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Preface

The objective of this book is to develop an understanding of the basic
principles of structural analysis. Emphasizing the intuitive classical ap-
proach, Structural Analysis covers the analysis of statically determinate
and indeterminate beams, trusses, and rigid frames. It also presents an
introduction to the matrix analysis of structures.

The book is divided into three parts. Part One presents a general
introduction to the subject of structural engineering. It includes a chap-
ter devoted entirely to the topic of loads because attention to this im-
portant topic is generally lacking in many civil engineering curricula.
Part Two, consisting of Chapters 3 through 10, covers the analysis of
statically determinate beams, trusses, and rigid frames. The chapters on
deflections (Chapters 6 and 7) are placed before those on influence lines
(Chapters 8 and 9), so that influence lines for deflections can be included
in the latter chapters. This part also contains a chapter on the analysis
of symmetric structures (Chapter 10). Part Three of the book, Chapters
11 through 17, covers the analysis of statically indeterminate structures.
The format of the book is flexible to enable instructors to emphasize
topics that are consistent with the goals of the course.

Each chapter of the book begins with an introductory section de-
fining its objective and ends with a summary section outlining its salient
features. An important general feature of the book is the inclusion of
step-by-step procedures for analysis to enable students to make an easier
transition from theory to problem solving. Numerous solved examples
are provided to illustrate the application of the fundamental concepts.

A computer program for analyzing plane framed structures is
available on the publisher’s website www.cengage.com/engineering.
This interactive software can be used to simulate a variety of structural
and loading configurations and to determine cause versus e¤ect rela-
tionships between loading and various structural parameters, thereby
enhancing the students’ understanding of the behavior of structures.
The software shows deflected shapes of structures to enhance students’
understanding of structural response due to various types of loadings. It
can also include the e¤ects of support settlements, temperature changes,

xiii



and fabrication errors in the analysis. A solutions manual, containing
complete solutions to over 600 text exercises, is also available for the
instructor.

New to the Fifth Edition

Building upon the original theme of this book which is that detailed ex-
planations of concepts provide the most e¤ective means of teaching
structural analysis, the following improvements and changes have been
made in this fifth edition:

� The entire artwork for the book has been redrawn in two colors
to enhance clarity. Where applicable, the external loading and
reactions of the structure, as well as its deformed (deflected)
shape, are shown in blue; whereas, the undeformed structure, its
supports and dimensions are drawn in black/grey.

� A new section on structural systems for transmitting loads has
been added in Chapter 2, where the concepts of gravity and
lateral load paths and tributary areas are introduced. Also in
this chapter, the previously separate sections on live loads and
impact have now been combined, another new section on the
classification of buildings for environmental loads as per
ASCE/SEI 7-10 Standard has been added, and all the material
on loads has been revised to meet the provisions of this latest
version of the ASCE/SEI 7 Standard.

� In chapter 7, the treatment of the virtual work method has been
expanded by including a graphical procedure for evaluating the
virtual work integrals, along with two new examples to illus-
trate the application of this procedure.

� Based on reviewers’ input, Chapter 14 of the previous edition has
been deleted, with the method of least work now covered in
Chapter 13 and the treatment of the three-moment equation
moved to a new Appendix D. The subsequent chapters of the
book have been re-numbered accordingly.

� Over 15 percent of the problems from the previous edition have
been replaced with new ones.

� There are numerous other minor revisions, including an expanded
discussion of static determinacy of trusses (Chapter 4), and addi-
tion of new photographs and figures illustrating some typical
building frame connections (Chapter 5). The page layout has
been redesigned to enhance clarity. Finally, the computer soft-
ware has been upgraded and recompiled to make it compatible
with the latest versions of Microsoft Windows.

Ancillaries for the Fifth Edition

Worked-out solutions to all end-of-chapter problems are provided in the
Instructors Solutions Manual, and available in print or digitally to reg-
istered instructors on the instructor resources web site.
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Two sets of PowerPoint slides, one of all figures and tables, the other
of examples and equations to allow instructors an easier way to prepare
their lectures, are also available on the instructor website, at www.cengage
.com/engineering. The computer software program is available for stu-
dents using the text, through www.cengagebrain.com, and for instructors
through either site.

MindTap Online Course and Reader

In addition to the print version, this textbook will also be available on-
line through MindTap, a personalized learning program. Students who
purchase the MindTap version will have access to the book’s MindTap
Reader and will be able to complete homework and assessment material
online, through their desktop, laptop, or iPad. If your class is using a
Learning Management System (such as Blackboard, Moodle, or Angel)
for tracking course content, assignments, and grading, you can seam-
lessly access the MindTap suite of content and assessments for this
course.

In MindTap, instructors can:

� Personalize the Learning Path to match the course syllabus by
rearranging content, hiding sections, or appending original
material to the textbook content

� Connect a Learning Management System portal to the online
course and Reader

� Customize online assessments and assignments
� Track student progress and comprehension with the Progress app
� Promote student engagement through interactivity and exercises

Additionally, students can listen to the text through ReadSpeaker,
take notes and highlight content for easy reference, and check their un-
derstanding of the material.
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Part One
Introduction to Structural
Analysis and Loads





1
Introduction to
Structural Analysis
1.1 Historical Background
1.2 Role of Structural Analysis in Structural Engineering Projects
1.3 Classification of Structures
1.4 Analytical Models

Summary

3

Structural analysis is the prediction of the performance of a given structure

under prescribed loads and/or other external e¤ects, such as support

movements and temperature changes. The performance characteristics
commonly of interest in the design of structures are (1) stresses or stress
resultants, such as axial forces, shear forces, and bending moments; (2)
deflections; and (3) support reactions. Thus, the analysis of a structure
usually involves determination of these quantities as caused by a given
loading condition. The objective of this text is to present the methods for
the analysis of structures in static equilibrium.

This chapter provides a general introduction to the subject of struc-
tural analysis. We first give a brief historical background, including
names of people whose work is important in the field. Then we discuss
the role of structural analysis in structural engineering projects. We
describe the five common types of structures: tension and compression
structures, trusses, and shear and bending structures. Finally, we con-
sider the development of the simplified models of real structures for the
purpose of analysis.

1.1 Historical Background

Since the dawn of history, structural engineering has been an essential
part of human endeavor. However, it was not until about the middle of
the seventeenth century that engineers began applying the knowledge of

Marina City District, Chicago
Hisham Ibrahim / Photographer’s Choice RF /Getty Images



mechanics (mathematics and science) in designing structures. Earlier en-
gineering structures were designed by trial and error and by using rules
of thumb based on past experience. The fact that some of the mag-
nificent structures from earlier eras, such as Egyptian pyramids (about
3000 b.c.), Greek temples (500–200 b.c.), Roman coliseums and aque-
ducts (200 b.c.–a.d. 200), and Gothic cathedrals (a.d. 1000–1500), still
stand today is a testimonial to the ingenuity of their builders (Fig. 1.1).

Galileo Galilei (1564–1642) is generally considered to be the origi-
nator of the theory of structures. In his book entitled Two New Sciences,
which was published in 1638, Galileo analyzed the failure of some
simple structures, including cantilever beams. Although Galileo’s predic-
tions of strengths of beams were only approximate, his work laid the
foundation for future developments in the theory of structures and ushered
in a new era of structural engineering, in which the analytical principles of
mechanics and strength of materials would have a major influence on the
design of structures.

Following Galileo’s pioneering work, the knowledge of structural
mechanics advanced at a rapid pace in the second half of the seventeenth
century and into the eighteenth century. Among the notable investigators
of that period were Robert Hooke (1635–1703), who developed the law
of linear relationships between the force and deformation of materials
(Hooke’s law); Sir Isaac Newton (1642–1727), who formulated the
laws of motion and developed calculus; John Bernoulli (1667–1748),
who formulated the principle of virtual work; Leonhard Euler
(1707–1783), who developed the theory of buckling of columns; and

FIG. 1.1 The Cathedral of Notre Dame in
Paris was Completed in the Thirteenth
Century
Ritu Manoj Jethani / Shutterstock.com
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C. A. de Coulomb (1736–1806), who presented the analysis of bending
of elastic beams.

In 1826 L. M. Navier (1785–1836) published a treatise on elastic be-
havior of structures, which is considered to be the first textbook on the
modern theory of strength of materials. The development of structural
mechanics continued at a tremendous pace throughout the rest of the
nineteenth century and into the first half of the twentieth, when most of
the classical methods for the analysis of structures described in this text
were developed. The important contributors of this period included B. P.
Clapeyron (1799–1864), who formulated the three-moment equation for
the analysis of continuous beams; J. C. Maxwell (1831–1879), who pre-
sented the method of consistent deformations and the law of reciprocal
deflections; Otto Mohr (1835–1918), who developed the conjugate-beam
method for calculation of deflections and Mohr’s circles of stress and
strain; Alberto Castigliano (1847–1884), who formulated the theorem of
least work; C. E. Greene (1842–1903), who developed the moment-area
method; H. Muller-Breslau (1851–1925), who presented a principle for
constructing influence lines; G. A. Maney (1888–1947), who developed
the slope-deflection method, which is considered to be the precursor of
the matrix sti¤ness method; and Hardy Cross (1885–1959), who devel-
oped the moment-distribution method in 1924. The moment-distribution
method provided engineers with a simple iterative procedure for analyz-
ing highly statically indeterminate structures. This method, which was the
most widely used by structural engineers during the period from about
1930 to 1970, contributed significantly to their understanding of the
behavior of statically indeterminate frames. Many structures designed
during that period, such as high-rise buildings, would not have been pos-
sible without the availability of the moment-distribution method.

The availability of computers in the 1950s revolutionized structural
analysis. Because the computer could solve large systems of simultaneous
equations, analyses that took days and sometimes weeks in the pre-
computer era could now be performed in seconds. The development of the
current computer-oriented methods of structural analysis can be attributed
to, among others, J. H. Argyris, R. W. Clough, S. Kelsey, R. K. Livesley,
H. C. Martin, M. T. Turner, E. L. Wilson, and O. C. Zienkiewicz.

1.2 Role of Structural Analysis in Structural Engineering Projects

Structural engineering is the science and art of planning, designing, and

constructing safe and economical structures that will serve their intended

purposes. Structural analysis is an integral part of any structural engi-
neering project, its function being the prediction of the performance of
the proposed structure. A flowchart showing the various phases of a
typical structural engineering project is presented in Fig. 1.2. As this di-
agram indicates, the process is an iterative one, and it generally consists
of the following steps:

1. Planning Phase The planning phase usually involves the estab-
lishment of the functional requirements of the proposed
structure, the general layout and dimensions of the structure,
consideration of the possible types of structures (e.g., rigid frame

Section 1.2 Role of Structural Analysis in Structural Engineering Projects 5



or truss) that may be feasible and the types of materials to be
used (e.g., structural steel or reinforced concrete). This phase
may also involve consideration of nonstructural factors, such as
aesthetics, environmental impact of the structure, and so on.
The outcome of this phase is usually a structural system that
meets the functional requirements and is expected to be the most
economical. This phase is perhaps the most crucial one of the
entire project and requires experience and knowledge of con-
struction practices in addition to a thorough understanding of
the behavior of structures.

2. Preliminary Structural Design In the preliminary structural de-
sign phase, the sizes of the various members of the structural
system selected in the planning phase are estimated based on
approximate analysis, past experience, and code requirements.
The member sizes thus selected are used in the next phase to
estimate the weight of the structure.

3. Estimation of Loads Estimation of loads involves determination
of all the loads that can be expected to act on the structure.

4. Structural Analysis In structural analysis, the values of the
loads are used to carry out an analysis of the structure in order
to determine the stresses or stress resultants in the members and
the deflections at various points of the structure.

5. Safety and Serviceability Checks The results of the analysis are
used to determine whether or not the structure satisfies the

FIG. 1.2 Phases of a Typical Structural
Engineering Project
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safety and serviceability requirements of the design codes. If
these requirements are satisfied, then the design drawings and
the construction specifications are prepared, and the construc-
tion phase begins.

6. Revised Structural Design If the code requirements are not sat-
isfied, then the member sizes are revised, and phases 3 through 5
are repeated until all the safety and serviceability requirements
are satisfied.

Except for a discussion of the types of loads that can be expected to
act on structures (Chapter 2), our primary focus in this text will be on
the analysis of structures.

1.3 Classification of Structures

As discussed in the preceding section, perhaps the most important deci-
sion made by a structural engineer in implementing an engineering
project is the selection of the type of structure to be used for supporting
or transmitting loads. Commonly used structures can be classified into
five basic categories, depending on the type of primary stresses that may
develop in their members under major design loads. However, it should
be realized that any two or more of the basic structural types described
in the following may be combined in a single structure, such as a build-
ing or a bridge, to meet the structure’s functional requirements.

Tension Structures

The members of tension structures are subjected to pure tension under the
action of external loads. Because the tensile stress is distributed uniformly
over the cross-sectional areas of members, the material of such a structure
is utilized in the most e‰cient manner. Tension structures composed of
flexible steel cables are frequently employed to support bridges and long-
span roofs. Because of their flexibility, cables have negligible bending
sti¤ness and can develop only tension. Thus, under external loads, a cable
adopts a shape that enables it to support the load by tensile forces alone.
In other words, the shape of a cable changes as the loads acting on it
change. As an example, the shapes that a single cable may assume under
two di¤erent loading conditions are shown in Fig. 1.3.

Figure 1.4 shows a familiar type of cable structure—the suspension

bridge. In a suspension bridge, the roadway is suspended from two main
cables by means of vertical hangers. The main cables pass over a pair of
towers and are anchored into solid rock or a concrete foundation at
their ends. Because suspension bridges and other cable structures lack
sti¤ness in lateral directions, they are susceptible to wind-induced oscil-
lations (see Fig. 1.5). Bracing or sti¤ening systems are therefore provided
to reduce such oscillations.

Besides cable structures, other examples of tension structures in-
clude vertical rods used as hangers (for example, to support balconies or
tanks) and membrane structures such as tents and roofs of large-span
domes (Fig. 1.6).

Section 1.3 Classification of Structures 7



FIG. 1.3

FIG. 1.4 Suspension Bridge

FIG. 1.5 Tacoma Narrows Bridge
Oscillating before Its Collapse in 1940
Smithsonian Institution Photo No. 72-787. Division of

Work & Industry, National Museum of American History,

Smithsonian Institution
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Compression Structures

Compression structures develop mainly compressive stresses under the
action of external loads. Two common examples of such structures are
columns and arches (Fig. 1.7). Columns are straight members subjected
to axially compressive loads, as shown in Fig. 1.8. When a straight
member is subjected to lateral loads and/or moments in addition to axial
loads, it is called a beam-column.

An arch is a curved structure, with a shape similar to that of an
inverted cable, as shown in Fig. 1.9. Such structures are frequently used

FIG. 1.6 The Fabric (membrane) Roof of
the Tokyo Dome is Tensioned (inflated)
by Air Pressure from Inside the Stadium
© Gavin Hellier / Alamy

FIG. 1.7 Columns and Arches of the
Segovia (Roman) Aqueduct Bridge in
Spain (constructed in the first or the
second centuries)
Bluedog423
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to support bridges and long-span roofs. Arches develop mainly com-
pressive stresses when subjected to loads and are usually designed so
that they will develop only compression under a major design loading.
However, because arches are rigid and cannot change their shapes as
can cables, other loading conditions usually produce secondary bending
and shear stresses in these structures, which, if significant, should be
considered in their designs.

Because compression structures are susceptible to buckling or in-
stability, the possibility of such a failure should be considered in their
designs; if necessary, adequate bracing must be provided to avoid such
failures.

Trusses

Trusses are composed of straight members connected at their ends by
hinged connections to form a stable configuration (Fig. 1.10). When the
loads are applied to a truss only at the joints, its members either elon-
gate or shorten. Thus, the members of an ideal truss are always either in
uniform tension or in uniform compression. Real trusses are usually
constructed by connecting members to gusset plates by bolted or welded
connections. Although the rigid joints thus formed cause some bending
in the members of a truss when it is loaded, in most cases such secon-
dary bending stresses are small, and the assumption of hinged joints
yields satisfactory designs.

Trusses, because of their light weight and high strength, are among
the most commonly used types of structures. Such structures are used in
a variety of applications, ranging from supporting roofs of buildings to
serving as support structures in space stations and sports arenas.

Shear Structures

Shear structures, such as reinforced concrete shear walls (Fig. 1.11), are
used in multistory buildings to reduce lateral movements due to wind
loads and earthquake excitations (Fig. 1.12). Shear structures develop
mainly in-plane shear, with relatively small bending stresses under the
action of external loads.

FIG. 1.10 Plane Truss

FIG. 1.8 Column

FIG. 1.11 Shear Wall

FIG. 1.9 Arch
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Bending Structures

Bending structures develop mainly bending stresses under the action of
external loads. In some structures, the shear stresses associated with the
changes in bending moments may also be significant and should be
considered in their designs.

Some of the most commonly used structures, such as beams, rigid
frames, slabs, and plates, can be classified as bending structures. A beam

is a straight member that is loaded perpendicular to its longitudinal axis

(Fig. 1.13). Recall from previous courses on statics and mechanics of

materials that the bending (normal) stress varies linearly over the depth
of a beam from the maximum compressive stress at the fiber farthest
from the neutral axis on the concave side of the bent beam to the max-
imum tensile stress at the outermost fiber on the convex side. For
example, in the case of a horizontal beam subjected to a vertically
downward load, as shown in Fig. 1.13, the bending stress varies from
the maximum compressive stress at the top edge to the maximum tensile
stress at the bottom edge of the beam. To utilize the material of a beam
cross section most e‰ciently under this varying stress distribution, the
cross sections of beams are often I-shaped (see Fig. 1.13), with most of
the material in the top and bottom flanges. The I-shaped cross sections
are most e¤ective in resisting bending moments.

Rigid frames are composed of straight members connected together
either by rigid (moment-resisting) connections or by hinged connections
to form stable configurations. Unlike trusses, which are subjected only

FIG. 1.12 The Shear Wall on the Side of
This Building is Designed to Resist
Lateral Loads Due to Wind and
Earthquakes
NISEE, University of California, Berkeley

FIG. 1.13 Beam
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to joint loads, the external loads on frames may be applied on the
members as well as on the joints (see Fig. 1.14). The members of a rigid
frame are, in general, subjected to bending moment, shear, and axial
compression or tension under the action of external loads. However, the
design of horizontal members or beams of rectangular frames is often
governed by bending and shear stresses only, since the axial forces in
such members are usually small.

Frames, like trusses, are among the most commonly used types of
structures. Structural steel and reinforced concrete frames are com-
monly used in multistory buildings (Fig. 1.15), bridges, and industrial
plants. Frames are also used as supporting structures in airplanes, ships,
aerospace vehicles, and other aerospace and mechanical applications.

It may be of interest to note that the generic term framed structure is
frequently used to refer to any structure composed of straight members,
including a truss. In that context, this textbook is devoted primarily to
the analysis of plane framed structures.

1.4 Analytical Models

An analytical model is a simplified representation, or an ideal, of a real
structure for the purpose of analysis. The objective of the model is to
simplify the analysis of a complicated structure. The analytical model
represents, as accurately as practically possible, the behavioral charac-
teristics of the structure of interest to the analyst, while discarding much
of the detail about the members, connections, and so on, that is ex-
pected to have little e¤ect on the desired characteristics. Establishment
of the analytical model is one of the most important steps of the analysis
process; it requires experience and knowledge of design practices in
addition to a thorough understanding of the behavior of structures.
Remember that the structural response predicted from the analysis of the
model is valid only to the extent that the model represents the actual
structure.

FIG. 1.14 Rigid Frame

FIG. 1.15 Skeletons of Frame Buildings
Racheal Grazias / Shutterstock.com
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Development of the analytical model generally involves consid-
eration of the following factors.

Plane Versus Space Structure

If all the members of a structure as well as the applied loads lie in a
single plane, the structure is called a plane structure. The analysis of
plane, or two-dimensional, structures is considerably simpler than the
analysis of space, or three-dimensional, structures. Fortunately, many
actual three-dimensional structures can be subdivided into plane struc-
tures for analysis.

As an example, consider the framing system of a bridge shown in
Fig. 1.16(a). The main members of the system, designed to support
vertical loads, are shown by solid lines, whereas the secondary bracing
members, necessary to resist lateral wind loads and to provide stability,
are represented by dashed lines. The deck of the bridge rests on beams
called stringers; these beams are supported by floor beams, which, in
turn, are connected at their ends to the joints on the bottom panels of the
two longitudinal trusses. Thus, the weight of the tra‰c, deck, stringers,
and floor beams is transmitted by the floor beams to the supporting
trusses at their joints; the trusses, in turn, transmit the load to the foun-
dation. Because this applied loading acts on each truss in its own plane,
the trusses can be treated as plane structures.

As another example, the framing system of a multistory building is
shown in Fig. 1.17(a). At each story, the floor slab rests on floor beams,
which transfer any load applied to the floor, the weight of the slab, and
their own weight to the girders of the supporting rigid frames. This ap-
plied loading acts on each frame in its own plane, so each frame can,
therefore, be analyzed as a plane structure. The loads thus transferred to
each frame are further transmitted from the girders to the columns and
then finally to the foundation.

Although a great majority of actual three-dimensional structural
systems can be subdivided into plane structures for the purpose of anal-
ysis, some structures, such as latticed domes, aerospace structures, and
transmission towers, cannot, due to their shape, arrangement of mem-
bers, or applied loading, be subdivided into planar components. Such
structures, called space structures, are analyzed as three-dimensional
bodies subjected to three-dimensional force systems.

Line Diagram

The analytical model of the two- or three-dimensional body selected for
analysis is represented by a line diagram. On this diagram, each member
of the structure is represented by a line coinciding with its centroidal
axis. The dimensions of the members and the size of the connections are
not shown on the diagram. The line diagrams of the bridge truss of
Fig. 1.16(a), and the rigid frame of Fig. 1.17(a) are shown in Figs. 1.16(b)
and 1.17(b), respectively. Note that two lines ( * *) are sometimes used in
this text to represent members on the line diagrams. This is done, when
necessary, for clarity of presentation; in such cases, the distance between
the lines does not represent the member depth.
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Connections

Two types of connections are commonly used to join members of struc-
tures: (1) rigid connections and (2) flexible, or hinged, connections. (A
third type of connection, termed a semirigid connection, although rec-
ognized by structural steel design codes, is not commonly used in
practice and, therefore, is not considered in this text.)

A rigid connection or joint prevents relative translations and rota-
tions of the member ends connected to it; that is, all member ends
connected to a rigid joint have the same translation and rotation. In
other words, the original angles between the members intersecting at a
rigid joint are maintained after the structure has deformed under the
action of loads. Such joints are, therefore, capable of transmitting forces

FIG. 1.16 Framing of a Bridge
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as well as moments between the connected members. Rigid joints are
usually represented by points at the intersections of members on the line
diagram of the structure, as shown in Fig. 1.17(b).

A hinged connection or joint prevents only relative translations of
member ends connected to it; that is, all member ends connected to a
hinged joint have the same translation but may have di¤erent rotations.
Such joints are thus capable of transmitting forces but not moments be-
tween the connected members. Hinged joints are usually depicted by
small circles at the intersections of members on the line diagram of the
structure, as shown in Fig. 1.16(b).

The perfectly rigid connections and the perfectly flexible frictionless
hinges used in the analysis are merely idealizations of the actual con-
nections, which are seldom perfectly rigid or perfectly flexible (see
Fig. 1.16(c)). However, actual bolted or welded connections are purposely
designed to behave like the idealized cases. For example, the connections
of trusses are designed with the centroidal axes of the members concurrent
at a point, as shown in Fig. 1.16(c), to avoid eccentricities that may cause
bending of members. For such cases, the analysis based on the idealized
connections and supports (described in the following paragraph) generally
yields satisfactory results.

FIG. 1.17 Framing of a Multistory Building
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Supports

Supports for plane structures are commonly idealized as either fixed

supports, which do not allow any movement; hinged supports, which can
prevent translation but permit rotation; or roller, or link, supports,
which can prevent translation in only one direction. A more detailed
description of the characteristics of these supports is presented in
Chapter 3. The symbols commonly used to represent roller and hinged
supports on line diagrams are shown in Fig. 1.16(b), and the symbol for
fixed supports is depicted in Fig. 1.17(b).

Summary

In this chapter, we learned about structural analysis and its role in struc-
tural engineering. Structural analysis is the prediction of the performance
of a given structure under prescribed loads. Structural engineering has
long been a part of human endeavor, but Galileo is considered to be the
originator of the theory of structures. Following his pioneering work,
many other people have made significant contributions. The availability
of computers has revolutionized structural analysis.

Structural engineering is the science of planning, designing, and
constructing safe, economical structures. Structural analysis is an in-
tegral part of this process.

Structures can be classified into five basic categories, namely, ten-
sion structures (e.g., cables and hangers), compression structures (e.g.,
columns and arches), trusses, shear structures (e.g., shear walls), and
bending structures (e.g., beams and rigid frames).

An analytical model is a simplified representation of a real structure
for the purpose of analysis. Development of the model generally in-
volves (1) determination of whether or not the structure can be treated
as a plane structure, (2) construction of the line diagram of the structure,
and (3) idealization of connections and supports.
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The objective of a structural engineer is to design a structure that will
be able to withstand all the loads to which it is subjected while serving
its intended purpose throughout its intended life span. In designing a
structure, an engineer must, therefore, consider all the loads that can
realistically be expected to act on the structure during its planned life span.
The loads that act on common civil engineering structures can be grouped
according to their nature and source into three classes: (1) dead loads due
to the weight of the structural system itself and any other material perma-
nently attached to it; (2) live loads, which are movable or moving loads
due to the use of the structure; and (3) environmental loads, which are
caused by environmental e¤ects, such as wind, snow, and earthquakes.

In addition to estimating the magnitudes of the design loads, an
engineer must also consider the possibility that some of these loads
might act simultaneously on the structure. The structure is finally de-
signed so that it will be able to withstand the most unfavorable combi-
nation of loads that is likely to occur in its lifetime.

The minimum design loads and the load combinations for which
the structures must be designed are usually specified in building codes.
The national codes providing guidance on loads for buildings, bridges,
and other structures include ASCE Standard Minimum Design Loads for

Buildings and Other Structures (ASCE/SEI 7-10) [1],* Manual for Rail-

way Engineering [26], Standard Specifications for Highway Bridges [36],
and International Building Code [15].

Earthquake-Damaged Building
Ints Vikmanis/Shutterstock.com

*The numbers in brackets refer to items listed in the bibliography.



Although the load requirements of most local building codes are
generally based on those of the national codes listed herein, local codes
may contain additional provisions warranted by such regional condi-
tions as earthquakes, tornadoes, hurricanes, heavy snow, and the like.
Local building codes are usually legal documents enacted to safeguard
public welfare and safety, and the engineer must become thoroughly
familiar with the building code for the area in which the structure is to
be built.

The loads described in the codes are usually based on past experi-
ence and study and are the minimum for which the various types of
structures must be designed. However, the engineer must decide if the
structure is to be subjected to any loads in addition to those considered
by the code, and, if so, must design the structure to resist the additional
loads. Remember that the engineer is ultimately responsible for the safe
design of the structure.

The objective of this chapter is to describe the types of loads com-
monly encountered in the design of structures and to introduce the basic
concepts of load estimation. Before discussing the specific types of loads,
we begin this chapter with a brief description of the typical structural
systems used in common buildings and bridges for transmitting loads to
the ground. In this first section, we also introduce the concepts of load
path and tributary area. Next, we describe dead loads and then discuss
live loads for buildings and bridges, including the dynamic e¤ect, or the
impact, of live loads. We describe environmental loads, including wind
loads, snow loads, and earthquake loads. We give a brief discussion of
hydrostatic and soil pressures and thermal e¤ects and conclude with a
discussion about the combinations of loads used for design purposes.

The material presented herein is mainly based on the ASCE Stand-

ard Minimum Design Loads for Buildings and Other Structures (ASCE/
SEI 7-10), which is commonly referred to as the ASCE 7 Standard and
is perhaps the most widely used standard in practice. Since the intent
here is to familiarize the reader with the general topic of loads on struc-
tures, many of the details have not been included. Needless to say, the
complete provisions of the local building codes or the ASCE 7 Standard †

must be followed in designing structures.

2.1 Structural Systems for Transmitting Loads

In most common buildings, bridges and other civil engineering facilities,
two or more of the basic structural types described in Section 1.3 (e.g.,
beams, columns, slabs and trusses, etc.) are assembled together to form
a structural system that can transmit the applied loads to the ground
through the foundation. Such structural systems are also referred to as
framing systems or frameworks, and the components of such an assem-
blage are called structural members.

†Copies of this standard may be purchased from the American Society of Civil Engineers,
1801 Alexander Bell Drive, Reston, Virginia 20191.
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An example of the load-carrying system for a single-story building
is shown in Fig. 2.1(a). The system consists of a reinforced-concrete roof
slab resting on four steel beams, which in turn, are supported by two
larger beams, called girders. The girders are then supported on four
columns attached to the footings at the ground level. Because all con-
nections are assumed to be bolted (i.e., shear or hinged) connections,
they can only transmit forces but not moments. Thus, diagonal braces
are needed to resist the horizontal loads caused by wind and earth-
quakes. In Fig. 2.1(a) this cross-bracing is shown only on two sides of
the building for simplicity. Such bracing (or other means of transmitting
horizontal forces, such as shear walls) should be provided on all four
sides of the building to resist loads applied in any direction in the hori-
zontal plane. Note that the architectural features, such as exterior
brickwork, partitions or non-load-bearing walls, doors and windows,
are not considered to be a part of the load-resisting structural system,
although their weights are considered in the design calculations.

The structural systems of most buildings and bridges are designed to
withstand loads in both the vertical and horizontal directions. The ver-
tical loads, due mainly to the occupancy, self-weight and snow or rain,
are commonly referred to as the gravity loads (although not all vertical
loads are caused by gravity). The horizontal loads, induced mainly by
wind and earthquakes, are called the lateral loads. The term load path is
used to describe how a load acting on the building (or bridge) is trans-
mitted, through the various members of the structural system, to the
ground.

The vertical (gravity) load path for the single-story building of
Fig. 2.1(a) is depicted in Fig. 2.1(b). Any vertical distributed area load
(force per area), such as due to snow, applied to the roof slab is first
transmitted to the beams EF, GH, IJ, and KL as a distributed line load
(force per length). As the beams are supported by girders EK and FL,
the beam reactions become concentrated forces on the girders (in reverse
directions), thereby transmitting the roof load to the girders as con-
centrated loads at points E through L. Similarly, the girders, that are
supported by columns AE, BF, CK, and DL, transfer the load, via their
reactions, to the columns as axial compressive forces. The columns, in
turn, transmit the load to the footings (A through D), which finally
distribute the load to the ground. Note that the diagonal braces do not
participate in transmitting the gravity load.

Figure 2.1(c) depicts the horizontal (lateral) load path for the same
single-story building. Any horizontal load (such as due to wind or
earthquake) applied to the roof slab is transmitted by the slab as in-
plane lateral forces to the two vertical frames, AEFB and CKLD, which
then carry the load to the footings. As shown in Fig. 2.1(c), each vertical
frame consists of a beam, two columns and two inclined braces, con-
nected together by hinged connections. Such frames, called the braced

frames, essentially act as plane trusses under the action of lateral loads,
with the braces transmitting the load from the roof-level to the footings.

In some buildings, specially designed shear walls, elevator shafts or
moment-resisting (rigidly-connected) frames are used, instead of the
braced frames, to transmit lateral loads (Figs. 2.2 and 2.3). Regardless
of the structural system used, the basic concept of load transmission
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FIG. 2.2 Multi-Story Building with
Braced Frames to Transmit Lateral
Loads Due to Wind and Earthquakes
Courtesy of Walterio A. L�opez
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remains the same, that is, the applied load is carried continuously from
member to member until it has been fully transmitted to the ground.

Floor Systems and Tributary Areas

As in the case of the single-story building discussed previously, the floor
and roof slabs of multi-story buildings, and the deck slabs of bridges,
are often supported on rectangular grids of beams and girders called
floor systems. Figure 2.4 shows the top view or the framing plan of a

FIG. 2.3 This Steel Frame Building Uses
Masonry Shafts for Elevators and Stairs
to Resist Lateral Loads Due to Wind
and Earthquakes

Copyright © American Institute of Steel Construction.

Reprinted with permission. All rights reserved

L4

s2s1 s2s2s1s1

Corner
column

Column
lines

Exterior (edge)
column

Exterior (edge)
girder

z

x

L3

L1 L2

Interior
beams

Interior
column

Interior
girder

Exterior
(edge)
beam

1 2 3

A

B

C

(a) A Typical Floor Framing Plan
FIG. 2.4

Section 2.1 Structural Systems for Transmitting Loads 23



L3

L4

s2s1 s2s2s1s1

s1
2

Tributary area of

interior beam b2

Tributary area of

interior beam b3

Tributary area of

exterior (edge)

beam b1

s2
2

s2
2

1 2 3

A

B

C

L1 L2

b1 b2

b3

s2
2

s1
2

(b) Tributary Areas of Beams

L3

L4

L2L1

Tributary area of

exterior (edge) girder A2 – A3

Tributary area of

interior girder

B1 – B2

C

B

A

321

L3

2

L4

2

L3

2

(c) Tributary Areas of Girders
FIG. 2.4 (contd.)

24 CHAPTER 2 Loads on Structures



typical floor system. As in common practice, the column lines in the two
(X and Z) directions are identified by letters and numbers, respectively.
Note the small gaps (blank spaces) at the intersections of members,
which denote that the members are connected by hinged or shear (non-
moment resisting) connections. The slab (not shown) rests on the beams,
and transmits its load through beams to girders and then to columns.

During the design process, an engineer needs to determine how
much of the total distributed load applied over the area of the slab is
carried by each member (i.e., a beam, a girder or a column) of the floor
system. The portion of the slab area whose load is carried by a partic-
ular member is called the tributary area of the member.

The slabs used in buildings and bridges are usually designed as one-
way slabs. Such slabs are assumed to be supported on two sides, and bend
only in one direction like wide beams. For floor systems with one-way
slabs, the tributary area of each beam is considered to be rectangular, of a
length equal to that of the beam, and a width extending to half the dis-
tance to the adjacent beam on each side, as shown in Fig. 2.4(b). The
tributary areas of girders and columns are defined similarly, and are de-
picted in Figs. 2.4(c) and (d), respectively. The procedure for calculating
loads on the members of floor systems with one-way slabs, is illustrated in
Example 2.1.
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For floor systems with a beam length to spacing ratio of less than
1.5 (i.e., L/s < 1.5 – see Fig. 2.4(a)), the slabs are designed as two-way
slabs, supported on all four sides. Such a slab is assumed to bend in two
perpendicular directions like a plate, and transmits its load to all four
supporting beams along its edges. Figures 2.5(a) and (b) depict the trib-
utary areas of the edge beams supporting square and rectangular two-
way slabs, respectively. These figures also show the loads carried by
edge beams due to a uniformly distributed pressure w (force per unit
area) applied to the surface area of the slab.
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Example 2.1

The floor of a building, shown in Fig. 2.6(a), is subjected to a uniformly distributed load of 3.5 kPa over its surface area.
Determine the loads acting on all the members of the floor system.
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Solution
Beams. The tributary areas of the exterior beam AB, and the interior beam EF, are shown in Fig. 2.6(b). Considering
the exterior beam AB first, we can see that each one-meter length of the beam supports the load applied over a strip of
the slab area (¼ 2 m � 1 m) ¼ 2 m2. Thus, the load transmitted to each one-meter length of the beam AB is:

ð3:5 kN=m2Þð2mÞð1mÞ ¼ 7 kN

This 7 kN/m load is uniformly distributed along the length of the beam, as shown in Fig. 2.6(b). This figure also shows
the reactions exerted by the supporting girders at the beam’s ends. As the beam is symmetrically loaded, the magnitudes
of the reactions are equal to half of the total load acting on the beam:

RA ¼ RB ¼
1

2
ð7 kN=mÞð9mÞ ¼ 31:5 kN

The load on the interior beam EF is computed in a similar manner. From Fig. 2.6(b), we see that the load transmitted to
each one-meter length of the beam EF is

ð3:5 kN=m2Þð4mÞð1mÞ ¼ 14 kN

This load acts as a uniformly distributed load of magnitude 14 kN/m along the beam’s length. The reactions of the
interior beam are:

RE ¼ RF ¼
1

2
ð14 kN=mÞð9mÞ ¼ 63 kN

Because of the symmetry of the framing plan and loading, the remaining beams CD and GH are subjected to the same
loads as the beams EF and AB, respectively. Ans.

Girders. The girder loads can be conveniently obtained by applying the beam reactions as concentrated loads (in reverse
directions) at their corresponding support (connection) points on the girder. As shown in Fig. 2.6(c), since girder AG
supports exterior beams AB and GH at points A and G, the reactions (31.5 kN) of the two exterior beams are applied at
these points. Similarly, the reactions of two interior beams (CD and EF) are applied at points C and E, where these in-
terior beams are supported on the girder. Note that the sum of the magnitudes of all four concentrated loads
applied to the girder equals its tributary area (4.5m� 12m) multiplied by the floor load intensity (3.5 kN/m2), that is
(see Fig. 2.6(c))

31:5 kNþ 63 kNþ 63 kNþ 31:5 kN ¼ ð3:5 kN=m2Þð4:5mÞð12mÞ ¼ 189 kN

continued
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As shown in Fig. 2.6(c), the end reactions of the girder are

RA ¼ RG ¼
1

2
½2ð31:5Þ þ 2ð63Þ� ¼ 94:5 kN

Because of symmetry, the load on girder BH is the same as on girder AG. Ans.

Columns. As shown in Fig. 4.6(d), the axial load on column A is obtained by applying the reaction RA (= 94.5 kN) of
girder AG on the column with its direction reversed. This column axial load can also be evaluated by multiplying the
tributary area (4.5m� 6m) of column A by the floor load intensity (3.5 kN/m2), that is (see Fig. 2.6(d))

ð3:5 kN=m2Þð4:5mÞð6mÞ ¼ 94:5 kN

Because of symmetry, the three remaining columns are subjected to the same axial compressive load as column A.

Ans.
Finally, the sum of the axial loads carried by all four columns must be equal to the product of the total surface area

of the floor, times the floor load intensity:

4ð94:5 kNÞ ¼ ð3:5 kN=m2Þð9mÞð12mÞ ¼ 378 kN Checks

In the foregoing example, we have only considered externally ap-
plied loading, but neglected the self-weight of the slab and the other
members of the floor system. In the next section, we discuss the proce-
dure for computing the weight of the structural system itself.

2.2 Dead Loads

Dead loads are gravity loads of constant magnitudes and fixed positions
that act permanently on the structure. Such loads consist of the weights
of the structural system itself and of all other material and equipment
permanently attached to the structural system. For example, the dead
loads for a building structure include the weights of frames, framing and
bracing systems, floors, roofs, ceilings, walls, stairways, heating and air-
conditioning systems, plumbing, electrical systems, and so forth.

The weight of the structure is not known in advance of design and is
usually assumed based on past experience. After the structure has been
analyzed and the member sizes determined, the actual weight is com-
puted by using the member sizes and the unit weights of materials. The
actual weight is then compared to the assumed weight, and the design
is revised if necessary. The unit weights of some common construction
materials are given in Table 2.1. The weights of permanent service
equipment, such as heating and air-conditioning systems, are usually
obtained from the manufacturer.

Example 2.2

The floor system of a building consists of a 5-in.-thick reinforced concrete slab resting on four steel floor beams, which
in turn are supported by two steel girders, as shown in Fig. 2.7(a). The cross-sectional areas of the floor beams and the
girders are 14.7 in.2 and 52.3 in.2, respectively. Determine the dead loads acting on the beams CG and DH and the
girder AD.

TABLE 2.1 UNIT WEIGHTS OF
CONSTRUCTION MATERIALS

Unit Weight

Material lb/ft3 kN/m3

Aluminum 165 25.9

Brick 120 18.8

Concrete, reinforced 150 23.6

Structural steel 490 77.0

Wood 40 6.3

continued
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FIG. 2.7

Solution
Beam CG. As shown in Fig. 2.7(a), the tributary area for beam CG has a width of 10 ft (i.e., half the distance between
beams CG and BF plus half the distance between beams CG and DH) and a length of 24 ft. We use the unit weights
of reinforced concrete and structural steel from Table 2.1 to compute the dead load per foot of length of beam CG as
follows:

Concrete slab: ð150 lb=ft3Þð10 ftÞð1 ftÞ 5

12

� �
ft ¼ 625 lb

Steel beam: ð490 lb=ft3Þ 14:7

144
ft2

� �
ð1 ftÞ ¼ 50 lb

Total load ¼ 675 lb Ans.

This 675 lb/ft load is uniformly distributed on the beam, as shown in Fig. 2.7(b). This figure also shows the reactions
exerted by the supporting girders at the ends of the beam. As the beam is symmetrically loaded, the magnitudes of the
reactions are:

RC ¼ RG ¼ 1
2 ð675 lb=ftÞð24 ftÞ ¼ 8100 lb

Note that the magnitudes of these end reactions represent the downward loads being transmitted to the supporting
girders AD and EH at points C and G, respectively.

Beam DH. The tributary area for beam DH is 5 ft wide and 24 ft long. The dead load per foot of length of this beam is
computed as follows:

Concrete slab: ð150 lb=ft3Þð5 ftÞð1 ftÞ 5

12
ft

� �
¼ 312:5 lb

Steel beam: ðsame as for beam CGÞ ¼ 50:0 lb

Total load ¼ 362:5 lb Ans.

continued
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As shown in Fig. 2.7(c), the end reactions are

RD ¼ RH ¼ 1
2 ð362:5 lb=ftÞð24 ftÞ ¼ 4350 lb

Girder AD. Because of the symmetry of the framing system and loading, the loads acting on beams BF and AE are the
same as those on beams CG and DH, respectively. The load on girder AD consists of the uniformly distributed load due
to its own weight, which has a magnitude of

ð490 lb=ft3Þ 52:3

144
ft2

� �
ð1 ftÞ ¼ 178 lb

and the concentrated loads transmitted to it by the beams at points A, B, C, and D, as shown in Fig. 2.7(d). Ans.

2.3 Live Loads

Live loads are loads of varying magnitudes and/or positions caused by
the use of the structure. Sometimes, the term live loads is used to refer to
all loads on the structure that are not dead loads, including environ-
mental loads, such as snow loads or wind loads. However, since the
probabilities of occurrence for environmental loads are di¤erent from
those due to the use of structures, the current codes use the term live
loads to refer only to those variable loads caused by the use of the
structure. It is in the latter context that this text uses this term.

The magnitudes of design live loads are usually specified in building
codes. The position of a live load may change, so each member of the
structure must be designed for the position of the load that causes the
maximum stress in that member. Di¤erent members of a structure may
reach their maximum stress levels at di¤erent positions of the given load.
For example, as a truck moves across a truss bridge, the stresses in the
truss members vary as the position of the truck changes. If member A is
subjected to its maximum stress when the truck is at a certain position x,
then another member B may reach its maximum stress level when the
truck is in a di¤erent position y on the bridge. The procedures for
determining the position of a live load at which a particular response
characteristic, such as a stress resultant or a deflection, of a structure is
maximum (or minimum) are discussed in subsequent chapters.

Live Loads for Buildings

Live loads for buildings are usually specified as uniformly distributed
surface loads in pounds per square foot or kilopascals. Minimum floor
live loads for some common types of buildings are given in Table 2.2.
For a comprehensive list of live loads for various types of buildings and
for provisions regarding roof live loads, concentrated loads, and reduc-
tion in live loads, the reader is referred to the ASCE 7 Standard.

Live Loads for Bridges

Live loads due to vehicular tra‰c on highway bridges are specified
by the American Association of State Highway and Transportation
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O‰cials in the Standard Specifications for Highway Bridges [36], which
is commonly referred to as the AASHTO Specification.

As the heaviest loading on highway bridges is usually caused by
trucks, the AASHTO Specification defines two systems of standard
trucks, H trucks and HS trucks, to represent the vehicular loads for de-
sign purposes.

The H-truck loadings (or H loadings), representing a two-axle
truck, are designated by the letter H, followed by the total weight of the
truck and load in tons and the year in which the loading was initially
specified. For example, the loading H20-44 represents a code for a two-
axle truck weighing 20 tons initially instituted in the 1944 edition of the
AASHTO Specification. The axle spacing, axle loads, and wheel spacing
for the H trucks are shown in Fig. 2.8(a).

The HS-truck loadings (or HS loadings) represent a two-axle tractor
truck with a single-axle semitrailer. These loadings are designated by the
letters HS followed by the weight of the corresponding H truck in tons
and the year in which the loading was initially specified. The axle spacing,
axle loads, and wheel spacing for the HS trucks are shown in Fig. 2.8(a).
Note that the spacing between the rear axle of the tractor truck and
the axle of the semitrailer should be varied between 14 ft and 30 ft, and the
spacing causing the maximum stress should be used for design.

The particular type of truck loading to be used in design depends on
the anticipated tra‰c on the bridge. The H20-44 and HS20-44 are the
most commonly used loadings; the axle loads for these loadings are
shown in Fig. 2.8(a).

In addition to the aforementioned single-truck loading, which must
be placed to produce the most unfavorable e¤ect on the member being
designed, AASHTO specifies that a lane loading, consisting of a uni-
formly distributed load combined with a single concentrated load, be
considered. The lane loading represents the e¤ect of a lane of medium-
weight vehicles containing a heavy truck. The lane loading must also be
placed on the structure so that it causes maximum stress in the member
under consideration. As an example, the lane loading corresponding to
the H20-44 and HS20-44 truck loadings is shown in Fig. 2.8(b). The
type of loading, either truck loading or lane loading, that causes the
maximum stress in a member should be used for the design of that

TABLE 2.2 MINIMUM FLOOR LIVE LOADS FOR BUILDINGS

Live Load

Occupancy or Use psf kPa

Hospital patient rooms, residential dwellings, apartments,
hotel guest rooms, school classrooms

40 1.92

Library reading rooms, hospital operating rooms
and laboratories

60 2.87

Dance halls and ballrooms, restaurants, gymnasiums 100 4.79

Light manufacturing, light storage warehouses,
wholesale stores

125 6.00

Heavy manufacturing, heavy storage warehouses 250 11.97

Source: Based on data from ASCE/SEI 7-10, Minimum Design Loads for Buildings and
Other Structures.
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member. Additional information regarding multiple lanes, loadings for
continuous spans, reduction in load intensity, and so on, can be found in
the AASHTO Specification.

Live loads for railroad bridges are specified by the American Rail-
way Engineering and Maintenance of Way Association (AREMA) in the
Manual for Railway Engineering [26]. These loadings, which are com-
monly known as Cooper E loadings, consist of two sets of nine con-
centrated loads, each separated by specified distances, representing the
two locomotives followed by a uniform loading representing the weight
of the freight cars. An example of such a loading, called the E80 loading,
is depicted in Fig. 2.9. The design loads for heavier or lighter trains can
be obtained from this loading by proportionately increasing or decreas-
ing the magnitudes of the loads while keeping the same distances be-
tween the concentrated loads. For example, the E40 loading can be
obtained from the E80 loading by simply dividing the magnitudes of the
loads by 2. As in the case of highway bridges considered previously, live
loads on railroad bridges must be placed so that they will cause the most
unfavorable e¤ect on the member under consideration.

2 ft2 ft

Curb

Lane
width

10 ft

6 ft

0.8 W0.8 W0.2 W

14 ft to 30 ft14 ft

0.8 W0.2 W

14 ft

W =  weight of the corresponding H truck
 = total weight on the first two axles

W =  total weight of truck and load

HS20-44 8 kH20-44 8 k 32 k 32 k 32 k

(a) Standard Truck Loadings

(b) H20-44 and HS20-44 Lane Loading

HS trucks End viewH trucks

18 k for moment
26 k for shear Concentrated load Uniform load 0.64 k/linear foot of lane

FIG. 2.8 Live Loads for Highway Bridges
Source: Based on Standard Specifications for Highway Bridges. Copyright 2002. American Association of State

Highway and Transportation Officials, Washington, D.C.

FIG. 2.9 Live Loads for Railroad Bridges
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Impact

When live loads are applied rapidly to a structure, they cause larger
stresses than those that would be produced if the same loads would have
been applied gradually. The dynamic e¤ect of the load that causes this
increase in stress in the structure is referred to as impact. To account for
the increase in stress due to impact, the live loads expected to cause such
a dynamic e¤ect on structures are increased by certain impact percen-
tages, or impact factors. The impact percentages and factors, which are
usually based on past experience and/or experimental results, are speci-
fied in the building codes. For example, the ASCE 7 Standard specifies
that the weights of reciprocating machinery and power driven units for
buildings be increased by 50% to account for impact.

For highway bridges, the AASHTO Specification gives the expres-
sion for the impact factor as

I ¼ 50

Lþ 125
a 0:3

in which L is the length in feet of the portion of the span loaded to cause
the maximum stress in the member under consideration. Similar em-
pirical expressions for impact factors to be used in designing railroad
bridges are specified in [26].

2.4 Classification of Buildings for Environmental Loads

Because of the inherent uncertainty involved in predicting environmental
loads that may act on a structure during its lifetime, the consequences of
the failure of the structure are usually considered in estimating design
environmental loads, such as due to wind, snow and earthquakes. In
general, the more serious the potential consequences of the structural
failure, the larger the magnitude of the load for which the structure
should be designed.

The ASCE 7 Standard classifies buildings into four Risk Categories

based on risk to human life, health, and welfare in the event of the fail-
ure of (or damage to) the structure because of the nature of its occu-
pancy or use. These risk categories are described in Table 2.3, and will
be used in subsequent sections for estimating environmental loads on
structures.

2.5 Wind Loads

Wind loads are produced by the flow of wind around the structure. The
magnitudes of wind loads that may act on a structure depend on the
geographical location of the structure, obstructions in its surrounding
terrain, such as nearby buildings, and the geometry and the vibrational
characteristics of the structure itself. Although the procedures described
in the various codes for the estimation of wind loads usually vary in
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detail, most of them are based on the same basic relationship between
the wind speed V and the dynamic pressure q induced on a flat surface
normal to the wind flow, which can be obtained by applying Bernoulli’s
principle and is expressed as

q ¼ 1
2 rV

2 ð2:1Þ

in which r is the mass density of the air. Using the unit weight of air of
0.0765 lb/ft3 for the standard atmosphere (at sea level, with a temper-
ature of 59�F), and expressing the wind speed V in miles per hour, the
dynamic pressure q in pounds per square foot is given by

q ¼ 1

2

0:0765

32:2

� �
5280

3600

� �2

V 2 ¼ 0:00256V 2 ð2:2Þ

The wind speed V to be used in the determination of the design
loads on a structure depends on its geographical location and can be
obtained from meteorological data for the region. The ASCE 7 Stand-

ard provides contour maps of the basic wind speeds for the United
States. These maps, which are based on data collected at 485 weather
stations, give the 3-second gust speeds in miles per hour (m/s). These
speeds are for open terrain at the heights of 33 ft (10 m) above ground

TABLE 2.3 RISK CATEGORIES OF BUILDINGS FOR ENVIRONMENTAL LOADS

Importance Factor

Risk category Occupancy or use Snow Loads (Is) Earthquake Loads (Ie)

I Buildings representing low risk to human life in the case
of failure, such as agricultural and minor storage
facilities.

0.8 1.00

II All buildings other than those listed in Risk Categories I, III,
and IV. This risk category applies to most of the residential,
commercial and industrial buildings (except those which have
been specifically assigned to another category).

1.0 1.00

III Buildings whose failure would pose a substantial risk to
human life, and/or could cause a substantial economic impact
or mass disruption of everyday public life. This category
contains buildings such as: theaters, lecture and assembly halls
where a large number of people congregate in one area;
elementary schools; small hospitals; prisons; power generating
stations; water and sewage treatment plants; telecommuni-
cation centers; and buildings containing hazardous and
explosive materials.

1.1 1.25

IV Essential facilities, including hospitals, fire and police stations,
national defense facilities and emergency shelters,
communication centers, power stations and utilities required
in an emergency, and buildings containing extremely
hazardous materials.

1.2 1.50

Source: Based on data from ASCE/SEI 7-10, Minimum Design Loads for Buildings and Other Structures.
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level. Figure 2.10 shows the basic wind speed map for structures in the
risk category II, which includes a vast majority of residential, commer-
cial and industrial buildings. These wind speeds correspond to approx-
imately 7% probability of being exceeded in 50 years. Similar wind
speed maps for structures in risk categories I, III, and IV are given in the
ASCE 7 Standard.* To account for the variation in wind speed with the
height and the surroundings in which a structure is located, the ASCE 7

Standard modifies Eq. (2.2) as

qz ¼ 0:00256KzKztKdV
2 ð2:3Þ

in which qz is the velocity pressure at height z in pounds per square
foot; V is the basic wind speed in miles per hour (Fig. 2.10); Kz is the
velocity pressure exposure coe‰cient; Kzt is the topographic factor; and
Kd is the wind directionality factor. When converted to SI units, Eq. (2.3)
becomes

qz ¼ 0:613KzKztKdV
2 ½SI units� ð2:4Þ

with qz and V now expressed in units of N/m2 and m/s, respectively.
The velocity pressure exposure coe‰cient, Kz, is given by

Kz ¼
2:01ðz=zgÞ2=a for 15 ft ð4:6 mÞa za zg

2:01
15 ftð4:6mÞ

zg

� �2=a

for z < 15 ft ð4:6mÞ

8><>: ð2:5Þ

in which z ¼ height above ground in feet (or meters); zg ¼ gradient
height in feet (or meters); and a ¼ power law coe‰cient. The constants
zg and a depend on the obstructions on the terrain immediately sur-
rounding the structure. The ASCE 7 Standard classifies the terrains to
which the structures may be exposed into three categories. These three
categories are briefly described in Table 2.4, which also provides the
values of the constants for each of the categories. A more detailed
description of the exposure categories can be found in the ASCE 7

Standard. The topographic factor, Kzt, takes into account the e¤ect of
increase in wind speed due to abrupt changes in topography, such as
isolated hills and steep cli¤s. For structures located on or near the tops of
such hills, the value of Kzt should be determined using the procedure
specified in the ASCE 7 Standard. For other structures, Kzt ¼ 1. The
wind directionality factor, Kd , takes into account the reduced proba-
bility of maximum winds coming from the direction that is most un-
favorable for the structure. This factor is used only when wind loads are
applied in combination with other types of loads (such as dead loads,
live loads, etc.). For structures subjected to such load combinations, the
values of Kd should be obtained from the ASCE 7 Standard. For struc-
tures subjected only to wind loads, Kd ¼ 1.

* The site-specific wind speeds at all U.S. locations for the four risk categories are also
available at the Applied Technology Council website: www.atcouncil.org/windspeed/.
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The external wind pressures to be used for designing the main
framing of structures are given by

pz ¼ qzGCp for windward wall

ph ¼ qhGCp for leeward wall; sidewalls; and roof
ð2:6Þ

in which h ¼ mean roof height above ground; qh ¼ velocity pressure at
height h (evaluated by substituting z ¼ h in Eq. (2.3) or (2.4)); pz ¼
design wind pressure at height z above ground; ph ¼ design wind pressure
at mean roof height h; G ¼ gust e¤ect factor; and Cp ¼ external pressure

coe‰cient.
The gust e¤ect factor, G, is used to consider the loading e¤ect of

wind turbulence on the structure. For a rigid structure, whose funda-
mental frequency is greater than or equal to 1 Hz., G ¼ 0:85. For flexi-
ble structures, the value of G should be calculated using the equations
given in the ASCE 7 Standard.

The values of the external pressure coe‰cients, Cp, based on wind
tunnel and full-scale tests, have been provided in the ASCE 7 Standard for
various types of structures. Figure 2.11 shows the coe‰cients specified for
designing the main framing of structures. We can see from this figure that
the external wind pressure varies with height on the windward wall of the
structure but is uniform on the leeward wall and the sidewalls. Note that
the positive pressures act toward the surfaces, whereas the negative pres-
sures, called suctions, act away from the surfaces of the structures.

Once the external wind pressures have been established, they are
combined with the internal pressures to obtain the design wind pressures.
With the design wind pressures known, we can determine the corre-
sponding design loads on members of the structures by multiplying the
pressures by the appropriate tributary areas of the members.

TABLE 2.4 EXPOSURE CATEGORIES FOR BUILDINGS FOR WIND LOADS

Constants

Exposure Category zg ft(m) a

Urban and suburban areas with closely
spaced obstructions of the size of single
family houses or larger. This terrain must
prevail in the upwind direction for a
distance of at least 2,600 ft (792 m) or 20
times the building height, whichever is
greater

B 1,200(365.76) 7.0

Applies to all buildings to which exposures
B or D do not apply

C 900(274.32) 9.5

Flat, unobstructed areas and water
surfaces. This terrain must prevail in the
upwind direction for a distance of at least
5,000 ft (1,524 m) or 20 times the building
height, whichever is greater

D 700(213.36) 11.5

Source: Based on data from ASCE/SEI 7-10, Minimum Design Loads for Buildings and
Other Structures.
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FIG. 2.11 External Pressure Coe‰cients, Cp, for Loads on Main Wind-Force
Resisting Systems for Enclosed or Partially Enclosed Buildings of All Heights
Source: Based on ASCE/SEI 7-10, Minimum Design Loads for Buildings and Other Structures.
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Wall Pressure Coe‰cients, Cp

Surface L=B Cp Use with

Windward wall All values 0.8 qz

0–1 �0.5
Leeward wall 2 �0.3 qh

b4 �0.2
Side wall All values �0.7 qh

Roof Pressure Coe‰cients, Cp, for use with qh

Windward Leeward

Angle, y (degrees) Angle, y (degrees)

Wind
direction

h=L 10 15 20 25 30 35 45 b60# 10 15 b20

a0.25
�0.7
�0.18

�0.5
0.0*

�0.3
0.2

�0.2
0.3

�0.2
0.3

0.0*
0.4 0.4 0.01y

�0.3 �0.5 �0.6

0.5
�0.9
�0.18

�0.7
�0.18

�0.4
0.0*

�0.3
0.2

�0.2
0.2

�0.2
0.3

0.0*
0.4 0.01y

�0.5 �0.5 �0.6
Normal to
ridge for
yb 10�

b1.0
�1.3**
�0.18

�1.0
�0.18

�0.7
�0.18

�0.5
0.0*

�0.3
0.2

�0.2
0.2

0.0*
0.3 0.01y

�0.7 �0.6 �0.6

Horiz distance from
windward edge

Cp
*Value is provided for interpolation
purposes.

0 to h=2 �0.9, �0.18
a0:5 h=2 to h �0.9, �0.18

h to 2 h �0.5, �0.18
>2 h �0.3, �0.18

**Value can be reduced linearly with area
over which it is applicable as follows.

Area (sq ft) Reduction factor
0 to h/2 �1.3**, �0.18

a100 (9.3 sq m) 1.0

250 (23.2 sq m) 0.9

Normal to
ridge for

y < 10� and
Parallel to

ridge for all y

b1.0

>h/2 �0.7, �0.18
b1,000 (92.9 sq m) 0.8

Notes:
1. Plus and minus signs signify pressures acting toward and away from the surfaces, respectively.
2. Linear interpolation is permitted for values of L=B; h=L; and y other than shown. Interpolation shall only be carried out between values

of the same sign. Where no value of the same sign is given, assume 0.0 for interpolation purposes.
3. Where two values of Cp are listed, this indicates that the windward roof slope is subjected to either positive or negative pressures and the

roof structure shall be designed for both conditions. Interpolation for intermediate ratios of h=L in this case shall only be carried out
between Cp values of like sign.

4. For monoslope roofs, the entire roof surface is either a windward or leeward surface.
5. Notation:

B: Horizontal dimension of building, in feet (meters), measured normal to wind direction.
L: Horizontal dimension of building, in feet (meters), measured parallel to wind direction.
h: Mean roof height in feet (meters), except that eave height shall be used for ya 10 degrees.
z: Height above ground, in feet (meters).
G: Gust e¤ect factor.
qz; qh: Velocity pressure, in pounds per square foot (N/m2), evaluated at respective height.
y: Angle of plane of roof from horizontal, in degrees.

6. For mansard roofs, the top horizontal surface and leeward inclined surface shall be treated as leeward surfaces from the table.
7. Except for MWFRS’s at the roof consisting of moment resisting frames, the total horizontal shear shall not be less than that determined

by neglecting wind forces on roof surfaces.
#For roof slopes greater than 80�, use Cp ¼ 0:8.

FIG. 2.11 (contd.)
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Example 2.3

Determine the external wind pressure on the roof of the rigid gabled frame of a nonessential industrial building shown
in Fig. 2.12(a). The structure is located in a suburb of Boston, Massachusetts, where the terrain is representative of ex-
posure B. The wind direction is normal to the ridge of the frame as shown.

FIG. 2.12

Solution
Roof Slope and Mean Roof Height. From Fig. 2.12(a), we obtain

tan y ¼ 16:83

20
¼ 0:842; or y ¼ 40:1�

h ¼ 11:58þ 16:83

2
¼ 20:0

h

L
¼ 20

40
¼ 0:5

Velocity Pressure at z ¼ h ¼ 20 0. From Fig. 2.10, we obtain the basic wind speed for Boston as

V ¼ 130 mph

From Table 2.4, for the exposure category B, we obtain the following values of the constants:

zg ¼ 1; 200 ft and a ¼ 7:0

By using Eq. (2.5), we determine the velocity pressure exposure coe‰cient:

Kh ¼ 2:01
h

zg

� �2=a

¼ 2:01
20

1; 200

� �2=7

¼ 0:62

Using Kzt ¼ 1 and Kd ¼ 1, we apply Eq. (2.3) to obtain the velocity pressure at height h as

qh ¼ 0:00256KhKztKdV
2

¼ 0:00256ð0:62Þð1Þð1Þð130Þ2

¼ 26:82 psf

External Wind Pressure on Roof. For rigid structures, the gust e¤ect factor is

G ¼ 0:85

continued
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For y&40� and h=L ¼ 0:5, the values of the external pressure coe‰cients are (Fig. 2.11):

For windward side: Cp ¼ 0:35 and �0:1

For leeward side: Cp ¼ �0:6

Finally, by substituting the values of qh, G, and Cp into Eq. (2.6), we obtain the following wind pressures: for the
windward side,

ph ¼ qhGCp ¼ ð26:82Þð0:85Þð0:35Þ ¼ 8:0 psf Ans.

and

ph ¼ qhGCp ¼ ð26:82Þð0:85Þð�0:1Þ ¼ �2:28 psf Ans.

and for the leeward side

ph ¼ qhGCp ¼ ð26:82Þð0:85Þð�0:6Þ ¼ �13:68 psf Ans.

These wind pressures are applied to the roof of the frame, as shown in Fig. 2.12(b). The two wind pressures (positive
and negative) on the windward side are treated as separate loading conditions, and the structure is designed for both
conditions.

2.6 Snow Loads

In many parts of the United States and the world, snow loads must be
considered in designing structures. The design snow load for a structure
is based on the ground snow load for its geographical location, which
can be obtained from building codes or meteorological data for that re-
gion. The ASCE 7 Standard provides contour maps (similar to Fig. 2.10)
of the ground snow loads for various parts of the United States. These
maps, which are based on data collected at 204 weather stations and over
9000 other locations, give the snow loads (in pounds per square foot)
that have a 2% probability of being exceeded in any given year.

Once the ground snow load has been established, the design snow
load for the roof of the structure is determined by considering such fac-
tors as the structure’s exposure to wind, and its thermal, geometric, and
functional characteristics. In most cases, there is less snow on roofs than
on the ground. The ASCE 7 Standard recommends that the design snow
load for flat roofs be expressed as

pf ¼ 0:7CeCtIspg ð2:7Þ

in which pf ¼ design flat-roof snow load in pounds per square foot
(kN/m2); pg ¼ ground snow load in pounds per square foot (kN/m2);
Ce ¼ exposure factor; Ct ¼ thermal factor; and Is ¼ importance factor.

In Eq. (2.7), the numerical factor 0.7, which is referred to as the
basic exposure factor, accounts for the general e¤ect of wind, which is
likely to blow some of the snow o¤ the roofs. The local e¤ects of wind,
which depend on the particular terrain surrounding the structure and
the exposure of its roof, are accounted for by the exposure factor Ce.
The ASCE 7 Standard provides the values of Ce, which range from 0.7
for structures in windy areas with exposed roofs to 1.2 for structures
exposed to little wind.
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The thermal factor, Ct, accounts for the fact that there will be more
snow on the roofs of unheated structures than on those of heated ones.
The values of Ct are specified as 1.0 and 1.2 for heated and unheated
structures, respectively. The importance factor Is in Eq. (2.7) accounts
for hazard to human life and damage to property in the case of failure
of the structure. The values of Is to be used for estimating roof snow
loads are given in Table 2.3.

The design snow load for a sloped roof is determined by multiplying
the corresponding flat-roof snow load by a slope factor Cs. Thus,

ps ¼ Cs pf ð2:8Þ

in which ps is the design sloped-roof snow load considered to act on
the horizontal projection of the roof surface, and the slope factor Cs is
given by

For warm roofs
ðCt a 1:0Þ

Cs ¼ 1 for 0a y < 30�

Cs ¼ 1� y� 30�

40�
for 30�a ya 70�

Cs ¼ 0 for y > 70�

8>>><>>>: ð2:9Þ

For cold roofs
ðCt ¼ 1:2Þ

Cs ¼ 1 for 0a y < 45�

Cs ¼ 1� y� 45�

25�
for 45�a ya 70�

Cs ¼ 0 for y > 70�

8>>><>>>: ð2:10Þ

In Eqs. (2.9) and (2.10), y denotes the slope of the roof from the hori-
zontal, in degrees. These slope factors are based on the considerations
that more snow is likely to slide o¤ of steep roofs, as compared to shal-
low ones, and that more snow is likely to melt and slide o¤ the roofs of
heated structures than those of unheated structures.

The ASCE 7 Standard specifies minimum values of snow loads for
which structures with low-slope roofs must be designed. For such struc-
tures, if Pg a 20 psf (0.96 kN/m2), then Pf shall not be less than PgIs;
if Pg > 20 psf (0.96 kN/m2), then Pf shall not be less than 20Is psf
(0.96Is kN/m2). These minimum values of Pf apply to monoslope, hip and
gable roofs with ya 15�.

In some structures, the snow load acting on only a part of the roof
may cause higher stresses than when the entire roof is loaded. To account
for such a possibility, the ASCE 7 Standard recommends that the e¤ect
of unbalanced snow loads also be considered in the design of structures.
A detailed description of unbalanced snow load distributions to be con-
sidered in the design of various types of roofs can be found in the ASCE
7 Standard. For example, for gable roofs with 2.38� � � � 30:2�, and the
horizontal distance from the eave to the ridge, W � 20 ft, the ASCE 7

Standard specifies that the structures be designed to resist an unbalanced
uniform load of magnitude PgIs applied to the leeward side of the roof,
with the windward side free of snow.
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Example 2.4

Determine the design snow loads for the roof of the gabled frame of an apartment building shown in Fig. 2.13(a). The
building is located in Chicago, Illinois, where the ground snow load is 25 psf. Because of several trees near the structure,
assume the exposure factor is Ce ¼ 1.

Solution
Flat-Roof Snow Load.

pg ¼ 25 psf

Ce ¼ 1

Ct ¼ 1 ðheated structureÞ

Is ¼ 1 ðfrom Table 2:3 for nonessential building; risk category IIÞ

40 ft
(a) (b) Balanced Snow Load

= 35°

W = 20 ft 15.4 psf

q

FIG. 2.13

From Eq. (2.7), the flat-roof snow load is obtained as

pf ¼ 0:7CeCtIspg ¼ 0:7ð1Þð1Þð1Þð25Þ

¼ 17:5 psf

The slope is y ¼ 35�, which is greater than 15�, so the minimum values of pf need not be considered.

Sloped-Roof Snow Load. By applying Eq. (2.9), we compute the slope factor as

Cs ¼ 1� y� 30�

40�
¼ 1� 35� � 30�

40�
¼ 0:88

From Eq. (2.8), we determine the design sloped-roof snow load:

ps ¼ Cs pf ¼ 0:88ð17:5Þ ¼ 15:4 psf Ans.

This load is called the balanced design snow load and is applied to the entire roof of the structure, as shown in
Fig. 2.13(b).

As the slope is � ¼ 35�, which is greater than 30.2�, the unbalanced snow load does not need to be considered.
Ans.
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2.7 Earthquake Loads

An earthquake is a sudden undulation of a portion of the earth’s surface.
Although the ground surface moves in both horizontal and vertical di-
rections during an earthquake, the magnitude of the vertical component
of ground motion is usually small and does not have a significant e¤ect
on most structures. It is the horizontal component of ground motion
that causes structural damage and that must be considered in designs of
structures located in earthquake-prone areas.

During an earthquake, as the foundation of the structure moves
with the ground, the above-ground portion of the structure, because of
the inertia of its mass, resists the motion, thereby causing the structure
to vibrate in the horizontal direction (Fig. 2.14). These vibrations pro-
duce horizontal shear forces in the structure. For an accurate pre-
diction of the stresses that may develop in a structure in the case of
an earthquake, a dynamic analysis, considering the mass and sti¤ness
characteristics of the structure, must be performed. However, for low- to
medium-height rectangular buildings, most codes employ equivalent
static forces to design for earthquake resistance. In this empirical ap-
proach, the dynamic e¤ect of the earthquake is approximated by a set of
lateral (horizontal) forces applied to the structure, and static analysis is
performed to evaluate stresses in the structure.

The ASCE 7 Standard permits the use of this equivalent lateral-
force procedure for earthquake design of buildings. According to the
ASCE 7 Standard, the total lateral seismic force that a building is de-
signed to resist is given by the equation

V ¼ CSW ð2:11Þ

in which V¼ total lateral force or base shear, W¼ e¤ective seismic
weight of the building that includes the total dead and a part of the live

FIG. 2.14 E¤ect of Earthquake on a
Structure
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load, and CS ¼ seismic response coe‰cient. The latter is defined by the
equation

CS ¼
SDS

R=Ie
ð2:12Þ

in which SDS is the design spectral response acceleration in the short
period range; R denotes the response modification coe‰cient; and Ie
represents the importance factor for earthquake loads based on the
building’s risk category. The ASCE 7 Standard further specifies upper
and lower limits for the values of CS to be used in design.

The design spectral response acceleration (SDS), used in the evalua-
tion of the design base shear, depends on the geographical location of the
structure, and can be obtained using the contour maps provided in the
ASCE 7 Standard. The response modification coe‰cient R takes into
consideration the energy-dissipation capacity of the structure; its values
range from 1 to 8. For example, for plain unreinforced masonry shear
walls, R ¼ 1:5; whereas, for moment resisting frames, R ¼ 8. The values
of Ie to be used for estimating earthquake loads are given in Table 2.3.

The total lateral force V thus obtained is then distributed to the
various floor levels of the building using the formulas provided in the
ASCE 7 Standard. For additional details about this equivalent lateral-
force procedure, and for limitations on the use of this procedure, the
reader is referred to the ASCE 7 Standard.

2.8 Hydrostatic and Soil Pressures

Structures used to retain water, such as dams and tanks, as well as
coastal structures partially or fully submerged in water must be designed
to resist hydrostatic pressure. Hydrostatic pressure acts normal to the
submerged surface of the structure, with its magnitude varying linearly
with height, as shown in Fig. 2.15. Thus, the pressure at a point located
at a distance h below the surface of the liquid can be expressed as

p ¼ gh ð2:13Þ

in which g ¼ unit weight of the liquid.
Underground structures, basement walls and floors, and retaining

walls must be designed to resist soil pressure. The vertical soil pressure is
given by Eq. (2.13), with g now representing the unit weight of the soil.
The lateral soil pressure depends on the type of soil and is usually con-
siderably smaller than the vertical pressure. For the portions of struc-
tures below the water table, the combined e¤ect of hydrostatic pressure
and soil pressure due to the weight of the soil, reduced for buoyancy,
must be considered.

2.9 Thermal and Other Effects

Statically indeterminate structures may be subjected to stresses due
to temperature changes, shrinkage of material, fabrication errors, and
di¤erential settlements of supports. Although these e¤ects are usually

FIG. 2.15 Hydrostatic Pressure
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not addressed in building codes, they may cause significant stresses in
structures and should be considered in their designs. The procedures for
determining the forces induced in structures due to these e¤ects are
considered in Part III.

2.10 Load Combinations

As stated previously, once the magnitudes of the design loads for a
structure have been estimated, an engineer must consider all loads that
might act simultaneously on the structure at a given time. For example,
it is highly unlikely that an earthquake and the maximum wind loads
will occur simultaneously. Based on past experience and probability
analysis, the ASCE 7 Standard specifies that the buildings be designed
so that their strength equals or exceeds the following combinations of
factored loads:

1:4D ð2:14aÞ

1:2Dþ 1:6Lþ 0:5ðLr or S or RÞ ð2:14bÞ

1:2Dþ 1:6ðLr or S or RÞ þ ðL or 0:5WÞ ð2:14cÞ

1:2DþW þ Lþ 0:5ðLr or S or RÞ ð2:14dÞ

1:2Dþ E þ Lþ 0:2S ð2:14eÞ

0:9DþW ð2:14fÞ

0:9Dþ E ð2:14gÞ

in which D ¼ dead load, E ¼ earthquake load, L ¼ live load, Lr ¼ roof
live load, R ¼ rain load, S ¼ snow load, and W ¼ wind load.

It is important to realize that the structure must be designed to
have adequate strength to resist the most unfavorable of all the load
combinations.

In addition to the aforementioned strength or safety requirements, a
structure must also satisfy any serviceability requirements related to its
intended use. For example, a high-rise building may be perfectly safe,
yet unserviceable if it deflects or vibrates excessively due to wind. The
serviceability requirements are specified in building codes for most
common types of structures and are usually concerned with deflections,
vibrations, cracking, corrosion, and fatigue.
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Summary

In this chapter, we learned about the loads that act on common civil
engineering structures and the structural systems used for transmitting
loads. These loads can be grouped into three classes: (1) dead loads,
(2) live loads, and (3) environmental loads.

Dead loads have constant magnitudes and fixed positions, and they
act permanently on the structure. Live loads have varying magnitudes
and/or positions and are caused by the use or occupancy of the struc-
ture. Each member of the structure must be designed for that position of
the live load that produces the most unfavorable e¤ect on that member.
For structures subjected to rapidly applied live loads, the dynamic ef-
fect, or the impact, of the loads should be considered in design.

The external wind pressures used for designing the main framing of
structures are given by

pz ¼ qzGCp for windward wall

ph ¼ qhGCp for leeward wall; sidewalls; and roof
ð2:6Þ

where h is the mean roof height, G is the gust e¤ect factor, Cp is the ex-
ternal pressure coe‰cient, and qz is the velocity pressure at height z,
which is expressed in psf as

qz ¼ 0:00256KzKztKdV
2 ð2:3Þ

with Kz ¼ velocity pressure exposure coe‰cient, Kzt ¼ topographic fac-
tor, Kd ¼ directionality factor, and V ¼ basic wind speed in mph.

The design flat-roof snow load for buildings is given by

pf ¼ 0:7CeCtIspg ð2:7Þ

where pg ¼ ground snow load, Ce ¼ exposure factor, and Ct ¼ thermal
factor. The design sloped-roof snow load is expressed as

ps ¼ Cs pf ð2:8Þ

with Cs ¼ slope factor.
The total lateral seismic design force for buildings is given by

V ¼ CSW ð2:11Þ

in which CS ¼ seismic response coe‰cient, and W ¼ e¤ective seismic
weight of the building.

The magnitude of the hydrostatic pressure at a point located at a
distance h below the surface of the liquid is given by

p ¼ gh ð2:13Þ

in which g ¼ unit weight of the liquid.
The e¤ects of temperature changes, shrinkage of material, fab-

rication errors, and support settlements should be considered in design-
ing statically indeterminate structures. The structure must be designed
to withstand the most unfavorable combination of loads.
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PROBLEMS

Section 2.1

2.1 The roof of a single-story storage building, shown in
Fig. P2.1, is subjected to a uniformly distributed load of
0.96 kPa over its surface area. Determine the loads acting on
the floor beam BE and the girder AC of the framing system.

2.2 For the building described in Problem 2.1, calculate the
axial load acting on the column C. See Fig. P2.1.

A CB

D FE

Girder ColumnFloor beam

6 m

2 at 4 m = 8 m

FIG. P2.1, P2.2

2.3 The floor of an apartment building, shown in Fig. P2.3,
is subjected to a uniformly distributed load of 45 psf over its
surface area. Determine the loads acting on the floor beams
AF , BG, and CH, and the girders AC and FH, of the
framing system.

2.4 For the building described in Problem 2.3, calculate the
axial loads acting on the columns A, F , and H. See Fig.
P2.3.

A B

Floor beam Girder Column
C D E

K L M N O

F
G H I

J

4 at 25 ft = 100 ft

2 at 40 ft =
80 ft

FIG. P2.3, P2.4

Section 2.2

2.5 The floor system of an apartment building consists of
a 4-in.-thick reinforced concrete slab resting on three
steel floor beams, which in turn are supported by two steel
girders, as shown in Fig. P2.5. The areas of cross section of
the floor beams and the girders are 18.3 in.2 and 32.7 in.2,
respectively. Determine the dead loads acting on the beam
CD and the girder AE.

2.6 Solve Problem 2.5 if a 6-in.-thick brick wall, which is
7 ft high and 25 ft long, bears directly on the top of beam
CD. See Fig. P2.5.

FIG. P2.5, P2.6, P2.9

2.7 The floor system of a gymnasium consists of a 130-
mm-thick concrete slab resting on four steel beams (A ¼
9;100 mm2) that, in turn, are supported by two steel girders
(A ¼ 25;600 mm2), as shown in Fig. P2.7. Determine the dead
loads acting on beam BF and girder AD.

A D
B C

E F G
H

10 m

3 at 5 m = 15 m

130 mm
concrete
slab

Steel
column

Steel girder (A = 25,600 mm2)
Steel floor beam
(A = 9,100 mm2)

FIG. P2.7, P2.10

2.8 The roof system of an o‰ce building consists of a 4-in.-
thick reinforced concrete slab resting on four steel beams
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(A ¼ 16:2 in.2), which are supported by two steel girders
(A ¼ 42:9 in.2). The girders, in turn, are supported by four
columns, as shown in Fig. P2.8. Determine the dead loads
acting on the girder AG .

C

E

G

A

D

F

H

B20 ft

3 at 9 ft = 27 ft

4 in.
concrete slab

Steel
columnSteel girder

(A = 42.9 in.2)

Steel floor beam
(A = 16.2 in.2)

FIG. P2.8, P2.11

Section 2.3

2.9 For the apartment building whose floor system was de-
scribed in Problem 2.5, determine the live loads acting on
the beam CD and the girder AE. See Fig. P2.5.

2.10 For the gymnasium whose floor system was described
in Problem 2.7, determine the live loads acting on beam BF

and girder AD. See Fig. P2.7.

2.11 The roof of the o‰ce building considered in Problem
2.8 is subjected to a live load of 20 psf. Determine the live
loads acting on the beam EF , the girder AG, and the col-
umn A. See Fig. P2.8.

Section 2.5

2.12 Determine the external wind pressure on the roof of
the rigid-gabled frame of an apartment building shown in
Fig. P2.12. The building is located in the Los Angeles area
of California, where the terrain is representative of exposure
B. The wind direction is normal to the ridge as shown.

Wind

30 ft

15 ft

40 ft

FIG. P2.12

2.13 Determine the external wind pressure on the roof of the
rigid-gabled frame of a school building shown in Fig. P2.13.
The structure is located in a suburb of Chicago, Illinois,
where the terrain is representative of exposure B, and the

basic wind speed for risk category III buildings is 54 m/s.
Assume the wind direction is normal to the ridge as shown.

Wind

12 m

5 m

12 m

FIG. P2.13, P2.17

2.14 Determine the external wind pressure on the roof of
the rigid-gabled frame of a building for an essential disaster
operation center shown in Fig. P2.14. The building is lo-
cated in Kansas City, Missouri, where the terrain is repre-
sentative of exposure C, and the basic wind speed for risk
category IV buildings is 120 mph. Assume the wind direc-
tion is normal to the ridge, as shown in the figure.

2.15 Determine the external wind pressures on the wind-
ward and leeward walls of the building of Problem 2.14. See
Fig. P2.14.

30 ft

Plan

Elevation

30 ft

11 ft
Wind

40 ft

FIG. P2.14, P2.15, P2.16

Section 2.6

2.16 Determine the balanced design snow load for the roof
of the disaster operation center building of Problem 2.14.
The ground snow load in Kansas City is 20 psf. Because of
trees near the building, assume the exposure factor is
Ce ¼ 1. See Fig. P2.14.

2.17 Determine the balanced design snow load for the roof
of the school building of Problem 2.13. The ground snow
load in Chicago is 1.2 kN/m2. Assume the exposure factor
is Ce ¼ 1. See Fig. P2.13.
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The objective of this chapter is to review the basic concept of equilibrium
of structures under the action of forces and to develop the analysis of
reactions exerted by supports on plane (two-dimensional) structures sub-
jected to coplanar force systems.

We first review the concept of equilibrium and develop the equations
of equilibrium of structures. Next we discuss the external and internal
forces. We then describe the common types of supports used to restrict
movements of plane structures. Structures can be classified as externally
statically determinate, indeterminate, or unstable. We discuss how this
classification can be made for plane structures. We then develop a pro-
cedure for determining reactions at supports for plane statically determi-
nate structures. Finally, we define the principle of superposition and
show how to use proportions in the computation of reactions of simply
supported structures.

3.1 Equilibrium of Structures

A structure is considered to be in equilibrium if, initially at rest, it remains

at rest when subjected to a system of forces and couples. If a structure is
in equilibrium, then all its members and parts are also in equilibrium.

In order for a structure to be in equilibrium, all the forces and cou-
ples (including support reactions) acting on it must balance each other,
and there must neither be a resultant force nor a resultant couple acting
on the structure. Recall from statics that for a space (three-dimensional)

Bridge Construction on an

Expressway
Donovan Reese / Photodisc / Getty Images



structure subjected to three-dimensional systems of forces and couples
(Fig. 3.1), the conditions of zero resultant force and zero resultant cou-
ple can be expressed in a Cartesian ðxyzÞ coordinate system asP

Fx ¼ 0
P

Fy ¼ 0
P

Fz ¼ 0P
Mx ¼ 0

P
My ¼ 0

P
Mz ¼ 0

ð3:1Þ

These six equations are called the equations of equilibrium of space

structures and are the necessary and su‰cient conditions for equili-
brium. The first three equations ensure that there is no resultant force
acting on the structure, and the last three equations express the fact that
there is no resultant couple acting on the structure.

For a plane structure lying in the xy plane and subjected to a co-
planar system of forces and couples (Fig. 3.2), the necessary and su‰-
cient conditions for equilibrium can be expressed asP

Fx ¼ 0
P

Fy ¼ 0
P

Mz ¼ 0 ð3:2Þ

These three equations are referred to as the equations of equilibrium of

plane structures. The first two of the three equilibrium equations express,
respectively, that the algebraic sums of the x components and y compo-
nents of all the forces are zero, thereby indicating that the resultant force

FIG. 3.1

M1

F4

F1

F2
F3

M2

x

y

z

FIG. 3.2
x

y
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acting on the structure is zero. The third equation indicates that the al-
gebraic um of the moments of all the forces about any point in the plane
of the structure and the moments of any couples acting on the structure
is zero, thereby indicating that the resultant couple acting on the struc-
ture is zero. All the equilibrium equations must be satisfied simulta-
neously for the structure to be in equilibrium.

It should be realized that if a structure (e.g., an aerospace vehicle)
initially in motion is subjected to forces that satisfy the equilibrium
equations, it will maintain its motion with a constant velocity, since the
forces cannot accelerate it. Such structures may also be considered to
be in equilibrium. However, the term equilibrium is commonly used to
refer to the state of rest of structures and is used in this context herein.

Alternative Forms of Equations of Equilibrium
of Plane Structures

Although the equilibrium equations as expressed in Eq. (3.2) provide
the most convenient means of analyzing a majority of plane structures,
the analysis of some structures can be expedited by employing one of the
following two alternative forms of the equations of equilibrium:P

Fq ¼ 0
P

MA ¼ 0
P

MB ¼ 0 ð3:3Þ

in which A and B are any two points in the plane of the structure, pro-
vided that the line connecting A and B is not perpendicular to the q axis,
and P

MA ¼ 0
P

MB ¼ 0
P

MC ¼ 0 ð3:4Þ

in which A;B, and C are any points in the plane of the structure, pro-
vided that these three points do not lie on the same straight line.

Concurrent Force Systems

When a structure is in equilibrium under the action of a concurrent force
system—that is, the lines of action of all the forces intersect at a single
point—the moment equilibrium equations are automatically satisfied,
and only the force equilibrium equations need to be considered. There-
fore, for a space structure subjected to a concurrent three-dimensional
force system, the equations of equilibrium areP

Fx ¼ 0
P

Fy ¼ 0
P

Fz ¼ 0 ð3:5Þ

Similarly, for a plane structure subjected to a concurrent coplanar force
system, the equilibrium equations can be expressed asP

Fx ¼ 0
P

Fy ¼ 0 ð3:6Þ

Two-Force and Three-Force Structures

Throughout this text, we will encounter several structures and structural
members that will be in equilibrium under the action of only two, or
three, forces. The analysis of such structures and of structures composed
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of such members can be considerably expedited by recalling from statics

the following characteristics of such systems:

1. If a structure is in equilibrium under the action of only two
forces, the forces must be equal, opposite, and collinear.

2. If a structure is in equilibrium under the action of only three
forces, the forces must be either concurrent or parallel.

3.2 External and Internal Forces

The forces and couples to which a structure may be subjected can be
classified into two types, external forces and internal forces.

External Forces

External forces are the actions of other bodies on the structure under
consideration. For the purposes of analysis, it is usually convenient to
further classify these forces as applied forces and reaction forces. Applied
forces, usually referred to as loads (e.g., live loads and wind loads), have
a tendency to move the structure and are usually known in the analysis.
Reaction forces, or reactions, are the forces exerted by supports on the
structure and have a tendency to prevent its motion and keep it in equi-
librium. The reactions are usually among the unknowns to be determined
by the analysis. The state of equilibrium or motion of the structure as a
whole is governed solely by the external forces acting on it.

Internal Forces

Internal forces are the forces and couples exerted on a member or por-
tion of the structure by the rest of the structure. These forces develop
within the structure and hold the various portions of it together. The
internal forces always occur in equal but opposite pairs, because each
member or portion exerts back on the rest of the structure the same
forces acting upon it but in opposite directions, according to Newton’s
third law. Because the internal forces cancel each other, they do not ap-
pear in the equations of equilibrium of the entire structure. The internal
forces are also among the unknowns in the analysis and are determined
by applying the equations of equilibrium to the individual members or
portions of the structure.

3.3 Types of Supports for Plane Structures

Supports are used to attach structures to the ground or other bodies,
thereby restricting their movements under the action of applied loads.
The loads tend to move the structures; but supports prevent the move-
ments by exerting opposing forces, or reactions, to neutralize the e¤ects
of loads, thereby keeping the structures in equilibrium. The type of
reaction a support exerts on a structure depends on the type of supporting
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device used and the type of movement it prevents. A support that pre-
vents translation of the structure in a particular direction exerts a reaction
force on the structure in that direction. Similarly, a support that prevents
rotation of the structure about a particular axis exerts a reaction couple
on the structure about that axis.

The types of supports commonly used for plane structures are
depicted in Fig. 3.3. These supports are grouped into three categories,
depending on the number of reactions (1, 2, or 3) they exert on the
structures. The figure also gives the types of reactions that these sup-
ports exert, as well as the number of unknowns that the various supports
introduce in the analysis. Figures 3.4 through 3.6 illustrate roller,
rocker, and hinged supports.

Category Type of support Symbolic representation Reactions Number of unknowns

Roller

1
The reaction force R acts
perpendicular to the supporting
surface and may be directed either
into or away from the structure.
The magnitude of R is the
unknown.

I
Rocker

Link

1
The reaction force R acts in the
direction of the link and may be
directed either into or away from
the structure. The magnitude of R is
the unknown.

II Hinge

2
The reaction force R may act in any
direction. It is usually convenient to
represent R by its rectangular
components, Rx and Ry. The
magnitudes of Rx and Ry are the
two unknowns.

III Fixed

3
The reactions consist of two force
components Rx and Ry and a
couple of moment M. The
magnitudes of Rx, Ry, and M are
the three unknowns.

FIG. 3.3 Types of Supports for Plane Structures
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3.4 Static Determinacy, Indeterminacy, and Instability

Internal Stability

A structure is considered to be internally stable, or rigid, if it maintains

its shape and remains a rigid body when detached from the supports.
Conversely, a structure is termed internally unstable (or nonrigid) if it
cannot maintain its shape and may undergo large displacements under
small disturbances when not supported externally. Some examples of
internally stable structures are shown in Fig. 3.7. Note that each of the

FIG. 3.4 Roller Support
Courtesy of the Illinois Department of Transportation

FIG. 3.5 Rocker Support
Maureen M. Kassimali

FIG. 3.6 Hinged Support
Maureen M. Kassimali
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structures shown forms a rigid body, and each can maintain its shape
under loads. Figure 3.8 shows some examples of internally unstable
structures. A careful look at these structures indicates that each struc-
ture is composed of two rigid parts, AB and BC, connected by a hinged
joint B, which cannot prevent the rotation of one part with respect to
the other.

It should be realized that all physical bodies deform when subjected
to loads; the deformations in most engineering structures under service
conditions are so small that their e¤ect on the equilibrium state of the
structure can be neglected. The term rigid structure as used here implies
that the structure o¤ers significant resistance to its change of shape,
whereas a nonrigid structure o¤ers negligible resistance to its change of
shape when detached from the supports and would often collapse under
its own weight when not supported externally.

Static Determinacy of Internally Stable Structures

An internally stable structure is considered to be statically determinate

externally if all its support reactions can be determined by solving the

FIG. 3.8 Examples of Internally Unstable Structures

FIG. 3.7 Examples of Internally Stable Structures
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equations of equilibrium. Since a plane internally stable structure can be
treated as a plane rigid body, in order for it to be in equilibrium under a
general system of coplanar loads, it must be supported by at least three
reactions that satisfy the three equations of equilibrium (Eqs. 3.2, 3.3, or
3.4). Also, since there are only three equilibrium equations, they cannot
be used to determine more than three reactions. Thus, a plane structure
that is statically determinate externally must be supported by exactly
three reactions. Some examples of externally statically determinate plane
structures are shown in Fig. 3.9. It should be noted that each of these
structures is supported by three reactions that can be determined by
solving the three equilibrium equations.

FIG. 3.9 Examples of Externally
Statically Determinate Plane Structures
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If a structure is supported by more than three reactions, then all
the reactions cannot be determined from the three equations of equili-
brium. Such structures are termed statically indeterminate externally. The
reactions in excess of those necessary for equilibrium are called external

redundants, and the number of external redundants is referred to as the
degree of external indeterminacy. Thus, if a structure has r reactions
ðr > 3Þ, then the degree of external indeterminacy can be written as

ie ¼ r� 3 ð3:7Þ

Figure 3.10 shows some examples of externally statically indeterminate
plane structures.

If a structure is supported by fewer than three support reactions, the
reactions are not su‰cient to prevent all possible movements of the struc-
ture in its plane. Such a structure cannot remain in equilibrium under a
general system of loads and is, therefore, referred to as statically unstable

externally. An example of such a structure is shown in Fig. 3.11. The truss
shown in this figure is supported on only two rollers. It should be obvious
that although the two reactions can prevent the truss from rotating and
translating in the vertical direction, they cannot prevent its translation in
the horizontal direction. Thus, the truss is not fully constrained and is
statically unstable.

The conditions of static instability, determinacy, and indeterminacy
of plane internally stable structures can be summarized as follows:

r < 3 the structure is statically unstable externally

r ¼ 3 the structure is statically determinate externally

r > 3 the structure is statically indeterminate externally

ð3:8Þ

where r ¼ number of reactions.
It should be realized that the first of three conditions stated in

Eq. (3.8) is both necessary and su‰cient in the sense that if r < 3, the
structure is definitely unstable. However, the remaining two conditions,
r ¼ 3 and r > 3, although necessary, are not su‰cient for static determi-
nacy and indeterminacy, respectively. In other words, a structure may
be supported by a su‰cient number of reactions ðrb 3Þ but may still be
unstable due to improper arrangement of supports. Such structures are
referred to as geometrically unstable externally. The two types of reaction
arrangements that cause geometric instability in plane structures are
shown in Fig. 3.12. The truss in Fig. 3.12(a) is supported by three paral-
lel reactions. It can be seen from this figure that although there is
a su‰cient number of reactions ðr ¼ 3Þ, all of them are in the vertical
direction, so they cannot prevent translation of the structure in the
horizontal direction. The truss is, therefore, geometrically unstable. The
other type of reaction arrangement that causes geometric instability is
shown in Fig. 3.12(b). In this case, the beam is supported by three
nonparallel reactions. However, since the lines of action of all three re-
action forces are concurrent at the same point, A, they cannot prevent
rotation of the beam about point A. In other words, the moment equili-
brium equation

P
MA ¼ 0 cannot be satisfied for a general system of
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FIG. 3.11 An Example of Externally
Statically Unstable Plane Structure

FIG. 3.10 Examples of Externally
Statically Indeterminate Plane
Structures
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coplanar loads applied to the beam. The beam is, therefore, geometri-
cally unstable.

Based on the preceding discussion, we can conclude that in order for
a plane internally stable structure to be geometrically stable externally so
that it can remain in equilibrium under the action of any arbitrary copla-
nar loads, it must be supported by at least three reactions, all of which
must be neither parallel nor concurrent.

Static Determinacy of Internally Unstable
Structures—Equations of Condition

Consider an internally unstable structure composed of two rigid mem-
bers AB and BC connected by an internal hinge at B, as shown in
Fig. 3.13(a). The structure is supported by a roller support at A and a
hinged support at C, which provide three nonparallel nonconcurrent
external reactions. As this figure indicates, these reactions, which would
have been su‰cient to fully constrain an internally stable or rigid struc-
ture, are not su‰cient for this structure. The structure can, however, be
made externally stable by replacing the roller support at A by a hinged
support to prevent the horizontal movement of end A of the structure.
Thus, as shown in Fig. 3.13(b), the minimum number of external reac-
tions required to fully constrain this structure is four.

Obviously, the three equilibrium equations are not su‰cient to de-
termine the four unknown reactions at the supports for this structure.
However, the presence of the internal hinge at B yields an additional
equation that can be used with the three equilibrium equations to deter-
mine the four unknowns. The additional equation is based on the condi-
tion that an internal hinge cannot transmit moment; that is, the moments
at the ends of the parts of the structure connected to a hinged joint are
zero. Therefore, when an internal hinge is used to connect two portions of
a structure, the algebraic sum of the moments about the hinge of the loads
and reactions acting on each portion of the structure on either side of the
hinge must be zero. Thus, for the structure of Fig. 3.13(b), the presence of
the internal hinge at B requires that the algebraic sum of moments about B
of the loads and reactions acting on the individual members AB and BC

must be zero; that is,
P

MAB
B ¼ 0 and

P
MBC

B ¼ 0. Such equations are

FIG. 3.12 Reaction Arrangements
Causing External Geometric Instability
in Plane Structures
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commonly referred to as the equations of condition or construction. It is
important to realize that these two equations are not independent. When
one of the two equations—for example,

P
MAB

B ¼ 0—is satisfied along
with the moment equilibrium equation

P
M ¼ 0 for the entire structure,

the remaining equation
P

MBC
B ¼ 0 is automatically satisfied. Thus, an

internal hinge connecting two members or portions of a structure provides
one independent equation of condition. (The structures that contain hinged
joints connecting more than two members are considered in subsequent
chapters.) Because all four unknown reactions for the structure of Fig. 3.13
(b) can be determined by solving the three equations of equilibrium plus
one equation of condition (

P
MAB

B ¼ 0 or
P

MBC
B ¼ 0), the structure is

considered to be statically determinate externally. Shear splices (Fig. 3.14)
are sometimes used to connect two beams into a longer one. Such con-
nections are designed to transfer (shear) forces but not (bending) moments,
and are treated as internal hinges for analysis.

Occasionally, connections are used in structures that permit not
only relative rotations of the member ends but also relative translations
in certain directions of the ends of the connected members. Such con-
nections are modeled as internal roller joints for the purposes of analy-
sis. Figure 3.15 shows a structure consisting of two rigid members AB

and BC that are connected by such an internal roller at B. The structure
is internally unstable and requires a minimum of five external support
reactions to be fully constrained against all possible movements under
a general system of coplanar loads. Since an internal roller can transmit
neither moment nor force in the direction parallel to the supporting sur-
face, it provides two equations of condition;P

F AB
x ¼ 0 or

P
F BC
x ¼ 0

FIG. 3.13
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and P
MAB

B ¼ 0 or
P

MBC
B ¼ 0

These two equations of condition can be used in conjunction with the three
equilibrium equations to determine the five unknown external reactions.
Thus, the structure of Fig. 3.15 is statically determinate externally.

From the foregoing discussion, we can conclude that if there are ec
equations of condition (one equation for each internal hinge and two
equations for each internal roller) for an internally unstable structure,
which is supported by r external reactions, then if

r < 3þ ec the structure is statically
unstable externally

r ¼ 3þ ec the structure is statically
determinate externally

r > 3þ ec the structure is statically
indeterminate externally

ð3:9Þ

FIG. 3.15

FIG. 3.14 Shear Splice
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For an externally indeterminate structure, the degree of external in-
determinacy is expressed as

ie ¼ r� ð3þ ecÞ ð3:10Þ

Alternative Approach An alternative approach that can be used for de-
termining the static instability, determinacy, and indeterminacy of inter-
nally unstable structures is as follows:

1. Count the total number of support reactions, r.
2. Count the total number of internal forces, fi, that can be trans-

mitted through the internal hinges and the internal rollers of
the structure. Recall that an internal hinge can transmit two
force components, and an internal roller can transmit one force
component.

3. Determine the total number of unknowns, rþ fi.
4. Count the number of rigid members or portions, nr, contained

in the structure.
5. Because each of the individual rigid portions or members of the

structure must be in equilibrium under the action of applied
loads, reactions, and/or internal forces, each member must sat-
isfy the three equations of equilibrium (

P
Fx ¼ 0,

P
Fy ¼ 0,

and
P

M ¼ 0). Thus, the total number of equations available
for the entire structure is 3nr.

6. Determine whether the structure is statically unstable, determi-
nate, or indeterminate by comparing the total number of un-
knowns, rþ fi, to the total number of equations. If

rþ fi < 3nr the structure is statically
unstable externally

rþ fi ¼ 3nr the structure is statically
determinate externally

rþ fi > 3nr the structure is statically
indeterminate externally

ð3:11Þ

For indeterminate structures, the degree of external indeterminacy
is given by

ie ¼ ðrþ fiÞ � 3nr ð3:12Þ

Applying this alternative procedure to the structure of Fig. 3.13(b), we can
see that for this structure, r ¼ 4, fi ¼ 2, and nr ¼ 2. As the total number of
unknowns ðrþ fi ¼ 6Þ is equal to the total number of equations ð3nr ¼ 6Þ,
the structure is statically determinate externally. Similarly, for the structure of
Fig. 3.15, r ¼ 5, fi ¼ 1, and nr ¼ 2. Since rþ fi ¼ 3nr, this structure is also
statically determinate externally.

The criteria for the static determinacy and indeterminacy as de-
scribed in Eqs. (3.9) and (3.11), although necessary, are not su‰cient
because they cannot account for the possibility of geometric instability.
To avoid geometric instability, the internally unstable structures, like the
internally stable structures considered previously, must be supported by
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reactions, all of which are neither parallel nor concurrent. An additional
type of geometric instability that may arise in internally unstable struc-
tures is depicted in Fig. 3.16. For the beam shown, which contains three
internal hinges at B;C, and D, r ¼ 6 and ec ¼ 3 (i.e., r ¼ 3þ ec); there-
fore, according to Eq. (3.9), the beam is supported by a su‰cient number
of reactions, and it should be statically determinate. However, it can be
seen from the figure that portion BCD of the beam is unstable because it
cannot support the vertical load P applied to it in its undeformed posi-
tion. Members BC and CD must undergo finite rotations to develop any
resistance to the applied load. Such a type of geometric instability can be
avoided by externally supporting any portion of the structure that con-
tains three or more internal hinges that are collinear.

Example 3.1

Classify each of the structures shown in Fig. 3.17 as externally unstable, statically determinate, or statically in-
determinate. If the structure is statically indeterminate externally, then determine the degree of external indeterminacy.

Solution
(a) This beam is internally stable with r ¼ 5 > 3. Therefore, it is statically indeterminate externally with the degree

of external indeterminacy of

ie ¼ r� 3 ¼ 5� 3 ¼ 2 Ans.

(b) This beam is internally unstable. It is composed of two rigid members AB and BC connected by an internal
hinge at B. For this beam, r ¼ 6 and ec ¼ 1. Since r > 3þ ec, the structure is statically indeterminate externally with the
degree of external indeterminacy of

ie ¼ r� ð3þ ecÞ ¼ 6� ð3þ 1Þ ¼ 2 Ans.

Alternative Method. fi ¼ 2, nr ¼ 2, rþ fi ¼ 6þ 2 ¼ 8, and 3nr ¼ 3ð2Þ ¼ 6. As rþ fi > 3nr, the beam is statically in-
determinate externally, with

ie ¼ ðrþ fiÞ � 3nr ¼ 8� 6 ¼ 2 Checks

(c) This structure is internally unstable with r ¼ 4 and ec ¼ 2. Since r < 3þ ec, the structure is statically unstable
externally. This can be verified from the figure, which shows that the member BC is not restrained against movement in
the horizontal direction. Ans.

Alternative Method. fi ¼ 1, nr ¼ 2, rþ fi ¼ 4þ 1 ¼ 5, and 3nr ¼ 6. Since rþ fi < 3nr, the structure is statically un-
stable externally. Checks

(d) This beam is internally unstable with r ¼ 5 and ec ¼ 2. Because r ¼ 3þ ec, the beam is statically determinate
externally. Ans.

continued

FIG. 3.16

Section 3.4 Static Determinacy, Indeterminacy, and Instability 67



Alternative Method. fi ¼ 4, nr ¼ 3, rþ fi ¼ 5þ 4 ¼ 9, and 3nr ¼ 3ð3Þ ¼ 9. Because rþ fi ¼ 3nr, the beam is staticaly
determinate externally. Checks

(e) This is an internally unstable structure with r ¼ 6 and ec ¼ 3. Since r ¼ 3þ ec, the structure is statically deter-
minate externally. Ans.

Alternative Method. fi ¼ 6, nr ¼ 4, rþ fi ¼ 6þ 6 ¼ 12, and 3nr ¼ 3ð4Þ ¼ 12. Because rþ fi ¼ 3nr, the structure is
statically determinate externally. Checks

(f ) This frame is internally unstable with r ¼ 4 and ec ¼ 1. Since r ¼ 3þ ec, the frame is statically determinate
externally. Ans.

Alternative Method. fi ¼ 2, nr ¼ 2, rþ fi ¼ 4þ 2 ¼ 6, and 3nr ¼ 3ð2Þ ¼ 6. Since rþ fi ¼ 3nr, the frame is statically
determinate externally. Checks

(g) This frame is internally unstable with r ¼ 6 and ec ¼ 3. Since r ¼ 3þ ec, the frame is statically determinate
externally. Ans.

Alternative Method. fi ¼ 6, nr ¼ 4, rþ fi ¼ 6þ 6 ¼ 12, and 3nr ¼ 3ð4Þ ¼ 12. Because rþ fi ¼ 3nr, the frame is
statically determinate externally. Checks

FIG. 3.17
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3.5 Computation of Reactions

The following step-by-step procedure can be used to determine the reactions
of plane statically determinate structures subjected to coplanar loads.

1. Draw a free-body diagram (FBD) of the structure.
a. Show the structure under consideration detached from its

supports and disconnected from all other bodies to which it
may be connected.

b. Show each known force or couple on the FBD by an arrow
indicating its direction and sense. Write the magnitude of
each known force or couple by its arrow.

c. Show the orientation of the mutually perpendicular xy

coordinate system to be used in the analysis. It is usually
convenient to orient the x and y axes in the horizontal
(positive to the right) and vertical (positive upward) direc-
tions, respectively. However, if the dimensions of the struc-
ture and/or the lines of action of most of the applied loads
are in an inclined direction, selection of the x (or y) axis in
that direction may considerably expedite the analysis.

d. At each point where the structure has been detached from a
support, show the unknown external reactions being exerted
on the structure. The type of reactions that can be exerted by
the various supports are given in Fig. 3.3. The reaction forces
are represented on the FBD by arrows in the known directions
of their lines of action. The reaction couples are represented by
curved arrows. The senses of the reactions are not known and
can be arbitrarily assumed. However, it is usually convenient
to assume the senses of the reaction forces in the positive x

and y directions and of reaction couples as counterclockwise.
The actual senses of the reactions will be known after their
magnitudes have been determined by solving the equations of
equilibrium and condition (if any). A positive magnitude for
a reaction will imply that the sense initially assumed was cor-
rect, whereas a negative value of the magnitude will indicate
that the actual sense is opposite to the one assumed on the
FBD. Since the magnitudes of the reactions are not yet known,
they are denoted by appropriate letter symbols on the FBD.

e. To complete the FBD, draw the dimensions of the struc-
ture, showing the locations of all the known and unknown
external forces.

2. Check for static determinacy. Using the procedure described in
Section 3.4, determine whether or not the given structure is
statically determinate externally. If the structure is either stat-
ically or geometrically unstable or indeterminate externally, end
the analysis at this stage.

3. Determine the unknown reactions by applying the equations of
equilibrium and condition (if any) to the entire structure. To
avoid solving simultaneous equations, write the equilibrium and
condition equations so that each equation involves only one un-
known. For some internally unstable structures, it may not be
possible to write equations containing one unknown each. For
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such structures, the reactions are determined by solving the
equations simultaneously. The analysis of such internally un-
stable structures can sometimes be expedited and the solution of
simultaneous equations avoided by disconnecting the structure
into rigid portions and by applying the equations of equilibrium
to the individual portions to determine the reactions. In such a
case, you must construct the free-body diagrams of the portions
of the structure; these diagrams must show, in addition to any
applied loads and support reactions, all the internal forces being
exerted upon that portion at connections. Remember that the
internal forces acting on the adjacent portions of a structure
must have the same magnitudes but opposite senses in accord-
ance with Newton’s third law.

4. Apply an alternative equilibrium equation that has not been used
before to the entire structure to check the computations. This
alternative equation should preferably involve all the reactions
that were determined in the analysis. You may use a moment
equilibrium equation involving a summation of moments about
a point that does not lie on lines of action of reaction forces for
this purpose. If the analysis has been carried out correctly, then
this alternative equilibrium equation must be satisfied.

Example 3.2

Determine the reactions at the supports for the beam shown in Fig. 3.18(a).

Solution
Free-Body Diagram. The free-body diagram of the beam is shown in Fig. 3.18(b). Note that the roller at A exerts re-
action RA in the direction perpendicular to the inclined supporting surface.

Static Determinacy. The beam is internally stable and is supported by three reactions, RA;Bx, and By, all of which are
neither parallel nor concurrent. Therefore, the beam is statically determinate.

FIG. 3.18

continued
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Support Reactions. Since two of the three reactions, namely, Bx and By, are concurrent at B, their moments about B are
zero. Therefore, the equilibrium equation

P
MB ¼ 0, which involves the summation of moments of all the forces about

B, contains only one unknown, RA. Thus,

þ ’
P

MB ¼ 0

� 4

5
RAð20Þ þ 12 sin 60�ð10Þ � 6ð5Þ ¼ 0

RA ¼ 4:62 k

The positive answer for RA indicates that our initial assumption about the sense of this reaction was correct.
Therefore,

RA ¼ 4:62 k% Ans.

Next, in order to determine Bx, we apply the equilibrium equation,

þ !
P

Fx ¼ 0

3

5
ð4:62Þ � 12 cos 60� þ Bx ¼ 0

Bx ¼ 3:23 k

Bx ¼ 3:23 k! Ans.

The only remaining unknown, By, can now be determined by applying the remaining equation of equilibrium:

þ "
P

Fy ¼ 0

4

5
ð4:62Þ � 12 sin 60� þ By � 6 ¼ 0

By ¼ 12:7 k

By ¼ 12:7 k " Ans.

In order to avoid having to solve simultaneous equations in the preceding computations, we applied the equili-
brium equations in such a manner that each equation contained only one unknown.

Checking Computations. Finally, to check our computations, we apply an alternative equation of equilibrium (see
Fig. 3.18(b)):

þ ’
P

MC ¼ �
4

5
ð4:62Þð25Þ þ 12 sin 60�ð15Þ � 12:7ð5Þ

¼ �0:01 k-ft Checks

Example 3.3

Determine the reactions at the supports for the beam shown in Fig. 3.19(a).

Solution
Free-Body Diagram. See Fig. 3.19(b).

Static Determinacy. The beam is internally stable with r ¼ 3. Thus, it is statically determinate.

continued
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Support Reactions. By applying the three equations of equilibrium, we obtain

þ !
P

Fx ¼ 0

Bx ¼ 0 Ans.

þ "
P

Fy ¼ 0

�15ð6Þ � 160þ By ¼ 0

By ¼ 250 kN

By ¼ 250 kN " Ans.

þ ’
P

MB ¼ 0

�400þ 15ð6Þð3þ 8Þ þ 160ð4Þ þMB ¼ 0

MB ¼ �1230 kN �m

MB ¼ 1230 kN �m @ Ans.

Checking Computations.

þ ’
P

MA ¼ �400� 15ð6Þð3Þ � 160ð10Þ þ 250ð14Þ � 1230 ¼ 0 Checks

Example 3.4

Determine the reactions at the support for the frame shown in Fig. 3.20(a).

Solution
Free-Body Diagram. The free-body diagram of the frame is shown in Fig. 3.20(b). Note that the trapezoidal loading
distribution has been divided into two simpler, uniform, and triangular, distributions whose areas and centroids are
easier to compute.

6 m 4 m

15 kN/m
160 kN

4 m

400 kN . m

(a)

6 m 4 m

15 kN/m
160 kN

4 m

400 kN . m

(b)

A B

By

Bx

MB

x

y

FIG. 3.19
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Static Determinacy. The frame is internally stable with r ¼ 3. Therefore, it is statically determinate.

Support Reactions. By applying the three equations of equilibrium, we obtain

þ !
P

Fx ¼ 0

Ax þ 2ð15Þ ¼ 0

Ax ¼ �30 kN

Ax ¼ 30 kN Ans.

þ "
P

Fy ¼ 0

Ay � 2ð9Þ � 1

2
ð3Þð9Þ ¼ 0

Ay ¼ 31:5 kN

Ay ¼ 31:5 kN " Ans.

þ ’
P

MA ¼ 0

MA � ½2ð15Þ�
15

2

� �
� ½2ð9Þ� 9

2

� �
� 1

2
ð3Þð9Þ

� �
2

3
ð9Þ ¼ 0

MA ¼ 387 kN-m

MA ¼ 387 kN-m ’ Ans.

Checking Computations.

þ ’
P

MB ¼ �30ð15Þ � 31:5ð9Þ þ 387þ ½2ð15Þ� 15

2

� �
þ ½2ð9Þ� 9

2

� �
þ 1

2
ð3Þð9Þ

� �
9

3

� �
¼ 0 Checks

FIG. 3.20
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Example 3.5

Determine the reactions at the supports for the frame shown in Fig. 3.21(a).

Solution
Free-Body Diagram. See Fig. 3.21(b).

Static Determinacy. The frame is internally stable with r ¼ 3. Thus, it is statically determinate.

Support Reactions.

þ !
P

Fx ¼ 0

Ax þ
1

2
ð2:5Þð18Þ � 15 ¼ 0

Ax ¼ �7:5 k

Ax ¼ 7:5 k Ans.

þ ’
P

MA ¼ 0

� 1

2
ð2:5Þð18Þ

� �
18

3

� �
� ½1:5ð18Þ�ð9Þ þ 15ð12Þ þ Byð12Þ ¼ 0

By ¼ 16:5 k

By ¼ 16:5 k " Ans.

þ "
P

Fy ¼ 0

Ay � 1:5ð18Þ þ 16:5 ¼ 0

Ay ¼ 10:5 k

Ay ¼ 10:5 k " Ans.

continued

FIG. 3.21
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Checking Computations.

þ ’
P

MC ¼ �7:5ð18Þ � 10:5ð18Þ þ 1

2
ð2:5Þð18Þ

� �
2

3
ð18Þ

þ 1:5ð18Þ 18

2

� �
� 15ð6Þ � 16:5ð6Þ

¼ 0 Checks

Example 3.6

Determine the reactions at the supports for the frame shown in Fig. 3.22(a).

Solution
Free-Body Diagram. See Fig. 3.22(b).

Static Determinacy. The frame is internally stable with r ¼ 3. Therefore, it is statically determinate.

10 ft

2 k/ft
50 k

3 k/ft

24 ft 12 ft 12 ft

(a)

10 ft

50 k

3 k/ft

24 ft 12 ft 12 ft

(b)

2 k/ft

5

1213

13 5
12

26 ft

Ay

A

B Cy

C
Cx

x

y

FIG. 3.22

continued
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Support Reactions.

þ !
P

Fx ¼ 0

2þ 3

2

� �
ð26Þ 5

13

� �
þ Cx ¼ 0

Cx ¼ �25 k

Cx ¼ 25 k Ans.

þ ’
P

MA ¼ 0

�2ð26Þð13Þ � 1

2
ð1Þð26Þ 26

3

� �
� 50ð24þ 12Þ þ 25ð10Þ þ Cyð48Þ ¼ 0

Cy ¼ 48:72 k

Cy ¼ 48:72 k " Ans.

þ "
P

Fy ¼ 0

Ay �
2þ 3

2

� �
ð26Þ 12

13

� �
� 50þ 48:72 ¼ 0

Ay ¼ 61:28 k

Ay ¼ 61:28 k " Ans.

Checking Computations.

þ ’
P

MB ¼ �61:28ð24Þ þ 2ð26Þð13Þ þ 1

2
ð1Þð26Þ 2

3

� �
ð26Þ � 50ð12Þ þ 48:72ð24Þ

¼ �0:107 k-ft&0 Checks

Example 3.7

Determine the reactions at the supports for the beam shown in Fig. 3.23(a).

Solution
Free-Body Diagram. See Fig. 3.23(b).

Static Determinacy. The beam is internally unstable. It is composed of three rigid members, AB;BE, and EF, connected by
two internal hinges at B and E. The structure has r ¼ 5 and ec ¼ 2; because r ¼ 3þ ec, the structure is statically determinate.

Support Reactions.

þ !
P

Fx ¼ 0

Ax ¼ 0 Ans.

Next, we apply the equation of condition,
P

MAB
B ¼ 0, which involves the summation of moments about B of all

the forces acting on the portion AB.

þ ’
P

MAB
B ¼ 0

�Ayð20Þ þ ½5ð20Þ�ð10Þ ¼ 0

Ay ¼ 50 kN

Ay ¼ 50 kN " Ans.

continued
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Similarly, by applying the equation of condition
P

MEF
E ¼ 0, we determine the reaction Fy as follows:

þ ’
P

MEF
E ¼ 0

�½3ð20Þ�ð10Þ þ Fyð20Þ ¼ 0

Fy ¼ 30 kN

Fy ¼ 30 kN " Ans.

The remaining two equilibrium equations can now be applied to determine the remaining two unknowns,
Cy and Dy:

þ ’
P

MD ¼ 0

�50ð90Þ þ ½5ð40Þ�ð70Þ � Cyð50Þ þ ½3ð90Þ�ð5Þ þ 30ð40Þ ¼ 0

Cy ¼ 241 kN

Cy ¼ 241 kN " Ans.

It is important to realize that the moment equilibrium equations involve the moments of all the forces acting on the
entire structure, whereas, the moment equations of condition involve only the moments of those forces that act on the
portion of the structure on one side of the internal hinge.

Finally, we compute Dy by using the equilibrium equation,

þ "
P

Fy ¼ 0

50� 5ð40Þ þ 241� 3ð90Þ þDy þ 30 ¼ 0

Dy ¼ 149 kN

Dy ¼ 149 kN " Ans.

(c)

20 m 20 m 20 m50 m

5 kN/m

A B

Ax

5 kN/m

B

Bx

Ay By By Cy Dy Ey

Bx

E

Ex

20 m

3 kN/m
E F

Ex

Ey Fy

3 kN/m

C D

FIG. 3.23

continued
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Alternative Method. The reactions of the beam can be determined alternatively by applying the three equations of
equilibrium to each of the three rigid portions AB, BE, and EF of the beam. The free-body diagrams of these rigid
portions are shown in Fig. 3.23(c). These diagrams show the internal forces being exerted through the internal hinges at
B and E in addition to the applied loads and support reactions. Note that the internal forces acting at each end B of
portions AB and BE and at each end E of portions BE and EF have the same magnitudes but opposite senses, according
to Newton’s law of action and reaction.

The total number of unknowns (including the internal forces) is nine. Since there are three equilibrium equations
for each of the three rigid portions, the total number of equations available is also nine (r + fi = 3nr = 9). Therefore, all
nine unknowns (reactions plus internal forces) can be determined from the equilibrium equations, and the beam is stat-
ically determinate.

Applying the three equations of equilibrium to portion AB, we obtain the following:

þ ’ �MAB
A ¼ 0 � ½5ð20Þ�ð10Þ þ Byð20Þ ¼ 0 By ¼ 50 kN

þ " �FAB
y ¼ 0 Ay � 5ð20Þ þ 50 ¼ 0 Ay ¼ 50 kN

þ ! �FAB
x ¼ 0 Ax � Bx ¼ 0

Checks

(1)

Next, we consider the equilibrium of portion EF:

þ ! �FEF
x ¼ 0

þ ’ �MEF
F ¼ 0

þ " �FEF
y ¼ 0

�Eyð20Þ þ ½3ð20Þ�ð10Þ ¼ 0

30� 3ð20Þ þ Fy ¼ 0

Ex ¼ 0

Ey ¼ 30 kN

Fy ¼ 30 kN Checks

Considering the equilibrium of portion BE, we write

þ ! �FBE
x ¼ 0 Bx ¼ 0

From Eq. (1), we obtain

Ax ¼ 0 Checks

þ’�MBE
C ¼ 0 50ð20Þ þ ½5ð20Þ�ð10Þ � ½3ð70Þ�ð35Þ þDyð50Þ � 30ð70Þ ¼ 0

Dy ¼ 149kN Checks

þ " �FBE
y ¼ 0 � 50� 5ð20Þ þ Cy � 3ð70Þ þ 149� 30 ¼ 0

Cy ¼ 241 kN Checks

Example 3.8

Determine the reactions at the supports for the three-hinged arch shown in Fig. 3.24(a).

Solution
Free-Body Diagram. See Fig. 3.24(b).

Static Determinacy. The arch is internally unstable; it is composed of two rigid portions, AB and BC, connected by an
internal hinge at B. The arch has r ¼ 4 and ec ¼ 1; since r ¼ 3þ ec, it is statically determinate.

continued
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Support Reactions.

þ ’
P

MC ¼ 0

�Ayð60Þ � ½1ð30Þ�ð15Þ þ ½2:5ð60Þ�ð30Þ ¼ 0

Ay ¼ 67:5 k

Ay ¼ 67:5 k " Ans.

þ ’
P

MAB
B ¼ 0

Axð30Þ � 67:5ð30Þ þ ½1ð30Þ�ð15Þ þ ½2:5ð30Þ�ð15Þ ¼ 0

Ax ¼ 15 k

Ax ¼ 15 k! Ans.

þ !
P

Fx ¼ 0

15þ 1ð30Þ þ Cx ¼ 0

Cx ¼ �45 k

Cx ¼ 45 k Ans.

þ "
P

Fy ¼ 0

67:5� 2:5ð60Þ þ Cy ¼ 0

Cy ¼ 82:5 k

Cy ¼ 82:5 k " Ans.

Checking Computations. To check our computations, we apply the equilibrium equation
P

MB ¼ 0 for the entire
structure:

þ ’
P

MB ¼ 15ð30Þ � 67:5ð30Þ þ ½1ð30Þ�ð15Þ þ ½2:5ð60Þ�ð0Þ

� 45ð30Þ þ 82:5ð30Þ

¼ 0 Checks

FIG. 3.24
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Example 3.9

Determine the reactions at the supports for the beam shown in Fig. 3.25(a).

Solution
Free-Body Diagram. The free-body diagram of the entire structure is shown in Fig. 3.25(b).

Static Determinacy. The beam is internally unstable, with r ¼ 5 and ec ¼ 2. Since r ¼ 3þ ec, the structure is statically
determinate.

Support Reactions. Using the free-body diagram of the entire beam shown in Fig. 3.25(b), we determine the reactions as
follows:

þ !
P

Fx ¼ 0

Ax ¼ 0 Ans.

þ ’
P

MAC
C ¼ 0

�Ayð200Þ þ 80ð125Þ � Byð75Þ ¼ 0

8Ay þ 3By ¼ 400 (1)

FIG. 3.25

continued
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In order to obtain another equation containing the same two unknowns, Ay and By, we write the second equation of
condition as

þ ’
P

MAD
D ¼ 0

�Ayð350Þ þ 80ð275Þ � Byð225Þ þ ½ð3Þð150Þ�ð75Þ ¼ 0

14Ay þ 9By ¼ 2230 (2)

Solving Eqs. (1) and (2) simultaneously, we obtain

Ay ¼ �103 k and By ¼ 408 k

Ay ¼ 103 k # Ans.

By ¼ 408 k " Ans.

The remaining two unknowns, Ey and Fy, are determined from the remaining two equilibrium equations as follows:

þ ’
P

MF ¼ 0

103ð550Þ þ 80ð475Þ � 408ð425Þ þ ½3ð350Þ�ð175Þ � Eyð125Þ ¼ 0

Ey ¼ 840 k

Ey ¼ 840 k " Ans.

þ "
P

Fy ¼ 0

�103� 80þ 408� 3ð350Þ þ 840þ Fy ¼ 0

Fy ¼ �15 k

Fy ¼ 15 k # Ans.

Alternative Method. The reactions of the beam also can be evaluated by applying the three equations of equilibrium to
each of the three rigid portions, AC;CD, and DF , of the beam. The free-body diagrams of these rigid portions are
shown in Fig. 3.25(c). These diagrams show, in addition to the applied loads and support reactions, the internal forces
being exerted through the internal hinges at C and D.

Applying the three equations of equilibrium to the portion CD, we obtain the following:

þ ’
P

MCD
C ¼ 0

�½3ð150Þ�ð75Þ þDyð150Þ ¼ 0

Dy ¼ 225 k

þ "
P

F CD
y ¼ 0

Cy � 3ð150Þ þ 225 ¼ 0

Cy ¼ 225 k

þ !
P

F CD
x ¼ 0

Cx þDx ¼ 0 (3)

Next, we consider the equilibrium of portion DF :

þ !
P

F DF
x ¼ 0

�Dx ¼ 0 or Dx ¼ 0

From Eq. (3), we obtain Cx ¼ 0

þ ’
P

MDF
F ¼ 0

225ð200Þ þ ½3ð200Þ�ð100Þ � Eyð125Þ ¼ 0

Ey ¼ 840 k Checks

continued
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þ "
P

F DF
y ¼ 0

�225� 3ð200Þ þ 840þ Fy ¼ 0

Fy ¼ �15 k Checks

Considering the equilibrium of portion AC, we write

þ !
P

F AC
x ¼ 0

Ax � 0 ¼ 0

Ax ¼ 0 Checks

þ ’
P

MAC
A ¼ 0

�80ð75Þ þ Byð125Þ � 225ð200Þ ¼ 0

By ¼ 408 k Checks

þ "
P

F AC
y ¼ 0

Ay � 80þ 408� 225 ¼ 0

Ay ¼ �103 k Checks

Example 3.10

A gable frame is subjected to a wind loading, as shown in Fig. 3.26(a). Determine the reactions at its supports due to the
loading.

Solution
Free-Body Diagram. See Fig. 3.26(b).

Static Determinacy. The frame is internally unstable, with r ¼ 4 and ec ¼ 1. Since r ¼ 3þ ec, it is statically determinate.

Support Reactions.

þ ’
P

MC ¼ 0

�Ayð16Þ � ½250ð12Þ�ð6Þ �
3

5
ð50Þð10Þ

� �
ð12þ 3Þ

þ 4

5
ð50Þð10Þ

� �
ð8þ 4Þ � 3

5
ð220Þð10Þ

� �
ð12þ 3Þ

� 4

5
ð220Þð10Þ

� �
ð4Þ � ½160ð12Þ�ð6Þ ¼ 0

Ay ¼ �3503:75 lb

Ay ¼ 3503:75 lb # Ans.

þ ’
P

MAB
B ¼ 0

Axð18Þ þ 3503:75ð8Þ þ ½250ð12Þ�ð6þ 6Þ þ ½50ð10Þ�ð5Þ ¼ 0

Ax ¼ �3696:11 lb

Ax ¼ 3696:11 lb Ans.

continued
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þ !
P

Fx ¼ 0

�3696:11þ 250ð12Þ þ 3

5
ð50Þð10Þ þ 3

5
ð220Þð10Þ þ 160ð12Þ þ Cx ¼ 0

Cx ¼ �2843:89 lb

Cx ¼ 2843:89 lb Ans.

þ "
P

Fy ¼ 0

�3503:75� 4

5
ð50Þð10Þ þ 4

5
ð220Þð10Þ þ Cy ¼ 0

Cy ¼ 2143:75 lb

Cy ¼ 2143:75 lb " Ans.

FIG. 3.26

continued
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Checking Computations.

þ ’
P

MB ¼ ð�3696:11� 2843:89Þð18Þ

þ ð3503:75þ 2143:75Þð8Þ þ ½ð250þ 160Þð12Þ�ð12Þ

þ ½ð50þ 220Þð10Þ�ð5Þ

¼ 0 Checks

Example 3.11

Determine the reactions at the supports for the frame shown in Fig. 3.27(a).

continued

FIG. 3.27

30 ft

25 k

3 k/ft

20 ft

20 ft 20 ft

Hinge

(a)

30 ft

25 k

3 k/ft

20 ft

20 ft 20 ft

(b)

A Ax

Ay

C

x

yCy

Cx

B
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Solution
Free-Body Diagram. See Fig. 3.27(b).

Static Determinacy. The frame has r ¼ 4 and ec ¼ 1; since r ¼ 3þ ec, it is statically determinate.

Support Reactions.

þ ’
P

MC ¼ 0

Axð10Þ � Ayð40Þ � 25ð20Þ þ 3ð40Þð20Þ ¼ 0

Ax � 4Ay ¼ �190 (1)

þ ’
P

MAB
B ¼ 0

Axð30Þ � Ayð20Þ þ 3ð20Þð10Þ ¼ 0

3Ax � 2Ay ¼ �60 (2)

Solving Eqs. (1) and (2) simultaneously, we obtain Ax ¼ 14 k and Ay ¼ 51 k

Ax ¼ 14 k! Ans.

Ay ¼ 51 k " Ans.

þ !
P

Fx ¼ 0

14þ 25þ Cx ¼ 0

Cx ¼ �39 k

Cx ¼ 39 k Ans.

þ "
P

Fy ¼ 0

51� 3ð40Þ þ Cy ¼ 0

Cy ¼ 69 k

Cy ¼ 69 k " Ans.

Checking Computations.

þ ’
P

MB ¼ 14ð30Þ � 51ð20Þ � 39ð20Þ þ 69ð20Þ ¼ 0 Checks

3.6 Principle of Superposition

The principle of superposition simply states that on a linear elastic struc-

ture, the combined e¤ect of several loads acting simultaneously is equal

to the algebraic sum of the e¤ects of each load acting individually. For
example, this principle implies, for the beam of Fig. 3.28, that the total
reactions due to the two loads acting simultaneously can be obtained by
algebraically summing, or superimposing, the reactions due to each of
the two loads acting individually.

The principle of superposition considerably simplifies the analysis
of structures subjected to di¤erent types of loads acting simultaneously
and is used extensively in structural analysis. The principle is valid for
structures that satisfy the following two conditions: (1) the deformations
of the structure must be so small that the equations of equilibrium can be
based on the undeformed geometry of the structure; and (2) the structure
must be composed of linearly elastic material; that is, the stress-strain
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relationship for the structural material must follow Hooke’s law. The
structures that satisfy these two conditions respond linearly to applied
loads and are referred to as linear elastic structures. Engineering struc-
tures are generally designed so that under service loads they undergo
small deformations with stresses within the initial linear portions of the
stress-strain curves of their materials. Thus, most common types of
structures under service loads can be classified as linear elastic; therefore,
the principle of superposition can be used in their analysis. The principle
of superposition is considered valid throughout this text.

3.7 Reactions of Simply Supported Structures Using Proportions

Consider a simply supported beam subjected to a vertical concentrated
load P, as shown in Fig. 3.29. By applying the moment equilibrium
equations,

P
MB ¼ 0 and

P
MA ¼ 0, we obtain the expressions for the

vertical reactions at supports A and B, respectively, as

Ay ¼ P
b

S

� �
and By ¼ P

a

S

� �
ð3:13Þ

where, as shown in Fig. 3.29, a ¼ distance of the load P from support A
(measured positive to the right); b ¼ distance of P from support B (meas-
ured positive to the left); and S ¼ distance between supports A and B.

FIG. 3.28 Principle of
Superposition

A

DB

C

Ay1
Cy1

P1

Ax1

A

DB

C

Ay2 Cy2

P2

Ax2

+

A

DB

C

Ay =  Ay1 + Ay2 Cy = Cy1 + Cy2

P1 P2

Ax = Ax1 + Ax2

=
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The first of the two expressions in Eq. (3.13) indicates that the mag-
nitude of the vertical reaction at A is equal to the magnitude of the load P

times the ratio of the distance of P from support B to the distance be-
tween the supports A and B. Similarly, the second expression in Eq. (3.13)
states that the magnitude of the vertical reaction at B is equal to the
magnitude of P times the ratio of the distance of P from A to the distance
between A and B. These expressions involving proportions, when used in
conjunction with the principle of superposition, make it very convenient
to determine reactions of simply supported structures subjected to series
of concentrated loads, as illustrated by the following example.

Example 3.12

Determine the reactions at the supports for the truss shown in Fig. 3.30(a).

FIG. 3.29

continued

FIG. 3.30
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Solution
Free-Body Diagram. See Fig. 3.30(b).

Static Determinacy. The truss is internally stable with r ¼ 3. Therefore, it is statically determinate.

Support Reactions.

þ !
P

Fx ¼ 0

Ax ¼ 0 Ans.

Ay ¼ 15
6

4

� �
þ 30

5

4
þ 3

4

� �
þ 25

2

4

� �
þ 20

1

4
� 1

4

� �
þ 10

�2
4

� �
¼ 90 k

Ay ¼ 90 k " Ans.

By ¼ 15
�2
4

� �
þ 30

�1
4
þ 1

4

� �
þ 25

2

4

� �
þ 20

3

4
þ 5

4

� �
þ 10

6

4

� �
¼ 60 k

By ¼ 60 k " Ans.

Checking Computations.

þ "
P

Fy ¼ �15� 2ð30Þ � 25� 2ð20Þ � 10þ 90þ 60 ¼ 0 Checks

Summary

In this chapter, we have learned that a structure is considered to be in
equilibrium if, initially at rest, it remains at rest when subjected to a system
of forces and couples. The equations of equilibrium of space structures can
be expressed as P

Fx ¼ 0
P

Fy ¼ 0
P

Fz ¼ 0P
Mx ¼ 0

P
My ¼ 0

P
Mz ¼ 0

ð3:1Þ

For plane structures, the equations of equilibrium are expressed asP
Fx ¼ 0

P
Fy ¼ 0

P
Mz ¼ 0 ð3:2Þ

Two alternative forms of the equilibrium equations for plane structures
are given in Eqs. (3.3) and (3.4).

The common types of supports used for plane structures are sum-
marized in Fig. 3.3. A structure is considered to be internally stable, or
rigid, if it maintains its shape and remains a rigid body when detached
from the supports.

A structure is called statically determinate externally if all of its sup-
port reactions can be determined by solving the equations of equilibrium
and condition. For a plane internally stable structure supported by r

number of reactions, if
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r < 3 the structure is statically unstable externally

r ¼ 3 the structure is statically determinate externally

r > 3 the structure is statically indeterminate externally

ð3:8Þ

The degree of external indeterminacy is given by

ie ¼ r� 3 ð3:7Þ

For a plane internally unstable structure, which has r number of
external reactions and ec number of equations of condition, if

r < 3þ ec the structure is statically unstable externally

r ¼ 3þ ec the structure is statically determinate externally

r > 3þ ec the structure is statically indeterminate externally

ð3:9Þ

The degree of external indeterminacy for such a structure is given by

ie ¼ r� ð3þ ecÞ ð3:10Þ

In order for a plane structure to be geometrically stable, it must be
supported by reactions, all of which are neither parallel nor concurrent.
A procedure for the determination of reactions at supports for plane
structures is presented in Section 3.5.

The principle of superposition states that on a linear elastic struc-
ture, the combined e¤ect of several loads acting simultaneously is equal
to the algebraic sum of the e¤ects of each load acting individually. The
determination of reactions of simply supported structures using propor-
tions is discussed in Section 3.7.

PROBLEMS

Section 3.4

3.1 through 3.4 Classify each of the structures shown as ex-
ternally unstable, statically determinate, or statically indeter-

minate. If the structure is statically indeterminate externally,
then determine the degree of external indeterminacy.

(a)

(b)

(c)

FIG. P3.1

Hinge

(d)
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Hinge

(a)

Hinge

(b)

Hinge

Hinge

(c)

Hinge

(d)

FIG. P3.2

Hinge Hinge Hinge

(a)

Hinge Hinge

(b)

(c)

(d)

FIG. P3.3
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FIG. P3.4

Sections 3.5 and 3.7

3.5 through 3.13 Determine the reactions at the supports for
the beam shown.

10 ft 20 ft 15 ft

2 k/ft

A B

FIG. P3.5

3 m 3 m 6 m

100 kN 20 kN/m

A B

FIG. P3.6

12 m

25 kN/m
B

A

FIG. P3.7

10 ft 10 ft30 ft

1.5 k/ft

A B

FIG. P3.8
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4 m 2 m

70 kN
30 kN/m

A

150 kN . m

FIG. P3.9

6 ft 6 ft 12 ft 10 ft

50 k
1.5 k/ft

A
B

4
3

30°
100 k-ft

FIG. P3.10

10 ft 10 ft20 ft

A B

2 k/ft

3 k/ft

30 k

60 k–ft

FIG. P3.11

9 ft 15 ft 6 ft

2 k/ft
3 k/ft

BA

FIG. P3.12

10 m

30 kN/m

A
B

3
4

FIG. P3.13

3.14 The weight of a car, moving at a constant speed on a
beam bridge, is modeled as a single concentrated load, as
shown in Fig. P3.14. Determine the expressions for the ver-
tical reactions at the supports in terms of the position of
the car as measured by the distance x, and plot the graphs
showing the variations of these reactions as functions of x.

5 m 3 m8 m

A B

x
W = 20 kN

FIG. P3.14

3.15 The weight of a 5-m-long trolley, moving at a constant
speed on a beam bridge, is modeled as a moving uniformly dis-
tributed load, as shown in Fig. P3.15. Determine the expressions
for the vertical reactions at the supports in terms of the position
of the trolley as measured by the distance x, and plot the graphs
showing the variations of these reactions as functions of x.

25 m

A B

x 5 m

w = 10 kN/m

FIG. P3.15
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3.16 through 3.42 Determine the reactions at the supports
for the structures shown.

70 kN

50 kN 50 kN

A B

4 at 6 m = 24 m

5 m

FIG. P3.16

24 k

15 k

24 k 24 k 24 k12 k

6 at 20 ft = 120 ft

15 ft

A
B

FIG. P3.17

6 at 5 m = 30 m

8 m

10 kN/m10 kN/m

A B

FIG. P3.18

A B

10 m

15 m

200 kN

35 kN/m

FIG. P3.19

A B

40 ft

20 ft

20 ft

30 k

15 k

1.25 k/ft

2.5 k/ft

FIG. P3.20

100 kN

4 m 4 m12 m

A B

5 m

5 m

40 kN/m
20 kN/m

FIG. P3.21
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20 ft 10 ft

A

B

2.5 k/ft

2.5 k/ft

15 ft

FIG. P3.22

6 m 6 m 6 m

8 m
20 kN/m

40 kN/m
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A truss is an assemblage of straight members connected at their ends by
flexible connections to form a rigid configuration. Because of their light
weight and high strength, trusses are widely used, and their applications
range from supporting bridges and roofs of buildings (Fig. 4.1) to being
support structures in space stations (Fig. 4.2). Modern trusses are con-
structed by connecting members, which usually consist of structural steel
or aluminum shapes or wood struts, to gusset plates by bolted or welded
connections.

As discussed in Section 1.4, if all the members of a truss and the
applied loads lie in a single plane, the truss is called a plane truss.

Plane trusses are commonly used for supporting decks of bridges
and roofs of buildings. A typical framing system for truss bridges was
described in Section 1.4 (see Fig. 1.16(a)). Figure 4.3 shows a typical
framing system for a roof supported by plane trusses. In this case, two or
more trusses are connected at their joints by beams, termed purlins, to
form a three-dimensional framework. The roof is attached to the purlins,
which transmit the roof load (weight of the roof plus any other load due
to snow, wind, etc.) as well as their own weight to the supporting trusses
at the joints. Because this applied loading acts on each truss in its own
plane, the trusses can be treated as plane trusses. Some of the common
configurations of bridge and roof trusses, many of which have been
named after their original designers, are shown in Figs. 4.4 and 4.5 (see
pp. 100 and 101), respectively.

Although a great majority of trusses can be analyzed as plane trusses,
there are some truss systems, such as transmission towers and latticed

Truss Bridges
Terry Poche/Shutterstock.com



domes (Fig. 4.6), that cannot be treated as plane trusses because of their
shape, arrangement of members, or applied loading. Such trusses, which
are called space trusses, are analyzed as three-dimensional bodies sub-
jected to three-dimensional force systems.

The objective of this chapter is to develop the analysis of member
forces of statically determinate plane and space trusses. We begin by dis-
cussing the basic assumptions underlying the analysis presented in this
chapter, and then we consider the number and arrangement of members
needed to form internally stable or rigid plane trusses. As part of this
discussion, we define simple and compound trusses. We also present the
equations of condition commonly encountered in plane trusses. We next
establish the classification of plane trusses as statically determinate,

FIG. 4.1 Roof Trusses. Plum High
School. Large Bow Truss and
Supporting Truss for Gymnasium
Camber Corporation. Web address: http://

www.cambergroup.com/g87.htm

FIG. 4.2 A Segment of the Integrated
Truss Structure which forms the
Backbone of the International Space
Station
Courtesy of National Aeronautics and Space Administration
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indeterminate, and unstable and present the procedures for the analysis
of simple plane trusses by the methods of joints and sections. We con-
clude with an analysis of compound plane trusses, a brief discussion of
complex trusses, and analysis of space trusses.

4.1 Assumptions for Analysis of Trusses

The analysis of trusses is usually based on the following simplifying
assumptions:

1. All members are connected only at their ends by frictionless
hinges in plane trusses and by frictionless ball-and-socket joints
in space trusses.

2. All loads and support reactions are applied only at the joints.
3. The centroidal axis of each member coincides with the line con-

necting the centers of the adjacent joints.

The reason for making these assumptions is to obtain an ideal truss,
whose members are subjected only to axial forces. Since each member of
an ideal truss is connected at its ends by frictionless hinges (assumption 1)
with no loads applied between its ends (assumption 2), the member would
be subjected to only two forces at its ends, as shown in Fig. 4.7(a). Since
the member is in equilibrium, the resultant force and the resultant couple
of the two forces FA and FB must be zero; that is, the forces must satisfy
the three equations of equilibrium. From Fig. 4.7(a), we can see that in
order for the resultant force of the two forces to be zero (

P
Fx ¼ 0 andP

Fy ¼ 0), the two forces must be equal in magnitude but with opposite
senses. For their resultant couple to be also equal to zero (

P
M ¼ 0),

the two forces must be collinear—that is, they must have the same line of
action. Moreover, since the centroidal axis of each truss member is a
straight line coinciding with the line connecting the centers of the adja-
cent joints (assumption 3), the member is not subjected to any bending

FIG. 4.3 Framing of a Roof Supported by Trusses
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FIG. 4.4 Common Bridge Trusses
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moment or shear force and is either in axial tension (being elongated, as
shown in Fig. 4.7(b)) or in axial compression (being shortened, as shown
in Fig. 4.7(c)). Such member axial forces determined from the analysis of
an ideal truss are called the primary forces.

In real trusses, these idealizations are almost never completely realized.
As stated previously, real trusses are constructed by connecting members to

FIG. 4.5 Common Roof Trusses

FIG. 4.6 Geodesic Dome Climatron at
Missouri Botanical Garden, St. Louis,
Missouri
Courtesy Missouri Botanical Garden
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gusset plates by welded or bolted connections (Fig. 4.8). Some members of
the truss may even be continuous at the joints. Furthermore, although the
external loads are indeed transmitted to the trusses at joints by means of
floor beams, purlins, and so on, the dead weights of the members are dis-
tributed along their lengths. The bending moments and shear and axial
forces caused by these and other deviations from the aforementioned ide-
alized conditions are commonly referred to as secondary forces. Although
secondary forces cannot be eliminated, they can be substantially reduced in
most trusses by using relatively slender members and by designing con-
nections so that the centroidal axes of the members meeting at a joint are
concurrent at a point (as shown in Fig. 1.16). The secondary forces in such
trusses are small compared to the primary forces and are usually not

FIG. 4.7

FIG. 4.8 Gusset Plate Connection
Michael Goff
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considered in their designs. In this chapter, we focus only on primary
forces. If large secondary forces are anticipated, the truss should be ana-
lyzed as a rigid frame using the methods presented in subsequent chapters.

4.2 Arrangement of Members of Plane Trusses—Internal Stability

Based on our discussion in Section 3.4, we can define a plane truss as
internally stable if the number and geometric arrangement of its mem-
bers is such that the truss does not change its shape and remains a rigid
body when detached from the supports. The term internal is used here to
refer to the number and arrangement of members contained within the
truss. The instability due to insu‰cient external supports or due to im-
proper arrangement of external supports is referred to as external.

Basic Truss Element

The simplest internally stable (or rigid) plane truss can be formed by
connecting three members at their ends by hinges to form a triangle, as
shown in Fig. 4.9(a). This triangular truss is called the basic truss ele-

ment. Note that this triangular truss is internally stable in the sense that
it is a rigid body that will not change its shape under loads. In contrast, a
rectangular truss formed by connecting four members at their ends by
hinges, as shown in Fig. 4.9(b), is internally unstable because it will
change its shape and collapse when subjected to a general system of co-
planar forces.

Simple Trusses

The basic truss element ABC of Fig. 4.10(a) can be enlarged by attach-
ing two new members, BD and CD, to two of the existing joints B and C

and by connecting them to form a new joint D, as shown in Fig. 4.10(b).
As long as the new joint D does not lie on the straight line passing
through the existing joints B and C, the new enlarged truss will be in-
ternally stable. The truss can be further enlarged by repeating the same
procedure (as shown in Fig. 4.10(c)) as many times as desired. Trusses
constructed by this procedure are called simple trusses. The reader should
examine the trusses depicted in Figs. 4.4 and 4.5 to verify that each of

FIG. 4.9
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them, with the exception of the Baltimore truss (Fig. 4.4) and the Fink
truss (Fig. 4.5), is a simple truss. The basic truss element of the simple
trusses is identified as ABC in these figures.

A simple truss is formed by enlarging the basic truss element, which
contains three members and three joints, by adding two additional mem-
bers for each additional joint, so the total number of members m in a
simple truss is given by

m ¼ 3þ 2ð j � 3Þ ¼ 2j � 3 ð4:1Þ

in which j ¼ total number of joints (including those attached to the
supports).

Compound Trusses

Compound trusses are constructed by connecting two or more simple
trusses to form a single rigid body. To prevent any relative movement
between the simple trusses, each truss must be connected to the other(s)
by means of connections capable of transmitting at least three force
components, all of which are neither parallel nor concurrent. Two ex-
amples of connection arrangements used to form compound trusses are
shown in Fig. 4.11. In Fig. 4.11(a), two simple trusses ABC and DEF are
connected by three members, BD;CD, and BF , which are nonparallel
and nonconcurrent. Another type of connection arrangement is shown in

FIG. 4.10 Simple Truss

FIG. 4.11 Compound Trusses
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Fig. 4.11(b). This involves connecting the two simple trusses ABC and
DEF by a common joint C and a member BD. In order for the com-
pound truss to be internally stable, the common joint C and joints B and
D must not lie on a straight line. The relationship between the total
number of members m and the total number of joints j for an internally
stable compound truss remains the same as for the simple trusses. This
relationship, which is given by Eq. (4.1), can be easily verified for the
compound trusses shown in Fig. 4.11.

Internal Stability

Equation (4.1) expresses the requirement of the minimum number of
members that a plane truss of j joints must contain if it is to be internally
stable. If a plane truss contains m members and j joints, then if

m < 2j � 3 the truss is internally unstable

mb 2j � 3 the truss is internally stable
ð4:2Þ

It is very important to realize that although the foregoing criterion for
internal stability is necessary, it is not su‰cient to ensure internal stability.
A truss must not only contain enough members to satisfy the mb 2j � 3
condition, but the members must also be properly arranged to ensure ri-
gidity of the entire truss. Recall from our discussion of simple and com-
pound trusses that in a stable truss, each joint is connected to the rest of
the structure by at least two nonparallel members, and each portion of the
truss must be connected to the remainder of the truss by connections ca-
pable of transmitting at least three nonparallel and nonconcurrent force
components.

Example 4.1

Classify each of the plane trusses shown in Fig. 4.12 as internally stable or unstable.

Solution
(a) The truss shown in Fig. 4.12(a) contains 20 members and 12 joints. Therefore, m ¼ 20 and 2j � 3 ¼ 2ð12Þ � 3 ¼ 21.

Since m is less than 2j � 3, this truss does not have a su‰cient number of members to form a rigid body; therefore, it is in-
ternally unstable. A careful look at the truss shows that it contains two rigid bodies, ABCD and EFGH, connected by two
parallel members, BE and DG. These two horizontal members cannot prevent the relative displacement in the vertical direc-
tion of one rigid part of the truss with respect to the other. Ans.

(b) The truss shown in Fig. 4.12(b) is the same as that of Fig. 4.12(a), except that a diagonal member DE has now
been added to prevent the relative displacement between the two portions ABCD and EFGH. The entire truss now acts
as a single rigid body. Addition of member DE increases the number of members to 21 (while the number of joints re-
mains the same at 12), thereby satisfying the equation m ¼ 2j � 3. The truss is now internally stable. Ans.

(c) Four more diagonals are added to the truss of Fig. 4.12(b) to obtain the truss shown in Fig. 4.12(c), thereby
increasing m to 25, while j remains constant at 12. Because m > 2j � 3, the truss is internally stable. Also, since the
di¤erence m� ð2j � 3Þ ¼ 4, the truss contains four more members than required for internal stability. Ans.

continued
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(d) The truss shown in Fig. 4.12(d) is obtained from that of Fig. 4.12(c) by removing two diagonals, BG and DE,
from panel BE, thereby decreasing m to 23; j remains constant at 12. Although m� ð2j � 3Þ ¼ 2—that is, the truss con-
tains two more members than the minimum required for internal stability—its two rigid portions, ABCD and EFGH, are
not connected properly to form a single rigid body. Therefore, the truss is internally unstable. Ans.

(e) The roof truss shown in Fig. 4.12(e) is internally unstable because m ¼ 26 and j ¼ 15, thereby yielding
m < 2j � 3. This is also clear from the diagram of the truss which shows that the portions ABE and CDE of the truss
can rotate with respect to each other. The di¤erence m� ð2j � 3Þ ¼ �1 indicates that this truss has one less member
than required for internal stability. Ans.

(f ) In Fig. 4.12(f ), a member BC has been added to the truss of Fig. 4.12(e), which prevents the relative movement
of the two portions ABE and CDE, thereby making the truss internally stable. As m has now been increased to 27, it
satisfies the equation m ¼ 2j � 3 for j ¼ 15. Ans.

(g) The tower truss shown in Fig. 4.12(g) has 16 members and 10 joints. Because m < 2j � 3, the truss is internally
unstable. This is also obvious from Fig. 4.12(g), which shows that member BC can rotate with respect to the rest of the

FIG. 4.12

continued
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structure. This rotation can occur because joint C is connected by only one member instead of the two re-
quired to completely constrain a joint of a plane truss. Ans.

(h) In Fig. 4.12(h), a member AC has been added to the truss of Fig. 4.12(g), which makes it internally stable. Here
m ¼ 17 and j ¼ 10, so the equation m ¼ 2j � 3 is satisfied. Ans.

4.3 Equations of Condition for Plane Trusses

In Section 3.4, we indicated that the types of connections used to con-
nect rigid portions of internally unstable structures provide equations of
condition that, along with the three equilibrium equations, can be used
to determine the reactions needed to constrain such structures fully.

Three types of connection arrangements commonly used to connect
two rigid trusses to form a single (internally unstable) truss are shown in
Fig. 4.13. In Fig. 4.13(a), two rigid trusses, AB and BC, are connected
together by an internal hinge at B. Because an internal hinge cannot
transmit moment, it provides an equation of condition:P

MAB
B ¼ 0 or

P
MBC

B ¼ 0

Another type of connection arrangement is shown in Fig. 4.13(b). This in-
volves connecting two rigid trusses, AB and CD, by two parallel mem-
bers. Since these parallel (horizontal) bars cannot transmit force in the
direction perpendicular to them, this type of connection provides an equa-
tion of condition: P

F AB
y ¼ 0 or

P
F CD
y ¼ 0

A third type of connection arrangement involves connecting two rigid
trusses, AB and CD, by a single link, BC, as shown in Fig. 4.13(c). Since
a link can neither transmit moment nor force in the direction perpen-
dicular to it, it provides two equations of condition:P

F AB
x ¼ 0 or

P
F CD
x ¼ 0

and P
MAB

B ¼ 0 or
P

MCD
C ¼ 0

As we indicated in the previous chapter, these equations of condition
can be used with the three equilibrium equations to determine the un-
known reactions of externally statically determinate plane trusses. The
reader should verify that all three trusses shown in Fig. 4.13 are statically
determinate externally.

4.4 Static Determinacy, Indeterminacy, and Instability of Plane Trusses

We consider a truss to be statically determinate if the forces in all its

members, as well as all the external reactions, can be determined by using

the equations of equilibrium. This characterization of static determinacy,
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encompassing both the external support reactions and the internal member
forces, is also referred to as the combined static determinacy, as compared
to the concept of external static determinacy (involving only external re-
actions) used previously in Chapter 3. Recall that, in the previous chapter,
we were interested in computing external support reactions only; whereas,
in the present chapter, our objective is to determine both the member forces
and the external reactions.

Since the two methods of analysis presented in the following sections
can be used to analyze only statically determinate trusses, it is important
for the student to be able to recognize statically determinate trusses be-
fore proceeding with the analysis.

Consider a plane truss subjected to external loads P1;P2, and P3, as
shown in Fig. 4.14(a). The free-body diagrams of the five members and
the four joints are shown in Fig. 4.14(b). Each member is subjected to
two axial forces at its ends, which are collinear (with the member cen-
troidal axis) and equal in magnitude but opposite in sense. Note that in
Fig. 4.14(b), all members are assumed to be in tension; that is, the forces
are pulling on the members. The free-body diagrams of the joints show
the same member forces but in opposite directions, in accordance with

FIG. 4.13 Equations of Condition for
Plane Trusses
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Newton’s third law. The analysis of the truss involves the calculation of
the magnitudes of the five member forces, FAB;FAC ;FBC;FBD, and FCD
(the lines of action of these forces are known), and the three reactions,
Ax;Ay, and By. Therefore, the total number of unknown quantities to be
determined is eight.

Because the entire truss is in equilibrium, each of its joints must also
be in equilibrium. As shown in Fig. 4.14(b), at each joint the internal and
external forces form a coplanar and concurrent force system, which must
satisfy the two equations of equilibrium,

P
Fx ¼ 0 and

P
Fy ¼ 0. Since

the truss contains four joints, the total number of equations available is
2ð4Þ ¼ 8. These eight joint equilibrium equations can be solved to calcu-
late the eight unknowns. The plane truss of Fig. 4.14(a) is, therefore, stat-
ically determinate.

Three equations of equilibrium of the entire truss as a rigid body
could be written and solved for the three unknown reactions (Ax;Ay, and
By). However, these equilibrium equations (as well as the equations of
condition in the case of internally unstable trusses) are not independent

FIG. 4.14
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from the joint equilibrium equations and do not contain any additional
information.

Based on the preceding discussion, we can develop the criteria for the
static determinacy, indeterminacy, and instability of general plane trusses
containing m members and j joints and supported by r (number of ) ex-
ternal reactions. For the analysis, we need to determine m member forces
and r external reactions; that is, we need to calculate a total of mþ r un-
known quantities. Since there are j joints and we can write two equations
of equilibrium (

P
Fx ¼ 0 and

P
Fy ¼ 0) for each joint, the total number

of equilibrium equations available is 2j. If the number of unknowns
ðmþ rÞ for a truss is equal to the number of equilibrium equations ð2jÞ—
that is, mþ r ¼ 2j—all the unknowns can be determined by solving the
equations of equilibrium, and the truss is statically determinate.

If a truss has more unknowns ðmþ rÞ than the available equilibrium
equations ð2jÞ—that is, mþ r > 2j—all the unknowns cannot be deter-
mined by solving the available equations of equilibrium. Such a truss is
called statically indeterminate. Statically indeterminate trusses have more
members and/or external reactions than the minimum required for sta-
bility. The excess members and reactions are called redundants, and the
number of excess members and reactions is referred to as the degree of

static indeterminacy, i, which can be expressed as

i ¼ ðmþ rÞ � 2j ð4:3Þ

If the number of unknowns ðmþ rÞ for a truss is less than the num-
ber of equations of joint equilibrium ð2jÞ—that is, mþ r < 2j—the truss
is called statically unstable. The static instability may be due to the truss
having fewer members than the minimum required for internal stability
or due to an insu‰cient number of external reactions or both.

The conditions of static instability, determinacy, and indeterminacy
of plane trusses can be summarized as follows:

mþ r < 2j statically unstable truss

mþ r ¼ 2j statically determinate truss

mþ r > 2j statically indeterminate truss

ð4:4Þ

The first condition, for the static instability of trusses, is both necessary
and su‰cient in the sense that if m < 2j � r, the truss is definitely statically
unstable. However, the remaining two conditions, for static determinacy
ðm ¼ 2j � rÞ and indeterminacy ðm > 2j � rÞ, are necessary but not su‰-
cient conditions. In other words, these two equations simply tell us that
the number of members and reactions is su‰cient for stability. They do
not provide any information regarding their arrangement. A truss may
have a su‰cient number of members and external reactions but may still
be unstable due to improper arrangement of members and/or external
supports.

We emphasize that in order for the criteria for static determinacy
and indeterminacy, as given by Eqs. (4.3) and (4.4), to be valid, the truss
must be stable and act as a single rigid body under a general system of
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coplanar loads when attached to the supports. Internally stable trusses
must be supported by at least three reactions, all of which must be nei-
ther parallel nor concurrent. If a truss is internally unstable, then it must
be supported by reactions equal in number to at least three plus the
number of equations of condition ð3þ ecÞ, and all the reactions must be
neither parallel nor concurrent. In addition, each joint, member, and
portion of the truss must be constrained against all possible rigid body
movements in the plane of the truss, either by the rest of the truss or by
external supports. If a truss contains a su‰cient number of members,
but they are not properly arranged, the truss is said to have critical form.
For some trusses, it may not be obvious from the drawings whether or
not their members are arranged properly. However, if the member ar-
rangement is improper, it will become evident during the analysis of the
truss. The analysis of such unstable trusses will always lead to incon-
sistent, indeterminate, or infinite results.

Example 4.2

Classify each of the plane trusses shown in Fig. 4.15 as unstable, statically determinate, or statically indeterminate. If
the truss is statically indeterminate, then determine the degree of static indeterminacy.

Solution
(a) The truss shown in Fig. 4.15(a) contains 17 members and 10 joints and is supported by 3 reactions. Thus,

mþ r ¼ 2j. Since the three reactions are neither parallel nor concurrent and the members of the truss are properly ar-
ranged, it is statically determinate. Ans.

(b) For this truss, m ¼ 17, j ¼ 10, and r ¼ 2. Because mþ r < 2j, the truss is unstable. Ans.

(c) For this truss, m ¼ 21, j ¼ 10, and r ¼ 3. Because mþ r > 2j, the truss is statically indeterminate, with the de-
gree of static indeterminacy i ¼ ðmþ rÞ � 2j ¼ 4. It should be obvious from Fig. 4.15(c) that the truss contains four
more members than required for stability. Ans.

(d) This truss has m ¼ 16, j ¼ 10, and r ¼ 3. The truss is unstable, since mþ r < 2j. Ans.

(e) This truss is composed of two rigid portions, AB and BC, connected by an internal hinge at B. The truss has
m ¼ 26, j ¼ 15, and r ¼ 4. Thus, mþ r ¼ 2j. The four reactions are neither parallel nor concurrent and the entire truss
is properly constrained, so the truss is statically determinate. Ans.

(f ) For this truss, m ¼ 10, j ¼ 7, and r ¼ 3. Because mþ r < 2j, the truss is unstable. Ans.

(g) In Fig. 4.15(g), a member BC has been added to the truss of Fig. 4.15(f ), which prevents the relative rotation of
the two portions ABE and CDE. Since m has now been increased to 11, with j and r kept constant at 7 and 3, re-
spectively, the equation mþ r ¼ 2j is satisfied. Thus, the truss of Fig. 4.15(g) is statically determinate. Ans.

(h) The truss of Fig. 4.15(f ) is stabilized by replacing the roller support at D by a hinged support, as shown in
Fig. 4.15(h). Thus, the number of reactions has been increased to 4, but m and j remain constant at 10 and 7, respectively.
With mþ r ¼ 2j, the truss is now statically determinate. Ans.

(i) For the tower truss shown in Fig. 4.15(i), m ¼ 16, j ¼ 10, and r ¼ 4. Because mþ r ¼ 2j, the truss is statically
determinate. Ans.

continued
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FIG. 4.15
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( j) This truss has m ¼ 13, j ¼ 8, and r ¼ 3. Although mþ r ¼ 2j, the truss is unstable, because it contains two
rigid portions ABCD and EFGH connected by three parallel members, BF ;CE, and DH, which cannot prevent the
relative displacement, in the vertical direction, of one rigid part of the truss with respect to the other. Ans.

(k) For the truss shown in Fig. 4.15(k), m ¼ 19, j ¼ 12, and r ¼ 5. Because mþ r ¼ 2j, the truss is statically
determinate. Ans.

4.5 Analysis of Plane Trusses by the Method of Joints

In the method of joints, the axial forces in the members of a statically de-

terminate truss are determined by considering the equilibrium of its joints.
Since the entire truss is in equilibrium, each of its joints must also be in
equilibrium. At each joint of the truss, the member forces and any ap-
plied loads and reactions form a coplanar concurrent force system (see
Fig. 4.14), which must satisfy two equilibrium equations,

P
Fx ¼ 0 andP

Fy ¼ 0, in order for the joint to be in equilibrium. These two equili-
brium equations must be satisfied at each joint of the truss. There are
only two equations of equilibrium at a joint, so they cannot be used to
determine more than two unknown forces.

The method of joints consists of selecting a joint with no more than
two unknown forces (which must not be collinear) acting on it and ap-
plying the two equilibrium equations to determine the unknown forces.
The procedure may be repeated until all the desired forces have been ob-
tained. As we discussed in the preceding section, all the unknown mem-
ber forces and the reactions can be determined from the joint equilibrium
equations, but in many trusses it may not be possible to find a joint with
two or fewer unknowns to start the analysis unless the reactions are
known beforehand. In such cases, the reactions are computed by using
the equations of equilibrium and condition (if any) for the entire truss
before proceeding with the method of joints to determine member forces.

To illustrate the analysis by this method, consider the truss shown in
Fig. 4.16(a). The truss contains five members, four joints, and three re-
actions. Since mþ r ¼ 2j, the truss is statically determinate. The free-body
diagrams of all the members and the joints are given in Fig. 4.16(b). Be-
cause the member forces are not yet known, the sense of axial forces (ten-
sion or compression) in the members has been arbitrarily assumed. As
shown in Fig. 4.16(b), members AB;BC, and AD are assumed to be in
tension, with axial forces tending to elongate the members, whereas mem-
bers BD and CD are assumed to be in compression, with axial forces
tending to shorten them. The free-body diagrams of the joints show the
member forces in directions opposite to their directions on the member
ends in accordance with Newton’s law of action and reaction. Focusing
our attention on the free-body diagram of joint C, we observe that the
tensile force FBC is pulling away on the joint, whereas the compressive force

FCD is pushing toward the joint. This e¤ect of members in tension pulling
on the joints and members in compression pushing into the joints can be
seen on the free-body diagrams of all the joints shown in Fig. 4.16(b). The
free-body diagrams of members are usually omitted in the analysis and
only those of joints are drawn, so it is important to understand that a ten-

sile member axial force is always indicated on the joint by an arrow pulling
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away on the joint, and a compressive member axial force is always indicated

by an arrow pushing toward the joint.
The analysis of the truss by the method of joints is started by select-

ing a joint that has two or fewer unknown forces (which must not be
collinear) acting on it. An examination of the free-body diagrams of
the joints in Fig. 4.16(b) indicates that none of the joints satisfies this re-
quirement. We therefore compute reactions by applying the three equili-
brium equations to the free body of the entire truss shown in Fig. 4.16(c),
as follows:

þ !
P

Fx ¼ 0 Ax � 28 ¼ 0 Ax ¼ 28 k!

þ ’
P

MC ¼ 0 �Ayð35Þ þ 28ð20Þ þ 42ð15Þ ¼ 0 Ay ¼ 34 k "

þ "
P

Fy ¼ 0 34� 42þ Cy ¼ 0 Cy ¼ 8 k "

Having determined the reactions, we can now begin computing
member forces either at joint A, which now has two unknown forces, FAB
and FAD, or at joint C, which also has two unknowns, FBC and FCD. Let
us start with joint A. The free-body diagram of this joint is shown in
Fig. 4.16(d). Although we could use the sines and cosines of the angles of
inclination of inclined members in writing the joint equilibrium equations,
it is usually more convenient to use the slopes of the inclined members
instead. The slope of an inclined member is simply the ratio of the vertical
projection of the length of the member to the horizontal projection of its
length. For example, from Fig. 4.16(a), we can see that member CD of
the truss under consideration rises 20 ft in the vertical direction over a
horizontal distance of 15 ft. Therefore, the slope of this member is 20:15,
or 4:3. Similarly, we can see that the slope of member AD is 1:1. The
slopes of inclined members thus determined from the dimensions of the
truss are usually depicted on the diagram of the truss by means of small
right-angled triangles drawn on the inclined members, as shown in
Fig. 4.16(a).

Refocusing our attention on the free-body diagram of joint A in
Fig. 4.16(d), we determine the unknowns FAB and FAD by applying the
two equilibrium equations:

þ "
P

Fy ¼ 0 34þ 1ffiffiffi
2
p FAD ¼ 0 FAD ¼ �48:08 k

¼ 48:08 k ðCÞ

þ !
P

Fx ¼ 0 28� 1ffiffiffi
2
p ð48:08Þ þ FAB ¼ 0 FAB ¼ þ6 k

¼ 6 k ðTÞ

Note that the equilibrium equations were applied in such an order so that
each equation contains only one unknown. The negative answer for FAD
indicates that the member AD is in compression instead of in tension, as
initially assumed, whereas the positive answer for FAB indicates that the
assumed sense of axial force (tension) in member AB was correct.
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Next, we draw the free-body diagram of joint B, as shown in
Fig. 4.16(e), and determine FBC and FBD as follows:

þ !
P

Fx ¼ 0 �6þ FBC ¼ 0 FBC ¼ þ6 k; or FBC ¼ 6 k ðTÞ

þ "
P

Fy ¼ 0 �FBD ¼ 0 FBD ¼ 0

Applying the equilibrium equation
P

Fx ¼ 0 to the free-body dia-
gram of joint C (Fig. 4.16(f )), we obtain

þ !
P

Fx ¼ 0 �6þ 3

5
FCD ¼ 0 FCD ¼ þ10 k; or

FCD ¼ 10 k ðCÞ

We have determined all the member forces, so the three remaining
equilibrium equations,

P
Fy ¼ 0 at joint C and

P
Fx ¼ 0 and

P
Fy ¼ 0

at joint D, can be used to check our calculations. Thus, at joint C,

þ "
P

Fy ¼ 8� 4

5
ð10Þ ¼ 0 Checks

and at joint D (Fig. 4.16(g)),

þ !
P

Fx ¼ �28þ
1ffiffiffi
2
p ð48:08Þ � 3

5
ð10Þ ¼ 0 Checks

þ "
P

Fy ¼
1ffiffiffi
2
p ð48:08Þ � 42þ 4

5
ð10Þ ¼ 0 Checks

In the preceding paragraphs, the analysis of a truss has been carried
out by drawing a free-body diagram and writing the two equilibrium
equations for each of its joints. However, the analysis of trusses can be
considerably expedited if we can determine some (preferably all) of the
member forces by inspection—that is, without drawing the joint free-body
diagrams and writing the equations of equilibrium. This approach can be
conveniently used for the joints at which at least one of the two unknown
forces is acting in the horizontal or vertical direction. When both of the
unknown forces at a joint have inclined directions, it usually becomes
necessary to draw the free-body diagram of the joint and determine the
unknowns by solving the equilibrium equations simultaneously. To illus-
trate this procedure, consider again the truss of Fig. 4.16(a). The free-body
diagram of the entire truss is shown in Fig. 4.16(c), which also shows the
support reactions computed previously. Focusing our attention on joint A
in this figure, we observe that in order to satisfy the equilibrium equationP

Fy ¼ 0 at joint A, the vertical component of FAD must push downward
into the joint with a magnitude of 34 k to balance the vertically upward
reaction of 34 k. The fact that member AD is in compression is indicated
on the diagram of the truss by drawing arrows near joints A and D push-
ing into the joints, as shown in Fig. 4.16(c). Because the magnitude of the
vertical component of FAD has been found to be 34 k and since the slope
of member AD is 1:1, the magnitude of the horizontal component of FAD
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must also be 34 k; therefore, the magnitude of the resultant force FAD is
FAD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð34Þ2 þ ð34Þ2

p
¼ 48:08 k. The components of FAD, as well as FAD

itself are shown on the corresponding sides of a right-angled triangle
drawn on member AD, as shown in Fig. 4.16(c). With the horizontal
component of FAD now known, we observe (from Fig. 4.16(c)) that in or-
der to satisfy the equilibrium equation

P
Fx ¼ 0 at joint A, the force in

member AB ðFABÞ must pull to the right on the joint with a magnitude of
6 k to balance the horizontal component of FAD of 34 k acting to the left
and the horizontal reaction of 28 k acting to the right. The magnitude of
FAB is now written on member AB, and the arrows, pulling away on the
joints, are drawn near joints A and B to indicate that member AB is in
tension.

Next, we focus our attention on joint B of the truss. It should be ob-
vious from Fig. 4.16(c) that in order to satisfy

P
Fy ¼ 0 at B, the force in

member BD must be zero. To satisfy
P

Fx ¼ 0, the force in member BC
must have a magnitude of 6 k, and it must pull to the right on joint B, in-
dicating tension in member BC. This latest information is recorded in the
diagram of the truss in Fig. 4.16(c). Considering now the equilibrium of
joint C, we can see from the figure that in order to satisfy

P
Fy ¼ 0, the

vertical component of FCD must push downward into the joint with a
magnitude of 8 k to balance the vertically upward reaction of 8 k. Thus,
member CD is in compression. Since the magnitude of the vertical compo-
nent of FCD is 8 k and since the slope of member CD is 4:3, the magnitude
of the horizontal component of FCD is equal to ð3=4Þð8Þ ¼ 6 k; therefore,
the magnitude of FCD itself is FCD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6Þ2 þ ð8Þ2

p
¼ 10 k. Having de-

termined all the member forces, we check our computations by applying
the equilibrium equations

P
Fx ¼ 0 at joint C and

P
Fx ¼ 0 andP

Fy ¼ 0 at joint D. The horizontal and vertical components of the mem-
ber forces are already available in Fig. 4.16(c), so we can easily check by
inspection to find that these equations of equilibrium are indeed satisfied.
We must recognize that all the arrows shown on the diagram of the truss in
Fig. 4.16(c) indicate forces acting at the joints (not at the ends of the
members).

Identification of Zero-Force Members

Because trusses are usually designed to support several di¤erent loading
conditions, it is not uncommon to find members with zero forces in them
when a truss is being analyzed for a particular loading condition. Zero-
force members are also added to trusses to brace compression mem-
bers against buckling and slender tension members against vibrating. The
analysis of trusses can be expedited if we can identify the zero-force mem-
bers by inspection. Two common types of member arrangements that re-
sult in zero-force members are the following:

1. If only two noncollinear members are connected to a joint that
has no external loads or reactions applied to it, then the force in
both members is zero.

2. If three members, two of which are collinear, are connected to a
joint that has no external loads or reactions applied to it, then
the force in the member that is not collinear is zero.
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The first type of arrangement is shown in Fig. 4.17(a). It consists of
two noncollinear members AB and AC connected to a joint A. Note that
no external loads or reactions are applied to the joint. From this figure we
can see that in order to satisfy the equilibrium equation

P
Fy ¼ 0, the y

component of FAB must be zero; therefore, FAB ¼ 0. Because the x com-
ponent of FAB is zero, the second equilibrium equation,

P
Fx ¼ 0, can be

satisfied only if FAC is also zero.
The second type of arrangement is shown in Fig. 4.17(b), and it con-

sists of three members, AB;AC, and AD, connected together at a joint A.
Note that two of the three members, AB and AD, are collinear. We can
see from the figure that since there is no external load or reaction applied
to the joint to balance the y component of FAC , the equilibrium equationP

Fy ¼ 0 can be satisfied only if FAC is zero.

Example 4.3

Identify all zero-force members in the Fink roof truss subjected to an unbalanced snow load, as shown in Fig. 4.18.

Solution
It can be seen from the figure that at joint B, three members, AB;BC, and BJ, are connected, of which AB and BC are
collinear and BJ is not. Since no external loads are applied at joint B, member BJ is a zero-force member. A similar
reasoning can be used for joint D to identify member DN as a zero-force member. Next, we focus our attention on

FIG. 4.17
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joint J, where four members, AJ;BJ;CJ, and JK , are connected and no external loads are applied. We have already
identified BJ as a zero-force member. Of the three remaining members, AJ and JK are collinear; therefore, CJ must be
a zero-force member. Similarly, at joint N, member CN is identified as a zero-force member; the same type of argu-
ments can be used for joint C to identify member CK as a zero-force member and for joint K to identify member KN as
a zero-force member. Finally, we consider joint N, where four members, CN;DN;EN, and KN, are connected, of
which three members, CN;DN, and KN, have already been identified as zero-force members. No external loads are
applied at joint N, so the force in the remaining member, EN, must also be zero.

Procedure for Analysis

The following step-by-step procedure can be used for the analysis of
statically determinate simple plane trusses by the method of joints.

1. Check the truss for static determinacy, as discussed in the preced-
ing section. If the truss is found to be statically determinate and
stable, proceed to step 2. Otherwise, end the analysis at this stage.
(The analysis of statically indeterminate trusses is considered in
Part Three of this text.)

2. Identify by inspection any zero-force members of the truss.
3. Determine the slopes of the inclined members (except the zero-

force members) of the truss.
4. Draw a free-body diagram of the whole truss, showing all ex-

ternal loads and reactions. Write zeros by the members that
have been identified as zero-force members.

5. Examine the free-body diagram of the truss to select a joint that
has no more than two unknown forces (which must not be col-
linear) acting on it. If such a joint is found, then go directly to
the next step. Otherwise, determine reactions by applying the
three equations of equilibrium and the equations of condition
(if any) to the free body of the whole truss; then select a joint
with two or fewer unknowns, and go to the next step.

6. a. Draw a free-body diagram of the selected joint, showing tensile
forces by arrows pulling away from the joint and compressive
forces by arrows pushing into the joint. It is usually convenient
to assume the unknown member forces to be tensile.

b. Determine the unknown forces by applying the two equilib-
rium equations

P
Fx ¼ 0 and

P
Fy ¼ 0. A positive answer

FIG. 4.18
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for a member force means that the member is in tension, as
initially assumed, whereas a negative answer indicates that
the member is in compression.

If at least one of the unknown forces acting at the se-
lected joint is in the horizontal or vertical direction, the
unknowns can be conveniently determined by satisfying
the two equilibrium equations by inspection of the joint on
the free-body diagram of the truss.

7. If all the desired member forces and reactions have been deter-
mined, then go to the next step. Otherwise, select another joint
with no more than two unknowns, and return to step 6.

8. If the reactions were determined in step 5 by using the equations
of equilibrium and condition of the whole truss, then apply the
remaining joint equilibrium equations that have not been uti-
lized so far to check the calculations. If the reactions were com-
puted by applying the joint equilibrium equations, then use the
equilibrium equations of the entire truss to check the calcu-
lations. If the analysis has been performed correctly, then these
extra equilibrium equations must be satisfied.

Example 4.4

Determine the force in each member of the Warren truss shown in Fig. 4.19(a) by the method of joints.

Solution
Static Determinacy. The truss has 13 members and 8 joints and is supported by 3 reactions. Because mþ r ¼ 2j and the
reactions and the members of the truss are properly arranged, it is statically determinate.

continued
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Zero-Force Members. It can be seen from Fig. 4.19(a) that at joint G, three members, CG;FG, and GH, are connected,
of which FG and GH are collinear and CG is not. Since no external load is applied at joint G, member CG is a zero-
force member.

FCG ¼ 0 Ans.

From the dimensions of the truss, we find that all inclined members have slopes of 3:4, as shown in Fig. 4.19(a).
The free-body diagram of the entire truss is shown in Fig. 4.19(b). As a joint with two or fewer unknowns—which
should not be collinear—cannot be found, we calculate the support reactions. (Although joint G has only two unknown
forces, FFG and FGH , acting on it, these forces are collinear, so they cannot be determined from the joint equilibrium
equation,

P
Fx ¼ 0.)

Reactions. By using proportions,

Ay ¼ 24
3

4

� �
þ 30

1

2

� �
þ 12

1

4

� �
¼ 36P

Fy ¼ 0 Ey ¼ ð24þ 30þ 12Þ � 36 ¼ 30 kP
Fx ¼ 0 Ax ¼ 0

Joint A. Focusing our attention on joint A in Fig. 4.19(b), we observe that in order to satisfy
P

Fy ¼ 0, the vertical
component of FAF must push downward into the joint with a magnitude of 36 k to balance the upward reaction of 36 k.
The slope of member AF is 3:4, so the magnitude of the horizontal component of FAF is ð4=3Þð36Þ, or 48 k. Thus, the
force in member AF is compressive, with a magnitude of FAF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð48Þ2 þ ð36Þ2

p
¼ 60 k.

FAF ¼ 60 k ðCÞ Ans.

With the horizontal component of FAF now known, we can see from the figure that in order for
P

Fx ¼ 0 to be
satisfied, FAB must pull to the right with a magnitude of 48 k to balance the horizontal component of FAF of 48 k acting
to the left. Therefore, member AB is in tension with a force of 48 k.

FAB ¼ 48 k ðTÞ Ans.

Joint B. Next, we consider the equilibrium of joint B. Applying
P

Fx ¼ 0, we obtain FBC .

FBC ¼ 48 k ðTÞ Ans.

From
P

Fy ¼ 0, we obtain FBF .

FBF ¼ 24 k ðTÞ Ans.

Joint F. This joint now has two unknowns, FCF and FFG, so they can be determined by applying the equations of
equilibrium as follows. We can see from Fig. 4.19(b) that in order to satisfy

P
Fy ¼ 0, the vertical component of FCF

must pull downward on joint F with a magnitude of 36� 24 ¼ 12 k. Using the 3:4 slope of member CF , we obtain the
magnitude of the horizontal component as ð4=3Þð12Þ ¼ 16 k and the magnitude of FCF itself as 20 k.

FCF ¼ 20 k ðTÞ Ans.

Considering the equilibrium of joint F in the horizontal direction ð
P

Fx ¼ 0Þ, it should be obvious from Fig. 4.19(b)
that FFG must push to the left on the joint with a magnitude of 48þ 16 ¼ 64 k.

FFG ¼ 64 k ðCÞ Ans.

Joint G. Similarly, by applying
P

Fx ¼ 0, we obtain FGH .

FGH ¼ 64 k ðCÞ Ans.

Note that the second equilibrium equation,
P

Fy ¼ 0, at this joint has already been utilized in the identification of
member CG as a zero-force member.

continued

Section 4.5 Analysis of Plane Trusses by the Method of Joints 121



Joint C. By considering equilibrium in the vertical direction,
P

Fy ¼ 0, we observe (from Fig. 4.19(b)) that member
CH should be in tension and that the magnitude of the vertical component of its force must be equal to 30� 12 ¼ 18 k.
Therefore, the magnitudes of the horizontal component of FCH and of FCH itself are 24 k and 30 k, respectively, as
shown in Fig. 4.19(b).

FCH ¼ 30 k ðTÞ Ans.

By considering equilibrium in the horizontal direction,
P

Fx ¼ 0, we observe that member CD must be in tension
and that the magnitude of its force should be equal to 48þ 16� 24 ¼ 40 k.

FCD ¼ 40 k ðTÞ Ans.

Joint D. By applying
P

Fx ¼ 0, we obtain FDE .

FDE ¼ 40 k ðTÞ Ans.

From
P

Fy ¼ 0, we determine FDH .

FDH ¼ 12 k ðTÞ Ans.

Joint E. Considering the vertical components of all the forces acting at joint E, we find that in order to satisfyP
Fy ¼ 0, the vertical component of FEH must push downward into joint E with a magnitude of 30 k to balance the

upward reaction Ey ¼ 30 k. The magnitude of the horizontal component of FEH is equal to ð4=3Þð30Þ, or 40 k. Thus,
FEH is a compressive force with a magnitude of 50 k.

FEH ¼ 50 k ðCÞ Ans.

Checking Computations. To check our computations, we apply the following remaining joint equilibrium equations (see
Fig. 4.19(b)). At joint E,

þ !
P

Fx ¼ �40þ 40 ¼ 0 Checks

At joint H,

þ !
P

Fx ¼ 64� 24� 40 ¼ 0 Checks

þ "
P

Fy ¼ �18� 12þ 30 ¼ 0 Checks

Example 4.5

Determine the force in each member of the truss shown in Fig. 4.20(a) by the method of joints.

Solution
Static Determinacy. The truss is composed of 7 members and 5 joints and is supported by 3 reactions. Thus, mþ r ¼ 2j.
Since the reactions and the members of the truss are properly arranged, it is statically determinate.

From the dimensions of the truss given in Fig. 4.20(a), we find that all inclined members have slopes of 12:5. Since
joint E has two unknown non-collinear forces, FCE and FDE , acting on it, we can begin the method of joints without
first calculating the support reactions.

Joint E. Focusing our attention on joint E in Fig. 4.20(b), we observe that in order to satisfy
P

Fx ¼ 0, the horizontal
component of FDE must push to the left into the joint with a magnitude of 25 kN to balance the 25 kN external load
acting to the right. The slope of member DE is 12:5, so the magnitude of the vertical component of FDE is ð12=5Þð25Þ, or
60 kN. Thus, the force in member DE is compressive, with a magnitude of

FDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð25Þ2 þ ð60Þ2

q
¼ 65 kN

FDE ¼ 65 kN ðCÞ Ans.
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With the vertical component of FDE now known, we can see from the figure that in order for
P

Fy ¼ 0 to be sat-
isfied, FCE must pull downward on joint E with a magnitude of 60� 30 ¼ 30 kN.

FCE ¼ 30 kN ðTÞ Ans.

Joint C. Next, we consider the equilibrium of joint C. Applying
P

Fx ¼ 0, we obtain FCD.

FCD ¼ 50 kN ðCÞ Ans.

From
P

Fy ¼ 0, we obtain FAC .

FAC ¼ 30 kN ðTÞ Ans.

Joint D. Both of the unknown forces, FAD and FBD, acting at this joint have inclined directions, so we draw the free-
body diagram of this joint as shown in Fig. 4.20(c) and determine the unknowns by solving the equilibrium equations
simultaneously:

þ !
P

Fx ¼ 0 50þ 5

13
ð65Þ � 5

13
FAD þ

5

13
FBD ¼ 0

þ "
P

Fy ¼ 0 � 12

13
ð65Þ � 12

13
FAD �

12

13
FBD ¼ 0

FIG. 4.20
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Solving these equations simultaneously, we obtain

FAD ¼ 65 kN and FBD ¼ �130 kN

FAD ¼ 65 kN ðTÞ Ans.

FBD ¼ 130 kN ðCÞ Ans.

Joint B. (See Fig. 4.20(b).) By considering the equilibrium of joint B in the horizontal direction ð
P

Fx ¼ 0Þ, we obtain
FAB.

FAB ¼ 50 kN ðTÞ Ans.

Having determined all the member forces, we apply the remaining equilibrium equation ð
P

Fy ¼ 0Þ at joint B to cal-
culate the support reaction By.

By ¼ 120 kN " Ans.

Joint A. By applying
P

Fx ¼ 0, we obtain Ax.

Ax ¼ 75 kN Ans.

From
P

Fy ¼ 0, we obtain Ay.

Ay ¼ 90 kN # Ans.

Checking Computations. To check our computations, we consider the equilibrium of the entire truss. Applying the three
equilibrium equations to the free body of the entire truss shown in Fig. 4.20(b), we obtain

þ !
P

Fx ¼ 25þ 50� 75 ¼ 0 Checks

þ "
P

Fy ¼ �30� 90þ 120 ¼ 0 Checks

þ ’
P

MB ¼ 30ð5Þ � 25ð12Þ � 50ð6Þ þ 90ð5Þ ¼ 0 Checks

Example 4.6

Determine the force in each member of the three-hinged trussed arch shown in Fig. 4.21(a) by the method of joints.

Solution
Static Determinacy. The truss contains 10 members and 7 joints and is supported by 4 reactions. Since mþ r ¼ 2j and
the reactions and the members of the truss are properly arranged, it is statically determinate. Note that since m < 2j � 3,
the truss is not internally stable, and it will not remain a rigid body when it is detached from its supports. However,
when attached to the supports, the truss will maintain its shape and can be treated as a rigid body.

Zero-Force Members. It can be seen from Fig. 4.21(a) that at joint C, three members, AC;CE, and CF , are connected,
of which members AC and CF are collinear. Since joint C does not have any external load applied to it, the non-
collinear member CE is a zero-force member.

FCE ¼ 0 Ans.

Similar reasoning can be used for joint D to identify member DG as a zero-force member.

FDG ¼ 0 Ans.

The slopes of the non-zero-force inclined members are shown in Fig. 4.21(a). The free-body diagram of the entire
truss is shown in Fig. 4.21(b). The method of joints can be started either at joint E, or at joint G, since both of these
joints have only two unknowns each.

continued
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Joint E. Beginning with joint E, we observe from Fig. 4.21(b) that in order for
P

Fx ¼ 0 to be satisfied, the force in
member EF must be compressive with a magnitude of 15 kN.

FEF ¼ 15 kN ðCÞ Ans.

Similarly, from
P

Fy ¼ 0, we obtain FAE .

FAE ¼ 10 kN ðCÞ Ans.

Joint G. By considering the equilibrium of joint G in the horizontal direction ð
P

Fx ¼ 0Þ, we observe that the force in
member FG is zero.

FFG ¼ 0 Ans.

Similarly, by applying
P

Fy ¼ 0, we obtain FBG.

FBG ¼ 10 kN ðCÞ Ans.

FIG. 4.21
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Joint F. Next, we consider joint F . Both of the unknown forces, FCF and FDF , acting at this joint have inclined direc-
tions, so we draw the free-body diagram of this joint as shown in Fig. 4.21(c) and determine the unknowns by solving
the equilibrium equations simultaneously:

þ !
P

Fx ¼ 0 15� 1ffiffiffi
2
p FCF þ

4

5
FDF ¼ 0

þ "
P

Fy ¼ 0 �20� 1ffiffiffi
2
p FCF �

3

5
FDF ¼ 0

Solving these equations, we obtain

FDF ¼ �25 kN and FCF ¼ �7:07 kN

FDF ¼ 25 kN ðCÞ Ans.

FCF ¼ 7:07 kN ðCÞ Ans.

Joint C. (See Fig. 4.21(b).) In order for joint C to be in equilibrium, the two nonzero collinear forces acting at it must
be equal and opposite.

FAC ¼ 7:07 kN ðCÞ Ans.

Joint D. Using a similar reasoning at joint D, we obtain FBD.

FBD ¼ 25 kN ðCÞ Ans.

Joint A. Having determined all the member forces, we apply the two equilibrium equations at joint A to calculate the
support reactions, Ax and Ay. By applying

P
Fx ¼ 0, we obtain Ax.

Ax ¼ 5 kN! Ans.

By applying
P

Fy ¼ 0, we find that Ay is equal to 10þ 5 ¼ 15 kN.

Ay ¼ 15 kN " Ans.

Joint B. By applying
P

Fx ¼ 0, we obtain Bx.

Bx ¼ 20 kN Ans.

From
P

Fy ¼ 0, we find that By ¼ 15þ 10 ¼ 25 kN.

By ¼ 25 kN " Ans.

Equilibrium Check of Entire Truss. Finally, to check our computations, we consider the equilibrium of the entire truss.
Applying the three equations of equilibrium to the free body of the entire truss shown in Fig. 4.21(b), we have

þ !
P

Fx ¼ 5þ 15� 20 ¼ 0 Checks

þ "
P

Fy ¼ 15� 10� 20� 10þ 25 ¼ 0 Checks

þ ’
P

MB ¼ 5ð2Þ � 15ð16Þ � 15ð6Þ þ 10ð16Þ þ 20ð8Þ ¼ 0 Checks

4.6 Analysis of Plane Trusses by the Method of Sections

The method of joints, presented in the preceding section, proves to be
very e‰cient when forces in all the members of a truss are to be de-
termined. However, if the forces in only certain members of a truss are
desired, the method of joints may not prove to be e‰cient, because it
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may involve calculation of forces in several other members of the truss
before a joint is reached that can be analyzed for a desired member
force. The method of sections enables us to determine forces in the spe-
cific members of trusses directly, without first calculating many un-
necessary member forces, as may be required by the method of joints.

The method of sections involves cutting the truss into two portions by

passing an imaginary section through the members whose forces are de-

sired. The desired member forces are then determined by considering the

equilibrium of one of the two portions of the truss. Each portion of the
truss is treated as a rigid body in equilibrium, under the action of any
applied loads and reactions and the forces in the members that have been
cut by the section. The unknown member forces are determined by ap-
plying the three equations of equilibrium to one of the two portions
of the truss. There are only three equilibrium equations available, so they
cannot be used to determine more than three unknown forces. Thus,
in general, sections should be chosen that do not pass through more than

three members with unknown forces. In some trusses, the arrangement of
members may be such that by using sections that pass through more than
three members with unknown forces, we can determine one or, at most,
two unknown forces. Such sections are, however, employed in the anal-
ysis of only certain types of trusses (see Example 4.9).

Procedure for Analysis

The following step-by-step procedure can be used for determining the mem-
ber forces of statically determinate plane trusses by the method of sections.

1. Select a section that passes through as many members as possible
whose forces are desired, but not more than three members with
unknown forces. The section should cut the truss into two parts.

2. Although either of the two portions of the truss can be used for
computing the member forces, we should select the portion that
will require the least amount of computational e¤ort in determin-
ing the unknown forces. To avoid the necessity for the calculation
of reactions, if one of the two portions of the truss does not have
any reactions acting on it, then select this portion for the analysis
of member forces and go to the next step. If both portions of the
truss are attached to external supports, then calculate reactions by
applying the equations of equilibrium and condition (if any) to the
free body of the entire truss. Next, select the portion of the truss
for analysis of member forces that has the least number of external
loads and reactions applied to it.

3. Draw the free-body diagram of the portion of the truss selected,
showing all external loads and reactions applied to it and the
forces in the members that have been cut by the section. The un-
known member forces are usually assumed to be tensile and are,
therefore, shown on the free-body diagram by arrows pulling

away from the joints.
4. Determine the unknown forces by applying the three equations of

equilibrium. To avoid solving simultaneous equations, try to ap-
ply the equilibrium equations in such a manner that each equa-
tion involves only one unknown. This can sometimes be achieved
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by using the alternative systems of equilibrium equations
(
P

Fq ¼ 0,
P

MA ¼ 0,
P

MB ¼ 0 or
P

MA ¼ 0,
P

MB ¼ 0,P
MC ¼ 0) described in Section 3.1 instead of the usual two-

force summations and a moment summation (
P

Fx ¼ 0,P
Fy ¼ 0,

P
M ¼ 0) system of equations.

5. Apply an alternative equilibrium equation, which was not used to
compute member forces, to check the calculations. This alternative
equation should preferably involve all three member forces de-
termined by the analysis. If the analysis has been performed cor-
rectly, then this alternative equilibrium equation must be satisfied.

Example 4.7

Determine the forces in members CD;DG, and GH of the truss shown in Fig. 4.22(a) by the method of sections.

Solution
Section aa. As shown in Fig. 4.22(a), a section aa is passed through the three members of interest, CD;DG, and GH,
cutting the truss into two portions, ACGE and DHI . To avoid the calculation of support reactions, we will use the right-
hand portion, DHI , to calculate the member forces.

Member Forces. The free-body diagram of the portion DHI of the truss is shown in Fig. 4.22(b). All three unknown forces
FCD;FDG, and FGH , are assumed to be tensile and are indicated by arrows pulling away from the corresponding joints on
the diagram. The slope of the inclined force, FDG, is also shown on the free-body diagram. The desired member forces are
calculated by applying the equilibrium equations as follows (see Fig. 4.22(b)).

FIG. 4.22
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þ ’
P

MD ¼ 0 �15ð16Þ þ FGHð12Þ ¼ 0

FGH ¼ 20 k ðTÞ Ans.

þ "
P

Fy ¼ 0 �30� 15þ 3

5
FDG ¼ 0

FDG ¼ 75 k ðTÞ Ans.

þ !
P

Fx ¼ 0 �20� 4

5
ð75Þ � FCD ¼ 0

FCD ¼ �80 k

The negative answer for FCD indicates that our initial assumption about this force being tensile was incorrect, and FCD is
actually a compressive force.

FCD ¼ 80 k ðCÞ Ans.

Checking Computations. (See Fig. 4.22(b).)

þ ’
P

MI ¼ 30ð16Þ � ð�80Þ12� 4

5
ð75Þð12Þ � 3

5
ð75Þð16Þ ¼ 0 Checks

Example 4.8

Determine the forces in members CJ and IJ of the truss shown in Fig. 4.23(a) by the method of sections.

Solution
Section aa. As shown in Fig. 4.23(a), a section aa is passed through members IJ;CJ, and CD, cutting the truss into two
portions, ACI and DGJ. The left-hand portion, ACI , will be used to analyze the member forces.

Reactions. Before proceeding with the calculation of member forces, we need to determine reactions at support A. By
considering the equilibrium of the entire truss (Fig. 4.23(b)), we determine the reactions to be Ax ¼ 0, Ay ¼ 50 k ", and
Gy ¼ 50 k ".

Member Forces. The free-body diagram of the portion ACI of the truss is shown in Fig. 4.23(c). The slopes of the in-
clined forces, FIJ and FCJ , are obtained from the dimensions of the truss given in Fig. 4.23(a) and are shown on the free-
body diagram. The unknown member forces are determined by applying the equations of equilibrium, as follows.

Because FCJ and FCD pass through point C, by summing moments about C, we obtain an equation containing
only FIJ :

þ ’
P

MC ¼ 0 �50ð40Þ þ 20ð20Þ � 4ffiffiffiffiffi
17
p FIJð25Þ ¼ 0

FIJ ¼ �65:97 k

The negative answer for FIJ indicates that our initial assumption about this force being tensile was incorrect. Force FIJ

is actually a compressive force.

FIJ ¼ 65:97 k ðCÞ Ans.

Next, we calculate FCJ by summing moments about point O, which is the point of intersection of the lines of action
of FIJ and FCD. Because the slope of member IJ is 1:4, the distance OC ¼ 4ðICÞ ¼ 4ð25Þ ¼ 100 ft (see Fig. 4.23(c)).
Equilibrium of moments about O yields

continued
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þ ’
P

MO ¼ 0 50ð60Þ � 20ð80Þ � 20ð100Þ þ 3ffiffiffiffiffi
13
p FCJð100Þ ¼ 0

FCJ ¼ 7:21 k ðTÞ Ans.

Checking Computations. To check our computations, we apply an alternative equation of equilibrium, which involves
the two member forces just determined.

þ "
P

Fy ¼ 50� 20� 20� 1ffiffiffiffiffi
17
p ð65:97Þ þ 3ffiffiffiffiffi

13
p ð7:21Þ ¼ 0 Checks

FIG. 4.23
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Example 4.9

Determine the forces in members FJ;HJ, and HK of the K truss shown in Fig. 4.24(a) by the method of sections.

Solution
From Fig. 4.24(a), we can observe that the horizontal section aa passing through the three members of interest, FJ;HJ,
and HK , also cuts an additional member FI , thereby releasing four unknowns, which cannot be determined by three
equations of equilibrium. Trusses such as the one being considered here with the members arranged in the form of the
letter K can be analyzed by a section curved around the middle joint, like section bb shown in Fig. 4.24(a). To avoid the
calculation of support reactions, we will use the upper portion IKNL of the truss above section bb for analysis. The free-
body diagram of this portion is shown in Fig. 4.24(b). It can be seen that although section bb has cut four members,
FI ; IJ; JK , and HK , forces in members FI and HK can be determined by summing moments about points K and I ,

FIG. 4.24

continued
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respectively, because the lines of action of three of the four unknowns pass through these points. We will, therefore, first
compute FHK by considering section bb and then use section aa to determine FFJ and FHJ .

Section bb. Using Fig. 4.24(b), we write

þ ’
P

MI ¼ 0 �25ð8Þ � FHK ð12Þ ¼ 0

FHK ¼ �16:67 kN

FHK ¼ 16:67 kN ðCÞ Ans.

Section aa. The free-body diagram of the portion IKNL of the truss above section aa is shown in Fig. 4.24(c). To
determine FHJ , we sum moments about F , which is the point of intersection of the lines of action of FFI and FFJ .
Thus,

þ ’
P

MF ¼ 0 �25ð16Þ � 50ð8Þ þ 16:67ð12Þ � 3

5
FHJð8Þ �

4

5
FHJð6Þ ¼ 0

FHJ ¼ �62:5 kN

FHJ ¼ 62:5 kN ðCÞ Ans.

By summing forces in the horizontal direction, we obtain

þ !
P

Fx ¼ 0 25þ 50� 3

5
FFJ �

3

5
ð62:5Þ ¼ 0

FFJ ¼ 62:5 kN ðTÞ Ans.

Checking Computations. Finally, to check our calculations, we apply an alternative equilibrium equation, which in-
volves the three member forces determined by the analysis. Using Fig. 4.24(c), we write

þ ’
P

MI ¼ �25ð8Þ �
4

5
ð62:5Þð6Þ þ 4

5
ð62:5Þð6Þ þ 16:67ð12Þ ¼ 0 Checks

4.7 Analysis of Compound Trusses

Although the method of joints and the method of sections described in
the preceding sections can be used individually for the analysis of com-
pound trusses, the analysis of such trusses can sometimes be expedited
by using a combination of the two methods. For some types of com-
pound trusses, the sequential analysis of joints breaks down when a joint
with two or fewer unknown forces cannot be found. In such a case, the
method of sections is then employed to calculate some of the member
forces, thereby yielding a joint with two or fewer unknowns, from which
the method of joints may be continued. This approach is illustrated by
the following examples.
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Example 4.10

Determine the force in each member of the compound truss shown in Fig. 4.25(a).
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Solution
Static Determinacy. The truss has 11 members and 7 joints and is supported by 3 reactions. Since mþ r ¼ 2j and the
reactions and the members of the truss are properly arranged, it is statically determinate.

The slopes of the inclined members, as determined from the dimensions of the truss, are shown in Fig. 4.25(a).

Reactions. The reactions at supports A and B, as computed by applying the three equilibrium equations to the free-body
diagram of the entire truss (Fig. 4.25(b)), are

Ax ¼ 25 k Ay ¼ 5 k " By ¼ 35 k "

Section aa. Since a joint with two or fewer unknown forces cannot be found to start the method of joints, we first cal-
culate FAB by using section aa, as shown in Fig. 4.25(a).

The free-body diagram of the portion of the truss on the left side of section aa is shown in Fig. 4.25(c). We de-
termine FAB by summing moments about point G, the point of intersection of the lines of action of FCG and FDG.

þ ’
P

MG ¼ 0 �25ð32Þ � 5ð16Þ þ 10ð16Þ þ FABð32Þ ¼ 0

FAB ¼ 22:5 k ðTÞ Ans.

With FAB now known, the method of joints can be started either at joint A, or at joint B, since both of these joints have
only two unknowns each. We begin with joint A.

Joint A. The free-body diagram of joint A is shown in Fig. 4.25(d).

þ !
P

Fx ¼ 0 �25þ 22:5þ 1ffiffiffi
5
p FAC þ

3

5
FAD ¼ 0

þ "
P

Fy ¼ 0 5þ 2ffiffiffi
5
p FAC þ

4

5
FAD ¼ 0

Solving these equations simultaneously, we obtain

FAC ¼ �27:95 k and FAD ¼ 25 k

FAC ¼ 27:95 k ðCÞ Ans.

FAD ¼ 25 k ðTÞ Ans.

Joints C and D. Focusing our attention on joints C and D in Fig. 4.25(b), and by satisfying the two equilibrium equa-
tions by inspection at each of these joints, we determine

FCG ¼ 27:95 k ðCÞ Ans.

FCD ¼ 10 k ðCÞ Ans.

FDG ¼ 20:62 k ðTÞ Ans.

Joint G. Next, we consider the equilibrium of joint G (see Fig. 4.25(e)).

þ !
P

Fx ¼ 0 5þ 1ffiffiffi
5
p ð27:95Þ � 1ffiffiffiffiffi

17
p ð20:62Þ þ 1ffiffiffiffiffi

17
p FEG þ

1ffiffiffi
5
p FFG ¼ 0

þ "
P

Fy ¼ 0 �40þ 2ffiffiffi
5
p ð27:95Þ � 4ffiffiffiffiffi

17
p ð20:62Þ � 4ffiffiffiffiffi

17
p FEG �

2ffiffiffi
5
p FFG ¼ 0

continued
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Solving these equations, we obtain

FEG ¼ �20:62 k and FFG ¼ �16:77 k

FEG ¼ 20:62 k ðCÞ Ans.

FFG ¼ 16:77 k ðCÞ Ans.

Joints E and F. Finally, by considering the equilibrium, by inspection, of joints E and F (see Fig. 4.25(b)), we obtain

FBE ¼ 25 k ðCÞ Ans.

FEF ¼ 10 k ðTÞ Ans.

FBF ¼ 16:77 k ðCÞ Ans.

Example 4.11

Determine the force in each member of the Fink truss shown in Fig. 4.26(a).
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Solution
The Fink truss shown in Fig. 4.26(a) is a compound truss formed by connecting two simple trusses, ACL and DFL, by a
common joint L and a member CD.

Static Determinacy. The truss contains 27 members and 15 joints and is supported by 3 reactions. Because mþ r ¼ 2j and
the reactions and the members of the truss are properly arranged, it is statically determinate.

Reactions. The reactions at supports A and F of the truss, as computed by applying the three equations of equilibrium
to the free-body diagram of the entire truss (Fig. 4.26(b)), are

Ax ¼ 0 Ay ¼ 42 k " Fy ¼ 42 k "

Joint A. The method of joints can now be started at joint A, which has only two unknown forces, FAB and FAI , acting on
it. By inspection of the forces acting at this joint (see Fig. 4.26(b)), we obtain the following:

FAI ¼ 93:91 k ðCÞ Ans.

FAB ¼ 84 k ðTÞ Ans.

Joint I. The free-body diagram of joint I is shown in Fig. 4.26(c). Member BI is perpendicular to members AI and IJ,
which are collinear, so the computation of member forces can be simplified by using an x axis in the direction of the
collinear members, as shown in Fig. 4.26(c).

þ -
P

Fy ¼ 0 � 2ffiffiffi
5
p ð12Þ � FBI ¼ 0

FBI ¼ �10:73 k

FBI ¼ 10:73 k ðCÞ Ans.

þ %
P

Fx ¼ 0 93:91� 1ffiffiffi
5
p ð12Þ þ FIJ ¼ 0

FIJ ¼ �88:54 k

FIJ ¼ 88:54 k ðCÞ Ans.

Joint B. Considering the equilibrium of joint B, we obtain (see Fig. 4.26(b)) the following:

þ "
P

Fy ¼ 0 � 2ffiffiffi
5
p ð10:73Þ þ 4

5
FBJ ¼ 0

FBJ ¼ 12 k ðTÞ Ans.

þ !
P

Fx ¼ 0 �84þ 1ffiffiffi
5
p ð10:73Þ þ 3

5
ð12Þ þ FBC ¼ 0

FBC ¼ 72 k ðTÞ Ans.
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Section aa. Since at each of the next two joints, C and J, there are three unknowns (FCD;FCG, and FCJ at joint C and
FCJ ;FGJ , and FJK at joint J), we calculate FCD by using section aa, as shown in Fig. 4.26(a). (If we moved to joint F
and started computing member forces from that end of the truss, we would encounter similar di‰culties at joints D
and N.)

The free-body diagram of the portion of the truss on the left side of section aa is shown in Fig. 4.26(d). We de-
termine FCD by summing moments about point L, the point of intersection of the lines of action of FGL and FKL.

þ ’
P

ML ¼ 0 �42ð32Þ þ 12ð24Þ þ 12ð16Þ þ 12ð8Þ þ FCDð16Þ ¼ 0

FCD ¼ 48 k ðTÞ Ans.

Joint C. With FCD now known, there are only two unknowns, FCG and FCJ , at joint C. These forces can be determined
by applying the two equations of equilibrium to the free body of joint C, as shown in Fig. 4.26(e).

þ "
P

Fy ¼ 0
2ffiffiffi
5
p FCJ þ

4

5
FCG ¼ 0

þ !
P

Fx ¼ 0 �72þ 48� 1ffiffiffi
5
p FCJ þ

3

5
FCG ¼ 0

Solving these equations simultaneously, we obtain

FCJ ¼ �21:47 k and FCG ¼ 24 k

FCJ ¼ 21:47 k ðCÞ Ans.

FCG ¼ 24 k ðTÞ Ans.

Joints J, K, and G. Similarly, by successively considering the equilibrium of joints J;K, and G, in that order, we de-
termine the following:

FJK ¼ 83:18 k ðCÞ Ans.

FGJ ¼ 12 k ðTÞ Ans.

FKL ¼ 77:81 k ðCÞ Ans.

FGK ¼ 10:73 k ðCÞ Ans.

FGL ¼ 36 k ðTÞ Ans.

Symmetry. Since the geometry of the truss and the applied loading are symmetrical about the center line of the truss
(shown in Fig. 4.26(b)), its member forces will also be symmetrical with respect to the line of symmetry. It is, therefore,
su‰cient to determine member forces in only one-half of the truss. The member forces determined here for the left half
of the truss are shown in Fig. 4.26(b). The forces in the right half can be obtained from the consideration of symmetry;
for example, the force in member MN is equal to that in member JK , and so forth. The reader is urged to verify this by
computing a few member forces in the right half of the truss. Ans.

4.8 Complex Trusses

Trusses that can be classified neither as simple trusses nor as compound
trusses are referred to as complex trusses. Two examples of complex
trusses are shown in Fig. 4.27. From an analytical viewpoint, the main
di¤erence between simple or compound trusses and complex trusses
stems from the fact that the methods of joints and sections, as described
previously, cannot be used for the analysis of complex trusses. We can
see from Fig. 4.27 that although the two complex trusses shown are
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statically determinate, after the computation of reactions the method of
joints cannot be applied because we cannot find a joint at which there are
two or fewer unknown member forces. Likewise, the method of sections
cannot be employed, because every section would pass through more than
three members with unknown forces. The member forces in such trusses can
be determined by writing two equilibrium equations in terms of unknown
member forces for each joint of the truss and then solving the system of
2j equations simultaneously. Today, complex trusses are usually analyzed
on computers using the matrix formulation presented in Chapter 17.

4.9 Space Trusses

Space trusses, because of their shape, arrangement of members, or ap-
plied loading, cannot be subdivided into plane trusses for the purposes of
analysis and must, therefore, be analyzed as three-dimensional structures
subjected to three-dimensional force systems. As stated in Section 4.1, to
simplify the analysis of space trusses, it is assumed that the truss mem-
bers are connected at their ends by frictionless ball-and-socket joints, all
external loads and reactions are applied only at the joints, and the
centroidal axis of each member coincides with the line connecting the
centers of the adjacent joints. Because of these simplifying assumptions,
the members of space trusses can be treated as axial force members.

The simplest internally stable (or rigid) space truss can be formed by
connecting six members at their ends by four ball-and-socket joints to
form a tetrahedron, as shown in Fig. 4.28(a). This tetrahedron truss may
be considered as the basic space truss element. It should be realized that
this basic space truss is internally stable in the sense that it is a three-
dimensional rigid body that will not change its shape under a general
three-dimensional loading applied at its joints. The basic truss ABCD of
Fig. 4.28(a) can be enlarged by attaching three new members, BE;CE,
and DE, to three of the existing joints B;C, and D, and by connecting
them to form a new joint E, as depicted in Fig. 4.28(b). As long as the new
joint E does not lie in the plane containing the existing joints B;C, and D,
the new enlarged truss will be internally stable. The truss can be further
enlarged by repeating the same procedure (as shown in Fig. 4.28(c)) as

FIG. 4.27 Complex Trusses
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many times as desired. Trusses constructed by this procedure are termed
simple space trusses.

A simple space truss is formed by enlarging the basic tetrahedron
element containing six members and four joints by adding three addi-
tional members for each additional joint, so the total number of mem-
bers m in a simple space truss is given by

m ¼ 6þ 3ð j � 4Þ ¼ 3j � 6 ð4:5Þ

in which j ¼ total number of joints (including those attached to the
supports).

Reactions

The types of supports commonly used for space trusses are depicted in
Fig. 4.29. The number and directions of the reaction forces that a sup-
port may exert on the truss depend on the number and directions of the
translations it prevents.

As suggested in Section 3.1, in order for an internally stable space
structure to be in equilibrium under a general system of three-dimensional
forces, it must be supported by at least six reactions that satisfy the six
equations of equilibrium (Eq. (3.1)):P

Fx ¼ 0
P

Fy ¼ 0
P

Fz ¼ 0P
Mx ¼ 0

P
My ¼ 0

P
Mz ¼ 0

Because there are only six equilibrium equations, they cannot be used to
determine more than six reactions. Thus, an internally stable space struc-
ture that is statically determinate externally must be supported by exactly
six reactions. If a space structure is supported by more than six reactions,
then all the reactions cannot be determined from the six equilibrium equa-
tions, and such a structure is termed statically indeterminate externally.
Conversely, if a space structure is supported by fewer than six reactions,
the reactions are not su‰cient to prevent all possible movements of the

FIG. 4.28 Simple Space Truss
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structure in three-dimensional space, and such a structure is referred to as
statically unstable externally. Thus, if

r < 6 the space structure is statically unstable externally

r ¼ 6 the space structure is statically determinate externally

r > 6 the space structure is statically indeterminate externally

ð4:6Þ

where r ¼ number of reactions.
As in the case of plane structures discussed in the previous chapter, the

conditions for static determinacy and indeterminacy, as given in Eq. (4.6),
are necessary but not su‰cient. In order for a space structure to be geo-
metrically stable externally, the reactions must be properly arranged so
that they can prevent translations in the directions of, as well as rotations
about, each of the three coordinate axes. For example, if the lines of ac-
tion of all the reactions of a space structure are either parallel or inter-
sect a common axis, the structure would be geometrically unstable.

Static Determinacy, Indeterminacy, and Instability

If a space truss contains m members and is supported by r external
reactions, then for its analysis we need to determine a total of mþ r

Category Type of support Symbolic representation Reactions Number of unknowns

Ball

1
The reaction force Ry acts
perpendicular to the supporting
surface and may be directed either
into or away from the structure.
The magnitude of Ry is the
unknown.

I

Link

1
The reaction force R acts in the
direction of the link and may be
directed either into or away from
the structure. The magnitude of R is
the unknown.

II Roller

2
Two reaction force components Rx

and Ry act in a plane perpendicular
to the direction in which the roller
is free to roll. The magnitudes of Rx

and Ry are the two unknowns.

III Ball and socket

3
The reaction force R may act in any
direction. It is usually represented
by its rectangular components, Rx,
Ry, and Rz. The magnitudes of Rx,
Ry, and Rz are the three unknowns.

FIG. 4.29 Types of Supports for Space Trusses
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unknown forces. Since the truss is in equilibrium, each of its joints must
also be in equilibrium. At each joint, the internal and external forces
form a three-dimensional concurrent force system that must satisfy the
three equations of equilibrium,

P
Fx ¼ 0,

P
Fy ¼ 0, and

P
Fz ¼ 0.

Therefore, if the truss contains j joints, the total number of equilibrium
equations available is 3j. If mþ r ¼ 3j, all the unknowns can be de-
termined by solving the 3j equations of equilibrium, and the truss is
statically determinate.

Space trusses containing more unknowns than the available equili-
brium equations ðmþ r > 3jÞ are statically indeterminate, and those with
fewer unknowns than the equilibrium equations ðmþ r < 3jÞ are stat-
ically unstable. Thus, the conditions of static instability, determinacy, and
indeterminacy of space trusses can be summarized as follows:

mþ r < 3j statically unstable space truss

mþ r ¼ 3j statically determinate space truss

mþ r > 3j statically indeterminate space truss

ð4:7Þ

In order for the criteria for static determinacy and indeterminacy, as
given by Eq. (4.7), to be valid, the truss must be stable and act as a sin-
gle rigid body, under a general three-dimensional system of loads, when
attached to the supports.

Analysis of Member Forces

The two methods for analysis of plane trusses discussed in Sections 4.5
and 4.6 can be extended to the analysis of space trusses. The method of

joints essentially remains the same, except that three equilibrium equa-
tions (

P
Fx ¼ 0,

P
Fy ¼ 0, and

P
Fz ¼ 0) must now be satisfied at each

joint of the space truss. Since the three equilibrium equations cannot
be used to determine more than three unknown forces, the analysis is
started at a joint that has a maximum of three unknown forces (which
must not be coplanar) acting on it. The three unknowns are determined
by applying the three equations of equilibrium. We then proceed from
joint to joint, computing three or fewer unknown forces at each subse-
quent joint, until all the desired forces have been determined.

Since it is di‰cult to visualize the orientations of inclined members in
three-dimensional space, it is usually convenient to express the rectangu-
lar components of forces in such members in terms of the projections of
member lengths in the x; y, and z directions. Consider a member AB of a
space truss, as shown in Fig. 4.30. The projections of its length LAB in the
x; y, and z directions are xAB; yAB, and zAB, respectively, as shown, with

LAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxABÞ2 þ ðyABÞ2 þ ðzABÞ2

q
Because the force FAB acts in the direction of the member, its compo-
nents FxAB;FyAB, and FzAB in the x; y, and z directions, respectively, can
be expressed as

FxAB ¼ FAB
xAB

LAB

� �
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FyAB ¼ FAB
yAB

LAB

� �
FzAB ¼ FAB

zAB

LAB

� �
and the resultant force FAB is given by

FAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFxABÞ2 þ ðFyABÞ2 þ ðFzABÞ2

q
The analysis of space trusses can be expedited by identifying the zero-

force members by inspection. Two common types of member arrange-
ments that result in zero-force members are the following:

1. If all but one of the members connected to a joint lie in a single
plane and no external loads or reactions are applied to the joint,
then the force in the member that is not coplanar is zero.

2. If all but two of the members connected to a joint have zero
force and no external loads or reactions are applied to the joint,
then unless the two remaining members are collinear, the force
in each of them is also zero.

The first type of arrangement is shown in Fig. 4.31(a). It consists
of four members AB;AC;AD, and AE connected to a joint A. Of these,
AB;AC, and AD lie in the xz plane, whereas member AE does not.
Note that no external loads or reactions are applied to joint A. It should
be obvious that in order to satisfy the equilibrium equation

P
Fy ¼ 0,

the y component of FAE must be zero, and therefore FAE ¼ 0.
The second type of arrangement is shown in Fig. 4.31(b). It consists

of four members AB;AC;AD, and AE connected to a joint A, of which
AD and AE are zero-force members, as shown. Note that no external
loads or reactions are applied to the joint. By choosing the orientation of
the x axis in the direction of member AB, we can see that the equilibrium
equations

P
Fy ¼ 0 and

P
Fz ¼ 0 can be satisfied only if FAC ¼ 0.

Because the x component of FAC is zero, the equation
P

Fx ¼ 0 is sat-
isfied only if FAB is also zero.

FIG. 4.30
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As in the case of plane trusses, the method of sections can be employed
for determining forces in specific members of space trusses. An imaginary
section is passed through the truss, cutting the members whose forces are
desired. The desired member forces are then calculated by applying the
six equations of equilibrium (Eq. (3.1)) to one of the two portions of the
truss. No more than six unknown forces can be determined from the six
equilibrium equations, so a section is generally chosen that does not pass
through more than six members with unknown forces.

Because of the considerable amount of computational e¤ort involved,
the analysis of space trusses is performed today on computers. However,
it is important to analyze at least a few relatively small space trusses
manually to gain an understanding of the basic concepts involved in the
analysis of such structures.

Example 4.12

Determine the reactions at the supports and the force in each member of the space truss shown in Fig. 4.32(a).

Solution
Static Determinacy. The truss contains 9 members and 5 joints and is supported by 6 reactions. Because mþ r ¼ 3j and
the reactions and the members of the truss are properly arranged, it is statically determinate.

Member Projections. The projections of the truss members in the x; y, and z directions, as obtained from Fig. 4.32(a),
as well as their lengths computed from these projections, are tabulated in Table 4.1.

Zero-Force Members. It can be seen from Fig. 4.32(a) that at joint D, three members, AD;CD, and DE, are connected.
Of these members, AD and CD lie in the same ðxzÞ plane, whereas DE does not. Since no external loads or reactions are
applied at the joint, member DE is a zero-force member.

FDE ¼ 0 Ans.

Having identified DE as a zero-force member, we can see that since the two remaining members AD and CD are
not collinear, they must also be zero-force members.

FAD ¼ 0 Ans.

FCD ¼ 0 Ans.

FIG. 4.31

continued
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FAE
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7 15
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y

FBE FBC

30

15
B x

y

z

E

z

15

25

x

y

FAE =
14.32

FCE = 20.05
FBE = 34.38

15

FIG. 4.32

continued
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Reactions. See Fig. 4.32(a).

þ .
P

Fz ¼ 0

Bz þ 15 ¼ 0

Bz ¼ �15 k

Bz ¼ 15 k% Ans.

þ ’
P

My ¼ 0

Bxð6Þ þ 15ð12Þ � 15ð6Þ ¼ 0

Bx ¼ �15 k

Bx ¼ 15 k Ans.

þ !
P

Fx ¼ 0

�15þ Cx ¼ 0

Cx ¼ 15 k! Ans.

þ ’
P

Mx ¼ 0

�Ayð6Þ � Byð6Þ þ 25ð3Þ þ 15ð12Þ ¼ 0

Ay þ By ¼ 42:5 (1)

þ "
P

Fy ¼ 0

Ay þ By þ Cy � 25 ¼ 0 (2)

By substituting Eq. (1) into Eq. (2), we obtain

Cy ¼ �17:5 k

Cy ¼ 17:5 k #
Ans.

þ ’
P

Mz ¼ 0

Byð12Þ � 17:5ð12Þ � 25ð6Þ ¼ 0

By ¼ 30 k " Ans.

By substituting By ¼ 30 into Eq. (1), we obtain Ay.

Ay ¼ 12:5 k " Ans.

Joint A. See Fig. 4.32(b).

þ "
P

Fy ¼ 0 12:5þ yAE

LAE

� �
FAE ¼ 0

in which the second term on the left-hand side represents the y component of FAE . Substituting the values of y and L for
member AE from Table 4.1, we write

12:5þ 12

13:75

� �
FAE ¼ 0

FAE ¼ �14:32 k

FAE ¼ 14:32 k ðCÞ Ans.

continued
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Similarly, we apply the remaining equilibrium equations:

þ .
P

Fz ¼ 0 � 6

13:42

� �
FAC þ

3

13:75

� �
ð14:32Þ ¼ 0

FAC ¼ 7:0 k ðTÞ Ans.

þ !
P

Fx ¼ 0 FAB þ
12

13:42

� �
ð7Þ � 6

13:75

� �
ð14:32Þ ¼ 0

FAB ¼ 0 Ans.

Joint B. (See Fig. 4.32(c).)

þ !
P

Fx ¼ 0 � 6

13:75

� �
FBE � 15 ¼ 0

FBE ¼ �34:38 k

FBE ¼ 34:38 k ðCÞ Ans.

þ .
P

Fz ¼ 0 �15� FBC þ
3

13:75

� �
ð34:38Þ ¼ 0

FBC ¼ �7:5 k

FBC ¼ 7:5 k ðCÞ Ans.

As all the unknown forces at joint B have been determined, we will use the remaining equilibrium equation to check our
computations:

þ "
P

Fy ¼ 30� 12

13:75

� �
ð34:38Þ ¼ 0 Checks

Joint C. See Fig. 4.32(d).

þ "
P

Fy ¼ 0 �17:5þ 12

13:75

� �
FCE ¼ 0

FCE ¼ 20:05 k ðTÞ Ans.

continued

TABLE 4.1

Projection

Member x (ft) y (ft) z (ft) Length (ft)

AB 12 0 0 12.0

BC 0 0 6 6.0

CD 12 0 0 12.0

AD 0 0 6 6.0

AC 12 0 6 13.42

AE 6 12 3 13.75

BE 6 12 3 13.75

CE 6 12 3 13.75

DE 6 12 3 13.75
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Checking Computations. At joint C (Fig. 4.32(d)),

þ !
P

Fx ¼ 15� 6

13:75

� �
ð20:05Þ � 12

13:42

� �
ð7Þ ¼ 0 Checks

þ .
P

Fz ¼ �7:5þ
6

13:42

� �
ð7Þ þ 3

13:75

� �
ð20:05Þ ¼ 0 Checks

At joint E (Fig. 4.32(e)),

þ !
P

Fx ¼
6

13:75
ð14:32� 34:38þ 20:05Þ ¼ 0 Checks

þ "
P

Fy ¼ �25þ
12

13:75

� �
ð14:32þ 34:38� 20:05Þ ¼ 0 Checks

þ .
P

Fz ¼ 15� 3

13:75

� �
ð14:32þ 34:38þ 20:05Þ ¼ 0 Checks

Summary

A truss is defined as a structure that is composed of straight members
connected at their ends by flexible connections to form a rigid config-
uration. The analysis of trusses is based on three simplifying assumptions:

1. All members are connected only at their ends by frictionless
hinges in plane trusses and by frictionless ball-and-socket joints
in space trusses.

2. All loads and reactions are applied only at the joints.
3. The centroidal axis of each member coincides with the line con-

necting the centers of the adjacent joints. The e¤ect of these as-
sumptions is that all the members of the truss can be treated as
axial force members.

A truss is considered to be internally stable if the number and ar-
rangement of its members is such that it does not change its shape and
remains a rigid body when detached from its supports. The common types
of equations of condition for plane trusses are described in Section 4.3.

A truss is considered to be statically determinate if all of its member
forces and reactions can be determined by using the equations of equili-
brium. If a plane truss contains m members, j joints, and is supported
by r reactions, then if

mþ r < 2j the truss is statically unstable

mþ r ¼ 2j the truss is statically determinate

mþ r > 2j the truss is statically indeterminate

ð4:4Þ

The degree of static indeterminacy is given by

i ¼ ðmþ rÞ � 2j ð4:3Þ

The foregoing conditions for static determinacy and indeterminacy are
necessary but not su‰cient conditions. In order for these criteria to be
valid, the truss must be stable and act as a single rigid body under a
general system of coplanar loads when it is attached to the supports.
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To analyze statically determinate plane trusses, we can use the method
of joints, which essentially consists of selecting a joint with no more than
two unknown forces acting on it and applying the two equilibrium equa-
tions to determine the unknown forces. We repeat the procedure until we
obtain all desired forces. This method is most e‰cient when forces in all or
most of the members of a truss are desired.

The method of sections usually proves to be more convenient when
forces in only a few specific members of the truss are desired. This
method essentially involves cutting the truss into two portions by pass-
ing an imaginary section through the members whose forces are desired
and determining the desired forces by applying the three equations of
equilibrium to the free body of one of the two portions of the truss.

The analysis of compound trusses can usually be expedited by using a
combination of the method of joints and the method of sections. A pro-
cedure for the determination of reactions and member forces in space
trusses is also presented.

PROBLEMS

Section 4.4

4.1 through 4.5 Classify each of the plane trusses shown as
unstable, statically determinate, or statically indeterminate.

If the truss is statically indeterminate, then determine the
degree of static indeterminacy.

FIG. P4.1 FIG. P4.2

148 CHAPTER 4 Plane and Space Trusses



(a)

(b)

(c) (d)

FIG. P4.4

(a) (b)

(c)

(d)

FIG. P4.5

(a)

(b)

FIG. P4.3

(c)

(d)
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Section 4.5

4.6 through 4.27 Determine the force in each member of the
truss shown by the method of joints.

10 ft

5 k 10 k 10 k

A B

D

E

C

12 ft 12 ft

FIG. P4.6

60 kN

120 kN

4 m 4 m

1 m

2 m

A CB

D

FIG. P4.7

8 ft

C
B

20 k

A

D E

6 ft 6 ft 6 ft 6 ft

20 k

15 k

FIG. P4.8

3 m

100 kN100 kN

35 kN

7 m

D E

C

A B

4 m 4 m3 m3 m

FIG. P4.9

15 k 30 k 15 k

A
E

4 at 16 ft = 64 ft

12 ft

B C D

F G H

FIG. P4.10

15 k 15 k

A
EB C D

F G H

4 at 16 ft = 64 ft

12 ft

FIG. P4.11
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12 m

12 m

12 m

5 m

H

F

D

B

G

E

C

A

15 kN

30 kN

30 kN

FIG. P4.12

8 k 1
1

12 k 24 k

15 ft

F GD E

A
B C

15 ft 15 ft 15 ft

8 ft

FIG. P4.13

40 kN

6 m

H

BA C D E F G

I J K L

6 at 8 m = 48 m

30 kN 30 kN 60 kN 60 kN 60 kN

FIG. P4.14

15 k 30 k 30 k 30 k 15 k

20 ft

6 at 20 ft = 120 ft

J K LH I

A
C D E F

G
B

FIG. P4.15

16 ft

16 ft

5 k

10 k
E

C

10 k

F

D

A

12 ft 12 ft

B

FIG. P4.16

40 kN 40 kN 40 kN

A B C
D

G

F
E

3 at 5 m = 15 m

5 m

FIG. P4.17
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12 ft20 k

12 ft

E

D

B
A

C

5 k

5 ft 5 ft 14 ft

FIG. P4.18

FIG. P4.19

40 k

20 k

5 ft 5 ft 5 ft 5 ft

B

A C

ED
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F

FIG. P4.20

50 kN
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C D

60 kN

E

A B
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FIG. P4.21

FIG. P4.22

12 ft

12 ft

B

D E

C

A

5 k 10 k

75 k 75 k

5 ft 5 ft

FIG. P4.23

152 CHAPTER 4 Plane and Space Trusses



15 k

30 k

30 k

30 k

5 ft

5 ft

5 ft

5 ft

5 ft 5 ft10 ft

30 k 30 k
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B

C D

E F

G H

I J

FIG. P4.24
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4 m

4 m

4 m

A

C

B

D

E
F

G
H

JI

12 kN12 kN 12 kN 12 kN 12 kN 12 kN

20 kN
K L M N O P

40 kN

40 kN

40 kN

5 at 3 m = 15 m

FIG. P4.25

FIG. P4.26

3 m

4 at 4 m = 16 m

50 kN

A E

C D

120 kN 120 kN

B

F G

FIG. P4.27

4.28 Determine the force in each member of the truss sup-
porting a floor deck as shown in Fig. P4.28. The deck is sim-
ply supported on floor beams which, in turn, are connected to
the joints of the truss. Thus, the uniformly distributed loading
on the deck is transmitted by the floor beams as concentrated
loads to the top joints of the truss.

FIG. P4.28

4.29 and 4.30 Determine the force in each member of the
roof truss shown. The roof is simply supported on purlins
which, in turn, are attached to the joints of the top chord of
the truss. Thus, the uniformly distributed loading on the roof
is transmitted by the purlins as concentrated loads to the
truss joints.
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FIG. P4.29

FIG. P4.30

Section 4.6

4.31 Determine the forces in the top chord member GH and
the bottom chord member BC of the truss, if h ¼ 3 ft. How
would the forces in these members change if the height h of
the truss was doubled to 6 ft?

FIG. P4.31

4.32 through 4.45 Determine the forces in the members
identified by ‘‘3’’ of the truss shown by the method of
sections.

5 m

G

40 kN
F

40 kN
E

40 kN
D

40 kN
B C

40 kN

A

H I J K L

6 at 5 m = 30 m

FIG. P4.32
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E F G
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FIG. P4.33
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FIG. P4.34
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FIG. P4.37
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FIG. P4.39
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FIG. P4.44

Section 4.7

4.46 through 4.50 Determine the force in each member of the
truss shown.
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Problems 157



FIG. P4.48

FIG. P4.49
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FIG. P4.50

Section 4.9

4.51 through 4.55 Determine the force in each member of the
space truss shown.

FIG. P4.51

FIG. P4.52
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FIG. P4.53

FIG. P4.54

Problems 159



FIG. P4.55
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5
Beams and Frames:
Shear and Bending Moment
5.1 Axial Force, Shear, and Bending Moment
5.2 Shear and Bending Moment Diagrams
5.3 Qualitative Deflected Shapes
5.4 Relationships between Loads, Shears, and Bending Moments
5.5 Static Determinacy, Indeterminacy, and Instability of Plane Frames
5.6 Analysis of Plane Frames

Summary
Problems

161

Unlike trusses, considered in the preceding chapter, whose members are al-
ways subjected to only axial forces, the members of rigid frames and beams
may be subjected to shear forces and bending moments as well as axial
forces under the action of external loads.The determinationof these internal
forces and moments (stress resultants) is necessary for the design of such
structures. The objective of this chapter is to present the analysis of internal
forces and moments that may develop in beams, and the members of plane
frames, under the action of coplanar systems of external forces and couples.

We begin by defining the three types of stress resultants—axial forces,
shear forces, and bending moments—that may act on the cross sections of
beams and the members of plane frames. We next discuss construction of
the shear and bending moment diagrams by the method of sections. We
also consider qualitative deflected shapes of beams and the relationships
between loads, shears, and bending moments. In addition, we develop the
procedures for constructing the shear and bending moment diagrams us-
ing these relationships. Finally we present the classification of plane
frames as statically determinate, indeterminate, and unstable; and the
analysis of statically determinate plane frames.

5.1 Axial Force, Shear, and Bending Moment

Internal forces were defined in Section 3.2 as the forces and couples
exerted on a portion of the structure by the rest of the structure. Con-
sider, for example, the simply supported beam shown in Fig. 5.1(a). The

Steel Girders
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free-body diagram of the entire beam is depicted in Fig. 5.1(b), which
shows the external loads, as well as the reactions Ax and Ay, and By at
supports A and B, respectively. As discussed in Chapter 3, the support
reactions can be computed by applying the equations of equilibrium to
the free body of the entire beam. In order to determine the internal
forces acting on the cross section of the beam at a point C, we pass an
imaginary section cc through C, thereby cutting the beam into two
parts, AC and CB, as shown in Figs. 5.1(c) and 5.1(d). The free-body dia-
gram of the portion AC (Fig. 5.1(c)) shows, in addition to the external
loads and support reactions acting on the portion AC, the internal forces,
Q;S, andM exerted upon portion AC at C by the removed portion of the
structure. Note that without these internal forces, portion AC is not in
equilibrium. Also, under a general coplanar system of external loads and
reactions, three internal forces (two perpendicular force components and
a couple) are necessary at a section to maintain a portion of the beam in
equilibrium. The two internal force components are usually oriented in
the direction of, and perpendicular to, the centroidal axis of the beam at
the section under consideration, as shown in Fig. 5.1(c). The internal
force Q in the direction of the centroidal axis of the beam is called the
axial force, and the internal force S in the direction perpendicular to the
centroidal axis is referred to as the shear force (or, simply, shear). The
moment M of the internal couple is termed the bending moment. Recall
from mechanics of materials that these internal forces, Q;S, and M, rep-
resent the resultants of the stress distribution acting on the cross section of
the beam.

The free-body diagram of the portion CB of the beam is shown in
Fig. 5.1(d). Note that this diagram shows the same internal forces, Q;S,
and M, but in opposite directions, being exerted upon portion CB at C
by the removed portion AC in accordance with Newton’s third law. The

FIG. 5.1
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magnitudes and the correct senses of the internal forces can be deter-
mined by simply applying the three equations of equilibrium,

P
Fx ¼ 0,P

Fy ¼ 0, and
P

M ¼ 0, to one of the two portions (AC or CB) of the
beam.

It can be seen from Figs. 5.1(c) and 5.1(d), that in order for the
equilibrium equation

P
Fx ¼ 0 to be satisfied for a portion of the beam,

the internal axial force Q must be equal in magnitude (but opposite
in direction) to the algebraic sum (resultant) of the components in the
direction parallel to the axis of the beam of all the external forces act-
ing on that portion. Since the entire beam is in equilibrium—that is,P

Fx ¼ 0 for the entire beam—the application of
P

Fx ¼ 0 individually
to its two portions will yield the same magnitude of the axial force Q.
Thus, we can state the following:

The internal axial force Q at any section of a beam is equal in magnitude

but opposite in direction to the algebraic sum (resultant) of the components

in the direction parallel to the axis of the beam of all the external loads and

support reactions acting on either side of the section under consideration.

Using similar reasoning, we can define the shear and bending mo-
ment as follows:

The shear S at any section of a beam is equal in magnitude but opposite in

direction to the algebraic sum (resultant) of the components in the direction

perpendicular to the axis of the beam of all the external loads and support

reactions acting on either side of the section under consideration.

The bending moment M at any section of a beam is equal in magnitude

but opposite in direction to the algebraic sum of the moments about (the

centroid of the cross section of the beam at) the section under consideration

of all the external loads and support reactions acting on either side of the

section.

Sign Convention

The sign convention commonly used for the axial forces, shears, and bend-
ing moments is depicted in Fig. 5.2. An important feature of this sign
convention, which is often referred to as the beam convention, is that it
yields the same (positive or negative) results regardless of which side of
the section is considered for computing the internal forces. The positive
directions of the internal forces acting on the portions of the member on
each side of the section are shown in Fig. 5.2(a).

From a computational viewpoint, however, it is usually more con-
venient to express this sign convention in terms of the external loads and
reactions acting on the beam or frame member, as shown in Fig. 5.2 (b) to
5.2(d). As indicated in Fig. 5.2(b), the internal axial force Q is considered to

be positive when the external forces acting on the member produce tension or

have the tendency to pull the member apart at the section.
As shown in Fig. 5.2(c), the shear S is considered to be positive when

the external forces tend to push the portion of the member on the left of

the section upward with respect to the portion on the right of the section.
It can be seen from this figure that an external force that acts upward on
the left portion or downward on the right portion causes positive shear.
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Alternatively, this sign convention for shear can be remembered by re-
alizing that any force that produces clockwise moment about a section
causes positive shear at that section and vice versa.

The positive bending moment is shown in Fig. 5.2(d). The bending

moment M is considered to be positive when the external forces and cou-

ples tend to bend the beam concave upward, causing compression in the

upper fibers and tension in the lower fibers of the beam at the section.
When the left portion is used for computing the bending moment, the
forces acting on the portion that produce clockwise moments about the
section, as well as clockwise couples, cause positive bending moment at
the section. When the right portion is considered, however, the forces
producing counterclockwise moments about the section, and counter-
clockwise couples, cause positive bending moment and vice versa.

In our discussion thus far, the beam or frame member has been as-
sumed to be horizontal, but the foregoing sign convention can be used for
inclined and vertical members by employing an xy coordinate system, as
shown in Fig. 5.2(a). The x axis of the coordinate system is oriented in the
direction of the centroidal axis of the member, and the positive direction
of the y axis is chosen so that the coordinate system is right-handed, with
the z axis always pointing out of the plane of the paper. The sign con-
vention can now be used for an inclined or a vertical member by consid-
ering the positive y direction as the upward direction and the portion of
the member near the origin O as the portion to the left of the section.

Procedure for Analysis

The procedure for determining internal forces at a specified location on
a beam can be summarized as follows:

1. Compute the support reactions by applying the equations of
equilibrium and condition (if any) to the free body of the entire

FIG. 5.2 Beam Convention
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beam. (In cantilever beams, this step can be avoided by select-
ing the free, or externally unsupported, portion of the beam for
analysis; see Example 5.2.)

2. Pass a section perpendicular to the centroidal axis of the beam
at the point where the internal forces are desired, thereby cut-
ting the beam into two portions.

3. Although either of the two portions of the beam can be used
for computing internal forces, we should select the portion that
will require the least amount of computational e¤ort, such as
the portion that does not have any reactions acting on it or that
has the least number of external loads and reactions applied
to it.

4. Determine the axial force at the section by algebraically sum-
ming the components in the direction parallel to the axis of the
beam of all the external loads and support reactions acting on
the selected portion. According to the sign convention adopted
in the preceding paragraphs, if the portion of the beam to the
left of the section is being used for computing the axial force,
then the external forces acting to the left are considered pos-
itive, whereas the external forces acting to the right are consid-
ered to be negative (see Fig. 5.2(b)). If the right portion is being
used for analysis, then the external forces acting to the right are
considered to be positive and vice versa.

5. Determine the shear at the section by algebraically summing
the components in the direction perpendicular to the axis of the
beam of all the external loads and reactions acting on the se-
lected portion. If the left portion of the beam is being used for
analysis, then the external forces acting upward are considered
positive, whereas the external forces acting downward are con-
sidered to be negative (see Fig. 5.2(c)). If the right portion has
been selected for analysis, then the downward external forces
are considered positive and vice versa.

6. Determine the bending moment at the section by algebraically
summing the moments about the section of all the external
forces plus the moments of any external couples acting on the
selected portion. If the left portion is being used for analysis,
then the clockwise moments are considered to be positive, and
the counterclockwise moments are considered negative (see Fig.
5.2(d)). If the right portion has been selected for analysis, then
the counterclockwise moments are considered positive and vice
versa.

7. To check the calculations, values of some or all of the internal
forces may be computed by using the portion of the beam not
utilized in steps 4 through 6. If the analysis has been performed
correctly, then the results based on both left and right portions
must be identical.
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Example 5.1

Determine the axial force, shear, and bending moment at point B of the beam shown in Fig. 5.3(a).

FIG. 5.3

Solution
Reactions. Considering the equilibrium of the free body of the entire beam (Fig. 5.3(b)), we write

þ !
P

Fx ¼ 0 Ax �
4

5

� �
ð25Þ ¼ 0 Ax ¼ 20 k!

þ ’
P

Mc ¼ 0 �Ayð36Þ þ 30ð24Þ þ 3

5

� �
ð25Þð12Þ ¼ 0 Ay ¼ 25 k "

þ "
P

Fy ¼ 0 25� 30� 3

5

� �
ð25Þ þ Cy ¼ 0 Cy ¼ 20 k "

Section bb. A section bb is passed through point B, cutting the beam into two portions, AB and BC (see Fig. 5.3(b)).
The portion AB, which is to the left of the section, is used here to compute the internal forces.

Axial Force. Considering the external forces acting to the left as positive, we write

Q ¼ �20 k Ans.

Shear. Considering the external forces acting upward as positive, we write

S ¼ 25� 30 ¼ �5

S ¼ �5 k Ans.

Bending Moment. Considering the clockwise moments of the external forces about B as positive, we write

M ¼ 25ð18Þ � 30ð6Þ ¼ 270

M ¼ 270 k-ft Ans.
continued
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Checking Computations. To check our calculations, we compute the internal forces using portion BC, which is to the
right of the section under consideration.

By considering the horizontal components of the external forces acting to the right on portion BC as positive,
we obtain

Q ¼ � 4

5

� �
ð25Þ ¼ �20 k Checks

By considering the external forces acting downward as positive, we obtain

S ¼ �20þ 3

5

� �
ð25Þ ¼ �5 k Checks

Finally, by considering the counterclockwise moments of the external forces about B as positive, we obtain

M ¼ 20ð18Þ � 3

5

� �
ð25Þð6Þ ¼ 270 k-ft Checks

Example 5.2

Determine the shear and bending moment at point B of the beam shown in Fig. 5.4.

FIG. 5.4

Solution
Section bb. (See Fig. 5.4.) To avoid computing reactions, we select externally unsupported portion BC, which is to the
right of the section bb, for computing the internal forces.

Shear. Considering the external forces acting downward as positive, we write

S ¼ þ20ð4Þ ¼ þ80 kN

S ¼ 80 kN Ans.

Note that the 500 kN �m couple does not have any e¤ect on shear.

Bending Moment. Considering the counterclockwise moments as positive, we write

M ¼ 500� 20ð4Þð2Þ ¼ 340 kN �m

M ¼ 340 kN �m Ans.

The reader may check the results by summing forces and moments on portion AB of the beam after computing the
reactions at support A.
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5.2 Shear and Bending Moment Diagrams

Shear and bending moment diagrams depict the variations of these quan-
tities along the length of the member. Such diagrams can be constructed
by using the method of sections described in the preceding section. Pro-
ceeding from one end of the member to the other (usually from left to
right), sections are passed, after each successive change in loading, along
the length of the member to determine the equations expressing the shear
and bending moment in terms of the distance of the section from a fixed
origin. The values of shear and bending moments determined from these
equations are then plotted as ordinates against the position with respect to
a member end as abscissa to obtain the shear and bending moment dia-
grams. This procedure is illustrated by the following examples.

Example 5.3

Draw the shear and bending moment diagrams for the beam shown in Fig. 5.5(a).

FIG. 5.5

Solution
Reactions. See Fig. 5.5(b).

þ !
P

Fx ¼ 0 Ax ¼ 0

þ ’
P

MD ¼ 0

�Ayð30Þ þ 60ð20Þ þ 180þ 2ð20Þð0Þ ¼ 0

Ay ¼ 46 k "
continued
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þ "
P

Fy ¼ 0

46� 60� 2ð20Þ þDy ¼ 0

Dy ¼ 54 k "

Shear Diagram. To determine the equation for shear in segment AB of the beam, we pass a section aa at a distance x

from support A, as shown in Fig. 5.5(b). Considering the free body to the left of this section, we obtain

S ¼ 46 k for 0 < x < 10 ft

As this equation indicates, the shear is constant at 46 k from an infinitesimal distance to the right of point A to an
infinitesimal distance to the left of point B. At point A, the shear increases abruptly from 0 to 46 k, so a vertical line
is drawn from 0 to 46 on the shear diagram (Fig. 5.5(c)) at A to indicate this change. This is followed by a horizontal
line from A to B to indicate that the shear remains constant in this segment.

Next, by using section bb (Fig. 5.5(b)), we determine the equation for shear in segment BC as

S ¼ 46� 60 ¼ �14 k for 10 ft < xa 20 ft

The abrupt change in shear from 46 k at an infinitesimal distance to the left of B to �14 k at an infinitesimal distance to
the right of B is shown on the shear diagram (Fig. 5.5(c)) by a vertical line from þ46 to �14. A horizontal line at �14 is
then drawn from B to C to indicate that the shear remains constant at this value throughout this segment.

To determine the equations for shear in the right half of the beam, it is convenient to use another coordinate, x1,
directed to the left from the end E of the beam, as shown in Fig. 5.5(b). The equations for shear in segments ED and
DC are obtained by considering the free bodies to the right of sections dd and cc, respectively. Thus,

S ¼ 2x1 for 0a x1 < 10 ft

and

S ¼ 2x1 � 54 for 10 ft < x1 a 20 ft

These equations indicate that the shear increases linearly from zero at E to þ20 k at an infinitesimal distance to the
right of D; it then drops abruptly to �34 k at an infinitesimal distance to the left of D; and from there it increases
linearly to �14 k at C. This information is plotted on the shear diagram, as shown in Fig. 5.5(c). Ans.

Bending Moment Diagram. Using the same sections and coordinates employed previously for computing shear, we
determine the following equations for bending moment in the four segments of the beam. For segment AB:

M ¼ 46x for 0a xa 10 ft

For segment BC:

M ¼ 46x� 60ðx� 10Þ ¼ �14xþ 600 for 10 fta x < 20 ft

For segment ED:

M ¼ �2x1
x1

2

� �
¼ �x2

1 for 0a x1 a 10 ft

For segment DC:

M ¼ �x2
1 þ 54ðx1 � 10Þ ¼ �x2

1 þ 54x1 � 540 for 10 fta x1 < 20 ft

The first two equations, for the left half of the beam, indicate that the bending moment increases linearly from 0 at A to
460 k-ft at B; it then decreases linearly to 320 k-ft at C, as shown on the bending moment diagram in Fig. 5.5(d). The
last two equations for the right half of the beam are quadratic in x1. The values of M computed from these equations are
plotted on the bending moment diagram shown in Fig. 5.5(d). It can be seen that M decreases from 0 at E to �100 k-ft
at D, and it then increases to þ140 k-ft at an infinitesimal distance to the right of C. Note that at C, the bending moment
drops abruptly by an amount 320� 140 ¼ 180 k-ft, which is equal to the magnitude of the moment of the counter-
clockwise external couple acting at this point.

continued
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A point at which the bending moment is zero is termed the point of inflection. To determine the location of the
point of inflection F (Fig. 5.5(d)), we set M ¼ 0 in the equation for bending moment in segment DC to obtain

M ¼ �x2
1 þ 54x1 � 540 ¼ 0

from which x1 ¼ 13:25 ft; that is, point F is located at a distance of 13.25 ft from end E, or 40� 13:25 ¼ 26:75 ft from
support A of the beam, as shown in Fig. 5.5(d). Ans.

Example 5.4

Draw the shear and bending moment diagrams for the beam shown in Fig. 5.6(a).

FIG. 5.6
continued
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Solution
Reactions. See Fig. 5.6(b).

þ !
P

Fx ¼ 0 Bx ¼ 0

þ ’
P

Mc ¼ 0

1

2

� �
ð9Þð27Þ 9

3

� �
� Byð6Þ ¼ 0 By ¼ 60:75 kN "

þ "
P

Fy ¼ 0

� 1

2

� �
ð9Þð27Þ þ 60:75þ Cy ¼ 0 Cy ¼ 60:75 kN "

Shear Diagram. To determine the equations for shear in segments AB and BC of the beam, we pass sections aa and bb

through the beam, as shown in Fig. 5.6(b). Considering the free bodies to the left of these sections and realizing that the
load intensity, wðxÞ, at a point at a distance x from end A is wðxÞ ¼ 27

9

� �
x ¼ 3x kN/m, we obtain the following equa-

tions for shear in segments AB and BC, respectively:

S ¼ � 1

2

� �
ðxÞð3xÞ ¼ � 3x2

2
for 0a x < 3 m

S ¼ � 3x2

2

� �
þ 60:75 for 3 m < x < 9 m

The values of S computed from these equations are plotted to obtain the shear diagram shown in Fig. 5.6(c). The point
D at which the shear is zero is obtained from the equation

S ¼ � 3x2

2

� �
þ 60:75 ¼ 0

from which x ¼ 6:36 m. Ans.

Bending Moment Diagram. Using the same sections employed previously for computing shear, we determine the follow-
ing equations for bending moment in segments AB and BC, respectively:

M ¼ � 1

2

� �
ðxÞð3xÞ x

3

� �
¼ � x3

2
for 0a xa 3 m

M ¼ � x3

2

� �
þ 60:75ðx� 3Þ for 3 ma xa 9 m

The values ofM computed from these equations are plotted to obtain the bending moment diagram shown in Fig. 5.6(d).
To locate the point at which the bending moment is maximum, we di¤erentiate the equation for M in segment BC with
respect to x and set the derivative dM=dx equal to zero; that is,

dM

dx
¼ � 3x2

2

� �
þ 60:75 ¼ 0

from which x ¼ 6:36 m. This indicates that the maximum bending moment occurs at the same point at which the shear
is zero. Also, a comparison of the expressions for dM=dx and S in segment BC indicates that the two equations are
identical; that is, the slope of the bending moment diagram at a point is equal to the shear at that point. (This rela-
tionship, which is generally valid, is discussed in detail in a subsequent section.)

Finally, the magnitude of the maximum moment is determined by substituting x ¼ 6:36 m into the equation for M
in segment BC:

Mmax ¼ �
ð6:36Þ3

2

" #
þ 60:75ð6:36� 3Þ ¼ 75:5 kN �m Ans.
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5.3 Qualitative Deflected Shapes

A qualitative deflected shape (elastic curve) of a structure is simply a rough
(usually exaggerated) sketch of the neutral surface of the structure, in the
deformed position, under the action of a given loading condition. Such
sketches, which can be constructed without any knowledge of the numer-
ical values of deflections, provide valuable insights into the behavior of
structures and are often useful in computing the numerical values of de-
flections. (Procedures for the quantitative analysis of deflections are pre-
sented in the following chapters.)

According to the sign convention adopted in Section 5.1, a positive
bending moment bends a beam concave upward (or toward the positive y

direction), whereas a negative bending moment bends a beam concave
downward (or toward the negative y direction). Thus, the sign (posi-
tive or negative) of the curvature at any point along the axis of a beam
can be obtained from the bending moment diagram. Using the signs of
curvatures, a qualitative deflected shape (elastic curve) of the beam,
which is consistent with its support conditions, can be easily sketched (see
Fig. 5.7).

For example, consider the beam analyzed in Example 5.3. The beam
and its bending moment diagram are redrawn in Fig. 5.7(a) and (b),
respectively. A qualitative deflected shape of the beam is shown in
Fig. 5.7(c). Because the bending moment is positive in segment AF , the
beam is bent concave upward in this region. Conversely, the bending

FIG. 5.7
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moment is negative in segment FE; therefore, in this region, the beam is
bent concave downward. Regarding the support conditions, note that at
both supports A and D the deflection of the beam is zero, but its slope
(rotation) is not zero at these points.

It is important to realize that a qualitative deflected shape is ap-
proximate, because it is based solely on the signs of curvatures; the nu-
merical values of deflections along the axis of the beam are not known
(except at supports). For example, numerical computations could possi-
bly indicate that the end E of the beam actually deflects upward, instead
of downward as assumed in Fig. 5.7(c).

5.4 Relationships between Loads, Shears, and Bending Moments

The construction of shear and bending moment diagrams can be consid-
erably expedited by using the basic di¤erential relationships that exist
between the loads, the shears, and the bending moments.

To derive these relationships, consider a beam subjected to an arbi-
trary loading, as shown in Fig. 5.8(a). All the external loads shown in this
figure are assumed to be acting in their positive directions. As indicated
in this figure, the external distributed and concentrated loads acting up-
ward (in the positive y direction) are considered positive; the external
couples acting clockwise are also considered to be positive and vice versa.
Next, we consider the equilibrium of a di¤erential element of length dx,
isolated from the beam by passing imaginary sections at distances x and
xþ dx from the origin O, as shown in Fig. 5.8(a). The free-body diagram
of the element is shown in Fig. 5.8(b), in which S and M represent the
shear and bending moment, respectively, acting on the left face of the
element (i.e., at distance x from the origin O), and dS and dM denote the
changes in shear and bending moment, respectively, over the distance dx.

FIG. 5.8
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As the distance dx is infinitesimally small, the distributed load w acting
on the element can be considered to be uniform of magnitude wðxÞ. In
order for the element to be in equilibrium, the forces and couples acting
on it must satisfy the two equations of equilibrium,

P
Fy ¼ 0 andP

M ¼ 0. The third equilibrium equation,
P

Fx ¼ 0, is automatically
satisfied, since no horizontal forces are acting on the element. Applying
the equilibrium equation

P
Fy ¼ 0, we obtain

þ "
P

Fy ¼ 0

S þ w dx� ðS þ dSÞ ¼ 0

dS ¼ w dx

ð5:1Þ

Dividing by dx, we write Eq. (5.1) as

dS

dx
¼ w (5.2)

in which dS=dx represents the slope of the shear diagram. Thus, Eq. (5.2)
can be expressed as

slope of shear diagram
at a point

¼ intensity of distributed
load at that point

ð5:3Þ

To determine the change in shear between points A and B along the
axis of the member (see Fig. 5.8(a)), we integrate Eq. (5.1) from A to B

to obtain ðB

A

dS ¼ SB � SA ¼
ðB

A

w dx (5.4)

in which ðSB � SAÞ represents the change in shear between points A and B

and
Ð
B
Aw dx represents the area under the distributed load diagram between

points A and B. Thus, Eq. (5.4) can be stated as

change in shear between
points A and B

¼ area under the distributed load
diagram between points A and B

ð5:5Þ

Applying the moment equilibrium equation to the free body of the
beam element shown in Fig. 5.8(b), we write

þ ’
P

Ma ¼ 0 �M þ wðdxÞðdx=2Þ � ðS þ dSÞ dxþ ðM þ dMÞ ¼ 0

By neglecting the terms containing second-order di¤erentials, we obtain

dM ¼ S dx (5.6)

which can also be written as

dM

dx
¼ S (5.7)
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in which dM=dx represents the slope of the bending moment diagram.
Thus, Eq. (5.7) can be stated as

slope of bending moment
diagram at a point

¼ shear at that point ð5:8Þ

To obtain the change in bending moment between points A and B

(see Fig. 5.8(a)), we integrate Eq. (5.6) to obtainðB

A

dM ¼MB �MA ¼
ðB

A

S dx (5.9)

in which ðMB �MAÞ represents the change in bending moment between
points A and B and

Ð B

A
S dx represents the area under the shear diagram

between points A and B. Thus, Eq. (5.9) can be stated as

change in bending moment
between points A and B

¼ area under the shear diagram
between points A and B

ð5:10Þ

Concentrated Loads

The relationships between the loads and shears derived thus far (Eqs. (5.1)
through (5.5)) are not valid at the point of application of concentrated
loads. As we illustrated in Example 5.3, at such a point the shear changes
abruptly by an amount equal to the magnitude of the concentrated load.
To verify this relationship, we consider the equilibrium of a di¤erential
element that is isolated from the beam of Fig. 5.8(a) by passing imagi-
nary sections at infinitesimal distances to the left and to the right of the
point of application C of the concentrated load P. The free-body diagram
of this element is shown in Fig. 5.8(c). Applying the equilibrium equationP

Fy ¼ 0, we obtain

þ "
P

Fy ¼ 0

S þ P� ðS þ dSÞ ¼ 0

dS ¼ P
(5.11)

which can be stated as

change in shear at the point of
application of a concentrated load

¼ magnitude of
the load

ð5:12Þ

The relationships between the shears and bendingmoments (Eqs. (5.6)
through (5.10)) derived previously remain valid at the points of applica-
tion of concentrated loads. Note that because of the abrupt change in the
shear diagram at such a point, there will be an abrupt change in the slope
of the bending moment diagram at that point.

Couples or Concentrated Moments

Although the relationships between the loads and shears derived thus
far (Eqs. (5.1) through (5.5), (5.11), and (5.12)) are valid at the points of
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application of couples or concentrated moments, the relationships be-
tween the shears and bending moments as given by Eqs. (5.6) through
(5.10) are not valid at such points. As illustrated in Example 5.3, at the
point of application of a couple, the bending moment changes abruptly
by an amount equal to the magnitude of the moment of the couple. To
derive this relationship, we consider the equilibrium of a di¤erential ele-
ment that is isolated from the beam of Fig. 5.8(a) by passing imaginary
sections at infinitesimal distances to the left and to the right of the point
of application D of the couple M. The free-body diagram of this element
is shown in Fig. 5.8(d). Applying the moment equilibrium equation, we
write

þ ’
P

Ma ¼ 0

�M �M þ ðM þ dMÞ ¼ 0

dM ¼M (5.13)

which can be stated as

change in bending moment at the
point of application of a couple

¼ magnitude of the
moment of the couple

ð5:14Þ

Procedure for Analysis

The following step-by-step procedure can be used for constructing the
shear and bending moment diagrams for beams by applying the foregoing
relationships between the loads, the shears, and the bending moments.

1. Calculate the support reactions.
2. Construct the shear diagram as follows:

a. Determine the shear at the left end of the beam. If no con-
centrated load is applied at this point, the shear is zero at
this point; go to step 2(b). Otherwise, the ordinate of the
shear diagram at this point changes abruptly from zero to
the magnitude of the concentrated force. Recall that an up-
ward force causes the shear to increase, whereas a down-
ward force causes the shear to decrease.

b. Proceeding from the point at which the shear was com-
puted in the previous step toward the right along the length
of the beam, identify the next point at which the numerical
value of the ordinate of the shear diagram is to be deter-
mined. Usually, it is necessary to determine such values only
at the ends of the beam and at points at which the con-
centrated forces are applied and where the load distributions
change.

c. Determine the ordinate of the shear diagram at the point
selected in step 2(b) (or just to the left of it, if a concentrated
load acts at the point) by adding algebraically the area under
the load diagram between the previous point and the point
currently under consideration to the shear at the previous
point (or just to the right of it, if a concentrated force acts at
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the point). The formulas for the areas of common geometric
shapes are listed in Appendix A.

d. Determine the shape of the shear diagram between the pre-
vious point and the point currently under consideration by
applying Eq. (5.3), which states that the slope of the shear
diagram at a point is equal to the load intensity at that
point.

e. If no concentrated force is acting at the point under con-
sideration, then proceed to step 2(f ). Otherwise, determine
the ordinate of the shear diagram just to the right of the
point by adding algebraically the magnitude of the concen-
trated load to the shear just to the left of the point. Thus, the
shear diagram at this point changes abruptly by an amount
equal to the magnitude of the concentrated force.

f. If the point under consideration is not located at the right
end of the beam, then return to step 2(b). Otherwise, the
shear diagram has been completed. If the analysis has been
carried out correctly, then the value of shear just to the
right of the right end of the beam must be zero, except for
the round-o¤ errors.

3. Construct the bending moment diagram as follows:
a. Determine the bending moment at the left end of the beam.

If no couple is applied at this point, the bending moment is
zero at this point; go to step 3(b). Otherwise, the ordinate of
the bending moment diagram at this point changes abruptly
from zero to the magnitude of the moment of the couple.
Recall that a clockwise couple causes the bending moment
to increase, whereas a counterclockwise couple causes the
bending moment to decrease at its point of application.

b. Proceeding from the point at which the bending moment
was computed in the previous step toward the right along
the length of the beam, identify the next point at which the
numerical value of the ordinate of the bending moment di-
agram is to be determined. It is usually necessary to de-
termine such values only at the points where the numerical
values of shear were computed in step 2, where the couples
are applied, and where the maximum and minimum values
of bending moment occur. In addition to the points of ap-
plication of couples, the maximum and minimum values of
bending moment occur at points where the shear is zero. At
a point of zero shear, if the shear changes from positive to
the left to negative to the right, the slope of the bending
moment diagram will change from positive to the left of the
point to negative to the right of it; that is, the bending mo-
ment will be maximum at this point. Conversely, at a point
of zero shear, where the shear changes from negative to the
left to positive to the right, the bending moment will be
minimum. For most common loading conditions, such as
concentrated loads and uniformly and linearly distributed
loads, the points of zero shear can be located by consider-
ing the geometry of the shear diagram. However, for some
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cases of linearly distributed loads, as well as for nonlinearly
distributed loads, it becomes necessary to locate the points
of zero shear by solving the expressions for shear, as illus-
trated in Example 5.4.

c. Determine the ordinate of the bending moment diagram at
the point selected in step 3(b) (or just to the left of it, if a
couple acts at the point) by adding algebraically the area
under the shear diagram between the previous point and the
point currently under consideration to the bending moment
at the previous point (or just to the right of it, if a couple acts
at the point).

d. Determine the shape of the bending moment diagram be-
tween the previous point and the point currently under con-
sideration by applying Eq. (5.8), which states that the slope
of the bending moment diagram at a point is equal to the
shear at that point.

e. If no couple is acting at the point under consideration, then
proceed to step 3(f ). Otherwise, determine the ordinate of
the bending moment diagram just to the right of the point by
adding algebraically the magnitude of the moment of the
couple to the bending moment just to the left of the point.
Thus, the bending moment diagram at this point changes
abruptly by an amount equal to the magnitude of the mo-
ment of the couple.

f. If the point under consideration is not located at the right
end of the beam, then return to step 3(b). Otherwise, the
bending moment diagram has been completed. If the analy-
sis has been carried out correctly, then the value of bending
moment just to the right of the right end of the beammust be
zero, except for the round-o¤ errors.

The foregoing procedure can be used for constructing the shear and
bending moment diagrams by proceeding from the left end of the beam
to its right end, as is currently the common practice. However, if we
wish to construct these diagrams by proceeding from the right end of the
beam toward the left, the procedure essentially remains the same except
that downward forces must now be considered to cause increase in shear,
counterclockwise couples are now considered to cause increase in bending
moment, and vice versa.

Example 5.5

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.9(a).

Solution
Reactions. (See Fig. 5.9(b).)

þ !
P

Fx ¼ 0 Ax ¼ 0

continued
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FIG. 5.9

By proportions,

Ay ¼ 12
20

30

� �
þ 30

10

30

� �
¼ 18 k Ay ¼ 18 k "

þ "
P

Fy ¼ 0

18� 12� 30þDy ¼ 0

Dy ¼ 24 k Dy ¼ 24 k "
continued
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Shear Diagram.

Point A. Since a positive (upward) concentrated force of 18-k magnitude acts at point A, the shear diagram increases
abruptly from 0 to þ18 k at this point.

Point B. The shear just to the left of point B is given by

SB;L ¼ SA;R þ area under the load diagram between just to the right of A to
just to the left of B

in which the subscripts ‘‘;L’’ and ‘‘;R’’ are used to denote ‘‘just to the left’’ and ‘‘just to the right,’’ respectively. As no
load is applied to this segment of the beam,

SB;L ¼ 18þ 0 ¼ 18 k

Because a negative (downward) concentrated load of 12-k magnitude acts at point B, the shear just to the right of B is

SB;R ¼ 18� 12 ¼ 6 k

Point C.

SC;L ¼ SB;R þ area under the load diagram between just to the right of B to
just to the left of C

SC;L ¼ 6þ 0 ¼ 6 k

SC;R ¼ 6� 30 ¼ �24 k

Point D. SD;L ¼ �24þ 0 ¼ �24 k

SD;R ¼ �24þ 24 ¼ 0 Checks

The numerical values of shear computed at points A;B;C, and D are used to construct the shear diagram as shown
in Fig. 5.9(c). The shape of the diagram between these ordinates has been established by applying Eq. (5.3), which states
that the slope of the shear diagram at a point is equal to the load intensity at that point. Because no load is applied to
the beam between these points, the slope of the shear diagram is zero between these points, and the shear diagram con-
sists of a series of horizontal lines, as shown in the figure. Note that the shear diagram closes (i.e., returns to zero) just to
the right of the right end D of the beam, indicating that the analysis has been carried out correctly. Ans.

To facilitate the construction of the bending moment diagram, the areas of the various segments of the shear dia-
gram have been computed and are shown in parentheses on the shear diagram (Fig. 5.9(c)).

Bending Moment Diagram.

Point A. Because no couple is applied at end A, MA ¼ 0.

Point B. MB ¼MA þ area under the shear diagram
between A and B

MB ¼ 0þ 180 ¼ 180 k-ft

Point C. MC ¼ 180þ 60 ¼ 240 k-ft

Point D. MD ¼ 240� 240 ¼ 0 Checks

The numerical values of bending moment computed at points A;B;C, and D are used to construct the bending mo-
ment diagram shown in Fig. 5.9(d). The shape of the diagram between these ordinates has been established by applying
Eq. (5.8), which states that the slope of the bending moment diagram at a point is equal to the shear at that point. As the
shear between these points is constant, the slope of the bending moment diagram must be constant between these points.

continued
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Therefore, the ordinates of the bending moment diagram are connected by straight, sloping lines. In segment AB, the
shear is þ18 k. Therefore, the slope of the bending moment diagram in this segment is 18:1, and it is positive—that is,
upward to the right (=). In segment BC, the shear drops to þ6 k; therefore, the slope of the bending moment diagram re-
duces to 6:1 but remains positive. In segment CD, the shear becomes �24; consequently, the slope of the bending moment
diagram becomes negative—that is, downward to the right (n), as shown in Fig. 5.9(d). Note that the maximum bending
moment occurs at point C, where the shear changes from positive to the left to negative to the right. Ans.

Qualitative Deflected Shape. A qualitative deflected shape of the beam is shown in Fig. 5.9(e). As the bending moment
is positive over its entire length, the beam bends concave upward, as shown. Ans.

Example 5.6

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.10(a).

Solution
Reactions. (See Fig. 5.10(b).)

þ !
P

Fx ¼ 0 Ax ¼ 0

þ "
P

Fy ¼ 0

Ay � 70 ¼ 0

Ay ¼ 70 kN Ay ¼ 70 kN "

þ ’
P

MA ¼ 0

MA � 70ð6Þ � 200 ¼ 0

MA ¼ 620 kN �m MA ¼ 620 kN �m ’

Shear Diagram.

Point A. SA;R ¼ 70 kN

Point B. SB;L ¼ 70þ 0 ¼ 70 kN

SB;R ¼ 70� 70 ¼ 0

Point C. SC;L ¼ 0þ 0 ¼ 0

SC;R ¼ 0þ 0 ¼ 0 Checks

The numerical values of shear evaluated at points A;B, and C are used to construct the shear diagram as shown in
Fig. 5.10(c). Because no load is applied to the beam between these points, the slope of the shear diagram is zero between
these points. To facilitate the construction of the bending moment diagram, the area of the segment AB of the shear
diagram has been computed and is shown in parentheses on the shear diagram (Fig. 5.10(c)). Ans.

continued
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70 kN

(a)

(b)

(c) Shear diagram (kN)

(d) Bending moment
 diagram (kN . m)

6 m 4 m

200 kN . m

70 kN

200 kN . m

CBA

CBA

MA = 620 kN . m

x

y

Ay = 70 kN

Zero slope

(420)

70

A B C

Zero slope
Positive slope

–620

–200

C

A

(e) Qualitative Deflected Shape
FIG. 5.10

Bending Moment Diagram.

Point A. Since a negative (counterclockwise) couple of 620 kN �m moment acts at point A, the bending moment dia-
gram decreases abruptly from 0 to �620 kN �m at this point; that is,

MA;R ¼ �620 kN �m

Point B. MB ¼ �620þ 420 ¼ �200 kN �m
continued
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Point C. MC;L ¼ �200þ 0 ¼ �200 kN �m

MC;R ¼ �200þ 200 ¼ 0 Checks

The bending moment diagram is shown in Fig. 5.10(d). The shape of this diagram between the ordinates just com-
puted is based on the condition that the slope of the bending moment diagram at a point is equal to shear at that point. As
the shear in the segments AB and BC is constant, the slope of the bending moment diagram must be constant in these
segments. Therefore, the ordinates of the bending moment diagram are connected by straight lines. In segment AB, the
shear is positive, and so is the slope of the bending moment diagram in this segment. In segment BC, the shear becomes
zero; consequently, the slope of the bending moment diagram becomes zero, as shown in Fig. 5.10(d). Ans.

Qualitative Deflected Shape. A qualitative deflected shape of the beam is shown in Fig. 5.10(e). As the bending moment
is negative over its entire length, the beam bends concave downward, as shown. Ans.

Example 5.7

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.11(a).

Solution
Reactions. (See Fig. 5.11(b).)

þ !
P

Fx ¼ 0

Ax � 30 ¼ 0

Ax ¼ 30 kN Ax ¼ 30 kN!

þ ’
P

MD ¼ 0

�Ayð27Þ þ 10ð15Þð19:5Þ � 162þ 40ð6Þ ¼ 0

Ay ¼ 111:22 kN Ay ¼ 111:22 kN "

þ "
P

Fy ¼ 0

111:22� 10ð15Þ � 40þDy ¼ 0

Dy ¼ 78:78 kN Dy ¼ 78:78 kN "

Shear Diagram.

Point A. SA;R ¼ 111:22 kN

Point B. SB ¼ 111:22� 10ð15Þ ¼ �38:78 kN

Point C. SC;L ¼ �38:78þ 0 ¼ �38:78 kN

SC;R ¼ �38:78� 40 ¼ �78:78 kN

Point D. SD;L ¼ �78:78þ 0 ¼ �78:78 kN

SD;R ¼ �78:78þ 78:78 ¼ 0 Checks

The shear diagram is shown in Fig. 5.11(c). In segment AB, the beam is subjected to a downward (negative) uni-
formly distributed load of 10 kN/m. Because the load intensity is constant and negative in segment AB, the shear dia-
gram in this segment is a straight line with negative slope. No distributed load is applied to the beam in segments BC and
CD, so the shear diagram in these segments consists of horizontal lines, indicating zero slopes. Ans.

continued
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FIG. 5.11

The point of zero shear, E, can be located by using the similar triangles forming the shear diagram between A and
B. Thus,

x

111:22
¼ 15

ð111:22þ 38:78Þ

x ¼ 11:12 m

continued
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To facilitate the construction of the bending moment diagram, the areas of the various segments of the shear dia-
gram have been computed; they are shown in parentheses on the shear diagram (Fig. 5.11(c)).

Bending Moment Diagram.

Point A. MA ¼ 0

Point E. ME ¼ 0þ 618:38 ¼ 618:38 kN �m

Point B. MB;L ¼ 618:38� 75:23 ¼ 543:15 kN �m

MB;R ¼ 543:15þ 162 ¼ 705:15 kN �m

Point C. MC ¼ 705:15� 232:68 ¼ 472:47 kN �m

Point D. MD ¼ 472:47� 472:68 ¼ �0:21&0 Checks

The bending moment diagram is shown in Fig. 5.11(d). The shape of this diagram between the ordinates just com-
puted has been based on the condition that the slope of the bending moment diagram at any point is equal to the shear at
that point. Just to the right of A, the shear is positive, and so is the slope of the bending moment diagram at this
point. As we move to the right from A, the shear decreases linearly (but remains positive), until it becomes zero at E.
Therefore, the slope of the bending moment diagram gradually decreases, or becomes less steep (but remains positive),
as we move to the right from A, until it becomes zero at E. Note that the shear diagram in segment AE is linear, but the
bending moment diagram in this segment is parabolic, or a second-degree curve, because the bending moment diagram
is obtained by integrating the shear diagram (Eq. 5.11). Therefore, the bending moment curve will always be one degree
higher than the corresponding shear curve.

We can see from Fig. 5.11(d) that the bending moment becomes locally maximum at point E, where the shear
changes from positive to the left to negative to the right. As we move to the right from E, the shear becomes negative,
and it decreases linearly between E and B. Accordingly, the slope of the bending moment diagram becomes negative to
the right of E, and it decreases continuously (becomes more steep downward to the right) between E and just to the left
of B. A positive (clockwise) couple acts at B, so the bending moment increases abruptly at this point by an amount
equal to the magnitude of the moment of the couple. The largest value (global maximum) of the bending moment
over the entire length of the beam occurs at just to the right of B. (Note that no abrupt change, or discontinuity, occurs
in the shear diagram at this point.) Finally, as the shear in segments BC and CD is constant and negative, the bending
moment diagram in these segments consists of straight lines with negative slopes. Ans.

Qualitative Deflected Shape. See Fig. 5.11(e). Ans.

Example 5.8

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.12(a).

Solution
Reactions. (See Fig. 5.12(b).)

þ !
P

Fx ¼ 0 Bx ¼ 0

þ ’
P

MC ¼ 0

1

2
ð3Þð12Þð24Þ � Byð20Þ þ 3ð20Þð10Þ � 1

2
ð3Þð6Þð2Þ ¼ 0

By ¼ 50:7 k By ¼ 50:7 k "

þ "
P

Fy ¼ 0

� 1

2
ð3Þð12Þ þ 50:7� 3ð20Þ � 1

2
ð3Þð6Þ þ Cy ¼ 0

Cy ¼ 36:3 k Cy ¼ 36:3 k "
continued
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FIG. 5.12

Shear Diagram.

Point A. SA ¼ 0

Point B. SB;L ¼ 0� 1

2
ð3Þð12Þ ¼ �18 k

SB;R ¼ �18þ 50:7 ¼ 32:7 k

continued
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Point C. SC;L ¼ 32:7� 3ð20Þ ¼ �27:3 k

SC;R ¼ �27:3þ 36:3 ¼ 9 k

Point D. SD ¼ 9� 1

2
ð3Þð6Þ ¼ 0 Checks

The shear diagram is shown in Fig. 5.12(c). The shape of the diagram between the ordinates just computed is ob-
tained by applying the condition that the slope of the shear diagram at any point is equal to the load intensity at that
point. For example, as the load intensity at A is zero, so is the slope of the shear diagram at A. Between A and B, the
load intensity is negative and it decreases linearly from zero at A to �3 k/ft at B. Thus, the slope of the shear diagram is
negative in this segment, and it decreases (becomes more steep) continuously from A to just to the left of B. The rest of
the shear diagram is constructed by using similar reasoning. Ans.

The point of zero shear, E, is located by using the similar triangles forming the shear diagram between B and C.
To facilitate the construction of the bending moment diagram, the areas of the various segments of the shear dia-

gram have been computed and are shown in parentheses on the shear diagram (Fig. 5.12(c)). It should be noted that the
areas of the parabolic spandrels, AB and CD, can be obtained by using the formula for the area of this shape given in
Appendix A.

Bending Moment Diagram.

Point A. MA ¼ 0

Point B. MB ¼ 0� 72 ¼ �72 k-ft

Point E. ME ¼ �72þ 178:22 ¼ 106:22 k-ft

Point C. MC ¼ 106:22� 124:22 ¼ �18 k-ft

Point D. MD ¼ �18þ 18 ¼ 0 Checks

The shape of the bending moment diagram between these ordinates is obtained by using the condition that the slope
of the bending moment diagram at any point is equal to the shear at that point. The bending moment diagram thus
constructed is shown in Fig. 5.12(d).

It can be seen from this figure that the maximum negative bending moment occurs at point B, whereas the
maximum positive bending moment, which has the largest absolute value over the entire length of the beam, occurs
at point E. Ans.

To locate the points of inflection, F and G, we set equal to zero the equation for bending moment in segment BC,
in terms of the distance x from the left support point B (Fig. 5.12(b)):

M ¼ � 1

2

� �
ð3Þð12Þð4þ xÞ þ 50:7x� 3ðxÞ x

2

� �
¼ 0

or

�1:5x2 þ 32:7x� 72 ¼ 0

from which x ¼ 2:49 ft and x ¼ 19:31 ft from B.

Qualitative Deflected Shape. A qualitative deflected shape of the beam is shown in Fig. 5.12(e). The bending moment is
positive in segment FG, so the beam is bent concave upward in this region. Conversely, since the bending moment is
negative in segments AF and GD, the beam is bent concave downward in these segments. Ans.
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Example 5.9

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.13(a).

FIG. 5.13

Solution
Reactions. (See Fig. 5.13(b).)

þ ’
P

MBD
B ¼ 0

�20ð10Þð5Þ þ Cyð10Þ � 100ð15Þ ¼ 0

Cy ¼ 250 kN Cy ¼ 250 kN "

þ "
P

Fy ¼ 0

Ay � 20ð10Þ þ 250� 100 ¼ 0

Ay ¼ 50 kN Ay ¼ 50 kN "

þ ’
P

MA ¼ 0

MA � 20ð10Þð15Þ þ 250ð20Þ � 100ð25Þ ¼ 0

MA ¼ 500 kN �m MA ¼ 500 kN �m ’

continued
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Shear Diagram.

Point A. SA;R ¼ 50 kN

Point B. SB ¼ 50þ 0 ¼ 50 kN

Point C. SC;L ¼ 50� 20ð10Þ ¼ �150 kN

SC;R ¼ �150þ 250 ¼ 100 kN

Point D. SD;L ¼ 100þ 0 ¼ 100 kN

SD;R ¼ 100� 100 ¼ 0 Checks

The shear diagram is shown in Fig. 5.13(c). Ans.

Bending Moment Diagram.

Point A. MA;R ¼ �500 kN �m

Point B. MB ¼ �500þ 500 ¼ 0

Point E. ME ¼ 0þ 62:5 ¼ 62:5 kN �m

Point C. MC ¼ 62:5� 562:5 ¼ �500 kN �m

Point D. MD ¼ �500þ 500 ¼ 0 Checks

The bendingmoment diagram is shown in Fig. 5.13(d). The point of inflection F can be located by setting equal to zero
the equation for bending moment in segment BC, in terms of the distance x1 from the right support point C (Fig. 5.13(b)):

M ¼ �100ð5þ x1Þ þ 250x1 � 20ðx1Þ
x1

2

� �
¼ 0

or

�10x2
1 þ 150x1 � 500 ¼ 0

from which x1 ¼ 5 m and x1 ¼ 10 m from C. Note that the solution x1 ¼ 10 m represents the location of the internal
hinge at B, at which the bending moment is zero. Thus, the point of inflection F is located at a distance of 5 m to the left
of C, as shown in Fig. 5.13(d). Ans.

Qualitative Deflected Shape. A qualitative deflected shape of the beam is shown in Fig. 5.13(e). Note that at the fixed sup-
portA, both the deflection and the slope of the beam are zero, whereas at the roller supportC, only the deflection is zero, but
the slope is not. The internal hinge B does not provide any rotational restraint, so the slope atB can be discontinuous. Ans.

Example 5.10

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.14(a).

Solution
Reactions. (See Fig. 5.14(b).)

þ ’
P

MCD
C ¼ 0

Dyð24Þ � 2ð24Þð12Þ ¼ 0

Dy ¼ 24 k Dy ¼ 24 k "
continued
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30 ft 24 ft

6 ft
(a)

Hinge

2 k/ft

(b)

(c) Shear Diagram (k)

2 k/ft

A B C D

Ay = 24 k By = 72 k Dy = 24 k

24

36

–36
–24

A E F
B D

12 ft

12 ft
(144) (324)

(–324) (–144)

6 ft

(d) Bending Moment Diagram (k-ft)

(e) Qualitative Deflected Shape

6 ft

B
A E G C F D

144 144

–180

A G B C D

FIG. 5.14

continued
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þ ’
P

MA ¼ 0

24ð60Þ þ Byð30Þ � 2ð60Þð30Þ ¼ 0

By ¼ 72 k By ¼ 72 k "

þ "
P

Fy ¼ 0

Ay � 2ð60Þ þ 72þ 24 ¼ 0

Ay ¼ 24 k Ay ¼ 24 k "

Shear Diagram.

Point A. SA;R ¼ 24 k

Point B. SB;L ¼ 24� 2ð30Þ ¼ �36 k

SB;R ¼ �36þ 72 ¼ 36 k

Point D. SD;L ¼ 36� 2ð30Þ ¼ �24 k

SD;R ¼ �24þ 24 ¼ 0 Checks

The shear diagram is shown in Fig. 5.14(c).
Ans.

Bending Moment Diagram.

Point A. MA ¼ 0

Point E. ME ¼ 0þ 144 ¼ 144 k-ft

Point B. MB ¼ 144� 324 ¼ �180 k-ft

Point F. MF ¼ �180þ 324 ¼ 144 k-ft

Point D. MD ¼ 144� 144 ¼ 0 Checks

The bending moment diagram is shown in Fig. 5.14(d). Ans.

Qualitative Deflected Shape. See Fig. 5.14(e). Ans.

Example 5.11

Draw the shear and bending moment diagrams and the qualitative deflected shape for the statically indeterminate beam
shown in Fig. 5.15. The support reactions, determined by using the procedures for the analysis of statically indeterminate
beams (presented in Part Three of this text), are given in Fig. 5.15(a).

Solution
Regardless of whether a beam is statically determinate or indeterminate, once the support reactions have been de-
termined, the procedure for constructing the shear and bending moment diagrams remains the same. The shear and
bending moment diagrams for the given statically indeterminate beam are shown in Fig. 5.15(b) and (c), respectively,
and a qualitative deflected shape of the beam is shown in Fig. 5.15(d).

continued
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FIG. 5.15

5.5 Static Determinacy, Indeterminacy, and Instability of Plane Frames

As defined in Section 1.3, rigid frames, usually referred to simply as frames,
are composed of straight members connected either by rigid (moment-
resisting) connections or by hinged connections to form stable config-
urations. The members of frames are usually connected by rigid joints,
although hinged connections are sometimes used (see Fig. 5.16). A rigid
joint prevents relative translations and rotations of the member ends con-
nected to it, so the joint is capable of transmitting two rectangular force
components and a couple between the connected members. Under the ac-
tion of external loads, the members of a frame may be, in general, sub-
jected to bending moment, shear, and axial tension or compression.

The combined (external and internal) static determinacy of frames
is defined in a manner similar to that for the trusses. A frame is consid-
ered to be statically determinate if the bending moments, shears, and axial

forces in all its members, as well as all the external reactions, can be de-

termined by using the equations of equilibrium and condition.
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Column

Beam

(a) Moment-resisting (rigid) connection. In this connection, the top
and bottom flanges, and the web, of the beam are connected to the
column, thereby preventing the rotation of the beam with respect to
the column. This type of connection can transmit forces, as well as
couples (moments).

(b) Shear (flexible) connection. In this connection, only the web of the
beam is attached to the column, allowing the beams’s end to rotate
with repect to the column. This type of connection can transmit
forces but not couples (moments), and is represented as a hinge at the
beam’s end for the purpose of analysis.

FIG. 5.16 Typical Bolted Connections used in Building Frames to Connect
Beams to Columns
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Since the method of analysis presented in the following section can
be used only to analyze statically determinate frames, it is important for
the student to be able to recognize statically determinate frames before
proceeding with the analysis.

Consider a plane frame subjected to an arbitrary loading, as shown
in Fig. 5.17(a). The free-body diagrams of the three members and the four
joints of the frame are shown in Fig. 5.17(b). Each member is subjected
to, in addition to the external forces, two internal force components and
an internal couple at each of its ends. Of course, the correct senses of the
internal forces and couples, which are commonly referred to as the mem-

ber end forces, are not known before the analysis and are chosen arbitra-
rily. The free-body diagrams of the joints show the same member end
forces but in opposite directions, in accordance with Newton’s third law.
The analysis of the frame involves the determination of the magnitudes of

FIG. 5.17
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the 18 member end forces (six per member), and the three support re-
actions, AX ;AY , and DY . Therefore, the total number of unknown quan-
tities to be determined is 21.

Because the entire frame is in equilibrium, each of its members
and joints must also be in equilibrium. As shown in Fig. 5.17(b), each
member and each joint are subjected to a general coplanar system of
forces and couples, which must satisfy the three equations of equilib-
rium,

P
FX ¼ 0,

P
FY ¼ 0, and

P
M ¼ 0. Since the frame contains three

members and four joints (including the two joints connected to supports),
the total number of equations available is 3ð3Þ þ 3ð4Þ ¼ 21. These 21
equilibrium equations can be solved to calculate the 21 unknowns. The
member end forces thus obtained can then be used to determine axial
forces, shears, and bendingmoments at various points along the lengths of
members. The frame of Fig. 5.17(a) is, therefore, statically determinate.

Three equations of equilibrium of the entire frame as a rigid body
could be written and solved for the three unknown reactions (AX ;AY ,
and DY ). However, these equilibrium equations are not independent
from the member and joint equilibrium equations and do not contain any
additional information.

Based on the foregoing discussion, we can develop the criteria for
the static determinacy, indeterminacy, and instability of general plane
frames containing m members and j joints and supported by r (num-
ber of ) external reactions. For the analysis, we need to determine 6m
member forces and r external reactions; that is, we need to calculate a
total of 6mþ r unknown quantities. Since there are m members and j

joints and we can write three equations of equilibrium for each member
and each joint, the number of equilibrium equations available is 3ðmþ jÞ.
Furthermore, if a frame contains internal hinges and/or internal rollers,
these internal conditions provide additional equations, which can be used
in conjunction with the equilibrium equations to determine the unknowns.
Thus, if there are ec equations of condition for a frame, the total number
of equations (equilibrium equations plus equations of condition) available
is 3ðmþ jÞ þ ec. For a frame, if the number of unknowns is equal to the
number of equations, that is,

6mþ r ¼ 3ðmþ jÞ þ ec

or

3mþ r ¼ 3j þ ec

then all the unknowns can be determined by solving the equations of equili-
brium and condition, and the frame is statically determinate. If a frame has
more unknowns than the available equations—that is, 3mþ r > 3j þ ec—
all the unknowns cannot be determined by solving the available equations,
and the frame is called statically indeterminate. Statically indeterminate
frames have more members and/or external reactions than the minimum
required for stability. The excess members and reactions are called re-

dundants, and the number of excess member forces and reactions is referred
to as the degree of static indeterminacy, i, which can be expressed as

i ¼ ð3mþ rÞ � ð3j þ ecÞ (5.15)

For a frame, if the number of unknowns is less than the number
of available equations—that is, 3mþ r < 3j þ ec—the frame is called
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statically unstable. The conditions for static instability, determinacy, and
indeterminacy of plane frames can be summarized as follows:

3mþ r < 3j þ ec statically unstable frame

3mþ r ¼ 3j þ ec statically determinate frame

3mþ r > 3j þ ec statically indeterminate frame

(5.16)

In applying Eq. (5.16), the ends of the frame attached to supports as well
as any free ends are treated as joints. The conditions for static determi-
nacy and indeterminacy, as given by Eq. (5.16), are necessary but not
su‰cient conditions. In order for these criteria for static determinacy and
indeterminacy to be valid, the arrangement of the members, support re-
actions, and internal hinges and rollers (if any) must be such that the frame
will remain geometrically stable under a general system of coplanar loads.

The procedure for determining the number of equations of condition
remains the same as discussed in Chapter 3. Recall that an internal hinge
within, or at the end of, a member provides one equation of condition
(Fig. 5.18), and an internal roller provides two such equations. When
several members of a frame are connected at a hinged joint, the number of
equations of condition at the joint is equal to the number of members
meeting at the joint minus one. For example, consider the hinged joint H
of the frame shown in Fig. 5.19. As a hinge cannot transmit moment, the
moments at the ends H of the three members EH;GH, and HI meeting
at the joint must be zero; that is, MEH

H ¼ 0, MGH
H ¼ 0, and MHI

H ¼ 0.
However, these three equations are not independent in the sense that
if any two of these three equations are satisfied along with the moment
equilibrium equation for the joint H, the remaining equation will auto-
matically be satisfied. Thus, the hinged jointH provides two independent

FIG. 5.18 The Shear Connections at the
Ends of the Beams are Treated as
Internal Hinges for Analysis
Copyright © American Institute of Steel Construction.

Reprinted with permission. All rights reserved (a) Beam-to-Column Shear Connections
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equations of condition. Using a similar reasoning, it can be shown that an
internal roller joint provides the equations of condition whose number is
equal to 2� (number of members meeting at the joint �1).

Alternative Approach

An alternative approach that can be used for determining the degree
of static indeterminacy of a frame is to cut enough members of the frame
by passing imaginary sections and/or to remove enough supports to ren-
der the structure statically determinate. The total number of internal and
external restraints thus removed equals the degree of static indeter-
minacy. As an example, consider the frame shown in Fig. 5.20(a). The

FIG. 5.19

FIG. 5.18 (contd.)
Copyright © American Institute of Steel Construction.

Reprinted with permission. All rights reserved (b) Beam-to-Beam Shear Connection
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frame can be made statically determinate by passing an imaginary sec-
tion through the girder BC, thereby removing three internal restraints
(the axial force Q, the shear S, and the bending moment M ), as shown in
Fig. 5.20(b). Note that the two cantilever structures thus produced are
both statically determinate and geometrically stable. Because three re-
straints (Q;S, and M) had to be removed from the original statically in-
determinate frame of Fig. 5.20(a) to obtain the statically determinate
frames of Fig. 5.20(b), the degree of static indeterminacy of the original
frame is three. There are many possible choices regarding the restraints
that can be removed from a statically indeterminate structure to render it
statically determinate. For example, the frame of Fig. 5.20(a) could al-
ternatively be rendered statically determinate by disconnecting it from the
fixed support at D, as shown in Fig. 5.20(c). Since three external restraints
or reactions, DX ;DY , and MD, must be removed in this process, the de-
gree of static indeterminacy of the frame is three, as concluded previously.

This alternative approach of establishing the degree of indeterminacy
(instead of applying Eq. (5.15)) provides the most convenient means of
determining the degrees of static indeterminacy of multistory building
frames. An example of such a frame is shown in Fig. 5.21(a). The struc-
ture can be made statically determinate by passing an imaginary section
through each of the girders, as shown in Fig. 5.21(b). Because each cut
removes three restraints, the total number of restraints that must be re-
moved to render the structure statically determinate is equal to three
times the number of girders in the frame. Thus, the degree of static in-
determinacy of a multistory frame with fixed supports is equal to three
times the number of girders, provided that the frame does not contain any
internal hinges or rollers.

FIG. 5.20
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Example 5.12

Verify that each of the plane frames shown in Fig. 5.22 is statically indeterminate and determine its degree of static
indeterminacy.

FIG. 5.22

Solution
See Fig. 5.22(a) through (f ).

FIG. 5.21
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5.6 Analysis of Plane Frames

The following step-by-step procedure can be used for determining the
member end forces as well as the shears, bending moments, and axial
forces in members of plane statically determinate frames.

1. Check for static determinacy. Using the procedure described in
the preceding section, determine whether or not the given frame
is statically determinate. If the frame is found to be statically
determinate and stable, proceed to step 2. Otherwise, end the
analysis at this stage. (The analysis of statically indeterminate
frames is considered in Part Three of this text.)

2. Determine the support reactions. Draw a free-body diagram of
the entire frame, and determine reactions by applying the equa-
tions of equilibrium and any equations of condition that can be
written in terms of external reactions only (without involving any
internal member forces). For some internally unstable frames, it
may not be possible to express all the necessary equations of
condition exclusively in terms of external reactions; therefore, it
may not be possible to determine all the reactions. However,
some of the reactions for such structures can usually be calculated
from the available equations.

3. Determine member end forces. It is usually convenient to specify
the directions of the unknown forces at the ends of the members of
the frame by using a common structural (or global) XY coor-
dinate system, with the X and Y axes oriented in the horizontal
(positive to the right) and vertical (positive upward) directions,
respectively. Draw free-body diagrams of all the members and
joints of the structure. These free-body diagrams must show, in
addition to any external loads and support reactions, all the in-
ternal forces being exerted upon the member or the joint. Re-
member that a rigid joint is capable of transmitting two force
components and a couple, a hinged joint can transmit two force
components, and a roller joint can transmit only one force com-
ponent. If there is a hinge at an end of a member, the internal
moment at that end should be set equal to zero. Any load acting at
a joint should be shown on the free-body diagrams of the joint, not
at the ends of the members connected to the joint. The senses of
the member end forces are not known and can be arbitrarily as-
sumed. However, it is usually convenient to assume the senses of
the unknown forces at member ends in the positive X and Y di-
rections and of the unknown couples as counterclockwise. The
senses of the internal forces and couples on the free-body diagrams
of joints must be in directions opposite to those assumed on the
member ends in accordance with Newton’s third law. Compute
the member end forces as follows:

a. Select a member or a joint with three or fewer unknowns.
b. Determine the unknown forces and moments by applying the

three equations of equilibrium (
P

FX ¼ 0,
P

FY ¼ 0, andP
M ¼ 0) to the free body of the member or joint selected in

step 3(a).
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c. If all the unknown forces, moments, and reactions have been
determined, then proceed to step 3(d). Otherwise, return to
step 3(a).

d. Since the support reactions were calculated in step 2 by
using the equations of equilibrium and condition of the entire
structure, there should be some equations remaining that have
not been utilized so far. The number of leftover equations
should be equal to the number of reactions computed in step
2. Use these remaining equations to check the calculations. If
the analysis has been carried out correctly, then the remaining
equations must be satisfied.

For some types of frames, a member or a joint that has a
number of unknowns less than or equal to the number of equili-
brium equations may not be found to start or continue the anal-
ysis. In such a case, it may be necessary to write equilibrium
equations in terms of unknowns for two or more free bodies and
solve the equations simultaneously to determine the unknown
forces and moments.

4. For each member of the frame, construct the shear, bending
moment, and axial force diagrams as follows:

a. Select a member (local) xy coordinate system with origin at
either end of the member and x axis directed along the cen-
troidal axis of the member. The positive direction of the y

axis is chosen so that the coordinate system is right-handed,
with the z axis pointing out of the plane of the paper.

b. Resolve all the external loads, reactions, and end forces act-
ing on the member into components in the x and y directions
(i.e., in the directions parallel and perpendicular to the cen-
troidal axis of the member). Determine the total (resultant)
axial force and shear at each end of the member by alge-
braically adding the x components and y components, re-
spectively, of the forces acting at each end of the member.

c. Construct the shear and bending moment diagrams for the
member by using the procedure described in Section 5.4. The
procedure can be applied to nonhorizontal members by con-
sidering the member end at which the origin of the xy coor-
dinate system is located as the left end of the member (with x

axis pointing toward the right) and the positive y direction as
the upward direction.

d. Construct the axial force diagram showing the variation of
axial force along the length of the member. Such a diagram
can be constructed by using the method of sections. Pro-
ceeding in the positive x direction from the member end at
which the origin of the xy coordinate system is located, sec-
tions are passed after each successive change in loading
along the length of the member to determine the equations
for the axial force in terms of x. According to the sign con-
vention adopted in Section 5.1, the external forces acting in
the negative x direction (causing tension at the section) are
considered to be positive. The values of axial forces deter-
mined from these equations are plotted as ordinates against
x to obtain the axial force diagram.
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5. Draw a qualitative deflected shape of the frame. Using the bend-
ing moment diagrams constructed in step 4, draw a qualitative
deflected shape for eachmember of the frame. The deflected shape
of the entire frame is then obtained by connecting the deflected
shapes of the individual members at joints so that the original an-
gles between the members at the rigid joints are maintained and
the support conditions are satisfied. The axial and shear de-
formations, which are usually negligibly small as compared to the
bending deformations, are neglected in sketching the deflected
shapes of frames.

It should be noted that the bending moment diagrams constructed by
using the procedure described in step 4(c) will always show moments on
the compression sides of the members. For example, at a point along a
vertical member, if the left side of the member is in compression, then the
value of the moment at that point will appear on the left side. Since the
side of the member on which a moment appears indicates the direction of
the moment, it is not necessary to use plus and minus signs on the moment
diagrams. When designing reinforced concrete frames, the moment dia-
grams are sometimes drawn on the tension sides of the members to facili-
tate the placement of steel bars used to reinforce concrete that is weak
in tension. A tension-side moment diagram can be obtained by simply
inverting (i.e., rotating through 180� about the member’s axis) the cor-
responding compression-side moment diagram. Only compression-side
moment diagrams are considered in this text.

Example 5.13

Draw the shear, bending moment, and axial force diagrams and the qualitative deflected shape for the frame shown in
Fig. 5.23(a).

Solution
Static Determinacy. m ¼ 3, j ¼ 4, r ¼ 3, and ec ¼ 0. Because 3mþ r ¼ 3j þ ec and the frame is geometrically stable, it
is statically determinate.

Reactions. Considering the equilibrium of the entire frame (Fig. 5.23(b)), we observe that in order to satisfy
P

FX ¼ 0,
the reaction component AX must act to the left with a magnitude of 18 k to balance the horizontal load of 18 k to the
right. Thus,

AX ¼ �18 k AX ¼ 18 k 

We compute the remaining two reactions by applying the two equilibrium equations as follows:

þ ’
P

MA ¼ 0 �18ð20Þ � 2ð30Þð15Þ þDY ð30Þ ¼ 0 DY ¼ 42 k "

þ "
P

FY ¼ 0 AY � 2ð30Þ þ 42 ¼ 0 AY ¼ 18 k "

Member End Forces. The free-body diagrams of all the members and joints of the frame are shown in Fig. 5.23(c). We
can begin the computation of internal forces either at joint A or at joint D, both of which have only three unknowns.

Joint A. Beginning with joint A, we can see from its free-body diagram that in order to satisfy
P

FX ¼ 0, AAB
X must act

to the right with a magnitude of 18 k to balance the horizontal reaction of 18 k to the left. Thus,

AAB
X ¼ �18 k

continued
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FIG. 5.23

continued
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FIG. 5.23 (contd.)

continued
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Similarly, by applying
P

FY ¼ 0, we obtain

AAB
Y ¼ 18 k

Member AB. With the magnitudes of AAB
X and AAB

Y now known, member AB has three unknowns, BAB
X ;BAB

Y , and MAB
B ,

which can be determined by applying
P

FX ¼ 0,
P

FY ¼ 0, and
P

MA ¼ 0. Thus,

BAB
X ¼ 18 k BAB

Y ¼ �18 k MAB
B ¼ 360 k-ft

Joint B. Proceeding next to joint B and considering its equilibrium, we obtain

BBC
X ¼ 0 BBC

Y ¼ 18 k MBC
B ¼ �360 k-ft

Member BC. Next, considering the equilibrium of member BC, we write

þ !
P

FX ¼ 0 CBC
X ¼ 0

þ "
P

FY ¼ 0 18� 2ð30Þ þ CBC
Y ¼ 0 CBC

Y ¼ 42 k

þ ’
P

MB ¼ 0 �360� 2ð30Þð15Þ þ 42ð30Þ þMBC
C ¼ 0 MBC

C ¼ 0

Joint C. Applying the three equilibrium equations, we obtain

CCD
X ¼ 0 CCD

Y ¼ �42 k MCD
C ¼ 0

Member CD. Applying
P

FX ¼ 0 and
P

FY ¼ 0 in order, we obtain

DCD
X ¼ 0 DCD

Y ¼ 42 k

Since all unknown forces and moments have been determined, we check our computations by using the third equili-
brium equations for member CD.

þ ’
P

MD ¼ 0 Checks

Joint D. (Checking computations)

þ !
P

FX ¼ 0 Checks

þ "
P

FY ¼ 0 42� 42 ¼ 0 Checks

Shear Diagrams. The xy coordinate systems selected for the three members of the frame are shown in Fig. 5.23(d),
and the shear diagrams for the members constructed by using the procedure described in Section 5.4 are depicted in
Fig. 5.23(e). Ans.

Bending Moment Diagrams. The bending moment diagrams for the three members of the frame are shown in Fig. 5.23(f ).

Axial Force Diagrams. From the free-body diagram of member AB in Fig. 5.23(d), we observe that the axial force
throughout the length of this member is compressive, with a constant magnitude of 18 k. Therefore, the axial force
diagram for this member is a straight line parallel to the x axis at a value of �18 k, as shown in Fig. 5.23(g). Similarly,
it can be seen from Fig. 5.23(d) that the axial forces in members BC and CD are also constant, with magnitudes of
0 and �42 k, respectively. The axial force diagrams thus constructed for these members are shown in Fig. 5.23(g). Ans.

Qualitative Deflected Shape. From the bending moment diagrams of the members of the frame (Fig. 5.23(f )), we ob-
serve that the members AB and BC bend concave to the left and concave upward, respectively. As no bending moment
develops in member CD, it does not bend but remains straight. A qualitative deflected shape of the frame obtained by
connecting the deflected shapes of the three members at the joints is shown in Fig. 5.23(h). As this figure indicates, the
deflection of the frame at support A is zero. Due to the horizontal load at B, joint B deflects to the right to B 0. Since the
axial deformations of members are neglected and bending deformations are assumed to be small, joint B deflects only in
the horizontal direction, and joint C deflects by the same amount as joint B; that is, BB 0 ¼ CC 0. Note that the curva-
tures of the members are consistent with their bending moment diagrams and that the original 90� angles between
members at the rigid joints B and C have been maintained. Ans.
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Example 5.14

Draw the shear, bending moment, and axial force diagrams and the qualitative deflected shape for the frame shown in
Fig. 5.24(a).
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FIG. 5.24 (contd.)

Solution
Static Determinacy. m ¼ 2, j ¼ 3, r ¼ 3, and ec ¼ 0. Because 3mþ r ¼ 3j þ ec and the frame is geometrically stable, it
is statically determinate.

Reactions. (See Fig. 5.24(b).)

þ !
P

Fx ¼ 0

�Ax þ 25 ¼ 0 Ax ¼ 25 k 

þ "
P

Fy ¼ 0

Ay � 1:6ð15Þ ¼ 0 Ay ¼ 24 k "

þ ’
P

MA ¼ 0

MA � 25ð10Þ � 1:6ð15Þð7:5Þ ¼ 0 MA ¼ 430 k-ft

’

continued
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Member End Forces. (See Fig. 5.24(c).)

Joint A. By applying the equilibrium equations
P

FX ¼ 0,
P

FY ¼ 0, and
P

MA ¼ 0, we obtain

AAB
X ¼ �25 k AAB

Y ¼ 24 k MAB
A ¼ 430 k-ft

Member AB. Next, considering the equilibrium of member AB, we write

þ ! P
FX ¼ 0 �25þ 25þ BAB

X ¼ 0 BAB
X ¼ 0

þ " P
FY ¼ 0 24þ BAB

Y ¼ 0 BAB
Y ¼ �24 k

þ ’
P

MB ¼ 0 430� 25ð10Þ þMAB
B ¼ 0 MAB

B ¼ �180 k-ft

Joint B. Applying the three equations of equilibrium, we obtain

BBC
X ¼ 0 BBC

Y ¼ 24 k MBC
B ¼ 180 k-ft

Member BC. (Checking computations.)

þ ! P
FX ¼ 0 Checks

þ " P
FY ¼ 0 24� 1:6ð15Þ ¼ 0 Checks

þ ’
P

MB ¼ 0 180� 1:6ð15Þð7:5Þ ¼ 0 Checks

The member end forces are shown in Fig. 5.24(d).

Shear Diagrams. See Fig. 5.24(e). Ans.

Bending Moment Diagrams. See Fig. 5.24(f ). Ans.

Axial Force Diagrams. See Fig. 5.24(g). Ans.

Qualitative Deflected Shape. See Fig. 5.24(h). Ans.

Example 5.15

A gable frame is subjected to a snow loading, as shown in Fig. 5.25(a). Draw the shear, bending moment, and axial
force diagrams and the qualitative deflected shape for the frame.

FIG. 5.25

continued
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FIG. 5.25 (contd.)

continued

Section 5.6 Analysis of Plane Frames 209



FIG. 5.25 (contd.)

continued
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Solution
Static Determinacy. m ¼ 4, j ¼ 5, r ¼ 4, and ec ¼ 1. Because 3mþ r ¼ 3j þ ec and the frame is geometrically stable, it
is statically determinate.

FIG. 5.25 (contd.)

continued
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Reactions. (See Fig. 5.25(b).)

þ ’
P

ME ¼ 0

�AY ð8Þ þ 12ð8Þð4Þ ¼ 0 AY ¼ 48 kN "

þ "
P

FY ¼ 0

48� 12ð8Þ þ EY ¼ 0 EY ¼ 48 kN "

þ ’
P

MAC
C ¼ 0

AX ð8Þ � 48ð4Þ þ 12ð4Þð2Þ ¼ 0 AX ¼ 12 kN!

þ!
P

FX ¼ 0

12þ EX ¼ 0

EX ¼ �12 kN EX ¼ 12 kN 

Member End Forces. (See Fig. 5.25(c).)

Joint A. By applying the equations of equilibrium
P

FX ¼ 0 and
P

FY ¼ 0, we obtain

AAB
X ¼ 12 kN AAB

Y ¼ 48 kN

Member AB. Considering the equilibrium of member AB, we obtain

BAB
X ¼ �12 kN BAB

Y ¼ �48 kN MAB
B ¼ �60 kN �m

Joint B. Applying the three equilibrium equations, we obtain

BBC
X ¼ 12 kN BBC

Y ¼ 48 kN MBC
B ¼ 60 kN �m

Member BC.

þ !
P

FX ¼ 0 CBC
X ¼ �12 kN

þ "
P

FY ¼ 0

48� 12ð4Þ þ CBC
Y ¼ 0 CBC

Y ¼ 0

þ ’
P

MB ¼ 0

60� 12ð4Þð2Þ þ 12ð3Þ ¼ 0 Checks

Joint C. Considering the equilibrium of joint C, we determine

CCD
X ¼ 12 kN CCD

Y ¼ 0

Member CD.

þ !
P

FX ¼ 0 DCD
X ¼ �12 kN

þ "
P

FY ¼ 0

�12ð4Þ þDCD
Y ¼ 0 DCD

Y ¼ 48 kN

þ ’
P

MD ¼ 0

�12ð3Þ þ 12ð4Þð2Þ þMCD
D ¼ 0 MCD

D ¼ �60 kN �m

Joint D. Applying the three equilibrium equations, we obtain

DDE
X ¼ 12 kN DDE

Y ¼ �48 kN MDE
D ¼ 60 kN �m

continued
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Member DE.

þ !
P

FX ¼ 0 EDE
X ¼ �12 kN

þ "
P

FY ¼ 0 EDE
Y ¼ 48 kN

þ ’
P

ME ¼ 0

60� 12ð5Þ ¼ 0 Checks

Joint E.

þ !
P

FX ¼ 0 �12þ 12 ¼ 0 Checks

þ "
P

FY ¼ 0 48� 48 ¼ 0 Checks

Distributed Loads on Inclined Members BC and CD. As the 12-kN/m snow loading is specified per horizontal meter, it is
necessary to resolve it into components parallel and perpendicular to the directions of members BC andCD. Consider, for
example, member BC, as shown in Fig. 5.25(d). The total vertical load acting on this member is (12 kN/m)(4 m) ¼ 48 kN.
Dividing this total vertical load by the length of the member, we obtain the intensity of the vertical distributed load per
meter along the inclined length of the member as 48/5 ¼ 9.6 kN/m. The components of this vertical distributed load in the
directions parallel and perpendicular to the axis of the member are (3/5)(9.6) ¼ 5.76 kN/m and (4/5)(9.6) ¼ 7.68 kN/m,
respectively, as shown in Fig. 5.25(d). The distributed loading for member CD is computed similarly and is shown in
Fig. 5.25(e).

Shear and Bending Moment Diagrams. See Fig. 5.25(f ) and (g). Ans.

Axial Force Diagrams. The equations for axial force in the members of the frame are:

Member AB Q ¼ �48

Member BC Q ¼ �38:4þ 5:76x

Member CD Q ¼ �9:6� 5:76x

Member DE Q ¼ �48

The axial force diagrams are shown in Fig. 5.25(h). Ans.

Qualitative Deflected Shape. See Fig. 5.25(i). Ans.

Summary

In this chapter, we have learned that the internal axial force at any section
of a member is equal in magnitude, but opposite in direction, to the alge-
braic sum of the components in the direction parallel to the axis of the
member of all the external loads and reactions acting on either side of the
section. We consider it to be positive when the external forces tend to
produce tension. The shear at any section of a member is equal in magni-
tude, but opposite in direction, to the algebraic sum of the components in
the direction perpendicular to the axis of the member of all the external
loads and reactions acting on either side of the section. We consider it to
be positive when the external forces tend to push the portion of the mem-
ber on the left of the section upward with respect to the portion on the
right of the section. The bending moment at any section of a member is
equal in magnitude, but opposite in direction, to the algebraic sum of the
moments about the section of all the external loads and reactions acting
on either side of the section. We consider it to be positive when the
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external forces and couples tend to bend the member concave upward,
causing compression in the upper fibers and tension in the lower fibers at
the section.

Shear, bending moment, and axial force diagrams depict the varia-
tions of these quantities along the length of the member. Such diagrams
can be constructed by determining and plotting the equations expressing
these stress resultants in terms of the distance of the section from an end
of the member. The construction of shear and bending moment diagrams
can be considerably expedited by applying the following relationships
that exist between the loads, shears, and bending moments:

slope of shear diagram
at a point

¼ intensity of distributed load
at that point

(5.3)

change in shear between
points A and B

¼
area under the distributed
load diagram between
points A and B

(5.5)

change in shear at the
point of application
of a concentrated load

¼ magnitude of the load (5.12)

slope of bending moment
diagram at a point

¼ shear at that point (5.8)

change in bending moment
between points A and B

¼ area under the shear diagram
between points A and B

(5.10)

change in bending moment
at the point of application
of a couple

¼ magnitude of the moment
of the couple

(5.14)

A frame is considered to be statically determinate if the shears, bend-
ing moments, and axial forces in all its members as well as all the external
reactions can be determined by using the equations of equilibrium and
condition. If a plane frame containsmmembers and j joints, is supported
by r reactions, and has ec equations of condition, then if

3mþ r < 3j þ ec the frame is statically unstable

3mþ r ¼ 3j þ ec the frame is statically determinate

3mþ r > 3j þ ec the frame is statically indeterminate

(5.16)

The degree of static indeterminacy is given by

i ¼ ð3mþ rÞ � ð3j þ ecÞ (5.15)

A procedure for the determination of member end forces, shears,
bending moments, and axial forces in the members of plane statically
determinate frames is presented in Section 5.6.
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PROBLEMS

Section 5.1

5.1 through 5.11 Determine the axial forces, shears, and
bending moments at points A and B of the structure shown.

5 m 5 m3 m 3 m2 m 2 m

50 kN80 kN60 kN

A B60°

FIG. P5.1

5 ft 5 ft 5 ft 5 ft

12 k

60°

8 k

A B

FIG. P5.2

A B

3 m 3 m 3 m 3 m

100 kN

75 kN . m

FIG. P5.3

A B

6 ft 6 ft 6 ft 6 ft

10 k

45°

50 k-ft

FIG. P5.4

4 m 2 m 2 m3 m 3 m 6 m

BA

75 kN
75 kN

90 kN
80 kN . m 100

 kN . m
4

3 4
3

FIG. P5.5

B

y

A

12 ft

12 ft

12 ft

4.5
k/ft

x

FIG. P5.6

150 kN
25 kN/m

A B

4 m 4 m 4 m
2 m 2 m

100 kN . m

FIG. P5.7

40 k 40 k

BA

10 ft
5 ft 5 ft

10 ft 10 ft

Hinge

FIG. P5.8
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10 m 5 m 5 m 5 m 5 m

20 kN/m

A BHinge

FIG. P5.9

B

A100 kN

100
kN

30°

6 m

3 m
6 m

3 m

3 m

3 m
100 kN

50 kN

FIG. P5.10

A

B

3
4

3 k/ft

10 ft

10 ft

10 ft

FIG. P5.11

Section 5.2

5.12 through 5.28 Determine the equations for shear and
bending moment for the beam shown. Use the resulting equa-
tions to draw the shear and bendingmoment diagrams.

FIG. P5.12

A C
B

P

2L
3

L
3

FIG. P5.13

FIG. P5.14

FIG. P5.15

FIG. P5.16

A

B

C
M

2L
3

L
3

FIG. P5.17

A
B

w

L

FIG. P5.18
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FIG. P5.19

9 ft 12 ft 9 ft

10 k

A

B C

D

20 k

FIG. P5.20

7 m 7 m

15 kN30 kN

BA C

FIG. P5.21

5 ft 5 ft 10 ft

25 k
1.5 k/ft

A B C D

FIG. P5.22

4 m 4 m

75 kN

A B C

100 kN . m

FIG. P5.23

5 m10 m

A B C

30 kN/m

FIG. P5.24

10 ft20 ft

BA C
1 k/ft

2.5 k/ft

FIG. P5.25

FIG. P5.26

5 m 10 m

B
CA

20 kN/m

FIG. P5.27

20 ft 30 ft

B
CA

2 k/ft 3 k/ft

FIG. P5.28

Section 5.4

5.29 through 5.51 Draw the shear and bending moment
diagrams and the qualitative deflected shape for the beam
shown.

6 ft 12 ft12 ft

25 k25 k

A D

B C

FIG. P5.29
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6 m 4 m

80 kN 80 kN

A
CB

FIG. P5.30

8 ft 8 ft 8 ft 8 ft

20 k10 k

EB

C

20 k

DA

FIG. P5.31

3 m 3 m 3 m 3 m

50 kN

A D

B

50 kN

E

100 kN

C

FIG. P5.32

10 ft 10 ft 10 ft 10 ft 10 ft

24 k 24 k

EB

C D

12 k

A

12 k

F

FIG. P5.33

4 m 4 m 4 m

A B C
D

75 kN
200 kN . m

FIG. P5.34

A
B C

D

6 ft 4 ft 10 ft

30 k
2 k/ft

FIG. P5.35

10 ft 10 ft 10 ft

60 k

A D

B C

150 k-ft

FIG. P5.36

6 m 6 m 6 m

75 kN

B DC

25 kN/m

A

FIG. P5.37

24 ft 9 ft

A
B C

3 k/ft

FIG. P5.38

9 ft

A B C D

24 ft 9 ft

3 k/ft

FIG. P5.39

50 kN

A
B C

D

15 kN/m

6 m 3 m 3 m

150 kN . m

FIG. P5.40

5 ft

A B C D

20 ft 5 ft

3 k/ft

10 k10 k

FIG. P5.41
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5 m 10 m

B C

A

60 kN
12 kN/m

200 kN . m

FIG. P5.42

10 ft

A B C D

30 ft 10 ft

40 k-ft
8 k

1.5 k/ft

FIG. P5.43

30 ft 10 ft

A
B C

2.4 k/ft

Hinge

FIG. P5.44

115 kN

C
D

B E

10 kN/m

12 m 12 m 9 m 12 m

A

Hinge

FIG. P5.45

16 ft 16 ft 16 ft

5 k

30 k-ft

2.3 k/ft

HingeA B C D

FIG. P5.46

12 k
1 k/ft

Hinge

A
B C D

E

30 ft 10 ft 10 ft 10 ft

FIG. P5.47

FIG. P5.48

18 kN/m

A
C DB E

F

Hinge Hinge

5 m10 m 5 m10 m 15 m

FIG. P5.49

FIG. P5.50

10 m 5 m 15 m 5 m 10 m

25 kN/m

C D E FBA
Hinge Hinge

FIG. P5.51

5.52 Draw the shear and bending moment diagrams for the
reinforced concrete footing subjected to the downward col-
umn loading of 22 kN/m and the upward soil reaction of
6 kN/m, as shown in the figure.

FIG. P5.52

5.53 and 5.54 For the beam shown: (a) determine the distance
a for which the maximum positive and negative bending mo-
ments in the beam are equal; and (b) draw the corresponding
shear and bending moment diagrams for the beam.
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FIG. P5.53

FIG. P5.54

Section 5.5

5.55 and 5.56 Classify each of the plane frames shown as un-
stable, statically determinate, or statically indeterminate. If
statically indeterminate, then determine the degree of static
indeterminacy.

FIG. P5.55

FIG. P5.56

Section 5.6

5.57 through 5.71 Draw the shear, bending moment, and
axial force diagrams and the qualitative deflected shape for
the frame shown.

15 ft 15 ft

25 k

12 k

B

A

C

10 ft

10 ft

FIG. P5.57
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5 m 5 m

90 kN

B
C

A

25 kN/m 12 m

FIG. P5.58

FIG. P5.59

12 ft 12 ft 6 ft 6 ft

30 k

20 k

B

A

C

16 ft

FIG. P5.60

5 m 10 m

10 m

20 kN/m

B
C

A

30 kN/m

FIG. P5.61

10 ft

20 k

A

4
3

B

C

25 ft

0.5 k/ft

FIG. P5.62
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FIG. P5.63

20 ft

30 k

2.5 k/ft

B C

A D

12 ft

12 ft

FIG. P5.64

10 m 5 m

15 kN/m

12 kN/m B

D EC

A

9 m

6 m

FIG. P5.65

FIG. P5.66

FIG. P5.67

10 m

15 kN/m

C

B

D

A

6 m

75 kN

6 m

Hinge

FIG. P5.68
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FIG. P5.69

15 ft 15 ft

30 k

2 k/ft

Hinge

BA

C D E

20 ft

FIG. P5.70

FIG. P5.71
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6
Deflections of Beams:
Geometric Methods
6.1 Differential Equation for Beam Deflection
6.2 Direct Integration Method
6.3 Superposition Method
6.4 Moment-Area Method
6.5 Bending Moment Diagrams by Parts
6.6 Conjugate-Beam Method

Summary
Problems

The John Hancock Building in

Chicago with cross-bracing on its

exterior to reduce horizontal

movement due to strong winds
Joe Mercier/Shutterstock.com
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Structures, like all other physical bodies, deform and change shape when
subjected to forces. Other common causes of deformations of structures
include temperature changes and support settlements. If the deforma-
tions disappear and the structure regains its original shape when the ac-
tions causing the deformations are removed, the deformations are termed
elastic deformations. The permanent deformations of structures are re-
ferred to as inelastic, or plastic, deformations. In this text, we will focus
our attention on linear elastic deformations. Such deformations vary lin-
early with applied loads (for instance, if the magnitudes of the loads act-
ing on the structure are doubled, its deformations are also doubled, and
so forth). Recall from Section 3.6 that in order for a structure to respond
linearly to applied loads, it must be composed of linear elastic material,
and it must undergo small deformations. The principle of superposition
is valid for such structures.

For most structures, excessive deformations are undesirable, as they
may impair the structure’s ability to serve its intended purpose. For ex-
ample, a high-rise building may be perfectly safe in the sense that the
allowable stresses are not exceeded, yet useless (unoccupied) if it deflects
excessively due to wind, causing cracks in the walls and windows. Struc-
tures are usually designed so that their deflections under normal service
conditions will not exceed the allowable values specified in building codes.

From the foregoing discussion, we can see that the computation of
deflections forms an essential part of structural analysis. Deflection cal-
culations are also required in the determination of the reactions and
stress resultants for statically indeterminate structures, to be considered
in Part Three of this text.



The methods that have been developed for computing deflections
can be broadly classified into two categories, (1) geometric methods and
(2) work-energy methods. As these names imply, geometric methods are
based on a consideration of the geometry of the deflected shapes of
structures, whereas the work-energy methods are based on the basic
principles of work and energy.

In this chapter, we study geometric methods commonly used for de-
termining the slopes and deflections of statically determinate beams. We
discuss work-energy methods in the following chapter. First, we derive
the di¤erential equation for the deflection of beams; we follow this deri-
vation with brief reviews of the direct (double) integration and super-
position methods of computing deflections. (We assume here that the
reader is familiar with these methods from a previous course in mechan-

ics of materials.) Next, we present the moment-area method for calculat-
ing slopes and deflections of beams, the construction of bending moment
diagrams by parts, and finally the conjugate-beam method for comput-
ing slopes and deflections of beams.

6.1 Differential Equation for Beam Deflection

Consider an initially straight elastic beam subjected to an arbitrary loading
acting perpendicular to its centroidal axis and in the plane of symmetry of
its cross section, as shown in Fig. 6.1(a). The neutral surface of the beam
in the deformed state is referred to as the elastic curve. To derive the dif-
ferential equation defining the elastic curve, we focus our attention on a
di¤erential element dx of the beam. The element in the deformed position
is shown in Fig. 6.1(b). As this figure indicates, we assume that the plane
sections perpendicular to the neutral surface of the beam before bending
remain plane and perpendicular to the neutral surface after bending.
The sign convention for bending moment M remains the same as
established in Chapter 5; that is, a positive bending moment causes
compression in the fibers above the neutral surface (in the positive y

direction). Tensile strains and stresses are considered to be positive.
The slope of the elastic curve, y ¼ dy=dx, is assumed to be so small
that y2 is negligible compared to unity; sin y≈y and cos y≈1. Note
that dy represents the change in slope over the di¤erential length dx. It
can be seen from Fig. 6.1(b) that the deformation of an arbitrary fiber
ab located at a distance y from the neutral surface can be expressed as

dD ¼ a 0b 0 � ab ¼ �2y dy

2

� �
¼ �y dy

Thus, the strain in fiber ab is equal to

e ¼ dD

dx
¼ dD

ds
¼ � y dy

Rdy
¼ � y

R
ð6:1Þ

in which R is the radius of curvature. By substituting the linear stress-
strain relationship e ¼ s=E into Eq. (6.1), we obtain

s ¼ �Ey

R
ð6:2Þ
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in which s is the stress in fiber ab and E represents Young’s modulus of
elasticity. Equation (6.2) indicates that the stress varies linearly with the
distance y from the neutral surface, as shown in Fig. 6.1(c). If sc denotes
the stress at the uppermost fiber located at a distance c from the neutral
surface (Fig. 6.1(c)), then the stress s at a distance y from the neutral
surface can be written as

s ¼ y

c
sc ð6:3Þ

Since the bending moment M is equal to the sum of the moments about
the neutral axis of the forces acting at all the fibers of the beam cross
section, we write

M ¼
ð
A

�sy dA ð6:4Þ

Substituting Eq. (6.3) into Eq. (6.4), we obtain

M ¼ � sc

c

ð
A

y2 dA ¼ � sc

c
I

or

sc ¼ �
Mc

I

FIG. 6.1
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Using Eq. (6.3), we obtain

s ¼ �My

I
ð6:5Þ

where I is the moment of inertia of the beam cross section.
Next, by combining Eqs. (6.2) and (6.5), we obtain the moment-

curvature relationship

1

R
¼ M

EI
ð6:6Þ

in which the product EI is commonly referred to as the flexural rigidity

of the beam. To express Eq. (6.6) in Cartesian coordinates, we recall
(from calculus) the relationship

1

R
¼ d 2y=dx2

½1þ ðdy=dxÞ2�3=2
ð6:7Þ

in which y represents the vertical deflection. As stated previously, for small
slopes the square of the slope, ðdy=dxÞ2, is negligible in comparison with
unity. Thus, Eq. (6.7) reduces to

1

R
&

d 2y

dx2
ð6:8Þ

By substituting Eq. (6.8) into Eq. (6.6), we obtain the following di¤er-
ential equation for the deflection of beams:

d 2y

dx2
¼ M

EI
ð6:9Þ

This equation is also referred to as the Bernoulli-Euler beam equation.
Because y ¼ dy=dx, Eq. (6.9) can also be expressed as

dy

dx
¼ M

EI
ð6:10Þ

6.2 Direct Integration Method

The direct integration method essentially involves writing the expression
for M=EI (bending moment divided by flexural rigidity of the beam) in
terms of the distance x along the axis of the beam and integrating this
expression successively to obtain equations for the slope and deflection of
the elastic curve. The constants of integration are determined from the
boundary conditions. The direct integration method proves to be most
convenient for computing slopes and deflections of beams for which
M=EI can be expressed as a single continuous function of x over the en-
tire length of the beam. However, the application of the method to
structures for which the M=EI function is not continuous can become
quite complicated. This problem occurs because each discontinuity, due
to a change in loading and/or the flexural rigidity (EI ), introduces two
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additional constants of integration in the analysis, which must be eval-
uated by applying the conditions of continuity of the elastic curve, a
process that can be quite tedious. The di‰culty can, however, be circum-
vented, and the analysis can be somewhat simplified by employing the
singularity functions defined in most textbooks on mechanics of materials.

Example 6.1

Determine the equations for the slope and deflection of the beam shown in Fig. 6.2(a) by the direct integration method.
Also, compute the slope at each end and the deflection at the midspan of the beam. EI is constant.

Solution
Reactions. See Fig. 6.2(b).

þ !
P

Fx ¼ 0 Ax ¼ 0

þ ’
P

MB ¼ 0

�AyðLÞ þ wðLÞ L

2

� �
¼ 0 Ay ¼

wL

2
"

þ "
P

Fy ¼ 0

wL

2

� �
� ðwLÞ þ By ¼ 0 By ¼

wL

2
"

Equation for Bending Moment. To determine the equation for bending moment for the beam, we pass a section at a dis-
tance x from support A, as shown in Fig. 6.2(b). Considering the free body to the left of this section, we obtain

M ¼ wL

2
ðxÞ � ðwxÞ x

2

� �
¼ w

2
ðLx� x2Þ

Equation for M/EI. The flexural rigidity, EI , of the beam is constant, so the equation for M=EI can be written as

d 2y

dx2
¼ M

EI
¼ w

2EI
ðLx� x2Þ

FIG. 6.2

continued
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Equations for Slope and Deflection. The equation for the slope of the elastic curve of the beam can be obtained by inte-
grating the equation for M=EI as

y ¼ dy

dx
¼ w

2EI

Lx2

2
� x3

3

� �
þ C1

Integrating once more, we obtain the equation for deflection as

y ¼ w

2EI

Lx3

6
� x4

12

� �
þ C1xþ C2

The constants of integration, C1 and C2, are evaluated by applying the following boundary conditions:

At end A; x ¼ 0; y ¼ 0

At end B; x ¼ L; y ¼ 0

By applying the first boundary condition—that is, by setting x ¼ 0 and y ¼ 0 in the equation for y—we obtain C2 ¼ 0.
Next, by using the second boundary condition—that is, by setting x ¼ L and y ¼ 0 in the equation for y—we obtain

0 ¼ w

2EI

L4

6
� L4

12

� �
þ C1L

from which

C1 ¼ �
wL3

24EI

Thus, the equations for slope and deflection of the beam are

y ¼ w

2EI

Lx2

2
� x3

3
� L3

12

� �
(1) Ans.

y ¼ wx

12EI
Lx2 � x3

2
� L3

2

� �
(2) Ans.

Slopes at Ends A and B. By substituting x ¼ 0 and L, respectively, into Eq. (1), we obtain

yA ¼ �
wL3

24EI
or yA ¼

wL3

24EI
@ Ans.

yB ¼
wL3

24EI
or yB ¼

wL3

24EI
’ Ans.

Deflection at Midspan. By substituting x ¼ L=2 into Eq. (2), we obtain

yC ¼ �
5wL4

384EI
or yC ¼

5wL4

384EI
# Ans.

Example 6.2

Determine the slope and deflection at point B of the cantilever beam shown in Fig. 6.3(a) by the direct integration method.

Solution
Equation for Bending Moment. We pass a section at a distance x from support A, as shown in Fig. 6.3(b). Considering
the free body to the right of this section, we write the equation for bending moment as

M ¼ �15ð20� xÞ

continued
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Equation for M/EI.

d 2y

dx2
¼ M

EI
¼ � 15

EI
ð20� xÞ

Equations for Slope and Deflection. By integrating the equation for M=EI , we determine the equation for slope as

y ¼ dy

dx
¼ � 15

EI
20x� x2

2

� �
þ C1

Integrating once more, we obtain the equation for deflection as

y ¼ � 15

EI
10x2 � x3

6

� �
þ C1xþ C2

The constants of integration, C1 and C2, are evaluated by using the boundary conditions that y ¼ 0 at x ¼ 0, and y ¼ 0
at x ¼ 0. By applying the first boundary condition—that is, by setting y ¼ 0 and x ¼ 0 in the equation for y—we obtain
C1 ¼ 0. Similarly, by applying the second boundary condition—that is, by setting y ¼ 0 and x ¼ 0 in the equation for
y—we obtain C2 ¼ 0. Thus, the equations for slope and deflection of the beam are

y ¼ � 15

EI
20x� x2

2

� �
y ¼ � 15

EI
10x2 � x3

6

� �
Slope and Deflection at End B. By substituting x ¼ 20 ft, E ¼ 29;000ð122Þ ksf, and I ¼ 758=ð124Þ ft4 into the foregoing
equations for slope and deflection, we obtain

yB ¼ �0:0197 rad or yB ¼ 0:0197 rad @ Ans.

yB ¼ �0:262 ft ¼ �3:14 in: or yB ¼ 3:14 in: # Ans.

FIG. 6.3

20 ft

(a)

(b)

15 k

BA

B
A

EI = constant
E = 29,000 ksi
I = 758 in.4

x

(20 – x)

Ay = 15 k

MA = 300 k-ft 15 k
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6.3 Superposition Method

When a beam is subjected to several loads, it is usually convenient to
determine slope or deflection caused by the combined e¤ect of loads by
superimposing (algebraically adding) the slopes or deflections due to
each of the loads acting individually on the beam. The slope and de-
flection due to each individual load can be computed by using either the
direct integration method described previously or one of the other meth-
ods discussed in subsequent sections. Also, many structural engineering
handbooks (e.g., Manual of Steel Construction published by the Ameri-

can Institute of Steel Construction) contain deflection formulas for beams
for various types of loads and support conditions, which can be used for
this purpose. Such formulas for slopes and deflections of beams for some
common types of loads and support conditions are given inside the front
cover of this book for convenient reference.

6.4 Moment-Area Method

The moment-area method for computing slopes and deflections of beams
was developed by Charles E. Greene in 1873. The method is based on
two theorems, called the moment-area theorems, relating the geometry of
the elastic curve of a beam to its M=EI diagram, which is constructed by
dividing the ordinates of the bending moment diagram by the flexural
rigidity EI . The method utilizes graphical interpretations of integrals in-
volved in the solution of the deflection di¤erential equation (Eq. (6.9)) in
terms of the areas and the moments of areas of the M=EI diagram.
Therefore, it is more convenient to use for beams with loading dis-
continuities and the variable EI , as compared to the direct integration
method described previously.

To derive the moment-area theorems, consider a beam subjected to
an arbitrary loading as shown in Fig. 6.4. The elastic curve and the
M=EI diagram for the beam are also shown in the figure. Focusing our
attention on a di¤erential element dx of the beam, we recall from the
previous section (Eq. (6.10)) that dy, which represents the change in
slope of the elastic curve over the di¤erential length dx, is given by

dy ¼ M

EI
dx ð6:11Þ

Note that the term ðM=EIÞ dx represents an infinitesimal area under
the M=EI diagram, as shown in Fig. 6.4. To determine the change in
slope between two arbitrary points A and B on the beam, we integrate
Eq. (6.11) from A to B to obtainðB

A

dy ¼
ðB

A

M

EI
dx

or

yBA ¼ yB � yA ¼
ðB

A

M

EI
dx ð6:12Þ
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in which yA and yB are the slopes of the elastic curve at points A and B,
respectively, with respect to the axis of the beam in the undeformed
(horizontal) state, yBA denotes the angle between the tangents to the
elastic curve at A and B, and

Ð B

A
ðM=EIÞ dx represents the area under the

M=EI diagram between points A and B.
Equation (6.12) represents the mathematical expression of the first

moment-area theorem, which can be stated as follows:

The change in slope between the tangents to the elastic curve at any two

points is equal to the area under the M/EI diagram between the two points,

provided that the elastic curve is continuous between the two points.

As noted, this theorem applies only to those portions of the elastic
curve in which there are no discontinuities due to the presence of in-
ternal hinges. In applying the first moment-area theorem, if the area of
the M=EI diagram between any two points is positive, then the angle
from the tangent at the point to the left to the tangent at the point to the
right will be counterclockwise, and this change in slope is considered to
be positive; and vice versa.

Considering again the beam shown in Fig. 6.4, we observe that the
deviation dD between the tangents drawn at the ends of the di¤erential
element dx on a line perpendicular to the undeformed axis of the beam
from a point B is given by

dD ¼ xðdyÞ ð6:13Þ

FIG. 6.4
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where x is the distance from B to the element dx. Substitution of Eq. (6.11)
into Eq. (6.13) yields

dD ¼ M

EI

� �
x dx ð6:14Þ

Note that the term on the right-hand side of Eq. (6.14) represents the mo-
ment of the infinitesimal area corresponding to dx about B. Integrating
Eq. (6.14) between any two arbitrary points A and B on the beam, we
obtain ðB

A

dD ¼
ðB

A

M

EI
x dx

or

DBA ¼
ðB

A

M

EI
x dx ð6:15Þ

in which DBA represents the tangential deviation of B from the tangent
at A, which is the deflection of point B in the direction perpendicular to
the undeformed axis of the beam from the tangent at point A, andÐ B

A
ðM=EIÞx dx represents the moment of the area under the M=EI dia-

gram between points A and B about point B.
Equation (6.15) represents the mathematical expression of the sec-

ond moment-area theorem, which can be stated as follows:

The tangential deviation in the direction perpendicular to the undeformed axis

of the beam of a point on the elastic curve from the tangent to the elastic

curve at another point is equal to the moment of the area under the M/EI

diagram between the two points about the point at which the deviation is

desired, provided that the elastic curve is continuous between the two points.

It is important to note the order of the subscripts used for D in
Eq. (6.15). The first subscript denotes the point where the deviation is de-
termined and about which the moments are evaluated, whereas the sec-
ond subscript denotes the point where the tangent to the elastic curve is
drawn. Also, since the distance x in Eq. (6.15) is always taken as positive,
the sign of DBA is the same as that of the area of the M=EI diagram be-
tween A and B. If the area of the M=EI diagram between A and B is
positive, then DBA is also positive, and point B lies above (in the positive
y direction) the tangent to the elastic curve at point A and vice versa.

Procedure for Analysis

In order to apply the moment-area theorems to compute the slopes and
deflections of a beam, it is necessary to draw a qualitative deflected shape
of the beam using its bending moment diagram. In this regard, recall
from Section 5.3 that a positive bending moment bends the beam con-
cave upward, whereas a negative bending moment bends it concave
downward. Also, at a fixed support, both the slope and the deflection of
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the beam must be zero; therefore, the tangent to the elastic curve at this
point is in the direction of the undeformed axis, whereas at a hinged or a
roller support, the deflection is zero, but the slope may not be zero. To
facilitate the computation of areas and moments of areas of the M=EI
diagrams, the formulas for the areas and centroids of common geometric
shapes are listed in Appendix A.

Instead of adopting a formal sign convention, it is common practice
to use an intuitive approach in solving problems using the moment-area
method. In this approach, the slopes and deflections at the various points
are assumed to be positive in the directions shown on the sketch of the
deflected shape or elastic curve of the structure. Any area of the M=EI
diagram that tends to increase the quantity under consideration is con-
sidered to be positive and vice versa. A positive answer for a slope or
deflection indicates that the sense of that quantity as assumed on the
elastic curve is correct. Conversely, a negative answer indicates that the
correct sense is opposite to that initially assumed on the elastic curve.

In applying the moment-area theorems, it is important to realize that
these theorems in general do not directly provide the slope and deflection
at a point with respect to the undeformed axis of the beam (which are
usually of practical interest); instead, they provide the slope and deflection
of a point relative to the tangent to the elastic curve at another point.
Therefore, before the slope or deflection at an arbitrary point on the beam
can be computed, a point must be identified where the slope of the tangent
to the elastic curve is either initially known or can be determined by using
the support conditions. Once this reference tangent has been established,
the slope and deflection at any point on the beam can be computed by
applying the moment-area theorems. In cantilever beams, since the slope of
the tangent to the elastic curve at the fixed support is zero, this tangent can
be used as the reference tangent. In the case of beams for which a tangent
with zero slope cannot be located by inspection, it is usually convenient to
use the tangent at one of the supports as the reference tangent. The slope
of this reference tangent can be determined by using the conditions of zero
deflections at the reference support and an adjacent support.

The magnitudes of the slopes and deflections of structures are usually
very small, so from a computational viewpoint it is usually convenient to
determine the solution in terms of EI and then substitute the numerical
values of E and I at the final stage of the analysis to obtain the numer-
ical magnitudes of the slopes and deflections. When the moment of inertia
varies along the length of a beam, it is convenient to express the moments
of inertia of the various segments of the beam in terms of a single reference
moment of inertia, which is then carried symbolically through the analysis.

Example 6.3

Determine the slopes and deflections at points B and C of the cantilever beam shown in Fig. 6.5(a) by the moment-area
method.

Solution
Bending Moment Diagram. The bending moment diagram for the beam is shown in Fig. 6.5(b).

continued
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M/EI Diagram. As indicated in Fig. 6.5(a), the values of the moment of inertia of the segments AB and BC of the beam
are 6,000 in.4 and 3,000 in.4, respectively. Using I ¼ IBC ¼ 3;000 in.4 as the reference moment of inertia, we express IAB
in terms of I as

IAB ¼ 6;000 ¼ 2ð3;000Þ ¼ 2I

which indicates that in order to obtain the M=EI diagram in terms of EI , we must divide the bending moment diagram
for segment AB by 2, as shown in Fig. 6.5(c).

Elastic Curve. The elastic curve for the beam is shown in Fig. 6.5(d). Note that because the M=EI diagram is negative,
the beam bends concave downward. Since the support at A is fixed, the slope at A is zero ðyA ¼ 0Þ; that is, the tangent to
the elastic curve at A is horizontal, as shown in the figure.

Slope at B. With the slope at A known, we can determine the slope at B by evaluating the change in slope yBA between A

and B (which is the angle between the tangents to the elastic curve at points A and B, as shown in Fig. 6.5(d)). According
to the first moment-area theorem, yBA ¼ area of the M=EI diagram between A and B. This area can be conveniently
evaluated by dividing the M=EI diagram into triangular and rectangular parts, as shown in Fig. 6.5(c). Thus,

yBA ¼
1

EI
ð100Þð15Þ þ 1

2
ð150Þð15Þ

� �
¼ 2;625 k-ft2

EI

From Fig. 6.5(d), we can see that because the tangent at A is horizontal (in the direction of the undeformed axis of
the beam), the slope at BðyBÞ is equal to the angle yBA between the tangents at A and B; that is,

yB ¼ yBA ¼
2;625 k-ft2

EI
¼ 2;625ð12Þ2 k-in:2

EI

Substituting the numerical values of E ¼ 29;000 ksi and I ¼ 3;000 in.4, we obtain

yB ¼
2;625ð12Þ2

ð29;000Þð3;000Þ rad ¼ 0:0043 rad

yB ¼ 0:0043 rad @ Ans.

FIG. 6.5

continued
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Deflection at B. From Fig. 6.5(d), it can be seen that the deflection of B with respect to the undeformed axis of the beam
is equal to the tangential deviation of B from the tangent at A; that is,

DB ¼ DBA

According to the second moment-area theorem,

DBA ¼ moment of the area of the M=EI diagram between A and B about B

¼ 1

EI
ð100Þð15Þð7:5Þ þ 1

2
ð150Þð15Þð10Þ

� �
¼ 22;500 k-ft3

EI

Therefore,

DB ¼ DBA ¼
22;500 k-ft3

EI

¼ 22;500ð12Þ3

ð29;000Þð3;000Þ ¼ 0:45 in:

DB ¼ 0:45 in: # Ans.

Slope at C. From Fig. 6.5(d), we can see that

yC ¼ yCA

where

yCA ¼ area of the M=EI diagram between A and C

¼ 1

EI
ð100Þð15Þ þ 1

2
ð150Þð15Þ þ 1

2
ð200Þð10Þ

� �
¼ 3;625 k-ft2

EI

Therefore,

yC ¼ yCA ¼
3;625 k-ft2

EI

¼ 3;625ð12Þ2

ð29;000Þð3;000Þ ¼ 0:006 rad

yC ¼ 0:006 rad @ Ans.

Deflection at C. It can be seen from Fig. 6.5(d) that

DC ¼ DCA

where

DCA ¼ moment of the area of the M=EI diagram between A and C about C

¼ 1

EI
ð100Þð15Þð7:5þ 10Þ þ 1

2
ð150Þð15Þð10þ 10Þ þ 1

2
ð200Þð10Þð6:67Þ

� �
¼ 55;420 k-ft3

EI

Therefore,

DC ¼ DCA ¼
55;420 k-ft3

EI

¼ 55;420ð12Þ3

ð29;000Þð3;000Þ ¼ 1:1 in:

DC ¼ 1:1 in: # Ans.
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Example 6.4

Use the moment-area method to determine the slopes at ends A and D and the deflections at points B and C of the
beam shown in Fig. 6.6(a).

Solution
M/EI Diagram. Because EI is constant along the length of the beam, the shape of the M=EI diagram is the same as
that of the bending moment diagram. The M=EI diagram is shown in Fig. 6.6(b).

Elastic Curve. The elastic curve for the beam is shown in Fig. 6.6(c).

FIG. 6.6
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Slope at A. The slope of the elastic curve is not known at any point on the beam, so we will use the tangent at support
A as the reference tangent and determine its slope, yA, from the conditions that the deflections at the support points A
and D are zero. From Fig. 6.6(c), we can see that

yA ¼
DDA

L

in which yA is assumed to be so small that tan yA≈yA. To evaluate the tangential deviation DDA, we apply the second
moment-area theorem:

DDA ¼ moment of the area of the M=EI diagram between A and D about D

DDA ¼
1

EI

�
1

2
ð800Þð20Þ 20

3
þ 20

� �
þ 1

2
ð200Þð10Þ 20

3
þ 10

� �
þ 600ð10Þð15Þ þ 1

2
ð600Þð10Þ 20

3

� ��
¼ 340;000 k-ft3

EI

Therefore, the slope at A is

yA ¼
DDA

L
¼ 340;000=EI

40
¼ 8;500 k-ft2

EI

Substituting the numerical values of E and I , we obtain

yA ¼
8;500ð12Þ2

ð1;800Þð46;000Þ ¼ 0:015 rad

yA ¼ 0:015 rad @ Ans.

Slope at D. From Fig. 6.6(c), we can see that

yD ¼ yDA � yA

in which, according to the first moment-area theorem,

yDA ¼ area of the M=EI diagram between A and D

¼ 1

EI

1

2
ð800Þð20Þ þ 1

2
ð200Þð10Þ þ 600ð10Þ þ 1

2
ð600Þð10Þ

� �
¼ 18;000 k-ft2

EI

Therefore,

yD ¼
18;000

EI
� 8;500

EI
¼ 9;500 k-ft2

EI

yD ¼
9;500ð12Þ2

ð1;800Þð46;000Þ ¼ 0:017 rad

yD ¼ 0:017 rad ’ Ans.

Deflection at B. Considering the portion AB of the elastic curve in Fig. 6.6(c), and realizing that yA is so small that
tan yA&yA, we write

yA ¼
DB þ DBA

20

from which

DB ¼ 20yA � DBA

continued
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where

DBA ¼ moment of the area of the M=EI diagram between A and B about B

¼ 1

EI

1

2
ð800Þð20Þ 20

3

� �� �
¼ 53;333:33 k-ft3

EI

Therefore,

DB ¼ 20
8;500

EI

� �
� 53;333:33

EI
¼ 116;666:67 k-ft3

EI

DB ¼
116;666:67ð12Þ3

ð1;800Þð46;000Þ ¼ 2:43 in:

DB ¼ 2:43 in: # Ans.

Deflection at C. Finally, considering the portion CD of the elastic curve in Fig. 6.6(c) and assuming yD to be small (so
that tan yD&yD), we write

yD ¼
DC þ DCD

10

or

DC ¼ 10yD � DCD

where

DCD ¼
1

EI

1

2
ð600Þð10Þ 10

3

� �� �
¼ 10;000 k-ft3

EI

Therefore,

DC ¼ 10
9;500

EI

� �
� 10;000

EI
¼ 85;000 k-ft3

EI

DC ¼
85;000ð12Þ3

ð1;800Þð46;000Þ ¼ 1:77 in:

DC ¼ 1:77 in: # Ans.

Example 6.5

Determine the maximum deflection for the beam shown in Fig. 6.7(a) by the moment-area method.

Solution
M=EI Diagram. The M=EI diagram is shown in Fig. 6.7(b).

Elastic Curve. The elastic curve for the beam is shown in Fig. 6.7(c).

continued
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Slope at A. The slope of the elastic curve is not known at any point on the beam, so we will use the tangent at support
A as the reference tangent and determine its slope, yA, from the conditions that the deflections at the support points A
and C are zero. From Fig. 6.7(c), we can see that

yA ¼
DCA

15

To evaluate the tangential deviation DCA, we apply the second moment-area theorem:

DCA ¼ moment of the area of the M=EI diagram between A and C about C

DCA ¼
1

EI

1

2
ð400Þð10Þ 10

3
þ 5

� �
þ 1

2
ð400Þð5Þ 10

3

� �� �
¼ 20;000 kN �m3

EI

FIG. 6.7

continued
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Therefore, the slope at A is

yA ¼
20;000=EI

15
¼ 1;333:33 kN �m2

EI

Location of the Maximum Deflection. If the maximum deflection occurs at point D, located at a distance xm from the
left support A (see Fig. 6.7(c)), then the slope at D must be zero; therefore,

yDA ¼ yA ¼
1;333:33 kN �m2

EI

which indicates that in order for the slope at D to be zero (i.e., the maximum deflection occurs at D), the area of the M=EI
diagram between A and D must be equal to 1;333:33=EI . We use this condition to determine the location of point D:

yDA ¼ area of the
M

EI
diagram between A and D ¼ 1;333:33

EI

or
1

2

40xm

EI

� �
xm ¼

1;333:33

EI

from which

xm ¼ 8:16 m

Maximum Deflection. From Fig. 6.7(c), we can see that

Dmax ¼ DAD

where

DAD ¼ moment of the area of the M=EI diagram between A and D about A

¼ 1

2

ð40Þð8:16Þ
EI

ð8:16Þ 2

3

� �
ð8:16Þ

¼ 7;244:51 kN �m3

EI

Therefore,

Dmax ¼
7;244:51 kN �m3

EI

Substituting E ¼ 200 GPa ¼ 200ð106Þ kN/m2 and I ¼ 700ð106Þ mm4 ¼ 700ð10�6Þ m4, we obtain

Dmax ¼
7;244:51

200ð106Þð700Þð10�6Þ ¼ 0:0517 m

Dmax ¼ 51:7 mm # Ans.

Example 6.6

Use the moment-area method to determine the slope at point A and the deflection at point C of the beam shown in
Fig. 6.8(a).

Solution
M=EI Diagram. The bending moment diagram is shown in Fig. 6.8(b), and the M=EI diagram for a reference moment
of inertia I ¼ 2;500 in.4 is shown in Fig. 6.8(c).

continued
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Elastic Curve. The elastic curve for the beam is shown in Fig. 6.8(d). Note that the elastic curve is discontinuous at the
internal hinge C. Therefore, the moment-area theorems must be applied separately over the portions AC and CF of the
curve on each side of the hinge.

Slope at D. The tangent at support D is selected as the reference tangent. From Fig. 6.8(d), we can see that the slope of
this tangent is given by the relationship

yD ¼
DED

15

where, from the second moment-area theorem,

DED ¼
1

EI
150ð15Þð7:5Þ þ 1

2
ð50Þð15Þð10Þ

� �
¼ 20;625 k-ft3

EI

Therefore,

yD ¼
20;625

15ðEIÞ ¼
1;375 k-ft2

EI

Deflection at C. From Fig. 6.8(d), we can see that

DC ¼ 10yD þ DCD

in which

DCD ¼
1

2

200

EI

� �
ð10Þ 20

3

� �
¼ 6;666:67 k-ft3

EI

continued
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Therefore,

DC ¼ 10
1;375

EI

� �
þ 6;666:67

EI
¼ 20;416:67 k-ft3

EI

Substituting the numerical values of E and I , we obtain

DC ¼
20;416:67ð12Þ3

ð29;000Þð2;500Þ ¼ 0:487 in:

DC ¼ 0:487 in: # Ans.

Slope at A. Considering the portion AC of the elastic curve, we can see from Fig. 6.8(d) that

yA ¼
DC þ DCA

20

where

DCA ¼
1

2

100

EI

� �
ð20Þð10Þ ¼ 10;000 k-ft3

EI

Therefore,

yA ¼
1

20

20;416:67

EI
þ 10;000

EI

� �
¼ 1;520:83 k-ft2

EI

yA ¼
1;520:83ð12Þ2

ð29;000Þð2;500Þ ¼ 0:003 rad

yA ¼ 0:003 rad @ Ans.

6.5 Bending Moment Diagrams by Parts

As illustrated in the preceding section, application of the moment-area
method involves computation of the areas and moments of areas of var-
ious portions of the M=EI diagram. It will be shown in the following
section that the conjugate-beam method for determining deflections of
beams also requires computation of these quantities. When a beam is
subjected to di¤erent types of loads, such as a combination of distributed
and concentrated loads, determination of the properties of the resultant
M=EI diagram, due to the combined e¤ect of all the loads, can become a
formidable task. This di‰culty can be avoided by constructing the bend-
ing moment diagram in parts—that is, constructing a separate bending
moment diagram for each of the loads. The ordinates of the bending
moment diagrams thus obtained are then divided by EI to obtain the
M=EI diagrams. These diagrams usually consist of simple geometric
shapes, so their areas and moments of areas can be easily computed.
The required areas and moments of areas of the resultant M=EI dia-
gram are then obtained by algebraically adding (superimposing) the
corresponding areas and moments of areas, respectively, of the bending
moment diagrams for the individual loads.
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Two procedures are commonly used for constructing bending mo-
ment diagrams by parts. The first procedure simply involves applying each
of the loads separately on the beam and constructing the corresponding
bending moment diagrams. Consider, for example, a beam subjected to a
combination of a uniformly distributed load and a concentrated load, as
shown in Fig. 6.9(a). To construct the bending moment diagram by parts,
we apply the two types of loads separately on the beam, as shown in Fig.
6.9(b) and (c), and draw the corresponding bending moment diagrams. It
is usually convenient to draw the parts of the bending moment diagram
together, as shown in Fig. 6.9(d). Although it is not necessary for the ap-
plication of the moment-area and conjugate-beam methods, if so desired,
the resultant bending moment diagram, as shown in Fig. 6.9(a), can be
obtained by superimposing the two parts shown in Fig. 6.9(b) and (c).

An alternative procedure for constructing bending moment dia-
grams by parts consists of selecting a point on the beam (usually a sup-
port point or an end of the beam) at which the beam is assumed to be
fixed, applying each of the loads and support reactions separately on this
imaginary cantilever beam, and constructing the corresponding bending
moment diagrams. This procedure is commonly referred to as construct-
ing the bending moment diagram by cantilever parts. To illustrate this

FIG. 6.9
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procedure, consider again the beam examined in Fig. 6.9. The beam is
redrawn in Fig. 6.10(a), which also shows the external loads as well as
the support reactions determined from the equations of equilibrium. To
construct the bending moment diagram by cantilever parts with respect
to the support point B, we imagine the beam to be a cantilever beam
with fixed support at point B. Then we apply the two loads and the re-
action at support A separately on this imaginary cantilever beam, as
shown in Fig. 6.10(b)–(d), and draw the corresponding bending moment

FIG. 6.10
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diagrams, as shown in these figures. The parts of the bending moment
diagram are often drawn together, as shown in Fig. 6.10(e). The resultant
bending moment diagram, as depicted in Fig. 6.10(a), can be obtained, if
desired, by superimposing the three parts shown in Fig. 6.10(b)–(d).

Example 6.7

Determine the deflection at point C of the beam shown in Fig. 6.11(a) by the moment-area method.

Solution
M=EI Diagram. The bending moment diagram for this beam by cantilever parts with respect to the support point B was
determined in Fig. 6.10. The ordinates of the bending moment diagram are divided by EI to obtain the M=EI diagram
shown in Fig. 6.11(b).

Elastic Curve. See Fig. 6.11(c).

FIG. 6.11

continued
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Slope at B. Selecting the tangent at B as the reference tangent, it can be seen from Fig. 6.11(c) that

yB ¼
DAB

30

By using the M=EI diagram (Fig. 6.11(b)) and the properties of geometric shapes given in Appendix A, we compute

DAB ¼
1

EI

1

2
ð780Þð30Þð20Þ � 1

3
ð900Þð30Þ 3

4

� �
ð30Þ

� �
¼ 31;500 k-ft3

EI

Therefore,

yB ¼
31;500

30EI
¼ 1;050 k-ft2

EI

Deflection at C. From Fig. 6.11(c), we can see that

DC ¼ 10yB � DCB

where

DCB ¼
1

2

120

EI

� �
ð10Þ 20

3

� �
¼ 4;000 k-ft3

EI

Therefore,

DC ¼ 10
1;050

EI

� �
� 4;000

EI
¼ 6;500 k-ft3

EI

Substituting the numerical values of E and I , we obtain

DC ¼
6;500ð12Þ3

ð29;000Þð2;000Þ ¼ 0:194 in:

DC ¼ 0:194 in: " Ans.

6.6 Conjugate-Beam Method

The conjugate-beam method, developed by Otto Mohr in 1868, generally
provides a more convenient means of computing slopes and deflections
of beams than the moment-area method. Although the amount of com-
putational e¤ort required by the two methods is essentially the same, the
conjugate-beam method is preferred by many engineers because of its
systematic sign convention and straightforward application, which does
not require sketching the elastic curve of the structure.

The conjugate-beam method is based on the analogy between the re-
lationships among load, shear, and bending moment and the relationships
amongM=EI , slope, and deflection. These two types of relationships were
derived in Sections 5.4 and 6.1, respectively, and are repeated in Table 6.1
for comparison purposes. As this table indicates, the relationships between
M=EI , slope, and deflection have the same form as that of the relation-
ships between load, shear, and bending moment. Therefore, the slope and
deflection can be determined from M=EI by the same operations as those
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performed to compute shear and bending moment, respectively, from the
load. Furthermore, if the M=EI diagram for a beam is applied as the load
on a fictitious analogous beam, then the shear and bending moment at
any point on the fictitious beam will be equal to the slope and deflection,
respectively, at the corresponding point on the original real beam. The
fictitious beam is referred to as the conjugate beam, and it is defined as
follows:

A conjugate beam corresponding to a real beam is a fictitious beam of the

same length as the real beam, but it is externally supported and internally

connected such that if the conjugate beam is loaded with the M=EI dia-

gram of the real beam, the shear and bending moment at any point on the

conjugate beam are equal, respectively, to the slope and deflection at the

corresponding point on the real beam.

As the foregoing discussion indicates, the conjugate-beam method es-
sentially involves computing the slopes and deflections of beams by com-
puting the shears and bending moments in the corresponding conjugate
beams.

Supports for Conjugate Beams

External supports and internal connections for conjugate beams are deter-
mined from the analogous relationships between conjugate beams and the
corresponding real beams; that is, the shear and bending moment at any
point on the conjugate beam must be consistent with the slope and de-
flection at that point on the real beam. The conjugate counterparts of the
various types of real supports thus determined are shown in Fig. 6.12. As
this figure indicates, a hinged or a roller support at an end of the real
beam remains the same in the conjugate beam. This is because at such a
support there may be slope, but no deflection, of the real beam. Therefore,
at the corresponding end of the conjugate beam there must be shear but
no bending moment; and a hinged or a roller support at that end would
satisfy these conditions. Since at a fixed support of the real beam there is
neither slope nor deflection, both shear and bending moment at that end
of the conjugate beam must be zero; therefore, the conjugate of a fixed
real support is a free end, as shown in Fig. 6.12. Conversely, a free end of
a real beam becomes a fixed support in the conjugate beam because there
may be slope as well as deflection at that end of the real beam; therefore,
the conjugate beam must develop both shear and bending moment at that
point. At an interior support of a real beam there is no deflection, but the
slope is continuous (i.e., there is no abrupt change of slope from one side

TABLE 6.1

Load–Shear–Bending Moment
Relationships

M=EI–Slope–Deflection
Relationships

dS

dx
¼ w

dy

dx
¼ M

EI

dM

dx
¼ S or

d 2M

dx2
¼ w

dy

dx
¼ y or

d 2y

dx2
¼ M

EI
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of the support to the other), so the corresponding point on the conjugate
beam becomes an internal hinge at which the bending moment is zero and
the shear is continuous. Finally, at an internal hinge in the real beam there
may be deflection as well as discontinuous slope of the real beam. There-
fore, the conjugate beam must have bending moment and abrupt change
of shear at that point. Because an interior support satisfies both of these
requirements, an internal hinge in the real beam becomes an interior sup-
port in the conjugate beam, as shown in Fig. 6.12.

The conjugates of some common types of (real) beams are depicted
in Fig. 6.13. As Fig. 6.13(a)–(e) indicates, the conjugate beams corre-
sponding to statically determinate real beams are always statically deter-
minate, whereas statically indeterminate beams have unstable conjugate
beams, as shown in Fig. 6.13(f )–(h). However, since these unstable con-
jugate beams will be loaded with the M=EI diagrams of statically in-
determinate real beams, which are self-balancing, the unstable conjugate
beams will be in equilibrium. As the last two examples in Fig. 6.13 illus-
trate, statically unstable real beams have statically indeterminate con-
jugate beams.

Sign Convention

If the positive ordinates of the M=EI diagram are applied to the conjugate
beam as upward loads (in the positive y direction) and vice versa, then a

Real Beam Conjugate Beam

Type of Support
Slope and
Deflection

Shear and
Bending Moment

Type of Support

Simple end support

or y= 0
D ¼ 0

S= 0
M ¼ 0

Simple end support

or

Fixed support
y ¼ 0
D ¼ 0

S ¼ 0
M ¼ 0

Free end

Free end

y=0
D= 0

S= 0
M= 0

Fixed support

Simple interior support

or

y= 0 and
continuous

D ¼ 0

S= 0 and
continuous
M ¼ 0

Internal hinge

Internal hinge
y=0 and

discontinuous
D= 0

S= 0 and
discontinuous

M= 0

Simple interior support

FIG. 6.12 Supports for Conjugate Beams
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positive shear in the conjugate beam denotes a positive (counterclockwise)
slope of the real beam with respect to the undeformed axis of the real
beam; also, a positive bending moment in the conjugate beam denotes a

FIG. 6.13
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positive (upward or in the positive y direction) deflection of the real beam
with respect to the undeformed axis of the real beam and vice versa.

Procedure for Analysis

The following step-by-step procedure can be used for determining the
slopes and deflections of beams by the conjugate-beam method.

1. Construct the M=EI diagram for the given (real) beam sub-
jected to the specified (real) loading. If the beam is subjected to
a combination of di¤erent types of loads (e.g., concentrated
loads and distributed loads), the analysis can be considerably
expedited by constructing the M=EI diagram by parts, as dis-
cussed in the preceding section.

2. Determine the conjugate beam corresponding to the given real
beam. The external supports and internal connections for the con-
jugate beammust be selected so that the shear and bendingmoment
at any point on the conjugate beam are consistent with the slope
and deflection, respectively, at that point on the real beam. The
conjugates of various types of real supports are given in Fig. 6.12.

3. Apply the M=EI diagram (from step 1) as the load on the con-
jugate beam. The positive ordinates of the M=EI diagram are
applied as upward loads on the conjugate beam and vice versa.

4. Calculate the reactions at the supports of the conjugate beam
by applying the equations of equilibrium and condition (if any).

5. Determine the shears at those points on the conjugate beam
where slopes are desired on the real beam. Determine the bend-
ing moments at those points on the conjugate beam where de-
flections are desired on the real beam. The shears and bending
moments in conjugate beams are considered to be positive or
negative in accordance with the beam sign convention (Fig. 5.2).

6. The slope at a point on the real beam with respect to the un-
deformed axis of the real beam is equal to the shear at that point on
the conjugate beam. A positive shear in the conjugate beam denotes
a positive or counterclockwise slope of the real beam and vice versa.

7. The deflection at a point on the real beam with respect to the
undeformed axis of the real beam is equal to the bending mo-
ment at that point on the conjugate beam. A positive bending
moment in the conjugate beam denotes a positive or upward
deflection of the real beam and vice versa.

Example 6.8

Determine the slopes and deflections at points B and C of the cantilever beam shown in Fig. 6.14(a) by the conjugate-
beam method.

Solution
M=EI Diagram. This beam was analyzed in Example 6.3 by the moment-area method. The M=EI diagram for a ref-
erence moment of inertia I ¼ 3;000 in.4 is shown in Fig. 6.14(b).

continued
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Conjugate Beam. Fig. 6.14(c) shows the conjugate beam, loaded with the M=EI diagram of the real beam. Note that
point A, which is fixed on the real beam, becomes free on the conjugate beam, whereas point C, which is free on the real
beam, becomes fixed on the conjugate beam. Because the M=EI diagram is negative, it is applied as a downward load
on the conjugate beam.

Slope at B. The slope at B on the real beam is equal to the shear at B in the conjugate beam. Using the free body of the
conjugate beam to the left of B and considering the external forces acting upward on the free body as positive, in ac-
cordance with the beam sign convention (see Fig. 5.2), we compute the shear at B in the conjugate beam as

þ " SB ¼
1

EI
�100ð15Þ � 1

2
ð150Þð15Þ

� �
¼ � 2;625 k-ft2

EI

Therefore, the slope at B on the real beam is

yB ¼ �
2;625 k-ft2

EI

Substituting the numerical values of E and I , we obtain

yB ¼ �
2;625ð12Þ2

ð29;000Þð3;000Þ ¼ �0:0043 rad

yB ¼ 0:0043 rad @ Ans.

Deflection at B. The deflection at B on the real beam is equal to the bending moment at B in the conjugate beam. Using
the free body of the conjugate beam to the left of B and considering the clockwise moments of the external forces about

FIG. 6.14

continued
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B as positive, in accordance with the beam sign convention (Fig. 5.2), we compute the bending moment at B on the
conjugate beam as

þ @

MB ¼
1

EI
�100ð15Þð7:5Þ � 1

2
ð150Þð15Þð10Þ

� �
¼ � 22;500 k-ft3

EI

Therefore, the deflection at B on the real beam is

DB ¼ �
22;500 k-ft3

EI
¼ � 22;500ð12Þ3

ð29;000Þð3;000Þ ¼ �0:45 in:

DB ¼ 0:45 in: # Ans.

Slope at C. Using the free body of the conjugate beam to the left of C, we determine the shear at C as

þ " SC ¼
1

EI
�100ð15Þ � 1

2
ð150Þð15Þ � 1

2
ð200Þð10Þ

� �
¼ � 3;625 k-ft2

EI

Therefore, the slope at C on the real beam is

yC ¼ �
3;625 k-ft2

EI
¼ � 3;625ð12Þ2

ð29;000Þð3;000Þ ¼ �0:006 rad

yC ¼ 0:006 rad @ Ans.

Deflection at C. Considering the free body of the conjugate beam to the left of C, we obtain

þ @

MC ¼
1

EI
�100ð15Þð17:5Þ � 1

2
ð150Þð15Þð20Þ � 1

2
ð200Þð10Þð6:67Þ

� �
¼ � 55;420 k-ft3

EI

Therefore, the deflection at C on the real beam is

DC ¼ �
55;420 k-ft3

EI
¼ � 55;420ð12Þ3

ð29;000Þð3;000Þ ¼ �1:1 in:

DC ¼ 1:1 in: # Ans.

Example 6.9

Determine the slope and deflection at point B of the beam shown in Fig. 6.15(a) by the conjugate-beam method.

Solution
M/EI Diagram. See Fig. 6.15(b).

Conjugate Beam. The conjugate beam, loaded with the M/EI diagram of the real beam, is shown in Fig. 6.15(c).

Slope at B. Considering the free body of the conjugate beam to the left of B, we determine the shear at B as

þ " SB ¼
M

EI
ðLÞ ¼ML

EI

continued
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Therefore, the slope at B on the real beam is

yB ¼
ML

EI

yB ¼
ML

EI
’ Ans.

Deflection at B. Using the free body of the conjugate beam to the left of B, we determine the bending moment at B as

þ @

MB ¼
M

EI
ðLÞ L

2

� �
¼ML2

2EI

Therefore, the deflection at B on the real beam is

DB ¼
ML2

2EI

DB ¼
ML2

2EI
" Ans.

FIG. 6.15

L

EI = constant
(a)

A

B

M

BA

M
EI

(b)         DiagramM
EI

L

(c) Conjugate Beam

BA

M
EI
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Example 6.10

Use the conjugate-beam method to determine the slopes at ends A and D and the deflections at points B and C of the
beam shown in Fig. 6.16(a).

Solution
M/EI Diagram. This beam was analyzed in Example 6.4 by the moment-area method. The M/EI diagram for this beam
is shown in Fig. 6.16(b).

Conjugate Beam. Fig. 6.16(c) shows the conjugate beam loaded with the M/EI diagram of the real beam. Points A and
D, which are simple end supports on the real beam, remain the same on the conjugate beam. Because the M/EI diagram
is positive, it is applied as an upward load on the conjugate beam.

FIG. 6.16

continued
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Reactions for Conjugate Beam. By applying the equations of equilibrium to the free body of the entire conjugate beam,
we obtain the following:

þ ’
P

MD ¼ 0

Ayð40Þ �
1

EI

�
1

2
ð800Þð20Þ 20

3
þ 20

� �
þ 600ð10Þð15Þ

þ 1

2
ð200Þð10Þ 20

3
þ 10

� �
þ 1

2
ð600Þð10Þ 20

3

� ��
¼ 0

Ay ¼
8;500 k-ft2

EI

þ "
P

Fy ¼ 0

1

EI

�
�8;500þ 1

2
ð800Þð20Þ þ 600ð10Þ þ 1

2
ð200Þð10Þ

þ 1

2
ð600Þð10Þ

�
�Dy ¼ 0

Dy ¼
9;500 k-ft2

EI

Slope at A. The slope at A on the real beam is equal to the shear just to the right of A in the conjugate beam, which is

þ " SA;R ¼ �Ay ¼ �
8;500 k-ft2

EI

Therefore, the slope at A on the real beam is

yA ¼ �
8;500 k-ft2

EI
¼ � 8;500ð12Þ2

ð1;800Þð46;000Þ ¼ �0:015 rad

yA ¼ 0:015 rad @ Ans.

Slope at D. The slope at D on the real beam is equal to the shear just to the left of D in the conjugate beam, which is

þ # SD;L ¼ þDy ¼
þ9;500 k-ft2

EI

Therefore, the slope at D on the real beam is

yD ¼
9;500 k-ft2

EI
¼ 9;500ð12Þ2

ð1;800Þð46;000Þ ¼ 0:017 rad

yD ¼ 0:017 rad ’ Ans.

Deflection at B. The deflection at B on the real beam is equal to the bending moment at B in the conjugate beam. Using
the free body of the conjugate beam to the left of B, we compute

þ @

MB ¼
1

EI
�8;500ð20Þ þ 1

2
ð800Þð20Þ 20

3

� �� �
¼ � 116;666:67 k-ft3

EI

Therefore, the deflection at B on the real beam is

DB ¼ �
116;666:67 k-ft3

EI
¼ � 116;666:67ð12Þ3

ð1;800Þð46;000Þ ¼ �2:43 in:

DB ¼ 2:43 in: # Ans.

continued
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Deflection at C. The deflection at C on the real beam is equal to the bending moment at C in the conjugate beam. Using
the free body of the conjugate beam to the right of C, we determine

þ ’ MC ¼
1

EI
�9;500ð10Þ þ 1

2
ð600Þð10Þ 10

3

� �� �
¼ � 85;000 k-ft3

EI

Therefore, the deflection at C on the real beam is

DC ¼ �
85;000 k-ft3

EI
¼ � 85;000ð12Þ3

ð1;800Þð46;000Þ ¼ �1:77 in:

DC ¼ 1:77 in: # Ans.

Example 6.11

Determine the maximum deflection for the beam shown in Fig. 6.17(a) by the conjugate-beam method.

Solution
M/EI Diagram. This beam was previously analyzed in Example 6.5 by the moment-area method. The M/EI diagram
for the beam is shown in Fig. 6.17(b).

Conjugate Beam. The simply supported conjugate beam, loaded with the M/EI diagram of the real beam, is shown in
Fig. 6.17(c).

Reaction at Support A of the Conjugate Beam. By applying the moment equilibrium equation
P

MC ¼ 0 to the free
body of the entire conjugate beam, we determine

þ ’ MC ¼ 0

Ayð15Þ �
1

EI

1

2
ð400Þð10Þ 10

3
þ 5

� �
þ 1

2
ð400Þð5Þ 10

3

� �� �
¼ 0

Ay ¼
1;333:33 kN �m2

EI

Location of the Maximum Bending Moment in Conjugate Beam. If the maximum bending moment in the conjugate beam
(or the maximum deflection on the real beam) occurs at point D, located at a distance xm from the left support A (see
Fig. 6.17(c)), then the shear in the conjugate beam at D must be zero. Considering the free body of the conjugate beam to
the left of D, we write

þ " SD ¼
1

EI
�1;333:33þ 1

2
ð40xmÞðxmÞ

� �
¼ 0

from which

xm ¼ 8:16 m

Maximum Deflection of the Real Beam. The maximum deflection of the real beam is equal to the maximum bending
moment in the conjugate beam, which can be determined by considering the free body of the conjugate beam to the left
of D, with xm ¼ 8:16 m. Thus,

þ @

Mmax ¼MD ¼
1

EI
�1;333:33ð8:16Þ þ 1

2
ð40Þð8:16Þ2 8:16

3

� �� �
¼ � 7;244:51 kN �m3

EI

continued
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Therefore, the maximum deflection of the real beam is

Dmax ¼ �
7;244:51 kN �m3

EI
¼ � 7;244:51

ð200Þð700Þ ¼ �0:0517 m ¼ �51:7 mm

Dmax ¼ 51:7 mm # Ans.

FIG. 6.17
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Example 6.12

Determine the slope at point A and the deflection at point C of the beam shown in Fig. 6.18(a) by the conjugate-beam
method.

Solution
M/EI Diagram. This beam was analyzed in Example 6.6 by the moment-area method. The M/EI diagram for a refer-
ence moment of inertia I ¼ 2;500 in.4 is shown in Fig. 6.18(b).

Conjugate Beam. Figure 6.18(c) shows the conjugate beam loaded with the M/EI diagram of the real beam. Note that
points D and E, which are simple interior supports on the real beam, become internal hinges on the conjugate beam;
point C, which is an internal hinge on the real beam, becomes a simple interior support on the conjugate beam. Also
note that the positive part of the M/EI diagram is applied as upward loading on the conjugate beam, whereas the neg-
ative part of the M/EI diagram is applied as downward loading.

FIG. 6.18

continued
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Reaction at Support A of the Conjugate Beam. We determine the reaction Ay of the conjugate beam by applying the
equations of condition as follows:

þ ’
P

MAD
D ¼ 0

Ayð30Þ �
1

2

100

EI

� �
ð20Þð20Þ þ Cyð10Þ þ

1

2

200

EI

� �
ð10Þ 10

3

� �
¼ 0

or

Cy ¼ �3Ay þ
1;666:67

EI
(1)

þ ’
P

MAE
E ¼ 0

Ayð45Þ �
1

2

100

EI

� �
ð20Þð35Þ þ Cyð25Þ þ

1

2

200

EI

� �
ð10Þ 10

3
þ 15

� �
þ 150

EI
ð15Þð7:5Þ þ 1

2

50

EI

� �
ð15Þð10Þ ¼ 0

or

45Ay þ 25Cy ¼ �
3;958:33

EI
(2)

Substituting Eq. (1) into Eq. (2) and solving for Ay, we obtain

Ay ¼
1;520:83 k-ft2

EI

Slope at A. The slope at A on the real beam is equal to the shear just to the right of A in the conjugate beam, which is

þ " SA;R ¼ �Ay ¼ �
1;520:83 k-ft2

EI

Therefore, the slope at A on the real beam is

yA ¼ �
1;520:83

EI
¼ � 1;520:83ð12Þ2

ð29;000Þð2;500Þ ¼ �0:003 rad

yA ¼ 0:003 rad @ Ans.

Deflection at C. The deflection at C on the real beam is equal to the bending moment at C in the conjugate beam. Con-
sidering the free body of the conjugate beam to the left of C, we obtain

þ @

MC ¼
1

EI
�1;520:83ð20Þ þ 1

2
ð100Þð20Þð10Þ

� �
¼ � 20;416:67 k-ft3

EI

Therefore, the deflection at C on the real beam is

DC ¼ �
20;416:67 k-ft3

EI
¼ � 20;416:67ð12Þ3

ð29;000Þð2;500Þ ¼ �0:487 in:

DC ¼ 0:487 in: # Ans.

Example 6.13

Use the conjugate-beam method to determine the deflection at point C of the beam shown in Fig. 6.19(a).

Solution
M/EI Diagram. This beam was previously analyzed in Example 6.7 by the moment-area method. The M/EI diagram by
cantilever parts with respect to point B is shown in Fig. 6.19(b).

continued
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Conjugate Beam. See Fig. 6.19(c).

Reaction at Support A of the Conjugate Beam.

þ ’
P

MAB
B ¼ 0

Ayð30Þ þ
1

EI

1

3
ð900Þð30Þ 30

4

� �
� 1

2
ð780Þð30Þ 30

3

� �� �
¼ 0

Ay ¼
1;650 k-ft2

EI

Deflection at C. The deflection at C on the real beam is equal to the bending moment at C in the conjugate beam. Con-
sidering the free body of the conjugate beam to the left of C, we obtain

þ @

MC ¼
1

EI

�
�1;650ð40Þ � 1

3
ð900Þð30Þ 30

4
þ 10

� �
þ 1

2
ð780Þð30Þð20Þ

� 1

2
ð120Þð10Þ 20

3

� ��
¼ 6;500 k-ft3

EI

Therefore, the deflection at C on the real beam is

DC ¼
6;500 k-ft3

EI
¼ 6;500ð12Þ3

ð29;000Þð2;000Þ ¼ 0:194 in:

DC ¼ 0:194 in: " Ans.

FIG. 6.19
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Summary

In this chapter we have discussed the geometric methods for determining
the slopes and deflections of statically determinate beams. The di¤er-
ential equation for the deflection of beams can be expressed as

d 2y

dx2
¼ M

EI
ð6:9Þ

The direct integration method essentially involves writing expression(s)
for M/EI for the beam in terms of x and integrating the expression(s)
successively to obtain equations for the slope and deflection of the elastic
curve. The constants of integration are determined from the boundary
conditions and the conditions of continuity of the elastic curve. If a beam
is subjected to several loads, the slope or deflection due to the combined
e¤ects of the loads can be determined by algebraically adding the slopes
or deflections due to each of the loads acting individually on the beam.

The moment-area method is based on two theorems, which can be
mathematically expressed as follows:

First moment-area theorem: yBA ¼
ðB

A

M

EI
dx ð6:12Þ

Second moment-area theorem: DBA ¼
ðB

A

M

EI
x dx ð6:15Þ

Two procedures for constructing bending moment diagrams by parts are
presented in Section 6.5.

A conjugate beam is a fictitious beam of the same length as the cor-
responding real beam; but it is externally supported and internally con-
nected such that, if the conjugate beam is loaded with the M/EI diagram
of the real beam, the shear and bending moment at any point on the
conjugate beam are equal, respectively, to the slope and deflection at the
corresponding point on the real beam. The conjugate-beam method
essentially involves determining the slopes and deflections of beams by
computing the shears and bending moments in the corresponding con-
jugate beams.

PROBLEMS

Section 6.2

6.1 through 6.6 Determine the equations for slope and de-
flection of the beam shown by the direct integration method.
EI ¼ constant.

L

A

B
M

FIG. P6.1

262 CHAPTER 6 Deflections of Beams: Geometric Methods



FIG. P6.2

FIG. P6.3

FIG. P6.4

FIG. P6.5

FIG. P6.6

6.7 and 6.8 Determine the slope and deflection at point B of
the beam shown by the direct integration method.

A
B

4 m

EI = constant
E = 70 GPa
I = 164 (106) mm4

50 kN . m

FIG. P6.7

12 ft

A

C
B

6 ft

EI = constant
E = 10,000 ksi
I = 800 in.4

60 k-ft

FIG. P6.8

Sections 6.4 and 6.5

6.9 through 6.12 Determine the slope and deflection at point
B of the beam shown by the moment-area method.

5 m

90 kN

BA

EI = constant
E = 200 GPa
I = 800 (106) mm4

FIG. P6.9, P6.35

30 ft

BA

2 k/ft

EI = constant
E = 29,000 ksi
I = 3,000 in.4

FIG. P6.10, P6.36

L

a

P

BA

EI = constant

FIG. P6.11, P6.37

Problems 263



L

a

w

BA

EI = constant

FIG. P6.12, P6.38

6.13 and 6.14 Determine the slope and deflection at point A
of the beam shown by the moment-area method.

FIG. P6.13, P6.39

A

P

E = constant
2II

B
C

2L
3

L
3

FIG. P6.14, P6.40

6.15 through 6.17 Use the moment-area method to determine
the slopes and deflections at points B and C of the beam
shown.

100 kN 300 kN . m

A

E = constant = 70 GPa
I = 500 (106) mm4

6 m
2I

3 m
I

B C

FIG. P6.15, P6.41

A
B C

10 ft 10 ft 10 ft

EI = constant
E = 29,000 ksi
I = 4,000 in.4

60 k
3 k/ft

FIG. P6.16, P6.42

18 ft9 ft 9 ft

A C D

B

64 k

EI = constant
E = 29,000 ksi
I = 500 in.4

FIG. P6.17, P6.43

6.18 through 6.22 Determine the smallest moment of inertia I
required for the beam shown, so that its maximum deflection
does not exceed the limit of 1/360 of the span length (i.e.,
Dmax aL=360). Use the moment-area method.

A
CB

L = 10 m
EI = constant
E = 200 GPa

5 m 5 m

300 kN . m
60 kN

FIG. P6.18, P6.44

B

3 k/ft

A

L = 20 ft
EI = constant
E = 29,000 ksi

FIG. P6.19, P6.45
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4 m

12 kN/m

4 m
C

A B

L = 8 m
EI = constant
E = 70 GPa

FIG. P6.20, P6.46

A

B C

D

10 ft 10 ft
L = 35 ft
EI = constant
E = 4,500 ksi

30 k 70 k

FIG. P6.21, P6.47

FIG. P6.22, P6.48

6.23 through 6.30 Determine the maximum deflection for
the beam shown by the moment-area method.

3 m 9 m

A C

B

200 kN

EI = constant
E = 70 GPa
I = 630 (106) mm4

FIG. P6.23, P6.49

45 ft

A

B

EI = constant
E = 10,000 ksi
I = 500 in.4

75 k-ft

FIG. P6.24, P6.50

80 kN

A

E = constant = 200 GPa
I  = 600 (106) mm4

12 m
I

12 m
2I

B
C

FIG. P6.25, P6.51

FIG. P6.26, P6.52

10 ft
I

10 ft
2I

10 ft
I

DA

CB

E = constant = 29,000 ksi
I = 1,000 in.4

60 k40 k

FIG. P6.27, P6.53
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FIG. P6.28, P6.54

FIG. P6.29, P6.55

FIG. P6.30, P6.56

6.31 and 6.32 Use the moment-area method to determine
the slope and deflection at point D of the beam shown.

7 m 3 m 5 m

A C

B D

EI = constant
E = 200 GPa
I = 262 (106) mm4

120 kN

FIG. P6.31, P6.57

5 m 5 m 4 m

A

B DC

EI = constant
E = 70 GPa
I = 2,340 (106) mm4

180 kN
15 kN/m

FIG. P6.32, P6.58

6.33 and 6.34 Use the moment-area method to determine
the slopes and deflections at points B and D of the beam
shown.

FIG. P6.33, P6.59

FIG. P6.34, P6.60

Section 6.6

6.35 through 6.38 Use the conjugate-beam method to deter-
mine the slope and deflection at point B of the beams shown
in Figs. P6.9 through P6.12.

6.39 and 6.40 Determine the slope and deflection at point A
of the beam shown in Figs. P6.13 and P6.14 by the conjugate-
beam method.

6.41 through 6.43 Use the conjugate-beam method to de-
termine the slopes and deflections at points B and C of the
beams shown in Figs. P6.15 through P6.17.

6.44 through 6.48 Using the conjugate-beam method, de-
termine the smallest moments of inertia I required for the
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beams shown in Figs. P6.18 through P6.22, so that the max-
imum beam deflection does not exceed the limit of 1/360 of
the span length (i.e., Dmax aL=360).

6.49 through 6.56 Determine the maximum deflection for
the beams shown in Figs. P6.23 through P6.30 by the con-
jugate-beam method.

6.57 and 6.58 Use the conjugate-beam method to determine
the slope and deflection at point D of the beam shown in
Figs. P6.31 and P6.32.

6.59 and 6.60 Use the conjugate-beam method to determine
the slopes and deflections at points B and D of the beams
shown in Figs. P6.33 and P6.34.
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Deflections of Trusses,
Beams, and Frames:
Work–Energy Methods
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7.2 Principle of Virtual Work
7.3 Deflections of Trusses by the Virtual Work Method
7.4 Deflections of Beams by the Virtual Work Method
7.5 Deflections of Frames by the Virtual Work Method
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7.7 Castigliano’s Second Theorem
7.8 Betti’s Law and Maxwell’s Law of Reciprocal Deflections

Summary
Problems
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In this chapter, we develop methods for the analysis of deflections of
statically determinate structures by using some basic principles of work
and energy. Work–energy methods are more general than the geometric
methods considered in the previous chapter in the sense that they can be
applied to various types of structures, such as trusses, beams, and frames.
A disadvantage of these methods is that with each application, only one
deflection component, or slope, at one point of the structure can be
computed.

We begin by reviewing the basic concept of work performed by
forces and couples during a deformation of the structure and then discuss
the principle of virtual work. This principle is used to formulate the
method of virtual work for the deflections of trusses, beams, and frames.
We derive the expressions for strain energy of trusses, beams, and frames
and then consider Castigliano’s second theorem for computing deflec-
tions. Finally, we present Betti’s law and Maxwell’s law of reciprocal
deflections.

7.1 Work

The work done by a force acting on a structure is simply defined as the
force times the displacement of its point of application in the direction of
the force. Work is considered to be positive when the force and the dis-
placement in the direction of the force have the same sense and negative
when the force and the displacement have opposite sense.

Interstate 35W Bridge Collapse in

Minnesota (2007)
AP Photo/Pioneer Press, Brandi Jade Thomas



Let us consider the work done by a force P during the deformation
of a structure under the action of a system of forces (which includes P),
as shown in Fig. 7.1(a). The magnitude of P may vary as its point of
application displaces from A in the undeformed position of the structure
to A 0 in the final deformed position. The work dW that P performs as
its point of application undergoes an infinitesimal displacement, dD
(Fig. 7.1(a)), can be written as

dW ¼ PðdDÞ

The total work W that the force P performs over the entire dis-
placement D is obtained by integrating the expression of dW as

W ¼
ðD

0

PdD ð7:1Þ

As Eq. (7.1) indicates, the work is equal to the area under the force-
displacement diagram as shown in Fig. 7.1(b). In this text, we are fo-
cusing our attention on the analysis of linear elastic structures, so an
expression for work of special interest is for the case when the force
varies linearly with displacement from zero to its final value, as shown
in Fig. 7.1(c). The work for such a case is given by the triangular area
under the force-displacement diagram and is expressed as

W ¼ 1

2
PD ð7:2Þ

FIG. 7.1
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Another special case of interest is depicted in Fig. 7.1(d). In this case,
the force remains constant at P while its point of application undergoes a
displacement D caused by some other action independent of P. The work
done by the force P in this case is equal to the rectangular area under the
force-displacement diagram and is expressed as

W ¼ PD ð7:3Þ

It is important to distinguish between the two expressions for work
as given by Eqs. (7.2) and (7.3). Note that the expression for work for the
case when the force varies linearly with displacement (Eq. 7.2) contains a
factor of 1

2 , whereas the expression for work for the case of a constant
force (Eq. 7.3) does not contain this factor. These two expressions for
work will be used subsequently in developing di¤erent methods for
computing deflections of structures.

The expressions for the work of couples are similar in form to those
for the work of forces. The work done by a couple acting on a structure
is defined as the moment of the couple times the angle through which
the couple rotates. The work dW that a couple of moment M performs
through an infinitesimal rotation dy (see Fig. 7.1(a)) is given by

dW ¼MðdyÞ

Therefore, the total work W of a couple with variable moment M over
the entire rotation y can be expressed as

W ¼
ð y

0

M dy ð7:4Þ

When the moment of the couple varies linearly with rotation from zero
to its final value, the work can be expressed as

W ¼ 1

2
My ð7:5Þ

and, if M remains constant during a rotation y, then the work is given by

W ¼My ð7:6Þ

7.2 Principle of Virtual Work

The principle of virtual work, which was introduced by John Bernoulli in
1717, provides a powerful analytical tool for many problems of structural
mechanics. In this section, we study two formulations of this principle,
namely, the principle of virtual displacements for rigid bodies and the
principle of virtual forces for deformable bodies. The latter formulation is
used in the following sections to develop the method of virtual work,
which is considered to be one of the most general methods for determin-
ing deflections of structures.
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Principle of Virtual Displacements for Rigid Bodies

The principle of virtual displacements for rigid bodies can be stated as
follows:

If a rigid body is in equilibrium under a system of forces and if it is sub-

jected to any small virtual rigid-body displacement, the virtual work done

by the external forces is zero.

The term virtual simply means imaginary, not real. Consider the
beam shown in Fig. 7.2(a). The free-body diagram of the beam is shown
in Fig. 7.2(b), in which Px and Py represent the components of the ex-
ternal load P in the x and y directions, respectively.

Now, suppose that the beam is given an arbitrary small virtual rigid-
body displacement from its initial equilibrium position ABC to another
position A 0B 0C 0, as shown in Fig. 7.2(c). As shown in this figure, the
total virtual rigid-body displacement of the beam can be decomposed
into translations Dvx and Dvy in the x and y directions, respectively, and
a rotation yv about point A. Note that the subscript v is used here to
identify the displacements as virtual quantities. As the beam undergoes
the virtual displacement from position ABC to position A 0B 0C 0, the
forces acting on it perform work, which is called virtual work. The total

FIG. 7.2
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virtual work, Wve, performed by the external forces acting on the beam
can be expressed as the sum of the virtual work Wvx and Wvy done during
translations in the x and y directions, respectively, and the virtual work
Wvr, done during the rotation; that is,

Wve ¼Wvx þWvy þWvr ð7:7Þ

During the virtual translations Dvx and Dvy of the beam, the virtual
work done by the forces is given by

Wvx ¼ AxDvx � PxDvx ¼ ðAx � PxÞDvx ¼ ð
P

FxÞDvx ð7:8Þ

and

Wvy ¼ AyDvy � PyDvy þ CyDvy ¼ ðAy � Py þ CyÞDvy ¼ ð
P

FyÞDvy ð7:9Þ

(see Fig. 7.2(c)). The virtual work done by the forces during the small
virtual rotation yv can be expressed as

Wvr ¼ �PyðayvÞ þ CyðLyvÞ ¼ ð�aPy þ LCyÞyv ¼ ð
P

MAÞyv ð7:10Þ

By substituting Eqs. (7.8) through (7.10) into Eq. (7.7), we write the
total virtual work done as

Wve ¼ ð
P

FxÞDvx þ ð
P

FyÞDvy þ ð
P

MAÞyv ð7:11Þ

Because the beam is in equilibrium,
P

Fx ¼ 0,
P

Fy ¼ 0, and
P

MA ¼ 0;
therefore, Eq. (7.11) becomes

Wve ¼ 0 ð7:12Þ

which is the mathematical statement of the principle of virtual displace-
ments for rigid bodies.

Principle of Virtual Forces for Deformable Bodies

The principle of virtual forces for deformable bodies can be stated as
follows:

If a deformable structure is in equilibrium under a virtual system of forces

(and couples) and if it is subjected to any small real deformation consistent

with the support and continuity conditions of the structure, then the virtual

external work done by the virtual external forces (and couples) acting

through the real external displacements (and rotations) is equal to the vir-

tual internal work done by the virtual internal forces (and couples) acting

through the real internal displacements (and rotations).

In this statement, the term virtual is associated with the forces to
indicate that the force system is arbitrary and does not depend on the
action causing the real deformation.

To demonstrate the validity of this principle, consider the two-
member truss shown in Fig. 7.3(a). The truss is in equilibrium under the
action of a virtual external force Pv as shown. The free-body diagram of
joint C of the truss is shown in Fig. 7.3(b). Since joint C is in equilibrium,
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the virtual external and internal forces acting on it must satisfy the fol-
lowing two equilibrium equations:P

Fx ¼ 0 Pv � FvAC cos y1 � FvBC cos y2 ¼ 0P
Fy ¼ 0 �FvAC sin y1 þ FvBC sin y2 ¼ 0

ð7:13Þ

in which FvAC and FvBC represent the virtual internal forces in members
AC and BC, respectively, and y1 and y2 denote, respectively, the angles of
inclination of these members with respect to the horizontal (Fig. 7.3(a)).

Now, let us assume that joint C of the truss is given a small real dis-
placement, D, to the right from its equilibrium position, as shown in
Fig. 7.3(a). Note that the deformation is consistent with the support
conditions of the truss; that is, joints A and B, which are attached to sup-
ports, are not displaced. Because the virtual forces acting at joints A and
B do not perform any work, the total virtual work for the truss ðWvÞ is
equal to the algebraic sum of the work of the virtual forces acting at joint
C; that is,

Wv ¼ PvD� FvACðD cos y1Þ � FvBCðD cos y2Þ

or

Wv ¼ ðPv � FvAC cos y1 � FvBC cos y2ÞD ð7:14Þ

As indicated by Eq. (7.13), the term in the parentheses on the right-hand
side of Eq. (7.14) is zero; therefore, the total virtual work is Wv ¼ 0.
Thus, Eq. (7.14) can be expressed as

PvD ¼ FvACðD cos y1Þ þ FvBCðD cos y2Þ ð7:15Þ

in which the quantity on the left-hand side represents the virtual external
work ðWveÞ done by the virtual external force, Pv, acting through the
real external displacement, D. Also, realizing that the terms D cos y1 and
D cos y2 are equal to the real internal displacements (elongations) of
members AC and BC, respectively, we can conclude that the right-hand
side of Eq. (7.15) represents the virtual internal work ðWviÞ done by the
virtual internal forces acting through the real internal displacements; that is

Wve ¼Wvi ð7:16Þ

FIG. 7.3
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which is the mathematical statement of the principle of virtual forces for
deformable bodies.

It should be realized that the principle of virtual forces as described
here is applicable regardless of the cause of real deformations; that is, de-
formations due to loads, temperature changes, or any other e¤ect can be
determined by the application of the principle. However, the deformations
must be small enough so that the virtual forces remain constant in mag-
nitude and direction while performing the virtual work. Also, although
the application of this principle in this text is limited to elastic structures,
the principle is valid regardless of whether the structure is elastic or not.

The method of virtual work is based on the principle of virtual
forces for deformable bodies as expressed by Eq. (7.16), which can be
rewritten as

virtual external work ¼ virtual internal work ð7:17Þ

or, more specifically, as

Virtual systemP virtual external force�
real external displacement

� �
¼

P virtual internal force�
real internal displacement

� �
Real system ð7:18Þ

in which the terms forces and displacements are used in a general sense
and include moments and rotations, respectively. Note that because the
virtual forces are independent of the actions causing the real deforma-
tion and remain constant during the real deformation, the expressions of
the external and internal virtual work in Eq. (7.18) do not contain the
factor 1/2.

As Eq. (7.18) indicates, the method of virtual work employs two
separate systems: a virtual force system and the real system of loads (or
other e¤ects) that cause the deformation to be determined. To determine
the deflection (or slope) at any point of a structure, a virtual force system
is selected so that the desired deflection (or rotation) will be the only un-
known in Eq. (7.18). The explicit expressions of the virtual work method
to be used for computing deflections of trusses, beams, and frames are
developed in the following three sections.

7.3 Deflections of Trusses by the Virtual Work Method

To develop the expression of the virtual work method that can be used to
determine the deflections of trusses, consider an arbitrary statically de-
terminate truss, as shown in Fig. 7.4(a). Let us assume that we want to
determine the vertical deflection, D, at joint B of the truss due to the
given external loads P1 and P2. The truss is statically determinate, so the
axial forces in its members can be determined from the method of joints
described previously in Chapter 4. If F represents the axial force in an
arbitrary member j (e.g., member CD in Fig. 7.4(a)) of the truss, then
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(from mechanics of materials) the axial deformation, d, of this member is
given by

d ¼ FL

AE
ð7:19Þ

in which L;A, and E denote, respectively, the length, cross-sectional area,
and modulus of elasticity of member j.

To determine the vertical deflection, D, at joint B of the truss, we se-
lect a virtual system consisting of a unit load acting at the joint and in the
direction of the desired deflection, as shown in Fig. 7.4(b). Note that the
(downward) sense of the unit load in Fig. 7.4(b) is the same as the assumed
sense of the desired deflection D in Fig. 7.4(a). The forces in the truss
members due to the virtual unit load can be determined from the method
of joints. Let Fv denote the virtual force in member j. Next, we subject the
truss with the virtual unit load acting on it (Fig. 7.4(b)) to the deforma-
tions of the real loads (Fig. 7.4(a)). The virtual external work performed
by the virtual unit load as it goes through the real deflection D is equal to

Wve ¼ 1ðDÞ ð7:20Þ

To determine the virtual internal work, let us focus our attention on
member j (member CD in Fig. 7.4). The virtual internal work done on
member j by the virtual axial force Fv, acting through the real axial de-
formation d, is equal to Fvd. Therefore, the total virtual internal work
done on all the members of the truss can be written as

Wvi ¼
P

FvðdÞ ð7:21Þ

By equating the virtual external work (Eq. (7.20)) to the virtual in-
ternal work (Eq. (7.21)) in accordance with the principle of virtual forces
for deformable bodies, we obtain the following expression for the method
of virtual work for truss deflections:

1ðDÞ ¼
P

FvðdÞ ð7:22Þ

When the deformations are caused by external loads, Eq. (7.19) can
be substituted into Eq. (7.22) to obtain

1ðDÞ ¼
P

Fv
FL

AE

� �
ð7:23Þ

Because the desired deflection, D, is the only unknown in Eq. (7.23), its
value can be determined by solving this equation.

Temperature Changes and Fabrication Errors

The expression of the virtual work method as given by Eq. (7.22) is quite
general in the sense that it can be used to determine truss deflections
due to temperature changes, fabrication errors, and any other e¤ect for
which the member axial deformations, d, are either known or can be
evaluated beforehand.

FIG. 7.4
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The axial deformation of a truss member j of length L due to a
change in temperature ðDTÞ is given by

d ¼ aðDTÞL ð7:24Þ

in which a denotes the coe‰cient of thermal expansion of member j. Sub-
stituting Eq. (7.24) into Eq. (7.22), we obtain the following expression:

1ðDÞ ¼
P

FvaðDTÞL ð7:25Þ

which can be used to compute truss deflections due to the changes in
temperature.

Truss deflections due to fabrication errors can be determined by
simply substituting changes in member lengths due to fabrication errors
for d in Eq. (7.22).

Procedure for Analysis

The following step-by-step procedure can be used to determine the de-
flections of trusses by the virtual work method.

1. Real System If the deflection of the truss to be determined is
caused by external loads, then apply the method of joints and/
or the method of sections to compute the (real) axial forces ðF Þ
in all the members of the truss. In the examples given at the end
of this section, tensile member forces are considered to be pos-
itive and vice versa. Similarly, increases in temperature and
increases in member lengths due to fabrication errors are con-
sidered to be positive and vice versa.

2. Virtual System Remove all the given (real) loads from the
truss; then apply a unit load at the joint where the deflection is
desired and in the direction of the desired deflection to form the
virtual force system. By using the method of joints and/or the
method of sections, compute the virtual axial forces ðFvÞ in all
the members of the truss. The sign convention used for the vir-
tual forces must be the same as that adopted for the real forces
in step 1; that is, if real tensile forces, temperature increases, or
member elongations due to fabrication errors were considered
as positive in step 1, then the virtual tensile forces must also be
considered to be positive and vice versa.

3. The desired deflection of the truss can now be determined by
applying Eq. (7.23) if the deflection is due to external loads,
Eq. (7.25) if the deflection is caused by temperature changes, or
Eq. (7.22) in the case of the deflection due to fabrication errors.
The application of these virtual work expressions can be facili-
tated by arranging the real and virtual quantities, computed in
steps 1 and 2, in a tabular form, as illustrated in the following
examples. A positive answer for the desired deflection means
that the deflection occurs in the same direction as the unit load,
whereas a negative answer indicates that the deflection occurs
in the direction opposite to that of the unit load.
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continued

Example 7.1

Determine the horizontal deflection at joint C of the truss shown in Fig. 7.5(a) by the virtual work method.

Solution
Real System. The real system consists of the loading given in the problem, as shown in Fig. 7.5(b). The member axial
forces due to the real loads ðFÞ obtained by using the method of joints are also depicted in Fig. 7.5(b).

Virtual System. The virtual system consists of a unit (1-k) load applied in the horizontal direction at joint C, as shown
in Fig. 7.5(c). The member axial forces due to the 1-k virtual load ðFvÞ are determined by applying the method of joints.
These member forces are also shown in Fig. 7.5(c).

FIG. 7.5
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Horizontal Deflection at C, DC. To facilitate the computation of the desired deflection, the real and virtual member forces
are tabulated along with the member lengths ðLÞ, as shown in Table 7.1. As the values of the cross-sectional area, A, and
modulus of elasticity, E, are the same for all the members, these are not included in the table. Note that the same sign
convention is used for both real and virtual systems; that is, in both the third and the fourth columns of the table, tensile
forces are entered as positive numbers and compressive forces as negative numbers. Then, for each member, the quantity
FvðFLÞ is computed, and its value is entered in the fifth column of the table.

The algebraic sum of all of the entries in the fifth column,
P

FvðFLÞ, is then determined, and its value is recorded at
the bottom of the fifth column, as shown. The total virtual internal work done on all of the members of the truss is given by

Wvi ¼
1

EA

P
FvðFLÞ

The virtual external work done by the 1-k load acting through the desired horizontal deflection at C, DC , is

Wve ¼ ð1 kÞDC

Finally, we determine the desired deflection DC by equating the virtual external work to the virtual internal work
and solving the resulting equation for DC as shown in Table 7.1. Note that the positive answer for DC indicates that
joint C deflects to the right, in the direction of the unit load.

Example 7.2

Determine the horizontal deflection at joint G of the truss shown in Fig. 7.6(a) by the virtual work method.

Solution
Real System. The real system consists of the loading given in the problem, as shown in Fig. 7.6(b). The member axial
forces due to the real loads ðFÞ obtained by using the method of joints are also shown in Fig. 7.6(b).

Virtual System. The virtual system consists of a unit (1-k) load applied in the horizontal direction at joint G, as shown
in Fig. 7.6(c). The member axial forces due to the 1-k virtual load ðFvÞ are also depicted in Fig. 7.6(c).

TABLE 7.1

Member L (in.) F (k) Fv (k) FvðFLÞ (k2 � in.)

AB 48 �37.5 �1.25 2,250

AC 180 62.5 3.75 42,187.5

BC 156 �97.5 �3.25 49,432.5P
FvðFLÞ ¼ 93;870

1ðDCÞ ¼
1

EA

P
FvðFLÞ

ð1 kÞDC ¼
93;870 k2 � in:

ð10;000 k=in:2Þð6 in:2Þ
DC ¼ 1:56 in:

DC ¼ 1:56 in:! Ans.

continued

278 CHAPTER 7 Deflections of Trusses, Beams, and Frames: Work–Energy Methods



Horizontal Deflection at G, DG. To facilitate the computation of the desired deflection, the real and virtual member forces
are tabulated along with the lengths ðLÞ and the cross-sectional areas ðAÞ of the members, as shown in Table 7.2. The
modulus of elasticity, E, is the same for all the members, so its value is not included in the table. Note that the same sign
convention is used for both real and virtual systems; that is, in both the fourth and the fifth columns of the table, tensile
forces are entered as positive numbers, and compressive forces as negative numbers. Then, for each member the quantity
FvðFL=AÞ is computed, and its value is entered in the sixth column of the table. The algebraic sum of all the entries in the
sixth column,

P
FvðFL=AÞ, is then determined, and its value is recorded at the bottom of the sixth column, as shown.

Finally, the desired deflection DG is determined by applying the virtual work expression (Eq. (7.23)) as shown in Table 7.2.
Note that the positive answer for DG indicates that joint G deflects to the right, in the direction of the unit load.

FIG. 7.6

TABLE 7.2

Member L (in.) A (in.2) F (k) Fv (k)
FvðFL=AÞ
(k2/in.)

AB 192 4 60 1 2,880

CD 192 3 0 0 0

EG 192 3 �20 0 0

AC 144 4 60 1.5 3,240

CE 144 4 0 0 0

BD 144 4 �15 �0.75 405

DG 144 4 �15 �0.75 405

BC 240 3 �75 �1.25 7,500

CG 240 3 25 1.25 2,500P
Fv

FL

A

� �
¼ 16;930

1ðDGÞ ¼
1

E

P
Fv

FL

A

� �
ð1 kÞDG ¼

16;930 k2=in:

29;000 k=in:2

DG ¼ 0:584 in:

DG ¼ 0:584 in:! Ans.
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Example 7.3

Determine the horizontal and vertical components of the deflection at joint B of the truss shown in Fig. 7.7(a) by the
virtual work method.

Solution
Real System. The real system and the corresponding member axial forces ðFÞ are shown in Fig. 7.7(b).

Horizontal Deflection at B, DBH. The virtual system used for determining the horizontal deflection at B consists of a 1-kN
load applied in the horizontal direction at joint B, as shown in Fig. 7.7(c). The member axial forces ðFv1Þ due to this virtual
load are also shown in this figure. The member axial forces due to the real system ðFÞ and this virtual system ðFv1Þ are then
tabulated, and the virtual work expression given by Eq. (7.23) is applied to determine DBH , as shown in Table 7.3.

Vertical Deflection at B, DBV. The virtual system used for determining the vertical deflection at B consists of a 1-kN load
applied in the vertical direction at joint B, as shown in Fig. 7.7(d). The member axial forces ðFv2Þ due to this virtual load
are also shown in this figure. These member forces are tabulated in the sixth column of Table 7.3, and DBV is computed
by applying the virtual work expression (Eq. (7.23)), as shown in the table.

FIG. 7.7
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Example 7.4

Determine the vertical deflection at joint C of the truss shown in Fig. 7.8(a) due to a temperature drop of 15�F in members
AB and BC and a temperature increase of 60�F in members AF ;FG;GH, and EH. Use the virtual work method.

TABLE 7.3

Member
L
(m)

F
(kN)

Fv1

(kN)
Fv1ðFLÞ
(kN2 �m)

Fv2

(kN)
Fv2ðFLÞ
(kN2 �m)

AB 4 21 1 84 0.43 36.12

BC 3 21 0 0 0.43 27.09

AD 5.66 �79.2 0 0 �0.61 273.45

BD 4 84 0 0 1 336.00

CD 5 �35 0 0 �0.71 124.25P
FvðFLÞ 84 796.91

1ðDBHÞ ¼
1

EA

P
Fv1ðFLÞ 1ðDBV Þ ¼

1

EA

P
Fv2ðFLÞ

ð1 kNÞDBH ¼
84

200ð106Þð0:0012Þ kN �m ð1 kNÞDBV ¼
796:91

200ð106Þð0:0012Þ kN �m

DBH ¼ 0:00035 m DBV ¼ 0:00332 m

DBH ¼ 0:35 mm! Ans. DBV ¼ 3:32 mm # Ans.

FIG. 7.8

continued
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Solution
Real System. The real system consists of the temperature changes ðDTÞ given in the problem, as shown in Fig. 7.8(b).

Virtual System. The virtual system consists of a 1-k load applied in the vertical direction at joint C, as shown in Fig. 7.8(c).
Note that the virtual axial forces ðFvÞ are computed for only those members that are subjected to temperature changes.
Because the temperature changes in the remaining members of the truss are zero, their axial deformations are zero; there-
fore, no internal virtual work is done on those members.

Vertical Deflection at C, DC. The temperature changes ðDTÞ and the virtual member forces ðFvÞ are tabulated along with
the lengths ðLÞ of the members, in Table 7.4. The coe‰cient of thermal expansion, a, is the same for all the members, so
its value is not included in the table. The desired deflection DC is determined by applying the virtual work expression
given by Eq. (7.25), as shown in the table. Note that the negative answer for DC indicates that joint C deflects upward, in
the direction opposite to that of the unit load.

Example 7.5

Determine the vertical deflection at joint D of the truss shown in Fig. 7.9(a) if member CF is 0.6 in. too long and member
EF is 0.4 in. too short. Use the method of virtual work.

Solution
Real System. The real system consists of the changes in the lengths ðdÞ of members CF and EF of the truss, as shown in
Fig. 7.9(b).

Virtual System. The virtual system consists of a 1-k load applied in the vertical direction at joint D, as shown in Fig. 7.9(c).
The necessary virtual forces ðFvÞ in members CF and EF can be easily computed by using the method of sections.

Vertical Deflection at D, DD. The desired deflection is determined by applying the virtual work expression given by
Eq. (7.22), as shown in Table 7.5.

TABLE 7.4

Member L (ft) DT (�F) Fv (k) FvðDTÞL (k-�F-ft)

AB 10 �15 0.667 �100
BC 10 �15 0.667 �100
AF 12.5 60 �0.833 �625
FG 12.5 60 �0.833 �625
GH 12.5 60 �0.833 �625
EH 12.5 60 �0.833 �625P

FvðDTÞL ¼ �2;700

1ðDCÞ ¼ a
P

FvðDTÞL

ð1 kÞDC ¼ 6:5ð10�6Þð�2;700Þ k-ft
DC ¼ �0:0176 ft ¼ �0:211 in:

DC ¼ 0:211 in: " Ans.
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7.4 Deflections of Beams by the Virtual Work Method

To develop an expression for the virtual work method for determining
the deflections of beams, consider a beam subjected to an arbitrary load-
ing, as shown in Fig. 7.10(a). Let us assume that the vertical deflection, D,

FIG. 7.9

TABLE 7.5

Member d (in.) Fv (k) FvðdÞ (k-in.)

CF 0.6 �1 �0.6
EF �0.4 1 �0.4P

FvðdÞ ¼ �1:0

1ðDDÞ ¼
P

FvðdÞ
ð1 kÞDD ¼ �1:0 k-in:

DD ¼ �1:0 in:

DD ¼ 1:0 in: " Ans.
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at a point B of the beam is desired. To determine this deflection, we select
a virtual system consisting of a unit load acting at the point and in the
direction of the desired deflection, as shown in Fig. 7.10(b). Now, if we
subject the beam with the virtual unit load acting on it (Fig. 7.10(b)), to
the deformations due to the real loads (Fig. 7.10(a)), the virtual external
work performed by the virtual unit load as it goes through the real de-
flection D is Wve ¼ 1ðDÞ.

To obtain the virtual internal work, we focus our attention on a
di¤erential element dx of the beam located at a distance x from the left
support A, as shown in Fig. 7.10(a) and (b). Because the beam with the
virtual load (Fig. 7.10(b)) is subjected to the deformation due to the real
loading (Fig. 7.10(a)), the virtual internal bending moment, Mv, acting
on the element dx performs virtual internal work as it undergoes the real
rotation dy, as shown in Fig. 7.10(c). Thus, the virtual internal work
done on the element dx is given by

dWvi ¼MvðdyÞ ð7:26Þ

Note that because the virtual moment Mv remains constant during the
real rotation dy, Eq. (7.26) does not contain a factor of 1/2. Recall from
Eq. (6.10) that the change of slope dy over the di¤erential length dx can
be expressed as

dy ¼ M

EI
dx ð7:27Þ

FIG. 7.10
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in which M ¼ bending moment due to the real loading causing the ro-
tation dy. By substituting Eq. (7.27) into Eq. (7.26), we write

dWvi ¼Mv

M

EI

� �
dx ð7:28Þ

The total virtual internal work done on the entire beam can now be de-
termined by integrating Eq. (7.28) over the length L of the beam as

Wvi ¼
ðL

0

MvM

EI
dx ð7:29Þ

By equating the virtual external work, Wve ¼ 1ðDÞ, to the virtual in-
ternal work (Eq. (7.29)), we obtain the following expression for the method
of virtual work for beam deflections:

1ðDÞ ¼
ðL

0

MvM

EI
dx ð7:30Þ

If we want the slope y at a point C of the beam (Fig. 7.10(a)), then we
use a virtual system consisting of a unit couple acting at the point, as
shown in Fig. 7.10(d). When the beam with the virtual unit couple is sub-
jected to the deformations due to the real loading, the virtual external
work performed by the virtual unit couple, as it undergoes the real rota-
tion y, is Wve ¼ 1ðyÞ. The expression for the internal virtual work remains
the same as given in Eq. (7.29), except that Mv now denotes the bending
moment due to the virtual unit couple. By setting Wve ¼Wvi, we obtain
the following expression for the method of virtual work for beam slopes:

1ðyÞ ¼
ðL

0

MvM

EI
dx ð7:31Þ

In the derivation of Eq. (7.29) for virtual internal work, we have neg-
lected the internal work performed by the virtual shear forces acting
through the real shear deformations. Therefore, the expressions of the
virtual work method as given by Eqs. (7.30) and (7.31) do not account for
the shear deformations of beams. However, for most beams (except for
very deep beams), shear deformations are so small as compared to the
bending deformations that their e¤ect can be neglected in the analysis.

Procedure for Analysis

The following step-by-step procedure can be used to determine the slopes
and deflections of beams by the virtual work method.

1. Real System Draw a diagram of the beam showing all the real
(given) loads acting on it.

2. Virtual System Draw a diagram of the beam without the real
loads. If deflection is to be determined, then apply a unit load at
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the point and in the direction of the desired deflection. If the
slope is to be calculated, then apply a unit couple at the point on
the beam where the slope is desired.

3. By examining the real and virtual systems and the variation of
the flexural rigidity EI specified along the length of the beam,
divide the beam into segments so that the real and virtual load-
ings as well as EI are continuous in each segment.

4. For each segment of the beam, determine an equation express-
ing the variation of the bending moment due to real loading
ðMÞ along the length of the segment in terms of a position co-
ordinate x. The origin for x may be located anywhere on the
beam and should be chosen so that the number of terms in the
equation for M is minimum. It is usually convenient to consider
the bending moments as positive or negative in accordance with
the beam sign convention (Fig. 5.2).

5. For each segment of the beam, determine the equation for the
bending moment due to virtual load or couple ðMvÞ using the
same x coordinate that was used for this segment in step 4 to
establish the expression for the real bending moment, M. The
sign convention for the virtual bending moment ðMvÞ must be
the same as that adopted for the real bending moment in step 4.

6. Determine the desired deflection or slope of the beam by ap-
plying the appropriate virtual work expression, Eq. (7.30) or
Eq. (7.31). If the beam has been divided into segments, then the
integral on the right-hand side of Eq. (7.30) or (7.31) can be
evaluated by algebraically adding the integrals for all the seg-
ments of the beam.

Graphical Evaluation of Virtual Work Integrals

The integrals in the virtual work equations (Eqs. (7.30) and (7.31)) are gen-
erally evaluated by mathematically integrating the equations of the quan-
tity ðMvM=EIÞ for each segment of the structure. However, if a structure
consists of segments with constant EI , and is subjected to a relatively sim-
ple loading, then an alternate graphical procedure may be more convenient
for evaluating these integrals. The graphical procedure essentially involves:
(a) drawing the bending moment diagrams of the structure due to the real
and virtual loads; and (b) determining the expressions of the virtual work
integral ð

Ð L
0 MvM dxÞ for each segment from a table of integrals, by com-

paring the shapes of the segment’s M andMv diagrams with those given in
the table. The expressions for such integrals for M and Mv diagrams of
some simple geometric shapes are given in Table 7.6, and the graphical
procedure is illustrated by Example 7.10 for beams and (in the following
section) Example 7.14 for frames.
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Example 7.6

Determine the slope and deflection at point A of the beam shown in Fig. 7.11(a) by the virtual work method.

Solution
Real System. See Fig. 7.11(b).

Slope at A, yA. The virtual system consists of a unit couple applied at A, as shown in Fig. 7.11(c). From Fig. 7.11(a)
through (c), we can see that there are no discontinuities of the real and virtual loadings or of EI along the length of the
beam. Therefore, there is no need to subdivide the beam into segments. To determine the equation for the bending mo-
ment M due to real loading, we select an x coordinate with its origin at end A of the beam, as shown in Fig. 7.11(b). By
applying the method of sections described in Section 5.2, we determine the equation for M as

0 < x < L M ¼ � 1

2
ðxÞ wx

L

� �
x

3

� �
¼ �wx3

6L

Similarly, the equation for the bending moment Mv1 due to virtual unit moment in terms of the same x coordinate is

0 < x < L Mv1 ¼ 1

To determine the desired slope yA, we apply the virtual work expression given by Eq. (7.31):

1ðyAÞ ¼
ðL

0

Mv1M

EI
dx ¼

ðL

0

1 � wx3

6LEI

� �
dx

yA ¼ �
w

6EIL

x4

4

� �L
0

¼ � wL3

24EI

The negative answer for yA indicates that pointA rotates counterclockwise, in the direction opposite to that of the unit moment.

yA ¼
wL3

24EI

’ Ans.

Deflection at A, DA. The virtual system consists of a unit load applied at A, as shown in Fig. 7.11(d). If we use the same x
coordinate as we used for computing yA, then the equation for M remains the same as before, and the equation for
bending moment Mv2 due to virtual unit load (Fig. 7.11(d)) is given by

0 < x < L Mv2 ¼ �1ðxÞ ¼ �x

FIG. 7.11

continued
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By applying the virtual work expression given by Eq. (7.30), we determine the desired deflection DA as

1ðDAÞ ¼
ðL

0

Mv2M

EI
dx ¼

ðL

0

ð�xÞ � wx3

6LEI

� �
dx

DA ¼
w

6EIL

x5

5

� �L
0

¼ wL4

30EI

The positive answer for DA indicates that point A deflects downward, in the direction of the unit load.

DA ¼
wL4

30EI
# Ans.

Example 7.7

Determine the slope at point B of the cantilever beam shown in Fig. 7.12(a) by the virtual work method.

Solution
The real and virtual systems are shown in Figs. 7.12(b) and (c), respectively. As shown in these figures, an x coordinate
with its origin at end B of the beam is selected to obtain the bending moment equations. From Fig. 7.12(b), we can see
that the equation for M in terms of the x coordinate is

0 < x < 25 ft M ¼ �18x

Similarly, from Fig. 7.12(c), we obtain the equation for Mv to be

0 < x < 25 ft Mv ¼ �1

FIG. 7.12

A B

25 ft

(a)

EI = constant
E = 10,000 ksi
I = 5,440 in.4

18 k

A B

x
(b) Real System –– M

18 k

A
B

x
(c) Virtual System –– Mv

1 k-ft

continued
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The slope at B can now be computed by applying the virtual work expression given by Eq. (7.31), as follows:

1ðyBÞ ¼
ðL

0

MvM

EI
dx

1ðyBÞ ¼
1

EI

ð25

0

�1ð�18xÞ dx

ð1 k-ftÞyB ¼
5;625 k2-ft3

EI

Therefore,

yB ¼
5;625 k-ft2

EI
¼ 5;625ð12Þ2

ð10;000Þð5;440Þ ¼ 0:0149 rad:

The positive answer for yB indicates that point B rotates clockwise, in the direction of the unit moment.

yB ¼ 0:0149 rad: @ Ans.

Example 7.8

Determine the deflection at point D of the beam shown in Fig. 7.13(a) by the virtual work method.

FIG. 7.13

continued
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Solution
The real and virtual systems are shown in Fig. 7.13(b) and (c), respectively. It can be seen from Fig. 7.13(a) that the
flexural rigidity EI of the beam changes abruptly at points B and D. Also, Fig. 7.13(b) and (c) indicates that the real and
virtual loadings are discontinuous at points C and D, respectively. Consequently, the variation of the quantity ðMvM=EIÞ
will be discontinuous at points B; C, and D. Thus, the beam must be divided into four segments, AB; BC; CD, and DE;
in each segment the quantity ðMvM=EIÞ will be continuous and, therefore, can be integrated.

The x coordinates selected for determining the bending moment equations are shown in Fig. 7.13(b) and (c). Note
that in any particular segment of the beam, the same x coordinate must be used to write both equations—that is, the
equation for the real bending moment ðMÞ and the equation for the virtual bending moment ðMvÞ. The equations for M
and Mv for the four segments of the beam, determined by using the method of sections, are tabulated in Table 7.7. The
deflection at D can now be computed by applying the virtual work expression given by Eq. (7.30).

1ðDDÞ ¼
ðL

0

MvM

EI
dx

1ðDDÞ ¼
1

EI

� ð 3

0

x

4

� �
ð75xÞ dxþ 1

2

ð6

3

x

4

� �
ð75xÞ dx

þ 1

2

ð9

6

x

4

� �
ð�75xþ 900Þ dxþ

ð 3

0

3

4
x

� �
ð75xÞ dx

�
ð1 kNÞDD ¼

2;193:75 kN2 �m3

EI

Therefore,

DD ¼
2;193:75 kN �m3

EI
¼ 2;193:75

200ð300Þ ¼ 0:0366 m ¼ 36:6 mm

DD ¼ 36:6 mm # Ans.

Example 7.9

Determine the deflection at point C of the beam shown in Fig. 7.14(a) by the virtual work method.

Solution
This beam was previously analyzed by the moment-area and the conjugate-beam methods in Examples 6.7 and 6.13,
respectively.

TABLE 7.7

x Coordinate

Segment Origin Limits (m)

EI
ðI ¼ 300�
106 mm4Þ

M
(kN �m)

Mv

(kN �m)

AB A 0–3 EI 75x
x

4

BC A 3–6 2EI 75x
x

4

CD A 6–9 2EI 75x� 150ðx� 6Þ x

4

ED E 0–3 EI 75x
3

4
x

continued
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The real and virtual systems for this problem are shown in Fig. 7.14(b) and (c), respectively. The real and virtual
loadings are discontinuous at point B, so the beam is divided into two segments, AB and BC. The x coordinates used for
determining the bending moment equations are shown in Fig. 7.14(b) and (c), and the equations for M and Mv obtained
for each of the two segments of the beam are tabulated in Table 7.8. The deflection at C can now be determined by
applying the virtual work expression given by Eq. (7.30), as follows:

1ðDCÞ ¼
ð L

0

MvM

EI
dx

1ðDCÞ ¼
1

EI

ð 30

0

� x

3

� �
ð26x� x2Þ dxþ

ð 10

0

ð�xÞð�12xÞ dx
� �

ð1 kÞDC ¼ �
6;500 k2-ft3

EI

Therefore,

DC ¼ �
6;500 k-ft3

EI
¼ � 6;500ð12Þ3

ð29;000Þð2;000Þ ¼ �0:194 in:

DC ¼ 0:194 in: " Ans.

FIG. 7.14

TABLE 7.8

x Coordinate

Segment Origin Limits (ft) M (k-ft) Mv (k-ft)

AB A 0–30 26x� x2 � x

3

CB C 0–10 �12x �x
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Example 7.10

Determine the deflection at point B of the beam shown in Fig. 7.15(a) by the virtual work method. Use the graphical
procedure (Table 7.6) to evaluate the virtual work integral.

Solution
The real and virtual systems, along with their bending moment diagrams (M and Mv), are shown in Figs. 7.15(b) and (c),
respectively. As the flexural rigidity EI is constant along the length of the beam, there is no need to subdivide the beam
into segments, and the virtual work equation (Eq. 7.30)) for the deflection at B can be expressed as

1ðDBÞ ¼
1

EI

ðL
0

MvM dx ð1Þ

To evaluate the integral
Ð L
0 MvM dx graphically, we first compare the shape of the M diagram in Fig. 7.15(b) with the

shapes listed in the left column of Table 7.6. Note that the shape of the M diagram matches the shape located in the sixth
row of the table. Next, we compare the shape of the Mv diagram (Fig. 7.15(c)) with those given in the top row of the
table, and notice that it is similar to the shape in the fifth column. This indicates that the expression for evaluating the
integral

Ð L
0 MvM dx, in this case, is located at the intersection of the sixth row and the fifth column of Table 7.6, that is,ðL

0

MvM dx ¼ 1

3
Mv1M1 Lþ l1l2

L

� �

C

35 kN/m

A B

EI = constant
E = 70 GPa
I = 1,800 (106) mm4

3 m 9 m

(a)

C

35 kN/m

210 210

A B C

1 kN

0.75 0.25

A B

C

630 (= M1)

6 m

12 m (= L)

A B D

(b) Real System and M Diagram (kN · m) 

C
3 m (= l1) 9 m (= l2)

2.25 (= Mv1)

12 m (= L)

A B

(c) Virtual System and Mv Diagram (kN · m)

FIG. 7.15

continued
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By substituting the numerical values of Mv1 ¼ 2:25 kN �m, M1 ¼ 630 kN �m, L ¼ 12 m, l1 ¼ 3 m and l2 ¼ 9 m, into
the foregoing equation, we compute the integral to beð12

0

MvM dx ¼ 1

3
ð2:25Þð630Þ 12þ 3ð9Þ

12

� �
¼ 6;733:13 kN2 �m3

The desired deflection at B can now be conveniently determined by applying the virtual work equation (Eq. 1) as

ð1 kNÞDB ¼
1

EI

ð12
0

MvM dx ¼ 6;733:13 kN2 �m3

EI

Therefore,

DB ¼
6;733:13 kN �m3

EI
¼ 6;733:13

70ð1;800Þ ¼ 0:0534 m ¼ 53:4 mm

DB ¼ 53:4 mm # Ans.

7.5 Deflections of Frames by the Virtual Work Method

Application of the virtual work method to determine the slopes and de-
flections of frames is similar to that for beams. To determine the deflec-
tion, D, or rotation, y, at a point of a frame, a virtual unit load or unit
couple is applied at that point. When the virtual system is subjected
to the deformations of the frame due to real loads, the virtual external
work performed by the unit load or the unit couple is Wve ¼ 1ðDÞ, or
Wve ¼ 1ðyÞ. As portions of the frame may undergo axial deformations in
addition to the bending deformations, the total virtual internal work
done on the frame is equal to the sum of the internal virtual work due to
bending and that due to axial deformations. As discussed in the preced-
ing section, when the real and virtual loadings and the flexural rigidity EI

are continuous over a segment of the frame, the virtual internal work due
to bending for that segment can be obtained by integrating the quantity
MvM=EI over the length of the segment. The virtual internal work due
to bending for the entire frame can then be obtained by summing the
work for the individual segments; that is,

Wvib ¼
Pð

MvM

EI
dx ð7:32Þ

Similarly, if the axial forces F and Fv due to the real and virtual loads,
respectively, and the axial rigidity AE are constant over the length L

of a segment of the frame, then, as discussed in Section 7.3, the virtual
internal work for that segment due to axial deformation is equal to
FvðFL=AEÞ. Thus, the virtual internal work due to axial deformations for
the entire frame can be expressed as

Wvia ¼
P

Fv

FL

AE

� �
ð7:33Þ
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By adding Eqs. (7.32) and (7.33), we obtain the total internal virtual
work for the frame due to both bending and axial deformations as

Wvi ¼
P

Fv

FL

AE

� �
þ
Pð

MvM

EI
dx ð7:34Þ

By equating the virtual external work to the virtual internal work,
we obtain the expressions for the method of virtual work for deflections
and rotations of frames, respectively, as

1ðDÞ ¼
P

Fv

FL

AE

� �
þ
P ð

MvM

EI
dx ð7:35Þ

and

1ðyÞ ¼
P

Fv
FL

AE

� �
þ
Pð

MvM

EI
dx ð7:36Þ

The axial deformations in the members of frames composed of com-
mon engineering materials are generally much smaller than the bending
deformations and are, therefore, usually neglected in the analysis. In this
text, unless stated otherwise, we will neglect the e¤ect of axial deforma-
tions in the analysis of frames. The virtual work expressions consider-
ing only the bending deformations of frames can be obtained by simply
omitting the first term on the right-hand sides of Eqs. (7.35) and (7.36),
which are thus reduced to

1ðDÞ ¼
Pð

MvM

EI
dx ð7:37Þ

and

1ðyÞ ¼
Pð

MvM

EI
dx ð7:38Þ

Procedure for Analysis

The following step-by-step procedure can be used to determine the slopes
and deflections of frames by the virtual work method.

1. Real System Determine the internal forces at the ends of the
members of the frame due to the real loading by using the pro-
cedure described in Section 5.6.

2. Virtual System If the deflection of the frame is to be deter-
mined, then apply a unit load at the point and in the direction of
the desired deflection. If the rotation is to be calculated, then
apply a unit couple at the point on the frame where the rotation
is desired. Determine the member end forces due to the virtual
loading.
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3. If necessary, divide the members of the frame into segments so
that the real and virtual loads and EI are continuous in each
segment.

4. For each segment of the frame, determine an equation express-
ing the variation of the bending moment due to real loading (M )
along the length of the segment in terms of a position coordinate x.

5. For each segment of the frame, determine the equation for the
bending moment due to virtual load or couple (Mv) using the
same x coordinate that was used for this segment in step 4 to es-
tablish the expression for the real bending moment, M. Any con-
venient sign convention can be used for M and Mv. However, it
is important that the sign convention be the same for both M

and Mv in a particular segment.
6. If the e¤ect of axial deformations is to be included in the analysis,

then go to step 7. Otherwise, determine the desired deflection or
rotation of the frame by applying the appropriate virtual work
expression, Eq. (7.37) or Eq. (7.38). End the analysis at this stage.

7. If necessary, divide the members of the frame into segments so
that the real and virtual axial forces and AE are constant in each
segment. It is not necessary that these segments be the same as
those used in step 3 for evaluating the virtual internal work due to
bending. It is important, however, that the same sign convention
be used for both the real axial force, F , and the virtual axial force,
Fv, in a particular segment.

8. Determine the desired deflection or rotation of the frame by
applying the appropriate virtual work expression, Eq. (7.35)
or Eq. (7.36).

Example 7.11

Determine the rotation of joint C of the frame shown in Fig. 7.16(a) by the virtual work method.

Solution
The real and virtual systems are shown in Fig. 7.16(b) and (c), respectively. The x coordinates used for determining the
bending moment equations for the three segments of the frame, AB;BC, and CD, are also shown in these figures. The
equations for M and Mv obtained for the three segments are tabulated in Table 7.9. The rotation of joint C of the frame
can now be determined by applying the virtual work expression given by Eq. (7.38).

1ðyCÞ ¼
Pð

MvM

EI
dx

¼ 1

EI

ð 30

0

x

30

� �
38:5x� 1:5

x2

2

� �
dx

ð1 k-ftÞyC ¼
6;487:5 k2-ft3

EI

Therefore,

yC ¼
6;487:5 k-ft2

EI
¼ 6;487:5ð12Þ2

ð29;000Þð2;500Þ ¼ 0:0129 rad:

yC ¼ 0:0129 rad: @ Ans.

continued
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FIG. 7.16

continued
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FIG. 7.16 (contd.)

TABLE 7.9

x Coordinate

Segment Origin Limits (ft) M (k-ft) Mv (k-ft)

AB A 0–12 40x 0

CB C 0–12 480 0

DC D 0–30 38:5x� 1:5
x2

2

x

30
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Example 7.12

Use the virtual work method to determine the vertical deflection at joint C of the frame shown in Fig. 7.17(a).

Solution
The real and virtual systems are shown in Figs. 7.17(b) and (c), respectively. The x coordinates used for determining the
bending moment equations for the two members of the frame, AB and BC, are also shown in the figures. The equations
for M and Mv obtained for the two members are tabulated in Table 7.10. The vertical deflection at joint C of the frame
can now be calculated by applying the virtual work expression given by Eq. (7.37):

1ðDCÞ ¼
Pð

MvM

EI
dx

1ðDCÞ ¼
1

EI

1

2

ð 5

0

ð�4Þð76x� 530Þ dxþ
ð 5

0

� 4

5
x

� �
ð�6x2Þ dx

� �
ð1 kNÞDC ¼

4;150 kN2 �m3

EI

Therefore,

DC ¼
4;150 kN �m3

EI
¼ 4;150

70ð554Þ ¼ 0:107 m ¼ 107 mm

DC ¼ 107 mm # Ans.

FIG. 7.17

40 kN

5 m 2I

A

B

5 m
I

12 kN/m C

4 m

(a)

3 m

E = constant = 70 GPa
I = 554 (106) mm4

continued
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40 kN

76
A

B

12 kN/m C

530

48

76

76
A 530

48

B

12 kN/m

C

x

48

40 kN

150150

36 60

150

76

48

B

48

150B

x

(b) Real System –– M

A

B

C

4

1

A

1

B

kN

C

x

1

4B

x

1 kN

4
5

3
5

4
5 kN3

5

4

(c) Virtual System –– Mv

4

FIG. 7.17 (contd.)

TABLE 7.10

x Coordinate

Segment Origin Limits (m)

EI
ðI ¼ 554�
106 mm4Þ

M
(kN �m)

Mv

(kN �m)

AB A 0–5 2EI 76x� 530 �4

CB C 0–5 EI �12 x
2

2
� 4

5
x
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Example 7.13

Determine the horizontal deflection at joint C of the frame shown in Fig. 7.18(a) including the e¤ect of axial deforma-
tions, by the virtual work method.

FIG. 7.18

continued
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Solution
The real and virtual systems are shown in Fig. 7.18(b) and (c), respectively. The x coordinates used for determining the
bending moment equations for the three members of the frame, AB; BC, and CD, are also shown in the figures. The
equations for M and Mv obtained for the three members are tabulated in Table 7.11 along with the axial forces F and Fv

FIG. 7.18 (contd.)

TABLE 7.11

x Coordinate

Segment Origin Limits (ft) M (k-ft) F (k) Mv (k-ft) Fv (k)

AB A 0–15 �1:67x �12:50 x

2

3

4

BC B 0–20 �25þ 12:5x� x2 �11:67 7:5� 3

4
x

1

2

DC D 0–15 11.67x �27:50 x

2
� 3

4

continued

Section 7.5 Deflections of Frames by the Virtual Work Method 303



of the members. The horizontal deflection at joint C of the frame can be determined by applying the virtual work ex-
pression given by Eq. (7.35):

1ðDCÞ ¼
P

Fv
FL

AE

� �
þ
Pð

MvM

EI
dx

1ðDCÞ ¼
1

AE

3

4
ð�12:5Þð15Þ þ 1

2
ð�11:67Þð20Þ � 3

4
ð�27:5Þð15Þ

� �
þ 1

EI

� ð15

0

x

2
ð�1:67xÞ dx

þ
ð20

0

7:5� 3

4
x

� �
ð�25þ 12:5x� x2Þ dxþ

ð 15

0

x

2
ð11:67xÞ dx

�
ð1 kÞDC ¼

52:08 k2-ft

AE
þ 9;375 k2-ft3

EI

Therefore,

DC ¼
52:08 k-ft

AE
þ 9;375 k-ft3

EI

¼ 52:08

ð35Þð29;000Þ þ
9;375ð12Þ2

ð29;000Þð1;000Þ

¼ 0:00005þ 0:04655

¼ 0:0466 ft ¼ 0:559 in:

DC ¼ 0:559 in:! Ans.

Note that the magnitude of the axial deformation term is negligibly small as compared to that of the bending deforma-
tion term.

Example 7.14

Determine the vertical deflection of joint A of the frame shown in Fig. 7.19(a) by the virtual work method. Use the graph-
ical procedure (Table 7.6) to evaluate the virtual work integral.

Solution
The real and virtual systems, along with their bending moment diagrams (M and Mv), are shown in Figs. 7.19(b) and (c),
respectively. As the flexural rigidity EI is constant, the virtual work equation (Eq. (7.37)) can be expressed as

1ðDAÞ ¼
1

EI

XðL
0

MvM dx ð1Þ

To evaluate the integrals
Ð L
0 MvM dx graphically, we compare the shapes of the M and Mv diagrams for member AB

with those given in Table 7.6, and obtain the relevant expression from the eighth row and second column of the table.
Thus, ðL

0

MvM dx ¼ 1

4
Mv1M1L

continued
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5 m

C

BA

7 kN/m

EI = constant
E = 200 GPa
I = 945 (106) mm4

10 m

(a)

C

BA

7 kN/m

87.5

35

C

BA

1 kN

5

1

BA

87.5

87.5

B

C

(b) Real System and
M Diagrams (kN · m)

BA
B

C

5

5

(c) Virtual System and
Mv Diagrams (kN · m)FIG. 7.19

continued
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By substituting Mv1 ¼ 5 kN �m, M1 ¼ 87:5 kN �m and L ¼ 5 m, into the foregoing equation, we compute the value of
the virtual work integral for member AB to beð5

0

MvM dx ¼ 1

4
ð5Þð87:5Þð5Þ ¼ 546:9 kN2 �m3

Similarly, the expression for the integral for member BC is obtained from the second row and second column of Table 7.6 asðL
0

MvM dx ¼Mv1M1L

with Mv1 ¼ 5 kN �m, M1 ¼ 87:5 kN �m and L ¼ 10 m, and the value of the integral for member BC is computed asð10
0

MvM dx ¼ ð5Þð87:5Þð10Þ ¼ 4;375 kN2 �m3

The desired deflection at joint A can now be determined by substituting the numerical values of the integrals for the two
members into the virtual work equation (Eq. 1) as

ð1 kNÞDA ¼
1

EI
ð546:9þ 4;375Þ ¼ 4;921:9 kN2 �m3

EI

Thus,

DA ¼
4;921:9 kN �m3

EI
¼ 4;921:9

200ð945Þ ¼ 0:026 m ¼ 26 mm

DA ¼ 26 mm # Ans.

7.6 Conservation of Energy and Strain Energy

Before we can develop the next method for computing deflections of struc-
tures, it is necessary to understand the concepts of conservation of energy
and strain energy.

The energy of a structure can be simply defined as its capacity for do-

ing work. The term strain energy is attributed to the energy that a struc-

ture has because of its deformation. The relationship between the work
and strain energy of a structure is based on the principle of conservation of

energy, which can be stated as follows:

The work performed on an elastic structure in equilibrium by statically

(gradually) applied external forces is equal to the work done by internal

forces, or the strain energy stored in the structure.

This principle can be mathematically expressed as

We ¼Wi ð7:39Þ

or

We ¼ U ð7:40Þ

In these equations, We and Wi represent the work done by the external
and internal forces, respectively, and U denotes the strain energy of the
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structure. The explicit expression for the strain energy of a structure de-
pends on the types of internal forces that can develop in the members of
the structure. Such expressions for the strain energy of trusses, beams,
and frames are derived in the following.

Strain Energy of Trusses

Consider the arbitrary truss shown in Fig. 7.20. The truss is subjected to a
load P, which increases gradually from zero to its final value, causing the
structure to deform as shown in the figure. Because we are considering
linearly elastic structures, the deflection of the truss D at the point of ap-
plication of P increases linearly with the load; therefore, as discussed in
Section 7.1 (see Fig. 7.1(c)), the external work performed by P during the
deformation D can be expressed as

We ¼
1

2
PD

To develop the expression for internal work or strain energy of the
truss, let us focus our attention on an arbitrary member j (e.g., member
CD in Fig. 7.20) of the truss. If F represents the axial force in this mem-
ber due to the external load P, then as discussed in Section 7.3, the axial
deformation of this member is given by d ¼ ðFLÞ=ðAEÞ. Therefore, in-
ternal work or strain energy stored in member j, Uj, is given by

Uj ¼
1

2
Fd ¼ F 2L

2AE

The strain energy of the entire truss is simply equal to the sum of the
strain energies of all of its members and can be expressed as

U ¼
P F 2L

2AE
ð7:41Þ

Note that a factor of 1
2 appears in the expression for strain energy because

the axial force F and the axial deformation d caused by F in each member
of the truss are related by the linear relationship d ¼ ðFLÞ=ðAEÞ.

Strain Energy of Beams

To develop the expression for the strain energy of beams, consider an
arbitrary beam, as shown in Fig. 7.21(a). As the external load P acting
on the beam increases gradually from zero to its final value, the internal
bending moment M acting on a di¤erential element dx of the beam
(Fig. 7.21(a) and (b)) also increases gradually from zero to its final value,
while the cross sections of element dx rotate by an angle dy with respect
to each other. The internal work or the strain energy stored in the ele-
ment dx is, therefore, given by

dU ¼ 1

2
MðdyÞ ð7:42Þ

FIG. 7.20
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Recalling from Section 7.4 (Eq. (7.27)) that the change in slope, dy, can
be expressed in terms of the bending moment, M, by the relationship
dy ¼ ðM=EIÞ dx, we write Eq. (7.42) as

dU ¼ M 2

2EI
dx ð7:43Þ

The expression for the strain energy of the entire beam can now be ob-
tained by integrating Eq. (7.43) over the length L of the beam:

U ¼
ðL

0

M 2

2EI
dx ð7:44Þ

When the quantity M=EI is not a continuous function of x over the en-
tire length of the beam, then the beam must be divided into segments so
that M=EI is continuous in each segment. The integral on the right-hand
side of Eq. (7.44) is then evaluated by summing the integrals for all the
segments of the beam. We must realize that Eq. (7.44) is based on the
consideration of bending deformations of beams and does not include
the e¤ect of shear deformations, which, as stated previously, are negli-
gibly small as compared to the bending deformations for most beams.

Strain Energy of Frames

The portions of frames may be subjected to axial forces as well as bend-
ing moments, so the total strain energy (U) of frames is expressed as the
sum of the strain energy due to axial forces (Ua) and the strain energy
due to bending (Ub); that is,

U ¼ Ua þUb ð7:45Þ

If a frame is divided into segments so that the quantity F=AE is con-
stant over the length L of each segment, then—as shown previously in the
case of trusses—the strain energy stored in each segment due to the axial
force F is equal to ðF 2LÞ=ð2AEÞ. Therefore, the strain energy due to axial
forces for the entire frame can be expressed as

Ua ¼
P F 2L

2AE
ð7:46Þ

FIG. 7.21
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Similarly, if the frame is divided into segments so that the quantity
M=EI is continuous over each segment, then the strain energy stored in
each segment due to bending can be obtained by integrating the quantity
M=EI over the length of the segment (Eq. (7.44)). The strain energy due
to bending for the entire frame is equal to the sum of strain energies of
bending of all the segments of the frame and can be expressed as

Ub ¼
Pð

M 2

2EI
dx ð7:47Þ

By substituting Eqs. (7.46) and (7.47) into Eq. (7.45), we obtain the fol-
lowing expression for the strain energy of frames due to both the axial
forces and bending:

U ¼
P F 2L

2AE
þ
Pð

M 2

2EI
dx ð7:48Þ

As stated previously, the axial deformations of frames are generally
much smaller than the bending deformations and are usually neglected
in the analysis. The strain energy of frames due only to bending is ex-
pressed as

U ¼
Pð

M 2

2EI
dx ð7:49Þ

7.7 Castigliano’s Second Theorem

In this section, we consider another energy method for determining de-
flections of structures. This method, which can be applied only to lin-
early elastic structures, was initially presented by Alberto Castigliano in
1873 and is commonly known as Castigliano’s second theorem. (Casti-
gliano’s first theorem, which can be used to establish equations of equi-
librium of structures, is not considered in this text.) Castigliano’s second
theorem can be stated as follows:

For linearly elastic structures, the partial derivative of the strain energy

with respect to an applied force (or couple) is equal to the displacement (or

rotation) of the force (or couple) along its line of action.

In mathematical form, this theorem can be stated as:

qU

qPi

¼ Di or
qU

qMi

¼ yi ð7:50Þ

in which U ¼ strain energy; Di ¼ deflection of the point of application of
the force Pi in the direction of Pi; and yi ¼ rotation of the point of ap-
plication of the couple Mi in the direction of Mi.

To prove this theorem, consider the beam shown in Fig. 7.22. The
beam is subjected to external loads P1; P2, and P3, which increase
gradually from zero to their final values, causing the beam to deflect, as
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shown in the figure. The strain energy (U) stored in the beam due to the
external work (We) performed by these forces is given by

U ¼We ¼
1

2
P1D1 þ

1

2
P2D2 þ

1

2
P3D3 ð7:51Þ

in which D1;D2, and D3 are the deflections of the beam at the points of
application of P1;P2, and P3, respectively, as shown in the figure. As
Eq. (7.51) indicates, the strain energy U is a function of the external loads
and can be expressed as

U ¼ f ðP1;P2;P3Þ ð7:52Þ

Now, assume that the deflection D2 of the beam at the point of ap-
plication of P2 is to be determined. If P2 is increased by an infinitesimal
amount dP2, then the increase in strain energy of the beam due to the
application of dP2 can be written as

dU ¼ qU

qP2
dP2 ð7:53Þ

and the total strain energy, UT , now stored in the beam is given by

UT ¼ U þ dU ¼ U þ qU

qP2
dP2 ð7:54Þ

The beam is assumed to be composed of linearly elastic material, so
regardless of the sequence in which the loads P1; ðP2 þ dP2Þ, and P3 are
applied, the total strain energy stored in the beam should be the same.

Consider, for example, the sequence in which dP2 is applied to the
beam before the application of P1;P2, and P3. If dD2 is the deflection of
the beam at the point of application of dP2 due to dP2, then the strain
energy stored in the beam is given by ð1=2ÞðdP2ÞðdD2Þ. The loads P1;P2,
and P3 are then applied to the beam, causing the additional deflections
D1;D2, and D3, respectively, at their points of application. Note that since
the beam is linearly elastic, the loads P1;P2, and P3 cause the same de-
flections, D1;D2, and D3, respectively, and perform the same amount of
external work on the beam regardless of whether any other load is acting
on the beam or not. The total strain energy stored in the beam during the
application of dP2 followed by P1;P2, and P3 is given by

UT ¼
1

2
ðdP2ÞðdD2Þ þ dP2ðD2Þ þ

1

2
P1D1 þ

1

2
P2D2 þ

1

2
P3D3 ð7:55Þ

Since dP2 remains constant during the additional deflection, D2, of its
point of application, the term dP2ðD2Þ on the right-hand side of Eq. (7.55)

FIG. 7.22
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does not contain the factor 1=2. The term ð1=2ÞðdP2ÞðdD2Þ represents a
small quantity of second order, so it can be neglected, and Eq. (7.55) can
be written as

UT ¼ dP2ðD2Þ þ
1

2
P1D1 þ

1

2
P2D2 þ

1

2
P3D3 ð7:56Þ

By substituting Eq. (7.51) into Eq. (7.56) we obtain

UT ¼ dP2ðD2Þ þU ð7:57Þ

and by equating Eqs. (7.54) and (7.57), we write

U þ qU

qP2
dP2 ¼ dP2ðD2Þ þU

or

qU

qP2
¼ D2

which is the mathematical statement of Castigliano’s second theorem.

Application to Trusses

To develop the expression of Castigliano’s second theorem, which can be
used to determine the deflections of trusses, we substitute Eq. (7.41) for
the strain energy (U) of trusses into the general expression of Castigliano’s
second theorem for deflections as given by Eq. (7.50) to obtain

D ¼ q

qP

P F 2L

2AE
ð7:58Þ

As the partial derivative qF 2=qP ¼ 2FðqF=qPÞ, the expression of Casti-
gliano’s second theorem for trusses can be written as

D ¼
P qF

qP

� �
FL

AE
ð7:59Þ

The foregoing expression is similar in form to the expression of the
method of virtual work for trusses (Eq. (7.23)). As illustrated by the
solved examples at the end of this section, the procedure for computing
deflections by Castigliano’s second theorem is also similar to that of the
virtual work method.

Application to Beams

By substituting Eq. (7.44) for the strain energy (U) of beams into the general
expressions of Castigliano’s second theorem (Eq. (7.50)), we obtain the fol-
lowing expressions for the deflections and rotations, respectively, of beams:

D ¼ q

qP

ðL

0

M 2

2EI
dx and y ¼ q

qM

ðL

0

M 2

2EI
dx
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or

D ¼
ðL

0

qM

qP

� �
M

EI
dx ð7:60Þ

and

y ¼
ðL

0

qM

qM

� �
M

EI
dx ð7:61Þ

Application to Frames

Similarly, by substituting Eq. (7.48) for the strain energy (U) of frames
due to the axial forces and bending into the general expressions of Cas-
tigliano’s second theorem (Eq. (7.50)), we obtain the following expres-
sions for the deflections and rotations, respectively, of frames:

D ¼
P qF

qP

� �
FL

AE
þ
Pð

qM

qP

� �
M

EI
dx ð7:62Þ

and

y ¼
P qF

qM

� �
FL

AE
þ
Pð

qM

qM

� �
M

EI
dx ð7:63Þ

When the e¤ect of axial deformations of the members of frames is neg-
lected in the analysis, Eqs. (7.62) and (7.63) reduce to

D ¼
Pð

qM

qP

� �
M

EI
dx ð7:64Þ

and

y ¼
Pð

qM

qM

� �
M

EI
dx ð7:65Þ

Procedure for Analysis

As stated previously, the procedure for computing deflections of struc-
tures by Castigliano’s second theorem is similar to that of the virtual
work method. The procedure essentially involves the following steps.

1. If an external load (or couple) is acting on the given structure
at the point and in the direction of the desired deflection (or
rotation), then designate that load (or couple) as the variable
P (or M ) and go to step 2. Otherwise, apply a fictitious load P
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(or couple M ) at the point and in the direction of the desired
deflection (or rotation).

2. Determine the axial force F and/or the equation(s) for bending
moment MðxÞ in each member of the structure in terms of P
(or M ).

3. Di¤erentiate the member axial forces F and/or the bending
moments MðxÞ obtained in step 2 with respect to the variable P
(or M ) to compute qF=qP and/or qM=qP (or qF=qM and/or
qM=qM ).

4. Substitute the numerical value of P (or M ) into the expressions
of F and/or MðxÞ and their partial derivatives. If P (or M ) rep-
resents a fictitious load (or couple), its numerical value is zero.

5. Apply the appropriate expression of Castigliano’s second theo-
rem (Eqs. (7.59) through (7.65)) to determine the desired deflec-
tion or rotation of the structure. A positive answer for the desired
deflection (or rotation) indicates that the deflection (or rotation)
occurs in the same direction as P (or M ) and vice versa.

Example 7.15

Determine the deflection at point C of the beam shown in Fig. 7.23(a) by Castigliano’s second theorem.

Solution
This beam was previously analyzed by the moment-area, the conjugate-beam, and the virtual work methods in Exam-
ples 6.7, 6.13, and 7.9, respectively.

The 12-k external load is already acting at point C, where the deflection is to be determined, so we designate this
load as the variable P, as shown in Fig. 7.23(b). Next, we compute the reactions of the beam in terms of P. These are
also shown in Fig. 7.23(b). Since the loading is discontinuous at point B, the beam is divided into two segments, AB and
BC. The x coordinates used for determining the equations for the bending moment in the two segments of the beam are
shown in Fig. 7.23(b). The equations forM (in terms of P) obtained for the segments of the beam are tabulated in Table 7.12,
along with the partial derivatives of M with respect to P.

FIG. 7.23

continued
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The deflection at C can now be determined by substituting P ¼ 12 k into the equations for M and qM=qP and by
applying the expression of Castigliano’s second theorem as given by Eq. (7.60):

DC ¼
ðL

0

qM

qP

� �
M

EI

� �
dx

DC ¼
1

EI

ð 30

0

� x

3

� �
30x� 12x

3
� x2

� �
dxþ

ð 10

0

ð�xÞð�12xÞ dx
� �

¼ 1

EI

ð 30

0

� x

3

� �
ð26x� x2Þ dxþ

ð10

0

ð�xÞð�12xÞ dx
� �

¼ � 6;500 k-ft3

EI
¼ � 6;500ð12Þ3

ð29;000Þð2;000Þ ¼ �0:194 in:

The negative answer for DC indicates that point C deflects upward in the direction opposite to that of P.

DC ¼ 0:194 in: " Ans.

Example 7.16

Use Castigliano’s second theorem to determine the deflection at point B of the beam shown in Fig. 7.24(a).

Solution
Using the x coordinate shown in Fig. 7.24(b), we write the equation for the bending moment in the beam as

M ¼ �Px

The partial derivative of M with respect to P is given by

qM

qP
¼ �x

TABLE 7.12

x Coordinate

Segment Origin Limits (ft) M (k-ft)

qM

qP
(k-ft/k)

AB A 0–30 30� P

3

� �
x� x2 � x

3

CB C 0–10 �Px �x

FIG. 7.24

A B

L

(a)
EI = constant

P

A B

x

(b)

P

continued
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The deflection at B can now be obtained by applying the expression of Castigliano’s second theorem, as given by
Eq. (7.60), as follows:

DB ¼
ðL

0

qM

qP

� �
M

EI

� �
dx

DB ¼
ðL

0

ð�xÞ �Px

EI

� �
dx

¼ P

EI

ð L

0

x2 dx ¼ PL3

3EI

DB ¼
PL3

3EI
# Ans.

Example 7.17

Determine the rotation of joint C of the frame shown in Fig. 7.25(a) by Castigliano’s second theorem.

FIG. 7.25

continued
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Solution
This frame was previously analyzed by the virtual work method in Example 7.11.

No external couple is acting at joint C, where the rotation is desired, so we apply a fictitious couple M ð¼ 0Þ at C,
as shown in Fig. 7.25(b). The x coordinates used for determining the bending moment equations for the three segments of
the frame are also shown in Fig. 7.25(b), and the equations for M in terms of M and qM=qM obtained for the three
segments are tabulated in Table 7.13. The rotation of joint C of the frame can now be determined by setting M ¼ 0 in
the equations for M and qM=qM and by applying the expression of Castigliano’s second theorem as given by Eq. (7.65):

yC ¼
Pð

qM

qM

� �
M

EI
dx

¼
ð 30

0

x

30

� �
38:5x� 1:5

x2

2

� �
dx

¼ 6;487:5 k-ft2

EI
¼ 6;487:5ð12Þ2

ð29;000Þð2;500Þ ¼ 0:0129 rad

yC ¼ 0:0129 rad @ Ans.

Example 7.18

Use Castigliano’s second theorem to determine the horizontal and vertical components of the deflection at joint B of the
truss shown in Fig. 7.26(a).

TABLE 7.13

x Coordinate

Segment Origin Limits (ft) M (k-ft)

qM

qM
(k-ft/k-ft)

AB A 0–12 40x 0

CB C 0–12 480 0

DC D 0–30 38:5þM

30

� �
x� 1:5

x2

2

x

30

FIG. 7.26

continued
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Solution
This truss was previously analyzed by the virtual work method in Example 7.3.

As shown in Fig. 7.26(b), a fictitious horizontal force P1 ð¼ 0Þ is applied at joint B to determine the horizontal
component of deflection, whereas the 84-kN vertical load is designated as the variable P2 to be used for computing the
vertical component of deflection at joint B. The member axial forces, in terms of P1 and P2, are then determined by ap-
plying the method of joints. These member forces F , along with their partial derivatives with respect to P1 and P2, are
tabulated in Table 7.14. Note that the tensile axial forces are considered as positive and the compressive forces are
negative. Numerical values of P1 ¼ 0 and P2 ¼ 84 kN are then substituted in the equations for F , and the expression of
Castigliano’s second theorem, as given by Eq. (7.59) is applied, as shown in the table, to determine the horizontal and
vertical components of the deflection at joint B of the truss.

7.8 Betti’s Law and Maxwell’s Law of Reciprocal Deflections

Maxwell’s law of reciprocal deflections, initially developed by James C.
Maxwell in 1864, plays an important role in the analysis of statically in-
determinate structures to be considered in Part Three of this text. Max-
well’s law will be derived here as a special case of the more general Betti’s
law, which was presented by E. Betti in 1872. Betti’s law can be stated as
follows:

For a linearly elastic structure, the virtual work done by a P system of

forces and couples acting through the deformation caused by a Q system of

forces and couples is equal to the virtual work of the Q system acting

through the deformation due to the P system.

To show the validity of this law, consider the beam shown in Fig. 7.27.
The beam is subjected to two di¤erent systems of forces, P and Q systems,
as shown in Fig. 7.27(a) and (b), respectively. Now, let us assume that we

TABLE 7.14

For P1 ¼ 0 and P2 ¼ 84 kN

Member
L
(m)

F
(kN)

qF

qP1

(kN/kN)

qF

qP2

(kN/kN)
ðqF=qP1ÞFL
(kN �m)

ðqF=qP2ÞFL
(kN �m)

AB 4 �15þ P1 þ 0:43P2 1 0.43 84.48 36.32

BC 3 �15þ 0:43P2 0 0.43 0 27.24

AD 5.66 �28:28� 0:61P2 0 �0.61 0 274.55

BD 4 P2 0 1 0 336.00

CD 5 25� 0:71P2 0 �0.71 0 122.97P qF

qP

� �
FL 84.48 797.08

DBH ¼
1

EA

P qF

qP1

� �
FL DBV ¼

1

EA

P qF

qP2

� �
FL

¼ 84:48

EA
kN �m ¼ 797:08

EA
kN �m

¼ 84:48

200ð106Þð0:0012Þ ¼ 0:00035 m ¼ 797:08

200ð106Þð0:0012Þ ¼ 0:00332 m

DBH ¼ 0:35 mm! Ans. DBV ¼ 3:32 mm # Ans.
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subject the beam that has the P forces already acting on it (Fig. 7.27(a)) to
the deflections caused by the Q system of forces (Fig. 7.27(b)). The virtual
external work (Wve) done can be written as

Wve ¼ P1DQ1 þ P2DQ2 þ � � � þ PnDQn

or

Wve ¼
Pn
i¼1

PiDQi

By applying the principle of virtual forces for deformable bodies,
Wve ¼Wvi, and using the expression for the virtual internal work done in
beams (Eq. (7.29)), we obtain

Pn
i¼1

PiDQi ¼
ðL

0

MPMQ

EI
dx ð7:66Þ

Next, we assume that the beam with the Q forces acting on it
(Fig. 7.27(b)) is subjected to the deflections caused by the P forces
(Fig. 7.27(a)). By equating the virtual external work to the virtual in-
ternal work, we obtain

Pm
j¼1

QjDpj ¼
ðL

0

MQMP

EI
dx ð7:67Þ

Noting that the right-hand sides of Eqs. (7.66) and (7.67) are identical,
we equate the left-hand sides to obtain

Pn
i¼1

PiDQi ¼
Pm
j¼1

QjDPj ð7:68Þ

Equation (7.68) represents the mathematical statement of Betti’s law.
Maxwell’s law of reciprocal deflections states that for a linearly elas-

tic structure, the deflection at a point i due to a unit load applied at a point j

is equal to the deflection at j due to a unit load at i.
In this statement, the terms deflection and load are used in the general

sense to include rotation and couple, respectively. As mentioned pre-
viously, Maxwell’s law can be considered as a special case of Betti’s law.
To prove Maxwell’s law, consider the beam shown in Fig. 7.28. The
beam is separately subjected to the P and Q systems, consisting of the
unit loads at points i and j, respectively, as shown in Fig. 7.28(a) and (b).
As the figure indicates, fij represents the deflection at i due to the unit
load at j, whereas fji denotes the deflection at j due to the unit load at i.
These deflections per unit load are referred to as flexibility coe‰cients. By
applying Betti’s law (Eq. (7.68)), we obtain

1ð fijÞ ¼ 1ð fjiÞ

or

fij ¼ fji ð7:69Þ

which is the mathematical statement of Maxwell’s law.

FIG. 7.27

FIG. 7.28
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The reciprocal relationship remains valid between the rotations
caused by two unit couples as well as between the deflection and the
rotation caused by a unit couple and a unit force, respectively.

Summary

In this chapter we have learned that the work done by a force P (or cou-
ple M ) during a displacement D (or rotation y) of its point of application
in the direction of its line of action is given by

W ¼
ðD

0

PdD ð7:1Þ

or

W ¼
ð y

0

M dy ð7:4Þ

The principle of virtual work for rigid bodies states that if a rigid
body is in equilibrium under a system of forces and if it is subjected to
any small virtual rigid-body displacement, the virtual work done by the
external forces is zero.

The principle of virtual forces for deformable bodies can be mathe-
matically stated as

Wve ¼Wvi ð7:16Þ

in which Wve ¼ virtual external work done by virtual external forces (and
couples) acting through the real external displacements (and rotations) of
the structure; and Wvi ¼ virtual internal work done by the virtual in-
ternal forces (and couples) acting through the real internal displacements
(and rotations) of the structure.

The method of virtual work for determining the deformations of
structures is based on the principle of virtual forces for deformable
bodies. The method employs two separate systems: (1) a real system of
loads (or other e¤ects) causing the deformation to be determined and
(2) a virtual system consisting of a unit load (or unit couple) applied at
the point and in the direction of the desired deflection (or rotation). The
explicit expressions of the virtual work method to be used to determine
the deflections of trusses, beams, and frames are as follows:

Trusses 1ðDÞ ¼
P

Fv

FL

AE

� �
ð7:23Þ

Beams 1ðDÞ ¼
ðL

0

MvM

EI
dx ð7:30Þ

Frames 1ðDÞ ¼
P

Fv

FL

AE

� �
þ
Pð

MvM

EI
dx ð7:35Þ

The principle of conservation of energy states that the work per-
formed by statically applied external forces on an elastic structure in
equilibrium is equal to the work done by internal forces or the strain

Summary 319



energy stored in the structure. The expressions for the strain energy of
trusses, beams and frames are

Trusses U ¼
P F 2L

2AE
ð7:41Þ

Beams U ¼
ðL

0

M 2

2EI
dx ð7:44Þ

Frames U ¼
P F 2L

2AE
þ
Pð

M 2

2EI
dx ð7:48Þ

Castigliano’s second theorem for linearly elastic structures can be
mathematically expressed as

qU

qPi

¼ Di or
qU

qMi

¼ yi ð7:50Þ

The expressions of Castigliano’s second theorem, which can be used to
determine deflections, are as follows:

Trusses D ¼
P qF

qP

� �
FL

AE
ð7:59Þ

Beams D ¼
ðL

0

qM

qP

� �
M

EI
dx ð7:60Þ

Frames D ¼
P qF

qP

� �
FL

AE
þ
Pð

qM

qP

� �
M

EI
dx ð7:62Þ

Maxwell’s law of reciprocal deflections states that, for a linearly
elastic structure, the deflection at a point i due to a unit load applied at
a point j is equal to the deflection at j due to a unit load at i.

PROBLEMS

Section 7.3

7.1 through 7.5 Use the virtual work method to determine
the horizontal and vertical components of the deflection at
joint B of the truss shown in Figs. P7.1–P7.5.

2 m 4 m

A C

B

100 kN

50 kN

3 m

EA = constant
E = 70 GPa
A = 1,000 mm2

FIG. P7.2, P7.52

15 ft

25 k

5 ft

A

C

B

EA = constant
E = 10,000 ksi
A = 6 in.2

FIG. P7.1, P7.51
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7.6 and 7.7 Use the virtual work method to determine the
vertical deflection at joint C of the truss shown in Figs. P7.6
and P7.7.

7.8 Use the virtual work method to determine the horizon-
tal deflection at joint E of the truss shown in Fig. P7.8.

FIG. P7.8, P7.56

A C

B

12 ft

75 k

16 ft

EA = constant
E = 29,000 ksi
A = 5.25 in.2

FIG. P7.3, P7.53

50 kN

210 kN

4 m

CA

B

3 m3 m

EA = constant
E = 200 GPa
A = 1,100 mm2

FIG. P7.4, P7.54

30 k

E = 10,000 ksi

(4 in.2 )

(6 in. 2)

(6 in. 2)

(6 in.2)

(4
 in

.2
)

45 k

10 ft

A

C

D

B

10 ft 10 ft

FIG. P7.5, P7.55

E = 29,000 ksi

(4 in.2)

(4 in.2)(4 in.2)

15 ft

A
C

D E

B

20 ft 20 ft

25 k25 k

(3 in
.2 )

(3
 in

.2
) (4 in. 2)

(3
 in

.2
)

FIG. P7.6

FIG. P7.7
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7.9 Use the virtual work method to determine the horizon-
tal deflection at joint H of the truss shown in Fig. P7.9.

7.10 through 7.12 Determine the smallest cross-sectional
area A required for the members of the truss shown, so that
the horizontal deflection at joint D does not exceed 10 mm.
Use the virtual work method.

7.13 through 7.15 Determine the smallest cross-sectional
area A for the members of the truss shown, so that the ver-
tical deflection at joint B does not exceed 0.4 inches. Use
the method of virtual work.

FIG. P7.12

FIG. P7.9

FIG. P7.11

FIG. P7.10
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7.16 Determine the horizontal deflection at joint E of the
truss shown in Fig. P7.16 due to a temperature increase of
50�C in members AC and CE. Use the method of virtual
work.

7.17 Determine the vertical deflection at joint B of the truss
shown in Fig. P7.17 due to a temperature increase of 70�F
in members AB and BC, and a temperature drop of 35�F in
members AD, DE, EF , and CF . Use the method of virtual
work.

7.18 Determine the horizontal deflection at joint E of the
truss shown in Fig. P7.16 if member BC is 18 mm too long
and member CE is 15mm too short. Use the method of
virtual work.

7.19 Determine the vertical deflection at joint B of the truss
shown in Fig. P7.17 if members AB and BE are 0.5 in. too
short. Use the method of virtual work.

FIG. P7.15

FIG. P7.14

FIG. P7.13

A B

DC

E

4 m

4 m

3 m

a  = 1.2 (10–5)/°C

FIG. P7.16, P7.18

12 ft 12 ft 12 ft 12 ft

B
A C

FD

E

a = 6.5 (10–6)/°F

7 ft

FIG. P7.17, P7.19
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Section 7.4

7.20 and 7.21 Use the virtual work method to determine the
slope and deflection at point B of the beam shown.

7.22 and 7.23 Determine the deflection at point B of the
beam shown in Figs. P7.20 and P7.21 by the virtual work
method. Use the graphical procedure (Table 7.6) to evaluate
the virtual work integrals.

7.24 through 7.27 Use the virtual work method to determine
the deflection at point C of the beam shown.

7.28 through 7.30 Determine the deflection at point C of
the beam shown in Figs. P7.24�P7.26 by the virtual work
method. Use the graphical procedure (Table 7.6) to eval-
uate the virtual work integrals.

7.31 through 7.33 Determine the smallest moment of inertia
I required for the beam shown, so that its maximum de-
flection does not exceed the limit of 1=360 of the span length
(i.e., Dmax aL=360). Use the method of virtual work.

FIG. P7.27, P7.62

30 ft

BA

2 k/ft

EI = constant
E = 29,000 ksi
I = 3,000 in.4

FIG. P7.20, P7.22, P7.57

A
B

4 m

EI = constant
E = 70 GPa
I = 164 (106) mm4

50 kN . m

FIG. P7.21, P7.23, P7.58

E = constant

A

2I I

B C

P

2L
3

L
3

FIG. P7.24, P7.28, P7.59

100 kN 300 kN . m

A

E = constant = 70 GPa
I = 500 (106) mm4

6 m
2I

3 m
I

B C

FIG. P7.25, P7.29, P7.60

B

3 k/ft

A

L = 20 ft
EI = constant
E = 29,000 ksi

FIG. P7.32

FIG. P7.26, P7.30, P7.61

A
CB

L = 10 m

5 m 5 m

EI = constant
 E  = 200 GPa

300 kN . m
60 kN

FIG. P7.31
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7.34 and 7.35 Use the virtual work method to determine the
slope and deflection at point D of the beam shown.

Section 7.5

7.36 and 7.37 Use the virtual work method to determine the
vertical deflection at joint C of the frame shown.

7.38 Use the virtual work method to determine the hori-
zontal deflection at joint C of the frame shown.

15 ft

30 ft

20 ft

A

B

C

0.
3 

k/
ft

0.4 k/ft

EI = constant
E = 10,000 ksi
I = 8,160 in.4

FIG. P7.37

4 m

12 kN/m

4 m
C

A B

L = 8 m
EI = constant
E = 70 GPa

FIG. P7.33

7 m 3 m 5 m

120 kN

A

B

C

D

EI = constant
E = 200 GPa
I = 262 (106) mm4

FIG. P7.34, P7.63

FIG. P7.35, P7.64

20 ft

15 ft

A

B C

2 k/ft

EI = constant
E = 29,000 ksi
I = 2,000 in.4

FIG. P7.36, P7.65
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7.39 Use the virtual work method to determine the rotation
of joint D of the frame shown.

7.40 Use the virtual work method to determine the hori-
zontal deflection at joint E of the frame shown in
Fig. P7.39.

7.41 Use the virtual work method to determine the rotation
of joint B of the frame shown.

7.42 Use the virtual work method to determine the vertical
deflection at joint B of the frame shown in Fig. P7.41.

7.43 Use the virtual work method to determine the rotation
of joint D of the frame shown.

7.44 Determine the rotation of joint D of the frame shown
in Fig. P7.43 by the virtual work method. Use the graphical
procedure (Table 7.6) to evaluate the virtual work integrals.

7.45 and 7.46 Use the virtual work method to determine the
horizontal deflection at joint C of the frame shown.

A

B I C

D

I

5 m 2 I

3 m

4 m

200 kN

E = constant = 70 GPa
I = 1,290 (106) mm4

FIG. P7.43, P7.44, P7.67

5 m

5 m

A

B

C
25

 k
N

/m

EI = constant
E = 70 GPa
I = 1,030 (106) mm4

FIG. P7.38, P7.66

FIG. P7.39, P7.40

FIG. P7.41, P7.42
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7.47 and 7.48 Determine the smallest moment of inertia I

required for the members of the frame shown, so that the
horizontal deflection at joint C does not exceed 1 inch. Use
the virtual work method.

7.49 Use the virtual work method to determine the rotation
of joint D of the frame shown.

7.50 Using the method of virtual work, determine the verti-
cal deflection at joint E of the frame shown in Fig. P7.49.

Section 7.7

7.51 through 7.55 Use Castigliano’s second theorem to de-
termine the horizontal and vertical components of the de-
flection at joint B of the trusses shown in Figs. P7.1–P7.5.

7.56 Use Castigliano’s second theorem to determine the hor-
izontal deflection at joint E of the truss shown in Fig. P7.8.

FIG. P7.49, P7.50

FIG. P7.45, P7.68

10 ft

B C

D

A

2 k/ft

15 ft 

30 ft

EI = constant
E = 29,000 ksi   I = 1,500 in.4

FIG. P7.46, P7.69

FIG. P7.47

FIG. P7.48
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7.57 and 7.58 Use Castigliano’s second theorem to deter-
mine the slope and deflection at point B of the beam shown
in Figs. P7.20 and P7.21.

7.59 through 7.62 Use Castigliano’s second theorem to de-
termine the deflection at point C of the beams shown in
Figs. P7.24–P7.27.

7.63 and 7.64 Use Castigliano’s second theorem to deter-
mine the slope and deflection at point D of the beam shown
in Figs. P7.34 and P7.35.

7.65 Use Castigliano’s second theorem to determine the ver-
tical deflection at joint C of the frame shown in Fig. P7.36.

7.66 Use Castigliano’s second theorem to determine the hori-
zontal deflection at joint C of the frame shown in Fig. P7.38.

7.67 Use Castigliano’s second theorem to determine the ro-
tation of joint D of the frame shown in Fig. P7.43.

7.68 and 7.69 Use Castigliano’s second theorem to deter-
mine the horizontal deflection at joint C of the frames shown
in Figs. P7.45 and P7.46.
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8
Influence Lines
8.1 Influence Lines for Beams and Frames by Equilibrium Method
8.2 Müller-Breslau’s Principle and Qualitative Influence Lines
8.3 Influence Lines for Girders with Floor Systems
8.4 Influence Lines for Trusses
8.5 Influence Lines for Deflections

Summary
Problems

A Bridge Subjected to Variable

Loads Due to Tra‰c
Oliver Strewe/Lonely Planet Images/Getty Images
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In the previous chapters, we considered the analysis of structures sub-
jected to loads whose positions were fixed on the structures. An example
of such stationary loading is the dead load due to the weight of the
structure itself and of other material and equipment permanently attached
to the structure. However, structures generally are also subjected to loads
(such as live loads and environmental loads) whose positions may vary on
the structure. In this chapter, we study the analysis of statically determi-
nate structures subjected to variable loads.

Consider, as an example, the bridge truss shown in Fig. 8.1. As a car
moves across the bridge, the forces in the members of the truss will vary
with the position x of the car. It should be realized that the forces in
di¤erent truss members will become maximum at di¤erent positions of
the car. For example, if the force in member AB becomes maximum
when the car is at a certain position x ¼ x1, then the force in another
member—for example, member CH—may become maximum when the
car is at a di¤erent position x ¼ x2. The design of each member of the
truss must be based on the maximum force that develops in that member
as the car moves across the bridge. Therefore, the analysis of the truss
would involve, for each member, determining the position of the car at
which the force in the member becomes maximum and then computing
the value of the maximum member force.

From the foregoing discussion, we can see that the analysis of struc-
tures for variable loads consists of two steps: (1) determining the posi-
tion(s) of the load(s) at which the response function of interest (e.g., a
reaction, shear or bending moment at a section of a beam, or force in a



truss member) becomes maximum, and (2) computing the maximum
value of the response function.

An important concept used in the analysis of structures subjected to
variable loads is that of the influence lines, initially introduced by E.Winkler
in 1867. An influence line is a graph of a response function of a structure as a

function of the position of a downward unit load moving across the structure.
We begin this chapter by describing the procedure for constructing

influence lines for the reactions, shears, and bending moments of beams
and frames by using the equations of equilibrium. We next discuss the
Müller-Breslau principle and its application for determining influence
lines. We also consider the influence lines for the force response functions
of girders with floor systems and of trusses and, finally, the influence lines
for deflections. The application of influence lines in determining the max-
imum values of response functions of structures due to variable loads is
considered in the next chapter.

8.1 Influence Lines for Beams and Frames by Equilibrium Method

Consider the simply supported beam shown in Fig. 8.2(a). The beam is
subjected to a downward concentrated load of unit magnitude, which
moves from the left end A of the beam to the right end C. The position
of the unit load is defined by the coordinate x measured from the left
end A of the beam, as shown in the figure. Suppose that we wish to draw
the influence lines for the vertical reactions at supports A and C and the
shear and bending moment at point B, which is located at a distance a

from the left end of the beam, as shown in the figure.

Influence Lines for Reactions

To develop the influence line for the vertical reaction Ay of the beam, we
determine the expression for Ay in terms of the variable position of the
unit load, x, by applying the equilibrium equation:

þ ’
P

MC ¼ 0

�AyðLÞ þ 1ðL� xÞ ¼ 0

Ay ¼
1ðL� xÞ

L
¼ 1� x

L
ð8:1Þ

Equation (8.1) indicates that Ay is a linear function of x, with Ay ¼ 1 at
x ¼ 0 and Ay ¼ 0 at x ¼ L.

FIG. 8.1
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FIG. 8.2
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Equation (8.1) represents the equation of the influence line for Ay,
which is constructed by plotting this equation with Ay as ordinate against
the position of the unit load, x, as abscissa, as shown in Fig. 8.2(b). Note
that this influence line (Fig. 8.2(b)) shows graphically how the movement
of a unit load across the length of the beam influences the magnitude of
the reaction Ay. As this influence line indicates, Ay ¼ 1 when the unit
load is located at the left support A of the beam (i.e., when x ¼ 0). As the
unit load moves from A to C, the magnitude of Ay decreases linearly until
it becomes zero when the unit load reaches the right support C (i.e., when
x ¼ L). It is important to realize that the ordinate of the influence line at
any position x is equal to the magnitude of Ay due to a unit load acting at
the position x on the beam. For example, from the influence line for Ay

(Fig. 8.2(b)), we can determine that when a unit load is applied at a dis-
tance of 0.25L from the end A of the beam, the magnitude of the reaction
Ay will be 0.75. Similarly, when the unit load is acting at x ¼ 0:6L, the
magnitude of Ay will be 0.4, and so on.

The influence line for the vertical reaction Cy of the beam (Fig. 8.2(a))
can be developed by using the procedure just outlined. To determine the
expression for Cy in terms of x, we apply the equilibrium equation:

þ ’
P

MA ¼ 0

�1ðxÞ þ CyðLÞ ¼ 0

Cy ¼
1ðxÞ
L
¼ x

L
ð8:2Þ

Equation (8.2) represents the equation of the influence line for Cy, which
is constructed by plotting this equation, as shown in Fig. 8.2(c). It can be
seen from Fig. 8.2(b) and (c) that the sum of the ordinates of the influence
lines for the reactions Ay and Cy at any position of the unit load, x, is
equal to 1, indicating that the equilibrium equation

P
Fy ¼ 0 is satisfied.

Influence Line for Shear at B

The influence lines for shears and bending moments can be developed by
employing a procedure similar to that used for constructing the influence
lines for reactions. To develop the influence line for the shear at point B
of the beam (Fig. 8.2(d)), we determine the expressions for SB. It can be
seen from Fig. 8.2(d) that when the unit load is located to the left of point
B—that is, on segment AB of the beam (0a x < a)—the shear at B can
be conveniently obtained by using the free body of the portion BC of the
beam that is to the right of B. Considering the downward external forces
and reactions acting on the portion BC as positive in accordance with the
beam sign convention (Section 5.1), we determine the shear at B as

SB ¼ �Cy 0a x < a

When the unit load is located to the right of point B—that is, on segment
BC of the beam (a < xaL)—it is simpler to determine SB by using the
free body of the portion AB, which is to the left of B. Considering the
upward external forces and reactions acting on the portion AB as pos-
itive, we determine the shear at B as

SB ¼ Ay a < xaL
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Thus the equations of the influence line for SB can be written as

SB ¼
�Cy 0a x < a

Ay a < xaL

�
ð8:3Þ

Note that Eq. (8.3) expresses the influence line for SB in terms of the in-
fluence lines for the reactions Ay and Cy. This equation indicates that the
segment of the influence line for SB between points A and B (0a x < a)
can be obtained by multiplying the ordinates of the segment of the in-
fluence line for Cy between A and B by �1. Also, according to this equa-
tion, the segment of the influence line for SB between points B and C

(a < xaL) is the same as the segment of the influence line for Ay be-
tween the same two points. The influence line for SB thus constructed
from the influence lines for Ay and Cy is shown in Fig. 8.2(e). It is usually
more convenient to construct the influence lines for shears and bending
moments (to be discussed subsequently) from the influence lines for re-
actions instead of from the equations expressing the shear or bending
moment explicitly in terms of the position of the unit load, x. If desired,
such equations for the influence line for SB in terms of x can be obtained
by simply substituting Eqs. (8.1) and (8.2) into Eq. (8.3); that is,

SB ¼
�Cy ¼ �

x

L
0a x < a

Ay ¼ 1� x

L
a < xaL

8><>: ð8:4Þ

The influence line for SB (Fig. 8.2(e)) shows that the shear at B is
zero when the unit load is located at the left support A of the beam. As
the unit load moves from A to B, the shear at B decreases linearly until
it becomes �a=L when the unit load reaches just to the left of point B.
As the unit load crosses point B, the shear at B increases abruptly to
1� ða=LÞ. It then decreases linearly as the unit load moves toward C

until it becomes zero when the unit load reaches the right support C.

Influence Line for Bending Moment at B

When the unit load is located to the left of point B (Fig. 8.2(d)), the ex-
pression for the bending moment at B can be conveniently obtained by
using the free body of the portion BC of the beam to the right of B.
Considering the counterclockwise moments of the external forces and re-
actions acting on the portion BC as positive in accordance with the beam
sign convention (Section 5.1), we determine the bending moment at B as

MB ¼ CyðL� aÞ 0a xa a

When the unit load is located to the right of point B, we use the free body
of the portion AB to the left of B to determine MB. Considering the
clockwise moments of the external forces and reactions acting on the por-
tion AB as positive, we determine the bending moment at B as

MB ¼ AyðaÞ aa xaL
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Thus the equations of the influence line for MB can be written as

MB ¼
CyðL� aÞ 0a xa a

AyðaÞ aa xaL

�
ð8:5Þ

Equation (8.5) indicates that the segment of the influence line for MB be-
tween points A and B (0a xa a) can be obtained by multiplying the
ordinates of the segment of the influence line for Cy between A and B by
ðL� aÞ. Also, according to this equation the segment of the influence line
for MB between points B and C (aa xaL) can be obtained by multi-
plying the ordinates of the segment of the influence line for Ay between B

and C by a. The influence line for MB thus constructed from the influence
lines for Ay and Cy is shown in Fig. 8.2(f ). The equations of this influence
line in terms of the position of the unit load, x, can be obtained by sub-
stituting Eqs. (8.1) and (8.2) into Eq. (8.5); that is,

MB ¼
CyðL� aÞ ¼ x

L
ðL� aÞ 0a xa a

AyðaÞ ¼ 1� x

L

� �
a aa xaL

8>><>>: ð8:6Þ

Although the influence line for MB (Fig. 8.2(f )) resembles, in shape,
the bending moment diagram of the beam for a concentrated load applied
at point B, the influence line for bending moment has an entirely di¤erent
meaning than the bending moment diagram, and it is essential that we
clearly understand the di¤erence between the two. A bending moment
diagram shows how the bending moment varies at all sections along the
length of a member for a loading condition whose position is fixed on
the member, whereas an influence line for bending moment shows how
the bending moment varies at one particular section as a unit load moves
across the length of the member.

Note from Fig. 8.2 that the influence lines for the reactions, shear,
and bending moment of the simply supported beam consist of straight-
line segments. We show in the following section that this is true for the
influence lines for all response functions involving forces and moments
(e.g., reactions, shears, bending moments, and forces in truss members)
for all statically determinate structures. However, influence lines for the
deflections of statically determinate structures (discussed in Section 8.5)
are composed of curved lines.

Procedure for Analysis

The procedure for constructing influence lines for the reactions, shears,
and bending moments of beams and frames by using the equilibrium
method can be summarized as follows:

1. Select an origin from which the position of a moving downward
concentrated unit load will be measured. It is usually convenient
to assume that the unit load moves from the left end of the struc-
ture to the right end, with its position defined by a coordinate x

measured from the left end of the structure.
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2. To construct an influence line for a support reaction:
a. Place the unit load at a distance x from the left end of the

structure, and determine the expression for the reaction in
terms of x by applying an equation of equilibrium or con-
dition. If the structure is composed of two or more rigid
parts connected together by internal hinges and/or rollers,
the expression for the reaction may change as the unit load
moves from one rigid part to the next by crossing an internal
hinge or roller. Therefore, for such structures, when apply-
ing the equations of condition the unit load must be placed
successively on each rigid part of the structure in the path
of the unit load, and an expression for the reaction must be
determined for each position of the load.

b. Once the expression(s) for the reaction for all the positions
of the unit load has been determined, construct the influence
line by plotting the expression(s) with the magnitude of the
reaction as ordinate against the position x of the unit load
as abscissa. A positive ordinate of the influence line indicates
that the unit load applied at that point causes the reaction to
act in the positive direction (i.e., the direction of the reaction
initially used in deriving the equation of the influence line)
and vice versa.

c. Repeat step 2 until all the desired influence lines for re-
actions have been determined.

3. It is generally convenient to construct the influence lines for
shears and bending moments by using the influence lines for sup-
port reactions. Thus, before proceeding with the construction of
an influence line for shear or bending moment at a point on the
structure, make sure that the influence lines for all the reactions,
on either the left or right side of the point under consideration,
are available. Otherwise, draw the required influence lines for
reactions by using the procedure described in the previous step.
An influence line for the shear (or bending moment) at a point
on the structure can be constructed as follows:
a. Place the unit load on the structure at a variable position x

to the left of the point under consideration, and determine
the expression for the shear (or bending moment). If the in-
fluence lines for all the reactions are known, then it is usually
convenient to use the portion of the structure to the right of
the point for determining the expression for shear (or bend-
ing moment), which will contain terms involving only re-
actions. The shear (or bending moment) is considered to be
positive or negative in accordance with the beam sign con-

vention established in Section 5.1 (see Fig. 5.2).
b. Next, place the unit load to the right of the point under

consideration, and determine the expression for the shear (or
bending moment). If the influence lines for all the reactions
are known, then it is usually convenient to use the portion
of the structure to the left of the point for determining the
desired expression, which will contain terms involving only
reactions.
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c. If the expressions for the shear (or bending moment) contain
terms involving only reactions, then it is generally simpler to
construct the influence line for shear (or bending moment)
by combining the segments of the reaction influence lines in
accordance with these expressions. Otherwise, substitute the
expressions for the reactions into the expressions for the
shear (or bending moment), and plot the resulting expres-
sions, which will now be in terms only of x, to obtain the
influence line.

d. Repeat step 3 until all the desired influence lines for shears
and bending moments have been determined.

Example 8.1

Draw the influence lines for the vertical reactions at supports A and C, and the shear and bending moment at point B, of
the simply supported beam shown in Fig. 8.3(a).

Solution
The free-body diagram of the beam is shown in Fig. 8.3(b). This diagram shows the beam subjected to a moving 1-k
load, whose position is defined by the coordinate x measured from the left end A of the beam. The two vertical reactions,
Ay and Cy, are assumed to be positive in the upward direction, as indicated on the free-body diagram.

Influence Line for Ay. To determine the expression for Ay, we apply the equilibrium equation:

þ ’
P

MC ¼ 0

�Ayð20Þ þ 1ð20� xÞ ¼ 0

Ay ¼
1ð20� xÞ

20
¼ 1� x

20

FIG. 8.3

continued
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The influence line for Ay, which is obtained by plotting this equation, is shown in Fig. 8.3(c). Note that the ordinates of
the influence line are expressed in the units obtained by dividing the units of the response function, Ay, by the units of the
unit load—that is, k=k. Ans.

Influence Line for Cy. þ ’
P

MA ¼ 0

�1ðxÞ þ Cyð20Þ ¼ 0

Cy ¼
1ðxÞ
20
¼ x

20

The influence line for Cy, which is obtained by plotting this equation, is shown in Fig. 8.3(d). Ans.

Influence Line for SB. First, we place the unit load at a variable position x to the left of point B—that is, on the segment
AB of the beam—and determine the shear at B by using the free body of the portion BC of the beam, which is to the
right of B:

SB ¼ �Cy 0a x < 12 ft

Next, the unit load is located to the right of B—that is, on the segment BC of the beam—and we use the free body of the
portion AB, which is to the left of B, to determine SB:

SB ¼ Ay 12 ft < xa 20 ft

Thus, the equations of the influence line for SB are

SB ¼
�Cy ¼ �

x

20
0a x < 12 ft

Ay ¼ 1� x

20
12 ft < xa 20 ft

8><>:
The influence line for SB is shown in Fig. 8.3(e). Ans.

Influence Line for MB. First, we place the unit load at a position x to the left of B and determine the bending moment at
B by using the free body of the portion of the beam to the right of B:

MB ¼ 8Cy 0a xa 12 ft

Next, the unit load is located to the right of B, and we use the free body of the portion of the beam to the left of B to
determine MB:

MB ¼ 12Ay 12 fta xa 20 ft

Thus the equations of the influence line for MB are

MB ¼
8Cy ¼

2x

5
0a xa 12 ft

12Ay ¼ 12� 3x

5
12 fta xa 20 ft

8>><>>:
The influence line for MB is shown in Fig. 8.3(f ). Ans.
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Example 8.2

Draw the influence lines for the vertical reaction and the reaction moment at support A and the shear and bending mo-
ment at point B of the cantilever beam shown in Fig. 8.4(a).

Solution
Influence Line for Ay.

þ "
P

Fy ¼ 0

Ay � 1 ¼ 0

Ay ¼ 1

The influence line for Ay is shown in Fig. 8.4(c). Ans.

Influence Line for MA.

þ ’
P

MA ¼ 0

�MA � 1ðxÞ ¼ 0

MA ¼ �1ðxÞ ¼ �x

The influence line for MA, which is obtained by plotting this equation, is shown in Fig. 8.4(d). As all the ordinates of the
influence line are negative, it indicates that the sense of MA for all the positions of the unit load on the beam is actually
counterclockwise, instead of clockwise as initially assumed (see Fig. 8.4(b)) in deriving the equation of the influence line.

Ans.

Influence Line for SB.

SB ¼
0 0a x < 3 m

Ay ¼ 1 3 m < xa 8 m

�
The influence line for SB is shown in Fig. 8.4(e). Ans.

FIG. 8.4

continued
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Influence Line for MB.

MB ¼
0 0a xa 3 m

MA þ 3Ay ¼ �xþ 3ð1Þ ¼ �xþ 3 3 ma xa 8 m

�
The influence line for MB is shown in Fig. 8.4(f ). Ans.

Example 8.3

Draw the influence lines for the vertical reactions at supports A;C, and E, the shear just to the right of support C, and
the bending moment at point B of the beam shown in Fig. 8.5(a).

Solution
The beam is composed of two rigid parts, AD and DE, connected by an internal hinge at D. To avoid solving simulta-
neous equations in determining the expressions for the reactions, we will apply the equations of equilibrium and con-
dition in such an order that each equation involves only one unknown.

FIG. 8.5

continued
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Influence Line for Ey. We will apply the equation of condition,
P

MDE
D ¼ 0, to determine the expression for Ey. First, we

place the unit load at a variable position x to the left of the hinge D—that is, on the rigid part AD of the beam—to obtain

þ ’
P

MDE
D ¼ 0

Eyð20Þ ¼ 0

Ey ¼ 0 0a xa 40 ft

Next, the unit load is located to the right of hinge D—that is, on the rigid part DE of the beam—to obtain

þ ’
P

MDE
D ¼ 0

�1ðx� 40Þ þ Eyð20Þ ¼ 0

Ey ¼
1ðx� 40Þ

20
¼ x

20
� 2 40 fta xa 60 ft

Thus, the equations of the influence line for Ey are

Ey ¼
0 0a xa 40 ft
x

20
� 2 40 fta xa 60 ft

8<:
The influence line for Ey is shown in Fig. 8.5(c). Ans.

Influence Line for Cy. Applying the equilibrium equation:

þ ’
P

MA ¼ 0

�1ðxÞ þ Cyð20Þ þ Eyð60Þ ¼ 0

Cy ¼
x

20
� 3Ey

By substituting the expressions for Ey, we obtain

Cy ¼

x

20
� 0 ¼ x

20
0a xa 40 ft

x

20
� 3

x

20
� 2

� �
¼ 6� x

10
40 fta xa 60 ft

8>>><>>>:
The influence line for Cy, which is obtained by plotting these equations, is shown in Fig. 8.5(d). Ans.

Influence Line for Ay.

þ "
P

Fy ¼ 0

Ay � 1þ Cy þ Ey ¼ 0

Ay ¼ 1� Cy � Ey

By substituting the expressions for Cy and Ey, we obtain the following equations of the influence line for Ay:

Ay ¼
1� x

20
� 0 ¼ 1� x

20
0a xa 40 ft

1� 6� x

10

� �
� x

20
� 2

� �
¼ x

20
� 3 40 fta xa 60 ft

8>>><>>>:
The influence line for Ay is shown in Fig. 8.5(e). Ans.

Influence Line for Shear at Just to the Right of C, SC,R.

SC;R ¼
�Ey 0a x < 20 ft

1� Ey 20 ft < xa 60 ft

�
continued
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By substituting the expressions for Ey, we obtain

SC;R ¼

0 0a x < 20 ft

1� 0 ¼ 1 20 ft < xa 40 ft

1� x

20
� 2

� �
¼ 3� x

20
40 fta xa 60 ft

8>>>><>>>>:
The influence line for SC;R is shown in Fig. 8.5(f ). Ans.

Influence Line for MB.

MB ¼
10Ay � 1ð10� xÞ 0a xa 10 ft

10Ay 10 fta xa 60 ft

�
By substituting the expressions for Ay, we obtain

MB ¼

10 1� x

20

� �
� 1ð10� xÞ ¼ x

2
0a xa 10 ft

10 1� x

20

� �
¼ 10� x

2
10 fta xa 40 ft

10
x

20
� 3

� �
¼ x

2
� 30 40 fta xa 60 ft

8>>>>>>>>><>>>>>>>>>:
The influence line for MB is shown in Fig. 8.5(g). Ans.

Example 8.4

Draw the influence lines for the vertical reaction and the reaction moment at support A of the frame shown in Fig. 8.6(a).

A

C DB

12 ft

6 ft 12 ft

(a)

A

C D
B

(b)

x

Ay

1 k

MA

FIG. 8.6

continued
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Solution
Influence Line for Ay.

þ "
P

Fy ¼ 0

Ay � 1 ¼ 0

Ay ¼ 1

The influence line for Ay is shown in Fig. 8.6(c). Ans.

Influence Line for MA.

þ ’
P

MA ¼ 0

MA � 1ðx� 6Þ ¼ 0

MA ¼ x� 6

The influence line for MA is shown in Fig. 8.6(d). Ans.

Example 8.5

Draw the influence lines for the horizontal and vertical reactions at supports A and B and the shear at hinge E of the
three-hinged bridge frame shown in Fig. 8.7(a).

Solution
Influence Line for Ay. þ ’

P
MB ¼ 0

�Ayð10Þ þ 1ð15� xÞ ¼ 0

Ay ¼
1ð15� xÞ

10
¼ 1:5� x

10

The influence line for Ay is shown in Fig. 8.7(c). Ans.

1.0

6.0

1.0 1.0

12.0

B C D

(c) Influence Line for Ay (k/k)

(d) Influence Line for MA (k-ft/k)

B
C D

FIG. 8.6 (contd.)

continued
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Influence Line for By.

þ "
P

Fy ¼ 0

Ay � 1þ By ¼ 0

By ¼ 1� Ay ¼ 1� 1:5� x

10

� �
¼ x

10
� 0:5

The influence line for By is shown in Fig. 8.7(d). Ans.

Influence Line for Ax. We will use the equation of condition
P

MCE
E ¼ 0 to determine the expressions for Ax. First, we

place the unit load to the left of hinge E—that is, on the rigid part CE of the frame—to obtain

þ ’
P

MCE
E ¼ 0

Axð3Þ � Ayð5Þ þ 1ð10� xÞ ¼ 0

Ax ¼
5

3
Ay �

1

3
ð10� xÞ ¼ 5

3
1:5� x

10

� �
� 1

3
ð10� xÞ

¼ x� 5

6
0a xa 10 m

FIG. 8.7

continued

Section 8.1 Influence Lines for Beams and Frames by Equilibrium Method 343



Next, the unit load is located to the right of hinge E—that is, on the rigid part EG of the frame—to obtain

þ ’
P

MCE
E ¼ 0

Axð3Þ � Ayð5Þ ¼ 0

Ax ¼
5

3
Ay ¼

5

3
1:5� x

10

� �
¼ 15� x

6
10 ma xa 20 m

Thus, the equations of the influence line for Ax are

Ax ¼

x� 5

6
0a xa 10 m

15� x

6
10 ma xa 20 m

8>>><>>>:
The influence line for Ax is shown in Fig. 8.7(e). Ans.

Influence Line for Bx.

þ !
P

Fx ¼ 0

Ax � Bx ¼ 0

Bx ¼ Ax

which indicates that the influence line for Bx is the same as that for Ax (Fig. 8.7(e)). Ans.

Influence Line for SE.

SE ¼
�By ¼ �

x

10
þ 0:5 0a x < 10 m

Ay ¼ 1:5� x

10
10 m < xa 20 m

8><>:
The influence line for SE is shown in Fig. 8.7(f ). Ans.

8.2 Müller-Breslau’s Principle and Qualitative Influence Lines

The construction of influence lines for the response functions involving
forces and moments can be considerably expedited by applying a proce-
dure developed by Heinrich Müller-Breslau in 1886. The procedure,
which is commonly known as Müller-Breslau’s principle, can be stated as
follows:

The influence line for a force (or moment) response function is given by the

deflected shape of the released structure obtained by removing the restraint

corresponding to the response function from the original structure and by

giving the released structure a unit displacement (or rotation) at the location

and in the direction of the response function, so that only the response

function and the unit load perform external work.

This principle is valid only for the influence lines for response func-
tions involving forces and moments (e.g., reactions, shears, bending mo-
ments, or forces in truss members), and it does not apply to the influence
lines for deflections.
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To prove the validity of Müller-Breslau’s principle, consider the simply
supported beam subjected to a moving unit load, as shown in Fig. 8.8(a).
The influence lines for the vertical reactions at supports A and C and the
shear and bending moment at point B of this beam were developed in the
previous section by applying the equations of equilibrium (see Fig. 8.2).
Suppose that we now wish to draw the influence lines for the same four
response functions by using Müller-Breslau’s principle.

To construct the influence line for the vertical reaction Ay, we remove
the restraint corresponding to Ay by replacing the hinged support at A by
a roller support, which can exert only a horizontal reaction, as shown in
Fig. 8.8(b). Note that point A of the beam is now free to displace in the
direction of Ay. Although the restraint corresponding to Ay has been re-
moved, the reaction Ay still acts on the beam, which remains in equili-
brium in the horizontal position (shown by solid lines in the figure) under

FIG. 8.8
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the action of the unit load and the reactions Ay and Cy. Next, point A of
the released beam is given a virtual unit displacement, D ¼ 1, in the pos-
itive direction of Ay, causing it to displace, as shown by the dashed lines
in Fig. 8.8(b). Note that the pattern of virtual displacement applied is
consistent with the support conditions of the released beam; that is, points
A and C cannot move in the horizontal and vertical directions, respec-
tively. Also, since the original beam is statically determinate, removal of
one restraint from it reduces it to a statically unstable beam. Thus, the
released beam remains straight (i.e., it does not bend) during the virtual
displacement. Since the beam is in equilibrium, according to the principle
of virtual displacements for rigid bodies (Section 7.2), the virtual work
done by the real external forces acting through the virtual external dis-
placements must be zero; that is,

Wve ¼ Ayð1Þ � 1ðyÞ ¼ 0

from which

Ay ¼ y ð8:7Þ

where y represents the displacement of the point of application of the unit
load, as shown in Fig. 8.8(b). Equation (8.7) indicates that the displace-
ment y of the beam at any position x is equal to the magnitude of Ay

due to a unit load acting at the position x on the beam. Thus, the dis-
placement y at any position x is equal to the ordinate of the influence line
for Ay at that position, as stated by Müller-Breslau’s principle. Equation
(8.7) can be expressed in terms of x by considering the geometry of the
deflected shape of the beam. From Fig. 8.8(b), we observe that the tri-
angles A 0AC and D 0DC are similar. Therefore,

y

ðL� xÞ ¼
1

L
or y ¼ 1� x

L

By substituting this expression into Eq. (8.7), we obtain the equation of
the influence line for Ay in terms of x as

Ay ¼ 1� x

L

which is the same as Eq. (8.1), which was derived by equilibrium
consideration.

The influence line for the vertical reaction Cy is determined in a
similar manner, as shown in Fig. 8.8(c). Note that this influence line
is identical to that constructed previously by equilibrium consideration
(Fig. 8.2(c)).

To construct the influence line for the shear SB at point B of the
beam, we remove the restraint corresponding to SB by cutting the beam
at B, as shown in Fig. 8.8(d). Note that points B of the portions AB and
BC of the released beam are now free to displace vertically relative to
each other. To keep the released beam in equilibrium, we apply at B the
shear forces, SB, and the bending moments, MB, as shown in the figure.
Note that SB and MB are assumed to act in their positive directions in
accordance with the beam sign convention. Next, at B the released beam is
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given a virtual unit relative displacement, D ¼ 1, in the positive direction
of SB (Fig. 8.8(d)) by moving the end B of portion AB downward by D1

and the end B of portion BC upward by D2, so that D1 þ D2 ¼ D ¼ 1.
The values of D1 and D2 depend on the requirement that the rotations, y,
of the two portions AB and BC be the same (i.e., the segments AB 0 and
B 00C in the displaced position must be parallel to each other), so that the
net work done by the two moments MB is zero, and only the shear forces
SB and the unit load perform work. Applying the principle of virtual dis-
placements, we write

Wve ¼ SBðD1Þ þ SBðD2Þ �MBðyÞ þMBðyÞ � 1ðyÞ

¼ SBðD1 þ D2Þ � 1ðyÞ

¼ SBðDÞ � 1ðyÞ

¼ SBð1Þ � 1ðyÞ ¼ 0

from which

SB ¼ y

which indicates that the deflected shape of the beam (Fig. 8.8(d)) is the
influence line for SB, as stated by Müller-Breslau’s principle. The values
of the ordinates D1 and D2 can be established from the geometry of the
deflected shape of the beam. From Fig. 8.8(d), we observe that the tri-
angles ABB 0 and BCB 00 are similar. Therefore,

D1

a
¼ D2

L� a
; or D2 ¼

L� a

a

� �
D1 (8.8)

Also,

D1 þ D2 ¼ 1; or D2 ¼ 1� D1 (8.9)

By equating Eqs. (8.8) and (8.9) and solving for D1, we obtain

D1 ¼
a

L

By substituting the expression for D1 into Eq. (8.9), we obtain

D2 ¼ 1� a

L

These ordinates are the same as determined previously by the equili-
brium method (Fig. 8.2(e)).

To construct the influence line for the bending moment MB, we re-
move the restraint corresponding to MB by inserting a hinge at B, as
shown in Fig. 8.8(e). The portions AB and BC of the released beam are
now free to rotate relative to each other. To keep the released beam in
equilibrium, we apply the moments MB at B, as shown in the figure. The
bending moment is assumed to be positive in accordance with the beam

sign convention. Next, a virtual unit rotation, y ¼ 1, is introduced at B
(Fig. 8.8(e)) by rotating portion AB by y1 counterclockwise and portion
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BC by y2 clockwise, so that y1 þ y2 ¼ y ¼ 1. Applying the principle of
virtual displacements, we write

Wve ¼MBðy1Þ þMBðy2Þ � 1ðyÞ

¼MBðy1 þ y2Þ � 1ðyÞ

¼MBðyÞ � 1ðyÞ

¼MBð1Þ � 1ðyÞ ¼ 0

from which

MB ¼ y

which indicates that the deflected shape of the beam (Fig. 8.8(e)) is the
influence line for MB, as stated by Müller-Breslau’s principle. The value
of the ordinate D can be established from the geometry of the deflected
shape of the beam. From Fig. 8.8(e), we can see that

D ¼ ay1 ¼ ðL� aÞy2 ð8:10Þ

or

y1 ¼
L� a

a

� �
y2 ð8:11Þ

Also,

y1 þ y2 ¼ 1; or y1 ¼ 1� y2 ð8:12Þ

By equating Eqs. (8.11) and (8.12) and solving for y2, we obtain

y2 ¼
a

L

By substituting the expression for y2 into Eq. (8.10), we obtain

D ¼ ðL� aÞ a
L
¼ a 1� a

L

� �
which is the same as obtained previously by the equilibrium method
(Fig. 8.2(f )).

In the preceding section, we stated that the influence lines for the
force and moment response functions of all statically determinate struc-
tures consist of straight-line segments. We can explain this by means of
Müller-Breslau’s principle. In implementing this principle in constructing
an influence line, the restraint corresponding to the force or moment re-
sponse function of interest needs to be removed from the structure. In the
case of a statically determinate structure, removal of any such restraint
from the structure reduces it to a statically unstable structure, or a mech-

anism. When this statically unstable released structure is subjected to the
unit displacement (or rotation), no stresses are induced in the members
of the structure, which remain straight and translate and/or rotate as
rigid bodies, thereby forming a deflected shape (and thus an influence
line) that consists of straight-line segments. Because the removal of a
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force or moment restraint from a statically indeterminate structure for the
purpose of constructing an influence line does not render it statically un-
stable, the influence lines for such structures consist of curved lines.

Qualitative Influence Lines

In many practical applications, it is necessary to determine only the gen-
eral shape of the influence lines but not the numerical values of the ordi-
nates. A diagram showing the general shape of an influence line without the

numerical values of its ordinates is called a qualitative influence line. In
contrast, an influence line with the numerical values of its ordinates known
is referred to as a quantitative influence line.

Although Müller-Breslau’s principle can be used to determine the
quantitative influence lines as discussed previously, it is more commonly
used to construct qualitative influence lines. The numerical values of the
influence-line ordinates, if desired, are then computed by using the equi-
librium method.

Procedure for Analysis

A procedure for determining the force and moment influence lines for
beams and frames by using the equilibrium method was presented in Sec-
tion 8.1. The following alternative procedure, which is based on a com-
bination of Müller-Breslau’s principle and the equilibrium method, may
considerably expedite the construction of such influence lines.

1. Draw the general shape of the influence line by applying Müller-
Breslau’s principle:
a. From the given structure remove the restraint correspond-

ing to the response function whose influence line is desired
to obtain the released structure.

b. Apply a small displacement (or rotation) to the released struc-
ture at the location and in the positive direction of the
response function. Draw a deflected shape of the released
structure that is consistent with the support and continuity
conditions of the released structure to obtain the general
shape of the influence line. (Remember that the influence lines
for statically determinate structures consist only of straight-
line segments.) If only a qualitative influence line is desired,
then end the analysis at this stage. Otherwise, proceed to the
next step.

2. Determine the numerical values of the influence-line ordinates
by using the equilibrium method and the geometry of the influ-
ence line.
a. Place a unit load on the given (i.e., not released) structure at

the location of the response function, and determine the num-
erical value of the influence-line ordinate at that location by
applying the equation(s) of equilibrium and/or condition. If
the response function of interest is a shear, then the unit load
must be placed successively at two locations, just to the left
and just to the right of the point where the shear is desired,
and values of the influence-line ordinates at these locations
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must be computed. If the influence-line ordinate at the loca-
tion of the response function is zero, then place the unit load
at the location of the maximum or minimum ordinate, and
determine the numerical value of that ordinate by equilibrium
consideration.

b. By using the geometry of the influence line, determine the
numerical values of all the remaining ordinates where the
changes in slope occur in the influence line.

An advantage of the foregoing procedure is that it enables us to
construct the influence line for any force or moment response function of
interest directly, without having to determine beforehand the influence
lines for other functions, which may or may not be needed. For example,
the construction of influence lines for shears and bending moments by
this procedure does not require the use of influence lines for reactions.
The procedure is illustrated by the following examples. The reader is
also encouraged to check the influence lines developed in Examples 8.1
through 8.3 by applying this procedure.

Example 8.6

Draw the influence lines for the vertical reactions at supports B and D and the shear and bending moment at point C of
the beam shown in Fig. 8.9(a).

Solution
Influence Line for By. To determine the general shape of the influence line for By, we remove the roller support at B from
the given beam (Fig. 8.9(a)) to obtain the released beam shown in Fig. 8.9(b). Next, point B of the released beam is given
a small displacement, D, in the positive direction of By, and a deflected shape of the beam is drawn, as shown by the
dashed line in the figure. Note that the deflected shape is consistent with the support conditions of the released structure;
that is, the right end of the released beam, which is attached to the hinged support D, does not displace. The shape of the
influence line is the same as the deflected shape of the released structure, as shown in Fig. 8.9(b).

To obtain the numerical value of the influence-line ordinate at B, we place a 1-kN load at point B on the original
beam (Fig. 8.9(b)) and apply an equilibrium equation to obtain By,

þ ’
P

MD ¼ 0 1ð9Þ � Byð9Þ ¼ 0 By ¼ 1 kN

Thus the value of the influence-line ordinate at B is 1 kN/kN. The value of the ordinate at A can now be determined
from the geometry of the influence line (Fig. 8.9(b)). Observing that the triangles AA 0D and BB 0D are similar, we write

AA 0 ¼ 1

9

� �
ð12Þ ¼ 4

3
kN=kN

The influence line for By thus obtained is shown in Fig. 8.9(b). Ans.

Influence Line for Dy. The influence line for Dy is constructed in a similar manner and is shown in Fig. 8.9(c). Ans.

Influence Line for SC. To determine the general shape of the influence line for the shear at point C, we cut the given beam
at C to obtain the released structure shown in Fig. 8.9(d). Next, the released structure is given a small relative displace-
ment in the positive direction of SC by moving end C of the portion AC downward by D1 and end C of the portion CD

upward by D2 to obtain the deflected shape shown in Fig. 8.9(d). The shape of the influence line is the same as the de-
flected shape of the released structure, as shown in the figure.

continued
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To obtain the numerical values of the influence-line ordinates at C, we place the 1-kN load first just to the left of C
and then just to the right of C, as shown by the solid and dashed arrows, respectively, in Fig. 8.9(d). The reactions By and
Dy are then determined by applying the equilibrium equations:

þ ’
P

MD ¼ 0 �Byð9Þ þ 1ð6Þ ¼ 0 By ¼
2

3
kN "

þ "
P

Fy ¼ 0
2

3

� �
� 1þDy ¼ 0 Dy ¼

1

3
kN "

Note that the magnitudes of By and Dy could, alternatively, have been obtained from the influence lines for these re-
actions constructed previously. It can be seen from Fig. 8.9(b) and (c) that the ordinates at C (or just to the left or right of
C) of the influence lines for By and Dy are indeed 2=3 and 1=3, respectively. When the unit load is at just to the left of C
(see Fig. 8.9(d)), the shear at C is

SC ¼ �Dy ¼ �
1

3
kN

When the unit load is at just to the right of C, the shear at C is

SC ¼ By ¼
2

3
kN

FIG. 8.9

continued
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Thus, the values of the influence-line ordinates at C are �1=3 kN/kN ( just to the left of C), and 2=3 kN/kN ( just to the
right of C), as shown in the figure. The ordinate of the influence line at A can now be obtained from the geometry of
the influence line (Fig. 8.9(d)). Observing that the triangles AA 0B and BCC 0 are similar, we obtain the ordinate at A,
AA 0 ¼ 1=3 kN/kN. The influence line for SC thus obtained is shown in Fig. 8.9(d). Ans.

Influence Line for MC. To obtain the general shape of the influence line for the bending moment at C, we insert a hinge
at C in the given beam to obtain the released structure shown in Fig. 8.9(e). Next, a small rotation y, in the positive
direction of MC , is introduced at C in the released structure by rotating the portion AC counterclockwise and the portion
CD clockwise to obtain the deflected shape shown in Fig. 8.9(e). The shape of the influence line is the same as the de-
flected shape of the released structure, as shown in the figure.

To obtain the numerical value of the influence-line ordinate at C, we place a 1-kN load at C on the original
beam (Fig. 8.9(e)). By applying, in order, the equilibrium equations

P
MD ¼ 0 and

P
Fy ¼ 0, we compute the reactions

By ¼ 2=3 kN and Dy ¼ 1=3 kN, after which the bending moment at C is determined as

MC ¼
2

3

� �
ð3Þ ¼ 2 kN �m

Thus, the value of the influence-line ordinate at C is 2 kN �m/kN. Finally, to complete the influence line, we determine
the ordinate at A by considering the geometry of the influence line. From Fig. 8.9(e), we observe that because the tri-
angles AA 0B and BCC 0 are similar, the ordinate at A is AA 0 ¼ �2 kN �m/kN. The influence line for MC thus obtained is
shown in Fig. 8.9(e). Ans.

FIG. 8.9 (contd.)
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Example 8.7

Draw the influence lines for the vertical reactions at supports A and E, the reaction moment at support A, the shear at
point B, and the bending moment at point D of the beam shown in Fig. 8.10(a).

Solution
Influence Line for Ay. To determine the general shape of the influence line for Ay, we remove the restraint corresponding
to Ay by replacing the fixed support at A by a roller guide that prevents the horizontal displacement and rotation at A but
not the vertical displacement. Next, point A of the released structure is given a small displacement D, and a deflected
shape of the beam is drawn as shown in Fig. 8.10(b). Note that the deflected shape is consistent with the support and
continuity conditions of the released structure. The end A of the beam, which is attached to the roller guide, cannot
rotate, so the portion AC must remain horizontal in the displaced configuration. Also, point E is attached to the roller

FIG. 8.10

continued
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support; therefore, it cannot displace in the vertical direction. Thus, the portion CF rotates about E, as shown in the
figure. The two rigid portions, AC and CF , of the beam remain straight in the displaced configuration and rotate relative
to each other at the internal hinge at C, which permits such a rotation. The shape of the influence line is the same as the
deflected shape of the released structure, as shown in Fig. 8.10(b).

By recognizing that Ay ¼ 1 k when a 1-k load is placed at A, we obtain the value of 1 k/k for the influence-line or-
dinate at A. The ordinates at points C and F are then determined from the geometry of the influence line. The influence
line for Ay thus obtained is shown in Fig. 8.10(b). Ans.

Influence Line for Ey. The roller support at E is removed from the given structure, and a small displacement, D, is ap-
plied at E to obtain the deflected shape shown in Fig. 8.10(c). Because of the fixed support at A, the portion AC of the
released beam can neither translate nor rotate as a rigid body. The shape of the influence line is the same as the deflected
shape of the released structure, as shown in the figure.

By realizing that Ey ¼ 1 k when the 1-k load is placed at E, we obtain the value of 1 k/k for the influence-line
ordinate at E. The ordinate at F is then determined from the geometry of the influence line. The influence line thus
obtained is shown in Fig. 8.10(c). Ans.

Influence Line for MA. To remove the restraint corresponding to the reaction moment MA, we replace the fixed support
at A by a hinged support, as shown in Fig. 8.10(d). Next, a small rotation y in the positive (counterclockwise) direction of
MA is introduced at A in the released structure to obtain the deflected shape shown in the figure. The shape of the influ-
ence line is the same as the deflected shape of the released structure.

FIG. 8.10 (contd.)

continued
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Because the ordinate of the influence line at A is zero, we determine the ordinate at C by placing the 1-k load at
C on the original beam (Fig. 8.10(d)). After computing the reaction Ey ¼ 0 by applying the equation of conditionP

MCF
C ¼ 0, we determine the moment at A from the equilibrium equation:

þ ’
P

MA ¼ 0 MA � 1ð10Þ ¼ 0 MA ¼ 10 k-ft

Thus, the value of the influence-line ordinate at C is 10 k-ft/k. The ordinate at F is then determined by considering the
geometry of the influence line. The influence line thus obtained is shown in Fig. 8.10(d). Ans.

Influence Line for SB. To remove the restraint corresponding to the shear at B, we cut the given beam at B to obtain the
released structure shown in Fig. 8.10(e). Next, the released structure is given a small relative displacement, D, to obtain
the deflected shape shown in the figure. Support A is fixed, so portion AB can neither translate nor rotate as a rigid body.
Also, the rigid portions AB and BC must remain parallel to each other in the displaced configuration. The shape of the
influence line is the same as the deflected shape of the released structure, as shown in the figure.

The numerical values of the influence-line ordinates at B are determined by placing the 1-k load successively just to
the left and just to the right of B (Fig. 8.10(e)) and by computing the shears at B for the two positions of the unit load.
The ordinates at C and F are then determined from the geometry of the influence line. The influence line thus obtained is
shown in Fig. 8.10(e). Ans.

Influence Line for MD. An internal hinge is inserted in the given beam at point D, and a small rotation y is applied at D
to obtain the deflected shape shown in Fig. 8.10(f ). The shape of the influence line is the same as the deflected shape of
the released structure, as shown in the figure.

The value of the influence-line ordinate at D is determined by placing the 1-k load at D and by computing the
bending moment at D for this position of the unit load (Fig. 8.10(f )). The ordinate at F is then determined from the
geometry of the influence line. The influence line thus obtained is shown in Fig. 8.10(f ). Ans.

Example 8.8

Draw the influence lines for the vertical reactions at supports A and C of the beam shown in Fig. 8.11(a).

Solution
Influence Line for Ay. To obtain the general shape of the influence line for Ay, the roller support at A is removed from
the given beam, and a small displacement, D, is given at point A of the released beam as shown in Fig. 8.11(b). The shape
of the influence line is the same as the deflected shape of the released beam, as shown in the figure. By realizing that
Ay ¼ 1 kN when the 1-kN load is placed at A, we obtain the value of 1 kN/kN for the influence-line ordinate at A. The
influence line thus obtained is shown in Fig. 8.11(b). Ans.

Influence Line for Cy. The roller support at C is removed from the given beam, and a small displacement, D, is applied at
C to obtain the deflected shape shown in Fig. 8.11(c). Note that the deflected shape is consistent with the support con-
ditions of the released beam. The shape of the influence line is the same as the deflected shape of the released beam, as
shown in the figure. By recognizing that Cy ¼ 1 kN when the 1-kN load is placed at C, we obtain the value of 1 kN/kN
for the influence-line ordinate at C. The ordinates at B and E are then determined from the geometry of the influence
line. The influence line for Cy thus obtained is shown in Fig. 8.11(c). Ans.

continued
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8.3 Influence Lines for Girders with Floor Systems

In the previous sections, we considered the influence lines for beams that
were subjected to a moving unit load applied directly to the beams. In
most bridges and buildings, there are some structural members that
are not subjected to live loads directly but to which the live loads are
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transmitted via floor framing systems. Typical framing systems used in
bridges and buildings were described in Section 1.4 (Figs. 1.13 and 1.14,
respectively). Another example of the framing system of a bridge is
shown in Fig. 8.12. The deck of the bridge rests on beams called stringers,
which are supported by floor beams, which, in turn, are supported by the
girders. Thus, any live loads (e.g., the weight of the tra‰c), regardless of
where they are located on the deck and whether they are concentrated or
distributed loads, are always transmitted to the girders as concentrated
loads applied at the points where the girders support the floor beams.

To illustrate the procedure for constructing influence lines for shears
and bending moments in the girders supporting bridge or building floor
systems, consider the simply supported girder shown in Fig. 8.13(a). As
shown, a unit load moves from left to right on the stringers, which are
assumed to be simply supported on the floor beams. The e¤ect of the unit
load is transmitted to the girder at points A through F, at which the girder
supports the floor beams. The points A through F are commonly referred
to as panel points, and the portions of the girder between the panel points
(e.g., AB or BC) are called panels. Figure 8.13(a) shows the stringers rest-
ing on top of the floor beams, which rest on top of the girder. Although
such sketches are used herein to show the manner in which the load is
transmitted from one structural member to the other, in actual floor sys-
tems, members are seldom supported on top of each other, as depicted in
Fig. 8.13(a). Instead, the stringers and the floor beams are usually posi-
tioned so that their top edges are even with each other and are either lower
than or at the same level as the top edges of the girders (see Fig. 8.12).

Influence Lines for Reactions

The equations of the influence lines for the vertical reactions Ay and Fy

can be determined by applying the equilibrium equations (Fig. 8.13(a)):

þ ’
P

MF ¼ 0 �AyðLÞ þ 1ðL� xÞ ¼ 0 Ay ¼ 1� x

L

þ ’
P

MA ¼ 0 �1ðxÞ þ FyðLÞ ¼ 0 Fy ¼
x

L

The influence lines obtained by plotting these equations are shown in
Fig. 8.13(b) and (c). Note that these influence lines are identical to those
for the reactions of a simply supported beam to which the unit load is
applied directly.

Influence Line for Shear in Panel BC

Next, suppose that we wish to construct the influence lines for shears
at points G and H, which are located in the panel BC, as shown in
Fig. 8.13(a). When the unit load is located to the left of the panel point
B, the shear at any point within the panel BC (e.g., the points G and H )
can be expressed as

SBC ¼ �Fy ¼ �
x

L
0a xa

L

5
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Similarly, when the unit load is located to the right of the panel point C,
the shear at any point within the panel BC is given by

SBC ¼ Ay ¼ 1� x

L

2L

5
a xaL

FIG. 8.13
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When the unit load is located within the panel BC, as shown in Fig. 8.13(d),
the force FB exerted on the girder by the floor beam at B must be included
in the expression for shear in panel BC:

SBC ¼ Ay � FB ¼ 1� x

L

� �
� 2� 5x

L

� �
¼ �1þ 4x

L

L

5
a xa

2L

5

Thus, the equations of the influence line for SBC can be written as

SBC ¼

�Fy ¼ �
x

L
0a xa

L

5

Ay � FB ¼ �1þ
4x

L

L

5
a xa

2L

5

Ay ¼ 1� x

L

2L

5
a xaL

8>>>>>>><>>>>>>>:
ð8:13Þ

These expressions for shear do not depend on the exact location of a
point within the panel; that is, these expressions remain the same for all
points located within the panel BC. The expressions do not change be-
cause the loads are transmitted to the girder at the panel points only;
therefore, the shear in any panel of the girder remains constant throughout

the length of that panel. Thus for girders with floor systems, the influence
lines for shears are usually constructed for panels rather than for specific
points along the girders. The influence line for the shear in panel BC,
obtained by plotting Eq. (8.13), is shown in Fig. 8.13(e).

Influence Line for Bending Moment at G

The influence line for the bending moment at point G, which is located in
the panel BC (Fig. 8.13(a)), can be constructed by using a similar proce-
dure. When the unit load is located to the left of the panel point B, the
bending moment at G can be expressed as

MG ¼ FyðL� aÞ ¼ x

L
ðL� aÞ 0a xa

L

5

When the unit load is located to the right of the panel point C, the
bending moment at G is given by

MG ¼ AyðaÞ ¼ 1� x

L

� �
a

2L

5
a xaL

When the unit load is located within the panel BC, as shown in Fig. 8.13(d),
the moment of the force FB exerted on the girder by the floor beam at B,
about G, must be included in the expression for bending moment at G:

MG ¼ AyðaÞ � FB a� L

5

� �
¼ 1� x

L

� �
a� 2� 5x

L

� �
a� L

5

� �

¼ 2L

5
� a� x 1� 4a

L

� �
L

5
a xa

2L

5
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Thus, the equations of the influence line for MG can be written as

MG ¼

FyðL� aÞ ¼ x

L
ðL� aÞ 0a xa

L

5

AyðaÞ � FB a� L

5

� �
¼ 2L

5
� a� x 1� 4a

L

� �
L

5
a xa

2L

5

AyðaÞ ¼ 1� x

L

� �
a

2L

5
a xaL

8>>>>>>>><>>>>>>>>:
ð8:14Þ

Equation (8.14) indicates that unlike shear, which remains constant
throughout a panel, the expressions for the bending moment depend on
the specific location of the point G within the panel BC. The influence
line for MG, obtained by plotting Eq. (8.14), is shown in Fig. 8.13(f ). It
can be seen from this figure that the influence line for MG, like the influ-
ence line for shear constructed previously (Fig. 8.13(e)), consists of three
straight-line segments, with discontinuities at the ends of the panel con-
taining the response function under consideration.

Influence Line for Bending Moment at Panel Point C

When the unit load is located to the left of C (Fig. 8.13(a)), the bending
moment at C is given by

MC ¼ Fy

3L

5

� �
¼ x

L

3L

5

� �
¼ 3

5
x 0a xa

2L

5

When the unit load is located to the right of C,

MC ¼ Ay

2L

5

� �
¼ 1� x

L

� �
2L

5
¼ 2

5
ðL� xÞ 2L

5
a xaL

Thus, the equations of the influence line for MC can be written as

MC ¼
Fy

3L

5

� �
¼ 3

5
x 0a xa

2L

5

Ay

2L

5

� �
¼ 2

5
ðL� xÞ 2L

5
a xaL

8>>>><>>>>: ð8:15Þ

The influence line obtained by plotting these equations is shown in
Fig. 8.13(g). Note that this influence line is identical to that for the
bending moment of a corresponding beam without the floor system.

Procedure for Analysis

As the foregoing example indicates, the influence lines for the girders
supporting floor systems with simply supported stringers consist of
straight-line segments with discontinuities or changes in slopes occurring
only at the panel points. In the influence lines for shears and for bending
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moments at points located within panels, the changes in slope occur
at the panel points at the ends of the panel containing the response
function (Fig. 8.13(e) and (f )), whereas in the influence lines for bending
moments at panel points, the change in slope occurs at the panel point
where the bending moment is evaluated. The influence lines for the
girders can, therefore, be conveniently constructed as follows.

Determine the influence-line ordinates at the support points and at
the panel points where the changes in slope occur by placing a unit load
successively at each of these points and by applying the equilibrium
equations. In the case of an influence line for bending moment at a panel
point of a cantilever girder, the influence-line ordinate at the location of
the bending moment will be zero. In such a case, it becomes necessary to
determine an additional influence-line ordinate (usually at the free end of
the cantilever girder) that is not zero to complete the influence line.

If the girder contains internal hinges, its influence lines will be dis-
continuous at the panel points, where such hinges are located. If an in-
ternal hinge is located within a panel, then the discontinuities will occur
at the panel points at the ends of that panel. Determine the influence-line
ordinates at the panel points where discontinuities occur due to the pre-
sence of internal hinges by placing the unit load at these points and by
applying the equations of equilibrium and/or condition.

Complete the influence line by connecting the previously computed
ordinates by straight lines and by determining any remaining ordinates
by using the geometry of the influence line.

Example 8.9

Draw the influence lines for the shear in panel BC and the bending moment at B of the girder with floor system shown
in Fig. 8.14(a).

Solution
Influence Line for SBC. To determine the influence line for the shear in panel BC, we place a 1-k load successively at the
panel points A;B;C, and D. For each position of the unit load, the appropriate support reaction is first determined by
proportions, and the shear in panel BC is computed. Thus, when

1 k is at A; Dy ¼ 0 SBC ¼ 0

1 k is at B; Dy ¼
1

3
k SBC ¼ �

1

3
k

1 k is at C; Ay ¼
1

3
k SBC ¼

1

3
k

1 k is at D; Ay ¼ 0 SBC ¼ 0

The influence line for SBC is constructed by plotting these ordinates and by connecting them with straight lines, as
shown in Fig. 8.14(c). Ans.
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Influence Line for MB. To determine the influence line for the bending moment at panel point B, we place the 1-k load
successively at the panel points A;B, and D. For each position of the unit load, the bending moment at B is determined
as follows: When

1 k is at A; Dy ¼ 0 MB ¼ 0

1 k is at B; Ay ¼
2

3
k MB ¼

2

3

� �
18 ¼ 12 k-ft

1 k is at D; Ay ¼ 0 MB ¼ 0

The influence line for MB thus obtained is shown in Fig. 8.14(d). Ans.

A B C D

3 panels at 18 ft = 54 ft

(a)

A B C D

(b)

(c) Influence Line for SBC (k/k)

(d) Influence Line for MB (k-ft/k)

Ay Dy

1 k

x

1
3

1
3

–

A B

BA D

C D0

0 0

0

12

FIG. 8.14
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Example 8.10

Draw the influence lines for the shear in panel CD and the bending moment at D of the girder with floor system shown
in Fig. 8.15(a).

Solution
Influence Line for SCD. To determine the influence line for the shear in panel CD, we place a 1-kN load successively at
the panel points B;C;D, and F . For each position of the unit load, the appropriate support reaction is first determined
by proportions, and the shear in panel CD is computed. Thus, when

1 kN is at B; Fy ¼ 0 SCD ¼ 0

1 kN is at C; Fy ¼
1

4
kN SCD ¼ �

1

4
kN

1 kN is at D; By ¼
2

4
¼ 1

2
kN SCD ¼

1

2
kN

1 kN is at F ; By ¼ 0 SCD ¼ 0

The influence line for SCD is constructed by plotting these ordinates and by connecting them with straight lines, as
shown in Fig. 8.15(c). The ordinates at the ends A and H of the girder are then determined from the geometry of the
influence line. Ans.

Influence Line for MD. To determine the influence line for the bending moment at panel point D, we place the 1-kN
load successively at the panel points B;D, and F . For each position of the unit load, the bending moment at D is de-
termined as follows: When

1 kN is at B; Fy ¼ 0 MD ¼ 0

1 kN is at D; By ¼
1

2
kN MD ¼

1

2

� �
8 ¼ 4 kN �m

1 kN is at F ; By ¼ 0 MD ¼ 0

The influence line for MD thus obtained is shown in Fig. 8.15(d). Ans.

FIG. 8.15
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Example 8.11

Draw the influence lines for the reaction at support A, the shear in panel CD, and the bending moment at D of the
girder with floor system shown in Fig. 8.16(a).

Solution
Influence Line for Ay. To determine the influence line for the reaction Ay, we place a 1-k load successively at the panel
points A;B, and C. For each position of the unit load, the magnitude of Ay is computed by applying the equation of
condition

P
MAF

F ¼ 0. Thus, when

1 k is at A; Ay ¼ 1 k

1 k is at B; þ ’
P

MAF
F ¼ 0

�Ayð15Þ þ 1ð5Þ ¼ 0 Ay ¼
1

3
k

1 k is at C; þ ’
P

MAF
F ¼ 0

�Ayð15Þ ¼ 0

Ay ¼ 0

The influence line for Ay thus obtained is shown in Fig. 8.16(c). Ans.

Influence Line for SCD. We place the 1-k load successively at each of the five panel points and determine the influence-
line ordinates as follows. When

1 k is at A; Ay ¼ 1 k SCD ¼ 0

1 k is at B; Ay ¼
1

3
k SCD ¼

1

3

� �
� 1 ¼ � 2

3
k

1 k is at C; Ay ¼ 0 SCD ¼ �1 k

1 k is at D; Ay ¼ 0 SCD ¼ 0

1 k is at E; Ay ¼ 0 SCD ¼ 0

The influence line for SCD thus obtained is shown in Fig. 8.16(d). Ans.

FIG. 8.16

continued
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Influence Line for MD. We place the 1-k load successively at each of the five panel points and determine the influence-
line ordinates as follows. When

1 k is at A; Ay ¼ 1 k MD ¼ 0

1 k is at B; Ay ¼
1

3
k MD ¼

1

3

� �
30� 1ð20Þ ¼ �10 k-ft

1 k is at C; Ay ¼ 0 MD ¼ �1ð10Þ ¼ �10 k-ft

1 k is at D; Ay ¼ 0 MD ¼ 0

1 k is at E; Ay ¼ 0 MD ¼ 0

The influence line for MD is shown in Fig. 8.16(e). Ans.

8.4 Influence Lines for Trusses

The floor framing systems commonly used to transmit live loads to trusses
are similar to those used for the girders discussed in the preceding section.
Figure 8.17 shows a typical floor system of a truss bridge, described pre-
viously in Section 1.4 (Fig. 1.13). The deck of the bridge rests on stringers
that are supported by floor beams, which, in turn, are connected at their
ends to the joints on the bottom chords of the two longitudinal trusses.
Thus, any live loads (e.g., the weight of the tra‰c), regardless of where
they are located on the deck and whether they are concentrated or dis-
tributed loads, are always transmitted to the trusses as concentrated loads
applied at the joints. Live loads are transmitted to the roof trusses in a
similar manner. As in the case of the girder floor systems, the stringers of
the floor systems of trusses are assumed to be simply supported at their
ends on the adjacent floor beams. Thus, the influence lines for trusses also
contain straight-line segments between panel points.

FIG. 8.17
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To illustrate the construction of influence lines for trusses, consider
the Pratt bridge truss shown in Fig. 8.18(a). A unit (1-k) load moves from
left to right on the stringers of a floor system attached to the bottom
chord AG of the truss. The e¤ect of the unit load is transmitted to the
truss at joints (or panel points) A through G, where the floor beams are
connected to the truss. Suppose that we wish to draw the influence lines
for the vertical reactions at supports A and E and for the axial forces in
members CI ;CD;DI ; IJ, and FL of the truss.

Influence Lines for Reactions

The equations of the influence lines for the vertical reactions, Ay and Ey,
can be determined by applying the equilibrium equations (Fig. 8.18(b)):

þ ’
P

ME ¼ 0 �Ayð60Þ þ 1ð60� xÞ ¼ 0 Ay ¼ 1� x

60

þ ’
P

MA ¼ 0 �1ðxÞ þ Eyð60Þ ¼ 0 Ey ¼
x

60

The influence lines obtained by plotting these equations are shown in
Fig. 8.18(c) and (d). Note that these influence lines are identical to those
for the reactions of a corresponding beam to which the unit load is ap-
plied directly.

Influence Line for Force in Vertical Member CI

The expressions for the member force FCI can be determined by passing
an imaginary section aa through the members CD;CI , and HI , as shown
in Fig. 8.18(e), and by applying the equilibrium equation

P
Fy ¼ 0 to

one of the two portions of the truss. It can be seen from Fig. 8.18(e) that
when the 1-k load is located to the left of joint C—that is, on the portion
AC of the truss—then FCI can be conveniently determined by consider-
ing the equilibrium of the free body of the right portion DG as

þ "
P

Fy ¼ 0 �FCI þ Ey ¼ 0 FCI ¼ Ey 0a xa 30 ft

which indicates that the segment of the influence line for FCI between A

and C is identical to the corresponding segment of the influence line for
Ey. When the 1-k load is located to the right of joint D, it is convenient to
determine FCI by using the free body of the left portion AC:

þ "
P

Fy ¼ 0 Ay þ FCI ¼ 0 FCI ¼ �Ay 45 fta xa 90 ft

which indicates that the segment of the influence line for FCI between D

and G can be obtained by multiplying the corresponding segment of
the influence line for Ay by �1. The segments of the influence line for
FCI between A and C and between D and G thus constructed from the
influence lines for Ey and Ay, respectively, by using the preceding
expressions are shown in Fig. 8.18(f ). When the 1-k load is located be-
tween C and D, the part of the load transmitted to the truss by the floor
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beam at C, FC ¼ ð45� xÞ=15, must be included in the equilibrium equa-
tion

P
Fy ¼ 0 for the left portion AC to obtain FCI :

þ "
P

Fy ¼ 0 Ay �
45� x

15

� �
þ FCI ¼ 0

FCI ¼ �Ay þ
45� x

15

� �
30 fta xa 45 ft

Thus the influence line for FCI is composed of three straight-line seg-
ments, as shown in Fig. 8.18(f ). Since the member force FCI was as-
sumed to be tensile (Fig. 8.18(e)) in the derivation of the influence-line
equations, a positive ordinate of the influence line indicates that the 1-k
load applied at that point causes a tensile force in the member CI and
vice versa. Thus, the influence line for FCI (Fig. 8.18(f )) indicates that
member CI will be in tension when the 1-k load is located between A

and M and between E and G, whereas it will be in compression when the
unit load is placed between M and E.

Influence Line for Force in Bottom Chord Member CD

The expressions for the member force FCD can be determined by consid-
ering the same section aa used for FCI but by applying the moment equi-
librium equation,

P
MI ¼ 0. It can be seen from Fig. 8.18(e) that when

the 1-k load is located to the left of joint C, then FCD can be conveniently
determined by considering the equilibrium of the free body of the right
portion DG of the truss:

þ ’
P

MI ¼ 0 �FCDð20Þ þ Eyð30Þ ¼ 0

FCD ¼ 1:5Ey 0a xa 30 ft

which indicates that the segment of the influence line for FCD between A

and C can be obtained by multiplying the corresponding segment of the

FIG. 8.18 (contd.)
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influence line for Ey by 1.5. When the 1-k load is located to the right of
C, it is convenient to determine FCD by using the free body of the left
portion AC:

þ ’
P

MI ¼ 0 �Ayð30Þ þ FCDð20Þ ¼ 0

FCD ¼ 1:5Ay 30 fta xa 90 ft

which indicates that the segment of the influence line for FCD between C

and G can be obtained by multiplying the corresponding segment of the
influence line for Ay by 1.5. The influence line for FCD thus constructed
from the influence lines for Ay and Ey is shown in Fig. 8.18(g).

The influence line for FCD could alternatively have been determined by
considering the vertical section bb passing through the members CD;DI ,
and IJ, as shown in Fig. 8.18(h), instead of the inclined section aa.

Influence Line for Force in Diagonal Member DI

The expressions for FDI can be determined by considering section bb

(Fig. 8.18(h)) and by applying the equilibrium equation
P

Fy ¼ 0 to one
of the two portions of the truss. When the unit load is located to the left
of joint C, application of the equilibrium equation

P
Fy ¼ 0 to the right

portion DG of the truss yields

þ "
P

Fy ¼ 0
4

5
FDI þ Ey ¼ 0

FDI ¼ �1:25Ey 0a xa 30 ft

When the 1-k load is located to the right of joint D, we write

þ "
P

Fy ¼ 0 Ay �
4

5
FDI ¼ 0

FDI ¼ 1:25Ay 45 fta xa 90 ft

The segments of the influence line for FDI between A and C and between
D and G thus constructed from the influence lines for Ey and Ay, re-
spectively, are shown in Fig. 8.18(i). The ordinates at C and D are then
connected by a straight line to complete the influence line for FDI , as
shown in the figure.

Influence Line for Force in Top Chord Member IJ

By considering section bb (Fig. 8.18(h)), and by placing the unit load
first to the left and then to the right of joint D, we obtain the following
expressions for FIJ :

þ ’
P

MD ¼ 0

FIJð20Þ þ Eyð15Þ ¼ 0

FIJ ¼ �0:75Ey 0a xa 45 ft
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þ ’
P

MD ¼ 0

�Ayð45Þ � FIJð20Þ ¼ 0

FIJ ¼ �2:25Ay 45 fta xa 90 ft

The influence line for FIJ thus obtained is shown in Fig. 8.18( j).

Influence Line for Force in Vertical Member FL

The influence line for FFL can be constructed by considering the equili-
brium of joint F . The free-body diagram of this joint is shown in
Fig. 8.18(k). By applying the equilibrium equation

P
Fy ¼ 0 to the free

body of joint F , we determine that FFL is zero when the 1-k load is lo-
cated at joints A through E and at joint G and that FFL ¼ 1 k when the
unit load is applied to the joint F . Thus, the influence-line ordinate at F is
equal to 1, whereas the ordinates at A through E and G are zero. The
influence line for FFL, obtained by connecting these ordinates by straight
lines, is shown in Fig. 8.18(1). As this influence line indicates, the force in
member FL will be nonzero only when the unit load is located in the
panels EF and FG of the truss.

Procedure for Analysis

The influence lines for the reactions of trusses can be constructed by us-
ing the same procedure used for the reactions of beams described in
Sections 8.1 and 8.2.

Perhaps the most straightforward procedure for constructing the in-
fluence lines for axial forces in the members of trusses is to apply a unit
load successively at each joint on the loaded chord of the truss and for
each position of the unit load, determine the magnitude of the member
force under consideration by using the method of joints and/or the
method of sections. The influence-line ordinates thus computed are then
connected by straight lines to obtain the desired influence line. This pro-
cedure generally proves to be very time-consuming for constructing in-
fluence lines for most truss members, except for the vertical members
that are connected at an end to two horizontal members (e.g., members
BH;DJ, and FL of the truss shown in Fig. 8.18(a)), whose forces can be
determined by inspection.

The following alternative procedure may considerably expedite the
construction of influence lines for axial forces in members of most com-
mon types of trusses:

1. Draw the influence lines for the reactions of the given truss.
2. By using the method of sections or the method of joints, obtain

the equilibrium equation that will be used to determine the ex-
pression(s) of the member force whose influence line is desired.
The desired member force must be the only unknown in the
equilibrium equation. If such an equilibrium equation cannot be
found, then it becomes necessary to construct the influence lines
for the other member forces that appear in the equation before
the desired influence line can be constructed (see Examples 8.12
and 8.13).
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3. If using the method of sections, then apply a unit load to the left
of the left end of the panel through which the section passes, and
determine the expression for the member force by applying the
equilibrium equation to the free body of the truss to the right of
the section. Next, apply the unit load to the right of the right
end of the sectioned panel, and determine the member force ex-
pression by applying the equilibrium equation to the free body
to the left of the section. Construct the influence line by plotting
the member force expressions and by connecting the ordinates at
the ends of the sectioned panel by a straight line.

4. When using the method of joints, if the joint being considered is
not located on the loaded chord of the truss, then determine the
expression of the desired member force directly by applying
the equation of equilibrium to the free body of the joint. Other-
wise, apply a unit load at the joint under consideration, and de-
termine the magnitude of the member force by considering the
equilibrium of the joint. Next, determine the expression for the
member force for a position of the unit load outside the panels
adjacent to the joint under consideration. Finally, connect the
influence-line segments and ordinates thus obtained by straight
lines to complete the influence line.

If the member force was initially assumed to be tensile in
deriving the equations of the influence line, then a positive ordi-
nate of the influence line indicates that the unit load applied at
that point causes a tensile force in the member and vice versa.

Example 8.12

Draw the influence lines for the forces in members AF ;CF , and CG of the Parker truss shown in Fig. 8.19(a). Live loads
are transmitted to the bottom chord of the truss.

Solution
Influence Lines for Reactions. The influence lines for the reactions Ay and Ey (Fig. 8.19(b)), obtained by applying the
equilibrium equations,

P
ME ¼ 0 and

P
MA ¼ 0, respectively, to the free body of the entire truss, are shown in

Fig. 8.19(c) and (d).

Influence Line for FAF. The expressions for FAF can be determined by applying the equilibrium equation
P

Fy ¼ 0 to the
free-body diagram of joint A shown in Fig. 8.19(e). When the 1-k load is located at joint A, we write

þ "
P

Fy ¼ 0 Ay � 1þ 3

5
FAF ¼ 0

Because Ay ¼ 1 k (see Fig. 8.19(c)), we obtain

FAF ¼ 0 for x ¼ 0

When the 1-k load is located to the right of joint B, we write

þ "
P

Fy ¼ 0 Ay þ
3

5
FAF ¼ 0

FAF ¼ �1:667Ay 20 fta xa 80 ft

continued
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Thus, the segment of the influence line for FAF between B and E is obtained by multiplying the corresponding segment
of the influence line for Ay by �1:667, as shown in Fig. 8.19(f ). The ordinates at A and B are then connected by a
straight line to complete the influence line as shown in the figure. Ans.

FIG. 8.19

continued
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Influence Line for FCF. The expressions for FCF can be determined by passing a section aa through the members BC;CF ,
and FG as shown in Fig. 8.19(b). The free-body diagrams of the two portions of the truss thus obtained are shown in
Fig. 8.19(g). The lines of action of FFG and FBC intersect at point O, so the equilibrium equation

P
MO ¼ 0 will contain

only one unknown, namely, FCF . Because the slope of member FG is 1:4, the distance OB ¼ 4ðFBÞ ¼ 4ð15Þ ¼ 60 ft.
Thus, the distance OA ¼ OB� AB ¼ 60� 20 ¼ 40 ft as shown in Fig. 8.19(g). When the 1-k load is located to the left of
B, we apply the equilibrium equation

P
MO ¼ 0 to the free body of the right portion CE of the truss to obtain

þ ’
P

MO ¼ 0

3

5
FCF ð80Þ þ Eyð120Þ ¼ 0

FCF ¼ �2:5Ey 0a xa 20 ft

When the 1-k load is located to the right of C, we consider the equilibrium of the left portion AB to obtain

þ ’
P

MO ¼ 0

Ayð40Þ �
4

5
FCF ð15Þ �

3

5
FCF ð60Þ ¼ 0

FCF ¼ 0:833Ay 40 fta xa 80 ft

The segments of the influence line for FCF between A and B and between C and E are constructed by using the influence
lines for Ey and Ay, respectively, in accordance with the preceding expressions. The ordinates at B and C are then con-
nected by a straight line to complete the influence line, as shown in Fig. 8.19(h). Ans.

Influence Line for FCG. We will determine the influence line for FCG by considering the equilibrium of joint G. By ap-
plying the equations of equilibrium to the free-body diagram of joint G (Fig. 8.19(i)), we write

þ "
P

Fy ¼ 0

�FCG �
1ffiffiffiffiffi
17
p

� �
FFG �

1ffiffiffiffiffi
17
p

� �
FGH ¼ 0

FCG ¼ �
1ffiffiffiffiffi
17
p

� �
ðFFG þ FGHÞ (1)

þ !
P

Fx ¼ 0

� 4ffiffiffiffiffi
17
p

� �
FFG þ

4ffiffiffiffiffi
17
p

� �
FGH ¼ 0

FGH ¼ FFG (2)

By substituting Eq. (2) into Eq. (1), we obtain

FCG ¼ �
2ffiffiffiffiffi
17
p

� �
FFG ¼ �0:485FFG (3)

Note that Eq. (3), which is valid for any position of the unit load, indicates that the influence line for FCG can be
obtained by multiplying the influence line for FFG by �0:485. Thus we will first construct the influence line for FFG by
using section aa (Fig. 8.19(g)) and then apply Eq. (3) to obtain the desired influence line for FCG.

It can be seen from Fig. 8.19(g) that when the 1-k load is located to the left of B, the expression for FFG can be
determined by applying the equilibrium equation

P
MC ¼ 0 to the free body of the right portion CE of the truss. Thus,

þ ’
P

MC ¼ 0

4ffiffiffiffiffi
17
p

� �
FFGð20Þ þ Eyð40Þ ¼ 0

FFG ¼ �2:062Ey 0a xa 20 ft
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When the 1-k load is located to the right of C, we consider the equilibrium of the left portion AB to obtain

þ ’
P

MC ¼ 0

� 1ffiffiffiffiffi
17
p

� �
FFGð20Þ �

4ffiffiffiffiffi
17
p

� �
FFGð15Þ � Ayð40Þ ¼ 0

FFG ¼ �2:062Ay 40 fta xa 80 ft

The influence line for FFG , constructed by using the preceding expressions, is shown in Fig. 8.19( j).
The desired influence line for FCG can now be obtained by multiplying the influence line for FFG by �0:485, in ac-

cordance with Eq. (3). The influence line for FCG thus obtained is shown in Fig. 8.19(k). Ans.
The influence line for FCG can also be constructed by considering the section bb shown in Fig. 8.19(b). By summing

moments about the point of intersection of the axes of members BC and GH, we can determine the expressions for FCG

in terms of FCF and Ay or Ey, whose influence lines are known. The influence line for FCG can then be constructed by
plotting these expressions. The reader is encouraged to check the influence line for FCG shown in Fig. 8.19(k) by em-
ploying this alternative approach.

Example 8.13

Draw the influence line for the force in member HL of the K truss shown in Fig. 8.20(a). Live loads are transmitted to
the bottom chord of the truss.

Solution
Influence Lines for Reactions. See Fig. 8.20(c) and (d).

Influence Lines for FHL. From Fig. 8.20(b), we can observe that any section, such as section aa, passing through the
member HL cuts three or more additional members, thereby releasing four or more unknowns, which cannot be deter-
mined by the three equations of equilibrium. We will, therefore, first construct the influence line for FLM by considering
the curved section bb, as shown in Fig. 8.20(b), and then use section aa to determine the desired influence line for FHL.

The free-body diagrams of the two portions of the truss, obtained by passing section bb, are shown in Fig. 8.20(e).
It can be seen that although section bb has cut four members, CD;DH;HM, and LM, the force in member LM can be
determined by summing moments about point D, because the lines of action of three remaining unknowns pass through
this point. When the 1-kN load is located to the left of C, the expression for FLM can be obtained as

þ ’
P

MD ¼ 0

FLMð12Þ þ Eyð8Þ ¼ 0

FLM ¼ �0:667Ey 0a xa 16 m (1)

When the unit load is located to the right of D, we obtain

þ ’
P

MD ¼ 0

�FLMð12Þ � Ayð24Þ ¼ 0

FLM ¼ �2Ay 24 ma xa 32 m (2)

The influence line for FLM thus obtained is shown in Fig. 8.20(f ).

continued
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The desired influence line for FHL can now be constructed by considering section aa. The free-body diagrams of the
two portions of the truss, obtained by passing section aa, are shown in Fig. 8.20(g). When the 1-kN load is located to
the left of C, the expression for FHL can be determined by applying the equilibrium equation

P
MC ¼ 0:

þ ’
P

MC ¼ 0

FLMð12Þ þ
4

5
FHLð6Þ þ

3

5
FHLð8Þ þ Eyð16Þ ¼ 0

FHL ¼ �1:667Ey � 1:25FLM 0a xa 16 m (3)

When the 1-kN load is to the right of D, we obtain

þ ’
P

MC ¼ 0

�Ayð16Þ � FLMð12Þ �
4

5
FHLð12Þ ¼ 0

FHL ¼ �1:667Ay � 1:25FLM 24 ma xa 32 m (4)

To obtain the expressions for FHL in terms of the reactions only, we substitute Eqs. (1) and (2) into Eqs. (3) and (4), respec-
tively, to obtain

FHL ¼ �0:833Ey 0a xa 16 m (5)

FHL ¼ 0:833Ay 24 ma xa 32 m (6)

The influence line for FHL can now be constructed by using either Eqs. (3) and (4) or Eqs. (5) and (6). The influence line
thus obtained is shown in Fig. 8.20(h). Ans.

8.5 Influence Lines for Deflections

A deflection influence line depicts the variation of a deflection of a struc-
ture as a concentrated load of unit magnitude moves across the structure.
Let us assume that it is desired to construct the influence line for the
vertical deflection at point B of the simply supported beam shown in
Fig. 8.21(a). We can construct the influence line by placing a unit load
successively at arbitrary points to the left and to the right of B; deter-
mining an expression for the vertical deflection at B for each position of
the unit load by using one of the methods for computing deflections de-
scribed in Chapters 6 and 7; and plotting the expressions.

A more e‰cient procedure for constructing the deflection influence
lines can be devised by the application of Maxwell’s law of reciprocal

deflections (Section 7.8). Considering again the beam of Fig. 8.21(a), if
fBX is the vertical deflection at B when the unit load is placed at an ar-
bitrary point X , then fBX represents the ordinate at X of the influence
line for the vertical deflection at B. Now, suppose that we place the unit
load at B, as shown in Fig. 8.21(b), and compute the vertical deflection
at point X , fXB. According to Maxwell’s law of reciprocal deflections,

fXB ¼ fBX
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which indicates that the deflection at X due to the unit load at B, fXB,
also represents the ordinate at X of the influence line for the vertical de-
flection at B. Because the point X was arbitrarily chosen, we can con-
clude that the deflected shape (elastic curve) of a structure due to a unit

load applied at a point represents the influence line for deflection at the

point where the unit load is applied. Thus, an influence line for deflection
at a point of a structure can be constructed by placing a unit load at the
point where the deflection is desired; determining the corresponding de-
flected shape (elastic curve) of the structure by using one of the methods
for computing deflections described in Chapters 6 and 7; and plotting the
deflected shape. The procedure is illustrated by the following example.

Example 8.14

Draw the influence line for the vertical deflection at end B of the cantilever beam shown in Fig. 8.22(a).

Solution
To determine the influence line for the vertical deflection at B, we place a 1-k load at B, as shown in Fig. 8.22(b), and
determine the expression for the deflected shape of the beam by using the conjugate-beam method described in Section 6.6.
The M=EI diagram of the real beam due to the 1-k load applied at B is shown in Fig. 8.22(c), and the conjugate beam,
loaded with the M=EI diagram of the real beam, is shown in Fig. 8.22(d). The deflection at an arbitrary point X located
at a distance x from A in the real beam is equal to the bending moment at X in the conjugate beam. From Fig. 8.22(d), we
can see that the bending moment at X in the conjugate beam is given by

MX ¼
1

EI
�15 1� x

15

� �
x

x

2

� �
� 1

2

� �
15� 15 1� x

15

� �� �
x

2x

3

� �� �
¼ 1

6EI
ðx3 � 45x2Þ

FIG. 8.21

continued
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Thus, the deflection at X on the real beam is

fXB ¼
1

6EI
ðx3 � 45x2Þ

which represents the expression for the deflected shape of the beam due to the 1-k load at B (Fig. 8.22(b)). By applying
Maxwell’s law of reciprocal deflections, fBX ¼ fXB, we obtain the equation of the influence line for the vertical deflection
at B as

fBX ¼
1

6EI
ðx3 � 45x2Þ

By substituting the numerical values of E and I , we get

fBX ¼
x3 � 45x2

604;167

The influence line for vertical deflection at B, obtained by plotting the preceding equation, is shown in Fig. 8.22(e). Ans.

FIG. 8.22
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Summary

In this chapter we have learned that an influence line is a graph of a re-
sponse function of a structure as a function of the position of a down-
ward unit load moving across the structure. The influence lines for the
force and moment response functions of all statically determinate struc-
tures consist of straight-line segments.

The influence line for a reaction can be constructed by placing a unit
load at a variable position x on the structure, applying an equilibrium
equation to determine the expression for the reaction in terms of x, and
plotting the expression. The influence line for shear (or bending moment)
at a point of a beam can be constructed by placing a unit load succes-
sively to the left and to the right of the point under consideration, deter-
mining the expressions for shear (or bending moment) for the two
positions of the unit load, and plotting the expressions.

Müller-Breslau’s principle states that the influence line for a force (or
moment) response function is given by the deflected shape of the released
structure obtained by removing the restraint corresponding to the re-
sponse function from the original structure and by giving the released
structure a unit displacement (or rotation) at the location and in the di-
rection of the response function, so that only the response function and
the unit load perform external work. This principle is commonly used to
construct qualitative influence lines (i.e., the general shape of influence
lines). The numerical values of the influence-line ordinates, if desired, are
then computed by applying the equations of equilibrium. Procedures for
constructing influence lines for girders with floor systems and trusses
were presented in Sections 8.3 and 8.4, respectively.

The deflected shape (elastic curve) of a structure, due to a unit load
applied at a point, represents the influence line for deflection at the point
where the unit load is applied.

PROBLEMS

Sections 8.1 and 8.2

8.1 through 8.3 Draw the influence lines for vertical reactions
at supports A and C and the shear and bending moment at
point B of the beams shown in Figs. P8.1 through P8.3.

14 ft 14 ft

CBA

FIG. P8.1, P8.59

4 m 12 m

CBA

FIG. P8.2, P8.60

10 m 5 m

CBA

FIG. P8.3
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8.4 Draw the influence lines for the shear and bending mo-
ment at point B of the cantilever beam shown in Fig. P8.4.

8.5 Draw the influence lines for the vertical reaction and the
reaction moment at support A and the shear and bending
moment at point B of the cantilever beam shown in Fig. P8.5.

8.6 Draw the influence lines for vertical reactions at sup-
ports A and C and the shear and bending moment at point
B of the beam shown in Fig. P8.6.

8.7 and 8.8 Draw the influence lines for vertical reactions at
supports B and D and the shear and bending moment at
point C of the beams shown in Figs. P8.7 and P8.8.

8.9 Draw the influence lines for the vertical reactions at
supports A and C, the shear at just to the right of A, and the
bending moment at point B of the beam shown in Fig. P8.9.

8.10 Draw the influence lines for the shear and bending
moment at point C and the shears just to the left and just to
the right of support D of the beam shown in Fig. P8.10.

8.11 Draw the influence lines for the shear and bending
moment at point E of the beam shown in Fig. P8.10.

8.12 Draw the influence lines for the shear and bending
moment at point B and the shears just to the left and just to
the right of support C of the beam shown in Fig. P8.12.

8.13 Draw the influence lines for the vertical reactions at
supports A and E and the reaction moment at support E of
the beam shown in Fig. P8.13.

FIG. P8.12

9 ft 9 ft

BA
C

FIG. P8.4

6 m 9 m

B CA

FIG. P8.5, P8.58

7 m7 m 4 m

DCBA

FIG. P8.6, P8.61

10 ft5 ft 10 ft

DCBA

FIG. P8.7

5 m 5 m8 m 8 m

EDA B C

FIG. P8.8

FIG. P8.9

5 m 4 m 4 m3 m6 m

D E FCBA

FIG. P8.10, P8.11
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8.14 Draw the influence lines for the shear and bending
moment at point B of the beam shown in Fig. P8.13.

8.15 Draw the influence lines for the shear and bending
moment at point D of the beam shown in Fig. P8.13.

8.16 Draw the influence lines for the vertical reactions at
supports A and E and the shear and bending moment at
point D of the frame shown in Fig. P8.16.

8.17 Draw the influence lines for the vertical reactions at
supports A and B and the shear and bending moment at
point D of the frame shown in Fig. P8.17.

8.18 Draw the influence lines for the vertical reaction and
reaction moment at support A and the shear and bending
moment at point C of the frame shown in Fig. P8.18.

8.19 Draw the influence lines for the vertical reactions at
supports A;B, and E and the shear at internal hinge D of
the frame shown in Fig. P8.19.

8.20 Draw the influence lines for the vertical reactions at
supports B;E, and G of the beam shown in Fig. P8.20.

8.21 Draw the influence lines for the shear and bending
moment at point C and the shear at internal hinge D of the
beam shown in Fig. P8.20.

8.22 Draw the influence lines for the shear and bending
moment at point F of the beam shown in Fig. P8.20.

12 ft 12 ft 12 ft 12 ft12 ft 12 ft

D E F GCBA

Hinge

FIG. P8.20, P8.21, P8.22

4 m 4 m 4 m 4 m

Hinge

A B C D
E

FIG. P8.13, P8.14, P8.15

3 m 3 m5 m 5 m

7 m

A

B C D E F

FIG. P8.16

12 ft 12 ft 12 ft

18 ft

12 ft

A

C D E F

B

FIG. P8.17

FIG. P8.18

FIG. P8.19
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8.23 and 8.24 Draw the influence lines for the vertical re-
actions at supports A;C;E, and G of the beams shown in
Figs. P8.23 and P8.24.

8.25 Draw the influence lines for the shear and bending
moment at point D of the beam shown in Fig. P8.23.

8.26 Draw the influence lines for the shear and bending
moment at point B of the beam shown in Fig. P8.24.

8.27 Draw the influence lines for the vertical reactions at
supports B;D, and G and the reaction moment at support G
of the beam shown in Fig. P8.27.

8.28 Draw the influence lines for the shear and bending
moment at point E of the beam shown in Fig. P8.27.

8.29 Draw the influence lines for the reaction moment at
support A and the vertical reactions at supports A;E, and G

of the beam shown in Fig. P8.29.

8.30 Draw the influence lines for the shears and bending
moments at points C and F of the beam shown in Fig. P8.29.

8.31 Draw the influence lines for the reaction moments and
the vertical reactions at supports A and F of the beam
shown in Fig. P8.31.

8.32 Draw the influence lines for the shears and bending
moments at points B and E of the beam shown in Fig. P8.31.

8.33 Draw the influence lines for the vertical reactions at
supports A, and B of the beam shown in Fig. P8.33.

8.34 Draw the influence lines for the shears and bending
moments at points D and F of the beam shown in Fig. P8.33.

8.35 and 8.36 Draw the influence lines for the horizontal
and vertical reactions at supports A and B of the frames
shown in Figs. P8.35 and P8.36.

6 m 6 m

A B

C D E
Hinge

6 m

FIG. P8.35

20 ft 20 ft 15 ft 15 ft30 ft 30 ft

D E F GCBA
HingeHinge

FIG. P8.23, P8.25

6 m 6 m 6 m 6 m6 m 6 m

D E F GCBA

Hinge Hinge

FIG. P8.24, P8.26

10 ft 15 ft 10 ft 10 ft15 ft 10 ft

D E F
G

CBA

Hinge Hinge

FIG. P8.27, P8.28

FIG. P8.29, P8.30

FIG. P8.31, P8.32

8 m 6 m 4 m 4 m 3 m 3 m 8 m

HingeHinge

D E F G HCBA

FIG. P8.33, P8.34
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8.37 Draw the influence lines for the reaction moment at
support A, the vertical reactions at supports A and F , and
the shear and bending moment at point E of the frame
shown in Fig. P8.37.

8.38 Draw the influence lines for the reaction moment at
support A, the vertical reactions at supports A and B, and
the shear at the internal hinge C of the frame shown in
Fig. P8.38.

8.39 Draw the influence lines for the vertical reactions at
supports A;B;C, and the shear and bending moment at
point E of the frame shown in Fig. P8.39.

Section 8.3

8.40 Draw the influence lines for the shear in panel CD and
the bending moment at D of the girder with the floor system
shown in Fig. P8.40.

8.41 Draw the influence lines for the shear in panel DE and
the bending moment at E of the girder with the floor system
shown in Fig. P8.41.

8.42 Draw the influence lines for the shear in panel BC and
the bending moment at F of the girder with the floor system
shown in Fig. P8.41.

8.43 Draw the influence lines for the shear in panel BC and
the bending moment at C of the girder with the floor system
shown in Fig. P8.43.

A B C D

7 panels at 18 ft = 126 ft

E F G H

FIG. P8.41, P8.42

FIG. P8.36

FIG. P8.37

FIG. P8.38

FIG. P8.39

A B C D E

4 panels at 6 m = 24 m

FIG. P8.40
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8.44 Draw the influence line for the shear in panel CD and
the bending moment at D of the girder with the floor system
shown in Fig. P8.44.

Section 8.4

8.45 through 8.52 Draw the influence lines for the forces in
the members identified by an ‘‘D’’ of the trusses shown in
Figs. P8.45–P8.52. Live loads are transmitted to the bottom
chords of the trusses.

FIG. P8.51

Fixed support

A B C D

4 panels at 15 ft = 60 ft

E

FIG. P8.43

FIG. P8.44

5 m 5 m

5 m

A

B
C

D

×

×

×

FIG. P8.45

4 m

A

B C

E F

D

3 panels at 3 m = 9 m

×

×

×

FIG. P8.46

FIG. P8.47

FIG. P8.48

FIG. P8.49

FIG. P8.50
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8.53 through 8.57 Draw the influence lines for the forces in
the members identified by an ‘‘D’’ of the trusses shown in
Figs. P8.53–P8.57. Live loads are transmitted to the top
chords of the trusses.

Section 8.5

8.58 Draw the influence line for the vertical deflection at
point B of the cantilever beam of Problem 8.5. EI ¼
constant. See Fig. P8.5.

8.59 and 8.60 Draw the influence line for the vertical de-
flection at point B of the simply supported beams of Prob-
lems 8.1 and 8.2. EI ¼ constant. See Figs. P8.1 and P8.2.

8.61 Draw the influence line for the vertical deflection at
point D of the beam of Problem 8.6. EI ¼ constant. See
Fig. P8.6.

FIG. P8.57

FIG. P8.52

FIG. P8.53

FIG. P8.54

FIG. P8.55

FIG. P8.56
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9
Application of Influence Lines
9.1 Response at a Particular Location Due to a Single Moving Concentrated

Load
9.2 Response at a Particular Location Due to a Uniformly Distributed Live

Load
9.3 Response at a Particular Location Due to a Series of Moving

Concentrated Loads
9.4 Absolute Maximum Response

Summary
Problems

A Highway Bridge Subjected to

Moving Loads
Caltrans District 4 Photography Department, Photographer

John Huseby. Copyright 2005 California Department of

Transportation
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In the preceding chapter, we learned how to construct influence lines for
various response functions of structures. In this chapter, we consider the
application of influence lines in determining the maximum values of re-
sponse functions at particular locations in structures due to variable loads.
We also discuss the procedures for evaluating the absolute maximum
value of a response function that may occur anywhere in a structure.

9.1 Response at a Particular Location Due to a Single Moving Concentrated Load

As discussed in the preceding chapter, each ordinate of an influence line
gives the value of the response function due to a single concentrated load
of unit magnitude placed on the structure at the location of that ordi-
nate. Thus, we can state the following.

1. The value of a response function due to any single concentrated
load can be obtained by multiplying the magnitude of the load
by the ordinate of the response function influence line at the
position of the load.

2. To determine the maximum positive value of a response func-
tion due to a single moving concentrated load, the load must
be placed at the location of the maximum positive ordinate of
the response function influence line, whereas to determine the



maximum negative value of the response function, the load
must be placed at the location of the maximum negative ordi-
nate of the influence line.

Consider, for example, a beam subjected to a moving concentrated
load of magnitude P, as shown in Fig. 9.1(a). Suppose that we wish to
determine the bending moment at B when the load P is located at a
distance x from the left support A. The influence line for MB, given in
Fig. 9.1(a), has an ordinate y at the position of the load P, indicating
that a unit load placed at the position of P causes a bending moment
MB ¼ y. Because the principle of superposition is valid, the load of mag-
nitude P must cause a bending moment at B, which is P times as large as
that caused by the load of unit magnitude. Thus, the bending moment
at B due to the load P is MB ¼ Py.

Next, suppose that our objective is to determine the maximum pos-
itive and the maximum negative bending moments at B due to the load
P. From the influence line for MB (Fig. 9.1(a)), we observe that the
maximum positive and the maximum negative influence-line ordinates
occur at points B and D, respectively. Therefore, to obtain the maximum
positive bending moment at B, we place the load P at point B, as shown
in Fig. 9.1(b), and compute the magnitude of the maximum positive
bending moment as MB ¼ PyB, where yB is the influence-line ordinate at
B (Fig. 9.1(a)). Similarly, to obtain the maximum negative bending mo-
ment at B, we place the load P at point D, as shown in Fig. 9.1(c), and
compute the magnitude of the maximum negative bending moment as
MB ¼ �PyD.

Example 9.1

For the beam shown in Fig. 9.2(a), determine the maximum upward reaction at support C due to a 50-kN concentrated
live load.

Solution
Influence Line. The influence line for the vertical reaction at support C of this beam was previously constructed in
Example 8.8 and is shown in Fig. 9.2(b). Recall that Cy was assumed to be positive in the upward direction in the
construction of this influence line.

Maximum Upward Reaction at C. To obtain the maximum positive value of Cy due to the 50-kN concentrated live load,
we place the load at B (Fig. 9.2(c)), where the maximum positive ordinate (1.4 kN/kN) of the influence line occurs. By
multiplying the magnitude of the load by the value of this ordinate, we determine the maximum upward reaction at C as

Cy ¼ 50ðþ1:4Þ ¼ þ70 kN ¼ 70 kN " Ans.

FIG. 9.1

continued
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9.2 Response at a Particular Location Due to a Uniformly Distributed Live Load

Influence lines can also be employed to determine the values of response
functions of structures due to distributed loads. Consider, for example,
a beam subjected to a uniformly distributed live load of intensity wl, as
shown in Fig. 9.3(a). Suppose that we wish to determine the bending mo-
ment at B when the load is placed on the beam, from x ¼ a to x ¼ b, as
shown in the figure. The influence line for MB is also given in the figure.
By treating the distributed load applied over a di¤erential length dx of the
beam as a concentrated load of magnitude dP ¼ wl dx, as shown in the
figure, we can express the bending moment at B due to the load dP as

dMB ¼ dP y ¼ wl dx y ð9:1Þ

where y is the influence line ordinate at x, which is the point of applica-
tion of dP, as shown in the figure. To determine the total bending mo-
ment at B due to the distributed load from x ¼ a to x ¼ b, we integrate
Eq. (9.1) between these limits to obtain

MB ¼
ð b

a

wl y dx ¼ wl

ð b

a

y dx ð9:2Þ

4 m 4 m 4 m 4 m10 m
(a)

(b)  Influence Line for Cy (kN/kN)

(c)  Position of 50-kN Load for
Maximum Upward Cy

A F
B

C D

E

Hinge Hinge

A C

B

D E F

Hinge Hinge

50 kN

A B C D

E F

1.4

–0.4

1.0

0

FIG. 9.2
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in which the integral
Ð b

a
y dx represents the area under the segment of the

influence line, which corresponds to the loaded portion of the beam. This
area is shown as a shaded area on the influence line forMB in Fig. 9.3(a).

Equation (9.2) also indicates that the bending moment at B will be
maximum positive if the uniformly distributed load is placed over all
those portions of the beam where the influence-line ordinates are positive
and vice versa. From Fig. 9.3(a), we can see that the ordinates of the in-
fluence line for MB are positive between the points A and C and negative
between C and D. Therefore, to obtain the maximum positive bending
moment at B, we place the uniformly distributed load wl from A to C, as
shown in Fig. 9.3(b), and compute the magnitude of the maximum pos-
itive bending moment as

MB ¼ wlðarea under the influence line between A and CÞ

¼ wl
1

2

� �
ð0:75LÞðyBÞ ¼ 0:375wl yBL

Similarly, to obtain the maximum negative bending moment at B, we
place the load from C to D, as shown in Fig. 9.3(c), and compute the
magnitude of the maximum negative bending moment as

MB ¼ wlðarea under the influence line between C and DÞ

¼ wl
1

2

� �
ð0:25LÞð�yDÞ ¼ �0:125wl yDL

Based on the foregoing discussion, we can state the following.

1. The value of a response function due to a uniformly distributed
load applied over a portion of the structure can be obtained by
multiplying the load intensity by the net area under the corre-
sponding portion of the response function influence line.

2. To determine the maximum positive (or negative) value of a re-
sponse function due to a uniformly distributed live load, the
load must be placed over those portions of the structure where
the ordinates of the response function influence line are positive
(or negative).

Example 9.2

For the beam shown in Fig. 9.4(a), determine the maximum upward reaction at support C due to a 15-kN/m uniformly
distributed live load.

Solution
Influence Line. The influence line for the vertical reaction at support C of this beam was previously constructed in
Example 8.8 and is shown in Fig. 9.4(b). Recall that Cy was assumed to be positive in the upward direction in the
construction of this influence line.

FIG. 9.3

continued
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Maximum Upward Reaction at C. From Fig. 9.4(b), we observe that the ordinates of the influence line for Cy are positive
between points A and D. Therefore, to obtain the maximum positive value of Cy, we place the 15-kN/m uniformly dis-
tributed live load over the portion AD of the beam, as shown in Fig. 9.4(c). By multiplying the load intensity by the area
under the portion AD of the influence line, we determine the maximum upward reaction at C as

Cy ¼ 15
1

2
ðþ1:4Þð18Þ

� �
¼ þ189 kN ¼ 189 kN " Ans.

Example 9.3

For the beam shown in Fig. 9.5(a), determine the maximum positive and negative shears and the maximum positive and
negative bending moments at point C due to a concentrated live load of 90 kN, a uniformly distributed live load of
40 kN/m, and a uniformly distributed dead load of 20 kN/m.

Solution
Influence Lines. The influence lines for the shear and bending moment at point C of this beam were previously con-
structed in Example 8.6 and are shown in Fig. 9.5(b) and (e), respectively.

Maximum Positive Shear at C. To obtain the maximum positive shear at C due to the 90-kN concentrated live load, we
place the load just to the right of C (Fig. 9.5(c)), where the maximum positive ordinate (2/3 kN/kN) of the influence line

4 m 4 m 4 m 4 m10 m
(a)

(b)  Influence Line for Cy (kN/kN)

(c)  Arrangement of 15-kN/m 
Load for Maximum Upward Cy

A F
B

C D

E

Hinge Hinge

A
CB D

E F

Hinge Hinge

A B C D

E F

1.4

–0.4

1.0

0

15 kN/m

FIG. 9.4

continued
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for SC occurs. By multiplying the magnitude of the load by the value of this ordinate, we determine the maximum posi-
tive value of SC due to the concentrated live load as

SC ¼ 90
2

3

� �
¼ 60 kN

From Fig. 9.5(b), we observe that the ordinates of the influence line for SC are positive between the points A and B and
between the points C and D. Therefore, to obtain the maximum positive shear at C due to the 40-kN/m uniformly dis-
tributed live load, we place the load over the portions AB and CD of the beam, as shown in Fig. 9.5(c), and compute the
maximum positive value of SC due to this load by multiplying the load intensity by the area under the portions AB and
CD of the influence line. Thus

SC ¼ 40
1

2

� �
ð3Þ 1

3

� �
þ 1

2

� �
ð6Þ 2

3

� �� �
¼ 100 kN

Unlike live loads, the dead loads always act at fixed positions on structures; that is, their positions cannot be varied to
maximize response functions. Therefore, the 20-kN/m uniformly distributed dead load is placed over the entire length of
the beam, as shown in Fig. 9.5(c), and the corresponding shear at C is determined by multiplying the dead-load intensity
by the net area under the entire influence line as

SC ¼ 20
1

2

� �
ð3Þ 1

3

� �
þ 1

2

� �
ð3Þ � 1

3

� �
þ 1

2

� �
ð6Þ 2

3

� �� �
¼ 40 kN

FIG. 9.5

continued
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The total maximum positive shear at C can now be obtained by algebraically adding the values of SC determined for the
three types of loads.

Maximum positive SC ¼ 60þ 100þ 40 ¼ 200 kN Ans.

Maximum Negative Shear at C. The arrangement of the loads to obtain the maximum negative shear at C is shown in
Fig. 9.5(d). The maximum negative shear at C is given by

Maximum negative SC ¼ 90 � 1

3

� �
þ 40

1

2

� �
ð3Þ � 1

3

� �
þ 20

�
1

2

� �
ð3Þ 1

3

� �
þ 1

2

� �
ð3Þ � 1

3

� �
þ 1

2

� �
ð6Þ 2

3

� ��
¼ �10 kN Ans.

Maximum Positive Bending Moment at C. The arrangement of the loads to obtain the maximum positive bending mo-
ment at C is shown in Fig. 9.5(f ). Note that the 90-kN concentrated live load is placed at the location of the maximum
positive ordinate of the influence line for MC (Fig. 9.5(e)); the 40-kN/m uniformly distributed live load is placed over the
portion BD of the beam, where the ordinates of the influence line are positive; whereas the 20-kN/m uniformly distributed
dead load is placed over the entire length of the beam. The maximum positive bending moment at C is given by

Maximum positive MC ¼ 90ð2Þþ 40
1

2

� �
ð9Þð2Þ

þ 20
1

2

� �
ð3Þð�2Þ þ 1

2

� �
ð9Þð2Þ

� �
¼ 660 kN �m Ans.

Maximum Negative Bending Moment at C. The loading arrangement to obtain the maximum negative bending moment
at C is shown in Fig. 9.5(g). The maximum negative MC is given by

Maximum negative MC ¼ 90ð�2Þþ 40
1

2

� �
ð3Þð�2Þ

þ 20
1

2

� �
ð3Þð�2Þ þ 1

2

� �
ð9Þð2Þ

� �
¼ �180 kN �m Ans.

9.3 Response at a Particular Location Due to a Series of Moving Concentrated Loads

As discussed in Section 2.2, live loads due to vehicular tra‰c on highway
and railway bridges are represented by a series of moving concentrated
loads with specified spacing between the loads (see Figs. 2.2 and 2.3).
Influence lines provide a convenient means of analyzing structures sub-
jected to such moving loads. In this section, we discuss how the influence
line for a response function can be used to determine (1) the value of the
response function for a given position of a series of concentrated loads
and (2) the maximum value of the response function due to a series of
moving concentrated loads.

Consider, for example, the bridge beam shown in Fig. 9.6. Suppose
that we wish to determine the shear at point B of the beam due to the
wheel loads of an HS20-44 truck when the front axle of the truck is
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located at a distance of 16 ft from the left support A, as shown in the fig-
ure. The influence line for the shear at B is also shown in the figure. The
distances between the three loads as well as the location of the 4-k load
are known, so the locations of the other two loads can be easily estab-
lished. Although the influence-line ordinates corresponding to the loads
can be obtained by using the properties of the similar triangles formed by
the influence line, it is usually convenient to evaluate such an ordinate by
multiplying the slope of the segment of the influence line where the load is
located by the distance of the load from the point at which the influ-
ence line segment intersects the horizontal axis (i.e., becomes zero). The
sign (plus or minus) of the ordinate is obtained by inspection. For exam-
ple, the influence-line ordinate corresponding to the 4-k load (Fig. 9.6),
can be computed by multiplying the slope (1:100) of the influence-line
segment for the portion AB by the distance (16 ft) of the load from point
A. Thus the ordinate of the influence line for SB corresponding to the 4-k
load equals �ð1=100Þð16Þ ¼ �0:16 k/k. The ordinates corresponding to
the three loads thus obtained are shown in Fig. 9.6.

It may be recalled that the shear at B due to a single concentrated load
is given by the product of the magnitude of the load and the influence-
line ordinate at the location of the load. Because superposition is valid, the
total shear at B caused by the three concentrated loads can be determined
by algebraically summing the shears at B due to the individual loads, that
is, by summing the products of the load magnitudes and the respective
influence-line ordinates. Thus

SB ¼ �4ð0:16Þ � 16ð0:3Þ þ 16ð0:4Þ ¼ 0:96 k

The foregoing procedure can be employed to determine the value of
any force or moment response function of a structure for a given position
of a series of concentrated loads.

FIG. 9.6
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Influence lines can also be used for determining the maximum values
of response functions at particular locations of structures due to a series
of concentrated loads. Consider the beam shown in Fig. 9.7(a), and sup-
pose that our objective is to determine the maximum positive shear at
point B due to the series of four concentrated loads shown in the figure.
The influence line for SB is shown in Fig. 9.7(b). Assuming that the load
series moves from right to left on the beam, we can observe from these
figures that as the series moves from the end C of the beam toward point
B, the shear at B increases continuously as the ordinates of the influence
line under the loads increase. The shear at B reaches a relative maximum

FIG. 9.7
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when the first load of the series, the 8-k load, reaches just to the right of
B, where the maximum positive ordinate of the influence line is located.
As the 8-k load crosses point B, the shear at B decreases abruptly by an
amount equal to �8ð0:667þ 0:333Þ ¼ �8 k. With the series of loads
continuing to move toward the left, SB increases again, and it reaches
another relative maximum when the second load of the series, the 10-k
load, reaches just to the right of B, and so on. Because SB becomes a
relative maximum whenever one of the loads of the series reaches the
maximum positive influence-line ordinate, we can conclude that during
the movement of the series of loads across the entire length of the beam,
the (absolute) maximum shear at B occurs when one of the loads of the
series is at the location of the maximum positive ordinate of the influence
line for SB. Since it is not possible to identify by inspection the load
that will cause the maximum positive SB when placed at the maximum
influence-line ordinate, we use a trial-and-error procedure to determine
the value of the maximum positive shear at B. As shown in Fig. 9.7(c),
the series of loads is initially positioned on the beam with its first load, the
8-k load, placed just to the right of B, where the maximum positive
ordinate of the influence line is located. Noting that the slope of the
influence-line segment for the portion BC is 1:30 (Fig. 9.7(b)), we com-
pute the value of SB for this loading position as

SB ¼ 8ð20Þ 1

30

� �
þ 10ð16Þ 1

30

� �
þ 15ð13Þ 1

30

� �
þ 5ð8Þ 1

30

� �
¼ 18:5 k

Next, the entire series of loads is moved to the left by 4 ft to place the
second load of the series, the 10-k load, at the location of the maximum
positive ordinate of the influence line, as shown in Fig. 9.7(d). The shear
at B for this loading position is given by

SB ¼ �8ð6Þ
1

30

� �
þ 10ð20Þ 1

30

� �
þ 15ð17Þ 1

30

� �
þ 5ð12Þ 1

30

� �
¼ 15:567 k

The series of loads is then moved further to the left by 3 ft to place the
third load of the series, the 15-k load, just to the right of B (Fig. 9.7(e)).
The shear at B is now given by

SB ¼ �8ð3Þ
1

30

� �
� 10ð7Þ 1

30

� �
þ 15ð20Þ 1

30

� �
þ 5ð15Þ 1

30

� �
¼ 9:367 k

Finally, the series is positioned so that its last load, the 5-k load, is just to
the right of B, as shown in Fig. 9.7(f ). Note that the 8-k load has moved
o¤ the span of the beam; therefore, it does not contribute to the shear at
B, which is given by

SB ¼ �10ð2Þ
1

30

� �
� 15ð5Þ 1

30

� �
þ 5ð20Þ 1

30

� �
¼ 0:167 k

By comparing the values of SB determined for the four loading positions,
we conclude that the maximum positive shear at B occurs for the first
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loading position—that is, when the 8-k load is placed just to the right of
B (Fig. 9.7(c)):

Maximum positive SB ¼ 18:5 k

Procedure for Analysis

The procedure for determining the maximum value of a force or moment
response function at a particular location in a structure due to a series of
moving concentrated loads can be summarized as follows.

1. Construct an influence line for the response function whose max-
imum value is desired, and locate its maximum positive or neg-
ative ordinate, depending on whether the maximum positive or
negative value of the response function is desired. (This ordinate
is referred to simply as the maximum ordinate in the following.)

2. Select the direction (either from right to left or vice versa) in
which the load series will be moved on the structure. If the series
is to move from right to left, then the load at the left end of the
series is considered to be the first load, whereas if the series is
to move from left to right, then the load at the right end is con-
sidered to be the first load. Beginning with the first load, se-
quentially number (as 1, 2, 3, . . .) all the loads of the series. The
position of the entire load series is referred to by the number of
the load, which is placed at the location of the maximum influ-
ence line ordinate; for example, when the third load of the series
is placed at the location of the maximum influence line ordinate,
then the position of the load series is referred to as the loading
position 3, and so on (for an example, see Fig. 9.7).

3. Position the given series of concentrated loads on the structure,
with the first load of the series at the location of the maximum
ordinate of the influence line. Establish the locations of the rest
of the loads of the series.

4. Evaluate the influence-line ordinates corresponding to the loads
of the series, and determine the value of the response function
by algebraically summing the products of the load magnitudes
and the respective influence-line ordinates. If the value of the
response function determined herein is for the last loading posi-
tion (with the last load of the series placed at the location of the
maximum influence-line ordinate), then go to step 6. Otherwise,
continue to the next step.

5. Move the load series in the direction selected in step 2 until the
next load of the series reaches the location of the maximum
influence-line ordinate. Establish the positions of the rest of the
loads of the series, and return to step 4.

6. By comparing the magnitudes of the response function deter-
mined for all the loading positions considered, obtain the max-
imum value of the response function.

If the arrangement of loads is such that all or most of the heavier
loads are located near one of the ends of the series, then the analysis can
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be expedited by selecting a direction of movement for the series, so that
the heavier loads will reach the maximum influence-line ordinate before
the lighter loads of the series. For example, a load series in which the
heavier loads are to the left should be moved on the structure from right
to left and vice versa. In such a case, it may not be necessary to examine
all the loading positions obtained by successively placing each load of the
series at the location of the maximum influence-line ordinate. Instead,
the analysis can be ended when the value of the response function begins
to decrease; that is, if the value of the response function for a loading
position is found to be less than that for the preceding loading position,
then the value of the response function for the preceding loading position
is considered to be the maximum value. Although this criterion may also
work for series with heavier loads near the middle of the group, it is not
valid for any general series of loads. In general, depending on the load
magnitudes and spacing, and the shape of the influence line, the value of
the response function, after declining for some loading positions, may
start increasing again for subsequent loading positions and may attain a
higher maximum.

Example 9.4

Determine the maximum axial force in member BC of the Warren truss due to the series of four moving concentrated
loads shown in Fig. 9.8(a).

Solution
Influence Line for FBC. See Fig. 9.8(b).

Maximum Force in Member BC. To determine the maximum value of FBC , we move the load series from right to left,
successively placing each load of the series at point B, where the maximum ordinate of the influence line for FBC is lo-
cated (see Fig. 9.8(c) through (f )). The value of FBC is then computed for each loading position as follows.

� For loading position 1 (Fig. 9.8(c)):

FBC ¼ ½16ð60Þ þ 32ð50Þ þ 8ð35Þ þ 32ð15Þ� 1

80

� �
¼ 41:5 k ðTÞ

� For loading position 2 (Fig. 9.8(d)):

FBC ¼ 16ð10Þ 3

80

� �
þ ½32ð60Þ þ 8ð45Þ þ 32ð25Þ� 1

80

� �
¼ 44:5 k ðTÞ

� For loading position 3 (Fig. 9.8(e)):

FBC ¼ 32ð5Þ 3

80

� �
þ ½8ð60Þ þ 32ð40Þ� 1

80

� �
¼ 28:0 k ðTÞ

� For loading position 4 (Fig. 9.8(f )):

FBC ¼ 32ð60Þ 1

80

� �
¼ 24:0 k ðTÞ

By comparing the values of FBC for the four loading positions, we conclude that the magnitude of the maximum axial
force that develops in member BC is FBC ¼ 44:5 k tension. This maximum force occurs when the second load of the
series is placed at joint B of the truss, as shown in Fig. 9.8(d).

Maximum FBC ¼ 44:5 k ðTÞ Ans.

continued
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FIG. 9.8
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9.4 Absolute Maximum Response

Thus far, we have considered the maximum response that may occur at a
particular location in a structure. In this section, we discuss how to de-
termine the absolute maximum value of a response function that may
occur at any location throughout a structure. Although only simply sup-
ported beams are considered in this section, the concepts presented
herein can be used to develop procedures for the analysis of absolute
maximum responses of other types of structures.

Single Concentrated Load

Consider the simply supported beam shown in Fig. 9.9(a). The influence
lines for the shear and bending moment at an arbitrary section a 0a 0 lo-
cated at a distance a from the left support A are shown in Fig. 9.9(b) and
(c), respectively. Recall that these influence lines were initially developed
in Section 8.1 (Fig. 8.2(e) and (f )).

Suppose that we wish to determine the absolute maximum shear in
the beam due to a single moving concentrated load of magnitude P. As
discussed in Section 9.1, the maximum positive shear at the section a 0a 0

FIG. 9.9
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is given by the product of the load magnitude, P, and the maximum
positive ordinate, 1� ða=LÞ, of the influence line for shear at section a 0a 0

(Fig. 9.9(b)). Thus,

maximum positive shear ¼ P 1� a

L

� �
ð9:3Þ

Similarly, the maximum negative shear at section a 0a 0 is given by

maximum negative shear ¼ �Pa

L
ð9:4Þ

These equations indicate that the maximum positive and maximum neg-
ative shears at a section due to a single moving concentrated load vary
linearly with the distance a of the section from the left support A of the
beam. A plot of Eqs. (9.3) and (9.4), with maximum shear as ordinate,
against the location a of the section as abscissa is shown in Fig. 9.9(d).
Such a graph, depicting the variation of the maximum value of a re-
sponse function as a function of the location of the section, is referred to
as the envelope of the maximum values of a response function. An enve-
lope of maximum values of a response function provides a convenient
means of determining the absolute maximum value of the response
function as well as its location. It can be seen from the envelope of
maximum shears (Fig. 9.9(d)) that in a simply supported beam subjected
to a moving concentrated load P, the absolute maximum shear develops
at sections just inside the supports and has the magnitude of P.

The envelope of maximum bending moments due to a single moving
concentrated load P can be generated in a similar manner. By using the
influence line for bending moment at the arbitrary section a 0a 0 given in
Fig. 9.9(c), we determine the expression for the maximum bending mo-
ment at the section a 0a 0 as

maximum bending moment ¼ Pa 1� a

L

� �
ð9:5Þ

The envelope of maximum bending moments constructed by plotting
Eq. (9.5) is shown in Fig. 9.9(e). It can be seen that the absolute max-
imum bending moment occurs at midspan of the beam and has magni-
tude PL=4.

Uniformly Distributed Load

Next, let us determine the absolute maximum shear and bending mo-
ment in the simply supported beam of Fig. 9.9(a) due to a uniformly
distributed live load of intensity wl. As discussed in Section 9.2, the
maximum positive (or negative) shear at the section a 0a 0 can be obtained
by placing the load over the portion of the beam where the ordinates of
the shear influence line (Fig. 9.9(b)) are positive (or negative), and by
multiplying the load intensity by the area of the influence line under the
loaded portion of the beam. Thus,

maximum positive shear ¼ wl

2L
ðL� aÞ2 ð9:6Þ
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maximum negative shear ¼ �wla
2

2L
ð9:7Þ

The envelope of maximum shears due to a uniformly distributed live
load, constructed by plotting Eqs. (9.6) and (9.7), is shown in Fig. 9.9(f ).
It can be seen that the absolute maximum shear develops at sections just
inside the supports and has magnitude wlL=2.

To determine the expression for the maximum bending moment at
section a 0a 0, we multiply the load intensity, wl, by the area of the bend-
ing moment influence line (Fig. 9.9(c)), to obtain

maximum bending moment ¼ wla

2
ðL� aÞ ð9:8Þ

The envelope of maximum bending moments due to a uniformly distri-
buted live load, constructed by plotting Eq. (9.8), is shown in Fig. 9.9(g).
It can be seen from this envelope that the absolute maximum bending
moment occurs at midspan of the beam and has magnitude wlL

2=8.

Series of Concentrated Loads

The absolute maximum value of a response function in any structure sub-
jected to a series of moving concentrated loads or any other live loading
condition can be determined from the envelope of maximum values of the
response function. Such an envelope can be constructed by evaluating the
maximum values of the response function at a number of points along
the length of the structure by using the procedures described in Sections
9.1 through 9.3, and by plotting the maximum values. Because of the
considerable amount of computational e¤ort involved, except for some
simple structures, the analysis of absolute maximum response is usually
performed using computers. In the following section, we discuss the direct
methods that are commonly employed to determine the absolute max-
imum shears and bending moments in simply supported beams subjected
to a series of moving concentrated loads.

As in the case of single concentrated and uniformly distributed
loads, the absolute maximum shear in a simply supported beam due to a
series of moving concentrated loads always occurs at sections just inside
the supports. From the influence line for shear at an arbitrary section
a 0a 0 of a simply supported beam shown in Fig. 9.9(b), we can see that in
order to develop the maximum positive shear at the section, we must
place as many loads of the series as possible on the portion of the beam
for which the influence line is positive and as few loads as possible on the
portion where the influence line is negative. Moreover, as section a 0a 0 is
shifted toward the left support of the beam, the value of the maximum
positive shear will continuously increase, because the length and the
maximum ordinate of the positive portion of the influence line increase,
whereas those of the negative portion decrease. Thus, the absolute max-
imum positive shear will occur when the section a 0a 0 is located just to the
right of the left support A. Using a similar reasoning, it can be shown
that the absolute maximum negative shear occurs at a section located
just to the left of the right support C of the simply supported beam. Since
the location of the absolute maximum shear is known, the procedure for

402 CHAPTER 9 Application of Influence Lines



computing maximum response at a section due to a series of concen-
trated loads, developed in Section 9.3, can be employed to determine the
magnitude of the absolute maximum shear. Because the influence line for
shear just inside the left support is identical to the influence line for
reaction at the left support, the latter can be conveniently used for de-
termining the magnitude of the absolute maximum shear.

To determine the location of the absolute maximum bending mo-
ment, consider the simply supported beam subjected to an arbitrary
series of moving concentrated loads P1;P2, and P3, as shown in Fig. 9.10.
The resultant of the loads P1;P2, and P3 is denoted by PR, which is
located at the distance x from the load P2, as shown in the figure. The
bending moment diagram of the beam consists of straight-line segments
between the load points regardless of the position of the loads, so the
absolute maximum bending moment occurs under one of the loads. As-
suming that the absolute maximum bending moment occurs under the
load P2, our objective is to determine its position x from the midspan of
the beam, as shown in the figure. By applying the equilibrium equationP

MB ¼ 0 and using the resultant PR instead of the individual loads in
the equilibrium equation, we determine the vertical reaction Ay to be

þ ’
P

MB ¼ 0

�AyðLÞ þ PR

L

2
þ x� x

� �
¼ 0

Ay ¼ PR

1

2
þ x

L
� x

L

� �
Thus the bending moment under the load P2 is given by

M2 ¼ Ay

L

2
þ x

� �
� P1a1

¼ PR

1

2
þ x

L
� x

L

� �
L

2
þ x

� �
� P1a1

¼ PR

L

4
þ x

2
þ xx

L
� x2

L

� �
� P1a1

For M2 to be maximum, its derivative with respect to x must be zero;
that is,

dM2

dx
¼ PR

x

L
� 2x

L

� �
¼ 0

from which we obtain

x ¼ x

2
ð9:9Þ

Based on Eq. (9.9), we can conclude that in a simply supported beam sub-

jected to a series of moving concentrated loads, the maximum bending

moment develops under a load when the midspan of the beam is located

halfway between the load and the resultant of all the loads on the beam.
By applying this criterion, a maximum bending moment can be computed

FIG. 9.10
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for each load acting on the beam. The largest of the maximum bending
moments thus obtained is the absolute maximum bending moment.
However, in general it is not necessary to examine all the loads acting on
the beam, since the absolute maximum bending moment usually occurs
under the load closest to the resultant, provided that it is of equal or larger
magnitude than the next adjacent load. Otherwise, the maximum bending
moments should be computed for the two loads adjacent to the resultant
and compared to obtain the absolute maximum bending moment.

Example 9.5

Determine the absolute maximum bending moment in the simply supported beam due to the wheel loads of the HS20-
44 truck shown in Fig. 9.11(a).

Solution
Resultant of Load Series. The magnitude of the resultant is obtained by summing the magnitudes of the loads of the
series. Thus

PR ¼
P

Pi ¼ 4þ 16þ 16 ¼ 36 k

FIG. 9.11

continued
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The location of the resultant can be determined by using the condition that the moment of the resultant about a point
equals the sum of the moments of the individual loads about the same point. Thus, by summing moments about the 16-k
trailer-wheel load, we obtain

PRðxÞ ¼
P

Pixi

36ðxÞ ¼ 4ð28Þ þ 16ð14Þ

x ¼ 9:33 ft

Absolute Maximum Bending Moment. From Fig. 9.11(b), we observe that the second load of the series (the 16-k rear-
wheel load) is located closest to the resultant. Thus the absolute maximum bending moment occurs under the second load
when the series is positioned on the beam so that the midspan of the beam is located halfway between the load and the
resultant. The resultant is located 4.67 ft to the right of the second load (Fig. 9.11(b)), so we position this load at a dis-
tance of 4:67=2 ¼ 2:33 ft to the left of the beam midspan, as shown in Fig. 9.11(c). Next we compute the vertical reaction
at A to be

Ay ¼ 36
22:67

50

� �
¼ 16:32 k

Thus the absolute maximum bending moment, which occurs under the second load of the series, is

Absolute maximum bending moment ¼M2 ¼ 16:32ð8:67þ 14Þ � 4ð14Þ

¼ 313:97 k-ft Ans.

Summary

In this chapter we have learned that the value of a response function due
to a single concentrated load can be obtained by multiplying the magni-
tude of the load by the ordinate of the response function influence line at
the position of the load. To determine the maximum positive (or neg-
ative) value of a response function due to a single moving concentrated
load, the load must be placed at the location of the maximum positive
(or negative) ordinate of the response function influence line.

The value of a response function due to a uniformly distributed load
applied over a portion of the structure can be obtained by multiplying the
load intensity by the net area under the corresponding portion of the re-
sponse function influence line. To determine the maximum positive (or neg-
ative) value of a response function due to a uniformly distributed live load,
the load must be placed over those portions of the structure where the ordi-
nates of the response function influence line are positive (or negative).

The maximum value of a response function at a particular location in
a structure due to a series of moving concentrated loads can be de-
termined by successively placing each load of the series on the structure at
the location of the maximum ordinate of the response function influence
line, by computing the value of the response function for each position of
the series through algebraically summing the products of the load mag-
nitudes and the respective influence-line ordinates, and by comparing the
values of the response function thus obtained to determine the maximum
value of the response function.
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In simply supported beams (a) the absolute maximum shear develops
at sections just inside the supports, (b) the absolute maximum bending
moment due to a single concentrated, or a uniformly distributed, live load
occurs at the beam midspan, and (c) the absolute maximum bending
moment due to a series of moving concentrated loads occurs under one of
the loads near the resultant of the loads when the midspan of the beam is
located halfway between the load and the resultant.

PROBLEMS

Sections 9.1 and 9.2

9.1 For the beam of Problem 8.6, determine the maximum
negative bending moment at point B due to a 75-kN con-
centrated live load.

9.2 For the beam of Problem 8.6, determine the maximum
upward reaction at support A due to a 35-kN/m uniformly
distributed live load.

9.3 For the beam of Problem 8.6, determine the maximum
negative shear at point B due to a 35-kN/m uniformly dis-
tributed live load.

9.4 For the beam of Problem 8.7, determine the maximum
positive and negative shears and the maximum positive and
negative bending moments at point C due to a concentrated
live load of 25 k, a uniformly distributed live load of 2 k/ft,
and a uniformly distributed dead load of 0.5 k/ft.

9.5 For the cantilever beam of Problem 8.5, determine the
maximum upward vertical reaction and the maximum
counterclockwise reaction moment at support A due to a
concentrated live load of 100 kN, a uniformly distributed
live load of 50 kN/m, and a uniformly distributed dead load
of 20 kN/m.

9.6 For the beam of Problem 8.10, determine the maximum
positive and negative shears and the maximum positive and
negative bending moments at point C due to a concentrated
live load of 150 kN, a uniformly distributed live load of 50
kN/m, and a uniformly distributed dead load of 25 kN/m.

9.7 For the beam of Problem 8.23, determine the maximum
positive and negative shears and the maximum positive and
negative bending moments at point D due to a concentrated
live load of 30 k, a uniformly distributed live load of 3 k/ft,
and a uniformly distributed dead load of 1 k/ft.

9.8 For the beam of Problem 8.27, determine the maximum
positive and negative shears and the maximum positive and
negative bending moments at point E due to a concentrated
live load of 40 k, a uniformly distributed live load of 2 k/ft,
and a uniformly distributed dead load of 1 k/ft.

9.9 For the truss of Problem 8.47, determine the maximum
compressive axial force in member GH due to a con-
centrated live load of 30 k, a uniformly distributed live load
of 2 k/ft, and a uniformly distributed dead load of 1 k/ft.

9.10 For the truss of Problem 8.50, determine the maximum
tensile axial force in member BE and the maximum com-
pressive axial force in member BF due to a concentrated live
load of 120 kN, a uniformly distributed live load of 40 kN/m,
and a uniformly distributed dead load of 20 kN/m.

9.11 For the truss of Problem 8.51, determine the maximum
tensile and compressive axial forces in member DI due to a
concentrated live load of 40 k, a uniformly distributed live
load of 4 k/ft, and a uniformly distributed dead load of 2 k/ft.

Section 9.3

9.12 For the beam of Problem 8.2, determine the maximum
positive shear and bending moment at point B due to the
wheel loads of the moving H20-44 truck shown in Fig. P9.12.

9.13 For the beam of Problem 8.3, determine the maximum
positive shear and bending moment at point B due to the ser-
ies of three moving concentrated loads shown in Fig. P9.13.

FIG. P9.13, P9.17, P9.18, P9.22

FIG. P9.12, P9.20
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9.14 For the beam of Problem 8.9, determine the maximum
positive bending moment at point B due to the series of four
moving concentrated loads shown in Fig. P9.14.

9.15 For the beam of Problem 8.23, determine the max-
imum positive bending moment at point D due to the wheel
loads of the moving HS15-44 truck shown in Fig. P9.15.

9.16 For the truss of Problem 8.49, determine the maximum
compressive axial force in member GH due to the series of
four moving concentrated loads shown in Fig. P9.14.

9.17 For the truss of Problem 8.53, determine the maximum
tensile axial force in member DI due to the series of three
moving concentrated loads shown in Fig. P9.13.

Section 9.4

9.18 Determine the absolute maximum shear in a 15-m-long
simply supported beam due to the series of three moving
concentrated loads shown in Fig. P9.13.

9.19 Determine the absolute maximum shear in a 60-ft-long
simply supported beam due to the series of four moving
concentrated loads shown in Fig. P9.14.

9.20 Determine the absolute maximum bending moment in
a 12-m-long simply supported beam due to the wheel loads
of the moving H20-44 truck shown in Fig. P9.12.

9.21 Determine the absolute maximum bending moment in
a 75-ft-long simply supported beam due to the wheel loads
of the moving HS15-44 truck shown in Fig. P9.15.

9.22 Determine the absolute maximum bending moment in
a 15-m-long simply supported beam due to the series of
three moving concentrated loads shown in Fig. P9.13.

9.23 Determine the absolute maximum bending moment in
a 60-ft-long simply supported beam due to the series of four
moving concentrated loads shown in Fig. P9.14.

FIG. P9.15, P9.21

FIG. P9.14, P9.16, P9.19, P9.23

Problems 407



10
Analysis of Symmetric
Structures
10.1 Symmetric Structures
10.2 Symmetric and Antisymmetric Components of Loadings
10.3 Behavior of Symmetric Structures under Symmetric and Antisymmetric

Loadings
10.4 Procedure for Analysis of Symmetric Structures

Summary
Problems

Taj Mahal, Built in the Seventeenth

Century in Agra, India
Luciano Mortula/Shutterstock.com

408

Many structures, because of aesthetic and/or functional considerations,
are arranged in symmetric forms. Provided a symmetric structure is lin-
early elastic, the response (i.e., member forces and deformations) of the
entire structure under any general loading can be obtained from the re-
sponse of one of its portions separated by the axes of symmetry. Thus
only a portion (usually half ) of the symmetric structure needs to be an-
alyzed. In this chapter we discuss how to recognize structural symmetry
and how to utilize it to reduce the computational e¤ort required in the
analysis of symmetric structures.

We first define symmetric structures and then discuss symmetric and
antisymmetric loadings. In this presentation, we develop a procedure for
decomposing a general loading into symmetric and antisymmetric com-
ponents. Next we examine the behavior of symmetric structures under the
symmetric and antisymmetric loadings; finally, we present a step-by-step
procedure for the analysis of symmetric structures.

Although the discussion in this chapter is confined to structures
with a single axis of symmetry, the concepts developed herein can be
extended to the analysis of structures with multiple axes of symmetry.

10.1 Symmetric Structures

Reflection

The definition of symmetry can be developed by using the concept of
reflection, or mirror image. Consider a structure located in the xy plane,
as shown in Fig. 10.1(a). The reflection of the structure about the y axis



is obtained by rotating the structure through 180� about the y axis, as
shown in Fig. 10.1(b). It can be seen from Fig. 10.1(a) and (b) that if the
coordinates of a point D of the structure are x1 and y1, then the coor-
dinates of that point on the reflection of the structure about the y axis
become �x1 and y1. The reflection of the structure about the x axis
can be obtained in a similar manner—that is, by rotating the structure
through 180� about the x axis, as shown in Fig. 10.1(c). Note that the
coordinates of point D on the reflection of the structure about the x axis
become x1 and �y1.

Based on the foregoing discussion, we realize that the reflection of
a structure about an arbitrary s axis can be obtained by rotating the
structure through 180� about the s axis. Alternatively, the structure’s
reflection can be obtained by joining the reflections of its various joints
and/or ends, which are determined by changing the signs of their coor-
dinates in the direction perpendicular to the s axis. To illustrate the latter
approach, consider the truss shown in Fig. 10.2(a). Suppose that we wish
to determine its reflection about the y axis. As shown in Fig. 10.2(b), the
reflections of the five joints of the truss are first determined by changing
the signs of the x coordinates of the joints. The reflections of the joints
are then connected by straight lines to obtain the reflection of the entire
truss. Note that the reflection of joint C, which is located on the y axis, is
in the same position as joint C itself.

FIG. 10.1
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Symmetric Structures

A plane structure is considered to be symmetric with respect to an axis of

symmetry in its plane if the reflection of the structure about the axis is iden-

tical in geometry, supports, and material properties to the structure itself.

Some examples of symmetric structures are shown in Fig. 10.3. For each
structure, the axis of symmetry is identified as the s axis. Note that the
reflection of each structure about its axis of symmetry is identical in geo-
metry, supports, and material properties to the structure itself.

Although the concept of reflection provides a mathematically pre-
cise means of defining symmetry, it is usually not necessary to draw the
reflection of a structure to determine whether or not the structure is
symmetric. Instead, most symmetric structures can be identified by
inspection—that is, by simply comparing the geometry, supports, and
material properties of the two halves of the structure on each side of the
axis of symmetry. Considering any of the structures of Fig. 10.3, if we
imagine that a half of the structure on either side of the axis of symmetry
is rotated through 180� about the axis of symmetry, it will exactly overlay
the other half of the structure, indicating that the structure is symmetric.

As stated previously, a structure, in general, is considered to be sym-
metric if its geometry, supports, and material properties are symmetric
with respect to the axis of symmetry. However, when examining struc-
tural symmetry for the purpose of an analysis, it is necessary to consider

FIG. 10.2
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FIG. 10.3 Examples of Symmetric
Structures
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the symmetry of only those structural properties that have an e¤ect on
results of that particular type of analysis. In other words, a structure
can be considered to be symmetric for the purpose of an analysis if its
structural properties that have an e¤ect on the results of the analysis are
symmetric.

Consider, for example, the statically determinate truss subjected to
vertical loads, as shown in Fig. 10.4. We can see from the figure that the
geometry of the truss (i.e., the dimensions of the truss and the arrange-
ment of truss members) and its material and cross-sectional properties
(E and A) are symmetric with respect to the s axis, but the supports vio-
late symmetry because the hinged support at A can exert both horizontal
and vertical reactions, whereas the roller support at C can exert only a
vertical reaction. However, the truss can be considered to be symmetric
when subjected to vertical loads only because under such loads, the hor-
izontal reaction at the hinged support will be zero ðAx ¼ 0Þ; therefore, it
will not have any e¤ect on the response (e.g., member axial forces and
deflections) of the truss. This truss cannot be considered to be symmetric
when subjected to any horizontal loads, however.

FIG. 10.3 (contd.)

FIG. 10.4
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Example 10.1

The truss shown in Fig. 10.5(a) is to be analyzed to determine its member axial forces and deflections due to a general
system of loads acting at the joints. Can the truss be considered to be symmetric for such an analysis?

Solution
We can see from Fig. 10.5(b) that the dimensions, the arrangement of members, the material and cross-sectional prop-
erties (E and A), and the supports of the given truss are all symmetric with respect to the vertical s axis passing through
the member CG of the truss. Thus the truss is symmetric with respect to the s axis. Ans.

Example 10.2

The beam shown in Fig. 10.6(a) is to be analyzed to determine the member end forces and deflections due to the vertical
loading shown. Can the beam be considered to be symmetric for the analysis?

Solution
We can see from Fig. 10.6(b) that the dimensions and properties (E and I ) of the beam are symmetric with respect to
the vertical s axis passing through the mid-point F of the beam, but the supports are not symmetric because the hinged
support at A can develop both horizontal and vertical reactions, whereas the roller supports at B;C, and E can develop
only vertical reactions. However, the beam can be considered to be symmetric under the vertical loads because the hori-
zontal reaction at A is zero ðAx ¼ 0Þ; therefore, it does not have any e¤ect on the member end forces and deflections of
the beam. Ans.

FIG. 10.6

FIG. 10.5
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Example 10.3

The frame shown in Fig. 10.7(a) is to be analyzed to determine its member end forces and deflections due to a general
system of loads. Can the frame be considered to be symmetric?

Solution
From Fig. 10.7(b) we can see that although the frame’s geometry and supports are symmetric with respect to the vertical
s axis passing through the internal hinge D, its moment of inertia (I ) is not symmetric. Since the frame is statically de-
terminate, its member end forces are independent of the material and cross-sectional properties (E; I , and A); therefore,
the frame can be considered to be symmetric for the purpose of analysis of its member forces. However, this frame can-
not be considered to be symmetric for the analysis of deflections, which depend on the moments of inertia of the mem-
bers of the frame. Ans.

10.2 Symmetric and Antisymmetric Components of Loadings

As discussed in the preceding section for structures, the reflection of a
system of forces (or deflections) about an axis can be obtained by rotating
the force system (or deflections) through 180� about the axis. Consider a
system of forces and moments, Fx;Fy, and M, acting at a point A in the
xy plane, as shown in Fig. 10.8(a). The reflections of the force system
about the y and x axes are shown in Fig. 10.8(b) and (c), respectively. As
shown in these figures, the reflections of the counterclockwise moment M
are clockwise. Conversely, the reflections of a clockwise moment will
always be counterclockwise. The reflections of the deflections Dx and Dy

and the rotation y of point A (Fig. 10.8(a)) can be obtained in a similar
manner and are also shown in Fig. 10.8(b) and (c).

Symmetric Loadings

A loading is considered to be symmetric with respect to an axis in its plane if

the reflection of the loading about the axis is identical to the loading itself.

Some examples of symmetric loadings are shown in Fig. 10.9. The re-
flection of each loading about its axis of symmetry is also shown in the

FIG. 10.7
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FIG. 10.9 Examples of Symmetric Loadings

FIG. 10.8

Section 10.2 Symmetric and Antisymmetric Components of Loadings 415



figure for verification. However, it is usually not necessary to draw the
reflections, since most loadings can be identified as symmetric, or not, by
inspection.

Antisymmetric Loadings

A loading is considered to be antisymmetric with respect to an axis in its

plane if the negative of the reflection of the loading about the axis is identi-

cal to the loading itself.

Some examples of antisymmetric loadings are shown in Fig. 10.10. For
each loading case, the reflection and the negative of reflection are also

FIG. 10.10 Examples of Antisymmetric Loadings

FIG. 10.9 (contd.)
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shown in the figure. The negative of a reflection is obtained by simply
reversing the directions of all the forces and moments on the reflection. It
can be seen from the figure that the negative of reflection of each loading
about its s axis is identical to the loading itself.

FIG. 10.10 (contd.)
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Decomposition of a General Loading into Symmetric
and Antisymmetric Components

Any general loading can be decomposed into symmetric and antisymmetric
components with respect to an axis by applying the following procedure:

1. Divide the magnitudes of the forces and/or moments of the
given loading by 2 to obtain the half loading.

2. Draw a reflection of the half loading about the specified axis.
3. Determine the symmetric component of the given loading by

adding the half loading to its reflection.
4. Determine the antisymmetric component of the given loading

by subtracting the symmetric loading component from the given
loading.

To illustrate this procedure, consider the unsymmetric loading shown
in Fig. 10.11(a). Suppose that we wish to determine the components of this
loading, which are symmetric and antisymmetric with respect to an arbi-
trarily located s axis shown in the figure. We first compute the half loading
by dividing the magnitudes of the distributed and the concentrated loads
by 2 (Fig. 10.11(b)). The reflection of this half loading about the s axis is
then drawn, as shown in Fig. 10.11(c). The symmetric component of the
given loading is determined by adding the half loading (Fig. 10.11(b)) to
its reflection (Fig. 10.11(c)). The symmetric loading component thus ob-
tained is shown in Fig. 10.11(d). Finally, the antisymmetric component is
computed by subtracting the symmetric component (Fig. 10.11(d)) from
the given loading (Fig. 10.11(a)). The antisymmetric loading component
thus obtained is shown in Fig. 10.11(e). Note that the sum of the sym-
metric and antisymmetric components is equal to the given loading.

FIG. 10.11
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Example 10.4

A Pratt bridge truss is subjected to the loading shown in Fig. 10.12(a). Determine the symmetric and antisymmetric com-
ponents of the loading with respect to the axis of symmetry of the truss.

Solution
Symmetric Loading Component. The axis of symmetry (s axis) of the truss and the half loading are shown in Fig. 10.12(b);
the reflection of the half loading about the s axis is drawn in Fig. 10.12(c). The symmetric component of the given loading
is determined by adding the half loading (Fig. 10.12(b)) to its reflection (Fig. 10.12(c)), as shown in Fig. 10.12(d). Ans.

Antisymmetric Loading Component. The antisymmetric component of the loading is obtained by subtracting the sym-
metric loading component (Fig. 10.12(d)) from the total loading (Fig. 10.12(a)) and is shown in Fig. 10.12(e). Ans.

Note that the sum of the symmetric and antisymmetric components is equal to the given loading.

FIG. 10.12

FIG. 10.11 (contd.)
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Example 10.5

A beam is subjected to the loading shown in Fig. 10.13(a). Determine the symmetric and antisymmetric components of
the loading with respect to the axis of symmetry of the beam.

Solution
Symmetric Loading Component. The axis of symmetry (s axis) of the beam and the half loading are shown in Fig. 10.13(b),
and the reflection of the half loading about the s axis is drawn in Fig. 10.13(c). The symmetric component of the given
loading is determined by adding the half loading (Fig. 10.13(b)) to its reflection (Fig. 10.13(c)), as shown in Fig. 10.13(d).

Ans.

Antisymmetric Loading Component. The antisymmetric component is obtained by subtracting the symmetric compo-
nent (Fig. 10.13(d)) from the total loading (Fig. 10.13(a)) and is shown in Fig. 10.13(e). Ans.

Note that the sum of the symmetric and antisymmetric components is equal to the given loading.

FIG. 10.13
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Example 10.6

A four-span continuous beam is subjected to the loading shown in Fig. 10.14(a). Determine the symmetric and anti-
symmetric components of the loading with respect to the axis of symmetry of the beam.

FIG. 10.14
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(a) Given Loading

(b) Half Loading

(c) Reflection of Half Loading
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s

s

s

continued
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Solution
Symmetric Loading Component. The half loading and its reflection are shown in Fig. 10.14(b) and (c), respectively. The sym-
metric component of the given loading is obtained by adding the half loading to its reflection, as shown in Fig. 10.14(d). Ans.

Antisymmetric Loading Component. By subtracting the symmetric component from the total loading (Fig. 10.14(a)), we
determine the antisymmetric component as shown in Fig. 10.14(e). Ans.

Example 10.7

A gable frame is subjected to the loading shown in Fig. 10.15(a). Determine the symmetric and antisymmetric compo-
nents of the loading with respect to the axis of symmetry of the frame.

FIG. 10.15

continued
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Solution
Symmetric Loading Component. The half loading and its reflection are shown in Fig. 10.15(b) and (c), respectively. The
symmetric component of the given loading is determined by adding the half loading to its reflection, as shown in
Fig. 10.15(d). Ans.

Antisymmetric Loading Component. By subtracting the symmetric component from the total loading (Fig. 10.15(a)), we
obtain the antisymmetric component as shown in Fig. 10.15(e). Ans.

Example 10.8

A two-story frame is subjected to the loading shown in Fig. 10.16(a). Determine the symmetric and antisymmetric com-
ponents of the loading with respect to the axis of symmetry of the frame.

Solution
Half Loading and Its Reflection. See Fig. 10.16(b) and (c), respectively.

Symmetric Loading Component. See Fig. 10.16(d). Ans.

Antisymmetric Loading Component. See Fig. 10.16(e). Ans.

FIG. 10.16
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10.3 Behavior of Symmetric Structures under Symmetric and Antisymmetric Loadings

In the preceding section, we discussed how a general unsymmetric load-
ing can be decomposed into symmetric and antisymmetric components.
In this section, we examine the response characteristics of symmetric
structures under symmetric and antisymmetric loading conditions. The
insight gained into the behavior of symmetric structures will enable us to
develop, in the following section, a general procedure that can consid-
erably expedite the analysis of such structures.

Symmetric Structures Subjected to Symmetric Loadings

When a symmetric structure is subjected to a loading that is symmetric with

respect to the structure’s axis of symmetry, the response of the structure is

FIG. 10.16 (contd.)
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also symmetric, with the points of the structure at the axis of symmetry

neither rotating (unless there is a hinge at such a point) nor deflecting per-

pendicular to the axis of symmetry.

Thus, to determine the response (i.e., member forces and deformations)
of the entire structure, we need to analyze only half the structure, on
either side of the axis of symmetry, with symmetric boundary conditions
(i.e., slopes must be either symmetric or zero, and deflections perpen-
dicular to the axis of symmetry must be zero) at the axis. The response
of the remaining half of the structure can then be obtained by reflection.

Consider, for example, a symmetric frame subjected to a loading that
is symmetric with respect to the frame’s axis of symmetry (s axis), as
shown in Fig. 10.17(a). The deflected shape (elastic curve) of the frame is
also shown in the figure. It can be seen that, like the loading, the deflected
shape is symmetric with respect to the axis of symmetry of the frame.
Note that the slope and the horizontal deflection are zero at point D,
where the axis of symmetry intersects the frame, whereas the vertical
deflection at D is not zero. The response of the entire frame can be
determined by analyzing only half the frame, on either side of the axis of
symmetry. The left half of the frame cut by the axis of symmetry is shown
in Fig. 10.17(b). Note that the symmetric boundary conditions are im-
posed on this substructure by supporting it at the end D by a collar type of
support (denoted by the symbol in Fig. 10.17(b)), which prevents
the rotation and the horizontal deflection at the axis of symmetry but
cannot prevent the vertical deflection along the axis. Once the response of
the left half of the frame has been determined by analysis, the response of
the right half can be obtained from that of the left half by reflection.

Consider another symmetric frame subjected to symmetric loading, as
shown in Fig. 10.18(a). The left half of the frame with symmetric boun-
dary conditions is shown in Fig. 10.18(b). As this figure indicates, the
rotation and horizontal deflection at joint E have been restrained. The
hinged joint B is already restrained from moving in the horizontal direc-
tion by the hinged support. Note that on the half of the frame selected for
analysis (Fig. 10.18(b)), the magnitude of the concentrated load P, which
acts along the axis of symmetry, has been reduced by half. Similarly, the

FIG. 10.17
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cross-sectional area (A) and the moment of inertia (I ) of member BE,
which is located along the axis of symmetry, have been halved. Although
it is usually considered convenient to reduce by half both properties A and
I of the members along the axis of symmetry, we must realize that the
values of the moments of inertia (I ) of these members are not relevant in
the analysis, because the members located along the axis of symmetry will
undergo only axial deformations without bending. Once the response of
the left half of the frame (Fig. 10.18(b)) has been determined by analysis,
the response of the right half is obtained by reflection.

Symmetric Structures Subjected to Antisymmetric Loadings

When a symmetric structure is subjected to a loading that is antisymmetric

with respect to the structure’s axis of symmetry, the response of the struc-

ture is also antisymmetric, with the points of the structure at the axis of

symmetry not deflecting in the direction of the axis of symmetry.

Thus to determine the response of the entire structure, we need to ana-
lyze only half the structure, on either side of the axis of symmetry, with
antisymmetric boundary conditions (i.e., deflections in the direction of
the axis of symmetry must be zero) at the axis. The response of the re-
maining half is given by the negative of the reflection of the response of
the half structure that is analyzed.

FIG. 10.18
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Consider a symmetric frame subjected to a loading that is anti-
symmetric with respect to the frame’s axis of symmetry (s axis), as shown
in Fig. 10.19(a). It can be seen that, like the loading, the deflected shape
of the frame is antisymmetric with respect to the frame’s axis of sym-
metry. Note that the vertical deflection is zero at point D, where the axis
of symmetry intersects the frame, whereas the horizontal deflection
and slope at D are not zero. The response of the entire frame can be
determined by analyzing only half the frame, on either side of the axis
of symmetry. The left half of the frame cut by the axis of symmetry is
shown in Fig. 10.19(b). Note that the antisymmetric boundary con-
ditions are imposed on this substructure by supporting it at end D by a
roller support, which prevents the vertical deflection at the axis of sym-
metry but cannot prevent the horizontal deflection and rotation at D.
Once the response of the left half of the frame has been determined by
analysis, the response of the right half is given by the negative of the re-
flection of the response of the left half.

If a structure contains a member along the axis of symmetry, the
properties of the member, I and A, should be reduced by half on the half
structure selected for analysis. Note that the members along the axis of
symmetry cannot undergo any axial deformations, but they can bend.
Thus the axial forces in the members of trusses located along the axis of
symmetry will be zero, and such members may be removed from the half
structure to simplify its analysis. The magnitudes of any loads and cou-
ples acting on the structure at the axis of symmetry should be halved, on
the half of the structure to be analyzed.

Symmetric Structures Subjected to General Loadings

As shown in Section 10.2, any general unsymmetric loading acting on a
symmetric structure can be decomposed into symmetric and antisym-
metric components with respect to the axis of symmetry of the structure.
The responses of the structure due to the symmetric and antisym-
metric loading components are then determined by analyzing a half of the

FIG. 10.19
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structure, with symmetric and antisymmetric boundary conditions, respec-
tively, as discussed in the preceding paragraphs. The symmetric and anti-
symmetric responses thus determined are then superimposed to obtain the
total response of the structure due to the given unsymmetric loading.

10.4 Procedure for Analysis of Symmetric Structures

The following step-by-step procedure can be used to take advantage of
structural symmetry in the analysis of structures.

1. Check the given structure for symmetry, as discussed in Sec-
tion 10.1. If the structure is found to be symmetric, then proceed
to step 2. Otherwise, end the analysis at this stage.

2. Select a substructure (half the structure) on either side of the axis
of symmetry for analysis. The cross-sectional areas and moments
of inertia of the members of the substructure, which are located
along the axis of symmetry, should be reduced by half, whereas full
values of these properties should be used for all other members.

3. Decompose the given loading into symmetric and antisym-
metric components with respect to the axis of symmetry of the
structure by using the procedure described in Section 10.2.

4. Determine the response of the structure due to the symmetric
loading component as follows:
a. At each joint and end of the substructure, which is located

at the axis of symmetry, apply restraints to prevent rotation
and deflection perpendicular to the axis of symmetry. If there
is a hinge at such a joint or end, then only the deflection, but
not rotation, should be restrained at that joint or end.

b. Apply the symmetric component of loading on the sub-
structure with the magnitudes of the concentrated loads at
the axis of symmetry reduced by half.

c. Analyze the substructure to determine its response.
d. Obtain the symmetric response of the complete structure by

reflecting the response of the substructure to the other side
of the axis of symmetry.

5. Determine the response of the structure due to the antisym-
metric loading component as follows:
a. At each joint and end of the substructure located at the axis

of symmetry, apply a restraint to prevent deflection in the
direction of the axis of symmetry. In the case of trusses, the
axial forces in members located along the axis of symmetry
will be zero. Remove such members from the substructure.

b. Apply the antisymmetric component of loading on the sub-
structure with the magnitudes of the loads and couples, ap-
plied at the axis of symmetry, reduced by half.

c. Analyze the substructure to determine its response.
d. Obtain the antisymmetric response of the complete structure

by reflecting the negative of the response of the substructure
to the other side of the axis of symmetry.
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6. Determine the total response of the structure due to the given
loading by superimposing the symmetric and antisymmetric re-
sponses obtained in steps 4 and 5, respectively.

The foregoing procedure can be applied to statically determinate as
well as indeterminate symmetric structures. It will become obvious in
subsequent chapters that the utilization of structural symmetry consid-
erably reduces the computational e¤ort required in the analysis of stat-
ically indeterminate structures.

Example 10.9

Determine the force in each member of the Warren truss shown in Fig. 10.20(a).

Solution
This truss was analyzed in Example 4.4 without taking advantage of its symmetry.

Symmetry. This truss is symmetric with respect to the vertical s axis passing through member CG, as shown in Fig. 10.20(b).
The truss is subjected to vertical loads only, so the horizontal reaction at support A is zero ðAx ¼ 0Þ. The half of the truss to
the right of the axis of symmetry, CEHG, will be used for analysis.

Symmetric and Antisymmetric Components of Loading. The symmetric and antisymmetric components of the given load-
ing with respect to the axis of symmetry of the truss are determined by using the procedure described in Section 10.2.
These loading components are shown in Fig. 10.20(b) and (c). Note that the sum of the two components is equal to the
total loading given in Fig. 10.20(a).

Member Forces Due to the Symmetric Loading Component. The substructure (right half of the truss) with symmetric boun-
dary conditions is shown in Fig. 10.20(d). Note that the joints C and G, which are located at the axis of symmetry, are
supported by rollers that prevent their movements in the horizontal direction (perpendicular to the s axis). The symmetric
component of loading (Fig. 10.20(b)) is applied to the substructure, with the magnitude of the 30-k concentrated load acting
along the axis of symmetry reduced by half, as shown in Fig. 10.20(d). The reactions of the substructure are obtained by
applying the equilibrium equations:

þ "
P

Fy ¼ 0 �15� 18þ Ey ¼ 0 Ey ¼ 33 k "

þ ’
P

MC ¼ 0 �Gxð15Þ � 18ð20Þ þ 33ð40Þ ¼ 0 Gx ¼ 64 k!

þ!
P

Fx ¼ 0 �Cx þ 64 ¼ 0 Cx ¼ 64 k 

The axial forces in the members of the substructure are determined by applying the method of joints. These member
forces are also shown in Fig. 10.20(d).

The member axial forces in the left half of the truss can now be obtained by rotating the member forces in the right
half (Fig. 10.20(d)) through 180� about the s axis, as shown in Fig. 10.20(e).

Member Forces Due to the Antisymmetric Loading Component. The substructure with antisymmetric boundary conditions
is shown in Fig. 10.20(f ). Note that joints C and G, located at the axis of symmetry, are supported by rollers to prevent
their deflections in the vertical direction. Also, member CG, which is located along the axis of symmetry, is removed from
the substructure, as shown in the figure. (The force in member CG will be zero under antisymmetric loading.) The anti-
symmetric component of loading (Fig. 10.20(c)) is applied to the substructure, and its reactions and member axial forces
are computed by applying the equilibrium equations and the method of joints (see Fig. 10.20(f )).

continued
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The member axial forces in the left half of the truss are then obtained by reflecting the negatives (i.e., the tensile
forces are changed to compressive forces and vice versa) of the member forces in the right half to the left side of the axis
of symmetry, as shown in Fig. 10.20(g).

Total Member Forces. Finally, the total axial forces in members of the truss are obtained by superimposing the forces
due to the symmetric and antisymmetric components of the loading, as given in Fig. 10.20(e) and (g), respectively. These
member forces are shown in Fig. 10.20(h). Ans.

FIG. 10.20
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Example 10.10

Determine the member end forces of the frame shown in Fig. 10.21(a).

Solution
Symmetry. The frame is symmetric with respect to the vertical s axis passing through the hinge at D, as shown in
Fig. 10.21(b). The left half of the frame, ACD, will be used for analysis.

Symmetric and Antisymmetric Components of Loading. See Fig. 10.21(b) and (c).

Member Forces Due to the Symmetric Loading Component. The substructure with symmetric boundary conditions is
shown in Fig. 10.21(d). The reactions and the member end forces of the substructure, as determined from equilibrium
considerations, are shown in Fig. 10.21(d) and to the left of the s axis in Fig. 10.21(e), respectively. The member end
forces to the right of the s axis are then obtained by reflection (see Fig. 10.21(e)).

Member Forces Due to the Antisymmetric Loading Component. The substructure with antisymmetric boundary conditions
is shown in Fig. 10.21(f ). The member forces are determined by analyzing the substructure and by reflecting the negatives
of the computed forces and moments about the axis of symmetry (see Fig. 10.21(g)).

Total Member Forces. The total member end forces, obtained by superimposing the member forces due to the sym-
metric and antisymmetric components of the loading, are shown in Fig. 10.21(h). Ans.

FIG. 10.21

continued
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Example 10.11

Determine the substructures for the analysis of the symmetric and antisymmetric responses of the statically indeter-
minate beam shown in Fig. 10.22(a).

Solution
Symmetry. The beam is symmetric with respect to the vertical s axis shown in Fig. 10.22(b). The left half of the beam is
selected for analysis.

Symmetric and Antisymmetric Components of Loading. See Fig. 10.22(b) and (c).

FIG. 10.21 (contd.)

continued
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Substructures. The substructures for the analysis of the symmetric and antisymmetric responses are shown in Fig. 10.22(d)
and (e), respectively. Ans.

FIG. 10.22

8 m 8 m 8 m

EI = constant

(a) Given Beam and Loading

4 m 4 m

60 kN
20 kN/m

(b) Symmetric Loading Component

10 kN/m
30 kN 30 kN

10 kN/m

s

4 m 4 m

(c) Antisymmetric Loading Component

10 kN/m
30 kN 30 kN

10 kN/m

s

(d) Substructure for Analysis of Symmetric Response

10 kN/m
30 kN

s

(e) Substructure for Analysis of Antisymmetric Response

10 kN/m
30 kN

s
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Example 10.12

Determine the substructures for the analysis of the symmetric and antisymmetric responses of the statically indeter-
minate frame shown in Fig. 10.23(a).

Solution
Symmetry. The frame is symmetric with respect to the vertical s axis shown in Fig. 10.23(b). The left half of the frame is
selected for analysis.

Symmetric and Antisymmetric Components of Loading. See Fig. 10.23(b) and (c).

Substructures. The substructures for the analysis of the symmetric and antisymmetric responses are shown in Fig. 10.23(d)
and (e), respectively. Ans.

FIG. 10.23

continued
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Summary

In this chapter, we have learned that a plane structure is considered to
be symmetric with respect to an axis in its plane if the reflection of the
structure about the axis is identical in geometry, supports, and material
properties to the structure itself.

A loading is considered to be symmetric with respect to an axis in its
plane if the reflection of the loading about the axis is identical to the load-
ing itself. A loading is considered to be antisymmetric with respect to an
axis in its plane if the negative of the reflection of the loading about the
axis is identical to the loading itself. Any general unsymmetrical loading
can be decomposed into symmetric and antisymmetric components with
respect to an axis.

When a symmetric structure is subjected to a loading that is sym-
metric with respect to the structure’s axis of symmetry, the response of
the structure is also symmetric. Thus we can obtain the response of the

FIG. 10.23 (contd.)
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entire structure by analyzing a half of the structure, on either side of the
axis of symmetry, with symmetric boundary conditions; and by reflecting
the computed response about the axis of symmetry.

When a symmetric structure is subjected to a loading that is anti-
symmetric with respect to the structure’s axis of symmetry, the response
of the structure is also antisymmetric. Thus, the response of the entire
structure can be obtained by analyzing a half of the structure, on either
side of the axis of symmetry, with antisymmetric boundary conditions;
and by reflecting the negative of the computed response about the axis of
symmetry.

The response of a symmetric structure due to a general unsymmetric
loading can be obtained by determining the responses of the structure
due to the symmetric and antisymmetric components of the unsymmetric
loading, and by superimposing the two responses.

PROBLEMS

Sections 10.1 and 10.2

10.1 through 10.15 Determine the symmetric and antisym-
metric components of the loadings shown in Figs. P10.1–
P10.15 with respect to the axis of symmetry of the structure.

Sections 10.3 and 10.4

10.16 through 10.20 Determine the force in each member of
the trusses shown in Figs. P10.1–P10.5 by utilizing struc-
tural symmetry.

50 kN

12 m

120 kN60 kN

C D

60 kN

E

A B

3.5 m3.5 m 5 m 5 m

FIG. P10.3, P10.18

5 m 5 m

5 m

A B

60 kN

80 kN

C

E, A = constant

FIG. P10.1, P10.16

12 ft

4 ft

4 ft
A

B

E, A = constant

20 k

10 k
C

FIG. P10.2 and P10.17
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10.21 through 10.23 Determine the member end forces of the
frames shown in Figs. P10.6–P10.8 by utilizing structural
symmetry.

30 k
C

30 k
D

50 k
E

50 k
F G

50 k
BA

H I J K L

6 at 20 ft = 120 ft

20 ft

FIG. P10.4, P10.19

FIG. P10.5, P10.20

FIG. P10.6, P10.21

FIG. P10.7, P10.22

FIG. P10.8, P10.23
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10.24 through 10.30 Determine the substructures for the ana-
lysis of the symmetric and antisymmetric responses of the
structures shown in Figs. P10.9–P10.15.

3 k/ft

20 ft 20 ft

E, I = constant

A C
B

FIG. P10.10 and P10.25

8 m
I

8 m
2 I

E = constant

8 m
I

4 m

A

B D EC

60 kN 20 kN/m

FIG. P10.11 and P10.26

12 ft 12 ft 12 ft6 ft
E, I = constant

6 ft

A F
B D

C E

30 k
4 k/ft

FIG. P10.12 and P10.27

6 m

E, I = constant

3 m 3 m

B

C
DA

40 kN

FIG. P10.9 and P10.24

FIG. P10.15, P10.30

10 m

4 m

7.5 m 7.5 m

E, I, A = constant
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30 kN
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35 kN

A B

C E

D

FIG. P10.13 and P10.28

FIG. P10.14, P10.29
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11.2 Analysis of Indeterminate Structures

Summary

Sydney Harbour, Australia
Aliciahh/Shutterstock.com

441

In Part Two of this text, we considered the analysis of statically deter-
minate structures. In this part (Chapters 11 through 17), we focus our
attention on the analysis of statically indeterminate structures.

As discussed previously, the support reactions and internal forces of
statically determinate structures can be determined from the equations
of equilibrium (including equations of condition, if any). However, since
indeterminate structures have more support reactions and/or members
than required for static stability, the equilibrium equations alone are not
su‰cient for determining the reactions and internal forces of such struc-
tures, and must be supplemented by additional relationships based on
the geometry of deformation of structures.

These additional relationships, which are termed the compatibility

conditions, ensure that the continuity of the displacements is maintained
throughout the structure and that the structure’s various parts fit to-
gether. For example, at a rigid joint the deflections and rotations of all
the members meeting at the joint must be the same. Thus the analysis of
an indeterminate structure involves, in addition to the dimensions and
arrangement of members of the structure, its cross-sectional and material
properties (such as cross-sectional areas, moments of inertia, moduli of
elasticity, etc.), which in turn, depend on the internal forces of the struc-
ture. The design of an indeterminate structure is, therefore, carried out in
an iterative manner, whereby the (relative) sizes of the structural mem-
bers are initially assumed and used to analyze the structure, and the
internal forces thus obtained are used to revise the member sizes; if
the revised member sizes are not close to those initially assumed, then the



structure is reanalyzed using the latest member sizes. The iteration con-
tinues until the member sizes based on the results of an analysis are close
to those assumed for that analysis.

Despite the foregoing di‰culty in designing indeterminate structures,
a great majority of structures being built today are statically indeter-
minate; for example, most modern reinforced concrete buildings are stat-
ically indeterminate. In this chapter, we discuss some of the important
advantages and disadvantages of indeterminate structures as compared to
determinate structures and introduce the fundamental concepts of the
analysis of indeterminate structures.

11.1 Advantages and Disadvantages of Indeterminate Structures

The advantages of statically indeterminate structures over determinate
structures include the following.

1. Smaller Stresses The maximum stresses in statically indetermin-
ate structures are generally lower than those in comparable deter-
minate structures. Consider, for example, the statically determinate
and indeterminate beams shown in Fig. 11.1(a) and (b), respec-
tively. The bending moment diagrams for the beams due to a
uniformly distributed load, w, are also shown in the figure. (The
procedures for analyzing indeterminate beams are considered in
subsequent chapters.) It can be seen from the figure that the maxi-
mum bending moment—and consequently the maximum bending
stress—in the indeterminate beam is significantly lower than in the
determinate beam.

FIG. 11.1
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2. Greater Sti¤nesses Statically indeterminate structures generally
have higher sti¤nesses (i.e., smaller deformations), than those of
comparable determinate structures. From Fig. 11.1, we observe
that the maximum deflection of the indeterminate beam is only
one-fifth that of the determinate beam.

3. Redundancies Statically indeterminate structures, if properly de-
signed, have the capacity for redistributing loads when certain
structural portions become overstressed or collapse in cases of
overloads due to earthquakes, tornadoes, impact (e.g., gas explo-
sions or vehicle impacts), and other such events. Indeterminate
structures have more members and/or support reactions than re-
quired for static stability, so if a part (or member or support) of
such a structure fails, the entire structure will not necessarily col-
lapse, and the loads will be redistributed to the adjacent portions
of the structure. Consider, for example, the statically determinate
and indeterminate beams shown in Fig. 11.2(a) and (b), respec-
tively. Suppose that the beams are supporting bridges over a
waterway and that the middle pier, B, is destroyed when a barge
accidentally rams into it. Because the statically determinate beam
is supported by just the su‰cient number of reactions required
for static stability, the removal of support B will cause the entire
structure to collapse, as shown in Fig. 11.2(a). However, the in-
determinate beam (Fig. 11.2(b)) has one extra reaction in the
vertical direction; therefore, the structure will not necessarily col-
lapse and may remain stable, even after the support B has failed.
Assuming that the beam has been designed to support dead loads
only in case of such an accident, the bridge will be closed to traf-
fic until pier B is repaired and then will be reopened.

The main disadvantages of statically indeterminate structures, over
determinate structures, are the following.

1. Stresses Due to Support Settlements Support settlements do not
cause any stresses in determinate structures; they may, however,

FIG. 11.2
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induce significant stresses in indeterminate structures, which
should be taken into account when designing indeterminate struc-
tures. Consider the determinate and indeterminate beams shown
in Fig. 11.3. It can be seen from Fig. 11.3(a) that when the sup-
port B of the determinate beam undergoes a small settlement DB,
the portions AB and BC of the beam, which are connected to-
gether by an internal hinge at B, move as rigid bodies without
bending—that is, they remain straight. Thus, no stresses develop
in the determinate beam. However, when the continuous indeter-
minate beam of Fig. 11.3(b) is subjected to a similar support
settlement, it bends, as shown in the figure; therefore, bending
moments develop in the beam.

2. Stresses Due to Temperature Changes and Fabrication Errors
Like support settlements, these e¤ects do not cause stresses in
determinate structures but may induce significant stresses in in-
determinate ones. Consider the determinate and indetermin-
ate beams shown in Fig. 11.4. It can be seen from Fig. 11.4(a)
that when the determinate beam is subjected to a uniform tem-
perature increase DT , it simply elongates, with the axial defor-
mation given by d ¼ aðDTÞL (Eq. 7.24). No stresses develop in
the determinate beam, since it is free to elongate. However,
when the indeterminate beam of Fig. 11.4(b), which is restrained

FIG. 11.4

FIG. 11.3
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from deforming axially by the fixed supports, is subjected to a
similar temperature change, DT , a compressive axial force,
F ¼ dðAE=LÞ ¼ aðDTÞAE, develops in the beam, as shown in
the figure. The e¤ects of fabrication errors are similar to those
of temperature changes on determinate and indeterminate
structures.

11.2 Analysis of Indeterminate Structures

Fundamental Relationships

Regardless of whether a structure is statically determinate or in-
determinate, its complete analysis requires the use of three types of
relationships:

� Equilibrium equations
� Compatibility conditions
� Member force-deformation relations

The equilibrium equations relate the forces acting on the structure (or its
parts), ensuring that the entire structure as well as its parts remain in
equilibrium; the compatibility conditions relate the displacements of the
structure so that its various parts fit together; and the member force-
deformation relations, which involve the material and cross-sectional
properties (E; I , and A) of the members, provide the necessary link be-
tween the forces and displacements of the structure.

In the analysis of statically determinate structures, the equations of
equilibrium are first used to obtain the reactions and the internal forces
of the structure; then the member force-deformation relations and the
compatibility conditions are employed to determine the structure’s dis-
placements. For example, consider the statically determinate truss shown
in Fig. 11.5(a). The axial forces in the truss members can be determined
by considering the equilibrium of joint A (see Fig. 11.5(b)):

þ !
P

Fx ¼ 0 �0:6FAB þ 0:6FAC ¼ 0 FAB ¼ FAC

þ "
P

Fy ¼ 0 2ð0:8FABÞ � 500 ¼ 0 FAB ¼ FAC ¼ 312:5 k ðTÞ
(11.1)

Similarly, the reactions at the supports B and C can be obtained by con-
sidering the equilibrium of joints B and C, respectively (Fig. 11.5(c)). To
determine the displacement D of joint A of the truss, we first employ the
member force-deformation relationship, d ¼ FðL=AEÞ, to compute the
member axial deformations:

dAB ¼ dAC ¼ 312:5
20

20;000

� �
¼ 0:313 ft (11.2)

Then these member axial deformations are related to the joint displace-
ment D by using the compatibility condition (see Fig. 11.5(d)):

dAB ¼ dAC ¼ D sin y ¼ 0:8D (11.3)
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in which D is assumed to be small. Note that Eq. (11.3) states the com-
patibility requirement that the vertical displacements of the ends A of
members AB and AC must be equal to the vertical displacement, D, of
joint A. By substituting Eq. (11.2) into Eq. (11.3), we find the displace-
ment of joint A to be

D ¼ 0:313

0:8
¼ 0:391 ft ¼ 4:69 in: (11.4)

The displacement D could also have been computed by employing
the virtual work method formulated in Chapter 7, which automatically
satisfies the member force-deformation relations and the necessary com-
patibility conditions.

Indeterminate Structures

In the analysis of statically indeterminate structures, the equilibrium equa-
tions alone are not su‰cient for determining the reactions and internal
forces. Therefore, it becomes necessary to solve the equilibrium equa-
tions in conjunction with the compatibility conditions of the structure to
determine its response. Because the equilibrium equations contain the

FIG. 11.5
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unknown forces, whereas the compatibility conditions involve displace-
ments as the unknowns, the member force-deformation relations are uti-
lized to express either the unknown forces in terms of the unknown dis-
placements or vice versa. The resulting system of equations containing
only one type of unknowns is then solved for the unknown forces or dis-
placements, which are then substituted into the fundamental relationships
to determine the remaining response characteristics of the structure.

Consider, for example, the indeterminate truss shown in Fig. 11.6(a).
The truss is obtained by adding a vertical member AD to the determinate
truss of Fig. 11.5(a), considered previously. The free-body diagram of
joint A of the truss is shown in Fig. 11.6(b). The equations of equilibrium
for this joint are given by

þ !
P

Fx ¼ 0 FAB ¼ FAC (11.5)

þ "
P

Fy ¼ 0 1:6FAB þ FAD ¼ 500 (11.6)

Note that the two equilibrium equations are not su‰cient for determining
the three unknown member axial forces. The compatibility conditions are
based on the requirement that the vertical displacements of the ends A of
the three members connected to joint A must be equal to the vertical dis-
placement D of joint A. The displacement diagram of joint A is shown in
Fig. 11.6(c). Assuming the displacement D to be small, we write the com-
patibility conditions as

dAB ¼ dAC ¼ D sin y ¼ 0:8D ð11:7Þ

dAD ¼ D ð11:8Þ

By substituting Eq. (11.8) into Eq. (11.7), we obtain the desired relation-
ship between the member axial deformations:

dAB ¼ dAC ¼ 0:8dAD ð11:9Þ

which indicates that the axial deformations of the inclined members AB
and AC are equal to 0.8 times the axial deformation of the vertical mem-
ber AD. To express Eq. (11.9) in terms of member axial forces, we utilize
the member force-deformation relations:

dAB ¼ FAB
LAB

EA

� �
¼ FAB

20

20;000

� �
¼ 0:001FAB ð11:10Þ

dAC ¼ FAC
LAC

EA

� �
¼ FAC

20

20;000

� �
¼ 0:001FAC ð11:11Þ

dAD ¼ FAD
LAD

EA

� �
¼ FAD

12

20;000

� �
¼ 0:0006FAD ð11:12Þ

Substitution of Eqs. (11.10) through (11.12) into Eq. (11.9) yields

0:001FAB ¼ 0:001FAC ¼ 0:8ð0:0006FADÞ

or

FAB ¼ FAC ¼ 0:48FAD ð11:13Þ
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Now, we can determine the axial forces in the three members of the truss
by solving Eq. (11.13) simultaneously with the two equilibrium equations
(Eqs. (11.5) and (11.6)). Thus (Fig. 11.6(d)),

FAB ¼ FAC ¼ 135:747 k ðTÞ and FAD ¼ 282:805 k ðTÞ

The member axial deformations can now be computed by substituting
these values of member axial forces into the member force-deformation
relations (Eqs. (11.10) through (11.12)) to obtain

dAB ¼ dAC ¼ 0:136 ft ¼ 1:629 in: and dAD ¼ 0:17 ft ¼ 2:036 in:

FIG. 11.6
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Finally, by substituting the values of member axial deformations into the
compatibility conditions (Eqs. (11.7) and (11.8)), we determine the dis-
placement of joint A as

D ¼ 0:17 ft ¼ 2:036 in:

Methods of Analysis

Since the mid-1800s, many methods have been developed for analyzing
statically indeterminate structures. These methods can be broadly clas-
sified into two categories, namely, the force (flexibility) methods and the
displacement (sti¤ness) methods, depending on the type of unknowns
(forces or displacements, respectively), involved in the solution of the gov-
erning equations. The force methods, which are presented in Chapters 13
and 14, are generally convenient for analyzing small structures with a few
redundants (i.e., fewer excess members and/or reactions than required for
static stability). These methods are also used to derive the member force-
deformation relations needed to develop the displacement methods. The
displacement methods are considered in Chapters 15 through 17. These
methods are more systematic, can be easily implemented on computers,
and are, therefore, preferred for the analysis of large and highly redundant
structures.

Summary

In this chapter we have learned that the advantages of statically indeter-
minate structures over determinate structures include smaller maximum
stresses, greater sti¤nesses, and redundancies. Support settlements, tem-
perature changes, and fabrication errors may induce significant stresses
in indeterminate structures, which should be taken into account when
designing such structures.

The analysis of structures involves the use of three fundamental rela-
tionships: equilibrium equations, compatibility conditions, and member
force-deformation relations. In the analysis of indeterminate structures,
the equilibrium equations must be supplemented by the compatibility con-
ditions based on the geometry of the deformation of the structure. The
link between the equilibrium equations and the compatibility conditions is
established by means of the member force-deformation relations of the
structure.

The methods for the analysis of indeterminate structures can be clas-
sified into two categories, namely, the force (flexibility) methods and the
displacement (sti¤ness) methods. The force methods are generally con-
venient for the analysis of structures with a few redundants (i.e., fewer
excess members and/or reactions than required for static stability). The
displacement methods, which can be easily implemented on computers,
are preferred for analyzing large and highly redundant structures.
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The analysis of statically indeterminate structures using the force and
displacement methods introduced in the preceding chapter can be con-
sidered as exact in the sense that the compatibility and equilibrium con-
ditions of the structure are exactly satisfied in such an analysis. However,
the results of such an exact analysis represent the actual structural re-
sponse only to the extent that the analytical model of the structure rep-
resents the actual structure. Experimental results have demonstrated that
the response of most common types of structures under service loads can
be reliably predicted by the force and displacement methods, provided an
accurate analytical model of the structure is used in the analysis.

Exact analysis of indeterminate structures involves computation of
deflections and solution of simultaneous equations, so it can be quite time
consuming. Moreover, such an analysis depends on the relative sizes
(cross-sectional areas and/or moments of inertia) of the members of the
structure. Because of these di‰culties associated with the exact analysis,
the preliminary designs of indeterminate structures are often based on the
results of approximate analysis, in which the internal forces are estimated
by making certain assumptions about the deformations and/or the dis-
tribution of forces between the members of structures, thereby avoiding
the necessity of computing deflections.

Approximate analysis proves to be quite convenient to use in the
planning phase of projects, when several alternative designs of the struc-
ture are usually evaluated for relative economy. The results of approx-
imate analysis can also be used to estimate the sizes of various structural
members needed to initiate the exact analysis. The preliminary designs of



members are then revised iteratively, using the results of successive exact
analyses, to arrive at their final designs. Furthermore, approximate analy-
sis is sometimes used to roughly check the results of exact analysis, which
due to its complexity can be prone to errors. Finally, in recent years, there
has been an increased tendency toward renovating and retrofitting older
structures. Many such structures constructed prior to 1960, including
many high-rise buildings, were designed solely on the basis of approximate
analysis, so a knowledge and understanding of approximate methods used
by the original designers is usually helpful in a renovation undertaking.

Unlike the exact methods, which are general in the sense that they
can be applied to various types of structures subjected to various loading
conditions, a specific method is usually required for the approximate
analysis of a particular type of structure for a particular loading. For ex-
ample, a di¤erent approximate method must be employed for the analysis
of a rectangular frame under vertical (gravity) loads than for the analysis
of the same frame subjected to lateral loads. Numerous methods have
been developed for approximate analysis of indeterminate structures.
Some of the more common approximate methods pertaining to rect-
angular frames are presented in this chapter. These methods can be ex-
pected to yield results within 20% of the exact solutions.

The objectives of this chapter are to consider the approximate anal-
ysis of rectangular building frames as well as to gain an understanding of
the techniques used in the approximate analysis of structures in general.
We present a general discussion of the simplifying assumptions necessary
for approximate analysis and then consider the approximate analysis of
rectangular frames under vertical (gravity) loads. Finally, we present the
two common methods used for the approximate analysis of rectangular
frames subjected to lateral loads.

12.1 Assumptions for Approximate Analysis

As discussed in Chapters 3 through 5, statically indeterminate structures
have more support reactions and/or members than required for static
stability; therefore, all the reactions and internal forces (including any
moments) of such structures cannot be determined from the equations of
equilibrium. The excess reactions and internal forces of an indeterminate
structure are referred to as redundants, and the number of redundants
(i.e., the di¤erence between the total number of unknowns and the num-
ber of equilibrium equations) is termed the degree of indeterminacy of the
structure. Thus, in order to determine the reactions and internal forces of
an indeterminate structure, the equilibrium equations must be supple-
mented by additional equations, whose number must equal the degree of
indeterminacy of the structure. In an approximate analysis, these addi-
tional equations are established by using engineering judgment to make
simplifying assumptions about the response of the structure. The total
number of assumptions must be equal to the degree of indeterminacy of
the structure, with each assumption providing an independent relation-
ship between the unknown reactions and/or internal forces. The equa-
tions based on the simplifying assumptions are then solved in conjunction
with the equilibrium equations of the structure to determine the approx-
imate values of its reactions and internal forces.
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Two types of assumptions are commonly employed in approximate
analysis.

Assumptions about the Location of Points of Inflection

In the first approach, a qualitative deflected shape of the indeterminate
structure is sketched and used to assume the location of the points of
inflection—that is, the points where the curvature of the elastic curve
changes signs, or becomes zero. Since the bending moments must be zero
at the points of inflection, internal hinges are inserted in the indetermi-
nate structure at the assumed locations of inflection points to obtain a
simplified determinate structure. Each of the internal hinges provides one
equation of condition, so the number of inflection points assumed should
be equal to the degree of indeterminacy of the structure. Moreover, the
inflection points should be selected such that the resulting determinate
structure must be statically and geometrically stable. The simplified de-
terminate structure thus obtained is then analyzed to determine the
approximate values of the reactions and internal forces of the original
indeterminate structure.

Consider, for example, a portal frame subjected to a lateral load P,
as shown in Fig. 12.1(a). As the frame is supported by four reaction
components and since there are only three equilibrium equations, it is
statically indeterminate to the first degree. Therefore, we need to make
one simplifying assumption about the response of the frame. By examin-
ing the deflected shape of the frame sketched in Fig. 12.1(a), we observe
that an inflection point exists near the middle of the girder CD. Although
the exact location of the inflection point depends on the (yet unknown)
properties of the two columns of the frame and can be determined only
from an exact analysis, for the purpose of approximate analysis we can
assume that the inflection point is located at the midpoint of the girder
CD. Since the bending moment at an inflection point must be zero, we
insert an internal hinge at the midpoint E of girder CD to obtain the
determinate frame shown in Fig. 12.1(b). The four reactions of the frame
can now be determined by applying the three equilibrium equations,P

FX ¼ 0,
P

FY ¼ 0, and
P

M ¼ 0, and one equation of condition,P
MAE

E ¼ 0 or
P

MBE
E ¼ 0, to the determinate frame (Fig. 12.1(b)):

þ ’
P

MB ¼ 0 AY ðLÞ � Ph ¼ 0 AY ¼
Ph

L
#

þ "
P

FY ¼ 0 �Ph

L
þ BY ¼ 0 BY ¼

Ph

L
"

þ ’
P

MBE
E ¼ 0

Ph

L

L

2

� �
� BX ðhÞ ¼ 0 BX ¼

P

2
 

þ !
P

FX ¼ 0 P� AX �
P

2
¼ 0 AX ¼

P

2
 

By using these approximate reactions, the approximate shear, bending
moment, and axial force diagrams for the frame can be constructed by
considering the equilibrium of its members and joints. The bending mo-
ment diagrams for the members of the frame are shown in Fig. 12.1(c).
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Assumptions about Distribution of Forces among Members
and/or Reactions

Approximate analysis of indeterminate structures is sometimes performed
by making assumptions about the distribution of forces among the mem-
bers and/or reactions of the structures. The number of such assumptions
required for the analysis of a structure is equal to the degree of indetermi-
nacy of the structure, with each assumption providing an independent
equation relating the unknown member forces and/or reactions. The
equations based on these assumptions are then solved simultaneously
with the equilibrium equations of the structure to determine its approx-
imate reactions and internal forces. For example, the portal frame of

FIG. 12.1
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Fig. 12.1(a) can alternatively be analyzed by assuming that the horizontal
reactions AX and BX are equal; that is, AX ¼ BX . By solving this equa-
tion simultaneously with the three equilibrium equations of the frame, we
obtain the same reactions as previously determined by assuming an in-
flection point at the midpoint of the girder CD of the frame.

The two types of assumptions described in this section can either be
used individually or they can be combined with each other and/or with
other types of assumptions based on the engineering judgment of the
structural response to develop methods for approximate analysis of var-
ious types of structures. In the rest of this chapter, we focus our attention
on the approximate analysis of rectangular building frames.

12.2 Analysis for Vertical Loads

Recall from Section 5.5 that the degree of indeterminacy of a rectangular
building frame with fixed supports is equal to three times the number of

girders in the frame provided that the frame does not contain any in-
ternal hinges or rollers. Thus, in an approximate analysis of such a rigid
frame, the total number of assumptions required is equal to three times
the number of girders in the frame.

A commonly used procedure for approximate analysis of rectangular
building frames subjected to vertical (gravity) loads involves making three
assumptions about the behavior of each girder of the frame. Consider a
frame subjected to uniformly distributed loads w, as shown in Fig. 12.2(a).
The free-body diagram of a typical girder DE of the frame is shown in
Fig. 12.2(b). From the deflected shape of the girder sketched in the figure,
we observe that two inflection points exist near both ends of the girder.
These inflection points develop because the columns and the adjacent
girder connected to the ends of girder DE o¤er partial restraint or resist-
ance against rotation by exerting negative moments MDE and MED at the
girder ends D and E, respectively. Although the exact location of the in-
flection points depends on the relative sti¤nesses of the frame members
and can be determined only from an exact analysis, we can establish the
regions along the girder in which these points are located by examining
the two extreme conditions of rotational restraint at the girder ends shown
in Fig. 12.2(c) and (d). If the girder ends were free to rotate, as in the case
of a simply supported girder (Fig. 12.2(c)), the zero bending moments—
and thus the inflection points—would occur at the ends. On the other ex-
treme, if the girder ends were completely fixed against rotation, we can
show by the exact analysis presented in subsequent chapters that the in-
flection points would occur at a distance of 0.211L from each end of the
girder, as illustrated in Fig. 12.2(d). Therefore, when the girder ends are
only partially restrained against rotation (Fig. 12.2(b)), the inflection
points must occur somewhere within a distance of 0.211L from each
end. For the purpose of approximate analysis, it is common practice to
assume that the inflection points are located about halfway between the
two extremes—that is, at a distance of 0.1L from each end of the girder.
Estimating the location of two inflection points involves making two as-
sumptions about the behavior of the girder. The third assumption is based
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on the experience gained from the exact analyses of rectangular frames
subjected to vertical loads only, which indicates that the axial forces in
girders of such frames are usually very small. Thus, in an approximate
analysis, it is reasonable to assume that the girder axial forces are zero.

FIG. 12.2
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To summarize the foregoing discussion, in the approximate analysis
of a rectangular frame subjected to vertical loads the following assump-
tions are made for each girder of the frame:

1. The inflection points are located at one-tenth of the span from
each end of the girder.

2. The girder axial force is zero.

FIG. 12.2 (contd.)
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The e¤ect of these simplifying assumptions is that the middle eight-
tenths of the span (0.8L) of each girder can be considered to be simply
supported on the two end portions of the girder, each of which is of the
length equal to one-tenth of the girder span (0.1L), as shown in Fig. 12.2(e).
Note that the girders are now statically determinate, and their end forces
and moments can be determined from statics, as shown in the figure. It
should be realized that by making three assumptions about the behavior of
each girder of the frame, we have made a total number of assumptions
equal to the degree of indeterminacy of the frame, thereby rendering the
entire frame statically determinate, as shown in Fig. 12.2(f ). Once the girder
end forces have been computed, the end forces of the columns and the
support reactions can be determined from equilibrium considerations.

Example 12.1

Draw the approximate shear and bending moment diagrams for the girders of the frame shown in Fig. 12.3(a).

Solution
As the span lengths and loads for the four girders of the frame are the same (Fig. 12.3(a)), the approximate shear and
bending moment diagrams for the girders will also be the same. By applying the assumptions discussed in this section to
any of the girders of the frame, we obtain the statically determinate girder shown in Fig. 12.3(b). Note that the middle
portion of the girder, which has a length of 0:8L ¼ 0:8ð30Þ ¼ 24 ft, is simply supported on the two end portions, each of
length 0:1L ¼ 0:1ð30Þ ¼ 3 ft.

By considering the equilibrium of the simply supported middle portion of the girder, we obtain the vertical reactions
at the ends of this portion to be 1:5ð24=2Þ ¼ 18 k. These forces are then applied in opposite directions (Newton’s law of
action and reaction) to the two end portions, as shown in the figure. The vertical forces (shears) and moments at the ends
of the girder can now be determined by considering the equilibrium of the end portions. By applying the equations of
equilibrium to the left end portion, we write

þ "
P

FY ¼ 0 SL � 1:5ð3Þ � 18 ¼ 0 SL ¼ 22:5 k "

þ ’
P

ML ¼ 0 ML � 1:5ð3Þ 3

2

� �
� 18ð3Þ ¼ 0 ML ¼ 60:75 k-ft

’

Similarly, by applying the equilibrium equations to the right end portion, we obtain

SR ¼ 22:5 k " and MR ¼ 60:75 k-ft @

By using these approximate values of the girder end forces and moments, we construct the shear and bending moment
diagrams for the girder, as shown in Fig. 12.3(b). Ans.

FIG. 12.3
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12.3 Analysis for Lateral Loads—Portal Method

The behavior of rectangular building frames is di¤erent under lateral
(horizontal) loads than under vertical loads, so di¤erent assumptions
must be used in the approximate analysis for lateral loads than were
used in the case of vertical loads considered previously. Two methods
are commonly used for approximate analysis of rectangular frames sub-
jected to lateral loads. These are (1) the portal method and (2) the canti-

lever method. The portal method is described in this section, whereas the
cantilever method is considered in the following section.

FIG. 12.3 (contd.)
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The portal method was initially developed by A. Smith in 1915 and is
generally considered to be appropriate for the approximate analysis of
relatively low building frames. Before we consider the analysis of multi-
story, multibay frames by using the portal method, let us examine the
behavior of a portal frame with fixed supports under a lateral load, as
shown in Fig. 12.4(a). The degree of indeterminacy of this frame is three;
therefore, three assumptions must be made for its approximate analysis.
From the deflected shape of the frame sketched in Fig. 12.4(a), we observe
that an inflection point exists near the middle of each member of the
frame. Thus, in approximate analysis, it is reasonable to assume that the
inflection points are located at the midpoints of the frame members.
Since the bending moments at the inflection points must be zero, internal
hinges are inserted at the midpoints of the three frame members to obtain
the statically determinate frame shown in Fig. 12.4(b). To determine the
six reactions, we pass a horizontal section aa through the hinges E and G,
as shown in Fig. 12.4(b), and apply the equations of equilibrium (and
condition, if any) to the three portions of the frame. Applying the three
equilibrium equations and one equation of condition to the portion
ECDG (Fig. 12.4(c)), we compute the forces at the internal hinges E and
G to be

þ ’
P

MG ¼ 0 EY ðLÞ � P
h

2

� �
¼ 0 EY ¼

Ph

2L
#

þ "
P

FY ¼ 0 �Ph

2L
þ GY ¼ 0 GY ¼

Ph

2L
"

FIG. 12.4
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þ ’
P

MEF
F ¼ 0

Ph

2L

L

2

� �
� EX

h

2

� �
¼ 0 EX ¼

P

2
 

þ!
P

FX ¼ 0 P� P

2
� GX ¼ 0 GX ¼

P

2
 

The reactions at supports A and B can now be determined by consider-
ing the equilibrium of portions AE and BG, respectively. For portion
AE (Fig. 12.4(c)):

þ !
P

FX ¼ 0 AX ¼
P

2
 

þ "
P

FY ¼ 0 AY ¼
Ph

2L
#

þ ’
P

MA ¼ 0 �P

2

h

2

� �
þMA ¼ 0 MA ¼

Ph

4

’

FIG. 12.4 (contd.)
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Similarly, for portion BG (Fig. 12.4(c)):

þ !
P

FX ¼ 0 BX ¼
P

2
 

þ "
P

FY ¼ 0 BY ¼
Ph

2L
"

þ ’
P

MB ¼ 0 �P

2

h

2

� �
þMB ¼ 0 MB ¼

Ph

4

’

Note that the horizontal reactions at the supports A and B are equal
(i.e., AX ¼ BX ), indicating that the shears in the two columns of the
frame must also be equal to each other. The bending moment diagrams
for the members of the portal frame are shown in Fig. 12.4(d).

To develop the portal method for approximate analysis of frames,
consider the two-story, three-bay building frame shown in Fig. 12.5(a). The
frame contains six girders, so its degree of indeterminacy is 3ð6Þ ¼ 18.
From the deflected shape of the frame sketched in Fig. 12.5(a), we observe
that the deflection behavior of this frame is similar to that of the portal
frame considered previously (Fig. 12.4(a)), in the sense that an inflection
point exists near the middle of each member of the frame. In the portal
method, it is assumed that these inflection points are located at the mid-
points of the members, and, therefore, an internal hinge is inserted at the
middle of each of the frame members to obtain a simplified frame, as
shown in Fig. 12.5(b). Note that this simplified frame is not statically de-
terminate because it is obtained by inserting only 14 internal hinges
(i.e., one hinge in each of the 14 members) into the original frame, which is
indeterminate to the 18th degree. Thus, the degree of indeterminacy of the
simplified frame of Fig. 12.5(b) is 18� 14 ¼ 4; therefore, four additional
assumptions must be made before an approximate analysis involving only
statics can be carried out. In the portal method, it is further assumed that
the frame is composed of a series of portal frames, as shown in Fig. 12.5(c),
with each interior column of the original multibay frame representing two
portal legs. We showed previously (Fig. 12.4) that when a portal frame
with internal hinges at the midpoints of its members is subjected to a lateral
load, equal shears develop in the two legs of the portal. Since an interior
column of the original multibay frame represents two portal legs, whereas
an exterior column represents only one leg, we can reasonably assume that
the shear in an interior column of a story of the multibay frame is twice as
much as the shear in an exterior column of that story (Fig. 12.5(c)). The
foregoing assumption regarding shear distribution between columns yields
one more equation for each story of the frame with multiple bays than
necessary for approximate analysis. For example, for each story of the
frame of Fig. 12.5, this assumption can be used to express shears in any
three of the columns in terms of that in the fourth. Thus, for the entire
frame, this assumption provides a total of six equations—that is, two
equations more than necessary for approximate analysis. However, as the
extra equations are consistent with the rest, they do not cause any compu-
tational di‰culty in the analysis.
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From the foregoing discussion, we gather that the assumptions made
in the portal method are as follows:

1. An inflection point is located at the middle of each member of
the frame.

2. On each story of the frame, interior columns carry twice as
much shear as exterior columns.

FIG. 12.5
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Procedure for Analysis

The following step-by-step procedure can be used for the approximate
analysis of building frames by the portal method.

1. Draw a sketch of the simplified frame obtained by inserting an
internal hinge at the midpoint of each member of the given
frame.

2. Determine column shears. For each story of the frame:
a. Pass a horizontal section through all the columns of the

story, cutting the frame into two portions.
b. Assuming that the shears in interior columns are twice as

much as in exterior columns, determine the column shears by
applying the equation of horizontal equilibrium ð

P
FX ¼ 0Þ

to the free body of the upper portion of the frame.
3. Draw free-body diagrams of all the members and joints of the

frame, showing the external loads and the column end shears
computed in the previous step.

4. Determine column moments. Determine moments at the ends
of each column by applying the equations of condition that the
bending moment is zero at the column midheight, where an
inflection point (internal hinge) has been assumed. As shown in
Fig. 12.6(a), by applying the equations of condition,

P
MBH

H ¼ 0
and

P
MTH

H ¼ 0, to the free body of a column of height h, we
find that the moments at the two ends of the column are equal in

FIG. 12.6
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magnitude and have the same sense (i.e., either both end mo-
ments are clockwise or both are counterclockwise). The magni-
tude of the column end moments (MC) is equal to the magnitude
of the column shears (SC) times half the column height; that is,

MC ¼ SC

h

2

� �
ð12:1Þ

Determine end moments for all the columns of the frame.
5. Determine girder axial forces, moments, and shears. Proceeding

from the top story of the frame to the bottom, compute axial
forces, moments, and shears at the ends of the girders of each
successive story by starting at the far left joint of the story and
working across to the right, as follows:
a. Apply the equilibrium equations,

P
FX ¼ 0 and

P
M ¼ 0,

to the free body of the joint under consideration to com-
pute the axial force and moment, respectively, at the left
(adjoining) end of the girder on the right side of the joint.

b. Considering the free body of the girder, determine the shear
at the girder’s left end by dividing the girder moment by
half the girder length (see Fig. 12.6(b)); that is,

Sg ¼
Mg

ðL=2Þ ð12:2Þ

Equation (12.2) is based on the condition that the bending
moment at the girder midpoint is zero.

c. By applying the equilibrium equations
P

FX ¼ 0,
P

FY ¼ 0,
and

P
M ¼ 0 to the free body of the girder, determine the

axial force, shear, and moment, respectively, at the right end.
As shown in Fig. 12.6(b), the axial forces and shears at the
ends of the girder must be equal but opposite, whereas the
two end moments must be equal to each other in both mag-
nitude and direction.

d. Select the joint to the right of the girder considered previ-
ously, and repeat steps 5(a) through 5(c) until the axial forces,
moments, and shears in all the girders of the story have
been determined. The equilibrium equations

P
FX ¼ 0 andP

M ¼ 0 for the right end joint have not been utilized so far,
so these equations can be used to check the calculations.

e. Starting at the far left joint of the story below the one con-
sidered previously, repeat steps 5(a) through 5(d) until the
axial forces, moments, and shears in all of the girders of the
frame have been determined.

6. Determine column axial forces. Starting at the top story, apply
the equilibrium equation

P
FY ¼ 0 successively to the free

body of each joint to determine the axial forces in the columns
of the story. Repeat the procedure for each successive story,
working from top to bottom, until the axial forces in all the
columns of the frame have been determined.
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7. Realizing that the forces and moments at the lower ends of the
bottom-story columns represent the support reactions, use the
three equilibrium equations of the entire frame to check the cal-
culations. If the analysis has been performed correctly, then
these equilibrium equations must be satisfied.

In steps 5 and 6 of the foregoing procedure, if we wish to compute
member forces and moments by proceeding from the right end of the
story toward the left, then the term left should be replaced by right and
vice versa.

Example 12.2

Determine the approximate axial forces, shears, and moments for all the members of the frame shown in Fig. 12.7(a) by
using the portal method.

Solution
Simplified Frame. The simplified frame for approximate analysis is obtained by inserting internal hinges at the mid-
points of all the members of the given frame, as shown in Fig. 12.7(b).

Column Shears. To compute shears in the columns of the frame, we pass an imaginary section aa through the columns just
above the support level, as shown in Fig. 12.7(b). The free-body diagram of the portion of the frame above section aa is
shown in Fig. 12.7(c). Note that the shear in the interior column BE has been assumed to be twice as much as in the ex-
terior columns AD and CF . By applying the equilibrium equation

P
FX ¼ 0, we obtain (see Fig. 12.7(c))

þ !
P

FX ¼ 0 60� S � 2S � S ¼ 0 S ¼ 15 kN

Thus, the shear forces at the lower ends of the columns are

SAD ¼ SCF ¼ S ¼ 15 kN SBE ¼ 2S ¼ 30 kN 

Shear forces at the upper ends of the columns are obtained by applying the equilibrium equation
P

FX ¼ 0 to the
free body of each column. For example, from the free-body diagram of column AD shown in Fig. 12.7(d), we observe
that in order to satisfy

P
FX ¼ 0, the shear force at the upper end, SDA, must act to the right with a magnitude of 15 kN

to balance the shear force at the lower end, SAD ¼ 15 kN to the left. Thus, SDA ¼ 15 kN!. Shear forces at the upper
ends of the remaining columns are determined in a similar manner and are shown in Fig. 12.7(e), which depicts the free-
body diagrams of all the members and joints of the frame.

Column Moments. With the column shears now known, the column end moments can be computed by multiplying the
column shears by half of the column heights. For example, since column AD (see Fig. 12.7(d)) is 8 m high and has end
shears of 15 kN, its end moments are

MAD ¼MDA ¼ 15
8

2

� �
¼ 60 kN �m ’

Note that the end moments, MAD and MDA, are both counterclockwise—that is, opposite to the clockwise moments of
the 15 kN end shears about the internal hinge at the column midheight. The end moments of the remaining columns of
the frame are computed in a similar manner and are shown in Fig. 12.7(e).

Girder Axial Forces, Moments, and Shears. We begin the calculation of girder end actions at the upper left joint D. The
column shear SDA and moment MDA computed previously are applied to the free-body diagram of joint D in opposite
directions according to Newton’s third law, as shown in Fig. 12.7(d). By applying the equilibrium equation

P
FX ¼ 0,

we obtain the girder axial force QDE ¼ 45 kN on joint D. Note that QDE must act in the opposite direction—that is,

continued
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to the right—at end D of girder DE. From the free-body diagram of joint D (Fig. 12.7(d)), we can also see that in order
to satisfy the moment equilibrium equation, ð

P
M ¼ 0Þ, the girder end moment MDE must be equal and opposite to the

60 kN �m column end moment. Thus, MDE ¼ 60 kN �m, with a counterclockwise direction on joint D but a clockwise
direction at the end D of girder DE.

To evaluate the girder shear SDE , we consider the moment equilibrium of the left half of girder DE. From the free-
body diagram of girder DE in Fig. 12.7(d), we can see that the shear force SDE must act downward with a magnitude of
MDE=ðL=2Þ so that it can develop a counterclockwise moment of magnitude, MDE , about the internal hinge to balance
the clockwise end moment, MDE . Thus,

SDE ¼
MDE

ðL=2Þ ¼
60

ð10=2Þ ¼ 12 kN #

The axial force, shear, and moment at the right end E can now be determined by applying the three equilibrium equa-
tions to the free body of girder DE (Fig. 12.7(d)):

þ !
P

FX ¼ 0 45�QED ¼ 0 QED ¼ 45 kN 

þ "
P

FY ¼ 0 �12þ SED ¼ 0 SED ¼ 12 kN "

þ ’
P

MD ¼ 0 �60�MED þ 12ð10Þ ¼ 0 MED ¼ 60 kN �m @

Note that the girder end moments, MDE and MED, are equal in magnitude and have the same direction.
Next, we calculate the end actions for girder EF . We first apply the equilibrium equations

P
FX ¼ 0 and

P
M ¼ 0

to the free body of joint E (Fig. 12.7(e)) to obtain the axial force QEF ¼ 15 kN! and the moment MEF ¼
60 kN �m @ at the left end E of the girder. We then obtain the shear SEF ¼12 kN # by dividing the moment MEF by
half of the girder length, and we apply the three equilibrium equations to the free body of the girder to obtain QFE ¼
15 kN , SFE ¼ 12 kN ", and MFE ¼ 60 kN �m @ at the right end F of the girder (see Fig. 12.7(e)).

Since all the moments and horizontal forces acting at the upper right joint F are now known, we can check the
calculations that have been performed thus far by applying the two equilibrium equations

P
FX ¼ 0 and

P
M ¼ 0 to

the free body of this joint. From the free-body diagram of joint F shown in Fig. 12.7(e), it is obvious that these equili-
brium equations are indeed satisfied.

Column Axial Forces. We begin the calculation of column axial forces at the upper left joint D. From the free-body di-
agram of this joint shown in Fig. 12.7(d), we observe that the axial force in column AD must be equal and opposite to the
shear in girder DE. Thus, the axial force at the upper end D of column AD is QDA ¼ 12 kN ". By applying

P
FY ¼ 0 to

the free body of column AD, we obtain the axial force at the lower end A of the column to be QAD ¼ 12 kN #. Thus, the
column AD is subjected to an axial tensile force of 12 kN. Axial forces for the remaining columns BE and CF are cal-
culated similarly by considering the equilibrium of joints E and F , respectively. The axial forces thus obtained are shown
in Fig. 12.7(e). Ans.

Reactions. The forces and moments at the lower ends of the columns AD;BE, and CF , represent the reactions at the
fixed supports A;B, and C, respectively, as shown in Fig. 12.7(f ). Ans.

Checking Computations. To check our computations, we apply the three equilibrium equations to the free body of the
entire frame (Fig. 12.7(f )):

þ !
P

FX ¼ 0 60� 15� 30� 15 ¼ 0 Checks

þ "
P

FY ¼ 0 �12þ 12 ¼ 0 Checks

þ ’
P

MC ¼ 0 �60ð8Þ þ 12ð20Þ þ 60þ 120þ 60 ¼ 0 Checks
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Example 12.3

Determine the approximate axial forces, shears, and moments for all the members of the frame shown in Fig. 12.8(a) by
using the portal method.

Solution
Simplified Frame. The simplified frame is obtained by inserting internal hinges at the midpoints of all the members of
the given frame, as shown in Fig. 12.8(b).

Column Shears. To compute shears in the columns of the second story of the frame, we pass an imaginary section aa

through the columns DG;EH, and FI just above the floor level, as shown in Fig. 12.8(b). The free-body diagram of the
portion of the frame above section aa is shown in Fig. 12.8(c). Note that the shear in the interior column EH has been
assumed to be twice as much as in the exterior columns DG and FI . By applying the equilibrium equation

P
FX ¼ 0,

we obtain (Fig. 12.8(c))

þ !
P

FX ¼ 0 10� S2 � 2S2 � S2 ¼ 0 S2 ¼ 2:5 k

Thus, the shear forces at the lower ends of the second-story columns are

SDG ¼ SFI ¼ S2 ¼ 2:5 k SEH ¼ 2S2 ¼ 5 k 

Similarly, by employing section bb (Fig. 12.8(b)), we determine shear forces at the lower ends of the first-story
columns AD;BE, and CF to be (see Fig. 12.8(d)):

SAD ¼ SCF ¼ S1 ¼ 7:5 k SBE ¼ 2S1 ¼ 15 k 

Shear forces at the upper ends of columns are determined by applying the equilibrium equation
P

FX ¼ 0 to the free
body of each column. For example, from the free-body diagram of column DG shown in Fig. 12.8(e), we can see that in
order to satisfy

P
FX ¼ 0, the shear force at the upper end, SGD, must act to the right with a magnitude of 2.5 k. Thus

SGD ¼ 2:5 k!. Shear forces at the upper ends of the remaining columns are obtained in a similar manner and are shown
in Fig. 12.8(f ), which depicts the free-body diagrams of all the members and joints of the frame.

Column Moments. Knowing column shears, we can now compute the column end moments by multiplying the column
shears by half of the column heights. For example, since column DG (see Fig. 12.8(e)) is 12 ft high and has end shears of
2.5 k, its end moments are

MDG ¼MGD ¼ 2:5
12

2

� �
¼ 15 k-ft

’

Note that the end moments, MDG and MGD, are both counterclockwise—that is, opposite to the clockwise moments of
the 2.5-k end shears about the internal hinge at the column midheight. The end moments of the remaining columns are
computed in a similar manner and are shown in Fig. 12.8(f ).

FIG. 12.8

continued
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FIG. 12.8 (contd.)

continued
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Girder Axial Forces, Moments, and Shears. We begin the computation of girder end actions at the upper left joint G. The
column shear SGD and moment MGD computed previously are applied to the free-body diagram of joint G in opposite
directions in accordance with Newton’s third law, as shown in Fig. 12.8(e). By summing forces in the horizontal direction,
we obtain the girder axial force QGH ¼ 7:5 k on joint G. Note that QGH must act in the opposite direction—that is, to
the right—at the end G of girder GH. From the free-body diagram of joint G (Fig. 12.8(e)), we can also see that in order
to satisfy the moment equilibrium ð

P
M ¼ 0Þ, the girder end moment MGH must be equal and opposite to the 15-k-ft

column end moment. Thus MGH ¼ 15 k-ft, with a counterclockwise direction on joint G but a clockwise direction at the
end G of girder GH.

To determine the girder shear SGH , we consider the moment equilibrium of the left half of girder GH. From the free-
body diagram of girder GH (Fig. 12.8(e)), we can see that the shear force SGH must act downward with a magnitude of
MGH=ðL=2Þ so that it can develop a counterclockwise moment of magnitude MGH about the internal hinge to balance
the clockwise end moment MGH . Thus

SGH ¼
MGH

ðL=2Þ ¼
15

ð30=2Þ ¼ 1 k #

The axial force, shear, and moment at the right end H can now be computed by applying the three equilibrium equa-
tions to the free body of girder GH (Fig. 12.8(e)). Applying

P
FX ¼ 0, we obtain QHG ¼ 7:5 k . From

P
FY ¼ 0, we

obtain SHG ¼ 1 k ", and to compute MHG, we apply the equilibrium equation:

þ ’
P

MG ¼ 0 �15�MHG þ 1ð30Þ ¼ 0 MHG ¼ 15 k-ft @

Note that the girder end moments, MGH and MHG, are equal in magnitude and have the same direction.
Next, the end actions for girder HI are computed. The equilibrium equations

P
FX ¼ 0 and

P
M ¼ 0 are first

applied to the free body of joint H (Fig. 12.8(f )) to obtain the axial force QHI ¼ 2:5 k! and the moment MHI ¼15 k-ft @
at the left end H of the girder. The shear SHI ¼ 1:5 k # is then obtained by dividing the moment MHI by half the girder
length, and the three equilibrium equations are applied to the free body of the girder to obtain QIH ¼ 2:5 k ,
SIH ¼ 1:5 k ", and MIH ¼ 15 k-ft @ at the right end I of the girder (see Fig. 12.8(f )).

All the moments and horizontal forces acting at the upper right joint I are now known, so we can check the calcu-
lations performed thus far by applying

P
FX ¼ 0 and

P
M ¼ 0 to the free body of this joint. From the free-body diagram

of joint I shown in Fig. 12.8(f ), it is obvious that these equilibrium equations are indeed satisfied.
The end actions for the first-story girders DE and EF are computed in a similar manner, by starting at the left joint

D and working across to the right. The girder end actions thus obtained are shown in Fig. 12.8(f ).

Column Axial Forces. We begin the computation of column axial forces at the upper left joint G. From the free-body
diagram of joint G shown in Fig. 12.8(e), we observe that the axial force in column DG must be equal and opposite to
the shear in girder GH. Thus the axial force at the upper end G of column DG is QGD ¼ 1 k ". By applying

P
FY ¼ 0 to

the free body of column DG, we obtain the axial force at the lower end of the column to be QDG ¼ 1 k #. Thus, the
column DG is subjected to an axial tensile force of 1 k. Axial forces for the remaining second-story columns, EH and
FI , are determined similarly by considering the equilibrium of joints H and I , respectively; thereafter, the axial forces
for the first-story columns, AD;BE, and CF , are computed from the equilibrium consideration of joints D;E, and F ,
respectively. The axial forces thus obtained are shown in Fig. 12.8(f ). Ans.

FIG. 12.8 (contd.)

continued

472 CHAPTER 12 Approximate Analysis of Rectangular Building Frames



Reactions. The forces and moments at the lower ends of the first-story columns AD;BE, and CF , represent the reactions
at the fixed supports A;B, and C, respectively, as shown in Fig. 12.8(g). Ans.

Checking Computations. To check our computations, we apply the three equilibrium equations to the free body of the
entire frame (Fig. 12.8(g)):

þ !
P

FX ¼ 0 10þ 20� 7:5� 15� 7:5 ¼ 0 Checks

þ "
P

FY ¼ 0 �6� 3þ 9 ¼ 0 Checks

þ ’
P

MC ¼ 0

� 10ð28Þ � 20ð16Þ þ 60þ 6ð50Þ þ 120þ 3ð20Þ þ 60 ¼ 0 Checks

12.4 Analysis for Lateral Loads—Cantilever Method

The cantilever method was initially developed by A. C. Wilson in 1908
and is generally considered to be appropriate for the approximate anal-
ysis of relatively tall building frames. The cantilever method is based
on the assumption that under lateral loads, the building frames behave
like cantilever beams, as shown in Fig. 12.9. Recall (from mechanics of

materials) that the axial stress on a cross section of a cantilever beam
subjected to lateral loads varies linearly with the distance from the cen-
troidal axis (neutral surface), so that the longitudinal fibers of the beam
on the concave side of the neutral surface are in compression, whereas
those on the convex side undergo tension. In the cantilever method, the
distribution of axial stress among the columns of a frame at the column
midheights is assumed to be analogous to the axial stress distribution
among the longitudinal fibers of a cantilever beam. In other words, it is
assumed that the axial stress at the midheight of each column is lin-
early proportional to the distance of the column from the centroid of the
areas of all the columns on that story. If we further assume that the
cross-sectional areas of all the columns on each story of the frame are
equal, then the axial force in each column will also be linearly propor-
tional to the distance of the column from the centroid of all the columns
on that story. When the lateral loads are acting on the frame toward the
right, as shown in Fig. 12.9, then the columns to the right of the cen-
troidal axis will be in compression, whereas those on the left side will be
in tension and vice versa.

In addition to the foregoing assumption, the cantilever method makes
the same assumption regarding the location of inflection points as used in
the portal method. Thus the assumptions made in the cantilever method
can be stated as follows:

1. An inflection point is located at the middle of each member of
the frame.

2. On each story of the frame, the axial forces in columns are lin-
early proportional to their distances from the centroid of the
cross-sectional areas of all the columns on that story.FIG. 12.9
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Procedure for Analysis

The following step-by-step procedure can be used for the approximate
analysis of building frames by the cantilever method.

1. Draw a sketch of the simplified frame obtained by inserting an
internal hinge at the midpoint of each member of the given frame.

2. Determine column axial forces. For each story of the frame:
a. Pass a horizontal section through the internal hinges at the

column midheights, cutting the frame into two portions.
b. Draw a free-body diagram of the portion of the frame above

the section. Because the section passes through the columns
at the internal hinges, only internal shears and axial forces
(but no internal moments) act on the free body at the points
where the columns have been cut.

c. Determine the location of the centroid of all the columns
on the story under consideration.

d. Assuming that the axial forces in the columns are propor-
tional to their distances from the centroid, determine the
column axial forces by applying the moment equilibrium
equation,

P
M ¼ 0, to the free body of the frame above the

section. To eliminate the unknown column shears from the
equilibrium equation, the moments should be summed about
one of the internal hinges at the column midheights through
which the section has been passed.

3. Draw free-body diagrams of all the members and joints of the
frame showing the external loads and the column axial forces
computed in the previous step.

4. Determine girder shears and moments. For each story of the
frame, the shears and moments at the ends of girders are com-
puted by starting at the far left joint and working across to the
right (or vice versa), as follows:
a. Apply the equilibrium equation

P
FY ¼ 0 to the free body

of the joint under consideration to compute the shear at the
left end of the girder that is on the right side of the joint.

b. Considering the free body of the girder, determine the mo-
ment at the girder’s left end by multiplying the girder shear
by half the girder length; that is,

Mg ¼ Sg

L

2

� �
ð12:3Þ

Equation (12.3) is based on the condition that the bending
moment at the girder midpoint is zero.

c. By applying the equilibrium equations
P

FY ¼ 0 andP
M ¼ 0 to the free body of the girder, determine the

shear and moment, respectively, at the right end.
d. Select the joint to the right of the girder considered pre-

viously, and repeat steps 4(a) through 4(c) until the shears
and moments in all the girders of the story have been de-
termined. Because the equilibrium equation

P
FY ¼ 0 for

the right end joint has not been utilized so far, it can be used
to check the calculations.
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5. Determine column moments and shears. Starting at the top
story, apply the equilibrium equation

P
M ¼ 0 to the free body

of each joint of the story to determine the moment at the upper
end of the column below the joint. Next, for each column of the
story, calculate the shear at the upper end of the column by di-
viding the column moment by half the column height; that is,

SC ¼
MC

ðh=2Þ ð12:4Þ

Determine the shear and moment at the lower end of the col-
umn by applying the equilibrium equations

P
FX ¼ 0 andP

M ¼ 0, respectively, to the free body of the column. Repeat
the procedure for each successive story, working from top to
bottom, until the moments and shears in all the columns of the
frame have been determined.

6. Determine girder axial forces. For each story of the frame, de-
termine the girder axial forces by starting at the far left joint
and applying the equilibrium equation

P
FX ¼ 0 successively

to the free body of each joint of the story.
7. Realizing that the forces and moments at the lower ends of the

bottom-story columns represent the support reactions, use the
three equilibrium equations of the entire frame to check the cal-
culations. If the analysis has been performed correctly, then
these equilibrium equations must be satisfied.

Example 12.4

Determine the approximate axial forces, shears, and moments for all the members of the frame shown in Fig. 12.10(a)
by using the cantilever method.

Solution
This frame was analyzed by the portal method in Example 12.3.

Simplified Frame. The simplified frame, obtained by inserting internal hinges at midpoints of all the members of the
given frame, is shown in Fig. 12.10(b).

Column Axial Forces. To compute axial forces in the columns of the second story of the frame, we pass an imaginary
section aa through the internal hinges at the midheights of columns DG;EH, and FI , as shown in Fig. 12.10(b). The free-
body diagram of the portion of the frame above this section is shown in Fig. 12.10(c). Because the section cuts the col-
umns at the internal hinges, only internal shears and axial forces (but no internal moments) act on the free body at the
points where the columns have been cut. Assuming that the cross-sectional areas of the columns are equal, we determine
the location of the centroid of the three columns from the left column DG by using the relationship

x ¼
P

AxP
A
¼ Að0Þ þ Að30Þ þ Að50Þ

3A
¼ 26:67 ft

The lateral loads are acting on the frame to the right, so the axial force in column DG, which is to the left of the centroid,
must be tensile, whereas the axial forces in the columns EH and FI , located to the right of the centroid, must be com-
pressive as shown in Fig. 12.10(c). Also, since the axial forces in the columns are assumed to be linearly proportional to

continued
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FIG. 12.10

continued
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their distances from the centroid, the relationships between them can be established by means of the similar triangles
shown in Fig. 12.10(c); that is,

QEH ¼
3:33

26:67
QDG ¼ 0:125QDG (1)

QFI ¼
23:33

26:67
QDG ¼ 0:875QDG (2)

By summing moments about the left internal hinge J, we write

þ ’
P

MJ ¼ 0 �10ð6Þ þQEHð30Þ þQFI ð50Þ ¼ 0

Substituting Eqs. (1) and (2) into the preceding equation and solving for QDG, we obtain

�60þ ð0:125QDGÞð30Þ þ ð0:875QDGÞð50Þ ¼ 0

QDG ¼ 1:26 k

Therefore, from Eqs. (1) and (2),

QEH ¼ 0:125ð1:26Þ ¼ 0:16 k

QFI ¼ 0:875ð1:26Þ ¼ 1:1 k

The axial forces in the first-story columns can be determined in a similar manner by employing section bb shown in
Fig. 12.10(b). The free-body diagram of the portion of the frame above this section is shown in Fig. 12.10(d). The ar-
rangement of columns for both stories of the frame is the same, so the location of the centroid—as well as the relation-
ships between the axial forces—of the columns for the two stories are also the same. Thus

QBE ¼ 0:125QAD (3)

QCF ¼ 0:875QAD (4)

By summing moments about the internal hinge K, we write

þ ’
P

MK ¼ 0 �10ð20Þ � 20ð8Þ þQBEð30Þ þQCF ð50Þ ¼ 0

Substituting Eqs. (3) and (4), we obtain

�360þ ð0:125QADÞð30Þ þ ð0:875QADÞð50Þ ¼ 0

QAD ¼ 7:58 k

Therefore,

QBE ¼ 0:95 k

QCF ¼ 6:63 k

FIG. 12.10 (contd.)

continued
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The column axial forces are shown in Fig. 12.10(f ), which depicts the free-body diagrams of all the members and joints
of the frame.

Girder Shears and Moments. Knowing column axial forces, the girder shears can now be computed by considering
equilibrium in the vertical direction of the joints. Starting at the upper left joint G, we apply the equilibrium equationP

FY ¼ 0 to the free body of this joint (see Fig. 12.10(e)) to obtain the shear SGH ¼ 1:26 k # at the left end of girder GH.
The moment at the left end is then determined by multiplying the shear by half the girder length; that is,

MGH ¼ 1:26ð15Þ ¼ 18:9 k-ft @

The shear and moment at the right end, H, can now be computed by applying the equilibrium equations
P

FY ¼ 0
and

P
M ¼ 0, respectively, to the free body of girder GH (Fig. 12.10(e)). By applying these equations, we obtain

SHG ¼ 1:26 k " and MHG ¼ 18:9 k-ft @. Note that the girder end moments, MGH and MHG, have the same magnitude
and direction.

Next, the end shears and moments for girder HI are computed by considering the equilibrium of joints H and
girder HI (see Fig. 12.10(f )), and the equilibrium equation

P
FY ¼ 0 is applied to the free body of the right joint I to

check the calculations performed thus far.
The shears and moments for the first-story girders DE and EF are computed in a similar manner by starting at the left

joint D and working across to the right. The girder shears and moments thus obtained are shown in Fig. 12.10(f ).

Column Moments and Shears. With the girder moments now known, the column moments can be determined by con-
sidering moment equilibrium of joints. Beginning at the second story and applying

P
M ¼ 0 to the free body of joint G

(Fig. 12.10(e)), we obtain the moment at the upper end of column DG to be MGD ¼ 18:9 k-ft

’

. The shear at the upper
end of column DG is then computed by dividing MGD by half the column height; that is,

SGD ¼
18:9

6
¼ 3:15 k!

Note that SGD must act to the right, so that it can develop a clockwise moment to balance the counterclockwise end
moment MGD. The shear and moment at the lower end D are then determined by applying the equilibrium equationsP

FX ¼0 and
P

M ¼ 0 to the free body of column DG (see Fig. 12.10(e)). Next, the end moments and shears for col-
umns EH and FI are computed in a similar manner; thereafter, the procedure is repeated to determine the moments and
shears for the first-story columns, AD;BE, and CF (see Fig. 12.10(f )).

Girder Axial Forces. We begin the computation of girder axial forces at the upper left joint G. Applying
P

FX ¼ 0 to the
free-body diagram of joint G shown in Fig. 12.10(e), we find the axial force in girder GH to be 6.85 k compression. The
axial force for girder HI is determined similarly by considering the equilibrium of joint H, after which the equilibrium
equation

P
FX ¼ 0 is applied to the free body of the right joint I to check the calculations. The axial forces for the first-

story girders DE and EF are then computed from the equilibrium consideration of joints D and E, in order. The axial
forces thus obtained are shown in Fig. 12.10(f ). Ans.

Reactions. The forces and moments at the lower ends of the first-story columns AD;BE, and CF represent the reactions
at the fixed supports A;B, and C, respectively, as shown in Fig. 12.10(g). Ans.

Checking Computations. To check our computations, we apply the three equilibrium equations to the free body of the
entire frame (Fig. 12.10(g)):

þ !
P

FX ¼ 0 10þ 20� 9:5� 15� 5:54 ¼ �0:04&0 Checks

þ "
P

FY ¼ 0 �7:58þ 0:95þ 6:63 ¼ 0 Checks

þ ’
P

MC ¼ 0

�10ð28Þ � 20ð16Þ þ 75:9þ 7:58ð50Þ þ 120:2� 0:95ð20Þ þ 44:3 ¼ 0:4&0 Checks
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Summary

In this chapter, we have learned that in the approximate analysis of sta-
tically indeterminate structures, two types of simplifying assumptions
are commonly employed: (1) assumptions about the location of inflection
points and (2) assumptions about the distribution of forces among mem-
bers and/or reactions. The total number of assumptions required is equal
to the degree of indeterminacy of the structure.

The approximate analysis of rectangular frames subjected to verti-
cal loads is based on the following assumptions for each girder of the
frame: (1) the inflection points are located at one-tenth of the span from
each end of the girder and (2) the girder axial force is zero.

Two methods commonly used for the approximate analysis of rec-
tangular frames subjected to lateral loads are the portal method and the
cantilever method.

The portal method involves making the assumptions that an in-
flection point is located at the middle of each member and that, on each
story, interior columns carry twice as much shear as exterior columns.

In the cantilever method, the following assumptions are made about
the behavior of the frame: that an inflection point is located at the mid-
dle of each member and that, on each story, the axial forces in the col-
umns are linearly proportional to their distances from the centroid of
the cross-sectional areas of all the columns on that story.

PROBLEMS

Section 12.2

12.1 through 12.5 Draw the approximate shear and bending
moment diagrams for the girders of the frames shown in
Figs. P12.1 through P12.5.

30 kN/m

A

D

B

E

C

F

6 m 6 m

4 m

FIG. P12.1

1 k/ft

1 k/ft
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A B

C D
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FIG. P12.2
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FIG. P12.3
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FIG. P12.5

Section 12.3

12.6 through 12.13 Determine the approximate axial forces,
shears, and moments for all the members of the frames
shown in Figs. P12.6 through P12.13 by using the portal
method.
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4 m

40 kN

60 kN

A B
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E F

D

FIG. P12.6, P12.14
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FIG. P12.7, P12.15

FIG. P12.8, P12.16
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FIG. P12.9, P12.17
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FIG. P12.10, P12.18

FIG. P12.11, P12.19

FIG. P12.12, P12.20

FIG. P12.13, P12.21

Section 12.4

12.14 through 12.21 Determine the approximate axial forces,
shears, and moments for all the members of the frames
shown in Figs. P12.6 through P12.13 by using the cantilever
method.
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In this chapter, we study a general formulation of the force (flexibility)
method called the method of consistent deformations for the analysis of
statically indeterminate structures. The method, which was introduced
by James C. Maxwell in 1864, essentially involves removing enough
restraints from the indeterminate structure to render it statically deter-
minate. This determinate structure, which must be statically (and geo-
metrically) stable, is referred to as the primary structure. The excess re-
straints removed from the given indeterminate structure to convert it
into the determinate primary structure are called redundant restraints,
and the reactions or internal forces associated with these restraints are
termed redundants. The redundants are then applied as unknown loads
on the primary structure, and their values are determined by solving the
compatibility equations based on the condition that the deformations of
the primary structure due to the combined e¤ect of the redundants and
the given external loading must be the same as the deformations of the
original indeterminate structure.

Since the independent variables or unknowns in the method of con-
sistent deformations are the redundant forces (and/or moments), which
must be determined before the other response characteristics (e.g., dis-
placements) can be evaluated, the method is classified as a force method.

An alternative formulation of the force method, called the method

of least work, is also discussed in this chapter. This alternative method,
which is based on Castigliano’s second theorem, is essentially similar to the
method of consistent deformations, except that the compatibility equations
in the method of least work are established by minimizing the structure’s



strain energy expressed in terms of the unknown redundants instead of by
deflection superposition, as in the method of consistent deformations.

In this chapter we first develop the analysis of beams, frames, and
trusses with a single degree of indeterminacy by using the method of
consistent deformations. We then apply this method to structures with
multiple degrees of indeterminacy. Next, we consider the analysis for the
e¤ects of support settlements, temperature changes, and fabrication er-
rors and, finally, present the method of least work.

13.1 Structures with a Single Degree of Indeterminacy

To illustrate the basic concept of the method of consistent deformations,
consider the propped cantilever beam subjected to a concentrated load
P, as shown in Fig. 13.1(a). Since the beam is supported by four sup-
port sreactions (Ax;Ay;MA, and Cy), the three equations of equilibrium
(
P

Fx ¼ 0,
P

Fy ¼ 0, and
P

M ¼ 0) are not su‰cient for determining
all the reactions. Therefore, the beam is statically indeterminate. The
degree of indeterminacy of the beam is equal to the number of un-
known reactions minus the number of equilibrium equations—that is,
4� 3 ¼ 1—which indicates that the beam has one more, or redundant,
reaction than necessary for static stability. Thus, if we can determine one
of the four reactions by using a compatibility equation based on the
geometry of the deformation of the beam, then the remaining three re-
actions can be obtained from the three equations of equilibrium.

To establish the compatibility equation, we select one of the reac-
tions of the beam to be the redundant. Suppose that we select the vertical
reaction Cy exerted by the roller support C to be the redundant. From
Fig. 13.1(a), we can see that if the roller support C is removed from the
beam, it will become determinate while still remaining statically stable,
because the fixed support A alone can prevent it from translating and/or
rotating as a rigid body. Thus, the roller support C is not necessary for
the static stability of the beam, and its reaction Cy can be designated
as the redundant. Note however, that the presence of support C imposes
the compatibility condition on the deflected shape of the beam that the
deflection at C must be zero (Fig. 13.1(a)); that is,

DC ¼ 0 ð13:1Þ

To determine the redundant Cy by using this compatibility condition, we
remove the roller support C from the indeterminate beam to convert it
into the determinate cantilever beam shown in Fig. 13.1(b). This deter-
minate beam is referred to as the primary beam. The redundant Cy is then
applied as an unknown load on the primary beam, along with the given
external load P ¼ 32 k, as shown in Fig. 13.1(b). The redundant Cy can
be determined by using the reasoning that if the value of the unknown
load Cy acting on the primary beam (Fig. 13.1(b)) is to be the same as
that of the reaction Cy exerted on the indeterminate beam by the roller
support C (Fig. 13.1(a)), then the deflection at the free end C of the pri-
mary beam due to the combined e¤ect of the external load P and the re-
dundant Cy must be the same as the deflection of the indeterminate beam
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at support C. Because the deflection DC at support C of the indetermin-
ate beam is zero (Eq. 13.1), the deflection at end C of the primary beam
due to the combined e¤ect of the external load P and the redundant Cy

must also be zero. The total deflection DC at end C of the primary beam
due to the combined e¤ect of P and Cy can be conveniently expressed by

FIG. 13.1
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superimposing (algebraically adding) the deflections due to the external
load P and the redundant Cy acting individually on the beam; that is,

DC ¼ DCO þ DCC ð13:2Þ

in which DCO and DCC represent, respectively, the deflections at the end
C of the primary beam due to the external load P and the redundant Cy,
each acting alone on the beam. Note that two subscripts are used to
denote the deflections DCO and DCC of the primary beam. The first sub-
script, C, indicates the location of these deflections; the second subscript,
O, is used to indicate that DCO is caused by the given external loading,
whereas the second subscript, C, of DCC implies that it is due to the re-
dundant Cy. Both of these deflections are considered to be positive if
they occur in the direction of the redundant Cy, which is assumed to be
upward, as shown in Fig. 13.1(b).

Since the redundant Cy is unknown, it is convenient to determine
DCC by first evaluating the deflection at C due to a unit value of the re-
dundant Cy, as shown in Fig. 13.1(d), and then multiplying the deflection
thus obtained by the unknown magnitude of the redundant. Thus,

DCC ¼ fCCCy ð13:3Þ

in which fCC denotes the deflection at point C of the primary beam due
to the unit value of the redundant Cy. It may be recalled from Section 7.8
that fCC , which has units of deflection per unit force, is referred to as a
flexibility coe‰cient. By substituting Eqs. (13.1) and (13.3) into Eq. (13.2),
we obtain the compatibility equation

DC ¼ DCO þ fCCCy ¼ 0 ð13:4Þ

which can be solved to express the redundant Cy in terms of the de-
flections DCO and fCC of the primary beam:

Cy ¼ �
DCO

fCC
ð13:5Þ

Equations (13.4) and (13.5) can also be established intuitively by re-
garding the redundant Cy as the force necessary to correct the deflected
shape of the primary structure so that it matches the deflected shape of
the original indeterminate structure. When support C is imagined to be
removed from the indeterminate beam of Fig. 13.1(a), the external load P

causes a downward deflection of DCO at end C, as shown in Fig. 13.1(c).
Since the deflection at C in the original indeterminate beam is zero, the
redundant force Cy must be of su‰cient magnitude to push the end C

back into its original position by producing an upward deflection of DCO

at end C of the primary beam. To evaluate the e¤ect of Cy on the beam,
we compute the flexibility coe‰cient fCC, which is the deflection at C
due to a unit value of the redundant (Fig. 13.1(d)). Since superposition is
valid, deflection is directly proportional to load; that is, if a unit load
causes a deflection of fCC , then a load ten times as much will cause a
deflection of 10fCC . Thus, the upward redundant of magnitude Cy causes
an upward deflection of Cy fCC at end C of the primary beam. Since the
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upward deflection ðCy fCCÞ caused by the redundant Cy must be equal to
the downward deflection ðDCOÞ due to the external load P, we write

Cy fCC ¼ �DCO ð13:6Þ

in which both deflections, fCC and DCO, are assumed to be positive up-
ward. Note that Eq. (13.6) is equivalent to Eqs. (13.4) and (13.5) derived
previously.

Since the primary beam is statically determinate, the deflections DCO

and fCC can be computed by either using the methods previously de-
scribed in Chapters 6 and 7 or by using the beam-deflection formulas
given inside the front cover of the book. By using the beam-deflection
formulas, we determine the deflection at end C of the primary beam due
to the external load Pð¼ 32 kÞ to be

DCO ¼ �
5PL3

48EI
¼ � 5ð32Þð20Þ3

48ð30;000Þð512Þ=144 ¼ �0:25 ft ¼ �3 in:

(see Fig. 13.1(c)) in which a negative sign has been assigned to the mag-
nitude of DCO to indicate that the deflection occurs in the downward
direction—that is, in the direction opposite to that of the redundant Cy.
Similarly, the flexibility coe‰cient fCC is evaluated as

fCC ¼
L3

3EI
¼ ð20Þ3

3ð30;000Þð512Þ=144 ¼ 0:025 ft/k ¼ 0:3 in:/k

(see Fig. 13.1(d)). By substituting the expressions or the numerical values
of DCO and fCC into Eq. (13.5), we determine the redundant Cy to be

Cy ¼ � �
5PL3

48EI

� �
3EI

L3

� �
¼ 5

16
P ¼ 10 k "

The positive answer for Cy indicates that our initial assumption about
the upward direction of Cy was correct.

With the reaction Cy known, the three remaining reactions can now
be determined by applying the three equilibrium equations to the free
body of the indeterminate beam (Fig. 13.1(e)):

þ !
P

Fx ¼ 0 Ax ¼ 0

þ "
P

Fy ¼ 0 Ay � 32þ 10 ¼ 0 Ay ¼ 22 k "
þ ’

P
MA ¼ 0 MA � 32ð10Þ þ 10ð20Þ ¼ 0 MA ¼ 120 k-ft

’

After the redundant Cy has been computed, the reactions and all
other response characteristics of the beam can also be determined by
employing superposition relationships similar in form to the deflection
superposition relationship expressed in Eq. (13.4). Thus, the reactions can
alternatively be determined by using the superposition relationships (see
Fig. 13.1(a), (c), and (d)):

þ ! Ax ¼ AxO þ AxCðCyÞ ¼ 0

þ " Ay ¼ AyO þ AyCðCyÞ ¼ 32� 1ð10Þ ¼ 22 k "
þ ’ MA ¼MAO þMACðCyÞ ¼ 320� 20ð10Þ ¼ 120 k-ft

’
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Note that the second subscript O is used to denote reactions due to the
external loading only (Fig. 13.1(c)), whereas the second subscript C de-
notes reactions due to a unit value of the redundant Cy (Fig. 13.1(d)).

Similarly, the bending moment diagram for the indeterminate beam
can be obtained by superimposing the bending moment diagram of the
primary beam due to external loading only, on the bending moment
diagram of the primary beam due to a unit value of redundant Cy multi-
plied by the value of Cy. The bending moment diagram for the indeter-
minate beam thus constructed is shown in Fig. 13.1(f ).

Moment as the Redundant

In the foregoing analysis of the propped cantilever of Fig. 13.1(a), we
arbitrarily selected the vertical reaction at roller support C to be the
redundant. When analyzing a structure by the method of consistent de-

formations, we can choose any support reaction or internal force (or mo-

ment) as the redundant, provided that the removal of the corresponding

restraint from the given indeterminate structure results in a primary

structure that is statically determinate and stable.
Considering again the propped cantilever beam of Fig. 13.1(a),

which is redrawn in Fig. 13.2(a), we can see that the removal of the

FIG. 13.2
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restraint corresponding to the horizontal reaction Ax will render the
beam statically unstable. Therefore, Ax cannot be used as the redundant.
However, either of the two other reactions at support A can be used as
the redundant.

Let us consider the analysis of the beam by using the reaction moment
MA as the redundant. The actual sense of MA is not known and is arbitra-
rily assumed to be counterclockwise, as shown in Fig. 13.2(a). To obtain
the primary beam, we remove the restraint against rotation at end A by
replacing the fixed support by a hinged support, as shown in Fig. 13.2(b).
Note that the simply supported beam thus obtained is statically determi-
nate and stable. The redundant MA is now treated as an unknown load on
the primary beam, and its magnitude can be determined from the com-
patibility condition that the slope at A due to the combined e¤ect of the
external load P and the redundant MA must be zero.

The primary beam is subjected separately to the external load
P ¼ 32 k and a unit value of the unknown redundant MA, as shown in
Fig. 13.2(b) and (c), respectively. As shown in these figures, yAO repre-
sents the slope at end A due to the external load P, whereas, fAA denotes
the flexibility coe‰cient—that is, the slope at A due to a unit value of the
redundant MA. Thus the slope at A due to MA equals yAA ¼ fAAMA. Be-
cause the algebraic sum of the slopes at end A due to the external load P

and the redundant MA must be zero, we can express the compatibility
equation as

yAO þ fAAMA ¼ 0 ð13:7Þ

The slopes yAO and fAA can be easily computed by using the beam-
deflection formulas inside the front cover of the book. Thus

yAO ¼ �
PL2

16EI
¼ � 32ð20Þ2

16ð30;000Þð512Þ=144 ¼ �0:0075 rad

fAA ¼
L

3EI
¼ 20

3ð30;000Þð512Þ=144 ¼ 0:0000625 rad/k-ft

Note that a negative sign has been assigned to the magnitude of yAO,
because this rotation occurs in the clockwise direction—that is, oppo-
site to the counterclockwise direction assumed for the redundant MA

(Fig. 13.2(a)). By substituting the numerical values of yAO and fAA into
the compatibility equation (Eq. 13.7), we write

�0:0075þ ð0:0000625ÞMA ¼ 0

from which

MA ¼
0:0075

0:0000625
¼ 120 k-ft

’

The positive answer implies that the counterclockwise sense initially as-
sumed for MA was correct. Note that the value of the reaction moment
MA ¼ 120 k-ft

’

computed here is identical to that obtained previously
by using the vertical reaction Cy as the redundant (Fig. 13.1). Once the
redundant MA is known, the remaining reactions as well as the other
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response characteristics of the beam can be determined either through
equilibrium considerations or by superposition, as discussed previously.

Procedure for Analysis

Based on the foregoing discussion, we can develop the following step-
by-step procedure for the analysis of externally indeterminate structures
with a single degree of indeterminacy.

1. Determine the degree of indeterminacy of the given structure.
If the degree of indeterminacy is greater than 1, and/or if the
structure is internally indeterminate, then end the analysis at this
stage. The analysis of internally indeterminate structures and
structures with multiple degrees of indeterminacy is considered
in subsequent sections.

2. Select one of the support reactions as the redundant. The choice
of redundant is merely a matter of convenience, and any reaction
can be selected as the redundant, provided that the removal of
the corresponding restraint from the given indeterminate struc-
ture results in a primary structure that is statically determinate
and stable. The sense of the redundant is not known and can be
arbitrarily assumed. The actual sense of the redundant will be
known after its magnitude has been determined by solving the
compatibility equation. A positive magnitude for the redundant
will imply that the sense initially assumed was correct, whereas
a negative value of the magnitude will indicate that the actual
sense is opposite to the one assumed initially.

3. Remove the restraint corresponding to the redundant from the
given indeterminate structure to obtain the primary determinate
structure.

4. a. Draw a diagram of the primary structure with only the ex-
ternal loading applied to it. Sketch a deflected shape of the
structure, and show the deflection (or slope) at the point of
application and in the direction of the redundant by an ap-
propriate symbol.

b. Next, draw a diagram of the primary structure with only the
unit value of the redundant applied to it. The unit force (or
moment) must be applied in the positive direction of
the redundant. Sketch a deflected shape of the structure, and
show by an appropriate symbol the flexibility coe‰cient re-
presenting the deflection (or slope) at the point of application
and in the direction of the redundant. To indicate that the
load as well as the response of the structure is to be multi-
plied by the redundant, show the redundant preceded by a
multiplication sign (3) next to the diagram of the structure.
The deflection (or slope) at the location of the redundant due
to the unknown redundant equals the flexibility coe‰cient
multiplied by the unknown magnitude of the redundant.

5. Write the compatibility equation by setting the algebraic sum of
the deflections (or slopes) of the primary structure at the location
of the redundant due to the external loading and the redundant
equal to the given displacement (or rotation) of the redundant

490 CHAPTER 13 Method of Consistent Deformations—Force Method



support of the actual indeterminate structure. Since we assume
here that supports are unyielding, the algebraic sum of the de-
flections due to the external loading and the redundant can be
simply set equal to zero to obtain the compatibility equation.
(The case of support movements is considered in a subsequent
section.)

6. Compute the deflections of the primary structure at the location
of the redundant due to the external loading and due to the unit
value of the redundant. A deflection is considered to be positive
if it has the same sense as that assumed for the redundant. The
deflections can be determined by using any of the methods dis-
cussed in Chapters 6 and 7. For beams with constant flexural ri-
gidity EI , it is usually convenient to determine these quantities
by using the deflection formulas given inside the front cover of
the book, whereas the deflections of trusses and frames can be
conveniently computed by using the method of virtual work.

7. Substitute the values of deflections (or slopes) computed in step
6 into the compatibility equation, and solve for the unknown
redundant.

8. Determine the remaining support reactions of the indeterminate
structure either by applying the three equilibrium equations to
the free body of the indeterminate structure or by superposition
of the reactions of the primary structure due to the external
loading and due to the redundant.

9. Once the reactions have been evaluated, the other response char-
acteristics (e.g., shear and bending diagram and/or member
forces) of the indeterminate structure can be determined either
through equilibrium considerations or by superposition of the re-
sponses of the primary structure due to the external loading and
due to the redundant.

Example 13.1

Determine the reactions and draw the shear and bending moment diagrams for the beam shown in Fig. 13.3(a) by the
method of consistent deformations.

Solution
Degree of Indeterminacy. The beam is supported by four reactions, Ax;Ay;MA, and By (Fig. 13.3(a)); that is, r ¼ 4.
Since there are only three equilibrium equations, the degree of indeterminacy of the beam is equal to r� 3 ¼ 1.

Primary Beam. The vertical reaction By at the roller support B is selected to be the redundant. The sense of By is assumed
to be upward, as shown in Fig. 13.3(a). The primary beam obtained by removing the roller support B from the given in-
determinate beam is shown in Fig. 13.3(b). Note that the primary cantilever beam is statically determinate and stable.
Next, the primary beam is subjected separately to the external momentM and a unit value of the unknown redundant By,
as shown in Fig. 13.3(b) and (c), respectively. As shown in the figure, DBO denotes the deflection at B due to the external
moment M, whereas fBB denotes the flexibility coe‰cient representing the deflection at B due to the unit value of the re-
dundant By. Thus, the deflection at B due to the unknown redundant By equals fBBBy.

continued
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Compatibility Equation. The deflection at support B of the actual indeterminate beam is zero, so the algebraic sum of
the deflections of the primary beam at B due to the external moment M and the redundant By must also be zero. Thus,
the compatibility equation can be written as

DBO þ fBBBy ¼ 0 (1)

Deflections of Primary Beam. By using the beam-deflection formulas, we obtain the deflections DBO and fBB to be

DBO ¼ �
ML2

2EI
and fBB ¼

L3

3EI

in which the negative sign for DBO indicates that this deflection occurs in the downward direction—that is, opposite to
the upward direction assumed for the redundant By.

Magnitude of the Redundant. By substituting the expressions for DBO and fBB into the compatibility equation (Eq. (1)),
we determine the redundant By as

�ML2

2EI
þ L3

3EI

� �
By ¼ 0 By ¼

3M

2L
" Ans.

The positive answer for By indicates that our initial assumption about the upward direction of By was correct.

Reactions. The remaining reactions of the indeterminate beam can now be determined by superposition of the reactions
of the primary beam due to the external moment M and the redundant By, shown in Fig. 13.3(b) and (c), respectively:

þ ! Ax ¼ 0 Ax ¼ 0 Ans.

þ " Ay ¼ �1
3M

2L

� �
¼ � 3M

2L
Ay ¼

3M

2L
# Ans.

þ ’ MA ¼M � L
3M

2L

� �
¼ �M

2
MA ¼

M

2
@ Ans.

The reactions are shown in Fig. 13.3(d).

Shear and Bending Moment Diagrams. By using the reactions, the shear and bending moment diagrams for the indeter-
minate beam are constructed. These diagrams are shown in Fig. 13.3(e). Ans.

Example 13.2

Determine the reactions and draw the shear and bending moment diagrams for the beam shown in Fig. 13.4(a) by the
method of consistent deformations. Select the reaction moment at the fixed support to be the redundant.

Solution
Degree of Indeterminacy. The beam is supported by four reactions (Fig. 13.4(a)), so its degree of indeterminacy is equal
to 4� 3 ¼ 1.

Primary Beam. The reaction moment MA at the fixed support A is selected to be the redundant. The sense of MA is as-
sumed to be counterclockwise, as shown in Fig. 13.4(a). To obtain the primary beam, we remove the restraint against
rotation at end A by replacing the fixed support by a hinged support, as shown in Fig. 13.4(b). The primary simply sup-
ported beam is then subjected separately to the external loading and a unit value of the unknown redundant MA, as shown
in Fig. 13.4(b) and (c), respectively. As shown in these figures, yAO represents the slope at A due to the external loading,
whereas fAA denotes the flexibility coe‰cient representing the slope at A due to the unit value of the redundant MA.

continued
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Compatibility Equation. By setting the algebraic sum of the slopes of the primary beam at A due to the external loading
and the redundant MA equal to the slope at the fixed support A of the actual indeterminate beam, which is zero, we write
the compatibility equation:

yAO þ fAAMA ¼ 0 (1)

Slopes of Primary Beam. From the beam-deflection formulas,

yAO ¼ �
1;800 k-ft2

EI
and fAA ¼

10 k-ft2/k-ft

EI

Magnitude of the Redundant. By substituting the values of yAO and fAA into the compatibility equation (Eq. (1)), we obtain

� 1;800

EI
þ 10

EI

� �
MA ¼ 0 MA ¼ 180 k-ft

’

Ans.

Reactions. To determine the remaining reactions of the indeterminate beam, we apply the equilibrium equations
(Fig. 13.4(d)):

þ !
P

Fx ¼ 0 Ax ¼ 0 Ans.

þ ’ MB ¼ 0 180� Ayð30Þ þ 1:6ð30Þð15Þ ¼ 0 Ay ¼ 30 k " Ans.

þ "
P

Fy ¼ 0 30� 1:6ð30Þ þ By ¼ 0 By ¼ 18 k " Ans.

Shear and Bending Moment Diagrams. See Fig. 13.4(e). Ans.

FIG. 13.4

5

1

3

continued
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Example 13.3

Determine the reactions and draw the shear and bending moment diagrams for the two-span continuous beam shown in
Fig. 13.5(a) using the method of consistent deformations.

Solution
Degree of Indeterminacy. The beam is supported by four reactions, so its degree of indeterminacy is equal to 4� 3 ¼ 1.

Primary Beam. The vertical reaction By at the roller support B is selected to be the redundant, and the primary beam is
obtained by removing the roller support B from the given indeterminate beam, as shown in Fig. 13.5(b). Next, the pri-
mary beam is subjected separately to the external loading and a unit value of the unknown redundant By, as shown in

FIG. 13.4 (contd.)

1.6 k/ft

Shear diagram (k)

Bending moment diagram (k-ft)

(d) Support Reactions for Indeterminate Beam

(e) Shear and Bending Moment Diagrams
for Indeterminate Beam

Ax
A

B= 0

MA = 180

Ay = 30 k By = 18 k

k-ft

18.75 ft

30

A B
C

–18

101.25

180

A

C B

continued
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Fig. 13.5(b) and (c), respectively. As shown in these figures, DBO denotes the deflection at B due to the external loading,
whereas fBB denotes the flexibility coe‰cient representing the deflection at B due to the unit value of the redundant By.

Compatibility Equation. Because the deflection at support B of the actual indeterminate beam is zero, the algebraic sum
of the deflections of the primary beam at B due to the external loading and the redundant By must also be zero. Thus, the
compatibility equation can be written as

DBO þ fBBBy ¼ 0 (1)

FIG. 13.5

continued
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Deflections of Primary Beam. The flexural rigidity EI of the primary beam is not constant (since the moment of inertia of
the right half of the beam, BD, is twice the moment of inertia of the left half, AB), so we cannot use the formulas given
inside the front cover of the book for computing deflections. Therefore, we will use the conjugate-beam method, dis-
cussed in Chapter 6, for determining the deflections of the primary beam.

To determine the deflection DBO due to the external loading, we draw the conjugate beams for the 15-kN/m uni-
formly distributed load and the 60-kN concentrated load, as shown in Fig. 13.5(d) and (e), respectively. Recalling that
the deflection at a point on a real beam is equal to the bending moment at that point in the corresponding conjugate
beam, we determine the deflection DBO due to the combined e¤ect of the distributed and concentrated loads as

EIDBO ¼ �4;218:75ð10Þ þ
2

3

� �
ð10Þð750Þ 30

8

� �� �
þ �718:75ð10Þ þ 1

2

� �
ð10Þð150Þ 10

3

� �� �
DBO ¼ �

28;125 kN �m3

EI

in which the negative sign indicates that the deflection occurs in the downward direction. Note that although the nu-
merical values of E and I are given, it is usually convenient to carry out the analysis in terms of EI . The flexibility co-
e‰cient fBB can be computed similarly by using the conjugate beam shown in Fig. 13.5(f ). Thus

EIfBB ¼ 20:833ð10Þ � 1

2

� �
ð10Þð5Þ 10

3

� �
¼ 125 kN �m3/kN

fBB ¼
125 kN �m3/kN

EI

Magnitude of the Redundant. By substituting the values of DBO and fBB into the compatibility equation (Eq. (1)), we
obtain

� 28;125

EI
þ 125

EI

� �
By ¼ 0 By ¼ 225 kN " Ans.

Reactions. To determine the remaining reactions of the indeterminate beam, we apply the equilibrium equations
(Fig. 13.5(g)):

þ !
P

Fx ¼ 0 Ax ¼ 0 Ans.

þ ’
P

MD ¼ 0 �Ayð20Þ � 225ð10Þ þ 15ð20Þð10Þ þ 60ð5Þ ¼ 0

Ay ¼ 52:5 kN " Ans.

þ "
P

Fy ¼ 0 52:5þ 225� 15ð20Þ � 60þDy ¼ 0

Dy ¼ 82:5 kN " Ans.

Shear and Bending Moment Diagrams. See Fig. 13.5(h). Ans.

Example 13.4

Determine the reactions and the force in each member of the truss shown in Fig. 13.6(a) using the method of consistent
deformations.

Solution
Degree of Indeterminacy. The truss is indeterminate to the first degree.

continued
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Primary Truss. The horizontal reaction Dx at the hinged support D is selected to be the redundant. The direction of Dx is
arbitrarily assumed to the right, as shown in Fig. 13.6(a). The primary truss is obtained by removing the restraint against
horizontal displacement at joint D by replacing the hinged support by a roller support, as shown in Fig. 13.6(b). Next,
the primary truss is subjected separately to the external loading and a unit value of the unknown redundant Dx, as shown
in Fig. 13.6(b) and (c), respectively.

Compatibility Equation. If DDO denotes the horizontal deflection at joint D of the primary truss due to external loading
and if fDD denotes the flexibility coe‰cient representing the horizontal deflection at D due to the unit value of the re-
dundant Dx, then the compatibility equation can be written as

DDO þ fDDDx ¼ 0 (1)

Deflections of Primary Truss. The deflections DDO and fDD can be evaluated by using the virtual work method. Recall
from Chapter 7 that the virtual work expression for truss deflections is given by (Eq. (7.23))

D ¼
PFFvL

AE
(2)

in which F symbolically represents the axial forces in truss members due to the real loading that causes the deflection D,
and Fv represents the axial forces in the truss members due to a virtual unit load acting at the joint and in the direction of
the desired deflection D.

For computing the deflection DDO of the primary truss, the real system consists of the given external loading, as shown
in Fig. 13.6(b). The member axial forces due to this loading are symbolically denoted as FO forces, and their numerical
values, obtained by the method of joints, are shown in Fig. 13.6(b). The virtual system for DDO consists of a unit load
applied at the location and in the direction of the redundant Dx, which is the same as the system shown in Fig. 13.6(c)
(without the multiplier Dx). The member axial forces due to the unit value of the redundant Dx are symbolically denoted as
uD forces, and their numerical values, obtained by the method of joints, are shown in Fig. 13.6(c). Thus, the virtual work
expression for DDO can be written as

DDO ¼
PFOuDL

AE
(3)

The FO and uD member forces are then tabulated, and Eq. (3) is applied to determine DDO, as shown in Table 13.1. Thus

DDO ¼
5;493:6 k/in:

E

The positive magnitude of DDO indicates that the deflection occurs to the right—that is, in the same direction as that
assumed for the redundant Dx.

For computing the flexibility coe‰cient fDD, both the real and the virtual systems consist of a unit value of the re-
dundant Dx applied to the primary truss, as shown in Fig. 13.6(c) (without the multiplier Dx). Thus, the virtual work
expression for fDD becomes

fDD ¼
P u2DL

AE
(4)

Equation (4) is applied to determine fDD, as shown in Table 13.1. Thus,

fDD ¼
120ð1/in:Þ

E

Magnitude of Redundant. By substituting the values of DDO and fDD into the compatibility equation (Eq. (1)), we deter-
mine the redundant Dx to be

5;493:6

E
þ 120

E

� �
Dx ¼ 0

Dx ¼ �45:78 k

continued
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The negative answer for Dx indicates that our initial assumption about Dx acting to the right was incorrect and that Dx

actually acts to the left.

Dx ¼ 45:78 k Ans.

Reactions. The remaining reactions of the indeterminate truss can now be determined by superposition of the reactions
of the primary truss due to the external loads (Fig. 13.6(b)) and due to the redundant Dx (Fig. 13.6(c)).

Ax ¼ �28� 1ð�45:78Þ ¼ 17:78 k! Ans.

Ay ¼ 18 k " Ans.

Dy ¼ 32 k " Ans.

The reactions are shown in Fig. 13.6(d).

Member Axial Forces. The axial forces in the members of the indeterminate truss can be determined by superposition of
the member forces of the primary truss due to the external loads and due to the redundant Dx; that is,

F ¼ FO þ uDDx (5)

The computation of final member forces can be conveniently carried out in a tabular form, as shown in Table 13.1. For
each member, the final force F is computed by algebraically adding the entry in the fourth column ðFOÞ, to the corre-
sponding entry in the fifth column ðuDÞ multiplied by the magnitude of the redundant Dx ¼ �45:78 k. The value of the
final force thus computed is then recorded in the eighth column, as shown in Table 13.1. The member forces thus obtained
are also shown in Fig. 13.6(d). Ans.

TABLE 13.1

FOuDL

A

u2DL

A
Member

L
(in.)

A
(in.2)

FO

(k)
uD
(k/k) (k/in.) (1/in.)

F ¼ FO þ uDDx

(k)

AB 240 6 52 1 2,080 40 6.22

BC 240 6 42.67 1 1,706.8 40 �3.11
CD 240 6 42.67 1 1,706.8 40 �3.11
EF 240 6 �24 0 0 0 �24
BE 180 4 18 0 0 0 18

CF 180 4 25 0 0 0 25

AE 300 6 �30 0 0 0 �30
BF 300 4 11.67 0 0 0 11.67

DF 300 6 �53.33 0 0 0 �53.33P
5,493.6 120

DDO ¼
1

E

PFOuDL

A
¼ 5;493:6 k=in:

E
fDD ¼

1

E

P u 2
DL

A
¼ 120ð1=in:Þ

E

Dx ¼ �
DDO

fDD

¼ �45:78 k
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Example 13.5

Determine the reactions and draw the shear and bending moment diagrams for the frame shown in Fig. 13.7(a) by the
method of consistent deformations.

Solution
Degree of Indeterminacy. The frame is indeterminate to the first degree.

continued
FIG. 13.7
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FIG. 13.7 (contd.)
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Primary Frame. The horizontal reaction AX at the hinged support A is selected to be the redundant. The primary frame is
obtained by removing the restraint against horizontal displacement at joint A, which is done by replacing the hinged
support by a roller support, as shown in Fig. 13.7(b). Next, the primary frame is subjected separately to the external
loading and a unit value of the unknown redundant AX , as shown in Fig. 13.7(b) and (c), respectively.

Compatibility Equation. From Fig. 13.7(a), (b), and (c), we observe that

DAO þ fAAAX ¼ 0 (1)

Deflections of Primary Frame. The deflections DAO and fAA of the primary frame will be evaluated by using the virtual
work method discussed in Chapter 7. The virtual work expression for DAO, which represents the horizontal deflection at
joint A of the primary frame due to external loading, can be written as

DAO ¼
Pð

MOmA

EI
dx (2)

in which MO denotes the bending moments due to the (real) external loading (Fig. 13.7(b)) and mA denotes the bending
moments due to a (virtual) unit load at the location and in the direction of the redundant (Fig. 13.7(c)). The x coor-
dinates used for determining the bending moment equations for members AB and BC of the primary frame are shown in
Fig. 13.7(b) and (c), and the equations for MO and mA are tabulated in Table 13.2. By applying Eq. (2), we obtain

DAO ¼
1

EI

ð30

0

45x� 3

2
x2

� �
�20þ 2

3
x

� �
dx ¼ � 67;500 k-ft3

EI

For computing the flexibility coe‰cient fAA, both the real and virtual systems consist of a unit value of the re-
dundant AX applied to the primary frame, as shown in Fig. 13.7(c) (without the multiplier AX ). Thus, the virtual work
expression for fAA becomes

fAA ¼
Pð

m2
A

EI
dx (3)

By substituting the equations for mA from Table 13.2, we obtain

fAA ¼
1

EI

ð20

0

ð�xÞ2 dxþ
ð 30

0

�20þ 2

3
x

� �2

dx

" #
¼ 6;666:66 ft3

EI

Magnitude of the Redundant. By substituting the values of DAO and fAA into the compatibility equation (Eq. (1)), we
determine the redundant AX to be

� 67;500

EI
þ 6;666:66

EI

� �
AX ¼ 0

AX ¼ 10:13 k! Ans.

Reactions. The remaining reactions and member end forces of the indeterminate frame can now be determined from
equilibrium. The reactions and member end forces thus obtained are shown in Fig. 13.7(d). Ans.

Shear and Bending Moment Diagrams. See Fig. 13.7(e). Ans.

TABLE 13.2

x coordinate

Member Origin Limits (ft) MO (k-ft) mA (k-ft/k)

AB A 0–20 0 �1x

BC B 0–30 45x� 3

2
x2 �20þ 2

3
x
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13.2 Internal Forces and Moments as Redundants

Thus far, we have analyzed externally indeterminate structures with a
single degree of indeterminacy by selecting a support reaction as the re-
dundant. The analysis of such structures can also be carried out by choos-
ing an internal force or moment as the redundant, provided that the
removal of the corresponding internal restraint from the indeterminate
structure results in a primary structure that is statically determinate and
stable.

Consider the two-span continuous beam shown in Fig. 13.8(a). The
beam is indeterminate to the first degree. As discussed in the preceding
section, this beam can be analyzed by treating one of the vertical reac-
tions as the redundant. However, it is usually more convenient to analyze
continuous beams (especially those with unequal spans) by selecting in-
ternal bending moments as redundants. Let us consider the analysis of
the beam of Fig. 13.8(a) by using the bending moment, MB, at the in-
terior support B as the redundant. From Fig. 13.8(a), we can see that the
slope of the elastic curve of the indeterminate beam is continuous at B. In
other words, there is no change of slope of the tangents to the elastic
curve at just to the left of B and at just to the right of B; that is, the angle
between the tangents is zero. When the restraint corresponding to the re-
dundant bending moment MB is removed by inserting an internal hinge
at B, as shown in Fig. 13.8(b), a discontinuity develops in the slope of the
elastic curve at B, in the sense that the tangent to the elastic curve at just
to the left of B rotates relative to the tangent at just to the right of B. The
change of slope (or the angle) between the two tangents due to the ex-
ternal loads is denoted by yBO rel: and can be expressed as

yBO rel: ¼ yBL þ yBR ð13:8Þ

(see Fig. 13.8(b)) in which yBL and yBR denote the slopes at the ends B
of the left and right spans of the beam, respectively, due to the given
external loading.

Since the redundant bending moment MB provides continuity of slope
of the elastic curve at B in the actual indeterminate beam, it must be of
su‰cient magnitude to remove the discontinuity yBO rel: from the primary
beam by bringing the tangents back together. To evaluate the e¤ect of MB

on the primary beam, we determine the flexibility coe‰cient fBB rel: repre-
senting the change of slope (or the angle) between the tangents to the
elastic curve at just to the left of B and at just to the right of B due to a
unit value of MB, as shown in Fig. 13.8(c). An internal bending moment is
defined by a pair of equal but opposite couples. Thus, two opposite cou-
ples of unit magnitude must be applied to the primary beam to determine
the flexibility coe‰cient, as shown in Fig. 13.8(c). Note that the redundant
MB is considered to be positive in accordance with the beam convention—
that is, when it causes compression in the upper fibers and tension in the
lower fibers of the beam. From Fig. 13.8(c), we can see that the flexibility
coe‰cient can be expressed as

fBB rel: ¼ fBBL þ fBBR ð13:9Þ
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FIG. 13.8
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in which fBBL and fBBR denote the slopes at the ends B of the left and the
right spans of the beam, respectively, due to the unit value of the re-
dundant MB.

The compatibility equation is based on the requirement that the slope
of the elastic curve of the actual indeterminate beam is continuous at B;
that is, there is no change of slope from just to the left of B to just to the
right of B. Therefore, the algebraic sum of the angles between the tan-
gents at just to the left and at just to the right of B due to the external
loading and the redundant MB must be zero. Thus,

yBO rel: þ fBB rel:MB ¼ 0 ð13:10Þ

which can be solved for the redundant bending moment MB after the
changes of slopes yBO rel: and fBB rel: have been evaluated.

Since each of the spans of the primary beam can be treated as a
simply supported beam, the slopes at the ends B of the left and the right
spans can be easily computed by using the conjugate-beam method. The
conjugate beams for the external loading are shown in Fig. 13.8(d). Re-
calling that the slope at a point on a real beam is equal to the shear at
that point on the corresponding conjugate beam, we determine the slopes
yBL and yBR at ends B of the left and the right spans, respectively, as

yBL ¼
420 k-ft2

EI
’ and yBR ¼

533:33 k-ft2

EI
@

FIG. 13.8 (contd.)
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Thus, from Eq. (13.8), we obtain

yBO rel: ¼ yBL þ yBR ¼
420þ 533:33

EI
¼ 953:33 k-ft2

EI

The flexibility coe‰cient fBB rel: can be computed similarly by using the
conjugate beam for a unit value of the redundantMB shown in Fig. 13.8(e).
Thus

fBBL ¼
6:67 k-ft2/k-ft

EI
’ and fBBR ¼

10 k-ft2/k-ft

EI
@

From Eq. (13.9), we obtain

fBB rel: ¼ fBBL þ fBBR ¼
6:67þ 10

EI
¼ 16:67 k-ft2/k-ft

EI

By substituting the values of yBO rel: and fBB rel: into the compatibility
equation (Eq. (13.10)), we determine the magnitude of the redundant
MB as

953:33

EI
þ 16:67

EI

� �
MB ¼ 0

or

MB ¼ �57:19 k-ft

With the redundant MB known, the forces at the ends of the mem-
bers as well as the support reactions can be determined by considering
the equilibrium of the free bodies of the members AB and BC and joint
B, as shown in Fig. 13.8(f ). Note that the negative bending moment MB

is applied at the ends B of members AB and BC so that it causes tension
in the upper fibers and compression in the lower fibers of the members.

When moments at the ends of the members of a continuous beam
are known, it is usually convenient to construct its bending moment
diagram in two parts; one for the external loading and another for the
member end moments. This procedure is commonly referred to as con-
structing the bending moment diagram by simple-beam parts, because
each member of the continuous beam is treated as a simply supported
beam, to which the external loads and the end moments are applied sep-
arately and the corresponding bending moment diagrams are drawn.
Such diagrams for the members AB and BC of the continuous beam
under consideration are shown in Fig. 13.8(g). The member bending
moment diagrams can be drawn together, as shown in Fig. 13.8(h), to
obtain the bending moment diagram for the entire continuous beam.

Internally Indeterminate Structures

As the foregoing discussion indicates, structures with a single degree of in-
determinacy that are externally indeterminate can be analyzed by selecting
either a reaction or an internal force or moment as the redundant. How-
ever, if a structure is internally indeterminate but externally determinate,

Section 13.2 Internal Forces and Moments as Redundants 507



then only an internal force or moment can be used as the redundant, be-
cause the removal of an external reaction from such a structure will yield a
statically unstable primary structure.

Consider, for example, the truss shown in Fig. 13.9(a). The truss con-
sists of six members connected together by four joints and is supported by
three reaction components. Thus, as discussed in Section 4.4, the degree of
indeterminacy of the truss is equal to ðmþ rÞ � 2j ¼ ð6þ 3Þ � 2ð4Þ ¼ 1.
Because the three reactions can be determined from the three equations of
equilibrium of the entire truss, the truss is internally indeterminate to the
first degree; that is, it contains one extra member than required for internal
stability.

To analyze the truss, we must select the axial force in one of its
members to be the redundant. Suppose that we select the force FAD in the
diagonal member AD to be the redundant. The restraint corresponding
to FAD is then removed from the truss by cutting member AD to obtain
the primary truss shown in Fig. 13.9(b). Note that since member AD can
no longer sustain a force, the primary truss is statically determinate.
When the primary truss is subjected to the external load P, it deforms

FIG. 13.9
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and a gap DADO opens up between the ends of the two portions of
member AD, as shown in Fig. 13.9(b). Since no such gap exists in the
actual indeterminate truss, we conclude that the redundant force FAD
must be of su‰cient magnitude to bring the ends of the two portions of
member AD back together to close the gap. To evaluate the e¤ect of
FAD in closing the gap, we subject the primary truss to a unit value of FAD
by applying equal and opposite unit axial loads to the two portions of
member AD, as shown in Fig. 13.9(c). Note that the actual sense of the
redundant FAD is not yet known and is arbitrarily assumed to be tensile,
with the unit axial forces tending to elongate the portions of member
AD, as shown in the figure. The unit value of FAD deforms the primary
truss and causes the ends of the two portions of member AD to overlap
by an amount fAD;AD, as shown in Fig. 13.9(c). Thus, the overlap in
member AD due to the axial force of magnitude FAD equals fAD;ADFAD.

Since neither a gap nor an overlap exists in member AD in the ac-
tual indeterminate truss, we can express the compatibility equation as

DADO þ fAD;ADFAD ¼ 0 ð13:11Þ

which can be solved for the redundant axial force FAD after the magni-
tudes of DADO and fAD;AD have been determined.

Note that DADO and fAD;AD are actually relative displacements be-
tween the joints A and D of the primary truss. These displacements can
be conveniently computed using the virtual work method by employing a
virtual system consisting of two unit loads applied with opposite senses in
the direction of member AD at joints A and D, as shown in Fig. 13.9(d).
A comparison of Fig. 13.9(c) and (d) indicates that the axial forces in the
members of the primary truss due to virtual unit loads (Fig. 13.9(d)) will
be the same as the uAD forces due to the unit axial force in member AD
(Fig. 13.9(c)). Thus the truss with a unit axial force in member AD can be
used as the virtual system for computing the relative displacements. If the
member axial forces due to the external load P are symbolically denoted
as FO forces (Fig. 13.9(b)), then the virtual work expression for DADO can
be written as

DADO ¼
PFOuADL

AE
ð13:12Þ

For computing the flexibility coe‰cient fAD;AD, both the real and the
virtual systems consist of a unit axial force in member AD, as shown in
Fig. 13.9(c). Thus, the virtual work expression for fAD;AD is given by

fAD;AD ¼
P u2ADL

AE
ð13:13Þ

in which the force in the redundant member AD must be included in the
summation to take into account the deformation of this member.

Once the relative displacements DADO and fAD;AD have been eval-
uated, their values are substituted into the compatibility equation (Eq.
(13.11)), which is then solved for the redundant FAD. With the redundant
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FAD known, the axial forces in the members of the indeterminate truss
can be determined by superposition of the member forces of the primary
truss due to the external load P and due to the redundant FAD; that is,

F ¼ FO þ uADFAD ð13:14Þ

Example 13.6

Determine the reactions and draw the bending moment diagram for the two-span continuous beam shown in Fig. 13.10(a)
by the method of consistent deformations. Select the bending moment at the interior support B to be the redundant.

Solution
This beam was analyzed in Example 13.3 by selecting the vertical reaction at support B as the redundant.

Primary Beam. The primary beam is obtained by removing the restraint corresponding to the redundant bending moment
MB by inserting an internal hinge at B in the given indeterminate beam, as shown in Fig. 13.10(b). Next, the primary beam
is subjected separately to the external loading and a unit value of the redundant MB, as shown in Fig. 13.10(b) and (c),
respectively.

FIG. 13.10

continued
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Compatibility Equation. See Fig. 13.10(b) and (c):

yBO rel: þ fBB rel:MB ¼ 0 (1)

Slopes of Primary Beam. Each of the spans of the primary beam can be treated as a simply supported beam of constant
flexural rigidity EI , so we can use the beam-deflection formulas given inside the front cover of the book for evaluating
the changes of slopes yBO rel: and fBB rel:. From Fig. 13.10(b), we can see that

yBO rel: ¼ yBL þ yBR

in which yBL and yBR are the slopes at the ends B of the left and the right spans of the primary beam, respectively, due
to the external loading. By using the deflection formulas, we obtain

yBL ¼
15ð10Þ3

24EI
¼ 625 kN �m2

EI

yBR ¼
15ð10Þ3

24Eð2IÞ þ
60ð10Þ2

16Eð2IÞ ¼
500 kN �m2

EI

FIG. 13.10 (contd.)

B

continued
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Thus,

yBO rel: ¼
625

EI
þ 500

EI
¼ 1;125 kN �m2

EI

The flexibility coe‰cient fBB rel: can be computed in a similar manner. From Fig. 13.10(c), we can see that

fBB rel: ¼ fBBL þ fBBR

in which

fBBL ¼
10

3EI
¼ 3:33 m

EI
and fBBR ¼

10

3Eð2IÞ ¼
1:67 m

EI

Thus,

fBB rel: ¼
3:33

EI
þ 1:67

EI
¼ 5 m

EI

Magnitude of the Redundant. By substituting the values of yBO rel: and fBB rel: into the compatibility equation (Eq. (1)),
we obtain

1;125

EI
þ 5

EI

� �
MB ¼ 0

MB ¼ �225 kN �m Ans.

Reactions. The forces at the ends of the members AB and BD of the continuous beam can now be determined by applying
the equations of equilibrium to the free bodies of the members shown in Fig. 13.10(d). By considering the equilibrium of
member AB, we obtain

Ay ¼
1

2

� �
ð15Þð10Þ � 225

10

� �
¼ 52:5 kN " Ans.

BAB
y ¼ 1

2

� �
ð15Þð10Þ þ 225

10

� �
¼ 97:5 kN "

Similarly, for member BD,

BBD
y ¼ 1

2

� �
ð15Þð10Þ þ 60

2

� �
þ 225

10

� �
¼ 127:5 kN "

Dy ¼
1

2

� �
ð15Þð10Þ þ 60

2

� �
� 225

10

� �
¼ 82:5 kN " Ans.

By considering the equilibrium of joint B in the vertical direction, we obtain

By ¼ BAB
y þ BBD

y ¼ 97:5þ 127:5 ¼ 225 kN " Ans.

Bending Moment Diagram. The bending moment diagram for the continuous beam, constructed by simple-beam parts,
is shown in Fig. 13.10(e). The two parts of the diagram due to the external loading and the member end moments may
be superimposed, if so desired, to obtain the resultant bending moment diagram shown in Example 13.3. Ans.
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Example 13.7

Determine the reactions and the force in each member of the truss shown in Fig. 13.11(a) by the method of consistent
deformations.

continued

FIG. 13.11
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Solution
Degree of Indeterminacy. The truss consists of ten members connected by six joints and is supported by three reaction
components. Thus the degree of indeterminacy of the truss is equal to ðmþ rÞ � 2j ¼ ð10þ 3Þ � 2ð6Þ ¼ 1. The three re-
actions can be determined from the three equations of external equilibrium, so the truss is internally indeterminate to the
first degree.

Primary Truss. The axial force FCE in the diagonal member CE is selected to be the redundant. The sense of FCE is arbit-
rarily assumed to be tensile. The primary truss obtained by removing member CE is shown in Fig. 13.11(b). Next, the pri-
mary truss is subjected separately to the external loading and a unit tensile force in the redundant member CE, as shown in
Fig. 13.11(b) and (c), respectively.

Compatibility Equation. The compatibility equation can be expressed as

DCEO þ fCE;CEFCE ¼ 0 (1)

in which DCEO denotes the relative displacement between joints C and E of the primary truss due to the external loads,
and the flexibility coe‰cient fCE;CE denotes the relative displacement between the same joints due to a unit value of the
redundant FCE .

Deflections of Primary Truss. The virtual work expression for DCEO can be written as

DCEO ¼
PFOuCEL

AE
(2)

in which FO and uCE represent, respectively, the member forces due to the external loads and the unit tensile force in
member CE. The numerical values of these forces are computed by the method of joints (Fig. 13.11(b) and (c)) and are
tabulated in Table 13.3. Equation (2) is then applied as shown in Table 13.3, to obtain

DCEO ¼ �
1;116 k-ft

AE

Next, the flexibility coe‰cient fCE;CE is computed by using the virtual work expression (see Table 13.3):

fCE;CE ¼
P u2CEL

AE
¼ 103:68 ft

AE

continued

TABLE 13.3

Member
L
(ft)

FO

(k)
uCE
(k/k)

FOuCEL
(k-ft)

u2CEL

(ft)
F ¼ FO þ uCEFCE

(k)

AB 18 30 0 0 0 30

BC 18 26.25 �0.6 �283.5 6.48 19.79

CD 18 26.25 0 0 0 26.25

EF 18 �30 �0.6 324 6.48 �36.46
BE 24 40 �0.8 �768 15.36 31.39

CF 24 30 �0.8 �576 15.36 21.39

AE 30 �50 0 0 0 �50
BF 30 6.25 1 187.5 30 17.01

CE 30 0 1 0 30 10.76

DF 30 �43.75 0 0 0 �43.75P
�1,116 103.68

DCEO ¼
1

AE

P
F0uCEL ¼ �

1;116 k-ft

AE

fCE;CE ¼
1

AE

P
u2CEL ¼

103:68 ft

AE

FCE ¼ �
DCEO

fCE;CE
¼ 10:76 k ðTÞ
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Magnitude of the Redundant. By substituting the values of DCEO and fCE;CE into the compatibility equation (Eq. (1)),
we determine the redundant FCE to be

� 1;116

AE
þ 103:68

AE

� �
FCE ¼ 0

FCE ¼ 10:76 k ðTÞ Ans.

Reactions. See Fig. 13.11(d). Note that the reactions due to the redundant FCE are zero, as shown in Fig. 13.11(c). Ans.

Member Axial Forces. The forces in the remaining members of the indeterminate truss can now be determined by using
the superposition relationship:

F ¼ FO þ uCEFCE

The member forces thus obtained are shown in Table 13.3 and Fig. 13.11(d). Ans.

13.3 Structures with Multiple Degrees of Indeterminacy

The method of consistent deformations developed in the preceding sec-
tions for analyzing structures with a single degree of indeterminacy can
easily be extended to the analysis of structures with multiple degrees of
indeterminacy. Consider, for example, the four-span continuous beam
subjected to a uniformly distributed load w, as shown in Fig. 13.12(a).
The beam is supported by six support reactions; thus its degree of in-
determinacy is equal to 6� 3 ¼ 3. To analyze the beam, we must select
three support reactions as redundants. Suppose that we select the ver-
tical reactions By; Cy, and Dy at the interior supports B; C, and D, re-
spectively, to be the redundants. The roller supports at B;C, and D are
then removed from the given indeterminate beam to obtain the statically
determinate and stable primary beam, as shown in Fig. 13.12(b). The
three redundants are now treated as unknown loads on the primary
beam, and their magnitudes can be determined from the compatibility
conditions that the deflections of the primary beam at the locations B;C,
and D of the redundants due to the combined e¤ect of the known ex-
ternal load w and the unknown redundants By;Cy, and Dy must be equal
to zero. This is because the deflections of the given indeterminate beam
at the roller supports B;C, and D are zero.

To establish the compatibility equations, we subject the primary
beam separately to the external load w (Fig. 13.12(b)) and a unit value
of each of the redundants By;Cy, and Dy (Fig. 13.12(c), (d), and (e), re-
spectively). As shown in Fig. 13.12(b), the deflections of the primary
beam at points B;C, and D due to the external load w are denoted by
DBO;DCO, and DDO, respectively. Note that the first subscript of a de-
flection D indicates the location of the deflection, whereas the second
subscript, O, is used to indicate that the deflection is due to the external
loading. The flexibility coe‰cients representing the deflections of the
primary beam due to unit values of the redundants are also defined by
using double subscripts, as shown in Fig. 13.12(c) through (e). The first
subscript of a flexibility coe‰cient denotes the location of the deflection,
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and the second subscript indicates the location of the unit load causing
the deflection. For example, the flexibility coe‰cient fCB denotes the de-
flection at point C of the primary beam due to a unit load at point B
(Fig. 13.12(c)), whereas fBC denotes the deflection at B due to a unit load
at C (Fig. 13.12(d)), and so on. Alternatively, a flexibility coe‰cient fij
may also be interpreted as the deflection corresponding to a redundant i
due to a unit value of a redundant j; for example, fCB denotes the de-
flection corresponding to the redundant Cy due to a unit value of the
redundant By (Fig. 13.12(c)), fBC denotes the deflection corresponding
to the redundant By due to a unit value of the redundant Cy, and so on.
A deflection or flexibility coe‰cient at the location of a redundant is con-
sidered to be positive if it has the same sense as that assumed for the
redundant.

Focusing our attention at point B of the primary beam, we see that
the deflection at this point due to the external load is DBO (Fig. 13.12(b)),
the deflection due to By is fBBBy (Fig. 13.12(c)), the deflection due to
Cy is fBCCy (Fig. 13.12(d)), and the deflection due to Dy is fBDDy

(Fig. 13.12(e)). Thus, the total deflection at B due to the combined
e¤ect of the external load and all of the redundants is DBO þ fBBByþ
fBCCyþ fBDDy. Since the deflection of the actual indeterminate beam
(Fig. 13.12(a)) at support B is zero, we set the algebraic sum of the de-
flections of the primary beam at B equal to zero to obtain the compati-
bility equation, DBO þ fBBBy þ fBCCy þ fBDDy ¼ 0. Next, we focus our
attention at point C of the primary beam; by algebraically adding the
deflections at C due to the external load and the redundants and by set-
ting the sum equal to zero, we obtain the second compatibility equation,
DCO þ fCBBy þ fCCCy þ fCDDy ¼ 0. Similarly, by setting equal to zero
the algebraic sum of the deflections of the primary beam at D due to the
external load and the redundants, we obtain the third compatibility
equation, DDO þ fDBBy þ fDCCy þ fDDDy ¼ 0. The three compatibility
equations thus obtained are

DBO þ fBBBy þ fBCCy þ fBDDy ¼ 0 ð13:15Þ

DCO þ fCBBy þ fCCCy þ fCDDy ¼ 0 ð13:16Þ

DDO þ fDBBy þ fDCCy þ fDDDy ¼ 0 ð13:17Þ

Since the number of compatibility equations is equal to the number of
unknown redundants, these equations can be solved for the redundants.
As Eqs. (13.15) through (13.17) indicate, the compatibility equations of
structures with multiple degrees of indeterminacy are, in general, coupled,
in the sense that each equation may contain more than one unknown
redundant. The coupling occurs because the deflection at the location of
a redundant may be caused not just by that particular redundant (and the
external load), but also by some, or all, of the remaining redundants.
Because of such coupling, the compatibility equations must be solved
simultaneously to determine the unknown redundants.

The primary beam is statically determinate, so its deflections due to
the external loading as well as the flexibility coe‰cients can be evaluated
by using the methods discussed previously in this text. The total number
of deflections (including flexibility coe‰cients) involved in a system of
compatibility equations depends on the degree of indeterminacy of the
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structure. From Eqs. (13.15) through (13.17), we can see that for the
beam under consideration, which is indeterminate to the third degree, the
compatibility equations contain a total of 12 deflections (i.e., 3 deflec-
tions due to the external loading plus 9 flexibility coe‰cients). However,

FIG. 13.12
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according to Maxwell’s law of reciprocal deflections (Section 7.8), fCB ¼
fBC, fDB ¼ fBD, and fDC ¼ fCD. Thus, three of the flexibility coe‰cients
can be obtained by the application of Maxwell’s law, thereby reducing
the number of deflections to be computed to 9. Using similar reasoning, it
can be shown that the total number of deflections needed for the analysis
of a structure with the degree of indeterminacy of i equals ði þ i2Þ, of
which ð3i þ i2Þ=2 deflections must be computed, whereas the remaining
can be obtained by the application of Maxwell’s law of reciprocal
deflections.

Once the redundants have been determined by solving the compati-
bility equations, the other response characteristics of the structure can
be evaluated either by equilibrium or by superposition.

Procedure for Analysis

Based on the foregoing discussion, we can develop the following step-
by-step procedure for the analysis of structures by the method of con-
sistent deformations:

1. Determine the degree of indeterminacy of the structure.
2. Select redundant forces and/or moments. The total number of

redundants must be equal to the degree of indeterminacy of the
structure. Also, the redundants must be chosen so that the re-
moval of the corresponding restraints from the given indeter-
minate structure results in a primary structure that is statically
determinate and stable. The senses of the redundants are not
known and can be arbitrarily assumed. A positive answer for a
redundant will imply that the sense initially assumed for the re-
dundant was correct.

3. Remove the restraints corresponding to the redundants from
the given indeterminate structure to obtain the primary (deter-
minate) structure.

4. a. Draw a diagram of the primary structure with only the ex-
ternal loading applied to it. Sketch a deflected shape of the
structure, and show the deflection (or slope) at the point of
application and in the direction of each redundant by an
appropriate symbol.

b. Next, for each redundant, draw a diagram of the primary
structure with only the unit value of the redundant applied
to it. The unit force (or moment) must be applied in the
positive direction of the redundant. Sketch a deflected shape
of the structure, and show by appropriate symbols the flex-
ibility coe‰cients at the locations of all the redundants. To
indicate that the load as well as the structural response is to
be multiplied by the redundant under consideration, show
the redundant preceded by a multiplication sign (3) next to
the diagram of the structure. The deflection (or slope) at the
location of any redundant due to the redundant under con-
sideration equals the flexibility coe‰cient at that location
multiplied by the unknown magnitude of the redundant.

5. Write a compatibility equation for the location of each redun-
dant by setting the algebraic sum of the deflections (or slopes) of
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the primary structure due to the external loading and each of the
redundants equal to the known displacement (or rotation) at the
corresponding location on the actual indeterminate structure.
The total number of compatibility equations thus obtained must
be equal to the number of redundants.

6. Compute the deflections (and the flexibility coe‰cients) involved
in the compatibility equations by using the methods discussed
previously in this text and by the application of Maxwell’s law
of reciprocal deflections. A deflection (or flexibility coe‰cient)
at the location of a redundant is considered to be positive if it
has the same sense as that assumed for the redundant.

7. Substitute the values of deflections computed in step 6 into
the compatibility equations, and solve them for the unknown
redundants.

8. Once the redundants have been determined, the other response
characteristics (e.g., reactions, shear and bending moment dia-
grams, and/or member forces) of the indeterminate structure
can be evaluated either through equilibrium considerations or
by superposition of the responses of the primary structure due
to the external loading and due to each of the redundants.

Example 13.8

Determine the reactions and draw the shear and bending moment diagrams for the three-span continuous beam shown
in Fig. 13.13(a) using the method of consistent deformations.

Solution
Degree of Indeterminacy. i ¼ 2.

Primary Beam. The vertical reactions By and Cy at the interior supports B and C, respectively, are selected as the re-
dundants. The roller supports at B and C are then removed to obtain the primary beam shown in Fig. 13.13(b). Next, the
primary beam is subjected separately to the 2-k/ft external load and the unit values of the redundants By and Cy, as
shown in Fig. 13.13(b), (c), and (d), respectively.

Compatibility Equations. Since the deflections of the actual indeterminate beam at supports B and C are zero, we set
equal to zero the algebraic sum of the deflections at points B and C, respectively, of the primary beam due to the 2-k/ft
external load and each of the redundants to obtain the compatibility equations:

DBO þ fBBBy þ fBCCy ¼ 0 (1)

DCO þ fCBBy þ fCCCy ¼ 0 (2)

Deflections of the Primary Beam. By using the beam-deflection formulas, we obtain

DBO ¼ DCO ¼ �
293;333:333 k-ft3

EI

fBB ¼ fCC ¼
3;555:556 ft3

EI

fCB ¼
3;111:111 ft3

EI

continued
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FIG. 13.13

continued
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By applying Maxwell’s law,

fBC ¼
3;111:111 ft3

EI

Magnitudes of the Redundants. By substituting the values of the deflections and flexibility coe‰cients of the primary beam
just computed into the compatibility equations (Eqs. (1) and (2)), we obtain

�293;333:333þ 3;555:556By þ 3;111:111Cy ¼ 0

�293;333:333þ 3;111:111By þ 3;555:556Cy ¼ 0

or

3;555:556By þ 3;111:111Cy ¼ 293;333:333 (1a)

3;111:111By þ 3;555:556Cy ¼ 293;333:333 (2a)

Solving Eqs. (1a) and (2a) simultaneously for By and Cy, we obtain

By ¼ Cy ¼ 44 k " Ans.

Reactions. The remaining reactions can now be determined by applying the three equations of equilibrium to the free
body of the continuous beam as follows (Fig. 13.13(e)):

þ !
P

Fx ¼ 0 Ax ¼ 0 Ans.

þ ’
P

MD ¼ 0 �Ayð60Þ þ 2ð60Þð30Þ � 44ð40þ 20Þ ¼ 0

Ay ¼ 16 k " Ans.

þ "
P

Fy ¼ 0 16� 2ð60Þ þ 44þ 44þDy ¼ 0

Dy ¼ 16 k " Ans.

FIG. 13.13 (contd.)

continued
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Shear and Bending Moment Diagrams. The shear and bending moment diagrams of the beam are shown in Fig. 13.13(f ).

Ans.
The shapes of the shear and bending moment diagrams for continuous beams, in general, are similar to those for the

three-span continuous beam shown in Fig. 13.13(f ). As shown in this figure, negative bending moments generally develop
at the interior supports of continuous beams, whereas the bending moment diagram is usually positive over the middle
portions of the spans. The bending moment at a hinged support at an end of the beam must be zero, and it is generally
negative at a fixed end support. Also, the shape of the bending moment diagram is parabolic for the spans subjected
to uniformly distributed loads, and it consists of linear segments for spans subjected to concentrated loads. The actual
values of the bending moments, of course, depend on the magnitude of the loading as well as on the lengths and flexural
rigidities of the spans of the continuous beam.

Example 13.9

Determine the reactions and draw the shear and bending moment diagrams for the beam shown in Fig. 13.14(a) by the
method of consistent deformations.

Solution
Degree of Indeterminacy. i ¼ 2.

Primary Beam. The vertical reactions Cy and Ey at the roller supports C and E, respectively, are selected as the redun-
dants. These supports are then removed to obtain the cantilever primary beam shown in Fig. 13.14(b). Next, the primary
beam is subjected separately to the external loading and the unit values of the redundants Cy and Ey, as shown in
Fig. 13.14(b), (c), and (d), respectively.

Compatibility Equations. See Fig. 13.14(a) through (d).

DCO þ fCCCy þ fCEEy ¼ 0 (1)

DEO þ fECCy þ fEEEy ¼ 0 (2)

Deflections of Primary Beam. By using the deflection formulas, we obtain

DCO ¼ �
82;500 kN �m3

EI
DEO ¼ �

230;000 kN �m3

EI

fCC ¼
333:333 m3

EI
fEC ¼

833:333 m3

EI

fEE ¼
2;666:667 m3

EI

By applying Maxwell’s law,

fCE ¼
833:333 m3

EI

Magnitudes of the Redundants. By substituting the deflections of the primary beam into the compatibility equations, we obtain

� 82;500þ 333:333Cy þ 833:333Ey ¼ 0

�230;000þ 833:333Cy þ 2;666:667Ey ¼ 0

or

333:333Cy þ 833:333Ey ¼ 82;500 (1a)

833:333Cy þ 2;666:667Ey ¼ 230;000 (2a)

continued
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Solving Eqs. (1a) and (2a) simultaneously for Cy and Ey, we obtain

Cy ¼ 145:714 kN " Ey ¼ 40:714 kN " Ans.

Reactions. The remaining reactions can now be determined by applying the three equations of equilibrium to the free
body of the indeterminate beam (Fig. 13.14(e)):

þ !
P

Fx ¼ 0 Ax ¼ 0 Ans.

þ "
P

Fy ¼ 0 Ay � 120þ 145:714� 120þ 40:714 ¼ 0

Ay ¼ 53:572 kN " Ans.

þ ’
P

MA ¼ 0 MA � 120ð5Þ þ 145:714ð10Þ � 120ð15Þ þ 40:714ð20Þ ¼ 0

MA ¼ 128:58 kN �m ’

Ans.

Shear and Bending Moment Diagrams. See Fig. 13.14(f ). Ans.

120 kN 120 kN

D
E
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A
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FIG. 13.14 (contd.)
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Example 13.10

Determine the moments at the supports of the fixed beam shown in Fig. 13.15(a) by the method of consistent deforma-
tions. Also, draw the bending moment diagram for the beam.

Solution
Degree of Indeterminacy. The beam is supported by six support reactions; thus, its degree of indeterminacy is i ¼ 6� 3 ¼ 3.
However, since the beam is subjected only to vertical loading, the horizontal reactions Ax and Cx must be zero. Therefore, to
analyze this beam, we need to select only two of the remaining four reactions as the redundants.

Primary Beam. The moments MA and MC at the fixed supports A and C, respectively, are selected as the redundants.
The restraints against rotation at ends A and C of the fixed beam are then removed to obtain the simply supported pri-
mary beam shown in Fig. 13.15(b). Next, the primary beam is subjected separately to the external load P and the unit
values of redundants MA and MC , as shown in Fig. 13.15(b), (c), and (d), respectively.

Compatibility Equations. Noting that the slopes of the actual indeterminate beam at the fixed supports A and C are
zero, we write the compatibility equations:

yAO þ fAAMA þ fACMC ¼ 0 (1)

yCO þ fCAMA þ fCCMC ¼ 0 (2)

Slopes of the Primary Beam. The slopes at ends A and C of the primary beam due to the external load P and due to the
unit value of each of the redundants obtained by using either the deflection formulas or the conjugate-beam method are

yAO ¼ �
PbðL2 � b2Þ

6EIL

yCO ¼ �
PaðL2 � a2Þ

6EIL

fAA ¼ fCC ¼
L

3EI

fCA ¼
L

6EI

By applying Maxwell’s law,

fAC ¼
L

6EI

Magnitudes of the Redundants. By substituting the expressions for slopes into the compatibility equations (Eqs. (1) and
(2)), we obtain

�PbðL2 � b2Þ
6EIL

þ L

3EI

� �
MA þ

L

6EI

� �
MC ¼ 0 (1a)

�PaðL2 � a2Þ
6EIL

þ L

6EI

� �
MA þ

L

3EI

� �
MC ¼ 0 (2a)

which can be simplified as

2MA þMC ¼
PbðL2 � b2Þ

L2
(1b)

MA þ 2MC ¼
PaðL2 � a2Þ

L2
(2b)

continued
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To solve Eqs. (1b) and (2b) for MA and MC , we multiply Eq. (1b) by 2 and subtract it from Eq. (2b):

MA ¼ �
P

3L2
½aðL2 � a2Þ � 2bðL2 � b2Þ�

¼ � P

3L2
½aðL� aÞðLþ aÞ � 2bðL� bÞðLþ bÞ�

¼ �Pab

3L2
½ðLþ aÞ � 2ðLþ bÞ�

¼ Pab2

L2

MA ¼
Pab2

L2

’

Ans.

By substituting the expression for MA into Eq. (1b) or Eq. (2b) and solving for MC , we obtain the following.

MC ¼
Pa2b

L2
@ Ans.

Bending Moment Diagram. The vertical reactions Ay and Cy can now be determined by superposition of the reactions
of the primary beam due to the external load P and due to each of the redundants (Fig. 13.15(b) through (d)). Thus

Ay ¼
Pb

L
þ 1

L
ðMA �MCÞ ¼

Pb2

L3
ð3aþ bÞ

Cy ¼
Pa

L
� 1

L
ðMA �MCÞ ¼

Pa2

L3
ðaþ 3bÞ

The bending moment diagram of the beam is shown in Fig. 13.15(e). Ans.
The moments at the ends of beams whose ends are fixed against rotation are usually referred to as fixed-end mo-

ments. Such moments play an important role in the analysis of structures by the displacement method, to be considered in
subsequent chapters. As illustrated here, the expressions for fixed-end moments due to various loading conditions can be
conveniently derived by using the method of consistent deformations. The fixed-end-moment expressions for some com-
mon types of loading conditions are given inside the back cover of the book for convenient reference.

Example 13.11

Determine the reactions and draw the shear and bending moment diagrams for the four-span continuous beam shown in
Fig. 13.16(a) using the method of consistent deformations.

Solution
Symmetry. As the beam and the loading are symmetric with respect to the vertical s axis passing through roller sup-
port C (Fig. 13.16(a)), we will analyze only the right half of the beam with symmetric boundary conditions, as shown in
Fig. 13.16(b). The response of the left half of the beam will then be obtained by reflecting the response of the right half to
the other side of the axis of symmetry.

Degree of Indeterminacy. The degree of indeterminacy of the substructure (Fig. 13.16(b)) is 2. Note that, since the de-
gree of indeterminacy of the complete continuous beam (Fig. 13.16(a)) is three, the utilization of structural symmetry
will reduce the computational e¤ort required in the analysis.

continued
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FIG. 13.16 (contd.)
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Primary Beam. The vertical reactions Dy and Ey at the roller supports D and E, respectively, of the substructure are
selected as the redundants. The roller supports at D and E are then removed to obtain the cantilever primary beam
shown in Fig. 13.16(c).

Compatibility Equations. See Fig. 13.16(b) through (e).

DDO þ fDDDy þ fDEEy ¼ 0 (1)

DEO þ fEDDy þ fEEEy ¼ 0 (2)

Deflections of the Primary Beam. By using the deflection formulas, we obtain

DDO ¼ �
17wL4

24EI
DEO ¼ �

2wL4

EI

fDD ¼
L3

3EI
fED ¼

5L3

6EI

fEE ¼
8L3

3EI

By applying Maxwell’s law,

fDE ¼
5L3

6EI

Magnitudes of the Redundants. By substituting the deflections of the primary beam into the compatibility equations, we
obtain

� 17wL4

24EI
þ L3

3EI

� �
Dy þ

5L3

6EI

� �
Ey ¼ 0 (1a)

� 2wL4

EI
þ 5L3

6EI

� �
Dy þ

8L3

3EI

� �
Ey ¼ 0 (2a)

which can be simplified to

8Dy þ 20Ey ¼ 17wL (1b)

5Dy þ 16Ey ¼ 12wL (2b)

Solving Eqs. (1b) and (2b) simultaneously for Dy and Ey, we obtain

Dy ¼
8

7
wL " Ey ¼

11

28
wL " Ans.

Reactions. The remaining reactions of the substructure, obtained by applying the equations of equilibrium, are shown
in Fig. 13.16(f ). The reactions to the left of the s axis are then obtained by reflection, as shown in Fig. 13.16(g).

Ans.

Shear and Bending Moment Diagrams. By using the reactions of the continuous beam, its shear and bending moment
diagrams are constructed. These diagrams are shown in Fig. 13.16(h). Ans.
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Example 13.12

Determine the reactions and the force in each member of the truss shown in Fig. 13.17(a) by the method of consistent
deformations.

Solution
Degree of Indeterminacy. i ¼ ðmþ rÞ � 2j ¼ ð14þ 4Þ � 2ð8Þ ¼ 2.

Primary Truss. The vertical reaction Dy at the roller support D and the axial force FBG in the diagonal member BG are
selected as the redundants. The roller support D and member BG are then removed from the given indeterminate truss
to obtain the primary truss shown in Fig. 13.17(b). The primary truss is subjected separately to the external loading
(Fig. 13.17(b)), a unit value of the redundant Dy (Fig. 13.17(c)), and a unit tensile force in the redundant member BG
(Fig. 13.17(d)).

Compatibility Equations. The compatibility equations can be expressed as

DDO þ fDDDy þ fD;BGFBG ¼ 0 (1)

DBGO þ fBG;DDy þ fBG;BGFBG ¼ 0 (2)

in which DDO ¼ vertical deflection at joint D of the primary truss due to the external loading; DBGO ¼ relative displace-
ment between joints B and G due to the external loading; fDD ¼ vertical deflection at joint D due to a unit load at joint
D; fBG;D ¼ relative displacement between joints B and G due to a unit load at joint D; fBG;BG ¼ relative displacement
between joints B and G due to a unit tensile force in member BG; and fD;BG ¼ vertical deflection at joint D due to a unit
tensile force in member BG.

Deflections of Primary Truss. The virtual work expressions for the preceding deflections are

DDO ¼
PFOuDL

AE
DBGO ¼

PFOuBGL

AE

fDD ¼
P u2DL

AE
fBG;BG ¼

P u2BGL

AE

fBG;D ¼ fD;BG ¼
P uDuBGL

AE

in which FO; uD, and uBG represent the member forces due to the external loading, a unit load at joint D, and a unit tensile
force in member BG, respectively. The numerical values of the member forces, as computed by the method of joints

FIG. 13.17

continued
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(Fig. 13.17(b) through (d)), are tabulated in Table 13.4. Note that since the axial rigidity EA is the same for all the
members, only the numerators of the virtual work expressions are evaluated in Table 13.4. Thus

DDO ¼ �
4;472:642 kN �m

AE
DBGO ¼ �

992:819 kN �m
AE

fDD ¼
48:736 m

AE
fBG;BG ¼

48:284 m

AE

fBG;D ¼ fD;BG ¼ �
6:773 m

AE

Magnitudes of the Redundants. By substituting these deflections and flexibility coe‰cients into the compatibility equa-
tions (Eqs. (1) and (2)), we write

�4;472:642þ 48:736Dy � 6:773FBG ¼ 0 (1a)

�992:819� 6:773Dy þ 48:284FBG ¼ 0 (2a)

Solving Eqs. (1a) and (2a) simultaneously for Dy and FBG, we obtain

Dy ¼ 96:507 kN " FBG ¼ 34:1 kN ðTÞ Ans.

Reactions. The remaining reactions of the indeterminate truss can now be determined by superposition of reactions of
the primary truss due to the external loading and due to each of the redundants. The reactions thus obtained are shown
in Fig. 13.17(e). Ans.

Member Axial Forces. The forces in the remaining members of the indeterminate truss can be determined by using the
superposition relationship:

F ¼ FO þ uDDy þ uBGFBG

The member forces thus obtained are shown in Table 13.4 and Fig. 13.17(e). Ans.

TABLE 13.4

Member
L
(m)

FO

(kN)
uD

(kN/kN)
uBG

(kN/kN)
FOuDL
(kN �m)

FOuBGL
(kN �m)

u2DL
(m)

u2BGL
(m)

uDuBGL
(m)

F ¼ FO þ uDDy

þ uBGFBG (kN)

AB 10 152.5 �0.25 0 �381.25 0 0.625 0 0 128.373

BC 10 152.5 �0.25 �0.707 �381.25 �1,078.175 0.625 5 1.768 104.265

CD 10 77.5 �0.75 0 �581.25 0 5.625 0 0 5.12

DE 10 77.5 �0.75 0 �581.25 0 5.625 0 0 5.12

FG 10 �85 0.5 �0.707 �425 600.95 2.5 5 �3.535 �60.855
GH 10 �85 0.5 0 �425 0 2.5 0 0 �36.747
BF 10 80 0 �0.707 0 �565.60 0 5 0 55.891

CG 10 0 0 �0.707 0 0 0 5 0 �24.109
DH 10 0 �1 0 0 0 10 0 0 �96.507
AF 14.142 �116.673 0.354 0 �584.096 0 1.772 0 0 �82.51
BG 14.142 0 0 1 0 0 0 14.142 0 34.1

CF 14.142 3.536 �0.354 1 �17.702 50.006 1.772 14.142 �5.006 3.473

CH 14.142 109.602 0.354 0 548.697 0 1.772 0 0 143.765

EH 14.142 �109.602 1.061 0 �1,644.541 0 15.92 0 0 �7.208P
�4,472.642 �992.819 48.736 48.284 �6.773
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Example 13.13

Determine the reactions and draw the shear and bending moment diagrams for the frame shown in Fig. 13.18(a) by the
method of consistent deformations.

FIG. 13.18

continued
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Solution
Degree of Indeterminacy. i ¼ 2.

Primary Frame. The reactions DX and DY at the hinged support D are selected as the redundants. The hinged support D
is then removed to obtain the primary frame shown in Fig. 13.18(b). Next, the primary frame is subjected separately
to the external loading and the unit values of the redundants DX and DY , as shown in Fig. 13.18(b), (c), and (d),
respectively.

Compatibility Equations. Noting that the horizontal and vertical deflections of the actual indeterminate frame at the
hinged support D are zero, we write the compatibility equations:

DDXO þ fDX ;DXDX þ fDX ;DYDY ¼ 0 (1)

DDYO þ fDY ;DXDX þ fDY ;DYDY ¼ 0 (2)

Deflections of Primary Frame. The equations for bending moments for the members of the frame due to the external
loading and unit values of the redundants are tabulated in Table 13.5. By applying the virtual work method, we obtain

DDXO ¼
Pð

MOmDX

EI
dx ¼ 241;875 k-ft3

EI

DDYO ¼
Pð

MOmDY

EI
dx ¼ � 641;250 k-ft3

EI

fDX ;DX ¼
Pð

m2
DX

EI
dx ¼ 9;000 ft3

EI

fDY ;DY ¼
Pð

m2
DY

EI
dx ¼ 22;500 ft3

EI

fDX ;DY ¼ fDY ;DX ¼
Pð

mDXmDY

EI
dx ¼ � 10;125 ft3

EI

Magnitudes of the Redundants. By substituting these deflections and flexibility coe‰cients into the compatibility equa-
tions, we write

241;875þ 9;000DX � 10;125DY ¼ 0 (1a)

�641;250� 10;125DX þ 22;500DY ¼ 0 (2a)

Solving Eqs. (1a) and (2a) simultaneously for DX and DY , we obtain

DX ¼ 10:503 k DY ¼ 33:226 k " Ans.

Reactions. The remaining reactions and the member end forces of the indeterminate frame can now be determined by ap-
plying the equations of equilibrium. The reactions and member and forces thus obtained are shown in Fig. 13.18(e). Ans.

Shear and Bending Moment Diagrams. See Fig. 13.18(f ). Ans.

TABLE 13.5

x coordinate

Member Origin Limits (ft) MO (k-ft) mDX (k-ft/k) mDY (k-ft/k)

AB A 0–15 �1;050þ 10x �x 30

CB C 0–30 �x2 �15 x

DC D 0–15 0 x 0
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13.4 Support Settlements, Temperature Changes, and Fabrication Errors

Support Settlements

Thus far, we have considered the analysis of structures with unyielding
supports. As discussed in Chapter 11, support movements due to weak
foundations and the like may induce significant stresses in externally in-
determinate structures and must be considered in their designs. Support
settlements, however, do not have any e¤ect on the stress conditions of
structures that are internally indeterminate but externally determinate.
This lack of e¤ect is due to the fact that the settlements cause such struc-
tures to displace and/or rotate as rigid bodies without changing their
shapes. The method of consistent deformations, as developed in the pre-
ceding sections, can be easily modified to include the e¤ect of support
settlements in the analysis.

Consider, for example, a two-span continuous beam subjected to a
uniformly distributed load w, as shown in Fig. 13.19(a). Suppose that the
supports B and C of the beam undergo small settlements DB and DC ,
respectively, as shown in the figure. To analyze the beam, we consider
the vertical reactions By and Cy to be the redundants. The supports B

and C are removed from the indeterminate beam to obtain the primary
beam, which is then subjected separately to the external load w and the
unit values of the redundants By and Cy, as shown in Fig. 13.19(b), (c),
and (d), respectively. By realizing that the deflections of the actual in-
determinate beam at supports B and C are equal to the settlements DB

and DC , respectively, we obtain the compatibility equations

DBO þ fBBBy þ fBCCy ¼ DB ð13:18Þ

DCO þ fCBBy þ fCCCy ¼ DC ð13:19Þ

which can be solved for the redundants By and Cy. Note that the right-
hand sides of the compatibility equations (Eqs. (13.18) and (13.19)) are
no longer equal to zero, as in the case of unyielding supports considered
in the previous sections, but are equal to the prescribed values of settle-
ments at supports B and C, respectively. Once the redundants have been
determined by solving the compatibility equations, the other response
characteristics of the beam can be evaluated either by equilibrium or by
superposition.

Although support settlements are usually specified with respect to the
undeformed position of the indeterminate structure, the magnitudes of
such displacements to be used in the compatibility equations must be
measured from the chord connecting the deformed positions of the sup-
ports of the primary structure to the deformed positions of the redundant
supports. Any such support displacement is considered to be positive if
it has the same sense as that assumed for the redundant. In the case of the
beam of Fig. 13.19(a), since the end supports A and D do not undergo
any settlement, the chord AD of the primary beam coincides with the
undeformed position of the indeterminate beam; therefore, the settle-
ments of supports B and C relative to the chord of the primary beam are
equal to the prescribed settlements DB and DC , respectively.
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Now, suppose that all of the supports of a beam undergo settlement
as shown in Fig. 13.20. If we consider the reactions By and Cy to be the
redundants, then the displacements DBR and DCR of supports B and C,
respectively, relative to the chord of the primary beam should be used
in the compatibility equations instead of the specified displacements DB

and DC . This is because only the displacements relative to the chord cause
stresses in the beam. In other words, if the supports of the beam would
have settled either by equal amounts or by amounts so that the deformed
positions of all of the supports would lie on a straight line, then the beam
would remain straight without bending, and no stresses would develop in
the beam.

FIG. 13.19

=

+

+
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Example 13.14

Determine the reactions and draw the shear and bending moment diagrams for the three-span continuous beam shown
in Fig. 13.21(a) due to the uniformly distributed load and due to the support settlements of 5/8 in. at B, 112 in. at C, and
3/4 in. at D. Use the method of consistent deformations.

Solution
This beam was previously analyzed in Example 13.8 for the 2-k/ft uniformly distributed loading by selecting the vertical
reactions at the interior supports B and C as the redundants. We will use the same primary beam as used previously.

Relative Settlements. The specified support settlements are depicted in Fig. 13.21(b) using an exaggerated scale. It can
be seen from this figure that the settlements of supports B and C relative to the chord of the primary beam (which is the
line connecting the displaced positions of supports A and D) are

DBR ¼ �0:375 in: and DCR ¼ �1:0 in:

in which the negative signs for the magnitudes of DBR and DCR indicate that these settlements occur in the downward
direction—that is, opposite to the upward direction assumed for the redundants By and Cy.

Compatibility Equations. The compatibility equations for the beam remain the same as in Example 13.8, except that the
right-hand sides of the equations must now be set equal to the settlements DBR and DCR. Thus

DBO þ fBBBy þ fBCCy ¼ DBR (1)

DCO þ fCBBy þ fCCCy ¼ DCR (2)

Deflections of Primary Beam. In Example 13.8, the deflections and the flexibility coe‰cients of the beam were expressed
in terms of EI . Since the right-hand sides of the compatibility equations were zero, the EI terms simply canceled out of the
computations. In the present example, however, because of the presence of support settlements on the right-hand sides of
the compatibility equations, the EI terms cannot be canceled out; therefore, the actual numerical values of deflections and
flexibility coe‰cients must be computed.

DBO ¼ DCO ¼ �
293;333:333 k-ft3

EI
¼ � 293;333:333ð12Þ3

ð29;000Þð7;800Þ ¼ �2:241 in:

fBB ¼ fCC ¼
3;555:556 ft3

EI
¼ 3;555:556ð12Þ3

ð29;000Þð7;800Þ ¼ 0:0272 in:=k

fCB ¼ fBC ¼
3;111:111 ft3

EI
¼ 3;111:111ð12Þ3

ð29;000Þð7;800Þ ¼ 0:0238 in:=k

FIG. 13.20

continued
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Magnitudes of the Redundants. By substituting the numerical values into the compatibility equations, we write

�2:241þ 0:0272By þ 0:0238Cy ¼ �0:375 (1a)

�2:241þ 0:0238By þ 0:0272Cy ¼ �1 (2a)

By solving Eqs. (1a) and (2a) simultaneously for By and Cy, we obtain

By ¼ 122:373 k " and Cy ¼ �61:451 k ¼ 61:451 k # Ans.

Reactions and Shear and Bending Moment Diagrams. The remaining reactions of the continuous beam can now be deter-
mined by equilibrium. The reactions and the shear and bending moment diagrams of the beam are shown in Fig. 13.21(c).
A comparison of these results with those of Example 13.8 (without settlement) indicates that even small support settle-
ments may have a significant e¤ect on the reactions and the shear and bending moment diagrams of indeterminate
structures. Ans.

FIG. 13.21
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Example 13.15

Determine the reactions and draw the shear and bending moment diagrams for the beam shown in Fig. 13.22(a) due to
the loading shown and due to the support settlements of 40 mm at C and 25 mm at E. Use the method of consistent
deformations.

Solution
This beam was previously analyzed in Example 13.9 for the external loading by selecting the vertical reactions at the
roller supports C and E as the redundants. We will use the same primary beam as used previously.

Support Settlements. The specified support settlements are depicted in Fig. 13.22(b), from which it can be seen that the
chord AE of the primary beam coincides with the undeformed position of the indeterminate beam; therefore, the settle-
ments of supports C and E relative to the chord of the primary beam are equal to the prescribed settlements, that is

DCR ¼ DC ¼ �0:04 m and DER ¼ DE ¼ �0:025 m

Compatibility Equations.

DCO þ fCCCy þ fCEEy ¼ DCR (1)

DEO þ fECCy þ fEEEy ¼ DER (2)

Deflections of Primary Beam. From Example 13.9,

DCO ¼ �
82;500 kN �m3

EI
¼ � 82;500

70ð106Þð1;250Þð10�6Þ
¼ �0:943 m

DEO ¼ �
230;000 kN �m3

EI
¼ � 230;000

70ð106Þð1;250Þð10�6Þ
¼ �2:629 m

fCC ¼
333:333 m3

EI
¼ 333:333

70ð106Þð1;250Þð10�6Þ
¼ 0:00381 m=kN

fEC ¼ fCE ¼
833:333 m3

EI
¼ 833:333

70ð106Þð1;250Þð10�6Þ
¼ 0:00952 m=kN

fEE ¼
2;666:667 m3

EI
¼ 2;666:667

70ð106Þð1;250Þð10�6Þ
¼ 0:0305 m=kN

Magnitudes of the Redundants. By substituting the numerical values into the compatibility equations, we write

�0:943þ 0:00381Cy þ 0:00952Ey ¼ �0:04 (1a)

�2:629þ 0:00952Cy þ 0:0305Ey ¼ �0:025 (2a)

Solving Eqs. (1a) and (2a) simultaneously for Cy and Ey, we obtain

Cy ¼ 107:6 kN " and Ey ¼ 51:8 kN " Ans.

Reactions and Shear and Bending Moment Diagrams. The remaining reactions of the indeterminate beam can now be
determined by equilibrium. The reactions and the shear and bending moment diagrams are shown in Fig. 13.22(c). Ans.

5 m 5 m 5 m 5 m

E = 70 GPa I = 1,250 (106) mm4

(a) Indeterminate Beam

A E

120 kN120 kN

C

DB

FIG. 13.22

continued
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(b) Support Settlements

A C E

0.04 m 0.025 m

Ay

MA

Ax

Cy

Ey

120 kN

Reactions

120 kN

BA

C E

D

MA = 288 kN.m

Ax = 0

Ay = 80.6 kN Cy = 107.6 kN Ey = 51.8 kN

Shear diagram (kN)

80.6

–39.4 –51.8

68.2

A B C
D E

Bending moment diagram (kN . m)

(c) Support Reactions and Shear and Bending Moment
Diagrams for Indeterminate Beam

A C

B D E

115

259

82

288

FIG. 13.22 (contd.)
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Temperature Changes and Fabrication Errors

Unlike support settlements, which a¤ect only externally indeterminate
structures, temperature changes and fabrication errors may a¤ect the
stress conditions of externally and/or internally indeterminate structures.
The procedure for the analysis of structures subjected to temperature
changes and/or fabrication errors is the same as used previously for the
case of external loads. The only di¤erence is that the primary structure is
now subjected to the prescribed temperature changes and/or fabrication
errors (instead of external loads) to evaluate its deflection at the locations
of redundants due to these e¤ects. The redundants are then determined
by applying the usual compatibility conditions that the deflections of the
primary structure at the locations of the redundants due to the combined
e¤ect of temperature changes and/or fabrication errors and the redun-
dants must equal the known deflections at the corresponding locations
on the actual indeterminate structure. The procedure is illustrated by the
following example.

Example 13.16

Determine the reactions and the force in each member of the truss shown in Fig. 13.23(a) due to a temperature increase
of 45�C in member AB and a temperature drop of 20�C in member CD. Use the method of consistent deformations.

Solution
Degree of Indeterminacy. i ¼ ðmþ rÞ � 2j ¼ ð6þ 3Þ � 2ð4Þ ¼ 1. The truss is internally indeterminate to the first degree.

Primary Truss. The axial force FAD in the diagonal member AD is selected to be the redundant. The primary truss ob-
tained by removing member AD is shown in Fig. 13.23(b). Next, the primary truss is subjected separately to the pre-
scribed temperature changes and a 1-kN tensile force in the redundant member AD, as shown in Fig. 13.23(b) and (c),
respectively.

Compatibility Equation. The compatibility equation can be expressed as

DADO þ fAD;ADFAD ¼ 0 (1)

in which DADO denotes the relative displacement between joints A and D of the primary truss due to temperature changes
and the flexibility coe‰cient fAD;AD denotes the relative displacement between the same joints due to a unit value of the
redundant FAD.

Deflections of Primary Truss. As discussed in Section 7.3, the virtual work expression for DADO can be written as

DADO ¼
P

aðDTÞLuAD
in which the product aðDTÞL equals the axial deformation of a member of the primary truss due to a change in temper-
ature DT , and uAD represents the axial force in the same member due to a 1-kN tensile force in member AD. The num-
erical values of these quantities are tabulated in Table 13.6, from which DADO is determined to be

DADO ¼ �1:92 mm

Next, the flexibility coe‰cient fAD;AD is computed by using the virtual work expression (see Table 13.6)

fAD;AD ¼
P u2ADL

AE
¼ 0:0479 mm

continued
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FIG. 13.23

TABLE 13.6

Member
L
(m)

A
(m2)

DT
(�C)

uAD
(kN/kN)

ðDTÞLuAD
(�C �m)

u2ADL=A
(1/m)

F ¼ uADFAD
(kN)

AB 8 0.005 45 �0.8 �288 1,024 �32.067
CD 8 0.005 �20 �0.8 128 1,024 �32.067
AC 6 0.005 0 �0.6 0 432 �24.05
BD 6 0.005 0 �0.6 0 432 �24.05
AD 10 0.003 0 1.0 0 3,333.333 40.084

BC 10 0.003 0 1.0 0 3,333.333 40.084P
�160 9,578.667

DADO ¼ a
P
ðDTÞLuAD ¼ 1:2ð10�5Þð�160Þ ¼ �0:00192 m ¼ �1:92 mm

fAD;AD ¼
1

E

P u2ADL

A
¼ 9;578:667

200ð106Þ
¼ 47:893ð10�6Þ m=kN ¼ 0:0479 mm=kN

FAD ¼ �
DADO

fAD;AD
¼ 40:084 kN ðTÞ

continued
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Magnitude of the Redundant. By substituting the values of DADO and fAD;AD into the compatibility equation (Eq. (1)),
we obtain

�1:92þ ð0:0479ÞFAD ¼ 0

FAD ¼ 40:084 kN ðTÞ Ans.

Reactions. Since the truss is statically determinate externally, its reactions due to the temperature changes are zero. Ans.

Member Axial Forces. The forces in the members of the primary truss due to the temperature changes are zero, so the
forces in the members of the indeterminate truss can be expressed as

F ¼ uADFAD

The member forces thus obtained are shown in Table 13.6 and Fig. 13.23(d). Ans.

13.5 Method of Least Work

In this section, we consider an alternative formulation of the force me-
thod called the method of least work. In this method, the compatibility
equations are established by using Castigliano’s second theorem instead
of by deflection superposition, as in the method of consistent deforma-
tions considered in the previous sections. With this exception, the two
methods are similar and require essentially the same amount of com-
putational e¤ort. The method of least work usually proves to be more
convenient for analyzing composite structures that contain both axial
force members and flexural members (e.g., beams supported by cables).
However, the method is not as general as the method of consistent de-
formations in the sense that, in its original form (as presented here), the
method of least work cannot be used for analyzing the e¤ects of support
settlements, temperature changes, and fabrication errors.

To develop the method of least work, let us consider a statically in-
determinate beam with unyielding supports subjected to an external load-
ing w, as shown in Fig. 13.24. Suppose that we select the vertical reaction
By at the interior support B to be the redundant. By treating the redun-
dant as an unknown load applied to the beam along with the prescribed
loading w, an expression for the strain energy can be written in terms of
the known load w and the unknown redundant By as

U ¼ f ðw;ByÞ ð13:20Þ

Equation (13.20) indicates symbolically that the strain energy for the
beam is expressed as a function of the known external load w and the
unknown redundant By.

According to Castigliano’s second theorem (Section 7.7), the partial
derivative of the strain energy with respect to a force equals the de-
flection of the point of application of the force along its line of action.
Since the deflection at the point of application of the redundant By is
zero, by applying Castigliano’s second theorem, we can write

qU

qBy

¼ 0 ð13:21Þ

FIG. 13.24

Section 13.5 Method of Least Work 545



It should be realized that Eq. (13.21) represents the compatibility equation
in the direction of redundant By, and it can be solved for the redundant.

As Eq. (13.21) indicates, the first partial derivative of the strain en-
ergy with respect to the redundant must be equal to zero. This implies
that for the value of the redundant that satisfies the equations of equili-
brium and compatibility, the strain energy of the structure is a minimum
or maximum. Since for a linearly elastic structure there is no maximum
value of strain energy, because it can be increased indefinitely by in-
creasing the value of the redundant, we conclude that for the true value
of the redundant the strain energy must be a minimum. This conclusion
is known as the principle of least work:

The magnitudes of the redundants of a statically indeterminate structure must

be such that the strain energy stored in the structure is a minimum (i.e., the

internal work done is the least).

The method of least work, as described here, can be easily extended
to the analysis of structures with multiple degrees of indeterminacy. If
a structure is indeterminate to the nth degree, then n redundants are
selected, and the strain energy for the structure is expressed in terms of
the known external loading and the n unknown redundants as

U ¼ f ðw;R1;R2; . . . ;RnÞ ð13:22Þ

in which w represents all the known loads and R1;R2; . . . ;Rn denote the
n redundants. Next, the principle of least work is applied separately for
each redundant by partially di¤erentiating the strain energy expression
(Eq. (13.22)) with respect to each of the redundants and by setting each
partial derivative equal to zero; that is,

qU

qR1
¼ 0

qU

qR2
¼ 0

..

.

qU

qRn

¼ 0

ð13:23Þ

which represents a system of n simultaneous equations in terms of n re-
dundants and can be solved for the redundants.

The procedure for the analysis of indeterminate structures by the
method of least work is illustrated by the following examples.

Example 13.17

Determine the reactions for the beam shown in Fig. 13.25 by the method of least work.

Solution
This beam was analyzed in Example 13.2 by the method of consistent deformations.

continued
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The beam is supported by four reactions, so its degree of indeterminacy is equal to 1. The vertical reaction By, at
the roller support B, is selected as the redundant. We will evaluate the magnitude of the redundant by minimizing the
strain energy of the beam with respect to By.

As discussed in Section 7.6, the strain energy of a beam subjected only to bending can be expressed as

U ¼
ðL

0

M 2

2EI
dx ð1Þ

According to the principle of least work, the partial derivative of strain energy with respect to By must be zero; that is,

qU

qBy

¼
ðL

0

qM

qBy

� �
M

EI
dx ¼ 0 ð2Þ

Using the x coordinate shown in Fig. 13.25, we write the equation for bending moment, M, in terms of By, as

M ¼ ByðxÞ �
1:6x2

2

Next, we partially di¤erentiate the expression for M with respect to By, to obtain

qM

qBy

¼ x

By substituting the expressions for M and qM=qBy into Eq. (2), we write

1

EI

ð 30

0

xðByx� 0:8x2Þ dx
� �

¼ 0

By integrating, we obtain

9;000By � 162;000 ¼ 0

from which

By ¼ 18 k " Ans.

To determine the remaining reactions of the indeterminate beam, we apply the equilibrium equations (Fig. 13.25):

þ !
P

Fx ¼ 0 Ax ¼ 0 Ans.

þ "
P

Fy ¼ 0 Ay � 1:6ð30Þ þ 18 ¼ 0 Ay ¼ 30 k " Ans.

þ ’
P

MA ¼ 0 MA � 1:6ð30Þð15Þ þ 18ð30Þ ¼ 0 MA ¼ 180 k-ft

’

Ans.

1.6 k/ft

30 ft
EI = constant

Ax

MA

A

Ay

B

By

x

FIG. 13.25
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Example 13.18

Determine the reactions for the two-span continuous beam shown in Fig. 13.26 by the method of least work.

Solution
The beam is supported by four reactions, Ax;Ay;By, and Dy. Since there are only three equilibrium equations, the de-
gree of indeterminacy of the beam is equal to 1. Let us select the reaction By to be the redundant. The magnitude of the
redundant will be determined by minimizing the strain energy of the beam with respect to By.

The strain energy of a beam subjected only to bending is expressed as

U ¼
ð L

0

M 2

2EI
dx ð1Þ

According to the principle of least work,

qU

qBy

¼
ðL

0

qM

qBy

� �
M

EI
dx ¼ 0 ð2Þ

Before we can obtain the equations for bending moments, M, we must express the reactions at the supports A and D of
the beam in terms of the redundant By. Applying the three equilibrium equations, we write

þ !
P

Fx ¼ 0 Ax ¼ 0 Ans.

þ ’
P

MD ¼ 0

�Ayð20Þ þ 30ð10Þð15Þ � Byð10Þ þ 80ð5Þ ¼ 0

Ay ¼ 245� 0:5By (3)

þ "
P

Fy ¼ 0

ð245� 0:5ByÞ � 30ð10Þ þ By � 80þDy ¼ 0

Dy ¼ 135� 0:5By (4)

To determine the equations for bending moments, M, the beam is divided into three segments, AB;BC, and CD. The x
coordinates used for determining the equations are shown in Fig. 13.26, and the bending moment equations, in terms of
By, are tabulated in Table 13.7. Next, the derivatives of the bending moments with respect to By are evaluated. These
derivatives are listed in the last column of Table 13.7.

FIG. 13.26

continued

TABLE 13.7

x coordinate

Segment Origin Limits (m) M qM=qBy

AB A 0–10 ð245� 0:5ByÞx� 15x2 �0:5x
DC D 0–5 ð135� 0:5ByÞx �0:5x
CB D 5–10 ð135� 0:5ByÞx� 80ðx� 5Þ �0:5x
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By substituting the expressions for M and qM=qBy into Eq. (2), we write

1

EI

� ð10

0

ð�0:5xÞð245x� 0:5Byx� 15x2Þ dx

þ
ð 5

0

ð�0:5xÞð135x� 0:5ByxÞ dx

þ
ð10

5

ð�0:5xÞð55x� 0:5Byxþ 400Þ dx
�
¼ 0

By integrating, we obtain

�40;416:667þ 166:667By ¼ 0

from which

By ¼ 242:5 kN " Ans.

By substituting the value of By into Eqs. (3) and (4), respectively, we determine the vertical reactions at supports A and D.

Ay ¼ 123:75 kN " Ans.

Dy ¼ 13:75 kN " Ans.

Example 13.19

Determine the force in each member of the truss shown in Fig. 13.27(a) by the method of least work.

Solution
The truss contains one more member than necessary for internal stability; therefore, its degree of indeterminacy is equal
to 1. Let us select the force FAD in member AD to be the redundant. We will determine the magnitude of FAD by mini-
mizing the strain energy of the truss with respect to FAD.

As discussed in Section 7.6, the strain energy of a truss can be expressed as

U ¼
P F 2L

2AE
ð1Þ

According to the principle of least work, the partial derivative of strain energy with respect to FAD must be zero; that is,

qU

qFAD
¼

P qF

qFAD

� �
FL

AE
¼ 0 ð2Þ

FIG. 13.27

continued
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The axial forces in members BD and CD are expressed in terms of the redundant FAD by considering the equilibrium of
joint D (Fig. 13.27(b)). These member forces F , along with their partial derivatives with respect to FAD, are tabulated in
Table 13.8. To apply Eq. (2), the terms ðqF=qFADÞ FL are computed for the individual members and are added as shown
in Table 13.8. Note that since EA is constant, it is not included in the summation. Equation (2) is then solved, as shown
in Table 13.8, to determine the magnitude of the redundant.

FAD ¼ 13:474 k ðTÞ Ans.

Finally, the forces in members BD and CD are evaluated by substituting the value of FAD into the expressions for the
member forces given in the third column of Table 13.8.

FBD ¼ 1:136 k ðTÞ Ans.

FCD ¼ 13:045 k ðCÞ Ans.

Example 13.20

A beam is supported by a fixed support A and a cable BD, as shown in Fig. 13.28(a). Determine the tension in the cable
by the method of least work.

TABLE 13.8

Member
L
(ft) F

qF

qFAD

qF

qFAD

� �
FL

F (k)

AD 20 FAD 1 20FAD 13.474

BD 12 20� 1:4FAD �1:4 �336þ 23:52FAD 1.136

CD 16.971 �28:284
þ 1:131FAD

1.131 �542:889
þ 21:709FAD

�13:045

P
�878:889þ 65:229FAD

1

AE

P qF

qFAD

� �
FL ¼ 0

�878:889þ 65:229FAD ¼ 0

FAD ¼ 13:474 k ðTÞ

FIG. 13.28
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Solution
We will analyze the structure by considering the tension T in cable BD to be redundant. The magnitude of the redun-
dant will be determined by minimizing the strain energy of the structure with respect to T .

Because the structure contains both axially loaded and flexural members, its total strain energy is expressed as the
sum of the strain energy due to axial forces and the strain energy due to bending; that is,

U ¼
P F 2L

2AE
þ
Pð

M 2

2EI
dx ð1Þ

According to the principle of least work,

qU

qT
¼

P qF

qT

� �
FL

AE
þ
Pð

qM

qT

� �
M

EI
dx ¼ 0 ð2Þ

The expressions for the bending moments M and the axial forces F in terms of the redundant T and their derivatives
with respect to T are tabulated in Table 13.9. By substituting these expressions and derivatives into Eq. (2), we write

1

E

"
ð�0:8Þð�0:8TÞð8Þð12Þ2

12
þ 1ðTÞð10Þð12Þ2

0:8

þ ð12Þ
4

400

ð12

4

0:6ðx� 4Þð�15xþ 0:6Tx� 2:4TÞ dx
#
¼ 0

T ¼ 27:612 k Ans.

Summary

In this chapter we have discussed two formulations of the force (flexi-
bility) method of analysis of statically indeterminate structures: (1) the
method of consistent deformations and (2) the method of least work.

The method of consistent deformations involves removing enough
restraints from the indeterminate structure to render it statically deter-
minate. The determinate structure is called the primary structure, and the
reactions or internal forces associated with the excess restraints removed
from the indeterminate structure are termed redundants. The redundants
are now treated as unknown loads applied to the primary structure, and
their magnitudes are determined by solving the compatibility equations
based on the condition that the deflections of the primary structure at the
locations (and in the directions) of the redundants, due to the combined
e¤ect of the prescribed external loading and the unknown redundants,

TABLE 13.9

x coordinate

Segment Origin Limits (ft) M F

qM

qT

qF

qT

CB C 0–4 �15x 0 0 0

BA C 4–12 �15xþ 0:6Tðx� 4Þ �0:8T 0:6ðx� 4Þ �0:8
BD — — 0 T 0 1
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must be equal to the known deflections at the corresponding locations on
the original indeterminate structure. Once the redundants have been de-
termined, the other response characteristics of the indeterminate struc-
ture can be evaluated either through equilibrium considerations or by
superposition of the responses of the primary structure due to the ex-
ternal loading and due to each of the redundants.

The principle of least work states that the magnitudes of the re-

dundants of an indeterminate structure must be such that the strain energy

stored in the structure is a minimum. To analyze an indeterminate struc-
ture by the method of least work, the strain energy of the structure is first
expressed in terms of the redundants. Then the partial derivatives of the
strain energy with respect to each of the redundants are determined and
set equal to zero to obtain a system of simultaneous equations that can be
solved for the redundants. The method of least work cannot be used for
analyzing the e¤ects of support settlements, temperature changes, and
fabrication errors.

PROBLEMS

Section 13.1

13.1 through 13.4 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P13.1–P13.4 using the method of consistent defor-
mations. Select the reaction at the roller support to be the
redundant.

3 m 3 m 3 m

B C

A D

60 kN 100 kN

E = 200 GPa
I = 3,250 (106) mm4

FIG. P13.1, P13.5, P13.49

FIG. P13.2, P13.6

13.5 through 13.8 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown

in Figs. P13.1–P13.4 by using the method of consistent
deformations. Select the reaction moment at the fixed sup-
port to be the redundant.

FIG. P13.3, P13.7

FIG. P13.4, P13.8

13.9 through 13.12 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P13.9–P13.12 using the method of consistent defor-
mations. Select the reaction at the interior support to be the
redundant.
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12 ft 12 ft 12 ft 12 ft

B D

A EC

50 k 50 k

E = 29,000 ksi 
I = 1,500 in.4

FIG. P13.9, P13.30, P13.50

FIG. P13.10, P13.31

FIG. P13.11, P13.32

A C
B

25 ft
2I

15 ft
I

3 k/ft

E = 29,000 ksi
I = 2,500 in.4

FIG. P13.12, P13.33, P13.51

13.13 through 13.25 Determine the reactions and draw the
shear and bending moment diagrams for the structures
shown in Figs. P13.13–P13.25 using the method of con-
sistent deformations.

12 m

250 kN
25 kN/m

6 m 6 m

1.5II

B C
D

A

E = constant

FIG. P13.13

10 ft

1.5 k/ft

20 ft

BA
C

EI = constant

FIG. P13.14

7 m 7 m

A B C

EI = constant

15 kN/m

FIG. P13.15, P13.58

30 ft

2k/ft 18k

3I I
10 ft
B C

A

E = constant

FIG. P13.16, P13.59

FIG. P13.17

FIG. P13.18
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5 m
EI = constant

5 m

10 m 20 kN/m

A

B D

C

150 kN

FIG. P13.19

FIG. P13.20

FIG. P13.21

30 ft

EI = constant

3 k/ft

40 k
C D

BA

15 ft

FIG. P13.22

FIG. P13.23

FIG. P13.24
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FIG. P13.25

13.26 through 13.29 Determine the reactions and the force in
each member of the trusses shown in Figs. P13.26–P13.29
using the method of consistent deformations.

FIG. P13.26

FIG. P13.27, P13.52

FIG. P13.28

FIG. P13.29

Section 13.2

13.30 through 13.33 Solve Problems 13.9 through 13.12 by
selecting the bending moment at the interior support to be
the redundant. See Figs. P13.9–P13.12.

13.34 through 13.36 Determine the reactions and the force in
each member of the trusses shown in Figs. P13.34–P13.36
using the method of consistent deformations.

16 ft

E = 29,000 ksi

12 ft

20 k 20 k

15 k
(6 in.2)

(6 in.2)

(8 in. 2)

(8 in
.2 ) (6

 in
.2 )

(6
 in

.2 )

C D

A B

FIG. P13.34
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50 kN

100 kN

4 m

4 m

3 m
EA = constant

A B

C
D

E

FIG. P13.35, P13.60

FIG. P13.36

Section 13.3

13.37 through 13.45 Determine the reactions and draw the
shear and bending moment diagrams for the structures
shown in Figs. P13.37–P13.45 using the method of con-
sistent deformations.

8 m 8 m

B
CA

25 kN/m

E = 70 GPa I = 1,300 (106) mm4

FIG. P13.37, P13.53

10 ft 10 ft 10 ft 20 ft

EI = constant

E
B C DA

35 k
2 k/ft1 k/ft

FIG. P13.38

6 m 4 m 6 m 4 m 4 m 4 m

I I2I

A C

B D F

E
G

120 kN 120 kN 150 kN

E =  200 GPa
I = 500 (106) mm4

FIG. P13.39, P13.54

FIG. P13.40

FIG. P13.41

FIG. P13.42
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FIG. P13.43

FIG. P13.44

FIG. P13.45

13.46 and 13.47 Determine the reactions and the force in
each member of the trusses shown in Figs. P13.46 and
P13.47 using the method of consistent deformations.

FIG. P13.46

FIG. P13.47

Section 13.4

13.48 Determine the reactions for the beam shown in
Fig. P13.48 due to a small settlement D at the roller sup-
port C.

FIG. P13.48

13.49 Solve Problem 13.1 for the loading shown and a set-
tlement of 30 mm at support D. See Fig. P13.1.

13.50 Solve Problem 13.9 for the loading shown in
Fig. P13.9 and a settlement of 114 in. at support C.

Problems 557



13.51 Solve Problem 13.12 for the loading shown in
Fig. P13.12 and the support settlements of 1

4 in. at A, 1 in. at
B, and 3

4 in. at C.

13.52 Solve Problem 13.27 for the loading shown in
Fig. P13.27 and the support settlements of 1 in. at A, 3 in.
at C, and 134 in. at D.

13.53 Solve Problem 13.37 for the loading shown in
Fig. P13.37 and the support settlements of 50 mm at B and
25 mm at C.

13.54 Solve Problem 13.39 for the loading shown in
Fig. P13.39 and the support settlements of 10 mm at A,
65 mm at C, 40 mm at E, and 25 mm at G.

13.55 Determine the reactions and the force in each member
of the truss shown in Fig. P13.55 due to a temperature drop
of 25�C in members AB;BC, and CD and a temperature
increase of 60�C in member EF . Use the method of con-
sistent deformations.

FIG. P13.55, P13.56

13.56 Determine the reactions and the force in each member
of the truss shown in Fig. P13.55 if member EF is 30 mm
too short. Use the method of consistent deformations.

13.57 Determine the reactions and the force in each member
of the truss shown in Fig. P13.57 due to a temperature in-
crease of 70�F in member AB. Use the method of consistent
deformations.

FIG. P13.57

Section 13.5

13.58 Solve Problem 13.15 by the method of least work. See
Fig. P13.15.

13.59 Solve Problem 13.16 by the method of least work. See
Fig. P13.16.

13.60 Solve Problem 13.35 by the method of least work. See
Fig. P13.35.

13.61 A beam is supported by a fixed support B and a cable
AC, as shown in Fig. P13.61. Determine the tension in the
cable by the method of least work.

Cable
AC = 300 mm2

E = constant

C

A

IB = 200 (106) mm4
Beam

8 m

12 kN/m

B

3 m

FIG. P13.61
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14
Influence Lines for Statically
Indeterminate Structures
14.1 Influence Lines for Beams and Trusses
14.2 Qualitative Influence Lines by Müller-Breslau’s Principle

Summary
Problems

The Golden Gate Bridge,

San Francisco
Acoi/Shutterstock.com
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In this chapter, we discuss the procedures for constructing influence lines
for statically indeterminate structures. It may be recalled from Chapter 8
that an influence line is a graph of a response function of a structure as a

function of the position of a downward unit load moving across the structure.
The basic procedure for constructing influence lines for indeterminate

structures is the same as that for determinate structures considered in
Chapter 8. The procedure essentially involves computing the values of the
response function of interest for various positions of a unit load on the
structure and plotting the response function values as ordinates against
the position of the unit load as abscissa to obtain the influence line. Since
the influence lines for forces and moments of determinate structures
consist of straight-line segments, such influence lines were constructed in
Chapter 8 by evaluating the ordinates for only a few positions of the unit
load and by connecting them with straight lines. The influence lines for
indeterminate structures, however, are generally curved lines. (For indeter-
minate girders with floor systems and trusses and for other indeterminate
structures to which moving loads are transmitted via framing systems, the
influence lines usually consist of chords of curved lines.) Thus the con-
struction of influence lines for indeterminate structures requires compu-
tation of many more ordinates than necessary in the case of determinate
structures.

Although any of the methods of analysis of indeterminate structures
presented in Part Three can be used for computing the ordinates of influ-
ence lines, we will use the method of consistent deformations, discussed in



Chapter 13, for such purposes. Once the influence lines for indeterminate
structures have been constructed, they can be used in the same manner as
those for determinate structures discussed in Chapter 9. In this chapter,
the procedure for constructing influence lines for statically indeterminate
beams and trusses is developed, and the application of Müller-Breslau’s
principle for constructing qualitative influence lines for indeterminate
beams and frames is discussed.

14.1 Influence Lines for Beams and Trusses

Consider the continuous beam shown in Fig. 14.1(a). Suppose that we
wish to draw the influence line for the vertical reaction at the interior sup-
port B of the beam. The beam is subjected to a downward-moving con-
centrated load of unit magnitude, the position of which is defined by the
coordinate x measured from the left end A of the beam, as shown in the
figure.

To develop the influence line for the reaction By, we need to de-
termine the expression for By in terms of the variable position x of the
unit load. Noting that the beam is statically indeterminate to the first
degree, we select the reaction By to be the redundant. The roller support
at B is then removed from the actual indeterminate beam to obtain the
statically determinate primary beam shown in Fig. 14.1(b). Next, the pri-
mary beam is subjected, separately, to the unit load positioned at an ar-
bitrary point X at a distance x from the left end, and the redundant By, as
shown in Fig. 14.1(b) and (c), respectively. The expression for By can now
be determined by using the compatibility condition that the deflection of
the primary beam at B due to the combined e¤ect of the external unit
load and the unknown redundant By must be equal to zero. Thus

fBX þ fBBBy ¼ 0

from which

By ¼ �
fBX

fBB
ð14:1Þ

in which the flexibility coe‰cient fBX denotes the deflection of the pri-
mary beam at B due to the unit load at X (Fig. 14.1(b)), whereas the
flexibility coe‰cient fBB denotes the deflection at B due to the unit value
of the redundant By (Fig. 14.1(c)).

We can use Eq. (14.1) for constructing the influence line for By by
placing the unit load successively at a number of positions X along the
beam, evaluating fBX for each position of the unit load, and plotting the
values of the ratio �fBX=fBB. However, a more e‰cient procedure can be
devised by applying Maxwell’s law of reciprocal deflections (Section 7.8),
according to which the deflection at B due to a unit load at X must be
equal to the deflection at X due to a unit load B; that is, fBX ¼ fXB.
Thus, Eq. (14.1) can be rewritten as

By ¼ �
fXB

fBB
ð14:2Þ

FIG. 14.1
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which represents the equation of the influence line for By. Note that the
deflections fXB and fBB are considered to be positive when in the upward
direction (i.e., in the positive direction of the redundant By) in accord-
ance with the sign convention adopted for the method of consistent de-
formations in Chapter 13.

Equation (14.2) is more convenient to apply than Eq. (14.1) in con-
structing the influence line, because according to Eq. (14.2), the unit load
needs to be placed on the primary beam only at B, and the deflections
fXB at a number of points X along the beam are to be computed. The
influence line can then be constructed by plotting the values of the ratio
�fXB=fBB as ordinates against the distance x, which represents the posi-
tion of point X , as abscissa.

The equation of an influence line, when expressed in the form of
Eq. (14.2), shows the validity of Müller-Breslau’s principle for statically
indeterminate structures. It can be seen from Eq. (14.2) for the influence
line for By that since fBB is a constant, the ordinate of the influence line at
any point X is proportional to the deflection fXB of the primary beam at
that point due to the unit load at B. Furthermore, this equation indicates
that the influence line for By can be obtained by multiplying the deflected
shape of the primary beam due to the unit load at B by the scaling factor
�1=fBB. Note that this scaling yields a deflected shape, with a unit dis-
placement at B, as shown in Fig. 14.1(d). The foregoing observation
shows the validity of Müller-Breslau’s principle for indeterminate struc-
tures. Recall from Section 8.2 that, according to this principle, the influ-
ence line for By can be obtained by removing the support B from the
original beam and by giving the released beam a unit displacement in
the direction of By. Also, note from Fig. 14.1(d) that, unlike the case of
statically determinate structures considered in Chapter 8, the removal of
support B from the indeterminate beam does not render it statically un-
stable; therefore, the influence line for its reaction By is a curved line.
Once the influence line for the redundant By has been determined, the in-
fluence lines for the remaining reactions and the shears and bending mo-
ments of the beam can be obtained through equilibrium considerations.

Influence Lines for Structures with Multiple Degrees
of Indeterminacy

The procedure for constructing the influence lines for structures with
multiple degrees of indeterminacy is similar to that for structures with a
single degree of indeterminacy. Consider, for example, the three-span con-
tinuous beam shown in Fig. 14.2(a). Because the beam is statically indeter-
minate to the second degree, we select the reactions By and Cy to be the
redundants. To determine the influence lines for the redundants, we place
a unit load successively at a number of positions X along the beam; and
for each position of the unit load, the ordinates of the influence lines for
By and Cy are evaluated by applying the compatibility equations (see
Fig. 14.2(a) through (d))

fBX þ fBBBy þ fBCCy ¼ 0 ð14:3Þ

fCX þ fCBBy þ fCCCy ¼ 0 ð14:4Þ
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Once the influence lines for the redundants have been obtained, the in-
fluence lines for the remaining reactions and the shears and bending
moments of the beam can be determined by statics.

As discussed previously, the analysis can be considerably expedited
by the application of Maxwell’s law of reciprocal deflections, according to
which fBX ¼ fXB and fCX ¼ fXC . Thus, the unit load needs to be placed
successively only at points B and C, and the deflections fXB and fXC at a
number of points X along the beam are computed instead of computing
the deflections fBX and fCX at points B and C, respectively, for each of a
number of positions of the unit load.

Procedure for Analysis

The procedure for constructing influence lines for statically indeterminate
structures by the method of consistent deformations can be summarized
as follows:

1. Determine the degree of indeterminacy of the structure and se-
lect redundants.

2. Select a number of points along the length of the structure at
which the numerical values of the ordinates of the influence lines
will be evaluated.

FIG. 14.2
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3. To construct the influence lines for the redundants, place a unit
load successively at each of the points selected in step 2; and for
each position of the unit load, apply the method of consistent
deformations to compute the values of the redundants. Plot the
values of the redundants thus obtained as ordinates against the
position of the unit load as abscissa, to construct the influence
lines for the redundants. (Evaluation of the deflections involved
in the compatibility equations can be considerably expedited by
the application of Maxwell’s law of reciprocal deflections, as il-
lustrated by Examples 14.1 through 14.3.)

4. Once the influence lines for the redundants have been determined,
the influence lines for the other force and/or moment response
functions of the structure can be obtained through equilibrium
considerations.

Example 14.1

Draw the influence lines for the reaction at support B and the bending moment at point C of the beam shown in Fig. 14.3(a).

Solution
The beam has one degree of indeterminacy. We select the vertical reaction By at the roller support B to be the redundant.
The ordinates of the influence lines will be computed at 3-m intervals at points A through E, as shown in Fig. 14.3(a).

Influence Line for Redundant By. The value of the redundant By for an arbitrary position X of the unit load can be
determined by solving the compatibility equation (see Fig. 14.3(b) and (c))

fBX þ fBBBy ¼ 0

from which

By ¼ �
fBX

fBB
ð1Þ

Since by Maxwell’s law of reciprocal deflections, fBX ¼ fXB, we place the unit load at B on the primary beam (Fig. 14.3(d))
and compute the deflections at points A through E by using the beam-deflection formulas given inside the front cover of the
book. Thus,

fBA ¼ fAB ¼ �
364:5 kN �m3=kN

EI

fBB ¼ �
243 kN �m3=kN

EI

fBC ¼ fCB ¼ �
126 kN �m3=kN

EI

fBD ¼ fDB ¼ �
36 kN �m3=kN

EI

fBE ¼ fEB ¼ 0

in which the negative signs indicate that these deflections are in the downward direction. Note that the flexibility coe‰cient
fBB in Eq. (1) denotes the upward (positive) deflection of the primary beam at B due to the unit value of the redundant By

continued
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(Fig. 14.3(c)), whereas the deflection fBB represents the downward (negative) deflection at B due to the external unit load
at B (Fig. 14.3(d)). Thus,

fBB ¼ �fBB ¼ þ
243 kN �m3=kN

EI

The ordinates of the influence line for By can now be evaluated by applying Eq. (1) successively for each position of the
unit load. For example, when the unit load is located at A, the value of By is obtained as

By ¼ �
fBA

fBB
¼ 364:5

243
¼ 1:5 kN=kN

The remaining ordinates of the influence line for By are calculated in a similar manner. These ordinates are tabulated in
Table 14.1, and the influence line for By is shown in Fig. 14.3(e). Ans.

5

1

3

FIG. 14.3

continued
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Influence Line for MC. With the influence line for By known, the ordinates of the influence line for the bending moment
at C can now be evaluated by placing the unit load successively at points A through E on the indeterminate beam and by
using the corresponding values of By computed previously. For example, as depicted in Fig. 14.3(f ), when the unit load is
located at point A, the value of the reaction at B is By ¼ 1:5 kN/kN. By considering the equilibrium of the free body of
the portion of the beam to the left of C, we obtain

MC ¼ �1ð6Þ þ 1:5ð3Þ ¼ �1:5 kN �m=kN

A B C D E

A B C D E

1.5

1.0

0.519

0.148
0

1.56

0.44

00A
B C D E

(d)  Primary Beam Subjected to Unit Load at B

(e)  Influence Line for By (kN/kN)

fBB

fCB

fDB

fAB

1 kN

(f)

(g)  Influence Line for MC (kN . m/kN)

By = 1.5

–1.5

E
A C D

B

1 kN

FIG. 14.3 (contd.)

continued
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The values of the remaining ordinates of the influence line are calculated in a similar manner. These ordinates are listed
in Table 14.1, and the influence line for MC is shown in Fig. 14.3(g). Ans.

Example 14.2

Draw the influence lines for the vertical reactions at the supports and the shear and bending moment at point C of the
two-span continuous beam shown in Fig. 14.4(a).

Solution
The beam is indeterminate to the first degree. We select the vertical reaction Dy at the interior support D as the redundant.
The influence line ordinates will be evaluated at 10-ft intervals at points A through F shown in Fig. 14.4(a).

Influence Line for Redundant Dy. The value of the redundant Dy for an arbitrary position X of the unit load can be
determined by solving the compatibility equation (see Fig. 14.4(b) and (c))

fDX þ fDDDy ¼ 0

from which

Dy ¼ �
fDX

fDD

ð1Þ

Since fDX ¼ fXD in accordance with Maxwell’s law, we place the unit load at D on the primary beam (Fig. 14.4(d)) and
compute the deflections at points A through F by using the conjugate-beam method. The conjugate beam is shown in
Fig. 14.4(e), from which we obtain the following:

fDA ¼ fAD ¼ 0

fDB ¼ fBD ¼ �
1

EI
86ð10Þ � 1

2

� �
ð10Þð2Þ 10

3

� �� �
¼ � 826:667 k-ft3=k

EI

fDC ¼ fCD ¼ �
1

EI
86ð20Þ � 1

2

� �
ð20Þð4Þ 20

3

� �� �
¼ � 1;453:333 k-ft3=k

EI

fDD ¼ �
1

EI
86ð30Þ � 1

2

� �
ð30Þð6Þð10Þ

� �
¼ � 1;680 k-ft3=k

EI

fDE ¼ fED ¼ �
1

EI
124ð10Þ � 1

2

� �
ð10Þð6Þ 10

3

� �� �
¼ � 1;140 k-ft3=k

EI

fDF ¼ fFD ¼ 0

TABLE 14.1

Influence Line Ordinates

Unit Load at By (kN/kN) MC (kN �m/kN)

A 1.5 �1.5
B 1.0 0

C 0.519 1.56

D 0.148 0.44

E 0 0

continued
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FIG. 14.4

continued
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FIG. 14.4 (contd.)

continued
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in which the negative signs indicate that these deflections occur in the downward direction. Note that the flexibility
coe‰cient fDD in Eq. (1) denotes the upward (positive) deflection of the primary beam at D due to the unit value of the
redundant Dy (Fig. 14.4(c)), whereas the deflection fDD represents the downward (negative) deflection at D due to the ex-
ternal unit load at D (Fig. 14.4(d)). Thus

fDD ¼ �fDD ¼ þ
1;680 k-ft3=k

EI

The ordinates of the influence line for Dy can now be computed by applying Eq. (1) successively for each position of the
unit load. For example, when the unit load is located at B, the value of Dy is given by

Dy ¼ �
fDB

fDD

¼ 826:667

1;680
¼ 0:492 k=k

The remaining ordinates of the influence line for Dy are computed in a similar manner. These ordinates are tabulated in
Table 14.2, and the influence line for Dy is shown in Fig. 14.4(f ). Ans.

Influence Lines for Ay and Fy. With the influence line for Dy known, the influence lines for the remaining reactions can
now be determined by applying the equations of equilibrium. For example, for the position of the unit load at point B as
shown in Fig. 14.4(g), the value of the reaction Dy has been found to be 0.492 k/k. By applying the equilibrium equa-
tions, we determine the values of the reactions Ay and Fy to be

þ ’
P

MF ¼ 0 �Ayð50Þ þ 1ð40Þ � 0:492ð20Þ ¼ 0

Ay ¼ 0:603 k=k "

þ "
P

Fy ¼ 0 0:603� 1þ 0:492þ Fy ¼ 0

Fy ¼ �0:095 k=k ¼ 0:095 k=k #

The values of the remaining influence line ordinates are computed in a similar manner. These ordinates are listed in
Table 14.2, and the influence lines for Ay and Fy are shown in Fig. 14.4(h) and (i), respectively. Ans.

Influence Lines for SC and MC. The ordinates of the influence lines for the shear and bending moment at C can now be
evaluated by placing the unit load successively at points A through F on the indeterminate beam and by using the cor-
responding values of the reactions computed previously. For example, as shown in Fig. 14.4(g), when the unit load is
located at point B, the values of the reactions are Ay ¼ 0:603 k/k; Dy ¼ 0:492 k/k; and Fy ¼ �0:095 k/k. By considering
the equilibrium of the free body of the portion of the beam to the left of C, we obtain

SC ¼ 0:603� 1 ¼ �0:397 k=k

MC ¼ 0:603ð20Þ � 1ð10Þ ¼ 2:06 k-ft=k

The values of the remaining ordinates of the influence lines are computed in a similar manner. These ordinates are listed in
Table 14.2, and the influence lines for the shear and bending moment at C are shown in Fig. 14.4( j) and (k), respectively.

Ans.

TABLE 14.2

Influence Line Ordinates

Unit Load at Dy (k/k) Ay (k/k) Fy (k/k) SC (k/k) MC (k-ft/k)

A 0 1.0 0 0 0

B 0.492 0.603 �0.095 �0.397 2.06

C 0.865 0.254 �0.119 �0.746 (left)

0.254 (right)

5.08

D 1.0 0 0 0 0

E 0.679 �0.072 0.393 �0.072 �1.44
F 0 0 1.0 0 0
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Example 14.3

Draw the influence lines for the reactions at supports for the beam shown in Fig. 14.5(a).

Solution
The beam is indeterminate to the second degree. We select the vertical reactions Dy and Gy at the roller supports D and G,
respectively, to be the redundants. The influence line ordinates will be evaluated at 5-m intervals at points A through G

shown in Fig. 14.5(a).

Influence Lines for Redundants Dy and Gy. The values of the redundants Dy and Gy for an arbitrary position X of the
unit load can be determined by solving the compatibility equations (see Fig. 14.5(b) through (d)):

fDX þ fDDDy þ fDGGy ¼ 0 ð1Þ

fGX þ fGDDy þ fGGGy ¼ 0 ð2Þ

Since by Maxwell’s law, fDX ¼ fXD, we place the unit load at D on the primary beam (Fig. 14.5(e)) and compute the
deflections at points A through G by using the beam-deflection formulas given inside the front cover of the book. Thus,

fDA ¼ fAD ¼ 0

fDB ¼ fBD ¼ �
166:667 kN �m3=kN

EI

fDC ¼ fCD ¼ �
583:333 kN �m3=kN

EI

fDD ¼ �
1;125 kN �m3=kN

EI

fDE ¼ fED ¼ �
1;687:5 kN �m3=kN

EI

fDF ¼ fFD ¼ �
2;250 kN �m3=kN

EI

fDG ¼ fGD ¼ �
2;812:5 kN �m3=kN

EI

Similarly, the deflections fGX ¼ fXG are computed by placing the unit load at G (Fig. 14.5(f )):

fGA ¼ fAG ¼ 0

fGB ¼ fBG ¼ �
354:167 kN �m3=kN

EI

fGC ¼ fCG ¼ �
1;333:333 kN �m3=kN

EI

fGE ¼ fEG ¼ �
4;666:667 kN �m3=kN

EI

fGF ¼ fFG ¼ �
6;770:833 kN �m3=kN

EI

fGG ¼ �
9;000 kN �m3=kN

EI

In these equations the negative signs indicate that these deflections are in the downward direction.

continued
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FIG. 14.5

continued
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The upward deflections due to the unit values of the redundants (Fig. 14.5(c) and (d)) are given by

fDD ¼ þ
1;125 kN �m3=kN

EI

fDG ¼ fGD ¼ þ
2;812:5 kN �m3=kN

EI

fGG ¼ þ
9;000 kN �m3=kN

EI

By substituting the numerical values of these flexibility coe‰cients into the compatibility equations (Eqs. (1) and (2))
and solving for Dy and Gy, we obtain

Dy ¼
EI

1;968:75
ð�8fDX þ 2:5fGX Þ ð3Þ

Gy ¼
EI

1;968:75
ð2:5fDX � fGX Þ ð4Þ

The values of the redundants Dy and Gy for each position of the unit load can now be determined by substituting the
corresponding values of the deflections fDX and fGX into Eqs. (3) and (4). For example, the ordinates of the influence lines
for Dy and Gy for the position of the unit load at B can be computed by substituting fDX ¼ fDB ¼ �166:667=EI and
fGX ¼ fGB ¼ �354:167=EI into Eqs. (3) and (4):

Dy ¼
EI

1;968:75
�8 � 166:667

EI

� �
þ 2:5 � 354:167

EI

� �� �
¼ 0:228 kN=kN "

Gy ¼
EI

1;968:75
2:5 � 166:667

EI

� �
þ 354:167

EI

� �
¼ �0:032 kN=kN

¼ 0:032 kN=kN #

The remaining ordinates of the influence lines for the redundants are computed in a similar manner. These ordinates are
tabulated in Table 14.3, and the influence lines for Dy and Gy are shown in Fig. 14.5(g) and (h), respectively. Ans.

Influence Lines for Ay and MA. The ordinates of the influence lines for the remaining reactions can now be determined
by placing the unit load successively at points A through G on the indeterminate beam and by applying the equations of
equilibrium. For example, for the position of the unit load at B (Fig. 14.5(i)), the values of the reactions Dy and Gy have
been found to be 0.228 kN/kN and �0.032 kN/kN, respectively. By considering the equilibrium of the beam, we deter-
mine the values of the reactions Ay and MA to be as follows:

þ "
P

Fy ¼ 0 Ay � 1þ 0:228� 0:032 ¼ 0

Ay ¼ 0:804 kN=kN "

TABLE 14.3

Influence Line Ordinates

Unit Load at Dy (kN/kN) Gy (kN/kN) Ay (kN/kN) MA (kN �m/kN)

A 0 0 1.0 0

B 0.228 �0.032 0.804 2.540

C 0.677 �0.063 0.386 1.735

D 1.0 0 0 0

E 0.931 0.228 �0.159 �0.805
F 0.545 0.582 �0.127 �0.635
G 0 1.0 0 0

continued
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þ ’
P

MA ¼ 0 MA � 1ð5Þ þ 0:228ð15Þ � 0:032ð30Þ ¼ 0

MA ¼ 2:54 kN �m=kN

’

The values of the remaining influence line ordinates are computed in a similar manner. These ordinates are listed in
Table 14.3, and the influence lines for Ay and MA are shown in Fig. 14.5( j) and (k), respectively. Ans.

Example 14.4

Draw the influence lines for the forces in members BC;BE, and CE of the truss shown in Fig. 14.6(a). Live loads are
transmitted to the top chord of the truss.

Solution
The truss is internally indeterminate to the first degree. We select the axial force FCE in the diagonal member CE to be
the redundant.

Influence Line for Redundant FCE. To determine the influence line for FCE , we place a unit load successively at joints B
and C of the truss, and for each position of the unit load, we apply the method of consistent deformations to compute the
value of FCE. The primary truss, obtained by removing member CE, is subjected separately to the unit load at B and C, as
shown in Fig. 14.6(b) and (c), respectively, and a unit tensile force in the redundant member CE, as shown in Fig. 14.6(d).

When the unit load is located at B, the compatibility equation can be expressed as

fCE;B þ fCE;CEFCE ¼ 0

in which fCE;B denotes the relative displacement between joints C and E of the primary truss due to the unit load at B
and fCE;CE denotes the relative displacements between the same joints due to a unit value of the redundant FCE . Apply-
ing the virtual work method (see Fig. 14.6(b) and (d) and Table 14.4), we obtain

fCE;B ¼
1

E

P uBuCEL

A
¼ � 37:856

E

fCE;CE ¼
1

E

P u2CEL

A
¼ 233:6

E

By substituting these numerical values into the compatibility equation, we determine the ordinate of the influence line
for FCE at B to be

FCE ¼ 0:162 k=k ðTÞ

Similarly, when the unit load is located at C, the compatibility equation is given by

fCE;C þ fCE;CEFCE ¼ 0

(see Fig. 14.6(c) and (d) and Table 14.4) in which

fCE;C ¼
1

E

P uCuCEL

A
¼ 91:856

E

By substituting the numerical values of fCE;C and fCE;CE into the compatibility equation, we determine the ordinate of
the influence line for FCE at C to be

FCE ¼ �0:393 k=k ¼ 0:393 k=k ðCÞ

The influence line for FCE is shown in Fig. 14.6(e). Ans.
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Influence Lines for FBC and FBE. The ordinate at B of the influence line for force in any member of the truss can be
determined by the superposition relationship (see Fig. 14.6(b) and (d) and Table 14.4)

F ¼ uB þ uCEFCE

in which FCE denotes the ordinate at B of the influence line for the redundant FCE . Thus the ordinates at B of the in-
fluence lines for FBC and FBE are

FBC ¼ �0:444þ ð�0:8Þð0:162Þ ¼ �0:575 k=k ¼ 0:575 k=k ðCÞ

FBE ¼ �0:667þ ð�0:6Þð0:162Þ ¼ �0:764 k=k ¼ 0:764 k=k ðCÞ

Similarly, the ordinates of the influence lines for FBC and FBE at C can be determined by using the superposition
relationship (see Fig. 14.6(c) and (d) and Table 14.4)

F ¼ uC þ uCEFCE

FIG. 14.6

continued
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in which FCE now denotes the ordinate at C of the influence line for the redundant FCE . Thus

FBC ¼ �0:889þ ð�0:8Þð�0:393Þ ¼ �0:575 k=k ¼ 0:575 k=k ðCÞ

FBE ¼ �0:333þ ð�0:6Þð�0:393Þ ¼ �0:097 k=k ¼ 0:097 k=k ðCÞ

The influence lines for FBC and FBE are shown in Fig. 14.6(f ) and (g), respectively. Ans.

14.2 Qualitative Influence Lines by Müller-Breslau’s Principle

In many practical applications, such as when designing continuous beams
or building frames subjected to uniformly distributed live loads, it is usu-
ally su‰cient to draw only the qualitative influence lines to decide where
to place the live loads to maximize the response functions of interest. As
in the case of statically determinate structures (Section 8.2), Müller-

Breslau’s principle provides a convenient means of establishing qualitative
influence lines for indeterminate structures.

Recall from Section 8.2 that Müller-Breslau’s principle can be
stated as follows:

The influence line for a force (or moment) response function is given by the

deflected shape of the released structure obtained by removing the restraint

corresponding to the response function from the original structure and by

giving the released structure a unit displacement (or rotation) at the location

and in the direction of the response function, so that only the response func-

tion and the unit load perform external work.

The procedure for constructing qualitative influence lines for indeter-
minate structures is the same as that for determinate structures discussed
in Section 8.2. The procedure essentially involves: (1) removing from the
given structure the restraint corresponding to the response function of in-
terest to obtain the released structure; (2) applying a small displacement
(or rotation) to the released structure at the location and in the positive
direction of the response function; and (3) drawing a deflected shape of

TABLE 14.4

Member
L

(in.)
A

(in.2)
uB

(k/k)
uC

(k/k)
uCE
(k/k)

uBuCEL

A

uCuCEL

A

u2CEL

A

AB 240 6 �0.889 �0.444 0 0 0 0

BC 240 6 �0.444 �0.889 �0.8 14.208 28.448 25.6

CD 240 6 �0.444 �0.889 0 0 0 0

EF 240 6 0.889 0.444 �0.8 �28.448 �14.208 25.6

BE 180 4 �0.667 �0.333 �0.6 18.009 8.991 16.2

CF 180 4 0 �1.0 �0.6 0 27.0 16.2

AE 300 6 1.111 0.555 0 0 0 0

BF 300 4 �0.555 0.555 1.0 �41.625 41.625 75.0

CE 300 4 0 0 1.0 0 0 75.0

DF 300 6 0.555 1.111 0 0 0 0P
�37.856 91.856 233.6
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the released structure consistent with its support and continuity con-
ditions. The influence lines for indeterminate structures are generally
curved lines.

Once a qualitative influence line for a structural response function has
been constructed, it can be used to decide where to place the live loads to
maximize the value of the response function. As discussed in Section 9.2,
the value of a response function due to a uniformly distributed live load is
maximum positive (or negative) when the load is placed over those por-
tions of the structure where the ordinates of the response function influ-
ence line are positive (or negative). Because the influence-line ordinates
tend to diminish rapidly with distance from the point of application of the
response function, live loads placed more than three span lengths away
from the location of the response function generally have a negligible
e¤ect on the value of the response function. With the live-load pattern
known, an indeterminate analysis of the structure can be performed to
determine the maximum value of the response function.

Example 14.5

Draw qualitative influence lines for the vertical reactions at supports A and B, the bending moment at point B, and the
shear and bending moment at point C of the four-span continuous beam shown in Fig. 14.7(a). Also, show the arrange-
ments of a uniformly distributed downward live load wl to cause the maximum positive reactions at supports A and B, the
maximum negative bending moment at B, the maximum negative shear at C, and the maximum positive bending moment
at C.

Solution
Influence Line for Ay. To determine the qualitative influence line for the vertical reaction Ay at support A, we remove the
vertical restraint at A from the actual beam and give the released beam a small displacement in the positive direction of Ay.
The deflected shape of the released beam thus obtained (Fig. 14.7(b)) represents the general shape of the influence line (i.e.,
the qualitative influence line) for Ay. Note that the deflected shape is consistent with the support conditions of the released
beam; that is, points B;D;E, and F of the released beam, which are attached to roller supports, do not displace. Ans.

FIG. 14.7

continued
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FIG. 14.7 (contd.)
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To maximize the positive value of Ay, the live load wl is placed over spans AB and DE of the beam, where the
ordinates of the influence line for Ay are positive, as shown in Fig. 14.7(b). Ans.

Influence Line for By. The qualitative influence line for By and the live-load arrangement for the maximum positive value
of By are determined in a similar manner and are shown in Fig. 14.7(c). Ans.

Influence Line for MB. To determine the qualitative influence line for the bending moment at B, we insert a hinge at B in
the actual beam and give the released beam a small rotation in the positive direction of MB by rotating the portion to the
left of B counterclockwise and the portion to the right of B clockwise, as shown in Fig. 14.7(d). The deflected shape of the
released beam thus obtained represents the qualitative influence line for MB. Ans.

To cause the maximum negative bending moment at B, we place the live load wl over spans AB;BD, and EF of the
beam, where the ordinates of the influence line for MB are negative, as shown in Fig. 14.7(d). Ans.

Influence Line for SC. The qualitative influence line for SC is determined by cutting the actual beam at C and by giving
the released beam a small relative displacement in the positive direction of SC by moving end C of the left portion of the
beam downward and end C of the right portion upward, as shown in Fig. 14.7(e). Ans.

To obtain the maximum negative shear at C, the live load is placed over span DE and the portion BC of the span
BD of the beam, where the ordinates of the influence line for Sc are negative, as shown in Fig. 14.7(e). Ans.

Influence Line for MC. The qualitative influence line for the bending moment at C and the live-load arrangement for the
maximum positive value of MC are shown in Fig. 14.7(f ). Ans.

Example 14.6

Draw qualitative influence lines for the bending moment and shear at point A of the building frame shown in Fig. 14.8(a).
Also, show the arrangements of a uniformly distributed downward live load wl that will cause the maximum positive
bending moment and the maximum negative shear at A.

Solution
Influence Line for MA. The qualitative influence line for the bending moment at A is shown in Fig. 14.8(b). Note that
since the members of the frame are connected together by rigid joints, the original angles between the members intersecting
at a joint must be maintained in the deflected shape of the frame. To obtain the maximum positive bending moment at A,
the live load wl is placed over those spans of the frame where the ordinates of the influence line for MA are positive, as
shown in Fig. 14.8(b). This type of live-load pattern is sometimes referred to as a checker-board load pattern. Ans.

Influence Line for SA. The qualitative influence line for the shear at A and the live-load arrangement for the maximum
negative value of SA are shown in Fig. 14.8(c). Ans.

FIG. 14.8

continued
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Summary

In this chapter we have discussed influence lines for statically indeter-
minate structures. The procedure for constructing such influence lines by
the method of consistent deformations essentially involves (1) construct-
ing the influence lines for the redundants by placing a unit load succes-
sively at a number of points along the length of the structure and, for
each position of the unit load, computing the values of the redundants
by applying the method of consistent deformations, and (2) using the
influence lines for the redundants and, by applying the equations of
equilibrium, determining the influence lines for other response functions
of the structure.

Evaluation of the deflections involved in the application of the me-
thod of consistent deformations can be considerably expedited by using
Maxwell’s law of reciprocal deflections. The procedure for constructing
qualitative influence lines for indeterminate structures by Müller-Breslau’s
principle is presented in Section 14.2.

FIG. 14.8 (contd.)
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PROBLEMS

Section 14.1

14.1 Draw the influence lines for the reactions at the sup-
ports and the shear and bending moment at point B of the
beam shown in Fig. P14.1. Determine the influence line or-
dinates at 3-m intervals. Select the reaction at support C to
be the redundant.

EI = constant

6 m

12 m

A B C

FIG. P14.1, P14.2

14.2 Determine the influence lines for the reactions at the
supports for the beam of Problem 14.1 by selecting the mo-
ment at support A to be the redundant. See Fig. P14.1.

14.3 Draw the influence lines for the reaction at support C
and the shear and bending moment at point B of the beam
shown in Fig. P14.3. Determine the influence line ordinates
at 5-ft intervals.

A B C D

15 ft

EI = constant

5 ft 5 ft

FIG. P14.3

14.4 Draw the influence lines for the reactions at the sup-
ports and the shear and bending moment at point C of the
beam shown in Fig. P14.4. Determine the influence line or-
dinates at 10-ft intervals.

FIG. P14.4

14.5 Draw the influence lines for the reactions at the sup-
ports and the shear and bending moment at point C of the
beam shown in Fig. P14.5. Determine the influence line or-
dinates at 5-m intervals.

EI = constant

10 m 10 m5 m

A B C D

FIG. P14.5

14.6 Draw the influence lines for the reactions at the sup-
ports and the shear and bending moment at point C of the
beam shown in Fig. P14.6. Determine the influence line or-
dinates at 4-m intervals.

FIG. P14.6

14.7 Draw the influence lines for the reactions at the sup-
ports and the forces in members BC;CE, and EF of the
truss shown in Fig. P14.7. Live loads are transmitted to the
bottom chord of the truss.

FIG. P14.7

14.8 Draw the influence lines for the reactions at the sup-
ports and the forces in members CD, CH, and GH of the
truss shown in Fig. P14.8. Live loads are transmitted to the
bottom chord of the truss.

EA

4 panels at 10 m = 40 m

10 m

HGF

B C D

EA = constant

FIG. P14.8
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14.9 Draw the influence lines for the forces in members BC
and CD of the truss shown in Fig. P14.9. Live loads are
transmitted to the top chord of the truss.

FIG. P14.9

14.10 Draw the influence lines for the forces in members
BC;BF , and CF of the truss shown in Fig. P14.10. Live
loads are transmitted to the bottom chord of the truss.

FIG. P14.10

14.11 Draw the influence lines for the reactions at supports
B and D and the shear and bending moment at point C of
the beam shown in Fig. P14.11. Determine the influence line
ordinates at 5-ft intervals.

FIG. P14.11

14.12 Draw the influence lines for the reactions at the sup-
ports for the beam shown in Fig. P14.12. Determine the in-
fluence line ordinates at 3-m intervals.

FIG. P14.12

14.13 Draw the influence lines for the reaction at support C
and the forces in members BC;CE, and EF of the truss
shown in Fig. P14.13. Live loads are transmitted to the bot-
tom chord of the truss.

FIG. P14.13

14.14 Draw the influence lines for the forces in members
BG;CD, and DG of the truss shown in Fig. P14.14. Live
loads are transmitted to the bottom chord of the truss.

FIG. P14.14

Section 14.2

14.15 through 14.18 Draw qualitative influence lines for the
vertical reactions at supports A and B, the bending moment
at point B, and the shear and bending moment at point C of
the beams shown in Figs. P14.15–P14.18. Also, show the
arrangements of a uniformly distributed downward live load
wl to cause the maximum upward reactions at supports A

and B, the maximum negative bending moment at B, the
maximum negative shear at C, and the maximum positive
bending moment at C.

A B C

L L LL
2

L
2

FIG. P14.15
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L 2 L L L

A B C

FIG. P14.16

A B C

L LLL
2

L
2

FIG. P14.17

A B C

L LL
2

L
2

FIG. P14.18

14.19 Draw qualitative influence lines for the bending mo-
ment and shear at point A of the building frame shown in
Fig. P14.19. Also, show the arrangements of a uniformly dis-
tributed downward live load wl to cause the maximum pos-
itive bending moment at A, and the maximum negative shear
at A.

FIG. P14.19

14.20 For the building frame shown in Fig. P14.20, determine
the arrangements of a uniformly distributed downward live
load wl that will cause the maximum negative bending mo-
ment at point A and the maximum positive bending moment
at point B.

FIG. P14.20
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15
Slope-Deflection Method
15.1 Slope-Deflection Equations
15.2 Basic Concept of the Slope-Deflection Method
15.3 Analysis of Continuous Beams
15.4 Analysis of Frames without Sidesway
15.5 Analysis of Frames with Sidesway

Summary
Problems

Petronas Towers, Kuala Lumpur,

Malaysia
Andrea Seemann/Shutterstock.com
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In Chapter 13, we considered the force (flexibility) method of analysis of
statically indeterminate structures. Recall that in the force method, the
unknown redundant forces are determined first by solving the structure’s
compatibility equations; then the other response characteristics of the
structure are evaluated by equilibrium equations or superposition. An
alternative approach that can be used for analyzing indeterminate struc-
tures is termed the displacement (sti¤ness) method. Unlike the force
method, in the displacement method the unknown displacements are de-
termined first by solving the structure’s equilibrium equations; then the
other response characteristics are evaluated through compatibility con-
siderations and member force-deformation relations.

In this chapter, we consider a classical formulation of the displace-
ment method, called the slope-deflection method. An alternative classical
formulation, the moment-distribution method, is presented in the next chap-
ter, followed by an introduction to the modern matrix sti¤ness method in
Chapter 17.

The slope-deflection method for the analysis of indeterminate beams
and frames was introduced by George A. Maney in 1915. The method
takes into account only the bending deformations of structures. Although
the slope-deflection method is itself considered to be a useful tool for an-
alyzing indeterminate beams and frames, an understanding of the funda-
mentals of this method provides a valuable introduction to the matrix
sti¤ness method, which forms the basis of most computer software cur-
rently used for structural analysis.



We first derive the fundamental relationships necessary for the ap-
plication of the slope-deflection method and then develop the basic
concept of the slope-deflection method. We consider the application of
the method to the analysis of continuous beams and present the analysis
of the frames in which joint translations are prevented. Finally, we con-
sider the analysis of frames with joint translations.

15.1 Slope-Deflection Equations

When a continuous beam or a frame is subjected to external loads, in-
ternal moments generally develop at the ends of its individual members.

The slope-deflection equations relate the moments at the ends of a member

to the rotations and displacements of its ends and the external loads applied

to the member.

To derive the slope-deflection equations, let us focus our attention on
an arbitrary member AB of the continuous beam shown in Fig. 15.1(a).
When the beam is subjected to external loads and support settlements,
member AB deforms, as shown in the figure, and internal moments are
induced at its ends. The free-body diagram and the elastic curve for mem-
ber AB are shown using an exaggerated scale in Fig. 15.1(b). As indicated
in this figure, double-subscript notation is used for member end moments,
with the first subscript identifying the member end at which the moment
acts and the second subscript indicating the other end of the member.
Thus, MAB denotes the moment at end A of member AB, whereas MBA

represents the moment at end B of member AB. Also, as shown in
Fig. 15.1(b), yA and yB denote, respectively, the rotations of ends A and B

of the member with respect to the undeformed (horizontal) position of
the member; D denotes the relative translation between the two ends of the
member in the direction perpendicular to the undeformed axis of the
member; and the angle c denotes the rotation of the member’s chord (i.e.,
the straight line connecting the deformed positions of the member ends)
due to the relative translation D. Since the deformations are assumed to be
small, the chord rotation can be expressed as

c ¼ D

L
ð15:1Þ

The sign convention used in this chapter is as follows:

The member end moments, end rotations, and

chord rotation are positive when counterclockwise.

Note that all the moments and rotations are shown in the positive sense
in Fig. 15.1(b).

The slope-deflection equations can be derived by relating the member
end moments to the end rotations and chord rotation by applying the sec-
ond moment-area theorem (Section 6.4). From Fig. 15.1(b), we can see that

yA ¼
DBA þ D

L
yB ¼

DAB þ D

L
ð15:2Þ
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FIG. 15.1
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By substituting D=L ¼ c into the preceding equations, we write

yA � c ¼ DBA

L
yB � c ¼ DAB

L
ð15:3Þ

in which, as shown in Fig. 15.1(b), DBA is the tangential deviation of end
B from the tangent to the elastic curve at end A and DAB is the tangential
deviation of end A from the tangent to the elastic curve at end B. Ac-
cording to the second moment-area theorem, the expressions for the tan-
gential deviations DBA and DAB can be obtained by summing the moments
about the ends B and A, respectively, of the area under the M=EI dia-
gram between the two ends.

FIG. 15.1 (contd.)
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The bending moment diagram for the member is constructed in parts
by applyingMAB;MBA, and the external loading separately on the member
with simply supported ends. The three simple-beam bending moment dia-

grams thus obtained are shown in Fig. 15.1(c). Assuming that the member
is prismatic—that is, EI is constant along the length of the member—we
sum the moments of the area under the M=EI diagram about the ends B
and A, respectively, to determine the tangential deviations:

DBA ¼
1

EI

MABL

2

� �
2L

3

� �
� MBAL

2

� �
L

3

� �
� gB

� �
or

DBA ¼
MABL

2

3EI
�MBAL

2

6EI
� gB

EI
ð15:4aÞ

and

DAB ¼
1

EI
� MABL

2

� �
L

3

� �
þ MBAL

2

� �
2L

3

� �
þ gA

� �
or

DAB ¼ �
MABL

2

6EI
þMBAL

2

3EI
þ gA

EI
ð15:4bÞ

in which gB and gA are the moments about the ends B and A, respec-
tively, of the area under the simple-beam bending moment diagram due
to external loading (ML diagram in Fig. 15.1(c)). The three terms in Eqs.
(15.4a) and (15.4b) represent the tangential deviations due to MAB;MBA,
and the external loading, acting separately on the member (Fig. 15.1(d)),
with a negative term indicating that the corresponding tangential devia-
tion is in the direction opposite to that shown on the elastic curve of the
member in Fig. 15.1(b).

By substituting the expressions for DBA and DAB (Eqs. (15.4)) into
Eq. (15.3), we write

yA � c ¼MABL

3EI
�MBAL

6EI
� gB

EIL
ð15:5aÞ

yB � c ¼ �MABL

6EI
þMBAL

3EI
þ gA

EIL
ð15:5bÞ

To express the member end moments in terms of the end rotations, the
chord rotation, and the external loading, we solve Eqs. (15.5a) and (15.5b)
simultaneously for MAB and MBA. Rewriting Eq. (15.5a) as

MBAL

3EI
¼ 2MABL

3EI
� 2gB
EIL
� 2ðyA � cÞ

By substituting this equation into Eq. (15.5b) and solving the resulting
equation for MAB, we obtain

MAB ¼
2EI

L
ð2yA þ yB � 3cÞ þ 2

L2
ð2gB � gAÞ ð15:6aÞ
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and by substituting Eq. (15.6a) into either Eq. (15.5a) or Eq. (15.5b), we
obtain the expression for MBA:

MBA ¼
2EI

L
ðyA þ 2yB � 3cÞ þ 2

L2
ðgB � 2gAÞ ð15:6bÞ

As Eqs. (15.6) indicate, the moments that develop at the ends of a mem-
ber depend on the rotations and translations of the member’s ends as
well as on the external loading applied between the ends.

Now, suppose that the member under consideration, instead of being
a part of a larger structure, was an isolated beam with both its ends com-
pletely fixed against rotations and translations, as shown in Fig. 15.1(e).
The moments that would develop at the ends of such a fixed beam are
referred to as fixed-end moments, and their expressions can be obtained
from Eqs. (15.6) by setting yA ¼ yB ¼ c ¼ 0; that is,

FEMAB ¼
2

L2
ð2gB � gAÞ ð15:7aÞ

FEMBA ¼
2

L2
ðgB � 2gAÞ ð15:7bÞ

in which FEMAB and FEMBA denote the fixed-end moments due to ex-
ternal loading at the ends A and B, respectively, of the fixed beam AB

(see Fig. 15.1(e)).
By comparing Eqs. (15.6) and (15.7), we find that the second terms

on the right sides of Eqs. (15.6) are equal to the fixed-end moments that
would develop if the ends of the member were fixed against rotations and
translations. Thus, by substituting Eqs. (15.7) into Eqs. (15.6), we obtain

MAB ¼
2EI

L
ð2yA þ yB � 3cÞ þ FEMAB ð15:8aÞ

MBA ¼
2EI

L
ðyA þ 2yB � 3cÞ þ FEMBA ð15:8bÞ

Equations (15.8), which express the moments at the ends of a member in
terms of its end rotations and translations for a specified external loading,
are called the slope-deflection equations. These equations are valid only for
prismatic members composed of linearly elastic material and subjected to
small deformations. Also, although the equations take into account the
bending deformations of members, the deformations due to axial forces
and shears are neglected.

From Eqs. (15.8), we observe that the two slope-deflection equations
have the same form and that either one of the equations can be obtained
from the other simply by switching the subscripts A and B. Thus it is usu-
ally convenient to express these equations by the following single slope-
deflection equation:

Mnf ¼
2EI

L
ð2yn þ yf � 3cÞ þ FEMnf ð15:9Þ

in which the subscript n refers to the near end of the member where the
moment Mnf acts and the subscript f identifies the far (other) end of the
member.
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Fixed-End Moments

The expressions for fixed-end moments due to any loading condition can
be derived by using the method of consistent deformations, as discussed in
Chapter 13 (see Example 13.10). However, it is usually more convenient
to determine the fixed-end moment expressions by applying Eqs. (15.7),
which require only the computation of the moments of the area under the
simple-beam bending moment diagram about the ends of the beam.

To illustrate the application of Eqs. (15.7), consider a fixed beam
subjected to a concentrated load P, as shown in Fig. 15.2(a). The fixed-
end moments of this beam were previously determined in Example 13.10
by the method of consistent deformations. To apply Eqs. (15.7), we re-
place the fixed ends of the beam by simple supports and construct the
simple-beam bending moment diagram, as shown in Fig. 15.2(b). The mo-
ments of the area under the simple-beam bending moment diagram about
the ends A and B are given by

gA ¼
1

2
a

Pab

L

� �
2a

3

� �
þ 1

2
b

Pab

L

� �
aþ b

3

� �

gB ¼
1

2
a

Pab

L

� �
a

3
þ b

� �
þ 1

2
b

Pab

L

� �
2b

3

� �

FIG. 15.2
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By substituting L ¼ aþ b into these equations and simplifying, we obtain

gA ¼
Pab

6
ð2aþ bÞ gB ¼

Pab

6
ðaþ 2bÞ

By substituting the expressions for gA and gB into Eqs. (15.7), we de-
termine the fixed-end moments to be

FEMAB ¼
2

L2

2Pab

6
ðaþ 2bÞ � Pab

6
ð2aþ bÞ

� �
¼ Pab2

L2

’

FEMBA ¼
2

L2

Pab

6
ðaþ 2bÞ � 2Pab

6
ð2aþ bÞ

� �
¼ �Pa2b

L2

Recall that Eqs. (15.7) are based on the sign convention that the counter-
clockwise end moments are positive. Thus the negative answer for FEMBA

indicates that its correct sense is clockwise; that is,

FEMBA ¼
Pa2b

L2
@

as shown in Fig. 15.2(c).
The fixed-end moment expressions for some common types of load-

ing conditions are given inside the back cover of the book for convenient
reference.

Members with One End Hinged

The slope-deflection equations derived previously (Eqs. (15.8) or Eq. (15.9))
are based on the condition that the member is rigidly connected to joints
at both ends, so that the member end rotations yA and yB are equal to
the rotations of the adjacent joints. When one of the member’s ends is
connected to the adjacent joint by a hinged connection, the moment at
the hinged end must be zero. The slope-deflection equations can be easily
modified to reflect this condition. With reference to Fig. 15.1(b), if the end
B of member AB is hinged, then the moment at B must be zero. By sub-
stituting MBA ¼ 0 into Eqs. (15.8), we write

MAB ¼
2EI

L
ð2yA þ yB � 3cÞ þ FEMAB ð15:10aÞ

MBA ¼ 0 ¼ 2EI

L
ðyA þ 2yB � 3cÞ þ FEMBA ð15:10bÞ

Solving Eq. (15.10b) for yB, we obtain

yB ¼ �
yA

2
þ 3

2
c� L

4EI
ðFEMBAÞ ð15:11Þ

To eliminate yB from the slope-deflection equations, we substitute
Eq. (15.11) into Eq. (15.10a), thus obtaining the modified slope-deflection

equations for member AB with a hinge at end B:

MAB ¼
3EI

L
ðyA � cÞ þ FEMAB �

FEMBA

2

� �
ð15:12aÞ

MBA ¼ 0 ð15:12bÞ
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Similarly, it can be shown that for a member AB with a hinge at end
A, the rotation of the hinged end is given by

yA ¼ �
yB

2
þ 3

2
c� L

4EI
ðFEMABÞ ð15:13Þ

and the modified slope-deflection equations can be expressed as

MBA ¼
3EI

L
ðyB � cÞ þ FEMBA �

FEMAB

2

� �
ð15:14aÞ

MAB ¼ 0 ð15:14bÞ

Because the modified slope-deflection equations given by Eqs. (15.12)
and (15.14) are similar in form, they can be conveniently summarized as

Mrh ¼
3EI

L
ðyr � cÞ þ FEMrh �

FEMhr

2

� �
ð15:15aÞ

Mhr ¼ 0 ð15:15bÞ

in which the subscript r refers to the rigidly connected end of the member
where the moment Mrh acts and the subscript h identifies the hinged end
of the member. The rotation of the hinged end can now be written as

yh ¼ �
yr

2
þ 3

2
c� L

4EI
ðFEMhrÞ ð15:16Þ

15.2 Basic Concept of the Slope-Deflection Method

To illustrate the basic concept of the slope-deflection method, consider the
three-span continuous beam shown in Fig. 15.3(a). Although the structure
actually consists of a single continuous beam between the fixed supports
A and D, for the purpose of analysis it is considered to be composed of

FIG. 15.3
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three members, AB; BC, and CD, rigidly connected at joints A;B;C, and
D located at the supports of the structure. Note that the continuous beam
has been divided into members and joints, so that the unknown external
reactions act only at the joints.

FIG. 15.3 (contd.)
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Degrees of Freedom

With the joint locations now established, we identify the unknown inde-
pendent displacements (translations and rotations) of the joints of the
structure. These unknown joint displacements are referred to as the de-

grees of freedom of the structure. From the qualitative deflected shape of
the continuous beam shown in Fig. 15.3(a), we can see that none of its
joints can translate. Furthermore, the fixed joints A and D cannot rotate,
whereas joints B and C are free to rotate. Thus the continuous beam has
two degrees of freedom, yB and yC , which represent the unknown rota-
tions of joints B and C, respectively.

The number of degrees of freedom is sometimes called the degree of

kinematic indeterminacy of the structure. Since the beam of Fig. 15.3(a)
has two degrees of freedom, it is considered to be kinematically indeter-
minate to the second degree. A structure without any degrees of freedom is
termed kinematically determinate. In other words, if the displacements of
all the joints of a structure are either zero or known, the structure is con-
sidered to be kinematically determinate.

Equations of Equilibrium

The unknown joint rotations are determined by solving the equations of
equilibrium of the joints that are free to rotate. The free-body diagrams
of the members and joints B and C of the continuous beam are shown in
Fig. 15.3(b). In addition to the external loads, each member is subjected
to an internal moment at each of its ends. Since the correct senses of the
member end moments are not yet known, it is assumed that the moments
at the ends of all the members are positive (counterclockwise) in accord-
ance with the slope-deflection sign convention adopted in the preceding
section. Note that the free-body diagrams of the joints show the member
end moments acting in an opposite (clockwise) direction, in accordance
with Newton’s law of action and reaction.

Because the entire structure is in equilibrium, each of its members
and joints must also be in equilibrium. By applying the moment equili-
brium equations

P
MB ¼ 0 and

P
MC ¼ 0, respectively, to the free

bodies of joints B and C, we obtain the equilibrium equations

MBA þMBC ¼ 0 ð15:17aÞ

MCB þMCD ¼ 0 ð15:17bÞ

Slope-Deflection Equations

The foregoing equilibrium equations (Eqs. (15.17)) can be expressed in
terms of the unknown joint rotations, yB and yC , by using slope-deflection
equations that relate member end moments to the unknown joint rotations.
However, before we can write the slope-deflection equations, we need to
compute the fixed-end moments due to the external loads acting on the
members of the continuous beam.

To calculate the fixed-end moments, we apply imaginary clamps at
joints B and C to prevent them from rotating, as shown in Fig. 15.3(c).
The fixed-end moments that develop at the ends of the members of this
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fully restrained or kinematically determinate structure can easily be eval-
uated either by applying Eqs. (15.7) or by using the fixed-end moment
expressions given inside the back cover of the book. By using the fixed-
end moment expressions, we calculate the fixed-end moments as follows:

For member AB:

FEMAB ¼
wL2

12
¼ 1:5ð20Þ2

12
¼ 50 k-ft

’

or þ50 k-ft

FEMBA ¼ 50 k-ft @ or �50 k-ft

For member BC:

FEMBC ¼
PL

8
¼ 30ð20Þ

8
¼ 75 k-ft

’

or þ75 k-ft

FEMCB ¼ 75 k-ft @ or �75 k-ft

Note that, in accordance with the slope-deflection sign convention, the
counterclockwise fixed-end moments are considered to be positive. Since
no external loads act on member CD, its fixed-end moments are zero;
that is,

FEMCD ¼ FEMDC ¼ 0

The fixed-end moments are shown on the diagram of the restrained
structure in Fig. 15.3(c).

The slope-deflection equations for the three members of the contin-
uous beam can now be written by using Eq. (15.9). Since none of the sup-
ports of the continuous beam translates, the chord rotations of the three
members are zero (i.e., cAB ¼ cBC ¼ cCD ¼ 0). Also, since supports A and
D are fixed, the rotations yA ¼ yD ¼ 0. By applying Eq. (15.9) for member
AB, with A as the near end and B as the far end, we obtain the slope-
deflection equation

MAB ¼
2EI

20
ð0þ yB � 0Þ þ 50 ¼ 0:1EIyB þ 50 ð15:18aÞ

Next, by considering B as the near end and A as the far end, we write

MBA ¼
2EI

20
ð2yB þ 0� 0Þ � 50 ¼ 0:2EIyB � 50 ð15:18bÞ

Similarly, by applying Eq. (15.9) for member BC, we obtain

MBC ¼
2EI

20
ð2yB þ yCÞ þ 75 ¼ 0:2EIyB þ 0:1EIyC þ 75 ð15:18cÞ

MCB ¼
2EI

20
ð2yC þ yBÞ � 75 ¼ 0:2EIyC þ 0:1EIyB � 75 ð15:18dÞ

and for member CD,

MCD ¼
2EI

15
ð2yCÞ ¼ 0:267EIyC ð15:18eÞ

MDC ¼
2EI

15
ðyCÞ ¼ 0:133EIyC ð15:18fÞ
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These slope-deflection equations automatically satisfy the compatibility
conditions of the structure. Since the member ends are rigidly connected
to the adjacent joints, the rotations of member ends are equal to the ro-
tations of the adjacent joints. Thus, the y terms in the slope-deflection
equations (Eqs. (15.18)) represent the rotations of the member ends as
well as those of the joints.

Joint Rotations

To determine the unknown joint rotations yB and yC , we substitute the
slope-deflection equations (Eqs. (15.18)) into the joint equilibrium equa-
tions (Eqs. (15.17)) and solve the resulting system of equations simulta-
neously for yB and yC . Thus by substituting Eqs. (15.18b) and (15.18c)
into Eq. (15.17a), we obtain

ð0:2EIyB � 50Þ þ ð0:2EIyB þ 0:1EIyC þ 75Þ ¼ 0

or

0:4EIyB þ 0:1EIyC ¼ �25 ð15:19aÞ

and by substituting Eqs. (15.18d) and (15.18e) into Eq. (15.17b), we get

ð0:2EIyC þ 0:1EIyB � 75Þ þ 0:267EIyC ¼ 0

or

0:1EIyB þ 0:467EIyC ¼ 75 ð15:19bÞ

Solving Eqs. (15.19a) and (15.19b) simultaneously for EIyB and EIyC ,
we obtain

EIyB ¼ �108:46 k-ft2

EIyC ¼ 183:82 k-ft2

By substituting the numerical values of E ¼ 29;000 ksi ¼ 29;000ð12Þ2 ksf
and I ¼ 500 in.4 ¼ ð500=124Þ ft4, we determine the rotations of joints B
and C to be

yB ¼ �0:0011 rad or 0:0011 rad @

yC ¼ 0:0018 rad

’

Member End Moments

The moments at the ends of the three members of the continuous beam
can now be determined by substituting the numerical values of EIyB
and EIyC into the slope-deflection equations (Eqs. (15.18)). Thus

MAB ¼ 0:1ð�108:46Þ þ 50 ¼ 39:2 k-ft

’

MBA ¼ 0:2ð�108:46Þ � 50 ¼ �71:7 k-ft or 71:7 k-ft @

MBC ¼ 0:2ð�108:46Þ þ 0:1ð183:82Þ þ 75 ¼ 71:7 k-ft

’
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MCB ¼ 0:2ð183:82Þ þ 0:1ð�108:46Þ � 75

¼ �49:1 k-ft or 49:1 k-ft @

MCD ¼ 0:267ð183:82Þ ¼ 49:1 k-ft

’

MDC ¼ 0:133ð183:82Þ ¼ 24:4 k-ft

’

Note that a positive answer for an end moment indicates that its sense is
counterclockwise, whereas a negative answer for an end moment implies
a clockwise sense.

To check that the solution of simultaneous equations (Eqs. (15.19))
has been carried out correctly, the numerical values of member end
moments should be substituted into the joint equilibrium equations
(Eqs. (15.17)). If the solution is correct, then the equilibrium equations
should be satisfied.

MBA þMBC ¼ �71:7þ 71:7 ¼ 0 Checks

MCB þMCD ¼ �49:1þ 49:1 ¼ 0 Checks

Member End Shears

The member end moments just computed are shown on the free-body
diagrams of the members and joints in Fig. 15.3(d). The shear forces at
the ends of members can now be determined by applying the equations
of equilibrium to the free bodies of the members. Thus, for member AB,

þ ’
P

MB ¼ 0 39:2� SABð20Þ þ 1:5ð20Þð10Þ � 71:7 ¼ 0

SAB ¼ 13:38 k "

þ "
P

Fy ¼ 0 13:38� 1:5ð20Þ þ SBA ¼ 0

SBA ¼ 16:62 k "

Similarly, for member BC,

þ ’
P

MC ¼ 0 71:7� SBCð20Þ þ 30ð10Þ � 49:1 ¼ 0

SBC ¼ 16:13 k "

þ "
P

Fy ¼ 0 16:13� 30þ SCB ¼ 0

SCB ¼ 13:87 k "
and for member CD,

þ ’
P

MD ¼ 0 49:1� SCDð15Þ þ 24:4 ¼ 0 SCD ¼ 4:9 k "

þ "
P

Fy ¼ 0 SDC ¼ 4:9 k #

The foregoing member end shears can, alternatively, be evaluated by
superposition of end shears due to the external load and each of the end
moments acting separately on the member. For example, the shear at
end A of member AB is given by

SAB ¼
1:5ð20Þ

2
þ 39:2

20
� 71:7

20
¼ 13:38 k "
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in which the first term equals the shear due to the 1.5-k/ft uniformly dis-
tributed load, whereas the second and third terms are the shears due to
the 39.2-k-ft and 71.7-k-ft moments, respectively, at the ends A and B of
the member.

Support Reactions

From the free-body diagram of joint B in Fig. 15.3(d), we can see that
the vertical reaction at the roller support B is equal to the sum of the
shears at ends B of members AB and BC; that is,

By ¼ SBA þ SBC ¼ 16:62þ 16:13 ¼ 32:75 k "

Similarly, the vertical reaction at the roller support C equals the sum of
the shears at ends C of members BC and CD. Thus

Cy ¼ SCB þ SCD ¼ 13:87þ 4:9 ¼ 18:77 k "

The reactions at the fixed support A are equal to the shear and moment
at the end A of member AB; that is,

Ay ¼ SAB ¼ 13:38 k "

MA ¼MAB ¼ 39:2 k-ft

’

Similarly, the reactions at the fixed support D equal the shear and mo-
ment at end D of member CD. Thus

Dy ¼ SDC ¼ 4:9 k #

MD ¼MDC ¼ 24:4 k-ft

’

The support reactions are shown in Fig. 15.3(e).

Equilibrium Check

To check our computations of member end shears and support reactions,
we apply the equations of equilibrium to the free body of the entire
structure. Thus (Fig. 15.3(e)),

þ "
P

Fy ¼ 0

13:38� 1:5ð20Þ þ 32:75� 30þ 18:77� 4:9 ¼ 0 Checks

þ ’
P

MD ¼ 0

39:2� 13:38ð55Þ þ 1:5ð20Þð45Þ � 32:75ð35Þ þ 30ð25Þ

� 18:77ð15Þ þ 24:4 ¼ �0:1&0 Checks

This equilibrium check, as well as the check performed previously on the
solution of simultaneous equations, does not detect any errors involved
in the slope-deflection equations. Therefore, the slope-deflection equa-
tions should be developed very carefully and should always be checked
before proceeding with the rest of the analysis.
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Shear and Bending Moment Diagrams

With the support reactions known, the shear and bending moment dia-
grams can now be constructed in the usual manner by using the beam sign

convention described in Section 5.1. The shear and bending moment dia-
grams thus obtained for the continuous beam are shown in Fig. 15.3(f )
and (g), respectively.

15.3 Analysis of Continuous Beams

Based on the discussion presented in the preceding section, the procedure
for the analysis of continuous beams by the slope-deflection method can
be summarized as follows:

1. Identify the degrees of freedom of the structure. For continuous
beams, the degrees of freedom consist of the unknown rotations
of the joints.

2. Compute fixed-end moments. For each member of the structure,
evaluate the fixed-end moments due to the external loads by
using the expressions given inside the back cover of the book. The
counterclockwise fixed-end moments are considered to be positive.

3. In the case of support settlements, determine the rotations of the
chords of members adjacent to the supports that settle by divid-
ing the relative translation between the two ends of the member
by the member length ðc ¼ D=LÞ. The chord rotations are mea-
sured from the undeformed (horizontal) positions of members,
with counterclockwise rotations considered as positive.

4. Write slope-deflection equations. For each member, apply Eq.
(15.9) to write two slope-deflection equations relating member
end moments to the unknown rotations of the adjacent joints.

5. Write equilibrium equations. For each joint that is free to ro-
tate, write a moment equilibrium equation,

P
M ¼ 0, in terms

of the moments at the member ends connected to the joint. The
total number of such equilibrium equations must be equal to
the number of degrees of freedom of the structure.

6. Determine the unknown joint rotations. Substitute the slope-
deflection equations into the equilibrium equations, and solve the
resulting system of equations for the unknown joint rotations.

7. Calculate member end moments by substituting the numerical
values of joint rotations determined in step 6 into the slope-
deflection equations. A positive answer for an end moment in-
dicates that its sense is counterclockwise, whereas a negative
answer for an end moment implies a clockwise sense.

8. To check whether or not the solution of simultaneous equations
was carried out correctly in step 6, substitute the numerical val-
ues of member end moments into the joint equilibrium equa-
tions developed in step 5. If the solution is correct, then the
equilibrium equations should be satisfied.

9. Compute member end shears. For each member, (a) draw a
free-body diagram showing the external loads and end moments
and (b) apply the equations of equilibrium to calculate the shear
forces at the ends of the member.
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10. Determine support reactions by considering the equilibrium of
the joints of the structure.

11. To check the calculations of member end shears and support
reactions, apply the equations of equilibrium to the free body
of the entire structure. If the calculations have been carried out
correctly, then the equilibrium equations should be satisfied.

12. Draw shear and bending moment diagrams of the structure by
using the beam sign convention.

Beams with Simple Supports at Their Ends

Although the foregoing procedure can be used to analyze continuous
beams that are simply supported at one or both ends, the analysis of
such structures can be considerably expedited by using the modified
slope-deflection equations (Eqs. (15.15)) for spans adjacent to the simple
end supports, thereby eliminating the rotations of simple supports from
the analysis (see Example 15.3). However, this simplified approach can
be used only for those simple end supports at which no external moment
is applied. This is because the modified slope-deflection equations for a
member with one end hinged (Eqs. (15.15)) are based on the condition
that the moment at the hinged end is zero.

Structures with Cantilever Overhangs

Consider a continuous beam with a cantilever overhang, as shown in
Fig. 15.4(a). Since the cantilever portion CD of the beam is statically

FIG. 15.4

Section 15.3 Analysis of Continuous Beams 599



determinate in the sense that the shear and moment at its end C can be
obtained by applying the equations of equilibrium (Fig. 15.4(b)), it is not
necessary to include this portion in the analysis. Thus, for the purpose of
analysis, the cantilever portion CD can be removed from the structure,
provided that the moment and the force exerted by the cantilever on the
remaining structure are included in the analysis. The indeterminate part
AC of the structure, which needs to be analyzed, is shown in Fig. 15.4(c).

Example 15.1

Determine the reactions and draw the shear and bending moment diagrams for the two-span continuous beam shown in
Fig. 15.5(a) by the slope-deflection method.

Solution
Degrees of Freedom. From Fig. 15.5(a), we can see that only joint B of the beam is free to rotate. Thus, the structure
has only one degree of freedom, which is the unknown joint rotation, yB.

Fixed-End Moments. By using the fixed-end moment expressions given inside the back cover of the book, we evaluate
the fixed-end moments due to the external loads for each member:

FEMAB ¼
Pab2

L2
¼ 18ð10Þð15Þ2

ð25Þ2
¼ 64:8 k-ft

’

or þ64:8 k-ft

FEMBA ¼
Pa2b

L2
¼ 18ð10Þ2ð15Þ

ð25Þ2
¼ 43:2 k-ft @ or �43:2 k-ft

FEMBC ¼
wL2

12
¼ 2ð30Þ2

12
¼ 150 k-ft

’

or þ150 k-ft

FEMCB ¼ 150 k-ft @ or �150 k-ft

Note that in accordance with the slope-deflection sign convention, the counterclockwise fixed-end moments are consid-
ered as positive, whereas the clockwise fixed-end moments are considered to be negative.

Chord Rotations. Since no support settlements occur, the chord rotations of both members are zero; that is, cAB ¼ cBC ¼ 0.

Slope-Deflection Equations. To relate the member end moments to the unknown joint rotation, yB, we write the slope-
deflection equations for the two members of the structure by applying Eq. (15.9). Note that since the supports A and C

are fixed, the rotations yA ¼ yC ¼ 0. Thus the slope-deflection equations for member AB can be expressed as

MAB ¼
2EI

25
ðyBÞ þ 64:8 ¼ 0:08EIyB þ 64:8 (1)

MBA ¼
2EI

25
ð2yBÞ � 43:2 ¼ 0:16EIyB � 43:2 (2)

Similarly, by applying Eq. (15.9) for member BC, we obtain the slope-deflection equations

MBC ¼
2EI

30
ð2yBÞ þ 150 ¼ 0:133EIyB þ 150 (3)

MCB ¼
2EI

30
ðyBÞ � 150 ¼ 0:0667EIyB � 150 (4)

continued
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Equilibrium Equation. The free-body diagram of joint B is shown in Fig. 15.5(b). Note that the member end moments,
which are assumed to be in a counterclockwise direction on the ends of the members, must be applied in the (opposite)
clockwise direction on the free body of the joint, in accordance with Newton’s third law. By applying the moment equi-
librium equation

P
MB ¼ 0 to the free body of joint B, we obtain the equilibrium equation

MBA þMBC ¼ 0 (5)

FIG. 15.5

continued
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Joint Rotation. To determine the unknown joint rotation, yB, we substitute the slope-deflection equations (Eqs. (2) and
(3)) into the equilibrium equation (Eq. (5)) to obtain

ð0:16EIyB � 43:2Þ þ ð0:133EIyB þ 150Þ ¼ 0

or
0:293EIyB ¼ �106:8

from which
EIyB ¼ �364:5 k-ft2

Member End Moments. The member end moments can now be computed by substituting the numerical value of EIyB
back into the slope-deflection equations (Eqs. (1) through (4)). Thus,

MAB ¼ 0:08ð�364:5Þ þ 64:8 ¼ 35:6 k-ft

’

MBA ¼ 0:16ð�364:5Þ � 43:2 ¼ �101:5 k-ft or 101:5 k-ft @

MBC ¼ 0:133ð�364:5Þ þ 150 ¼ 101:5 k-ft

’

MCB ¼ 0:0667ð�364:5Þ � 150 ¼ �174:3 k-ft or 174:3 k-ft @

Note that a positive answer for an end moment indicates that its sense is counterclockwise, whereas a negative answer for
an end moment implies a clockwise sense. Since the end moments MBA and MBC are equal in magnitude but opposite in
sense, the equilibrium equation, MBA þMBC ¼ 0, is indeed satisfied.

Member End Shears. The member end shears, obtained by considering the equilibrium of each member, are shown in
Fig. 15.5(c).

Support Reactions. The reactions at the fixed supports A and C are equal to the forces and moments at the ends of the
members connected to these joints. To determine the reaction at the roller support B, we consider the equilibrium of the
free body of joint B in the vertical direction (see Fig. 15.5(c)), to obtain

By ¼ SBA þ SBC ¼ 9:84þ 27:57 ¼ 37:41 k "

The support reactions are shown in Fig. 15.5(d). Ans.

Equilibrium Check. To check our calculations of member end shears and support reactions, we apply the equations of
equilibrium to the free body of the entire structure. Thus (see Fig. 15.5(d)),

þ "
P

Fy ¼ 0

8:16� 18þ 37:41� 2ð30Þ þ 32:43 ¼ 0 Checks

þ ’
P

MC ¼ 0

35:6� 8:16ð55Þ þ 18ð45Þ � 37:41ð30Þ þ 2ð30Þð15Þ � 174:3 ¼ 0:2&0 Checks

Shear and Bending Moment Diagrams. The shear and bending moment diagrams can now be constructed by using the
beam sign convention described in Section 5.1. These diagrams are shown in Fig. 15.5(e) and (f ). Ans.

Example 15.2

Determine the reactions and draw the shear and bending moment diagrams for the three-span continuous beam shown
in Fig. 15.6(a) by the slope-deflection method.

continued
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Solution
Degrees of Freedom. yB and yC

Fixed-End Moments.

FEMAB ¼
3ð18Þ2

30
¼ 32:4 k-ft

’

or þ32:4 k-ft

FEMBA ¼
3ð18Þ2

20
¼ 48:6 k-ft @ or �48:6 k-ft

FEMBC ¼
3ð18Þ2

12
¼ 81 k-ft

’

or þ81 k-ft

FEMCB ¼ 81 k-ft @ or �81 k-ft

EI = constant

(a) Continous Beam

(b) Free-Body Diagrams of Joints B and C

18 ft 18 ft

3 k/ft

18 ft

A D
B C

3 k/ft

(c) Member End Moments and Shears

B
MBA

MBC
C

MCB

MCD

3 k/ft

A B B C21.6

6.3 20.7
70.2 70.2

3 k/ft

DC 21.6

6.320.72727
70.270.2

B

20.7 27

By = 47.7

C

27 20.7

Cy = 47.7

(d) Support Reactions

3 k/ft

BA DC

47.7 k47.7 k6.3 k 6.3 k

21.6
k-ft

21.6
k-ft

FIG. 15.6

continued
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FEMCD ¼
3ð18Þ2

20
¼ 48:6 k-ft

’

or þ48:6 k-ft

FEMDC ¼
3ð18Þ2

30
¼ 32:4 k-ft @ or �32:4 k-ft

Slope-Deflection Equations. Using Eq. (15.9) for members AB, BC, and CD, we write

MAB ¼
2EI

18
ðyBÞ þ 32:4 ¼ 0:111EIyB þ 32:4 (1)

MBA ¼
2EI

18
ð2yBÞ � 48:6 ¼ 0:222EIyB � 48:6 (2)

MBC ¼
2EI

18
ð2yB þ yCÞ þ 81 ¼ 0:222EIyB þ 0:111EIyC þ 81 (3)

MCB ¼
2EI

18
ðyB þ 2yCÞ � 81 ¼ 0:111EIyB þ 0:222EIyC � 81 (4)

MCD ¼
2EI

18
ð2yCÞ þ 48:6 ¼ 0:222EIyC þ 48:6 (5)

MDC ¼
2EI

18
ðyCÞ � 32:4 ¼ 0:111EIyC � 32:4 (6)

Equilibrium Equations. See Fig. 15.6(b).

MBA þMBC ¼ 0 (7)

MCB þMCD ¼ 0 (8)

8.7 ft –6.3

(e) Shear Diagram (k)

(f) Bending Moment Diagram (k-ft)

E

A

E F G

B C D

F

BA C G
D

6.3

27

–20.7

20.7

–27

9 ft

8.7 ft

–21.6 –21.6

–70.2 –70.2

14.9

51.3

14.9

FIG. 15.6 (contd.)
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Joint Rotations. By substituting the slope-deflection equations (Eqs. (1) through (6)) into the equilibrium equations
(Eqs. (7) and (8)), we obtain

0:444EIyB þ 0:111EIyC ¼ �32:4 (9)

0:111EIyB þ 0:444EIyC ¼ 32:4 (10)

By solving Eqs. (9) and (10) simultaneously, we determine the values of EIyB and EIyC to be

EIyB ¼ �97:3 k-ft2

EIyC ¼ 97:3 k-ft2

Member End Moments. To compute the member end moments, we substitute the numerical values of EIyB and EIyC
back into the slope-deflection equations (Eqs. (1) through (6)) to obtain

MAB ¼ 0:111ð�97:3Þ þ 32:4 ¼ 21:6 k-ft

’

Ans.

MBA ¼ 0:222ð�97:3Þ � 48:6 ¼ �70:2 k-ft or 70:2 k-ft @ Ans.

MBC ¼ 0:222ð�97:3Þ þ 0:111ð97:3Þ þ 81 ¼ 70:2 k-ft

’

Ans.

MCB ¼ 0:111ð�97:3Þ þ 0:222ð97:3Þ � 81

¼ �70:2 k-ft or 70:2 k-ft @ Ans.

MCD ¼ 0:222ð97:3Þ þ 48:6 ¼ 70:2 k-ft

’

Ans.

MDC ¼ 0:111ð97:3Þ � 32:4 ¼ �21:6 k-ft or 21:6 k-ft @ Ans.

Note that the numerical values of MBA;MBC ;MCB, and MCD do satisfy the equilibrium equations (Eqs. (7) and (8)).

Member End Shears and Support Reactions. See Fig. 15.6(c) and (d). Ans.

Equilibrium Check. The equilibrium equations check.

Shear and Bending Moment Diagrams. See Fig. 15.6(e) and (f ). Ans.

Example 15.3

Determine the member end moments and reactions for the continuous beam shown in Fig. 15.7(a) by the slope-
deflection method.

Solution
This beam was previously analyzed in Example 13.6 by the method of consistent deformations.

From Fig. 15.7(a), we can see that all three joints of the beam are free to rotate. Thus the beam can be considered
to have three degrees of freedom, yA; yB, and yD, and it can be analyzed by using the usual slope-deflection equations
(Eq. (15.9)) for members rigidly connected at both ends. However, this approach is quite time consuming, since it re-
quires solving three simultaneous equations to determine the three unknown joint rotations.

Since the end supports A and D of the beam are simple supports at which no external moment is applied, the mo-
ments at the end A of member AB and at the end D of member BD must be zero. (This can easily be verified by consid-
ering moment equilibrium of the free bodies of joints A and D shown in Fig. 15.7(b).) Thus the end A of member AB and
the end D of member BD can be considered to be hinged ends, and the modified slope-deflection equations (Eqs. (15.15))
can be used for these members. Furthermore, since the modified slope-deflection equations do not contain the rotations
of the hinged ends, by using these equations the rotations yA and yD of the simple supports can be eliminated from the
analysis, which will then involve only one unknown joint rotation, yB. It should be noted that once yB has been eval-
uated, the values of the rotations yA and yD, if desired, can be computed by using Eq. (15.16). In the following, we use
this simplified approach to analyze the continuous beam.

continued
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Degrees of Freedom. yB

Fixed-End Moments.

FEMAB ¼
15ð10Þ2

12
¼ 125 kN �m ’

or þ125 kN �m

FEMBA ¼ 125 kN �m @ or �125 kN �m

FEMBD ¼
60ð10Þ

8
þ 15ð10Þ2

12
¼ 200 kN �m ’

or þ200 kN �m

FEMDB ¼ 200 kN �m @ or �200 kN �m

FIG. 15.7

continued
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Slope-Deflection Equations. Since both members of the beam have one end hinged, we use Eqs. (15.15) to obtain the
slope-deflection equations for both members. Thus

MAB ¼ 0 Ans.

MBA ¼
3EI

10
ðyBÞ þ �125� 125

2

� �
¼ 0:3EIyB � 187:5 (1)

MBD ¼
3Eð2IÞ
10

ðyBÞ þ 200þ 200

2

� �
¼ 0:6EIyB þ 300 (2)

MDB ¼ 0 Ans.

Equilibrium Equation. By considering the moment equilibrium of the free body of joint B (Fig. 15.7(b)), we obtain the
equilibrium equation

MBA þMBD ¼ 0 (3)

Joint Rotation. To determine the unknown joint rotation yB, we substitute the slope-deflection equations (Eqs. (1) and
(2)) into the equilibrium equation (Eq. (3)) to obtain

ð0:3EIyB � 187:5Þ þ ð0:6EIyB þ 300Þ ¼ 0

or

0:9EIyB ¼ �112:5

from which

EIyB ¼ �125 kN �m2

Member End Moments. The member end moments can now be computed by substituting the numerical value of EIyB
into the slope-deflection equations (Eqs. (1) and (2)). Thus

MBA ¼ 0:3ð�125Þ � 187:5 ¼ �225 kN �m or 225 kN �m @ Ans.

MBD ¼ 0:6ð�125Þ þ 300 ¼ 225 kN �m ’

Ans.

Member End Shears and Support Reactions. See Fig. 15.7(c) and (d).

Equilibrium Check. See Fig. 15.7(d).

þ "
P

Fy ¼ 0 52:5� 15ð20Þ þ 225� 60þ 82:5 ¼ 0 Checks

þ ’
P

MD ¼ 0

�52:5ð20Þ þ 15ð20Þð10Þ � 225ð10Þ þ 60ð5Þ ¼ 0 Checks

Example 15.4

Determine the member end moments and reactions for the continuous beam shown in Fig. 15.8(a) by the slope-
deflection method.

Solution
Since the moment and shear at end C of the cantilever member CD of the beam can be computed directly by applying
the equations of equilibrium (see Fig. 15.8(b)), it is not necessary to include this member in the analysis. Thus, only the
indeterminate part AC of the beam, shown in Fig. 15.8(c), needs to be analyzed. Note that, as shown in this figure, the
120-kN �m moment and the 30-kN force exerted at joint C by the cantilever CD must be included in the analysis.

continued
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FIG. 15.8
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Degrees of Freedom. From Fig. 15.8(c), we can see that joints B and C are free to rotate. Thus, the structure to be ana-
lyzed has two degrees of freedom, which are the unknown joint rotations yB and yC .

Fixed-End Moments.

FEMAB ¼ FEMBA ¼ 0

FEMBC ¼
10ð9Þ2

12
¼ 67:5 kN �m ’

or þ67:5 kN �m

FEMCB ¼ 67:5 kN �m @ or �67:5 kN �m

Slope-Deflection Equations. By applying Eq. (15.9) to members AB and BC, we write the slope-deflection equations:

MAB ¼
2EI

6
ðyBÞ ¼ 0:333EIyB (1)

MBA ¼
2EI

6
ð2yBÞ ¼ 0:667EIyB (2)

MBC ¼
2EI

9
ð2yB þ yCÞ þ 67:5 ¼ 0:444EIyB þ 0:222EIyC þ 67:5 (3)

MCB ¼
2EI

9
ð2yC þ yBÞ � 67:5 ¼ 0:222EIyB þ 0:444EIyC � 67:5 (4)

Equilibrium Equations. By considering the moment equilibrium of the free bodies of joints B and C (Fig. 15.8(d)), we
obtain the equilibrium equations

MBA þMBC ¼ 0 (5)

MCB þ 120 ¼ 0 (6)

Joint Rotations. Substitution of the slope-deflection equations (Eqs. (2) through (4)) into the equilibrium equations
(Eqs. (5) and (6)) yields

1:111EIyB þ 0:222EIyC ¼ �67:5 (7)

0:222EIyB þ 0:444EIyC ¼ �52:5 (8)

By solving Eqs. (7) and (8) simultaneously, we determine the values of EIyB and EIyC to be

EIyB ¼ �41:25 kN �m2

EIyC ¼ �97:62 kN �m2

Member End Moments. The member end moments can now be computed by substituting the numerical values of EIyB
and EIyC into the slope-deflection equations (Eqs. (1) through (4)):

MAB ¼ 0:333ð�41:25Þ ¼ �13:7 kN �m or 13:7 kN �m @ Ans.

MBA ¼ 0:667ð�41:25Þ ¼ �27:5 kN �m or 27:5 kN �m @ Ans.

MBC ¼ 0:444ð�41:25Þ þ 0:222ð�97:62Þ þ 67:5

¼ 27:5 kN �m ’

Ans.

MCB ¼ 0:222ð�41:25Þ þ 0:444ð�97:62Þ � 67:5

¼ �120 kN �m or 120 kN �m @ Ans.

Note that the numerical values of MBA;MBC , and MCB do satisfy the equilibrium equations (Eqs. (5) and (6)).

Member End Shears and Support Reactions. See Fig. 15.8(e) and (f ). Ans.

Equilibrium Check. The equilibrium equations check.
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Example 15.5

Determine the reactions and draw the shear and bending moment diagrams for the continuous beam shown in Fig. 15.9(a)
due to a settlement of 20 mm at support B. Use the slope-deflection method.

Solution
Degrees of Freedom. yB and yC

Fixed-End Moments. Since no external loads act on the beam, the fixed-end moments are zero.

continued
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Chord Rotations. The specified support settlement is depicted in Fig. 15.9(b), using an exaggerated scale. The inclined
dashed lines in this figure indicate the chords (not the elastic curves) of the members in the deformed positions. Because
the length of member AB is 8 m, the rotation of its chord is

cAB ¼ �
0:02

8
¼ �0:0025

in which the negative sign has been assigned to the value of cAB to indicate that its direction is clockwise, as shown in
Fig. 15.9(b). Similarly, the chord rotation for member BC is

cBC ¼
0:02

8
¼ 0:0025

From Fig. 15.9(b), we can see that
cCD ¼ 0

Slope-Deflection Equations. Applying Eq. (15.9) to members AB;BC, and CD, we write

MAB ¼
2EI

8
ðyB þ 0:0075Þ (1)

MBA ¼
2EI

8
ð2yB þ 0:0075Þ (2)

MBC ¼
2EI

8
ð2yB þ yC � 0:0075Þ (3)

MCB ¼
2EI

8
ðyB þ 2yC � 0:0075Þ (4)

MCD ¼
2EI

8
ð2yCÞ (5)

MDC ¼
2EI

8
ðyCÞ (6)

continued
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(g) Bending Moment Diagram (kN . m)
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FIG. 15.9 (contd.)
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Equilibrium Equations. See Fig. 15.9(c).

MBA þMBC ¼ 0 (7)

MCB þMCD ¼ 0 (8)

Joint Rotations. Substitution of the slope-deflection equations (Eqs. (1) through (6)) into the equilibrium equations
(Eqs. (7) and (8)) yields

4yB þ yC ¼ 0 (9)

yB þ 4yC ¼ 0:0075 (10)

By solving Eqs. (9) and (10) simultaneously, we determine

yB ¼ �0:0005 rad

yC ¼ 0:002 rad

Member End Moments. To compute the member end moments, we substitute the numerical values of yB; yC , and
EI ¼ ð70Þð800Þ ¼ 56;000 kN �m2 into the right sides of the slope-deflection equations (Eqs. (1) through (6)) to obtain

MAB ¼ 98 kN �m ’

Ans.

MBA ¼ 91 kN �m ’

Ans.

MBC ¼ �91 kN �m or 91 kN �m @ Ans.

MCB ¼ �56 kN �m or 56 kN �m @ Ans.

MCD ¼ 56 kN �m ’
Ans.

MDC ¼ 28 kN �m ’

Ans.

Member End Shears and Support Reactions. See Fig. 15.9(d) and (e). Ans.

Equilibrium Check. See Fig. 15.9(e).

þ "
P

Fy ¼ 0 23:63� 42þ 28:87� 10:5 ¼ 0 Checks

þ ’ MA ¼ 0

98� 42ð8Þ þ 28:87ð16Þ � 10:5ð24Þ þ 28 ¼ �0:08&0 Checks

Shear and Bending Moment Diagrams. See Fig. 15.9(f ) and (g). Ans.

Example 15.6

Determine the member end moments and reactions for the three-span continuous beam shown in Fig. 15.10(a) due to
the uniformly distributed load and due to the support settlements of 5

8 in. at B, 1
1
2 in. at C, and 3

4 in. at D. Use the slope-
deflection method.

Solution
Degrees of Freedom. Although all four joints of the beam are free to rotate, we will eliminate the rotations of the simple
supports at the ends A and D from the analysis by using the modified slope-deflection equations for members AB and
CD, respectively. Thus, the analysis will involve only two unknown joint rotations, yB and yC .

continued
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Fixed-End Moments.

FEMAB ¼ FEMBC ¼ FEMCD ¼
2ð20Þ2

12
¼ 66:7 k-ft

’

or þ66:7 k-ft

FEMBA ¼ FEMCB ¼ FEMDC ¼ 66:7 k-ft @ or �66:7 k-ft

Chord Rotations. The specified support settlements are depicted in Fig. 15.10(b) using an exaggerated scale. The inclined
dashed lines in this figure indicate the chords (not the elastic curves) of the members in the deformed positions. It can be
seen from this figure that since support A does not settle but support B settles by 5

8 in., the relative settlement between the

FIG. 15.10

continued
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two ends of member AB is 5
8 in. ¼ 0:0521 ft. Because the length of member AB is 20 ft, the rotation of the chord of

member AB is

cAB ¼ �
0:0521

20
¼ �0:0026

in which the negative sign has been assigned to the value of cAB to indicate that its direction is clockwise, as shown
in Fig. 15.10(b). The chord rotation for member BC can be computed in a similar manner by using the settlement of
supports B and C. From Fig. 15.10(b), we observe that the relative settlement between the ends of member BC is
112 in.� 5

8 in. ¼ 0:875 in. ¼ 0:0729 ft, and so

cBC ¼ �
0:0729

20
¼ �0:00365

Similarly, the chord rotation for member CD is

cCD ¼
1:5� 0:75

ð12Þð20Þ ¼ 0:00313

Slope-Deflection Equations.

MAB ¼ 0 Ans.

MBA ¼
3EI

20
ðyB þ 0:0026Þ � 100 ¼ 0:15EIyB þ 0:00039EI � 100 (1)

MBC ¼
2EI

20
½2yB þ yC � 3ð�0:00365Þ� þ 66:7

¼ 0:2EIyB þ 0:1EIyC þ 0:0011EI þ 66:7 (2)

MCB ¼
2EI

20
½2yC þ yB � 3ð�0:00365Þ� � 66:7

¼ 0:1EIyB þ 0:2EIyC þ 0:0011EI � 66:7 (3)

MCD ¼
3EI

20
ðyC � 0:00313Þ þ 100 ¼ 0:15EIyC � 0:00047EI þ 100 (4)

MDC ¼ 0 Ans.

Equilibrium Equations. See Fig. 15.10(c).

MBA þMBC ¼ 0 (5)

MCB þMCD ¼ 0 (6)

Joint Rotations. By substituting the slope-deflection equations (Eqs. (1) through (4)) into the equilibrium equations
(Eqs. (5) and (6)), we obtain

0:35EIyB þ 0:1EIyC ¼ �0:00149EI þ 33:3

0:1EIyB þ 0:35EIyC ¼ �0:00063EI � 33:3

Substituting EI ¼ ð29;000Þð7;800Þ=ð12Þ2 k-ft2 into the right sides of the above equations yields

0:35EIyB þ 0:1EIyC ¼ �2;307:24 (7)

0:1EIyB þ 0:35EIyC ¼ �1;022:93 (8)

By solving Eqs. (7) and (8) simultaneously, we determine the values of EIyB and EIyC to be

EIyB ¼ �6;268:81 k-ft2

EIyC ¼ �1;131:57 k-ft2

continued
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Member End Moments. To compute the member end moments, we substitute the numerical values of EIyB and EIyC
back into the slope-deflection equations (Eqs. (1) through (4)) to obtain

MBA ¼ �427:7 k-ft or 427:7 k-ft @ Ans.

MBC ¼ 427:7 k-ft

’

Ans.

MCB ¼ 808 k-ft

’

Ans.

MCD ¼ �808 k-ft or 808 k-ft @ Ans.

Member End Shears and Support Reactions. See Fig. 15.10(d) and (e). Ans.

Equilibrium Check. The equilibrium equations check.
We previously analyzed the continuous beam considered here in Example 13.14 by the method of consistent defor-

mations. Theoretically, the slope-deflection method and the method of consistent deformations should yield identical re-
sults for a given structure. The small di¤erences between the results determined here and those obtained in Example 13.14
are due to the round-o¤ errors.

Example 15.7

Determine the reactions and draw the shear and bending moment diagrams for the four-span continuous beam shown in
Fig. 15.11(a).

Solution
Because the beam and the loading are symmetric with respect to the vertical s axis passing through roller support C
(Fig. 15.11(a)), the response of the complete beam can be determined by analyzing only the left half, AC, of the beam,
with symmetric boundary conditions as shown in Fig. 15.11(b). Furthermore, from Fig. 15.11(b), we can see that the one-
half of the beam with symmetric boundary conditions is also symmetric with respect to the s 0 axis passing through roller

FIG. 15.11

continued
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support B. Therefore, we need to analyze only one-fourth of the beam—that is, the portion AB—with symmetric boun-
dary conditions, as shown in Fig. 15.11(c).

Since the substructure to be analyzed consists simply of the fixed beam AB (Fig. 15.11(c)), its end moments can be
obtained directly from the fixed-end moment expressions given inside the back cover of the book. Thus

MAB ¼ FEMAB ¼
wL2

12

’

MBA ¼ FEMBA ¼
wL2

12
@

The shears at the ends of member AB are determined by considering the equilibrium of the member.
The shears and moments at the ends of member BC can now be obtained by reflecting the corresponding responses

of member AB to the right of the s 0 axis, and the member end moments and shears on the right half of the beam can be
determined by reflecting the corresponding responses on the left half to the other side of the s axis. The member end
moments and shears thus obtained are shown in Fig. 15.11(d), and the support reactions are given in Fig. 15.11(e).

The shear and bending moment diagrams for the beam are shown in Fig. 15.11(f ) and (g), respectively. Ans.
As this example shows, the utilization of structural symmetry can considerably reduce the computational e¤ort re-

quired in the analysis. The beam considered in this example (Fig. 15.11(a)) has three degrees of freedom, yB; yC , and yD.
However, by taking advantage of the structure’s symmetry, we were able to eliminate all the degrees of freedom from the
analysis.

FIG. 15.11 (contd.)
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15.4 Analysis of Frames without Sidesway

The slope-deflection method can also be used for the analysis of frames.
Since the axial deformations of the members of frames composed of com-
mon engineering materials are generally much smaller than the bending
deformations, the axial deformations of members are neglected in the
analysis, and the members are assumed to be inextensible (i.e., they cannot
undergo any axial elongation or shortening).

Consider the frame shown in Fig. 15.12(a). A qualitative deflected
shape of the frame for an arbitrary load P is also shown. From the figure,
we can see that the fixed joints A and B can neither rotate nor translate,
whereas joint C, which is located at the hinged support, can rotate, but it
cannot translate. As for joint D, while it is free to rotate, its translation in
any direction is prevented by members AD and CD, which are assumed
to be inextensible. Similarly, joint E is free to rotate, but since members
BE and DE cannot deform axially and since joints B and D do not
translate, joint E also cannot translate. Thus none of the joints of the
frame can translate.

Now suppose that we remove member CD from the frame of
Fig. 15.12(a) to obtain the frame shown in Fig. 15.12(b). Since the axial
deformations of columns AD and BE are neglected, joints D and E can-
not translate in the vertical direction. However, there are no restraints to
prevent these joints from rotating, and displacing in the horizontal di-
rection, as shown in Fig. 15.12(b). Note that since the girder DE is as-
sumed to be inextensible, the horizontal displacements of joints D and E

must be the same.
The lateral displacements of building frames, like that of the frame of

Fig. 15.12(b), are commonly referred to as sidesways and the frames whose
joints undergo translations are termed frames with sidesway, whereas the
frames without joint translations are called frames without sidesway. In
applying the slope-deflection method, it is usually convenient to distinguish
between the frames without sidesway (i.e., without unknown joint trans-
lations), and those with sidesway. For an arbitrary plane frame sub-
jected to a general coplanar loading, the number of independent joint
translations—which are commonly referred to as the sidesway degrees of

freedom, ss—can be expressed as

ss ¼ 2j � ½2ð f þ hÞ þ rþm� ð15:20Þ

in which j ¼ number of joints; f ¼ number of fixed supports; h ¼
number of hinged supports; r ¼ number of roller supports; and m ¼
number of (inextensible) members. The foregoing expression is based on
the reasoning that two translations (e.g., in the horizontal and vertical
directions) are needed to specify the deformed position of each free joint
of a plane frame; and that each fixed and hinged support prevents both
translations, each roller support prevents translation in one direction (of
the joint attached to it), and each inextensible member connecting two
joints prevents one joint translation in its axial direction. The number
of independent joint translations, ss, is then obtained by subtracting
from the total number of possible translations of j free joints the num-
ber of translations restrained by the supports and members of the
frame. We can verify our conclusions about the frames of Figs. 15.12(a)
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and (b) by applying Eq. (15.20). Since the frame of Fig. 15.12(a) consists
of five joints ð j ¼ 5Þ, four members ðm ¼ 4Þ, two fixed supports
ð f ¼ 2Þ, and one hinged support ðh ¼ 1Þ, the application of Eq. (15.20)
yields ss ¼ 2ð5Þ � ½2ð2þ 1Þ þ 4� ¼ 0, which indicates that this frame can
be considered as without sidesway. As for the frame of Fig. 15.12(b),
since it has j ¼ 4, m ¼ 3, and f ¼ 2, the number of its sidesway degrees
of freedom is given by ss ¼ 2ð4Þ � ½2ð2Þ þ 3� ¼ 1, which indicates that
the frame can undergo one independent joint translation. Note that this
independent joint translation is identified as the horizontal displacement
D of joints D and E in Fig. 15.12(b).

FIG. 15.12
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It is important to realize that a frame may contain joints that are
free to translate, but it may still be considered for analytical purposes as
one without sidesway under a particular loading condition if no joint
translations occur when the frame is subjected to that loading condition.
An example of such a frame is shown in Fig. 15.12(c). Although joints D
and E of the symmetric frame are free to translate horizontally, they will
not translate when the frame is subjected to a loading that is symmetric
with respect to the structure’s axis of symmetry. Thus this frame, when
subjected to a symmetric loading, can be analyzed as a frame without
sidesway. In the following, we discuss the application of the slope-
deflection method to the analysis of frames without sidesway. The anal-
ysis of frames with sidesway is considered in the next section.

The procedure for the analysis of frames without sidesway is almost
identical to that for the analysis of continuous beams presented in the
preceding section. This similarity occurs because, like the continuous
beams, the degrees of freedom of frames without sidesway consist of
only the unknown joint rotations, with the joint translations being either
zero or known (as in the case of support settlements). However, unlike
the continuous beams, more than two members may be connected to a
joint of a frame, and the equilibrium equation for such a joint would in-
volve more than two member end moments. The analysis of frames
without sidesway is illustrated by the following examples.

Example 15.8

Determine the member end moments and reactions for the frame shown in Fig. 15.13(a) by the slope-deflection method.

Solution
Degrees of Freedom. The joints C;D, and E of the frame are free to rotate. However, we will eliminate the rotation of
the simple support at end E by using the modified slope-deflection equations for member DE. Thus the analysis will
involve only two unknown joint rotations, yC and yD.

Fixed-End Moments. By using the fixed-end moment expressions given inside the back cover of the book, we obtain

FEMAC ¼
40ð20Þ

8
¼ 100 k-ft

’

or þ100 k-ft

FEMCA ¼ 100 k-ft @ or �100 k-ft

FEMBD ¼ FEMDB ¼ 0

FEMCD ¼ FEMDE ¼
2ð30Þ2

12
¼ 150 k-ft

’

or þ150 k-ft

FEMDC ¼ FEMED ¼ 150 k-ft @ or �150 k-ft

Slope-Deflection Equations. As indicated in Fig. 15.13(a), the moments of inertia of the columns and the girders of the
frame are 800 in.4 and 1,600 in.4, respectively. Using I ¼ Icolumn ¼ 800 in.4 as the reference moment of inertia, we express
Igirder in terms of I as

Igirder ¼ 1;600 ¼ 2ð800Þ ¼ 2I

continued
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Next, we write the slope-deflection equations by applying Eq. (15.9) to members AC;BD, and CD, and Eqs. (15.15) to
member DE. Thus

MAC ¼
2EI

20
ðyCÞ þ 100 ¼ 0:1EIyC þ 100 (1)

MCA ¼
2EI

20
ð2yCÞ � 100 ¼ 0:2EIyC � 100 (2)

MBD ¼
2EI

20
ðyDÞ ¼ 0:1EIyD (3)

MDB ¼
2EI

20
ð2yDÞ ¼ 0:2EIyD (4)

MCD ¼
2Eð2IÞ
30

ð2yC þ yDÞ þ 150 ¼ 0:267EIyC þ 0:133EIyD þ 150 (5)

MDC ¼
2Eð2IÞ
30

ð2yD þ yCÞ � 150 ¼ 0:133EIyC þ 0:267EIyD � 150 (6)

MDE ¼
3Eð2IÞ
30

ðyDÞ þ 150þ 150

2

� �
¼ 0:2EIyD þ 225 (7)

MED ¼ 0 Ans.

Equilibrium Equations. By applying the moment equilibrium equation,
P

M ¼ 0, to the free bodies of joints C and D

(Fig. 15.13(b)), we obtain the equilibrium equations

MCA þMCD ¼ 0 (8)

MDB þMDC þMDE ¼ 0 (9)

Joint Rotations. Substitution of the slope-deflection equations into the equilibrium equations yields

0:467EIyC þ 0:133EIyD ¼ �50 (10)

0:133EIyC þ 0:667EIyD ¼ �75 (11)

By solving Eqs. (10) and (11) simultaneously, we determine the values of EIyC and EIyD to be

EIyC ¼ �79:545 k-ft2

EIyD ¼ �96:591 k-ft2

Member End Moments. The member end moments can now be computed by substituting the numerical values of EIyC
and EIyD into the slope-deflection equations (Eqs. (1) through (7)).

MAC ¼ 92 k-ft

’

Ans.

MCA ¼ �115:9 k-ft or 115:9 k-ft @ Ans.

MBD ¼ �9:7 k-ft or 9:7 k-ft @ Ans.

MDB ¼ �19:3 k-ft or 19:3 k-ft @ Ans.

MCD ¼ 115:9 k-ft

’

Ans.

MDC ¼ �186:4 k-ft or 186:4 k-ft @ Ans.

MDE ¼ 205:7 k-ft

’

Ans.

continued
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To check that the solution of the simultaneous equations (Eqs. (10) and (11)) has been carried out correctly, we sub-
stitute the numerical values of member end moments back into the equilibrium equations (Eqs. (8) and (9)) to obtain

MCA þMCD ¼ �115:9þ 115:9 ¼ 0 Checks

MDB þMDC þMDE ¼ �19:3� 186:4þ 205:7 ¼ 0 Checks

Member End Shears. The member end shears, obtained by considering the equilibrium of each member, are shown in
Fig. 15.13(c).

Member Axial Forces. With end shears known, member axial forces can now be evaluated by considering the equili-
brium of joints C and D in order. The axial forces thus obtained are shown in Fig. 15.13(c).

Support Reactions. See Fig. 15.13(d). Ans.

Equilibrium Check. The equilibrium equations check.

Example 15.9

Determine the member end moments and reactions for the frame of Example 15.8 due to a settlement of 34 in. at support B.
Use the slope-deflection method.

Solution
The frame is shown in Fig. 15.14(a).

Degrees of Freedom. yC and yD are the degrees of freedom.

Chord Rotations. Since the axial deformation of member BD is neglected, the 3
4
-in. settlement of support B causes the

joint D to displace downward by the same amount, as shown in Fig. 15.14(b). The inclined dashed lines in this figure
represent the chords (not the elastic curves) of members CD and DE in the deformed positions. The rotation of the chord
of member CD is

cCD ¼ �
3

4
ð12Þð30Þ ¼ �0:00208

in which the negative sign has been assigned to the value of cCD to indicate that its sense is clockwise. Similarly, for
member DE,

cDE ¼ 0:00208

Slope-Deflection Equations.

MAC ¼ 0:1EIyC (1)

MCA ¼ 0:2EIyC (2)

MBD ¼ 0:1EIyD (3)

MDB ¼ 0:2EIyD (4)

MCD ¼
2Eð2IÞ
30

½2yC þ yD � 3ð�0:00208Þ�

¼ 0:267EIyC þ 0:133EIyD þ 0:000832EI (5)

continued

622 CHAPTER 15 Slope-Deflection Method



FIG. 15.14
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MDC ¼
2Eð2IÞ
30

½2yD þ yC � 3ð�0:00208Þ�

¼ 0:133EIyC þ 0:267EIyD þ 0:000832EI (6)

MDE ¼
3Eð2IÞ
30

ðyD � 0:00208Þ ¼ 0:2EIyD � 0:000416EI (7)

MED ¼ 0 Ans.

Equilibrium Equations. See Fig. 15.14(c).

MCA þMCD ¼ 0 (8)

MDB þMDC þMDE ¼ 0 (9)

Joint Rotations. By substituting the slope-deflection equations into the equilibrium equations, we obtain

0:467EIyC þ 0:133EIyD ¼ �0:000832EI

0:133EIyC þ 0:667EIyD ¼ �0:000416EI

Substitution of EI ¼ ð29;000Þð800Þ=ð12Þ2 k-ft2 into the right sides of the preceding equations yields

0:467EIyC þ 0:133EIyD ¼ �134 (10)

0:133EIyC þ 0:667EIyD ¼ �67 (11)

Solving Eqs. (10) and (11) simultaneously, we obtain

EIyC ¼ �273:883 k-ft2

EIyD ¼ �45:838 k-ft2

Member End Moments. By substituting the numerical values of EIyC and EIyD into the slope-deflection equations, we
obtain

MAC ¼ �27:4 k-ft or 27:4 k-ft @ Ans.

MCA ¼ �54:8 k-ft or 54:8 k-ft @ Ans.

MBD ¼ �4:6 k-ft or 4:6 k-ft @ Ans.

MDB ¼ �9:2 k-ft or 9:2 k-ft @ Ans.

MCD ¼ 54:8 k-ft

’

Ans.

MDC ¼ 85:4 k-ft

’

Ans.

MDE ¼ �76:2 k-ft or 76:2 k-ft @ Ans.

Back substitution of the numerical values of member end moments into the equilibrium equations (Eqs. (8) and (9))
yields

MCA þMCD ¼ �54:8þ 54:8 ¼ 0 Checks

MDB þMDC þMDE ¼ �9:2þ 85:4� 76:2 ¼ 0 Checks

Member End Shears and Axial Forces. See Fig. 15.14(d).

Support Reactions. See Fig. 15.14(e).

Equilibrium Check. The equilibrium equations check.
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15.5 Analysis of Frames with Sidesway

A frame, in general, will undergo sidesway if its joints are not restrained
against translation, unless it is a symmetric frame subjected to symmetric
loading. To develop the analysis of frames with sidesway, consider the
rectangular frame shown in Fig. 15.15(a). A qualitative deflected shape
of the frame for an arbitrary loading is also shown in the figure using an
exaggerated scale. While the fixed joints A and B of the frame are com-
pletely restrained against rotation as well as translation, the joints C and
D are free to rotate and translate. However, since the columns AC and
BD are assumed to be inextensible and the deformations of the frame are
assumed to be small, the joints C and D can translate only in the hori-
zontal direction—that is, in the direction perpendicular to the columns
AC and BD, respectively. Furthermore, since the girder CD is also as-
sumed to be inextensible, the horizontal displacements of joints C and D

must be the same. Thus the frame has three unknown joint displacements
or degrees of freedom, the rotations yC and yD of joints C and D, re-
spectively, and the horizontal displacement D of both joints C and D.

As shown in Fig. 15.15(a), the displacement D of the joints C and D

causes the chords of the columns AC and BD to rotate, and these chord
rotations can be expressed in terms of the unknown displacement D as

cAC ¼ cBD ¼ �
D

h
ð15:21Þ

FIG. 15.15
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in which the negative sign indicates that the chord rotations are clock-
wise. Since joints C and D cannot displace vertically, the chord rotation
of the girder CD is zero; that is, cCD ¼ 0.

To relate the member end moments to the unknown joint displace-
ments, yC ; yD, and D, we write the slope-deflection equations for the
three members of the frame. Thus by applying Eq. (15.9), we obtain

MAC ¼
2EI

h
yC þ

3D

h

� �
þ FEMAC ð15:22aÞ

MCA ¼
2EI

h
2yC þ

3D

h

� �
þ FEMCA ð15:22bÞ

MBD ¼
2EI

h
yD þ

3D

h

� �
ð15:22cÞ

MDB ¼
2EI

h
2yD þ

3D

h

� �
ð15:22dÞ

MCD ¼
2EI

L
ð2yC þ yDÞ þ FEMCD ð15:22eÞ

MDC ¼
2EI

L
ð2yD þ yCÞ þ FEMDC ð15:22fÞ

Note that the foregoing slope-deflection equations contain three un-
knowns, yC ; yD, and D, which must be determined by solving three inde-
pendent equations of equilibrium before the values of the member end
moments can be computed. Two of the three equilibrium equations nec-
essary for the solution of the unknown joint displacements are obtained by
considering the moment equilibrium of joints C and D (Fig. 15.15(b)):

MCA þMCD ¼ 0 ð15:23aÞ

MDB þMDC ¼ 0 ð15:23bÞ

The third equilibrium equation, commonly termed the shear equation, is
based on the condition that the sum of all the horizontal forces acting on
the free body of the entire frame must be zero. The free-body diagram of
the frame, obtained by passing an imaginary section just above the sup-
port level, is shown in Fig. 15.15(c). By applying the equilibrium equa-
tion

P
FX ¼ 0, we write

P� SAC � SBD ¼ 0 ð15:23cÞ

in which SAC and SBD are the shears at the lower ends of the columns
AC and BD, respectively, as shown in Fig. 15.15(c). To express the third
equilibrium equation (Eq. (15.23c)) in terms of column end moments,
we consider the equilibrium of the free bodies of the columns AC and
BD shown in Fig. 15.15(d). By summing moments about the top of each
column, we obtain the following:

þ ’
P

MAC
C ¼ 0 MAC � SACðhÞ þ P

h

2

� �
þMCA ¼ 0

SAC ¼
MAC þMCA

h
þ P

2
ð15:24aÞ
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þ ’
P

MBD
D ¼ 0 MBD þMDB � SBDðhÞ ¼ 0

SBD ¼
MBD þMDB

h
ð15:24bÞ

By substituting Eqs. (15.24a) and (15.24b) into Eq. (15.23c), we obtain
the third equilibrium equation in terms of member end moments:

P� MAC þMCA

h
þ P

2

� �
� MBD þMDB

h

� �
¼ 0

which reduces to

MAC þMCA þMBD þMDB �
Ph

2
¼ 0 ð15:25Þ

With the three equilibrium equations (Eqs. (15.23a), (15.23b), and
(15.25)) now established, we can proceed with the rest of the analysis
in the usual manner. By substituting the slope-deflection equations
(Eqs. (15.22)) into the equilibrium equations, we obtain the system of
equations that can be solved for the unknown joint displacements
yC ; yD, and D. The joint displacements thus obtained can then be back
substituted into the slope-deflection equations to determine the member
end moments, from which the end shears and axial forces of members
and the support reactions can be computed, as discussed previously.

Frames with Inclined Legs

The analysis of frames with inclined legs is similar to that of the rect-
angular frames considered previously, except that when frames with in-
clined legs are subjected to sidesway, their horizontal members also
undergo chord rotations, which must be included in the analysis. Recall
from our previous discussion that the chord rotations of the horizontal
members of rectangular frames, subjected to sidesway, are zero.

Consider the frame with inclined legs shown in Fig. 15.16(a). In order
to analyze this frame by the slope-deflection method, we must relate the
chord rotations of its three members to each other or to an independent
joint translation. To that end, we subject the joint C of the frame to an
arbitrary horizontal displacement D and draw a qualitative deflected shape
of the frame, which is consistent with its support conditions as well as with
our assumption that the members of the frame are inextensible. To draw
the deflected shape, which is shown in Fig. 15.16(b), we first imagine that
the members BD and CD are disconnected at joint D. Since member AC is
assumed to be inextensible, joint C can move only in an arc about point A.
Furthermore, since the translation of joint C is assumed to be small, we
can consider the arc to be a straight line perpendicular to member AC.

Thus, in order to move joint C horizontally by a distance D, we must
displace it in a direction perpendicular to member AC by a distance CC 0

(Fig. 15.16(b)), so that the horizontal component of CC 0 equals D. Note
that although joint C is free to rotate, its rotation is ignored at this stage
of the analysis, and the elastic curve AC 0 of member AC is drawn with
the tangent at C 0 parallel to the undeformed direction of the member.
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The member CD remains horizontal and translates as a rigid body into
the position C 0D1 with the displacement DD1 equal to CC 0, as shown
in the figure. Since the horizontal member CD is assumed to be inex-
tensible and the translation of joint D is assumed to be small, the end D

FIG. 15.16

628 CHAPTER 15 Slope-Deflection Method



of this member can be moved from its deformed position D1 only in the
vertical direction. Similarly, since member BD is also assumed to be in-
extensible, its end D can be moved only in the direction perpendicular to
the member. Therefore, to obtain the deformed position of joint D, we
move the end D of member CD from its deformed position D1 in the
vertical direction and the end D of member BD in the direction perpen-
dicular to BD, until the two ends meet at point D 0, where they are re-
connected to obtain the displaced position D 0 of joint D. By assuming
that joint D does not rotate, we draw the elastic curves C 0D 0 and BD 0,
respectively, of members CD and BD, to complete the deflected shape of
the entire frame.

The chord rotation of a member can be obtained by dividing the
relative displacement between the two ends of the member in the direc-
tion perpendicular to the member, by the member’s length. Thus we can
see from Fig. 15.16(b) that the chord rotations of the three members of
the frame are given by

cAC ¼ �
CC 0

L1
cBD ¼ �

DD 0

L2
cCD ¼

D1D
0

L
ð15:26Þ

in which the chord rotations of members AC and BD are considered to be
negative because they are clockwise (Fig. 15.16(c)). The three chord rota-
tions can be expressed in terms of the joint displacement D by considering
the displacement diagrams of joints C and D, shown in Fig. 15.16(b).
Since CC 0 is perpendicular to AC, which is inclined at an angle b1 with
the vertical, CC 0 must make the same angle b1 with the horizontal. Thus,

FIG. 15.16 (contd.)
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from the displacement diagram of joint C (triangle CC 0C2), we can see
that

CC 0 ¼ D

cos b1
ð15:27Þ

Next, let us consider the displacement diagram of joint D (triangle
DD1D

0). It has been shown previously that DD1 is equal in magnitude
and parallel to CC 0. Therefore,

DD2 ¼ DD1 cos b1 ¼ D

Since DD 0 is perpendicular to member BD, it makes an angle b2 with
the horizontal. Thus, from the displacement diagram of joint D,

DD 0 ¼ DD2

cos b2
¼ D

cos b2
ð15:28Þ

and

D1D
0 ¼ DD1 sin b1 þDD 0 sin b2 ¼

D

cos b1
sin b1 þ

D

cos b2
sin b2

or

D1D
0 ¼ Dðtan b1 þ tan b2Þ ð15:29Þ

By substituting Eqs. (15.27) through (15.29) into Eq. (15.26), we obtain
the chord rotations of the three members in terms of D:

cAC ¼ �
D

L1 cos b1
ð15:30aÞ

cBD ¼ �
D

L2 cos b2
ð15:30bÞ

cCD ¼
D

L
ðtan b1 þ tan b2Þ ð15:30cÞ

The foregoing expressions of chord rotations can be used to write
the slope-deflection equations, thereby relating member end moments to
the three unknown joint displacements, yC ; yD, and D. As in the case of
the rectangular frames considered previously, the three equilibrium equa-
tions necessary for the solution of the unknown joint displacements can
be established by summing the moments acting on joints C and D and by
summing the horizontal forces acting on the entire frame. However, for
frames with inclined legs, it is usually more convenient to establish the
third equilibrium equation by summing the moments of all the forces and
couples acting on the entire frame about a moment center O, which is
located at the intersection of the longitudinal axes of the two inclined
members, as shown in Fig. 15.16(d). The location of the moment center
O can be determined by using the conditions (see Fig. 15.16(d))

a1 cos b1 ¼ a2 cos b2 ð15:31aÞ

a1 sin b1 þ a2 sin b2 ¼ L ð15:31bÞ

630 CHAPTER 15 Slope-Deflection Method



By solving Eqs. (15.31a) and (15.31b) simultaneously for a1 and a2, we
obtain

a1 ¼
L

cos b1ðtan b1 þ tan b2Þ
ð15:32aÞ

a2 ¼
L

cos b2ðtan b1 þ tan b2Þ
ð15:32bÞ

Once the equilibrium equations have been established, the analysis can
be completed in the usual manner, as discussed previously.

Multistory Frames

The foregoing method can be extended to the analysis of multistory
frames subjected to sidesway, as illustrated by Example 15.12. However,
because of the considerable amount of computational e¤ort involved, the
analysis of such structures today is performed on computers using the
matrix formulation of the displacement method presented in Chapter 17.

Example 15.10

Determine the member end moments and reactions for the frame shown in Fig. 15.17(a) by the slope-deflection method.

Solution
Degrees of Freedom. The degrees of freedom are yC ; yD, and D (see Fig. 15.17(b)).

Fixed-End Moments. By using the fixed-end moment expressions given inside the back cover of the book, we obtain

FEMCD ¼
40ð3Þð4Þ2

ð7Þ2
¼ 39:2 kN �m ’

or þ39:2 kN �m

FEMDC ¼
40ð3Þ2ð4Þ
ð7Þ2

¼ 29:4 kN �m @ or �29:4 kN �m

FEMAC ¼ FEMCA ¼ FEMBD ¼ FEMDB ¼ 0

Chord Rotations. From Fig. 15.17(b), we can see that

cAC ¼ �
D

7
cBD ¼ �

D

5
cCD ¼ 0

Slope-Deflection Equations.

MAC ¼
2EI

7
yC � 3 �D

7

� �� �
¼ 0:286EIyC þ 0:122EID (1)

MCA ¼
2EI

7
2yC � 3 �D

7

� �� �
¼ 0:571EIyC þ 0:122EID (2)

MBD ¼
2EI

5
yD � 3 �D

5

� �� �
¼ 0:4EIyD þ 0:24EID (3)

continued
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MDB ¼
2EI

5
2yD � 3 �D

5

� �� �
¼ 0:8EIyD þ 0:24EID (4)

MCD ¼
2EI

7
ð2yC þ yDÞ þ 39:2 ¼ 0:571EIyC þ 0:286EIyD þ 39:2 (5)

MDC ¼
2EI

7
ðyC þ 2yDÞ � 29:4 ¼ 0:286EIyC þ 0:571EIyD � 29:4 (6)

Equilibrium Equations. By considering the moment equilibrium of joints C and D, we obtain the equilibrium equations

MCA þMCD ¼ 0 (7)

MDB þMDC ¼ 0 (8)

FIG. 15.17

continued
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FIG. 15.17 (contd.)

continued
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To establish the third equilibrium equation, we apply the force equilibrium equation
P

FX ¼ 0 to the free body of the
entire frame (Fig. 15.17(c)), to obtain

SAC þ SBD ¼ 0

in which SAC and SBD represent the shears at the lower ends of columns AC and BD, respectively, as shown in Fig. 15.17(c).
To express the column end shears in terms of column end moments, we draw the free-body diagrams of the two columns
(Fig. 15.17(d)) and sum the moments about the top of each column:

SAC ¼
MAC þMCA

7
and SBD ¼

MBD þMDB

5

By substituting these equations into the third equilibrium equation, we obtain

MAC þMCA

7
þMBD þMDB

5
¼ 0

which can be rewritten as

5ðMAC þMCAÞ þ 7ðMBD þMDBÞ ¼ 0 (9)

Joint Displacements. To determine the unknown joint displacements yC ; yD, and D, we substitute the slope-deflection
equations (Eqs. (1) through (6)) into the equilibrium equations (Eqs. (7) through (9)) to obtain

1:142EIyC þ 0:286EIyD þ 0:122EID ¼ �39:2 (10)

0:286EIyC þ 1:371EIyD þ 0:24EID ¼ 29:4 (11)

4:285EIyC þ 8:4EIyD þ 4:58EID ¼ 0 (12)

Solving Eqs. (10) through (12) simultaneously yields

EIyC ¼ �40:211 kN �m2

EIyD ¼ 34:24 kN �m2

EID ¼ �25:177 kN �m3

Member End Moments. By substituting the numerical values of EIyC ;EIyD, and EID into the slope-deflection equa-
tions (Eqs. (1) through (6)), we obtain

MAC ¼ �14:6 kN �m or 14:6 kN �m @ Ans.

MCA ¼ �26 kN �m or 26 kN �m @ Ans.

MBD ¼ 7:7 kN �m ’

Ans.

MDB ¼ 21:3 kN �m ’

Ans.

MCD ¼ 26 kN �m ’

Ans.

MDC ¼ �21:3 kN �m or 21:3 kN �m @ Ans.

To check that the solution of the simultaneous equations (Eqs. (10) through (12)) has been carried out correctly, we sub-
stitute the numerical values of member end moments back into the equilibrium equations (Eqs. (7) through (9)):

MCA þMCD ¼ �26þ 26 ¼ 0 Checks

MDB þMDC ¼ 21:3� 21:3 ¼ 0 Checks

5ðMAC þMCAÞ þ 7ðMBD þMDBÞ ¼ 5ð�14:6� 26Þ þ 7ð7:7þ 21:3Þ ¼ 0 Checks

Member End Shears. The member end shears, obtained by considering the equilibrium of each member, are shown in
Fig. 15.17(e).

Member Axial Forces. With end shears known, member axial forces can now be evaluated by considering the equili-
brium of joints C and D. The axial forces thus obtained are shown in Fig. 15.17(e).

Support Reactions. See Fig. 15.17(f ). Ans.

Equilibrium Check. The equilibrium equations check.
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Example 15.11

Determine the member end moments and reactions for the frame shown in Fig. 15.18(a) by the slope-deflection method.

Solution
Degrees of Freedom. Degrees of freedom are yC ; yD, and D.

Fixed-End Moments. Since no external loads are applied to the members, the fixed-end moments are zero.

Chord Rotations. From Fig. 15.18(b), we can see that

cAC ¼ �
CC 0

20
¼ �

5

4

� �
D

20
¼ �0:0625D

cBD ¼ �
DD 0

16
¼ � D

16
¼ �0:0625D

cCD ¼
C 0C1

20
¼

3

4

� �
D

20
¼ 0:0375D

Slope-Deflection Equations.

MAC ¼
2EI

20
½yC � 3ð�0:0625DÞ� ¼ 0:1EIyC þ 0:0188EID (1)

MCA ¼
2EI

20
½2yC � 3ð�0:0625DÞ� ¼ 0:2EIyC þ 0:0188EID (2)

MBD ¼
2EI

16
½yD � 3ð�0:0625DÞ� ¼ 0:125EIyD þ 0:0234EID (3)

MDB ¼
2EI

16
½2yD � 3ð�0:0625DÞ� ¼ 0:25EIyD þ 0:0234EID (4)

MCD ¼
2EI

20
½2yC þ yD � 3ð0:0375DÞ� ¼ 0:2EIyC þ 0:1EIyD � 0:0113EID (5)

MDC ¼
2EI

20
½2yD þ yC � 3ð0:0375DÞ� ¼ 0:2EIyD þ 0:1EIyC � 0:0113EID (6)

Equilibrium Equations. By considering the moment equilibrium of joints C and D, we obtain the equilibrium equations

MCA þMCD ¼ 0 (7)

MDB þMDC ¼ 0 (8)

The third equilibrium equation is established by summing the moments of all the forces and couples acting on the free
body of the entire frame about point O, which is located at the intersection of the longitudinal axes of the two columns,
as shown in Fig. 15.18(c). Thus

þ ’
P

MO ¼ 0 MAC � SACð53:33Þ þMBD � SBDð42:67Þ þ 30ð26:67Þ ¼ 0

in which the shears at the lower ends of the columns can be expressed in terms of column end moments as (see
Fig. 15.18(d))

SAC ¼
MAC þMCA

20
and SBD ¼

MBD þMDB

16

continued
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By substituting these expressions into the third equilibrium equation, we obtain

1:67MAC þ 2:67MCA þ 1:67MBD þ 2:67MDB ¼ 800 (9)

Joint Displacements. Substitution of the slope-deflection equations (Eqs. (1) through (6)) into the equilibrium equations
(Eqs. (7) through (9)) yields

0:4EIyC þ 0:1EIyD þ 0:0075EID ¼ 0 (10)

0:1EIyC þ 0:45EIyD þ 0:0121EID ¼ 0 (11)

0:71EIyC þ 0:877EIyD þ 0:183EID ¼ 800 (12)

By solving Eqs. (10) through (12) simultaneously, we determine

EIyC ¼ �66:648 k-ft2

EIyD ¼ �125:912 k-ft2

EID ¼ 5;233:6 k-ft3

continued

FIG. 15.18
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FIG. 15.18 (contd.)

continued
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Member End Moments. By substituting the numerical values of EIyC ;EIyD, and EID into the slope-deflection equations
(Eqs. (1) through (6)), we obtain

MAC ¼ 91:7 k-ft

’

Ans.

MCA ¼ 85:1 k-ft

’

Ans.

MBD ¼ 106:7 k-ft

’

Ans.

MDB ¼ 91 k-ft

’

Ans.

MCD ¼ �85:1 k-ft or 85:1 k-ft @ Ans.

MDC ¼ �91 k-ft or 91 k-ft @ Ans.

Back substitution of the numerical values of member end moments into the equilibrium equations yields

MCA þMCD ¼ 85:1� 85:1 ¼ 0 Checks

MDB þMDC ¼ 91� 91 ¼ 0 Checks

FIG. 15.18 (contd.)

continued
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1:67MAC þ 2:67MCA þ 1:67MBD þ 2:67MDB ¼ 1:67ð91:7Þ þ 2:67ð85:1Þ

þ 1:67ð106:7Þ þ 2:67ð91Þ

¼ 801:5&800 Checks

Member End Shears and Axial Forces. See Fig. 15.18(e).

Support Reactions. See Fig. 15.18(f ). Ans.

Equilibrium Check. The equilibrium equations check.

Example 15.12

Determine the member end moments, the support reactions, and the horizontal deflection of joint F of the two-story
frame shown in Fig. 15.19(a) by the slope-deflection method.

Solution
Degrees of Freedom. From Fig. 15.19(a), we can see that the joints C;D;E, and F of the frame are free to rotate, and
translate in the horizontal direction. As shown in Fig. 15.19(b), the horizontal displacement of the first-story joints C and
D is designated as D1, whereas the horizontal displacement of the second-story joints E and F is expressed as D1 þ D2,
with D2 representing the displacement of the second-story joints relative to the first-story joints. Thus, the frame has six
degrees of freedom—that is, yC ; yD; yE ; yF ;D1, and D2.

FIG. 15.19

continued
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FIG. 15.19 (contd.)

continued
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Fixed-End Moments. The nonzero fixed-end moments are

FEMCD ¼ FEMEF ¼ 200 k-ft

FEMDC ¼ FEMFE ¼ �200 k-ft

Chord Rotations. See Fig. 15.19(b).

cAC ¼ cBD ¼ �
D1

20

cCE ¼ cDF ¼ �
D2

20

cCD ¼ cEF ¼ 0

Slope-Deflection Equations. Using Icolumn ¼ I and Igirder ¼ 2I , we write

MAC ¼ 0:1EIyC þ 0:015EID1 (1)

MCA ¼ 0:2EIyC þ 0:015EID1 (2)

MBD ¼ 0:1EIyD þ 0:015EID1 (3)

MDB ¼ 0:2EIyD þ 0:015EID1 (4)

MCE ¼ 0:2EIyC þ 0:1EIyE þ 0:015EID2 (5)

MEC ¼ 0:2EIyE þ 0:1EIyC þ 0:015EID2 (6)

MDF ¼ 0:2EIyD þ 0:1EIyF þ 0:015EID2 (7)

MFD ¼ 0:2EIyF þ 0:1EIyD þ 0:015EID2 (8)

MCD ¼ 0:2EIyC þ 0:1EIyD þ 200 (9)

MDC ¼ 0:2EIyD þ 0:1EIyC � 200 (10)

MEF ¼ 0:2EIyE þ 0:1EIyF þ 200 (11)

MFE ¼ 0:2EIyF þ 0:1EIyE � 200 (12)

Equilibrium Equations. By considering the moment equilibrium of joints C, D, E, and F , we obtain

MCA þMCD þMCE ¼ 0 (13)

MDB þMDC þMDF ¼ 0 (14)

MEC þMEF ¼ 0 (15)

MFD þMFE ¼ 0 (16)

To establish the remaining two equilibrium equations, we successively pass a horizontal section just above the lower ends
of the columns of each story of the frame and apply the equation of horizontal equilibrium ð

P
FX ¼ 0Þ to the free body

of the portion of the frame above the section. The free-body diagrams thus obtained are shown in Fig. 15.19(c) and (d).
By applying the equilibrium equation

P
FX ¼ 0 to the top story of the frame (Fig. 15.19(c)), we obtain

SCE þ SDF ¼ 10

Similarly, by applying
P

FX ¼ 0 to the entire frame (Fig. 15.19(d)), we write

SAC þ SBD ¼ 30

By expressing column end shears in terms of column end moments as

SAC ¼
MAC þMCA

20
SBD ¼

MBD þMDB

20

SCE ¼
MCE þMEC

20
SDF ¼

MDF þMFD

20

continued
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and by substituting these expressions into the force equilibrium equations, we obtain

MCE þMEC þMDF þMFD ¼ 200 (17)

MAC þMCA þMBD þMDB ¼ 600 (18)

Joint Displacements. Substitution of the slope-deflection equations (Eqs. (1) through (12)) into the equilibrium equations
(Eqs. (13) through (18)) yields

0:6EIyC þ 0:1EIyD þ 0:1EIyE þ 0:015EID1 þ 0:015EID2 ¼ �200 (19)

0:1EIyC þ 0:6EIyD þ 0:1EIyF þ 0:015EID1 þ 0:015EID2 ¼ 200 (20)

0:1EIyC þ 0:4EIyE þ 0:1EIyF þ 0:015EID2 ¼ �200 (21)

0:1EIyD þ 0:1EIyE þ 0:4EIyF þ 0:015EID2 ¼ 200 (22)

0:3EIyC þ 0:3EIyD þ 0:3EIyE þ 0:3EIyF þ 0:06EID2 ¼ 200 (23)

0:1EIyC þ 0:1EIyD þ 0:02EID1 ¼ 200 (24)

By solving Eqs. (19) through (24) by the Gauss-Jordan elimination method (Appendix B), we determine

EIyC ¼ �812:988 k-ft2

EIyD ¼ �241:556 k-ft2

EIyE ¼ �789:612 k-ft2

EIyF ¼ 353:248 k-ft2

EID1 ¼ 15;272:728 k-ft3 or D1 ¼ 0:0758 ft ¼ 0:91 in:!
EID2 ¼ 10;787:878 k-ft3 or D2 ¼ 0:0536 ft ¼ 0:643 in:!

Thus, the horizontal deflection of joint F of the frame is as follows:

DF ¼ D1 þ D2 ¼ 0:91þ 0:643 ¼ 1:553 in:! Ans.

Member End Moments. By substituting the numerical values of the joint displacements into the slope-deflection equations
(Eqs. (1) through (12)), we obtain

MAC ¼ 147:8 k-ft

’

Ans.

MCA ¼ 66:5 k-ft

’

Ans.

MBD ¼ 204:9 k-ft

’

Ans.

MDB ¼ 180:8 k-ft

’

Ans.

MCE ¼ �79:7 k-ft or 79:7 k-ft @ Ans.

MEC ¼ �77:4 k-ft or 77:4 k-ft @ Ans.

MDF ¼ 148:8 k-ft

’

Ans.

MFD ¼ 208:3 k-ft

’

Ans.

MCD ¼ 13:2 k-ft

’

Ans.

MDC ¼ �329:6 k-ft or 329:6 k-ft @ Ans.

MEF ¼ 77:4 k-ft

’

Ans.

MFE ¼ �208:3 k-ft or 208:3 k-ft @ Ans.

Back substitution of the numerical values of member end moments into the equilibrium equations yields

MCA þMCD þMCE ¼ 66:5þ 13:2� 79:7 ¼ 0 Checks

MDB þMDC þMDF ¼ 180:8� 329:6þ 148:8 ¼ 0 Checks

MEC þMEF ¼ �77:4þ 77:4 ¼ 0 Checks

continued
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MFD þMFE ¼ 208:3� 208:3 ¼ 0 Checks

MCE þMEC þMDF þMFD ¼ �79:7� 77:4þ 148:8þ 208:3 ¼ 200 Checks

MAC þMCA þMBD þMDB ¼ 147:8þ 66:5þ 204:9þ 180:8 ¼ 600 Checks

Member End Shears and Axial Forces. See Fig. 15.19(e).

Support Reactions. See Fig. 15.19(f ). Ans.

Equilibrium Check. The equilibrium equations check.

Summary

In this chapter, we have studied a classical formulation of the displace-
ment (sti¤ness) method, called the slope-deflection method, for the anal-
ysis of beams and frames. The method is based on the slope-deflection
equation:

Mnf ¼
2EI

L
ð2yn þ yf � 3cÞ þ FEMnf ð15:9Þ

which relates the moments at the ends of a member to the rotations and
displacements of its ends and the external loads applied to the member.

The procedure for analysis essentially involves (1) identifying the un-
known joint displacements (degrees of freedom) of the structure; (2) for
each member, writing slope-deflection equations relating member end
moments to the unknown joint displacements; (3) establishing the equa-
tions of equilibrium of the structure in terms of member end moments; (4)
substituting the slope-deflection equations into the equilibrium equations
and solving the resulting system of equations to determine the unknown
joint displacements; and (5) computing member end moments by sub-
stituting the values of joint displacements back into the slope-deflection
equations. Once member end moments have been evaluated, member end
shears and axial forces, and support reactions, can be determined through
equilibrium considerations.

PROBLEMS

Section 15.3

15.1 through 15.5 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P15.1–P15.5 by using the slope-deflection method.

FIG. P15.1

15.6 Solve Problem 15.2 for the loading shown in Fig. P15.2
and a settlement of 1

2 in. at support B.

15 ft

E = 29,000 ksi I = 1,650 in.4

15 ft 20 ft

B
A C

20 k

1.5 k/ft
3 k/ft

FIG. P15.2, P15.6
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15.7 Solve Problem 15.4 for the loading shown in Fig. P15.4
and the support settlements of 1 in. at B and 1

4 in. at C.

FIG. P15.3

2 k/ft

24 ft36 ft

B
CA

EI = constant
E = 29,000 ksi I = 1,530 in.4

FIG. P15.4, P15.7

12 m

250 kN
25 kN/m

6 m 6 m

1.5 II

B C
D

A

E = constant

FIG. P15.5

15.8 through 15.14 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P15.8–P15.14 by using the slope-deflection method.

1.5 k/ft

25 ft20 ft
EI = constant

25 ft

B C
DA

FIG. P15.8

FIG. P15.9, P15.15

FIG. P15.10

10 ft 10 ft 10 ft 20 ft

EI = constant

E
B C DA

35 k
2 k/ft1 k/ft

FIG. P15.11

6 m 4 m 6 m 4 m 4 m 4 m

I I2I

A C

B D F

E
G

120 kN 120 kN 150 kN

E =  200 GPa
I = 500 (106) mm4

FIG. P15.12, P15.16

FIG. P15.13
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FIG. P15.14

15.15 Solve Problem 15.9 for the loading shown in
Fig. P15.9 and a settlement of 25 mm at support C.

15.16 Solve Problem 15.12 for the loading shown in
Fig. P15.12 and support settlements of 10 mm at A; 65 mm
at C; 40 mm at E; and 25 mm at G.

Section 15.4

15.17 through 15.20 Determine the member end moments
and reactions for the frames shown in Figs. P15.17–P15.20
by using the slope-deflection method.

FIG. P15.17, P15.21

FIG. P15.18, P15.22

3 k/ft

D
C E

B

A

10 ft

5 ft

15 k

I

20 ft 5 ft

2I

E = constant

FIG. P15.19

30 kN/m

C D

A B

10 m

EI = constant

8 m

FIG. P15.20

15.21 Solve Problem 15.17 for the loading shown in
Fig. P15.17 and a settlement of 50 mm at support D.

15.22 Solve Problem 15.18 for the loading shown in
Fig. P15.18 and a settlement of 1

4 in. at support A.

15.23 Determine the member end moments and reactions
for the frame in Fig. P15.23 for the loading shown and the
support settlements of 1 in. at A and 112 in. at D. Use the
slope-deflection method.
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FIG. P15.23

Section 15.5

15.24 through 15.31 Determine the member end moments
and reactions for the frames shown in Figs. P15.24–P15.31
by using the slope-deflection method.

2 k/ft

25 k

20 ft

B
C

A

15 ft

EI = constant

FIG. P15.24

FIG. P15.25

30 ft

EI = constant

3 k/ft

40 k
C D

BA

15 ft

FIG. P15.26

FIG. P15.27
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FIG. P15.28

FIG. P15.29

FIG. P15.30

FIG. P15.31
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16
Moment-Distribution Method
16.1 Definitions and Terminology
16.2 Basic Concept of the Moment-Distribution Method
16.3 Analysis of Continuous Beams
16.4 Analysis of Frames without Sidesway
16.5 Analysis of Frames with Sidesway

Summary
Problems

The Empire State Building,

New York
Keith Levit/Shutterstock.com
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In this chapter, we consider another classical formulation of the displace-
ment method, the moment-distribution method. Like the slope-deflection
method, the moment-distribution method can be used only for the analy-
sis of continuous beams and frames, taking into account their bending
deformations only. This method, which was initially developed by Hardy
Cross in 1924, was the most widely used method for analysis of struc-
tures from 1930, when it was first published, through the 1960s. Since the
early 1970s, with the increasing availability of computers, the use of the
moment-distribution method has declined in favor of the computer-
oriented matrix methods of structural analysis. Nonetheless, the moment-
distribution method is still preferred by many engineers for analyzing
smaller structures, since it provides a better insight into the behavior of
structures. Furthermore, this method may also be used for preliminary
designs as well as for checking the results of computerized analyses.

The main reason for the popularity of the moment-distribution
method in the precomputer era was due to the fact that it does not in-
volve the solution of as many simultaneous equations as required by the
other classical methods. In the analysis of continuous beams and frames
without sidesway, the moment-distribution method completely avoids
the solution of simultaneous equations, whereas in the case of frames
with sidesway, the number of simultaneous equations involved usually
equals the number of independent joint translations.

The moment-distribution method is classified as a displacement
method, and from a theoretical viewpoint, it is very similar to the slope-
deflection method considered in the preceding chapter. However, unlike



the slope-deflection method in which all the structure’s equilibrium equa-
tions are satisfied simultaneously, in the moment-distribution method the
moment equilibrium equations of the joints are solved iteratively by suc-
cessively considering the moment equilibrium at one joint at a time, while
the remaining joints of the structure are assumed to be restrained against
displacement.

We first derive the fundamental relations necessary for the applica-
tion of the moment-distribution method and then develop the basic con-
cept of the method. We next consider the application of the method to the
analysis of continuous beams and frames without sidesway and, finally,
discuss the analysis of frames with sidesway.

16.1 Definitions and Terminology

Before we can develop the moment-distribution method, it is necessary to
adopt a sign convention and define the various terms used in the analysis.

Sign Convention

In applying the moment-distribution method, we will adopt the same sign
convention as used previously for the slope-deflection method:

Counterclockwise member end moments
are considered positive.

Since a counterclockwise moment at an end of a member must act in a
clockwise direction on the adjacent joint, the foregoing sign convention
implies that clockwise moments on joints are considered positive.

Member Stiffness

Consider a prismatic beam AB, which is hinged at end A and fixed at end
B, as shown in Fig. 16.1(a). If we apply a moment M at the end A, the
beam rotates by an angle y at the hinged end A and develops a moment
MBA at the fixed end B, as shown in the figure. The relationship between
the applied moment M and the rotation y can be established by using
the slope-deflection equation derived in Section 15.1. By substituting
Mnf ¼M, yn ¼ y, and yf ¼ c ¼ FEMnf ¼ 0 into the slope-deflection
equation (Eq. (15.9)), we obtain

M ¼ 4EI

L

� �
y ð16:1Þ

The bending sti¤ness, K, of a member is defined as the moment that must

be applied at an end of the member to cause a unit rotation of that end.
Thus, by setting y ¼ 1 rad in Eq. (16.1), we obtain the expression for the
bending sti¤ness of the beam of Fig. 16.1(a) to be

K ¼ 4EI

L
ð16:2Þ
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When the modulus of elasticity for all the members of a structure is
the same (i.e., E ¼ constant), it is usually convenient to work with the
relative bending sti¤nesses of members in the analysis. The relative bend-

ing sti¤ness, K, of a member is obtained by dividing its bending sti¤ness, K,

by 4E. Thus, the relative bending sti¤ness of the beam of Fig. 16.1(a) is
given by

K ¼ K

4E
¼ I

L
ð16:3Þ

Now, suppose that the far end B of the beam of Fig. 16.1(a) is hinged,
as shown in Fig. 16.1(b). The relationship between the applied moment
M and the rotation y of the end A of the beam can now be determined
by using the modified slope-deflection equation (Eqs. (15.15)) derived
in Section 15.1. By substituting Mrh ¼M, yr ¼ y, and c ¼ FEMrh ¼
FEMhr ¼ 0 into Eq. 15.15(a), we obtain

M ¼ 3EI

L

� �
y ð16:4Þ

By setting y ¼ 1 rad, we obtain the expression for the bending sti¤ness
of the beam of Fig. 16.1(b) to be

K ¼ 3EI

L
ð16:5Þ

A comparison of Eqs. (16.2) and (16.5) indicates that the sti¤ness of the
beam is reduced by 25 percent when the fixed support at B is replaced by
a hinged support. The relative bending sti¤ness of the beam can now be
obtained by dividing its bending sti¤ness by 4E:

K ¼ 3

4

I

L

� �
ð16:6Þ

FIG. 16.1
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From Eqs. (16.1) and (16.4), we can see that the relationship be-
tween the applied end moment M and the rotation y of the correspond-
ing end of a member can be summarized as follows:

M ¼

4EI

L

� �
y if far end of member is fixed

3EI

L

� �
y if far end of member is hinged

8>>>><>>>>: ð16:7Þ

Similarly, based on Eqs. (16.2) and (16.5), the bending sti¤ness of a mem-
ber is given by

K ¼

4EI

L
if far end of member is fixed

3EI

L
if far end of member is hinged

8>>><>>>: ð16:8Þ

and the relative bending sti¤ness of a member can be expressed as (see
Eqs. (16.3) and (16.6))

K ¼

I

L
if far end of member is fixed

3

4

I

L

� �
if far end of member is hinged

8>>><>>>: ð16:9Þ

Carryover Moment

Let us consider again the hinged-fixed beam of Fig. 16.1(a). When a
moment M is applied at the hinged end A of the beam, a moment MBA

develops at the fixed end B, as shown in the figure. The moment MBA

is termed the carryover moment. To establish the relationship between
the applied moment M and the carryover moment MBA, we write the
slope-deflection equation for MBA by substituting Mnf ¼MBA, yf ¼ y,
and yn ¼ c ¼ FEMnf ¼ 0 into Eq. (15.9):

MBA ¼
2EI

L

� �
y ð16:10Þ

By substituting y ¼ML=ð4EIÞ from Eq. (16.1) into Eq. (16.10), we obtain

MBA ¼
M

2
ð16:11Þ

As Eq. (16.11) indicates, when a moment of magnitude M is applied at
the hinged end of a beam, one-half of the applied moment is carried over

to the far end, provided that the far end is fixed. Note that the direction
of the carryover moment, MBA, is the same as that of the applied mo-
ment, M.
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When the far end of the beam is hinged, as shown in Fig. 16.1(b),
the carryover moment MBA is zero. Thus, we can express the carryover
moment as

MBA ¼
M

2
if far end of member is fixed

0 if far end of member is hinged

8><>: ð16:12Þ

The ratio of the carryover moment to the applied moment ðMBA=MÞ
is called the carryover factor of the member. It represents the fraction of the
applied moment M that is carried over to the far end of the member. By
dividing Eq. (16.12) by M, we can express the carryover factor (COF) as

COF ¼
1

2
if far end of member is fixed

0 if far end of member is hinged

8><>: ð16:13Þ

Derivation of Member Stiffness and Carryover Moment by
the Moment-Area Method

The foregoing expressions of member bending sti¤ness and carryover mo-
ment can, alternatively, be derived by applying the moment-area method
discussed in Chapter 6.

The hinged-fixed beam of Fig. 16.1(a) is redrawn in Fig. 16.2(a),
which also shows the M=EI diagram of the beam. Because the right end
B of the beam is fixed, the tangent to the elastic curve at B is horizontal,
and it passes through the left end A. Therefore, the tangential deviation
of end A from the tangent at end B is equal to zero (i.e., DAB ¼ 0). Since
according to the second moment-area theorem, this tangential deviation
is equal to the moment of the M=EI diagram between A and B about A,
we can write

DAB ¼
1

2

M

EI

� �
L

L

3

� �
� 1

2

MBA

EI

� �
L

2L

3

� �
¼ 0

from which

MBA ¼
M

2

Note that the preceding expression for carryover moment is identical to
Eq. (16.11), which was derived previously by using the slope-deflection
equations.

With the tangent at B horizontal, the angle y at A equals the change
in slope yBA between A and B. Since, according to the first moment-area
theorem, yBA is equal to the area of the M=EI diagram between A and
B, we write

y ¼ 1

2

M

EI

� �
L� 1

2

MBA

EI

� �
L

FIG. 16.2
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By substituting MBA ¼M=2, we obtain

y ¼ L

4EI

� �
M

from which

M ¼ 4EI

L

� �
y

which is the same as Eq. (16.1), derived previously.
The elastic curve and the M=EI diagram for the beam, when its far

end B is hinged, are shown in Fig. 16.2(b). From the elastic curve we can
see that

y ¼ DBA

L

in which, according to the second moment-area theorem,

DBA ¼ moment of M=EI diagram between A and B about B

¼ 1

2

M

EI

� �
L

2L

3

� �
¼ L2

3EI

� �
M

Therefore,

y ¼ DBA

L
¼ L

3EI

� �
M

from which

M ¼ 3EI

L

� �
y

which is identical to Eq. (16.4), derived previously by using the slope-
deflection equations.

Distribution Factors

When analyzing a structure by the moment-distribution method, an im-
portant question that arises is how to distribute a moment applied at a
joint among the various members connected to that joint. Consider the
three-member frame shown in Fig. 16.3(a), and suppose that a moment
M is applied to the joint B, causing it to rotate by an angle y, as shown in
the figure. To determine what fraction of the applied moment M is re-
sisted by each of the three members connected to the joint, we draw free-
body diagrams of joint B and of the three members AB;BC, and BD, as
shown in Fig. 16.3(b). By considering the moment equilibrium of the free
body of joint B (i.e.,

P
MB ¼ 0), we write

M þMBA þMBC þMBD ¼ 0

or

M ¼ �ðMBA þMBC þMBDÞ ð16:14Þ
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Since members AB;BC, and BD are rigidly connected to joint B, the ro-
tations of the ends B of these members are the same as that of the joint.
The moments at the ends B of the members can be expressed in terms of
the joint rotation y by applying Eq. (16.7). Noting that the far ends A

and C, respectively, of members AB and BC are fixed, whereas the far
end D of member BD is hinged, we apply Eqs. (16.7) through (16.9) to
each member to obtain

MBA ¼
4EI1
L1

� �
y ¼ KBAy ¼ 4EKBAy ð16:15Þ

MBC ¼
4EI2
L2

� �
y ¼ KBCy ¼ 4EKBCy ð16:16Þ

MBD ¼
3EI3
L3

� �
y ¼ KBDy ¼ 4EKBDy ð16:17Þ

FIG. 16.3
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Substitution of Eqs. (16.15) through (16.17) into the equilibrium equa-
tion (Eq. (16.14)) yields

M ¼ � 4EI1
L1
þ 4EI2

L2
þ 3EI3

L3

� �
y

¼ �ðKBA þ KBC þ KBDÞy ¼ �ð
P

KBÞy ð16:18Þ

in which
P

KB represents the sum of the bending sti¤nesses of all the
members connected to joint B.

The rotational sti¤ness of a joint is defined as the moment required to

cause a unit rotation of the joint. From Eq. (16.18), we can see that the
rotational sti¤ness of a joint is equal to the sum of the bending sti¤nesses
of all the members rigidly connected to the joint. The negative sign in
Eq. (16.18) appears because of the sign convention we have adopted, ac-
cording to which the member end moments are considered positive when
in the counterclockwise direction, whereas the moments acting on the
joints are considered positive when they act in the clockwise direction.

To express member end moments in terms of the applied moment
M, we first rewrite Eq. (16.18) in terms of the relative bending sti¤nesses
of members as

M ¼ �4EðKBA þ KBC þ KBDÞy ¼ �4Eð
P

KBÞy

from which

y ¼ � M

4E
P

KB

ð16:19Þ

By substituting Eq. (16.19) into Eqs. (16.15) through (16.17), we obtain

MBA ¼ �
KBAP
KB

� �
M ð16:20Þ

MBC ¼ �
KBCP
KB

� �
M ð16:21Þ

MBD ¼ �
KBDP
KB

� �
M ð16:22Þ

From Eqs. (16.20) through (16.22), we can see that the applied moment
M is distributed to the three members in proportion to their relative
bending sti¤nesses. The ratio K=

P
KB for a member is termed the dis-

tribution factor of that member for end B, and it represents the fraction of
the applied moment M that is distributed to end B of the member. Thus
Eqs. (16.20) through (16.22) can be expressed as

MBA ¼ �DFBAM ð16:23Þ

MBC ¼ �DFBCM ð16:24Þ

MBD ¼ �DFBDM ð16:25Þ

in which DFBA ¼ KBA=
P

KB, DFBC ¼ KBC=
P

KB, and DFBD ¼
KBD=

P
KB are the distribution factors for ends B of members AB;BC,

and BD, respectively.
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For example, if joint B of the frame of Fig. 16.3(a) is subjected to a
clockwise moment of 150 k-ft (i.e., M ¼ 150 k-ft) and if L1 ¼ L2 ¼ 20 ft,
L3 ¼ 30 ft, and I1 ¼ I2 ¼ I3 ¼ I , so that

KBA ¼ KBC ¼
I

20
¼ 0:05I

KBD ¼
3

4

I

30

� �
¼ 0:025I

then the distribution factors for the ends B of members AB;BC, and BD

are given by

DFBA ¼
KBA

KBA þ KBC þ KBD

¼ 0:05I

ð0:05þ 0:05þ 0:025ÞI ¼ 0:4

DFBC ¼
KBC

KBA þ KBC þ KBD

¼ 0:05I

0:125I
¼ 0:4

DFBD ¼
KBD

KBA þ KBC þ KBD

¼ 0:05I

0:125I
¼ 0:2

These distribution factors indicate that 40 percent of the 150-k-ft mo-
ment applied to joint B is exerted at end B of member AB, 40 percent at
end B of member BC, and the remaining 20 percent at end B of member
BD. Thus, the moments at ends B of the three members are

MBA ¼ �DFBAM ¼ �0:4ð150Þ ¼ �60 k-ft or 60 k-ft @

MBC ¼ �DFBCM ¼ �0:4ð150Þ ¼ �60 k-ft or 60 k-ft @

MBD ¼ �DFBDM ¼ �0:2ð150Þ ¼ �30 k-ft or 30 k-ft @

Based on the foregoing discussion, we can state that, in general, the
distribution factor (DF) for an end of a member that is rigidly connected
to the adjacent joint equals the ratio of the relative bending sti¤ness of the
member to the sum of the relative bending sti¤nesses of all the members
framing into the joint; that is,

DF ¼ KP
K

ð16:26Þ

Furthermore, the moment distributed to (or resisted by) a rigidly con-
nected end of a member equals the distribution factor for that end times
the negative of the moment applied to the adjacent joint.

Fixed-End Moments

The fixed-end moment expressions for some common types of loading
conditions as well as for relative displacements of member ends are given
inside the back cover of the book for convenient reference. In the mo-
ment-distribution method, the e¤ects of joint translations due to support
settlements and sidesway are also taken into account by means of fixed-
end moments.

Consider the fixed beam of Fig. 16.4(a). As shown in this figure, a
small settlement D of the left end A of the beam with respect to the right
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end B causes the beam’s chord to rotate counterclockwise by an angle
c ¼ D=L. By writing the slope-deflection equations (Eq. (15.9)) for the
two end moments with c ¼ D=L and by setting yA; yB, and fixed-end
moments FEMAB and FEMBA due to external loading, equal to zero, we
obtain

FEMAB ¼ FEMBA ¼ �
6EID

L2

in which FEMAB and FEMBA now denote the fixed-end moments due to
the relative translation D between the two ends of the beam. Note that
the magnitudes as well as the directions of the two fixed-end moments
are the same. It can be seen from Fig. 16.4(a) that when a relative dis-
placement causes a chord rotation in the counterclockwise direction,
then the two fixed-end moments act in the clockwise (negative) direction
to maintain zero slopes at the two ends of the beam. Conversely, if the
chord rotation due to a relative displacement is clockwise, as shown in
Fig. 16.4(b), then both fixed-end moments act in the counterclockwise
(positive) direction to prevent the ends of the beam from rotating.

16.2 Basic Concept of the Moment-Distribution Method

The moment-distribution method is an iterative procedure, in which it is
initially assumed that all the joints of the structure that are free to rotate
are temporarily restrained against rotation by imaginary clamps applied
to them. External loads and joint translations (if any) are applied to this
hypothetical fixed structure, and fixed-end moments at the ends of its
members are computed. These fixed-end moments generally are not in
equilibrium at those joints of the structure that are actually free to rotate.
The conditions of equilibrium at such joints are then satisfied iteratively by
releasing one joint at a time, with the remaining joints assumed to remain
clamped. A joint at which the moments are not in balance is selected, and
its unbalanced moment is evaluated. The joint is then released by remov-
ing the clamp, thereby allowing it to rotate under the unbalanced moment
until the equilibrium state is reached. The rotation of the joint induces
moments at the ends of the members connected to it. Such member end
moments are referred to as distributed moments, and their values are de-
termined by multiplying the negative of the unbalanced joint moment by
the distribution factors for the member ends connected to the joint. The
bending of these members due to the distributed moments causes carry-
over moments to develop at the far ends of the members, which can easily

FIG. 16.4
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be evaluated by using the member carryover factors. The joint, which is
now in equilibrium, is reclamped in its rotated position. Next, another
joint with an unbalanced moment is selected and is released, balanced, and
reclamped in the same manner. The procedure is repeated until the un-
balanced moments at all the joints of the structure are negligibly small.
The final member end moments are obtained by algebraically summing
the fixed-end moment and all the distributed and carryover moments at
each member end. This iterative process of determining member end mo-
ments by successively distributing the unbalanced moment at each joint is
called the moment-distribution process.

With member end moments known, member end shears, member
axial forces, and support reactions can be determined through equili-
brium considerations, as discussed in Chapter 15.

To illustrate the moment-distribution method, consider the three-span
continuous beam shown in Fig. 16.5(a). This structure was previously ana-
lyzed in Section 15.2 by the slope-deflection method. It is usually con-
venient to carry out the moment-distribution analysis in a tabular form, as
shown in Fig. 16.5(a). Note that the table, which is sometimes referred to as
a moment-distribution table, consists of six columns, one for each member
end of the structure. All the computations for a particular member end
moment are recorded in the column for that member end.

Distribution Factors

The first step in the analysis is to calculate the distribution factors at
those joints of the structure that are free to rotate.

As discussed in Section 16.1 (Eq. (16.26)), the distribution factor for
an end of a member is equal to the relative bending sti¤ness of the mem-
ber divided by the sum of the relative bending sti¤nesses of all the mem-
bers connected to the joint. From Fig. 16.5(a), we can see that only joints
B and C of the continuous beam are free to rotate. The distribution fac-
tors at joint B are

DFBA ¼
KBA

KBA þ KBC

¼ I=20

2I=20
¼ 0:5

DFBC ¼
KBC

KBA þ KBC

¼ I=20

2I=20
¼ 0:5

Similarly, at joint C,

DFCB ¼
KCB

KCB þ KCD

¼ I=20

ðI=20Þ þ ðI=15Þ ¼ 0:429

DFCD ¼
KCD

KCB þ KCD

¼ I=15

ðI=20Þ þ ðI=15Þ ¼ 0:571

Note that the sum of the distribution factors at each joint must always
equal 1. The distribution factors are recorded in boxes directly beneath
the corresponding member ends on top of the moment-distribution table,
as shown in Fig. 16.5(a).
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Fixed-End Moments

Next, by assuming that joints B and C are restrained against rotation by
imaginary clamps applied to them (Fig. 16.5(b)), we calculate the fixed-
end moments that develop at the ends of each member. By using the

FIG. 16.5
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fixed-end moment expressions given inside the back cover of the book, we
obtain

FEMAB ¼
1:5ð20Þ2

12
¼ 50 k-ft

’

or þ50 k-ft

FEMBA ¼ 50 k-ft @ or �50 k-ft

FIG. 16.5 (contd.)
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FEMBC ¼
30ð20Þ

8
¼ 75 k-ft

’

or þ75 k-ft

FEMCB ¼ 75 k-ft @ or �75 k-ft

FEMCD ¼ FEMDC ¼ 0

Note that in accordance with the moment-distribution sign convention,
the counterclockwise fixed-end moments are considered to be positive.
The fixed-end moments are recorded on the first line of the moment-
distribution table, as shown in Fig. 16.5(a).

Balancing Joint C

Since joints B and C are actually not clamped, we release them, one at a
time. We can release either joint B or joint C; let us begin at joint C.
From Fig. 16.5(b), we can see that there is a �75-k-ft (clockwise) fixed-
end moment at end C of member BC, whereas no moment exists at end
C of member CD. As long as joint C is restrained against rotation by
the clamp, the �75-k-ft unbalanced moment is absorbed by the clamp.
However, when the imaginary clamp is removed to release the joint, the
�75-k-ft unbalanced moment acts at the joint, as shown in Fig. 16.5(c),
causing it to rotate in the counterclockwise direction until it is in equili-
brium (Fig. 16.5(d)). The rotation of joint C causes the distributed mo-
ments, DMCB and DMCD, to develop at ends C of members BC and CD,
which can be evaluated by multiplying the negative of the unbalanced
moment (i.e., þ75-k-ft) by the distribution factors DFCB and DFCD, re-
spectively. Thus

DMCB ¼ 0:429ðþ75Þ ¼ þ32:2 k-ft

DMCD ¼ 0:571ðþ75Þ ¼ þ42:8 k-ft

These distributed moments are recorded on line 2 of the moment-
distribution table (Fig. 16.5(a)), and a line is drawn beneath them to in-
dicate that joint C is now balanced. Note that the sum of the three
moments above the line at joint C is equal to zero (i.e., �75þ 32:2þ
42:8 ¼ 0).

The distributed moment at end C of member BC induces a carry-
over moment at the far end B (Fig. 16.5(d)), which can be determined by
multiplying the distributed moment by the carryover factor of the mem-
ber. Since joint B remains clamped, the carryover factor of member BC
is 1

2 (Eq. (16.13)). Thus, the carryover moment at the end B of member
BC is

COMBC ¼ COFCBðDMCBÞ ¼
1

2
ðþ32:2Þ ¼ þ16:1 k-ft

Similarly, the carryover moment at the end D of member CD is com-
puted as

COMDC ¼ COFCDðDMCDÞ ¼
1

2
ðþ42:8Þ ¼ þ21:4 k-ft

These carryover moments are recorded on the same line of the moment-
distribution table as the distributed moments, with a horizontal arrow
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from each distributed moment to its carryover moment, as shown in
Fig. 16.5(a).

The total member end moments at this point in the analysis are de-
picted in Fig. 16.5(e). It can be seen from this figure that joint C is now in
equilibrium, because it is subjected to two equal, but opposite, moments.
Joint B, however, is not in equilibrium, and it needs to be balanced. Be-
fore we release joint B, an imaginary clamp is applied to joint C in its
rotated position, as shown in Fig. 16.5(e).

Balancing Joint B

Joint B is now released. The unbalanced moment at this joint is ob-
tained by summing all the moments acting at the ends B of members AB
and BC, which are rigidly connected to joint B. From the moment-
distribution table (lines 1 and 2), we can see that there is a �50-k-ft
fixed-end moment at end B of member AB, whereas the end B of mem-
ber BC is subjected to a þ75-k-ft fixed-end moment and a þ16.1-k-ft
carryover moment. Thus the unbalanced moment at joint B is

UMB ¼ �50þ 75þ 16:1 ¼ þ41:1 k-ft

This unbalanced moment causes joint B to rotate, as shown in Fig. 16.5(f ),
and induces distributed moments at ends B of members AB and BC. As
discussed previously, the distributed moments are evaluated by multiplying
the negative of the unbalanced moment by the distribution factors:

DMBA ¼ 0:5ð�41:1Þ ¼ �20:6 k-ft

DMBC ¼ 0:5ð�41:1Þ ¼ �20:6 k-ft

These distributed moments are recorded on line 3 of the moment-
distribution table, and a line is drawn beneath them to indicate that joint
B is now balanced. One-half of the distributed moments are then carried
over to the far ends A and C of members AB and BC, respectively, as
indicated by horizontal arrows on line 3 of the table. Joint B is then re-
clamped in its rotated position.

Balancing Joint C

With joint B now balanced, we can see from the moment-distribution
table (line 3) that, due to the carryover e¤ect, there is a �10.3-k-ft un-
balanced moment at joint C. Recall that the moments above the hori-
zontal line at joint C were balanced previously. Thus we release joint C
again and distribute the unbalanced moment to ends C of members BC
and CD as (Fig. 16.5(g))

DMCB ¼ 0:429ðþ10:3Þ ¼ þ4:4 k-ft

DMCD ¼ 0:571ðþ10:3Þ ¼ þ5:9 k-ft

These distributed moments are recorded on line 4 of the moment-
distribution table, and one-half of these moments are carried over to the
ends B and D of members BC and CD, respectively, as indicated on the
table. Joint C is then reclamped.
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Balancing Joint B

The þ2.2-k-ft unbalanced moment at joint B (line 4 of the moment-
distribution table) is balanced in a similar manner. The distributed and
the carryover moments thus computed are shown on line 5 of the table.
Joint B is then reclamped.

It can be seen from line 5 of the moment-distribution table that the
unbalanced moment at joint C has now been reduced to only �0.6 k-ft.
Another balancing of joint C produces an even smaller unbalanced
moment of þ0.2 k-ft at joint B, as shown on line 6 of the moment-
distribution table. Since the distributed moments induced by this un-
balanced moment are negligibly small, we end the moment-distribution
process. The final member end moments are obtained by algebraically
summing the entries in each column of the moment-distribution table.
The final moments thus obtained are recorded on line 8 of the table and
are shown on the free-body diagrams of the members in Fig. 16.5(h).
Note that the final moments satisfy the equations of moment equilibrium
at joints B and C.

With the member end moments known, member end shears and sup-
port reactions can now be determined by considering the equilibrium of
the free bodies of the members and joints of the continuous beam, as dis-
cussed in Section 15.2. The shear and bending moment diagrams can then
be constructed in the usual manner by using the beam sign convention (see
Fig. 15.3).

Practical Application of the Moment-Distribution Process

In the foregoing discussion, we determined the member end moments by
successively balancing one joint of the structure at a time. Although this
approach provides a clearer insight into the basic concept of the moment-
distribution process, from a practical viewpoint, it is usually more con-
venient to use an alternative approach in which all the joints of the
structure that are free to rotate are balanced simultaneously in the same
step. All the carryover moments that are induced at the far ends of the
members are then computed simultaneously in the following step, and the
process of balancing the joints and carrying over moments is repeated
until the unbalanced moments at the joints are negligibly small.

To illustrate this alternative approach, consider again the three-span
continuous beam of Fig. 16.5(a). The moment-distribution table used for
carrying out the computations is shown in Fig. 16.5(i). The previously
computed distribution factors and fixed-end moments are recorded on
the top and the first line, respectively, of the table, as shown in the figure.
The moment-distribution process is started by balancing joints B and C.
From line 1 of the moment-distribution table (Fig. 16.5(i)), we can see
that the unbalanced moment at joint B is

UMB ¼ �50þ 75 ¼ þ25 k-ft

As discussed previously, the balancing of joint B induces distributed mo-
ments at ends B of the members AB and BC, which can be evaluated by
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multiplying the negative of the unbalanced moment by the distribution
factors. Thus,

DMBA ¼ 0:5ð�25Þ ¼ �12:5 k-ft

DMBC ¼ 0:5ð�25Þ ¼ �12:5 k-ft

Joint C is then balanced in a similar manner. From line 1 of the moment-
distribution table, we can see that the unbalanced moment at joint C is

UMC ¼ �75 k-ft

Thus, the balancing of joint C induces the following distributed moments
at ends C of members BC and CD, respectively:

DMCB ¼ 0:429ðþ75Þ ¼ þ32:2 k-ft

DMCD ¼ 0:571ðþ75Þ ¼ þ42:8 k-ft

The four distributed moments are recorded on line 2 of the moment-
distribution table, and a line is drawn beneath them, across the entire
width of the table, to indicate that all the joints are now balanced.

In the next step of the analysis, the carryover moments that develop
at the far ends of the members are computed by multiplying the dis-
tributed moments by the carryover factors:

COMAB ¼
1

2
ðDMBAÞ ¼

1

2
ð�12:5Þ ¼ �6:3 k-ft

COMCB ¼
1

2
ðDMBCÞ ¼

1

2
ð�12:5Þ ¼ �6:3 k-ft

COMBC ¼
1

2
ðDMCBÞ ¼

1

2
ðþ32:2Þ ¼ þ16:1 k-ft

COMDC ¼
1

2
ðDMCDÞ ¼

1

2
ðþ42:8Þ ¼ þ21:4 k-ft

These carryover moments are recorded on the next line (line 3) of the
moment-distribution table, with an inclined arrow pointing from each
distributed moment to its carryover moment, as shown in Fig. 16.5(i). We
can see from line 3 of the moment-distribution table that, due to the
carryover e¤ect, there are now þ16.1-k-ft and �6.3-k-ft unbalanced mo-
ments at joints B and C, respectively. Thus these joints are balanced
again, and the distributed moments thus obtained are recorded on line 4
of the moment-distribution table. One-half of the distributed moments are
then carried over to the far ends of the members (line 5), and the process
is continued until the unbalanced moments are negligibly small. The final
member end moments, obtained by algebraically summing the entries in
each column of the moment-distribution table, are recorded on line 11 of
the table (Fig. 16.5(i)). Note that these final moments are in agreement
with those determined previously in Fig. 16.5(a) and in Section 15.2 by
the slope-deflection method. The small di¤erences between the results
obtained by di¤erent approaches are due to the round-o¤ errors.
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16.3 Analysis of Continuous Beams

Based on the discussion presented in the preceding section, the proce-
dure for the analysis of continuous beams by the moment-distribution
method can be summarized as follows:

1. Calculate distribution factors. At each joint that is free to rotate,
calculate the distribution factor for each of the members rigidly
connected to the joint. The distribution factor for a member end
is computed by dividing the relative bending sti¤ness ðI=LÞ of
the member by the sum of the relative bending sti¤nesses of all
the members rigidly connected to the joint. The sum of all the
distribution factors at a joint must equal 1.

2. Compute fixed-end moments. Assuming that all the free joints
are clamped against rotation, evaluate, for each member, the
fixed-end moments due to the external loads and support settle-
ments (if any) by using the fixed-end moment expressions given
inside the back cover of the book. The counterclockwise fixed-
end moments are considered to be positive.

3. Balance the moments at all the joints that are free to rotate by
applying the moment-distribution process as follows:
a. At each joint, evaluate the unbalanced moment and distrib-

ute the unbalanced moment to the members connected to the
joint. The distributed moment at each member end rigidly
connected to the joint is obtained by multiplying the negative
of the unbalanced moment by the distribution factor for the
member end.

b. Carry over one-half of each distributed moment to the op-
posite (far) end of the member.

c. Repeat steps 3(a) and 3(b) until either all the free joints are
balanced or the unbalanced moments at these joints are
negligibly small.

4. Determine the final member end moments by algebraically sum-
ming the fixed-end moment and all the distributed and carryover
moments at each member end. If the moment distribution has
been carried out correctly, then the final moments must satisfy
the equations of moment equilibrium at all the joints of the
structure that are free to rotate.

5. Compute member end shears by considering the equilibrium of
the members of the structure.

6. Determine support reactions by considering the equilibrium of
the joints of the structure.

7. Draw shear and bending moment diagrams by using the beam

sign convention.

Beams with Simple Supports at the Ends

Although the foregoing procedure can be used to analyze continuous
beams that are simply supported at one or both ends, the analysis of such
structures can be considerably simplified by using the reduced relative
bending sti¤nesses, K ¼ 3I=ð4LÞ, for spans adjacent to the simple end
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supports, in accordance with Eq. (16.9). When using reduced sti¤nesses,
the joints at the simple end supports are balanced only once during the
moment-distribution process, after which they are left unclamped so that
no moments can be carried over to them as the interior joints of the
structure are balanced (see Example 16.3).

Structures with Cantilever Overhangs

Consider a continuous beam with a cantilever overhang, as shown in
Fig. 16.6(a). Since the cantilever portion CD does not contribute to the
rotational sti¤ness of joint C, the distribution factor for its end C is zero
(DFCD ¼ 0). Thus, joint C can be treated as a simple end support in the
analysis. The moment at end C of the cantilever, however, does a¤ect the
unbalanced moment at joint C and must be included along with the other
fixed-end moments in the analysis (Fig. 16.6(b)). Note that the cantilever
portion CD is statically determinate; therefore, the moment at its end C

can be easily evaluated by applying the equation of moment equilibrium
(Fig. 16.6(c)).

Example 16.1

Determine the member end moments for the two-span continuous beam shown in Fig. 16.7(a) by using the moment-
distribution method.

Solution
This beam was previously analyzed in Example 15.1 by the slope-deflection method.

FIG. 16.6

continued
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Distribution Factors. Only joint B is free to rotate. The distribution factors at this joint are

DFBA ¼
KBA

KBA þ KBC

¼ I=25

ðI=25Þ þ ðI=30Þ ¼ 0:545

DFBC ¼
KBC

KBA þ KBC

¼ I=30

ðI=25Þ þ ðI=30Þ ¼ 0:455

Note that the sum of the distribution factors at joint B is equal to 1; that is,

DFBA þDFBC ¼ 0:545þ 0:455 ¼ 1 Checks

The distribution factors are recorded in boxes beneath the corresponding member ends on top of the moment-
distribution table, as shown in Fig. 16.7(a).

Fixed-End Moments. Assuming that joint B is clamped against rotation, we calculate the fixed-end moments due to the
external loads by using the fixed-end moment expressions given inside the back cover of the book:

FEMAB ¼
18ð10Þð15Þ2

ð25Þ2
¼ 64:8 k-ft

’

or þ64:8 k-ft

FEMBA ¼
18ð10Þ2ð15Þ
ð25Þ2

¼ 43:2 k-ft @ or �43:2 k-ft

FEMBC ¼
2ð30Þ2

12
¼ 150 k-ft

’

or þ150 k-ft

FEMCB ¼ 150 k-ft @ or �150 k-ft

These fixed-end moments are recorded on the first line of the moment-distribution table, as shown in Fig. 16.7(a).

Moment Distribution. Since joint B is actually not clamped, we release the joint and determine the unbalanced moment
acting on it by summing the moments at ends B of members AB and BC:

UMB ¼ �43:2þ 150 ¼ þ106:8 k-ft

FIG. 16.7

continued
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This unbalanced moment at joint B induces distributed moments at the ends B of members AB and BC, which can be
determined by multiplying the negative of the unbalanced moment by the distribution factors:

DMBA ¼ DFBAð�UMBÞ ¼ 0:545ð�106:8Þ ¼ �58:2 k-ft

DMBC ¼ DFBCð�UMBÞ ¼ 0:455ð�106:8Þ ¼ �48:6 k-ft

These distributed moments are recorded on line 2 of the moment-distribution table, and a line is drawn beneath them
to indicate that joint B is now balanced. The carryover moments at the far ends A and C of members AB and BC,
respectively, are then computed as

COMAB ¼
1

2
ðDMBAÞ ¼

1

2
ð�58:2Þ ¼ �29:1 k-ft

COMCB ¼
1

2
ðDMBCÞ ¼

1

2
ð�48:6Þ ¼ �24:3 k-ft

The carryover moments are recorded on the next line (line 3) of the moment-distribution table, with an inclined arrow
pointing from each distributed moment to its carryover moment, as shown in Fig. 16.7(a).

Joint B is the only joint of the structure that is free to rotate, and because it has been balanced, we end the moment-
distribution process.

Final Moments. The final member end moments are obtained by algebraically summing all the moments in each
column of the moment-distribution table. The final moments thus obtained are recorded on the last line of the table in
Fig. 16.7(a). Note that these final moments satisfy the equation of moment equilibrium at joint B. A positive answer for
an end moment indicates that its sense is counterclockwise, whereas a negative answer for an end moment implies a
clockwise sense. The final member end moments are depicted in Fig. 16.7(b). Ans.

The member end shears and support reactions can now be determined by considering the equilibrium of the mem-
bers and joints of the continuous beam, as discussed in Example 15.1. The shear and bending moment diagrams of the
beam were also constructed in Example 15.1.

Example 16.2

Determine the member end moments for the three-span continuous beam shown in Fig. 16.8(a) by the moment-
distribution method.

Solution
This beam was analyzed previously in Example 15.2 by using the slope-deflection method.

Distribution Factors. From Fig. 16.8(a), we can see that joints B and C of the beam are free to rotate. The distribution
factors at joint B are

DFBA ¼
KBA

KBA þ KBC

¼ I=18

ðI=18Þ þ ðI=18Þ ¼ 0:5

DFBC ¼
KBC

KBA þ KBC

¼ I=18

ðI=18Þ þ ðI=18Þ ¼ 0:5
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Similarly, at joint C,

DFCB ¼
KCB

KCB þ KCD

¼ I=18

ðI=18Þ þ ðI=18Þ ¼ 0:5

DFCD ¼
KCD

KCB þ KCD

¼ I=18

ðI=18Þ þ ðI=18Þ ¼ 0:5

Fixed-End Moments.

FEMAB ¼ þ
3ð18Þ2

30
¼ þ32:4 k-ft

FEMBA ¼ �
3ð18Þ2

20
¼ �48:6 k-ft

FEMBC ¼ þ
3ð18Þ2

12
¼ þ81 k-ft

FEMCB ¼ �81 k-ft

FEMCD ¼ þ
3ð18Þ2

20
¼ þ48:6 k-ft

FEMDC ¼ �
3ð18Þ2

30
¼ �32:4 k-ft

0.5 0.5 0.5 0.5
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–0.5
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+8.1

+2.0
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+0.1

+16.2

+4.1

+1.0
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–70.2

–81

–8.1

–2.0

–0.5

–0.1

+16.2

+4.1
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+0.05

+70.2
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+0.1

1. Fixed-end moments
2. Balance joints B and C
3. Carryover
4. Balance joints B and C
5. Carryover
6. Balance joints B and C
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Distribution Factors
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FIG. 16.8
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Moment Distribution. After recording the distribution factors and the fixed-end moments in the moment-distribution
table shown in Fig. 16.8(a), we begin the moment-distribution process by balancing joints B and C. The unbalanced
moment at joint B is equal to �48:6þ 81 ¼ þ32:4 k-ft. Thus, the distributed moments at the ends B of members AB
and BC are

DMBA ¼ DFBAð�UMBÞ ¼ 0:5ð�32:4Þ ¼ �16:2 k-ft

DMBC ¼ DFBCð�UMBÞ ¼ 0:5ð�32:4Þ ¼ �16:2 k-ft

Similarly, noting that the unbalanced moment at joint C equals �81þ 48:6 ¼ �32:4 k-ft, we determine the dis-
tributed moments at the ends C of members BC and CD to be

DMCB ¼ DFCBð�UMCÞ ¼ 0:5ðþ32:4Þ ¼ þ16:2 k-ft

DMCD ¼ DFCDð�UMCÞ ¼ 0:5ðþ32:4Þ ¼ þ16:2 k-ft

One-half of these distributed moments are then carried over to the far ends of the members, as shown on the third line
of the moment-distribution table in Fig. 16.8(a). This process is repeated, as shown in the figure, until the unbalanced
moments are negligibly small.

Final Moments. The final member end moments, obtained by summing the moments in each column of the moment-
distribution table, are recorded on the last line of the table in Fig. 16.8(a). These moments are depicted in Fig. 16.8(b).

Ans.

The member end shears, support reactions, and shear and bending moment diagrams of the beam were determined
in Example 15.2.

Example 16.3

Determine the reactions and draw the shear and bending moment diagrams for the two-span continuous beam shown in
Fig. 16.9(a) by using the moment-distribution method.

Solution
Distribution Factors. From Fig. 16.9(a), we can see that joints B and C of the continuous beam are free to rotate. The
distribution factors at joint B are

DFBA ¼
KBA

KBA þ KBC

¼ 1:5I=10

ð1:5I=10Þ þ ðI=10Þ ¼ 0:6

DFBC ¼
KBC

KBA þ KBC

¼ I=10

ð1:5I=10Þ þ ðI=10Þ ¼ 0:4

Similarly, at joint C,

DFCB ¼
KCB

KCB

¼ 0:1I

0:1I
¼ 1

Fixed-End Moments.

FEMAB ¼ þ
80ð10Þ

8
¼ þ100 kN �m

FEMBA ¼ �100 kN �m

continued
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FEMBC ¼ þ
40ð10Þ

8
¼ þ50 kN �m

FEMCB ¼ �50 kN �m

Moment Distribution. After recording the distribution factors and the fixed-end moments in the moment-distribution table
shown in Fig. 16.9(b), we begin the moment-distribution process by balancing joints B and C. The unbalanced moment at
joint B is equal to �100þ 50 ¼ �50 kN �m. Thus the distributed moments at the ends B of members AB and BC are

DMBA ¼ DFBAð�UMBÞ ¼ 0:6ðþ50Þ ¼ þ30 kN �m

DMBC ¼ DFBCð�UMBÞ ¼ 0:4ðþ50Þ ¼ þ20 kN �m

FIG. 16.9

continued
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Similarly, noting that the unbalanced moment at joint C is �50 kN �m, we determine the distributed moment at
end C of member BC to be

DMCB ¼ DFCBð�UMCÞ ¼ 1ðþ50Þ ¼ þ50 kN �m

One-half of these distributed moments are then carried over to the far ends of the members, as shown on the third line
of the moment-distribution table in Fig. 16.9(b). This process is repeated, as shown in the figure, until the unbalanced
moments are negligibly small.

FIG. 16.9 (contd.)
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Final Moments. The final member end moments, obtained by summing the moments in each column of the moment-
distribution table, are recorded on the last line of the table in Fig. 16.9(b). Ans.

Alternative Method. Because the end support C of the continuous beam is a simple support, the analysis can be sim-
plified by using the reduced relative bending sti¤ness for member BC, which is adjacent to the simple support C:

KBC ¼
3

4

I

10

� �
Note that the relative bending sti¤ness of member AB remains the same as before. The distribution factors at joint B are
now given by

DFBA ¼
KBA

KBA þ KBC

¼ 1:5I=10

ð1:5I=10Þ þ ð3I=40Þ ¼
2

3

DFBC ¼
KBC

KBA þ KBC

¼ 3I=40

ð1:5I=10Þ þ ð3I=40Þ ¼
1

3

At joint C, DFCB ¼ KCB=KCB ¼ 1. These distribution factors, and the fixed-end moments that remain the same as be-
fore, are recorded in the moment-distribution table, as shown in Fig. 16.9(c).

Since we are using the reduced relative bending sti¤ness for member BC, joint C needs to be balanced only once in
the moment-distribution process. Thus joints B and C are balanced and the distributed moments are computed in the
usual manner, as indicated on the second line of the moment-distribution table (Fig. 16.9(c)). However, as shown on the
third line of the table in Fig. 16.9(c), no moment is carried over to end C of member BC. Joint B is balanced once more,
and the moment is carried over to the end A of member AB (lines 4 and 5). Because both joints B and C are now bal-
anced, we can end the moment-distribution process and determine the final moments by summing the moments in each
column of the moment-distribution table. Ans.

Member End Shears. The member end shears, obtained by considering the equilibrium of each member, are shown in
Fig. 16.9(d). Ans.

Support Reactions. See Fig. 16.9(e). Ans.

Shear and Bending Moment Diagrams. See Fig. 16.9(f ) and (g). Ans.

Example 16.4

Determine the member end moments for the continuous beam shown in Fig. 16.10(a) by using the moment-distribution
method.

Solution
This beam was previously analyzed in Example 15.4 by the slope-deflection method.

Distribution Factors. Since the cantilever portion CD does not contribute to the rotational sti¤ness of joint C, we can
treat joint C as a simple end support and use the reduced relative bending sti¤ness of member BC in the analysis:

KBA ¼
I

6
and KBC ¼

3

4

I

9

� �
¼ I

12

At joint B,

DFBA ¼
I=6

ðI=6Þ þ ðI=12Þ ¼
2

3

DFBC ¼
I=12

ðI=6Þ þ ðI=12Þ ¼
1

3

At joint C,

DFCB ¼ 1

continued

Section 16.3 Analysis of Continuous Beams 673



Fixed-End Moments. Using the fixed-end moment expressions and Fig. 16.10(b), we obtain

FEMAB ¼ FEMBA ¼ 0

FEMBC ¼ þ67:5 kN �m FEMCB ¼ �67:5 kN �m

FEMCD ¼ þ30ð4Þ ¼ þ120 kN �m

Moment Distribution. The moment distribution is carried out as shown on the moment-distribution table in Fig. 16.10(c).

Final Moments. See the moment-distribution table and Fig. 16.10(d). Ans.

Example 16.5

Determine the member end moments for the continuous beam shown in Fig. 16.11(a) due to a settlement of 20 mm at
support B. Use the moment-distribution method.

Solution
This beam was analyzed previously in Example 15.5 by using the slope-deflection method.

FIG. 16.10

continued
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Distribution Factors. At joint B,

DFBA ¼
I=8

ðI=8Þ þ ðI=8Þ ¼ 0:5

DFBC ¼
I=8

ðI=8Þ þ ðI=8Þ ¼ 0:5

At joint C,

DFCB ¼
I=8

ðI=8Þ þ ðI=8Þ ¼ 0:5

DFCD ¼
I=8

ðI=8Þ þ ðI=8Þ ¼ 0:5

0.5 0.5

BC CB CD DCAB BA
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+98

–13.1

–0.8
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+91.1

–13.1
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–0.4

+26.3

+1.6

+0.1

+3.3
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+3.3

+0.2
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(c) Moment-Distribution Table
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56

91

FIG. 16.11
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Fixed-End Moments. A qualitative deflected shape of the continuous beam with all joints clamped against rotation and
subjected to the specified support settlement is depicted in Fig. 16.11(b) using an exaggerated scale. It can be seen from
this figure that the relative settlements for the three members are DAB ¼ DBC ¼ 0:02 m, and DCD ¼ 0.

By using the fixed-end moment expressions, we determine the fixed-end moments due to the support settlement to be

FEMAB ¼ FEMBA ¼ þ
6EID

L2
¼ þ 6ð70Þð800Þð0:02Þ

ð8Þ2
¼ þ105 kN �m

FEMBC ¼ FEMCB ¼ �
6EID

L2
¼ � 6ð70Þð800Þð0:02Þ

ð8Þ2
¼ �105 kN �m

FEMCD ¼ FEMDC ¼ 0

Moment Distribution. The moment distribution is carried out in the usual manner, as shown on the moment-distribution
table in Fig. 16.11(c).

Final Moments. See the moment-distribution table and Fig. 16.11(d). Ans.

Example 16.6

Determine the member end moments for the three-span continuous beam shown in Fig. 16.12(a) due to the uniformly
distributed load and due to the support settlements of 5

8 in. at B, 1
1
2 in. at C, and 3

4 in. at D. Use the moment-distribution
method.

Solution
This beam was previously analyzed in Example 15.6 by the slope-deflection method.

Distribution Factors. At joint A,

DFAB ¼ 1

At joint B,

DFBA ¼
3I=80

ð3I=80Þ þ ðI=20Þ ¼ 0:429

DFBC ¼
I=20

ð3I=80Þ þ ðI=20Þ ¼ 0:571

At joint C,

DFCB ¼
I=20

ð3I=80Þ þ ðI=20Þ ¼ 0:571

DFCD ¼
3I=80

ð3I=80Þ þ ðI=20Þ ¼ 0:429

At joint D,

DFDC ¼ 1

Fixed-End Moments. A qualitative deflected shape of the continuous beam with all joints clamped against rota-
tion and subjected to the specified support settlements is depicted in Fig. 16.12(b) using an exaggerated scale. It can be
seen from this figure that the relative settlements for the three members are DAB ¼ 5

8 in:, DBC ¼ 112� 5
8 ¼ 7

8 in:, and
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FIG. 16.12

continued
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DCD ¼ 112� 3
4 ¼ 3

4 in: By using the fixed-end-moment expressions, we determine the fixed-end moments due to the support
settlements to be

FEMAB ¼ FEMBA ¼ þ
6EID

L2
¼ þ

6ð29;000Þð7;800Þ 5

8

� �
ð20Þ2ð12Þ3

¼ þ1;227:2 k-ft

FEMBC ¼ FEMCB ¼ þ
6ð29;000Þð7;800Þ 7

8

� �
ð20Þ2ð12Þ3

¼ þ1;718:1 k-ft

FEMCD ¼ FEMDC ¼ �
6ð29;000Þð7;800Þ 3

4

� �
ð20Þ2ð12Þ3

¼ �1;472:7 k-ft

The fixed-end moments due to the 2-k/ft external load are

FEMAB ¼ FEMBC ¼ FEMCD ¼ þ
2ð20Þ2

12
¼ þ66:7 k-ft

FEMBA ¼ FEMCB ¼ FEMDC ¼ �66:7 k-ft

Thus, the total fixed-end moments due to the combined e¤ect of the external load and the support settlements are

FEMAB ¼ þ1;293:9 k-ft FEMBA ¼ þ1;160:5 k-ft

FEMBC ¼ þ1;784:8 k-ft FEMCB ¼ þ1;651:4 k-ft

FEMCD ¼ �1;406 k-ft FEMDC ¼ �1;539:4 k-ft

Moment Distribution. The moment distribution is carried out in the usual manner, as shown on the moment-
distribution table in Fig. 16.12(c). Note that the joints A and D at the simple end supports are balanced only once and
that no moments are carried over to these joints.

Final Moments. See the moment-distribution table and Fig. 16.12(d). Ans.

16.4 Analysis of Frames without Sidesway

The procedure for the analysis of frames without sidesway is similar to
that for the analysis of continuous beams presented in the preceding sec-
tion. However, unlike the continuous beams, more than two members
may be connected to a joint of a frame. In such cases, care must be taken
to record the computations in such a manner that mistakes are avoided.
Whereas some engineers like to record the moment-distribution compu-
tations directly on a sketch of the frame, others prefer to use a tabular
format for such purposes. We will use a tabular form for calculations, as
illustrated by the following example.
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Example 16.7

Determine the member end moments for the frame shown in Fig. 16.13(a) by using the moment-distribution method.

FIG. 16.13

continued
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Solution
This frame was analyzed in Example 15.8 by the slope-deflection method.

Distribution Factors. At joint C,

DFCA ¼

800

20

� �
800

20

� �
þ 1600

30

� � ¼ 0:429 DFCD ¼

1600

30

� �
800

20

� �
þ 1600

30

� � ¼ 0:571

DFCA þDFCD ¼ 0:429þ 0:571 ¼ 1 Checks

At joint D,

DFDB ¼

800

20

� �
800

20

� �
þ 1600

30

� �
þ 3

4

� �
1600

30

� � ¼ 0:3

DFDC ¼

1600

30

� �
800

20

� �
þ 1600

30

� �
þ 3

4

� �
1600

30

� � ¼ 0:4

DFDE ¼

3

4

� �
1600

30

� �
800

20

� �
þ 1600

30

� �
þ 3

4

� �
1600

30

� � ¼ 0:3

DFDB þDFDE þDFDC ¼ 2ð0:3Þ þ 0:4 ¼ 1 Checks

At joint E,

DFED ¼ 1

Fixed-End Moments. By using the fixed-end moment expressions, we obtain

FEMAC ¼ þ100 k-ft FEMCA ¼ �100 k-ft

FEMBD ¼ FEMDB ¼ 0

FEMCD ¼ FEMDE ¼ þ150 k-ft FEMDC ¼ FEMED ¼ �150 k-ft

Moment Distribution. The moment-distribution process is carried out in tabular form, as shown in Fig. 16.13(b). The table,
which is similar in form to those used previously for the analysis of continuous beams, contains one column for each
member end of the structure. Note that the columns for all member ends, which are connected to the same joint, are
grouped together, so that any unbalanced moment at the joint can be conveniently distributed among the members con-
nected to it. Also, when the columns for two ends of a member cannot be located adjacent to each other, then an overhead
arrow connecting the columns for the member ends may serve as a reminder to carry over moments from one end of the
member to the other. In Fig. 16.13(b), such an arrow is used between the columns for the ends of member BD. This arrow
indicates that a distributed moment at end D of member BD induces a carryover moment at the far end B. Note, however,
that no moment can be carried over from end B to end D of member BD, because joint B, which is at a fixed support, will
not be released during the moment-distribution process.

The moment distribution is carried out in the same manner as discussed previously for continuous beams. Note
that any unbalanced moment at joint D must be distributed to the ends D of the three members connected to it in ac-
cordance with their distribution factors.

Final Moments. The final member end moments are obtained by summing all the moments in each column of the
moment-distribution table. Note that the final moments, which are recorded on the last line of the moment-distribution
table and are depicted in Fig. 16.13(c), satisfy the equations of moment equilibrium at joints C and D of the frame. Ans.
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16.5 Analysis of Frames with Sidesway

Thus far, we have considered the analysis of structures in which the trans-
lations of the joints were either zero or known (as in the case of support
settlements). In this section, we apply the moment-distribution method to
analyze frames whose joints may undergo both rotations and translations
that have not been prescribed. As discussed in Section 15.4, such frames
are commonly referred to as frames with sidesway.

Consider, for example, the rectangular frame shown in Fig. 16.14(a).
A qualitative deflected shape of the frame for an arbitrary loading is also
shown in the figure using an exaggerated scale. While the fixed joints A
and B of the frame are completely restrained against rotation as well as
translation, the joints C and D are free to rotate and translate. However,
since the members of the frame are assumed to be inextensible and the
deformations are assumed to be small, the joints C and D displace by the
same amount, D, in the horizontal direction only, as shown in the figure.

The moment-distribution analysis of such a frame, with sidesway, is
carried out in two parts. In the first part, the sidesway of the frame is
prevented by adding an imaginary roller to the structure, as shown in
Fig. 16.14(b). External loads are then applied to this frame, and member
end moments are computed by applying the moment-distribution process
in the usual manner. With the member end moments known, the re-
straining force (reaction) R that develops at the imaginary support is
evaluated by applying the equations of equilibrium.

FIG. 16.14
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In the second part of the analysis, the frame is subjected to the force
R, which is applied in the opposite direction, as shown in Fig. 16.14(c).
The moments that develop at the member ends are determined and
superimposed on the moments computed in the first part (Fig. 16.14(b))
to obtain the member end moments in the actual frame (Fig. 16.14(a)). If
M;MO, and MR denote, respectively, the member end moments in the
actual frame, the frame with sidesway prevented, and the frame sub-
jected to R, then we can write (see Fig. 16.14(a), (b), and (c))

M ¼MO þMR ð16:27Þ

An important question that arises in the second part of the analysis
is how to determine the member end momentsMR that develop when the
frame undergoes sidesway under the action of R (Fig. 16.14(c)). Since
the moment-distribution method cannot be used directly to compute the
moments due to the known lateral load R, we employ an indirect ap-
proach in which the frame is subjected to an arbitrary known joint
translation D0 caused by an unknown load Q acting at the location and
in the direction of R, as shown in Fig. 16.14(d). From the known joint
translation, D0, we determine the relative translation between the ends
of each member, and we calculate the member fixed-end moments in
the same manner as done previously in the case of support settlements.
The fixed-end moments thus obtained are distributed by the moment-
distribution process to determine the member end moments MQ caused
by the yet-unknown load Q. Once the member end moments MQ have
been determined, the magnitude of Q can be evaluated by the application
of equilibrium equations.

With the load Q and the corresponding moments MQ known, the
desired moments MR due to the lateral load R can now be determined
easily by multiplying MQ by the ratio R=Q; that is,

MR ¼
R

Q

� �
MQ ð16:28Þ

By substituting Eq. (16.28) into Eq. (16.27), we can express the member
end moments in the actual frame (Fig. 16.14(a)) as

M ¼MO þ
R

Q

� �
MQ ð16:29Þ

This method of analysis is illustrated by the following examples.

Example 16.8

Determine the member end moments for the frame shown in Fig. 16.15(a) by using the moment-distribution method.

Solution
This frame was analyzed in Example 15.10 by the slope-deflection method.

continued
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Distribution Factors. At joint C,

DFCA ¼ DFCD ¼
I=7

2ðI=7Þ ¼ 0:5

At joint D,

DFDC ¼
I=7

ðI=7Þ þ ðI=5Þ ¼ 0:417

DFDB ¼
I=5

ðI=7Þ þ ðI=5Þ ¼ 0:583

DFDC þDFDB ¼ 0:417þ 0:583 ¼ 1 Checks

Part I: Sidesway Prevented. In the first part of the analysis, the sidesway of the frame is prevented by adding an imagi-
nary roller at joint C, as shown in Fig. 16.15(b). Assuming that joints C and D of this frame are clamped against rota-
tion, we calculate the fixed-end moments due to the external load to be

FEMCD ¼ þ39:2 kN �m FEMDC ¼ �29:4 kN �m

FEMAC ¼ FEMCA ¼ FEMBD ¼ FEMDB ¼ 0

FIG. 16.15

continued
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FIG. 16.15 (contd.)

continued
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FIG. 16.15 (contd.)

continued
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The moment-distribution of these fixed-end moments is then performed, as shown on the moment-distribution table in
Fig. 16.15(c), to determine the member end moments MO in the frame with sidesway prevented.

To evaluate the restraining force R that develops at the imaginary roller support, we first calculate the shears at the
lower ends of the columns AC and BD by considering the moment equilibrium of the free bodies of the columns shown
in Fig. 16.15(d). Next, by considering the equilibrium of the horizontal forces acting on the entire frame (Fig. 16.15(e)),
we determine the restraining force R to be

þ !
P

FX ¼ 0 Rþ 5:14� 7:2 ¼ 0

R ¼ 2:06 kN!

Note that the restraining force acts to the right, indicating that if the roller would not have been in place, the frame
would have swayed to the left.

Part II: Sidesway Permitted. Since the actual frame is not supported by a roller at joint C, we neutralize the e¤ect of the
restraining force by applying a lateral load R ¼ 2:06 kN in the opposite direction (i.e., to the left) to the frame, as
shown in Fig. 16.15(f ). As discussed previously, since the moment-distribution method cannot be used directly to com-
pute member end moments MR due to the lateral load R ¼ 2:06 kN, we use an indirect approach in which the frame is
subjected to an arbitrary known joint translation D0 caused by an unknown load Q acting at the location and in the di-
rection of R, as shown in Fig. 16.15(g). Assuming that the joints C and D of the frame are clamped against rotation, as
shown in Fig. 16.15(h), the fixed-end moments due to the translation D0 are given by

FEMAC ¼ FEMCA ¼ �
6EID0

ð7Þ2
¼ � 6EID0

49

FEMBD ¼ FEMDB ¼ �
6EID0

ð5Þ2
¼ � 6EID0

25

FEMCD ¼ FEMDC ¼ 0

in which negative signs have been assigned to the fixed-end moments for the columns, because these moments must act
in the clockwise direction, as shown in Fig. 16.15(h).

FIG. 16.15 (contd.)

continued
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Instead of arbitrarily assuming a numerical value for D0 to compute the fixed-end moments, it is usually more con-
venient to assume a numerical value for one of the fixed-end moments, evaluate D0 from the expression of that fixed-end
moment, and use the value of D0 thus obtained to compute the remaining fixed-end moments. Thus, we arbitrarily as-
sume the fixed-end moment FEMAC to be �50 kN �m; that is,

FEMAC ¼ FEMCA ¼ �
6EID0

49
¼ �50 kN �m

By solving for D0, we obtain

D0 ¼ 408:33

EI

By substituting this value of D0 into the expressions for FEMBD and FEMDB, we determine the consistent values of these
moments to be

FEMBD ¼ FEMDB ¼ �
6ð408:33Þ

25
¼ �98 kN �m

The foregoing fixed-end moments are then distributed by the usual moment-distribution process, as shown in
Fig. 16.15(i), to determine the member end moments MQ caused by the yet-unknown load Q.

To evaluate the magnitude of Q that corresponds to these member end moments, we first calculate shears at the
lower ends of the columns by considering their moment equilibrium (Fig. 16.15( j)) and then apply the equation of
equilibrium in the horizontal direction to the entire frame:

þ !
P

FX ¼ 0

�Qþ 10:97þ 23:44 ¼ 0

Q ¼ 34:41 kN 

which indicates that the moments MQ computed in Fig. 16.15(i) are caused by a lateral load Q ¼ 34:41 kN. Since the
moments are linearly proportional to the magnitude of the load, the desired moments MR due to the lateral load
R ¼ 2:06 kN must be equal to the moments MQ (Fig. 16.15(i)) multiplied by the ratio R=Q ¼ 2:06=34:41.

Actual Member End Moments. The actual member end moments, M, can now be determined by algebraically summing
the member end moments MO computed in Fig. 16.15(c) and 2:06=34:41 times the member end moments MQ computed
in Fig. 16.15(i). Thus

MAC ¼ �12þ
2:06

34:41

� �
ð�42:3Þ ¼ �14:5 kN �m Ans.

MCA ¼ �24þ
2:06

34:41

� �
ð�34:5Þ ¼ �26:1 kN �m Ans.

MCD ¼ 23:9þ 2:06

34:41

� �
ð34:3Þ ¼ 26 kN �m Ans.

MDC ¼ �24þ
2:06

34:41

� �
ð45:4Þ ¼ �21:3 kN �m Ans.

MDB ¼ 24þ 2:06

34:41

� �
ð�45:4Þ ¼ 21:3 kN �m Ans.

MBD ¼ 12þ 2:06

34:41

� �
ð�71:8Þ ¼ 7:7 kN �m Ans.

These moments are depicted in Fig. 16.15(k).
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Example 16.9

Determine the reactions for the nonprismatic beam shown in Fig. 16.16(a) by using the moment-distribution method.

FIG. 16.16

continued
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FIG. 16.16 (contd.)

continued
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Solution
Since the sti¤ness and carryover relationships derived in Section 16.1 as well as the expressions of fixed-end moments
given inside the back cover of the book are valid only for prismatic members, we will analyze the given nonprismatic
beam as if it were composed of two prismatic members, AB and BC, rigidly connected at joint B. Note that joint B is
free to rotate as well as translate in the vertical direction, as shown in Fig. 16.16(a).

Distribution Factors. The distribution factors at joint B are

DFBA ¼
I=30

ðI=30Þ þ ð2I=18Þ ¼ 0:231

DFBC ¼
2I=18

ðI=30Þ þ ð2I=18Þ ¼ 0:769

Part I: Joint Translation Prevented. In this part of the analysis, the translation of joint B is prevented by an imaginary
roller, as shown in Fig. 16.16(b). The fixed-end moments due to the external load are

FEMAB ¼ þ150 k-ft FEMBA ¼ �150 k-ft

FEMBC ¼ þ54 k-ft FEMCB ¼ �54 k-ft

The moment distribution of these fixed-end moments is performed, as shown in Fig. 16.16(b), to determine the member
end moments MO. The restraining force R at the imaginary roller support is then evaluated by considering the equili-
brium of members AB and BC and of joint B as shown in Fig. 16.16(c). The restraining force is found to be

R ¼ 53:04 k "

Part II: Joint Translation Permitted. Since the actual beam is not supported by a roller at joint B, we neutralize its re-
straining e¤ect by applying a downward load R ¼ 53:04 k to the beam, as shown in Fig. 16.16(d). To determine the
member end moments MR due to R, we subject the beam to an arbitrary known translation D0, as shown in Fig. 16.16(e).
The fixed-end moments due to D0 are given by (see Fig. 16.16(f ))

FEMAB ¼ FEMBA ¼
6EID0

ð30Þ2
¼ EID0

150

FEMBC ¼ FEMCB ¼ �
6Eð2IÞD0

ð18Þ2
¼ �EID0

27

If we arbitrarily assume that

FEMBC ¼ FEMCB ¼ �
EID0

27
¼ �100 k-ft

then

EID0 ¼ 2;700

and, therefore,

FEMAB ¼ FEMBA ¼
2;700

150
¼ 18 k-ft

These fixed-end moments are distributed by the moment-distribution process, as shown in Fig. 16.16(g), to determine
the member end moments MQ. The load Q at the location and in the direction of R that corresponds to these moments
can now be evaluated by considering equilibrium of members AB and BC and of joint B, as shown in Fig. 16.16(h). The
magnitude of Q is found to be

Q ¼ 8 k #

continued
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Thus, the desired moments MR due to the vertical load R ¼ 53:04 k (Fig. 16.16(d)) must be equal to the moments MQ

(Fig. 16.16(g)) multiplied by the ratio R=Q ¼ 53:04=8 ¼ 6:63.

Actual Member End Moments. The actual member end moments, M, can now be determined by algebraically summing
the member end moments MO computed in Fig. 16.16(b) and 6.63 times the member end moments MQ computed in
Fig. 16.16(g).

MAB ¼ 161:1þ 6:63ð27:5Þ ¼ 343:4 k-ft Ans.

MBA ¼ �127:8þ 6:63ð36:9Þ ¼ 116:8 k-ft Ans.

MBC ¼ 127:8þ 6:63ð�36:9Þ ¼ �116:8 k-ft Ans.

MCB ¼ �17:1þ 6:63ð�68:5Þ ¼ �471:2 k-ft Ans.

The member end shears obtained by applying equations of equilibrium are shown in Fig. 16.16(i).

Support Reactions. See Fig. 16.16( j). Ans.

Equilibrium Check. The equilibrium equations check.

Example 16.10

Determine the member end moments and reactions for the frame shown in Fig. 16.17(a) by using the moment-
distribution method.

Solution
Distribution Factors. At joint C,

DFCA ¼ DFCD ¼
I=20

2ðI=20Þ ¼ 0:5

At joint D,

DFDC ¼
I=20

ðI=20Þ þ ð3=4ÞðI=14:42Þ ¼ 0:49

DFDB ¼
ð3=4ÞðI=14:42Þ

ðI=20Þ þ ð3=4ÞðI=14:42Þ ¼ 0:51

Member End Moments Due to an Arbitrary Sidesway D0. Since no external loads are applied to the members of the
frame, the member end moments MO in the frame restrained against sidesway will be zero. To determine the member
end moments M due to the 30-k lateral load, we subject the frame to an arbitrary known horizontal translation D0 at
joint C. Figure 16.17(b) shows a qualitative deflected shape of the frame with all joints clamped against rotation and
subjected to the horizontal displacement D0 at joint C. The procedure for constructing such deflected shapes was dis-
cussed in Section 15.5. Note that, since the frame members are assumed to be inextensible and deformations are
assumed to be small, an end of a member can translate only in the direction perpendicular to the member. From this
figure, we can see that the relative translation DAC between the ends of member AC in the direction perpendicular to the
member can be expressed in terms of the joint translation D0 as

DAC ¼ CC 0 ¼ 5

4
D0 ¼ 1:25D0

continued
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Similarly, the relative translations for members CD and BD are given by

DCD ¼ D1D
0 ¼ 2

3
D0 þ 3

4
D0 ¼ 1:417D0

DBD ¼ DD 0 ¼
ffiffiffiffiffi
13
p

3
D0 ¼ 1:202D0

FIG. 16.17

continued
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FIG. 16.17 (contd.)

continued
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The fixed-end moments due to the relative translations are

FEMAC ¼ FEMCA ¼
6EIð1:25D0Þ
ð20Þ2

FEMCD ¼ FEMDC ¼ �
6EIð1:417D0Þ
ð20Þ2

FEMBD ¼ FEMDB ¼
6EIð1:202D0Þ
ð14:42Þ2

in which, as shown in Fig. 16.17(b), the fixed-end moments for members AC and BD are counterclockwise (positive),
whereas those for member CD are clockwise (negative). If we arbitrarily assume that

FEMBD ¼ FEMDB ¼
6EIð1:202D0Þ
ð14:42Þ2

¼ 100 k-ft

then

EID0 ¼ 2;883:2

and, therefore,

FEMAC ¼ FEMCA ¼ 54:1 k-ft

FEMCD ¼ FEMDC ¼ �61:3 k-ft

These fixed-end moments are distributed by the moment-distribution process, as shown in Fig. 16.17(c), to de-
termine the member end moments MQ.

To determine the magnitude of the load Q that corresponds to the member end moments computed in Fig. 16.17(c),
we first calculate the shears at the ends of the girder CD by considering the moment equilibrium of the free body of the
girder shown in Fig. 16.17(d). The girder shears (5.58 k) thus obtained are then applied to the free bodies of the inclined
members AC and BD, as shown in the figure. Next, we apply the equations of moment equilibrium to members AC and
BD to calculate the horizontal forces at the lower ends of these members. The magnitude of Q can now be determined by
considering the equilibrium of horizontal forces acting on the entire frame as (see Fig. 16.17(d))

þ !
P

Fx ¼ 0

Q� 11:17� 8:32 ¼ 0

Q ¼ 19:49 k!

Actual Member End Moments. The actual member end moments, M, due to the 30-k lateral load can now be evaluated
by multiplying the moments MQ computed in Fig. 16.17(c) by the ratio 30=Q ¼ 30=19:49:

MAC ¼
30

19:49
ð55:3Þ ¼ 85:1 k-ft Ans.

MCA ¼
30

19:49
ð56:5Þ ¼ 87 k-ft Ans.

FIG. 16.17 (contd.)

continued
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MCD ¼
30

19:49
ð�56:4Þ ¼ �86:8 k-ft Ans.

MDC ¼
30

19:49
ð�55:2Þ ¼ �85 k-ft Ans.

MDB ¼
30

19:49
ð55:2Þ ¼ 85 k-ft Ans.

MBD ¼ 0 Ans.

Member End Forces. See Fig. 16.17(e).

Support Reactions. See Fig. 16.17(f ). Ans.

Equilibrium Check. The equilibrium equations check.

Analysis of Multistory Frames

The foregoing procedure can be extended to the analysis of structures
with multiple degrees of freedom of sidesway. Consider the two-story
rectangular frame shown in Fig. 16.18(a). The moment-distribution anal-
ysis of this frame is carried out in three parts. In the first part, the sides-
way of both floors of the frame is prevented by adding imaginary rollers
at the floor levels, as shown in Fig. 16.18(b). Member end moments MO

that develop in this frame due to the external loads are computed by the
moment-distribution process, and the restraining forces R1 and R2 at the
imaginary supports are evaluated by applying the equations of equili-
brium. In the second part of the analysis, the lower floor of the frame is
allowed to displace by a known amount D01 while the sidesway of the up-
per floor is prevented, as shown in Fig. 16.18(c). The fixed-end moments
caused by this displacement are computed and distributed to obtain the
member end moments MQ1. With the member end moments known, the
forces Q11 and Q21 at the locations of the roller supports are determined
from the equilibrium equations. Similarly, in the third part of the analysis,
the upper floor of the frame is allowed to displace by a known amount
D02, as shown in Fig. 16.18(d), and the corresponding member end mo-
ments MQ2, and the forces Q12 and Q22, are evaluated. The member end
moments M in the actual frame (Fig. 16.18(a)) are determined by super-
position of the moments computed in the three parts as

M ¼MO þ c1MQ1 þ c2MQ2 ð16:30Þ

in which c1 and c2 are the constants whose values are obtained by solv-
ing the equations of superposition of horizontal forces at the locations of
the imaginary supports. By superimposing the horizontal forces shown in
Fig. 16.18(a) through (d) at joints D and F , respectively, we obtain

�R1 þ c1Q11 � c2Q12 ¼ 0

�R2 � c1Q21 þ c2Q22 ¼ 0
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By solving these equations simultaneously, we obtain the values of the
constants c1 and c2, which are then used in Eq. (16.30) to determine the
desired member end moments, M.

As the foregoing discussion indicates, the analysis of multistory frames
by the moment-distribution method can be quite tedious and time consum-
ing. Therefore, the analysis of such structures is performed today on com-
puters using the matrix formulation of the displacement method presented
in Chapter 17.

Summary

In this chapter we have studied a classical formulation of the displace-
ment (sti¤ness) method, called the moment-distribution method, for the
analysis of beams and frames.

The procedure for the analysis of continuous beams and frames without
sidesway essentially involves computing fixed-end moments due to the ex-
ternal loads by assuming that all the free joints of the structure are tempo-
rarily restrained against rotation and balancing the moments at free joints by
the moment-distribution process. In the moment-distribution process, at
each free joint of the structure, the unbalanced moment is evaluated and

FIG. 16.18
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distributed to the member ends connected to it. Carryover moments in-
duced at the far ends of the members are then computed, and the process
of balancing the joints and carrying over moments is repeated until the
unbalanced moments are negligibly small. The final member end mo-
ments are obtained by algebraically summing the fixed-end moment and
all the distributed and carryover moments at each member end.

The analysis of frames with a single degree of freedom of sidesway is
carried out in two parts. In the first part, the sidesway is prevented by the
addition of an imaginary roller to the structure. Member end moments
that develop in this restrained frame, due to the external loads, are com-
puted by the moment-distribution process; and the restraining force R at
the imaginary roller is evaluated by the application of the equations of
equilibrium. In the second part of the analysis, to calculate the member
moments due to the force R applied in the opposite direction, the struc-
ture is allowed to displace by an arbitrarily assumed known amount; and
the member moments and the corresponding force Q at the location of
R are evaluated as before. The actual member end moments are deter-
mined by algebraically summing the moments computed in the first part
and R=Q times the moments computed in the second part.

Once member end moments are known, member end shears, mem-
ber axial forces, and support reactions can be evaluated through equili-
brium considerations.

PROBLEMS

Section 16.3

16.1 through 16.5 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P16.1–P16.5 by using the moment-distribution
method.

FIG. P16.1

15 ft

E = 29,000 ksi I = 1,650 in.4

15 ft 20 ft

B
A C

20 k

1.5 k/ft
3 k/ft

FIG. P16.2, P16.6

FIG. P16.3

2 k/ft

24 ft36 ft

B
CA

EI = constant
E =  29,000 ksi I = 1,530 in.4

FIG. P16.4, P16.7

12 m

250 kN
25 kN/m

6 m 6 m

1.5II

B C
D

A

E = constant

FIG. P16.5
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16.6 Solve Problem 16.2 for the loading shown in Fig. P16.2
and a settlement of 1

2 in. at support B.

16.7 Solve Problem 16.4 for the loading shown in Fig. P16.4
and the support settlements of 1 in. at B and 1

4 in. at C.

16.8 through 16.14 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P16.8–P16.14 by using the moment-distribution
method.

1.5 k/ft

25 ft20 ft
EI = constant

25 ft

B C
DA

FIG. P16.8

FIG. P16.9, P16.15

FIG. P16.10

10 ft 10 ft 10 ft 20 ft

EI = constant

E
B C DA

35 k
2 k/ft1 k/ft

FIG. P16.11

6 m 4 m 6 m 4 m 4 m 4 m

I I2I

A C

B D F

E
G

120 kN 120 kN 150 kN

E =  200 GPa I = 500 (106) mm4

FIG. P16.12, P16.16

FIG. P16.13

FIG. P16.14

16.15 Solve Problem 16.9 for the loading shown in Fig. P16.9
and a settlement of 25 mm at support C.

16.16 Solve Problem 16.12 for the loading shown in
Fig. P16.12 and the support settlements of 10 mm atA, 65 mm
at C, 40 mm at E, and 25 mm at G.
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Section 16.4

16.17 through 16.20 Determine the member end moments
and reactions for the frames shown in Figs. P16.17–P16.20
by using the moment-distribution method.

FIG. P16.17, P16.21

FIG. P16.18, P16.22

FIG. P16.19

30 kN/m

C D

A B

10 m

EI = constant

8 m

FIG. P16.20

16.21 Solve Problem 16.17 for the loading shown in
Fig. P16.17 and a settlement of 50 mm at support D.

16.22 Solve Problem 16.18 for the loading shown in
Fig. P16.18 and a settlement of 1

4 in. at support A.

16.23 Determine the member end moments and reactions for
the frame of Fig. P16.23 for the loading shown in the figure
and the support settlements of 1 in. at A and 112 in. at D. Use
the moment-distribution method.

FIG. P16.23

Section 16.5

16.24 through 16.31 Determine the member end moments
and reactions for the frames shown in Figs. P16.24–P16.31
by using the moment-distribution method.

Problems 699



2 k/ft

25 k

20 ft

B
C

A

15 ft

EI = constant

FIG. P16.24

FIG. P16.25

30 ft

EI = constant

3 k/ft

40 k
C D

BA

15 ft

FIG. P16.26

FIG. P16.27

FIG. P16.28

FIG. P16.29
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FIG. P16.30

FIG. P16.31
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In this text we have focused our attention on the classical methods of
structural analysis. Although a study of classical methods is essential for
developing an understanding of structural behavior and the principles of
structural analysis, the analysis of large structures by using these hand-
calculation methods can be quite time consuming. With the availability
of inexpensive, yet powerful, microcomputers, the analysis of structures
in most design o‰ces is routinely performed today on computers using
software based on matrix methods of structural analysis.

The objective of this chapter is to introduce the reader to the excit-
ing and still-growing field of matrix structural analysis. However, only
the basic concepts of matrix analysis are presented herein. For a more
detailed study, the reader should refer to one of the many textbooks de-
voted entirely to the subject of matrix structural analysis.

Matrix methods do not involve any new fundamental principles; but
the fundamental relationships of equilibrium, compatibility, and mem-
ber force-displacement relations are now expressed in the form of matrix
equations, so that the numerical computations can be e‰ciently per-
formed on a computer. Therefore, familiarity with the basic operations of
matrix algebra is a prerequisite to understanding matrix structural analy-
sis. A review of the concepts of matrix algebra necessary for formulating
the matrix methods of structural analysis is presented in Appendix B for
the convenience of the reader.

Although both the flexibility (force) and the sti¤ness (displacement)
methods can be expressed in matrix form, the sti¤ness method is more



systematic and can be more easily implemented on computers. Thus,
most of the commercially available computer programs for structural
analysis are based on the sti¤ness method. In this chapter, we will con-
sider only the matrix sti¤ness (displacement) method of structural anal-
ysis. This method can be used to analyze statically determinate as well
as indeterminate structures.

We begin by discussing the process of preparing an analytical model
of the structure to be analyzed. We also define global and local coordinate
systems and explain the concept of degrees of freedom. Next we derive
member force-displacement relations in local coordinates. We consider
the transformation of member end forces and end displacements from
local to global coordinates and vice versa, and develop the member sti¤-
ness relations in global coordinates. We formulate the sti¤ness relations
for the entire structure by combining the member sti¤ness relations and,
finally, develop a step-by-step procedure for the analysis of trusses, con-
tinuous beams, and frames by the matrix sti¤ness method.

17.1 Analytical Model

In the matrix sti¤ness method of analysis, the structure is considered to
be an assemblage of straight members connected at their ends to joints.
A member is defined as a part of the structure for which the member force-

displacement relations to be used in the analysis are valid. In other words,
given the displacements of the ends of a member, one should be able
to determine the forces and moments at its ends by using the force-
displacement relations. Such relations for prismatic members will be
derived in the following section. A joint is defined as a structural part

of infinitesimal size to which the member ends are connected. The mem-
bers and joints of structures are also referred to as elements and nodes,
respectively.

Before proceeding with the analysis, an analytical model of the
structure must be prepared. The model is represented by a line diagram
of the structure, on which all the joints and members are identified by
numbers. Consider, for example, the frame shown in Fig. 17.1(a). The
analytical model of the frame is shown in Fig. 17.1(b), in which the
joint numbers are enclosed within circles to distinguish them from the
member numbers, which are enclosed within rectangles. As shown in this
figure, the frame is considered to be composed of four members and
five joints for the purpose of analysis. Note that, since the member force-
displacement relations to be used in the analysis are valid for prismatic
members only, the vertical column of the frame has been subdivided into
two members, each with constant cross-sectional properties (I and A)
along its length.

Global and Local Coordinate Systems

In the sti¤ness method, the overall geometry and behavior of the struc-
ture are described with reference to a Cartesian or rectangular global (or
structural) coordinate system. The global coordinate system used in this

Section 17.1 Analytical Model 703



chapter is a right-handed XYZ coordinate system, with the plane struc-
ture lying in the XY plane, as shown in Fig. 17.1(b).

Since it is usually convenient to derive the basic force-displacement
relations in terms of the forces and displacements in the directions along
and perpendicular to members, a local (or member) coordinate system

is defined for each member of the structure. The origin of the local xyz co-
ordinate system for a member may be arbitrarily located at one of the ends
of the member, with the x axis directed along the centroidal axis of the
member. The positive direction of the y axis is chosen so that the coor-
dinate system is right-handed, with the local z axis pointing in the positive
direction of the globalZ axis. In Fig. 17.1(b), the positive direction of the x
axis for eachmember is indicated by drawing an arrow along eachmember
on the line diagram of the structure. For example, this figure indicates that
the origin of the local coordinate system for member 1 is located at its
end connected to joint 1, with the x1 axis directed from joint 1 to joint 2.
The joint to which the member end with the origin of the local coordinate

FIG. 17.1
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system is connected is referred to as the beginning joint for the member,
whereas the joint adjacent to the opposite end of the member is termed the
end joint. For example, in Fig. 17.1(b), member 1 begins at joint 1 and ends
at joint 2, whereas member 2 begins at joint 2 and ends at joint 3, and so
on. Once the local x axis is defined for a member, the corresponding y axis
can be established by applying the right-hand rule. The local y axes thus
obtained for the members of the frame under consideration are shown in
Fig. 17.1(c). Note that, for each member, if we curl the fingers of our right
hand from the direction of the x axis toward the direction of the corre-
sponding y axis, then our extended thumb points out of the plane of the
page, which is the positive direction of the global Z axis.

Degrees of Freedom

The degrees of freedom of a structure are the independent joint displacements

(translations and rotations) that are necessary to specify the deformed shape

of the structure when subjected to an arbitrary loading. Consider again the
plane frame of Fig. 17.1(a). The deformed shape of the frame, for an
arbitrary loading, is depicted in Fig. 17.1(d) using an exaggerated scale.
Unlike in the case of the classical methods of analysis considered
previously, it is usually not necessary to neglect member axial deforma-
tions when analyzing frames by the matrix sti¤ness method. From
Fig. 17.1(d), we can see that joint 1, which is located at the hinged sup-
port, can rotate, but it cannot translate. Thus joint 1 has only one de-
gree of freedom, which is designated as d1 in the figure. Since joint 2 of
the frame is not attached to a support, three displacements—the trans-
lations d2 and d3 in the X and Y directions, respectively, and the rota-
tion d4 about the Z axis—are needed to completely specify its deformed
position 2 0. Thus joint 2 has three degrees of freedom. Similarly, joints 3
and 4, which are also free joints, have three degrees of freedom each.
Finally, joint 5, which is attached to the fixed support, can neither trans-
late nor rotate; therefore, it does not have any degrees of freedom. Thus,
the entire frame has a total of ten degrees of freedom. As shown in
Fig. 17.1(d), the joint displacements are defined relative to the global co-
ordinate system, with joint translations considered as positive when in the
positive directions of the X and Y axes and joint rotations considered as
positive when counterclockwise. Note that all the joint displacements are
shown in the positive sense in Fig. 17.1(d). The joint displacements of the
frame can be collectively written in matrix form as

d ¼

d1

d2

..

.

d9

d10

26666664

37777775
in which d is termed the joint displacement vector of the structure.

When applying the sti¤ness method, it is not necessary to draw the
deformed shape of the structure, as shown in Fig. 17.1(d), to identify
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its degrees of freedom. Instead, the degrees of freedom can be directly
specified on the line diagram of the structure by drawing arrows at the
joints, as shown in Fig. 17.1(b). As indicated in this figure, the degrees of
freedom are numbered by starting at the lowest joint number and pro-
ceeding sequentially to the highest joint number. In the case of more than
one degree of freedom at a joint, the translation in the X direction is
numbered first, followed by the translation in the Y direction, and then
the rotation.

In continuous beams subjected to lateral loads, the axial deforma-
tions of members are zero. Therefore, it is not necessary to consider the
joint displacements in the direction of the beam’s centroidal axis in the
analysis. Thus a joint of a plane continuous beam can have up to two
degrees of freedom, namely, a translation perpendicular to the beam’s
centroidal axis and a rotation. For example, the continuous beam of
Fig. 17.2(a) has four degrees of freedom, as shown in Fig. 17.2(b).

Since the joints of trusses are assumed to be frictionless hinges, they
are not subjected to moments; therefore, their rotations are zero. Thus,
when analyzing plane trusses, only two degrees of freedom, namely, trans-
lations in the global X and Y directions, need to be considered for each
joint. For example, the truss of Fig. 17.3(a) has three degrees of freedom,
as shown in Fig. 17.3(b).

FIG. 17.2

FIG. 17.3
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17.2 Member Stiffness Relations in Local Coordinates

In the matrix sti¤ness method of analysis, the joint displacements of the
structure are determined by solving a system of simultaneous equations,
which is expressed in the form

P ¼ Sd ð17:1Þ

in which d denotes the joint displacement vector, as discussed previously;
P represents the e¤ects of external loads at the joints of the structure;
and S is called the structure sti¤ness matrix. As will be discussed in
Section 17.5, the sti¤ness matrix for the entire structure, S, is obtained by
assembling the sti¤ness matrices for the individual members of the struc-
ture. The sti¤ness matrix for a member is used to express the forces at the

ends of the member as functions of the displacements of the member’s ends.
Note that the terms forces and displacements are used here in the general
sense to include moments and rotations, respectively. In this section, we
derive sti¤ness matrices for the members of plane frames, continuous
beams, and plane trusses in the local coordinate systems of the members.

Frame Members

To establish the sti¤ness relationships for the members of plane frames,
let us focus our attention on an arbitrary prismatic member m of
the frame shown in Fig. 17.4(a). When the frame is subjected to ex-
ternal loads, member m deforms and internal forces are induced at its
ends. The undeformed and deformed positions of the member are
shown in Fig. 17.4(b). As indicated in this figure, three displacements—
translations in the x and y directions and rotation about the z axis—are
needed to completely specify the deformed position of each end of the
member. Thus the member has a total of six end displacements or degrees
of freedom. As shown in Fig. 17.4(b), the member end displacements are
denoted by u1 through u6, and the corresponding member end forces are
denoted by Q1 through Q6. Note that these end displacements and forces
are defined relative to the local coordinate system of the member, with
translations and forces considered as positive when in the positive direc-
tions of the local x and y axes, and rotations and moments considered as
positive when counterclockwise. As indicated in Fig. 17.4(b), the member
end displacements and forces are numbered by beginning at the member
end b, where the origin of the local coordinate system is located, with the
translation and force in the x direction numbered first, followed by the
translation and force in the y direction, and then the rotation and mo-
ment. The displacements and forces at the opposite end e of the member
are then numbered in the same sequential order.

Our objective here is to determine the relationships between the
member end forces and end displacements in terms of the external loads
applied to the member. Such relationships can be conveniently estab-
lished by subjecting the member, separately, to each of the six end
displacements and external loads, and by expressing the total member
end forces as the algebraic sums of the end forces required to cause the
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FIG. 17.4 (contd.)
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individual end displacements and the forces caused by the external
loads. Thus, from Fig. 17.4(b) through (i), we can see that

Q1 ¼ k11u1 þ k12u2 þ k13u3 þ k14u4 þ k15u5 þ k16u6 þQf 1 ð17:2aÞ

Q2 ¼ k21u1 þ k22u2 þ k23u3 þ k24u4 þ k25u5 þ k26u6 þQf 2 ð17:2bÞ

Q3 ¼ k31u1 þ k32u2 þ k33u3 þ k34u4 þ k35u5 þ k36u6 þQf 3 ð17:2cÞ

Q4 ¼ k41u1 þ k42u2 þ k43u3 þ k44u4 þ k45u5 þ k46u6 þQf 4 ð17:2dÞ

Q5 ¼ k51u1 þ k52u2 þ k53u3 þ k54u4 þ k55u5 þ k56u6 þQf 5 ð17:2eÞ

Q6 ¼ k61u1 þ k62u2 þ k63u3 þ k64u4 þ k65u5 þ k66u6 þQf 6 ð17:2fÞ

in which kij represents the force at the location and in the direction of Qi

required, along with other end forces, to cause a unit value of the dis-

placement uj while all other end displacements are zero. These forces per
unit displacement are referred to as sti¤ness coe‰cients. Note that a
double-subscript notation is used for sti¤ness coe‰cients, with the first
subscript identifying the force and the second subscript identifying the
displacement. The last terms on the right sides of Eqs. (17.2) represent
the fixed-end forces due to external loads (Fig. 17.4(i)), which can be
determined by using the expressions for fixed-end moments given inside
the back cover of the book and by applying the equations of equilibrium.

By using the definition of matrix multiplication, Eqs. (17.2) can be
expressed in matrix form as

Q1

Q2

Q3

Q4

Q5

Q6

2666666664

3777777775
¼

k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

k41 k42 k43 k44 k45 k46

k51 k52 k53 k54 k55 k56

k61 k62 k63 k64 k65 k66

2666666664

3777777775

u1

u2

u3

u4

u5

u6

2666666664

3777777775
þ

Qf 1

Qf 2

Qf 3

Qf 4

Qf 5

Qf 6

2666666664

3777777775
ð17:3Þ

or, symbolically as

Q ¼ kuþQf ð17:4Þ

in which Q and u are the member end force and member end displace-
ment vectors, respectively, in local coordinates; k is called the member

sti¤ness matrix in local coordinates, and Qf is the member fixed-end force

vector in local coordinates.
The sti¤ness coe‰cients, kij, can be evaluated by subjecting the mem-

ber, separately, to unit values of each of the six end displacements. The
member end forces required to cause the individual unit displacements are
then determined by using the principles of mechanics of materials and the
slope-deflection equations (Chapter 15) and by applying the equations of
equilibrium. The member end forces thus obtained represent the sti¤ness
coe‰cients for the member.

Let us evaluate the sti¤ness coe‰cients corresponding to a unit value
of the displacement u1 at end b of the member, as shown in Fig. 17.4(c).

710 CHAPTER 17 Introduction to Matrix Structural Analysis



Note that all other displacements of the member are zero. Recalling from
mechanics of materials that the axial deformation u1 of a member caused
by an axial force Q1 is given by u1 ¼ Q1L=EA, we determine the force k11
that must be applied at end b of the member (Fig. 17.4(c)) to cause a dis-
placement u1 ¼ 1 to be

k11 ¼
EA

L

The axial force k41 at the far end e of the member can now be obtained
by applying the equation of equilibrium:

þ !
P

Fx ¼ 0 k11 þ k41 ¼ 0

k41 ¼ �k11 ¼ �
EA

L

in which the negative sign indicates that this force acts in the negative
x direction. Since the imposition of end displacement u1 ¼ 1 does not
cause the member to bend, no moments or forces in the y direction de-
velop at the member ends. Therefore,

k21 ¼ k31 ¼ k51 ¼ k61 ¼ 0

Similarly, the end forces required to cause an axial displacement
u4 ¼ 1 at end e of the member are (Fig. 17.4(f ))

k14 ¼ �
EA

L
k44 ¼

EA

L
k24 ¼ k34 ¼ k54 ¼ k64 ¼ 0

The deformed shape of the beam due to a unit value of displacement
u2 while all other displacements are zero is shown in Fig. 17.4(d). The
end moments required (along with end forces in the y direction) to cause
this deflected shape can be determined by using the slope-deflection equa-
tions derived in Section 15.1. By substituting MAB ¼ k32, MBA ¼ k62,
yA ¼ yB ¼ 0, c ¼ �1=L, and FEMAB ¼ FEMBA ¼ 0 into Eqs. (15.8),
we obtain

k32 ¼ k62 ¼
6EI

L2

The end forces in the y direction can now be obtained by applying the
following equilibrium equations:

þ ’
P

Me ¼ 0 2
6EI

L2

� �
� k22ðLÞ ¼ 0

k22 ¼
12EI

L3

þ "
P

Fy ¼ 0
12EI

L3
þ k52 ¼ 0

k52 ¼ �
12EI

L3
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Since no axial deformations are induced in the member, the axial forces
at the member ends are zero; that is,

k12 ¼ k42 ¼ 0

The member end forces required to cause a displacement u5 ¼ 1
(Fig. 17.4(g)) can be determined in a similar manner:

k15 ¼ k45 ¼ 0 k25 ¼ �
12EI

L3
k35 ¼ k65 ¼ �

6EI

L2
k55 ¼

12EI

L3

The deformed shape of the member due to a rotation u3 ¼ 1, with
u1 ¼ u2 ¼ u4 ¼ u5 ¼ u6 ¼ 0, is shown in Fig. 17.4(e). By substituting
MAB ¼ k33, MBA ¼ k63, yA ¼ 1, and yB ¼ c ¼ FEMAB ¼ FEMBA ¼ 0
into the slope-deflection equations (Eqs. (15.8)), we obtain the member
end moments to be

k33 ¼
4EI

L
k63 ¼

2EI

L

By applying the equations of equilibrium, we determine

k23 ¼
6EI

L2
k53 ¼ �

6EI

L2

Proceeding in the same manner, the sti¤ness coe‰cients correspond-
ing to the unit displacement u6 ¼ 1 are found to be (Fig. 17.4(h))

k16 ¼ k46 ¼ 0 k26 ¼ �k56 ¼
6EI

L2
k36 ¼

2EI

L
k66 ¼

4EI

L

Substitution of the foregoing values of the sti¤ness coe‰cients into
Eq. (17.3) yields the following sti¤ness matrix for the members of plane
frames in local coordinates:

k ¼ EI

L3

AL2

I
0 0 �AL2

I
0 0

0 12 6L 0 �12 6L

0 6L 4L2 0 �6L 2L2

�AL2

I
0 0

AL2

I
0 0

0 �12 �6L 0 12 �6L
0 6L 2L2 0 �6L 4L2

26666666666664

37777777777775
ð17:5Þ

Note that the ith column of the member sti¤ness matrix consists of the
end forces required to cause a unit value of the displacement ui while all
other displacements are zero. For example, the second column of k

consists of the six end forces required to cause the displacement u2 ¼ 1,
as shown in Fig. 17.4(d), and so on. From Eq. (17.5), we can see that the
sti¤ness matrix k is symmetric; that is, kij ¼ kji. It can be shown by us-
ing Betti’s law (Section 7.8) that sti¤ness matrices for linearly elastic
structures are always symmetric.
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Continuous Beam Members

Since the axial deformations of the members of continuous beams sub-
jected to lateral loads are zero, we do not need to consider the degrees of
freedom in the direction of the member’s centroidal axis in the analysis.
Thus, only four degrees of freedom need to be considered for the members
of plane continuous beams. The degrees of freedom and the correspond-
ing end forces for a continuous beam member are shown in Fig. 17.5.

The sti¤ness relations expressed in symbolic or condensed matrix
form in Eq. (17.4) remain valid for continuous beam members. However,
Q; u, and Qf are now 4� 1 vectors, and the member sti¤ness matrix in
local coordinates, k, is given by

k ¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 2L2 �6L 4L2

26664
37775 ð17:6Þ

Note that the foregoing 4� 4 k matrix is obtained by deleting the first
and fourth columns and the first and fourth rows from the correspond-
ing matrix for frame members derived previously (Eq. (17.5)).

Truss Members

A member of a truss is subjected to only axial forces, which can be deter-
mined from the displacements of the member’s ends in the direction of the
centroidal axis of the member. Thus only two axial degrees of freedom
need to be considered for the members of plane trusses. The degrees of
freedom and the corresponding end forces for a truss member are shown
in Fig. 17.6.

The sti¤ness relationships for truss members in local coordinates are
expressed as

Q ¼ ku ð17:7Þ

Note that Eq. (17.7) is obtained from Eq. (17.4) by setting Qf ¼ 0. This
is because the members of trusses are not subjected to any external loads

FIG. 17.6

FIG. 17.5
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and, therefore, the member fixed-end forces are zero. In Eq. (17.7), Q
and u are 2� 1 vectors consisting of the member end forces and end
displacements, respectively (Fig. 17.6); and k is the member sti¤ness
matrix in local coordinates, which is given by

k ¼ EA

L

1 �1
�1 1

� �
ð17:8Þ

The foregoing sti¤ness matrix for truss members can either be derived di-
rectly by using the procedure discussed previously (see Fig. 17.4(c) and
(f )) or it can be obtained by deleting columns 2, 3, 5, and 6 and rows 2, 3,
5, and 6 from the corresponding matrix for frame members (Eq. 17.5)).

17.3 Coordinate Transformations

When members of a structure are oriented in di¤erent directions, it be-
comes necessary to transform the sti¤ness relations for each member from
the member’s local coordinate system to a common global coordinate
system. The member sti¤ness relations in global coordinates thus obtained
are then combined to establish the sti¤ness relations for the entire struc-
ture. In this section, we discuss the transformation of member end forces
and end displacements from local to global coordinates, and vice versa,
for the members of plane frames, continuous beams, and plane trusses.
Coordinate transformation of the sti¤ness relationships is considered in
the following section.

Frame Members

Consider an arbitrary member m of the frame shown in Fig. 17.7(a). The
orientation of the member with respect to the global XY coordinate sys-
tem is defined by an angle y measured counterclockwise from the posi-
tive direction of the global X axis to the positive direction of the local x
axis, as shown in the figure. The sti¤ness relations derived in the preceding
section are valid only for member end forces Q and end displacements u
described with reference to the local xy coordinate system of the member,
as shown in Fig. 17.7(b).

Now, suppose that the member end forces and end displacements are
specified relative to the globalXY coordinate system (Fig. 17.7(c)) and we
wish to determine the equivalent system of end forces and end displace-
ments, in local xy coordinates, that has the same e¤ect on the member. As
shown in Fig. 17.7(c), the member end forces in global coordinates are
denoted by F1 through F6, and the corresponding member end displace-
ments are denoted by v1 through v6. These global member end forces and
end displacements are numbered by beginning at the member end b,
where the origin of the local coordinate system is located, with the force
and translation in the X direction numbered first, followed by the force
and translation in the Y direction and then the moment and rotation. The
forces and displacements at the opposite end e of the member are then
numbered in the same sequential order.

A comparison of Fig. 17.7(b) and (c) indicates that at the end b of
the member, the local force Q1 must be equal to the algebraic sum of the
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components of the global forces F1 and F2 in the direction of the local x
axis. Thus

Q1 ¼ F1 cos yþ F2 sin y ð17:9aÞ

In a similar manner, the local force Q2 equals the algebraic sum of the
components of F1 and F2 in the direction of the local y axis; that is,

Q2 ¼ �F1 sin yþ F2 cos y ð17:9bÞ

Since the local z axis and the global Z axis are in the same direction—
that is, directed out of the plane of the page—the local end moment Q3

is equal to the global end moment F3. Thus

Q3 ¼ F3 ð17:9cÞ

By using a similar procedure at end e of the member, we express the
local forces in terms of the global forces as

Q4 ¼ F4 cos yþ F5 sin y ð17:9dÞ
Q5 ¼ �F4 sin yþ F5 cos y ð17:9eÞ
Q6 ¼ F6 ð17:9fÞ

Equations (17.9a) through (17.9f ) can be written in matrix form as

Q1

Q2

Q3

Q4

Q5

Q6

2666666664

3777777775
¼

cos y sin y 0 0 0 0

�sin y cos y 0 0 0 0

0 0 1 0 0 0

0 0 0 cos y sin y 0

0 0 0 �sin y cos y 0

0 0 0 0 0 1

2666666664

3777777775

F1

F2

F3

F4

F5

F6

2666666664

3777777775
ð17:10Þ

or symbolically as

Q ¼ TF ð17:11Þ

in which

T ¼

cos y sin y 0 0 0 0

�sin y cos y 0 0 0 0

0 0 1 0 0 0

0 0 0 cos y sin y 0

0 0 0 �sin y cos y 0

0 0 0 0 0 1

2666666664

3777777775
ð17:12Þ

is referred to as the transformation matrix. The member’s direction cosines,
necessary for the evaluation of T, can be easily determined by using the
relationships

cos y ¼ Xe � Xb

L
¼ Xe � Xbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXe � XbÞ2 þ ðYe � YbÞ2
q ð17:13aÞ

sin y ¼ Ye � Yb

L
¼ Ye � Ybffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXe � XbÞ2 þ ðYe � YbÞ2
q ð17:13bÞ
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in which Xb and Yb represent the global coordinates of the beginning
joint b for the member; Xe and Ye denote the global coordinates of the
end joint e; and L is the length of the member.

Like end forces, the member end displacements are vectors which
are defined in the same directions as the corresponding forces. There-
fore, the transformation matrix T developed for the case of end forces
(Eq. (17.12)) can also be used to transform member end displacements
from global to local coordinates:

u ¼ Tv ð17:14Þ

Next, we determine the transformations of member end forces and
end displacements from local to global coordinates. From Fig. 17.7(b)
and (c), we observe that at end b of the member, the global force F1

must be equal to the algebraic sum of the components of the local forces
Q1 and Q2 in the direction of the global X axis. Thus

F1 ¼ Q1 cos y�Q2 sin y ð17:15aÞ

Similarly, the global force F2 equals the algebraic sum of the compo-
nents of Q1 and Q2 in the direction of the global Y axis; that is,

F2 ¼ Q1 sin yþQ2 cos y ð17:15bÞ

and, as discussed previously,

F3 ¼ Q3 ð17:15cÞ

Similarly, at end e of the member,

F4 ¼ Q4 cos y�Q5 sin y ð17:15dÞ
F5 ¼ Q4 sin yþQ5 cos y ð17:15eÞ
F6 ¼ Q6 ð17:15fÞ

Equations (17.15a) through (17.15f ) can be expressed in matrix form as

F1

F2

F3

F4

F5

F6

2666666664

3777777775
¼

cos y �sin y 0 0 0 0

sin y cos y 0 0 0 0

0 0 1 0 0 0

0 0 0 cos y �sin y 0

0 0 0 sin y cos y 0

0 0 0 0 0 1

2666666664

3777777775

Q1

Q2

Q3

Q4

Q5

Q6

2666666664

3777777775
ð17:16Þ

A comparison of Eqs. (17.10) and (17.16) indicates that the trans-
formation matrix in Eq. (17.16), which transforms the forces from local
to global coordinates, is the transpose of the transformation matrix T
in Eq. (17.10), which transforms the forces from global to local coordi-
nates. Thus Eq. (17.16) can be written as

F ¼ TTQ ð17:17Þ
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The matrix TT can also define the transformation of member end
displacements from local to global coordinates; that is,

v ¼ TTu ð17:18Þ

Continuous Beam Members

When analyzing continuous beams, the member local coordinates are
oriented so that the positive directions of the local x and y axes are the
same as the positive directions of the global X and Y axes, respectively
(Fig. 17.8). This orientation enables us to avoid coordinate transfor-
mations because the member end forces and end displacements in the
global and local coordinates are the same; that is,

F ¼ Q v ¼ u ð17:19Þ

Truss Members

Consider an arbitrary member m of the truss shown in Fig. 17.9(a).
The end forces and end displacements for the member, in local
and global coordinates, are shown in Fig. 17.9(b) and (c), respectively.
Note that at each member end, two degrees of freedom and two end
forces are needed in global coordinates to represent the components of
the member axial displacement and axial force, respectively. Thus,
in global coordinates, the truss member has a total of four degrees of
freedom, v1 through v4, and four end forces, F1 through F4, as shown in
Fig. 17.9(c).

The transformation matrix T for truss members can be established
by expressing the local end forces, Q, in terms of the global end forces,
F, as (Fig. 17.9(b) and (c))

Q1 ¼ F1 cos yþ F2 sin y ð17:20aÞ
Q2 ¼ F3 cos yþ F4 sin y ð17:20bÞ

FIG. 17.8
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or in matrix form as

Q1

Q2

� �
¼ cos y sin y 0 0

0 0 cos y sin y

� � F1

F2

F3

F4

26664
37775 ð17:21Þ

from which we obtain the transformation matrix,

T ¼ cos y sin y 0 0

0 0 cos y sin y

� �
ð17:22Þ

The transformation relations given in symbolic or condensed matrix
form in Eqs. (17.11), (17.14), (17.17), and (17.18) remain valid for a truss
member, with the vectors Q;F; u, and v now representing the end forces
and end displacements of the truss member, as shown in Figs. 17.9(b) and
(c), and the matrix T representing the transformation matrix defined in
Eq. (17.22).

17.4 Member Stiffness Relations in Global Coordinates

By using the member sti¤ness relations in local coordinates (Section 17.2)
and the transformation relations (Section 17.3), we can now develop the
sti¤ness relations for members in global coordinates.

FIG. 17.9
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Frame Members

To establish the member sti¤ness relations in global coordinates, we
first substitute the sti¤ness relations in local coordinates Q ¼ kuþQf

(Eq. (17.4)) into the force transformation relations F ¼ TTQ (Eq. (17.17))
to obtain

F ¼ TTQ ¼ TTðkuþQf Þ ¼ TTkuþ TTQf ð17:23Þ

Then, by substituting the displacement transformation relations u ¼ Tv

(Eq. (17.14)) into Eq. (17.23), we determine the desired relations be-
tween the member end forces, F, and end displacements, v, to be

F ¼ TTkTvþ TTQf ð17:24Þ

Equation (17.24) can be conveniently written as

F ¼ Kvþ Ff ð17:25Þ

where

K ¼ TTkT ð17:26Þ

Ff ¼ TTQf ð17:27Þ

The matrix K is called the member sti¤ness matrix in global coordinates

and Ff is the member fixed-end force vector in global coordinates.

Continuous Beam Members

As stated previously, the local coordinates of the members of continuous
beams are oriented so that the positive directions of the local x and y axes
are the same as the positive directions of the global X and Y axes, re-
spectively. Thus no transformations of coordinates are needed, and the
member sti¤ness relations in the local and global coordinates are the same.

Truss Members

The sti¤ness relations for truss members in global coordinates are
expressed as

F ¼ Kv ð17:28Þ

Note that Eq. (17.28) is obtained from Eq. (17.25) by setting the fixed-
end force vector Ff ¼ 0.

When analyzing trusses, it is usually convenient to use the explicit
form of the member sti¤ness matrix K. By substituting Eqs. (17.8) and
(17.22) into Eq. (17.26), we write

K ¼

cos y 0

sin y 0

0 cos y

0 sin y

26664
37775EA

L

1 �1
�1 1

� �
cos y sin y 0 0

0 0 cos y sin y

� �
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By performing the matrix multiplications, we obtain

K ¼ EA

L

cos2 y cos y sin y �cos2 y �cos y sin y

cos y sin y sin2 y �cos y sin y �sin2 y

�cos2 y �cos y sin y cos2 y cos y sin y

�cos y sin y �sin2 y cos y sin y sin2 y

26664
37775

ð17:29Þ

The matrix K of Eq. (17.29) could have been determined alternatively by
subjecting an inclined truss member, separately, to unit values of each of
the four global end displacements and by evaluating the end forces in
global coordinates required to cause the individual unit displacements.
The end forces required to cause a unit value of the displacement vi while
all other displacements are zero represent the ith column of the member
global sti¤ness matrix K.

17.5 Structure Stiffness Relations

Once the member sti¤ness relations in global coordinates have been de-
termined, the sti¤ness relations for the entire structure can be established
by writing equilibrium equations for the joints of the structure and by
applying the compatibility conditions that the displacements of the mem-
ber ends rigidly connected to joints must be the same as the corresponding
joint displacements.

To illustrate this procedure, consider the two-member frame shown in
Fig. 17.10(a). The analytical model of the frame is given in Fig. 17.10(b),
which indicates that the structure has three degrees of freedom, d1; d2, and
d3. The joint loads corresponding to these degrees of freedom are designated
as P1;P2, and P3, respectively. The global end forces FðiÞ and end displace-
ments vðiÞ for the two members of the frame are shown in Fig. 17.10(c),
in which the superscript ðiÞ denotes the member number. Our objective is to
express the joint loads P as functions of the joint displacements d.

Equilibrium Equations

By applying the three equations of equilibrium,
P

FX ¼ 0,
P

FY ¼ 0,
and

P
M ¼ 0, to the free body of joint 2 shown in Fig. 17.10(c), we obtain

the equilibrium equations

P1 ¼ F
ð1Þ
4 þ F

ð2Þ
1 ð17:30aÞ

P2 ¼ F
ð1Þ
5 þ F

ð2Þ
2 ð17:30bÞ

P3 ¼ F
ð1Þ
6 þ F

ð2Þ
3 ð17:30cÞ

Member Stiffness Relations

To express the joint loads P in terms of the joint displacements d, we
first relate the member end forces FðiÞ to end displacements vðiÞ, by using
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the member sti¤ness relations in global coordinates derived in the pre-
ceding section. By writing Eq. (17.25) in expanded form for member 1,
we obtain

F
ð1Þ
1

F
ð1Þ
2

F
ð1Þ
3

F
ð1Þ
4

F
ð1Þ
5

F
ð1Þ
6

2666666666664

3777777777775
¼

K
ð1Þ
11 K

ð1Þ
12 K

ð1Þ
13 K

ð1Þ
14 K

ð1Þ
15 K

ð1Þ
16

K
ð1Þ
21 K

ð1Þ
22 K

ð1Þ
23 K

ð1Þ
24 K

ð1Þ
25 K

ð1Þ
26

K
ð1Þ
31 K

ð1Þ
32 K

ð1Þ
33 K

ð1Þ
34 K

ð1Þ
35 K

ð1Þ
36

K
ð1Þ
41 K

ð1Þ
42 K

ð1Þ
43 K

ð1Þ
44 K

ð1Þ
45 K

ð1Þ
46

K
ð1Þ
51 K

ð1Þ
52 K

ð1Þ
53 K

ð1Þ
54 K

ð1Þ
55 K

ð1Þ
56

K
ð1Þ
61 K

ð1Þ
62 K

ð1Þ
63 K

ð1Þ
64 K

ð1Þ
65 K

ð1Þ
66

2666666666664

3777777777775

v
ð1Þ
1

v
ð1Þ
2

v
ð1Þ
3

v
ð1Þ
4

v
ð1Þ
5

v
ð1Þ
6

2666666666664

3777777777775
þ

F
ð1Þ
f 1

F
ð1Þ
f 2

F
ð1Þ
f 3

F
ð1Þ
f 4

F
ð1Þ
f 5

F
ð1Þ
f 6

26666666666664

37777777777775
ð17:31Þ

FIG. 17.10
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FIG. 17.10 (contd.)
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from which we determine the expressions for forces at end 2 of the mem-
ber to be

F
ð1Þ
4 ¼ K

ð1Þ
41 v

ð1Þ
1 þ K

ð1Þ
42 v

ð1Þ
2 þ K

ð1Þ
43 v

ð1Þ
3 þ K

ð1Þ
44 v

ð1Þ
4

þ K
ð1Þ
45 v

ð1Þ
5 þ K

ð1Þ
46 v

ð1Þ
6 þ F

ð1Þ
f 4 ð17:32aÞ

F
ð1Þ
5 ¼ K

ð1Þ
51 v

ð1Þ
1 þ K

ð1Þ
52 v

ð1Þ
2 þ K

ð1Þ
53 v

ð1Þ
3 þ K

ð1Þ
54 v

ð1Þ
4

þ K
ð1Þ
55 v

ð1Þ
5 þ K

ð1Þ
56 v

ð1Þ
6 þ F

ð1Þ
f 5 ð17:32bÞ

F
ð1Þ
6 ¼ K

ð1Þ
61 v

ð1Þ
1 þ K

ð1Þ
62 v

ð1Þ
2 þ K

ð1Þ
63 v

ð1Þ
3 þ K

ð1Þ
64 v

ð1Þ
4

þ K
ð1Þ
65 v

ð1Þ
5 þ K

ð1Þ
66 v

ð1Þ
6 þ F

ð1Þ
f 6 ð17:32cÞ

Similarly, by writing Eq. (17.25) for member 2, we obtain

F
ð2Þ
1

F
ð2Þ
2

F
ð2Þ
3

F
ð2Þ
4

F
ð2Þ
5

F
ð2Þ
6

2666666666664

3777777777775
¼

K
ð2Þ
11 K

ð2Þ
12 K

ð2Þ
13 K

ð2Þ
14 K

ð2Þ
15 K

ð2Þ
16

K
ð2Þ
21 K

ð2Þ
22 K

ð2Þ
23 K

ð2Þ
24 K

ð2Þ
25 K

ð2Þ
26

K
ð2Þ
31 K

ð2Þ
32 K

ð2Þ
33 K

ð2Þ
34 K

ð2Þ
35 K

ð2Þ
36

K
ð2Þ
41 K

ð2Þ
42 K

ð2Þ
43 K

ð2Þ
44 K

ð2Þ
45 K

ð2Þ
46

K
ð2Þ
51 K

ð2Þ
52 K

ð2Þ
53 K

ð2Þ
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55 K
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56
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63 K

ð2Þ
64 K
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1
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2
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3
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ð2Þ
4

v
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5
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ð2Þ
6

2666666666664
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þ
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f 4

F
ð2Þ
f 5

F
ð2Þ
f 6

26666666666664

37777777777775
ð17:33Þ

from which we determine the forces at end 2 of the member to be

F
ð2Þ
1 ¼ K

ð2Þ
11 v

ð2Þ
1 þ K

ð2Þ
12 v

ð2Þ
2 þ K

ð2Þ
13 v

ð2Þ
3 þ K

ð2Þ
14 v

ð2Þ
4

þ K
ð2Þ
15 v

ð2Þ
5 þ K

ð2Þ
16 v

ð2Þ
6 þ F

ð2Þ
f 1 ð17:34aÞ

F
ð2Þ
2 ¼ K

ð2Þ
21 v

ð2Þ
1 þ K

ð2Þ
22 v

ð2Þ
2 þ K

ð2Þ
23 v

ð2Þ
3 þ K

ð2Þ
24 v

ð2Þ
4

þ K
ð2Þ
25 v

ð2Þ
5 þ K

ð2Þ
26 v

ð2Þ
6 þ F

ð2Þ
f 2 ð17:34bÞ

F
ð2Þ
3 ¼ K

ð2Þ
31 v

ð2Þ
1 þ K

ð2Þ
32 v

ð2Þ
2 þ K

ð2Þ
33 v

ð2Þ
3 þ K

ð2Þ
34 v

ð2Þ
4

þ K
ð2Þ
35 v

ð2Þ
5 þ K

ð2Þ
36 v

ð2Þ
6 þ F

ð2Þ
f 3 ð17:34cÞ

Compatibility Equations

By comparing Fig. 17.10(b) and (c), we observe that since the lower end
1 of member 1 is rigidly connected to the fixed joint 1, which can neither
translate nor rotate, the three displacements of end 1 of the member
must be zero. Similarly, since end 2 of this member is rigidly connected
to joint 2, the displacements of end 2 must be the same as the displace-
ments of joint 2. Thus, the compatibility equations for member 1 are

v
ð1Þ
1 ¼ v

ð1Þ
2 ¼ v

ð1Þ
3 ¼ 0 v

ð1Þ
4 ¼ d1 v

ð1Þ
5 ¼ d2 v

ð1Þ
6 ¼ d3 ð17:35Þ
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In a similar manner, the compatibility equations for member 2 are found
to be

v
ð2Þ
1 ¼ d1 v

ð2Þ
2 ¼ d2 v

ð2Þ
3 ¼ d3 v

ð2Þ
4 ¼ v

ð2Þ
5 ¼ v

ð2Þ
6 ¼ 0 ð17:36Þ

By substituting the compatibility equations for member 1 (Eq. (17.35))
into the member’s force-displacement relations as given by Eqs. (17.32), we
express the member end forces Fð1Þ in terms of the joint displacements d as

F
ð1Þ
4 ¼ K

ð1Þ
44 d1 þ K

ð1Þ
45 d2 þ K

ð1Þ
46 d3 þ F

ð1Þ
f 4 ð17:37aÞ

F
ð1Þ
5 ¼ K

ð1Þ
54 d1 þ K

ð1Þ
55 d2 þ K

ð1Þ
56 d3 þ F

ð1Þ
f 5 ð17:37bÞ

F
ð1Þ
6 ¼ K

ð1Þ
64 d1 þ K

ð1Þ
65 d2 þ K

ð1Þ
66 d3 þ F

ð1Þ
f 6 ð17:37cÞ

Similarly, for member 2, substitution of Eq. (17.36) into Eqs. (17.34)
yields

F
ð2Þ
1 ¼ K

ð2Þ
11 d1 þ K

ð2Þ
12 d2 þ K

ð2Þ
13 d3 þ F

ð2Þ
f 1 ð17:38aÞ

F
ð2Þ
2 ¼ K

ð2Þ
21 d1 þ K

ð2Þ
22 d2 þ K

ð2Þ
23 d3 þ F

ð2Þ
f 2 ð17:38bÞ

F
ð2Þ
3 ¼ K

ð2Þ
31 d1 þ K

ð2Þ
32 d2 þ K

ð2Þ
33 d3 þ F

ð2Þ
f 3 ð17:38cÞ

Structure Stiffness Relations

Finally, by substituting Eqs. (17.37) and (17.38) into the joint equili-
brium equations (Eqs. (17.30)), we obtain the desired relationships be-
tween the joint loads P and the joint displacement d of the frame as

P1 ¼ ðK ð1Þ44 þ K
ð2Þ
11 Þd1 þ ðK

ð1Þ
45 þ K

ð2Þ
12 Þd2 þ ðK

ð1Þ
46 þ K

ð2Þ
13 Þd3

þ ðF ð1Þf 4 þ F
ð2Þ
f 1 Þ ð17:39aÞ

P2 ¼ ðK ð1Þ54 þ K
ð2Þ
21 Þd1 þ ðK

ð1Þ
55 þ K

ð2Þ
22 Þd2 þ ðK

ð1Þ
56 þ K

ð2Þ
23 Þd3

þ ðF ð1Þf 5 þ F
ð2Þ
f 2 Þ ð17:39bÞ

P3 ¼ ðK ð1Þ64 þ K
ð2Þ
31 Þd1 þ ðK

ð1Þ
65 þ K

ð2Þ
32 Þd2 þ ðK

ð1Þ
66 þ K

ð2Þ
33 Þd3

þ ðF ð1Þf 6 þ F
ð2Þ
f 3 Þ ð17:39cÞ

Equations (17.39) can be conveniently expressed in condensed matrix
form as

P ¼ Sdþ Pf ð17:40Þ

or

P� Pf ¼ Sd ð17:41Þ
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in which

S ¼
K
ð1Þ
44 þ K

ð2Þ
11 K

ð1Þ
45 þ K

ð2Þ
12 K

ð1Þ
46 þ K

ð2Þ
13

K
ð1Þ
54 þ K

ð2Þ
21 K

ð1Þ
55 þ K

ð2Þ
22 K

ð1Þ
56 þ K

ð2Þ
23

K
ð1Þ
64 þ K

ð2Þ
31 K

ð1Þ
65 þ K

ð2Þ
32 K

ð1Þ
66 þ K

ð2Þ
33

2664
3775 ð17:42Þ

is called the structure sti¤ness matrix and

Pf ¼
F
ð1Þ
f 4 þ F

ð2Þ
f 1

F
ð1Þ
f 5 þ F

ð2Þ
f 2

F
ð1Þ
f 6 þ F

ð2Þ
f 3

26664
37775 ð17:43Þ

is termed the structure fixed-joint force vector. The foregoing procedure
of determining the structure sti¤ness relations by combining the member
sti¤ness relations is often referred to as the direct sti¤ness method [39].

The structure sti¤ness matrix S is interpreted in a manner analogous
to the member sti¤ness matrix; that is, a structure sti¤ness coe‰cient Sij

represents the force at the location and in the direction of Pi required, along

with other joint forces, to cause a unit value of the displacement dj while all

other joint displacements are zero. Thus the jth column of matrix S con-
sists of the joint loads required to cause a unit value of the displacement dj
while all other displacements are zero. For example, the first column of S
consists of the three joint loads required to cause the displacement d1 ¼ 1,
as shown in Fig. 17.10(d), and so on.

The foregoing interpretation of the structural sti¤ness matrix S indi-
cates that such a matrix can, alternatively, be determined by subjecting the
structure, separately, to unit values of each of its joint displacements and
by evaluating the joint loads required to cause the individual displace-
ments. However, such a procedure cannot be easily implemented on com-
puters and is seldom used in practice. Therefore, this alternative procedure
is not pursued in this chapter.

Assembly of S and Pf by Using Member Code Numbers

In the preceding paragraphs, we determined the structure sti¤ness matrix
S (Eq. (17.42)) and the structure fixed-joint force vector Pf (Eq. (17.43))
by substituting the member compatibility equations into the member
global sti¤ness relations and then substituting the resulting relationships
into the joint equilibrium equations. This process of writing three types of
equations and then making substitutions can be quite tedious and time
consuming for large structures.

From Eq. (17.42), we observe that the sti¤ness of a joint in a direc-
tion equals the sum of the sti¤nesses in that direction of the members
meeting at the joint. This fact indicates that the structure sti¤ness ma-
trix S can be formulated directly by adding the elements of the member
sti¤ness matrices into their proper positions in the structure matrix,
thereby avoiding the necessity of writing any equations. The technique
of directly forming a structure sti¤ness matrix by assembling the
elements of the member global sti¤ness matrices was introduced by
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S. S. Tezcan in 1963 [38] and is sometimes referred to as the code num-

ber technique.
To illustrate this technique, consider again the two-member frame

of Fig. 17.10. The sti¤ness matrices in global coordinates for the mem-
bers 1 and 2 of the frame are designated as K1 and K2, respectively
(Fig. 17.10(e)). Our objective is to form the structure sti¤ness matrix S

by assembling the elements of K1 and K2. Before we can determine the
positions of the elements of a member matrix K in the structure matrix
S, we need to identify, for each of the member’s degrees of freedom in
global coordinates, the number of the corresponding structure degree of
freedom. If the structure degree of freedom corresponding to a member
degree of freedom is not defined (i.e., the corresponding joint displace-
ment is zero), then a zero is used for the structure degree of freedom
number. Thus by comparing the global degrees of freedom of member
1 shown in Fig. 17.10(c) with the structure degrees of freedom given in
Fig. 17.10(b), we determine the structure degree of freedom numbers for
the member to be 0; 0; 0; 1; 2; 3. Note that these numbers are in the
same order as the member degrees of freedom; for example, the fourth
number, 1, corresponds to the fourth degree of freedom, v

ð1Þ
4 , of the mem-

ber, and so on. In other words, the first three numbers identify, in order,
the X translation, the Y translation, and the rotation of the beginning
joint of the member, whereas the last three numbers identify the X trans-
lation, theY translation, and the rotation, respectively, of the end joint. In
a similar manner, we determine the structure degree of freedom numbers
for member 2 to be 1; 2; 3; 0; 0; 0.

The structure degree of freedom numbers for a member can be used
to define the compatibility equations for the member. For example, the
structure degree of freedom numbers, 0; 0; 0; 1; 2; 3, imply the following
compatibility equations for member 1:

v
ð1Þ
1 ¼ v

ð1Þ
2 ¼ v

ð1Þ
3 ¼ 0 v

ð1Þ
4 ¼ d1 v

ð1Þ
5 ¼ d2 v

ð1Þ
6 ¼ d3

which are identical to those given in Eq. (17.35).
The positions of the elements of the member sti¤ness matrix K1 in the

structure sti¤ness matrix S can now be determined by writing the mem-
ber’s structure degree of freedom numbers ð0; 0; 0; 1; 2; 3Þ on the right side
and at the top of K1, as shown in Fig. 17.10(e). Note that the numbers
on the right side ofK1 represent the row numbers of the Smatrix, whereas
the numbers at the top represent the column numbers of S. For example,
the element K

ð1Þ
65 of K1 must be located in row 3 and column 2 of S, as

shown in Fig. 17.10(e). By using this approach, the remaining elements of
K1, except those corresponding to zero row or column number of S, are
stored in their proper positions in the structure sti¤ness matrix S.

The same procedure is then repeated for member 2. When two or
more member sti¤ness coe‰cients are located in the same position in S,
then the coe‰cients must be algebraically added. The completed struc-
ture sti¤ness matrix S is shown in Fig. 17.10(e). Note that this matrix
is identical to the one obtained previously (Eq. (17.42)) by substituting
the member compatibility equations and sti¤ness relations into the joint
equilibrium equations.

The foregoing procedure of directly forming the structure sti¤-
ness matrix by assembling member sti¤ness coe‰cients can be easily
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implemented on computers. To save computer storage space, one mem-
ber sti¤ness matrix is generated at a time; it is stored in the structure sti¤-
ness matrix, and the space is reused to generate the sti¤ness matrix for the
next member, and so on.

The structure fixed-joint force vector, Pf , can be assembled by using a
procedure similar to that for forming the structure sti¤ness matrix. To
generate the Pf vector for the frame under consideration, the structure
degree of freedom numbers for member 1 are first written on the right side
of the member’s fixed-end force vector Ff 1, as shown in Fig. 17.10(f ).
Each of these numbers now represents the row number of Pf in which the
corresponding member force is to be stored. For example, the element
F
ð1Þ
f 5 must be located in row 2 of Pf , as shown in the figure. In a similar

manner, the remaining elements of Ff 1, except those corresponding to
zero row number of Pf , are stored in their proper positions in Pf . The
same procedure is then repeated for member 2. The structure fixed-joint
force vector Pf thus obtained is shown in Fig. 17.10(f ). Note that this
vector is identical to that given in Eq. (17.43).

Once S and Pf have been evaluated, the structure sti¤ness relations
(Eq. (17.41)), which now represent a system of simultaneous linear alge-
braic equations, can be solved for the unknown joint displacements d.
With d known, the end displacements for each member can be determined
by applying the compatibility equations defined by its structure degree of
freedom numbers; then the corresponding end forces can be computed by
using the member’s sti¤ness relations.

The procedure for generating the structure sti¤ness matrix S and
fixed-joint force vector Pf , as described here for frames, can be applied to
continuous beams and trusses as well, except that in the case of trusses
Pf ¼ 0.

17.6 Procedure for Analysis

Based on the discussion presented in the previous sections, we can de-
velop the following step-by-step procedure for the analysis of structures
by the matrix sti¤ness method.

1. Prepare an analytical model of the structure as follows:
a. Draw a line diagram of the structure, on which each joint

and member must be identified by a number.
b. Select a global XY coordinate system, with the X and Y

axes oriented in the horizontal (positive to the right) and
vertical (positive upward) directions, respectively. It is usu-
ally convenient to locate the origin of this coordinate sys-
tem at a lower left joint of the structure, so that the X and
Y coordinates of most of the joints are positive.

c. For each member, establish a local xy coordinate system by
selecting one of the joints at its ends as the beginning joint
and the other as the end joint. On the line diagram of the
structure, for each member indicate the positive direction
of the local x axis by drawing an arrow along the member
pointing toward the end joint. For horizontal members, the
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coordinate transformations can be avoided by selecting the
joint at the left end of the member as the beginning joint.

d. Identify the degrees of freedom or unknown joint displace-
ments, d, of the structure. The degrees of freedom are speci-
fied on the structure’s line diagram by drawing arrows at the
joints and are numbered by starting at the lowest joint num-
ber and proceeding sequentially to the highest joint number.
In the case of more than one degree of freedom at a joint, the
X translation is numbered first, followed by the Y trans-
lation, and then the rotation. Recall that a joint of a plane
frame can have up to three degrees of freedom (two trans-
lations and a rotation); a joint of a continuous beam can
have up to two degrees of freedom (a translation perpendic-
ular to the beam’s centroidal axis and a rotation); and a joint
of a plane truss can have up to two degrees of freedom (two
translations). Note that joint translations are considered as
positive when in the positive directions of the X and Y axes;
joint rotations are considered as positive when counter-
clockwise.

2. Evaluate the structure sti¤ness matrix S and fixed-joint force
vector Pf . For each member of the structure, perform the fol-
lowing operations:
a. For trusses, go directly to step 2(d). Otherwise, compute the

member sti¤ness matrix in local coordinates, k. Expressions
of k for the members of frames and continuous beams are
given in Eqs. (17.5) and (17.6), respectively.

b. If the member is subjected to external loads, then evaluate
its fixed-end force vector in local coordinates, Qf , by using
the expressions for fixed-end moments given inside the back
cover of the book and by applying the equations of equili-
brium (see Examples 17.2 and 17.3).

c. For horizontal members with the local x axis positive to the
right (i.e., in the same direction as the global X axis), the
member sti¤ness relations in the local and global coordin-
ates are the same (i.e., K ¼ k and Ff ¼ Qf ); go to step 2(e).
Otherwise, compute the member’s transformation matrix T

by using Eq. (17.12).
d. Determine the member sti¤ness matrix in global coordin-

ates, K ¼ TTkT (Eq. (17.26)), and the corresponding fixed-
end force vector, Ff ¼ TTQf (Eq. (17.27)). The matrix K

must be symmetric. For trusses, it is usually more convenient
to use the explicit form of K given in Eq. (17.29). Also, for
trusses, Ff ¼ 0.

e. Identify the member’s structure degree of freedom numbers
and store the pertinent elements of K and Ff in their proper
positions in the structure sti¤ness matrix S and the fixed-
joint force vector Pf , respectively, by using the procedure
described in Section 17.5. The complete structure sti¤ness
matrix S obtained by assembling the sti¤ness coe‰cients of
all the members of the structure must be symmetric.

3. Form the joint load vector, P.
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4. Determine the unknown joint displacements. Substitute P;Pf ,
and S into the structure sti¤ness relations, P� Pf ¼ Sd

(Eq. (17.41)), and solve the resulting system of simultaneous
equations for the unknown joint displacements d.

5. Compute member end displacements and end forces. For each
member, do the following:
a. Obtain member end displacements in global coordinates,

v, from the joint displacements, d, by using the member’s
structure degree of freedom numbers.

b. Determine member end displacements in local coordinates
by using the relationship u ¼ Tv (Eq. (17.14)). For hori-
zontal members with the local x axis positive to the right,
u ¼ v.

c. Compute member end forces in local coordinates by using
the relationship Q ¼ kuþQf (Eq. (17.4)). For trusses,
Qf ¼ 0.

d. Calculate member end forces in global coordinates by using
the transformation relationship F ¼ TTQ (Eq. (17.17)).
For horizontal members with the local x axis positive to the
right, F ¼ Q.

6. Determine support reactions by considering the equilibrium of
the joints located at the supports of the structure.

Computer Program

A computer program for the analysis of plane framed structures using the
sti¤ness method is available on the publisher’s web site www.cengage
.com/engineering for use by the reader. A brief description of the program
as well as information on how to use this program, including an illus-
trative example, are presented in Appendix C.

Example 17.1

Determine the reactions and the force in each member of the truss shown in Fig. 17.11(a) by the matrix sti¤ness
method.

Solution
Degrees of Freedom. From the analytical model of the truss shown in Fig. 17.11(b), we observe that only joint 3 is free
to translate. Thus the truss has two degrees of freedom, d1 and d2, which are the unknown translations of joint 3 in the
X and Y directions, respectively.

Structure Sti¤ness Matrix.

Member 1 As shown in Fig. 17.11(b), joint 1 has been selected as the beginning joint and joint 3 as the end joint
for member 1. By applying Eqs. (17.13), we determine

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX3 � X1Þ2 þ ðY3 � Y1Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð15� 0Þ2 þ ð20� 0Þ2

q
¼ 25 ft

cos y ¼ X3 � X1

L
¼ 15

25
¼ 0:6

sin y ¼ Y3 � Y1

L
¼ 20

25
¼ 0:8
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The member sti¤ness matrix in global coordinates can now be evaluated by using Eq. (17.29)

K1 ¼
ð29;000Þð9Þ
ð25Þð12Þ

0:36 0:48 �0:36 �0:48
0:48 0:64 �0:48 �0:64
�0:36 �0:48 0:36 0:48

�0:48 �0:64 0:48 0:64

26664
37775

FIG. 17.11

continued
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or

(1)

From Fig. 17.11(b), we observe that the displacements of the beginning joint 1 for the member are zero, whereas the
displacements of the end joint 3 are d1 and d2. Thus the structure degree of freedom numbers for this member are
0; 0; 1; 2. These numbers are written on the right side and at the top of K1 (see Eq. (1)) to indicate the rows and columns,
respectively, of the structure sti¤ness matrix S, where the elements of K1 must be stored. Note that the elements of K1,
which correspond to the zero structure degree of freedom number, are simply disregarded. Thus, the element in row 3
and column 3 of K1 is stored in row 1 and column 1 of S, as shown in Fig. 17.11(c). Similarly, the element in row 3 and
column 4 of K1 is stored in row 1 and column 2 of S. The remaining elements of K1 are stored in S in a similar manner
(Fig. 17.11(c)).

Member 2 From Fig. 17.11(b), we can see that joint 2 is the beginning joint and joint 3 is the end joint for mem-
ber 2. By applying Eqs. (17.13), we obtain

cos y ¼ X3 � X2

L
¼ 15� 15

20
¼ 0

sin y ¼ Y3 � Y2

L
¼ 20� 0

20
¼ 1

Thus, by using Eq. (17.29)

From Fig. 17.11(b), we can see that the structure degree of freedom numbers for this member are 0, 0, 1, 2. These
numbers are used to store the pertinent elements of K2 in their proper positions in the structure sti¤ness matrix S, as
shown in Fig. 17.11(c).

Member 3 cos y ¼ 1 sin y ¼ 0
By using Eq. (17.29),

The structure degree of freedom numbers for this member are 0; 0; 1; 2. By using these numbers, the elements of K3 are
stored in S, as shown in Fig. 17.11(c).

Note that the structure sti¤ness matrix S (Fig. 17.11(c)), obtained by assembling the sti¤ness coe‰cients of the
three members, is symmetric.

Joint Load Vector. By comparing Fig. 17.11(a) and (b), we realize that

P1 ¼ 100 cos 60� ¼ 50 k P2 ¼ �100 sin 60� ¼ �86:6 k

continued
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Thus the joint load vector is

P ¼ 50

�86:6

� �
(2)

Joint Displacements. The sti¤ness relations for the entire truss can be expressed as (Eq. (17.41) with Pf ¼ 0)

P ¼ Sd (3)

By substituting P from Eq. (2) and S from Fig. 17.11(c), we write Eq. (3) in expanded form as

50

�86:6

� �
¼ 1;763:2 417:6

417:6 1;644:3

� �
d1

d2

� �
By solving these equations simultaneously, we determine the joint displacements to be

d1 ¼ 0:0434 in: d2 ¼ �0:0637 in:

or

d ¼ 0:0434

�0:0637

� �
in:

Member End Displacements and End Forces.

Member 1 The member end displacements in global coordinates, v, can be obtained by simply comparing
the member’s global degree of freedom numbers with the structure degree of freedom numbers for the member, as
follows:

v1 ¼

v1 0

v2 0

v3 1

v4 2

26664
37775 ¼

0

0

d1

d2

26664
37775 ¼

0

0

0:0434

�0:0637

26664
37775in: (4)

Note that the structure degree of freedom numbers for the member ð0; 0; 1; 2Þ are written on the right side of v, as shown
in Eq. (4). Since the structure degree of freedom numbers corresponding to v1 and v2 are zero, this indicates that
v1 ¼ v2 ¼ 0. Similarly, the numbers 1 and 2 corresponding to v3 and v4, respectively, indicate that v3 ¼ d1 and v4 ¼ d2.
It should be realized that these compatibility equations could have been established alternatively simply by a visual in-
spection of the line diagram of the structure (Fig. 17.11(b)). However, the use of the structure degree of freedom num-
bers enables us conveniently to program this procedure on a computer.

The member end displacements in local coordinates can now be determined by using the relationship u ¼ Tv

(Eq. (17.14)), with T as defined in Eq. (17.22):

u1 ¼
u1

u2

� �
¼ 0:6 0:8 0 0

0 0 0:6 0:8

� � 0

0

0:0434

�0:0637

26664
37775 ¼ 0

�0:0249

� �
in:

By using Eq. (17.7), we compute member end forces in local coordinates as

Q ¼ ku

Q1 ¼
Q1

Q2

� �
¼ 870

1 �1
�1 1

� �
0

�0:0249

� �
¼ 21:66

�21:66

� �
k

Thus, as shown in Fig. 17.11(d), the axial force in member 1 is

21:66 k ðCÞ Ans.

continued
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By applying Eq. (17.17), we can determine member end forces in global coordinates as

F ¼ TTQ

F1 ¼

F1

F2

F3

F4

26664
37775 ¼

0:6 0

0:8 0

0 0:6

0 0:8

26664
37775 21:66

�21:66

� �
¼

13

17:33

�13
�17:33

26664
37775k

Member 2 The member end displacements in global coordinates are given by

v2 ¼

v1 0

v2 0

v3 1

v4 2

26664
37775 ¼

0

0

d1

d2

26664
37775 ¼

0

0

0:0434

�0:0637

26664
37775in:

By using the relationship u ¼ Tv, we determine the member end displacements in local coordinates to be

u2 ¼
u1

u2

� �
¼ 0 1 0 0

0 0 0 1

� � 0

0

0:0434

�0:0637

26664
37775 ¼ 0

�0:0637

� �
in:

Next, the member end forces in local coordinates are computed by using the relationship Q ¼ ku:

Q2 ¼
Q1

Q2

� �
¼ 1;087:5

1 �1
�1 1

� �
0

�0:0637

� �
¼ 69:27

�69:27

� �
k

Thus, as shown in Fig. 17.11(d), the axial force in member 2 is

69:27 k ðCÞ Ans.

By using the relationship F ¼ TTQ, we calculate the member end forces in global coordinates to be

F2 ¼

F1

F2

F3

F4

26664
37775 ¼

0 0

1 0

0 0

0 1

26664
37775 69:27

�69:27

� �
¼

0

69:27

0

�69:27

26664
37775k

Member 3

v3 ¼

v1 0

v2 0

v3 1

v4 2

26664
37775 ¼

0

0

d1

d2

26664
37775 ¼

0

0

0:0434

�0:0637

26664
37775in:

u ¼ Tv

u3 ¼
u1

u2

� �
¼ 1 0 0 0

0 0 1 0

� � 0

0

0:0434

�0:0637

26664
37775 ¼ 0

0:0434

� �
in:

Q ¼ ku

Q3 ¼
Q1

Q2

� �
¼ 1;450

1 �1
�1 1

� �
0

0:0434

� �
¼ �62:93

62:93

� �
k

continued
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Thus, the axial force in member 3 is (Fig. 17.11(d))

62:93 k ðTÞ Ans.

F ¼ TTQ

F3 ¼

F1

F2

F3

F4

26664
37775 ¼

1 0

0 0

0 1

0 0

26664
37775 �62:9362:93

� �
¼

�62:93
0

62:93

0

26664
37775k

Support Reactions. As shown in Fig. 17.11(e), the reactions at the support joints 1; 2, and 4 are equal to the forces in
global coordinates at the ends of the members connected to these joints. Ans.

Equilibrium Check. Applying the equations of equilibrium to the free body of the entire structure (Fig. 17.11(e)), we
obtain

þ !
P

FX ¼ 0 13� 62:93þ 100 cos 60� ¼ 0:07&0 Checks

þ "
P

FY ¼ 0 17:33þ 69:27� 100 sin 60� ¼ 0 Checks

þ ’
P

M1 ¼ 0 69:27ð15Þ þ 62:93ð20Þ � 100 cos 60�ð20Þ � 100 sin 60�ð15Þ

¼ �1:39&0 Checks

Example 17.2

Determine the reactions and the member end forces for the three-span continuous beam shown in Fig. 17.12(a) by using
the matrix sti¤ness method.

Solution
Degrees of Freedom. From the analytical model of the beam shown in Fig. 17.12(b), we observe that the structure has
two degrees of freedom, d1 and d2, which are the unknown rotations of joints 2 and 3, respectively. Note that the member
local coordinate systems are chosen so that the positive directions of the local and global axes are the same. Therefore,
no coordinate transformations are needed; that is, the member sti¤ness relations in the local and global coordinates are
the same.

Structure Sti¤ness Matrix.

Member 1 By substituting L ¼ 10 m into Eq. (17.6), we obtain

K1 ¼ k1 ¼ EI

26664
0 0 0 1

0:012 0:06 �0:012 0:06 0

0:06 0:4 �0:06 0:2 0

�0:012 �0:06 0:012 �0:06 0

0:06 0:2 �0:06 0:4 1

37775
By using the fixed-end moment expressions given inside the back cover of the book, we evaluate the fixed-end moments
due to the 80-kN load as

Qf 2 ¼
80ð6Þð4Þ2

ð10Þ2
¼ 76:8 kN �m

Qf 4 ¼ �
80ð6Þ2ð4Þ
ð10Þ2

¼ �115:2 kN �m

continued

Section 17.6 Procedure for Analysis 735



continued

FIG. 17.12
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The fixed-end shears Qf 1 and Qf 3 can now be determined by considering the equilibrium of the free body of member 1,
shown in Fig. 17.12(c):

þ ’
P

M2 ¼ 0 76:8�Qf 1ð10Þ þ 80ð4Þ � 115:2 ¼ 0

Qf 1 ¼ 28:16 kN

þ "
P

Fy ¼ 0 28:16� 80þQf 3 ¼ 0

Qf 3 ¼ 51:84 kN

Thus, the fixed-end force vector for member 1 is

Ff 1 ¼ Qf 1 ¼

28:16 0

76:8 0

51:84 0

�115:2 1

26664
37775

From Fig. 17.12(b), we observe that the structure degree of freedom numbers for this member are 0; 0; 0; 1. By using
these numbers, the pertinent elements of K1 and Ff 1 are stored in their proper positions in the structure sti¤ness matrix S

and the fixed-joint force vector Pf , respectively, as shown in Fig. 17.12(d).
Member 2 By substituting L ¼ 10 m into Eq. (17.6), we obtain

K2 ¼ k2 ¼ EI

26664
0 1 0 2

0:012 0:06 �0:012 0:06 0

0:06 0:4 �0:06 0:2 1

�0:012 �0:06 0:012 �0:06 0

0:06 0:2 �0:06 0:4 2

37775
The fixed-end moments due to the 24-kN/m load are

Qf 2 ¼ �Qf 4 ¼
24ð10Þ2

12
¼ 200 kN �m

Application of the equations of equilibrium to the free body of member 2 yields (Fig. 17.12(c))

Qf 1 ¼ Qf 3 ¼ 120 kN

Thus,

Ff 2 ¼ Qf 2 ¼

120 0

200 1

120 0

�200 2

26664
37775

By using the structure degree of freedom numbers, 0; 1; 0; 2, for this member, we store the relevant elements of K2 and
Ff 2 into S and Pf , respectively, as shown in Fig. 17.12(d).

Member 3 L ¼ 5 m:

K3 ¼ k3 ¼ EI

26664
0 2 0 0

0:096 0:24 �0:096 0:24 0

0:24 0:8 �0:24 0:4 2

�0:096 �0:24 0:096 �0:24 0

0:24 0:4 �0:24 0:8 0

37775
The elements of K3 are stored in S using the structure degree of freedom numbers 0; 2; 0; 0. Note that since member 3 is
not subjected to any external loads,

Ff 3 ¼ Qf 3 ¼ 0

continued
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Joint Load Vector. Since no external moments are applied to the beam at joints 2 and 3, the joint load vector is zero;
that is,

P ¼ 0

Joint Displacements. The sti¤ness relations for the entire continuous beam, P� Pf ¼ Sd, are written in expanded form as

�84:8
200

� �
¼ EI

0:8 0:2

0:2 1:2

� �
d1

d2

� �
By solving these equations simultaneously, we determine the joint displacements to be

EId1 ¼ �154:09 kN �m2 EId2 ¼ 192:35 kN �m2

or

d ¼ 1

EI

�154:09
192:35

� �
kN �m2

Member End Displacements and End Forces.

Member 1 By using the member’s structure degree of freedom numbers, we obtain the member end displacements:

u1 ¼ v1 ¼

v1 0

v2 0

v3 0

v4 1

26664
37775 ¼

0

0

0

d1

26664
37775¼ 1

EI

0

0

0

�154:09

26664
37775

By using the member sti¤ness relations Q ¼ kuþQf (Eq. (17.4)), we compute member end forces as

F1 ¼Q1 ¼ EI

0:012 0:06 �0:012 0:06

0:06 0:4 �0:06 0:2

�0:012 �0:06 0:012 �0:06
0:06 0:2 �0:06 0:4

26664
37775 1

EI

0

0

0

�154:09

26664
37775þ

28:16

76:8

51:84

�115:2

26664
37775

¼

18:91 kN

45:98 kN �m
61:09 kN

�176:84 kN �m

26664
37775 Ans.

Member 2

u2 ¼ v2 ¼

v1 0

v2 1

v3 0

v4 2

26664
37775 ¼

0

d1

0

d2

26664
37775¼ 1

EI

0

�154:09
0

192:35

26664
37775

Q ¼ kuþQf

F2 ¼ Q2 ¼

0:012 0:06 �0:012 0:06

0:06 0:4 �0:06 0:2

�0:012 �0:06 0:012 �0:06
0:06 0:2 �0:06 0:4

26664
37775

0

�154:09
0

192:35

26664
37775þ

120

200

120

�200

26664
37775

¼

122:3 kN

176:83 kN �m
117:7 kN

�153:88 kN �m

26664
37775 Ans.
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Member 3

u3 ¼ v3 ¼

v1 0

v2 2

v3 0

v4 0

26664
37775 ¼

0

d2

0

0

26664
37775¼ 1

EI

0

192:35

0

0

26664
37775

Q ¼ kuþQf

F3 ¼ Q3 ¼

0:096 0:24 �0:096 0:24

0:24 0:8 �0:24 0:4

�0:096 �0:24 0:096 �0:24
0:24 0:4 �0:24 0:8

26664
37775

0

192:35

0

0

26664
37775¼

46:16 kN

153:88 kN �m
�46:16 kN

76:94 kN �m

26664
37775 Ans.

The end forces for the three members of the continuous beam are shown in Fig. 17.12(e).

Support Reactions. Since support joint 1 is the beginning joint for member 1, equilibrium considerations require that the
reactions at joint 1, R1, be equal to the upper half of F1 (i.e., the forces at end 1 of member 1).

R1 ¼
18:91 kN

45:98 kN �m

� �
Ans.

in which the first element of R1 represents the vertical force and the second element represents the moment, as shown
in Fig. 17.12(f ). In a similar manner, since support joint 2 is the end joint for member 1 but the beginning joint for
member 2, the reaction vector at joint 2, R2, must be equal to the algebraic sum of the lower half of F1 and the upper
half of F2.

R2 ¼
61:09

�176:84

� �
þ 122:3

176:83

� �
¼ 183:39 kN

�0:01&0

� �
Ans.

Similarly, at support joint 3, R3 can be determined by algebraically summing the lower half of F2 and the upper
half of F3.

R3 ¼
117:7

�153:88

� �
þ 46:16

153:88

� �
¼ 163:86 kN

0

� �
Ans.

Finally, the reaction vector at joint 4 must be equal to the lower half of F3:

R4 ¼
�46:16 kN

76:94 kN �m

� �
Ans.

The support reactions are shown in Fig. 17.12(f ). Ans.

Equilibrium Check. Applying the equations of equilibrium to the entire structure (Fig. 17.12(f )), we obtain

þ "
P

FY ¼ 0

18:91� 80þ 183:39� 24ð10Þ þ 163:86� 46:16 ¼ 0 Checks

þ ’
P

M4 ¼ 0

45:98� 18:91ð25Þ þ 80ð19Þ � 183:39ð15Þ

þ 24ð10Þð10Þ � 163:86ð5Þ þ 76:94 ¼ 0:02&0 Checks
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Example 17.3

Determine the reactions and the member end forces for the frame shown in Fig. 17.13(a) by using the matrix sti¤ness
method.

Solution
Degrees of Freedom. From the analytical model of the frame shown in Fig. 17.13(b), we observe that while joints 1 and 3
of the structure can neither translate nor rotate, joint 2 is free to translate as well as rotate. Thus the frame has three
degrees of freedom: the translations d1 and d2 in the X and Y directions, respectively, and the rotation d3 of joint 2.

Structure Sti¤ness Matrix.

Member 1 Since the local xy coordinate system for this member coincides with the global XY coordinate system, no
coordinate transformations are needed; that is, the member sti¤ness relations in the local and global coordinates are the
same. By substituting E ¼ 29;000ð12Þ2 ksf, I ¼ 800=ð12Þ4 ft4, A ¼ 16=ð12Þ2 ft2, and L ¼ 30 ft into Eq. (17.5), we obtain

(1)

By using the fixed-end moment expressions given inside the back cover of the book, we evaluate the fixed-end moments
due to the 2-k/ft load as

Qf 3 ¼ �Qf 6 ¼
2ð30Þ2

12
¼ 150 k-ft

By applying equilibrium equations to the free body of the member, we obtain (Fig. 17.13(c))

Qf 2 ¼ Qf 5 ¼ 30 k

Thus,

(2)

By using the structure degree of freedom numbers, 0; 0; 0; 1; 2; 3, for this member, the pertinent elements of K1 and Ff 1

are stored in their proper positions in the structure sti¤ness matrix S and the fixed-joint force vector Pf , respectively, as
shown in Fig. 17.13(d).

Member 2 By substituting E ¼ 29;000ð12Þ2 ksf, I ¼ 400=ð12Þ4 ft4, A ¼ 12=ð12Þ2 ft2, and L ¼ 25 ft into Eq. (17.5),
we obtain

k2 ¼

13;920 0 0 �13;920 0 0

0 61:87 773:33 0 �61:87 773:33

0 773:33 12;888:89 0 �773:33 6;444:44

�13;920 0 0 13;920 0 0

0 �61:87 �773:33 0 61:87 �773:33
0 773:33 6;444:44 0 �773:33 12;888:89

2666666664

3777777775
(3)
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FIG. 17.13

continued
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Since member 2 is not subjected to any external loads,

Qf 2 ¼ 0 (4)

By using the global coordinates of the beginning joint 3 and the end joint 2, we determine the direction cosines of
member 2 as (Eq. (17.13))

cos y ¼ X2 � X3

L
¼ 30� 45

25
¼ �0:6

sin y ¼ Y2 � Y3

L
¼ 0� ð�20Þ

25
¼ 0:8

Substitution of these values into Eq. (17.12) yields the following transformation matrix for the member:

T2 ¼

�0:6 0:8 0 0 0 0

�0:8 �0:6 0 0 0 0

0 0 1 0 0 0

0 0 0 �0:6 0:8 0

0 0 0 �0:8 �0:6 0

0 0 0 0 0 1

2666666664

3777777775
(5)

FIG. 17.13 (contd.)
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continued

To determine the member sti¤ness matrix in global coordinates, K2, we substitute the matrices k2 and T2 into the
relationship K ¼ TTkT (Eq. (17.26)) and carry out the necessary matrix multiplications to obtain

(6)

Note that K2 is symmetric. By using the structure degree of freedom numbers, 0; 0; 0; 1; 2; 3, for member 2, the relevant
elements of K2 are added into their positions in the S matrix, as shown in Fig. 17.13(d). Note that Ff 2 ¼ 0.

Joint Load Vector. By comparing Fig. 17.13(a) and (b), we write

P ¼
0

0

75

264
375

Joint Displacements. The sti¤ness relations for the entire frame, P� Pf ¼ Sd, are written in expanded form as

0

0

75

264
375� 0

30

�150

264
375 ¼ 20;517:47 �6;651:9 618:67

�6;651:9 9;002:67 �610:07
618:67 �610:07 34;370:37

264
375 d1

d2

d3

264
375

or

0

�30
225

264
375 ¼ 20;517:47 �6;651:9 618:67

�6;651:9 9;002:67 �610:07
618:67 �610:07 34;370:37

264
375 d1

d2

d3

264
375

By solving these equations simultaneously, we determine the joint displacements to be

d ¼
�0:00149 ft

�0:00399 ft

0:0065 rad

264
375

Member End Displacements and End Forces.

Member 1

u1 ¼ v1 ¼

v1 0

v2 0

v3 0

v4 1

v5 2

v6 3

2666666664

3777777775
¼

0

0

0

d1

d2

d3

2666666664

3777777775
¼

0

0

0

�0:00149 ft

�0:00399 ft

0:0065 rad

2666666664

3777777775
By substituting k1;Qf 1, and u1 in the member sti¤ness relationship Q ¼ kuþQf (Eq. (17.4)), we determine the member
end forces to be

F1 ¼ Q1 ¼

23:05 k

37:27 k

224:1 k-ft

�23:05 k

22:73 k

�6:08 k-ft

2666666664

3777777775
Ans.
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Member 2

v2 ¼

v1 0

v2 0

v3 0

v4 1

v5 2

v6 3

2666666664

3777777775
¼

0

0

0

d1

d2

d3

2666666664

3777777775
¼

0

0

0

�0:00149 ft

�0:00399 ft

0:0065 rad

2666666664

3777777775
By substituting K2; v2, and Ff 2 ¼ 0 into the member sti¤ness relationship in global coordinates, F ¼ Kvþ Ff (Eq. (17.25)),
we determine the member end forces in global coordinates to be

F2 ¼

�23:04 k

22:71 k

39:12 k-ft

23:04 k

�22:71 k

81 k-ft

2666666664

3777777775
The member end forces in local coordinates can now be evaluated by substituting F2 and T2 into the relationship
Q ¼ TF (Eq. (17.11)).

Q2 ¼

31:99 k

4:81 k

39:12 k-ft

�31:99 k

�4:81 k

81 k-ft

2666666664

3777777775
Ans.

The end forces in the local coordinates of the members are shown in Fig. 17.13(e). Ans.

Support Reactions. Since support joints 1 and 3 are the beginning joints for members 1 and 2, respectively, the reaction
vectors R1 and R3 must be equal to the upper halves of F1 and F2, respectively.

R1 ¼
23:05 k

37:27 k

224:1 k-ft

264
375; R3 ¼

�23:04 k

22:71 k

39:12 k-ft

264
375 Ans.

The support reactions are shown in Fig. 17.13(f ). Ans.

Equilibrium Check. Applying the equations of equilibrium to the entire frame (Fig. 17.13(f )), we obtain

þ !
P

FX ¼ 0 23:05� 23:04 ¼ 0:01&0 Checks

þ "
P

FY ¼ 0 37:27� 2ð30Þ þ 22:71 ¼ �0:02&0 Checks

þ ’
P

M1 ¼ 0 224:1� 2ð30Þð15Þ þ 75� 23:04ð20Þ þ 22:71ð45Þ þ 39:12

¼ �0:63&0 Checks
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Summary

In this chapter we have studied the basic concepts of the matrix sti¤ness
method for the analysis of plane framed structures. A block diagram sum-
marizing the various steps involved in the analysis is presented in Fig. 17.14.

PROBLEMS

Section 17.6

17.1 through 17.3 Determine the reactions and the force in
each member of the trusses shown in Figs. P17.1–P17.3 by
using the matrix sti¤ness method.

FIG. P17.1 FIG. P17.2

FIG. 17.14

Problems 745



FIG. P17.3

17.4 through 17.6 Determine the reactions and the member
end forces for the beams shown in Figs. P17.4–P17.6 by
using the matrix sti¤ness method.

FIG. P17.4

FIG. P17.5

FIG. P17.6

17.7 through 17.9 Determine the reactions and the mem-
ber end forces in local coordinates for the frames shown in
Figs. P17.7–P17.9 by using the matrix sti¤ness method.

FIG. P17.7

FIG. P17.8

FIG. P17.9
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A
Areas and Centroids of
Geometric Shapes
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Shape Area Centroid

Right-angled triangle

A ¼ bh

2
x ¼ 2b

3

Triangle

A ¼ bh

2
x ¼ aþ b

3

Trapezoid

A ¼ bðh1 þ h2Þ
2

x ¼ bðh1 þ 2h2Þ
3ðh1 þ h2Þ

Semi-parabola

A ¼ 2bh

3
x ¼ 3b

8



Shape Area Centroid

Parabolic spandrel

A ¼ bh

3
x ¼ 3b

4

Parabolic segment

A ¼ 2bh

3
x ¼ b

2

Note: When the segment represents a
part of the bending moment diagram
of a member subjected to uniformly
distributed load w, then h ¼ wb2=8.

Cubic

A ¼ 3bh

4
x ¼ 2b

5

Cubic spandrel

A ¼ bh

4
x ¼ 4b

5

nth-degree curve
y ¼ axn, nb1

A ¼ bh

nþ 1
x ¼ ðnþ 1Þb

ðnþ 2Þ
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B
Review of Matrix Algebra
B.1 Definition of a Matrix
B.2 Types of Matrices
B.3 Matrix Operations
B.4 Solution of Simultaneous Equations by the Gauss-Jordan Method

Problems

In this appendix, some basic concepts of matrix algebra necessary for for-
mulating the computerized analysis of structures are briefly reviewed.
A more comprehensive and mathematilcally rigorous treatment of these
concepts can be found in any textbook on matrix algebra, such as [11]
and [28].

B.1 Definition of a Matrix

A matrix is a rectangular array of quantities arranged in rows and col-

umns. A matrix containing m rows and n columns can be expressed as:

A ¼ ½A� ¼

A11 A12 � � � � � � A1n

A21 A22 � � � � � � A2n

� � � � � � Aij � � �
Am1 Am2 � � �



 � � � Amn

26664
37775ith row (B.1)

jth column m� n

As Eq. (B.1) indicates, matrices are usually denoted either by boldface

letters (e.g., A) or by italic letters enclosed within brackets (e.g., [A]). The
quantities that form a matrix are referred to as the elements of the ma-
trix, and each element is represented by a double-subscripted letter, with
the first subscript identifying the row and the second subscript identifying
the column in which the element is located. Thus in Eq. (B.1), A12 rep-
resents the element located in the first row and the second column of the
matrix A, and A21 represents the element in the second row and the first
column of A. In general, an element located in the ith row and the jth
column of matrix A is designated as Aij. It is common practice to enclose
the entire array of elements between brackets, as shown in Eq. (B.1).

The size of a matrix is measured by its order, which refers to the
number of rows and columns of the matrix. Thus the matrix A in Eq. (B.1),



which consists of m rows and n columns, is considered to be of order m� n

(m by n). As an example, consider a matrix B given by

B ¼
5 21 3 �7

40 �6 19 23

�8 12 50 22

264
375

The order of this matrix is 3� 4, and its elements can be symbolically
represented by Bij , with i ¼ 1 to 3 and j ¼ 1 to 4; for example, B23 ¼ 19,
B31 ¼ �8, B34 ¼ 22, etc.

B.2 Types of Matrices

Row Matrix

If all the elements of a matrix are arranged in a single row (i.e., m ¼ 1),
then the matrix is called a row matrix. An example of a row matrix is

C ¼ ½50 �3 �27 35�

Column Matrix

A matrix with only one column of elements (i.e., n ¼ 1) is called a col-

umn matrix. For example,

D ¼ fDg ¼

�10
33

�6
15

26664
37775

Column matrices are also referred to as vectors and are sometimes de-
noted by italic letters enclosed within braces (e.g., fDg).

Square Matrix

A matrix with the same number of rows and columns ðm ¼ nÞ is called a
square matrix. An example of a 3� 3 square matrix is

A ¼

266664
5 21 3

40 �6 19

�8 12 50

377775 (B.2)

Main diagonal���������!
The elements with the same subscripts—that is, A11;A22; . . . ;Ann—form
the main diagonal of the square matrix A. These elements are referred to
as the diagonal elements. As shown in Eq. (B.2), the main diagonal ex-
tends from the upper left corner to the lower right corner of the square
matrix. The remaining elements of the matrix (i.e., Aij with i= j) that
are not along the main diagonal are termed the o¤-diagonal elements.
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Symmetric Matrix

If the elements of a square matrix are symmetric about its main diago-
nal (i.e., Aij ¼ Aji), the matrix is called a symmetric matrix. An example
of a 4� 4 symmetric matrix is

A ¼

�12 �6 13 5

�6 7 �28 31

13 �28 10 �9
5 31 �9 �2

26664
37775

Diagonal Matrix

If all the o¤-diagonal elements of a square matrix are zero (i.e., Aij ¼ 0
for i= j), the matrix is referred to as a diagonal matrix. For example,

A ¼
3 0 0

0 �8 0

0 0 14

264
375

Unit or Identity Matrix

A diagonal matrix with all its diagonal elements equal to 1 (i.e., Iii ¼ 1
and Iij ¼ 0 for i= j) is called a unit, or identity, matrix. Unit matrices
usually are denoted by I or [I ]. An example of a 4� 4 unit matrix is

I ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

26664
37775

Null Matrix

When all the elements of a matrix are zero (i.e., Oij ¼ 0), the matrix is
called a null matrix. Null matrices are commonly denoted by O or [O].
For example,

O ¼
0 0 0 0

0 0 0 0

0 0 0 0

264
375
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B.3 Matrix Operations

Equality

Two matrices A and B are equal if they are of the same order and if
their corresponding elements are identical (i.e., Aij ¼ Bij). Consider, for
example, the matrices

A ¼
�3 5 6

4 7 9

12 0 1

264
375 and B ¼

�3 5 6

4 7 9

12 0 1

264
375

Since both A and B are of order 3� 3 and since each element of A is
equal to the corresponding element of B, the matrices are considered to
be equal to each other; that is, A ¼ B.

Addition and Subtraction

The addition (or subtraction) of two matrices A and B, which must be
of the same order, is carried out by adding (or subtracting) the cor-
responding elements of the two matrices. Thus if Aþ B ¼ C, then
Cij ¼ Aij þ Bij; and if A� B ¼ D, then Dij ¼ Aij � Bij . For example, if

A ¼
2 5

3 0

8 1

264
375 and B ¼

10 4

6 7

9 2

264
375

then

Aþ B ¼ C ¼
12 9

9 7

17 3

264
375

and

A� B ¼ D ¼
�8 1

�3 �7
�1 �1

264
375

Note that matrices C and D have the same order as matrices A and B.

Multiplication by a Scalar

To obtain the product of a scalar and a matrix, each element of the
matrix must be multiplied by the scalar. Thus, if

B ¼ 7 3

�1 4

� �
and c ¼ �3

then

cB ¼ �21 �9
3 �12

� �
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Multiplication of Matrices

The multiplication of two matrices can be carried out only if the number of

columns of the first matrix equals the number of rows of the second matrix.
Such matrices are referred to as being conformable for multiplication.
Consider, for example, the matrices

A ¼ �1 5

7 �3

� �
and B ¼ 2 3 �6

4 �8 9

� �
(B.3)

in which A is of order 2� 2 and B is of order 2� 3. Note that the pro-
duct AB of these matrices is defined, because the first matrix, A, of the
sequence AB has two columns and the second matrix, B, has two rows.
However, if the sequence of the matrices is reversed, the product BA

does not exist, because now the first matrix, B, has three columns and the
second matrix, A, has two rows. The product AB is usually referred to
either as A postmultiplied by B or as B premultiplied by A. Conversely,
the product BA is referred to either as B postmultiplied by A or as A

premultiplied by B.
When two conformable matrices are multiplied, the product matrix

thus obtained will have the number of rows of the first matrix and the
number of columns of the second matrix. Thus, if a matrix A of order
m� n is postmultiplied by a matrix B of order n� s, then the product
matrix C will be of order m� s; that is,

A B ¼ C
#

m� n � equal �! n� s m� s
"

ith row

�
Ai1 ! Ain

� B1j

#
Bnj

26664
37775 ¼

�
Cij

�
ith row

jth column

jth column (B.4)

As illustrated in Eq. (B.4), any element Cij of the product matrix C can
be evaluated by multiplying each element of the ith row of A by the
corresponding element of the jth column of B and by algebraically sum-
ming the resulting products; that is,

Cij ¼ Ai1B1j þ Ai2B2j þ � � � þ AinBnj (B.5)

Equation (B.5) can be conveniently expressed as

Cij ¼
Xn

k¼1
AikBkj ðB:6Þ

in which n represents the number of columns of the matrix A and the
number of rows of the matrix B. Note that Eq. (B.6) can be used to de-
termine any element of the product matrix C ¼ AB.
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To illustrate the procedure of matrix multiplication, we compute the
product C ¼ AB of the matrices A and B given in Eq. (B.3) as

C ¼ AB ¼ �1 5

7 �3

� �
2 3 �6
4 �8 9

� �
¼ 18 �43 51

2 45 �69

� �
2� 2 2� 3 2� 3

in which the element C11 of the product matrix C is obtained by multi-
plying each element of the first row of A by the corresponding element
of the first column of B and summing the resulting products; that is,

C11 ¼ �1ð2Þ þ 5ð4Þ ¼ 18

Similarly, the element C21 is determined by multiplying the elements of
the second row of A by the corresponding elements of the first column of
B and adding the resulting products; that is,

C21 ¼ 7ð2Þ � 3ð4Þ ¼ 2

The remaining elements of C are determined in a similar manner:

C12 ¼ �1ð3Þ þ 5ð�8Þ ¼ �43

C22 ¼ 7ð3Þ � 3ð�8Þ ¼ 45

C13 ¼ �1ð�6Þ þ 5ð9Þ ¼ 51

C23 ¼ 7ð�6Þ � 3ð9Þ ¼ �69

Note that the order of the product matrix C is 2� 3, which equals the
number of rows of A and the number of columns of B.

A common application of matrix multiplication is to express simul-
taneous equations in compact matrix form. Consider the system of simul-
taneous linear equations:

A11x1 þ A12x2 þ A13x3 ¼ P1

A21x1 þ A22x2 þ A23x3 ¼ P2 (B.7)

A31x1 þ A32x2 þ A33x3 ¼ P3

in which x1; x2, and x3 are the unknowns and A’s and P’s represent the
coe‰cients and constants, respectively. By using the definition of matrix
multiplication, this system of simultaneous equations can be written in
matrix form as

A11 A12 A13

A21 A22 A23

A31 A32 A33

264
375 x1

x2

x3

264
375¼ P1

P2

P3

264
375 (B.8)

or, symbolically, as

Ax ¼ P (B.9)

Even when two matrices A and B are of such orders that both pro-
ducts AB and BA can be determined, the two products are generally not
equal; that is,

AB 6¼ BA ðB:10Þ
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It is, therefore, necessary to maintain the proper sequential order of ma-
trices when computing matrix products. Although matrix multiplication
is generally not commutative, as indicated by Eq. (B.10), it is associative
and distributive, provided that the sequential order in which the matrices
are to be multiplied is maintained. Thus

ABC ¼ ðABÞC ¼ AðBCÞ (B.11)

and

AðBþ CÞ ¼ ABþ AC (B.12)

Multiplication of any matrix A by a conformable null matrix O

yields a null matrix; that is,

OA ¼ O and AO ¼ O (B.13)

For example,

0 0

0 0

� �
5 �7
9 2

� �
¼ 0 0

0 0

� �
Multiplication of any matrix A by a conformable unit matrix I

yields the same matrix A, that is,

IA ¼ A and AI ¼ A (B.14)

For example,

1 0

0 1

� �
5 �7
9 2

� �
¼ 5 �7

9 2

� �
and

5 �7
9 2

� �
1 0

0 1

� �
¼ 5 �7

9 2

� �
As Eqs. (B.13) and (B.14) indicate, the null and unit matrices serve the
purposes in matrix algebra that are analogous to those of the numbers 0
and 1, respectively, in scalar algebra.

Inverse of a Square Matrix

The inverse of a square matrix A is defined as a matrix A�1 with ele-
ments of such magnitudes that the multiplication of the original matrix A
by its inverse A�1 yields a unit matrix I; that is,

A�1A ¼ AA�1 ¼ I ðB:15Þ

Consider, for example, the square matrix

A ¼ 1 �2
3 �4

� �
The inverse of A is given by

A�1 ¼ �2 1

�1:5 0:5

� �
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so that the products A�1A and AA�1 satisfy Eq. (B.15):

A�1A ¼ �2 1

�1:5 0:5

� �
1 �2
3 �4

� �
¼ ð�2þ 3Þ ð4� 4Þ
ð�1:5þ 1:5Þ ð3� 2Þ

� �
¼ 1 0

0 1

� �
¼ I

and

AA�1 ¼ 1 �2
3 �4

� � �2 1

�1:5 0:5

� �
¼ ð�2þ 3Þ ð1� 1Þ
ð�6þ 6Þ ð3� 2Þ

� �
¼ 1 0

0 1

� �
¼ I

The operation of inversion is defined only for square matrices. The
inverse of such a matrix is also a square matrix of the same order as the
original matrix. A procedure for determining inverses of matrices is pre-
sented in the following section. The operation of matrix inversion serves
the same purpose as the operation of division in scalar algebra. Consider
a system of simultaneous equations expressed in the matrix form as

Ax ¼ P

in which A represents the square matrix of known coe‰cients; x repre-
sents the vector of the unknowns; and P represents the vector of the con-
stants. Since the operation of division is not defined in matrix algebra,
we cannot solve the foregoing matrix equation for x by dividing P by A

(i.e., x ¼ P=A). Instead, to determine the unknowns x, we premultiply
both sides of the equation by A�1 to obtain

A�1Ax ¼ A�1P

Since A�1A ¼ I and Ix ¼ x, we can write

x ¼ A�1P

which indicates that a system of simultaneous equations can be solved
by premultiplying the vector of the constants by the inverse of the co-
e‰cient matrix.

An important property of matrix inversion is that the inverse of a

symmetric matrix is always a symmetric matrix.

Transpose of a Matrix

The transpose of a matrix is obtained by interchanging its correspond-
ing rows and columns. The transposed matrix is usually identified by the
superscript T placed on the symbol of the original matrix. Consider, for
example, the 2� 3 matrix

A ¼ 6 �2 4

1 8 �3

� �
The transpose of A is given by

AT ¼
6 1

�2 8

4 �3

264
375
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Note that the first column of A becomes the first row of AT . Similarly,
the second and third columns of A become, respectively, the second and
third rows of AT . The order of AT thus obtained is 3� 2.

As another example, consider the 3� 3 matrix

B ¼
9 7 �5
7 �3 2

�5 2 6

264
375

Since the elements of B are symmetric about the main diagonal (i.e.,
Bij ¼ Bji), interchanging the rows and the columns of this matrix pro-
duces a matrix BT that is identical to the matrix B itself; that is,

BT ¼ B

Thus, the transpose of a symmetric matrix yields the same matrix.
Another useful property of matrix transposition is that the transpose

of a product of matrices equals the product of the transposes in reverse

order; that is,

ðABÞT ¼ BTAT ðB:16Þ

Similarly,

ðABCÞT ¼ CTBTAT ðB:17Þ

Partitioning of Matrices

Partitioning is a process by which a matrix is subdivided into a number
of smaller matrices called submatrices. For example, a 3� 4 matrix A is
partitioned into four submatrices by drawing horizontal and vertical
dashed partition lines:

A ¼
3 5 �1 2

�2 4 7 9

6 1 3 4

264
375¼ A11 A12

A21 A22

� �
(B.18)

in which the submatrices are

A11 ¼
3 5 �1
�2 4 7

� �
A12 ¼

2

9

� �
A21 ¼ ½ 6 1 3 � A22 ¼ ½4�

Matrix operations such as addition, subtraction, and multiplication
can be preformed on partitioned matrices in the same manner as de-
scribed previously by treating the submatrices as elements, provided that
the matrices are partitioned in such a way that their corresponding sub-
matrices are conformable for the particular operation. For example, sup-
pose that we wish to postmultiply the 3� 4 matrix A of Eq. (B.18) by a
4� 2 matrix B, which is partitioned into two submatrices as

B ¼

1 8

�5 2

�3 6

7 �1

26664
37775¼ B11

B21

� �
(B.19)
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The product AB is expressed in terms of the submatrices as

AB ¼ A11 A12

A21 A22

� �
B11

B21

� �
¼ A11B11 þ A12B21

A21B11 þ A22B21

� �
(B.20)

Note that the matrices A and B have been partitioned in such a way that
their corresponding submatrices are conformable for multiplication; that
is, the orders of the submatrices are such that the products A11B11;A12B21;
A21B11, and A22B21 are defined. As shown in Eqs. (B.18) and (B.19), this
is achieved by partitioning the rows of the second matrix B of the product
AB in the same way that the columns of the first matrix A are partitioned.
The products of the submatrices are given by

A11B11 ¼
3 5 �1
�2 4 7

� � 1 8

�5 2

�3 6

264
375¼ �19 28

�43 34

� �

A12B21 ¼
2

9

� �
½7 �1� ¼ 14 �2

63 �9

� �

A21B11 ¼ ½6 1 3�
1 8

�5 2

�3 6

264
375¼ ½�8 68�

A22B21 ¼ ½4�½7 �1� ¼ ½28 �4�

Substitution into Eq. (B.20) yields

AB ¼
�19 28

�43 34

� �
þ 14 �2

63 �9

� �
½�8 68� þ ½28 �4�

264
375¼ �5 26

20 25

20 64

264
375

B.4 Solution of Simultaneous Equations by the Gauss-Jordan Method

The Gauss-Jordan elimination method is one of the most commonly used
procedures for solving simultaneous linear algebraic equations. To illus-
trate the method, consider the following system of three simultaneous
equations:

2x1 � 5x2 þ 4x3 ¼ 44

3x1 þ x2 � 8x3 ¼ �35 (B.21a)

4x1 � 7x2 � x3 ¼ 28

To solve for the unknowns x1; x2, and x3, we begin by dividing the first
equation by the coe‰cient of its x1 term:

x1 � 2:5x2 þ 2x3 ¼ 22

3x1 þ x2 � 8x3 ¼ �35 (B.21b)

4x1 � 7x2 � x3 ¼ 28
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Next, the unknown x1 is eliminated from the remaining equations by suc-
cessively subtracting from each remaining equation the product of the
coe‰cient of its x1 term and the first equation. Thus, to eliminate x1 from
the second equation, we multiply the first equation by 3 and subtract it
from the second equation. Similarly, we eliminate x1 from the third equa-
tion by multiplying the first equation by 4 and subtracting it from the
third equation. The system of equations thus obtained is

x1 � 2:5x2 þ 2x3 ¼ 22

8:5x2 � 14x3 ¼ �101 (B.21c)

3x2 � 9x3 ¼ �60

With x1 eliminated from all but the first equation, we now divide the
second equation by the coe‰cient of its x2 term:

x1 � 2:5x2 þ 2x3 ¼ 22

x2 � 1:647x3 ¼ �11:882 (B.21d)

3x2 � 9x3 ¼ �60

Next, we eliminate x2 from the first and the third equations, succes-
sively, by multiplying the second equation by �2:5 and subtracting it
from the first equation, and then by multiplying the second equation by
3 and subtracting it from the third equation. This yields

x1 � 2:118x3 ¼ �7:705

x2 � 1:647x3 ¼ �11:882 (B.21e)

� 4:059x3 ¼ �24:354

By dividing the third equation by the coe‰cient of its x3 term, we obtain

x1 � 2:118x3 ¼ �7:705

x2 � 1:647x3 ¼ �11:882 (B.21f )

x3 ¼ 6

Finally, by multiplying the third equation by �2.118 and subtracting it
from the first equation, and by multiplying the third equation by �1.647
and subtracting it from the second equation, we determine the solution
of the given system of equations (Eq. (B.21a)) to be

x1 ¼ 5

x2 ¼ �2 (B.21g)

x3 ¼ 6

That is, x1 ¼ 5, x2 ¼ �2, and x3 ¼ 6. To check that the solution is car-
ried out correctly, we substitute the numerical values of x1; x2, and x3
back into the original equations (Eq. (B.21a)):

2ð5Þ � 5ð�2Þ þ 4ð6Þ ¼ 44 Checks

3ð5Þ � 2� 8ð6Þ ¼ �35 Checks

4ð5Þ � 7ð�2Þ � 6 ¼ 28 Checks
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As the foregoing example illustrates, the Gauss-Jordan method es-
sentially involves successively eliminating each unknown from all but one
of the equations of the system by performing the following operations:
(1) dividing an equation by a scalar; and (2) multiplying an equation by a
scalar and subtracting the resulting equation from another equation.
These operations, which do not change the solution of the original system
of equations, are applied repeatedly until a system with each equation
containing only one unknown is obtained.

The solution of simultaneous equations is usually carried out in ma-
trix form by operating on the rows of the coe‰cient matrix and the vector
containing the constant terms of the equations. The foregoing operations
are then referred to as elementary row operations. These opera tions are
applied to both the coe‰cient matrix and the vector of the constants si-
multaneously, until the coe‰cient matrix is reduced to a unit matrix. The
elements of the vector, which initially contained the constant terms of the
original equations, now represent the solution of the original simultaneous
equations. To illustrate this procedure, consider again the system of three
simultaneous equations given in Eq. (B.21a). The system can be expressed
in matrix form as

Ax ¼ P

2 �5 4

3 1 �8
4 �7 �1

264
375 x1

x2

x3

264
375¼ 44

�35
28

264
375 (B.22)

When applying the Gauss-Jordan method, it is usually convenient to
write the coe‰cient matrix A and the vector of constants P as sub-
matrices of a partitioned augmented matrix:

2 �5 4 44

3 1 �8 �35
4 �7 �1 28

264
375 (B.23a)

To determine the solution, we begin by dividing row 1 of the augmented
matrix by A11 ¼ 2:

1 �2:5 2 22

3 1 �8 �35
4 �7 �1 28

264
375 (B.23b)

Next, we multiply row 1 by A21 ¼ 3 and subtract it from row 2 and then
multiply row 1 by A31 ¼ 4 and subtract it from row 3. This yields

1 �2:5 2 22

0 8:5 �14 �101
0 3 �9 �60

264
375 (B.23c)

Divide row 2 by A22 ¼ 8:5, obtaining

1 �2:5 2 22

0 1 �1:647 �11:882
0 3 �9 �60

264
375 (B.23d)
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Multiply row 2 by A12 ¼ �2:5 and subtract it from row 1; then multiply
row 2 by A32 ¼ 3 and subtract it from row 3. This yields

1 0 �2:118 �7:705
0 1 �1:647 �11:882
0 0 �4:059 �24:354

264
375 (B.23e)

Divide row 3 by A33 ¼ �4:059:

1 0 �2:118 �7:705
0 1 �1:647 �11:882
0 0 1 6

264
375 (B.23f )

Multiply row 3 by A13 ¼ �2:118 and subtract it from row 1; then mul-
tiply row 3 by A23 ¼ �1:647 and subtract it from row 2. This yields

1 0 0 5

0 1 0 �2
0 0 1 6

264
375 (B.23g)

Thus x1 ¼ 5, x2 ¼ �2, and x3 ¼ 6.

Matrix Inversion

The Gauss-Jordan elimination method can also be used to determine the
inverses of square matrices. The procedure is similar to that described
previously for solving simultaneous equations, except that in the aug-
mented matrix, the coe‰cient matrix is now replaced by the matrix A

that is to be inverted and the vector of constants P is replaced by a unit
matrix I of the same order as the matrix A. Elementary row operations
are then performed on the augmented matrix to reduce the matrix A to a
unit matrix. The matrix I, which was initially the unit matrix, now rep-
resents the inverse of the original matrix A.

To illustrate the foregoing procedure, let us compute the inverse of
the 2� 2 matrix

A ¼ 1 �2
3 �4

� �
(B.24)

The augmented matrix is given by

1 �2 1 0

3 �4 0 1

� �
(B.25a)

By multiplying row 1 by A21 ¼ 3 and subtracting it from row 2, we
obtain

1 �2 1 0

0 2 �3 1

� �
(B.25b)

Next, by dividing row 2 by A22 ¼ 2, we obtain

1 �2 1 0

0 1 �1:5 0:5

� �
(B.25c)
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Finally, by multiplying row 2 by �2 and subtracting it from row 1, we
obtain

1 0 �2 1

0 1 �1:5 0:5

� �
(B.25d)

Thus,

A�1 ¼ �2 1

�1:5 0:5

� �
The computations can be checked by using the relationship A�1A ¼ I.
We showed in Section B.3 that the matrix A�1, as computed here, does
indeed satisfy this relationship.

PROBLEMS

Section B.3

B.1 Determine the matrix C ¼ Aþ 3B if

A ¼
12 �8 15

�8 7 10

15 10 �5

264
375 B ¼

2 �1 1

�1 4 6

1 6 3

264
375

B.2 Determine the matrix C ¼ 2B� A if

A ¼
3 7

8 4

2 �2

264
375 B ¼

�1 6

5 1

3 �4

264
375

B.3 Determine the products C ¼ AB and D ¼ BA if

A ¼
6

�4
2

264
375 B ¼ ½�3 1 �5�

B.4 Determine the products C ¼ AB and D ¼ BA if

A ¼ �3 2

2 5

� �
B ¼ 6 �4

�4 1

� �
B.5 Show that ðABÞT ¼ BTAT by using the matrices A and
B given here.

A ¼
8 �2 5

1 �4 3

2 0 6

264
375 B ¼

1 �5
7 0

0 �3

264
375

Section B.4

B.6 Solve the following system of simultaneous equations
by the Gauss-Jordan method.

2x1 þ 5x2 � x3 ¼ 15

5x1 � x2 þ 3x3 ¼ 27

�x1 þ 3x2 þ 4x3 ¼ 14

B.7 Solve the following system of simultaneous equations
by the Gauss-Jordan method.

�12x1 � 3x2 þ 6x3 ¼ 45

5x1 þ 2x2 � 4x3 ¼ �9

10x1 þ x2 � 7x3 ¼ �32

B.8 Solve the following system of simultaneous equations
by the Gauss-Jordan method.

5x1 � 2x2 þ 6x3 ¼ 0

�2x1 þ 4x2 þ x3 þ 3x4 ¼ 18

6x1 þ x2 þ 6x3 þ 8x4 ¼ �29

3x2 þ 8x3 þ 7x4 ¼ 11

B.9 Determine the inverse of the matrix shown using the
Gauss-Jordan method.

A ¼
4 �3 �1
�2 5 1

6 �4 �5

264
375

B.10 Determine the inverse of the matrix shown using the
Gauss-Jordan method.

A ¼

4 2 0 �3
2 3 �4 0

0 �4 2 �1
�3 0 �1 5

26664
37775
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C
Computer Software
C.1 Starting the Computer Software
C.2 Inputting Data
C.3 Results of the Analysis

Problems

A computer program for analyzing plane-framed structures is available
on the publisher’s website www.cengage.com/engineering. The software,
which can be used to analyze plane trusses, continuous beams, and plane
frames, is based on the matrix sti¤ness (displacement) method described in
Chapter 17. The software is designed for use on IBM and IBM-compatible
personal computers with Microsoft Windows1 Operating Systems, and it
provides an option for saving input data into files for subsequent modi-
fication and/or execution.

Complete instructions for downloading and installing the software
are provided on the publisher’s website www.cengage.wadsworth.com.

C.1 Starting the Computer Software

To start the computer software:

1. Click the Start button on the taskbar.
2. Point to the menu title Programs and then click the menu item

Structural Analysis 5.0 by A. Kassimali; the software’s title
screen will appear as shown in Fig. C.1.

C.2 Inputting Data

The computer software is interactive in the sense that the user inputs in-
formation about the structure by responding to questions and prompts
on the screen. The software is designed so that any consistent set of units
may be used. Thus all the data must be converted into a consistent set of
units before being entered into the software. For example, if we wish to
use the units of kips and feet, then the joint coordinates must be defined
in feet, the moduli of elasticity in k/ft2, the areas of cross section in ft2,
the moments of inertia in ft4, the joint forces and moments in kips and
k-ft, respectively, and the uniformly distributed member loads in k/ft.



To start inputting data for a structure, click the menu title Project;
and then click the menu item New Project (Fig. C.2). The input data
necessary for the analysis of a structure consist of the following:

1. General Structural Data Input (a) the project title, and (b) the
structure type, as shown in Fig. C.3.

2. Joint Coordinates and Supports Input the X and Y coordinates
of each joint, and restraints for each support joint, as shown in
Fig. C.4. A plot of the joint coordinates and supports will appear
on the screen, which can be used to verify that the joint coor-
dinates and restraints have been entered correctly (Fig. C.5).

3. Material Properties Enter the modulus of elasticity (E) for
each material (Fig. C.6).

4. Cross-Sectional Properties Enter the cross-sectional area (A)
and moment of inertia (I ) for each cross-sectional property set
(Fig. C.7). For beams, the cross-sectional areas are not needed;
whereas for trusses, the moments of inertia are not needed.

FIG. C.2 Project Menu

FIG. C.1 Title Screen
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5. Member Data For each member, input (a) the beginning joint,
(b) the end joint, (c) the material number, and (d) the cross-
sectional property set number (Fig. C.8). For frames and beams,
the member releases option can be used to define any hinges at
the member ends. The origin of the local coordinate system for a
member is located at the beginning of the member, with the x axis
directed from the beginning joint to the end joint. The positive
direction of the local y axis is defined by the right-hand rule, with
the z axis pointing out of the plane of the page. A plot of the
structure appears on the screen, which can be used to verify that
the geometry of the structure have been entered correctly.

FIG. C.3 General Structural Data Screen

FIG. C.4 Joint Coordinates and Supports Screen
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6. Joint Loads When analyzing a frame, enter for each joint that
is loaded, the joint number, the forces in the global X and Y di-
rections, and the moment (Fig. C.9). In the case of a beam, input
only the force in the Y direction and the moment; whereas, for a
truss, input only the forces in the X and Y directions. Since the
software does not consider member concentrated loads, frame
and beam members subjected to such loads must be subdivided
into elements (i.e., smaller members) connected together by rigid
joints at the locations of the concentrated loads, for the purpose
of analysis.

FIG. C.5 A Graphics Display of Joints

FIG. C.6 Material Properties Screen
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7. Uniformly Distributed Loads on Frame and Beam Members For
each member subjected to uniformly distributed loading, enter
the member number and the load intensity (w), as shown in
Fig. C.10. Note that the uniformly distributed load, w, is con-
sidered to be positive if it acts in the direction opposite to the
member local y axis.

8. Support Settlements, Temperature Changes and Fabrication Errors
These e¤ects can be input in a manner similar to that for the
joint and member loads.

FIG. C.7 Cross-Sectional Properties Screen

FIG. C.8 Member Data Screen
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FIG. C.9 Joint Loads Screen

FIG. C.10 Member Loads Screen
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C.3 Results of the Analysis

Once all the necessary data have been entered, click the menu title Anal-
ysis of the main screen to analyze the structure (Fig. C.11). The software
will automatically compute the joint displacements, member end forces,
and support reactions by using the matrix sti¤ness (displacement) method
described in Chapter 17. The results of the analysis are displayed on the
screen. The input data as well as the results of the analysis can be printed
by clicking on the menu title Project and then clicking on the menu item
Print, of the main screen, as shown in Fig. C.12.

FIG. C.11 Main Screen
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Example C.1

Analyze the two-story frame shown in Fig. C.13(a) using the computer software.

Solution
This frame was previously analyzed in Example 15.12 by the slope-deflection method, which takes into account only the
bending deformations of structures.

The analytical model of the frame is shown in Fig. C.13(b), and the input data are shown on the screen displays given
in Figs. C.3 through C.12. The computer printout, which contains the input data and the results of the analysis, is shown
in Fig. C.14. Note that the results of the computerized analysis are in agreement with those determined previously by the
slope-deflection method.

FIG. C.12 Results of the Analysis

FIG. C.13

continued
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****************************
*    Computer Software     *
*           for            *
*   STRUCTURAL ANALYSIS    *
*      Fifth Edition       *
*           by             *
*     Aslam Kassimali      *
****************************

=======================
General Structural Data
=======================

Project Title : Two-Story Frame
Structure Type : Plane Frame
Number of Joints : 6 
Number of Members : 6 
Number of Material Property Sets (E) : 1 
Number of Cross-Sectional Property Sets : 2 

=================
Joint Coordinates
=================

Joint No. X Coordinate Y Coordinate
--------- ------------ ------------

  1  0.0000E+00  0.0000E+00
  2  0.0000E+00  2.0000E+01
  3  0.0000E+00  4.0000E+01
  4  4.0000E+01  4.0000E+01
  5  4.0000E+01  2.0000E+01
  6  4.0000E+01  0.0000E+00

========
Supports
========

Joint No.   X Restraint   Y Restraint   Rotational Restraint
---------   -----------   -----------   --------------------
  1 Yes Yes Yes
  6 Yes Yes Yes

===================
Material Properties
===================

Material       Modulus of        Co-efficient of
   No.       Elasticity (E)     Thermal Expansion
--------     --------------     -----------------
  1  4.1760E+06  0.0000E+00

FIG. C.14 Computer Printout for Two-Story Frame

continued
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==========================
Cross-Sectional Properties
==========================

Property No.     Area (A)     Moment of Inertia (I)
------------   -----------    ---------------------

  1  1.8750E-01  4.8225E-02
  2  2.1528E-01  9.6451E-02

===========
Member Data
===========

Member   Beginning    End    Material   Cross-Sectional
 No.      Joint     Joint      No.       Property No.
------   ---------   -----   --------   ---------------
  1   1   2   1   1
  2   2   3   1   1
  3   6   5   1   1
  4   5   4   1   1
  5   2   5   1   2
  6   3   4   1   2

===========
Joint Loads
===========

Joint No.     X Force       Y Force       Moment
---------   -----------   -----------   -----------
  2  2.0000E+01  0.0000E+00  0.0000E+00
  3  1.0000E+01  0.0000E+00  0.0000E+00

============
Member Loads
============

                    Load    
Member   Load     Intensity 
  No.    Type        (w)    
------  -------  -----------
  5 Uniform  1.500E+0
  6 Uniform  1.500E+0

************** End of Input Data **************
FIG. C.14 (contd.)

continued
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======================================
Member End Forces in Local Coordinates
======================================

Member   Joint   Axial Force   Shear Force     Moment
------   -----   -----------   -----------   -----------
  1   1  4.8825E+01  1.0698E+01  1.4784E+02 

  2 -4.8825E+01 -1.0698E+01  6.6107E+01 

  2   2  2.6730E+01 -7.8201E+00 -7.9258E+01 
  3 -2.6730E+01  7.8201E+00 -7.7144E+01 

  3   6  7.1175E+01  1.9303E+01  2.0514E+02 
  5 -7.1175E+01 -1.9303E+01  1.8091E+02 

  4   5  3.3270E+01  1.7820E+01  1.4844E+02 
  4 -3.3270E+01 -1.7820E+01  2.0796E+02 

  5   2  1.4825E+00  2.2095E+01  1.3150E+01 
  5 -1.4825E+00  3.7905E+01 -3.2935E+02 

  6   3  1.7820E+01  2.6730E+01  7.7144E+01 
  4 -1.7820E+01  3.3270E+01 -2.0796E+02 

=================
Support Reactions
=================

Joint No.     X Force       Y Force       Moment
---------   -----------   -----------   -----------
  1 -1.0698E+01  4.8825E+01  1.4784E+02
  6 -1.9303E+01  7.1175E+01  2.0514E+02

*************** End of Analysis ***************

************************************************************
*                   Results of Analysis                    *
************************************************************

===================
Joint Displacements
===================

Joint No.   X Translation   Y Translation   Rotation (Rad)
---------   -------------   -------------   --------------
  1  0.0000E+00  0.0000E+00  0.0000E+00 
  2  7.6000E-02 -1.2471E-03 -4.0587E-03 
  3  1.3024E-01 -1.9299E-03 -3.9537E-03 
  4  1.2944E-01 -2.6678E-03  1.7516E-03 
  5  7.5934E-02 -1.8180E-03 -1.2035E-03 
  6  0.0000E+00  0.0000E+00  0.0000E+00 

FIG. C.14 (contd.)
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PROBLEMS

C.1 and C.2 Using the computer software, determine the
smallest cross-sectional area A for the members of the trusses
shown in parts (a) through (c) of Figs. PC.1 and PC.2,
so that the maximum vertical deflection does not exceed the
limit of 1/360 of the span length (i.e., Dmax aL=360).

FIG. PC.1

FIG. PC.2

C.3 Using the computer software, determine the smallest
moment of inertia I required for the frame shown, so that
the horizontal deflection of its top right joint does not ex-
ceed 1.33 inches.

FIG. PC.3
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D
Three-Moment Equation
D.1 Derivation of Three-Moment Equation
D.2 Application of Three-Moment Equation

Summary
Problems

775

In Chapter 13, we studied two formulations of the force (flexibility) me-
thod of analysis of statically indeterminate structures, namely, the me-
thod of consistent deformations and the method of least work. In this
appendix, we consider a third formulation of the force method, called the
three-moment equation.

The three-moment equation, which was initially presented by Cla-
peyron in 1857, provides a convenient tool for analyzing continuous beams.
The three-moment equation represents, in a general form, the compatibility
condition that the slope of the elastic curve be continuous at an interior
support of the continuous beam. Since the equation involves three mo-
ments—the bending moments at the support under consideration and at
the two adjacent supports—it commonly is referred to as the three-moment

equation. When using this method, the bending moments at the interior
(and any fixed) supports of the continuous beam are treated as the redun-
dants. The three-moment equation is then applied at the location of each
redundant to obtain a set of compatibility equations which can be solved
for the unknown redundant moments.

We begin this appendix with the derivation of the three-moment
equation for beams with prismatic spans and subjected to external loads
and support settlements. Next, we present a procedure for the application
of this equation for the analysis of continuous beams.

D.1 Derivation of Three-Moment Equation

Consider an arbitrary continuous beam subjected to external loads and
support settlements as shown in Fig. D.1(a). As discussed previously in
chapter 13, this beam can be analyzed by the method of consistent de-
formations by treating the bending moments at the interior supports to be
the redundants. From Fig. D.1(a), we can see that the slope of the elastic
curve of the indeterminate beam is continuous at the interior supports.
When the restraints corresponding to the redundant bending moments
are removed by inserting internal hinges at the interior support points, the



5

1

1

FIG. D.1
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primary structure thus obtained consists of a series of simply supported
beams. As shown in Figs. D.1(b) and (c), respectively, when this primary
structure is subjected to the known external loading and support settle-
ments, discontinuities develop in the slope of the elastic curve at the
locations of the interior supports. Since the redundant bending mo-
ments provide continuity of the slope of the elastic curve, these unknown
moments are applied as loads on the primary structure as shown in
Fig. D.1(d), and their magnitudes are determined by solving the compat-
ibility equations based on the condition that, at each interior support of
the primary structure, the slope of the elastic curve, due to the combined
e¤ect of the external loading, support settlements, and unknown redun-
dants, must be continuous.

The three-moment equation uses the foregoing compatibility con-
dition of slope continuity at an interior support to provide a general re-
lationship between the unknown bending moments at the support where
compatibility is being considered and at the adjacent supports to the left
and to the right, in terms of the loads on the intermediate spans and any
settlements of the three supports.

To derive the three-moment equation, we focus our attention on the
compatibility equation at an interior support c of the continuous beam,
with prismatic spans and a constant modulus of elasticity, shown in
Fig. D.1(a). As indicated in this figure, the adjacent supports to the left
and to the right of c are identified as l and r, respectively; the subscripts
l and r are used to refer to the loads and properties of the left span, lc,
and the right span, cr, respectively; and the settlements of supports l; c,
and r are denoted by Dl; Dc, and Dr, respectively. The support settle-
ments are considered positive when in the downward direction, as shown
in the figure.

From Fig. D.1(a), we can see that the slope of the elastic curve of
the indeterminate beam is continuous at c. In other words, there is no
change of slope of the tangents to the elastic curve at just to the left of c
and just to the right of c; that is, the angle between the tangents is zero.
However, when the primary structure, obtained by inserting internal
hinges at the interior support points, is subjected to external loads, as
shown in Fig. D.1(b), a discontinuity develops in the slope of the elastic
curve at c, in the sense that the tangent to the elastic curve at just to the
left of c rotates relative to the tangent at just to the right of c. The change
of slope (or the angle) between the two tangents due to external loads is
denoted by y1 and can be expressed as (see Fig. D.1(b))

y1 ¼ yl1 þ yr1 ðD:1Þ

in which yl1 and yr1 denote, respectively, the slopes at the ends c of the
spans to the left and to the right of the support c, due to external loads.
Similarly, the slope discontinuity at c in the primary structure, due to
support settlements (Fig. D.1(c)), can be written as

y2 ¼ yl2 þ yr2 ðD:2Þ

in which yl2 and yr2 represent, respectively, the slopes of the spans to
the left and to the right of c, due to support settlements. Finally, when
the primary structure is loaded with the redundant support bending
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moments, as shown in Fig. D.1(d), the slope discontinuity at c can be
expressed as

y3 ¼ yl3 þ yr3 ðD:3Þ

in which yl3 and yr3 denote, respectively, the slopes at end c of the spans
to the left and to the right of the support c, due to unknown redundant
moments.

The compatibility equation is based on the requirement that the slope
of the elastic curve of the actual indeterminate beam is continuous at c;
that is, there is no change of slope from just to the left of c to just to the
right of c. Therefore, the algebraic sum of the angles between the tangents
at just to the left and at just to the right of c due to the external loading,
support settlements and the redundant bending moments must be zero.
Thus,

y1 þ y2 þ y3 ¼ 0 ðD:4Þ

By substituting Eqs. (D.1) through (D.3) into Eq. (D.4), we obtain

ðyl1 þ yr1Þ þ ðyl2 þ yr2Þ þ ðyl3 þ yr3Þ ¼ 0 ðD:5Þ

Since each span of the primary structure can be treated as a simply
supported beam, the slopes at the ends c of the left and the right spans,
due to the external loads (Fig. D.1(b)), can be conveniently determined
either by the conjugate-beam method or by using the beam-deflection
formulas given inside the front cover of the book. By using the deflection
formulas, we obtain

yl1 ¼
PPlL

2
lklð1� k2

l Þ
6EIl

þ wlL
3
l

24EIl
ðD:6aÞ

yr1 ¼
PPrL

2
r krð1� k2

r Þ
6EIr

þ wrL
3
r

24EIr
ðD:6bÞ

in which the summation signs have been added to the first terms on the
right sides of these equations, so that multiple concentrated loads can
be applied to each span (instead of a single concentrated load as shown
in Figs. D.1(a) and (b) for simplicity). As continuous beams usually are
loaded with uniformly distributed loads over entire spans and concen-
trated loads, the e¤ects of only these two types of loadings generally are
considered in the three-moment equation. However, the e¤ects of other
types of loads can be included simply by adding the expressions of slopes
due to these loads to the right sides of Eqs. (D.6a) and (D.6b).

The slopes yl2 and yr2, of the left and the right spans, respectively,
due to support settlements, can be obtained directly from the deformed
positions of the spans depicted in Fig. D.1(c). Since the settlements are
assumed to be small, the slopes can be expressed as

yl2 ¼
Dl � Dc

Ll
yr2 ¼

Dr � Dc

Lr

ðD:7Þ

778 APPENDIX D Three-Moment Equation



The slopes at ends c of the left and the right spans, due to redundant
support bending moments, (Fig. D.1(d)), can be determined conveniently
by using the beam-deflection formulas. Thus,

yl3 ¼
MlLl

6EIl
þMcLl

3EIl
ðD:8aÞ

yr3 ¼
McLr

3EIr
þMrLr

6EIr
ðD:8bÞ

in which Ml, Mc and Mr denote the bending moments at supports l,
c and r, respectively. As shown in Fig. D.1(d), these redundant bend-
ing moments are considered to be positive in accordance with the beam

convention—that is, when causing compression in the upper fibers and
tension in the lower fibers of the beam.

By substituting Eqs. (D.6) through (D.8) into Eq. (D.5), we write
the compatibility equation as

PPlL
2
lklð1� k2

l Þ
6EIl

þ wlL
3
l

24EIl
þ
PPrL

2
r krð1� k2

r Þ
6EIr

þ wrL
3
r

24EIr
þ Dl � Dc

Ll

þ Dr � Dc

Lr

þMlLl

6EIl
þMcLl

3EIl
þMcLr

3EIr
þMrLr

6EIr
¼ 0

By simplifying the foregoing equation and rearranging it to separate the
terms containing redundant moments from those involving loads and
support settlements, we obtain the general form of the three-moment

equation:

MlLl

Il
þ 2Mc

Ll

Il
þ Lr

Ir

� �
þMrLr

Ir

¼ �
PPlL

2
lkl

Il
ð1� k2

l Þ �
PPrL

2
r kr

Ir
ð1� k2

r Þ �
wlL

3
l

4Il
� wrL

3
r

4Ir

�6E Dl � Dc

Ll
þ Dr � Dc

Lr

� �
ðD:9Þ

in which Mc ¼ bending moment at support c where the compatibility is
being considered; Ml, Mr ¼ bending moments at the adjacent supports
to the left and to the right of c, respectively; E ¼ modulus of elasticity;
Ll;Lr ¼ lengths of the spans to the left and to the right of c, respectively;
Il; Ir ¼ moments of inertia of the spans to the left and to the right of c,
respectively; Pl;Pr ¼ concentrated loads acting on the left and the right
spans, respectively; kl (or kr) ¼ ratio of the distance of Pl (or Pr) from the
left (or right) support to the span length; wl;wr ¼ uniformly distributed
loads applied to the left and the right spans, respectively; Dc ¼ settlement
of the support c under consideration; and Dl;Dr ¼ settlements of the
adjacent supports to the left and to the right of c, respectively. As noted
before, the support bending moments are considered to be positive in ac-
cordance with the beam convention—that is, when causing compression in
the upper fibers and tension in the lower fibers of the beam. Furthermore,
the external loads and support settlements are considered positive when
in the downward direction, as shown in Fig. D.1(a).
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If the moments of inertia of two adjacent spans of a continuous beam
are equal (i.e., Il ¼ Ir ¼ I ), then the three-moment equation simplifies to

MlLl þ 2McðLl þ LrÞ þMrLr

¼ �
P

PlL
2
lklð1� k2

l Þ �
P

PrL
2
r krð1� k2

r Þ �
1

4
ðwlL

3
l þ wrL

3
r Þ

� 6EI
Dl � Dc

Ll
þ Dr � Dc

Lr

� �
ðD:10Þ

If both the moments of inertia and the lengths of two adjacent spans
are equal (i.e., Il ¼ Ir ¼ I and Ll ¼ Lr ¼ L), then the three-moment
equation becomes

Ml þ 4Mc þMr

¼�
P

PlLklð1� k2
l Þ �

P
PrLkrð1� k2

r Þ

� L2

4
ðwl þ wrÞ �

6EI

L2
ðDl � 2Dc þ DrÞ

ðD:11Þ

The foregoing three-moment equations are applicable to any three
consecutive supports, l, c and r, of a continuous beam, provided that
there are no discontinuities, such as internal hinges, in the beam between
the left support l and the right support r.

D.2 Application of Three-Moment Equation

The following step-by-step procedure can be used for analyzing contin-
uous beams by the three-moment equation.

1. Select the unknown bending moments at all interior supports of
the beam as the redundants.

2. By treating each interior support successively as the intermediate
support c, write a three-moment equation. When writing these
equations, it should be realized that bending moments at the sim-
ple end supports are known. For such a support with a cantilever
overhang, the bending moment equals that due to the external
loads acting on the cantilever portion about the end support. The
total number of three-moment equations thus obtained must be
equal to the number of redundant support bending moments,
which must be the only unknowns in these equations.

3. Solve the system of three-moment equations for the unknown
support bending moments.

4. Compute the span end shears. For each span of the beam, (a)
draw a free-body diagram showing the external loads and end
moments and (b) apply the equations of equilibrium to calculate
the shear forces at the ends of the span.

5. Determine support reactions by considering the equilibrium of
the support joints of the beam.

6. If so desired, draw shear and bending moment diagrams of the
beam by using the beam sign convention.
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Fixed Supports

The three-moment equations, as given by Eqs. (D.9) through (D.11),
were derived to satisfy the compatibility condition of slope continuity at
the interior supports of continuous beams. These equations can, however,
be used to satisfy the compatibility condition of zero slope at the fixed
end supports of beams. This can be achieved by replacing the fixed sup-
port by an imaginary interior roller support with an adjoining end span
of zero length simply supported at its outer end, as shown in Fig. D.2.
The reaction moment at the actual fixed support is now treated as the
redundant bending moment at the imaginary interior support, and the
three-moment equation when applied to this imaginary support satisfies
the compatibility condition of zero slope of the elastic curve at the actual
fixed support. When analyzing a beam for support settlements, both ima-
ginary supports—that is, the interior roller support and the outer simple
end support—are considered to undergo the same settlement as the actual
fixed support.

Example D.1

Determine the reactions and draw the shear and bending moment diagrams for the beam shown in Fig. D.3(a) by using
the three-moment equation.

FIG. D.2

FIG. D.3

20 k30 k

8 ft 8 ft 8 ft

E = constant

(a) Indeterminate Beam

20 ft

2I I

A CA

B

2.5 k/ft

continued
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FIG. D.3 (contd.)

(b) Span End Moments and Shears

(c) Support Reactions

C

20 k30 k
151.5

A
B

B

29.6 32.6

151.5 151.5
B C

151.5 2.5 k/ft

By = 62.2

Ay = 20.4 By   = 29.6AB By   = 32.6BC Cy = 17.4

30 k 20 k
2.5 k/ft

A

D E B

Ay = 20.4 k By = 62.2 k Cy = 17.4 k

Ax = 0

C
A

A D E F C
B

B F

ED

20.4

32.6

–9.6

–29.6

Shear diagram (k)

Bending moment diagram (k-ft)

(d) Shear and Bending Moment Diagrams

–17.4

7 ft

163.2

86.4
60.9

151.5

continued
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Solution
Redundant. The beam has one degree of indeterminacy. The bending moment MB, at the interior support B, is the
redundant.

Three-Moment Equation at Joint B. Considering the supports, A, B, and C as l, c, and r, respectively, and substituting
Ll ¼ 24 ft, Lr ¼ 20 ft, Il ¼ 2I , Ir ¼ I , Pl1 ¼ 30 k, kl1 ¼ 1=3, Pl2 ¼ 20 k, kl2 ¼ 2=3, wr ¼ 2:5 k/ft, and Pr ¼
wl ¼ Dl ¼ Dc ¼ Dr ¼ 0, into Eq. (D.9), we obtain

MAð24Þ
2I

þ 2MB
24

2I
þ 20

I

� �
þMCð20Þ

I
¼ � 30ð24Þ2ð1=3Þ

2I
½1� ð1=3Þ2�

� 20ð24Þ2ð2=3Þ
2I

½1� ð2=3Þ2� � 2:5ð20Þ3

4I

Since A and C are simple end supports, we have by inspection

MA ¼MC ¼ 0

Thus, the three-moment equation becomes

64MB ¼ �9;693:33

from which we obtain the redundant bending moment to be

MB ¼ �151:5 k-ft Ans.

Span End Shears and Reactions. The shears at the ends of the spans AB and BC of the continuous beam can now be deter-
mined by applying the equations of equilibrium to the free bodies of the spans shown in Fig. D.3(b). Note that the negative
bending moment MB is applied at the ends B of spans AB and BC so that it causes tension in the upper fibers and com-
pression in the lower fibers of the beam. By considering the equilibrium of span AB, we obtain

þ ’
P

MB ¼ 0 �Ayð24Þ þ 30ð16Þ þ 20ð8Þ � 151:5 ¼ 0

Ay ¼ 20:4 k " Ans.

þ "
P

Fy ¼ 0 20:4� 30� 20þ BAB
y ¼ 0

BAB
y ¼ 29:6 k "

Similarly, for span BC,

þ ’
P

MC ¼ 0 �BBC
y ð20Þ þ 151:5þ 2:5ð20Þð10Þ ¼ 0

BBC
y ¼ 32:6 k "

þ "
P

Fy ¼ 0 32:6� 2:5ð20Þ þ Cy ¼ 0

Cy ¼ 17:4 k " Ans.

By considering the equilibrium of joint B in the vertical direction, we obtain

By ¼ BAB
y þ BBC

y ¼ 29:6þ 32:6 ¼ 62:2 k " Ans.

The reactions are shown in Fig. D.3(c).

Shear and Bending Moment Diagrams. See Fig. D.3(d). Ans.
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Example D.2

Determine the reactions for the continuous beam shown in Fig. D.4(a) due to the uniformly distributed load and due to
the support settlements of 10 mm at A, 50 mm at B, 20 mm at C, and 40 mm at D. Use the three-moment equation.

Solution
Redundants. The bending moments MB and MC , at the interior supports B and C, respectively, are the redundants.

Three-Moment Equation at Joint B. By considering the supports A, B, and C as l, c, and r, respectively, and substituting
L ¼ 10 m, E ¼ 200 GPa ¼ 200ð106Þ kN/m2, I ¼ 700ð106Þ mm4 ¼ 700ð10�6Þ m4, wl ¼ wr ¼ 30 kN/m, Dl ¼ DA ¼
10 mm ¼ 0.01 m, Dc ¼ DB ¼ 50 mm ¼ 0.05 m, Dr ¼ DC ¼ 20 mm ¼ 0.02 m and Pl ¼ Pr ¼ 0, into Eq. (D.11), we write

MA þ 4MB þMC ¼ �
ð10Þ2

4
ð30þ 30Þ � 6ð200Þð700Þ

ð10Þ2
½0:01� 2ð0:05Þ þ 0:02�

Since A is a simple end support, MA ¼ 0. The foregoing equation thus simplifies to

4MB þMC ¼ �912 (1)

Three-Moment Equation at Joint C. Similarly, by considering the supports B, C, and D as l, c, and r, respectively, and
by substituting the appropriate numerical values in Eq. (D.11), we obtain

MB þ 4MC þMD ¼ �
ð10Þ2

4
ð30þ 30Þ � 6ð200Þð700Þ

ð10Þ2
½0:05� 2ð0:02Þ þ 0:04�

FIG. D.4

30 kN/m

10 m 10 m 10 m

A
B C

D

30 kN/m

A
B C

D

EI = constant

(a) Indeterminate Beam

(b) Span End Moments and Shears

(c) Support Reactions

E = 200 GPa I = 700 (106) mm4

30 kN/m 30 kN/m30 kN/m

Cy = 378.7

Cy    = 195.1CDCy    = 183.6BCBy    = 116.4BCBy    = 161.5ABAy = 138.5 Dy = 104.9

By = 277.9

A
B B C

115.2 115.2 451.2 451.2

115.2 115.2 451.2 451.2

161.5 183.6 195.1116.4

Ax = 0

Ay = 138.5 kN By = 277.9 kN Cy = 378.7 kN Dy = 104.9 kN

B C
C D

continued
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Since D is a simple end support, MD ¼ 0. Thus, the foregoing equation becomes

MB þ 4MC ¼ �1;920 (2)

Support Bending Moments. Solving Eqs. (1) and (2) simultaneously for MB and MC , we obtain

MB ¼ �115:2 kN �m Ans.

MC ¼ �451:2 kN �m Ans.

Span End Shears and Reactions. With the redundants MB and MC known, the span end shears and the support reactions
can be determined by considering the equilibrium of the free bodies of the spans AB;BC, and CD, and joints B and C, as
shown in Fig. D.4(b). The reactions are shown in Fig. D.4(c). Ans.

Example D.3

Determine the reactions for the continuous beam shown in Fig. D.5(a) by the three-moment equation.

Solution
Since support A of the beam is fixed, we replace it with an imaginary interior roller support with an adjoining end span
of zero length, as shown in Fig. D.5(b).

Redundants. From Fig. D.5(b), we can see that the bending moments MA and MB at the supports A and B, respectively,
are the redundants.

Three-Moment Equation at Joint A. By using Eq. (D.10) for supports A 0, A, and B, we obtain

2MAð0þ 20Þ þMBð20Þ ¼ �45ð20Þ2ð1=2Þ½1� ð1=2Þ2�
or

2MA þMB ¼ �337:5 (1)

Three-Moment Equation at Joint B. Similarly, applying Eq. (D.10) for supports A;B, and C, we write

MAð20Þ þ 2MBð20þ 30Þ þMCð30Þ

¼ �45ð20Þ2ð1=2Þ½1� ð1=2Þ2� � ð1=4Þð1:8Þð30Þ3

The bending moment at end C of the cantilever overhang CD is computed as

MC ¼ �1:8ð10Þð5Þ ¼ �90 k-ft Ans.

By substituting MC ¼ �90 k-ft into the foregoing three-moment equation and simplifying, we obtain

MA þ 5MB ¼ �810 (2)

Support Bending Moments. Solving Eqs. (1) and (2), we obtain

MA ¼ �97:5 k-ft Ans.

MB ¼ �142:5 k-ft Ans.

Span End Shears and Reactions. See Figs. D.5(c) and (d). Ans.

continued
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Summary

In this appendix, we have considered a formulation of the force (flexi-
bility) method of analysis of statically indeterminate structures, called the
three-moment equation.

The three-moment equation represents, in a general form, the com-
patibility condition that the slope of the elastic curve be continuous at an

FIG. D.5

45 k

45 k

1.8 k/ft
AA

0 10 ft 10 ft

(b) Equivalent Beam to be Analyzed by Three-Moment Equation

10 ft30 ft

10 ft 10 ft 10 ft30 ft

EI = constant

(a) Indeterminate Beam

B

B C D

C D

1.8 k/ft

A

45 k

B
C D

1.8 k/ft

A

43.25 k53.5 k

(d) Support Reactions

(c) Span End Moments and Shears

20.25 k

97.5
k-ft

B C C D

1.8 k/ft 1.8 k/ft

By = 53.5
24.75 28.75 25.25 1820.25

45 k

A B

97.5 142.5 142.5 90 90

142.5 142.5

24.75 28.75

Cy = 43.25

90 90

25.25 18

B C
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interior support of the continuous beam. This method, which can be used
for analyzing continuous beams subjected to external loads and support
settlements, involves treating the bending moments at the interior (and
any fixed) supports of the beam as the redundants. The three-moment
equation is then applied at the location of each redundant to obtain a set
of compatibility equations which can then be solved for the redundant
bending moments.

PROBLEMS

Section D.2

D.1 through D.8 Determine the reactions and draw the shear
and bending moment diagrams for the beams shown in
Figs. PD.1 through PD.8 using the three-moment equation.

FIG. PD.1

A C
B

25 ft
2I

15 ft
I

3 k/ft

E = 29,000 ksi
I = 2,500 in.4

FIG. PD.2, PD.9

12 m

250 kN
25 kN/m

6 m 6 m

1.5II

B C
D

A

E = constant

FIG. PD.3

7 m 7 m

A B C

EI = constant

15 kN/m

FIG. PD.4

30 ft
3I

18 k

10 ft
I

B
C

E = constant

2 k/ft

A

FIG. PD.5

6 m 4 m 6 m 4 m 4 m 4 m

I I2I

A C

B D F

E
G

120 kN 120 kN 150 kN

E =  200 GPa
I = 500 (106) mm4

FIG. PD.6, PD.10
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FIG. PD.7

D.9 Solve Problem D.2 for the loading shown in Fig. PD.2
and the support settlements of 1

4 in. at A, 1 in. at B, and
3
4 in. at C.

D.10 Solve Problem D.6 for the loading shown in Fig. PD.6
and the support settlements of 10 mm at A, 65 mm at C,
40 mm at E, and 25 mm at G.

10 ft 10 ft 10 ft 20 ft

EI = constant

E
B C DA

35 k
2 k/ft1 k/ft

FIG. PD.8
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791

Answers to Selected Problems

CHAPTER 2

2.1 Beam BE: w ¼ 3:84 kN/m; Girder AC: PA ¼ PC ¼ 5:76

kN; PB ¼ 11:52 kN

2.3 Beam AF : w¼562:5 lb/ft; Beams BG and CH: w¼
1;125 lb/ft; Girder AC: PA¼PC¼11;250 lb; PB¼22;500 lb;

Girder FH: PF ¼PH¼22;500 lb; PG¼45;000 lb

2.5 Beam CD: w ¼ 662:3 lb/ft; Girder AE: w ¼ 111:3 lb/ft;

PC ¼ 8;279 lb; PA ¼ PE ¼ 4;529 lb

2.7 Beam BF : w¼16:04 kN/m; Girder AD: w¼ 1:97 kN/m;

PB¼PC¼80:2 kN; PA¼PD¼ 41:85 kN

2.9 Beam CD: w ¼ 480 lb/ft; Girder AE: PC ¼ 6;000 lb;

PA ¼ PE ¼ 3;000 lb

2.11 Beam EF : w ¼ 180 lb/ft; Girder AG: PC ¼ PE ¼
1;800 lb; PA ¼ PG ¼ 900 lb; Column A: P ¼ 2;700 lb

2.13 Windward side: �121:6 N/m2 and 303:9 N/m2; Lee-

ward side: �729:3 N/m2

2.15 Windward wall: 21.3 psf for 0 � z � 15 ft; 24.57 psf

for z ¼ 30 ft; Leeward wall: �12:8 psf

2.17 0.7 kN/m2

CHAPTER 3

3.1 (a) Unstable; (b) Determinate; (c) Indeterminate, ie ¼ 2;

(d) Indeterminate, ie ¼ 1

3.3 (a) Unstable; (b) Determinate; (c) Indeterminate, ie ¼ 3;

(d) Indeterminate, ie ¼ 1

3.5 Ax ¼ 0; Ay ¼ 33:75 k "; By ¼ 56:25 k "

3.7 Ax ¼ 150 kN!; Ay ¼ 0;MA ¼ 1; 200 kN �m

1

3.9 Ax ¼ 0; Ay ¼ 220 kN "; MA ¼ 650 kN �m ’

3.11 Ay ¼ 33:67 k "; Bx ¼ 0; By ¼ 61:33 k "

3.13 Ax ¼ 37:5 kN!;Ay ¼ 100 kN"; RB ¼ 62:5 kN-

3.15 For 0a xa 20m:Ay ¼ 45� 2x kN ";By ¼ 5þ 2x kN "
For 20 ma xa 25 m: Ay ¼ ð25� xÞ2=5 kN "; By ¼
ð625� x2Þ=5 kN "

3.17 Ay ¼ 102:75 k "; Bx ¼ 0; By ¼ 20:25 k "

3.19 Ax ¼ 200 kN ; Ay ¼ 125 kN #;By ¼ 475 kN "

3.21 Ax ¼ 100 kN ; Ay ¼ 216:11 kN "; By ¼ 183:89 kN "

3.23 Ay ¼ 244:07 kN "; Bx ¼ 240 kN ; By ¼ 85:93 kN "

3.25 Ay ¼ 22:5 k "; Bx ¼ 0; By ¼ 52:5 k ";MB ¼ 1;500 k-ft

1

3.27 Ax ¼ 20 k ; Ay ¼ 20 k "; Bx ¼ 14 k !; By ¼ 2 k "

3.29 Ax ¼ 0; Ay ¼ Dy ¼ 7:5 k "; By ¼ Cy ¼ 90 k "

3.31 Ax ¼ 13:75 k  ; Ay ¼ 3:75 k "; Bx ¼ 21:25 k  ;

By ¼ 46:25 k "

3.33 Ax ¼ 55 kN  ; Ay ¼ 216:11 kN "; Bx ¼ 45 kN  ;

By ¼ 183:89 kN "

3.35 Ax ¼ 8:63 k  ; Ay ¼ 15:46 k "; Bx ¼ 11:37 k  ;

By ¼ 35:45 k "

3.37 Ax ¼ 0; Ay ¼ 115 k "; MA ¼ 900 k-ft

’

; By ¼ 120 k ";
Cy ¼ 5 k "

3.39 Ay ¼ 50 kN #; By ¼ 475 kN "; Cx ¼ 0; Cy ¼ 225 kN ";
MC ¼ 900 kN �m

1



3.41 Ax ¼ 15 k !; Ay ¼ 15 k "; MA ¼ 300 k-ft

1

; Bx ¼
15 k !; By ¼ 15 k #; MB ¼ 300 k-ft

1

CHAPTER 4

4.1 (a) Unstable; (b) Determinate; (c) Determinate;

(d) Unstable

4.3 (a) Unstable; (b) Determinate; (c) Determinate;

(d) Indeterminate, ie ¼ 1

4.5 (a) Determinate; (b) Unstable; (c) Determinate;

(d) Determinate

4.7 FAB ¼ FBC ¼ 77:31 kN (C); FAD ¼ 168:75 kN (T);

FBD ¼ 37:5 kN (C); FCD ¼ 93:75 kN (T)

4.9 FAD ¼ 197:46 kN (C); FAC ¼ 153:21 kN (T);

FCD ¼ 117:85 kN (T); FDE ¼ 191:67 kN (C)

4.11 FAB ¼ 10 k (T); FAF ¼ 12:5 k (C); FBF ¼ 7:5 k (T);

FBG ¼ 12:5 k (T); FFG ¼ 10 k (C); FBC ¼ FCD ¼ FCG ¼ 0

4.13 FBC¼80:67 k (C); FBE¼13:47 k (C); FBF¼64:47 k (T);

FEF¼18:12 k (T)

4.15 FCD ¼ FDE ¼ 30 k (T); FCI ¼ FEK ¼ 15 k (C); FDI ¼
FDK ¼ 21:21 k (T); FIJ ¼ FJK ¼ 45 k (C); FDJ ¼ 0

4.17 FBC¼120 kN (T); FBF¼60 kN (C); FBG¼ 63:25 kN (T);

FFG¼189:74 kN (C)

4.19 FCD ¼ 17:85 k (T); FDI ¼ 4:71 k (C); FDJ ¼ 25:69 k (T);

FIJ ¼ 41:21 k (C)

4.21 FAC ¼ FBE ¼ 62:5 kN (C); FAD ¼ 0;FCD ¼32:5 kN (C)

4.23 FAC ¼ FCE ¼ 26 k (T); FAD ¼ 63 k (C); FBC ¼
FCD ¼ 13 k (C)

4.25 FGH ¼ 27 kN (C); FGM ¼ 18 kN (C); FGN ¼
33:33 kN (T); FHN ¼ 44:67 kN (C); FMN ¼ 7 kN (T)

4.27 FBC ¼ 130 kN (T); FCD ¼ 190 kN (C); FCF ¼
100 kN (C); FCG ¼ 300 kN (T)

4.29 FBC ¼ 6:1 k (T); FBE ¼ 6 k (C); FBG ¼ 5 k (T);

FEG ¼ 2:625 k (C)

4.31 FBC ¼ 48 k-ft/h (T); FGH ¼ 36 k-ft/h (C)

4.33 FBC ¼ 18:75 k (T); FCF ¼ 68:94 k (C); FFG ¼ 45 k (T)

4.35 FAD ¼ 61:85 kN (C); FCD ¼ 45:34 kN (T); FCE ¼
6:87 kN (T)

4.37 FCD ¼ 113:33 kN (T); FCH ¼ 41:67 kN (C); FGH ¼
100 kN (C)

4.39 FCD ¼ 58:87 k (T); FCI ¼ 9:01 k (T); FHI ¼ 9:24 k (T)

4.41 FCD ¼ 102:86 k (C); FDI ¼ 6:17 k (C); FDJ ¼
35:63 k (C)

4.43 FCF ¼ 21:08 k (T); FCG ¼ 27:04 k (T); FEG ¼
27:04 k (C)

4.45 FCD ¼ 80 k (C); FDI ¼ 111:8 k (C); FIN ¼ 111:8 k (T)

4.47 FBC ¼ 45 kN (C); FBF ¼ 215 kN (C);

FEF ¼ 30 kN (T); FEI ¼ 161 kN (T)

4.49 FEF ¼ 110 k (T); FEL ¼ 28:28 k (T); FLP ¼ 49:5 k (T);

FOP ¼ 130 k (C)

4.51 FAD ¼ 1:12 k (T); FBD ¼ 7:56 k (C); FCD ¼ 8:54 k (C)

4.53 FAB ¼ 2:18 k (C); FAC ¼ 6:24 k (C); FAD ¼ 16:63 k (T);

FBC ¼ 8:61 k (T)

4.55 FAB ¼ 29:17 k (T); FCD ¼ 15:83 k (C); FAE ¼ 4:12 k (T);

FEF ¼ 28:33 k (T)

CHAPTER 5

5.1 QA ¼ �40 kN; SA ¼ 32:14 kN; MA ¼ 524:98 kN �m;

QB ¼ 0; SB ¼ �87:14 kN; MB ¼ 261:42 kN �m

5.3 QA ¼ SA ¼QB ¼ 0; MA ¼�75 kN �m; SB ¼�100 kN;

MB ¼�375 kN �m

5.5 QA ¼ 60 kN; SA ¼ 55 kN; MA ¼ �95 kN �m;

QB ¼ 45 kN; SB ¼ 60 kN; MB ¼ �120 kN �m

5.7 QA ¼ QB ¼ 0; SA ¼ �50 kN; MA ¼ 50 kN �m;

SB ¼ �62:5 kN; MB ¼ �150 kN �m

5.9 QA ¼ QB ¼ SB ¼ 0; SA ¼ 200 kN;

MA ¼ �750 kN �m;MB ¼ 250 kN �m

5.11 QA ¼�9 k; SA ¼ 12 k; MA ¼ MB ¼ 240 k-ft;

QB ¼ 9 k; SB ¼ �12 k

5.13 For 0 < x < ðL=3Þ: S ¼ 2P=3; M ¼ 2Px=3

For ðL=3Þ < x < L: S ¼ �P=3; M ¼ PðL� xÞ=3

5.15 S ¼ wðL� 2xÞ=2; M ¼ wxðL� xÞ=2

5.17 S ¼M=L

For 0 < x < ð2L=3Þ: Bending Moment ¼Mx=L

For ð2L=3Þ < x < L: Bending Moment ¼ Mðx� LÞ=L

5.19 S ¼ wðL2 � 3x2Þ=ð6LÞ; M ¼ wxðL2 � x2Þ=ð6LÞ

5.21 For 0 < x < 7 m: S ¼ �30 kN; M ¼ �30x kN �m
For 7 m < x < 14 m: S ¼ �45 kN; M ¼ �45xþ 105 kN �m

5.23 For 0 < x < 4 m: S ¼ �75 kN; M ¼ �75x kN �m
For 4 m < x < 8 m: S ¼ �75 kN; M ¼ �75xþ 100 kN �m
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5.25 For 0 < x < 20 ft: S ¼ �ðx2=40Þ � xþ 7:5; M ¼
�ðx3=120Þ � ðx2=2Þ þ 7:5x

For 20 ft < x < 30 ft: S ¼ �ðx2=40Þ � xþ 52:5; M ¼
�ðx3=120Þ � ðx2=2Þ þ 52:5x� 900

5.27 For 0 < xa 5 m (from A to B): S ¼ �2x2 þ 83:33;

M ¼ �ð2x3=3Þ þ 83:33x

For 0 < x1 a 10 m (from C to B): S ¼ x2
1 � 66:7;

M ¼ �ðx3
1=3Þ þ 66:67x1

5.29 SA;R ¼ SB;L ¼ 30 kN; SB;R ¼ SC;L ¼ 5 kN; SC;R ¼
SD;L ¼ �20 kN; MB ¼ 180 kN �m; MC ¼ 240 kN �m

5.31 SA;R ¼ SB;L ¼ �10 k; SB;R ¼ SC;L ¼ 23:33 k; SC;R ¼
SD;L ¼ 3:33 k; SD;R ¼ SE;L ¼ �16:67 k; MB ¼ �80 k-ft;

MC ¼ 106:67 k-ft; MD ¼ 133:33 k-ft

5.33 SA;R ¼ SB;L ¼ �12 k; SB;R ¼ SC;L ¼ 24 k; SC;R ¼
SD;L ¼ 0; SD;R ¼ SE;L ¼ �24 k; SE;R ¼ SF ;L ¼ 12 k;

MB ¼ME ¼ �120 k-ft; MC ¼MD ¼ 120 k-ft

5.35 SA;R ¼ SB; L ¼ 26 k; SB; R ¼ SC ¼ �4 k; SD; L ¼
�24 k; MA ¼ MD ¼ 0; MB ¼ 156 k-ft; MC ¼ 140 k-ft

5.37 SA;R ¼ SB;L ¼ 225 kN; SB;R ¼ SC ¼ 150 kN; SD ¼ 0;

MA ¼ �2;700 kN �m; MB ¼ �1;350 kN �m; MC ¼ �450
kN �m; MD ¼ 0

5.39 SB;L ¼ �27 k; SB;R ¼ 36 k; SC;L ¼ �36 k; SC;R ¼
27 k; MB ¼MC ¼ �121:5 k-ft; þMmax ¼ 94:5 k-ft, at 21 ft

from A

5.41 SA; R ¼ �10 k; SB; L ¼ �25 k; SB; R ¼ 30k; SC; L ¼
�30k; SC; R ¼25 k; SD; L ¼ 10k; MB ¼ MC ¼ �87.5 k-ft;

þMmax ¼ 62:5 k-ft, at 15 ft from A

5.43 SA;R ¼ SB;L ¼ �8 k; SB;R ¼ 23:83 k; SC;L ¼ �21:17 k;

SC;R ¼ SD ¼ 0; MB ¼ �80 k-ft; MC ¼ MD ¼ �40 k-ft;

þMmax ¼ 109:3 k-ft, at 25.89 ft from A

5.45 SA;R ¼ SB;L ¼ 80 kN; SB; R ¼ SC ¼ �35 kN; SD; L ¼
�125 kN; SD; R ¼ 120 kN; MA ¼ �540 kN �m; MB ¼
420 kN �m; MD ¼ �720 kN �m

5.47 SA;R ¼ 11.33 k; SB;L ¼ �18.67 k; SB;R ¼16 k;

SC ¼ SD; L ¼6 k; SD; R ¼ SE; L ¼ �6 k; MB ¼ �110 k-ft;

MD ¼ 60 k-ft; þMmax ¼ 64:18k-ft, at 11.33 ft from A

5.49 SA;R ¼ 90 kN;SC; L ¼ �180 kN; SC;R ¼ 157:5 kN;

SE; L ¼ �112:5 kN; SE;R ¼ 157:5 kN;SF ; L ¼ �112:5 kN;

MC ¼ �675 kN �m; ME ¼ �337:5 kN �m;þMmax ¼
351:6 kN �m; at 6.25 m to the left of F

5.51 SA;R ¼ 125 kN; SC;L ¼ �250 kN; SC;R ¼ 187:5 kN;

SD;L ¼ �187:5 kN; SD;R ¼ 250 kN; SF ;L ¼ �125 kN;

MC ¼MD ¼ �937:5 kN �m; þMmax ¼ 312:5 kN �m, at

5 m from A and F

5.53 (a) a¼ 3 m; (b) SA;R ¼ SB;L ¼ 50 kN; SB;R ¼
SC;L ¼�100 kN; SC;R ¼ SD;L ¼ 150 kN; MB ¼ 450 kN �m;

MC ¼�450 kN �m

5.55 (a) Determinate; (b) Unstable; (c) Indeterminate, i ¼ 6;

(d) Indeterminate, i ¼ 5

5.57 Member AB: Smax ¼ 16:5 k; Mmax ¼ 247:5 k-ft; Q ¼ 0

Member BC: Smax ¼ �12 k; Mmax ¼ 120 k-ft; Q ¼ �8:5 k

5.59 Member AB: Smax ¼ 48 kN; Mmax ¼ 120 kN �m;

Qmax ¼ �104 kN

Member BC: Smax ¼ �48 kN; Mmax ¼ 96 kN �m; Q ¼
�24 kN

5.61 Member AB: Smax ¼ �204:97 kN; Mmax ¼
416:67 kN �m; Q ¼ �260:87 kN

Member BC: Smax ¼ 141:67 kN; Mmax ¼ 416:67 kN �m;

Q ¼ �300 kN

5.63 Member AB: S ¼ 48 k; Mmax ¼ 1;260 k-ft; Q ¼ �24 k

Member BC: Smax ¼ 30 k; Mmax ¼ 300 k-ft; Q ¼ 0

5.65 Member AC: Smax ¼ 108 kN; Mmax ¼ 486 kN �m;

Q ¼ �7:65 kN

Member BD: S ¼M ¼ 0; Q ¼ �217:35 kN

Member CE: Smax ¼ �142:35 kN; Mmax ¼ 487:95 kN �m;

Q ¼ 0

5.67 Member AB: S ¼ 10 k; Mmax ¼ 200 k-ft; Q ¼ �8:83 k

Member BC: Smax ¼ �30:51 k; Mmax ¼ 225 k-ft;

Qmax ¼ �17:02 k

Member CD: Smax ¼ 15 k; Mmax ¼ 225 k-ft; Q ¼ �27:17 k

5.69 Member AB: Smax ¼ �24 k; Mmax ¼ 492 k-ft;

Q ¼ �30 k

Member BC: Smax ¼ 30 k; Mmax ¼ 492 k-ft; Q ¼ �24 k

Member CD: Smax ¼ 24 k; Mmax ¼ 192 k-ft; Q ¼ 0

5.71 MemberAC: S ¼ 1:25 k;Mmax ¼ 18:75 k-ft;Q ¼ �10 k
Member CE: Smax ¼ �35 k; Mmax ¼ 356:25 k-ft;

Q ¼ �23:75 k

Member EG: S ¼ 23:75 k; Mmax ¼ 356:25 k-ft; Q ¼ �35 k

CHAPTER 6

6.1 y ¼ � M

6EIL
ð3x2 � 6Lxþ 2L2Þ;

y ¼ � M

6EIL
ðx3 � 3Lx2 þ 2L2xÞ
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6.3 For 0a xa a: y ¼ wx

2EI

�
a2 � L2 þ ðL� aÞx

�
;

y ¼ wx2

2EI

a2 � L2

2
þ ðL� aÞx

3

� �

For aa xaL: y ¼ w

2EI
xLðx� LÞ �x3

3
þ a3

3

� �
;

y ¼ w

2EI
x2L

x

3
� L

2

� �
� x4

12
� a4

12
þ a3x

3

" #

6.5 y ¼ wx

24EIL
ð�x3 þ 6L2x� 8L3Þ;

y ¼ wx2

120EIL
ð�x3 þ 10L2x� 20L3Þ

6.7 y ¼ 0:0174 rad

1

; y ¼ 34:8 mm #

6.9 and 6.35 yB ¼ 0:00703 rad

1

; DB ¼ 23:4 mm #

6.11 and 6.37 yB ¼ Pa2=2EI

1

; DB ¼ Pa2ð3L� aÞ=6EI #

6.13 and 6.39 yA ¼ wL3=8EI ’ ; DA ¼ 11wL4=120EI #

6.15 and 6.41 yB ¼ 0:0514 rad

1

; DB ¼ 180 mm #
yC ¼ 0:0771 rad

1

; DC ¼ 373 mm #

6.17 and 6.43 yB = 0.0257 rad
1

; DB ¼ 4:17 in. #;
yC ¼ 0:00644 rad

2

; DC ¼ 5:1 in. #
6.19 and 6.45 559 in4

6.21 and 6.47 22;508 in4

6.23 and 6.49 Dmax ¼ 114:1 mm #, at 5:29 m from A

6.25 and 6.51 Dmax ¼ 146mm #; at 10.95 m from A

6.27 and 6.53 Dmax ¼ 1:92 in: #; at 15.42 ft from A

6.29 and 6.55 0.0139 in. #

6.31 and 6.57 yD ¼ 0:0136 rad

2

; DD ¼ 68:13 mm "

6.33 and 6.59 yB ¼ 0:0099 rad

1

; DB ¼ 0:86 in. #
yD ¼ 0:0084 rad

2

; DD ¼ 1:44 in. #

CHAPTER 7

7.1 and 7.51 DBH ¼ 0:225 in.  ; DBV ¼ 1:466 in. #
7.3 and 7.53 DBH ¼ 0:567 in.  ; DBV ¼ 0:126 in. "
7.5 and 7.55 DBH ¼ 0:36 in.  ; DBV ¼ 1:894 in. #
7.7 9.1 mm #
7.9 23 mm !
7.11 3,050 mm2

7.13 11.91 in2

7.15 11.07 in2

7.17 0.693 in. #
7.19 1.357 in. "
7.21 and 7.58 yB ¼ 0:0174 rad

1

; DB ¼ 34:8 mm #
7.23 34.8 mm #
7.25, 7.29 and 7.60 373 mm #
7.27 and 7.62 0.0048 in. "
7.31 5;625 (106) mm4

7.33 3;374 (106) mm4

7.35 and 7.64 yD ¼ 0:0071 rad

1

; DD ¼ 0:62 in. #
7.37 3.63 in. #
7.39 0.0034 rad

1

7.41 0.0011 rad

1

7.43 and 7.67 0.0393 rad

2

7.45 and 7.68 182 mm !
7.47 2,225 in4

7.49 0.00386 rad

1

CHAPTER 8

8.1 Ay: 1 at A; 0 at C

Cy: 0 at A; 1 at C

SB: 0 at A and C; �0.5 at BL; 0.5 at BR

MB: 0 at A and C; 7.0 at B

8.3 Ay: 1 at A; 0 at C

Cy: 0 at A; 1 at C

SB: 0 at A and C; �0.667 at BL; 0.333 at BR

MB: 0 at A and C; 3.33 at B

8.5 Ay: 1 at A and C

MAðþ 2Þ: 0 at A; 15 at C

SB: 0 at A and BL; 1 at BR and C

MB: 0 at A and B; �9 at C

8.7 By: 1.25 at A; 0 at D

Dy: �0:25 at A; 0 at B; 1 at D

SC : 0.25 at A; 0 at B and D; �0.5 at CL; 0.5 at CR

MC : �2.5 at A; 0 at B and D; 5 at C

8.9 Ay: 1 at A; 0 at C

Cy: 0 at A; 1 at C

SA;R: 1 at A; 0 at C

MB: 0 at A and C; 7.5 at B
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8.11 SE : 0 at B, D, and EL; 1 at ER and F

ME : 0 at B, D, and E; �4 at F

8.13 Ay: 1 at A; 0 at C and E

Ey: 0 at A; 1 at C and E

ME ðþ

1

Þ: 0 at A and E; 8 at C

8.15 SD: 0 at A, DR, and E; �1 at C and DL

MD: 0 at A, D, and E; �4 at C

8.17 Ay: 1 at C; 0 at E; �0.5 at F

By: 0 at C; 1.5 at F

SD: 0 at C and E; �0.5 at DL and F ; 0.5 at DR

MD: 0 at C and E; 6 at D; �6 at F

8.19 Ay: 0 at B and E; 2 at D

By: 1 at B; 0 at C and E; �1 at D

Ey: 0 at B, C, and D; 1 at E

SD: 0 at B, C, DL, and E; 1 at DR

8.21 SC : 0:5 at A; 0 at B;D;E;F ; and G;

�0:5 at CL; 0:5 at CR

MC : �6 at A; 0 at B;D;E;F ; and G; 6 at C

SD: 0:5 at A; 0 at B;DR;E;F ; and G;

�0:5 at C;�1 at DL

8.23 Ay: 1 at A; 0 at B, C, E, F , and G

Cy: 0 at A, E, and G; 1.333 at B; �0.25 at F

Ey: 0 at A, C, and G; �0.333 at B; 1.25 at F

Gy: 0 at A, B, C, E, and F ; 1 at G

8.25 SD: 0 at A, C, E, and G; 0.333 at B; �0.5 at DL;

0.5 at DR; �0.25 at F

MD: 0 at A, C, E, and G; �10 at B; 15 at D;

�7.5 at F

8.27 By: 1:67 at A; 1 at B; 0 at C;D;E;F and G

Dy: �1:17 at A; 0 at B;F and G; 1:75 at C; 1 at D

Gy: 0:5 at A; 0 atB andD;�0:75 atC; 1 atF and G

MGðþ

1

Þ: 5 at A; 0 at B;D and G;�7:5 at C; 10 at F

8.29 Ay: 1 at A and B; 0 at D, E, and G

Ey: 0 at A, B, and G; 1.667 at D

Gy: 0 at A, B, and E; �0.667 at D; 1 at G

MA ðþ 2Þ: 0 at A, D, E, and G; 20 at B

8.31 Ay: 1 at A and C; 0 at D and F

Fy: 0 at A and C; 1 at D and F

MA ðþ 2Þ: 0 at A, D, and F ; 10 at C

MF ðþ 2Þ: 0 at A, C, and F ; �6 at D

8.33 Ay: 1 at A; 0 at B;E;G and H;�0:75 at C

By: 0 at A;E;G and H; 1:75 at C

8.35 Ax: 0 at C and E; 0.5 at D

Ay: 1 at C; 0 at E

Bx: 0 at C and E; �0.5 at D

By: 0 at C; 1 at E

8.37 Ay: 1 at B, C, and D; 0 at F

MA ðþ 2Þ: �5 at B; 0 at C and F ; 5 at D

Fy: 0 at B, C, and D; 1 at F

SE : 0 at B, C, D, and F ; �0.5 at EL; 0.5 at ER

ME : 0 at B, C, D, and F ; 2.5 at E

8.39 Ay: 1 at D; 0 at F and H; �0.75 at G

By: 0 at D and H; 1 at F ; 1.75 at G

Cy: 0 at D, F , and G; 1 at H

SE : 0 at D, F , and H; �0.5 at EL; 0.5 at ER; �0.75 at G

ME : 0 at D, F , and H; 2 at E; �3 at G

8.41 SDE : 0:667 at A; 0 at C and F ;�0:333 at D;

0:333 at E;�0:667 at H

ME : �12 at A; 0 at C and F ; 12 at E;�24 at H

8.43 SBC : �1 at A and B; 0 at C, D, and E

MC : �30 at A; 0 at C, D, and E

8.45 FAB: 0 at A and C; 0.5 at B

FAD: 0 at A and C; �0.707 at B

FBD: 0 at A and C; 1 at B

8.47 FDH : 0 at A, B, C, and E; 1 at D

FCD: 0 at A and E; 1 at D

FGH : 0 at A and E; �1.33 at C

FCH : 0 at A and E; 0.833 at C; �0.417 at D

8.49 FDE : 0 at A, B, C, and D; �0.667 at E

FCG: 0 at A and D; �0.401 at B and E; 0.401 at C

FGH : 0 at A and D; �0.889 at C; 0.889 at E

FBC : 0 at A and D; 0.667 at B and C; �0.667 at E

8.51 FCD: �1.6 at A; 0 at C, D, E, F , and G

FCI : �1.8 at A; 0 at C and E; �0.5 at D; 1 at G

FDI : 1.494 at A; 0 at C and E; 0.534 at D; �1.067 at G

FDJ : �0.333 at A and G; 0 at C and E; 0.167 at D

8.53 FAB: 0 at A and G; �1.11 at B

FDI : 0 at A and G; 0.556 at C; �0.833 at D

FIJ : 0 at A and G; 2 at D

FCI : 0 at A and G; �0.333 at C; 0.5 at D
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8.55 FBC : 0 at E, F , and G; �4.123 at D

FBF : 0 at E, F , and D; 0.5 at G

FBG: 0 at E, F , and D; �2.236 at G

FFG : 0 at E and F ; 2 at G; 4 at D

8.57 FAD: 0 at C and E; �1 at D; 1 at F

FBD: 0 at C, D, and E; �1.67 at F

FCD: 1.33 at C; 0 at D, E, and F

8.59 DB: 0 at A and C; �457.33/(EI ) at B

8.61 DD: 0 at A and C; �96/(EI ) at D

CHAPTER 9

9.1 �150 kN �m

9.3 �81.25 kN

9.5 Maximum Ay ¼ 1;150 kN ";
Maximum MA ¼ 9;375 kN �m

2

9.7 Maximum Positive SD ¼ 60:417 k;

Maximum Negative SD ¼ �45:833 k

Maximum Positive MD ¼ 1;937:5 k-ft;

Maximum Negative MD ¼ �1;100 k-ft

9.9 200 kðCÞ

9.11 Maximum Tensile FDI ¼ 220:3 k (T);

Maximum Compressive FDI ¼ 80:2 k (C)

9.13 SB ¼ 61:67 kN; MB ¼ 733:33 kN �m

9.15 264 k-ft

9.17 88.56 kN (T)

9.19 42.5 k

9.21 370.1 k-ft

9.23 601.8 k-ft

CHAPTER 10

10.17 FAC ¼ 26:35 k (C); FBC ¼ 36:89 k (T)

10.19 FDE ¼ 195 k (C); FDJ ¼ 50 k (C);

FEJ ¼ 21:21 k (T); FJK ¼ 180 k (T)

10.21 AAD
X ¼ 20 kN !; AAD

Y ¼ 197:33 kN "; DAD
X ¼

20 kN ; DAD
Y ¼ 197:33 kN #; MAD

D ¼ 240 kN �m

1

10.23 BBG
X ¼ 23:75 k  ; BBG

Y ¼ 35 k "; MBG
B ¼

356:25 k-ft

2

; GBG
X ¼ 23:75 k !; GBG

Y ¼ 35 k #;
MBG

G ¼ 356:25 k-ft

2

CHAPTER 12

12.1 SL ¼ SR ¼ 90 kN "; ML ¼ 48:6 kN �m
2

; MR ¼ 48:6

kN �m

1

12.3 Girder DE: SL ¼ SR ¼ 80 kN; ML ¼ 57:6 kN �m

2

;

MR ¼ 57:6 kN �m

1

Girder EF : SL ¼ SR ¼ 50 kN; ML ¼ 22:5 kN �m

2

;

MR ¼ 22:5 kN �m

1

12.5 Girder DE: SL ¼ SR ¼ 80 kN; ML ¼ 57:6 kN �m

2

;

MR ¼ 57:6 kN �m
1

Girder HI : SL ¼ SR ¼ 60 kN; ML ¼ 64:8 kN �m

2

;

MR ¼ 64:8 kN �m

1

12.7 Member AD: Q ¼ 12:5 k (T); S ¼ 12:5 k; M ¼
125 k-ft

Member BE: Q ¼ 0; S ¼ 25 k; M ¼ 250 k-ft

Member EF : Q ¼ 12:5 k (C); S ¼ 12:5 k; M ¼ 125 k-ft

12.9 Member AD: Q ¼ 16:67 k (C); S ¼ 15 k; M ¼ 120 k-ft

Member CF : Q ¼ 16:67 k (T); S ¼ 15 k; M ¼ 120 k-ft

Member DE: Q ¼ 10 k (C); S ¼ 13:33 k; M ¼ 160 k-ft

Member HI : Q ¼ 15 k (C); S ¼ 3:33 k; M ¼ 40 k-ft

12.11 Member AD: Q ¼ 10:5 k (C); S ¼ 10 k; M ¼ 60 k-ft

Member CF : Q ¼ 14 k (T); S ¼ 10 k; M ¼ 60 k-ft

Member DE: Q ¼ 6:25 k (C); S ¼ 8:25 k; M ¼ 82:5 k-ft

Member HI : Q ¼ 11:25 k (C); S ¼ 3 k; M ¼ 22:5 k-ft

12.13 Member AE: Q ¼ 7:33 k (T); S ¼ 6:25 k; M ¼
50 k-ft

Member CG: Q ¼ 9:67 k (C); S ¼ 12:5 k; M ¼ 100 k-ft

Member EF : Q ¼ 12:5 k (C); S ¼ 5:33 k; M ¼ 80 k-ft

Member JK : Q ¼ 7:5 k (C); S ¼ 6 k; M ¼ 60 k-ft

12.15 Member AD: Q ¼ 12:5 k (T); S ¼ 12:5 k;M ¼ 125 k-ft

Member BE: Q ¼ 0; S ¼ 25 k; M ¼ 250 k-ft

Member EF : Q ¼ 12:5 k (C); S ¼ 12:5 k; M ¼ 125 k-ft

12.17 Member AD: Q ¼ 16:67 k (C); S ¼ 15 k; M ¼
120 k-ft

Member CF : Q ¼ 16:67 k (T); S ¼ 15 k; M ¼ 120 k-ft

Member DE: Q ¼ 10 k (C); S ¼ 13:33 k; M ¼ 160 k-ft

Member HI : Q ¼ 15 k (C); S ¼ 3:33 k; M ¼ 40 k-ft

12.19 Member AD: Q ¼ 12:66 k (C); S ¼ 12:06 k;

M ¼ 72:4 k-ft

Member CF : Q ¼ 11:51 k (T); S ¼ 8:24 k; M ¼ 49:43 k-ft

Member DE: Q ¼ 7:55 k (C); S ¼ 9:95 k; M ¼ 99:5 k-ft

Member HI : Q ¼ 12:1 k (C); S ¼ 2:46 k; M ¼ 18:45 k-ft

796 Answers to Selected Problems



12.21 Member AE: Q ¼ 9:18 k (T); S ¼ 3:97 k; M ¼
31:75 k-ft

Member CG: Q ¼ 2:29 k (C); S ¼ 14:78 k; M ¼ 118:25 k-ft

Member EF : Q ¼ 17:65 k (C); S ¼ 5:65 k; M ¼ 84:75 k-ft

Member JK: Q ¼ 7:49 k (C); S ¼ 1:41 k; M ¼ 14:1 k-ft

CHAPTER 13

13.1 and 13.5 Ay ¼ 99:26 kN "; MA ¼ 233:3 kN �m

2

; Dy ¼
60:74 kN "

13.3 and 13.7 Ay ¼ 28:13 kN "; Cy ¼ 91:87 kN "; MC ¼
307:4 kN �m

1

13.9 and 13.30 Ay ¼ Ey ¼ 15:625 k "; Cy ¼ 68:75 k "

13.11 and 13.32 Ay ¼ Ey ¼ 15:63 k "; Cy ¼ 68:75 k "

13.13 Ay ¼ 108:75 kN "; By ¼ 357:5 kN "; Dy ¼ 83:75 kN "

13.15 and 13.58 Ay ¼ 13:125 kN #; MA ¼ 91:875 kN �m
1

;

By ¼ 223:125 kN "

13.17 Ay ¼ ð13 wLÞ=32 "; By ¼ ð17 wLÞ=16 "; Cy ¼
ð33 wLÞ=32 "

13.19 AX ¼ 200 kN  ; AY ¼ 57:03 kN "; MA ¼
820:3 kN �m

2

; DY ¼ 92:97 kN "

13.21 AX ¼ 5:7 k !; AY ¼ 50:1 k "; CX ¼ 9:3 k !;

CY ¼ 24:9 k "

13.23 AX ¼ 0; AY ¼ 8:23 kN #; MA ¼ 675:8 kN �m

1

;

BY ¼ 98:23 kN "

13.25 AX ¼ 30 k  ; AY ¼ 0; MA ¼ 160:8 k-ft

2

;

BY ¼ 2:14 k #; DY ¼ 2:14 k "

13.27 Ax ¼ 10 k  ; Ay ¼ 11:7 k "; Cy ¼ 41:5 k "; Dy ¼
6:8 k "

13.29 Ax ¼ 2:7 kN  ; Ay ¼ 20 kN #; Bx ¼ 57:3 kN  ;

By ¼ 100 kN "

13.35 and 13.60 FBC ¼ 119:8 kN (C); FAD ¼ 130:2 kN (T);

FAC ¼ 162:5 kN (T); FBD ¼ 170:8 kN (C)

13.37 Ay¼92:8 kN "; MA¼114:3 kN �m

2

; By¼ 228:6 kN ";
Cy¼78:6 kN "

13.39 Ay ¼ 29:1 kN ";Cy ¼ 138:7 kN ";
Ey ¼ 171 kN "; Gy ¼ 51:2 kN "

13.41 Ay ¼ Gy ¼ 23 k "; By ¼ Fy ¼ 63 k "; Dy ¼ 48 k "

13.43 AX ¼ 15 k !; AY ¼ 34:13 k "; EX ¼ 10 k !;

EY ¼ 30:87 k "; ME ¼ 122:4 k-ft

1

13.45 AX ¼ 4:29 k  ; AY ¼ 23:25 k "; MA ¼ 107:9 k-ft

2

;

BX ¼ 15:71 k ; BY ¼ 36:75 k "; MB ¼ 222:1 k-ft

2

13.47 Ax ¼ 10:04 k !; Ay ¼ 13:77 k "; Cy ¼ 6:23 k ";
Dx ¼ 10:04 k ; FBD ¼ 12:16 k (T)

13.49 Ay ¼ 179:5 kN "; MA ¼ 955:5 kN �m

2

; Dy ¼
19:5 kN #

13.51 Ay ¼ 39:94 k"; By ¼ 53:49 k"; Cy ¼ 26:57 k"

13.53 Ay ¼ 165:2 kN "; MA ¼ 449:4 kN �m

2

; By ¼
125:8 kN "; Cy ¼ 109 kN "

13.55 FBC ¼ FEF ¼ 37:34 kN (C); FBF ¼ FCE ¼ 46:67 kN (T)

13.57 FAB ¼ 3:35 k (C); FAC ¼ FBC ¼ 9:46 k (T); FCD ¼
13:38 k (T)

CHAPTER 14

14.1 and 14.2 Ay: 1 at A; 0.688 at B; 0 at C

MA: 0 at A and C; 2.25 at B

Cy: 0 at A; 0.313 at B; 1 at C

SB: 0 at A and C; �0.313 at BL; 0.687 at BR

MB: 0 at A and C; 1.875 at B

14.3 Cy: 0 at A; 0.633 at B; 1 at C; 1.375 at D

SB: 0 at A and C; �0.633 at BL; 0.367 at BR;

�0.375 at D

MB: 0 at A and C; 3.164 at B; �3.125 at D

14.5 Ay: 1 at A; 0 at B and D; �0.167 at C

By: 0 at A and D; 1 at B; 0.944 at C

Dy: 0 at A and B; 0.222 at C; 1 at D

SC : 0 at A, B and D; �0.222 at CL; 0.778 at CR

MC : 0 at A, B and D; 2.222 at C

14.7 Ay: 1 at A; 0.479 at B; 0 at C and D

Cy: 0 at A and D; 0.563 at B; 1 at C

Dy: 0 at A and C; �0.042 at B; 1 at D

FBC : 0 at A, C and D; 0.359 at B

FCE : 0 at A, C and D; �0.652 at B

FEF : 0 at A, C and D; 0.032 at B

14.9 FBC : 0 at C; 0.833 at D; 0.938 at E

FCD: 0 at C; 0.667 at D; 1.917 at E

14.11 By: 1.643 at A; 1 at B; 0.393 at C; 0 at D and E;

�0.054 at x ¼ 20 ft

Dy: �0.857 at A; 0 at B and E; 0.767 at C; 1 at D; 0.447 at

x ¼ 20 ft

SC : 0.643 at A; 0 at B, D, and E; �0.607 at CL; 0.393 at CR;

�0.054 at x ¼ 20 ft

MC : �1.79 at A; 0 at B, D, and E; 1.97 at C; �0.27 at

x ¼ 20 ft
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14.13 Cy: 0 at A and D; 0.582 at B; 1 at C

FBC : 0 at A, C, and D; 0.11 at B

FCE : 0 at A, C, and D; �0.252 at B

FEF : 0 at A, C, and D; �0.203 at B

CHAPTERS 15 AND 16

15.1 and 16.1 MAC ¼ 50:6 k-ft

2

; MCA ¼ 58:8 k-ft

1

; MCE ¼
58:8 k-ft

2

; MEC ¼ 26:9 k-ft

1

15.3 and 16.3 MAB ¼ 100 kN �m 1

; MBA ¼ 200 kN �m 1

;

MBE ¼ 200 kN �m

2

; MEB ¼ 500 kN �m 1

15.5 and 16.5 MAB ¼MDB ¼ 0; MBA ¼ 495 kN �m 1

; MBD ¼
495 kN �m

2

15.7 and 16.7 MAB ¼ 347:5 k-ft

2

; MBA ¼ 72 k-ft

1

; MBC ¼
72 k-ft

2

; MCB ¼ 0

15.9 and 16.9 MAB ¼ 103:5 kN �m

2

; MBA ¼ 113 kN �m 1

;

MBC ¼ 113 kN �m

2

; MCB ¼ 85 kN �m 1

; MCE ¼
85 kN �m

2

; MEC ¼ 47:5 kN �m 1

15.11 and 16.11 MBA ¼ 50 k-ft

1

; MBD ¼ 50 k-ft
2

; MDB ¼
89:3 k-ft

1

; MDE ¼ 89:3 k-ft

2

; MED ¼ 55:4 k-ft
1

15.13 and 16.13 MAB¼MED¼0; MBA¼MDC¼57:9 kN�m 1

;

MBC¼MDE¼57:9 kN�m

2

; MCB¼38:6 kN�m 1

; MCD¼
38:6 kN �m

2

15.15 and 16.15 MAB ¼ 68:6 kN �m
2

; MBA ¼ 183 kN �m 1

;

MBC ¼ 183 kN �m

2

; MCB ¼ 29 kN �m

2

; MCE ¼
29 kN �m 1

; MEC ¼ 170:2 kN �m 1

15.17 and 16.17 MAC ¼ 9:4 kN �m 1

; MCA ¼ 187:5 kN �m 1

;

MCD ¼ 187:5 kN �m
2

; MDC ¼ 0

15.19 and 16.19 MAD ¼ MCD ¼ MED ¼ 0; MDA ¼ 65 k-ft

2

;

MDC ¼ 102:5 k-ft

1

; MDE ¼ 37:5 k-ft

2

15.21 and 16.21 MAC ¼ 58:6 kN �m 1

; MCA ¼ 286 kN �m 1

;

MCD ¼ 286 kN �m

2

; MDC ¼ 0

15.23 and 16.23 MAC ¼ 0; MDE ¼ 100 k-ft

2

; MCA ¼
69:6 k-ft

1

; MBC ¼ 301:5 k-ft

2

; MCB ¼ 37 k-ft

2

;

MCD ¼ 32:1 k-ft

2

; MDC ¼ 100 k-ft

1

15.25 and 16.25 MAC ¼ 107:8 k-ft

2

; MCA ¼ 20:8 k-ft

2

;

MBD ¼ 222 k-ft

2

; MDB ¼ 249:2 k-ft

2

; MCD ¼ 20:8 k-ft

1

;

MDC ¼ 249:2 k-ft

1

15.27 and 16.27 MAB ¼ 127 k-ft

2

; MBA ¼ 103:4 k-ft

2

;

MBC ¼ 103:4 k-ft

1

; MCB ¼ 0

15.29 and 16.29 MAC ¼ 11:7 kN �m

2

; MCA ¼ 43:9 kN �m 1

;

MCD ¼ 43:9 kN �m

2

; MDC ¼ 14:7 kN �m 1

; MDB ¼ 14:7

kN �m

2

; MBD ¼ 0

15.31 and 16.31 MAC ¼MBD ¼ 119 k-ft

2

; MCA ¼MDB ¼
83:5 k-ft

2

; MCE ¼MDF ¼ 23:3 k-ft

2

; MEC ¼ MFD ¼ 44:2

k-ft

2

; MCD ¼MDC ¼ 106:8 k-ft

1

; MEF ¼MFE ¼ 44:2 k-ft

1

CHAPTER 17

17.1 Q1 ¼ 53:5 k (T); Q2 ¼ 48 k (C)

17.3 Q1 ¼ 102:8 kN (T); Q2 ¼ 28:6 kN (C); Q3 ¼ 145:4 kN

(C)

17.5 Q1 ¼

104:4 kN

394 kN �m
�104:4 kN

232 kN �m

2

6
6
6
6
4

3

7
7
7
7
5
Q2 ¼

�45:6 kN

�232 kN �m
45:6 kN

�178 kN �m

2

6
6
6
6
4

3

7
7
7
7
5

17.7 Q1 ¼

9:36 k

14:72 k

37:65 k-ft

�9:36 k

15:29 k

�41:92 k-ft

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

Q2 ¼

15:28 k

9:36 k

41:92 k-ft

�15:28 k

10:64 k

�54:65 k-ft

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

17.9 Q1 ¼

23:26 k

4:3 k

108 k-ft

�23:26 k

�4:3 k

21 k-ft

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

Q2 ¼

15:7 k

23:26 k

�21 k-ft

�15:7 k

36:74 k

�249 k-ft

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

Q3 ¼

36:74 k

15:7 k

222 k-ft

�36:74 k

�15:7 k

249 k-ft

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

APPENDIX B

B.1 C ¼
18 �11 18

�11 19 28

18 28 4

2

6
4

3

7
5

B.3 C ¼
�18 6 �30

12 �4 20

�6 2 �10

2

6
4

3

7
5; D ¼ �32
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B.5 ðABÞT ¼ BTAT ¼
�6 �27 2

�55 �14 �28

� �
B.7 x1 ¼ �7; x2 ¼ 3; x3 ¼ �5

B.9 A�1 ¼
0:42 0:22 �0:04
0:08 0:28 0:04

0:44 0:04 �0:28

264
375

APPENDIX C

C.1 (a) 9.12 in2; (b) 6.33 in2; (c) 8.66 in2

C.3 1,257 in4

APPENDIX D

D.1 Ay ¼ Ey ¼ 15:63 k "; Cy ¼ 68:75 k "

D.3 Ay ¼ 108:75 kN "; By ¼ 357:5 kN "; Dy ¼ 83:75 kN "

D.5 Ay ¼ 28:5 k "; MA ¼ 135 k-ft
2

; By ¼ 49:5 k "

D.7 Ay¼23:6 k "; By¼66:4 k "; Cy¼56:4 k "; Ey¼13:6 k "

D.9 Ay ¼ 39:94 k "; By ¼ 53:49 k "; Cy ¼ 26:57 k "
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Index

A

AASHTO Standard Specifications for Highway Bridges,
17, 32–34

Analytical models, 12–16, 702–706
connections for, 14–15
degrees of freedom, 705–706
global coordinate system, 702–705
line diagrams, 13–14
local coordinate system, 702–705
matrix structural analysis, 702–706
plane structure, 13
purpose of, 12
space structure, 13
supports for, 16

Antisymmetric loadings, 416–419, 426–427
Applied forces, 56. See also Loads
Approximate analysis, 450–482

assumptions for, 451–454
cantilever method for, 473–479
degree of indeterminacy (i), 451
forces, distribution of, 453–456
frames of rectangular buildings, 450–482
inflection points for, 452–455
lateral loads, 458–479
portal method for, 458–473
procedures for analysis by, 463–465, 474–475
reactions and, 451–454
redundants, 451
statically indeterminate structures, 450–482
use of, 450–451
vertical load, 454–458

Arches, structure of, 9–10
Area of geometric shapes, 747–748
ASCE Standard Minimum Design Loads for Buildings and

Other Structures, 17–18, 34–40

Axial deformation (d), 275–276
Axial force (Q), 99, 101–103, 161–167, 454–456

approximate analysis and, 454–456
beams, 161–167
girders, 454–456
primary, 101
procedure for analysis of, 164–165
secondary, 102–103
shear and bending moments and, 161–167
sign convention for, 163–164
trusses, 99, 101–103

Axial loads, structure classification and, 9
Axis of symmetry (s), 410–412

B

Ball supports, 140
Ball-and-socket supports, 138, 140
Baltimore truss, 100
Beam–column members, 9
Beams, 10–11, 161–222, 224–267, 283–295, 307–308,

311–313, 317–319, 330–356, 484–515, 560–575,
584–616, 652–657, 665–678, 713, 718, 720

axial force (Q) and, 161–167
bending moment diagrams, 168–173, 243–247,

592, 598
bending moments (M), 161–167, 247–249, 333–334,

584–588
bending structure of, 11–12
Betti’s law of reciprocal deflections, 317–319
cantilever overhangs, 599–600, 666
Castigliano’s second theorem for, 311–313
conjugate-beam method for, 247–261
consistent deformations, method of for, 484–515
continuous, 504–507, 584–591, 598–616, 665–678, 713,

718, 720

801



deflection, 172–173, 224–267, 283–295, 307–308,
311–313, 317–319

degrees of freedom, 593, 617
direct integration method for, 227–230
equilibrium method for, 330–344
fixed-end moments (FEM), 588–590, 594
flexibility coe‰cient, 486–487
flexural rigidity (EI) of, 227
geometric methods for, 224–267
hinged members, 590–591
influence lines for, 330–344, 560–575
integrals for virtual work, 285–288
internal forces, 161–167, 488–490, 504–515
load–shear–bending moment relationships, 173–192,

247–249
matrix structural analysis, 713, 718, 720
Maxwell’s law of reciprocal deflections, 317–319,

560–561
member end moments, 587–588, 595–596
member end shears, 596–597
moment-area method for, 231–243
moment-distribution method, 665–678
moments as redundants in, 488–490, 504–515
Müller-Breslau’s principle, 344–356, 561
multiple degrees of determinacy, 561–562
primary, 484–490
procedures for analysis of, 164–165, 176–178, 233–234,

251, 285, 288, 312–313, 334–336, 490–491, 562–563,
598–599, 665

qualitative deflected shapes for, 172–173
reactions in, 330–332
redundants in, 488–490, 504–515
shear diagrams, 168–171, 592, 598
shear force (S) and, 161–167, 332–333
sign convention for, 163–164
simple end supports, 599, 665–666
slope-deflection method for, 584–616
statically determinate structures, 161–222, 224–267,

307–308, 311–313, 317–319, 330–344
statically indeterminate structures, 484–515, 560–575,

584–616, 665–678
sti¤ness of, 652–657, 713, 720
strain energy (U) for, 307–308
superposition method for, 231
supports for, 248–249
virtual work method for, 283–295
work–energy methods for, 283–295, 307–308, 311–313,

317–319
Bending moment diagrams, 168–192, 243–247, 286–287,

592, 598
beam deflection and, 172–173, 243–247
cantilever parts method, 244–246
elastic curve, 172–173
integrals for, 286–287
loads and, 173–192
parts method, 243–247

procedures for construction of, 176–178
qualitative deflective shapes and, 172–173
shear (S ) and, 168–171, 173–192
slope–deflection method and, 592, 598

Bending moments (M), 161–192, 247–249, 333–334,
360–361, 488–490, 504–515, 584–588, 595–596,
626–627, 779–780

axial force (Q) and, 161–167
beams, 161–192, 247–249, 333–334, 584–588
concentrated loads and, 175
consistent deformation method and, 488–490, 504–515
couples or concentrated moments, 175–176
equations for, 169–171
equilibrium method for, 333–334
floor systems, 360–361
frames, 333–334, 626–627
influence lines for, 333–334, 360–361
load–shear relationships, 173–192, 247–249
member ends, 584–588, 595–596, 626–627
point of inflection, 170
procedure for analysis of, 164–165, 176–178
redundants, as, 488–490, 504–515
shear (S) and, 161–167
sign convention for, 163–164
slope (y ) and, 504–508
slope–deflection relationships, 247–249, 584–588
slope–deflection method and, 595–596, 626–627
statically determinate structures, 161–192, 247–249,

333–334, 360–361
statically indeterminate structures, 488–490, 504–515
three-moment equation and, 779–780

Bending stress, 442
Bending structures, 11–12
Betti’s law of reciprocal deflections, 317–319
Bolted connections, 193
Braced frames, 19–22
Bridges, 7–10, 13, 18–26, 31–33, 100, 366–377.

See also Trusses
AASHTO Standard Specifications for Highway Bridges,

17, 32–34
floor beams, 13
floor systems, 23–26
force in members, 367–371
girders, 19–21, 23–24
horizontal (lateral) loads, 19, 22
impact factor (I), 34
influence lines for, 366–377
lane (combined) load, 32–33
live loads on, 31–33
load transmission for, 19–29
railroad loads, 32–33
reactions, 367–369
stringers, 13
support, 9–10
suspension, 7–8
tension structure as, 7–9
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tributary areas, 23–26
truck loads, 32–33
trusses, 10, 100, 366–367
vertical (gravity) loads, 19–21

Buildings, 7–12, 19–29, 31–32, 34–47, 450–482
approximate analysis of, 450–482
bending structures in, 11–12
cantilever method for, 473–479
construction material weight, 29
earthquake loads, 45–46
environmental loads, 34–47
exposure categories, 38
external pressure coe‰cients (Cp) for, 38–40
frames, 450–482
hydrostatic pressure and, 46–47
impact factor (I), 34
lateral load analysis, 458–479
live loads on, 31–32
load transmission systems of, 18–29
multi-story structure systems, 19, 22–26
portal method for, 458–473
procedures for analysis of, 463–465, 474–475
risk category classification, 34–35
shear structures in, 10–11
single-story structure systems, 19–22
snow loads, 42–44
soil pressure and, 46–47
tension structures in, 7–9
thermal e¤ects on, 46–47
tributary areas, 23–26
vertical load analysis, 454–458
wind loads, 34–42

C

Cantilever method for lateral loads, 473–479
Cantilever overhangs, 599–600, 666
Carryover factor (COF), 664
Carryover moments, 651–657
Castigliano’s second theorem, 309–317, 545–546

beam deflection by, 311–312
frame deflection by, 312
least-work method and, 545–546
procedure for analysis using, 312–313
strain energy (U) and, 309–311
truss deflection by, 311

Centroids of geometric shapes, 747–748
Chord rotation (c), 584–588, 625–626, 629–630

fixed-end moments and, 588
frames, 625–626, 629–630
inclined legs and, 629–630
sidesway and, 625–626, 629–630
slope-deflection equation for, 584–588

Code number technique, 726–728
Column matrix, 750
Column members, 9–10, 461–462

Compatibility condition equations, 441–442, 445–447,
516–518, 537–539, 724–725

consistent deformations method and, 516–517, 537–539
equilibrium and, 446–449
force-deformation relations and, 445–447
matrix structural analysis, 724–725
multiple degrees of indeterminacy, 516–518
structure sti¤ness relations and, 724–725
support settlement and, 537–539

Complex trusses, 137–138
Compound trusses, 98, 104–105, 132–137

analysis of, 132–137
connection arrangements, 104–105

Compression structures, 9–10
Computer software, 763–774

analysis results, 769–773
data input for, 763–768
matrix structural analysis using, 730
starting, 763

Concentrated loads, 175, 387–389, 393–399, 400–404
influence line applications for, 387–389, 393–399,

400–404
procedures for analysis of, 397–398
response to series of moving, 393–399, 402–404
response to single moving, 387–389, 400–401

Concentrated moments (M), 175–176
Concurrent force systems, 55
Conjugate beam, 248
Conjugate-beam method, 247–261

beam deflection by, 247–261
load–shear–bending moment relationships, 247–249
procedure for analysis using, 251
sign convention, 249–251
slope–deflection relationships, 247–249
supports for, 248–249

Connections, 14–15, 103–105, 107, 138–139, 192–197.
See also Joints

bolted, 193
equations of condition for, 107
frames, 192–197
moment-resisting, 193
shear, 196–197
structural use of, 14–15
tetrahedron element, 138–139
triangular (basic) element, 103–104
truss arrangements, 103–105, 138–139

Consistent deformations, method of, 483–581
beams, 484–515
bending moments (M ) and, 488–490, 504–515
Castigliano’s second theorem for, 545–546
compatibility equations for, 516–518
fabrication errors and, 543–545
flexibility coe‰cient for, 486–487, 504–507, 516–518
internal forces and, 488–490, 504–515
internally indeterminate structures, 507–510
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least work, method of for, 483–484, 545–551
multiple degrees of indeterminacy and, 515–536
primary beam, 484–490
primary structure, 483–504
procedures for analysis using, 490–491, 518–519
redundants for, 483–490, 504–536
single degree of indeterminacy and, 484–515
slope of elastic curve (y) and, 504–507
statically indeterminate structures, 483–581
support settlements and, 537–542
temperature changes and, 543–545
trusses, 507–510

Construction material weight, 29
Continuous beams, 504–507, 584–591, 598–616, 665–678,

713, 718, 720
analysis of, 598–616, 665–678
cantilever overhangs, 599–600, 666
chord rotation (c), 584–588
consistent deformations method for, 504–507
coordinate transformations, 718
fixed-end moments (FEM), 588–590
global coordinate system, 720
hinged end moments, 590–591
local coordinate system, 713
matrix structural analysis, 713, 718, 720
moment-distribution method for, 665–678
procedure for analysis of, 598–599
redundants, 504–507
simple end supports, 599, 665–666
slope-deflection method for, 584–591, 598–616
sti¤ness relations in members, 713, 720

Coordinate systems, 703–705, 707–721
continuous beam members, 713, 718, 720
frames, 707–712, 714–718, 720
global, 703–705, 719–721
local, 703–705, 707–714
member sti¤ness matrix (K), 719–720
member sti¤ness matrix (k), 707–714
structure sti¤ness matrix (S), 707, 725–728
transformation matrix (T), 714–719
trusses, 713–714, 718–719, 720–721

Couple moments (M), 175–176

D

Dead loads, 17, 29–31
Decomposition of loading, 418–424
Deflection (D), 172–173, 224–267, 268–328, 377–379,

543–545
beams, 172–173, 224–267, 283–295, 307–308, 311–312,

318–319
bending moment diagrams and, 172–173, 243–247
Betti’s law of reciprocal, 317–319
Castigliano’s second theorem for, 309–317
consistent deformation method and, 543–545
conjugate-beam method for, 247–261
di¤erential equation for, 225–227

direct integration method for, 227–230
elastic, 224
elastic curve for, 172–173, 225–226
fabrication error and, 275–276, 543–545
flexibility coe‰cients, 318
flexural rigidity (EI), 227
frames, 295–306, 308–309, 312
geometric methods for, 224–267
influence lines for, 377–379
Maxwell’s law of reciprocal, 317–319, 377–378
moment-area method for, 231–243
plastic (inelastic), 224
procedures for analysis of, 233–234, 251, 276, 285, 288,

312–313
qualitative deflected shapes, 172–173
strain energy (U) and, 306–309
superposition method for, 231
temperature change and, 275–276, 543–545
trusses, 274–283, 307, 311
virtual work method for, 270–306
work–energy methods for, 268–328

Deformable bodies, virtual forces for, 272–274
Deformation (d), 275–276, 444–449, 543–545

axial, 275–276
fabrication errors and, 275–276, 444–445, 543–545
force relations with, 445–449
temperature changes and, 275–276, 444–445, 543–545

Degrees of freedom, 593, 617–618, 705–706
Determinacy, 59–68, 107–113, 140–141, 192–199,

451, 593
degree of external indeterminacy, 61
degree of freedom, 593
degree of static indeterminacy (i), 110, 195–196, 451
external stability and, 59–68
frames, 192–199, 451
internally stable structures, 59–63
internally unstable structures, 63–67
kinematically indeterminate, 593
plane trusses, 107–113
space trusses, 140–141
structure stability, 59–68
trusses, 107–113, 140–141

Diagonal matrix, 751
Di¤erential equation for beam deflection, 225–227
Direct integration method for beam deflection, 227–230
Displacement (sti¤ness) methods, 449, 583–746

matrix structural analysis, 702–746
moment-distribution method, 648–701
slope-deflection, 583–647
statically indeterminate structures, 449, 583–746

Distributed moments, 657–658
Distribution factor (DF), 653–656, 658

joints, determination of at, 658
member sti¤ness (K ), 653–656
moment-distribution method and, 653–656, 658

Dynamic pressure (q), 35–36
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E

Earthquake loads, 45–46
E¤ective seismic weight (W), 45
Elastic curve, 172–173, 225–226, 231–232, 504–507

consistent deformation method using, 504–507
deflection (D) and, 172–173, 225–226
flexibility coe‰cient ( f ) and, 504–507
geometric analysis using, 172–173
moment-area method using, 231–232
slope (y), 225–226, 231–232, 504–507

End force, girders, 454–457
Energy, conservation of, 306–307. See also Strain energy
Engineering projects, phases of, 5–7
Environmental loads, 34–47

ASCE Standard Minimum Design Loads for Buildings

and Other Structures, 34–40
earthquakes, 45–46
external pressure coe‰cients (Cp) for, 38–40
hydrostatic pressure, 46–47
risk category classification, 34–35
snow, 42–44
soil pressure, 46–47
thermal e¤ects on structures, 46–47
wind, 34–42

Equilibrium, 53–96, 107–110, 445–449, 452–454,
593, 597, 721

approximate analysis and, 452–454
compatibility equations and, 446–449
computation of reactions for, 69–85
concurrent force systems and, 55
equations of, 54–55, 445–447, 452, 593, 597, 721
equations of condition, 63–65, 107–108
external forces and, 56
force and, 53–56
force-deformation relations, 445–449
free-body diagrams (FBD) for, 69
internal forces and, 56
internally stable (rigid) structures, 58–63
internally unstable (nonrigid) structures, 63–67
matrix structural analysis, 721
plane structures, 54–55, 56–58
reactions and, 53–96
simply supported structure reactions and, 86–89
slope-deflection method and, 593, 597
space structures, 54
static determinacy, 59–68
statically determinate structures, 53–96
statically indeterminate structures, 445–449, 593, 597
sti¤ness relations in structures, 721
structures in, 53–56
superposition, principle of for, 85–86
supports reactions and, 56–58
trusses, 107–110
two- and three-force structures, 55–56

Equilibrium method, 330–344
beams, 330–344

bending moments (M), 334–335
frames, 330–344
influence lines by, 330–344
procedure for analysis using, 334–336
reactions, 330–332
shear (S), 332–333

Exposure factor (Ce) for, 42–43
External forces, 56, 271–274
External indeterminacy, degree of, 61
External loads, 7–12
External pressure coe‰cients (Cp), 38–40
External redundants, 61
External structure stability, 59–68, 103

F

Fabrication errors, 275–276, 444–445, 543–545
consistent deformations method and, 543–545
deformation and, 275–276, 444–445, 543–545
stresses due to, 444–445
trusses and, 275–276

Fink truss, 101
Fixed-end moments (FEM), 588–590, 594, 656–657, 659–661

moment-distribution method, 656–657, 659–661
slope-deflection method, 588–590, 594

Fixed supports, 16, 57, 248–249, 781
Flat roofs (pf), 42
Flexibility coe‰cient ( f ), 318, 486–487, 504–507, 516–518

Maxwell’s law of reciprocal deflection for, 318, 518
multiple degrees of indeterminacy and, 516–518
redundants and, 486–487, 516–518
single degree of indeterminacy and, 486–487
slope of elastic curve (y) and, 504–507

Flexibility methods, see Force methods
Flexible connections, 14
Flexural rigidity (EI), 227
Floor systems, 13, 23–29, 31–33, 356–377

beams, 13
bending moments (M) in, 360–361
bridges, 23–26
buildings, 23–29
force in members, 367–371
framing plan, 23–25
girders in, 23–24, 356–366
influence lines for, 356–377
live load minimums, 31–32
load transmission of, 23–29
panel points, 357, 359
procedures for analysis of, 361–362, 371–372
reactions in, 357, 367–369
shear (S) in, 357, 359–360
slabs, 25–26
stringers, 13, 357–358
tributary areas, 23–26
trusses in, 366–377

Force–deformation relations, 445–449
Force–displacement diagrams, 269–270
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Force (flexibility) methods, 449, 483–582
consistent deformations, 483–558
influence lines for, 483–582
statically indeterminate structure analysis, 449, 483–582

Forces, 53–56, 99, 101–103, 161–167, 268–274, 367–371,
445–449, 453–456. See also Loads

applied, 56
approximate analysis and, 453–456
axial (Q), 99, 101–103, 161–167
beam deflection and, 161–167
bending moment (M) and, 161–167
compatibility conditions for, 445–447
concurrent systems, 55
deformation relations, 445–449
deformable bodies and, 272–274
displacement for rigid bodies, 271–272
distribution among frame members, 453–456
equilibrium and, 53–56, 445–449
external, 56, 271–274
influence lines for, 367–371
internal, 56, 161–167, 272–274, 472–473
primary, 101
reactions, 56
secondary, 102–103
shear (S), 161–167
statically determinate structures, 161–167, 268–274,

367–371
statically indeterminate structure, 445–449
trusses, 99, 101–103, 367–371
two- and three-force structures, 55–56
virtual work, principle of, 270–274
work (W) by, 268–270

Framed structure, 12
Frames, 11–12, 19–22, 192–213, 295–306, 308–309, 312,

330–344, 450–482, 575–579, 584–591, 617–643,
678–696, 707–712, 714–718, 720

analysis of, 200–213, 617–643, 678–696
approximate analysis of, 450–482
bending moments (M), 192–213, 333–334, 584–588
bending structure of, 11–12
braced, 19–22
buildings (rectangular), 450–482
cantilever method for, 473–479
Castigliano’s second theorem for, 312
centroidal axis of, 473
connections, 192–197
coordinate transformations, 714–718
deflection (D), 295–306, 308–309, 312
degrees of freedom, 617–618
determinacy of, 192–199
displacement at joints, 590–595, 617–619, 627–631
equations of condition, 196–197
equilibrium method for, 330–344
fixed-end moments (FEM), 588–590, 594
force distribution of among members, 453–456
girder forces and, 454–457

global coordinate system, 720
inclined legs and, 627–631
indeterminacy (i ), degree of, 195–196, 451
inflection points for, 452–455, 459
influence lines for, 330–344, 575–579
internal work (Wvi), 295–296
joint displacement, 617–619, 627–631
lateral load analysis, 458–479
local coordinate system, 707–712
matrix structural analysis, 707–712, 714–718, 720
member end forces, 194–195
member end moments, 587–588, 626–627
member end shears, 596–597
moment-distribution method for, 678–696
multistory, 631, 695–696
portal method for, 458–473
procedures for analysis of, 200–202, 296–297, 334–336,

463–465, 474–475
reactions, 330–332, 451–454
rigid, 11–12, 192
rotations (y) and, 584–588
shear (S), 192–213, 332–333
sidesway, analysis of with, 625–643, 681–696
sidesway, analysis of without, 617–624, 680–687
slope-deflection method, for, 617–643
statically determinate, 192–213, 295–306, 308–309, 312,

330–344
statically indeterminate, 450–482, 575–579, 584–591,

617–643, 678–696, 707–712, 714–718, 720
strain energy (U) for, 308–309
sti¤ness relations in members, 707–712, 720
vertical load analysis, 454–458
virtual work method for, 295–306
work–energy methods for, 295–306, 308–309, 312

Framing systems (frameworks), 18–23
braced frames, 19–22
girders, 19–21
horizontal (lateral) loads, 19, 22
vertical (gravity) loads, 19–21

Free-body diagrams (FBD), 69, 113–117
Free-end support, 248–249

G

Gauss-Jordan elimination method, 758–762
Geometric analysis methods, 224–267

beam deflection by, 224–267
bending moment diagrams by parts, 243–247
conjugate-beam, 247–261
direct integration, 227–230
elastic curve for, 172–173
moment-area, 231–243
procedures for analysis of, 233–234, 251
superposition, 231

Geometric shapes, 747–748
Geometrically unstable (externally) structures,

61–63
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Girders, 19–21, 23–24, 356–366, 454–457. See also
Floor systems

approximate analysis of, 454–457
axial force of, 454–456
building frames, 454–457
end force of, 454–457
floor systems with, 23–24, 356–366
influence lines for, 356–366
load transmission and, 19–21

Global coordinate system, 703–705, 719–721
Gravity, 19–21. See also Vertical load analysis
Gusset plates, 97, 102
Gust e¤ect factor (G), 38

H

Hinged supports, 14–16, 57–58, 248–249, 459–461,
590–591

beam deflection and, 248–249, 590–591
conjugate beams, 248–249
frames, 459–461
load–shear–bending moment relationships, 248–249
plane structure reactions, 57–58
portal method for, 459–461
slope–deflection relationships, 248–249, 590–591
structural use of, 14–16

Horizontal (lateral) loads, 19, 22. See also Lateral
load analysis

Howe truss, 100–101
Hydrostatic pressure, 46–47

I

Ideal truss, 99–101
Identity matrix, 751
Impact factor (I), 34
Importance factor (I), 42, 46
Indeterminacy (i), degree of, 61, 110, 195–196, 451
Inflection points, 452–455, 459
Influence lines, 329–407, 559–582

absolute maximum response applications, 400–405
applications of, 387–407
beams, 330–344, 560–575
bending moments (M ), 333–334, 360–361
concentrated load applications, 387–389, 393–399,

400–404
deflections, 377–379
equilibrium method for, 330–344
floor systems, 356–377
force members, 367–371
frames, 330–344, 575–579
girders, 356–366
live load applications, 389–393, 401–402
Maxwell’s law of reciprocal deflections for, 377–378,

560–562
Müller-Breslau’s principle for, 344–356, 561, 575–579
multiple degrees of indeterminacy and, 561–562
procedures for analysis of, 334–336, 349–350, 361–362,

371–372, 397–398, 562–563

qualitative, 349, 575–579
reactions, 330–332, 357, 359, 367–369
response functions, 330, 387–407
shear (S ), 332–333, 357, 359–360
statically determinate structures, 329–407
statically indeterminate structures, 559–582
trusses, 366–377, 560–575
uniformly distributed load applications, 389–393,

401–402
use of in analysis, 329–330

Integrals, 285–288
graphical evaluation of, 288
moment diagrams using, 286–287
virtual work and, 285–288

Internal forces, 56, 161–167, 272–274, 284–285, 295–296,
488–490, 504–515

axial force (Q ) as, 161–167
beams, 488–490, 504–515
consistent deformation method using, 488–490, 504–515
deformable bodies and, 272–274
external forces and, 272–274
frames, 295–296
procedure for analysis of, 164–165
redundant as, 488–490, 504–515
shear force (S ) as, 161–167
single indeterminate structures, 488–490, 504–515
structural reactions to, 56
trusses, 284–285
virtual work (Wvi), 272–274, 284–285, 295–296

Internal stability, 58–63, 105–107
Internal unstability, 63–67
Internally indeterminate structures, 507–510.

See also Trusses
International Building Code, 17
Inversion of matrices, 755–756, 761–762

J

Joint displacement vector (d), 705
Joint load matrix (P), 721–723, 725–728
Joints, 14–15, 103–104, 589–593, 595, 617–619, 627–631,

658, 661–663, 703–706
analytical models, 14–15, 703–706
balancing, 661–663
connections, 14–15
coordinate systems for, 703–705
degrees of freedom, 593, 617, 705–706
displacement from sidesway, 617–619, 627–631
distribution factors (DF) for, 658
member elements, 703
equilibrium equations for, 593
external reactions at, 591–592
fixed-end moments (FEM) for, 589–591
frame analysis and, 617–619, 627–631
hinged (flexible), 14–15, 590–591
matrix structural analysis, 703–706
moment-distribution method and, 658, 661–663
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nodes, 703
rigid, 14–15
rotations (y), 595, 658
sidesway and, 617–619, 625–627
simple trusses, 103–104
slope-deflection method and, 589–593, 595, 617–619,

627–631
Joints, method of, 113–126, 141–143

free-body diagrams (FBD) for, 113–117
plane truss analysis by, 113–126
procedure for analysis, 119–120
space truss analysis by, 141–143
zero-force members and, 117–119, 142–143

K

K truss, 100
King post truss, 101

L

Lane load, bridges, 32–33
Lateral load analysis, 458–479

cantilever method for, 473–479
centroidal axis for, 473
column forces and, 461–462
hinge forces and, 459–461
inflection points for, 459
portal method for, 458–473
procedures for analysis by, 463–465, 474–475

Least work, method of, 483–484, 545–551
Line diagrams, analytical model representation by, 13–14
Linear elastic structures, 85–86
Link supports, 16, 57, 140
Live loads, 17, 31–34, 389–393, 401–402

absolute maximum response to, 401–402
bridges, 31–33
buildings, 31–32
floor minimums, 31–32
impact factor (I), 34
influence line applications for, 389–393, 401–402
railroads, 32–33
responses due to, 389–393, 401–402
trucks, 32–33
uniformly distributed, 389–393, 401–402

Load path, 19
Loadings, 408–438

antisymmetric, 416–419, 426–427
components of, 414–424
decomposition of, 418–424
general, 418–419, 427–428
symmetric, 414–416, 418–419, 424–426
symmetric structures and, 408–438

Loads (P), 6–12, 17–50, 56, 173–192, 247–249, 387–407,
454–479

AASHTO Standard Specifications for Highway Bridges,
17, 32–34

absolute maximum response, 400–405

applied forces as, 56
approximate analysis for, 454–479
ASCE Standard Minimum Design Loads for Buildings

and Other Structures, 17–18, 34–40
axial, 9
beams, 173–192, 247–249
cantilever method for, 473–479
combinations, 47
concentrated, 175, 387–389, 393–399, 400–404
construction material weight for, 29
dead, 17, 29–31
deflection and, 247–249
earthquake, 45–46
environmental, 17, 34–47
estimation for structural design, 6
external, 7–12
frames (rectangular), 12, 454–479
horizontal (lateral), 19, 22, 458–479
hydrostatic pressure, 46–47
impact factor (I), 34
influence line applications, 387–407
International Building Code, 17
lane (combined), 32–33
lateral (horizontal), 19, 22, 458–479
live, 17, 31–34, 389–393, 401–402
Manual for Railroad Engineering, 17
portal method for, 458–473
procedure for analysis of, 176–178, 397–398, 463–465,

474–475
railroad bridges, 33
responses due to, 387–407
shear–bending moment relationships, 173–192, 247–249
snow, 42–44
soil pressure, 46–47
statically determinate structures, 173–192, 247–249,

387–407
statically indeterminate structures, 454–479
structural systems for, 18–29
structure classification and, 7–12
thermal e¤ects, 46–47
transmitting, 18–29
trucks, 32–33
uniformly distributed, 389–393, 401–402
vertical (gravity), 19–21, 454–458
wind, 34–42

Local coordinate system, 703–705, 707–714

M

Manual for Railroad Engineering, 17
Manual of Steel Construction, 231
Matrix algebra, 749–762

elements, 749
Gauss-Jordan elimination method for, 758–762
inversion, 755–756, 761–762
operations, 752–758
partitioning, 757–758
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simultaneous equation solutions from, 758–762
size of matrices, 749–750
transposing, 756–757
types of matrices, 750–751

Matrix structural analysis, 702–746
analytical model for, 703–706
code numbers for members, 726–728
compatibility equations for, 724–725
computer program for, 730
continuous beam members, 713, 718, 720
coordinate transformations, 714–719
degrees of freedom, 705–706
equilibrium equations for, 721
frames, 707–712, 714–718, 720
global coordinate system, 703–705, 719–721
joint load matrix (P), 721–723, 725–728
local coordinate system, 703–705, 707–714
member end force matrix (F), 721–723
member sti¤ness matrix (K), global, 719–721
member sti¤ness matrix (k), local, 707–714
procedure for analysis using, 728–730
sti¤ness (k) relations, 707–714, 719–728
structure sti¤ness matrix (S), 707, 721–728
transformation matrix (T), 714–719
trusses, 713–714, 718–719, 720–721
use of, 702–703

Maxwell’s law of reciprocal deflections, 317–319, 377–378,
560–562

flexibility coe‰cient ( f ) for, 318
influence lines devised using, 377–378, 560–562
statically determinate structures, 317–319, 377–378
statically indeterminate structures, 560–562
work–energy methods using, 317–319

Member end force matrix (F), 721–723
Member end forces, frames, 194–195
Member end moments, 587–588, 595–596, 626–627
Member end shears, 596–597
Moment of inertia, 234
Moment-area method, 231–243

beam deflection by, 231–243
first theorem for, 231–233
procedure for analysis, 233–234
second theorem for, 233
tangential deviation and, 233–234

Moment-distribution method, 648–701
application of, 663–664
carryover factor (COF), 664
carryover moments, 651–657
concept of, 657–664
continuous beams, 665–678
distribution factor (DF), 653–656, 658
fixed-end moments (FEM), 656–657, 659–661
frames, 678–696
joints, balancing, 661–663
procedure for analysis of, 665
sidesway and, 678–696

sign convention for, 649
sti¤ness (K), 649–651, 652–657
use of, 648–649

Moment-distribution table, 658–659
Moment-resisting connections, 193
Müller-Breslau’s principle, 344–356, 561, 575–579

influence line construction, 344–356, 561, 575–579
procedure for analysis, 349–350
qualitative influence lines and, 349, 575–579
statically determinate structures, 344–356
statically indeterminate structures, 561, 575–579

Multiple degrees of indeterminacy, 515–536, 561–562
compatibility equations for, 516–518
consistent deformations, method of for, 515–536
flexibility coe‰cient ( f ) for, 516–518
influence lines for, 561–562
procedure for analysis of, 518–519

Multistory frames, 631, 695–696

N

Nodes, 703
Nonrigid (internally unstable) structures, 63–67
Null matrix, 751

P

Panel points, 357, 359
Parker truss, 100
Partitioning a matrix, 757–758
Plane structures, 13, 54–55, 56–67, 192–213

equilibrium equations of, 54–55
frames, 192–213
geometrically unstable externally, 61–62
internally stabile (rigid), 58–63
internally unstable (nonrigid), 63–67
static determinacy of, 59–68
supports for, 56–58

Plane trusses, 97–138
assumptions for analysis, 99–103
complex, 137–138
compound, 98, 104–105, 132–137
configurations of, 98–99
connection arrangements, 104–105
critical form of, 111
degree of indeterminacy (i), 110
equations of condition for, 107–108
equilibrium of, 109–110
internal stability of, 105–107
joints, method of, 113–126
reactions, 110–111, 113–114
sections, method of, 126–132
simple, 98, 103
static determinacy of, 107–113
triangular (basic) element, 103–104
use of, 97
zero-force members, 117–119

Plates, bending structure of, 11–12
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Point of inflection, 170
Portal method for lateral loads, 458–473
Pratt truss, 100–101
Pressure, 35–36, 38–40, 46–47

dynamic (q), 35–36
external coe‰cients (Cp), 38–40
hydrostatic, 46–47
soil, 46–47
velocity coe‰cient (Kz), 36
wind loads, 35–36, 38–40

Primary beam, 484–490
Primary forces, 101
Primary structure, 483. See also Consistent deformations
Proportion method for simply supported structures, 86–88
Purlins, 97

Q

Qualitative influence lines, 349

R

Reactions, 56–88, 110–111, 113–114, 139–140, 330–332,
357, 359, 367–369, 451–454

approximate analysis and, 451–454
beams, 330–332
computation of, 69–85
equilibrium method for, 330–332
external forces as, 56
external stability and, 59–68
floor systems, 357, 367–369
force distribution and, 453–454
frames, 330–332, 451–454
free-body diagrams (FBD) for, 69
influence lines for, 330–332, 357, 359, 367–369
internal stability and, 58–63
internal unstability and, 63–67
plane trusses, 110–111, 113–114
procedure for determination of, 69–85
proportion method for, 86–88
redundants, 61, 110, 451
simply supported structures, 86–88
space trusses, 139–140
static determinacy of structures, 59–68
supports and, 56–58, 139–140
trusses, 110–111, 113–114, 139–140, 367–369

Redundants, 61, 110, 443, 451, 483–490, 504–536
approximate analysis and, 451
bending moments (M) as, 488–490, 504–515
compatibility equations and, 515–518
consistent deformations method and, 483–490, 504–536
degree of indeterminacy (i) and, 61, 110, 451
external, 61, 110
flexibility coe‰cient ( f ) for, 486–487, 516–518
frames, 451
internal forces as, 504–515
internally indeterminate structures, 507–510
multiple degrees of indeterminacy and, 515–536

plane trusses, 110
restraints, 483
single degree of indeterminacy and, 484–490
statically indeterminate structures, 443, 451

Reference tangent, 234
Reflection, symmetry and, 408–410
Response functions, 330, 387–407

absolute maximum, 400–405
concentrated loads, 387–389, 393–399, 400–404
influence line applications for, 330, 387–407
live loads, 389–393, 401–402
procedure for analysis of, 396–397
uniformly distributed loads, 389–393, 401–402

Rigid-body displacements, 271–272
Rigid connections, 14–15
Rigid frames, bending structure of, 11–12
Rigid (internally stable) structures, 59
Risk categories, building classification, 34–35
Rocker supports, 57–58
Roller supports, 16, 57–58, 140
Roofs, 7–9, 42–44, 99, 101

snow loads on, 42–44
tension structure as, 7–9
trusses, 99, 101

Rotations (y), 271–272, 584–588, 595, 658
chord (c), 584–588, 625–626, 629–630
frames, 625–626, 629–630
joints, 595, 658
moment-distribution method, 658
slope-deflection method and, 584–588, 595
virtual (yv), 271–272

Row matrix, 750

S

Safety and serviceability checks, 6–7
Secondary forces, 102–103
Sections, method of, 126–132, 143

plane truss analysis by, 126–132
procedure for analysis, 127–128
space truss analysis by, 143

Seismic response coe‰cient (CS), 46
Semirigid connections, 14
Shear (S), 161–171, 161–223, 247–249, 332–333, 357,

359–360, 596–597
axial force (Q) and, 161–167
beams, 161–223, 247–249, 332–333
bending moments (M) and, 161–171
concentrated loads (P) and, 175
deflection and, 247–249
equilibrium method for, 332–333
floor systems, 357, 359–360
framed structures, 192–213
frames, 332–333
influence lines for, 332–333, 357, 359–360
member end, 596–597
procedures for analysis of, 164–165, 176–178
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load–bending moment relationships, 173–192, 247–249
sign convention for, 163–164
slope–deflection method and, 596–597

Shear connections, 196–197
Shear diagrams, 168–171, 176–178, 592, 598

beams, 168–171, 176–178
equations for, 169, 171
procedures for construction of, 176–178
slope–deflection method and, 592, 598

Shear structures, 10–11
Sidesway, 617–643, 678–696

degrees of freedom, 617–618
frames with, 625–643, 681–696
frames without, 617–624, 678–680
inclined legs and, 627–631
joint displacement and, 617–619, 625–627
moment-distribution method and, 678–696
multistory frames and, 631, 695–696
slope-deflection method and, 617–643

Simple interior support, 248–249
Simple trusses, 98, 103–104, 138–139

connections (joints) for, 103–104, 138–139
plane, 103–104
space, 138–139

Simply supported structures, reactions of, 86–88
Single degree of indeterminacy, 484–515. See also Beams
Slabs, 11–12, 25–26
Slope (y), 225–226, 231–232, 504–507, 775–779

bending moments (M) and, 504–508
beam deflection, 225–226, 231–232
change in (dy), 225–226, 231–232
consistent deformation method and, 504–507
continuity, 775–779
elastic curve, 225–226, 231–232, 504–507
three-moment equation for, 775–779

Slope–deflection method, 583–647
beams, 584–616
bending moment diagrams for, 592, 598
bending moments (M ), 584–588
cantilever overhangs and, 599–600
chord rotation (c), 584–588, 625–626, 629–630
concept of, 591–598
continuous beam analysis, 598–616
degrees of freedom, 593, 617–618
end supports, 588–591, 599
equations, 584–591, 593–595
equilibrium equations for, 593, 597
fixed-end moments (FEM), 588–590, 594
frame analysis, 617–643
hinged members, 590–591
joints and, 590–595, 617–619, 627–631
member end moments, 587–588, 595–596, 626–627
member end shears, 596–597
procedure for analysis using, 598–599
rotations (y) and, 584–588, 595
shear diagrams for, 592, 598

sidesway and, 617–643
sign convention for, 593, 598
support reactions, 597

Slope–deflection relationships, 247–249
Slope factor (Cs), 43
Sloped roofs (ps), 43
Snow loads, 42–44

exposure factor (Ce) for, 42–43
flat roofs (pf), 42
importance factor (I), 42
slope factor (Cs) for, 43
sloped roofs (ps), 43
thermal factor (Ct) for, 42–43

Soil pressure, 46–47
Space structures, 13, 54, 97, 99–103, 138–147

assumptions for analysis, 99–103
determinacy of, 140–141
equilibrium, equations of, 54
joints, method of, 141–143
reactions, 139–140
sections, method of, 143
stability of, 141
structure of, 54
supports for, 138–140
tetrahedron element for, 138–139
trusses, 99–103, 138–147
zero-force members, 142–143

Square matrix, 750
Stability, see Equilibrium; Internal Stability; Structural

stability
Static determinacy/indeterminacy, see Determinacy
Static indeterminacy (i), degree of, 110, 195–196
Statically determinate structures, 51–438, 442–445

beams, 161–222, 224–267, 283–295, 307–308, 311–313,
317–319, 330–344

bending moments (M), 161–223
deflection (D), 172–173, 224–267, 268–328,

377–379
determinacy of, 59–68, 107–113
equations of conditions for, 63–68, 107
equilibrium of, 53–96, 109–110
external forces and, 56
external stability of, 50–58
floor systems, 356–377
frames, 192–213, 295–306, 308–309, 312, 330–344
geometrically unstable (externally), 61–63
geometric methods for, 224–267
girders, 356–366
indeterminate structures compared to, 442–445
influence lines, 329–407
internal forces and, 56
internal stability of, 58–63
internal unstability of, 63–67
linear elastic, 85–86
loading e¤ects on, 387–438
principle of superposition, 85–86
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responses to loads, 387–438
shear (S), 161–223
simply supported, 86–88
support reactions, 56–67
symmetric, 408–438
trusses, 97–160, 274–283, 307, 311, 366–377
work–energy methods for, 268–328

Statically indeterminate structures, 59–68, 439–746
advantages of, 442–443
analysis of, 445–449
approximate analysis for, 450–482
beams, 484–515, 560–575, 584–616, 665–678, 713, 720
building frames, 450–482
compatibility conditions for, 441–442, 445–447,

516–518, 537–539
consistent deformations, method of, 483–558
determinacy of, 59–68
determinate structures compared to, 442–445
disadvantages of, 443–445
displacement (sti¤ness) methods, 449, 583–746
equilibrium of, 445–449
force (flexibility) methods for, 449, 483–558
force-deformation relations, 445–449
frames, 450–482, 575–579, 617–643, 678–696,

707–712, 720
inflection points for, 452–455, 459
influence lines for, 559–582
internal indeterminacy of, 507–510
internal stability and, 59–68
least work, method of, 483–484, 545–551
matrix structural analysis of, 702–746
moment-distribution method for, 648–701
multiple degrees of indeterminacy, 515–536
procedures for analysis of, 463–465, 474–475, 490–491,

518–519, 562–563, 598–599, 728–730
redundants, 61, 443, 451, 483–490, 504–536
sidesway, 625–643
single degree of indeterminacy, 484–515
slope-deflection method for, 583–647
sti¤ness of, 443
stresses in, 442–445
trusses, 507–510, 560–575, 713–714, 720–721

Sti¤ness, 443, 649–651, 652–657, 707–714, 719–728
beams, 652–653, 713
bending, 649–651, 653–656
code numbers for members, 726–728
compatibility equations for, 724–725
continuous beams, 713, 720
distribution factors (DF) for, 653–656
equilibrium equations for, 721
frames, 707–712, 720
global coordinate (K) relations, 719–721
local coordinate (k) relations, 707–714
matrix structural analysis, 707–714, 719–728
member (matrix) relations, 721–724
moment-distribution method and, 649–651, 652–657

statically indeterminate structures, 443, 707–714, 719–728
structure (matrix) relations, 725–726
structure sti¤ness matrix (S), 707, 721–728
trusses, 713–714, 720–721

Sti¤ness matrices, 707–714, 719–728
global member (K), 719–720
joint loads (P), 721–723, 725–728
local member (k), 707–714
matrix structural analysis using, 707–714, 719–728
member end forces (F), 721–723
structure (S), 707, 725–728
transformation matrix (T), 714–719

Sti¤ness methods, see Displacement methods
Strain energy (U), 306–311

beams, 307–308
Castigliano’s second theorem and, 309–311
conservation of energy and, 306–307
deflection and, 306–311
frames, 308–309
trusses, 307

Stress, 442–445
bending, 442
fabrication errors and, 444–445
statically indeterminate structures, 442–445
support settlement causing, 443–444
temperature changes and, 444–445

Stringers, 13, 357–358
Structural analysis, 3–16, 17–50, 53–96, 99–103, 329–407,

483–746. See also Statically determinate structures;
Statically indeterminate structures

analytical models for, 12–16
beams, 330–356, 484–515, 560–575
bending structures, 11–12
classification of structures, 7–12
compression structures, 9–10
computations for reactions, 69–85
connections and, 14–15
consistent deformations, method of, 483–558
engineering projects, role of in, 5–7
equilibrium, 53–96
estimation of loads for, 6
flexibility coe‰cient for, 486–487
frames, 330–344
free-body diagrams (FBD) for, 69
history of, 3–5
influence lines for, 329–407, 559–582
internal stability, 58–68
line diagrams for, 13–14
loads, 7–10, 17–50
performance characteristics of, 3
plane structure model, 13
planning phase, 5–6
principle of superposition, 85–86
reactions, 56–88
safety and serviceability checks, 6–7
shear structures, 10–111
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slope-deflection method, 583–647
space structure model, 13
static determinacy, 58–85
structural design and, 6, 7
superposition, principle of for, 85–86
supports and, 16
tension structures, 7–9
trusses, 10, 99–103, 366–377

Structural stability, 58–68, 105–113, 192–199
determinacy and, 59–68, 107–113, 192–199
equations of condition for, 63–68
external, 59–68
internal, 58–63, 105–107
internal unstability and, 63–67
plane frames, 192–199
trusses, 105–113

Structural systems, 18–29
bridges, 18–26
floor systems, 23–29
framing systems (frameworks), 18
girders, 19–21, 23–24
horizontal (lateral) load path, 19, 22
load transmission from, 18–29
multi-story buildings, 19, 22–26
single-story buildings, 19–22
structural members, 18
tributary areas, 23–26
vertical (gravity) load path, 19–21

Structure classification, 7–12
axial loads and, 9
bending, 11–12
compression, 9–10
external loads and, 7–12
shear, 10–11
tension, 7–9
trusses, 10

Structure sti¤ness matrix (S), 707, 721–728
Structures, see Bridges; Buildings; Trusses
Superposition, 85–86, 231

beam deflection, method for, 231
principle of, 85–86

Support bridges, 9–10
Supports, 16, 56–68, 138–140, 248–249, 443–444, 537–542,

588–591, 594, 597, 775–788
ball, 140
ball-and-socket, 138, 140
beams, 248–249, 588–591
compatibility equations for, 537–539
conjugate beams, 248–249
consistent deformations method and, 537–542
continuous beam end supports, 588–591
deflection and, 248–249
end, 588–591, 599
equilibrium and, 56–67
fixed, 16, 57, 248–249, 588–590, 594, 781
free end, 248–249

hinged, 16, 57–58, 248–249, 590–591
internal stability and, 58–63
internal unstability and, 63–67
link, 57, 140
plane structures, 56–58
reactions and, 56–58, 139–140, 597
rocker, 57–58
roller, 57–58, 140
statically determinate structures, 138–140, 248–249
statically indeterminate structures, 443–444, 537–542,

588–591
simple interior, 248–249
slope-deflection method for, 588–591, 594, 597
space trusses, 138–140
static determinacy and, 59–68
stresses due to settlement of, 443–444
structural use of, 16, 56–67
three-moment equation for, 775–788

Suspension bridges, 7–8
Symmetric loadings, 414–416, 418–419, 424–426
Symmetric matrix, 751
Symmetric structures, 408–438

antisymmetric loadings, 416–419, 426–427
axis of symmetry (s) for, 410–412
behavior of under loadings, 424–428
decomposition of loading, 418–424
examples of, 410–412
general loadings, 418–419, 427–428
determination of, 410–414
procedure for analysis of, 428–429
reflection and, 408–410
symmetric loadings, 414–416, 418–419, 424–426

T

Tangential deviation, 233–234
Temperature changes, 275–276, 444–445, 543–545

consistent deformations method and, 543–545
deformation and, 275–276, 444–445, 543–545
stresses due to, 444–445
trusses and, 275–276

Tension structures, 7–9
Tetrahedron truss element, 138–139
Thermal e¤ects on structures, 46–47, 444–445
Thermal factor (Ct) for, 42–43
Three-moment equation, 775–788

application of, 780–787
bending moments (M) and, 779–780
derivation of, 775–780
fixed supports, 781
slope (y) continuity and, 775–779

Topographic factor (Kzt), 36
Transformation matrix (T), 714–719
Transpose of a matrix, 756–757
Triangular (basic) truss element, 103
Tributary areas, 23–26
Truck load, bridges, 32–33
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Trusses, 10, 97–160, 274–283, 307, 311, 366–377, 507–510,
560–575, 713–714, 718–719, 720–721

assumptions for analysis, 99–103
axial forces on, 99, 101–103
basic (triangular) element, 103
bridges, 100, 366–377
Castigliano’s second theorem for, 311
complex, 137–138
compound, 98, 104–105, 132–137
consistent deformations method for, 507–510
coordinate transformations, 718–719
deflection, 274–283, 307, 311
determinacy of, 107–113, 140–141
equilibrium and, 107–110
external stability, 103
fabrication errors and, 275–276
floor systems with, 366–377
force in members, 367–371
global coordinate system, 720–721
ideal, 99–101
influence lines for, 366–377, 560–575
internal stability, 105–107, 141
joints, method of, 113–126, 142–143
local coordinate system, 713–714
matrix structural analysis, 713–714, 718–719, 720–721
plane, 97–138
primary forces on, 101
procedures for analysis of, 119–120, 127–128, 276,

371–372, 562–563
reactions, 110–111, 113–114, 139–140, 367–369
roofs, 99, 101
secondary forces on, 102–103
sections, method of, 126–132, 143
simple, 98–104, 138–139
space, 97, 138–147
statically determinate, 97–160, 274–283, 307, 311,

366–377
statically indeterminate, 507–510, 560–575
sti¤ness relations in members, 713–714, 720–721
strain energy (U) for, 307
structure of, 10, 97–99
temperature changes and, 275–276
tetrahedron element for, 138–139
virtual work method for, 274–283
work–energy methods for, 274–283, 307, 311
zero-force members, 117–119, 142–143

Two- and three-force structures, equilibrium of, 55–56

U

Uniformly distributed live loads, 389–393, 401–402
absolute maximum response to, 401–402
influence line applications for, 389–393, 401–402

Unity matrix, 751

V

Velocity pressure exposure coe‰cient (Kz), 36
Vertical (gravity) loads, 19–21

Vertical load analysis, 454–458
approximate analysis for, 454–458
frames of rectangular buildings, 454–458
girder forces and, 454–457
inflection points for, 454–455

Virtual work, 270–306
axial deformation (d), 275–276
beam deflection by, 283–295
deflection (D) by, 270–306
displacement (D), 271–272
external (Wve), 271–274
fabrication error and, 275–276
forces for deformable bodies, 272–274
frame deflection by, 295–306
integrals for, 285–288
internal (Wvi), 272–274, 284–285, 295–296
principle of, 270–274
procedures for analysis using, 276, 285, 288, 296–297
rigid-body displacements, 271–272
rotation (yv), 271–272,
temperature change and, 275–276
truss deflection by, 274–283

W

Walls, shear structure of, 10–11
Warren truss, 100–101
Wind directionality factor (Kd), 36
Wind loads, 34–42

building classifications for, 34–35
building exposure categories, 38
dynamic pressure (q) and, 35–36
external pressure coe‰cients (Cp) for, 38–40
gust e¤ect factor (G) for, 38
topographic factor (Kzt), 36
velocity pressure exposure coe‰cient (Kz), 36
wind directionality factor (Kd), 36
wind speed (V) and, 35–37

Wind speed (V), 35–37
Work (W), 268–270, 306–307. See also Virtual work
Work–energy methods, 268–328

beam deflection by, 283–295, 307–308, 311–312
Betti’s law of reciprocal deflections, 317–319
Castigliano’s second theorem, 309–317
couples, work of, 270
deflection (D) by, 268–328
energy, conservation of, 306–309
forces and, 268–270
frame deflection by, 295–306, 308–309, 312
Maxwell’s law of reciprocal deflections, 317–319
procedures for analysis using, 276, 285, 288, 312–313
strain energy (U), 306–309
total work (W), 268–270
truss deflection by, 274–283, 307, 311
virtual work, 270–306

Z

Zero-force members, 117–119, 142–143
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