤
⎥⎥⎦

are orthogonal and where the singular values of A are 4,3,2.

Singular value decompositions have many applications, and play important roles
in the mathematics of optimization, data compression, population genetics, and im-
age processing. They are especially useful since accurate and relatively-efficient
algorithms for computing these decompositions are readily available in many com-
mon linear-algebra software packages. In particular, in many applications one needs
to compute the singular value decomposition of a product of a large number of ma-
trices (often over 1,000) and there exist algorithms to do that without having to
multiply out the matrices explicitly.

Exercises

Exercise 1108
Let A ∈ Mn×n(C) be similar to a unitary matrix. Is A−1 necessarily similar
to AH ?

Exercise 1109
Let n be a positive integer and let A ∈Mn×n(C) be a nonsingular matrix having
a singular value decomposition A = PDQH , where P and Q are unitary matri-

ces and D =
⎡
⎢⎣

c1 O

.. .

O cn

⎤
⎥⎦ is a diagonal matrix with c1 ≥ · · · ≥ cn. If B is a

singular matrix, show that ‖A − B‖ ≥ cn, where ‖ · ‖ denotes the spectral norm.

Exercise 1110
Let n > 1 be an integer and let V be the subspace of C[X] consisting of all
polynomials of degree at most n. Let 0 	= c ∈ C and let α be the endomorphism
of V defined by α : p(X) �→ p(X + c). Is it possible to define an inner product
on V relative to which α is normal?
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Exercise 1111
Let a, b, c ∈C. Find the set of all triples (x, y, z) of complex numbers satisfying

the condition that the matrix

⎡
⎣a x y

0 b z

0 0 c

⎤
⎦ represents a normal endomorphism

of C3, endowed with the dot product, with respect to the canonical basis.

Exercise 1112
Show that any Givens rotation matrix in M2×2(R) can be written as the product
of two Jacobi reflection matrices.

Exercise 1113
Let n be a positive integer. A matrix A ∈ Mn×n(C) is normal if and only if
AH A = AAH . Show that every normal upper-triangular matrix is a diagonal ma-
trix.

Exercise 1114
Let n be a positive integer and let A ∈ Mn×n(R). Then A is normal if and only
if AT A = AAT . If A is normal, is eA normal? Is the converse of this statement
true?

Exercise 1115
Let V = R

2, together with the dot product. Show that a matrix in M2×2(R) is of
the form ΦBB(α) for some normal endomorphism α of V which is not selfadjoint

if and only if it is of the form

[
a −b

b a

]
for real numbers a and b 	= 0.

Exercise 1116
Let V be an inner product space finitely generated over R and let S be the set of
all isometries V . Is S an R-subalgebra of End(V )?

Exercise 1117
Let n be a positive integer and let V = C

n on which we have the dot product. If
α ∈ End(V ), let G(α) = {〈α(v), v〉 | ‖v‖ = 1}. For the special case n = 2, find
G(α) and G(β), where α is represented with respect to the canonical basis by

the matrix

[
1 0
0 0

]
and β is represented with respect to the canonical basis by

the matrix

[
0 2
0 0

]
.

Exercise 1118
Let V = R

3 on which we have the dot product, and let W be the space of all
polynomial functions in R

R of degree at most 2, on which we define the inner
product 〈f,g〉 = ∫ 1

0 f (x)g(x) dx. Let α ∈ Hom(V ,W) be defined by
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α

⎛
⎝
⎡
⎣a

b

c

⎤
⎦
⎞
⎠ : x �→ 1 + b

2
+ c

6
+ (b − c)x + cx2.

Is this linear transformation an isometry?

Exercise 1119
Let V be an inner product space and let α be an endomorphism of V satisfying
the condition that α∗α = σ0. Show that α = σ0.

Exercise 1120
Let V = R

3 with the dot product, and let α be the automorphism of V defined by

α :
⎡
⎣a

b

c

⎤
⎦ �→

⎡
⎣−c

−b

−a

⎤
⎦. Is α unitary?

Exercise 1121

Is the matrix

⎡
⎢⎢⎣

0 0 0 i

0 0 1 0
0 1 0 0
i 0 0 0

⎤
⎥⎥⎦ ∈ M4×4(C) unitary?

Exercise 1122
Find a real number a satisfying the condition that the matrix

a

⎡
⎣ −9 + 8i −10 − 4i −16 − 18i

−2 − 24i 1 + 12i −10 − 4i

4 − 10i −2 − 24i −9 + 8i

⎤
⎦ ∈ M3×3(C)

is unitary.

Exercise 1123
Find a real number a satisfying the condition that the matrix

1

24

⎡
⎢⎢⎣

12 6 − 12i 12 + 6i 6 − 6i

6 + 12i a 5i 3 + i

12 − 6i −5i a 1 − 3i

6 + 6i 3 − i 1 + 3i −22

⎤
⎥⎥⎦ ∈M4×4(C)

is unitary.

Exercise 1124
Given a real number a, check if the matrix[

− sin2(a) + i cos2(a) (1 + i) sin(a) cos(a)

(1 + i) sin(a) cos(a) − cos2(a) + i sin2(a)

]
∈ M2×2(C)

is unitary.
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Exercise 1125
Find all possible triples a, b, c of real numbers, if any exist, such that the matrix

1
3

⎡
⎣1 −2 2

2 −1 2
a b c

⎤
⎦ is orthogonal.

Exercise 1126

For which a ∈ R is 1
1+2a2

⎡
⎣ 1 −2a 2a2

2a 1 − 2a2 2a

2a2 2a 1

⎤
⎦ ∈ M3×3(R) an orthogonal

matrix?

Exercise 1127

Is the matrix 1
2

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎦ ∈ M4×4(R) orthogonal?

Exercise 1128

If v =
[

c

d

]
∈R

2, show that there exists an orthogonal matrix A ∈ M2×2(R) and

a real number b satisfying the condition that Av =
[
b

0

]
.

Exercise 1129
Let a and b be real numbers, not both equal to 0. Show that the matrix

1

a2 + ab + b2

⎡
⎣ ab a(a + b) b(a + b)

a(a + b) −b(a + b) ab

b(a + b) ab −a(a + b)

⎤
⎦ ∈ M3×3(R)

is orthogonal.

Exercise 1130

Find all a ∈ R such that the matrix

⎡
⎣ 2a −2a a

−2a −a 2a

a 2a 2a

⎤
⎦ ∈ M3×3(R) is orthog-

onal.

Exercise 1131

Let A =
⎡
⎣ 4 −1 1

−1 4 −1
1 −1 4

⎤
⎦ ∈ M3×3(R). Find an orthogonal matrix P such that

P T AP is a diagonal matrix.
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Exercise 1132

Let A =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ ∈ M4×4(R). Find an orthogonal matrix P such that

P T AP is a diagonal matrix.

Exercise 1133

Let n be a positive integer and let A and B be orthogonal matrices in Mn×n(R)

satisfying |A| + |B| = 0. Show that |A + B| = 0.

Exercise 1134

Let A = 1
2

⎡
⎢⎣

1 −1 2
√

2

2
√

2 2
√

2 0

−1 1 2
√

2

⎤
⎥⎦ ∈ M3×3(R). Find an infinite number of pairs

(P,Q) of orthogonal matrices such that PAQ is a diagonal matrix.

Exercise 1135

Find an a ∈R such that the matrix

⎡
⎢⎣

a − 4
5 0

4
5 a 0

0 0 1

⎤
⎥⎦ ∈M3×3(R) is orthogonal.

Exercise 1136

Let A,B ∈ Mk×n(R) be matrices such that the columns of each form orthonor-

mal bases for the same subspace W of Rk . Show that AAT = BBT .

Exercise 1137

Let A,B ∈ Mn×n(R) be orthogonal matrices. Is the matrix

[
A O

O B

]
∈

M2n×2n(R) necessarily orthogonal?

Exercise 1138

Let n be a positive integer and let A ∈ Mn×n(R) be a skew-symmetric matrix.

Show that (A − I )−1(A + I ) is an orthogonal matrix which does not have 1 as

an eigenvalue.

Exercise 1139

Find two distinct functions f1, f2 : R4
∖
⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

→R satisfying the condition

that
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fi

⎛
⎜⎜⎝

⎡
⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎦

⎞
⎟⎟⎠
⎡
⎢⎣

a2 + b2 − c2 − d2 2(bc − da) 2(bd − ca)

2(bc − da) a2 + b2 − c2 − d2 2(cd − ba)

2(bd − ca) 2(cd − ba) a2 + b2 − c2 − d2

⎤
⎥⎦

is always an orthogonal matrix.

Exercise 1140
Let n be a positive integer and let A,B ∈ Mn×n(R) satisfy A2 + B2 = I . Is the

matrix

[
A −B

B A

]
∈M2n×2n(R) necessarily orthogonal?

Exercise 1141
Let O 	= A ∈ M3×3(C) be a matrix satisfying adj(A) = AH . Show that A is a
unitary matrix having determinant 1.

Exercise 1142
Let n be a positive integer and let α be the endomorphism of C

n defined by
α : v �→ iv. Is α normal?

Exercise 1143
Let V be an inner product space and let α,β ∈ End(V ) be normal. Is βα neces-
sarily normal?

Exercise 1144
Let V be an inner product space finitely-generated over C and let α ∈ End(V )

satisfy the condition that every eigenvector of β = α + α∗ is also an eigenvector
of γ = α − α∗. Prove that α is normal.

Exercise 1145
Let α be the endomorphism of C2 represented with respect to the canonical basis

by the matrix A =
[

2 i

i 2

]
. Is α normal?

Exercise 1146
Let V be an inner product space over C and let α ∈ End(V ) be normal. If c ∈ C,
is the endomorphism α − cσ1 necessarily normal?

Exercise 1147
Let V be an inner product space finitely generated over C and let σ0 	= α ∈
End(V ) be normal. Show that α is not nilpotent.
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Exercise 1148
Let a, b ∈ R let α ∈ End(R3) be represented with respect to the canonical ba-

sis by

⎡
⎣ a −2 b

b a −2
−2 3 a

⎤
⎦. For which values of a and b is this endomorphism

normal?

Exercise 1149
Let α ∈ End(R3) be represented with respect to the canonical basis by the matrix

1
3

⎡
⎣14 2 14

2 −1 −16
14 −16 5

⎤
⎦. Show that α is selfadjoint and find an orthonormal basis

of R3 composed of eigenvectors of α.

Exercise 1150
Let α be the endomorphism of C3 represented with respect to the canonical basis

by the matrix

⎡
⎣ 6 −2 3

3 6 −2
−2 3 6

⎤
⎦. Show that α is normal and find an orthonormal

basis of C3 composed of eigenvectors of α.

Exercise 1151
Let V be an inner product space and let σ0 	= α ∈ End(V ) be a normal projection.
Show that ‖α(v)‖ ≤ ‖v‖ for all v ∈ V , with equality whenever v ∈ im(α). Give
an example where this does not hold for α which is not normal.

Exercise 1152
Let n be a positive integer and let F be any field. A matrix A ∈ Mn×n(F ) is
antiorthogonal if and only if A−1 = −AT . Give an example of an antiorthogonal
matrix in M2×2(GF(3)).

Exercise 1153

Let α ∈ End(R4) be defined by α :
⎡
⎢⎣

a1
a2
a3
a4

⎤
⎥⎦ �→

⎡
⎢⎣

a1
a2

a3 + a4
a4 − a3

⎤
⎥⎦. Show that α is normal

but not selfadjoint.

Exercise 1154
Let α : R2 → R

3 be the linear transformation represented with respect to the

canonical bases by the matrix A =
⎡
⎣1 1

2 2
2 2

⎤
⎦. Find the singular values of α.
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Exercise 1155
Let n be a positive integer, let F be a field, and let I be the identity matrix in
Mn×n(F ). A matrix A ∈ M2n×2n(F ) is symplectic if and only if

A

[
O I

−I O

]
AT =

[
O I

−I O

]
.

If B,C ∈ Mn×n(R), show that B + iC ∈ Mn×n(C) is unitary if and only if the

matrix

[
B −C

C B

]
∈M2n×2n(R) is symplectic.

Exercise 1156

For which c, d ∈ C is the matrix

⎡
⎣ 0 −1/

√
2 d

c 1/2 i/2
i/

√
2 −i/2 1/2

⎤
⎦ Hermitian? For

which values of c and d is it unitary?

Exercise 1157
A polynomial p(X) ∈ C[X] of degree n ≥ 0 is a reciprocal polynomial if and
only if p(X) = ±Xnp(X−1). Show that characteristic polynomials of orthogonal
matrices are reciprocal and that the set of all reciprocal polynomials, together
with the 0-polynomial, forms a subalgebra of C[X].

Exercise 1158
(Cayley representation) For any real number t , with cos(t) 	= −1, find a skew-
symmetric matrix A ∈ M2×2(R) satisfying

[
cos(t) sin(t)

− sin(t) cos(t)

]
= (I − A)(I + A)−1.

Exercise 1159
Let V be a vector space finitely generated over C and let α be an automorphism
of V having polar decomposition α = ψθ , where ψ is unitary and θ is positive
definite. Show that α is normal if and only if α = θψ .
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Let V and W be inner product spaces, and let α : V → W be a linear transforma-
tion. We know that there exists a linear transformation β : W → V satisfying the
condition that βα is the identity function on V and αβ is the identity function on
W if and only if α is an isomorphism; in this case, β = α−1. If both spaces are
finitely generated, we also know that such an isomorphism can exist only when
dim(V ) = dim(W). If α is not an isomorphism, it is possible to weaken the notion
of the inverse of a function. Given a linear transformation α : V → W , we say that
a linear transformation β : W → V is a Moore–Penrose pseudoinverse of α if and
only if the following conditions are satisfied:
(1) αβα = α and βαβ = β;
(2) The endomorphisms βα ∈ End(V ) and αβ ∈ End(W) are selfadjoint.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach (Penrose).

Eliakim Hastings Moore developed this construction in 1922, but it did
not receive much attention at the time; it was rediscovered independently
in 1955 by Sir Roger Penrose, a contemporary British applied mathe-
matician, best known for his collaboration with the physicist Stephen
Hawking.

Example The two parts of condition (2) in the definition of the Moore–Penrose
pseudoinverse are independent. To see this, consider the linear transformation

α :R3 → R
2 defined by α : v �→

[
1 2 3
0 1 0

]
v. For any c, d ∈ R, let β : R2 → R

3

be the linear transformation defined by β : w �→
⎡
⎣1 − 3c −2 − 3d

0 1
c d

⎤
⎦. Then one

can check that αβα = α and βαβ = β and that αβ = σ1 in End(R2). On the other

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_19, © Springer Science+Business Media B.V. 2012
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hand, βα : v �→
⎡
⎣1 − 3c −6c − 3d 3 − 9c

0 1 0
c 2c + d 3c

⎤
⎦v, and it is easy enough to choose

c and d so that this matrix is not symmetric and hence βα is not selfadjoint.

We will denote the Moore–Penrose pseudoinverse of α by α+. Of course, in order
to justify this notation we have to show that β exists and is unique, which we will
do for the case that V and W are finitely generated. We will begin with uniqueness.

Proposition 19.1 Let V and W be inner product spaces and let α : V → W

be a linear transformation. If α has a Moore–Penrose pseudoinverse, it must
be unique.

Proof Suppose that β,γ ∈ Hom(W,V ) are Moore–Penrose pseudoinverses of α.
Then β = βαβ = (βα)∗β = α∗β∗β = (αγ α)∗β∗β = (γ α)∗α∗β∗β = γ αα∗β∗β =
γ α(βα)∗β = γ αβαβ = γ αβ = γ αγαβ = γ (αγ )∗αβ = γ γ ∗α∗αβ = γ γ ∗α∗(αβ)∗
= γ γ ∗(αβα)∗ = γ γ ∗α∗ = γ (αγ )∗ = γ αγ = γ and so we have proven unique-
ness. �

In particular, if α : V → W is an isomorphism, then, by Proposition 19.1, we
have α+ = α−1. If α is the 0-function then so is α+.

Proposition 19.2 Let V and W be finitely-generated inner product spaces
and let α : V → Wbe a linear transformation.
(1) If α is a monomorphism, then α+ exists and equals (α∗α)−1α∗. Moreover,

α+α is the identity function on V ;
(2) If α is an epimorphism, then α+ exists and equals α∗(αα∗)−1. Moreover,

αα+ is the identity function on W .

Proof (1) From Proposition 16.20, we see that if α is a monomorphism then
α∗α ∈ Aut(V ), and so (α∗α)−1 exists. Set β = (α∗α)−1α∗. Then βα is the iden-
tity function on V , and so βα is a selfadjoint endomorphism of V which satis-
fies αβα = α and βαβ = β . Finally, (αβ)∗ = [α(α∗α)−1α∗]∗ = α[(α∗α)−1]∗α∗ =
α[(α∗α)∗]−1α∗ = α(α∗α)−1α∗ = αβ , and so αβ is also selfadjoint. Thus β = α+.

(2) From Proposition 16.20, we see that if α is an epimorphism then αα∗ ∈
Aut(W) and so (αα∗)−1 exists. As in (1), we see that α∗(αα∗)−1 = α+. �

Example Let α : R2 → R
3 be the linear transformation represented with respect to

the canonical bases by the matrix

⎡
⎣ 1 2

−1 3
2 4

⎤
⎦. This is a monomorphism and so, by
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Proposition 19.2, α+ exists and is represented with respect to the canonical bases

by the matrix 1
25

[
3 −10 6
1 5 2

]
.

Proposition 19.3 Let V and W be finitely-generated inner product spaces.
Then every α ∈ Hom(V ,W) has a Moore–Penrose pseudoinverse α+ ∈
Hom(W,V ).

Proof Let Y = im(α), and write α = μβ , where β : V → Y is an epimorphism
given by β : v �→ α(v), and μ : Y → W is the inclusion monomorphism. By Propo-
sition 19.2, we know that β+ ∈ Hom(Y,V ) and μ+ ∈ Hom(W,Y ) exist and satisfy
the conditions that ββ+ and μ+μ are equal to the identity function on Y . Therefore,
we see that (μβ)(β+μ+)(μβ) = μβ and (β+μ+)(μβ)(β+μ+) = β+μ+ and we see
that (β+μ+)(μβ) = β+β and (μβ)(β+μ+) = μμ+ are selfadjoint. Thus α+ exists
and equals β+μ+. �

As an immediate consequence of this, we note that if α is an endomorphism
of a finitely-generated inner produce space V then, by Proposition 6.11, we see
that rk(αα+) ≤ rk(α) and rk(α) = rk(αα+α) ≤ rk(αα+) and so rk(αα+) = rk(α).
Similarly, rk(α+α) = rk(α).

If F is either R or C, and if we are given a linear transformation α : Fk → Fn

which is represented with respect to the canonical bases by the matrix A = [aij ],
then we will denote the matrix representing α+ with respect to these bases by A+.
Thus the matrix A+ has the following properties:
(1) AA+A = A and A+AA+ = A+;
(2) The matrices AA+ and A+A are symmetric (in the case F = R) or Hermitian

(in the case F =C).

Example Let A =
⎡
⎣1 −1 2

2 1 −2
3 0 0

⎤
⎦ ∈ M3×3(R). This matrix is clearly singular and

hence A−1 does not exist. However, we can check that A+ = 1
45

⎡
⎣ 5 5 10

−5 4 −1
10 −8 2

⎤
⎦.

For nonsingular square matrices of the same size A and B , we know that
(AB)−1 = B−1A−1. A similar equality does not hold for the Moore–Penrose pseu-
doinverse, as the following example shows.
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Example If A =
[

2 6
1 3

]
and B =

[
1 2
2 4

]
in M2×2(R), then AB =

[
14 28
7 14

]
.

Then A+ = 1
50

[
2 1
6 3

]
and B+ = 1

25

[
1 2
2 4

]
so B+A+ = 7

1250

[
2 1
4 2

]
, while

(AB)+ = 1
175

[
2 1
4 2

]
.

The Singular Value Decomposition Theorem can be used to compute pseudoin-
verses. This is important since, as we have remarked previously, there exist several
relatively efficient and stable numerical algorithms for computing such decomposi-
tions.

Example Let α : Rk → R
n be a monomorphism represented with respect to the

canonical bases by a matrix A. By Proposition 19.2, we have A+ = (AT A)−1AT .
By Proposition 18.15, we set A = PEQT , where P ∈ Mk×k(R) and Q ∈
Mk×n(R) are orthogonal matrices and E ∈ Mk×n(R) is of the form

[
D O

O O

]

for a diagonal matrix D ∈ Mt×t (R), the diagonal entries of which are nonzero.
Then

A+ = (
AT A

)−1
AT = (

QET P T PEQT
)−1

QET P T

= (
QET EQT

)−1
QET P T = Q

[
D−2 O

O O

]
QT QET P T

= Q

[
D−1 O

O O

]
P T .

Example If A(t) =
[

1 0
0 t

]
for all real numbers t then we see that A(t)+ =[

1 0
0 t−1

]
when t �= 0, but is equal to

[
1 0
0 0

]
for t = 0. Thus we see that not only

is limt→0 A(t) not equal to A(0), but indeed that the value of A(t) moves farther
and farther away from A(0) as t approaches 0.

Thus we see that the Moore–Penrose pseudoinverse is not computationally sta-
ble. This means that one has to be very careful in actual applications. Because of
the importance and utility of Moore–Penrose pseudoinverses, there exists a consid-
erable literature on techniques for computing A+ or A+A, given a matrix A. One of
the methods used in practice for computing the Moore–Penrose pseudoinverse over
R is a recursive one, known as Greville’s method, which is based on the following
result: If A ∈ Mk×n(R), and if we write A = [B v ], where B ∈Mk×(n−1)(R), then
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A+ =
[
B+(I − v ∧ w)

w

]
, where

w =
{

(‖(I − BB+)v‖)−2(I − BB+)v if ‖(I − BB+)v‖ �= 0,

(1 + ‖B+v‖2)−1(B+)T B+v otherwise.

© Mrs Greville (Greville); © Adi Ben-Israel (Ben-Israel)

In the 1970s, the American mathematician
Thomas N.E. Greville and the American/Israeli
mathematician Adi Ben-Israel popularized and
reinvigorated the use of the Moore–Penrose pseu-
doinverse as a computational tool.

Another technique is to break A up into blocks, if possible. Indeed, if A =[
A11 A12
A21 A22

]
, where A11 is a nonsingular square matrix the rank of which equals

the rank of A, then, by Zlobec’s formula, we have A+ = [
A11 A12

]∗
B∗

[
A11
A21

]∗
,

where B =
([

A11 A12
]
A∗

[
A11
A21

])−1

.

One can also use convergence methods to compute the Moore–Penrose pseudo-
inverse of a matrix. If A ∈ Mk×n(C) then, by Proposition 17.4, we know that
the eigenvalues of A∗A are real. Let c be the largest such eigenvalue and pick a
real number b satisfying 0 < bc < 2. For each integer p ≥ 2, define the sequence
Y0, Y1, . . . of matrices in Mn×k(C) as follows:
(1) Y0 = bA∗;
(2) If k ≥ 0 and Yk has already been defined, set Tk = I − YkA and set Yk+1 =

Yk + ∑p−1
i=1 T i

k Yk . Then the sequence Y0, Y1, . . . converges to A+.
Another method is the following: if A ∈ Mn×n(R) is an arbitrary symmetric

matrix we can define matrices A0,A1, . . . by setting A0 = A and Ak+1 = [I + (I −
Ak)(I + Ak)

−1]Ak for all k ≥ 0. Also, we can define real numbers c0, c1, . . . by
setting c0 = 1 and ci+1 = 2ci + 1 for each i ≥ 0. Then the Kovarik algorithm states
that if none of the numbers −c−1

i is an eigenvalue of A, the sequence A0,A1, . . .

converges to A+A.
Let F be either R or C, let k and n be positive integers, and let A ∈ Mk×n(F ).

We now look at what the matrix A+ says about a solution (if any) to a system of
linear equations of the form AX = w, where w ∈ Fk . First of all, we note that in
general the following proposition holds.
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Proposition 19.4 Let F be either R or C, let k and nbe positive integers, let
A ∈ Mk×n(F ), and let w ∈ Fk . The system of linear equations AX = w has
a solution if and only if (AA+)w = w.

Proof If there is a vector v ∈ Fn satisfying Av = w then (AA+)w = (AA+)(Av) =
(AA+A)v = Av = w. Conversely, if (AA+)w = w then A(A+w) = w and so
Av = w, where v = A+w. �

We also note that, in the situation above, if y ∈ Fn then A(I − A+A)y =
⎡
⎢⎣

0
...

0

⎤
⎥⎦,

and so we also see that A+w+(I −A+A)y is also a solution to the system AX = w,
assuming that the system has any solutions at all. Conversely, any solution to this

system is of the form A+w + u, where Au =
⎡
⎢⎣

0
...

0

⎤
⎥⎦, and so (I − A+A)u = u.

Proposition 19.5 Let F be either R or C, let k and n be positive integers,
and let A ∈ Mk×n(F ). Let w ∈ Fk . If the system AX = w has a solution then
in the set of all solutions to this system of linear equations there is precisely
one having a minimal norm, and it is A+w.

Proof If u is a solution to this system, then we have already seen that it is of the
form A+w + (I − A+A)y. But we note that

〈
A+w,

(
I − A+A

)
y
〉 = 〈

A+AA+w,
(
I − A+A

)
y
〉

= 〈
A+w,

(
A+A

)(
I − A+A

)
y
〉

= 〈
A+w,

(
A+A − A+AA+A

)
y
〉

=

〈
A+w,

⎡
⎢⎣

0
...

0

⎤
⎥⎦
〉

= 0

so

‖u‖2 = 〈u,u〉 = 〈
A+w + (

I − A+A
)
y,A+w + (

I − A+A
)
y
〉

= 〈
A+w,A+w

〉 + 〈(
I − A+A

)
y,

(
I − A+A

)
y
〉

= ∥∥A+w
∥∥2 + ∥∥(

I − A+A
)
y
∥∥2

,

which implies that ‖u‖ ≥ ‖A+w‖. �
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Example Let A =
[

2 −1 1
1 1 1

]
and w =

[
1
2

]
. Then A+ = 1

14

⎡
⎣ 4 2

−5 8
1 4

⎤
⎦ and so

the solution to the system AX = w having minimal norm is A+w = 1
14

⎡
⎣ 8

11
9

⎤
⎦. Its

norm is 1
14

√
266.

But what happens if the system AX = w does not have a solution? Suppose that
F is either R or C and that A ∈ Mk×n(F ), and w ∈ Fk , where k and n be positive
integers. Then the system (A+A)X = A+w always has a solution, namely A+w,
and, by Proposition 19.5, this is in fact the solution of minimal norm of this equation,
which is the best approximation to a solution of AX = w.

Example Consider the system of linear equations AX = w, where

A =

⎡
⎢⎢⎣

2 −4 5
6 0 3
2 −4 5
6 0 3

⎤
⎥⎥⎦ and w =

⎡
⎢⎢⎣

1
3

−1
3

⎤
⎥⎥⎦ .

Then

A+ = 1

72

⎡
⎣−2 6 −2 6

−5 3 −5 3
4 0 4 0

⎤
⎦ and A+w = 1

4

⎡
⎣2

1
0

⎤
⎦ .

In order to emphasize the use of Proposition 19.5, we briefly consider the least
squares method, which is an important tool in many areas of applied mathemat-
ics and statistics. This method was developed at the beginning of the nineteenth
century by Gauss and Legendre and, independently, by the American mathematical
pioneer Robert Adrain. Suppose that we have before us the results of several ob-
servations, which, depending on values t1, . . . , tn of a real parameter, give us real
values c1, . . . , cn. Our theory tells us that the set of points {(ti , ci) | 1 ≤ i ≤ n} in
the Euclidean plane should lie on a straight line. However, because of measur-
ing and/or computational errors, this does not quite work out. So we want to find
the equation of the line in the plane which best fits our observed data. In other
words, we want to find a solution of minimal norm to the system of linear equations

{X1 + tiX2 = ci | 1 ≤ i ≤ n}, which can be written as

⎡
⎢⎢⎢⎣

1 t1
1 t2
...

...

1 tn

⎤
⎥⎥⎥⎦

[
X1
X2

]
=

⎡
⎢⎢⎢⎣

c1
c2
...

cn

⎤
⎥⎥⎥⎦.
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As we have seen, the solution of minimal norm, if it exists, is

⎡
⎢⎢⎢⎣

1 t1
1 t2
...

...

1 tn

⎤
⎥⎥⎥⎦

+ ⎡
⎢⎢⎢⎣

c1
c2
...

cn

⎤
⎥⎥⎥⎦.

Otherwise, this is the best approximation to the solution the system.

With kind permission of the University of Pennsylvania Libraries.

Irish-born Robert Adrain emigrated to the United States in 1798. He
published his own mathematics journal, but his work received no in-
ternational attention at the time.

Example To find the equation of the line in the Euclidean plane which best fits the
set of points {(1,3), (2,7), (3,8), (4,11)}, we calculate

⎡
⎢⎢⎣

1 1
1 2
1 3
1 4

⎤
⎥⎥⎦

+ ⎡
⎢⎢⎣

3
7
8

11

⎤
⎥⎥⎦ =

(
1

20

[
20 10 0 −10
−6 −2 2 6

])⎡
⎢⎢⎣

3
7
8

11

⎤
⎥⎥⎦ = 1

2

[
2
5

]

so the line we want is given by {(t,1 + 5
2 t) | t ∈ R}.

We can use the same method to find the best fit of any polynomial of a higher
degree to a set of points. For example, if we wish to find a parabola which best fits
the set of points {(ti , ci) | 1 ≤ i ≤ n} in the Euclidean plane, we have to find a best
approximation to a solution of the system of linear equations {X1 + tiX2 + t2

i = ci |

1 ≤ i ≤ n}, which we know is

⎡
⎢⎢⎢⎣

1 t1 t2
1

1 t2 t2
2

...
...

...

1 tn t2
n

⎤
⎥⎥⎥⎦

+ ⎡
⎢⎢⎢⎣

c1
c2
...

cn

⎤
⎥⎥⎥⎦.

Example To find the equation of the parabola in the Euclidean plane which best fits
the set of points {(1,3), (2,7), (3,8), (4,11)}, we calculate

⎡
⎢⎢⎣

1 1 1
1 2 4
1 3 9
1 4 16

⎤
⎥⎥⎦

+ ⎡
⎢⎢⎣

3
7
8

11

⎤
⎥⎥⎦ =

⎛
⎝ 1

20

⎡
⎣ 45 −15 −25 15

−31 23 27 −19
5 −5 −5 5

⎤
⎦

⎞
⎠

⎡
⎢⎢⎣

3
7
8

11

⎤
⎥⎥⎦

= 1

4

⎡
⎣−1

15
−1

⎤
⎦ ,
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and so the parabola we want is given by {(t,− 1
4 + 15

4 t − 1
4 t2) | t ∈R}.

Needless to say, we can also consider a much more general context. Suppose that
W is a finitely-generated subspace of RA. Given a set of observations {(ti , ci) | 1 ≤
i ≤ n} ⊆ A ×R, we want to find the function g ∈ W which best approximates these
observations.

To do this, we pick a basis {f1, . . . , fk} for W . Then we want to find a best
approximation to a solution of the system of linear equations

{
X1f1(ti) + · · · + Xkfk(ti) = ci

∣∣1 ≤ i ≤ n
}
,

which can be written as

⎡
⎢⎣

f1(t1) . . . fk(t1)
...

. . .
...

f1(tn) . . . fk(tn)

⎤
⎥⎦

⎡
⎢⎣

X1
...

Xk

⎤
⎥⎦ =

⎡
⎢⎣

c1
...

cn

⎤
⎥⎦. As we have seen,

this is

⎡
⎢⎣

f1(t1) . . . fk(t1)
...

. . .
...

f1(tn) . . . fk(tn)

⎤
⎥⎦

+ ⎡
⎢⎣

c1
...

cn

⎤
⎥⎦.

Least-squares approximations are often used to find best-fit solutions to very
large systems of linear equations of the form AX = w which, in theory, have an
exact solution but in practice that solution cannot be found because of errors in
measurement of the data and computational errors. Indeed, Gauss developed this
method for finding solutions to the very large systems of linear equations which
resulted from laying down a triangulation grid for a geodetic survey of the state of
Hanover he conducted in 1818. In 1978, the American National Geodetic Survey
used it to solve a system of over 2.5 million linear equations in 400,000 unknowns
which resulted from the updating of the triangulation grid for the continental United
States.

The constructions presented in this chapter can be generalized considerably. In-
deed, if (K,•) is an associative unital algebra over a field F on which we have
defined an involution a �→ a∗, then an element a of K has a Moore–Penrose pseu-
doinverse b if and only if the following conditions are satisfied:
(1) a • b • a = a and b • a • b = b;
(2) (b • a)∗ = b • a and (a • b)∗ = a • b.

Proposition 19.1 can easily be modified to show that such a pseudoinverse, if it
exists, is unique. Pseudoinverses of this sort show up in the study of C∗-algebras, or,
more generally, associative unital algebras (K,•) that satisfy the Gelfand–Naimark
property , namely that e + a∗ • a is a unit of K for each a ∈ K , where e is the
multiplicative identity of K . In such algebras, it is possible to show that if a ∈ K

satisfies the condition that there exists an element b ∈ K satisfying a • b • a = a and
b • a • b = b, then a has a Moore–Penrose pseudoinverse.
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With kind permission of the Archives of the Mathematisches
Forschungsinstitut Oberwolfach (Gelfand); With kind permis-
sion of the American Mathematical Society (Naimark).

Israil Moisseevich Gelfand was a twentieth-
century Russian mathematician who emigrated
to the United States. He worked in many ar-
eas of analysis and mathematical biology. Mark
Aronovich Naimark was a twentieth-century
Ukrainian mathematician who worked primarily in
functional analysis.

Finally, one should note that the Moore–Penrose pseudoinverse is just one of
many “pseudoinverses” in the mathematical literature, each designed for a fairly
specific purpose. The first of these was introduced by Fredholm in 1903 to deal with
integral operators. Others are based on specific situations which arise in algebra or
analysis, or which are used to implement specific computational methods.

Example Let V be a vector space finitely generated over a field F and let
α ∈ End(V ). Let k = inf{0 < h ∈ N | rk(αh) = rk(αh+1)}. Then the Drazin pseu-
doinverse of α is the endomorphism β of V satisfying αk+1β = αk , βαβ = β ,
and αβ = βα. If such a β exists, it is necessarily unique. It is immediate that if
α ∈ Aut(V ) then k = 1 and β = α−1. If α is nilpotent then its Drazin pseudoinverse
is σ0. Drazin pseudoinverses have important applications in differential equations
and in mathematical economics.

Exercises

Exercise 1160
Let V and W be finitely-generated inner product spaces and let α ∈ Hom(V ,W).
Let β ∈ Hom(W,V ) satisfy αβα = α. Show that rk(β) ≥ rk(α), with equality
holding if and only if βαβ = β .

Exercise 1161

Let A =
⎡
⎣ 1 1

−1 1
2 3

⎤
⎦ ∈M3×2(R). Calculate A+.

Exercise 1162
Let A = [5 0 0 ] ∈M1×3(Q). Calculate A+.

Exercise 1163
Let A = [a1 . . . an ] ∈ M1×n(C), where n is a positive integer. Show that A+ =
(AAH )−1AH .
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Exercise 1164

Let A =
⎡
⎣2 2 0

1 2 1
1 2 1

⎤
⎦ ∈ M3×3(R). Calculate A+.

Exercise 1165
Let V and W be finitely-generated inner product spaces, and let α ∈ Hom(V ,W).
For any nonzero scalar c, show that (cα)+ = 1

c
α+.

Exercise 1166
Let n be a positive integer and let A ∈ Mn×n(R) be a diagonal matrix. Calcu-
late A+.

Exercise 1167
Let V and W be finitely-generated inner product spaces, and let α ∈ Hom(V ,W).
Show that (α∗)+ = (α+)∗.

Exercise 1168
Let V = R

2, which is endowed with the dot product and let α : V → R be the

linear functional defined by α :
[
a

b

]
�→ a. Let β : R →V be the linear transfor-

mation defined by β : a �→
[
a

a

]
. Show that (αβ)+ �= β+α+.

Exercise 1169
Let n be a positive integer and let A = [aij ] ∈Mn×n(R) be the matrix all entries
of which are equal to 1. Show that A+ = n−2A.

Exercise 1170

Let A ∈Mk×n(R) be a matrix of the form

[
C O

O O

]
, where C is a t × t nonsin-

gular diagonal matrix. Show that A+ =
[

D O

O O

]
, where D = C−1.

Exercise 1171
Let V = R

n on which we have the dot product defined, and let α ∈ End(V ) satisfy
the condition that ker(α) = im(α)⊥. Show that the restriction β of α to im(α) is
an automorphism of im(α) and that the restriction of α+ to im(α) equals β−1.

Exercise 1172
Let n be a positive integer and let A,B ∈ Mn×n(R) be matrices satisfying the
conditions ABA = A, BAB = B , and A2 = A. Is it necessarily true that B2 = B?
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Exercise 1173
Let h, k,m, and n be positive integers, let A ∈ Mh×k(R), let B ∈ Mm×n(R),
and let C ∈Mh×n(R). Show that there exists a matrix X ∈Mk×m(R) satisfying
AXB = C if and only if AA+CB+B = C.

Exercise 1174
Let k and n be positive integers and let B ∈ Mk×k(R) and C ∈ Mn×n(R) be
orthogonal matrices. For A ∈ Mk×n(R), show that (BAC)+ = CT A+BT .

Exercise 1175
Let k and n be positive integers and let A ∈ Mk×k(R) and B ∈ Mk×n(R). Let
C ∈ Mn×n(R) be nonsingular. Prove that

[
A AB

O C

]+
=

[
A+ −A+ABC−1

O C−1

]
.
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Let V , W , and Y be vector spaces over a field F . We say that a function f :
V × W → Y is a bilinear transformation if and only if the function v �→ f (v,w0)

belongs to Hom(V ,Y ) for any given vector w0 ∈ W and the function w �→ f (v0,w)

belongs to Hom(W,Y ) for any given vector v0 ∈ V . The set of all bilinear transfor-
mations from V × W to Y will be denoted by Bil(V × W,Y). If f,g ∈ Bil(V ×
W,Y) and if c ∈ F then f + g and cf also belong to Bill(V × W,Y), and so
Bill(V × W,Y) is a subspace of the vector space YV ×W over F . Also, any bilinear
transformation f : V ×W → Y defines a bilinear transformation f op : W ×V → Y ,
called the opposite transformation of f , by setting f op : (w,v) �→ f (v,w). It is
clear that the function

( )op : Bill(V × W,Y) → Bill(W × V,Y )

is an isomorphism of vector spaces. We say that a bilinear transformation
f ∈ Bill(V × V,Y ) is symmetric if and only if f = f op. It is skew symmetric if
and only if f = −f op.

In particular, if we consider a single vector space V over a field F , then we note
that f ∈ Bill(V × V,V ) if and only if the operation • on V defined by v • w =
f (v,w) turns V into an F -algebra. This algebra is commutative if and only if f is
symmetric.

Example Let n be a positive integer and let V = R
n, on which we have the dot prod-

uct defined. A classical problem in geometry is to ask if there exists a bilinear trans-
formation f ∈ Bill(V × V,V ) satisfying the condition that ‖f (v,w)‖ = ‖v‖ · ‖w‖
for all v,w ∈ V . Euler showed that such a transformation exists for the case n = 4.
At the end of the nineteenth century, Hurwitz showed that such transformations exist
only when n = 1,2,4, or 8.

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9_20, © Springer Science+Business Media B.V. 2012
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With kind permission of ETH-Bibliothek Zurich, Image Archive.

Adolph Hurwitz was a nineteenth-century German mathematician
who taught both Hilbert and Minkowski.

Example Let F be a field and let k, n, and t be positive integers. Set V = Mk×n(F ),
W = Mt×n(F ), and Y = Mk×t (F ). Then there exists a bilinear transformation
V × W → Y defined by (A,B) �→ ABT . In particular, we have a bilinear transfor-
mation Fn × Fn → Mn×n(F ) given by (v,w) �→ v ∧ w. More generally, if V , W ,
and Y are as mentioned, every matrix C ∈ Mn×n(F ) defines a bilinear transforma-
tion V × W → Y by setting (A,B) �→ ACBT .

Example For vector spaces V and W over a field F , the function Hom(V ,W) ×
V → W given by (α, v) �→ α(v) is a bilinear transformation.

Let V , W , and Y be vector spaces over a field F . The image of a bilinear trans-
formation f ∈ Bill(V × W,Y) is not necessarily a subspace of Y , as the following
example shows.

Example Consider the bilinear transformation f : R2 × R
2 → M2×2(R) defined

by f : (v,w) �→ v ∧ w. The image of f contains

[
0 1
0 0

]
and

[
0 0
1 0

]
, but is not a

subspace since

[
0 1
1 0

]
/∈ im(f ).

As with linear transformations, bilinear transformations are totally determined
by their behavior on bases. That is to say, let V and W be vector spaces over a
field F , and let B = {vi | i ∈ �} and D = {wj | j ∈ �} be bases of V and W ,
respectively. Let Y be a vector space over F and let f0 : B × D → Y be a
function. Then there exists a unique bilinear transformation f ∈ Bill(V × W,Y)

satisfying f (vi,wj ) = f0(vi,wj ) for all i and j , namely the function defined
by f : (

∑
i∈� aivi,

∑
j∈� bjwj ) �→∑

i∈�

∑
j∈� aibjf0(vi,wj ). In the case that

V = W = Y , we have already noted this fact in Proposition 5.5.

Proposition 20.1 If V , W , and Y are vector spaces over a field F , then
Bill(V × W,Y) is isomorphic to Hom(V ,Hom(W,Y )).

Proof Define a function θ : Bill(V × W,Y) → Hom(V ,Hom(W,Y )) as follows:
given a bilinear transformation f ∈ Bill(V × W,Y) and a vector v ∈ V , then



20 Bilinear Transformations and Forms 455

θ(f )(v) : w �→ f (v,w). It is straightforward to check that indeed θ(f )(v) ∈
Hom(W,Y ) for all f ∈ Bill(V × W,Y) and all v ∈ V . Moreover, θ(f )(v1 + v2) =
θ(f )(v1) + θ(f )(v2) and θ(f )(cv) = cθ(f )(v) for all v, v1, v2 ∈ V and all c ∈ F ,
so θ(f ) ∈ Hom(V ,Hom(W,Y )) for all f ∈ Bill(V × W,Y). Finally, θ(f + g) =
θ(f ) + θ(g) and θ(cf ) = cθ(f ) for all f,g ∈ Bill(V × W,Y) and all c ∈ F , and so
we have shown that θ is a linear transformation.

It is also possible to define a function

ϕ : Hom
(
V,Hom(W,Y )

)→ Bill(V × W,Y)

by setting ϕ(α) : (v,w) �→ α(v)(w) for all v ∈ V and w ∈ W , and again it is easy
to show that this is a linear transformation. If α ∈ Hom(V ,Hom(W,Y )) and v ∈ V ,
then θϕ(α)(v) : w �→ ϕ(α)(v)(w) = α(v)(w) and so θϕ(α)(v) = α(v) for all v ∈ V .
Thus θϕ(α) = α for all α ∈ Hom(V ,Hom(W,Y )), and so θϕ is the identity function
on Hom(V ,Hom(W,Y )). Conversely, if f ∈ Bill(V × W,Y) then

ϕθ(f ) : (v,w) �→ θ(f )(v)(w) = f (v,w)

for all v ∈ V and w ∈ W and so ϕθ(f ) = f for all f ∈ Bill(V × W,Y), proving
that ϕθ is the identity function on Bill(V × W,Y). Thus we have established that θ

is an isomorphism, with θ−1 = ϕ. �

Let V and W be vector spaces over a field F . A bilinear transformation
f : V × W → F is called a bilinear form. We will denote the set of all such bilinear
forms by Bill(V × W), instead of Bill(V × W,F). By what we have seen above,
Bill(V × W) is a subspace of FV ×W which is isomorphic to Hom(V ,D(W)). If
V and W are vector spaces over a field F , then a bilinear form f ∈ Bill(V × W)

is nondegenerate if and only if for each 0V �= v ∈ V there exists a w ∈ W sat-
isfying f (v,w) �= 0 and for each 0W �= w ∈ W there exists a v ∈ V satisfying
f (v,w) �= 0.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.

Mathematicians at the beginning of the nineteenth century, such as
Gauss and Jacobi, preferred to state their results in terms of bilinear
forms rather than in terms of matrices. Sylvester contributed greatly to
the theory of bilinear forms, as did the influential nineteenth-century
German mathematician Karl Weierstrass.

Example If V is an inner product space over R, then the function (v,w) �→ 〈v,w〉
belongs to Bill(V × V ). This is not true, of course, if our field of scalars is C.

Example If F is a field and V = Fn for some positive integer n, then the function
(v,w) �→ v 
 w belongs to Bill(F n × Fn). This function is particularly useful in
the case F = GF(2). Indeed, if v ∈ GF(2)n, then
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v 
 v =
{

0 if an even number of entries in v are equal to 1,

1 if an odd number of entries in v are equal to 1.

This value is known as the parity of v.
More generally, let A be a finite set and let V be the collection of all subsets of A.

Define a function f : V × V → GF(2) by setting

f (A,B) =
{

0 if A ∩ B has an even number of elements,
1 if A ∩ B has an odd number of elements.

Then f ∈ Bill(V × V ).

Example If V is a vector space over a field F , we have a nondegenerate bilinear
form in Bill(D(V ) × V ) given by (δ, v) �→ δ(v). Similarly, if δ1, δ2 ∈ D(V ), we
have a bilinear form in Bill(V × V ) given by (v,w) �→ δ1(v)δ2(w), which is non-
degenerate if δ1 and δ2 are not the 0-functional.

Example If F is a field and if k and n are positive integers, then each matrix
A ∈Mk×n(F ) defines a bilinear form in Bill(F k × Fn) by (v,w) �→ v 
 Aw.

Example If F is a field of characteristic not equal to 2 and of V is a vector space
over F , then any f ∈ Bill(V × V ) can be written as a sum of a symmetric bilinear
form and a skew-symmetric bilinear form, namely f = f1 +f2, where f1 : (v,w) �→
1
2 [f (v,w)+f (w,v)] and f2 : (v,w) �→ 1

2 [f (v,w)−f (w,v)]. Moreover, this rep-
resentation is unique, for if f = g1 + g2, where g1 is symmetric and g2 is skew
symmetric, then for each (v,w) ∈ V × V we have f (v,w) + f (w,v) = 2g1(v,w)

and f (v,w)−f (w,v) = 2g2(v,w), from which we deduce that gi = fi for i = 1,2.

If V and W are vector spaces over F of finite dimension k and n, respectively,
then any bilinear form on V ×W can be represented as in the previous example. In-
deed, if we fix bases B = {v1, . . . , vk} for V and D = {w1, . . . ,wn} for W , then for
any f ∈ Bill(V × W) we define the matrix TBD(f ) = [f (vi,wj )] ∈Mk×n(F ) and
check that if v =∑k

i=1 aivi and w =∑n
j=1 bjwj , then f (v,w) = v 
 TBD(f )w.

Indeed, for fixed B and D, the function f �→ TBD(f ) is an isomorphism from
Bill(V × W) to Mk×n(F ).

Example Let F be a field and let V = F 2. Consider the bases B =
{[

1
0

]
,

[
0
1

]}

and D =
{[

1
−1

]
,

[
1
1

]}
of V . If f ∈ Bill(V ×V ) is given by f :

([
a

b

]
,

[
c

d

])
�→

(a + b)(c + d), then it is easy to verify that TBB(f ) =
[

1 1
1 1

]
and TDD(f ) =[

0 0
0 4

]
.
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Proposition 20.2 Let V and W be vector spaces finitely generated over a
field F and having bases B = {v1, . . . , vk} and D = {w1, . . . ,wn}, respec-
tively. Let C = {x1, . . . , xk}and E = {y1, . . . , yn} also be bases for V and W ,
respectively, and let P = [pir ] ∈ Mk×k(F ) and Q = [qjs] ∈ Mn×n(F ) be
nonsingular matrices satisfying

⎡
⎢⎣

x1
...

xk

⎤
⎥⎦= P

⎡
⎢⎣

v1
...

vk

⎤
⎥⎦ and

⎡
⎢⎣

y1
...

yn

⎤
⎥⎦= Q

⎡
⎢⎣

w1
...

wn

⎤
⎥⎦ .

Then for f ∈ Bill(V × W) we see that TCD(f ) = PTBD(f )QT .

Proof As a direct consequence of the definitions, we see that

f (xi, yj ) =
(

k∑
r=1

pirvr ,

n∑
s=1

qjsws

)
=

k∑
r=1

n∑
s=1

pirf (vr ,ws)qjs,

and this is precisely the (i, j)th-entry of PTBD(f )QT . �

In particular, we see that if f ∈ Bill(V × V ), where V is a vector space of fi-
nite dimension n over a field F , and if B and D are bases of V , then there exists a
nonsingular matrix P ∈ Mn×n(F ) satisfying TDD(f ) = PTBB(f )P T . In general,
matrices A and C in Mn×n(F ) are congruent if and only if there exists a nonsin-
gular matrix P ∈ Mn×n(F ) satisfying C = PAP T . Congruence is easily checked
to be an equivalence relation on Mn×n(F ), which joins the relations of equivalence
and similarity, that we have already defined. Congruent matrices clearly have the
same rank, so that the rank of a matrix of the form TBB(f ) depends only on f and
not on the choice of basis B . Therefore, we call this the rank of the bilinear form f .
Thus, for example, the bilinear forms in Bill(V × V ) of rank 1 are precisely those
of the form (v,w) �→ α(v)β(w), where α,β ∈ D(V ).

A matrix congruent to a symmetric matrix is again symmetric. Indeed, if
A ∈Mn×n(F ) is symmetric, then for any nonsingular matrix P we have
(PAP T )T = P T T AT P T = PAP T .

Example The matrix A =
⎡
⎣ 1 −6 −6

−6 40 39
−6 39 39

⎤
⎦ ∈ M3×3(R) is congruent to I , since

PAP T = I , where P =
⎡
⎣ 1 0 0

3 1
2 0√

3 −
√

3
2

2
√

3
3

⎤
⎦.

As was the case with inner products, we can define orthogonality with respect
to an arbitrary bilinear form. This concept has important applications when we are



458 20 Bilinear Transformations and Forms

working over fields other than R or C, and especially in areas such as algebraic
coding theory, where all of the work is done over finite fields. Let V be a vector
space over a field F and let f ∈ Bill(V × V ). Vectors v,w ∈ V are f -orthogonal if
and only if f (v,w) = 0. In this case, we will write v ⊥f w. (One has to be careful
here, it may be true that v ⊥f w but false that w ⊥f v; this will not happen, of
course, if f is symmetric.) If A is a nonempty subset of V , then we can talk about the
right f -orthogonal complement of A to be the set A⊥f = {w ∈ V | v ⊥f w for all
v ∈ A}. Complements of this form may behave very differently than complements
defined by inner products, as the following example shows.

Example Let F = GF(2) and let V = F 4. Define f ∈ Bill(V × V ) by setting

f (v,w) = v 
 w. Then W =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

is a subspace of V

which satisfies W⊥f = W .
We note that V ⊥f is trivial if and only if for any 0V �= w ∈ V there exists a

vector v ∈ V satisfying f (v,w) �= 0. This condition is not a consequence of our
definitions, and we must explicitly state it when we need it. It holds, of course, if f

is nondegenerate.

Example Let V = R

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1

−1
−1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

⊆ R
4. If f ∈ Bill(V × V ) is defined by

f :

⎛
⎜⎜⎝
⎡
⎢⎢⎣

a1
a2
a3
a4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

b1
b2
b3
b4

⎤
⎥⎥⎦
⎞
⎟⎟⎠ �→ a1b1 +a2b2 +a3b3 −a4b4, then

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦ ∈ V ⊥f and, indeed,

V ⊥f = R

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−1

0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

.

Proposition 20.3 Let V be a vector space over a field F , and let f ∈
Bill(V × V ). If A is a nonempty subset of V then:
(1) A⊥f is a subspace of V ;
(2) A⊥f = (FA)⊥f ;
(3) If A ⊆ B then B⊥f ⊆ A⊥f .
Moreover, if {Ai | i ∈ �} is a collection of nonempty subsets of V , then

(
⋃

i∈� Ai)
⊥f =⋂i∈� A

⊥f

i .
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Proof The proof of (1)–(3) is an immediate consequence of the definitions. To prove
the last statement, we note that if w ∈ V , then w ∈ (

⋃
i∈� Ai)

⊥f if and only if for

each i ∈ � and each v ∈ Ai we have f (v,w) = 0. This is true if and only if w ∈ A
⊥f

i

for each i ∈ �, namely if and only if w ∈⋂i∈� A
⊥f

i . �

Proposition 20.4 Let V be a vector space finitely generated over a field F

and let f ∈ Bill(V × V ) satisfy the condition that V ⊥f is trivial. Then each
subspace W of V satisfies the following conditions:
(1) If δ ∈ D(W) there exists a v ∈ V such that δ(w) = f (v,w) for all w ∈ W ;
(2) dim(W) + dim(W⊥f ) = dim(V ).

Proof (1) Every vector v ∈ V defines a linear functional δv ∈ D(V ) by setting
δv : y �→ f (y, v). Moreover, the function v �→ δv from V to D(V ) is a linear trans-
formation, which is a monomorphism as a result of the condition that V ⊥f is trivial.
But dim(V ) = dim(D(V )) since V is finitely generated, and hence this is an iso-
morphism. Now let δ ∈ D(W) and let Y be a complement of W in V . Then the
function from V to F given by w + y �→ δ(w) belongs to D(V ) and so there exists
a vector v ∈ V such that it equals δv . In particular, δ(w) = f (v,w) for all w ∈ W ,
proving (1).

(2) The function from V to D(W) which assigns to each v ∈ V the restriction of
δv to W is a linear transformation which, by (1), is an epimorphism. The kernel of
this epimorphism consists of all vectors v ∈ V satisfying f (w,v) = 0 for all w ∈ W ,
and that is precisely W⊥f . Therefore, by Proposition 6.10, we have (2). �

In particular, we see from Proposition 20.4 that a necessary and sufficient condi-
tion for us to have V = W ⊕ W⊥f is that W and W⊥f be disjoint.

Proposition 20.5 Let V and W be vector spaces finitely generated over a
field F and let f ∈ Bill(V ×W) be a bilinear form which is not the 0-function.
Then there exist bases {v1, . . . , vk} and {w1, . . . ,wn} of V and W , respec-
tively, and there exists a positive integer 1 ≤ t ≤ min{k,n} such that

f (vi,wj ) =
{

1 if i = j ≤ t,

0 otherwise.

Proof Since f is not the 0-function, there exist vectors v1 ∈ V and y1 ∈ W such that
f (v1, y1) �= 0. Therefore, if we set w1 = f (v1, y1)

−1y1, we have f (v1,w1) = 1. Let
V1 = Fv1 and W1 = Fw1. If we set W2 = {w ∈ W | f (v1,w) = 0}, then W1 ∩W2 =
{0W } since cw1 /∈ W2 for all 0 �= c ∈ F . We claim that W = W1 ⊕ W2. Indeed, if
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w ∈ W and if c = f (v1,w) then we see that

f (v1,w − cw1) = f (v1,w) − cf (v1,w1) = c − c = 0

and so w − cw1 ∈ W2, which proves the claim. In a similar way, we have
V = V1 ⊕ V2, where V2 = {v ∈ V | f (v,w1) = 0}. Thus we see that f (v,w) = 0
whenever (v,w) ∈ [V1 × W2] ∪ [V2 × W1].

By passing to the oppose form if necessary, we can assume without loss of gener-
ality that k ≤ n. If k = 1, we choose {v1} as a basis for V and {w1, . . . ,wn} as a basis
for W , where {w2, . . . ,wn} is an arbitrary basis for W2. This proves the proposition,
with t = 1. Now assume that k > 1 (which implies n > 1) and that the proposition
has been proven whenever dim(V ) < k. In particular, we will look at the restriction
of f to V2 × W2. By the induction hypothesis, there exist bases {v2, . . . , vk} of V2
and {w2, . . . ,wn} of W2 such that

f (vi,wj ) =
{

1 if 2 ≤ i = j ≤ t,

0 otherwise.

Then {v1, . . . , vk} and {w1, . . . ,wn} are the bases we want. �

We see that if V and W are vector spaces finitely generated over a field F and if
f ∈ Bill(V ×W), then Proposition 20.5 says that there exist bases of V and W with

respect to which f is represented by a matrix of the form

[
I O

O O

]
.

We will be particularly interested in symmetric bilinear forms. As an immediate
consequence of the definition, we see that if V is a vector space finitely generated
over a field F and if B is a given basis for V , then a bilinear form f ∈ Bill(V × V )

is symmetric if and only if the matrix TBB(f ) is symmetric. Moreover, every sym-
metric matrix is TBB(f ) for some symmetric bilinear form f ∈ Bill(V × V ).

Example Let B be the canonical basis of R3 and let A =
⎡
⎣ 1 −5 3

−5 1 7
3 7 4

⎤
⎦. Then

A = TBB(f ), where f ∈ Bill(R3 ×R
3) is defined by

f

⎛
⎝
⎡
⎣a1

a2
a3

⎤
⎦ ,

⎡
⎣b1

b2
b3

⎤
⎦
⎞
⎠ = a1b1 + a2b2 − 5(a1b2 + a2b1)

+ 3(a1b3 + a3b1) + 7(a2b3 + a3b2) + 4a3b3.

Proposition 20.6 Let F be a set of characteristic other than 2 and let V be
a vector space finitely-generated over F . Let f ∈ Bill(V × V ) be symmet-
ric. Then there exists a basis B = {v1, . . . , vn} of V such that TBB(f ) is a
diagonal matrix.
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Proof The proposition is trivially true if f is the 0-function, and so we can assume
that is not the case. We will proceed by induction on n = dim(V ). For n = 1, the
result is again immediate, and so we can assume that n > 1 and that the result has
been established for all spaces having dimension less than n. We first claim is that
there exists a vector v ∈ V satisfying f (v, v) �= 0. Indeed, assume that this is not the
case. Then if v and w are arbitrary vectors in V we have

0 = f (v + w,v + w) = f (v, v) + 2f (v,w) + f (w,w) = 2f (v,w)

and since the characteristic of F is not 2, this implies that f (v,w) = 0, contradicting
our assumption that f is not the 0-function. Hence we can select a vector v1 ∈ V

satisfying f (v1, v1) �= 0.

Let V1 = Fv1 and let V2 = V
⊥f

1 . From the definition of V1 it is clear that V1
and V2 are disjoint, and from Proposition 20.3 it follows that V = V1 ⊕ V2. In
particular, dim(V2) = n − 1 and so, by the induction hypothesis, there exists a
basis C = {v2, . . . , vn} of V2, such that, if f2 is the restriction of f to V2, then
TCC(f2) is a diagonal matrix. Since f (v1, vi) = 0 for all 2 ≤ i ≤ n, it follows that
B = {v1, . . . , vn} does indeed give us the desired result. �

Thus we see that every symmetric matrix over a field of characteristic other than
2 is congruent to a diagonal matrix.

Proposition 20.7 Let V be a vector space finitely-generated over C and let
f ∈ Bill(V × V ) be a symmetric bilinear form of rank r . Then there exists a
basis B = {v1, . . . , vn} of V satisfying the following conditions:
(1) TBB(f ) is a diagonal matrix;

(2) f (vi, vi) =
{

1 if 1 ≤ i ≤ r,

0 otherwise.

Proof By Proposition 20.6, we know that there is a basis B = {v1, . . . , vn} of V

satisfying the condition that TBB(f ) is a diagonal matrix. This matrix is of rank r

and so, renumbering the basis elements if necessary, we can assume that f (vi, vi) �=
0 when and only when 1 ≤ i ≤ r . For each 1 ≤ i ≤ r , define ci = f (vi, vi)

−1/2 ∈C,
and replace vi by civi to get a basis satisfying (2) as well. �

Let V be a vector space finitely-generated over a field F of characteristic other
than 2 and let f ∈ Bill(V × V ) be a bilinear form. The function q : V → F de-
fined by q : v �→ f (v, v) is called the quadratic form defined by f . Note that if
a ∈ F and v ∈ V then q(av) = f (av, av) = a2f (v, v) = a2q(v). Moreover, if
f ∈ Bill(V ×V ) and if g ∈ Bill(V ×V ) is the symmetric bilinear form g : (v,w) �→
1
2 [f (v,w) + f (w,v)] then the quadratic forms defined by f and g are the same.
Therefore, without loss of generality, we will always assume that all quadratic forms
over such fields are defined by symmetric bilinear forms. We further see that dif-
ferent symmetric bilinear forms define different quadratic forms, since, for any
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v,w ∈ V , we have f (v,w) = 1
2 [q(v + w) − q(v) − q(w)]. The classification of

quadratic forms is of great importance in analytic geometry and in number theory.

With kind permission of the Archives of the Mathematisches
Forschungsinstitut Oberwolfach (Witt).

The theory of quadratic forms over R was developed
by Gauss and his student Eisenstein, and the need
to study such forms was one of the factors which
led to the development of determinant theory. Their
work was extended to quadratic forms over C by
the nineteenth-century British mathematician Henry

Smith. The fundamental development in the theory of symmetric bilinear forms on vec-
tor spaces over fields of characteristic other than 2 is due to the twentieth-century German
mathematician Ernst Witt.

Let V be a vector space over R. A quadratic form q : V → R is positive if and
only if q(v) > 0 for all 0V �= v ∈ V . If q : V → R is a positive quadratic form de-
fined by a symmetric bilinear form f ∈ Bill(V ×V ), then f must be nondegenerate.
Indeed, if 0V �= v ∈ V then f (v, v) �= 0.

Example If V is the vector space of all polynomial functions from R to itself,
then we have a symmetric bilinear form from V × V to R defined by (f, g) �→∫ 1

0 f (t)g(t) dt , which in turn defines the positive quadratic form f �→ ∫ 1
0 f (t)2 dt .

Example Let V = R
4 and let f ∈ Bill(V × V ) be the symmetric bilinear form⎛

⎜⎜⎝
⎡
⎢⎢⎣

a1
a2
a3
a4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

b1
b2
b3
b4

⎤
⎥⎥⎦
⎞
⎟⎟⎠ �→ a1b1 + a2b2 + a3b3 − a4b4, which lies at the center of

Minkowski’s mathematical formulation of Einstein’s relativity theory. The quadratic

form defined by this bilinear form is

⎡
⎢⎢⎣

a1
a2
a3
a4

⎤
⎥⎥⎦ �→ a2

1 +a2
2 +a2

3 −a2
4 . A similar symmet-

ric bilinear form is the Lorentz form

⎛
⎜⎜⎝
⎡
⎢⎢⎣

a1
a2
a3
a4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

b1
b2
b3
b4

⎤
⎥⎥⎦
⎞
⎟⎟⎠ �→ a1b1 + a2b2 + a3b3 −

c2a4b4, where c is the speed of light. The quadratic form defined by this bilinear

form is

⎡
⎢⎢⎣

a1
a2
a3
a4

⎤
⎥⎥⎦ �→ a2

1 + a2
2 + a2

3 − c2a2
4 .
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With kind permission of the Museum Boerhaave Leiden.

The Dutch physicist Hendrick Antoon Lorentz, the first to conceive
of the notion of the electron, won a Nobel prize in 1902. His work
formed a basis for much of Einstein’s theory.

A more general result, also based on the work of Lorentz and Minkowski, gives
a fascinating “reversal” of the Cauchy–Schwarz–Bunyakovski inequality. Let n be a
positive integer and consider the subset (not subspace) U of Rn+1 consisting of all

vectors of the form

[
a

v

]
, where a is a nonnegative real number and v ∈R

n satisfies

‖v‖ ≤ a. For u =
[
a

v

]
and y =

[
b

w

]
in U , let us define u � y to be ab − v · w. By

our assumption on U , we note at u � u ≥ 0 for every u ∈ U . Then one can show
that u � y ≥ [√u � u][√y � y]. This inequality is often known as the lightcone
inequality because of its applications in physics.

Example If V is an inner product space over R, then we have already noted that
the function f : (v,w) �→ 〈v,w〉 is a symmetric bilinear form. The quadratic form
defined by f is given by v �→ ‖v‖2. This quadratic form is surely positive. The
converse is also true. If f ∈ Bill(V × V ) is a symmetric bilinear form defining a
positive quadratic form, then f is an inner product on V , in the sense of Chap. 15.

By Proposition 20.7, we see that if V is a vector space finitely generated over C
and if f ∈ Bill(V ×V ) is symmetric and has rank r , we can find a basis {v1, . . . , vn}
of V such that the quadratic form q defined by f is given by q :∑n

i=1 aivi �→∑r
i=1 a2

i .

Example Let F be either R or C. Let n be a positive integer and let A ∈ Mn×n(F )

be symmetric. Let f ∈ Bill(F n × Fn) be the symmetric bilinear form given by
f : (v,w) = vT Aw, and let q be the quadratic form defined by f . The set {q(v) |
‖v‖ = 1} (here the norm is the one defined by the dot product on Fn) is called the
numerical range of the matrix A. In the case F =C, this is always a bounded convex
subset which contains all of the eigenvalues of A. For the special case n = 2, this
set is an ellipse with its foci at the eigenvalues of A, assuming that they are distinct,
or a circle with center at the sole eigenvalue of A, assuming that A has only one
eigenvalue of multiplicity 2. For n > 2, the characterization of the numerical range
is much more complicated.
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Proposition 20.8 Let n be a positive integer and let A ∈ Mn×n(R) be sym-
metric. Let f ∈ Bill(Rn × R

n) be the symmetric bilinear form given by
f : (v,w) �→ vT Aw, and let q be the quadratic form defined by f . Let
c1 ≥ c2 ≥ · · · ≥ cn be the eigenvalues of A. Then the numerical range of A

lies in the closed interval [cn, c1]. Moreover, both endpoints of this interval
belong to the numerical range of A.

Proof By Proposition 17.7, we know that there exists an orthonormal basis B =
{v1, . . . , vn} of V consisting of eigenvectors of A. Moreover, if v ∈ V then v =∑n

i=1〈v, vi〉vi by Proposition 17.9, and so 1 = ‖v‖2 = 〈v, v〉 =∑n
i=1〈v, vi〉2. We

also see that Av =∑n
i=1〈v, vi〉A(vi) =∑n

i=1 ci〈v, vi〉vi . Thus vT Av = 〈v,Av〉 =∑n
i=1 ci〈v, vi〉2. But c1 = c1(

∑n
i=1〈v, vi〉2) ≥∑n

i=1 ci〈v, vi〉2 ≥ cn(
∑n

i=1〈v, vi〉2)

= cn. Therefore, the numerical range of A lies in the closed interval [cn, c1].
If v is a normal eigenvector of A corresponding to cn, then vT Av = 〈v,Av〉 =

〈v, cnv〉 = cn〈v, v〉 = cn, and similarly for the case of an eigenvector of A satisfying
‖v‖ = 1 and corresponding to c1. �

In order to see the geometric significance of quadratic forms, let us recall that a
general quadratic equation in three unknowns over R is one of the form

(
a11X

2
1 + a22X

2
2 + a33X

2
3

)+ 2(a12X1X2 + a13X1X3 + a23X2X3)

+ b1X1 + b2X2 + b3X3 + c = 0

in which not all of the aij are equal to 0. Such an equation can be writ-
ten in the form f (v, v) + w · v + c = 0, where f ∈ Bill(R3,R3) is the sym-
metric bilinear form defined with respect to the canonical basis by the matrix

A =
⎡
⎣a11 a12 a13

a12 a22 a23
a13 a23 a22

⎤
⎦, where w =

⎡
⎣b1

b2
b3

⎤
⎦, and where v =

⎡
⎣X1

X2
X3

⎤
⎦. The graph of

such an equation is a quadratic surface. The various quadratic surfaces in R
3 can

then be classified by considering congruence classes of the matrices A, a task very
important in analytic geometry.

We will now return to the general case of bilinear transformations. Let F be a
field, let V and W be vector spaces over F , and let G = F (V ×W). Then G is a
subspace of FV ×W having a basis {gv,w | (v,w) ∈ V × W }, where

gv,w : (v′,w′) �→
{

1 if (v′,w′) = (v,w),

0 otherwise.

Let H be the subspace of G generated by all functions of the form

gv1+v2,w − gv1,w − gv2,w, gv,w1+w2 − gv,w1 − gv,w2 , gav,w − agv,w,

or gv,aw − agv,w
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for all v, v1, v2 ∈ V , w,w1,w2 ∈ W , and a ∈ F . Let us pick a complement of H

in G, and call it V ⊗ W . By Proposition 7.8, we know that V ⊗ W is unique up
to isomorphism. Let α be the projection of G with image V ⊗ W coming from the
decomposition G = H ⊕ (V ⊗ W) and, for all v ∈ V and w ∈ W , denote α(gv,w)

by v ⊗ w. Then B = {v ⊗ w | (v,w) ∈ V × W } is a generating set for V ⊗ W . It
is important to emphasize that the elements of V ⊗ W are linear combinations of
elements of B . In quantum physics, elements of V ⊗ W �B , for suitable spaces V

and W , are known as entangled tensors and these have important physical interpre-
tations. Elements of B are known as simple tensors.

If v1, v2 ∈ V and w ∈ W , then

[v1 + v2] ⊗ w − (v1 ⊗ w) − (v2 ⊗ w) = α(gv1+v2,w − gv1,w − gv2,w) = 0G

and so [v1 + v2] ⊗ w = (v1 ⊗ w) + (v2 ⊗ w). Similarly, if v ∈ V and w1,w2 ∈ W

then v ⊗[w1 +w2] = v ⊗w1 +v ⊗w2. We also see that if v ∈ V , w ∈ W and c ∈ F ,
then cv ⊗ w = c(v ⊗ w) = v ⊗ cw. The vector space V ⊗ W is called the tensor
product of V and W .

With kind permission of the
Archives of the Mathematisches
Forschungsinstitut Oberwolfach
(Chevalley).

There are many equiva-
lent definitions of the ten-
sor product. The definition
given here is due to the

twentieth-century French mathematician Claude Chevalley. The notion of a tensor was
first introduced in differential calculus by the nineteenth-century Italian mathematicians
Gregorio Ricci-Curbastro and Tullio Levi-Civita and became a central tool in relativity
theory.

From the definition of the tensor product, we see that the function tV W from
V × W to V ⊗ W given by (v,w) �→ v ⊗ w is a bilinear transformation. This trans-
formation has a very special significance, due to the following theorem, which al-
lows us to move from bilinear transformations to linear transformations.

Proposition 20.9 Let V , W , and Y be vector spaces over a field F . For each
bilinear transformation f ∈ Bill(V ×W,Y) there exists a unique linear trans-
formation α ∈ Hom(V ⊗ W,Y) satisfying f = αtV W .

Proof Given f ∈ Bill(V ×W,Y), there exists a linear transformation β ∈ Hom(G,Y )

defined on the elements of a basis of the space G defined above, given by the con-
dition that β : gv,w �→ f (v,w). Since f is a bilinear transformation, H ⊆ ker(β)

and so we can define the linear transformation α ∈ Hom(V ⊗ W,Y) by setting
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α :∑n
i=1 ai[vi ⊗ wi] �→∑n

i=1 aif (vi,wi). This function is well-defined since if∑n
i=1 ai[vi ⊗ wi] =∑n

i=1 bi[vi ⊗ wi] in V ⊗ W then
∑n

i=1(ai − bi)gvi ,wi
∈ H ⊆

ker(β). Therefore, we see that α(
∑n

i=1 ai[vi ⊗wi]) = α(
∑n

i=1 bi[vi ⊗wi]). Clearly,
α is a linear transformation and satisfies f = αtV W .

We are left to prove uniqueness. Suppose that γ ∈ Hom(V ⊗ W,Y) satisfies
f = γ tV W . In particular, α(v ⊗ w) = γ (v ⊗ w) for all (v,w) ∈ V × W . That is to
say, α and γ act identically on a generating set for V ⊗ W and so, in particular, on
a basis for V ⊗ W contained in this generating set. Therefore, by Proposition 6.2, it
follows that α = γ . �

The following proposition is very important, and is often used as a basis for the
definition of the tensor product.

Proposition 20.10 If V , W , and Y are vector spaces over a field F , then the
vector spaces Hom(V ⊗ W,Y) and Hom(V ,Hom(W,Y )) are isomorphic.

Proof The function Hom(V ⊗ W,Y) → Bill(V × W,Y) defined by β �→ βtV W is
clearly a linear transformation, and from Proposition 20.8 it follows that this is an
isomorphism. Therefore, the result follows from Proposition 20.1. �

Example Let V and W be vector spaces over a field F and let δ1 ∈ D(V ) and
δ2 ∈ D(W) be linear functionals. Then there exists a bilinear form in Bill(V × W)

defined by (v,w) �→ δ1(v)δ2(w). From Proposition 20.9, it follows that there exists
a linear functional δ1 ⊗ δ2 ∈ D(V ⊗ W) satisfying δ1 ⊗ δ2 :∑n

i=1 ai[vi ⊗ wi] �→∑n
i=1 aiδ1(vi)δ2(wi).

Example More generally, let V and W be vector spaces over a field F , let α be
an endomorphism of V , and let β be an endomorphism of W . The function from
V × W to V ⊗ W defined by

(v,w) �→ α(v) ⊗ β(w)

is a bilinear transformation and so defines an endomorphism α ⊗ β of V ⊗ W satis-
fying α ⊗ β :∑n

i=1 ai[vi ⊗ wi] �→∑n
i=1 ai[α(vi) ⊗ β(wi)].

By Proposition 5.13, we know that if V ⊕ W is a vector space finitely-generated
over a field F , then dim(V ⊕ W) = dim(V ) + dim(W). We now prove the “multi-
plicative” analog of this assertion for tensor products.

Proposition 20.11 Let V and W be vector spaces finitely generated over
a field F . Then V ⊗ W is also finitely generated, and dim(V ⊗ W) =
dim(V )dim(W).
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Proof Let us choose bases {v1, . . . , vk} of V and {w1, . . . ,wn} of W . Then
for any v = ∑k

i=1 aivi ∈ V and w = ∑n
j=1 bjwj ∈ W , we see that v ⊗ w =∑k

i=1
∑n

j=1 aibj (vi ⊗ wj). Thus we see that {vi ⊗ wj | 1 ≤ i ≤ k and 1 ≤ j ≤ n} is
a generating set for V ⊗W , showing that V ⊗W is finitely-generated. Moreover, by
Proposition 20.10 and Proposition 14.8, we see that the dimension of V ⊗W is equal
to the dimension of D(V ⊗W) and hence to the dimension of Hom(V ,D(W)), and
this is equal to the dimension of Hom(V ,W), which is precisely dim(V )dim(W). �

In particular, we see that in the context of Proposition 20.10, the set {vi ⊗ wj |
1 ≤ i ≤ k and 1 ≤ j ≤ n} is in fact a basis of V ⊗ W .

Example Let F be a field and let k and n be positive integers. Then, by Proposi-
tion 20.11, we know that dim(F k ⊗ Fn) = kn = dim(Mk×n(F )), and so the vec-
tor spaces Fk ⊗ Fn and Mk×n(F ) are isomorphic. Indeed, if we choose bases
{v1, . . . , vk} of V and {w1, . . . ,wn} of W , then the function vi ⊗ wj �→ vi ∧ wj

extends to an isomorphism between these two spaces.

Example Let F be a field, let n be a positive integer, and let V be a vector
space finitely generated over F and having a basis {v1, . . . , vk}. The dimension
of the vector space Mn×n(V ) over F is n2k. Consider the bilinear transforma-
tion f : Mn×n(F ) × V → Mn×n(V ) defined by ([aij ], v) �→ [aij v]. By Proposi-
tion 20.9, we know that this bilinear transformation defines a linear transformation
α : Mn×n(F ) ⊗ V → Mn×n(V ) and it is clear that this is an epimorphism. But, by
Proposition 20.10, we see that the dimension of Mn×n(F ) ⊗ V is also equal to n2k

and so α must be an isomorphism.

Example Let F be a field and let k, n, s, and t be positive integers. Let f :
Mk×n(F ) ×Ms×t (F ) →Mks×nt (F ) be the function defined by

f : (A,B) �→
⎡
⎢⎣

a11B . . . a1nB
...

. . .
...

ak1B . . . aknB

⎤
⎥⎦ .

This is a bilinear transformation of vector spaces over F and so, by Proposition 20.8,
it defines a linear transformation α : Mk×n(F ) ⊗Ms×t (F ) → Mks×nt (F ) which,
again, can be shown to be an isomorphism. In the literature, it is usual to write A⊗B

instead of f (A,B). This matrix is called the Kronecker product of the matrices A

and B . Kronecker products are very important in matrix theory and its applications.
It is easy to see that for all such matrices A and B we have (A ⊗ B)T = AT ⊗ BT .
Moreover, if k = n and s = t and if A and B are nonsingular, then A ⊗ B is nonsin-
gular, and (A ⊗ B)−1 = A−1 ⊗ B−1. We also note that if A and B are symmetric
then so is A ⊗ B . Furthermore, Cholesky or QR-factorizations of A ⊗ B come im-
mediately from the corresponding factorizations of A and B .
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As an example of the use of Kronecker products, we note the following re-
sult, established in the 1970s by the American mathematicians Michael Gauger
and Christopher Byrnes: Let F be a field, let n be a positive integer, and let
A,B ∈ Mn×n(F ). Let I be the multiplicative identity of Mn×n(F ). Then the ma-
trices A and B are similar if and only if they have the same characteristic polynomial
and the n2 × n2 matrices A ⊗ I − I ⊗ A, B ⊗ I − I ⊗ B , and A ⊗ I − I ⊗ B all
have the same rank.

Because of the utility of Kronecker products, one can raise the following prob-
lem: Given positive integers k, n, s, and t , and given C ∈ Mks×nt (R), find matri-
ces A ∈ Mk×n(R) and B ∈ Ms×t (R) such that ‖C − A ⊗ B‖ is minimal. Sev-
eral algorithms have been developed for finding a solution to this problem, the
first by the American computer scientists Charles Van Loan and Nikos Pitsia-
nis.

Let V , V ′, W , and W ′ be vector spaces over a field F . If α ∈ Hom(V ,V ′) and
β ∈ Hom(W,W ′) then we have a bilinear transformation V × W → V ′ ⊗ W ′ de-
fined by (v,w) �→ α(v) ⊗ β(w) and so, by Proposition 20.8, there exists a linear
transformation from V ⊗ W to V ′ ⊗ W ′ satisfying v ⊗ w �→ α(v) ⊗ β(w). We will
denote this linear transformation by α ⊗ β .

Proposition 20.12 Let V , V ′, W , and W ′ be vector spaces finitely generated
over a field F . Any element of the space Hom(V ⊗ W,V ′ ⊗ W ′) is of the
form

∑n
i=1 αi ⊗ βi , where αi ∈ Hom(V ,V ′) and βi ∈ Hom(W,W ′) for each

1 ≤ i ≤ n.

Proof The function (α,β) �→ α⊗β from Hom(V ,V ′)×Hom(W,W ′) to Hom(V ⊗
W,V ′ ⊗ W ′) is bilinear and so defines a linear transformation ϕ : Hom(V ,V ′) ⊗
Hom(W,W ′) → Hom(V ⊗ W,V ′ ⊗ W ′). We are done if we can show that ϕ is an
isomorphism. By Propositions 8.1 and 20.11, we know that

dim
(
Hom(V ,V ′) ⊗ Hom(W,W ′)

) = dim
(
Hom(V ,V ′)

)
dim
(
Hom(W,W ′)

)
= dim(V )dim(V ′)dim(W)dim(W ′)

= dim(V ⊗ W)dim(V ′ ⊗ W ′)

= dim
(
Hom(V ⊗ W,V ′ ⊗ W ′)

)
,

and so it suffices to prove that ϕ is a monomorphism.
Indeed, assume that

∑n
i=1 αi ⊗ βi ∈ ker(ϕ), where the set {β1, . . . , βn} is lin-

early independent, and where none of the αi is the 0-function. Then
∑n

i=1 αi(v) ⊗
βi(w) = 0V ′⊗W ′ for all v ∈ V and all w ∈ W . Pick v ∈ V satisfying α1(v) �= 0V ′ .
By renumbering if necessary, we can assume that {α1(v), . . . , αk(v)} is a maximal
linearly-independent subset of {α1(v), . . . , αn(v)}. Therefore, for each k < h ≤ n

there exists a scalar bhj , not all of them being equal to 0, such that αh(v) =∑k
j=1 bhjαj (v) and so
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0V ′⊗W ′ =
k∑

i=1

αi(v) ⊗ βi(w) +
m∑

h=k+1

(
k∑

j=1

bhjαj (v)

)
⊗ βh(w)

=
k∑

i=1

αi(v) ⊗ βi(w) +
k∑

j=1

αj (v) ⊗
(

m∑
h=k+1

bhjβh(w)

)

=
k∑

i=1

αi(v) ⊗
(

βi(w) +
m∑

h=k+1

bhjβh(w)

)
.

Since the set {α1(v), . . . , αk(v)} is linearly independent, we must have βi(w) +∑m
h=k+1 bhjβh(w) = 0W ′ for all 1 ≤ i ≤ k and all w ∈ W . Hence βi +∑m

h=k+1 bhjβh

is the 0-function for all 1 ≤ i ≤ k, contradicting the assumption that the set
{β1, . . . , βn} is linearly independent. We therefore conclude that ker(ϕ) is trivial,
which is what we needed to prove. �

Proposition 20.13 If U , V , and W are vector spaces over a field F , then

U ⊗ (V ⊗ W) ∼= (U ⊗ V ) ⊗ W.

Proof The bilinear transformation U ×(V ⊗W) → (U ⊗V )⊗W defined by (u, v⊗
w) �→ (u⊗v)⊗w induces a linear transformation α : U ⊗(V ⊗W) → (U ⊗V )⊗W

which satisfies u⊗ (v ⊗ w) �→ (u⊗ v)⊗ w. Similarly, we have a linear transforma-
tion β : (U ⊗V )⊗W → U ⊗ (V ⊗W) which satisfies (u⊗v)⊗w �→ u⊗ (v ⊗w).
Since αβ and βα are clearly the respective identity maps, we see that α must be the
isomorphism we seek. �

Proposition 20.14 If V and W are vector spaces over a field F , then
V ⊗ W ∼= W ⊗ V .

Proof The bilinear transformation V × W → W ⊗ V defined by (v,w) �→ w ⊗ v

induces a linear transformation α from V ⊗ W to W ⊗ V satisfying α : v ⊗ w �→
w⊗v. Similarly, there exists a linear transformation β : W ⊗V → V ⊗W satisfying
β : w ⊗ v �→ v ⊗ w. Since αβ and βα are clearly the respective identity maps, we
see that α must be the isomorphism we seek. �

Finally, let us briefly mention two algebras built on the notion of the tensor prod-
uct. The study of these algebras is beyond the scope of this book. However, the
reader should be aware of them and will find it fruitful to explore them further. In
what ensues, V is an arbitrary vector space over a field F .
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(I) For each nonnegative integer k, we define the vector space V ⊗k over F by
setting V ⊗0 = V and V ⊗k = V ⊗(k−1) ⊗ V if k > 0. Let T (V ) =∐∞

k=0 V ⊗k . We
can define a product • on T (V ) by setting (v1 ⊗ · · · ⊗ vk) • (vk+1 ⊗ · · · ⊗ vm) =
v1 ⊗ · · · ⊗ vk+m for all v1, . . . , vk+m ∈ V and extend linearly. This is an F -algebra,
known as the tensor algebra of V over F . The tensor algebra has several impor-
tant properties, one of which is that if K is any algebra over F then any linear
transformation α : V → K can be uniquely extended to a homomorphism of F -
algebras from T (V ) to K . Moreover, if W is a vector space over F then any lin-
ear transformation α : V → W can be uniquely extended to a homomorphism of
F -algebras from T (V ) to T (W). (In the language of category theory, this says that
T ( · ) is a functor from the category of vector spaces over F to the category of
F -algebras.)

(II) Let Y be the subspace of V ⊗ V generated by {v ⊗ v | v ∈ V }. Then a
complement of Y in V ⊗ V is called an exterior square of V and is denoted
by V ∧ V . This space is unique up to isomorphism. If α is the projection of
V ⊗ V with image V ∧ V and kernel Y , denote α(v ⊗ w) by v ∧ w. Since
(v + w) ⊗ (v + w) = v ⊗ v + v ⊗ w + w ⊗ v + w ⊗ w for all v,w ∈ V , we see that
v ∧ w = −w ∧ v for all v,w ∈ V . Therefore, if V is finitely-generated over F with
basis {v1, . . . , vn}, we see that {vi ∧ vj | 1 ≤ i < j ≤ n} is a basis for V ∧ V , and
hence dim(V ∧ V ) = (n2) = 1

2n(n − 1). This construction can be iterated to more
than two factors. If k > 0 is an integer, we can consider the subspace Y of V ⊗k gen-
erated by all expressions of the form v1 ⊗ · · · ⊗ vk in which vi = vj for some i �= j .
A complement of Y is denoted by

∧k
V and is called the kth exterior power of V .

If V has finite dimension n, then dim(
∧k

V ) = (n
k

)
. In particular, we note that

∧k
V

is trivial when k > n. The subspace
∧

(V ) =∐n
k=0(

∧k
V ) of T (V ) is known as the

exterior algebra of V , and has important applications in geometry and cohomology
theory. One can show that if (K,•) is a unital F -algebra and if α : V → K is a lin-
ear transformation satisfying the condition that α(v) •α(v) = 0K for all v ∈ V , then
α can be uniquely extended to a homomorphism of unital F -algebras from

∧
(V )

to K .

Exercises

Exercise 1176
Let n be a positive integer and let V be the space of all polynomials in C[X]
of degree at most n. For p(X) = ∑aiX

i and q(X) = ∑biX
i in V , we de-

fine the nth Bézout matrix Bezn(f, g) ∈ Mn×x(C) defined by f and g as fol-
lows: Bezn(f, g) = [cij ], where cij =∑m(i,j)

k=1 [aj+k−1bi−k − ai−kbj+k−1] and
m(i, j) = min{i, n + 1 − j}. Show that the function Bezn : V × V → Mn×x(C)

is a bilinear transformation satisfying the conditions that Bezn(f,f ) = O for all
f ∈ V . If n = max{deg(f ),deg(g)}, show that Bezn(f, g) is nonsingular if and
only if f and g have no common roots.
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Étienne Bézout was an eighteenth-century French mathematician.

Exercise 1177

Find a ∈ R such that the matrices

⎡
⎣1 a a

0 1 a

0 0 1

⎤
⎦ and

⎡
⎣ 1 −1 −1

−1 1 −1
−1 −1 1

⎤
⎦ define

the same bilinear form in Bill(R3,R3).

Exercise 1178
Let V = Q

Q. Is the function from V × V to Q given by (f, g) �→ (f + g)( 1
2 ) ·

(f − g)(2) a bilinear form?

Exercise 1179
Let F be a field and let u : N×N → F be an arbitrary function. Is the function
fu : F [X] × F [X] → F [X] defined by

fu :
( ∞∑

i=0

aiX
i,

∞∑
j=0

bjX
j

)
�→

∞∑
k=0

( ∑
i+j=k

u(i, j)aibjX
k

)

a bilinear transformation?

Exercise 1180
Let B be the canonical basis for the vector space V = R

2. Find a bilinear form

f ∈ Bill(V × V ) satisfying the condition TBB(f ) =
[

2 2
4 −1

]
.

Exercise 1181
Let B be the canonical basis for R3. Find TBB(f ), where f : R3 × R

3 → R is
the bilinear form defined by

f :
⎛
⎝
⎡
⎣a

b

c

⎤
⎦ ,

⎡
⎣a′

b′
c′

⎤
⎦
⎞
⎠ �→ aa′ + 2bc′ + cc′ + 2cb′ − ab′ + bb′ − ba′.
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Exercise 1182

Let f :R3 ×R
3 → R be the bilinear form defined by

f : (v,w) �→ v ·
⎡
⎣0 1 0

1 0 2
0 1 1

⎤
⎦w.

Find the matrix representing f with respect to the basis

⎧⎨
⎩
⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣0

1
1

⎤
⎦ ,

⎡
⎣1

0
1

⎤
⎦
⎫⎬
⎭

of R3.

Exercise 1183
Let V and W be vector spaces over a field F and let α ∈ Hom(V ,W). For each
g ∈ Bill(W × W), let us define the bilinear form gα ∈ Bill(V × V ) by setting
gα : (v, v′) �→ g(α(v),α(v′)). Is the function g �→ gα a linear transformation?

Exercise 1184
Let F be a field of characteristic other than 2 and let V be a vector space over F .
Let f ∈ Bill(V × V ). Show that f (v, v) �= 0 for all 0V �= v ∈ V if and only if
for every nontrivial subspace W of V and for every 0V �= w ∈ W there exists a
vector w′ ∈ W satisfying f (w,w′) �= 0.

Exercise 1185
Show that if V and W are vector spaces finitely generated over a field F of
unequal dimensions, then there is no nondegenerate f ∈ Bill(V × W).

Exercise 1186
Let F be a field of characteristic 0 and let the bilinear form f ∈ Bill(F 3 ×F 3) be

defined by f :
⎛
⎝
⎡
⎣a

b

c

⎤
⎦ ,

⎡
⎣a′

b′
c′

⎤
⎦
⎞
⎠ �→ aa′ +bb′ −cc′. Is there a nontrivial subspace

W of V satisfying f (w,w′) = 0 for all w,w′ ∈ W?

Exercise 1187
Let f ∈ Bill(R4 ×R

4) be defined by f : (v,w) �→ v · (Aw), where

A =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦ .

Find a basis {v1, v2, v3, v4} of R4 satisfying the condition that f (vi, vi) = 0 for
all 1 ≤ i ≤ 4.
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Exercise 1188
Let f : Mn×n(F ) × Mn×n(F ) → F be the function defined by f : (A,B) �→
tr(AB), where F is a field and n is a positive integer. Is f a bilinear form? Is f

symmetric?

Exercise 1189
Let n be a positive integer and let f : Mn×n(C) ×Mn×n(C) → C be the func-
tion defined by f : (A,B) �→ n · tr(AB)− tr(A) tr(B). Show that f is a symmetric
bilinear form.

Exercise 1190
Let V be a vector space over a field F and let f ∈ Bill(V × V ) be a symmetric
bilinear form. Let Y = F × V and define an operation • on Y by setting

[
a

v

]
•
[

b

w

]
=
[
ab + f (v,w)

aw + bv

]
for all a, b ∈ F and all v,w ∈ V .

Show that (Y,•) is a Jordan algebra.

Exercise 1191
Let V be a vector space over Q. Is the function V ×V → V defined by (v, v′) �→
v + v′ a bilinear transformation?

Exercise 1192

Are the matrices

⎡
⎣0 0 0

1 1 0
1 1 1

⎤
⎦ and 1

25

⎡
⎣25 −5 35

0 −3 21
0 −4 28

⎤
⎦ in M3×3(R) congruent?

Exercise 1193

Find an upper-triangular matrix in M3×3(R) congruent to

⎡
⎣ 1 0 −2

−1 1 0
0 −2 4

⎤
⎦ or

show that there is no such matrix.

Exercise 1194
Let F be a field and let n be a positive integer. A matrix A = [aij ] ∈ Mn×n(F ) is
an upper Hessenberg matrix if and only if aij = 0 whenever i − j ≥ 2. Is every
matrix in Mn×n(R) necessarily congruent to an upper Hessenberg matrix?

© Brigitte Bossert.

Karl Hessenberg was a twentieth-century German engineer.
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Exercise 1195
Let F be a field. Show that every upper triangular matrix in M3×3(F ) is congru-
ent to a lower triangular matrix.

Exercise 1196
Let n be a positive integer and let A be a nonsingular symmetric matrix in
Mn×n(C). Show that A is congruent to A−1.

Exercise 1197

Find a matrix P ∈M3×3(R) such that the matrix P

⎡
⎣2 1 3

1 0 1
3 1 3

⎤
⎦P T is diagonal.

Exercise 1198

Let A =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦ ∈M4×4(R). Find a nonsingular matrix P ∈ M4×4(R)

such that PAP T is diagonal.

Exercise 1199
Find a diagonal matrix in M4×4(R) congruent to the matrix

⎡
⎢⎢⎣

1 2 3 2
2 3 5 8
3 5 8 10
2 8 10 −8

⎤
⎥⎥⎦ .

Exercise 1200

Is the matrix

⎡
⎣ 1 i 1 + i

i 0 2 − i

1 + i 2 − i 10 + 2i

⎤
⎦ ∈ M3×3(C) congruent to I?

Exercise 1201
Let n be a positive integer and let α be a positive-definite endomorphism of Rn

represented with respect to the canonical basis by the matrix A. If A′ is a matrix
congruent to A, does it too represent a positive-definite endomorphism of R

n

with respect to the canonical basis?

Exercise 1202
Let V be a vector space finitely generated over be a field F of characteristic other
than 2. If f ∈ Bill(V × V ) is symmetric and not the 0-function, show that there
exists a vector v ∈ V satisfying f (v, v) �= 0.
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Exercise 1203
Let V be a vector space finitely generated over be a field F of characteristic
other than 2. If f ∈ Bill(V × V ), show that f (v, v) = 0 for all v ∈ V if and only
if f (v,w) = −f (w,v) for all v,w ∈ V .

Exercise 1204
Let n be a positive integer, let F be a field, and let A ∈ Mn×n(F ). Show that
there exists a symmetric matrix B ∈ Mn×n(F ) satisfying v · Av = v · Bv for all
v ∈ Fn.

Exercise 1205

Find a bilinear form f ∈ Bill

⎛
⎜⎜⎝R3 ×

⎡
⎢⎢⎣

1
3

−1
3

⎤
⎥⎥⎦R

3

⎞
⎟⎟⎠ which defines the quadratic

form

⎡
⎣a

b

c

⎤
⎦ �→ a2 − 2ab + 4ac − 2bc + 2c2.

Exercise 1206
Let f ∈ Bill(R3,R3) be the symmetric bilinear form defined by the matrix⎡
⎣−3 1 0

1 −6 1
0 1 7

⎤
⎦. Find the quadratic form defined by f .

Exercise 1207
Let f ∈ Bill(R3,R3) be the symmetric bilinear form defined by the matrix⎡
⎣ 2 −1 5

−1 0 1
3

5 1
3 −3

⎤
⎦. Find the quadratic form defined by f .

Exercise 1208
Find a symmetric bilinear form f ∈ Bill(R3,R3) which defines the quadratic

form

⎡
⎣a

b

c

⎤
⎦ �→ 2ab + 4ac + 6bc.

Exercise 1209
Let F be a field of characteristic other than 2, and let V be a vector space over F .
Let q : V → F be a function satisfying the condition that q(v +w)+q(v −w) =
2q(v) + 2q(w) for all v,w ∈ V . Show that the function f : V × V → F defined
by f : (v,w) �→ 1

4 [q(v + w) − q(v − w)] is a symmetric bilinear form.
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Exercise 1210
Let V be a vector space over a field F of characteristic other than 2, and let
f ∈ Bill(V × V ) be a symmetric bilinear form which defines a quadratic form
q : V → F . Show that

q(u + v + w) = q(u + v) + q(u + w) + q(v + w) − q(u) − q(v) − q(w)

for all u,v,w ∈ V .

Exercise 1211
Let V be a vector space over a field F . Show that V ∼= F ⊗ V .

Exercise 1212
Let V and W be vector spaces over a field F . Let x ∈ V ⊗ W be written in the
form x =∑n

i=1 vi ⊗ wi , where n is minimal in the sense that there is no way to
express x in the form

∑k
i=1 v′

i ⊗ w′
i for any k < n. Show that {v1, . . . , vn} is a

linearly-independent subset of V and that {w1, . . . ,wn} is a linearly-independent
subset of W .

Exercise 1213
Let K be a field containing F as a subfield. If V is a vector space over F , show
that K ⊗ V is a vector space over K .

Exercise 1214
Let V be a vector space of finite dimension n over a field F and let Y be the
subspace of V ⊗ V generated by all elements of the form v ⊗ v′ − v′ ⊗ v, where
v, v′ ∈ V . Find the dimension of Y .

Exercise 1215
Let V and W be finite dimensional vector spaces over a field F . Let v, v′ ∈ V

and w,w′ ∈ W be vectors satisfying the condition v ⊗w = v′ ⊗w′ and this is not
the identity element of V ⊗ W with respect to addition. Show that there exists a
scalar c ∈ F such that v = cv′ and w′ = cw.

Exercise 1216
Let F be a field and, for all A,B ∈ M2×2(F ), denote the Kronecker product
of A and B by A ⊗ B . If {H1, . . . ,H4} is the canonical basis for M2×2(F ), is
{Hi ⊗ Hj | 1 ≤ i, j ≤ 4} a basis for M4×4(F ).

Exercise 1217
Find the numerical range of the quadratic form q : R2 → R defined by q : v �→
vT

[
1 0
0 0

]
v.

Exercise 1218
Let n be a positive integer and let F be a field. If A ∈ Mn×n(F ) is a magic
matrix, is the same true for A ⊗ A ∈ M2n×2n(F )?
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Exercise 1219
Let F be a field and let k and n be positive integers. If matrices A ∈ Mk×k(F )

and B ∈ Mn×n(F ) have eigenvalues a and b, respectively, show that ab is an
eigenvalue of A ⊗ B .

Exercise 1220
Let F be a field and let k and n be positive integers. If matrices A ∈ Mk×k(F )

and B ∈ Mn×n(F ) have eigenvalues a and b respectively, find a matrix
C ∈Mkn×kn(F ) with eigenvalue a + b.

Exercise 1221
Let F be a field of characteristic other than 2 and let V be a vector space over F .
Find the minimal polynomial of the endomorphism α of V ⊗ V defined by
α :∑n

i=1 ai(vi ⊗ wi) �→∑n
i=1 ai(wi ⊗ vi).

Exercise 1222
Let F be a field, let k,n, s, and t be positive integers, and consider matrices
A ∈ Mk×n(F ) and B ∈ Ms×t (F ). Is the rank of A ⊗ B necessarily equal to the
product of the ranks of A and B?

Exercise 1223
Let V,V ′,W,W ′ be vector spaces over a field F and let α : V → V ′ and
β : W → W ′ be monic linear transformations. Let α ⊗ β be the linear trans-
formation from V ⊗ V ′ to W ⊗ W ′ defined by α ⊗ β : ∑n

i=1 ai(vi ⊗ v′
i ) �→∑n

i=1 ai[α(vi) ⊗ β(v′
i )]. Is α ⊗ β monic?

Exercise 1224
Let F be a field and let (K,•) and (L,∗) be F -algebras. Define an operation �
on V ⊗ W by setting (v ⊗ w) � (v′ ⊗ w′) = (v • v′) ⊗ (w ∗ w′) for all v, v′ ∈ K

and w,w′ ∈ L. Is (K ⊗ L,�) an F -algebra?

Exercise 1225

Let V = R
2 and let W = V ⊗ V . If w ∈ W is normal, do there necessarily exist

normal vectors v, v′ ∈ V such that w = v ⊗ v′?

Exercise 1226
Let V be a vector space over R. Show that the complexification of V is isomor-
phic to C⊗V .

Exercise 1227
Let V be an inner product space over R having a basis {vi | i ∈ �} and let W

be an inner product space over R having a basis {wj | j ∈ �} Define a function
μ : (V ⊗ W) × (V ⊗ W) →R by setting
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μ :
(∑

i∈�

∑
j∈�

aij (vi ⊗ wj),
∑
i∈�

∑
j∈�

bij (v
′
i ⊗ w′

j )

)

�→
∑
i∈�

∑
j∈�

aij bij

[〈vi, v
′
i〉 + 〈wj ,w

′
j 〉
]
.

Is μ an inner product on V ⊗ W ?

Exercise 1228
Let V be a vector space over a field F and let α ∈ End(V ). Is the function
V ∧ V → V ∧ V defined by

∑n
i=1 ci(vi ∧ wi) �→∑n

i=1 ci(α(vi) ∧ α(wi)) a lin-
ear transformation?

Exercise 1229
Let n be a positive integer and let A,B ∈ Mn×n(R) be orthogonal matrices. Is
their Kronecker product A ⊗ B an orthogonal matrix?

Exercise 1230
Let n be a positive integer and let A,B ∈ Mn×n(R) be permutation matrices. Is
their Kronecker product A ⊗ B a permutation matrix?

Exercise 1231
Let k and n be positive integers and let F be a field. Let A ∈ Mk×k(F ) and let
B ∈ Mn×n(F ). Is it necessarily true that tr(A ⊗ B) = tr(A) tr(B)?

Exercise 1232
Let k and n be positive integers and let F be a field. For A ∈ Mk×k(F ) and
B ∈ Mn×n(F ), find a matrix C ∈Mkn×kn(F ) such that eC = eA ⊗ eB .

Exercise 1233

The matrix

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ plays an important part in quantum information the-

ory. Write this matrix as a sum of Kronecker products of

[
1 0
0 1

]
and the three

Pauli matrices.
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Bunch–Kaufman algorithm, 408
Burnside’s Theorem, 279

C
Canonical basis, 64, 300
Cantor set, 69
Cartesian product, 2
Cassini oval, 351

J.S. Golan, The Linear Algebra a Beginning Graduate Student Ought to Know,
DOI 10.1007/978-94-007-2636-9, © Springer Science+Business Media B.V. 2012

489

http://dx.doi.org/10.1007/978-94-007-2636-9


490 Index

Cauchy–Schwarz–Bunyakovsky Theorem, 337
Cayley algebra, 336
Cayley representation, 440
Cayley–Hamilton Theorem, 276
Chain, 61
Chain subset, 61
Change-of-basis matrix, 162
Characteristic, 9
Characteristic function, 24
Characteristic polynomial, 264, 298

generalized, 282
Characteristic value, 255
Characteristic vector, 255
Chebyshev polynomial, 370
Cholesky decomposition, 406
Circuit, 71
Circulant matrix, 172
Co-independent hyperplanes, 332
Coefficient, 44

Fourier, 378
leading, 44
Taylor, 117

Coefficient matrix, 191
Column equivalent, 161
Column space, 199
Combination

affine, 29
linear, 27
uniform, 38
zero-sum, 38

Commutative algebra, 39
Commuting pair, 40
Companion matrix, 265
Complement, 75

orthogonal, 374
Completely reducible, 49
Complex conjugate, 8
Complex Hadamard matrix, 388
Complex number, 7
Complex polarization identity, 363
Complexification, 72
Condensation,

method of, 230
Condition number, 210

spectral, 432
Congruent matrices, 457
Conjugate,

complex, 8
Conjugate transpose, 334
Continuant, 243
Convex subset, 412
Convolution algebra, 41
Copositive, 418
Coproduct

direct, 26
Courant–Fischer Minimax Theorem, 400
Cramer’s Theorem, 236
Cross product, 42
Crout’s algorithm, 169
Cut norm, 345
Cyclic, 117
Cyclotomic polynomial, 48

D
Decomposition

Cholesky, 406
direct sum, 74
LU, 168
polar, 431
QR, 379
singular value, 431
spectral, 429

Defective eigenvalue, 270
Deflation, 281
Degree

algebraic, 110
of a generalized eigenvector, 304
of a multivariate polynomial, 50
of a polynomial, 44
of a polynomial function, 47

Derivation, 114
Derogatory endomorphism, 270
Determinant, 227
Determinant function, 221
Diagonal Dominance Theorem, 350
Diagonal matrix, 148
Diagonalizable endomorphism, 261
Difference set, 2
Differential, 90
Differential operator, 114
Dimension, 71
Dirac functional, 321
Direct coproduct, 26
Direct product, 23
Direct sum, 74
Direct sum decomposition, 74
Discrete cosine transform, 152
Discrete Fourier transform, 152, 341
Disjoint subspaces, 27
Distance, 352
Distance matrix, 400
Distribution, 318
Division algebra, 52
Division Algorithm, 46
Domain, 2

integral, 9
Dominant eigenvalue, 280
Dot product, 334
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weighted, 335
Drazin pseudoinverse, 450
Dual basis, 323
Dual space, 317

weak, 323
Dyadic product, 145

E
Eigenspace, 257, 258

generalized, 306
Eigenvalue, 255, 258

defective, 270
dominant, 280
semisimple, 270
simple, 270

Eigenvector, 255, 258
generalized, 304

Eisenstein’s criterion, 47
Elementary automorphism, 115
Elementary matrix, 153
Elementary operation, 158
Elliptic norm, 403
Endomorphism, 113

almost positive semidefinite, 415
bounded, 125
copositive, 418
derogatory, 270
diagonalizable, 261
indefinite, 403
integration, 114
nilpotent, 302
nonderogatory, 270
normal, 424
orthogonally diagonalizable, 398
positive definite, 403
positive semidefinite, 403
selfadjoint, 395

Entangled tensors, 465
Entire, 44
Epic, 2
Epimorphism, 95
Equal functions, 2
Equivalence relation, 120
Equivalent matrices, 161
Equivalent norms, 346
Euclidean

norm, 338
subfield, 333

Evaluation functional, 324
Even function, 76
Even permutation, 224
Exchange Property, 29

Extended coefficient matrix, 191
Extension, 2
Exterior algebra, 470
Exterior power, 470
Exterior product, 136
Exterior square, 470

F
Factor space, 110
Fan, 186
Fast Fourier transform, 152
Fibonacci sequence, 299
Field, 5

algebraically closed, 49
formally-real, 334
Galois, 8
orderable, 18

Field of algebraic numbers, 73
Finite dimensional, 71
Finitely generated, 29
Fixed point, 256
Fixed space, 257
Flat polynomial, 51
Form

bilinear, 455
Lorentz, 462
quadratic, 461

Formal differentiation, 117
Formal Laurent series, 18
Formally real field, 334
Fourier coefficient, 378
Fredholm alternative, 326
Frobenius norm, 345
Full pivoting, 168
Function, 2

characteristic, 24
determinant, 221
even, 76
inverse, 2
linearly independent, 110
odd, 76
periodic, 69
piecewise constant, 34
spline, 56
weight, 318

Functional
Dirac, 321
evaluation, 324
linear, 317
zero, 317

Fundamental Theorem of Algebra, 49
Fuzzification, 87
Fuzzy subspace, 37
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G
Galois field, 8
Gap, 387
Gauss–Jordan method, 195
Gauss–Seidel iteration method, 205
Gaussian elimination, 195
Gelfand–Naimark Property, 449
General Lie algebra, 147
General quadratic equation, 464
Generalized characteristic polynomial, 282
Generalized eigenspace, 306
Generalized eigenvector, 304
Generating set, 28
Geometric multiplicity, 270
Gershgorin bound, 349
Gershgorin’s Theorem, 350
Givens rotation matrix, 420
GMRES algorithm, 375
Golden ratio, 299
Google matrix, 282
Gram matrix, 336
Gram–Schmidt process, 372
Gram–Schmidt Theorem, 372
Graph, 91
Grassmann’s Theorem, 77
Greville’s method, 444
Grothendieck’s inequality, 345
Group of automorphisms, 120
Guttman’s Theorem, 154

H
Haar wavelet, 376
Hadamard inequality, 373
Hadamard matrix, 229

complex, 388
Hadamard product, 174
Hahn–Banach Theorem, 347
Hamel basis, 69
Hamming norm, 352
Hankel matrix, 241
Hausdorff Maximum Principle, 67
Hermitian matrix, 396
Hermitian transpose, 334
Hibert subset, 376
Hilbert matrix, 159
Hilbert–Schmidt norm, 345
Homogeneous system of linear equations, 190
Homomorphism, 89

of algebras, 89
of unital algebras, 89

Householder matrix, 423
Hua’s identity, 12

Hull
uniform, 38
zero-sum, 38

Hyperplane, 325

I
Idempotent, 118
Ill-conditioned, 209
Image, 94
Imaginary part, 7
Improper subspace, 25
Indefinite endomorphism, 403
Independent subspaces, 74
Indeterminate, 44
Index of nilpotence, 302
Induced norm, 343
Infinite dimensional, 71
Inner product, 333
Inner product space, 333
Integral domain, 9
Integration endomorphism, 114
Interior product, 136
Interpolation problem, 189
Intersection, 1
Invariant subspace, 117
Inverse function, 2
Inversion, 224
Involution, 385
Involutory matrix, 151
Irreducible, 47
Isometry, 409
Isomorphic vector spaces, 97
Isomorphism, 95

of algebras, 95
of unital algebras, 95

Iteration method
Gauss–Seidel, 205
Jacobi, 205
JOR, 207
SOR, 207
stationary, 208

J
Jacobi identity, 41
Jacobi iteration method, 205
Jacobi overrelaxation method, 207
Jacobi polynomial, 371
Jacobi reflection matrix, 422
JOR, 207
Jordan algebra, 43
Jordan canonical form, 304, 308
Jordan identity, 43
Jordan product, 43
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K
Karatsuba’s algorithm, 45
Kernel, 94
Ket-bra product, 136
Kovarik algorithm, 445
Kronecker product, 467
Krylov algorithm, 301
Krylov subspace, 297

L
Lagrange identity, 339
Lagrange interpolation polynomial, 162
Lanczos algorithm, 301
Laurent series, formal, 18
Leading coefficient, 44
Leading entry, 194
Least squares method, 447
Legendre polynomial, 370
Lie algebra, 41

general, 147
special, 320

Lie product, 42
Lightcone inequality, 463
Linear combination, 27
Linear functional, 317
Linear transformation, 89

adjoint of, 383
Linear variety, 96
Linearly dependent, 57

locally, 92
Linearly independent, 57, 110

nearly, 82
with respect to a fuzzification, 87

Linearly recurrent sequence, 298
List, 1
Locally linearly dependent, 92
Loewner partial order, 404
Lorentz form, 462
Lower-triangular matrix, 150
LU-decomposition, 168

M
Magic matrix, 287
Markov matrix, 150
Matrices

column-equivalent, 161
congruent, 457
equivalent, 161
Pauli, 82
row-equivalent, 161
similar, 266
unitarily similar, 420

Matrix, 23
adjacency, 399

adjoint, 235
anti-Hermitian, 413
band, 149
change-of-basis, 162
circulant, 172
coefficient, 191
companion, 265
complex Hadamard, 388
determinant of, 227
diagonal, 148
distance, 400
elementary, 153
extended coefficient, 191
Givens rotation, 420
Google, 282
Gram, 336
Hadamard, 229
Hankel, 241
Hermitian, 396
Hilbert, 159
Householder, 423
in block form, 138
in reduced row echelon form, 194
in row echelon form, 193
involutory, 151
Jacobi reflection, 422
lower-triangular, 150
magic, 287
Markov, 150
Nievergelt’s, 159
nonsingular, 151
normal, 434
orthogonal, 422
permutation, 158
quasidefinite, 415
scalar, 148
singular, 151
skew-symmetric, 150
sparse, 167
special orthogonal, 424
stochastic, 150
strictly diagonally dominant, 249
symmetric, 150
symmetric Toeplitz, 202
symplectic, 440
transpose, 95
tridiagonal, 149
unitary, 419
upper Hessenberg, 473
upper-triangular, 149
Vandermonde, 163
zero, 24

Matrix logarithm, 356
Matrix representation, 153
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Maximal, 61
Maximal subspace, 325
Method of condensation, 230
Minimal, 61
Minimal polynomial, 273, 298
Minkowski’s inequality, 339
Minor, 230
Modular Law, 31
Moebius function, 48
Monic

function, 2
polynomial, 44

Monomorphism, 95
Moore–Penrose pseudoinverse, 441
Multiplication

in a field, 5
scalar, 21

Multiplication table, 65
Multiplicity

algebraic, 270
geometric, 270

Mutually orthogonal, 369

N
Nearly linearly independent, 82
Nevanlinna–Pick Interpolation Theorem, 403
Nievergelt’s matrix, 159
Nilpotent, 302
Nondegenerate bilinear form, 455
Nonderogatory endomorphism, 270
Nonhomogeneous system of linear equations,

190
Nonsingular matrix, 151
Nontrivial subspace, 25
Norm, 338, 342

cut, 345
elliptic, 403
Euclidean, 338
Frobenius, 345
Hamming, 352
Hilbert–Schmidt, 345
induced, 343
spectral, 344
triangular, 37

Normal endomorphism, 424
Normal matrix, 434
Normal vector, 338
Normed space, 342
Norms

equivalent, 346
Nullity, 98
Number

complex, 7
rational, 5

real, 5
Numerical range, 463

O
Odd function, 76
Odd permutation, 224
Operation

elementary, 158
Opposite transformation, 453
Optimization algebra, 9
Order of recurrence, 298
Orderable field, 18
Orthogonal, 369
Orthogonal complement, 374

right, 458
Orthogonal matrix, 422
Orthogonal projection, 374
Orthogonality with respect to a bilinear form,

458
Orthogonally diagonalizable, 398
Orthonormal, 375

P
Padé approximant, 239
Pairwise disjoint, 27
Parallelogram law, 339
Parity, 456
Parseval’s identity, 380
Partial order, 60

Loewner, 404
Partial pivoting, 168
Partially-ordered set, 60
Pauli matrices, 82
Periodic function, 69
Permanent, 252
Permutation, 2

even, 224
odd, 224

Permutation matrix, 158
Pfaffian, 228
Piecewise constant, 34
Pivot, 168
Pivoting

full, 168
partial, 168

Poincaré–Birkhoff–Witt Theorem, 42
Polar decomposition, 431
Polarization identity

complex, 363
real, 363

Polynomial, 44
characteristic, 264, 298
Chebyshev, 370
completely reducible, 49
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Polynomial (cont.)
cyclotomic, 48
flat, 51
in several indeterminates, 50
irreducible, 47
Jacobi, 371
Lagrange interpolation, 162
Legendre, 370
minimal, 273, 298
monic, 44
reciprocal, 440
reducible, 47
trigonometric, 56
zero, 44

Polynomial function, 47
Positive definite, 403
Positive quadratic form, 462
Positive semidefinite, 403
Power

exterior, 470
Pre-Banach space, 342
Pre-Hilbert space, 333
Primitive root of unity, 152
Principal component analysis, 118
Process

Arnoldi, 375
Gram–Schmidt, 372

Product
bra-ket, 136
Cartesian, 2
cross, 42
direct, 23
dot, 334
dyadic, 145
exterior, 136
Hadamard, 174
inner, 333
interior, 136
Jordan, 43
ket-bra, 136
Kronecker, 467
Lie, 42
scalar triple, 339
Schur, 174
tensor, 465
vector triple, 339

Projection, 118
onto an affine set, 387
orthogonal, 374

Proper subspace, 25
Pseudoinverse

Drazin, 450
Moore–Penrose, 441

Q
QR algorithm, 380
QR-decomposition, 379
Quadratic form, 461

positive, 462
Quadratic surface, 464
Quasidefinite matrix, 415
Quaternion

algebra, 66
real, 66

QZ algorithm, 380

R
Range, 2

numerical, 463
Rank, 98, 199, 457
Rational Decomposition Theorem, 304
Rational number, 5
Rayleigh quotient

function, 400
iteration scheme, 400

Real Euclidean, 333
Real number, 5
Real part, 7
Real polarization identity, 363
Real quaternion, 66
Reciprocal polynomial, 440
Reduced row echelon form, 194
Reducible, 47
Relation

equivalence, 120
partial order, 60

Relaxation method, 207
Representation, 153
Restriction, 2
Riesz Representation Theorem, 382
Right orthogonal complement, 458
Row echelon form, 193
Row equivalent, 161
Row space, 199

S
Scalar, 22
Scalar matrix, 148
Scalar multiplication, 21
Scalar triple product, 339
Schur complement, 160
Schur product, 174
Schur’s Theorem, 421
Selfadjoint, 395
Semifield, 9
Semisimple eigenvalue, 270
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Sequence, 1
Fibonacci, 299
linearly recurrent, 298

Set
difference, 2
generating, 28
partially-ordered, 60
spanning, 28

Sherman–Morrison–Woodbury Theorem, 154
Signum, 224
Similar matrices, 266
Simple eigenvalue, 270
Simple tensors, 465
Simpson’s rule, 187
Singular matrix, 151
Singular value, 432
Singular Value Decomposition Theorem, 431
Skew symmetric bilinear form, 453
Skew symmetric matrix, 150
Solution set, 191
Solution space, 191
SOR, 207
Space

dual, 317
inner product, 333
normed, 342
pre-Banach, 342
pre-Hilbert, 333
solution, 191

Spanning set, 28
Sparse matrix, 167
Special Lie algebra, 320
Special orthogonal matrix, 424
Spectral condition number, 432
Spectral Decomposition Theorem, 429
Spectral norm, 344
Spectral radius, 258
Spectrum, 255
Spline function, 56
Stabilizer, 131
Standard identity, 238
Stationary iteration method, 208
Steinitz Replacement Property, 60
Stochastic matrix, 150
Strassen–Winograd algorithm, 166
Strictly diagonally dominant, 249
Subalgebra, 41

unital, 41
Subfield, 6

Euclidean, 333
real Euclidean, 333

Subset
affine, 96
bounded, 67

chain, 61
convex, 412
Hilbert, 376
orthonormal, 375
underlying, 1

Subspace, 25
cyclic, 117
fuzzy, 37
generated by, 28
improper, 25
invariant, 117
Krylov, 297
maximal, 325
nontrivial, 25
proper, 25
spanned by, 28
trivial, 25

Subspaces
disjoint, 27
independent, 74
pairwise disjoint, 27

Successive overrelaxation method, 207
Sylvester’s Theorem, 98
Symmetric

bilinear transformation, 453
matrix, 150
Toeplitz matrix, 202
with respect to an involution, 385

Symmetric difference, 24
Symplectic matrix, 440
System of linear equations, 189

homogeneous, 190
nonhomogeneous, 190

T
Taber’s Theorem, 321
Taylor coefficient, 117
Tensor algebra, 470
Tensor product, 465
Tensors

entangled, 465
simple, 465

Ternary ring, 18
Trace, 318
Transcendental, 73
Transform

discrete cosine, 152
discrete Fourier, 152, 341
fast Fourier, 152

Transformation
affine, 96
bilinear, 453
linear, 89
opposite, 453
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Transpose, 95
conjugate, 334
Hermitian, 334

Triangle difference inequality, 339
Triangle inequality, 353
Triangular norm, 37
Tridiagonal matrix, 149
Trigonometric polynomial, 56
Trivial subspace, 25

U
Underlying subset, 1
Uniform combination, 38
Uniform hull, 38
Union, 1
Unit, 40
Unital algebra, 39
Unital subalgebra, 41
Unitarily similar matrices, 420
Unitary automorphism, 419
Unitary matrix, 419
Upper Hessenberg matrix, 473
Upper-triangular matrix, 149

V
Vandermonde matrix, 163
Variety

linear, 96
Vector, 22

normal, 338

Vector addition, 21
Vector space, 21

finite dimensional, 71
finitely generated, 29
infinite dimensional, 71

Vector triple product, 339
Vectors

orthogonal, 369
orthogonal with respect to a bilinear form,

458

W
Wavelet

Haar, 376
Weak dual space, 323
Weight function, 318
Weight of a Baxter algebra, 90
Weighted dot product, 335
Well Ordering Principle, 61
Weyl’s Problem, 399
Width of a band matrix, 149
Wiedemann algorithm, 301
Word, 23
Wronskian, 228

Z
Zero-sum combination, 38
Zero-sum hull, 38
Zlobec’s formula, 445
Zorn’s Lemma, 67
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