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Preface

The objective of this book is to develop an understanding of the basic
principles of structural analysis. Emphasizing the intuitive classical ap-
proach, Structural Analysis covers the analysis of statically determinate
and indeterminate beams, trusses, and rigid frames. It also presents an
introduction to the matrix analysis of structures.

The book is divided into three parts. Part One presents a general
introduction to the subject of structural engineering. It includes a chap-
ter devoted entirely to the topic of loads because attention to this im-
portant topic is generally lacking in many civil engineering curricula.
Part Two, consisting of Chapters 3 through 10, covers the analysis of
statically determinate beams, trusses, and rigid frames. The chapters on
deflections (Chapters 6 and 7) are placed before those on influence lines
(Chapters 8 and 9), so that influence lines for deflections can be included
in the latter chapters. This part also contains a chapter on the analysis
of symmetric structures (Chapter 10). Part Three of the book, Chapters
11 through 17, covers the analysis of statically indeterminate structures.
The format of the book is flexible to enable instructors to emphasize
topics that are consistent with the goals of the course.

Each chapter of the book begins with an introductory section de-
fining its objective and ends with a summary section outlining its salient
features. An important general feature of the book is the inclusion of
step-by-step procedures for analysis to enable students to make an easier
transition from theory to problem solving. Numerous solved examples
are provided to illustrate the application of the fundamental concepts.

A computer program for analyzing plane framed structures is
available on the publisher’s website www.cengage.com/engineering.
This interactive software can be used to simulate a variety of structural
and loading configurations and to determine cause versus effect rela-
tionships between loading and various structural parameters, thereby
enhancing the students’ understanding of the behavior of structures.
The software shows deflected shapes of structures to enhance students’
understanding of structural response due to various types of loadings. It
can also include the effects of support settlements, temperature changes,

Xiii
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and fabrication errors in the analysis. A solutions manual, containing
complete solutions to over 600 text exercises, is also available for the
instructor.

New to the Fifth Edition

Building upon the original theme of this book which is that detailed ex-
planations of concepts provide the most effective means of teaching
structural analysis, the following improvements and changes have been
made in this fifth edition:

The entire artwork for the book has been redrawn in two colors
to enhance clarity. Where applicable, the external loading and
reactions of the structure, as well as its deformed (deflected)
shape, are shown in blue; whereas, the undeformed structure, its
supports and dimensions are drawn in black/grey.

A new section on structural systems for transmitting loads has
been added in Chapter 2, where the concepts of gravity and
lateral load paths and tributary areas are introduced. Also in
this chapter, the previously separate sections on live loads and
impact have now been combined, another new section on the
classification of buildings for environmental loads as per
ASCE/SEI 7-10 Standard has been added, and all the material
on loads has been revised to meet the provisions of this latest
version of the ASCE/SEI 7 Standard.

In chapter 7, the treatment of the virtual work method has been
expanded by including a graphical procedure for evaluating the
virtual work integrals, along with two new examples to illus-
trate the application of this procedure.

Based on reviewers’ input, Chapter 14 of the previous edition has
been deleted, with the method of least work now covered in
Chapter 13 and the treatment of the three-moment equation
moved to a new Appendix D. The subsequent chapters of the
book have been re-numbered accordingly.

Over 15 percent of the problems from the previous edition have
been replaced with new ones.

There are numerous other minor revisions, including an expanded
discussion of static determinacy of trusses (Chapter 4), and addi-
tion of new photographs and figures illustrating some typical
building frame connections (Chapter 5). The page layout has
been redesigned to enhance clarity. Finally, the computer soft-
ware has been upgraded and recompiled to make it compatible
with the latest versions of Microsoft Windows.

Ancillaries for the Fifth Edition

Worked-out solutions to all end-of-chapter problems are provided in the
Instructors Solutions Manual, and available in print or digitally to reg-
istered instructors on the instructor resources web site.
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Two sets of PowerPoint slides, one of all figures and tables, the other
of examples and equations to allow instructors an easier way to prepare
their lectures, are also available on the instructor website, at www.cengage
.com/engineering. The computer software program is available for stu-
dents using the text, through www.cengagebrain.com, and for instructors
through ecither site.

MindTap Online Course and Reader

In addition to the print version, this textbook will also be available on-
line through MindTap, a personalized learning program. Students who
purchase the MindTap version will have access to the book’s MindTap
Reader and will be able to complete homework and assessment material
online, through their desktop, laptop, or iPad. If your class is using a
Learning Management System (such as Blackboard, Moodle, or Angel)
for tracking course content, assignments, and grading, you can seam-
lessly access the MindTap suite of content and assessments for this
course.
In MindTap, instructors can:

e  Personalize the Learning Path to match the course syllabus by
rearranging content, hiding sections, or appending original
material to the textbook content

e Connect a Learning Management System portal to the online
course and Reader
Customize online assessments and assignments
Track student progress and comprehension with the Progress app
Promote student engagement through interactivity and exercises

Additionally, students can listen to the text through ReadSpeaker,
take notes and highlight content for easy reference, and check their un-
derstanding of the material.
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Introduction to Structural
Analysis and Loads
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Introduction to
Structural Analysis

1.1 Historical Background
1.2 Role of Structural Analysis in Structural Engineering Projects
1.3 Classification of Structures
1.4 Analytical Models
Summary

Structural analysis is the prediction of the performance of a given structure
under prescribed loads and/or other external effects, such as support
movements and temperature changes. The performance characteristics
commonly of interest in the design of structures are (1) stresses or stress
resultants, such as axial forces, shear forces, and bending moments; (2)
deflections; and (3) support reactions. Thus, the analysis of a structure
usually involves determination of these quantities as caused by a given
loading condition. The objective of this text is to present the methods for
the analysis of structures in static equilibrium.

This chapter provides a general introduction to the subject of struc-
tural analysis. We first give a brief historical background, including
names of people whose work is important in the field. Then we discuss
the role of structural analysis in structural engineering projects. We
describe the five common types of structures: tension and compression
structures, trusses, and shear and bending structures. Finally, we con-
sider the development of the simplified models of real structures for the
purpose of analysis.

1.1 Historical Background

Since the dawn of history, structural engineering has been an essential
part of human endeavor. However, it was not until about the middle of
the seventeenth century that engineers began applying the knowledge of
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FIG. 1.1 The Cathedral of Notre Dame in
Paris was Completed in the Thirteenth
Century

Ritu Manoj Jethani / Shutterstock.com

mechanics (mathematics and science) in designing structures. Earlier en-
gineering structures were designed by trial and error and by using rules
of thumb based on past experience. The fact that some of the mag-
nificent structures from earlier eras, such as Egyptian pyramids (about
3000 B.c.), Greek temples (500-200 B.c.), Roman coliseums and aque-
ducts (200 B.c.—A.D. 200), and Gothic cathedrals (a.p. 1000—-1500), still
stand today is a testimonial to the ingenuity of their builders (Fig. 1.1).

Galileo Galilei (1564-1642) is generally considered to be the origi-
nator of the theory of structures. In his book entitled 7wo New Sciences,
which was published in 1638, Galileo analyzed the failure of some
simple structures, including cantilever beams. Although Galileo’s predic-
tions of strengths of beams were only approximate, his work laid the
foundation for future developments in the theory of structures and ushered
in a new era of structural engineering, in which the analytical principles of
mechanics and strength of materials would have a major influence on the
design of structures.

Following Galileo’s pioneering work, the knowledge of structural
mechanics advanced at a rapid pace in the second half of the seventeenth
century and into the eighteenth century. Among the notable investigators
of that period were Robert Hooke (1635-1703), who developed the law
of linear relationships between the force and deformation of materials
(Hooke’s law); Sir Isaac Newton (1642-1727), who formulated the
laws of motion and developed calculus; John Bernoulli (1667-1748),
who formulated the principle of virtual work; Leonhard Euler
(1707-1783), who developed the theory of buckling of columns; and
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C. A. de Coulomb (1736-1806), who presented the analysis of bending
of elastic beams.

In 1826 L. M. Navier (1785-1836) published a treatise on elastic be-
havior of structures, which is considered to be the first textbook on the
modern theory of strength of materials. The development of structural
mechanics continued at a tremendous pace throughout the rest of the
nineteenth century and into the first half of the twentieth, when most of
the classical methods for the analysis of structures described in this text
were developed. The important contributors of this period included B. P.
Clapeyron (1799-1864), who formulated the three-moment equation for
the analysis of continuous beams; J. C. Maxwell (1831-1879), who pre-
sented the method of consistent deformations and the law of reciprocal
deflections; Otto Mohr (1835-1918), who developed the conjugate-beam
method for calculation of deflections and Mohr’s circles of stress and
strain; Alberto Castigliano (1847-1884), who formulated the theorem of
least work; C. E. Greene (1842-1903), who developed the moment-area
method; H. Muller-Breslau (1851-1925), who presented a principle for
constructing influence lines; G. A. Maney (1888-1947), who developed
the slope-deflection method, which is considered to be the precursor of
the matrix stiffness method; and Hardy Cross (1885-1959), who devel-
oped the moment-distribution method in 1924. The moment-distribution
method provided engineers with a simple iterative procedure for analyz-
ing highly statically indeterminate structures. This method, which was the
most widely used by structural engineers during the period from about
1930 to 1970, contributed significantly to their understanding of the
behavior of statically indeterminate frames. Many structures designed
during that period, such as high-rise buildings, would not have been pos-
sible without the availability of the moment-distribution method.

The availability of computers in the 1950s revolutionized structural
analysis. Because the computer could solve large systems of simultaneous
equations, analyses that took days and sometimes weeks in the pre-
computer era could now be performed in seconds. The development of the
current computer-oriented methods of structural analysis can be attributed
to, among others, J. H. Argyris, R. W. Clough, S. Kelsey, R. K. Livesley,
H. C. Martin, M. T. Turner, E. L. Wilson, and O. C. Zienkiewicz.

1.2 Role of Structural Analysis in Structural Engineering Projects

Structural engineering is the science and art of planning, designing, and
constructing safe and economical structures that will serve their intended
purposes. Structural analysis is an integral part of any structural engi-
neering project, its function being the prediction of the performance of
the proposed structure. A flowchart showing the various phases of a
typical structural engineering project is presented in Fig. 1.2. As this di-
agram indicates, the process is an iterative one, and it generally consists
of the following steps:

1. Planning Phase The planning phase usually involves the estab-
lishment of the functional requirements of the proposed
structure, the general layout and dimensions of the structure,
consideration of the possible types of structures (e.g., rigid frame
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FIG. 1.2 Phases of a Typical Structural
Engineering Project

Planning phase

Preliminary structural design

Estimation of loads

Structural analysis

Are the

safety and Revised
serviceability No ——| structural
requirements design

satisfied?

Yes

1

Construction phase

or truss) that may be feasible and the types of materials to be
used (e.g., structural steel or reinforced concrete). This phase
may also involve consideration of nonstructural factors, such as
aesthetics, environmental impact of the structure, and so on.
The outcome of this phase is usually a structural system that
meets the functional requirements and is expected to be the most
economical. This phase is perhaps the most crucial one of the
entire project and requires experience and knowledge of con-
struction practices in addition to a thorough understanding of
the behavior of structures.

Preliminary Structural Design In the preliminary structural de-
sign phase, the sizes of the various members of the structural
system selected in the planning phase are estimated based on
approximate analysis, past experience, and code requirements.
The member sizes thus selected are used in the next phase to
estimate the weight of the structure.

Estimation of Loads Estimation of loads involves determination
of all the loads that can be expected to act on the structure.
Structural Analysis In structural analysis, the values of the
loads are used to carry out an analysis of the structure in order
to determine the stresses or stress resultants in the members and
the deflections at various points of the structure.

Safety and Serviceability Checks The results of the analysis are
used to determine whether or not the structure satisfies the
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safety and serviceability requirements of the design codes. If
these requirements are satisfied, then the design drawings and
the construction specifications are prepared, and the construc-
tion phase begins.

6. Revised Structural Design If the code requirements are not sat-
isfied, then the member sizes are revised, and phases 3 through 5
are repeated until all the safety and serviceability requirements
are satisfied.

Except for a discussion of the types of loads that can be expected to
act on structures (Chapter 2), our primary focus in this text will be on
the analysis of structures.

1.3 Classification of Structures

As discussed in the preceding section, perhaps the most important deci-
sion made by a structural engineer in implementing an engineering
project is the selection of the type of structure to be used for supporting
or transmitting loads. Commonly used structures can be classified into
five basic categories, depending on the type of primary stresses that may
develop in their members under major design loads. However, it should
be realized that any two or more of the basic structural types described
in the following may be combined in a single structure, such as a build-
ing or a bridge, to meet the structure’s functional requirements.

Tension Structures

The members of tension structures are subjected to pure tension under the
action of external loads. Because the tensile stress is distributed uniformly
over the cross-sectional areas of members, the material of such a structure
is utilized in the most efficient manner. Tension structures composed of
flexible steel cables are frequently employed to support bridges and long-
span roofs. Because of their flexibility, cables have negligible bending
stiffness and can develop only tension. Thus, under external loads, a cable
adopts a shape that enables it to support the load by tensile forces alone.
In other words, the shape of a cable changes as the loads acting on it
change. As an example, the shapes that a single cable may assume under
two different loading conditions are shown in Fig. 1.3.

Figure 1.4 shows a familiar type of cable structure—the suspension
bridge. In a suspension bridge, the roadway is suspended from two main
cables by means of vertical hangers. The main cables pass over a pair of
towers and are anchored into solid rock or a concrete foundation at
their ends. Because suspension bridges and other cable structures lack
stiffness in lateral directions, they are susceptible to wind-induced oscil-
lations (see Fig. 1.5). Bracing or stiffening systems are therefore provided
to reduce such oscillations.

Besides cable structures, other examples of tension structures in-
clude vertical rods used as hangers (for example, to support balconies or
tanks) and membrane structures such as tents and roofs of large-span
domes (Fig. 1.6).
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FIG. 1.3 (a) (b)

Cable
anchorage

Roadway

FIG. 1.4 Suspension Bridge

FIG. 1.5 Tacoma Narrows Bridge
Oscillating before Its Collapse in 1940
Smithsonian Institution Photo No. 72-787. Division of
Work & Industry, National Museum of American History,
Smithsonian Institution
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FIG. 1.6 The Fabric (membrane) Roof of
the Tokyo Dome is Tensioned (inflated)
by Air Pressure from Inside the Stadium
© Gavin Hellier / Alamy

Compression Structures

Compression structures develop mainly compressive stresses under the
action of external loads. Two common examples of such structures are
columns and arches (Fig. 1.7). Columns are straight members subjected
to axially compressive loads, as shown in Fig. 1.8. When a straight
member is subjected to lateral loads and/or moments in addition to axial
loads, it is called a beam-column.

An arch is a curved structure, with a shape similar to that of an
inverted cable, as shown in Fig. 1.9. Such structures are frequently used
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FIG. 1.7 Columns and Arches of the
Segovia (Roman) Aqueduct Bridge in
Spain (constructed in the first or the
second centuries)
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FIG. 1.8 Column

FIG. 1.9 Arch

FIG. 1.11 Shear Wall

to support bridges and long-span roofs. Arches develop mainly com-
pressive stresses when subjected to loads and are usually designed so
that they will develop only compression under a major design loading.
However, because arches are rigid and cannot change their shapes as
can cables, other loading conditions usually produce secondary bending
and shear stresses in these structures, which, if significant, should be
considered in their designs.

Because compression structures are susceptible to buckling or in-
stability, the possibility of such a failure should be considered in their
designs; if necessary, adequate bracing must be provided to avoid such
failures.

Trusses

Trusses are composed of straight members connected at their ends by
hinged connections to form a stable configuration (Fig. 1.10). When the
loads are applied to a truss only at the joints, its members ecither elon-
gate or shorten. Thus, the members of an ideal truss are always either in
uniform tension or in uniform compression. Real trusses are usually
constructed by connecting members to gusset plates by bolted or welded
connections. Although the rigid joints thus formed cause some bending
in the members of a truss when it is loaded, in most cases such secon-
dary bending stresses are small, and the assumption of hinged joints
yields satisfactory designs.

FIG. 1.10 Plane Truss

Trusses, because of their light weight and high strength, are among
the most commonly used types of structures. Such structures are used in
a variety of applications, ranging from supporting roofs of buildings to
serving as support structures in space stations and sports arenas.

Shear Structures

Shear structures, such as reinforced concrete shear walls (Fig. 1.11), are
used in multistory buildings to reduce lateral movements due to wind
loads and earthquake excitations (Fig. 1.12). Shear structures develop
mainly in-plane shear, with relatively small bending stresses under the
action of external loads.
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FIG. 1.12 The Shear Wall on the Side of
This Building is Designed to Resist
Lateral Loads Due to Wind and
Earthquakes

NISEE, University of California, Berkeley
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Bending Structures

Bending structures develop mainly bending stresses under the action of
external loads. In some structures, the shear stresses associated with the
changes in bending moments may also be significant and should be
considered in their designs.

Some of the most commonly used structures, such as beams, rigid
frames, slabs, and plates, can be classified as bending structures. 4 beam
is a straight member that is loaded perpendicular to its longitudinal axis
(Fig. 1.13). Recall from previous courses on statics and mechanics of
materials that the bending (normal) stress varies linearly over the depth
of a beam from the maximum compressive stress at the fiber farthest
from the neutral axis on the concave side of the bent beam to the max-
imum tensile stress at the outermost fiber on the convex side. For
example, in the case of a horizontal beam subjected to a vertically
downward load, as shown in Fig. 1.13, the bending stress varies from
the maximum compressive stress at the top edge to the maximum tensile
stress at the bottom edge of the beam. To utilize the material of a beam
cross section most efficiently under this varying stress distribution, the
cross sections of beams are often I-shaped (see Fig. 1.13), with most of
the material in the top and bottom flanges. The I-shaped cross sections
are most effective in resisting bending moments.

lp
LL EE

FIG. 1.13 Beam

XL

Rigid frames are composed of straight members connected together
either by rigid (moment-resisting) connections or by hinged connections
to form stable configurations. Unlike trusses, which are subjected only
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FIG. 1.14 Rigid Frame

FIG. 1.15 Skeletons of Frame Buildings
Racheal Grazias / Shutterstock.com

to joint loads, the external loads on frames may be applied on the
members as well as on the joints (see Fig. 1.14). The members of a rigid
frame are, in general, subjected to bending moment, shear, and axial
compression or tension under the action of external loads. However, the
design of horizontal members or beams of rectangular frames is often
governed by bending and shear stresses only, since the axial forces in
such members are usually small.

Frames, like trusses, are among the most commonly used types of
structures. Structural steel and reinforced concrete frames are com-
monly used in multistory buildings (Fig. 1.15), bridges, and industrial
plants. Frames are also used as supporting structures in airplanes, ships,
aerospace vehicles, and other aerospace and mechanical applications.

It may be of interest to note that the generic term framed structure is
frequently used to refer to any structure composed of straight members,
including a truss. In that context, this textbook is devoted primarily to
the analysis of plane framed structures.

1.4 Analytical Models

An analytical model is a simplified representation, or an ideal, of a real
structure for the purpose of analysis. The objective of the model is to
simplify the analysis of a complicated structure. The analytical model
represents, as accurately as practically possible, the behavioral charac-
teristics of the structure of interest to the analyst, while discarding much
of the detail about the members, connections, and so on, that is ex-
pected to have little effect on the desired characteristics. Establishment
of the analytical model is one of the most important steps of the analysis
process; it requires experience and knowledge of design practices in
addition to a thorough understanding of the behavior of structures.
Remember that the structural response predicted from the analysis of the
model is valid only to the extent that the model represents the actual
structure.
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Development of the analytical model generally involves consid-
eration of the following factors.

Plane Versus Space Structure

If all the members of a structure as well as the applied loads lie in a
single plane, the structure is called a plane structure. The analysis of
plane, or two-dimensional, structures is considerably simpler than the
analysis of space, or three-dimensional, structures. Fortunately, many
actual three-dimensional structures can be subdivided into plane struc-
tures for analysis.

As an example, consider the framing system of a bridge shown in
Fig. 1.16(a). The main members of the system, designed to support
vertical loads, are shown by solid lines, whereas the secondary bracing
members, necessary to resist lateral wind loads and to provide stability,
are represented by dashed lines. The deck of the bridge rests on beams
called stringers; these beams are supported by floor beams, which, in
turn, are connected at their ends to the joints on the bottom panels of the
two longitudinal trusses. Thus, the weight of the traffic, deck, stringers,
and floor beams is transmitted by the floor beams to the supporting
trusses at their joints; the trusses, in turn, transmit the load to the foun-
dation. Because this applied loading acts on each truss in its own plane,
the trusses can be treated as plane structures.

As another example, the framing system of a multistory building is
shown in Fig. 1.17(a). At each story, the floor slab rests on floor beams,
which transfer any load applied to the floor, the weight of the slab, and
their own weight to the girders of the supporting rigid frames. This ap-
plied loading acts on each frame in its own plane, so each frame can,
therefore, be analyzed as a plane structure. The loads thus transferred to
each frame are further transmitted from the girders to the columns and
then finally to the foundation.

Although a great majority of actual three-dimensional structural
systems can be subdivided into plane structures for the purpose of anal-
ysis, some structures, such as latticed domes, aerospace structures, and
transmission towers, cannot, due to their shape, arrangement of mem-
bers, or applied loading, be subdivided into planar components. Such
structures, called space structures, are analyzed as three-dimensional
bodies subjected to three-dimensional force systems.

Line Diagram

The analytical model of the two- or three-dimensional body selected for
analysis is represented by a /line diagram. On this diagram, each member
of the structure is represented by a line coinciding with its centroidal
axis. The dimensions of the members and the size of the connections are
not shown on the diagram. The line diagrams of the bridge truss of
Fig. 1.16(a), and the rigid frame of Fig. 1.17(a) are shown in Figs. 1.16(b)
and 1.17(b), respectively. Note that two lines (==) are sometimes used in
this text to represent members on the line diagrams. This is done, when
necessary, for clarity of presentation; in such cases, the distance between
the lines does not represent the member depth.
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Floor beams
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Hinged joints

Roller support Hinged support

ﬁe?ﬁagmm of the bridge truss
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Actual bolted connection Idealized hinged connection
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FIG. 1.16 Framing of a Bridge

Connections

Two types of connections are commonly used to join members of struc-
tures: (1) rigid connections and (2) flexible, or hinged, connections. (A
third type of connection, termed a semirigid connection, although rec-
ognized by structural steel design codes, is not commonly used in
practice and, therefore, is not considered in this text.)

A rigid connection or joint prevents relative translations and rota-
tions of the member ends connected to it; that is, all member ends
connected to a rigid joint have the same translation and rotation. In
other words, the original angles between the members intersecting at a
rigid joint are maintained after the structure has deformed under the
action of loads. Such joints are, therefore, capable of transmitting forces
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Floor beams

-

Columns

L Ll

Plan (slab not shown)

Rigid joints

Fixed supports
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Elevation Line diagram of the multistory rigid frame

(a) (b)
FIG. 1.17 Framing of a Multistory Building

as well as moments between the connected members. Rigid joints are
usually represented by points at the intersections of members on the line
diagram of the structure, as shown in Fig. 1.17(b).

A hinged connection or joint prevents only relative translations of
member ends connected to it; that is, all member ends connected to a
hinged joint have the same translation but may have different rotations.
Such joints are thus capable of transmitting forces but not moments be-
tween the connected members. Hinged joints are usually depicted by
small circles at the intersections of members on the line diagram of the
structure, as shown in Fig. 1.16(b).

The perfectly rigid connections and the perfectly flexible frictionless
hinges used in the analysis are merely idealizations of the actual con-
nections, which are seldom perfectly rigid or perfectly flexible (see
Fig. 1.16(c)). However, actual bolted or welded connections are purposely
designed to behave like the idealized cases. For example, the connections
of trusses are designed with the centroidal axes of the members concurrent
at a point, as shown in Fig. 1.16(c), to avoid eccentricities that may cause
bending of members. For such cases, the analysis based on the idealized
connections and supports (described in the following paragraph) generally
yields satisfactory results.



16 CHAPTER 1 Introduction to Structural Analysis

Supports

Supports for plane structures are commonly idealized as either fixed
supports, which do not allow any movement; hinged supports, which can
prevent translation but permit rotation; or roller, or link, supports,
which can prevent translation in only one direction. A more detailed
description of the characteristics of these supports is presented in
Chapter 3. The symbols commonly used to represent roller and hinged
supports on line diagrams are shown in Fig. 1.16(b), and the symbol for
fixed supports is depicted in Fig. 1.17(b).

Summary

In this chapter, we learned about structural analysis and its role in struc-
tural engineering. Structural analysis is the prediction of the performance
of a given structure under prescribed loads. Structural engineering has
long been a part of human endeavor, but Galileo is considered to be the
originator of the theory of structures. Following his pioneering work,
many other people have made significant contributions. The availability
of computers has revolutionized structural analysis.

Structural engineering is the science of planning, designing, and
constructing safe, economical structures. Structural analysis is an in-
tegral part of this process.

Structures can be classified into five basic categories, namely, ten-
sion structures (e.g., cables and hangers), compression structures (e.g.,
columns and arches), trusses, shear structures (e.g., shear walls), and
bending structures (e.g., beams and rigid frames).

An analytical model is a simplified representation of a real structure
for the purpose of analysis. Development of the model generally in-
volves (1) determination of whether or not the structure can be treated
as a plane structure, (2) construction of the line diagram of the structure,
and (3) idealization of connections and supports.
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Loads on Structures

2.1 Structural Systems for Transmitting Loads
2.2 Dead Loads
2.3 Live Loads
2.4 Classification of Buildings for Environmental Loads
2.5 Wind Loads
2.6 Snow Loads
2.7 Earthquake Loads
2.8 Hydrostatic and Soil Pressures
2.9 Thermal and Other Effects
2.10 Load Combinations
Summary
Problems

The objective of a structural engineer is to design a structure that will
be able to withstand all the loads to which it is subjected while serving
its intended purpose throughout its intended life span. In designing a
structure, an engineer must, therefore, consider all the loads that can
realistically be expected to act on the structure during its planned life span.
The loads that act on common civil engineering structures can be grouped
according to their nature and source into three classes: (1) dead loads due
to the weight of the structural system itself and any other material perma-
nently attached to it; (2) live loads, which are movable or moving loads
due to the use of the structure; and (3) environmental loads, which are
caused by environmental effects, such as wind, snow, and earthquakes.

In addition to estimating the magnitudes of the design loads, an
engineer must also consider the possibility that some of these loads
might act simultaneously on the structure. The structure is finally de-
signed so that it will be able to withstand the most unfavorable combi-
nation of loads that is likely to occur in its lifetime.

The minimum design loads and the load combinations for which
the structures must be designed are usually specified in building codes.
The national codes providing guidance on loads for buildings, bridges,
and other structures include ASCE Standard Minimum Design Loads for
Buildings and Other Structures (ASCE/SEI 7-10) [1]," Manual for Rail-
way Engineering [26), Standard Specifications for Highway Bridges [36],
and International Building Code [15].

“The numbers in brackets refer to items listed in the bibliography.
17
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Although the load requirements of most local building codes are
generally based on those of the national codes listed herein, local codes
may contain additional provisions warranted by such regional condi-
tions as earthquakes, tornadoes, hurricanes, heavy snow, and the like.
Local building codes are usually legal documents enacted to safeguard
public welfare and safety, and the enginecer must become thoroughly
familiar with the building code for the area in which the structure is to
be built.

The loads described in the codes are usually based on past experi-
ence and study and are the minimum for which the various types of
structures must be designed. However, the engineer must decide if the
structure is to be subjected to any loads in addition to those considered
by the code, and, if so, must design the structure to resist the additional
loads. Remember that the engineer is ultimately responsible for the safe
design of the structure.

The objective of this chapter is to describe the types of loads com-
monly encountered in the design of structures and to introduce the basic
concepts of load estimation. Before discussing the specific types of loads,
we begin this chapter with a brief description of the typical structural
systems used in common buildings and bridges for transmitting loads to
the ground. In this first section, we also introduce the concepts of load
path and tributary area. Next, we describe dead loads and then discuss
live loads for buildings and bridges, including the dynamic effect, or the
impact, of live loads. We describe environmental loads, including wind
loads, snow loads, and earthquake loads. We give a brief discussion of
hydrostatic and soil pressures and thermal effects and conclude with a
discussion about the combinations of loads used for design purposes.

The material presented herein is mainly based on the ASCE Stand-
ard Minimum Design Loads for Buildings and Other Structures (ASCE/
SEI 7-10), which is commonly referred to as the ASCE 7 Standard and
is perhaps the most widely used standard in practice. Since the intent
here is to familiarize the reader with the general topic of loads on struc-
tures, many of the details have not been included. Needless to say, the
complete provisions of the local building codes or the ASCE 7 Standard
must be followed in designing structures.

2.1 Structural Systems for Transmitting Loads

In most common buildings, bridges and other civil engineering facilities,
two or more of the basic structural types described in Section 1.3 (e.g.,
beams, columns, slabs and trusses, etc.) are assembled together to form
a structural system that can transmit the applied loads to the ground
through the foundation. Such structural systems are also referred to as
framing systems or frameworks, and the components of such an assem-
blage are called structural members.

 Copies of this standard may be purchased from the American Society of Civil Engineers,
1801 Alexander Bell Drive, Reston, Virginia 20191.



Section 2.1 Structural Systems for Transmitting Loads 19

An example of the load-carrying system for a single-story building
is shown in Fig. 2.1(a). The system consists of a reinforced-concrete roof
slab resting on four steel beams, which in turn, are supported by two
larger beams, called girders. The girders are then supported on four
columns attached to the footings at the ground level. Because all con-
nections are assumed to be bolted (i.e., shear or hinged) connections,
they can only transmit forces but not moments. Thus, diagonal braces
are needed to resist the horizontal loads caused by wind and earth-
quakes. In Fig. 2.1(a) this cross-bracing is shown only on two sides of
the building for simplicity. Such bracing (or other means of transmitting
horizontal forces, such as shear walls) should be provided on all four
sides of the building to resist loads applied in any direction in the hori-
zontal plane. Note that the architectural features, such as exterior
brickwork, partitions or non-load-bearing walls, doors and windows,
are not considered to be a part of the load-resisting structural system,
although their weights are considered in the design calculations.

The structural systems of most buildings and bridges are designed to
withstand loads in both the vertical and horizontal directions. The ver-
tical loads, due mainly to the occupancy, self-weight and snow or rain,
are commonly referred to as the gravity loads (although not all vertical
loads are caused by gravity). The horizontal loads, induced mainly by
wind and earthquakes, are called the lateral loads. The term load path is
used to describe how a load acting on the building (or bridge) is trans-
mitted, through the various members of the structural system, to the
ground.

The vertical (gravity) load path for the single-story building of
Fig. 2.1(a) is depicted in Fig. 2.1(b). Any vertical distributed area load
(force per area), such as due to snow, applied to the roof slab is first
transmitted to the beams EF, GH, IJ, and KL as a distributed line load
(force per length). As the beams are supported by girders EK and FL,
the beam reactions become concentrated forces on the girders (in reverse
directions), thereby transmitting the roof load to the girders as con-
centrated loads at points £ through L. Similarly, the girders, that are
supported by columns AE, BF, CK, and DL, transfer the load, via their
reactions, to the columns as axial compressive forces. The columns, in
turn, transmit the load to the footings (4 through D), which finally
distribute the load to the ground. Note that the diagonal braces do not
participate in transmitting the gravity load.

Figure 2.1(c) depicts the horizontal (lateral) load path for the same
single-story building. Any horizontal load (such as due to wind or
earthquake) applied to the roof slab is transmitted by the slab as in-
plane lateral forces to the two vertical frames, AEFB and CKLD, which
then carry the load to the footings. As shown in Fig. 2.1(c), each vertical
frame consists of a beam, two columns and two inclined braces, con-
nected together by hinged connections. Such frames, called the braced
frames, essentially act as plane trusses under the action of lateral loads,
with the braces transmitting the load from the roof-level to the footings.

In some buildings, specially designed shear walls, elevator shafts or
moment-resisting (rigidly-connected) frames are used, instead of the
braced frames, to transmit lateral loads (Figs. 2.2 and 2.3). Regardless
of the structural system used, the basic concept of load transmission
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FIG. 2.1 (contd.)
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~— Braced frame

D

<~ Braced frame

B

(c) Horizontal (Lateral) Load Path
FIG. 2.1 (contd.)

FIG. 2.2 Multi-Story Building with
Braced Frames to Transmit Lateral
Loads Due to Wind and Earthquakes
Courtesy of Walterio A. Lopez




FIG. 2.3 This Steel Frame Building Uses
Masonry Shafts for Elevators and Stairs
to Resist Lateral Loads Due to Wind
and Earthquakes

Copyright © American Institute of Steel Construction.
Reprinted with permission. All rights reserved
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remains the same, that is, the applied load is carried continuously from
member to member until it has been fully transmitted to the ground.

Floor Systems and Tributary Areas

As in the case of the single-story building discussed previously, the floor
and roof slabs of multi-story buildings, and the deck slabs of bridges,
are often supported on rectangular grids of beams and girders called
floor systems. Figure 2.4 shows the top view or the framing plan of a
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FIG. 2.4
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(a) A Typical Floor Framing Plan
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FIG. 2.4 (contd.) (d) Tributary Areas of Columns

typical floor system. As in common practice, the column lines in the two
(X and Z) directions are identified by letters and numbers, respectively.
Note the small gaps (blank spaces) at the intersections of members,
which denote that the members are connected by hinged or shear (non-
moment resisting) connections. The slab (not shown) rests on the beams,
and transmits its load through beams to girders and then to columns.

During the design process, an engineer needs to determine how
much of the total distributed load applied over the area of the slab is
carried by each member (i.e., a beam, a girder or a column) of the floor
system. The portion of the slab area whose load is carried by a partic-
ular member is called the tributary area of the member.

The slabs used in buildings and bridges are usually designed as one-
way slabs. Such slabs are assumed to be supported on two sides, and bend
only in one direction like wide beams. For floor systems with one-way
slabs, the tributary area of each beam is considered to be rectangular, of a
length equal to that of the beam, and a width extending to half the dis-
tance to the adjacent beam on each side, as shown in Fig. 2.4(b). The
tributary areas of girders and columns are defined similarly, and are de-
picted in Figs. 2.4(c) and (d), respectively. The procedure for calculating
loads on the members of floor systems with one-way slabs, is illustrated in
Example 2.1.
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For floor systems with a beam length to spacing ratio of less than
1.5 (i.e., L/s < 1.5 — see Fig. 2.4(a)), the slabs are designed as two-way
slabs, supported on all four sides. Such a slab is assumed to bend in two
perpendicular directions like a plate, and transmits its load to all four
supporting beams along its edges. Figures 2.5(a) and (b) depict the trib-
utary areas of the edge beams supporting square and rectangular two-
way slabs, respectively. These figures also show the loads carried by
edge beams due to a uniformly distributed pressure w (force per unit
area) applied to the surface area of the slab.
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The floor of a building, shown in Fig. 2.6(a), is subjected to a uniformly distributed load of 3.5 kPa over its surface area.

Determine the loads acting on all the members of the floor system.

Floor beam C}lumn
A B
Slab
C D
3at4m
Floor beam — =12m
E F
Girder —
GT =l
1 9m 1
(a) Framing Plan
7 kKN/m
. 5 ¢ PYivvvvig,
Tributary area R ‘ ‘ iz m I 9m ?
of beam AB 4 —1m 31.5kN 31.5kN
C D Load on exterior beams
Tributary area Z N 7| 14 kN/m
of beam EF ¢¢¢¢¢¢¢¢¢¢
G]— T H | 9m |
| ® m | 63 kN 63 kN
‘ ‘ Load on interior beams
CD and EF
(b) Load on Beams
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of girder AG
A ‘ I B
4m 31.5kN 63 kKN 63 kKN 31.5kN
c b | l l |
A‘ G
4 m 12m r
E F 94. 5 kN 94.5 kN
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4m
¢ | :F "
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(c) Load on Girders AG and BH
FIG. 2.6

continued
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(d) Compressive Axial Load on Columns 4, B, G, and H
FIG. 2.6 (contd.)

Solution

Beams. The tributary areas of the exterior beam AB, and the interior beam EF, are shown in Fig. 2.6(b). Considering
the exterior beam A B first, we can see that each one-meter length of the beam supports the load applied over a strip of
the slab area (= 2m x 1 m) = 2 m?. Thus, the load transmitted to each one-meter length of the beam 4B is:

(3.5kN/m?*)(2m)(1m) = 7kN
This 7 kN/m load is uniformly distributed along the length of the beam, as shown in Fig. 2.6(b). This figure also shows

the reactions exerted by the supporting girders at the beam’s ends. As the beam is symmetrically loaded, the magnitudes
of the reactions are equal to half of the total load acting on the beam:

R4 = Rz =~ (7kN/m)(9m) = 31.5kN

N —

The load on the interior beam EF is computed in a similar manner. From Fig. 2.6(b), we see that the load transmitted to
each one-meter length of the beam EF is

(3.5kN/m?)(4m)(1 m) = 14kN

This load acts as a uniformly distributed load of magnitude 14 kN/m along the beam’s length. The reactions of the
interior beam are:

Rp = Ry :%(14kN/m)(9m) = 63kN

Because of the symmetry of the framing plan and loading, the remaining beams CD and GH are subjected to the same
loads as the beams EF and 4B, respectively. Ans.

Girders. The girder loads can be conveniently obtained by applying the beam reactions as concentrated loads (in reverse
directions) at their corresponding support (connection) points on the girder. As shown in Fig. 2.6(c), since girder AG
supports exterior beams 4B and GH at points A4 and G, the reactions (31.5 kN) of the two exterior beams are applied at
these points. Similarly, the reactions of two interior beams (CD and EF) are applied at points C and E, where these in-
terior beams are supported on the girder. Note that the sum of the magnitudes of all four concentrated loads
applied to the girder equals its tributary area (4.5m x 12m) multiplied by the floor load intensity (3.5 kN/m?), that is
(see Fig. 2.6(c))

31.5kN + 63kN + 63kN + 31.5kN = (3.5kN/m2)(4.5m)(12m) = 189kN

continued
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As shown in Fig. 2.6(c), the end reactions of the girder are

'y :%[2(31.5) +2(63)] = 94.5kN

Because of symmetry, the load on girder BH is the same as on girder 4AG. Ans.

Columns. As shown in Fig. 4.6(d), the axial load on column 4 is obtained by applying the reaction R4 (= 94.5 kN) of
girder AG on the column with its direction reversed. This column axial load can also be evaluated by multiplying the
tributary area (4.5m x 6m) of column A by the floor load intensity (3.5 kN/m?), that is (see Fig. 2.6(d))

(3.5kN/m?)(4.5m)(6m) = 94.5kN

Because of symmetry, the three remaining columns are subjected to the same axial compressive load as column A.

Ans.

Finally, the sum of the axial loads carried by all four columns must be equal to the product of the total surface area

of the floor, times the floor load intensity:

4(94.5kN) = (3.5kN/m2)(9 m)(12m) = 378 kN Checks

In the foregoing example, we have only considered externally ap-
plied loading, but neglected the self-weight of the slab and the other
members of the floor system. In the next section, we discuss the proce-
dure for computing the weight of the structural system itself.

2.2 Dead Loads

TABLE 2.1 UNIT WEIGHTS OF

CONSTRUCTION MATERIALS

Dead loads are gravity loads of constant magnitudes and fixed positions
that act permanently on the structure. Such loads consist of the weights
of the structural system itself and of all other material and equipment
permanently attached to the structural system. For example, the dead
loads for a building structure include the weights of frames, framing and
bracing systems, floors, roofs, ceilings, walls, stairways, heating and air-
conditioning systems, plumbing, electrical systems, and so forth.

The weight of the structure is not known in advance of design and is

Unit Weight usually assumed based on past experience. After the structure has been
Material Ib/f>  kN/m? analyzed and the member sizes determined, the actual weight is com-
i puted by using the member sizes and the unit weights of materials. The
Aluminum 165 25.9 . . . .
Brick 120 18.8 actual weight is then compared to the assumed weight, and the design
e . ’ is revised if necessary. The unit weights of some common construction
Concrete, reinforced 150 23.6 . . . . .
materials are given in Table 2.1. The weights of permanent service
Structural steel 490 77.0 . h heati d ai ditioni 1
Wood 0 63 equipment, such as heating and air-conditioning systems, are usually

obtained from the manufacturer.

Example 2.2

AN N, W

The floor system of a building consists of a 5-in.-thick reinforced concrete slab resting on four steel floor beams, which
in turn are supported by two steel girders, as shown in Fig. 2.7(a). The cross-sectional areas of the floor beams and the
girders are 14.7 in.> and 52.3 in.2, respectively. Determine the dead loads acting on the beams CG and DH and the
girder AD.

continued



30

CHAPTER 2 Loads on Structures
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FIG. 2.7
Solution

Beam CG. As shown in Fig. 2.7(a), the tributary area for beam CG has a width of 10 ft (i.e., half the distance between
beams CG and BF plus half the distance between beams CG and DH) and a length of 24 ft. We use the unit weights
of reinforced concrete and structural steel from Table 2.1 to compute the dead load per foot of length of beam CG as
follows:

Concrete slab: (150 1b/ft*)(10 ft)(1 ft) (%) ft = 625 1b
s (147
Steel beam: (490 Ib/ft”) Taa ft= | (1 ft)= 50 1b
Total load = 675 1b Ans.

This 675 1b/ft load is uniformly distributed on the beam, as shown in Fig. 2.7(b). This figure also shows the reactions

exerted by the supporting girders at the ends of the beam. As the beam is symmetrically loaded, the magnitudes of the
reactions are:

Rc = Rg = (675 Ib/ft)(24 ft) = 8100 Ib

Note that the magnitudes of these end reactions represent the downward loads being transmitted to the supporting
girders AD and EH at points C and G, respectively.

Beam DH. The tributary area for beam DH is 5 ft wide and 24 ft long. The dead load per foot of length of this beam is
computed as follows:

5
Concrete slab: (150 1b/ft3)(5 ft)(1 ft) (E ft) =312.51b
Steel beam: (same as for beam CG) = 50.0 1b
Total load = 362.5 1b Ans.

continued
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As shown in Fig. 2.7(c), the end reactions are

Rp = Ry = 1(362.5 Ib/ft) (24 ft) = 4350 Ib

Girder AD. Because of the symmetry of the framing system and loading, the loads acting on beams BF and AE are the
same as those on beams CG and DH, respectively. The load on girder 4D consists of the uniformly distributed load due
to its own weight, which has a magnitude of

52.

(490 1b/ft?) (—3 ftz) (1ft) =178 1b

144

and the concentrated loads transmitted to it by the beams at points 4, B, C, and D, as shown in Fig. 2.7(d). Ans.

2.3 Live Loads

Live loads are loads of varying magnitudes and/or positions caused by
the use of the structure. Sometimes, the term live loads is used to refer to
all loads on the structure that are not dead loads, including environ-
mental loads, such as snow loads or wind loads. However, since the
probabilities of occurrence for environmental loads are different from
those due to the use of structures, the current codes use the term live
loads to refer only to those variable loads caused by the use of the
structure. It is in the latter context that this text uses this term.

The magnitudes of design live loads are usually specified in building
codes. The position of a live load may change, so each member of the
structure must be designed for the position of the load that causes the
maximum stress in that member. Different members of a structure may
reach their maximum stress levels at different positions of the given load.
For example, as a truck moves across a truss bridge, the stresses in the
truss members vary as the position of the truck changes. If member 4 is
subjected to its maximum stress when the truck is at a certain position x,
then another member B may reach its maximum stress level when the
truck is in a different position y on the bridge. The procedures for
determining the position of a live load at which a particular response
characteristic, such as a stress resultant or a deflection, of a structure is
maximum (or minimum) are discussed in subsequent chapters.

Live Loads for Buildings

Live loads for buildings are usually specified as uniformly distributed
surface loads in pounds per square foot or kilopascals. Minimum floor
live loads for some common types of buildings are given in Table 2.2.
For a comprehensive list of live loads for various types of buildings and
for provisions regarding roof live loads, concentrated loads, and reduc-
tion in live loads, the reader is referred to the ASCE 7 Standard.

Live Loads for Bridges

Live loads due to vehicular traffic on highway bridges are specified
by the American Association of State Highway and Transportation



32

CHAPTER 2 Loads on Structures

TABLE 2.2 MINIMUM FLOOR LIVE LOADS FOR BUILDINGS

Live Load

Occupancy or Use psf kPa
Hospital patient rooms, residential dwellings, apartments, 40 1.92
hotel guest rooms, school classrooms

Library reading rooms, hospital operating rooms 60 2.87
and laboratories

Dance halls and ballrooms, restaurants, gymnasiums 100 4.79
Light manufacturing, light storage warehouses, 125 6.00
wholesale stores

Heavy manufacturing, heavy storage warehouses 250 11.97

Source: Based on data from ASCE/SEI 7-10, Minimum Design Loads for Buildings and
Other Structures.

Officials in the Standard Specifications for Highway Bridges [36], which
is commonly referred to as the AASHTO Specification.

As the heaviest loading on highway bridges is usually caused by
trucks, the AASHTO Specification defines two systems of standard
trucks, H trucks and HS trucks, to represent the vehicular loads for de-
sign purposes.

The H-truck loadings (or H loadings), representing a two-axle
truck, are designated by the letter H, followed by the total weight of the
truck and load in tons and the year in which the loading was initially
specified. For example, the loading H20-44 represents a code for a two-
axle truck weighing 20 tons initially instituted in the 1944 edition of the
AASHTO Specification. The axle spacing, axle loads, and wheel spacing
for the H trucks are shown in Fig. 2.8(a).

The HS-truck loadings (or HS loadings) represent a two-axle tractor
truck with a single-axle semitrailer. These loadings are designated by the
letters HS followed by the weight of the corresponding H truck in tons
and the year in which the loading was initially specified. The axle spacing,
axle loads, and wheel spacing for the HS trucks are shown in Fig. 2.8(a).
Note that the spacing between the rear axle of the tractor truck and
the axle of the semitrailer should be varied between 14 ft and 30 ft, and the
spacing causing the maximum stress should be used for design.

The particular type of truck loading to be used in design depends on
the anticipated traffic on the bridge. The H20-44 and HS20-44 are the
most commonly used loadings; the axle loads for these loadings are
shown in Fig. 2.8(a).

In addition to the aforementioned single-truck loading, which must
be placed to produce the most unfavorable effect on the member being
designed, AASHTO specifies that a lane loading, consisting of a uni-
formly distributed load combined with a single concentrated load, be
considered. The lane loading represents the effect of a lane of medium-
weight vehicles containing a heavy truck. The lane loading must also be
placed on the structure so that it causes maximum stress in the member
under consideration. As an example, the lane loading corresponding to
the H20-44 and HS20-44 truck loadings is shown in Fig. 2.8(b). The
type of loading, ecither truck loading or lane loading, that causes the
maximum stress in a member should be used for the design of that
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FIG. 2.8 Live Loads for Highway Bridges
Source: Based on Standard Specifications for Highway Bridges. Copyright 2002. American Association of State
Highway and Transportation Officials, Washington, D.C.

member. Additional information regarding multiple lanes, loadings for
continuous spans, reduction in load intensity, and so on, can be found in
the AASHTO Specification.

Live loads for railroad bridges are specified by the American Rail-
way Engineering and Maintenance of Way Association (AREMA) in the
Manual for Railway Engineering [26]. These loadings, which are com-
monly known as Cooper E loadings, consist of two sets of nine con-
centrated loads, each separated by specified distances, representing the
two locomotives followed by a uniform loading representing the weight
of the freight cars. An example of such a loading, called the E80 loading,
is depicted in Fig. 2.9. The design loads for heavier or lighter trains can
be obtained from this loading by proportionately increasing or decreas-
ing the magnitudes of the loads while keeping the same distances be-
tween the concentrated loads. For example, the E40 loading can be
obtained from the E80 loading by simply dividing the magnitudes of the
loads by 2. As in the case of highway bridges considered previously, live
loads on railroad bridges must be placed so that they will cause the most
unfavorable effect on the member under consideration.
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FIG. 2.9 Live Loads for Railroad Bridges
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Impact

When live loads are applied rapidly to a structure, they cause larger
stresses than those that would be produced if the same loads would have
been applied gradually. The dynamic effect of the load that causes this
increase in stress in the structure is referred to as impact. To account for
the increase in stress due to impact, the live loads expected to cause such
a dynamic effect on structures are increased by certain impact percen-
tages, or impact factors. The impact percentages and factors, which are
usually based on past experience and/or experimental results, are speci-
fied in the building codes. For example, the ASCE 7 Standard specifies
that the weights of reciprocating machinery and power driven units for
buildings be increased by 50% to account for impact.

For highway bridges, the AASHTO Specification gives the expres-
sion for the impact factor as

50

=——  <0.
! L+ 125 =03

in which L is the length in feet of the portion of the span loaded to cause
the maximum stress in the member under consideration. Similar em-
pirical expressions for impact factors to be used in designing railroad
bridges are specified in [26].

2.4 Classification of Buildings for Environmental Loads

Because of the inherent uncertainty involved in predicting environmental
loads that may act on a structure during its lifetime, the consequences of
the failure of the structure are usually considered in estimating design
environmental loads, such as due to wind, snow and earthquakes. In
general, the more serious the potential consequences of the structural
failure, the larger the magnitude of the load for which the structure
should be designed.

The ASCE 7 Standard classifies buildings into four Risk Categories
based on risk to human life, health, and welfare in the event of the fail-
ure of (or damage to) the structure because of the nature of its occu-
pancy or use. These risk categories are described in Table 2.3, and will
be used in subsequent sections for estimating environmental loads on
structures.

2.5 Wind Loads

Wind loads are produced by the flow of wind around the structure. The
magnitudes of wind loads that may act on a structure depend on the
geographical location of the structure, obstructions in its surrounding
terrain, such as nearby buildings, and the geometry and the vibrational
characteristics of the structure itself. Although the procedures described
in the various codes for the estimation of wind loads usually vary in
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TABLE 2.3 RISK CATEGORIES OF BUILDINGS FOR ENVIRONMENTAL LOADS

Risk category

Importance Factor

Occupancy or use Snow Loads (I;)  Earthquake Loads (Z,)

I

11

111

v

Buildings representing low risk to human life in the case 0.8 1.00
of failure, such as agricultural and minor storage
facilities.

All buildings other than those listed in Risk Categories I, III, 1.0 1.00
and IV. This risk category applies to most of the residential,

commercial and industrial buildings (except those which have

been specifically assigned to another category).

Buildings whose failure would pose a substantial risk to 1.1 1.25
human life, and/or could cause a substantial economic impact

or mass disruption of everyday public life. This category

contains buildings such as: theaters, lecture and assembly halls

where a large number of people congregate in one area;

elementary schools; small hospitals; prisons; power generating

stations; water and sewage treatment plants; telecommuni-

cation centers; and buildings containing hazardous and

explosive materials.

Essential facilities, including hospitals, fire and police stations, 1.2 1.50
national defense facilities and emergency shelters,

communication centers, power stations and utilities required

in an emergency, and buildings containing extremely

hazardous materials.

Source: Based on data from ASCE/SEI 7-10, Minimum Design Loads for Buildings and Other Structures.

detail, most of them are based on the same basic relationship between
the wind speed V' and the dynamic pressure ¢ induced on a flat surface
normal to the wind flow, which can be obtained by applying Bernoulli’s
principle and is expressed as

q=13pV? (2.1)

in which p is the mass density of the air. Using the unit weight of air of
0.0765 1b/ft? for the standard atmosphere (at sea level, with a temper-
ature of 59°F), and expressing the wind speed ' in miles per hour, the
dynamic pressure ¢ in pounds per square foot is given by

1 /0.0765\ /5280\* , 5

The wind speed V' to be used in the determination of the design
loads on a structure depends on its geographical location and can be
obtained from meteorological data for the region. The ASCE 7 Stand-
ard provides contour maps of the basic wind speeds for the United
States. These maps, which are based on data collected at 485 weather
stations, give the 3-second gust speeds in miles per hour (m/s). These
speeds are for open terrain at the heights of 33 ft (10 m) above ground
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level. Figure 2.10 shows the basic wind speed map for structures in the
risk category II, which includes a vast majority of residential, commer-
cial and industrial buildings. These wind speeds correspond to approx-
imately 7% probability of being exceeded in 50 years. Similar wind
speed maps for structures in risk categories I, III, and IV are given in the
ASCE 7 Standard.” To account for the variation in wind speed with the
height and the surroundings in which a structure is located, the ASCE 7
Standard modifies Eq. (2.2) as

q- = 0.00256K.K ., K4V* (2.3)

in which ¢. is the velocity pressure at height z in pounds per square
foot; V' is the basic wind speed in miles per hour (Fig. 2.10); K is the
velocity pressure exposure coefficient; K., is the topographic factor; and
K, is the wind directionality factor. When converted to SI units, Eq. (2.3)
becomes

q- = 0.613K.K.,K,V?* [SI units] (2.4)

with ¢. and ¥ now expressed in units of N/m? and m/s, respectively.
The velocity pressure exposure coeflicient, K., is given by

2.01(z/z,) %" , for 15 ft (4.6 m) <z < z,
- . ’ 2.5
2.01 {w"ém)] for z < 15 ft (4.6m) 23)
Zg

in which z = height above ground in feet (or meters); z, = gradient
height in feet (or meters); and o« = power law coefficient. The constants
z, and o depend on the obstructions on the terrain immediately sur-
rounding the structure. The ASCE 7 Standard classifies the terrains to
which the structures may be exposed into three categories. These three
categories are briefly described in Table 2.4, which also provides the
values of the constants for each of the categories. A more detailed
description of the exposure categories can be found in the ASCE 7
Standard. The topographic factor, K., takes into account the effect of
increase in wind speed due to abrupt changes in topography, such as
isolated hills and steep cliffs. For structures located on or near the tops of
such hills, the value of K., should be determined using the procedure
specified in the ASCE 7 Standard. For other structures, K., = 1. The
wind directionality factor, K,, takes into account the reduced proba-
bility of maximum winds coming from the direction that is most un-
favorable for the structure. This factor is used only when wind loads are
applied in combination with other types of loads (such as dead loads,
live loads, etc.). For structures subjected to such load combinations, the
values of K, should be obtained from the ASCE 7 Standard. For struc-
tures subjected only to wind loads, K; = 1.

" The site-specific wind speeds at all U.S. locations for the four risk categories are also
available at the Applied Technology Council website: www.atcouncil.org/windspeed/.
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TABLE 2.4 EXPOSURE CATEGORIES FOR BUILDINGS FOR WIND LOADS

Constants
Exposure Category z, ft(m) o
Urban and suburban areas with closely B 1,200(365.76) 7.0
spaced obstructions of the size of single
family houses or larger. This terrain must
prevail in the upwind direction for a
distance of at least 2,600 ft (792 m) or 20
times the building height, whichever is
greater
Applies to all buildings to which exposures C 900(274.32) 9.5
B or D do not apply
Flat, unobstructed areas and water D 700(213.36) 11.5

surfaces. This terrain must prevail in the
upwind direction for a distance of at least
5,000 ft (1,524 m) or 20 times the building
height, whichever is greater

Source: Based on data from ASCE/SEI 7-10, Minimum Design Loads for Buildings and
Other Structures.

The external wind pressures to be used for designing the main
framing of structures are given by

p- =q-GC, for windward wall 26)
ph = qnGC, for leeward wall, sidewalls, and roof ’

in which 4 = mean roof height above ground; g, = velocity pressure at
height / (evaluated by substituting z =/ in Eq. (2.3) or (2.4)); p. =
design wind pressure at height z above ground; p; = design wind pressure
at mean roof height i; G = gust effect factor; and C, = external pressure
coefficient.

The gust effect factor, G, is used to consider the loading effect of
wind turbulence on the structure. For a rigid structure, whose funda-
mental frequency is greater than or equal to 1 Hz., G = 0.85. For flexi-
ble structures, the value of G should be calculated using the equations
given in the ASCE 7 Standard.

The values of the external pressure coeflicients, C,, based on wind
tunnel and full-scale tests, have been provided in the ASCE 7 Standard for
various types of structures. Figure 2.11 shows the coefficients specified for
designing the main framing of structures. We can see from this figure that
the external wind pressure varies with height on the windward wall of the
structure but is uniform on the leeward wall and the sidewalls. Note that
the positive pressures act toward the surfaces, whereas the negative pres-
sures, called suctions, act away from the surfaces of the structures.

Once the external wind pressures have been established, they are
combined with the internal pressures to obtain the design wind pressures.
With the design wind pressures known, we can determine the corre-
sponding design loads on members of the structures by multiplying the
pressures by the appropriate tributary areas of the members.
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FIG. 211 External Pressure Coefficients, Cp, for Loads on Main Wind-Force
Resisting Systems for Enclosed or Partially Enclosed Buildings of All Heights
Source: Based on ASCE/SEI 7-10, Minimum Design Loads for Buildings and Other Structures.
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Wall Pressure Coefficients, C,
Surface L/B Cy | Use with
Windward wall | All values | 0.8 q-
0-1 -0.5
Leeward wall 2 -0.3 qn
>4 -0.2
Side wall All values | —0.7 qn
Roof Pressure Coefficients, C,, for use with g,
Wind Windward Leeward
direction Angle, 0 (degrees) Angle, 0 (degrees)
h/L 10 15 20 25 30 35 45 > 60# 10 15 >20
-0.7 -0.5 -0.3 —0.2 -0.2 0.0*
<025 [ —0.18 | 00* | 02 | 03 03 | 04 | 04 | o010 | 03| 05| 06
Normal to 0.9 0.7 0.4 0.3 0.2 0.2 0.0*
ridge for —U. —0. —0. —0. —0. —0. . B B B
0> 10° 0.5 | 018 | —0.18 | 0.0* | 02 02 | 03 | 04 | ootp| 03| 705 | 06
—1.3* | —1.0 -0.7 -0.5 -03 | -0.2 0.0*
>10 | -018 | —018 | —0.18 | 00% | 02 | 02 | 03 | ootg | 07 | ~06 | 06
Horiz distance from c *Value is provided for interpolation
windward edge 4 purposes.
Normal to 0toh/2 -0.9, —0.18
ridge for <0.5 h/2to h —0.9, —0.18 **Value can be reduced linearly with area
Hpjriﬁlla;d h o2 h 05, 018 over which it is applicable as follows.
ridge for all 0 >2h —-0.3, —0.18
0 to hy2 C13%, 018 Area (sq ft) Reduction factor
>1.0 <100 (9.3 sq m) 1.0
~h/2 07, -0.18 250 (23.2 sq m) 0.9
>1,000 (92.9 sq m) 0.8

Notes:

1. Plus and minus signs signify pressures acting toward and away from the surfaces, respectively.
2. Linear interpolation is permitted for values of L/B, /L, and 0 other than shown. Interpolation shall only be carried out between values
of the same sign. Where no value of the same sign is given, assume 0.0 for interpolation purposes.
3. Where two values of C, are listed, this indicates that the windward roof slope is subjected to either positive or negative pressures and the
roof structure shall be designed for both conditions. Interpolation for intermediate ratios of /2/L in this case shall only be carried out
between C, values of like sign.
4. For monoslope roofs, the entire roof surface is either a windward or leeward surface.

W

. Notation:

B: Horizontal dimension of building, in feet (meters), measured normal to wind direction.
L: Horizontal dimension of building, in feet (meters), measured parallel to wind direction.
h: Mean roof height in feet (meters), except that eave height shall be used for ¢ < 10 degrees.
z: Height above ground, in feet (meters).
G: Gust effect factor.
q-, qi: Velocity pressure, in pounds per square foot (N/m?), evaluated at respective height.
0: Angle of plane of roof from horizontal, in degrees.
6. For mansard roofs, the top horizontal surface and leeward inclined surface shall be treated as leeward surfaces from the table.
7. Except for MWFRS’s at the roof consisting of moment resisting frames, the total horizontal shear shall not be less than that determined
by neglecting wind forces on roof surfaces.
#For roof slopes greater than 80°, use C, = 0.8.

FIG. 211 (contd.)
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Example 2.3 /,fw E r, T'\ T\ K N\ A I

Determine the external wind pressure on the roof of the rigid gabled frame of a nonessential industrial building shown
in Fig. 2.12(a). The structure is located in a suburb of Boston, Massachusetts, where the terrain is representative of ex-
posure B. The wind direction is normal to the ridge of the frame as shown.

(a) (b)
FIG. 2.12
Solution
Roof Slope and Mean Roof Height. From Fig. 2.12(a), we obtain
tan 0 = 16.83 =0.842, or 0=40.1°
20

h= 11.58+Lé83 =20.0

h 20
Velocity Pressure at z = h = 20’. From Fig. 2.10, we obtain the basic wind speed for Boston as

V' =130 mph

From Table 2.4, for the exposure category B, we obtain the following values of the constants:
z,=1,200ft and «=7.0

By using Eq. (2.5), we determine the velocity pressure exposure coefficient:

h 2/o 20 2/7

Using K., = 1 and K; = 1, we apply Eq. (2.3) to obtain the velocity pressure at height / as
qn = 0.00256 K, KK, V>

= 0.00256(0.62)(1)(1)(130)2
= 26.82 psf
External Wind Pressure on Roof. For rigid structures, the gust effect factor is

G =0.85

continued



42

CHAPTER 2 Loads on Structures

For 0 ~ 40° and /L = 0.5, the values of the external pressure coefficients are (Fig. 2.11):
For windward side: C, = 0.35 and —0.1

For leeward side: C,=-0.6

Finally, by substituting the values of ¢;, G, and C, into Eq. (2.6), we obtain the following wind pressures: for the
windward side,

pr = qnGC, = (26.82)(0.85)(0.35) = 8.0 psf Ans.
and
pn = qrGC, = (26.82)(0.85)(—0.1) = —2.28 psf Ans.
and for the leeward side
Pn = qnGC, = (26.82)(0.85)(—0.6) = —13.68 psf Ans.

These wind pressures are applied to the roof of the frame, as shown in Fig. 2.12(b). The two wind pressures (positive
and negative) on the windward side are treated as separate loading conditions, and the structure is designed for both
conditions.

2.6 Snow Loads

In many parts of the United States and the world, snow loads must be
considered in designing structures. The design snow load for a structure
is based on the ground snow load for its geographical location, which
can be obtained from building codes or meteorological data for that re-
gion. The ASCE 7 Standard provides contour maps (similar to Fig. 2.10)
of the ground snow loads for various parts of the United States. These
maps, which are based on data collected at 204 weather stations and over
9000 other locations, give the snow loads (in pounds per square foot)
that have a 2% probability of being exceeded in any given year.

Once the ground snow load has been established, the design snow
load for the roof of the structure is determined by considering such fac-
tors as the structure’s exposure to wind, and its thermal, geometric, and
functional characteristics. In most cases, there is less snow on roofs than
on the ground. The ASCE 7 Standard recommends that the design snow
load for flat roofs be expressed as

pr=0.7C.Cisp, (2.7)

in which p, = design flat-roof snow load in pounds per square foot
(kN/m?); p, = ground snow load in pounds per square foot (kN/m?);
C, = exposure factor; C, = thermal factor; and I; = importance factor.

In Eq. (2.7), the numerical factor 0.7, which is referred to as the
basic exposure factor, accounts for the general effect of wind, which is
likely to blow some of the snow off the roofs. The local effects of wind,
which depend on the particular terrain surrounding the structure and
the exposure of its roof, are accounted for by the exposure factor C,.
The ASCE 7 Standard provides the values of C,, which range from 0.7
for structures in windy areas with exposed roofs to 1.2 for structures
exposed to little wind.
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The thermal factor, C,, accounts for the fact that there will be more
snow on the roofs of unheated structures than on those of heated ones.
The values of C, are specified as 1.0 and 1.2 for heated and unheated
structures, respectively. The importance factor i in Eq. (2.7) accounts
for hazard to human life and damage to property in the case of failure
of the structure. The values of I; to be used for estimating roof snow
loads are given in Table 2.3.

The design snow load for a sloped roof is determined by multiplying
the corresponding flat-roof snow load by a slope factor C;. Thus,

Ps = Cspr (28)

in which p; is the design sloped-roof snow load considered to act on
the horizontal projection of the roof surface, and the slope factor Cj is
given by

Ci=1 for 0 < 6 < 30°
For warm roofs 0 —30° . .
(CZSIO) CS:I_W for 30 §0S70 (29)
C=0 for 6 > 70°
G =1 for 0 <0 < 45°
For cold roofs 0 —45° o o
(C,=1.2) Ci=1- 750 for45° <0 <70 (2.10)
C,=0 for 6 > 70°

In Egs. (2.9) and (2.10), 8 denotes the slope of the roof from the hori-
zontal, in degrees. These slope factors are based on the considerations
that more snow is likely to slide off of steep roofs, as compared to shal-
low ones, and that more snow is likely to melt and slide off the roofs of
heated structures than those of unheated structures.

The ASCE 7 Standard specifies minimum values of snow loads for
which structures with low-slope roofs must be designed. For such struc-
tures, if P, < 20 psf (0.96 kN/m?), then P shall not be less than P,I;
if P, > 20 psf (0.96 kN/m?), then P, shall not be less than 201, psf
(0.961; kN/m?). These minimum values of P, apply to monoslope, hip and
gable roofs with < 15°.

In some structures, the snow load acting on only a part of the roof
may cause higher stresses than when the entire roof is loaded. To account
for such a possibility, the ASCE 7 Standard recommends that the effect
of unbalanced snow loads also be considered in the design of structures.
A detailed description of unbalanced snow load distributions to be con-
sidered in the design of various types of roofs can be found in the ASCE
7 Standard. For example, for gable roofs with 2.38° < 6 < 30.2°, and the
horizontal distance from the eave to the ridge, W < 20 ft, the ASCE 7
Standard specifies that the structures be designed to resist an unbalanced
uniform load of magnitude P,/ applied to the leeward side of the roof,
with the windward side free of snow.
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Example 2.4 ﬁ*" ‘ \‘. - *ix,..\“?‘( _‘\ ‘ \ A I |

Determine the design snow loads for the roof of the gabled frame of an apartment building shown in Fig. 2.13(a). The
building is located in Chicago, Illinois, where the ground snow load is 25 psf. Because of several trees near the structure,
assume the exposure factor is C, = 1.

Solution
Flat-Roof Snow Load.
pg = 25 psf
Co=1
C, =1 (heated structure)

I, =1 (from Table 2.3 for nonessential building, risk category II)

W =20 ft 15.4 psf
r— ERERRERRAR
0 =35°
1 40 ft 1
(a) (b) Balanced Snow Load

FIG. 2.13

From Eq. (2.7), the flat-roof snow load is obtained as
pr =0.7C,C/Lip, = 0.7(1)(1)(1)(25)
= 17.5 psf
The slope is 0 = 35°, which is greater than 15°, so the minimum values of p; need not be considered.
Sloped-Roof Snow Load. By applying Eq. (2.9), we compute the slope factor as

0-30° | 35 -30°

C=l-p=1-"— =088

From Eq. (2.8), we determine the design sloped-roof snow load:
ps = Cspr = 0.88(17.5) =154 pSf Ans.

This load is called the balanced design snow load and is applied to the entire roof of the structure, as shown in
Fig. 2.13(Db).
As the slope is = 35°, which is greater than 30.2°, the unbalanced snow load does not need to be considered.
Ans.
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2.7 Earthquake Loads

FIG. 2.14 Effect of Earthquake on a
Structure

An earthquake is a sudden undulation of a portion of the earth’s surface.
Although the ground surface moves in both horizontal and vertical di-
rections during an earthquake, the magnitude of the vertical component
of ground motion is usually small and does not have a significant effect
on most structures. It is the horizontal component of ground motion
that causes structural damage and that must be considered in designs of
structures located in earthquake-prone areas.

During an earthquake, as the foundation of the structure moves
with the ground, the above-ground portion of the structure, because of
the inertia of its mass, resists the motion, thereby causing the structure
to vibrate in the horizontal direction (Fig. 2.14). These vibrations pro-
duce horizontal shear forces in the structure. For an accurate pre-
diction of the stresses that may develop in a structure in the case of
an earthquake, a dynamic analysis, considering the mass and stiffness
characteristics of the structure, must be performed. However, for low- to
medium-height rectangular buildings, most codes employ equivalent
static forces to design for earthquake resistance. In this empirical ap-
proach, the dynamic effect of the earthquake is approximated by a set of
lateral (horizontal) forces applied to the structure, and static analysis is
performed to evaluate stresses in the structure.

The ASCE 7 Standard permits the use of this equivalent lateral-
force procedure for earthquake design of buildings. According to the
ASCE 7 Standard, the total lateral seismic force that a building is de-
signed to resist is given by the equation

V=CsW (2.11)

in which V= total lateral force or base shear, W = effective seismic
weight of the building that includes the total dead and a part of the live

Deformed — ——
configuration \/ Initial (unc.leformed)
configuration
]

B D
Ground motion
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load, and Cg = seismic response coefficient. The latter is defined by the
equation

Sps
— 2.12
Cs R/, (2.12)

in which Spg is the design spectral response acceleration in the short
period range; R denotes the response modification coefficient; and I,
represents the importance factor for earthquake loads based on the
building’s risk category. The ASCE 7 Standard further specifies upper
and lower limits for the values of Cg to be used in design.

The design spectral response acceleration (Sps), used in the evalua-
tion of the design base shear, depends on the geographical location of the
structure, and can be obtained using the contour maps provided in the
ASCE 7 Standard. The response modification coefficient R takes into
consideration the energy-dissipation capacity of the structure; its values
range from 1 to 8. For example, for plain unreinforced masonry shear
walls, R = 1.5; whereas, for moment resisting frames, R = 8. The values
of I, to be used for estimating earthquake loads are given in Table 2.3.

The total lateral force V' thus obtained is then distributed to the
various floor levels of the building using the formulas provided in the
ASCE 7 Standard. For additional details about this equivalent lateral-
force procedure, and for limitations on the use of this procedure, the
reader is referred to the ASCE 7 Standard.

2.8 Hydrostatic and Soil Pressures

FIG. 2.15 Hydrostatic Pressure

Structures used to retain water, such as dams and tanks, as well as
coastal structures partially or fully submerged in water must be designed
to resist hydrostatic pressure. Hydrostatic pressure acts normal to the
submerged surface of the structure, with its magnitude varying linearly
with height, as shown in Fig. 2.15. Thus, the pressure at a point located
at a distance /4 below the surface of the liquid can be expressed as

p=7h (2.13)

in which y = unit weight of the liquid.

Underground structures, basement walls and floors, and retaining
walls must be designed to resist soil pressure. The vertical soil pressure is
given by Eq. (2.13), with y now representing the unit weight of the soil.
The lateral soil pressure depends on the type of soil and is usually con-
siderably smaller than the vertical pressure. For the portions of struc-
tures below the water table, the combined effect of hydrostatic pressure
and soil pressure due to the weight of the soil, reduced for buoyancy,
must be considered.

2.9 Thermal and Other Effects

Statically indeterminate structures may be subjected to stresses due
to temperature changes, shrinkage of material, fabrication errors, and
differential settlements of supports. Although these effects are usually
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not addressed in building codes, they may cause significant stresses in
structures and should be considered in their designs. The procedures for
determining the forces induced in structures due to these effects are
considered in Part I11.

2.10 Load Combinations

As stated previously, once the magnitudes of the design loads for a
structure have been estimated, an engineer must consider all loads that
might act simultaneously on the structure at a given time. For example,
it is highly unlikely that an earthquake and the maximum wind loads
will occur simultaneously. Based on past experience and probability
analysis, the ASCE 7 Standard specifies that the buildings be designed
so that their strength equals or exceeds the following combinations of
factored loads:

1.4D (2.142)

1.2D + 1.6L + 0.5(L, or S or R) (2.14b)
1.2D + 1.6(L, or S or R) + (L or 0.5W) (2.14¢)
12D+ W+ L+0.5(L, or S or R) (2.14d)
12D+ E+L+02S (2.14e)

0.9D + W (2.14f)

09D + E (2.14g)

in which D = dead load, E = earthquake load, L = live load, L, = roof
live load, R = rain load, S = snow load, and W = wind load.

It is important to realize that the structure must be designed to
have adequate strength to resist the most unfavorable of all the load
combinations.

In addition to the aforementioned strength or safety requirements, a
structure must also satisfy any serviceability requirements related to its
intended use. For example, a high-rise building may be perfectly safe,
yet unserviceable if it deflects or vibrates excessively due to wind. The
serviceability requirements are specified in building codes for most
common types of structures and are usually concerned with deflections,
vibrations, cracking, corrosion, and fatigue.
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Summary

In this chapter, we learned about the loads that act on common civil
engineering structures and the structural systems used for transmitting
loads. These loads can be grouped into three classes: (1) dead loads,
(2) live loads, and (3) environmental loads.

Dead loads have constant magnitudes and fixed positions, and they
act permanently on the structure. Live loads have varying magnitudes
and/or positions and are caused by the use or occupancy of the struc-
ture. Each member of the structure must be designed for that position of
the live load that produces the most unfavorable effect on that member.
For structures subjected to rapidly applied live loads, the dynamic ef-
fect, or the impact, of the loads should be considered in design.

The external wind pressures used for designing the main framing of
structures are given by

p- = q-GC, for windward wall 26)
pi = q;GC, for leeward wall, sidewalls, and roof '

where / is the mean roof height, G is the gust effect factor, C, is the ex-
ternal pressure coefficient, and ¢. is the velocity pressure at height z,
which is expressed in psf as

q- = 0.00256K.K K ,V* (2.3)

with K. = velocity pressure exposure coefficient, K., = topographic fac-
tor, K; = directionality factor, and V' = basic wind speed in mph.
The design flat-roof snow load for buildings is given by

pr =0.7C.Cip, (2.7)

where p, = ground snow load, C, = exposure factor, and C; = thermal
factor. The design sloped-roof snow load is expressed as

DPs = Cspr (28)

with C; = slope factor.
The total lateral seismic design force for buildings is given by

V=CsW (2.11)

in which Cg = seismic response coefficient, and W = effective seismic
weight of the building.

The magnitude of the hydrostatic pressure at a point located at a
distance /1 below the surface of the liquid is given by

p=7h (2.13)

in which y = unit weight of the liquid.

The effects of temperature changes, shrinkage of material, fab-
rication errors, and support settlements should be considered in design-
ing statically indeterminate structures. The structure must be designed
to withstand the most unfavorable combination of loads.
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PROBLEMS

Section 2.1

2.1 The roof of a single-story storage building, shown in
Fig. P2.1, is subjected to a uniformly distributed load of
0.96 kPa over its surface area. Determine the loads acting on
the floor beam BE and the girder AC of the framing system.

2.2 For the building described in Problem 2.1, calculate the
axial load acting on the column C. See Fig. P2.1.

Floor beam Girder Column
A B C /
- < FH 5
6m
! £ .
f—2at4dm=8m——

FIG. P2.1, P2.2

2.3 The floor of an apartment building, shown in Fig. P2.3,
is subjected to a uniformly distributed load of 45 psf over its
surface area. Determine the loads acting on the floor beams
AF, BG, and CH, and the girders AC and FH, of the
framing system.

2.4 For the building described in Problem 2.3, calculate the
axial loads acting on the columns A4, F, and H. See Fig.
P2.3.

Girder

Floor beam Column
A C J E
B D
H H HJ T
2 at40 ft =
FH c——Hlg 7 F17 7 g0 1
H H———H

K L M 0
L 4at25ft=100ft—

FIG. P2.3, P2.4

Section 2.2

2.5 The floor system of an apartment building consists of
a 4-in.-thick reinforced concrete slab resting on three
steel floor beams, which in turn are supported by two steel
girders, as shown in Fig. P2.5. The areas of cross section of
the floor beams and the girders are 18.3 in.? and 32.7 in.?,
respectively. Determine the dead loads acting on the beam
CD and the girder AE.

2.6 Solve Problem 2.5 if a 6-in.-thick brick wall, which is
7 ft high and 25 ft long, bears directly on the top of beam
CD. See Fig. P2.5.

Stcel girder A 251t | B Steel
(A =32.7in.2) I column
4 in.

concrete slab

2at 12 ft=24ft
Steel floor beam

A =183in2) -
E

FIG. P2.5, P2.6, P2.9

2.7 The floor system of a gymnasium consists of a 130-
mm-thick concrete slab resting on four steel beams (4 =
9,100 mm?) that, in turn, are supported by two steel girders
(A = 25,600 mm?), as shown in Fig. P2.7. Determine the dead
loads acting on beam BF and girder AD.

Steel floor beam
(A =9,100 mm?)

I

Steel girder (A = 25,600 mm?)

D_— Steel
column

B C

130 mm
concrete
slab

10 m

LT e

\%325111:15 \

FIG. P2.7, P2.10

2.8 The roof system of an office building consists of a 4-in.-
thick reinforced concrete slab resting on four steel beams
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(4 =16.2 in.?), which are supported by two steel girders
(4 =42.9 in.?). The girders, in turn, are supported by four
columns, as shown in Fig. P2.8. Determine the dead loads
acting on the girder AG.

Al 20 ft | B___—Steel
Steel girder H _— H — column

(A=429in2) din

D | concrete slab

Cle——— =

3at9ft=27ft
E|—————|F

Steel floor beam

(A=16.21in.2)
H———H—
G H
FIG. P2.8, P2.11
Section 2.3

2.9 For the apartment building whose floor system was de-
scribed in Problem 2.5, determine the live loads acting on
the beam CD and the girder AE. See Fig. P2.5.

2.10 For the gymnasium whose floor system was described
in Problem 2.7, determine the live loads acting on beam BF
and girder AD. See Fig. P2.7.

2.11 The roof of the office building considered in Problem
2.8 is subjected to a live load of 20 psf. Determine the live
loads acting on the beam EF, the girder 4G, and the col-
umn A. See Fig. P2.8.

Section 2.5

2.12 Determine the external wind pressure on the roof of
the rigid-gabled frame of an apartment building shown in
Fig. P2.12. The building is located in the Los Angeles area
of California, where the terrain is representative of exposure
B. The wind direction is normal to the ridge as shown.

Wind
—_— 15 ft

40 ft

30 ft —

FIG. P2.12

2.13 Determine the external wind pressure on the roof of the
rigid-gabled frame of a school building shown in Fig. P2.13.
The structure is located in a suburb of Chicago, Illinois,
where the terrain is representative of exposure B, and the

basic wind speed for risk category III buildings is 54 m/s.
Assume the wind direction is normal to the ridge as shown.

T

Wind —— 5'm

12m

} 12m }
FIG. P2.13, P2.17

2.14 Determine the external wind pressure on the roof of
the rigid-gabled frame of a building for an essential disaster
operation center shown in Fig. P2.14. The building is lo-
cated in Kansas City, Missouri, where the terrain is repre-
sentative of exposure C, and the basic wind speed for risk
category IV buildings is 120 mph. Assume the wind direc-
tion is normal to the ridge, as shown in the figure.

2.15 Determine the external wind pressures on the wind-
ward and leeward walls of the building of Problem 2.14. See
Fig. P2.14.

30 ft
Plan
Wind -
— 11 ft
30 ft
F—40 ft —
Elevation

FIG. P2.14, P2.15, P2.16

Section 2.6

2.16 Determine the balanced design snow load for the roof
of the disaster operation center building of Problem 2.14.
The ground snow load in Kansas City is 20 psf. Because of
trees near the building, assume the exposure factor is
C, = 1. See Fig. P2.14.

2.17 Determine the balanced design snow load for the roof
of the school building of Problem 2.13. The ground snow
load in Chicago is 1.2 kN/m?. Assume the exposure factor
is C, = 1. See Fig. P2.13.
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Equilibrium and Support
Reactions

3.1 Equilibrium of Structures

3.2 External and Internal Forces

3.3 Types of Supports for Plane Structures

3.4 Static Determinacy, Indeterminacy, and Instability

3.5 Computation of Reactions

3.6 Principle of Superposition

3.7 Reactions of Simply Supported Structures Using Proportions
Summary
Problems

The objective of this chapter is to review the basic concept of equilibrium
of structures under the action of forces and to develop the analysis of
reactions exerted by supports on plane (two-dimensional) structures sub-
jected to coplanar force systems.

We first review the concept of equilibrium and develop the equations
of equilibrium of structures. Next we discuss the external and internal
forces. We then describe the common types of supports used to restrict
movements of plane structures. Structures can be classified as externally
statically determinate, indeterminate, or unstable. We discuss how this
classification can be made for plane structures. We then develop a pro-
cedure for determining reactions at supports for plane statically determi-
nate structures. Finally, we define the principle of superposition and
show how to use proportions in the computation of reactions of simply
supported structures.

3.1 Equilibrium of Structures

A structure is considered to be in equilibrium if, initially at rest, it remains
at rest when subjected to a system of forces and couples. If a structure is
in equilibrium, then all its members and parts are also in equilibrium.
In order for a structure to be in equilibrium, all the forces and cou-
ples (including support reactions) acting on it must balance each other,
and there must neither be a resultant force nor a resultant couple acting
on the structure. Recall from statics that for a space (three-dimensional)

53



54

FIG. 3.1

FIG. 3.2

CHAPTER 3 Equilibrium and Support Reactions

M,

0}

structure subjected to three-dimensional systems of forces and couples
(Fig. 3.1), the conditions of zero resultant force and zero resultant cou-
ple can be expressed in a Cartesian (xyz) coordinate system as

S F.=0 >y =0 SF.=0 31
Y>Mc=0 S>M,=0 Y M.=0 3.1)
These six equations are called the equations of equilibrium of space
structures and are the necessary and sufficient conditions for equili-
brium. The first three equations ensure that there is no resultant force
acting on the structure, and the last three equations express the fact that
there is no resultant couple acting on the structure.

For a plane structure lying in the xy plane and subjected to a co-
planar system of forces and couples (Fig. 3.2), the necessary and suffi-
cient conditions for equilibrium can be expressed as

SE=0 YF=0 YM=0 (3.2)

These three equations are referred to as the equations of equilibrium of
plane structures. The first two of the three equilibrium equations express,
respectively, that the algebraic sums of the x components and y compo-
nents of all the forces are zero, thereby indicating that the resultant force
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acting on the structure is zero. The third equation indicates that the al-
gebraic um of the moments of all the forces about any point in the plane
of the structure and the moments of any couples acting on the structure
is zero, thereby indicating that the resultant couple acting on the struc-
ture is zero. All the equilibrium equations must be satisfied simulta-
neously for the structure to be in equilibrium.

It should be realized that if a structure (e.g., an aerospace vehicle)
initially in motion is subjected to forces that satisfy the equilibrium
equations, it will maintain its motion with a constant velocity, since the
forces cannot accelerate it. Such structures may also be considered to
be in equilibrium. However, the term equilibrium is commonly used to
refer to the state of rest of structures and is used in this context herein.

Alternative Forms of Equations of Equilibrium
of Plane Structures

Although the equilibrium equations as expressed in Eq. (3.2) provide
the most convenient means of analyzing a majority of plane structures,
the analysis of some structures can be expedited by employing one of the
following two alternative forms of the equations of equilibrium:

S F,=0 Y My;=0 Y Mz=0 (3.3)

in which 4 and B are any two points in the plane of the structure, pro-
vided that the line connecting 4 and B is not perpendicular to the ¢ axis,
and

SMy=0 S Mp=0 S Mc=0 (3.4)

in which A4, B, and C are any points in the plane of the structure, pro-
vided that these three points do not lie on the same straight line.

Concurrent Force Systems

When a structure is in equilibrium under the action of a concurrent force
system—that is, the lines of action of all the forces intersect at a single
point—the moment equilibrium equations are automatically satisfied,
and only the force equilibrium equations need to be considered. There-
fore, for a space structure subjected to a concurrent three-dimensional
force system, the equations of equilibrium are

YE=0 YF=0 YFE=0 (3.5)

Similarly, for a plane structure subjected to a concurrent coplanar force
system, the equilibrium equations can be expressed as

SE =0  YF=0 (3.6)

Two-Force and Three-Force Structures

Throughout this text, we will encounter several structures and structural
members that will be in equilibrium under the action of only two, or
three, forces. The analysis of such structures and of structures composed
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of such members can be considerably expedited by recalling from statics
the following characteristics of such systems:

1. If a structure is in equilibrium under the action of only two
forces, the forces must be equal, opposite, and collinear.

2. If a structure is in equilibrium under the action of only three
forces, the forces must be either concurrent or parallel.

3.2 External and Internal Forces

The forces and couples to which a structure may be subjected can be
classified into two types, external forces and internal forces.

External Forces

External forces are the actions of other bodies on the structure under
consideration. For the purposes of analysis, it is usually convenient to
further classify these forces as applied forces and reaction forces. Applied
forces, usually referred to as loads (e.g., live loads and wind loads), have
a tendency to move the structure and are usually known in the analysis.
Reaction forces, or reactions, are the forces exerted by supports on the
structure and have a tendency to prevent its motion and keep it in equi-
librium. The reactions are usually among the unknowns to be determined
by the analysis. The state of equilibrium or motion of the structure as a
whole is governed solely by the external forces acting on it.

Internal Forces

Internal forces are the forces and couples exerted on a member or por-
tion of the structure by the rest of the structure. These forces develop
within the structure and hold the various portions of it together. The
internal forces always occur in equal but opposite pairs, because each
member or portion exerts back on the rest of the structure the same
forces acting upon it but in opposite directions, according to Newton’s
third law. Because the internal forces cancel each other, they do not ap-
pear in the equations of equilibrium of the entire structure. The internal
forces are also among the unknowns in the analysis and are determined
by applying the equations of equilibrium to the individual members or
portions of the structure.

3.3 Types of Supports for Plane Structures

Supports are used to attach structures to the ground or other bodies,
thereby restricting their movements under the action of applied loads.
The loads tend to move the structures; but supports prevent the move-
ments by exerting opposing forces, or reactions, to neutralize the effects
of loads, thereby keeping the structures in equilibrium. The type of
reaction a support exerts on a structure depends on the type of supporting



Section 3.3 Types of Supports for Plane Structures

57

device used and the type of movement it prevents. A support that pre-
vents translation of the structure in a particular direction exerts a reaction
force on the structure in that direction. Similarly, a support that prevents
rotation of the structure about a particular axis exerts a reaction couple
on the structure about that axis.

The types of supports commonly used for plane structures are
depicted in Fig. 3.3. These supports are grouped into three categories,
depending on the number of reactions (1, 2, or 3) they exert on the
structures. The figure also gives the types of reactions that these sup-
ports exert, as well as the number of unknowns that the various supports
introduce in the analysis. Figures 3.4 through 3.6 illustrate roller,
rocker, and hinged supports.

Category

Type of support

Symbolic representation

Reactions

Number of unknowns

Roller

—

Rocker

1
The reaction force R acts
perpendicular to the supporting
surface and may be directed either
into or away from the structure.
The magnitude of R is the
unknown.

Link

1
The reaction force R acts in the
direction of the link and may be
directed either into or away from
the structure. The magnitude of R is
the unknown.

11

Hinge

or

2
The reaction force R may act in any
direction. It is usually convenient to
represent R by its rectangular
components, R, and R,. The
magnitudes of R, and R, are the
two unknowns.

111

Fixed

3
The reactions consist of two force
components R, and R, and a
couple of moment M. The
magnitudes of R, R,, and M are
the three unknowns.

FIG. 3.3 Types of Supports for Plane Structures
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FIG. 3.4 Roller Support
Courtesy of the lllinois Department of Transportation

FIG. 3.5 Rocker Support FIG. 3.6 Hinged Support
Maureen M. Kassimali Maureen M. Kassimali

3.4 Static Determinacy, Indeterminacy, and Instability

Internal Stability

A structure is considered to be internally stable, or rigid, if it maintains
its shape and remains a rigid body when detached from the supports.
Conversely, a structure is termed internally unstable (or nonrigid) if it
cannot maintain its shape and may undergo large displacements under
small disturbances when not supported externally. Some examples of
internally stable structures are shown in Fig. 3.7. Note that each of the
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(a) (b)

© (d)
FIG. 3.7 Examples of Internally Stable Structures
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FIG. 3.8 Examples of Internally Unstable Structures

structures shown forms a rigid body, and each can maintain its shape
under loads. Figure 3.8 shows some examples of internally unstable
structures. A careful look at these structures indicates that each struc-
ture is composed of two rigid parts, 4B and BC, connected by a hinged
joint B, which cannot prevent the rotation of one part with respect to
the other.

It should be realized that all physical bodies deform when subjected
to loads; the deformations in most engineering structures under service
conditions are so small that their effect on the equilibrium state of the
structure can be neglected. The term rigid structure as used here implies
that the structure offers significant resistance to its change of shape,
whereas a nonrigid structure offers negligible resistance to its change of
shape when detached from the supports and would often collapse under
its own weight when not supported externally.

Static Determinacy of Internally Stable Structures

An internally stable structure is considered to be statically determinate
externally if all its support reactions can be determined by solving the
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FIG. 3.9 Examples of Externally
Statically Determinate Plane Structures

(a)

(b)

(c)

(d)

(e)

equations of equilibrium. Since a plane internally stable structure can be
treated as a plane rigid body, in order for it to be in equilibrium under a
general system of coplanar loads, it must be supported by at least three
reactions that satisfy the three equations of equilibrium (Egs. 3.2, 3.3, or
3.4). Also, since there are only three equilibrium equations, they cannot
be used to determine more than three reactions. Thus, a plane structure
that is statically determinate externally must be supported by exactly
three reactions. Some examples of externally statically determinate plane
structures are shown in Fig. 3.9. It should be noted that each of these
structures is supported by three reactions that can be determined by
solving the three equilibrium equations.
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If a structure is supported by more than three reactions, then all
the reactions cannot be determined from the three equations of equili-
brium. Such structures are termed statically indeterminate externally. The
reactions in excess of those necessary for equilibrium are called external
redundants, and the number of external redundants is referred to as the
degree of external indeterminacy. Thus, if a structure has r reactions
(r > 3), then the degree of external indeterminacy can be written as

io=r—3 (3.7)

Figure 3.10 shows some examples of externally statically indeterminate
plane structures.

If a structure is supported by fewer than three support reactions, the
reactions are not sufficient to prevent all possible movements of the struc-
ture in its plane. Such a structure cannot remain in equilibrium under a
general system of loads and is, therefore, referred to as statically unstable
externally. An example of such a structure is shown in Fig. 3.11. The truss
shown in this figure is supported on only two rollers. It should be obvious
that although the two reactions can prevent the truss from rotating and
translating in the vertical direction, they cannot prevent its translation in
the horizontal direction. Thus, the truss is not fully constrained and is
statically unstable.

The conditions of static instability, determinacy, and indeterminacy
of plane internally stable structures can be summarized as follows:

r < 3 the structure is statically unstable externally
r =3 the structure is statically determinate externally (3.8)
r >3 the structure is statically indeterminate externally

where » = number of reactions.

It should be realized that the first of three conditions stated in
Eq. (3.8) is both necessary and sufficient in the sense that if r < 3, the
structure is definitely unstable. However, the remaining two conditions,
r =3 and r > 3, although necessary, are not sufficient for static determi-
nacy and indeterminacy, respectively. In other words, a structure may
be supported by a sufficient number of reactions (r > 3) but may still be
unstable due to improper arrangement of supports. Such structures are
referred to as geometrically unstable externally. The two types of reaction
arrangements that cause geometric instability in plane structures are
shown in Fig. 3.12. The truss in Fig. 3.12(a) is supported by three paral-
lel reactions. It can be seen from this figure that although there is
a sufficient number of reactions (r = 3), all of them are in the vertical
direction, so they cannot prevent translation of the structure in the
horizontal direction. The truss is, therefore, geometrically unstable. The
other type of reaction arrangement that causes geometric instability is
shown in Fig. 3.12(b). In this case, the beam is supported by three
nonparallel reactions. However, since the lines of action of all three re-
action forces are concurrent at the same point, 4, they cannot prevent
rotation of the beam about point 4. In other words, the moment equili-
brium equation Y M4 = 0 cannot be satisfied for a general system of
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FIG. 3.12 Reaction Arrangements
Causing External Geometric Instability
in Plane Structures
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coplanar loads applied to the beam. The beam is, therefore, geometri-
cally unstable.

Based on the preceding discussion, we can conclude that in order for
a plane internally stable structure to be geometrically stable externally so
that it can remain in equilibrium under the action of any arbitrary copla-
nar loads, it must be supported by at least three reactions, all of which
must be neither parallel nor concurrent.

Static Determinacy of Internally Unstable
Structures—Equations of Condition

Consider an internally unstable structure composed of two rigid mem-
bers AB and BC connected by an internal hinge at B, as shown in
Fig. 3.13(a). The structure is supported by a roller support at 4 and a
hinged support at C, which provide three nonparallel nonconcurrent
external reactions. As this figure indicates, these reactions, which would
have been sufficient to fully constrain an internally stable or rigid struc-
ture, are not sufficient for this structure. The structure can, however, be
made externally stable by replacing the roller support at 4 by a hinged
support to prevent the horizontal movement of end A of the structure.
Thus, as shown in Fig. 3.13(b), the minimum number of external reac-
tions required to fully constrain this structure is four.

Obviously, the three equilibrium equations are not sufficient to de-
termine the four unknown reactions at the supports for this structure.
However, the presence of the internal hinge at B yields an additional
equation that can be used with the three equilibrium equations to deter-
mine the four unknowns. The additional equation is based on the condi-
tion that an internal hinge cannot transmit moment; that is, the moments
at the ends of the parts of the structure connected to a hinged joint are
zero. Therefore, when an internal hinge is used to connect two portions of
a structure, the algebraic sum of the moments about the hinge of the loads
and reactions acting on each portion of the structure on either side of the
hinge must be zero. Thus, for the structure of Fig. 3.13(b), the presence of
the internal hinge at B requires that the algebraic sum of moments about B
of the loads and reactions acting on the individual members 4B and BC
must be zero; that is, Y. M2 =0 and > M = 0. Such equations are
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FIG. 3.13
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(a)

Internal hinge

One equation of condition: ZM4% =0 or TMEC =0

(b)

commonly referred to as the equations of condition or construction. It is
important to realize that these two equations are not independent. When
one of the two equations—for example, >~ M#8 = 0—is satisfied along
with the moment equilibrium equation » M = 0 for the entire structure,
the remaining equation > MZ¢ = 0 is automatically satisfied. Thus, an
internal hinge connecting two members or portions of a structure provides
one independent equation of condition. (The structures that contain hinged
joints connecting more than two members are considered in subsequent
chapters.) Because all four unknown reactions for the structure of Fig. 3.13
(b) can be determined by solving the three equations of equilibrium plus
one equation of condition (3° M#8 =0 or 3 MEC = 0), the structure is
considered to be statically determinate externally. Shear splices (Fig. 3.14)
are sometimes used to connect two beams into a longer one. Such con-
nections are designed to transfer (shear) forces but not (bending) moments,
and are treated as internal hinges for analysis.

Occasionally, connections are used in structures that permit not
only relative rotations of the member ends but also relative translations
in certain directions of the ends of the connected members. Such con-
nections are modeled as internal roller joints for the purposes of analy-
sis. Figure 3.15 shows a structure consisting of two rigid members 4B
and BC that are connected by such an internal roller at B. The structure
is internally unstable and requires a minimum of five external support
reactions to be fully constrained against all possible movements under
a general system of coplanar loads. Since an internal roller can transmit
neither moment nor force in the direction parallel to the supporting sur-
face, it provides two equations of condition;

SES=0 o $FE =0
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FIG. 3.14 Shear Splice

/
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Internal roller Internal roller
. r=35
Two equations of condition: EFA8 =0 or ZF,BC=0
FIG. 3.15 IMBE=0 or IMEC=0
and

SSMB=0 or Y MF=0

These two equations of condition can be used in conjunction with the three
equilibrium equations to determine the five unknown external reactions.
Thus, the structure of Fig. 3.15 is statically determinate externally.

From the foregoing discussion, we can conclude that if there are e,
equations of condition (one equation for each internal hinge and two
equations for each internal roller) for an internally unstable structure,
which is supported by r external reactions, then if

r <3 -+e. the structure is statically

unstable externally
r=3-+e. the strqcture is statically (3.9)
determinate externally
r >3+ e, the structure is statically
indeterminate externally
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For an externally indeterminate structure, the degree of external in-
determinacy is expressed as

i.=r—3+e) (3.10)

Alternative Approach An alternative approach that can be used for de-
termining the static instability, determinacy, and indeterminacy of inter-
nally unstable structures is as follows:

1. Count the total number of support reactions, r.

2. Count the total number of internal forces, f;, that can be trans-

mitted through the internal hinges and the internal rollers of

the structure. Recall that an internal hinge can transmit two
force components, and an internal roller can transmit one force
component.

Determine the total number of unknowns, r + f;.

4. Count the number of rigid members or portions, n,, contained
in the structure.

5. Because each of the individual rigid portions or members of the
structure must be in equilibrium under the action of applied
loads, reactions, and/or internal forces, each member must sat-
isfy the three equations of equilibrium (3 F, =0, Y F, =0,
and > M =0). Thus, the total number of equations available
for the entire structure is 3n,.

6. Determine whether the structure is statically unstable, determi-
nate, or indeterminate by comparing the total number of un-
knowns, r + f;, to the total number of equations. If

ol

r+ fi < 3n, the structure is statically
unstable externally

r+f; = 3n, the structure is statically

determinate externally (3.11)

r+f; > 3n, the structure is statically
indeterminate externally

For indeterminate structures, the degree of external indeterminacy
is given by

ie = (r+ fi) = 3n, (3.12)

Applying this alternative procedure to the structure of Fig. 3.13(b), we can
see that for this structure, r = 4, f; = 2, and n, = 2. As the total number of
unknowns (r + f; = 6) is equal to the total number of equations (3n, = 6),
the structure is statically determinate externally. Similarly, for the structure of
Fig. 3.15,r =5, f; = 1, and n, = 2. Since r + f; = 3n,, this structure is also
statically determinate externally.

The criteria for the static determinacy and indeterminacy as de-
scribed in Egs. (3.9) and (3.11), although necessary, are not sufficient
because they cannot account for the possibility of geometric instability.
To avoid geometric instability, the internally unstable structures, like the
internally stable structures considered previously, must be supported by
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reactions, all of which are neither parallel nor concurrent. An additional
type of geometric instability that may arise in internally unstable struc-
tures is depicted in Fig. 3.16. For the beam shown, which contains three
internal hinges at B, C, and D, r = 6 and e, = 3 (i.e., r = 3 + ¢.); there-
fore, according to Eq. (3.9), the beam is supported by a sufficient number
of reactions, and it should be statically determinate. However, it can be
seen from the figure that portion BCD of the beam is unstable because it
cannot support the vertical load P applied to it in its undeformed posi-
tion. Members BC and CD must undergo finite rotations to develop any
resistance to the applied load. Such a type of geometric instability can be
avoided by externally supporting any portion of the structure that con-
tains three or more internal hinges that are collinear.

Example 3.1

PO BN

Classify each of the structures shown in Fig. 3.17 as externally unstable, statically determinate, or statically in-
determinate. If the structure is statically indeterminate externally, then determine the degree of external indeterminacy.

Solution
(a) This beam is internally stable with » = 5 > 3. Therefore, it is statically indeterminate externally with the degree
of external indeterminacy of

le=r—3=5-3=2 Ans.
(b) This beam is internally unstable. It is composed of two rigid members 4B and BC connected by an internal

hinge at B. For this beam, r = 6 and e, = 1. Since r > 3 + ¢, the structure is statically indeterminate externally with the
degree of external indeterminacy of

ip=r—(3+e)=6-(3+1)=2 Ans.

Alternative Method. f; =2, n, =2, r+ fi =6+2 =28, and 3n, = 3(2) = 6. As r + f; > 3n,, the beam is statically in-
determinate externally, with

ip=(r+fi)—3n=8—6=2 Checks

(¢) This structure is internally unstable with » = 4 and e, = 2. Since r < 3 + ¢, the structure is statically unstable
externally. This can be verified from the figure, which shows that the member BC is not restrained against movement in
the horizontal direction. Ans.

Alternative Method. f; =1, n, =2, r+ fi =4+ 1 =5, and 3n, = 6. Since r + f; < 3n,, the structure is statically un-
stable externally. Checks

(d) This beam is internally unstable with r = 5 and e, = 2. Because r = 3 + ¢., the beam is statically determinate
externally. Ans.

continued
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Alternative Method. f; =4, n, =3, r+ fi =5+4 =29, and 3n, = 3(3) = 9. Because r + f; = 3n,, the beam is staticaly
determinate externally. Checks

(e) This is an internally unstable structure with r = 6 and e. = 3. Since r = 3 + ¢, the structure is statically deter-
minate externally. Ans.

Alternative Method. f; =6, n, =4, r+ fi =6+ 6 = 12, and 3n, = 3(4) = 12. Because r + f; = 3n,, the structure is
statically determinate externally. Checks

(f) This frame is internally unstable with r =4 and e. = 1. Since r = 3 + ¢., the frame is statically determinate
externally. Ans.

Alternative Method. f; =2, n, =2, r+ fi =4+2 =6, and 3n, = 3(2) = 6. Since r + f; = 3n,, the frame is statically
determinate externally. Checks

(g) This frame is internally unstable with r = 6 and e, = 3. Since r = 3 + e., the frame is statically determinate
externally. Ans.

Alternative Method. f; =6, n,=4, r+ fi =6+ 6=12, and 3n, = 3(4) = 12. Because r+ f; = 3n,, the frame is
statically determinate externally. Checks
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3.5 Computation of Reactions

The following step-by-step procedure can be used to determine the reactions
of plane statically determinate structures subjected to coplanar loads.

1. Draw a free-body diagram (FBD) of the structure.

a. Show the structure under consideration detached from its
supports and disconnected from all other bodies to which it
may be connected.

b. Show each known force or couple on the FBD by an arrow
indicating its direction and sense. Write the magnitude of
each known force or couple by its arrow.

c¢. Show the orientation of the mutually perpendicular xy
coordinate system to be used in the analysis. It is usually
convenient to orient the x and y axes in the horizontal
(positive to the right) and vertical (positive upward) direc-
tions, respectively. However, if the dimensions of the struc-
ture and/or the lines of action of most of the applied loads
are in an inclined direction, selection of the x (or y) axis in
that direction may considerably expedite the analysis.

d. At each point where the structure has been detached from a
support, show the unknown external reactions being exerted
on the structure. The type of reactions that can be exerted by
the various supports are given in Fig. 3.3. The reaction forces
are represented on the FBD by arrows in the known directions
of their lines of action. The reaction couples are represented by
curved arrows. The senses of the reactions are not known and
can be arbitrarily assumed. However, it is usually convenient
to assume the senses of the reaction forces in the positive x
and y directions and of reaction couples as counterclockwise.
The actual senses of the reactions will be known after their
magnitudes have been determined by solving the equations of
equilibrium and condition (if any). A positive magnitude for
a reaction will imply that the sense initially assumed was cor-
rect, whereas a negative value of the magnitude will indicate
that the actual sense is opposite to the one assumed on the
FBD. Since the magnitudes of the reactions are not yet known,
they are denoted by appropriate letter symbols on the FBD.

e. To complete the FBD, draw the dimensions of the struc-
ture, showing the locations of all the known and unknown
external forces.

2. Check for static determinacy. Using the procedure described in
Section 3.4, determine whether or not the given structure is
statically determinate externally. If the structure is either stat-
ically or geometrically unstable or indeterminate externally, end
the analysis at this stage.

3. Determine the unknown reactions by applying the equations of
equilibrium and condition (if any) to the entire structure. To
avoid solving simultaneous equations, write the equilibrium and
condition equations so that each equation involves only one un-
known. For some internally unstable structures, it may not be
possible to write equations containing one unknown each. For
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such structures, the reactions are determined by solving the
equations simultaneously. The analysis of such internally un-
stable structures can sometimes be expedited and the solution of
simultaneous equations avoided by disconnecting the structure
into rigid portions and by applying the equations of equilibrium
to the individual portions to determine the reactions. In such a
case, you must construct the free-body diagrams of the portions
of the structure; these diagrams must show, in addition to any
applied loads and support reactions, all the internal forces being
exerted upon that portion at connections. Remember that the
internal forces acting on the adjacent portions of a structure
must have the same magnitudes but opposite senses in accord-
ance with Newton’s third law.

Apply an alternative equilibrium equation that has not been used
before to the entire structure to check the computations. This
alternative equation should preferably involve all the reactions
that were determined in the analysis. You may use a moment
equilibrium equation involving a summation of moments about
a point that does not lie on lines of action of reaction forces for
this purpose. If the analysis has been carried out correctly, then
this alternative equilibrium equation must be satisfied.

Example 3.2

Determine the reactions at the supports for the beam shown in Fig. 3.18(a).

FIG. 3.18

Solution

12k 6k

for ]
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(b)

Free-Body Diagram. The free-body diagram of the beam is shown in Fig. 3.18(b). Note that the roller at A exerts re-
action R, in the direction perpendicular to the inclined supporting surface.

Static Determinacy. The beam is internally stable and is supported by three reactions, R4, By, and By, all of which are
neither parallel nor concurrent. Therefore, the beam is statically determinate.

continued
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Support Reactions. Since two of the three reactions, namely, B, and By, are concurrent at B, their moments about B are
zero. Therefore, the equilibrium equation » Mz = 0, which involves the summation of moments of all the forces about
B, contains only one unknown, R,4. Thus,

+GCY Mp=0
—%RA(ZO) + 12 sin 60°(10) — 6(5) = 0

Ry=4.62k

The positive answer for R, indicates that our initial assumption about the sense of this reaction was correct.
Therefore,

R, =462k / Ans.
Next, in order to determine By, we apply the equilibrium equation,
+ — Z Fx =0
%(4.62) —12cos60°+ B, =0
B, =323k
B, =323k — Ans.

The only remaining unknown, B,, can now be determined by applying the remaining equation of equilibrium:

+1>F =0
4 R
5(4.62) —12sin60° +B, —6=0
B, =127k
B, =127k Ans.

In order to avoid having to solve simultaneous equations in the preceding computations, we applied the equili-
brium equations in such a manner that each equation contained only one unknown.

Checking Computations. Finally, to check our computations, we apply an alternative equation of equilibrium (see
Fig. 3.18(b)):

+C M= —%(4.62)(25) + 12 sin 60°(15) — 12.7(5)

= —0.01 k-ft Checks

Example 3.3 ,&w ,,, %‘ ' \ Ix \ /K I

Determine the reactions at the supports for the beam shown in Fig. 3.19(a).

Solution
Free-Body Diagram. See Fig. 3.19(Db).

Static Determinacy. The beam is internally stable with » = 3. Thus, it is statically determinate.

continued
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FIG. 3.19

Support Reactions. By applying the three equations of equilibrium, we obtain

+—=>Y F =0
B, =0
+12XFH=0
~15(6) — 160+ B, = 0
B, =250 kN
B, =250 kN |
+CXMp=0

—400 + 15(6)(3 + 8) + 160(4) + M =0
Mg =—1230 kN -m
Mg =1230 kN -m )

Checking Computations.

+ ¢ My = —400 — 15(6)(3) — 160(10) + 250(14) — 1230 = 0

Ans.

Ans.

Ans.

Checks

Example 3.4

A7 T,
- - e

L\\%{’ :

\

| AN

Determine the reactions at the support for the frame shown in Fig. 3.20(a).

Solution

Free-Body Diagram. The free-body diagram of the frame is shown in Fig. 3.20(b). Note that the trapezoidal loading
distribution has been divided into two simpler, uniform, and triangular, distributions whose areas and centroids are

easier to compute.

continued
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3 kN/m
2 kN/m

Static Determinacy. The frame is internally stable with » = 3. Therefore, it is statically determinate.

Support Reactions. By applying the three equations of equilibrium, we obtain

+ -2 Fc=0
A +2(15) =0
Ay = —30 kN
A, =30 kN «—
+TF,=0
4,-209) 3 (3)9) =0
A, =315kN
A, =315kN 1|

+CY Ms=0

ma-203)(3) - eON(3) - ;00050 =0

M, = 387 kKN-m
M4 = 387 kN-m ¢

Checking Computations.

+G > Mp = —30(15) — 31.5(9) + 387 + [2(15)] (125)

+2o)(3) + ;00 (3)

=0

Ans.

Ans.

Ans.

Checks

73
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Example 3.5 zﬁ \"_ L\&(*R\ ‘ A A II

Determine the reactions at the supports for the frame shown in Fig. 3.21(a).

12 ft L6 ft 12 ft 6 ft
1.5 k/ft I 1.5 k/ft
ERERERREN] EEEERERRER
I o
6 ft 6 ft
<15 k—k 13 k‘k
18 ft 6 ft 18 ft 6 ft
1 . |
y
A &
: —> A
2.5 k/ft 2.5 k/ft *
Ay X
(a) (b)
FIG. 3.21
Solution
Free-Body Diagram. See Fig. 3.21(b).
Static Determinacy. The frame is internally stable with » = 3. Thus, it is statically determinate.
Support Reactions.
+ =Y F =0
A, +%(2.5)(18) —15=0
Ay, =-75k
A, =75k « Ans.
+C> M4=0
1 18
~[529)(18)| (5] — [1-518)](9) +15(12) + B,(12) = 0
B, =165k
B, =165k Ans.
+1XF=0
A4, —1.5(18)+16.5=0
A, =105k
A4, =105k 1 Ans.

continued
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Checking Computations.

+ngQ:—1xmy4uxmykB@jxmﬂém)
+150&(¥)—1ﬁ®—16ﬂ®

=0

Checks

== AN

Example 3.6

Determine the reactions at the supports for the frame shown in Fig. 3.22(a).

50k
2 k/ft l
10 ft
3K/t
! 24 ft | 12 ft 12 ft
(a)
\5" 50 k
13\\ : 12 2 k/ft
| / c
\ _>Cx
G
y
X
12 ft 12 ft
FIG. 3.22
Solution

Free-Body Diagram. See Fig. 3.22(b).

Static Determinacy. The frame is internally stable with » = 3. Therefore, it is statically determinate.

continued
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Support Reactions.

+—>> F,=0
(2;3) (26) (1—53) FC=0
C=-25k
Cy =25k « Ans.
+CY M =0
1 26
—~2(26)(13) - 5 (1)(26)( 5 ) = 50(24 + 12) +25(10) + C,(48) = 0
C,=48.72k
C,=4872k 1 Ans.
+15F,=0
243 12
A, — (T) (26) (ﬁ) —50+48.72=0
A, =6128k
A, =6128Kk 1 Ans.

Checking Computations.
+ G > Mg =—61.28(24) +2(26)(13) + % (1)(26) <§) (26) — 50(12) + 48.72(24)

= —0.107 k-ft = 0 Checks

Example 3.7 Ai':* - \‘_ 3 L_\%;'T\ ‘ \\ : A ' |

Determine the reactions at the supports for the beam shown in Fig. 3.23(a).

Solution
Free-Body Diagram. See Fig. 3.23(b).

Static Determinacy. The beam is internally unstable. It is composed of three rigid members, AB, BE, and EF, connected by
two internal hinges at B and E. The structure has r = 5 and e, = 2; because r = 3 + e, the structure is statically determinate.

Support Reactions.
+—=Y F =0
A, =0 Ans.

Next, we apply the equation of condition, Y M## = 0, which involves the summation of moments about B of all
the forces acting on the portion 4B.

+GCYMP=0
—4,(20) + [5(20)](10) = 0
A, =50 kN
Ay =50 kN | Ans.

continued
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5 kN/m N/
‘ REEREERERR
A— Hinge puo L Hinge O
20 m<-20 m4+——s0m 20 m 20 m-|
(a)
y
5 kN/m 3 N/
i Tt rryid .
A, TA B TC tD E TF
A)’ CY Dy Fy
20 m-\‘ZOm ——50m | 20m.l-20m-|
(b)
5 kN/m 5 kN/m 3 N/ 3 N/
al | s sl | v v T 1 11 E{ ] }F
Ay B, B, C D E, E,
A, By B, G D, E E, F
‘«20 m»‘ ‘«20m 1 50 m 1 20 ma‘ ‘«20 m»‘
(©)

FIG. 3.23

Similarly, by applying the equation of condition > MEF = 0, we determine the reaction F, as follows:

+CYX MET =0
—[3(20)](10) + F,(20) = 0
F, =30 kN
F,=30kN 1| Ans.

The remaining two equilibrium equations can now be applied to determine the remaining two unknowns,
C, and D,:
y y

+GC> Mp=0
—50(90) + [5(40)](70) — C,,(50) + [3(90)](5) + 30(40) =0
C, =241 kKN
C, =241 kN | Ans.

It is important to realize that the moment equilibrium equations involve the moments of a// the forces acting on the
entire structure, whereas, the moment equations of condition involve only the moments of those forces that act on the
portion of the structure on one side of the internal hinge.

Finally, we compute D, by using the equilibrium equation,

+1XFH=0
50 — 5(40) + 241 — 3(90) + D, +30 = 0
D, = 149 kN
D, =149 kN | Ans.

continued
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Alternative Method. The reactions of the beam can be determined alternatively by applying the three equations of
equilibrium to each of the three rigid portions AB, BE, and EF of the beam. The free-body diagrams of these rigid
portions are shown in Fig. 3.23(c). These diagrams show the internal forces being exerted through the internal hinges at
B and E in addition to the applied loads and support reactions. Note that the internal forces acting at each end B of
portions 4B and BE and at each end E of portions BE and EF have the same magnitudes but opposite senses, according
to Newton’s law of action and reaction.

The total number of unknowns (including the internal forces) is nine. Since there are three equilibrium equations
for each of the three rigid portions, the total number of equations available is also nine (r + f; = 3n, = 9). Therefore, all
nine unknowns (reactions plus internal forces) can be determined from the equilibrium equations, and the beam is stat-
ically determinate.

Applying the three equations of equilibrium to portion 4B, we obtain the following:

+CEM{E=0 —[5(20)](10) + B,(20) =0 B, = 50kN
+1EF®E=0 A, —5(20)+50=0 4, =50kN Cheers
+—>EF;‘B:0 AX—BXZO (1)

Next, we consider the equilibrium of portion EF:

+ = SFEF =0 E, =0
+GEMEF =0 —E,(20) +[3(20)](10) = 0 E, = 30kN
+1ZFF =0 30 —3(20) + F, =0 F, =30kN Checks

Considering the equilibrium of portion BE, we write

+-ZFF =0 B, =0
From Eq. (1), we obtain
A, =0 Checks
+CEMEE =0 50(20) + [5(20)](10) — [3(70)](35) + D,(50) — 30(70) = 0
D, = 149kN Checks
+1ZFF =0 —50 — 5(20) + C, — 3(70) + 149 — 30 = 0
C, = 241 kN Checks

Example 3.8 /j,f« “ E _ %" T\ nk A ﬂ

Determine the reactions at the supports for the three-hinged arch shown in Fig. 3.24(a).

Solution
Free-Body Diagram. See Fig. 3.24(b).

Static Determinacy. The arch is internally unstable; it is composed of two rigid portions, AB and BC, connected by an
internal hinge at B. The arch has r = 4 and e, = 1; since r = 3 + e, it is statically determinate.

continued
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2.5 k/ft

1 k/ft
1 k/ft
l 30 ft | 30 ft !
(a) (b)
FIG. 3.24
Support Reactions.
+CX Me=0
—A4,(60) — [1(30)](15) + [2.5(60)](30) =0
A, =675k
A4, =675k Ans.
+CEMET=0

A(30) — 67.5(30) + [1(30)](15) + [2.5(30)](15) = 0

Ay =15k
A, =15k — Ans.
+—- X F=0
15+ 1(30) + C, =0
C.=—45k
C, =45k « Ans.
+13F =0
67.5 —2.5(60) + C, =0
C, =825k
C, =825k Ans.

Checking Computations. To check our computations, we apply the equilibrium equation Y Mp =0 for the entire
structure:

+ ¢ 3 Mp = 15(30) — 67.5(30) + [1(30)](15) + [2.5(60)](0)
— 45(30) + 82.5(30)
=0 Checks
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Example 39 P2 INEAR

Determine the reactions at the supports for the beam shown in Fig. 3.25(a).

80 k 3 K/ft
N EEEEREE
.LFT\ Hinges\ o o
1/ . 150 ft—t— .125ftJ
75 ft 50 t75 ft 75 ft
(a)
80 k 3 k/ft y
ta bs [TTL1TT,
Ay ‘ TB,V ‘ 1Ey TFy
!/./!\.150ft.\!125ﬂ *
75 ft 50 ft 75 ft 75 ft
(b)
3 k/ft
“ye of >
C)’ D)’
Dy
gok & 3 K/t
iA ‘ B ‘4— - F
cC. DD E
AyT \ TBy ‘ * * TEY TFy
!/ .,! 150 ft—— !125&
75 ft 50 ft 75 ft 75 ft
FIG. 3.25 &)
Solution

Free-Body Diagram. The free-body diagram of the entire structure is shown in Fig. 3.25(b).

Static Determinacy. The beam is internally unstable, with » = 5 and e, = 2. Since r = 3 + ¢, the structure is statically
determinate.

Support Reactions. Using the free-body diagram of the entire beam shown in Fig. 3.25(b), we determine the reactions as

follows:
+—o > F.=0
A, =0 Ans.
+CEMEC =
—A4,(200) 4 80(125) — B,(75) =0
84, + 3B, =400 (1)

continued
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In order to obtain another equation containing the same two unknowns, A4, and B,, we write the second equation of
condition as

+¢Y MpP =0
— A4,(350) + 80(275) — B,(225) + [(3)(150)](75) = 0
144, + 9B, = 2230 (2)
Solving Egs. (1) and (2) simultaneously, we obtain

A,=-103k and B, =408k

A, =103k | Ans.
B, =408k | Ans.
The remaining two unknowns, E, and F), are determined from the remaining two equilibrium equations as follows:
+C(X Mp=0
103(550) + 80(475) — 408(425) + [3(350)](175) — E,(125) = 0
E, =840 k
E, =840k 1 Ans.
T1XE=0
—103 — 80 + 408 — 3(350) + 840 + F), = 0
F,=-15k
F,=15k | Ans.

Alternative Method. The reactions of the beam also can be evaluated by applying the three equations of equilibrium to
each of the three rigid portions, AC, CD, and DF, of the beam. The free-body diagrams of these rigid portions are
shown in Fig. 3.25(c). These diagrams show, in addition to the applied loads and support reactions, the internal forces
being exerted through the internal hinges at C and D.

Applying the three equations of equilibrium to the portion CD, we obtain the following:
+CXMEP =0
—[3(150)](75) + D, (150) = 0
D, =225k
+1XF® =0
C, —3(150) +225=0
C, =225k
+-XFP=0
Ci+Dy=0 (3)
Next, we consider the equilibrium of portion DF:
+o X R =0
—D,=0 or D,=0
From Eq. (3), we obtain C, =0
+CY MPEF =0
225(200) + [3(200)](100) — E,(125) =0
E, =840 k Checks

continued
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+IXF =0
—225 — 3(200) + 840 + F, = 0
Fy=-15k

Considering the equilibrium of portion AC, we write

+— L FC=0

A, —0=0
A, =0
+CYM{€=0
—80(75) + B, (125) — 225(200) = 0
B, =408 k
+ 1Y FC=0
Ay —80+408 —225=0
A, =-103 k

Checks

Checks

Checks

Checks

Example 3.10 z"'v 4 ‘-.‘ *,L\,%_{K ‘ .

P W

A gable frame is subjected to a wind loading, as shown in Fig. 3.26(a). Determine the reactions at its supports due to the

loading.

Solution
Free-Body Diagram. See Fig. 3.26(b).

Static Determinacy. The frame is internally unstable, with » = 4 and e. = 1. Since r = 3 + ¢, it is statically determinate.

Support Reactions.
+GC> Mc=0

—4,(16) — [250(12))(6) — E (50)(10)} (12 +3)
T {%(50)(10)] (8+4)— E (220)(10)} (124 3)
- E (220)(10)} (4) — [160(12)](6) = 0
A, = —3503.75 Ib
A, = 350375 Ib |

+CYMEP =0
A(18) + 3503.75(8) + [250(12)](6 + 6) + [50(10)](5) = O
Ay =—3696.11 b
Ay =3696.11 1b —

Ans.

Ans.

continued
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S0 b/t 220 Ib/ft
6 ft
= —
 ——
e —>‘
250 Ib/ft - 160 Ib/ft 121t
|
premereppe-
Fing *
f—8 ft ———8 ft —]

220 1b/ft ‘
6 ft

250 Ib/ft —] 160 1b/ft 12 ft

X —]
| ——

A C —

A * x C
WAy Cyt
F—8 ft —+——8 ft —
(b)
FIG. 3.26
+ — ZFX =0

—3696.11 + 250(12) + % (50)(10) + % (220)(10) + 160(12) + Cy = 0

C, = —2843.89 Ib
C, =2843.89 1b — Ans.

+TF,=0
—3503.75 — %(50)(10) +§(220)(10) +C =0

C, =2143.75 1b
C,=2143751b 1 Ans.

continued
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Checking Computations.
+ G > Mp = (—3696.11 — 2843.89)(18)
+ (3503.75 4 2143.75)(8) + [(250 + 160)(12)](12)
+ [(50 + 220)(10)](5)
=0 Checks

Example 3.11 /

Determine the reactions at the supports for the frame shown in Fig. 3.27(a).

3 kit
25k IR
\Hinge
20 ft
30 ft J
- AN
| 20 ft 20 ft |
@
3 kit
25k IR
B
20 ft
30 ft
cl—rn &
| &
A A, G Y
A,
20 ft 20 ft —— !

FIG. 3.27 (b)

continued



Solution

Free-Body Diagram. See Fig. 3.27(D).

Section 3.6 Principle of Superposition 85

Static Determinacy. The frame has r = 4 and e, = 1; since r = 3 + ¢, it is statically determinate.

Support Reactions.

+CZMC:0

A, (10) — 4,(40) — 25(20) + 3(40)(20) = 0

Ay —44, = —190 (1)
+CYXMP=0

A,(30) — 4,(20) + 3(20)(10) = 0

34, — 24, = —60 )
Solving Egs. (1) and (2) simultaneously, we obtain A = 14 k and 4, = 51 k
A, =14k — Ans.
A, =51k 1 Ans.
+—- X F=0
14+25+C,=0
Cy=-39k
C, =39k « Ans.
+1YF=0
51 -3(40)+ C, =0
C, =69k
C, =69 k1 Ans.
Checking Computations.
+ ¢ 3 Mp = 14(30) — 51(20) — 39(20) + 69(20) = 0 Checks

3.6 Principle of Superposition

The principle of superposition simply states that on a linear elastic struc-
ture, the combined effect of several loads acting simultaneously is equal
to the algebraic sum of the effects of each load acting individually. For
example, this principle implies, for the beam of Fig. 3.28, that the total
reactions due to the two loads acting simultaneously can be obtained by
algebraically summing, or superimposing, the reactions due to each of
the two loads acting individually.

The principle of superposition considerably simplifies the analysis
of structures subjected to different types of loads acting simultaneously
and is used extensively in structural analysis. The principle is valid for
structures that satisfy the following two conditions: (1) the deformations
of the structure must be so small that the equations of equilibrium can be
based on the undeformed geometry of the structure; and (2) the structure
must be composed of linearly elastic material; that is, the stress-strain
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Py
pr A c
—_— 7 N
xl 2 o
SR
Py
A C /
A ) _>£.‘ R D,
e -
Py P,
A=A +A 4 \ ¢ /
= e (Y >
X x1 x2 [ \ 2 -
FIG. 3.28 Principle of T ~ T
Superposition Ay= Ay +Ap C,=C,1+Cyp

relationship for the structural material must follow Hooke’s law. The
structures that satisfy these two conditions respond linearly to applied
loads and are referred to as linear elastic structures. Engineering struc-
tures are generally designed so that under service loads they undergo
small deformations with stresses within the initial linear portions of the
stress-strain curves of their materials. Thus, most common types of
structures under service loads can be classified as linear elastic; therefore,
the principle of superposition can be used in their analysis. The principle
of superposition is considered valid throughout this text.

3.7 Reactions of Simply Supported Structures Using Proportions

Consider a simply supported beam subjected to a vertical concentrated
load P, as shown in Fig. 3.29. By applying the moment equilibrium
equations, Y. Mg =0and > M4 = 0, we obtain the expressions for the
vertical reactions at supports 4 and B, respectively, as

Ay=P<§> and @:P(%) (3.13)

where, as shown in Fig. 3.29, a = distance of the load P from support A
(measured positive to the right); » = distance of P from support B (meas-
ured positive to the left); and S = distance between supports 4 and B.



FIG. 3.29
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e

1T o

¥ B

| S

The first of the two expressions in Eq. (3.13) indicates that the mag-
nitude of the vertical reaction at 4 is equal to the magnitude of the load P
times the ratio of the distance of P from support B to the distance be-
tween the supports 4 and B. Similarly, the second expression in Eq. (3.13)
states that the magnitude of the vertical reaction at B is equal to the
magnitude of P times the ratio of the distance of P from A to the distance
between A and B. These expressions involving proportions, when used in
conjunction with the principle of superposition, make it very convenient
to determine reactions of simply supported structures subjected to series
of concentrated loads, as illustrated by the following example.

Example 3.12

ANNF E N -

FIG. 3.30

)

15k 30k 30k 25k 20k 20k 10k

b 8at15ft=120ft ——————

(a)

20lft
At 1 1 s
15k 30k 30k 25k 20k 20k 10k
A)’ By
b2 gat15ft=120ft ———
(b)

continued
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Solution
Free-Body Diagram. See Fig. 3.30(b).

Static Determinacy. The truss is internally stable with » = 3. Therefore, it is statically determinate.

Support Reactions.

+> Y F=0
A, =0 Ans.
A, = 15(2) +30(§+%> +25(§) +2OG—%) + 10(_72)
=90 k
A, =90k Ans.
5,—15(2) e0(h e D) was(2) s m(33) 0 (§)
=60k
B, =60k Ans.
Checking Computations.
+ 13 F, =—15-2(30) — 25— 2(20) — 10+ 90 + 60 = 0 Checks

Summary

In this chapter, we have learned that a structure is considered to be in
equilibrium if; initially at rest, it remains at rest when subjected to a system
of forces and couples. The equations of equilibrium of space structures can
be expressed as

SSF,=0 YF=0 YFE=0 .
ZM\':O ZMJ’:O ZMZ:O ()

For plane structures, the equations of equilibrium are expressed as
SF. =0 >F,=0 S>M.=0 (3.2)

Two alternative forms of the equilibrium equations for plane structures
are given in Eqgs. (3.3) and (3.4).

The common types of supports used for plane structures are sum-
marized in Fig. 3.3. A structure is considered to be internally stable, or
rigid, if it maintains its shape and remains a rigid body when detached
from the supports.

A structure is called statically determinate externally if all of its sup-
port reactions can be determined by solving the equations of equilibrium
and condition. For a plane internally stable structure supported by r
number of reactions, if
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r <3 the structure is statically unstable externally
r =3 the structure is statically determinate externally (3.8)
r> 3 the structure is statically indeterminate externally

The degree of external indeterminacy is given by
ip=r—3 (3.7)

For a plane internally unstable structure, which has r number of
external reactions and e, number of equations of condition, if

r <3+ e, the structure is statically unstable externally
r=3+e, the structure is statically determinate externally (3.9)
r>3+e. the structure is statically indeterminate externally

The degree of external indeterminacy for such a structure is given by
ie=r—(3+e) (3.10)

In order for a plane structure to be geometrically stable, it must be
supported by reactions, all of which are neither parallel nor concurrent.
A procedure for the determination of reactions at supports for plane
structures is presented in Section 3.5.

The principle of superposition states that on a linear elastic struc-
ture, the combined effect of several loads acting simultanecously is equal
to the algebraic sum of the effects of each load acting individually. The
determination of reactions of simply supported structures using propor-
tions is discussed in Section 3.7.

PROBLEMS
Section 3.4
3.1 through 3.4 Classify each of the structures shown as ex- minate. If the structure is statically indeterminate externally,
ternally unstable, statically determinate, or statically indeter- then determine the degree of external indeterminacy.
JEON JEON JEON
@) Hinge
"\ s ! H
(b)
! ,
[ JEON JEON A A
() (@

FIG. P3.1



90 CHAPTER 3 Equilibrium and Support Reactions

Hinge Hinge Hinge Hinge
(@) (a)
Hinge Hinge Hinge
piw O o | . :
I JEONN O
(b) (b)

(©

Hinge

d
@ ()

FIG. P3.3
FIG. P3.2
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L = = > Sections 3.5 and 3.7
(a) 3.5 through 3.13 Determine the reactions at the supports for
the beam shown.
Hinge Hinge 2 K/t
EEEEEEEEEEEEEEEEEN
LA LB ‘
~—— 10 ft ! 20 ft ! 15 ft ‘
FIG. P3.5
Ly L 100 kN 20 KN/m
b
®) s EEEREEEY
L—S m 3m ! 6 m |
FIG. P3.6
25 kN/m
(©) 12m
Hinge
Hinge Hinge
Al
FIG. P3.7
(d) 1.5 k/ft
FIG. P3.4 A B
L—IO ft ! 30 ft ! 10 ft*»‘

FIG. P3.8
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70 kKN
30 kN/m
150 kN -
HEREERERE R "

' | |

! 4 m | 2m |
FIG. P3.9

AN
350k

1.5 k/ft 100 k-ft

30% A EEEREE q
¥ ~\B
7\

¥

‘~6fta‘~6ft 1 12 ft 1 10 ft—

FIG. P3.10

3 k/ft

B
AL - 44(3

10 m }

FIG. P3.13

3.14 The weight of a car, moving at a constant speed on a
beam bridge, is modeled as a single concentrated load, as
shown in Fig. P3.14. Determine the expressions for the ver-
tical reactions at the supports in terms of the position of
the car as measured by the distance x, and plot the graphs
showing the variations of these reactions as functions of x.

W=20kN

-—F

A ogd @

[ 7o)

B
AW AR

%Sm | 8 m |3m«{

FIG. P3.14

30k

FIG. P3.11

L =)
9ft— 15 ft | 6ftJ

FIG. P3.12

- 5 60 k—ft

10 ft ! 20 ft ! 10 ft ——

3.15 The weight of a 5-m-long trolley, moving at a constant
speed on a beam bridge, is modeled as a moving uniformly dis-
tributed load, as shown in Fig. P3.15. Determine the expressions
for the vertical reactions at the supports in terms of the position
of the trolley as measured by the distance x, and plot the graphs
showing the variations of these reactions as functions of x.

X *-f—S m‘—l
w =10 kN/m
41111111}\
A e B

LT 277
|
|

FIG. P3.15



3.16 through 3.42 Determine the reactions at the supports
for the structures shown.
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35 kN/m

R .

7AA Bé:

‘«710 m—»‘

1.25 k/ft

0 O A

15m
\ 4at6m=24m ‘
FIG. P3.16
FIG. P3.19
15k 20 ft
15 ft
) N ) ) B 20 ft
A
R - b
12k 24 k 24 k 24 k 24 k IR
! 6 at 20 ft = 120 ft !
FIG. P3.17
FIG. P3.20

rrrrvay

‘ 40 ft ‘
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Hinge ;
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Truss Bridges
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4

Plane and Space Trusses

4.1 Assumptions for Analysis of Trusses
4.2 Arrangement of Members of Plane Trusses—Internal Stability
4.3 Equations of Condition for Plane Trusses
4.4 Static Determinacy, Indeterminacy, and Instability of Plane Trusses
4.5 Analysis of Plane Trusses by the Method of Joints
4.6  Analysis of Plane Trusses by the Method of Sections
4.7  Analysis of Compound Trusses
4.8 Complex Trusses
4.9 Space Trusses
Summary
Problems

A truss is an assemblage of straight members connected at their ends by
flexible connections to form a rigid configuration. Because of their light
weight and high strength, trusses are widely used, and their applications
range from supporting bridges and roofs of buildings (Fig. 4.1) to being
support structures in space stations (Fig. 4.2). Modern trusses are con-
structed by connecting members, which usually consist of structural steel
or aluminum shapes or wood struts, to gusset plates by bolted or welded
connections.

As discussed in Section 1.4, if all the members of a truss and the
applied loads lie in a single plane, the truss is called a plane truss.

Plane trusses are commonly used for supporting decks of bridges
and roofs of buildings. A typical framing system for truss bridges was
described in Section 1.4 (see Fig. 1.16(a)). Figure 4.3 shows a typical
framing system for a roof supported by plane trusses. In this case, two or
more trusses are connected at their joints by beams, termed purlins, to
form a three-dimensional framework. The roof is attached to the purlins,
which transmit the roof load (weight of the roof plus any other load due
to snow, wind, etc.) as well as their own weight to the supporting trusses
at the joints. Because this applied loading acts on each truss in its own
plane, the trusses can be treated as plane trusses. Some of the common
configurations of bridge and roof trusses, many of which have been
named after their original designers, are shown in Figs. 4.4 and 4.5 (see
pp. 100 and 101), respectively.

Although a great majority of trusses can be analyzed as plane trusses,
there are some truss systems, such as transmission towers and latticed

97
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FIG. 4.1 Roof Trusses. Plum High
School. Large Bow Truss and
Supporting Truss for Gymnasium
Camber Corporation. Web address: http://
www.cambergroup.com/g87.htm

FIG. 4.2 A Segment of the Integrated
Truss Structure which forms the
Backbone of the International Space
Station

Courtesy of National Aeronautics and Space Administration
98_05164

domes (Fig. 4.6), that cannot be treated as plane trusses because of their
shape, arrangement of members, or applied loading. Such trusses, which
are called space trusses, are analyzed as three-dimensional bodies sub-
jected to three-dimensional force systems.

The objective of this chapter is to develop the analysis of member
forces of statically determinate plane and space trusses. We begin by dis-
cussing the basic assumptions underlying the analysis presented in this
chapter, and then we consider the number and arrangement of members
needed to form internally stable or rigid plane trusses. As part of this
discussion, we define simple and compound trusses. We also present the
equations of condition commonly encountered in plane trusses. We next
establish the classification of plane trusses as statically determinate,
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FIG. 4.3 Framing of a Roof Supported by Trusses

indeterminate, and unstable and present the procedures for the analysis
of simple plane trusses by the methods of joints and sections. We con-
clude with an analysis of compound plane trusses, a brief discussion of
complex trusses, and analysis of space trusses.

4.1 Assumptions for Analysis of Trusses

The analysis of trusses is usually based on the following simplifying
assumptions:

1. All members are connected only at their ends by frictionless

hinges in plane trusses and by frictionless ball-and-socket joints

in space trusses.

All loads and support reactions are applied only at the joints.

3. The centroidal axis of each member coincides with the line con-
necting the centers of the adjacent joints.

N

The reason for making these assumptions is to obtain an ideal truss,
whose members are subjected only to axial forces. Since each member of
an ideal truss is connected at its ends by frictionless hinges (assumption 1)
with no loads applied between its ends (assumption 2), the member would
be subjected to only two forces at its ends, as shown in Fig. 4.7(a). Since
the member is in equilibrium, the resultant force and the resultant couple
of the two forces F; and Fz must be zero; that is, the forces must satisfy
the three equations of equilibrium. From Fig. 4.7(a), we can see that in
order for the resultant force of the two forces to be zero (3 Fy = 0 and
> F, =0), the two forces must be equal in magnitude but with opposite
senses. For their resultant couple to be also equal to zero (> M = 0),
the two forces must be collinear—that is, they must have the same line of
action. Moreover, since the centroidal axis of each truss member is a
straight line coinciding with the line connecting the centers of the adja-
cent joints (assumption 3), the member is not subjected to any bending
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Pratt truss Fink truss

FIG. 45 Common Roof Trusses

FIG. 4.6 Geodesic Dome Climatron at
Missouri Botanical Garden, St. Louis,
Missouri

Courtesy Missouri Botanical Garden

moment or shear force and is either in axial tension (being elongated, as
shown in Fig. 4.7(b)) or in axial compression (being shortened, as shown
in Fig. 4.7(c)). Such member axial forces determined from the analysis of
an ideal truss are called the primary forces.

In real trusses, these idealizations are almost never completely realized.
As stated previously, real trusses are constructed by connecting members to
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FIG. 4.7

FIG. 4.8 Gusset Plate Connection
Michael Goff

F, T C

(a) (b) Axial Tension (c) Axial Compression

gusset plates by welded or bolted connections (Fig. 4.8). Some members of
the truss may even be continuous at the joints. Furthermore, although the
external loads are indeed transmitted to the trusses at joints by means of
floor beams, purlins, and so on, the dead weights of the members are dis-
tributed along their lengths. The bending moments and shear and axial
forces caused by these and other deviations from the aforementioned ide-
alized conditions are commonly referred to as secondary forces. Although
secondary forces cannot be eliminated, they can be substantially reduced in
most trusses by using relatively slender members and by designing con-
nections so that the centroidal axes of the members meeting at a joint are
concurrent at a point (as shown in Fig. 1.16). The secondary forces in such
trusses are small compared to the primary forces and are usually not
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considered in their designs. In this chapter, we focus only on primary
forces. If large secondary forces are anticipated, the truss should be ana-
lyzed as a rigid frame using the methods presented in subsequent chapters.

4.2 Arrangement of Members of Plane Trusses—Internal Stability

FIG. 4.9

Based on our discussion in Section 3.4, we can define a plane truss as
internally stable if the number and geometric arrangement of its mem-
bers is such that the truss does not change its shape and remains a rigid
body when detached from the supports. The term internal is used here to
refer to the number and arrangement of members contained within the
truss. The instability due to insufficient external supports or due to im-
proper arrangement of external supports is referred to as external.

Basic Truss Element

The simplest internally stable (or rigid) plane truss can be formed by
connecting three members at their ends by hinges to form a triangle, as
shown in Fig. 4.9(a). This triangular truss is called the basic truss ele-
ment. Note that this triangular truss is internally stable in the sense that
it is a rigid body that will not change its shape under loads. In contrast, a
rectangular truss formed by connecting four members at their ends by
hinges, as shown in Fig. 4.9(b), is internally unstable because it will
change its shape and collapse when subjected to a general system of co-
planar forces.

Simple Trusses

The basic truss element ABC of Fig. 4.10(a) can be enlarged by attach-
ing two new members, BD and CD, to two of the existing joints B and C
and by connecting them to form a new joint D, as shown in Fig. 4.10(b).
As long as the new joint D does not lie on the straight line passing
through the existing joints B and C, the new enlarged truss will be in-
ternally stable. The truss can be further enlarged by repeating the same
procedure (as shown in Fig. 4.10(c)) as many times as desired. Trusses
constructed by this procedure are called simple trusses. The reader should
examine the trusses depicted in Figs. 4.4 and 4.5 to verify that each of

(a) (b)



104 CHAPTER 4 Plane and Space Trusses

A

(a)

_——— New member C D
__--3') D (New joint) N
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A B “————— New member

(b) (c)

FIG. 410 Simple Truss

them, with the exception of the Baltimore truss (Fig. 4.4) and the Fink
truss (Fig. 4.5), is a simple truss. The basic truss element of the simple
trusses is identified as ABC in these figures.

A simple truss is formed by enlarging the basic truss element, which
contains three members and three joints, by adding two additional mem-
bers for each additional joint, so the total number of members m in a
simple truss is given by

m=3+2(-3)=2-3 (4.1)

in which j = total number of joints (including those attached to the
supports).

Compound Trusses

Compound trusses are constructed by connecting two or more simple
trusses to form a single rigid body. To prevent any relative movement
between the simple trusses, each truss must be connected to the other(s)
by means of connections capable of transmitting at least three force
components, all of which are neither parallel nor concurrent. Two ex-
amples of connection arrangements used to form compound trusses are
shown in Fig. 4.11. In Fig. 4.11(a), two simple trusses ABC and DEF are
connected by three members, BD, CD, and BF, which are nonparallel
and nonconcurrent. Another type of connection arrangement is shown in

(b)

FIG. 411 Compound Trusses
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Fig. 4.11(b). This involves connecting the two simple trusses ABC and
DEF by a common joint C and a member BD. In order for the com-
pound truss to be internally stable, the common joint C and joints B and
D must not lie on a straight line. The relationship between the total
number of members m and the total number of joints j for an internally
stable compound truss remains the same as for the simple trusses. This
relationship, which is given by Eq. (4.1), can be easily verified for the
compound trusses shown in Fig. 4.11.

Internal Stability

Equation (4.1) expresses the requirement of the minimum number of
members that a plane truss of j joints must contain if it is to be internally
stable. If a plane truss contains 2 members and ; joints, then if

m < 2j —3 the truss is internally unstable (42)
m >2j —3 the truss is internally stable '

It is very important to realize that although the foregoing criterion for
internal stability is necessary, it is not sufficient to ensure internal stability.
A truss must not only contain enough members to satisfy the m > 2j — 3
condition, but the members must also be properly arranged to ensure ri-
gidity of the entire truss. Recall from our discussion of simple and com-
pound trusses that in a stable truss, each joint is connected to the rest of
the structure by at least two nonparallel members, and each portion of the
truss must be connected to the remainder of the truss by connections ca-
pable of transmitting at least three nonparallel and nonconcurrent force
components.

Example 4.1 48 NE \?"\T\ \ \\l A l

Classify each of the plane trusses shown in Fig. 4.12 as internally stable or unstable.

Solution

(a) The truss shown in Fig. 4.12(a) contains 20 members and 12 joints. Therefore, m = 20 and 2j — 3 = 2(12) — 3 = 21.
Since m is less than 2j — 3, this truss does not have a sufficient number of members to form a rigid body; therefore, it is in-
ternally unstable. A careful look at the truss shows that it contains two rigid bodies, ABCD and EFGH, connected by two
parallel members, BE and DG. These two horizontal members cannot prevent the relative displacement in the vertical direc-
tion of one rigid part of the truss with respect to the other. Ans.

(b) The truss shown in Fig. 4.12(b) is the same as that of Fig. 4.12(a), except that a diagonal member DE has now
been added to prevent the relative displacement between the two portions ABCD and EFGH. The entire truss now acts
as a single rigid body. Addition of member DE increases the number of members to 21 (while the number of joints re-
mains the same at 12), thereby satisfying the equation m = 2j — 3. The truss is now internally stable. Ans.

(¢) Four more diagonals are added to the truss of Fig. 4.12(b) to obtain the truss shown in Fig. 4.12(c), thereby
increasing m to 25, while j remains constant at 12. Because m > 2j — 3, the truss is internally stable. Also, since the
difference m — (2j — 3) = 4, the truss contains four more members than required for internal stability. Ans.

continued
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FIG. 4.12

(d) The truss shown in Fig. 4.12(d) is obtained from that of Fig. 4.12(c) by removing two diagonals, BG and DE,
from panel BE, thereby decreasing m to 23; j remains constant at 12. Although m — (2j — 3) = 2—that is, the truss con-
tains two more members than the minimum required for internal stability—its two rigid portions, ABCD and EFGH, are
not connected properly to form a single rigid body. Therefore, the truss is internally unstable. Ans.

(e) The roof truss shown in Fig. 4.12(e) is internally unstable because m =26 and j = 15, thereby yielding
m < 2j — 3. This is also clear from the diagram of the truss which shows that the portions ABE and CDE of the truss
can rotate with respect to each other. The difference m — (2j — 3) = —1 indicates that this truss has one less member
than required for internal stability. Ans.

(f) In Fig. 4.12(f), a member BC has been added to the truss of Fig. 4.12(e), which prevents the relative movement
of the two portions ABE and CDE, thereby making the truss internally stable. As m has now been increased to 27, it
satisfies the equation m = 2j — 3 for j = 15. Ans.

(g) The tower truss shown in Fig. 4.12(g) has 16 members and 10 joints. Because m < 2j — 3, the truss is internally
unstable. This is also obvious from Fig. 4.12(g), which shows that member BC can rotate with respect to the rest of the

continued
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structure. This rotation can occur because joint C is connected by only one member instead of the two re-
quired to completely constrain a joint of a plane truss. Ans.

(h) In Fig. 4.12(h), a member 4 C has been added to the truss of Fig. 4.12(g), which makes it internally stable. Here
m = 17 and j = 10, so the equation m = 2j — 3 is satisfied. Ans.

4.3 Equations of Condition for Plane Trusses

In Section 3.4, we indicated that the types of connections used to con-
nect rigid portions of internally unstable structures provide equations of
condition that, along with the three equilibrium equations, can be used
to determine the reactions needed to constrain such structures fully.

Three types of connection arrangements commonly used to connect
two rigid trusses to form a single (internally unstable) truss are shown in
Fig. 4.13. In Fig. 4.13(a), two rigid trusses, 4B and BC, are connected
together by an internal hinge at B. Because an internal hinge cannot
transmit moment, it provides an equation of condition:

SMHE=0 or S MF=0

Another type of connection arrangement is shown in Fig. 4.13(b). This in-
volves connecting two rigid trusses, 4B and CD, by two parallel mem-
bers. Since these parallel (horizontal) bars cannot transmit force in the
direction perpendicular to them, this type of connection provides an equa-
tion of condition:

AB _ €D _
Y FE7 =0 or Y F7=0

A third type of connection arrangement involves connecting two rigid
trusses, AB and CD, by a single link, BC, as shown in Fig. 4.13(c). Since
a link can neither transmit moment nor force in the direction perpen-
dicular to it, it provides two equations of condition:

SFEMP=0 or YFP=0
and
SM8=0 or SMEP =0

As we indicated in the previous chapter, these equations of condition
can be used with the three equilibrium equations to determine the un-
known reactions of externally statically determinate plane trusses. The
reader should verify that all three trusses shown in Fig. 4.13 are statically
determinate externally.

4.4 Static Determinacy, Indeterminacy, and Instability of Plane Trusses

We consider a truss to be statically determinate if the forces in all its
members, as well as all the external reactions, can be determined by using
the equations of equilibrium. This characterization of static determinacy,
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FIG. 4.13 Equations of Condition for
Plane Trusses

One equation of condition:
IMP=0 or TME=0

(a)

One equation of condition:
LF¥ =0 o :FP=0

x (b)

Two equations of condition:
EF¥=0 or ZFP=0

M4 =0 or zmﬁ”:o

(c)

encompassing both the external support reactions and the internal member
forces, is also referred to as the combined static determinacy, as compared
to the concept of external static determinacy (involving only external re-
actions) used previously in Chapter 3. Recall that, in the previous chapter,
we were interested in computing external support reactions only; whereas,
in the present chapter, our objective is to determine both the member forces
and the external reactions.

Since the two methods of analysis presented in the following sections
can be used to analyze only statically determinate trusses, it is important
for the student to be able to recognize statically determinate trusses be-
fore proceeding with the analysis.

Consider a plane truss subjected to external loads Py, P,, and Pj3, as
shown in Fig. 4.14(a). The free-body diagrams of the five members and
the four joints are shown in Fig. 4.14(b). Each member is subjected to
two axial forces at its ends, which are collinear (with the member cen-
troidal axis) and equal in magnitude but opposite in sense. Note that in
Fig. 4.14(b), all members are assumed to be in tension; that is, the forces
are pulling on the members. The free-body diagrams of the joints show
the same member forces but in opposite directions, in accordance with
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Newton’s third law. The analysis of the truss involves the calculation of
the magnitudes of the five member forces, Fyp, Fyc, Fpc, Fpp, and Fcp
(the lines of action of these forces are known), and the three reactions,
Ay, Ay, and B,. Therefore, the total number of unknown quantities to be
determined is eight.

Because the entire truss is in equilibrium, each of its joints must also
be in equilibrium. As shown in Fig. 4.14(b), at each joint the internal and
external forces form a coplanar and concurrent force system, which must
satisfy the two equations of equilibrium, > F, =0 and > F, = 0. Since
the truss contains four joints, the total number of equations available is
2(4) = 8. These eight joint equilibrium equations can be solved to calcu-
late the eight unknowns. The plane truss of Fig. 4.14(a) is, therefore, stat-
ically determinate.

Three equations of equilibrium of the entire truss as a rigid body
could be written and solved for the three unknown reactions (A4, 4,, and
B,). However, these equilibrium equations (as well as the equations of
condition in the case of internally unstable trusses) are not independent
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from the joint equilibrium equations and do not contain any additional
information.

Based on the preceding discussion, we can develop the criteria for the
static determinacy, indeterminacy, and instability of general plane trusses
containing m members and ; joints and supported by r (number of) ex-
ternal reactions. For the analysis, we need to determine m member forces
and r external reactions; that is, we need to calculate a total of m + r un-
known quantities. Since there are j joints and we can write two equations
of equilibrium (>~ Fy = 0 and Y F, = 0) for each joint, the total number
of equilibrium equations available is 2j. If the number of unknowns
(m + r) for a truss is equal to the number of equilibrium equations (2/)—
that is, m + r = 2j—all the unknowns can be determined by solving the
equations of equilibrium, and the truss is statically determinate.

If a truss has more unknowns (m + r) than the available equilibrium
equations (2/)—that is, m + r > 2j—all the unknowns cannot be deter-
mined by solving the available equations of equilibrium. Such a truss is
called statically indeterminate. Statically indeterminate trusses have more
members and/or external reactions than the minimum required for sta-
bility. The excess members and reactions are called redundants, and the
number of excess members and reactions is referred to as the degree of
static indeterminacy, i, which can be expressed as

i=m+r)=2j (4.3)

If the number of unknowns (m + r) for a truss is less than the num-
ber of equations of joint equilibrium (2j)—that is, m + r < 2j—the truss
is called statically unstable. The static instability may be due to the truss
having fewer members than the minimum required for internal stability
or due to an insufficient number of external reactions or both.

The conditions of static instability, determinacy, and indeterminacy
of plane trusses can be summarized as follows:

m+r < 2j statically unstable truss
m+r =2j statically determinate truss (4.4)
m~+r>2j statically indeterminate truss

The first condition, for the static instability of trusses, is both necessary
and sufficient in the sense that if m < 2j — r, the truss is definitely statically
unstable. However, the remaining two conditions, for static determinacy
(m = 2j —r) and indeterminacy (m > 2j — r), are necessary but not suffi-
cient conditions. In other words, these two equations simply tell us that
the number of members and reactions is sufficient for stability. They do
not provide any information regarding their arrangement. A truss may
have a sufficient number of members and external reactions but may still
be unstable due to improper arrangement of members and/or external
supports.

We emphasize that in order for the criteria for static determinacy
and indeterminacy, as given by Egs. (4.3) and (4.4), to be valid, the truss
must be stable and act as a single rigid body under a general system of
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coplanar loads when attached to the supports. Internally stable trusses
must be supported by at least three reactions, all of which must be nei-
ther parallel nor concurrent. If a truss is internally unstable, then it must
be supported by reactions equal in number to at least three plus the
number of equations of condition (3 + ¢.), and all the reactions must be
neither parallel nor concurrent. In addition, each joint, member, and
portion of the truss must be constrained against all possible rigid body
movements in the plane of the truss, either by the rest of the truss or by
external supports. If a truss contains a sufficient number of members,
but they are not properly arranged, the truss is said to have critical form.
For some trusses, it may not be obvious from the drawings whether or
not their members are arranged properly. However, if the member ar-
rangement is improper, it will become evident during the analysis of the
truss. The analysis of such unstable trusses will always lead to incon-
sistent, indeterminate, or infinite results.

Example 4.2 ANN"a N W

Classify each of the plane trusses shown in Fig. 4.15 as unstable, statically determinate, or statically indeterminate. If
the truss is statically indeterminate, then determine the degree of static indeterminacy.

Solution

(a) The truss shown in Fig. 4.15(a) contains 17 members and 10 joints and is supported by 3 reactions. Thus,
m + r = 2j. Since the three reactions are neither parallel nor concurrent and the members of the truss are properly ar-
ranged, it is statically determinate. Ans.

(b) For this truss, m = 17, j = 10, and r = 2. Because m + r < 2j, the truss is unstable. Ans.

(¢) For this truss, m = 21, j = 10, and r = 3. Because m + r > 2j, the truss is statically indeterminate, with the de-
gree of static indeterminacy i = (m + r) — 2j = 4. It should be obvious from Fig. 4.15(c) that the truss contains four
more members than required for stability. Ans.

(d) This truss has m = 16, j = 10, and r = 3. The truss is unstable, since m + r < 2;. Ans.

(e) This truss is composed of two rigid portions, 4B and BC, connected by an internal hinge at B. The truss has
m =26, j =15, and r = 4. Thus, m + r = 2j. The four reactions are neither parallel nor concurrent and the entire truss
is properly constrained, so the truss is statically determinate. Ans.

(f) For this truss, m = 10, j = 7, and r = 3. Because m + r < 2j, the truss is unstable. Ans.

(2) In Fig. 4.15(g), a member BC has been added to the truss of Fig. 4.15(f), which prevents the relative rotation of
the two portions ABE and CDE. Since m has now been increased to 11, with j and r kept constant at 7 and 3, re-
spectively, the equation m + r = 2j is satisfied. Thus, the truss of Fig. 4.15(g) is statically determinate. Ans.

(h) The truss of Fig. 4.15(f) is stabilized by replacing the roller support at D by a hinged support, as shown in
Fig. 4.15(h). Thus, the number of reactions has been increased to 4, but m and j remain constant at 10 and 7, respectively.
With m + r = 2j, the truss is now statically determinate. Ans.

(i) For the tower truss shown in Fig. 4.15(i), m = 16, j = 10, and r = 4. Because m + r = 2j, the truss is statically
determinate. Ans.

continued
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m=17 j=10 r=3 m=17 j=10 r=2 m=21 j=10 r=3
m+r=2f m+r<2j m+r>2j
(a) Statically Determinate (b) Unstable (c) Statically Indeterminate (i = 4)

m+r<2j

(d) Unstable

m=10 j=7 r=3 m=11 j=7 r=3
m+r<2j m+r=2j
(f) Unstable (g) Statically Determinate

m=10 j=7 r=4
m+r=2j

(h) Statically Determinate

m=19 j=12 r=5
m+r=2j

(k) Statically Determinate
FIG. 4.15

continued
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(j) This truss has m = 13, j =8, and r = 3. Although m + r = 2j, the truss is unstable, because it contains two
rigid portions ABCD and EFGH connected by three parallel members, BF, CE, and DH, which cannot prevent the
relative displacement, in the vertical direction, of one rigid part of the truss with respect to the other. Ans.

(k) For the truss shown in Fig. 4.15(k), m =19, j =12, and r = 5. Because m + r = 2j, the truss is statically
determinate. Ans.

4.5 Analysis of Plane Trusses by the Method of Joints

In the method of joints, the axial forces in the members of a statically de-
terminate truss are determined by considering the equilibrium of its joints.
Since the entire truss is in equilibrium, each of its joints must also be in
equilibrium. At each joint of the truss, the member forces and any ap-
plied loads and reactions form a coplanar concurrent force system (see
Fig. 4.14), which must satisfy two equilibrium equations, > F, = 0 and
> F, =0, in order for the joint to be in equilibrium. These two equili-
brium equations must be satisfied at each joint of the truss. There are
only two equations of equilibrium at a joint, so they cannot be used to
determine more than two unknown forces.

The method of joints consists of selecting a joint with no more than
two unknown forces (which must not be collinear) acting on it and ap-
plying the two equilibrium equations to determine the unknown forces.
The procedure may be repeated until all the desired forces have been ob-
tained. As we discussed in the preceding section, all the unknown mem-
ber forces and the reactions can be determined from the joint equilibrium
equations, but in many trusses it may not be possible to find a joint with
two or fewer unknowns to start the analysis unless the reactions are
known beforehand. In such cases, the reactions are computed by using
the equations of equilibrium and condition (if any) for the entire truss
before proceeding with the method of joints to determine member forces.

To illustrate the analysis by this method, consider the truss shown in
Fig. 4.16(a). The truss contains five members, four joints, and three re-
actions. Since m + r = 2j, the truss is statically determinate. The free-body
diagrams of all the members and the joints are given in Fig. 4.16(b). Be-
cause the member forces are not yet known, the sense of axial forces (ten-
sion or compression) in the members has been arbitrarily assumed. As
shown in Fig. 4.16(b), members AB, BC, and AD are assumed to be in
tension, with axial forces tending to elongate the members, whereas mem-
bers BD and CD are assumed to be in compression, with axial forces
tending to shorten them. The free-body diagrams of the joints show the
member forces in directions opposite to their directions on the member
ends in accordance with Newton’s law of action and reaction. Focusing
our attention on the free-body diagram of joint C, we observe that the
tensile force Fpc is pulling away on the joint, whereas the compressive force
Fep is pushing toward the joint. This effect of members in tension pulling
on the joints and members in compression pushing into the joints can be
seen on the free-body diagrams of all the joints shown in Fig. 4.16(b). The
free-body diagrams of members are usually omitted in the analysis and
only those of joints are drawn, so it is important to understand that a ten-
sile member axial force is always indicated on the joint by an arrow pulling
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away on the joint, and a compressive member axial force is always indicated
by an arrow pushing toward the joint.

The analysis of the truss by the method of joints is started by select-
ing a joint that has two or fewer unknown forces (which must not be
collinear) acting on it. An examination of the free-body diagrams of
the joints in Fig. 4.16(b) indicates that none of the joints satisfies this re-
quirement. We therefore compute reactions by applying the three equili-
brium equations to the free body of the entire truss shown in Fig. 4.16(c),
as follows:

+ S F =0 A —28=0 A, =28k —
G Me=0  —A4,(35) +28(20) +42(15) =0 A, =34k1
+15F,=0 34-42+C,=0 C,=8k]

Having determined the reactions, we can now begin computing
member forces either at joint 4, which now has two unknown forces, F;p
and Fyp, or at joint C, which also has two unknowns, Fgc and F¢p. Let
us start with joint 4. The free-body diagram of this joint is shown in
Fig. 4.16(d). Although we could use the sines and cosines of the angles of
inclination of inclined members in writing the joint equilibrium equations,
it is usually more convenient to use the slopes of the inclined members
instead. The slope of an inclined member is simply the ratio of the vertical
projection of the length of the member to the horizontal projection of its
length. For example, from Fig. 4.16(a), we can see that member CD of
the truss under consideration rises 20 ft in the vertical direction over a
horizontal distance of 15 ft. Therefore, the slope of this member is 20:15,
or 4:3. Similarly, we can see that the slope of member AD is 1:1. The
slopes of inclined members thus determined from the dimensions of the
truss are usually depicted on the diagram of the truss by means of small
right-angled triangles drawn on the inclined members, as shown in
Fig. 4.16(a).

Refocusing our attention on the free-body diagram of joint 4 in
Fig. 4.16(d), we determine the unknowns F;p and E;p by applying the
two equilibrium equations:

1
+ F,=0 344+ —F;p=0 Fip = —48.08 k
TYF 75 fap UD
— 48.08 k (C)
1
F Y F =0 28— —(48.08)+ Fiy=0  Fip— 46k
V2
— 6k (T)

Note that the equilibrium equations were applied in such an order so that
each equation contains only one unknown. The negative answer for F;p
indicates that the member AD is in compression instead of in tension, as
initially assumed, whereas the positive answer for Fp indicates that the
assumed sense of axial force (tension) in member 4B was correct.
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Next, we draw the free-body diagram of joint B, as shown in
Fig. 4.16(e), and determine Fgc and Fpp as follows:

+—>2Fx20 —6+ Fpc=0 Fgc =+6k, or FBC:6k(T)
+TZF}':0 —Fpp =0 Fpp =0

Applying the equilibrium equation ) Fy = 0 to the free-body dia-
gram of joint C (Fig. 4.16(f)), we obtain

3
+—-> F.=0 76+§FCD:0 Fep=+10k, or
Fep =10k (C)
We have determined all the member forces, so the three remaining
equilibrium equations, )~ F, = 0 atjoint Cand ) Fy =0and ) F, =0

at joint D, can be used to check our calculations. Thus, at joint C,

4
+TZF=8—§(10):0 Checks

and at joint D (Fig. 4.16(g)),

1 3
F,=—28 +—(48.08) —Z(10) =0
+— S F, +ﬁ( ) 5( ) Checks
+1X2F —L(4808)—42+ﬂ(10)—0 Checks
)’_\/E . 5 -

In the preceding paragraphs, the analysis of a truss has been carried
out by drawing a free-body diagram and writing the two equilibrium
equations for each of its joints. However, the analysis of trusses can be
considerably expedited if we can determine some (preferably all) of the
member forces by inspection—that is, without drawing the joint free-body
diagrams and writing the equations of equilibrium. This approach can be
conveniently used for the joints at which at least one of the two unknown
forces is acting in the horizontal or vertical direction. When both of the
unknown forces at a joint have inclined directions, it usually becomes
necessary to draw the free-body diagram of the joint and determine the
unknowns by solving the equilibrium equations simultaneously. To illus-
trate this procedure, consider again the truss of Fig. 4.16(a). The free-body
diagram of the entire truss is shown in Fig. 4.16(c), which also shows the
support reactions computed previously. Focusing our attention on joint 4
in this figure, we observe that in order to satisfy the equilibrium equation
> F, =0 at joint A4, the vertical component of F;p must push downward
into the joint with a magnitude of 34 k to balance the vertically upward
reaction of 34 k. The fact that member AD is in compression is indicated
on the diagram of the truss by drawing arrows near joints 4 and D push-
ing into the joints, as shown in Fig. 4.16(c). Because the magnitude of the
vertical component of F4p has been found to be 34 k and since the slope
of member 4D is 1:1, the magnitude of the horizontal component of F;p
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must also be 34 k; therefore, the magnitude of the resultant force Fyp is
FEip = /(34)2 + (34)2 = 48.08 k. The components of Fyp, as well as Fyp
itself are shown on the corresponding sides of a right-angled triangle
drawn on member AD, as shown in Fig. 4.16(c). With the horizontal
component of F;p now known, we observe (from Fig. 4.16(c)) that in or-
der to satisfy the equilibrium equation Y F, = 0 at joint A4, the force in
member AB (F;z) must pull to the right on the joint with a magnitude of
6 k to balance the horizontal component of Fyp of 34 k acting to the left
and the horizontal reaction of 28 k acting to the right. The magnitude of
Fyp is now written on member AB, and the arrows, pulling away on the
joints, are drawn near joints A and B to indicate that member AB is in
tension.

Next, we focus our attention on joint B of the truss. It should be ob-
vious from Fig. 4.16(c) that in order to satisfy > F), = 0 at B, the force in
member BD must be zero. To satisty > F, = 0, the force in member BC
must have a magnitude of 6 k, and it must pull to the right on joint B, in-
dicating tension in member BC. This latest information is recorded in the
diagram of the truss in Fig. 4.16(c). Considering now the equilibrium of
joint C, we can see from the figure that in order to satisfy > F), = 0, the
vertical component of Fcp must push downward into the joint with a
magnitude of 8 k to balance the vertically upward reaction of 8 k. Thus,
member CD is in compression. Since the magnitude of the vertical compo-
nent of Fcp is 8 k and since the slope of member CD is 4:3, the magnitude
of the horizontal component of F¢p is equal to (3/4)(8) = 6 k; therefore,
the magnitude of Fcp itself is f,, = (6)2 + (8)2 = 10 k. Having de-
termined all the member forces, we check our computations by applying
the equilibrium equations Y Fy =0 at joint C and > Fy=0 and
> F, =0 at joint D. The horizontal and vertical components of the mem-
ber forces are already available in Fig. 4.16(c), so we can easily check by
inspection to find that these equations of equilibrium are indeed satisfied.
We must recognize that all the arrows shown on the diagram of the truss in
Fig. 4.16(c) indicate forces acting at the joints (not at the ends of the
members).

Identification of Zero-Force Members

Because trusses are usually designed to support several different loading
conditions, it is not uncommon to find members with zero forces in them
when a truss is being analyzed for a particular loading condition. Zero-
force members are also added to trusses to brace compression mem-
bers against buckling and slender tension members against vibrating. The
analysis of trusses can be expedited if we can identify the zero-force mem-
bers by inspection. Two common types of member arrangements that re-
sult in zero-force members are the following:

1. If only two noncollinear members are connected to a joint that
has no external loads or reactions applied to it, then the force in
both members is zero.

2. If three members, two of which are collinear, are connected to a
joint that has no external loads or reactions applied to it, then
the force in the member that is not collinear is zero.
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FIG. 417

(b)

The first type of arrangement is shown in Fig. 4.17(a). It consists of
two noncollinear members AB and 4C connected to a joint 4. Note that
no external loads or reactions are applied to the joint. From this figure we
can see that in order to satisfy the equilibrium equation )  F, = 0, the y
component of Fyg must be zero; therefore, F;p = 0. Because the x com-
ponent of Eyp is zero, the second equilibrium equation, ) Fy = 0, can be
satisfied only if F;¢ is also zero.

The second type of arrangement is shown in Fig. 4.17(b), and it con-
sists of three members, AB, AC, and AD, connected together at a joint 4.
Note that two of the three members, 4B and 4D, are collinear. We can
see from the figure that since there is no external load or reaction applied
to the joint to balance the y component of Fy¢, the equilibrium equation
> F, = 0 can be satisfied only if F;c is zero.

Example 43

-

ANES § N .

Identify all zero-force members in the Fink roof truss subjected to an unbalanced snow load, as shown in Fig. 4.18.

Solution

It can be seen from the figure that at joint B, three members, AB, BC, and BJ, are connected, of which 4B and BC are
collinear and BJ is not. Since no external loads are applied at joint B, member BJ is a zero-force member. A similar
reasoning can be used for joint D to identify member DN as a zero-force member. Next, we focus our attention on

continued
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FIG. 4.18

joint J, where four members, AJ, BJ, CJ, and JK, are connected and no external loads are applied. We have already
identified BJ as a zero-force member. Of the three remaining members, 4J and JK are collinear; therefore, CJ must be
a zero-force member. Similarly, at joint N, member CN is identified as a zero-force member; the same type of argu-
ments can be used for joint C to identify member CK as a zero-force member and for joint K to identify member KN as
a zero-force member. Finally, we consider joint N, where four members, CN, DN, EN, and KN, are connected, of
which three members, CN, DN, and KN, have already been identified as zero-force members. No external loads are
applied at joint N, so the force in the remaining member, EN, must also be zero.

Procedure for Analysis

The following step-by-step procedure can be used for the analysis of
statically determinate simple plane trusses by the method of joints.

1.

N

Check the truss for static determinacy, as discussed in the preced-

ing section. If the truss is found to be statically determinate and

stable, proceed to step 2. Otherwise, end the analysis at this stage.

(The analysis of statically indeterminate trusses is considered in

Part Three of this text.)

Identify by inspection any zero-force members of the truss.

Determine the slopes of the inclined members (except the zero-

force members) of the truss.

Draw a free-body diagram of the whole truss, showing all ex-

ternal loads and reactions. Write zeros by the members that

have been identified as zero-force members.

Examine the free-body diagram of the truss to select a joint that

has no more than two unknown forces (which must not be col-

linear) acting on it. If such a joint is found, then go directly to
the next step. Otherwise, determine reactions by applying the
three equations of equilibrium and the equations of condition

(if any) to the free body of the whole truss; then select a joint

with two or fewer unknowns, and go to the next step.

a. Draw a free-body diagram of the selected joint, showing tensile
forces by arrows pulling away from the joint and compressive
forces by arrows pushing into the joint. It is usually convenient
to assume the unknown member forces to be tensile.

b. Determine the unknown forces by applying the two equilib-
rium equations ) Fy =0 and ) F, = 0. A positive answer
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for a member force means that the member is in tension, as
initially assumed, whereas a negative answer indicates that
the member is in compression.

If at least one of the unknown forces acting at the se-
lected joint is in the horizontal or vertical direction, the
unknowns can be conveniently determined by satisfying
the two equilibrium equations by inspection of the joint on
the free-body diagram of the truss.

7. If all the desired member forces and reactions have been deter-
mined, then go to the next step. Otherwise, select another joint
with no more than two unknowns, and return to step 6.

8. If the reactions were determined in step 5 by using the equations
of equilibrium and condition of the whole truss, then apply the
remaining joint equilibrium equations that have not been uti-
lized so far to check the calculations. If the reactions were com-
puted by applying the joint equilibrium equations, then use the
equilibrium equations of the entire truss to check the calcu-
lations. If the analysis has been performed correctly, then these
extra equilibrium equations must be satisfied.

Example 4.4 /&w »-. *1"\ T'\ Hk \l A 'I

Determine the force in each member of the Warren truss shown in Fig. 4.19(a) by the method of joints.

l 24k 30k 12k ‘
l 4 at 20 ft = 80 ft | .

(a)

FIG. 4.19

Solution
Static Determinacy. The truss has 13 members and 8 joints and is supported by 3 reactions. Because m + r = 2j and the
reactions and the members of the truss are properly arranged, it is statically determinate.

continued
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Zero-Force Members. It can be seen from Fig. 4.19(a) that at joint G, three members, CG, FG, and GH, are connected,
of which FG and GH are collinear and CG is not. Since no external load is applied at joint G, member CG is a zero-
force member.

Fee =0 Ans.

From the dimensions of the truss, we find that all inclined members have slopes of 3:4, as shown in Fig. 4.19(a).
The free-body diagram of the entire truss is shown in Fig. 4.19(b). As a joint with two or fewer unknowns—which
should not be collinear—cannot be found, we calculate the support reactions. (Although joint G has only two unknown
forces, Fpg and Fgy, acting on it, these forces are collinear, so they cannot be determined from the joint equilibrium
equation, > F, =0.)

Reactions. By using proportions,

A4, =24 G) 30 G) I 12(}‘) =36
S F,=0 E,=(24+30+12)-36=30k
SSF=0 A,=0
Joint 4. Focusing our attention on joint A in Fig. 4.19(b), we observe that in order to satisfy ) F, = 0, the vertical
component of Fyr must push downward into the joint with a magnitude of 36 k to balance the upward reaction of 36 k.

The slope of member AF is 3:4, so the magnitude of the horizontal component of Fyr is (4/3)(36), or 48 k. Thus, the
force in member AF is compressive, with a magnitude of Fyr = 1/(48)2 + (36)2 = 60 k.

Eir =60k (C) Ans.

With the horizontal component of F;r now known, we can see from the figure that in order for > F, = 0 to be
satisfied, Fyp must pull to the right with a magnitude of 48 k to balance the horizontal component of Fyr of 48 k acting
to the left. Therefore, member 4B is in tension with a force of 48 k.

F;p =48 k (T) Ans.
Joint B. Next, we consider the equilibrium of joint B. Applying > F, = 0, we obtain Fpc.
Fpe =48 k (T) Ans.
From )" F, = 0, we obtain Fpp.
Fpr =24 k (T) Ans.

Joint F. This joint now has two unknowns, Fcr and Frg, so they can be determined by applying the equations of
equilibrium as follows. We can see from Fig. 4.19(b) that in order to satisfy ) F;, = 0, the vertical component of Fcy
must pull downward on joint F with a magnitude of 36 — 24 = 12 k. Using the 3:4 slope of member CF, we obtain the
magnitude of the horizontal component as (4/3)(12) = 16 k and the magnitude of Fcp itself as 20 k.

Fcr =20 k (T) Ans.

Considering the equilibrium of joint F in the horizontal direction (> Fy = 0), it should be obvious from Fig. 4.19(b)
that Fpg must push to the left on the joint with a magnitude of 48 + 16 = 64 k.

Frg =64k (C) Ans.
Joint G. Similarly, by applying > F, = 0, we obtain Fgy.
Fgy = 64 k (C) Ans.

Note that the second equilibrium equation, y F, = 0, at this joint has already been utilized in the identification of
member CG as a zero-force member.

continued
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Joint C. By considering equilibrium in the vertical direction, ) F, = 0, we observe (from Fig. 4.19(b)) that member
CH should be in tension and that the magnitude of the vertical component of its force must be equal to 30 — 12 = 18 k.
Therefore, the magnitudes of the horizontal component of Fry and of Fry itself are 24 k and 30 k, respectively, as
shown in Fig. 4.19(b).

Fey =30 k (T) Ans.

By considering equilibrium in the horizontal direction, Y F, = 0, we observe that member CD must be in tension
and that the magnitude of its force should be equal to 48 + 16 — 24 = 40 k.

Fep =40 k (T) Ans.
Joint D. By applying > F, = 0, we obtain Fpg.
Fpr =40k (T) Ans.
From ) F, = 0, we determine Fpy.
Fpy =12k (T) Ans.

Joint E. Considering the vertical components of all the forces acting at joint E, we find that in order to satisfy
> F, =0, the vertical component of Fgy must push downward into joint £ with a magnitude of 30 k to balance the
upward reaction £, = 30 k. The magnitude of the horizontal component of Fgy is equal to (4/3)(30), or 40 k. Thus,
Fgy is a compressive force with a magnitude of 50 k.

Fey =50 k (C) Ans.

Checking Computations. To check our computations, we apply the following remaining joint equilibrium equations (see
Fig. 4.19(b)). At joint E,

+ =Y F.=-40+40=0 Checks
At joint H,
+ >3 F,=64—-24—-40=0 Checks
+ 13 F,=-18—12+30=0 Checks

Example 4.5 4y x- ™ ﬁ:‘\ i \ f’/" %4\ |

Determine the force in each member of the truss shown in Fig. 4.20(a) by the method of joints.

Solution
Static Determinacy. The truss is composed of 7 members and 5 joints and is supported by 3 reactions. Thus, m + r = 2;.
Since the reactions and the members of the truss are properly arranged, it is statically determinate.

From the dimensions of the truss given in Fig. 4.20(a), we find that all inclined members have slopes of 12:5. Since
joint E has two unknown non-collinear forces, Fcg and Fpg, acting on it, we can begin the method of joints without
first calculating the support reactions.

Joint E. Focusing our attention on joint E in Fig. 4.20(b), we observe that in order to satisfy Y F = 0, the horizontal
component of Fpr must push to the left into the joint with a magnitude of 25 kN to balance the 25 kN external load
acting to the right. The slope of member DE is 12:5, so the magnitude of the vertical component of Fpr is (12/5)(25), or
60 kN. Thus, the force in member DE is compressive, with a magnitude of

Fpr = 1/(25)2 + (60)2 = 65 kN

Fpg = 65 kN (C) Ans.

continued
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30 kN 30

FIG. 4.20

With the vertical component of Fpr now known, we can see from the figure that in order for ) F;, = 0 to be sat-
isfied, Fcg must pull downward on joint E with a magnitude of 60 — 30 = 30 kN.

Fcgp =30 kN (T) Ans.
Joint C. Next, we consider the equilibrium of joint C. Applying ) F\ = 0, we obtain Fcp.
Fep =50 kN (C) Ans.
From ) F, = 0, we obtain Fjc.
FEjc =30 kN (T) Ans.

Joint D. Both of the unknown forces, Fyp and Fpp, acting at this joint have inclined directions, so we draw the free-
body diagram of this joint as shown in Fig. 4.20(c) and determine the unknowns by solving the equilibrium equations
simultaneously:

5 5 5
+ = L F=0  50+3(65) ~ 3 Eip+ 13 Fap =0
12 12 12

continued



124 CHAPTER 4 Plane and Space Trusses

Solving these equations simultaneously, we obtain
E;p =65kN and Fpp=—130 kN
E;p = 65 kN (T) Ans.
Fpp = 130 kN (C) Ans.

Joint B. (See Fig. 4.20(b).) By considering the equilibrium of joint B in the horizontal direction (> Fy = 0), we obtain
FEp.

F;3 =50 kN (T) Ans.

Having determined all the member forces, we apply the remaining equilibrium equation (Y F, = 0) at joint B to cal-
culate the support reaction B,,.

B, =120 kN | Ans.
Joint A. By applying > F, = 0, we obtain A,.
A, =75 kN «— Ans.
From ) F, = 0, we obtain 4,.
Ay, =90 kN | Ans.

Checking Computations. To check our computations, we consider the equilibrium of the entire truss. Applying the three
equilibrium equations to the free body of the entire truss shown in Fig. 4.20(b), we obtain

+ > F=25+50-75=0 Checks
+ 1> F=-30-90+120 =0 Checks
+ ¢ > Mp =30(5) — 25(12) — 50(6) +90(5) =0 Checks

s Y (]

Example 4.6 LaN\D x- ™ ﬁ:‘\ i \ f’/" %4\ |

Determine the force in each member of the three-hinged trussed arch shown in Fig. 4.21(a) by the method of joints.

Solution

Static Determinacy. The truss contains 10 members and 7 joints and is supported by 4 reactions. Since m + r = 2j and
the reactions and the members of the truss are properly arranged, it is statically determinate. Note that since m < 2j — 3,
the truss is not internally stable, and it will not remain a rigid body when it is detached from its supports. However,
when attached to the supports, the truss will maintain its shape and can be treated as a rigid body.

Zero-Force Members. It can be seen from Fig. 4.21(a) that at joint C, three members, AC, CE, and CF, are connected,
of which members AC and CF are collinear. Since joint C does not have any external load applied to it, the non-
collinear member CE is a zero-force member.

Fep =0 Ans.
Similar reasoning can be used for joint D to identify member DG as a zero-force member.

Fpg =0 Ans.

The slopes of the non-zero-force inclined members are shown in Fig. 4.21(a). The free-body diagram of the entire
truss is shown in Fig. 4.21(b). The method of joints can be started either at joint E, or at joint G, since both of these
joints have only two unknowns each.

continued
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FIG. 4.21

Joint E. Beginning with joint E, we observe from Fig. 4.21(b) that in order for Y F, = 0 to be satisfied, the force in
member EF must be compressive with a magnitude of 15 kN.

Fgr = 15 kN (C) Ans.
Similarly, from ) F}, = 0, we obtain F;z.
F;z =10 kN (C) Ans.

Joint G. By considering the equilibrium of joint G in the horizontal direction () F, = 0), we observe that the force in
member FG is zero.

Frg =0 Ans.
Similarly, by applying > F), = 0, we obtain Fpg.
Fpe =10 kN (C) Ans.

continued
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Joint F. Next, we consider joint F. Both of the unknown forces, Fcr and Fpp, acting at this joint have inclined direc-
tions, so we draw the free-body diagram of this joint as shown in Fig. 4.21(c) and determine the unknowns by solving
the equilibrium equations simultaneously:

1 4
+—>YF.=0 15— —Fcp+-Fpr =0
E \/E CF 5 DF
+ 1> F =0 20— gy —3pp—0

y = N cF —5toF =

Solving these equations, we obtain
Fpr=—-25kN and Fcrp=-7.07 kN
Fpr =25 kN (C) Ans.
Fcr =7.07 kN (C) Ans.

Joint C. (See Fig. 4.21(b).) In order for joint C to be in equilibrium, the two nonzero collinear forces acting at it must
be equal and opposite.

F;c =7.07 kN (C) Ans.
Joint D. Using a similar reasoning at joint D, we obtain Fpp.
Fpp =25 kN (C) Ans.

Joint 4. Having determined all the member forces, we apply the two equilibrium equations at joint 4 to calculate the
support reactions, 4, and A4,. By applying ) F = 0, we obtain A.

A, =5kN — Ans.
By applying } F, = 0, we find that 4, is equal to 10 + 5 = 15 kN.
A, =15kN 1T Ans.
Joint B. By applying > F, = 0, we obtain B.
B, =20 kN « Ans.
From ) F, = 0, we find that B, = 15+ 10 = 25 kN.
B, =25kN | Ans.

Equilibrium Check of Entire Truss. Finally, to check our computations, we consider the equilibrium of the entire truss.
Applying the three equations of equilibrium to the free body of the entire truss shown in Fig. 4.21(b), we have

= HA =S ERS =2 0=10 Checks
+ 1> F=15-10-20-10+25=0 Checks
+ G > Mp =5(2) — 15(16) — 15(6) + 10(16) +20(8) = 0 Checks

4.6 Analysis of Plane Trusses by the Method of Sections

The method of joints, presented in the preceding section, proves to be
very efficient when forces in all the members of a truss are to be de-
termined. However, if the forces in only certain members of a truss are
desired, the method of joints may not prove to be efficient, because it
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may involve calculation of forces in several other members of the truss
before a joint is reached that can be analyzed for a desired member
force. The method of sections enables us to determine forces in the spe-
cific members of trusses directly, without first calculating many un-
necessary member forces, as may be required by the method of joints.

The method of sections involves cutting the truss into two portions by
passing an imaginary section through the members whose forces are de-
sired. The desired member forces are then determined by considering the
equilibrium of one of the two portions of the truss. Each portion of the
truss is treated as a rigid body in equilibrium, under the action of any
applied loads and reactions and the forces in the members that have been
cut by the section. The unknown member forces are determined by ap-
plying the three equations of equilibrium to one of the two portions
of the truss. There are only three equilibrium equations available, so they
cannot be used to determine more than three unknown forces. Thus,
in general, sections should be chosen that do not pass through more than
three members with unknown forces. In some trusses, the arrangement of
members may be such that by using sections that pass through more than
three members with unknown forces, we can determine one or, at most,
two unknown forces. Such sections are, however, employed in the anal-
ysis of only certain types of trusses (see Example 4.9).

Procedure for Analysis

The following step-by-step procedure can be used for determining the mem-
ber forces of statically determinate plane trusses by the method of sections.

1. Select a section that passes through as many members as possible
whose forces are desired, but not more than three members with
unknown forces. The section should cut the truss into two parts.

2. Although either of the two portions of the truss can be used for
computing the member forces, we should select the portion that
will require the least amount of computational effort in determin-
ing the unknown forces. To avoid the necessity for the calculation
of reactions, if one of the two portions of the truss does not have
any reactions acting on it, then select this portion for the analysis
of member forces and go to the next step. If both portions of the
truss are attached to external supports, then calculate reactions by
applying the equations of equilibrium and condition (if any) to the
free body of the entire truss. Next, select the portion of the truss
for analysis of member forces that has the least number of external
loads and reactions applied to it.

3. Draw the free-body diagram of the portion of the truss selected,
showing all external loads and reactions applied to it and the
forces in the members that have been cut by the section. The un-
known member forces are usually assumed to be tensile and are,
therefore, shown on the free-body diagram by arrows pulling
away from the joints.

4. Determine the unknown forces by applying the three equations of
equilibrium. To avoid solving simultaneous equations, try to ap-
ply the equilibrium equations in such a manner that each equa-
tion involves only one unknown. This can sometimes be achieved



128 CHAPTER 4 Plane and Space Trusses

by wusing the alternative systems of equilibrium equations
(ZFII :0, ZMA :0, ZMB =0 or ZMA :0, ZMB :0,
Y>> M¢ = 0) described in Section 3.1 instead of the usual two-
force summations and a moment summation (> F, =0,
> F,=0,> M = 0) system of equations.

5. Apply an alternative equilibrium equation, which was not used to
compute member forces, to check the calculations. This alternative
equation should preferably involve all three member forces de-
termined by the analysis. If the analysis has been performed cor-
rectly, then this alternative equilibrium equation must be satisfied.

Example 47 P2 A INEAR

Determine the forces in members CD, DG, and GH of the truss shown in Fig. 4.22(a) by the method of sections.

30k 30k, 30k 15k
E l F l ¢ | |=n l I
: : :
o |
| AN
A B c ! D
-

4at16 ft=64 ft

(a)
30k 15k
H
FGH I [ y
Foo 4 5 12 ft
° |
FCD
D X
— 16ft —
b
FIG. 4.22 ®)
Solution

Section aa. As shown in Fig. 4.22(a), a section aa is passed through the three members of interest, CD, DG, and GH,
cutting the truss into two portions, ACGE and DHI. To avoid the calculation of support reactions, we will use the right-
hand portion, DHI, to calculate the member forces.

Member Forces. The free-body diagram of the portion DHI of the truss is shown in Fig. 4.22(b). All three unknown forces
Fcp, Fpg, and Fgy, are assumed to be tensile and are indicated by arrows pulling away from the corresponding joints on
the diagram. The slope of the inclined force, Fpg, is also shown on the free-body diagram. The desired member forces are
calculated by applying the equilibrium equations as follows (see Fig. 4.22(b)).

continued
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+QZMD:0 —15(16)+FGH(12):0
For =20 k (T) Ans.

+T2Fy:0 _30_15+%FDG:0
Fpg =75k (T) Ans.

4
+—>ZFX:O _20_3(75)_FCD:0

Fep = —80 k

The negative answer for Frp indicates that our initial assumption about this force being tensile was incorrect, and Fcp is
actually a compressive force.

Fep =80k (C) Ans.
Checking Computations. (See Fig. 4.22(b).)

+ G M; =30(16) — (—80)12 72(75)(12) %(75)(16) =0 Checks

Example 4.8 A2 ENE. -

Determine the forces in members CJ and IJ of the truss shown in Fig. 4.23(a) by the method of sections.

Solution
Section aa. As shown in Fig. 4.23(a), a section aa is passed through members 1/, CJ, and CD, cutting the truss into two
portions, ACI and DGJ. The left-hand portion, 4CI, will be used to analyze the member forces.

Reactions. Before proceeding with the calculation of member forces, we need to determine reactions at support 4. By
considering the equilibrium of the entire truss (Fig. 4.23(b)), we determine the reactions to be 4, =0, 4, = 50 k 1, and
G, =50k 1.

Member Forces. The free-body diagram of the portion ACI of the truss is shown in Fig. 4.23(c). The slopes of the in-
clined forces, Fj; and F¢y, are obtained from the dimensions of the truss given in Fig. 4.23(a) and are shown on the free-
body diagram. The unknown member forces are determined by applying the equations of equilibrium, as follows.

Because Fry and Fep pass through point C, by summing moments about C, we obtain an equation containing
only Fjy:

+CSMe=0  —50(40) +20(20) — \/iﬁF,,(zs) =0

Fiy=—-6597k

The negative answer for F; indicates that our initial assumption about this force being tensile was incorrect. Force Fy;
is actually a compressive force.

F;; =6597 k (C) Ans.

Next, we calculate F; by summing moments about point O, which is the point of intersection of the lines of action
of Fi; and F¢p. Because the slope of member ZJ is 1:4, the distance OC = 4(IC) = 4(25) = 100 ft (see Fig. 4.23(c)).
Equilibrium of moments about O yields

continued
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5 ft
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60 ft |— 20 ft ~} 20 ft —|
FIG. 4.23 B
a4 Mo =0 50(60) — 20(80) — 20(100) + Fcy(100) =0
C> Mo (60) (80) (100) NE cs(100)
Fcy =721k (T) Ans.

Checking Computations. To check our computations, we apply an alternative equation of equilibrium, which involves
the two member forces just determined.

1 3
F,=50—-20—-20 - ——(6597) +—(7.21) =0 Checks
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Y 1 [)

ANR% U N =,

Determine the forces in members F.J, HJ, and HK of the K truss shown in Fig. 4.24(a) by the method of sections.

L—6m——6m~ y

25 kN
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(a)
L M N
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L M N
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50 !
K
Fy Fix
Fpy Fug
(b) Section bb (c) Section aa
FIG. 4.24
Solution

From Fig. 4.24(a), we can observe that the horizontal section aa passing through the three members of interest, FJ, HJ,
and HK, also cuts an additional member FI, thereby releasing four unknowns, which cannot be determined by three
equations of equilibrium. Trusses such as the one being considered here with the members arranged in the form of the
letter K can be analyzed by a section curved around the middle joint, like section bb shown in Fig. 4.24(a). To avoid the
calculation of support reactions, we will use the upper portion IKNL of the truss above section bb for analysis. The free-
body diagram of this portion is shown in Fig. 4.24(b). It can be seen that although section bb has cut four members,
FI,1J,JK, and HK, forces in members F/ and HK can be determined by summing moments about points K and 7,

continued
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respectively, because the lines of action of three of the four unknowns pass through these points. We will, therefore, first
compute Fyg by considering section bb and then use section aa to determine Fry and Fpyy.

Section bb. Using Fig. 4.24(b), we write
FCY M =0 —25(8) — Fux(12) =0
Fux = —16.67 kN

Fpx = 16.67 kN (C) Ans.

Section aa. The free-body diagram of the portion JKNL of the truss above section aa is shown in Fig. 4.24(c). To
determine Fp;, we sum moments about F, which is the point of intersection of the lines of action of Fp; and Fgy.
Thus,

+CY Mp=0  —25(16) — 50(8) + 16.67(12) — %FH,(S) - gFH,(@ =0
Fpy = —62.5 kN
Fyy = 62.5kN (C) Ans.

By summing forces in the horizontal direction, we obtain

b =0 25+50—%Fn—§(62.5):0

Fry = 62.5 kN (T) Ans.

Checking Computations. Finally, to check our calculations, we apply an alternative equilibrium equation, which in-
volves the three member forces determined by the analysis. Using Fig. 4.24(c), we write

4
5

+ ¢ My = —25(8) — = (62.5)(6) +%(62.5)(6) +16.67(12) = 0 Checks

4.7 Analysis of Compound Trusses

Although the method of joints and the method of sections described in
the preceding sections can be used individually for the analysis of com-
pound trusses, the analysis of such trusses can sometimes be expedited
by using a combination of the two methods. For some types of com-
pound trusses, the sequential analysis of joints breaks down when a joint
with two or fewer unknown forces cannot be found. In such a case, the
method of sections is then employed to calculate some of the member
forces, thereby yielding a joint with two or fewer unknowns, from which
the method of joints may be continued. This approach is illustrated by
the following examples.
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Example 410 AN\N2

Determine the force in each member of the compound truss shown in Fig. 4.25(a).

/) (b)
i
Feg Fpe
10 —C> >
F
AC Fyp 40
G 5
25 ——d Fus 25— 25
27.95 Fro
5 5 20.62 Frg
(c) Section aa (d) )
FIG. 4.25

continued
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Solution
Static Determinacy. The truss has 11 members and 7 joints and is supported by 3 reactions. Since m + r = 2j and the
reactions and the members of the truss are properly arranged, it is statically determinate.

The slopes of the inclined members, as determined from the dimensions of the truss, are shown in Fig. 4.25(a).

Reactions. The reactions at supports 4 and B, as computed by applying the three equilibrium equations to the free-body
diagram of the entire truss (Fig. 4.25(b)), are

A;=25k— A,=5k] B,=35kt

Section aa. Since a joint with two or fewer unknown forces cannot be found to start the method of joints, we first cal-
culate Fyp by using section aa, as shown in Fig. 4.25(a).

The free-body diagram of the portion of the truss on the left side of section aa is shown in Fig. 4.25(c). We de-
termine F;p by summing moments about point G, the point of intersection of the lines of action of Frg and Fpg.

+C Mg =0 —25(32) — 5(16) + 10(16) + E;(32) =0
E;p =225k (T) Ans.

With F;z now known, the method of joints can be started either at joint 4, or at joint B, since both of these joints have
only two unknowns each. We begin with joint 4.

Joint A. The free-body diagram of joint 4 is shown in Fig. 4.25(d).

1 3
F.=0 —25+22.5+—F ~Ep=0
+ = > 3 +\/§AC+5 AD
2 4
+1X 6 =0 5+7§Ffic+g&o=0

Solving these equations simultaneously, we obtain
Fic=-2795k and E;p =25k
E;c =2795k (C) Ans.
Eip =25k (T) Ans.

Joints C and D. Focusing our attention on joints C and D in Fig. 4.25(b), and by satisfying the two equilibrium equa-
tions by inspection at each of these joints, we determine

Feg =27.95k (C) Ans.
Fep =10k (C) Ans.
Fpg = 20.62 k (T) Ans.

Joint G. Next, we consider the equilibrium of joint G (see Fig. 4.25(¢)).

1 1 1 1
+ F.=0 S5+—=(27.95) — —(20.62) + —=Frg + —=Frc =0
FITE, =0 —40+ = (27.95) — — (20.62) — —— Fig — —= Frg = 0
y = \/§ o \/1_7 . \/1—7 EG \/5 FG —

continued
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Solving these equations, we obtain

FEG = —-20.62 k and FFG =-16.77k
Frg =20.62 k (C) Ans.
Frg = 16.77 k (C) Ans.

Joints E and F. Finally, by considering the equilibrium, by inspection, of joints £ and F (see Fig. 4.25(b)), we obtain

Fpr =25k (C) Ans.
Fgr =10k (T) Ans.
Fpr =16.77 k (C) Ans.

Example 4.11 ,«é’f% ».. %" I N IX \l /K l

8 ft —— 8 ft —}— 8 ft i 8 ft i 8 ft i 8 ft —}— 8 ft —|— 8 fr —|

16 ft

FIG. 4.26

continued
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() @ ©)
FIG. 4.26 (contd.)

Solution
The Fink truss shown in Fig. 4.26(a) is a compound truss formed by connecting two simple trusses, ACL and DFL, by a
common joint L and a member CD.

Static Determinacy. The truss contains 27 members and 15 joints and is supported by 3 reactions. Because m + r = 2j and
the reactions and the members of the truss are properly arranged, it is statically determinate.

Reactions. The reactions at supports 4 and F of the truss, as computed by applying the three equations of equilibrium
to the free-body diagram of the entire truss (Fig. 4.26(b)), are
A, =0 A, =42k 1 F,=42k1
Joint 4. The method of joints can now be started at joint 4, which has only two unknown forces, F;p and Fy;, acting on
it. By inspection of the forces acting at this joint (see Fig. 4.26(b)), we obtain the following:
E; =9391k (C) Ans.
E;p =84 k (T) Ans.

Joint 1. The free-body diagram of joint 7 is shown in Fig. 4.26(c). Member BI is perpendicular to members A7 and 1J,
which are collinear, so the computation of member forces can be simplified by using an x axis in the direction of the
collinear members, as shown in Fig. 4.26(c).

2
+ F;=0 ——(12)—Fg =0
\Z v \/5( ) BI
Fpr=—-10.73 k
Fpr =10.73 k (C) Ans.

1
+ Y F=0 9391 ———(12)+ Fy =0
i \5( )+ Fry

Fiy = —88.54 k
Fiy = 88.54 k (C) Ans.

Joint B. Considering the equilibrium of joint B, we obtain (see Fig. 4.26(b)) the following:
2 4
F, = —=_(10. ZFpy =
+1XFH =0 \/5(073)4'5 B =0
Fp; =12k (T) Ans.
1 3
18, =0 —84 4+ —=(10.73) + = (12) + Fpc =0
+—= ) F 8+\/§( ) +5(12) + Fc

Fpe =72k (T) Ans.

continued
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Section aa. Since at each of the next two joints, C and J, there are three unknowns (Fcp, Fcg, and Fgy at joint C and
Fcy, Fgy, and Fjg at joint J), we calculate Fop by using section aa, as shown in Fig. 4.26(a). (If we moved to joint F
and started computing member forces from that end of the truss, we would encounter similar difficulties at joints D
and N.)

The free-body diagram of the portion of the truss on the left side of section aa is shown in Fig. 4.26(d). We de-
termine Frp by summing moments about point L, the point of intersection of the lines of action of Fg; and Fg; .

+CS ML =0 —42(32) + 12(24) + 12(16) + 12(8) + Fep(16) =0
Fep =48 k (T) Ans.

Joint C. With Fp now known, there are only two unknowns, Frg and Fcy, at joint C. These forces can be determined
by applying the two equations of equilibrium to the free body of joint C, as shown in Fig. 4.26(¢).

2 4
F, =0 —F —Feg =0
+12F NG CJ+5 G
4 F, 0 72 + 48 1F +3F 0
— = — R - =
> Jsfer+ ke

Solving these equations simultaneously, we obtain
Fey=-2147k and Feg=24k
Fey =2147k (C) Ans.
Feg =24k (T) Ans.

Joints J, K, and G. Similarly, by successively considering the equilibrium of joints J, K, and G, in that order, we de-
termine the following:

Fix = 83.18 k (C) Ans.
Fgy =12k (T) Ans.
Fgr =77.81 k (C) Ans.
Fex =10.73 k (C) Ans.
For =36k (T) Ans.

Symmetry. Since the geometry of the truss and the applied loading are symmetrical about the center line of the truss
(shown in Fig. 4.26(b)), its member forces will also be symmetrical with respect to the line of symmetry. It is, therefore,
sufficient to determine member forces in only one-half of the truss. The member forces determined here for the left half
of the truss are shown in Fig. 4.26(b). The forces in the right half can be obtained from the consideration of symmetry;
for example, the force in member MN is equal to that in member JK, and so forth. The reader is urged to verify this by
computing a few member forces in the right half of the truss. Ans.

4.8 Complex Trusses

Trusses that can be classified neither as simple trusses nor as compound
trusses are referred to as complex trusses. Two examples of complex
trusses are shown in Fig. 4.27. From an analytical viewpoint, the main
difference between simple or compound trusses and complex trusses
stems from the fact that the methods of joints and sections, as described
previously, cannot be used for the analysis of complex trusses. We can
see from Fig. 4.27 that although the two complex trusses shown are
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FIG. 427 Complex Trusses

statically determinate, after the computation of reactions the method of
joints cannot be applied because we cannot find a joint at which there are
two or fewer unknown member forces. Likewise, the method of sections
cannot be employed, because every section would pass through more than
three members with unknown forces. The member forces in such trusses can
be determined by writing two equilibrium equations in terms of unknown
member forces for each joint of the truss and then solving the system of
2j equations simultaneously. Today, complex trusses are usually analyzed
on computers using the matrix formulation presented in Chapter 17.

4.9 Space Trusses

Space trusses, because of their shape, arrangement of members, or ap-
plied loading, cannot be subdivided into plane trusses for the purposes of
analysis and must, therefore, be analyzed as three-dimensional structures
subjected to three-dimensional force systems. As stated in Section 4.1, to
simplify the analysis of space trusses, it is assumed that the truss mem-
bers are connected at their ends by frictionless ball-and-socket joints, all
external loads and reactions are applied only at the joints, and the
centroidal axis of each member coincides with the line connecting the
centers of the adjacent joints. Because of these simplifying assumptions,
the members of space trusses can be treated as axial force members.

The simplest internally stable (or rigid) space truss can be formed by
connecting six members at their ends by four ball-and-socket joints to
form a fetrahedron, as shown in Fig. 4.28(a). This tetrahedron truss may
be considered as the basic space truss element. It should be realized that
this basic space truss is internally stable in the sense that it is a three-
dimensional rigid body that will not change its shape under a general
three-dimensional loading applied at its joints. The basic truss ABCD of
Fig. 4.28(a) can be enlarged by attaching three new members, BE, CE,
and DE, to three of the existing joints B, C, and D, and by connecting
them to form a new joint E, as depicted in Fig. 4.28(b). As long as the new
joint E does not lie in the plane containing the existing joints B, C, and D,
the new enlarged truss will be internally stable. The truss can be further
enlarged by repeating the same procedure (as shown in Fig. 4.28(c)) as
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FIG. 4.28 Simple Space Truss

many times as desired. Trusses constructed by this procedure are termed
simple space trusses.

A simple space truss is formed by enlarging the basic tetrahedron
element containing six members and four joints by adding three addi-
tional members for each additional joint, so the total number of mem-
bers m in a simple space truss is given by

m=6+3(j—4)=3 -6 (4.5)

in which j = total number of joints (including those attached to the
supports).

Reactions

The types of supports commonly used for space trusses are depicted in
Fig. 4.29. The number and directions of the reaction forces that a sup-
port may exert on the truss depend on the number and directions of the
translations it prevents.

As suggested in Section 3.1, in order for an internally stable space
structure to be in equilibrium under a general system of three-dimensional
forces, it must be supported by at least six reactions that satisfy the six
equations of equilibrium (Eq. (3.1)):

S F=0 YF=0 YF=0
SM,=0 Y M,=0 S M=0

Because there are only six equilibrium equations, they cannot be used to
determine more than six reactions. Thus, an internally stable space struc-
ture that is statically determinate externally must be supported by exactly
six reactions. If a space structure is supported by more than six reactions,
then all the reactions cannot be determined from the six equilibrium equa-
tions, and such a structure is termed statically indeterminate externally.
Conversely, if a space structure is supported by fewer than six reactions,
the reactions are not sufficient to prevent all possible movements of the
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Category

Type of support

Symbolic representation | Reactions Number of unknowns

Ball

1
The reaction force R, acts
perpendicular to the supporting
surface and may be directed either
into or away from the structure.
The magnitude of R, is the
unknown.

Link

1
The reaction force R acts in the
direction of the link and may be
directed either into or away from
the structure. The magnitude of R is
the unknown.

II

Roller

2
Two reaction force components R,
and R, act in a plane perpendicular
to the direction in which the roller
is free to roll. The magnitudes of R,
and R, are the two unknowns.

111

Ball and socket

3
The reaction force R may act in any
direction. It is usually represented
by its rectangular components, R,,
R,, and R.. The magnitudes of R,,
R,, and R. are the three unknowns.

FIG. 4.29 Types of Supports for Space Trusses

structure in three-dimensional space, and such a structure is referred to as
statically unstable externally. Thus, if

r < 6 the space structure is statically unstable externally
r=6 the space structure is statically determinate externally  (4.6)

r> 6 the space structure is statically indeterminate externally

where » = number of reactions.

As in the case of plane structures discussed in the previous chapter, the
conditions for static determinacy and indeterminacy, as given in Eq. (4.6),
are necessary but not sufficient. In order for a space structure to be geo-
metrically stable externally, the reactions must be properly arranged so
that they can prevent translations in the directions of, as well as rotations
about, each of the three coordinate axes. For example, if the lines of ac-
tion of all the reactions of a space structure are either parallel or inter-
sect a common axis, the structure would be geometrically unstable.

Static Determinacy, Indeterminacy, and Instability

If a space truss contains m members and is supported by r external
reactions, then for its analysis we need to determine a total of m +r
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unknown forces. Since the truss is in equilibrium, each of its joints must
also be in equilibrium. At each joint, the internal and external forces
form a three-dimensional concurrent force system that must satisfy the
three equations of equilibrium, ) F, =0, > F, =0, and ) F. =0.
Therefore, if the truss contains j joints, the total number of equilibrium
equations available is 3j. If m + r = 3j, all the unknowns can be de-
termined by solving the 3j equations of equilibrium, and the truss is
statically determinate.

Space trusses containing more unknowns than the available equili-
brium equations (m + r > 3j) are statically indeterminate, and those with
fewer unknowns than the equilibrium equations (m + r < 3j) are stat-
ically unstable. Thus, the conditions of static instability, determinacy, and
indeterminacy of space trusses can be summarized as follows:

m+r < 3j statically unstable space truss
m+r=3j statically determinate space truss (4.7
m -+ r > 3j statically indeterminate space truss

In order for the criteria for static determinacy and indeterminacy, as
given by Eq. (4.7), to be valid, the truss must be stable and act as a sin-
gle rigid body, under a general three-dimensional system of loads, when
attached to the supports.

Analysis of Member Forces

The two methods for analysis of plane trusses discussed in Sections 4.5
and 4.6 can be extended to the analysis of space trusses. The method of
Jjoints essentially remains the same, except that three equilibrium equa-
tions (D Fy =0, > F, =0, and ) F. = 0) must now be satisfied at each
joint of the space truss. Since the three equilibrium equations cannot
be used to determine more than three unknown forces, the analysis is
started at a joint that has a maximum of three unknown forces (which
must not be coplanar) acting on it. The three unknowns are determined
by applying the three equations of equilibrium. We then proceed from
joint to joint, computing three or fewer unknown forces at each subse-
quent joint, until all the desired forces have been determined.

Since it is difficult to visualize the orientations of inclined members in
three-dimensional space, it is usually convenient to express the rectangu-
lar components of forces in such members in terms of the projections of
member lengths in the x, y, and z directions. Consider a member 4B of a
space truss, as shown in Fig. 4.30. The projections of its length L 45 in the
x, y, and z directions are x g, V4B, and z4p, respectively, as shown, with

Lp= \/(XAB)2 + (yaB)* + (z48)?

Because the force Fyp acts in the direction of the member, its compo-
nents Foyp, F, 45, and F. 45 in the x, y, and z directions, respectively, can
be expressed as

X
Foup = Fyp (ﬁ)
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FIG. 4.30
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and the resultant force Fyp is given by

Ep = \/(EYAB)Z + (FB)? + (Foa)?

The analysis of space trusses can be expedited by identifying the zero-
force members by inspection. Two common types of member arrange-
ments that result in zero-force members are the following:

1. If all but one of the members connected to a joint lie in a single
plane and no external loads or reactions are applied to the joint,
then the force in the member that is not coplanar is zero.

2. If all but two of the members connected to a joint have zero
force and no external loads or reactions are applied to the joint,
then unless the two remaining members are collinear, the force
in each of them is also zero.

The first type of arrangement is shown in Fig. 4.31(a). It consists
of four members AB, AC, AD, and AE connected to a joint 4. Of these,
AB, AC, and AD lie in the xz plane, whereas member AE does not.
Note that no external loads or reactions are applied to joint 4. It should
be obvious that in order to satisty the equilibrium equation ) F, = 0,
the y component of Fyr must be zero, and therefore Fr = 0.

The second type of arrangement is shown in Fig. 4.31(b). It consists
of four members AB, AC, AD, and AE connected to a joint 4, of which
AD and AE are zero-force members, as shown. Note that no external
loads or reactions are applied to the joint. By choosing the orientation of
the x axis in the direction of member 4B, we can see that the equilibrium
equations > F, =0 and ) F. =0 can be satisfied only if Fs;c =0.
Because the x component of F;¢ is zero, the equation ) F, = 0 is sat-
isfied only if Fyp is also zero.
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(a) (b)

FIG. 4.31

As in the case of plane trusses, the method of sections can be employed
for determining forces in specific members of space trusses. An imaginary
section is passed through the truss, cutting the members whose forces are
desired. The desired member forces are then calculated by applying the
six equations of equilibrium (Eq. (3.1)) to one of the two portions of the
truss. No more than six unknown forces can be determined from the six
equilibrium equations, so a section is generally chosen that does not pass
through more than six members with unknown forces.

Because of the considerable amount of computational effort involved,
the analysis of space trusses is performed today on computers. However,
it is important to analyze at least a few relatively small space trusses
manually to gain an understanding of the basic concepts involved in the
analysis of such structures.

Example 4.12 /{;f ' \‘_ e h *l"' T\ ‘ \\l A l

Determine the reactions at the supports and the force in each member of the space truss shown in Fig. 4.32(a).

Solution
Static Determinacy. The truss contains 9 members and 5 joints and is supported by 6 reactions. Because m + r = 3;j and
the reactions and the members of the truss are properly arranged, it is statically determinate.

Member Projections. The projections of the truss members in the x, y, and z directions, as obtained from Fig. 4.32(a),
as well as their lengths computed from these projections, are tabulated in Table 4.1.

Zero-Force Members. It can be seen from Fig. 4.32(a) that at joint D, three members, AD, CD, and DE, are connected.
Of these members, 4D and CD lie in the same (xz) plane, whereas DE does not. Since no external loads or reactions are
applied at the joint, member DFE is a zero-force member.

Fpr =0 Ans.

Having identified DE as a zero-force member, we can see that since the two remaining members 4D and CD are
not collinear, they must also be zero-force members.

FE;p =0 Ans.
Fep=0 Ans.

continued
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continued
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Reactions. See Fig. 4.32(a).

+ /S F=0
B.+15=0
B.=-15k
B.=15k / Ans.
+C> M, =0
B.(6) + 15(12) — 15(6) = 0
B.=-15k
B, =15k «— Ans.
=3 =0
=54 C; =0
C, =15k — Ans.
+0X M =0
—A4,(6) — B,(6) +25(3) +15(12) =0
A, + B, =425 (1)
+1XF=0
Ay + B, + €, —25=10 (2)
By substituting Eq. (1) into Eq. (2), we obtain
C,=-175k
C, =115k | N
XM =0
B,(12) — 17.5(12) — 25(6) = 0
B, =30k Ans.
By substituting B, = 30 into Eq. (1), we obtain 4,.
A4, =125k 7 Ans.

Joint A. See Fig. 4.32(b).

+INF =0 125+ (M)FAE -0
Lyg

in which the second term on the left-hand side represents the y component of F;z. Substituting the values of y and L for
member AE from Table 4.1, we write

12
12.5 + (ﬁ)E"E =0

FEip=-1432k
Er=1432k (C) Ans.

continued
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TABLE 4.1
Projection
Member x (ft) v (ft) z (ft) Length (ft)
AB 12 0 0 12.0
BC 0 0 6 6.0
CD 12 0 0 12.0
AD 0 0 6 6.0
AC 12 0 6 13.42
AE 6 12 3 13.75
BE 6 12 3 13.75
CE 6 12 3 13.75
DE 6 12 3 13.75
Similarly, we apply the remaining equilibrium equations:
/=0 (-2 ) Ee+ (=) (1432) = 0
i 13.42)4¢ " \1375) VY T
FEic =7.0%k (T) Ans.
FoTFR =0  Ep+ (=2 6 \1432) = 0
— = — = || =—== 5 =
* BT \13.42 13.75
FEip=0 Ans.
Joint B. (See Fig. 4.32(c).)
+o S F =0 O Vpp—15-0
— = — = =
* 13.75) " PF
Fpg = —34.38 k
Fpp =34.38 k (C) Ans.
FUTE =0 —15— Fpe+ [—=)(3438) =0
T Pem\1375) Y
Fge=-75k
Fpc =7.5k (C) Ans.

As all the unknown forces at joint B have been determined, we will use the remaining equilibrium equation to check our
computations:

12
+1YF =30— (ﬁ) (34.38) =0 Checks

Joint C. See Fig. 4.32(d).

12

Fep =20.05 k (T) Ans.

continued
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Checking Computations. At joint C (Fig. 4.32(d)),

At joint E (Fig. 4.32(e)),

6 12
6 3
+/ Y F.=-75+ (W) (7) + (ﬁ (20.05) =0 Checks
6
- (14.32 — 34.38 4+ 20.05) = 0 Checks
+T1Xh/=-25+ <%) (14.32 + 34.38 — 20.05) = 0 Checks
+ /> F=15— (ﬁ) (14.32 + 34.38 + 20.05) = 0 Checks

Summary

A truss is defined as a structure that is composed of straight members
connected at their ends by flexible connections to form a rigid config-
uration. The analysis of trusses is based on three simplifying assumptions:

1. All members are connected only at their ends by frictionless
hinges in plane trusses and by frictionless ball-and-socket joints
in space trusses.

All loads and reactions are applied only at the joints.

3. The centroidal axis of each member coincides with the line con-
necting the centers of the adjacent joints. The effect of these as-
sumptions is that all the members of the truss can be treated as
axial force members.

N

A truss is considered to be internally stable if the number and ar-
rangement of its members is such that it does not change its shape and
remains a rigid body when detached from its supports. The common types
of equations of condition for plane trusses are described in Section 4.3.

A truss is considered to be statically determinate if all of its member
forces and reactions can be determined by using the equations of equili-
brium. If a plane truss contains m members, j joints, and is supported
by r reactions, then if

m—+r < 2j the truss is statically unstable
m+r =2j the truss is statically determinate (4.4)
m-+r>2j the truss is statically indeterminate

The degree of static indeterminacy is given by
i=(m+r)—=2j (4.3)

The foregoing conditions for static determinacy and indeterminacy are
necessary but not sufficient conditions. In order for these criteria to be
valid, the truss must be stable and act as a single rigid body under a
general system of coplanar loads when it is attached to the supports.
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To analyze statically determinate plane trusses, we can use the method
of joints, which essentially consists of selecting a joint with no more than
two unknown forces acting on it and applying the two equilibrium equa-
tions to determine the unknown forces. We repeat the procedure until we
obtain all desired forces. This method is most efficient when forces in all or
most of the members of a truss are desired.

The method of sections usually proves to be more convenient when
forces in only a few specific members of the truss are desired. This
method essentially involves cutting the truss into two portions by pass-
ing an imaginary section through the members whose forces are desired
and determining the desired forces by applying the three equations of
equilibrium to the free body of one of the two portions of the truss.

The analysis of compound trusses can usually be expedited by using a
combination of the method of joints and the method of sections. A pro-
cedure for the determination of reactions and member forces in space
trusses is also presented.

PROBLEMS

Section 4.4

4.1 through 4.5 Classify each of the plane trusses shown as If the truss is statically indeterminate, then determine the
unstable, statically determinate, or statically indeterminate. degree of static indeterminacy.

(a)
©)

FIG. P4.1

FIG. P4.2
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(b)

é
X B ==

(d)
FIG. P4.3

() (d

FIG. P4.4

(a) (b) (d)

FIG. P4.5
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Section 4.5 100 kN 100 kN
4.6 through 4.27 Determine the force in each member of the JD J £
truss shown by the method of joints. - -
3m
10 ft
7m
| 12 ft | 12 ft | } 4m } 3m } 3m } 4m }
FIG. P4.6 FIG. P4.9

4 at 16 ft = 64 ft

FIG. P4.7 FIG. P4.10

15k

8 ft

4 at 16 ft = 64 ft

FIG. P4.11

FIG. P4.8
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60 kN 120 kN 60 kN

12 ft

50 kN

12 ft

5 ft—-5 ft } 14 ft }

FIG. P4.18

}‘—6at 16 ft =96 fi —»‘

FIG. P4.19
15_| 10 25 25 10*114
ft 't ft fo Ut ft
FIG. P4.22
[ 5k— 10k
5ft
} 12 ft
sr
B
]
5 ft——f—5 ft——f—5 ft—f—5 fti—|
FIG. P4.20

PSﬁ 5 ft—
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30k 30k 30k 30k
6at 16 ft=96ft —

10 ft
FIG. P4.24 120 kN 120 kN
! 4at4m=16m !
FIG. P4.27
‘—5 at3m=15 m4“
N DN KN 2N KN 12kN 4.28 Determine the force in each member of the truss sup-

20 kN Kl lL lM

y Lo ,
= 4
7

FIG. P4.25

porting a floor deck as shown in Fig. P4.28. The deck is sim-
ply supported on floor beams which, in turn, are connected to
the joints of the truss. Thus, the uniformly distributed loading
on the deck is transmitted by the floor beams as concentrated
loads to the top joints of the truss.

Floor beam
Deck

(mam

15 kN/m

TYYPRTVviiidesy
.5 ALC )

TYvrvyy
D

F G H T

o mda w2 mb2 md2 md2mo

-2 m»LZ m-
FIG. P4.28

4.29 and 4.30 Determine the force in each member of the
roof truss shown. The roof is simply supported on purlins
which, in turn, are attached to the joints of the top chord of
the truss. Thus, the uniformly distributed loading on the roof
is transmitted by the purlins as concentrated loads to the
truss joints.
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Section 4.6

4.31 Determine the forces in the top chord member GH and
the bottom chord member BC of the truss, if # =3 ft. How
would the forces in these members change if the height / of
the truss was doubled to 6 ft?

2k 4k 4k 4k 2k

P NS N—1 41 g

A D £ AFE
B C D
FIG. P4.29 }7 4at6ft=24ft —-————~‘
FIG. P4.31
Al B C Purlin 4.32 through 4.45 Determine the forces in the members
identified by “X” of the truss shown by the method of
)7 2at8 m=16 m ——] sections.
FIG. P4.30

H 1 x J K L

FIG. P4.32

{7t

Ct=s

! 10 ft | 10 ft 1 10 ft i 10 ft ! 10 ft i 10 ft 1

FIG. P4.33
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30k

25k 25k 25k 25k
\ 4 at 20 ft = 80 ft 1

FIG. P4.34

“74 at4m=16 m4>‘

FIG. P4.37

4 at 10 ft =40 ft

FIG. P4.38

FIG. P4.36
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75 kN 75kN  75kN

‘ 6at4m=24m !

FIG. P4.40

‘ 6 at 30 ft = 180 ft
25k 25k 25k

20 ft

15 ft
5 ft

FIG. P4.41

FIG. P4.43
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100 kKN — 13

FIG. P4.44
G 1 20k
\«—76at30ft:180ft |
FIG. P4.45

Section 4.7
4.46 through 4.50 Determine the force in each member of the
truss shown.

20[ ft

‘ 40k 30k ‘
‘ 4 at 15 ft = 60 ft ‘

FIG. P4.46

-3 mﬁ‘ﬁy, mﬁ‘ﬁ3 mﬁ‘ES mﬁP m ‘ 8m

} 8 m }”m»

FIG. P4.47
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8atl6ft=128ft ——————— Section 4.9
I5k 10k 4.51 through 4.55 Determine the force in each member of the
15k L / 10k space truss shown.
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Beams and Frames:
Shear and Bending Moment

5.1  Axial Force, Shear, and Bending Moment
5.2 Shear and Bending Moment Diagrams
5.3 Qualitative Deflected Shapes
5.4 Relationships between Loads, Shears, and Bending Moments
5.5  Static Determinacy, Indeterminacy, and Instability of Plane Frames
5.6  Analysis of Plane Frames
Summary
Problems

Unlike trusses, considered in the preceding chapter, whose members are al-
ways subjected to only axial forces, the members of rigid frames and beams
may be subjected to shear forces and bending moments as well as axial
forces under the action of external loads. The determination of these internal
forces and moments (stress resultants) is necessary for the design of such
structures. The objective of this chapter is to present the analysis of internal
forces and moments that may develop in beams, and the members of plane
frames, under the action of coplanar systems of external forces and couples.

We begin by defining the three types of stress resultants—axial forces,
shear forces, and bending moments—that may act on the cross sections of
beams and the members of plane frames. We next discuss construction of
the shear and bending moment diagrams by the method of sections. We
also consider qualitative deflected shapes of beams and the relationships
between loads, shears, and bending moments. In addition, we develop the
procedures for constructing the shear and bending moment diagrams us-
ing these relationships. Finally we present the classification of plane
frames as statically determinate, indeterminate, and unstable; and the
analysis of statically determinate plane frames.

5.1 Axial Force, Shear, and Bending Moment

Internal forces were defined in Section 3.2 as the forces and couples
exerted on a portion of the structure by the rest of the structure. Con-
sider, for example, the simply supported beam shown in Fig. 5.1(a). The

161
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FIG. 5.1
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free-body diagram of the entire beam is depicted in Fig. 5.1(b), which
shows the external loads, as well as the reactions A, and 4,, and B, at
supports A and B, respectively. As discussed in Chapter 3, the support
reactions can be computed by applying the equations of equilibrium to
the free body of the entire beam. In order to determine the internal
forces acting on the cross section of the beam at a point C, we pass an
imaginary section cc through C, thereby cutting the beam into two
parts, AC and CB, as shown in Figs. 5.1(c) and 5.1(d). The free-body dia-
gram of the portion AC (Fig. 5.1(c)) shows, in addition to the external
loads and support reactions acting on the portion 4 C, the internal forces,
0, S, and M exerted upon portion AC at C by the removed portion of the
structure. Note that without these internal forces, portion AC is not in
equilibrium. Also, under a general coplanar system of external loads and
reactions, three internal forces (two perpendicular force components and
a couple) are necessary at a section to maintain a portion of the beam in
equilibrium. The two internal force components are usually oriented in
the direction of, and perpendicular to, the centroidal axis of the beam at
the section under consideration, as shown in Fig. 5.1(c). The internal
force Q in the direction of the centroidal axis of the beam is called the
axial force, and the internal force S in the direction perpendicular to the
centroidal axis is referred to as the shear force (or, simply, shear). The
moment M of the internal couple is termed the bending moment. Recall
from mechanics of materials that these internal forces, Q, S, and M, rep-
resent the resultants of the stress distribution acting on the cross section of
the beam.

The free-body diagram of the portion CB of the beam is shown in
Fig. 5.1(d). Note that this diagram shows the same internal forces, Q, S,
and M, but in opposite directions, being exerted upon portion CB at C
by the removed portion 4C in accordance with Newton’s third law. The
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magnitudes and the correct senses of the internal forces can be deter-
mined by simply applying the three equations of equilibrium, > F, = 0,
> F,=0,and > M =0, to one of the two portions (4C or CB) of the
beam.

It can be seen from Figs. 5.1(c) and 5.1(d), that in order for the
equilibrium equation )  F, = 0 to be satisfied for a portion of the beam,
the internal axial force Q must be equal in magnitude (but opposite
in direction) to the algebraic sum (resultant) of the components in the
direction parallel to the axis of the beam of all the external forces act-
ing on that portion. Since the entire beam is in equilibrium—that is,
> Fy = 0 for the entire beam—the application of ) F\ = 0 individually
to its two portions will yield the same magnitude of the axial force Q.
Thus, we can state the following:

The internal axial force Q at any section of a beam is equal in magnitude
but opposite in direction to the algebraic sum (resultant) of the components
in the direction parallel to the axis of the beam of all the external loads and
support reactions acting on either side of the section under consideration.

Using similar reasoning, we can define the shear and bending mo-
ment as follows:

The shear S at any section of a beam is equal in magnitude but opposite in
direction to the algebraic sum (resultant) of the components in the direction
perpendicular to the axis of the beam of all the external loads and support
reactions acting on either side of the section under consideration.

The bending moment M at any section of a beam is equal in magnitude
but opposite in direction to the algebraic sum of the moments about (the
centroid of the cross section of the beam at) the section under consideration
of all the external loads and support reactions acting on either side of the
section.

Sign Convention

The sign convention commonly used for the axial forces, shears, and bend-
ing moments is depicted in Fig. 5.2. An important feature of this sign
convention, which is often referred to as the beam convention, is that it
yields the same (positive or negative) results regardless of which side of
the section is considered for computing the internal forces. The positive
directions of the internal forces acting on the portions of the member on
each side of the section are shown in Fig. 5.2(a).

From a computational viewpoint, however, it is usually more con-
venient to express this sign convention in terms of the external loads and
reactions acting on the beam or frame member, as shown in Fig. 5.2 (b) to
5.2(d). Asindicated in Fig. 5.2(b), the internal axial force Q is considered to
be positive when the external forces acting on the member produce tension or
have the tendency to pull the member apart at the section.

As shown in Fig. 5.2(c), the shear S is considered to be positive when
the external forces tend to push the portion of the member on the left of
the section upward with respect to the portion on the right of the section.
It can be seen from this figure that an external force that acts upward on
the left portion or downward on the right portion causes positive shear.
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FIG. 5.2 Beam Convention
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Alternatively, this sign convention for shear can be remembered by re-
alizing that any force that produces clockwise moment about a section
causes positive shear at that section and vice versa.

The positive bending moment is shown in Fig. 5.2(d). The bending
moment M is considered to be positive when the external forces and cou-
ples tend to bend the beam concave upward, causing compression in the
upper fibers and tension in the lower fibers of the beam at the section.
When the left portion is used for computing the bending moment, the
forces acting on the portion that produce clockwise moments about the
section, as well as clockwise couples, cause positive bending moment at
the section. When the right portion is considered, however, the forces
producing counterclockwise moments about the section, and counter-
clockwise couples, cause positive bending moment and vice versa.

In our discussion thus far, the beam or frame member has been as-
sumed to be horizontal, but the foregoing sign convention can be used for
inclined and vertical members by employing an xy coordinate system, as
shown in Fig. 5.2(a). The x axis of the coordinate system is oriented in the
direction of the centroidal axis of the member, and the positive direction
of the y axis is chosen so that the coordinate system is right-handed, with
the z axis always pointing out of the plane of the paper. The sign con-
vention can now be used for an inclined or a vertical member by consid-
ering the positive y direction as the upward direction and the portion of
the member near the origin O as the portion to the left of the section.

Procedure for Analysis

The procedure for determining internal forces at a specified location on
a beam can be summarized as follows:

1. Compute the support reactions by applying the equations of
equilibrium and condition (if any) to the free body of the entire
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beam. (In cantilever beams, this step can be avoided by select-
ing the free, or externally unsupported, portion of the beam for
analysis; see Example 5.2.)

Pass a section perpendicular to the centroidal axis of the beam
at the point where the internal forces are desired, thereby cut-
ting the beam into two portions.

Although either of the two portions of the beam can be used
for computing internal forces, we should select the portion that
will require the least amount of computational effort, such as
the portion that does not have any reactions acting on it or that
has the least number of external loads and reactions applied
to it.

Determine the axial force at the section by algebraically sum-
ming the components in the direction parallel to the axis of the
beam of all the external loads and support reactions acting on
the selected portion. According to the sign convention adopted
in the preceding paragraphs, if the portion of the beam to the
left of the section is being used for computing the axial force,
then the external forces acting to the left are considered pos-
itive, whereas the external forces acting to the right are consid-
ered to be negative (see Fig. 5.2(b)). If the right portion is being
used for analysis, then the external forces acting to the right are
considered to be positive and vice versa.

Determine the shear at the section by algebraically summing
the components in the direction perpendicular to the axis of the
beam of all the external loads and reactions acting on the se-
lected portion. If the left portion of the beam is being used for
analysis, then the external forces acting upward are considered
positive, whereas the external forces acting downward are con-
sidered to be negative (see Fig. 5.2(c)). If the right portion has
been selected for analysis, then the downward external forces
are considered positive and vice versa.

Determine the bending moment at the section by algebraically
summing the moments about the section of all the external
forces plus the moments of any external couples acting on the
selected portion. If the left portion is being used for analysis,
then the clockwise moments are considered to be positive, and
the counterclockwise moments are considered negative (see Fig.
5.2(d)). If the right portion has been selected for analysis, then
the counterclockwise moments are considered positive and vice
versa.

To check the calculations, values of some or all of the internal
forces may be computed by using the portion of the beam not
utilized in steps 4 through 6. If the analysis has been performed
correctly, then the results based on both left and right portions
must be identical.
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Example 5.1 /,fw E r, T'\ T\ K N\ A I

Determine the axial force, shear, and bending moment at point B of the beam shown in Fig. 5.3(a).

30k 4
1 25k 3J
B 7

ALE = ¢
le fit ' 6ft-L6 fi ‘ 12 ftJ
€Y
30k b
| 4 25Kk
5
A=20k—2 ! ¢
T ? T
y  A=25k b C,=20k
le fit 6ft‘|‘6 fr-t—12 ft4‘
FIG. 5.3 * &)

Solution
Reactions. Considering the equilibrium of the free body of the entire beam (Fig. 5.3(b)), we write

+ oS F=0 Ax—@)(%):o A =20k —

FCY M =0 —4,(36) +30(24) + (%) (25)(12) =0 A4, =25k

+1YF =0 25—30—@)(25)+Cy:0 C,=20k1

Section bb. A section bb is passed through point B, cutting the beam into two portions, 4B and BC (see Fig. 5.3(b)).
The portion 4B, which is to the left of the section, is used here to compute the internal forces.

Axial Force. Considering the external forces acting to the left as positive, we write

Q=-20k Ans.
Shear. Considering the external forces acting upward as positive, we write
§=25-30=-5
S=-5k Ans.
Bending Moment. Considering the clockwise moments of the external forces about B as positive, we write
M = 25(18) — 30(6) = 270
M =270 k-ft Ans.

continued
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Checking Computations. To check our calculations, we compute the internal forces using portion BC, which is to the
right of the section under consideration.

By considering the horizontal components of the external forces acting to the right on portion BC as positive,
we obtain

0=-— G) (25)=-20k Checks

By considering the external forces acting downward as positive, we obtain
3
S=-20+ 3 (25)=-5k Checks
Finally, by considering the counterclockwise moments of the external forces about B as positive, we obtain

M =20(18) — G) (25)(6) = 270 k-ft Checks

Example 5.2 /jfw - T.‘T' T\ K N\ ﬁ “

Determine the shear and bending moment at point B of the beam shown in Fig. 5.4.

lf SO0 kN - m

20 kN/m :
PR IR N A A IR &fo
|

4 m 1

FIG. 5.4

Solution

Section bb. (See Fig. 5.4.) To avoid computing reactions, we select externally unsupported portion BC, which is to the
right of the section bb, for computing the internal forces.

Shear. Considering the external forces acting downward as positive, we write
S = +20(4) = +80 kN
S =80 kN Ans.
Note that the 500 kN - m couple does not have any effect on shear.
Bending Moment. Considering the counterclockwise moments as positive, we write
M =500 —20(4)(2) = 340 kN - m
M =340 kN - m Ans.

The reader may check the results by summing forces and moments on portion 4B of the beam after computing the
reactions at support 4.
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5.2 Shear and Bending Moment Diagrams

Shear and bending moment diagrams depict the variations of these quan-
tities along the length of the member. Such diagrams can be constructed
by using the method of sections described in the preceding section. Pro-
ceeding from one end of the member to the other (usually from left to
right), sections are passed, after each successive change in loading, along
the length of the member to determine the equations expressing the shear
and bending moment in terms of the distance of the section from a fixed
origin. The values of shear and bending moments determined from these
equations are then plotted as ordinates against the position with respect to
a member end as abscissa to obtain the shear and bending moment dia-
grams. This procedure is illustrated by the following examples.

Example 5.3 ,&w \‘_ E a.‘ *1“" T\ K \ A l

Draw the shear and bending moment diagrams for the beam shown in Fig. 5.5(a).

a 60k b jgqpp d
| j | | 2wn |
0k 180kt ! RN
- MU E T E
YOV ¥ F 1 A=kl » . | X
3 . ; ! : 'D =54k
LT 7 fon L a b . d
| ond | | ond e 5
10 ft——10 ft—+—10 ft—|—10 ft X
(a) (b)
460
46 320
20
l\ 140
A B C D E F
14 A B c \\3///"E
L e
34 6.75 ft v
FIG. 5.5 (c) Shear Diagram (k) (d) Bending Moment Diagram (k-ft)
Solution

Reactions. See Fig. 5.5(b).
+ o NFE=0  A.=0
+CEMp=0
—A4,(30) + 60(20) + 180 + 2(20)(0) =0
A, =46k 1

continued
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+1YF=0
46 — 60 — 2(20) + D, = 0
D, =54k 1

Shear Diagram. To determine the equation for shear in segment 4B of the beam, we pass a section aa at a distance x
from support 4, as shown in Fig. 5.5(b). Considering the free body to the left of this section, we obtain

S=46k for0<x<10 ft

As this equation indicates, the shear is constant at 46 k from an infinitesimal distance to the right of point 4 to an
infinitesimal distance to the left of point B. At point A4, the shear increases abruptly from 0 to 46 k, so a vertical line
is drawn from 0 to 46 on the shear diagram (Fig. 5.5(c)) at 4 to indicate this change. This is followed by a horizontal
line from 4 to B to indicate that the shear remains constant in this segment.

Next, by using section bb (Fig. 5.5(b)), we determine the equation for shear in segment BC as

S=46—-60=—14k for 10 ft <x <20 ft

The abrupt change in shear from 46 k at an infinitesimal distance to the left of B to —14 k at an infinitesimal distance to
the right of B is shown on the shear diagram (Fig. 5.5(c)) by a vertical line from +46 to —14. A horizontal line at —14 is
then drawn from B to C to indicate that the shear remains constant at this value throughout this segment.

To determine the equations for shear in the right half of the beam, it is convenient to use another coordinate, xi,
directed to the left from the end E of the beam, as shown in Fig. 5.5(b). The equations for shear in segments ED and
DC are obtained by considering the free bodies to the right of sections dd and cc, respectively. Thus,

S=2x; for0<x; <10 ft

and
S =2x; —54 for 10 ft < x; <20 ft
These equations indicate that the shear increases linearly from zero at E to +20 k at an infinitesimal distance to the

right of D; it then drops abruptly to —34 k at an infinitesimal distance to the left of D; and from there it increases
linearly to —14 k at C. This information is plotted on the shear diagram, as shown in Fig. 5.5(c). Ans.

Bending Moment Diagram. Using the same sections and coordinates employed previously for computing shear, we
determine the following equations for bending moment in the four segments of the beam. For segment AB:
M =46x for 0 <x <10 ft

For segment BC:
M = 46x — 60(x — 10) = —14x + 600 for 10 ft < x < 20 ft

For segment ED:

M:—2x1(%) = —xf for 0 < x; <10 ft

For segment DC:
M = —xl2 + 54(x; — 10) = —xl2 + 54x; — 540 for 10 ft < x; < 20 ft

The first two equations, for the left half of the beam, indicate that the bending moment increases linearly from 0 at 4 to
460 k-ft at B; it then decreases linearly to 320 k-ft at C, as shown on the bending moment diagram in Fig. 5.5(d). The
last two equations for the right half of the beam are quadratic in x;. The values of M computed from these equations are
plotted on the bending moment diagram shown in Fig. 5.5(d). It can be seen that M decreases from 0 at E to —100 k-ft
at D, and it then increases to +140 k-ft at an infinitesimal distance to the right of C. Note that at C, the bending moment
drops abruptly by an amount 320 — 140 = 180 k-ft, which is equal to the magnitude of the moment of the counter-
clockwise external couple acting at this point.

continued
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A point at which the bending moment is zero is termed the point of inflection. To determine the location of the
point of inflection F (Fig. 5.5(d)), we set M = 0 in the equation for bending moment in segment DC to obtain

M = —x}+54x; — 540 =0

from which x; = 13.25 ft; that is, point F is located at a distance of 13.25 ft from end E, or 40 — 13.25 = 26.75 ft from
support A of the beam, as shown in Fig. 5.5(d). Ans.

Example 5.4 /&w »-. *1"\ T'\ K \l ﬁ. ’I

Draw the shear and bending moment diagrams for the beam shown in Fig. 5.6(a).

b
a |
, A ' ©

!

|
a b

L 1m | 6m | | x| By: 60.75 kI|\I C,=60.75 kN
1

(b)

47.25

—135
6.36 m

—60.75
(c) Shear Diagram (kN)
I
75.5
§
i
]
i
I
1
|
|
A B L c
—13 5
6.36 m

(d) Bending Moment Diagram (kN - m)
FIG. 5.6

continued
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Solution
Reactions. See Fig. 5.6(b).

+—=YF=0 B.=0

+¢S M, =0

G) (9)(27) (g) ~B,(6)=0  B,=60.75kN |
+13F =0

— G) (9)27) +60.75+C, =0  C, =60.75 kN |

Shear Diagram. To determine the equations for shear in segments 4B and BC of the beam, we pass sections aa and bb
through the beam, as shown in Fig. 5.6(b). Considering the free bodies to the left of these sections and realizing that the
load intensity, w(x), at a point at a distance x from end 4 is w(x) = (3/)x = 3x kN/m, we obtain the following equa-

tions for shear in segments 4B and BC, respectively:
1 B
S= —<—>(x)(3x) — —% for0<x<3m

3x2
S:_T + 60.75 for3im<x<9m

The values of S computed from these equations are plotted to obtain the shear diagram shown in Fig. 5.6(c). The point
D at which the shear is zero is obtained from the equation

2
S:—(%)+60.75:0

from which x = 6.36 m. Ans.

Bending Moment Diagram. Using the same sections employed previously for computing shear, we determine the follow-
ing equations for bending moment in segments 4B and BC, respectively:

3
M:—(%)(x)@x)(%) :—x? for0 <x<3m
e
M:f(7)+60.75(x73) for3m<x<9m

The values of M computed from these equations are plotted to obtain the bending moment diagram shown in Fig. 5.6(d).
To locate the point at which the bending moment is maximum, we differentiate the equation for M in segment BC with
respect to x and set the derivative dM /dx equal to zero; that is,
dM 3x?
o (_T) +60.75=0
from which x = 6.36 m. This indicates that the maximum bending moment occurs at the same point at which the shear
is zero. Also, a comparison of the expressions for dM /dx and S in segment BC indicates that the two equations are
identical; that is, the slope of the bending moment diagram at a point is equal to the shear at that point. (This rela-
tionship, which is generally valid, is discussed in detail in a subsequent section.)

Finally, the magnitude of the maximum moment is determined by substituting x = 6.36 m into the equation for M
in segment BC:

(6.36)°
2

Minax = — { +60.75(6.36 — 3) = 75.5 kN - m Ans.
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5.3 Qualitative Deflected Shapes

FIG. 5.7

A qualitative deflected shape (elastic curve) of a structure is simply a rough
(usually exaggerated) sketch of the neutral surface of the structure, in the
deformed position, under the action of a given loading condition. Such
sketches, which can be constructed without any knowledge of the numer-
ical values of deflections, provide valuable insights into the behavior of
structures and are often useful in computing the numerical values of de-
flections. (Procedures for the quantitative analysis of deflections are pre-
sented in the following chapters.)

According to the sign convention adopted in Section 5.1, a positive
bending moment bends a beam concave upward (or toward the positive y
direction), whereas a negative bending moment bends a beam concave
downward (or toward the negative y direction). Thus, the sign (posi-
tive or negative) of the curvature at any point along the axis of a beam
can be obtained from the bending moment diagram. Using the signs of
curvatures, a qualitative deflected shape (elastic curve) of the beam,
which is consistent with its support conditions, can be easily sketched (see
Fig. 5.7).

For example, consider the beam analyzed in Example 5.3. The beam
and its bending moment diagram are redrawn in Fig. 5.7(a) and (b),
respectively. A qualitative deflected shape of the beam is shown in
Fig. 5.7(c). Because the bending moment is positive in segment AF, the
beam is bent concave upward in this region. Conversely, the bending

60k 180 k-ft
l ~ 2 K/t
A BRI
Wiw 7 on E
D
460

(b) Bending Moment Diagram (k-ft)
I

A FI D E

g

KT

(c) Qualitative Deflected Shape
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moment is negative in segment FE; therefore, in this region, the beam is
bent concave downward. Regarding the support conditions, note that at
both supports 4 and D the deflection of the beam is zero, but its slope
(rotation) is not zero at these points.

It is important to realize that a qualitative deflected shape is ap-
proximate, because it is based solely on the signs of curvatures; the nu-
merical values of deflections along the axis of the beam are not known
(except at supports). For example, numerical computations could possi-
bly indicate that the end E of the beam actually deflects upward, instead
of downward as assumed in Fig. 5.7(c).

5.4 Relationships between Loads, Shears, and Bending Moments

The construction of shear and bending moment diagrams can be consid-
erably expedited by using the basic differential relationships that exist
between the loads, the shears, and the bending moments.

To derive these relationships, consider a beam subjected to an arbi-
trary loading, as shown in Fig. 5.8(a). All the external loads shown in this
figure are assumed to be acting in their positive directions. As indicated
in this figure, the external distributed and concentrated loads acting up-
ward (in the positive y direction) are considered positive; the external
couples acting clockwise are also considered to be positive and vice versa.
Next, we consider the equilibrium of a differential element of length dx,
isolated from the beam by passing imaginary sections at distances x and
X + dx from the origin O, as shown in Fig. 5.8(a). The free-body diagram
of the element is shown in Fig. 5.8(b), in which S and M represent the
shear and bending moment, respectively, acting on the left face of the
element (i.e., at distance x from the origin O), and dS and dM denote the
changes in shear and bending moment, respectively, over the distance dx.

y
1
1
' P
| wo | | 1 7
LT A 1| B c =
! ad H dx
()
P
w —
RN T i

(b)

1>M+dM M(T 1>M+dM M<a ( >M+dM

l——dx—»‘ S+ds l——\dx——|
(©) (d)

FIG. 5.8
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As the distance dx is infinitesimally small, the distributed load w acting
on the element can be considered to be uniform of magnitude w(x). In
order for the element to be in equilibrium, the forces and couples acting
on it must satisfy the two equations of equilibrium, »° F, =0 and
>> M = 0. The third equilibrium equation, > F, = 0, is automatically
satisfied, since no horizontal forces are acting on the element. Applying
the equilibrium equation ) F,, = 0, we obtain

FIEE=0
S+wdx—(S+dS)=0 (5.1)
dsS =wdx

Dividing by dx, we write Eq. (5.1) as

ds
oV (5.2)

in which dS/dx represents the slope of the shear diagram. Thus, Eq. (5.2)
can be expressed as

slope of shear diagram _ intensity of distributed

at a point " load at that point (55)

To determine the change in shear between points 4 and B along the
axis of the member (see Fig. 5.8(a)), we integrate Eq. (5.1) from 4 to B
to obtain

B B
J dsS =Sgp— Sy :J w dx (54)
A A

in which (S — S4) represents the change in shear between points 4 and B
and [Bw dx represents the area under the distributed load diagram between
points 4 and B. Thus, Eq. (5.4) can be stated as

change in shear between  area under the distributed load (5.5)
points A and B "~ diagram between points 4 and B '

Applying the moment equilibrium equation to the free body of the
beam element shown in Fig. 5.8(b), we write

+C> M, =0 M +w(dx)(dx/2) — (S+dS)dx+ (M +dM) =0
By neglecting the terms containing second-order differentials, we obtain
dM = S dx (5.6)

which can also be written as

dM
I S (5.7)



Section 5.4 Relationships between Loads, Shears, and Bending Moments 175

in which dM /dx represents the slope of the bending moment diagram.
Thus, Eq. (5.7) can be stated as

sl_o 1 Oif bendlng MOMENt _ i ear at that point (5.8)
diagram at a point

To obtain the change in bending moment between points 4 and B
(see Fig. 5.8(a)), we integrate Eq. (5.6) to obtain

B B
J dM:MB—MAzj S dx (5.9)
A A

in which (Mg — M) represents the change in bending moment between
points 4 and B and ff S dx represents the area under the shear diagram
between points 4 and B. Thus, Eq. (5.9) can be stated as

change in bending moment _ area under the shear diagram

between points 4 and B between points 4 and B (510)

Concentrated Loads

The relationships between the loads and shears derived thus far (Egs. (5.1)
through (5.5)) are not valid at the point of application of concentrated
loads. As we illustrated in Example 5.3, at such a point the shear changes
abruptly by an amount equal to the magnitude of the concentrated load.
To verify this relationship, we consider the equilibrium of a differential
element that is isolated from the beam of Fig. 5.8(a) by passing imagi-
nary sections at infinitesimal distances to the left and to the right of the
point of application C of the concentrated load P. The free-body diagram
of this element is shown in Fig. 5.8(c). Applying the equilibrium equation
>~ F, =0, we obtain

+1XF=0
S+P—(S+dS)=0
as=F (5.11)
which can be stated as
change in shear at the point of __ magnitude of (5.12)

application of a concentrated load = the load

The relationships between the shears and bending moments (Egs. (5.6)
through (5.10)) derived previously remain valid at the points of applica-
tion of concentrated loads. Note that because of the abrupt change in the
shear diagram at such a point, there will be an abrupt change in the slope
of the bending moment diagram at that point.

Couples or Concentrated Moments

Although the relationships between the loads and shears derived thus
far (Egs. (5.1) through (5.5), (5.11), and (5.12)) are valid at the points of
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application of couples or concentrated moments, the relationships be-
tween the shears and bending moments as given by Egs. (5.6) through
(5.10) are not valid at such points. As illustrated in Example 5.3, at the
point of application of a couple, the bending moment changes abruptly
by an amount equal to the magnitude of the moment of the couple. To
derive this relationship, we consider the equilibrium of a differential ele-
ment that is isolated from the beam of Fig. 5.8(a) by passing imaginary
sections at infinitesimal distances to the left and to the right of the point
of application D of the couple M. The free-body diagram of this element
is shown in Fig. 5.8(d). Applying the moment equilibrium equation, we
write

+GX M, =0
—M - M+ (M+dM)=0
dM = M (5.13)

which can be stated as

change in bending moment at the _ magnitude of the (5.14)
point of application of a couple =~ moment of the couple '

Procedure for Analysis

The following step-by-step procedure can be used for constructing the
shear and bending moment diagrams for beams by applying the foregoing
relationships between the loads, the shears, and the bending moments.

1. Calculate the support reactions.
2. Construct the shear diagram as follows:

a. Determine the shear at the left end of the beam. If no con-
centrated load is applied at this point, the shear is zero at
this point; go to step 2(b). Otherwise, the ordinate of the
shear diagram at this point changes abruptly from zero to
the magnitude of the concentrated force. Recall that an up-
ward force causes the shear to increase, whereas a down-
ward force causes the shear to decrease.

b. Proceeding from the point at which the shear was com-
puted in the previous step toward the right along the length
of the beam, identify the next point at which the numerical
value of the ordinate of the shear diagram is to be deter-
mined. Usually, it is necessary to determine such values only
at the ends of the beam and at points at which the con-
centrated forces are applied and where the load distributions
change.

c¢. Determine the ordinate of the shear diagram at the point
selected in step 2(b) (or just to the left of it, if a concentrated
load acts at the point) by adding algebraically the area under
the load diagram between the previous point and the point
currently under consideration to the shear at the previous
point (or just to the right of it, if a concentrated force acts at
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the point). The formulas for the areas of common geometric
shapes are listed in Appendix A.

Determine the shape of the shear diagram between the pre-
vious point and the point currently under consideration by
applying Eq. (5.3), which states that the slope of the shear
diagram at a point is equal to the load intensity at that
point.

If no concentrated force is acting at the point under con-
sideration, then proceed to step 2(f). Otherwise, determine
the ordinate of the shear diagram just to the right of the
point by adding algebraically the magnitude of the concen-
trated load to the shear just to the left of the point. Thus, the
shear diagram at this point changes abruptly by an amount
equal to the magnitude of the concentrated force.

If the point under consideration is not located at the right
end of the beam, then return to step 2(b). Otherwise, the
shear diagram has been completed. If the analysis has been
carried out correctly, then the value of shear just to the
right of the right end of the beam must be zero, except for
the round-off errors.

3. Construct the bending moment diagram as follows:

a.

Determine the bending moment at the left end of the beam.
If no couple is applied at this point, the bending moment is
zero at this point; go to step 3(b). Otherwise, the ordinate of
the bending moment diagram at this point changes abruptly
from zero to the magnitude of the moment of the couple.
Recall that a clockwise couple causes the bending moment
to increase, whereas a counterclockwise couple causes the
bending moment to decrease at its point of application.

Proceeding from the point at which the bending moment
was computed in the previous step toward the right along
the length of the beam, identify the next point at which the
numerical value of the ordinate of the bending moment di-
agram is to be determined. It is usually necessary to de-
termine such values only at the points where the numerical
values of shear were computed in step 2, where the couples
are applied, and where the maximum and minimum values
of bending moment occur. In addition to the points of ap-
plication of couples, the maximum and minimum values of
bending moment occur at points where the shear is zero. At
a point of zero shear, if the shear changes from positive to
the left to negative to the right, the slope of the bending
moment diagram will change from positive to the left of the
point to negative to the right of it; that is, the bending mo-
ment will be maximum at this point. Conversely, at a point
of zero shear, where the shear changes from negative to the
left to positive to the right, the bending moment will be
minimum. For most common loading conditions, such as
concentrated loads and uniformly and linearly distributed
loads, the points of zero shear can be located by consider-
ing the geometry of the shear diagram. However, for some
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cases of linearly distributed loads, as well as for nonlinearly
distributed loads, it becomes necessary to locate the points
of zero shear by solving the expressions for shear, as illus-
trated in Example 5.4.

¢. Determine the ordinate of the bending moment diagram at
the point selected in step 3(b) (or just to the left of it, if a
couple acts at the point) by adding algebraically the area
under the shear diagram between the previous point and the
point currently under consideration to the bending moment
at the previous point (or just to the right of it, if a couple acts
at the point).

d. Determine the shape of the bending moment diagram be-
tween the previous point and the point currently under con-
sideration by applying Eq. (5.8), which states that the slope
of the bending moment diagram at a point is equal to the
shear at that point.

e. If no couple is acting at the point under consideration, then
proceed to step 3(f). Otherwise, determine the ordinate of
the bending moment diagram just to the right of the point by
adding algebraically the magnitude of the moment of the
couple to the bending moment just to the left of the point.
Thus, the bending moment diagram at this point changes
abruptly by an amount equal to the magnitude of the mo-
ment of the couple.

f. If the point under consideration is not located at the right
end of the beam, then return to step 3(b). Otherwise, the
bending moment diagram has been completed. If the analy-
sis has been carried out correctly, then the value of bending
moment just to the right of the right end of the beam must be
zero, except for the round-off errors.

The foregoing procedure can be used for constructing the shear and
bending moment diagrams by proceeding from the left end of the beam
to its right end, as is currently the common practice. However, if we
wish to construct these diagrams by proceeding from the right end of the
beam toward the left, the procedure essentially remains the same except
that downward forces must now be considered to cause increase in shear,
counterclockwise couples are now considered to cause increase in bending
moment, and vice versa.

Example 5.5

ANy @ N Wl

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.9(a).

Solution
Reactions. (See Fig. 5.9(b).)

+ oS F=0 A4,=0

continued
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(d) Bending Moment Diagram (k—ft)

(e) Qualitative Deflected Shape
FIG. 5.9

By proportions,

Ayzlz(%)ﬂo(%):lw A, =18k 1
+1YF=0
18—12—-30+D, =0
D, =24k D, =24k 1
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Shear Diagram.

Point 4. Since a positive (upward) concentrated force of 18-k magnitude acts at point 4, the shear diagram increases
abruptly from 0 to +18 k at this point.

Point B. The shear just to the left of point B is given by

Sp,r =S4 r + area under the load diagram between just to the right of A4 to
just to the left of B

in which the subscripts ““, L and ““, R are used to denote “‘just to the left” and “just to the right,” respectively. As no
load is applied to this segment of the beam,

Spr=184+0=18k
Because a negative (downward) concentrated load of 12-k magnitude acts at point B, the shear just to the right of B is

Spr=18—12=6k

Point C.
Sc, . = Sp r + area under the load diagram between just to the right of B to
just to the left of C
Scr=6+0=06k
Scr=6-30=-24%k
Point D. Spp=-24+0=-24k

Spr=-24+24=0 Checks

The numerical values of shear computed at points A4, B, C, and D are used to construct the shear diagram as shown
in Fig. 5.9(c). The shape of the diagram between these ordinates has been established by applying Eq. (5.3), which states
that the slope of the shear diagram at a point is equal to the load intensity at that point. Because no load is applied to
the beam between these points, the slope of the shear diagram is zero between these points, and the shear diagram con-
sists of a series of horizontal lines, as shown in the figure. Note that the shear diagram closes (i.e., returns to zero) just to
the right of the right end D of the beam, indicating that the analysis has been carried out correctly. Ans.

To facilitate the construction of the bending moment diagram, the areas of the various segments of the shear dia-
gram have been computed and are shown in parentheses on the shear diagram (Fig. 5.9(c)).

Bending Moment Diagram.

Point 4. Because no couple is applied at end 4, M4 = 0.

Point B. Mp = M4 + area under the shear diagram
between 4 and B

Mp =0+ 180 = 180 k-ft
Point C. Mc = 180 + 60 = 240 k-ft
Point D. Mp =240 —-240 =0 Checks

The numerical values of bending moment computed at points 4, B, C, and D are used to construct the bending mo-
ment diagram shown in Fig. 5.9(d). The shape of the diagram between these ordinates has been established by applying
Eq. (5.8), which states that the slope of the bending moment diagram at a point is equal to the shear at that point. As the
shear between these points is constant, the slope of the bending moment diagram must be constant between these points.

continued
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Therefore, the ordinates of the bending moment diagram are connected by straight, sloping lines. In segment AB, the
shear is +18 k. Therefore, the slope of the bending moment diagram in this segment is 18:1, and it is positive—that is,
upward to the right (/). In segment BC, the shear drops to +6 k; therefore, the slope of the bending moment diagram re-
duces to 6:1 but remains positive. In segment CD, the shear becomes —24; consequently, the slope of the bending moment
diagram becomes negative—that is, downward to the right (\), as shown in Fig. 5.9(d). Note that the maximum bending
moment occurs at point C, where the shear changes from positive to the left to negative to the right. Ans.

Qualitative Deflected Shape. A qualitative deflected shape of the beam is shown in Fig. 5.9(e). As the bending moment
is positive over its entire length, the beam bends concave upward, as shown. Ans.

Example 5.6 /é‘iﬁ \‘_ h‘ *Iv\ T\ K \\l K l

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.10(a).

Solution
Reactions. (See Fig. 5.10(b).)

+—- 2 F=0 Ay =0
+ 1> F=0
A4, -70=0
A, =170 kN A, =70 kN 1
+GC>Mu=0

M, —70(6) — 200 = 0
My=620kN-m M, =620kN-mD

Shear Diagram.

Point A. S r="T70KkN
Point B. Sgr=70+0=70kN
Sgr=70-70=0
Point C. Scr=0+0=0
Scr=04+0=0 Checks

The numerical values of shear evaluated at points 4, B, and C are used to construct the shear diagram as shown in
Fig. 5.10(c). Because no load is applied to the beam between these points, the slope of the shear diagram is zero between
these points. To facilitate the construction of the bending moment diagram, the area of the segment 4B of the shear
diagram has been computed and is shown in parentheses on the shear diagram (Fig. 5.10(c)). Ans.

continued
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70 kN
I
| -)
200 kN - m
\ 6 m 4 m ‘
(@)
My =620kN - m 701kN
G I
200 kN - m
A, =T70kN
x (b)
Zero slope
70
(420)
A B C
(c) Shear diagram (kN)
A B €
200 \
Zero slope

Positive slope

ol (d) Bending moment

diagram (kN - m)

e) Qualitative Deflected Shape
FIG. 5.10 ©Q g
Bending Moment Diagram.

Point 4. Since a negative (counterclockwise) couple of 620 kN - m moment acts at point 4, the bending moment dia-
gram decreases abruptly from 0 to —620 kN - m at this point; that is,

MA,R = —620 kKN - m

Point B. Mp = —620 + 420 = —200 kN - m

continued
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Point C. Mc = —-200+0=—-200 kN -m
Mec gr = =200+ 200 = 0 Checks

The bending moment diagram is shown in Fig. 5.10(d). The shape of this diagram between the ordinates just com-
puted is based on the condition that the slope of the bending moment diagram at a point is equal to shear at that point. As
the shear in the segments 4B and BC is constant, the slope of the bending moment diagram must be constant in these
segments. Therefore, the ordinates of the bending moment diagram are connected by straight lines. In segment 4B, the
shear is positive, and so is the slope of the bending moment diagram in this segment. In segment BC, the shear becomes
zero; consequently, the slope of the bending moment diagram becomes zero, as shown in Fig. 5.10(d). Ans.

Qualitative Deflected Shape. A qualitative deflected shape of the beam is shown in Fig. 5.10(e). As the bending moment
is negative over its entire length, the beam bends concave downward, as shown. Ans.

Example 5.7 ,«é’f% »,. *T" Yr\ IX \ /K I

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.11(a).

Solution
Reactions. (See Fig. 5.11(b).)
+ -2 F=0
A, —30=0
A, =30 kN Ay =30 kN —
+C> Mp=0

—A4,(27) + 10(15)(19.5) — 162 + 40(6) = 0
A, =11122kN 4, =111.22kN |
+1XF=0
111.22 — 10(15) — 40 + D, = 0
D,=7878kN D, =7878 kN 1

Shear Diagram.

Point A4. Sy r=111.22 kN
Point B. Sp = 111.22 — 10(15) = —38.78 kN
Point C. Sc.p=—3878+0=—38.78 kN
Sc.r=—38.78 —40 = —78.78 kN
Point D. Sp..=—78.78+ 0= —78.78 kN
Sp.r=—78.78 +78.78 = 0 Checks

The shear diagram is shown in Fig. 5.11(c). In segment 4B, the beam is subjected to a downward (negative) uni-
formly distributed load of 10 kN/m. Because the load intensity is constant and negative in segment 4B, the shear dia-
gram in this segment is a straight line with negative slope. No distributed load is applied to the beam in segments BC and
CD, so the shear diagram in these segments consists of horizontal lines, indicating zero slopes. Ans.

continued
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10 kN/m /4

LE < <.
! 15 m ! 6 m ! 6 m~—|
(a)
162 kN - m 40 kN
10 kN/ P l
AR RERR R R L 30KN p
A ] C
)7
A,=111.22 kN D,=78.78 kN
(b)
111.22 kN
(=75.23)
B (618.38) E B c D
L {_(-232.68)
x=11.12m _3878 (-472.68)
(c) Shear Diagram (kN) =
Negative slope
Zero slope / 705.15
Positive 'slope o A 472.47
(decreasing)

Positive slope ~

A E B C D

(d) Bending Moment Diagram (kN - m)

(e) Qualitative Deflected Shape
FIG. 5.11

The point of zero shear, E, can be located by using the similar triangles forming the shear diagram between 4 and
B. Thus,

x 15
111.22  (111.22 + 38.78)

x=11.12m

continued
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To facilitate the construction of the bending moment diagram, the areas of the various segments of the shear dia-
gram have been computed; they are shown in parentheses on the shear diagram (Fig. 5.11(c)).

Bending Moment Diagram.

Point A. My=0
Point E. Mg =0+618.38 =618.38 kKN - m
Point B. Mp 1 = 618.38 —75.23 = 543.15 kN - m
Mp r =543.15+ 162 = 705.15 kN - m
Point C. Mc =705.15 — 232.68 = 472.47 kKN - m
Point D. Mp =472.47 —472.68 = —0.21 ~ 0 Checks

The bending moment diagram is shown in Fig. 5.11(d). The shape of this diagram between the ordinates just com-
puted has been based on the condition that the slope of the bending moment diagram at any point is equal to the shear at
that point. Just to the right of A, the shear is positive, and so is the slope of the bending moment diagram at this
point. As we move to the right from A, the shear decreases linearly (but remains positive), until it becomes zero at E.
Therefore, the slope of the bending moment diagram gradually decreases, or becomes less steep (but remains positive),
as we move to the right from A, until it becomes zero at E. Note that the shear diagram in segment 4E is linear, but the
bending moment diagram in this segment is parabolic, or a second-degree curve, because the bending moment diagram
is obtained by integrating the shear diagram (Eq. 5.11). Therefore, the bending moment curve will always be one degree
higher than the corresponding shear curve.

We can see from Fig. 5.11(d) that the bending moment becomes locally maximum at point E, where the shear
changes from positive to the left to negative to the right. As we move to the right from E, the shear becomes negative,
and it decreases linearly between E and B. Accordingly, the slope of the bending moment diagram becomes negative to
the right of E, and it decreases continuously (becomes more steep downward to the right) between E and just to the left
of B. A positive (clockwise) couple acts at B, so the bending moment increases abruptly at this point by an amount
equal to the magnitude of the moment of the couple. The largest value (global maximum) of the bending moment
over the entire length of the beam occurs at just to the right of B. (Note that no abrupt change, or discontinuity, occurs
in the shear diagram at this point.) Finally, as the shear in segments BC and CD is constant and negative, the bending
moment diagram in these segments consists of straight lines with negative slopes. Ans.

Qualitative Deflected Shape. See Fig. 5.11(e). Ans.

s Y (]

Example 5.8 AND a- | *‘“x i N\ ?"‘\K

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.12(a).

Solution

Reactions. (See Fig. 5.12(b).)
== =10 B, =0
+G6> Mc=0

(3)(12)(24) — B,(20) + 3(20)(10) — %(3)(6)(2) =0

N —

B,=507k B,=507k1

+1>XF=0

—%(3)(12) +50.7 — 3(20) —%(3)(6) +C,=0
C, =363k C, =363k

continued
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L—l2 ft ! 20 ft 6 ft~|
(a)
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= TR ERERARY
€

B,=50.7k =363k

9 (18)
(—72) (178 22)\ (—124. 22)

—18
l—109 ft 273

(c) Shear Diagram (k)
106.22

A B C D
Iz
\/ _] 8
! J
— 2491 69 ft

(d) Bending Moment Diagram (k ft)

B | |C/'
A T D
e U

F G

(e) Qualitative Deflected Shape

FIG. 5.12

Shear Diagram.

Point A. S,=0

1
Point B. Spi=0-5(3)(12) = ~18 k

Spr=—184+50.7=32.7k

continued
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Point C. Sc, =32.7-3(20) =273k
Scr=-2734+363=9k

Point D. Sp=9—=(3)(6)=0 Checks

The shear diagram is shown in Fig. 5.12(c). The shape of the diagram between the ordinates just computed is ob-
tained by applying the condition that the slope of the shear diagram at any point is equal to the load intensity at that
point. For example, as the load intensity at 4 is zero, so is the slope of the shear diagram at 4. Between 4 and B, the
load intensity is negative and it decreases linearly from zero at 4 to —3 k/ft at B. Thus, the slope of the shear diagram is
negative in this segment, and it decreases (becomes more steep) continuously from A to just to the left of B. The rest of
the shear diagram is constructed by using similar reasoning. Ans.

The point of zero shear, E, is located by using the similar triangles forming the shear diagram between B and C.

To facilitate the construction of the bending moment diagram, the areas of the various segments of the shear dia-
gram have been computed and are shown in parentheses on the shear diagram (Fig. 5.12(c)). It should be noted that the
areas of the parabolic spandrels, AB and CD, can be obtained by using the formula for the area of this shape given in
Appendix A.

Bending Moment Diagram.

Point A. My=0

Point B. Mp=0—72=—-72k-ft

Point E. Mg = —72+ 178.22 = 106.22 k-ft

Point C. Me =106.22 — 124.22 = —18 k-ft

Point D. Mp=—-18+18=0 Checks

The shape of the bending moment diagram between these ordinates is obtained by using the condition that the slope
of the bending moment diagram at any point is equal to the shear at that point. The bending moment diagram thus
constructed is shown in Fig. 5.12(d).

It can be seen from this figure that the maximum negative bending moment occurs at point B, whereas the
maximum positive bending moment, which has the largest absolute value over the entire length of the beam, occurs
at point E. Ans.

To locate the points of inflection, F and G, we set equal to zero the equation for bending moment in segment BC,
in terms of the distance x from the left support point B (Fig. 5.12(b)):

AI:—(%)Gﬂnx4+xy+w7x—3@w3):0

or
—1.5x24+327x—72=0
from which x = 2.49 ft and x = 19.31 ft from B.

Qualitative Deflected Shape. A qualitative deflected shape of the beam is shown in Fig. 5.12(e). The bending moment is
positive in segment FG, so the beam is bent concave upward in this region. Conversely, since the bending moment is
negative in segments AF and GD, the beam is bent concave downward in these segments. Ans.
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Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.13(a).

Example 5.9

100
50 62.5
(62.5) (500)
(500) - E
A B (-562.5)|C D
2.5m
—150
100 kN (c) Shear Diagram (kN)
Hinge\ 20 kN/m L
S AR s Fsm
B E F C
! 10 m ! 10 m ! 5 m~—‘ :
|
(a) :
-500 ! -500
M,=500kN - m 20 KN/m IOOlkN (d) Bending Moment Diagram (kN - m)
I
SRR y A
x| — \O_/
A, =50 kN C,=250kN
(b) (e) Qualitative Deflected Shape
FIG. 5.13
Solution
Reactions. (See Fig. 5.13(b).)
+CYXMEP =0
—20(10)(5) + C,,(10) — 100(15) = 0
C, =250 kN C, =250 kN T
+1YF=0
A, —20(10) +250 — 100 =0
A, =50 kN A, =50 kN T
+C> My4=0

M — 20(10)(15) + 250(20) — 100(25) = 0
My=500kN-m M, =500kN -m )

continued
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Shear Diagram.

Point A. S4 r =50 kN
Point B. Sp=50+0=50 kN
Point C. Sc,r =50 —20(10) = —150 kN
Sc.r = —150 4+ 250 = 100 kN
Point D. Sp,z =100+ 0 = 100 kN
Sp,g =100 — 100 =0 Checks
The shear diagram is shown in Fig. 5.13(c). Ans.

Bending Moment Diagram.

Point A. My g =—500 kKN - m

Point B. Mp = —500+ 500 =0

Point E. Mg =0+625=062.5kN -m

Point C. Mc =62.5—562.5=—-500 kKN - m

Point D. Mp = —500 + 500 = 0 Checks

The bending moment diagram is shown in Fig. 5.13(d). The point of inflection F can be located by setting equal to zero
the equation for bending moment in segment BC, in terms of the distance x; from the right support point C (Fig. 5.13(b)):

M = —100(5 + x1) + 250x; — 20(x;) <%> )

or

—10x? + 150x; — 500 = 0

from which x; =5 m and x; = 10 m from C. Note that the solution x; = 10 m represents the location of the internal
hinge at B, at which the bending moment is zero. Thus, the point of inflection F is located at a distance of 5 m to the left
of C, as shown in Fig. 5.13(d). Ans.

Qualitative Deflected Shape. A qualitative deflected shape of the beam is shown in Fig. 5.13(e). Note that at the fixed sup-
port 4, both the deflection and the slope of the beam are zero, whereas at the roller support C, only the deflection is zero, but
the slope is not. The internal hinge B does not provide any rotational restraint, so the slope at B can be discontinuous. Ans.

Example 5.10 /&, 1';,.'- *1" T\ Hk \l A ‘

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.14(a).

Solution
Reactions. (See Fig. 5.14(b).)

+¢SMEP =0
D,(24) —2(24)(12) =0
D,=24k D,=24k1

continued
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continued
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+CS My =0

24(60) + B,(30) — 2(60)(30) = 0
B,=72k B,=72k7

+1YF =0

Ay —2(60) +72+24=0
A, =24k A, =24k1

Shear Diagram.

Point A. Sir=24k
Point B. Sp 1 =24—-2(30) = -36 k

Spr=-36+72=36k
Point D. Sp,r =36—-2(30) =-24k

Spr=-24+24=0 Checks
The shear diagram is shown in Fig. 5.14(c). .
Bending Moment Diagram.
Point A. My=0
Point E. Mp =0+ 144 = 144 k-ft
Point B. Mp = 144 — 324 = —180 k-ft
Point F. Mp = —180 + 324 = 144 k-ft
Point D. Mp=144—-144=0 Checks
The bending moment diagram is shown in Fig. 5.14(d). Ans.
Qualitative Deflected Shape. See Fig. 5.14(e). Ans.

Example 5.11 PR E INELA

Draw the shear and bending moment diagrams and the qualitative deflected shape for the statically indeterminate beam
shown in Fig. 5.15. The support reactions, determined by using the procedures for the analysis of statically indeterminate
beams (presented in Part Three of this text), are given in Fig. 5.15(a).

Solution

Regardless of whether a beam is statically determinate or indeterminate, once the support reactions have been de-
termined, the procedure for constructing the shear and bending moment diagrams remains the same. The shear and
bending moment diagrams for the given statically indeterminate beam are shown in Fig. 5.15(b) and (c), respectively,
and a qualitative deflected shape of the beam is shown in Fig. 5.15(d).

continued
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5.5 Static Determinacy, Indeterminacy, and Instability of Plane Frames

As defined in Section 1.3, rigid frames, usually referred to simply as frames,
are composed of straight members connected either by rigid (moment-
resisting) connections or by hinged connections to form stable config-
urations. The members of frames are usually connected by rigid joints,
although hinged connections are sometimes used (see Fig. 5.16). A rigid
joint prevents relative translations and rotations of the member ends con-
nected to it, so the joint is capable of transmitting two rectangular force
components and a couple between the connected members. Under the ac-
tion of external loads, the members of a frame may be, in general, sub-
jected to bending moment, shear, and axial tension or compression.

The combined (external and internal) static determinacy of frames
is defined in a manner similar to that for the trusses. A frame is consid-
ered to be statically determinate if the bending moments, shears, and axial
forces in all its members, as well as all the external reactions, can be de-
termined by using the equations of equilibrium and condition.
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a) Moment-resisting (rigid) connection. In this connection, the top
and bottom flanges, and the web, of the beam are connected to the
column, thereby preventing the rotation of the beam with respect to
the column. This type of connection can transmit forces, as well as
couples (moments).

b) Shear (flexible) connection. In this connection, only the web of the
beam is attached to the column, allowing the beams’s end to rotate
with repect to the column. This type of connection can transmit
forces but not couples (moments), and is represented as a hinge at the
beam’s end for the purpose of analysis.

FIG. 5.16 Typical Bolted Connections used in Building Frames to Connect
Beams to Columns
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FIG. 5.17
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Since the method of analysis presented in the following section can
be used only to analyze statically determinate frames, it is important for
the student to be able to recognize statically determinate frames before
proceeding with the analysis.

Consider a plane frame subjected to an arbitrary loading, as shown
in Fig. 5.17(a). The free-body diagrams of the three members and the four
joints of the frame are shown in Fig. 5.17(b). Each member is subjected
to, in addition to the external forces, two internal force components and
an internal couple at each of its ends. Of course, the correct senses of the
internal forces and couples, which are commonly referred to as the mem-
ber end forces, are not known before the analysis and are chosen arbitra-
rily. The free-body diagrams of the joints show the same member end
forces but in opposite directions, in accordance with Newton’s third law.
The analysis of the frame involves the determination of the magnitudes of
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the 18 member end forces (six per member), and the three support re-
actions, Ay, Ay, and Dy. Therefore, the total number of unknown quan-
tities to be determined is 21.

Because the entire frame is in equilibrium, each of its members
and joints must also be in equilibrium. As shown in Fig. 5.17(b), each
member and each joint are subjected to a general coplanar system of
forces and couples, which must satisfy the three equations of equilib-
rium, > Fy =0,> Fy =0,and ) M = 0. Since the frame contains three
members and four joints (including the two joints connected to supports),
the total number of equations available is 3(3) 4 3(4) = 21. These 21
equilibrium equations can be solved to calculate the 21 unknowns. The
member end forces thus obtained can then be used to determine axial
forces, shears, and bending moments at various points along the lengths of
members. The frame of Fig. 5.17(a) is, therefore, statically determinate.

Three equations of equilibrium of the entire frame as a rigid body
could be written and solved for the three unknown reactions (Ay, 4y,
and Dy). However, these equilibrium equations are not independent
from the member and joint equilibrium equations and do not contain any
additional information.

Based on the foregoing discussion, we can develop the criteria for
the static determinacy, indeterminacy, and instability of general plane
frames containing m members and j joints and supported by r (num-
ber of) external reactions. For the analysis, we need to determine 6m
member forces and r external reactions; that is, we need to calculate a
total of 6m + r unknown quantities. Since there are m members and j
joints and we can write three equations of equilibrium for each member
and each joint, the number of equilibrium equations available is 3(m + ).
Furthermore, if a frame contains internal hinges and/or internal rollers,
these internal conditions provide additional equations, which can be used
in conjunction with the equilibrium equations to determine the unknowns.
Thus, if there are e. equations of condition for a frame, the total number
of equations (equilibrium equations plus equations of condition) available
is 3(m + j) + e.. For a frame, if the number of unknowns is equal to the
number of equations, that is,

om+r=3m+j)+e.
or
3m+r=3j+e,

then all the unknowns can be determined by solving the equations of equili-
brium and condition, and the frame is statically determinate. If a frame has
more unknowns than the available equations—that is, 3m +r > 3j + e,—
all the unknowns cannot be determined by solving the available equations,
and the frame is called statically indeterminate. Statically indeterminate
frames have more members and/or external reactions than the minimum
required for stability. The excess members and reactions are called re-
dundants, and the number of excess member forces and reactions is referred
to as the degree of static indeterminacy, i, which can be expressed as

i=0CBm+r)— (3 +e) (5.15)

For a frame, if the number of unknowns is less than the number
of available equations—that is, 3m + r < 3j + e.—the frame is called
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FIG. 5.18 The Shear Connections at the
Ends of the Beams are Treated as
Internal Hinges for Analysis

Copyright © American Institute of Steel Construction.
Reprinted with permission. All rights reserved

statically unstable. The conditions for static instability, determinacy, and
indeterminacy of plane frames can be summarized as follows:

3m+r < 3j+e. statically unstable frame
3m+r=23j+e. statically determinate frame (5.16)
3m+r>3j+e. statically indeterminate frame

In applying Eq. (5.16), the ends of the frame attached to supports as well
as any free ends are treated as joints. The conditions for static determi-
nacy and indeterminacy, as given by Eq. (5.16), are necessary but not
sufficient conditions. In order for these criteria for static determinacy and
indeterminacy to be valid, the arrangement of the members, support re-
actions, and internal hinges and rollers (if any) must be such that the frame
will remain geometrically stable under a general system of coplanar loads.
The procedure for determining the number of equations of condition
remains the same as discussed in Chapter 3. Recall that an internal hinge
within, or at the end of, a member provides one equation of condition
(Fig. 5.18), and an internal roller provides two such equations. When
several members of a frame are connected at a hinged joint, the number of
equations of condition at the joint is equal to the number of members
meeting at the joint minus one. For example, consider the hinged joint H
of the frame shown in Fig. 5.19. As a hinge cannot transmit moment, the
moments at the ends H of the three members EH, GH, and HI meeting
at the joint must be zero; that is, M7 =0, M5" =0, and M}I' = 0.
However, these three equations are not independent in the sense that
if any two of these three equations are satisfied along with the moment
equilibrium equation for the joint H, the remaining equation will auto-
matically be satisfied. Thus, the hinged joint H provides two independent

(a) Beam-to-Column Shear Connections
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FIG. 5.18 (contd.)
Copyright © American Institute of Steel Construction.
Reprinted with permission. Al rights reserved (b) Beam-to-Beam Shear Connection

Internal hinged joint
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Any two of the following may be considered
as equations of condition:

FIG. 5.19 Mg =0, MZ"=0, My'=0

equations of condition. Using a similar reasoning, it can be shown that an
internal roller joint provides the equations of condition whose number is
equal to 2 x (number of members meeting at the joint —1).

Alternative Approach

An alternative approach that can be used for determining the degree
of static indeterminacy of a frame is to cut enough members of the frame
by passing imaginary sections and/or to remove enough supports to ren-
der the structure statically determinate. The total number of internal and
external restraints thus removed equals the degree of static indeter-
minacy. As an example, consider the frame shown in Fig. 5.20(a). The
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frame can be made statically determinate by passing an imaginary sec-
tion through the girder BC, thereby removing three internal restraints
(the axial force Q, the shear S, and the bending moment M), as shown in
Fig. 5.20(b). Note that the two cantilever structures thus produced are
both statically determinate and geometrically stable. Because three re-
straints (Q, S, and M) had to be removed from the original statically in-
determinate frame of Fig. 5.20(a) to obtain the statically determinate
frames of Fig. 5.20(b), the degree of static indeterminacy of the original
frame is three. There are many possible choices regarding the restraints
that can be removed from a statically indeterminate structure to render it
statically determinate. For example, the frame of Fig. 5.20(a) could al-
ternatively be rendered statically determinate by disconnecting it from the
fixed support at D, as shown in Fig. 5.20(c). Since three external restraints
or reactions, Dy, Dy, and Mp, must be removed in this process, the de-
gree of static indeterminacy of the frame is three, as concluded previously.

This alternative approach of establishing the degree of indeterminacy
(instead of applying Eq. (5.15)) provides the most convenient means of
determining the degrees of static indeterminacy of multistory building
frames. An example of such a frame is shown in Fig. 5.21(a). The struc-
ture can be made statically determinate by passing an imaginary section
through each of the girders, as shown in Fig. 5.21(b). Because each cut
removes three restraints, the total number of restraints that must be re-
moved to render the structure statically determinate is equal to three
times the number of girders in the frame. Thus, the degree of static in-
determinacy of a multistory frame with fixed supports is equal to three
times the number of girders, provided that the frame does not contain any
internal hinges or rollers.
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i = 3(number of girders) = 3(12) = 36

FIG. 5.21 (a) (b)

il /{“ E 1~,-‘= ind wk ! "\1 ,, T‘\

Verify that each of the plane frames shown in Fig. 5.22 is statically indeterminate and determine its degree of static
indeterminacy.

pEoN
m=5 j=6 r=8 e.=0 m=4 j=4 r=3 e.=0 m=6 j=6 r=4 ¢,=0
3m+r>3j+e, 3m+r>3j+e, Im+r>3j+e,
(a) Statically Indeterminate (i = 5) (b) Statically Indeterminate (i = 3) (c) Statically Indeterminate (i = 4)
Hinge Hinge

|
L L]
| |
l |

A AN

1 | |
[

u u
2T

= =:L s

m=10 j=9 r=9 e.=5

3m+r>3j+e, i = 3 (number of girders) =3(4) =12 i = 3 (number of girders) = 3(35) = 105
(d) Statically Indeterminate (i = 7) (e) ()
FIG. 5.22
Solution

See Fig. 5.22(a) through (f).
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5.6 Analysis of Plane Frames

The following step-by-step procedure can be used for determining the
member end forces as well as the shears, bending moments, and axial
forces in members of plane statically determinate frames.

1.

Check for static determinacy. Using the procedure described in
the preceding section, determine whether or not the given frame
is statically determinate. If the frame is found to be statically
determinate and stable, proceed to step 2. Otherwise, end the
analysis at this stage. (The analysis of statically indeterminate
frames is considered in Part Three of this text.)

Determine the support reactions. Draw a free-body diagram of
the entire frame, and determine reactions by applying the equa-
tions of equilibrium and any equations of condition that can be
written in terms of external reactions only (without involving any
internal member forces). For some internally unstable frames, it
may not be possible to express all the necessary equations of
condition exclusively in terms of external reactions; therefore, it
may not be possible to determine all the reactions. However,
some of the reactions for such structures can usually be calculated
from the available equations.

Determine member end forces. It is usually convenient to specify
the directions of the unknown forces at the ends of the members of
the frame by using a common structural (or global) XY coor-
dinate system, with the X and Y axes oriented in the horizontal
(positive to the right) and vertical (positive upward) directions,
respectively. Draw free-body diagrams of all the members and
joints of the structure. These free-body diagrams must show, in
addition to any external loads and support reactions, all the in-
ternal forces being exerted upon the member or the joint. Re-
member that a rigid joint is capable of transmitting two force
components and a couple, a hinged joint can transmit two force
components, and a roller joint can transmit only one force com-
ponent. If there is a hinge at an end of a member, the internal
moment at that end should be set equal to zero. Any load acting at
a joint should be shown on the free-body diagrams of the joint, not
at the ends of the members connected to the joint. The senses of
the member end forces are not known and can be arbitrarily as-
sumed. However, it is usually convenient to assume the senses of
the unknown forces at member ends in the positive X and Y di-
rections and of the unknown couples as counterclockwise. The
senses of the internal forces and couples on the free-body diagrams
of joints must be in directions opposite to those assumed on the
member ends in accordance with Newton’s third law. Compute
the member end forces as follows:

a. Select a member or a joint with three or fewer unknowns.

b. Determine the unknown forces and moments by applying the
three equations of equilibrium (> Fy =0, >  Fy =0, and
> M = 0) to the free body of the member or joint selected in
step 3(a).



Section 5.6 Analysis of Plane Frames 201

If all the unknown forces, moments, and reactions have been
determined, then proceed to step 3(d). Otherwise, return to
step 3(a).

Since the support reactions were calculated in step 2 by
using the equations of equilibrium and condition of the entire
structure, there should be some equations remaining that have
not been utilized so far. The number of leftover equations
should be equal to the number of reactions computed in step
2. Use these remaining equations to check the calculations. If
the analysis has been carried out correctly, then the remaining
equations must be satisfied.

For some types of frames, a member or a joint that has a

number of unknowns less than or equal to the number of equili-
brium equations may not be found to start or continue the anal-
ysis. In such a case, it may be necessary to write equilibrium
equations in terms of unknowns for two or more free bodies and
solve the equations simultaneously to determine the unknown
forces and moments.

For each member of the frame, construct the shear, bending
moment, and axial force diagrams as follows:

a.

Select a member (local) xy coordinate system with origin at
either end of the member and x axis directed along the cen-
troidal axis of the member. The positive direction of the y
axis is chosen so that the coordinate system is right-handed,
with the z axis pointing out of the plane of the paper.
Resolve all the external loads, reactions, and end forces act-
ing on the member into components in the x and y directions
(i.e., in the directions parallel and perpendicular to the cen-
troidal axis of the member). Determine the total (resultant)
axial force and shear at each end of the member by alge-
braically adding the x components and y components, re-
spectively, of the forces acting at each end of the member.
Construct the shear and bending moment diagrams for the
member by using the procedure described in Section 5.4. The
procedure can be applied to nonhorizontal members by con-
sidering the member end at which the origin of the xy coor-
dinate system is located as the left end of the member (with x
axis pointing toward the right) and the positive y direction as
the upward direction.

Construct the axial force diagram showing the variation of
axial force along the length of the member. Such a diagram
can be constructed by using the method of sections. Pro-
ceeding in the positive x direction from the member end at
which the origin of the xy coordinate system is located, sec-
tions are passed after each successive change in loading
along the length of the member to determine the equations
for the axial force in terms of x. According to the sign con-
vention adopted in Section 5.1, the external forces acting in
the negative x direction (causing tension at the section) are
considered to be positive. The values of axial forces deter-
mined from these equations are plotted as ordinates against
x to obtain the axial force diagram.
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5. Draw a qualitative deflected shape of the frame. Using the bend-
ing moment diagrams constructed in step 4, draw a qualitative
deflected shape for each member of the frame. The deflected shape
of the entire frame is then obtained by connecting the deflected
shapes of the individual members at joints so that the original an-
gles between the members at the rigid joints are maintained and
the support conditions are satisfied. The axial and shear de-
formations, which are usually negligibly small as compared to the
bending deformations, are neglected in sketching the deflected
shapes of frames.

It should be noted that the bending moment diagrams constructed by
using the procedure described in step 4(c) will always show moments on
the compression sides of the members. For example, at a point along a
vertical member, if the left side of the member is in compression, then the
value of the moment at that point will appear on the left side. Since the
side of the member on which a moment appears indicates the direction of
the moment, it is not necessary to use plus and minus signs on the moment
diagrams. When designing reinforced concrete frames, the moment dia-
grams are sometimes drawn on the tension sides of the members to facili-
tate the placement of steel bars used to reinforce concrete that is weak
in tension. A tension-side moment diagram can be obtained by simply
inverting (i.e., rotating through 180° about the member’s axis) the cor-
responding compression-side moment diagram. Only compression-side
moment diagrams are considered in this text.

Example 5.13

PR INEAR |

Draw the shear, bending moment, and axial force diagrams and the qualitative deflected shape for the frame shown in

Fig. 5.23(a).

Solution

Static Determinacy. m = 3, j =4, r = 3, and e, = 0. Because 3m + r = 3j + e, and the frame is geometrically stable, it
is statically determinate.

Reactions. Considering the equilibrium of the entire frame (Fig. 5.23(b)), we observe that in order to satisfy > Fy = 0,
the reaction component 4y must act to the left with a magnitude of 18 k to balance the horizontal load of 18 k to the
right. Thus,

Ay =—18k Ay =18 k —
We compute the remaining two reactions by applying the two equilibrium equations as follows:
+GC>Mu=0 —18(20) — 2(30)(15) + Dy(30) =0 Dy =42k
+ 1 Fy=0 Ay —2(30)+42=0 Ay=18k1

Member End Forces. The free-body diagrams of all the members and joints of the frame are shown in Fig. 5.23(c). We
can begin the computation of internal forces either at joint 4 or at joint D, both of which have only three unknowns.

Joint A. Beginning with joint 4, we can see from its free-body diagram that in order to satisfy > Fy = 0, 412 must act
to the right with a magnitude of 18 k to balance the horizontal reaction of 18 k to the left. Thus,

AP =18k

continued
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(h) Qualitative Deflected Shape

continued
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Similarly, by applying Y Fy = 0, we obtain
Ay =18k

Member AB. With the magnitudes of 4% and 43® now known, member 4B has three unknowns, B¢Z, B4 and M5,
which can be determined by applying > Fx =0, Fy = 0,and }, M, = 0. Thus,

By? =18k  ByP=-18k  Mj® =360 k-ft
Joint B. Proceeding next to joint B and considering its equilibrium, we obtain
BEC =0 BEC =18k  MPC =360 k-ft

Member BC. Next, considering the equilibrium of member BC, we write

+—= Y Fx=0 Cy¢=0

+ 1 Fr=0 18 —2(30) + CE€ =0 CEC =42k

+GCSMp=0  —360 —2(30)(15) +42(30) + ME =0 M =0
Joint C. Applying the three equilibrium equations, we obtain

cP=0 cfP=-422k M =0
Member CD. Applying > Fxy =0 and ) Fy = 0 in order, we obtain
DP =0 DFP =42k

Since all unknown forces and moments have been determined, we check our computations by using the third equili-
brium equations for member CD.

+GC> Mp=0 Checks

Joint D. (Checking computations)
+—=Y Fy=0 Checks
+ 1> Fy=0 42 —-42=0 Checks

Shear Diagrams. The xy coordinate systems selected for the three members of the frame are shown in Fig. 5.23(d),
and the shear diagrams for the members constructed by using the procedure described in Section 5.4 are depicted in
Fig. 5.23(e). Ans.

Bending Moment Diagrams. The bending moment diagrams for the three members of the frame are shown in Fig. 5.23(f).

Axial Force Diagrams. From the free-body diagram of member 4B in Fig. 5.23(d), we observe that the axial force
throughout the length of this member is compressive, with a constant magnitude of 18 k. Therefore, the axial force
diagram for this member is a straight line parallel to the x axis at a value of —18 k, as shown in Fig. 5.23(g). Similarly,
it can be seen from Fig. 5.23(d) that the axial forces in members BC and CD are also constant, with magnitudes of
0 and —42 k, respectively. The axial force diagrams thus constructed for these members are shown in Fig. 5.23(g).  Ans.

Qualitative Deflected Shape. From the bending moment diagrams of the members of the frame (Fig. 5.23(f)), we ob-
serve that the members 4B and BC bend concave to the left and concave upward, respectively. As no bending moment
develops in member CD, it does not bend but remains straight. A qualitative deflected shape of the frame obtained by
connecting the deflected shapes of the three members at the joints is shown in Fig. 5.23(h). As this figure indicates, the
deflection of the frame at support A4 is zero. Due to the horizontal load at B, joint B deflects to the right to B’. Since the
axial deformations of members are neglected and bending deformations are assumed to be small, joint B deflects only in
the horizontal direction, and joint C deflects by the same amount as joint B; that is, BB’ = CC’. Note that the curva-
tures of the members are consistent with their bending moment diagrams and that the original 90° angles between
members at the rigid joints B and C have been maintained. Ans.
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Example 5.14 / g’l "L‘\\L M F

Draw the shear, bending moment, and axial force diagrams and the qualitative deflected shape for the frame shown in
Fig. 5.24(a).
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Solution
Static Determinacy. m =2, j =3, r = 3, and e, = 0. Because 3m + r = 3j + ¢, and the frame is geometrically stable, it

is statically determinate.

Reactions. (See Fig. 5.24(b).)

1.6 k/ft
I O =
C
B
B
D 24
A

25

Section 5.6 A

2

nalysis of Plane Frames 207

4

[

B
D

A

(e) Shear Diagrams (k)
B B’ C
C [ ]
bol
Al

(g) Axial Force Diagrams (k)

-2 F=0
—A;+25=0
+1XFH=0
A, —1.6(15) =0
+CEM=0

M, —25(10) — 1.6(15)(7.5) = 0

Ay =25k
A4, =24k
M, =430 k-ft D

(h) Qualitative Deflected Shape

continued



208 CHAPTER 5 Beams and Frames: Shear and Bending Moment

Member End Forces. (See Fig. 5.24(c).)
Joint A. By applying the equilibrium equations > Fy =0, > Fy =0, and > M4 = 0, we obtain
AP =-25k AP =24k  M;P =430 k-ft
Member AB. Next, considering the equilibrium of member 4B, we write
+ =Y Fy=0 —25+25+ By =0 B =0
+1 X Fr=0 24+By?=0  By¥=-24k
+ (X Mp=0  430-25(10) + M58 =0  Mz® =180 k-ft
Joint B. Applying the three equations of equilibrium, we obtain
B¢ =0 BEC=24k  MZC =180 k-t

Member BC. (Checking computations.)

+—=> Fx=0 Checks
+ 1> Fy=0 24 —1.6(15) =0 Checks
+GC> Mp=0 180 — 1.6(15)(7.5) = Checks

The member end forces are shown in Fig. 5.24(d).
Shear Diagrams. See Fig. 5.24(e). Ans.
Bending Moment Diagrams. See Fig. 5.24(f). Ans.
Axial Force Diagrams. See Fig. 5.24(g). Ans.
Qualitative Deflected Shape. See Fig. 5.24(h). Ans.

Example 5.15 PN N

A gable frame is subjected to a snow loading, as shown in Fig. 5.25(a). Draw the shear, bending moment, and axial
force diagrams and the qualitative deflected shape for the frame.
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FIG. 5.25

continued
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Solution

Static Determinacy. m =4, j =5, r = 4, and e, = 1. Because 3m + r = 3j + e, and the frame is geometrically stable, it

is statically determinate.
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Reactions. (See Fig. 5.25(b).)

+GY Mp=0
—Ay(8) +12(8)(4) =0 Ay =48 kN |
+ 1Y Fy=0
48 — 12(8) + Ey =0 Ey =48 kN |
+CY MEC=0
Ax(8) —48(4) + 12(4)(2) =0 Ay =12 kN —
+—- Y Fx=0
12+ Ex =0

Ey = —12kN Eyxy =12 kN «
Member End Forces. (See Fig. 5.25(c).)
Joint A. By applying the equations of equilibrium Y Fy = 0 and }_ Fy = 0, we obtain

A =12kN 475 =48 kN
Member AB. Considering the equilibrium of 